Throughout k is a field. For any finite type k-algebra A we consider the function

$$\delta : \text{Spec}(A) \to \mathbb{Z}, \quad p \mapsto \delta(p) = \text{trdeg}_k(\kappa(p))$$

Lemma 0.1. Let $A \subset B$ be an integral extension of domains. If $J \subset B$ is a nonzero ideal, then $A \cap J$ is nonzero.

Proof. Let $b \in J$ be nonzero. Let $P = t^d + a_1t^{d-1} + \ldots + a_d \in A[t]$ be a monic polynomial of minimal degree with $P(b) = 0$. Then a_d is nonzero, since otherwise we may replace P by P/t (here we use that B is a domain and b is nonzero) and lower the degree of P. Then $a_d = -b^d - a_1b^{d-1} - \ldots - a_{d-1}b \in J \cap A$. \hfill \square

Lemma 0.2. Let $A \subset B$ be an extension of domains and denote $K \subset L$ their fraction fields. Let $b \in B$ be integral over A. If A is normal, then the minimal polynomial $P \in K[t]$ of b viewed as an element of L has coefficients in A.

Proof. Let $Q \in A[t]$ be a monic polynomial such that $Q(b) = 0$. Since P is the minimal polynomial of b we see that P is monic and P divides Q in $K[t]$. Choose a splitting field M/L of Q. Write

$$Q = (t - \beta_1) \ldots (t - \beta_m)$$

with β_1, \ldots, β_m the roots of Q in M. Clearly, β_1, \ldots, β_m are integral over A. Since $P|Q$ and P is monic, we see that after a permutation we can find $n \leq m$ such that

$$P = (t - \beta_1) \ldots (t - \beta_n)$$

Thus the coefficients are polynomials in the β_j’s and in particular they are integral over A. Since they are also in K and A is normal, we see that they are in A. \hfill \square

Lemma 0.3. Let A be a finite type k-algebra. For $g \in A$ there is a finite type k-algebra $A_g = A[t]/(gt - 1)$ with the following property: the induced map $\text{Spec}(A_g) \to \text{Spec}(A)$ induces a homeomorphism onto $D(g) \subset \text{Spec}(A)$ and identifies residue fields.

Proof. Omitted. \hfill \square

Lemma 0.4. Let A be of finite type over a field k. Let $q \subset p \subset A$ be distinct primes. Then $\delta(q) > \delta(p)$.

Proof. Set $A' = A/q$, $q' = (0)$, and $p' = p/q$. Then $\kappa(p') = \kappa(p)$ and $\kappa(q') = \kappa(q)$; please prove this yourselves. Thus we may assume A is a domain and $q = (0)$. In other words, we have to show: if A is a domain and $p \subset A$ is a nonzero prime, then the transcendence degree of $\kappa(p)$ over k is less than the transcendence degree of $f.f.(A)$.

Choose $P = k[x_1, \ldots, x_r] \subset A$ finite (Noether normalization, see previous lecture). Then

$$k(x_1, \ldots, x_r) \subset f.f.(A)$$

The existence of Q guarantees that b viewed as an element of L is indeed algebraic over K and hence the statement of the lemma makes sense.
is a finite extension, hence the transcendence degree of \(f.f.(A) \) is \(r \). By Lemma 0.1 there is a nonzero element \(g \in k[x_1, \ldots, x_r] \) contained in \(p \). Thus the images \(x_1, \ldots, x_r \) of the elements \(x_1, \ldots, x_r \) in \(\kappa(p) = f.f.(A/p) \) aren’t algebraically independent. Now \(\kappa(p) \) is algebraic over the subfield generated by \(k \) and \(x_1, \ldots, x_r \); please prove this yourselves. We conclude that the transcendence degree of \(\kappa(p) \) over \(k \) is strictly less than \(r \).

\[\square \]

Lemma 0.5. Let \(A \) be of finite type over a field \(k \). Let \(q \subset p \subset A \) be distinct prime ideals with no prime ideal strictly in between. Then \(\delta(p) + 1 = \delta(q) \).

