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Class 1

Definition 1. Given a ring R, a finite-type R-algebra is any R-algebra A
which can be generated as an R-algebra by finitely many elements over R.
Equivalently, A ∼= R[x1, . . . , xn]/I.

Definition 2. A ring map φ : A → B is finite (or B is finite over A) if there
exist finitely many elements of B that generate B as an A-module. Equivalently,
there exists a surjective map A⊕n → B as A-modules.

Example 1. Consider A = k[x1, x2]/(x1x2 − 1) ∼= k[t, t−1] ⊂ k(t). The map
k[x1, x2] � A is finite but not injective. On the other hand, k[x1] → A is

injective but not finite. The map k[y]
φ→ A given by y 7→ x1 + x2 works, as one

can show.

Theorem (Noether Normalization). Let k be a field, and A be a finite-type
k-algebra. Then there exists an r ≥ 0 and a finite injective k-algebra map
k[y1, . . . , yr]→ A.

Before we prove the theorem let us state some useful lemmas.

Lemma 1. If A → B is a ring map such that B is generated as an A-algebra
by x1, . . . , xn ∈ B and each xi satisfies a monic equation

xdnn + φ(an−1)x
dn−1

n−1 + . . .+ φ(a1) = 0

over A, then φ is finite.

Proof. The map A⊕d1...dn → B given by

(ai1 , . . . , ain) 7→
∑

φ(ai1 , . . . , ain)xi11 · · ·xinn

is surjective.

Definition 3. Given a ring map A → B we say that an element b ∈ B is
integral over A if there exists a monic P (T ) ∈ A[T ] such that P (b) = 0 in B.
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Lemma 2 (Horrible lemma). Suppose f ∈ k[x1, . . . , xn] is non-zero. Pick
natural numbers e1 � e2 � . . .� en−1. Then f(x1 +xe1n , . . . , xn−1 +x

en−1
n , xn)

is of the form axNn + lower order terms, where a ∈ k×.

Proof. Write f =
∑
I∈k aIx

I with aI 6= 0 for all I ∈ k, where k is a finite set of
multi-indices. Substituting, we get something of the form

(x1 + xe1n )ii · · · (xn−1 + xen−1
n )in−1xinn = xi1e1+...+in−1en−1+in

n .

It suffices to show that if I, I ′ ∈ k, for distinct I, I ′ we have that

i1e1 + . . .+ in−1en−1 + in 6= i′1e1 + . . .+ i′n−1en−1 + i′n.

If I is lexicographically larger than I ′ then the left hand side is greater than the
right hand side.

Lemma 3. Suppose we have A→ B → C ring maps. If A→ C is finite, then
B → C is finite.

Proof. Trivial.

Lemma 4. Suppose we have A → B → C ring maps. If A → B and B → C
are finite, then A→ C is finite as well.

Proof. Trivial.

We now have enough machinery to prove Noether normalization.

Proof. Let A be as in the theorem. We write A = k[x1, . . . , xn]/I. We proceed
by induction on n. For n = 0, we simply have A = k, and we can take the
identity map k → A, which is clearly finite and injective. Now suppose the
statement holds for n−1, i.e. for algebras generated by n−1 or fewer elements.
If the generators x1, . . . , xn are algebraically independent over k (i.e. I = 0),
we are done and we may take r = n and yi = xi. If not, pick a non-zero f ∈ I.
For e1 � e2 � . . .� en−1 � 1, set

y1 = x1 − xe1n , . . . yn−1 = xn−1 − xen−1
n , xn = xn,

and consider f(x1, . . . , xn) = f(y1 + xe1n , . . . , yn−1 + x
en−1
n , yn). By Lemma 2,

we see that this polynomial is monic in xn and hence, since xi are integral
over A, we conclude (by Lemma 1) that A = k[x1, . . . , xn]/I is finite over
B = k[y1, . . . , yn−1]. To show that B → A is injective, let J = Ker(B → A)
and replace B by B/J . Now B/J → A is injective, and by Lemma 3 it is finite.
But since B/J is finite over k[y1, . . . , yr] by the induction hypothesis, A must
be as well (see Lemma 4), and we are done.
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Class 2

Let A be a ring. Then we define the spectrum of A, SpecA, to be the set
of prime ideals of A. Note that Spec(−) is a contravariant functor in the sense
that if φ : A → B is a ring map we get a map Spec(φ) : Spec(B) → Spec(A)
given by q 7→ φ−1(q). In order for this to work we want q prime in B ⇔ φ−1(q)
prime in A. Notice that q prime implies that B/q is a domain. But φ induces
a homomorphism A/φ−1(q) → B/q and this homomorphism must preserve
multiplication. In particular, if the product of two elements in A/φ−1(q) is
0, then so is the product of their images in B/q. So B/q domain implies that
A/φ−1(q) is a domain. Then φ−1(q) is prime. The converse can be proved in
the same way.

Remark. Abuse of notation: often we write A ∩ q for φ−1(q) even if φ is not
injective. Note also that Spec(−) is in fact a functor from Ring to Top, though
we will postpone discussion about topology until later.

Example 2. Consider Spec(C[x]). Since C[x] is a PID (and thus a UFD), the
primes are principal ideals generated by irreducibles, i.e. linear terms. Hence
Spec(C[x]) = {(0), (x− λ)|λ ∈ C}. Consider φ : C[x]→ C[y], given by x 7→ y2.
Set qλ = (y−λ) and pλ = (x−λ). Then Spec(φ)(qλ) = pλ2 . Why is this? First
note that φ(pλ2) = (x2−λ2) = (x−λ)(x+λ) ⊂ pλ, which gives us an inclusion.
Additionally, we have that Spec(φ) ((0)) = (0). Since this is everything in
SpecC[y], we have equality. Note that the fibres of Spec(φ) are finite!

Indeed, the goal of the next couple lectures will be to show that the fibres
of maps on spectra of a finite ring map are finite.

Let us start by considering the following setup. Let φ : A → B be a ring
map and p ⊂ A a prime ideal. What is the fibre of Spec(φ) over p? First of all,
note that if φ−1(q) = q ∩A = p, then pB = φ(φ−1(q))B ⊂ q.

Lemma 5. If I ⊂ A is an ideal in a ring A then the ring map A→ A/I induces
via Spec(−) a bijection Spec(A/I)↔ V (I) = {p ∈ Spec(A)|I ⊂ p}.

Proof. We use the fact that the ideals of A/I are in 1-to-1 correspondence with
ideals of A containing I. We wish to extend this to prime ideals. By the third
isomorphism theorem, given J ⊂ I ⊂ A, we have that A/I ∼= (A/J)/(I/J). We
see that A/I is a domain iff I/J is prime in A/J iff I is prime in A; this gives
us the 1-to-1 correspondence.

Remark. Consider next the following two diagrams.

B B/pB

A A/p

φ φ̄ ←→
SpecB Spec(B/pB)

SpecA Spec(A/p)

Spec(φ) Spec(φ̄)

Clearly the point p ∈ Spec A corresponds to (0) ∈ Spec(A/p). Thus, by Lemma
5, points in the fibre of Spec(φ) over p are in 1-1 correspondence with points in
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the fibre of Spec(φ̄) over (0) ∈ Spec(A/p). This fact will be very important for
our proofs later on.

Lemma 6. If k is a field, then Spec(k) has exactly one point. If k is the
fraction field of a domain A, then Spec(k)→ Spec(A) maps the unique point to
(0) ∈ Spec(A).

Proof. The only ideals of a field k are (0) and k itself. The sole prime ideals is
thus (0) and hence Spec(k) has only one point. If k is the fraction field of the
domain A then we have an injective map A → k which clearly pulls (0) ⊂ k
back to (0) ⊂ A.

Next we wish to invert some elements in B/pB. More specifically, since we
are interested in the ideals of B/pB that are mapped to (0) by Spec(φ̄), we
would like to ’throw out’ the other ones. We do this by creating inverses for
elements of A/p − {0}, such that none of them will be primes anymore. (See
example 3 below for how this works.) This leads to a very general notion of
localization, which we discuss in detail for the rest of the lecture.

Definition 4. Let A be a ring. A multiplicative subset of A is a subset
S ⊂ A such that 1 ∈ S and if a, b ∈ S, then ab ∈ S.

Definition 5. Given a multiplicative subset S, we can define the localization
of A with respect to S, S−1A, as the set of pairs (a, s) with a ∈ A, s ∈ S
modulo the equivalence relation (a, s) ∼ (a′, s′) ⇐⇒ ∃s′′ ∈ S such that
s′′(as′ − a′s) = 0 in A. Elements of S−1A are denoted a

s . Addition proceeds as
usual. One checks that this is indeed a ring.

Lemma 7. The ring map A → S−1A given by a 7→ a
1 induces a bijection

Spec(S−1A)↔ {p ⊂ A|S ∩ p = ∅}.

Proof. It’s easy to show that Spec(φ)(S−1(A)) ⊂ {p ⊂ A|S ∩ p = ∅}. Let q be
a prime in S−1A; if φ−1 contains some s ∈ S, then φ(s) ∈ q. But φ(s) is a unit,
so q = S−1A. We omit the proof of the converse.

Note that any element of S becomes invertible in S−1A so it is not in any
prime ideal of S−1A.

Example 3. Suppose A = C[x] → B = C[y] with x 7→ 5y2 + 3y + 2. Then
Spec(φ)−1 ((x)) = Spec

(
(A/p− {0})−1B/pB

)
= Spec

(
(C×)−1C[y]/(5y2 + 3y + 2)

)
=

Spec
(
C[y]/(5y2 + 3y + 2)

)
. There are two points in this space, since this quadratic

factors into two prime ideals containing the ideal generated by this quadratic
(see Lemma 5). More generally, one may refer to the following diagram, which
will be very useful next lecture.

B B/pB φ̄ (A/p− {0})−1
B/pB

A A/p Fr(A/p) = (A/p− {0})−1
A/p

4



Given S ⊂ A multiplicative, and an A-module M , we can form an S−1A-
module

S−1M =
{m
s
|m ∈M, s ∈ S

}
/ ∼

where the equivalence relation is the same as before. The construction M →
S−1M is a functor ModA →ModS−1A.

Lemma 8. The localization functor M → S−1M is exact.

Proof. Suppose the sequence 0 → M ′
α→ M

β→ M ′′ → 0 is exact. We wish to

show that the sequence 0 → S−1M ′
S−1α→ S−1M

S−1β→ S−1M ′′ → 0 is exact.
Let us first show that this sequence is exact at S−1M , i.e. that Im(S−1α) =
ker(S−1β). Pick m′/s ∈ S−1M ′. We take S−1α(m′/s) = α(m′)/s and then
compute S−1β(α(m′)/s) = β(α(m′))/s = 0 by the given exactness. This
shows the inclusion Im(S−1α) ⊂ ker(S−1β). Next, choose an element m/s ∈
ker(S−1β). Then β(m)/s = 0 in S−1M ′′, i.e. there exists a t ∈ S such that
tβ(m) = 0 in M ′′. Since β is a A-module homomorphism, tβ(m) = β(tm) and
so tm ∈ ker(β) = Im(α). Therefore tm = α(m′) for some m′ ∈ M ′. Hence we
have m/s = α(m′)/st = (S−1α)(m′/st) ∈ Im(S−1α), which demonstrates the
reverse inclusion.

The rest of the proof is left as a exercise.

Remark. An exact functor is one that preserves quotients. What Lemma 8 says
is that if N ⊂ M then S−1M/S−1N ∼= S−1(M/N). In particular, if I ⊂ A is
an ideal, then S−1(A/I) = S−1A/S−1I.

Remark. If A
φ→ B, then S−1B is an S−1A-algebra and S−1B ∼=

(
φ(S)

)−1
B.

Definition 6. Let A be a ring and p ⊂ A be a prime ideal, then Ap = (A−p)−1A
is the local ring of A at p (or the localization of A at p). If M is an A-module,
then we set Mp = (A− p)−1M .

Definition 7. A local ring is a ring with a unique maximal ideal.

Lemma 9. Ap is a local ring.

Proof. Consider the quotient Ap/pAp. By the remark above, we can factor
Ap/pAp = (A − p)−1(A/p). This is justified because Ap = (A − p)−1A by
definition and because pAp = (A− p)−1p for some reason. Next, by the remark
directly above, if we let φ : A → A/p be the natural surjection, then (A −
p)−1(A/p) = (φ(A − p))−1(A/p) = (A/p − {0})−1(A/p). But this is just the
fraction field of A/p, i.e. Ap/pAp is a field. Hence pAp is maximal.

This is the unique maximal ideal because by Lemma 7, the primes of Ap are
the primes q ⊂ A that do not intersect A− p. This implies that q ⊂ p, and thus
q cannot be maximal unless q = p.
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Class 3

Lemma 10. Let A
φ→ B be a finite ring map. Then

(a) for I ⊂ A ideal, the ring map A/I → B/IB is finite;

(b) for S ⊂ A multiplicative subset, S−1A→ S−1B is finite;

(c) for A→ A′ ring map, A′ → B ⊗A A′ is finite.

Proof. (a) Consider the following diagram:

B B/IB

A A/I

By Lemma 4 we see that if the map B → B/IB is finite, then so is A →
B/IB, which would imply that (by Lemma 3) A/I → B/IB is finite. But
B → B/IB is obviously finite, as it is generated as a B-module by {1}.

(b) Since A → B is finite, there exists a surjection A⊕n � B. The state-
ment that S−1A → S−1B is finite follows immediately from the fact that
localization is exact and hence preserves surjectivity of (S−1A)⊕n � S−1B.

(c) We haven’t yet discussed tensor products, so we will leave this for now.

Lemma 11. Suppose k is a field, A is a domain and k → A a finite ring map.
Then A is a field.

Proof. Since A is an algebra, multiplication by an element a ∈ A defines a k-
linear map A→ A. The map is also injective: Ker(a) = {a′ ∈ A|aa′ = 0} = {0},
because A has no zero divisors. But, since dimk(A) is finite, injectivity implies
surjectivity. Then there exists a′′ such that aa′′ = 1, so a is a unit.

Lemma 12. Let k be a field and k → A a finite ring map. Then:

(a) Spec(A) is finite.

(b) there are no inclusions among prime ideals of A.

In other words, Spec(A) is a finite discrete topological space with respect to the
Zariski topology.

Proof. For some p prime in A, A/p is a domain and the natural map k → A/p
is finite since k → A and A → A/p are both finite. By Lemma 11 we see
that A/p must be a field, and that p must be maximal. Hence all primes of
A are maximal. This shows (b), as there can be no inclusions among maximal
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ideals. Moreover, by the Chinese remainder theorem (see Lemma 13 below)
the map A → A/m1 × . . . × A/mn is surjective. Since A and its quotients are
vector spaces, this translates into a statement about their dimension: dimk A ≥∑
i dimk A/mi ≥ n. Thus n is finite, which shows (a).

Lemma 13 (Chinese remainder theorem). Let A be a ring, and I1, ..., In ideals
of A such that Ii + Ij = A,∀i 6= j. Then there exists a surjective ring map
A� A/I1 × ...×A/In with kernel I1 ∩ ... ∩ In = I1...In.

Proof. Omitted.

Lemma 14. Let A
φ→ B be a finite ring map. The fibres of Spec(φ) are finite.

Proof. Consider the following diagram:

B B/pB Bp/pBp = φ̄ (A/p− {0})−1
B/pB

A A/p Fr(A/p) = (A/p− {0})−1
A/p

φ φ̄

By (a) and (b) of Lemma 10, φ̄ and Fr(A/p) → Bp/pBp are finite. Now recall
that the points in the fibre of Spec(φ) over p ∈ Spec(A) correspond to points
in the fibre of Spec(φ̄) over (0) ∈ Spec(A/p). If we now look at the third
column of the diagram, we see that since Fr(A/p) is a field, Lemma 12 implies
that Spec(Bp/pBp) is finite. Hence there must be a finite number of points in
Spec(Bp/pBp) that map to (0) ∈ Spec(Fr(A/p)), and thus (again arguing via
correspondence), the points in the fibre of Spec(φ) over p ∈ Spec(A) must be
finite.

Lemma 15. Suppose that A ⊂ B is a finite extension (i.e. there exists a finite
injective map A→ B). Then Spec(B)→ Spec(A) is surjective.

Proof. We want to reduce the problem to the case where A is a local ring. For
this, let p ⊂ A be a prime. By part b of Lemma 10, the map Ap → Bp is finite.
By Lemma 8, the same map is injective. Then we can replace A and B in the
statement of the lemma by Ap and Bp.

Now, assuming that A is local, p is the maximal ideal of A, and we denote
it by m in what follows. The following statements are equivalent:

∃q ⊂ B lying over m⇔ ∃q ⊂ B such that mB ⊂ q
⇔ B/mB 6= 0

But the last statement is always true, since Nakayama’s lemma (see below) says
that mB = B implies B = 0.

Lemma 16 (Nakayama’s lemma). Let A be a local ring with maximal ideal m,
and let M be a finite A-module such that M = mM . Then M = 0.
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Proof. Let x1, ..., xr ∈M be generators ofM . SinceM = mM we can write xi =∑r
j=1 aijxj , for some aij ∈ m. Then define the r × r matrix B = 1r×r − (aij).

The above relation for the generators translates into:

B

 x1

...
xr

 = 0

Now consider Bad, the matrix such that BadB = det(B)1r×r. Multiplying the
above equation on the left by Bad we obtain:

det(B)

 x1

...
xr

 = 0

Thus det(B)xi = 0 for all i. If we assume that the generators of M are nonzero,
the fact that det(B) annihilates all generators implies that it is equal to 0. But,
by expanding out the determinant of B = 1r×r − (aij), we see that it is of the
form 1 + a for some a ∈ m. Since (A,m) is a local ring, this implies that det(a)
is a unit. A unit cannot be zero in (A,m), so this is a contradiction. Thus all
generators of M are zero, and M = 0.

Lemma 17 (Going up for finite ring maps). Let A → B be a finite ring map,
p a prime ideal in A and q a prime ideal in B which belongs to the fibre of p. If
there exists a prime p′ such that p ⊂ p′ ⊂ A, then there exists a prime q′ such
that q ⊂ q′ ⊂ B and q′ belongs to the fibre of p′.

B q ?

