Intersection Theory

This is an old note on intersection theory written for a graduate student seminar in the Fall of 2007 organized by Johan de Jong. In the summer of 2009 a new group of students led by Johan de Jong and Qi You reworked this material which then became a chapter of the Stacks project. We strongly urge the reader to read this online at

https://stacks.math.columbia.edu/tag/0AZ6

instead of reading the old material below. In particular, we do not vouch for the correctness of what follows.

Cycles. Let X be a nonsingular projective variety over an algebraically closed field C. A k-cycle on X is a finite formal sum \(\sum n_i[Z_i] \) where each \(Z_i \) is a closed subvariety of dimension k.

Pushforward. Suppose that \(f : X \to Y \) is a morphism of projective smooth varieties. Let \(Z \subset X \) be a k-dimensional closed subvariety. We define \(f_\ast[Z] \) to be 0 if \(\dim(f(Z)) < k \) and \(d \cdot [f(Z)] \) if \(\dim(f(Z)) = k \) where \(d = [C(Z) : C(f(Z))] \). Let \(\alpha = \sum n_i[Z_i] \) be a k-cycle on Y. The pushforward of \(\alpha \) is the sum \(f_\ast\alpha = \sum n_i f_\ast[Z_i] \) where each \(f_\ast[Z_i] \) is defined as above.

Cycle associated to closed subscheme. Suppose that \(X \) is a nonsingular projective variety and \(Z \subset X \) is a closed subscheme with \(\dim(Z) \leq k \). Let \(Z_i \) be the irreducible components of \(Z \) of dimension k and let \(n_i \) be the length of the local ring of \(Z \) at the generic point of \(Z_i \). We define the k-cycle associated to \(Z \) to be the k-cycle \([Z]_k = \sum n_i[Z_i] \).

Cycle associated to a coherent sheaf. Suppose that \(X \) is a nonsingular projective variety and \(\mathcal{F} \) is a coherent \(\mathcal{O}_X \)-module on \(X \) with \(\dim(\text{Supp}(\mathcal{F})) \leq k \). Let \(Z_i \) be the irreducible components of \(\text{Supp}(\mathcal{F}) \) of dimension k and let \(n_i \) be the length of the stalk of \(\mathcal{F} \) at the generic point of \(Z_i \). We define the k-cycle associated to \(\mathcal{F} \) to be the k-cycle \([\mathcal{F}]_k = \sum n_i[Z_i] \).

Note that, if \(\dim(Z) \leq k \), then \([Z]_k = [\mathcal{O}_Z]_k \).

Suppose that \(f : X \to Y \) is a morphism of projective smooth varieties. Let \(Z \subset X \) be a k-dimensional closed subvariety. It can be shown that \(f_\ast[Z] = [f_\ast\mathcal{O}_Z]_k \). See [Serre, Chapter V].

Flat pullback. Suppose that \(f : X \to Y \) is a flat morphism of nonsingular projective varieties of relative dimension r, in other words all fibres have dimension r. Let \(Z \subset X \) be a k-dimensional closed subvariety. We define \(f^\ast[Z] \) to be the \(k+r \)-cycle associated to the scheme theoretic inverse image: \(f^\ast[Z] = [f^\ast(\mathcal{O}_Z)]_{k+r} \).

Let \(\alpha = \sum n_i[Z_i] \) be a k-cycle on Y. The pullback of \(\alpha \) is the sum \(f^\ast\alpha = \sum n_i f^\ast[Z_i] \) where each \(f^\ast[Z_i] \) is defined as above.

With this notation, we get that \(f^\ast[\mathcal{F}]_k = [f^\ast\mathcal{F}]_{k+r} \) if \(\mathcal{F} \) is a coherent sheaf on \(Y \) and the dimension of the support of \(\mathcal{F} \) is at most k.

