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CHAPTER 1

Introduction

1.1. Overview

Besides the book by Laumon and Moret-Bailly, see [LMB00a], and the work (in progress)
by Fulton et al, we think there is a place for an open source textbook on algebraic stacks
and the algebraic geometry that is needed to define them. The Stacks Project attempts to
do this by building the foundations starting with commutative algebra and proceeding via
the theory of schemes and algebraic spaces to a comprehensive foundation for the theory
of algebraic stacks.
We expect this material to be read online as a key feature are the hyperlinks giving quick
access to internal references spread over many different pages. If you use an embedded pdf
or dvi viewer in your browser, the cross file links should work.
This project is a collaborative effort and we encourage you to help out. Please email any
typos or errors you find while reading or any suggestions, additional material, or examples
you have to stacks.project@gmail.com. You can download a tarball containing all source
files, extract, run make, and use a dvi or pdf viewer locally. Please feel free to edit the
LaTeX files and email your improvements.

1.2. Attribution

The scope of this work is such that it is a daunting task to attribute correctly and succinctly
all of those mathematicians whose work has led to the development of the theory we try to
explain here. We hope eventually to generate enough community interest to find contribu-
tors willing to write sections with historical remarks for each and every chapter.
Those who contributed to this work are listed on the title page of the book version of this
work and online. Here we would like to name a selection of major contributions:

(1) Jarod Alper wrote Guide to Literature.
(2) Bhargav Bhatt wrote the initial version of Étale Morphisms of Schemes.
(3) Bhargav Bhatt wrote the initial version of More on Algebra, Section 12.8.
(4) Algebra, Section 7.25 and Injectives, Section 17.6 are from The CRing Project,

courtesy of Akhil Mathew.
(5) Alex Perry wrote the material on projective modules, Mittag-Leffler modules,

including the proof of Algebra, Theorem 7.89.5.
(6) Alex Perry wrote Formal Deformation Theory.
(7) Thibaut Pugin, Zachary Maddock and Min Lee took course notes which formed

the basis for Étale Cohomology.
(8) David Rydh has contributed many helpful comments, pointed out several mis-

takes, helped out in an essential way with the material on residual gerbes, and
was the originator for the material in More on Groupoids in Spaces, Sections
53.8 and 53.11.
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CHAPTER 2

Conventions

2.1. Comments

The philosophy behind the conventions used in writing these documents is to choose those
conventions that work.

2.2. Set theory

We use Zermelo-Fraenkel set theory with the axiom of choice. See [Kun83]. We do not
use universes (different from SGA4). We do not stress set-theoretic issues, but we make
sure everything is correct (of course) and so we do not ignore them either.

2.3. Categories

A category 𝒞 consists of a set of objects and, for each pair of objects, a set of morphisms
between them. In other words, it is what is called a ``small'' category in other texts. We
will use ``big'' categories (categories whose objects form a proper class) as well, but only
those that are listed in Categories, Remark 4.2.2.

2.4. Algebra

In these notes a ring is a commutative ring with a 1. Hence the category of rings has an
initial object 𝐙 and a final object {0} (this is the unique ring where 1 = 0). Modules are
assumed unitary. See [Eis95].

2.5. Notation

The natural integers are elements of 𝐍 = {1, 2, 3, …}. The integers are elements of 𝐙 =
{… , −2, −1, 0, 1, 2, …}. The field of rational numbers is denoted 𝐐. The field of real
numbers is denoted 𝐑. The field of complex numbers is denoted 𝐂.

2.6. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups
(9) Sites and Sheaves

(10) Homological Algebra
(11) Derived Categories

(12) More on Algebra
(13) Smoothing Ring Maps
(14) Simplicial Methods
(15) Sheaves of Modules
(16) Modules on Sites
(17) Injectives
(18) Cohomology of Sheaves
(19) Cohomology on Sites
(20) Hypercoverings
(21) Schemes
(22) Constructions of Schemes
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CHAPTER 3

Set Theory

3.1. Introduction

We need some set theory every now and then. We use Zermelo-Fraenkel set theory with
the axiom of choice (ZFC) as described in [Kun83] and [Jec02].

3.2. Everything is a set

Most mathematicians think of set theory as providing the basic foundations for mathemat-
ics. So how does this really work? For example, how do we translate the sentence ``𝑋
is a scheme'' into set theory? Well, we just unravel the definitions: A scheme is a locally
ringed space such that every point has an open neighbourhood which is an affine scheme.
A locally ringed space is a ringed space such that every stalk of the structure sheaf is a local
ring. A ringed space is a pair (𝑋, 𝒪𝑋) consisting of a topological space 𝑋 and a sheaf of
rings 𝒪𝑋 on it. A topological space is a pair (𝑋, 𝜏) consisting of a set 𝑋 and a set of subsets
𝜏 ⊂ 𝒫(𝑋) satisfying the axioms of a topology. And so on and so forth.

So how, given a set 𝑆 would we recognize whether it is a scheme? The first thing we look
for is whether the set 𝑆 is an ordered pair. This is defined (see [Jec02], page 7) as saying
that 𝑆 has the form (𝑎, 𝑏) ∶= {{𝑎}, {𝑎, 𝑏}} for some sets 𝑎, 𝑏. If this is the case, then we
would take a look to see whether 𝑎 is an ordered pair (𝑐, 𝑑). If so we would check whether
𝑑 ⊂ 𝒫(𝑐), and if so whether 𝑑 forms the collection of sets for a topology on the set 𝑐. And
so on and so forth.

So even though it would take a considerable amount of work to write a complete formula
𝜙𝑠𝑐ℎ𝑒𝑚𝑒(𝑥) with one free variable 𝑥 in set theory that expresses the notion ``𝑥 is a scheme'',
it is possible to do so. The same thing should be true for any mathematical object.

3.3. Classes

Informally we use the notion of a class. Given a formula 𝜙(𝑥, 𝑝1, … , 𝑝𝑛), we call

𝐶 = {𝑥 ∶ 𝜙(𝑥, 𝑝1, … , 𝑝𝑛)}

a class. A class is easier to manipulate than the formula that defines it, but it is not strictly
speaking a mathematical object. For example, if 𝑅 is a ring, then we may consider the class
of all 𝑅-modules (since after all we may translate the sentence ``𝑀 is an 𝑅-module'' into a
formula in set theory, which then defines a class). A proper class is a class which is not a
set.

In this way we may consider the category of 𝑅-modules, which is a ``big'' category---in
other words, it has a proper class of objects. Similarly, we may consider the ``big'' category
of schemes, the ``big'' category of rings, etc.
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46 3. SET THEORY

3.4. Ordinals

A set 𝑇 is transitive if 𝑥 ∈ 𝑇 implies 𝑥 ⊂ 𝑇. A set 𝛼 is an ordinal if it is transitive and
well-ordered by ∈. In this case, we define 𝛼 + 1 = 𝛼 ∪ {𝛼}, which is another ordinal called
the successor of 𝛼. An ordinal 𝛼 is called a successor ordinal if there exists an ordinal 𝛽
such that 𝛼 = 𝛽 + 1. The smallest ordinal is ∅ which is also denoted 0. If 𝛼 is not 0, and
not a successor ordinal, then 𝛼 is called a limit ordinal and we have

𝛼 = ⋃𝛾∈𝛼
𝛾.

The first limit ordinal is 𝜔 and it is also the first infinite ordinal. The collection of all ordinals
is a proper class. It is well-ordered by ∈ in the following sense: any nonempty set (or even
class) of ordinals has a least element. Given a set 𝐴 of ordinals, we define the supremum of
𝐴 to be sup𝛼∈𝐴𝛼 = ⋃𝛼∈𝐴 𝛼. It is the least ordinal bigger or equal to all 𝛼 ∈ 𝐴. Given any
well ordered set (𝑆, ≥), there is a unique ordinal 𝛼 such that (𝑆, ≥) ≅ (𝛼, ∈); this is called
the order type of the well ordered set.

3.5. The hierarchy of sets

We define, by transfinite induction, 𝑉0 = ∅, 𝑉𝛼+1 = 𝑃(𝑉𝛼) (power set), and for a limit
ordinal 𝛼,

𝑉𝛼 = ⋃𝛽<𝛼
𝑉𝛽.

Note that each 𝑉𝛼 is a transitive set.

Lemma 3.5.1. (See [Jec02], Lemma 6.3.) Every set is an element of 𝑉𝛼 for some ordinal
𝛼.

In [Kun83, Chapter III] it is explained that this lemma is equivalent to the axiom of foun-
dation. The rank of a set 𝑆 is the least ordinal 𝛼 such that 𝑆 ∈ 𝑉𝛼.

3.6. Cardinality

The cardinality of a set 𝐴 is the least ordinal 𝛼 such that there exists a bijection between
𝐴 and 𝛼. We sometimes use the notation 𝛼 = |𝐴| to indicate this. We say an ordinal 𝛼
is a cardinal if and only if it occurs as the cardinality of some set 𝐴---in other words, if
𝛼 = |𝐴|. We use the greek letters 𝜅, 𝜆 for cardinals. The first infinite cardinal is 𝜔, and in
this context it is denoted ℵ0. A set is countable if its cardinality is ≤ ℵ0. If 𝛼 is an ordinal,
then we denote 𝛼+ the least cardinal > 𝛼. You can use this to define ℵ1 = ℵ+

0 , ℵ2 = ℵ+
1 ,

etc, and in fact you can define ℵ𝛼 for any ordinal 𝛼 by transfinite induction.
The addition of cardinals 𝜅, 𝜆 is denoted 𝜅⊕𝜆; it is the cardinality of 𝜅⨿𝜆. Themultiplica-
tion of cardinals 𝜅, 𝜆 is denoted 𝜅 ⊗ 𝜆; it is the cardinality of 𝜅 × 𝜆. It is uninteresting since
if 𝜅 and 𝜆 are infinite cardinals, then 𝜅 ⊗ 𝜆 = max(𝜅, 𝜆). The exponentiation of cardinals
𝜅, 𝜆 is denoted 𝜅𝜆; it is the cardinality of the set of (set) maps from 𝜆 to 𝜅. Given any set 𝐾
of cardinals, the supremum of 𝐾 is sup𝜅∈𝐾𝜅 = ⋃𝜅∈𝐾 𝜅, which is also a cardinal.

3.7. Cofinality

A cofinal subset 𝑆 of a partially ordered set 𝑇 is a subset 𝑆 ⊂ 𝑇 such that ∀𝑡 ∈ 𝑇∃𝑠 ∈ 𝑆(𝑡 ≤
𝑠). Note that a subset of a well-ordered set is a well-ordered set (with induced ordering).
Given an ordinal 𝛼, the cofinality cf(𝛼) of 𝛼 is the least ordinal 𝛽 which occurs as the order
type of some cofinal subset of 𝛼. The cofinality of an ordinal is always a cardinal (this is
clear from the definition). Hence alternatively we can define the cofinality of 𝛼 as the least
cardinality of a cofinal subset of 𝛼.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=000C


3.8. REFLECTION PRINCIPLE 47

Lemma 3.7.1. Suppose that 𝑇𝛽 = 𝑐𝑜𝑙𝑖𝑚𝛼<𝛽 𝑇𝛼 is a colimit of sets indexed by ordinals less
than a given ordinal 𝛽. Suppose that 𝜑 ∶ 𝑆 → 𝑇 is a map of sets. Then 𝜑 lifts to a map into
𝑇𝛼 for some 𝛼 < 𝛽 provided that 𝛽 is not a limit of ordinals indexed by 𝑆, in other words, if
𝛽 is an ordinal with cf(𝛽) > |𝑆|.

Proof. For each element 𝑠 ∈ 𝑆 pick a 𝛼𝑠 < 𝛽 and an element 𝑡𝑠 ∈ 𝑇𝛼𝑠
which maps to 𝜑(𝑠)

in 𝑇. By assumption 𝛼 = sup𝑠∈𝑆 𝛼𝑠 is strictly smaller than 𝛽. Hence the map 𝜑𝛼 ∶ 𝑆 → 𝑇𝛼
which assigns to 𝑠 the image of 𝑡𝑠 in 𝑇𝛼 is a solution. �

The following is essentially Grothendieck's argument for the existence of ordinals with
arbitrarily large cofinality which he used to prove the existence of enough injectives in
certain abelian categories, see [Gro57].

Proposition 3.7.2. Let 𝜅 be a cardinal. Then there exists an ordinal whose cofinality is
bigger than 𝜅.

Proof. If 𝜅 is finite, then 𝜔 = cf(𝜔) works. Let us thus assume that 𝜅 is infinite. Consider
the smallest ordinal 𝛼 whose cardinality is strictly greater than 𝜅. We claim that cf(𝛼) > 𝜅.
Note that 𝛼 is a limit ordinal, since if 𝛼 = 𝛽 + 1, then |𝛼| = |𝛽| (because 𝛼 and 𝛽 are infinite)
and this contradicts the minimality of 𝛼. (Of course 𝛼 is also a cardinal, but we do not need
this.) To get a contradiction suppose 𝑆 ⊂ 𝛼 is a cofinal subset with |𝑆| ≤ 𝜅. For 𝛽 ∈ 𝑆,
i.e., 𝛽 < 𝛼, we have |𝛽| ≤ 𝜅 by minimality of 𝛼. As 𝛼 is a limit ordinal and 𝑆 cofinal in 𝛼
we obtain 𝛼 = ⋃𝛽∈𝑆 𝛽. Hence |𝛼| ≤ |𝑆| ⊗ 𝜅 ≤ 𝜅 ⊗ 𝜅 ≤ 𝜅 which is a contradiction with
our choice of 𝛼. �

3.8. Reflection principle

Some of this material is in the chapter of [Kun83] called ``Easy consistency proofs''.

Let 𝜙(𝑥1, … , 𝑥𝑛) be a formula of set theory. Let us use the convention that this notation
implies that all the free variables in 𝜙 occur among 𝑥1, … , 𝑥𝑛. Let 𝑀 be a set. The formula
𝜙𝑀(𝑥1, … , 𝑥𝑛) is the formula obtained from 𝜙(𝑥1, … , 𝑥𝑛) by replacing all the ∀𝑥 and ∃𝑥
by ∀𝑥 ∈ 𝑀 and ∃𝑥 ∈ 𝑀, respectively. So the formula 𝜙(𝑥1, 𝑥2) = ∃𝑥(𝑥 ∈ 𝑥1 ∧ 𝑥 ∈ 𝑥2)
is turned into 𝜙𝑀(𝑥1, 𝑥2) = ∃𝑥 ∈ 𝑀(𝑥 ∈ 𝑥1 ∧ 𝑥 ∈ 𝑥2). The formula 𝜙𝑀 is called the
relativization of 𝜙 to 𝑀.

Theorem 3.8.1. See [Jec02, Theorem 12.14] or [Kun83, Theorem 7.4]. Suppose given
𝜙1(𝑥1, … , 𝑥𝑛), … , 𝜙𝑚(𝑥1, … , 𝑥𝑛) a finite collection of formulas of set theory. Let 𝑀0 be
a set. There exists a set 𝑀 such that 𝑀0 ⊂ 𝑀 and ∀𝑥1, … , 𝑥𝑛 ∈ 𝑀, we have

∀𝑖 = 1, … , 𝑚, 𝜙𝑀
𝑖 (𝑥1, … , 𝑥𝑛) ⇔ ∀𝑖 = 1, … , 𝑚, 𝜙𝑖(𝑥1, … , 𝑥𝑛).

In fact we may take 𝑀 = 𝑉𝛼 for some limit ordinal 𝛼.

We view this theorem as saying the following: Given any 𝑥1, … , 𝑥𝑛 ∈ 𝑀 the formulas
hold with the bound variables ranging through all sets if and only if they hold for the bound
variables ranging through elements of 𝑉𝛼. This theorem is a meta-theorem because it deals
with the formulas of set theory directly. It actually says that given the finite list of formulas
𝜙1, … , 𝜙𝑚 with at most free variables 𝑥1, … , 𝑥𝑛 the sentence

∀𝑀0 ∃𝑀, 𝑀0 ⊂ 𝑀 ∀𝑥1, … , 𝑥𝑛 ∈ 𝑀
𝜙1(𝑥1, … , 𝑥𝑛) ∧ … ∧ 𝜙𝑚(𝑥1, … , 𝑥𝑛) ↔ 𝜙𝑀

1 (𝑥1, … , 𝑥𝑛) ∧ … ∧ 𝜙𝑀
𝑚 (𝑥1, … , 𝑥𝑛)

is provable in ZFC. In other words, whenever we actually write down a finite list of formulas
𝜙𝑖, we get a theorem.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05N2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05N3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=000G
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It is somewhat hard to use this theorem in ``ordinary mathematics'' since the meaning of
the formulas 𝜙𝑀

𝑖 (𝑥1, … , 𝑥𝑛) is not so clear! Instead, we will use the idea of the proof of
the reflection principle to prove the existence results we need directly.

3.9. Constructing categories of schemes

We will discuss how to apply this to produce, given an initial set of schemes, a ``small''
category of schemes closed under a list of natural operations. Before we do so, we introduce
the size of a scheme. Given a scheme 𝑆 we define

size(𝑆) = max(ℵ0, 𝜅1, 𝜅2),
where we define the cardinal numbers 𝜅1 and 𝜅2 as follows:

(1) We let 𝜅1 be the cardinality of the set of affine opens of 𝑆.
(2) We let 𝜅2 be the supremum of all the cardinalities of all Γ(𝑈, 𝒪𝑆) for all 𝑈 ⊂ 𝑆

affine open.

Lemma 3.9.1. For every cardinal 𝜅, there exists a set 𝐴 such that every element of 𝐴 is a
scheme and such that for every scheme 𝑆 with Size(𝑆) ≤ 𝜅, there is an element 𝑋 ∈ 𝐴 such
that 𝑋 ≅ 𝑆 (isomorphism of schemes).

Proof. Omitted. Hint: think about how any scheme is isomorphic to a scheme obtained by
glueing affines. �

We denote 𝐵𝑜𝑢𝑛𝑑 the function which to each cardinal 𝜅 associates
(3.9.1.1) 𝐵𝑜𝑢𝑛𝑑(𝜅) = max{𝜅ℵ0, 𝜅+}.
We could make this function grow much more rapidly, e.g., we could set 𝐵𝑜𝑢𝑛𝑑(𝜅) = 𝜅𝜅,
and the result belowwould still hold. For any ordinal 𝛼, we denote Sch𝛼 the full subcategory
of category of schemes whose objects are elements of 𝑉𝛼. Here is the result we are going
to prove.

Lemma 3.9.2. With notations size, 𝐵𝑜𝑢𝑛𝑑 and Sch𝛼 as above. Let 𝑆0 be a set of schemes.
There exists a limit ordinal 𝛼 with the following properties:

(1) We have 𝑆0 ⊂ 𝑉𝛼; in other words, 𝑆0 ⊂ 𝑂𝑏(Sch𝛼).
(2) For any 𝑆 ∈ 𝑂𝑏(Sch𝛼) and any scheme 𝑇 with size(𝑇) ≤ 𝐵𝑜𝑢𝑛𝑑(size(𝑆)), there

exists a scheme 𝑆′ ∈ 𝑂𝑏(Sch𝛼) such that 𝑇 ≅ 𝑆′.
(3) For any countable diagram1 category ℐ and any functor 𝐹 ∶ ℐ → Sch𝛼, the limit

𝑙𝑖𝑚ℐ 𝐹 exists in Sch𝛼 if and only if it exists in Sch and moreover, in this case, the
natural morphism between them is an isomorphism.

(4) For any countable diagram category ℐ and any functor 𝐹 ∶ ℐ → Sch𝛼, the
colimit 𝑐𝑜𝑙𝑖𝑚ℐ 𝐹 exists in Sch𝛼 if and only if it exists in Sch and moreover, in this
case, the natural morphism between them is an isomorphism.

Proof. We define, by transfinite induction, a function 𝑓 which associates to every ordinal
an ordinal as follows. Let 𝑓(0) = 0. Given 𝑓(𝛼), we define 𝑓(𝛼 + 1) to be the least ordinal
𝛽 such that the following hold:

(1) We have 𝛼 + 1 ≤ 𝛽 and 𝑓(𝛼) ≤ 𝛽.
(2) For any 𝑆 ∈ 𝑂𝑏(Sch𝑓(𝛼)) and any scheme 𝑇 with size(𝑇) ≤ 𝐵𝑜𝑢𝑛𝑑(size(𝑆)), there

exists a scheme 𝑆′ ∈ 𝑂𝑏(Sch𝛽) such that 𝑇 ≅ 𝑆′.

1Both the set of objects and the morphism sets are countable. In fact you can prove the lemma with ℵ0
replaced by any cardinal whatsoever in (3) and (4).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=000I
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(3) For any countable diagram category ℐ and any functor 𝐹 ∶ ℐ → Sch𝑓(𝛼), if
the limit 𝑙𝑖𝑚ℐ 𝐹 or the colimit 𝑐𝑜𝑙𝑖𝑚ℐ 𝐹 exists in Sch, then it is isomorphic to a
scheme in Sch𝛽.

To see 𝛽 exists, we argue as follows. Since𝑂𝑏(Sch𝑓(𝛼)) is a set, we see that 𝜅 = sup𝑆∈𝑂𝑏(Sch𝑓(𝛼))𝐵𝑜𝑢𝑛𝑑(size(𝑆))
exists and is a cardinal. Let 𝐴 be a set of schemes obtained starting with 𝜅 as in Lemma
3.9.1. There is a set 𝐶𝑜𝑢𝑛𝑡𝐶𝑎𝑡 of countable categories such that any countable category is
isomorphic to an element of 𝐶𝑜𝑢𝑛𝑡𝐶𝑎𝑡. Hence in (3) above we may assume that ℐ is an
element in 𝐶𝑜𝑢𝑛𝑡𝐶𝑎𝑡. This means that the pairs (ℐ, 𝐹) in (3) range over a set. Thus, there
exists a set 𝐵 whose elements are schemes such that for every (ℐ, 𝐹) as in (3), if the limit
or colimit exists, then it is isomorphic to an element in 𝐵. Hence, if we pick any 𝛽 such that
𝐴 ∪ 𝐵 ⊂ 𝑉𝛽 and 𝛽 > max{𝛼 + 1, 𝑓(𝛼)}, then (1)--(3) hold. Since every nonempty collection
of ordinals has a least element, we see that 𝑓(𝛼 + 1) is well defined. Finally, if 𝛼 is a limit
ordinal, then we set 𝑓(𝛼) = sup𝛼′<𝛼𝑓(𝛼′).

Pick 𝛽0 such that 𝑆0 ⊂ 𝑉𝛽0
. By construction 𝑓(𝛽) ≥ 𝛽 and we see that also 𝑆0 ⊂ 𝑉𝑓(𝛽0).

Moreover, as 𝑓 is nondecreasing, we see 𝑆0 ⊂ 𝑉𝑓(𝛽) is true for any 𝛽 ≥ 𝛽0. Next, choose
any ordinal 𝛽1 > 𝛽0 with cofinality cf(𝛽1) > 𝜔 = ℵ0. This is possible since the cofinality of
ordinals gets arbitrarily large, see Proposition 3.7.2. We claim that 𝛼 = 𝑓(𝛽1) is a solution
to the problem posed in the lemma.

The first property of the lemma holds by our choice of 𝛽1 > 𝛽0 above.

Since 𝛽1 is a limit ordinal (as its cofinality is infinite), we get 𝑓(𝛽1) = sup𝛽<𝛽1
𝑓(𝛽). Hence

{𝑓(𝛽) ∣ 𝛽 < 𝛽1} ⊂ 𝑓(𝛽1) is a cofinal subset. Hence we see that

𝑉𝛼 = 𝑉𝑓(𝛽1) = ⋃𝛽<𝛽1
𝑉𝑓(𝛽).

Now, let 𝑆 ∈ 𝑂𝑏(Sch𝛼). We define 𝛽(𝑆) to be the least ordinal 𝛽 such that 𝑆 ∈ 𝑂𝑏(Sch𝑓(𝛽)).
By the above we see that always 𝛽(𝑆) < 𝛽1. Since 𝑂𝑏(Sch𝑓(𝛽+1)) ⊂ 𝑂𝑏(Sch𝛼), we see by
construction of 𝑓 above that the second property of the lemma is satisfied.

Suppose that {𝑆1, 𝑆2, …} ⊂ 𝑂𝑏(Sch𝛼) is a countable collection. Consider the function
𝜔 → 𝛽1, 𝑛 ↦ 𝛽(𝑆𝑛). Since the cofinality of 𝛽1 is > 𝜔, the image of this function cannot
be a cofinal subset. Hence there exists a 𝛽 < 𝛽1 such that {𝑆1, 𝑆2, …} ⊂ 𝑂𝑏(Sch𝑓(𝛽)). It
follows that any functor 𝐹 ∶ ℐ → Sch𝛼 factors through one of the subcategories Sch𝑓(𝛽).
Thus, if there exists a scheme 𝑋 that is the colimit or limit of the diagram 𝐹, then, by
construction of 𝑓, we see 𝑋 is isomorphic to an object of Sch𝑓(𝛽+1) which is a subcategory
of Sch𝛼. This proves the last two assertions of the lemma. �

Remark 3.9.3. The lemma above can also be proved using the reflection principle. How-
ever, one has to be careful. Namely, suppose the sentence 𝜙𝑠𝑐ℎ𝑒𝑚𝑒(𝑋) expresses the property
``𝑋 is a scheme'', then what does the formula 𝜙𝑉𝛼

𝑠𝑐ℎ𝑒𝑚𝑒(𝑋) mean? It is true that the reflection
principle says we can find 𝛼 such that for all 𝑋 ∈ 𝑉𝛼 we have 𝜙𝑠𝑐ℎ𝑒𝑚𝑒(𝑋) ↔ 𝜙𝑉𝛼

𝑠𝑐ℎ𝑒𝑚𝑒(𝑋) but
this is entirely useless. It is only by combining two such statements that something interest-
ing happens. For example suppose 𝜙𝑟𝑒𝑑(𝑋, 𝑌) expresses the property ``𝑋, 𝑌 are schemes,
and 𝑌 is the reduction of 𝑋'' (see Schemes, Definition 21.12.5). Suppose we apply the re-
flection principle to the pair of formulas 𝜙1(𝑋, 𝑌) = 𝜙𝑟𝑒𝑑(𝑋, 𝑌), 𝜙2(𝑋) = ∃𝑌, 𝜙1(𝑋, 𝑌).
Then it is easy to see that any 𝛼 produced by the reflection principle has the property that
given 𝑋 ∈ 𝑂𝑏(Sch𝛼) the reduction of 𝑋 is also an object of Sch𝛼 (left as an exercise).

Lemma 3.9.4. Let 𝑆 be an affine scheme. Let 𝑅 = Γ(𝑆, 𝒪𝑆). Then the size of 𝑆 is equal to
max{ℵ0, |𝑅|}.
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Proof. There are at most max{|𝑅|, ℵ0} affine opens of 𝑆𝑝𝑒𝑐(𝑅). This is clear since any
affine open 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) is a finite union of principal opens 𝐷(𝑓1) ∪ … ∪ 𝐷(𝑓𝑛) and
hence the number of affine opens is at most sup𝑛 |𝑅|𝑛 = max{|𝑅|, ℵ0}, see [Kun83, Ch. I,
10.13]. On the other hand, we see that Γ(𝑈, 𝒪) ⊂ 𝑅𝑓1

× … × 𝑅𝑓𝑛
and hence |Γ(𝑈, 𝒪)| ≤

max{ℵ0, |𝑅𝑓1
|, … , |𝑅𝑓𝑛

|}. Thus it suffices to prove that |𝑅𝑓| ≤ max{ℵ0, |𝑅|} which is
omitted. �

Lemma 3.9.5. Let 𝑆 be a scheme. Let 𝑆 = ⋃𝑖∈𝐼 𝑆𝑖 be an open covering. Then size(𝑆) ≤
max{|𝐼|, sup𝑖{size(𝑆𝑖)}}.

Proof. Let 𝑈 ⊂ 𝑆 be any affine open. Since 𝑈 is quasi-compact there exist finitely many
elements 𝑖1, … , 𝑖𝑛 ∈ 𝐼 and affine opens 𝑈𝑖 ⊂ 𝑈 ∩ 𝑆𝑖 such that 𝑈 = 𝑈1 ∪ 𝑈2 ∪ … ∪ 𝑈𝑛. Thus

|Γ(𝑈, 𝒪𝑈)| ≤ |Γ(𝑈1, 𝒪)| ⊗ … ⊗ |Γ(𝑈𝑛, 𝒪)| ≤ sup𝑖{size(𝑆𝑖)}

Moreover, it shows that the set of affine opens of 𝑆 has cardinality less than or equal to the
cardinality of the set

∐
𝑛∈𝜔

∐
𝑖1,…,𝑖𝑛∈𝐼

{affine opens of 𝑆𝑖1} × … × {affine opens of 𝑆𝑖𝑛}.

Each of the sets inside the disjoint union has cardinality at most sup𝑖{size(𝑆𝑖)}. The index
set has cardinality at most max{|𝐼|, ℵ0}, see [Kun83, Ch. I, 10.13]. Hence by [Jec02,
Lemma 5.8] the cardinality of the coproduct is at most max{ℵ0, |𝐼|} ⊗ sup𝑖{size(𝑆𝑖)}. The
lemma follows. �

Lemma 3.9.6. Let 𝑓 ∶ 𝑋 → 𝑆, 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes. Then we have
size(𝑋 ×𝑆 𝑌) ≤ max{size(𝑋), size(𝑌))}.

Proof. Let 𝑆 = ⋃𝑘∈𝐾 𝑆𝑘 be an affine open covering. Let 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖, 𝑌 = ⋃𝑗∈𝐽 𝑉𝑗
be affine open coverings with 𝐼, 𝐽 of cardinality ≤ size(𝑋), size(𝑌). For each 𝑖 ∈ 𝐼 there
exists a finite set 𝐾𝑖 of 𝑘 ∈ 𝐾 such that 𝑓(𝑈𝑖) ⊂ ⋃𝑘∈𝐾𝑖

𝑆𝑘. For each 𝑗 ∈ 𝐽 there ex-
ists a finite set 𝐾𝑗 of 𝑘 ∈ 𝐾 such that 𝑔(𝑉𝑗) ⊂ ⋃𝑘∈𝐾𝑗

𝑆𝑘. Hence 𝑓(𝑋), 𝑔(𝑌) are con-
tained in 𝑆′ = ⋃𝑘∈𝐾′ 𝑆𝑘 with 𝐾′ = ⋃𝑖∈𝐼 𝐾𝑖 ∪ ⋃𝑗∈𝐽 𝐾𝑗. Note that the cardinality of 𝐾′

is at most max{ℵ0, |𝐼|, |𝐽|}. Applying Lemma 3.9.5 we see that it suffices to prove that
size(𝑓−1(𝑆𝑘) ×𝑆𝑘

𝑔−1(𝑆𝑘)) ≤ max{size(𝑋), size(𝑌))} for 𝑘 ∈ 𝐾′. In other words, we may
assume that 𝑆 is affine.

Assume 𝑆 affine. Let 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖, 𝑌 = ⋃𝑗∈𝐽 𝑉𝑗 be affine open coverings with 𝐼, 𝐽 of
cardinality ≤ size(𝑋), size(𝑌). Again by Lemma 3.9.5 it suffices to prove the lemma for the
products 𝑈𝑖 ×𝑆 𝑉𝑗. By Lemma 3.9.4 we see that it suffices to show that

|𝐴 ⊗𝐶 𝐵| ≤ max{ℵ0, |𝐴|, |𝐵|}.

We omit the proof of this inequality. �

Lemma 3.9.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be locally of finite type with 𝑋 quasi-
compact. Then size(𝑋) ≤ size(𝑆).

Proof. We can find a finite affine open covering 𝑋 = ⋃𝑖=1,…𝑛 𝑈𝑖 such that each 𝑈𝑖 maps
into an affine open 𝑆𝑖 of 𝑆. Thus by Lemma 3.9.5 we reduce to the case where both 𝑆 and
𝑋 are affine. In this case by Lemma 3.9.4 we see that it suffices to show

|𝐴[𝑥1, … , 𝑥𝑛]| ≤ max{ℵ0, |𝐴|}.

We omit the proof of this inequality. �
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In Algebra, Lemma 7.99.13 we will show that if 𝐴 → 𝐵 is an epimorphism of rings, then
|𝐵| ≤ |𝐴|. The analogue for schemes is the following lemma.

Lemma 3.9.8. If 𝑋 → 𝑌 is monomorphism of schemes, then size(𝑋) ≤ size(𝑌).

Proof. Let 𝑌 = ⋃𝑗∈𝐽 𝑉𝑗 be an affine open covering of 𝑌 with |𝐽| ≤ size(𝑌). By Lemma
3.9.5 it suffices to bound the size of the inverse image of 𝑉𝑗 in 𝑋. Hence we reduce to
the case that 𝑌 is affine. As 𝑋 → 𝑌 is a monomorphism the map 𝑋 → 𝑌 is injective on
underlying sets of points. For each 𝑥 ∈ 𝑋 choose an affine open neighbourhood 𝑈𝑥 ⊂ 𝑋.
Then 𝑈𝑥 → 𝑌 is a monomorphism too, and 𝑋 = ⋃𝑥∈𝑋 𝑈𝑥 is an affine open covering whose
index set has cardinality at most size(𝑌). Hence applying Lemma 3.9.5 again we see that we
reduce to the case that both 𝑋 and 𝑌 are affine. In this case the result follows from Lemma
3.9.4 and the lemma mentioned just above the statement of the lemma whose proof you are
reading now. �

Lemma 3.9.9. Let 𝛼 be an ordinal as in Lemma 3.9.2 above. The category Sch𝛼 satisfies
the following properties:

(1) If 𝑋, 𝑌, 𝑆 ∈ 𝑂𝑏(Sch𝛼), then for any morphisms 𝑓 ∶ 𝑋 → 𝑆, 𝑔 ∶ 𝑌 → 𝑆 the fibre
product 𝑋 ×𝑆 𝑌 in Sch𝛼 exists and is a fibre product in the category of schemes.

(2) Given any at most countable collection 𝑆1, 𝑆2, … of elements of 𝑂𝑏(Sch𝛼), the
coproduct∐𝑖 𝑆𝑖 exists in𝑂𝑏(Sch𝛼) and is a coproduct in the category of schemes.

(3) For any 𝑆 ∈ 𝑂𝑏(Sch𝛼) and any open immersion 𝑈 → 𝑆, there exists a 𝑉 ∈
𝑂𝑏(Sch𝛼) with 𝑉 ≅ 𝑈.

(4) For any 𝑆 ∈ 𝑂𝑏(Sch𝛼) and any closed immersion 𝑇 → 𝑆, there exists a 𝑆′ ∈
𝑂𝑏(Sch𝛼) with 𝑆′ ≅ 𝑇.

(5) For any 𝑆 ∈ 𝑂𝑏(Sch𝛼) and any finite type morphism 𝑇 → 𝑆, there exists a 𝑆′ ∈
𝑂𝑏(Sch𝛼) with 𝑆′ ≅ 𝑇.

(6) Suppose 𝑆 is a scheme which has an open covering 𝑆 = ⋃𝑖∈𝐼 𝑆𝑖 such that there
exists a 𝑇 ∈ 𝑂𝑏(Sch𝛼) with (a) size(𝑆𝑖) ≤ size(𝑇)ℵ0 for all 𝑖 ∈ 𝐼, and (b) |𝐼| ≤
size(𝑇)ℵ0. Then 𝑆 is isomorphic to an object of Sch𝛼.

(7) For any 𝑆 ∈ 𝑂𝑏(Sch𝛼) and any morphism 𝑓 ∶ 𝑇 → 𝑆 locally of finite type
such that 𝑇 can be covered by at most size(𝑆)ℵ0 open affines, there exists a 𝑆′ ∈
𝑂𝑏(Sch𝛼) with 𝑆′ ≅ 𝑇. For example this holds if 𝑇 can be covered by at most
|𝐑| = 2ℵ0 = ℵℵ0

0 open affines.
(8) For any 𝑆 ∈ 𝑂𝑏(Sch𝛼) and any monomorphism 𝑇 → 𝑆, there exists a 𝑆′ ∈

𝑂𝑏(Sch𝛼) with 𝑆′ ≅ 𝑇.
(9) Suppose that 𝑇 ∈ 𝑂𝑏(Sch𝛼) is affine. Write 𝑅 = Γ(𝑇, 𝒪𝑇). Then any of the

following schemes is isomorphic to a scheme in Sch𝛼:
(a) For any ideal 𝐼 ⊂ 𝑅 with completion 𝑅∗ = 𝑙𝑖𝑚𝑛 𝑅/𝐼𝑛, the scheme 𝑆𝑝𝑒𝑐(𝑅∗).
(b) For any finite type 𝑅-algebra 𝑅′, the scheme 𝑆𝑝𝑒𝑐(𝑅′).
(c) For any localization 𝑆−1𝑅, the scheme 𝑆𝑝𝑒𝑐(𝑆−1𝑅).
(d) For any prime 𝔭 ⊂ 𝑅, the scheme 𝑆𝑝𝑒𝑐(𝜅(𝔭)).
(e) For any subring 𝑅′ ⊂ 𝑅, the scheme 𝑆𝑝𝑒𝑐(𝑅′).
(f) Any scheme of finite type over a ring of cardinality at most |𝑅|ℵ0.
(g) And so on.

Proof. Statements (1) and (2) follow directly from the definitions. Statement (3) follows
as the size of an open subscheme 𝑈 of 𝑆 is clearly smaller than or equal to the size of 𝑆.
Statement (4) follows from (5). Statement (5) follows from (7). Statement (6) follows as the
size of 𝑆 is ≤ max{|𝐼|, sup𝑖 size(𝑆𝑖)} ≤ size(𝑇)ℵ0 by Lemma 3.9.5. Statement (7) follows
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from (6). Namely, for any affine open 𝑉 ⊂ 𝑇 we have size(𝑉) ≤ size(𝑆) by Lemma 3.9.7.
Thus, we see that (6) applies in the situation of (7). Part (8) follows from Lemma 3.9.8.

Statement (9) is translated, via Lemma 3.9.4, into an upper bound on the cardinality of the
rings 𝑅∗, 𝑆−1𝑅, 𝜅(𝔭), 𝑅′, etc. Perhaps the most interesting one is the ring 𝑅∗. As a set, it
is the image of a surjective map 𝑅𝐍 → 𝑅∗. Since |𝑅𝐍| = |𝑅|ℵ0, we see that it works by
our choice of 𝐵𝑜𝑢𝑛𝑑(𝜅) = 𝜅ℵ0. Phew! (The cardinality of the algebraic closure of a field is
the same as the cardinality of the field, or it is ℵ0.) �

Remark 3.9.10. Let 𝑅 be a ring. Suppose we consider the ring ∏𝔭∈𝑆𝑝𝑒𝑐(𝑅) 𝜅(𝔭). The
cardinality of this ring is bounded by |𝑅||𝑅|, but is not bounded by |𝑅|ℵ0 in general (for
example if 𝑅 = 𝐂[𝑥]). Thus the ``And so on'' of Lemma 3.9.9 above should be taken with
a grain of salt. Of course, if it ever becomes necessary to consider these rings in arguments
pertaining to fppf/étale cohomology, then we can change the function 𝐵𝑜𝑢𝑛𝑑 above into the
function 𝜅 ↦ 𝜅𝜅.

3.10. Sets with group action

Let 𝐺 be a group. We denote 𝐺-Sets the ``big'' category of 𝐺-sets. For any ordinal 𝛼, we
denote 𝐺-Sets𝛼 the full subcategory of 𝐺-Sets whose objects are in 𝑉𝛼. As a notion for size
of a 𝐺-set we take size(𝑆) = max{ℵ0, |𝐺|, |𝑆|} (where |𝐺| and |𝑆| are the cardinality of
the underlying sets). As above we use the function 𝐵𝑜𝑢𝑛𝑑(𝜅) = 𝜅ℵ0.

Lemma 3.10.1. With notations 𝐺, 𝐺-Sets𝛼, size, and 𝐵𝑜𝑢𝑛𝑑 as above. Let 𝑆0 be a set of
𝐺-sets. There exists a limit ordinal 𝛼 with the following properties:

(1) We have 𝑆0 ∪ {𝐺𝐺} ⊂ 𝑂𝑏(𝐺-Sets𝛼).
(2) For any 𝑆 ∈ 𝑂𝑏(𝐺-Sets𝛼) and any 𝐺-set 𝑇 with size(𝑇) ≤ 𝐵𝑜𝑢𝑛𝑑(size(𝑆)), there

exists a 𝑆′ ∈ 𝑂𝑏(𝐺-Sets𝛼) that is isomorphic to 𝑇.
(3) For any countable diagram category ℐ and any functor 𝐹 ∶ ℐ → 𝐺-Sets𝛼, the

limit 𝑙𝑖𝑚ℐ 𝐹 and colimit 𝑐𝑜𝑙𝑖𝑚ℐ 𝐹 exist in 𝐺-Sets𝛼 and are the same as in 𝐺-Sets.

Proof. Omitted. Similar to but easier than the proof of Lemma 3.9.2 above. �

Lemma 3.10.2. Let 𝛼 be an ordinal as in Lemma 3.10.1 above. The category 𝐺-Sets𝛼
satisfies the following properties:

(1) The 𝐺-set 𝐺𝐺 is an object of 𝐺-Sets𝛼.
(2) (Co)Products, fibre products, and pushouts exist in 𝐺-Sets𝛼 and are the same as

their counterparts in 𝐺-Sets.
(3) Given an object 𝑈 of 𝐺-Sets𝛼, any 𝐺-stable subset 𝑂 ⊂ 𝑈 is isomorphic to an

object of 𝐺-Sets𝛼.

Proof. Omitted. �

3.11. Coverings of a site

Suppose that 𝒞 is a category (as in Categories, Definition 4.2.1) and that Cov(𝒞) is a proper
class of coverings satisfying properties (1), (2), and (3) of Sites, Definition 9.6.2. We list
them here:

(1) If 𝑉 → 𝑈 is an isomorphism, then {𝑉 → 𝑈} ∈ Cov(𝒞).
(2) If {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) and for each 𝑖 we have {𝑉𝑖𝑗 → 𝑈𝑖}𝑗∈𝐽𝑖

∈ Cov(𝒞), then
{𝑉𝑖𝑗 → 𝑈}𝑖∈𝐼,𝑗∈𝐽𝑖

∈ Cov(𝒞).
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(3) If {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) and 𝑉 → 𝑈 is a morphism of 𝒞, then 𝑈𝑖 ×𝑈 𝑉 exists
for all 𝑖 and {𝑈𝑖 ×𝑈 𝑉 → 𝑉}𝑖∈𝐼 ∈ Cov(𝒞).

For an ordinal 𝛼, we set Cov(𝒞)𝛼 = Cov(𝒞) ∩ 𝑉𝛼. Given an ordinal 𝛼 and a cardinal 𝜅, we
set Cov(𝒞)𝜅,𝛼 equal to the set of elements 𝒰 = {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞)𝛼 such that
|𝐼| ≤ 𝜅.

We recall the following notion, see Sites, Definition 9.8.2. Two families of morphisms,
{𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 and {𝜓𝑗 ∶ 𝑊𝑗 → 𝑈}𝑗∈𝐽, with the same target of 𝒞 are called combina-
torially equivalent if there exist maps 𝛼 ∶ 𝐼 → 𝐽 and 𝛽 ∶ 𝐽 → 𝐼 such that 𝜑𝑖 = 𝜓𝛼(𝑖) and
𝜓𝑗 = 𝜑𝛽(𝑗). This defines an equivalence relation on families of morphisms having a fixed
target.

Lemma 3.11.1. With notations as above. Let Cov0 ⊂ Cov(𝒞) be a set contained in Cov(𝒞).
There exist a cardinal 𝜅 and a limit ordinal 𝛼 with the following properties:

(1) We have Cov0 ⊂ Cov(𝒞)𝜅,𝛼.
(2) The set of coverings Cov(𝒞)𝜅,𝛼 satisfies (1), (2), and (3) of Sites, Definition 9.6.2

(see above). In other words (𝒞,Cov(𝒞)𝜅,𝛼) is a site.
(3) Every covering in Cov(𝒞) is combinatorially equivalent to a covering in Cov(𝒞)𝜅,𝛼.

Proof. To prove this, we first consider the set 𝒮 of all sets of morphisms of 𝒞 with fixed
target. In other words, an element of 𝒮 is a subset 𝑇 of Arrows(𝒞) such that all elements of
𝑇 have the same target. Given a family 𝒰 = {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 of morphisms with fixed
target, we define 𝑆𝑢𝑝𝑝(𝒰) = {𝜑 ∈ Arrows(𝒞) ∣ ∃𝑖 ∈ 𝐼, 𝜑 = 𝜑𝑖}. Note that two families
𝒰 = {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 and 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽 are combinatorially equivalent if and only
if 𝑆𝑢𝑝𝑝(𝒰) = 𝑆𝑢𝑝𝑝(𝒱). Next, we define 𝒮𝜏 ⊂ 𝒮 to be the subset 𝒮𝜏 = {𝑇 ∈ 𝒮 ∣ ∃ 𝒰 ∈
Cov(𝒞) 𝑇 = 𝑆𝑢𝑝𝑝(𝒰)}. For every element 𝑇 ∈ 𝒮𝜏, set 𝛽(𝑇) to equal the least ordinal 𝛽 such
that there exists a 𝒰 ∈ Cov(𝒞)𝛽 such that 𝑇 = Supp(𝒰). Finally, set 𝛽0 = sup𝑇∈𝑆𝜏

𝛽(𝑇). At
this point it follows that every 𝒰 ∈ Cov(𝒞) is combinatorially equivalent to some element
of Cov(𝒞)𝛽0

.

Let 𝜅 be the maximum of ℵ0, the cardinality |Arrows(𝒞)|,

sup{𝑈𝑖→𝑈}𝑖∈𝐼∈Cov(𝒞)𝛽0
|𝐼|, and sup{𝑈𝑖→𝑈}𝑖∈𝐼∈Cov0

|𝐼|.

Since 𝜅 is an infinite cardinal, we have 𝜅 ⊗ 𝜅 = 𝜅. Note that obviously Cov(𝒞)𝛽0
=

Cov(𝒞)𝜅,𝛽0
.

We define, by transfinite induction, a function 𝑓 which associates to every ordinal an ordinal
as follows. Let 𝑓(0) = 0. Given 𝑓(𝛼), we define 𝑓(𝛼 + 1) to be the least ordinal 𝛽 such that
the following hold:

(1) We have 𝛼 + 1 ≤ 𝛽 and 𝑓(𝛼) ≤ 𝛽.
(2) If {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞)𝜅,𝑓(𝛼) and for each 𝑖 we have {𝑊𝑖𝑗 → 𝑈𝑖}𝑗∈𝐽𝑖

∈
Cov(𝒞)𝜅,𝑓(𝛼), then {𝑊𝑖𝑗 → 𝑈}𝑖∈𝐼,𝑗∈𝐽𝑖

∈ Cov(𝒞)𝜅,𝛽.
(3) If {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞)𝜅,𝛼 and 𝑊 → 𝑈 is a morphism of 𝒞, then {𝑈𝑖 ×𝑈 𝑊 →

𝑊}𝑖∈𝐼 ∈ Cov(𝒞)𝜅,𝛽.
To see 𝛽 exists we note that clearly the collection of all coverings {𝑊𝑖𝑗 → 𝑈} and {𝑈𝑖 ×𝑈
𝑊 → 𝑊} that occur in (2) and (3) form a set. Hence there is some ordinal 𝛽 such that 𝑉𝛽
contains all of these coverings. Moreover, the index set of the covering {𝑊𝑖𝑗 → 𝑈} has
cardinality ∑𝑖∈𝐼 |𝐽𝑖| ≤ 𝜅 ⊗ 𝜅 = 𝜅, and hence these coverings are contained in Cov(𝒞)𝜅,𝛽.
Since every nonempty collection of ordinals has a least element we see that 𝑓(𝛼 + 1) is well
defined. Finally, if 𝛼 is a limit ordinal, then we set 𝑓(𝛼) = sup𝛼′<𝛼𝑓(𝛼′).
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Pick an ordinal 𝛽1 such that Arrows(𝒞) ⊂ 𝑉𝛽1
, Cov0 ⊂ 𝑉𝛽0

, and 𝛽1 ≥ 𝛽0. By construction
𝑓(𝛽1) ≥ 𝛽1 and we see that the same properties hold for 𝑉𝑓(𝛽1). Moreover, as 𝑓 is nonde-
creasing this remains true for any 𝛽 ≥ 𝛽1. Next, choose any ordinal 𝛽2 > 𝛽1 with cofinality
cf(𝛽2) > 𝜅. This is possible since the cofinality of ordinals gets arbitrarily large, see Propo-
sition 3.7.2. We claim that the pair 𝜅, 𝛼 = 𝑓(𝛽2) is a solution to the problem posed in the
lemma.
The first and third property of the lemma holds by our choices of 𝜅, 𝛽2 > 𝛽1 > 𝛽0 above.
Since 𝛽2 is a limit ordinal (as its cofinality is infinite) we get 𝑓(𝛽2) = sup𝛽<𝛽2

𝑓(𝛽). Hence
{𝑓(𝛽) ∣ 𝛽 < 𝛽2} ⊂ 𝑓(𝛽2) is a confinal subset. Hence we see that

𝑉𝛼 = 𝑉𝑓(𝛽2) = ⋃𝛽<𝛽2
𝑉𝑓(𝛽).

Now, let 𝒰 ∈ Cov𝜅,𝛼. We define 𝛽(𝒰) to be the least ordinal 𝛽 such that 𝒰 ∈ Cov𝜅,𝑓(𝛽). By
the above we see that always 𝛽(𝒰) < 𝛽2.
We have to show properties (1), (2), and (3) defining a site hold for the pair (𝒞,Cov𝜅,𝛼).
The first holds because by our choice of 𝛽2 all arrows of 𝒞 are contained in 𝑉𝑓(𝛽2). For the
third, we use that given a covering 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞)𝜅,𝛼 we have 𝛽(𝒰) < 𝛽2 and
hence any base change of 𝒰 is by construction of 𝑓 contained in Cov(𝒞)𝜅,𝑓(𝛽+1) and hence
in Cov(𝒞)𝜅,𝛼.
Finally, for the second condition, suppose that {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞)𝜅,𝑓(𝛼) and for each 𝑖
we have 𝒲𝑖 = {𝑊𝑖𝑗 → 𝑈𝑖}𝑗∈𝐽𝑖

∈ Cov(𝒞)𝜅,𝑓(𝛼). Consider the function 𝐼 → 𝛽2, 𝑖 ↦ 𝛽(𝒲𝑖).
Since the cofinality of 𝛽2 is > 𝜅 ≥ |𝐼| the image of this function cannot be a cofinal subset.
Hence there exists a 𝛽 < 𝛽1 such that 𝒲𝑖 ∈ Cov𝜅,𝑓(𝛽) for all 𝑖 ∈ 𝐼. It follows that the
covering {𝑊𝑖𝑗 → 𝑈}𝑖∈𝐼,𝑗∈𝐽𝑖

is an element of Cov(𝒞)𝜅,𝑓(𝛽+1) ⊂ Cov(𝒞)𝜅,𝛼 as desired. �

Remark 3.11.2. It is likely the case that, for some limit ordinal 𝛼, the set of coverings
Cov(𝒞)𝛼 satisfies the conditions of the lemma. This is after all what an application of the
reflection principle would appear to give (modulo caveats as described at the end of Section
3.8 and in Remark 3.9.3).

3.12. Abelian categories and injectives

The following lemma applies to the category of modules over a sheaf of rings on a site.

Lemma 3.12.1. Suppose given a big category 𝒜 (see Categories, Remark 4.2.2). Assume
𝒜 is abelian and has enough injectives. See Homology, Definitions 10.3.12 and 10.20.4.
Then for any given set of objects {𝐴𝑠}𝑠∈𝑆 of 𝒜, there is an abelian subcategory 𝒜′ ⊂ 𝒜
with the following properties:

(1) 𝑂𝑏(𝒜′) is a set,
(2) 𝑂𝑏(𝒜′) contains 𝐴𝑠 for each 𝑠 ∈ 𝑆,
(3) 𝒜′ has enough injectives, and
(4) an object of 𝒜′ is injective if and only if it is an injective object of 𝒜.

Proof. Omitted. �

3.13. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory

(4) Categories
(5) Topology
(6) Sheaves on Spaces
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CHAPTER 4

Categories

4.1. Introduction

Categories were first introduced in [EL45]. The category of categories (which is a proper
class) is a 2-category. Similarly, the category of stacks forms a 2-category. If you already
know about categories, but not about 2-categories you should read Section 4.25 as an in-
troduction to the formal definitions later on.

4.2. Definitions

We recall the definitions, partly to fix notation.

Definition 4.2.1. A category 𝒞 consists of the following data:
(1) A set of objects 𝑂𝑏(𝒞).
(2) For each pair 𝑥, 𝑦 ∈ 𝑂𝑏(𝒞) a set of morphisms 𝑀𝑜𝑟𝒞(𝑥, 𝑦).
(3) For each triple 𝑥, 𝑦, 𝑧 ∈ 𝑂𝑏(𝒞) a composition map 𝑀𝑜𝑟𝒞(𝑦, 𝑧) × 𝑀𝑜𝑟𝒞(𝑥, 𝑦) →

𝑀𝑜𝑟𝒞(𝑥, 𝑧), denoted (𝜙, 𝜓) ↦ 𝜙 ∘ 𝜓.
These data are to satisfy the following rules:

(1) For every element 𝑥 ∈ 𝑂𝑏(𝒞) there exists a morphism id𝑥 ∈ 𝑀𝑜𝑟𝒞(𝑥, 𝑥) such
that id𝑥 ∘ 𝜙 = 𝜙 and 𝜓 ∘ id𝑥 = 𝜓 whenever these compositions make sense.

(2) Composition is associative, i.e., (𝜙 ∘ 𝜓) ∘ 𝜒 = 𝜙 ∘ (𝜓 ∘ 𝜒) whenever these compo-
sitions make sense.

It is customary to require all the morphism sets 𝑀𝑜𝑟𝒞(𝑥, 𝑦) to be disjoint. In this way a
morphism 𝜙 ∶ 𝑥 → 𝑦 has a unique source 𝑥 and a unique target 𝑦. This is not strictly
necessary, although care has to be taken in formulating condition (2) above if it is not the
case. It is convenient and wewill often assume this is the case. In this case we say that 𝜙 and
𝜓 are composable if the source of 𝜙 is equal to the target of 𝜓, in which case 𝜙∘𝜓 is defined.
An equivalent definition would be to define a category as a quintuple (Ob,Arrows, 𝑠, 𝑡, ∘)
consisting of a set of objects, a set of morphisms (arrows), source, target and composition
subject to a long list of axioms. We will occasionally use this point of view.

Remark 4.2.2. Big categories. In some texts a category is allowed to have a proper class
of objects. We will allow this as well in these notes but only in the following list of cases
(to be updated as we go along). In particular, when we say: ``Let 𝒞 be a category'' then it
is understood that 𝑂𝑏(𝒞) is a set.

(1) The category Sets of sets.
(2) The category Ab of abelian groups.
(3) The category Groups of groups.
(4) Given a group 𝐺 the category 𝐺-Sets of sets with a left 𝐺-action.
(5) Given a ring 𝑅 the category Mod𝑅 of 𝑅-modules.
(6) Given a field 𝑘 the category of vector spaces over 𝑘.
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(7) The category of rings.
(8) The category of schemes.
(9) The category Top of topological spaces.

(10) Given a topological space 𝑋 the category PSh(𝑋) of presheaves of sets over 𝑋.
(11) Given a topological space 𝑋 the category Sh(𝑋) of sheaves of sets over 𝑋.
(12) Given a topological space 𝑋 the category PAb(𝑋) of presheaves of abelian groups

over 𝑋.
(13) Given a topological space 𝑋 the category Ab(𝑋) of sheaves of abelian groups

over 𝑋.
(14) Given a small category 𝒞 the category of functors from 𝒞 to Sets.
(15) Given a category 𝒞 the category of presheaves of sets over 𝒞.
(16) Given a site 𝒞 the category of sheaves of sets over 𝒞.

One of the reason to enumerate these here is to try and avoid working with something like
the ``collection'' of ``big'' categories which would be like working with the collection of all
classes which I think definitively is a meta-mathematical object.

Remark 4.2.3. It follows directly from the definition any two identity morphisms of and
object 𝑥 of 𝒜 are the same. Thus we may and will speak of the identity morphism id𝑥 of 𝑥.

Definition 4.2.4. A morphism 𝜙 ∶ 𝑥 → 𝑦 is an isomorphism of the category 𝒞 if there
exists a morphism 𝜓 ∶ 𝑦 → 𝑥 such that 𝜙 ∘ 𝜓 = id𝑦 and 𝜓 ∘ 𝜙 = id𝑥.

An isomorphism 𝜙 is also sometimes called an invertible morphism, and the morphism 𝜓
of the definition is called the inverse and denoted 𝜙−1. It is unique if it exists. Note that
given an object 𝑥 of a category 𝒜 the set of invertible elements Aut𝒜(𝑥) of 𝑀𝑜𝑟𝒜(𝑥, 𝑥)
forms a group under composition. This group is called the automorphism group of 𝑥 in 𝒜.

Definition 4.2.5. A groupoid is a category where every morphism is an isomorphism.

Example 4.2.6. A group 𝐺 gives rise to a groupoid with a single object 𝑥 and morphisms
𝑀𝑜𝑟(𝑥, 𝑥) = 𝐺, with the composition rule given by the group law in 𝐺. Every groupoid
with a single object is of this form.

Example 4.2.7. A set 𝐶 gives rise to a groupoid 𝒞 defined as follows: As objects we take
𝑂𝑏(𝒞) ∶= 𝐶 and for morphisms we take 𝑀𝑜𝑟(𝑥, 𝑦) empty if 𝑥 ≠ 𝑦 and equal to {id𝑥} if
𝑥 = 𝑦.

Definition 4.2.8. A functor 𝐹 ∶ 𝒜 → ℬ between two categories 𝒜, ℬ is given by the
following data:

(1) A map 𝐹 ∶ 𝑂𝑏(𝒜) → 𝑂𝑏(ℬ).
(2) For every 𝑥, 𝑦 ∈ 𝑂𝑏(𝒜) a map 𝐹 ∶ 𝑀𝑜𝑟𝒜(𝑥, 𝑦) → 𝑀𝑜𝑟ℬ(𝐹(𝑥), 𝐹(𝑦)), denoted

𝜙 ↦ 𝐹(𝜙).
These data should be compatible with composition and identity morphisms in the following
manner: 𝐹(𝜙 ∘ 𝜓) = 𝐹(𝜙) ∘ 𝐹(𝜓) for a composable pair (𝜙, 𝜓) of morphisms of 𝒜 and
𝐹(id𝑥) = id𝐹(𝑥).

Note that every category 𝒜 has an identity functor id𝒜. In addition, given a functor 𝐺 ∶
ℬ → 𝒞 and a functor 𝐹 ∶ 𝒜 → ℬ there is a composition functor 𝐺 ∘ 𝐹 ∶ 𝒜 → 𝒞 defined
in an obvious manner.

Definition 4.2.9. Let 𝐹 ∶ 𝒜 → ℬ be a functor.
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(1) We say 𝐹 is faithful if for any objects 𝑥, 𝑦 of 𝑂𝑏(𝒜) the map

𝐹 ∶ 𝑀𝑜𝑟𝒜(𝑥, 𝑦) → 𝑀𝑜𝑟ℬ(𝐹(𝑥), 𝐹(𝑦))

is injective.
(2) If these maps are all bijective then 𝐹 is called fully faithful.
(3) The functor 𝐹 is called essentially surjective if for any object 𝑦 ∈ 𝑂𝑏(ℬ) there

exists an object 𝑥 ∈ 𝑂𝑏(𝒜) such that 𝐹(𝑥) is isomorphic to 𝑦 in ℬ.

Definition 4.2.10. A subcategory of a category ℬ is a category 𝒜 whose objects and arrows
form subsets of the objects and arrows of 𝒜 and such that source, target and composition in
𝒜 agree with those of ℬ. We say 𝒜 is a full subcategory of ℬ if 𝑀𝑜𝑟𝒜(𝑥, 𝑦) = 𝑀𝑜𝑟ℬ(𝑥, 𝑦)
for all 𝑥, 𝑦 ∈ 𝑂𝑏(𝒜). We say 𝒜 is a strictly full subcategory of ℬ if it is a full subcategory
and given 𝑥 ∈ 𝑂𝑏(𝒜) any object of ℬ which is isomorphic to 𝑥 is also in 𝒜.

If 𝒜 ⊂ ℬ is a subcategory then the identity map is a functor from 𝒜 to ℬ. Furthermore
a subcategory 𝒜 ⊂ ℬ is full if and only if the inclusion functor is fully faithful. Note that
given a category ℬ the set of full subcategories of ℬ is the same as the set of subsets of
𝑂𝑏(ℬ).

Remark 4.2.11. Suppose that 𝒜 is a category. A functor 𝐹 from 𝒜 to Sets is a mathematical
object (i.e., it is a set not a class or a formula of set theory, see Sets, Section 3.2) even though
the category of sets is ``big''. Namely, the range of 𝐹 on objects will be a set 𝐹(𝑂𝑏(𝒜)) and
then we may think of 𝐹 as a functor between 𝒜 and the full subcategory of the category of
sets whose objects are elements of 𝐹(𝑂𝑏(𝒜)).

Example 4.2.12. A homomorphism 𝑝 ∶ 𝐺 → 𝐻 of groups gives rise to a functor between
the associated groupoids in Example 4.2.6. It is faithful (resp. fully faithful) if and only if
𝑝 is injective (resp. an isomorphism).

Example 4.2.13. Given a category 𝒞 and an object 𝑋 ∈ 𝑂𝑏(𝒞) we define the category of
objects over 𝑋, denoted 𝒞/𝑋 as follows. The objects of 𝒞/𝑋 are morphisms 𝑌 → 𝑋 for
some 𝑌 ∈ 𝑂𝑏(𝒞). Morphisms between objects 𝑌 → 𝑋 and 𝑌′ → 𝑋 are morphisms 𝑌 → 𝑌′

in 𝒞 that make the obvious diagram commute. Note that there is a functor 𝑝𝑋 ∶ 𝒞/𝑋 → 𝒞
which simply forgets the morphism. Moreover given a morphism 𝑓 ∶ 𝑋′ → 𝑋 in 𝒞 there
is an induced functor 𝐹 ∶ 𝒞/𝑋′ → 𝒞/𝑋 obtained by composition with 𝑓, and 𝑝𝑋 ∘ 𝐹 = 𝑝𝑋′.

Example 4.2.14. Given a category 𝒞 and an object 𝑋 ∈ 𝑂𝑏(𝒞) we define the category of
objects under 𝑋, denoted 𝑋/𝒞 as follows. The objects of 𝑋/𝒞 are morphisms 𝑋 → 𝑌 for
some 𝑌 ∈ 𝑂𝑏(𝒞). Morphisms between objects 𝑋 → 𝑌 and 𝑋 → 𝑌′ are morphisms 𝑌 → 𝑌′

in 𝒞 that make the obvious diagram commute. Note that there is a functor 𝑝𝑋 ∶ 𝑋/𝒞 → 𝒞
which simply forgets the morphism. Moreover given a morphism 𝑓 ∶ 𝑋′ → 𝑋 in 𝒞 there
is an induced functor 𝐹 ∶ 𝑋/𝒞 → 𝑋′/𝒞 obtained by composition with 𝑓, and 𝑝𝑋′ ∘ 𝐹 = 𝑝𝑋.

Definition 4.2.15. Let 𝐹, 𝐺 ∶ 𝒜 → ℬ be functors. A natural transformation, or a mor-
phism of functors 𝑡 ∶ 𝐹 → 𝐺, is a collection {𝑡𝑥}𝑥∈𝑂𝑏(𝒜) such that

(1) 𝑡𝑥 ∶ 𝐹(𝑥) → 𝐺(𝑥) is a morphism in the category ℬ, and
(2) for every morphism 𝜙 ∶ 𝑥 → 𝑦 of 𝒜 the following diagram is commutative

𝐹(𝑥)
𝑡𝑥 //

𝐹(𝜙)
��

𝐺(𝑥)

𝐺(𝜙)
��

𝐹(𝑦)
𝑡𝑦 // 𝐺(𝑦)
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Sometimes we use the diagram

𝒜
𝐹
&&

𝐺
88�� 𝑡 ℬ

to indicate that 𝑡 is a morphism from 𝐹 to 𝐺.

Note that every functor 𝐹 comes with the identity transformation id𝐹 ∶ 𝐹 → 𝐹. In addition,
given a morphism of functors 𝑡 ∶ 𝐹 → 𝐺 and a morphism of functors 𝑠 ∶ 𝐸 → 𝐹 then the
composition 𝑡 ∘ 𝑠 is defined by the rule

(𝑡 ∘ 𝑠)𝑥 = 𝑡𝑥 ∘ 𝑠𝑥 ∶ 𝐸(𝑥) → 𝐺(𝑥)

for 𝑥 ∈ 𝑂𝑏(𝒜). It is easy to verify that this is indeed a morphism of functors from 𝐸 to 𝐺.
In this way, given categories 𝒜 and ℬ we obtain a new category, namely the category of
functors between 𝒜 and ℬ.

Remark 4.2.16. This is one instance where the same thing does not hold if 𝒜 is a ``big''
category. For example consider functors Sets → Sets. As we have currently defined it such
a functor is a class and not a set. In other words, it is given by a formula in set theory (with
some variables equal to specified sets)! It is not a good idea to try to consider all possible
formulae of set theory as part of the definition of a mathematical object. The same problem
presents itself when considering sheaves on the category of schemes for example. We will
come back to this point later.

Definition 4.2.17. An equivalence of categories 𝐹 ∶ 𝒜 → ℬ is a functor such that there
exists a functor 𝐺 ∶ ℬ → 𝒜 such that the compositions 𝐹 ∘ 𝐺 and 𝐺 ∘ 𝐹 are isomorphic to
the identity functors idℬ, respectively id𝒜. In this case we say that 𝐺 is a quasi-inverse to
𝐹.

Lemma 4.2.18. Let 𝐹 ∶ 𝒜 → ℬ be a fully faithful functor. Suppose for every 𝑋 ∈ 𝑂𝑏(ℬ)
given an object 𝑗(𝑋) of 𝒜 and an isomorphism 𝑖𝑋 ∶ 𝑋 → 𝐹(𝑗(𝑋)). Then there is a unique
functor 𝑗 ∶ ℬ → 𝒜 such that 𝑗 extends the rule on objects, and the isomorphisms 𝑖𝑋 define
an isomorphism of functors idℬ → 𝐹 ∘ 𝑗. Moreover, 𝑗 and 𝐹 are quasi-inverse equivalences
of categories.

Proof. This lemma proves itself. �

Lemma 4.2.19. A functor is an equivalence of categories if and only if it is both fully
faithful and essentially surjective.

Proof. Let 𝐹 ∶ 𝒜 → ℬ be essentially surjective and fully faithful. As by convention all
categories are small and as 𝐹 is essentially surjective we can, using the axiom of choice,
choose for every 𝑋 ∈ 𝑂𝑏(ℬ) an object 𝑗(𝑋) of 𝒜 and an isomorphism 𝑖𝑋 ∶ 𝑋 → 𝐹(𝑗(𝑋)).
Then we apply Lemma 4.2.18 using that 𝐹 is fully faithful. �

Definition 4.2.20. Let 𝒜, ℬ be categories. We define the product category to be the cate-
gory 𝒜 × ℬ to be the category with objects 𝑂𝑏(𝒜 × ℬ) = 𝑂𝑏(𝒜) × 𝑂𝑏(ℬ) and

𝑀𝑜𝑟𝒜×ℬ((𝑥, 𝑦), (𝑥′, 𝑦′)) ∶= 𝑀𝑜𝑟𝒜(𝑥, 𝑥′) × 𝑀𝑜𝑟ℬ(𝑦, 𝑦′).

Composition is defined componentwise.
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4.3. Opposite Categories and the Yoneda Lemma

Definition 4.3.1. Given a category 𝒞 the opposite category 𝒞𝑜𝑝𝑝 is the category with the
same objects as 𝒞 but all morphisms reversed.

In other words 𝑀𝑜𝑟𝒞𝑜𝑝𝑝(𝑥, 𝑦) = 𝑀𝑜𝑟𝒞(𝑦, 𝑥). Composition in 𝒞𝑜𝑝𝑝 is the same as in 𝒞 except
backwards: if 𝜙 ∶ 𝑦 → 𝑧 and 𝜓 ∶ 𝑥 → 𝑦 in 𝒞𝑜𝑝𝑝 then 𝜙 ∘𝑜𝑝𝑝 𝜓 ∶= 𝜓 ∘ 𝜙.

Definition 4.3.2. Let 𝒞, 𝒮 be categories. A contravariant functor 𝐹 from 𝒞 to 𝒮 is a functor
𝒞𝑜𝑝𝑝 → 𝒮.

Concretely, a contravariant functor 𝐹 is given by a map 𝐹 ∶ 𝑂𝑏(𝒞) → 𝑂𝑏(𝒮) and for every
morphism 𝜓 ∶ 𝑥 → 𝑦 in 𝒞 a morphism 𝐹(𝜓) ∶ 𝐹(𝑦) → 𝐹(𝑥). These should satisfy the
property that, given another morphism 𝜙 ∶ 𝑦 → 𝑧, we have 𝐹(𝜙 ∘ 𝜓) = 𝐹(𝜓) ∘ 𝐹(𝜙) as
morphisms 𝐹(𝑧) → 𝐹(𝑥). (Note the reverse of order.)

Definition 4.3.3. Let 𝒞 be a category.
(1) A presheaf of sets on 𝒞 or simply a presheaf is a contravariant functor 𝐹 from 𝒞

to Sets.
(2) The category of presheaves is denoted PSh(𝒞).

Of course the category of presheaves is a proper class.

Example 4.3.4. Functor of points. For any 𝑈 ∈ 𝑂𝑏(𝒞) there is a contravariant functor
ℎ𝑈 ∶ 𝒞 ⟶ Sets

𝑋 ⟼ 𝑀𝑜𝑟𝒞(𝑋, 𝑈)
which takes an object 𝑋 to the set 𝑀𝑜𝑟𝒞(𝑋, 𝑈). In other words ℎ𝑈 is a presheaf. Given a
morphism 𝑓 ∶ 𝑋 → 𝑌 the corresponding map ℎ𝑈(𝑓) ∶ 𝑀𝑜𝑟𝒞(𝑌, 𝑈) → 𝑀𝑜𝑟𝒞(𝑋, 𝑈) takes 𝜙
to 𝜙∘𝑓. Wewill always denote this presheaf ℎ𝑈 ∶ 𝒞𝑜𝑝𝑝 → Sets. It is called the representable
presheaf associated to 𝑈 If 𝒞 is the category of schemes this functor is sometimes referred
to as the functor of points of 𝑈.

Note that given a morphism 𝜙 ∶ 𝑈 → 𝑉 in 𝒞 we get a corresponding natural transformation
of functors ℎ(𝜙) ∶ ℎ𝑈 → ℎ𝑉 defined simply by composing with the morphism 𝑈 → 𝑉. It
is trivial to see that this turns composition of morphisms in 𝒞 into composition of transfor-
mations of functors. In other words we get a functor

ℎ ∶ 𝒞 ⟶ Fun(𝒞𝑜𝑝𝑝, Sets) = PSh(𝒞)
Note that the target is a ``big'' category, see Remark 4.2.2. On the other hand, ℎ is an actual
mathematical object (i.e. a set), compare Remark 4.2.11.

Lemma 4.3.5. Yoneda lemma. Let 𝑈, 𝑉 ∈ 𝑂𝑏(𝒞). Given any morphism of functors 𝑠 ∶
ℎ𝑈 → ℎ𝑉 there is a unique morphism 𝜙 ∶ 𝑈 → 𝑉 such that ℎ(𝜙) = 𝑠. In other words the
functor ℎ is fully faithful. More generally, given any contravariant functor 𝐹 and any object
𝑈 of 𝒞 we have a natural bijection

𝑀𝑜𝑟PSh(𝒞)(ℎ𝑈, 𝐹) ⟶ 𝐹(𝑈), 𝑠 ⟼ 𝑠𝑈(id𝑈).

Proof. Just take 𝜙 = 𝑠𝑈(id𝑈) ∈ 𝑀𝑜𝑟𝒞(𝑈, 𝑉). �

Definition 4.3.6. A contravariant functor 𝐹 ∶ 𝒞 → Sets is said to be representable if it is
isomorphic to the functor of points ℎ𝑈 for some object 𝑈 of 𝒞.

Choose an object 𝑈 of 𝒞 and an isomorphism 𝑠 ∶ ℎ𝑈 → 𝐹. The Yoneda lemma guarantees
that the pair (𝑈, 𝑠) is unique up to unique isomorphism. The object 𝑈 is called an object
representing 𝐹.
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4.4. Products of pairs

Definition 4.4.1. Let 𝑥, 𝑦 ∈ 𝑂𝑏(𝒞), A product of 𝑥 and 𝑦 is an object 𝑥×𝑦 ∈ 𝑂𝑏(𝒞) together
with morphisms 𝑝 ∈ 𝑀𝑜𝑟𝒞(𝑥 × 𝑦, 𝑥) and 𝑞 ∈ 𝑀𝑜𝑟𝒞(𝑥 × 𝑦, 𝑦) such that the following
universal property holds: for any 𝑤 ∈ 𝑂𝑏(𝒞) and morphisms 𝛼 ∈ 𝑀𝑜𝑟𝒞(𝑤, 𝑥) and 𝛽 ∈
𝑀𝑜𝑟𝒞(𝑤, 𝑦) there is a unique 𝛾 ∈ 𝑀𝑜𝑟𝒞(𝑤, 𝑥 × 𝑦) making the diagram

𝑤
𝛽

**
𝛾

''
𝛼

  

𝑥 × 𝑦
𝑝
��

𝑞
// 𝑧

𝑥
commute.

If a product exists it is unique up to unique isomorphism. This follows from the Yoneda
lemma as the definition requires 𝑥 × 𝑦 to be an object of 𝒞 such that

ℎ𝑥×𝑦(𝑤) = ℎ𝑥(𝑤) × ℎ𝑦(𝑤)
functorially in 𝑤. In other words the product 𝑥 × 𝑦 is an object representing the functor
𝑤 ↦ ℎ𝑥(𝑤) × ℎ𝑦(𝑤).

Definition 4.4.2. We say the category 𝒞 has products of pairs of objects if a product 𝑥 × 𝑦
exists for any 𝑥, 𝑦 ∈ 𝑂𝑏(𝒞).

We use this terminology to distinguish this notion from the notion of ``having products''
or ``having finite products'' which usually means something else (in particular it always
implies there exists a final object).

4.5. Coproducts of pairs

Definition 4.5.1. Let 𝑥, 𝑦 ∈ 𝑂𝑏(𝒞), A coproduct, or amalgamated sum of 𝑥 and 𝑦 is an
object 𝑥 ⨿ 𝑦 ∈ 𝑂𝑏(𝒞) together with morphisms 𝑖 ∈ 𝑀𝑜𝑟𝒞(𝑥, 𝑥 ⨿ 𝑦) and 𝑗 ∈ 𝑀𝑜𝑟𝒞(𝑦, 𝑥 ⨿ 𝑦)
such that the following universal property holds: for any 𝑤 ∈ 𝑂𝑏(𝒞) and morphisms 𝛼 ∈
𝑀𝑜𝑟𝒞(𝑥, 𝑤) and 𝛽 ∈ 𝑀𝑜𝑟𝒞(𝑦, 𝑤) there is a unique 𝛾 ∈ 𝑀𝑜𝑟𝒞(𝑥⨿𝑦, 𝑤) making the diagram

𝑦

𝑗
�� 𝛽

��

𝑥 𝑖 //

𝛼
**

𝑥 ⨿ 𝑦
𝛾

'' 𝑤
commute.

If a coproduct exists it is unique up to unique isomorphism. This follows from the Yoneda
lemma (applied to the opposite category) as the definition requires 𝑥 ⨿ 𝑦 to be an object of
𝒞 such that

𝑀𝑜𝑟𝒞(𝑥 ⨿ 𝑦, 𝑤) = 𝑀𝑜𝑟𝒞(𝑥, 𝑤) × 𝑀𝑜𝑟𝒞(𝑦, 𝑤)
functorially in 𝑤.

Definition 4.5.2. We say the category 𝒞 has coproducts of pairs of objects if a coproduct
𝑥 ⨿ 𝑦 exists for any 𝑥, 𝑦 ∈ 𝑂𝑏(𝒞).
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We use this terminology to distinguish this notion from the notion of ``having coproducts''
or ``having finite coproducts'' which usually means something else (in particular it always
implies there exists an initial object in 𝒞).

4.6. Fibre products

Definition 4.6.1. Let 𝑥, 𝑦, 𝑧 ∈ 𝑂𝑏(𝒞), 𝑓 ∈ 𝑀𝑜𝑟𝒞(𝑥, 𝑦) and 𝑔 ∈ 𝑀𝑜𝑟𝒞(𝑧, 𝑦). A fibre
product of 𝑓 and 𝑔 is an object 𝑥×𝑦𝑧 ∈ 𝑂𝑏(𝒞) together withmorphisms 𝑝 ∈ 𝑀𝑜𝑟𝒞(𝑥×𝑦𝑧, 𝑥)
and 𝑞 ∈ 𝑀𝑜𝑟𝒞(𝑥 ×𝑦 𝑧, 𝑧) making the diagram

𝑥 ×𝑦 𝑧
𝑞 //

𝑝

��

𝑧

𝑔

��
𝑥

𝑓 // 𝑦

commute, and such that the following universal property holds: for any 𝑤 ∈ 𝑂𝑏(𝒞) and
morphisms 𝛼 ∈ 𝑀𝑜𝑟𝒞(𝑤, 𝑥) and 𝛽 ∈ 𝑀𝑜𝑟𝒞(𝑤, 𝑧) with 𝑓 ∘ 𝛼 = 𝑔 ∘ 𝛽 there is a unique
𝛾 ∈ 𝑀𝑜𝑟𝒞(𝑤, 𝑥 ×𝑧 𝑦) making the diagram

𝑤
𝛽

**
𝛾

''
𝛼

  

𝑥 ×𝑦 𝑧

𝑝

��

𝑞
// 𝑧

𝑔

��
𝑥

𝑓 // 𝑧
commute.
If a fibre product exists it is unique up to unique isomorphism. This follows from the Yoneda
lemma as the definition requires 𝑥 ×𝑦 𝑧 to be an object of 𝒞 such that

ℎ𝑥×𝑦𝑧(𝑤) = ℎ𝑥(𝑤) ×ℎ𝑦(𝑤) ℎ𝑧(𝑤)

functorially in 𝑤. In other words the fibre product 𝑥 ×𝑦 𝑧 is an object representing the
functor 𝑤 ↦ ℎ𝑥(𝑤) ×ℎ𝑦(𝑤) ℎ𝑧(𝑤).

Definition 4.6.2. We say the category 𝒞 has fibre products if the fibre product exists for
any 𝑓 ∈ 𝑀𝑜𝑟𝒞(𝑥, 𝑧) and 𝑔 ∈ 𝑀𝑜𝑟𝒞(𝑦, 𝑧).
Definition 4.6.3. A morphism 𝑓 ∶ 𝑥 → 𝑦 of a category 𝒞 is said to be representable, if
and only if for every morphism 𝑧 → 𝑦 in 𝒞 the fibre product 𝑧 ×𝑦 𝑥 exists.
Lemma 4.6.4. Let 𝒞 be a category. Let 𝑓 ∶ 𝑥 → 𝑦, and 𝑔 ∶ 𝑦 → 𝑧 be representable. Then
𝑔 ∘ 𝑓 ∶ 𝑥 → 𝑧 is representable.
Proof. Omitted. �

Lemma 4.6.5. Let 𝒞 be a category. Let 𝑓 ∶ 𝑥 → 𝑦 be representable. Let 𝑦′ → 𝑦 be a
morphism of 𝒞. Then the morphism 𝑥′ ∶= 𝑥 ×𝑦 𝑦′ → 𝑦′ is representable also.
Proof. Let 𝑧 → 𝑦′ be a morphism. The fibre product 𝑥′ ×𝑦′ 𝑧 is supposed to represent the
functor

𝑤 ↦ ℎ𝑥′(𝑤) ×ℎ𝑦′(𝑤) ℎ𝑧(𝑤)
= (ℎ𝑥(𝑤) ×ℎ𝑦(𝑤) ℎ𝑦′(𝑤)) ×ℎ𝑦′(𝑤) ℎ𝑧(𝑤)
= ℎ𝑛(𝑤) ×ℎ𝑦(𝑤) ℎ𝑧(𝑤)
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which is representable by assumption. �

4.7. Examples of fibre products

In this section we list examples of fibre products and we describe them.
As a really trivial first example we observe that the category of sets has fibred products and
hence every morphism is representable. Namely, if 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑍 → 𝑌 are maps
of sets then we define 𝑋 ×𝑌 𝑍 as the subset of 𝑋 × 𝑍 consisting of pairs (𝑥, 𝑧) such that
𝑓(𝑥) = 𝑔(𝑧). The morphisms 𝑝 ∶ 𝑋 ×𝑌 𝑍 → 𝑋 and 𝑞 ∶ 𝑋 ×𝑈 𝑍 → 𝑍 are the projection
maps (𝑥, 𝑧) ↦ 𝑥, and (𝑥, 𝑧) ↦ 𝑧. Finally, if 𝛼 ∶ 𝑊 → 𝑋 and 𝛽 ∶ 𝑊 → 𝑍 are morphisms
such that 𝑓 ∘ 𝛼 = 𝑔 ∘ 𝛽 then the map 𝑊 → 𝑋 × 𝑌, 𝑤 ↦ (𝛼(𝑤), 𝛽(𝑤)) obviously ends up in
𝑋 ×𝑌 𝑍 as desired.
Inmany categories whose objects are sets endowedwith certain types of algebraic structures
the fibre product of the underlying sets also provides the fibre product in the category. For
example, suppose that 𝑋, 𝑌 and 𝑍 above are groups and that 𝑓, 𝑔 are homomorphisms of
groups. Then the set-theoretic fibre product 𝑋×𝑌 𝑍 inherits the structure of a group, simply
by defining the product of two pairs by the formula (𝑥, 𝑧) ⋅ (𝑥′, 𝑧′) = (𝑥𝑥′, 𝑧𝑧′). Here we
list those categories for which a similar reasoning works.

(1) The category Groups of groups.
(2) The category 𝐺-Sets of sets endowed with a left 𝐺-action for some fixed group

𝐺.
(3) The category of rings.
(4) The category of 𝑅-modules given a ring 𝑅.

4.8. Fibre products and representability

In this section we work out fibre products in the category of contravariant functors from
a category to the category of sets. This will later be superceded during the discussion of
sites, presheaves, sheaves. Of some interest is the notion of a ``representable morphism''
between such functors.

Lemma 4.8.1. Let 𝒞 be a category. Let 𝐹, 𝐺, 𝐻 ∶ 𝒞𝑜𝑝𝑝 → Sets be functors. Let 𝑎 ∶ 𝐹 → 𝐺
and 𝑏 ∶ 𝐻 → 𝐺 be transformations of functors. Then the fibre product 𝐹 ×𝑎,𝐺,𝑏 𝐻 in the
category FUN(𝒞𝑜𝑝𝑝, Sets) exists and is given by the formula

(𝐹 ×𝑎,𝐺,𝑏 𝐻)(𝑋) = 𝐹(𝑋) ×𝑎𝑋,𝐺(𝑋),𝑏𝑋
𝐻(𝑋)

for any object 𝑋 of 𝒞.

Proof. Omitted. �

As a special case suppose we have a morphism 𝑎 ∶ 𝐹 → 𝐺, an object 𝑈 ∈ 𝑂𝑏(𝒞) and
an element 𝜉 ∈ 𝐺(𝑈). According to the Yoneda Lemma 4.3.5 this gives a transformation
𝜉 ∶ ℎ𝑈 → 𝐺. The fibre product in this case is described by the rule

(ℎ𝑈 ×𝜉,𝐺,𝑎 𝐹)(𝑋) = {(𝑓, 𝜉′) ∣ 𝑓 ∶ 𝑋 → 𝑈, 𝜉′ ∈ 𝐹(𝑋), 𝐺(𝑓)(𝜉) = 𝑎𝑋(𝜉′)}
If 𝐹, 𝐺 are also representable, then this is the functor representing the fibre product, if it
exists, see Section 4.6. The analogy with Definition 4.6.3 prompts us to define a notion of
representable transformations.

Definition 4.8.2. Let 𝒞 be a category. Let 𝐹, 𝐺 ∶ 𝒞𝑜𝑝𝑝 → Sets be functors. We say a
morphism 𝑎 ∶ 𝐹 → 𝐺 is representable, or that 𝐹 is relatively representable over 𝐺, if for
every 𝑈 ∈ 𝑂𝑏(𝒞) and any 𝜉 ∈ 𝐺(𝑈) the functor ℎ𝑈 ×𝐺 𝐹 is representable.
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Lemma 4.8.3. Let 𝒞 be a category. Let 𝑎 ∶ 𝐹 → 𝐺 be a morphism of contravariant
functors from 𝒞 to Sets. If 𝑎 is representable, and 𝐺 is a representable functor, then 𝐹 is
representable.

Proof. Omitted. �

Lemma 4.8.4. Let 𝒞 be a category. Let 𝐹 ∶ 𝒞𝑜𝑝𝑝 → Sets be a functor. Assume 𝒞 has
products of pairs of objects and fibre products. The following are equivalent:

(1) The diagonal 𝐹 → 𝐹 × 𝐹 is representable.
(2) For every 𝑈 in 𝒞, and any 𝜉 ∈ 𝐹(𝑈) the map 𝜉 ∶ ℎ𝑈 → 𝐹 is representable.

Proof. Suppose the diagonal is representable, and let 𝑈, 𝜉 be given. Consider any 𝑉 ∈
𝑂𝑏(𝒞) and any 𝜉′ ∈ 𝐹(𝑉). Note that ℎ𝑈 × ℎ𝑉 = ℎ𝑈×𝑉 is representable. Hence the fibre
product of themaps (𝜉, 𝜉′) ∶ ℎ𝑈×ℎ𝑉 → 𝐹×𝐹 and 𝐹 → 𝐹×𝐹 is representable by assumption.
This means there exists 𝑊 ∈ 𝑂𝑏(𝒞), morphisms 𝑊 → 𝑈, 𝑊 → 𝑉 and ℎ𝑊 → 𝐹 such that

ℎ𝑊

��

// 𝐹

��
ℎ𝑈 × ℎ𝑉

// 𝐹 × 𝐹

is cartesian. We leave it to the reader to see that this implies that ℎ𝑊 = ℎ𝑈 ×𝐹 ℎ𝑉 as desired.

Assume (2) holds. Consider any 𝑉 ∈ 𝑂𝑏(𝒞) and any (𝜉, 𝜉′) ∈ (𝐹 × 𝐹)(𝑉). We have to show
that ℎ𝑉 ×𝐹×𝐹 𝐹 is representable. What we know is that ℎ𝑉 ×𝜉,𝐹,𝜉′ ℎ𝑉 is representable, say by
𝑊 in 𝒞 with corresponding morphisms 𝑎, 𝑎′ ∶ 𝑊 → 𝑉 (such that 𝜉 ∘ 𝑎 = 𝜉′ ∘ 𝑎′). Consider
𝑊′ = 𝑊 ×(𝑎,𝑎′),𝑉×𝑉 𝑉. It is formal to show that 𝑊′ represents ℎ𝑉 ×𝐹×𝐹 𝐹 because

ℎ𝑊′ = ℎ𝑊 ×ℎ𝑉×ℎ𝑉
ℎ𝑉 = (ℎ𝑉 ×𝜉,𝐹,𝜉′ ℎ𝑉) ×ℎ𝑉×ℎ𝑉

ℎ𝑉 = 𝐹 ×𝐹×𝐹 ℎ𝑉.

�

4.9. Push outs

The dual notion to fibre products is that of push outs.

Definition 4.9.1. Let 𝑥, 𝑦, 𝑧 ∈ 𝑂𝑏(𝒞), 𝑓 ∈ 𝑀𝑜𝑟𝒞(𝑦, 𝑥) and 𝑔 ∈ 𝑀𝑜𝑟𝒞(𝑦, 𝑧). A push out of
𝑓 and 𝑔 is an object 𝑥 ⨿𝑦 𝑧 ∈ 𝑂𝑏(𝒞) together with morphisms 𝑝 ∈ 𝑀𝑜𝑟𝒞(𝑥, 𝑥 ⨿𝑦 𝑧) and
𝑞 ∈ 𝑀𝑜𝑟𝒞(𝑧, 𝑥 ⨿𝑦 𝑧) making the diagram

𝑦
𝑔 //

𝑓

��

𝑧

𝑞
��

𝑥
𝑝 // 𝑥 ⨿𝑦 𝑧

commute, and such that the following universal property holds: For any 𝑤 ∈ 𝑂𝑏(𝒞) and
morphisms 𝛼 ∈ 𝑀𝑜𝑟𝒞(𝑥, 𝑤) and 𝛽 ∈ 𝑀𝑜𝑟𝒞(𝑧, 𝑤) with 𝛼 ∘ 𝑓 = 𝛽 ∘ 𝑔 there is a unique
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𝛾 ∈ 𝑀𝑜𝑟𝒞(𝑥 ⨿𝑧 𝑦, 𝑤) making the diagram

𝑦
𝑔 //

𝑓

��

𝑧

𝑞
�� 𝛽

��

𝑥
𝑝 //

𝛼

**

𝑥 ⨿𝑦 𝑧
𝛾

'' 𝑤

commute.

It is possible and straightforward to prove the uniqueness of the triple (𝑥 ⨿𝑦 𝑧, 𝑝, 𝑞) up to
unique isomorphism (if it exists) by direct arguments. Another possibility is to think of the
coproduct as the product in the opposite category, thereby getting this uniqueness for free
from the discussion in Section 4.6.

4.10. Equalizers

Definition 4.10.1. Suppose that 𝑋, 𝑌 are objects of a category 𝒞 and that 𝑎, 𝑏 ∶ 𝑋 → 𝑌 are
morphisms. We say a morphism 𝑒 ∶ 𝑍 → 𝑋 is an equalizer for the pair (𝑎, 𝑏) if 𝑎 ∘ 𝑒 = 𝑏 ∘ 𝑒
and if (𝑍, 𝑒) satisfies the following universal property: For every morphism 𝑡 ∶ 𝑊 → 𝑋 in
𝒞 such that 𝑎 ∘ 𝑡 = 𝑏 ∘ 𝑡 there exists a unique morphism 𝑠 ∶ 𝑊 → 𝑍 such that 𝑡 = 𝑒 ∘ 𝑠.

As in the case of the fibre product above, equalizers when they exist are unique up to unique
isomorphism. There is a straightforward generalization of this definition to the case where
we have more than 2 morphisms.

4.11. Coequalizers

Definition 4.11.1. Suppose that 𝑋, 𝑌 are objects of a category 𝒞 and that 𝑎, 𝑏 ∶ 𝑋 → 𝑌 are
morphisms. We say a morphism 𝑐 ∶ 𝑌 → 𝑍 is a coequalizer for the pair (𝑎, 𝑏) if 𝑐 ∘ 𝑎 = 𝑐 ∘ 𝑏
and if (𝑍, 𝑐) satisfies the following universal property: For every morphism 𝑡 ∶ 𝑌 → 𝑊 in
𝒞 such that 𝑡 ∘ 𝑎 = 𝑡 ∘ 𝑏 there exists a unique morphism 𝑠 ∶ 𝑍 → 𝑊 such that 𝑡 = 𝑠 ∘ 𝑐.

As in the case of the push outs above, coequalizers when they exist are unique up to unique
isomorphism, and this follows from the uniqueness of equalizers upon considering the op-
posite category. There is a straightforward generalization of this definition to the case where
we have more than 2 morphisms.

4.12. Initial and final objects

Definition 4.12.1. Let 𝒞 be a category.
(1) An object 𝑥 of the category 𝒞 is called an initial object if for every object 𝑦 of 𝒞

there is exactly one morphism 𝑥 → 𝑦.
(2) An object 𝑥 of the category 𝒞 is called a final object if for every object 𝑦 of 𝒞

there is exactly one morphism 𝑦 → 𝑥.

In the category of sets the empty set ∅ is an initial object, and in fact the only initial object.
Also, any singleton, i.e., a set with one element, is a final object (so it is not unique).
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4.13. Limits and colimits

Let 𝒞 be a category. A diagram in 𝒞 is simply a functor 𝑀 ∶ ℐ → 𝒞. We say that ℐ is the
index category or that 𝑀 is an ℐ-diagram. We will use the notation 𝑀𝑖 to denote the image
of the object 𝑖 of ℐ. Hence for 𝜙 ∶ 𝑖 → 𝑖′ a morphism in ℐ we have 𝑀(𝜙) ∶ 𝑀𝑖 → 𝑀𝑖′.

Definition 4.13.1. A limit of the ℐ-diagram 𝑀 in the category 𝒞 is given by an object
𝑙𝑖𝑚𝐼 𝑀 in 𝒞 together with morphisms 𝑝𝑖 ∶ 𝑙𝑖𝑚𝐼 𝑀 → 𝑀𝑖 such that

(1) for 𝜙 ∶ 𝑖 → 𝑖′ a morphism in ℐ we have 𝑝𝑖′ = 𝑀(𝜙) ∘ 𝑝𝑖, and
(2) for any object 𝑊 in 𝒞 and any family of morphisms 𝑞𝑖 ∶ 𝑊 → 𝑀𝑖 such that for

all 𝜙 ∶ 𝑖 → 𝑖′ in ℐ we have 𝑞𝑖′ = 𝑀(𝜙) ∘ 𝑞𝑖 there exists a unique morphism
𝑞 ∶ 𝑊 → 𝑙𝑖𝑚𝐼 𝑀 such that 𝑞𝑖 = 𝑝𝑖 ∘ 𝑞 for every object 𝑖 of ℐ.

Limits (𝑙𝑖𝑚𝐼 𝑀, (𝑝𝑖)𝑖∈𝑂𝑏(ℐ)) are (if they exist) unique up to unique isomorphism by the
uniqueness requirement in the definition. Products of pairs, fibred products, and equal-
izers are examples of limits. The limit over the empty diagram is a final object of 𝒞. In the
category of sets all limits exist. The dual notion is that of colimits.

Definition 4.13.2. A colimit of the ℐ-diagram 𝑀 in the category 𝒞 is given by an object
𝑐𝑜𝑙𝑖𝑚𝐼 𝑀 in 𝒞 together with morphisms 𝑠𝑖 ∶ 𝑀𝑖 → 𝑐𝑜𝑙𝑖𝑚𝐼 𝑀 such that

(1) for 𝜙 ∶ 𝑖 → 𝑖′ a morphism in ℐ we have 𝑠𝑖 = 𝑠𝑖′ ∘ 𝑀(𝜙), and
(2) for any object 𝑊 in 𝒞 and any family of morphisms 𝑡𝑖 ∶ 𝑀𝑖 → 𝑊 such that for

all 𝜙 ∶ 𝑖 → 𝑖′ in ℐ we have 𝑡𝑖 = 𝑡𝑖′ ∘ 𝑀(𝜙) there exists a unique morphism
𝑡 ∶ 𝑐𝑜𝑙𝑖𝑚𝐼 𝑀 → 𝑊 such that 𝑡𝑖 = 𝑡 ∘ 𝑠𝑖 for every object 𝑖 of ℐ.

Colimits (𝑐𝑜𝑙𝑖𝑚𝐼 𝑀, (𝑠𝑖)𝑖∈𝑂𝑏(ℐ)) are (if they exist) unique up to unique isomorphism by the
uniqueness requirement in the definition. Coproducts of pairs, push outs, and coequalizers
are examples of colimits. The colimit over an empty diagram is an initial object of 𝒞. In
the category of sets all colimits exist.

Remark 4.13.3. The index category of a (co)limit will never allowed to have a proper class
of objects. In this project it means that it cannot be one of the categories listed in Remark
4.2.2

Remark 4.13.4. We often write 𝑙𝑖𝑚𝑖 𝑀𝑖, 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖, 𝑙𝑖𝑚𝑖∈ℐ 𝑀𝑖, or 𝑐𝑜𝑙𝑖𝑚𝑖∈ℐ 𝑀𝑖 instead of
the versions indexed by ℐ. Using this notation, and using the description of limits and
colimits of sets in Section 4.14 below, we can say the following. Let 𝑀 ∶ ℐ → 𝒞 be a
diagram.

(1) The object 𝑙𝑖𝑚𝑖 𝑀𝑖 if it exists satisfies the following property

𝑀𝑜𝑟𝒞(𝑊, 𝑙𝑖𝑚𝑖 𝑀𝑖) = 𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑊, 𝑀𝑖)

where the limit on the right takes place in the category of sets.
(2) The object 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖 if it exists satisfies the following property

𝑀𝑜𝑟𝒞(𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖, 𝑊) = 𝑙𝑖𝑚𝑖∈ℐopp 𝑀𝑜𝑟𝒞(𝑀𝑖, 𝑊)

where on the right we have the limit over the opposite category with value in the
category of sets.

By the Yoneda lemma (and its dual) this formula completely determines the limit, respec-
tively the colimit.

As an application of the notions of limits and colimits we define products and coproducts.
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Definition 4.13.5. Suppose that 𝐼 is a set, and suppose given for every 𝑖 ∈ 𝐼 an object 𝑀𝑖
of the category 𝒞. A product ∏𝑖∈𝐼 𝑀𝑖 is by definition 𝑙𝑖𝑚ℐ 𝑀 (if it exists) where ℐ is the
category having only identities as morphisms and having the elements of 𝐼 as objects.

An important special case is where 𝐼 = ∅ in which case the product is a final object of the
category. The morphisms 𝑝𝑖 ∶ ∏ 𝑀𝑖 → 𝑀𝑖 are called the projection morphisms.

Definition 4.13.6. Suppose that 𝐼 is a set, and suppose given for every 𝑖 ∈ 𝐼 an object 𝑀𝑖
of the category 𝒞. A coproduct ∐𝑖∈𝐼 𝑀𝑖 is by definition 𝑐𝑜𝑙𝑖𝑚ℐ 𝑀 (if it exists) where ℐ is
the category having only identities as morphisms and having the elements of 𝐼 as objects.

An important special case is where 𝐼 = ∅ in which case the product is an initial object
of the category. Note that the coproduct comes equipped with morphisms 𝑀𝑖 → ∐ 𝑀𝑖.
These are sometimes called the coprojections.

Lemma 4.13.7. Suppose that 𝑀 ∶ ℐ → 𝒞, and 𝑁 ∶ 𝒥 → 𝒞 are diagrams whose colimits
exist. Suppose 𝐻 ∶ ℐ → 𝒥 is a functor, and suppose 𝑡 ∶ 𝑀 → 𝑁 ∘ 𝐻 is a transformation
of functors. Then there is a unique morphism

𝜃 ∶ 𝑐𝑜𝑙𝑖𝑚ℐ 𝑀 ⟶ 𝑐𝑜𝑙𝑖𝑚𝒥 𝑁

such that all the diagrams
𝑀𝑖

𝑡𝐻(𝑖)

��

// 𝑐𝑜𝑙𝑖𝑚ℐ 𝑀

𝜃
��

𝑁𝐻(𝑖)
// 𝑐𝑜𝑙𝑖𝑚ℐ 𝑁

commute.

Proof. Omitted. �

Lemma 4.13.8. Suppose that 𝑀 ∶ ℐ → 𝒞, and 𝑁 ∶ 𝒥 → 𝒞 are diagrams whose limits
exist. Suppose 𝐻 ∶ ℐ → 𝒥 is a functor, and suppose 𝑡 ∶ 𝑁 ∘ 𝐻 → 𝑀 is a transformation
of functors. Then there is a unique morphism

𝜃 ∶ 𝑙𝑖𝑚𝒥 𝑁 ⟶ 𝑙𝑖𝑚ℐ 𝑀

such that all the diagrams
𝑙𝑖𝑚𝒥 𝑁

𝜃
��

// 𝑁𝐻(𝑖)

𝑡𝐻(𝑖)

��
𝑙𝑖𝑚ℐ 𝑀 //𝑀𝑖

commute.

Proof. Omitted. �

Lemma 4.13.9. Let ℐ, 𝒥 be index categories. Let 𝑀 ∶ ℐ × 𝒥 → 𝒞 be a functor. We have

𝑐𝑜𝑙𝑖𝑚𝑖 𝑐𝑜𝑙𝑖𝑚𝑗 𝑀𝑖,𝑗 = 𝑐𝑜𝑙𝑖𝑚𝑖,𝑗 𝑀𝑖,𝑗 = 𝑐𝑜𝑙𝑖𝑚𝑗 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖,𝑗

provided all the indicated colimits exist. Similar for limits.

Proof. Omitted. �
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Lemma 4.13.10. Let 𝑀 ∶ ℐ → 𝒞 be a diagram. Write 𝐼 = 𝑂𝑏(ℐ) and 𝐴 = Arrow(ℐ).
Denote 𝑠, 𝑡 ∶ 𝐴 → 𝐼 the source and target maps. Suppose that ∏𝑖∈𝐼 𝑀𝑖 and ∏𝑎∈𝐴 𝑀𝑡(𝑎)
exist. Suppose that the equalizer of

∏𝑖∈𝐼 𝑀𝑖

𝜙 //

𝜓
// ∏𝑎∈𝐴 𝑀𝑡(𝑎)

exists, where the morphisms are determined by their components as follows: 𝑝𝑎∘𝜓 = 𝑎∘𝑝𝑠(𝑎)
and 𝑝𝑎 ∘ 𝜙 = 𝑝𝑡(𝑎). Then this equalizer is the limit of the diagram.

Proof. Omitted. �

Lemma 4.13.11. Let 𝑀 ∶ ℐ → 𝒞 be a diagram. Write 𝐼 = 𝑂𝑏(ℐ) and 𝐴 = Arrow(ℐ).
Denote 𝑠, 𝑡 ∶ 𝐴 → 𝐼 the source and target maps. Suppose that ∐𝑖∈𝐼 𝑀𝑖 and ∐𝑎∈𝐴 𝑀𝑠(𝑎)
exist. Suppose that the coequalizer of

∐𝑎∈𝐴 𝑀𝑠(𝑎)

𝜙 //

𝜓
// ∐𝑖∈𝐼 𝑀𝑖

exists, where themorphisms are determined by their components as follows: The component
𝑀𝑠(𝑎) maps via 𝜓 to the component 𝑀𝑡(𝑎) via the morphism 𝑎. The component 𝑀𝑠(𝑎) maps
via 𝜙 to the component 𝑀𝑠(𝑎) by the identity morphism. Then this coequalizer is the colimit
of the diagram.

Proof. Omitted. �

4.14. Limits and colimits in the category of sets

Not only do limits and colimits exist in Sets but they are also easy to describe. Namely, let
𝑀 ∶ ℐ → Sets, 𝑖 ↦ 𝑀𝑖 be a diagram of sets. Denote 𝐼 = 𝑂𝑏(ℐ). The limit is described as

𝑙𝑖𝑚ℐ 𝑀 = {(𝑚𝑖)𝑖∈𝐼 ∈ ∏𝑖∈𝐼
𝑀𝑖 ∣ ∀𝜙 ∶ 𝑖 → 𝑖′ in ℐ, 𝑀(𝜙)(𝑚𝑖) = 𝑚𝑖′}.

So we think of an element of the limit as a compatible system of elements of all the sets
𝑀𝑖.

On the other hand, the colimit is

𝑐𝑜𝑙𝑖𝑚ℐ 𝑀 = (∐𝑖∈𝐼
𝑀𝑖)/ ∼

where the equivalence relation ∼ is the equivalence relation generated by setting 𝑚𝑖 ∼ 𝑚𝑖′
if 𝑚𝑖 ∈ 𝑀𝑖, 𝑚𝑖′ ∈ 𝑀𝑖′ and 𝑀(𝜙)(𝑚𝑖) = 𝑚𝑖′ for some 𝜙 ∶ 𝑖 → 𝑖′. In other words, 𝑚𝑖 ∈ 𝑀𝑖
and 𝑚𝑖′ ∈ 𝑀𝑖′ are equivalent if there is a chain of morphisms in ℐ

𝑖1

}} ��

𝑖3

��

𝑖2𝑛−1

$$
𝑖 = 𝑖0 𝑖2 … 𝑖2𝑛 = 𝑖′

and elements 𝑚𝑖𝑗 ∈ 𝑀𝑖𝑗 mapping to each other under the maps 𝑀𝑖2𝑘−1
→ 𝑀𝑖2𝑘−2

and
𝑀𝑖2𝑘−1

→ 𝑀𝑖2𝑘
induced from the maps in ℐ above.

This is not a very pleasant type of object to work with. But if the diagram is filtered then it
is much easier to describe. We will explain this in Section 4.17.
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4.15. Connected limits

A (co)limit is called connected if its index category is connected.

Definition 4.15.1. We say that a category ℐ is connected if the equivalence relation gen-
erated by 𝑥 ∼ 𝑦 ⇔ 𝑀𝑜𝑟ℐ(𝑥, 𝑦)≠∅ has at most one equivalence class.

The following in some vague sense characterizes connected nonempty limits.

Lemma 4.15.2. Let 𝒞 be a category. Let 𝑋 be an object of 𝒞. Let 𝑀 ∶ ℐ → 𝒞/𝑋
be a diagram in the category of objects over 𝑋. If the index category ℐ is nonempty and
connected and the limit of𝑀 exists in𝒞/𝑋, then the limit of the compositionℐ → 𝒞/𝑋 → 𝒞
exists and is the same.

Proof. Let 𝑀 → 𝑋 be an object representing the limit in 𝒞/𝑋. Consider the functor

𝑊 ⟼ 𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑊, 𝑀𝑖).

Let (𝜑𝑖) be an element of the set on the right. Since each 𝑀𝑖 comes equipped with a
morphism 𝑠𝑖 ∶ 𝑀𝑖 → 𝑋 we get morphisms 𝑓𝑖 = 𝑠𝑖 ∘ 𝜑𝑖 ∶ 𝑊 → 𝑋. But as ℐ is connected
we see that all 𝑓𝑖 are equal. Since ℐ is nonempty there is at least one 𝑓𝑖. Hence this common
value 𝑊 → 𝑋 defines the structure of an object of 𝑊 in 𝒞/𝑋 and (𝜑𝑖) defines is an element
of 𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞/𝑋(𝑊, 𝑀𝑖). Thus we obtain a unique morphism 𝜙 ∶ 𝑊 → 𝑀 such that 𝜑𝑖 is
the composition of 𝜙 with 𝑀 → 𝑀𝑖 as desired. �

Lemma 4.15.3. Let 𝒞 be a category. Let 𝑋 be an object of 𝒞. Let 𝑀 ∶ ℐ → 𝑋/𝒞
be a diagram in the category of objects under 𝑋. If the index category ℐ is nonempty
and connected and the colimit of 𝑀 exists in 𝑋/𝒞, then the colimit of the composition
ℐ → 𝑋/𝒞 → 𝒞 exists and is the same.

Proof. Omitted. Hint: This lemma is dual to Lemma 4.15.2. �

Lemma 4.15.4. Let ℐ be a category. Let ℐ′ be a subcategory of ℐ, see Definition 4.2.10.
Assume that

(1) for every 𝑥 ∈ 𝑂𝑏(ℐ) there exists a 𝑥′ ∈ 𝑂𝑏(ℐ′) and a morphism 𝑥′ → 𝑥 in ℐ,
(2) for any 𝑥 ∈ 𝑂𝑏(ℐ), 𝑥′, 𝑥″ ∈ 𝑂𝑏(ℐ′) and morphisms 𝑥′ → 𝑥, 𝑥″ → 𝑥 in ℐ there

exists 𝑛 ≥ 0 and a commutative diagram

𝑥′ //

**

𝑥1

''

𝑥2

  

oo // … // 𝑥2𝑛−1

||

𝑥2𝑛

uu

oo // 𝑥″

ss𝑥

where all the horizontal morphisms are in ℐ′, and the vertical arrows in ℐ.
Then for every diagram 𝑀 ∶ ℐ → 𝒞 the limit 𝑙𝑖𝑚ℐ 𝑀 exists if and only if 𝑙𝑖𝑚ℐ′ 𝑀 exists
and if so these limits agree.

Proof. Omitted. �

Lemma 4.15.5. Let 𝐹 ∶ ℐ → ℐ′ be a functor. Assume
(1) the fibre categories (see Definition 4.29.2) of ℐ over ℐ′ are all nonempty and

connected, and
(2) for every morphism 𝛼′ ∶ 𝑥′ → 𝑦′ in ℐ′ there exist a morphism 𝛼 ∶ 𝑥 → 𝑦 in ℐ

such that 𝐹(𝛼) = 𝛼′.
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Then for every diagram𝑀 ∶ ℐ′ → 𝒞 the colimit 𝑐𝑜𝑙𝑖𝑚ℐ 𝑀∘𝐹 exists if and only if 𝑐𝑜𝑙𝑖𝑚ℐ′ 𝑀
exists and if so these colimits agree.

Proof. It suffices to show that for any object 𝑇 of 𝒞 we have

𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒞(𝑀𝐹(𝑖), 𝑇) = 𝑙𝑖𝑚ℐ′ 𝑀𝑜𝑟𝒞(𝑀𝑖′, 𝑇)

If (𝑔𝑖′)𝑖′∈𝑂𝑏(ℐ′) is an element of the right hand side, then setting 𝑓𝑖 = 𝑔𝐹(𝑖) we obtain an
element (𝑓𝑖)𝑖∈𝑂𝑏(ℐ) of the left hand side. Conversely, let (𝑓𝑖)𝑖∈𝑂𝑏(ℐ) be an element of the
left hand side. Note that on each (nonempty connected) fibre category ℐ𝑖′ the functor 𝑀∘𝐹
is constant with value 𝑀𝑖′. Hence the morphisms 𝑓𝑖 for 𝑖 ∈ 𝑂𝑏(ℐ) with 𝐹(𝑖) = 𝑖′ are all
the same and determine a well defined morphism 𝑔𝑖′ ∶ 𝑀𝑖′ → 𝑇. By assumption (2) the
collection (𝑔𝑖′)𝑖′∈𝑂𝑏(ℐ′) defines an element of the right hand side. �

4.16. Finite limits and colimits

A finite (co)limit is a (co)limit whose diagram category is finite, i.e., the diagram category
has finitely many objects and finitely many morphisms. A (co)limit is called nonempty
if the index category is nonempty. A (co)limit is called connected if the index category
is connected, see Definition 4.15.1. It turns out that there are ``enough'' finite diagram
categories.

Lemma 4.16.1. Let ℐ be a category with
(1) 𝑂𝑏(ℐ) is finite, and
(2) there exist finitely many morphisms 𝑓1, … , 𝑓𝑚 ∈ Arrows(ℐ) such that every mor-

phism of ℐ is a composition 𝑓𝑗1
∘ 𝑓𝑗2

∘ … ∘ 𝑓𝑗𝑘
.

Then there exists a functor 𝐹 ∶ 𝒥 → ℐ such that
(a) 𝒥 is a finite category, and
(b) for any diagram 𝑀 ∶ ℐ → 𝒞 the (co)limit of 𝑀 over ℐ exists if and only if the

(co)limit of 𝑀 ∘ 𝐹 over 𝒥 exists and in this case the (co)limits are canonically
isomorphic.

Moreover, 𝒥 is connected (resp. nonempty) if and only if ℐ is so.

Proof. Say 𝑂𝑏(ℐ) = {𝑥1, … , 𝑥𝑛}. Denote 𝑠, 𝑡 ∶ {1, … , 𝑚} → {1, … , 𝑛} the functions
such that 𝑓𝑗 ∶ 𝑥𝑠(𝑗) → 𝑥𝑡(𝑗). We set 𝑂𝑏(𝒥) = {𝑦1, … , 𝑦𝑛, 𝑧1, … , 𝑧𝑛} Besides the identity
morphisms we introduce morphisms 𝑔𝑗 ∶ 𝑦𝑠(𝑗) → 𝑧𝑡(𝑗), 𝑗 = 1, … , 𝑚 and morphisms ℎ𝑖 ∶
𝑦𝑖 → 𝑧𝑖, 𝑖 = 1, … , 𝑛. Since all of the nonidentity morphisms in 𝒥 go from an 𝑥 to a 𝑦 there
are no compositions to define and no associativity to check. Set 𝐹(𝑦𝑖) = 𝐹(𝑧𝑖) = 𝑥𝑖. Set
𝐹(𝑔𝑗) = 𝑓𝑗 and 𝐹(ℎ𝑖) = id𝑥𝑖

. It is clear that 𝐹 is a functor. It is clear that 𝒥 is finite. It is
clear that 𝒥 is connected, resp. nonempty if and only if ℐ is so.

Let 𝑀 ∶ ℐ → 𝒞 be a diagram. Consider an object 𝑊 of 𝒞 and morphisms 𝑞𝑖 ∶ 𝑊 → 𝑀(𝑥𝑖)
as in Definition 4.13.1. Then by taking 𝑞𝑖 ∶ 𝑊 → 𝑀(𝐹(𝑦𝑖)) = 𝑀(𝐹(𝑧𝑖)) = 𝑀(𝑥𝑖) we obtain
a family of maps as in Definition 4.13.1 for the diagram 𝑀 ∘ 𝐹. Conversely, suppose we are
given maps 𝑞𝑦𝑖 ∶ 𝑊 → 𝑀(𝐹(𝑦𝑖)) and 𝑞𝑧𝑖 ∶ 𝑊 → 𝑀(𝐹(𝑧𝑖)) as in Definition 4.13.1 for the
diagram 𝑀 ∘ 𝐹. Since

𝑀(𝐹(ℎ𝑖)) = id ∶ 𝑀(𝐹(𝑦𝑖)) = 𝑀(𝑥𝑖) ⟶ 𝑀(𝑥𝑖) = 𝑀(𝐹(𝑧𝑖))

we conclude that 𝑞𝑦𝑖 = 𝑞𝑧𝑖 for all 𝑖. Set 𝑞𝑖 equal to this common value. The compatibility
of 𝑞𝑠(𝑗) = 𝑞𝑦𝑠(𝑗) and 𝑞𝑡(𝑗) = 𝑞𝑧𝑡(𝑗) with the morphism 𝑀(𝑓𝑗) guarantees that the family 𝑞𝑖 is
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compatible with all morphisms in ℐ as by assumption every such morphism is a composi-
tion of the morphisms 𝑓𝑗. Thus we have found a canonical bijection

𝑙𝑖𝑚𝐵∈𝑂𝑏(𝒥) 𝑀𝑜𝑟𝒞(𝑊, 𝑀(𝐹(𝐵))) = 𝑙𝑖𝑚𝐴∈𝑂𝑏(ℐ) 𝑀𝑜𝑟𝒞(𝑊, 𝑀(𝐴))
which implies the statement on limits in the lemma. The statement on colimits is proved in
the same way (proof omitted). �

Lemma 4.16.2. Let 𝒞 be a category. The following are equivalent:
(1) Nonempty connected finite limits exist in 𝒞.
(2) Equalizers and fibre products exist in 𝒞.

Proof. Since equalizers and fibre products are finite nonempty connected limits we see that
(2) implies (1). For the converse, let ℐ be a finite nonempty connected diagram category.
Let 𝐹 ∶ 𝒥 → ℐ be the functor of diagram categories constructed in the proof of Lemma
4.16.1. Then we see that we may replace ℐ by 𝒥. The result is that we may assume that
𝑂𝑏(ℐ) = {𝑥1, … , 𝑥𝑛} ⨿ {𝑦1, … , 𝑦𝑚} with 𝑛, 𝑚 ≥ 1 such that all nonidentity morphisms in
ℐ are morphisms 𝑓 ∶ 𝑥𝑖 → 𝑦𝑗 for some 𝑖 and 𝑗.
Suppose that 𝑛 > 1. Since ℐ is connected there exist indices 𝑖1, 𝑖2 and 𝑗0 and morphisms
𝑎 ∶ 𝑥𝑖1 → 𝑦𝑗0

and 𝑏 ∶ 𝑥𝑖2 → 𝑦𝑗0
. Consider the category

ℐ′ = {𝑥} ⨿ {𝑥1, … , �̂�𝑖1, … , �̂�𝑖2, … 𝑥𝑛} ⨿ {𝑦1, … , 𝑦𝑚}

with
𝑀𝑜𝑟ℐ′(𝑥, 𝑦𝑗) = 𝑀𝑜𝑟ℐ(𝑥𝑖1, 𝑦𝑗) ⨿ 𝑀𝑜𝑟ℐ(𝑥𝑖2, 𝑦𝑗)

and all other morphism sets the same as in ℐ. For any functor 𝑀 ∶ ℐ → 𝒞 we can construct
a functor 𝑀′ ∶ ℐ′ → 𝒞 by setting

𝑀′(𝑥) = 𝑀(𝑥𝑖1) ×𝑀(𝑎),𝑀(𝑦𝑗),𝑀(𝑏) 𝑀(𝑥𝑖2)

and for a morphism 𝑓′ ∶ 𝑥 → 𝑦𝑗 corresponding to, say, 𝑓 ∶ 𝑥𝑖1 → 𝑦𝑗 we set 𝑀′(𝑓) =
𝑀(𝑓) ∘ pr1. Then the functor 𝑀 has a limit if and only if the functor 𝑀′ has a limit (proof
omitted). Hence by induction we reduce to the case 𝑛 = 1.
If 𝑛 = 1, then the limit of any 𝑀 ∶ ℐ → 𝒞 is the successive equalizer of pairs of maps
𝑥1 → 𝑦𝑗 hence exists by assumption. �

Lemma 4.16.3. Let 𝒞 be a category. The following are equivalent:
(1) Nonempty finite limits exist in 𝒞.
(2) Products of pairs and equalizers exist in 𝒞.
(3) Products of pairs and fibre products exist in 𝒞.

