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1. Introduction

Any smooth projective Fano variety in characteristic zero is rationally connected
and hence contains a very free rational curve. In positive characteristic a smooth
projective Fano variety is rationally chain connected. However, it is not known
whether such varieties are separably rationally connected, or equivalently, whether
they have a very free rational curve. This is an open question even for nonsingular
Fano hypersurfaces. See [Kol96] as well as [Deb01].

In this paper we consider the degree 5 Fermat hypersurface

X : X5
0 + X5

1 + X5
2 + X5

3 + X5
4 + X5

5 = 0

in P5 over an algebraically closed field k of characteristic 2. Note that X is a
nonsingular projective Fano variety.

Theorem 1.1. Any free rational curve ϕ : P1 → X has degree ≥ 8 and there exists
a free rational curve of degree 8. Any very free rational curve ϕ : P1 → X has
degree ≥ 9 and there exists a very free rational curve of degree 9.

This result, although perhaps expected, is interesting for several reasons. First, it is
known that X is unirational, see [Deb01, Page 52] (the corresponding rational map
P4 99K X is inseparable). Second, in [Bea90], it is shown that every nonsingular
hyperplane section of X is isomorphic to a Fermat hypersurface of dimension 3
and this property characterizes Fermat hypersurfaces among all hypersurfaces of
degree 5 in characteristic 2. We believe that these facts single out the Fermat as a
likely candidate for a counter example to the conjecture below; instead our theorem
shows that they are evidence for it.

Conjecture 1.2. Nonsingular Fano hypersurfaces have very free rational curves.

A little bit about the method of proof. In Section 2 we translate the geometric
question into an algebraic question which is computationally more accessible. In
Sections 3, 4, and 5 we exclude low degree solutions by theoretical methods. Finally,
in Sections 6 and 7 we explicitly describe some curves which are free and very free
in degrees 8 and 9 respectively.

Results in this paper were obtained during an REU at Columbia University led by A.J. de
Jong in the summer of 2012.

1



2. The overall setup

In the rest of this paper k will be an algebraically closed field of characteristic 2
and X will be the Fermat hypersurface of degree 5 over k. Let ϕ : P1 → X be a
nonconstant morphism. We will repeatedly use that every vector bundle on P1 is a
direct sum of line bundles, see [Gro57]. Thus we can choose a splitting

ϕ∗TX = OP1(a1)⊕OP1(a2)⊕OP1(a3)⊕OP1(a4).

Recall that ϕ is said to be a free curve on X if ai ≥ 0 and ϕ is said to be very free
if ai > 0. Consider the following commutative diagram

(2.0.1)

0

��

0

��
OX

��

OX

��
0 // EX

��

// OX(1)⊕6

��

// OX(5) // 0

0 // TX
//

��

TP5 |X //

��

NX/P5 // 0

0 0

with exact rows and columns as indicated. We will call EX the extended tangent
bundle of X. The left vertical exact sequence determines a short exact sequence

0→ OP1 → ϕ∗EX → ϕ∗TX → 0.

The splitting type of ϕ∗EX will consistently be denoted (f1, f2, f3, f4, f5) in this
paper. Since HomP1(OP1(f),OP1(a)) = 0 if f > a we conclude that

(1) If fi ≥ 0 for all i, then ϕ is free.
(2) If fi > 0 for all i, then ϕ is very free.

For the converse, note that the map OP1 → ϕ∗EX has image contained in the direct
sum of the summands with fi ≥ 0. Hence, if fi < 0 for some i, then ϕ is not free.
Finally, suppose that fi ≥ 0 for all i. If there are at least two fi equal to 0, then
we see that ϕ is free but not very free. We conclude that

(3) If ϕ is free, then fi ≥ 0 for all i.
(4) If ϕ is very free, then either (a) fi > 0 for all i, or (b) exactly one fi = 0

and all others > 0.

We do not know if (4)(b) occurs.

Translation into algebra. Here we work over the graded k-algebra R = k[S, T ].
As usual, we let R(e) be the graded free R-module whose underlying module is R
with grading given by R(e)n = Re+n. A graded free R-module will be any graded R-
module isomorphic to a finite direct sum of R(e)’s. Such a module M has a splitting
type, namely the sequence of integers u1, . . . , ur such that M ∼= R(u1)⊕ . . .⊕R(ur).