Proof. After replacing \(A \) by \(A/q \) as in the proof of Lemma 0.4 we may assume \(q = (0) \) and hence \(p \subset A \) is a prime ideal minimal with the property of not being zero. Our goal is to show that \(\text{trdeg}_k \kappa(p) + 1 = \text{trdeg}_k f.f.(A/p) \).

Pick nonzero \(f \) in \(p \). Then \(p \) is minimal over \((f) \), i.e., \(p \) defines a generic point of \(V(f) \). By a previous result \(V(f) \) has a finite number of generic points besides \(p \). By prime avoidance can pick \(g \) in those primes but not in \(p \). After replacing \(A \) by \(A_g \) we get \(p = \sqrt{(f)} \). Some details omitted; see Lemma 0.3 to see why it is permissible to do this replacement.

Choose \(P = k[x_1, \ldots, x_r] \subset A \) finite (Noether normalization). Then \(r = \text{trdeg}_k f.f.(A) \), see proof of Lemma 0.4. For all elements of \(A \) the minimal polynomial has coefficients in \(P \) by Lemma 0.2 and the normality of the polynomial algebra. In particular get \(Nm : A \to P \) because the norm of an element is a power of the last coefficient of the minimal polynomial (see previous lecture).

Let \(q = P \cap p \). Then \(g \in q \) implies \(g^n = af \) for some \(n > 0 \) and \(a \in A \). Let \(d \) be the degree of the extension \(f.f.(A)/f.f.(P) \). Then

\[
g^{nd} = Nm(g^n) = Nm(g^n) = Nm(a)Nm(f)
\]

by properties of the norm (see previous lecture).

We have \(Nm(f) \in q \): the last coefficient of its minimal polynomial is in \(p \) and in \(P \) and \(Nm(f) \) is a power of it (compare with the proof of Lemma 0.1). Thus, we see that one of the irreducible factors, say \(g \), of \(Nm(f) \) is in \(q \). Applying the displayed equation above we see that \(Nm(f) \) is a power of the irreducible \(g \) up to a unit.

We claim \(q = (g) \). Namely, if \(h \in q \), then applying the displayed equation for \(h \) we see that \(g \) divides a power of \(h \), hence \(h \in (g) \).

The transcendence degree of \(\kappa(q) \) over \(k \) is \(r - 1 \) (see previous lecture). The extension \(\kappa(q) \subset \kappa(p) \) is finite because \(P \subset A \) is finite; please prove this yourselves. Thus the transcendence degree of \(\kappa(p) \) over \(k \) is \(r - 1 \) as well. \[\square \]

Lemma 0.6 (Hilbert Nullstellensatz). Let \(A \) be finite type over a field \(k \). Let \(p \subset A \) be a prime. Then the following are equivalent

1. \(p \) is a maximal ideal,
2. \(\text{trdeg}_k \kappa(p) = 0 \),
3. \(\kappa(p) \) is finite over \(k \).

Proof. After replacing \(A \) by \(A/p \) we see that we have to show the following: given a domain \(A \) of finite type over \(k \) the following are equivalent

1. \(A \) is a field,
2. \(\text{trdeg}_k f.f.(A) = 0 \),
Theorem 0.7. Let \(A \) be a finite type \(k \)-algebra and set \(X = \text{Spec}(A) \). The function
\[
\delta : \text{Spec}(A) \rightarrow \mathbb{Z}, \quad p \mapsto \delta(p) = \text{trdeg}_k(\kappa(p))
\]
is a dimension function and we have \(\delta(p) = 0 \) if and only if \(p \) is a closed point.

Proof. Combine Lemmas 0.4, 0.5, and 0.6.

There are many things you can conclude from this. Let us give three examples.

Lemma 0.8. Let \(A \) be a finite type \(k \)-algebra and set \(X = \text{Spec}(A) \).

