EXERCISE 20

RANKEYA DATTA

Exercise 20: Find a pair of conics intersecting in exactly 4 points.

Proof: We will work over C. Consider the conic Cr given by the homogeneous polynomial
F = YZ—X?. The affine part of this conic (i.e., when Z = 1) is just the parabola Y = X? (at
least over R). Consider the conic Cg given by the polynomial G = (X+Y—Z)(—X+Y—-Z) =
(Y—Z)2—X2. The affine part of this conic are the two lines X+Y—1 = 0 and —X+Y—1 = 0.
Note that the polynomials F and G have no common irreducible factors (F itself is irreducible
over C). So, in particular Bezout’s theorem applies, and the conics Cr and Cg have at most
4 intersection points counting with multiplicities.

In fact, the affine parts of these conics intersect at 4 distinct points over R, the points of
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So, the conics intersect in Pé at the 4 distinct points [
(—1—\/5)2.1] [1—\/5.(1—\/5)2.1] [1+\/5.(1+\/5)2.1]
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