
Intersection Theory

This is an old note on intersection theory written for a graduate student seminar in the Fall of 2007 organized
by Johan de Jong. In the summer of 2009 a new group of students led by Johan de Jong and Qi You reworked
this material which then because a chapter of the Stacks project. We strongly urge the reader to read this
online at

https://stacks.math.columbia.edu/tag/0AZ6

instead of reading the old material below. In particular, we do not vouch for the correctness of what follows.

Cycles. Let X be a nonsingular projective variety over an algebraically closed field C. A k-cycle on X is a
finite formal sum

∑
ni[Zi] where each Zi is a closed subvariety of dimension k.

Pushforward. Suppose that f : X → Y is a morphism of projective smooth varieties. Let Z ⊂ X be a
k-dimensional closed subvariety. We define f∗[Z] to be 0 if dim(f(Z)) < k and d · [f(Z)] if dim(f(Z)) = k
where d = [C(Z) : C(f(Z))]. Let α =

∑
ni[Zi] be a k-cycle on Y . The pushforward of α is the sum

f∗α =
∑
nif∗[Zi] where each f∗[Zi] is defined as above.

Cycle associated to closed subscheme. Suppose that X is a nonsingular projective variety and that
Z ⊂ X is a closed subscheme with dim(Z) ≤ k. Let Zi be the irreducible components of Z of dimension k
and let ni be the length of the local ring of Z at the generic point of Zi. We define the k-cycle associated to
Z to be the k-cycle [Z]k =

∑
ni[Zi].

Cycle associated to a coherent sheaf. Suppose that X is a nonsingular projective variety and that F
is a coherent OX -module on X with dim(Supp(F)) ≤ k. Let Zi be the irreducible components of Supp(F)
of dimension k and let ni be the length of the stalk of F at the generic point of Zi. We define the k-cycle
associated to F to be the k-cycle [F ]k =

∑
ni[Zi].

Note that, if dim(Z) ≤ k, then [Z]k = [OZ ]k.

Suppose that f : X → Y is a morphism of projective smooth varieties. Let Z ⊂ X be a k-dimensional closed
subvariety. It can be show that f∗[Z] = [f∗OZ ]k. See [Serre, Chapter V].

Flat pullback. Suppose that f : X → Y is a flat morphism of nonsingular projective varieties of relative
dimension r, in other words all fibres have dimension r. Let Z ⊂ X be a k-dimensional closed subvariety.
We define f∗[Z] to be the k+r-cycle associated to the scheme theoretic inverse image: f∗[Z] = [f−1(Z)]k+r.
Let α =

∑
ni[Zi] be a k-cycle on Y . The pullback of α is the sum f∗α =

∑
nif
∗[Zi] where each f∗[Zi] is

defined as above.

With this notation, we get that f∗[F ]k = [f∗F ]k+r if F is a coherent sheaf on Y and the dimension of the
support of F is at most k.

Intersection multiplicities using Tor formula. Suppose that X is a nonsingular projective variety and
that W,V ⊂ X are closed subvarieties with dim(W ) = s and dim(V ) = r. Assume that dim(W ∩ V ) ≤
r+s−dim(X). We say that W and V intersect properly if this holds. In this case the sheaves TorOX

j (OW ,OV )
are coherent, supported on V ∩W , and zero if j < 0 or j > dim(X). We define

W · V =
∑
i

(−1)i[TorOX
j (OW ,OV )]r+s−dim(X).

With this notation, the cycle V ·W is a formal linear combination
∑
eiZi of the irreducible components Zi

of the intersection V ∩W . The integers ei are called the intersection multiplicities: ei = e(X,V ·W,Zi).
They satisfy many good properties, see [Serre].