A p p′

Proof. Consider A/p → B/q. This is injective since p = A ∩ q and finite by
Lemma 3. p′/p is a prime ideal in A/p, and by Lemma 15 its preimage is
nonempty. Thus there exists a prime q′/q in A/p which maps to p′/p, and this
corresponds to a prime q′ in B that contains q.

Class 4

Lemma 18. The following are equivalent for a ring A:

(1) A is local;

(2) Spec(A) has a unique closed point;

(3) A has a maximal ideal m such that every element of A−m is invertible;
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(4) A is not zero and x ∈ A⇒ x ∈ A∗ or 1− x ∈ A∗.

Proof. (1) ⇔ (2) In the Zariski topology for Spec(A), a closed set looks like
V (p) for some prime p. Therefore a closed point is a maximal ideal.

(1) ⇒ (3) Let m ⊂ A be the maximal ideal and take x 6∈ m. Then V (x) = ∅,
and, by Lemma 19, x is invertible.

(3)⇒ (4) If x 6∈ m then x is invertible, so assume x ∈ m. But then 1− x 6∈ m,
since this would imply 1 ∈ m. Therefore 1− x is invertible.

(4) ⇒ (1) Let m = A − A∗. It’s easy to show that m is an ideal. More-
over, m is maximal: assume m ⊂ I and m 6= I, then I must contain a unit, and
so I = A. There can be no other maximal ideal, since all elements of A−m are
units.

Lemma 19. For x ∈ A, A local, V (x) = ∅ ⇔ x ∈ A∗.

Proof. The ⇐ direction is trivial. For the converse, note that by Lemma 7:

V (x) = ∅ ⇒ Spec(A/xA) = ∅ ⇔ A/xA = 0⇔ x unit

Example 4. Examples of local rings:

(a) fields, the maximal ideal is (0).

(b) C[[z]], power series ring, the maximal ideal is (z). Note that something
of the form z − λ is invertible by some power series, and thus cannot be
maximal.

(c) for X topological space and x ∈ X, OX,x, the ring of germs of continuous C-
valued functions at x. The maximal ideal is mx = {(U, f) ∈ OX,x|f(x) = 0}.
Note that, if g 6∈ mx, then g 6= 0 on a neighborhood of x, because of
continuity. Therefore g is invertible on this neighborhood. Then, by Lemma
18, mx is maximal.

(d) for k a field, k[x]/(xn), the maximal ideal is (x)/(xn).

For the rest of the lecture, we examine the closedness of maps on spectra.

Definition 8. Let X be a topological space, x, y ∈ X. We say that x spe-
cializes to y or y is a generalization of x if y ∈ {x}. We denote this as
x y.

Example 5. In SpecZ we have (0) (p) for all primes p, but not (p) (0) or
(p) (q), unless p = q.

Lemma 20. The closure of p in Spec(A) is V (p). In particular, p q iff p ⊂ q.
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Proof.

{p} =
⋂
I⊂p

V (I) = V (
⋂
I⊂p

I) = V (p)

Lemma 21. The image of Spec(Ap) → Spec(A) is the set of all generators of
p.

Proof. By Lemma 7, there is a bijection between primes of Ap and primes of
A contained in p. But the latter are all ideals generated by a subset of the
generators of p, and in particular the generators themselves.

Definition 9. A subset T of a topological space is closed under specializa-
tion if x ∈ T and x y imply y ∈ T .

Notation: for f ∈ A, let D(f) = Spec(A)− (f) = {q ∈ A|f 6∈ q}. Obviously
D(f) is open.

Lemma 22. Let A→ B be a ring map. Set T = Im
(

Spec(B)→ Spec(A)
)
. If

T is closed under specialization then T is closed.

Proof. Suppose p ∈ T̄ . Then every open neighborhood of p contains a point
of T . Now pick f ∈ A \ p. Then D(f) ⊂ SpecA is an open neighborhood of
p. Then there exists a q ⊂ B with Spec(φ)(q) ∈ D(f), which implies that ther
exists a q ⊂ B such that φ(f) 6= q. Hence Bf 6= 0.

Thus we see φ(f) · 1 6= 0 for all f ∈ A \ p. Hence Bp 6= 0 (1 6= 0) and thus
Spec(Bp) 6= ∅. We conclude (Lemma 21) that there exists a q′ ⊂ B such that
p′ = φ−1(q′) ∈ T is a generalization of p, i.e. p is a specialization of a point of
T , and we conclude that p ∈ T .

Lemma 23. If going up holds from A to B, then Spec(φ) is closed as a map of
topological spaces.

Proof. Let Z ⊂ Spec(B) be a closed subset; we want to show that its image is
closed. In the Zariski topology closed sets look like V (J) for some prime J , and
by Lemma 7 we have Z = Im

(
Spec(B/J)→ Spec(B)

)
. Then:

Spec(B/J)

Spec(B) Z

Spec(A) Spec(φ)(Z)

∼=

Spec(φ) Spec(φ)

Note that Spec(φ)(Z) = Im
(

Spec(B/J) → Spec(A)
)
. By Lemma 22 it suffices

to show that Spec(φ)(Z) is closed under specialization. That is, if there exists
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some prime p′ ⊂ A which specializes to another prime p and is the image of a
prime q′ ⊂ B, then p is also the image of some prime q ⊂ B. Suppose we have
the solid part of the diagram; by going up we can find q fitting into the diagram
below, therefore p ∈ Spec(φ)(Z) as long as p′ ∈ Spec(φ)(Z).

B J q′ ?

A p′ p

Class 5: Krull dimension

Definition 10.

(a) A topological space X is reducible if it can be written as the union X =
Z1 ∪ Z2 of two closed, proper subsets Zi of X. A topological space is
irreducible if it is not reducible.

(b) A subset T ⊂ X is called irreducible iff T is irreducible as a topological
space with the induced topology.

(c) An irreducible component of X is a maximal irreducible subset of X.

Example 6.

(a) In Rn with the usual topology, the only irreducible subsets are the single-
tons. This is true in general for any Hausdorff topological space.

(b) SpecZ is irreducible.

(c) If A is a domain, then SpecA is irreducible. This is because (0) ∈ V (I) ⇐⇒
I ⊂ (0) ⇐⇒ I ⊂ (0) ⇐⇒ I = (0) =⇒ V (I) = SpecA.

(d) Spec(k[x, y]/(xy)) is reducible because it is V (x) ∪ V (y): geometrically
speaking, the coordinate axes

Lemma 24. Let X be a topological space.

(a) If T ⊂ X is irreducible so is T̄ ⊂ X;

(b) An irreducible component of X is closed;

(c) X is the union of its irreducible components, i.e. X = ∪i∈IZi where Zi ⊂ X
are closed and irreducible with no inclusions among them.

Proof. Omitted.

Lemma 25. Let X = SpecA where A is a ring. Then,
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(a) V (I) is irreducible if and only if
√
I is a prime;

(b) Any closed irreducible subset of X is of the form V (p), p a prime;

(c) Irreducible components of X are in one-to-one correspondence with the min-
imal primes of A

Proof.

(a) V (I) = {p : I ⊂ p} = V (
√
I) so we may replace I by

√
I. For the backwards

direction, let I be a prime. Then A/I is a domain, so Spec(A/I) = V (I)
by a previous lemma (this is true both as sets and topologies), which is
irreducible by the example (c) above. Conversely, if V (I) is irreducible and
ab ∈ I, then

V (I) = V (I, a) ∪ V (I, b).

By irreduciblity we have that V (I) = V (I, a) or V (I) = V (I, b). This
implies that either a ∈ I or b ∈ I by Lemma 26 below.

(b) Omitted.

(c) Omitted.

Lemma 26.
√
I = ∩I⊂pp

Proof. That the left-hand side is included in the right-hand side is clear. Con-
versely, suppose f is contained in the right-hand side. Then Spec((A/I)f ) = ∅
and hence (A/I)f = 0 as a ring. This implies that fn · 1 = 0 in A/I, and hence
that fn ∈ I.

Definition 11. Let X be a topological space. We set

dimX = sup {n|∃Z0 ( Z1 ( · · · ( Zn ⊂ X}

with Zi ⊂ X irreducible and closed. We call dimX the Krull or combinatorial
dimension of X. Furthermore, for x ∈ X and for U 3 x open subsets of X, we
set

dimxX = min
U

dimU,

which is called the dimension of X at x.

Lemma 27. Let A be a ring. The dimension of SpecA is

dim SpecA = sup{n|∃p0 ( p1 ( · · · ( pn ⊂ A},

(for pi primes) and is called the dimension of A.

Proof. Clear from Lemma 25.

12



Lemma 28. Let A be a ring. Then

dimA = sup
p⊂A

dimAp = sup
m⊂A

dimAm.

Definition 12. If p ⊂ A is prime, then the height of p is

ht(p) = dimAp.

Informally, one might think of this as the “codimension” of V (p) in SpecA.

Exercise 1. If p ⊂ A is a prime, then p is a minimal prime if and only if
ht(p) = 0.

Let us now prove the lemma.

Proof. Any chain of primes in A has a last one. If we consider

p0 ( · · · ( pn

we can localize to get the chain

p0Apn ( · · · ( pnApn

in Apn .

Lemma 29. Let A
φ→ B be a finite ring map such that Specφ is surjective.

Then dimA = dimB.

Proof. By our description of fibres of Spec(φ) in the proofs of Lemma 12 and
14, there are no strict inclusions among primes in a fibre. If we take the chain

q0 ( q1 ( · · · qn

in B then A∩ q0 ( · · · ( A∩ qn is a chain in A. Hence dimB ≤ dimA. On the
other hand, let p0 ( · · · ( pn be a chain of primes in A. Pick q0 lying over p0

in B (since Spec(φ) is surjective). We can now use going up to succesively pick
q0 ⊂ q1 ⊂ · · · ⊂ qn lying over p1 ⊂ · · · ⊂ pn (a previous lemma showed that
going up holds for finite ring maps). We conclude that dimB ≥ dimA.

Remark. There are a few remarks to be made here:

(a) The proof shows that if A
φ→ B has going up and Spec(φ) is surjective, then

dimA = dimB. The same statement holds for going down in place of going
up.

(b) By Noether normalization together with Lemma 29, we can conclude that
the dimension of a finite-type algebra over a field k is equal to the dimension
of k[t1, . . . , tr] for some r.

13



(c) It will turn out that dim k[t1, . . . , tr] = r. For now all we can say is that it
is certainly greater than r because we can construct the chain

(0) ⊂ (t1) ⊂ (t1, t2) ⊂ . . . ⊂ (t1, . . . , tr).

Now we talk for a bit about dimension 0 rings.

Definition 13. An ideal I ⊂ A is nilpotent if there exists n ≥ 1 such that
In = 0. It is locally nilpotent if ∀x ∈ I, ∃n ≥ 1 such that xn = 0.

Lemma 30. For p ⊂ A prime, the following are equivalent:

(a) p minimal

(b) ht(p) = 0

(c) the maximal ideal pAp of Ap is locally nilpotent

Proof. (a)⇔(b) follows from the description of Spec(Ap) in Lemma 21. The rest
follows from Lemma 31, stated below.

Lemma 31. If (A,m) is local, the following are equivalent:

(a) dim(A) = 0

(b) Spec(A) = {m}

(c) m is locally nilpotent

Proof. (b) ⇒ (c) If f ∈ m is not nilpotent, then Af 6= 0, so Spec(Af ) 6= 0, so
∃p ⊂ A, f 6∈ p, which is a contradiction; hence p = m.

Definition 14. A ring is Noetherian if every ideal is finitely generated.

Lemma 32. Let I ⊂ A be an ideal. If I is locally nilpotent and finitely gen-
erated, then I is nilpotent. In particular, if A is Noetherian then all locally
nilpotent ideals are nilpotent.

Proof. If I = (f1, ..., fn) and feii = 0, then consider:

(a1f1+...+anfn)(e1−1)+...+(en−1)+1 =
∑

(binomial coefficient)ai11 ...a
in
n f

i1
1 ...f

in
n = 0

Since in each term at least one of the ij will be≥ ej , which will make f
ij
j = 0.

14



Class 6

Definition 15. Let A be a ring and M be an A-module. We say that M is
Artinian ring if it satisfies the descending chain condition on ideals. We say
that A is Artinian if A is Artinian as an A-module.

Lemma 33. Let
0→M ′ →M →M ′′ → 0

be a short exact sequence of A-modules. If M ′ and M ′′ are Artinian (of length
m,n) then M is as well (of length max(m,n)).

Proof. Suppose M ⊂ M1 ⊂ . . . are submodules of M . By assumption, there
exists an n such that Mn ∩M ′ = Mn+1 ∩M ′ = · · · and there exists an m such
that π(Mm) = π(Mm+1) = · · · . Then Mt = Mt+1 = · · · for t = max(m,n).

Lemma 34. A Noetherian local ring of dimension 0 is Artinian.

Proof. Using Lemmas 31 and 32 we get that mn = 0 for some n ≥ 1. So
0 = mn ⊂ mn−1 ⊂ · · · ⊂ m ⊂ A. Then mi/mi+1 = (A/m)⊕ri is an A/m-
module generated by finitely many elements (since A is Noetherian). So it is
clear that mi/mi+1 is Artinian as an A/m-module, hence over A. Apply Lemma
33 repeatedly.

Lemma 35. If A is Noetherian then so is

(a) A/I for I ⊂ A an ideal;

(b) S−1A with S ⊂ A multiplicative;

(c) A[x1, . . . , xn];

(d) any localization of a finite-type A-algebra.

Proof. Omitted.

Remark. Any finite-type algebra over a field or over Z is Noetherian.

Theorem 36 (Hauptidealsatz, v.1). Let (A,m) be a Noetherian local ring. If
m =

√
(x) for some x ∈ m then dimA ≤ 1.

Proof. Take p ⊂ A, p 6= m. We will show ht(p) = 0 and the theorem will
follow. Observe that x /∈ p because if it were, by primeness of p,

√
(x) would

be contained in p, which is a contradiction. Set for n ≥ 1,

p(n) = {a ∈ A|a
1
∈ pnAp}.

We will use later that p(n)Ap = pnAp (proof omitted). The ring B = A/(x)

is local and Noetherian with nilpotent maximal ideal (since m =
√

(x)). By
Lemma 34 B is Artinian. Hence

p + (x)

(x)
⊃ p(2) + (x)

(x)
⊃ p(3) + (x)

(x)
⊃ · · ·

15



stabilizes and p(n) +(x) = p(n+1) +(x) for some n. Then every f ∈ p(n) is of the
form f = ax+ b where a ∈ A, b ∈ p(n+1). This implies that a

1 ·
x
1 = f−b

1 ∈ pnAp

and x
1 is a unit in Ap. Thus a

1 ∈ pnAp and a ∈ p(n). Hence p(n) = xp(n) +p(n+1).

Since x ∈ m and p(n) and p(n+1) are finite A-modules, Nakayama’s lemma
implies that p(n) = p(n+1). Going back to Ap, we get p(n)Ap = p(n+1)Ap, which
implies that pnAp = pn+1Ap. By Nakayama’s lemma, pnAp = 0. Finally, by
Lemma 30 dimAp = 0, i.e. ht(p) = 0.

Lemma 37. In the situation of the previous theorem, dimA = 0 if and only if
x is nilpotent and dimA = 1 if and only if x is not nilpotent.

Proof. By Lemma 31, dimA = 0 if and only if m is locally nilpotent.

Lemma 38. If (A,m) is a local Noetherian ring and dimA = 1 then there exists
an x ∈M such that m =

√
(x).

Proof. Since the dimension of A is 1 there must exist primes other than m, pi
which are all minimal. To finish the proof, we will use two facts: first, that
a Noetherian ring has finitely many minimal ideals and secondly, that one can
find x ∈ m with x /∈ pi for i ∈ I. We shall prove these lemmas below next.
Assuming these facts, V (x) = {m}, which implies that

√
(x) = m.

Lemma 39 (Prime avoidance). Let A be a ring, I ⊂ A an ideal, and p1, . . . , pn ⊂
A primes. If I 6⊂ pi for all i then I 6⊂ p1 ∪ · · · ∪ pn (i.e. we can find a function
vanishing on I but not on pi, Urysohn’s lemma).

Proof. We proceed by induction on n. It’s clearly true for n = 1. We may
assume that there are no inclusions among p1, · · · , pn (drop smaller ones). Pick
x ∈ I, x /∈ p1 ∪ · · · ∪ pn−1 (induction hypothesis). If x /∈ pn, we are done;
if p1, . . . , pn−1 ⊂ pn then pj ⊂ pn for some j (pn is prime). This contradicts
previous mangling of the primes. So p1, . . . , pn−1 6⊂ pn and I 6⊂ pn which implies
(since pn is prime) that p1 · · · pn−1I 6⊂ pn. Pick y ∈ p1 · · · pn−1I with y /∈ pn.
Then x + y works. Indeed, x + y ∈ I, x + y /∈ pj for j = 1, · · · , n − 1, and
x+ y /∈ pn (x ∈ pn but not y).

Lemma 40. Let A be a Noetherian ring. Then

(a) For all ideals I ⊂ A, there exists a list of primes p1, . . . , pn such that I ⊂ pi
and p1 · · · pn ⊂ I;

(b) The set of primes minimal over I is a subset of this list;

(c) A has a finite number of minimal primes (i.e. the spectrum has a finite
number of irreducible components)

Proof.
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(a) Look at I = {I ⊂ A|(a) does not hold}. If I 6= ∅ there must exist an I ∈ I
maximal with respect to inclusion (since A is Noetherian). So if ab ∈ I
and a /∈ I, b /∈ I then pi ⊃ (I, a) and (I, a) ⊃ p1 · · · pn, and qj ⊃ (I, b) and
(I, b) ⊃ q1 · · · qm. This implies that I ⊃ (I, a)(I, b) ⊃ p1 · · · pnq1 · · · qm and
I ⊂ pi, I ⊂ qj . This can’t happen because I ∈ I and hence we conclude
that I is a prime which is a contradiction.

(b) If I is minimal in p then p1 · · · pn ⊂ p and pj ⊂ p for some j, i.e. pj = p
and pmin ⊃ I.

(c) Apply (a) and (b) to I = (0).

