Schemes

Exercises 5

Schemes – invertible sheaves are important

Feel free to quote results from Hartshorne or EGA.

An invertible \mathcal{O}_X -module on a locally ringed space (X, \mathcal{O}_X) is a sheaf of \mathcal{O}_X -modules \mathcal{L} such that every point has an open neighbourhood $U \subset X$ such that $\mathcal{L}|_U$ is isomorphic to \mathcal{O}_U as \mathcal{O}_U -module. We say that \mathcal{L} is trivial if it is isomorphic to \mathcal{O}_X as a \mathcal{O}_X -module.

1. General facts.

- (a) Show that an invertible \mathcal{O}_X -module on a scheme X is quasi-coherent.
- (b) Suppose $X \to Y$ is a morphism of ringed spaces, and \mathcal{L} an invertible \mathcal{O}_Y -module. Show that $f^*\mathcal{L}$ is an invertible \mathcal{O}_X module.

2. Algebra.

- (a) Show that an invertible \mathcal{O}_X -module on an affine scheme Spec A corresponds to an A-module M which is (i) finite, (ii) projective, (iii) locally free of rank 1, and hence (iv) flat, and (v) finitely presented. (Feel free to quote things from last semesters course; or from algebra books.)
- (b) Suppose that A is a domain and that M is a module as in (a). Show that M is isomorphic as an A-module to an ideal $I \subset A$ such that $IA_{\mathfrak{p}}$ is principal for every prime \mathfrak{p} .

3. Simple examples.

- (a) Let k be a field. Let A = k[x]. Show that $X = \operatorname{Spec} A$ has only trivial invertible \mathcal{O}_X -modules.
- **(b)** Let A be the ring

$$A = \{ f \in k[x] \mid f(0) = f(1) \}.$$

Show that $X = \operatorname{Spec} A$ has a nontrivial invertible \mathcal{O}_X -module, unless $k = \mathbb{F}_2$. (Hint: Think about $\operatorname{Spec} A$ as identifying 0 and 1 in $\mathbb{A}^1_k = \operatorname{Spec} k[x]$.)

(c) Same question for the ring $A = k[x^2, x^3] \subset k[x]$ (except now $k = \mathbb{F}_2$ works as well).

4. Higher dimensions.

- (a) Prove that every invertible sheaf on two dimensional affine space is trivial. More precisely, let $\mathbb{A}^2_k = \operatorname{Spec} k[x,y]$ where k is a field. Show that every invertible sheaf on \mathbb{A}^2_k is trivial. (Hint: One way to do this is to consider the corresponding module M, to look at $M \otimes_{k[x,y]} k(x)[y]$, and then use 3(a) to find a generator for this; then you still have to think. Another way to is to use 2(b) and use what we know about ideals of the polynomial ring: primes of height one are generated by an irreducible polynomial; then you still have to think.)
- (b) Prove that every invertible sheaf on any open subscheme of two dimensional affine space is trivial. More precisely, let $U \subset \mathbb{A}^2_k$ be an open subscheme where k is a field. Show that every invertible sheaf on U is trivial. Hint: Show that every invertible sheaf on U extends to one on \mathbb{A}^2_k . Not easy; but you can find it in Hartshorne.
- (c) Find an example of a nontrivial invertible sheaf on a punctured cone over a field. More precisely, let k be a field and let $C = \operatorname{Spec} k[x,y,z]/(xy-z^2)$. Let $U = C \setminus \{(x,y,z)\}$. Find a nontrivial invertible sheaf on U. Hint: It may be easier to compute the group of isomorphism classes of invertible sheaves on U than to just find one. Note that U is covered by the opens $\operatorname{Spec} k[x,y,z,1/x]/(xy-z^2)$ and $\operatorname{Spec} k[x,y,z,1/y]/(xy-z^2)$ which are "easy" to deal with.