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1 First Lecture, 5/29

Our main object of study is X ⊂ P5
F2

, where X is the degree 5 Fermat hypersurface, which we
are looking at in P5 over F2. X is the zero locus {X5

0 +X5
1 + ...+X5

5 = 0}. The question is,
“what kind of rational curves lie on X?” Since F2 only has one invertible element, Pn(F2) =
Fn+1

2 \ 0, which suggests that the Fermat quintic has the same zero locus as the linear
hypersurface X0 + X1 + ... + X5 = 0; however, we are interested in field extensions as well,
so X is a “thing,” not just the space of solutions.

Definition. A rational curve is the image of a morphism ϕ : P1 → P5 which maps into X;
it is unlikely that we will ever actually look at the image, instead saying that the morphism
is the curve.

Goal. X has too many rational curves, and they behave differently than we expect. We
want to find (very) free rational curves on X or prove that they don’t exist, i.e. ϕ∗TX is
globally generated or ample.

Definition. A morphism ϕ : P1 → P5 over a field K is given by f0, ..., f5 ∈ K [Y0, Y1]
homogeneous and all of the same degree d such that (a : b) 7→ (f0(a : b) : ... : f5(a : b)) makes
sense (which renders the bit about same degree redundant, and requires them to not have a
common zero except (0, 0), equivalently gcd(f0, ..., f5) = 1.).

Definition. We say that ϕ maps into X = {F = 0}, where F is the Fermat quintic, if and
only if F (f0, ..., f5) ≡ 0 as a polynomial in K [Y0, Y1].

2 Second Lecture, 5/30

We begin with the projective plane. Informally, it is a thing with points and lines and an
incidence correspondence, i.e. P ∈ L, together with the axioms

• Any two distinct lines meet in a unique point.

• For any two distinct points, there exists a unique line passing through both of them.
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Remark. Swapping the terms “line” and “point” changes nothing, so we have a type of
duality.

Exercise. Show that the number of points and the number of lines are equal, assuming
that not all points are colinear, and not all lines pass through a single point. If we look at the
tautological line bundle over P2, we can also look at the projection from the total space to
the space of lines. It suffices to show that these maps have fibers with the same cardinality.
Fix distinct points P,Q. Consider a line L through P but not Q, and a line M through Q
but not P . The intersection point L ∩M is neither P nor Q. The set of such pairs (L,M)
is in bijection with the points of P2 not on PQ. Thus

(#lines thru P − 1)(#lines thru Q− 1) = #points of P −#points on PQ.

Thus the number of lines through P is independent of which P ∈ PQ we chose (this only
works if PQ has at least three points). Because every two points determine a line, we conclude
that (modulo boundary cases) the number of points on a line is independent of the choice
of line by duality. Now we choose a line L and a point P , assuming P 6∈ L. Choosing any
line through P , it intersects L in some Q. Conversely choosing any Q ∈ L, there is a unique
line PQ. We have an explicit bijection of sets {lines through P} → {points on L} given by
M 7→ L ∩M with inverse given by Q 7→ PQ.

Open Question. What are the orders of finite projective planes? There are some exotic
ones...

Example. Let K be a field. We have a projective plane P2
K whose points are 1-dimensional

K-vector subspaces of K⊕3. We think of a point as a triple (a : b : c) of elements of K not
all zero, taken up to a multiplicative scalar. We might write P2

K = (K2 \ {0})/K∗. A line
L ∈ P2 is given by an equation AX0 + BX1 + CX2 = 0 for A,B,C ∈ K not all zero. If L′

is given by A′X0 + B′X1 + C ′X2 = 0, then L = L′ if and only if A = λA′, B = λB′, and
C = λC ′ for some λ ∈ K∗. The incidence relation is given by saying that (a : b : c) ∈ L if
and only if Aa+Bb+ Cc = 0.

Exercise. Show that P2
K is a projective plane in the axiomatic sense.

Convention. We will write all scripts over K = Z/pZ.

Projective Line. We have points of the form (a : b). In the case P2
Fp

, there are p + 1
points, which can be counted via the group action or via “affine decomposition.”

Automorphisms of P1. These will all look like (x0 : x1) 7→ (a00x0 + a01x1 : a10x0 + a11x1)
where A = (aij ∈ GL2(K). If A = λA′ for some λ ∈ K∗, then A and A′ define the same
automorphism. We conclude that AutK(P1) ∼= PGL2(K) = GL2(K)/K∗. These are basically
just coordinate changes.

