# Conics on the Fermat quintic threefold 

Damiano Testa<br>Junior Number Theory Seminar<br>University of Oxford

October 11, 2010

## Background

We are interested in varieties over a field $k ; k$ could be $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \ldots$

## Background

We are interested in varieties over a field $k ; k$ could be $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \ldots$
An affine variety over $k$ is the set of solutions in $k^{n}$ of a system of polynomial equations in $n$ variables.

## Background

We are interested in varieties over a field $k ; k$ could be $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \ldots$
An affine variety over $k$ is the set of solutions in $k^{n}$ of a system of polynomial equations in $n$ variables.

Affine space $\mathbb{A}^{n}$ of dimension $n$ is the variety defined by the polynomial 0 in the polynomial ring in $n$ variables. The set of points of $\mathbb{A}^{n}$ over the field $k$ is $k^{n}$.

## Background

We are interested in varieties over a field $k ; k$ could be $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \ldots$
An affine variety over $k$ is the set of solutions in $k^{n}$ of a system of polynomial equations in $n$ variables.

Affine space $\mathbb{A}^{n}$ of dimension $n$ is the variety defined by the polynomial 0 in the polynomial ring in $n$ variables. The set of points of $\mathbb{A}^{n}$ over the field $k$ is $k^{n}$.

For instance, the set of solutions of $x^{2}+y^{2}=1$ is an affine variety over any field. Over $\mathbb{R}$, this is just the unit circle $S^{1} \subset \mathbb{R}^{2}$.

## Background

We are interested in varieties over a field $k ; k$ could be $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \ldots$
An affine variety over $k$ is the set of solutions in $k^{n}$ of a system of polynomial equations in $n$ variables.

Affine space $\mathbb{A}^{n}$ of dimension $n$ is the variety defined by the polynomial 0 in the polynomial ring in $n$ variables. The set of points of $\mathbb{A}^{n}$ over the field $k$ is $k^{n}$.

For instance, the set of solutions of $x^{2}+y^{2}=1$ is an affine variety over any field. Over $\mathbb{R}$, this is just the unit circle $S^{1} \subset \mathbb{R}^{2}$.

A morphism between two affine varieties is a function given by polynomials in the coordinates of the ambient affine space.

## Background

Often it is easier to study homogeneous polynomials. The vanishing set $X$ of a homogeneous polynomial $F$ has two characteristic features:

- the set $X$ contains 0 , since $F(0)=0$;


## Background

Often it is easier to study homogeneous polynomials. The vanishing set $X$ of a homogeneous polynomial $F$ has two characteristic features:

- the set $X$ contains 0 , since $F(0)=0$;
- if $\underline{x} \in X$, then for all $\lambda \in k$ also $\lambda \underline{x} \in X$, since

$$
F(\underline{x})=0 \Longrightarrow F(\lambda \underline{x})=\lambda^{\operatorname{deg}(F)} F(\underline{x})=0
$$

## Background

Often it is easier to study homogeneous polynomials. The vanishing set $X$ of a homogeneous polynomial $F$ has two characteristic features:

- the set $X$ contains 0 , since $F(0)=0$;
- if $\underline{x} \in X$, then for all $\lambda \in k$ also $\lambda \underline{x} \in X$, since

$$
F(\underline{x})=0 \Longrightarrow F(\lambda \underline{x})=\lambda^{\operatorname{deg}(F)} F(\underline{x})=0
$$

Working with homogeneous polynomials

- we remove 0 from their vanishing set;


## Background

Often it is easier to study homogeneous polynomials. The vanishing set $X$ of a homogeneous polynomial $F$ has two characteristic features:

- the set $X$ contains 0 , since $F(0)=0$;
- if $\underline{x} \in X$, then for all $\lambda \in k$ also $\lambda \underline{x} \in X$, since

$$
F(\underline{x})=0 \Longrightarrow F(\lambda \underline{x})=\lambda^{\operatorname{deg}(F)} F(\underline{x})=0
$$

Working with homogeneous polynomials

- we remove 0 from their vanishing set;
- we consider solutions only up to multiplication by a scalar.


## Background

We are therefore naturally led to consider the projective space $\mathbb{P}^{n}$ over $k$, whose $k$-points are

$$
\mathbb{P}^{n}(k):=\left(k^{n+1} \backslash\{0\}\right) / k^{\times}
$$

## Background

We are therefore naturally led to consider the projective space $\mathbb{P}^{n}$ over $k$, whose $k$-points are

$$
\mathbb{P}^{n}(k):=\left(k^{n+1} \backslash\{0\}\right) / k^{\times}
$$

A projective variety over $k$ is the set of solutions in $\mathbb{P}^{n}(k)$ of a system of homogeneous polynomials in $n+1$ variables.

A projective variety admits a cover by affine varieties: if $x$ is a variable, then $\mathbb{P}^{n} \backslash\{x=0\} \simeq \mathbb{A}^{n}$.

## Background

We are therefore naturally led to consider the projective space $\mathbb{P}^{n}$ over $k$, whose $k$-points are

$$
\mathbb{P}^{n}(k):=\left(k^{n+1} \backslash\{0\}\right) / k^{\times}
$$

A projective variety over $k$ is the set of solutions in $\mathbb{P}^{n}(k)$ of a system of homogeneous polynomials in $n+1$ variables.

A projective variety admits a cover by affine varieties: if $x$ is a variable, then $\mathbb{P}^{n} \backslash\{x=0\} \simeq \mathbb{A}^{n}$.

A morphism between two varieties is an everywhere defined function that is locally a rational function in the coordinates.

