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1. INTRODUCTION

Any smooth projective Fano variety in characteristic zero is rationally connected
and hence contains a very free rational curve. In positive characteristic a smooth
projective Fano variety is rationally chain connected. However, it is not known
whether such varieties are separably rationally connected, or equivalently, whether
they have a very free rational curve. This is an open question even for nonsingular
Fano hypersurfaces. See [Kol96] as well as [Deb01].

In this paper we consider the degree 5 Fermat hypersurface
X @ X0+XP+ X3+ XS+ X+X2=0

in P5 over an algebraically closed field k of characteristic 2. Note that X is a
nonsingular projective Fano variety.

Theorem 1.1. Any free rational curve ¢ : P! — X has degree > 8 and there exists
a free rational curve of degree 8. Any very free rational curve o : P! — X has
degree > 9 and there exists a very free rational curve of degree 9.

This result, although perhaps expected, is interesting for several reasons. First, it is
known that X is unirational, see [Deb01, Page 52] (the corresponding rational map
P* --» X is inseparable). Second, in [Bea90], it is shown that every nonsingular
hyperplane section of X is isomorphic to a Fermat hypersurface of dimension 3
and this property characterizes Fermat hypersurfaces among all hypersurfaces of
degree 5 in characteristic 2. We believe that these facts single out the Fermat as a
likely candidate for a counter example to the conjecture below; instead our theorem
shows that they are evidence for it.

Conjecture 1.2. Nonsingular Fano hypersurfaces have very free rational curves.

A little bit about the method of proof. In Section 2 we translate the geometric
question into an algebraic question which is computationally more accessible. In
Sections 3, 4, and 5 we exclude low degree solutions by theoretical methods. Finally,
in Sections 6 and 7 we explicitly describe some curves which are free and very free
in degrees 8 and 9 respectively.

Results in this paper were obtained during an REU at Columbia University led by A.J. de
Jong in the summer of 2012.
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2. THE OVERALL SETUP

In the rest of this paper k& will be an algebraically closed field of characteristic 2
and X will be the Fermat hypersurface of degree 5 over k. Let ¢ : P! — X be a
nonconstant morphism. We will repeatedly use that every vector bundle on P! is a
direct sum of line bundles, see [Gro57]. Thus we can choose a splitting

QQ*TX = Opl (al) D O]pl (az) (&) O[pl (ag) (&) Opl (04).

Recall that ¢ is said to be a free curve on X if a; > 0 and ¢ is said to be very free
if a; > 0. Consider the following commutative diagram

0 0
Ox ———=0x
(2.0.1) 0— > Ex — > Ox(1)%° Ox(5) 0
0 Tx Tps | x Nx ps 0
0 0

with exact rows and columns as indicated. We will call Ex the extended tangent
bundle of X. The left vertical exact sequence determines a short exact sequence

0= Op — o*"Ex — "Tx — 0.

The splitting type of ¢*Ex will consistently be denoted (f1, fa, f3, f4, f5) in this
paper. Since Homp: (Op:1 (f), Op1(a)) = 0 if f > a we conclude that

(1) If f; > 0 for all 4, then ¢ is free.

(2) If f; > 0 for all ¢, then ¢ is very free.

For the converse, note that the map Op: — ¢* Ex has image contained in the direct
sum of the summands with f; > 0. Hence, if f; < 0 for some 4, then ¢ is not free.
Finally, suppose that f; > 0 for all 4. If there are at least two f; equal to 0, then
we see that ¢ is free but not very free. We conclude that

(3) If ¢ is free, then f; > 0 for all i.
(4) If ¢ is very free, then either (a) f; > 0 for all 4, or (b) exactly one f; =0
and all others > 0.

We do not know if (4)(b) occurs.

Translation into algebra. Here we work over the graded k-algebra R = k[S,T].
As usual, we let R(e) be the graded free R-module whose underlying module is R
with grading given by R(e),, = Reqn- A graded free R-module will be any graded R-
module isomorphic to a finite direct sum of R(e)’s. Such a module M has a splitting
type, namely the sequence of integers uy, ..., u, such that M = R(u1)®...® R(u,).