Intersection multiplicities using Tor formula. Suppose that \(X \) is a nonsingular projective variety and that \(W, V \subset X \) are closed subvarieties with \(\dim(W) = s \) and \(\dim(V) = r \). Assume that \(\dim(W \cap V) \leq r+s-\dim(X) \). We say that \(W \) and \(V \) intersect properly if this holds. In this case the sheaves \(Tor_j^{\mathcal{O}_X}(\mathcal{O}_W, \mathcal{O}_V) \) are coherent, supported on \(V \cap W \), and zero if \(j < 0 \) or \(j > \dim(X) \). We define

\[
W \cdot V = \sum_i (-1)^i [Tor_j^{\mathcal{O}_X}(\mathcal{O}_W, \mathcal{O}_V)]_{r+s-\dim(X)}.
\]

With this notation, the cycle \(V \cdot W \) is a formal linear combination \(\sum e_i Z_i \) of the irreducible components \(Z_i \) of the intersection \(V \cap W \). The integers \(e_i \) are called the intersection multiplicities: \(e_i = e(X, V \cdot W, Z_i) \). They satisfy many good properties, see [Serre].

Computing intersection multiplicities. In the situation above, let \(Z = Z_i \) be one of the irreducible components. Let \(A \) be the local ring of \(X \) at the generic point of \(Z \). Suppose that the ideal of \(V \) in \(A \) is cut out by a regular sequence \(x_1, \ldots, x_c \) and suppose that the local ring of \(W \) at the generic point of \(Z \) corresponds to the quotient map \(A \to B \). In this case \(e(X, V \cdot W, Z) \) is equal to \(c! \) times the leading coefficient in the Hilbert polynomial

\[
t \mapsto \text{length}_A(B/(x_1, \ldots, x_c)^t B), \quad t \gg 0.
\]
Consider the case that $c = 1$, i.e., V is a(n effective) Cartier divisor. Then x_1 is a nonzero divisor on B by properness of intersection of V and W. We easily deduce
\[
e(X, V \cdot W, Z) = \text{length}_A(B/x_1 B).
\]

More generally, if the local ring B is Cohen-Macaulay, then we have
\[
e(X, V \cdot W, Z) = \text{length}_A(B/x_1 B + \ldots + x_C B).
\]

Intersection product using Tor formula. Suppose that X is a nonsingular projective variety. Suppose $\alpha = \sum n_i [W_i]$ is an r-cycle, and $\beta = \sum j m_j [V_j]$ is an s-cycle on X. We say that α and β **intersect properly** if W_i and V_j intersect properly for all i and j. In this case we define
\[
\alpha \cdot \beta = \sum_{i,j} n_i m_j W_i \cdot V_j,
\]
where $W_i \cdot V_j$ is as defined above using the Tor-formula.

Suppose \mathcal{F} and \mathcal{G} are coherent sheaves on X with $\dim(\text{Supp}(\mathcal{F})) \leq s$, $\dim(\text{Supp}(\mathcal{G})) \leq r$ and $\dim(\text{Supp}(\mathcal{F}) \cap \text{Supp}(\mathcal{G})) \leq r + s - \dim X$. In this case
\[
[\mathcal{F}]_s \cdot [\mathcal{G}]_r = \sum (-1)^i [\text{Tor}_i^O(\mathcal{F}, \mathcal{G})]_{r+s-\dim X}.
\]

See [Serre, Chapter V].

Exterior product. Let X and Y be nonsingular projective varieties. Let ν, resp. W be a closed subvariety of X, resp. Y. The product $V \times W$ is a closed subscheme of $X \times Y$. It is a subvariety because the ground field is algebraically closed. For a k-cycle $\alpha = \sum n_i [V_i]$ and a l-cycle $\beta = \sum m_j [V_j]$ on Y we define $\alpha \times \beta = \sum n_i m_j [V_i \times W_j]$.

Consider the subvariety $X \subset X$ with class $[X]$. Note that $pr_X^*(\beta) = [X] \times \beta$. Note that $\alpha \times [Y]$ and $[X] \times \beta$ intersect properly on $X \times Y$. With the definitions above we have $\alpha \times \beta = (\alpha \times [Y]) \cdot ([X] \times \beta) = pr_X^*(\alpha) \cdot pr_Y^*(\beta)$.

Reduction to the diagonal. Let X be a nonsingular projective variety. Let $\Delta \subset X \times X$ denote the diagonal. We will identify Δ with X. Let α, resp. β be r-cycles, resp. s-cycles on X. Assume α and β intersect properly. In this case $\alpha \times \beta$ and $[\Delta]$ intersect properly. Note that the cycle $\Delta \cdot \alpha \times \beta$ is supported on the diagonal and hence we can think of it as a cycle on X. With this convention we have $\alpha \cdot \beta = \Delta \cdot \alpha \times \beta$.