## Rational curves

To study a variety we are going to search for "parameterized curves" inside it. For example, the image of the morphism

$$
\begin{array}{rlc}
\mathbb{A}^{1} & \longrightarrow \mathbb{A}^{2} \\
t & \longmapsto\left(t, t^{2}\right)
\end{array}
$$

is the affine variety in $\mathbb{A}^{2}$ defined by the equation $y=x^{2}$.

## Rational curves

To study a variety we are going to search for "parameterized curves" inside it. For example, the image of the morphism

$$
\begin{aligned}
\mathbb{A}^{1} & \longrightarrow \mathbb{A}^{2} \\
t & \longmapsto\left(t, t^{2}\right)
\end{aligned}
$$

is the affine variety in $\mathbb{A}^{2}$ defined by the equation $y=x^{2}$.
We can also homogenize the above example:

| $t$ | $\longmapsto$ | $\left(t, t^{2}\right)$ |
| :---: | :---: | :---: |
| $\mathbb{A}^{1}$ | $\longrightarrow$ | $\mathbb{A}^{2}$ |
| $\cap$ |  | $\cap$ |
| $\mathbb{P}^{1}$ | $\longrightarrow$ | $\mathbb{P}^{2}$ |
| $[s, t]$ | $\longmapsto$ | $\left[s^{2}, s t, t^{2}\right]$. |

## Rational curves

A rational curve on a variety $X$ is the image of a non-constant morphism $\mathbb{P}^{1} \rightarrow X$.

## Rational curves

A rational curve on a variety $X$ is the image of a non-constant morphism $\mathbb{P}^{1} \rightarrow X$.

Example 1. Recall the unit circle $S^{1}:=\left\{x^{2}+y^{2}-1=0\right\} \subset \mathbb{A}^{2}$.
The "parameterization"

$$
\begin{aligned}
\mathbb{R} & \longrightarrow S^{1} \\
t & \longmapsto(\cos (t), \sin (t))
\end{aligned}
$$

of $S^{1}$ is not in terms of polynomials in the coordinates.
We want a polynomial parameterization.

## Rational curves

Instead, we proceed using stereographic projection.


This is the circle $S^{1}: x^{2}+y^{2}=1$ over $\mathbb{R}$.

## Rational curves

Instead, we proceed using stereographic projection.


We let $P$ be the point with coordinates $P:=(0,1)$.

## Rational curves

Instead, we proceed using stereographic projection.


We project from the point $P$ to the $x$-axis.

## Rational curves

Instead, we proceed using stereographic projection.


Each line through $P$ intersects the circle $S^{1}$ at $P$ and at one more point: the points of $S^{1}$ are identified with the lines through $\underline{\underline{P}}$,

## Rational curves

Thus we found

$$
S^{1} \longrightarrow\left\{\text { lines in } \mathbb{A}^{2} \text { through } P\right\} \simeq \mathbb{P}^{1}
$$

so that the unit circle is (essentially) a rational curve in $\mathbb{A}^{2}$.

## Rational curves

Thus we found

$$
S^{1} \longrightarrow\left\{\text { lines in } \mathbb{A}^{2} \text { through } P\right\} \simeq \mathbb{P}^{1}
$$

so that the unit circle is (essentially) a rational curve in $\mathbb{A}^{2}$. More precisely, homogenizing we replace

$$
\begin{aligned}
& S^{1} \rightsquigarrow C:=\left\{x_{0}^{2}+x_{1}^{2}=x_{2}^{2}\right\} \subset \mathbb{P}^{2} \\
& P \rightsquigarrow \bar{P}:=[0,1,1]
\end{aligned}
$$

and stereographic projection is the parameterization of $C$

$$
\begin{array}{ccc}
\mathbb{P}^{1} & \longrightarrow & C \subset \mathbb{P}^{2} \\
{[s, t]} & \longmapsto & {\left[s^{2}-t^{2}, 2 s t, s^{2}+t^{2}\right] .}
\end{array}
$$

## Rational curves

Thus we found

$$
S^{1} \longrightarrow\left\{\text { lines in } \mathbb{A}^{2} \text { through } P\right\} \simeq \mathbb{P}^{1}
$$

so that the unit circle is (essentially) a rational curve in $\mathbb{A}^{2}$. More precisely, homogenizing we replace

$$
\begin{aligned}
& S^{1} \rightsquigarrow C:=\left\{x_{0}^{2}+x_{1}^{2}=x_{2}^{2}\right\} \subset \mathbb{P}^{2} \\
& P \rightsquigarrow \bar{P}:=[0,1,1]
\end{aligned}
$$

and stereographic projection is the parameterization of $C$

$$
\begin{array}{ccc}
\mathbb{P}^{1} & \longrightarrow & C \subset \mathbb{P}^{2} \\
{[s, t]} & \longmapsto & {\left[s^{2}-t^{2}, 2 s t, s^{2}+t^{2}\right] .}
\end{array}
$$

The curve $C$ is a conic. Any non-singular conic with a point can be parameterized by the same argument.

## Rational curves

Example 2. Let $X$ be a non-singular cubic surface in $\mathbb{P}^{3}$.
Classical fact: $X$ contains exactly 27 lines, among them there pairs of skew lines (in fact, there are 216 such pairs).


## Rational curves

Let $L_{1}, L_{2}$ be two skew lines on the cubic surface $X \subset \mathbb{P}^{3}$.


## Rational curves

For each point $P \in X$ let $\varphi_{1}(P) \in L_{1}$ be the point of intersection of the line $L_{1}$ with the plane containing $L_{2}$ and the point $P$.


## Rational curves

For each point $P \in X$ let $\varphi_{1}(P) \in L_{1}$ be the point of intersection of the line $L_{1}$ with the plane containing $L_{2}$ and the point $P$.


## Rational curves

Similarly, let $\varphi_{2}(P) \in L_{2}$ be the point of intersection of the line $L_{2}$ with the plane containing $L_{1}$ and the point $P$.


