EXERCISE 20

RANKEYA DATTA

Exercise 20: Find a pair of conics intersecting in exactly 4 points.

Proof: We will work over \mathbb{C} . Consider the conic C_F given by the homogeneous polynomial $F = YZ - X^2$. The affine part of this conic (i.e., when Z = 1) is just the parabola $Y = X^2$ (at least over \mathbb{R}). Consider the conic C_G given by the polynomial $G = (X+Y-Z)(-X+Y-Z) = (Y-Z)^2 - X^2$. The affine part of this conic are the two lines X+Y-1 = 0 and -X+Y-1 = 0. Note that the polynomials F and G have no common irreducible factors (F itself is irreducible over \mathbb{C}). So, in particular Bezout's theorem applies, and the conics C_F and C_G have at most 4 intersection points counting with multiplicities.

In fact, the affine parts of these conics intersect at 4 distinct points over \mathbb{R} , the points of intersection being $(\frac{-1+\sqrt{5}}{2}, (\frac{-1+\sqrt{5}}{2})^2)$, $(\frac{-1-\sqrt{5}}{2}, (\frac{-1-\sqrt{5}}{2})^2)$, $(\frac{1-\sqrt{5}}{2}, (\frac{1-\sqrt{5}}{2})^2)$, $(\frac{1+\sqrt{5}}{2}, (\frac{1+\sqrt{5}}{2})^2)$. So, the conics intersect in $\mathbb{P}^2_{\mathbb{C}}$ at the 4 distinct points $[\frac{-1+\sqrt{5}}{2}: (\frac{-1+\sqrt{5}}{2})^2: 1]$, $[\frac{-1-\sqrt{5}}{2}: (\frac{-1-\sqrt{5}}{2})^2: 1]$, $[\frac{1-\sqrt{5}}{2}: (\frac{1-\sqrt{5}}{2})^2: 1]$, $[\frac{1+\sqrt{5}}{2}: (\frac{1+\sqrt{5}}{2})^2: 1]$.