See [Serre, Chapter V].

Perhaps a less confusing formulation would be that $pr_1,*(\Delta \cdot \alpha \times \beta) = \alpha \cdot \beta$, where $pr_1 : X \times X \to X$ is the projection.

Flat pullback and intersection products. Suppose that $f : X \to Y$ is a flat morphism of nonsingular projective varieties. Suppose that α is a k-cycle on Y and that β is a l-cycle on Y. Assume that α and β intersect properly. Then $f^* \alpha$ and $f^* \beta$ intersect properly and $f^*(\alpha \cdot \beta) = f^* \alpha \cdot f^* \beta$. This is not hard to see from the material above.

Projection formula for flat maps. Let $f : X \to Y$ be a flat morphism of relative dimension r of nonsingular projective varieties. Let α be an k-cycle on X and let β be a l-cycle on Y. Assume that α and β intersect properly. Then $f_* \alpha$ and $f_* \beta$ intersect properly and $f_*(\alpha \cdot \beta) = f_* \alpha \cdot f_* \beta$. This is not hard to see from the material above.

We explain how to prove the projection formula in the flat case. Let $W \subset X$ be a closed subvariety of dimension k. Let $V \subset Y$ be a closed subvariety of dimension l, so $f^{-1}(V)$ has pure dimension $l + r$. Assume that W and $[f^{-1}(V)]$ intersect properly. Note that $f(W \cap f^{-1}(V)) = f(W) \cap V$. Hence it follows that $f(W)$ and V intersect properly as well. Let $Z \subset f(W) \cap V$ be an irreducible component of dimension $k + l - \dim Y$. Let $Z_i \subset W \cap f^{-1}(V)$ be the irreducible components of $W \cap f^{-1}(V)$ dominating Z. Let A be the local ring of X at the generic point of Z. Let A_i be the local ring of Y at the generic point of Z_i. Let B be the local ring...
ring of \(f(W) \) at the generic point of \(Z \). Let \(B' \) be the stalk of \(f_*({\mathcal O}_W) \) at the generic point of \(Z \). Then \(B \to B' \) is finite, \(B' \) is semi-local, and the localizations \(B'_i \) of \(B' \) are the local rings of \(W \) at the generic point of the \(Z_i \). Thus they are quotients \(A_i \to B'_i \). Let \(C \) be the local ring of \(V \) at the generic point of \(Z \). The multiplicity of \(Z \) in \(f_*([W]) : V \) is by definition
\[
(I) = [B' : B] \sum (-1)^i \text{length}_{A_i}(\text{Tor}^{A_i}_j(B', C)).
\]
Here \([B' : B]\) is the rank of the \(B \)-module \(B' \). The multiplicity of \(Z \) in \(f_*([W] \cdot f^*[V]) \) is by definition
\[
(II) = \sum_k (-1)^i \text{length}_{A_i}(\text{Tor}^{A_i}_j(B'_1, A_i \otimes_A C)) [\kappa(A_i) : \kappa(A)]
\]
Here \(\kappa(-) \) indicates the residue field. The first thing is to note that \(\text{length}_{A_i}(M) = [\kappa(A_i) : \kappa(A)] \text{length}_{A_i}(M) \) for a finite length \(A_i \)-module \(M \). We can compute all the Tor groups by choosing a free resolution of \(C \) as an \(A \)-module. Doing this it is easy to see that \((I) \) equals \(\sum (-1)^i \text{length}_{A}(\text{Tor}^{A}_j(B', C)) \). Finally, note that, by definition, there is an \(A \)-module map \(B^\oplus \to B' \) whose kernel and cokernel are supported in a proper closed subset of \(\text{Spec}(B) \). From the additivity properties of the Tor-formula, see [Serre, Chapter V], it follows that \(\sum (-1)^i \text{length}_{A}(\text{Tor}^{A}_j(B', C)) = [B' : B] \sum (-1)^i \text{length}_{A}(\text{Tor}^{A}_j(B, C)) \) as desired.