Class 7

For a local Noetherian ring (A,m) set dimA = the Krull dimension of A, and
d(A) = min {d|∃x1, . . . , xd ∈ m such that m =

√
(x1, . . . , xd)}. We’ve seen

already that:

dimA = 0⇔ m nilpotent⇔ d(A) = 0 (Lemma 31 + Lemma 32)

dimA = 1⇔ d(A) = 1 (Lemma 36 + Lemma 38)

Theorem 41 (Krull Hauptidealsatz, v. 2). dimA = d(A).

Proof. We first prove that dim(A) ≤ d(A) by induction on d. Let x1, . . . , xd ∈ m
such that m =

√
(x1, . . . , xd). Because A is Noetherian, ∀q ( m, q 6= m there

exists a q ⊂ p ⊂ m such that there exists no prime strictly between p and m.
Hence it suffices to show ht(p) ≤ d− 1 for such a p. We may assume xd 6∈ p (by
reordering). Then m =

√
(p, xd) because there exists no prime strictly between

p and m (+ Lemma 26). Hence:

xnii = aixd + zi (∗)

For some ni ≥ 1, zi ∈ p, ai ∈ A. Then we have:

Hence

√
(xd) = maximal ideal ofA(z1, . . . , zd−1). By Theorem 36 dimA/(z1, . . . , zd−1) ≤

1. Then p is minimal over (z1, . . . , zd−1). By Lemma 42, pAp is minimal over
(z1, . . . , zd−1)Ap. Finally, by the induction hypothesis dim(Ap) ≤ d − 1 ⇒
ht(p) ≤ d− 1.

Now we prove that d(A) ≤ dim(A). We may assume that dim(A) ≥ 1. Let
p1, . . . , pn be the finite number of minimal primes of A. (By Lemma 40) Pick
y ∈ m, y 6∈ pi for i = 1, . . . , n. (Such a y exists by Lemma 39.) Then:

dim
(
A/(y)

)
≤ dim(A)− 1

Because all chains of primes in A/(y) can be seen as a chain of primes in A
that can be extended by one of the pi). Then by the induction hypothesis there
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exists x̄1, . . . , x̄dim(A)− in m/(y) such that m/(y) =
√

(x̄1, . . . , x̄dim(A)−1). It

follows that m =
√

(x̄1, . . . , x̄dim(A)−1, y).

Lemma 42. Let A be a ring, I ⊂ A an ideal, I ⊂ p prime, S ⊂ A a multiplica-
tive subset, S ∩ p = ∅. Then p minimal over I ⇔ S−1p is minimal over S−1I
of S−1A.

Proof. See Lemma 7.

Lemma 43. Let (A,m) be a Noetherian local ring. Then the dimension of A
is less than or equal to the number of generators of m = dimA/m

(
m/m2

)
. In

particular, dimA <∞.

Proof. The inequality is clear because if m = (x1, . . . , xn) then m =
√

(m1, . . . ,mn).
Equality follows from one of Nakayama’s many lemmas:

• if M is finite and mM = M , then M = 0;

• if N ⊂M , M = mM +N , everything finite, then M = N ;

• if x1, . . . , xt ∈M which generate M/mM , then x1, . . . , xn generate M .

Remark. Note that there do indeed exist infinte-dimensional Noetherian rings.
Constructing them is not particularly fun.

Lemma 44. Let A be a Noetherian ring. Let I = (f1, . . . , fc) be an ideal
generated by c elements (c somehow stands for codimension). If p is a minimal
prime over I, then ht(p) ≤ c.

Proof. Combine Theorem 41 and 42.

Lemma 45. Let A be a Noetherian ring, p ⊂ A prime. If ht(p) = c then there
exist f1, . . . , fc ∈ A such that p is minimal over I = (f1, . . . , fc).

Proof. By Theorem 41 there exists x1, . . . , xc ∈ pAp such that pAp =
√

(x1, . . . , xc).
Write xi = fi/gi, fi ∈ p and gi ∈ A, gi /∈ p. Then I = (f1, . . . , fc) satisfies
IAp = (x1, . . . , xc)Ap with Lemma 42.

Lemma 46. Let (A,m) be a Noetherian local ring. Let x ∈ m. Then dim(A/xA) ∈
{dimA,dimA− 1}. If x is not contained in any minimal prime of A, e.g. if x
is a nonzerodivisor, then dim(A/xA) = dimA− 1.

Proof. If x1, . . . , xt map to x̄1, . . . , x̄t inA/xA such that mA/xA =
√

(x̄1, . . . , x̄t).

Then mA =
√

(x1, . . . , xt, x). Hence d(A) ≤ d(A/xA) + 1. Conversely, d(A) ≤
d(A/xA) is easy. Thus d(A/xA) ∈ {d(A),d(A) − 1} and hence the same for
dimension by Theorem 41.

Lemma 47. A nonzerodivisor of any ring is not contained in a minimal prime.
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Proof. Let x ∈ A be a nonzerodivisor. Then the map A
a→ A is injective. By

exactness of localization, x/1 is a nonzerodivisor in Ap for all minimal p. Hence
x is not nilpotent in Ap. Note also that x/1 /∈ pAp because pAp is locally
nilpotent when p is minimal by Lemma 30.

Example 7.

• Consider A = (k[x, y]/(xy))(x,y). It’s clear from a previous homework

exercise that dimA = 1 (the primes look like (x), (y), and (x, y)). Note
that if we consider A/(x), which is now a domain as (x) is prime in A,
(x, y) is now simply (y), and the chain we are left with is (0) ⊂ (y). Hence
dimA/(x) = 1.

• Consider A = k[x, y, z](x,y,z). By one of the lemmas we have just proved
above, since m = (x, y, z) has 3 generators, it’s clear that dimA ≤ 3.
However, it must be at least 3 due to the presence of the chain (0) ⊂
(x) ⊂ (x, y) ⊂ (x, y, z). Hence dimA = 3.

• dim
(
k[x, y, z]/(x2 + y2 + z2)

)
(x,y,z)

= 2 = 3 − 1, since (x2 + y2 + z2) is

not a zerodivisor

• dim
(
k[x, y, z]/(x2 + y2 + z2, x3 + y3 + z3)

)
(x,y,z)

= 1 = 3 − 2. It suffices

to check that x3 + y3 + z3 is not 0 in the domain k[x, y, z]/(x2 + y2 + z2).

• dim (k[x, y, z]/(xy, yz, xz))(x,y,z) = 1. This is because dimA/(x+y+z) =

0, and we’ve seen in the problem sets that (x + y + z) is not a minimal
prime.

Class 8

Theorem 48 (Hilbert Nullstellensatz). Let k be a field. For any finite-type
k-algebra A we have:

(i) If m ⊂ A is a maximal ideal then A/m is a finite extension of k;

(ii) If I ⊂ A is a radical ideal (i.e. I =
√
I) then I = ∩I⊂mm.

Remark. Note that if k = k̄ then this says that the residue fields at maximal
ideals are equal to k. In particular, every maximal ideal of k[x1, . . . , xn] is of
the form (x1 − λ1, . . . , xn − λn) for some λi ∈ k.

In every ring, if I is radical then I = ∩p⊃Ip. Hence closed subsets of SpecA
are in one-to-one correspondence with radical ideals. Part (ii) of the theorem
says that if A is a finite-type k-algebra then closed points are dense in all closed
subsets.

Proof. Let us prove (i) first. Note that B = A/m is a finite-type k-algebra
which is a field. By Noether normalization there exists some k[t1, . . . , tr] ⊂ B
for some r ≥ 0. Now, by Lemma 15, the map SpecB → Spec k[t1, . . . , tr] is
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surjective. Since SpecB is simply a point, we can conclude that r = 0. Hence
dimk B ≤ ∞.

The proof of (ii) follows from (i). We omit it.

Lemma 49. Let k be a field and A
φ→ B be a homomorphism of finite type

k-algebras. Then Specφ maps closed points to closed points.

Proof. We have to show that m ∈ B maximal implies φ−1(m) maximal. We
look at k ⊂ A/φ−1(m) ⊂ B/m. Note that the latter is a finite field extension of
k, by Theorem 48. Then dimk A/φ

−1(m) <∞. Then by Lemma 11 A/φ−1(m)
is a field.

Lemma 50. For k field and A finite type k-algebra, dim(A) = 0 ⇔ dimk A <
∞.

Proof. By Noether normalization there exists a finite map k[t1, . . . , kr] ↪→ A.
Then by Lemma 29 dim(A) = dim(k[t1 . . . tr]) ≥ r. Hence (⇒) follows. For the
converse use Lemma 12.

Our goal is now to construct a “good” dimension theory for finite type
algebras over fields.

Lemma 51.

(a) For X a topological space with irreducible components Zi then dim(X) =
sup dim(Zi);

(b) For a ring A, dim(A) = supp⊂A minimal dim(A/p).

Proof. Omitted.

Definition 16. Let k ⊂ K be a field extension. The transcendence degree
trdegkK = sup{n| ∃x1, . . . , xn algebraically independent over k}. This means
that the map k[t1 . . . tn]→ K that takes ti → xi is injective.

Lemma 52. Let k be a field, then every maximal ideal m of the ring k[x1 . . . xn]
can be generated by n numbers, and dim(k[x1 . . . xn])m = n.

Proof. By Theorem 48, the residue field κ = k[x1 . . . xn]/m is finite over k. Let
αi ∈ κ be the image of xi. We look at the chain:

k = κ0 ⊂ κ1 = k(α1) ⊂ · · · ⊂ κ = k(α1, . . . , αn)

We know from field theory that xi ∈ k[α1, . . . , αi]. Choose fi ∈ k[x1 . . . xi]
such that f(α1, . . . , αi−1, xi) is the minimal polynomial of αi over κi−1. Then
fi(α1, . . . , αi) = 0, so fi ⊂ m. Now we claim that κi ∼= k[x1, . . . , xi]/(f1, . . . , fi).
We prove this by induction:

k[x1, . . . , xi]/(f1, . . . , fi) ∼= k[x1, . . . , xi−1]/(f1, . . . , fi−1)[xi]/(fi)
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If we let i = n, this proves the first statement of the lemma. Finally, we have a
chain of primes:

(0) ⊂ (f1) ⊂ · · · ⊂ (f1 . . . fn) = m

because k[x1, . . . , xi]/(f1, . . . , fi) ∼= κi[xi+1, . . . , xn]. Therefore dim(k[x1, . . . , xn])m ≥
n. But by Lemma 41 it is at most n, so this finishes the proof.

Lemma 53. dim(k[x1, . . . , xn]) = n.

Proof. Omitted.

Remark. For a Noetherian local ring (A,m) we have:

dimA ≤ minimum number of generators of m = dimA/m m/m2

(A,m) is called regular if we have equality. The above shows that k[x1, . . . , xn]m
is regular for all maximal ideals m.

Lemma 54. Let k be a field and A be a finite type k-algebra. Then:

(a) the integer r from Noether Normalization is equal to dimA;

(b) if A is a domain, then dimA = trdegk(f.f.A).

Proof.

(a) follows from Lemma 29 and Lemma 53

(b) follows from (a) and the fact:

k[t1 . . . tr] ⊂ A finite
L10⇒ k(t1 . . . tr) ⊂ S−1A finite

L11⇒ S−1A is the f.f. of A

Then:

k(t1 . . . tr) ⊂ f.f.(A)⇒ trdegkf.f.(A) = trdegkk(t1 . . . tr) = r

The last two equalities should be familiar from field theory.

Remark. If k → A is a finite type domain then dim(A) = dim(Af )∀f ∈ A, f 6= 0.
We may regard this as a very weak form of “equidimensionality”.

Remark. So far we missed proving an important result; we will do so later. We
will want to show that for A finite type domain over a field, p ⊂ A prime, we
have dim(A) = dim(A/p) + ht(p). Intuitively it’s clear why this should be so:
take a chain in A and some p in this chain, then dim(A/p) counts elements
containing p, and ht(p) counts elements contained in p.

Definition 17. Let A → B be a ring map. The integral closure of A in B
is B′ = {b ∈ B|b is integral overA}. We say that B is integral over A iff
B′ = B.

Lemma 55. If A→ B finite, then B is integral over A.
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Proof. Pick b ∈ B. Choose b1, . . . bn,∈ B such that B =
∑
Abi. Write, for

aij ∈ A,

bbi =
∑
aij

bj .

Let M = (aij) ∈ Mat(n × n,A) and let P (T ) ∈ A[T ] be the characteristic
polynomial of M . By Cayley-Hamilton, P (M) = 0, which implies that P (b) =
0.

Class 9

Lemma 56. The integral closure of a ring A is an A-algebra.

Proof. Suppose b, b′ ∈ B′, we want to show that b + b′, bb′ ∈ B′. Let C be the
A-algebra generated by b, b′. Then C is finite over A by Lemma 1. Then by
Lemma 55 C is integral over A, so C ⊂ B′.

Lemma 57. If A→ B → C are ring maps then:

1. A→ B,B → C integral ⇒ A→ C integral;

2. A→ C integral ⇒ B → C integral.

Proof. Omitted.

Definition 18. A normal domain is a domain which is integrally closed in
its field of fractions. (In other words, it is equal to its integral closure in its field
of fractions.)

Lemma 58. For a field k, k[x1, . . . , xn] is a normal domain.

Proof. Polynomial rings are UFDs, so this follows from Lemma 59.

Lemma 59. A UFD is a normal domain.

Proof. Suppose that a/b ∈ f.f.(A) is in least terms (we can always reduce a
fraction to least terms, due to unique factorization) and is integral over A.
Thus there exist some ai ∈ A such that:(a

b

)n
+ a1

(a
b

)n−1

+ · · ·+ an = 0

an + a1a
n−1b+ · · ·+ anb

n = 0

Therefore an ∈ (b), which, unless b is a unit, contradicts the fact that a, b are
relatively prime. Therefore the only elements of the field of fractions that are
integral over A are those of A itself.

Lemma 60. Let R be a domain with field of fractions K, and let a0, . . . , an−1,
b0, . . . , bm−1 ∈ R. If xn+an−1x

n−1 + · · ·+a0 divides xm+bm−1x
m−1 + · · ·+b0,

then ai are integral over the Z subalgebra of R generated by {bj}.
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Proof. Choose some field extension L of K with β1, βm ∈ L such that:

xm + bm−1x
m−1 + · · ·+ b0 =

m∏
i=1

(x− βi)

Then by unique factorization in L[x] we get:

xn + an−1x
n−1 + · · ·+ a0 =

∏
j

(x− βj)

Where j runs over a subset of {1, . . . ,m}. But this means that:

ai ∈ Z[b0, . . . , bm−1, β1, . . . , βm] ⊃ Z[b0, . . . , bm−1]

By Lemmas 1 and 55, the inclusion is integral.

Lemma 61. Let R ⊂ A be a finite extension of domains, R normal. For a ∈ A
we have:

(1) the coefficients of the minimal polynomial of a over the field of fractions of
R are in R;

(2) Nm(a) ∈ R, where Nm denotes the norm.

Proof. Apply Lemma 60. For example, a must satisfy a monic polynomial with
coefficients in R, and the minimal polynomial must divide that.

Lemma 62. Suppose R ⊂ A is a finite extension of domains, and R is normal.
Suppose also that f ∈ A, p ⊂ A prime with V (f) ⊂ V (p). Then setting f0 =
Nmff(A)/ffR(f) we have:

1. f0 ∈ R;

2. R ∩ p =
√

(f0).

[(1)]

Proof. (1) follows by Lemma 61. (See also the argument by Tate in Mumford’s
red book.) For part (2), let

xd + r1x
d−1 + . . . rd

be the minimal polynomial of f over f.f.(R), with ri ∈ R. (This is possible by
Lemma 61.) Then f0 = red for some e ≥ 1. So:

fd + r1f
d−1 + · · ·+ rd = 0⇒ rd ∈ (f)⇒ f0 ∈ (f)

We already know that f ∈ p by assumption V (f) = V (p), so we get
√
f0 ⊂ R∩p.

Conversely, if r ∈ R ∩ p we have rn ∈ (f) for some n, because V (f) = V (p).
Say rn = af , then:

(rn)[f.f.(A):f.f.(R)] = Nm(rn) = Nm(a) Nm(f) = {sth in R}f0

Then r ∈
√
f0.
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Remark. This lemma says that the image (under a finite map) of an irreducible
hypersurface is an irreducible hypersurface.

Now we use this lemma to prove the missing link from dimension theory.

Theorem 63. Given a finite type k-algebra A which is a domain and a height
1 prime p, then:

dimA = dim(A/p) + 1

Proof. By Lemma 45, p minimal over (f) for some f ∈ A. Say p, p1, . . . , pn
are all the distinct minimal primes over (f). (Lemma 40 says they are finitely
many.) Then p1 . . . pn 6⊂ p. (Prime avoidance.) Then we can pick g ∈ p1 . . . pn,
g 6∈ p. After replacing A by Ag and p by pAg and f by f/1 we may assume p
is the only prime minimal over (f), i.e. V (f) = V (p). By an earlier remark,
dimA = dimAg, so the statement of the theorem doesn’t change if we do the
replacement.

Now by Noether Normalization we choose a finite injective map k[t1, . . . , td] ↪→
A. Set f0 = Nm(f) ∈ k[t1, . . . , td], by Lemma 62 and p ⊂ k[t1, . . . , td] =

√
(f0),

again by Lemma 62. Since k[t1, . . . , td] is a UFD, we can write f0 = cfe, for
some c ∈ k∗, e ≥ 1. Then

√
(f0) = (f0) and we see that k[t1, . . . , td]/(f0) ↪→ A/p

is a finite injective map. Thus:

trdegk(f.f.(A/p)) ⊂ trdegk(f.f.(k[t1, . . . , td]/(f0))) = d− 1

Example 8. We compute the integral closure of k[x, y]/(y2 − x3) in its field of
fractions. (This is called “normalization”.)

k[x, y]/(y2 − x3) ⊂ f.f.(k[x, y]/(y2 − x3))

To get some element in the integral closure which is not in the ring, we look at
the equation:

y2 − x3 = 0⇒ y

x
= x1/2

We see that t = y/x is both in the integral closure and in the field of fractions.
We therefore add it to the ring and see what happens. We construct the map:

k[x, y]/(y2 − x3)→ k[t]

x→ t2

y → t3

We need to check that this induces an isomorphism of fraction fields, namely
maps y/x to t. We also need to check that the map is integral (it is, because
t is integral). We are now done, because k[t] is a UFD and therefore a normal
domain.
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Class 10

Corollary 64. Let A be a finite type k-algebra. Then:

(1) A domain ⇒ any maximal chain of primes in A has length dimA;

(2) A domain and p ⊂ A prime ⇒ dimA = dim(A/p) + ht(p);

(3) A domain and m ⊂ A maximal⇒ dim(Am) = dimA and all maximal chains
of primes in Am have length dimA;

(4) if p ⊂ q ⊂ A then any maximal chain of primes between p and q has length
trdegk(f.f.(p))− trdegk(f.f.(q));

(5) if m ⊂ A maximal then dim(Am) = maxp minimal dim(A/p) = dimm Spec(A).