We will think of a degree d morphism ϕ : P1 → P5 as a 6-tuple (G0, . . . , G5) of
homogeneous elements in R of degree d with no common factors. Then ϕ is a
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morphism into X if and only if G5
0 + . . . + G5

5 = 0. In this situation we define two
graded R-modules. The first is called the pullback of the cotangent bundle

ΩX(ϕ) = Ker(ϕ̃ : R⊕6(−d) −→ R)

where the map ϕ̃ is given by (A0, . . . , A5) 7→
∑

AiGi. The second is called the the
pullback of the extended tangent bundle

EX(ϕ) = Ker(R⊕6(d) −→ R(5d))

where the map is given by (A0, . . . , A5) 7→
∑

AiG
4
i . Since the kernel of a map

of graded free R-modules is a graded free R-module, both ΩX(ϕ) and EX(ϕ) are
themselves graded free R-modules of rank 5.

Lemma 2.1. The splitting type of ϕ∗EX is equal to the splitting type of the R-
module EX(ϕ).

Proof. Recall that P1 = Proj(R). Thus, a finitely generated graded R-module
corresponds to a coherent sheaf on P1, see [Har77, Proposition 5.11]. Under this
correspondence, the module R(e) corresponds to OP1(e). The lemma follows if
we show that ϕ∗EX is the coherent sheaf associated to EX(ϕ). Diagram (2.0.1)
shows that ϕ∗EX is the kernel of a map OP1(d)⊕6 → OP1 given by substituting
(G0, . . . , G5) into the partial derivatives of the polynomial defining X. Since the
equation is X5

0 + . . . + X5
5 , the derivatives are X4

i , and substituting we obtain G4
i

as desired. �

3. Relating the Splitting Types

Observe that ΩX(ϕ) is also a graded free module of rank 5 and so has a splitting
type, which we denote using e1, . . . , e5. In this section, we relate the splitting type
of ΩX(ϕ) to the splitting type of EX(ϕ).

If (A0, . . . , A5) ∈ ΩX(ϕ), then A0G0 + · · ·+ A5G5 = 0 so that

A4
0G

4
0 + · · ·+ A4

5G
4
5 = 0

by the Frobenius endomorphism in characteristic 2. Let

T = {(A4
0, . . . , A

4
5) | (A0, . . . , A5) ∈ ΩX(ϕ)}

in EX(ϕ). We denote the R-module generated by T as R〈T 〉.

Lemma 3.1. In the notation above, EX(ϕ) = R〈T 〉.

Proof. Let (B0, . . . , B5) be an element of EX(ϕ) where Bi is a homogeneous poly-
nomial of degree b. We consider the case b ≡ 0 mod 4.

Observe that we can rewrite each monomial term of Bi as (c1/4S`T k)4SiT 4−i or
(c1/4S`T k)4 for some integers `, k, where c ∈ k and 0 < i < 4. After collecting
terms and applying the Frobenius endomorphism, we obtain

Bi = a4
i1 + a4

i2S
3T + a4

i3S
2T 2 + a4

i4ST
3

where each aij is an element of R. Then, since B0G
4
0 + · · ·+B5G

4
5 = 0, substituting

our expression for the Bi’s and applying Frobenius we obtain

(

5∑
i=0

ai1Gi)
4 + (

5∑
i=0

ai2Gi)
4S3T + (

5∑
i=0

ai3Gi)
4S2T 2 + (

5∑
i=0

ai4Gi)
4ST 3 = 0
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The sums
∑5

i=0 aijGi are each themselves homogeneous polynomials. But since the

degree of T in each term above is distinct modulo 4, the equation
∑5

i=0 aijGi = 0
implies that (a0j , . . . , a5j) ∈ ΩX(ϕ), so that (a4

0j , . . . , a
4
5j) ∈ T for 1 ≤ j ≤ 4.

Hence, every homogeneous element of EX(ϕ) is contained in the submodule gener-
ated by T . Since the reverse containment is trivial, it follows that EX(ϕ) = R〈T 〉.
The cases for b ≡ 1, 2, 3 mod 4 follow similarly. �

Proposition 3.2. If xi = (xi0, . . . , xi5) for 1 ≤ i ≤ 5 form a basis for ΩX(ϕ), then
yi = (x4

i0, . . . , x
4
i5) for 1 ≤ i ≤ 5 form a basis for EX(ϕ).

Proof. If xi ∈ ΩX(ϕ), then yi ∈ T and every element of T is an R-linear combina-
tion of the yi’s. Since EX(ϕ) = R〈T 〉, every element of EX(ϕ) is also an R-linear
combination of the yi’s so that the yi’s generate EX(ϕ). Moreover, EX(ϕ) is a
free module of rank 5 over a domain, so the generators yi for EX(ϕ) must also be
linearly independent and hence form a basis. �

Accounting for twist, a simple computation using the results above gives us the
following.