Rational Equivalence. Let \(X \) be a nonsingular projective variety. Let \(\alpha = \sum_i n_i [W_i] \) be a \((k+1)\)-cycle on \(X \times \mathbf{P}^1 \), and let \(a, b \) be two closed points of \(\mathbf{P}^1 \). Assume that \(X \times a \) and \(\alpha \) intersect properly, and that \(X \times b \) and \(\alpha \) intersect properly. This will be the case if each \(W_i \) dominates \(\mathbf{P}^1 \) for example. Let \(pr_X : X \times \mathbf{P}^1 \to X \) be the projection morphism. A cycle rationally equivalent to zero is any cycle of the form
\[
pr_X (\alpha \times X \times a - \alpha \times X \times b).
\]
This is a \(k \)-cycle. Note that these cycles are easy to compute in practice (given \(\alpha \)) because they are obtained by proper intersection with Cartier divisors (see formula above). It is a fact that the collection of \(k \)-cycles rationally equivalent to zero is a additive subgroup of the group of \(k \)-cycles. We say two \(k \) cycles are *rationally equivalent*, notation \(\alpha \sim_{\text{rat}} \alpha' \) if \(\alpha - \alpha' \) is a cycle rationally equivalent to zero. See Chapter I of [Fulton].

Pushforward and rational equivalence. Suppose that \(f : X \to Y \) is a morphism of projective smooth varieties. Let \(\alpha \sim_{\text{rat}} 0 \) be a \(k \)-cycle on \(X \) rationally equivalent to 0. Then the pushforward of \(\alpha \) is rationally equivalent to zero: \(f_* \alpha \sim_{\text{rat}} 0 \). See Chapter I of [Fulton].

Pullback and rational equivalence. Suppose that \(f : X \to Y \) is a flat morphism of relative dimension \(r \) of projective smooth varieties. Let \(\alpha \sim_{\text{rat}} 0 \) be a \(k \)-cycle on \(Y \) rationally equivalent to 0. Then the pullback of \(\alpha \) is rationally equivalent to zero: \(f^* \alpha \sim_{\text{rat}} 0 \). See Chapter I of [Fulton].

Moving Lemma. The moving lemma states that given an \(r \)-cycle \(\alpha \) and a \(s \) cycle \(\beta \) there exists \(\alpha', \alpha' \sim_{\text{rat}} \alpha \) such that \(\alpha \) and \(\beta \) intersect properly. See [Samuel], [Chevalley], or [Fulton, Example 11.4,1].

Intersection product and rational equivalence. With definitions as above we show that the intersection product is well defined modulo rational equivalence. Let \(X \) be a nonsingular projective algebraic variety. Let \(\alpha \), resp. \(\beta \) be a \(s \), resp. \(r \) cycle on \(X \). Assume that \(\alpha \) and \(\beta \) intersect properly so that \(\alpha \cdot \beta \) is defined. Finally, assume that \(\alpha \sim_{\text{rat}} 0 \). Goal: show that \(\alpha \cdot \beta \sim_{\text{rat}} 0 \).

After some formal arguments this amounts to showing the following statement. Let \(W \subset X \times \mathbf{P}^1 \) be a \((s+1)\)-dimensional subvariety dominating \(\mathbf{P}^1 \). Let \(W_a \), resp. \(W_b \) be the fibre of \(W \to \mathbf{P}^1 \) over \(a \), resp. \(b \). Let \(V \) be a \(r \)-dimensional subvariety of \(X \) such that \(V \) intersects both \(W_a \) and \(W_b \) properly. Then \(V \cdot [W_a] \sim_{\text{rat}} V \cdot [W_b] \).
In order to see this, note first that \([W_a] = pr_{X,*}(W \times X \times a) \) and similar for \([W_b] \). Thus we reduce to showing
\[
V \cdot pr_{X,*}(W \times X \times a) \sim_{\text{rat}} V \cdot pr_{X,*}(W \times X \times b).
\]
The projection formula – which may be applied – says \(V \cdot pr_{X,*}(W \times X \times a) = pr_{X,*}(V \times \mathbf{P}^1 \cdot (W \times X \times a)) \), and similar for \(b \). Thus we reduce to showing
\[
pr_{X,*}(V \times \mathbf{P}^1 \cdot (W \times X \times a)) \sim_{\text{rat}} pr_{X,*}(V \times \mathbf{P}^1 \cdot (W \times X \times b))
\]
Associativity for the intersection multiplicities (see [Serre, Chapter V]) implies that $V \cdot (W \cdot X \times a) = (V \times \mathbb{P}^1 \cdot W) \cdot X \times a$ and similar for b. Thus we reduce to showing

$$pr_{X,*}((V \times \mathbb{P}^1 \cdot W) \cdot X \times a) \sim_{rat} pr_{X,*}((V \times \mathbb{P}^1 \cdot W) \cdot X \times b)$$

which is true by definition of rational equivalence.