## Rational curves

Similarly, let $\varphi_{2}(P) \in L_{2}$ be the point of intersection of the line $L_{2}$ with the plane containing $L_{1}$ and the point $P$.


## Rational curves

We constructed a morphism

$$
\left(\varphi_{1}, \varphi_{2}\right): X \longrightarrow L_{1} \times L_{2} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

admitting an inverse almost everywhere.


## Rational curves

"Inverse": $\left(p_{1}, p_{2}\right) \in L_{1} \times L_{2}$ determines uniquely a line $L_{12} \subset \mathbb{P}^{3}$; apart from $p_{1}, p_{2}$ the line $L$ has one more intersection point $p_{12}$ with $X$. The assignment $\left(p_{1}, p_{2}\right) \mapsto p_{12}$ is the required inverse.


## Rational curves

Remark. Any cubic surface is isomorphic to the blow up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at five points, and also to the blow up of $\mathbb{P}^{2}$ at six points.


## Rational curves

Recap

Conics are rational curves, and can be parameterized if one of their points is known.

At least in the case of cubic surfaces, the knowledge of their lines can be exploited to explicitly determine how they look like.

Remark. Smooth cubic surfaces also contain conics: any plane containing a line intersects the cubic in the line and a residual conic.

## Quintic threefolds

We move on to quintic threefolds in $\mathbb{P}^{4}$.
Facts on smooth quintic threefolds


They are Calabi-Yau threefolds.
They are of interest in string theory and are a good testing ground for Mirror Symmetry.

## Rational curves on quintic threefolds

Clemens made a very precise conjecture about the space of rational curves on general quintic threefolds over the complex numbers.

## Rational curves on quintic threefolds

Clemens made a very precise conjecture about the space of rational curves on general quintic threefolds over the complex numbers.

In particular, his conjecture implies that for every degree $d$ a general quintic threefold contains only finitely many rational curves of degree $d$.

## Rational curves on quintic threefolds

Clemens made a very precise conjecture about the space of rational curves on general quintic threefolds over the complex numbers.

In particular, his conjecture implies that for every degree $d$ a general quintic threefold contains only finitely many rational curves of degree $d$.

This is known for $d \leq 11$ (Katz, Johnsen-Kleiman, Cotterill).

## Rational curves on quintic threefolds

Clemens made a very precise conjecture about the space of rational curves on general quintic threefolds over the complex numbers.

In particular, his conjecture implies that for every degree $d$ a general quintic threefold contains only finitely many rational curves of degree $d$.

This is known for $d \leq 11$ (Katz, Johnsen-Kleiman, Cotterill).
A general quintic threefold contains exactly 2,875 lines and exactly 609,250 conics.

There is a formula for the number of rational curves of degree $d$ on a general quintic threefold, even though it is not known in general that there are only finitely many rational curves!

## The Dwork pencil

We go in the opposite direction: look for special quintic threefolds containing infinitely many rational curves.

## The Dwork pencil

We go in the opposite direction: look for special quintic threefolds containing infinitely many rational curves.

Some quintic threefolds are known to contain one-parameter families of lines: for every value of $\psi$, the quintic

$$
x^{5}+y^{5}+z^{5}+u^{5}+v^{5}=5 \psi x y z u v
$$

contains infinitely many lines (van Geemen, Albano-Katz).

## The Dwork pencil

We go in the opposite direction: look for special quintic threefolds containing infinitely many rational curves.

Some quintic threefolds are known to contain one-parameter families of lines: for every value of $\psi$, the quintic

$$
x^{5}+y^{5}+z^{5}+u^{5}+v^{5}=5 \psi x y z u v
$$

contains infinitely many lines (van Geemen, Albano-Katz).
The $\psi$-pencil above is called the Dwork pencil and it is often studied for its relation to Mirror Symmetry.

## Fermat quintic threefold

Setting $\psi=0$ in the Dwork pencil, we obtain the Fermat quintic

$$
X:\left\{x^{5}+y^{5}+z^{5}+u^{5}+v^{5}=0\right\} \subset \mathbb{P}^{4} .
$$

The Fermat quintic is the focus of our attention from now on.
Most of what we say works more generally on every quintic in the Dwork pencil.

## Lines on the Fermat quintic threefold

Rational curves of small degree in the Fermat quintic $X$

## Lines on the Fermat quintic threefold

Rational curves of small degree in the Fermat quintic $X$
Lines on $X$ (van Geemen, Albano-Katz) :

$$
\left(x^{5}+y^{5}+z^{5}\right)+\underbrace{\left(u^{5}+v^{5}\right)}_{\substack{\text { factor } \\ \text { this term }}}
$$

## Lines on the Fermat quintic threefold

Rational curves of small degree in the Fermat quintic $X$
Lines on $X$ (van Geemen, Albano-Katz) :

$$
\left(x^{5}+y^{5}+z^{5}\right)+\underbrace{\left(u^{5}+v^{5}\right)}_{\substack{\text { factor } \\ \text { this term }}}=\left(x^{5}+y^{5}+z^{5}\right)+\prod_{\zeta: \zeta^{5}=1}(u-\zeta v)
$$

## Lines on the Fermat quintic threefold

Rational curves of small degree in the Fermat quintic $X$
Lines on $X$ (van Geemen, Albano-Katz) :

$$
\left(x^{5}+y^{5}+z^{5}\right)+\underbrace{\left(u^{5}+v^{5}\right)}_{\substack{\text { factor } \\ \text { this term }}}=\left(x^{5}+y^{5}+z^{5}\right)+\prod_{\zeta: \zeta^{5}=1}(u-\zeta v)
$$

A point $\left[x_{0}, y_{0}, z_{0}\right]$ on the Fermat quintic curve $x^{5}+y^{5}+z^{5}=0$ determines the five lines

$$
\left\{\left[s x_{0}, s y_{0}, s z_{0}, \zeta t, t\right]:[s, t] \in \mathbb{P}^{1}\right\}_{\zeta}
$$

on $X$, one for each $\zeta$ with $\zeta^{5}-1=0$. We find 50 one-parameter families of lines on $X$. There are no other lines on $X$.