We will think of a degree d morphism ¢ : P! — P5 as a 6-tuple (Gy,...,G5) of
homogeneous elements in R of degree d with no common factors. Then ¢ is a
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morphism into X if and only if G§ + ...+ G2 = 0. In this situation we define two
graded R-modules. The first is called the pullback of the cotangent bundle

Qx(¢) = Ker(p : R®(—d) — R)
where the map ¢ is given by (Ag,...,As) — > A;G;. The second is called the the
pullback of the extended tangent bundle

Ex(p) = Ker(R®®(d) — R(5d))

where the map is given by (Ao,...,As) — >, A;G}. Since the kernel of a map
of graded free R-modules is a graded free R-module, both Qx(¢) and Ex(p) are
themselves graded free R-modules of rank 5.

Lemma 2.1. The splitting type of p*Ex is equal to the splitting type of the R-
module Ex ().

Proof. Recall that P! = Proj(R). Thus, a finitely generated graded R-module
corresponds to a coherent sheaf on P!, see [Har77, Proposition 5.11]. Under this
correspondence, the module R(e) corresponds to Opi(e). The lemma follows if
we show that ¢*Fx is the coherent sheaf associated to Ex(p). Diagram (2.0.1)
shows that ¢*Ex is the kernel of a map Op:(d)®% — Op: given by substituting
(Go,...,G5) into the partial derivatives of the polynomial defining X. Since the
equation is X3 + ... + X2, the derivatives are X}, and substituting we obtain G}
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as desired. 0

3. RELATING THE SPLITTING TYPES

Observe that Qx(¢) is also a graded free module of rank 5 and so has a splitting
type, which we denote using e, ..., es. In this section, we relate the splitting type
of Qx () to the splitting type of Ex ().

If (Ag,...,As) € Qx(¢), then AgGo + --- + A5G5 = 0 so that
AJGe+ -+ AGE =0
by the Frobenius endomorphism in characteristic 2. Let
T ={(A5,---,43) | (Ao, ..., 45) € Qx(p)}
in Ex (). We denote the R-module generated by 7 as R(T).
Lemma 3.1. In the notation above, Ex(p) = R(T).

Proof. Let (By,...,Bs) be an element of Ex () where B; is a homogeneous poly-
nomial of degree b. We consider the case b =0 mod 4.
Observe that we can rewrite each monomial term of B; as (c'/4S‘T*)S*T*~" or
(cY/2S*TF)* for some integers ¢, k, where ¢ € k and 0 < i < 4. After collecting
terms and applying the Frobenius endomorphism, we obtain

B; = a}, + a}S3T + a}38*T? + a}, ST?

where each a;; is an element of R. Then, since BoGg +-- ~—|—B5G%1 = 0, substituting
our expression for the B;’s and applying Frobenius we obtain

5 5 5 5
(Z ailGi)4 + (Z aigGi)453T + (Z ai3Gi)452T2 =+ (Z ai4Gi)4ST3 = 0
1=0 =0 1=0 =0
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The sums Z?:o a;;G; are each themselves homogeneous polynomials. But since the
degree of T' in each term above is distinct modulo 4, the equation E?:o a;;G; =0
implies that (agj, ..., as;) € Qx (@), so that (ag;,...,a5;) € T for 1 < j < 4.

Hence, every homogeneous element of E'x (y) is contained in the submodule gener-
ated by 7. Since the reverse containment is trivial, it follows that Ex () = R(T).
The cases for b =1,2,3 mod 4 follow similarly. O

Proposition 3.2. Ifx; = (zio,...,xi5) for 1 <i <5 form a basis for Qx (), then
yi = (zky, ..., o) for 1 <i <5 form a basis for Ex ().

Proof. If z; € Qx(p), then y; € T and every element of T is an R-linear combina-
tion of the y;’s. Since Ex () = R(T), every element of Ex () is also an R-linear
combination of the y;’s so that the y;’s generate Ex(¢). Moreover, Ex(p) is a
free module of rank 5 over a domain, so the generators y; for Fx(¢) must also be
linearly independent and hence form a basis. O

Accounting for twist, a simple computation using the results above gives us the
following.