Computing intersection multiplicities. In the situation above, let Z = Zi be one of the irreducible
components. Let A is be the local ring of X at the generic point of Z. Suppose that the ideal of V in A
is cut out by a regular sequence x1, . . . , xc and suppose that the local ring of W at the generic point of Z
corresponds to the quotient map A→ B. In this case e(X,V ·W,Z) is equal to c! times the leading coefficient
in the Hilbert polynomial

t 7→ lengthA(B/(x1, . . . , xc)
tB), t >> 0.
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Consider the case that c = 1, i.e., V is a(n effective) Cartier divisor. Then x1 is a nonzero divisor on B by
properness of intersection of V and W . We easily deduce

e(X,V ·W,Z) = lengthA(B/x1B).

More generally, if the local ring B is Cohen-Macaulay, then we have

(∗) e(X,V ·W,Z) = lengthA(B/x1B + . . .+ xcB).

Intersection product using Tor formula. Suppose that X is a nonsingular projective variety. Suppose
α =

∑
ni[Wi] is an r-cycle, and β =

∑
j mj [Vj ] is an s-cycle on X. We say that α and β intersect properly

if Wi and Vj intersect properly for all i and j. In this case we define

α · β =
∑
i,j

nimjWi · Vj .

where Wi · Vj is as defined above using the Tor-formula.

Suppose F and G are coherent sheaves on X with dim(Supp(F)) ≤ s, dim(Supp(G)) ≤ r and dim(Supp(F)∩
Supp(G)) ≤ r + s− dimX. In this case

[F ]s · [G]r =
∑

(−1)i[TorOX
i (F ,G)]r+s−dimX .

See [Serre, Chapter V].

Exterior product. Let X and Y be nonsingular projective vareities. Let V , resp. W be a closed subvariety
of X, resp. Y . The product V × W is a closed subscheme of X × Y . It is a subvariety because the
ground field is algebraically closed. For a k-cycle α =

∑
ni[Vi] and a l-cycle β =

∑
mj [Vj ] on Y we define

α× β =
∑
nimj [Vi ×Wj ].

Consider the subvariety X ⊂ X with class [X]. Note that pr∗Y (β) = [X]× β. Note that α× [Y ] and [X]× β
intersect properly on X×Y . With the definitions above we have α×β = (α×[Y ])·([X]×β) = pr∗Y (α)·pr∗X(β).

Reduction to the diagonal. Let X be a nonsingular projective variety. Let ∆ ⊂ X × X denote the
diagonal. We will identify ∆ with X. Let α, resp. β be r-cycles, resp. s-cycles on X. Assume α and β
intersect properly. In this case α× β and [∆] intersect properly. Note that the cycle ∆ · α× β is supported
on the diagonal and hence we can think of it as a cycle on X. With this convention we have α ·β = ∆ ·α×β.
See [Serre, Chapter V].

Perhaps a less confusing formulation would be that pr1,∗(∆ · α× β) = α · β, where pr1 : X ×X → X is the
projection.

Flat pullback and intersection products. Suppose that f : X → Y is a flat morphism of nonsingular
projective varieties. Suppose that α is a k-cycle on Y and that β is a l-cycle on Y . Assume that α and β
intersect properly. Then f∗α and f∗β intersect properly and f∗(α · β) = f∗α · f∗β. This is not hard to see
from the material above.

Projection formula for flat maps. Let f : X → Y be a flat morphism of relative dimension r of
nonsingular projective varieties. Let α be an k-cycle on X and let β be a l-cycle on Y . Assume that
f∗(α) and β intersect properly, and that α and f∗(β) intersect properly. The projection formula says that
f∗(α) ·β = f∗(α ·f∗β) in this case. See [Serre, Chapter V, Section 7, formula (10)] for a more general formula.

