SHEAVES ON THE SPECTRUM OF A RING

Throughout A is a ring. We set $X = \text{Spec}(A)$. We denote \mathcal{B} the set of principal opens of X (AKA standard opens). In a formula

$$\mathcal{B} = \{ U \subset X \mid \exists f \in A, \ U = D(f) \}$$

Sheaves on a basis: see Tag 009H

Think of \mathcal{B} as a category: the objects are the elements of \mathcal{B} and the morphisms are the inclusions. A presheaf \mathcal{F} on \mathcal{B} is a contravariant functor from \mathcal{B} to the category of sets (or abelian groups, rings, etc). Similarly for presheaves of modules over a given presheaf of rings. We say \mathcal{F} is a sheaf on \mathcal{B} if and only if for every covering $U : U = U_1 \cup \ldots \cup U_n$ with $U, U_i \in \mathcal{B}$ we have that $\mathcal{F}(U) \rightarrow \prod_i \mathcal{F}(U_i) \rightarrow \prod_{i_0 < i_1} \mathcal{F}(U_{i_0} \cap U_{i_1})$ is an equalizer diagram. Observe that this makes sense because $U, U' \in \mathcal{B} \Rightarrow U \cap U' \in \mathcal{B}$ as you can easily verify.

Lemma 0.1. The category of sheaves on X and sheaves on \mathcal{B} are equivalent via the functor which takes a sheaf on X and restricts it to \mathcal{B}.

Proof. This is a copy of Tag 009O.

If $\mathcal{F}|_{\mathcal{B}}$ denotes the restriction of \mathcal{F} on X to \mathcal{B} (as in the equivalence of Lemma 0.1), then we have for $x \in X$ the equality

$$\mathcal{F}_x = \text{colim}_{x \in U \in \mathcal{B}} \mathcal{F}(U) = \text{colim}_{x \in U \in \mathcal{B}} \mathcal{F}|_{\mathcal{B}}(U)$$

Hence we can directly compute the stalks in terms of the sheaf on \mathcal{B}.

The structure sheaf: see Tag 01HR

For every $U \in \mathcal{B}$ choose an element $f \in A$ such that $U = D(f)$. The we set

$$\mathcal{O}_X(U) = A_f$$

If $U = D(f) \supset V = D(g)$, then we can write $g^n = af$ for some $n > 0$ and $a \in A$ (small detail omitted) and we define the restriction mapping for \mathcal{O}_X as the map of A-algebras

$$\mathcal{O}_X(U) = A_f \rightarrow A_g = \mathcal{O}_X(V)$$

sending b/f^m to ba^m/g^nm. It is easy to see this is a presheaf of rings.

The sheaf of modules \widetilde{M} associate to an A-module M: see Tag 01HR

Let M be an A-module. For every $U \in \mathcal{B}$ choose an element $f \in A$ such that $U = D(f)$. The we set

$$\widetilde{M}(U) = M_f$$

1Since every element of \mathcal{B} is quasi-compact we only need to consider finite coverings.
If \(U = D(f) \supset V = D(g) \), then we can write \(g^n = af \) for some \(n > 0 \) and \(a \in A \) (small detail omitted) and we define the restriction mapping for \(\tilde{M} \) as the map of \(A \)-modules

\[
\tilde{M}(U) = M_f \longrightarrow M_g = \tilde{M}(V)
\]

sending \(x/f^m \) to \(a x/g^{nm} \). It is easy to see this is a presheaf of modules over \(\mathcal{O}_X \). Also, observe that \(\mathcal{O}_X = \tilde{A} \), and hence if we prove \(\tilde{M} \) is a sheaf, then the same thing holds for \(\mathcal{O}_X \).

Sheaf property: To check the sheaf property consider a covering

\[U : U = U_1 \cup \ldots \cup U_n \]

with \(U_i \in \mathcal{B} \). Write \(U = D(f) \) and \(U_i = D(f_i) \). To check the sheaf property it suffices to check

\[
0 \to M_f \to \prod_{i_0} M_{f_{i_0}} \to \prod_{i_0 < i_1} M_{f_{i_0} f_{i_1}} \to \ldots
\]

is exact. The fact that \(U = \bigcup U_i \) implies that

\[
M_{f_{i_0} \ldots f_{i_p}} = (M_f)_{f_{i_0} \ldots f_{i_p}}
\]

and that \(f_1, \ldots, f_n \) generate the unit ideal in the ring \(A_f \). Hence the alternating Čech complex for \(U \) and \(\tilde{M} \) is the complex of Lemma 0.2 for the ring \(A_f \), the module \(M_f \), and the elements \(f_1/1, \ldots, f_n/1 \) of \(A_f \).

Lemma 0.2. Let \(A \) be a ring, let \(M \) be an \(A \)-module, let \(f_1, \ldots, f_n \in A \) generate the unit ideal. Then the complex

\[
0 \to M \to \prod_{i_0} M_{f_{i_0}} \to \prod_{i_0 < i_1} M_{f_{i_0} f_{i_1}} \to \ldots
\]

is exact.

Proof. Two steps: first if \(f_i \) is a unit in \(A \) for some \(i \), then one writes an explicit homotopy, next, one proves the lemma below to deduce the general case from this special case. \(\square \)

Lemma 0.3. Let \(A \) be a ring, let \(M_1 \to M_2 \to M_3 \) be a complex of \(A \)-modules, let \(f_1, \ldots, f_n \in A \) generate the unit ideal. Then \(M_1 \to M_2 \to M_3 \) is exact if and only if for each \(i \) the complex

\[
(M_i)_{f_i} \to (M_2)_{f_i} \to (M_3)_{f_i}
\]

is exact.

Proof. Using that localization is exact this reduces to the statement: if an \(A \)-module \(H \) satisfies \(H_{f_i} = 0 \) for \(i = 1, \ldots, n \), then \(H = 0 \). This is proved by considering an element \(x \in H \) and observing that the annihilator ideal of \(x \) contains \(f_i^{N_i} \) for some \(N_i > 0 \). Since \(f_1^{N_1}, \ldots, f_n^{N_n} \) is the unit ideal of \(A \), we conclude that \(x = 0 \). See Tag 00EN for more results of this nature. \(\square \)

Proposition 0.4. The higher cohomology groups of the structure sheaf \(\mathcal{O}_X \) and of the sheaves \(\tilde{M} \) vanish.

Proof. The discussion and lemmas above show that for any open covering \(U : U = U_1 \cup \ldots \cup U_n \) with \(U_i \in \mathcal{B} \) the higher Čech cohomology of \(\tilde{M} \) vanishes. Thus we may apply Tag 01EW. See also Tag 01XB. \(\square \)