Exercise. Giving the images of three distinct points determines an automorphism of P1.

Definition. A conic C is an equation F = 0 ( not the zero locus, but the equation itself)
where

F =
∑

0≤i≤j≤2

aijXiXj

for aij ∈ K not all zero. C = C ′ if and only if F = λF ′ for λ ∈ K∗.
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Example. F = X2
0 +X2

1 +X2
2 is a conic.

Definition. We say (a : b : c) ∈ C if F (a, b, c) = 0.

Remark. The example has an empty zero locus over R, though it has many points over C.

Intersections. In affine space, we could have a conic meeting a line in 0, 1, or 2 points.

Proposition. Every conic over a finite field K has a point over K.

Proof. Optional exercise. �

Definition. We say C : F = 0 is irreducible if and only if F is irreducible in K [X0, X1, X2].

Parametrization. Given a line L and a point P 6∈ L, we can parametrize L by slopes of
lines through P intersecting L. We want to do something similar for an irreducible conic. In
general, this does not work. The trick is to take a point on C. Since every conic over a finite
field has a point, we can do this. Looking at all of the lines through P , we get a bijection
with the remaining points on C.

Exercise. Explicitly do the stereographic projection for irreducible, smooth conics.

Example. Let K = R and F = X2
0 +X2

1 . This is irreducible since we do not have access to
imaginary numbers. It has a single point (0 : 0 : 1) over the reals, which is the intersection
point of the two lines which constitute the conic over C (the lines are conjugate under the
action of the Galois group).

3 Third Lecture, 6/1

In PARI, “Mod(1,p)” returns the integer 1 mod p. If we write “Mod(1,p)*A”, with A a
matrix, we get the matrix with entries mod p.

One way to compute the intersection points of a conic C and a line L is to parametrize the
line as t 7→ (at+ b : ct+d : 1), although this misses the point passing through {z = 0}. Then
solve F (at+ b, ct+ d, 1) = 0 in t and substitute back in.

Perhaps more natural is to paramatrize via a morphism P1 → P2 given by (y0 : y1) 7→
(ay0 + by1 : cy0 + dy1 : y1).

Morphisms from P1 → Pn. These are given by (n + 1)-tuples G0, ..., Gn ∈ K [Y0, Y1],
homogeneous and all of the same degree, with gcd(G0, ..., Gn) = 1. This last condition makes
sense since K [Y0, Y1] is a UFD. The map (on points) is then (a : b) 7→ (G0(a, b) : G1(a, b) :
· · · : Gn(a, b)).

Explanation of gcd condition. Suppose K = K̄. Then if G ∈ K [Y0, Y1] is homogeneous
of degree d, it can be factored into linear forms.

Example. Y 2
0 + 3Y0Y1 + Y 2

1 de-homogenizes to T 2 + 3T + 1 = (T −α)(T − β with α, β given
by the quadratic formula. Then our original form factors as (Y0 − αY1)(Y0 − βY1).
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So anyway, we can write G = cY e
1

∏d−e
i=1 (Y0−αiY1), where e is some sufficiently large integer.

Call this the canonical form

Example. 5Y0Y
2

1 − Y 3
1 = 5Y 2

1 (Y0 − 1
5
Y1).

So in this case, the zero locus of G in P1
K is the collection consisting of (1 : 0) with multiplicity

e and (αi : 1) for i = 1, ..., d− e with possible repeats.

Going back to G0, ..., Gn, write each in canonical form. Then take the gcd as in the case of
integers.

Cool Thing That Happens. A morphism P1 → P2 should have as its image a curve in
P2. The integer d is the degree of the morphism. Multiplying the (n+1)-tuple by λ ∈ K∗
results in the same morphism.

If d = 2, we claim that the “image” is either a line or a conic. Let ϕ : P1 → P2 be given by the
triple G0, G1, G2. We say ϕ maps into a curve C : F = 0 if and only if F (G0, G1, G2) = 0
in K [Y0, Y1]. Note that in this case, if ϕ is not a constant morphism, then ϕ will be onto C.

4 Fourth Lecture, 6/4

We begin today by trying to solve Exercise 17. Let G0, G1, G2 ∈ K [S, T ] be homogeneous
quadratics. We need aij ∈ K not all zero such that∑

i≤j

aijGiGj ≡ 0.

The terms are elements of a five-dimensional vector space of homogeneous polynomials of
degree 4, which has basis S4, S3T, ..., T 4. There are six polynomials in the sum, hence there
is a nontrivial linear dependence.