Corollary 3.3. If f; denotes the splitting type of Ex(¢) and e; denotes the splitting
type of Qx (), then for a degree d morphism, f; = 4e; + 5d.

4. NUMEROLOGY
We now utilize some facts about graded free modules in order to give constraints
on potential splitting types. Given a graded free module
M=R(u1)® ... & R(u,)
one can observe that the Hilbert polynomial H,; is given by
Hy(m)=rm+u; + ... +u,. +r.

Let ¢ denote a free morphism into X. Noting that the map ¢ : R(—d)®"*! — R,,
is surjective for m > 0, we obtain

Ho(p)(m) = dimy, (ker(R(—d)E" — R,,))
=n+1)(-d+m+1)—(m+1)
=nm+ —d(n+ 1) +n.

A similar calculation shows that,
Hpg,(p)(m) =nm+d(n+1-5)+n

We continue to refer to the splitting type components of Q(y), respectively Ex (¢)
as e;, respectively f;. In both cases n = r = 5, so combining these two equations
with the general form for the Hilbert polynomial of a graded free module, we obtain
our first constraints:

(4.0.1) e1 +ez +ez+eq+es=—6d
(4.0.2) fitfotfat+fatfs=d.

Recall from Section 2 that a curve is free, respectively very free if f; > 0, respectively
fi > 0 for each 4. Since f; = 4e; 4+ 5d, it follows that

4.0.3 > 2
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where strict inequality implies the curve is very free. With these two bounds, we
can quickly observe a few facts about curves of different degrees.

Remark 4.1.

(1) There exist no free curves in degrees 1,2, 3,6, and 7.

(2) Any free curve of degree not divisible by 4 must be very free.

(3) There are no very free curves in degrees 4 or 8.

(4) The Q(¢) splitting type of a degree 4 free curve must be (=5, —5, =5, =5, —4).

(5) The Q(¢) splitting type of a degree 5 very free curve must be (—6, —6, —6, —6, —6).

All of these observation follow directly from the two constraints. For example, in
degree 6, e; +es + e3 + €4 + e5 = —6d = —36. However, each e; > %o = -7.5. So
even if each e; is at best —7, the e; cannot sum to —36.

The rest of the remarks follow in a similar manner. Note that one can glean even
more information about these curves from the constraints, but the remarks listed
above are sufficient for our purposes.

5. DEGREE 4 AND 5 MORPHISMS INTO X

We will now show that there are no free morphisms of degrees 4 or 5 into X. A
morphism ¢ = (G, ...,Gs), where each G; = Zj:o a;;S¥IT7 is a homogeneous
polynomials of degree d, gives us a 6 x (d 4+ 1) matrix (a;;). We will denote this

matrix as M.

Lemma 5.1. If ¢ is a degree 4 or 5 free morphism into X, then M, has mazimal
rank.

Proof. This follows from Remark 4.1 (4) and (5) by observing that for a degree
d morphism into X, the transpose of M, is the matrix of the k-linear map @q :
(R(—d)®6)d — Ry. O

Lemma 5.2.

(a) There are no degree 4 free morphisms into X.
(b) There are no degree 5 free morphisms into X.

Proof. (a) Assume a degree 4 free morphism ¢ = (Gp, ..., G5) exists. By the pre-
vious lemma, the 6 x 5 matrix M, = (a;;) has maximal rank. Since permuting
the G’s does not affect the splitting type of Ex (p), we can assume that the first 5
rows of M, are linearly independent over k. Then det((a;;)i<4) # 0. Now consider
the matrix M, = (aj;). By the Frobenius endomorphism on k, det((af;)i<a) =
det((aij)i<a))* # 0, proving that M, has maximal rank as well.

Since G + ... + G2 = 0, computing the coefficients of G + ... + G2, we obtain for
0<j<4

5 5
(5.2.1) Zi:o a?jaﬂ =0 and Zi:o afjaig, =0.
The kernel of the map k% — k° given by right multiplication by the matrix m has
dimension 1 because rank(ﬁy,) =5. By (5.2.1), (ao1, @11, ---, as1), (@03, @13, ---, a53)
€ ker(k® — k%), and since these 6-tuples are columns of M, they are linearly
independent over k. Then dimy, (ker(k® — k%)) > 2, a contradiction.
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(b) Assume ¢ = (G, ..., G5) is a degree 5 free morphism. By the previous lemma,
the matrix M, = (a;;) has maximal rank, and is invertible. Thus M, = (a;) is
invertible by the same argument above. Since G§ + ... + G2 = 0, computing the

coefficients of the polynomial G + - - - + G2, we get Z?:o afjaiQ =0for0<j<5.