Proof. (1) Choose a chain of primes:

(0) ( p1 ( · · · ( pl ( A

We have ht(p1) = 1. Hence Proposition 63 shows that dim(A/p1) =
dim(A)− 1 and thus we get a chain:

(0) =
p1

p1
(

p2

p1
( · · · ( pl

p1

By induction l = dimA.

(2) Let h = ht(p) and d = dim(A/p). Then we have chains:

(0) =
p

p
(

p1

p
( · · · ( pd

p
(
A

p

(0) ( q1Ap ( · · · ( qhAp

Then (0) ( · · · ( qh−1 ( qh = p ⊂ . . . pd is a maximal chain of primes in A
of length h+ d. By (1) dimA = h+ d.

(3) follows from (1).

(4) follows from (3) by looking at A/p and q/p and using Lemma 54.

(5) follows from (3) and Lemma 51.

Definition 19. A graded ring is a ring A together with a given direct sum
decomposition A = ⊕d≥0Ad such that AdAe ⊂ Ad+e. A graded module M
over A is an A-module M equipped with a direct sum decomposition M =
⊕d∈ZMd such that AdMe ⊂ Md+e. We say that B is a graded A-algebra if
there is a direct sum decomposition as R-modules.

Example 9. If we take A = k[x1, . . . , xd] and Ad to be the homogeneous
polynomials of degree d, we see that A is a graded ring.
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Theorem 65. Let M be a finitely-generated, graded, A-module, where A is a
graded k-algebra which is generated (as a k-algebra) by a finite number of ele-
ments of degree 1. Then the function d 7→ dimk(Md) is a numerical polynomial.
This function is known as the Hilbert polynomial.

Definition 20. A function f : Z → Z is a numerical polynomial iff there
exists an r ≥ 0, ai ∈ Z such that

f(d) =

r∑
i=0

ai

(
d

i

)
for all d� 0.

Lemma 66. If f : Z→ Z is a function and d 7→ f(d)− f(d− 1) is a numerical
polynomial, then so is f .

Let us now prove the theorem.

Proof. We may assume that A = k[x1, . . . , xd], graded as in the above example.
The proof proceeds by induction on n. Let us consider three distinct cases. In
the first, we suppose that xn is a nonzerodivisor on M . Then we have a short
exact sequence

0→M
xn→M →M/xnM → 0.

Note that the multiplication by xn shifts the grading by 1 and that

−dimMd−1 + dimMd − dim (M/xnM)d = 0.

Now M/xnM is a finitely-generated graded module as k[x1, . . . , xd−1] so we are
done by induction and Lemma 66.

Next consider the case where xenM = 0 for some e ≥ 0. In this case we get
a short exact sequence

0→ xnM →M →M/xnM → 0.

Note that xe−1
n xnM = 0. Hence we are done by induction on e and n.

Finally, consider the general case. Let N = {m ∈ M |xenm = 0 for some e}.
Then we get an exact sequence

0→ N →M →M/N → 0.

At N , this follows from the nilpotent cases, as A is Noetherian and M being
finitely-generated implies that N is. At M/N this follows from the nonzerodi-
visor case.

Definition 21. Let (A,m, k) be a Noetherian local ring. Set

grmA =
⊕
n≥0

mn/mn+1.

This is a graded k-algebra generated by m/m2 over k. Hence n 7→ dimk(mn/mn+1)
is a numerical polynomial by Theorem 65. We denote by d(A) the degree of
this polynomial; if mn = 0 for some n, we take -1.
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Theorem. For (A,m, k) a Noetherian local ring, d(A) = dimA− 1.

Proof. We will only sketch the proof of this theorem. The result is clear for
dimA = 0. Suppose dimA > 0. Suppose you can find an x ∈ m such that
x is a nonzerodivisor in A and x̄ ∈ m/m2 is a nonzerodivisor in grmA. Then
dimA/xA = dimA− 1. The sequences

0→ mn−1/mn
x→ mn/mn+1 → m̄n/m̄n+1 → 0

are exact, where m̄ ⊂ A/xA is the maximal ideal. Then d(A/xA) = d(A) − 1,
and we are done by induction on dimA.

This argument will not work if such an x does not exist. Roughly speaking,
one finds an x such that x̄ is in the none of the minimal primes of grmA and
one shows that d(A/xA) does actually drop by 1.

Theorem. If B is a graded k-algebra generated by finitely many elements of
degree 1, then dimB−1 is the degree of the numerical polynomial n 7→ dimk Bn.

Corollary. dimA = dim grmA.

Class 11

Definition 22. Let A be a ring, I ⊂ A an ideal, M an A-module. Then we
define the completion of M to be

M̂ = lim←−M/InM = {(x1, x2, . . .) ∈
∏

M/InM |xn+1 = xn mod InM}.

There is a canonical map M → M̂ that takes x 7→ (x, x, x, . . .).

Definition 23. We say that M is I-adically complete if M → M̂ is an
isomorphism. Note that included is the condition ∩nInM = (0).

Lemma. If I is finitely-generated then M̂ is I-adically complete and moreover
InM̂ = ker(M̂ →M/InM).

Lemma. If A is Noetherian then Â is Noetherian.

Proof. Say I = (f1, . . . , fr) then the map A[[x1, . . . , xr−1]] → Â that takes∑
aIx

I 7→
∑
AIf

I is surjective. So this lemma follows from the fact that
A[x1, . . . , xr]] is Noetherian.

Lemma. If (A,m) is local and Noetherian then the completion Â of A with
respect to m is a Noetherian local ring with maximal ideal m̂ = mÂ such that
grm̂
∼= grmA and dimA = dim Â. This can be used to reduce problems to the

complete local case.

Theorem (Cohen Structure Theorem for characteristic 0). A complete Noethe-
rian local ring A containing a field of characteristic zero is isomorphic to k[[x1, . . . , xn]]/I
for some field k = A/m.
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Lemma 67 (Artin-Rees Lemma). Let A be a Noetherian ring. Let I ⊂ A be
an ideal. Let N ⊂M be A-modules with M finite. Then there exists c ≥ 0 such
that

InM ∩N = In−c(IcM ∩N)

for all n ≥ c.

Proof. Consider B = A ⊕ I ⊕ I2 ⊕ . . . (the Rees algebra). This is a finitely-
generated A-algebra and hence is Noetherian. Consider P = M⊕IM⊕I2M⊕. . .
By similar considerations, P is a finite B-module, hence Noetherian (a.c.c. for
submodules). Hence the B-submodule N⊕IM ∩N⊕I2M ∩N⊕ . . . is a finitely-
generated submodule. Thus there exist r ≥ 0, c1, . . . , cr ≥ 0 and xi ∈ IciM ∩N
such that N ⊕ IM ∩N ⊕ I2M ∩N ⊕ . . . =

∑
Bxi. Take n ≥ c = max(ci). Then

InM∩N =
(∑

Bxi

)
n

=
∑

In−cixi ⊆
∑

In−ci(IciM∩N) ⊆ In−c(IcM∩N).

Hence we’ve proved the ⊆ inclusion. The reverse inclusion is trivial.

Let us investigate some of the consequences of this lemma. First note that in
a Noetherian local ring (A,m) we have ∩mn = (0). We can prove this by setting
M = A and N = ∩mn and hence N = mn ∩ N = mn−c(mc ∩ N) = mn−cN ,
which by Nakayama’s lemma implies that N = 0.

Moreover, if A is Noetherian, I an ideal, then the functor M → M̂ is exact
on the category of finite modules.

Finally, note that (A,m) Noetherian local implies that A→ Â is flat.

Definition 24. Let k ⊂ K be fields. A discrete valuation on K/k is a
surjective map v : K× → Z such that:

(i) v(c) = 0 for all c ∈ k×;

(ii) v(xy) = v(x) + v(y) for all x, y ∈ K×;

(iii) v(x+ y) ≥ min(v(x), v(y)).

Lemma. If v(x) 6= v(y) then v(x+ y) = min(v(x), v(y)).

Proof. Assume v(y) > v(x). Then v(y) = v(−y) because −1 ∈ k. Then v(x) =
v(x+ y − y) ≥ min(v(x+ y), v(y)).

Example 10. Let K = k(t). Then let v(f) be the order of vanishing of f at
t = 0. Then we see that v(t/(1 + t)) = 1 and v((1 + t)/(t2 + t3)) = −2.

Now assume that k is algebraically closed, i.e. k̄ = k. What are all the
discrete valuations on k(t)/k? Let us proceed by cases.

In the first case, suppose that v(f) < 0 for some f ∈ k[t]. Then it’s clear
that f is non-constant and that we can add a constant to f without changing
v(f) (by the lemma). Hence we may assume that f = tg for some g ∈ h[t].
Then either v(t) < 0 or v(g) < 0. By induction we find that v of some linear
polynomial must be less than 0. Suppose v(at+b) = −m. Then v(t+b/a) = −m
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and v(t + λ) = −m for all λ ∈ k. This shows that v(ant
n + . . . + a0) = −nm,

because k = k̄. We conclude that m = 1 because v is surjective. So

v

(
atn + . . .

btl + . . .

)
= l − n,

which gives us the order of vanishing at infinity.
For the other case, where v(f) ≥ 0 for all f ∈ k[t]. In this case m = {f ∈

k[t]|v(f) > 0}, is an ideal, prime, not the zero ideal, and hence maximal via k[t]
a PID. Hence m is a maximal ideal, i.e. (t− α) for some α. v(t− a) = m > 0.
Then v(f) is m times the order of vanishing of f at t−α. Because v is surjective,
we get m = 1 and v(f) is the order of vanishing at t = α.

Definition 25. The projective line P1
k over k = k̄ is the set of valuations

on k(t)/k. We define its topology by closed sets being finite subsets of P1
k and

∅ and P1
k. The regular functions given U ⊂ P1

k open are O(U) = {f ∈
k(t)|v(f) ≥ 0∀v ∈ U}.

For example, if U = P1
k \ {∞} then O(U) = k[t].

Class 12 - Algebraic Curves

Throughout, let k = k̄ be our algebraically closed ground field. Let K be a
finitely-generated field extension of k with trdegkK = 1. Somehow we want
to think of K as a function field of an algebraic curve. We will follow van der
Waerden’s Algebra Vol. II, chapter 19.

We will denote by C the set of discrete valuations of K/k (and think about
it as the set of points of K/k. For v ∈ C we set

Ov = {f ∈ K | v(f) ≥ 0}
mv = {f ∈ K | v(f) > 0}.

Lemma 68. For a discrete valuation v on a field K, Ov is a local domain with
a maximal ideal mv. If z ∈ mv has v(z) = 1 (such z exist by surjectivity of
valuations) then mv = (z) and every ideal in Ov is of the form (zn) = mnv for
some n ≥ 0. Such a ring is called a discrete valuation ring.

Proof. If f ∈ mv then v(f) ≥ 1 so v(f/z) ≥ 0 so f = (f/z)z as f/z ∈ Ov, which
proves the claim.

Lemma 69. If K/k is finitely-generated of transcendence degree 1 and v ∈ C
then κv = Ov/mv is equal to k.

Proof. Pick z ∈ K with v(z) = 1. Then z /∈ k so z is transcendental over k.
Hence n = [K : k(z)] < ∞. Say [κv : k] > 1 =⇒ [κv : k] = ∞. This implies
that there exist u1, . . . , un ∈ Ov such that ū1, . . . , ūn+1 ∈ κv are k-linearly
independent: ∑

i

aiui = 0
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for some ai ∈ k(z) not all zero. Clearing denominators, we may assume that
ai ∈ k[t] and not all in (z). But then we obtain∑

i

āiūi = 0,

which is a non-trivial relation in κv, which is a contradiction.

Remark. Now we know that Ov contains k, has residue field k, and has a uni-
formizer z i.e. mv = (z). Then it follows that Ôv = lim←−Ov/m

n
v
∼= k[[z]]. A

special case is where K = k(z), v = ordz=0. Then Ov = k[z](z) and Ôv = k[[z]]
in which we see 1/(1 + z) 7→ 1− z + z2 − z3 + . . ..

Lemma 70. Let v1, . . . , vn be pairwise distinct discrete valuations on a field K.
Then there exists an f ∈ K such that v1(f) > 0 and vi(f) < 0 for i = 2, . . . n.

Proof. If n = 1, this is trivial. Suppose n = 2 and the statement does not
hold, i.e. v1(f) > 0 and v2(f) ≥ 0. Pick z ∈ K with v1(z) > 0. Then for any
f ∈ K we have v1(fazb) = av1(f)+bv1(z) and v2(fazb) = av2(f)+bv2(z). This
implies that v1(f) > −bv1(z)/a and v2(f) ≥ −bv2(f)/a. Thinking a little bit,

we can conclude that v2(f) ≥ v1(f) v2(z)
v1(z) . Similarly for f−1,

−v2(f) = v2(f−1) ≥ v1(f−1)
v2(z)

v1(z)
= −v1(f)

v2(z)

v1(z)
.

By surjectivity of v1, v2 we find that the fraction above must be 1, and hence
v1 = v2.

Now consider n > 2. Pick f ∈ K such that v1(f) > 0 and vi(f) < 0 for
i = 2, . . . , n − 1 (by induction). If vn(f) < 0 then we are done. If not, pick
g ∈ K such that f1(g) > 0 and vr(g) < 0. Then hr = g(1 + fr), and for r � 0
we get v1(hr) = v1(g) because fr ∈ mv and 1 + fr is thus a unit. Now, for
2 ≥ i ≤ n− 1, note that vi(hr) = vi(g) + vi(1 + fr) = vi(g) + rvi(f) which goes
to −∞ as r → ∞. Finally, we see that vn(hr) = v)n(g) + vn(1 + fr) < 0. We
know that vn(f) ≥ 0. If vn(f) ≥ 0 then 1 + fr os a unit and v(1 + fr) = 0.
If vn(f) = 0 then vn(1 + fr) > 0 only if fr maps to −1 in κvn . We are done
as there is an infinite sequence of r such that fr = −1 (except possibly if the
char k = 2, which we leave as an exercise).

Definition 26. Let v1, . . . , vn be pairwise distinct discrete valuations on a field
K. Let f1, . . . , fn ∈ K. An approximation to order N of f1, . . . , fn at
v1, . . . , vn is an f ∈ K such that vi(f − fi) ≥ N for i = 1, . . . , n.

Theorem 71. Approximations exist.

Proof. Pick f ∈ K as in Lemma 70. Then

hM =
1

1 + fM
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for M � 0. This satisfies hM ∈ Ov, hM ≡ 1 mod mMv1 and that hM ∈ mMvi for
i = 2, . . . , n (compute vi(hM )). So we see that hM · f1 approximates f1, 0, . . . , 0
up to order N if M � N . But since we can approximate the sum of vectors as
well, we are done.

Lemma 72. Let K ⊂ L be a finite extension of fields. Let w : L× → Z be a
discrete valuation. Then w|K× = ev for some discrete valuation v on K and
integer e ≥ 1.

Proof. It is clear that w|K× satisfies the properties of a discrete valuation except
for possibly being surjective. So e = [Z : w(K×)] works provided that w(K×) 6=
0. But if w(K×) = 0 then K ⊂ Ow ⊂ L, which by the previous lemma Ow is a
field, which is a contradiction.

Definition 27. In the situation of Lemma 72 we say that w extends v.

Lemma 73. If K ⊂ L is finite and v : K× → Z given then there are at most a
finite number of w : L× → Z such that w|K× = eN · v.

Proof. Say we have pairwise distinct w1, . . . , wr on L extending v. Pick (by
a previous lemma) fi ∈ L such that wi(fi) > 0 and wj(fi) < 0 for j 6= i.
We’ll show that f−1

1 · · · f−1
n are linearly independent, which suffices. Suppose∑

i aif
−1
i = 0 for some a1, . . . , ar ∈ K. Clearing denominators, we may assume

that ai ∈ Ov and that ai0 /∈ mr for some i0. Then

wi0

(∑
i

aif
−1
i

)
≥ minwi0(aif

−1
i ) ≥ min ei0v(ai) + wi0(f−1

i ).

But the first term is greater than or equal to zero (equal if i = j) and the second
is always greater than equal to zero (equal if i = i0). Hence this could not have
been zero. So

∑
i aif

−1
i 6= 0.

Class 13

Definition 28. v ∈ C is a zero (respectively pole) of f ∈ K× if v(f) > 0,
respectively v(f) < 0. (The integers are called the order of the zero, and
(−1)·the order of the pole.)

Lemma 74. Let K be a finitely generated extension of k with transcendence
degree 1. If f ∈ K×, then f has a finite number of zeros and poles.

Proof. We look at the map k(t)→ K that takes t→ f . Then n = [K : k(t)] <
∞. If v is a zero of f then v is an extension to K of the valuation ordt=0 on
k(t). By Lemma 73, there exist finitely many of these.

Lemma 75. Let k ⊂ L be a finite extension of (arbitrary) fields. Let v : K× →
Z be a discrete valuation. Then there exists w : L× → Z extending v.
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Last lecture we proved the finiteness of such extensions and this is the exis-
tence statement. We will not prove this fact yet; we will do so later using the
technology of divisors. There are two approaches we could use to prove it even
now, but it would be quite hard.

1. Look at the completion K̂ of K. Then look at L̂ = L⊗K K̂. This is not
necessarily a field. Then choose a quotient L̂� L′ which is a field. Then
we can take v ◦NmL′/K̂ to be the extension.

2. Ov ⊂ K can be extended to a valuation ring Ov ⊂ Ow ⊂ L with f.f.(Ow) =
L. Then we show that Ow is a discrete valuation ring.

Lemma 76. Let K/k be finitely generated with transcendence degree 1, then
any f ∈ K, f 6∈ k (i.e. nonconstant) has a pole.

