EXERCISE 37

RANKEYA DATTA

Let R = F,[S,T]. Let X be the Fermat hypersurface. Let Gy, ..., G5 be homogeneous
polynomials of degree d such that gcd(Gy,...,G5) = 1, and G(S) + ...+ Gg = 0. Let
© = (Go, ceny G5) P — PO,

We define,

Qx(@) := ker(R®°(—d) R). Asamodule, ker(R¥°(—d)

R(6d)).We will work with this latter module.
G4,...,G4
Ex(@) := ker(R®°(d) -2, R(5d). As a module, ker(R®°(d)
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ker(R®® ——= R(—d)). We will work with this latter module.
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We know that both Qx(¢@) and Ex(¢) are free R modules of rank 5.

Because we are working over [Fy, if (Ag,...,As5) € Qx(¢@), then AyGg + ... + A5G5 = 0.
so A§G + ... + A2GS = 0. Hence, (Ag,...,As) € Qx(9) = (A,...,A) € Ex(@). Let

3 ={(A% .., AY) 1 (Agy ...y As) € ker(RP6 £0285, R6d))}.

Claim: If (By,...,B5) € Ex(¢@) is homogeneous, then (By,...,B5) can be written as a
finite sum of elements of J with coefficients in R.

Proof of Claim: First note that if G € R is homogeneous, then the power of S, T
in each term of G* is a multiple of 4. This is one of the perks of working over F,.
Suppose deg((By,...,B5)) = D( this means that deg(B;) = D, for i = {0,...,5}). Then
D =0,1,2,3(mod4).

Case 1: d = 0(mod4) In this case D = 4k. We have,
Sk — (Sk)4

SAk—TT — (Skf] )453-[-

S4k—2T72 — (Skfl )4SZT2

S4k=3T3 — (Sk71)4ST3

S4(k—1)T4 — (Sk—1T)4

S4(k—1)—1T5 — (Sk—ZT)4s3T
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It is then easy to see that every degree D element of R is of the form a* + b*S3T +
c*S2T2 + d*ST3, for homogeneous a,b,c,d € R.

So, for all i € {0,...5}, B; = af + b{S3T+¢{S?T? 4+ dfST3. Since, BOG0+ .+B5G2 =0, we
have )i 5(aiGi)*+(0iGi) S T+(ciGi) 'S T +(di Gi)*ST? = (X; aiGi)*+(X_; biGs 433T+
(3, ciGy)*S T2 + (X, diGy)*ST? = 0.

It suffices to show that ) ; a;Gi = Y ;biGi = ) ;¢iGi = ) ; diG; = 0. Note that a;G;
are all homogeneous of the same degree, so that ) ; a;G; is homogenous. Similarly, ) ; biGj,
> ;ciGy, Y ; diGy are homogeneous. So, to prove that these sums are 0, it suffices to prove
that if for homogeneous «, B,v,5 € R, we have a* + B*S3T 4+ v*S2T2 + §*ST3 = 0, then
o« =p =7v=>5=0. But, by an earlier remark, the degree of T in every term of o is a
multiple of 4, the degree of T in every term of B*S3T is congruent to 1 mod 4, the degree of
T in every term of Y*S2T? is congruent to 2 mod 4, the degree of T in every term of 5*ST3
is congruent to 3 mod 4. Hence, no polynomial of the form o* + B*S3T +y*S?T2 4 54ST3
can possibly equal 0, unless «, 3,v,0 are 0.

SO Z al Zi biGi = Zi CiGi = Zi dG =0= (Cl(), ,Cl5) (bO) ---)b5), (CO) ey C5)) (dO) ey d5) €
G ) »G ~
ker(R®® MR(éd)) = (a3, ..., ad), (b3, ..., b2), (cy ..., c2), (d3, ..., d3) € J. Now, (B, ...,Bs) =
(ag, - a5 + S3T(bg, ...,bg) + SZTZ(Cg, - Cg) + STS(d d4) so we are done.

Case 2: D = 1(mod4) In this case D = 4k 4+ 1 for some k. By a method similar to
the one above one can show that every degree D homogeneous polynomial is of the form
a*S+bHT4c*S3T24-d*S?T3. Agam ASHRTHYAST? 484 TP = 0= =P =y=5=0.
So, we get that (By, ..., B5) € J by a process similar to the one above.

Case 3: D = 2(mod4) In this case D = 4k + 2 for some k. Every homogenous polyno-
mial of degree D is of the form a*S? +b*ST + ¢*T2 4- d*S3T3, and we imitate the argument
for Case 1.

Case 4: D = 3(mod4) In this case every homogenous polynomial of degree D is of the
form a*S® + b*S?T + ¢*ST? 4+ d*T3, and again we imitate argument for Case 1.

So, what we have shown is that every homogeneous element of ker(R¥® -2, R(—d))

6 GO’ ’Gg ~
is in the R submodule generated by J. Hence, keT(R@ ——> R(—d)) € R< J >. But,

G b 7G4 ) )G4
R < J >C ker(R®® 235, R(—d)). So, ker(R®® °—> R(—d)) = R < J >. But, what
does this means in terms of the generators of Qx (@) and Ex(¢). Well, if Qi = (Qigy --., Qi5)

(i=1{1,2,3,4,5}) form a free basis of ker(R®® GorGs, R(6d)), then Z; = (Qfo, veny Q?s) e
and moreover every element of J is an R-linear combination of the element Z;. Since,
G2 G3,-..,Ga

G2...., . ey
ker(R®® 23, R(—d)) = R < J >, it follows that every element of ker(R®® —22
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R(—d)) is an R linear combination of the element of J, and hence of the Z;. So, Zi,....,Z5
generate ker(R®® R(—d)). Now, we know that ker(R®° Gg—Gg> R(—d)) = R%,
So, localizing we get (R—0)~"(ker(R®® M R(—d))) = (R—0)"1(R®). The latter is a
vector space over Frac(R) of dimension 5. Hence, (R — 0)~"(ker(R®® M R(—d))) is a

G4,..,G4
vector space over Frac(R) of dimension 5. Since, % in (R—0)""(ker(R® =22, R(—d)))

4 4
G,...,G4

G4,...,G? )
generate (R — 0)~'(ker(R®® —23, R(—d))), it follows that % are linearly independent
over Frac(R). As R is a domain, R C Frac(R). So, % are linearly independent over R.

Clearly then the Z; are linearly independent over R, completing the proof.



