EXERCISE 13

Suppose that $F=a x^{2}+b x y+c x z+d y^{2}+e y z+f z^{2}$ is a conic in \mathbb{P}_{K}^{2} for an algebraically closed field K with $\operatorname{char}(K) \neq 2$.

Taking the partial derivatives of F, we get

$$
\begin{aligned}
& F_{x}=2 a x+b y+c z \\
& F_{y}=b x+2 d y+e z \\
& F_{z}=c x+e y+2 f z
\end{aligned}
$$

Hence, supposing $(x, y, z) \in K^{3}-\{0\}$ is a common zero of the partial derivatives, (x, y, z) must satisfy the matrix equation

$$
\left(\begin{array}{ccc}
2 a & b & c \\
b & 2 d & e \\
c & e & 2 f
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Since $(x, y, z) \neq 0$, this gives $\operatorname{det}(A)=0$, where A is the 3 x 3 matrix. Now we note that the original conic equation can be rewritten as

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
2 a & b & c \\
b & 2 d & e \\
c & e & 2 f
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Since A is symmetric and $\operatorname{char}(K) \neq 2$, we can find a matrix $\mathrm{B} \in G L_{3}(K)$ s.t. $A^{\prime}=B^{t} A B$ is a diagonal matrix. We apply (x, y, z) to B^{t} to get a change of coordinates $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(x, y, z) B^{t}$, noting that B applied to $(x, y, z)^{t}$ is $\left(B^{t}\right)^{t}$ so $B(x, y, z)^{t}=\left((x, y, z) B^{t}\right)^{t}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)^{t}$. This allows us to consider the projectively equivalent conic equation

$$
\left(\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
a^{\prime} & 0 & 0 \\
0 & b^{\prime} & 0 \\
0 & 0 & c^{\prime}
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)
$$

Where the 3 x 3 matrix is A^{\prime}. Since $\operatorname{det}(A)=0$, we also get $\operatorname{det}\left(A^{\prime}\right)=0$ i.e. $a^{\prime} b^{\prime} c^{\prime}=0$. WLOG assume $c^{\prime}=0$. This gives the conic equation $a x^{2}+b y^{\prime 2}$, which is not irreducible in $K[x, y, z]$ since K is algebraically closed. This is a contradiction, so our supposition that (x, y, z) is a common zero of the partial derivatives is false.