Proof. Since products of pairs, fibre products, and equalizers are limits with nonempty
index categories we see that (1) implies both (2) and (3). Assume (2). Then finite nonempty
products and equalizers exist. Hence by Lemma 4.13.10 we see that finite nonempty limits
exist, i.e., (1) holds. Assume (3). If 𝑎, 𝑏 ∶ 𝐴 → 𝐵 are morphisms of 𝒞, then the equalizer
of 𝑎, 𝑏 is

(𝐴 ×𝑎,𝐵,𝑏 𝐴) ×(𝑝𝑟1,𝑝𝑟2),𝐴×𝐴,Δ 𝐴.
Thus (3) implies (2), and the lemma is proved. �

Lemma 4.16.4. Let 𝒞 be a category. The following are equivalent:
(1) Finite limits exist in 𝒞.
(2) Finite products and equalizers exist.
(3) The category has a final object and fibred products exist.
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Proof. Since products of pairs, fibre products, equalizers, and final objects are limits over
finite index categories we see that (1) implies both (2) and (3). By Lemma 4.13.10 above
we see that (2) implies (1). Assume (3). Note that the product 𝐴 × 𝐴 is the fibre product
over the final object. If 𝑎, 𝑏 ∶ 𝐴 → 𝐵 are morphisms of 𝒞, then the equalizer of 𝑎, 𝑏 is

(𝐴 ×𝑎,𝐵,𝑏 𝐴) ×(𝑝𝑟1,𝑝𝑟2),𝐴×𝐴,Δ 𝐴.

Thus (3) implies (2) and the lemma is proved. �

Lemma 4.16.5. Let 𝒞 be a category. The following are equivalent:
(1) Nonempty connected finite colimits exist in 𝒞.
(2) Coequalizers and push outs exist in 𝒞.

Proof. Omitted. Hint: This is dual to Lemma 4.16.2. �

Lemma 4.16.6. Let 𝒞 be a category. The following are equivalent:
(1) Nonempty finite colimits exist in 𝒞.
(2) Coproducts of pairs and coequalizers exist in 𝒞.
(3) Coproducts of pairs and push outs exist in 𝒞.

Proof. Omitted. Hint: This is the dual of Lemma 4.16.3. �

Lemma 4.16.7. Let 𝒞 be a category. The following are equivalent:
(1) finite colimits exist in 𝒞,
(2) finite coproducts and coequalizers exist in 𝒞, and
(3) 𝒞 has an initial object and pushouts exist.

Proof. Omitted. Hint: This is dual to Lemma 4.16.4. �

4.17. Filtered colimits

Colimits are easier to compute or describe when they are over a filtered diagram. Here is
the definition.

Definition 4.17.1. We say that a diagram 𝑀 ∶ ℐ → 𝒞 is directed, or filtered if the following
conditions hold:

(1) the category ℐ has at least one object,
(2) for every pair of objects 𝑥, 𝑦 of ℐ there exists an object 𝑧 and morphisms 𝑥 → 𝑧,

𝑦 → 𝑧, and
(3) for every pair of objects 𝑥, 𝑦 of ℐ and every pair of morphisms 𝑎, 𝑏 ∶ 𝑥 → 𝑦 of

ℐ there exists a morphism 𝑐 ∶ 𝑦 → 𝑧 of ℐ such that 𝑀(𝑐 ∘ 𝑎) = 𝑀(𝑐 ∘ 𝑏) as
morphisms in 𝒞.

We say that an index category ℐ is directed, or filtered if id ∶ ℐ → ℐ is filtered (in other
words you erase the 𝑀 in part (3) above.)

We observe that any diagram with filtered index category is filtered, and this is how filtered
colimits usually come about. In fact, if 𝑀 ∶ ℐ → 𝒞 is a filtered diagram, then we can
factor 𝑀 as ℐ → ℐ′ → 𝒞 where ℐ′ is a filtered index category1 such that 𝑐𝑜𝑙𝑖𝑚ℐ 𝑀 exists
if and only if 𝑐𝑜𝑙𝑖𝑚ℐ′ 𝑀′ exists in which case the colimits are canonically isomorphic.

1Namely, let ℐ′ have the same objects as ℐ but where 𝑀𝑜𝑟ℐ′(𝑥, 𝑦) is the quotient of 𝑀𝑜𝑟ℐ(𝑥, 𝑦) by the
equivalence relation which identifies 𝑎, 𝑏 ∶ 𝑥 → 𝑦 if 𝑀(𝑎) = 𝑀(𝑏).
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Suppose that 𝑀 ∶ ℐ → Sets is a filtered diagram. In this case we may describe the
equivalence relation in the formula

𝑐𝑜𝑙𝑖𝑚ℐ 𝑀 = (∐𝑖∈𝐼
𝑀𝑖)/ ∼

simply as follows

𝑚𝑖 ∼ 𝑚𝑖′ ⇔ ∃𝑖″, 𝜙 ∶ 𝑖 → 𝑖″, 𝜙′ ∶ 𝑖′ → 𝑖″, 𝑀(𝜙)(𝑚𝑖) = 𝑀(𝜙′)(𝑚𝑖′).

In other words, two elements are equal in the colimit if and only if the ``eventually become
equal''.

Lemma 4.17.2. Let ℐ and 𝒥 be index categories. Assume that ℐ is filtered and 𝒥 is finite.
Let 𝑀 ∶ 𝒥 × ℐ → Sets, (𝑖, 𝑗) ↦ 𝑀𝑖,𝑗 be a diagram of diagrams of sets. In this case

𝑐𝑜𝑙𝑖𝑚𝑖 𝑙𝑖𝑚𝑗 𝑀𝑖,𝑗 = 𝑙𝑖𝑚𝑗 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖,𝑗.

In particular, colimits over ℐ commute with finite products, fibre products, and equalizers
of sets.

Proof. Omitted. �

Instead of giving the easy proof of the lemma we give a counter example to the case where
𝒥 is infinite. Namely, let ℐ consist of 𝐍 = {1, 2, 3, …} with a unique morphism 𝑖 → 𝑖′

whenever 𝑖 ≤ 𝑖′. Let 𝒥 consist of the discrete category 𝐍 = {1, 2, 3, …} (only morphisms
are identities). Let 𝑀𝑖,𝑗 = {1, 2, … , 𝑖} with obvious inclusion maps 𝑀𝑖,𝑗 → 𝑀𝑖′,𝑗 when
𝑖 ≤ 𝑖′. In this case 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖,𝑗 = 𝐍 and hence

𝑙𝑖𝑚𝑗 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖,𝑗 = ∏𝑗
𝐍 = 𝐍𝐍

On the other hand 𝑙𝑖𝑚𝑗 𝑀𝑖,𝑗 = ∏𝑗 𝑀𝑖,𝑗 and hence

𝑐𝑜𝑙𝑖𝑚𝑖 𝑙𝑖𝑚𝑗 𝑀𝑖,𝑗 = ⋃𝑖
{1, 2, … , 𝑖}𝐍

which is smaller than the other limit.

Lemma 4.17.3. Let ℐ be an index category, i.e., a category. Assume
(1) for every pair of morphisms 𝑎 ∶ 𝑤 → 𝑥 and 𝑏 ∶ 𝑤 → 𝑦 in ℐ there exists an

object 𝑧 and morphisms 𝑐 ∶ 𝑥 → 𝑧 and 𝑑 ∶ 𝑦 → 𝑧 such that 𝑐 ∘ 𝑎 = 𝑑 ∘ 𝑏, and
(2) for every pair of morphisms 𝑎, 𝑏 ∶ 𝑥 → 𝑦 there exists a morphism 𝑐 ∶ 𝑦 → 𝑧 such

that 𝑐 ∘ 𝑎 = 𝑐 ∘ 𝑏.
Then ℐ is a (possibly empty) union of disjoint filtered index categories ℐ𝑗.

Proof. If ℐ is the empty category, then the lemma is true. Otherwise, we define a relation
on objects of ℐ by saying that 𝑥 ∼ 𝑦 if there exists a 𝑧 and morphisms 𝑥 → 𝑧 and 𝑦 → 𝑧.
This is an equivalence relation by the first assumption of the lemma. Hence 𝑂𝑏(ℐ) is a
disjoint union of equivalence classes. Let ℐ𝑗 be the full subcategories corresponding to
these equivalence classes. The rest is clear from the definitions. �

Lemma 4.17.4. Let ℐ be an index category satisfying the hypotheses of Lemma 4.17.3
above. Then colimits over ℐ commute with fibre products and equalizers in sets (and more
generally with connected finite nonempty limits).

Proof. By Lemma 4.17.3 wemaywrite ℐ = ∐ ℐ𝑗 with each ℐ𝑗 filtered. By Lemma 4.17.2
we see that colimits of ℐ𝑗 commute with equalizers and fibred products. Thus it suffices
to show that equalizers and fibre products commute with coproducts in the category of sets
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(including empty coproducts). In other words, given a set 𝐽 and sets 𝐴𝑗, 𝐵𝑗, 𝐶𝑗 and set maps
𝐴𝑗 → 𝐵𝑗, 𝐶𝑗 → 𝐵𝑗 for 𝑗 ∈ 𝐽 we have to show that

(∐𝑗∈𝐽
𝐴𝑗) ×(∐𝑗∈𝐽 𝐵𝑗) (∐𝑗∈𝐽

𝐶𝑗) = ∐𝑗∈𝐽
𝐴𝑗 ×𝐵𝑗

𝐶𝑗

and given 𝑎𝑗, 𝑎′
𝑗 ∶ 𝐴𝑗 → 𝐵𝑗 that

Equalizer(∐𝑗∈𝐽
𝑎𝑗, ∐𝑗∈𝐽

𝑎′
𝑗) = ∐𝑗∈𝐽

Equalizer(𝑎𝑗, 𝑎′
𝑗)

This is true even if 𝐽 = ∅. Details omitted. �

Definition 4.17.5. Let ℐ, 𝒥 be filtered index categories. Let 𝐻 ∶ ℐ → 𝒥 be a functor. We
say ℐ is cofinal in 𝒥 if

(1) for all 𝑦 ∈ 𝑂𝑏(𝒥) there exists a 𝑥 ∈ 𝑂𝑏(ℐ) and a morphism 𝑦 → 𝐻(𝑥), and
(2) for all 𝑥1, 𝑥2 ∈ 𝑂𝑏(ℐ) and any 𝜑 ∶ 𝐻(𝑥1) → 𝐻(𝑥2) there exists 𝑥12 ∈ 𝑂𝑏(ℐ)

and morphisms 𝑥1 → 𝑥12, 𝑥2 → 𝑥12 such that

𝐻(𝑥12)

𝐻(𝑥1)
𝜑 //

::

𝐻(𝑥2)

dd

commutes.

Lemma 4.17.6. Letℐ, 𝒥 be filtered index categories. Let𝐻 ∶ ℐ → 𝒥 be a functor. Assume
ℐ is cofinal in 𝒥. Then for every diagram 𝑀 ∶ 𝒥 → 𝒞 we have a canonical isomorphism

𝑐𝑜𝑙𝑖𝑚ℐ 𝑀 ∘ 𝐻 = 𝑐𝑜𝑙𝑖𝑚𝒥 𝑀

if either side exists.

Proof. Omitted. �

4.18. Cofiltered limits

Limits are easier to compute or describe when they are over a cofiltered diagram. Here is
the definition.

Definition 4.18.1. We say that a diagram 𝑀 ∶ ℐ → 𝒞 is codirected or cofiltered if the
following conditions hold:

(1) the category ℐ has at least one object,
(2) for every pair of objects 𝑥, 𝑦 of ℐ there exists an object 𝑧 and morphisms 𝑧 → 𝑥,

𝑧 → 𝑦, and
(3) for every pair of objects 𝑥, 𝑦 of ℐ and every pair of morphisms 𝑎, 𝑏 ∶ 𝑥 → 𝑦 of

ℐ there exists a morphism 𝑐 ∶ 𝑤 → 𝑥 of ℐ such that 𝑀(𝑎 ∘ 𝑐) = 𝑀(𝑏 ∘ 𝑐) as
morphisms in 𝒞.

We say that an index category ℐ is codirected, or cofiltered if id ∶ ℐ → ℐ is cofiltered (in
other words you erase the 𝑀 in part (3) above.)

We observe that any diagram with cofiltered index category is cofiltered, and this is how
this situation usually occurs.

Here is an example of why cofiltered limits of sets are ``easier'' than general ones: If 𝑀 ∶
ℐ → Sets is a cofiltered diagram, and all the 𝑀𝑖 are finite nonempty, then 𝑙𝑖𝑚𝑖 𝑀𝑖 is
nonempty. The same does not hold for a general limit of finite nonempty sets.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04E6
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4.19. Limits and colimits over partially ordered sets

A special case of diagrams is given by systems over partially ordered sets.

Definition 4.19.1. Let (𝐼, ≥) be a partially ordered set. Let 𝒞 be a category.
(1) A system over 𝐼 in 𝒞, sometimes called a inductive system over 𝐼 in 𝒞 is given

by objects 𝑀𝑖 of 𝒞 and for every 𝑖 ≤ 𝑖′ a morphism 𝑓𝑖𝑖′ ∶ 𝑀𝑖 → 𝑀𝑖′ such that
𝑓𝑖𝑖 = id and such that 𝑓𝑖𝑖″ = 𝑓𝑖′𝑖″ ∘ 𝑓𝑖𝑖′ whenever 𝑖 ≤ 𝑖′ ≤ 𝑖″.

(2) An inverse system over 𝐼 in 𝒞, sometimes called a projective system over 𝐼 in 𝒞
is given by objects 𝑀𝑖 of 𝒞 and for every 𝑖 ≥ 𝑖′ a morphism 𝑓𝑖𝑖′ ∶ 𝑀𝑖 → 𝑀𝑖′
such that 𝑓𝑖𝑖 = id and such that 𝑓𝑖𝑖″ = 𝑓𝑖′𝑖″ ∘ 𝑓𝑖𝑖′ whenever 𝑖 ≥ 𝑖′ ≥ 𝑖″. (Note
reversal of inequalities.)

We will say (𝑀𝑖, 𝑓𝑖𝑖′) is a (inverse) system over 𝐼 to denote this. The maps 𝑓𝑖𝑖′ are some-
times called the transition maps.

In other words a system over 𝐼 is just a diagram 𝑀 ∶ ℐ → 𝒞 where ℐ is the category with
objects 𝐼 and a unique arrow 𝑖 → 𝑖′ if and only 𝑖 ≤ 𝑖′. And an inverse system is a diagram
𝑀 ∶ ℐ𝑜𝑝𝑝 → 𝒞. From this point of view we could take (co)limits of any (inverse) system
over 𝐼. However, it is customary to take only colimits of systems over 𝐼 and only limits of
inverse systems over 𝐼. More precisely: Given a system (𝑀𝑖, 𝑓𝑖𝑖′) over 𝐼 the colimit of the
system (𝑀𝑖, 𝑓𝑖𝑖′) is defined as

𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 = 𝑐𝑜𝑙𝑖𝑚ℐ 𝑀,

i.e., as the colimit of the corresponding diagram. Given a inverse system (𝑀𝑖, 𝑓𝑖𝑖′) over 𝐼
the limit of the inverse system (𝑀𝑖, 𝑓𝑖𝑖′) is defined as

𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 = 𝑙𝑖𝑚ℐ𝑜𝑝𝑝 𝑀,

i.e., as the limit of the corresponding diagram.

Definition 4.19.2. With notation as above. We say the system (resp. inverse system)
(𝑀𝑖, 𝑓𝑖𝑖′) is a directed system (resp. directed inverse system) if the partially ordered set
𝐼 is directed: 𝐼 is nonempty and for all 𝑖1, 𝑖2 ∈ 𝐼 there exists 𝑖 ∈ 𝐼 such that 𝑖1 ≤ 𝑖 and
𝑖2 ≤ 𝑖.

In this case the colimit is sometimes (unfortunately) called the ``direct limit''. We will not
use this last terminology. It turns out that diagrams over a filtered category are no more
general than directed systems in the following sense.

Lemma 4.19.3. Let ℐ be a filtered index category. There exists a directed partially ordered
set (𝐼, ≥) and a system (𝑥𝑖, 𝜑𝑖𝑖′) over 𝐼 in ℐ with the following properties:

(1) For every category 𝒞 and every diagram 𝑀 ∶ ℐ → 𝒞 with values in 𝒞, denote
(𝑀(𝑥𝑖), 𝑀(𝜑𝑖𝑖′)) the corresponding system over 𝐼. If 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀(𝑥𝑖) exists then
so does 𝑐𝑜𝑙𝑖𝑚ℐ 𝑀 and the transformation

𝜃 ∶ 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀(𝑥𝑖) ⟶ 𝑐𝑜𝑙𝑖𝑚ℐ 𝑀

of Lemma 4.13.7 is an isomorphism.
(2) For every category𝒞 and every diagram𝑀 ∶ ℐ𝑜𝑝𝑝 → 𝒞 in𝒞, denote (𝑀(𝑥𝑖), 𝑀(𝜑𝑖𝑖′))

the corresponding inverse system over 𝐼. If 𝑙𝑖𝑚𝑖∈𝐼 𝑀(𝑥𝑖) exists then so does
𝑙𝑖𝑚ℐ 𝑀 and the transformation

𝜃 ∶ 𝑙𝑖𝑚ℐ𝑜𝑝𝑝 𝑀 ⟶ 𝑙𝑖𝑚𝑖∈𝐼 𝑀(𝑥𝑖)

of Lemma 4.13.8 is an isomorphism.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0030
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Proof. Consider quadruples (𝑆, 𝐴, 𝑥, {𝑓𝑠}𝑠∈𝑆) with the following properties
(1) 𝑆 is a finite set of objects of ℐ,
(2) 𝐴 is a finite set of arrows of ℐ such that each 𝑎 ∈ 𝐴 is an arrow 𝑎 ∶ 𝑠(𝑎) → 𝑡(𝑎)

with 𝑠(𝑎), 𝑡(𝑎) ∈ 𝑆,
(3) 𝑥 is an object of ℐ, and
(4) 𝑓𝑠 ∶ 𝑠 → 𝑥 is a morphism of ℐ such that for all 𝑎 ∈ 𝐴 we have 𝑓𝑡(𝑎) ∘ 𝑎 = 𝑓𝑠(𝑎).

Given such a quadruple 𝑖 = (𝑆, 𝐴, 𝑥, {𝑓𝑠}𝑠∈𝑆) we denote 𝑆𝑖 = 𝑆, 𝐴𝑖 = 𝐴, 𝑥𝑖 = 𝑥, and
𝑓𝑠,𝑖 = 𝑓𝑠 for 𝑠 ∈ 𝑆𝑖. We also set ̃𝑆𝑖 = 𝑆𝑖 ∪ {𝑥𝑖} and ̃𝐴𝑖 = 𝐴𝑖 ∪ {𝑓𝑠,𝑖, 𝑠 ∈ 𝑆𝑖}. Let 𝐼 be the
set of all such quadruples. We define a relation on 𝐼 by the rule

𝑖 ≤ 𝑖′ ⇔ ̃𝑆𝑖 ⊂ 𝑆𝑖′ and ̃𝐴𝑖 ⊂ 𝐴𝑖′

It is obviously a partial ordering on 𝐼. Note that if 𝑖 ≤ 𝑖′, then there is a given morphism
𝜑𝑖𝑖′ ∶ 𝑥𝑖 → 𝑥𝑖′ namely 𝑓𝑥𝑖,𝑖′ because 𝑥𝑖 ∈ 𝑆𝑖′. Hence we have a system over 𝐼 in ℐ by
taking (𝑥𝑖, 𝜑𝑖𝑖′). We claim that this system satisfies all the conditions of the lemma.

First we show that 𝐼 is a directed partially ordered set. Note that 𝐼 is nonempty since
({𝑥}, ∅, 𝑥, {id𝑥}) is a quadruple where 𝑥 is any object of ℐ, and ℐ is not empty according to
Definition 4.17.1. Suppose that 𝑖, 𝑖′ ∈ 𝐼. Consider the set of objects 𝑆 = 𝑆𝑖 ∪𝑆𝑖′ ∪{𝑥𝑖, 𝑥𝑖′}
of ℐ. This is a finite set. According to Definition 4.17.1 and a simple induction argument
there exists an object 𝑥′ of ℐ such that for each 𝑠 ∈ 𝑆 there is a morphism 𝑓′

𝑠 ∶ 𝑠 → 𝑥′.
Consider the set of arrows 𝐴 = 𝐴𝑖 ∪𝐴𝑖′ ∪{𝑓𝑠,𝑖, 𝑠 ∈ 𝑆𝑖}∪{𝑓𝑠,𝑖′, 𝑠 ∈ 𝑆𝑖′}. This is a finite set
of arrows whose source and target are elements of 𝑆. According to Definition 4.17.1 and a
simple induction argument there exists a morphism 𝑓 ∶ 𝑥′ → 𝑥 such that for all 𝑎 ∈ 𝐴 we
have

𝑓 ∘ 𝑓′
𝑡(𝑎) ∘ 𝑎 = 𝑓 ∘ 𝑓′

𝑠(𝑎)

as morphisms into 𝑥. Hence we see that (𝑆, 𝐴, 𝑥, {𝑓 ∘ 𝑓′
𝑠}𝑠∈𝑆) is a quadruple which is ≥ 𝑖

and ≥ 𝑖′ in the partial ordering defined above. This proves 𝐼 is directed.

Next, we prove the statement about colimits. Let 𝒞 be a category. Let 𝑀 ∶ ℐ → 𝒞
be a functor. Denote (𝑀(𝑥𝑖), 𝑀(𝜑𝑖𝑖′)) the corresponding system over 𝐼. Below we will
write 𝑀𝑖 = 𝑀(𝑥𝑖) for clarity. Assume 𝐾 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀(𝑥𝑖) exists. We will verify that 𝐾
is also the colimit of the diagram 𝑀. Recall that for every object 𝑥 of ℐ the quadruple
𝑖𝑥 = ({𝑥}, ∅, 𝑥, {id𝑥}) is an element of 𝐼. By definition of a colimit there is a morphism

𝑀(𝑥) = 𝑀𝑖𝑥 ⟶ 𝐾

Let 𝜑 ∶ 𝑥 → 𝑥′ be a morphism of ℐ. The quadruples 𝑖𝑥, 𝑖𝑥′ and

𝑖𝜑 = ({𝑥, 𝑥′}, {id𝑥, id𝑥′, 𝜑}, 𝑥′, {𝜑, id𝑥′})

are elements of 𝐼. Moreover, 𝑖𝑥 ≤ 𝑖𝜑 and 𝑖𝑥′ ≤ 𝑖𝜑. Thus the diagram

𝑀(𝑥) = 𝑀𝑖𝑥
//

''

𝑀(𝑥′) = 𝑀𝑖𝜑

��

𝑀(𝑥′) = 𝑀𝑖𝑥′
oo

vv𝐾

is commutative in 𝒞. Since the left pointing horizontal arrow is the identity morphism on
𝑀(𝑥′) by our definition of 𝜑𝑖𝑥′𝑖𝜑 we see that the morphisms 𝑀(𝑥) → 𝐾 so defined satisfy
condition (1) of Definition 4.13.2.
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Finally we have to verify condition (2) of Definition 4.13.2. Suppose that 𝑊 is an object
of 𝒞 and suppose that we are given morphisms 𝑤𝑥 ∶ 𝑀(𝑥) → 𝑊 such that for all mor-
phisms 𝑎 of ℐ we have 𝑤𝑠(𝑎) = 𝑤𝑡(𝑎) ∘ 𝑎. In this case, set 𝑤𝑖 = 𝑤𝑥𝑖

for a quadruple
𝑖 = (𝑆𝑖, 𝐴𝑖, 𝑥𝑖, {𝑓𝑠,𝑖}𝑠∈𝑆𝑖

). Note that the condition on the maps 𝑤𝑥 in particular guarantees
that 𝑤𝑖′ = 𝑤𝑖∘𝑀(𝜑𝑖𝑖′) if 𝑖 ≤ 𝑖′ in 𝐼. Because 𝐾 is the colimit of the system (𝑀(𝑥𝑖), 𝑀(𝜑𝑖𝑖′)
we obtain a unique morphism 𝐾 → 𝑊 compatible with the maps 𝑤𝑖 and the given mor-
phisms 𝑀𝑖 → 𝐾. This proves the statement about colimits of the lemma.

We omit the proof of the statement about limits. (Hint: You can change it into a statement
about colimits by considering the opposite category of 𝒞.) �

4.20. Essentially constant systems

Let 𝑀 ∶ ℐ → 𝒞 be a diagram in a category 𝒞. Assume the index category ℐ is filtered.
In this case there are three successively stronger notions which pick out an object 𝑋 of 𝒞.
The first is just

𝑋 = 𝑐𝑜𝑙𝑖𝑚𝑖∈ℐ 𝑀𝑖.
Then 𝑋 comes equipped with projection morphisms 𝑀𝑖 → 𝑋. A stronger condition would
be to require that 𝑋 is the colimit and that there exists an 𝑖 ∈ ℐ and a morphism 𝑋 → 𝑀𝑖
such that the composition 𝑋 → 𝑀𝑖 → 𝑋 is id𝑋. A stronger condition is the following.

Definition 4.20.1. Let 𝑀 ∶ ℐ → 𝒞 be a diagram in a category 𝒞.
(1) Assume the index category ℐ is filtered. We say 𝑀 is essentially constant with

value 𝑋 if 𝑋 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖 and there exists an 𝑖 ∈ ℐ and a morphism 𝑋 → 𝑀𝑖
such that
(a) 𝑋 → 𝑀𝑖 → 𝑋 is id𝑋, and
(b) for all 𝑗 there exist 𝑘 andmorphisms 𝑖 → 𝑘 and 𝑗 → 𝑘 such that themorphism

𝑀𝑗 → 𝑀𝑘 equals the composition 𝑀𝑗 → 𝑋 → 𝑀𝑖 → 𝑀𝑘.
(2) Assume the index category ℐ is cofiltered. We say 𝑀 is essentially constantwith

value 𝑋 if 𝑋 = 𝑙𝑖𝑚𝑖 𝑀𝑖 and there exists an 𝑖 ∈ ℐ and a morphism 𝑀𝑖 → 𝑋 such
that
(a) 𝑋 → 𝑀𝑖 → 𝑋 is id𝑋, and
(b) for all 𝑗 there exist 𝑘 andmorphisms 𝑘 → 𝑖 and 𝑘 → 𝑗 such that themorphism

𝑀𝑘 → 𝑀𝑗 equals the composition 𝑀𝑘 → 𝑀𝑖 → 𝑋 → 𝑀𝑗.

Which of the two versions is meant will be clear from context. If there is any confusion
we will distinguish between these by saying that the first version means 𝑀 is essentially
constant as an ind-object, and in the second case we will say it is essentially constant as
an pro-object. This terminology is further explained in Remarks 4.20.3 and 4.20.4. In fact
we will often use the terminology ``essentially constant system'' which formally speaking
is only defined for systems over directed partially ordered sets.

Definition 4.20.2. Let 𝒞 be a category. A directed system (𝑀𝑖, 𝑓𝑖𝑖′) is an essentially con-
stant system if 𝑀 viewed as a functor 𝐼 → 𝒞 defines an essentially constant diagram. A
directed inverse system (𝑀𝑖, 𝑓𝑖𝑖′) is an essentially constant inverse system if 𝑀 viewed as
a functor 𝐼𝑜𝑝𝑝 → 𝒞 defines an essentially constant inverse diagram.

If (𝑀𝑖, 𝑓𝑖𝑖′) is an essentially constant system and the morphisms 𝑓𝑖𝑖′ are monomorphisms,
then for all 𝑖 ≤ 𝑖′ sufficiently large the morphisms 𝑓𝑖𝑖′ are isomorphisms. In general this
need not be the case however. An example is the system

𝐙2 → 𝐙2 → 𝐙2 → …

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05PU
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with maps given by (𝑎, 𝑏) ↦ (𝑎 + 𝑏, 0). This system is essentially constant with value
𝐙. A non-example is to let 𝑀 = ⨁𝑛≥0 𝐙 and to let 𝑆 ∶ 𝑀 → 𝑀 be the shift operator
(𝑎0, 𝑎1, …) ↦ (𝑎1, 𝑎2, …). In this case the system 𝑀 → 𝑀 → 𝑀 → … with transition
maps 𝑆 has colimit 0, and a map 0 → 𝑀 but the system is not essentially constant.

Remark 4.20.3. Let 𝒞 be a category. There exists a big category Ind-𝒞 of ind-objects of
𝒞. Namely, if 𝐹 ∶ ℐ → 𝒞 and 𝐺 ∶ 𝒥 → 𝒞 are filtered diagrams in 𝒞, then we can define

𝑀𝑜𝑟Ind-𝒞(𝐹, 𝐺) = 𝑙𝑖𝑚𝑖 𝑐𝑜𝑙𝑖𝑚𝑗 𝑀𝑜𝑟𝒞(𝐹(𝑖), 𝐺(𝑗)).
There is a canonical functor 𝒞 → Ind-𝒞 which maps 𝑋 to the constant system on 𝑋. This is
a fully faithful embedding. In this language one sees that a diagram 𝐹 is essentially constant
if and only 𝐹 is isomorphic to a constant system. If we ever need this material, then we will
formulate this into a lemma and prove it here.

Remark 4.20.4. Let 𝒞 be a category. There exists a big category Pro-𝒞 of pro-objects of
𝒞. Namely, if 𝐹 ∶ ℐ → 𝒞 and 𝐺 ∶ 𝒥 → 𝒞 are cofiltered diagrams in 𝒞, then we can define

𝑀𝑜𝑟Pro-𝒞(𝐹, 𝐺) = 𝑙𝑖𝑚𝑗 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝐹(𝑖), 𝐺(𝑗)).
There is a canonical functor 𝒞 → Pro-𝒞 which maps 𝑋 to the constant system on 𝑋. This is
a fully faithful embedding. In this language one sees that a diagram 𝐹 is essentially constant
if and only 𝐹 is isomorphic to a constant system. If we ever need this material, then we will
formulate this into a lemma and prove it here.

Lemma 4.20.5. Let 𝒞 be a category. Let 𝑀 ∶ ℐ → 𝒞 be a diagram with filtered (resp.
cofiltered) index category ℐ. Let 𝐹 ∶ 𝒞 → 𝒟 be a functor. If 𝑀 is essentially constant as
an ind-object (resp. pro-object), then so is 𝐹 ∘ 𝑀 ∶ ℐ → 𝒟.

Proof. If 𝑋 is a value for 𝑀, then it follows immediately from the definition that 𝐹(𝑋) is
a value for 𝐹 ∘ 𝑀. �

Lemma 4.20.6. Let 𝒞 be a category. Let 𝑀 ∶ ℐ → 𝒞 be a diagram with filtered index
category ℐ. The following are equivalent

(1) 𝑀 is an essentially constant ind-object, and
(2) 𝑋 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖 exists and for any 𝑊 in 𝒞 the map

𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑊, 𝑀𝑖) ⟶ 𝑀𝑜𝑟𝒞(𝑊, 𝑋)
is bijective.

Proof. Assume (2) holds. Then id𝑋 ∈ 𝑀𝑜𝑟𝒞(𝑋, 𝑋) comes from a morphism 𝑋 → 𝑀𝑖 for
some 𝑖, i.e., 𝑋 → 𝑀𝑖 → 𝑋 is the identity. Then both maps

𝑀𝑜𝑟𝒞(𝑊, 𝑋) ⟶ 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑊, 𝑀𝑖) ⟶ 𝑀𝑜𝑟𝒞(𝑊, 𝑋)
are bijective for all 𝑊 where the first one is induced by the morphism 𝑋 → 𝑀𝑖 we found
above, and the composition is the identity. This means that the composition

𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑊, 𝑀𝑖) ⟶ 𝑀𝑜𝑟𝒞(𝑊, 𝑋) ⟶ 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑊, 𝑀𝑖)
is the identity too. Setting 𝑊 = 𝑀𝑗 and starting with id𝑀𝑗

in the colimit, we see that
𝑀𝑗 → 𝑋 → 𝑀𝑖 → 𝑀𝑘 is equal to 𝑀𝑗 → 𝑀𝑘 for some 𝑘 large enough. This proves (1)
holds. The proof of (1) ⇒ (2) is omitted. �

Lemma 4.20.7. Let 𝒞 be a category. Let 𝑀 ∶ ℐ → 𝒞 be a diagram with cofiltered index
category ℐ. The following are equivalent

(1) 𝑀 is an essentially constant pro-object, and
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(2) 𝑋 = 𝑙𝑖𝑚𝑖 𝑀𝑖 exists and for any 𝑊 in 𝒞 the map

𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑀𝑖, 𝑊) ⟶ 𝑀𝑜𝑟𝒞(𝑋, 𝑊)

is bijective.

Proof. Assume (2) holds. Then id𝑋 ∈ 𝑀𝑜𝑟𝒞(𝑋, 𝑋) comes from a morphism 𝑀𝑖 → 𝑋 for
some 𝑖, i.e., 𝑋 → 𝑀𝑖 → 𝑋 is the identity. Then both maps

𝑀𝑜𝑟𝒞(𝑋, 𝑊) ⟶ 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑀𝑖, 𝑊) ⟶ 𝑀𝑜𝑟𝒞(𝑋, 𝑊)

are bijective for all 𝑊 where the first one is induced by the morphism 𝑀𝑖 → 𝑋 we found
above, and the composition is the identity. This means that the composition

𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑀𝑖, 𝑊) ⟶ 𝑀𝑜𝑟𝒞(𝑋, 𝑊) ⟶ 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑀𝑖, 𝑊)

is the identity too. Setting 𝑊 = 𝑀𝑗 and starting with id𝑀𝑗
in the colimit, we see that

𝑀𝑘 → 𝑀𝑖 → 𝑋 → 𝑀𝑗 is equal to 𝑀𝑘 → 𝑀𝑗 for some 𝑘 large enough. This proves (1)
holds. The proof of (1) ⇒ (2) is omitted. �

4.21. Exact functors

Definition 4.21.1. Let 𝐹 ∶ 𝒜 → ℬ be a functor.
(1) Suppose all finite limits exist in 𝒜. We say 𝐹 is left exact if it commutes with all

finite limits.
(2) Suppose all finite colimits exist in 𝒜. We say 𝐹 is right exact if it commutes with

all finite colimits.
(3) We say 𝐹 is exact if it is both left and right exact.

Lemma 4.21.2. Let 𝐹 ∶ 𝒜 → ℬ be a functor. Suppose all finite limits exist in 𝒜, see
Lemma 4.16.4. The following are equivalent:

(1) 𝐹 is left exact,
(2) 𝐹 commutes with finite products and equalizers, and
(3) 𝐹 transforms a final object of 𝒜 into a final object of ℬ, and commutes with fibre

products.

Proof. Lemma 4.13.10 shows that (2) implies (1). Suppose (3) holds. The fibre product
over the final object is the product. If 𝑎, 𝑏 ∶ 𝐴 → 𝐵 are morphisms of 𝒜, then the equalizer
of 𝑎, 𝑏 is

(𝐴 ×𝑎,𝐵,𝑏 𝐴) ×(𝑝𝑟1,𝑝𝑟2),𝐴×𝐴,Δ 𝐴.
Thus (3) implies (2). Finally (1) implies (3) because the empty limit is a final object, and
fibre products are limits. �

4.22. Adjoint functors

Definition 4.22.1. Let 𝒞, 𝒟 be categories. Let 𝑢 ∶ 𝒞 → 𝒟 and 𝑣 ∶ 𝒟 → 𝒞 be functors.
We say that 𝑢 is a left adjoint of 𝑣, or that 𝑣 is a right adjoint to 𝑢 if there are bijections

𝑀𝑜𝑟𝒟(𝑢(𝑋), 𝑌) ⟶ 𝑀𝑜𝑟𝒞(𝑋, 𝑣(𝑌))

functorial in 𝑋 ∈ 𝑂𝑏(𝒞), and 𝑌 ∈ 𝑂𝑏(𝒟).

In other words, this means that there is an isomorphism of functors 𝒞𝑜𝑝𝑝 × 𝒟 → Sets from
𝑀𝑜𝑟𝒟(𝑢(−), −) to 𝑀𝑜𝑟𝒞(−, 𝑣(−)).

Lemma 4.22.2. Let 𝑢 be a left adjoint to 𝑣 as in Definition 4.22.1.
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(1) Suppose that 𝑀 ∶ ℐ → 𝒞 is a diagram, and suppose that 𝑐𝑜𝑙𝑖𝑚ℐ 𝑀 exists in
𝒞. Then 𝑢(𝑐𝑜𝑙𝑖𝑚ℐ 𝑀) = 𝑐𝑜𝑙𝑖𝑚ℐ 𝑢 ∘ 𝑀. In other words, 𝑢 commutes with (repre-
sentable) colimits.

(2) Suppose that 𝑀 ∶ ℐ → 𝒟 is a diagram, and suppose that 𝑙𝑖𝑚ℐ 𝑀 exists in 𝒟.
Then 𝑣(𝑙𝑖𝑚ℐ 𝑀) = 𝑙𝑖𝑚ℐ 𝑣 ∘ 𝑀. In other words 𝑣 commutes with representable
limits.

Proof. A morphism from a colimit into an object is the same as a compatible system of
morphisms from the constituents of the limit into the object, see Remark 4.13.4. So

𝑀𝑜𝑟𝒟(𝑢(𝑐𝑜𝑙𝑖𝑚𝑖∈ℐ 𝑀𝑖), 𝑌) = 𝑀𝑜𝑟𝒞(𝑐𝑜𝑙𝑖𝑚𝑖∈ℐ 𝑀𝑖, 𝑣(𝑌))
= 𝑙𝑖𝑚𝑖∈ℐ𝑜𝑝𝑝 𝑀𝑜𝑟𝒞(𝑀𝑖, 𝑣(𝑌))
= 𝑙𝑖𝑚𝑖∈ℐ𝑜𝑝𝑝 𝑀𝑜𝑟𝒟(𝑢(𝑀𝑖), 𝑌)

proves that 𝑢(𝑐𝑜𝑙𝑖𝑚𝑖∈ℐ 𝑀𝑖) is the colimit we are looking for. A similar argument works for
the other statement. �

Lemma 4.22.3. Let 𝑢 be a left adjoint of 𝑣 as in Definition 4.22.1.
(1) If 𝒞 has finite colimits, then 𝑢 is right exact.
(2) If 𝒟 has finite limits, then 𝑣 is left exact.

Proof. Obvious from the definitions and Lemma 4.22.2. �

4.23. Monomorphisms and Epimorphisms

Definition 4.23.1. Let 𝒞 be a category, and let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of 𝒞.
(1) We say that 𝑓 is a monomorphism if for every object 𝑊 and every pair of mor-

phisms 𝑎, 𝑏 ∶ 𝑊 → 𝑋 such that 𝑓 ∘ 𝑎 = 𝑓 ∘ 𝑏 we have 𝑎 = 𝑏.
(2) We say that 𝑓 is an epimorphism if for every object𝑊 and every pair ofmorphisms

𝑎, 𝑏 ∶ 𝑌 → 𝑊 such that 𝑎 ∘ 𝑓 = 𝑏 ∘ 𝑓 we have 𝑎 = 𝑏.

Example 4.23.2. In the category of sets the monomorphisms correspond to injective maps
and the epimorphisms correspond to surjective maps.

4.24. Localization in categories

The basic idea of this section is given a category 𝒞 and a set of arrows to construct a functor
𝐹 ∶ 𝒞 → 𝑆−1𝒞 such that all elements of 𝑆 become invertible in 𝑆−1𝒞 and such that 𝐹 is
universal among all functors with this property. References for this section are [GZ67,
Chapter I, Section 2] and [Ver96, Chapter II, Section 2].

Definition 4.24.1. Let 𝒞 be a category. A set of arrows 𝑆 of 𝒞 is called a left multiplicative
system if it has the following properties:

LMS1 The identity of every object of 𝒞 is in 𝑆 and the composition of two composable
elements of 𝑆 is in 𝑆.

LMS2 Every solid diagram
𝑋

𝑡
��

𝑔
// 𝑌

𝑠
��

𝑍
𝑓 // 𝑊

with 𝑡 ∈ 𝑆 can be completed to a commutative dotted square with 𝑠 ∈ 𝑆.
LMS3 For every pair of morphisms 𝑓, 𝑔 ∶ 𝑋 → 𝑌 and 𝑡 ∈ 𝑆 with target 𝑋 such that

𝑓 ∘ 𝑡 = 𝑔 ∘ 𝑡 there exists a 𝑠 ∈ 𝑆 with source 𝑌 such that 𝑠 ∘ 𝑓 = 𝑠 ∘ 𝑔.
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A set of arrows𝑆 of𝒞 is called a right multiplicative system if it has the following properties:
RMS1 The identity of every object of 𝒞 is in 𝑆 and the composition of two composable

elements of 𝑆 is in 𝑆.
RMS2 Every solid diagram

𝑋

𝑡
��

𝑔
// 𝑌

𝑠
��

𝑍
𝑓 // 𝑊

with 𝑠 ∈ 𝑆 can be completed to a commutative dotted square with 𝑡 ∈ 𝑆.
RMS3 For every pair of morphisms 𝑓, 𝑔 ∶ 𝑋 → 𝑌 and 𝑠 ∈ 𝑆 with source 𝑌 such that

𝑠 ∘ 𝑓 = 𝑠 ∘ 𝑔 there exists a 𝑡 ∈ 𝑆 with target 𝑋 such that 𝑓 ∘ 𝑡 = 𝑔 ∘ 𝑡.
A set of arrows 𝑆 of 𝒞 is called a multiplicative system if it is both a left multiplicative
system and a right multiplicative system. In other words, this means that MS1, MS2, MS3
hold, where MS1 = LMS1 = RMS1, MS2 = LMS2 + RMS2, and MS3 = LMS3 + RMS3.

These conditions are useful to construct the categories 𝑆−1𝒞 as follows.
Left calculus of fractions. Let 𝒞 be a category and let 𝑆 be a left multiplicative system.
We define a new category 𝑆−1𝒞 as follows (we verify this works in the proof of Lemma
4.24.2):

(1) We set 𝑂𝑏(𝑆−1𝒞) = 𝑂𝑏(𝒞).
(2) Morphisms 𝑋 → 𝑌 of 𝑆−1𝒞 are given by pairs (𝑓 ∶ 𝑋 → 𝑌′, 𝑠 ∶ 𝑌 → 𝑌′) with

𝑠 ∈ 𝑆 up to equivalence. (Think of this as 𝑠−1𝑓 ∶ 𝑋 → 𝑌.)
(3) Two pairs (𝑓1 ∶ 𝑋 → 𝑌1, 𝑠1 ∶ 𝑌 → 𝑌1) and (𝑓2 ∶ 𝑋 → 𝑌2, 𝑠2 ∶ 𝑌 → 𝑌2) are

said to be equivalent if there exists a third pair (𝑓3 ∶ 𝑋 → 𝑌3, 𝑠3 ∶ 𝑌 → 𝑌3)
and morphisms 𝑢 ∶ 𝑌1 → 𝑌3 and 𝑣 ∶ 𝑌2 → 𝑌3 of 𝒞 fitting into the commutative
diagram

𝑌1

𝑢
��

𝑋

𝑓1
??

𝑓3 //

𝑓2 ��

𝑌3 𝑌

𝑠1
^^

𝑠3oo

𝑠2��
𝑌2

𝑣

OO

(4) The composition of the equivalence classes of the pairs (𝑓 ∶ 𝑋 → 𝑌′, 𝑠 ∶ 𝑌 → 𝑌′)
and (𝑔 ∶ 𝑌 → 𝑍′, 𝑡 ∶ 𝑍 → 𝑍′) is defined as the equivalence class of a pair
(ℎ ∘ 𝑓 ∶ 𝑋 → 𝑍″, 𝑢 ∘ 𝑡 ∶ 𝑍 → 𝑍″) where ℎ and 𝑢 ∈ 𝑆 are chosen to fit into a
commutative diagram

𝑌

𝑠
��

𝑔 // 𝑍′

𝑢
��

𝑌′ ℎ // 𝑍″

which exists by assumption.

Lemma 4.24.2. Let 𝒞 be a category and let 𝑆 be a left multiplicative system.
(1) The relation on pairs defined above is an equivalence relation.
(2) The composition rule given above is well defined on equivalence classes.
(3) Composition is associative and hence 𝑆−1𝒞 is a category.
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Proof. Proof of (1). Let us say two pairs 𝑝1 = (𝑓1 ∶ 𝑋 → 𝑌1, 𝑠1 ∶ 𝑌 → 𝑌1) and 𝑝2 = (𝑓2 ∶
𝑋 → 𝑌2, 𝑠2 ∶ 𝑌 → 𝑌2) are elementary equivalent if there exists a morphism 𝑎 ∶ 𝑌1 → 𝑌2
of 𝒞 such that 𝑎 ∘ 𝑓1 = 𝑓2 and 𝑎 ∘ 𝑠1 = 𝑠2. Diagram:

𝑋
𝑓1
// 𝑌1

𝑎
��

𝑌𝑠1
oo

𝑋
𝑓2 // 𝑌2 𝑌

𝑠2oo

Let us denote this property by saying 𝑝1𝐸𝑝2. Note that 𝑝𝐸𝑝 and 𝑎𝐸𝑏, 𝑏𝐸𝑐 ⇒ 𝑎𝐸𝑐. Part
(1) claims that the relation 𝑝 ∼ 𝑝′ ⇔ ∃𝑞 ∶ 𝑝𝐸𝑞 ∧ 𝑝′𝐸𝑞 is an equivalence relation. A
simple formal argument, using the properties of 𝐸 above shows that it suffices to prove
𝑝2𝐸𝑝1, 𝑝2𝐸𝑝3 ⇒ 𝑝1 ∼ 𝑝2. Thus suppose that we are given a commutative diagram

𝑌1

𝑋

𝑓1
??

𝑓3 //

𝑓2 ��

𝑌3

𝑎31

OO

𝑎32

��

𝑌

𝑠1
^^

𝑠3oo

𝑠2��
𝑌2

with 𝑠𝑖 ∈ 𝑆. First we apply LMS2 to get a commutative diagram

𝑌

𝑠1
��

𝑠3
// 𝑌3

𝑠34

��
𝑌1

𝑎14 // 𝑌4

with 𝑠34 ∈ 𝑆. Then we have 𝑠34∘𝑠2 = 𝑎14∘𝑎31∘𝑠2. Hence by LMS3 there exists a morphism
𝑠44 ∶ 𝑌4 → 𝑌′

4, 𝑠44 ∈ 𝑆 such that 𝑠44 ∘ 𝑠34 = 𝑠44 ∘ 𝑎14 ∘ 𝑎31. Hence after replacing 𝑌4 by 𝑌′
4,

𝑎14 by 𝑠44 ∘ 𝑎14, and 𝑠24 by 𝑠44 ∘ 𝑠24 we may assume that 𝑠34 = 𝑎14 ∘ 𝑎31. Next, we apply
LMS2 to get a commutative diagram

𝑌3

𝑎32

��

𝑠34
// 𝑌4

𝑠45

��
𝑌2

𝑎25 // 𝑌5

with 𝑠45 ∈ 𝑆. Thus we obtain a pair 𝑝5 = (𝑠45 ∘ 𝑠34 ∘ 𝑓3 ∶ 𝑋 → 𝑌5, 𝑠45 ∘ 𝑠34 ∘ 𝑠3 ∶ 𝑌 → 𝑌5)
and the morphisms 𝑠45 ∘ 𝑎14 ∶ 𝑌1 → 𝑌5 and 𝑎25 ∶ 𝑌2 → 𝑌5 show that indeed 𝑝1𝐸𝑝5 and
𝑝2𝐸𝑝5 as desired.
Proof of (2). Let 𝑝 = (𝑓 ∶ 𝑋 → 𝑌′, 𝑠 ∶ 𝑌 → 𝑌′) and 𝑞 = (𝑔 ∶ 𝑌 → 𝑍′, 𝑡 ∶ 𝑍 → 𝑍′) be
pairs as in the definition of composition above. To compose we have to choose a diagram

𝑌

𝑠
��

𝑔 // 𝑍′

𝑢2
��

𝑌′ ℎ2 // 𝑍2

We first show that the equivalence class of the pair 𝑟2 = (ℎ2 ∘𝑓 ∶ 𝑋 → 𝑍2, 𝑢2 ∘𝑡 ∶ 𝑍 → 𝑍2)
is independent of the choice of (𝑍2, ℎ2, 𝑢2). Namely, suppose that (𝑍3, ℎ3, 𝑢3) is another
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choice with corresponding composition 𝑟3 = (ℎ3 ∘ 𝑓 ∶ 𝑋 → 𝑍3, 𝑢3 ∘ 𝑡 ∶ 𝑍 → 𝑍3). Then
by LMS2 we can choose a diagram

𝑍′

𝑢2

��

𝑢3
// 𝑍3

𝑢34

��
𝑍2

ℎ24 // 𝑍4

with 𝑢34 ∈ 𝑆. Hence we obtain a pair 𝑟4 = (ℎ24 ∘ ℎ2 ∘ 𝑓 ∶ 𝑋 → 𝑍4, 𝑢34 ∘ 𝑢3 ∘ 𝑡 ∶ 𝑍 → 𝑍4)
and the morphisms ℎ24 ∶ 𝑍2 → 𝑍4 and 𝑢34 ∶ 𝑍3 → 𝑍4 show that we have 𝑟2𝐸𝑟4 and
𝑟3𝐸𝑟4 as desired. Thus it now makes sense to define 𝑝 ∘ 𝑞 as the equivalence class of all
possible pairs 𝑟 obtained as above.

To finish the proof of (2) we have to show that given pairs 𝑝1, 𝑝2, 𝑞 such that 𝑝1𝐸𝑝2 then
𝑝1 ∘ 𝑞 = 𝑝2 ∘ 𝑞 and 𝑞 ∘ 𝑝1 = 𝑞 ∘ 𝑝2 whenever the compositions make sense. To do this,
write 𝑝1 = (𝑓1 ∶ 𝑋 → 𝑌1, 𝑠1 ∶ 𝑌 → 𝑌1) and 𝑝2 = (𝑓2 ∶ 𝑋 → 𝑌2, 𝑠2 ∶ 𝑌 → 𝑌2) and let
𝑎 ∶ 𝑌1 → 𝑌2 be a morphism of 𝒞 such that 𝑓2 = 𝑎 ∘ 𝑓1 and 𝑠2 = 𝑎 ∘ 𝑠1. First assume that
𝑞 = (𝑔 ∶ 𝑌 → 𝑍′, 𝑡 ∶ 𝑍 → 𝑍′). In this case choose a commutative diagram as the one on
the left

𝑌

𝑠2
��

𝑔 // 𝑍′

𝑢
��

𝑌2
ℎ // 𝑍″

⇒

𝑌

𝑠1
��

𝑔 // 𝑍′

𝑢
��

𝑌1
ℎ∘𝑎 // 𝑍″

which implies the diagram on the right is commutative as well. Using these diagramswe see
that both compositions are the equivalence class of (ℎ ∘ 𝑎 ∘ 𝑓1 ∶ 𝑋 → 𝑍″, 𝑢 ∘ 𝑡 ∶ 𝑍 → 𝑍″).
Thus 𝑝1 ∘ 𝑞 = 𝑝2 ∘ 𝑞. The proof of the other case, in which we have to show 𝑞 ∘ 𝑝1 = 𝑞 ∘ 𝑝2,
is omitted.

Proof of (3). We have to prove associativity of composition. Consider a solid diagram

𝑍

��
𝑌

��

// 𝑍′

��
𝑋

��

// 𝑌′

��

// 𝑍″

��
𝑊 // 𝑊′ // 𝑌″ // 𝑍‴

which gives rise to three composable pairs. Using LMS2 we can choose the dotted arrows
making the squares commutative and such that the vertical arrows are in 𝑆. Then it is clear
that the composition of the three pairs is the equivalence class of the pair (𝑊 → 𝑍‴, 𝑍 →
𝑍‴) gotten by composing the horizontal arrows on the bottom row and the vertical arrows
on the right column. �

We can ``write any finite collection of morphisms with the same target as fractions with
common denominator''.



4.24. LOCALIZATION IN CATEGORIES 85

Lemma 4.24.3. Let 𝒞 be a category and let 𝑆 be a left multiplicative system of morphisms
of 𝒞. Given any finite collection 𝑔𝑖 ∶ 𝑋𝑖 → 𝑌 of morphisms of 𝑆−1𝒞 we can find an element
𝑠 ∶ 𝑌 → 𝑌′ of 𝑆 and 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌′ such that 𝑔𝑖 is the equivalence class of the pair
(𝑓𝑖 ∶ 𝑋𝑖 → 𝑌′, 𝑠 ∶ 𝑌 → 𝑌′).

Proof. For each 𝑖 choose a representative (𝑋𝑖 → 𝑌𝑖, 𝑠𝑖 ∶ 𝑌 → 𝑌𝑖). The lemma follows if we
can find a morphism 𝑠 ∶ 𝑌 → 𝑌′ in 𝑆 such that for each 𝑖 there is a morphism 𝑎𝑖 ∶ 𝑌𝑖 → 𝑌′

with 𝑎𝑖 ∘ 𝑠𝑖 = 𝑠. If we have two indices 𝑖 = 1, 2, then we can do this by completing the
square

𝑌

𝑠1

��

𝑠2
// 𝑌2

𝑡2
��

𝑌1
𝑎1 // 𝑌′

with 𝑡2 ∈ 𝑆 as is possible by Definition 4.24.1. Then 𝑠 = 𝑡2 ∘ 𝑠1 ∈ 𝑆 works. If we have
𝑛 > 2 morphisms, then we use the above trick to reduce to the case of 𝑛 − 1 morphisms,
and we win by induction. �

There is an easy characterization of equality of morphisms if they have the same denomi-
nator.

Lemma 4.24.4. Let 𝒞 be a category and let 𝑆 be a left multiplicative system of morphisms
of 𝒞. Let 𝐴, 𝐵 ∶ 𝑋 → 𝑌 be morphisms of 𝑆−1𝒞 which are the equivalence classes of
(𝑓 ∶ 𝑋 → 𝑌′, 𝑠 ∶ 𝑌 → 𝑌′) and (𝑔 ∶ 𝑋 → 𝑌′, 𝑠 ∶ 𝑌 → 𝑌′). Then 𝐴 = 𝐵 if and only if there
exists a morphism 𝑎 ∶ 𝑌′ → 𝑌″ with 𝑎 ∘ 𝑠 ∈ 𝑆 and such that 𝑎 ∘ 𝑓 = 𝑎 ∘ 𝑔.

Proof. The equality of 𝐴 and 𝐵 means that there exists a commutative diagram

𝑌′

𝑢
��

𝑋

𝑓
>>

ℎ //

𝑔   

𝑍 𝑌

𝑠
__

𝑡oo

𝑠��
𝑌′

𝑣

OO

with 𝑡 ∈ 𝑆. In particular 𝑢 ∘ 𝑠 = 𝑣 ∘ 𝑠. Hence by LMS3 there exists a 𝑠′ ∶ 𝑍 → 𝑌″ in 𝑆
such that 𝑠′ ∘ 𝑢 = 𝑠′ ∘ 𝑣. Setting 𝑎 equal to this common value does the job. �

Remark 4.24.5. Let 𝒞 be a category. Let 𝑆 be a left multiplicative system. Given an object
𝑌 of 𝒞 we denote 𝑌/𝑆 the category whose objects are 𝑠 ∶ 𝑌 → 𝑌′ with 𝑠 ∈ 𝑆 and whose
morphisms are commutative diagrams

𝑌
𝑠

��

𝑡

��
𝑌′ 𝑎 // 𝑌″

where 𝑎 ∶ 𝑌′ → 𝑌″ is arbitrary. We claim that the category 𝑌/𝑆 is filtered (see Definition
4.17.1). Namely, LMS1 implies that id𝑌 ∶ 𝑌 → 𝑌 is in 𝑌/𝑆 hence 𝑌/𝑆 is nonempty. LMS2
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implies that given 𝑠1 ∶ 𝑌 → 𝑌1 and 𝑠2 ∶ 𝑌 → 𝑌2 we can find a diagram

𝑌

𝑠1
��

𝑠2
// 𝑌2

𝑡
��

𝑌1
𝑎 // 𝑌3

with 𝑡 ∈ 𝑆. Hence 𝑠1 ∶ 𝑌 → 𝑌1 and 𝑠2 ∶ 𝑌 → 𝑌2 both map to 𝑡 ∘ 𝑠2 ∶ 𝑌 → 𝑌3 in 𝑌/𝑆.
Finally, given two morphisms 𝑎, 𝑏 from 𝑠1 ∶ 𝑌 → 𝑌1 to 𝑠2 ∶ 𝑌 → 𝑌2 in 𝑆/𝑌 we see that
𝑎 ∘ 𝑠1 = 𝑏 ∘ 𝑠1 hence by LMS3 there exists a 𝑡 ∶ 𝑌2 → 𝑌3 such that 𝑡 ∘ 𝑎 = 𝑡 ∘ 𝑏. Now the
combined results of Lemmas 4.24.3 and 4.24.4 tell us that

(4.24.5.1) 𝑀𝑜𝑟𝑆−1𝒞(𝑋, 𝑌) = 𝑐𝑜𝑙𝑖𝑚(𝑠∶𝑌→𝑌′)∈𝑌/𝑆 𝑀𝑜𝑟𝒞(𝑋, 𝑌′)

This formula expressing morphisms in 𝑆−1𝒞 as a filtered colimit of morphisms in 𝒞 is
occasionally useful.

Lemma 4.24.6. Let 𝒞 be a category and let 𝑆 be a left multiplicative system of morphisms
of 𝒞.

(1) The rules 𝑋 ↦ 𝑋 and (𝑓 ∶ 𝑋 → 𝑌) ↦ (𝑓 ∶ 𝑋 → 𝑌, id𝑌 ∶ 𝑌 → 𝑌) define a
functor 𝑄 ∶ 𝒞 → 𝑆−1𝒞.

(2) For any 𝑠 ∈ 𝑆 the morphism 𝑄(𝑠) is an isomorphism in 𝑆−1𝒞.
(3) If 𝐺 ∶ 𝒞 → 𝒟 is any functor such that 𝐺(𝑠) is invertible for every 𝑠 ∈ 𝑆, then

there exists a unique functor 𝐻 ∶ 𝑆−1𝒞 → 𝒟 such that 𝐻 ∘ 𝑄 = 𝐺.

Proof. Parts (1) and (2) are clear. To see (3) just set 𝐻(𝑋) = 𝐺(𝑋) and set 𝐻((𝑓 ∶ 𝑋 →
𝑌′, 𝑠 ∶ 𝑌 → 𝑌′)) = 𝐻(𝑠)−1 ∘ 𝐻(𝑓). Details omitted. �

Lemma 4.24.7. Let 𝒞 be a category and let 𝑆 be a left multiplicative system of morphisms
of 𝒞. The localization functor 𝑄 ∶ 𝒞 → 𝑆−1𝒞 commutes with finite colimits.

Proof. This is clear from (4.24.5.1), Remark 4.13.4, and Lemma 4.17.2. �

Lemma 4.24.8. Let 𝒞 be a category. Let 𝑆 be a left multiplicative system. If 𝑓 ∶ 𝑋 → 𝑌,
𝑓′ ∶ 𝑋′ → 𝑌′ are two morphisms of 𝒞 and if

𝑄(𝑋)

𝑄(𝑓)
��

𝑎
// 𝑄(𝑋′)

𝑄(𝑓′)
��

𝑄(𝑌) 𝑏 // 𝑄(𝑌′)

is a commutative diagram in 𝑆−1𝒞, then there exists a morphism 𝑓″ ∶ 𝑋″ → 𝑌″ in 𝒞 and
a commutative diagram

𝑋

𝑓
��

𝑔
// 𝑋″

𝑓″

��

𝑋′

𝑓′

��

𝑠
oo

𝑌 ℎ // 𝑌″ 𝑌′𝑡oo

in 𝒞 with 𝑠, 𝑡 ∈ 𝑆 and 𝑎 = 𝑠−1𝑔, 𝑏 = 𝑡−1ℎ.

Proof. We choose maps and objects in the following way: First write 𝑎 = 𝑠−1𝑔 for some
𝑠 ∶ 𝑋′ → 𝑋″ in 𝑆 and ℎ ∶ 𝑋 → 𝑋″. By LMS2 we can find 𝑡 ∶ 𝑌′ → 𝑌″ in 𝑆 and
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𝑓″ ∶ 𝑋″ → 𝑌″ such that
𝑋

𝑓
��

𝑔
// 𝑋″

𝑓″

��

𝑋′

𝑓′

��

𝑠
oo

𝑌 𝑌″ 𝑌′𝑡oo

commutes. Now in this diagram we are going to repeatedly change our choice of

𝑋″ 𝑓″

−−→ 𝑌″ 𝑡
←− 𝑌′

by postcomposing both 𝑡 and 𝑓″ by a morphism 𝑑 ∶ 𝑌″ → 𝑌‴ with the property that
𝑑 ∘ 𝑡 ∈ 𝑆. According to Remark 4.24.5 we may after such a replacement assume that there
exists a morphism ℎ ∶ 𝑌 → 𝑌″ such that 𝑏 = 𝑡−1ℎ. At this point we have everything as in the
lemma except that we don't know that the left square of the diagram commutes. However,
we do know that 𝑄(𝑓″𝑔) = 𝑄(ℎ𝑓) in 𝑆−1𝒟 because the right square commutes, the outer
square commutes in𝑆−1𝒟 by assumption, and because𝑄(𝑠), 𝑄(𝑡) are isomorphisms. Hence
using Lemma 4.24.4 we can find a morphism 𝑑 ∶ 𝑋‴ → 𝑋″ in 𝑆 (!) such that 𝑑𝑓″𝑔 = 𝑑ℎ𝑓.
Hence we make one more replacement of the kind described above and we win. �

Right calculus of fractions. Let 𝒞 be a category and let 𝑆 be a right multiplicative system.
We define a new category 𝑆−1𝒞 as follows (we verify this works in the proof of Lemma
4.24.9):

(1) We set 𝑂𝑏(𝑆−1𝒞) = 𝑂𝑏(𝒞).
(2) Morphisms 𝑋 → 𝑌 of 𝑆−1𝒞 are given by pairs (𝑓 ∶ 𝑋′ → 𝑌, 𝑠 ∶ 𝑋′ → 𝑋) with

𝑠 ∈ 𝑆 up to equivalence. (Think of this as 𝑓𝑠−1 ∶ 𝑋 → 𝑌.)
(3) Two pairs (𝑓1 ∶ 𝑋1 → 𝑌, 𝑠1 ∶ 𝑋1 → 𝑋) and (𝑓2 ∶ 𝑋2 → 𝑌, 𝑠2 ∶ 𝑋2 → 𝑋) are

said to be equivalent if there exists a third pair (𝑓3 ∶ 𝑋3 → 𝑌, 𝑠3 ∶ 𝑋3 → 𝑋) and
morphisms 𝑢 ∶ 𝑋3 → 𝑋1 and 𝑣 ∶ 𝑋3 → 𝑋2 of 𝒞 fitting into the commutative
diagram

𝑋1
𝑠1

��

𝑓1

��
𝑋 𝑋3

𝑠3oo

𝑢

OO

𝑣
��

𝑓3 // 𝑌

𝑋2

𝑠2

__

𝑓2

??

(4) The composition of the equivalence classes of the pairs (𝑓 ∶ 𝑋′ → 𝑌, 𝑠 ∶ 𝑋′ →
𝑋) and (𝑔 ∶ 𝑌′ → 𝑍, 𝑡 ∶ 𝑌′ → 𝑌) is defined as the equivalence class of a pair
(𝑔 ∘ ℎ ∶ 𝑋″ → 𝑍, 𝑠 ∘ 𝑢 ∶ 𝑋″ → 𝑋) where ℎ and 𝑢 ∈ 𝑆 are chosen to fit into a
commutative diagram

𝑋″

𝑢
��

ℎ // 𝑌′

𝑡
��

𝑋′ 𝑓 // 𝑌
which exists by assumption.

Lemma 4.24.9. Let 𝒞 be a category and let 𝑆 be a right multiplicative system.
(1) The relation on pairs defined above is an equivalence relation.
(2) The composition rule given above is well defined on equivalence classes.
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(3) Composition is associative and hence 𝑆−1𝒞 is a category.

Proof. This lemma is dual to Lemma 4.24.2. It follows formally from that lemma by re-
placing 𝒞 by its opposite category in which 𝑆 is a left multiplicative system. �

We can ``write any finite collection of morphisms with the same source as fractions with
common denominator''.

Lemma 4.24.10. Let 𝒞 be a category and let 𝑆 be a right multiplicative system of mor-
phisms of 𝒞. Given any finite collection 𝑔𝑖 ∶ 𝑋 → 𝑌𝑖 of morphisms of 𝑆−1𝒞 we can find
an element 𝑠 ∶ 𝑋′ → 𝑋 of 𝑆 and 𝑓𝑖 ∶ 𝑋′ → 𝑌𝑖 such that 𝑔𝑖 is the equivalence class of the
pair (𝑓𝑖 ∶ 𝑋′ → 𝑌𝑖, 𝑠 ∶ 𝑋′ → 𝑋).

Proof. This lemma is the dual of Lemma 4.24.3 and follows formally from that lemma by
replacing all categories in sight by their opposites. �

There is an easy characterization of equality of morphisms if they have the same denomi-
nator.

Lemma 4.24.11. Let 𝒞 be a category and let 𝑆 be a right multiplicative system of mor-
phisms of 𝒞. Let 𝐴, 𝐵 ∶ 𝑋 → 𝑌 be morphisms of 𝑆−1𝒞 which are the equivalence classes
of (𝑓 ∶ 𝑋′ → 𝑌, 𝑠 ∶ 𝑋′ → 𝑋) and (𝑔 ∶ 𝑋′ → 𝑌, 𝑠 ∶ 𝑋′ → 𝑋). Then 𝐴 = 𝐵 if and only if
there exists a morphism 𝑎 ∶ 𝑋″ → 𝑋′ with 𝑠 ∘ 𝑎 ∈ 𝑆 and such that 𝑓 ∘ 𝑎 = 𝑔 ∘ 𝑎.

Proof. This is dual to Lemma 4.24.4. �

Remark 4.24.12. Let 𝒞 be a category. Let 𝑆 be a right multiplicative system. Given an
object 𝑋 of 𝒞 we denote 𝑆/𝑋 the category whose objects are 𝑠 ∶ 𝑋′ → 𝑋 with 𝑠 ∈ 𝑆 and
whose morphisms are commutative diagrams

𝑋′

𝑠
  

𝑎
// 𝑋″

𝑡~~
𝑋

where 𝑎 ∶ 𝑋′ → 𝑋″ is arbitrary. The category 𝑆/𝑋 is cofiltered (see Definition 4.18.1).
(This is dual to the corresponding statement in Remark 4.24.5.) Now the combined results
of Lemmas 4.24.10 and 4.24.11 tell us that

(4.24.12.1) 𝑀𝑜𝑟𝑆−1𝒞(𝑋, 𝑌) = 𝑐𝑜𝑙𝑖𝑚(𝑠∶𝑋′→𝑋)∈(𝑆/𝑋)𝑜𝑝𝑝 𝑀𝑜𝑟𝒞(𝑋′, 𝑌)

This formula expressing morphisms in 𝑆−1𝒞 as a filtered colimit of morphisms in 𝒞 is
occasionally useful.

Lemma 4.24.13. Let 𝒞 be a category and let 𝑆 be a right multiplicative system of mor-
phisms of 𝒞.

(1) The rules 𝑋 ↦ 𝑋 and (𝑓 ∶ 𝑋 → 𝑌) ↦ (𝑓 ∶ 𝑋 → 𝑌, id𝑋 ∶ 𝑋 → 𝑋) define a
functor 𝑄 ∶ 𝒞 → 𝑆−1𝒞.

(2) For any 𝑠 ∈ 𝑆 the morphism 𝑄(𝑠) is an isomorphism in 𝑆−1𝒞.
(3) If 𝐺 ∶ 𝒞 → 𝒟 is any functor such that 𝐺(𝑠) is invertible for every 𝑠 ∈ 𝑆, then

there exists a unique functor 𝐻 ∶ 𝑆−1𝒞 → 𝒟 such that 𝐻 ∘ 𝑄 = 𝐺.

Proof. This lemma is the dual of Lemma 4.24.6 and follows formally from that lemma by
replacing all categories in sight by their opposites. �
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Lemma 4.24.14. Let 𝒞 be a category and let 𝑆 be a right multiplicative system of mor-
phisms of 𝒞. The localization functor 𝑄 ∶ 𝒞 → 𝑆−1𝒞 commutes with finite limits.

Proof. This is clear from (4.24.12.1), Remark 4.13.4, and Lemma 4.17.2. �

Lemma 4.24.15. Let 𝒞 be a category. Let 𝑆 be a right multiplicative system. If 𝑓 ∶ 𝑋 → 𝑌,
𝑓′ ∶ 𝑋′ → 𝑌′ are two morphisms of 𝒞 and if

𝑄(𝑋)

𝑄(𝑓)
��

𝑎
// 𝑄(𝑋′)

𝑄(𝑓′)
��

𝑄(𝑌) 𝑏 // 𝑄(𝑌′)

is a commutative diagram in 𝑆−1𝒞, then there exists a morphism 𝑓″ ∶ 𝑋″ → 𝑌″ in 𝒞 and
a commutative diagram

𝑋

𝑓
��

𝑋″
𝑠

oo

𝑓″

��

𝑔
// 𝑋′

𝑓′

��
𝑌 𝑌″𝑡oo ℎ // 𝑌′

in 𝒞 with 𝑠, 𝑡 ∈ 𝑆 and 𝑎 = 𝑔𝑠−1, 𝑏 = ℎ𝑡−1.

Proof. This lemma is dual to Lemma 4.24.8 but we can also prove it directly as follows. We
choose maps and objects in the following way: First write 𝑏 = ℎ𝑡−1 for some 𝑡 ∶ 𝑌″ → 𝑌 in
𝑆 and ℎ ∶ 𝑌″ → 𝑌′. By RMS2 we can find 𝑠 ∶ 𝑋″ → 𝑋 in 𝑆 and 𝑓″ ∶ 𝑋″ → 𝑌″ such that

𝑋

𝑓
��

𝑋″
𝑠

oo

𝑓″

��

𝑋′

𝑓′

��
𝑌 𝑌″𝑡oo ℎ // 𝑌′

commutes. Now in this diagram we are going to repeatedly change our choice of

𝑋
𝑠

←− 𝑋″ 𝑓″

−−→ 𝑌″

by precomposing both 𝑠 and 𝑓″ by a morphism 𝑑 ∶ 𝑋‴ → 𝑋″ with the property that 𝑠∘𝑑 ∈
𝑆. According to Remark 4.24.12 we may after such a replacement assume that there exists
a morphism 𝑔 ∶ 𝑋″ → 𝑋′ such that 𝑎 = 𝑔𝑠−1. At this point we have everything as in the
lemma except that we don't know that the right square of the diagram commutes. However,
we do know that 𝑄(𝑓′𝑔) = 𝑄(ℎ𝑓″) in 𝑆−1𝒟 because the left square commutes, the outer
square commutes in𝑆−1𝒟 by assumption, and because𝑄(𝑠), 𝑄(𝑡) are isomorphisms. Hence
using Lemma 4.24.11 we can find a morphism 𝑑 ∶ 𝑋‴ → 𝑋″ in 𝑆 (!) such that 𝑓′𝑔𝑑 =
ℎ𝑓″𝑑. Hence we make one more replacement of the kind described above and we win. �

Multiplicative systems and two sided calculus of fractions. If𝑆 is amultiplicative system
then left and right calculus of fractions given canonically isomorphic categories.

Lemma 4.24.16. Let 𝒞 be a category and let 𝑆 be a multiplicative system. The category
of left fractions and the category of right fractions 𝑆−1𝒞 are canonically isomorphic.

Proof. Denote 𝒞𝑙𝑒𝑓𝑡, 𝒞𝑟𝑖𝑔ℎ𝑡 the two categories of fractions. By the universal properties of
Lemmas 4.24.6 and 4.24.13 we obtain functors 𝒞𝑙𝑒𝑓𝑡 → 𝒞𝑟𝑖𝑔ℎ𝑡 and 𝒞𝑟𝑖𝑔ℎ𝑡 → 𝒞𝑙𝑒𝑓𝑡. By the
uniqueness of these functors they are each others inverse. �
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Definition 4.24.17. Let 𝒞 be a category and let 𝑆 be a multiplicative system. We say 𝑆 is
saturated if, in addition to MS1, MS2, MS3 we also have

MS4 Given three composable morphisms 𝑓, 𝑔, ℎ, if 𝑓𝑔, 𝑔ℎ ∈ 𝑆, then 𝑔 ∈ 𝑆.

Note that a saturated multiplicative system contains all isomorphisms. Moreover, if 𝑓, 𝑔, ℎ
are composable morphisms in a category and 𝑓𝑔, 𝑔ℎ are isomorphisms, then 𝑔 is an isomor-
phism (because then 𝑔 has both a left and a right inverse, hence is invertible).

Lemma 4.24.18. Let 𝒞 be a category and let 𝑆 be a multiplicative system. Denote 𝑄 ∶
𝒮 → 𝑆−1𝒞 the localization functor. The set

̂𝑆 = {𝑓 ∈ Arrows(𝒞) ∣ 𝑄(𝑓) is an isomorphism}

is equal to

𝑆′ = {𝑓 ∈ Arrows(𝒞) ∣ there exist 𝑔, ℎ such that 𝑔𝑓, 𝑓ℎ ∈ 𝑆}

and is the smallest saturated multiplicative system containing 𝑆. In particular, if 𝑆 is sat-
urated, then ̂𝑆 = 𝑆.

Proof. It is clear that 𝑆 ⊂ 𝑆′ ⊂ ̂𝑆 because elements of 𝑆′ map to morphisms in 𝑆−1𝒞
which have both left and right inverses. Note that 𝑆′ satisfies MS4, and that ̂𝑆 satisfies
MS1. Next, we prove that 𝑆′ = ̂𝑆.

Let 𝑓 ∈ ̂𝑆. Let 𝑠−1𝑔 = ℎ𝑡−1 be the inverse morphism in 𝑆−1𝒞. (We may use both left
fractions and right fractions to describe morphisms in 𝑆−1𝒞, see Lemma 4.24.16.) The
relation id𝑋 = 𝑠−1𝑔𝑓 in 𝑆−1𝒞 means there exists a commutative diagram

𝑋′

𝑢
��

𝑋

𝑔𝑓
>>

𝑓′
//

id𝑋   

𝑋″ 𝑋

𝑠
``

𝑠′
oo

id𝑋~~
𝑋

𝑣

OO

for some morphisms 𝑓′, 𝑢, 𝑣 and 𝑠′ ∈ 𝑆. Hence 𝑢𝑔𝑓 = 𝑠′ ∈ 𝑆. Similarly, using that
id𝑌 = 𝑓ℎ𝑡−1 one proves that 𝑓ℎ𝑤 ∈ 𝑆 for some 𝑤. We conclude that 𝑓 ∈ 𝑆′. Thus
𝑆′ = ̂𝑆. Provided we prove that 𝑆′ = ̂𝑆 is a multiplicative system it is now clear that this
implies that 𝑆′ = ̂𝑆 is the smallest saturated system containing 𝑆.

Our remarks above take care of MS1 and MS4, so to finish the proof of the lemma we have
to show that LMS2, RMS2, LMS3, RMS3 hold for ̂𝑆. Let us check that LMS2 holds for ̂𝑆.
Suppose we have a solid diagram

𝑋

𝑡
��

𝑔
// 𝑌

𝑠
��

𝑍
𝑓 // 𝑊
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with 𝑡 ∈ ̂𝑆. Pick a morphism 𝑎 ∶ 𝑍 → 𝑍′ such that 𝑎𝑡 ∈ 𝑆. Then we can use LMS2 for 𝑆
to find a commutative diagram

𝑋

𝑡
��

𝑔
// 𝑌

𝑠

��

𝑍

𝑎
��

𝑍′ 𝑓′
// 𝑊

and setting 𝑓 = 𝑓′ ∘ 𝑎 we win. The proof of RMS2 is dual to this. Finally, suppose given a
pair of morphisms 𝑓, 𝑔 ∶ 𝑋 → 𝑌 and 𝑡 ∈ ̂𝑆 with target 𝑋 such that 𝑓𝑡 = 𝑔𝑡. Then we pick
a morphism 𝑏 such that 𝑡𝑏 ∈ 𝑆. Then 𝑓𝑡𝑏 = 𝑔𝑡𝑏 which implies by LMS3 for 𝑆 that there
exists an 𝑠 ∈ 𝑆 with source 𝑌 such that 𝑠𝑓 = 𝑠𝑔 as desired. The proof of RMS3 is dual to
this. �

4.25. Formal properties

In this section we discuss some formal properties of the 2-category of categories. This will
lead us to the definition of a (strict) 2-category later.

Let us denote 𝑂𝑏(Cat) the class of all categories. For every pair of categories 𝒜, ℬ ∈
𝑂𝑏(Cat) we have the ``small'' category of functors Fun(𝒜, ℬ). Composition of transforma-
tion of functors such as

𝒜

𝐹″

##�� 𝑡′

𝐹′
//
;;

𝐹
�� 𝑡

ℬ composes to 𝒜
𝐹″

))

𝐹

55�� 𝑡∘𝑡′ ℬ

is called vertical composition. We will use the usual symbol ∘ for this. Next, we will define
horizontal composition. In order to do this we explain a bit more of the structure at hand.

Namely for every triple of categories 𝒜, ℬ, and 𝒞 there is a composition law

∘ ∶ 𝑂𝑏(Fun(ℬ, 𝒞)) × 𝑂𝑏(Fun(𝒜, ℬ)) ⟶ 𝑂𝑏(Fun(𝒜, 𝒞))

coming from composition of functors. This composition law is associative, and identity
functors act as units. In other words -- forgetting about transformations of functors -- we
see thatCat forms a category. How does this structure interact with the morphisms between
functors?

Well, given 𝑡 ∶ 𝐹 → 𝐹′ a transformation of functors 𝐹, 𝐹′ ∶ 𝒜 → ℬ and a functor
𝐺 ∶ ℬ → 𝒞 we can define a transformation of functors 𝐺 ∘ 𝐹 → 𝐺 ∘ 𝐹′. We will denote
this transformation 𝐺𝑡. It is given by the formula (𝐺𝑡)𝑥 = 𝐺(𝑡𝑥) ∶ 𝐺(𝐹(𝑥)) → 𝐺(𝐹′(𝑥)) for
all 𝑥 ∈ 𝒜. In this way composition with 𝐺 becomes a functor

Fun(𝒜, ℬ) ⟶ Fun(𝒜, 𝒞).

To see this you just have to check that 𝐺(id𝐹) = id𝐺∘𝐹 and that 𝐺(𝑡1 ∘ 𝑡2) = 𝐺𝑡1 ∘ 𝐺𝑡2. Of
course we also have that id𝒜

𝑡 = 𝑡.

Similarly, given 𝑠 ∶ 𝐺 → 𝐺′ a transformation of functors 𝐺, 𝐺′ ∶ ℬ → 𝒞 and 𝐹 ∶ 𝒜 → ℬ
a functor we can define 𝑠𝐹 to be the transformation of functors 𝐺 ∘ 𝐹 → 𝐺′ ∘ 𝐹 given by
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(𝑠𝐹)𝑥 = 𝑠𝐹(𝑥) ∶ 𝐺(𝐹(𝑥)) → 𝐺′(𝐹(𝑥)) for all 𝑥 ∈ 𝒜. In this way composition with 𝐹
becomes a functor

Fun(ℬ, 𝒞) ⟶ Fun(𝒜, 𝒞).

To see this you just have to check that (id𝐺)𝐹 = id𝐺∘𝐹 and that (𝑠1 ∘ 𝑠2)𝐹 = 𝑠1,𝐹 ∘ 𝑠2,𝐹. Of
course we also have that 𝑠idℬ

= 𝑠.

These constructions satisfy the additional properties

𝐺1
(𝐺2

𝑡) = 𝐺1∘𝐺2
𝑡, (𝑠𝐹1

)𝐹2
= 𝑠𝐹1∘𝐹2

, and 𝐻(𝑠𝐹) = (𝐻𝑠)𝐹

whenever these make sense. Finally, given functors 𝐹, 𝐹′ ∶ 𝒜 → ℬ, and 𝐺, 𝐺′ ∶ ℬ → 𝒞
and transformations 𝑡 ∶ 𝐹 → 𝐹′, and 𝑠 ∶ 𝐺 → 𝐺′ the following diagram is commutative

𝐺 ∘ 𝐹 𝐺𝑡 //

𝑠𝐹
��

𝐺 ∘ 𝐹′

𝑠𝐹′
��

𝐺′ ∘ 𝐹
𝐺′𝑡
// 𝐺′ ∘ 𝐹′

in other words 𝐺′𝑡 ∘𝑠𝐹 = 𝑠𝐹′ ∘𝐺𝑡. To prove this we just consider what happens on any object
𝑥 ∈ 𝑂𝑏(𝒜):

𝐺(𝐹(𝑥))
𝐺(𝑡𝑥) //

𝑠𝐹(𝑥)
��

𝐺(𝐹′(𝑥))

𝑠𝐹′(𝑥)
��

𝐺′(𝐹(𝑥))
𝐺′(𝑡𝑥)

// 𝐺′(𝐹′(𝑥))

which is commutative because 𝑠 is a transformation of functors. This compatibility relation
allows us to define horizontal composition.

Definition 4.25.1. Given a diagram as in the left hand side of:

𝒜
𝐹

((

𝐹′

66�� 𝑡 ℬ
𝐺

((

𝐺′

66�� 𝑠 𝒞 gives 𝒜
𝐺∘𝐹

((

𝐺′∘𝐹′

66�� 𝑠⋆𝑡 𝒞

we define the horizontal composition 𝑠 ⋆ 𝑡 to be the transformation of functors 𝐺′𝑡 ∘ 𝑠𝐹 =
𝑠𝐹′ ∘ 𝐺𝑡.

Now we see that we may recover our previously constructed transformations 𝐺𝑡 and 𝑠𝐹 as
𝐺𝑡 = id𝐺⋆𝑡 and 𝑠𝐹 = 𝑠⋆id𝐹. Furthermore, all of the rules we found above are consequences
of the properties stated in the lemma that follows.

Lemma 4.25.2. The horizontal and vertical compositions have the following properties

(1) ∘ and ⋆ are associative,
(2) the identity transformations id𝐹 are units for ∘,
(3) the identity transformations of the identity functors idid𝒜

are units for ⋆ and ∘,
and
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(4) given a diagram

𝒜

𝐹

##�� 𝑡

𝐹′
//
;;

𝐹″
�� 𝑡′

ℬ

𝐺

##�� 𝑠

𝐺′
//
;;

𝐺″
�� 𝑠′

𝒞

we have (𝑠′ ∘ 𝑠) ⋆ (𝑡′ ∘ 𝑡) = (𝑠′ ⋆ 𝑡′) ∘ (𝑠 ⋆ 𝑡).

Proof. The last statement turns using our previous notation into the following equation

𝑠′
𝐹″ ∘ 𝐺′𝑡′ ∘ 𝑠𝐹′ ∘ 𝐺𝑡 = (𝑠′ ∘ 𝑠)𝐹″ ∘ 𝐺(𝑡′ ∘ 𝑡).

According to our result above applied to the middle composition we may rewrite the left
hand side as 𝑠′

𝐹″ ∘ 𝑠𝐹″ ∘ 𝐺𝑡′ ∘ 𝐺𝑡 which is easily shown to be equal to the right hand side. �

Another way of formulating condition (4) of the lemma is that composition of functors and
horizontal composition of transformation of functors gives rise to a functor

(∘, ⋆) ∶ Fun(ℬ, 𝒞) × Fun(𝒜, ℬ) ⟶ Fun(𝒜, 𝒞)

whose source is the product category, see Definition 4.2.20.

4.26. 2-categories

We will give a definition of (strict) 2-categories as they appear in the setting of stacks. Be-
fore you read this take a look at Section 4.25 and Example 4.27.2. Basically, you take
this example and you write out all the rules satisfied by the objects, 1-morphisms and
2-morphisms in that example.

Definition 4.26.1. A (strict) 2-category 𝒞 consists of the following data
(1) A set of objects 𝑂𝑏(𝒞).
(2) For each pair 𝑥, 𝑦 ∈ 𝑂𝑏(𝒞) a category 𝑀𝑜𝑟𝒞(𝑥, 𝑦). The objects of 𝑀𝑜𝑟𝒞(𝑥, 𝑦)

will be called 1-morphisms and denoted 𝐹 ∶ 𝑥 → 𝑦. The morphisms between
these 1-morphisms will be called 2-morphisms and denoted 𝑡 ∶ 𝐹′ → 𝐹. The
composition of 2-morphisms in 𝑀𝑜𝑟𝒞(𝑥, 𝑦) will be called vertical composition
and will be denoted 𝑡 ∘ 𝑡′ for 𝑡 ∶ 𝐹′ → 𝐹 and 𝑡′ ∶ 𝐹″ → 𝐹′.

(3) For each triple 𝑥, 𝑦, 𝑧 ∈ 𝑂𝑏(𝒞) a functor

(∘, ⋆) ∶ 𝑀𝑜𝑟𝒞(𝑦, 𝑧) × 𝑀𝑜𝑟𝒞(𝑥, 𝑦) ⟶ 𝑀𝑜𝑟𝒞(𝑥, 𝑧).

The image of the pair of 1-morphisms (𝐹, 𝐺) on the left hand side will be called
the composition of𝐹 and𝐺, and denoted𝐹∘𝐺. The image of the pair of 2-morphisms
(𝑡, 𝑠) will be called the horizontal composition and denoted 𝑡 ⋆ 𝑠.

These data are to satisfy the following rules:
(1) The set of objects together with the set of 1-morphisms endowed with composi-

tion of 1-morphisms forms a category.
(2) Horizontal composition of 2-morphisms is associative.
(3) The identity 2-morphism idid𝑥

of the identity 1-morphism id𝑥 is a unit for hori-
zontal composition.
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This is obviously not a very pleasant type of object to work with. On the other hand, there
are lots of examples where it is quite clear how you work with it. The only example we
have so far is that of the 2-category whose objects are a given collection of categories,
1-morphisms are functors between these categories, and 2-morphisms are natural transfor-
mations of functors, see Section 4.25. As far as this text is concerned all 2-categories will
be sub 2-categories of this example. Here is what it means to be a sub 2-category.

Definition 4.26.2. Let 𝒞 be a 2-category. A sub 2-category 𝒞′ of 𝒞, is given by a sub-
set 𝑂𝑏(𝒞′) of 𝑂𝑏(𝒞) and sub categories 𝑀𝑜𝑟𝒞′(𝑥, 𝑦) of the categories 𝑀𝑜𝑟𝒞(𝑥, 𝑦) for all
𝑥, 𝑦 ∈ 𝑂𝑏(𝒞′) such that these, together with the operations ∘ (composition 1-morphisms),
∘ (vertical composition 2-morphisms), and ⋆ (horizontal composition) form a 2-category.

Remark 4.26.3. Big 2-categories. In many texts a 2-category is allowed to have a class
of objects (but hopefully a ``class of classes'' is not allowed). We will allow these ``big''
2-categories as well, but only in the following list of cases (to be updated as we go along):

(1) The 2-category of categories Cat.
(2) The (2, 1)-category of categories Cat.
(3) The 2-category of groupoids Groupoids.
(4) The (2, 1)-category of groupoids Groupoids.
(5) The 2-category of fibred categories over a fixed category.
(6) The (2, 1)-category of fibred categories over a fixed category.

Note that in each case the class of objects of the 2-category 𝒞 is a proper class, but for all
objects 𝑥, 𝑦 ∈ 𝑂𝑏(𝐶) the category 𝑀𝑜𝑟𝒞(𝑥, 𝑦) is ``small'' (according to our conventions).

The notion of equivalence of categories that we defined in Section 4.2 extends to the more
general setting of 2-categories as follows.

Definition 4.26.4. Two objects 𝑥, 𝑦 of a 2-category are equivalent if there exist 1-morphisms
𝐹 ∶ 𝑥 → 𝑦 and 𝐺 ∶ 𝑦 → 𝑥 such that 𝐹 ∘ 𝐺 is 2-isomorphic to id𝑦 and 𝐺 ∘ 𝐹 is 2-isomorphic
to id𝑥.

Sometimes we need to say what it means to have a functor from a category into a 2-category.

Definition 4.26.5. Let 𝒜 be a category and let 𝒞 be a 2-category.
(1) A functor from an ordinary category into a 2-categorywill ignore the 2-morphisms

unless mentioned otherwise. In other words, it will be a ``usual'' functor into the
category formed out of 2-category by forgetting all the 2-morphisms.

(2) A weak functor, or a pseudo functor 𝜑 from 𝒜 into the 2-category 𝒞 is given by
the following data
(a) a map 𝜑 ∶ 𝑂𝑏(𝒜) → 𝑂𝑏(𝒞),
(b) for every pair 𝑥, 𝑦 ∈ 𝑂𝑏(𝒜), and every morphism 𝑓 ∶ 𝑥 → 𝑦 a 1-morphism

𝜑(𝑓) ∶ 𝜑(𝑥) → 𝜑(𝑦),
(c) for every 𝑥 ∈ 𝑂𝑏(𝐴) a 2-morphism 𝛼𝑥 ∶ id𝜑(𝑥) → 𝜑(id𝑥), and
(d) for every pair of composable morphisms 𝑓 ∶ 𝑥 → 𝑦, 𝑔 ∶ 𝑦 → 𝑧 of 𝒜 a

2-morphism 𝛼𝑔,𝑓 ∶ 𝜑(𝑔 ∘ 𝑓) → 𝜑(𝑔) ∘ 𝜑(𝑓).
These data are subject to the following conditions:
(a) the 2-morphisms 𝛼𝑥 and 𝛼𝑔,𝑓 are all isomorphisms,
(b) for any morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝒜 we have 𝛼id𝑦,𝑓 = 𝛼𝑦 ⋆ id𝜑(𝑓):

𝜑(𝑥)
𝜑(𝑓)

**

𝜑(𝑓)
44�� id𝜑(𝑓) 𝜑(𝑦)

id𝑦
**

𝜑(id𝑦)
44�� 𝛼𝑦 𝜑(𝑦) = 𝜑(𝑥)

𝜑(𝑓)
**

𝜑(id𝑦)∘𝜑(𝑓)
44��

𝛼𝑓,id𝑦 𝜑(𝑦)
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(c) for any morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝒜 we have 𝛼𝑓,id𝑥
= id𝜑(𝑓) ⋆ 𝛼𝑥,

(d) for any triple of composable morphisms 𝑓 ∶ 𝑤 → 𝑥, 𝑔 ∶ 𝑥 → 𝑦, and
ℎ ∶ 𝑦 → 𝑧 of 𝒜 we have

(id𝜑(ℎ) ⋆ 𝛼𝑔,𝑓) ∘ 𝛼ℎ,𝑔∘𝑓 = (𝛼ℎ,𝑔 ⋆ id𝜑(𝑓)) ∘ 𝛼ℎ∘𝑔,𝑓

in other words the following diagram with objects 1-morphisms and arrows
2-morphisms commutes

𝜑(ℎ ∘ 𝑔 ∘ 𝑓)

𝛼ℎ,𝑔∘𝑓

��

𝛼ℎ∘𝑔,𝑓
// 𝜑(ℎ ∘ 𝑔) ∘ 𝜑(𝑓)

𝛼ℎ,𝑔⋆id𝜑(𝑓)
��

𝜑(ℎ) ∘ 𝜑(𝑔 ∘ 𝑓)
id𝜑(ℎ)⋆𝛼𝑔,𝑓 // 𝜑(ℎ) ∘ 𝜑(𝑔) ∘ 𝜑(𝑓)

Again this is not a very workable notion, but it does sometimes come up. There is a theorem
that says that any pseudo-functor is isomorphic to a functor. Finally, there are the notions
of functor between 2-categories, and pseudo functor between 2-categories. This last notion
leads us into 3-category territory. We would like to avoid having to define this at almost
any cost!

4.27. (2, 1)-categories

Some 2-categories have the property that all 2-morphisms are isomorphisms. These will
play an important role in the following, and they are easier to work with.

Definition 4.27.1. A (strict) (2, 1)-category is a 2-category in which all 2-morphisms are
isomorphisms.

Example 4.27.2. The 2-categoryCat, see Remark 4.26.3, can be turned into a (2, 1)-category
by only allowing isomorphisms of functors as 2-morphisms.

In fact, more generally any 2-category 𝒞 produces a (2, 1)-category by considering the sub
2-category 𝒞′ with the same objects and 1-morphisms but whose 2-morphisms are the in-
vertible 2-morphisms of 𝒞. In this situation we will say ``let 𝒞′ be the (2, 1)-category asso-
ciated to 𝒞'' or similar. For example, the (2, 1)-category of groupoids means the 2-category
whose objects are groupoids, whose 1-morphisms are functors and whose 2-morphisms are
isomorphisms of functors. Except that this is a bad example as a transformation between
functors between groupoids is automatically an isomorphism!

Remark 4.27.3. Thus there are variants of the construction of Example 4.27.2 above where
we look at the 2-category of groupoids, or categories fibred in groupoids over a fixed cate-
gory, or stacks. And so on.

4.28. 2-fibre products

In this section we introduce 2-fibre products. Suppose that 𝒞 is a 2-category. We say that
a diagram

𝑤 //

��

𝑦

��
𝑥 // 𝑧

2-commutes if the two 1-morphisms 𝑤 → 𝑦 → 𝑧 and 𝑤 → 𝑥 → 𝑧 are 2-isomorphic. In a
2-category it is more natural to ask for 2-commutativity of diagrams than for actually com-
muting diagrams. (Indeed, somemay say that we should not work with strict 2-categories at
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all, and in a ``weak'' 2-category the notion of a commutative diagram of 1-morphisms does
not even make sense.) Correspondingly the notion of a fibre product has to be adjusted.

Let 𝒞 be a 2-category. Let 𝑥, 𝑦, 𝑧 ∈ 𝑂𝑏(𝒞) and 𝑓 ∈ 𝑀𝑜𝑟𝒞(𝑥, 𝑧) and 𝑔 ∈ 𝑀𝑜𝑟𝒞(𝑦, 𝑧).
In order to define the 2-fibre product of 𝑓 and 𝑔 we are going to look at 2-commutative
diagrams

𝑤 𝑎
//

𝑏
��

𝑥

𝑓
��

𝑦
𝑔 // 𝑧.

Now in the case of categories, the fibre product is a final object in the category of such
diagrams. Correspondingly a 2-fibre product is a final object in a 2-category (see definition
below). The 2-category of 2-commutative diagrams is the 2-category defined as follows:

(1) Objects are quadruples (𝑤, 𝑎, 𝑏, 𝜙) as above where 𝜙 is an invertible 2-morphism
𝜙 ∶ 𝑓 ∘ 𝑎 → 𝑔 ∘ 𝑏,

(2) 1-morphisms from (𝑤′, 𝑎′, 𝑏′, 𝜙′) to (𝑤, 𝑎, 𝑏, 𝜙) are given by (𝑘 ∶ 𝑤′ → 𝑤, 𝛼 ∶
𝑎′ → 𝑎 ∘ 𝑘, 𝛽 ∶ 𝑏′ → 𝑏 ∘ 𝑘) such that

𝑓 ∘ 𝑎′
id𝑓⋆𝛼

//

𝜙′

��

𝑓 ∘ 𝑎 ∘ 𝑘

𝜙⋆id𝑘
��

𝑓 ∘ 𝑏′ id𝑓⋆𝛽
// 𝑓 ∘ 𝑏 ∘ 𝑘

is commutative,
(3) given a second 1-morphism (𝑘′, 𝛼′, 𝛽′) ∶ (𝑤″, 𝑎″, 𝑏″, 𝜙″) → (𝑤′, 𝛼′, 𝛽′, 𝜙′) the

composition of 1-morphisms is given by the rule

(𝑘, 𝛼, 𝛽) ∘ (𝑘′, 𝛼′, 𝛽′) = (𝑘 ∘ 𝑘′, (𝛼 ⋆ id𝑘′) ∘ 𝛼′, (𝛽 ⋆ id𝑘′) ∘ 𝛽′),

(4) a 2-morphism between 1-morphisms (𝑘𝑖, 𝛼𝑖, 𝛽𝑖), 𝑖 = 1, 2 with the same is given
by a 2-morphism 𝛿 ∶ 𝑘1 → 𝑘2 such that

𝑎′

𝛼2 !!

𝛼1
// 𝑎 ∘ 𝑘1

id𝑎⋆𝛿
��

𝑏 ∘ 𝑘1

id𝑏⋆𝛿
��

𝑏′
𝛽1
oo

𝛽2}}
𝑎 ∘ 𝑘2 𝑏 ∘ 𝑘2

commute,
(5) vertical composition of 2-morphisms is given by vertical composition of the mor-

phisms 𝛿 in 𝒞, and
(6) horizontal composition of the diagram

(𝑤″, 𝑎″, 𝑏″, 𝜙″)
(𝑘′

1,𝛼′
1,𝛽′

1) --

(𝑘′
2,𝛼′

2,𝛽′
2)
11�� 𝛿′ (𝑤′, 𝑎′, 𝑏′, 𝜙′)

(𝑘1,𝛼1,𝛽1)
,,

(𝑘2,𝛼2,𝛽2)
22�� 𝛿 (𝑤, 𝑎, 𝑏, 𝜙)

is given by the diagram

(𝑤″, 𝑎″, 𝑏″, 𝜙″)
(𝑘1∘𝑘′

1,(𝛼1⋆id𝑘′
1
)∘𝛼′

1,(𝛽1⋆id𝑘′
1
)∘𝛽′

1)
--

(𝑘2∘𝑘′
2,(𝛼2⋆id𝑘′

2
)∘𝛼′

2,(𝛽2⋆id𝑘′
2
)∘𝛽′

2)
11�� 𝛿⋆𝛿′ (𝑤, 𝑎, 𝑏, 𝜙)
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Note that if 𝒞 is actually a (2, 1)-category, the morphisms 𝛼 and 𝛽 in (2) above are automat-
ically also isomorphisms2. In addition the 2-category of 2-commutative diagrams is also a
(2, 1)-category if 𝒞 is a (2, 1)-category.

Definition 4.28.1. A final object of a (2, 1)-category 𝒞 is an object 𝑥 such that
(1) for every 𝑦 ∈ 𝑂𝑏(𝒞) there is a morphism 𝑦 → 𝑥, and
(2) every two morphisms 𝑦 → 𝑥 are isomorphic by a unique 2-morphism.

Likely, in the more general case of 2-categories there are different flavours of final objects.
We do not want to get into this and hence we only define 2-fibre products in the (2, 1)-case.

Definition 4.28.2. Let 𝒞 be a (2, 1)-category. Let 𝑥, 𝑦, 𝑧 ∈ 𝑂𝑏(𝒞) and 𝑓 ∈ 𝑀𝑜𝑟𝒞(𝑥, 𝑧)
and 𝑔 ∈ 𝑀𝑜𝑟𝒞(𝑦, 𝑧). A 2-fibre product of 𝑓 and 𝑔 is a final object in the category of
2-commutative diagrams described above. If a 2-fibre product exists we will denote it 𝑥 ×𝑧
𝑦 ∈ 𝑂𝑏(𝒞), and denote the required morphisms 𝑝 ∈ 𝑀𝑜𝑟𝒞(𝑥 ×𝑧 𝑦, 𝑥) and 𝑞 ∈ 𝑀𝑜𝑟𝒞(𝑥 ×𝑧
𝑦, 𝑦) making the diagram

𝑥 ×𝑦 𝑧
𝑝 //

𝑞

��

𝑥

𝑓
��

𝑦
𝑔 // 𝑧

2-commute and we will denote the given invertible 2-morphism exhibiting this by 𝜓 ∶
𝑓 ∘ 𝑝 → 𝑔 ∘ 𝑞.

Thus the following universal property holds: for any 𝑤 ∈ 𝑂𝑏(𝒞) and morphisms 𝑎 ∈
𝑀𝑜𝑟𝒞(𝑤, 𝑥) and 𝑏 ∈ 𝑀𝑜𝑟𝒞(𝑤, 𝑦) with a given 2-isomorphism 𝜙 ∶ 𝑓 ∘ 𝑎 → 𝑔 ∘ 𝑏 there is a
𝛾 ∈ 𝑀𝑜𝑟𝒞(𝑤, 𝑥 ×𝑧 𝑦) making the diagram

𝑤
𝑎

**
𝛾

''

𝑏

��

𝑥 ×𝑦 𝑧 𝑝
//

𝑞

��

𝑥

𝑓
��

𝑦
𝑔 // 𝑧

2-commute such that for suitable choices of 𝑎 → 𝑝 ∘ 𝛾 and 𝑏 → 𝑞 ∘ 𝛾 the diagram

𝑓 ∘ 𝑎 //

𝜙
��

𝑓 ∘ 𝑝 ∘ 𝛾

𝜓⋆id𝛾

��
𝑔 ∘ 𝑏 // 𝑔 ∘ 𝑞 ∘ 𝛾

commutes. Moreover 𝛾 is unique up to isomorphism. Of course the exact properties are
finer than this. All of the cases of 2-fibre products that we will need later on come from the
following example of 2-fibre products in the 2-category of categories.

Example 4.28.3. Let 𝒜, ℬ, and 𝒞 be categories. Let 𝐹 ∶ 𝒜 → 𝒞 and 𝐺 ∶ ℬ → 𝒞 be
functors. We define a category 𝒜 ×𝒞 ℬ as follows:

2In fact it seems in the 2-category case that one could define another 2-category of 2-commutative diagrams
where the direction of the arrows 𝛼, 𝛽 is reversed, or even where the direction of only one of them is reversed.
This is why we restrict to (2, 1)-categories later on.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=003P
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=003Q
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=003R
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(1) an object of 𝒜 ×𝒞 ℬ is a triple (𝐴, 𝐵, 𝑓), where 𝐴 ∈ 𝑂𝑏(𝒜), 𝐵 ∈ 𝑂𝑏(ℬ), and
𝑓 ∶ 𝐹(𝐴) → 𝐺(𝐵) is an isomorphism in 𝒞,

(2) a morphism (𝐴, 𝐵, 𝑓) → (𝐴′, 𝐵′, 𝑓′) is given by a pair (𝑎, 𝑏), where 𝑎 ∶ 𝐴 → 𝐴′

is a morphism in 𝒜, and 𝑏 ∶ 𝐵 → 𝐵′ is a morphism in ℬ such that the diagram

𝐹(𝐴)
𝑓 //

𝐹(𝑎)
��

𝐺(𝐵)

𝐺(𝑏)
��

𝐹(𝐴′)
𝑓′
// 𝐺(𝐵′)

is commutative.

Moreover, we define functors 𝑝 ∶ 𝒜 ×𝒞 ℬ → 𝒜 and 𝑞 ∶ 𝒜 ×𝒞 ℬ → ℬ by setting

𝑝(𝐴, 𝐵, 𝑓) = 𝐴, 𝑞(𝐴, 𝐵, 𝑓) = 𝐵,

in other words, these are the forgetful functors. We define a transformation of functors
𝜓 ∶ 𝐹 ∘ 𝑝 → 𝐺 ∘ 𝑞. On the object 𝜉 = (𝐴, 𝐵, 𝑓) it is given by 𝜓𝜉 = 𝑓 ∶ 𝐹(𝑝(𝜉)) = 𝐹(𝐴) →
𝐺(𝐵) = 𝐺(𝑞(𝜉)).

Lemma 4.28.4. In the (2, 1)-category of categories 2-fibre products exist and are given by
the construction of Example 4.28.3.

Proof. Let us check the universal property: let 𝒲 be a category, let 𝑎 ∶ 𝒲 → 𝒜 and
𝑏 ∶ 𝒲 → ℬ be functors, and let 𝑡 ∶ 𝐹 ∘ 𝑎 → 𝐺 ∘ 𝑏 be an isomorphism of functors.

Consider the functor 𝛾 ∶ 𝒲 → 𝒜 ×𝒞 ℬ given by 𝑊 ↦ (𝑎(𝑊), 𝑏(𝑊), 𝑡𝑊). (Check this is a
functor omitted.) Moreover, consider 𝛼 ∶ 𝑎 → 𝑝 ∘ 𝛾 and 𝛽 ∶ 𝑏 → 𝑞 ∘ 𝛾 obtained from the
identities 𝑝 ∘ 𝛾 = 𝑎 and 𝑞 ∘ 𝛾 = 𝑏. Then it is clear that (𝛾, 𝛼, 𝛽) is a morphism from (𝑊, 𝑎, 𝑏, 𝑡)
to (𝒜 ×𝒞 ℬ, 𝑝, 𝑞, 𝜓).

Let (𝑘, 𝛼′, 𝛽′) ∶ (𝑊, 𝑎, 𝑏, 𝑡) → (𝒜 ×𝒞 ℬ, 𝑝, 𝑞, 𝜓) be a second such morphism. For an object
𝑊 of 𝒲 let us write 𝑘(𝑊) = (𝑎𝑘(𝑊), 𝑏𝑘(𝑊), 𝑡𝑘,𝑊). Hence 𝑝(𝑘(𝑊)) = 𝑎𝑘(𝑊) and so on. The
map 𝛼′ corresponds to functorial maps 𝛼′ ∶ 𝑎(𝑊) → 𝑎𝑘(𝑊). Since we are working in the
(2, 1)-category of categories, in fact each of the maps 𝑎(𝑊) → 𝑎𝑘(𝑊) is an isomorphism.
We can use these (and their counterparts 𝑏(𝑊) → 𝑏𝑘(𝑊)) to get isomorphisms

𝛿𝑊 ∶ 𝛾(𝑊) = (𝑎(𝑊), 𝑏(𝑊), 𝑡𝑊) ⟶ (𝑎𝑘(𝑊), 𝑏𝑘(𝑊), 𝑡𝑘,𝑊) = 𝑘(𝑊).

It is straightforward to show that 𝛿 defines a 2-isomorphism between 𝛾 and 𝑘 in the 2-category
of 2-commutative diagrams as desired. �

Remark 4.28.5. Let 𝒜, ℬ, and 𝒞 be categories. Let 𝐹 ∶ 𝒜 → 𝒞 and 𝐺 ∶ ℬ → 𝒞 be
functors. Another, slightly more symmetrical, construction of a 2-fibre product 𝒜 ×𝒞 ℬ is
as follows. An object is a quintuple (𝐴, 𝐵, 𝐶, 𝑎, 𝑏) where 𝐴, 𝐵, 𝐶 are objects of 𝒜, ℬ, 𝒞 and
where 𝑎 ∶ 𝐹(𝐴) → 𝐶 and 𝑏 ∶ 𝐺(𝐵) → 𝐶 are isomorphisms. A morphism (𝐴, 𝐵, 𝐶, 𝑎, 𝑏) →
(𝐴′, 𝐵′, 𝐶′, 𝑎′, 𝑏′) is given by a triple of morphisms 𝐴 → 𝐴′, 𝐵 → 𝐵′, 𝐶 → 𝐶′ compatible
with the morphisms 𝑎, 𝑏, 𝑎′, 𝑏′. We can prove directly that this leads to a 2-fibre product.
However, it is easier to observe that the functor (𝐴, 𝐵, 𝐶, 𝑎, 𝑏) ↦ (𝐴, 𝐵, 𝑏−1 ∘ 𝑎) gives an
equivalence from the category of quintuples to the category constructed in Example 4.28.3.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02X9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06RL
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Lemma 4.28.6. Let
𝒴

𝐼
��

𝐾

��
𝒳 𝐻 //

𝐿

  

𝒵
𝑀

  

ℬ

𝐺
��

𝒜 𝐹 // 𝒞
be a 2-commutative diagram of categories. A choice of isomorphisms 𝛼 ∶ 𝐺 ∘ 𝐾 → 𝑀 ∘ 𝐼
and 𝛽 ∶ 𝑀 ∘ 𝐻 → 𝐹 ∘ 𝐿 determines a morphism

𝒳 ×𝒵 𝒴 ⟶ 𝒜 ×𝒞 ℬ

of 2-fibre products associated to this situation.

Proof. Just use the functor

(𝑋, 𝑌, 𝜙) ⟼ (𝐿(𝑋), 𝐾(𝑌), 𝛼−1
𝑌 ∘ 𝑀(𝜙) ∘ 𝛽−1

𝑋 )

on objects and
(𝑎, 𝑏) ⟼ (𝐿(𝑎), 𝐾(𝑏))

on morphisms. �

Lemma 4.28.7. Assumptions as in Lemma 4.28.6.
(1) If 𝐾 and 𝐿 are faithful then the morphism 𝒴 ×𝒵 𝒳 → ℬ ×𝒞 𝒜 is faithful.
(2) If 𝐾 and 𝐿 are fully faithful and 𝑀 is faithful then the morphism 𝒴 ×𝒵 𝒳 →

ℬ ×𝒞 𝒜 is fully faithful.
(3) If 𝐾 and 𝐿 are equivalences and 𝑀 is fully faithful then the morphism 𝒴×𝒵 𝒳 →

ℬ ×𝒞 𝒜 is an equivalence.

Proof. Let (𝑋, 𝑌, 𝜙) and (𝑋′, 𝑌′, 𝜙′) be objects of 𝒳 ×𝒵 𝒴. Set 𝑍 = 𝐻(𝑋) and identify it
with 𝐼(𝑌) via 𝜙. Also, identify 𝑀(𝑍) with 𝐹(𝐿(𝑋)) via 𝛼𝑋 and identify 𝑀(𝑍) with 𝐺(𝐾(𝑌))
via 𝛽𝑌. Similarly for 𝑍′ = 𝐻(𝑋′) and 𝑀(𝑍′). The map on morphisms is the map

𝑀𝑜𝑟𝒳(𝑋, 𝑋′) ×𝑀𝑜𝑟𝒵(𝑍,𝑍′) 𝑀𝑜𝑟𝒴(𝑌, 𝑌′)

��
𝑀𝑜𝑟𝒜(𝐿(𝑋), 𝐿(𝑋′)) ×𝑀𝑜𝑟𝒞(𝑀(𝑍),𝑀(𝑍′)) 𝑀𝑜𝑟ℬ(𝐾(𝑌), 𝐾(𝑌′))

Hence parts (1) and (2) follow. Moreover, if 𝐾 and 𝐿 are equivalences and 𝑀 is fully
faithful, then any object (𝐴, 𝐵, 𝜙) is in the essential image for the following reasons: Pick
𝑋, 𝑌 such that 𝐿(𝑋) ≅ 𝐴 and 𝐾(𝑌) ≅ 𝐵. Then the fully faithfulness of 𝑀 guarantees that
we can find an isomorphism 𝐻(𝑋) ≅ 𝐼(𝑌). Some details omitted. �

Lemma 4.28.8. Let

𝒜

  

𝒞

~~ ��

ℰ

��
ℬ 𝒟

be a diagram of categories and functors. Then there is a canonical isomorphism

(𝒜 ×ℬ 𝒞) ×𝒟 ℰ ≅ 𝒜 ×ℬ (𝒞 ×𝒟 ℰ)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02XA
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02XB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02XC
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of categories.

Proof. Just use the functor

((𝐴, 𝐶, 𝜙), 𝐸, 𝜓) ⟼ (𝐴, (𝐶, 𝐸, 𝜓), 𝜙)

if you know what I mean. �

Henceforth we do not write the parentheses when dealing with fibred products of more than
2 categories.

Lemma 4.28.9. Let

𝒜

  

𝒞

~~ ��

ℰ

��
ℬ

𝐹   

𝒟

𝐺��
ℱ

be a commutative diagram of categories and functors. Then there is a canonical functor

pr02 ∶ 𝒜 ×ℬ 𝒞 ×𝒟 ℰ ⟶ 𝒜 ×ℱ ℰ

of categories.

Proof. If we write 𝒜 ×ℬ 𝒞 ×𝒟 ℰ as (𝒜 ×ℬ 𝒞) ×𝒟 ℰ then we can just use the functor

((𝐴, 𝐶, 𝜙), 𝐸, 𝜓) ⟼ (𝐴, 𝐸, 𝐺(𝜓) ∘ 𝐹(𝜙))

if you know what I mean. �

Lemma 4.28.10. Let
𝒜 → ℬ ← 𝒞 ← 𝒟

be a diagram of categories and functors. Then there is a canonical isomorphism

𝒜 ×ℬ 𝒞 ×𝒞 𝒟 ≅ 𝒜 ×𝒞 𝒟

of categories.

Proof. Omitted. �

We claim that this means you can work with these 2-fibre products just like with ordinary
fibre products. Here are some further lemmas that actually come up later.

Lemma 4.28.11. Let
𝒞3

//

��

𝒮

Δ
��

𝒞1 × 𝒞2
𝐺1×𝐺2 // 𝒮 × 𝒮

be a 2-fibre product of categories. Then there is a canonical isomorphism 𝒞3 ≅ 𝒞1 ×𝐺1,𝒮,𝐺2
𝒞2.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04S7
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02XD
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02XE
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Proof. We may assume that 𝒞3 is the category (𝒞1 × 𝒞2) ×𝒮×𝒮 𝒮 constructed in Example
4.28.3. Hence an object is a triple ((𝑋1, 𝑋2), 𝑆, 𝜙)where𝜙 = (𝜙1, 𝜙2) ∶ (𝐺1(𝑋1), 𝐺2(𝑋2)) →
(𝑆, 𝑆) is an isomorphism. Thus we can associate to this the triple (𝑋1, 𝑋2, 𝜙2 ∘ 𝜙−1

1 ). Con-
versely, if (𝑋1, 𝑋2, 𝜓) is an object of 𝒞1 ×𝐺1,𝒮,𝐺2

𝒞2, then we can associate to this the
triple ((𝑋1, 𝑋2), 𝐺1(𝑋1), (id𝐺1(𝑋1), 𝜓)). We claim these constructions given mutually in-
verse functors. We omit describing how to deal with morphisms and show they are mutually
inverse. �

Lemma 4.28.12. Let

𝒞′ //

��

𝒮

Δ
��

𝒞
𝐺1×𝐺2// 𝒮 × 𝒮

be a 2-fibre product of categories. Then there is a canonical isomorphism

𝒞′ ≅ (𝒞 ×𝐺1,𝒮,𝐺2
𝒞) ×(𝑝,𝑞),𝒞×𝒞,Δ 𝒞.

Proof. An object of the right hand side is given by ((𝐶1, 𝐶2, 𝜙), 𝐶3, 𝜓)where𝜙 ∶ 𝐺1(𝐶1) →
𝐺2(𝐶2) is an isomorphism and 𝜓 = (𝜓1, 𝜓2) ∶ (𝐶1, 𝐶2) → (𝐶3, 𝐶3) is an isomorphism.
Hence we can associate to this the triple (𝐶3, 𝐺1(𝐶1), (𝐺1(𝜓−1

1 ), 𝜑−1 ∘ 𝐺2(𝜓−1
2 ))) which is

an object of 𝒞′. Details omitted. �

Lemma 4.28.13. Let 𝒜 → 𝒞, ℬ → 𝒞 and 𝒞 → 𝒟 be functors between categories. Then
the diagram

𝒜 ×𝒞 ℬ

��

// 𝒜 ×𝒟 ℬ

��
𝒞

Δ𝒞/𝒟 //// 𝒞 ×𝒟 𝒞

is a 2-fibre product diagram.

