
EXERCISE 20

RANKEYA DATTA

Exercise 20: Find a pair of conics intersecting in exactly 4 points.

Proof: We will work over C. Consider the conic CF given by the homogeneous polynomial
F = YZ−X2. The affine part of this conic (i.e., when Z = 1) is just the parabola Y = X2 (at
least over R). Consider the conic CG given by the polynomial G = (X+Y−Z)(−X+Y−Z) =
(Y−Z)2−X2. The affine part of this conic are the two lines X+Y−1 = 0 and −X+Y−1 = 0.
Note that the polynomials F and G have no common irreducible factors (F itself is irreducible
over C). So, in particular Bezout’s theorem applies, and the conics CF and CG have at most
4 intersection points counting with multiplicities.

In fact, the affine parts of these conics intersect at 4 distinct points over R, the points of
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