Suppose now degG0 = degG1 = degG2 = d. We want F ∈ K [X0, X1, Xd]d (the space of
homogeneous polynomials od degree d) such that F (G0, G1, G2) ≡ 0 in K [S, T ]. F gives a
K-linear map K [X0, X1, X2]d → K [S, T ]d2 . To get a (provably) nonzero kernel, we need

dim(LHS)

(
d+ 2

2

)
> dim(RHS) = d2 + 1.

This doesn’t work. We could try replacing d on the left with e, giving (e+2)(e+1)
2

> de + 1,
which works for e >> d. It always maps into some curve, but it is harder to show that the
image is degree d.

In general, cubic curves cannot be parametrized by P1.

Fact. If C : F = 0 in P2 is a cubic, is irreducible even over K̄, and is singular, then we can
parametrize it.
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Warmup. Consider the conic x2 +y2 = 1 over R. We wish to parametrize it with basepoint
(1, 0). We have (1, 0) + λ(1, t), so we get (1 + λ)2 + λ2t2 = 1, so 2λ + λ(1 + t2) = 0. Our
basepoint corresponds to λ = 0, so we factor this out and get

t 7→
(

1 +
−2

1 + t2
,
−2t

1 + t2

)
.

In P2, this is equivalent to
t 7→

(
t2 − 1 : −2t : 1 + t2

)
.

Back to cubics. We can always factor something in just two variables. Consider C : X3 +
Y 3 + 5XY Z = 0. Dehomogenizing by setting z = 1, we get x3 + y3 + 5xy = 0. This is
most likely a nodal curve. We have the line λ(1, t) through the node. Substituting, we get
λ3 + (λt)3 + 5λ(λt) = λ2(λ + λt3 + 5t) = 0. Thus λ = −5t/(1 + t3), and we have the
parametrization

t 7→
(
−5t

1 + t3
,
−5t2

1 + t3

)
.

We now turn to surfaces in P3. Such a thing is S : F = 0, where F ∈ K [X0, X1, X2, X3]. We
can again talk about irreducible and singular points.

Dumb Route to Rational Curves. First consider the special case in which S is a
quadric or cubic surface (degree of F is 2 or 3). We again have morphisms ϕ : P1 → P3,
this time given by a quadruple of homogeneous polynomials of the same degree. The dumb
idea is to just take X3 = 0, thus passing to a subvariety, which looks like P2, in which we
can look for rational curves; in fact we intersect the ambient subvariety with S. The result
of the intersection is a curve. If S is a quadric, we should more or less always be able to
parametrize. In the cubic case, we may not be able to parametrize.

Intersecting a quadric with a plane may yield several different types of curves. In the cubic
case, we will try to find a plane in proj3 whose intersection with S is singular.

5 Fifth Lecture, 6/6

Definition. A rational plane curve is a morphism ϕ : P1 → P2 given by (a : b) 7→ (G0(a :
b), G1(a : b), G2(a : b)), where the Gi are homogeneous polynomials of degree d.

Last time, we showed by a dimension count that if(
e+ 2

2

)
> de+ 1,

then there exists a curve C : F = 0 of degree e such that ϕ maps into C. On the other
hand, the general theory says that there exists such a C of degree d. To prove this, begin by
dehomogenizing. Take

ϕ : (1 : t) 7→ (G0(1 : t) : G1(1 : t) : G2(1 : t)) =

(
1 :

G1(1 : t)

G0(1 : t)
:
G2(1 : t)

G0(1 : t)

)
= (1 : f(t) : g(t))
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We want to find Q ∈ K [x, y] of total degree at most d such that Q(f, g) = 0 as a rational
function.

“Okay, now we’re gonna do something mildly clever...” -Johan

Set L = K(x) and M = K(t), respectively fields of fractions. Consider the map evf : L→M
taking x 7→ f , and more generally h(x) 7→ h(f). One can prove that this is a ring map (in fact
a map of K-algebras). Note that there is a potential problem: suppose h = (x2− 5)/(x− 7),
then h(f) = (f 2 − 5)/(f − 7), and we need f − 7 6= 0 as a rational function. This is OK as
long as f is not constant. Since evf is a ring map of fields, it is an injective map, so we can
think of M as a field extension of L. Since t generates M over K, it also generates M over
L. Moreover, we have x = f(t) in M ; in other words, xG0(1, t) = G1(1, t) is a polynomial
equation for t over L of degree at most d. Thus M is a finite extension of L with [M : L] ≤ d.
M ∼= L [T ] /some monic irreducible polynomial P (T ) ∈ L [T ], mapping T 7→ t, where P (T )
divides xG0(1, t)−G1(1, t).