We explain how to prove the projection formula in the flat case. Let W ⊂ X be a closed subvariety of
dimension k. Let V ⊂ Y be a closed subvariety of dimension l, so f−1(V ) has pure dimension l+ r. Assume
that W and [f−1(V )] intersect properly. Note that f(W ∩f−1(V )) = f(W )∩V . Hence it follows that f(W )
and V intersect properly as well. Let Z ⊂ f(W )∩V be an irreducible component of dimension k+ l−dimY .
Let Zi ⊂W ∩ f−1(V ) be the irreducible components of W ∩ f−1(V ) dominating Z. Let A be the local ring
of X at the generic point of Z. Let Ai be the local ring of Y at the generic point of Zi. Let B be the local
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ring of f(W ) at the generic point of Z. Let B′ be the stalk of f∗(OW ) at the generic point of Z. Then
B → B′ is finite, B′ is semi-local, and the localizations B′i of B′ are the local rings of W at the generic point
of the Zi. Thus they are quotients Ai → B′i. Let C be the local ring of V at the generic point of Z. The
multiplicity of Z in f∗([W ]) · V is by definition

(I) = [B′ : B]
∑

(−1)j lengthA(TorAj (B,C)).

Here [B′ : B] is the rank of the B-module B′. The multiplicity of Z in f∗(W · f∗[V ]) is by definition

(II) =
∑

i,j
(−1)j lengthAi

(TorAi
j (B′i, Ai ⊗A C))[κ(Ai) : κ(A)]

Here κ(−) indicates the residue field. The first thing is to note that lengthA(M) = [κ(Ai) : κ(A)]lengthAi
(M)

for a finite length Ai-module M . We can compute all the Tor groups by choosing a free resolution of C
as an A-module. Doing this it is easy to see that (I) equals

∑
(−1)j lengthA(TorAj (B′, C)). Finally, note

that, by definition, there is an A-module map B⊕[B
′:B] → B′ whose kernel and cokernel are supported in a

proper closed subset of Spec(B). From the additivity properties of the Tor-formula, see [Serre, Chapter V],
it follows that

∑
(−1)j lengthA(TorAj (B′, C)) = [B′ : B]

∑
(−1)j lengthA(TorAj (B,C)) as desired.

Rational Equivalence. Let X be a nonsingular projective variety. Let α =
∑
ni[Wi] be a (k+ 1)-cycle on

X×P1, and let a, b be two closed points of P1. Assume that X×a and α intersect properly, and that X× b
and α intersect properly. This will be the case if each Wi dominates P1 for example. Let prX : X×P1 → X
be the projection morphism. A cycle rationally equivalent to zero is any cycle of the form

prX,∗(α ·X × a− α ·X × b).

This is a k-cycle. Note that these cycles are easy to compute in practice (given α) because they are obtained
by proper intersection with Cartier divisors (see formula above). It is a fact that the collection of k-cycles
rationally equivalent to zero is a additive subgroup of the group of k-cycles. We say two k cycles are rationally
equivalent, notation α ∼rat α

′ if α− α′ is a cycle rationally equivalent to zero. See Chapter I of [Fulton].

Pushforward and rational equivalence. Suppose that f : X → Y is a morphism of projective smooth
varieties. Let α ∼rat 0 be a k-cycle on X rationally equivalent to 0. Then the pushforward of α is rationally
equivalent to zero: f∗α ∼rat 0. See Chapter I of [Fulton].

Pullback and rational equivalence. Suppose that f : X → Y is a flat morphism of relative dimension r
of projective smooth varieties. Let α ∼rat 0 be a k-cycle on Y rationally equivalent to 0. Then the pullback
of α is rationally equivalent to zero: f∗α ∼rat 0. See Chapter I of [Fulton].

Moving Lemma. The moving lemma states that given an r-cycle α and a s cycle β there exists α′, α′ ∼rat α
such that α and β intersect properly. See [Samuel], [Chevalley], or [Fulton, Example 11,4,1].

Intersection product and rational equivalence. With definitions as above we show that the intersection
product is well defined modulo rational equivalence. Let X be a nonsingular projective algebraic variety.
Let α, resp. β be a s, resp. r cycle on X. Assume that α and β intersect properly so that α · β is defined.
Finally, assume that α ∼rat 0. Goal: show that α · β ∼rat 0.

After some formal arguments this amounts to showing the following statement. Let W ⊂ X×P1 be a (s+1)-
dimensional subvariety dominating P1. Let Wa, resp. Wb be the fibre of W → P1 over a, resp. b. Let V be a
r-dimensional subvariety of X such that V intersects both Wa and Wb properly. Then V · [Wa] ∼rat V · [Wb].