Proof. Look at k(t) → K that takes t → f , then v = ord∞ ∈ P 1
k has an

extension w to K. w(f) < 0 because ord∞(t) < 0.

Example 11. The poles of t2

t+1 are −1,∞. Its zeros are 0, counted twice.

Let us now fix k ⊂ K a function field over a curve C = {discrete valuations on K/k}.

Definition 29. A divisor is a formal sum D =
∑
v∈C nvv with nv ∈ Z almost

all zero. D is said to be effective iff nv ≥ 0 for all v ∈ C. Moreover, we
say that D1 ≥ D2 iff n1v ≥ n2v for all v ∈ C, i.e. D1 − D2 is effective. For
f ∈ K×, the principal divisor associated to f is (f) =

∑
v∈C v(f)v. This is

well-defined by Lemma 74. Observe that (fg) = (f) + (g). Next we define the
zero divisor of f to be (f)0 =

∑
v(f)>0 v(f)v and the pole divisor of f to

be (f)∞ =
∑
v(f)<0 v(f)v. Observe that (f) = (f)0 + (f)∞. If D is a divisor

D =
∑
nvv then its degree is deg(D) =

∑
nv ∈ Z.

Given a divisor D =
∑
nvv we set

L(D) = {f ∈ K× | v(f) ≥ −nv∀nv ∈ C} ∪ {0}.

This is a k-vector space. Let `(D) = dimk L(D).

Lemma 77. If D1 ≥ D2 then L(D2) ⊂ L(D1) has codimension at most
deg(D1)− deg(D2).

Proof. It suffices to prove this for D2 = D1 − v for some v ∈ C, and then the
result follows by induction. We have the exact sequence of vector spaces:

0→ L(D2)→ L(D1)→ π−nOv/π−(n−1)Ov

where π ∈ Ov is the uniformizer and n is the coefficient of v in D1. We are
done, because π−nOv/π−(n−1)Ov is a 1-dimensional k-vector space.

Lemma 78. Say D = D1 −D2 with D1, D2 ≥ 0. Then l(D) ≤ deg(D1) + 1.
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Proof. Observe that L(D) ⊂ L(D1). Observe also that L(0) = k, because by
Lemma 76 any nonconstant function has a pole. So the statement holds for
the trivial divisor. Now we can induct: add points and use Lemma 77. For
example L(v) ⊃ L(0) of codimension ≤ 1. So either l(v) = 0 or l(v) = 1. Then
L(v1 + v2) ⊃ L(v1) has codimension ≤ 1, etc.

Corollary. l(D) ≤ ∞.

Definition 30. D1, D2 are called rationally equivalent (notation D1 ∼rat

D2) if there exists f ∈ K× such that D1 = D2 + (f). This is obviously an
equivalence relation.

Lemma 79. If D1 ∼rat D2, then l(D1) = l(D2).

Proof. We can pass from L(D1) to L(D2) and viceversa by multiplying functions
by f−1 or f respectively.

Example 12. If K = k(t), then the degree of a principal divisor is 0. Namely
every nonzero rational function looks like:

f = c
∏
λ∈k

(t− λ)nλ

Such that almost all nλ = 0, and c ∈ k×. Then:

(f) =
∑
λ

nλ ordt=λ−

(∑
λ

nλ

)
· ∞

Then deg(f) =
∑
λ nλ −

∑
λ nλ = 0. Caution: in the equation above, the

symbol∞ represents the valuation which is the point at infinity on P 1
K . Clearly,

any divisor D is rationally equivalent to n · ∞ for some n. (Substract some
appropriately chosen (f) to cancel out the other terms.) Then this n is the
degree of D. Then we can compute l(D), since:

L(n · ∞) = {f ∈ k(t) : ordt=λ(f) ≥ 0, ordt=∞(f) ≥ −n}
= {f ∈ k[t] : ordt=∞(f) ≥ −n}
= {f ∈ k[t] : deg(f) ≤ n}

This has dimension n+ 1. Hence the bound in Lemma 78 is optimal.

Lecture 14

Proposition 80. Let K/k be a function field and f ∈ K be nonconstant. Set
n = [K : k(t)]. Then n = deg(f)0 = deg(f)∞.
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Proof. STEP 1. n ≥ deg(f)0. To show this, say:

(f)0 = n1v1 + . . . nrvr ni > 0

For 1 ≤ i ≤ r and 1 ≤ j ≤ nr pick zij ∈ K such that zij has order of vanishing
j at vi and it has order of vanishing > ni at all other points. This is possible by
Thm 71. We claim that zij are linearly independent over k(f). If

∑
aijzij = 0

we can clear denominators and get aij ∈ k[f ], with not all aij zero at f = 0.
Say ai0j0 6= 0, with j0 minimal. Then we see that vi0(

∑
aijzij) = j0. This is

because, if a ∈ k[f ] is zero at f = 0 then vi0(a) ≥ ni0 because vi0(f) = ni0 .
Therefore

∑
aijzij 6= 0.

STEP 2. n ≥ deg(f)∞. To see this, apply step 1 to f−1.

STEP 3. n ≤ deg(f)∞. To prove this, write K = ⊕ni=1k(t) · ui for some
u1, . . . , un ∈ K. Suppose v is a valuation of K lying over ordf=λ, λ ∈ k such
that v(ui) < 0. Then after multiplying ui by (f − λ)nui the valuation v is no
longer a pole of ui, and we haven’t introduced any new poles for ui, except per-
haps poles of f . After doing this finitely many times, we may assume that poles
of ui ⊂ poles of f . This implies that ∃mi ≥ 0 such that (ui)∞ ≤ (mi + 1)(f)∞.
Choose m ≥ max{mi}. Then ui, fui, f

2ui, . . . f
m−mi−1ui ∈ L

(
m(f)∞

)
. Hence

l
(
m(f)∞

)
≥
∑n
i=1(m−mi) = nm−

∑
mi

. We are done, because by Lemma 78

l
(
m(f)∞

)
≤ m deg

(
(f)∞) + 1.

Corollary 81.

1. The degree of a principal divisor is 0.

2. If D ∼rat D
′ then deg(D) = deg(D′).

Lemma 82. Let D be a divisor, TFAE:

1. l(D) > 0;

2. D is rationally equivalent to an effective divisor.

Proof. For f ∈ K× we have D + (f) ≥ 0⇔ f ∈ L(D).

Proposition 83. There exists a constant c such that deg(D)− l(D) ≤ c for all
D.

Proof. Let f ∈ K be noncosntant, write K = ⊕k(f)ui with (ui)∞ ≤ (mi +
1)(f)∞ as in the proof of proposition 80. We saw that:

deg(m(f)∞)− l(m(f)∞) ≤ (
∑

mi) + 100

Hence the proposition holds for D = m(f)∞ with c = (
∑
mi) + 100. Now

let D be arbitrary. By lemma 77 it suffices to find D′ ≥ D such that c ≥
deg(D′) − l(D′) ≥ deg(D) − l(D). We may also replace D by D + (f), as
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this doesn’t change deg(D) or l(D). By the same argument as in the proof of
prop 80, D is rationally equivalent to a divisor D′ such that the support of the
positive part of D′ is included in the poles of f . Then D′ ≤ m(f)∞ for some
m >> 0.

Definition 31. The genus of K/k is the smallest integer g such that deg(D)−
l(D) ≤ g − 1 for all divisors D.

Remark. g ≥ 0 because for D = 0 we have l(D) = 1.

If we define the speciality index h1(D) by the formula:

l(D)− h1(D) = deg(D) + 1− g

Then the Riemann-Roch theorem gives a meaning to h1(D). We have seen in
the proof of proposition 83 that given any nonconstant f ∈ K then the sequence
of integers deg(m(f)∞)− l(m(f)∞) is nondecreasing and has an upper bound.
This upper bound is g − 1.

Remark. In proposition 83 we have proved asymptotic Riemann-Roch.

Example 13. The genus of P 1
k . We know that any divisor D is rationally

equivalent to d∞ for some integer d = deg(D). Also:

L(∞) = {f ∈ k[t] : deg(f) ≤ d}

So l(d∞) = d+ 1 if d > 0, and 0 otherwise. Then:

deg(d∞)− l(d∞) =

{
−1 if d ≥ 0
d if d < 0

Example 14. K = f.f.(C[x, y]/(y2 − x3 − x)). What Riemann would say is
that this is the surface corresponding to

√
x3 + x. We could try to compute

L(m∞′), where we have that 2 · ∞′ = (x)∞, where x is regarded as an element
of K = C[x, y]. Note also that elements of K are of the form a + by, with
a, b ∈ C(x).

Class 15

Let K/k be finitely generated of transcendence degree 1. For v ∈ C an algebraic
curve we define Kv to be the v-adic topology f.f.(Ôv), i.e. the set of all Cauchy
sequences (xn) where v(xn − xm)→∞ as n,m→∞ (modulo null sequences).

Lemma 84. Kv is a field. In fact, if z ∈ K is a uniformizer at v then Ôv =
k[[z]] and Kv = k((z)), the field of Laurent series in z over k.

Proof. Omitted. The idea is that there is a map k[z] → Ov which induces an
isomorphism on completions k[[z]]→ Ôv.

Remark. In the literature, one often finds written Ov for Ôv.
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Definition 32. The ring of adeles is

Ak = {(xv) ∈
∏
v∈C

Kv | for almost all v, xv ∈ Ôv}

Lemma 85. Let k be a field. Let L = k((t)). Then Homcts(L, k), the set of
λ : L → k k-linear such that λ|tnk[[t]] ≡ 0 for some n, is a one-dimensional
vector space over L.

Proof. Consider the map λ0 given by f → Rest=0
fdt
t given by

∑
i ait

i 7→ a0.
We claim that any λ is a multiple of λ0. Namely, say λ(tm) = bm ∈ k for m ∈ Z.
Then bm = 0 for m � 0. So we can introduce g =

∑
bmt
−m ∈ L. We then

claim that λ(f) = λ0(gf). It suffices to check this for ti (due to the basis of
L/tnk[[t]]). Then λ(ti) = bi and λ0(tig) = Rest=0

(∑
ti−mbm

dt
t

)
= bi.

Definition 33. The module of covectors is the module

A∗k = {λ = (λv) ∈
∏
v

Homcts(Kv, k) | for almost all v : λv|Ôv = 0}.

Recall now that we have defined a genus g such that

`(D)− h1(D) = deg(D) + 1− g

for some h1(D) ≥ 0.

Lemma 86. If D′ ≥ D then h1(D′) ≤ h1(D).

Proof. This is a reformulation of Lemma 77.

Lemma 87. For every D there exists a D′ with D′ ≥ D and h1(D′) = 0.

Proof. By the construction of g, there exists a D0 with h1(D0) = 0. Choose
D′ ≥ D0 and D′ ≥ D. Apply Lemma 86.

Now note that there exists a canonical map K → Ak given by f 7→ (f, f, f, . . .).

Definition 34. A Weil differential is a covector λ ∈ A∗k such that λ(f) = 0
for all f ∈ K.

Definition 35. Given λ = (λn) ∈ A∗k and D a divisor, we say λ ≥ D if and
only if λv|π−nvv Ov = 0 for all v.

Theorem 88. h1(D) is precisely the dimension of the k-vector space of Weil
differentials λ such that λ ≥ D.

Proof. Pick any D′ =
∑
v n
′
vv ≥ D =

∑
v nvv with h1(D′) = 0 (by Lemma 86).

Then we have the short exact sequence

0 −→ L(D′)

L(D)
−→

∏
v

π
−n′v
v Ov
π−nvv Ov

−→ v.s. of dim h1(D) −→ 0.
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Note that the dimensions work out by our formula for g and that in fact

π
−n′v
v Ov
π−nvv Ov

=
π
−n′v
v Ôv
π−nvv Ôv

.

We can put all these sequences together for varying D′ ≥ D with h1(D′) = 0:

0 −→ K

L(D)
−→

∏
v

Kv

π−nvv Ov
−→ fixed v.s. of dim h1(D) −→ 0.

Corollary 89. The k-vector space of regular Weil differentials, i.e. λ ≥ 0, has
dimension g.

Theorem 90. The collection of all Weil differentials is a one-dimensional K-
vector space.

Proof. It is already clear that the dimension is nonzero. Suppose now that λ1, λ2

are K-linearly independent Weil differentials. Choose D such that λi ≥ D. Pick
a divisor E with huge degree. For f1, f2 ∈ L(E) we get that λ = f1λ1 + f2λ2 ≥
D−E (this is an easy local computation). Thus, h1(D−E) ≥ 2`(E) by Theorem
88, which by the formula for g is greater than or equal to 2(degE+1−g). On the
other hand, `(D−E)−h1(D−E) = degD−degE+1−g. Putting these together
we find that `(D −E) ≥ deg(E) + const · (something depending on D, g). This
is a contradiction.

Now pick a (fixed) non-zero differential λ0. Set Kc to be the largest divisor
such that λ0 ≥ Kc (we leave it as an exercise to show that such a thing exists).
In other words, if Kc =

∑
mvv then λ0,v|π−mvv Ôv = 0 but λ0,v|π−mv−1

v Ôv 6= 0.

Lemma 91. The rational equivalence class of Kc is well-defined.

Proof. Let λ be another non-zero differential. Then by Theorem 90 we see that
λ = f · λ0 and Kc is changed by adding (f).

Definition 36. The divisor of Kc is called the canonical divisor of C.

Theorem 92 (Riemann-Roch). For a divisor D, `(D)− `(Kc −D) = degD+
1− g.

Proof. The result follows easily by Theorems 88 and 90:

`(Kc −D) = dim {f | (f) +Kc −D ≥ 0}
= dim {f | (f) +Kc ≥ D}
= dim {f | fλ0 ≥ D}
= dim {Weil differentials λ | λ ≥ D}
= h1(D)
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Class 16

Modules of differentials

Let A→ B be a ring map. Let M be a B-module.

Definition 37. An A-derivation D : B → M is an A-linear map satisfying
the Leibniz rule:

D(b1b2) = b1D(b2) + b2D(b1).

It is clear that D(1) = 0.

Example 15. Consider A→ B = A[x1, . . . , xn] and D = (∂x1
, . . . , ∂xn) : B →

⊕ni=1B.

Lemma 93. There exists a universal A-derivation d : B → ΩB/A, i.e. for any
A-derivation D : B → M there exists a unique B-linear map θ : ΩB/A → M
such that D = θ ◦ d.

Proof. Let ΩB/A be the free B-module on the symbols d(b) for b ∈ B and then
quotient out by the B-submodule generated by d(a) for a ∈ A, d(b1 + b2) −
d(b1) − d(b2) for b1, b2 ∈ B, and by d(b1b2) − b1d(b2) − b2d(b1) for b1, b2 ∈ B.
Now it’s clear that our map θ from ΩB/A to M should take db to D(b).

Example 16. If B = A[x1, . . . , xn] then ΩB/A = ⊕ni=1A[x1, . . . , xn]dxi. Then

d(f) =
∑n
i=1

(
∂f
∂xi

)
dxi.

Example 17. Suppose P ∈ A[x, y] and B = A[x, y]/(P ). Then ΩB/A =

coker (B −→ Bdx⊕Bdy), where the map takes 1 7→ dP = ∂P
∂x dx+ ∂P

∂y dy.

Lemma 94. If S ⊂ B is a multiplicative subset, then ΩS−1B/A = S−1ΩB/A (as
S−1B modules).

Proof. See, in the Stacks Project Tag 00RT.

Example 18. Ωk(t)/k = k(t)dt because Ωk[t]/k = k[t]dt.

Lemma 95. Let K/k be a finitely-generated field extension of transcendence
degree 1, with k algebraically closed. Then ΩK/k is a one-dimensional vector
space over K.

Proof. By field theory there exists

(a) an element x ∈ K such that K/k(x) is finite and separable;

(b) An element y ∈ K such that K is generated by x, y over k (theorem of the
primitive element).
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Denote by B the domain k[x, y]/(P ). Let P (x, y) ∈ k[x, y] be an irreducible
polynomial such that P (x, T ) is k(x)× multiple of the minimial polynomial for
y over k(x). Then K = S−1(k[x, y]/(P )) whence ΩK/k = S−1Ω(k[x,y]/(P ))/k =

S−1

(
coker

(
B

( ∂P∂x ,
∂P
∂y )
→ Bdx⊕Bdy

))
= coker

(
K

( ∂P∂x ,
∂P
∂y )
→ Kdx⊕Kdy

)
. By

(a) above we see that ∂P
∂y 6= 0 in K. Hence the map is not the zero map and

the cokernel has dimension one.

Lemma 96 (Scholium). If x ∈ K and K/k(x) is finite and separable then dx
is a basis for ΩK/k.

Now let us return to Weil differentials and the setup from previous classes.
Let ω ∈ ΩK/k be nonzero. Then we will construct a covector λω ∈ A∗K by
setting λω((fv)) =

∑
Res (fvω). Let us investigate what this means. “As my

five-year old likes to say: what the heck?”
Fix v ∈ C and pick a uniformizer zv. Then Kv = k[[zv]], canonically (by

Lemma 84). There are maps

ΩK/k Ωkv/k k((zv))dzv
functoriality Taylor expansion

(1)

where the second map sense
∑
fidgi 7→

∑(
dgi
dzv

)
dzv. Note carefully that

the Taylor expansion is not an isomorphism. This can be fixed by replacing
ΩKv/k by ΩKv/k,cont, i.e. continuous differentials. Then we set Resv(fvω) =

Reszv=0

(
Taylorzv (fvω)

)
.

Lemma 97. The RHS is independent of choice of local uniformizer.

Proof. Suppose η ∈ ΩKv/k and h(zv)dzv = Taylorzv (η) and h̃(z̃v)dz̃v = Taylorz̃v (η).

Then z̃v = a1zv+a2z
2
v+· · · with a1 6= 0. We are given that h(zv)dzv = h̃(a1zv+

a2z
2
v + · · · )d(a1zv + a2z

2
b + · · · ). Then we see that h̃ =

∑
bj(z̃v)

j is a Laurent

series as it has finitely many negative terms and that Resz̃v=0

(
h̃(z̃v)dz̃v

)
= b−1.