Proof. Omitted. �

Lemma 4.28.14. Let

𝒰

��

// 𝒱

��
𝒳 // 𝒴

be a 2-fibre product. Then the diagram

𝒰

��

// 𝒰 ×𝒱 𝒰

��
𝒳 // 𝒳 ×𝒴 𝒳

is 2-cartesian.
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Proof. This is a purely 2-category theoretic statement, valid in any (2, 1)-category with
2-fibre products. Explicitly, it follows from the following chain of equivalences:

𝒳 ×(𝒳×𝒴𝒳) (𝒰 ×𝒱 𝒰) = 𝒳 ×(𝒳×𝒴𝒳) ((𝒳 ×𝒴 𝒱) ×𝒱 (𝒳 ×𝒴 𝒱))

= 𝒳 ×(𝒳×𝒴𝒳) (𝒳 ×𝒴 𝒳 ×𝒴 𝒱)

= 𝒳 ×𝒴 𝒱 = 𝒰

see Lemmas 4.28.8 and 4.28.10. �

4.29. Categories over categories

In this section we have a functor 𝑝 ∶ 𝒮 → 𝒞. We think of 𝒮 as being on top and of 𝒞 as
being at the bottom. To make sure that everybody knows what we are talking about we
define the 2-category of categories over 𝒞.

Definition 4.29.1. Let 𝒞 be a category. The 2-category of categories over 𝒞 is the sub
2-category of Cat defined as follows:

(1) Its objects will be functors 𝑝 ∶ 𝒮 → 𝒞.
(2) Its 1-morphisms (𝒮, 𝑝) → (𝒮′, 𝑝′) will be functors 𝐺 ∶ 𝒮 → 𝒮′ such that 𝑝′ ∘ 𝐺 =

𝑝.
(3) Its 2-morphisms 𝑡 ∶ 𝐺 → 𝐻 for 𝐺, 𝐻 ∶ (𝒮, 𝑝) → (𝒮′, 𝑝′) will be morphisms of

functors such that 𝑝′(𝑡𝑥) = id𝑝(𝑥) for all 𝑥 ∈ 𝑂𝑏(𝒮).
In this situation we will denote

𝑀𝑜𝑟Cat/𝒞(𝒮, 𝒮′)
the category of 1-morphisms between (𝒮, 𝑝) and (𝒮′, 𝑝′)

Since we have defined this as a sub 2-category of Cat we do not have to check any of the
axioms. Rather we just have to check things such as ``vertical composition of 2-morphisms
over 𝒞 gives another 2-morphism over 𝒞''. This is clear.

Analogously to the fibre of a map of spaces, we have the notion of a fibre category, and
some notions of lifting associated to this situation.

Definition 4.29.2. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a category over 𝒞.
(1) The fibre category over an object 𝑈 ∈ 𝑂𝑏(𝒞) is the category 𝒮𝑈 with objects

𝑂𝑏(𝒮𝑈) = {𝑥 ∈ 𝑂𝑏(𝒮) ∶ 𝑝(𝑥) = 𝑈}

and morphisms

𝑀𝑜𝑟𝒮𝑈
(𝑥, 𝑦) = {𝜙 ∈ 𝑀𝑜𝑟𝒮(𝑥, 𝑦) ∶ 𝑝(𝜙) = id𝑈}.

(2) A lift of an object 𝑈 ∈ 𝑂𝑏(𝒞) is an object 𝑥 ∈ 𝑂𝑏(𝒮) such that 𝑝(𝑥) = 𝑈, i.e.,
𝑥 ∈ 𝑂𝑏(𝒮𝑈). We will also sometime say that 𝑥 lies over 𝑈.

(3) Similarly, a lift of a morphism 𝑓 ∶ 𝑉 → 𝑈 in 𝒞 is a morphism 𝜙 ∶ 𝑦 → 𝑥 in 𝒮
such that 𝑝(𝜙) = 𝑓. We sometimes say that 𝜙 lies over 𝑓.

There are some observations we could make here. For example if 𝐹 ∶ (𝒮, 𝑝) → (𝒮′, 𝑝′) is a
1-morphism of categories over 𝒞, then 𝐹 induces functors of fibre categories 𝐹 ∶ 𝒮𝑈 → 𝒮′

𝑈.
Similarly for 2-morphisms.

Here is the obligatory lemma describing the 2-fibre product in the (2, 1)-category of cate-
gories over 𝒞.
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Lemma 4.29.3. Let 𝒞 be a category. The (2, 1)-category of categories over 𝒞 has 2-fibre
products. Suppose that 𝑓 ∶ 𝒳 → 𝒮 and 𝑔 ∶ 𝒴 → 𝒮 are morphisms of categories over 𝒞.
An explicit 2-fibre product 𝒳 ×𝒮 𝒴 is given by the following description

(1) an object of 𝒳 ×𝒮 𝒴 is a quadruple (𝑈, 𝑥, 𝑦, 𝑓), where 𝑈 ∈ 𝑂𝑏(𝒞), 𝑥 ∈ 𝑂𝑏(𝒳𝑈),
𝑦 ∈ 𝑂𝑏(𝒴𝑈), and 𝑓 ∶ 𝐹(𝑥) → 𝐺(𝑦) is an isomorphism in 𝒮𝑈,

(2) a morphism (𝑈, 𝑥, 𝑦, 𝑓) → (𝑈′, 𝑥′, 𝑦′, 𝑓′) is given by a pair (𝑎, 𝑏), where 𝑎 ∶ 𝑥 →
𝑥′ is a morphism in 𝒳, and 𝑏 ∶ 𝑦 → 𝑦′ is a morphism in 𝒴 such that
(a) 𝑎 and 𝑏 induced the same morphism 𝑈 → 𝑈′, and
(b) the diagram

𝐹(𝑥)
𝑓 //

𝐹(𝑎)
��

𝐺(𝑦)

𝐺(𝑏)
��

𝐹(𝑥′)
𝑓′
// 𝐺(𝑦′)

is commutative.
The functors 𝑝 ∶ 𝒳 ×𝒮 𝒴 → 𝒳 and 𝑞 ∶ 𝒳 ×𝒮 𝒴 → 𝒴 are the forgetful functors in this
case. The transformation 𝜓 ∶ 𝐹 ∘ 𝑝 → 𝐺 ∘ 𝑞 is given on the object 𝜉 = (𝑈, 𝑥, 𝑦, 𝑓) by
𝜓𝜉 = 𝑓 ∶ 𝐹(𝑝(𝜉)) = 𝐹(𝑥) → 𝐺(𝑦) = 𝐺(𝑞(𝜉)).

Proof. Let us check the universal property: let 𝑝𝑊 ∶ 𝒲 → 𝒞 be a category over 𝒞, let
𝑋 ∶ 𝒲 → 𝒳 and 𝑌 ∶ 𝒲 → 𝒴 be functors over 𝒞, and let 𝑡 ∶ 𝐹 ∘ 𝑋 → 𝐺 ∘ 𝑌 be
an isomorphism of functors over 𝒞. The desired functor 𝛾 ∶ 𝒲 → 𝒜 ×𝒞 ℬ is given by
𝑊 ↦ (𝑝𝑊(𝑊), 𝑋(𝑊), 𝑌(𝑊), 𝑡𝑊). Details omitted; compare with Lemma 4.28.4. �

Lemma 4.29.4. Let 𝒞 be a category. Let 𝑓 ∶ 𝒳 → 𝒮 and 𝑔 ∶ 𝒴 → 𝒮 be morphisms of
categories over 𝒞. For any object 𝑈 of 𝒞 we have the following identity of fibre categories

(𝒳 ×𝒮 𝒴)𝑈 = 𝒳𝑈 ×𝒮𝑈
𝒴𝑈

Proof. Omitted. �

4.30. Fibred categories

A very brief discussion of fibred categories is warranted.

Let 𝑝 ∶ 𝒮 → 𝒞 be a category over 𝒞. Given an object 𝑥 ∈ 𝒮 with 𝑝(𝑥) = 𝑈, and given a
morphism 𝑓 ∶ 𝑉 → 𝑈, we can try to take some kind of ``fibre product 𝑉 ×𝑈 𝑥'' (or a base
change of 𝑥 via 𝑉 → 𝑈). Namely, a morphism from an object 𝑧 ∈ 𝒮 into ``𝑉 ×𝑈 𝑥'' should
be given by a pair (𝜑, 𝑔), where 𝜑 ∶ 𝑧 → 𝑥, 𝑔 ∶ 𝑝(𝑧) → 𝑉 such that 𝑝(𝜑) = 𝑓∘𝑔. Pictorially:

𝑧

𝑝
��

? //

𝑝
��

𝑥

𝑝
��

𝑝(𝑍) // 𝑉
𝑓 // 𝑈

If such a morphism 𝑉 ×𝑈 𝑥 → 𝑥 exists then it is called a strongly cartesian morphism.

Definition 4.30.1. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a category over 𝒞. A strongly
cartesian morphism, or more precisely a strongly 𝒞-cartesian morphism is a morphism
𝜑 ∶ 𝑦 → 𝑥 of 𝒮 such that for every 𝑧 ∈ 𝑂𝑏(𝒮) the map

𝑀𝑜𝑟𝒮(𝑧, 𝑦) ⟶ 𝑀𝑜𝑟𝒮(𝑧, 𝑥) ×𝑀𝑜𝑟𝒞(𝑝(𝑧),𝑝(𝑥)) 𝑀𝑜𝑟𝒞(𝑝(𝑧), 𝑝(𝑦)),

given by 𝜓 ⟼ (𝜑 ∘ 𝜓, 𝑝(𝜓)) is bijective.
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Note that by the Yoneda Lemma 4.3.5, given 𝑥 ∈ 𝑂𝑏(𝒮) lying over 𝑈 ∈ 𝑂𝑏(𝒞) and the
morphism 𝑓 ∶ 𝑉 → 𝑈 of 𝒞, if there is a strongly cartesian morphism 𝜑 ∶ 𝑦 → 𝑥 with
𝑝(𝜑) = 𝑓, then (𝑦, 𝜑) is unique up to unique isomorphism. This is clear from the definition
above, as the functor

𝑧 ⟼ 𝑀𝑜𝑟𝒮(𝑧, 𝑥) ×𝑀𝑜𝑟𝒞(𝑝(𝑧),𝑈) 𝑀𝑜𝑟𝒞(𝑝(𝑧), 𝑉)

only depends on the data (𝑥, 𝑈, 𝑓 ∶ 𝑉 → 𝑈). Hence we will sometimes use 𝑉 ×𝑈 𝑥 → 𝑥 or
𝑓∗𝑥 → 𝑥 to denote a strongly cartesian morphism which is a lift of 𝑓.

Lemma 4.30.2. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a category over 𝒞.

(1) The composition of two strongly cartesian morphisms is strongly cartesian.
(2) Any isomorphism of 𝒮 is strongly cartesian.
(3) Any strongly cartesian morphism 𝜑 such that 𝑝(𝜑) is an isomorphism, is an iso-

morphism.

Proof. Proof of (1). Let 𝜑 ∶ 𝑦 → 𝑥 and 𝜓 ∶ 𝑧 → 𝑦 be strongly cartesian. Let 𝑡 be an
arbitrary object of 𝒮. Then we have

𝑀𝑜𝑟𝒮(𝑡, 𝑧)
= 𝑀𝑜𝑟𝒮(𝑡, 𝑦) ×𝑀𝑜𝑟𝒞(𝑝(𝑡),𝑝(𝑦)) 𝑀𝑜𝑟𝒞(𝑝(𝑡), 𝑝(𝑧))
= 𝑀𝑜𝑟𝒮(𝑡, 𝑥) ×𝑀𝑜𝑟𝒞(𝑝(𝑡),𝑝(𝑥)) 𝑀𝑜𝑟𝒞(𝑝(𝑡), 𝑝(𝑦)) ×𝑀𝑜𝑟𝒞(𝑝(𝑡),𝑝(𝑦)) 𝑀𝑜𝑟𝒞(𝑝(𝑡), 𝑝(𝑧))
= 𝑀𝑜𝑟𝒮(𝑡, 𝑥) ×𝑀𝑜𝑟𝒞(𝑝(𝑡),𝑝(𝑥)) 𝑀𝑜𝑟𝒞(𝑝(𝑡), 𝑝(𝑧))

hence 𝑥 → 𝑧 is strongly cartesian.

Proof of (2). Let 𝑦 → 𝑥 be an isomorphism. Then 𝑝(𝑦) → 𝑝(𝑥) is an isomorphism too.
Hence𝑀𝑜𝑟𝒞(𝑝(𝑧), 𝑝(𝑦)) → 𝑀𝑜𝑟𝒞(𝑝(𝑧), 𝑝(𝑥)) is a bijection. Hence𝑀𝑜𝑟𝒮(𝑧, 𝑥)×𝑀𝑜𝑟𝒞(𝑝(𝑧),𝑝(𝑥))
𝑀𝑜𝑟𝒞(𝑝(𝑧), 𝑝(𝑦)) is just bijective to 𝑀𝑜𝑟𝒮(𝑧, 𝑥). Hence the displayed map of Definition
4.30.1 is a bijection as 𝑦 → 𝑥 is an isomorphism, and we conclude that 𝑥 → 𝑦 is strongly
cartesian.

Proof of (3). Assume 𝜑 ∶ 𝑦 → 𝑥 is strongly cartesian with 𝑝(𝜑) ∶ 𝑝(𝑦) → 𝑝(𝑥) an
isomorphism. Applying the definition with 𝑧 = 𝑥 shows that (id𝑥, 𝑝(𝜑)−1) comes from a
unique morphism 𝜒 ∶ 𝑥 → 𝑦. We omit the verification that 𝜒 is the inverse of 𝜑. �

Lemma 4.30.3. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a category over 𝒞. Let 𝑥 → 𝑦 and
𝑧 → 𝑦 be morphisms of 𝒮. Assume

(1) 𝑥 → 𝑦 is strongly cartesian,
(2) 𝑝(𝑥) ×𝑝(𝑦) 𝑝(𝑧) exists, and
(3) there exists a strongly cartesian morphism 𝑎 ∶ 𝑤 → 𝑧 in 𝒮 with 𝑝(𝑤) = 𝑝(𝑥)×𝑝(𝑦)

𝑝(𝑧) and 𝑝(𝑎) = pr2 ∶ 𝑝(𝑥) ×𝑝(𝑦) 𝑝(𝑧) → 𝑝(𝑧).

Then the fibre product 𝑥 ×𝑦 𝑧 exists and is isomorphic to 𝑤.
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Proof. Since 𝑥 → 𝑦 is strongly cartesian there exists a unique morphism 𝑏 ∶ 𝑤 → 𝑥 such
that 𝑝(𝑏) = pr1. To see that 𝑤 is the fibre product we compute

𝑀𝑜𝑟𝒮(𝑡, 𝑤)
= 𝑀𝑜𝑟𝒮(𝑡, 𝑧) ×𝑀𝑜𝑟𝒞(𝑝(𝑡),𝑝(𝑧)) 𝑀𝑜𝑟𝒞(𝑝(𝑡), 𝑝(𝑤))
= 𝑀𝑜𝑟𝒮(𝑡, 𝑧) ×𝑀𝑜𝑟𝒞(𝑝(𝑡),𝑝(𝑧)) (𝑀𝑜𝑟𝒞(𝑝(𝑡), 𝑝(𝑥)) ×𝑀𝑜𝑟𝒞(𝑝(𝑡),𝑝(𝑦)) 𝑀𝑜𝑟𝒞(𝑝(𝑡), 𝑝(𝑧)))
= 𝑀𝑜𝑟𝒮(𝑡, 𝑧) ×𝑀𝑜𝑟𝒞(𝑝(𝑡),𝑝(𝑦)) 𝑀𝑜𝑟𝒞(𝑝(𝑡), 𝑝(𝑥))
= 𝑀𝑜𝑟𝒮(𝑡, 𝑧) ×𝑀𝑜𝑟𝒮(𝑡,𝑦) 𝑀𝑜𝑟𝒮(𝑡, 𝑦) ×𝑀𝑜𝑟𝒞(𝑝(𝑡),𝑝(𝑦)) 𝑀𝑜𝑟𝒞(𝑝(𝑡), 𝑝(𝑥))
= 𝑀𝑜𝑟𝒮(𝑡, 𝑧) ×𝑀𝑜𝑟𝒮(𝑡,𝑦) 𝑀𝑜𝑟𝒮(𝑡, 𝑥)

as desired. The first equality holds because 𝑎 ∶ 𝑤 → 𝑧 is strongly cartesian and the last
equality holds because 𝑥 → 𝑦 is strongly cartesian. �

Definition 4.30.4. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a category over 𝒞. We say 𝒮 is
a fibred category over 𝒞 if given any 𝑥 ∈ 𝑂𝑏(𝒮) lying over 𝑈 ∈ 𝑂𝑏(𝒞) and any morphism
𝑓 ∶ 𝑉 → 𝑈 of 𝒞, there exists a strongly cartesian morphism 𝑓∗𝑥 → 𝑥 lying over 𝑓.

Assume 𝑝 ∶ 𝒮 → 𝒞 is a fibred category. For every 𝑓 ∶ 𝑉 → 𝑈 and 𝑥 ∈ 𝑂𝑏(𝒮𝑈) as in
the definition we may choose a strongly cartesian morphism 𝑓∗𝑥 → 𝑥 lying over 𝑓. By
the axiom of choice we may choose 𝑓∗𝑥 → 𝑥 for all 𝑓 ∶ 𝑉 → 𝑈 = 𝑝(𝑥) simultaneously.
We claim that for every morphism 𝜙 ∶ 𝑥 → 𝑥′ in 𝒮𝑈 and 𝑓 ∶ 𝑉 → 𝑈 there is a unique
morphism 𝑓∗𝜙 ∶ 𝑓∗𝑥 → 𝑓∗𝑥′ in 𝒮𝑉 such that

𝑓∗𝑥
𝑓∗𝜙
//

��

𝑓∗𝑥′

��
𝑥

𝜙 // 𝑥′

commutes. Namely, the arrow exists and is unique because 𝑓∗𝑥′ → 𝑥′ is strongly cartesian.
The uniqueness of this arrow guarantees that 𝑓∗ (now also defined on morphisms) is a
functor 𝑓∗ ∶ 𝒮𝑈 → 𝒮𝑉.

Definition 4.30.5. Assume 𝑝 ∶ 𝒮 → 𝒞 is a fibred category.
(1) A choice of pullbacks3 for 𝑝 ∶ 𝒮 → 𝒞 is given by a choice of a strongly cartesian

morphism 𝑓∗𝑥 → 𝑥 lying over 𝑓 for any morphism 𝑓 ∶ 𝑉 → 𝑈 of 𝒞 and any
𝑥 ∈ 𝑂𝑏(𝒮𝑈).

(2) Given a choice of pullbacks, for any morphism 𝑓 ∶ 𝑉 → 𝑈 of 𝒞 the functor
𝑓∗ ∶ 𝒮𝑈 → 𝒮𝑉 described above is called a pullback functor (associated to the
choices 𝑓∗𝑥 → 𝑥 made above).

Of course we may always assume our choice of pullbacks has the property that id∗
𝑈𝑥 = 𝑥,

although in practice this is a useless property without imposing further assumptions on the
pullbacks.

Lemma 4.30.6. Assume 𝑝 ∶ 𝒮 → 𝒞 is a fibred category. Assume given a choice of pull-
backs for 𝑝 ∶ 𝒮 → 𝒞.

3This is probably nonstandard terminology. In some texts this is called a ``cleavage'' but it conjures up the
wrong image. Maybe a ``cleaving'' would be a better word. A related notion is that of a ``splitting'', but in many
texts a ``splitting'' means a choice of pullbacks such that 𝑔∗𝑓∗ = (𝑓 ∘ 𝑔)∗ for any composable pair of morphisms.
Compare also with Definition 4.33.2.
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(1) For any pair of composable morphisms 𝑓 ∶ 𝑉 → 𝑈, 𝑔 ∶ 𝑊 → 𝑉 there is a unique
isomorphism

𝛼𝑔,𝑓 ∶ (𝑓 ∘ 𝑔)∗ ⟶ 𝑔∗ ∘ 𝑓∗

as functors 𝒮𝑈 → 𝒮𝑊 such that for every 𝑦 ∈ 𝑂𝑏(𝒮𝑈) the following diagram
commutes

𝑔∗𝑓∗𝑦 // 𝑓∗𝑦

��
(𝑓 ∘ 𝑔)∗𝑦 //

(𝛼𝑔,𝑓)𝑦

OO

𝑦
(2) If 𝑓 = id𝑈, then there is a canonical isomorphism 𝛼𝑈 ∶ id → (id𝑈)∗ as functors

𝒮𝑈 → 𝒮𝑈.
(3) The quadruple (𝑈 ↦ 𝒮𝑈, 𝑓 ↦ 𝑓∗, 𝛼𝑔,𝑓, 𝛼𝑈) defines a pseudo functor from 𝒞𝑜𝑝𝑝 to

the (2, 1)-category of categories, see Definition 4.26.5.

Proof. In fact, it is clear that the commutative diagram of part (1) uniquely determines the
morphism (𝛼𝑔,𝑓)𝑦 in the fibre category 𝒮𝑊. It is an isomorphism since both the morphism
(𝑓 ∘ 𝑔)∗𝑦 → 𝑦 and the morphism and the composition 𝑔∗𝑓∗𝑦 → 𝑓∗𝑦 → 𝑌 are strongly
cartesian morphisms lifting 𝑓 ∘ 𝑔 (see discussion following Definition 4.30.1 and Lemma
4.30.2). In the same way, since id𝑥 ∶ 𝑥 → 𝑥 is clearly strongly cartesian over id𝑈 (with
𝑈 = 𝑝(𝑥)) we see that there exists an isomorphism (𝛼𝑈)𝑥 ∶ 𝑥 → (id𝑈)∗𝑥. (Of course we
could have assumed beforehand that 𝑓∗𝑥 = 𝑥 whenever 𝑓 is an identity morphism, but it is
better for the sake of generality not to assume this.) We omit the verification that 𝛼𝑔,𝑓 and
𝛼𝑈 so obtained are transformations of functors. We also omit the verification of (3). �

Lemma 4.30.7. Let 𝒞 be a site. Let 𝒮1, 𝒮2 be categories over 𝒞. Suppose that 𝒮1 and 𝒮2
are equivalent as categories over 𝒞. Then 𝒮1 is fibred over 𝒞 if and only if 𝒮2 is fibred over
𝒞.

Proof. Let 𝐹 ∶ 𝒮1 → 𝒮2, 𝐺 ∶ 𝒮2 → 𝒮1 be functors over 𝒞, and let 𝑖 ∶ 𝐹 ∘ 𝐺 → id𝒮2
,

𝑗 ∶ 𝐺 ∘ 𝐹 → id𝒮1
be isomorphisms of functors over 𝒞. We claim that in this case 𝑓

maps strongly cartesian morphisms to strongly cartesian morphisms. Namely, suppose that
𝜑 ∶ 𝑦 → 𝑥 is strongly cartesian in 𝒮1. Set 𝑓 ∶ 𝑉 → 𝑈 equal to 𝑝1(𝜑). Suppose that
𝑧′ ∈ 𝑂𝑏(𝒮2), with 𝑊 = 𝑝2(𝑧′), and we are given 𝑔 ∶ 𝑊 → 𝑉 and 𝜓′ ∶ 𝑧′ → 𝐹(𝑥) such that
𝑝(𝜓′) = 𝑓 ∘ 𝑔. Then

𝜓 = 𝑗 ∘ 𝐺(𝜓′) ∶ 𝐺(𝑧′) → 𝐺(𝐹(𝑥)) → 𝑥
is a morphism in 𝒮1 with 𝑝(𝜓) = 𝑓∘𝑔. Hence by assumption there exists a unique morphism
𝜉 ∶ 𝐺(𝑧′) → 𝑦 lying over 𝑔 such that 𝜓 = 𝜑 ∘ 𝜉. This in turn gives a morphism

𝜉′ = 𝐹(𝜉) ∘ 𝑖−1 ∶ 𝑧′ → 𝐹(𝐺(𝑧′)) → 𝐹(𝑦)

lying over 𝑔 with 𝜓′ = 𝐹(𝜑) ∘ 𝜉′. We omit the verification that 𝜉′ is unique. �

The conclusion from Lemma 4.30.7 is that equivalences map strongly cartesian morphisms
to strongly cartesian morphisms. But this may not be the case for an arbitrary functor
between fibred categories over 𝒞. Hence we define the 2-category of fibred categories as
follows.

Definition 4.30.8. Let 𝒞 be a category. The 2-category of fibred categories over 𝒞 is the
sub 2-category of the 2-category of categories over 𝒞 (see Definition 4.29.1) defined as
follows:

(1) Its objects will be fibred categories 𝑝 ∶ 𝒮 → 𝒞.
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(2) Its 1-morphisms (𝒮, 𝑝) → (𝒮′, 𝑝′) will be functors 𝐺 ∶ 𝒮 → 𝒮′ such that 𝑝′ ∘
𝐺 = 𝑝 and such that 𝐺 maps strongly cartesian morphisms to strongly cartesian
morphisms.

(3) Its 2-morphisms 𝑡 ∶ 𝐺 → 𝐻 for 𝐺, 𝐻 ∶ (𝒮, 𝑝) → (𝒮′, 𝑝′) will be morphisms of
functors such that 𝑝′(𝑡𝑥) = id𝑝(𝑥) for all 𝑥 ∈ 𝑂𝑏(𝒮).

In this situation we will denote
𝑀𝑜𝑟Fib/𝒞(𝒮, 𝒮′)

the category of 1-morphisms between (𝒮, 𝑝) and (𝒮′, 𝑝′)

Note the condition on 1-morphisms. Note also that this is a true 2-category and not a
(2, 1)-category. Hencewhen taking 2-fibre products we first pass to the associated (2, 1)-category.

Lemma 4.30.9. Let 𝒞 be a category. The (2, 1)-category of fibred categories over 𝒞 has
2-fibre products, and they are described as in Lemma 4.29.3.

Proof. Basically what one has to show here is that given 𝑓 ∶ 𝒳 → 𝒮 and 𝑔 ∶ 𝒴 → 𝒮
morphisms of fibred categories over 𝒞, then the category 𝒳 ×𝒮 𝒴 described in Lemma
4.29.3 is fibred. Let us show that 𝒳 ×𝒮 𝒴 has plenty of strongly cartesian morphisms.
Namely, suppose we have (𝑈, 𝑥, 𝑦, 𝜙) an object of 𝒳 ×𝒮 𝒴. And suppose 𝑓 ∶ 𝑉 → 𝑈 is a
morphism in 𝒞. Choose strongly cartesian morphisms 𝑎 ∶ 𝑓∗𝑥 → 𝑥 in 𝒳 lying over 𝑓 and
𝑏 ∶ 𝑓∗𝑦 → 𝑦 in 𝒴 lying over 𝑓. By assumption 𝐹(𝑎) and 𝐺(𝑏) are strongly cartesian. Since
𝜙 ∶ 𝐹(𝑥) → 𝐺(𝑦) is an isomorphism, by the uniqueness of strongly cartesian morphisms
we find a unique isomorphism 𝑓∗𝜙 ∶ 𝐹(𝑓∗𝑥) → 𝐺(𝑓∗𝑦) such that 𝐺(𝑏) ∘ 𝑓∗𝜙 = 𝜙 ∘ 𝐺(𝑎). In
other words (𝐺(𝑎), 𝐺(𝑏)) ∶ (𝑉, 𝑓∗𝑥, 𝑓∗𝑦, 𝑓∗𝜙) → (𝑈, 𝑥, 𝑦, 𝜙) is a morphism in 𝒳 ×𝒮 𝒴. We
omit the verification that this is a strongly cartesian morphism (and that these are in fact the
only strongly cartesian morphisms). �

Lemma 4.30.10. Let 𝒞 be a category. Let 𝑈 ∈ 𝑂𝑏(𝒞). If 𝑝 ∶ 𝒮 → 𝒞 is a fibred category
and 𝑝 factors through 𝑝′ ∶ 𝒮 → 𝒞/𝑈 then 𝑝′ ∶ 𝒮 → 𝒞/𝑈 is a fibred category.

Proof. Suppose that 𝜑 ∶ 𝑥′ → 𝑥 is strongly cartesian with respect to 𝑝. We claim that 𝜑 is
strongly cartesian with respect to 𝑝′ also. Set 𝑔 = 𝑝′(𝜑), so that 𝑔 ∶ 𝑉′/𝑈 → 𝑉/𝑈 for some
morphisms 𝑓 ∶ 𝑉 → 𝑈 and 𝑓′ ∶ 𝑉′ → 𝑈. Let 𝑧 ∈ 𝑂𝑏(𝒮). Set 𝑝′(𝑧) = (𝑊 → 𝑈). To show
that 𝜑 is strongly cartesian for 𝑝′ we have to show

𝑀𝑜𝑟𝒮(𝑧, 𝑥′) ⟶ 𝑀𝑜𝑟𝒮(𝑧, 𝑥) ×𝑀𝑜𝑟𝒞/𝑈(𝑊/𝑈,𝑉/𝑈) 𝑀𝑜𝑟𝒞/𝑈(𝑊/𝑈, 𝑉′/𝑈),

given by 𝜓′ ⟼ (𝜑 ∘ 𝜓′, 𝑝′(𝜓′)) is bijective. Suppose given an element (𝜓, ℎ) of the right
hand side, then in particular 𝑔 ∘ ℎ = 𝑝(𝜓), and by the condition that 𝜑 is strongly cartesian
we get a unique morphism 𝜓′ ∶ 𝑧 → 𝑥′ with 𝜓 = 𝜑 ∘ 𝜓′ and 𝑝(𝜓′) = ℎ. OK, and now
𝑝′(𝜓′) ∶ 𝑊/𝑈 → 𝑉/𝑈 is a morphism whose corresponding map 𝑊 → 𝑉 is ℎ, hence equal
to ℎ as a morphism in 𝒞/𝑈. Thus 𝜓′ is a unique morphism 𝑧 → 𝑥′ which maps to the given
pair (𝜓, ℎ). This proves the claim.

Finally, suppose given 𝑔 ∶ 𝑉′/𝑈 → 𝑉/𝑈 and 𝑥 with 𝑝′(𝑥) = 𝑉/𝑈. Since 𝑝 ∶ 𝒮 → 𝒞
is a fibred category we see there exists a strongly cartesian morphism 𝜑 ∶ 𝑥′ → 𝑥 with
𝑝(𝜑) = 𝑔. By the same argument as above it follows that 𝑝′(𝜑) = 𝑔 ∶ 𝑉′/𝑈 → 𝑉/𝑈. And as
seen above the morphism 𝜑 is strongly cartesian. Thus the conditions of Definition 4.30.4
are satisfied and we win. �

Lemma 4.30.11. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category. Let 𝑥 → 𝑦 and 𝑧 → 𝑦 be morphisms
of 𝒮 with 𝑥 → 𝑦 strongly cartesian. If 𝑝(𝑥) ×𝑝(𝑦) 𝑝(𝑧) exists, then 𝑥 ×𝑦 𝑧 exists, 𝑝(𝑥 ×𝑦 𝑧) =
𝑝(𝑥) ×𝑝(𝑦) 𝑝(𝑧), and 𝑥 ×𝑦 𝑧 → 𝑧 is strongly cartesian.
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Proof. Pick a strongly cartesian morphism pr∗2𝑧 → 𝑧 lying over pr2 ∶ 𝑝(𝑥) ×𝑝(𝑦) 𝑝(𝑧) →
𝑝(𝑧). Then pr∗2𝑧 = 𝑥 ×𝑦 𝑧 by Lemma 4.30.3. �

4.31. Inertia

Given a fibred categories 𝑝 ∶ 𝒮 → 𝒞 and 𝑝′ ∶ 𝒮′ → 𝒞 over a category 𝒞 and a 1-morphism
𝐹 ∶ 𝒮 → 𝒮′ we have the diagonal morphism

Δ = Δ𝒮/𝒮′ ∶ 𝒮 ⟶ 𝒮 ×𝒮′ 𝒮
in the (2, 1)-category of fibred categories over 𝒞.

Lemma 4.31.1. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 and 𝑝′ ∶ 𝒮′ → 𝒞 be fibred categories.
Let 𝐹 ∶ 𝒮 → 𝒮′ be a 1-morphism of fibred categories over 𝒞. Consider the category ℐ𝒮/𝒮′

over 𝒞 whose
(1) objects are pairs (𝑥, 𝛼) where 𝑥 ∈ 𝑂𝑏(𝒮) and 𝛼 ∶ 𝑥 → 𝑥 is an automorphism

with 𝐹(𝛼) = id,
(2) morphisms (𝑥, 𝛼) → (𝑦, 𝛽) are given by morphisms 𝜙 ∶ 𝑥 → 𝑦 such that

𝑥
𝜙
//

𝛼
��

𝑦

𝛽
��

𝑥
𝜙 // 𝑦

commutes, and
(3) the functor ℐ𝒮/𝒮′ → 𝒞 is given by (𝑥, 𝛼) ↦ 𝑝(𝑥).

Then
(1) there is an equivalence

ℐ𝒮/𝒮′ ⟶ 𝒮 ×Δ,(𝒮×𝒮′𝒮),Δ 𝒮

in the (2, 1)-category of categories over 𝒞, and
(2) ℐ𝒮/𝒮′ is a fibred category over 𝒞.

Proof. Note that (2) follows from (1) by Lemma 4.30.9. Thus it suffices to prove (1). We
will use without further mention the construction of the 2-fibre product fromLemma 4.30.9.
In particular an object of 𝒮×Δ,(𝒮×𝒮′𝒮),Δ 𝒮 is a triple (𝑥, 𝑦, (𝜄, 𝜅)) where 𝑥 and 𝑦 are objects of
𝒮, and (𝜄, 𝜅) ∶ (𝑥, 𝑥, id𝐹(𝑥)) → (𝑦, 𝑦, id𝐹(𝑦)) is an isomorphism in 𝒮 ×𝒮′ 𝒮. This just means
that 𝜄, 𝜅 ∶ 𝑥 → 𝑦 are isomorphisms and that 𝐹(𝜄) = 𝐹(𝜅). Consider the functor

𝐼𝒮/𝒮′ ⟶ 𝒮 ×Δ,(𝒮×𝒮′𝒮),Δ 𝒮

which to an object (𝑥, 𝛼) of the left hand side assigns the object (𝑥, 𝑥, (𝛼, id𝑥)) of the right
hand side and to a morphism 𝜙 of the left hand side assigns the morphism (𝜙, 𝜙) of the
right hand side. We claim that a quasi-inverse to that morphism is given by the functor

𝒮 ×Δ,(𝒮×𝒮′𝒮),Δ 𝒮 ⟶ 𝐼𝒮/𝒮′

which to an object (𝑥, 𝑦, (𝜄, 𝜅)) of the left hand side assigns the object (𝑥, 𝜅−1 ∘ 𝜄) of the right
hand side and to a morphism (𝜙, 𝜙′) ∶ (𝑥, 𝑦, (𝜄, 𝜅)) → (𝑧, 𝑤, (𝜆, 𝜇)) of the left hand side
assigns the morphism 𝜙. Indeed, the endo-functor of 𝐼𝒮/𝒮′ induced by composing the two
functors above is the identity on the nose, and the endo-functor induced on 𝒮×Δ,(𝒮×𝒮′𝒮),Δ 𝒮
is isomorphic to the identity via the natural isomorphism

(𝜄−1 ∘ 𝜅, 𝜅 ∘ 𝜄−1 ∘ 𝜅) ∶ (𝑥, 𝑥, (𝜅−1 ∘ 𝜄, id𝑥)) ⟶ (𝑥, 𝑦, (𝜄, 𝜅)).
Some details omitted. �
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Definition 4.31.2. Let 𝒞 be a category.
(1) Let 𝐹 ∶ 𝒮 → 𝒮′ be a 1-morphism of fibred categories over 𝒞. The relative inertia

of 𝒮 over 𝒮′ is the fibred category ℐ𝒮/𝒮′ → 𝒞 of Lemma 4.31.1.
(2) By the inertia fibred category ℐ𝒮 of 𝒮 we mean ℐ𝒮 = ℐ𝒮/𝒞.

Note that there are canonical 1-morphisms

(4.31.2.1) ℐ𝒮/𝒮′ ⟶ 𝒮 and ℐ𝒮 ⟶ 𝒮

of fibred categories over 𝒞. In terms of the description of Lemma 4.31.1 these simply map
the object (𝑥, 𝛼) to the object 𝑥 and the morphism 𝜙 ∶ (𝑥, 𝛼) → (𝑦, 𝛽) to the morphism
𝜙 ∶ 𝑥 → 𝑦. There is also a neutral section

(4.31.2.2) 𝑒 ∶ 𝒮 → ℐ𝒮/𝒮′ and 𝑒 ∶ 𝒮 → ℐ𝒮

defined by the rules 𝑥 ↦ (𝑥, id𝑥) and (𝜙 ∶ 𝑥 → 𝑦) ↦ 𝜙. This is a right inverse to (4.31.2.1).
Given a 2-commutative square

𝒮1

𝐹1
��

𝐺
// 𝒮2

𝐹2
��

𝒮′
1

𝐺′
// 𝒮′

2

there is a functoriality map

(4.31.2.3) ℐ𝒮1/𝒮′
1

⟶ ℐ𝒮2/𝒮′
2

and ℐ𝒮1
⟶ ℐ𝒮2

defined by the rules (𝑥, 𝛼) ↦ (𝐺(𝑥), 𝐺(𝛼)) and 𝜙 ↦ 𝐺(𝜙). In particular there is always a
comparison map

(4.31.2.4) ℐ𝒮/𝒮′ ⟶ ℐ𝒮

and all the maps above are compatible with this.

Lemma 4.31.3. Let 𝐹 ∶ 𝒮 → 𝒮′ be a 1-morphism of categories fibred over a category 𝒞.
Then the diagram

ℐ𝒮/𝒮′

𝐹∘(4.31.2.1)
��

(4.31.2.4)
// ℐ𝒮

(4.31.2.3)
��

𝒮′ 𝑒 // ℐ𝒮′

is a 2-fibre product.

Proof. Omitted. �

4.32. Categories fibred in groupoids

In this section we explain how to think about categories in groupoids and we see how they
are basically the same as functors with values in the (2, 1)-category of groupoids.

Definition 4.32.1. We say that 𝒮 is fibred in groupoids over 𝒞 if the following two condi-
tions hold:

(1) For every morphism 𝑓 ∶ 𝑉 → 𝑈 in 𝒞 and every lift 𝑥 of 𝑈 there is a lift 𝜙 ∶ 𝑦 → 𝑥
of 𝑓 with target 𝑥.

(2) For every pair of morphisms 𝜙 ∶ 𝑦 → 𝑥 and 𝜓 ∶ 𝑧 → 𝑥 and any morphism
𝑓 ∶ 𝑝(𝑧) → 𝑝(𝑦) such that 𝑝(𝜙) ∘ 𝑓 = 𝑝(𝜓) there exists a unique lift 𝜒 ∶ 𝑧 → 𝑦 of
𝑓 such that 𝜙 ∘ 𝜒 = 𝜓.
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Condition (2) phrased differently says that applying the functor 𝑝 gives a bijection between
the sets of dotted arrows in the following commutative diagram below:

𝑦 // 𝑥 𝑝(𝑦) // 𝑝(𝑥)

𝑧

OO @@

𝑝(𝑧)

OO <<

Another way to think about the second condition is the following. Suppose that 𝑔 ∶ 𝑊 → 𝑉
and 𝑓 ∶ 𝑉 → 𝑈 are morphisms in 𝒞. Let 𝑥 ∈ 𝑂𝑏(𝒮𝑈). By the first condition we can lift 𝑓
to 𝜙 ∶ 𝑦 → 𝑥 and then we can lift 𝑔 to 𝜓 ∶ 𝑧 → 𝑦. Instead of doing this two step process
we can directly lift 𝑔 ∘ 𝑓 to 𝛾 ∶ 𝑧′ → 𝑥. This gives the solid arrows in the diagram

(4.32.1.1)

𝑧′

��

𝛾

''𝑧

OO

𝜓 //

𝑝
��

𝑦
𝜙 //

𝑝
��

𝑥

𝑝
��

𝑊
𝑔 // 𝑉

𝑓 // 𝑈
where the squiggly arrows represent not morphisms but the functor 𝑝. Applying the second
condition to the arrows 𝜙 ∘ 𝜓, 𝛾 and id𝑊 we conclude that there is a unique morphism
𝜒 ∶ 𝑧 → 𝑧′ in 𝒮𝑊 such that 𝛾 ∘ 𝜒 = 𝜙 ∘ 𝜓. Similarly there is a unique morphism 𝑧′ → 𝑧.
The uniqueness implies that the morphisms 𝑧′ → 𝑧 and 𝑧 → 𝑧′ are mutually inverse, in
other words isomorphisms.

It should be clear from this discussion that a category fibred in groupoids is very closely
related to a fibred category. Here is the result.

Lemma 4.32.2. Let 𝑝 ∶ 𝒮 → 𝒞 be a functor. The following are equivalent
(1) 𝑝 ∶ 𝒮 → 𝒞 is a category fibred in groupoids, and
(2) all fibre categories are groupoids and 𝒮 is a fibred category over 𝒞.

Moreover, in this case every morphism of 𝒮 is strongly cartesian. In addition, given 𝑓∗𝑥 →
𝑥 lying over 𝑓 for all 𝑓 ∶ 𝑉 → 𝑈 = 𝑝(𝑥) the data (𝑈 ↦ 𝒮𝑈, 𝑓 ↦ 𝑓∗, 𝛼𝑓,𝑔, 𝛼𝑈) constructed
in Lemma 4.30.6 defines a pseudo functor from 𝒞𝑜𝑝𝑝 in to the (2, 1)-category of groupoids.

Proof. Assume 𝑝 ∶ 𝒮 → 𝒞 is fibred in groupoids. To show all fibre categories 𝒮𝑈 for
𝑈 ∈ 𝑂𝑏(𝒞) are groupoids, we must exhibit for every 𝑓 ∶ 𝑦 → 𝑥 in 𝒮𝑈 an inverse morphism.
The diagram on the left (in 𝒮𝑈) is mapped by 𝑝 to the diagram on the right:

𝑦
𝑓 // 𝑥 𝑈

𝑖𝑑𝑈 // 𝑈

𝑥

OO

𝑖𝑑𝑥

@@

𝑈

OO

𝑖𝑑𝑈

??

Since only 𝑖𝑑𝑈 makes the diagram on the right commute, there is a unique 𝑔 ∶ 𝑥 → 𝑦
making the diagram on the left commute, so 𝑓𝑔 = 𝑖𝑑𝑥. By a similar argument there is a
unique ℎ ∶ 𝑦 → 𝑥 so that 𝑔ℎ = 𝑖𝑑𝑦. Then 𝑓𝑔ℎ = 𝑓 ∶ 𝑦 → 𝑥. We have 𝑓𝑔 = 𝑖𝑑𝑥, so
ℎ = 𝑓. Condition (2) of Definition 4.32.1 says exactly that every morphism of 𝒮 is strongly
cartesian. Hence condition (1) of Definition 4.32.1 implies that 𝒮 is a fibred category over
𝒞.
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Conversely, assume all fibre categories are groupoids and 𝒮 is a fibred category over 𝒞.
We have to check conditions (1) and (2) of Definition 4.32.1. The first condition follows
trivially. Let 𝜙 ∶ 𝑦 → 𝑥, 𝜓 ∶ 𝑧 → 𝑥 and 𝑓 ∶ 𝑝(𝑧) → 𝑝(𝑦) such that 𝑝(𝜙) ∘ 𝑓 = 𝑝(𝜓) be as in
condition (2) of Definition 4.32.1. Write 𝑈 = 𝑝(𝑥), 𝑉 = 𝑝(𝑦), 𝑊 = 𝑝(𝑧), 𝑝(𝜙) = 𝑔 ∶ 𝑉 → 𝑈,
𝑝(𝜓) = ℎ ∶ 𝑊 → 𝑈. Choose a strongly cartesian 𝑔∗𝑥 → 𝑥 lying over 𝑔. Then we get a
morphism 𝑖 ∶ 𝑦 → 𝑔∗𝑥 in 𝒮𝑉, which is therefore an isomorphism. We also get a morphism
𝑗 ∶ 𝑧 → 𝑔∗𝑥 corresponding to the pair (𝜓, 𝑓) as 𝑔∗𝑥 → 𝑥 is strongly cartesian. Then one
checks that 𝜒 = 𝑖−1 ∘ 𝑗 is a solution.

We have seen in the proof of (1) ⇒ (2) that every morphism of 𝒮 is strongly cartesian. The
final statement follows directly from Lemma 4.30.6. �

Lemma 4.32.3. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category. Let 𝒮′ be the
subcategory of 𝒮 defined as follows

(1) 𝑂𝑏(𝒮′) = 𝑂𝑏(𝒮), and
(2) for 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮′) the set of morphisms between 𝑥 and 𝑦 in 𝒮′ is the set of of

strongly cartesian morphisms between 𝑥 and 𝑦 in 𝒮.
Let 𝑝′ ∶ 𝒮′ → 𝒞 be the restriction of 𝑝 to 𝒮′. Then 𝑝′ ∶ 𝒮′ → 𝒞 is fibred in groupoids.

Proof. Note that the construction makes sense since by Lemma 4.30.2 the identity mor-
phism of any object of 𝒮 is strongly cartesian, and the composition of strongly cartesian
morphisms is strongly cartesian. The first lifting property of Definition 4.32.1 follows from
the condition that in a fibred category given any morphism 𝑓 ∶ 𝑉 → 𝑈 and 𝑥 lying over
𝑈 there exists a strongly cartesian morphism 𝜑 ∶ 𝑦 → 𝑥 lying over 𝑓. Let us check the
second lifting property of Definition 4.32.1 for the category 𝑝′ ∶ 𝒮′ → 𝒞 over 𝒞. To do
this we argue as in the discussion following Definition 4.32.1. Thus in Diagram 4.32.1.1
the morphisms 𝜙, 𝜓 and 𝛾 are strongly cartesian morphisms of 𝒮. Hence 𝛾 and 𝜙 ∘ 𝜓 are
strongly cartesian morphisms of 𝒮 lying over the same arrow of 𝒞 and having the same
target in 𝒮. By the discussion following Definition 4.30.1 this means these two arrows are
isomorphic as desired (here we use also that any isomorphism in 𝒮 is strongly cartesian, by
Lemma 4.30.2 again). �

Example 4.32.4. A homomorphism of groups 𝑝 ∶ 𝐺 → 𝐻 gives rise to a functor 𝑝 ∶ 𝒮 →
𝒞 as in Example 4.2.12. This functor 𝑝 ∶ 𝒮 → 𝒞 is fibred in groupoids if and only if 𝑝
is surjective. The fibre category 𝒮𝑈 over the (unique) object 𝑈 ∈ 𝑂𝑏(𝒞) is the category
associated to the kernel of 𝑝 as in Example 4.2.6.

Given 𝑝 ∶ 𝒮 → 𝒞, we can ask: if the fibre category 𝒮𝑈 is a groupoid for all 𝑈 ∈ 𝑂𝑏(𝒞),
must 𝒮 be fibred in groupoids over 𝒞? We can see the answer is no as follows. Start with
a category fibred in groupoids 𝑝 ∶ 𝒮 → 𝒞. Altering the morphisms in 𝒮 which do not map
to the identity morphism on some object does not alter the categories 𝒮𝑈. Hence we can
violate the existence and uniqueness conditions on lifts. One example is the functor from
Example 4.32.4 when 𝐺 → 𝐻 is not surjective. Here is another example.

Example 4.32.5. Let 𝑂𝑏(𝒞) = {𝐴, 𝐵, 𝑇} and 𝑀𝑜𝑟𝒞(𝐴, 𝐵) = {𝑓}, 𝑀𝑜𝑟𝒞(𝐵, 𝑇) = {𝑔},
𝑀𝑜𝑟𝒞(𝐴, 𝑇) = {ℎ} = {𝑔𝑓}, plus the identity morphism for each object. See the diagram
below for a picture of this category. Now let 𝑂𝑏(𝒮) = {𝐴′, 𝐵′, 𝑇′} and 𝑀𝑜𝑟𝒮(𝐴′, 𝐵′) = ∅,
𝑀𝑜𝑟𝒮(𝐵′, 𝑇′) = {𝑔′}, 𝑀𝑜𝑟𝒮(𝐴′, 𝑇′) = {ℎ′}, plus the identity morphisms. The functor
𝑝 ∶ 𝒮 → 𝒞 is obvious. Then for every 𝑈 ∈ 𝑂𝑏(𝒞), 𝒮𝑈 is the category with one object and
the identity morphism on that object, so a groupoid, but the morphism 𝑓 ∶ 𝐴 → 𝐵 cannot
be lifted. Similarly, if we declare 𝑀𝑜𝑟𝒮(𝐴′, 𝐵′) = {𝑓′

1, 𝑓′
2} and 𝑀𝑜𝑟𝒮(𝐴′, 𝑇′) = {ℎ′} =

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03WQ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=003U
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02C4


112 4. CATEGORIES

{𝑔′𝑓′
1} = {𝑔′𝑓′

2}, then the fibre categories are the same and 𝑓 ∶ 𝐴 → 𝐵 in the diagram
below has two lifts.

𝐵′ 𝑔′
// 𝑇′ 𝐵

𝑔 // 𝑇

𝐴′

??

OO

ℎ′

>>

𝑎𝑏𝑜𝑣𝑒

𝐴

𝑓

OO

𝑔𝑓=ℎ

@@

Later we would like to make assertions such as ``any category fibred in groupoids over 𝒞 is
equivalent to a split one'', or ``any category fibred in groupoids whose fibre categories are
setlike is equivalent to a category fibred in sets''. The notion of equivalence depends on the
2-category we are working with.

Definition 4.32.6. Let 𝒞 be a category. The 2-category of categories fibred in groupoids
over 𝒞 is the sub 2-category of the 2-category of fibred categories over 𝒞 (see Definition
4.30.8) defined as follows:

(1) Its objects will be categories 𝑝 ∶ 𝒮 → 𝒞 fibred in groupoids.
(2) Its 1-morphisms (𝒮, 𝑝) → (𝒮′, 𝑝′) will be functors 𝐺 ∶ 𝒮 → 𝒮′ such that 𝑝′ ∘ 𝐺 =

𝑝 (since every morphism is strongly cartesian 𝐺 automatically preserves them).
(3) Its 2-morphisms 𝑡 ∶ 𝐺 → 𝐻 for 𝐺, 𝐻 ∶ (𝒮, 𝑝) → (𝒮′, 𝑝′) will be morphisms of

functors such that 𝑝′(𝑡𝑥) = id𝑝(𝑥) for all 𝑥 ∈ 𝑂𝑏(𝒮).

Note that every 2-morphism is automatically an isomorphism! Hence this is actually a
(2, 1)-category and not just a 2-category. Here is the obligatory lemma on 2-fibre products.

Lemma 4.32.7. Let 𝒞 be a category. The 2-category of categories fibred in groupoids over
𝒞 has 2-fibre products, and they are described as in Lemma 4.29.3.

Proof. By Lemma 4.30.9 the fibre product as described in Lemma 4.29.3 is a fibred cate-
gory. Hence it suffices to prove that the fibre categories are groupoids, see Lemma 4.32.2.
By Lemma 4.29.4 it is enough to show that the 2-fibre product of groupoids is a groupoid,
which is clear (from the construction in Lemma 4.28.4 for example). �

Lemma 4.32.8. Let 𝑝 ∶ 𝒮 → 𝒞 and 𝑝′ ∶ 𝒮′ → 𝒞 be categories fibred in groupoids, and
suppose that 𝐺 ∶ 𝒮 → 𝒮′ is a functor over 𝒞.

(1) Then 𝐺 is faithful (resp. fully faithful, resp. an equivalence) if and only if for each
𝑈 ∈ 𝑂𝑏(𝒞) the induced functor 𝐺𝑈 ∶ 𝒮𝑈 → 𝒮′

𝑈 is faithful (resp. fully faithful,
resp. an equivalence).

(2) If 𝐺 is an equivalence, then 𝐺 is an equivalence in the 2-category of categories
fibred in groupoids over 𝒞.

Proof. Let 𝑥, 𝑦 be objects of 𝒮 lying over the same object 𝑈. Consider the commutative
diagram

𝑀𝑜𝑟𝒮(𝑥, 𝑦)

𝑝
''

𝐺
//𝑀𝑜𝑟𝒮′(𝐺(𝑥), 𝐺(𝑦))

𝑝′
vv

𝑀𝑜𝑟𝒞(𝑈, 𝑈)
From this diagram it is clear that if 𝐺 is faithful (resp. fully faithful) then so is each 𝐺𝑈.
Suppose 𝐺 is an equivalence. For every object 𝑥′ of 𝒮′ there exists an object 𝑥 of 𝒮 such
that 𝐺(𝑥) is isomorphic to 𝑥′. Suppose that 𝑥′ lies over 𝑈′ and 𝑥 lies over 𝑈. Then there is
an isomorphism 𝑓 ∶ 𝑈′ → 𝑈 in 𝒞, namely, 𝑝′ applied to the isomorphism 𝑥′ → 𝐺(𝑋). By
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the axioms of a category fibred in groupoids there exists an arrow 𝑓∗𝑥 → 𝑥 of 𝒮 lying over
𝑓. Hence there exists an isomorphism 𝛼 ∶ 𝑥′ → 𝐺(𝑓∗𝑥) such that 𝑝′(𝛼) = id𝑈′ (this time
by the axioms for 𝒮′). All in all we conclude that for every object 𝑥′ of 𝒮′ we can choose a
pair (𝑜𝑥′, 𝛼𝑥′) consisting of an object 𝑜𝑥′ of 𝒮 and an isomorphism 𝛼𝑥′ ∶ 𝑥′ → 𝐺(𝑜𝑥′) with
𝑝(𝛼𝑥′) = id𝑝′(𝑥′). From this point on we proceed as usual (see proof of Lemma 4.2.19) to
produce an inverse functor 𝐹 ∶ 𝒮′ → 𝒮, by taking 𝑥′ ↦ 𝑜𝑥′ and 𝜑′ ∶ 𝑥′ → 𝑦′ to the unique
arrow 𝜑𝜑′ ∶ 𝑜𝑥′ → 𝑜𝑦′ with 𝛼−1

𝑥′ ∘ 𝐺(𝜑𝜑′) ∘ 𝛼𝑦′ = 𝜑′. With these choices 𝐹 is a functor
over 𝒞. We omit the verification that 𝐺 ∘ 𝐹 and 𝐹 ∘ 𝐺 are 2-isomorphic (in the 2-category
of categories fibred in groupoids over 𝒞).

Suppose that 𝐺𝑈 is faithful (resp. fully faithful) for all 𝑈 ∈ 𝑂𝑏(𝒞). To show that 𝐺 is
faithful (resp. fully faithful) we have to show for any objects 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮) that 𝐺 induces
an injection (resp. bijection) between 𝑀𝑜𝑟𝒮(𝑥, 𝑦) and 𝑀𝑜𝑟𝒮′(𝐺(𝑥), 𝐺(𝑦)). Set 𝑈 = 𝑝(𝑥)
and 𝑉 = 𝑝(𝑦). It suffices to prove that 𝐺 induces an injection (resp. bijection) between
morphism 𝑥 → 𝑦 lying over 𝑓 to morphisms 𝐺(𝑥) → 𝐺(𝑦) lying over 𝑓 for any morphism
𝑓 ∶ 𝑈 → 𝑉. Now fix 𝑓 ∶ 𝑈 → 𝑉. Denote 𝑓∗𝑦 → 𝑦 a pullback. Then also 𝐺(𝑓∗𝑦) → 𝐺(𝑦)
is a pullback. The set of morphisms from 𝑥 to 𝑦 lying over 𝑓 is bijective to the set of
morphisms between 𝑥 and 𝑓∗𝑦 lying over id𝑈. (By the second axiom of a category fibred
in groupoids.) Similarly the set of morphisms from 𝐺(𝑥) to 𝐺(𝑦) lying over 𝑓 is bijective
to the set of morphisms between 𝐺(𝑥) and 𝐺(𝑓∗𝑦) lying over id𝑈. Hence the fact that 𝐺𝑈
is faithful (resp. fully faithful) gives the desired result.

Finally suppose for all 𝐺𝑈 is an equivalence for all 𝑈, so it is fully faithful and essentially
surjective. We have seen this implies𝐺 is fully faithful, and thus to prove it is an equivalence
we have to prove that it is essentially surjective. This is clear, for if 𝑧′ ∈ 𝑂𝑏(𝒮′) then
𝑧′ ∈ 𝑂𝑏(𝒮′

𝑈) where 𝑈 = 𝑝′(𝑧′). Since 𝐺𝑈 is essentially surjective we know that 𝑧′ is
isomorphic, in 𝒮′

𝑈, to an object of the form 𝐺𝑈(𝑧) for some 𝑧 ∈ 𝑂𝑏(𝒮𝑈). But morphisms
in 𝒮′

𝑈 are morphisms in 𝒮′ and hence 𝑧′ is isomorphic to 𝐺(𝑧) in 𝒮′. �

Lemma 4.32.9. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 and 𝑝′ ∶ 𝒮′ → 𝒞 be categories fibred
in groupoids. Let 𝐺 ∶ 𝒮 → 𝒮′ be a functor over 𝒞. Then 𝐺 is fully faithful if and only if
the diagonal

Δ𝐺 ∶ 𝒮 ⟶ 𝒮 ×𝐺,𝒮′,𝐺 𝒮
is an equivalence.

Proof. By Lemma 4.32.8 it suffices to look at fibre categories over an object 𝑈 of 𝒞. An
object of the right hand side is a triple (𝑥, 𝑥′, 𝛼) where 𝛼 ∶ 𝐺(𝑥) → 𝐺(𝑥′) is a morphism in
𝒮′

𝑈. The functor Δ𝐺 maps the object 𝑥 of 𝒮𝑈 to the triple (𝑥, 𝑥, id𝐺(𝑥)). Note that (𝑥, 𝑥′, 𝛼)
is in the essential image of Δ𝐺 if and only if 𝛼 = 𝐺(𝛽) for some morphism 𝛽 ∶ 𝑥 → 𝑥′

in 𝒮𝑈 (details omitted). Hence in order for Δ𝐺 to be an equivalence, every 𝛼 has to be the
image of a morphism 𝛽 ∶ 𝑥 → 𝑥′, and also every two distinct morphisms 𝛽, 𝛽′ ∶ 𝑥 → 𝑥′

have to given distinct morphisms 𝐺(𝛽), 𝐺(𝛽′). This proves one direction of the lemma. We
omit the proof of the other direction. �

Lemma 4.32.10. Let𝒞 be a category. Let𝒮𝑖, 𝑖 = 1, 2, 3, 4 be categories fibred in groupoids
over 𝒞. Suppose that 𝜑 ∶ 𝒮1 → 𝒮2 and 𝜓 ∶ 𝒮3 → 𝒮4 are equivalences over 𝒞. Then

𝑀𝑜𝑟Cat/𝒞(𝒮2, 𝒮3) ⟶ 𝑀𝑜𝑟Cat/𝒞(𝒮1, 𝒮4), 𝛼 ⟼ 𝜓 ∘ 𝛼 ∘ 𝜑

is an equivalence of categories.

Proof. This is a generality and holds in any 2-category. �
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Lemma 4.32.11. Let 𝒞 be a category. If 𝑝 ∶ 𝒮 → 𝒞 is fibred in groupoids, then so is the
inertia fibred category ℐ𝒮 → 𝒞.

Proof. Clear from the construction in Lemma 4.31.1 or by using (from the same lemma)
that 𝐼𝒮 → 𝒮 ×Δ,𝒮×𝒞𝒮,Δ 𝒮 is an equivalence and appealing to Lemma 4.32.7. �

Lemma 4.32.12. Let 𝒞 be a category. Let 𝑈 ∈ 𝑂𝑏(𝒞). If 𝑝 ∶ 𝒮 → 𝒞 is a category fibred in
groupoids and 𝑝 factors through 𝑝′ ∶ 𝒮 → 𝒞/𝑈 then 𝑝′ ∶ 𝒮 → 𝒞/𝑈 is fibred in groupoids.

Proof. We have already seen in Lemma 4.30.10 that 𝑝′ is a fibred category. Hence it
suffices to prove the fibre categories are groupoids, see Lemma 4.32.2. For 𝑉 ∈ 𝑂𝑏(𝒞)
we have

𝒮𝑉 = ∐𝑓∶𝑉→𝑈
𝒮(𝑓∶𝑉→𝑈)

where the left hand side is the fibre category of 𝑝 and the right hand side is the disjoint
union of the fibre categories of 𝑝′. Hence the result. �

Lemma 4.32.13. Let 𝑝 ∶ 𝒮 → 𝒞 be a category fibred in groupoids. Let 𝑥 → 𝑦 and 𝑧 → 𝑦
be morphisms of 𝒮. If 𝑝(𝑥)×𝑝(𝑦) 𝑝(𝑧) exists, then 𝑥×𝑦 𝑧 exists and 𝑝(𝑥×𝑦 𝑧) = 𝑝(𝑥)×𝑝(𝑦) 𝑝(𝑧).

Proof. Follows from Lemma 4.30.11. �

Lemma 4.32.14. Let 𝒞 be a category. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of categories
fibred in groupoids over 𝒞. There exists a factorization 𝒳 → 𝒳′ → 𝒴 by 1-morphisms of
categories fibred in groupoids over 𝒞 such that 𝒳 → 𝒳′ is an equivalence over 𝒞 and such
that 𝒳′ is a category fibred in groupoids over 𝒴.

Proof. Denote 𝑝 ∶ 𝒳 → 𝒞 and 𝑞 ∶ 𝒴 → 𝒞 the structure functors. We construct 𝒳′

explicitly as follows. An object of 𝒳′ is a quadruple (𝑈, 𝑥, 𝑦, 𝑓) where 𝑥 ∈ 𝑂𝑏(𝒳𝑈), 𝑦 ∈
𝑂𝑏(𝒴𝑈) and 𝑓 ∶ 𝐹(𝑥) → 𝑦 is an isomorphism in 𝒴𝑈. A morphism (𝑎, 𝑏) ∶ (𝑈, 𝑥, 𝑦, 𝑓) →
(𝑈′, 𝑥′, 𝑦′, 𝑓′) is given by 𝑎 ∶ 𝑥 → 𝑥′ and 𝑏 ∶ 𝑦 → 𝑦′ with 𝑝(𝑎) = 𝑞(𝑏) and such that
𝑓′∘𝐹(𝑎) = 𝑏∘𝑓. In other words 𝒳′ = 𝒳×𝐹,𝒴,id𝒴 with the construction of the 2-fibre product
from Lemma 4.29.3. By Lemma 4.32.7 we see that 𝒳′ is a category fibred in groupoids
over 𝒞 and that 𝒳′ → 𝒴 is a morphism of categories over 𝒞. As functor 𝒳 → 𝒳′ we take
𝑥 ↦ (𝑝(𝑥), 𝑥, 𝐹(𝑥), id𝐹(𝑥)) on objects and (𝑎 ∶ 𝑥 → 𝑥′) ↦ (𝑎, 𝐹(𝑎)) on morphisms. It is
clear that the composition 𝒳 → 𝒳′ → 𝒴 equals 𝐹. We omit the verification that 𝒳 → 𝒳′

is an equivalence of fibred categories over 𝒞.

Finally, we have to show that 𝒳′ → 𝒴 is a category fibred in groupoids. Let 𝑏 ∶ 𝑦′ → 𝑦 be
a morphism in 𝒴 and let (𝑈, 𝑥, 𝑦, 𝑓) be an object of 𝒳′ lying over 𝑦. Because 𝒳 is fibred in
groupoids over 𝒞 we can find a morphism 𝑎 ∶ 𝑥′ → 𝑥 lying over 𝑈′ = 𝑞(𝑦′) → 𝑞(𝑦) = 𝑈.
Since 𝒴 is fibred in groupoids over 𝒞 and since both 𝐹(𝑥′) → 𝐹(𝑥) and 𝑦′ → 𝑦 lie over
the same morphism 𝑈′ → 𝑈 we can find 𝑓′ ∶ 𝐹(𝑥′) → 𝑦′ lying over id𝑈′ such that
𝑓 ∘ 𝐹(𝑎) = 𝑏 ∘ 𝑓′. Hence we obtain (𝑎, 𝑏) ∶ (𝑈′, 𝑥′, 𝑦′, 𝑓′) → (𝑈, 𝑥, 𝑦, 𝑓). This verifies the
first condition (1) of Definition 4.32.1. To see (2) let (𝑎, 𝑏) ∶ (𝑈′, 𝑥′, 𝑦′, 𝑓′) → (𝑈, 𝑥, 𝑦, 𝑓)
and (𝑎′, 𝑏′) ∶ (𝑈″, 𝑥″, 𝑦″, 𝑓″) → (𝑈, 𝑥, 𝑦, 𝑓) be morphisms of 𝒳′ and let 𝑏″ ∶ 𝑦′ → 𝑦″ be a
morphism of 𝒴 such that 𝑏′ ∘ 𝑏″ = 𝑏. We have to show that there exists a unique morphism
𝑎″ ∶ 𝑥′ → 𝑥″ such that 𝑓″ ∘𝐹(𝑎″) = 𝑏″ ∘𝑓′ and such that (𝑎′, 𝑏′)∘(𝑎″, 𝑏″) = (𝑎, 𝑏). Because
𝒳 is fibred in groupoids we know there exists a unique morphism 𝑎″ ∶ 𝑥′ → 𝑥″ such that
𝑎′ ∘ 𝑎″ = 𝑎 and 𝑝(𝑎″) = 𝑞(𝑏″). Because 𝒴 is fibred in groupoids we see that 𝐹(𝑎″) is the
unique morphism 𝐹(𝑥′) → 𝐹(𝑥″) such that 𝐹(𝑎′) ∘𝐹(𝑎″) = 𝐹(𝑎) and 𝑞(𝐹(𝑎″)) = 𝑞(𝑏″). The
relation 𝑓″ ∘ 𝐹(𝑎″) = 𝑏″ ∘ 𝑓′ follows from this and the given relations 𝑓 ∘ 𝐹(𝑎) = 𝑏 ∘ 𝑓′ and
𝑓 ∘ 𝐹(𝑎′) = 𝑏′ ∘ 𝑓″. �
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Lemma 4.32.15. Let 𝒞 be a category. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of categories
fibred in groupoids over 𝒞. Assume we have a 2-commutative diagram

𝒳′

𝑓   

𝒳𝑎
oo

𝐹
��

𝑏
// 𝒳″

𝑔
~~

𝒴

where 𝑎 and 𝑏 are equivalences of categories over 𝒞 and 𝑓 and 𝑔 are categories fibred in
groupoids. Then there exists an equivalence ℎ ∶ 𝒳″ → 𝒳′ of categories over 𝒴 such
that ℎ ∘ 𝑏 is 2-isomorphic to 𝑎 as 1-morphisms of categories over 𝒞. If the diagram above
actually commutes, then we can arrange it so that ℎ∘𝑏 is 2-isomorphic to 𝑎 as 1-morphisms
of categories over 𝒴.

Proof. We will show that both 𝒳′ and 𝒳″ over 𝒴 are equivalent to the category fibred
in groupoids 𝒳 ×𝐹,𝒴,id 𝒴 over 𝒴, see proof of Lemma 4.32.14. Choose a quasi-inverse
𝑏−1 ∶ 𝒳″ → 𝒳 in the 2-category of categories over 𝒞. Since the right triangle of the
diagram is 2-commutative we see that

𝒳

𝐹
��

𝒳″
𝑏−1
oo

𝑔
��

𝒴 𝒴oo

is 2-commutative. Hence we obtain a 1-morphism 𝑐 ∶ 𝒳″ → 𝒳 ×𝐹,𝒴,id 𝒴 by the universal
property of the 2-fibre product. Moreover 𝑐 is a morphism of categories over 𝒴 (!) and an
equivalence (by the assumption that 𝑏 is an equivalence, see Lemma 4.28.7). Hence 𝑐 is an
equivalence in the 2-category of categories fibred in groupoids over 𝒴 by Lemma 4.32.8.

We still have to construct a 2-isomorphism between 𝑐∘𝑏 and the functor 𝑑 ∶ 𝒳 → 𝒳×𝐹,𝒴,id
𝒴, 𝑥 ↦ (𝑝(𝑥), 𝑥, 𝐹(𝑥), id𝐹(𝑥)) constructed in the proof of Lemma 4.32.14. Let 𝛼 ∶ 𝐹 → 𝑔∘𝑏
and 𝛽 ∶ 𝑏−1 ∘ 𝑏 → id be 2-isomorphisms between 1-morphisms of categories over 𝒞. Note
that 𝑐 ∘ 𝑏 is given by the rule

𝑥 ↦ (𝑝(𝑥), 𝑏−1(𝑏(𝑥)), 𝑔(𝑏(𝑥)), 𝛼𝑥 ∘ 𝐹(𝛽𝑥))

on objects. Then we see that

(𝛽𝑥, 𝛼𝑥) ∶ (𝑝(𝑥), 𝑥, 𝐹(𝑥), id𝐹(𝑥)) ⟶ (𝑝(𝑥), 𝑏−1(𝑏(𝑥)), 𝑔(𝑏(𝑥)), 𝛼𝑥 ∘ 𝐹(𝛽𝑥))

is a functorial isomorphism which gives our 2-morphism 𝑑 → 𝑏 ∘ 𝑐. Finally, if the diagram
commutes then 𝛼𝑥 is the identity for all 𝑥 and we see that this 2-morphism is a 2-morphism
in the 2-category of categories over 𝒴. �

4.33. Presheaves of categories

In this section we compare the notion of fibred categories with the closely related notion of
a ``presheaf of categories''. The basic construction is explained in the following example.

Example 4.33.1. Let 𝒞 be a category. Suppose that 𝐹 ∶ 𝒞𝑜𝑝𝑝 → Cat is a functor to the
2-category of categories, see Definition 4.26.5. For 𝑓 ∶ 𝑉 → 𝑈 in 𝒞 we will suggestively
write 𝐹(𝑓) = 𝑓∗ for the functor from 𝐹(𝑈) to 𝐹(𝑉). From this we can construct a fibred
category 𝒮𝐹 over 𝒞 as follows. Define

𝑂𝑏(𝒮𝐹) = {(𝑈, 𝑥) ∣ 𝑈 ∈ 𝑂𝑏(𝒞), 𝑥 ∈ 𝑂𝑏(𝐹(𝑈))}.
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For (𝑈, 𝑥), (𝑉, 𝑦) ∈ 𝑂𝑏(𝒮𝐹) we define

𝑀𝑜𝑟𝒮𝐹
((𝑉, 𝑦), (𝑈, 𝑥)) = {(𝑓, 𝜙) ∣ 𝑓 ∈ 𝑀𝑜𝑟𝒞(𝑉, 𝑈), 𝜙 ∈ 𝑀𝑜𝑟𝐹(𝑉)(𝑦, 𝑓∗𝑥)}

= ∐𝑓∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝑀𝑜𝑟𝐹(𝑉)(𝑦, 𝑓∗𝑥)

In order to define composition we use that 𝑔∗ ∘ 𝑓∗ = (𝑓 ∘ 𝑔)∗ for a pair of composable
morphisms of 𝒞 (by definition of a functor into a 2-category). Namely, we define the com-
position of 𝜓 ∶ 𝑧 → 𝑔∗𝑦 and 𝜙 ∶ 𝑦 → 𝑓∗𝑥 to be 𝑔∗(𝜙) ∘ 𝜓. The functor 𝑝𝐹 ∶ 𝒮𝐹 → 𝒞
is given by the rule (𝑈, 𝑥) ↦ 𝑈. Let us check that this is indeed a fibred category. Given
𝑓 ∶ 𝑉 → 𝑈 in 𝒞 and (𝑈, 𝑥) a lift of 𝑈, then we claim (𝑓, 𝑖𝑑𝑓∗𝑥) ∶ (𝑉, 𝑓∗𝑥) → (𝑈, 𝑥) is a
strongly cartesian lift of 𝑓. We have to show a ℎ in the diagram on the left determines (ℎ, 𝜈)
on the right:

𝑉
𝑓 // 𝑈 (𝑉, 𝑓∗𝑥)

(𝑓,id𝑓∗𝑥)
// (𝑈, 𝑥)

𝑊

ℎ

OO

𝑔

??

(𝑊, 𝑧)

(ℎ,𝜈)

OO

(𝑔,𝜓)

::

Just take 𝜈 = 𝜓 which works because 𝑓 ∘ ℎ = 𝑔 and hence 𝑔∗𝑥 = ℎ∗𝑓∗𝑥. Moreover, this is
the only lift making the diagram (on the right) commute.

Definition 4.33.2. Let 𝒞 be a category. Suppose that 𝐹 ∶ 𝒞𝑜𝑝𝑝 → Cat is a functor to the
2-category of categories. We will write 𝑝𝐹 ∶ 𝒮𝐹 → 𝒞 for the fibred category constructed in
Example 4.33.1. A split fibred category is a fibred category isomorphic (!) over 𝒞 to one
of these categories 𝒮𝐹.

Lemma 4.33.3. Let 𝒞 be a category. Let 𝒮 be a fibred category over 𝒞. Then 𝒮 is split if
and only if for some choice of pullbacks (see Definition 4.30.5) the pullback functors (𝑓∘𝑔)∗

and 𝑔∗ ∘ 𝑓∗ are equal.

Proof. This is immediate from the definitions. �

Lemma 4.33.4. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category. There exists a functor 𝐹 ∶ 𝒞 → Cat
such that 𝒮 is equivalent to 𝒮𝐹 in the 2-category of fibred categories over 𝒞. In other words,
every fibred category is equivalent to a split one.

Proof. Let us make a choice of pullbacks (see Definition 4.30.5). By Lemma 4.30.6 we
get pullback functors 𝑓∗ for every morphism 𝑓 of 𝒞.

We construct a new category 𝒮′ as follows. The objects of 𝒮′ are pairs (𝑥, 𝑓) consisting of a
morphism 𝑓 ∶ 𝑉 → 𝑈 of 𝒞 and an object 𝑥 of 𝒮 over 𝑈, i.e., 𝑥 ∈ 𝑂𝑏(𝒮𝑈). The functor 𝑝′ ∶
𝒮′ → 𝒞 will map the pair (𝑥, 𝑓) to the source of the morphism 𝑓, in other words 𝑝′(𝑥, 𝑓 ∶
𝑉 → 𝑈) = 𝑉. A morphism 𝜑 ∶ (𝑥1, 𝑓1 ∶ 𝑉1 → 𝑈1) → (𝑥2, 𝑓2 ∶ 𝑉2 → 𝑈2) is given by a
pair (𝜑, 𝑔) consisting of a morphism 𝑔 ∶ 𝑉1 → 𝑉2 and a morphism 𝜑 ∶ 𝑓∗

1𝑥1 → 𝑓∗
2𝑥2 with

𝑝(𝜑) = 𝑔. It is no problem to define the composition law: (𝜑, 𝑔) ∘ (𝜓, ℎ) = (𝜑 ∘ 𝜓, 𝑔 ∘ ℎ) for
any pair of composable morphisms. There is a natural functor 𝒮 → 𝒮′ which simply maps
𝑥 over 𝑈 to the pair (𝑥, id𝑥).

At this point we need to check that 𝑝′ makes 𝒮′ into a fibred category over 𝒞, and we need
to check that 𝒮 → 𝒮′ is an equivalence of categories over 𝒞 which maps strongly cartesian
morphisms to strongly cartesian morphisms. We omit the verifications.

Finally, we can define pullback functors on 𝒮′ by setting 𝑔∗(𝑥, 𝑓) = (𝑥, 𝑓 ∘ 𝑔) on objects
if 𝑔 ∶ 𝑉′ → 𝑉 and 𝑓 ∶ 𝑉 → 𝑈. On morphisms (𝜑, id𝑉) ∶ (𝑥1, 𝑓1) → (𝑥2, 𝑓2) between
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morphisms in 𝒮′
𝑉 we set 𝑔∗(𝜑, id𝑉) = (𝑔∗𝜑, id𝑉′) where we use the unique identifications

𝑔∗𝑓∗
𝑖 𝑥𝑖 = (𝑓𝑖 ∘ 𝑔)∗𝑥𝑖 from Lemma 4.30.6 to think of 𝑔∗𝜑 as a morphism from (𝑓1 ∘ 𝑔)∗𝑥1 to

(𝑓2 ∘ 𝑔)∗𝑥2. Clearly, these pullback functors 𝑔∗ have the property that 𝑔∗
1 ∘ 𝑔∗

2 = (𝑔2 ∘ 𝑔1)∗,
in other words 𝒮′ is split as desired. �

4.34. Presheaves of groupoids

In this section we compare the notion of categories fibred in groupoids with the closely
related notion of a ``presheaf of groupoids''. The basic construction is explained in the
following example.

Example 4.34.1. This example is the analogue of Example 4.33.1, for ``presheaves of
groupoids'' instead of ``presheaves of categories''. The output will be a category fibred in
groupoids instead of a fibred category. Suppose that 𝐹 ∶ 𝒞𝑜𝑝𝑝 → Groupoids is a functor to
the category of groupoids, see Definition 4.26.5. For 𝑓 ∶ 𝑉 → 𝑈 in 𝒞 we will suggestively
write 𝐹(𝑓) = 𝑓∗ for the functor from 𝐹(𝑈) to 𝐹(𝑉). We construct a category 𝒮𝐹 fibred in
groupoids over 𝒞 as follows. Define

𝑂𝑏(𝒮𝐹) = {(𝑈, 𝑥) ∣ 𝑈 ∈ 𝑂𝑏(𝒞), 𝑥 ∈ 𝑂𝑏(𝐹(𝑈))}.

For (𝑈, 𝑥), (𝑉, 𝑦) ∈ 𝑂𝑏(𝒮𝐹) we define

𝑀𝑜𝑟𝒮𝐹
((𝑉, 𝑦), (𝑈, 𝑥)) = {(𝑓, 𝜙) ∣ 𝑓 ∈ 𝑀𝑜𝑟𝒞(𝑉, 𝑈), 𝜙 ∈ 𝑀𝑜𝑟𝐹(𝑉)(𝑦, 𝑓∗𝑥)}

= ∐𝑓∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝑀𝑜𝑟𝐹(𝑉)(𝑦, 𝑓∗𝑥)

In order to define composition we use that 𝑔∗ ∘ 𝑓∗ = (𝑓 ∘ 𝑔)∗ for a pair of composable
morphisms of 𝒞 (by definition of a functor into a 2-category). Namely, we define the com-
position of 𝜓 ∶ 𝑧 → 𝑔∗𝑦 and 𝜙 ∶ 𝑦 → 𝑓∗𝑥 to be 𝑔∗(𝜙) ∘ 𝜓. The functor 𝑝𝐹 ∶ 𝒮𝐹 → 𝒞 is
given by the rule (𝑈, 𝑥) ↦ 𝑈. The condition that 𝐹(𝑈) is a groupoid for every 𝑈 guarantees
that 𝒮𝐹 is fibred in groupoids over 𝒞, as we have already seen in Example 4.33.1 that 𝒮𝐹 is a
fibred category, see Lemma 4.32.2. But we can also prove conditions (1), (2) of Definition
4.32.1 directly as follows: (1) Lifts of morphisms exist since given 𝑓 ∶ 𝑉 → 𝑈 in 𝒞 and
(𝑈, 𝑥) an object of 𝒮𝐹 over 𝑈, then (𝑓, 𝑖𝑑𝑓∗𝑥) ∶ (𝑉, 𝑓∗𝑥) → (𝑈, 𝑥) is a lift of 𝑓. (2) Suppose
given solid diagrams as follows

𝑉
𝑓 // 𝑈 (𝑉, 𝑦)

(𝑓,𝜙) // (𝑈, 𝑥)

𝑊

ℎ

OO

𝑔

??

(𝑊, 𝑧)

(ℎ,𝜈)

OO

(𝑔,𝜓)

::

Then for the dotted arrows we have 𝜈 = (ℎ∗𝜙)−1 ∘ 𝜓 so given ℎ there exists a 𝜈 which is
unique by uniqueness of inverses.

Definition 4.34.2. Let 𝒞 be a category. Suppose that 𝐹 ∶ 𝒞𝑜𝑝𝑝 → Groupoids is a functor
to the 2-category of groupoids. We will write 𝑝𝐹 ∶ 𝒮𝐹 → 𝒞 for the category fibred in
groupoids constructed in Example 4.34.1. A split category fibred in groupoids is a category
fibred in groupoids isomorphic (!) over 𝒞 to one of these categories 𝒮𝐹.

Lemma 4.34.3. Let 𝑝 ∶ 𝒮 → 𝒞 be a category fibred in groupoids. There exists a functor
𝐹 ∶ 𝒞 → Groupoids such that 𝒮 is equivalent to 𝒮𝐹 over 𝒞. In other words, every category
fibred in groupoids is equivalent to a split one.
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Proof. Make a choice of pullbacks (see Definition 4.30.5). By Lemmas 4.30.6 and 4.32.2
we get pullback functors 𝑓∗ for every morphism 𝑓 of 𝒞.
We construct a new category 𝒮′ as follows. The objects of 𝒮′ are pairs (𝑥, 𝑓) consisting of a
morphism 𝑓 ∶ 𝑉 → 𝑈 of 𝒞 and an object 𝑥 of 𝒮 over 𝑈, i.e., 𝑥 ∈ 𝑂𝑏(𝒮𝑈). The functor 𝑝′ ∶
𝒮′ → 𝒞 will map the pair (𝑥, 𝑓) to the source of the morphism 𝑓, in other words 𝑝′(𝑥, 𝑓 ∶
𝑉 → 𝑈) = 𝑉. A morphism 𝜑 ∶ (𝑥1, 𝑓1 ∶ 𝑉1 → 𝑈1) → (𝑥2, 𝑓2 ∶ 𝑉2 → 𝑈2) is given by a
pair (𝜑, 𝑔) consisting of a morphism 𝑔 ∶ 𝑉1 → 𝑉2 and a morphism 𝜑 ∶ 𝑓∗

1𝑥1 → 𝑓∗
2𝑥2 with

𝑝(𝜑) = 𝑔. It is no problem to define the composition law: (𝜑, 𝑔) ∘ (𝜓, ℎ) = (𝜑 ∘ 𝜓, 𝑔 ∘ ℎ) for
any pair of composable morphisms. There is a natural functor 𝒮 → 𝒮′ which simply maps
𝑥 over 𝑈 to the pair (𝑥, id𝑥).
At this point we need to check that 𝑝′ makes 𝒮′ into a category fibred in groupoids over
𝒞, and we need to check that 𝒮 → 𝒮′ is an equivalence of categories over 𝒞. We omit the
verifications.
Finally, we can define pullback functors on 𝒮′ by setting 𝑔∗(𝑥, 𝑓) = (𝑥, 𝑓 ∘ 𝑔) on objects
if 𝑔 ∶ 𝑉′ → 𝑉 and 𝑓 ∶ 𝑉 → 𝑈. On morphisms (𝜑, id𝑉) ∶ (𝑥1, 𝑓1) → (𝑥2, 𝑓2) between
morphisms in 𝒮′

𝑉 we set 𝑔∗(𝜑, id𝑉) = (𝑔∗𝜑, id𝑉′) where we use the unique identifications
𝑔∗𝑓∗

𝑖 𝑥𝑖 = (𝑓𝑖 ∘ 𝑔)∗𝑥𝑖 from Lemma 4.32.2 to think of 𝑔∗𝜑 as a morphism from (𝑓1 ∘ 𝑔)∗𝑥1 to
(𝑓2 ∘ 𝑔)∗𝑥2. Clearly, these pullback functors 𝑔∗ have the property that 𝑔∗

1 ∘ 𝑔∗
2 = (𝑔2 ∘ 𝑔1)∗,

in other words 𝒮′ is split as desired. �

We will see an alternative proof of this lemma in Section 4.38.

4.35. Categories fibred in sets

Definition 4.35.1. A category is called discrete if the only morphisms are the identity mor-
phisms.

A discrete category has only one interesting piece of information: its set of objects. Thus
we sometime confuse discrete categories with sets.

Definition 4.35.2. Let 𝒞 be a category. A category fibred in sets, or a category fibred
in discrete categories is a category fibred in groupoids all of whose fibre categories are
discrete.

We want to clarify the relationship between categories fibred in sets and presheaves (see
Definition 4.3.3). To do this it makes sense to first make the following definition.

Definition 4.35.3. Let 𝒞 be a category. The 2-category of categories fibred in sets over 𝒞 is
the sub 2-category of the category of categories fibred in groupoids over 𝒞 (see Definition
4.32.6) defined as follows:

(1) Its objects will be categories 𝑝 ∶ 𝒮 → 𝒞 fibred in sets.
(2) Its 1-morphisms (𝒮, 𝑝) → (𝒮′, 𝑝′) will be functors 𝐺 ∶ 𝒮 → 𝒮′ such that 𝑝′ ∘ 𝐺 =

𝑝 (since every morphism is strongly cartesian 𝐺 automatically preserves them).
(3) Its 2-morphisms 𝑡 ∶ 𝐺 → 𝐻 for 𝐺, 𝐻 ∶ (𝒮, 𝑝) → (𝒮′, 𝑝′) will be morphisms of

functors such that 𝑝′(𝑡𝑥) = id𝑝(𝑥) for all 𝑥 ∈ 𝑂𝑏(𝒮).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category is
actually a (2, 1)-category. Here is the obligatory lemma on the existence of 2-fibre products.

Lemma 4.35.4. Let 𝒞 be a category. The 2-category of categories fibred in sets over 𝒞 has
2-fibre products. More precisely, the 2-fibre product described in Lemma 4.29.3 returns a
category fibred in sets if one starts out with such.
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Proof. Omitted. �

Example 4.35.5. This example is the analogue of Examples 4.33.1 and 4.34.1 for presheaves
instead of ``presheaves of categories''. The output will be a category fibred in sets instead
of a fibred category. Suppose that 𝐹 ∶ 𝒞𝑜𝑝𝑝 → Sets is a presheaf. For 𝑓 ∶ 𝑉 → 𝑈 in 𝒞 we
will suggestively write 𝐹(𝑓) = 𝑓∗ ∶ 𝐹(𝑈) → 𝐹(𝑉). We construct a category 𝒮𝐹 fibred in
sets over 𝒞 as follows. Define

𝑂𝑏(𝒮𝐹) = {(𝑈, 𝑥) ∣ 𝑈 ∈ 𝑂𝑏(𝒞), 𝑥 ∈ 𝑂𝑏(𝐹(𝑈))}.

For (𝑈, 𝑥), (𝑉, 𝑦) ∈ 𝑂𝑏(𝒮𝐹) we define

𝑀𝑜𝑟𝒮𝐹
((𝑉, 𝑦), (𝑈, 𝑥)) = {𝑓 ∈ 𝑀𝑜𝑟𝒞(𝑉, 𝑈) ∣ 𝑓∗𝑥 = 𝑦}

Composition is inherited from composition in 𝒞 which works as 𝑔∗ ∘ 𝑓∗ = (𝑓 ∘ 𝑔)∗ for a pair
of composable morphisms of 𝒞. The functor 𝑝𝐹 ∶ 𝒮𝐹 → 𝒞 is given by the rule (𝑈, 𝑥) ↦ 𝑈.
As every fibre category 𝒮𝐹,𝑈 is discrete with underlying set 𝐹(𝑈) and we have already see
in Example 4.34.1 that 𝒮𝐹 is a category fibred in groupoids, we conclude that 𝒮𝐹 is fibred
in sets.

Lemma 4.35.6. Let 𝒞 be a category. The only 2-morphisms between categories fibred in
sets are identities. In other words, the 2-category of categories fibred in sets is a category.
Moreover, there is an equivalence of categories

{
the category of presheaves

of sets over 𝒞 } ↔ {
the category of categories

fi𝒞 }

The functor from left to right is the construction 𝐹 → 𝒮𝐹 discussed in Example 4.35.5. The
functor from right to left assigns to 𝑝 ∶ 𝒮 → 𝒞 the presheaf of objects 𝑈 ↦ 𝑂𝑏(𝒮𝑈).

Proof. The first assertion is clear, as the only morphisms in the fibre categories are identi-
ties.

Suppose that 𝑝 ∶ 𝒮 → 𝒞 is fibred in sets. Let 𝑓 ∶ 𝑉 → 𝑈 be a morphism in 𝒞 and
let 𝑥 ∈ 𝑂𝑏(𝒮𝑈). Then there is exactly one choice for the object 𝑓∗𝑥. Thus we see that
(𝑓 ∘ 𝑔)∗𝑥 = 𝑔∗(𝑓∗𝑥) for 𝑓, 𝑔 as in Lemma 4.32.2. It follows that we may think of the
assignments 𝑈 ↦ 𝑂𝑏(𝒮𝑈) and 𝑓 ↦ 𝑓∗ as a presheaf on 𝒞. �

Here is an important example of a category fibred in sets.

Example 4.35.7. Let 𝒞 be a category. Let 𝑋 ∈ 𝑂𝑏(𝒞). Consider the representable presheaf
ℎ𝑋 = 𝑀𝑜𝑟𝒞(−, 𝑋) (see Example 4.3.4). On the other hand, consider the category 𝑝 ∶
𝒞/𝑋 → 𝒞 from Example 4.2.13. The fibre category (𝒞/𝑋)𝑈 has as objects morphisms
ℎ ∶ 𝑈 → 𝑋, and only identities as morphisms. Hence we see that under the correspondence
of Lemma 4.35.6 we have

ℎ𝑋 ⟷ 𝒞/𝑋.
In other words, the category 𝒞/𝑋 is canonically equivalent to the category 𝒮ℎ𝑋

associated
to ℎ𝑋 in Example 4.35.5.

For this reason it is tempting to define a ``representable'' object in the 2-category of cat-
egories fibred in groupoids to be a category fibred in sets whose associated presheaf is
representable. However, this is would not be a good definition for use since we prefer to
have a notion which is invariant under equivalences. To make this precise we study exactly
which categories fibred in groupoids are equivalent to categories fibred in sets.
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4.36. Categories fibred in setoids

Definition 4.36.1. Let us call a category a setoid4 if it is a groupoid where every object has
exactly one automorphism: the identity.

If 𝐶 is a set with an equivalence relation ∼, thenwe canmake a setoid 𝒞 as follows: 𝑂𝑏(𝒞) =
𝐶 and 𝑀𝑜𝑟𝒞(𝑥, 𝑦) = ∅ unless 𝑥 ∼ 𝑦 in which case we set 𝑀𝑜𝑟𝒞(𝑥, 𝑦) = {1}. Transitivity
of ∼ means that we can compose morphisms. Conversely any setoid category defines an
equivalence relation on its objects (isomorphism) such that you recover the category (up to
unique isomorphism -- not equivalence) from the procedure just described.

Discrete categories are setoids. For any setoid 𝒞 there is a canonical procedure to make
a discrete category equivalent to it, namely one replaces 𝑂𝑏(𝒞) by the set of isomorphism
classes (and adds identity morphisms). In terms of sets endowed with an equivalence rela-
tion this corresponds to taking the quotient by the equivalence relation.

Definition 4.36.2. Let 𝒞 be a category. A category fibred in setoids is a category fibred in
groupoids all of whose fibre categories are setoids.

Below we will clarify the relationship between categories fibred in setoids and categories
fibred in sets.

Definition 4.36.3. Let 𝒞 be a category. The 2-category of categories fibred in setoids
over 𝒞 is the sub 2-category of the category of categories fibred in groupoids over 𝒞 (see
Definition 4.32.6) defined as follows:

(1) Its objects will be categories 𝑝 ∶ 𝒮 → 𝒞 fibred in setoids.
(2) Its 1-morphisms (𝒮, 𝑝) → (𝒮′, 𝑝′) will be functors 𝐺 ∶ 𝒮 → 𝒮′ such that 𝑝′ ∘ 𝐺 =

𝑝 (since every morphism is strongly cartesian 𝐺 automatically preserves them).
(3) Its 2-morphisms 𝑡 ∶ 𝐺 → 𝐻 for 𝐺, 𝐻 ∶ (𝒮, 𝑝) → (𝒮′, 𝑝′) will be morphisms of

functors such that 𝑝′(𝑡𝑥) = id𝑝(𝑥) for all 𝑥 ∈ 𝑂𝑏(𝒮).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category is
actually a (2, 1)-category.
Here is the obligatory lemma on the existence of 2-fibre products.

Lemma 4.36.4. Let 𝒞 be a category. The 2-category of categories fibred in setoids over 𝒞
has 2-fibre products. More precisely, the 2-fibre product described in Lemma 4.29.3 returns
a category fibred in setoids if one starts out with such.

Proof. Omitted. �

Lemma 4.36.5. Let 𝒞 be a category. Let 𝒮 be a category over 𝒞.
(1) If 𝒮 → 𝒮′ is an equivalence over 𝒞 with 𝒮′ fibred in sets over 𝒞, then

(a) 𝒮 is fibred in setoids over 𝒞, and
(b) for each 𝑈 ∈ 𝑂𝑏(𝒞) the map 𝑂𝑏(𝒮𝑈) → 𝑂𝑏(𝒮′

𝑈) identifies the target as the
set of isomorphism classes of the source.

(2) If 𝑝 ∶ 𝒮 → 𝒞 is a category fibred in setoids, then there exists a category fibred in
sets 𝑝′ ∶ 𝒮′ → 𝒞 and an equivalence can ∶ 𝒮 → 𝒮′ over 𝒞.

Proof. Let us prove (2). An object of the category𝒮′ will be a pair (𝑈, 𝜉), where𝑈 ∈ 𝑂𝑏(𝒞)
and 𝜉 is an isomorphism class of objects of 𝒮𝑈. A morphism (𝑈, 𝜉) → (𝑉, 𝜓) is given by a
morphism 𝑥 → 𝑦, where 𝑥 ∈ 𝜉 and 𝑦 ∈ 𝜓. Here we identify two morphisms 𝑥 → 𝑦 and

4A set on steroids!?
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𝑥′ → 𝑦′ if they induce the samemorphism 𝑈 → 𝑉, and if for some choices of isomorphisms
𝑥 → 𝑥′ in 𝒮𝑈 and 𝑦 → 𝑦′ in 𝒮𝑉 the compositions 𝑥 → 𝑥′ → 𝑦′ and 𝑥 → 𝑦 → 𝑦′ agree. By
construction there are surjective maps on objects and morphisms from 𝒮 → 𝒮′. We define
composition of morphisms in 𝒮′ to be the unique law that turns 𝒮 → 𝒮′ into a functor.
Some details omitted. �

Thus categories fibred in setoids are exactly the categories fibred in groupoids which are
equivalent to categories fibred in sets. Moreover, an equivalence of categories fibred in sets
is an isomorphism by Lemma 4.35.6.

Lemma 4.36.6. Let 𝒞 be a category. The construction of Lemma 4.36.5 part (2) gives a
functor

𝐹 ∶ {
the 2-category of categories

fi𝒞 } ⟶ {
the category of categories

fi𝒞 }
(see Definition 4.26.5). This functor is an equivalence in the following sense:

(1) for any two 1-morphisms 𝑓, 𝑔 ∶ 𝒮1 → 𝒮2 with 𝐹(𝑓) = 𝐹(𝑔) there exists a unique
2-isomorphism 𝑓 → 𝑔,

(2) for any morphism ℎ ∶ 𝐹(𝒮1) → 𝐹(𝒮2) there exists a 1-morphism 𝑓 ∶ 𝒮1 → 𝒮2
with 𝐹(𝑓) = ℎ, and

(3) any category fibred in sets 𝒮 is equal to 𝐹(𝒮).
In particular, defining 𝐹𝑖 ∈ PSh(𝒞) by the rule 𝐹𝑖(𝑈) = 𝑂𝑏(𝒮𝑖,𝑈)/ ≅, we have

𝑀𝑜𝑟Cat/𝒞(𝒮1, 𝒮2)/2-isomorphism = 𝑀𝑜𝑟PSh(𝒞)(𝐹1, 𝐹2)

More precisely, given any map 𝜙 ∶ 𝐹1 → 𝐹2 there exists a 1-morphism 𝑓 ∶ 𝒮1 → 𝒮2
which induces 𝜙 on isomorphism classes of objects and which is unique up to unique
2-isomorphism.

Proof. By Lemma 4.35.6 the target of 𝐹 is a category hence the assertion makes sense. The
construction of Lemma 4.36.5 part (2) assigns to 𝒮 the category fibred in sets whose value
over 𝑈 is the set of isomorphism classes in 𝒮𝑈. Hence it is clear that it defines a functor as
indicated. Let 𝑓, 𝑔 ∶ 𝒮1 → 𝒮2 with 𝐹(𝑓) = 𝐹(𝑔) be as in (1). For each object 𝑈 of 𝒞 and
each object 𝑥 of 𝒮1,𝑈 we see that 𝑓(𝑥) ≅ 𝑔(𝑥) by assumption. As 𝒮2 is fibred in setoids there
exists a unique isomorphism 𝑡𝑥 ∶ 𝑓(𝑥) → 𝑔(𝑥) in 𝒮2,𝑈. Clearly the rule 𝑥 ↦ 𝑡𝑥 gives the
desired 2-isomorphism 𝑓 → 𝑔. We omit the proofs of (2) and (3). To see the final assertion
use Lemma 4.35.6 to see that the right hand side is equal to 𝑀𝑜𝑟Cat(𝒞)(𝐹(𝒮1), 𝐹(𝒮2)) and
apply (1) and (2) above. �

Here is another characterization of categories fibred in setoids among all categories fibred
in groupoids.

Lemma 4.36.7. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a category fibred in groupoids.
The following are equivalent:

(1) 𝑝 ∶ 𝒮 → 𝒞 be a category fibred in setoids, and
(2) the canonical 1-morphism ℐ𝒮 → 𝒮, see (4.31.2.1), is an equivalence (of cate-

gories over 𝒞).

Proof. Assume (2). The category ℐ𝒮 has objects (𝑥, 𝛼) where 𝑥 ∈ 𝒮, say with 𝑝(𝑥) = 𝑈,
and 𝛼 ∶ 𝑥 → 𝑥 is a morphism in 𝒮𝑈. Hence if ℐ𝒮 → 𝒮 is an equivalence over 𝒞 then every
pair of objects (𝑥, 𝛼), (𝑥, 𝛼′) are isomorphic in the fibre category of ℐ𝒮 over 𝑈. Looking
at the definition of morphisms in ℐ𝒮 we conclude that 𝛼, 𝛼′ are conjugate in the group of
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automorphisms of 𝑥. Hence taking 𝛼′ = id𝑥 we conclude that every automorphism of 𝑥 is
equal to the identity. Since 𝒮 → 𝒞 is fibred in groupoids this implies that 𝒮 → 𝒞 is fibred
in setoids. We omit the proof of (1) ⇒ (2). �

Lemma 4.36.8. Let 𝒞 be a category. The construction of Lemma 4.36.6 which associates
to a category fibred in setoids a presheaf is compatible with products, in the sense that
the presheaf associated to a 2-fibre product 𝒳 ×𝒴 𝒵 is the fibre product of the presheaves
associated to 𝒳, 𝒴, 𝒵.

Proof. Let 𝑈 ∈ 𝑂𝑏(𝒞). The lemma just says that

𝑂𝑏((𝒳 ×𝒴 𝒵)𝑈)/≅ equals 𝑂𝑏(𝒳𝑈)/≅ ×𝑂𝑏(𝒴𝑈)/≅ 𝑂𝑏(𝒵𝑈)/≅

the proof of which we omit. (But note that this would not be true in general if the category
𝒴𝑈 is not a setoid.) �

4.37. Representable categories fibred in groupoids

Here is our definition of a representable category fibred in groupoids. As promised this is
invariant under equivalences.

Definition 4.37.1. Let 𝒞 be a category. A category fibred in groupoids 𝑝 ∶ 𝒮 → 𝒞 is
called representable if there exists an object 𝑋 of 𝒞 and an equivalence 𝑗 ∶ 𝒮 → 𝒞/𝑋 (in
the 2-category of groupoids over 𝒞).

The usual abuse of notation is to say that 𝑋 represents 𝒮 and not mention the equivalence
𝑗. We spell out what this entails.

Lemma 4.37.2. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a category fibred in groupoids.
(1) 𝒮 is representable if and only if the following conditions are satisfied:

(a) 𝒮 is fibred in setoids, and
(b) the presheaf 𝑈 ↦ 𝑂𝑏(𝒮𝑈)/ ≅ is representable.

(2) If 𝒮 is representable the pair (𝑋, 𝑗), where 𝑗 is the equivalence 𝑗 ∶ 𝒮 → 𝒞/𝑋 is
uniquely determined up to isomorphism.

Proof. The first assertion follows immediately from Lemma 4.36.5. For the second, sup-
pose that 𝑗′ ∶ 𝒮 → 𝒞/𝑋′ is a second such pair. Choose a 1-morphism 𝑡′ ∶ 𝒞/𝑋′ → 𝒮 such
that 𝑗′ ∘ 𝑡′ ≅ id𝒞/𝑋′ and 𝑡′ ∘ 𝑗′ ≅ id𝒮. Then 𝑗 ∘ 𝑡′ ∶ 𝒞/𝑋′ → 𝒞/𝑋 is an equivalence. Hence
it is an isomorphism, see Lemma 4.35.6. Hence by the Yoneda Lemma 4.3.5 (via Example
4.35.7 for example) it is given by an isomorphism 𝑋′ → 𝑋. �

Lemma 4.37.3. Let 𝒞 be a category. Let 𝒳, 𝒴 be categories fibred in groupoids over 𝒞.
Assume that 𝒳, 𝒴 are representable by objects 𝑋, 𝑌 of 𝒞. Then

𝑀𝑜𝑟Cat/𝒞(𝒳, 𝒴)/2-isomorphism = 𝑀𝑜𝑟𝒞(𝑋, 𝑌)

More precisely, given 𝜙 ∶ 𝑋 → 𝑌 there exists a 1-morphism 𝑓 ∶ 𝒳 → 𝒴 which induces 𝜙
on isomorphism classes of objects and which is unique up to unique 2-isomorphism.

Proof. By Example 4.35.7 we have 𝒞/𝑋 = 𝒮ℎ𝑋
and 𝒞/𝑌 = 𝒮ℎ𝑌

. By Lemma 4.36.6 we
have

𝑀𝑜𝑟Cat/𝒞(𝒳, 𝒴)/2-isomorphism = 𝑀𝑜𝑟PSh(𝒞)(ℎ𝑋, ℎ𝑌)

By the Yoneda Lemma 4.3.5 we have 𝑀𝑜𝑟PSh(𝒞)(ℎ𝑋, ℎ𝑌) = 𝑀𝑜𝑟𝒞(𝑋, 𝑌). �
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4.38. Representable 1-morphisms

Let 𝒞 be a category. In this section we explain what it means for a 1-morphism between
categories fibred in groupoids over 𝒞 to be representable. Note that the 2-category of cate-
gories fibred in groupoids over 𝒞 is a ``full'' sub 2-category of the 2-category of categories
over 𝒞 (see Definition 4.32.6). Hence if 𝒮, 𝒮′ are fibred in groupoids over 𝒞 then

𝑀𝑜𝑟Cat/𝒞(𝒮, 𝒮′)
denotes the category of 1-morphisms in this 2-category (see Definition 4.29.1). These are
all groupoids, see remarks following Definition 4.32.6. Here is the 2-category analogue of
the Yoneda lemma.

Lemma 4.38.1. (2-Yoneda lemma) Let 𝒮 → 𝒞 be fibred in groupoids. Let 𝑈 ∈ 𝑂𝑏(𝒞). The
functor

𝑀𝑜𝑟Cat/𝒞(𝒞/𝑈, 𝒮) ⟶ 𝒮𝑈
given by 𝐺 ↦ 𝐺(id𝑈) is an equivalence.

Proof. Make a choice of pullbacks for 𝒮 (see Definition 4.30.5). We define a functor
𝒮𝑈 ⟶ 𝑀𝑜𝑟Cat/𝒞(𝒞/𝑈, 𝒮)

as follows. Given 𝑥 ∈ 𝑂𝑏(𝒮𝑈) the associated functor is
(1) on objects: (𝑓 ∶ 𝑉 → 𝑈) ↦ 𝑓∗𝑥, and
(2) on morphisms: the arrow (𝑔 ∶ 𝑉′/𝑈 → 𝑉/𝑈) maps to the composition

(𝑓 ∘ 𝑔)∗𝑥
(𝛼𝑔,𝑓)𝑥

−−−−−→ 𝑔∗𝑓∗𝑥 → 𝑓∗𝑥
where 𝛼𝑔,𝑓 is as in Lemma 4.32.2.

We omit the verification that this is an inverse to the functor of the lemma. �

Remark 4.38.2. We can use the 2-Yoneda lemma to give an alternative proof of Lemmas
4.34.3. Let 𝑝 ∶ 𝒮 → 𝒞 be a category fibred in groupoids. We define a contravariant functor
𝐹 from 𝒞 to the category of groupoids as follows: for 𝑈 ∈ 𝑂𝑏(𝒞) let

𝐹(𝑈) = 𝑀𝑜𝑟Cat/𝒞(𝒞/𝑈, 𝒮).
If 𝑓 ∶ 𝑈 → 𝑉 the induced functor 𝒞/𝑈 → 𝒞/𝑉 induces the morphism 𝐹(𝑓) ∶ 𝐹(𝑉) → 𝐹(𝑈).
Clearly 𝐹 is a functor. Let 𝒮′ be the associated category fibred in groupoids from Example
4.34.1. There is an obvious functor 𝐺 ∶ 𝒮′ → 𝒮 over 𝒞 given by taking the pair (𝑈, 𝑥),
where 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑥 ∈ 𝐹(𝑈), to 𝑥(id𝑈) ∈ 𝒮. Now Lemma 4.38.1 implies that for each
𝑈,

𝐺𝑈 ∶ 𝒮′
𝑈 = 𝐹(𝑈) = 𝑀𝑜𝑟Cat/𝒞(𝒞/𝑈, 𝒮) → 𝒮𝑈

is an equivalence, and thus 𝐺 equivalence between 𝒮 and 𝒮′ by Lemma 4.32.8.

Let 𝒞 be a category. Let 𝒳, 𝒴 be categories fibred in groupoids over 𝒞. Let 𝑈 ∈ 𝑂𝑏(𝒞).
Let 𝐹 ∶ 𝒳 → 𝒴 and 𝐺 ∶ 𝒞/𝑈 → 𝒴 be 1-morphisms of categories fibred in groupoids over
𝒞. We want to describe the 2-fibre product

(𝒞/𝑈) ×𝒴 𝒳 //

��

𝒳

𝐹
��

𝒞/𝑈 𝐺 // 𝒴

Let 𝑦 = 𝐺(id𝑈) ∈ 𝒴𝑈. Make a choice of pullbacks for 𝒴 (see Definition 4.30.5). Then 𝐺
is isomorphic to the functor (𝑓 ∶ 𝑉 → 𝑈) ↦ 𝑓∗𝑦, see Lemma 4.38.1 and its proof. We may
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think of an object of (𝒞/𝑈) ×𝒴 𝒳 as a quadruple (𝑉, 𝑓 ∶ 𝑉 → 𝑈, 𝑥, 𝜙), see Lemma 4.29.3.
Using the description of 𝐺 above we may think of 𝜙 as an isomorphism 𝜙 ∶ 𝑓∗𝑦 → 𝐹(𝑥)
in 𝒴𝑉.

Lemma 4.38.3. In the situation above the fibre category of (𝒞/𝑈) ×𝒴 𝒳 over an object
𝑓 ∶ 𝑉 → 𝑈 of 𝒞/𝑈 is the category described as follows:

(1) objects are pairs (𝑥, 𝜙), where 𝑥 ∈ 𝑂𝑏(𝒳𝑉), and 𝜙 ∶ 𝑓∗𝑦 → 𝐹(𝑥) is a morphism
in 𝒴𝑉,

(2) the set of morphisms between (𝑥, 𝜙) and (𝑥′, 𝜙′) is the set of morphisms 𝜓 ∶ 𝑥 →
𝑥′ in 𝒳𝑉 such that 𝐹(𝜓) = 𝜙′ ∘ 𝜙−1.

Proof. See discussion above. �

Lemma 4.38.4. Let 𝒞 be a category. Let 𝒳, 𝒴 be categories fibred in groupoids over 𝒞.
Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism. Let 𝐺 ∶ 𝒞/𝑈 → 𝒴 be a 1-morphism. Then

(𝒞/𝑈) ×𝒴 𝒳 ⟶ 𝒞/𝑈

is a category fibred in groupoids.

Proof. We have already seen in Lemma 4.32.7 that the composition

(𝒞/𝑈) ×𝒴 𝒳 ⟶ 𝒞/𝑈 ⟶ 𝒞

is a category fibred in groupoids. Then the lemma follows from Lemma 4.32.12. �

Definition 4.38.5. Let 𝒞 be a category. Let 𝒳, 𝒴 be categories fibred in groupoids over
𝒞. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism. We say 𝐹 is representable, or that 𝒳 is relatively
representable over 𝒴, if for every 𝑈 ∈ 𝑂𝑏(𝒞) and any 𝐺 ∶ 𝒞/𝑈 → 𝒳 the category fibred
in groupoids

(𝒞/𝑈) ×𝒴 𝒳 ⟶ 𝒞/𝑈
is representable over 𝒞/𝑈.

Lemma 4.38.6. Let 𝒞 be a category. Let 𝒳, 𝒴 be categories fibred in groupoids over 𝒞.
Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism. If 𝐹 is representable then every one of the functors

𝐹𝑈 ∶ 𝒳𝑈 ⟶ 𝒴𝑈

between fibre categories is faithful.

Proof. Clear from the description of fibre categories in Lemma 4.38.3 and the characteri-
zation of representable fibred categories in Lemma 4.37.2. �

Lemma 4.38.7. Let 𝒞 be a category. Let 𝒳, 𝒴 be categories fibred in groupoids over 𝒞.
Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism. Make a choice of pullbacks for 𝒴. Assume

(1) each functor 𝐹𝑈 ∶ 𝒳𝑈 ⟶ 𝒴𝑈 between fibre categories is faithful, and
(2) for each 𝑈 and each 𝑦 ∈ 𝒴𝑈 the presheaf

(𝑓 ∶ 𝑉 → 𝑈) ⟼ {(𝑥, 𝜙) ∣ 𝑥 ∈ 𝒳𝑉, 𝜙 ∶ 𝑓∗𝑦 → 𝐹(𝑥)}/ ≅

is a representable presheaf on 𝒞/𝑈.
Then 𝐹 is representable.

Proof. Clear from the description of fibre categories in Lemma 4.38.3 and the characteri-
zation of representable fibred categories in Lemma 4.37.2. �
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Before we state the next lemma we point out that the 2-category of categories fibred in
groupoids is a (2, 1)-category, and hence we know what it means to say that it has a final
object (see Definition 4.28.1). And it has a final object namely id ∶ 𝒞 → 𝒞. Thus we define
2-products of categories fibred in groupoids over 𝒞 as the 2-fibred products

𝒳 × 𝒴 ∶= 𝒳 ×𝒞 𝒴.
With this definition in place the following lemma makes sense.

Lemma 4.38.8. Let 𝒞 be a category. Let 𝒮 → 𝒞 be a category fibred in groupoids. Assume
𝒞 has products of pairs of objects and fibre products. The following are equivalent:

(1) The diagonal 𝒮 → 𝒮 × 𝒮 is representable.
(2) For every 𝑈 in 𝒞, any 𝐺 ∶ 𝒞/𝑈 → 𝒮 is representable.

Proof. Suppose the diagonal is representable, and let 𝑈, 𝐺 be given. Consider any 𝑉 ∈
𝑂𝑏(𝒞) and any 𝐺′ ∶ 𝒞/𝑉 → 𝒮. Note that 𝒞/𝑈 × 𝒞/𝑉 = 𝒞/𝑈 × 𝑉 is representable. Hence
the fibre product

(𝒞/𝑈 × 𝑉) ×(𝒮×𝒮) 𝒮 //

��

𝒮

��
𝒞/𝑈 × 𝑉

(𝐺,𝐺′) // 𝒮 × 𝒮
is representable by assumption. This means there exists 𝑊 → 𝑈 × 𝑉 in 𝒞, such that

𝒞/𝑊

��

// 𝒮

��
𝒞/𝑈 × 𝒞/𝑉 // 𝒮 × 𝒮

is cartesian. This implies that 𝒞/𝑊 ≅ 𝒞/𝑈 ×𝒮 𝒞/𝑉 (see Lemma 4.28.11) as desired.
Assume (2) holds. Consider any 𝑉 ∈ 𝑂𝑏(𝒞) and any (𝐺, 𝐺′) ∶ 𝒞/𝑉 → 𝒮 × 𝒮. We have
to show that 𝒞/𝑉 ×𝒮×𝒮 𝒮 is representable. What we know is that 𝒞/𝑉 ×𝐺,𝒮,𝐺′ 𝒞/𝑉 is repre-
sentable, say by 𝑎 ∶ 𝑊 → 𝑉 in 𝒞/𝑉. The equivalence

𝒞/𝑊 → 𝒞/𝑉 ×𝐺,𝒮,𝐺′ 𝒞/𝑉
followed by the second projection to 𝒞/𝑉 gives a second morphism 𝑎′ ∶ 𝑊 → 𝑉. Consider
𝑊′ = 𝑊 ×(𝑎,𝑎′),𝑉×𝑉 𝑉. There exists an equivalence

𝒞/𝑊′ ≅ 𝒞/𝑉 ×𝒮×𝒮 𝒮
namely

𝒞/𝑊′ ≅ 𝒞/𝑊 ×(𝒞/𝑉×𝒞/𝑉) 𝒞/𝑉
≅ (𝒞/𝑉 ×(𝐺,𝒮,𝐺′) 𝒞/𝑉) ×(𝒞/𝑉×𝒞/𝑉) 𝒞/𝑉
≅ 𝒞/𝑉 ×(𝒮×𝒮) 𝒮

(for the last isomorphism see Lemma 4.28.12) which proves the lemma. �

Biographical notes: Parts of this have been taken from Vistoli's notes [Vis].
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CHAPTER 5

Topology

5.1. Introduction

Basic topology will be explained in this document. A reference is [Eng77].

5.2. Basic notions

The following notions are considered basic and will not be defined, and or proved. This
does not mean they are all necessarily easy or well known.

(1) 𝑋 is a topological space,
(2) 𝑥 ∈ 𝑋 is a point,
(3) 𝑥 ∈ 𝑋 is a closed point,
(4) 𝑓 ∶ 𝑋1 → 𝑋2 is continuous,
(5) a neighbourhood of 𝑥 ∈ 𝑋 is any subset 𝐸 ⊂ 𝑋 which contains an open subset

that contains 𝑥,
(6) 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 is an open covering of 𝑈 (note: we allow any 𝑈𝑖 to be empty

and we even allow, in case 𝑈 is empty, the empty set for 𝐼),
(7) the open covering 𝒱 is a refinement of the open covering 𝒰 (if 𝒱 ∶ 𝑉 = ⋃𝑗∈𝐽 𝑉𝑗

and 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 this means each 𝑉𝑗 is completely contained in one of the
𝑈𝑖),

(8) {𝐸𝑖}𝑖∈𝐼 is a fundamental system of neighbourhoods of 𝑥 in 𝑋,
(9) a topological space 𝑋 is called Hausdorff or separated if and only if for every

distinct pair of points 𝑥, 𝑦 ∈ 𝑋 there exist disjoint opens 𝑈, 𝑉 ⊂ 𝑋 such that
𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉,

(10) the product of two topological spaces,
(11) the fibre product 𝑋×𝑌 𝑍 of a pair of continuous maps 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑍 → 𝑌,
(12) etc.

5.3. Bases

Definition 5.3.1. Let 𝑋 be a topological space. A collection of subsets ℬ of 𝑋 is called
a base for the topology on 𝑋 or a basis for the topology on 𝑋 if the following conditions
hold:

(1) Every element 𝐵 ∈ ℬ is open in 𝑋.
(2) For every open 𝑈 ⊂ 𝑋 and every 𝑥 ∈ 𝑈, there exists an element 𝐵 ∈ ℬ such

that 𝑥 ∈ 𝐵 ⊂ 𝑈.

Lemma 5.3.2. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋. Let
𝒰 ∶ 𝑈 = ⋃𝑖 𝑈𝑖 be an open covering of 𝑈 ⊂ 𝑋. There exists an open covering 𝑈 = ⋃ 𝑉𝑗
which is a refinement of 𝒰 such that each 𝑉𝑗 is an element of the basis ℬ.

Proof. Omitted. �
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5.4. Connected components

Definition 5.4.1. Let 𝑋 be a topological space.
(1) We say 𝑋 is connected if whenever 𝑋 = 𝑇1 ∐ 𝑇2 with 𝑇𝑖 ⊂ 𝑋 open and closed,

then either 𝑇1 = ∅ or 𝑇2 = ∅.
(2) We say 𝑇 ⊂ 𝑋 is a connected component of 𝑋 if 𝑇 is a maximal connected subset

of 𝑋.

The empty space is connected.

Lemma 5.4.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. If 𝐸 ⊂ 𝑋 is a
connected subset, then 𝑓(𝐸) ⊂ 𝑌 is connected as well.

Proof. Omitted. �

Lemma 5.4.3. Let 𝑋 be a topological space. If 𝑇 ⊂ 𝑋 is connected, then so is its closure.
Each point of 𝑋 is contained in a connected component. Connected components are always
closed, but not necessarily open.

