Schemes

Exercises 3

Schemes – examples are important

Please also argue that your examples are as required. Feel free to quote results from Hartshorne or EGA.

- **1.** Give an example of a morphism of *integral* schemes $f: X \to Y$ such that the induced maps $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ are surjective for all $x \in X$, but f is not a closed immersion.
- **2.** Give examples of graded rings S such that
 - (a) $\operatorname{Proj}(S)$ is affine and nonempty, and
 - (b) $\operatorname{Proj}(S)$ is integral, nonempty but not isomorphic to \mathbb{P}^n_A for any $n \ge 0$, any ring A.
- **3.** Give an example of a nonconstant morphism of schemes $\mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^5_{\mathbb{C}}$ over $\operatorname{Spec}(\mathbb{C})$.
- 4. Give an example of an isomorphism of schemes $\mathbb{P}^1_{\mathbb{C}} \to \operatorname{Proj}(\mathbb{C}[X_0, X_1, X_2]/(X_0^2 + X_1^2 + X_2^2)).$
- 5. Give an example of a morphism of schemes $f : X \to \mathbb{A}^1_{\mathbb{C}} = \operatorname{Spec}(\mathbb{C}[T])$ such that the (scheme theoretic) fibre of f over $t \in \mathbb{A}^1_{\mathbb{C}}$ is (a) isomorphic to $\mathbb{P}^1_{\mathbb{C}}$ when t is a closed point not equal to 0, and (b) not isomorphic to $\mathbb{P}^1_{\mathbb{C}}$ when t = 0.

Remark. This can be done in many, many ways. Here are some additional restraints you can impose: Can you do it with fibre at t = 0 projective? Can you do it with special fibre irreducible and projective? Can you do it with special fibre integral and projective? Can you do it with fibre at t = 0 smooth and projective? What about similar questions when you replace $\mathbb{P}^1_{\mathbb{C}}$ with another variety over \mathbb{C} ?