It remains to show that the coefficient of z−1
v in∑

bj(a1zv + a2z
2
v + · · · )j(a1 + 2a2zv + · · · )

is equal to b−1. Factoring, we find

∑
aj+1

1 bjz
j
v

(
1 +

a2

a1
zv + · · ·

)j (
1 +

2a2

a1
zv + · · ·

)
.

We claim that the coefficient of z−1
v is now b−1.

Lemma 98. For ω ∈ ΩK/k and (fv) ∈ Ak we have Res(fvω) = 0 for almost all
v.
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Proof. Say K = Frack[x, y]/(P ) () with ∂P
∂y 6= 0 in K as before. Then ω = fdx

for some f ∈ K. Let v be a discrete valuation of K/k centered on k[x, y]/(P ),
i.e. v(h) ≥ 0 for all h ∈ k[x, y]/(P ) and there are only a finite number of v
which are not centered on k[x, y]/(P ). If v is not a pole or zero of f and v is
also not a zero of ∂P/∂y then Let (α, β) ∈ k2 be coordinates of the point in
{P = 0} ⊂ k2 corresponding to v. Then

(a) x− a is a uniformizer at v;

(b) ω = cd(x− α) with c a unit in O∗v .

Hence Res(fvω) = 0 if fv ∈ Ôv.

How do we prove (a) and (b) above? Since (α, β) is a nonsingular point of
{P = 0} (as defined in the exercises) we have that

R = (k[x, y]/(P ))(x−α,y−β)

is a regular local ring of dimension one and hence a discrete valuation ring.
Since R ⊂ Ov is an inclusion of discrete valuation rings with same fraction field,
we see that R = Ov. So you can read off whether x − α is a uniformizer from
the structure of R, i.e. show x− α /∈ m2

R.
Consequently, we see that λω : Ak → k given by (fv) 7→

∑
v Resv(fvω) is a

covector. If ω 6= 0 then λω 6= 0 (easy).

Theorem 99. The covector λω is a Weil differential and the assignment ω 7→
λω is an isomorphism from ΩK/k to the space of Weil differentials.

Proof. It now suffices to show that if f ∈ K then
∑
v∈C Resv(fω) = 0. See

below.

Theorem 100. The sum of the residues of an element in ΩK/k is zero.

Example 19. Take K = k(t) and ω = dt. There is a pole of order 2 at infinity:
d(1/s) = −1/s2ds. It’s clear that Res∞ is zero in this case. Let’s instead try
ω = dt/t. We see that d(1/s)/(1/s) = −ds/s and hence the residue at infinity
is -1 which cancels out the residue of 1 at zero.

Let us now prove this theorem (for characteristic zero).

Proof. Let us split this into two cases. For this first, assume K = k(t). In this
case

ω = f(t)dt =
∑

Missing notes here
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Class 17

We resume the proof of Thm 100. We first recall the statement. Let K/k be a
function field, and let ω ∈ ΩK/k. Then

∑
v∈C Resv(ω) = 0.

Proof. Case I. K = k(t). In this case, ω = f(t)dt =
∑ cidt

(t−αi)ei . We actually

only need to check when ω = dt
(t−αi)ei , and we did this last time.

Case II. K ⊃ k(t) separable and finite. Let ω = dt. Then we claim that:∑
w valuation of K/k

Resw(fω) =
∑

v valuation of k(t)/k

Resv(TrK/k(t)(f) · ω)

This claim follows from Lemma 101. Then we are done, since the RHS is 0 by
Case I.

Lemma 101. Let k((x)) ⊂ k((y)) be a finite separable extension. For f ∈ k((y))
we have:

Resy=0(Taylory(fdx)) = Resx=0(Taylorx(Trk((y))/k((x))(f)dx))

Proof. We prove this lemma for character 0. In this case, there exists a uni-
formizer y′ ∈ k((y)) such that x = (y′)e for some e. (Using the fact that
k((x)) = ∪ek((xye)) if k = k̄ has characteristic 0.) By Lemma 97, the LHS does
not depend on the choice of uniformizer. We may replace y by y′ and assume
ye = x. Then we get:

LHS = Resy=0(ef(y)ye−1dy) = e(coeff. of y−e in f)

RHS = Resx=0(

e−1∑
i=0

f(ξiy)dx) = e(coeff. of y−e in f)

In the above equation ξ is a primitive eth root of unity of k. The last equality
follows since:

yn →
e−1∑
i=0

ξinyn =

{
0 if e 6 |n
eyn if e|n

Let us discuss a few applications. First note that the canonical divisor
class equals the divisor class of a nonzero meromorphic differential form, i.e. if
ω ∈ ΩK/k nonzero then

Kc ∼rat

∑
v∈C

(ordvω)v.

Note also that we can use this to show that degKc = 2g−2. This is because
`(0)−`(Kc) = 1−g and `(Kc)−`(0) = degKc+1−g. Hence 0 = degKc+2−2g.

Furthermore `(Kc) = g (number of regular differential forms on C). Finally,
note that if degKc ≥ 2g−1 then `(D) = degD+1−g simply because deg(Kc−
D) < 0 so `(Kc −D) = 0.
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Lemma 102. Let S ⊂ C be a finite nonempty subset. Then,

(i) A = ∩v∈C,v/∈SOv is a normal domain with fraction field K of finite type
over k

(ii) dimA = 1

(iii) Closed points of SpecA are in one-to-one correspondence with points C\S.

Proof. A is a normal domain because it is the intersection of the normal domains
Ov. Once we show finite-type, A will be Noetherian of dimension one, so all of
its local rings will be DVRs, i.e. points of A correspond to v. (Then ε more to
finish the proof). Let us prove finite-type. Say S = {v1, . . . , vn}. For each i we
have

`(evi) = e+ 1− g, e ≥ 2g − 1.

Hence we can pick fi,j ∈ L(jvi) \ L((j − 1)vi) for j = 2g, . . . 4g − 1. Note that
fi,j ∈ A. We claim that A is generated as a k-algebra by fi,j and L((2g−1)(v1 +
. . .+ vn)). Namely, if f ∈ A, then

(f)∞ =

n∑
i=1

eivi, ei ≥ 0.

If ei ≥ 2g for some i. Then expanding in a uniformizer at vi, we see that
f ′ = f − c (some monomial fi,j). Some c ∈ k∗ has a lower value of ei. So f ′ has
a lower degree of pde divisor. Continue until we reach f ∈ L((2g−1)(

∑
vi)).

Remark. Take C, K/k as above. Put cofinite topology on C, and for U ⊂ C
open, set Ov(U) = ∩v∈UOv (finite-type normal k-algebra with MaxSpec U).
Then (C,Ov) is a “variety over k.”

Let us now discuss maps to projective spaces Pr = (k⊕r+1 \ {0})/k∗.

Definition 38. Let C/k be a curve. A linear system on C is a finite-
dimensional k-subvector space V ⊂ K.

Let f0, . . . fr ∈ V be a basis with r ≥ 1 (i.e. dimV ≥ 2). Then we define
(f0, . . . , fr) : C → Pr given by v 7→ [f0(v) : · · · : fr(v)]. For almost all v, v is
not a pole of f0, . . . , fr, and some fi(v) 6= 0. In general, let i0 ∈ {0, . . . , r} be
the index with −v(fi) maximal, then f0/fi, . . . , fr/fi ∈ Ov and fi/fi = 1. So
((f0/fi)(v), . . . , 1, . . . , (fr/fi)(v)) ∈ kr+1 \ {0} gives a point of Pr.

For example, take K = C(t)/C with f0 = 1/t(t+ 1), f1 = 1/t2(t+ 1)2, f2 =
t2/(t+1)10. φ = (f0 : f1 : f2) : P1 → P2. If t 6= 0,−1,∞ then just take the value.
If t = 0, (f0/f1, 1, f2/f1) = (t(t + 1), 1, t4/(t + 1)8)|t=0 = (0, 1, 0). For t = −1
we get (0, 0, 1) and for t = ∞ we get (1, 0, 0). We see that φ−1(first A1) =
P1 \ {0,−1} = MSpec k[1/t, 1/(t+ 1)].

Remark. The map to projective space defined by the linear system is the same
up to choice of coordinates as the map defined by f.V for f ∈ K∗.
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Class 18

Consider the homogeneous coordinates x0, . . . , xr on Pr. These do not give
functions on Pr but they do give functions up to k∗. More precisely, if F ∈
k[x0, . . . , xr] is homogeneous then

V (F ) = {[x0 : . . . : xn] ∈ Pr | F (x0, . . . , xn) = 0}.

is well defined. Moreover,

Pr = (Pr \ V (x0)) ∪ · · · ∪ (Pr \ V (xr))

and Pr\V (xi) is an affine space with coordinates xj/xi for j = 0, . . . , i−1, i+1, r.
Take P1, for example. We get P1 \ V (X0) with coordinate x1/x0 and P1 \

V (X1) with coordinates x0/x1.

Proposition 103. A subset Z ⊂ Pr is called Zariski closed if the following
equivalent conditions are satisfied.

1. For each i = 0, . . . , r the intersection Z ∩ (Pr \ V (xi)) is the zero set of a
collection of polynomials fα ∈ k[xj/xi];

2. There exists a collection of homogeneous polynomials Fβ ∈ k[x0, . . . , xr]
such that Z = ∩βV (Fβ).

Proof. De(homogenize).

Exercise 2. The Zariski topology on Pr is Noetherian (d.c.c. for closed subsets)
of dimension r.

Lemma 104. Let C be a curve with function field K/k and let V = kf0 + . . .+
kfr be a linear system of dimension r + 1. Then

Im ([f0 : f1 : · · · : fr]) : C → Pr

is Zariski closed.

Proof. Pick a ∈ {0, . . . , r}. Then consider k[x0/xi, . . . , xr/xi] → K given by
xj/xi 7→ fj/fi. The image is a finite-type k-algebra B ⊂ K. Let B ⊂ A ⊂ K
be the integral closure. Then A is of finite-type over k [Ha, 3.9A]. Then
A is a normal Noetherian domain of dimension one with fraction field K.
Then m ∈ MaxSpec A yields a DVR Am in C with a valuatoin on K/k.
By Lemma 15 we get a surjective map from MaxSpec A � MaxSpec B ⊂
MaxSpec k[x0/xi, . . . , xr/xi] = Pr − V (xi) ⊂ Pr and the diagram commutes
(proof omitted).

Remark. Of course, in the situation above, the dimension of the image is 1.

Remark. If f0, . . . , fs ∈ V span but are linearly dependent, then we still get
a map C → Ps with closed image, but now Im Φ ⊂ V (

∑
aixi) for some

a0, . . . , ar ∈ k not all zero. We say that the image is linearly degenerate
in this case.
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Lemma 105. Let D ⊂ Pr be an irreducible Zariski closed subset of dimension
one. There D is the image of a curve C by a map as above.

Proof. Pick i ∈ {0, . . . , r} such that D(Pr \ V (xi)) 6= ∅. Then Di = D ∩ (Pr \
V (xi)) = MaxSpec k[xj/xi]/J where J is the set of all polynomials in xj/xi
vanishing on Di. By topology, D irreducible implies that Di is irreducible,
and hence J is prime. This implies that A = k[xj/xi]/J is a domain. Then,
dimD = 1 implies that dimDi = 1 and thus dimA = 1. By Lemma 54 we see
that K = Frac A is a finitely-generated field extension of k with trdegkK = 1.

Let V be k times the class of x0/x1 plus ... plus k times the class of xr/xi.
Denote xj/xi by fj . Then consider Φ = [f0 : . . . : fr] : C → Pr. If h ∈ J ⊂
k[x0/x1, . . . , xr/xi] then h(f0, . . . , f̂i, fr) = 0 in K. Then, thinking a little bit,
we see that Φ(C)∩ (Pr \ V (xi), which is contained in Di. Some topology shows
that Φ(C) = D (both closed irreducible and agree on an open).

Let V ⊂ K be a linear system. Let f0, . . . , fr be a basis. Let D =
max((fi)∞)−min((fi)0). Then V ⊂ L(D) and D is minimal with this property.

Definition 39.

(a) We say that V is a complete linear system if V = L(D) with D as above;

(b) The degree of a linear system V is degD;

(c) The r of the linear system V is dimV − 1.

In this situation, we say that V is a grd.

Lemma 106. If V is a grd then Φ−1
V (hyperplane H ⊂ Pr) is a divisor consisting

of exactly d points.

Proof. Pick a minimal divisor D such that V ⊂ L(D) Say

H = V (a0x0 + . . .+ arxr).

Then Φ−1(H) is the set of v ∈ C such that v(
∑
aifi) is greater than minus the

coefficient of v in D as a divisor (
∑
aifi) + D. This is an effective divisor, as∑

aifi ∈ V ⊂ L(D) and the degree is equal to degD = d because the degree
of a principal divisor is zero. Pick i0 such that −v(fi0) is maximal. Then
Φ(v) has coordinates of fi/fi0 evaluated at v. So v maps into H if and only if∑
aifi/fi0 = 0 if and only if

∑
aifi has lesser pole order than fi0 at v.

Class 19

Here’s another way to think about ΦV . First, consider Pr as being the space
of r-dimensional linear subspaces of (kr+1)∗. Given a vector space V , we will
set in Grothendieck notation, P(V ) to be the projective space of codimension

44



one linear subspaces of V . Given a linear system V ⊂ K choose D a divisor
minimal with V ⊂ L(D). Then

ΦV :C −→ P(V )

p 7→ V (−P ) = L(D − P ) ∩ V

Corollary 107. The map associated to V is injective if and only if for all
P 6= Q in C we have dimV (−P − Q) = dimV − 2. We say “V separates
points.”

Proof. ΦV (P ) 6= Φv(Q)↔ V (−P ) 6= V (−Q) and we have

V (−P −Q) = V (−P ) ∩ V (−Q).

There’s a problem here: ΦV can be injective without being an “isomorphism”
onto its image. An example of this is the cuspidal curve. Take K = k(t) and
V = k + kt2 + kt3. Then Φ : C = P1 → P2 maps P1 to something with a
singularity. More precisely, A1 = P1−∞ = Φ−1

(
P2 − V (X0)

)
7→ P2−V (X0) =

A2. The image is the curve in A2 cut out by y2−x3 = 0. In characteristic zero,
getting a singularity in the image is the only problem. In characteristic p > 0,
on the other hand, let V = k + ktp. Then we get a map Φ : P1 → P1 given by
t 7→ tp, which is injective and surjective. Namely, if a, b ∈ k and ap = bp then
a = b. But this map is not an isomorphism, as it has degree p > 1. We have
k(t) ⊃ k(tp).

Proposition 108. Let V be a linear system. If V separates points and tangent
vectors, i.e. for all P,Q in C (with P = Q allowed) dimV (−P −Q) = dimV =
−2. Then ΦV : C → Pr is an isomorphism onto its image. In fact, ΦV is a
closed immersion, i.e. for every i = 0, . . . , r, the ring map

OC(Φ−1
V (Pr − V (Xi))←− k[x0/xi, . . . xr/xi].

Proof. Omitted. Roughly speaking, if we let A be the left-hand side and B be
a quotient of the right-hand side, we see that A is the integral closure of B in
K, A is finite over B, and finally we use Lemma II 7.4 in Hartshorne (see also
7.3).

Definition 40. Let D be a divisor. We say that D is basepoint free if
L(D − P ) 6= L(D) for all P ∈ C. This really only makes sense as long as
L(D) ≥ 1.

Remark. This exactly means that L(D) is a grd with d = degD. Furthermore,
this exactly means that L(D) ⊂ L(D′)↔ D′ ≥ D.

Lemma 109. Let C be a curve of genus g and D a divisor of degree d. Then

1. if d > 2g − 1 then D is bpf;
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2. if d > 2g then L(D) separates points and tangent vectors.

Proof. If E is a divisor with degE > 2g− 2 then `(E) = degE + 1− g. For (2)
we simply see that L(D−P −Q) = d−2+1−g = (d+1−g)−2 = `(D)−2.

Example 20. Let g = 0. If d = 1, we get an isomorphism from P1 → P1.
If d = 2 we get an isomorphism from P1 to some curve in P2 which meets
everywhere line in P2 at two points (counted with multiplicity). Next, take
d = 3. We get a map P1 → P3 given by [1 : t] 7→ [1 : t : t2 : t3] whose image is a
curve that meets every plane at 3 points. This is called a rational normal curve
of degree 3.

Now let g = 1 and d = 3. Our image is isomorphic to a curve D ⊂ P2

which meets every line in 3 points. We claim that D = V (F ) where F is a cubic
(homogeneous). To see this note that we know D is irreducible of dimension one.
In particular, D∩ (P2−V (X0)) corresponds to a prime ideal in k[x1/x0, x2/x0]
which is not maximal and not (0). But since we have a UFD, p = (f), f an
irreducible polynomial. Then D = V (F ) where F is X0 to the total degree
of (f) times f(x1/x0.x2/x0). Now why is the degree of F 3? Well given a
squarefree homogeneous F ∈ k[x0, x1, x2] we can find a line L ⊂ P2 such that
the number of points of L ∩ F is the degree of F . The idea for proving this
is to dehomogenize. Then let ∆(x) be the discriminant of the dehomogenized
polynomial. Clearly ∆(x) 6= 0 everywhere because F is squarefree. Take λ ∈ k
such that ∆(λ) 6= 0 and now the line x = λ i.e. x1/x0 = λ i.e. X1 − λX0 = 0
meets V (F ) in exactly degF points.

Lecture 20

In the previous lectures we proved the statements:

(1) If C has g2
d then we get Φ : C → P2 such that every line meets Φ(C) in d

points (counted with multiplicity).

(2) If F homogenous of degree d and squarefree then a general line meets D =
V (F ) ⊂ P2 in d distinct points.

Lemma 110. In situation (1) above Φ(C) = V (F ), where F is an irreducible
homogenous polynomial of degree e, and e|d. In fact, d/e is the degree of the
function field of C over the function field of D.

Proof. Pick any F 6= 0 homogenous such that Φ(C) ⊂ V (F ). This is possi-
ble because the image is closed. If we can factor F = F1F2, then Φ(C) ⊂
V (F1) ∪ V (F2), but Φ(C) irreducible so we have either Φ(C) ⊂ V (F1) or
Φ(C) ⊂ V (F2). Therefore we may assume that F is irreducible. But this implies
Φ(C) = V (F ). [There’s also an alternative way to think about this. Φ : C → P2

is given by V = kf0 + kf1 + kf2. Then Φ(C) ⊂ V (F )⇔ F (f0, f1, f2) = 0 in k.]