1. If \(x \in X \), then there is a specialization \(x \leadsto y \) with \(y \) closed in \(X \).
2. We have \(\dim(X) = \max\{\delta(x) \mid x \in X\} \).
3. For \(x \in X \) with \(\delta(x) > 0 \) the set of closed points of \(Z = \{x\} \) is infinite.

Proof. The proof of (1) is formal from the theorem. Namely, if \(\delta(x) = 0 \), then we take \(y = x \) (this is forced). If \(\delta(x) > 0 \) we see that \(x \) is not a closed point of \(X \). Hence we can find \(x \leadsto x' \) in \(X \) with \(\delta(x) > \delta(x') \). If \(\delta(x') > 0 \), then we can do it again. Thus we can continue
\[
x \leadsto x' \leadsto x'' \leadsto \ldots \leadsto x^{(e)}
\]
until we hit a final point \(x^{(e)} \in X \) with \(\delta(x^{(e)}) = 0 \). Set \(y = x^{(e)} \). This is a closed point by the theorem. Since specialization is transitive we see that \(x \leadsto y \).

Proof of (2). Since \(X \) is a sober\(^2\) topological space the dimension of \(X \) is equal to the supremum of the lengths of chains of nontrivial specializations
\[
x_n \leadsto x_{n-1} \leadsto \ldots \leadsto x_0
\]
in \(X \). By the properties of a dimension function, we can assume \(\delta(x_i) = \delta(x_{i-1}) + 1 \). Since every prime in a ring contains a minimal prime and is contained in a maximal ideal, we may assume that \(x_n \) is a generic point of an irreducible component of \(X \) and \(x_0 \) a closed point. Then \(n = \delta(x_n) \). Finally, there are only finitely many irreducible components of \(X \) hence the supremum is attained.

To prove (3) we use that \(X \) has a basis for its topology consisting of opens \(U \) which also have the property with respect to \(\delta_U \); namely the principal opens \(D(y) = \text{Spec}(A_y) \), see Lemma 0.3. Suppose we have closed points \(x_1, \ldots, x_n \in Z \). Then we can choose an open \(U \subseteq X \) as above with \(x \in U \) and \(x_1 \notin U, \ldots, x_n \notin U \). By (1) applied to \(x \in U \) we can find \(x \leadsto y \) in \(U \) with \(y \) closed in \(U \), equivalent \(\delta(y) = 0 \). Then \(y \in X \) is closed because the function \(\delta \) is the same for \(y \) viewed as a point

\(^2\)This means that every closed irreducible subset \(Z \) is of the form \(\overline{\{\eta\}} \) for a unique generic point \(\eta \in Z \).
of U or of X! Since $y \in Z$ is not equal to x_1, \ldots, x_n it is a “new” closed point as desired.

Example 0.9. For example, part (3) of the last lemma says that $k[x_1, \ldots, x_n]$ has infinitely many maximal ideals if $n > 0$. This is obvious if k is infinite, as you can take the ideals $(x_1 - a_1, \ldots, x_n - a_n)$ for $(a_1, \ldots, a_n) \in k^n$. But it is true even if k is a finite field. More interestingly perhaps, suppose $k = \mathbb{Q}$ and consider $A = \mathbb{Q}[x, y]/(x^2 + y^2 + 1)$. Then there are no \mathbb{Q}-rational points on $\text{Spec}(A)$, i.e., there are no maximal ideals $m \subset A$ with $\kappa(m) \cong \mathbb{Q}$. However, there are still infinitely many maximal ideals: you can take $m_n = (x - n, y^2 + n^2 + 1)$ for $n \in \mathbb{N}$.

Example 0.10. Suppose that we consider the ring

$$A = k[x, y, z, w]/(xy, xz)$$

Then we have two irreducible components corresponding to the prime ideals (x) and (y, z). The dimension of these irreducible components is 3 and 2. Thus the dimension of A is 3.