Proof. Let 𝑇 be the closure of the connected subset 𝑇. Suppose 𝑇 = 𝑇1 ∐ 𝑇2 with 𝑇𝑖 ⊂ 𝑇
open and closed. Then 𝑇 = (𝑇 ∩ 𝑇1) ∐(𝑇 ∩ 𝑇2). Hence 𝑇 equals one of the two, say
𝑇 = 𝑇1 ∩ 𝑇. Thus clearly 𝑇 ⊂ 𝑇1 as desired.
Pick a point 𝑥 ∈ 𝑋. Consider the set 𝐴 of connected subsets 𝑥 ∈ 𝑇𝛼 ⊂ 𝑋. Note that 𝐴
is nonempty since {𝑥} ∈ 𝐴. There is a partial ordering on 𝐴 coming from inclusion: 𝛼 ≤
𝛼′ ⇔ 𝑇𝛼 ⊂ 𝑇𝛼′. Choose a maximal totally ordered subset 𝐴′ ⊂ 𝐴, and let 𝑇 = ⋃𝛼∈𝐴′ 𝑇𝛼.
We claim that 𝑇 is connected. Namely, suppose that 𝑇 = 𝑇1 ∐ 𝑇2 is a disjoint union of
two open and closed subsets of 𝑇. For each 𝛼 ∈ 𝐴′ we have either 𝑇𝛼 ⊂ 𝑇1 or 𝑇𝛼 ⊂ 𝑇2,
by connectedness of 𝑇𝛼. Suppose that for some 𝛼0 ∈ 𝐴′ we have 𝑇𝛼0

⊄𝑇1 (say, if not we're
done anyway). Then, since 𝐴′ is totally ordered we see immediately that 𝑇𝛼 ⊂ 𝑇2 for all
𝛼 ∈ 𝐴′. Hence 𝑇 = 𝑇2.
To get an example where connected components are not open, just take an infinite product
∏𝑛∈𝐍{0, 1} with the product topology. This is a totally disconnected space so connected
components are singletons, which are not open. �

Lemma 5.4.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Assume that
(1) all fibres of 𝑓 are nonempty and connected, and
(2) a set 𝑇 ⊂ 𝑌 is closed if and only if 𝑓−1(𝑇) is closed.

Then 𝑓 induces a bijection between the sets of connected components of 𝑋 and 𝑌.

Proof. Let 𝑇 ⊂ 𝑌 be a connected component. Note that 𝑇 is closed, see Lemma 5.4.3. The
lemma follows if we show that 𝑝−1(𝑇) is connected because any connected subset of 𝑋 maps
into a connected component of 𝑌 by Lemma 5.4.2. Suppose that 𝑝−1(𝑇) = 𝑍1 ∐ 𝑍2 with
𝑍1, 𝑍2 closed. For any 𝑡 ∈ 𝑇 we see that 𝑝−1({𝑡}) = 𝑍1 ∩ 𝑝−1({𝑡}) ∐ 𝑍2 ∩ 𝑝−1({𝑡}). By
(1) we see 𝑝−1({𝑡}) is connected we conclude that either 𝑝−1({𝑡}) ⊂ 𝑍1 or 𝑝−1({𝑡}) ⊂ 𝑍2.
In other words 𝑇 = 𝑇1 ∐ 𝑇2 with 𝑝−1(𝑇𝑖) = 𝑍𝑖. By (2) we conclude that 𝑇𝑖 is closed in 𝑌.
Hence either 𝑇1 = ∅ or 𝑇2 = ∅ as desired. �

Lemma 5.4.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Assume that
(a) 𝑓 is open, (b) all fibres of 𝑓 are nonempty and connected. Then 𝑓 induces a bijection
between the sets of connected components of 𝑋 and 𝑌.

Proof. This is a special case of Lemma 5.4.4. �
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Definition 5.4.6. A topological space is totally disconnected if the connected components
are all singletons.

A discrete space is totally disconnected. A totally disconnected space need not be discrete,
for example 𝐐 ⊂ 𝐑 is totally disconnected but not discrete.

Definition 5.4.7. A topological space 𝑋 is called locally connected if every point 𝑥 ∈ 𝑋
has a fundamental system of connected neighbourhoods.

Lemma 5.4.8. Let 𝑋 be a topological space. If 𝑋 is locally connected, then
(1) any open subset of 𝑋 is locally connected, and
(2) the connected components of 𝑋 are open.

So also the connected components of open subsets of 𝑋 are open. In particular, every point
has a fundamental system of open connected neighbourhoods.

Proof. Omitted. �

5.5. Irreducible components

Definition 5.5.1. Let 𝑋 be a topological space.
(1) We say 𝑋 is irreducible, if 𝑋 is not empty, and whenever 𝑋 = 𝑍1 ∪ 𝑍2 with 𝑍𝑖

closed, we have 𝑋 = 𝑍1 or 𝑋 = 𝑍2.
(2) We say 𝑍 ⊂ 𝑋 is an irreducible component of 𝑋 if 𝑍 is a maximal irreducible

subset of 𝑋.

An irreducible space is obviously connected.

Lemma 5.5.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. If 𝐸 ⊂ 𝑋 is an
irreducible subset, then 𝑓(𝐸) ⊂ 𝑌 is irreducible as well.

Proof. Omitted. �

Lemma 5.5.3. Let 𝑋 be a topological space. If 𝑇 ⊂ 𝑋 is irreducible so is its closure
in 𝑋. Any irreducible component of 𝑋 is closed. Every point of 𝑋 is contained in some
irreducible component of 𝑋.

Proof. Let 𝑇 be the closure of the irreducible subset 𝑇. If 𝑇 = 𝑍1 ∪ 𝑍2 with 𝑍𝑖 ⊂ 𝑇 closed,
then 𝑇 = (𝑇 ∩ 𝑍1) ∪ (𝑇 ∩ 𝑍2) and hence 𝑇 equals one of the two, say 𝑇 = 𝑍1 ∩ 𝑇. Thus
clearly 𝑇 ⊂ 𝑍1 as desired.
Pick a point 𝑥 ∈ 𝑋. Consider the set 𝐴 of irreducible subsets 𝑥 ∈ 𝑇𝛼 ⊂ 𝑋. Note that 𝐴
is nonempty since {𝑥} ∈ 𝐴. There is a partial ording on 𝐴 coming from inclusion: 𝛼 ≤
𝛼′ ⇔ 𝑇𝛼 ⊂ 𝑇𝛼′. Choose a maximal totally ordered subset 𝐴′ ⊂ 𝐴, and let 𝑇 = ⋃𝛼∈𝐴′ 𝑇𝛼.
We claim that 𝑇 is irreducible. Namely, suppose that 𝑇 = 𝑍1 ∪ 𝑍2 is a union of two closed
subsets of 𝑇. For each 𝛼 ∈ 𝐴′ we have either 𝑇𝛼 ⊂ 𝑍1 or 𝑇𝛼 ⊂ 𝑍2, by irreducibility
of 𝑇𝛼. Suppose that for some 𝛼0 ∈ 𝐴′ we have 𝑇𝛼0

⊄𝑍1 (say, if not we're done anyway).
Then, since 𝐴′ is totally ordered we see immediately that 𝑇𝛼 ⊂ 𝑍2 for all 𝛼 ∈ 𝐴′. Hence
𝑇 = 𝑍2. �

A singleton is irreducible. Thus if 𝑥 ∈ 𝑋 is a point then the closure {𝑥} is an irreducible
closed subset of 𝑋.

Definition 5.5.4. Let 𝑋 be a topological space.
(1) Let 𝑍 ⊂ 𝑋 be an irreducible closed subset. A generic point of 𝑍 is a point 𝜉 ∈ 𝑍

such that 𝑍 = {𝜉}.
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(2) The space 𝑋 is called Kolmogorov, if for every 𝑥, 𝑥′ ∈ 𝑋, 𝑥≠𝑥′ there exists a
closed subset of 𝑋 which contains exactly one of the two points.

(3) The space 𝑋 is called sober if every irreducible closed subset has a unique generic
point.

A space 𝑋 is Kolmogorov if for 𝑥1, 𝑥2 ∈ 𝑋 we have 𝑥1 = 𝑥2 if and only if {𝑥1} = {𝑥2}.
Hence we see that a sober topological space is Kolmogorov.

Lemma 5.5.5. Let 𝑋 be a topological space. If 𝑋 has an open covering 𝑋 = ⋃ 𝑋𝑖 with
𝑋𝑖 sober (resp. Kolmogorov), then 𝑋 is sober (resp. Kolmogorov).

Proof. Omitted. �

Example 5.5.6. Recall that a topological space 𝑋 is Hausdorff iff for every distinct pair of
points 𝑥, 𝑦 ∈ 𝑋 there exist disjoint opens 𝑈, 𝑉 ⊂ 𝑋 such that 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉. In this case 𝑋
is irreducible if and only if 𝑋 is a singleton. Similarly, any subset of 𝑋 is irreducible if and
only if it is a singleton. Hence a Hausdorff space is sober.

Lemma 5.5.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Assume that (a)
𝑌 is irreducible, (b) 𝑓 is open, and (c) there exists a dense collection of points 𝑦 ∈ 𝑌 such
that 𝑓−1(𝑦) is irreducible. Then 𝑋 is irreducible.

Proof. Suppose 𝑌 = 𝑍1∪𝑍2 with 𝑍𝑖 closed. Consider the open sets 𝑈1 = 𝑍1⧵𝑍2 = 𝑌⧵𝑍2
and 𝑈2 = 𝑍2 ⧵ 𝑍1 = 𝑌 ⧵ 𝑍2. To get a contradiction assume that 𝑈1 and 𝑈2 are both
nonempty. By (b) we see that 𝑓(𝑈𝑖) is open. By (a) we have 𝑋 irreducible and hence
𝑓(𝑈1) ∩ 𝑓(𝑈2)≠∅. By (c) there is a point 𝑦 which corresponds to a point of this intersection
such that the fibre 𝑋𝑦 = 𝑓−1(𝑦) is irreducible. Then 𝑋𝑦 ∩ 𝑈1 and 𝑋𝑦 ∩ 𝑈2 are nonempty
disjoint open subsets of 𝑋𝑦 which is a contradiction. �

Lemma 5.5.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Assume that (a)
𝑓 is open, and (b) for every 𝑦 ∈ 𝑌 the fibre 𝑓−1(𝑦) is irreducible. Then 𝑓 induces a bijection
between irreducible components.

Proof. We point out that assumption (b) implies that 𝑓 is surjective (see Definition 5.5.1).
Let 𝑇 ⊂ 𝑌 be an irreducible component. Note that 𝑇 is closed, see Lemma 5.5.3. The
lemma follows if we show that 𝑝−1(𝑇) is irreducible because any irreducible subset of 𝑋
maps into an irreducible component of 𝑌 by Lemma 5.5.2. Note that 𝑝−1(𝑇) → 𝑇 satisfies
the assumptions of Lemma 5.5.7. Hence we win. �

5.6. Noetherian topological spaces

Definition 5.6.1. A topological space is calledNoetherian if the descending chain condition
holds for closed subsets of 𝑋. A topological space is called locally Noetherian if every point
has a neighbourhood which is Noetherian.

Lemma 5.6.2. Let 𝑋 be a Noetherian topological space.
(1) Any subset of 𝑋 with the induced topology is Noetherian.
(2) The space 𝑋 has finitely many irreducible components.
(3) Each irreducible component of 𝑋 contains a nonempty open of 𝑋.

Proof. Let 𝑇 ⊂ 𝑋 be a subset of 𝑋. Let 𝑇1 ⊃ 𝑇2 ⊃ … be a descending chain of closed
subsets of 𝑇. Write 𝑇𝑖 = 𝑇 ∩ 𝑍𝑖 with 𝑍𝑖 ⊂ 𝑋 closed. Consider the descending chain of
closed subsets 𝑍1 ⊃ 𝑍1 ∩ 𝑍2 ⊃ 𝑍1 ∩ 𝑍2 ∩ 𝑍3 … This stabilizes by assumption and hence
the original sequence of 𝑇𝑖 stabilizes. Thus 𝑇 is Noetherian.
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Let 𝐴 be the set of closed subsets of 𝑋 which do not have finitely many irreducible com-
ponents. Assume that 𝐴 is not empty to arrive at a contradiction. The set 𝐴 is partially
ordered by inclusion: 𝛼 ≤ 𝛼′ ⇔ 𝑍𝛼 ⊂ 𝑍𝛼′. By the descending chain condition we may
find a smallest element of 𝐴, say 𝑍. As 𝑍 is not a finite union of irreducible components,
it is not irreducible. Hence we can write 𝑍 = 𝑍′ ∪ 𝑍″ and both are strictly smaller closed
subsets. By construction 𝑍′ = ⋃ 𝑍′

𝑖 and 𝑍″ = ⋃ 𝑍″
𝑗 are finite unions of their irreducible

components. Hence 𝑍 = ⋃ 𝑍′
𝑖 ∪⋃ 𝑍″

𝑗 is a finite union of irreducible closed subsets. After
removing redundant members of this expression, this will be the decomposition of 𝑍 into
its irreducible components, a contradiction.

Let 𝑍 ⊂ 𝑋 be an irreducible component of 𝑋. Let 𝑍1, … , 𝑍𝑛 be the other irreducible
components of 𝑋. Consider 𝑈 = 𝑍 ⧵ (𝑍1 ∪ … ∪ 𝑍𝑛). This is not empty since otherwise the
irreducible space 𝑍 would be contained in one of the other 𝑍𝑖. Because 𝑋 = 𝑍∪𝑍1∪… 𝑍𝑛
(see Lemma 5.5.3), also 𝑈 = 𝑋 ⧵ (𝑍1 ∪ … ∪ 𝑍𝑛) and hence open in 𝑋. Thus 𝑍 contains a
nonempty open of 𝑋. �

Lemma 5.6.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces.

(1) If 𝑋 is Noetherian, then 𝑓(𝑋) is Noetherian.
(2) If 𝑋 is locally Noetherian and 𝑓 open, then 𝑓(𝑋) is locally Noetherian.

Proof. In case (1), suppose that 𝑍1 ⊃ 𝑍2 ⊃ 𝑍2 ⊃ … is a descending chain of closed
subsets of 𝑓(𝑋) (as usual with the induced topology as a subset of 𝑌). Then 𝑓−1(𝑍1) ⊃
𝑓−1(𝑍2) ⊃ 𝑓−1(𝑍3) ⊃ … is a descending chain of closed subsets of 𝑋. Hence this chain
stabilizes. Since 𝑓(𝑓−1(𝑍𝑖)) = 𝑍𝑖 we conclude that 𝑍1 ⊃ 𝑍2 ⊃ 𝑍2 ⊃ … stabilizes also.
In case (2), let 𝑦 ∈ 𝑓(𝑋). Choose 𝑥 ∈ 𝑋 with 𝑓(𝑥) = 𝑦. By assumption there exists a
neighbourhood 𝐸 ⊂ 𝑋 of 𝑥 which is Noetherian. Then 𝑓(𝐸) ⊂ 𝑓(𝑋) is a neighbourhood
which is Noetherian by part (1). �

Lemma 5.6.4. Let 𝑋 be a topological space. Let 𝑋𝑖 ⊂ 𝑋, 𝑖 = 1, … , 𝑛 be a finite collec-
tion of subsets. If each 𝑋𝑖 is Noetherian (with the induced topology), then ⋃𝑖=1,…,𝑛 𝑋𝑖 is
Noetherian (with the induced topology).

Proof. Omitted. �

Example 5.6.5. Any Noetherian topological space has a closed point (combine Lemmas
5.9.6 and 5.9.9). Let 𝑋 = {1, 2, 3, …}. Define a topology on 𝑋 with opens ∅, {1, 2, … , 𝑛},
𝑛 ≥ 1 and 𝑋. Thus 𝑋 is a locally Noetherian topological space, without any closed points.
This space cannot be the underlying topological space of a locally Noetherian scheme, see
Properties, Lemma 23.5.8.

Lemma 5.6.6. Let 𝑋 be a locally Noetherian topological space. Then 𝑋 is locally con-
nected.

Proof. Let 𝑥 ∈ 𝑋. Let 𝐸 be a neighbourhood of 𝑥. We have to find a connected neigh-
bourhood of 𝑥 contained in 𝐸. By assumption there exists a neighbourhood 𝐸′ of 𝑥 which
is Noetherian. Then 𝐸 ∩ 𝐸′ is Noetherian, see Lemma 5.6.2. Let 𝐸 ∩ 𝐸′ = 𝑌1 ∪ … ∪ 𝑌𝑛
be the decomposition into irreducible components, see Lemma 5.6.2. Let 𝐸″ = ⋃𝑥∈𝑌𝑖

𝑌𝑖.
This is a connected subset of 𝐸 ∩ 𝐸′ containing 𝑥. It contains the open 𝐸 ∩ 𝐸′ ⧵ (⋃𝑥∉𝑌𝑖

𝑌𝑖)
of 𝐸 ∩ 𝐸′ and hence it is a neighbourhood of 𝑥 in 𝑋. This proves the lemma. �
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5.7. Krull dimension

Definition 5.7.1. Let 𝑋 be a topological space.
(1) A chain of irreducible closed subsets of 𝑋 is a sequence 𝑍0 ⊂ 𝑍1 ⊂ … ⊂ 𝑍𝑛 ⊂

𝑋 with 𝑍𝑖 closed irreducible and 𝑍𝑖≠𝑍𝑖+1 for 𝑖 = 0, … , 𝑛 − 1.
(2) The length of a chain 𝑍0 ⊂ 𝑍1 ⊂ … ⊂ 𝑍𝑛 ⊂ 𝑋 of irreducible closed subsets of

𝑋 is the integer 𝑛.
(3) The dimension or more precisely the Krull dimension dim(𝑋) of 𝑋 is the element

of {∞, 0, 1, 2, 3, …} defined by the formula:
dim(𝑋) = sup{lengths of chains of irreducible closed subsets}

(4) Let 𝑥 ∈ 𝑋. The Krull dimension of 𝑋 at 𝑥 is defined as
dim𝑥(𝑋) = min{dim(𝑈), 𝑥 ∈ 𝑈 ⊂ 𝑋 open}

the minimum of dim(𝑈) where 𝑈 runs over the open neighbourhoods of 𝑥 in 𝑋.

Note that if 𝑈′ ⊂ 𝑈 ⊂ 𝑋 are open then dim(𝑈′) ≤ dim(𝑈). Hence if dim𝑥(𝑋) = 𝑑 then 𝑥
has a fundamental system of open neighbourhoods 𝑈 with dim(𝑈) = dim𝑥(𝑋).

Example 5.7.2. The Krull dimension of the usual Euclidean space 𝐑𝑛 is 0.

Example 5.7.3. Let 𝑋 = {𝑠, 𝜂} with open sets given by {∅, {𝜂}, {𝑠, 𝜂}}. In this case a
maximal chain of irreducible closed subsets is {𝑠} ⊂ {𝑠, 𝜂}. Hence dim(𝑋) = 1. It is easy
to generalize this example to get a (𝑛 + 1)-element topological space of Krull dimension 𝑛.

Definition 5.7.4. Let 𝑋 be a topological space. We say that 𝑋 is equidimensional if every
irreducible component of 𝑋 has the same dimension.

5.8. Codimension and catenary spaces

Definition 5.8.1. Let 𝑋 be a topological space. We say 𝑋 is catenary if for every pair of
irreducible closed subsets 𝑇 ⊂ 𝑇′ there exist a maximal chain of irreducible closed subsets

𝑇 = 𝑇0 ⊂ 𝑇1 ⊂ … ⊂ 𝑇𝑒 = 𝑇′

and every such chain has the same length.

Lemma 5.8.2. Let 𝑋 be a topological space. The following are equivalent:
(1) 𝑋 is catenary,
(2) 𝑋 has an open covering by catenary spaces.

Moreover, in this case any locally closed subspace of 𝑋 is catenary.

Proof. Suppose that 𝑋 is catenary and that 𝑈 ⊂ 𝑋 is an open subset. The rule 𝑇 ↦ 𝑇
defines a bijective inclusion preserving map between the closed irreducible subsets of 𝑈
and the closed irreducible subsets of 𝑋 which meet 𝑈. Using this the lemma easily follows.
Details omitted. �

Definition 5.8.3. Let 𝑋 be a topological space. Let 𝑌 ⊂ 𝑋 be an irreducible closed subset.
The codimension of 𝑌 in 𝑋 is the supremum of the lengths 𝑒 of chains

𝑌 = 𝑌0 ⊂ 𝑌1 ⊂ … ⊂ 𝑌𝑒 ⊂ 𝑋
of irreducible closed subsets in 𝑋 starting with 𝑌. We will denote this codim(𝑌, 𝑋).

Lemma 5.8.4. Let 𝑋 be a topological space. Let 𝑌 ⊂ 𝑋 be an irreducible closed subset.
Let 𝑈 ⊂ 𝑋 be an open subset such that 𝑌 ∩ 𝑈 is nonempty. Then

codim(𝑌, 𝑋) = codim(𝑌 ∩ 𝑈, 𝑈)
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Proof. Follows from the observation made in the proof of Lemma 5.8.2. �

Example 5.8.5. Let 𝑋 = [0, 1] be the unit interval with the following topology: The sets
[0, 1], (1 − 1/𝑛, 1] for 𝑛 ∈ 𝐍, and ∅ are open. So the closed sets are ∅, {0}, [0, 1 − 1/𝑛] for
𝑛 > 1 and [0, 1]. This is clearly a Noetherian topological space. But the irreducible closed
subset 𝑌 = {0} has infinite codimension codim(𝑌, 𝑋) = ∞. To see this we just remark that
all the closed sets [0, 1 − 1/𝑛] are irreducible.

Lemma 5.8.6. Let 𝑋 be a topological space. The following are equivalent:
(1) 𝑋 is catenary, and
(2) for pair of irreducible closed subsets 𝑌 ⊂ 𝑌′ we have codim(𝑌, 𝑌′) < ∞ and for

every triple 𝑌 ⊂ 𝑌′ ⊂ 𝑌″ of irreducible closed subsets we have

codim(𝑌, 𝑌″) = codim(𝑌, 𝑌′) + codim(𝑌′, 𝑌″).

Proof. Omitted. �

5.9. Quasi-compact spaces and maps

The phrase ``compact'' will be reserved for Hausdorff topological spaces. And many spaces
occuring in algebraic geometry are not Hausdorff.

Definition 5.9.1. Quasi-compactness.
(1) We say that a topological space 𝑋 is quasi-compact if every open covering of 𝑋

has a finite refinement.
(2) We say that a continuous map 𝑓 ∶ 𝑋 → 𝑌 is quasi-compact if the inverse image

𝑓−1(𝑉) of every quasi-compact open 𝑉 ⊂ 𝑌 is quasi-compact.
(3) We say a subset 𝑍 ⊂ 𝑋 is retrocompact if the inclusion map 𝑍 → 𝑋 is quasi-

compact.

In many texts on topology a space is called compact if it is quasi-compact and Hausdorff;
and in other texts the Hausdorff condition is omitted. To avoid confusion in algebraic ge-
ometry we use the term quasi-compact. Note that the notion of quasi-compactness of a map
is very different from the notion of a ``proper map'' in topology, since there one requires the
inverse image of any (quasi-)compact subset of the target to be (quasi-)compact, whereas
in the definition above we only consider quasi-compact open sets.

Lemma 5.9.2. A composition of quasi-compact maps is quasi-compact.

Proof. Omitted. �

Lemma 5.9.3. A closed subset of a quasi-compact topological space is quasi-compact.

Proof. Omitted. �

The following is really a reformulation of the quasi-compact property.

Lemma 5.9.4. Let 𝑋 be a quasi-compact topological space. If {𝑍𝛼}𝛼∈𝐴 is a collection
of closed subsets such that the intersection of each finite subcollection is nonempty, then
⋂𝛼∈𝐴 𝑍𝛼 is nonempty.

Proof. Omitted. �

Lemma 5.9.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces.
(1) If 𝑋 is quasi-compact, then 𝑓(𝑋) is quasi-compact.
(2) If 𝑓 is quasi-compact, then 𝑓(𝑋) is retrocompact.
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Proof. If 𝑓(𝑋) = ⋃ 𝑉𝑖 is an open covering, then 𝑋 = ⋃ 𝑓−1(𝑉𝑖) is an open covering.
Hence if 𝑋 is quasi-compact then 𝑋 = 𝑓−1(𝑉𝑖1) ∪ … ∪ 𝑓−1(𝑉𝑖𝑛) for some 𝑖1, … , 𝑖𝑛 ∈ 𝐼
and hence 𝑓(𝑋) = 𝑉𝑖1 ∪ … ∪ 𝑉𝑖𝑛. This proves (1). Assume 𝑓 is quasi-compact, and let
𝑉 ⊂ 𝑌 be quasi-compact open. Then 𝑓−1(𝑉) is quasi-compact, hence by (1) we see that
𝑓(𝑓−1(𝑉)) = 𝑓(𝑋) ∩ 𝑉 is quasi-compact. Hence 𝑓(𝑋) is retrocompact. �

Lemma 5.9.6. Let 𝑋 be a topological space. Assume that
(1) 𝑋 is nonempty,
(2) 𝑋 is quasi-compact, and
(3) 𝑋 is Kolmogorov.

Then 𝑋 has a closed point.

Proof. Consider the set

𝒯 = {𝑍 ⊂ 𝑋 ∣ 𝑍 = {𝑥} for some 𝑥 ∈ 𝑋}

of all closures of singletons in 𝑋. It is nonempty since 𝑋 is nonempty. Make 𝒯 into a
partially ordered set using the relation of inclusion. Suppose 𝑍𝛼, 𝛼 ∈ 𝐴 is a totally ordered
subset of 𝒯. By Lemma 5.9.4 we see that ⋂𝛼∈𝐴 𝑍𝛼≠∅. Hence there exists some 𝑥 ∈
⋂𝛼∈𝐴 𝑍𝛼 and we see that 𝑍 = {𝑥} ∈ 𝒯 is a lower bound for the family. By Zorn's lemma
there exists a minimal element 𝑍 ∈ 𝒯. As 𝑋 is Kolmogorov we conclude that 𝑍 = {𝑥} for
some 𝑥 and 𝑥 ∈ 𝑋 is a closed point. �

Lemma 5.9.7. Let 𝑋 be a topological space. Assume
(1) 𝑋 is quasi-compact,
(2) 𝑋 has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.

For any 𝑥 ∈ 𝑋 the connected component of 𝑋 containing 𝑥 is the intersection of all open
and closed subsets of 𝑋 containing 𝑥.

Proof. Let 𝑇 be the connected component containing 𝑥. Let 𝑆 = ⋂𝛼∈𝐴 𝑍𝛼 be the inter-
section of all open and closed subsets 𝑍𝛼 of 𝑋 containing 𝑥. Note that 𝑆 is closed in 𝑋.
Note that any finite intersection of 𝑍𝛼's is a 𝑍𝛼. Because 𝑇 is connected and 𝑥 ∈ 𝑇 we have
𝑇 ⊂ 𝑆. It suffices to show that 𝑆 is connected. If not, then there exists a disjoint union
decomposition 𝑆 = 𝐵 ∐ 𝐶 with 𝐵 and 𝐶 open and closed in 𝑆. In particular, 𝐵 and 𝐶 are
closed in 𝑋, and so quasi-compact by Lemma 5.9.3 and assumption (1). By assumption (2)
there exist quasi-compact opens 𝑈, 𝑉 ⊂ 𝑋 with 𝐵 = 𝑆 ∩ 𝑈 and 𝐶 = 𝑆 ∩ 𝑉 (details omitted).
Then 𝑈 ∩ 𝑉 ∩ 𝑆 = ∅. Hence ⋂𝛼 𝑈 ∩ 𝑉 ∩ 𝑍𝛼 = ∅. By assumption (3) the intersection
𝑈 ∩ 𝑉 is quasi-compact. By Lemma 5.9.4 for some 𝛼 ∈ 𝐴 we have 𝑈 ∩ 𝑉 ∩ 𝑍𝛼 = ∅. Hence
𝑍𝛼 = 𝑈 ∩ 𝑍𝛼 ∐ 𝑉 ∩ 𝑍𝛼 is a decomposition into two open pieces, hence 𝑈 ∩ 𝑍𝛼 and 𝑉 ∩ 𝑍𝛼
are open and closed in 𝑋. Thus, if 𝑥 ∈ 𝐵 say, then we see that 𝑆 ⊂ 𝑈∩𝑍𝛼 and we conclude
that 𝐶 = ∅. �

Lemma 5.9.8. Let 𝑋 be a topological space. Assume
(1) 𝑋 is quasi-compact,
(2) 𝑋 has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.

For a subset 𝑇 ⊂ 𝑋 the following are equivalent:
(a) 𝑇 is an intersection of open and closed subsets of 𝑋, and
(b) 𝑇 is closed in 𝑋 and is a union of connected components of 𝑋.
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Proof. It is clear that (a) implies (b). Assume (b). Let 𝑥 ∈ 𝑋, 𝑥∉𝑇. Let 𝑥 ∈ 𝐶 ⊂ 𝑋 be
the connected component of 𝑋 containing 𝑥. By Lemma 5.9.7 we see that 𝐶 = ⋂ 𝑉𝛼 is
the intersection of all open and closed subsets 𝑉𝛼 of 𝑋 which contain 𝐶. In particular, any
pairwise intersection 𝑉𝛼 ∩ 𝑉𝛽 occurs as a 𝑉𝛼. As 𝑇 is a union of connected components of 𝑋
we see that 𝐶 ∩ 𝑇 = ∅. Hence 𝑇 ∩ ⋂ 𝑉𝛼 = ∅. Since 𝑇 is quasi-compact as a closed subset
of a quasi-compact space (see Lemma 5.9.3) we deduce that 𝑇 ∩ 𝑉𝛼 = ∅ for some 𝛼, see
Lemma 5.9.4. For this 𝛼 we see that 𝑈𝛼 = 𝑋 ⧵ 𝑉𝛼 is an open and closed subset of 𝑋 which
contains 𝑇 and not 𝑥. The lemma follows. �

Lemma 5.9.9. Let 𝑋 be a Noetherian topological space.
(1) The space 𝑋 is quasi-compact.
(2) Any subset of 𝑋 is retrocompact.

Proof. Suppose 𝑋 = ⋃ 𝑈𝑖 is an open covering of 𝑋 indexed by the set 𝐼 which does not
have a refinement by a finite open covering. Choose 𝑖1, 𝑖2, … elements of 𝐼 inductively in
the following way: If 𝑋≠𝑈𝑖1 ∪ … ∪ 𝑈𝑖𝑛 then choose 𝑖𝑛+1 such that 𝑈𝑖𝑛+1

is not contained in
𝑈𝑖1 ∪…∪𝑈𝑖𝑛. Thus we see that 𝑋 ⊃ (𝑋⧵𝑈𝑖1) ⊃ (𝑋⧵𝑈𝑖1 ∪𝑈𝑖2) ⊃ … is a strictly decreasing
infinite sequence of closed subsets. This contradicts the fact that 𝑋 is Noetherian. This
proves the first assertion. The second assertion is now clear since every subset of 𝑋 is
Noetherian by Lemma 5.6.2. �

Lemma 5.9.10. A quasi-compact locally Noetherian space is Noetherian.

Proof. The conditions imply immediately that 𝑋 has a finite covering by Noetherian sub-
sets, and hence is Noetherian by Lemma 5.6.4. �

5.10. Constructible sets

Definition 5.10.1. Let 𝑋 be a topological space. Let 𝐸 ⊂ 𝑋 be a subset of 𝑋.
(1) We say 𝐸 is constructible1 in 𝑋 if 𝐸 is a finite union of subsets of the form 𝑈 ∩ 𝑉𝑐

where 𝑈, 𝑉 ⊂ 𝑋 are open and retrocompact in 𝑋.
(2) We say 𝐸 is locally construcible in 𝑋 if there exists an open covering 𝑋 = ⋃ 𝑉𝑖

such that each 𝐸 ∩ 𝑉𝑖 is construcible in 𝑉𝑖.

Lemma 5.10.2. The collection of constructible sets is closed under finite intersections,
finite unions and complements.

Proof. Note that if 𝑈1, 𝑈2 are open and retrocompact in 𝑋 then so is 𝑈1 ∪ 𝑈2 because the
union of two quasi-compact subsets of 𝑋 is quasi-compact. It is also true that 𝑈1 ∩ 𝑈2 is
retrocompact. Namely, suppose𝑈 ⊂ 𝑋 is quasi-compact open, then𝑈2∩𝑈 is quasi-compact
because 𝑈2 is retrocompact in 𝑋, and then we conclude 𝑈1 ∩ (𝑈2 ∩ 𝑈) is quasi-compact
because 𝑈1 is retrocompact in 𝑋. From this it is formal to show that the complement of a
constructible set is constructible, that finite unions of constructibles are constructible, and
that finite intersections of constructibles are constructible. �

Lemma 5.10.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. If the inverse
image of every retrocompact open subset of 𝑌 is retrocompact in 𝑋, then inverse images of
constructible sets are constructible.

Proof. This is true because 𝑓−1(𝑈 ∩ 𝑉𝑐) = 𝑓−1(𝑈) ∩ 𝑓−1(𝑉)𝑐, combined with the definition
of constructible sets. �

1In the second edition of EGA I [GD71] this was called a ``globally constructible'' set and a the terminology
``constructible'' was used for what we call a locally constructible set.
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Lemma 5.10.4. Let 𝑈 ⊂ 𝑋 be open. For a constructible set 𝐸 ⊂ 𝑋 the intersection 𝐸 ∩ 𝑈
is constructible in 𝑈.

Proof. Suppose that 𝑉 ⊂ 𝑋 is retrocompact open in 𝑋. It suffices to show that 𝑉 ∩ 𝑈 is
retrocompact in 𝑈 by Lemma 5.10.3. To show this let 𝑊 ⊂ 𝑈 be open and quasi-compact.
Then 𝑊 is open and quasi-compact in 𝑋. Hence 𝑉 ∩ 𝑊 = 𝑉 ∩ 𝑈 ∩ 𝑊 is quasi-compact as
𝑉 is retrocompact in 𝑋. �

Lemma 5.10.5. Let 𝑋 be a topological space. Let 𝐸 ⊂ 𝑋 be a subset. Let 𝑋 = 𝑉1 ∪…∪𝑉𝑚
be a finite covering by retrocompact opens. Then 𝐸 is constructible in 𝑋 if and only if 𝐸∩𝑉𝑗
is constructible in 𝑉𝑗 for each 𝑗 = 1, … , 𝑚.

Proof. If 𝐸 is constructible in 𝑋, then by Lemma 5.10.4 we see that 𝐸 ∩ 𝑉𝑗 is construcible
in 𝑉𝑗 for all 𝑗. Conversely, suppose that 𝐸 ∩ 𝑉𝑗 is constructible in 𝑉𝑗 for each 𝑗 = 1, … , 𝑚.
Then 𝐸 is a finite union of sets of the form 𝐸′ = 𝑈′ ∩ (𝑉𝑗 ⧵ 𝑉′) where 𝑈′, 𝑉′ are open
and retrocompact subsets of 𝑉𝑗. Note that 𝑈′ and 𝑉′ are also open and retrocompact in
𝑋 (as a composition of quasi-compact maps is quasi-compact, see Lemma 5.9.2). Since
𝐸′ = 𝑈′ ∩ (𝑉′)𝑐 where the complement is in 𝑋 we win. �

Lemma 5.10.6. Let 𝑋 be a topological space. Suppose that 𝑍 ⊂ 𝑋 is irreducible. Let
𝐸 ⊂ 𝑋 be a finite union of locally closed subsets (e.g. 𝐸 is constructible). The following
are equivalent

(1) The intersection 𝐸 ∩ 𝑍 contains an open dense subset of 𝑍.
(2) The intersection 𝐸 ∩ 𝑍 is dense in 𝑍.

If 𝑍 has a generic point 𝜉, then this is also equivalent to
(3) We have 𝜉 ∈ 𝐸.

Proof. Write 𝐸 = ⋃ 𝑈𝑖 ∩ 𝑍𝑖 as the finite union of intersections of open sets 𝑈𝑖 and closed
sets 𝑍𝑖. Suppose that 𝐸 ∩ 𝑍 is dense in 𝑍. Note that the closure of 𝐸 ∩ 𝑍 is the union of
the closures of the intersections 𝑈𝑖 ∩ 𝑍𝑖 ∩ 𝑍. Hence we see that 𝑈𝑖 ∩ 𝑍𝑖 ∩ 𝑍 is dense in 𝑍
for some 𝑖 = 𝑖0. As 𝑍 is closed we have either 𝑍 ∩ 𝑍𝑖 = 𝑍 or 𝑍 ∩ 𝑍𝑖 is not dense, hence
we conclude 𝑍 ⊂ 𝑍𝑖0. Then 𝑈𝑖0 ∩ 𝑍𝑖0 ∩ 𝑍 = 𝑈𝑖0 ∩ 𝑍 is an open not empty subset of 𝑍.
Because 𝑍 is irreducible, it is open dense. The converse is obvious.
Suppose that 𝜉 ∈ 𝑍 is a generic point. Of course if (1) ⇔ (2) holds, then 𝜉 ∈ 𝐸. Conversely,
if 𝜉 ∈ 𝐸, then 𝜉 ∈ 𝑈𝑖 ∩ 𝑍𝑖 for some 𝑖 = 𝑖0. Clearly this implies 𝑍 ⊂ 𝑍𝑖0 and hence
𝑈𝑖0 ∩ 𝑍𝑖0 ∩ 𝑍 = 𝑈𝑖0 ∩ 𝑍 is an open not empty subset of 𝑍. We conclude as before. �

5.11. Constructible sets and Noetherian spaces

Lemma 5.11.1. Let 𝑋 be a Noetherian topological space. Constructible sets in 𝑋 are finite
unions of locally closed subsets of 𝑋.

Proof. This follows immediately from Lemma 5.9.9. �

Lemma 5.11.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of Noetherian topological spaces. If
𝐸 ⊂ 𝑌 is constructible in 𝑌, then 𝑓−1(𝐸) is constructible in 𝑋.

Proof. Follows immediately from Lemma 5.11.1 and the definition of a continuous map.
�

Lemma 5.11.3. Let 𝑋 be a Noetherian topological space. Let 𝐸 ⊂ 𝑋 be a subset. The
following are equivalent

(1) 𝐸 is constructible in 𝑋, and
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(2) for every irreducible closed 𝑍 ⊂ 𝑋 the intersection 𝐸 ∩ 𝑍 either contains a
nonempty open of 𝑍 or is not dense in 𝑍.

Proof. Assume 𝐸 is constructible and 𝑍 ⊂ 𝑋 irreducible closed. Then 𝐸 ∩ 𝑍 is con-
structible in 𝑍 by Lemma 5.11.2. Hence 𝐸 ∩ 𝑍 is a finite union of nonempty locally closed
subsets 𝑇𝑖 of 𝑍. Clearly if none of the 𝑇𝑖 is open in 𝑍, then 𝐸 ∩ 𝑍 is not dense in 𝑍. In this
way we see that (1) implies (2).

Conversely, assume (2) holds. Consider the set 𝒮 of closed subsets 𝑌 of 𝑋 such that 𝐸 ∩ 𝑌
is not constructible in 𝑌. If 𝒮≠∅, then it has a smallest element 𝑌 as 𝑋 is Noetherian. Let
𝑌 = 𝑌1 ∪ … ∪ 𝑌𝑟 be the decomposition of 𝑌 into its irreducible components, see Lemma
5.6.2. If 𝑟 > 1, then each 𝑌𝑖 ∩ 𝐸 is constructible in 𝑌𝑖 and hence a finite union of locally
closed subsets of 𝑌𝑖. Thus 𝐸 ∩ 𝑌 is a finite union of locally closed subsets of 𝑌 too and we
conclude that 𝐸 ∩ 𝑌 is constructible in 𝑌 by Lemma 5.11.1. This is a contradication and so
𝑟 = 1. If 𝑟 = 1, then 𝑌 is irreducible, and by assumption (2) we see that 𝐸 ∩ 𝑌 either (a)
contains an open 𝑉 of 𝑌 or (b) is not dense in 𝑌. In case (a) we see, by minimality of 𝑌, that
𝐸 ∩ (𝑌 ⧵ 𝑉) is a finite union of locally closed subsets of 𝑌 ⧵ 𝑉. Thus 𝐸 ∩ 𝑌 is a finite union of
locally closed subsets of 𝑌 and is constructible by Lemma 5.11.1. This is a contradication
and so we must be in case (b). In case (b) we see that 𝐸 ∩ 𝑌 = 𝐸 ∩ 𝑌′ for some proper
closed subset 𝑌′ ⊂ 𝑌. By minimality of 𝑌 we see that 𝐸 ∩ 𝑌′ is a finite union of locally
closed subsets of 𝑌′ and we see that 𝐸∩𝑌′ = 𝐸∩𝑌 is a finite union of locally closed subsets
of 𝑌 and is constructible by Lemma 5.11.1. This contradication finishes the proof of the
lemma. �

Lemma 5.11.4. Let 𝑋 be a Noetherian topological space. Let 𝑥 ∈ 𝑋. Let 𝐸 ⊂ 𝑋 be
constructible in 𝑋. The following are equivalent

(1) 𝐸 is a neighbourhood of 𝑥, and
(2) for every irreducible closed subset 𝑌 of 𝑋 which contains 𝑥 the intersection 𝐸∩ 𝑌

is dense in 𝑌.

Proof. It is clear that (1) implies (2). Assume (2). Consider the set 𝒮 of closed subsets
𝑌 of 𝑋 containing 𝑥 such that 𝐸 ∩ 𝑌 is not a neighbourhood of 𝑥 in 𝑌. If 𝒮≠∅, then it
has a smallest element 𝑌 as 𝑋 is Noetherian. Let 𝑌 = 𝑌1 ∪ … ∪ 𝑌𝑟 be the decomposition
of 𝑌 into its irreducible components, see Lemma 5.6.2. If 𝑟 > 1, then each 𝑌𝑖 ∩ 𝐸 is a
neighbourhood of 𝑥 in 𝑌𝑖 by minimality of 𝑌. Thus 𝐸∩𝑌 is a neighbourhood of 𝑥 in 𝑌. This
is a contradication and so 𝑟 = 1. If 𝑟 = 1, then 𝑌 is irreducible, and by assumption (2) we
see that 𝐸∩𝑌 is dense in 𝑌. Thus 𝐸∩𝑌 contains an open 𝑉 of 𝑌, see Lemma 5.11.3. If 𝑥 ∈ 𝑉
then 𝐸 ∩ 𝑌 is a neighbourhood of 𝑥 in 𝑌 which is a contradiction. If 𝑥∉𝑉, then 𝑌′ = 𝑌 ⧵ 𝑉 is
a proper closed subset of 𝑌 containing 𝑥. By minimality of 𝑌 we see that 𝐸 ∩ 𝑌′ contains an
open neighbourhood 𝑉′ ⊂ 𝑌′ of 𝑥 in 𝑌′. But then 𝑉′ ∪ 𝑉 is an open neighbourhood of 𝑥 in
𝑌 contained in 𝐸, a contradiction. This contradication finishes the proof of the lemma. �

Lemma 5.11.5. Let 𝑋 be a Noetherian topological space. Let 𝐸 ⊂ 𝑋 be a subset. The
following are equivalent

(1) 𝐸 is open in 𝑋, and
(2) for every irreducible closed subset 𝑌 of 𝑋 the intersection 𝐸 ∩ 𝑌 is either empty

or contains a nonempty open of 𝑌.

Proof. This follows formally from Lemmas 5.11.3 and 5.11.4. �
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5.12. Characterizing proper maps

We include a section discussing the notion of a proper map in usual topology. It turns out
that in topology, the notion of being proper is the same as the notion of being universally
closed, in the sense that any base change is a closed morphism (not just taking products
with spaces). The reason for doing this is that in algebraic geometry we use this notion of
universal closedness as the basis for our definition of properness.

Lemma 5.12.1. (Tube lemma.) Let 𝑋 and 𝑌 be topological spaces. Let 𝐴 ⊂ 𝑋 and 𝐵 ⊂ 𝑌
be quasi-compact subsets. Let 𝐴 × 𝐵 ⊂ 𝑊 ⊂ 𝑋 × 𝑌 with 𝑊 open in 𝑋 × 𝑌. Then there exists
opens 𝐴 ⊂ 𝑈 ⊂ 𝑋 and 𝐵 ⊂ 𝑉 ⊂ 𝑌 such that 𝑈 × 𝑉 ⊂ 𝑊.

Proof. For every 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 there exist opens 𝑈(𝑎,𝑏) of 𝑋 and 𝑉(𝑎,𝑏) of 𝑌 such that
(𝑎, 𝑏) ∈ 𝑈(𝑎,𝑏) × 𝑉(𝑎,𝑏) ⊂ 𝑊. Fix 𝑏 and we see there exist a finite number 𝑎1, … , 𝑎𝑛 such that
𝐴 ⊂ 𝑈(𝑎1,𝑏)∪…∪𝑈(𝑎𝑛,𝑏). Hence 𝐴×{𝑏} ⊂ (𝑈(𝑎1,𝑏)∪…∪𝑈(𝑎𝑛,𝑏))×(𝑉(𝑎1,𝑏)∪…∪𝑉(𝑎𝑛,𝑏)) ⊂ 𝑊.
Thus for every 𝑏 ∈ 𝐵 there exists opens 𝑈𝑏 ⊂ 𝑋 and 𝑉𝑏 ⊂ 𝑌 such that 𝐴 × {𝑏} ⊂ 𝑈𝑏 × 𝑉𝑏 ⊂
𝑊. As above there exist a finite number 𝑏1, … , 𝑏𝑚 such that 𝐵 ⊂ 𝑉𝑏1

∪ … ∪ 𝑉𝑏𝑚
. Then we

win because 𝐴 × 𝐵 ⊂ (𝑈𝑏1
∩ … ∩ 𝑈𝑏𝑚

) × (𝑉𝑏1
∪ … ∪ 𝑉𝑏𝑚

). �

The notation in the following definition may be slightly different from what you are used
to.

Definition 5.12.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map between topological spaces.
(1) We say that the map 𝑓 is closed iff the image of every closed subset is closed.
(2) We say that the map 𝑓 is proper2 iff the map 𝑍 × 𝑋 → 𝑍 × 𝑌 is closed for any

topological space 𝑍.
(3) We say that the map 𝑓 is quasi-proper iff the inverse image 𝑓−1(𝑉) of every quasi-

compact 𝑉 ⊂ 𝑌 is quasi-compact.
(4) We say that 𝑓 is universally closed iff the map 𝑓′ ∶ 𝑍 ×𝑌 𝑋 → 𝑍 is closed for

any map 𝑔 ∶ 𝑍 → 𝑌.

The following lemma is useful later.

Lemma 5.12.3. A topological space 𝑋 is quasi-compact if and only if the projection map
𝑍 × 𝑋 → 𝑍 is closed for any topological space 𝑍.

Proof. (See also remark below.) If 𝑋 is not quasi-compact, there exists an open covering
𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 such that no finite number of 𝑈𝑖 cover 𝑋. Let 𝑍 be the subset of the power
set 𝒫(𝐼) of 𝐼 consisting of 𝐼 and all nonempty finite subsets of 𝐼. Define a topology on 𝑍
with as a basis for the topology the following sets:

(1) All subsets of 𝑍 ⧵ {𝐼}.
(2) The empty set.
(3) For every finite subset 𝐾 of 𝐼 the set 𝑈𝐾 ∶= {𝐽 ⊂ 𝐼 ∣ 𝐽 ∈ 𝑍, 𝐾 ⊂ 𝐽}).

It is left to the reader to verify this is the basis for a topology. Consider the subset of 𝑍 × 𝑋
defined by the formula

𝑀 = {(𝐽, 𝑥) ∣ 𝐽 ∈ 𝑍, 𝑥 ∈ ⋂𝑖∈𝐽
𝑈𝑐

𝑖 )}

If (𝐽, 𝑥)∉𝑀, then 𝑥 ∈ 𝑈𝑖 for some 𝑖 ∈ 𝐽. Hence 𝑈{𝑖} × 𝑈𝑖 ⊂ 𝑍 × 𝑋 is an open subset
containing (𝐽, 𝑥) and not intersecting 𝑀. Hence 𝑀 is closed. The projection of 𝑀 to 𝑍 is
𝑍 − {𝐼} which is not closed. Hence 𝑍 × 𝑋 → 𝑍 is not closed.

2This is the terminology used in [Bou71]. Usually this is what is called ``universally closed'' in the literature.
Thus our notion of proper does not involve any separation conditions.
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Assume 𝑋 is quasi-compact. Let 𝑍 be a topological space. Let 𝑀 ⊂ 𝑍 × 𝑋 be closed. Let
𝑧 ∈ 𝑍 be a point which is not in pr1(𝑀). By the Tube Lemma 5.12.1 there exists an open
𝑈 ⊂ 𝑍 such that 𝑈 × 𝑋 is contained in the complement of 𝑀. Hence pr1(𝑀) is closed. �

Remark 5.12.4. Lemma 5.12.3 is a combination of [Bou71, I, p. 75, Lemme 1] and
[Bou71, I, p. 76, Corrolaire 1].

Theorem 5.12.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map between topological spaces. The
following condition is equivalent.

(1) The map 𝑓 is quasi-proper and closed.
(2) The map 𝑓 is proper.
(3) The map 𝑓 is universally closed.
(4) The map 𝑓 is closed and 𝑓−1(𝑦) is quasi-compact for any 𝑦 ∈ 𝑌.

Proof. (See also the remark below.) If the map 𝑓 satisfies (1), it automatically satisfies (4)
because any single point is quasi-compact.

Assume map 𝑓 satisfies (4). We will prove it is universally closed, i.e., (3) holds. Let
𝑔 ∶ 𝑍 → 𝑌 be a continuous map of topological spaces and consider the diagram

𝑍 ×𝑌 𝑋
𝑔′

//

𝑓′

��

𝑋

𝑓
��

𝑍
𝑔 // 𝑌

During the proof we will use that 𝑍 ×𝑌 𝑋 → 𝑍 × 𝑋 is a homeomorphism onto its image,
i.e., that we may identify 𝑍 ×𝑌 𝑋 with the corresponding subset of 𝑍 × 𝑋 with the induced
topology. The image of 𝑓′ ∶ 𝑋×𝑌 𝑍 → 𝑍 is Im(𝑓′) = {𝑧 ∶ 𝑔(𝑧) ∈ 𝑓(𝑋)}. Because 𝑓(𝑋) is
closed, we see that Im(𝑓′) is a closed subspace of 𝑍. Consider a closed subset 𝑃 ⊂ 𝑋 ×𝑌 𝑍.
Let 𝑧 ∈ 𝑍, 𝑧∉𝑓′(𝑃). If 𝑧∉Im(𝑓′), then 𝑍 ⧵ Im(𝑓′) is an open neighbourhood which avoids
𝑓′(𝑃). If 𝑧 is in Im(𝑓′) then (𝑓′)−1{𝑧} = {𝑧} × 𝑓−1{𝑔(𝑧)} and 𝑓−1{𝑔(𝑧)} is quasi-compact
by assumption. Because 𝑃 is a closed subset of 𝑍 ×𝑌 𝑋, we have a closed 𝑃′ of 𝑍 × 𝑋 such
that 𝑃 = 𝑃′ ∩ 𝑍 ×𝑌 𝑋. Since (𝑓′)−1{𝑧} is a subset of 𝑃𝑐 = 𝑃′𝑐 ∪ (𝑍 ×𝑌 𝑋)𝑐, we see that
(𝑓′)−1{𝑧} is disjoint from (𝑍 ×𝑌 𝑋)𝑐. Hence (𝑓′)−1{𝑧} is contained in 𝑃′𝑐. We may apply
the Tube Lemma 5.12.1 to (𝑓′)−1{𝑧} = {𝑧}×𝑓−1{𝑔(𝑧)} ⊂ (𝑃′)𝑐 ⊂ 𝑍×𝑋. This gives 𝑈×𝑉
containing (𝑓′)−1{𝑧} where 𝑈 and 𝑉 are open sets in 𝑋 and 𝑍 respectively and 𝑈 × 𝑉 has
empty intersection with 𝑃′. Hence 𝑧 is contained in 𝑉 and 𝑉 has empty intersection with
the image of 𝑃. As a result, the map 𝑓 is universally closed.

The implication (3) ⇒ (2) is trivial. Namely, given any topological space 𝑍 consider the
projection morphism 𝑔 ∶ 𝑍×𝑌 → 𝑌. Then it is easy to see that 𝑓′ is the map 𝑍×𝑋 → 𝑍×𝑌,
in other words that (𝑍×𝑌)×𝑌𝑋 = 𝑍×𝑋. (This identification is a purely categorical property
having nothing to do with topological spaces per se.)

Assume 𝑓 satisfies (2). We will prove it satisfies (1). Note that 𝑓 is closed as 𝑓 can be
identified with the map {𝑝𝑡} × 𝑋 → {𝑝𝑡} × 𝑌 which is assumed closed. Choose any quasi-
compact subset 𝐾 ⊂ 𝑌. Let 𝑍 be any topological space. Because 𝑍 × 𝑋 → 𝑍 × 𝑌 is
closed we see the map 𝑍 × 𝑓−1(𝐾) → 𝑍 × 𝐾 is closed (if 𝑇 is closed in 𝑍 × 𝑓−1(𝐾), write
𝑇 = 𝑍×𝑓−1(𝐾)∩𝑇′ for some closed 𝑇′ ⊂ 𝑍×𝑋). Because 𝐾 is quasi-compact, 𝐾×𝑍 → 𝑍
is closed by Lemma 5.12.3. Hence the composition 𝑍 × 𝑓−1(𝐾) → 𝑍 × 𝐾 → 𝑍 is closed
and therefore 𝑓−1(𝐾) must be quasi-compact by Lemma 5.12.3 again. �
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Remark 5.12.6. Here are some references to the literature. In [Bou71, I, p. 75, Theorem
1] you can find: (2) ⇔ (4). In [Bou71, I, p. 77, Proposition 6] you can find: (2) ⇒ (1).
Of course, trivially we have (1) ⇒ (4). Thus (1), (2) and (4) are equivalent. Fan Zhou
claimed and proved that (3) and (4) are equivalent; let me know if you find a reference in
the literature.

5.13. Jacobson spaces

Definition 5.13.1. Let 𝑋 be a topological space. Let 𝑋0 be the set of closed points of 𝑋.
We say that 𝑋 is Jacobson if every closed subset 𝑍 ⊂ 𝑋 is the closure of 𝑍 ∩ 𝑋0.

Let 𝑋 be a Jacobson space and let 𝑋0 be the set of closed points of 𝑋 with the induced
topology. Clearly, the definition implies that the morphism 𝑋0 → 𝑋 induces a bijection
between the closed subsets of 𝑋0 and the closed subsets of 𝑋. Thus many properties of 𝑋
are inherted by 𝑋0. For example, the Krull dimensions of 𝑋 and 𝑋0 are the same.

Lemma 5.13.2. Let 𝑋 be a topological space. Let 𝑋0 be the set of closed points of 𝑋.
Suppose that for every irreducible closed subset 𝑍 ⊂ 𝑋 the intersection 𝑋0 ∩ 𝑍 is dense in
𝑍. Then 𝑋 is Jacobson.

Proof. Let 𝑍 ⊂ 𝑋 be closed. According to Lemma 5.5.3 we have 𝑍 = ⋃ 𝑍𝑖 with 𝑍𝑖
irreducible and closed. Thus is 𝑋0 ∩ 𝑍𝑖 is dense in each 𝑍𝑖, then 𝑋0 ∩ 𝑍 is dense in 𝑍. �

Lemma 5.13.3. Let 𝑋 be a sober, Noetherian topological space. If 𝑋 is not Jacobson, then
there exists a non-closed point 𝜉 ∈ 𝑋 such that {𝜉} is locally closed.

Proof. Assume 𝑋 is sober, Noetherian and not Jacobson. By Lemma 5.13.2 there exists
an irreducible closed subset 𝑍 ⊂ 𝑋 which is not the closure of its closed points. Since 𝑋
is Noetherian we may assume 𝑍 is minimal with this property. Let 𝜉 ∈ 𝑍 be the unique
generic point (here we use 𝑋 is sober). Note that the closed points are dense in {𝑧} for any
𝑧 ∈ 𝑍, 𝑧≠𝜉 by minimality of 𝑍. Hence the closure of the set of closed points of 𝑍 is a
closed subset containing all 𝑧 ∈ 𝑍, 𝑧≠𝜉. Hence {𝜉} is locally closed as desired. �

Lemma 5.13.4. Let 𝑋 be a topological space. Let 𝑋 = ⋃ 𝑈𝑖 be an open covering. Then
𝑋 is Jacobson if and only if each 𝑈𝑖 is Jacobson. Moreover, in this case 𝑋0 = ⋃ 𝑈𝑖,0.

Proof. Let 𝑋 be a topological space. Let 𝑋0 be the set of closed points of 𝑋. Let 𝑈𝑖,0 be
the set of closed points of 𝑈𝑖. Then 𝑋0 ∩ 𝑈𝑖 ⊂ 𝑈𝑖,0 but equality may not hold in general.
First, assume that each 𝑈𝑖 is Jacobson. We claim that in this case 𝑋0 ∩ 𝑈𝑖 = 𝑈𝑖,0. Namely,
suppose that 𝑥 ∈ 𝑈𝑖,0, i.e., 𝑥 is closed in 𝑈𝑖. Let {𝑥} be the closure in 𝑋. Consider {𝑥}∩𝑈𝑗.
If 𝑥∉𝑈𝑗, then {𝑥}∩𝑈𝑗 = ∅. If 𝑥 ∈ 𝑈𝑗, then 𝑈𝑖 ∩𝑈𝑗 ⊂ 𝑈𝑗 is an open subset of 𝑈𝑗 containing
𝑥. Let 𝑇′ = 𝑈𝑗 ⧵ 𝑈𝑖 ∩ 𝑈𝑗 and 𝑇 = {𝑥} ∐ 𝑇′. Then 𝑇, 𝑇′ are closed subsets of 𝑈𝑗 and 𝑇
contains 𝑥. As 𝑈𝑗 is Jacobson we see that the closed points of 𝑈𝑗 are dense in 𝑇. Because
𝑇 = {𝑥} ∐ 𝑇′ this can only be the case if 𝑥 is closed in 𝑈𝑗. Hence {𝑥} ∩ 𝑈𝑗 = {𝑥}. We
conlude that {𝑥} = {𝑥} as desired.
Let 𝑍 ⊂ 𝑋 be a closed subset (still assuming each 𝑈𝑖 is Jacobson). Since now we know
that 𝑋0 ∩ 𝑍 ∩ 𝑈𝑖 = 𝑈𝑖,0 ∩ 𝑍 are dense in 𝑍 ∩ 𝑈𝑖 it follows immediately that 𝑋0 ∩ 𝑍 is dense
in 𝑍.
Conversely, assume that 𝑋 is Jacobson. Let 𝑍 ⊂ 𝑈𝑖 be closed. Then 𝑋0 ∩ 𝑍 is dense in 𝑍.
Hence also 𝑋0 ∩ 𝑍 is dense in 𝑍, because 𝑍 ⧵ 𝑍 is closed. As 𝑋0 ∩ 𝑈𝑖 ⊂ 𝑈𝑖,0 we see that
𝑈𝑖,0 ∩ 𝑍 is dense in 𝑍. Thus 𝑈𝑖 is Jacobson as desired. �
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Lemma 5.13.5. Let 𝑋 be Jacobson. The following types of subsets 𝑇 ⊂ 𝑋 are Jacobson:
(1) Open subspaces.
(2) Closed subspaces.
(3) Locally closed subspaces.
(4) Finite unions of locally closed subspaces.
(5) Constructible sets.
(6) Any subset 𝑇 ⊂ 𝑋 which locally on 𝑋 is a finite union of locally closed subsets.

In each of these cases closed points of 𝑇 are closed in 𝑋.

Proof. Let 𝑋0 be the set of closed points of 𝑋. For any subset 𝑇 ⊂ 𝑋 we let (∗) denote the
property:

(∗) For every closed subset 𝑍 ⊂ 𝑇 the set 𝑍 ∩ 𝑋0 is dense in 𝑍.
Note that always 𝑋0 ∩ 𝑇 ⊂ 𝑇0. Hence property (∗) implies that 𝑇 is Jacobson. In addition
it clearly implies that every closed point of 𝑇 is closed in 𝑋.

Let 𝑈 ⊂ 𝑋 be an open subset. Suppose 𝑍 ⊂ 𝑈 is closed. Then 𝑋0 ∩𝑍 is dense in 𝑍. Hence
𝑋0 ∩ 𝑍 is dense in 𝑍, because 𝑍 ⧵ 𝑍 is closed. Thus (∗) holds.

Let 𝑍 ⊂ 𝑋 be a closed subset. Since closed subsets of 𝑍 are the same as closed subsets of
𝑋 contained in 𝑍 property (∗) is immediate.

Let 𝑇 ⊂ 𝑋 be locally closed. Write 𝑇 = 𝑈 ∩ 𝑍 for some open 𝑈 ∩ 𝑋 and some closed
𝑍 ⊂ 𝑋. Note that closed subsets of 𝑇 are the same thing as closed subsets of 𝑈 which
happen to be contained in 𝑍. Hence (∗) holds for 𝑇 because we proved it for 𝑈 above.

Suppose 𝑇𝑖 ⊂ 𝑋, 𝑖 = 1, … , 𝑛 are locally closed subsets. Let 𝑇 = 𝑇1 ∪ … ∪ 𝑇𝑛. Suppose
𝑍 ⊂ 𝑇 is closed. Then 𝑍𝑖 = 𝑍 ∩ 𝑇𝑖 is closed in 𝑇𝑖. By (∗) for 𝑇𝑖 we see that 𝑍𝑖 ∩ 𝑋0 is
dense in 𝑍𝑖. Clearly this implies that 𝑋0 ∩ 𝑍 is dense in 𝑍, and property (∗) holds for 𝑇.

The case of constructible subsets is subsumed in the case of finite unions of locally closed
subsets, see Definition 5.10.1.

The condition of the last assertion means that there exists an open covering 𝑋 = ⋃ 𝑈𝑖 such
that each 𝑇 ∩ 𝑈𝑖 is a finite union of locally closed subsets of 𝑈𝑖. We conclude that 𝑇 is
Jacobson by Lemma 5.13.4 and the case of a finite union of locally closed subsets dealt
with above. It is formal to deduce (∗) for 𝑇 from (∗) for all the inclusions 𝑇 ∩ 𝑈𝑖 ⊂ 𝑈𝑖 and
the assertions 𝑋0 = ⋃ 𝑈𝑖,0 and 𝑇0 = ⋃(𝑇 ∩ 𝑈𝑖)0 from Lemma 5.13.4. �

Lemma 5.13.6. A finite Kolmogorov Jacobson space is discrete.

Proof. By induction on the number of points. The lemma holds if the space is empty. If 𝑋
is a non-empty finite Kolmogorov space, choose a closed point 𝑥 ∈ 𝑋, see Lemma 5.9.6.
Then 𝑈 = 𝑋 ⧵ {𝑥} is a finite Jacobson space, see Lemma 5.13.5. By induction 𝑈 is a finite
discrete space, hence all its points are closed. By Lemma 5.13.5 all the points of 𝑈 are also
closed in 𝑋 and we win. �

Lemma 5.13.7. Suppose 𝑋 is a Jacobson topological space. Let 𝑋0 be the set of closed
points of 𝑋. There is a bijective, inclusion preserving correspondence

{constructible subsets of 𝑋} ↔ {constructible subsets of 𝑋0}

given by 𝐸 ↦ 𝐸 ∩ 𝑋0. This correspondence preserves the subset of retrocompact open
subsets, as well as complements of these.

Proof. Obvious from Lemma 5.13.5 above. �
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Lemma 5.13.8. Suppose 𝑋 is a Jacobson topological space. Let 𝑋0 be the set of closed
points of 𝑋. There is a bijective, inclusion preserving correspondence

{fi𝑋} ↔ {fi𝑋0}

given by 𝐸 ↦ 𝐸∩𝑋0. This correspondence preserves the subsets of locally closed, of open
and of closed subsets.

Proof. Obvious from Lemma 5.13.5 above. �

5.14. Specialization

Definition 5.14.1. Let 𝑋 be a toplogical space.
(1) If 𝑥, 𝑥′ ∈ 𝑋 then we say 𝑥 is a specialization of 𝑥′, or 𝑥′ is a generalization of 𝑥

if 𝑥 ∈ {𝑥′}. Notation: 𝑥′  𝑥.
(2) A subset 𝑇 ⊂ 𝑋 is stable under specialization if for all 𝑥′ ∈ 𝑇 and every special-

ization 𝑥′  𝑥 we have 𝑥 ∈ 𝑇.
(3) A subset 𝑇 ⊂ 𝑋 is stable under generalization if for all 𝑥 ∈ 𝑇 and every general-

ization 𝑥′ of 𝑥 we have 𝑥′ ∈ 𝑇.

Lemma 5.14.2. Let 𝑋 be a toplogical space.
(1) Any closed subset of 𝑋 is stable under specialization.
(2) Any open subset of 𝑋 is stable under generalization.
(3) A subset 𝑇 ⊂ 𝑋 is stable under specialization if and only if the complement 𝑇𝑐 is

stable under generalization.

Proof. Omitted. �

Definition 5.14.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces.
(1) We say that specializations lift along 𝑓 or that 𝑓 is specializing if given 𝑦′  𝑦

in 𝑌 and any 𝑥′ ∈ 𝑋 with 𝑓(𝑥′) = 𝑦′ there exists a specialization 𝑥′  𝑥 of 𝑥′ in
𝑋 such that 𝑓(𝑥) = 𝑦.

(2) We say that generalizations lift along 𝑓 or that 𝑓 is generalizing if given 𝑦′  𝑦
in 𝑌 and any 𝑥 ∈ 𝑋 with 𝑓(𝑥) = 𝑦 there exists a generalization 𝑥′  𝑥 of 𝑥 in 𝑋
such that 𝑓(𝑥′) = 𝑦′.

Lemma 5.14.4. Suppose 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are continuous maps of topologi-
cal spaces. If specializations lift along both 𝑓 and 𝑔 then specializations lift along 𝑔 ∘ 𝑓.
Similarly for ``generalizations lift along''.

Proof. Omitted. �

Lemma 5.14.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces.
(1) If specializations lift along 𝑓, and if 𝑇 ⊂ 𝑋 is stable under specialization, then

𝑓(𝑇) ⊂ 𝑌 is stable under specialization.
(2) If generalizations lift along 𝑓, and if 𝑇 ⊂ 𝑋 is stable under generalization, then

𝑓(𝑇) ⊂ 𝑌 is stable under generalization.

Proof. Omitted. �

Lemma 5.14.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces.
(1) If 𝑓 is closed then specializations lift along 𝑓.
(2) If 𝑓 is open, 𝑋 is a Noetherian topological space, each irreducible closed subset

of 𝑋 has a generic point, and 𝑌 is Kolmogorov then generalizations lift along 𝑓.
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Proof. Assume 𝑓 is closed. Let 𝑦′  𝑦 in 𝑌 and any 𝑥′ ∈ 𝑋 with 𝑓(𝑥′) = 𝑦′ be given.
Consider the closed subset 𝑇 = {𝑥′} of 𝑋. Then 𝑓(𝑇) ⊂ 𝑌 is a closed subset, and 𝑦′ ∈ 𝑓(𝑇).
Hence also 𝑦 ∈ 𝑓(𝑇). Hence 𝑦 = 𝑓(𝑥) with 𝑥 ∈ 𝑇, i.e., 𝑥′  𝑥.
Assume 𝑓 is open, 𝑋 Noetherian, every irreducible closed subset of 𝑋 has a generic point,
and 𝑌 is Kolmogorov. Let 𝑦′  𝑦 in 𝑌 and any 𝑥 ∈ 𝑋 with 𝑓(𝑥) = 𝑦 be given. Consider
𝑇 = 𝑓−1({𝑦′}) ⊂ 𝑋. Take an open neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 of 𝑥. Then 𝑓(𝑈) ⊂ 𝑌 is
open and 𝑦 ∈ 𝑓(𝑈). Hence also 𝑦′ ∈ 𝑓(𝑈). In other words, 𝑇 ∩ 𝑈≠∅. This proves that
𝑥 ∈ 𝑇. Since𝑋 is Noetherian, 𝑇 is Noetherian (Lemma 5.6.2). Hence it has a decomposition
𝑇 = 𝑇1 ∪ … ∪ 𝑇𝑛 into irreducible components. Then correspondingly 𝑇 = 𝑇1 ∪ … ∪ 𝑇𝑛. By
the above 𝑥 ∈ 𝑇𝑖 for some 𝑖. By assumption there exists a generic point 𝑥′ ∈ 𝑇𝑖, and we see
that 𝑥′  𝑥. As 𝑥′ ∈ 𝑇 we see that 𝑓(𝑥′) ∈ {𝑦′}. Note that 𝑓(𝑇𝑖) = 𝑓({𝑥′}) ⊂ {𝑓(𝑥′)}. If
𝑓(𝑥′)≠𝑦′, then since 𝑌 is Kolmogorov 𝑓(𝑥′) is not a generic point of the irreducible closed
subset {𝑦′} and the inclusion {𝑓(𝑥′)} ⊂ {𝑦′} is strict, i.e., 𝑦′∉𝑓(𝑇𝑖). This contradicts the
fact that 𝑓(𝑇𝑖) = {𝑦′}. Hence 𝑓(𝑥′) = 𝑦′ and we win. �

Lemma 5.14.7. Suppose that 𝑠, 𝑡 ∶ 𝑅 → 𝑈 and 𝜋 ∶ 𝑈 → 𝑋 are continuous maps of
topological spaces such that

(1) 𝜋 is open,
(2) 𝑈 is sober,
(3) 𝑠, 𝑡 have finite fibres,
(4) generalizations lift along 𝑠, 𝑡,
(5) (𝑡, 𝑠)(𝑅) ⊂ 𝑈 × 𝑈 is an equivalence relation on 𝑈 and 𝑋 is the quotient of 𝑈 by

this equivalence relation (as a set).
Then 𝑋 is Kolmogorov.

Proof. Properties (3) and (5) imply that a point 𝑥 corresponds to an finite equivalence
class {𝑢1, … , 𝑢𝑛} ⊂ 𝑈 of the equivalence relation. Suppose that 𝑥′ ∈ 𝑋 is a second point
corresponding to the equivalence class {𝑢′

1, … , 𝑢′
𝑚} ⊂ 𝑈. Suppose that 𝑢𝑖  𝑢′

𝑗 for some
𝑖, 𝑗. Then for any 𝑟′ ∈ 𝑅 with 𝑠(𝑟′) = 𝑢′

𝑗 by (4) we can find 𝑟  𝑟′ with 𝑠(𝑟) = 𝑢𝑖.
Hence 𝑡(𝑡)  𝑡(𝑟′). Since {𝑢′

1, … , 𝑢′
𝑚} = 𝑡(𝑠−1({𝑢′

𝑗})) we conclude that every element of
{𝑢′

1, … , 𝑢′
𝑚} is the specialization of an element of {𝑢1, … , 𝑢𝑛}. Thus {𝑢1} ∪ … ∪ {𝑢𝑛} is a

union of equivalence classes, hence of the form 𝜋−1(𝑍) for some subset 𝑍 ⊂ 𝑋. By (1) we
see that 𝑍 is closed in 𝑋 and in fact 𝑍 = {𝑥} because 𝜋({𝑢𝑖}) ⊂ {𝑥} for each 𝑖. In other
words, 𝑥  𝑥′ if and only if some lift of 𝑥 in 𝑈 specializes to some lift of 𝑥′ in 𝑈, if and
only if every lift of 𝑥′ in 𝑈 is a specialization of some lift of 𝑥 in 𝑈.
Suppose that both 𝑥  𝑥′ and 𝑥′  𝑥. Say 𝑥 corresponds to {𝑢1, … , 𝑢𝑛} and 𝑥′ corre-
sponds to {𝑢′

1, … , 𝑢′
𝑚} as above. Then, by the resuls of the preceding paragraph, we can

find a sequence
… 𝑢′

𝑗3
 𝑢𝑖3  𝑢′

𝑗2
 𝑢𝑖2  𝑢′

𝑗1
 𝑢𝑖1

which must repeat, hence by (2) we conclude that {𝑢1, … , 𝑢𝑛} = {𝑢′
1, … , 𝑢′

𝑚}, i.e., 𝑥 = 𝑥′.
Thus 𝑋 is Kolmogorov. �

Lemma 5.14.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of topological spaces. Suppose that 𝑌 is a
sober topological space, and 𝑓 is surjective. If either specializations or generalizations lift
along 𝑓, then dim(𝑋) ≥ dim(𝑌).

Proof. Assume specializations lift along 𝑓. Let 𝑍0 ⊂ 𝑍1 ⊂ … 𝑍𝑒 ⊂ 𝑌 be a chain of
irreducible closed subsets of 𝑋. Let 𝜉𝑒 ∈ 𝑋 be a point mapping to the generic point of
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𝑍𝑒. By assumption there exists a specialization 𝜉𝑒  𝜉𝑒−1 in 𝑋 such that 𝜉𝑒−1 maps to the
generic point of 𝑍𝑒−1. Continuing in this manner we find a sequence of specializations

𝜉𝑒  𝜉𝑒−1  … 𝜉0

with 𝜉𝑖 mapping to the generic point of 𝑍𝑖. This clearly implies the sequence of irreducible
closed subsets

{𝜉0} ⊂ {𝜉1} ⊂ … {𝜉𝑒}

is a chain of length 𝑒 in 𝑋. The case when generalizations lift along 𝑓 is similar. �

Lemma 5.14.9. Let 𝑋 be a Noetherian sober topological space. Let 𝐸 ⊂ 𝑋 be a subset of
𝑋.

(1) If 𝐸 is constructible and stable under specialization, then 𝐸 is closed.
(2) If 𝐸 is constructible and stable under generalization, then 𝐸 is open.

Proof. Let 𝐸 be constructible and stable under generalization. Let 𝑌 ⊂ 𝑋 be an irreducible
closed subset with generic point 𝜉 ∈ 𝑌. If 𝐸 ∩ 𝑌 is nonempty, then it contains 𝜉 (by stability
under generalization) and hence is dense in 𝑌, hence it contains a nonempty open of 𝑌, see
Lemma 5.11.3. Thus 𝐸 is open by Lemma 5.11.5. This proves (2). To prove (1) apply (2)
to the complement of 𝐸 in 𝑋. �

5.15. Submersive maps

Definition 5.15.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. We say 𝑓 is
submersive3 if 𝑓 is surjective and for any 𝑇 ⊂ 𝑌 we have 𝑇 is open or closed if and only if
𝑓−1(𝑇) is so.

Another way to express the second condition is that 𝑌 has the quotient topology relative to
the map 𝑋 → 𝑌. Here is an example where this holds.

Lemma 5.15.2. Let 𝑓 ∶ 𝑋 → 𝑌 be surjective, open, continuous map of topological spaces.
Let 𝑇 ⊂ 𝑌 be a subset. Then

(1) 𝑓−1(𝑇) = 𝑓−1(𝑇),
(2) 𝑇 ⊂ 𝑌 is closed if and only 𝑓−1(𝑇) is closed,
(3) 𝑇 ⊂ 𝑌 is open if and only 𝑓−1(𝑇) is open, and
(4) 𝑇 ⊂ 𝑌 is locally closed if and only 𝑓−1(𝑇) is locally closed.

In particular we see that 𝑓 is submersive.

Proof. It is clear that 𝑓−1(𝑇) ⊂ 𝑓−1(𝑇). If 𝑥 ∈ 𝑋, and 𝑥∉𝑓−1(𝑇), then there exists an open
neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 with 𝑈 ∩ 𝑓−1(𝑇) = ∅. Since 𝑓 is open we see that 𝑓(𝑈) is an
open neighbourhood of 𝑓(𝑥) not meeting 𝑇. Hence 𝑥∉𝑓−1(𝑇). This proves (1). Part (2) is
an easy consequences of this. Part (3) is obvious from the fact that 𝑓 is open. For (4), if
𝑓−1(𝑇) is locally closed, then 𝑓−1(𝑇) ⊂ 𝑓−1(𝑇) = 𝑓−1(𝑇) is open, and hence by (3) applied
to the map 𝑓−1(𝑇) → 𝑇 we see that 𝑇 is open in 𝑇, i.e., 𝑇 is locally closed. �

3This is very different from the notion of a submersion between differential manifolds!
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5.16. Dimension functions

It scarcelymakes sense to consider dimension functions unless the space considered is sober
(Definition 5.5.4). Thus the definition below can be improved by considering the sober
topological space associated to 𝑋. Since the underlying topological space of a scheme is
sober we do not bother with this improvement.

Definition 5.16.1. Let 𝑋 be a topological space.
(1) Let 𝑥, 𝑦 ∈ 𝑋, 𝑥≠𝑦. Suppose 𝑥  𝑦, that is 𝑦 is a specialization of 𝑥. We say 𝑦

is an immediate specialization of 𝑥 if there is no 𝑧 ∈ 𝑋 ⧵ {𝑥, 𝑦} with 𝑥 𝑧 and
𝑧 𝑦.

(2) A map 𝛿 ∶ 𝑋 → 𝐙 is called a dimension function4 if
(a) whenever 𝑥 𝑦 and 𝑥≠𝑦 we have 𝛿(𝑥) > 𝛿(𝑦), and
(b) for every immediate specialization 𝑥 𝑦 in 𝑋 we have 𝛿(𝑥) = 𝛿(𝑦) + 1.

It is clear that if 𝛿 is a dimension function, then so is 𝛿 + 𝑡 for any 𝑡 ∈ 𝐙. Here is a fun
lemma.

Lemma 5.16.2. Let 𝑋 be a topological space. If 𝑋 is sober and has a dimension function,
then 𝑋 is catenary. Moreover, for any 𝑥 𝑦 we have

𝛿(𝑥) − 𝛿(𝑦) = codim({𝑦}, {𝑥}) .

Proof. Suppose 𝑌 ⊂ 𝑌′ ⊂ 𝑋 are irreducible closed subsets. Let 𝜉 ∈ 𝑌, 𝜉′ ∈ 𝑌′ be
their generic points. Then we see immediately from the definitions that codim(𝑌, 𝑌′) ≤
𝛿(𝜉) − 𝛿(𝜉′) < ∞. In fact the first inequality is an equality. Namely, suppose

𝑌 = 𝑌0 ⊂ 𝑌1 ⊂ … ⊂ 𝑌𝑒 = 𝑌′

is any maximal chain of irreducible closed subsets. Let 𝜉𝑖 ∈ 𝑌𝑖 denote the generic point.
Then we see that 𝜉𝑖  𝜉𝑖+1 is an immediate specialization. Hence we see that 𝑒 = 𝛿(𝜉) −
𝛿(𝜉′) as desired. This also proves the last statement of the lemma. �

Lemma 5.16.3. Let 𝑋 be a topological space. Let 𝛿, 𝛿′ be two dimension functions on 𝑋.
If 𝑋 is locally Noetherian and sober then 𝛿 − 𝛿′ is locally constant on 𝑋.

Proof. Let 𝑥 ∈ 𝑋 be a point. We will show that 𝛿 − 𝛿′ is constant in a neighbourhood of
𝑥. We may replace 𝑋 by an open neighbourhood of 𝑥 in 𝑋 which is Noetherian. Hence
we may assume 𝑋 is Noetherian and sober. Let 𝑍1, … , 𝑍𝑟 be the irreducible components
of 𝑋 passing through 𝑥. (There are finitely many as 𝑋 is Noetherian, see Lemma 5.6.2.)
Let 𝜉𝑖 ∈ 𝑍𝑖 be the generic point. Note 𝑍1 ∪ … ∪ 𝑍𝑟 is a neighbourhood of 𝑥 in 𝑋 (not
necessarily closed). We claim that 𝛿 − 𝛿′ is constant on 𝑍1 ∪ … ∪ 𝑍𝑟. Namely, if 𝑦 ∈ 𝑍𝑖,
then

𝛿(𝑥) − 𝛿(𝑦) = 𝛿(𝑥) − 𝛿(𝜉𝑖) + 𝛿(𝜉𝑖) − 𝛿(𝑦) = −codim({𝑥}, 𝑍𝑖) + codim({𝑦}, 𝑍𝑖)

by Lemma 5.16.2. Similarly for 𝛿′. Whence the result. �

Lemma 5.16.4. Let 𝑋 be locally Noetherian, sober and catenary. Then any point has an
open neighbourhood 𝑈 ⊂ 𝑋 which has a dimension function.

4This is likely nonstandard notation. This notion is usually introduced only for (locally) Noetherian schemes,
in which case condition (a) is implied by (b).
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Proof. We will use repeatedly that an open subspace of a catenary space is catenary, see
Lemma 5.8.2 and that a Noetherian topological space has finitely many irreducible com-
ponents, see Lemma 5.6.2. In the proof of Lemma 5.16.3 we saw how to construct such a
function. Namely, we first replace 𝑋 by a Noetherian open neighbourhood of 𝑥. Next, we
let 𝑍1, … , 𝑍𝑟 ⊂ 𝑋 be the irreducible components of 𝑋. Let

𝑍𝑖 ∩ 𝑍𝑗 = ⋃ 𝑍𝑖𝑗𝑘

be the decomposition into irreducible components. We replace 𝑋 by

𝑋 ⧵ (⋃𝑥∉𝑍𝑖
𝑍𝑖 ∪ ⋃𝑥∉𝑍𝑖𝑗𝑘

𝑍𝑖𝑗𝑘)
so that we may assume 𝑥 ∈ 𝑍𝑖 for all 𝑖 and 𝑥 ∈ 𝑍𝑖𝑗𝑘 for all 𝑖, 𝑗, 𝑘. For 𝑦 ∈ 𝑋 choose any 𝑖
such that 𝑦 ∈ 𝑍𝑖 and set

𝛿(𝑦) = −codim({𝑥}, 𝑍𝑖) + codim({𝑦}, 𝑍𝑖).

We claim this is a dimension function. First we show that it is well defined, i.e., independent
of the choice of 𝑖. Namely, suppose that 𝑦 ∈ 𝑍𝑖𝑗𝑘 for some 𝑖, 𝑗, 𝑘. Then we have (using
Lemma 5.8.6)

𝛿(𝑦) = −codim({𝑥}, 𝑍𝑖) + codim({𝑦}, 𝑍𝑖)

= −codim({𝑥}, 𝑍𝑖𝑗𝑘) − codim(𝑍𝑖𝑗𝑘, 𝑍𝑖) + codim({𝑦}, 𝑍𝑖𝑗𝑘) + codim(𝑍𝑖𝑗𝑘, 𝑍𝑖)

= −codim({𝑥}, 𝑍𝑖𝑗𝑘) + codim({𝑦}, 𝑍𝑖𝑗𝑘)

which is symmetric in 𝑖 and 𝑗. We omit the proof that it is a dimension function. �

Remark 5.16.5. Combining Lemmas 5.16.3 and 5.16.4 we see that on a catenary, locally
Noetherian, sober topological space the obstruction to having a dimension function is an
element of 𝐻1(𝑋, 𝐙).

5.17. Nowhere dense sets

Definition 5.17.1. Let 𝑋 be a topological space.
(1) Given a subset 𝑇 ⊂ 𝑋 the interior of 𝑇 is the largest open subset of 𝑋 contained

in 𝑇.
(2) A subset 𝑇 ⊂ 𝑋 is called nowhere dense if the closure of 𝑇 has empty interior.

Lemma 5.17.2. Let 𝑋 be a topological space. The union of a finite number of nowhere
dense sets is a nowhere dense set.

Proof. Omitted. �

Lemma 5.17.3. Let 𝑋 be a topological space. Let 𝑈 ⊂ 𝑋 be an open. Let 𝑇 ⊂ 𝑈 be a
subset. If 𝑇 is nowhere dense in 𝑈, then 𝑇 is nowhere dense in 𝑋.

Proof. Assume 𝑇 is nowhere dense in 𝑈. Suppose that 𝑥 ∈ 𝑋 is an interior point of the
closure 𝑇 of 𝑇 in 𝑋. Say 𝑥 ∈ 𝑉 ⊂ 𝑇 with 𝑉 ⊂ 𝑋 open in 𝑋. Note that 𝑇 ∩ 𝑈 is the closure
of 𝑇 in 𝑈. Hence the interior of 𝑇 ∩ 𝑈 being empty implies 𝑉 ∩ 𝑈 = ∅. Thus 𝑥 cannot be
in the closure of 𝑈, a fortiori cannot be in the closure of 𝑇, a contradiction. �

Lemma 5.17.4. Let 𝑋 be a topological space. Let 𝑋 = ⋃ 𝑈𝑖 be an open covering. Let
𝑇 ⊂ 𝑋 be a subset. If 𝑇 ∩ 𝑈𝑖 is nowhere dense in 𝑈𝑖 for all 𝑖, then 𝑇 is nowhere dense in 𝑋.

Proof. Omitted. (Hint: closure commutes with intersecting with opens.) �
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Lemma 5.17.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝑇 ⊂ 𝑋 be
a subset. If 𝑓 identifies 𝑋 with a closed subset of 𝑌 and 𝑇 is nowhere dense in 𝑋, then also
𝑓(𝑇) is nowhere dense in 𝑌.

Proof. Omitted. �

Lemma 5.17.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝑇 ⊂ 𝑌
be a subset. If 𝑓 is open and 𝑇 is a closed nowhere dense subset of 𝑌, then also 𝑓−1(𝑇) is
a closed nowhere dense subset of 𝑋. If 𝑓 is surjective and open, then 𝑇 is closed nowhere
dense if and only if 𝑓−1(𝑇) is closed nowhere dense.

Proof. Omitted. (Hint: In the first case the interior of 𝑓−1(𝑇) maps into the interior of 𝑇,
and in the second case the interior of 𝑓−1(𝑇) maps onto the interior of 𝑇.) �

5.18. Miscellany

Recall that a neighbourhood of a point need not be open.

Definition 5.18.1. A topological space 𝑋 is called locally quasi-compact5 if every point
has a fundamental system of quasi-compact neighbourhoods.

The following lemma applies to the underlying topological space associated to a quasi-
separated scheme.

Lemma 5.18.2. Let 𝑋 be a topological space which
(1) has a basis of the topology consisting of quasi-compact opens, and
(2) has the property that the intersection of any two quasi-compact opens is quasi-

compact.
Then

(1) any quasi-compact open 𝑈 ⊂ 𝑋 has a cofinal system of open coverings 𝒰 ∶ 𝑈 =
⋃𝑗∈𝐽 𝑈𝑗 with 𝐽 finite and all 𝑈𝑗 ∩ 𝑈𝑗′ quasi-compact for all 𝑗, 𝑗′ ∈ 𝐽

(2) add more here.

Proof. Omitted. �

Definition 5.18.3. Let 𝑋 be a topological space. We say 𝑥 ∈ 𝑋 is an isolated point of 𝑋 if
{𝑥} is open in 𝑋.
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CHAPTER 6

Sheaves on Spaces

6.1. Introduction

Basic properties of sheaves on topological spaces will be explained in this document. A
reference is [God73].

This will be superceded by the discussion of sheaves over sites later in the documents. But
perhaps it makes sense to briefly define some of the notions here.

6.2. Basic notions

The following notions are considered basic and will not be defined, and or proved. This
does not mean they are all necessarily easy or well known.

(1) Let 𝑋 be a topological space. The phrase: ``Let 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open cov-
ering'' means the following: 𝐼 is a set, and for each 𝑖 ∈ 𝐼 we are given an open
subset 𝑈𝑖 ⊂ 𝑋. Furthermore 𝑈 is the union of the 𝑈𝑖. It is allowed to have 𝐼 = ∅
in which case there are no 𝑈𝑖 and 𝑈 = ∅. It is also allowed, in case 𝐼≠∅ to have
any or all of the 𝑈𝑖 be empty.

(2) etc, etc.

6.3. Presheaves

Definition 6.3.1. Let 𝑋 be a topological space.
(1) A presheaf ℱ of sets on 𝑋 is a rule which assigns to each open 𝑈 ⊂ 𝑋 a set ℱ(𝑈)

and to each inclusion 𝑉 ⊂ 𝑈 a map 𝜌𝑈
𝑉 ∶ ℱ(𝑈) → ℱ(𝑉) such that 𝜌𝑈

𝑈 = idℱ(𝑈)
and whenever 𝑊 ⊂ 𝑉 ⊂ 𝑈 we have 𝜌𝑈

𝑊 = 𝜌𝑉
𝑊 ∘ 𝜌𝑈

𝑉 .
(2) A morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of sets on 𝑋 is a rule which assigns to

each open 𝑈 ⊂ 𝑋 a map of sets 𝜑 ∶ ℱ(𝑈) → 𝒢(𝑈) compatible with restriction
maps, i.e., whenever 𝑉 ⊂ 𝑈 ⊂ 𝑋 are open the diagram

ℱ(𝑈)
𝜑 //

𝜌𝑈
𝑉
��

𝒢(𝑈)

𝜌𝑈
𝑉
��

ℱ(𝑉)
𝜑 // 𝒢(𝑉)

commutes.
(3) The category of presheaves of sets on 𝑋 will be denoted PSh(𝑋).

The elements of the set ℱ(𝑈) are called the sections of ℱ over 𝑈. For every 𝑉 ⊂ 𝑈 the map
𝜌𝑈

𝑉 ∶ ℱ(𝑈) → ℱ(𝑉) is called the restricton map. We will use the notation 𝑠|𝑉 ∶= 𝜌𝑈
𝑉 (𝑠)

if 𝑠 ∈ ℱ(𝑈). This notation is consistent with the notion of restriction of functions from
topology because if 𝑊 ⊂ 𝑉 ⊂ 𝑈 and 𝑠 is a section of ℱ over 𝑈 then 𝑠|𝑊 = (𝑠|𝑉)|𝑊 by the
property of the restriction maps expressed in the definition above.
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Another notation that is often used is to indicate sections over an open 𝑈 by the symbol
Γ(𝑈, −) or by 𝐻0(𝑈, −). In other words, the following equalities are tautological

Γ(𝑈, ℱ) = ℱ(𝑈) = 𝐻0(𝑈, ℱ).
In this chapter we will not use this notation, but in others we will.

Definition 6.3.2. Let 𝑋 be a topological space. Let 𝐴 be a set. The constant presheaf
with value 𝐴 is the presheaf that assigns the set 𝐴 to every open 𝑈 ⊂ 𝑋, and such that all
restriction mappings are id𝐴.

6.4. Abelian presheaves

In this section we briefly point out some features of the category of presheaves that allow
one to define presheaves of abelian groups.

Example 6.4.1. Let 𝑋 be a topological space 𝑋. Consider a rule ℱ that associates to every
open subset a singleton set. Since every set has a unique map into a singleton set, there
exist unique restriction maps 𝜌𝑈

𝑉 . The resulting structure is a presheaf of sets. It is a final
object in the category of presheaves of sets, by the property of singleton sets mentioned
above. Hence it is also unique up to unique isomorphism. We will sometimes write ∗ for
this presheaf.

Lemma 6.4.2. Let 𝑋 be a topological space. The category of presheaves of sets on 𝑋 has
products (see Categories, Definition 4.13.5). Moreover, the set of sections of the product
ℱ × 𝒢 over an open 𝑈 is the product of the sets of sections of ℱ and 𝒢 over 𝑈.

Proof. Namely, suppose ℱ and 𝒢 are presheaves of sets on the topological space 𝑋. Con-
sider the rule 𝑈 ↦ ℱ(𝑈) × 𝒢(𝑈), denoted ℱ × 𝒢. If 𝑉 ⊂ 𝑈 ⊂ 𝑋 are open then define the
restriction mapping

(ℱ × 𝒢)(𝑈) ⟶ (ℱ × 𝒢)(𝑉)
by mapping (𝑠, 𝑡) ↦ (𝑠|𝑉, 𝑡|𝑉). Then it is immediately clear that ℱ × 𝒢 is a presheaf. Also,
there are projection maps 𝑝 ∶ ℱ × 𝒢 → ℱ and 𝑞 ∶ ℱ × 𝒢 → 𝒢. We leave it to the reader to
show that for any third presheaf ℋ we have 𝑀𝑜𝑟(ℋ, ℱ×𝒢) = 𝑀𝑜𝑟(ℋ, ℱ)×𝑀𝑜𝑟(ℋ, 𝒢). �

Recall that if (𝐴, + ∶ 𝐴×𝐴 → 𝐴, − ∶ 𝐴 → 𝐴, 0 ∈ 𝐴) is an abelian group, then the zero and
the negation maps are uniquely determined by the addition law. In other words, it makes
sense to say ``let (𝐴, +) be an abelian group''.

Lemma 6.4.3. Let 𝑋 be a topological space. Let ℱ be a presheaf of sets. Consider the
following types of structure on ℱ:

(1) For every open 𝑈 the structure of an abelian group on ℱ(𝑈) such that all restric-
tion maps are abelian group homomorphisms.

(2) A map of presheaves + ∶ ℱ × ℱ → ℱ, a map of presheaves − ∶ ℱ → ℱ and
a map 0 ∶ ∗ → ℱ (see Example 6.4.1) satisfying all the axioms of +, −, 0 in a
usual abelian group.

(3) A map of presheaves + ∶ ℱ × ℱ → ℱ, a map of presheaves − ∶ ℱ → ℱ and a
map 0 ∶ ∗ → ℱ such that for each open 𝑈 ⊂ 𝑋 the quadruple (ℱ(𝑈), +, −, 0) is
an abelian group,

(4) A map of presheaves + ∶ ℱ × ℱ → ℱ such that for every open 𝑈 ⊂ 𝑋 the map
+ ∶ ℱ(𝑈) × ℱ(𝑈) → ℱ(𝑈) defines the structure of an abelian group.

There are natural bijections between the collections of types of data (1) - (4) above.

Proof. Omitted. �
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The lemma says that to give an abelian group object ℱ in the category of presheaves is the
same as giving a presheaf of setsℱ such that all the setsℱ(𝑈) are endowedwith the structure
of an abelian group and such that all the restriction mappings are group homomorphisms.
For most algebra structures we will take this approach to (pre)sheaves of such objects, i.e.,
we will define a (pre)sheaf of such objects to be a (pre)sheaf ℱ of sets all of whose sets of
sections ℱ(𝑈) are endowed with this structure compatibly with the restriction mappings.

Definition 6.4.4. Let 𝑋 be a topological space.
(1) A presheaf of abelian groups on 𝑋 or an abelian presheaf over 𝑋 is a presheaf of

sets ℱ such that for each open 𝑈 ⊂ 𝑋 the set ℱ(𝑈) is endowed with the structure
of an abelian group, and such that all restriction maps 𝜌𝑈

𝑉 are homomorphisms of
abelian groups, see Lemma 6.4.3 above.

(2) Amorphism of abelian presheaves over𝑋 𝜑 ∶ ℱ → 𝒢 is amorphism of presheaves
of sets which induces a homomorphism of abelian groups ℱ(𝑈) → 𝒢(𝑈) for every
open 𝑈 ⊂ 𝑋.

(3) The category of presheaves of abelian groups on 𝑋 is denoted PAb(𝑋).

Example 6.4.5. Let 𝑋 be a topological space. For each 𝑥 ∈ 𝑋 suppose given an abelian
group 𝑀𝑥. For 𝑈 ⊂ 𝑋 open we set

ℱ(𝑈) = ⨁𝑥∈𝑈
𝑀𝑥.

We denote a typical element in this abelian group by ∑𝑛
𝑖=1 𝑚𝑥𝑖

, where 𝑥𝑖 ∈ 𝑈 and 𝑚𝑥𝑖
∈

𝑀𝑥𝑖
. (Of course we may always choose our representation such that 𝑥1, … , 𝑥𝑛 are pairwise

distinct.) We define for 𝑉 ⊂ 𝑈 ⊂ 𝑋 open a restriction mapping ℱ(𝑈) → ℱ(𝑉) by mapping
an element 𝑠 = ∑𝑛

𝑖=1 𝑚𝑥𝑖
to the element 𝑠|𝑉 = ∑𝑥𝑖∈𝑉 𝑚𝑥𝑖

. We leave it to the reader to verify
that this is a presheaf of abelian groups.

6.5. Presheaves of algebraic structures

Let us clarify the definition of presheaves of algebraic structures. Suppose that 𝒞 is a cate-
gory and that 𝐹 ∶ 𝒞 → Sets is a faithful functor. Typically 𝐹 is a ``forgetful'' functor. For
an object 𝑀 ∈ 𝑂𝑏(𝒞) we often call 𝐹(𝑀) the underlying set of the object 𝑀. If 𝑀 → 𝑀′

is a morphism in 𝒞 we call 𝐹(𝑀) → 𝐹(𝑀′) the underlying map of sets. In fact, we will
often not distinguish between an object and its underlying set, and similarly for morphisms.
So we will say a map of sets 𝐹(𝑀) → 𝐹(𝑀′) is a morphism of algebraic structures, if it is
equal to 𝐹(𝑓) for some morphism 𝑓 ∶ 𝑀 → 𝑀′ in 𝒞.

In analogy with Definition 6.4.4 above a ``presheaf of objects of 𝒞'' could be defined by the
following data:

(1) a presheaf of sets ℱ, and
(2) for every open 𝑈 ⊂ 𝑋 a choice of an object 𝐴(𝑈) ∈ 𝑂𝑏(𝒞)

subject to the following conditions (using the phraseology above)
(1) for every open 𝑈 ⊂ 𝑋 the set ℱ(𝑈) is the underlying set of 𝐴(𝑈), and
(2) for every 𝑉 ⊂ 𝑈 ⊂ 𝑋 open the map of sets 𝜌𝑈

𝑉 ∶ ℱ(𝑈) → ℱ(𝑉) is a morphism of
algebraic structures.

In other words, for every 𝑉 ⊂ 𝑈 open in 𝑋 the restriction mappings 𝜌𝑈
𝑉 is the image 𝐹(𝛼𝑈

𝑉 )
for some unique morphism 𝛼𝑈

𝑉 ∶ 𝐴(𝑈) → 𝐴(𝑉) in the category 𝒞. The uniqueness is forced
by the condition that 𝐹 is faithful; it also implies that 𝛼𝑈

𝑊 = 𝛼𝑉
𝑊 ∘ 𝛼𝑈

𝑉 whenever 𝑊 ⊂ 𝑉 ⊂ 𝑈
are open in 𝑋. The system (𝐴(−), 𝛼𝑈

𝑉 ) is what we will define as a presheaf with values in
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𝒞 on 𝑋, compare Sites, Definition 9.2.2. We recover our presheaf of sets (ℱ, 𝜌𝑈
𝑉 ) via the

rules ℱ(𝑈) = 𝐹(𝐴(𝑈)) and 𝜌𝑈
𝑉 = 𝐹(𝛼𝑈

𝑉 ).

Definition 6.5.1. Let 𝑋 be a topological space. Let 𝒞 be a category.
(1) A presheaf ℱ on 𝑋 with values in 𝒞 is given by a rule which assigns to every

open 𝑈 ⊂ 𝑋 an object ℱ(𝑈) of 𝒞 and to each inclusion 𝑉 ⊂ 𝑈 a morphism
𝜌𝑈

𝑉 ∶ ℱ(𝑈) → ℱ(𝑉) in 𝒞 such that whenever 𝑊 ⊂ 𝑉 ⊂ 𝑈 we have 𝜌𝑈
𝑊 = 𝜌𝑉

𝑊 ∘ 𝜌𝑈
𝑉 .

(2) A morphism 𝜑 ∶ ℱ → 𝒢 of presheaves with value in 𝒞 is given by a morphism
𝜑 ∶ ℱ(𝑈) → 𝒢(𝑈) in 𝒞 compatible with restriction morphisms.

Definition 6.5.2. Let 𝑋 be a topological space. Let 𝒞 be a category. Let 𝐹 ∶ 𝒞 → Sets
be a faithful functor. Let ℱ be a presheaf on 𝑋 with values in 𝒞. The presheaf of sets
𝑈 ↦ 𝐹(ℱ(𝑈)) is called the underlying presheaf of sets of ℱ.

It is customary to use the same letter ℱ to denote the underlying presheaf of sets, and
this makes sense according to our discussion preceding Definition 6.5.1. In particular, the
phrase ``let 𝑠 ∈ ℱ(𝑈)'' or ``let 𝑠 be a section of ℱ over 𝑈'' signifies that 𝑠 ∈ 𝐹(ℱ(𝑈)).

This notation and these definitions apply in particular to: Presheaves of (not necessarily
abelian) groups, rings, modules over a fixed ring, vector spaces over a fixed field, etc and
morphisms between these.

6.6. Presheaves of modules

Suppose that 𝒪 is a presheaf of rings on 𝑋. We would like to define the notion of a presheaf
of 𝒪-modules over 𝑋. In analogy with Definition 6.4.4 we are tempted to define this as a
sheaf of sets ℱ such that for every open 𝑈 ⊂ 𝑋 the set ℱ(𝑈) is endowed with the structure
of an 𝒪(𝑈)-module compatible with restriction mappings (of ℱ and 𝒪). However, it is
customary (and equivalent) to define it as in the following definition.

Definition 6.6.1. Let 𝑋 be a topological space, and let 𝒪 be a presheaf of rings on 𝑋.
(1) A presheaf of 𝒪-modules is given by an abelian presheaf ℱ together with a map

of presheaves of sets
𝒪 × ℱ ⟶ ℱ

such that for every open 𝑈 ⊂ 𝑋 the map 𝒪(𝑈) × ℱ(𝑈) → ℱ(𝑈) defines the
structure of an 𝒪(𝑈)-module structure on the abelian group ℱ(𝑈).

(2) A morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of 𝒪-modules is a morphism of abelian
presheaves 𝜑 ∶ ℱ → 𝒢 such that the diagram

𝒪 × ℱ //

id×𝜑
��

ℱ

𝜑
��

𝒪 × 𝒢 // 𝒢
commutes.

(3) The set of 𝒪-module morphisms as above is denoted 𝐻𝑜𝑚𝒪(ℱ, 𝒢).
(4) The category of presheaves of 𝒪-modules is denoted PMod(𝒪).

Suppose that 𝒪1 → 𝒪2 is a morphism of presheaves of rings on 𝑋. In this case, if ℱ is a
presheaf of 𝒪2-modules then we can think of ℱ as a presheaf of 𝒪1-modules by using the
composition

𝒪1 × ℱ → 𝒪2 × ℱ → ℱ.
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We sometimes denote this by ℱ𝒪1
to indicate the restriction of rings. We call this the

restriction of ℱ. We obtain the restriction functor

PMod(𝒪2) ⟶ PMod(𝒪1)

On the other hand, given a presheaf of 𝒪1-modules 𝒢 we can construct a presheaf of
𝒪2-modules 𝒪2 ⊗𝑝,𝒪1

𝒢 by the rule

(𝒪2 ⊗𝑝,𝒪1
𝒢) (𝑈) = 𝒪2(𝑈) ⊗𝒪1(𝑈) 𝒢(𝑈)

The index 𝑝 stands for ``presheaf'' and not ``point''. This presheaf is called the tensor product
presheaf. We obtain the change of rings functor

PMod(𝒪1) ⟶ PMod(𝒪2)

Lemma 6.6.2. With 𝑋, 𝒪1, 𝒪2, ℱ and 𝒢 as above there exists a canonical bijection

𝐻𝑜𝑚𝒪1
(𝒢, ℱ𝒪1

) = 𝐻𝑜𝑚𝒪2
(𝒪2 ⊗𝑝,𝒪1

𝒢, ℱ)

In other words, the restriction and change of rings functors are adjoint to each other.

Proof. This follows from the fact that for a ring map 𝐴 → 𝐵 the restriction functor and the
change of ring functor are adjoint to each other. �

6.7. Sheaves

In this section we explain the sheaf condition.

Definition 6.7.1. Let 𝑋 be a topological space.
(1) A sheafℱ of sets on𝑋 is a presheaf of sets which satsifies the following additional

property: Given any open covering 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 and any collection of sections
𝑠𝑖 ∈ ℱ(𝑈𝑖), 𝑖 ∈ 𝐼 such that ∀𝑖, 𝑗 ∈ 𝐼

𝑠𝑖|𝑈𝑖∩𝑈𝑗
= 𝑠𝑗|𝑈𝑖∩𝑈𝑗

there exists a unique section 𝑠 ∈ ℱ(𝑈) such that 𝑠𝑖 = 𝑠|𝑈𝑖
for all 𝑖 ∈ 𝐼.

(2) A morphism of sheaves of sets is simply a morphism of presheaves of sets.
(3) The category of sheaves of sets on 𝑋 is denoted Sh(𝑋).

Remark 6.7.2. There is always a bit of confusion as to whether it is necessary to say some-
thing about the set of sections of a sheaf over the empty set ∅ ⊂ 𝑋. It is necessary, and we
already did if you read the definition right. Namely, note that the empty set is covered by
the empty open covering, and hence the ``collection of section 𝑠𝑖'' from the definition above
actually form an element of the empty product which is the final object of the category the
sheaf has values in. In other words, if you read the definition right you automatically de-
duce that ℱ(∅) = a final object, which in the case of a sheaf of sets is a singleton. If you
do not like this argument, then you can just require that ℱ(∅) = {∗}.

In particular, this condition will then ensure that if 𝑈, 𝑉 ⊂ 𝑋 are open and disjoint then

ℱ(𝑈 ∪ 𝑉) = ℱ(𝑈) × ℱ(𝑉).

(Because the fibre product over a final object is a product.)
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Example 6.7.3. Let 𝑋, 𝑌 be topological spaces. Consider the rule ℱ wich associates to the
open 𝑈 ⊂ 𝑋 the set

ℱ(𝑈) = {𝑓 ∶ 𝑈 → 𝑌 ∣ 𝑓 is continuous}

with the obvious restriction mappings. We claim that ℱ is a sheaf. To see this suppose that
𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 is an open covering, and 𝑓𝑖 ∈ ℱ(𝑈𝑖), 𝑖 ∈ 𝐼 with 𝑓𝑖|𝑈𝑖∩𝑈𝑗

= 𝑓𝑗|𝑈𝑖∩𝑈𝑗
for all

𝑖, 𝑗 ∈ 𝐼. In this case define 𝑓 ∶ 𝑈 → 𝑌 by setting 𝑓(𝑢) equal to the value of 𝑓𝑖(𝑢) for any
𝑖 ∈ 𝐼 such that 𝑢 ∈ 𝑈𝑖. This is well defined by assumption. Moreover, 𝑓 ∶ 𝑈 → 𝑌 is a
map such that its restriction to 𝑈𝑖 agrees with the continuous map 𝑈𝑖. Hence clearly 𝑓 is
continuous!

We can use the result of the example to define constant sheaves. Namely, suppose that 𝐴 is
a set. Endow 𝐴 with the discrete topology. Let 𝑈 ⊂ 𝑋 be an open subset. Then we have

{𝑓 ∶ 𝑈 → 𝐴 ∣ 𝑓 continuous} = {𝑓 ∶ 𝑈 → 𝐴 ∣ 𝑓 locally constant}.

Thus the rule which assigns to an open all locally constant maps into 𝐴 is a sheaf.

Definition 6.7.4. Let 𝑋 be a topological space. Let 𝐴 be a set. The constant sheaf with
value 𝐴 denoted 𝐴, or 𝐴𝑋 is the sheaf that assigns to an open 𝑈 ⊂ 𝑋 the set of all locally
constant maps 𝑈 → 𝐴 with restriction mappings given by restrictions of functions.

Example 6.7.5. Let 𝑋 be a topological space. Let (𝐴𝑥)𝑥∈𝑋 be a family of sets 𝐴𝑥 indexed
by points 𝑥 ∈ 𝑋. We are going to construct a sheaf of sets Π from this data. For 𝑈 ⊂ 𝑋
open set

Π(𝑈) = ∏𝑥∈𝑈
𝐴𝑥.

For 𝑉 ⊂ 𝑈 ⊂ 𝑋 open define a restriction mapping by the following rule: An element
𝑠 = (𝑎𝑥)𝑥∈𝑈 ∈ Π(𝑈) restricts to 𝑠|𝑉 = (𝑎𝑥)𝑥∈𝑉. It is obvious that this defines a presheaf
of sets. We claim this is a sheaf. Namely, let 𝑈 = ⋃ 𝑈𝑖 be an open covering. Suppose
that 𝑠𝑖 ∈ Π(𝑈𝑖) are such that 𝑠𝑖 and 𝑠𝑗 agree over 𝑈𝑖 ∩ 𝑈𝑗. Write 𝑠𝑖 = (𝑎𝑖,𝑥)𝑥∈𝑈𝑖

. The
compatibility condition implies that 𝑎𝑖,𝑥 = 𝑎𝑗,𝑥 in the set 𝐴𝑥 whenever 𝑥 ∈ 𝑈𝑖 ∩ 𝑈𝑗. Hence
there exists a unique element 𝑠 = (𝑎𝑥)𝑥∈𝑈 in Π(𝑈) = ∏𝑥∈𝑈 𝐴𝑥 with the property that
𝑎𝑥 = 𝑎𝑖,𝑥 whenever 𝑥 ∈ 𝑈𝑖 for some 𝑖. Of course this element 𝑠 has the property that
𝑠|𝑈𝑖

= 𝑠𝑖 for all 𝑖.

Example 6.7.6. Let 𝑋 be a topological space. Suppose for each 𝑥 ∈ 𝑋 we are given an
abelian group 𝑀𝑥. Consider the presheaf ℱ ∶ 𝑈 ↦ ⨁𝑥∈𝑈 𝑀𝑥 defined in Example 6.4.5.
This is not a sheaf in general. For example, if 𝑋 is an infinite set with the discrete topology,
then the sheaf condition would imply that ℱ(𝑋) = ∏𝑥∈𝑋 ℱ({𝑥}) but by definition we have
ℱ(𝑋) = ⨁𝑥∈𝑋 𝑀𝑥 = ⨁𝑥∈𝑋 ℱ({𝑥}). And an infinite direct sum is in general different
from an infinite direct product.

However, if 𝑋 is a topological space such that every open of 𝑋 is quasi-compact, then ℱ is
a sheaf. This is left as an exercise to the reader.

6.8. Abelian sheaves

Definition 6.8.1. Let 𝑋 be a topological space.
(1) An abelian sheaf on 𝑋 or sheaf of abelian groups on 𝑋 is an abelian presheaf on

𝑋 such that the underlying presheaf of sets is a sheaf.
(2) The category of sheaves of abelian groups is denoted Ab(𝑋).
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Let 𝑋 be a topological space. In the case of an abelian presheaf ℱ the sheaf condition with
regards to an open covering 𝑈 = ⋃ 𝑈𝑖 is often expressed by saying that the complex of
abelian groups

0 → ℱ(𝑈) → ∏𝑖
ℱ(𝑈𝑖) → ∏(𝑖0,𝑖1)

ℱ(𝑈𝑖0 ∩ 𝑈𝑖1)

is exact. The first map is the usual one, whereas the second maps the element (𝑠𝑖)𝑖∈𝐼 to the
element

(𝑠𝑖0|𝑈𝑖0∩𝑈𝑖1
− 𝑠𝑖1|𝑈𝑖0∩𝑈𝑖1

)(𝑖0,𝑖1) ∈ ∏(𝑖0,𝑖1)
ℱ(𝑈𝑖0 ∩ 𝑈𝑖1)

6.9. Sheaves of algebraic structures

Let us clarify the definition of sheaves of certain types of structures. First, let us reformulate
the sheaf condition. Namely, suppose that ℱ is a presheaf of sets on the topological space 𝑋.
The sheaf condition can be reformulated as follows. Let 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering.
Consider the diagram

ℱ(𝑈) // ∏𝑖∈𝐼 ℱ(𝑈𝑖)
//
// ∏(𝑖0,𝑖1)∈𝐼×𝐼 ℱ(𝑈𝑖0 ∩ 𝑈𝑖1)

Here the left map is defined by the rule 𝑠 ↦ ∏𝑖∈𝐼 𝑠|𝑈𝑖
. The two maps on the right are the

maps

∏𝑖
𝑠𝑖 ↦ ∏(𝑖0,𝑖1)

𝑠𝑖0|𝑈𝑖0∩𝑈𝑖1
resp. ∏𝑖

𝑠𝑖 ↦ ∏(𝑖0,𝑖1)
𝑠𝑖1|𝑈𝑖0∩𝑈𝑖1

.

The sheaf condition exactly says that the left arrow is the equalizer of the right two. This
generalizes immediately to the case of presheaves with values in a category as long as the
category has products.

Definition 6.9.1. Let 𝑋 be a topological space. Let 𝒞 be a category with products. A
presheaf ℱ with values in 𝒞 on 𝑋 is a sheaf if for every open covering the diagram

ℱ(𝑈) // ∏𝑖∈𝐼 ℱ(𝑈𝑖)
//
// ∏(𝑖0,𝑖1)∈𝐼×𝐼 ℱ(𝑈𝑖0 ∩ 𝑈𝑖1)

is an equalizer diagram in the category 𝒞.

Suppose that 𝒞 is a category and that 𝐹 ∶ 𝒞 → Sets is a faithful functor. A good example
to keep in mind is the case where 𝒞 is the category of abelian groups and 𝐹 is the forgetful
functor. Consider a presheaf ℱ with values in 𝒞 on 𝑋. We would like to reformulate the
condition above in terms of the underlying presheaf of sets (Definition 6.5.2). Note that the
underlying presheaf of sets is a sheaf of sets if and only if all the diagrams

𝐹(ℱ(𝑈)) // ∏𝑖∈𝐼 𝐹(ℱ(𝑈𝑖))
//
// ∏(𝑖0,𝑖1)∈𝐼×𝐼 𝐹(ℱ(𝑈𝑖0 ∩ 𝑈𝑖1))

of sets -- after applying the forgetful functor 𝐹 -- are equalizer diagrams! Thus we would
like 𝒞 to have products and equalizers and we would like 𝐹 to commute with them. This is
equivalent to the condition that 𝒞 has limits and that 𝐹 commutes with them, see Categories,
Lemma 4.13.10. But this is not yet good enough (see Example 6.9.4); we also need 𝐹 to
reflect isomorphisms. This property means that given a morphism 𝑓 ∶ 𝐴 → 𝐴′ in 𝒞, then
𝑓 is an isomorphism if (and only if) 𝐹(𝑓) is a bijection.

Lemma 6.9.2. Suppose the category 𝒞 and the functor 𝐹 ∶ 𝒞 → Sets have the following
properties:

(1) 𝐹 is faithful,
(2) 𝒞 has limits and 𝐹 commutes with them, and
(3) the functor 𝐹 reflects isomorphisms.
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Let 𝑋 be a topological space. Let ℱ be a presheaf with values in 𝒞. Then ℱ is a sheaf if
and only if the underlying presheaf of sets is a sheaf.

Proof. Assume that ℱ is a sheaf. Then ℱ(𝑈) is the equalizer of the diagram above and by
assumption we see 𝐹(ℱ(𝑈)) is the equalizer of the corresponding diagram of sets. Hence
𝐹(ℱ) is a sheaf of sets.

Assume that 𝐹(ℱ) is a sheaf. Let 𝐸 ∈ 𝑂𝑏(𝒞) be the equalizer of the two parrallel arrows in
Definition 6.9.1. We get a canonical morphism ℱ(𝑈) → 𝐸, simply because ℱ is a presheaf.
By assumption, the induced map 𝐹(ℱ(𝑈)) → 𝐹(𝐸) is an isomorphism, because 𝐹(𝐸) is the
equalizer of the corresponding diagram of sets. Hence we see ℱ(𝑈) → 𝐸 is an isomorphism
by condition (3) of the lemma. �

The lemma in particular applies to sheaves of groups, rings, algebras over a fixed ring,
modules over a fixed ring, vector spaces over a fixed field, etc. In other words, these are
presheaves of groups, rings, modules over a fixed ring, vector spaces over a fixed field, etc
such that the underlying presheaf of sets is a sheaf.

Example 6.9.3. Let 𝑋 be a topological space. For each open 𝑈 ⊂ 𝑋 consider the 𝐑-algebra
𝒞0(𝑈) = {𝑓 ∶ 𝑈 → 𝐑 ∣ 𝑓 is continuous}. There are obvious restriction mappings that turn
this into a presheaf of 𝐑-algebras over 𝑋. By Example 6.7.3 it is a sheaf of sets. Hence by
the Lemma 6.9.2 it is a sheaf of 𝐑-algebras over 𝑋.

Example 6.9.4. Consider the category of topological spaces Top. There is a natural faithful
functor Top → Sets which commutes with products and equalizers. But it does not reflect
isomorphisms. And, in fact it turns out that the analogue of Lemma 6.9.2 is wrong. Namely,
suppose 𝑋 = 𝐍 with the discrete topology. Let 𝐴𝑖, for 𝑖 ∈ 𝐍 be a discrete topological
space. For any subset 𝑈 ⊂ 𝐍 define ℱ(𝑈) = ∏𝑖∈𝑈 𝐴𝑖 with the discrete topology. Then
this is a presheaf of topological spaces whose underlying presheaf of sets is a sheaf, see
Example 6.7.5. However, if each 𝐴𝑖 has at least two elements, then this is not a sheaf of
topological spaces according to Definition 6.9.1. The reader may check that putting the
product topology on each ℱ(𝑈) = ∏𝑖∈𝑈 𝐴𝑖 does lead to a sheaf of topological spaces over
𝑋.

