RATIONAL CURVES ON FERMAT HYPERSURFACES

MINGMIN SHEN

Abstract

In this note we study rational curves on degree $p^{r}+1$ Fermat hypersurface in $\mathbb{P}_{k}^{p^{r}+1}$, where k is an algebraically closed field of characteristic p. The key point is that the presence of Frobenius morphism makes the behavior of rational curves to be very different from that of charateristic 0 . We show that if there exists N_{0} such that for all $e \geq N_{0}$ there is a degree e very free rational curve on X, then $N_{0}>p^{r}\left(p^{r}-1\right)$.

1. Introduction

Rational curves appear to be very important in the study of higher dimensional algebraic varieties. We refer to [K0] for the background. Let X be a smooth projective variety over an algebraically closed field k.
Definition 1.1. A rational curve $f: C \cong \mathbb{P}^{1} \rightarrow X$ is free (resp. very free) if $f^{*} T_{X}$ is globally generated (resp. ample). We say that X is separably rationally connected (SRC) if there is a very free rational curve on X.
Definition 1.2. X is rationally connected (RC) if a general pair of points can be connected by a rational curve. This means that there is a family of rational curves $\pi: U \rightarrow Y$ together with a morphism $u: U \rightarrow X$ such that the natural map $u^{(2)}: U \times_{Y} U \rightarrow X \times_{k} X$ is dominant. If we only require the general fiber of π to be a genus 0 curve, then we say that X is rationally chain connected.

One very important tool to study rational curves is deformation theory. This works especially well in characteristic 0 . For example, it is easy to see that SRC implies RC in any characteristic. But if the characteristic is 0 , the then $R C$ is equivalent to SRC. One very important class of rationally connected varieties is provided by the following
Theorem 1.3. (KMM, Ca]) Smooth Fano varieties over a field of characteristic 0 are rationally connected.

The case of characteristic p is still mystery. We know that all smooth Fano varieties are rationally chain connected, see V. 2 of [K0. Kollár has constructed examples of singular Fano's that are not SRC, see V. 5 of [K0. This naturally leads to the question whether all smooth Fano varieties are SRC. Recently Y. Zhu has proved that a general Fano hypersurface is SRC, see $[\mathrm{Zh}$.

In this note, we consider a class of very special Fano hypersurfaces over a field of positive characteristic. From now on, we fix k to be an algebraically closed field of characteristic p. Let $X=X_{d, N} \subset \mathbb{P}_{k}^{N}$ be the Fermat hypersurface defined by

$$
X_{0}^{d}+X_{1}^{d}+\cdots+X_{N}^{d}=0,
$$

where $d=p^{r}+1$ and $N \geq d$. We ask the following

[^0]Question 1.4. Is there a very free rational curve on X ?
Lemma 1.5. If $X_{d, N}$ contains a very free rational curve for $N=p^{r}+1$, then $X_{d, N}$ contains a very free rational curve for all $N \geq p^{r}+1$.

By this Lemma, we see that the most interesting case is when $d=N$. Our first observation is

Proposition 1.6. Let $X=X_{d, d}$ be the Fermat hypersurface of degree $d=p^{r}+1$ in \mathbb{P}_{k}^{d} and M_{e} be the space of degree e morphisms from \mathbb{P}^{1} to X. Then for M_{e} to have the expected dimension, e has to be at least $p^{r}-1$. In particular, if $e<p^{r}-1$ then there is no free rational curve of degree e.

For very free rational curves on $X_{d, d}$ we have the following
Theorem 1.7. Let $X=X_{d, d}$ be the Fermat hypersurface of degree $d=p^{r}+1$ in \mathbb{P}_{k}^{d}. Let $f: C=\mathbb{P}^{1} \rightarrow X$ be a rational curve of degree e. If $m N<e \leq(m+1)(N-1)$ for some $0 \leq m \leq N-3$, then f is not very free.

Corollary 1.8. If there exists N_{0} such that for all $e \geq N_{0}$ there is a very free rational curve of degree e on X, then $N_{0}>p^{r}\left(p^{r}-1\right)$.
Definition 1.9. A rational normal curve $f: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{N}$ is a rational curve of degree N whose linear span is the whole \mathbb{P}^{N}.

One potential candidate of a very free rational curve of low degree on X is given by the following

Proposition 1.10. Let $X=X_{d, N}$ be as above. If $C \subset X$ is a rational normal curve (viewed as a rational curve on \mathbb{P}^{N}), then C is very free on X.

One of the simplest unknown cases is the following question.
Question 1.11. Let X be the degree 5 Fermat hypersurface in \mathbb{P}^{5} over $\overline{\mathbb{F}}_{2}$. Is there a rational normal curve on X ?

2. Proofs

Let $X=X_{d, N}$. We use the following diagram to investigate the tangent sheaf of X.