In the first place, we wanted to find a Q ∈ K [x, y]. We start by finding an expression for y
in x. Consider g(t) ∈M . Because M/L is finite of degree at most d, there exist a0, ..., ad ∈ L
not all zero such that a0 + a1g+ ...+ adg

d = 0 in M , which follows because M has dimension
d as a vector space over L, but 1, g, ..., gd has order d+ 1, yielding a linear relation. Clearing
denominators, we may assume a0, ..., ad ∈ K [x]. Set Q = a0(x) + a1(x)y + ... + ad(x)yd ∈
K [x, y]. By construction, Q(f, g) = 0. This is not ideal, as the degree in x could be quite
large.

Let I = {Q ∈ K [x, y] | Q(f, g) = 0}. This is an ideal, and we have more-or-less shown that
there exists Q ∈ I with degyQ ≤ d. By symmetry, there exists Q′ ∈ I with degxQ

′ ≤ d.

Exercise. gcd(Q,Q′) ∈ I, i.e. I is principle. Try working in K(x) [y]. The Euclidean
algorithm and the Gauss lemma probably come up.

The degree bounds hold up to a linear change of coordinates; suppose we have xdyd, then
taking x 7→ x+ y results in a factor of y2d. To finish the argument, choose Q ∈ I a generator
and observe the bounds on the degree. Do a linear change of coordinates such that the degree
in the “new y” is equal to the total degree in y.

Exercise 27. This will be a guided discussion rather than a lecture. The goal is to find
rational curves on S : X3

0 +X3
1 +X3

2 +X3
3 = 0 over F2. Mike suggests we pick d, and list all

possible 4-tuples G0, ..., G3 ∈ F2 [S, T ]d, and compute
∑
G3

i to see if we get 0. The number
of choices is (2d+1)d, while the number of possible outcomes is 23d+1. The estimated number
of solutions is 24d+42−(3d+1) = 2d+3.

John observes that the solutions of
∑
X3

i = 0 in P3
F2

are (1 : 1 : 1 : 1) and permutations of
(0 : 0 : 1 : 1). Johan suggests prescribing a set map Φ : P1(F2) → S(F2). and carrying out
Mike’s method, looking only at those ϕ with ϕ|P1(F2) = Φ.

Since we already had the idea of cutting S with a plane (a linear surface) to yield a cubic
curve, I suggest that we try cutting S with a higher degree surface S ′ in a way that yields a
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curve S ∩ S ′ with an irreducible component which can be parametrized. If S ′ is a plane, it
needs to be tangent at a point of intersection. If S ′ is a quadric surface, S ∩ S ′ will usually
be a genus 4 curve, which means that getting it to be rational requires S and S ′ having four
points of tangency. This is really hard.

Somehow or another, we’ve ended up talking about the group law on a cubic curve. If we
have two points on a cubic over a given field, their composition will also be on the cubic over
that field. If we have rational curves through the original pair of points, we can parametrize
them with a line, which will cut out a third rational curve as the composition point varies.

6 Sixth Lecture, 6/8

We now discuss graded modules over R = K [T ].

Definition. A graded ring is of the form R = R0 ⊕R1 ⊕R2 ⊕ .... We call Ri the degree i
part of R, which takes the form KT i. We also have the condition Rd ·Rd′ ⊂ Rd+d′. A graded
module is an R-module M together with a direct sum decomposition M =

⊕
n∈ZMn such

that Rd ·Mn ⊂Md+n.

Remark. For reasons of abstract nonsense, all rings are graded from 0 up, while modules
are graded over all of Z. Thus viewed as a module over itself, a ring has empty graded pieces
for negative indices.

Example. Let M = K [T, T−1]. Mn = KT n for each n ∈ Z. Thus each graded piece is
nonzero.

Definition. An element x ∈ M is homogeneous (of degree n) if and only if x ∈ Mn.
Thus zero is homogeneous of every degree.

Exercise 28. If M is a finitely-generated graded R-module, then it is generated by finitely
many homogeneous elements.

Exercise 29. If M is a finitely-generated graded R-module, then (a) Mn = 0 for all n << 0,
and (b) dimK(Mn) <∞ for all n ∈ Z.

