Exercises

Tabes Bridges

Summer 2012

1 The Projective Plane

1.1 Exercise 2.

Proposition. Let k be a field. The projective plane \mathbb{P}_{k}^{2} defined as the space of lines in k^{3} is an axiomatic projective plane.

Proof. Let $\pi: k^{3} \rightarrow \mathbb{P}_{k}^{2}$ be the quotient map. The preimage of a point under π is a line in k^{3}. Two distinct points in \mathbb{P}^{2} determine two distinct lines in k^{3} whose span is a hyperplane, which projects to a unique line in \mathbb{P}^{2}. Similarly, two distinct lines in \mathbb{P}^{2} lift to a pair of hyperplanes in k^{3} which intersect in a unique line, which projects to a unique point. Thus \mathbb{P}_{k}^{2} satisfies the axioms of a projective plane.

1.2 Exercise 3.

Proposition. Let $k=\mathbb{F}_{q} . \mathbb{P}_{k}^{2}$ contains $q^{2}+q+1$ points.
Proof. We enumerate the points $(x: y: z) \in \mathbb{P}_{k}^{2}$ in cases. First, suppose $x \neq 0$. Then fix $x=1$, so the coordinates y and z may vary freely in k, yielding q^{2} points. Now suppose $x=0$ and $y \neq 0$. Fix $y=1$ and let z vary over k, yielding q points. Finally, suppose $x, y=0$, so $z \neq 0$ by definition of \mathbb{P}^{2}. Then there is only one point under these conditions, so the total number of points is $q^{2}+q+1$.
Remark. In general, \mathbb{P}^{n} decomposes into pieces given by whether or not the first coordinate is zero, which are isomorphic to k^{n} and \mathbb{P}^{n-1}. Repeated application of this decomposition gives $\mathbb{P}^{n}=k^{n} \cup k^{n-1} \cup \ldots \cup k^{2} \cup k \cup\{\infty\}$, which has cardinality

$$
\sum_{i=0}^{n} q^{i}
$$

Alternately, we can consider the effect of the group action, which partitions $k^{n+1} \backslash\{0\}$ into orbits, each of which has cardinality $q-1$. Since $\left|k^{n+1} \backslash\{0\}\right|=q^{n+1}-1$, the quotient under the action has $\left(q^{n+1}-1\right) /(q-1)$ points; this value is of course equal to the enumerative calculation.

2 The Projective Line

2.1 Exercise 7.

The general case is done in the section on the projective plane.

3 Conics in \mathbb{P}^{2}

3.1 Exercise 10.

The conic $C: x^{2}+y^{2}+z^{2}=0$ in $\mathbb{P}_{\mathbb{R}}^{2}$ has no points since the terms are positive definite and $(0: 0: 0) \notin \mathbb{P}_{\mathbb{R}}^{2}$.

4 Morphisms of Projective Space

4.1 Exercise 17a.

Proposition. Any degree two morphism $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ maps onto either a line or a conic.
Beginning of Proof. Such a morphism is given by a relatively prime triple G_{0}, G_{1}, G_{2} of homogeneous quadratics in $k\left[Y_{0}, Y_{1}\right]$. If the morphism is into a line or conic, then it is certainly onto since the G_{i} are nonconstant. To show that the morphism is into, we must find a line $L: F=0$ or a conic $C: H=0$ such that $F\left(G_{0}, G_{1}, G_{2}\right)=0$ or $H\left(G_{0}, G_{1}, G_{2}\right)=0$; in fact it suffices to find a conic, since any line squares to a reducible conic. We need $a_{i j} \in K$ not all zero such that

$$
\sum_{i \leq j} a_{i j} G_{i} G_{j} \equiv 0
$$

The terms are elements of a five-dimensional vector space of homogeneous polynomials of degree 4 , which has basis $S^{4}, S^{3} T, \ldots, T^{4}$. There are six polynomials in the sum, hence there is a nontrivial linear dependence.

5 Cubics in \mathbb{P}^{2}

5.1 Exercise 18.

We can trivially get $C(K) \subset C^{\prime}(K)$ if $C(K)$ is empty, so recall Exercise 10, in which we saw that for $C: x^{2}+y^{2}+z^{2}=0, C(\mathbb{R})$ is empty. If $C^{\prime}: x^{2}-y^{2}+z^{2}$, then clearly $C(\mathbb{R})=\emptyset \subset C^{\prime}(\mathbb{R})$, but $C \not \subset C^{\prime}$ since $x^{2}-y^{2}+z^{2} \notin\left(x^{2}+y^{2}+z^{2}\right) \subset \mathbb{R}[x, y, z]$.

5.2 Exercise 20.

I've done a fair bit of random calculation trying to obtain such an intersection over a finite field, but it's hard enough getting four points on a conic at all. Over the complex numbers it should not be a problem; two conics intersecting transversely (so with multiplicity 1 at each
intersection point, if I recall correctly) over an algebraically closed field have four intersection points. Let $C: F=0$ and $C^{\prime}: F^{\prime}=0$, where $F=2 x^{2}+y^{2}+z^{2}$ and $F^{\prime}=x^{2}+2 y^{2}+3 z^{2}$. These most likely work, although it is too late to do intersection calculations.

