EXERCISE 32

Given a graded free module M over $R = K[S, T]$ for a field K and the values of its Hilbert function H_M, we want to produce an algorithm that finds the splitting type of M.

Let $r, i = 0$, and take $n << 0$. As we’ve previously seen, taking $n << 0$ guarantees that $H_M(n) = 0$. Now iteratively let $r = r_{old} + H_M(n) - i_{old}$, $i = i_{old} + r_{old} + 2(H_M(n) - i_{old})$, and $n = n_{old} + 1$. In each iteration, add $H_M(n) - i_{old}$ elements equal to $-n$ to the collection of e_i, reordering the collection as needed.

As an example, consider what we did in class, where we began with $n = -3$:

$H_M(-3) = 0$, so $r = 0 + 0 - 0 = 0$ and $i = 0 + 0 + 0 = 0$.

$H_M(-2) = 1$, so $r = 0 + 1 - 0 = 1$ and $i = 0 + 0 + 2 = 2$ (Add 2 to $\{e_i\}$).

$H_M(-1) = 3$, so $r = 1 + 3 - 2 = 2$ and $i = 2 + 1 + 2 = 5$ (Add 1 to $\{e_i\}$).

$H_M(0) = 5$, so $r = 2 + 5 - 5 = 2$ and $i = 5 + 2 + 0 = 7$.

$H_M(1) = 7$, so $r = 2 + 7 - 7 = 2$ and $i = 7 + 2 + 0 = 9$.

$H_M(2) = 9$, so $r = 2 + 9 - 9 = 2$ and $i = 9 + 2 + 0 = 11$.

\cdots

Note that without more information, it is impossible to decide when this process should terminate. However, If we know the rank of M, we know to stop as soon as $r = \text{rank}(M)$. Since the Hilbert polynomial of M takes the form $rn + e_1 + \cdots + e_r + r$ where $r = \text{rank}(M)$, knowing its explicit form $an + b$ is enough to deduce that $\text{rank}(M) = a$ so this can also be useful. ■