Definition. In the situation of Exercise 29, we define the Hilbert function HM of M to
be a map HM : Z→ Z≥0 taking n 7→ dimK(Mn).

Exercise 30. What are all possible HM for R = K [T ] and M a finitely-generated graded
R-module? If M = (0), the function vanishes. If M = (T ), the function is 1 for n ≥ 1,
zero otherwise. If M = R, the function is 1 for n ≥ 0, zero otherwise. If M = R/(T 2), the
function is 1 for n = 0, 1 and zero otherwise. Note that HM +HN = HM⊕N .

Definition. If M is a graded module, then for e ∈ Z the twist M(e) is the graded module
such that the underlying R-module is M , and M(e)n = Me+n.

Remark. The values of the Hilbert function are determined by the behavior of generators.
Since we are looking at finitely generated modules, the function will be constant after a point.
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7 Seventh Lecture, 6/11

To do before Friday: Rankeya, Tabes, and John - write a script that works; Mike - flesh out
argument posted thus far; Joe - nothing.

Let R = K [S, T ], where S, T are homogeneous of degree 1. We continue talking about
graded R-modules. If M is a finitely generated R-module, then Mn = 0 for n << 0, and
dimK(Mn) <∞. Recall that for each M we have a Hilbert function HM : Z→ Z≥0 taking
n 7→ dimK(Mn).

Lemma. In this situation, there exist a, b such that Hm(n) = an+ b for all n >> 0.

Proof. Consider multiplication by S, which is a module map M
S·−→ M which does not

preserve the grading. Let L = ker(M
S·−→ M) and Q = coker(M

S·−→ M). We claim that L

and Q are graded R-modules, as L =
⊕

n∈Z ker(Mn
S·−→Mn+1) and Q =

⊕
n∈Z coker(Mn−1

S·−→
Mn), and S acts as zero on both L and Q, so we can think of both L and Q as graded K [T ]-
modules via the map S 7→ 0, T 7→ T . Also, Q and L are finitely generated; this fact is obvious
for Q since it is a quotient of a finitely generated module. For L, we know that L ⊂ M is a
submodule. It is a fact that over Noetherian rings, submodules of finitely generated modules
are finitely generated. K [S, T ] is Noetherian, so L is finitely generated. As we observed last
time, there exist `,m ≥ 0 such that HL(n) = ` for all n >> 0 and HQ(n) = m for all n >> 0.
For every n, we have an exact sequence of vector spaces

0→ Ln →Mn
S·−→Mn+1 → Qn+1 → 0.

This implies that

dim(Mn+1)− dim(Mn) = dim(Qn+1)− dim(Ln) = m− `

for n >> 0. Elementary arguments show that HM(n) = (m − `)n + b for all n >> 0, for
some b ∈ Z. �

Definition. If HM(n) = an+b for all n >> 0, then an+b is called the Hilbert polynomial
of M .

Recall that we defined a twisted module M(e)n = Me+n. We can defined R(e) to be the
graded R-module with R(e)n equal to Re+n for e+ n ≥ 0 and 0 for e+ n < 0. This is, as an
R-module, free of rank 1 with a generator 1 in degree −e.

Definition. A finitely generated graded module M is called graded free if and only if M ∼=
R(e1)⊕ ...⊕R(er) as a graded module.

Facts about such modules. The dimension of a graded piece is n + 1 since we have
two variables. Thus the dimension of R(e)n is n + e + 1, so the Hilbert polynomial is
rn + e1 + ... + er + r. M has a minimal set of generators xi = (0, ..., 1, ..., 0) in degree −ei;
this set has cardinality r. We claim that if we order e1 ≤ e2 ≤ ... ≤ er, then e1, ..., er is an
invariant of the isomorphism class of M .
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Definition. If M is graded free, the sequence e1 ≤ ... ≤ er such that M ∼=
⊕

R(ei) is called
the splitting type of bfM .

Exercise 32. Let M be graded free. We want an algorithm to find the splitting type using
only the Hilbert function.

Exercise 33 (optional. The kernel of a map of graded free modules is graded free.

Exercise 34. Let G0, ..., Gn ∈ R = K [S, T ]. Let ϕ = (G0, ..., Gn) : P1 → Pn be a morphism
of degree d. Let

Ω(ϕ) := ker(R(−d)⊕ ...⊕R(−d)
G0,...,Gn−−−−−→ R)

taking

(L0, ..., Ln) 7→
∑

GiLi.