Corollary 3.3. If fi denotes the splitting type of EX(ϕ) and ei denotes the splitting
type of ΩX(ϕ), then for a degree d morphism, fi = 4ei + 5d.

4. Numerology

We now utilize some facts about graded free modules in order to give constraints
on potential splitting types. Given a graded free module

M = R(u1)⊕ ...⊕R(ur)

one can observe that the Hilbert polynomial HM is given by

HM (m) = rm + u1 + ... + ur + r.

Let ϕ denote a free morphism into X. Noting that the map ϕ̃ : R(−d)⊕n+1
m −→ Rm

is surjective for m� 0, we obtain

HΩ(ϕ)(m) = dimk

(
ker(R(−d)⊕n+1

m −→ Rm)
)

= (n + 1)(−d + m + 1)− (m + 1)

= nm +−d(n + 1) + n.

A similar calculation shows that,

HEX(ϕ)(m) = nm + d(n + 1− 5) + n

We continue to refer to the splitting type components of Ω(ϕ), respectively EX(ϕ)
as ei, respectively fi. In both cases n = r = 5, so combining these two equations
with the general form for the Hilbert polynomial of a graded free module, we obtain
our first constraints:

e1 + e2 + e3 + e4 + e5 = −6d(4.0.1)

f1 + f2 + f3 + f4 + f5 = d.(4.0.2)

Recall from Section 2 that a curve is free, respectively very free if fi ≥ 0, respectively
fi > 0 for each i. Since fi = 4ei + 5d, it follows that

ei ≥ −
5d

4
(4.0.3)
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where strict inequality implies the curve is very free. With these two bounds, we
can quickly observe a few facts about curves of different degrees.

Remark 4.1.

(1) There exist no free curves in degrees 1, 2, 3, 6, and 7.
(2) Any free curve of degree not divisible by 4 must be very free.
(3) There are no very free curves in degrees 4 or 8.
(4) The Ω(ϕ) splitting type of a degree 4 free curve must be (−5,−5,−5,−5,−4).
(5) The Ω(ϕ) splitting type of a degree 5 very free curve must be (−6,−6,−6,−6,−6).

All of these observation follow directly from the two constraints. For example, in
degree 6, e1 + e2 + e3 + e4 + e5 = −6d = −36. However, each ei ≥ −30

4 = −7.5. So
even if each ei is at best −7, the ei cannot sum to −36.

The rest of the remarks follow in a similar manner. Note that one can glean even
more information about these curves from the constraints, but the remarks listed
above are sufficient for our purposes.

5. Degree 4 and 5 morphisms into X

We will now show that there are no free morphisms of degrees 4 or 5 into X. A

morphism ϕ = (G0, ..., G5), where each Gi =
∑d

j=0 aijS
d−jT j is a homogeneous

polynomials of degree d, gives us a 6 × (d + 1) matrix (aij). We will denote this
matrix as Mϕ.

Lemma 5.1. If ϕ is a degree 4 or 5 free morphism into X, then Mϕ has maximal
rank.

Proof. This follows from Remark 4.1 (4) and (5) by observing that for a degree
d morphism into X, the transpose of Mϕ is the matrix of the k-linear map ϕ̃d :
(R(−d)⊕6)d → Rd. �

Lemma 5.2.

(a) There are no degree 4 free morphisms into X.
(b) There are no degree 5 free morphisms into X.

Proof. (a) Assume a degree 4 free morphism ϕ = (G0, ..., G5) exists. By the pre-
vious lemma, the 6 × 5 matrix Mϕ = (aij) has maximal rank. Since permuting
the G′is does not affect the splitting type of EX(ϕ), we can assume that the first 5
rows of Mϕ are linearly independent over k. Then det((aij)i≤4) 6= 0. Now consider

the matrix Mϕ = (a4
ij). By the Frobenius endomorphism on k, det((a4

ij)i≤4) =

det((aij)i≤4))4 6= 0, proving that Mϕ has maximal rank as well.

Since G5
0 + ... + G5

5 = 0, computing the coefficients of G5
0 + ... + G5

5, we obtain for
0 ≤ j ≤ 4

(5.2.1)
∑5

i=0
a4
ijai1 = 0 and

∑5

i=0
a4
ijai3 = 0.