## Conics on the Fermat quintic threefold

From now on, this is joint work in progress with R. Heath-Brown.

## Conics on the Fermat quintic threefold

From now on, this is joint work in progress with R. Heath-Brown.
Conics on $X$ :
To get an idea of what to expect over $\mathbb{C}$, we reduce the equation modulo small primes and we search extensively for conics using a computer.

## Conics on the Fermat quintic threefold

From now on, this is joint work in progress with R. Heath-Brown.
Conics on $X$ :
To get an idea of what to expect over $\mathbb{C}$, we reduce the equation modulo small primes and we search extensively for conics using a computer.

A short computer search shows that there plenty of conics in $X$ modulo every prime less than 40.

## Conics on the Fermat quintic threefold

From now on, this is joint work in progress with R. Heath-Brown.
Conics on $X$ :
To get an idea of what to expect over $\mathbb{C}$, we reduce the equation modulo small primes and we search extensively for conics using a computer.

A short computer search shows that there plenty of conics in $X$ modulo every prime less than 40.

In fact, there are so many conics, that we suspect that there might be a one parameter family of them!

## Conics on the Fermat quintic threefold

So far, though, we only found conics over finite fields.
Where to start looking for conics on $X$ over $\mathbb{C}$ ?

## Conics on the Fermat quintic threefold

So far, though, we only found conics over finite fields.
Where to start looking for conics on $X$ over $\mathbb{C}$ ?
Remember that a conic in projective space is always contained in a two-dimensional linear subspace.

## Conics on the Fermat quintic threefold

So far, though, we only found conics over finite fields.
Where to start looking for conics on $X$ over $\mathbb{C}$ ?
Remember that a conic in projective space is always contained in a two-dimensional linear subspace.

Staring at the conics we found over finite fields, we observe that

- for some primes, the conics pair up in coplanar pairs;


## Conics on the Fermat quintic threefold

So far, though, we only found conics over finite fields.
Where to start looking for conics on $X$ over $\mathbb{C}$ ?
Remember that a conic in projective space is always contained in a two-dimensional linear subspace.

Staring at the conics we found over finite fields, we observe that

- for some primes, the conics pair up in coplanar pairs;
- even for the primes where no pairing occurs, there still are some coplanar pairs;


## Conics on the Fermat quintic threefold

So far, though, we only found conics over finite fields.
Where to start looking for conics on $X$ over $\mathbb{C}$ ?
Remember that a conic in projective space is always contained in a two-dimensional linear subspace.

Staring at the conics we found over finite fields, we observe that

- for some primes, the conics pair up in coplanar pairs;
- even for the primes where no pairing occurs, there still are some coplanar pairs;
- clearly, a plane containing two conics of $X$ has a residual intersection with $X$ consisting of a line.


## Conics on the Fermat quintic threefold

The pairs of conics modulo small primes suggest concentrating on the planes of the form

$$
\left\{\begin{array}{l}
x+y=2 \alpha v \\
z+u=2 \beta v
\end{array}\right.
$$

for $\alpha, \beta$ in the field $k$.

## Conics on the Fermat quintic threefold

The pairs of conics modulo small primes suggest concentrating on the planes of the form

$$
\left\{\begin{array}{l}
x+y=2 \alpha v \\
z+u=2 \beta v
\end{array}\right.
$$

for $\alpha, \beta$ in the field $k$.
The strategy is to determine conditions on $\alpha$ and $\beta$ so that the plane described above contains two conics of $X$.

## Conics on the Fermat quintic threefold

Intersect $X$ with the two-dimensional linear subspace

$$
\left\{\begin{array}{l}
x=\alpha v+s \\
y=\alpha v-s \\
z=\beta v+t \\
u=\beta v-t
\end{array}\right.
$$

where $\alpha, \beta \in k$ and $s, t$ are parameters.

## Conics on the Fermat quintic threefold

Intersect $X$ with the two-dimensional linear subspace

$$
\left\{\begin{array}{l}
x=\alpha v+s \\
y=\alpha v-s \\
z=\beta v+t \\
u=\beta v-t
\end{array}\right.
$$

where $\alpha, \beta \in k$ and $s, t$ are parameters. We find
$v\left(\left(1+2 \alpha^{5}+2 \beta^{5}\right) v^{4}+20 \alpha^{3} v^{2} s^{2}+20 \beta^{3} v^{2} t^{2}+10 \alpha s^{4}+10 \beta t^{4}\right)=0$

## Conics on the Fermat quintic threefold

$$
v\left(\left(1+2 \alpha^{5}+2 \beta^{5}\right) v^{4}+20 \alpha^{3} v^{2} s^{2}+20 \beta^{3} v^{2} t^{2}+10 \alpha s^{4}+10 \beta t^{4}\right)=0
$$

## Conics on the Fermat quintic threefold

$v\left(\left(1+2 \alpha^{5}+2 \beta^{5}\right) v^{4}+20 \alpha^{3} v^{2} s^{2}+20 \beta^{3} v^{2} t^{2}+10 \alpha s^{4}+10 \beta t^{4}\right)=0$
The component $v=0$ corresponds to the line in $X$

$$
x+y=0 \quad z+u=0 \quad v=0
$$

If everything works out, with a careful choice of $\alpha$ and $\beta$, the intersection of $X$ with the plane above consists of the line $v=0$ and of a union of two conics.