We call this module Ω(ϕ) the pullback of the cotangent bundle. Compute the Hilbert
polynomial of Ω(ϕ).

Example. Let (G0, G1, G2) = (S2, ST, T 2) : P1 → P2. Ω(ϕ) is the kernel of the map
R(−2)⊕3 → R. This map is nontrivial, but it is clearly not surjective, so the rank should be 2
(the module is free by Exercise 33). For n = 1, HR(−2)3 = 0, HR = 2, HΩ(ϕ) = 0. For n = 2,
HR(−2)3 = 3, HR = 3, HΩ(ϕ) = 0. For n = 3, HR(−2)3 = 6, HR = 4, and HΩ(ϕ) = 2 if the map
is surjective, which is clear. Since the rank is 2, we are done. Thus Ω(ϕ) ∼= R(−3)⊕2.

Definition. We will call the splitting type of Ω(ϕ) the splitting type of ϕ.

Question. Is there a rational curve on the Fermat quintic ϕ such that the splitting type
of ϕ consists entirely of negative integers.

8 Eighth Lecture, 6/13

Fix a morphism ϕ = (G0, ..., Gn) : P1 → Pn of degree d. Recall that we defined

Ω(ϕ) ker(R(−d)⊕n+1 → R),

where R = K [S, T ]. The splitting type of ϕ is the splitting type of Ω(ϕ).

Remark. The pullback of the cotangent bundle will always have rank n.

Example. If n = 1, so ϕ : P1 → P1, then the splitting type is −2d.

If ϕ “is” a line, the splitting type is −2,−1,−1, ...,−1, where the number of −1 terms is
n− 1.

Aside. HΩ(ϕ)(m) = dim ker(R(−d)oplusn+1
m → Rm). It is a fact that if gcd(G0, ..., Gn) = 1,

then the map is surjective for m >> 0, so we get (n + 1) dim(R(−d)m) − dim(Rm) =
(n + 1) dim(Rd+m) − dim(Rm) = (n + 1)(−d + m + 1) − (m + 1) = nm + (−d(n + 1) + n);
in the definition of Hilbert polynomial, n = a, and (−d(n + 1) + n) = b. It follows that if
e1, ..., en is the splitting type of ϕ, then

e1 + ...+ en + n = −d(n+ 1) + n.
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Last time, we saw that a conic in P3 has splitting type −3,−3, which checks out, as does the
case of a line above.

Cubics. In the good case, the splitting type is −4,−4,−4, −5,−4,−3, or −6,−3,−3. The
last of these is the case where ϕ maps to a a line; the first is the standard case, and the
middle case is where we map into a plane (necessarily nodal).

Example. Let (T 4, T 3S, TS3, S4) be a morphism of degree 4. Then Ω(ϕ) = ker(R(−4)4 →
R). The sum e1 +e2 +e3 must be −4(3+1) = −16. For m = 4, the Hilbert function vanishes
since there are no relations among the Gi with constant coefficients. For m = 5, the map
R⊕4

1 → R5 is surjective since we can get any degree 5 monomial, so the Hilbert function is
8− 6 = 2. Thus we have e1 = e2 = −5, so we must have e3 = −6.

If ϕ : P1 → Pn maps into a nonsingular degree e hypersurface X : F = 0, then there is
another important module EX(ϕ) = ker(R(d)⊕n+1 → R(ed)) given by

∂F

∂Xi

(G0, ..., Gn)

in each coordinate. This roughly measures something to do with infinitesimal perturbations
of the curve ϕ.

Goal. Find ϕ on the Fermat quintic X ⊂ P5
F2

such that the splitting type of EX(ϕ) is
nonnegative, or prove that it cannot happen. In this case, the first partials all take the form
X4

i .

Exercise 37. Relate the splitting types of Ω(ϕ) and EX(ϕ).

Why is the Fermat Hypersurface special? We look for lines on X. A line in P5 can
be parametrized as (S : T ) 7→ (a0S + b0T : ... : a5S + b5T ). This lies on X when

(a0S + b0T )5 + ...+ (a5S + b5T )5 = 0 = (a5
0 + ...+ a5

5)S5 +

(
5
1

)
(a4

0b0 + ...+ a4
5b5)S4T + ...

There seem to be six conditions here, but in fact

(
5
2

)
=

(
5
3

)
= 10 automatically vanish in

characteristic 2. In characteristic 0 there would be a two-dimensional family of lines on X,
but the vanishing of the two equations increases the dimension to four.

