EXERCISE 31

RANKEYA DATTA

Exercise 31: Which pairs a, b can occur in the lemma? In other words: What are all possible Hilbert polynomials of finitely generated graded R-modules, where R = k[S, T]?

Solution: The lemma shows that given a finitely generated module M over R, the Hilbert function $H_M : \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ is polynomial like, and moreover, $\exists a, b \in \mathbb{Z}$ such that $H_M(n) = an + b$ for all n >> 0. Since $H_M(n)$ is nonnegative, the first thing one can say is that $a \geq 0$.

I will first show that there is a module M such that the Hilbert function of M is given by an + b, for any $a, b \in \mathbb{Z}$ such that a > 0.

Well, just let $M = \underbrace{R \oplus R \oplus ... \oplus R}_{(a-1) \text{times}} \oplus R(b-a)$. Then it is easily seen that the Hilbert polynomial of this module is an + b.

If a = 0, then again by the fact that H_M is nonnegative, it is clear that $b \ge 0$. We get b = 0 for the zero module. If b > 0, then since a = 0, we get that H_M is constant for n >> 0. Now, R/(T) is an R algebra, hence an R module, where multiplication by T acts as 0 on this module. So, R/(T) is actually a module over k[S], and it is clear that the Hilbert polynomial of this module is just the constant function 1. Hence, $M = R/(T) \oplus ... \oplus R/(T)$

b-times

is a module whose Hilbert polynomial is just the constant **b**.

In conclusion, (a, b) takes values in the set $\{(a, b)|a, b \in \mathbb{Z}, a > 0\} \cup \{(0, b) : b \in \mathbb{Z}_{\geq 0}\}$.