## Conics on the Fermat quintic threefold

$v\left(\left(1+2 \alpha^{5}+2 \beta^{5}\right) v^{4}+20 \alpha^{3} v^{2} s^{2}+20 \beta^{3} v^{2} t^{2}+10 \alpha s^{4}+10 \beta t^{4}\right)=0$
The component $v=0$ corresponds to the line in $X$

$$
x+y=0 \quad z+u=0 \quad v=0
$$

If everything works out, with a careful choice of $\alpha$ and $\beta$, the intersection of $X$ with the plane above consists of the line $v=0$ and of a union of two conics.

The component where $v$ is not identically zero is defined by the factor of degree four in $v, s, t$ involving only even degree exponents!

## Conics on the Fermat quintic threefold

$$
\left(1+2 \alpha^{5}+2 \beta^{5}\right) v^{4}+20 \alpha^{3} v^{2} s^{2}+20 \beta^{3} v^{2} t^{2}+10 \alpha s^{4}+10 \beta t^{4}=0
$$

We rewrite it in terms of $V:=v^{2}, S:=s^{2}$ and $T:=t^{2}$

## Conics on the Fermat quintic threefold

$$
\left(1+2 \alpha^{5}+2 \beta^{5}\right) v^{4}+20 \alpha^{3} v^{2} s^{2}+20 \beta^{3} v^{2} t^{2}+10 \alpha s^{4}+10 \beta t^{4}=0
$$

We rewrite it in terms of $V:=v^{2}, S:=s^{2}$ and $T:=t^{2}$
$\left(1+2 \alpha^{5}+2 \beta^{5}\right) V^{2}+20 \alpha^{3} V S+20 \beta^{3} V T+10 \alpha S^{2}+10 \beta T^{2}=0$

## Conics on the Fermat quintic threefold

$$
\left(1+2 \alpha^{5}+2 \beta^{5}\right) v^{4}+20 \alpha^{3} v^{2} s^{2}+20 \beta^{3} v^{2} t^{2}+10 \alpha s^{4}+10 \beta t^{4}=0
$$

We rewrite it in terms of $V:=v^{2}, S:=s^{2}$ and $T:=t^{2}$

$$
\left(1+2 \alpha^{5}+2 \beta^{5}\right) V^{2}+20 \alpha^{3} V S+20 \beta^{3} V T+10 \alpha S^{2}+10 \beta T^{2}=0
$$

so that it defines a conic in the $V, S, T$ plane.

## Conics on the Fermat quintic threefold

$$
\left(1+2 \alpha^{5}+2 \beta^{5}\right) V^{2}+20 \alpha^{3} V S+20 \beta^{3} V T+10 \alpha S^{2}+10 \beta T^{2}=0
$$

## Conics on the Fermat quintic threefold

$$
\left(1+2 \alpha^{5}+2 \beta^{5}\right) V^{2}+20 \alpha^{3} V S+20 \beta^{3} V T+10 \alpha S^{2}+10 \beta T^{2}=0
$$

This is the quadratic form associated to the bilinear form

$$
\left(\begin{array}{ccc}
2\left(1+2 \alpha^{5}+2 \beta^{5}\right) & 20 \alpha^{3} & 20 \beta^{3} \\
20 \alpha^{3} & 20 \alpha & 0 \\
20 \beta^{3} & 0 & 20 \beta
\end{array}\right)
$$

## Conics on the Fermat quintic threefold

$$
\left(1+2 \alpha^{5}+2 \beta^{5}\right) V^{2}+20 \alpha^{3} V S+20 \beta^{3} V T+10 \alpha S^{2}+10 \beta T^{2}=0
$$

This is the quadratic form associated to the bilinear form

$$
\left(\begin{array}{ccc}
2\left(1+2 \alpha^{5}+2 \beta^{5}\right) & 20 \alpha^{3} & 20 \beta^{3} \\
20 \alpha^{3} & 20 \alpha & 0 \\
20 \beta^{3} & 0 & 20 \beta
\end{array}\right)
$$

and determinant

$$
\Delta(\alpha, \beta):=800 \alpha \beta\left(1-8 \alpha^{5}-8 \beta^{5}\right) .
$$

## Conics on the Fermat quintic threefold

$$
\left(1+2 \alpha^{5}+2 \beta^{5}\right) V^{2}+20 \alpha^{3} V S+20 \beta^{3} V T+10 \alpha S^{2}+10 \beta T^{2}=0
$$

This is the quadratic form associated to the bilinear form

$$
\left(\begin{array}{ccc}
2\left(1+2 \alpha^{5}+2 \beta^{5}\right) & 20 \alpha^{3} & 20 \beta^{3} \\
20 \alpha^{3} & 20 \alpha & 0 \\
20 \beta^{3} & 0 & 20 \beta
\end{array}\right)
$$

and determinant

$$
\Delta(\alpha, \beta):=800 \alpha \beta\left(1-8 \alpha^{5}-8 \beta^{5}\right)
$$

The quadratic form in $V, S, T$ is a product of linear forms if

$$
\Delta(\alpha, \beta)=0
$$

## Conics on the Fermat quintic threefold

The determinant $\Delta(\alpha, \beta)=800 \alpha \beta\left(1-8 \alpha^{5}-8 \beta^{5}\right)$ vanishes

## Conics on the Fermat quintic threefold

The determinant $\Delta(\alpha, \beta)=800 \alpha \beta\left(1-8 \alpha^{5}-8 \beta^{5}\right)$ vanishes if and only if
the quadratic form is a product of two linear forms

## Conics on the Fermat quintic threefold

The determinant $\Delta(\alpha, \beta)=800 \alpha \beta\left(1-8 \alpha^{5}-8 \beta^{5}\right)$ vanishes
if and only if
the quadratic form is a product of two linear forms
if and only if
the quartic we want is a product of two quadratic forms.