By (2) we see that e = degF ≤ d. But, to show that e|d, we need to use
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Lemma 111 below. This shows us that, for every line H, deg Φ−1(H) = [k(C) :
k(D)] · deg(H ⊂ V (F )). In conclusion, if D is a degree 3 divisor on a genus
1 curve C, then its complete linear system L(D) defines a closed embedding
(injective immersion such that the domain is birational to the image):

C ↪→ P2

whose image is a degree 3 curve.

Lemma 111. Suppose K1 ⊃ K2 is a finite extension of an extension of k which
is f.g. and has transcendence degree 1. The corresponding map C1 → C2 has
degree [K1 : K2] in the sense that its fibers have exactly that many points if you
count with muptiplicity.

Proof. If v valuation on K2, then w1, . . . , wi extensions of v to K1, set ei = the
integer such that wi|K2 = eiv, then

∑
ei = [K1 : K2].

We also prove here the converse of Lemma 110, namely that any nonsingular
degree 3 curve has genus 1.

Proof. Let F ∈ k[x0, x1, x2] homogenous of degree 3 such that C = V (F ) is
nonsingular, i.e. on the affine pieces you get a nonsingular curve. This means
that ∂F

∂x1
, ∂F∂x2

, ∂F∂x3
, F have no common 0 in P2.

Now we work on the affine piece C ∩ (P2 V (x0)). Let x = x1

x0
, y = x2

x0
such

that we can write f(x, y) = F (1, x, y). We know that fx, fy are not simultane-
ously 0 on f = 0. So we can look at:

ω =
dx

fy
= −dy

fx
∈ Ωk(C)/k

The equality holds because df = fxdx+ fydy = 0. Thus, for every P on f = 0,
the module of differentials is generated by dx if fy(P ) 6= 0 or by dy if fx(P ) 6= 0.
We conclude that ω ∈ Ωk(C)/k vanishes nowhere and doesn’t have a pole at any
of the points of this open.

On the overlap with another affine open, say k[u, v] = k[x0/x1, x2/x1], we have
u = x−1, v = yx−1. Then write g(u, v) = F (u, 1, v). We have:

F (1, x, y) = x3F (x−1, 1, yx−1) = x3g(x−1, yx−1)

fy = x3x−1gv = u−2gv

For the purpose of generalizing to arbitrary degree d, which we will do shortly,
note that the 2 which appears here is d− 1.

ω =
dx

fy
=
u−2du

u−2gv
=
du

gv

By similar reasoning, this has no zeros or poles. In conclusion, our C has a global
differential form ω ∈ Ωk(C)/k without poles or zeros. Therefore deg(KC) = 0 =
2gC − 2, so gC = 1.
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Remark. If degF = d > 3, then we get:

ω =
dx

fy
= −udeg(F )−3 du

gv

Assume we chose coordinates such that C ∩ V (x0) ∩ V (x1) = ∅. Then (u =
0)∩(C∩(P2−V (x1))) = V (x0)∩C. This is a divisor of degree d. In conclusion,
if d > 3 then there exists a regular differential form whose divisor of zeros is
(d− 3)· divisor at ∞. This has degree d(d− 3). Then:

2gC − 2 = d(d− 3)⇒ gC =
(d− 1)(d− 2)

2

About other embeddings of genus 1 curves

If D is a divisor of degree ≥ 3 on a genus 1 curve C then the full linear system
of D is BPF and embeds C as a degree d curve in Pd−1. If d = degD = 4 = 2 ·2,
then we guess that we should get an intersection of two quadratics. To prove
this, we set V = L(D) ⊂ K. We look at:

Sym2(V )→ L(2D)

By Riemann-Roch, L(2D) has dimension 8 + 1 − g = 8. The dimension of
Sym2(V ) is

(
5
2

)
. Therefore the kernel has dimension 2, so C lies on two quadrat-

ics.

Lecture 21

Lemma. Let U.V,W be finite dimensional vector spaces. Let φ : V ⊗W → U
be a linear map such that φ(v ⊗ w) 6= 0 if v, w 6= 0. Then dimU ≥ dimV +
dimW − 1.

Proof. We look at X = {v ⊗ w ∈ V ⊗W} ↪→ V ⊗W , which is Zariski closed.
We have that dimV + dimW − 1, where the −1 comes from the invariance to
rescaling v and w simultaneously. If U = k⊕n, then φ = (φ1, . . . , φn). Then:

0 = dim(X ∩Ker(φ)) = dim(X ∩Kerφ1 ∩ · · · ∩Kerφn)

= dim(X)− 1− 1 · · · − 1

= dim(X)− n

Theorem (Clifford’s theorem). Let D be a divisor with l(D), l(KC −D) ≥ 1.
Then l(D) ≤ 1

2 deg(D) + 1.

Proof. Apply the lemma to the multiplication map:

L(D)⊗k L(KC −D)→ L(KC)
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And get l(D) + l(KC − D) ≤ g + 1. On the other hand, by RR, we have
l(D)− l(KC−D) = degD+1−g. Adding these two equations gives the desired
result.

Theorem. If g(C) ≥ 2, thn C has at most one g1
2. (Up to multiplication by an

element of K×.)

Proof. If V is a g2
1 , then it’s a complete linear system (by Clifford’s theorem).

Say we have two divisors D,D′ of degree 2, l(D) = l(D′) = 2. We may assume
D,D′ are effective. Then l(D + D′) ≤ 1

2 · 4 + 1 = 3. (Note: to use Clifford’s
theorem here, we need to check that l(KC − D − D′) > 0, but this is an easy
consequence of Riemann-Roch.)

If L(D) has basis f1, f2 and L(D′) has basis g1, g2, then:

g1
2 : C

f1/f2→ P1

g1
2 : C

g1/g2→ P1

We want to show that these maps are the same. There exist aij ∈ k not all zero
such that: ∑

aijfigj = 0 in K

The rank of A = (aij) cannot be 1, because then L(D)⊗k L(D′) would send a
pure tensor to 0. Then we can always change basis fi, gi such that:

f1g2 − f2g1 = 0⇔ f1

f2
=
g1

g2

Theorem (Clifford, part 2). If we have equality in Clifford’s theorem,and D 6∼rat

0, D′ 6∼rat 0, then C is hyperelliptic and D = mD′, with D′ the unique g1
2 on C.

Proof. See Harthshorne.

Definition 41. Assume (unnecessarily, but in order to make Prof. de Jong less
stressed out) that k = C. The gonality of the curve C is any of the following
equivalent notions:

(1) The minimal degree of a morphism C → P1.

(2) The minimal degree of [K : C(f)] for any f ∈ K − C.

(3) The minimal integer k such that C has a g1
k.

Lemma. The gonality of C is at least the integer k such that there exist
P1, . . . , Pk in C which do not impose independent conditions on L(KC),i.e.:

l(Kc − P1 − · · · − Pk) > g − k
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Proof. Suppose f : C → P1 has degree k, let:

f−1({t}) = {P1, . . . , Pk}

for t ∈ P1(C). Then a few moments of thought give:

l(P1 + · · ·+ Pk) ≥ 2

⇒ l(KC − P1 − · · · − Pk) ≥ 2− k − 1 + g = 1 + g − k

Conversely, if l(KC − P1 − · · · − Pk) > g − k, then l(P1 + · · ·+ Pk) ≥ 2 and we
get a g1

k.

Theorem (1979). A smooth plane curve has gonality d− 1, where d ≥ 4 is the
degree.

Proof. By projection from a point of C we see that the gonality is ≤ d − 1
(because a line intersects C in d points, and one of them is the point we project
from). For the converse we use the fact from last time:

KC ∼ (d− 3)H ∩ C

H ∩ P2 is the hyperplane at (x), so H = V (x0) and gc = (d−1)(d−2)
2 . Hence for

every h ∈ C[x, y] of total degree ≤ d− 3 we obtain an element L(KC):

h→ hω =
hdx

fy
− hdy

fx

Where f(x, y) = 0 defines C ∩ (P2 − V (x0)). This map is injective because
h 6∈ (f) by degree reasons.

dim{h} = 1 + 2 + · · ·+ d− 2 =
(d− 1)(d− 2)

2

Where, for example, the d− 2 is the dimension of Cxd−3 + · · ·+ Cyd−3. Hence

{h} ∼= L(KC). Now if C
φ

P1 is a g1
k then picking t ∈ P1(C) general, we see that

φ−1({t}) = {P1, . . . , Pk} are all going to be in C − C ∩H ⊂ C2. But k ≤ d− 2
points in C2 pose independent conditions on polynomials of degree d − 3. So
the gonality of C is ≥ d− 1.

Corollary. A smooth plane curve of degree d ≥ 4 is not hyperelliptic.
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Class 22

Let’s approach schemes backwards - let’s define schemes and then work back-
wards to see what it means. Hence, there will be undefined terms at any given
point.

Definition 42.

(i) A scheme is a locally ringed space such that every point has an open
neighborhood isomorphic to an affine scheme.

(ii) A morphism of schemes is a morphism of locally ringed spaces.

(iii) A locally ringed space is a ringed space (X,OX) such that the stalks of
the structure sheaf OX are local rings for x ∈ X

(iv) A morphism of locally ringed spaces is a morphism of ringed spaces
f : (X,OX) → (Y,OY ) such that for all x ∈ X the induced map f#

x :
OY,f(x) → OX,x is a local homorphism of local rings: f#

x (mf(x)) ⊂ mx.

(v) A ringed space (X,OX) is a pair consisting of a topological space X and
a sheaf of rings OX on X called the structure sheaf of X

(vi) A morphism of ringed spaces f : (X,OX)→ (Y,OY ) is given by a continu-

ous map f : X → Y and for all V ⊂ Y open, a map OY (V )
f#

→ Ox(f−1V )
of rings compatible with the restriction mapping of OX and OY .

(vii) Let X be a topological space. A presheaf F of some target category
C on X is a rule which assigns to every open U ⊂ X an object of the
target category F(U) and for every V ⊂ U a restriction morphism ρUV :
F(U)→ F(V ) of the target cateory such that ρUU = id and ρUV ◦ ρWU = ρWV
if V ⊂ U ⊂W open in X. Often used is the notation that s|V = ρUV (s).

(viii) A presheaf F is called a sheaf if given an open covering Ui of any open
U ⊂ X, we have that F(U) maps bijectively to

{(si) ∈
∏
i∈J
F(Ui) | ρUiUi∩Uj (si) = ρ

Uj
Ui∩Uj (sj) for all i, j ∈ I

with s 7→ ρUUi(s). This is called the sheaf condition. This is essentially
saying that local data plus gluing implies global data.

(ix) Given a presheaf F of C and a point x ∈ X, the stalk of F at x is

Fx = {(U, s)}/ ∼

where (U, s) are pairs consisting of an open neighborhood U of x and
s ∈ F(U) with the equivalence

(U, s) ∼ (U ′, s′)⇔ ∃x ∈ U ′′ ⊂ U ∩ U ′ open s.t. ρUU ′′(s) = ρU
′

U ′′(s
′).

Note that Fx is an object in C.
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(x) A morphism of presheaves F φ→ G is given by a collection of maps
φ(U) : F(U) → G(U) for U ⊂ X open compatible with restriction map-
pings: whenever V ⊂ U open, the diagram

F(U) G(U)

F(V ) G(V )

φ(U)

ρUV ρUV

φ(V )

commutes. A morphism of sheaves is simple a morphism of presheaves.

Our next goal is to construct affine schemes from rings. The idea is that
SpecA has as a basis of opens the standard opens

D(f) = {p ⊂ A | f /∈ p}

for f ∈ A. We will want (because it works)

OSpecA(D(f)) = Af .

Let B be a basis for the topology of a topological space X and assume (for
simplicity) that if U, V ∈ B then U ∩ V ∈ B. Define presheaves on B exactly
as before. Furthermore, define sheaves on B exactly as before, i.e. the sheaf
condition for coverings U = ∪i∈IUi when Ui ∈ B.

Proposition 112. Let X and B as above. Then there is an equivalence of
categories Sh(X) ⇔ Sh(b) with F 7→ F|B. This is in general not correct for
presheaves.

Read this in the Stacks project or in FOAG (Ravi’s notes). “Ravi claims
that he covers ALL OF THAT in one year. And that his students do all the
exercises. It’s not possible. I don’t believe it... well maybe it’s possible.” - de
Jong.

Proof. If G is a sheaf on B and U ⊂ X is an arbitrary open then we can choose
a covering U = ∪Ui with Ui ∈ B. Then the sheaf F on X corresponding to G
should satisfy

F(U) = {(si) ∈
∏
G(Ui) | ρUiUi∩Uj (si) = ρ

Uj
Ui∩Uj (sj).

Then we just define F by this formula! “...and now you have to write up sort
of infinitely long checks.”

Example 21. X = SpecA with the Zariski topology.

B = {D(f) | f ∈ A}.

This satisfies our assumption D(f) ∩ D(g) = D(fg). We want to consider
B 3 D(f) 7→ Af . But this is nonsense! It might happen that D(f) = D(g)
without f = g.
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Lemma 113. If f, g ∈ A and D(f) ⊃ D(G) then there is a unique A-algebra
map Af → Ag. If D(f) = D(g) then this map is an isomorphism.

Proof. Recall that SpecAf → SpecA induces a homeomorphism onto D(g).
Thus the assumption D(f) ⊃ D(g) implies that f maps to an element of Ag not
in any prime ideal. So f is invertible in Ag. Hence we get our unique canonical
map by the universal property of localization.

Class 23

Lemma 114. Let B be the standard basis of opens of SpecA. Given an A-
module M the rule B →A−modules given by U = D(f) 7→Mf = M ⊗A Af is a
sheaf of A-modules on B.

Proof. Lemma 113 shows that this is well-defined and gives the restriction map-
pings. It is left as homework to prove the sheaf condition.

Definition 43. The structure sheaf of SpecA is the sheaf of rings OSpecA

which corresponds via the proposition to the rule D(f) 7→ Af on the basis B of
standard opens.

Remark. Similarly, we have a sheaf M̃ corresponding to D(f) 7→ Mf . Observe

that M̃ is a sheaf of OSpecA-modules.

Let us look at the stalk of the structure sheaf at p. Note that since B is a
basis for the topology, to compute the stalk we need only consider pairs (D(f), s)
where p ∈ D(f) and s ∈ Af , i.e. f ∈ A \ p and s = a/fn. Then two such pairs
(D(f), a/fn) and (D(g), b/gm) give the same element of the stalk if and only if
there exists h ∈ A \ p such that D(h) ⊂ D(f), D(h) ⊂ D(g) and a/fn and b/gm

map to the same element of Ah. Contemplate the diagram:

A

Af Ag

Ah

Ap

and conclude that we get a well-defined map OSpecA,p → Ap that is both injec-
tive and surjective. In fact, it is an algebraic fact that the colimit

lim−→
f∈A\p

= Ap
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and that
OSpecA,p = lim−→

U3p
O(U) = lim−→

U∈B,p∈U
F(U).

In particular OSpecA,p = Ap is a local ring

Lemma 115. The stalk of OSpecA at p is Ap. The stalk of M̃ at p is Mp.

Definition 44. An affine scheme is a locally ringed space isomorphic1 to
(SpecA,OSpecA) for some ring A.

Now recall that a scheme X is a locally ringed space that at every point
x ∈ X has an open neighborhood isomorphic to an affine scheme.

Remark. If (X,OX) is a (locally) ringed space and U ⊂ X is open, then
(U,OX |U ) is a (locally) ringed space, let us call it an open subspace. More-
over, there is an inclusion morphism j : (U,OX |U )→ (X,OX) of (locally) ringed
spaces.

Remark. Open subspaces of schemes are again schemes. To see this, it is enough
to show that

(D(f),OSpecA|D(f)) ∼= (SpecAf ,OSpecAf ),

which we shall do below.

Ring maps and morphisms

Let φ : A → B be a ring map and Specφ : SpecB → SpecA be the associated
continuous map of topological spaces. Moreover, if f ∈ A, then

Specφ−1(D(f)) = D(φ(f)).

Proposition. Let f : X → Y be a continuous map of topological spaces. Let B,
resp. C, be a basis for the topology on X, resp. Y , bot closed under intersections.
Assume f−1V ∈ B for all V ∈ C. Then, given sheaves F , resp. G, on X, resp.
Y , to give a collection of maps φ(V ) : G(V ) → F(f−1V ) for all V open in Y
compatible with restriction mappings is the same thing as giving a collection of
maps φ(V ) : G(V )→ (F )(f−1V ) for all V ∈ C compatible with restriction maps.

Remark. Such a collection of maps φ = {φ(V )} is called an f -map from G to F .

Proof. Given φ(V ) defined for V ⊂ C and W ⊂ Y open, we choose an open
covering W = ∪Vi for Vi ∈ C and then define φ(W ) by taking

G(W ) = {(si) ∈
∏
G(Vi) | ρViVi∩Vj (si) = ρ

Vj
Vi∩Vj (sj)}

to
F(f−1(W )) = {(ti) ∈

∏
F(f−1Vi) | · · · }

One now has to do an infinite number of things to show that this works, and
this concludes the proof.

1As a (locally) ringed space. It doesn’t matter which, because if φ : A → B is an isomor-
phism of rings, and A and B are local, then φ is local.
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Going back to our ring map A → B we let Specφ : (SpecB,OSpecB) →
(SpecA,OSpecA) defined by the rules:

1. (Specφ)(q) = φ−1(q) for q ∈ SpecB.

2. OSpecA(D(f)) = Af → OSpecB(D(φ(f))) = Bφ(f) defined by a/fn 7→
φ(a)/φ(f)n.

This gives us a morphism of ringed spaces. To check that it is indeed a morphism
of schemes, we must check that the induced maps

OSpecA,φ−1(q)Aφ−1(q) → Bq = OSpecB,q

is a local homorphism of local rings. This does hold, as it is the map induced
by φ.

Remark. Suppose we have f : X → Y and φ : G → F and f -map. We need to
get an induced map on the stalks φx : Gf(x) → Fx for some x ∈ X. We can do
this by sending (V, t) 7→ (f−1V, φ(V )(t)).

