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2 LECTURE NOTES B

1. Dualizing sheaf

Let k be a field. Let X be a proper scheme over k. We say a pair (ωX , t) is a
dualizing sheaf or dualizing module if ωX is a coherent OX -module and

t : HdimX(X,ωX) −→ k

is a k-linear map such that for any coherent OX -module F the pairing

HomX(F , ωX)×HdimX(X,F) −→ k, (ϕ, ξ) 7−→ t(ϕ(ξ))

is a perfect pairing of finite dimensional k-vector spaces.

Theorem 1.1. If X is projective over k then there exists a dualizing sheaf. In fact,
for any closed immersion i : X → P = Pnk there is an isomorphism

i∗ωX = Extn−dimX
OP

(i∗OX , ωP )

Lemma 1.2. If X ⊂ Pnk is a hypersurface of degree d then ωX = OX(d− n− 1).
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2. Projective schemes

Let X ⊂ Pnk be a closed subscheme. Recall that if i : X → Pnk is the corresponding
closed immersion, then we use the notation

OX(m) = i∗OP1
k
(m)

Recall that OX(1) is an ample invertible sheaf on X. Also, since i∗ commutes with
tensor product we have OX(m) = OX(1)⊗m. By the projection formula we have

i∗ (OX(m)) = (i∗OX)⊗OPn
k
OP1

k
(m)

This also means the notation i∗OX(m) is not ambiguous.

For every integer m there is a surjection of sheaves

OPn
k
(m) −→ i∗OX(m)

The homogeneous ideal of X is the graded ideal I ⊂ k[T0, . . . , Tn] with degree m
part equal to the kernel of

k[T0, . . . , Tn]m = Γ(P1
k,OP1

k
(m)) −→ Γ(P1

k, i∗OX(m)) = Γ(X,OX(m))

Lemma 2.1. In the situation above the surjection of graded rings

k[T0, . . . , Tn] −→ k[T0, . . . , Tn]/I

induces a closed immersion

Proj(k[T0, . . . , Tn]/I) −→ Proj(k[T0, . . . , Tn]) = P1
k

whose image is equal to X.
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3. Ext pairings

Let (X,OX) be a ringed space. Given OX -modules F ,G,H there is a pairing

ExtnX(G,H)× ExtmX(F ,G) −→ Extn+mX (F ,H), (η, ξ) 7−→ η ◦ ξ
One way to define these pairings is using injective resolutions. For example choose
injective resolutions G → J • and H → I•. We may represent ξ and η by maps of
complexes

ξ̃ : F → J •[m] η̃ : G → I•[n]

as discussed previously. Then you can find the dotted arrow making the diagram

G

��

η̃
// I•[n]

J •
η̃′

<<

commute. See Lemma 013P. Here we use that the vertical arrow is an (injective)
quasi-isomorphism of complexes and that the complex I•[n] is a bounded below
complex of injectives. Then finally we get

(η̃′)[m] ◦ ξ̃ : F → I•[n+m]

which defines a class in the target Ext module.

Of course one has to prove that the resulting class is indepedent of the choices we
made. The Ext pairing is associative in an obvious manner. The Ext pairing is
functorial in all three variables F ,G,H when formulated suitably. Finally, the Ext
pairing is compatible with short exact sequences and the boundary maps associated
to them (again formulated suitably).

Special case: if F = OX we obtain

ExtnX(G,H)×Hm(X,G) −→ Hn+m(X,H)

https://stacks.math.columbia.edu/tag/013P
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4. Serre duality

Let X/k be proper as above and let (ωX , t) be a dualizing sheaf. Using the Ext
pairing we obtain pairings

ExtiX(F , ωX)×HdimX−i(X,F) −→ k, (η, ξ) 7−→ t(η ◦ ξ)
for any coherent OX -module F .

Theorem 4.1. If X is projective, equidimensional, and Cohen-Macaulay, then
these pairings are perfect.

More is true, see Hartshorne Theorem 7.6, Chapter III.

Sketch of proof. We are going to use δ-functors, see Section 010P. We show that
both the (homological) δ-functor

{ExtiX(F , ωX)}i=0,1,2,...

and the (homological) δ-functor

{k-linear dual of HdimX−i(X,F)}i=0,1,2,...

are universal. Since for i = 0 the functors are isomorphic by our choice of ωX , we
conclude (except that we have to check that the resulting isomorphism comes from
the pairings we have discussed in the previous section).

By the (categorical dual of) Lemma 010T it suffices for every i > 0 and every
coherent module F to find a surjection G → F such that

ExtiX(G, ωX) = 0 and HdimX−i(X,G) = 0

Choose a closed immersion X → Pnk . By our earlier considerations it suffices to
show that

ExtiX(OX(m), ωX) = Hi(X,ωX(−m)) and HdimX−i(X,OX(m)) = 0

for m� 0. The first one holds by our general result about cohomology of twists of
coherent sheaves on Pnk . For the second one we have to use the equidimensionality
and Cohen-Macaulay properties of X as it isn’t true for a general projective X over
k. We will do this on the next page. �

https://stacks.math.columbia.edu/tag/010P
https://stacks.math.columbia.edu/tag/010T
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5. Vanishing and Cohen-Macaulay

We aim to prove the following.