## Conics on the Fermat quintic threefold

The determinant $\Delta(\alpha, \beta)=800 \alpha \beta\left(1-8 \alpha^{5}-8 \beta^{5}\right)$ vanishes
if and only if
the quadratic form is a product of two linear forms
if and only if
the quartic we want is a product of two quadratic forms.

We exclude the cases $\alpha \beta=0$.

## Conics on the Fermat quintic threefold

Summarizing, if $\alpha, \beta$ in $k$ satisfy the equation

$$
8\left(\alpha^{5}+\beta^{5}\right)=1
$$

then the plane

$$
\left\{\begin{array}{l}
x+y=2 \alpha v \\
z+u=2 \beta v
\end{array}\right.
$$

intersects the Fermat quintic threefold $X$ in a union of a line and two conics.

## Conics on the Fermat quintic threefold

Summarizing, if $\alpha, \beta$ in $k$ satisfy the equation

$$
8\left(\alpha^{5}+\beta^{5}\right)=1
$$

then the plane

$$
\left\{\begin{array}{l}
x+y=2 \alpha v \\
z+u=2 \beta v
\end{array}\right.
$$

intersects the Fermat quintic threefold $X$ in a union of a line and two conics. The two conics $C_{ \pm}$have equations

$$
\begin{aligned}
x+y & =2 \alpha v \\
z+u & =2 \beta v \\
\sqrt{\alpha}\left((x-y)^{2}+\alpha^{2} v^{2}\right) & = \pm \sqrt{-\beta}\left((z-u)^{2}+\beta^{2} v^{2}\right) .
\end{aligned}
$$

## Conics on the Fermat quintic threefold

We can incorporate the square roots in our definitions: if $\alpha$ and $\beta$ in $k$ satisfy the equation

$$
8\left(\alpha^{10}+\beta^{10}\right)=1
$$

then the conic

$$
\begin{aligned}
x+y & =2 \alpha^{2} v \\
z+u & =2 \beta^{2} v \\
\alpha\left((x-y)^{2}+\alpha^{4} v^{2}\right) & =i \beta\left((z-u)^{2}+\beta^{4} v^{2}\right)
\end{aligned}
$$

is contained in $X$.

## Conics on the Fermat quintic threefold

We can incorporate the square roots in our definitions: if $\alpha$ and $\beta$ in $k$ satisfy the equation

$$
8\left(\alpha^{10}+\beta^{10}\right)=1,
$$

then the conic

$$
\begin{aligned}
x+y & =2 \alpha^{2} v \\
z+u & =2 \beta^{2} v \\
\alpha\left((x-y)^{2}+\alpha^{4} v^{2}\right) & =i \beta\left((z-u)^{2}+\beta^{4} v^{2}\right)
\end{aligned}
$$

is contained in $X$.
(We are counting twice every conic, since the simultaneous change in sign in $\alpha$ and $\beta$ defines the same conic.)

## Conics on the Fermat quintic threefold

Thus the plane curve

$$
8\left(\alpha^{10}+\beta^{10}\right)=1
$$

parameterizes (some of) the conics on $X$.

## Conics on the Fermat quintic threefold

Thus the plane curve

$$
8\left(\alpha^{10}+\beta^{10}\right)=1
$$

parameterizes (some of) the conics on $X$. Homogenizing and extracting roots, the curve becomes

$$
X^{10}+Y^{10}+Z^{10}=0
$$

## Conics on the Fermat quintic threefold

## Theorem

Let $k$ be an algebraically closed field of characteristic not 2 or 5 . The space of conics in the Fermat quintic threefold $X$ over $k$ contains 375 curves that are (doubly covered by) the plane Fermat curve of degree ten

$$
X^{10}+Y^{10}+Z^{10}=0
$$

## Conics on the Fermat quintic threefold

## Theorem

Let $k$ be an algebraically closed field of characteristic not 2 or 5 . The space of conics in the Fermat quintic threefold $X$ over $k$ contains 375 curves that are (doubly covered by) the plane Fermat curve of degree ten

$$
X^{10}+Y^{10}+Z^{10}=0
$$

Remark. There are conics on $X$ that are not contained in any one-parameter family.

## Curves of higher degree?

Recall that the components of the curve parameterizing the lines on $X$ are isomorphic to the curve

$$
X^{5}+Y^{5}+Z^{5}=0
$$

and we found that the space of conics contains components that are related to the curve

$$
X^{5 \cdot 2}+Y^{5 \cdot 2}+Z^{5 \cdot 2}=0
$$

## Curves of higher degree?

Recall that the components of the curve parameterizing the lines on $X$ are isomorphic to the curve

$$
X^{5}+Y^{5}+Z^{5}=0
$$

and we found that the space of conics contains components that are related to the curve

$$
X^{5 \cdot 2}+Y^{5 \cdot 2}+Z^{5 \cdot 2}=0
$$

Question: is the plane curve

$$
X^{5 \cdot d}+Y^{5 \cdot d}+Z^{5 \cdot d}=0
$$

related to the space of rational curves of degree $d$ contained in $X$ ?