Problem. X has too many rational curves.

9 Ninth Lecture, 6/15

Lemma. If ψ : M → N is a (degree preserving) map of graded modules and we have n such
that ψn is surjective and N can be generated by homogeneous elements in degree at most n,
then ψm is surjective for all m ≤ n.

We work another example of computing the splitting type. We have a conic on the Fermat
quintic given by

(S : T ) 7→ (S2, S2, ST, ST, T 2, T 2),

10



which is a closed immersion of P1 in proj5
F2

. Ω(ϕ) is the kernel of the map R(−2)⊕6 → R
given by the conic. For n = 2, HR(−2)6 = 6, while HR = HΩ = 3. For n = 3, HR(−2)6 = 12,
while HR = 4 and HΩ = 8. We have generators −2,−2,−2,−3,−3, and we were looking for
rank 5, so we are done.

Recall that EX(ϕ) = ker(R(2)⊕6 → R(10), where the map is given by (S8, S8, S4T 4, S4T 4, T 8, T 8).
For n = −2, HR(2)6 = 6, HR(10 = 9, and HEX

= 3, which gives the first three generators.
For n = −1, HR(2)6 = 12, HR(10 = 10, HEX

= 6. For n = 0, HR(10 = 18, HR(10 = 11, and
HEX

= 9. For n = 1, the map is surjective, so HR(2)6 = 24, HR(10) = 12, and HEX
= 12. For

n = 2, HR(2)6 = 30, HR(10 = 13, and HEX
= 17, giving two more generators.

10 Tenth Lecture, 6/18

Lemma. (Exercise 33) Let R = K [S, T ]. The kernel of a map of graded free modules is
graded free.

Proof. Say we have a map ϕ : M → N of graded free modules such that ϕ(Mn) ⊂ Nn. Set
L = kerϕ =

⊕
ker(Mn → Nn). Consider multiplication by S, so we have a diagram

0

��

0

��

0

��
0 // L(1) //

·S
��

M(1) //

·S
��

N(1)

·S
��

0 // L //

��

M //

��

N

��
L/SL //

��

M/SM //

��

N/SN

��
0 0 0.

We claim that L/SL→ M/SM is still injective, which follows from the Snake Lemma. Set
R = R/SR ∼= K [T ]. Say M ∼=

⊕r
i=1R(ei). Then M/SM =

⊕r
i=1 R(ei) as an R-module.

We now claim that a submodule of a graded free R-module is a graded free R-module. Say
U lives in a graded free module, then argue using the following steps:

• U is finitely generated since R is Noetherian.

• We can pick a minimal generating set.

• If
∑
aiui = 0 with ai homogeneous and all degT (ai) > 0, then

∑
(ai/T )ui = 0 since U

has no T -torsion.

• Minimality of ui means that
∑
aiui = 0 implies degt(ai) > 0 for all i.

11



Thus we have that L/SL is a graded free R-module. Pick `1, ..., `r homogeneous such that
the images ¯̀

1, ..., ¯̀
r ∈ L/SL for a basis (equivalently a minimal generating set). To prove

the claim, we need to check that the generate and are linearly independent.

To see generation, note that R is Noetherian, so L is finitely generated, hence Ln = 0 for
n << 0. We show by induction on n that the `i span Ln. The base case is far to the left.
Suppose this is true for Ln−1. Pick x ∈ Ln. By the choice of `i, we can write x =

∑
ai`i+S ·x′

for some ai ∈ R homogeneous and some x′ ∈ Ln−1. By the induction hypothesis, x′ =
∑
ai`i,

proving the claim.

For linear independence, we argue just as in the proof of the second claim. �

Computing Splitting Types. Let ϕ : P1 → Pn be a rational curve of degree d. As
it stands, we know that Ω(ϕ) = (e1, ..., en) is the kernel of ϕ : R(−d)⊕n=1 → R, and the
Hilbert polynomial PΩ(ϕ)(t) = nt − d(n + 1) + n. We know that Ω(ϕ)t = 0 for t < d, and
that ei ≤ −d, hence e1 + ...+ en = −d(n+ 1). ei = −d for some i if and only if there exists
a relation

∑
aiGi = 0 with all ai ∈ K and not all zero.

If n = 2, we can plot the possible values (e1, e2). They lie on a line with negative slope
through (−3d,−3d), with neither coordinate greater than −d, which reveals that neither
coordinate can be less than −2d.