6.10. Sheaves of modules

Definition 6.10.1. Let 𝑋 be a topological space. Let 𝒪 be a sheaf of rings on 𝑋.
(1) A sheaf of 𝒪-modules is a presheaf of 𝒪-modules ℱ, see Definition 6.6.1, such

that the underlying presheaf of abelian groups ℱ is a sheaf.
(2) Amorphism of sheaves of 𝒪-modules is a morphism of presheaves of 𝒪-modules.
(3) Given sheaves of 𝒪-modules ℱ and 𝒢 we denote 𝐻𝑜𝑚𝒪(ℱ, 𝒢) the set of morphism

of sheaves of 𝒪-modules.
(4) The category of sheaves of 𝒪-modules is denoted Mod(𝒪).

This definition kind of makes sense even if 𝒪 is just a presheaf of rings, allthough we do not
know any examples where this is useful, and we will avoid using the terminology ``sheaves
of 𝒪-modules'' in case 𝒪 is not a sheaf of rings.

6.11. Stalks

Let 𝑋 be a topological space. Let 𝑥 ∈ 𝑋 be a point. Let ℱ be a presheaf of sets on 𝑋. The
stalk of ℱ at 𝑥 is the set

ℱ𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑥∈𝑈 ℱ(𝑈)
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where the colimit is over the set of open neighbourhoods 𝑈 of 𝑥 in 𝑋. The set of open
neighbourhoods is (partially) ordered by (reverse) inclusion: We say 𝑈 ≥ 𝑈′ ⇔ 𝑈 ⊂ 𝑈′.
The transition maps in the system are given by the restriction maps of ℱ. See Categories,
Section 4.19 for notation and terminology regarding (co)limits over systems. Note that the
colimit is a directed colimit. Thus it is easy to describe ℱ𝑥. Namely,

ℱ𝑥 = {(𝑈, 𝑠) ∣ 𝑥 ∈ 𝑈, 𝑠 ∈ ℱ(𝑈)}/ ∼

with equivalence relation given by (𝑈, 𝑠) ∼ (𝑈′, 𝑠′) if and only if 𝑠|𝑈∩𝑈′ = 𝑠′|𝑈∩𝑈′. By
abuse of notation we will often denote (𝑈, 𝑠), 𝑠𝑥, or even 𝑠 the corresponding element in ℱ𝑥.
Also we will say 𝑠 = 𝑠′ in ℱ𝑥 for two local sections of ℱ defined in an open neighbourhod
of 𝑥 to denote that they have the same image in ℱ𝑥.

An obvious consequence of this definition is that for any open 𝑈 ⊂ 𝑋 there is a canonical
map

ℱ(𝑈) ⟶ ∏𝑥∈𝑈
ℱ𝑥

defined by 𝑠 ↦ ∏𝑥∈𝑈(𝑈, 𝑠). Think about it!

Lemma 6.11.1. Let ℱ be a sheaf of sets on the topological space 𝑋. For every open 𝑈 ⊂ 𝑋
the map

ℱ(𝑈) ⟶ ∏𝑥∈𝑈
ℱ𝑥

is injective.

Proof. Suppose that 𝑠, 𝑠′ ∈ ℱ(𝑈) map to the same element in every stalk ℱ𝑥 for all 𝑥 ∈ 𝑈.
This means that for every 𝑥 ∈ 𝑈, there exists an open 𝑉𝑥 ⊂ 𝑈, 𝑥 ∈ 𝑉𝑥 such that 𝑠|𝑉𝑥 = 𝑠′|𝑉𝑥.
But then 𝑈 = ⋃𝑥∈𝑈 𝑉𝑥 is an open covering. Thus by the uniqueness in the sheaf condition
we see that 𝑠 = 𝑠′. �

Definition 6.11.2. Let 𝑋 be a topological space. A presheaf of sets ℱ on 𝑋 is separated if
for every open 𝑈 ⊂ 𝑋 the map ℱ(𝑈) → ∏𝑥∈𝑈 ℱ𝑥 is injective.

Another observation is that the construction of the stalk ℱ𝑥 is functorial in the presheaf ℱ.
In other words, it gives a functor

PSh(𝑋) ⟶ Sets, ℱ ⟼ ℱ𝑥.

This functor is called the stalk functor. Namely, if 𝜑 ∶ ℱ → 𝒢 is a morphism of presheaves,
then we define 𝜑𝑥 ∶ ℱ𝑥 → 𝒢𝑥 by the rule (𝑈, 𝑠) ↦ (𝑈, 𝜑(𝑠)). To see that this works we
have to check that if (𝑈, 𝑠) = (𝑈′, 𝑠′) in ℱ𝑥 then also (𝑈, 𝜑(𝑠)) = (𝑈′, 𝜑(𝑠′)) in 𝒢𝑥. This is
clear since 𝜑 is compatible with the restriction mappings.

Example 6.11.3. Let 𝑋 be a topological space. Let 𝐴 be a set. Denote temporarily 𝐴𝑝 the
constant presheaf with value 𝐴 (𝑝 for presheaf -- not for point). There is a canonical map of
presheaves 𝐴𝑝 → 𝐴 into the constant sheaf with value 𝐴. For evey point we have canonical
bijections 𝐴 = (𝐴𝑝)𝑥 = 𝐴𝑥, where the second map is induced by functoriality from the
map 𝐴𝑝 → 𝐴.

Example 6.11.4. Suppose 𝑋 = 𝐑𝑛 with the Euclidean topology. Consider the presheaf
of 𝒞∞ functions on 𝑋, denoted 𝒞∞

𝐑𝑛. In other words, 𝒞∞
𝐑𝑛(𝑈) is the set of 𝒞∞-functions

𝑓 ∶ 𝑈 → 𝐑. As in Example 6.7.3 it is easy to show that this is a sheaf. In fact it is a sheaf
of 𝐑-vector spaces.

Next, let 𝑥 ∈ 𝑋 = 𝐑𝑛 be a point. How do we think of an element in the stalk 𝒞∞
𝐑𝑛,𝑥?

Such an element is given by a 𝒞∞-function 𝑓 whose domain contains 𝑥. And a pair of such
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functions 𝑓, 𝑔 determine the same element of the stalk if they agree in a neighbourhood of
𝑥. In other words, an element if 𝒞∞

𝐑𝑛,𝑥 is the same thing as what is sometimes called a germ
of a 𝒞∞-function at 𝑥.

Example 6.11.5. Let 𝑋 be a topological space. Let 𝐴𝑥 be a set for each 𝑥 ∈ 𝑋. Consider
the sheaf ℱ ∶ 𝑈 ↦ ∏𝑥∈𝑈 𝐴𝑥 of Example 6.7.5. Wewould just like to point out here that the
stalk ℱ𝑥 of ℱ at 𝑥 is in general not equal to the set 𝐴𝑥. Of course there is a map ℱ𝑥 → 𝐴𝑥,
but that is in general the best you can say. For example, if each neighbourhood of 𝑥 has
infinitely many points, and each 𝐴𝑥′ has exactly two elements, then ℱ𝑥 has infinitely many
elements. (Left to the reader.) On the other hand, if every neighbourhood of 𝑥 contains a
point 𝑦 such that 𝐴𝑦 = ∅, then ℱ𝑥 = ∅.

6.12. Stalks of abelian presheaves

We first deal with the case of abelian groups as a model for the general case.

Lemma 6.12.1. Let 𝑋 be a topological space. Let ℱ be a presheaf of abelian groups on
𝑋. There exists a unique structure of an abelian group on ℱ𝑥 such that for every 𝑈 ⊂ 𝑋
open, 𝑥 ∈ 𝑈 the map ℱ(𝑈) → ℱ𝑥 is a group homomorphism. Moreover,

ℱ𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑥∈𝑈 ℱ(𝑈)

holds in the category of abelian groups.

Proof. We define addition of a pair of elements (𝑈, 𝑠) and (𝑉, 𝑡) as the pair (𝑈 ∩ 𝑉, 𝑠|𝑈∩𝑉 +
𝑡|𝑈∩𝑉). The rest is easy to check. �

What is crucial in the proof above is that the partially ordered set of open neighbourhoods
is a directed system (compare Categories, Definition 4.19.2). Namely, the coproduct of two
abelian groups 𝐴, 𝐵 is the direct sum 𝐴 ⊕ 𝐵, whereas the coproduct in the category of sets
is the disjoint union 𝐴 ∐ 𝐵, showing that colimits in the category of abelian groups do not
agree with colimits in the category of sets in general.

6.13. Stalks of presheaves of algebraic structures

The proof of Lemma 6.12.1 will work for any type of algebraic structure such that directed
colimits commute with the forgetful functor.

Lemma 6.13.1. Let 𝒞 be a category. Let 𝐹 ∶ 𝒞 → Sets be a functor. Assume that
(1) 𝐹 is faithful, and
(2) directed colimits exist in 𝒞 and 𝐹 commutes with them.

Let 𝑋 be a topological space. Let 𝑥 ∈ 𝑋. Let ℱ be a presheaf with values in 𝒞. Then

ℱ𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑥∈𝑈 ℱ(𝑈)

exists in 𝒞. Its underlying set is equal to the stalk of the underlying presheaf of sets of ℱ.
Furthermore, the construction ℱ ↦ ℱ𝑥 is a functor from the category of presheaves with
values in 𝒞 to 𝒞.

Proof. Omitted. �

By the very definition, all the morphisms ℱ(𝑈) → ℱ𝑥 are morphisms in the category 𝒞
which (after applying the forgetful functor 𝐹) turn into the corresponding maps for the
underlying sheaf of sets. As usual we will not distinguish between the morphism in 𝒞 and
the underlying map of sets, which is permitted since 𝐹 is faithful.
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This lemma applies in particular to: Presheaves of (not necessarily abelian) groups, rings,
modules over a fixed ring, vector spaces over a fixed field.

6.14. Stalks of presheaves of modules

Lemma 6.14.1. Let 𝑋 be a topological space. Let 𝒪 be a presheaf of rings on 𝑋 Let ℱ be
a presheaf 𝒪-modules. Let 𝑥 ∈ 𝑋. The canonical map 𝒪𝑥 × ℱ𝑥 → ℱ𝑥 coming from the
multiplication map 𝒪 × ℱ → ℱ defines a 𝒪𝑥-module structure on the abelian group ℱ𝑥.

Proof. Omitted. �

Lemma 6.14.2. Let 𝑋 be a topological space. Let 𝒪 → 𝒪′ be a morphism of presheaves
of rings on 𝑋 Let ℱ be a presheaf 𝒪-modules. Let 𝑥 ∈ 𝑋. We have

ℱ𝑥 ⊗𝒪𝑥
𝒪′

𝑥 = (ℱ ⊗𝑝,𝒪 𝒪′)𝑥

as 𝒪′
𝑥-modules.

Proof. Omitted. �

6.15. Algebraic structures

In this section we mildly formalize the notions we have encountered in the sections above.

Definition 6.15.1. A type of algebraic structure is given by a category 𝒞 and a functor
𝐹 ∶ 𝒞 → Sets with the following properties

(1) 𝐹 is faithful,
(2) 𝒞 has limits and 𝐹 commutes with limits,
(3) 𝒞 has filtered colimits and 𝐹 commutes with them, and
(4) 𝐹 reflects isomorphisms.

We make this definition to point out the properties we will use in a number of arguments
below. But we will not actually study this notion in any great detail, since we are prohibited
from studying ``big'' categories by convention, except for those listed in Categories, Remark
4.2.2. Among those the following have the required properties.

Lemma 6.15.2. The following categories, endowed with the obvious forgetful functor, de-
fine types of algebraic structures:

(1) The category of pointed sets.
(2) The category of abelian groups.
(3) The category of groups.
(4) The category of monoids.
(5) The category of rings.
(6) The category of 𝑅-modules for a fixed ring 𝑅.
(7) The category of Lie algebras over a fixed field.

Proof. Omitted. �

From now on we will think of a (pre)sheaf of algebraic structures and their stalks, in terms
of the underlying (pre)sheaf of sets. This is allowable by Lemmas 6.9.2 and 6.13.1.
In the rest of this section we point out some results on algebraic structures that will be useful
in the future.

Lemma 6.15.3. Let (𝒞, 𝐹) be a type of algebraic structure.
(1) 𝒞 has a final object 0 and 𝐹(0) = {∗}.
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(2) 𝒞 has products and 𝐹(∏ 𝐴𝑖) = ∏ 𝐹(𝐴𝑖).
(3) 𝒞 has fibre products and 𝐹(𝐴 ×𝐵 𝐶) = 𝐹(𝐴) ×𝐹(𝐵) 𝐹(𝐶).
(4) 𝒞 has equalizers, and if 𝐸 → 𝐴 is the equalizer of 𝑎, 𝑏 ∶ 𝐴 → 𝐵, then 𝐹(𝐸) →

𝐹(𝐴) is the equalizer of 𝐹(𝑎), 𝐹(𝑏) ∶ 𝐹(𝐴) → 𝐹(𝐵).
(5) 𝐴 → 𝐵 is a monomorphism if and only if 𝐹(𝐴) → 𝐹(𝐵) is injective.
(6) if 𝐹(𝑎) ∶ 𝐹(𝐴) → 𝐹(𝐵) is surjective, then 𝑎 is an epimorphism.
(7) given 𝐴1 → 𝐴2 → 𝐴3 → …, then 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 exists and 𝐹(𝑐𝑜𝑙𝑖𝑚 𝐴𝑖) = 𝑐𝑜𝑙𝑖𝑚 𝐹(𝐴𝑖),

and more generally for any filtered colimit.

Proof. Omitted. The only interesting statement is (5) which follows because 𝐴 → 𝐵 is a
monomorphism if and only if 𝐴 → 𝐴 ×𝐵 𝐴 is an isomorphism, and then applying the fact
that 𝐹 reflects isomorphisms. �

Lemma 6.15.4. Let (𝒞, 𝐹) be a type of algebraic structure. Suppose that 𝐴, 𝐵, 𝐶 ∈ 𝑂𝑏(𝒞).
Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐵 be morphisms of 𝒞. If 𝐹(𝑔) is injective, and Im(𝐹(𝑓)) ⊂
Im(𝐹(𝑔)), then 𝑓 factors as 𝑓 = 𝑔 ∘ 𝑡 for some morphism 𝑡 ∶ 𝐴 → 𝐶.

Proof. Consider 𝐴×𝐵𝐶. The assumptions imply that 𝐹(𝐴×𝐵𝐶) = 𝐹(𝐴)×𝐹(𝐵)𝐹(𝐶) = 𝐹(𝐴).
Hence 𝐴 = 𝐴 ×𝐵 𝐶 because 𝐹 reflects isomorphisms. The result follows. �

Example 6.15.5. The lemma will be applied often to the following situation. Suppose that
we have a diagram

𝐴 // 𝐵

��
𝐶 // 𝐷

in 𝒞. Suppose 𝐶 → 𝐷 is injective on underlying sets, and suppose that the composition
𝐴 → 𝐵 → 𝐷 has image on underlying sets in the image of 𝐶 → 𝐷. Then we get a
commutative diagram

𝐴 //

��

𝐵

��
𝐶 // 𝐷

in 𝒞.

Example 6.15.6. Let 𝐹 ∶ 𝒞 → Sets be a type of algebraic structures. Let 𝑋 be a topologi-
cal space. Suppose that for every 𝑥 ∈ 𝑋 we are given an object 𝐴𝑥 ∈ ob(𝒞). Consider the
presheaf Π with values in 𝒞 on 𝑋 defined by the rule Π(𝑈) = ∏𝑥∈𝑈 𝐴𝑥 (with obvious re-
striction mappings). Note that the associated presheaf of sets 𝑈 ↦ 𝐹(Π(𝑈)) = ∏𝑥∈𝑈 𝐹(𝐴𝑥)
is a sheaf by Example 6.7.5. Hence Π is a sheaf of algebraic structures of type (𝒞, 𝐹). This
gives many examples of sheaves of abelian groups, groups, rings, etc.

6.16. Exactness and points

In any category we have the notion of epimorphism, monomorphism, isomorphism, etc.

Lemma 6.16.1. Let 𝑋 be a topological space. Let 𝜑 ∶ ℱ → 𝒢 be a morphism of sheaves
of sets on 𝑋.

(1) The map 𝜑 is a monomorphism in the category of sheaves if and only if for all
𝑥 ∈ 𝑋 the map 𝜑𝑥 ∶ ℱ𝑥 → 𝒢𝑥 is injective.

(2) The map 𝜑 is an epimorphism in the category of sheaves if and only if for all
𝑥 ∈ 𝑋 the map 𝜑𝑥 ∶ ℱ𝑥 → 𝒢𝑥 is surjective.
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(3) The map 𝜑 is a isomorphism in the category of sheaves if and only if for all 𝑥 ∈ 𝑋
the map 𝜑𝑥 ∶ ℱ𝑥 → 𝒢𝑥 is bijective.

Proof. Omitted. �

It follows that in the category of sheaves of sets the notions epimorphism and monomor-
phism can be described as follows.

Definition 6.16.2. Let 𝑋 be a topological space.
(1) A presheaf ℱ is called a subpresheaf of a presheaf 𝒢 if ℱ(𝑈) ⊂ 𝒢(𝑈) for all open

𝑈 ⊂ 𝑋 such that the restriction maps of 𝒢 induce the restriction maps of ℱ. If ℱ
and 𝒢 are sheaves, then ℱ is called a subsheaf of 𝒢. We sometimes indicate this
by the notation ℱ ⊂ 𝒢.

(2) A morphism of presheaves of sets 𝜑 ∶ ℱ → 𝒢 on 𝑋 is called injective if and only
if ℱ(𝑈) → 𝒢(𝑈) is injective for all 𝑈 open in 𝑋.

(3) A morphism of presheaves of sets 𝜑 ∶ ℱ → 𝒢 on 𝑋 is called surjective if and
only if ℱ(𝑈) → 𝒢(𝑈) is surjective for all 𝑈 open in 𝑋.

(4) A morphism of sheaves of sets 𝜑 ∶ ℱ → 𝒢 on 𝑋 is called injective if and only if
ℱ(𝑈) → 𝒢(𝑈) is injective for all 𝑈 open in 𝑋.

(5) A morphism of sheaves of sets 𝜑 ∶ ℱ → 𝒢 on 𝑋 is called surjective if and only if
for every open 𝑈 of 𝑋 and every section 𝑠 of ℱ(𝑈) there exists an open covering
𝑈 = ⋃ 𝑈𝑖 such that 𝑠|𝑈𝑖

is in the image of ℱ(𝑈𝑖) → 𝒢(𝑈) for all 𝑖.

Lemma 6.16.3. Let 𝑋 be a topological space.
(1) Epimorphisms (resp. monomorphisms) in the category of presheaves are exactly

the surjective (resp. injective) maps of presheaves.
(2) Epimorphisms (resp. monomorphisms) in the category of sheaves are exactly the

surjective (resp. injective) maps of sheaves, and are exactly those maps with are
surjective (resp. injective) on all the stalks.

(3) The sheafification of a surjective (resp. injective) morphism of presheaves of sets
is surjective (resp. injective).

Proof. Omitted. �

Lemma 6.16.4. let 𝑋 be a topological space. Let (𝒞, 𝐹) be a type of algebraic structure.
Suppose that ℱ, 𝒢 are sheaves on 𝑋 with values in 𝒞. Let 𝜑 ∶ ℱ → 𝒢 be a map of the
underlying sheaves of sets. If for all points 𝑥 ∈ 𝑋 the map ℱ𝑥 → 𝒢𝑥 is a morphism of
algebraic structures, then 𝜑 is a morphism of sheaves of algebraic structures.

Proof. Let 𝑈 be an open subset of 𝑋. Consider the diagram of (underlying) sets

ℱ(𝑈) //

��

∏𝑥∈𝑈 ℱ𝑥

��
𝒢(𝑈) // ∏𝑥∈𝑈 𝒢𝑥

By assumption, and previous results, all but the left vertical arrow are morphisms of alge-
braic structures. In addition the bottom horizontal arrow is injective, see Lemma 6.11.1.
Hence we conclude by Lemma 6.15.4, see also Example 6.15.5 �

Short exact sequences of abelian sheaves, etc will be discussed in the chapter on sheaves of
modules. See Modules, Section 15.3.
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6.17. Sheafification

In this section we explain how to get the sheafification of a presheaf on a topological space.
We will use stalks to describe the sheafification in this case. This is different from the gen-
eral procedure described in Sites, Section 9.10, and perhaps somewhat easier to understand.

The basic construction is the following. Let ℱ be a presheaf of sets ℱ on a topological
space 𝑋. For every open 𝑈 ⊂ 𝑋 we define

ℱ#(𝑈) = {(𝑠𝑢) ∈ ∏𝑢∈𝑈
ℱ𝑢 such that (∗)}

where (∗) is the property:
(∗) For every 𝑢 ∈ 𝑈, there exists an open neighbourhood 𝑢 ∈ 𝑉 ⊂ 𝑈, and a section

𝜎 ∈ ℱ(𝑉) such that for all 𝑣 ∈ 𝑉 we have 𝑠𝑣 = (𝑉, 𝜎) in ℱ𝑣.
Note that (∗) is a condition for each 𝑢 ∈ 𝑈, and that given 𝑢 ∈ 𝑈 the truth of this condition
depends only on the values 𝑠𝑣 for 𝑣 in any open neighbourhood of 𝑢. Thus it is clear that,
if 𝑉 ⊂ 𝑈 ⊂ 𝑋 are open, the projection maps

∏𝑢∈𝑈
ℱ𝑢 ⟶ ∏𝑣∈𝑉

ℱ𝑣

maps elements of ℱ#(𝑈) into ℱ#(𝑉). In other words, we get the structure of a presheaf of
sets on ℱ#.

Furthermore, the map ℱ(𝑈) → ∏𝑢∈𝑈 ℱ𝑢 described in Section 6.11 clearly has image in
ℱ#(𝑈). In addition, if 𝑉 ⊂ 𝑈 ⊂ 𝑋 are open then we have the following commutative
diagram

ℱ(𝑈) //

��

ℱ#(𝑈) //

��

∏𝑢∈𝑈 ℱ𝑢

��
ℱ(𝑉) // ℱ#(𝑉) //∏𝑣∈𝑉 ℱ𝑣

where the vertical maps are induced from the restriction mappings. Thus we see that there
is a canonical morphism of presheaves ℱ → ℱ#.

In Example 6.7.5 we saw that the rule Π(ℱ) ∶ 𝑈 ↦ ∏𝑢∈𝑈 ℱ𝑢 is a sheaf, with obvious
restriction mappings. And by construction ℱ# is a subpresheaf of this. In other words, we
have morphisms of presheaves

ℱ → ℱ# → Π(ℱ).
In addition the rule that associates to ℱ the sequence above is clearly functorial in the
presheaf ℱ. This notation will be used in the proofs of the lemmas below.

Lemma 6.17.1. The presheaf ℱ# is a sheaf.

Proof. It is probably better for the reader to find their own explanation of this than to
read the proof here. In fact the lemma is true for the same reason as why the presheaf
of continuous function is a sheaf, see Example 6.7.3 (and this analogy can be made precise
using the ``espace étalé'').

Anyway, let 𝑈 = ⋃ 𝑈𝑖 be an open covering. Suppose that 𝑠𝑖 = (𝑠𝑖,𝑢)𝑢∈𝑈𝑖
∈ ℱ#(𝑈𝑖) such

that 𝑠𝑖 and 𝑠𝑗 agree over 𝑈𝑖 ∩𝑈𝑗. Because Π(ℱ) is a sheaf, we find an element 𝑠 = (𝑠𝑢)𝑢∈𝑈 in
∏𝑢∈𝑈 ℱ𝑢 restricting to 𝑠𝑖 on 𝑈𝑖. We have to check property (∗). Pick 𝑢 ∈ 𝑈. Then 𝑢 ∈ 𝑈𝑖
for some 𝑖. Hence by (∗) for 𝑠𝑖, there exists a 𝑉 open, 𝑢 ∈ 𝑉 ⊂ 𝑈𝑖 and a 𝜎 ∈ ℱ(𝑉) such that
𝑠𝑖,𝑣 = (𝑉, 𝜎) in ℱ𝑣 for all 𝑣 ∈ 𝑉. Since 𝑠𝑖,𝑣 = 𝑠𝑣 we get (∗) for 𝑠. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=007Y


6.18. SHEAFIFICATION OF ABELIAN PRESHEAVES 163

Lemma 6.17.2. Let 𝑋 be a topological space. Let ℱ be a presheaf of sets on 𝑋. Let 𝑥 ∈ 𝑋.
Then ℱ𝑥 = ℱ#

𝑥.

Proof. The map ℱ𝑥 → ℱ#
𝑥 is injective, since already the map ℱ𝑥 → Π(ℱ)𝑥 is injective.

Namely, there is a canonical map Π(ℱ)𝑥 → ℱ𝑥 which is a left inverse to the map ℱ𝑥 →
Π(ℱ)𝑥, see Example 6.11.5. To show that it is surjective, suppose that 𝑠 ∈ ℱ#

𝑥. We can find
an open neighbourhood 𝑈 of 𝑥 such that 𝑠 is the equivalence class of (𝑈, 𝑠) with 𝑠 ∈ ℱ#(𝑈).
By definition, this means there exists an open neighbourhood 𝑉 ⊂ 𝑈 of 𝑥 and a section
𝜎 ∈ ℱ(𝑉) such that 𝑠|𝑉 is the image of 𝜎 in Π(ℱ)(𝑉). Clearly the class of (𝑉, 𝜎) defines an
element of ℱ𝑥 mapping to 𝑠. �

Lemma 6.17.3. Let ℱ be a presheaf of sets on 𝑋. Any map ℱ → 𝒢 into a sheaf of sets
factors uniquely as ℱ → ℱ# → 𝒢.

Proof. Clearly, there is a commutative diagram

ℱ //

��

ℱ# //

��

Π(ℱ)

��
𝒢 // 𝒢# // Π(𝒢)

So it suffices to prove that 𝒢 = 𝒢#. To see this it suffices to prove, for every point 𝑥 ∈ 𝑋
the map 𝒢𝑥 → 𝒢#

𝑥 is bijective, by Lemma 6.16.1. And this is Lemma 6.17.2 above. �

This lemma really says that there is an adjoint pair of functors: 𝑖 ∶ Sh(𝑋) → PSh(𝑋)
(inclusion) and # ∶ PSh(𝑋) → Sh(𝑋) (sheafification). The formula is that

𝑀𝑜𝑟PSh(𝑋)(ℱ, 𝑖(𝒢)) = 𝑀𝑜𝑟Sh(𝑋)(ℱ#, 𝒢)

which says that sheafification is a left adjoint of the inclusion functor. See Categories,
Section 4.22.

Example 6.17.4. See Example 6.11.3 for notation. The map 𝐴𝑝 → 𝐴 induces a map
𝐴#

𝑝 → 𝐴. It is easy to see that this is an isomorphism. In words: The sheafification of the
constant presheaf with value 𝐴 is the constant sheaf with value 𝐴.

Lemma 6.17.5. Let 𝑋 be a topological space. A presheaf ℱ is separated (see Definition
6.11.2) if and only if the canonical map ℱ → ℱ# is injective.

Proof. This is clear from the construction of ℱ# in this section. �

6.18. Sheafification of abelian presheaves

The following strange looking lemma is likely unnecessary, but very convenient to deal
with sheafification of presheaves of algebraic structures.

Lemma 6.18.1. Let 𝑋 be a topological space. Let ℱ be a presheaf of sets on 𝑋. Let 𝑈 ⊂ 𝑋
be open. There is a canonical fibre product diagram

ℱ#(𝑈)

��

// Π(ℱ)(𝑈)

��
∏𝑥∈𝑈 ℱ𝑥

// ∏𝑥∈𝑈 Π(ℱ)𝑥

where the maps are the following:
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(1) The left vertical map has components ℱ#(𝑈) → ℱ#
𝑥 = ℱ𝑥 where the equality is

Lemma 6.17.2.
(2) The top horizontal map comes from the map of presheaves ℱ → Π(ℱ) described

in Section 6.17.
(3) The right vertical map has obvious component maps Π(ℱ)(𝑈) → Π(ℱ)𝑥.
(4) The bottom horizontal map has components ℱ𝑥 → Π(ℱ)𝑥 which come from the

map of presheaves ℱ → Π(ℱ) described in Section 6.17.

Proof. It is clear that the diagram commutes. We have to show it is a fibre product diagram.
The bottom horizontal arrow is injective since all the maps ℱ𝑥 → Π(ℱ)𝑥 are injective (see
beginning proof of Lemma 6.17.2). A section 𝑠 ∈ Π(ℱ)(𝑈) is in ℱ# if and only if (∗) holds.
But (∗) says that around every point the section 𝑠 comes from a section of ℱ. By definition
of the stalk functors, this is equivalent to saying that the value of 𝑠 in every stalk Π(ℱ)𝑥
comes from an element of the stalk ℱ𝑥. Hence the lemma. �

Lemma 6.18.2. Let 𝑋 be a topological space. Let ℱ be an abelian presheaf on 𝑋. Then
there exists a unique structure of abelian sheaf on ℱ# such that ℱ → ℱ# is a morphism of
abelian presheaves. Moreover, the following adjointness property holds

𝑀𝑜𝑟PAb(𝑋)(ℱ, 𝑖(𝒢)) = 𝑀𝑜𝑟Ab(𝑋)(ℱ#, 𝒢).

Proof. Recall the sheaf of sets Π(ℱ) defined in Section 6.17. All the stalks ℱ𝑥 are abelian
groups, see Lemma 6.12.1. Hence Π(ℱ) is a sheaf of abelian groups by Example 6.15.6.
Also, it is clear that the map ℱ → Π(ℱ) is a morphism of abelian presheaves. If we show
that condition (∗) of Section 6.17 defines a subgroup of Π(ℱ)(𝑈) for all open subsets 𝑈 ⊂ 𝑋,
then ℱ# canonically inherits the structure of abelian sheaf. This is quite easy to do by hand,
and we leave it to the reader to find a good simple argument. The argument we use here,
which generalizes to presheaves of algebraic structures is the following: Lemma 6.18.1
show that ℱ#(𝑈) is the fibre product of a diagram of abelian groups. Thus ℱ# is an abelian
subgroup as desired.

Note that at this point ℱ#
𝑥 is an abelian group by Lemma 6.12.1 and that ℱ𝑥 → ℱ#

𝑥 is a
bijection (Lemma 6.17.2) and a homomorphism of abelian groups. Hence ℱ𝑥 → ℱ#

𝑥 is an
isomorphism of abelian groups. This will be used below without further mention.

To prove the adjointness propertywe use the adjointness property of sheafification of presheaves
of sets. For example if 𝜓 ∶ ℱ → 𝑖(𝒢) is morphism of presheaves then we obtain a mor-
phism of sheaves 𝜓′ ∶ ℱ# → 𝒢. What we have to do is to check that this is a morphism of
abelian sheaves. We may do this for example by noting that it is true on stalks, by Lemma
6.17.2, and then using Lemma 6.16.4 above. �

6.19. Sheafification of presheaves of algebraic structures

Lemma 6.19.1. Let 𝑋 be a topological space. Let (𝒞, 𝐹) be a type of algebraic structure.
Let ℱ be a presheaf with values in 𝒞 on 𝑋. Then there exists a sheaf ℱ# with values in 𝒞
and a morphism ℱ → ℱ# of presheaves with values in 𝒞 with the following properties:

(1) The map ℱ → ℱ# identifies the underlying sheaf of sets of ℱ# with the sheafifi-
cation of the underlying presheaf of sets of ℱ.

(2) For any morphism ℱ → 𝒢, where 𝒢 is a sheaf with values in 𝒞 there exists a
unique factorization ℱ → ℱ# → 𝒢.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0085
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0087


6.20. SHEAFIFICATION OF PRESHEAVES OF MODULES 165

Proof. The proof is the same as the proof of Lemma 6.18.2, with repeated application of
Lemma 6.15.4 (see also Example 6.15.5). The main idea however, is to define ℱ#(𝑈) as
the fibre product in 𝒞 of the diagram

Π(ℱ)(𝑈)

��
∏𝑥∈𝑈 ℱ𝑥

// ∏𝑥∈𝑈 Π(ℱ)𝑥

compare Lemma 6.18.1. �

6.20. Sheafification of presheaves of modules

Lemma 6.20.1. Let 𝑋 be a topological space. Let 𝒪 be a presheaf of rings on 𝑋 Let ℱ be
a presheaf 𝒪-modules. Let 𝒪# be the sheafification of 𝒪. Let ℱ# be the sheafification of ℱ
as a presheaf of abelian groups. There exists a map of sheaves of sets

𝒪# × ℱ# ⟶ ℱ#

which makes the diagram
𝒪 × ℱ //

��

ℱ

��
𝒪# × ℱ# // ℱ#

commute and which makes ℱ# into a sheaf of 𝒪#-modules. In addition, if 𝒢 is a sheaf of
𝒪#-modules, then any morphism of presheaves of 𝒪-modules ℱ → 𝒢 (into the restriction
of 𝒢 to a 𝒪-module) factors uniquely as ℱ → ℱ# → 𝒢 where ℱ# → 𝒢 is a morphism of
𝒪#-modules.

Proof. Omitted. �

This actually means that the functor 𝑖 ∶ Mod(𝒪#) → PMod(𝒪) (combining restriction
and including sheaves into presheaves) and the sheafification functor of the lemma # ∶
PMod(𝒪) → Mod(𝒪#) are adjoint. In a formula

𝑀𝑜𝑟PMod(𝒪)(ℱ, 𝑖𝒢) = 𝑀𝑜𝑟Mod(𝒪#)(ℱ#, 𝒢)

Let 𝑋 be a topological space. Let 𝒪1 → 𝒪2 be a morphism of sheaves of rings on 𝑋. In
Section 6.6 we defined a restriction functor and a change of rings functor on presheaves of
modules associated to this situation.

If ℱ is a sheaf of 𝒪2-modules then the restriction ℱ𝒪1
of ℱ is clearly a sheaf of 𝒪1-modules.

We obtain the restriction functor

Mod(𝒪2) ⟶ Mod(𝒪1)

On the other hand, given a sheaf of 𝒪1-modules 𝒢 the presheaf of 𝒪2-modules 𝒪2 ⊗𝑝,𝒪1
𝒢

is in general not a sheaf. Hence we define the tensor product sheaf 𝒪2 ⊗𝒪1
𝒢 by the formula

𝒪2 ⊗𝒪1
𝒢 = (𝒪2 ⊗𝑝,𝒪1

𝒢)#

as the sheafification of our construction for presheaves. We obtain the change of rings
functor

Mod(𝒪1) ⟶ Mod(𝒪2)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0089


166 6. SHEAVES ON SPACES

Lemma 6.20.2. With 𝑋, 𝒪1, 𝒪2, ℱ and 𝒢 as above there exists a canonical bijection

𝐻𝑜𝑚𝒪1
(𝒢, ℱ𝒪1

) = 𝐻𝑜𝑚𝒪2
(𝒪2 ⊗𝒪1

𝒢, ℱ)

In other words, the restriction and change of rings functors are adjoint to each other.

Proof. This follows fromLemma 6.6.2 and the fact that𝐻𝑜𝑚𝒪2
(𝒪2⊗𝒪1

𝒢, ℱ) = 𝐻𝑜𝑚𝒪2
(𝒪2⊗𝑝,𝒪1

𝒢, ℱ) because ℱ is a sheaf. �

Lemma 6.20.3. Let 𝑋 be a topological space. Let 𝒪 → 𝒪′ be a morphism of sheaves of
rings on 𝑋 Let ℱ be a sheaf 𝒪-modules. Let 𝑥 ∈ 𝑋. We have

ℱ𝑥 ⊗𝒪𝑥
𝒪′

𝑥 = (ℱ ⊗𝒪 𝒪′)𝑥

as 𝒪′
𝑥-modules.

Proof. Follows directly from Lemma 6.14.2 and the fact that taking stalks commutes with
sheafification. �

6.21. Continuous maps and sheaves

Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. We will define the push forward
and pull back functors for presheaves and sheaves.

Let ℱ be a presheaf of sets on 𝑋. We define the pushforward of ℱ by the rule

𝑓∗ℱ(𝑉) = ℱ(𝑓−1(𝑉))

for any open 𝑉 ⊂ 𝑌. Given 𝑉1 ⊂ 𝑉2 ⊂ 𝑌 open the restriction map is given by the commu-
tativity of the diagram

𝑓∗ℱ(𝑉2)

��

ℱ(𝑓−1(𝑉2))

restriction for ℱ
��

𝑓∗ℱ(𝑉1) ℱ(𝑓−1(𝑉1))

It is clear that this defines a presheaf of sets. The construction is clearly functorial in the
presheaf ℱ and hence we obtain a functor

𝑓∗ ∶ PSh(𝑋) ⟶ PSh(𝑌).

Lemma 6.21.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. Let ℱ be a sheaf of sets on 𝑋. Then
𝑓∗ℱ is a sheaf on 𝑌.

Proof. This immediately follows from the fact that if 𝑉 = ⋃ 𝑉𝑗 is an open covering in 𝑌,
then 𝑓−1(𝑉) = ⋃ 𝑓−1(𝑉𝑗) is an open covering in 𝑋. �

As a consequence we obtain a functor

𝑓∗ ∶ Sh(𝑋) ⟶ Sh(𝑌).

This is compatible with composition in the following strong sense.

Lemma 6.21.2. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be continuous maps of topological spaces.
The functors (𝑔 ∘ 𝑓)∗ and 𝑔∗ ∘ 𝑓∗ are equal (on both presheaves and sheaves of sets).

Proof. This is because (𝑔 ∘ 𝑓)∗ℱ(𝑊) = ℱ((𝑔 ∘ 𝑓)−1𝑊) and (𝑔∗ ∘ 𝑓∗)ℱ(𝑊) = ℱ(𝑓−1𝑔−1𝑊)
and (𝑔 ∘ 𝑓)−1𝑊 = 𝑓−1𝑔−1𝑊. �
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Let 𝒢 be a presheaf of sets on 𝑌. The pullback presheaf 𝑓𝑝𝒢 of a given presheaf 𝒢 is
defined as the left adjoint of the pushforward 𝑓∗ on presheaves. In other words it should be
a presheaf 𝑓𝑝𝒢 on 𝑋 such that

𝑀𝑜𝑟PSh(𝑋)(𝑓𝑝𝒢, ℱ) = 𝑀𝑜𝑟PSh(𝑌)(𝒢, 𝑓∗ℱ).

By the Yoneda lemma this determines the pullback uniquely. It turns out that it actually
exists.

Lemma 6.21.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. There exists a functor 𝑓𝑝 ∶ PSh(𝑌) →
PSh(𝑋) which is right adjoint to 𝑓∗. For a presheaf 𝒢 it is determined by the rule

𝑓𝑝𝒢(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑓(𝑈)⊂𝑉 𝒢(𝑉)

where the colimit is over the collection of open neighbourhoods 𝑉 of 𝑓(𝑈) in 𝑌. The colimits
are over directed partially ordered sets. (The restriction mappings of 𝑓𝑝𝒢 are explained in
the proof.)

Proof. The colimit is over the partially ordered set consisting of open subset 𝑉 ⊂ 𝑌 which
contain 𝑓(𝑈) with ordering by reverse inclusion. This is a directed partially ordered set,
since if 𝑉, 𝑉′ are in it then so is 𝑉 ∩ 𝑉′. Furthermore, if 𝑈1 ⊂ 𝑈2, then every open neigh-
bourhood of 𝑓(𝑈2) is an open neighbourhood of 𝑓(𝑈1). Hence the system defining 𝑓𝑝𝒢(𝑈2)
is a subsystem of the one defining 𝑓𝑝𝒢(𝑈1) and we obtain a restiction map (for example by
applying the generalities in Categories, Lemma 4.13.7).

Note that the construction of the colimit is clearly functorial in 𝒢, and similarly for the
restriction mappings. Hence we have defined 𝑓𝑝 as a functor.

A small useful remark is that there exists a canonical map 𝒢(𝑈) → 𝑓𝑝𝒢(𝑓−1(𝑈)), because
the system of open neighbourhoods of 𝑓(𝑓−1(𝑈)) contains the element 𝑈. This is compati-
ble with restriction mappings. In other words, there is a canonical map 𝑖𝒢 ∶ 𝒢 → 𝑓∗𝑓𝑝𝒢.

Let ℱ be a presheaf of sets on 𝑋. Suppose that 𝜓 ∶ 𝑓𝑝𝒢 → ℱ is a map of presheaves of
sets. The corresponding map 𝒢 → 𝑓∗ℱ is the map 𝑓∗𝜓 ∘ 𝑖𝒢 ∶ 𝒢 → 𝑓∗𝑓𝑝𝒢 → 𝑓∗ℱ.

Another small useful remark is that there exists a canonical map 𝑐ℱ ∶ 𝑓𝑝𝑓∗ℱ → ℱ. Namely,
let 𝑈 ⊂ 𝑋 open. For every open neighbourhood 𝑉 ⊃ 𝑓(𝑈) in 𝑌 there exists a map 𝑓∗ℱ(𝑉) =
ℱ(𝑓−1(𝑉)) → ℱ(𝑈), namely the restriction map on ℱ. And this is certainly compatible wrt
restriction mappings between values of ℱ on 𝑓−1 of varying opens containing 𝑓(𝑈). Thus
we obtain a canonical map 𝑓𝑝𝑓∗ℱ(𝑈) → ℱ(𝑈). Another trivial verification show that these
maps are compatible with restrictions and define a map 𝑐ℱ of presheaves of sets.

Suppose that 𝜑 ∶ 𝒢 → 𝑓∗ℱ is a map of presheaves of sets. Consider 𝑓𝑝𝜑 ∶ 𝑓𝑝𝒢 → 𝑓𝑝𝑓∗ℱ.
Postcomposingwith 𝑐ℱ gives the desiredmap 𝑐ℱ∘𝑓𝑝𝜑 ∶ 𝑓𝑝𝒢 → ℱ. We omit the verification
that this construction is inverse to the construction in the other direction given above. �

Lemma 6.21.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. Let 𝑥 ∈ 𝑋. Let 𝒢 be a presheaf of
sets on 𝑌. There is a canonical bijection of stalks (𝑓𝑝𝒢)𝑥 = 𝒢𝑓(𝑥).

Proof. This you can see as follows

(𝑓𝑝𝒢)𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑥∈𝑈 𝑓𝑝𝒢(𝑈)
= 𝑐𝑜𝑙𝑖𝑚𝑥∈𝑈 𝑐𝑜𝑙𝑖𝑚𝑓(𝑈)⊂𝑉 𝒢(𝑉)
= 𝑐𝑜𝑙𝑖𝑚𝑓(𝑥)∈𝑉 𝒢(𝑉)
= 𝒢𝑓(𝑥)
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Here we have used Categories, Lemma 4.13.9, and the fact that any 𝑉 open in 𝑌 containing
𝑓(𝑥) occurs in the third description above. Details omitted. �

Let 𝒢 be a sheaf of sets on 𝑌. The pullback sheaf 𝑓−1𝒢 is defined by the formula

𝑓−1𝒢 = (𝑓𝑝𝒢)#.

Sheafification is a left adjoint to the inclusion of sheaves in presheaves, and 𝑓𝑝 is a left
adjoint to 𝑓∗ on presheaves. As a formal consequence we obtain that 𝑓−1 is a left adjoint
of pushforward on sheaves. In other words,

𝑀𝑜𝑟Sh(𝑋)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Sh(𝑌)(𝒢, 𝑓∗ℱ).

The formal argument is given in the setting of abelian sheaves in the next section.

Lemma 6.21.5. Let 𝑥 ∈ 𝑋. Let 𝒢 be a sheaf of sets on 𝑌. There is a canonical bijection of
stalks (𝑓−1𝒢)𝑥 = 𝒢𝑓(𝑥).

Proof. This is a combination of Lemmas 6.17.2 and 6.21.4. �

Lemma 6.21.6. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be continuous maps of topological spaces.
The functors (𝑔 ∘ 𝑓)−1 and 𝑓−1 ∘ 𝑔−1 are canonically isomorphic. Similarly (𝑔 ∘ 𝑓)𝑝 ≅ 𝑓𝑝 ∘ 𝑔𝑝
on presheaves.

Proof. To see this use that adjoint functors are unique up to unique isomorphism, and
Lemma 6.21.2. �

Definition 6.21.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. Let ℱ be a sheaf of sets on 𝑋 and
let 𝒢 be a sheaf of sets on 𝑌. An 𝑓-map 𝜉 ∶ 𝒢 → ℱ is a collection of maps 𝜉𝑉 ∶ 𝒢(𝑉) →
ℱ(𝑓−1(𝑉)) indexed by open subsets 𝑉 ⊂ 𝑌 such that

𝒢(𝑉)
𝜉𝑉
//

restriction of 𝒢
��

ℱ(𝑓−1𝑉)

restriction of ℱ
��

𝒢(𝑉′)
𝜉𝑉′ // ℱ(𝑓−1𝑉′)

commutes for all 𝑉′ ⊂ 𝑉 ⊂ 𝑌 open.

Lemma 6.21.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. Let ℱ be a sheaf of sets on 𝑋 and let
𝒢 be a sheaf of sets on 𝑌. There are canonical bijections between the following three sets:

(1) The set of maps 𝒢 → 𝑓∗ℱ.
(2) The set of maps 𝑓−1𝒢 → ℱ.
(3) The set of 𝑓-maps 𝜉 ∶ 𝒢 → ℱ.

Proof. We leave the easy verification to the reader. �

It is sometimes convenient to think about 𝑓-maps instead of maps between sheaves either
on 𝑋 or on 𝑌. We define composition of 𝑓-maps as follows.

Definition 6.21.9. Suppose that 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are continuous maps of
topological spaces. Suppose that ℱ is a sheaf on 𝑋, 𝒢 is a sheaf on 𝑌, and ℋ is a sheaf on
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𝑍. Let 𝜑 ∶ 𝒢 → ℱ be an 𝑓-map. Let 𝜓 ∶ ℋ → 𝒢 be an 𝑔-map. The composition of 𝜑 and
𝜓 is the (𝑔 ∘ 𝑓)-map 𝜑 ∘ 𝜓 defined by the commutativity of the diagrams

ℋ(𝑊)
(𝜑∘𝜓)𝑊

//

𝜓𝑊 $$

ℱ(𝑓−1𝑔−1𝑊)

𝒢(𝑔−1𝑊)

𝜑𝑔−1𝑊

88

We leave it to the reader to verify that this works. Another way to think about this is to
think of 𝜑 ∘ 𝜓 as the composition

ℋ
𝜓

−→ 𝑔∗𝒢
𝑔∗𝜑

−−−→ 𝑔∗𝑓∗ℱ = (𝑔 ∘ 𝑓)∗ℱ

Now, doesn't it seem that thinking about 𝑓-maps is somehow easier?

Finally, given a continuous map 𝑓 ∶ 𝑋 → 𝑌, and an 𝑓-map 𝜑 ∶ 𝒢 → ℱ there is a natural
map on stalks

𝜑𝑥 ∶ 𝒢𝑓(𝑥) ⟶ ℱ𝑥
for all 𝑥 ∈ 𝑋. The image of a representative (𝑉, 𝑠) of an element in 𝒢𝑓(𝑥) is mapped to the
element in ℱ𝑥 with representative (𝑓−1𝑉, 𝜑𝑉(𝑠)). We leave it to the reader to see that this
is well defined. Another way to state it is that it is the unique map such that all diagrams

ℱ(𝑓−1𝑉) // ℱ𝑥

𝒢(𝑉) //

𝜑𝑉

OO

𝒢𝑓(𝑥)

𝜑𝑥

OO

(for 𝑥 ∈ 𝑉 ⊂ 𝑌 open) commute.

Lemma 6.21.10. Suppose that 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are continuous maps of
topological spaces. Suppose that ℱ is a sheaf on 𝑋, 𝒢 is a sheaf on 𝑌, and ℋ is a sheaf on
𝑍. Let 𝜑 ∶ 𝒢 → ℱ be an 𝑓-map. Let 𝜓 ∶ ℋ → 𝒢 be an 𝑔-map. Let 𝑥 ∈ 𝑋 be a point. The
map on stalks (𝜑 ∘ 𝜓)𝑥 ∶ ℋ𝑔(𝑓(𝑥)) → ℱ𝑥 is the composition

ℋ𝑔(𝑓(𝑥))
𝜓𝑓(𝑥)

−−−−→ 𝒢𝑓(𝑥)
𝜑𝑥−−→ ℱ𝑥

Proof. Immediate fromDefinition 6.21.9 and the definition of themap on stalks above. �

6.22. Continuous maps and abelian sheaves

Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. We claim there are functors

𝑓∗ ∶ PAb(𝑋) ⟶ PAb(𝑌)
𝑓∗ ∶ Ab(𝑋) ⟶ Ab(𝑌)

𝑓𝑝 ∶ PAb(𝑌) ⟶ PAb(𝑋)

𝑓−1 ∶ Ab(𝑌) ⟶ Ab(𝑋)

with similar properties to their counterparts in Section 6.21. To see this we argue in the
following way.

Each of the functors will be constructed in the same way as the corresponding functor in
Section 6.21. This works because all the colimits in that section are directed colimits (but
we will work through it below).
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First off, given an abelian presheaf ℱ on 𝑋 and an abelian presheaf 𝒢 on 𝑌 we define

𝑓∗ℱ(𝑉) = ℱ(𝑓−1(𝑉))
𝑓𝑝𝒢(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑓(𝑈)⊂𝑉 𝒢(𝑉)

as abelian groups. The restriction mappings are the same as the restriction mappings for
presheaves of sets (and they are all homomorphisms of abelian groups).

The assignments ℱ ↦ 𝑓∗ℱ and 𝒢 → 𝑓𝑝𝒢 are functors on the categories of presheaves of
abelian groups. This is clear, as (for example) a map of abelian presheaves 𝒢1 → 𝒢2 gives
rise to a map of directed systems {𝒢1(𝑉)}𝑓(𝑈)⊂𝑉 → {𝒢2(𝑉)}𝑓(𝑈)⊂𝑉 all of whose maps are
homomorphisms and hence gives rise to a homomorphism of abelian groups 𝑓𝑝𝒢1(𝑈) →
𝑓𝑝𝒢2(𝑈).

The functors 𝑓∗ and 𝑓𝑝 are adjoint on the category of presheaves of abelian groups, i.e., we
have

𝑀𝑜𝑟PAb(𝑋)(𝑓𝑝𝒢, ℱ) = 𝑀𝑜𝑟PAb(𝑌)(𝒢, 𝑓∗ℱ).
To prove this, note that the map 𝑖𝒢 ∶ 𝒢 → 𝑓∗𝑓𝑝𝒢 from the proof of Lemma 6.21.3 is a
map of abelian presheaves. Hence if 𝜓 ∶ 𝑓𝑝𝒢 → ℱ is a map of abelian presheaves, then
the corresponding map 𝒢 → 𝑓∗ℱ is the map 𝑓∗𝜓 ∘ 𝑖𝒢 ∶ 𝒢 → 𝑓∗𝑓𝑝𝒢 → 𝑓∗ℱ is also a map
of abelian presheaves. For the other direction we point out that the map 𝑐ℱ ∶ 𝑓𝑝𝑓∗ℱ → ℱ
from the proof of Lemma 6.21.3 is a map of abelian presheaves as well (since it is made out
of restriction mappings of ℱ which are all homomorphisms). Hence given a map of abelian
presheaves 𝜑 ∶ 𝒢 → 𝑓∗ℱ the map 𝑐ℱ ∘ 𝑓𝑝𝜑 ∶ 𝑓𝑝𝒢 → ℱ is a map of abelian presheaves as
well. Since these constructions 𝜓 ↦ 𝑓∗𝜓 and 𝜑 ↦ 𝑐ℱ ∘ 𝑓𝑝𝜑 are inverse to each other as
constructions on maps of presheaves of sets we see they are also inverse to each other on
maps of abelian presheaves.

If ℱ is an abelian sheaf on 𝑌, then 𝑓∗ℱ is an abelian sheaf on 𝑋. This is true because of
the definition of an abelian sheaf and because this is true for sheaves of sets, see Lemma
6.21.1. This defines the functor 𝑓∗ on the category of abelian sheaves.

We define 𝑓−1𝒢 = (𝑓𝑝𝒢)# as before. Adjointness of 𝑓∗ and 𝑓−1 follows formally as in the
case of presheaves of sets. Here is the argument:

𝑀𝑜𝑟Ab(𝑋)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟PAb(𝑋)(𝑓𝑝𝒢, ℱ)
= 𝑀𝑜𝑟PAb(𝑌)(𝒢, 𝑓∗ℱ)
= 𝑀𝑜𝑟Ab(𝑌)(𝒢, 𝑓∗ℱ)

Lemma 6.22.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map.
(1) Let 𝒢 be an abelian presheaf on 𝑌. Let 𝑥 ∈ 𝑋. The bijection 𝒢𝑓(𝑥) → (𝑓𝑝𝒢)𝑥 of

Lemma 6.21.4 is an isomorphism of abelian groups.
(2) Let 𝒢 be an abelian sheaf on 𝑌. Let 𝑥 ∈ 𝑋. The bijection 𝒢𝑓(𝑥) → (𝑓−1𝒢)𝑥 of

Lemma 6.21.5 is an isomorphism of abelian groups.

Proof. Omitted. �

Given a continuous map 𝑓 ∶ 𝑋 → 𝑌 and sheaves of abelian groups ℱ on 𝑋, 𝒢 on 𝑌, the
notion of an 𝑓-map 𝒢 → ℱ of sheaves of abelian groups makes sense. We can just define
it exactly as in Definition 6.21.7 (replacing maps of sets with homomorphisms of abelian
groups) or we can simply say that it is the same as a map of abelian sheaves 𝒢 → 𝑓∗ℱ. We
will use this notion freely in the following. The group of 𝑓-maps between 𝒢 and ℱ will be
in canonical bijection with the groups 𝑀𝑜𝑟Ab(𝑋)(𝑓−1𝒢, ℱ) and 𝑀𝑜𝑟Ab(𝑌)(𝒢, 𝑓∗ℱ).
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Composition of 𝑓-maps is defined in exactly the same manner as in the case of 𝑓-maps of
sheaves of sets. In addition, given an 𝑓-map 𝒢 → ℱ as above, the induced maps on stalks

𝜑𝑥 ∶ 𝒢𝑓(𝑥) ⟶ ℱ𝑥

are abelian group homomorphisms.

6.23. Continuous maps and sheaves of algebraic structures

Let (𝒞, 𝐹) be a type of algebraic structure. For a topological space 𝑋 let us introduce the
notation:

(1) PSh(𝑋, 𝒞) will be the category of presheaves with values in 𝒞.
(2) Sh(𝑋, 𝒞) will be the category of sheaves with values in 𝒞.

Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. The same arguments as in the
previous section show there are functors

𝑓∗ ∶ PSh(𝑋, 𝒞) ⟶ PSh(𝑌, 𝒞)
𝑓∗ ∶ Sh(𝑋, 𝒞) ⟶ Sh(𝑌, 𝒞)

𝑓𝑝 ∶ PSh(𝑌, 𝒞) ⟶ PSh(𝑋, 𝒞)

𝑓−1 ∶ Sh(𝑌, 𝒞) ⟶ Sh(𝑋, 𝒞)

constructed in the same manner and with the same properties as the functors constructed
for abelian (pre)sheaves. In particular there are commutative diagrams

PSh(𝑋, 𝒞)
𝑓∗ //

𝐹
��

PSh(𝑌, 𝒞)

𝐹
��

Sh(𝑋, 𝒞)
𝑓∗ //

𝐹
��

Sh(𝑌, 𝒞)

𝐹
��

PSh(𝑋)
𝑓∗ // PSh(𝑌) Sh(𝑋)

𝑓∗ // Sh(𝑌)

PSh(𝑌, 𝒞)
𝑓𝑝 //

𝐹
��

PSh(𝑋, 𝒞)

𝐹
��

Sh(𝑌, 𝒞)
𝑓−1
//

𝐹
��

Sh(𝑋, 𝒞)

𝐹
��

PSh(𝑌)
𝑓𝑝 // PSh(𝑋) Sh(𝑌)

𝑓−1
// Sh(𝑋)

The main formulas to keep in mind are the following

𝑓∗ℱ(𝑉) = ℱ(𝑓−1(𝑉))
𝑓𝑝𝒢(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑓(𝑈)⊂𝑉 𝒢(𝑉)

𝑓−1𝒢 = (𝑓𝑝𝒢)#

(𝑓𝑝𝒢)𝑥 = 𝒢𝑓(𝑥)

(𝑓−1𝒢)𝑥 = 𝒢𝑓(𝑥)

Each of these formulas has the property that they hold in the category 𝒞 and that upon
taking underlying sets we get the corresponding formula for presheaves of sets. In addition
we have the adjointness properties

𝑀𝑜𝑟PSh(𝑋,𝒞)(𝑓𝑝𝒢, ℱ) = 𝑀𝑜𝑟PSh(𝑌,𝒞)(𝒢, 𝑓∗ℱ)

𝑀𝑜𝑟Sh(𝑋,𝒞)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Sh(𝑌,𝒞)(𝒢, 𝑓∗ℱ).
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To prove these, the main step is to construct the maps
𝑖𝒢 ∶ 𝒢 ⟶ 𝑓∗𝑓𝑝𝒢

and
𝑐ℱ ∶ 𝑓𝑝𝑓∗ℱ ⟶ ℱ

which occur in the proof of Lemma 6.21.3 as morphisms of presheaves with values in 𝒞.
This may be safely left to the reader since the constructions are exactly the same as in the
case of presheaves of sets.
Given a continuous map 𝑓 ∶ 𝑋 → 𝑌 and sheaves of algebraic structures ℱ on 𝑋, 𝒢 on 𝑌,
the notion of an 𝑓-map 𝒢 → ℱ of sheaves of algebraic structuresmakes sense. We can just
define it exactly as in Definition 6.21.7 (replacing maps of sets with morphisms in 𝒞) or we
can simply say that it is the same as a map of sheaves of algebraic structures 𝒢 → 𝑓∗ℱ. We
will use this notion freely in the following. The set of 𝑓-maps between 𝒢 and ℱ will be in
canonical bijection with the sets 𝑀𝑜𝑟Sh(𝑋,𝒞)(𝑓−1𝒢, ℱ) and 𝑀𝑜𝑟Sh(𝑌,𝒞)(𝒢, 𝑓∗ℱ).
Composition of 𝑓-maps is defined in exactly the same manner as in the case of 𝑓-maps of
sheaves of sets. In addition, given an 𝑓-map 𝒢 → ℱ as above, the induced maps on stalks

𝜑𝑥 ∶ 𝒢𝑓(𝑥) ⟶ ℱ𝑥

are homomorphisms of algebraic structures.

Lemma 6.23.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Suppose given
sheaves of algebraic structures ℱ on 𝑋, 𝒢 on 𝑌. Let 𝜑 ∶ 𝒢 → ℱ be an 𝑓-map of underlying
sheaves of sets. If for every 𝑉 ⊂ 𝑌 open the map of sets 𝜑𝑉 ∶ 𝒢(𝑉) → ℱ(𝑓−1𝑉) is the effect
of a morphism in 𝒞 on underlying sets, then 𝜑 comes from a unique 𝑓-morphism between
sheaves of algebraic structures.

Proof. Omitted. �

6.24. Continuous maps and sheaves of modules

The case of sheaves of modules is more complicated. The reason is that the natural setting
for defining the pullback and pushforward functors, is the setting of ringed spaces, which
we will define below. First we state a few obvious lemmas.

Lemma 6.24.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝒪 be
a presheaf of rings on 𝑋. Let ℱ be a presheaf of 𝒪-modules. There is a natural map of
underlying presheaves of sets

𝑓∗𝒪 × 𝑓∗ℱ ⟶ 𝑓∗ℱ
which turns 𝑓∗ℱ into a presheaf of 𝑓∗𝒪-modules. This construction is functorial in ℱ.

Proof. Let 𝑉 ⊂ 𝑌 is open. We define the map of the lemma to be the map
𝑓∗𝒪(𝑉) × 𝑓∗ℱ(𝑉) = 𝒪(𝑓−1𝑉) × ℱ(𝑓−1𝑉) → ℱ(𝑓−1𝑉) = 𝑓∗ℱ(𝑉).

Here the arrow in the middle is the multiplication map on 𝑋. We leave it to the reader to
see this is compatible with restriction mappings and defines a structure of 𝑓∗𝒪-module on
𝑓∗ℱ. �

Lemma 6.24.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝒪 be
a presheaf of rings on 𝑌. Let 𝒢 be a presheaf of 𝒪-modules. There is a natural map of
underlying presheaves of sets

𝑓𝑝𝒪 × 𝑓𝑝𝒢 ⟶ 𝑓𝑝𝒢
which turns 𝑓𝑝𝒢 into a presheaf of 𝑓𝑝𝒪-modules. This construction is functorial in 𝒢.
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Proof. Let 𝑈 ⊂ 𝑋 is open. We define the map of the lemma to be the map

𝑓𝑝𝒪(𝑈) × 𝑓𝑝𝒢(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑓(𝑈)⊂𝑉 𝒪(𝑉) × 𝑐𝑜𝑙𝑖𝑚𝑓(𝑈)⊂𝑉 𝒢(𝑉)
= 𝑐𝑜𝑙𝑖𝑚𝑓(𝑈)⊂𝑉(𝒪(𝑉) × 𝒢(𝑉))
→ 𝑐𝑜𝑙𝑖𝑚𝑓(𝑈)⊂𝑉 𝒢(𝑉)
= 𝑓𝑝𝒢(𝑈).

Here the arrow in the middle is the multiplication map on 𝑌. The second equality holds
because directed colimits commute with finite limits, see Categories, Lemma 4.17.2. We
leave it to the reader to see this is compatible with restriction mappings and defines a struc-
ture of 𝑓𝑝𝒪-module on 𝑓𝑝𝒢. �

Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. Let 𝒪𝑋 be a presheaf of rings on 𝑋 and let 𝒪𝑌 be a
presheaf of rings on 𝑌. So at the moment we have defined functors

𝑓∗ ∶ PMod(𝒪𝑋) ⟶ PMod(𝑓∗𝒪𝑋)
𝑓𝑝 ∶ PMod(𝒪𝑌) ⟶ PMod(𝑓𝑝𝒪𝑌)

These satisfy some compatibilities as follows.

Lemma 6.24.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝒪 be
a presheaf of rings on 𝑌. Let 𝒢 be a presheaf of 𝒪-modules. Let ℱ be a presheaf of
𝑓𝑝𝒪-modules. Then

𝑀𝑜𝑟PMod(𝑓𝑝𝒪)(𝑓𝑝𝒢, ℱ) = 𝑀𝑜𝑟PMod(𝒪)(𝒢, 𝑓∗ℱ).

Here we use Lemmas 6.24.2 and 6.24.1, and we think of 𝑓∗ℱ as an 𝒪-module via the map
𝑖𝒪 ∶ 𝒪 → 𝑓∗𝑓𝑝𝒪 (defined first in the proof of Lemma 6.21.3).

Proof. Note that we have

𝑀𝑜𝑟PAb(𝑋)(𝑓𝑝𝒢, ℱ) = 𝑀𝑜𝑟PAb(𝑌)(𝒢, 𝑓∗ℱ).

according to Section 6.22. So what we have to prove is that under this correspondence, the
subsets of module maps correspond. In addition, the correspondence is determined by the
rule

(𝜓 ∶ 𝑓𝑝𝒢 → ℱ) ⟼ (𝑓∗𝜓 ∘ 𝑖𝒢 ∶ 𝒢 → 𝑓∗𝑓𝑝𝒢 → 𝑓∗ℱ)
Hence, using the functoriality of the pushforwardwe see that it suffices to prove that themap
𝑖𝒢 ∶ 𝒢 → 𝑓∗𝑓𝑝𝒢 is compatible with module structure, which we leave to the reader. �

Lemma 6.24.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝒪 be
a presheaf of rings on 𝑋. Let ℱ be a presheaf of 𝒪-modules. Let 𝒢 be a presheaf of
𝑓∗𝒪-modules. Then

𝑀𝑜𝑟PMod(𝒪)(𝒪 ⊗𝑝,𝑓𝑝𝑓∗𝒪 𝑓𝑝𝒢, ℱ) = 𝑀𝑜𝑟PMod(𝑓∗𝒪)(𝒢, 𝑓∗ℱ).

Here we use Lemmas 6.24.2 and 6.24.1, and we use the map 𝑐𝒪 ∶ 𝑓𝑝𝑓∗𝒪 → 𝒪 in the
definition of the tensor product.

Proof. This follows from the equalities

𝑀𝑜𝑟PMod(𝒪)(𝒪 ⊗𝑝,𝑓𝑝𝑓∗𝒪 𝑓𝑝𝒢, ℱ) = 𝑀𝑜𝑟PMod(𝑓𝑝𝑓∗𝒪)(𝑓𝑝𝒢, ℱ𝑓𝑝𝑓∗𝒪)
= 𝑀𝑜𝑟PMod(𝑓∗𝒪)(𝒢, 𝑓∗ℱ).

which is a combination of Lemmas 6.6.2 and 6.24.3. �
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Lemma 6.24.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝒪 be a
sheaf of rings on 𝑋. Let ℱ be a sheaf of 𝒪-modules. The pushforward 𝑓∗ℱ, as defined in
Lemma 6.24.1 is a sheaf of 𝑓∗𝒪-modules.

Proof. Obvious from the definition and Lemma 6.21.1. �

Lemma 6.24.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝒪 be a
sheaf of rings on 𝑌. Let 𝒢 be a sheaf of 𝒪-modules. There is a natural map of underlying
presheaves of sets

𝑓−1𝒪 × 𝑓−1𝒢 ⟶ 𝑓−1𝒢

which turns 𝑓−1𝒢 into a sheaf of 𝑓−1𝒪-modules.

Proof. Recall that 𝑓−1 is defined as the composition of the functor 𝑓𝑝 and sheafification.
Thus the lemma is a combination of Lemma 6.24.2 and Lemma 6.20.1. �

Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. Let 𝒪𝑋 be a sheaf of rings on 𝑋 and let 𝒪𝑌 be a sheaf
of rings on 𝑌. So now we have defined functors

𝑓∗ ∶ Mod(𝒪𝑋) ⟶ Mod(𝑓∗𝒪𝑋)
𝑓−1 ∶ Mod(𝒪𝑌) ⟶ Mod(𝑓−1𝒪𝑌)

These satisfy some compatibilities as follows.

Lemma 6.24.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝒪 be a
sheaf of rings on 𝑌. Let 𝒢 be a sheaf of 𝒪-modules. Let ℱ be a sheaf of 𝑓−1𝒪-modules.
Then

𝑀𝑜𝑟Mod(𝑓−1𝒪)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝒪)(𝒢, 𝑓∗ℱ).

Here we use Lemmas 6.24.6 and 6.24.5, and we think of 𝑓∗ℱ as an 𝒪-module by restriction
via 𝒪 → 𝑓∗𝑓−1𝒪.

Proof. Argue by the equalities

𝑀𝑜𝑟Mod(𝑓−1𝒪)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝑓𝑝𝒪)(𝑓𝑝𝒢, ℱ)
= 𝑀𝑜𝑟Mod(𝒪)(𝒢, 𝑓∗ℱ).

where the second is Lemmas 6.24.3 and the first is by Lemma 6.20.1. �

Lemma 6.24.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let 𝒪 be a
sheaf of rings on 𝑋. Let ℱ be a sheaf of 𝒪-modules. Let 𝒢 be a sheaf of 𝑓∗𝒪-modules. Then

𝑀𝑜𝑟Mod(𝒪)(𝒪 ⊗𝑓−1𝑓∗𝒪 𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝑓∗𝒪)(𝒢, 𝑓∗ℱ).

Here we use Lemmas 6.24.6 and 6.24.5, and we use the canonical map 𝑓−1𝑓∗𝒪 → 𝒪 in the
definition of the tensor product.

Proof. This follows from the equalities

𝑀𝑜𝑟Mod(𝒪)(𝒪 ⊗𝑓−1𝑓∗𝒪 𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝑓−1𝑓∗𝒪)(𝑓−1𝒢, ℱ𝑓−1𝑓∗𝒪)
= 𝑀𝑜𝑟Mod(𝑓∗𝒪)(𝒢, 𝑓∗ℱ).

which are a combination of Lemma 6.20.2 and 6.24.7. �
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Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. Let 𝒪𝑋 be a (pre)sheaf of rings on 𝑋 and let 𝒪𝑌 be a
(pre)sheaf of rings on 𝑌. So at the moment we have defined functors

𝑓∗ ∶ PMod(𝒪𝑋) ⟶ PMod(𝑓∗𝒪𝑋)
𝑓∗ ∶ Mod(𝒪𝑋) ⟶ Mod(𝑓∗𝒪𝑋)

𝑓𝑝 ∶ PMod(𝒪𝑌) ⟶ PMod(𝑓𝑝𝒪𝑌)

𝑓−1 ∶ Mod(𝒪𝑌) ⟶ Mod(𝑓−1𝒪𝑌)

Clearly, usually the pair of functors (𝑓∗, 𝑓−1) on sheaves of modules are not adjoint, because
their target categories do not match. Namely, as we saw above, it works only if by some
miracle the sheaves of rings 𝒪𝑋, 𝒪𝑌 satisfy the relations 𝒪𝑋 = 𝑓−1𝒪𝑌 and 𝒪𝑌 = 𝑓∗𝒪𝑋. This
is almost never true in practice. We interrupt the discussion to define the correct notion of
morphism for which a suitable adjoint pair of functors on sheaves of modules exists.

6.25. Ringed spaces

Let 𝑋 be a topological space and let 𝒪𝑋 be a sheaf of rings on 𝑋. We are supposed to think
of the sheaf of rings 𝒪𝑋 as a sheaf of functions on 𝑋. And if 𝑓 ∶ 𝑋 → 𝑌 is a ``suitable''
map, then by composition a function on 𝑌 turns into a function on 𝑋. Thus there should be
a natural 𝑓-map from 𝒪𝑌 to 𝒪𝑋 See Definition 6.21.7, and the remarks in previous sections
for terminology. For a precise example, see Example 6.25.2 below. Here is the relevant
abstract definition.

Definition 6.25.1. A ringed space is a pair (𝑋, 𝒪𝑋) consisting of a topological space 𝑋
and a sheaf of rings 𝒪𝑋 on 𝑋. A morphism of ringed spaces (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) is a pair
consisting of a continuousmap 𝑓 ∶ 𝑋 → 𝑌 and an 𝑓-map of sheaves of rings 𝑓♯ ∶ 𝒪𝑌 → 𝒪𝑋.

Example 6.25.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Consider
the sheaves of continuous real valued functions 𝒞0

𝑋 on 𝑋 and 𝒞0
𝑌 on 𝑌, see Example 6.9.3.

We claim that there is a natural 𝑓-map 𝑓♯ ∶ 𝒞0
𝑌 → 𝒞0

𝑋 associated to 𝑓. Namely, we simply
define it by the rule

𝒞0
𝑌(𝑉) ⟶ 𝒞0

𝑋(𝑓−1𝑉)
ℎ ⟼ ℎ ∘ 𝑓

Stricly speaking we should write 𝑓♯(ℎ) = ℎ∘𝑓|𝑓−1(𝑉). It is clear that this is a family of maps
as in Definition 6.21.7 and compatible with the 𝐑-algebra structures. Hence it is an 𝑓-map
of sheaves of 𝐑-algebras, see Lemma 6.23.1.
Of course there are lots of other situations where there is a canonical morphism of ringed
spaces associated to a geometrical type ofmorphism. For example, if𝑀, 𝑁 are𝒞∞-manifolds
and 𝑓 ∶ 𝑀 → 𝑁 is a infinitely differentiable map, then 𝑓 induces a canonical morphism of
ringed spaces (𝑀, 𝒞∞

𝑀) → (𝑁, 𝒞∞
𝑁). The construction (which is identical to the above) is

left to the reader.

It may not be completely obvious how to compose morphisms of ringed spaces hence we
spell it out here.

Definition 6.25.3. Let (𝑓, 𝑓♯) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) and (𝑔, 𝑔♯) ∶ (𝑌, 𝒪𝑌) → (𝑍, 𝒪𝑍) be
morphisms of ringed spaces. Thenwe define the composition of morphisms of ringed spaces
by the rule

(𝑔, 𝑔♯) ∘ (𝑓, 𝑓♯) = (𝑔 ∘ 𝑓, 𝑓♯ ∘ 𝑔♯).
Here we use composition of 𝑓-maps defined in Definition 6.21.9.
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6.26. Morphisms of ringed spaces and modules

We have now introduced enough notation so that we are able to define the pullback and
pushforward of modules along a morphism of ringed spaces.

Definition 6.26.1. Let (𝑓, 𝑓♯) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces.
(1) Let ℱ be a sheaf of 𝒪𝑋-modules. We define the pushforward of ℱ as the sheaf

of 𝒪𝑌-modules which as a sheaf of abelian groups equals 𝑓∗ℱ and with module
structure given by the restriction via 𝑓♯ ∶ 𝒪𝑌 → 𝑓∗𝒪𝑋 of the module structure
given in Lemma 6.24.5.

(2) Let 𝒢 be a sheaf of 𝒪𝑌-modules. We define the pullback 𝑓∗𝒢 to be the sheaf of
𝒪𝑋-modules defined by the formula

𝑓∗ℱ = 𝒪𝑋 ⊗𝑓−1𝒪𝑌
𝑓−1ℱ

where the ring map 𝑓−1𝒪𝑌 → 𝒪𝑋 is the map corresponding to 𝑓♯, and where the
module structure is given by Lemma 6.24.6.

Thus we have defined functors
𝑓∗ ∶ Mod(𝒪𝑋) ⟶ Mod(𝒪𝑌)
𝑓∗ ∶ Mod(𝒪𝑌) ⟶ Mod(𝒪𝑋)

The final result on these functors is that they are indeed adjoint as expected.

Lemma 6.26.2. Let (𝑓, 𝑓♯) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. Let ℱ be
a sheaf of 𝒪𝑋-modules. Let 𝒢 be a sheaf of 𝒪𝑌-modules. There is a canonical bijection

𝐻𝑜𝑚𝒪𝑋
(𝑓∗𝒢, ℱ) = 𝐻𝑜𝑚𝒪𝑌

(𝒢, 𝑓∗ℱ).

In other words: the functor 𝑓∗ is the left adjoint to 𝑓∗.

Proof. This follows from the work we did before:
𝐻𝑜𝑚𝒪𝑋

(𝑓∗𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝒪𝑋)(𝒪𝑋 ⊗𝑓−1𝒪𝑌
𝑓−1𝒢, ℱ)

= 𝑀𝑜𝑟Mod(𝑓−1𝒪𝑌)(𝑓−1𝒢, ℱ𝑓−1𝒪𝑌
)

= 𝐻𝑜𝑚𝒪𝑌
(𝒢, 𝑓∗ℱ).

Here we use Lemmas 6.20.2 and 6.24.7. �

Lemma 6.26.3. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms of ringed spaces. The
functors (𝑔 ∘ 𝑓)∗ and 𝑔∗ ∘ 𝑓∗ are equal. There is a canonical isomorphism of functors
(𝑔 ∘ 𝑓)∗ ≅ 𝑓∗ ∘ 𝑔∗.

Proof. The result on pushforwards is a consequence of Lemma 6.21.2 and our definitions.
The result on pullbacks follows from this by the same argument as in the proof of Lemma
6.21.6. �

Given amorphism of ringed spaces (𝑓, 𝑓♯) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌), and a sheaf of 𝒪𝑋-modules
ℱ, a sheaf of 𝒪𝑌-modules 𝒢 on 𝑌, the notion of an 𝑓-map 𝜑 ∶ 𝒢 → ℱ of sheaves of modules
makes sense. We can just define it as an 𝑓-map 𝜑 ∶ 𝒢 → ℱ of abelian sheaves such that
for all open 𝑉 ⊂ 𝑌 the map

𝒢(𝑉) ⟶ ℱ(𝑓−1𝑉)
is an 𝒪𝑌(𝑉)-module map. Here we think of ℱ(𝑓−1𝑉) as an 𝒪𝑌(𝑉)-module via the map 𝑓♯

𝑉 ∶
𝒪𝑌(𝑉) → 𝒪𝑋(𝑓−1𝑉). The set of 𝑓-maps between 𝒢 and ℱ will be in canonical bijection
with the sets 𝑀𝑜𝑟Mod(𝒪𝑋)(𝑓∗𝒢, ℱ) and 𝑀𝑜𝑟Mod(𝒪𝑌)(𝒢, 𝑓∗ℱ). See above.
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Composition of 𝑓-maps is defined in exactly the same manner as in the case of 𝑓-maps of
sheaves of sets. In addition, given an 𝑓-map 𝒢 → ℱ as above, and 𝑥 ∈ 𝑋 the induced map
on stalks

𝜑𝑥 ∶ 𝒢𝑓(𝑥) ⟶ ℱ𝑥
is an𝒪𝑌,𝑓(𝑥)-modulemapwhere the𝒪𝑌,𝑓(𝑥)-module structure onℱ𝑥 comes from the𝒪𝑋,𝑥-module
structure via the map 𝑓♯

𝑥 ∶ 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥. Here is a related lemma.

Lemma 6.26.4. Let (𝑓, 𝑓♯) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. Let 𝒢 be
a sheaf of 𝒪𝑌-modules. Let 𝑥 ∈ 𝑋. Then

𝑓∗𝒢𝑥 = ℱ𝑓(𝑥) ⊗𝒪𝑌,𝑓(𝑥),𝑓
♯
𝑥

𝒪𝑋,𝑥

as 𝒪𝑋,𝑥-modules.

Proof. This follows from Lemma 6.20.3 and the identification of the stalks of pullback
sheaves at 𝑥 with the corresponding stalks at 𝑓(𝑥). See the formulae in Section 6.23 for
example. �

6.27. Skyscraper sheaves and stalks

Definition 6.27.1. Let 𝑋 be a topological space.
(1) Let 𝑥 ∈ 𝑋 be a point. Denote 𝑖𝑥 ∶ {𝑥} → 𝑋 the inclusion map. Let 𝐴 be a set

and think of 𝐴 as a sheaf on the one point space {𝑥}. We call 𝑖𝑥,∗𝐴 the skyscraper
sheaf at 𝑥 with value 𝐴.

(2) If in (1) above 𝐴 is an abelian group then we think of 𝑖𝑥,∗𝐴 as a sheaf of abelian
groups on 𝑋.

(3) If in (1) above 𝐴 is an algebraic structure then we think of 𝑖𝑥,∗𝐴 as a sheaf of
algeberaic structures.

(4) If (𝑋, 𝒪𝑋) is a ringed space, then we think of 𝑖𝑥 ∶ {𝑥} → 𝑋 as a morphism of
ringed spaces ({𝑥}, 𝒪𝑋,𝑥) → (𝑋, 𝒪𝑋) and if 𝐴 is a 𝒪𝑋,𝑥-module, then we think of
𝑖𝑥,∗𝐴 as a sheaf of 𝒪𝑋-modules.

(5) We say a sheaf of sets ℱ is a skyscraper sheaf if there exists an point 𝑥 of 𝑋 and
a set 𝐴 such that ℱ ≅ 𝑖𝑥,∗𝐴.

(6) We say a sheaf of abelian groups ℱ is a skyscraper sheaf if there exists an point
𝑥 of 𝑋 and an abelian group 𝐴 such that ℱ ≅ 𝑖𝑥,∗𝐴 as sheaves of abelian groups.

(7) We say a sheaf of algebraic structures ℱ is a skyscraper sheaf if there exists an
point 𝑥 of 𝑋 and an algebraic structure 𝐴 such that ℱ ≅ 𝑖𝑥,∗𝐴 as sheaves of
algebraic structures.

(8) If (𝑋, 𝒪𝑋) is a ringed space and ℱ is a sheaf of 𝒪𝑋-modules, then we say ℱ is
a skyscraper sheaf if there exists a point 𝑥 ∈ 𝑋 and a 𝒪𝑋,𝑥-module 𝐴 such that
ℱ ≅ 𝑖𝑥,∗𝐴 as sheaves of 𝒪𝑋-modules.

Lemma 6.27.2. Let 𝑋 be a topological space, 𝑥 ∈ 𝑋 a point, and 𝐴 a set. For any point
𝑥′ ∈ 𝑋 the stalk of the skyscraper sheaf at 𝑥 with value 𝐴 at 𝑥′ is

(𝑖𝑥,∗𝐴)𝑥′ =
{

𝐴 if 𝑥′ ∈ {𝑥}
{∗} if 𝑥′∉{𝑥}

A similar description holds for the case of abelian groups, algebraic structures and sheaves
of modules.

Proof. Omitted. �
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Lemma 6.27.3. Let 𝑋 be a topological space, and let 𝑥 ∈ 𝑋 a point. The functors ℱ ↦ ℱ𝑥
and 𝐴 ↦ 𝑖𝑥,∗𝐴 are adjoint. In a formula

𝑀𝑜𝑟Sets(ℱ𝑥, 𝐴) = 𝑀𝑜𝑟Sh(𝑋)(ℱ, 𝑖𝑥,∗𝐴).
A similar satement holds for the case of abelian groups, algebraic structures. In the case
of sheaves of modules we have

𝐻𝑜𝑚𝒪𝑋,𝑥
(ℱ𝑥, 𝐴) = 𝐻𝑜𝑚𝒪𝑋

(ℱ, 𝑖𝑥,∗𝐴).

Proof. Omitted. Hint: The stalk functor can be seen as the pullback functor for the mor-
phism 𝑖𝑥 ∶ {𝑥} → 𝑋. Then the adjointness follows from adjointness of 𝑖−1

𝑥 and 𝑖𝑥,∗ (resp.
𝑖∗
𝑥 and 𝑖𝑥,∗ in the case of sheaves of modules. �

6.28. Limits and colimits of presheaves

Let 𝑋 be a topological space. Let ℐ → PSh(𝑋), 𝑖 ↦ ℱ𝑖 be a diagram.
(1) Both 𝑙𝑖𝑚𝑖 ℱ𝑖 and 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 exist.
(2) For any open 𝑈 ⊂ 𝑋 we have

(𝑙𝑖𝑚𝑖 ℱ𝑖)(𝑈) = 𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈)
and

(𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈).
(3) Let 𝑥 ∈ 𝑋 be a point. In general the stalk of 𝑙𝑖𝑚𝑖 ℱ𝑖 at 𝑥 is not equal to the limit

of the stalks. But if the diagram category is finite then it is the case. In other
words, the stalk functor is left exact (see Categories, Definition 4.21.1).

(4) Let 𝑥 ∈ 𝑋. We always have
(𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖,𝑥.

The proofs are all easy.

6.29. Limits and colimits of sheaves

Let 𝑋 be a topological space. Let ℐ → Sh(𝑋), 𝑖 ↦ ℱ𝑖 be a diagram.
(1) Both 𝑙𝑖𝑚𝑖 ℱ𝑖 and 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 exist.
(2) The inclusion functor 𝑖 ∶ Sh(𝑋) → PSh(𝑋) commutes with limits. In other

words, we may compute the limit in the category of sheaves as the limit in the
category of presheaves. In particular, for any open 𝑈 ⊂ 𝑋 we have

(𝑙𝑖𝑚𝑖 ℱ𝑖)(𝑈) = 𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈).
(3) The inclusion functor 𝑖 ∶ Sh(𝑋) → PSh(𝑋) does not commute with colimits in

general (not even with finite colimits -- think surjections). The colimit is com-
puted as the sheafification of the colimit in the category of presheaves:

𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 = (𝑈 ↦ 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈))
#
.

(4) Let 𝑥 ∈ 𝑋 be a point. In general the stalk of 𝑙𝑖𝑚𝑖 ℱ𝑖 at 𝑥 is not equal to the limit
of the stalks. But if the diagram category is finite then it is the case. In other
words, the stalk functor is left exact.

(5) Let 𝑥 ∈ 𝑋. We always have
(𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖,𝑥.

(6) The sheafification functor # ∶ PSh(𝑋) → Sh(𝑋) commutes with all colimits, and
with finite limits. But it does not commute with all limits.
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The proofs are all easy. Here is an example of what is true for directed colimits of sheaves.

Lemma 6.29.1. Let 𝑋 be a topological space. Let 𝐼 be a directed partially ordered set. Let
(ℱ𝑖, 𝜑𝑖𝑖′) be a system of sheaves of sets over 𝐼, see Categories, Section 4.19. Let 𝑈 ⊂ 𝑋 be
an open subset. Consider the canonical map

Ψ ∶ 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈) ⟶ (𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖) (𝑈)

(1) If all the transition maps are injective then Ψ is injective for any open 𝑈.
(2) If 𝑈 is quasi-compact, then Ψ is injective.
(3) If 𝑈 is quasi-compact and all the transition maps are injective then Ψ is an iso-

morphism.
(4) If 𝑈 has a cofinal system of open coverings 𝒰 ∶ 𝑈 = ⋃𝑗∈𝐽 𝑈𝑗 with 𝐽 finite and

𝑈𝑗 ∩ 𝑈𝑗′ quasi-compact for all 𝑗, 𝑗′ ∈ 𝐽, then Ψ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf ℱ′ ∶ 𝑉 ↦
𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖(𝑉) is separated (see Definition 6.11.2). By the discussion above we have (ℱ′)# =
𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖. By Lemma 6.17.5 we see that ℱ′ → (ℱ′)# is injective. This proves (1).

Assume 𝑈 is quasi-compact. Suppose that 𝑠 ∈ ℱ𝑖(𝑈) and 𝑠′ ∈ ℱ𝑖′(𝑈) give rise to elements
on the left hand side which have the same image under Ψ. Since 𝑈 is quasi-compact this
means there exists a finite open covering 𝑈 = ⋃𝑗=1,…,𝑚 𝑈𝑗 and for each 𝑗 an index 𝑖𝑗 ∈ 𝐼,
𝑖𝑗 ≥ 𝑖, 𝑖𝑗 ≥ 𝑖′ such that 𝜑𝑖𝑖𝑗(𝑠) = 𝜑𝑖′𝑖𝑗(𝑠

′). Let 𝑖″ ∈ 𝐼 be ≥ than all of the 𝑖𝑗. We conclude
that 𝜑𝑖𝑖″(𝑠) and 𝜑𝑖′𝑖″(𝑠) agree on the opens 𝑈𝑗 for all 𝑗 and hence that 𝜑𝑖𝑖″(𝑠) = 𝜑𝑖′𝑖″(𝑠).
This proves (2).

Assume 𝑈 is quasi-compact and all transition maps injective. Let 𝑠 be an element of the
target of Ψ. Since 𝑈 is quasi-compact there exists a finite open covering 𝑈 = ⋃𝑗=1,…,𝑚 𝑈𝑗,
for each 𝑗 an index 𝑖𝑗 ∈ 𝐼 and 𝑠𝑗 ∈ ℱ𝑖𝑗(𝑈𝑗) such that 𝑠|𝑈𝑗

comes from 𝑠𝑗 for all 𝑗. Pick 𝑖 ∈ 𝐼
which is ≥ than all of the 𝑖𝑗. By (1) the sections 𝜑𝑖𝑗𝑖(𝑠𝑗) agree over the overlaps 𝑈𝑗 ∩ 𝑈𝑗′.
Hence they glue to a section 𝑠′ ∈ ℱ𝑖(𝑈) which maps to 𝑠 under Ψ. This proves (3).

Assume the hypothesis of (4). Let 𝑠 be an element of the target of Ψ. By assumption there
exists a finite open covering 𝑈 = ⋃𝑗=1,…,𝑚 𝑈𝑗, with 𝑈𝑗 ∩𝑈𝑗′ quasi-compact for all 𝑗, 𝑗′ ∈ 𝐽
and for each 𝑗 an index 𝑖𝑗 ∈ 𝐼 and 𝑠𝑗 ∈ ℱ𝑖𝑗(𝑈𝑗) such that 𝑠|𝑈𝑗

is the image of 𝑠𝑗 for all 𝑗.
Since 𝑈𝑗 ∩ 𝑈𝑗′ is quasi-compact we can apply (2) and we see that there exists an 𝑖𝑗𝑗′ ∈ 𝐼,
𝑖𝑗𝑗′ ≥ 𝑖𝑗, 𝑖𝑗𝑗′ ≥ 𝑖𝑗′ such that 𝜑𝑖𝑗𝑖𝑗𝑗′(𝑠𝑗) and 𝜑𝑖𝑗′𝑖𝑗𝑗′(𝑠𝑗′) agree over 𝑈𝑗 ∩ 𝑈𝑗′. Choose an index
𝑖 ∈ 𝐼 wich is bigger or equal than all the 𝑖𝑗𝑗′. Then we see that the sections 𝜑𝑖𝑗𝑖(𝑠𝑗) of ℱ𝑖
glue to a section of ℱ𝑖 over 𝑈. This section is mapped to the element 𝑠 as desired. �

Example 6.29.2. Let 𝑋 = {𝑠1, 𝑠2, 𝜉1, 𝜉2, 𝜉3, …} as a set. Declare a subset 𝑈 ⊂ 𝑋 to be
open if 𝑠1 ∈ 𝑈 or 𝑠2 ∈ 𝑈 implies 𝑈 contains all of the 𝜉𝑖. Let 𝑈𝑛 = {𝜉𝑛, 𝜉𝑛+1, …}, and let
𝑗𝑛 ∶ 𝑈𝑛 → 𝑋 be the inclusion map. Set ℱ𝑛 = 𝑗𝑛,∗𝐙. There are transition maps ℱ𝑛 → ℱ𝑛+1.
Let ℱ = 𝑐𝑜𝑙𝑖𝑚 ℱ𝑛. Note that ℱ𝑛,𝜉𝑚

= 0 if 𝑚 < 𝑛 because {𝜉𝑚} is an open subset of 𝑋 which
misses 𝑈𝑛. Hence we see that ℱ𝜉𝑛

= 0 for all 𝑛. On the other hand the stalk ℱ𝑠𝑖
, 𝑖 = 1, 2 is

the colimit
𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑛 ∏𝑚≥𝑛

𝐙

which is not zero. We conclude that the sheaf ℱ is the direct sum of the skyscraper sheaves
with value 𝑀 at the closed points 𝑠1 and 𝑠2. Hence Γ(𝑋, ℱ) = 𝑀 ⊕ 𝑀. On the other hand,
the reader can verify that 𝑐𝑜𝑙𝑖𝑚𝑛 Γ(𝑋, ℱ𝑛) = 𝑀. Hence some condition is necessary in part
(4) of Lemma 6.29.1 above.
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6.30. Bases and sheaves

Sometimes there exists a basis for the topology consisting of opens that are easier to work
with than general opens. For convenience we give here some definitions and simple lemmas
in order to facilitate working with (pre)sheaves in such a situation.

Definition 6.30.1. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋.
(1) A presheaf ℱ of sets on ℬ is a rule which assigns to each 𝑈 ∈ ℬ a set ℱ(𝑈) and

to each inclusion 𝑉 ⊂ 𝑈 of elements of ℬ a map 𝜌𝑈
𝑉 ∶ ℱ(𝑈) → ℱ(𝑉) such that

whenever 𝑊 ⊂ 𝑉 ⊂ 𝑈 in ℬ we have 𝜌𝑈
𝑊 = 𝜌𝑉

𝑊 ∘ 𝜌𝑈
𝑉 .

(2) A morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of sets on ℬ is a rule which assigns to
each element 𝑈 ∈ ℬ a map of sets 𝜑 ∶ ℱ(𝑈) → 𝒢(𝑈) compatible with restriction
maps.

As in the case of usual presheaves we use the terminology of sections, restrictions of sec-
tions, etc. In particular, we may define the stalk of ℱ at a point 𝑥 ∈ 𝑋 by the colimit

ℱ𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑈∈ℬ,𝑥∈𝑈 ℱ(𝑈).

As in the case of the stalk of a presheaf on 𝑋 this limit is directed. The reason is that the
collection of 𝑈 ∈ ℬ, 𝑥 ∈ 𝑈 is a fundamental system of open neighbourhoods of 𝑥.

It is easy to make examples to show that the notion of a presheaf on 𝑋 is very different from
the notion of a presheaf on a basis for the topology on 𝑋. This does not happen in the case
of sheaves. A much more useful notion therefore, is the following.

Definition 6.30.2. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋.
(1) A sheaf ℱ of sets on ℬ is a presheaf of sets on ℬ which satisfies the following

additional property: Given any 𝑈 ∈ ℬ, and any covering 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 with
𝑈𝑖 ∈ ℬ, and any coverings 𝑈𝑖 ∩ 𝑈𝑗 = ⋃𝑘∈𝐼𝑖𝑗

𝑈𝑖𝑗𝑘 with 𝑈𝑖𝑗𝑘 ∈ ℬ the sheaf
condition holds:
(∗∗) For any collection of sections 𝑠𝑖 ∈ ℱ(𝑈𝑖), 𝑖 ∈ 𝐼 such that ∀𝑖, 𝑗 ∈ 𝐼, ∀𝑘 ∈ 𝐼𝑖𝑗

𝑠𝑖|𝑈𝑖𝑗𝑘
= 𝑠𝑗|𝑈𝑖𝑗𝑘

there exists a unique section 𝑠 ∈ ℱ(𝑈) such that 𝑠𝑖 = 𝑠|𝑈𝑖
for all 𝑖 ∈ 𝐼.

(2) A morphism of sheaves of sets on ℬ is simply a morphism of presheaves of sets.

First we explain that it suffices to check the sheaf condition (∗∗) on a cofinal system of
coverings. In the situation of the definition, suppose 𝑈 ∈ ℬ. Let us temporarily denote
Covℬ(𝑈) the set of all coverings of 𝑈 by elements of ℬ. Note that Covℬ(𝑈) is partially
ordered by refinement. A subset 𝐶 ⊂ Covℬ(𝑈) is a cofinal system, if for every 𝒰 ∈
Covℬ(𝑈) there exists a covering 𝒱 ∈ 𝐶 which refines 𝒰.

Lemma 6.30.3. With notation as above. For each 𝑈 ∈ ℬ, let 𝐶(𝑈) ⊂ Covℬ(𝑈) be a
cofinal system. For each 𝑈 ∈ ℬ, and each 𝒰 ∶ 𝑈 = ⋃ 𝑈𝑖 in 𝐶(𝑈), let coverings 𝒰𝑖𝑗 ∶
𝑈𝑖 ∩ 𝑈𝑗 = ⋃ 𝑈𝑖𝑗𝑘, 𝑈𝑖𝑗𝑘 ∈ ℬ be given. Let ℱ be a presheaf of sets on ℬ. The following are
equivalent

(1) The presheaf ℱ is a sheaf on ℬ.
(2) For every 𝑈 ∈ ℬ and every covering 𝒰 ∶ 𝑈 = ⋃ 𝑈𝑖 in 𝐶(𝑈) the sheaf condition

(∗∗) holds (for the given coverings 𝒰𝑖𝑗).

Proof. We have to show that (2) implies (1). Suppose that 𝑈 ∈ ℬ, and that 𝒰 ∶ 𝑈 =
⋃𝑖∈𝐼 𝑈𝑖 is an arbitrary covering by elements of ℬ. Because the system 𝐶(𝑈) is cofinal we
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can find an element 𝒱 ∶ 𝑈 = ⋃𝑗∈𝐽 𝑉𝑗 in 𝐶(𝑈) which refines 𝒰. This means there exists a
map 𝛼 ∶ 𝐽 → 𝐼 such that 𝑉𝑗 ⊂ 𝑈𝛼(𝑖).

Note that if 𝑠, 𝑠′ ∈ ℱ(𝑈) are sections such that 𝑠|𝑈𝑖
= 𝑠′|𝑈𝑖

, then

𝑠|𝑉𝑗
= (𝑠|𝑈𝛼(𝑗)

)|𝑉𝑗
= (𝑠′|𝑈𝛼(𝑗)

)|𝑉𝑗
= 𝑠′|𝑉𝑗

for all 𝑗. Hence by the uniqueness in (∗∗) for the covering 𝒱 we conclude that 𝑠 = 𝑠′. Thus
we have proved the uniqueness part of (∗∗) for our arbitrary covering 𝒰.
Suppose furthermore that 𝑈𝑖 ∩ 𝑈𝑖′ = ⋃𝑘∈𝐼𝑖𝑖′

𝑈𝑖𝑖′𝑘 are arbitrary coverings by 𝑈𝑖𝑖′𝑘 ∈ ℬ.
Let us try to prove the existence part of (∗∗) for the system (𝒰, 𝒰𝑖𝑗). Thus let 𝑠𝑖 ∈ ℱ(𝑈𝑖)
and suppose we have

𝑠𝑖|𝑈𝑖𝑗𝑘
= 𝑠𝑖′|𝑈𝑖𝑖′𝑘

for all 𝑖, 𝑖′, 𝑘. Set 𝑡𝑗 = 𝑠𝛼(𝑖)|𝑉𝑗
, where 𝒱 and 𝛼 are as above.

There is one small kink in the argument here. Namely, let 𝒱𝑗𝑗′ ∶ 𝑉𝑗 ∩ 𝑉𝑗′ = ⋃𝑙∈𝐽𝑗𝑗′ 𝑉𝑗𝑗′𝑙
be the covering given to us by the statement of the lemma. It is not a priori clear that

𝑡𝑗|𝑉𝑗𝑗′𝑙
= 𝑡𝑗′|𝑉𝑗𝑗′𝑙

for all 𝑗, 𝑗′, 𝑙. To see this, note that we do have
𝑡𝑗|𝑊 = 𝑡𝑗′|𝑊 for all 𝑊 ∈ ℬ, 𝑊 ⊂ 𝑉𝑗𝑗′𝑙 ∩ 𝑈𝛼(𝑗)𝛼(𝑗′)𝑘

for all 𝑘 ∈ 𝐼𝛼(𝑗)𝛼(𝑗′), by our assumption on the family of elements 𝑠𝑖. And since 𝑉𝑗 ∩ 𝑉𝑗′ ⊂
𝑈𝛼(𝑗) ∩ 𝑈𝛼(𝑗′) we see that 𝑡𝑗|𝑉𝑗𝑗′𝑙

and 𝑡𝑗′|𝑉𝑗𝑗′𝑙
agree on the members of a covering of 𝑉𝑗𝑗′𝑙 by

elements of ℬ. Hence by the uniqueness part proved above we finally deduce the desired
equality of 𝑡𝑗|𝑉𝑗𝑗′𝑙

and 𝑡𝑗′|𝑉𝑗𝑗′𝑙
. Thenwe get the existence of an element 𝑡 ∈ ℱ(𝑈) by property

(∗∗) for (𝒱, 𝒱𝑗𝑗′).
Again there is a small snag. We know that 𝑡 restricts to 𝑡𝑗 on 𝑉𝑗 but we do not yet know that
𝑡 restricts to 𝑠𝑖 on 𝑈𝑖. To conclude this note that the sets 𝑈𝑖 ∩𝑉𝑗, 𝑗 ∈ 𝐽 cover 𝑈𝑖. Hence also
the sets 𝑈𝑖𝛼(𝑗)𝑘 ∩ 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐼𝑖𝛼(𝑗) cover 𝑈𝑖. We leave it to the reader to see that 𝑡 and 𝑠𝑖
restrict to the same section of ℱ on any 𝑊 ∈ ℬ which is contained in one of the open sets
𝑈𝑖𝛼(𝑗)𝑘 ∩ 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐼𝑖𝛼(𝑗). Hence by the uniqueness part seen above we win. �

Lemma 6.30.4. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋.
Assume that for every pair 𝑈, 𝑈′ ∈ ℬ we have 𝑈 ∩ 𝑈′ ∈ ℬ. For each 𝑈 ∈ ℬ, let
𝐶(𝑈) ⊂ Covℬ(𝑈) be a cofinal system. Let ℱ be a presheaf of sets on ℬ. The following are
equivalent

(1) The presheaf ℱ is a sheaf on ℬ.
(2) For every 𝑈 ∈ ℬ and every covering 𝒰 ∶ 𝑈 = ⋃ 𝑈𝑖 in 𝐶(𝑈) and for every

family of sections 𝑠𝑖 ∈ ℱ(𝑈𝑖) such that 𝑠𝑖|𝑈𝑖∩𝑈𝑗
= 𝑠𝑗|𝑈𝑖∩𝑈𝑗

there exists a unique
section 𝑠 ∈ ℱ(𝑈) which restricts to 𝑠𝑖 on 𝑈𝑖.

Proof. This is a reformulation of Lemma 6.30.3 above in the special case where the cov-
erings 𝒰𝑖𝑗 each consist of a single element. But also this case is much easier and is an easy
exercise to do directly. �

Lemma 6.30.5. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋. Let
𝑈 ∈ ℬ. Let ℱ be a sheaf of sets on ℬ. The map

ℱ(𝑈) → ∏𝑥∈𝑈
ℱ𝑥

identifies ℱ(𝑈) with the elements (𝑠𝑥)𝑥∈𝑈 with the property

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=009L
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=009M


182 6. SHEAVES ON SPACES

(∗) For any 𝑥 ∈ 𝑈 there exists a 𝑉 ∈ ℬ, 𝑥 ∈ 𝑉 and a section 𝜎 ∈ ℱ(𝑉) such that
for all 𝑦 ∈ 𝑉 we have 𝑠𝑦 = (𝑉, 𝜎) in ℱ𝑦.

Proof. First note that the map ℱ(𝑈) → ∏𝑥∈𝑈 ℱ𝑥 is injective by the uniqueness in the sheaf
condition of Definition 6.30.2. Let (𝑠𝑥) be any element on the right hand side which satisfies
(∗). Clearly this means we can find a covering 𝑈 = ⋃ 𝑈𝑖, 𝑈𝑖 ∈ ℬ such that (𝑠𝑥)𝑥∈𝑈𝑖

comes
from certain 𝜎𝑖 ∈ ℱ(𝑈𝑖). For every 𝑦 ∈ 𝑈𝑖 ∩ 𝑈𝑗 the sections 𝜎𝑖 and 𝜎𝑗 agree in the stalk
ℱ𝑦. Hence there exists an element 𝑉𝑖𝑗𝑦 ∈ ℬ, 𝑦 ∈ 𝑉𝑖𝑗𝑦 such that 𝜎𝑖|𝑉𝑖𝑗𝑦

= 𝜎𝑗|𝑉𝑖𝑗𝑦
. Thus the

sheaf condition (∗∗) of Definition 6.30.2 applies to the system of 𝜎𝑖 and we obtain a section
𝑠 ∈ ℱ(𝑈) with the desired property. �

Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋. There is a natural
restriction functor from the category of sheaves of sets on 𝑋 to the category of sheaves of
sets on ℬ. It turns out that this is an equivalence of categories. In down to earth terms this
means the following.

Lemma 6.30.6. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋.
Let ℱ be a sheaf of sets on ℬ. There exists a unique sheaf of sets ℱ𝑒𝑥𝑡 on 𝑋 such that
ℱ𝑒𝑥𝑡(𝑈) = ℱ(𝑈) for all 𝑈 ∈ ℬ compatibly with the restriction mappings.

Proof. Wefirst construct a presheafℱ𝑒𝑥𝑡 with the desired property. Namely, for an arbitrary
open 𝑈 ⊂ 𝑋 we define ℱ𝑒𝑥𝑡(𝑈) as the set of elements (𝑠𝑥)𝑥∈𝑈 such that (∗) of Lemma 6.30.5
holds. It is clear that there are restriction mappings that turn ℱ𝑒𝑥𝑡 into a presheaf of sets.
Also, by Lemma 6.30.5 we see that ℱ(𝑈) = ℱ𝑒𝑥𝑡(𝑈) whenever 𝑈 is an element of the basis
ℬ. To see ℱ𝑒𝑥𝑡 is a sheaf one may argue as in the proof of Lemma 6.17.1. �

Note that we have
ℱ𝑥 = ℱ𝑒𝑥𝑡

𝑥
in the situation of the lemma. This is so because the collection of elements of ℬ containing
𝑥 forms a fundamental system of open neighbourhoods of 𝑥.

Lemma 6.30.7. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋.
Denote Sh(ℬ) the category of sheaves on ℬ. There is an equivalence of categories

Sh(𝑋) ⟶ Sh(ℬ)

which assigns to a sheaf on 𝑋 its restriction to the members of ℬ.

Proof. The inverse functor in given in Lemma 6.30.6 above. Checking the obvious func-
torialities is left to the reader. �

This ends the discussion of sheaves of sets on a basis ℬ. Let (𝒞, 𝐹) be a type of algebraic
structure. At the end of this section we would like to point out that the constructions above
work for sheaves with values in 𝒞. Let us briefly define the relevant notions.

Definition 6.30.8. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋.
Let (𝒞, 𝐹) be a type of algebraic structure.

(1) A presheaf ℱ with values in 𝒞 on ℬ is a rule which assigns to each 𝑈 ∈ ℬ an
object ℱ(𝑈) of 𝒞 and to each inclusion 𝑉 ⊂ 𝑈 of elements of ℬ a morphism 𝜌𝑈

𝑉 ∶
ℱ(𝑈) → ℱ(𝑉) in 𝒞 such that whenever 𝑊 ⊂ 𝑉 ⊂ 𝑈 in ℬ we have 𝜌𝑈

𝑊 = 𝜌𝑉
𝑊 ∘ 𝜌𝑈

𝑉 .
(2) A morphism 𝜑 ∶ ℱ → 𝒢 of presheaves with values in 𝒞 on ℬ is a rule which

assigns to each element 𝑈 ∈ ℬ a morphism of algebraic structures 𝜑 ∶ ℱ(𝑈) →
𝒢(𝑈) compatible with restriction maps.
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(3) Given a presheaf ℱ with values in 𝒞 on ℬ we say that 𝑈 ↦ 𝐹(ℱ(𝑈)) is the
underlying presheaf of sets.

(4) A sheaf ℱ with values in 𝒞 on ℬ is a presheaf with values in 𝒞 on ℬ whose
underlying presheaf of sets is a sheaf.

At this point we can define the stalk at 𝑥 ∈ 𝑋 of a presheaf with values in 𝒞 on ℬ as the
directed colimit

ℱ𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑈∈ℬ,𝑥∈𝑈 ℱ(𝑈).
It exists as an object of 𝒞 because of our assumptions on 𝒞. Also, we see that the underlying
set of ℱ𝑥 is the stalk of the underlying presheaf of sets on ℬ.
Note that Lemmas 6.30.3, 6.30.4 and 6.30.5 refer to the sheaf property which we have
defined in terms of the associated presheaf of sets. Hence they generalize without change
to the notion of a presheaf with values in 𝒞. The analogue of Lemma 6.30.6 need some
care. Here it is.

Lemma 6.30.9. Let 𝑋 be a topological space. Let (𝒞, 𝐹) be a type of algebraic structure.
Let ℬ be a basis for the topology on 𝑋. Let ℱ be a sheaf with values in 𝒞 on ℬ. There
exists a unique sheaf ℱ𝑒𝑥𝑡 with values in 𝒞 on 𝑋 such that ℱ𝑒𝑥𝑡(𝑈) = ℱ(𝑈) for all 𝑈 ∈ ℬ
compatibly with the restriction mappings.

Proof. By the conditions imposed on the pair (𝒞, 𝐹) it suffices to come up with a presheaf
ℱ𝑒𝑥𝑡 which does the correct thing on the level of underlying presheaves of sets. Thus our
first task is to construct a suitable object ℱ𝑒𝑥𝑡(𝑈) for all open 𝑈 ⊂ 𝑋. We could do this by
imitating Lemma 6.18.1 in the setting of presheaves on ℬ. However, a slightly different
method (but basically equivalent) is the following: Define it as the directed colimit

ℱ𝑒𝑥𝑡(𝑈) ∶= 𝑐𝑜𝑙𝑖𝑚𝒰 𝐹𝐼𝐵(𝒰)
over all coverings 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 by 𝑈𝑖 ∈ ℬ of the fibre product

𝐹𝐼𝐵(𝒰) //

��

∏𝑥∈𝑈 ℱ𝑥

��
∏𝑖∈𝐼 ℱ(𝑈𝑖) // ∏𝑖∈𝐼 ∏𝑥∈𝑈𝑖

ℱ𝑥

By the usual arguments, see Lemma 6.15.4 and Example 6.15.5 it suffices to show that this
construction on underlying sets is the same as the definition using (∗∗) above. Details left
to the reader. �

Note that we have
ℱ𝑥 = ℱ𝑒𝑥𝑡

𝑥
as objects in 𝒞 in the situation of the lemma. This is so because the collection of elements
of ℬ containing 𝑥 forms a fundamental system of open neighbourhoods of 𝑥.

Lemma 6.30.10. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋.
Let (𝒞, 𝐹) be a type of algebraic structure. Denote Sh(ℬ, 𝒞) the category of sheaves with
values in 𝒞 on ℬ. There is an equivalence of categories

Sh(𝑋, 𝒞) ⟶ Sh(ℬ, 𝒞)
which assigns to a sheaf on 𝑋 its restriction to the members of ℬ.

Proof. The inverse functor in given in Lemma 6.30.9 above. Checking the obvious func-
torialities is left to the reader. �
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Finally we come to the case of (pre)sheaves of modules on a basis. We will use the easy fact
that the category of presheaves of sets on a basis has products and that they are described
by taking products of values on elements of the bases.

Definition 6.30.11. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋.
Let 𝒪 be a presheaf of rings on ℬ.

(1) A presheaf of 𝒪-modules ℱ on ℬ is a presheaf of abelian groups on ℬ together
with a morphism of presheaves of sets 𝒪 × ℱ → ℱ such that for all 𝑈 ∈ ℬ the
map 𝒪(𝑈) × ℱ(𝑈) → ℱ(𝑈) turns the group ℱ(𝑈) into an 𝒪(𝑈)-module.

(2) A morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of 𝒪-modules on ℬ is a morphism of
abelian presheaves onℬwhich induces an𝒪(𝑈)-module homomorphismℱ(𝑈) →
𝒢(𝑈) for every 𝑈 ∈ ℬ.

(3) Suppose that 𝒪 is a sheaf of rings on ℬ. A sheaf ℱ of 𝒪-modules on ℬ is a
presheaf of 𝒪-modules on ℬ whose underlying presheaf of abelain groups is a
sheaf.

We can define the stalk at 𝑥 ∈ 𝑋 of a presheaf of 𝒪-modules on ℬ as the directed colimit

ℱ𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑈∈ℬ,𝑥∈𝑈 ℱ(𝑈).

It is a 𝒪𝑥-module.

Note that Lemmas 6.30.3, 6.30.4 and 6.30.5 refer to the sheaf property which we have
defined in terms of the associated presheaf of sets. Hence they generalize without change
to the notion of a presheaf of 𝒪-modules. The analogue of Lemma 6.30.6 is as follows.

Lemma 6.30.12. Let 𝑋 be a topological space. Let 𝒪 be a sheaf of rings on ℬ. Let ℬ be a
basis for the topology on 𝑋. Let ℱ be a sheaf with values in 𝒞 on ℬ. Let 𝒪𝑒𝑥𝑡 be the sheaf
of rings on 𝑋 extending 𝒪 and let ℱ𝑒𝑥𝑡 be the abelian sheaf on 𝑋 extending ℱ, see Lemma
6.30.9. There exists a canonical map

𝒪𝑒𝑥𝑡 × ℱ𝑒𝑥𝑡 ⟶ ℱ𝑒𝑥𝑡

which agrees with the given map over elements of ℬ and which endows ℱ𝑒𝑥𝑡 with the struc-
ture of an 𝒪𝑒𝑥𝑡-module.

Proof. It suffices to construct the multiplication map on the level of presheaves of sets.
Perhaps the easiest way to see this is to prove directly that if (𝑓𝑥)𝑥∈𝑈, 𝑓𝑥 ∈ 𝒪𝑥 and (𝑚𝑥)𝑥∈𝑈,
𝑚𝑥 ∈ ℱ𝑥 satisfy (∗), then the element (𝑓𝑥𝑚𝑥)𝑥∈𝑈 also satisfies (∗). Then we get the desired
result, because in the proof of Lemma 6.30.6 we construct the extension in terms of families
of elements of stalks satisfying (∗). �

Note that we have
ℱ𝑥 = ℱ𝑒𝑥𝑡

𝑥

as 𝒪𝑥-modules in the situation of the lemma. This is so because the collection of elements
of ℬ containing 𝑥 forms a fundamental system of open neighbourhoods of 𝑥, or simply
because it is true on the underlying sets.

Lemma 6.30.13. Let 𝑋 be a topological space. Let ℬ be a basis for the topology on 𝑋.
Let 𝒪 be a sheaf of rings on 𝑋. Denote Mod(𝒪|ℬ) the category of sheaves of 𝒪|ℬ-modules
on ℬ. There is an equivalence of categories

Mod(𝒪) ⟶ Mod(𝒪|ℬ)

which assigns to a sheaf of 𝒪-modules on 𝑋 its restriction to the members of ℬ.
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Proof. The inverse functor in given in Lemma 6.30.12 above. Checking the obvious func-
torialities is left to the reader. �

Finally, we address the question of the relationship of this with continuous maps. This is
now very easy thanks to the work above. First we do the case where there is a basis on the
target given.

Lemma 6.30.14. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let (𝒞, 𝐹)
be a type of algebraic structures. Let ℱ be a sheaf with values in 𝒞 on 𝑋. Let 𝒢 be a sheaf
with values in 𝒞 on 𝑌. Let ℬ be a basis for the topology on 𝑌. Suppose given for every
𝑉 ∈ ℬ a morphism

𝜑𝑉 ∶ 𝒢(𝑉) ⟶ ℱ(𝑓−1𝑉)
of 𝒞 compatible with restriction mappings. Then there is a unique 𝑓-map (see Definition
6.21.7 and discussion of 𝑓-maps in Section 6.23) 𝜑 ∶ 𝒢 → ℱ recovering 𝜑𝑉 for 𝑉 ∈ ℬ.

Proof. This is trivial because the collection of maps amounts to a morphism between the
restrictions of 𝒢 and 𝑓∗ℱ to ℬ. By Lemma 6.30.10 this is the same as giving a morphism
from 𝒢 to 𝑓∗ℱ, which by Lemma 6.21.8 is the same as an 𝑓-map. See also Lemma 6.23.1
and the discussion preceding it for how to deal with the case of sheaves of algebraic struc-
tures. �

Here is the analogue for ringed spaces.

Lemma 6.30.15. Let (𝑓, 𝑓♯) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. Let
ℱ be a sheaf of 𝒪𝑋-modules. Let 𝒢 be a sheaf of 𝒪𝑌-modules. Let ℬ be a basis for the
topology on 𝑌. Suppose given for every 𝑉 ∈ ℬ a 𝒪𝑌(𝑉)-module map

𝜑𝑉 ∶ 𝒢(𝑉) ⟶ ℱ(𝑓−1𝑉)

(where ℱ(𝑓−1𝑉) has a module structure using 𝑓♯
𝑉 ∶ 𝒪𝑌(𝑉) → 𝒪𝑋(𝑓−1𝑉)) compatible with

restriction mappings. Then there is a unique 𝑓-map (see discussion of 𝑓-maps in Section
6.26) 𝜑 ∶ 𝒢 → ℱ recovering 𝜑𝑉 for 𝑉 ∈ ℬ.

Proof. Same as the proof of the corresponding lemma for sheaves of algebraic structures
above. �

Lemma 6.30.16. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Let (𝒞, 𝐹)
be a type of algebraic structures. Let ℱ be a sheaf with values in 𝒞 on 𝑋. Let 𝒢 be a sheaf
with values in 𝒞 on 𝑌. Let ℬ𝑌 be a basis for the topology on 𝑌. Let ℬ𝑋 be a basis for
the topology on 𝑋. Suppose given for every 𝑉 ∈ ℬ𝑌, and 𝑈 ∈ ℬ𝑋 such that 𝑓(𝑈) ⊂ 𝑉 a
morphism

𝜑𝑈
𝑉 ∶ 𝒢(𝑉) ⟶ ℱ(𝑈)

of 𝒞 compatible with restriction mappings. Then there is a unique 𝑓-map (see Definition
6.21.7 and the discussion of 𝑓-maps in Section 6.23) 𝜑 ∶ 𝒢 → ℱ recovering 𝜑𝑈

𝑉 as the
composition

𝒢(𝑉)
𝜑𝑉−−→ ℱ(𝑓−1(𝑉))

restr.
−−−−→ ℱ(𝑈)

for every pair (𝑈, 𝑉) as above.