## Curves of higher degree?

Philip Candelas mentioned a description of the space of lines on the Fermat quintic threefold in which the standard toric variety structure $\left(\mathbb{C}^{\times}\right)^{2} \subset \mathbb{P}^{2}(\mathbb{C})$ plays a natural role.
This is very interesting, since the curves above are obtained by raising to the $d$-th power the coordinates and are therefore the inverse image under the map

$$
\begin{aligned}
(-)^{d}: & \left(\mathbb{C}^{\times}\right)^{2} \\
& \longrightarrow\left(\mathbb{C}^{\times}\right)^{2} \\
(x, y) & \longmapsto\left(x^{d}, y^{d}\right) .
\end{aligned}
$$

## Curves of higher degree?

Philip Candelas mentioned a description of the space of lines on the Fermat quintic threefold in which the standard toric variety structure $\left(\mathbb{C}^{\times}\right)^{2} \subset \mathbb{P}^{2}(\mathbb{C})$ plays a natural role.
This is very interesting, since the curves above are obtained by raising to the $d$-th power the coordinates and are therefore the inverse image under the map

$$
\begin{aligned}
(-)^{d}: & \left(\mathbb{C}^{\times}\right)^{2} \\
& \longrightarrow\left(\mathbb{C}^{\times}\right)^{2} \\
(x, y) & \longmapsto\left(x^{d}, y^{d}\right) .
\end{aligned}
$$

## Conics through special points

Special Points on the Fermat quintic threefold $X$
In 1967, Lander and Parkin observed that the equality

$$
27^{5}+84^{5}+110^{5}+133^{5}=144^{5}
$$

holds: the point $L P:=[27,84,110,133,-144]$ lies on $X$.

## Conics through special points

Special Points on the Fermat quintic threefold $X$
In 1967, Lander and Parkin observed that the equality

$$
27^{5}+84^{5}+110^{5}+133^{5}=144^{5}
$$

holds: the point $L P:=[27,84,110,133,-144]$ lies on $X$.
There are no lines through $L P$.

Are there conics contained in $X$ and containing the point $L P$ ?

## Conics through special points

The one-parameter families found above span the surface contained in $X$ having equations

$$
\begin{array}{r}
x^{5}+y^{5}+z^{5}+u^{5}+v=0 \\
(x+y)\left(x^{2}+y^{2}\right)^{2}+(z+u)\left(z^{2}+u^{2}\right)^{2}=0
\end{array}
$$

up to permutation and multiplication by fifth roots of unity of the variables.

## Conics through special points

The one-parameter families found above span the surface contained in $X$ having equations

$$
\begin{array}{r}
x^{5}+y^{5}+z^{5}+u^{5}+v=0 \\
(x+y)\left(x^{2}+y^{2}\right)^{2}+(z+u)\left(z^{2}+u^{2}\right)^{2}=0
\end{array}
$$

up to permutation and multiplication by fifth roots of unity of the variables.

The point $L P$ lies on none of these surfaces.

## Conics through special points

The one-parameter families found above span the surface contained in $X$ having equations

$$
\begin{array}{r}
x^{5}+y^{5}+z^{5}+u^{5}+v=0 \\
(x+y)\left(x^{2}+y^{2}\right)^{2}+(z+u)\left(z^{2}+u^{2}\right)^{2}=0
\end{array}
$$

up to permutation and multiplication by fifth roots of unity of the variables.

The point $L P$ lies on none of these surfaces.
As before, we search modulo small primes for conics containing the reduction of the point $L P$.

## Conics through special points

Lower bounds for non-singular conics through $L P$

| prime $p$ | $\#\binom{$ conics modulo $p}{$ through $L P}$ |
| :---: | :---: |
| 2 | 1 (singular) |
| 3 | 1 |
| 5 | - |
| 7 | 6 |
| 11 | 4 |
| 13 | 2 |
| 17 | 1 |
| 19 | 6 |
| 23 | 1 |
| 29 | 0 |
| 31 | 101 |

## Conics through special points

Lower bounds for non-singular conics through $L P$

| $p$ | $\#$ (conics) | lines <br> through $L P ?$ |
| :---: | :---: | :---: |
| 2 | 1 (sing) | Yes |
| 3 | 1 | Yes |
| 5 | - | - |
| 7 | 6 | Yes |
| 11 | 4 | Yes |
| 13 | 2 | Yes |
| 17 | 1 | Yes |
| 19 | 6 | No |
| 23 | 1 | No |
| 29 | 0 | No |
| 31 | 101 | Yes |

$L P$ not on a line $(\bmod 19)$
$\Longrightarrow$ no line over $\mathbb{Q}$
$" \Longleftarrow " 31 \equiv 1(\bmod 5)$

## Conics through special points

| $p$ | 3 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ (conics) | 1 | 6 | 4 | 2 | 1 | 6 | 1 | 0 |

(We omit the values for the primes 2,5 and 31 .)
Remember that the number of conics above is only a lower bound.
The space parameterizing non-singular conics through $L P$ is also an algebraic variety, denote it by $\operatorname{Con}(X, L P)$.

## Conics through special points

| $p$ | 3 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ (conics) | 1 | 6 | 4 | 2 | 1 | 6 | 1 | 0 |

(We omit the values for the primes 2, 5 and 31.)
Remember that the number of conics above is only a lower bound.
The space parameterizing non-singular conics through $L P$ is also an algebraic variety, denote it by $\operatorname{Con}(X, L P)$.

The numbers in the list are the number of points of $\operatorname{Con}(X, L P)$ modulo $p$, for various primes $p$ satisfying a technical condition:

## Conics through special points

| $p$ | 3 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ (conics) | 1 | 6 | 4 | 2 | 1 | 6 | 1 | 0 |

(We omit the values for the primes 2, 5 and 31.)
Remember that the number of conics above is only a lower bound.
The space parameterizing non-singular conics through $L P$ is also an algebraic variety, denote it by $\operatorname{Con}(X, L P)$.

The numbers in the list are the number of points of $\operatorname{Con}(X, L P)$ modulo $p$, for various primes $p$ satisfying a technical condition:
the (Zariski) tangent space of the points counted above in the variety $\operatorname{Con}(X, L P)$ has dimension zero.