In order to see this, note first that [Wa] = prX,∗(W ·X×a) and similar for [Wb]. Thus we reduce to showing

V · prX,∗(W ·X × a) ∼rat V · prX,∗(W ·X × b).

The projection formula – which may be applied – says V · prX,∗(W ·X × a) = prX,∗(V ×P1 · (W ·X × a)),
and similar for b. Thus we reduce to showing

prX,∗(V ×P1 · (W ·X × a)) ∼rat prX,∗(V ×P1 · (W ·X × b))
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Associativity for the intersection multiplicities (see [Serre, Chapter V]) implies that V · (W · X × a) =
(V ×P1 ·W ) ·X × a and similar for b. Thus we reduce to showing

prX,∗((V ×P1 ·W ) ·X × a) ∼rat prX,∗((V ×P1 ·W ) ·X × b)

which is true by definition of rational equivalence.

Upshot: Chow rings. Using the above, for any nonsingular projective X we set Ak(X) equal to the group
of k-cycles on X modulo rational equivalence. Since it is more convenient we also use Ac(X) = AdimX−c(X)
to denote the group of codimension c cycles modulo rational equivalence. The intersection product defines
a product

Ak(X)×Al(X) −→ Ak+l(X)

defined as follows: for a ∈ Ak(X) and b ∈ Al(X) we can find a codimension k cycle α representing α, a
codimension l cycle β representing b such that α and β intersect properly. We define a · b to be the rational
equivalence class of α · β. End result: A commutative and associative graded ring A∗(X) with unit 1 = [X].

Pullback for a general morphism. Let X and Y be nonsingular projective varieties, and let f : X → Y
be a morphism. We define

f∗ : Ak(Y )→ Ak+dimX−dimY (X)

by the rule
f∗(α) = prX,∗(Γf · pr∗Y (α))

where Γf ⊂ X × Y is the graph of f . Note that it is defined only on cycle classes and not on cylces. This
pullback satisfies:
(1) f∗ : A∗(Y )→ A∗(X) is a ring map,
(2) (f ◦ g)∗ = g∗ ◦ f∗ for a composable pair f, g,
(3) the projection formula holds: f∗(α) · β = f∗(α · f∗β), and
(4) if f is flat then it agrees with the previous definition.

All of these follow easily from the above. For (1) you have to show that prX,∗(Γf · α · β) = prX,∗(Γf · α) ·
prX,∗(Γf ·β). It is easy to see that if α intersects Γf properly, then Γf ·α = Γf · pr∗X(prX,∗(Γf ·α)) as cycles
because Γf is a graph. Thus we get

prX,∗(Γf · α · β) = prX,∗(Γf · pr∗X(prX,∗(Γf · α)) · β)

= prX,∗(pr
∗
X(prX,∗(Γf · α)) · (Γf · β))

= prX,∗(Γf · α) · prX,∗(Γf · β)

the last step by the projection formula in the flat case. Properties (2) and (3) are formal [for (3) use the flat
projection formula twice]. Property (4) rests on identifying the intersection product Γf · α in the case f is
flat.

Pullback of cycles. Suppose that X and Y be nonsingular projective varieties, and let f : X → Y be a
morphism. Suppose that Z ⊂ Y is a closed subvariety. Let f−1(Z) be the scheme theoretic inverse image:

f−1(Z) → Z
↓ ↓
X → Y

is a fibre product diagram of schemes. In particular f−1(Z) ⊂ X is a closed subscheme of X. In this case
we always have

dim f−1(Z) ≥ dimZ + dimX − dimY.

If equality holds in the formula above, then f∗[Z] = [f−1(Z)]dimZ+dimX−dimY provided that the scheme
Z is Cohen-Macaulay at the images of the generic points of f−1(Z). This follows by identifying f−1(Z)
with the scheme theoretic intersection of Γf and X × Z and using the computation (∗) of the intersection
multiplicities we gave above.
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