Proof. Let us first proves this for sheaves of sets. Fix 𝑉 ⊂ 𝑌 open. Pick 𝑠 ∈ 𝒢(𝑉). We are
going to construct an element 𝜑𝑉(𝑠) ∈ ℱ(𝑓−1𝑉). We can define a value 𝜑(𝑠)𝑥 in the stalk
ℱ𝑥 for every 𝑥 ∈ 𝑓−1𝑉 by picking a 𝑈 ∈ ℬ𝑋 with 𝑥 ∈ 𝑈 ⊂ 𝑓−1𝑉 and setting 𝜑(𝑠)𝑥 equal to
the equivalence class of (𝑈, 𝜑𝑈

𝑉 (𝑠)) in the stalk. Clearly, the family (𝜑(𝑠)𝑥)𝑥∈𝑓−1𝑉 satisfies
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condition (∗) because the maps 𝜑𝑈
𝑉 for varying 𝑈 are compatible with restrictions in the

sheaf ℱ. Thus, by the proof of Lemma 6.30.6 we see that (𝜑(𝑠)𝑥)𝑥∈𝑓−1𝑉 corresponds to a
unique element 𝜑𝑉(𝑠) of ℱ(𝑓−1𝑉). Thus we have defined a set map 𝜑𝑉 ∶ 𝒢(𝑉) → ℱ(𝑓−1𝑉).
The compatibility between 𝜑𝑉 and 𝜑𝑈

𝑉 follows from Lemma 6.30.5.

We leave it to the reader to show that the construction of 𝜑𝑉 is compatible with restriction
mappings as we vary 𝑣 ∈ ℬ𝑌. Thus we may apply Lemma 6.30.14 above to ``glue'' them
to the desired 𝑓-map.

Finally, we note that the map of sheaves of sets so constructed satisfies the property that the
map on stalks

𝒢𝑓(𝑥) ⟶ ℱ𝑥

is the colimit of the system of maps 𝜑𝑈
𝑉 as 𝑉 ∈ ℬ𝑌 varies over those elements that contain

𝑓(𝑥) and 𝑈 ∈ ℬ𝑋 varies over those elements that contain 𝑥. In particular, if 𝒢 and ℱ are
the underlying sheaves of sets of sheaves of algebraic structures, then we see that the maps
on stalks is a morphism of algebraic structures. Hence we conclude that the associated map
of sheaves of underlying sets 𝑓−1𝒢 → ℱ satisfies the assumptions of Lemma 6.23.1. We
conclude that 𝑓−1𝒢 → ℱ is a morphism of sheaves with values in 𝒞. And by adjointness
this means that 𝜑 is an 𝑓-map of sheaves of algebraic structures. �

Lemma 6.30.17. Let (𝑓, 𝑓♯) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. Let
ℱ be a sheaf of 𝒪𝑋-modules. Let 𝒢 be a sheaf of 𝒪𝑌-modules. Let ℬ𝑌 be a basis for the
topology on 𝑌. Let ℬ𝑋 be a basis for the topology on 𝑋. Suppose given for every 𝑉 ∈ ℬ𝑌,
and 𝑈 ∈ ℬ𝑋 such that 𝑓(𝑈) ⊂ 𝑉 a 𝒪𝑌(𝑉)-module map

𝜑𝑈
𝑉 ∶ 𝒢(𝑉) ⟶ ℱ(𝑈)

compatible with restriction mappings. Here the 𝒪𝑌(𝑉)-module structure on ℱ(𝑈) comes
from the 𝒪𝑋(𝑈)-module structure via the map 𝑓♯

𝑉 ∶ 𝒪𝑌(𝑉) → 𝒪𝑋(𝑓−1𝑉) → 𝒪𝑋(𝑈). Then
there is a unique 𝑓-map of sheaves of modules (see Definition 6.21.7 and the discussion of
𝑓-maps in Section 6.26) 𝜑 ∶ 𝒢 → ℱ recovering 𝜑𝑈

𝑉 as the composition

𝒢(𝑉)
𝜑𝑉−−→ ℱ(𝑓−1(𝑉))

restrc.
−−−−→ ℱ(𝑈)

for every pair (𝑈, 𝑉) as above.

Proof. Similar to the above and omitted. �

6.31. Open immersions and (pre)sheaves

Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an open subset 𝑈 into
𝑋. In Section 6.21 we have defined functors 𝑗∗ and 𝑗−1 such that 𝑗∗ is right adjoint to 𝑗−1.
It turns out that for an open immersion there is a left adjoint for 𝑗−1, which we will denote
𝑗!. First we point out that 𝑗−1 has a particularly simple description in the case of an open
immersion.

Lemma 6.31.1. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an open
subset 𝑈 into 𝑋.

(1) Let 𝒢 be a presheaf of sets on 𝑋. The presheaf 𝑗𝑝𝒢 (see Section 6.21) is given by
the rule 𝑉 ↦ 𝒢(𝑉) for 𝑉 ⊂ 𝑈 open.

(2) Let 𝒢 be a sheaf of sets on 𝑋. The sheaf 𝑗−1𝒢 is given by the rule 𝑉 ↦ 𝒢(𝑉) for
𝑉 ⊂ 𝑈 open.
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(3) For any point 𝑢 ∈ 𝑈 and any sheaf 𝒢 on 𝑋 we have a canonical identification of
stalks

𝑗−1𝒢𝑢 = (𝒢|𝑈)𝑢 = 𝒢𝑢.
(4) On the category of presheaves of 𝑈 we have 𝑗𝑝𝑗∗ = id.
(5) On the category of sheaves of 𝑈 we have 𝑗−1𝑗∗ = id.

The same description holds for (pre)sheaves of abelian groups, (pre)sheaves of algebraic
structures, and (pre)sheaves of modules.

Proof. The colimit in the definition of 𝑗𝑝𝒢(𝑉) is over collection of all 𝑊 ⊂ 𝑋 open such
that 𝑉 ⊂ 𝑊 ordered by reverse inclusion. Hence this has a largest element, namely 𝑉.
This proves (1). And (2) follows because the assignment 𝑉 ↦ 𝒢(𝑉) for 𝑉 ⊂ 𝑈 open
is clearly a sheaf if 𝒢 is a sheaf. Assertion (3) follows from (2) since the collection of
open neighbourhoods of 𝑢 which are contained in 𝑈 is cofinal in the collection of all open
neighbourhoods of 𝑢 in 𝑋. Parts (4) and (5) follow by computing 𝑗−1𝑗∗ℱ(𝑉) = 𝑗∗ℱ(𝑉) =
ℱ(𝑉).

The exact same arguments work for (pre)sheaves of abelian groups and (pre)sheaves of
algebraic structures. �

Definition 6.31.2. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an
open subset.

(1) Let 𝒢 be a presheaf of sets, abelian groups or algebraic structures on 𝑋. The
presheaf 𝑗𝑝𝒢 described in Lemma 6.31.1 is called the restriction of 𝒢 to 𝑈 and
denoted 𝒢|𝑈.

(2) Let 𝒢 be a sheaf of sets on 𝑋, abelian groups or algebraic structures on 𝑋. The
sheaf 𝑗−1𝒢 is called the restriction of 𝒢 to 𝑈 and denoted 𝒢|𝑈.

(3) If (𝑋, 𝒪) is a ringed space, then the pair (𝑈, 𝒪|𝑈) is called the open subspace of
(𝑋, 𝒪) associated to 𝑈.

(4) If 𝒢 is a presheaf of 𝒪-modules then 𝒢|𝑈 together with the multiplication map
𝒪|𝑈 × 𝒢|𝑈 → 𝒢|𝑈 (see Lemma 6.24.6) is called the restriction of 𝒢 to 𝑈.

We leave a definition of the restriction of presheaves of modules to the reader. Ok, so in
this section we will discuss a left adjoint to the restriction functor. Here is the definition in
the case of (pre)sheaves of sets.

Definition 6.31.3. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an
open subset.

(1) Let ℱ be a presheaf of sets on 𝑈. We define the extension of ℱ by the empty set
𝑗𝑝!ℱ to be the presheaf of sets on 𝑋 defined by the rule

𝑗𝑝!ℱ(𝑉) = {
∅ if 𝑉⊄𝑈

ℱ(𝑉) if 𝑉 ⊂ 𝑈

with obvious restriction mappings.
(2) Let ℱ be a sheaf of sets on 𝑈. We define the extension of ℱ by the empty set 𝑗!ℱ

to be the sheafification of the presheaf 𝑗𝑝!ℱ.

Lemma 6.31.4. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an open
subset.

(1) The functor 𝑗𝑝! is a left adjoint to the restriction functor 𝑗𝑝 (see Lemma 6.31.1).
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(2) The functor 𝑗! is a left adjoint to restriction, in a formula

𝑀𝑜𝑟Sh(𝑋)(𝑗!ℱ, 𝒢) = 𝑀𝑜𝑟Sh(𝑈)(ℱ, 𝑗−1𝒢) = 𝑀𝑜𝑟Sh(𝑈)(ℱ, 𝒢|𝑈)

bifunctorially in ℱ and 𝒢.
(3) Let ℱ be a sheaf of sets on 𝑈. The stalks of the sheaf 𝑗!ℱ are described as follows

𝑗!ℱ𝑥 = {
∅ if 𝑥∉𝑈
ℱ𝑥 if 𝑥 ∈ 𝑈

(4) On the category of presheaves of 𝑈 we have 𝑗𝑝𝑗𝑝! = id.
(5) On the category of sheaves of 𝑈 we have 𝑗−1𝑗! = id.

Proof. To map 𝑗𝑝!ℱ into 𝒢 it is enough to map ℱ(𝑉) → 𝒢(𝑉) whenever 𝑉 ⊂ 𝑈 compatibly
with restriction mappings. And by Lemma 6.31.1 the same description holds for maps
ℱ → 𝒢|𝑈. The adjointness of 𝑗! and restriction follows from this and the properties of
sheafification. The identification of stalks is obvious from the definition of the extension
by the empty set and the definition of a stalk. Statements (4) and (5) follow by computing
the value of the sheaf on any open of 𝑈. �

Note that if ℱ is a sheaf of abelian groups on 𝑈, then in general 𝑗!ℱ as defined above, is
not a sheaf of abelian groups, for example because some of its stalks are empty (hence not
abelian groups for sure). Thus we need to modify the definition of 𝑗! depending on the
type of sheafs we consider. The reason for choosing the empty set in the definition of the
extension by the empty set, is that it is the initial object in the category of sets. Thus in the
case of abelian groups we use 0 (and more generally for sheaves with values in any abelian
category).

Definition 6.31.5. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an
open subset.

(1) Let ℱ be an abelian presheaf on 𝑈. We define the extension 𝑗𝑝!ℱ of ℱ by 0 to be
the abelian presheaf on 𝑋 defined by the rule

𝑗𝑝!ℱ(𝑉) = {
0 if 𝑉⊄𝑈

ℱ(𝑉) if 𝑉 ⊂ 𝑈

with obvious restriction mappings.
(2) Let ℱ be an abelian sheaf on 𝑈. We define the extension 𝑗!ℱ of ℱ by 0 to be the

sheafification of the abelian presheaf 𝑗𝑝!ℱ.
(3) Let 𝒞 be a category having an initial object 𝑒. Let ℱ be a presheaf on 𝑈 with

values in 𝒞. We define the extension 𝑗𝑝!ℱ of ℱ by 𝑒 to be the presheaf on 𝑋 with
values in 𝒞 defined by the rule

𝑗𝑝!ℱ(𝑉) = {
𝑒 if 𝑉⊄𝑈

ℱ(𝑉) if 𝑉 ⊂ 𝑈

with obvious restriction mappings.
(4) Let (𝒞, 𝐹) be a type of algebraic structure such that 𝒞 has an initial object 𝑒. Let ℱ

be a sheaf of algebraic structures on 𝑈 (of the give type). We define the extension
𝑗!ℱ of ℱ by 𝑒 to be the sheafification of the presheaf 𝑗𝑝!ℱ defined above.

(5) Let 𝒪 be a presheaf of rings on 𝑋. Let ℱ be a presheaf of 𝒪|𝑈-modules. In this
case we define the extension by 0 to be the presheaf of 𝒪-modules which is equal
to 𝑗𝑝!ℱ as an abelian presheaf endowed with the multiplication map 𝒪 × 𝑗𝑝!ℱ →
𝑗𝑝!ℱ.
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(6) Let 𝒪 be a sheaf of rings on 𝑋. Let ℱ be a sheaf of 𝒪|𝑈-modules. In this case we
define the extension by 0 to be the 𝒪-module which is equal to 𝑗!ℱ as an abelian
sheaf endowed with the multiplication map 𝒪 × 𝑗!ℱ → 𝑗!ℱ.

It is true that one can define 𝑗! in the setting of sheaves of algebraic structures (see below).
However, it depends on the type of algebraic structures involved what the resulting object
is. For example, if 𝒪 is a sheaf of rings on 𝑈, then 𝑗!,𝑟𝑖𝑛𝑔𝑠𝒪≠𝑗!,𝑎𝑏𝑒𝑙𝑖𝑎𝑛𝒪 since the initial
object in the category of rings is 𝐙 and the initial object in the category of abelian groups
is 0. In particular the functor 𝑗! does not commute with taking underlying sheaves of sets,
in contrast to what we have seen sofar! We separate out the case of (pre)sheaves of abelian
groups, (pre)sheaves of algebraic structures and (pre)sheaves of modules as usual.

Lemma 6.31.6. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an open
subset. Consider the functors of restriction and extension by 0 for abelian (pre)sheaves.

(1) The functor 𝑗𝑝! is a left adjoint to the restriction functor 𝑗𝑝 (see Lemma 6.31.1).
(2) The functor 𝑗! is a left adjoint to restriction, in a formula

𝑀𝑜𝑟Ab(𝑋)(𝑗!ℱ, 𝒢) = 𝑀𝑜𝑟Ab(𝑈)(ℱ, 𝑗−1𝒢) = 𝑀𝑜𝑟Ab(𝑈)(ℱ, 𝒢|𝑈)

bifunctorially in ℱ and 𝒢.
(3) Let ℱ be an abelian sheaf on 𝑈. The stalks of the sheaf 𝑗!ℱ are described as

follows

𝑗!ℱ𝑥 = {
0 if 𝑥∉𝑈

ℱ𝑥 if 𝑥 ∈ 𝑈
(4) On the category of abelian presheaves of 𝑈 we have 𝑗𝑝𝑗𝑝! = id.
(5) On the category of abelian sheaves of 𝑈 we have 𝑗−1𝑗! = id.

Proof. Omitted. �

Lemma 6.31.7. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an
open subset. Let (𝒞, 𝐹) be a type of algebraic structure such that 𝒞 has an initial object
𝑒. Consider the functors of restriction and extension by 𝑒 for (pre)sheaves of algebraic
structure defined above.

(1) The functor 𝑗𝑝! is a left adjoint to the restriction functor 𝑗𝑝 (see Lemma 6.31.1).
(2) The functor 𝑗! is a left adjoint to restriction, in a formula

𝑀𝑜𝑟Sh(𝑋,𝒞)(𝑗!ℱ, 𝒢) = 𝑀𝑜𝑟Sh(𝑈,𝒞)(ℱ, 𝑗−1𝒢) = 𝑀𝑜𝑟Sh(𝑈,𝒞)(ℱ, 𝒢|𝑈)

bifunctorially in ℱ and 𝒢.
(3) Let ℱ be a sheaf on 𝑈. The stalks of the sheaf 𝑗!ℱ are described as follows

𝑗!ℱ𝑥 = {
𝑒 if 𝑥∉𝑈

ℱ𝑥 if 𝑥 ∈ 𝑈

(4) On the category of presheaves of algebraic structures on 𝑈 we have 𝑗𝑝𝑗𝑝! = id.
(5) On the category of sheaves of algebraic structures on 𝑈 we have 𝑗−1𝑗! = id.

Proof. Omitted. �

Lemma 6.31.8. Let (𝑋, 𝒪) be a ringed space. Let 𝑗 ∶ (𝑈, 𝒪|𝑈) → (𝑋, 𝒪) be an open sub-
space. Consider the functors of restriction and extension by 0 for (pre)sheaves of modules
defined above.
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(1) The functor 𝑗𝑝! is a left adjoint to restriction, in a formula

𝑀𝑜𝑟PMod(𝒪)(𝑗𝑝!ℱ, 𝒢) = 𝑀𝑜𝑟PMod(𝒪|𝑈)(ℱ, 𝒢|𝑈)

bifunctorially in ℱ and 𝒢.
(2) The functor 𝑗! is a left adjoint to restriction, in a formula

𝑀𝑜𝑟Mod(𝒪)(𝑗!ℱ, 𝒢) = 𝑀𝑜𝑟Mod(𝒪|𝑈)(ℱ, 𝒢|𝑈)

bifunctorially in ℱ and 𝒢.
(3) Let ℱ be a sheaf of 𝒪-modules on 𝑈. The stalks of the sheaf 𝑗!ℱ are described as

follows

𝑗!ℱ𝑥 = {
0 if 𝑥∉𝑈

ℱ𝑥 if 𝑥 ∈ 𝑈

(4) On the category of sheaves of 𝒪|𝑈-modules on 𝑈 we have 𝑗−1𝑗! = id.

Proof. Omitted. �

Note that by the lemmas above, both the functors 𝑗∗ and 𝑗! are fully faithful embeddings
of the category of sheaves on 𝑈 into the category of sheaves on 𝑋. It is only true for the
functor 𝑗! that one can easily describe the essential image of this functor.

Lemma 6.31.9. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an open
subset. The functor

𝑗! ∶ Sh(𝑈) ⟶ Sh(𝑋)
is fully faithful. Its essential image consists exactly of those sheaves 𝒢 such that 𝒢𝑥 = ∅
for all 𝑥 ∈ 𝑋 ⧵ 𝑈.

Proof. Fully faithfullness follows formally from 𝑗−1𝑗! = id. We have seen that any sheaf in
the image of the functor has the property on the stalks mentioned in the lemma. Conversely,
suppose that 𝒢 has the indicated property. Then it is easy to check that

𝑗!𝑗−1𝒢 → 𝒢

is an isomorphism on all stalks and hence an isomorphism. �

Lemma 6.31.10. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an open
subset. The functor

𝑗! ∶ Ab(𝑈) ⟶ Ab(𝑋)
is fully faithful. Its essential image consists exactly of those sheaves 𝒢 such that 𝒢𝑥 = 0 for
all 𝑥 ∈ 𝑋 ⧵ 𝑈.

Proof. Omitted. �

Lemma 6.31.11. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an open
subset. Let (𝒞, 𝐹) be a type of algebraic structure such that 𝒞 has an initial object 𝑒. The
functor

𝑗! ∶ Sh(𝑈, 𝒞) ⟶ Sh(𝑋, 𝒞)
is fully faithful. Its essential image consists exactly of those sheaves 𝒢 such that 𝒢𝑥 = 𝑒 for
all 𝑥 ∈ 𝑋 ⧵ 𝑈.

Proof. Omitted. �
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Lemma 6.31.12. Let (𝑋, 𝒪) be a ringed space. Let 𝑗 ∶ (𝑈, 𝒪|𝑈) → (𝑋, 𝒪) be an open
subspace. The functor

𝑗! ∶ Mod(𝒪|𝑈) ⟶ Mod(𝒪)
is fully faithful. Its essential image consists exactly of those sheaves 𝒢 such that 𝒢𝑥 = 0 for
all 𝑥 ∈ 𝑋 ⧵ 𝑈.

Proof. Omitted. �

Remark 6.31.13. Let 𝑗 ∶ 𝑈 → 𝑋 be an open immersion of topological spaces as above.
Let 𝑥 ∈ 𝑋, 𝑥∉𝑈. Let ℱ be a sheaf of sets on 𝑈. Then ℱ𝑥 = ∅ by Lemma 6.31.4. Hence
𝑗! does not transform a final object of Sh(𝑈) into a final object of Sh(𝑋) unless 𝑈 = 𝑋.
According to our conventions in Categories, Section 4.21 this means that the functor 𝑗! is
not left exact as a functor between the categories of sheaves of sets. It will be shown later
that 𝑗! on abelian sheaves is exact, see Modules, Lemma 15.3.5.

6.32. Closed immersions and (pre)sheaves

Let 𝑋 be a topological space. Let 𝑖 ∶ 𝑍 → 𝑋 be the inclusion of a closed subset 𝑍 into 𝑋.
In Section 6.21 we have defined functors 𝑖∗ and 𝑖−1 such that 𝑖∗ is right adjoint to 𝑖−1.

Lemma 6.32.1. Let 𝑋 be a topological space. Let 𝑖 ∶ 𝑍 → 𝑋 be the inclusion of a closed
subset 𝑍 into 𝑋. Let ℱ be a sheaf of sets on 𝑍. The stalks of 𝑖∗ℱ are described as follows

𝑖∗ℱ𝑥 = {
{∗} if 𝑥∉𝑍
ℱ𝑥 if 𝑥 ∈ 𝑍

where {∗} denotes a singleton set. Moreover, 𝑖−1𝑖∗ = id on the category of sheaves of
sets on 𝑍. Moreover, the same holds for abelian sheaves on 𝑍, resp. sheaves of algebraic
structures on 𝑍 where {∗} has to be replaced by 0, resp. a final object of the category of
algebraic structures.

Proof. If 𝑥∉𝑍, then there exist arbitrarily small open neighbourhoods 𝑈 of 𝑥 which do not
meet 𝑍. Because ℱ is a sheaf we have ℱ(𝑖−1(𝑈)) = {∗} for any such 𝑈, see Remark 6.7.2.
This proves the first case. The second case comes from the fact that for 𝑧 ∈ 𝑍 any open
neighbourhood of 𝑧 is of the form 𝑍 ∩ 𝑈 for some open 𝑈 of 𝑋. For the statement that
𝑖−1𝑖∗ = id consider the canonical map 𝑖−1𝑖∗ℱ → ℱ. This is an isomorphism on stalks (see
above) and hence an isomorphism.

For sheaves of abelian groups, and sheaves of algebraic structures you argue in the same
manner. �

Lemma 6.32.2. Let 𝑋 be a topological space. Let 𝑖 ∶ 𝑍 → 𝑋 be the inclusion of a closed
subset. The functor

𝑖∗ ∶ Sh(𝑍) ⟶ Sh(𝑋)
is fully faithful. Its essential image consists exactly of those sheaves 𝒢 such that 𝒢𝑥 = {∗}
for all 𝑥 ∈ 𝑋 ⧵ 𝑍.

Proof. Fully faithfullness follows formally from 𝑖−1𝑖∗ = id. We have seen that any sheaf in
the image of the functor has the property on the stalks mentioned in the lemma. Conversely,
suppose that 𝒢 has the indicated property. Then it is easy to check that

𝒢 → 𝑖∗𝑖−1𝒢

is an isomorphism on all stalks and hence an isomorphism. �
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Lemma 6.32.3. Let 𝑋 be a topological space. Let 𝑖 ∶ 𝑍 → 𝑋 be the inclusion of a closed
subset. The functor

𝑖∗ ∶ Ab(𝑍) ⟶ Ab(𝑋)
is fully faithful. Its essential image consists exactly of those sheaves 𝒢 such that 𝒢𝑥 = 0 for
all 𝑥 ∈ 𝑋 ⧵ 𝑍.

Proof. Omitted. �

Lemma 6.32.4. Let 𝑋 be a topological space. Let 𝑖 ∶ 𝑍 → 𝑋 be the inclusion of a closed
subset. Let (𝒞, 𝐹) be a type of algebraic structure with final object 0. The functor

𝑖∗ ∶ Sh(𝑍, 𝒞) ⟶ Sh(𝑋, 𝒞)
is fully faithful. Its essential image consists exactly of those sheaves 𝒢 such that 𝒢𝑥 = 0 for
all 𝑥 ∈ 𝑋 ⧵ 𝑍.

Proof. Omitted. �

Remark 6.32.5. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of topological spaces as above. Let
𝑥 ∈ 𝑋, 𝑥∉𝑍. Let ℱ be a sheaf of sets on 𝑍. Then (𝑖∗ℱ)𝑥 = {∗} by Lemma 6.32.1. Hence
if ℱ = ∗ ⨿ ∗, where ∗ is the singleton sheaf, then 𝑖∗ℱ𝑥 = {∗}≠𝑖∗(∗)𝑥 ⨿ 𝑖∗(∗)𝑥 because
the latter is a two point set. According to our conventions in Categories, Section 4.21 this
means that the functor 𝑖∗ is not right exact as a functor between the categories of sheaves
of sets. In particular, it cannot have a right adjoint, see Categories, Lemma 4.22.3.
On the other hand, we will see later (seeModules, Lemma 15.6.3) that 𝑖∗ on abelian sheaves
is exact, and does have a right adjoint, namely the functor that associates to an abelian sheaf
on 𝑋 the sheaf of sections supported in 𝑍.

Remark 6.32.6. We have not discussed the relationship between closed immersions and
ringed spaces. This is because the notion of a closed immersion of ringed spaces is best
discussed in the setting of quasi-coherent sheaves, see Modules, Section 15.13.

6.33. Glueing sheaves

In this section we glue sheaves defined on the members of a covering of 𝑋. We first deal
with maps.

Lemma 6.33.1. Let 𝑋 be a topological space. Let 𝑋 = ⋃ 𝑈𝑖 be an open covering. Let ℱ,
𝒢 be sheaves of sets on 𝑋. Given a collection

𝜑𝑖 ∶ ℱ|𝑈𝑖
⟶ 𝒢|𝑈𝑖

of maps of sheaves such that for all 𝑖, 𝑗 ∈ 𝐼 the maps 𝜑𝑖, 𝜑𝑗 restrict to the same map
ℱ|𝑈𝑖∩𝑈𝑗

→ 𝒢|𝑈𝑖∩𝑈𝑗
then there exists a unique map of sheaves

𝜑 ∶ ℱ ⟶ 𝒢
whose restriction to each 𝑈𝑖 agrees with 𝜑𝑖.

Proof. Omitted. �

The previous lemma implies that given two sheaves ℱ, 𝒢 on the topological space 𝑋 the
rule

𝑈 ⟼ 𝑀𝑜𝑟Sh(𝑈)(ℱ|𝑈, 𝒢|𝑈)
defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the setting
of sheaves of sets, and more usually in the setting of sheaves of modules, see Modules,
Section 15.19.
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Let 𝑋 be a topological space. Let 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering. For each 𝑖 ∈ 𝐼 let ℱ𝑖
be a sheaf of sets on 𝑈𝑖. For each pair 𝑖, 𝑗 ∈ 𝐼, let

𝜑𝑖𝑗 ∶ ℱ𝑖|𝑈𝑖∩𝑈𝑗
⟶ ℱ𝑗|𝑈𝑖∩𝑈𝑗

be an isomorphism of sheaves of sets. Assume in addition that for every triple of indices
𝑖, 𝑗, 𝑘 ∈ 𝐼 the following diagram is commutative

ℱ𝑖|𝑈𝑖∩𝑈𝑗∩𝑈𝑘 𝜑𝑖𝑘
//

𝜑𝑖𝑗
&&

ℱ𝑘|𝑈𝑖∩𝑈𝑗∩𝑈𝑘

ℱ𝑗|𝑈𝑖∩𝑈𝑗∩𝑈𝑘

𝜑𝑗𝑘

88

Wewill call such a collection of data (ℱ𝑖, 𝜑𝑖𝑗) a glueing data for sheaves of sets with respect
to the covering 𝑋 = ⋃ 𝑈𝑖.

Lemma 6.33.2. Let 𝑋 be a topological space. Let 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering.
Given any glueing data (ℱ𝑖, 𝜑𝑖𝑗) for sheaves of sets with respect to the covering 𝑋 = ⋃ 𝑈𝑖
there exists a sheaf of sets ℱ on 𝑋 together with isomorphisms

𝜑𝑖 ∶ ℱ|𝑈𝑖
→ ℱ𝑖

such that the diagrams
ℱ|𝑈𝑖∩𝑈𝑗 𝜑𝑖

//

id
��

ℱ𝑖|𝑈𝑖∩𝑈𝑗

𝜑𝑖𝑗

��
ℱ|𝑈𝑖∩𝑈𝑗

𝜑𝑗 // ℱ𝑗|𝑈𝑖∩𝑈𝑗

are commutative.

Proof. Actually we can write a formula for the set of sections of ℱ over an open 𝑊 ⊂ 𝑋.
Namely, we define

ℱ(𝑊) = {(𝑠𝑖)𝑖∈𝐼 ∣ 𝑠𝑖 ∈ ℱ𝑖(𝑊 ∩ 𝑈𝑖), 𝜑𝑖𝑗(𝑠𝑖|𝑊∩𝑈𝑖∩𝑈𝑗
) = 𝑠𝑗|𝑊∩𝑈𝑖∩𝑈𝑗

}.

Restriction mappings for 𝑊′ ⊂ 𝑊 are defined by the restricting each of the 𝑠𝑖 to 𝑊′ ∩ 𝑈𝑖.
The sheaf condition for ℱ follows immediately from the sheaf condition for each of the ℱ𝑖.

We still have to prove that ℱ|𝑈𝑖
maps isomorphically to ℱ𝑖. Let 𝑊 ⊂ 𝑈𝑖. In this case the

condition in the definition of ℱ(𝑊) implies that 𝑠𝑗 = 𝜑𝑖𝑗(𝑠𝑖|𝑊∩𝑈𝑗
). And the commutativity

of the diagrams in the definition of a glueing data assures that we may start with any section
𝑠 ∈ ℱ𝑖(𝑊) and obtain a compatible collection by setting 𝑠𝑖 = 𝑠 and 𝑠𝑗 = 𝜑𝑖𝑗(𝑠𝑖|𝑊∩𝑈𝑗

). Thus
the lemma follows. �

Lemma 6.33.3. Let 𝑋 be a topological space. Let 𝑋 = ⋃ 𝑈𝑖 be an open covering. Let
(ℱ𝑖, 𝜑𝑖𝑗) be a glueing data of sheaves of abelian groups, resp. sheaves of algebraic struc-
tures, resp. sheaves of 𝒪-modules for some sheaf of rings 𝒪 on 𝑋. Then the construction in
the proof of Lemma 6.33.2 above leads to a sheaf of abelian groups, resp. sheaf of algebraic
structures, resp. sheaf of 𝒪-modules.

Proof. This is true because in the construction the set of sections ℱ(𝑊) over an open 𝑊 is
given as the equalizer of the maps

∏𝑖∈𝐼 ℱ𝑖(𝑊 ∩ 𝑈𝑖)
//
// ∏𝑖,𝑗∈𝐼 ℱ𝑖(𝑊 ∩ 𝑈𝑖 ∩ 𝑈𝑗)
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And in each of the cases envisioned this equalizer gives an object in the relevant category
whose underlying set is the object considered in the cited lemma. �

Lemma 6.33.4. Let 𝑋 be a topological space. Let 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering. The
functor which associates to a sheaf of sets ℱ the following collection of glueing data

(ℱ|𝑈𝑖
, (ℱ|𝑈𝑖

)|𝑈𝑖∩𝑈𝑗
→ (ℱ|𝑈𝑗

)|𝑈𝑖∩𝑈𝑗
)

with respect to the covering 𝑋 = ⋃ 𝑈𝑖 defines an equivalence of categories between Sh(𝑋)
and the category of glueing data. A similar statement holds for abelian sheaves, resp.
sheaves of algebraic structures, resp. sheaves of 𝒪-modules.

Proof. The functor is fully faithful by Lemma 6.33.1 and essentially surjective (via an
explicitly given quasi-inverse functor) by Lemma 6.33.2. �

This lemma means that if the sheaf ℱ was constructed from the glueing data (ℱ𝑖, 𝜑𝑖𝑗) and
if 𝒢 is a sheaf on 𝑋, then a morphism 𝑓 ∶ ℱ → 𝒢 is given by a collection of morphisms of
sheaves

𝑓𝑖 ∶ ℱ𝑖 ⟶ 𝒢|𝑈𝑖

compatible with the glueing maps 𝜑𝑖𝑗. Similarly, to give a morphism of sheaves 𝑔 ∶ 𝒢 → ℱ
is the same as giving a collection of morphisms of sheaves

𝑔𝑖 ∶ 𝒢|𝑈𝑖
⟶ ℱ𝑖

compatible with the glueing maps 𝜑𝑖𝑗.
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CHAPTER 7

Commutative Algebra

7.1. Introduction

Basic commutative algebra will be explained in this document. A reference is [Mat70].

7.2. Conventions

A ring is commutative with 1. The zero ring is a ring. In fact it is the only ring that does
not have a prime ideal. The Kronecker symbol 𝛿𝑖𝑗 will be used. If 𝑅 → 𝑆 is a ring map
and 𝔮 a prime of 𝑆, then we use the notation ``𝔭 = 𝑅 ∩ 𝔮'' to indicate the prime which is
the inverse image of 𝔮 under 𝑅 → 𝑆 even if 𝑅 is not a subring of 𝑆 and even if 𝑅 → 𝑆 is
not injective.

7.3. Basic notions

The following notions are considered basic and will not be defined, and or proved. This
does not mean they are all necessarily easy or well known.

(1) 𝑅 is a ring,
(2) 𝑥 ∈ 𝑅 is nilpotent,
(3) 𝑥 ∈ 𝑅 is a zero-divisor,
(4) 𝑥 ∈ 𝑅 is a unit,
(5) 𝑒 ∈ 𝑅 is an idempotent,
(6) an idempotent 𝑒 ∈ 𝑅 is called trivial if 𝑒 = 1 or 𝑒 = 0,
(7) 𝜑 ∶ 𝑅1 → 𝑅2 is a ring homomorphism,
(8) 𝜑 ∶ 𝑅1 → 𝑅2 is of finite presentation, or 𝑅2 is a finitely presented 𝑅1-algebra,

see Definition 7.6.1,
(9) 𝜑 ∶ 𝑅1 → 𝑅2 is of finite type, or 𝑅2 is a finitely type 𝑅1-algebra, see Definition

7.6.1,
(10) 𝜑 ∶ 𝑅1 → 𝑅2 is finite, or 𝑅2 is a finite 𝑅1-algebra,
(11) 𝑅 is a (integral) domain,
(12) 𝑅 is reduced,
(13) 𝑅 is Noetherian,
(14) 𝑅 is a principal ideal domain or a PID,
(15) 𝑅 is a Euclidean domain,
(16) 𝑅 is a unique factorization domain or a UFD,
(17) 𝑅 is a discrete valuation ring or a dvr,
(18) 𝐾 is a field,
(19) 𝐾 ⊂ 𝐿 is a field extension,
(20) 𝐾 ⊂ 𝐿 is an algebraic field extension,
(21) {𝑡𝑖}𝑖∈𝐼 is a transcendence basis for 𝐿 over 𝐾,
(22) the transcendence degree trdeg(𝐿/𝐾) of 𝐿 over 𝐾,
(23) the field 𝑘 is algebraically closed,

197
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(24) if 𝐾 ⊂ 𝐿 is algebraic, and 𝐾 → 𝑘 a field map, then there exists a map 𝐿 → 𝑘
extending the map on 𝐾,

(25) 𝐼 ⊂ 𝑅 is an ideal,
(26) 𝐼 ⊂ 𝑅 is radical,
(27) if 𝐼 is an ideal then we have its radical √𝐼,
(28) 𝐼 ⊂ 𝑅 is nilpotent means that 𝐼𝑛 = 0 for some 𝑛 ∈ 𝐍,
(29) 𝐼 ⊂ 𝑅 is locally nilpotent means that every element of 𝐼 is nilpotent,
(30) 𝔭 ⊂ 𝑅 is a prime ideal,
(31) if 𝔭 ⊂ 𝑅 is prime and if 𝐼, 𝐽 ⊂ 𝑅 are ideal, and if 𝐼𝐽 ⊂ 𝔭, then 𝐼 ⊂ 𝔭 or 𝐽 ⊂ 𝔭.
(32) 𝔪 ⊂ 𝑅 is a maximal ideal,
(33) any nonzero ring has a maximal ideal,
(34) the Jacobson radical of 𝑅 is rad(𝑅) = ⋂𝔪⊂𝑅 𝔪 the intersection of all the maxi-

mal ideals of 𝑅,
(35) the ideal (𝑇) generated by a subset 𝑇 ⊂ 𝑅,
(36) the quotient ring 𝑅/𝐼,
(37) an ideal 𝐼 in the ring 𝑅 is prime if and only if 𝑅/𝐼 is a domain,
(38) an ideal 𝐼 in the ring 𝑅 is maximal if and only if the ring 𝑅/𝐼 is a field,
(39) if 𝜑 ∶ 𝑅1 → 𝑅2 is a ring homomorphism, and if 𝐼 ⊂ 𝑅2 is an ideal, then 𝜑−1(𝐼)

is an ideal of 𝑅1,
(40) if 𝜑 ∶ 𝑅1 → 𝑅2 is a ring homomorphism, and if 𝐼 ⊂ 𝑅1 is an ideal, then 𝜑(𝐼)⋅𝑅2

(sometimes denoted 𝐼 ⋅ 𝑅2, or 𝐼𝑅2) is the ideal of 𝑅2 generated by 𝜑(𝐼),
(41) if 𝜑 ∶ 𝑅1 → 𝑅2 is a ring homomorphism, and if 𝔭 ⊂ 𝑅2 is a prime ideal, then

𝜑−1(𝔭) is a prime ideal of 𝑅1,
(42) 𝑀 is an 𝑅-module,
(43) for 𝑚 ∈ 𝑀 the annihilator 𝐼 = {𝑓 ∈ 𝑅 ∣ 𝑓𝑚 = 0} of 𝑚 in 𝑅,
(44) 𝑁 ⊂ 𝑀 is an 𝑅-submodule,
(45) 𝑀 is an Noetherian 𝑅-module,
(46) 𝑀 is a finite 𝑅-module,
(47) 𝑀 is a finitely generated 𝑅-module,
(48) 𝑀 is a finitely presented 𝑅-module,
(49) 𝑀 is a free 𝑅-module,
(50) if 0 → 𝐾 → 𝐿 → 𝑀 → 0 is a short exact sequence of 𝑅-modules and 𝐾, 𝑀 are

free, then 𝐿 is free,
(51) if 𝑁 ⊂ 𝑀 ⊂ 𝐿 are 𝑅-modules, then 𝐿/𝑀 = (𝐿/𝑁)/(𝑀/𝑁),
(52) 𝑆 is a multiplicative subset of 𝑅,
(53) the localization 𝑅 → 𝑆−1𝑅 of 𝑅,
(54) if 𝑅 is a ring and 𝑆 is a multiplicative subset of 𝑅 then 𝑆−1𝑅 is the zero ring if

and only if 𝑆 contains 0,
(55) if 𝑅 is a ring and if the multiplicative subset 𝑆 consists completely of nonzero

divisors, then 𝑅 → 𝑆−1𝑅 is injective,
(56) if 𝜑 ∶ 𝑅1 → 𝑅2 is a ring homomorphism, and 𝑆 is a multiplicative subsets of

𝑅1, then 𝜑(𝑆) is a multiplicative subset of 𝑅2,
(57) if 𝑆, 𝑆′ are multiplicative subsets of 𝑅, and if 𝑆𝑆′ denotes the set of products

𝑆𝑆′ = {𝑟 ∈ 𝑅 ∣ ∃𝑠 ∈ 𝑆, ∃𝑠′ ∈ 𝑆′, 𝑟 = 𝑠𝑠′} then 𝑆𝑆′ is a multiplicative subset
of 𝑅,

(58) if 𝑆, 𝑆′ are multiplicative subsets of 𝑅, and if 𝑆 denotes the image of 𝑆 in
(𝑆′)−1𝑅, then (𝑆𝑆′)−1𝑅 = 𝑆−1((𝑆′)−1𝑅),

(59) the localization 𝑆−1𝑀 of the 𝑅-module 𝑀,
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(60) the functor𝑀 ↦ 𝑆−1𝑀 preserves injectivemaps, surjectivemaps, and exactness,

(61) if𝑆, 𝑆′ aremultiplicative subsets of𝑅, and if𝑀 is an𝑅-module, then (𝑆𝑆′)−1𝑀 =
𝑆−1((𝑆′)−1𝑀),

(62) if 𝑅 is a ring, 𝐼 and ideal of 𝑅 and 𝑆 a multiplicative subset of 𝑅, then 𝑆−1𝐼 is
an ideal of 𝑆−1𝑅, and we have 𝑆−1𝑅/𝑆−1𝐼 = 𝑆−1(𝑅/𝐼), where 𝑆 is the image of
𝑆 in 𝑅/𝐼,

(63) if 𝑅 is a ring, and 𝑆 a multiplicative subset of 𝑅, then any ideal 𝐼′ of 𝑆−1𝑅 is of
the form 𝑆−1𝐼, where one can take 𝐼 to be the inverse image of 𝐼′ in 𝑅,

(64) if 𝑅 is a ring, 𝑀 an 𝑅-module, and 𝑆 a multiplicative subset of 𝑅, then any
submodule 𝑁′ of 𝑆−1𝑀 is of the form 𝑆−1𝑁 for some submodule 𝑁 ⊂ 𝑀,
where one can take 𝑁 to be the inverse image of 𝑁′ in 𝑀,

(65) if 𝑆 = {1, 𝑓, 𝑓2, …} then 𝑅𝑓 = 𝑆−1𝑅, and 𝑀𝑓 = 𝑆−1𝑀,
(66) if 𝑆 = 𝑅 ⧵ 𝔭 = {𝑥 ∈ 𝑅 ∣ 𝑥∉𝔭} for some prime ideal 𝔭, then it is customary to

denote 𝑅𝔭 = 𝑆−1𝑅 and 𝑀𝔭 = 𝑆−1𝑀,
(67) a local ring is a ring with exactly one maximal ideal,
(68) a semi-local ring is a ring with finitely many maximal ideals,
(69) if 𝔭 is a prime in 𝑅, then 𝑅𝔭 is a local ring with maximal ideal 𝔭𝑅𝔭,
(70) the residue field, denoted 𝜅(𝔭), of the prime 𝔭 in the ring𝑅 is the quotient𝑅𝔭/𝔭𝑅𝔭 =

(𝑅 ⧵ 𝔭)−1𝑅/𝔭,
(71) given 𝑅 and 𝑀1, 𝑀2 the tensor product 𝑀1 ⊗𝑅 𝑀2,
(72) etc.

7.4. Snake lemma

The snake lemma and its variants are discussed in the setting of abelian categories in Ho-
mology, Section 10.3.

Lemma 7.4.1. Suppose given a commutative diagram

𝑋 //

𝛼
��

𝑌 //

𝛽
��

𝑍 //

𝛾
��

0

0 // 𝑈 // 𝑉 // 𝑊

of abelian groups with exact rows, then there is a canonical exact sequence

Ker(𝛼) → Ker(𝛽) → Ker(𝛾) → Coker(𝛼) → Coker(𝛽) → Coker(𝛾)

Moreover, if 𝑋 → 𝑌 is injective, then the first map is injective, and if 𝑉 → 𝑊 is surjective,
then the last map is surjective.

Proof. The map 𝜕 ∶ Ker(𝛾) → Coker(𝛼) is defined as follows. Take 𝑧 ∈ Ker(𝛾). Choose
𝑦 ∈ 𝑌 mapping to 𝑧. Then 𝛽(𝑦) ∈ 𝑉 maps to zero in 𝑊. Hence 𝛽(𝑦) is the image of some
𝑢 ∈ 𝑈. Set 𝜕𝑧 = 𝑢 the class of 𝑢 in the cokernel of 𝛼. Proof of exactness is omitted. �

7.5. Finite modules and finitely presented modules

Just some basic notation and lemmas.

Definition 7.5.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module
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(1) We say 𝑀 is a finite 𝑅-module, or a finitely generated 𝑅-module if there exist 𝑛 ∈
𝐍 and 𝑥1, … , 𝑥𝑛 ∈ 𝑀 such that every element of 𝑀 is a 𝑅-linear combination
of the 𝑥𝑖. Equivalently, this means there exists a surjection 𝑅⊕𝑛 → 𝑀 for some
𝑛 ∈ 𝐍.

(2) We say 𝑀 is a finitely presented 𝑅-module or an 𝑅-module of finite presentation
if there exist integers 𝑛, 𝑚 ∈ 𝐍 and an exact sequence

𝑅⊕𝑚 ⟶ 𝑅⊕𝑛 ⟶ 𝑀 ⟶ 0

Informally this means that 𝑀 is finitely generated and that the module of relations among
these generators is finitely generated as well. A choice of an exact sequence as in the defi-
nition is called a presentation of 𝑀.

Lemma 7.5.2. Let 𝑅 be a ring. Let 𝛼 ∶ 𝑅⊕𝑛 → 𝑀 and 𝛽 ∶ 𝑁 → 𝑀 be module maps. If
Im(𝛼) ⊂ Im(𝛽), then there exists an 𝑅-module map 𝛾 ∶ 𝑅⊕𝑛 → 𝑁 such that 𝛼 = 𝛽 ∘ 𝛾.

Proof. Let 𝑒𝑖 = (0, … , 0, 1, 0, … , 0) be the 𝑖th basis vector of 𝑅⊕𝑛. Let 𝑥𝑖 ∈ 𝑁 be an
element with 𝛼(𝑒𝑖) = 𝛽(𝑥𝑖) which exists by assumption. Set 𝛾(𝑎1, … , 𝑎𝑛) = ∑ 𝑎𝑖𝑥𝑖. By
construction 𝛼 = 𝛽 ∘ 𝛾. �

Lemma 7.5.3. Let 𝑀 be an 𝑅-module of finite presentation. For any surjection 𝛼 ∶ 𝑅⊕𝑛 →
𝑀 the kernel of 𝛼 is a finitely generated 𝑅-module.

Proof. Choose a presentation

𝑅⊕𝑙 → 𝑅⊕𝑚 → 𝑀 → 0

Let 𝐾 = Ker(𝛼). By Lemma 7.5.2 there exists a map 𝑅⊕𝑚 → 𝑅⊕𝑛 such that the solid
diagram

𝑅⊕𝑙 //

��

𝑅⊕𝑚 //

��

𝑀 //

𝑖𝑑
��

0

0 // 𝐾 // 𝑅⊕𝑛 𝛼 //𝑀 // 0
commutes. This produces the dotted arrow. By the snake lemma (Lemma 7.4.1) we see
that we get an isomorphism

Coker(𝑅⊕𝑙 → 𝐾) ≅ Coker(𝑅⊕𝑚 → 𝑅⊕𝑛)

In particular we conclude that Coker(𝑅⊕𝑙 → 𝐾) is a finite 𝑅-module. Hence there are
finitely many elements of 𝐾 which together with the images of the basis vectors of 𝑅⊕𝑙

generate 𝐾, i.e., 𝐾 is finitely generated. �

Lemma 7.5.4. Let 𝑅 be a ring. Let

0 → 𝑀1 → 𝑀2 → 𝑀3 → 0

be a short exact sequence of 𝑅-modules.
(1) If 𝑀1 and 𝑀3 are finite 𝑅-modules, then 𝑀2 is a finite 𝑅-module.
(2) If 𝑀1 and 𝑀3 are finitely presented 𝑅-modules, then 𝑀2 is a finitely presented

𝑅-module.
(3) If 𝑀2 is a finite 𝑅-module, then 𝑀3 is a finite 𝑅-module.
(4) If 𝑀2 is a finitely presented 𝑅-module and 𝑀1 is a finite 𝑅-module, then 𝑀3 is

a finitely presented 𝑅-module.
(5) If 𝑀3 is a finitely presented 𝑅-module and 𝑀2 is a finite 𝑅-module, then 𝑀1 is

a finite 𝑅-module.
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Proof. We prove part (5). Assume 𝑀3 is finitely presented and 𝑀2 finite. Let 𝛼 ∶ 𝑅⊕𝑛 →
𝑀2 be a surjection. Then we can find 𝑘1, … , 𝑘𝑚 ∈ 𝑅⊕𝑛 which generate the kernel of the
composition 𝑅⊕𝑛 → 𝑀2 → 𝑀3. Then 𝛼(𝑘1), … , 𝛼(𝑘𝑚) generate 𝑀1 as a submodule of
𝑀2. The proofs of the other parts are omitted. �

Lemma 7.5.5. Let 𝑅 be a ring, and let 𝑀 be a finite 𝑅-module. There exists a filtration by
𝑅-submodules

0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀
such that each quotient 𝑀𝑖/𝑀𝑖−1 is isomorphic to 𝑅/𝐼𝑖 for some ideal 𝐼𝑖 of 𝑅.

Proof. By induction on the number of generators of 𝑀. Let 𝑥1, … , 𝑥𝑟 ∈ 𝑀 be a minimal
number of generators. Let 𝑀′ = 𝑅𝑥1 ⊂ 𝑀. Then 𝑀/𝑀′ has 𝑟 − 1 generators and the
induction hypothesis applies. And clearly 𝑀′ ≅ 𝑅/𝐼1 with 𝐼1 = {𝑓 ∈ 𝑅 ∣ 𝑓𝑥1 = 0}. �

Lemma 7.5.6. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. If 𝑀 is finite as an
𝑅-module, then 𝑀 is finite as an 𝑆-module.

Proof. In fact, any 𝑅-generating set of 𝑀 is also an 𝑆-generating set of 𝑀, since the
𝑅-module structure is induced by the image of 𝑅 in 𝑆. �

7.6. Ring maps of finite type and of finite presentation

Definition 7.6.1. Let 𝑅 → 𝑆 be a ring map.
(1) We say 𝑅 → 𝑆 is of finite type, or that 𝑆 is a finite type 𝑅-algebra if there exists

an 𝑛 ∈ 𝐍 and an surjection of 𝑅-algebras 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆.
(2) We say 𝑅 → 𝑆 is of finite presentation if there exist integers 𝑛, 𝑚 ∈ 𝐍 and polyno-

mials 𝑓1, … , 𝑓𝑚 ∈ 𝑅[𝑥1, … , 𝑥𝑛] and an isomorphism of𝑅-algebras𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) ≅
𝑆.

Informally this means that 𝑆 is finitely generated as an 𝑅-algebra and that the ideal of rela-
tions among the generators is finitely generated. A choice of a surjection 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆
as in the definition is sometimes called a presentation of 𝑆.

Lemma 7.6.2. The notions finite type and finite presentation have the following perma-
nence properties.

(1) A composition of ring maps of finite type is of finite type.
(2) A composition of ring maps of finite presentation is of finite presentation.
(3) Given 𝑅 → 𝑆′ → 𝑆 with 𝑅 → 𝑆 of finite type, then 𝑆′ → 𝑆 is of finite type.
(4) Given 𝑅 → 𝑆′ → 𝑆, with 𝑅 → 𝑆 of finite presentation, and 𝑅 → 𝑆′ of finite

type, then 𝑆′ → 𝑆 is of finite presentation.

Proof. We only prove the last assertion. Write 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) and 𝑆′ =
𝑅[𝑦1, … , 𝑦𝑎]/𝐼. Say that the class ̄𝑦𝑖 of 𝑦𝑖 maps to ℎ𝑖 mod (𝑓1, … , 𝑓𝑚) in 𝑆. Then it is clear
that 𝑆′ = 𝑆[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚, ℎ1 − ̄𝑦1, … , ℎ𝑚 − ̄𝑦𝑚). �

Lemma 7.6.3. Let 𝑅 → 𝑆 be a ring map of finite presentation. For any surjection 𝛼 ∶
𝑅[𝑥1, … , 𝑥𝑛] → 𝑆 the kernel of 𝛼 is a finitely generated ideal in 𝑅[𝑥1, … , 𝑥𝑛].

Proof. Write 𝑆 = 𝑅[𝑦1, … , 𝑦𝑚]/(𝑓1, … , 𝑓𝑘). Choose 𝑔𝑖 ∈ 𝑅[𝑦1, … , 𝑦𝑚] which are lifts
of 𝛼(𝑥𝑖). Then we see that 𝑆 = 𝑅[𝑥𝑖, 𝑦𝑗]/(𝑓𝑗, 𝑥𝑖 − 𝑔𝑖). Choose ℎ𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛] such
that 𝛼(ℎ𝑗) corresponds to 𝑦𝑗 mod (𝑓1, … , 𝑓𝑘). Consider the map 𝜓 ∶ 𝑅[𝑥𝑖, 𝑦𝑗] → 𝑅[𝑥𝑖],
𝑥𝑖 ↦ 𝑥𝑖, 𝑦𝑗 ↦ ℎ𝑗. Then the kernel of 𝛼 is the image of (𝑓𝑗, 𝑥𝑖 −𝑔𝑖) under 𝜓 and we win. �
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Lemma 7.6.4. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Assume 𝑅 → 𝑆 is of
finite type and 𝑀 is finitely presented as an 𝑅-module. Then 𝑀 is finitely presented as an
𝑆-module.

Proof. This is similar to the proof of part (4) of Lemma 7.6.2. We may assume 𝑆 =
𝑅[𝑥1, … , 𝑥𝑛]/𝐽. Choose 𝑦1, … , 𝑦𝑚 ∈ 𝑀 which generate 𝑀 as an 𝑅-module and choose
relations ∑ 𝑎𝑖𝑗𝑦𝑗 = 0, 𝑖 = 1, … , 𝑡 which generate the kernel of 𝑅⊕𝑛 → 𝑀. For any
𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚 write

𝑥𝑖𝑦𝑗 = ∑ 𝑎𝑖𝑗𝑘𝑦𝑘

for some 𝑎𝑖𝑗𝑘 ∈ 𝑅. Consider the 𝑆-module 𝑁 generated by 𝑦1, … , 𝑦𝑚 subject to the rela-
tions ∑ 𝑎𝑖𝑗𝑦𝑗 = 0, 𝑖 = 1, … , 𝑡 and 𝑥𝑖𝑦𝑗 = ∑ 𝑎𝑖𝑗𝑘𝑦𝑘, 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚. Then 𝑁
has a presentation

𝑆⊕𝑛𝑚+𝑡 ⟶ 𝑆⊕𝑚 ⟶ 𝑀 ⟶ 0
By construction there is a surjective map 𝜑 ∶ 𝑁 → 𝑀. To finish the proof we show 𝜑 is
injective. Suppose 𝑧 = ∑ 𝑏𝑗𝑦𝑗 ∈ 𝑁 for some 𝑏𝑗 ∈ 𝑆. We may think of 𝑏𝑗 as a polynomial
in 𝑥1, … , 𝑥𝑛 with coefficients in 𝑅. By applying the relations of the form 𝑥𝑖𝑦𝑗 = ∑ 𝑎𝑖𝑗𝑘𝑦𝑘
we can inductively lower the degree of the polynomials. Hence we see that 𝑧 = ∑ 𝑐𝑗𝑦𝑗 for
some 𝑐𝑗 ∈ 𝑅. Hence if 𝜑(𝑧) = 0 then the vector (𝑐1, … , 𝑐𝑚) is an 𝑅-linear combination of
the vectors (𝑎𝑖1, … , 𝑎𝑖𝑚) and we conclude that 𝑧 = 0 as desired. �

7.7. Finite ring maps

Definition 7.7.1. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. We say 𝜑 ∶ 𝑅 → 𝑆 is finite if if 𝑆 is finite
as an 𝑅-module.

Lemma 7.7.2. Let 𝑅 → 𝑆 be a finite ring map. Let 𝑀 be an 𝑆-module. Then 𝑀 is finite
as an 𝑅-module if and only if 𝑀 is finite as an 𝑆-module.

Proof. One of the implications follows from Lemma 7.5.6. To see the other assume that
𝑀 is finite as an 𝑆-module. Pick 𝑥1, … , 𝑥𝑛 ∈ 𝑆 which generate 𝑆 as an 𝑅-module. Pick
𝑦1, … , 𝑦𝑚 ∈ 𝑀 which generate 𝑀 as an 𝑆-module. Then 𝑥𝑗𝑦𝑗 generate 𝑀 as an 𝑅-module.

�

Lemma 7.7.3. Suppose that 𝑅 → 𝑆 and 𝑆 → 𝑇 are finite ring maps. Then 𝑅 → 𝑇 is finite.

Proof. If 𝑡𝑖 generate 𝑇 as an 𝑆-module and 𝑠𝑗 generate 𝑆 as an 𝑅-module, then 𝑡𝑖𝑠𝑗 generate
𝑇 as an 𝑅-module. (Also follows from Lemma 7.7.2.) �

Lemma 7.7.4. Let 𝑅 → 𝑆 be a finite and finitely presented ring map. Let 𝑀 be an
𝑆-module. Then 𝑀 is finitely presented as an 𝑅-module if and only if 𝑀 is finitely pre-
sented as an 𝑆-module.

Proof. One of the implications follows from Lemma 7.6.4. To see the other assume that
𝑀 is finitely presented as an 𝑆-module. Pick a presentation

𝑆⊕𝑚 ⟶ 𝑆⊕𝑛 ⟶ 𝑀 ⟶ 0
As 𝑆 is finite as an 𝑅-module, the kernel of 𝑆⊕𝑛 → 𝑀 is a finite 𝑅-module. Thus from
Lemma 7.5.4 we see that it suffices to prove that 𝑆 is finitely presented as an 𝑅-module.
Pick 𝑥1, … , 𝑥𝑛 ∈ 𝑆 which generate 𝑆 as an 𝑅-module. Write 𝑥𝑖𝑥𝑗 = ∑ 𝑎𝑖𝑗𝑘𝑥𝑘 for some
𝑎𝑖𝑗𝑘 ∈ 𝑅. Let 𝐽 = Ker(𝑅[𝑋1, … , 𝑋𝑛] → 𝑆) where 𝑅[𝑋1, … , 𝑋𝑛] → 𝑆 is the 𝑅-algebra
map determined by 𝑋𝑖 ↦ 𝑥𝑖. Let 𝑔𝑖𝑗 = 𝑋𝑖𝑋𝑗 − ∑ 𝑎𝑖𝑗𝑘𝑋𝑘 which is an element of 𝐽. Let
𝐼 = (𝑔𝑖𝑗) so that 𝐼 ⊂ 𝐽. By Lemma 7.6.3 there exist finitely many 𝑔1, … , 𝑔𝑁 ∈ 𝐽 such that
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𝐽 = (𝑔1, … , 𝑔𝑁). For every index 𝑙 ∈ {1, … , 𝑁} we can write 𝑔𝑙 = ℎ𝑙 mod 𝐼 for some
ℎ𝑙 ∈ 𝐽 which has degree ≤ 1 in 𝑋1, … , 𝑋𝑛. (Details omitted; hint: use the 𝑔𝑖𝑗 get rid of the
monomial of highest degree in 𝑔𝑙 and use induction.) Write ℎ𝑙 = 𝑎𝑙0 + ∑ 𝑎𝑙𝑖𝑋𝑖 for some
𝑎𝑙𝑖 ∈ 𝑅. Then 𝑆 has the following presentation

𝑅⊕𝑁 ⟶ 𝑅⊕𝑛+1 ⟶ 𝑀 ⟶ 0

as an 𝑅-module where the first arrow maps the 𝑙th basis vector to (𝑎𝑙0, 𝑎𝑙1, … , 𝑎𝑙𝑛) and the
second arrow maps (𝑎0, 𝑎1, … , 𝑎𝑛) to 𝑎0 + ∑ 𝑎𝑖𝑥𝑖. �

7.8. Colimits

Some of the material in this section overlaps with the general discussion on colimits in
Categories, Sections 4.13 -- 4.19.

Definition 7.8.1. A partially ordered set is a set 𝐼 together with a relation ≤ which is
associative (if 𝑖 ≤ 𝑗 and 𝑗 ≤ 𝑘 then 𝑖 ≤ 𝑘) and reflexive (𝑖 ≤ 𝑖 for all 𝑖 ∈ 𝐼). A directed set
(𝐼, ≤) is a partially ordered set (𝐼, ≤) such that 𝐼 is not empty and such that ∀𝑖, 𝑗 ∈ 𝐼, there
exists 𝑘 ∈ 𝐼 with 𝑖 ≤ 𝑘, 𝑗 ≤ 𝑘.

It is customary to drop the ≤ from the notation when talking about a partially ordered set.
This is the same as the notion defined in Categories, Section 4.19.

Definition 7.8.2. Let (𝐼, ≤) be a partially ordered set. A system (𝑀𝑖, 𝜇𝑖𝑗) of 𝑅-modules
over 𝐼 consists of a family of 𝑅-modules {𝑀𝑖}𝑖∈𝐼 indexed by 𝐼 and a family of 𝑅-module
maps {𝜇𝑖𝑗 ∶ 𝑀𝑖 → 𝑀𝑗}𝑖≤𝑗 such that for all 𝑖 ≤ 𝑗 ≤ 𝑘

𝜇𝑖𝑖 = 𝑖𝑑𝑀𝑖
(7.8.2.1)

𝜇𝑖𝑘 = 𝜇𝑗𝑘 ∘ 𝜇𝑖𝑗(7.8.2.2)

We say (𝑀𝑖, 𝜇𝑖𝑗) is a directed system if 𝐼 is a directed set.

This is the same as the notion defined in Categories, Definition 4.19.1 and Section 4.19.
We refer to Categories, Definition 4.13.2 for the definition of a colimit of a diagram/system
in any category.

Lemma 7.8.3. Let (𝑀𝑖, 𝜇𝑖𝑗) be a system of 𝑅-modules over the partially ordered set 𝐼.
The colimit of the system (𝑀𝑖, 𝜇𝑖𝑗) is the quotient 𝑅-module (⨁𝑖∈𝐼 𝑀𝑖)/𝑄 where 𝑄 is the
𝑅-submodule generated by all elements

𝜄𝑖(𝑥𝑖) − 𝜄𝑗(𝜇𝑖𝑗(𝑥𝑖))

where 𝜄𝑖 ∶ 𝑀𝑖 → ⨁𝑖∈𝐼 𝑀𝑖 is the natural inclusion. We denote the colimit 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖.
We denote 𝜋 ∶ ⨁𝑖∈𝐼 𝑀𝑖 → 𝑀 the projection map and 𝜙𝑖 = 𝜋 ∘ 𝜄𝑖 ∶ 𝑀𝑖 → 𝑀.

Proof. This lemma is a special case of Categories, Lemma 4.13.11 but we will also prove
it directly in this case. Namely, note that 𝜙𝑖 = 𝜙𝑗 ∘ 𝜇𝑖𝑗 in the above construction. To show
the pair (𝑀, 𝜙𝑖) is the colimit we have to show it satisfies the universal property: for any
other such pair (𝑌, 𝜓𝑖) with 𝜓𝑖 ∶ 𝑀𝑖 → 𝑌, 𝜓𝑖 = 𝜓𝑗 ∘ 𝜇𝑖𝑗, there is a unique 𝑅-module
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homomorphism 𝑔 ∶ 𝑀 → 𝑌 such that the following diagram commutes:

𝑀𝑖
𝜇𝑖𝑗 //

𝜙𝑖

  
𝜓𝑖

��

𝑀𝑗
𝜙𝑗

~~
𝜓𝑗

��

𝑀

𝑔
��

𝑌

And this is clear because we can define 𝑔 by taking the map 𝜓𝑖 on the summand 𝑀𝑖 in the
direct sum ⨁ 𝑀𝑖. �

Lemma 7.8.4. Let (𝑀𝑖, 𝜇𝑖𝑗) be a system of 𝑅-modules over the partially ordered set 𝐼.
Assume that 𝐼 is directed. The colimit of the system (𝑀𝑖, 𝜇𝑖𝑗) is canonically isomorphic to
the module 𝑀 defined as follows:

(1) as a set let

𝑀 = (∐𝑖∈𝐼
𝑀𝑖) / ∼

where for 𝑚 ∈ 𝑀𝑖 and 𝑚′ ∈ 𝑀𝑖′ we have

𝑚 ∼ 𝑚′ ⇔ 𝜇𝑖𝑗(𝑚) = 𝜇𝑖′𝑗(𝑚′) for some 𝑗 ≥ 𝑖, 𝑖′

(2) as an abelian group for 𝑚 ∈ 𝑀𝑖 and 𝑚′ ∈ 𝑀𝑖′ we define the sum of the classes
of 𝑚 and 𝑚′ in 𝑀 to be the class of 𝜇𝑖𝑗(𝑚) + 𝜇𝑖′𝑗(𝑚′) where 𝑗 ∈ 𝐼 is any index
with 𝑖 ≤ 𝑗 and 𝑖′ ≤ 𝑗, and

(3) as an 𝑅-module define for 𝑚 ∈ 𝑀𝑖 and 𝑥 ∈ 𝑅 the product of 𝑥 and the class of
𝑚 in 𝑀 to be the class of 𝑥𝑚 in 𝑀.

The canonical maps 𝜙𝑖 ∶ 𝑀𝑖 → 𝑀 are induced by the canonical maps 𝑀𝑖 → ∐𝑖∈𝐼 𝑀𝑖.

Proof. Omitted. Compare with Categories, Section 4.17. �

Lemma 7.8.5. Let (𝑀𝑖, 𝜇𝑖𝑗) be a directed system. Let 𝑀 = 𝑐𝑜𝑙𝑖𝑚 𝑀𝑖 with 𝜇𝑖 ∶ 𝑀𝑖 → 𝑀,
then 𝜇𝑖(𝑥𝑖) = 0 for 𝑥𝑖 ∈ 𝑀𝑖 if and only if there exists 𝑗 ⪰ 𝑖 such that 𝜇𝑖𝑗(𝑥𝑖) = 0.

Proof. This is clear from the description of the directed colimit in Lemma 7.8.4. �

Example 7.8.6. Consider the partially ordered set 𝐼 = {𝑎, 𝑏, 𝑐} with 𝑎 ≺ 𝑏 and 𝑎 ≺ 𝑐
and no other strict inequalities. A system (𝑀𝑎, 𝑀𝑏, 𝑀𝑐, 𝜇𝑎𝑏, 𝜇𝑎𝑐) over 𝐼 consists of three
𝑅-modules 𝑀𝑎, 𝑀𝑏, 𝑀𝑐 and two 𝑅-module homomorphisms 𝜇𝑎𝑏 ∶ 𝑀𝑎 → 𝑀𝑏 and 𝜇𝑎𝑐 ∶
𝑀𝑎 → 𝑀𝑐. The colimit of the system is just

𝑀 ∶= 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 = Coker(𝑀𝑎 → 𝑀𝑏 ⊕ 𝑀𝑐)

where the map is 𝜇𝑎𝑏 ⊕−𝜇𝑎𝑐. Thus the kernel of the canonical map 𝑀𝑎 → 𝑀 is Ker(𝜇𝑎𝑏)+
Ker(𝜇𝑎𝑐). And the kernel of the canonical map 𝑀𝑏 → 𝑀 is the image of Ker(𝜇𝑎𝑐) under
the map 𝜇𝑎𝑏. Hence clearly the result of Lemma 7.8.5 is false for general systems.

Definition 7.8.7. Let (𝑀𝑖, 𝜇𝑖𝑗), (𝑁𝑖, 𝜈𝑖𝑗) be systems of 𝑅-modules over the same partially
ordered set 𝐼. A homomorphism of systems Φ from (𝑀𝑖, 𝜇𝑖𝑗) to (𝑁𝑖, 𝜈𝑖𝑗) is by definition a
family of 𝑅-module homomorphisms 𝜙𝑖 ∶ 𝑀𝑖 → 𝑁𝑖 such that 𝜙𝑗 ∘ 𝜇𝑖𝑗 = 𝜈𝑖𝑗 ∘ 𝜙𝑖 for all
𝑖 ≤ 𝑗.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00D6
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00D7
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00D8
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00D9


7.8. COLIMITS 205

This is the same notion as a transformation of functors between the associated diagrams
𝑀 ∶ 𝐼 → Mod𝑅 and 𝑁 ∶ 𝐼 → Mod𝑅, in the language of categories. The following lemma
is a special case of Categories, Lemma 4.13.7.

Lemma 7.8.8. Let (𝑀𝑖, 𝜇𝑖𝑗), (𝑁𝑖, 𝜈𝑖𝑗) be systems of 𝑅-modules over the same partially
ordered set. A morphism of systems Φ = (𝜙𝑖) from (𝑀𝑖, 𝜇𝑖𝑗) to (𝑁𝑖, 𝜈𝑖𝑗) induces a unique
homomorphism

𝑐𝑜𝑙𝑖𝑚 𝜙𝑖 ∶ 𝑐𝑜𝑙𝑖𝑚 𝑀𝑖 ⟶ 𝑐𝑜𝑙𝑖𝑚 𝑁𝑖

such that
𝑀𝑖

//

𝜙𝑖
��

𝑐𝑜𝑙𝑖𝑚 𝑀𝑖

𝑐𝑜𝑙𝑖𝑚 𝜙𝑖
��

𝑁𝑖
// 𝑐𝑜𝑙𝑖𝑚 𝑁𝑖

commutes for all 𝑖 ∈ 𝐼.

Proof. Write 𝑀 = 𝑐𝑜𝑙𝑖𝑚 𝑀𝑖 and 𝑁 = 𝑐𝑜𝑙𝑖𝑚 𝑁𝑖 and 𝜙 = 𝑐𝑜𝑙𝑖𝑚 𝜙𝑖 (as yet to be constructed).
We will use the explicit description of 𝑀 and 𝑁 in Lemma 7.8.3 without further mention.
The condition of the lemma is equivalent to the condition that

⨁𝑖∈𝐼 𝑀𝑖
//

⨁ 𝜙𝑖
��

𝑀

𝜙
��

⨁𝑖∈𝐼 𝑁𝑖
// 𝑁

commutes. Hence it is clear that if 𝜙 exists, then it is unique. To see that 𝜙 exists, it suffices
to show that the kernel of the upper horizontal arrow is mapped by ⨁ 𝜙𝑖 to the kernel of
the lower horizontal arrow. To see this, let 𝑗 ≤ 𝑘 and 𝑥𝑗 ∈ 𝑀𝑗. Then

(⨁ 𝜙𝑖)(𝑥𝑗 − 𝜇𝑗𝑘(𝑥𝑗)) = 𝜙𝑗(𝑥𝑗) − 𝜙𝑘(𝜇𝑗𝑘(𝑥𝑗)) = 𝜙𝑗(𝑥𝑗) − 𝜈𝑗𝑘(𝜙𝑖(𝑥𝑗))

which is in the kernel of the lower horizontal arrow as required. �

Lemma 7.8.9. Let 𝐼 be a directed partially ordered set. Let (𝐿𝑖, 𝜆𝑖𝑗), (𝑀𝑖, 𝜇𝑖𝑗), and (𝑁𝑖, 𝜈𝑖𝑗)
be systems of 𝑅-modules over 𝐼. Let 𝜑𝑖 ∶ 𝐿𝑖 → 𝑀𝑖 and 𝜓𝑖 ∶ 𝑀𝑖 → 𝑁𝑖 be morphisms of
systems over 𝐼. Assume that for all 𝑖 ∈ 𝐼 the sequence of 𝑅-modules

𝐿𝑖
𝜑𝑖 //𝑀𝑖

𝜓𝑖 // 𝑁𝑖

is a complex with homology 𝐻𝑖. Then the 𝑅-modules 𝐻𝑖 form a system over 𝐼, the sequence
of 𝑅-modules

𝑐𝑜𝑙𝑖𝑚𝑖 𝐿𝑖
𝜑 // 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖

𝜓 // 𝑐𝑜𝑙𝑖𝑚𝑖 𝑁𝑖

is a complex as well, and denoting 𝐻 its homology we have

𝐻 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑖.

Proof. We are going to repeatedly use the description of colimits over 𝐼 as in Lemma 7.8.4
without further mention. Let ℎ ∈ 𝐻. Since 𝐻 = ker(𝜑)/Im(𝜓) we see that ℎ is the class
mod Im(𝜓) of an element [𝑚] in Ker(𝜓) ⊂ 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖. Choose an 𝑖 such that [𝑚] comes
from an element 𝑚 ∈ 𝑀𝑖. Choose a 𝑗 ≥ 𝑖 such that 𝜈𝑖𝑗(𝜓𝑖(𝑚)) = 0 which is possible
since [𝑚] ∈ Ker(𝜓). After replacing 𝑖 by 𝑗 and 𝑚 by 𝜇𝑖𝑗(𝑚) we see that we may assume
𝑚 ∈ Ker(𝜓𝑖). This shows that the map 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑖 → 𝐻 is surjective.
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Suppose that ℎ𝑖 ∈ 𝐻𝑖 has image zero on 𝐻. Since 𝐻𝑖 = Ker(𝜓𝑖)/Im(𝜑𝑖) we may represent
ℎ𝑖 by an element 𝑚 ∈ Ker(𝜓𝑖) ⊂ 𝑀𝑖. The assumption on the vanishing of ℎ𝑖 in 𝐻 means
that the class of 𝑚 in 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖 lies in the image of 𝜑. Hence there exists an 𝑗 ≥ 𝑖 and a
𝑙 ∈ 𝐿𝑗 such that 𝜑𝑗(𝑙) = 𝜇𝑖𝑗(𝑚). Clearly this shows that the image of ℎ𝑖 in 𝐻𝑗 is zero. This
proves the injectivity of 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑖 → 𝐻. �

Example 7.8.10. Taking colimits is not exact in general. Consider the partially ordered set
𝐼 = {𝑎, 𝑏, 𝑐} with 𝑎 ≺ 𝑏 and 𝑎 ≺ 𝑐 and no other strict inequalities, as in Example 7.8.6.
Consider the map of systems (0, 𝐙, 𝐙, 0, 0) → (𝐙, 𝐙, 𝐙, 1, 1). From the description of the
colimit in Example 7.8.6 we see that the associated map of colimits is not injective, even
though the map of systems is injective on each object. Hence the result of Lemma 7.8.9 is
false for general systems.

Lemma 7.8.11. Let ℐ be an index category satisfying the assumptions of Categories,
Lemma 4.17.3. Then taking colimits of diagrams of abelian groups over ℐ is exact (i.e., the
analogue of Lemma 7.8.9 holds in this situation).

Proof. By Categories, Lemma 4.17.3 we may write ℐ = ∐𝑗∈𝐽 ℐ𝑗 with each ℐ𝑗 a filtered
category, and 𝐽 possibly empty. By Categories, Lemma 4.19.3 taking colimits over the
index categories ℐ𝑗 is the same as taking the colimit over some directed partially ordered
set. Hence Lemma 7.8.9 applies to these colimits. This reduces the problem to showing
that coproducts in the category of 𝑅-modules over the set 𝐽 are exact. In other words, exact
sequences 𝐿𝑗 → 𝑀𝑗 → 𝑁𝑗 of 𝑅 modules we have to show that

⨁𝑗∈𝐽
𝐿𝑗 ⟶ ⨁𝑗∈𝐽

𝑀𝑗 ⟶ ⨁𝑗∈𝐽
𝑁𝑗

is exact. This can be verified by hand, and holds even if 𝐽 is empty. �

For purposes of reference, we define what it means to have a relation between elements of
a module.

Definition 7.8.12. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑛 ≥ 0 and 𝑥𝑖 ∈ 𝑀 for
𝑖 = 1, … , 𝑛. A relation between 𝑥1, … , 𝑥𝑛 in 𝑀 is a sequence of elements 𝑓1, … , 𝑓𝑛 ∈ 𝑅
such that ∑𝑖=1,…,𝑛 𝑓𝑖𝑥𝑖 = 0.

Lemma 7.8.13. Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. Then 𝑀 is the colimit of a
directed system (𝑀𝑖, 𝜇𝑖𝑗) of 𝑅-modules with all 𝑀𝑖 finitely presented 𝑅-modules.

Proof. Consider any finite subset 𝑆 ⊂ 𝑀 and any finite collection of relations 𝐸 among
the elements of 𝑆. So each 𝑠 ∈ 𝑆 corresponds to 𝑥𝑠 ∈ 𝑀 and each 𝑒 ∈ 𝐸 consists of a
vector of elements 𝑓𝑒,𝑠 ∈ 𝑅 such that ∑ 𝑓𝑒,𝑠𝑥𝑠 = 0. Let 𝑀𝑆,𝐸 be the cokernel of the map

𝑅#𝐸 ⟶ 𝑅#𝑆, (𝑔𝑒)𝑒∈𝐸 ⟼ (∑ 𝑔𝑒𝑓𝑒,𝑠)𝑠∈𝑆.

There are canonical maps 𝑀𝑆,𝐸 → 𝑀. If 𝑆 ⊂ 𝑆′ and if the elements of 𝐸 correspond, via
this map, to relations in 𝐸′, then there is an obvious map 𝑀𝑆,𝐸 → 𝑀𝑆′,𝐸′ commuting with
the maps to 𝑀. Let 𝐼 be the set of pairs (𝑆, 𝐸) with ordering by inclusion as above. It is
clear that the colimit of this directed system is 𝑀. �

7.9. Localization

Definition 7.9.1. Let 𝑅 be a ring, 𝑆 a subset of 𝑅. We say 𝑆 is a multiplicative subset of
𝑅 is 1 ∈ 𝑆 and 𝑆 is closed under multiplication, i.e., 𝑠, 𝑠′ ∈ 𝑆 ⇒ 𝑠𝑠′ ∈ 𝑆.
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Given a ring 𝐴 and a multiplicative subset 𝑆, we define a relation on 𝐴 × 𝑆 as follows:

(𝑥, 𝑠) ∼ (𝑦, 𝑡) ⟺ ∃𝑢 ∈ 𝑆, such that (𝑥𝑡 − 𝑦𝑠)𝑢 = 0

It is easily checked that this is an equivalence relation. Let 𝑥/𝑠 (or 𝑥
𝑠 ) be the equivalence

class of (𝑥, 𝑠) and 𝑆−1𝐴 be the set of all equivalence classes. Define addition and multipli-
cation in 𝑆−1𝐴 as follows:

𝑥/𝑠 + 𝑦/𝑡 = (𝑥𝑡 + 𝑦𝑠)/𝑠𝑡(7.9.1.1)
𝑥/𝑠 ⋅ 𝑦/𝑡 = 𝑥𝑦/𝑠𝑡(7.9.1.2)

One can check that 𝑆−1𝐴 becomes a ring under these operations.

Definition 7.9.2. This ring is called the localization of 𝐴 with respect to 𝑆.

We have a natural ring map from 𝐴 to its localization 𝑆−1𝐴,

𝐴 ⟶ 𝑆−1𝐴, 𝑥 ⟼ 𝑥/1

which is sometimes called the localization map. In general the localization map is not
injective, unless 𝑆 contains no zero divisors. For, if 𝑥/1 = 0, then there is a 𝑢 ∈ 𝑆 such
that 𝑥𝑢 = 0 in 𝐴 and hence 𝑥 = 0 since there are no zero divisors in 𝑆. The localization of
a ring has the following universal property.

Proposition 7.9.3. Let 𝑓 ∶ 𝐴 → 𝐵 be a ring map that sends every element in 𝑆 to a unit of
𝐵. Then there is a unique homomorphism 𝑔 ∶ 𝑆−1𝐴 → 𝐵 such that the following diagram
commutes.

𝐴
𝑓 //

""

𝐵

𝑆−1𝐴
𝑔

==

Proof. Existence. We define amap 𝑔 as follows. For 𝑥/𝑠 ∈ 𝑆−1𝐴, let 𝑔(𝑥/𝑠) = 𝑓(𝑥)𝑓(𝑠)−1 ∈
𝐵. It is easily checked from the definition that this is a well-defined ring map. And it is also
clear that this makes the diagram commutative.

Uniqueness. We now show that if 𝑔′ ∶ 𝑆−1𝐴 → 𝐵 satisfies 𝑔′(𝑥/1) = 𝑓(𝑥), then 𝑔 = 𝑔′.
Hence 𝑓(𝑠) = 𝑔′(𝑠/1) for 𝑠 ∈ 𝑆 by the commutativity of the diagram. But then 𝑔′(1/𝑠)𝑓(𝑠) =
1 in𝐵, which implies that 𝑔′(1/𝑠) = 𝑓(𝑠)−1 and hence 𝑔′(𝑥/𝑠) = 𝑔′(𝑥/1)𝑔′(1/𝑠) = 𝑓(𝑥)𝑓(𝑠)−1 =
𝑔(𝑥/𝑠). �

Lemma 7.9.4. The localization 𝑆−1𝐴 is the zero ring if and only if 0 ∈ 𝑆.

Proof. If 0 ∈ 𝑆, any pair (𝑎, 𝑠) ∼ (0, 1) by definition. If 0∉𝑆, then clearly 1/1 ≠ 0/1 in
𝑆−1𝐴. �

Lemma 7.9.5. Let 𝑅 be a ring. Let 𝑆 ⊂ 𝑅 be a multiplicative subset. The category of
𝑆−1𝑅-modules is equivalent to the category of 𝑅-modules 𝑁 with the property that every
𝑠 ∈ 𝑆 acts as an automorphism on 𝑁.

Proof. The functor which defines the equivalence associates to an 𝑆−1𝑅-module 𝑀 the
same module but now viewed as an 𝑅-module via the localization map 𝑅 → 𝑆−1𝑅. Con-
versely, if 𝑁 is an 𝑅-module, such that every 𝑠 ∈ 𝑆 acts via an automorphism 𝑠𝑁, then we
can think of 𝑁 as an 𝑆−1𝑅-module by letting 𝑥/𝑠 act via 𝑥𝑁 ∘ 𝑠−1

𝑁 . We omit the verification
that these two functors are quasi-inverse to each other. �
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The notion of localization of a ring can be generalized to the localization of a module. Let
𝐴 be a ring, 𝑆 a multiplicative subset of 𝐴 and 𝑀 an 𝐴-module. We define a relation on
𝑀 × 𝑆 as follows

(𝑚, 𝑠) ∼ (𝑛, 𝑡) ⟺ ∃𝑢 ∈ 𝑆, such that (𝑚𝑡 − 𝑛𝑠)𝑢 = 0
This is clearly an equivalence relation. Denote by 𝑚/𝑠 (or 𝑚

𝑠 ) be the equivalence class
of (𝑚, 𝑠) and 𝑆−1𝑀 be the set of all equivalence classes. Define the addition and scalar
multiplication as follows

𝑚/𝑠 + 𝑛/𝑡 = (𝑚𝑡 + 𝑛𝑠)/𝑠𝑡(7.9.5.1)
𝑚/𝑠 ⋅ 𝑛/𝑡 = 𝑚𝑛/𝑠𝑡(7.9.5.2)

It is clear that this makes 𝑆−1𝑀 an 𝑆−1𝐴 module.

Definition 7.9.6. The 𝑆−1𝐴-module 𝑆−1𝑀 is called the localization of 𝑀 at 𝑆.

Note that there is an 𝐴-module map 𝑀 → 𝑆−1𝑀, 𝑚 ↦ 𝑚/1 which is sometimes called the
localization map. It satisfies the following universal property.

Lemma 7.9.7. Let 𝑅 be a ring. Let 𝑆 ⊂ 𝑅 a multiplicative subset. Let 𝑀, 𝑁 be 𝑅-modules.
Assume all the elements of 𝑆 act as automorphisms on 𝑁. Then the canonical map

𝐻𝑜𝑚𝑅(𝑆−1𝑀, 𝑁) ⟶ 𝐻𝑜𝑚𝑅(𝑀, 𝑁)
induced by the localisation map, is an isomorphism.

Proof. It is clear that themap iswell-defined andR-linear. Injectivity: Let 𝛼 ∈ 𝐻𝑜𝑚𝑅(𝑆−1𝑀, 𝑁)
and take an arbitrary element 𝑚/𝑠 ∈ 𝑆−1𝑀. Then, since 𝑠 ⋅ 𝛼(𝑚/𝑠) = 𝛼(𝑚/1), we have
𝛼(𝑚/𝑠) = 𝑠−1(𝛼(𝑚/1)), so 𝛼 is completely determined by what it does on the image of 𝑀 in
𝑆−1𝑀. Surjectivity: Let 𝛽 ∶ 𝑀 → 𝑁 be a given R-linear map. We need to show that it can
be "extended" to 𝑆−1𝑀. Define a map of sets

𝑀 × 𝑆 → 𝑁, (𝑚, 𝑠) ↦ 𝑠−1(𝑚)
Clearly, this map respects the equivalence relation from above, so it descends to a well-
defined map 𝛼 ∶ 𝑆−1𝑀 → 𝑁. It remains to show that this map is 𝑅-linear, so take 𝑟, 𝑟′ ∈ 𝑅
as well as 𝑠, 𝑠′ ∈ 𝑆 and 𝑚, 𝑚′ ∈ 𝑀. Then

𝛼(𝑟 ⋅ 𝑚/𝑠 + 𝑟′ ⋅ 𝑚′/𝑠′) = 𝛼((𝑟 ⋅ 𝑠′ ⋅ 𝑚 + 𝑟′ ⋅ 𝑠 ⋅ 𝑚′)/(𝑠𝑠′))

= (𝑠𝑠′)−1(𝛽(𝑟 ⋅ 𝑠′ ⋅ 𝑚 + 𝑟′ ⋅ 𝑠 ⋅ 𝑚′)

= (𝑠𝑠′)−1(𝑟 ⋅ 𝑠′𝛽(𝑚) + 𝑟′ ⋅ 𝑠𝛽(𝑚′)
= 𝑟𝛼(𝑚/𝑠) + 𝑟′𝛼(𝑚′/𝑠′)

and we win. �

Example 7.9.8. Let 𝐴 be a ring and let 𝑀 be an 𝐴-module. Here are some important
examples of localizations.

(1) Given 𝔭 a prime ideal of 𝐴 consider 𝑆 = 𝐴 ⧵ 𝔭. It is immediately checked that
𝑆 is a multiplicative set. In this case we denote 𝐴𝔭 and 𝑀𝔭 the localization of
𝐴 and 𝑀 with respect to 𝑆 respectively. These are called the localization of 𝐴,
resp. 𝑀 at 𝔭.

(2) Let 𝑓 ∈ 𝐴. Consider 𝑆 = {1, 𝑓, 𝑓2, ⋯}. This is clearly a multiplicative subset
of 𝐴. In this case we denote 𝐴𝑓 (resp. 𝑀𝑓) the localization 𝑆−1𝐴 (resp. 𝑆−1𝑀).
This is called the localization of 𝐴, resp. 𝑀 with respect to 𝑓. Note that 𝐴𝑓 = 0
if and only if 𝑓 is nilpotent in 𝐴.
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(3) Let 𝑆 = {𝑓 ∈ 𝐴 ∣ 𝑓 is not a zerodivisor in 𝐴}. This is a multiplicative subset of
𝐴. In this case the ring 𝑄(𝐴) = 𝑆−1𝐴 is called either the total quotient ring, or
the total ring of fractions of 𝐴.

Lemma 7.9.9. Let 𝑅 be a ring. Let 𝑆 ⊂ 𝑅 be a multiplicative subset. Let 𝑀 be an
𝑅-module. Then

𝑆−1𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑓∈𝑆 𝑀𝑓

where the partial ordering on 𝑆 is given by 𝑓 ≥ 𝑓′ ⇔ 𝑓 = 𝑓′𝑓″ for some 𝑓′ ∈ 𝑅 in which
case the map 𝑀𝑓′ → 𝑀𝑓 is given by 𝑚/(𝑓′)𝑒 ↦ 𝑚(𝑓″)𝑒/𝑓𝑒.

Proof. Omitted. Hint: Use the universal property of Lemma 7.9.7. �

In the following paragraph, let 𝐴 denote a ring, and 𝑀, 𝑁 denote modules over 𝐴.

If 𝑆 and 𝑆′ are multiplicative sets of 𝐴, then it is clear that

𝑆𝑆′ = {𝑠𝑠′ ∶ 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′}

is also a multiplicative set of 𝐴. Then the following holds.

Proposition 7.9.10. Let 𝑆 be the image of 𝑆 in 𝑆′−1𝐴, then (𝑆𝑆′)−1𝐴 is isomorphic to
𝑆−1(𝑆′−1𝐴).

Proof. The map sending 𝑥 ∈ 𝐴 to 𝑥/1 ∈ (𝑆𝑆′−1)𝐴 induces a map sending 𝑥/𝑠 ∈ 𝑆′−1𝐴
to 𝑥/𝑠 ∈ (𝑆𝑆′−1)𝐴, by universal property. The image of the elements in 𝑆 are invertible in
(𝑆𝑆′−1)𝐴. By the universal property we get a map 𝑓 ∶ 𝑆−1(𝑆′−1𝐴) → (𝑆𝑆′−1)𝐴 which
maps (𝑥/𝑡′)/(𝑠/𝑠′) to (𝑥/𝑡′) ⋅ (𝑠/𝑠′)−1.

On the other hand, the map from 𝐴 to 𝑆−1(𝑆′−1𝐴) sending 𝑥 ∈ 𝐴 to (𝑥/1)/(1/1) also induces
a map 𝑔 ∶ (𝑆𝑆′−1)𝐴 → 𝑆−1(𝑆′−1𝐴) which sends 𝑥/𝑠𝑠′ to (𝑥/𝑠′)/(𝑠/1), by the universal
property again. It is immediately checked that 𝑓 and 𝑔 are inverse to each other, hence they
are both isomorphisms. �

For the module 𝑀 we have

Proposition 7.9.11. View 𝑆′−1𝑀 as an 𝐴-module, then 𝑆−1(𝑆′−1𝑀) is isomorphic to
(𝑆𝑆′)−1𝑀.

Proof. Note that given a 𝐴-module M, we have not proved any universal property for
𝑆−1𝑀. Hence we cannot reason as in the preceding proof; we have to construct the iso-
morphism explicitly.

We define the maps as follows

𝑓 ∶ 𝑆−1(𝑆′−1𝑀) ⟶ (𝑆𝑆′)−1𝑀, 𝑥/𝑠′

𝑠
↦ 𝑥/𝑠𝑠′

𝑔 ∶ (𝑆𝑆′)−1𝑀 ⟶ 𝑆−1(𝑆′−1𝑀), 𝑥/𝑡 ↦ 𝑥/𝑠′

𝑠
for some 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑡 = 𝑠𝑠′

We have to check that these homomorphisms are well-defined, that is, independent the
choice of the fraction. This is easily checked and it is also straightforward to show that they
are inverse to each other. �

If 𝑢 ∶ 𝑀 → 𝑁 is an 𝐴 homomorphism, then the localization indeed induces a well-defined
𝑆−1𝐴 homomorphism 𝑆−1𝑢 ∶ 𝑆−1𝑀 → 𝑆−1𝑁 which sends 𝑥/𝑠 to 𝑢(𝑥)/𝑠. It is immedi-
ately checked that this construction is functorial, so that 𝑆−1 is actually a functor from the
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category of 𝐴-modules to the category of 𝑆−1𝐴-modules. Moreover this functor is exact,
as we show in the following proposition.

Proposition 7.9.12. Let 𝐿
𝑢

−→ 𝑀
𝑣

−→ 𝑁 is an exact sequence of 𝑅 modules. Then 𝑆−1𝐿 →
𝑆−1𝑀 → 𝑆−1𝑁 is also exact.

Proof. First it is clear that 𝑆−1𝐿 → 𝑆−1𝑀 → 𝑆−1𝑁 is a complex since localization is
a functor. Next suppose that 𝑥/𝑠 maps to zero in 𝑆−1𝑁 for some 𝑥/𝑠 ∈ 𝑆−1𝑀. Then by
definition there is a 𝑡 ∈ 𝑆 such that 𝑣(𝑥𝑡) = 𝑣(𝑥)𝑡 = 0 in 𝑀, which means 𝑥𝑡 ∈ Ker(𝑣). By
the exactness of 𝐿 → 𝑀 → 𝑁 we have 𝑥𝑡 = 𝑢(𝑦) for some 𝑦 in 𝐿. Then 𝑥/𝑠 is the image
of 𝑦/𝑠𝑡. This proves the exactness. �

Lemma 7.9.13. Localization respects quotients, i.e. if 𝑁 is a submodule of 𝑀, then
𝑆−1(𝑀/𝑁) ≃ (𝑆−1𝑀)/(𝑆−1𝑁).

Proof. From the exact sequence
0 ⟶ 𝑁 ⟶ 𝑀 ⟶ 𝑀/𝑁 ⟶ 0

we have
0 ⟶ 𝑆−1𝑁 ⟶ 𝑆−1𝑀 ⟶ 𝑆−1(𝑀/𝑁) ⟶ 0

The corollary then follows. �

If, in the preceding Corollary, we take 𝑁 = 𝐼 and 𝑀 = 𝐴 for an ideal 𝐼 of 𝐴, we see that
𝑆−1𝐴/𝑆−1𝐼 ≃ 𝑆−1(𝐴/𝐼) as 𝐴-modules. The next proposition shows that they are isomor-
phic as rings.

Proposition 7.9.14. Let 𝐼 be an ideal of 𝐴, 𝑆 a multiplicative set of 𝐴. Then 𝑆−1𝐼 is an
ideal of 𝑆−1𝐴 and 𝑆−1(𝐴/𝐼) is isomorphic to 𝑆−1𝐴/𝑆−1𝐼, where 𝑆 is the image of 𝑆 in 𝐴/𝐼.

Proof. The fact that 𝑆−1𝐼 is an ideal is clear since 𝐼 itself is an ideal. Define

𝑓 ∶ 𝑆−1𝐴 ⟶ 𝑆−1(𝐴/𝐼), 𝑥/𝑠 ↦ 𝑥/𝑠
where 𝑥 and 𝑠 are the images of 𝑥 and 𝑠 in 𝐴/𝐼. We shall keep similar notations in this
proof. This map is well-defined by the universal property of 𝑆−1𝐴, and 𝑆−1𝐼 is contained
in the kernel of it, therefore it induces a map

𝑓 ∶ 𝑆−1𝐴/𝑆−1𝐼 ⟶ 𝑆−1(𝐴/𝐼), 𝑥/𝑠 ↦ 𝑥/𝑠

On the other hand, the map 𝐴 → 𝑆−1𝐴/𝑆−1𝐼 sending 𝑥 to 𝑥/1 induces a map 𝐴/𝐼 →
𝑆−1𝐴/𝑆−1𝐼 sending 𝑥 to 𝑥/1. The image of 𝑆 is invertible in 𝑆−1𝐴/𝑆−1𝐼, thus induces a
map

𝑔 ∶ 𝑆−1(𝐴/𝐼) ⟶ 𝑆−1𝐴/𝑆−1𝐼, 𝑥
𝑠

↦ 𝑥/𝑠

by the universal property. It is then clear that 𝑓 and 𝑔 are inverse to each other, hence are
both isomorphisms. �

We now consider how submodules behave in localization.

Lemma 7.9.15. Any submodule 𝑁′ of 𝑆−1𝑀 is of the form 𝑆−1𝑁 for some 𝑁 ⊂ 𝑀. Indeed
one can take 𝑁 to be the inverse image of 𝑁′ in 𝑀.

Proof. Let 𝑁 be the inverse image of 𝑁′ in 𝑀. Then one can see that 𝑆−1𝑁 ⊃ 𝑁′. To
show they are equal, take 𝑥/𝑠 in 𝑆−1𝑁, where 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝑁. This yields that 𝑥/1 ∈ 𝑁′.
Since 𝑁′ is an 𝑆−1𝑅-submodule we have 𝑥/𝑠 = 𝑥/1 ⋅1/𝑠 ∈ 𝑁′. This finishes the proof. �
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Taking 𝑀 = 𝐴 and 𝑁 = 𝐼 an ideal of 𝐴, we have the following corollary, which can be
viewed as a converse of the first part of Proposition 7.9.14.

Lemma 7.9.16. Each ideal 𝐼′ of 𝑆−1𝐴 takes the form 𝑆−1𝐼, where one can take 𝐼 to be the
inverse image of 𝐼′ in 𝐴.

The next lemma concerns the spectrum and localization. FIXME: This should be moved
later in the manuscript.

Lemma 7.9.17. Let 𝑆 be a multiplicative set of 𝐴. Then the map

𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑆−1𝐴) ⟶ 𝑆𝑝𝑒𝑐(𝐴)

induced by the canonical ring map 𝐴 → 𝑆−1𝐴 is a homeomorphism onto its image and
Im(𝑓) = {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∶ 𝔭 ∩ 𝑆 = ∅}.

Proof. Denote the localization map by 𝜑 ∶ 𝐴 → 𝑆−1𝐴. We first show that Im(𝑓) =
{𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∶ 𝔭 ∩ 𝑆 = ∅}. For any ideal 𝔮 of 𝑆−1𝐴, 𝜑−1(𝔮) ∩ 𝑆 = 0. Otherwise if
𝑥≠0 ∈ 𝜑−1(𝔮) ∩ 𝑆, then 𝑥/1 ∈ 𝔮. But 𝑥 ∈ 𝑆, hence 𝑥/1 is invertible in 𝑆−1𝐴 which is
impossible since 𝔮 is a prime ideal. For any prime ideal 𝔭 in 𝐴 which does not meet 𝑆, 𝑆−1𝔭
is an ideal in 𝑆−1𝐴. Moreover it is a prime ideal. This is because 𝑆−1𝐴/𝑆−1𝔭 is isomorphic
to 𝑆−1(𝐴/𝔭) and the localization of an integral domain is again an integral domain.

We still have to show that this map is open, i.e. we have to show that the image of a
standard open set is again open. For any 𝑥/𝑠 ∈ 𝑆−1𝐴, we claim that the image of 𝐷(𝑥/𝑠)
is 𝐷(𝑥) ∩ Im(𝑓). First if 𝑥/𝑠∉𝑆−1𝔭 for some prime ideal 𝔭 of 𝐴, then 𝑥∉𝔭. Conversely, if
𝑥∉𝔭 and 𝔭 does not meet 𝑆, then 𝑥/𝑠∉𝑆−1𝔭. This is due to that fact that 𝔭 ∩ 𝑆 = ∅.

Thus 𝑓 is indeed an homeomorphism onto its image. �

7.10. Internal Hom

If 𝑅 is a ring, and 𝑀, 𝑁 are 𝑅-modules, then

𝐻𝑜𝑚𝑅(𝑀, 𝑁) = {𝜑 ∶ 𝑀 → 𝑁}

is the set of 𝑅-linear maps from 𝑀 to 𝑁. This set comes with the structure of an abelian
group by setting (𝜑 + 𝜓)(𝑚) = 𝜑(𝑚) + 𝜓(𝑚), as usual. In fact, 𝐻𝑜𝑚𝑅(𝑀, 𝑁) is also an
𝑅-module via the rule (𝑥𝜑)(𝑚) = 𝑥𝜑(𝑚) = 𝜑(𝑥𝑚).

Given maps 𝑎 ∶ 𝑀 → 𝑀′ and 𝑏 ∶ 𝑁 → 𝑁′ of 𝑅-modules, we can pre-compose and post-
compose homomorphisms by 𝑎 and 𝑏. This leads to the following commutative diagram

𝐻𝑜𝑚𝑅(𝑀′, 𝑁)

−∘𝑎
��

𝑏∘−
// 𝐻𝑜𝑚𝑅(𝑀′, 𝑁′)

−∘𝑎
��

𝐻𝑜𝑚𝑅(𝑀, 𝑁′) 𝑏∘− // 𝐻𝑜𝑚𝑅(𝑀, 𝑁)

In fact, the maps in this diagram are 𝑅-module maps. Thus 𝐻𝑜𝑚𝑅 defines an additive
functor

Mod𝑜𝑝𝑝
𝑅 × Mod𝑅 ⟶ Mod𝑅, (𝑀, 𝑁) ⟼ 𝐻𝑜𝑚𝑅(𝑀, 𝑁)

Lemma 7.10.1. Exactness and 𝐻𝑜𝑚𝑅. Let 𝑅 be a ring.
(1) Let 𝑀1 → 𝑀2 → 𝑀3 → 0 be a complex of 𝑅-modules. Then 𝑀1 → 𝑀2 →

𝑀3 → 0 is exact if and only if 0 → 𝐻𝑜𝑚𝑅(𝑀3, 𝑁) → 𝐻𝑜𝑚𝑅(𝑀2, 𝑁) →
𝐻𝑜𝑚𝑅(𝑀1, 𝑁) is exact for all 𝑅-modules 𝑁.
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(2) Let 0 → 𝑀1 → 𝑀2 → 𝑀3 be a complex of 𝑅-modules. Then 0 → 𝑀1 →
𝑀2 → 𝑀3 is exact if and only if 0 → 𝐻𝑜𝑚𝑅(𝑁, 𝑀1) → 𝐻𝑜𝑚𝑅(𝑁, 𝑀2) →
𝐻𝑜𝑚𝑅(𝑁, 𝑀1) is exact for all 𝑅-modules 𝑁.

Proof. Omitted. �

Lemma 7.10.2. Let 𝑅 be a ring. Let 𝑀 be a finitely presented 𝑅-module. Let 𝑁 be an
𝑅-module. Let 𝑓 ∈ 𝑅. Then 𝐻𝑜𝑚𝑅(𝑀, 𝑁)𝑓 ≅ 𝐻𝑜𝑚𝑅𝑓

(𝑀𝑓, 𝑁𝑓).

Proof. Choose a presentation

⨁𝑗=1,…,𝑚
𝑅 ⟶ ⨁𝑖=1,…,𝑛

𝑅 → 𝑀 → 0.

By Lemma 7.10.1 this gives an exact sequence

0 → ℋ𝑜𝑚𝑅(𝑀, 𝑁) → ⨁𝑖=1,…,𝑛
𝑁 ⟶ ⨁𝑗=1,…,𝑚

𝑁.

Inverting 𝑓 we get an exact sequence

0 → (ℋ𝑜𝑚𝑅(𝑀, 𝑁))𝑓 → ⨁𝑖=1,…,𝑛
𝑁𝑓 ⟶ ⨁𝑗=1,…,𝑚

𝑁𝑓

and the result follows since 𝑀𝑓 sits in an exact sequence

⨁𝑗=1,…,𝑚
𝑅𝑓 ⟶ ⨁𝑖=1,…,𝑛

𝑅𝑓 → 𝑀𝑓 → 0

which induces (by Lemma 7.10.1) the exact sequence

0 → 𝐻𝑜𝑚𝑅𝑓
(𝑀𝑓, 𝑁𝑓) → ⨁𝑖=1,…,𝑛

𝑁𝑓 ⟶ ⨁𝑗=1,…,𝑚
𝑁𝑓

which is the same as the one above. �

7.11. Tensor products

Definition 7.11.1. Let 𝑅 be a ring, 𝑀, 𝑁, 𝑃 be three 𝑅-modules. A mapping 𝑓 ∶ 𝑀×𝑁 →
𝑃 (where 𝑀 × 𝑁 is viewed only as Cartesian product of two 𝑅-modules) is said to be
𝑅-bilinear if for each 𝑥 ∈ 𝑀 the mapping 𝑦 ↦ 𝑓(𝑥, 𝑦) of 𝑁 into 𝑃 is 𝑅-linear, and for each
𝑦 ∈ 𝑁 the mapping 𝑥 ↦ 𝑓(𝑥, 𝑦) is also 𝑅-linear.

Lemma 7.11.2. Let 𝑀, 𝑁 be 𝑅-modules. Then there exists a pair (𝑇, 𝑔) where 𝑇 is an
𝑅-module, and 𝑔 ∶ 𝑀 × 𝑁 → 𝑇 an 𝑅-bilinear mapping, with the following universal
property: For any 𝑅-module 𝑃 and any 𝑅-bilinear mapping 𝑓 ∶ 𝑀 × 𝑁 → 𝑃, there exists
a unique 𝑅-linear mapping ̃𝑓 ∶ 𝑇 → 𝑃 such that 𝑓 = ̃𝑓 ∘ 𝑔. In other words, the following
diagram commutes:

𝑀 × 𝑁
𝑓 //

##

𝑃

𝑇
𝑓′

??

Moreover, if (𝑇, 𝑔) and (𝑇′, 𝑔′) are two pairs with this property, then there exists a unique
isomorphism 𝑗 ∶ 𝑇 → 𝑇′ such that 𝑗 ∘ 𝑔 = 𝑔′.

The 𝑅-module 𝑇 which satisfies the above universal property is called the tensor product
of 𝑅-modules 𝑀 and 𝑁, denoted as 𝑀 ⊗𝑅 𝑁.
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We first prove the existence of such 𝑅-module 𝑇. Let 𝑀, 𝑁 be 𝑅-modules. Let 𝑇 be the
quotientmodule𝑃/𝑄, where𝑃 is the free𝑅-module𝑅𝑀×𝑁 and𝑄 is the𝑅-module generated
by all elements of the following types: (𝑥 ∈ 𝑀, 𝑦 ∈ 𝑁)

(𝑥 + 𝑥′, 𝑦) − (𝑥, 𝑦) − (𝑥′, 𝑦)(7.11.2.1)
(𝑥, 𝑦 + 𝑦′) − (𝑥, 𝑦) − (𝑥, 𝑦′)(7.11.2.2)

(𝑎𝑥, 𝑦) − 𝑎 ⋅ (𝑥, 𝑦)(7.11.2.3)
(𝑥, 𝑎𝑦) − 𝑎 ⋅ (𝑥, 𝑦)(7.11.2.4)

Let 𝜋 ∶ 𝑀×𝑁 → 𝑇 denote the natural map. This map is 𝑅-bilinear, as implied by the above
relations when we check the bilinearity conditions. Denote the image 𝜋(𝑥, 𝑦) = 𝑥 ⊗ 𝑦, then
these elements generate 𝑇. Now let 𝑓 ∶ 𝑀 × 𝑁 → 𝑃 be an 𝑅-bilinear map, then we can
define 𝑓′ ∶ 𝑇 → 𝑃 by extending the mapping 𝑓′(𝑥 ⊗ 𝑦) = 𝑓(𝑥, 𝑦). Clearly 𝑓 = 𝑓′ ∘ 𝜋.
Moreover, 𝑓′ is uniquely determined by the value on the generating sets {𝑥 ⊗ 𝑦 ∶ 𝑥 ∈
𝑀, 𝑦 ∈ 𝑁}. Suppose there is another pair (𝑇′, 𝑔′) satisfying the same properties. Then
there is a unique 𝑗 ∶ 𝑇 → 𝑇′ and also 𝑗′ ∶ 𝑇′ → 𝑇 such that 𝑔′ = 𝑗 ∘ 𝑔, 𝑔 = 𝑗′ ∘ 𝑔′. But then
both the maps (𝑗 ∘ 𝑗′) ∘ 𝑔 and 𝑔 satisfies the universal properties, so by uniqueness they are
equal, and hence 𝑗′ ∘ 𝑗 is identity on 𝑇. Similarly (𝑗′ ∘ 𝑗) ∘ 𝑔′ = 𝑔′ and 𝑗 ∘ 𝑗′ is identity on 𝑇′.
So 𝑗 is an isomorphism.

Lemma 7.11.3. Let 𝑀, 𝑁, 𝑃 be 𝑅-modules, then the bilinear maps

(𝑥, 𝑦) ↦ 𝑦 ⊗ 𝑥(7.11.3.1)
(𝑥 + 𝑦, 𝑧) ↦ 𝑥 ⊗ 𝑧 + 𝑦 ⊗ 𝑧(7.11.3.2)

(𝑟, 𝑥) ↦ 𝑟𝑥(7.11.3.3)

induce unique isomorphisms

𝑀 ⊗𝑅 𝑁 → 𝑁 ⊗𝑅 𝑀,(7.11.3.4)
(𝑀 ⊕ 𝑁) ⊗𝑅 𝑃 → (𝑀 ⊗𝑅 𝑃) ⊕ (𝑁 ⊗𝑅 𝑃),(7.11.3.5)

𝑅 ⊗𝑅 𝑀 → 𝑀(7.11.3.6)

Proof. Omitted. �

We may generalize the tensor product of two 𝑅-modules to finitely many 𝑅-modules, and
set up a correspondence between themulti-tensor product withmultilinearmappings. Using
almost the same construction one can prove that:

Lemma 7.11.4. Let 𝑀1, … , 𝑀𝑟 be 𝑅-modules. Then there exists a pair (𝑇, 𝑔) consisting of
an 𝑅-module T and an 𝑅-multilinear mapping: 𝑔 ∶ 𝑀1 × … × 𝑀𝑟 → 𝑇 with the universal
property: For any 𝑅-multilinear mapping 𝑓 ∶ 𝑀1 × … × 𝑀𝑟 → 𝑃 there exists a unique
𝑅-homomorphism 𝑓′ ∶ 𝑇 → 𝑃 such that 𝑓′ ∘ 𝑔 = 𝑓.
Such a module 𝑇 is unique up to isomorphism, i.e. if (𝑇, 𝑔) and (𝑇′, 𝑔′) are two such pairs,
then there exists a unique isomorphism 𝑗 ∶ 𝑇′ → 𝑇 with 𝑗 ∘ 𝑔 = 𝑔′. We denote 𝑇 =
𝑀1 ⊗𝑅 … ⊗𝑅 𝑀𝑟.

Proof. Omitted. �

Lemma 7.11.5. The homomorphisms

(𝑀 ⊗𝑅 𝑁) ⊗𝑅 𝑃 → 𝑀 ⊗𝑅 𝑁 ⊗𝑅 𝑃 → 𝑀 ⊗𝑅 (𝑁 ⊗𝑅 𝑃)(7.11.5.1)

such that 𝑓((𝑥 ⊗ 𝑦) ⊗ 𝑧) = 𝑥 ⊗ 𝑦 ⊗ 𝑧 and 𝑔(𝑥 ⊗ 𝑦 ⊗ 𝑧) = 𝑥 ⊗ (𝑦 ⊗ 𝑧), 𝑥 ∈ 𝑀, 𝑦 ∈ 𝑁, 𝑧 ∈ 𝑃
are well-defined and are isomorphisms.
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Proof. We shall prove 𝑓 is well-defined and is an isomorphism, and this proof carries anal-
ogously to 𝑔. Fix any 𝑧 ∈ 𝑃, then the mapping (𝑥, 𝑦) ↦ 𝑥 ⊗ 𝑦 ⊗ 𝑧, 𝑥 ∈ 𝑀, 𝑦 ∈ 𝑁, is
𝑅-bilinear in 𝑥 and 𝑦, and hence induces homomorphism 𝑓𝑧 ∶ 𝑀 ⊗ 𝑁 → 𝑀 ⊗ 𝑁 ⊗ 𝑃
𝑓𝑧(𝑥⊗𝑦) = 𝑥⊗𝑦⊗𝑧. Then consider (𝑀⊗𝑁)×𝑃 → 𝑀⊗𝑁⊗𝑃 given by (𝑤, 𝑧) ↦ 𝑓𝑧(𝑤).
The map is 𝑅-bilinear and thus induces 𝑓 ∶ (𝑀 ⊗𝑅 𝑁) ⊗𝑅 𝑃 → 𝑀 ⊗𝑅 𝑁 ⊗𝑅 𝑃 and
𝑓((𝑥 ⊗ 𝑦) ⊗ 𝑧) = 𝑥 ⊗ 𝑦 ⊗ 𝑧. To construct the inverse, we note that the map 𝜋 ∶
𝑀 × 𝑁 × 𝑃 → (𝑀 ⊗ 𝑁) ⊗ 𝑃 is 𝑅-trilinear. Therefore, it induces an 𝑅-linear map
ℎ ∶ 𝑀 ⊗ 𝑁 ⊗ 𝑃 → (𝑀 ⊗ 𝑁) ⊗ 𝑃 which agrees with the universal property. Here we
see that ℎ(𝑥 ⊗ 𝑦 ⊗ 𝑧) = (𝑥 ⊗ 𝑦) ⊗ 𝑧. From the explicit expression of 𝑓 and ℎ, 𝑓 ∘ ℎ and
ℎ ∘ 𝑓 are identity maps of 𝑀 ⊗ 𝑁 ⊗ 𝑃 and (𝑀 ⊗ 𝑁) ⊗ 𝑃 respectively, hence 𝑓 is our desired
isomorphism. �

Doing induction we see that this extends to multi-tensor products. Combined with Lemma
7.11.3 we see that the tensor product operation on the category of 𝑅-modules is associative,
commutative and distributive.

Definition 7.11.6. An abelian group𝑁 is called an (𝐴, 𝐵)-bimodule if it is both an𝐴-module
and a 𝐵-module, and the actions 𝐴 → 𝐸𝑛𝑑(𝑀) and 𝐵 → 𝐸𝑛𝑑(𝑀) are compatible in the
sense that (𝑎𝑥)𝑏 = 𝑎(𝑥𝑏) for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑥 ∈ 𝑁. Usually we denote it as 𝐴𝑁𝐵.

Lemma 7.11.7. For𝐴-module𝑀, 𝐵-module P and (𝐴, 𝐵)-bimodule N, the modules (𝑀⊗𝐴
𝑁) ⊗𝐵 𝑃 and 𝑀 ⊗𝐴 (𝑁 ⊗𝐵 𝑃) can both be given (𝐴, 𝐵)-bimodule structure, and moreover

(𝑀 ⊗𝐴 𝑁) ⊗𝐵 𝑃 ≅ 𝑀 ⊗𝐴 (𝑁 ⊗𝐵 𝑃).(7.11.7.1)

Proof. A priori 𝑀⊗𝐴 𝑁 is an 𝐴-module, but we can give it a 𝐵-module structure by letting

(𝑥 ⊗ 𝑦)𝑏 = 𝑥 ⊗ 𝑦𝑏, 𝑥 ∈ 𝑀, 𝑦 ∈ 𝑁, 𝑏 ∈ 𝐵

Thus 𝑀 ⊗𝐴 𝑁 becomes an (𝐴, 𝐵)-bimodule. Similarly for 𝑁 ⊗𝐵 𝑃, and thus for (𝑀 ⊗𝐴
𝑁) ⊗𝐵 𝑃 and 𝑀 ⊗𝐴 (𝑁 ⊗𝐵 𝑃). Therefore by the above lemma, these two modules are
isomorphic as both as 𝐴-module and 𝐵-module via the same mapping. �

Lemma 7.11.8 (Tensor products commute with colimits). Let (𝑀𝑖, 𝜇𝑖𝑗) be a system over
the partially ordered set 𝐼. Let 𝑁 be an 𝑅-module. Then

𝑐𝑜𝑙𝑖𝑚(𝑀𝑖 ⊗ 𝑁) ≅ (𝑐𝑜𝑙𝑖𝑚 𝑀𝑖) ⊗ 𝑁.(7.11.8.1)

Moreover, the isomorphism is induced by the homomorphisms 𝜇𝑖 ⊗ 1 ∶ 𝑀𝑖 ⊗ 𝑁 → 𝑀 ⊗ 𝑁
where 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖 with natural maps 𝜇𝑖 ∶ 𝑀𝑖 → 𝑀.

Proof. Let 𝑃 = 𝑐𝑜𝑙𝑖𝑚(𝑀𝑖 ⊗ 𝑁), 𝑀 = 𝑐𝑜𝑙𝑖𝑚 𝑀𝑖. Then for all 𝑖 ≤ 𝑗, the following diagram
commutes:

𝑀𝑖 ⊗ 𝑁
𝜇𝑖⊗1

//

𝜇𝑖𝑗⊗1
��

𝑀 ⊗ 𝑁

id
��

𝑀𝑗 ⊗ 𝑁
𝜇𝑗⊗1

//𝑀 ⊗ 𝑁

By Lemma 7.8.8, these maps induce a unique homomorphism 𝜓 ∶ 𝑃 → 𝑀 ⊗ 𝑁, with
𝜆𝑖 ∶ 𝑀𝑖 ⊗ 𝑁 → 𝑃 given by 𝜆𝑖 = 𝜋 ∘ (𝜄𝑖 ⊗ 1).

To construct the inverse map, for each 𝑖 ∈ 𝐼, there is the canonical 𝑅-bilinear mapping
𝑔𝑖 ∶ 𝑀𝑖 × 𝑁 → 𝑀𝑖 ⊗ 𝑁. This induces a unique mapping 𝜙 ∶ 𝑀 × 𝑁 → 𝑃 such that
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𝜙∘(𝜇𝑖 ×1) = 𝜆𝑖 ∘𝑔𝑖. It is 𝑅-bilinear. Thus it induces an 𝑅-linear mapping 𝜙 ∶ 𝑀⊗𝑁 → 𝑃.
From the commutative diagram below:

𝑀𝑖 × 𝑁
𝑔𝑖 //

𝜇𝑖×id
��

𝑀𝑖 ⊗ 𝑁
id
//

𝜆𝑖
��

𝑀𝑖 ⊗ 𝑁

𝜇𝑖⊗id
��

𝜆𝑖

##
𝑀 × 𝑁

𝜙 // 𝑃
𝜓 //𝑀 ⊗ 𝑁

𝜙 // 𝑃

we see that 𝜓 ∘ 𝜙 = 𝑔, the canonical 𝑅-bilinear mapping 𝑔 ∶ 𝑀 × 𝑁 → 𝑀 ⊗ 𝑁. So 𝜓 ∘ 𝜙
is identity on 𝑀 ⊗ 𝑁. From the right-hand square and triangle, 𝜙 ∘ 𝜓 is also identity on
𝑃. �

Exactness Properties. We first make a basic observation relating tensor products and the
functor 𝐻𝑜𝑚:

Lemma 7.11.9. For any three 𝑅-modules 𝑀, 𝑁, 𝑃,

𝐻𝑜𝑚𝑅(𝑀 ⊗𝑅 𝑁, 𝑃) ≅ 𝐻𝑜𝑚𝑅(𝑀, 𝐻𝑜𝑚𝑅(𝑁, 𝑃))(7.11.9.1)

Proof. An 𝑅-linear map ̂𝑓 ∈ 𝐻𝑜𝑚𝑅(𝑀 ⊗𝑅 𝑁, 𝑃) corresponds to an 𝑅-bilinear map 𝑓 ∶
𝑀 × 𝑁 → 𝑃. For each 𝑥 ∈ 𝑀 the mapping 𝑦 ↦ 𝑓(𝑥, 𝑦) is 𝑅-linear by the universal
property. Thus 𝑓 corresponds to a map 𝜙𝑓 ∶ 𝑀 → 𝐻𝑜𝑚𝑅(𝑁, 𝑃). This map is 𝑅-linear
since

𝜙𝑓(𝑎𝑥 + 𝑦)(𝑧) = 𝑓(𝑎𝑥 + 𝑦, 𝑧) = 𝑎𝑓(𝑥, 𝑧) + 𝑓(𝑦, 𝑧) = (𝑎𝜙𝑓(𝑥) + 𝜙𝑓(𝑦))(𝑧),

∀𝑦 ∈ 𝑁 and ∀𝑎 ∈ 𝑅, 𝑥, 𝑧 ∈ 𝑀. Conversely, any 𝑓 ∈ 𝐻𝑜𝑚𝑅(𝑀, 𝐻𝑜𝑚𝑅(𝑁, 𝑃)) defines
an 𝑅-bilinear map 𝑀 × 𝑁 → 𝑃, namely (𝑥, 𝑦) ↦ 𝑓(𝑥)(𝑦). So this is a natural one-to-one
correspondence between the two modules. �

Lemma 7.11.10. Let

𝑀1
𝑓

−→ 𝑀2
𝑔

−→ 𝑀3 → 0(7.11.10.1)

be an exact sequence of𝑅-modules and homomorphisms, and let𝑁 be any𝑅-module. Then
the sequence

𝑀1 ⊗ 𝑁
𝑓⊗1

−−−→ 𝑀2 ⊗ 𝑁
𝑔⊗1

−−−→ 𝑀3 ⊗ 𝑁 → 0(7.11.10.2)

is exact. In other words, the functor − ⊗𝑅 𝑁 is right exact, in the sense that tensoring each
term in the original right exact sequence preserves the exactness.