## Conics through special points

| $p$ | 3 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ (conics) | 1 | 6 | 4 | 2 | 1 | 6 | 1 | 0 |

(We omit the values for the primes 2, 5 and 31.)
Remember that the number of conics above is only a lower bound.
The space parameterizing non-singular conics through $L P$ is also an algebraic variety, denote it by $\operatorname{Con}(X, L P)$.

The numbers in the list are the number of points of $\operatorname{Con}(X, L P)$ modulo $p$, for various primes $p$ satisfying a technical condition:
the (Zariski) tangent space of the points counted above in the variety $\operatorname{Con}(X, L P)$ has dimension zero.

Thus, not only they represent non-singular conics, but they are also non-singular points of the variety $\operatorname{Con}(X, L P)$.

## Conclusions from the previous data

The reason for being excited about the smoothness of the points in the variety of conics modulo primes is Hensel's Lemma.

## Lemma (Hensel's Lemma)

Let $f(x)$ be a polynomial with integer coefficients in one variable and let $p$ be a prime. Suppose that $x_{0}$ is an integer such that

$$
f\left(x_{0}\right) \equiv 0 \quad(\bmod p) \quad \text { and } \quad f^{\prime}\left(x_{0}\right) \not \equiv 0 \quad(\bmod p) .
$$

Then there is a p-adic integer $\bar{x}_{0} \in \mathbb{Z}_{p}$ such that $f\left(\bar{x}_{0}\right)=0$.

## Conclusions from the previous data

The reason for being excited about the smoothness of the points in the variety of conics modulo primes is Hensel's Lemma.

## Lemma (Hensel's Lemma)

Let $f(x)$ be a polynomial with integer coefficients in one variable and let $p$ be a prime. Suppose that $x_{0}$ is an integer such that

$$
f\left(x_{0}\right) \equiv 0 \quad(\bmod p) \quad \text { and } \quad f^{\prime}\left(x_{0}\right) \not \equiv 0 \quad(\bmod p) .
$$

Then there is a p-adic integer $\bar{x}_{0} \in \mathbb{Z}_{p}$ such that $f\left(\bar{x}_{0}\right)=0$.
We restate (and mildly generalize) Hensel's Lemma as follows.
Let $p$ be a prime and let $Y$ be an algebraic variety defined and flat over $\mathbb{Z}$. Suppose that $y$ is a point of the reduction of $Y$ modulo $p$ and that it is non-singular, then $Y$ has a $p$-adic point.

## Conclusions from the previous data

| $p$ | 3 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ (conics) | 1 | 6 | 4 | 2 | 1 | 6 | 1 | 0 |

IF the space $\operatorname{Con}(X, L P)$ were flat near a pair $(p, \operatorname{conic}(\bmod p))$
THEN there would be a conic through $L P$ over $\mathbb{C}$ !

The amazing conclusion is that knowing a smooth point modulo a finite field, we would deduce the existence of a point over a field of characteristic zero!

## Conclusions from the previous data

| $p$ | 3 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ (conics) | 1 | 6 | 4 | 2 | 1 | 6 | 1 | 0 |

IF the space $\operatorname{Con}(X, L P)$ were flat near a pair $(p, \operatorname{conic}(\bmod p))$
THEN there would be a conic through $L P$ over $\mathbb{C}$ !
The amazing conclusion is that knowing a smooth point modulo a finite field, we would deduce the existence of a point over a field of characteristic zero!

Note that this rests on the hypothesis that we can prove flatness. This is something that we do not know how to do at the moment.

## Conclusions on the conics on $X$

Short summary
$X=\left\{x^{5}+y^{5}+z^{5}+u^{5}+v^{5}=0\right\} \subset \mathbb{P}^{4}$ Fermat quintic threefold
Lines on $X$ : parameterized by curves isomorphic to $X^{5}+Y^{5}+Z^{5}=0$.

## Conclusions on the conics on $X$

Short summary
$X=\left\{x^{5}+y^{5}+z^{5}+u^{5}+v^{5}=0\right\} \subset \mathbb{P}^{4}$ Fermat quintic threefold
Lines on $X$ : parameterized by curves isomorphic to $X^{5}+Y^{5}+Z^{5}=0$.

Conics on $X$ : one-parameter families related to the curve $X^{10}+Y^{10}+Z^{10}=0$.

## Conclusions on the conics on $X$

Short summary
$X=\left\{x^{5}+y^{5}+z^{5}+u^{5}+v^{5}=0\right\} \subset \mathbb{P}^{4}$ Fermat quintic threefold
Lines on $X$ : parameterized by curves isomorphic to $X^{5}+Y^{5}+Z^{5}=0$.

Conics on $X$ : one-parameter families related to the curve $X^{10}+Y^{10}+Z^{10}=0$.

The rational point $L P=[27,84,110,133,-144]$ is contained in $X$, but not on any line.

Is $L P$ contained in a conic on $X$ ?

## Conclusions on the conics on $X$

## Short summary

$X=\left\{x^{5}+y^{5}+z^{5}+u^{5}+v^{5}=0\right\} \subset \mathbb{P}^{4}$ Fermat quintic threefold
Lines on $X$ : parameterized by curves isomorphic to $X^{5}+Y^{5}+Z^{5}=0$.

Conics on $X$ : one-parameter families related to the curve $X^{10}+Y^{10}+Z^{10}=0$.

The rational point $L P=[27,84,110,133,-144]$ is contained in $X$, but not on any line.

Is $L P$ contained in a conic on $X$ ?
Over many finite fields, yes. Is this enough to conclude that $L P$ is contained in a conic over $\overline{\mathbb{Q}}$ ?

## Thank you!