The kernel of the map k6 → k5 given by right multiplication by the matrix Mϕ has

dimension 1 because rank
(
Mϕ

)
= 5. By (5.2.1), (a01, a11, ..., a51), (a03, a13, ..., a53)

∈ ker(k6 → k5), and since these 6-tuples are columns of Mϕ, they are linearly
independent over k. Then dimk

(
ker(k6 → k5)

)
≥ 2, a contradiction.
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(b) Assume ϕ = (G0, ..., G5) is a degree 5 free morphism. By the previous lemma,
the matrix Mϕ = (aij) has maximal rank, and is invertible. Thus Mϕ = (a4

ij) is

invertible by the same argument above. Since G5
0 + ... + G5

5 = 0, computing the

coefficients of the polynomial G5
0 + · · ·+ G5

5, we get
∑5

i=0 a
4
ijai2 = 0 for 0 ≤ j ≤ 5.

Thus, the product of the row matrix (a02, a12, ..., a52) and the matrix Mϕ is 0,

which is impossible because (a02, a12, ..., a52) 6= 0 and Mϕ is invertible. �

6. Computations for the degree 8 free curve

Let ϕ : P1 → P5 be a morphism given by the 6-tuple

G0 = S7T

G1 = S4T 4 + S3T 5

G2 = S4T 4 + S3T 5 + T 8

G3 = S7T + S6T 2 + S5T 3 + S4T 4 + S3T 5

G4 = S8 + S7T + S6T 2 + S5T 3 + S4T 4 + S3T 5 + T 8

G5 = S8 + S7T + S6T 2 + S5T 3 + S4T 4 + S3T 5 + S2T 6 + ST 7.

One can check by computer or by hand that this curve lies on the Fermat hyper-
surface X ⊂ P5.

Due to twisting, the domain of the map ϕ̃ : R(−8)⊕6 → R has its first nontrivial
graded piece in dimension 8. The Gi are linearly independent over k, hence the
kernel is trivial in dimension 8. The matrix for the map ϕ̃9 : R(−8)⊕6

9 → R9 is

0 0 0 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 1 1 1 1
0 1 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 1 0 1 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 1 0 0


where each direct summand of the domain has a basis {(S, 0), (0, T )}, of which we
take six copies (for total dimension 12), and the range has basis given by the degree
9 monomials in S and T , ordered by increasing T -degree (for total dimension 10).
This matrix has rank 10, which means that the map in degree 9 is surjective. By
rank-nullity, two dimensions of the kernel live in degree 9; denote the generators
by x1, x2. Surjectivity of ϕ̃ in degree 9 implies surjectivity in all higher degrees. A
second application of rank-nullity gives dimk Ω(ϕ)10 = 7. Four of the generators
are inherited from the previous degree, taking the forms

x1S, x2S, x1T, x2T.

We conclude that there are three additional generators in degree 10. Therefore, the
splitting type of ΩX(ϕ) is e1, ..., e5 = −10,−10,−10,−9,−9, which translates to a
splitting type for EX(ϕ) of f1, ..., f5 = 0, 0, 0, 4, 4, hence the curve is free.
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7. A Very Free Rational Curve of Degree 9

We conclude by giving an example of a degree 9 very free curve lying on X. Let
ϕ : P1 → P5 be a morphism into the Fermat hypersurface given by the 6-tuple

G0 = S4T 5

G1 = S9 + S8T + S5T 4

G2 = S9 + S4T 5 + ST 8

G3 = S9 + S8T + S4T 5 + S3T 6 + S2T 7 + ST 8

G4 = S9 + S5T 4 + S3T 6 + S2T 7 + ST 8 + T 9

G5 = S7T 2 + S6T 3 + S5T 4 + S3T 6 + S2T 7 + ST 8 + T 9.

Let e1, ..., e5 again denote the splitting type of ΩX(ϕ). As in Section 6, we know
that ei ≤ −9. Since the Gi are linearly independent over k, dimk(ΩX(ϕ)9) = 0.

Next we claim that ϕ̃10 : R
⊕

6
1 → R10 is surjective. In fact, it can be checked that

the ϕ̃(bi) span R10, where the bi are distinct basis elements of R
⊕

6
1 . It follows that

ϕ̃n : R(−9)
⊕

6
n → Rn is surjective for n ≥ 10. Hence,

dimk(ΩX(ϕ)10) = dimk(R
⊕

6
1 )− dimk(R10) = 1

dimk(ΩX(ϕ)11) = dimk(R
⊕

6
2 )− dimk(R11) = 6.

After reordering, this yields (e1, ..., e5) = (−11,−11,−11,−11,−10), which corre-
sponds to the splitting type (1, 1, 1, 1, 5) of EX(ϕ), showing that ϕ is very free.
This completes the proof of Theorem 1.1.
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