Schemes

Excercises 1

Sheaves

- 1. Carefully prove that a map of sheaves of **sets** is an epimorphisms (in the category of sheaves of sets) if and only if the induced maps on all the stalks are surjective.
- **2.** Let $f: X \to Y$ be a map of topological spaces. Prove pushforward f_* and pullback f^{-1} for sheaves of **sets** form an adjoint pair of functors.
- **3.** Let $j : U \to X$ be an open immersion. Show that j^{-1} has a left adjoint $j_{!}$ on the category of sheaves of sets. Characterize the stalks of $j_{!}(\mathcal{G})$. (Hint: $j_{!}$ is called extension by zero when you do this for abelian sheaves...)
- 4. Let \mathcal{F} be an abelian sheaf on X. Show that \mathcal{F} is the quotient of a (possibly very large) direct sum of sheaves all of whose terms are of the form

 $j_!(\underline{\mathbb{Z}}_U)$

where $U \subset X$ is open and $\underline{\mathbb{Z}}_U$ denotes the constant sheaf with value \mathbb{Z} on U.

Remark. In the category of abelian sheaves the direct sum of a family of sheaves $\{\mathcal{F}_i\}_{i \in I}$ is the sheaf associated to the presheaf $U \mapsto \oplus \mathcal{F}_i(U)$. Consequently the stalk of the direct sum at a point x is the direct sum of the stalks of the \mathcal{F}_i at x.