Proposition 5.1. Let X ⊂ Pnk be a closed subscheme equidimensional of dimension
d, and Cohen-Macaulay. Then for j < d we have Hj(X,OX(m)) = 0 for m� 0.

We proceed in a manner different from what is done in Hartshorne.

Lemma 5.2. For X as in the proposition any finite morphism X → Pdk is finite
locally free.

Explanation and proof. A morphism f : X → Y is said to be finite locally free if
f is affine and f∗OX is a finite locally free OY -module. If Y is Noetherian, it is
equivalent to say that f is finite and flat, see Lemma 02KB.

The lemma holds by ”miracle flatness”, more precisely Lemma 00R4. Let us check
that the lemma applies. Namely, if x ∈ X is a closed point mapping to y ∈ Y = Pdk
then we have dim(OX,x) = d and dim(OY,y) = d by dimension theory, the local ring
OY,y is regular (by our work previous semester), and the local ring OX,x is Cohen-
Macaulay by assumption. Finally, the quotient OX,x/myOX,x has dimension 0 as
its spectrum has only the point x in it due to the fact that we assumed X → Y to
be finite. �

Lemma 5.3. For any projective scheme X of dimension d over an infinite field k
there exists a finite morphism f : X → Pdk such that f∗OPd

k
(1) = OX(1).

Proof. Use projections, see next page. �

Proof of proposition. There is a reduction to the case where the ground field k is
infinite (flat base change + field extensions are flat). Then we may assume we have
a finite and flat morphism f : X → Pdk with f∗OPd

k
(1) = OX(1). Then we see that

Hj(X,OX(m)) = Hj(Pdk, f∗ (OX(m))) = Hj(Pdk, f∗(OX)(m))

the last equality by the projection formula, see Lemma 01E8. Since E = f∗(OX) is
a finite locally free module on Pdk we see that it suffices to show the next lemma. �

Lemma 5.4. For any finite locally free module E on Pdk we have Hj(Pdk, E(m)) = 0
for m� 0.

Proof. By duality on Pdk this translates into Hd−j(Pdk, E∨ ⊗ ωX(−m)) which does
indeed vanish for −m� 0. �

https://stacks.math.columbia.edu/tag/02KB
https://stacks.math.columbia.edu/tag/00R4
https://stacks.math.columbia.edu/tag/01E8
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6. Projections

Let x ∈ Pnk be a k-rational point. Projection from x is a morphism of varieties

p : Pnk \ {x} −→ Pn−1k

with the property that

p∗(OPn−1
k

(1)) = OPn
k
(1)|Pn

k\{x}

The easiest way to define it is to choose linear polynomials L0, . . . , Ln−1 ∈ k[T0, . . . , Tn]
whose common vanishing set is exactly {p} and to use the morphism into Pn−1k

corresponding to the line bundle OPn
k
(1)|Pn

k\{x} on Pnk \ {x} and the sections

L0, . . . , Ln−1 which generate it (so we get our projection morphism by the uni-
versal property of the projective space of dimension n− 1).

If x = [0 : . . . : 0 : 1] then it is customary to choose T0, . . . , Tn−1 and the morphism
p is simply given on points by

p([a0 : . . . : an]) = [a0 : . . . : an−1]

The k-rational points of the fibre of p over the k-rational point [b0 : . . . : bn−1] is
the set of points

{[b0 : . . . : bn−1 : b], b ∈ k} ∪ {x}
which is exactly the line connecting x to [b0 : . . . : bn−1 : 0]. In general the fibres of
p are exactly the lines passing through x.

Proof of Lemma 5.3. Let X ⊂ Pnk be a closed subscheme of dimension d. Then
if x ∈ Pnk is a k-rational point not contained in X (and there always is such a point
if d < n and k is infinite) then we can consider the restriction

p|X : X −→ Pn−1k

Observe that the fibres of p|X are finite because none of the lines passing through
x can be completely contained in X as x 6∈ X! Thus p|X is a finite morphism of
schemes, see for example Lemma 02OG. Denote X ′ ⊂ Pn−1k the scheme theoretic
image of this morphism (this is the smallest closed subscheme through which p|X
factors, see Section 01R5). We obtain a commutative diagram

X
g

//

��

X ′

��
Pnk \ {x}

p // Pn−1k

Note that g is finite because p|X is finite. By induction on n we can find a compo-
sition of projections which determines a finite morphism

f ′ : X ′ −→ Pdk

Then f = f ′ ◦ g : X → Pdk is finite as a composition of finite morphisms and the
proof is complete.

https://stacks.math.columbia.edu/tag/02OG
https://stacks.math.columbia.edu/tag/01R5
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