We dualize the second column and get

$$
0 \longrightarrow \Omega_{\mathbb{P}^{N}}^{1} \otimes \mathcal{O}_{X}(1) \longrightarrow \mathcal{O}_{X}^{N+1} \xrightarrow{\left(X_{i}\right)} \mathcal{O}_{X}(1) \longrightarrow 0
$$

Let $F: X \rightarrow X$ be the Frobenius morphism. We apply $\left(F^{*}\right)^{r}$ to the above exact sequence and get

$$
\begin{equation*}
0 \longrightarrow\left(F^{*}\right)^{r} \Omega_{\mathbb{P}^{N}}^{1} \otimes \mathcal{O}_{X}\left(p^{r}\right) \longrightarrow \mathcal{O}_{X}^{N+1} \xrightarrow{\left(X_{i}^{p^{r}}\right)} \mathcal{O}_{X}\left(p^{r}\right) \longrightarrow 0 \tag{2}
\end{equation*}
$$

Compare this with the second row of (11), we get

$$
\begin{equation*}
\mathscr{F} \cong\left(F^{*}\right)^{r} \Omega_{\mathbb{P}^{N}}^{1} \otimes \mathcal{O}_{X}\left(p^{r}+1\right) \tag{3}
\end{equation*}
$$

Proof. (of Proposition 1.10). Since $f: C \rightarrow \mathbb{P}^{N}$ is a rational normal curve, we have

$$
f^{*} \Omega_{\mathbb{P}^{N}}^{1} \cong \mathcal{O}_{\mathbb{P}^{1}}(-N-1)^{\oplus N}
$$

Hence

$$
f^{*} \mathscr{F}=\mathcal{O}_{\mathbb{P}^{1}}\left((-N-1) p^{r}+\left(p^{r}+1\right) N\right)^{\oplus N}=\mathcal{O}_{\mathbb{P}^{1}}\left(N-p^{r}\right)^{N}
$$

is very ample. The first column of diagram (1) shows that $f^{*} T_{X}$ is very ample.
Proof. (of Theorem 1.7). Consider the first column in diagram (11), we know that if the splitting of $f^{*} \mathscr{F}$ has a negative summand or has at least two copies of $\mathcal{O}_{\mathbb{P}^{1}}$, then $f^{*} T_{X}$ is not ample. To avoid this from happening, the best situation is when $\left.\Omega_{\mathbb{P}^{N}}^{1}\right|_{C}$ is balanced. Now we assume that all the above splittings are balanced. Let $a=\left[\frac{(N+1) e}{N}\right]=e+\left[\frac{e}{N}\right]$. Then

$$
\left.\Omega_{\mathbb{P}^{N}}^{1}\right|_{C} \cong \mathcal{O}(-a)^{l} \oplus \mathcal{O}(-a-1)^{l^{\prime}}
$$

with $l^{\prime}=(N+1) e-N a$ and $l=N-l^{\prime}$. Then it follows from (3) that

$$
f^{*} \mathscr{F} \cong \mathcal{O}\left(b_{1}\right)^{l} \oplus \mathcal{O}\left(b_{2}\right)^{l^{\prime}}
$$

with $b_{1}=-a p^{r}+e\left(p^{r}+1\right)$ and $b_{2}=-(a+1) p^{r}+e\left(p^{r}+1\right)$. Note that $f^{*} \mathscr{F}$ is highly unbalance unless e is a multiple of N. If $m N<e<(m+1) N$, then $a=e+m$ and

$$
b_{2}=-(a+1) p^{r}+e\left(p^{r}+1\right)=e-(m+1)(N-1)
$$

Hence we have $b_{2}<0$ if $e<(m+1)(N-1)$. If $e=(m+1)(N-1)$, then

$$
l^{\prime}=(N+1) e-N a=N-m-1
$$

The theorem follows easily from this computation.
Proof. (of Proposition 1.6). A degree e rational curve $f: \mathbb{P}^{1} \rightarrow X$ can be written as

$$
t \mapsto\left[f_{0}: f_{1}: \cdots: f_{d}\right]
$$

where $f_{i}=\sum_{j=0}^{e} a_{i j} t^{j}$ are polynomials of degree at most e. The condition for the image of f to be contained in X is given by $F=\sum f_{i}^{d}=0$ as a polynomial in t. Note that $\operatorname{deg} F=d e$, hence we expect to get $d e+1$ equations in the coefficients $a_{i j}$. By dimension count, we easily see that the expected dimension of M_{e} is $d+e-1$. By explicit computation we have

$$
f_{i}^{d}=\left(\sum_{j=0}^{e} a_{i j} t^{j}\right)^{p^{r}}\left(\sum_{j=0}^{e} a_{i j} t^{j}\right)=\left(\sum_{j=0}^{e} a_{i j}^{p^{r}} t^{j p^{r}}\right)\left(\sum_{j=0}^{e} a_{i j} t^{j}\right)
$$

If $e<p^{r}-1$ the coefficient of $t^{j p^{r}-1}, j=1, \ldots, e$, is automatically 0 . Hence the actual dimension of M_{e} is bigger than the expected dimension.

Proof. (of Lemma 1.5). It is easy to realize $X_{d, N}$ as hyperplane section of $X_{d, N+1}$. This implies that any very free rational curve on $X_{d, N}$ gives a very free rational curve on $X_{d, N+1}$.

3. Acknowledgement

This work was done when the author was a Ph.D. student at Columbia University. The author would like to thank his advisor, Johan de Jong, for many stimulating discussions. He would also like to thank Yi Zhu for requesting a write-up of these results, which leads to this note. Finally, Burt Totaro made many suggestions on a preliminary version.

References

[Ca], F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. E.N.S. 25(1992), 539-545.
[Ko] J. Kollár, Rational curves on algebraic varieties, Springer, 1996.
[KMM] J. Kollár, Y. Miyaoka and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Diff. Geom. 36(1992), 765-769.
[Zh] Y. Zhu, Fano hypersurfaces in positive characteristic, preprint, 2011. arXiv:1111.2964.
DPMMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK
E-mail address: M.Shen@dpmms.cam.ac.uk

[^0]: 2010 Mathematics Subject Classification. 14C05,14D10.
 Key words and phrases. rational curve, Fermat hypersurface, positive characteristic.

