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1 The Projective Plane

1.1 Exercise 2.

Proposition. Let k be a field. The projective plane P2
k defined as the space of lines in k3 is

an axiomatic projective plane.

Proof. Let π : k3 → P2
k be the quotient map. The preimage of a point under π is a line in

k3. Two distinct points in P2 determine two distinct lines in k3 whose span is a hyperplane,
which projects to a unique line in P2. Similarly, two distinct lines in P2 lift to a pair of
hyperplanes in k3 which intersect in a unique line, which projects to a unique point. Thus
P2
k satisfies the axioms of a projective plane. �

1.2 Exercise 3.

Proposition. Let k = Fq. P2
k contains q2 + q + 1 points.

Proof. We enumerate the points (x : y : z) ∈ P2
k in cases. First, suppose x 6= 0. Then fix

x = 1, so the coordinates y and z may vary freely in k, yielding q2 points. Now suppose x = 0
and y 6= 0. Fix y = 1 and let z vary over k, yielding q points. Finally, suppose x, y = 0, so
z 6= 0 by definition of P2. Then there is only one point under these conditions, so the total
number of points is q2 + q + 1. �

Remark. In general, Pn decomposes into pieces given by whether or not the first coordinate
is zero, which are isomorphic to kn and Pn−1. Repeated application of this decomposition
gives Pn = kn ∪ kn−1 ∪ ... ∪ k2 ∪ k ∪ {∞}, which has cardinality

n∑
i=0

qi.

Alternately, we can consider the effect of the group action, which partitions kn+1 \ {0} into
orbits, each of which has cardinality q− 1. Since |kn+1 \ {0} | = qn+1− 1, the quotient under
the action has (qn+1 − 1)/(q − 1) points; this value is of course equal to the enumerative
calculation.
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2 The Projective Line

2.1 Exercise 7.

The general case is done in the section on the projective plane.

3 Conics in P2

3.1 Exercise 10.

The conic C : x2 + y2 + z2 = 0 in P2
R has no points since the terms are positive definite and

(0 : 0 : 0) 6∈ P2
R.

4 Morphisms of Projective Space

4.1 Exercise 17a.

Proposition. Any degree two morphism ϕ : P1 → P2 maps onto either a line or a conic.

Beginning of Proof. Such a morphism is given by a relatively prime triple G0, G1, G2

of homogeneous quadratics in k [Y0, Y1]. If the morphism is into a line or conic, then it is
certainly onto since the Gi are nonconstant. To show that the morphism is into, we must
find a line L : F = 0 or a conic C : H = 0 such that F (G0, G1, G2) = 0 or H(G0, G1, G2) = 0;
in fact it suffices to find a conic, since any line squares to a reducible conic. We need aij ∈ K
not all zero such that ∑

i≤j

aijGiGj ≡ 0.

The terms are elements of a five-dimensional vector space of homogeneous polynomials of
degree 4, which has basis S4, S3T, ..., T 4. There are six polynomials in the sum, hence there
is a nontrivial linear dependence. �

5 Cubics in P2

5.1 Exercise 18.

We can trivially get C(K) ⊂ C ′(K) if C(K) is empty, so recall Exercise 10, in which we saw
that for C : x2+y2+z2 = 0, C(R) is empty. If C ′ : x2−y2+z2, then clearly C(R) = ∅ ⊂ C ′(R),
but C 6⊂ C ′ since x2 − y2 + z2 6∈ (x2 + y2 + z2) ⊂ R [x, y, z].

5.2 Exercise 20.

I’ve done a fair bit of random calculation trying to obtain such an intersection over a finite
field, but it’s hard enough getting four points on a conic at all. Over the complex numbers it
should not be a problem; two conics intersecting transversely (so with multiplicity 1 at each
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intersection point, if I recall correctly) over an algebraically closed field have four intersection
points. Let C : F = 0 and C ′ : F ′ = 0, where F = 2x2 + y2 + z2 and F ′ = x2 + 2y2 + 3z2.
These most likely work, although it is too late to do intersection calculations.
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