Lemma 116. Let A be a ring and f ∈ A. The ring map A → Af induces an
isomorphism

(SpecAf ,OSpecAf ) (D(f),OSpecAf |D(f))

(SpecA,OSpecA)

A→Af
j

Proof. Omitted.

Lemma 117. Let f : (X,OX) → (Y,OY ) be a morphism of (locally) ringed
spaces. Then f is an isomorphism iff f is a homeomorphism and f induces
isomorphisms on stalks: for x ∈ X, OY,f(x) → OX,x.

Proof. Obvious by Lemma 118.

Lemma 118. Let F α→ G be a map of sheaves on a topological space X. Then
α is an isomorphism if and only if αx : Fx → Gx is an isomorphism for all
x ∈ X.

Proof. We have to construct a β : G → F inverse to α. To do this, it is enough
if α(U) : F(U) → G(U) is bijective for all U ⊂ X open. Let us first show
injectivity. Suppose α(s) = α(s′) for some s, s′ ∈ F(U). Then (U,α(s)) and
(U,α(s′)) define the same element of the stalk Gx for all x ∈ U . By assumption,
this shows that (U, s) and (U, s′) define the same element of Fx for all x ∈ U .
By by definition, for all x ∈ U , there exists x ∈ UX ⊂ U such that s|Ux = s′|Ux .
But then U = ∪x∈UUx is an open covering and the sheaf condition for F shows
that s = s′. Surjectivity is similarly shown.
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Class 24

Examples of Schemes

Example 22 (Scheme associated to an abstract curve). Let k = k̄ be an alge-
braically closed field, K/k a finitely generated extension of transcendence degree
one. As a set,

X = {discrete valuations on K/k} ∪ {η},
where η is a generic point. Note that the closed subsets are ∅, X, and finite
collections of discrete valuations of K/k. Additionally, if U = X \ {v1, . . . , vn}
is open then we take

OX(U) = {f ∈ K | v(f) ≥ 0∀v ∈ U}.

This is indeed a scheme, with every open U ⊂ X,U 6= X affine, the rings OX(U)
always of finite type over k, the local ring of OX at v is OX,v = Ov = {f ∈ K |
v(f) ≥ 0}, and the local ring of OX at η is K.

Example 23 (Affine scheme over a ring R).

AnR = SpecR[x1, . . . , xn] −→ SpecR

Example 24 (Spectrum of the integers). Consider SpecZ = {(0), (2), (3), . . .}.
The closed subsets are ∅,SpecZ, and finite subsets of D(0). Any open is of the
form D(f) where f ∈ Z and OSpecZ(D(f)) = Z[1/f ]. Note that SpecZ is a final
object in the category of schemes.

Example 25 (Proj of a graded ring). Let A = ⊕d≥0Ad a graded ring and
A+ = ⊕d>0Ad ⊂ A be the irrelevant ideal. We define PA to be the graded
prime ideals p ⊂ A such that p does not contain A+. As a topology, for f ∈ A+,
we take a homogeneous set

D+(f) = {p ∈ ProjA | f /∈ p}.

These subsets are a basis for a topology on ProjA. We take

OProjA(D+(f)) = A(f),

which is simply the degree 0 part of Af (which is indeed a ring). Observe that
Af is a Z-graded ring. This yields a sheaf of rings on this basis and hence a sheaf
of rings on ProjA. It turns out that D+(f) is affine, hence D+(f) ∼= SpecA(f).
Finally, if p ∈ ProjA, then

OProjA,p = A(p).

Remark. Warning: the Proj construction is not functorial (in the variable A).
E.g.

A = R[x0, x1]→ R[y0, y1, y2] = B

given by x0 7→ y0, x1 7→ y1. Then q = (y0, y1) ∈ ProjB but its image under
the map SpecB → SpecA is not in ProjA. Namely, it is (x0, x1) = A+, which
is disallowed. Geometrically, one can think of trying to map P2 → P1 but the
point (0 : 0 : 1) gives us trouble as it is sent to (0 : 0).
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Example 26 (Projective space over a ring R). We define

PnR = ProjR[x1, . . . , xn] −→ SpecR

where the grading is the usual one. Since R[x0, . . . , xn]+ = (x0, . . . , xn), by the
definition of Proj, we see that

PnR = D+(x0) ∪ · · · ∪D+(xn).

and
D+(Xi) = SpecR[

x0

x1
, · · · , xn

xi
].

Key facts on affine schemes

Let (X,OX) = (SpecA,OSpecA) be an affine scheme.

1. Γ(X,OX) = OX(X) = A;

2. OX(D(f)) = Af ;

3. For any scheme (S,OS), we have

MorSchemes((S,OS), (X,OX))⇔ HomRings(A,OS(S))

given by f 7→ f# : A = OX(X)→ OS(S)

4. In particular, the full subcategory (of schemes) of affine schemes is anti-
equivalent to the category of rings. Note that this and the above are
incorrect if in the definition of morphisms of schemes one does not require
“locally.”

From point 3, let us construct the map in the other direction. Suppose we are
given a ring map φ : A→ OS(S). We want to construct f : (S,OS)→ (X,OX).
As a map of sets, let s ∈ S and consider

A
φ→ OS(S)→ OS,s

where we have ms ⊂ OS,s the unique maximal and a prime p ⊂ A. Hence we
set f(s) = p to be the inverse image of ms under this composition. Now why is
f continuous? Say g ∈ A. It suffices to show that the inverse image of a basis
element is open, i.e. f−1(D(g)) is open in S. But f−1D(g) is the set of all
s ∈ S such that g is not contained in the inverse image of ms, or equivalently,
the global section φ(g) in OS(S) does not map into ms.

Lemma. Let (T,OT ) be a locally ringed space. Let g ∈ OT (T ). Then

Tg = U = {t ∈ T | g /∈ mt}

is open in T and moreover, there exists a unique h ∈ OT (U) such that g|U ·h = 1.
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Proof. Idea: if t ∈ U then g is invertible in OT,t. There exists an ht ∈ OT,t such
that ght = 1. Then, by definition of stalks, there exists an open neighborhood
Ut of t and ht ∈ OT (Ut) such that g|Utht = 1. Then U = ∪Ut is open, where
the union is over t such that g /∈ mt. Moreover, by uniqueness of inverses in
Rings, and the sheaf condition, the local ht’s glue to an h.

Now we define f#. For D(g) ⊂ SpecA open we let

f# : OSpecA(D(g)) = Ag → OS(f−1D(S))

be the unique ring map extending

A
φ→ OS(S)→ OS(f−1D(g)).

This works because the above lemma tells us that g is mapped to an invertible
element.

We have to now check that the above constructions do really give a morphism
of locally ringed spaces, and we have to check that we indeed do have a inverse.

Example 27 (Surjective morphism A1
C → P1

C). Take t 7→ [t : t2 + 1] at the
level of points. At the level of primes, we take (0) 7→ (0) ⊂ C[x0, x1] and
take (x − t) 7→ ((t2 + 1)x0 − tx1) ⊂ C[x0, x1]. At the level of rings, not that
P1
C = D+(x0) ∪D+(x1).

f−1(D+(x0)) = D(x) = SpecC[x, x−1]→ SpecC[
x1

x0
]

with x1/x0 on the right mapped to (x2 + 1)/x on the left. Similarly,

f−1(D+(x1)) = D(x2 + 1) = SpecC[x, 1/(x2 + 1)]→ D+(x1) = SpecC[x0/x1]

where x0/x1 on the right is mapped to x/(x2 + 1) on the left. We claim that
this is surjective, as x/(x2 + 1) takes on all values while (x2 + 1)/x takes on
every value but zero.

Class 25

Example 28. Consider A1
Z → SpecZ where A1

Z = SpecZ[x]. Note that

dimA1
Z = 2.

The points of A1
Z are as follows. There is a generic point corresponding to

(0) ⊂ SpecZ[x]. There are codimension one points corresponding to irreducibles
(f) (i.e. primes or irreducible nonconstant polynomials). The closed points
correspond to (p, f) where p is a prime number and f is a polynomial which is
irreducible modulo p.
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One has a very similar picture for

A1
C[t] SpecC[t]

A2
C A1

C

∼= ∼=

Observe that if Z ⊂ A1
Z is closed, the its image in SpecZ is either a finite

set of closed points or open in SpecZ. Similarly for the complex case.

Example 29. Consider A2
C → A2

C with the map C[x, y] ← C[x, y] given by
xy ← x, y ← y. “On points,” (x, y) 7→ (xy, y). In the arithmetic case we

take A1
Z

g→ A1
Z and Z[x] ← Z[x] given by 13x ← x. In the geometric case we

have Im(g) = D(y) ∪ closed pt (0, 0). In the arithmetic case, Im(g) = D(13) ∪
{(13, x)}.

Definition 45. Let X be a Noetherian topological space. We say E ⊂ X is
constructible if E is a finite union of locally closed subsets (closed of an open).

Theorem 119 (Chevalley). Let f : X → Y be a finite-type morphism of Noethe-
rian schemes. Then the image of a constructible set under f is constructible.

We will not define these terms here, but one may look at Hartshorne or
the Stacks project. The translation into algebra is the following: given R →
S a finite-type ring map of Noetherian rings, then SpecS → SpecR sends
constructibles to constructibles.

Lemma 120. Let R be a Noetherian ring. E ⊂ SpecR is constructible if and
only if E is a finite union of subsets of the form D(f) ∩ V (g1, . . . , gm) with
f, g1, . . . , gm ∈ R.

Proof. The right-to-left statement is clear. Hence we assume that E is locally
closed, i.e. E = U ∩V c where U, V ⊂ SpecR are open. Then U = D(f1)∪ . . .∪
D(fn) and V = D(g1) ∪ . . . ∪D(gm) as SpecR is Noetherian so every subset is
quasicompact. Then

U ∩ V c = (D(f1) ∩ V (g1, . . . , gm)) ∪ · · · ∪ (D(fn) ∩ V (g1, . . . , gm))

(look this up).

Lemma. Let R be a Noetherian ring, f ∈ R,S = Rf . The the result holds.

Proof. In this case SpecS → SpecR is a homeomorphism onto an open, hence
locally closed subsets map to locally closed subsets.

Lemma. Let R be a Noetherian ring, I ⊂ R and ideal with S = R/I. Then the
result holds.

59



Proof. In this case SpecS → SpecR is a homeomorphism onto an closed subset,
hence locally closed subsets map to locally closed subsets.

Lemma. Let R be a Noetherian ring. The map SpecR[x]→ SpecR is open.

Proof. It is enough to show that the image of D(f) is open in SpecR for f ∈
R[x]. Suppose f = adx

d + · · · + a0, for ai ∈ R. Then we claim that the image
of D(f) is D(a0)∪ · · · ∪D(ad) (which is open). Let p ⊂ R be a prime ideal. Let
f̄ ∈ κ(p)[x] be the image of f . We claim that

(R[x]f )p/p(R[x]f )p ∼= κ(p)[x]f̄ .

The claim follows by some work based on the stuff we did with fibers early in
the semester. Hence we see that p is in the image if and only if the ring is not
zero. In other words p is in the image if and only if f̄ 6= 0.

Lemma. Let R be a Noetherian ring and f, g ∈ R[x]. Assume the leading
coefficient of g is a unit in R. Then the image of D(f) ∩ V (g) in SpecR is
open.

Proof. Write g = uxd + ad−1x
d−1 + . . . + a0 with u ∈ R×. Set S = R[s]/(g).

As an R-module S is free with basis 1, x, . . . , xd−1. Consider multiplication by
f on S - this is an R-linear map so we get a matrix as well as a characteristic
polynomial P (T ) ∈ R[R]. We write

P (T ) = T d + rd−1T
d−1 + · · ·+ r0.

We claim that the image of D(f) ∩ V (g) is D(r0) ∪ · · · ∪ D(rd−1). Suppose
q ∈ D(f)∩V (g) and p = R∩q. Then there is a map Sp/pSp → κ(q) compatible
with multiplication by f . Since f acts as a unit on κ(q), we see that f is not
nilpotent on Sp/pSp so p ∈ D(r0) ∪ · · · ∪D(rd−1) (by the lemma below).

Let us now prove the converse. Suppose ri /∈ p for some i. Then multiplica-
tion by f is not nilpotent on Sp/pSp. This implies that there exists a maximal
ideal q̄ ⊂ Sp/pSp not containing the image of f , which in turn implies that the
inverse image q ⊂ R[x] of q̄ is a point of D(f) ∩ V (g) mapping to p.

Lemma. We have that p ∈ V (r0, . . . , rd−1) if and only if multiplication by f
on Sp/pSp is nilpotent.

Proof. Omitted. Hint: Sp/pSp is free with basis 1, x, . . . , xd−1 over κ(p).

Theorem 121 (Chevalley’s theorem). Let R → S be a finite-type ring map.
Let R be Noetherian. Then if E ⊂ SpecS is constructible then the image of E
under the map is constructible.

Proof. Take S = R[x1, . . . , xn]/(f1, . . . , fm). Can factor

R→ R[x1]→ R[x1, x2]→ . . .→ R[x1, . . . , xn]� S

and so may assume S = R[x] (as the statement has been shown for surjective
maps in the lemmas above). We know that E is a finite union of sets of the
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form D(f) ∩ V (g1, . . . , gm) and hence reduce to E = D(f) ∩ V (g1, . . . , gm).
Note that if c ∈ R then SpecR = D(c) t V (c) and it suffices to show our set
intersected with either piece is construcible (by previous lemmas). The claim
is that the shape of E does not change under this procedure, i.e. that the
image of (D(f) ∩ V (g)) ∩D(c) is the image of D(fc) ∩ V (gc) in SpecRc where
fc, gc ∈ Rc[x] are the images of f and g. Similarly for V (c).

We use induction on m and on the degrees of the gi. Let d be the degree of g1

where g1 has leading coefficient c. Cut upR as above. On theRc part we get that
g1 has invertible leading coefficient, while on the R/c part, the degree of g1 drops
so we are done by induction. For the localization case, we can lower the degrees
of g2, . . . , gm if they are bigger or equal to d (V (g1, . . . , gm) = V (g1, g2−hg1, . . .))
again we are done if some gi has degree ≥ d. If not I swap g1, g2 and go back
to start. (The two base cases were D(f)∩ V (g) and D(f) and were done in the
lemmas)

Class 26

The homework over winter break is to read Hartshorne Chapter II, Sections
1,2,3,4, and to do some of the contained exercises.

Definition 46. A morphism of schemes f : X → Y is proper if it is of finite-
type, separated, and universally closed (i.e. closed after any base change).

Today we will discuss this definition for PnS → S.

Proposition. For any scheme S the projection morphism PnS → S is closed.

Proof. We have immediate reduction to the case S = SpecR. Recall that PnR =
D+(X0)∪· · ·∪D+(Xn) whereD+(Xi) = SpecRi whereRi = R[x0/xi, . . . , xn/xi].
SetRij = (Ri)xj/xi = (Rj)xi/xj = R[x0/xi . . . , xn/xi, xi/xj ] = R[x0/xj , . . . , xn/xj , xj/xi]
where we take the degree zero part. Let Z ⊂ PnR be a closed subset. Then
Z ∩D+(Xi) = V (Ii) for a unique radical ideal Ii ⊂ Ri. Then (Z ∩D+(Xi)) ∩
D+(Xj) = Z∩D+(XiXj) = (Z∩D+(Xj))∩D+(Xi). Thus we see by the corre-
spondence between the radicals ideals of Rij and the closed subsets of SpecRij
that IiRij = IjRij for all i 6= j. Note that closed subschemes of PnR correspond
exactly to ideals Ii ⊂ Ri (not necessarily radical) such that the just-stated
correspondence holds.

Now set I ⊂ R[x0, . . . , xn] to be the graded ideal generated by homogeneous

elements F of positive degree such that F/XdegF
i ∈ Ii for i = 0, . . . , n. If

we denote V+(F ) = PnR \ D+(F ), this condition is equivalent to saying that
F ∈ I ⇐⇒ Z ⊂ V+(F ).

Let p ∈ SpecR not in the image of Z under PnR → SpecR. This implies
that for all i = 0, . . . , n, (Ri/Ii)p/p(Ri/Ii)p = 0 = (Ri)p/((Ii)p +p(Ri)p), which
in turn implies (by clearing denominators) that for all i = 0, . . . , n, there exist
gi ∈ R \ p such that fi ∈ Ii,

gi = fi +
∑
i

ai,t + fi,t
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where ai,t ∈ p, fi,t ∈ Ri. By the second lemma below (and homogenizing) we
find that

gix
N
i = Fi +

∑
i

ai,tFi,t

with Fi ∈ IN and Fi,t ∈ (R[X0, . . . , Xn])N where this notation denotes the
Nth graded part of the objects. Then XN

i ∈ (IN )p + p(R[x0, . . . , xn]N )p.
Then (R[x0, . . . , xn](n+1)N )p = (I(n+1)N )p + p(R[X0, . . . , Xn)](n+1)N )p. The
left hand side becomes (Rp[X0, . . . Xn])(n+1)N , which is finite and free as Rp-
modules on the basis of the monomials. By Nakayama’s lemma, we see that

(R[X0, . . . , Xn](n+1)N )p = (I(n+1)N )p, which implies that hiX
(n+1)N
i ∈ I(n+1)N

for some hi ∈ R \ p. Aside: this means that Z ⊂ V+(hiX
(n+1)N
i ) = V (hiXi)

(uniquely). This in turn implies that the image of Z to SpecR is disjoint from
D(h0)∩ · · · ∩D(hn) = D(h0 · · ·hn) which is an open neighborhood of p. Hence
V+(X0) ∩ · · · ∩ V+(Xn) = ∅, and we are done.

Lemma. If f ∈ Ri and the image of f is in IiRij, then Xj/Xi · f ∈ Ii.

Proof. f ∈ IiRij means that f vanishes on Z ∩ D+(XiXj). Then Xi/Xj · f
vanishes on Z ∩ D+(XiXj) and V+(Xj) ∩ D+(Xi) = V (Xj/Xi) ⊂ D+(Xi) =
SpecRi. So Xj/Xi vanishes on Z ∩D+(Xi), so Xj/Xi · f ∈ Ii.

Lemma. If F is homogeneous of positive degree, and F/XdegF
i ∈ Ii for some

i, then XiF ∈ I.

Proof. Immediate consequence of the lemma above.
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