Commutative Algebra

Exercises 1

The Spectrum of a ring [Reference: EGA I, Chapter 0 §2]

-2. Compute Spec \(\mathbb{Z} \) as a set and describe its topology.

Let \(A \) be any ring. Let \(X \) be any topological space.

-1. For \(f \in A \) we define \(D(f) := \text{Spec } A \setminus V(f) \). Prove that the open subsets \(D(f) \) form a basis of the topology of \(\text{Spec } A \).

0. Prove that the map \(I \mapsto V(I) \) defines a natural bijection \(\{ I \subset A \text{ with } I = \sqrt{I} \} \rightarrow \{ T \subset \text{Spec } A \text{ closed} \} \).

A topological space \(X \) is called quasi-compact if for any open covering \(X = \bigcup_{i \in I} U_i \) there is a finite subset \(\{ i_1, \ldots, i_n \} \subset I \) such that \(X = U_{i_1} \cup \ldots \cup U_{i_n} \).

1. Prove that Spec \(A \) is quasi-compact for any ring \(A \).

A topological space \(X \) is said to verify the separation axiom \(T_0 \) if for any pair of points \(x, y \in X, x \neq y \) there is an open subset of \(X \) containing one but not the other. We say that \(X \) is Hausdorff if for any pair \(x, y \in X, x \neq y \) there are disjoint open subsets \(U, V \) such that \(x \in U \) and \(y \in V \).

2. Show that Spec \(A \) is not Hausdorff in general. Prove that Spec \(A \) is \(T_0 \). Give an example of a topological space \(X \) that is not \(T_0 \).

Remark: usually the word compact is reserved for quasi-compact and Hausdorff spaces. A topological space \(X \) is called irreducible if \(X \) is not empty and if \(X = Z_1 \cup Z_2 \) with \(Z_1, Z_2 \subset X \) closed, then either \(Z_1 = X \) or \(Z_2 = X \). A subset \(T \subset X \) of a topological space is called irreducible if it is an irreducible topological space with the topology induced from \(X \). This definitions implies \(T \) is irreducible if and only if the closure \(\bar{T} \) of \(T \) in \(X \) is irreducible.

3. Prove that Spec \(A \) is irreducible if and only if \(\text{Nil}(A) \) is a prime ideal and that in this case it is the unique minimal prime ideal of \(A \).

4. Prove that a closed subset \(T \subset \text{Spec } A \) is irreducible if and only if it is of the form \(T = V(p) \) for some prime ideal \(p \subset A \).

A point \(x \) of an irreducible topological space \(X \) is called a generic point of \(X \) if \(X \) is equal to the closure of the subset \(\{ x \} \).

5. Show that in a \(T_0 \) space \(X \) every irreducible closed subset has at most one generic point.

6. Prove that in Spec \(A \) every irreducible closed subset does have a generic point. In fact show that the map \(p \mapsto \{ p \} \) is a bijection of Spec \(A \) with the set of irreducible closed subsets of \(X \).

7. Give an example to show that an irreducible subset of Spec \(\mathbb{Z} \) does not neccesarily have a generic point.
A topological space X is called \textit{Noetherian} if any decreasing sequence $Z_1 \supset Z_2 \supset Z_3 \supset \ldots$ of closed subsets of X stabilizes. (It is called \textit{Artinian} if any increasing sequence of closed subsets stabilizes.)

8. Show that if the ring A is Noetherian then the topological space $\text{Spec } A$ is Noetherian. Give an example to show that the converse is false. (The same for Artinian if you like.)

A maximal irreducible subset $T \subset X$ is called an \textit{irreducible component} of the space X. Such an irreducible component of X is automatically a closed subset of X.

9. Prove that any irreducible subset of X is contained in an irreducible component of X.

10. Prove that a Noetherian topological space X has only finitely many irreducible components, say X_1, \ldots, X_n, and that $X = X_1 \cup X_2 \cup \ldots \cup X_n$. (Note that any X is always the union of its irreducible components, but that if $X = \mathbb{R}$ with its usual topology for instance then the irreducible components of X are the one point subsets. This is not terribly interesting.)

11. Show that irreducible components of $\text{Spec } A$ correspond to minimal primes of A.

A point $x \in X$ is called closed if $\{x\} = \overline{\{x\}}$. Let x, y be points of X. We say that x is a \textit{specialization} of y, or that y is a \textit{generalization} of x if $x \in \overline{\{y\}}$.

12. Show that closed points of $\text{Spec } A$ correspond to maximal ideals of A.

13. Show that a generalization p of q in $\text{Spec } A$ if and only if $p \subset q$. Characterize closed points, maximal ideals, generic points and minimal prime ideals in terms of generalization and specialization. (Here we use the terminology that a point of a possibly reducible topological space X is called a generic point if it is a generic points of one of the irreducible components of X.)

14. Let I and J be ideals of A. What is the condition for $V(I)$ and $V(J)$ to be disjoint? A topological space X is called \textit{connected} if it is not the union of two nonempty disjoint open subsets. A \textit{connected component} of X is a (nonempty) maximal connected subset. Any point of X is contained in a connected component of X and any connected component of X is closed in X. (But in general a connected component need not be open in X.)

15. Show that $\text{Spec } A$ is disconnected iff $A \cong B \times C$ for certain nonzero rings B, C.

16. Let T be a connected component of $\text{Spec } A$. Prove that T is stable under generalization. Prove that T is an open subset of $\text{Spec } A$ if A is Noetherian. (Remark: This is wrong when A is an infinite product of copies of \mathbb{F}_2 for example. The spectrum of this ring consists of infinitely many closed points.)

17. Compute $\text{Spec } k[x]$, i.e., describe the prime ideals in this ring, describe the possible specializations, and describe the topology. (Work this out when k is algebraically closed but also when k is not.)

18. Compute $\text{Spec } k[x, y]$, where k is algebraically closed. [Hint: use the morphism $\varphi : \text{Spec } k[x, y] \to \text{Spec } k[x]$; if $\varphi(p) = (0)$ then localize with respect to $S = \{f \in k[x] \mid f \neq 0\}$ and use result of lecture on localization and Spec.] (Why do you think algebraic geometers call this affine 2-space?)

19. Compute $\text{Spec } \mathbb{Z}[y]$. [Hint: as above.] (Affine 1-space over \mathbb{Z}.)