Thus, the product of the row matrix (ag2, @12, ..., as2) and the matrix M, is 0,
which is impossible because (agz,a12, ..., as2) # 0 and M,, is invertible. O

6. COMPUTATIONS FOR THE DEGREE 8 FREE CURVE
Let ¢ : P! — P5 be a morphism given by the 6-tuple
Go=5"T
Gy = S'T* + S°T°
Gy = ST + P15 + 13
Gy = S™T + S°T? + S°T? 4 S4T* + S3T°
Gy=S%+S"T+ S°T% + S°T3 + S*T* + S3T° + T®
Gy = S%+ 87T + S°T? + S°T3 + S*T* + S*°T° + S*T° + ST”.
One can check by computer or by hand that this curve lies on the Fermat hyper-

surface X C P,

Due to twisting, the domain of the map ¢ : R(—8)®® — R has its first nontrivial
graded piece in dimension 8. The G; are linearly independent over k, hence the
kernel is trivial in dimension 8. The matrix for the map @g : R(—8)§° — Ry is

o
(an)
(an)
o
o
(an)
—
o

SO PR OOOO
_ O O =M= OOO
e e e e e =)

— O O

DO DD DODODO OO —=O
OO OO OO OO
DO R OO OO
(an)

(@)

_— OO R, OOOO
OO OO R M =
OO R R, PP EF~EO
— O O FH
OO = = e

[an}
(e}

where each direct summand of the domain has a basis {(S,0), (0,7}, of which we
take six copies (for total dimension 12), and the range has basis given by the degree
9 monomials in S and T, ordered by increasing T-degree (for total dimension 10).
This matrix has rank 10, which means that the map in degree 9 is surjective. By
rank-nullity, two dimensions of the kernel live in degree 9; denote the generators
by x1, 2. Surjectivity of @ in degree 9 implies surjectivity in all higher degrees. A
second application of rank-nullity gives dimy Q(¢)19 = 7. Four of the generators
are inherited from the previous degree, taking the forms

:1718, IQS, mlT, I’QT.
We conclude that there are three additional generators in degree 10. Therefore, the
splitting type of Qx () is eq,...,e5 = —10,—10, —10, —9, —9, which translates to a

splitting type for Ex(¢) of f1,..., fs =0,0,0,4,4, hence the curve is free.
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7. A VERY FREE RATIONAL CURVE OF DEGREE 9

We conclude by giving an example of a degree 9 very free curve lying on X. Let
¢ : P! — P° be a morphism into the Fermat hypersurface given by the 6-tuple

Go = S*T°

G1 =5+ ST + S°T1*

Gy =S+ 5T + ST®

Gy = S + S3T + S*T° + S37° + S*T7 + ST®

Gy =8+ 8°T* + ST + S*°T" + ST® + T°

Gs = S"T? + S°T® + S°T* + S3T° + ST + ST® + T°.
Let ey, ..., e5 again denote the splitting type of Qx(¢). As in Section 6, we know
that e; < —9. Since the G; are linearly independent over k, dimg(Qx(p)g) = 0.
Next we claim that ¢ig : R§B6 — Ry is surjective. In fact, it can be checked that

the ¢(b;) span Rig, where the b; are distinct basis elements of R?G. It follows that
B R(79)§?6 — R, is surjective for n > 10. Hence,

dimy (Qx () 10) = dimy(RP ®) — dimy (R1o) = 1
dimy (Qx (9)11) = dimy (RP®) — dimy (R11) = 6.

After reordering, this yields (eq,...,e5) = (—11,—11,—11, —11,—10), which corre-
sponds to the splitting type (1,1,1,1,5) of Ex(p), showing that ¢ is very free.
This completes the proof of Theorem 1.1.
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