Exercise 20: Find a pair of conics intersecting in exactly 4 points.

Proof: We will work over \mathbb{C}. Consider the conic C_F given by the homogeneous polynomial $F = YZ - X^2$. The affine part of this conic (i.e., when $Z = 1$) is just the parabola $Y = X^2$ (at least over \mathbb{R}). Consider the conic C_G given by the polynomial $G = (X+Y-Z)(-X+Y-Z) = (Y-Z)^2 - X^2$. The affine part of this conic are the two lines $X+Y-1 = 0$ and $-X+Y-1 = 0$. Note that the polynomials F and G have no common irreducible factors (F itself is irreducible over \mathbb{C}). So, in particular Bezout’s theorem applies, and the conics C_F and C_G have at most 4 intersection points counting with multiplicities.

In fact, the affine parts of these conics intersect at 4 distinct points over \mathbb{R}, the points of intersection being $\left(\frac{-1+\sqrt{5}}{2}, \left(\frac{-1+\sqrt{5}}{2}\right)^2\right)$, $\left(\frac{-1-\sqrt{5}}{2}, \left(\frac{-1-\sqrt{5}}{2}\right)^2\right)$, $\left(\frac{1-\sqrt{5}}{2}, \left(\frac{1-\sqrt{5}}{2}\right)^2\right)$, $\left(\frac{1+\sqrt{5}}{2}, \left(\frac{1+\sqrt{5}}{2}\right)^2\right)$. So, the conics intersect in \mathbb{P}^2, at the 4 distinct points $\left[\frac{-1+\sqrt{5}}{2} : \left(\frac{-1+\sqrt{5}}{2}\right)^2 : 1\right]$, $\left[\frac{-1-\sqrt{5}}{2} : \left(\frac{-1-\sqrt{5}}{2}\right)^2 : 1\right]$, $\left[\frac{1-\sqrt{5}}{2} : \left(\frac{1-\sqrt{5}}{2}\right)^2 : 1\right]$, $\left[\frac{1+\sqrt{5}}{2} : \left(\frac{1+\sqrt{5}}{2}\right)^2 : 1\right]$.