Computing the Hilbert Function. The straightforward way is to compute the matrix
of ϕ in degree t. Choose a basis for Rt, the monomials in S, T of degree t. Call SiT j = αij.
Choose a basis for (R(−d)⊕n)t = R⊕n+1

−d+t , the monomials of degree t − d for each copy. Call
SiT j in the k-th summand βijk. βijk maps to GkS

iT j.

Things We Want.

• A function that computes HΩ(ϕ)(t) using the matrix method.

• A function that uses HΩ(t), d, n, and spits out e1, ..., en.

• Find some curves on X.

• Relate the splitting types of Ω and EX .

11 Eleventh Lecture, 6/20

We are looking for either free or very free rational curves. A free curve is one for which the
splitting type of EX(ϕ) is nonnegative. A very free curve is one for which the splitting type
is strictly positive.

Proposition. (Mingmen Shen) If the Fermat hypersurface X has a rational normal curve
C, then C is very free on X.

Definition. A rational normal curve of degree m in Pn is a rational curve such that the
G0, ..., Gn are linearly independent over K; equivalently, they are a basis of K [S, T ]m.

12



Fact. Given n+3 points in Pn
K , there exists a unique rational normal curve passing through

them. This sounds difficult.

Difficulties. Curves for which multiple Gi are equal will almost surely not be free.

Relating Bundles. An element of Ω(ϕ) is a sextuple (A0, ..., A5) such that A0G0 + ... +
A5G5 = 0. An element of EX(ϕ) is a sextuple (B0, ..., B5) such that B0G

4
0 + ...+ B5G

4
5 = 0.

These are related since taking the fourth power is a ring map in characteristic 2. Thus for
ξ ∈ Ω(ϕ), deg(ξ4) = 4 deg ξ.

Example. Take ϕ : R2 → R(1) given by (S, T ). (T, S) is a generator of Ω(ϕ), so e1 = −1.
Similarly, (T 4, S4) generates EX(ϕ), so f4 = −4. This suggests that we have just multiplied
the splitting type by 4.

Background. We have looked mainly at P1,Pn, and hypersurfaces in projn. One could
also consider intersections of a bunch of hypersurfaces to obtain a general variety. There is
a notion of dimension which is roughly n minus the number of equations, counted properly.
Nonsingular curves of genus 0 are isomorphic to P1: conics, lines. Nonsingular curves of
genus 1 are elliptic curves, i.e. nonsingular cubics. Curves of genus ≥ 2 are all the rest.

Suppose K = Q or a number field, X a nonsingular curve over K. If g = 0, it can happen
that X(K) = ∅. After at worst a quadratic extension, XK

∼= P1
K , so X(K) is huge. If g = 1,

it can happen that X(K) is empty, but after some finite extension of K, we get that X(K)
is infinite (no bound on the degree of the necessary extension). For g ≥ 2, Gerd Faltings
proved Mordell’s conjecture: X(K) is always finite.

Varieties of dimension n split into n+2 classes similarly to the case of curves; the classification
is done according to κ ∈ {−∞, 0, 1, ..., n}, the Kodaira dimension. The Kodaira dimension
of Pn is always −∞. A very nice subclass of varieties of Kodaira dimension −∞ are the
rationally connected (RC) varieties.

Definition. A variety X over C is rationally connected if and only if for almost all
pairs (x, y) ∈ X(C), there exists a morphism ϕ : P1 → X with ϕ(0) = x and ϕ(∞) = y.
This analogous to the notion of a path-connected space in topology, but in many ways quite
different.

In some ways, this definition is really bad, since it gives no clear way to check this.

Theorem. Let K = C. X is RC if and only if there exists a very free rational curve on X.

A line in P2 is very free. A line on a quadric (in one of the pencils) is free, but not very free.
In characteristic p, we still have that the existence of a very free curve implies X is RC, but
the converse is false.

Definition. A morphism ϕ : P1 → X is called very free (resp. free) if and only if ϕ∗TX is
an ample vector bundle (resp. ϕ∗TX is globally generated).
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Hypersurfaces. Let Xe ⊂ Pn be a smooth hypersurface over any algebraically closed field.
Then κ(Xe) = −∞ if and only if e ≤ n. If char(K) = 0, then these are always rationally
connected. If char(K) = p, then these are always rationally chain connected (there is a chain
of rational curves connecting any pair of points).

“And maybe we get nothing, and that’s okay too, because that’s your typical research expe-
rience!” -Johan
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