Upshot: Chow rings. Using the above, for any nonsingular projective X we set $A_k(X)$ equal to the group of k-cycles on X modulo rational equivalence. Since it is more convenient we also use $A^c(X) = A_{\dim X - c}(X)$ to denote the group of codimension c cycles modulo rational equivalence. The intersection product defines a product

$$A^k(X) \times A^l(X) \to A^{k+l}(X)$$

defined as follows: for $a \in A^k(X)$ and $b \in A^l(X)$ we can find a codimension k cycle α representing a, a codimension l cycle β representing b such that α and β intersect properly. We define $a \cdot b$ to be the rational equivalence class of $\alpha \cdot \beta$. End result: A commutative and associative graded ring $A^*(X)$ with unit $1 = [X]$.

Pullback for a general morphism. Let X and Y be nonsingular projective varieties, and let $f : X \to Y$ be a morphism. We define

$$f^* : A_k(Y) \to A_{k+\dim X - \dim Y}(X)$$

by the rule

$$f^*(\alpha) = pr_{X,*}(\Gamma_f \cdot pr_Y^*(\alpha))$$

where $\Gamma_f \subset X \times Y$ is the graph of f. Note that it is defined only on cycle classes and not on cycles. This pullback satisfies:

1. $f^* : A^*(Y) \to A^*(X)$ is a ring map,
2. $(f \circ g)^* = g^* \circ f^*$ for a composable pair f, g,
3. the projection formula holds: $f_* (\alpha) \cdot \beta = f_* (\alpha \cdot f^* \beta)$, and
4. if f is flat then it agrees with the previous definition.

All of these follow easily from the above. For (1) you have to show that $pr_{X,*}(\Gamma_f \cdot \alpha \cdot \beta) = pr_{X,*}(\Gamma_f \cdot \alpha) \cdot pr_{X,*}(\Gamma_f \cdot \beta)$. It is easy to see that if α intersects Γ_f properly, then $\Gamma_f \cdot \alpha = \Gamma_f \cdot pr_X^*(pr_{X,*}(\Gamma_f \cdot \alpha))$ as cycles because Γ_f is a graph. Thus we get

$$pr_{X,*}(\Gamma_f \cdot \alpha \cdot \beta) = pr_{X,*}(\Gamma_f \cdot pr_X^*(pr_{X,*}(\Gamma_f \cdot \alpha)) \cdot \beta)$$

$$= pr_{X,*}(pr_X^*(pr_{X,*}(\Gamma_f \cdot \alpha)) \cdot (\Gamma_f \cdot \beta))$$

$$= pr_{X,*}(\Gamma_f \cdot \alpha) \cdot pr_{X,*}(\Gamma_f \cdot \beta)$$

the last step by the projection formula in the flat case. Properties (2) and (3) are formal [for (3) use the flat projection formula twice]. Property (4) rests on identifying the intersection product $\Gamma_f \cdot \alpha$ in the case f is flat.

Pullback of cycles. Suppose that X and Y be nonsingular projective varieties, and let $f : X \to Y$ be a morphism. Suppose that $Z \subset Y$ is a closed subvariety. Let $f^{-1}(Z)$ be the scheme theoretic inverse image:

$$f^{-1}(Z) \to Z$$

$$\downarrow \quad \downarrow$$

$$X \to Y$$

is a fibre product diagram of schemes. In particular $f^{-1}(Z) \subset X$ is a closed subscheme of X. In this case we always have

$$\dim f^{-1}(Z) \geq \dim Z + \dim X - \dim Y.$$

If equality holds in the formula above, then $f^*[Z] = [f^{-1}(Z)]_{\dim Z + \dim X - \dim Y}$ provided that the scheme Z is Cohen-Macaulay at the images of the generic points of $f^{-1}(Z)$. This follows by identifying $f^{-1}(Z)$ with the scheme theoretic intersection of Γ_f and $X \times Z$ and using the computation ($*$) of the intersection multiplicities we gave above.
References

[Chevalley] Less classes d’équivalence rationelle, I, II
[Fulton] Intersection Theory