Proof. We apply the functor 𝐻𝑜𝑚(−, 𝐻𝑜𝑚(𝑁, 𝑃)) to the first exact sequence. We obtain

0 → 𝐻𝑜𝑚(𝑀3, 𝐻𝑜𝑚(𝑁, 𝑃)) → 𝐻𝑜𝑚(𝑀2, 𝐻𝑜𝑚(𝑁, 𝑃)) → 𝐻𝑜𝑚(𝑀1, 𝐻𝑜𝑚(𝑁, 𝑃))

By Lemma 7.11.9, we have

0 → 𝐻𝑜𝑚(𝑀3 ⊗ 𝑁, 𝑃) → 𝐻𝑜𝑚(𝑀2 ⊗ 𝑁, 𝑃) → 𝐻𝑜𝑚(𝑀1 ⊗ 𝑁, 𝑃)

Using the pullback property again, we arrive at the desired exact sequence. �

Remark 7.11.11. However, tensor product does NOT preserve exact sequences in general.
In other words, if 𝑀1 → 𝑀2 → 𝑀3 is exact, then it is not necessarily true that 𝑀1 ⊗ 𝑁 →
𝑀2 ⊗ 𝑁 → 𝑀3 ⊗ 𝑁 is exact for arbitrary 𝑅-module 𝑁.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00DE
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00DF
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00DH


216 7. COMMUTATIVE ALGEBRA

Example 7.11.12. Consider the injective map 2 ∶ 𝐙 → 𝐙 viewed as a map of 𝐙-modules.
Let 𝑁 = 𝐙/2. Then the induced map 𝐙 ⊗ 𝐙/2 → 𝐙 ⊗ 𝐙/2 is NOT injective. This is because
for 𝑥 ⊗ 𝑦 ∈ 𝐙 ⊗ 𝐙/2,

(2 ⊗ 1)(𝑥 ⊗ 𝑦) = 2𝑥 ⊗ 𝑦 = 𝑥 ⊗ 2𝑦 = 𝑥 ⊗ 0 = 0

Therefore the induced map is the zero map while 𝐙 ⊗ 𝑁 ≠ 0.

Remark 7.11.13. For 𝑅-modules 𝑁, if the functor − ⊗𝑅 𝑁 is exact, i.e. tensoring with
𝑁 preserves all exact sequences, then 𝑁 is said to be flat 𝑅-module. We will discuss this
later.

Lemma 7.11.14. Let 𝑅 be a ring. Let 𝑀 and 𝑁 be 𝑅-modules.

(1) If 𝑁 and 𝑀 are finite, then so is 𝑀 ⊗𝑅 𝑁.
(2) If 𝑁 and 𝑀 are finitely presented, then so is 𝑀 ⊗𝑅 𝑁.

Proof. Suppose 𝑀 is finite. Then choose a presentation 0 → 𝐾 → 𝑅⊗𝑛 → 𝑀 → 0. This
gives an exact sequence 𝐾 ⊗𝑅 𝑁 → 𝑁⊕𝑛 → 𝑀 ⊗𝑅 𝑁 → 0 by Lemma 7.11.10 above.
We conclude that if 𝑁 is finite too then 𝑀 ⊗𝑅 𝑁 is a quotient of a finite module, hence
finite, see Lemma 7.5.4. Similarly, if both 𝑁 and 𝑀 are finitely presented, then we see that
𝐾 is finite and that 𝑀 ⊗𝑅 𝑁 is a quotient of the finitely presented module 𝑁⊕𝑛 by a finite
module, namely 𝐾 ⊗𝑅 𝑁, and hence finitely presented, see Lemma 7.5.4. �

Lemma 7.11.15. Let 𝑀 be an 𝑅-module. Then the 𝑆−1𝑅 modules 𝑆−1𝑀 and 𝑆−1𝑅⊗𝑅 𝑀
are canonically isomorphic, and the unique isomorphism 𝑓 ∶ 𝑆−1𝑅 ⊗𝑅 𝑀 → 𝑆−1𝑀 is
given by

𝑓((𝑎/𝑠) ⊗ 𝑚) = 𝑎𝑚/𝑠, ∀𝑎 ∈ 𝑅, 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆(7.11.15.1)

Proof. Obviously, the map 𝑓′ ∶ 𝑆−1𝑅 × 𝑀 → 𝑆−1𝑀 given by 𝑓((𝑎𝑚, 𝑠)) = 𝑎𝑚/𝑠 is
bilinear, and thus by the universal property, this map induces a unique 𝑆−1𝑅-module ho-
momorphism 𝑓 ∶ 𝑆−1𝑅 ⊗𝑅 𝑀 → 𝑆−1𝑀 given as in the above lemma. Actually every
element in 𝑆−1𝑀 is of the form 𝑚/𝑠, 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆 and every element in 𝑆−1𝑅 ⊗𝑅 𝑀 is
of the form 1/𝑠 ⊗ 𝑚. To see the latter fact, write an element in 𝑆−1𝑅 ⊗𝑅 𝑀 as

∑
𝑘

𝑎𝑘
𝑠𝑘

⊗ 𝑚𝑘 = ∑
𝑘

𝑎𝑘𝑡𝑘
𝑠

⊗ 𝑚𝑘 = 1
𝑠

⊗ ∑
𝑘

𝑎𝑘𝑡𝑘𝑚𝑘 = 1
𝑠

⊗ 𝑚

Where 𝑚 = ∑𝑘 𝑎𝑘𝑡𝑘𝑚𝑘. Then it is obvious that 𝑓 is surjective, and if 𝑓( 1
𝑠 ⊗ 𝑚) = 𝑚/𝑠 = 0

then there exists 𝑡′ ∈ 𝑆 with 𝑡𝑚 = 0 in 𝑀. Then we have

1
𝑠

⊗ 𝑚 = 1
𝑠𝑡

⊗ 𝑡𝑚 = 1
𝑠𝑡

⊗ 0 = 0

Therefore 𝑓 is injective. �

Lemma 7.11.16. Let 𝑀, 𝑁 be 𝑅-modules, then there is a canonical 𝑆−1𝑅-module isomor-
phism 𝑓 ∶ 𝑆−1𝑀 ⊗𝑆−1𝑅 𝑆−1𝑁 → 𝑆−1(𝑀 ⊗𝑅 𝑁), given by

𝑓((𝑚/𝑠) ⊗ (𝑛/𝑡) = (𝑚 ⊗ 𝑛)/𝑠𝑡
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Proof. We may use Lemma 7.11.7 and Lemma 7.11.15 repeatedly to see that these two
𝑆−1𝑅-modules are isomorphic, noting that 𝑆−1𝑅 is an (𝑅, 𝑆−1𝑅)-bimodule:

𝑆−1(𝑀 ⊗𝑅 𝑁) ≅ 𝑆−1𝑅 ⊗𝑅 (𝑀 ⊗𝑅 𝑁)(7.11.16.1)

≅ 𝑆−1𝑀 ⊗𝑅 𝑁(7.11.16.2)

≅ (𝑆−1𝑀 ⊗𝑆−1𝑅 𝑆−1𝑅) ⊗𝑅 𝑁(7.11.16.3)

≅ 𝑆−1𝑀 ⊗𝑆−1𝑅 (𝑆−1𝑅 ⊗𝑅 𝑁)(7.11.16.4)

≅ 𝑆−1𝑀 ⊗𝑆−1𝑅 𝑆−1𝑁(7.11.16.5)

This isomorphism is easily seen to be the one stated in the lemma. �

Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Given a 𝑆-module 𝑁 we obtain an 𝑅-module 𝑁𝑅 by the
rule 𝑟 ⋅ 𝑛 = 𝜑(𝑟)𝑛. This is sometimes called the restriction of 𝑁 to 𝑅.

Lemma 7.11.17. Let 𝑅 → 𝑆 be a ring map. The functors Mod𝑆 → Mod𝑅, 𝑁 ↦ 𝑁𝑅
(restriction) and Mod𝑅 → Mod𝑆, 𝑀 ↦ 𝑀 ⊗𝑅 𝑆 (base change) are adjoint functors. In a
formula

𝐻𝑜𝑚𝑅(𝑀, 𝑁𝑅) = 𝐻𝑜𝑚𝑆(𝑀 ⊗𝑅 𝑆, 𝑁)

Proof. If 𝛼 ∶ 𝑀 → 𝑁𝑅 is an 𝑅-module map, then we define 𝛼′ ∶ 𝑀⊗𝑅 𝑆 → 𝑁 by the rule
𝛼′(𝑚 ⊗ 𝑠) = 𝑠𝛼(𝑚). If 𝛽 ∶ 𝑀 ⊗𝑅 𝑆 → 𝑁 is an 𝑆-module map, we define 𝛽′ ∶ 𝑀 → 𝑁𝑅 by
the rule 𝛽′(𝑚) = 𝛽(𝑚 ⊗ 1). We omit the verification that these constructions are mutually
inverse. �

7.12. Tensor algebra

Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. We define the tensor algebra of 𝑀 over 𝑅 to be
the noncommutative 𝑅-algebra

T(𝑀) = T𝑅(𝑀) = ⨁
𝑛≥0

T𝑛(𝑀)

with T0(𝑀) = 𝑅, T1(𝑀) = 𝑀, T2(𝑀) = 𝑀 ⊗𝑅 𝑀, T3(𝑀) = 𝑀 ⊗𝑅 𝑀 ⊗𝑅 𝑀, and so on.
Multiplication is defined by the rule that on pure tensors we have

(𝑥1 ⊗ 𝑥2 ⊗ … ⊗ 𝑥𝑛) ⋅ (𝑦1 ⊗ 𝑦2 ⊗ … ⊗ 𝑦𝑚) = 𝑥1 ⊗ 𝑥2 ⊗ … ⊗ 𝑥𝑛 ⊗ 𝑦1 ⊗ 𝑦2 ⊗ … ⊗ 𝑦𝑚

and we extend this by linearity.

We define the exterior algebra ∧(𝑀) of 𝑀 over 𝑅 to be the quotient of T(𝑀) by the two
sided ideal generated by the elements 𝑥⊗𝑥 ∈ T2(𝑀). The image of a pure tensor 𝑥1 ⊗…⊗
𝑥𝑛 in ∧𝑛(𝑀) is denoted 𝑥1 ∧ … ∧ 𝑥𝑛. These elements generate ∧𝑛(𝑀), they are 𝑅-linear in
each 𝑥𝑖 and they are zero when two of the 𝑥𝑖 are equal (i.e., alternating). The multiplication
on ∧(𝑀) is graded commutative, i.e., 𝑥 ∧ 𝑦 = −𝑦 ∧ 𝑥.

An example of this is when 𝑀 = 𝑅𝑥1 ⊕…⊕𝑅𝑥𝑛 is a finite free module. In this case ∧(𝑀)
is free over 𝑅 with basis the elements

𝑥𝑖1 ∧ … ∧ 𝑥𝑖𝑟

with 0 ≤ 𝑟 ≤ 𝑛 and 1 ≤ 𝑖1 < 𝑖2 < … < 𝑖𝑟 ≤ 𝑛.

We define the symmetric algebra Sym(𝑀) of 𝑀 over 𝑅 to be the quotient of T(𝑀) by the
two sided ideal generated by the elements 𝑥⊗𝑦−𝑦⊗𝑥 ∈ T2(𝑀). The image of a pure tensor
𝑥1 ⊗ … ⊗ 𝑥𝑛 in Sym𝑛(𝑀) is denoted just 𝑥1 … 𝑥𝑛. These elements generate Sym𝑛(𝑀),
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these are 𝑅-linear in each 𝑥𝑖 and 𝑥1 … 𝑥𝑛 = 𝑥′
1 … 𝑥′

𝑛 if the sequence of elements 𝑥1, … , 𝑥𝑛
is a permutation of the sequence 𝑥′

1, … , 𝑥′
𝑛. Thus we see that Sym(𝑀) is commutative.

An example of this is when 𝑀 = 𝑅𝑥1 ⊕ … ⊕ 𝑅𝑥𝑛 is a finite free module. In this case
Sym(𝑀) = 𝑅[𝑥1, … , 𝑥𝑛] is a polynomial algebra.

Lemma 7.12.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. If 𝑀 is a free 𝑅-module, so is
each symmetric and exterior power.

Proof. Omitted, but see above for the finite free case. �

Lemma 7.12.2. Let 𝑅 be a ring. Let 𝑀2 → 𝑀1 → 𝑀 → 0 be an exact sequence of
𝑅-modules. There are exact sequences

𝑀2 ⊗𝑅 Sym𝑛−1(𝑀1) → Sym𝑛(𝑀1) → Sym𝑛(𝑀) → 0

and similarly
𝑀2 ⊗𝑅 ∧𝑛−1(𝑀1) → ∧𝑛(𝑀1) → ∧𝑛(𝑀) → 0

Proof. Omitted. �

Lemma 7.12.3. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑥𝑖, 𝑖 ∈ 𝐼 be a given system
of generators of 𝑀 as an 𝑅-module. Let 𝑛 ≥ 2. There exists a canonical exact sequence

⨁
1≤𝑗1<𝑗2≤𝑛

⨁
𝑖1,𝑖2∈𝐼

T𝑛−2(𝑀) ⊕ ⨁
1≤𝑗1<𝑗2≤𝑛

⨁
𝑖∈𝐼

T𝑛−2(𝑀) → T𝑛(𝑀) → ∧𝑛(𝑀) → 0

where the pure tensor 𝑚1 ⊗ … ⊗ 𝑚𝑛−2 in the first summand maps to

𝑚1 ⊗ … ⊗ 𝑥𝑖1 ⊗ … ⊗ 𝑥𝑖2 ⊗ … ⊗ 𝑚𝑛−2 + 𝑚1 ⊗ … ⊗ 𝑥𝑖2 ⊗ … ⊗ 𝑥𝑖1 ⊗ … ⊗ 𝑚𝑛−2

and 𝑚1 ⊗ … ⊗ 𝑚𝑛−2 in the second summand maps to

𝑚1 ⊗ … ⊗ 𝑥𝑖 ⊗ … ⊗ 𝑥𝑖 ⊗ … ⊗ 𝑚𝑛−2

There is also a canonical exact sequence

⨁
1≤𝑗1<𝑗2≤𝑛

⨁
𝑖1,𝑖2∈𝐼

T𝑛−2(𝑀) → T𝑛(𝑀) → Sym𝑛(𝑀) → 0

where the pure tensor 𝑚1 ⊗ … ⊗ 𝑚𝑛−2 maps to

𝑚1 ⊗ … ⊗ 𝑥𝑖1 ⊗ … ⊗ 𝑥𝑖2 ⊗ … ⊗ 𝑚𝑛−2 − 𝑚1 ⊗ … ⊗ 𝑥𝑖2 ⊗ … ⊗ 𝑥𝑖1 ⊗ … ⊗ 𝑚𝑛−2

Proof. Omitted. �

Lemma7.12.4. Let𝑅 be a ring. Let𝑀𝑖 be a directed system of𝑅-modules. Then 𝑐𝑜𝑙𝑖𝑚𝑖 T(𝑀) =
T(𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖) and similarly for the symmetric and exterior algebras.

Proof. Omitted. �

7.13. Base change

We formally introduce base change in algebra as follows.

Definition 7.13.1. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Let 𝑅 → 𝑅′

be any ring map. The base change of 𝜑 by 𝑅 → 𝑅′ is the ring map 𝑅′ → 𝑆 ⊗𝑅 𝑅′. In
this situation we often write 𝑆′ = 𝑆 ⊗𝑅 𝑅′. The base change of the 𝑆-module 𝑀 is the
𝑆′-module 𝑀 ⊗𝑅 𝑅′.
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If 𝑆 = 𝑅[𝑥𝑖]/(𝑓𝑗) for some collection of variables 𝑥𝑖, 𝑖 ∈ 𝐼 and some collection of polyno-
mials 𝑓𝑗 ∈ 𝑅[𝑥𝑖], 𝑗 ∈ 𝐽, then 𝑆 ⊗𝑅 𝑅′ = 𝑅′[𝑥𝑖]/(𝑓′

𝑗), where 𝑓′
𝑗 ∈ 𝑅′[𝑥𝑖] is the image of

𝑓𝑗 under the map 𝑅[𝑥𝑖] → 𝑅′[𝑥𝑖] induced by 𝑅 → 𝑅′. This simple remark is the key to
understanding base change.

Lemma 7.13.2. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Let 𝑅 → 𝑅′ be a ring
map and let 𝑆′ = 𝑆 ⊗𝑅 𝑅′ and 𝑀′ = 𝑀 ⊗𝑅 𝑅′ be the base changes.

(1) If 𝑀 is a finite 𝑆-module, then the base change 𝑀′ is a finite 𝑆′-module.
(2) If 𝑀 is an 𝑆-module finite presentation, then the base change 𝑀′ is an 𝑆′-module

of finite presentation.
(3) If 𝑅 → 𝑆 is of finite type, then the base change 𝑅′ → 𝑆′ is of finite type.
(4) If 𝑅 → 𝑆 is of finite presentation, then the base change 𝑅′ → 𝑆′ is of finite

presentation.

Proof. Proof of (1). Take a surjective, 𝑅-linear map 𝑅⊕𝑛 → 𝑀 → 0. By Lemma 7.11.3
and 7.11.10 the result after tensoring with 𝑅′ is a surjection 𝑅′⊕𝑛 → 𝑀′ → 0, so 𝑀′ is a
finitely generated 𝑅′-module. Proof of (2). Take a presentation 𝑅⊕𝑚 → 𝑅⊕𝑛 → 𝑀 → 0.
By Lemma 7.11.3 and 7.11.10 the result after tensoring with 𝑅′ gives a finite presentation
𝑅′⊕𝑚 → 𝑅′⊕𝑛 → 𝑀′ → 0, of the 𝑅′-module 𝑀′. Proof of (3). This follows by the remark
preceding the lemma as we can take 𝐼 to be finite by assumption. Proof of (4). This follows
by the remark preceding the lemma as we can take 𝐼 and 𝐽 to be finte by assumption. �

7.14. Miscellany

The proofs in this section should not refer to any results except those from the section on
basic notions, Section 7.3.

Lemma 7.14.1. Let 𝑅 → 𝑅′ be a ring map and let 𝐼 ⊂ 𝑅 be a locally nilpotent ideal. Then
𝐼𝑅′ is a locally nilpotent ideal of 𝑅′.

Proof. This follows from the fact that if 𝑥, 𝑦 ∈ 𝑅′ are nilpotent, then 𝑥 + 𝑦 is nilpotent too.
Namely, if 𝑥𝑛 = 0 and 𝑦𝑚 = 0, then (𝑥 + 𝑦)𝑛+𝑚−1 = 0. �

Lemma 7.14.2. Let 𝑅 be a ring, 𝐼 and 𝐽 two ideals and 𝔭 a prime ideal containing the
product 𝐼𝐽. Then 𝔭 contains 𝐼 or 𝐽.

Proof. Asumme the contrary and take 𝑥 ∈ 𝐼 ⧵ 𝔭 and 𝑦 ∈ 𝐼 ⧵ 𝔭. Their product is an element
of 𝐼𝐽 ⊆ 𝔭, which contradicts the assumption that 𝔭 was prime. �

Lemma 7.14.3 (Prime avoidance). Let 𝑅 be a ring. Let 𝐼𝑖 ⊂ 𝑅, 𝑖 = 1, … , 𝑟, and 𝐽 ⊂ 𝑅 be
ideals. Assume

(1) 𝐽⊄𝐼𝑖 for 𝑖 = 1, … , 𝑟, and
(2) all but two of 𝐼𝑖 are prime ideals.

Then there exists an 𝑥 ∈ 𝐽, 𝑥∉𝐼𝑖 for all 𝑖.

Proof. The result is true for 𝑟 = 1. If 𝑟 = 2, then let 𝑥, 𝑦 ∈ 𝐽 with 𝑥∉𝐼1 and 𝑦∉𝐼2. We are
done unless 𝑥 ∈ 𝐼2 and 𝑦 ∈ 𝐼1. Then the element 𝑥 + 𝑦 cannot be in 𝐼1 (since that would
mean 𝑥 + 𝑦 − 𝑦 ∈ 𝐼1) and it also cannot be in 𝐼2.

For 𝑟 ≥ 3, assume the result holds for 𝑟 − 1. After renumbering we may assume that 𝐼𝑟 is
prime. We may also assume there are no inclusions among the 𝐼𝑖. Pick 𝑥 ∈ 𝐽, 𝑥∉𝐼𝑖 for all
𝑖 = 1, … , 𝑟 − 1. If 𝑥∉𝐼𝑟 we are done. So assume 𝑥 ∈ 𝐼𝑟. If 𝐽𝐼1 … 𝐼𝑟−1 ⊂ 𝐼𝑟 then 𝐽 ⊂ 𝐼𝑟
(by Lemma 7.14.2) a contradiction. Pick 𝑦 ∈ 𝐽𝐼1 … 𝐼𝑟−1, 𝑦∉𝐼𝑟. Then 𝑥 + 𝑦 works. �
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Lemma 7.14.4. (Chinese remainder.) Let 𝑅 be a ring.
(1) If 𝐼1, … , 𝐼𝑟 are ideals such that 𝐼𝑎 + 𝐼𝑏 = 𝑅 when 𝑎≠𝑏, then 𝐼1 ∩ … ∩ 𝐼𝑟 =

𝐼1𝐼2 … 𝐼𝑟 and 𝑅/(𝐼1𝐼2 … 𝐼𝑟) ≅ 𝑅/𝐼1 × … × 𝑅/𝐼𝑟.
(2) If 𝔪1, … , 𝔪𝑟 are pairwise distinct maximal ideals then 𝔪𝑎 + 𝔪𝑏 = 𝑅 for 𝑎≠𝑏

and the above applies.

Proof. Let us first prove 𝐼1 ∩ … ∩ 𝐼𝑟 = 𝐼1 … 𝐼𝑟 as this will also imply the injectivity of the
induced ring homomorphism 𝑅/(𝐼1 … 𝐼𝑟) → 𝑅/𝐼1 ×…×𝑅/𝐼𝑟. The inclusion 𝐼1 ∩…∩𝐼𝑟 ⊇
𝐼1 … 𝐼𝑟 is always fulfilled since ideals are closed under multiplication with arbitrary ring
elements. To prove the other inclusion, we claim that the ideals

𝐼1 … ̂𝐼𝑖 … 𝐼𝑟, 𝑖 = 1, … , 𝑟

generate the ring 𝑅. We prove this by induction on 𝑟. It holds when 𝑟 = 2. If 𝑟 > 2, then
we see that 𝑅 is the sum of the ideals 𝐼1 … ̂𝐼𝑖 … 𝐼𝑟−1, 𝑖 = 1, … , 𝑟 − 1. Hence 𝐼𝑟 is the sum
of the ideals 𝐼1 … ̂𝐼𝑖 … 𝐼𝑟, 𝑖 = 1, … , 𝑟 − 1. Applying the same argument with the reverse
ordering on the ideals we see that 𝐼1 is the sum of the ideals 𝐼1 … ̂𝐼𝑖 … 𝐼𝑟, 𝑖 = 2, … , 𝑟.
Since 𝑅 = 𝐼1 + 𝐼𝑟 by assumption we see that 𝑅 is the sum of the ideals displayed above.
Therefore we can find elements 𝑎𝑖 ∈ 𝐼1 … ̂𝐼𝑖 … 𝐼𝑟 such that their sum is one. Multiplying
this equation by an element of 𝐼1 ∩ … ∩ 𝐼𝑟 gives the other inclusion. It remains to show
that the canonical map 𝑅/(𝐼1 … 𝐼𝑟) → 𝑅/𝐼1 × … × 𝑅/𝐼𝑟 is surjective. For this, consider its
action on the equation 1 = ∑𝑟

𝑖=1 𝑎𝑖 we derived above. On the one hand, a ring morphism
sends 1 to 1 and on the other hand, the image of any 𝑎𝑖 is zero in 𝑅/𝐼𝑗 for 𝑗 ≠ 𝑖. Therefore,
the image of 𝑎𝑖 in 𝑅/𝐼𝑖 is the identity. So given any element ( ̄𝑏1, … , ̄𝑏𝑟) ∈ 𝑅/𝐼1 ×…×𝑅/𝐼𝑟,
the element ∑𝑟

𝑖=1 𝑎𝑖 ⋅ 𝑏𝑖 is an inverse image in 𝑅.

To see (2), by the very definition of being distinct maximal ideals, we have 𝔪𝑎 + 𝔪𝑏 = 𝑅
for 𝑎 ≠ 𝑏 and so the above applies. �

Lemma 7.14.5. (Nakayama's lemma.) Let 𝑅 be a ring, let 𝑀 be an 𝑅-module, and let
𝐼 ⊂ 𝑅 be an ideal.

(1) If 𝑀 is finite, and 𝐼𝑀 = 𝑀, then there exists a 𝑓 = 1 + 𝑖 ∈ 1 + 𝐼 such that
𝑓𝑀 = 0.

(2) If 𝑀 is finite, 𝐼𝑀 = 𝑀, and 𝐼 ⊂ rad(𝑅) then 𝑀 = 0.
(3) If 𝐼𝑀 = 𝑀, 𝐼 is nilpotent, then 𝑀 = 0.

Proof. Proof of (1). Write 𝑀 = ∑ 𝑅𝑥𝑗, 𝑗 = 1, … , 𝑟. Write 𝑥𝑗 = ∑ 𝑖𝑗𝑗′𝑥𝑗′ with 𝑖𝑗𝑗′ ∈ 𝐼.
In other words ∑(𝛿𝑗𝑗′ −𝑖𝑗𝑗′)𝑥𝑗′ = 0. Hence the determinant 𝑓 of the 𝑟×𝑟 matrix (𝛿𝑗𝑗′ −𝑖𝑗𝑗′)
is a solution. The other parts are easy. �

Lemma 7.14.6. Let 𝑅 be a ring. Let 𝑛 ≥ 𝑚. Let 𝐴 = (𝑎𝑖𝑗) be an 𝑛 × 𝑚 matrix with
coefficients in 𝑅. Let 𝐼 ⊂ 𝑅 be the ideal generated by the 𝑚 × 𝑚 minors of 𝐴.

(1) For any 𝑓 ∈ 𝐼 there exists a 𝑚 × 𝑛 matrix 𝐵 such that 𝐵𝐴 = 𝑓1𝑚×𝑚.
(2) If 𝑓 ∈ 𝑅 and 𝐵𝐴 = 𝑓1𝑚×𝑚 for some 𝑚 × 𝑚 matrix 𝐵, then 𝑓𝑚 ∈ 𝐼.

Proof. For 𝐼 ⊂ {1, … , 𝑛} with |𝐼| = 𝑚 denote 𝐸𝐼 the 𝑚 × 𝑛 matrix of the projection

𝑅⊕𝑛 = ⨁𝑖∈{1,…,𝑛}
𝑅 ⟶ ⨁𝑖∈𝐼

𝑅

and set 𝐴𝐼 = 𝐸𝐼𝐴, i.e., 𝐴𝐼 is the 𝑚 × 𝑚 matrix whose rows are the rows of 𝐴 with indices
in 𝐼. Let 𝐵𝐼 be the adjugate (transpose of cofactor) matrix to 𝐴𝐼, i.e., such that 𝐴𝐼𝐵𝐼 =
𝐵𝐼𝐴𝐼 = det(𝐴𝐼). If 𝑓 ∈ 𝐼 then we can write 𝑓 = ∑ 𝑐𝐼 det(𝐴𝐼) for some 𝑐𝐼 ∈ 𝑅. Set
𝐵 = ∑ 𝑐𝐼𝐵𝐼𝐸𝐼 to see that (1) holds.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00DT
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If 𝑓1𝑚×𝑚 = 𝐵𝐴 then by the Cauchy-Binet formula we have 𝑓𝑚 = ∑ 𝑏𝐼 det(𝐴𝐼) where 𝑏𝐼 is
the determinant of the 𝑚 × 𝑚 matrix whose columns are the columns of 𝐵 with indices in
𝐼. �

7.15. Cayley-Hamilton

Lemma 7.15.1. Let 𝑅 be a ring. Let 𝐴 = (𝑎𝑖𝑗) be an 𝑛 × 𝑛 matrix with coefficients in 𝑅.
Let 𝑃(𝑥) ∈ 𝑅[𝑥] be the characteristic polynomial of 𝐴 (defined as det(𝑥id𝑛×𝑛 − 𝐴)). Then
𝑃(𝐴) = 0 in Mat(𝑛 × 𝑛, 𝑅).

Proof. We reduce the question to the well-known Cayley-Hamilton theorem from linear
algebra in several steps:

(1) If 𝜙 ∶ 𝑆 → 𝑅 is a ring morphism and 𝑏𝑖𝑗 are inverse images of the 𝑎𝑖𝑗 under
this map, then it suffices to show the statement for 𝑆 and (𝑏𝑖𝑗) since 𝜙 is a ring
morphism.

(2) If 𝜓 ∶ 𝑅 ↪ 𝑆 is an injective ring morphism, it clearly suffices to show the result
for 𝑆 and the 𝑎𝑖𝑗 considered as elements of 𝑆.

(3) Thus we may first reduce to the case 𝑅 = ℤ[𝑋𝑖𝑗], 𝑎𝑖𝑗 = 𝑋𝑖𝑗 of a polynomial
ring and then further to the case 𝑅 = ℚ(𝑋𝑖𝑗) where we may finally apply Cayley-
Hamilton.

�

Lemma 7.15.2. Let 𝑅 be a ring. Let 𝑀 be a finite 𝑅-module. Let 𝜑 ∶ 𝑀 → 𝑀 be an
endomorphism. Then there exists a monic polynomial 𝑃 ∈ 𝑅[𝑇] such that 𝑃(𝜑) = 0 as an
endomorphism of 𝑀.

Proof. Choose a surjective 𝑅-module map 𝑅⊕𝑛 → 𝑀, given by (𝑎1, … , 𝑎𝑛) ↦ ∑ 𝑎𝑖𝑥𝑖 for
some generators 𝑥𝑖 ∈ 𝑀. Choose (𝑎𝑖1, … , 𝑎𝑖𝑛) ∈ 𝑅⊕𝑛 such that 𝜑(𝑥𝑖) = ∑ 𝑎𝑖𝑗𝑥𝑗. In other
words the diagram

𝑅⊕𝑛

𝐴
��

//𝑀

𝜑
��

𝑅⊕𝑛 //𝑀
is commutative where 𝐴 = (𝑎𝑖𝑗). By Lemma 7.15.1 there exists a monic polynomial 𝑃 such
that 𝑃(𝐴) = 0. Then it follows that 𝑃(𝜑) = 0. �

Lemma 7.15.3. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be a finite 𝑅-module.
Let 𝜑 ∶ 𝑀 → 𝑀 be an endomorphism such that 𝜑(𝑀) ⊂ 𝐼𝑀. Then there exists a monic
polynomial 𝑃 = 𝑡𝑛 + 𝑎1𝑡𝑛−1 + … + 𝑎𝑛 ∈ 𝑅[𝑇] such that 𝑎𝑗 ∈ 𝐼𝑗 and 𝑃(𝜑) = 0 as an
endomorphism of 𝑀.

Proof. Choose a surjective 𝑅-module map 𝑅⊕𝑛 → 𝑀, given by (𝑎1, … , 𝑎𝑛) ↦ ∑ 𝑎𝑖𝑥𝑖 for
some generators 𝑥𝑖 ∈ 𝑀. Choose (𝑎𝑖1, … , 𝑎𝑖𝑛) ∈ 𝐼⊕𝑛 such that 𝜑(𝑥𝑖) = ∑ 𝑎𝑖𝑗𝑥𝑗. In other
words the diagram

𝑅⊕𝑛

𝐴
��

//𝑀

𝜑
��

𝐼⊕𝑛 //𝑀
is commutative where 𝐴 = (𝑎𝑖𝑗). By Lemma 7.15.1 the polynomial 𝑃(𝑡) = det(𝑡id𝑛×𝑛 − 𝐴)
has all the desired properties. �
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As a fun example application we prove the following surprising lemma.

Lemma 7.15.4. Let 𝑅 be a ring. Let 𝑀 be a finite 𝑅-module. Let 𝜑 ∶ 𝑀 → 𝑀 be a
surjective 𝑅-module map. Then 𝜑 is an isomorphism.

First proof. Write 𝑅′ = 𝑅[𝑥] and think of 𝑀 as a finite 𝑅′-module with 𝑥 acting via 𝜑.
Set 𝐼 = (𝑥) ⊂ 𝑅′. By our assumption that 𝜑 is surjective we have 𝐼𝑀 = 𝑀. Hence we
may apply Lemma 7.15.3 to 𝑀 as an 𝑅′ module, the ideal 𝐼 and the endomorphism id𝑀.
We conclude that (1 + 𝑎1 + … + 𝑎𝑛)id𝑀 = 0 with 𝑎𝑗 ∈ 𝐼. Write 𝑎𝑗 = 𝑏𝑗(𝑥)𝑥 for some
𝑏𝑗(𝑥) ∈ 𝑅[𝑥]. Translating back into 𝜑 we see that id𝑀 = −(∑𝑗=1,…,𝑛 𝑏𝑗(𝜑)𝜑 and hence 𝜑
is invertible. �

Second proof. We perform induction on the number of generators of 𝑀 over 𝑅. If 𝑀 is
generated by one element, then 𝑀 ≅ 𝑅/𝐼 for some ideal 𝐼 ⊂ 𝑅. In this case we may replace
𝑅 by 𝑅/𝐼 so that 𝑀 = 𝑅. In this case 𝜑 ∶ 𝑅 → 𝑅 is given by multiplication on 𝑀 by an
element 𝑟 ∈ 𝑅. The surjectivity of 𝜑 forces 𝑟 invertible, since 𝜑 must hit 1, which implies
that 𝜑 is invertible.
Now assume that we have proven the lemma in the case of modules generated by 𝑛 − 1
elements, and are examining a module 𝑀 generated by 𝑛 elements. Let 𝐴 mean the ring
𝑅[𝑡], and regard the module 𝑀 as an 𝐴-module by letting 𝑡 act via 𝜑; since 𝑀 is finite over
𝑅, it is finite over 𝑅[𝑡] as well, and since we're trying to prove 𝜑 injective, a set-theoretic
property, we might as well prove the endomorphism 𝑡 ∶ 𝑀 → 𝑀 over 𝐴 injective. We
have reduced our problem to the case our endomorphism is multiplication by an element of
the ground ring. Let 𝑀′ ⊂ 𝑀 denote the sub-𝐴-module generated by the first 𝑛 − 1 of the
generators of 𝑀, and consider the diagram

0 //𝑀′ //

𝜑∣𝑀′
��

𝑀

𝜑
��

//𝑀/𝑀′

𝜑 mod 𝑀′

��

// 0

0 //𝑀′ //𝑀 //𝑀/𝑀′ // 0,

where the restriction of 𝜑 to 𝑀′ and the map induced by 𝜑 on the quotient 𝑀/𝑀′ are
well-defined since 𝜑 is multiplication by an element in the base, and 𝑀′ and 𝑀/𝑀′ are
𝐴-modules in their own right. By the case 𝑛 = 1 the the map 𝑀/𝑀′ → 𝑀/𝑀′ is an
isomorphism. A diagram chase implies that 𝜑|𝑀′ is surjective hence by induction 𝜑|𝑀′

is an isomorphism. This forces the middle column to be an isomorphism by the snake
lemma. �

7.16. The spectrum of a ring

We arbitrarily decide that the spectrum of a ring as a topological space is part of the algebra
chapter, whereas an affine scheme is part of the chapter on schemes.

Definition 7.16.1. Let 𝑅 be a ring.
(1) The spectrum of 𝑅 is the set of prime ideals of 𝑅. It is usually denoted 𝑆𝑝𝑒𝑐(𝑅).
(2) Given a subset 𝑇 ⊂ 𝑅 we let 𝑉(𝑇) ⊂ 𝑆𝑝𝑒𝑐(𝑅) be the set of primes containing 𝑇,

i.e., 𝑉(𝑇) = {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ ∀𝑓 ∈ 𝑇, 𝑓 ∈ 𝔭}.
(3) Given an element 𝑓 ∈ 𝑅 we let 𝐷(𝑓) ⊂ 𝑆𝑝𝑒𝑐(𝑅) be the set of primes not con-

taining 𝑓.

Lemma 7.16.2. Let 𝑅 be a ring.
(1) The spectrum of a ring 𝑅 is empty if and only if 𝑅 is the zero ring.
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(2) Every nonzero ring has a maximal ideal.
(3) Every nonzero ring has a minimal prime ideal.
(4) Given an ideal 𝐼 ⊂ 𝑅 and a prime ideal 𝐼 ⊂ 𝔭 there exists a prime 𝐼 ⊂ 𝔮 ⊂ 𝔭

such that 𝔮 is minimal over 𝐼.
(5) If 𝑇 ⊂ 𝑅, and if (𝑇) is the ideal generated by 𝑇 in 𝑅, then 𝑉((𝑇)) = 𝑉(𝑇).
(6) If 𝐼 is an ideal and √𝐼 is its radical, see basic notion (27), then 𝑉(𝐼) = 𝑉(√𝐼).
(7) Given an ideal 𝐼 of 𝑅 we have √𝐼 = ⋂𝐼⊂𝔭 𝔭.
(8) If 𝐼 is an ideal then 𝑉(𝐼) = ∅ if and only if 𝐼 is the unit ideal.
(9) If 𝐼, 𝐽 are ideals of 𝑅 then 𝑉(𝐼) ∪ 𝑉(𝐽) = 𝑉(𝐼 ∩ 𝐽).

(10) If (𝐼𝑎)𝑎∈𝐴 is a set of ideals of 𝑅 then ∩𝑎∈𝐴𝑉(𝐼𝑎) = 𝑉(∪𝑎∈𝐴𝐼𝑎).
(11) If 𝑓 ∈ 𝑅, then 𝐷(𝑓) ∐ 𝑉(𝑓) = 𝑆𝑝𝑒𝑐(𝑅).
(12) If 𝑓 ∈ 𝑅 then 𝐷(𝑓) = ∅ if and only if 𝑓 is nilpotent.
(13) If 𝑓 = 𝑢𝑓′ for some unit 𝑢 ∈ 𝑅, then 𝐷(𝑓) = 𝐷(𝑓′).
(14) If 𝐼 ⊂ 𝑅 is an ideal, and 𝔭 is a prime of 𝑅 with 𝔭∉𝑉(𝐼), then there exists an 𝑓 ∈ 𝑅

such that 𝔭 ∈ 𝐷(𝑓), and 𝐷(𝑓) ∩ 𝑉(𝐼) = ∅.
(15) If 𝑓, 𝑔 ∈ 𝑅, then 𝐷(𝑓𝑔) = 𝐷(𝑓) ∩ 𝐷(𝑔).
(16) If 𝑓𝑖 ∈ 𝑅 for 𝑖 ∈ 𝐼, then ⋃𝑖∈𝐼 𝐷(𝑓𝑖) is the complement of 𝑉({𝑓𝑖}𝑖∈𝐼) in 𝑆𝑝𝑒𝑐(𝑅).
(17) If 𝑓 ∈ 𝑅 and 𝐷(𝑓) = 𝑆𝑝𝑒𝑐(𝑅), then 𝑓 is a unit.

Proof.
(1) This is a direct consequence of (2) and (3).
(2) Let 𝔄 be the set of all proper ideals of 𝑅. This set is ordered by inclusion and

is non-empty, since (0) ∈ 𝔄 is a proper ideal. Let 𝐴 be a totally ordered subset
of 𝑅. ⋃𝐼∈𝐴 𝐼 is in fact an ideal. Since 1 ∉ 𝐼 for all 𝐼 ∈ 𝐴, the union does not
contain 1 and thus is proper. Hence ⋃𝐼∈𝐴 𝐼 is in 𝔄 and is an upper bound for the
set 𝐴. Thus by Zorn's lemma 𝔄 has a maximal element, which is the sought-after
maximal ideal.

(3) Since 𝑅 is nonzero, it contains a maximal ideal which is a prime ideal. Thus the
set 𝔄 of all prime ideals of 𝑅 is nonempty. 𝔄 is ordered by reverse-inclusion.
Let 𝐴 be a totally ordered subset of 𝔄. It's pretty clear that 𝐽 = ⋂𝐼∈𝐴 𝐼 is in fact
an ideal. Not so clear, however, is that it is prime. Let 𝑥𝑦 ∈ 𝐽. Then 𝑥𝑦 ∈ 𝐼 for
all 𝐼 ∈ 𝐴. Now let 𝐵 = {𝐼 ∈ 𝐴|𝑦 ∈ 𝐼}. Let 𝐾 = ⋂𝐼∈𝐵 𝐼. Since 𝐴 is totally
ordered, either 𝐾 = 𝐽 (and we're done, since then 𝑦 ∈ 𝐽) or 𝐾 ⊃ 𝐽 and for all
𝐼 ∈ 𝐴 such that 𝐼 is properly contained in 𝐾, we have 𝑦 ∉ 𝐼. But that means
that for all those 𝐼, 𝑥 ∈ 𝐼, since they are prime. Hence 𝑥 ∈ 𝐽. In either case, 𝐽
is prime as desired. Hence by Zorn's lemma we get a maximal element which in
this case is a minimal prime ideal.

(4) This is the same exact argument as (3) except you only consider prime ideals
contained in 𝔭 and containing 𝐼.

(5) (𝑇) is the smallest ideal containing 𝑇. Hence if 𝑇 ⊂ 𝐼, some ideal, then (𝑇) ⊂ 𝐼 as
well. Hence if 𝐼 ∈ 𝑉(𝑇), then 𝐼 ∈ 𝑉((𝑇)) as well. The other inclusion is obvious.

(6) Since 𝐼 ⊂ √𝐼, 𝑉(√𝐼) ⊂ 𝑉(𝐼). Now let 𝔭 ∈ 𝑉(𝐼). Let 𝑥 ∈ √𝐼. Then 𝑥𝑛 ∈ 𝐼 for
some 𝑛. Hence 𝑥𝑛 ∈ 𝔭. But since 𝔭 is prime, a boring induction argument gets
you that 𝑥 ∈ 𝔭. Hence √𝐼 ⊂ 𝔭 and 𝔭 ∈ 𝑉(√𝐼).

(7) Let 𝑓 ∈ 𝑅 ⧵ √𝐼. Then 𝑓𝑛 ∉ 𝐼 for all 𝑛. Hence 𝑆 = {1, 𝑓, 𝑓2, …} is a mul-
tiplicative subset, not containing 0. Take a prime ideal �̄� ⊂ 𝑆−1𝑅 containing
𝑆−1𝐼. Then the pull-back 𝔭 in 𝑅 of �̄� is a prime ideal containing 𝐼 that does not
intersect 𝑆. This shows that ⋂𝐼⊂𝔭 𝔭 ⊂ √𝐼. Now if 𝑎 ∈ √𝐼, then 𝑎𝑛 ∈ 𝐼 for
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some 𝑛. Hence if 𝐼 ⊂ 𝔭, then 𝑎𝑛 ∈ 𝔭. But since 𝔭 is prime, we have 𝑎 ∈ 𝔭. Thus
the equality is shown.

(8) 𝐼 is not the unit ideal iff 𝐼 is contained in some maximal ideal (to see this, apply
(2) to the ring 𝑅/𝐼) which is therefore prime.

(9) If 𝔭 ∈ 𝑉(𝐼) ∪ 𝑉(𝐽), then 𝐼 ⊂ 𝔭 or 𝐽 ⊂ 𝔭 which means that 𝐼 ∩ 𝐽 ⊂ 𝔭. Now if
𝐼 ∩ 𝐽 ⊂ 𝔭, then 𝐼𝐽 ⊂ 𝔭 and hence either 𝐼 of 𝐽 is in 𝔭, since 𝔭 is prime.

(10) 𝔭 ∈ ⋂𝑎∈𝐴 𝑉(𝐼𝑎) ⇔ 𝐼𝑎 ⊂ 𝔭, ∀𝑎 ∈ 𝐴 ⇔ 𝔭 ∈ 𝑉(∪𝑎∈𝐴𝐼𝑎)
(11) If 𝔭 is a prime ideal and 𝑓 ∈ 𝑅, then either 𝑓 ∈ 𝔭 or 𝑓 ∉ 𝔭 (strictly) which is

what the disjoint union says.
(12) If 𝑎 ∈ 𝑅 is nilpotent, then 𝑎𝑛 = 0 for some 𝑛. Hence 𝑎𝑛 ∈ 𝔭 for any prime ideal.

Thus 𝑎 ∈ 𝔭 as can be shown by induction and 𝐷(𝑓) = ∅. Now, as shown in (7),
if 𝑎 ∈ 𝑅 is not nilpotent, then there is a prime ideal that does not contain it.

(13) 𝑓 ∈ 𝔭 ⇔ 𝑢𝑓 ∈ 𝔭, since 𝑢 is invertible.
(14) If 𝔭 ∉ 𝑉(𝐼), then ∃𝑓 ∈ 𝐼 ⧵ 𝔭. Then 𝑓 ∉ 𝔭 so 𝔭 ∈ 𝐷(𝑓). Also if 𝔮 ∈ 𝐷(𝑓), then

𝑓 ∉ 𝔮 and thus 𝐼 is not contained in 𝔮. Thus 𝐷(𝑓) ∩ 𝑉(𝐼) = ∅.
(15) If 𝑓𝑔 ∈ 𝔭, then 𝑓 ∈ 𝔭 or 𝑔 ∈ 𝔭. Hence if 𝑓 ∉ 𝔭 and 𝑔 ∉ 𝔭, then 𝑓𝑔 ∉ 𝔭. Since 𝔭

is an ideal, if 𝑓𝑔 ∉ 𝔭, then 𝑓 ∉ 𝔭 and 𝑔 ∉ 𝔭.
(16) 𝔭 ∈ ⋃𝑖∈𝐼 𝐷(𝑓𝑖) ⇔ ∃𝑖 ∈ 𝐼, 𝑓𝑖 ∉ 𝔭 ⇔ 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ⧵ 𝑉({𝑓𝑖}𝑖∈𝐼)
(17) If 𝐷(𝑓) = 𝑆𝑝𝑒𝑐(𝑅), then 𝑉(𝑓) = ∅ and hence 𝑓𝑅 = 𝑅, so 𝑓 is a unit.

�

The lemma implies that the subsets 𝑉(𝑇) from Definition 7.16.1 form the closed subsets of
a topology on 𝑆𝑝𝑒𝑐(𝑅). And it also shows that the sets 𝐷(𝑓) are open and form a basis for
this topology.

Definition 7.16.3. Let 𝑅 be a ring. The topology on 𝑆𝑝𝑒𝑐(𝑅) whose closed sets are the sets
𝑉(𝑇) is called the Zariski topology. The open subsets 𝐷(𝑓) are called the standard opens of
𝑆𝑝𝑒𝑐(𝑅).

It should be clear from context whether we consider 𝑆𝑝𝑒𝑐(𝑅) just as a set or as a topological
space.

Lemma 7.16.4. Suppose that 𝜑 ∶ 𝑅 → 𝑅′ is a ring homomorphism. The induced map

𝑆𝑝𝑒𝑐(𝜑) ∶ 𝑆𝑝𝑒𝑐(𝑅′) ⟶ 𝑆𝑝𝑒𝑐(𝑅), 𝔭′ ⟼ 𝜑−1(𝔭′)
is continuous for the Zariski topologies. In fact, for any element 𝑓 ∈ 𝑅we have𝑆𝑝𝑒𝑐(𝜑)−1(𝐷(𝑓)) =
𝐷(𝜑(𝑓)).

Proof. It is basic notion (41) that 𝔭 ∶= 𝜑−1(𝔭′) is indeed a prime ideal of 𝑅. The last
assertion of the lemma follows directly from the definitions, and implies the first. �

If 𝜑′ ∶ 𝑅′ → 𝑅″ is a second ring homomorphism then the composition
𝑆𝑝𝑒𝑐(𝑅′) ⟶ 𝑆𝑝𝑒𝑐(𝑅′) ⟶ 𝑆𝑝𝑒𝑐(𝑅″)

equals 𝑆𝑝𝑒𝑐(𝜑′ ∘ 𝜑). In other words, 𝑆𝑝𝑒𝑐 is a contravariant functor from the category of
rings to the category of topological spaces.

Lemma 7.16.5. Let𝑅 be a ring. Let𝑆 ⊂ 𝑅 be a multiplicative subset. The map𝑅 → 𝑆−1𝑅
induces via the functoriality of 𝑆𝑝𝑒𝑐 a homeomorphism

𝑆𝑝𝑒𝑐(𝑆−1𝑅) ⟶ {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ 𝑆 ∩ 𝔭 = ∅}
where the topology on the right hand side is that induced from the Zariski topology on
𝑆𝑝𝑒𝑐(𝑅). The inverse map is given by 𝔭 ↦ 𝑆−1𝔭.
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Proof. Denote the right hand side of the arrow of the lemma by 𝐷. Choose a prime 𝔭′ ⊂
𝑆−1𝑅 and let 𝔭 the inverse image of 𝔭′ in 𝑅. Since 𝔭′ does not contain 1 we see that 𝔭
does not contain any element of 𝑆. Hence 𝔭 ∈ 𝐷 and we see that the image is contained
in 𝐷. Let 𝔭 ∈ 𝐷. By assumption the image 𝑆 does not contain 0. By basic notion (54)
𝑆−1(𝑅/𝔭) is not the zero ring. By basic notion (62) we see 𝑆−1𝑅/𝑆−1𝔭 = 𝑆−1(𝑅/𝔭) is
a domain, and hence 𝑆−1𝔭 is a prime. The equality of rings also shows that the inverse
image of 𝑆−1𝔭 in 𝑅 is equal to 𝔭, because 𝑅/𝔭 → 𝑆−1(𝑅/𝔭) is injective by basic notion
(55). This proves that the map 𝑆𝑝𝑒𝑐(𝑆−1𝑅) → 𝑆𝑝𝑒𝑐(𝑅) is bijective onto 𝐷 with inverse as
given. It is continuous by Lemma 7.16.4. Finally, let 𝐷(𝑔) ⊂ 𝑆𝑝𝑒𝑐(𝑆−1𝑅) be a standard
open. Write 𝑔 = ℎ/𝑠 for some ℎ ∈ 𝑅 and 𝑠 ∈ 𝑆. Since 𝑔 and ℎ/1 differ by a unit we
have 𝐷(𝑔) = 𝐷(ℎ/1) in 𝑆𝑝𝑒𝑐(𝑆−1𝑅). Hence by Lemma 7.16.4 and the bijectivity above the
image of 𝐷(𝑔) = 𝐷(ℎ/1) is 𝐷 ∩ 𝐷(ℎ). This proves the map is open as well. �

Lemma 7.16.6. Let 𝑅 be a ring. Let 𝑓 ∈ 𝑅. The map 𝑅 → 𝑅𝑓 induces via the functoriality
of 𝑆𝑝𝑒𝑐 a homeomorphism

𝑆𝑝𝑒𝑐(𝑅𝑓) ⟶ 𝐷(𝑓) ⊂ 𝑆𝑝𝑒𝑐(𝑅).

The inverse is given by 𝔭 ↦ 𝔭 ⋅ 𝑅𝑓.

Proof. This is a special case of Lemma 7.16.5 above. �

It is not the case that every ``affine open'' of a spectrum is a standard open. See Example
7.24.4.

Lemma 7.16.7. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. The map 𝑅 → 𝑅/𝐼 induces via
the functoriality of 𝑆𝑝𝑒𝑐 a homeorphism

𝑆𝑝𝑒𝑐(𝑅/𝐼) ⟶ 𝑉(𝐼) ⊂ 𝑆𝑝𝑒𝑐(𝑅).

The inverse is given by 𝔭 ↦ 𝔭/𝐼.

Proof. It is immediate that the image is contained in 𝑉(𝐼). On the other hand, if 𝔭 ∈ 𝑉(𝐼)
then 𝔭 ⊃ 𝐼 and we may consider the ideal 𝔭/𝐼 ⊂ 𝑅/𝐼. Using basic notion (51) we see that
(𝑅/𝐼)/(𝔭/𝐼) = 𝑅/𝔭 is a domain and hence 𝔭/𝐼 is a prime ideal. From this it is immediately
clear that the image of 𝐷(𝑓+𝐼) is 𝐷(𝑓)∩𝑉(𝐼), and hence the map is a homeomorphism. �

Remark 7.16.8. A fundamental commutative diagram associated to 𝜑 ∶ 𝑅 → 𝑆, 𝔮 ⊂ 𝑆
and 𝔭 = 𝜑−1(𝔮) is the following

𝜅(𝔮) = 𝑆𝔮/𝔮𝑆𝔮 𝑆𝔮
oo 𝑆 //oo 𝑆/𝔮 // 𝜅(𝔮) = f.f.(𝑆/𝔮)

𝜅(𝔭) ⊗𝑅 𝑆 = 𝑆𝔭/𝔭𝑆𝔭

OO

𝑆𝔭

OO

oo 𝑆

OO

//oo 𝑆/𝔭𝑆

OO

// (𝑅 ⧵ 𝔭)−1𝑆/𝔭𝑆

OO

𝜅(𝔭) = 𝑅𝔭/𝔭𝑅𝔭

OO

𝑅𝔭

OO

oo 𝑅

OO

//oo 𝑅/𝔭

OO

// 𝜅(𝔭) = f.f.(𝑅/𝔭)

OO

In this diagram the arrows on the outer left and outer right columns are identical. The
horizontal maps induce on the associated spectrums always a homeomorphism onto the
image. The lower two rows of the diagram make sense without assuming 𝔮 exists. The
lower squares induce fibre squares of topological spaces. This diagram shows that 𝔭 is in
the image of the map on Spec if and only if 𝑆 ⊗𝑅 𝜅(𝔭) is not the zero ring.
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Lemma 7.16.9. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝔭 be a prime of 𝑅. The following are
equivalent

(1) 𝔭 is in the image of 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅),
(2) 𝑆 ⊗𝑅 𝜅(𝔭)≠0,
(3) 𝑆𝔭/𝔭𝑆𝔭≠0,
(4) (𝑆/𝔭𝑆)𝔭≠0, and
(5) 𝔭 = 𝜑−1(𝔭𝑆).

Proof. We have already seen the equivalence of the first two in Remark 7.16.8. The others
are just reformulations of this. �

Lemma 7.16.10. Let 𝑅 be a ring. The space 𝑆𝑝𝑒𝑐(𝑅) is quasicompact.

Proof. It suffices to prove that any covering of 𝑆𝑝𝑒𝑐(𝑅) by standard opens can be refined
by a finite covering. Thus suppose that 𝑆𝑝𝑒𝑐(𝑅) = ∪𝐷(𝑓𝑖) for a set of elements {𝑓𝑖}𝑖∈𝐼 of
𝑅. This means that ∩𝑉(𝑓𝑖) = ∅. According to Lemma 7.16.2 this means that 𝑉({𝑓𝑖}) = ∅.
According to the same lemma this means that the ideal generated by the 𝑓𝑖 is the unit ideal
of 𝑅. This means that we can write 1 as a finite sum: 1 = ∑𝑖∈𝐽 𝑟𝑖𝑓𝑖 with 𝐽 ⊂ 𝐼 finite. And
then it follows that 𝑆𝑝𝑒𝑐(𝑅) = ∪𝑖∈𝐽𝐷(𝑓𝑖). �

Lemma 7.16.11. Let 𝑅 be a ring. The topology on 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) has the following prop-
erties:

(1) 𝑋 is quasi-compact,
(2) 𝑋 has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Proof. The spectrum of a ring is quasi-compact, see Lemma 7.16.10. It has a basis for the
topology consisting of the standard opens 𝐷(𝑓) = 𝑆𝑝𝑒𝑐(𝑅𝑓) (Lemma 7.16.6) which are
quasi-compact by the first remark. The intersection of two standard opens is quasi-compact
as 𝐷(𝑓) ∩ 𝐷(𝑔) = 𝐷(𝑓𝑔). Given any two quasi-compact opens 𝑈, 𝑉 ⊂ 𝑋 we may write
𝑈 = 𝐷(𝑓1) ∪ … ∪ 𝐷(𝑓𝑛) and 𝑉 = 𝐷(𝑔1) ∪ … ∪ 𝐷(𝑔𝑚). Then 𝑈 ∩ 𝑉 = ⋃ 𝐷(𝑓𝑖𝑔𝑗) which is
quasi-compact. �

7.17. Local rings

Local rings are the bread and butter of algebraic geometry.

Definition 7.17.1. A local ring is a ring with exactly onemaximal ideal. Themaximal ideal
is often denoted 𝔪𝑅 in this case. We often say ``let (𝑅, 𝔪, 𝜅) be a local ring'' to indicate
that 𝑅 is local, 𝔪 is its unique maximal ideal and 𝜅 = 𝑅/𝔪 is its residue field. A local
homomorphism of local rings is a ring map 𝜑 ∶ 𝑅 → 𝑆 such that 𝑅 and 𝑆 are local rings
and such that 𝜑(𝔪𝑅) ⊂ 𝔪𝑆. If it is given that 𝑅 and 𝑆 are local rings, then the phrase
``local ring map 𝜑 ∶ 𝑅 → 𝑆'' means that 𝜑 is a local homomorphism of local rings.

A field is a local ring. Any ring map between fields is a local homomorphism of local rings.

Lemma 7.17.2. Let 𝑅 be a ring. The following are equivalent:
(1) 𝑅 is a local ring,
(2) 𝑆𝑝𝑒𝑐(𝑅) has exactly one closed point,
(3) 𝑅 has a maximal ideal 𝔪 and every element of 𝑅 ⧵ 𝔪 is a unit, and
(4) 𝑅 is not the zero ring and every 𝑥 ∈ 𝑅 is either invertible or 1 − 𝑥 is invertible.
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Proof. Let 𝑅 be a ring, and 𝔪 a maximal ideal. If 𝑥 ∈ 𝑅 ⧵ 𝔪, and 𝑥 is not a unit then there
is a maximal ideal 𝔪′ containing 𝑥. Hence 𝑅 has at least two maximal ideals. Conversely,
if 𝔪′ is another maximal ideal, then choose 𝑥 ∈ 𝔪′, 𝑥∉𝔪. Clearly 𝑥 is not a unit. This
proves the equivalence of (1) and (3). The equivalence (1) and (2) is tautological. If 𝑅
is local then (4) holds since 𝑥 is either in 𝔪 or not. If (4) holds, and 𝔪, 𝔪′ are distinct
maximal ideals then we may choose 𝑥 ∈ 𝑅 such that 𝑥 mod 𝔪′ = 0 and 𝑥 mod 𝔪 = 1
by the Chinese remainder theorem (Lemma 7.14.4). This element 𝑥 is not invertible and
neither is 1 − 𝑥 which is a contradiction. Thus (4) and (1) are equivalent. �

The localization 𝑅𝔭 of a ring 𝑅 at a prime 𝔭 is a local ring with maximal ideal 𝔭𝑅𝔭. Namely,
the quotient 𝑅𝔭/𝔭𝑅𝔭 is the fraction field of the domain 𝑅/𝔭 and every element of 𝑅𝔭 which
is not contained in 𝔭𝑅𝔭 is invertible.

Lemma 7.17.3. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Assume 𝑅 and 𝑆 are local rings. The
following are equivalent:

(1) 𝜑 is a local ring map,
(2) 𝜑(𝔪𝑅) ⊂ 𝔪𝑆, and
(3) 𝜑−1(𝔪𝑆) = 𝔪𝑅.

Proof. Conditions (1) and (2) are equivalent by definition. If (3) holds then (2) holds.
Conversely, if (2) holds, then 𝜑−1(𝔪𝑆) is a prime ideal containg the maximal ideal 𝔪𝑅,
hence 𝜑−1(𝔪𝑆) = 𝔪𝑅. �

Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝔮 ⊂ 𝑆 be a prime and set 𝔭 = 𝜑−1(𝔮). Then the induced
ring map 𝑅𝔭 → 𝑆𝔮 is a local ring map.

7.18. Open and closed subsets of spectra

It turns out that open and closed subsets of a spectrum correspond to idempotents of the
ring.

Lemma 7.18.1. Let 𝑅 be a ring. Let 𝑒 ∈ 𝑅 be an idempotent. In this case

𝑆𝑝𝑒𝑐(𝑅) = 𝐷(𝑒) ∐ 𝐷(1 − 𝑒).

Proof. Note that an idempotent 𝑒 of a domain is either 1 or 0. Hence we see that

𝐷(𝑒) = {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ 𝑒∉𝔭}
= {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ 𝑒≠0 in 𝜅(𝔭)}
= {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ 𝑒 = 1 in 𝜅(𝔭)}

Similarly we have

𝐷(1 − 𝑒) = {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ 1 − 𝑒∉𝔭}
= {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ 𝑒≠1 in 𝜅(𝔭)}
= {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ 𝑒 = 0 in 𝜅(𝔭)}

Since the image of 𝑒 in any residue field is either 1 or 0 we deduce that 𝐷(𝑒) and 𝐷(1 − 𝑒)
cover all of 𝑆𝑝𝑒𝑐(𝑅). �

Lemma 7.18.2. Let 𝑅1 and 𝑅2 be rings. Let 𝑅 = 𝑅1 × 𝑅2. The maps 𝑅 → 𝑅1, (𝑥, 𝑦) ↦ 𝑥
and 𝑅 → 𝑅2, (𝑥, 𝑦) ↦ 𝑦 induce continuous maps 𝑆𝑝𝑒𝑐(𝑅1) → 𝑆𝑝𝑒𝑐(𝑅) and 𝑆𝑝𝑒𝑐(𝑅2) →
𝑆𝑝𝑒𝑐(𝑅). The induced map

𝑆𝑝𝑒𝑐(𝑅1) ∐ 𝑆𝑝𝑒𝑐(𝑅2) ⟶ 𝑆𝑝𝑒𝑐(𝑅)
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is a homeomorphism. In other words, the spectrum of 𝑅 = 𝑅1 × 𝑅2 is the disjoint union of
the spectrum of 𝑅1 and the spectrum of 𝑅2.

Proof. Write 1 = 𝑒1 + 𝑒2 with 𝑒1 = (1, 0) and 𝑒2 = (0, 1). Note that 𝑒1 and 𝑒2 = 1 − 𝑒1 are
idempotents. We leave it to the reader to show that 𝑅1 = 𝑅𝑒1

is the localization of 𝑅 at 𝑒1.
Similarly for 𝑒2. Thus the statement of the lemma follows from Lemma 7.18.1 combined
with Lemma 7.16.6. �

We reprove the following lemma later after introducing a glueing lemma for functions. See
Section 7.20.

Lemma 7.18.3. Let 𝑅 be a ring. For each 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) which is open and closed there
exists a unique idempotent 𝑒 ∈ 𝑅 such that 𝑈 = 𝐷(𝑒). This induces a 1-1 correspondence
between open and closed subsets 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) and idempotents 𝑒 ∈ 𝑅.

First proof of Lemma 7.18.3. Let 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be open and closed. Since 𝑈 is closed it is
quasi-compact by Lemma 7.16.10, and similarly for its complement. Write 𝑈 = ⋃𝑛

𝑖=1 𝐷(𝑓𝑖)
as a finite union of standard opens. Similarly, write 𝑆𝑝𝑒𝑐(𝑅) ⧵ 𝑈 = ⋃𝑚

𝑗=1 𝐷(𝑔𝑗) as a finite
union of standard opens. Since ∅ = 𝐷(𝑓𝑖) ∩ 𝐷(𝑔𝑗) = 𝐷(𝑓𝑖𝑔𝑗) we see that 𝑓𝑖𝑔𝑗 is nilpotent
by Lemma 7.16.2. Let 𝐼 = (𝑓1, … , 𝑓𝑛) ⊂ 𝑅 and let 𝐽 = (𝑔1, … , 𝑔𝑚) ⊂ 𝑅. Note that 𝑉(𝐽)
equals 𝑈, that 𝑉(𝐼) equals the complement of 𝑈, so 𝑆𝑝𝑒𝑐(𝑅) = 𝑉(𝐼) ∐ 𝑉(𝐽). By the remark
on nilpotency above, we see that (𝐼𝐽)𝑁 = (0) for some sufficiently large integer 𝑁. Since
⋃ 𝐷(𝑓𝑖) ∪ ⋃ 𝐷(𝑔𝑗) = 𝑆𝑝𝑒𝑐(𝑅) we see that 𝐼 + 𝐽 = 𝑅, see Lemma 7.16.2. By raising this
equation to the 2𝑁th power we conclude that 𝐼𝑁 + 𝐽𝑁 = 𝑅. Write 1 = 𝑥 + 𝑦 with 𝑥 ∈ 𝐼𝑁

and 𝑦 ∈ 𝐽𝑁. Then 1 = (𝑥+𝑦)2 = 𝑥2 +𝑦2 because 𝐼𝑁𝐽𝑁 = (0). Then 𝑧 = 𝑥−𝑥2 ∈ 𝐼𝑁 ∩𝐽𝑁.
Thus 𝑧𝑥 = 0 and 𝑧2 = 0. Hence (𝑥 − 𝑧) − (𝑥 − 𝑧)2 = 𝑥 − 𝑥2 − 𝑧 = 0. In other words,
𝑒 = 𝑥 − 𝑧 is an idempotent contained in 𝐼𝑁 ⊂ 𝐼, and the idempotent 𝑒′ = 1 − 𝑒 = 𝑦 + 𝑧
is contained in 𝐽𝑁 ⊂ 𝐽. This shows that the idempotent 𝑒 maps to 1 in every residue field
𝜅(𝔭) for 𝔭 ∈ 𝑉(𝐽) and that 𝑒 maps to 0 in 𝜅(𝔭) for every 𝔭 ∈ 𝑉(𝐼).

To see uniqueness suppose that 𝑒1, 𝑒2 are distinct idempotents in 𝑅. We have to show there
exists a prime 𝔭 such that 𝑒1 ∈ 𝔭 and 𝑒2∉𝔭, or conversely. Write 𝑒′

𝑖 = 1 − 𝑒𝑖. If 𝑒1≠𝑒2, then
0≠𝑒1 − 𝑒2 = 𝑒1(𝑒2 + 𝑒′

2) − (𝑒1 + 𝑒′
1)𝑒2 = 𝑒1𝑒′

2 − 𝑒′
1𝑒2. Hence either the idempotent 𝑒1𝑒′

2≠0
or 𝑒′

1𝑒2≠0. An idempotent is not nilpotent, and hence we find a prime 𝔭 such that either
𝑒1𝑒′

2∉𝔭 or 𝑒′
1𝑒2∉𝔭, by Lemma 7.16.2. It is easy to see this gives the desired prime. �

Lemma 7.18.4. Let 𝑅 be a ring. Then 𝑆𝑝𝑒𝑐(𝑅) is connected if and only if 𝑅 has no non-
trivial idempotents.

Proof. Obvious from Lemma 7.18.3 above. �

Lemma 7.18.5. Let 𝑅 be a ring. Let 𝐼 be a finitely generated ideal. Assume that 𝐼 = 𝐼2.
Then 𝑉(𝐼) is open and closed in 𝑆𝑝𝑒𝑐(𝑅), and 𝑅/𝐼 ≅ 𝑅𝑒 for some idempotent 𝑒 ∈ 𝑅.

Proof. By Nakayama's Lemma 7.14.5 there exists an element 𝑓 = 1 + 𝑖, 𝑖 ∈ 𝐼 in 𝑅 such
that 𝑓𝐼 = 0. It follows that 𝑉(𝐼) = 𝐷(𝑓) by a simple argument. Also, 0 = 𝑓𝑖 = 𝑖 + 𝑖2, and
hence 𝑓2 = 1 + 𝑖 + 𝑖 + 𝑖2 = 1 + 𝑖 = 𝑓, so 𝑓 is an idempotent. Consider the canonical map
𝑅 → 𝑅𝑓. It is surjective since 𝑥/𝑓𝑛 = 𝑥/𝑓 = 𝑥𝑓/𝑓2 = 𝑥𝑓/𝑓 = 𝑥/1 in 𝑅𝑓. Any element of
𝐼 is in the kernel since 𝑓𝐼 = 0. If 𝑥 ↦ 0 in 𝑅𝑓, then 𝑓𝑛𝑥 = 0 for some 𝑛 > 0 and hence
(1 + 𝑖)𝑥 = 0 hence 𝑥 ∈ 𝐼. �
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7.19. Connected components of spectra

Connected components of spectra are not as easy to understand as one may think at first.
This is because we are used to the topology of locally connected spaces, but the spectrum
of a ring is in general not locally connected.

Lemma 7.19.1. Let 𝑅 be a ring. Let 𝑇 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be a subset of the spetrum. The following
are equivalent

(1) 𝑇 is closed and is a union of connected components of 𝑆𝑝𝑒𝑐(𝑅),
(2) 𝑇 is an intersection of open and closed subsets of 𝑆𝑝𝑒𝑐(𝑅), and
(3) 𝑇 = 𝑉(𝐼) where 𝐼 ⊂ 𝑅 is an ideal generated by idempotents.

Moreover, the ideal in (3) if it exists is unique.

Proof. By Lemma 7.16.11 and Topology, Lemma 5.9.8 we see that (1) and (2) are equiv-
alent. Assume (2) and write 𝑇 = ⋂ 𝑈𝛼 with 𝑈𝛼 ⊂ 𝑆𝑝𝑒𝑐(𝑅) open and closed. Then
𝑈𝛼 = 𝐷(𝑒𝛼) for some idempotent 𝑒𝛼 ∈ 𝐴 by Lemma 7.18.3. Then setting 𝐼 = (1 − 𝑒𝛼)
we see that 𝑇 = 𝑉(𝐼), i.e., (3) holds. Finally, assume (3). Write 𝑇 = 𝑉(𝐼) and 𝐼 = (𝑒𝛼) for
some collection of idempotents 𝑒𝛼. Then it is clear that 𝑇 = ⋂ 𝑉(𝑒𝛼) = ⋂ 𝐷(1 − 𝑒𝛼).

Suppose that 𝐼 is an ideal generated by idempotents. Let 𝑒 ∈ 𝑅 be an idempotent such
that 𝑉(𝐼) ⊂ 𝑉(𝑒). Then by Lemma 7.16.2 we see that 𝑒𝑛 ∈ 𝐼 for some 𝑛 ≥ 1. As 𝑒 is
an idempotent this means that 𝑒 ∈ 𝐼. Hence we see that 𝐼 is generated by exactly those
idempotents 𝑒 such that 𝑇 ⊂ 𝑉(𝑒). In other words, the ideal 𝐼 is completely determined by
the closed subset 𝑇 which proves uniqueness. �

Lemma 7.19.2. Let 𝑅 be a ring. A connected component of 𝑆𝑝𝑒𝑐(𝑅) is of the form 𝑉(𝐼),
where 𝐼 is an ideal generated by idempotents such that every idempotent of 𝑅 either maps
to 0 or 1 in 𝑅/𝐼.

Proof. Let 𝔭 be a prime of 𝑅. By Lemma 7.16.11 we have see that the hypotheses of
Topology, Lemma 5.9.7 are satisfied for the topological space 𝑆𝑝𝑒𝑐(𝑅). Hence the con-
nected component of 𝔭 in 𝑆𝑝𝑒𝑐(𝑅) is the intersection of open and closed subsets of 𝑆𝑝𝑒𝑐(𝑅)
containing 𝔭. Hence it equals 𝑉(𝐼) where 𝐼 is generated by the idempotents 𝑒 ∈ 𝑅 such that
𝑒 maps to 0 in 𝜅(𝔭), see Lemma 7.18.3. Any idempotent 𝑒 which is not in this collection
clearly maps to 1 in 𝑅/𝐼. �

7.20. Glueing functions

In this section we show that given an open covering

𝑆𝑝𝑒𝑐(𝑅) = ⋃
𝑛
𝑖=1

𝐷(𝑓𝑖)

by standard opens, and given an element ℎ𝑖 ∈ 𝑅𝑓𝑖
for each 𝑖 such that ℎ𝑖 = ℎ𝑗 as elements

of 𝑅𝑓𝑖𝑓𝑗
then there exists a unique ℎ ∈ 𝑅 such that the image of ℎ in 𝑅𝑓𝑖

is ℎ𝑖. This result
can be interpreted in two ways:

(1) The rule 𝐷(𝑓) ↦ 𝑅𝑓 is a sheaf of rings on the standard opens, see Sheaves,
Section 6.30.

(2) If we think of elements of 𝑅𝑓 as the ``algebraic'' or ``regular'' functions on 𝐷(𝑓),
then these glue as would continuous, resp. differentiable functions on a topolog-
ical, resp. differentiable manifold.

At the end of this section we use this result to reprove the lemma describing open and closed
subsets in terms of idempotents.
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Lemma 7.20.1. Let 𝑅 be a ring, and let 𝑓1, 𝑓2, … 𝑓𝑛 ∈ 𝑅 generate the unit ideal in 𝑅.
Then the following sequence is exact:

0 ⟶ 𝑅 ⟶ ⨁𝑖
𝑅𝑓𝑖

⟶ ⨁𝑖,𝑗
𝑅𝑓𝑖𝑓𝑗

where the maps 𝛼 ∶ 𝑅 ⟶ ⨁𝑖 𝑅𝑓𝑖
and 𝛽 ∶ ⨁𝑖 𝑅𝑓𝑖

⟶ ⨁𝑖,𝑗 𝑅𝑓𝑖𝑓𝑗
are defined as

𝛼(𝑥) = (
𝑥
1

, … , 𝑥
1 ) and 𝛽 (

𝑥1
𝑓1

, … ,
𝑥𝑛
𝑓𝑛 ) = (

𝑥𝑖
𝑓𝑖

−
𝑥𝑗

𝑓𝑗
in 𝑅𝑓𝑖𝑓𝑗) .

Proof. We first show that 𝛼 is injective, and then that the image of 𝛼 equals the kernel of
𝛽. Assume there exists 𝑥 ∈ 𝑅 such that 𝛼(𝑥) = (0, … , 0). Then 𝑥

1 = 0 in 𝑅𝑓𝑖
for all 𝑖. This

means, for all 𝑖, there exists a number 𝑛𝑖 such that

𝑓𝑛𝑖
𝑖 𝑥 = 0

Since the 𝑓𝑖 generate 𝑅, we can pick 𝑎𝑖 so

1 = ∑
𝑛
𝑖=1

𝑎𝑖𝑓𝑖

Then for all 𝑀 ≥ ∑ 𝑛𝑖, we have

1𝑀 = (∑ 𝑎𝑖𝑓𝑖)
𝑀

,

where each term has a factor of at least 𝑓𝑛𝑖
𝑖 for some 𝑖. Therefore,

𝑥 = 1𝑥 = 1𝑀𝑥 = (∑ 𝑎𝑖𝑓𝑖)
𝑀

𝑥 = 0.

Thus, if 𝛼(𝑥) = 0, 𝑥 = 0 and 𝛼 is injective. We check that the image of 𝛼 equals the kernel
of 𝛽. First, note that for 𝑥 ∈ 𝑅,

𝛽(𝛼(𝑥)) = 𝛽 (
𝑥
1

, … , 𝑥
1 ) = (𝑥

1
− 𝑥

1
𝑖𝑛 𝑅𝑓𝑖𝑓𝑗

) = 0.

Therefore, the image of 𝛼 is in the kernel of 𝛽, and it remains only to verify that if

𝛽 (
𝑥1
𝑓1

, … ,
𝑥𝑛
𝑓𝑛 ) = 0,

then there exists 𝑥 ∈ 𝑅 so that for all 𝑖,
𝑥
1

=
𝑥𝑖
𝑓𝑖

Assume we have 𝑥1, … , 𝑥𝑛 such that

𝛽 (
𝑥1
𝑓1

, … ,
𝑥𝑛
𝑓𝑛 ) = 0.

Then, for all pairs 𝑖, 𝑗, there exists an 𝑛𝑖𝑗 such that

𝑓
𝑛𝑖𝑗
𝑖 𝑓

𝑛𝑖𝑗
𝑗 (𝑓𝑗𝑥𝑖 − 𝑓𝑖𝑥𝑗) = 0

Choosing 𝑁 so 𝑁 ≥ 𝑛𝑖𝑗 for all 𝑖, 𝑗, we see that

𝑓𝑁
𝑖 𝑓𝑁

𝑗 (𝑓𝑗𝑥𝑖 − 𝑓𝑖𝑥𝑗) = 0

Define elements 𝑥𝑖 and 𝑓𝑖 as follows:

𝑓𝑖 = 𝑓𝑁+1
𝑖 , 𝑥𝑖 = 𝑓𝑁

𝑖 𝑥𝑖.
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Notice that
𝑥𝑖

𝑓𝑖
=

𝑥𝑖
𝑓𝑖

.

Also, we can use this to rewrite the above equation to get the following equality, for all 𝑖, 𝑗,

𝑓𝑗𝑥𝑖 = 𝑓𝑖𝑥𝑗.

Since 𝑓1, … , 𝑓𝑛 generate 𝑅, we clearly have that 𝑓1, … , 𝑓𝑛 also generate 𝑅. Therefore,
there exist 𝑎1, … , 𝑎𝑛 in 𝑅 so that

1 = ∑
𝑛
𝑖=1

𝑎𝑖𝑓𝑖

Therefore, we finally conclude that for all 𝑖,

𝑥𝑖
𝑓𝑖

=
𝑥𝑖

𝑓𝑖
= ∑

𝑛
𝑗=1

𝑎𝑗𝑓𝑗𝑥𝑖

𝑓𝑖
= ∑

𝑛
𝑗=1

𝑎𝑗𝑓𝑖𝑥𝑗

𝑓𝑖
=

∑𝑛
𝑗=1 𝑎𝑗𝑥𝑗

1
.

Thus, we have

𝛼 (∑
𝑛
𝑗=1

𝑎𝑗𝑥𝑗) = (
𝑥1
𝑓1

, … ,
𝑥𝑛
𝑓𝑛 ) ,

as required. There the sequence is exact. �

Lemma 7.20.2. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑛 be elements of 𝑅 generating the unit ideal.
Let 𝑀 be an 𝑅-module. The sequence

0 → 𝑀
𝛼

−→ ⨁
𝑛
𝑖=1

𝑀𝑓𝑖

𝛽
−→ ⨁

𝑛
𝑖,𝑗=1

𝑀𝑓𝑖𝑓𝑗

is exact, where 𝛼(𝑚) = (𝑚/1, … , 𝑚/1) and 𝛽(𝑚1/𝑓𝑒1
1 , … , 𝑚𝑛/𝑓𝑒𝑛

𝑛 ) = (𝑚𝑖/𝑓
𝑒𝑖
𝑖 − 𝑚𝑗/𝑓

𝑒𝑗
𝑗 )(𝑖,𝑗).

Proof. The same as the proof of Lemma 7.20.1. �

Second proof of Lemma 7.18.3. Having assured ourselves (Lemma 7.20.1) that for gen-
erators 𝑓1, … , 𝑓𝑛 for the unit ideal of a ring 𝑅 the sequence

0 → 𝑅 → ⨁
𝑛
𝑖=1

𝑅𝑓𝑖
→ ⨁𝑖,𝑗

𝑅𝑓𝑖𝑓𝑗

is exact, we now provide an alternate proof of the surjectivity of the map from idempotents
𝑒 of 𝑅 to open and closed subsets of 𝑆𝑝𝑒𝑐(𝑅) presented in Lemma 7.18.3. Let 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅)
be open and closed, and 𝑊 be its complement. We can write 𝑈 and 𝑉 as unions of standard
opens such that 𝑈 = ⋃𝑛

𝑖=1 𝐷(𝑓𝑖) and 𝑊 = ⋃𝑚
𝑗=1 𝐷(𝑔𝑗). Since 𝑆𝑝𝑒𝑐(𝑅) = ⋃ 𝐷(𝑓𝑖) ∪

⋃ 𝐷(𝑔𝑗), we observe that the collection {𝑓𝑖; 𝑔𝑗} must generate the unit ideal in 𝑅 by Lemma
7.16.2. So the following sequence is exact.
(7.20.2.1)

0 → 𝑅
𝛼

→ ⨁
𝑛
𝑖=1

𝑅𝑓𝑖
⊕ ⨁

𝑚
𝑗=1

𝑅𝑔𝑗
→ ⨁𝑖1,𝑖2

𝑅𝑓𝑖1𝑓𝑖2
⊕ ⨁𝑖,𝑗

𝑅𝑓𝑖𝑔𝑗
⊕ ⨁𝑗1,𝑗2

𝑅𝑔𝑗1𝑔𝑗2

However, notice that for any pair 𝑖, 𝑗, 𝐷(𝑓𝑖) ∩ 𝐷(𝑔𝑗) = ∅ since 𝐷(𝑓𝑖) ⊂ 𝑈 and 𝐷(𝑔𝑗) ⊂ 𝑊).
From part (15) of Lemma 7.16.2 we recall that 𝐷(𝑓𝑖𝑔𝑗) = 𝐷(𝑓𝑖) ∩ 𝐷(𝑔𝑗) = ∅. Therefore
by Lemma 7.16.5 𝑆𝑝𝑒𝑐(𝑅𝑓𝑖𝑔𝑗

) = 𝐷(𝑓𝑖𝑔𝑗) = ∅, implying that 𝑅𝑓𝑖𝑔𝑗
is the zero ring for

each pair 𝑖, 𝑗 by part (3) of Lemma 7.16.2. Consider the element (1, … , 1, 0, … , 0) ∈
⨁𝑛

𝑖=1 𝑅𝑓𝑖
⊕ ⨁𝑚

𝑗=1 𝑅𝑔𝑗
whose coordinates are 1 in each 𝑅𝑓𝑖

and 0 in each 𝑅𝑔𝑗
. This is sent

to 0 under the map

𝛽 ∶ ⨁
𝑛
𝑖=1

𝑅𝑓𝑖
⊕ ⨁

𝑚
𝑗=1

𝑅𝑔𝑗
→ ⨁𝑖1,𝑖2

𝑅𝑓𝑖1𝑓𝑖2
⊕ ⨁𝑗1,𝑗2

𝑅𝑔𝑗1𝑔𝑗2
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so by the exactness of the sequence (7.20.2.1), there must be some element of 𝑅 whose im-
age under 𝛼 is (1, … , 1, 0, … , 0). Call it 𝑒. We see that 𝛼(𝑒2) = 𝛼(𝑒)2 = (1, … , 1, 0, … , 0) =
𝛼(𝑒). Since 𝛼 is injective, 𝑒 = 𝑒2 in 𝑅 and 𝑒 is an idempotent of 𝑅. We claim that 𝑈 = 𝐷(𝑒).
Notice that for arbitrary 𝑗, the map 𝑅 → 𝑅𝑔𝑗

maps 𝑒 to 0. Therefore there must be some

positive integer 𝑘𝑗 such that 𝑔
𝑘𝑗
𝑗 (𝑒 − 0) = 0 in 𝑅. Multiplying by 𝑒 as necessary, we see that

(𝑔𝑗𝑒)𝑘𝑗 = 0, so 𝑔𝑗𝑒 is nilpotent in𝑅. By Lemma 7.16.2𝐷(𝑔𝑗)∩𝐷(𝑒) = 𝐷(𝑔𝑗𝑒) = ∅. So since
𝑉 = ⋃ 𝐷(𝑔𝑗), 𝐷(𝑒) ∩ 𝑉 = ∅ and 𝐷(𝑒) ⊂ 𝑈. Furthermore, for arbitrary 𝑖, the map 𝑅 → 𝑅𝑓𝑖

maps 𝑒 to 1, so there must be some 𝑙𝑖 such that 𝑓𝑙𝑖
𝑖 (𝑒 − 1) = 0 in 𝑅. Hence 𝑓𝑙𝑖

𝑖 𝑒 = 𝑓𝑙𝑖
𝑖 . Sup-

pose 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) contains 𝑒, then 𝔭 contains 𝑓𝑙𝑖
𝑖 𝑒 = 𝑓𝑙𝑖

𝑖 , and since 𝔭 is prime, 𝑓𝑖 ∈ 𝔭. So
𝑉(𝑒) ⊂ 𝑉(𝑓𝑖), implying that 𝐷(𝑓𝑖) ⊂ 𝐷(𝑒). Therefore 𝑈 = ⋃ 𝐷(𝑓𝑖) ⊂ 𝐷(𝑒), and 𝑈 = 𝐷(𝑒).
Therefore any open and closed subset of 𝑆𝑝𝑒𝑐(𝑅) is the standard open of an idempotent as
desired. �

The following we have already seen above, but we state it explicitly here for convenience.

Lemma 7.20.3. Let 𝑅 be a ring. If 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⨿ 𝑉 with both 𝑈 and 𝑉 open then 𝑅 ≅
𝑅1 × 𝑅2 with 𝑈 ≅ 𝑆𝑝𝑒𝑐(𝑅1) and 𝑉 ≅ 𝑆𝑝𝑒𝑐(𝑅2) via the maps in Lemma 7.18.2. Moreover,
both 𝑅1 and 𝑅2 are localizations as well as quotients of the ring 𝑅.

Proof. By Lemma 7.18.3 we have 𝑈 = 𝐷(𝑒) and 𝑉 = 𝐷(1 − 𝑒) for some idempotent 𝑒.
By Lemma 7.20.1 we see that 𝑅 ≅ 𝑅𝑒 × 𝑅1−𝑒 (since clearly 𝑅𝑒(1−𝑒) = 0 so the glueing
condition is trivial; of course it is trivial to prove the product decomposition directly in this
case). The lemma follows. �

Lemma 7.20.4. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑛 ∈ 𝑅. Let 𝑀 be an 𝑅-module. Then
𝑀 → ⨁ 𝑀𝑓𝑖

is injective if and only if

𝑀 ⟶ ⨁𝑖=1,…,𝑛
𝑀, 𝑚 ⟼ (𝑓1𝑚, … , 𝑓𝑛𝑚)

is injective.

Proof. The map 𝑀 → ⨁ 𝑀𝑓𝑖
is injective if and only if for all 𝑚 ∈ 𝑀 and 𝑒1, … , 𝑒𝑛 ≥ 1

such that 𝑓𝑒𝑖
𝑖 𝑚 = 0, 𝑖 = 1, … , 𝑛 we have 𝑚 = 0. This clearly implies the displayed map is

injective. Conversely, suppose the displayed map is injective and 𝑚 ∈ 𝑀 and 𝑒1, … , 𝑒𝑛 ≥ 1
are such that 𝑓𝑒𝑖

𝑖 𝑚 = 0, 𝑖 = 1, … , 𝑛. If 𝑒𝑖 = 1 for all 𝑖, then we immediately conclude that
𝑚 = 0 from the injectivity of the displayed map. Next, we prove this holds for any such
data by induction on 𝑒 = ∑ 𝑒𝑖. The base case is 𝑒 = 𝑛, and we have just dealt with this.
If some 𝑒𝑖 > 1, then set 𝑚′ = 𝑓𝑖𝑚. By induction we see that 𝑚′ = 0. Hence we see that
𝑓𝑖𝑚 = 0, i.e., we may take 𝑒𝑖 = 1 which decreases 𝑒 and we win. �

7.21. More glueing results

In this section we put a number of standard results of the form: if something is true for all
members of a standard open covering then it is true. In fact, it often suffices to check things
on the level of local rings as in the following lemma.

Lemma 7.21.1. Let 𝑅 be a ring.
(1) For an element 𝑥 of an 𝑅-module 𝑀 the following are equivalent

(a) 𝑥 = 0,
(b) 𝑥 maps to zero in 𝑀𝔭 for all 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅),
(c) 𝑥 maps to zero in 𝑀𝔪 for all maximal ideals 𝔪 of 𝑅.
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In other words, the map 𝑀 → ∏𝔪 𝑀𝔪 is injective.
(2) Given an 𝑅-module 𝑀 the following are equivalent

(a) 𝑀 is zero,
(b) 𝑀𝔭 is zero for all 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅),
(c) 𝑀𝔪 is zero for all maximal ideals 𝔪 of 𝑅.

(3) Given a complex 𝑀1 → 𝑀2 → 𝑀3 of 𝑅-modules the following are equivalent
(a) 𝑀1 → 𝑀2 → 𝑀3 is exact,
(b) for every prime 𝔭 of 𝑅 the localization 𝑀1,𝔭 → 𝑀2,𝔭 → 𝑀3,𝔭 is exact,
(c) for every maximal ideal 𝔪 of 𝑅 the localization 𝑀1,𝔪 → 𝑀2,𝔪 → 𝑀3,𝔪 is

exact.
(4) Given a map 𝑓 ∶ 𝑀 → 𝑀′ of 𝑅-modules the following are equivalent

(a) 𝑓 is injective,
(b) 𝑓𝔭 ∶ 𝑀𝔭 → 𝑀′

𝔭 is injective for all primes 𝔭 of 𝑅,
(c) 𝑓𝔪 ∶ 𝑀𝔪 → 𝑀′

𝔪 is injective for all maximal ideals 𝔪 of 𝑅.
(5) Given a map 𝑓 ∶ 𝑀 → 𝑀′ of 𝑅-modules the following are equivalent

(a) 𝑓 is surjective,
(b) 𝑓𝔭 ∶ 𝑀𝔭 → 𝑀′

𝔭 is surjective for all primes 𝔭 of 𝑅,
(c) 𝑓𝔪 ∶ 𝑀𝔪 → 𝑀′

𝔪 is surjective for all maximal ideals 𝔪 of 𝑅.
(6) Given a map 𝑓 ∶ 𝑀 → 𝑀′ of 𝑅-modules the following are equivalent

(a) 𝑓 is bijective,
(b) 𝑓𝔭 ∶ 𝑀𝔭 → 𝑀′

𝔭 is bijective for all primes 𝔭 of 𝑅,
(c) 𝑓𝔪 ∶ 𝑀𝔪 → 𝑀′

𝔪 is bijective for all maximal ideals 𝔪 of 𝑅.

Proof. Let 𝑥 ∈ 𝑀 as in (1). Let 𝐼 = {𝑓 ∈ 𝑅 ∣ 𝑓𝑥 = 0}. It is easy to see that 𝐼 is an ideal
(it is the annihilator of 𝑥). Condition (1)(c) means that for all maximal ideals 𝔪 there exists
an 𝑓 ∈ 𝑅 ⧵ 𝔪 such that 𝑓𝑥 = 0. In other words, 𝑉(𝐼) does not contain a closed point. By
Lemma 7.16.2 we see 𝐼 is the unit ideal. Hence 𝑥 is zero, i.e., (1)(a) holds. This proves (1).

Part (2) follows by applying (1) to all elements of 𝑀 simultaneously.

Proof of (3). Let 𝐻 be the homology of the sequence, i.e., 𝐻 = Ker(𝑀2 → 𝑀3)/Im(𝑀1 →
𝑀2). By Proposition 7.9.12 we have that 𝐻𝔭 is the homology of the sequence 𝑀1,𝔭 →
𝑀2,𝔭 → 𝑀3,𝔭. Hence (3) is a consequence of (2).

Parts (4) and (5) are special cases of (3). Part (6) follows formally on combining (4) and
(5). �

Lemma 7.21.2. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑆 be an 𝑅-algebra. Suppose
that 𝑓1, … , 𝑓𝑛 is a finite list of elements of 𝑅 such that ⋃ 𝐷(𝑓𝑖) = 𝑆𝑝𝑒𝑐(𝑅) in other words
(𝑓1, … , 𝑓𝑛) = 𝑅.

(1) If each 𝑀𝑓𝑖
= 0 then 𝑀 = 0.

(2) If each 𝑀𝑓𝑖
is a finite 𝑅𝑓𝑖

-module, then 𝑀 is a finite 𝑅-module.
(3) If each 𝑀𝑓𝑖

is a finitely presented 𝑅𝑓𝑖
-module, then 𝑀 is a finitely presented

𝑅-module.
(4) Let 𝑀 → 𝑁 be a map of 𝑅-modules. If 𝑀𝑓𝑖

→ 𝑁𝑓𝑖
is an isomorphism for each

𝑖 then 𝑀 → 𝑁 is an isomorphism.
(5) Let 0 → 𝑀″ → 𝑀 → 𝑀′ → 0 be a complex of 𝑅-module. If 0 → 𝑀″

𝑓𝑖
→

𝑀𝑓𝑖
→ 𝑀′

𝑓𝑖
→ 0 is exact for each 𝑖, then 0 → 𝑀″ → 𝑀 → 𝑀′ → 0 is exact.

(6) If each 𝑅𝑓𝑖
is Noetherian, then 𝑅 is Noetherian.

(7) If each 𝑆𝑓𝑖
is a finite type 𝑅-algebra, so is 𝑆.
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(8) If each 𝑆𝑓𝑖
is of finite presentation over 𝑅, so is 𝑆.

Proof. We prove each of the parts in turn.
(1) By Proposition 7.9.10 this implies 𝑀𝔭 = 0 for all 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅), so we conclude

by Lemma 7.21.1.
(2) For each 𝑖 take a finite generating set 𝑋𝑖 of 𝑀𝑓𝑖

. Without loss of generality,
we may assume that the elements of 𝑋𝑖 are in the image of the localisation map
𝑀 → 𝑀𝑓𝑖

, so we take a finite set 𝑌𝑖 of preimages of the elements of 𝑋𝑖 in 𝑀.
Let 𝑌 be the union of these sets. This is still a finite set. Consider the obvious
𝑅-linear map 𝑅𝑌 → 𝑀 sending the basis element 𝑒𝑦 to 𝑦. By assumption this
map is surjective after localizing at an arbitrary prime ideal 𝔭 of 𝑅, so it surjective
by Lemma 7.21.1 and 𝑀 is finitely generated.

(3) By (2) we have a short exact sequence

0 → 𝐾 → 𝑅𝑛 → 𝑀 → 0

Since finite presentation does not depend on the chosen presentation (Lemma
7.5.3) and localisation is an exact functor 𝐾𝑓𝑖

is finitely generated for all 1 ≤ 𝑖 ≤
𝑛. By 2. this implies that 𝐾 is a finitely generated 𝑅-module and therefore 𝑀 is
finitely presented.

(4) By Proposition 7.9.10 the assumption implies that the induced morphism on lo-
calisations at all prime ideals is an isomorphism, so we conclude by Lemma
7.21.1.

(5) By Proposition 7.9.10 the assumption implies that the induced sequence of local-
isations at all prime ideals is short exact, so we conclude by Lemma 7.21.1.

(6) We will show that every ideal of 𝑅 has a finite generating set: For this, let 𝐼 ⊆ 𝑅
be an arbitrary ideal. By Proposition 7.9.12 each 𝐼𝑓𝑖

⊆ 𝑅𝑓𝑖
is an ideal. These are

all finitely generated by assumption, so we conclude by (2).
(7) For each 𝑖 take a finite generating set𝑋𝑖 of𝑆𝑓𝑖

. Without loss of generality, wemay
assume that the elements of 𝑋𝑖 are in the image of the localisation map 𝑆 → 𝑆𝑓𝑖

,
so we take a finite set 𝑌𝑖 of preimages of the elements of 𝑋𝑖 in 𝑆. Let 𝑌 be the
union of these sets. This is still a finite set. Consider the algebra homomorphism
𝑅[𝑋𝑦]𝑦∈𝑌 → 𝑆 induced by 𝑌. Since it is an algebra homomorphism, the image 𝑇
is an 𝑅-submodule of the 𝑅-module S, so we can consider the quotient module
𝑆/𝑇. By assumption, this is zero if we localise at the 𝑓𝑖, so it is zero by item 1.
and therefore 𝑆 is an 𝑅-algebra of finite type.

(8) By the previous item, there exists a surjective𝑅-algebra homomorphism𝑅[𝑋1, ..., 𝑋𝑛] →
𝑆. Let 𝐾 be the kernel of this map. This is an ideal in 𝑅[𝑋1, ..𝑋𝑛], finitely gen-
erated in each localisation at 𝑓𝑖. Since the 𝑓𝑖 generate the unit ideal in 𝑅, they
also generate the unit ideal in 𝑅[𝑋1, ..., 𝑋𝑛], so an application of (2) finishes the
proof.

�

Lemma 7.21.3. Let𝑅 → 𝑆 be a ring map. Suppose that 𝑔1, … , 𝑔𝑚 is a finite list of elements
of 𝑆 such that ⋃ 𝐷(𝑔𝑗) = 𝑆𝑝𝑒𝑐(𝑆) in other words (𝑔1, … , 𝑔𝑚) = 𝑆.

(1) If each 𝑆𝑔𝑖
is of finite type over 𝑅, then 𝑆 is of finite type over 𝑅.

(2) If each 𝑆𝑔𝑖
is of finite presentation over 𝑅, then 𝑆 is of finite presentation over 𝑅.

Proof. Omitted. �
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The following lemma is better stated and proved in the more general context of flat descent.
However, it makes sense to state it here since it fits well with the above.

Lemma 7.21.4. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑛 ∈ 𝑅 be elements which generate the unit
ideal in 𝑅. Suppose we are given the following data:

(1) For each 𝑖 an 𝑅𝑓𝑖
-module 𝑀𝑖.

(2) For each pair 𝑖, 𝑗 an 𝑅𝑓𝑖𝑓𝑗
-module isomorphism 𝜓𝑖𝑗 ∶ (𝑀𝑖)𝑓𝑗

→ (𝑀𝑗)𝑓𝑖
.

which satisfy the ``cocycle condition'' that all the diagrams

(𝑀𝑖)𝑓𝑗𝑓𝑘

𝜓𝑖𝑗 %%

𝜓𝑖𝑘 // (𝑀𝑘)𝑓𝑖𝑓𝑗

(𝑀𝑗)𝑓𝑖𝑓𝑘

𝜓𝑗𝑘

99

commute (for all triples 𝑖, 𝑗, 𝑘). Given this data define

𝑀 = Ker(⨁1≤𝑖≤𝑛
𝑀𝑖 ⟶ ⨁1≤𝑖,𝑗≤𝑛

(𝑀𝑖)𝑓𝑖)
where (𝑚1, … , 𝑚𝑛) maps to the element whose (𝑖, 𝑗)th entry is 𝑚𝑖/1 − 𝜓𝑗𝑖(𝑚𝑗/1). Then the
natural map 𝑀 → 𝑀𝑖 identifies 𝑀𝑖 with 𝑀𝑓𝑖

. Moreover 𝜓𝑖𝑗(𝑚/1) = 𝑚/1 for all 𝑚 ∈ 𝑀
(with obvious notation).

Proof. Omitted. �

7.22. Total rings of fractions

We can apply the glueing results above to prove something about total rings of fractions
𝑄(𝑅). Namely, Lemma 7.22.2 below.

Lemma 7.22.1. Let 𝑅 be a ring. Let 𝑆 ⊂ 𝑅 be a multiplicative subset consisting of nonzero
divisors. Then 𝑄(𝑅) ≅ 𝑄(𝑆−1𝑅). In particular 𝑄(𝑅) ≅ 𝑄(𝑄(𝑅)).

Proof. If 𝑥 ∈ 𝑆−1𝑅 is a nonzero divisor, and 𝑥 = 𝑟/𝑓 for some 𝑟 ∈ 𝑅, 𝑓 ∈ 𝑆, then 𝑟 is a
nonzero divisor in 𝑅. Whence the lemma. �

Lemma 7.22.2. Let𝑅 be a ring. Assume that𝑅 has finitely manyminimal primes 𝔮1, … , 𝔮𝑡,
and that 𝔮1 ∪ … ∪ 𝔮𝑡 is the set of zero divisors of 𝑅. Then the total ring of fractions 𝑄(𝑅)
(Example 7.9.8) is equal to 𝑅𝔮1

× … × 𝑅𝔮𝑡
.

Proof. There are natural maps 𝑄(𝑅) → 𝑅𝔮𝑖
since any nonzero divisor is contained in 𝑅⧵𝔮𝑖.

Hence a natural map 𝑄(𝑅) → 𝑅𝔮1
× … × 𝑅𝔮𝑡

. For any nonminimal prime 𝔭 ⊂ 𝑅 we see
that 𝔭⊄𝔮1 ∪ … ∪ 𝔮𝑡 by Lemma 7.14.3. Hence 𝑆𝑝𝑒𝑐(𝑄(𝑅)) = {𝔮1, … , 𝔮𝑡} (as subsets of
𝑆𝑝𝑒𝑐(𝑅), see Lemma 7.16.5). Therefore 𝑆𝑝𝑒𝑐(𝑄(𝑅)) is a finite discrete set and it follows
that 𝑄(𝑅) = 𝐴1 × … × 𝐴𝑡 with 𝑆𝑝𝑒𝑐(𝐴𝑖) = {𝑞𝑖}, see Lemma 7.20.3. Moreover 𝐴𝑖 is a local
ring, which is a localization of 𝑅. Hence 𝐴𝑖 ≅ 𝑅𝔮𝑖

. �

7.23. Irreducible components of spectra

We show that irreducible components of the spectrum of a ring correspond to the minimal
primes in the ring.

Lemma 7.23.1. Let 𝑅 be a ring.
(1) For a prime 𝔭 ⊂ 𝑅 the closure of {𝔭} in the Zariski topology is 𝑉(𝔭). In a formula

{𝔭} = 𝑉(𝔭).
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(2) The irreducible closed subsets of 𝑆𝑝𝑒𝑐(𝑅) are exactly the subsets 𝑉(𝔭), with 𝔭 ⊂
𝑅 a prime.

(3) The irreducible components (see Topology, Definition 5.5.1) of 𝑆𝑝𝑒𝑐(𝑅) are ex-
actly the subsets 𝑉(𝔭), with 𝔭 ⊂ 𝑅 a minimal prime.

Proof. Note that if 𝔭 ∈ 𝑉(𝐼), then 𝐼 ⊂ 𝔭. Hence, clearly {𝔭} = 𝑉(𝔭). In particular 𝑉(𝔭) is
the closure of a singleton and hence irreducible. The second assertion implies the third. To
show the second, let 𝑉(𝐼) ⊂ 𝑆𝑝𝑒𝑐(𝑅) with 𝐼 a radical ideal. If 𝐼 is not prime, then choose
𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏∉𝐼 with 𝑎𝑏 ∈ 𝐼. In this case 𝑉(𝐼, 𝑎)∪𝑉(𝐼, 𝑏) = 𝑉(𝐼), but neither 𝑉(𝐼, 𝑏) = 𝑉(𝐼)
nor 𝑉(𝐼, 𝑎) = 𝑉(𝐼), by Lemma 7.16.2. Hence 𝑉(𝐼) is not irreducible. �

In other words, this lemma shows that every irreducible closed subset of 𝑆𝑝𝑒𝑐(𝑅) is of the
form 𝑉(𝔭) for some prime 𝔭. Since 𝑉(𝔭) = {𝔭} we see that each irreducible closed subset
has a unique generic point, see Topology, Definition 5.5.4. In particular, 𝑆𝑝𝑒𝑐(𝑅) is a sober
topological space.

Lemma 7.23.2. Let 𝑅 be a ring. Let 𝔭 ⊂ 𝑅 be a prime.
(1) the set of irreducible closed subsets of𝑆𝑝𝑒𝑐(𝑅) passing through 𝔭 is in one-to-one

correspondence with primes 𝔮 ⊂ 𝑅𝔭.
(2) The set of irreducible components of 𝑆𝑝𝑒𝑐(𝑅) passing through 𝔭 is in one-to-one

correspondence with minimal primes 𝔮 ⊂ 𝑅𝔭.

Proof. Omitted. �

Lemma 7.23.3. Let 𝔭 be a minimal prime of a ring 𝑅. Every element of the maximal ideal
of 𝑅𝔭 is nilpotent. If 𝑅 is reduced then 𝑅𝔭 is a field.

Proof. If some element 𝑥 of 𝔭𝑅𝔭 is not nilpotent, then 𝐷(𝑥)≠∅, see Lemma 7.16.2. This
contradicts the minimality of 𝔭. If 𝑅 is reduced, then 𝔭𝑅𝔭 = 0 and hence it is a field. �

Lemma 7.23.4. Let 𝑅 be a ring. Let 𝔭 be a minimal prime of 𝑅. Let 𝑊 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be a
quasi-compact open not containing the point 𝔭. Then there exists an 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that
𝐷(𝑓) ∩ 𝑊 = ∅.

Proof. Since 𝑊 is quasi-compact we may write it as a finite union of standard affine opens
𝐷(𝑔𝑖), 𝑖 = 1, … , 𝑛. Since 𝔭∉𝑊 we have 𝑔𝑖 ∈ 𝔭 for all 𝑖. By Lemma 7.23.3 above each 𝑔𝑖
is nilpotent in 𝑅𝔭. Hence we can find an 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that for all 𝑖 we have 𝑓𝑔𝑛𝑖

𝑖 = 0
for some 𝑛𝑖 > 0. Then 𝐷(𝑓) works. �

Lemma 7.23.5. Let 𝑅 be a ring. The following are equivalent
(1) there are no nontrivial inclusions between its prime ideals,
(2) every prime ideal is minimal,
(3) every prime ideal is a maximal ideal,
(4) every quasi-compact open of 𝑆𝑝𝑒𝑐(𝑅) is also closed, and
(5) 𝑆𝑝𝑒𝑐(𝑅) is totally disconnected.

Proof. It is clear that (1), (2), and (3) are equivalent. The implication (2) ⇒ (4) follows
from Lemma 7.23.4. Assume (4) holds. Let 𝔭, 𝔭′ be distinct primes of 𝑅. Then we can
choose an 𝑓 ∈ 𝔭′, 𝑓∉𝔭. Then 𝔭′∉𝐷(𝑓) and 𝔭 ∈ 𝐷(𝑓). By (4) the open 𝐷(𝑓) is also
closed. Hence 𝔭 and 𝔭′ cannot be in the same connected component of 𝑆𝑝𝑒𝑐(𝑅) and we
see (5) holds. Finally, if (5) holds then there cannot be any specializations between points
of 𝑆𝑝𝑒𝑐(𝑅) and we see that (1) holds. �
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Lemma 7.23.6. Let 𝑅 be a reduced ring. Then 𝑅 is a subring of a product of fields. In
fact, 𝑅 ⊂ ∏𝔭 minimal 𝑅𝔭 is such an embedding.

Proof. This is clear from Lemma 7.23.3 above and the fact that ⋂𝔭 𝔭 = (0) in a reduced
ring, see Lemma 7.16.2. �

7.24. Examples of spectra of rings

In this section we put some examples of spectra.

Example 7.24.1. In this example we describe 𝑋 = 𝑆𝑝𝑒𝑐(𝐙[𝑥]/(𝑥2 − 4)). Let 𝔭 be an
arbitrary prime in 𝑋. Let 𝜙 ∶ 𝐙 → 𝐙[𝑥]/(𝑥2 − 4) be the natural ring map. Then, 𝜙−1(𝔭)
is a prime in 𝐙. If 𝜙−1(𝔭) = (2), then since 𝔭 contains 2, it corresponds to a prime ideal
in 𝐙[𝑥]/(𝑥2 − 4, 2) ≅ (𝐙/2𝐙)[𝑥]/(𝑥2) via the map 𝐙[𝑥]/(𝑥2 − 4) → 𝐙[𝑥]/(𝑥2 − 4, 2). Any
prime in (𝐙/2𝐙)[𝑥]/(𝑥2) corresponds to a prime in (𝐙/2𝐙)[𝑥] containing (𝑥2). Such primes
will then contain 𝑥. Since (𝐙/2𝐙) ≅ (𝐙/2𝐙)[𝑥]/(𝑥) is a field, (𝑥) is a maximal ideal. Since
any prime contains (𝑥) and (𝑥) is maximal, the ring contains only one prime (𝑥). Thus, in
this case, 𝔭 = (2, 𝑥). Now, if 𝜙−1(𝔭) = (𝑞) for 𝑞 > 2, then since 𝔭 contains 𝑞, it corresponds
to a prime ideal in 𝐙[𝑥]/(𝑥2 − 4, 𝑞) ≅ (𝐙/𝑞𝐙)[𝑥]/(𝑥2 − 4) via the map 𝐙[𝑥]/(𝑥2 − 4) →
𝐙[𝑥]/(𝑥2 − 4, 𝑞). Any prime in (𝐙/𝑞𝐙)[𝑥]/(𝑥2 − 4) corresponds to a prime in (𝐙/𝑞𝐙)[𝑥]
containing (𝑥2 − 4) = (𝑥 − 2)(𝑥 + 2). Hence, these primes must contain either 𝑥 − 2 or
𝑥 + 2. Since (𝐙/𝑞𝐙)[𝑥] is a PID, all nonzero primes are maximal, and so there are precisely
2 primes in (𝐙/𝑞𝐙)[𝑥] containing (𝑥 − 2)(𝑥 + 2), namely (𝑥 − 2) and (𝑥 + 2). In conclusion,
there exist two primes (𝑞, 𝑥 − 2) and (𝑞, 𝑥 + 2) since 2 ≠ −2 ∈ 𝐙/(𝑞). Finally, we treat the
case where 𝜙−1(𝔭) = (0). Notice that 𝔭 corresponds to a prime ideal in 𝐙[𝑥] that contains
(𝑥2 − 4) = (𝑥 − 2)(𝑥 + 2). Hence, 𝔭 contains either (𝑥 − 2) or (𝑥 + 2). Hence, 𝔭 corresponds
to a prime in 𝐙[𝑥]/(𝑥 − 2) or one in 𝐙[𝑥]/(𝑥 + 2) that intersects 𝐙 only at 0, by assumption.
Since 𝐙[𝑥]/(𝑥 − 2) ≅ 𝐙 and 𝐙[𝑥]/(𝑥 − 2) ≅ 𝐙, this means that 𝔭 must correspond to 0 in
one of these rings. Thus, 𝔭 = (𝑥 − 2) or 𝔭 = (𝑥 + 2) in the original ring.

Example 7.24.2. In this example we describe 𝑋 = 𝑆𝑝𝑒𝑐(𝐙[𝑥]). Fix 𝔭 ∈ 𝑋. Let 𝜙 ∶ 𝐙 →
𝐙[𝑥] and notice that 𝜙−1(𝔭) ∈ 𝑆𝑝𝑒𝑐(𝐙). If 𝜙−1(𝔭) = (𝑞) for 𝑞 a prime number 𝑞 > 0, then
it 𝔭 corresponds to a prime in (𝐙/(𝑞))[𝑥], which must be generated by a polynomial that
is irreducible in (𝐙/(𝑞))[𝑥]. If we choose a representative of this polynomial with minimal
degree, then it will also be irreducible in 𝐙[𝑥]. Hence, in this case 𝔭 = (𝑞, 𝑓𝑞) where 𝑓𝑞
is an irreducible polynomial in 𝐙[𝑥] that is irreducible when viewed in (𝐙/(𝑞)[𝑥]). Now,
assume that 𝜙−1(𝔭) = (0). In this case, 𝔭 must be generated by nonconstant polynomials
which, since 𝔭 is prime, may be assumed to be irreducible in 𝐙[𝑥]. By Gauss' lemma,
these polynomials are also irreducible in 𝐐[𝑥]. Since 𝐐[𝑥] is a Euclidean domain, if there
are at least two distinct irreducibles 𝑓, 𝑔 generating 𝔭, then 1 = 𝑎𝑓 + 𝑏𝑔 for 𝑎, 𝑏 ∈ 𝐐[𝑥].
Multiplying through by a common denominator, we see that 𝑚 = ̄𝑎𝑓 + �̄�𝑔 for ̄𝑎, �̄� ∈ 𝐙[𝑥]
and nonzero 𝑚 ∈ 𝐙. This is a contradiction. Hence, 𝔭 is generated by one irreducible
polynomial in 𝐙[𝑥].

Example 7.24.3. In this example we describe 𝑋 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]) when 𝑘 is an arbitrary
field. Clearly (0) is prime, and any principal ideal generated by an irreducible polynomial
will also be a prime since 𝑘[𝑥, 𝑦] is a unique factorization domain. Now assume 𝔭 is an
element of 𝑋 that is not principal. Since 𝑘[𝑥, 𝑦] is a Noetherian UFD, the prime ideal 𝔭 can
be generated by a finite number of irreducible polynomials (𝑓1, … , 𝑓𝑛). Now, I claim that
if 𝑓, 𝑔 are irreducible polynomials in 𝑘[𝑥, 𝑦] that are not associates, then (𝑓, 𝑔) ∩ 𝑘[𝑥] ≠ 0.
To do this, it is enough to show that 𝑓 and 𝑔 are relatively prime when viewed in 𝑘(𝑥)[𝑦].
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In this case, 𝑘(𝑥)[𝑦] is a Euclidean domain, so by applying the Euclidean algorithm and
clearing denominators, we obtain 𝑝 = 𝑎𝑓 + 𝑏𝑔 for 𝑝, 𝑎, 𝑏 ∈ 𝑘[𝑥]. Thus, assume this is not
the case, that is, that some nonunit ℎ ∈ 𝑘(𝑥)[𝑦] divides both 𝑓 and 𝑔. Then, by Gauss's
lemma, for some 𝑎, 𝑏 ∈ 𝑘(𝑥) we have 𝑎ℎ|𝑓 and 𝑏ℎ|𝑔 for 𝑎ℎ, 𝑏ℎ ∈ 𝑘[𝑥] since Frac(𝑘[𝑥]) =
𝑘(𝑥). By irreducibility, 𝑎ℎ = 𝑓 and 𝑏ℎ = 𝑔 (since ℎ ∉ 𝑘(𝑥)). So, back in 𝑘(𝑥)[𝑦], 𝑓, 𝑔
are associates, as 𝑎

𝑏 𝑔 = 𝑓. Since 𝑘(𝑥) = Frac(𝑘[𝑥]), we can write 𝑔 = 𝑟
𝑠 𝑓 for elements

𝑟, 𝑠 ∈ 𝑘[𝑥] sharing no common factors. This implies that 𝑠𝑔 = 𝑟𝑓 in 𝑘[𝑥, 𝑦] and so 𝑠 must
divide 𝑓 since 𝑘[𝑥, 𝑦] is a UFD. Hence, 𝑠 = 1 or 𝑠 = 𝑓. If 𝑠 = 𝑓, then 𝑟 = 𝑔, implying
𝑓, 𝑔 ∈ 𝑘[𝑥] and thus must be units in 𝑘(𝑥) and relatively prime in 𝑘(𝑥)[𝑦], contradicting
our hypothesis. If 𝑠 = 1, then 𝑔 = 𝑟𝑓, another contradiction. Thus, we must have 𝑓, 𝑔
relatively prime in 𝑘(𝑥)[𝑦], a Euclidean domain. Thus, we have reduced to the case 𝔭
contains some irreducible polynomial 𝑝 ∈ 𝑘[𝑥] ⊆ 𝑘[𝑥, 𝑦]. By the above, 𝔭 corresponds
to a prime in the ring 𝑘[𝑥, 𝑦]/(𝑝) = 𝑘(𝛼)[𝑦], where 𝛼 is an element algebraic over 𝑘 with
minimum polynomial 𝑝. This is a PID, and so any prime ideal corresonds to (0) or an
irreducible polynomial in 𝑘(𝛼)[𝑦]. Thus, 𝔭 is of the form (𝑝) or (𝑝, 𝑓)where 𝑓 is a polynomial
in 𝑘[𝑥, 𝑦] that is irreducible in the quotient 𝑘[𝑥, 𝑦]/(𝑝).

Example 7.24.4. Consider the ring

𝑅 = {𝑓 ∈ 𝐐[𝑧] with 𝑓(0) = 𝑓(1)}.

Consider the map
𝜑 ∶ 𝐐[𝐴, 𝐵] → 𝑅

defined by 𝜑(𝐴) = 𝑧2 − 𝑧 and 𝜑(𝐵) = 𝑧3 − 𝑧2. It is easily checked that (𝐴3 − 𝐵2 + 𝐴𝐵) ⊆
ker(𝜑) and that 𝐴3 − 𝐵2 + 𝐴𝐵 is irreducible. Assume that 𝜑 is surjective; then since 𝑅
is an integral domain (it is a subring of an integral domain), ker(𝜙) must be a prime ideal
of 𝐐[𝐴, 𝐵]. The prime ideals which contain (𝐴3 − 𝐵2 + 𝐴𝐵) are (𝐴3 − 𝐵2 + 𝐴𝐵) itself
and any maximal ideal (𝑓, 𝑔) with 𝑓, 𝑔 ∈ 𝐐[𝐴, 𝐵] such that 𝑓 is irreducible mod 𝑔. But
𝑅 is not a field, so the kernel must be (𝐴3 − 𝐵2 + 𝐴𝐵); hence 𝜑 gives an isomorphism
𝑅 → 𝐐[𝐴, 𝐵]/(𝐴3 − 𝐵2 + 𝐴𝐵).

To see that 𝜑 is surjective, we must express any 𝑓 ∈ 𝑅 as a 𝐐-coefficient polynomial
in 𝐴(𝑧) = 𝑧2 − 𝑧 and 𝐵(𝑧) = 𝑧3 − 𝑧2. Note the relation 𝑧𝐴(𝑧) = 𝐵(𝑧). Let 𝑎 = 𝑓(0) = 𝑓(1).
Then 𝑧(𝑧−1) must divide 𝑓(𝑧)−𝑎, so we can write 𝑓(𝑧) = 𝑧(𝑧−1)𝑔(𝑧)+𝑎 = 𝐴(𝑧)𝑔(𝑧)+𝑎.
If deg(𝑔) < 2, then ℎ(𝑧) = 𝑐1𝑧 + 𝑐0 and 𝑓(𝑧) = 𝐴(𝑧)(𝑐1𝑧 + 𝑐0) + 𝑎 = 𝑐1𝐵(𝑧) + 𝑐0𝐴(𝑧) + 𝑎,
so we are done. If deg(𝑔) ≥ 2, then by the polynomial division algorithm, we can write
𝑔(𝑧) = 𝐴(𝑧)ℎ(𝑧) + 𝑏1𝑧 + 𝑏0 (deg(ℎ) ≤ deg(𝑔) − 2), so 𝑓(𝑧) = 𝐴(𝑧)2ℎ(𝑧) + 𝑏1𝐵(𝑧) + 𝑏0𝐴(𝑧).
Applying division to ℎ(𝑧) and iterating, we obtain an expression for 𝑓(𝑧) as a polynomial
in 𝐴(𝑧) and 𝐵(𝑧); hence 𝜑 is surjective.

Now let 𝑎 ∈ 𝐐, 𝑎 ≠ 0, 1
2 , 1 and consider

𝑅𝑎 = {𝑓 ∈ 𝐐[𝑧, 1
𝑧 − 𝑎

] with 𝑓(0) = 𝑓(1)}.

This is a finitely generated 𝐐-algebra as well: it is easy to check that the functions 𝑧2 − 𝑧,
𝑧3 − 𝑧, and 𝑎2−𝑎

𝑧−𝑎 + 𝑧 generate 𝑅𝑎 as an 𝐐-algebra. We have the following inclusions:

𝑅 ⊂ 𝑅𝑎 ⊂ 𝐐[𝑧, 1
𝑧 − 𝑎

], 𝑅 ⊂ 𝐐[𝑧] ⊂ 𝐐[𝑧, 1
𝑧 − 𝑎

].

Recall (Lemma 7.16.5) that for a ring T and a multiplicative subset 𝑆 ⊂ 𝑇, the ring map
𝑇 → 𝑆−1𝑇 induces a map on spectra 𝑆𝑝𝑒𝑐(𝑆−1𝑇) → 𝑆𝑝𝑒𝑐(𝑇) which is a homeomorphism

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00F1
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onto the subset
{𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑇) ∣ 𝑆 ∩ 𝔭 = ∅} ⊆ 𝑆𝑝𝑒𝑐(𝑇).

When 𝑆 = {1, 𝑓, 𝑓2, …} for some 𝑓 ∈ 𝑇, this is the open set 𝐷(𝑓) ⊂ 𝑇. We now
verify a corresponding property for the ring map 𝑅 → 𝑅𝑎: we will show that the map
𝜃 ∶ 𝑆𝑝𝑒𝑐(𝑅𝑎) → 𝑆𝑝𝑒𝑐(𝑅) induced by inclusion 𝑅 ⊂ 𝑅𝑎 is a homeomorphism onto an open
subset of 𝑆𝑝𝑒𝑐(𝑅) by verifying that 𝜃 is an injective local homeomorphism. We do so with
respect to an open cover of 𝑆𝑝𝑒𝑐(𝑅𝑎) by two distinguished opens, as we now describe. For
any 𝑟 ∈ 𝐐, let ev𝑟 ∶ 𝑅 → 𝐐 be the homomorphism given by evaluation at 𝑟. Note that for
𝑟 = 0 and 𝑟 = 1 − 𝑎, this can be extended to a homomorphism ev′

𝑟 ∶ 𝑅𝑎 → 𝐐 (the latter
because 1

𝑧−𝑎 is well-defined at 𝑧 = 1 − 𝑎, since 𝑎 ≠ 1
2 ). However, ev𝑎 does not extend to

𝑅𝑎. Write 𝔪𝑟 = ker(ev𝑟); it is easy to check that

𝔪0 = (𝑧2 − 𝑧, 𝑧3 − 𝑧),

𝔪𝑎 = ((𝑧 − 1 + 𝑎)(𝑧 − 𝑎), (𝑧2 − 1 + 𝑎)(𝑧 − 𝑎)), and

𝔪1−𝑎 = ((𝑧 − 1 + 𝑎)(𝑧 − 𝑎), (𝑧 − 1 + 𝑎)(𝑧2 − 𝑎)).
(To do so, note that the right-hand sides are clearly contained in the left-hand sides. Then
check that the right-hand sides are maximal ideals by writing the generators in terms of
𝐴 and 𝐵, and viewing 𝑅 as 𝐐[𝐴, 𝐵]/(𝐴3 − 𝐵2 + 𝐴𝐵).) Note that 𝔪𝑎 is not in the image
of 𝜃: we have (𝑧2 − 1 + 𝑎)(𝑧 − 𝑎) − (𝑧 − 1 + 𝑎)(𝑧 − 𝑎) = (𝑧2 − 𝑧)(𝑧 − 𝑎) is in 𝔪𝑎, so
𝑧2 − 𝑧 = (𝑧2−𝑧)(𝑧−𝑎)

𝑧−𝑎 is in 𝔪𝑎𝑅𝑎. Hence no ideal 𝐼 of 𝑅𝑎 can satisfy 𝐼 ∩ 𝑅 = 𝔪𝔞, as
such an 𝐼 would have to contain 𝑧2 − 𝑧, which is in 𝑅 but not in 𝔪𝑎. The distinguished
open set 𝐷((𝑧 − 1 + 𝑎)(𝑧 − 𝑎)) ⊂ 𝑆𝑝𝑒𝑐(𝑅) is equal to the complement of the closed set
{𝔪𝑎, 𝔪1−𝑎}. Then check that 𝑅(𝑧−1+𝑎)(𝑧−𝑎) = (𝑅𝑎)(𝑧−1+𝑎)(𝑧−𝑎); calling this localized ring
𝑅′, then, it follows that the map 𝑅 → 𝑅′ factors as 𝑅 → 𝑅𝑎 → 𝑅′. By Lemma 7.16.5, then,
these maps express 𝑆𝑝𝑒𝑐(𝑅′) ⊆ 𝑆𝑝𝑒𝑐(𝑅𝑎) and 𝑆𝑝𝑒𝑐(𝑅′) ⊆ 𝑆𝑝𝑒𝑐(𝑅) as open subsets; hence
𝜃 ∶ 𝑆𝑝𝑒𝑐(𝑅𝑎) → 𝑆𝑝𝑒𝑐(𝑅), when restricted to 𝐷((𝑧 − 1 + 𝑎)(𝑧 − 𝑎)), is a homeomorphism
onto an open subset. Similarly, 𝜃 restricted to 𝐷((𝑧2 + 𝑧 + 2𝑎 − 2)(𝑧 − 𝑎)) ⊆ 𝑆𝑝𝑒𝑐(𝑅𝑎) is a
homeomorphism onto the open subset 𝐷((𝑧2 +𝑧+2𝑎−2)(𝑧−𝑎)) ⊆ 𝑆𝑝𝑒𝑐(𝑅). Depending on
whether 𝑧2 + 𝑧 + 2𝑎 − 2 is irreducible or not over 𝐐, this former distinguished open set has
complement equal to one or two closed points along with the closed point 𝔪𝑎. Furthermore,
the ideal in 𝑅𝑎 generated by the elements (𝑧2 +𝑧+2𝑎−𝑎)(𝑧−𝑎) and (𝑧−1+𝑎)(𝑧−𝑎) is all
of 𝑅𝑎, so these two distinguished open sets cover 𝑆𝑝𝑒𝑐(𝑅𝑎). Hence in order to show that 𝜃
is a homeomorphism onto 𝑆𝑝𝑒𝑐(𝑅) − {𝔪𝑎}, it suffices to show that these one or two points
can never equal 𝔪1−𝑎. And this is indeed the case, since 1 − 𝑎 is a root of 𝑧2 + 𝑧 + 2𝑎 − 2
if and only of 𝑎 = 0 or 𝑎 = 1, both of which do not occur.

Despite this homeomorphism which mimics the behavior of a localization at an element of
𝑅, while 𝐐[𝑧, 1

𝑧−𝑎 ] is the localization of 𝐐[𝑧] at the maximal ideal (𝑧 − 𝑎), the ring 𝑅𝑎 is
not a localization of 𝑅: Any localization 𝑆−1𝑅 results in more units than the original ring
𝑅. The units of 𝑅 are 𝐐×, the units of 𝐐. If 𝑓

(𝑧−𝑎)𝑘 is a unit in 𝑅𝑎 (𝑓 ∈ 𝑅 and 𝑘 ≥ 0 an
integer), then we have

𝑓
(𝑧 − 𝑎)𝑘 ⋅

𝑔
(𝑧 − 𝑎)ℓ = 1

for some 𝑔 ∈ 𝑅 and some integer ℓ ≥ 0. Since 𝑅 is an integral domain, this is equivalent
to

𝑓𝑔 = (𝑧 − 𝑎)𝑘+ℓ.
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But (𝑧 − 𝑎)𝑘+ℓ is only an element of 𝑅 if 𝑘 = ℓ = 0; hence 𝑓, 𝑔 are units in 𝑅 as well.
Hence 𝑅𝑎 has no more units than 𝑅 does, and thus cannot be a localization of 𝑅.

We used the fact that 𝑎 ≠ 0, 1 to ensure that 1
𝑧−𝑎 makes sense at 𝑧 = 0, 1. We used the fact

that 𝑎 ≠ 1/2 in a few places: (1) In order to be able to talk about the kernel of ev1−𝑎 on 𝑅𝑎,
which ensures that 𝔪1−𝑎 is a point of 𝑅𝑎 (i.e., that 𝑅𝑎 is missing just one point of 𝑅). (2)
At the end in order to conclude that (𝑧 − 𝑎)𝑘+ℓ can only be in 𝑅 for 𝑘 = ℓ = 0; indeed, if
𝑎 = 1/2, then this is in 𝑅 as long as 𝑘 + ℓ is even. Hence there would indeed be more units
in 𝑅𝑎 than in 𝑅, and 𝑅𝑎 could possibly be a localization of 𝑅.

7.25. A meta-observation about prime ideals

This section is taken from the CRing project. Let 𝑅 be a ring and let 𝑆 ⊂ 𝑅 be a multiplica-
tive subset. A consequence of Lemma 7.16.5 is that an ideal 𝐼 ⊂ 𝑅 maximal with respect to
the property of not intersecting 𝑆 is prime. The reason is that 𝐼 = 𝑅 ∩ 𝔪 for some maximal
ideal 𝔪 of the ring 𝑆−1𝑅. It turns out that for many properties of ideals, the maximal ones
are prime. A general method of seeing this was developed in [LR08]. In this section, we
digress to explain this phenomenon.

Let 𝑅 be a ring. If 𝐼 is an ideal of 𝑅 and 𝑎 ∈ 𝑅, we define

(𝐼 ∶ 𝑎) = {𝑥 ∈ 𝑅 ∣ 𝑥𝑎 ∈ 𝐼} .

More generally, if 𝐽 ⊂ 𝑅 is an ideal, we define

(𝐼 ∶ 𝐽) = {𝑥 ∈ 𝑅 ∣ 𝑥𝐽 ⊂ 𝐼} .

Lemma 7.25.1. Let 𝑅 be a ring. For a principal ideal 𝐽 ⊂ 𝑅, and for any ideal 𝐼 ⊂ 𝐽 we
have 𝐼 = 𝐽(𝐼 ∶ 𝐽).

Proof. Say 𝐽 = (𝑎). Then (𝐼 ∶ 𝐽) = (𝐼 ∶ 𝑎). Since 𝐼 ⊂ 𝐽 we see that any 𝑦 ∈ 𝐼 is of the
form 𝑦 = 𝑥𝑎 for some 𝑥 ∈ (𝐼 ∶ 𝑎). Hence 𝐼 ⊂ 𝐽(𝐼 ∶ 𝐽). Conversely, if 𝑥 ∈ (𝐼 ∶ 𝑎), then
𝑥𝐽 = (𝑥𝑎) ⊂ 𝐼, which proves the other inclusion. �

Let ℱ be a collection of ideals of 𝑅. We are interested in conditions that will guarantee that
the maximal elements in the complement of ℱ are prime.

Definition 7.25.2. Let 𝑅 be a ring. Let ℱ be a set of ideals of 𝑅. We say ℱ is an Oka
family if 𝑅 ∈ ℱ and whenever 𝐼 ⊂ 𝑅 is an ideal and (𝐼 ∶ 𝑎), (𝐼, 𝑎) ∈ ℱ for some 𝑎 ∈ 𝑅,
then 𝐼 ∈ ℱ.

Let us give some examples ofOka families. The first example is the basic example discussed
in the introduction to this section.

Example 7.25.3. Let 𝑅 be a ring and let 𝑆 be a multiplicative subset of 𝑅. We claim that
ℱ = {𝐼 ⊂ 𝑅 ∣ 𝐼 ∩ 𝑆≠∅} is an Oka family. Namely, suppose that (𝐼 ∶ 𝑎), (𝐼, 𝑎) ∈ ℱ for
some 𝑎 ∈ 𝑅. Then pick 𝑠 ∈ (𝐼, 𝑎) ∩ 𝑆 and 𝑠′ ∈ (𝐼 ∶ 𝑎) ∩ 𝑆. Then 𝑠𝑠′ ∈ 𝐼 ∩ 𝑆 and hence
𝐼 ∈ ℱ. Thus ℱ is an Oka family.

Example 7.25.4. Let 𝑅 be a ring, 𝐼 ⊂ 𝑅 an ideal, and 𝑎 ∈ 𝑅. If (𝐼 ∶ 𝑎) is generated by
𝑎1, … , 𝑎𝑛 and (𝐼, 𝑎) is generated by 𝑎, 𝑏1, … , 𝑏𝑚 with 𝑏1, … , 𝑏𝑚 ∈ 𝐼, then 𝐼 is generated
by 𝑎𝑎1, … , 𝑎𝑎𝑛, 𝑏1, … , 𝑏𝑚. To see this, note that if 𝑥 ∈ 𝐼, then 𝑥 ∈ (𝐼, 𝑎) is a linear
combination of 𝑎, 𝑏1, … , 𝑏𝑚, but the coefficient of 𝑎 must lie in (𝐼 ∶ 𝑎). As a result, we
deduce that the family of finitely generated ideals is an Oka family.
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Example 7.25.5. Let us show that the family of principal ideals of a ring 𝑅 is an Oka
family. Indeed, suppose 𝐼 ⊂ 𝑅 is an ideal, 𝑎 ∈ 𝑅, and (𝐼, 𝑎) and (𝐼 ∶ 𝑎) are principal. Note
that (𝐼 ∶ 𝑎) = (𝐼 ∶ (𝐼, 𝑎)). Setting 𝐽 = (𝐼, 𝑎), we find that 𝐽 is principal and (𝐼 ∶ 𝐽) is too.
By Lemma 7.25.1 we have 𝐼 = 𝐽(𝐼 ∶ 𝐽). Thus we find in our situation that since 𝐽 = (𝐼, 𝑎)
and (𝐼 ∶ 𝐽) are principal, 𝐼 is principal.

Example 7.25.6. Let 𝑅 be a ring. Let 𝜅 be an infinite cardinal. The family of ideals which
can be generated by at most 𝜅 elements is an Oka family. The argument is analogous to the
argument in Example 7.25.4 and is omitted.

Proposition 7.25.7. If ℱ is an Oka family of ideals, then any maximal element of the com-
plement of ℱ is prime.

Proof. Suppose 𝐼∉ℱ is maximal with respect to not being in ℱ but 𝐼 is not prime. Note
that 𝐼≠𝑅 because 𝑅 ∈ ℱ. Since 𝐼 is not prime we can find 𝑎, 𝑏 ∈ 𝑅 − 𝐼 with 𝑎𝑏 ∈ 𝐼. it
follows that (𝐼, 𝑎) ≠ 𝐼 and (𝐼 ∶ 𝑎) contains 𝑏∉𝐼 so also (𝐼 ∶ 𝑎) ≠ 𝐼. Thus (𝐼 ∶ 𝑎), (𝐼, 𝑎)
both strictly contain 𝐼, so they must belong to ℱ. By the Oka condition, we have 𝐼 ∈ ℱ, a
contradiction. �

At this point we are able to turn most of the examples above into a lemma about prime
ideals in a ring.

Lemma 7.25.8. Let 𝑅 be a ring. Let 𝑆 be a multiplicative subset of 𝑅. An ideal 𝐼 ⊂ 𝑅
which is maximal with respect to the property that 𝐼 ∩ 𝑆 = ∅ is prime.

Proof. This is the example discussed in the introduction to this section. For an alternative
proof, combine Example 7.25.3 with Proposition 7.25.7. �

Lemma 7.25.9. Let 𝑅 be a ring.
(1) An ideal 𝐼 ⊂ 𝑅 maximal with respect to not being finitely generated is prime.
(2) If every prime ideal of 𝑅 is finitely generated, then every ideal of 𝑅 is finitely

generated1.

Proof. The first assertion is an immediate consequence of Example 7.25.4 and Proposition
7.25.7. For the second, suppose that there exists an ideal 𝐼 ⊂ 𝑅 which is not finitely
generated. The union of a totally ordered chain {𝐼𝛼} of ideals that are not finitely generated
is not finitely generated; indeed, if 𝐼 = ⋃ 𝐼𝛼 were generated by 𝑎1, … , 𝑎𝑛, then all the
generators would belong to some 𝐼𝛼 and would consequently generate it. By Zorn's lemma,
there is an ideal maximal with respect to being not finitely generated. By the first part this
ideal is prime. �

Lemma 7.25.10. Let 𝑅 be a ring.
(1) An ideal 𝐼 ⊂ 𝑅 maximal with respect to not being principal is prime.
(2) If every prime ideal of 𝑅 is principal, then every ideal of 𝑅 is principal.

Proof. This first part follows from Example 7.25.5 and Proposition 7.25.7. For the second,
suppose that there exists an ideal 𝐼 ⊂ 𝑅 which is not principal. The union of a totally
ordered chain {𝐼𝛼} of ideals that not principal is not principal; indeed, if 𝐼 = ⋃ 𝐼𝛼 were
generated by 𝑎, then 𝑎 would belong to some 𝐼𝛼 and 𝑎 would generate it. By Zorn's lemma,
there is an ideal maximal with respect to not being principal. This ideal is necessarily prime
by the first part. �

1Later we will say that 𝑅 is Noetherian.
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Lemma 7.25.11. Let 𝑅 be a ring.
(1) An ideal maximal among the ideals which do not contain a zero divisor is prime.
(2) If every nonzero prime ideal in 𝑅 contains a non-zerodivisor, then 𝑅 is a domain.

Proof. Consider the set 𝑆 of nonzerodivisors. It is a multiplicative subset of 𝑅. Hence any
ideal maximal with respect to not intersecting 𝑆 is prime, see Lemma 7.25.8. Thus, if every
nonzero prime ideal contains a nonzero divisor, then (0) is prime, i.e., 𝑅 is a domain. �

Remark 7.25.12. Let 𝑅 be a ring. Let 𝜅 be an infinite cardinal. By applying Example
7.25.6 and Proposition 7.25.7 we see that any ideal maximal with respect to the property of
not being generated by 𝜅 elements is prime. This result is not so useful because there exists
a ring for which every prime ideal of 𝑅 can be generated by ℵ0 elements, but some ideal
cannot. Namely, let 𝑘 be a field, let 𝑇 be a set whose cardinality is greater than ℵ0 and let

𝑅 = 𝑘[{𝑥𝑛}𝑛≥1, {𝑧𝑡,𝑛}𝑡∈𝑇,𝑛≥0]/(𝑥2
𝑛, 𝑧2

𝑡,𝑛, 𝑥𝑛𝑧𝑡,𝑛 − 𝑧𝑡,𝑛−1)

This is a local ring with unique prime ideal 𝔪 = (𝑥𝑛). But the ideal (𝑧𝑡,𝑛) cannot be
generated by countably many elements.

7.26. Images of ring maps of finite presentation

In this section we prove some results on the topology of maps 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) induced
by ring maps 𝑅 → 𝑆, mainly Chevalley's Theorem. In order to do this we will use the
notions of constructible sets, quasi-compact sets, retrocompact sets, and so on which are
defined in Topology, Section 5.9.

Lemma 7.26.1. Let 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be open. The following are equivalent:
(1) 𝑈 is retrocompact in 𝑆𝑝𝑒𝑐(𝑅),
(2) 𝑈 is quasi-compact, and
(3) 𝑈 is a finite union of standard opens.

Proof. The implication (2)⇒(3) is immediate from the fact that standard opens form a basis
for the topology. Each standard open is homeomorphic to the spectrum of a ring and hence
quasi-compact, by Lemmas 7.16.10 and 7.16.6. Hence a finite union of standard opens
is quasi-compact as well. To finish it suffices to show that a finite union ⋃𝑖=1…𝑛 𝐷(𝑓𝑖)
is retrocompact in 𝑆𝑝𝑒𝑐(𝑅). In order to do this it suffices to show that (⋃𝑖=1…𝑛 𝐷(𝑓𝑖)) ∩
(⋃𝑗=1…𝑚 𝐷(𝑔𝑗)) is quasi-compact, which is clear because it equals ⋃𝑖,𝑗 𝐷(𝑓𝑖𝑔𝑗). �

Lemma 7.26.2. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. The induced continuous map 𝑓 ∶
𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is quasi-compact. For any constructible set 𝐸 ⊂ 𝑆𝑝𝑒𝑐(𝑅) the in-
verse image 𝑓−1(𝐸) is constructible in 𝑆𝑝𝑒𝑐(𝑆).

Proof. We first show that the inverse image of any quasi-compact open 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) is
quasi-compact. By Lemma 7.26.1 we may write 𝑈 as a finite open of standard opens. Thus
by Lemma 7.16.4 we see that 𝑓−1(𝑈) is a finite union of standard opens. Hence 𝑓−1(𝑈) is
quasi-compact by Lemma 7.26.1 again. The second assertion now follows from Topology,
Lemma 5.10.3. �

Lemma 7.26.3. Let 𝑅 be a ring and let 𝑇 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be constructible. Then there exists a
ring map 𝑅 → 𝑆 of finite presentation such that 𝑇 is the image of 𝑆𝑝𝑒𝑐(𝑆) in 𝑆𝑝𝑒𝑐(𝑅).

Proof. Let 𝑇 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be constructible. The spectrum of a finite product of rings is
the disjoint union of the spectra, see Lemma 7.18.2. Hence if 𝑇 = 𝑇1 ∪ 𝑇2 and the result
holds for 𝑇1 and 𝑇2, then the result holds for 𝑇. In particular we may assume that 𝑇 =
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𝑈 ∩ 𝑉𝑐, where 𝑈, 𝑉 ⊂ 𝑆𝑝𝑒𝑐(𝑅) are retrocompact open. By Lemma 7.26.1 we may write
𝑇 = (⋃ 𝐷(𝑓𝑖)) ∩ (⋃ 𝐷(𝑔𝑗))𝑐 = ⋃ (𝐷(𝑓𝑖) ∩ 𝑉(𝑔1, … , 𝑔𝑚)). In fact we may assume that
𝑇 = 𝐷(𝑓) ∩ 𝑉(𝑔1, … , 𝑔𝑚) (by the argument on unions above). In this case 𝑇 is the image of
the map 𝑅 → (𝑅/(𝑔1, … , 𝑔𝑚))𝑓, see Lemmas 7.16.6 and 7.16.7. �

Lemma 7.26.4. Let 𝑅 be a ring. Let 𝑓 be an element of 𝑅. Let 𝑆 = 𝑅𝑓. Then the image of
a constructible subset of 𝑆𝑝𝑒𝑐(𝑆) is constructible in 𝑆𝑝𝑒𝑐(𝑅).

Proof. We repeatedly use Lemma 7.26.1 without mention. Let 𝑈, 𝑉 be quasi-compact open
in 𝑆𝑝𝑒𝑐(𝑆). We will show that the image of 𝑈∩𝑉𝑐 is constructible. Under the identification
𝑆𝑝𝑒𝑐(𝑆) = 𝐷(𝑓) of Lemma 7.16.6 the sets 𝑈, 𝑉 correspond to quasi-compact opens 𝑈′, 𝑉′

of 𝑆𝑝𝑒𝑐(𝑅). Hence it suffices to show that 𝑈′ ∩ (𝑉′)𝑐 is constructible in 𝑆𝑝𝑒𝑐(𝑅) which is
clear. �

Lemma 7.26.5. Let 𝑅 be a ring. Let 𝐼 be a finitely generated ideal of 𝑅. Let 𝑆 = 𝑅/𝐼.
Then the image of a constructible of 𝑆𝑝𝑒𝑐(𝑆) is constructible in 𝑆𝑝𝑒𝑐(𝑅).

Proof. If 𝐼 = (𝑓1, … , 𝑓𝑚), then we see that 𝑉(𝐼) is the complement of ⋃ 𝐷(𝑓𝑖), see Lemma
7.16.2. Hence it is constructible, by Lemma 7.26.1. Denote the map 𝑅 → 𝑆 by 𝑓 ↦ 𝑓.
We have to show that if 𝑈, 𝑉 are retrocompact opens of 𝑆𝑝𝑒𝑐(𝑆), then the image of 𝑈 ∩ 𝑉𝑐

in 𝑆𝑝𝑒𝑐(𝑅) is constructible. By Lemma 7.26.1 we may write 𝑈 = ⋃ 𝐷(𝑔𝑖). Setting 𝑈 =
⋃ 𝐷(𝑔𝑖) we see 𝑈 has image 𝑈 ∩ 𝑉(𝐼) which is constructible in 𝑆𝑝𝑒𝑐(𝑅). Similarly the
image of 𝑉 equals 𝑉 ∩ 𝑉(𝐼) for some retrocompact open 𝑉 of 𝑆𝑝𝑒𝑐(𝑅). Hence the image of
𝑈 ∩ 𝑉𝑐 equals 𝑈 ∩ 𝑉(𝐼) ∩ 𝑉𝑐 as desired. �

Lemma 7.26.6. Let 𝑅 be a ring. The map 𝑆𝑝𝑒𝑐(𝑅[𝑥]) → 𝑆𝑝𝑒𝑐(𝑅) is open, and the image
of any standard open is a quasi-compact open.

Proof. It suffices to show that the image of a standard open 𝐷(𝑓), 𝑓 ∈ 𝑅[𝑥] is quasi-
compact open. The image of 𝐷(𝑓) is the image of 𝑆𝑝𝑒𝑐(𝑅[𝑥]𝑓) → 𝑆𝑝𝑒𝑐(𝑅). Let 𝔭 ⊂ 𝑅 be
a prime ideal. Let 𝑓 be the image of 𝑓 in 𝜅(𝔭)[𝑥]. Recall, see Lemma 7.16.9, that 𝔭 is in the
image if and only if 𝑅[𝑥]𝑓 ⊗𝑅 𝜅(𝔭) = 𝜅(𝔭)[𝑥]𝑓 is not the zero ring. This is exactly the con-
dition that 𝑓 does not map to zero in 𝜅(𝔭)[𝑥], in other words, that some coefficient of 𝑓 is not
in 𝔭. Hence we see: if 𝑓 = 𝑎𝑑𝑥𝑑 + … 𝑎0, then the image of 𝐷(𝑓) is 𝐷(𝑎𝑑) ∪ … ∪ 𝐷(𝑎0). �

We prove a property of characteristic polynomials which will be used below.

Lemma 7.26.7. Let 𝑅 → 𝐴 be a ring homomorphism. Assume 𝐴 ≅ 𝑅⊕𝑛 as an 𝑅-module.
Let 𝑓 ∈ 𝐴. The multiplication map 𝑚𝑓 ∶ 𝐴 → 𝐴 is 𝑅-linear and hence has a characteristic
polynomial 𝑃(𝑇) = 𝑇𝑛 + 𝑟𝑛−1𝑇𝑛−1 + ⋯ + 𝑟0 ∈ 𝑅[𝑇]. For any prime 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅), 𝑓 acts
nilpotently on 𝐴 ⊗𝑅 𝜅(𝔭) if and only if 𝔭 ∈ 𝑉(𝑟0, … , 𝑟𝑛−1).

Proof. This follows quite easily once we prove that the characteristic polynomial ̄𝑃(𝑇) ∈
𝜅(𝔭)[𝑇] of the multiplication map 𝑚 ̄𝑓 ∶ 𝐴⊗𝑅 𝜅(𝔭) → 𝐴⊗𝑅 𝜅(𝔭) which multiplies elements
of 𝐴 ⊗𝑅 𝜅(𝔭) by ̄𝑓, the image of 𝑓 viewed in 𝜅(𝔭), is just the image of 𝑃(𝑇) in 𝜅(𝔭)[𝑇].
Let (𝑎𝑖𝑗) be the matrix of the map 𝑚𝑓 with entries in 𝑅, using a basis 𝑒1, … , 𝑒𝑛 of 𝐴 as
an 𝑅-module. Then, 𝐴 ⊗𝑅 𝜅(𝔭) ≅ (𝑅 ⊗𝑅 𝜅(𝔭))⊕𝑛 = 𝜅(𝔭)𝑛, which is an 𝑛-dimensional
vector space over 𝜅(𝔭) with basis 𝑒1 ⊗ 1, … , 𝑒𝑛 ⊗ 1. The image ̄𝑓 = 𝑓 ⊗ 1, and so the
multiplication map 𝑚 ̄𝑓 has matrix (𝑎𝑖𝑗 ⊗1). Thus, the characteristic polynomial is precisely
the image of 𝑃(𝑇).
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From linear algebra, we know that a linear transformation acts nilpotently on an 𝑛-dimensional
vector space if and only if the characteristic polynomial is 𝑇𝑛 (since the characteristic poly-
nomial divides some power of the minimal polynomial). Hence, 𝑓 acts nilpotently on
𝐴 ⊗𝑅 𝜅(𝔭) if and only if ̄𝑃(𝑇) = 𝑇𝑛. This occurs if and only if 𝑟𝑖 ∈ 𝔭 for all 0 ≤ 𝑖 ≤ 𝑛 − 1,
that is when 𝔭 ∈ 𝑉(𝑟0, … , 𝑟𝑛−1). �

Lemma 7.26.8. Let 𝑅 be a ring. Let 𝑓, 𝑔 ∈ 𝑅[𝑥] be polynomials. Assume the leading
coefficient of 𝑔 is a unit of 𝑅. There exists elements 𝑟𝑖 ∈ 𝑅, 𝑖 = 1 … , 𝑛 such that the image
of 𝐷(𝑓) ∩ 𝑉(𝑔) in 𝑆𝑝𝑒𝑐(𝑅) is ⋃𝑖=1,…,𝑛 𝐷(𝑟𝑖).

Proof. Write 𝑔 = 𝑢𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + … 𝑎0, where 𝑑 is the degree of 𝑔, and hence 𝑢 ∈ 𝑅∗.
Consider the ring 𝐴 = 𝑅[𝑥]/(𝑔). It is, as an 𝑅-module, finite free with basis the images
of 1, 𝑥, … , 𝑥𝑑−1. Consider multiplication by (the image of) 𝑓 on 𝐴. This is an 𝑅-module
map. Hence we can let 𝑃(𝑇) ∈ 𝑅[𝑇] be the characteristic polynomial of this map. Write
𝑃(𝑇) = 𝑇𝑑 + 𝑟𝑑−1𝑇𝑑−1 + … 𝑟0. We claim that 𝑟0, … , 𝑟𝑑−1 have the desired property. We
will use below the property of characteristic polynomials that

𝔭 ∈ 𝑉(𝑟0, … , 𝑟𝑑−1) ⇔ multiplication by 𝑓 is nilpotent on 𝐴 ⊗𝑅 𝜅(𝔭).

This was proved in Lemma 7.26.7 above.

Suppose 𝔮 ∈ 𝐷(𝑓)∩𝑉(𝑔), and let 𝔭 = 𝔮∩𝑅. Then there is a nonzero map 𝐴⊗𝑅 𝜅(𝔭) → 𝜅(𝔮)
which is compatible with multiplication by 𝑓. And 𝑓 acts as a unit on 𝜅(𝔮). Thus we
conclude 𝔭∉𝑉(𝑟0, … , 𝑟𝑑−1).

On the other hand, suppose that 𝑟𝑖∉𝔭 for some prime 𝔭 of 𝑅 and some 0 ≤ 𝑖 ≤ 𝑑 − 1. Then
multiplication by 𝑓 is not nilpotent on the algebra 𝐴⊗𝑅 𝜅(𝔭). Hence there exists a maximal
ideal 𝔮 ⊂ 𝐴 ⊗𝑅 𝜅(𝔭) not containing the image of 𝑓. The inverse image of 𝔮 in 𝑅[𝑥] is an
element of 𝐷(𝑓) ∩ 𝑉(𝑔) mapping to 𝔭. �

Theorem 7.26.9. Chevalley's Theorem. Suppose that 𝑅 → 𝑆 is of finite presentation. The
image of a constructible subset of 𝑆𝑝𝑒𝑐(𝑆) in 𝑆𝑝𝑒𝑐(𝑅) is constructible.

Proof. Write 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚). We may factor 𝑅 → 𝑆 as 𝑅 → 𝑅[𝑥1] →
𝑅[𝑥1, 𝑥2] → … → 𝑅[𝑥1, … , 𝑥𝑛−1] → 𝑆. Hencewemay assume that𝑆 = 𝑅[𝑥]/(𝑓1, … , 𝑓𝑚).
In this case we factor the map as 𝑅 → 𝑅[𝑥] → 𝑆, and by Lemma 7.26.5 we reduce to
the case 𝑆 = 𝑅[𝑥]. By Lemma 7.26.1 suffices to show that if 𝑇 = (⋃𝑖=1…𝑛 𝐷(𝑓𝑖)) ∩
𝑉(𝑔1, … , 𝑔𝑚) for 𝑓𝑖, 𝑔𝑗 ∈ 𝑅[𝑥] then the image in 𝑆𝑝𝑒𝑐(𝑅) is constructible. Since finite
unions of constructible sets are constructible, it suffices to deal with the case 𝑛 = 1, i.e.,
when 𝑇 = 𝐷(𝑓) ∩ 𝑉(𝑔1, … , 𝑔𝑚).

Note that if 𝑐 ∈ 𝑅, then we have

𝑆𝑝𝑒𝑐(𝑅) = 𝑉(𝑐) ∐ 𝐷(𝑐) = 𝑆𝑝𝑒𝑐(𝑅/(𝑐)) ∐ 𝑆𝑝𝑒𝑐(𝑅𝑐)),

and correspondingly 𝑆𝑝𝑒𝑐(𝑅[𝑥]) = 𝑉(𝑐) ∐ 𝐷(𝑐) = 𝑆𝑝𝑒𝑐(𝑅/(𝑐)[𝑥]) ∐ 𝑆𝑝𝑒𝑐(𝑅𝑐[𝑥])). The
intersection of 𝑇 = 𝐷(𝑓) ∩ 𝑉(𝑔1, … , 𝑔𝑚) with each part still has the same shape, with
𝑓, 𝑔𝑖 replaced by their images in 𝑅/(𝑐)[𝑥], respectively 𝑅𝑐[𝑥]. Note that the image of 𝑇 in
𝑆𝑝𝑒𝑐(𝑅) is the union of the image of 𝑇∩𝑉(𝑐) and 𝑇∩𝐷(𝑐). Using Lemmas 7.26.4 and 7.26.5
it suffices to prove the images of both parts are constructible in 𝑆𝑝𝑒𝑐(𝑅/(𝑐)), respectively
𝑆𝑝𝑒𝑐(𝑅𝑐).

Let us assume we have 𝑇 = 𝐷(𝑓) ∩ 𝑉(𝑔1, … , 𝑔𝑚) as above, with deg(𝑔1) ≤ deg(𝑔2) ≤
… ≤ deg(𝑔𝑚). We are going to use descending induction on 𝑚, and on the degrees of the
𝑔𝑖. Let 𝑑 = deg(𝑔1), i.e., 𝑔1 = 𝑐𝑥𝑑1 + 𝑙.𝑜.𝑡 with 𝑐 ∈ 𝑅 not zero. Cutting 𝑅 up into the
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pieces 𝑅/(𝑐) and 𝑅𝑐 we either lower the degree of 𝑔1 (and this is covered by induction) or
we reduce to the case where 𝑐 is invertible. If 𝑐 is invertible, and 𝑚 > 1, then write 𝑔2 =
𝑐′𝑥𝑑2 + 𝑙.𝑜.𝑡. In this case consider 𝑔′

2 = 𝑔2 − (𝑐′/𝑐)𝑥𝑑2−𝑑1𝑔1. Since the ideals (𝑔1, 𝑔2, … , 𝑔𝑚)
and (𝑔1, 𝑔′

2, 𝑔3, … , 𝑔𝑚) are equal we see that 𝑇 = 𝐷(𝑓) ∩ 𝑉(𝑔1, 𝑔′
2, 𝑔3 … , 𝑔𝑚). But here the

degree of 𝑔′
2 is strictly less than the degree of 𝑔2 and hence this case is covered by induction.

The bases case for the induction above are the cases (a) 𝑇 = 𝐷(𝑓) ∩ 𝑉(𝑔) where the leading
coefficient of 𝑔 is invertible, and (b) 𝑇 = 𝐷(𝑓). These two cases are dealt with in Lemmas
7.26.8 and 7.26.6. �

7.27. More on images

In this section we collect a few additional lemmas concerning the image on 𝑆𝑝𝑒𝑐 for ring
maps. See also Section 7.36 for example.

Lemma 7.27.1. Let 𝑅 ⊂ 𝑆 be an inclusion of domains. Assume that 𝑅 → 𝑆 is of finite
type. There exists a nonzero 𝑓 ∈ 𝑅, and a nonzero 𝑔 ∈ 𝑆 such that 𝑅𝑓 → 𝑆𝑓𝑔 is of finite
presentation.

Proof. By induction on the number of generators of 𝑆 over 𝑅.
Suppose that 𝑆 is generated by a single element over 𝑅. Then 𝑆 = 𝑅[𝑥]/𝔮 for some prime
ideal 𝔮 ⊂ 𝑅[𝑥]. If 𝔮 = (0) there is nothing to prove. If 𝔮≠(0), then let 𝑔 ∈ 𝔮 be an element
with minimal degree in 𝑥. Since 𝐾[𝑥] = 𝑓.𝑓.(𝑅)[𝑥] is a PID we see that 𝑔 is irreducible
over 𝐾 and that 𝑓.𝑓.(𝑆) = 𝐾[𝑥]/(𝑔). Write 𝑔 = 𝑎𝑑𝑥𝑑 +…+𝑎0 with 𝑎𝑖 ∈ 𝑅 and 𝑎𝑑≠0. After
inverting 𝑎𝑑 in 𝑅 we may assume that 𝑔 is monic. Hence we see that 𝑅 → 𝑅[𝑥]/(𝑔) → 𝑆
with the last map surjective. But 𝑅[𝑥]/(𝑔) = 𝑅 ⊕ 𝑅𝑥 ⊕ … ⊕ 𝑅𝑥𝑑−1 maps injectively into
𝑓.𝑓.(𝑆) = 𝐾[𝑥]/(𝑔) = 𝐾 ⊕ 𝐾𝑥 ⊕ … ⊕ 𝐾𝑥𝑑−1. Thus 𝑆 ≅ 𝑅[𝑥]/(𝑔) is finitely presented.
Suppose that 𝑆 is generated by 𝑛 > 1 elements over 𝑅. Say 𝑥1, … , 𝑥𝑛 ∈ 𝑆 generate 𝑆.
Denote 𝑆′ ⊂ 𝑆 the subring generated by 𝑥1, … , 𝑥𝑛−1. By induction hypothesis we see
that there exist 𝑓 ∈ 𝑅 and 𝑔 ∈ 𝑆′ nonzero such that 𝑅𝑓 → 𝑆′

𝑓𝑔 is of finite presentation.
Next we apply the induction hypothesis to 𝑆′

𝑓𝑔 → 𝑆𝑓𝑔 to see that there exist 𝑓′ ∈ 𝑆′
𝑓𝑔 and

𝑔′ ∈ 𝑆𝑓𝑔 such that 𝑆′
𝑓𝑔𝑓′ → 𝑆𝑓𝑔𝑓′𝑔′ is of finite presentation. We leave it to the reader to

conclude. �

Lemma 7.27.2. Let 𝑅 → 𝑆 be a finite type ring map. Denote 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑌 =
𝑆𝑝𝑒𝑐(𝑆). Write 𝑓 ∶ 𝑌 → 𝑋 the induced map of spectra. Let 𝐸 ⊂ 𝑌 = 𝑆𝑝𝑒𝑐(𝑆) be a
constructible set. If a point 𝜉 ∈ 𝑋 is in 𝑓(𝐸), then {𝜉} ∩ 𝑓(𝐸) contains an open dense
subset of {𝜉}.

Proof. Let 𝜉 ∈ 𝑋 be a point of 𝑓(𝐸). Choose a point 𝜂 ∈ 𝐸 mapping to 𝜉. Let 𝔭 ⊂ 𝑅 be
the prime corresponding to 𝜉 and let 𝔮 ⊂ 𝑆 be the prime corresponding to 𝜂. Consider the
diagram

𝜂 //
_

��

𝐸 ∩ 𝑌′ //

��

𝑌′ = 𝑆𝑝𝑒𝑐(𝑆/𝔮) //

��

𝑌

��
𝜉 // 𝑓(𝐸) ∩ 𝑋′ // 𝑋′ = 𝑆𝑝𝑒𝑐(𝑅/𝔭) // 𝑋

By Lemma 7.26.2 the set 𝐸 ∩ 𝑌′ is constructible in 𝑌′. It follows that we may replace 𝑋
by 𝑋′ and 𝑌 by 𝑌′. Hence we may assume that 𝑅 ⊂ 𝑆 is an inclusion of domains, 𝜉 is
the generic point of 𝑋, and 𝜂 is the generic point of 𝑌. By Lemma 7.27.1 combined with
Chevalley's theorem (Theorem 7.26.9) we see that there exist dense opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑌
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such that 𝑓(𝑉) ⊂ 𝑈 and such that 𝑓 ∶ 𝑉 → 𝑈 maps constructible sets to constructible
sets. Note that 𝐸 ∩ 𝑉 is constructible in 𝑉, see Topology, Lemma 5.10.4. Hence 𝑓(𝐸 ∩ 𝑉)
is constructible in 𝑈 and contains 𝜉. By Topology, Lemma 5.10.6 we see that 𝑓(𝐸 ∩ 𝑉)
contains a dense open 𝑈′ ⊂ 𝑈. �

At the end of this section we present a few more results on images of maps on Spectra that
have nothing to do with constructible sets.

Lemma 7.27.3. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. The following are equivalent:
(1) The map 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is surjective.
(2) For any radical ideal 𝐼 ⊂ 𝑅 the inverse image of 𝐼𝑆 in 𝑅 is equal to 𝐼.
(3) For every prime 𝔭 of 𝑅 the inverse image of 𝔭𝑆 in 𝑅 is 𝔭.

In this case the same is true after any base change: Given a ring map 𝑅 → 𝑅′ the ring
map 𝑅′ → 𝑅′ ⊗𝑅 𝑆 has the equivalent properties (1), (2), (3) also.

Proof. The implication (2) ⇒ (3) is immediate. If 𝐼 ⊂ 𝑅 is a radical ideal, then Lemma
7.16.2 guarantees that 𝐼 = ⋂𝐼⊂𝔭 𝔭. Hence (3) ⇒ (2). By Lemma 7.16.9 we have 𝔭 =
𝜑−1(𝔭𝑆) if and only if 𝔭 is in the image. Hence (1) ⇔ (3). Thus (1), (2), and (3) are
equivalent.
Assume (1) holds. Let 𝑅 → 𝑅′ be a ring map. Let 𝔭′ ⊂ 𝑅′ be a prime ideal lying over the
prime 𝔭 of 𝑅. To see that 𝔭′ is in the image of 𝑆𝑝𝑒𝑐(𝑅′ ⊗𝑅 𝑆) → 𝑆𝑝𝑒𝑐(𝑅′) we have to
show that (𝑅′ ⊗𝑅 𝑆) ⊗𝑅′ 𝜅(𝔭′) is not zero, see Lemma 7.16.9. But we have

(𝑅′ ⊗𝑅 𝑆) ⊗𝑅′ 𝜅(𝔭′) = 𝑆 ⊗𝑅 𝜅(𝔭) ⊗𝜅(𝔭) 𝜅(𝔭′)

which is not zero as 𝑆 ⊗𝑅 𝜅(𝔭) is not zero by assumption and 𝜅(𝔭) → 𝜅(𝔭′) is an extension
of fields. �

Lemma 7.27.4. Let 𝑅 be a domain. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. The following are
equivalent:

(1) The ring map 𝑅 → 𝑆 is injective.
(2) The image 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) contains a dense set of points.
(3) There exists a prime ideal 𝔮 ⊂ 𝑆 whose inverse image in 𝑅 is (0).

Proof. Let 𝐾 be the field of fractions of the domain 𝑅. Assume that 𝑅 → 𝑆 is injective.
Since localization is exact we see that 𝐾 → 𝑆 ⊗𝑅 𝐾 is injective. Hence there is a prime
mapping to (0) by Lemma 7.16.9.
Note that (0) is dense in 𝑆𝑝𝑒𝑐(𝑅), so that the last condition implies the second.
Suppose the second condition holds. Let 𝑓 ∈ 𝑅, 𝑓≠0. As 𝑅 is a domain we see that 𝑉(𝑓) is
a proper closed subset of 𝑅. By assumption there exists a prime 𝔮 of 𝑆 such that 𝜑(𝑓)∉𝔮.
Hence 𝜑(𝑓)≠0. Hence 𝑅 → 𝑆 is injective. �

Lemma 7.27.5. Let 𝑅 ⊂ 𝑆 be an injective ring map. Then 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) hits all the
minimal primes of 𝑆𝑝𝑒𝑐(𝑅).

Proof. Let 𝔭 ⊂ 𝑅 be a minimal prime. In this case 𝑅𝔭 has a unique prime ideal. Hence it
suffices to show that 𝑆𝔭 is not zero. And this follows from the fact that localization is exact,
see Proposition 7.9.12. �

Lemma 7.27.6. Let 𝑅 → 𝑆 be a ring map. The following are equivalent:
(1) The kernel of 𝑅 → 𝑆 consists of nilpotent elements.
(2) The minimal primes of 𝑅 are in the image of 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅).
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(3) The image of 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is dense in 𝑆𝑝𝑒𝑐(𝑅).

Proof. Let 𝐼 = Ker(𝑅 → 𝑆). Note that √(0) = ⋂𝔮⊂𝑆 𝔮, see Lemma 7.16.2. Hence
√𝐼 = ⋂𝔮⊂𝑆 𝑅 ∩ 𝔮. Thus 𝑉(𝐼) = 𝑉(√𝐼) is the closure of the image of 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅).
This shows that (1) is equivalent to (3). It is clear that (2) implies (3). Finally, assume (1).
We may replace 𝑅 by 𝑅/𝐼 and 𝑆 by 𝑆/𝐼𝑆 without affecting the topology of the spectra and
the map. Hence the implication (1) ⇒ (2) follows from Lemma 7.27.5 above. �

7.28. Noetherian rings

A ring 𝑅 is Noetherian if any ideal of 𝑅 is finitely generated. This is clearly equivalent to
the ascending chain condition for ideals of 𝑅. By Lemma 7.25.9 it suffices to check that
every prime ideal of 𝑅 is finitely generated.

Lemma 7.28.1. Any finitely generated ring over a Noetherian ring is Noetherian. Any
localization of a Noetherian ring is Noetherian.

Proof. The statement on localizations follows from the fact that any ideal 𝐽 ⊂ 𝑆−1𝑅 is of
the form 𝐼 ⋅ 𝑆−1𝑅. Any quotient 𝑅/𝐼 of a Noetherian ring 𝑅 is Noetherian because any
ideal 𝐽 ⊂ 𝑅/𝐼 is of the form 𝐽/𝐼 for some ideal 𝐼 ⊂ 𝐽 ⊂ 𝑅. Thus it suffices to show that
if 𝑅 is Noetherian so is 𝑅[𝑋]. Suppose 𝐽1 ⊂ 𝐽2 ⊂ … is an ascending chain of ideals in
𝑅[𝑋]. Consider the ideals 𝐼𝑖,𝑑 defined as the ideal of elements of 𝑅 which occur as leading
coefficients of degree 𝑑 polynomials in 𝐽𝑖. Clearly 𝐼𝑖,𝑑 ⊂ 𝐼𝑖′,𝑑′ whenever 𝑖 ≤ 𝑖′ and 𝑑 ≤ 𝑑′.
By the ascending chain condition in 𝑅 there are at most finitely many distinct ideals among
all of the 𝐼𝑖,𝑑. (Hint: Any infinite set of elements of 𝐍 × 𝐍 contains an increasing infinite
sequence.) Take 𝑖0 so large that 𝐼𝑖,𝑑 = 𝐼𝑖0,𝑑 for all 𝑖 ≥ 𝑖0 and all 𝑑. Suppose 𝑓 ∈ 𝐽𝑖 for some
𝑖 ≥ 𝑖0. By induction on the degree 𝑑 = deg(𝑓) we show that 𝑓 ∈ 𝐽𝑖0. Namely, there exists
a 𝑔 ∈ 𝐽𝑖0 whose degree is 𝑑 and which has the same leading coefficient as 𝑓. By induction
𝑓 − 𝑔 ∈ 𝐽𝑖0 and we win. �

Lemma7.28.2. If𝑅 is a Noetherian ring, then so is the formal power series ring𝑅[[𝑥1, … , 𝑥𝑛]].

Proof. Since 𝑅[[𝑥1, … , 𝑥𝑛+1]] ≅ 𝑅[[𝑥1, … , 𝑥𝑛]][[𝑥𝑛+1]] it suffices to prove the statement
that 𝑅[[𝑥]] is Noetherian if 𝑅 is Noetherian. Let 𝐼 ⊂ 𝑅[[𝑥]] be a ideal. We have to show
that 𝐼 is a finitely generated ideal. For each integer 𝑑 denote 𝐼𝑑 = {𝑎 ∈ 𝑅 ∣ 𝑎𝑥𝑑 + h.o.t. ∈
𝐼}. Then we see that 𝐼0 ⊂ 𝐼1 ⊂ … stabilizes as 𝑅 is Noetherian. Choose 𝑑0 such that
𝐼𝑑0

= 𝐼𝑑0+1 = …. For each 𝑑 ≤ 𝑑0 choose elements 𝑓𝑑,𝑗 ∈ 𝐼 ∩ (𝑥𝑑), 𝑗 = 1, … , 𝑛𝑑 such
that if we write 𝑓𝑑,𝑗 = 𝑎𝑑,𝑗𝑥𝑑 +h.o.t then 𝐼𝑑 = (𝑎𝑑,𝑗). Denote 𝐼′ = ({𝑓𝑑,𝑗}𝑑=0,…,𝑑0,𝑗=1,…,𝑛𝑑

).
Then it is clear that 𝐼′ ⊂ 𝐼. Pick 𝑓 ∈ 𝐼. First we may choose 𝑐𝑑,𝑖 ∈ 𝑅 such that

𝑓 − ∑ 𝑐𝑑,𝑖𝑓𝑑,𝑖 ∈ (𝑥𝑑0+1) ∩ 𝐼.

Next, we can choose 𝑐𝑖,1 ∈ 𝑅, 𝑖 = 1, … , 𝑛𝑑0
such that

𝑓 − ∑ 𝑐𝑑,𝑖𝑓𝑑,𝑖 − ∑ 𝑐𝑖,1𝑥𝑓𝑑0,𝑖 ∈ (𝑥𝑑0+2) ∩ 𝐼.

Next, we can choose 𝑐𝑖,2 ∈ 𝑅, 𝑖 = 1, … , 𝑛𝑑0
such that

𝑓 − ∑ 𝑐𝑑,𝑖𝑓𝑑,𝑖 − ∑ 𝑐𝑖,1𝑥𝑓𝑑0,𝑖 − ∑ 𝑐𝑖,2𝑥2𝑓𝑑0,𝑖 ∈ (𝑥𝑑0+3) ∩ 𝐼.

And so on. In the end we see that
𝑓 = ∑ 𝑐𝑑,𝑖𝑓𝑑,𝑖 + ∑𝑖

(∑𝑒
𝑐𝑖,𝑒𝑥𝑒)𝑓𝑑0,𝑖

is contained in 𝐼′ as desired. �
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The following lemma, although easy, is useful because finite type 𝐙-algebras come up quite
often in a technique called ``absolute Noetherian reduction''.

Lemma 7.28.3. Any finite type algebra over a field is Noetherian. Any finite type algebra
over 𝐙 is Noetherian.

Proof. This is immediate from the above and the fact that 𝐙 is a Noetherian ring because
it is a principal ideal domain. �

Lemma 7.28.4. Let 𝑅 be a Noetherian ring.
(1) Any finite 𝑅-module is of finite presentation.
(2) Any finite type 𝑅-algebra is of finite presentation over 𝑅.

Proof. Let 𝑀 be a finite 𝑅-module. By Lemma 7.5.5 we can find a finite filtration of 𝑀
whose succesive quotients are of the form 𝑅/𝐼. Since any ideal is finitely generated, each of
the quotients 𝑅/𝐼 is finitely presented. Hence 𝑀 is finitely presented by Lemma 7.5.4. This
proves (1). To see (2) note that any ideal of 𝑅[𝑥1, … , 𝑥𝑛] is finitely generated by Lemma
7.28.1 above. �

Lemma 7.28.5. If 𝑅 is a Noetherian ring then 𝑆𝑝𝑒𝑐(𝑅) is a Noetherian topological space,
see Topology, Definition 5.6.1.

Proof. This is because any closed subset of 𝑆𝑝𝑒𝑐(𝑅) is uniquely of the form 𝑉(𝐼) with 𝐼 a
radical ideal, see Lemma 7.16.2. And this correspondence is inclusion reversing. Thus the
result follows from the definitions. �

Lemma 7.28.6. If 𝑅 is a Noetherian ring then 𝑆𝑝𝑒𝑐(𝑅) has finitely many irreducible com-
ponents. In other words 𝑅 has finitely many minimal primes.

Proof. By Lemma 7.28.5 and Topology, Lemma 5.6.2 we see there are finitely many irre-
ducible components. By Lemma 7.23.1 these correspond to minimal primes of 𝑅. �

Lemma 7.28.7. Let 𝑘 be a field and let 𝑅 be a Noetherian 𝑘-algebra. If 𝑘 ⊂ 𝐾 is a finitely
generated field extension the 𝐾 ⊗𝑘 𝑅 is Noetherian.

Proof. Write 𝐾 = 𝑆−1𝐵 where 𝐵 is a finite type 𝑘-algebra, and 𝑆 ⊂ 𝐵 is a multiplicative
subset. Then we have 𝐾 ⊗𝑘 𝑅 = 𝑆−1(𝐵 ⊗𝑘 𝑅). Hence 𝐾 ⊗𝑘 𝑅 is a localization of the finite
type 𝑅-algebra 𝐵 ⊗𝑘 𝑅 which is Noetherian by Lemma 7.28.1. �

Here is fun lemma that is sometimes useful.

Lemma 7.28.8. Any surjective endomorphism of a Noetherian ring is an isomorphism.

Proof. If 𝑓 ∶ 𝑅 → 𝑅 were such an endomorphism but not injective, then

Ker(𝑓) ⊂ Ker(𝑓 ∘ 𝑓) ⊂ Ker(𝑓 ∘ 𝑓 ∘ 𝑓) ⊂ …

would be a strictly increasing chain of ideals. �

7.29. Curiosity

Lemma 7.20.3 explains what happens if 𝑉(𝐼) is open for some ideal 𝐼 ⊂ 𝑅. But what if
𝑆𝑝𝑒𝑐(𝑆−1𝑅) is closed in 𝑆𝑝𝑒𝑐(𝑅)? The next two lemmas give a partial answer. For more
information see Section 7.100.

Lemma 7.29.1. Let 𝑅 be a ring. Let 𝑆 ⊂ 𝑅 be a multiplicative subset. Assume the image
of the map 𝑆𝑝𝑒𝑐(𝑆−1𝑅) → 𝑆𝑝𝑒𝑐(𝑅) is closed. Then 𝑆−1𝑅 ≅ 𝑅/𝐼 for some ideal 𝐼 ⊂ 𝑅.
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Proof. Let 𝐼 = Ker(𝑅 → 𝑆−1𝑅) so that 𝑉(𝐼) contains the image. Say the image is the
closed subset 𝑉(𝐼′) ⊂ 𝑆𝑝𝑒𝑐(𝑅) for some ideal 𝐼′ ⊂ 𝑅. So 𝑉(𝐼′) ⊂ 𝑉(𝐼). For 𝑓 ∈ 𝐼′ we
see that 𝑓/1 ∈ 𝑆−1𝑅 is contained in every prime ideal. Hence 𝑓𝑛 maps to zero in 𝑆−1𝑅
for some 𝑛 ≥ 1 (Lemma 7.16.2). Hence 𝑉(𝐼′) = 𝑉(𝐼). Then this implies every 𝑔 ∈ 𝑆 is
invertible mod 𝐼. Hence we get ring maps 𝑅/𝐼 → 𝑆−1𝑅 and 𝑆−1𝑅 → 𝑅/𝐼. The first map
is injective by choice of 𝐼. The second is the map 𝑆−1𝑅 → 𝑆−1(𝑅/𝐼) = 𝑅/𝐼 which has
kernel 𝑆−1𝐼 because localization is exact. Since 𝑆−1𝐼 = 0 we see also the second map is
injective. Hence 𝑆−1𝑅 ≅ 𝑅/𝐼. �

Lemma 7.29.2. Let 𝑅 be a ring. Let 𝑆 ⊂ 𝑅 be a multiplicative subset. Assume the image of
the map 𝑆𝑝𝑒𝑐(𝑆−1𝑅) → 𝑆𝑝𝑒𝑐(𝑅) is closed. If 𝑅 is Noetherian, or 𝑆𝑝𝑒𝑐(𝑅) is a Noetherian
topological space, or 𝑆 is finitely generated as a monoid, then 𝑅 ≅ 𝑆−1𝑅 × 𝑅′ for some
ring 𝑅′.

Proof. By Lemma 7.29.1 we have 𝑆−1𝑅 ≅ 𝑅/𝐼 for some ideal 𝐼 ⊂ 𝑅. By Lemma 7.20.3
it suffices to show that 𝑉(𝐼) is open. If 𝑅 is Noetherian then 𝑆𝑝𝑒𝑐(𝑅) is a Noetherian
topological space, see Lemma 7.28.5. If 𝑆𝑝𝑒𝑐(𝑅) is a Noetherian topological space, then
the complement 𝑆𝑝𝑒𝑐(𝑅)⧵𝑉(𝐼) is quasi-compact, see Topology, Lemma 5.9.9. Hence there
exist finitely many 𝑓1, … , 𝑓𝑛 ∈ 𝐼 such that 𝑉(𝐼) = 𝑉(𝑓1, … , 𝑓𝑛). Since each 𝑓𝑖 maps to
zero in 𝑆−1𝑅 there exists a 𝑔 ∈ 𝑆 such that 𝑔𝑓𝑖 = 0 for 𝑖 = 1, … , 𝑛. Hence 𝐷(𝑔) = 𝑉(𝐼) as
desired. In case 𝑆 is finitely generated as a monoid, say 𝑆 is generated by 𝑔1, … , 𝑔𝑚, then
𝑆−1𝑅 ≅ 𝑅𝑔1…𝑔𝑚

and we conclude that 𝑉(𝐼) = 𝐷(𝑔1 … 𝑔𝑚). �

7.30. Hilbert Nullstellensatz

Theorem 7.30.1. (Hilbert Nullstellensatz) Let 𝑘 be a field.
(1) For any maximal ideal 𝔪 ⊂ 𝑘[𝑥1, … , 𝑥𝑛] the field extension 𝑘 ⊂ 𝜅(𝔪) is finite.
(2) Any radical ideal 𝐼 ⊂ 𝑘[𝑥1, … , 𝑥𝑛] is the intersection of maximal ideals contain-

ing it.
The same is true in any finite type 𝑘-algebra.

Proof. It is enough to prove part (1) of the theorem for the case of a polynomial algebra
𝑘[𝑥1, … , 𝑥𝑛], because any finitely generated 𝑘-algebra is a quotient of such a polynomial
algebra. We prove this by induction on 𝑛. The case 𝑛 = 0 is clear. Suppose that 𝔪 is a
maximal ideal in 𝑘[𝑥1, … , 𝑥𝑛]. Let 𝔭 ⊂ 𝑘[𝑥𝑛] be the intersection of 𝔪 with 𝑘[𝑥𝑛].

If 𝔭≠(0), then 𝔭 is maximal and generated by an irreducible monic polynomial 𝑃 (because
of the Euclidean algorithm in 𝑘[𝑥𝑛]). Then 𝑘′ = 𝑘[𝑥𝑛]/𝔭 is a finite field extension of 𝑘 and
contained in 𝜅(𝔪). In this case we get a surjection

𝑘′[𝑥1, … , 𝑥𝑛−1] → 𝑘′[𝑥1, … , 𝑥𝑛] = 𝑘′ ⊗𝑘 𝑘[𝑥1, … , 𝑥𝑛] ⟶ 𝜅(𝔪)

and hence we see that 𝜅(𝔪) is a finite extension of 𝑘′ by induction hypothesis. Thus 𝜅(𝔪)
is finite over 𝑘 as well.

If 𝔭 = (0) we consider the ring extension 𝑘[𝑥𝑛] ⊂ 𝑘[𝑥1, … , 𝑥𝑛]/𝔪. This is a finitely
generated ring extension, hence of finite presentation by Lemmas 7.28.3 and 7.28.4. Thus
the image of 𝑆𝑝𝑒𝑐(𝑘[𝑥1, … , 𝑥𝑛]/𝔪) in 𝑆𝑝𝑒𝑐(𝑘[𝑥𝑛]) is constructible by Theorem 7.26.9.
Since the image contains (0) we conclude that it contains a standard open 𝐷(𝑓) for some
𝑓 ∈ 𝑘[𝑥𝑛] nonzero. Since clearly 𝐷(𝑓) is infinite we get a contradiction with the assumption
that 𝑘[𝑥1, … , 𝑥𝑛]/𝔪 is a field (and hence has a spectrum consisting of one point).
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To prove part (2) let 𝐼 ⊂ 𝑅 be radical, with 𝑅 of finite type over 𝑘. Let 𝑓 ∈ 𝑅, 𝑓∉𝐼. Pick a
maximal ideal 𝔪′ in the nonzero ring 𝑅𝑓/𝐼𝑅𝑓 = (𝑅/𝐼)𝑓. Let 𝔪 ⊂ 𝑅 be the inverse image
of 𝔪′ in 𝑅. We see that 𝐼 ⊂ 𝔪 and 𝑓∉𝔪. If we show that 𝔪 is a maximal ideal of 𝑅, then
we are done. We clearly have

𝑘 ⊂ 𝑅/𝔪 ⊂ 𝜅(𝔪′).
By part (1) the field extension 𝑘 ⊂ 𝜅(𝔪′) is finite. By elementary field theory we conclude
that 𝑅/𝔪 is a field. �

Lemma 7.30.2. Let 𝑅 be a ring. Let 𝐾 be a field. If 𝑅 ⊂ 𝐾 and 𝐾 is of finite type over 𝑅,
then there exists a 𝑓 ∈ 𝑅 such that 𝑅𝑓 is a field, and 𝑅𝑓 ⊂ 𝐾 is a finite field extension.

Proof. By Lemma 7.27.2 there exist a nonempty open 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) contained in the image
{(0)} of 𝑆𝑝𝑒𝑐(𝐾) → 𝑆𝑝𝑒𝑐(𝑅). Choose 𝑓 ∈ 𝑅, 𝑓≠0 such that 𝐷(𝑓) ⊂ 𝑈, i.e., 𝐷(𝑓) = {(0)}.
Then 𝑅𝑓 is a domain whose spectrum has exactly one point and 𝑅𝑓 is a field. Then 𝐾 is a
finitely generated algebra over the field 𝑅𝑓 and hence a finite field extension of 𝑅𝑓 by the
Hilbert Nullstellensatz above. �

7.31. Jacobson rings

Let 𝑅 be a ring. The closed points of 𝑆𝑝𝑒𝑐(𝑅) are the maximal ideals of 𝑅. Often rings
which occur naturally in algebraic geometry have lots of maximal ideals. For example finite
type algebras over a field or over 𝐙. Wewill show that these are examples of Jacobson rings.

Definition 7.31.1. Let 𝑅 be a ring. We say that 𝑅 is a Jacobson ring if every radical ideal
𝐼 is the intersection of the maximal ideals containing it.

Lemma 7.31.2. Any algebra of finite type over a field is Jacobson.

Proof. This follows from Theorem 7.30.1 and Definition 7.31.1. �

Lemma 7.31.3. Let 𝑅 be a ring. If every prime ideal of 𝑅 is the intersection of the maximal
ideals containing it, then 𝑅 is Jacobson.

Proof. This is immediately clear from the fact that every radical ideal 𝐼 ⊂ 𝑅 is the inter-
section of the primes containing it. See Lemma 7.16.2. �

Lemma 7.31.4. A ring 𝑅 is Jacobson if and only if 𝑆𝑝𝑒𝑐(𝑅) is Jacobson, see Topology,
Definition 5.13.1.

Proof. Suppose 𝑅 is Jacobson. Let 𝑍 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be a closed subset. We have to show
that the set of closed points in 𝑍 is dense in 𝑍. Let 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be an open such that
𝑈 ∩ 𝑍 is nonempty. We have to show 𝑍 ∩ 𝑈 contains a closed point of 𝑆𝑝𝑒𝑐(𝑅). We may
assume 𝑈 = 𝐷(𝑓) as standard opens form a basis for the topology on 𝑆𝑝𝑒𝑐(𝑅). According
to Lemma 7.16.2 we may assume that 𝑍 = 𝑉(𝐼), where 𝐼 is a radical ideal. We see also
that 𝑓∉𝐼. By assumption, there exists a maximal ideal 𝔪 ⊂ 𝑅 such that 𝐼 ⊂ 𝔪 but 𝑓∉𝔪.
Hence 𝔪 ∈ 𝐷(𝑓) ∩ 𝑉(𝐼) = 𝑈 ∩ 𝑍 as desired.
Conversely, suppose that 𝑆𝑝𝑒𝑐(𝑅) is Jacobson. Let 𝐼 ⊂ 𝑅 be a radical ideal. Let 𝐽 =
∩𝐼⊂𝔪𝔪 be the intersection of the maximal ideals containing 𝐼. Clearly 𝐽 is radical, 𝑉(𝐽) ⊂
𝑉(𝐼), and 𝑉(𝐽) is the smallest closed subset of 𝑉(𝐼) containing all the closed points of 𝑉(𝐼).
By assumption we see that 𝑉(𝐽) = 𝑉(𝐼). But Lemma 7.16.2 shows there is a bijection
between Zariski closed sets and radical ideals, hence 𝐼 = 𝐽 as desired. �

Lemma 7.31.5. Let 𝑅 be a ring. If 𝑅 is not Jacobson there exist a prime 𝔭 ⊂ 𝑅, an element
𝑓 ∈ 𝑅 such that the following hold

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00FY
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00G0
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00G1
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00G2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00G3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=034J


7.31. JACOBSON RINGS 251

(1) 𝔭 is not a maximal ideal,
(2) 𝑓∉𝔭,
(3) 𝑉(𝔭) ∩ 𝐷(𝑓) = {𝔭}, and
(4) (𝑅/𝔭)𝑓 is a field.

On the other hand, if 𝑅 is Jacobson, then for any pair (𝔭, 𝑓) such that (1) and (2) hold the
set 𝑉(𝔭) ∩ 𝐷(𝑓) is infinite.

Proof. Assume 𝑅 is not Jacobson. By Lemma 7.31.4 this means there exists an closed
subset 𝑇 ⊂ 𝑆𝑝𝑒𝑐(𝑅) whose set 𝑇0 ⊂ 𝑇 of closed points is not dense in 𝑇. Choose an 𝑓 ∈ 𝑅
such that 𝑇0 ⊂ 𝑉(𝑓) but 𝑇⊄𝑉(𝑓). Note that 𝑇 ∩ 𝐷(𝑓) is homeomorphic to 𝑆𝑝𝑒𝑐((𝑅/𝐼)𝑓) if
𝑇 = 𝑉(𝐼), see Lemmas 7.16.7 and 7.16.6. As any ring has a maximal ideal (Lemma 7.16.2)
we can choose a closed point 𝑡 of space 𝑇 ∩ 𝐷(𝑓). Then 𝑡 corresponds to a prime ideal
𝔭 ⊂ 𝑅 which is not maximal (as 𝑡∉𝑇0). Thus (1) holds. By construction 𝑓∉𝔭, hence (2).
As 𝑡 is a closed point of 𝑇 ∩ 𝐷(𝑓) we see that 𝑉(𝔭) ∩ 𝐷(𝑓) = {𝔭}, i.e., (3) holds. Hence
we conclude that (𝑅/𝔭)𝑓 is a domain whose spectrum has one point, hence (4) holds (for
example combine Lemmas 7.17.2 and 7.23.3).
Conversely, suppose that 𝑅 is Jacobson and (𝔭, 𝑓) satisfy (1) and (2). If 𝑉(𝔭) ∩ 𝑉(𝑓) =
{𝔭, 𝔮1, … , 𝔮𝑡} then 𝔭≠𝔮𝑖 implies there exists an element 𝑔 ∈ 𝑅 such that 𝑔∉𝔭 but 𝑔 ∈ 𝔮𝑖
for all 𝑖. Hence 𝑉(𝔭) ∩ 𝐷(𝑓𝑔) = {𝔭} which is impossible since each locally closed subset of
𝑆𝑝𝑒𝑐(𝑅) contains at least one closed point as 𝑆𝑝𝑒𝑐(𝑅) is a Jacobson topological space. �

Lemma 7.31.6. The ring 𝐙 is a Jacobson ring. More generally, let 𝑅 be a ring such that
(1) 𝑅 is a domain,
(2) 𝑅 is Noetherian,
(3) any nonzero prime ideal is a maximal ideal, and
(4) 𝑅 has infinitely many maximal ideals.

Then 𝑅 is a Jacobson ring.

Proof. Let 𝑅 satisfy (1), (2), (3) and (4). The statement means that (0) = ⋂𝔪⊂𝑅 𝔪.
Since 𝑅 has infinitely many maximal ideals it suffices to show that any nonzero 𝑥 ∈ 𝑅 is
contained in at most finitely many maximal ideals, in other words that 𝑉(𝑥) is finite. By
Lemma 7.16.7 we see that 𝑉(𝑥) is homeomorphic to 𝑆𝑝𝑒𝑐(𝑅/𝑥𝑅). By assumption (3) every
prime of 𝑅/𝑥𝑅 is minimal and hence corresponds to an irreducible component of 𝑆𝑝𝑒𝑐(𝑅)
(Lemma 7.23.1). As 𝑅/𝑥𝑅 is Noetherian, the topological space 𝑆𝑝𝑒𝑐(𝑅/𝑥𝑅) is Noetherian
(Lemma 7.28.5) and has finitely many irreducible components (Topology, Lemma 5.6.2).
Thus 𝑉(𝑥) is finite as desired. �

Example 7.31.7. Let 𝐴 be an infinite set. For each 𝛼 ∈ 𝐴, let 𝑘𝛼 be a field. We claim
that 𝑅 = ∏𝛼∈𝐴 𝑘𝛼 is Jacobson. First, note that any element 𝑓 ∈ 𝑅 has the form 𝑓 = 𝑢𝑒,
with 𝑢 ∈ 𝑅 a unit and 𝑒 ∈ 𝑅 an idempotent (left to the reader). Hence 𝐷(𝑓) = 𝐷(𝑒), and
𝑅𝑓 = 𝑅𝑒 = 𝑅/(1 − 𝑒) is a quotient of 𝑅. Actually, any ring with this property is Jacobson.
Namely, say 𝔭 ⊂ 𝑅 is a prime ideal and 𝑓 ∈ 𝑅, 𝑓∉𝔭. We have to find a maximal ideal 𝔪
of 𝑅 such that 𝔭 ⊂ 𝔪 and 𝑓∉𝔪. Because 𝑅𝑓 is a quotient of 𝑅 we see that any maximal
ideal of 𝑅𝑓 corresponds to a maximal ideal of 𝑅 not containing 𝑓. Hence the result follows
by choosing a maximal ideal of 𝑅𝑓 containing 𝔭𝑅𝑓.

Example 7.31.8. A domain 𝑅 with finitely many maximal ideals 𝔪𝑖, 𝑖 = 1, … , 𝑛 is not a
Jacobson ring, except when it is a field. Namely, in this case (0) is not the intersection of
the maximal ideals (0)≠𝔪1 ∩ 𝔪2 ∩ … ∩ 𝔪𝑛 ⊃ 𝔪1 ⋅ 𝔪2 ⋅ … ⋅ 𝔪𝑛≠0. In particular a discrete
valuation ring, or any local ring with at least two prime ideals is not a Jacobson ring.
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Lemma 7.31.9. Let 𝑅 → 𝑆 be a ring map. Let 𝔪 ⊂ 𝑅 be a maximal ideal. Let 𝔮 ⊂ 𝑆 be a
prime ideal lying over 𝔪 such that 𝜅(𝔪) ⊂ 𝜅(𝔮) is an algebraic field extension. Then 𝔮 is
a maximal ideal of 𝑆.

Proof. Consider the diagram

𝑆 // 𝑆/𝔮 // 𝜅(𝔮)

𝑅 //

OO

𝑅/𝔪

OO

We see that 𝜅(𝔪) ⊂ 𝑆/𝔮 ⊂ 𝜅(𝔮). Because the field extension 𝜅(𝔪) ⊂ 𝜅(𝔮) is algebraic, any
ring between 𝜅(𝔪) and 𝜅(𝔮) is a field (by elementary field theory). Thus 𝑆/𝔮 is a field, and
a posteriori equal to 𝜅(𝔮). �

Lemma 7.31.10. Suppose that 𝑘 is a field and suppose that 𝑉 is a nonzero vector space over
𝑘. Asssume the dimension of 𝑉 (which is a cardinal number) is smaller than the cardinality
of 𝑘. Then for any linear operator 𝑇 ∶ 𝑉 → 𝑉 there exists some monic polynomial 𝑃(𝑡) ∈
𝑘[𝑡] such that 𝑃(𝑇) is not invertible.

Proof. If not then 𝑉 inherits the structure of a vector space over the field 𝑘(𝑡). But the
dimension of 𝑘(𝑡) over 𝑘 is at least the cardinality of 𝑘 for example due to the fact that the
elements 1

𝑡−𝜆 are 𝑘-linearly independent. �

Here is another version of Hilbert's Nullstellensatz.

Theorem 7.31.11. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra generated over 𝑘 by the elements
{𝑥𝑖}𝑖∈𝐼. Assume the cardinality of 𝐼 is smaller than the cardinality of 𝑘. Then

(1) for all maximal ideals 𝔪 ⊂ 𝑆 the field extension 𝑘 ⊂ 𝜅(𝔪) is algebraic, and
(2) 𝑆 is a Jacobson ring.

Proof. If 𝐼 is finite then the result follows from the Hilbert Nullstellensatz, Theorem 7.30.1.
In the rest of the proof we assume 𝐼 is infinite. It suffices to prove the result for 𝔪 ⊂
𝑘[{𝑥𝑖}𝑖∈𝐼] maximal in the polynomial ring on variables 𝑥𝑖, since 𝑆 is a quotient of this. As
𝐼 is infinite the set of monomials 𝑥𝑒1

𝑖1
… 𝑥𝑒𝑟

𝑖𝑟
, 𝑖1, … , 𝑖𝑟 ∈ 𝐼 and 𝑒1, … , 𝑒𝑟 ≥ 0 has cardinality

at most equal to the cardinality of 𝐼. Because the cardinality of 𝐼 × … × 𝐼 is the cardinality
of 𝐼, and also the cardinality of ⋃𝑛≥0 𝐼𝑛 has the same cardinality. (If 𝐼 is finite, then this is
not true and in that case this proof only works if 𝑘 is uncountable.)
To arrive at a contradiction pick 𝑇 ∈ 𝜅(𝔪) transcendental over 𝑘. Note that the 𝑘-linear
map 𝑇 ∶ 𝜅(𝔪) → 𝜅(𝔪) given by multiplication by 𝑇 has the property that 𝑃(𝑇) is invertible
for all monic polynomials 𝑃(𝑡) ∈ 𝑘[𝑡]. Also, 𝜅(𝔪) has dimension at most the cardinality of
𝐼 over 𝑘 since it is a quotient of the vector space 𝑘[{𝑥𝑖}𝑖∈𝐼] over 𝑘 (whose dimension is #𝐼
as we saw above). This is impossible by Lemma 7.31.10.
To show that 𝑆 is Jacobson we argue as follows. If not then there exists a prime 𝔮 ⊂ 𝑆
and an element 𝑓 ∈ 𝑆, 𝑓∉𝔮 such that 𝔮 is not maximal and (𝑆/𝔮)𝑓 is a field, see Lemma
7.31.5. But note that (𝑆/𝔮)𝑓 is generated by at most #𝐼 + 1 elements. Hence the field
extension 𝑘 ⊂ (𝑅/𝔮)𝑓 is algebraic (by the first part of the proof). This implies that 𝜅(𝔮)
is an algebraic extension of 𝑘 hence 𝔮 is maximal by Lemma 7.31.9. This contradiction
finishes the proof. �

Lemma 7.31.12. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra. For any field extension 𝑘 ⊂ 𝐾
whose cardinality is larger than the cardinality of 𝑆 we have
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(1) for every maximal ideal 𝔪 of 𝑆𝐾 the field 𝜅(𝔪) is algebraic over 𝐾, and
(2) 𝑆𝐾 is a Jacobson ring.

Proof. Choose 𝑘 ⊂ 𝐾 such that the cardinality of 𝐾 is greater than the cardinality of 𝑆.
Since the elements of 𝑆 generate the 𝐾-algebra 𝑆𝐾 we see that Theorem 7.31.11 applies.

�

Example 7.31.13. The trick in the proof of Theorem 7.31.11 really does not work if 𝑘 is
a countable field and 𝐼 is countable too. Let 𝑘 be a countable field. Let 𝑥 be a variable,
and let 𝑘(𝑥) be the field of rational functions in 𝑥. Consider the polynomial algebra 𝑅 =
𝑘[𝑥, {𝑥𝑓}𝑓∈𝑘[𝑥]−{0}]. Let 𝐼 = ({𝑓𝑥𝑓 − 1}𝑓∈𝑘[𝑥]−{0}). Note that 𝐼 is a proper ideal in 𝑅.
Choose a maximal ideal 𝐼 ⊂ 𝔪. Then 𝑘 ⊂ 𝑅/𝔪 is isomorphic to 𝑘(𝑥), and is not algebraic
over 𝑘.

Lemma 7.31.14. Let 𝑅 be a Jacobson ring. Let 𝑓 ∈ 𝑅. The ring 𝑅𝑓 is Jacobson and
maximal ideals of 𝑅𝑓 correspond to maximal ideals of 𝑅.

Proof. By Topology, Lemma 5.13.5 we see that 𝐷(𝑓) = 𝑆𝑝𝑒𝑐(𝑅𝑓) is Jacobson and that
closed points of 𝐷(𝑓) correspond to closed points in 𝑆𝑝𝑒𝑐(𝑅) which happen to lie in 𝐷(𝑓).
Thus we win by Lemma 7.31.4. �

Example 7.31.15. Here is a simple example that shows Lemma 7.31.14 to be false if 𝑅 is
not Jacobson. Consider the ring 𝑅 = 𝐙(2), i.e., the localization of 𝐙 at the prime (2). The
localization of 𝑅 at the element 2 is isomorphic to 𝐐, in a formula: 𝑅2 ≅ 𝐐. Clearly the
map 𝑅 → 𝑅2 maps the closed point of 𝑆𝑝𝑒𝑐(𝐐) to the generic point of 𝑆𝑝𝑒𝑐(𝑅).

Example 7.31.16. Here is a simple example that shows Lemma 7.31.14 is false if 𝑅 is
Jacobson but we localize at infinitely many elements. Namely, let 𝑅 = 𝐙 and consider the
localization (𝑅 ⧵ {0})−1𝑅 ≅ 𝐐 of 𝑅 at the set of all nonzero elements. Clearly the map
𝐙 → 𝐐 maps the closed point of 𝑆𝑝𝑒𝑐(𝐐) to the generic point of 𝑆𝑝𝑒𝑐(𝐙).

Lemma 7.31.17. Let 𝑅 be a Jacobson ring. Let 𝐼 ⊂ 𝑅 be an ideal. The ring 𝑅/𝐼 is
Jacobson and maximal ideals of 𝑅/𝐼 correspond to maximal ideals of 𝑅.

Proof. The proof is the same as the proof of Lemma 7.31.14. �

Proposition 7.31.18. Let 𝑅 be a Jacobson ring. Let 𝑅 → 𝑆 be a ring map of finite type.
Then

(1) The ring 𝑆 is Jacobson.
(2) The map 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) transforms closed points to closed points.
(3) For 𝔪′ ⊂ 𝑆 maximal lying over 𝔪 ⊂ 𝑅 the field extension 𝜅(𝔪) ⊂ 𝜅(𝔪′) is

finite.

Proof. Let 𝐴 → 𝐵 → 𝐶 be finite type ring maps. Suppose 𝑆𝑝𝑒𝑐(𝐶) → 𝑆𝑝𝑒𝑐(𝐵) and
𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) map closed points to closed points, and induce finite residue field
extensions on residue fields at closed points. Then so does 𝑆𝑝𝑒𝑐(𝐶) → 𝑆𝑝𝑒𝑐(𝐴). Thus it
is clear that if we factor 𝑅 → 𝑆 as 𝑅 → 𝑆′ → 𝑆 for some finite type 𝑅-algebra 𝑆′, then
it suffices to prove the lemma for 𝑅 → 𝑆′ and then 𝑆′ → 𝑆. Writing 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼
we see that it suffices to prove the lemma in the cases 𝑆 = 𝑅[𝑥] and 𝑆 = 𝑅/𝐼. The case
𝑆 = 𝑅/𝐼 is Lemma 7.31.17.

The case 𝑆 = 𝑅[𝑥]. Take an irreducible closed subset 𝑍 ⊂ 𝑆𝑝𝑒𝑐(𝑅[𝑥]). In other words
𝑍 = 𝑉(𝔮) for some prime 𝔮 ⊂ 𝑅[𝑥]. Set 𝔭 = 𝔮 ∩ 𝑅. Let 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅[𝑥]) be open such that
𝑈 ∩ 𝑍≠∅. We have to find a closed point in 𝑈 ∩ 𝑍. In fact, we will find
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(∗) a closed point 𝑦 of 𝑈 ∩ 𝑍 which maps to a closed point 𝑥 of 𝑆𝑝𝑒𝑐(𝑅) such that
additionally 𝜅(𝑥) ⊂ 𝜅(𝑦) is finite.

To do this we may assume 𝑈 = 𝐷(𝑓) for some 𝑓 ∈ 𝑅[𝑥]. In this case 𝑈 ∩ 𝑉(𝔮)≠∅ means
𝑓∉𝔮. Consider the diagram

𝑅[𝑥] // 𝑅/𝔭[𝑥]

𝑅 //

OO

𝑅/𝔭

OO

It suffices to solve the problem on the right hand side of this diagram. Thus we see we may
assume 𝑅 is Jacobson, a domain and 𝔭 = (0).

In case 𝔮 = (0), write 𝑓 = 𝑎𝑑𝑥𝑑 + … + 𝑎0. We see that not all 𝑎𝑖 are zero. Take any
maximal ideal 𝔪 of 𝑅 such that 𝑎𝑖∉𝔪 for some 𝑖 (here we use 𝑅 is Jacobson). Next,
choose a maximal ideal 𝔪′ ⊂ (𝑅/𝔪)[𝑥] not containing the image of 𝑓 (possible because
𝜅(𝔪)[𝑥] is Jacobson). Then the inverse image 𝔪′ ⊂ 𝑅[𝑥] defines a closed point of 𝑈 ∩ 𝑍
and maps to 𝔪. Also, by construction 𝜅(𝔪) ⊂ 𝜅(𝔪′) is finite. Thus we have shown (∗) in
this case.

In case 𝔮≠(0), let 𝐾 be the fraction field of 𝑅. Write 𝔮𝐾[𝑥] = (𝑔) for some irreducible
𝑔 ∈ 𝐾[𝑥]. Clearing denominators, we may assume that 𝑔 ∈ 𝑅[𝑥], and hence in 𝔮. Write
𝑔 = 𝑏𝑒𝑥𝑒 + … + 𝑏0, 𝑏𝑖 ∈ 𝑅 with 𝑏𝑒≠0. The maps 𝑅 → 𝑅𝑏𝑒

and 𝑅[𝑥] → 𝑅[𝑥]𝑏𝑒
satisfies

the conclusion of the lemma, by Lemma 7.31.14 and moreover induce isomorphisms on
residue fields. Hence, in order to prove (∗), we may replace 𝑅 by 𝑅𝑏𝑒

and assume that 𝑔 is
monic. In this case we see that 𝑅[𝑥]/𝔮 is a quotient of the finite free 𝑅-module 𝑅[𝑥]/(𝑔) =
𝑅 ⊕ 𝑅𝑥 ⊕ … ⊕ 𝑅𝑥𝑒−1. But on the other hand we have 𝑅[𝑥]/(𝑔) ⊂ 𝐾[𝑥]/(𝑔) = 𝐾[𝑥]/𝔮𝐾[𝑥].
Hence 𝔮 = (𝑔), and 𝑍 = 𝑉(𝔮) = 𝑉(𝑔). At this point, by Lemma 7.26.8 the image of
𝐷(𝑓) ∩ 𝑉(𝑔) in 𝑆𝑝𝑒𝑐(𝑅) is 𝐷(𝑟1) ∪ … ∪ 𝐷(𝑟𝑑) for some 𝑟𝑖 ∈ 𝑅 (of course it is nonempty).
Take any maximal ideal 𝔪 ⊂ 𝑅 in this image (possible because 𝑅 is Jacobson) and take
any prime 𝔪′ ⊂ 𝑅[𝑥] corresponding to a point of 𝐷(𝑓) ∩ 𝑉(𝑔) lying over 𝔪. Note that the
residue field extension 𝜅(𝔪) ⊂ 𝜅(𝔪′) is finite (because 𝑔 ∈ 𝔪′). By Lemma 7.31.9 we see
that 𝔪′ is a closed point. This proves (∗) in this case.

At this point we are done. Namely, (∗) implies that 𝑆𝑝𝑒𝑐(𝑅[𝑥]) is Jacobson (via Lemma
7.31.4). Also, if 𝑍 is a singleton closed set, then (∗) implies that 𝑍 = {𝔪′} with 𝔪′ lying
over a maximal ideal 𝔪 ⊂ 𝑅 such that 𝜅(𝔪) ⊂ 𝜅(𝔪′) is finite. �

Lemma 7.31.19. Any finite type algebra over 𝐙 is Jacobson.

Proof. Combine Lemma 7.31.6 and Proposition 7.31.18. �

Lemma 7.31.20. Let 𝑅 → 𝑆 be a finite type ring map of Jacobson rings. Denote 𝑋 =
𝑆𝑝𝑒𝑐(𝑅) and 𝑌 = 𝑆𝑝𝑒𝑐(𝑆). Write 𝑓 ∶ 𝑌 → 𝑋 the induced map of spectra. Let 𝐸 ⊂
𝑌 = 𝑆𝑝𝑒𝑐(𝑆) be a constructible set. Denote with a subscript 0 the set of closed points of a
topological space.

(1) We have 𝑓(𝐸)0 = 𝑓(𝐸0) = 𝑋0 ∩ 𝑓(𝐸).
(2) A point 𝜉 ∈ 𝑋 is in 𝑓(𝐸) if and only if {𝜉} ∩ 𝑓(𝐸0) is dense in {𝜉}.
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Proof. We have a commutative diagram of continuous maps

𝐸 //

��

𝑌

��
𝑓(𝐸) // 𝑋

Suppose 𝑥 ∈ 𝑓(𝐸) is closed in 𝑓(𝐸). Then 𝑓−1({𝑥}) ∩ 𝐸 is closed in 𝐸. Hence 𝑓−1({𝑥}) ∩
𝐸 is constructible, nonempty in 𝑌. By Topology, Lemma 5.13.5, the intersection 𝑌0 ∩
𝑓−1({𝑥}) ∩ 𝐸 is not empty. Thus there exists 𝑦 ∈ 𝑌0 mapping to 𝑥. Since clearly 𝑦 ∈ 𝐸0
we see that 𝑥 ∈ 𝑓(𝐸0). This proves that 𝑓(𝐸)0 ⊂ 𝑓(𝐸0). Proposition 7.31.18 implies that
𝑓(𝐸0) ⊂ 𝑋0 ∩ 𝑓(𝐸). The inclusion 𝑋0 ∩ 𝑓(𝐸) ⊂ 𝑓(𝐸)0 is trivial. This proves the first
assertion.

Suppose that 𝜉 ∈ 𝑓(𝐸). According to Lemma 7.27.2 the set 𝑓(𝐸) ∩ {𝜉} contains a dense
open subset of {𝜉}. Since 𝑋 is Jacobson we conclude that 𝑓(𝐸) ∩ {𝜉} contains a dense set
of closed points, see Topology, Lemma 5.13.5. We conclude by part (1) of the lemma.

On the other hand, suppose that {𝜉} ∩ 𝑓(𝐸0) is dense in {𝜉}. By Lemma 7.26.3 there exists
a ring map 𝑆 → 𝑆′ of finite presentation such that 𝐸 is the image of 𝑌′ ∶= 𝑆𝑝𝑒𝑐(𝑆′) → 𝑌.
Then 𝐸0 is the image of 𝑌′

0 by the first part of the lemma applied to the ring map 𝑆 → 𝑆′.
Thus we may assume that 𝐸 = 𝑌 by replacing 𝑆 by 𝑆′. Suppose 𝜉 corresponds to 𝔭 ⊂ 𝑅.
Consider the diagram

𝑆 // 𝑆/𝔭𝑆

𝑅 //

OO

𝑅/𝔭

OO

This diagram and the density of 𝑓(𝑌0)∩𝑉(𝔭) in 𝑉(𝔭) shows that the morphism 𝑅/𝔭 → 𝑆/𝔭𝑆
satisfies condition (2) of Lemma 7.27.4. Hence we conclude there exists a prime 𝔮 ⊂ 𝑆/𝔭𝑆
mapping to (0). In other words the inverse image 𝔮 of 𝔮 in 𝑆 maps to 𝔭 as desired. �

The conclusion of the lemma above is that we can read off the image of 𝑓 from the set of
closed points of the image. This is a little nicer in case the map is of finite presentation
because then we know that images of constructibles are constructible. Before we state it
we introduce some notation. Denote Constr(𝑋) the set of constructible Let 𝑅 → 𝑆 be a
ring map. Denote 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑌 = 𝑆𝑝𝑒𝑐(𝑆). Write 𝑓 ∶ 𝑌 → 𝑋 the induced map of
spectra. Denote with a subscript 0 the set of closed points of a topological space.

Lemma 7.31.21. With notation as above. Assume that 𝑅 is a Noetherian Jacobson ring.
Further assume 𝑅 → 𝑆 is of finite type. There is a commutative diagram

Constr(𝑌)
𝐸↦𝐸0 //

𝐸↦𝑓(𝐸)
��

Constr(𝑌0)

𝐸↦𝑓(𝐸)
��

Constr(𝑋)
𝐸↦𝐸0 // Constr(𝑋0)

where the horizontal arrows are the bijections from Topology, Lemma 5.13.7.

Proof. Since 𝑅 → 𝑆 is of finite type, it is of finite presentation, see Lemma 7.28.4. Thus
the image of a constructible set in 𝑋 is constructible in 𝑌 by Chevalley's theorem (Theorem
7.26.9). Combined with Lemma 7.31.20 above the lemma follows. �
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To illustrate the use of Jacobson rings, we give the following two examples.

Example 7.31.22. Let 𝑘 be a field. The space 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]/(𝑥𝑦)) has two irreducible com-
ponents: namely the 𝑥-axis and the 𝑦-axis. As a generalization, let

𝑅 = 𝑘[𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑦11, 𝑦12, 𝑦21, 𝑦22]/𝔞,

where 𝔞 is the ideal in 𝑘[𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑦11, 𝑦12, 𝑦21, 𝑦22] generated by the entries of the
2 × 2 product matrix

(
𝑥11 𝑥12
𝑥21 𝑥22) (

𝑦11 𝑦12
𝑦21 𝑦22) ,

we shall also describe 𝑆𝑝𝑒𝑐(𝑅)

To prove the statement about 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]/(𝑥𝑦)) we argue as follows. If 𝔭 ⊂ 𝑘[𝑥, 𝑦] is any
ideal containing 𝑥𝑦, then either 𝑥 or 𝑦 would be contained in 𝔭. Hence the minimal such
prime ideals are just (𝑥) and (𝑦). In case 𝑘 is algebraically closed, the max-Spec of these
components can then be visualized as the point sets of 𝑦 and 𝑥 axis.

For the generalization, note that we may identify the closed points of the spectrum of
𝑘[𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑦11, 𝑦12, 𝑦21, 𝑦22]) with the space of matrices

{(𝑋, 𝑌) ∈ 𝑀𝑎𝑡(2, 𝑘) × 𝑀𝑎𝑡(2, 𝑘) ∣ 𝑋 = (
𝑥11 𝑥12
𝑥21 𝑥22) , 𝑌 = (

𝑦11 𝑦12
𝑦21 𝑦22)}

at least if 𝑘 is algebraically closed. Now define a group action of 𝐺𝐿(2, 𝑘) × 𝐺𝐿(2, 𝑘) ×
𝐺𝐿(2, 𝑘) on the space of matrices {(𝑋, 𝑌)} by

(𝑔1, 𝑔2, 𝑔3) × (𝑋, 𝑌) ↦ ((𝑔1𝑋𝑔−1
2 , 𝑔2𝑌𝑔−1

3 )).

Here, also observe that the algebraic set

𝐺𝐿(2, 𝑘) × 𝐺𝐿(2, 𝑘) × 𝐺𝐿(2, 𝑘) ⊆ 𝑀𝑎𝑡(2, 𝑘) × 𝑀𝑎𝑡(2, 𝑘) × 𝑀𝑎𝑡(2, 𝑘)

is irreducible since it is the max spectrum of the domain

𝑘[𝑥11, 𝑥12, … , 𝑧21, 𝑧22, (𝑥11𝑥22 − 𝑥12𝑥21)−1, (𝑦11𝑦22 − 𝑦12𝑦21)−1, (𝑧11𝑧22 − 𝑧12𝑧21)−1].

Since the image of irreducible an algebraic set is still irreducible, it suffices to classify the
orbits of the set {(𝑋, 𝑌) ∈ 𝑀𝑎𝑡(2, 𝑘) × 𝑀𝑎𝑡(2, 𝑘)|𝑋𝑌 = 0} and take their closures. From
standard linear algebra, we are reduced to the following three cases:

(1) ∃(𝑔1, 𝑔2) such that 𝑔1𝑋𝑔−1
2 = 𝐼2×2. Then 𝑌 is necessarily 0, which as an algebraic

set is invariant under the group action. It follows that this orbit is contained in
the irreducible algebraic set defined by the prime ideal (𝑦11, 𝑦12, 𝑦21, 𝑦22). Taking
the closure, we see that (𝑦11, 𝑦12, 𝑦21, 𝑦22) is actually a component.

(2) ∃(𝑔1, 𝑔2) such that

𝑔1𝑋𝑔−1
2 = (

1 0
0 0) .

This case occurs if and only if 𝑋 is a rank 1 matrix, and furthermore, 𝑌 is killed
by such an 𝑋 if and only if

𝑥11𝑦11 + 𝑥12𝑦21 = 0; 𝑥11𝑦12 + 𝑥12𝑦22 = 0;

𝑥21𝑦11 + 𝑥22𝑦21 = 0; 𝑥21𝑦12 + 𝑥22𝑦22 = 0.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00GF


7.32. FINITE AND INTEGRAL RING EXTENSIONS 257

Fix a rank 1 𝑋, such non zero 𝑌's satisfying the above equations form an irre-
ducible algebraic set for the following reason(𝑌 = 0 is contained the the previous
case): 0 = 𝑔1𝑋𝑔−1

2 𝑔2𝑌 implies that

𝑔2𝑌 = (
0 0

𝑦′
21 𝑦′

22) .

With a further 𝐺𝐿(2, 𝑘)-action on the right by 𝑔3, 𝑔2𝑌 can be brought into

𝑔2𝑌𝑔−1
3 = (

0 0
0 1) ,

and thus such 𝑌's form an irreducible algebraic set isomorphic to the image of
𝐺𝐿(2, 𝑘) under this action. Finally, notice that the ``rank 1" condition for 𝑋's
forms an open dense subset of the irreducible algebraic set det 𝑋 = 𝑥11𝑥22 −
𝑥12𝑥21 = 0. It now follows that all the five equations define an irreducible com-
ponent (𝑥11𝑦11+𝑥12𝑦21, 𝑥11𝑦12+𝑥12𝑦22, 𝑥21𝑦11+𝑥22𝑦21, 𝑥21𝑦12+𝑥22𝑦22, 𝑥11𝑥22−
𝑥12𝑥21), in open subset of the space of pairs of nonzero matrices. It can be shown
that the pair of equations det 𝑋 = 0, det 𝑌 = 0 cuts 𝑆𝑝𝑒𝑐(𝑅) in an irreducible
component with the above locus an open dense subset.

(3) ∃(𝑔1, 𝑔2) such that 𝑔1𝑋𝑔−1
2 = 0, or equivalently, 𝑋 = 0. Then 𝑌 can be arbitrary

and this component is thus defined by (𝑥11, 𝑥12, 𝑥21, 𝑥22).

Example 7.31.23. For another example, consider 𝑅 = 𝑘[{𝑡𝑖𝑗}𝑛
𝑖,𝑗=1]/𝔞, where 𝔞 is the ideal

generated by the entries of the product matrix 𝑇2 − 𝑇, 𝑇 = (𝑡𝑖𝑗). From linear algebra,
we know that under the 𝐺𝐿(𝑛, 𝑘)-action defined by 𝑔, 𝑇 ↦ 𝑔𝑇𝑔−1, 𝑇 is classified by the
its rank and each 𝑇 is conjugate to some diag(1, … , 1, 0, … , 0), which has 𝑟 1's and 𝑛 −
𝑟 0's. Thus each orbit of such a diag(1, … , 1, 0, … , 0) under the group action forms an
irreducible component and every idempotent matrix is contained in one such orbit. Next
we will show that any two different orbits are necessarily disjoint. For this purpose we
only need to cook up polynomial functions that take different values on different orbits. In
characteristic 0 cases, such a function can be taken to be 𝑓(𝑡𝑖𝑗) = 𝑡𝑟𝑎𝑐𝑒(𝑇) = ∑𝑛

𝑖=1 𝑡𝑖𝑖. In
positive characteristic cases, things are slightly more tricky since we might have 𝑡𝑟𝑎𝑐𝑒(𝑇) =
0 even if 𝑇 ≠ 0. For instance, 𝑐ℎ𝑎𝑟 = 3

𝑡𝑟𝑎𝑐𝑒
⎛
⎜
⎜
⎝

1
1

1

⎞
⎟
⎟
⎠

= 3 = 0

Anyway, these components can be separated using other functions. For instance, in the
characteristic 3 case, 𝑡𝑟(∧3𝑇) takes value 1 on the components corresponding to 𝑑𝑖𝑎𝑔(1, 1, 1)
and 0 on other components.

7.32. Finite and integral ring extensions

Trivial lemmas concerning finite and integral ring maps. We recall the definition.

Definition 7.32.1. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map.
(1) An element 𝑠 ∈ 𝑆 is integral over 𝑅 if there exists a monic polynomial 𝑃(𝑥) ∈

𝑅[𝑥] such that 𝑃𝜑(𝑠) = 0, where 𝑃𝜑(𝑥) ∈ 𝑆[𝑥] is the image of 𝑃 under 𝜑 ∶
𝑅[𝑥] → 𝑆[𝑥].

(2) The ring map 𝜑 is integral if every 𝑠 ∈ 𝑆 is integral over 𝑅.
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Lemma 7.32.2. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑦 ∈ 𝑆. If there exists a finite
𝑅-submodule 𝑀 of 𝑆 such that 1 ∈ 𝑀 and 𝑦𝑀 ⊂ 𝑀, then 𝑦 is integral over 𝑅.

Proof. Let 𝑥1 = 1 ∈ 𝑀 and 𝑥𝑖 ∈ 𝑀, 𝑖 = 2, … , 𝑛 be a finite set of elements generating
𝑀 as an 𝑅-module. Write 𝑦𝑥𝑖 = ∑ 𝜑(𝑎𝑖𝑗)𝑥𝑗 for some 𝑎𝑖𝑗 ∈ 𝑅. Let 𝑃(𝑇) ∈ 𝑅[𝑇] be
the characteristic polynomial of the 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗). By Lemma 7.15.1 we see
𝑃(𝐴) = 0. By construction the map 𝜋 ∶ 𝑅𝑛 → 𝑀, (𝑎1, … , 𝑎𝑛) ↦ ∑ 𝜑(𝑎𝑖)𝑥𝑖 commutes
with 𝐴 ∶ 𝑅𝑛 → 𝑅𝑛 and multiplication by 𝑦. In a formula 𝜋(𝐴𝑣) = 𝑦𝜋(𝑣). Thus 𝑃(𝑦) =
𝑃(𝑦) ⋅ 1 = 𝑃(𝑦) ⋅ 𝑥1 = 𝑃(𝑦) ⋅ 𝜋((1, 0, … , 0)) = 𝜋(𝑃(𝐴)(1, 0, … , 0)) = 0. �

Lemma 7.32.3. A finite ring extension is integral.

Proof. Let 𝑅 → 𝑆 be finite. Let 𝑦 ∈ 𝑆. Apply Lemma 7.32.2 to 𝑀 = 𝑆 to see that 𝑦 is
integral over 𝑅. �

Lemma 7.32.4. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑠1, … , 𝑠𝑛 be a finite set of elements
of 𝑆. In this case 𝑠𝑖 is integral over 𝑅 for all 𝑖 = 1, … , 𝑛 if and only if there exists an
𝑅-subalgebra 𝑆′ ⊂ 𝑆 finite over 𝑅 containing all of the 𝑠𝑖.

Proof. If each 𝑠𝑖 is integral, then the subalgebra generated by 𝜑(𝑅) and the 𝑠𝑖 is finite over
𝑅. Namely, if 𝑠𝑖 satisfies a monic equation of degree 𝑑𝑖 over 𝑅, then this subalgebra is
generated as an 𝑅-module by the elements 𝑠𝑒1

1 … 𝑠𝑒𝑛
𝑛 with 0 ≤ 𝑒𝑖 ≤ 𝑑𝑖 − 1. Conversely,

suppose given a finite 𝑅-subalgebra 𝑆′ containing all the 𝑠𝑖. Then all of the 𝑠𝑖 are integral
by Lemma 7.32.3. �

Lemma 7.32.5. Let 𝑅 → 𝑆 be a ring map. The following are equivalent
(1) 𝑅 → 𝑆 is finite,
(2) 𝑅 → 𝑆 is integral and of finite type, and
(3) there exist 𝑥1, … , 𝑥𝑛 ∈ 𝑆 which generate 𝑆 as an algebra over 𝑅 such that each

𝑥𝑖 is integral over 𝑅.

Proof. Clear from Lemma 7.32.4. �

Lemma 7.32.6. Suppose that 𝑅 → 𝑆 and 𝑆 → 𝑇 are integral ring maps. Then 𝑅 → 𝑇 is
integral.

Proof. Let 𝑡 ∈ 𝑇. Let 𝑃(𝑥) ∈ 𝑆[𝑥] be a monic polynomial such that 𝑃(𝑡) = 0. Apply
Lemma 7.32.4 to the finite set of coefficients of 𝑃. Hence 𝑡 is integral over some subalgebra
𝑆′ ⊂ 𝑆 finite over 𝑅. Apply Lemma 7.32.4 again to find a subalgebra 𝑇′ ⊂ 𝑇 finite over
𝑆′ and containing 𝑡. Lemma 7.7.3 applied to 𝑅 → 𝑆′ → 𝑇′ shows that 𝑇′ is finite over 𝑅.
The integrality of 𝑡 over 𝑅 now follows from Lemma 7.32.3. �

Lemma 7.32.7. Let 𝑅 → 𝑆 be a ring homomorphism. The set

𝑆′ = {𝑠 ∈ 𝑆 ∣ 𝑠 is integral over 𝑅}
is an 𝑅-subalgebra of 𝑆.

Proof. This is clear from Lemmas 7.32.4 and 7.32.3. �

Definition 7.32.8. Let 𝑅 → 𝑆 be a ring map. The ring 𝑆′ ⊂ 𝑆 of elements integral over
𝑅, see Lemma 7.32.7, is called the integral closure of 𝑅 in 𝑆. If 𝑅 ⊂ 𝑆 we say that 𝑅 is
integrally closed in 𝑆 if 𝑅 = 𝑆′.

In particular, we see that 𝑅 → 𝑆 is integral if and only if the integral closure of 𝑅 in 𝑆 is
all of 𝑆.
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Lemma 7.32.9. Integral closure commutes with localization: If 𝐴 → 𝐵 is a ring map, and
𝑆 ⊂ 𝐴 is a multiplicative subset, then the integral closure of 𝑆−1𝐴 in 𝑆−1𝐵 is 𝑆−1𝐵′, where
𝐵′ ⊂ 𝐵 is the integral closure of 𝐴 in 𝐵.

Proof. Since localization is exact we see that 𝑆−1𝐵′ ⊂ 𝑆−1𝐵. Suppose 𝑥 ∈ 𝐵′ and 𝑓 ∈ 𝑆.
Then 𝑥𝑑 + ∑𝑖=1,…,𝑑 𝑎𝑖𝑥𝑑−𝑖 = 0 in 𝐵 for some 𝑎𝑖 ∈ 𝐴. Hence also

(𝑥/𝑓)𝑑 + ∑𝑖=1,…,𝑑
𝑎𝑖/𝑓𝑖(𝑥/𝑓)𝑑−𝑖 = 0

in 𝑆−1𝐵. In this way we see that 𝑆−1𝐵′ is contained in the integral closure of 𝑆−1𝐴 in
𝑆−1𝐵. Conversely, suppose that 𝑥/𝑓 ∈ 𝑆−1𝐵 is integral over 𝑆−1𝐴. Then we have

(𝑥/𝑓)𝑑 + ∑𝑖=1,…,𝑑
(𝑎𝑖/𝑓𝑖)(𝑥/𝑓)𝑑−𝑖 = 0

in 𝑆−1𝐵 for some 𝑎𝑖 ∈ 𝐴 and 𝑓𝑖 ∈ 𝑆. This means that

(𝑓′𝑓1 … 𝑓𝑑𝑥)𝑑 + ∑𝑖=1,…,𝑑
𝑓𝑖(𝑓′)𝑖𝑓𝑖

1 … 𝑓𝑖−1
𝑖 … 𝑓𝑖

𝑑𝑎𝑖(𝑓′𝑓1 … 𝑓𝑑𝑥)𝑑−𝑖 = 0

for a suitable 𝑓′ ∈ 𝑆. Hence 𝑓′𝑓1 … 𝑓𝑑𝑥 ∈ 𝐵′ and thus 𝑥/𝑓 ∈ 𝑆−1𝐵′ as desired. �

Lemma 7.32.10. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑥 ∈ 𝑆. The following are equivalent:
(1) 𝑥 is integral over 𝑅, and
(2) for every 𝔭 ∈ 𝑅 the element 𝑥 ∈ 𝑆𝔭 is integral over 𝑅𝔭.

Proof. It is clear that (1) implies (2). Assume (1). Consider the 𝑅-algebra 𝑆′ ⊂ 𝑆 gener-
ated by𝜑(𝑅) and 𝑥. Let𝔭 be a prime ideal of𝑅. Thenwe know that 𝑥𝑑+∑𝑖=1,…,𝑑 𝜑(𝑎𝑖)𝑥𝑑−𝑖 =
0 in 𝑆𝔭 for some 𝑎𝑖 ∈ 𝑅𝔭. Hence we see, by looking at which denominators occur, that for
some 𝑓 ∈ 𝑅, 𝑓∉𝔭 we have 𝑎𝑖 ∈ 𝑅𝑓 and 𝑥𝑑 + ∑𝑖=1,…,𝑑 𝜑(𝑎𝑖)𝑥𝑑−𝑖 = 0 in 𝑆𝑓. This implies
that 𝑆′

𝑓 is finite over 𝑅𝑓. Since 𝔭 was arbitrary and 𝑆𝑝𝑒𝑐(𝑅) is quasi-compact (Lemma
7.16.10) we can find finitely many elements 𝑓1, … , 𝑓𝑛 ∈ 𝑅 which generate the unit ideal
of 𝑅 such that 𝑆′

𝑓𝑖
is finite over 𝑅. Hence we conclude from Lemma 7.21.2 that 𝑆′ is finite

over 𝑅. Hence 𝑥 is integral over 𝑅 by Lemma 7.32.4. �

Lemma 7.32.11. Let 𝑅 → 𝑆 and 𝑅 → 𝑅′ be ring maps. Set 𝑆′ = 𝑅′ ⊗𝑅 𝑆.
(1) If 𝑅 → 𝑆 is integral so is 𝑅′ → 𝑆′.
(2) If 𝑅 → 𝑆 is finite so is 𝑅′ → 𝑆′.

Proof. We prove (1). Let 𝑠𝑖 ∈ 𝑆 be generators for 𝑆 over 𝑅. Each of these satisfies a monic
polynomial equation 𝑃𝑖 over 𝑅. Hence the elements 1 ⊗ 𝑠𝑖 ∈ 𝑆′ generate 𝑆′ over 𝑅′ and
satisfy the corresponding polynomial 𝑃′

𝑖 over 𝑅′. Since these elements generate 𝑆′ over 𝑅′

we see that 𝑆′ is integral over 𝑅′. Proof of (2) omitted. �

Lemma 7.32.12. Let 𝑅 → 𝑆 be a ring map. Let 𝑓1, … , 𝑓𝑛 ∈ 𝑅 generate the unit ideal.
(1) If each 𝑅𝑓𝑖

→ 𝑆𝑓𝑖
is integral, so is 𝑅 → 𝑆.

(2) If each 𝑅𝑓𝑖
→ 𝑆𝑓𝑖

is finite, so is 𝑅 → 𝑆.

Proof. Proof of (1). Let 𝑠 ∈ 𝑆. Consider the ideal 𝐼 ⊂ 𝑅[𝑥] of polynomials 𝑃 such that
𝑃(𝑠) = 0. Let 𝐽 ⊂ 𝑅 denote the ideal (!) of leading coefficients of elements of 𝐼. By
assumption and clearing denominators we see that 𝑓𝑛𝑖

𝑖 ∈ 𝐽 for all 𝑖 and certain 𝑛𝑖 ≥ 0.
Hence 𝐽 contains 1 and we see 𝑠 is integral over 𝑅. Proof of (2) omitted. �

Lemma 7.32.13. Let 𝐴 → 𝐵 → 𝐶 be ring maps.
(1) If 𝐴 → 𝐶 is integral so is 𝐵 → 𝐶.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0307
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=034K
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02JK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02JL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02JM


260 7. COMMUTATIVE ALGEBRA

(2) If 𝐴 → 𝐶 is finite so is 𝐵 → 𝐶.

Proof. Omitted. �

Lemma 7.32.14. Let 𝐴 → 𝐵 → 𝐶 be ring maps. Let 𝐵′ be the integral closure of 𝐴 in 𝐵,
let 𝐶′ be the integral closure of 𝐵′ in 𝐶. Then 𝐶′ is the integral closure of 𝐴 in 𝐶.

Proof. Omitted. �

Lemma 7.32.15. Suppose that 𝑅 → 𝑆 is an integral ring extension with 𝑅 ⊂ 𝑆. Then
𝜑 ∶ 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is surjective.

Proof. Let 𝔭 ⊂ 𝑅 be a prime ideal. We have to show 𝔭𝑆𝔭≠𝑆𝔭, see Lemma 7.16.9. The
localization 𝑅𝔭 → 𝑆𝔭 is injective (as localization is exact) and integral by Lemma 7.32.9 or
7.32.11. Hence wemay replace 𝑅, 𝑆 by 𝑅𝔭, 𝑆𝔭 andwemay assume 𝑅 is local with maximal
ideal 𝔪 and it suffices to show that 𝔪𝑆≠𝑆. Suppose 1 = ∑ 𝑓𝑖𝑠𝑖 with 𝑓𝑖 ∈ 𝔪 and 𝑠𝑖 ∈ 𝑆
in order to get a contradiction. Let 𝑅 ⊂ 𝑆′ ⊂ 𝑆 be such that 𝑅 → 𝑆′ is finite and 𝑠𝑖 ∈ 𝑆′,
see Lemma 7.32.4. The equation 1 = ∑ 𝑓𝑖𝑠𝑖 implies that the finite 𝑅-module 𝑆′ satisfies
𝑆′ = 𝔪𝑆′. Hence by Nakayama's Lemma 7.14.5 we see 𝑆′ = 0. Contradiction. �

Lemma 7.32.16. Let 𝑅 be a ring. Let 𝐾 be a field. If 𝑅 ⊂ 𝐾 and 𝐾 is integral over 𝑅,
then 𝑅 is a field and 𝐾 is an algebraic extension. If 𝑅 ⊂ 𝐾 and 𝐾 is finite over 𝑅, then 𝑅
is a field and 𝐾 is a finite algebraic extension.

Proof. Assume that 𝑅 ⊂ 𝐾 is integral. By Lemma 7.32.15 above we see that 𝑆𝑝𝑒𝑐(𝑅) has
1 point. Since clearly 𝑅 is a domain we see that 𝑅 = 𝑅(0) is a field. The other assertions
are immediate from this. �

Lemma 7.32.17. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra over 𝑘.
(1) If 𝑆 is a domain and finite dimensional over 𝑘, then 𝑆 is a field.
(2) If 𝑆 is integral over 𝑘 and a domain, then 𝑆 is a field.
(3) If 𝑆 is integral over 𝑘 then every prime of 𝑆 is a maximal ideal (see Lemma 7.23.5

for more consequences).

Proof. The statement on primes follows from the statement ``integral + domain ⇒ field''.
Let 𝑆 integral over 𝑘 and assume 𝑆 is a domain, Take 𝑠 ∈ 𝑆. By Lemma 7.32.4 we may
find a finite dimensional 𝑘-subalgebra 𝑘 ⊂ 𝑆′ ⊂ 𝑆. containing 𝑠. Hence 𝑆 is a field if
we can prove the first statement. Assume 𝑆 finite dimensional over 𝑘 and a domain. Pick
𝑠 ∈ 𝑆. Since 𝑆 is a domain the multiplication map 𝑠 ∶ 𝑆 → 𝑆 is surjective by dimension
reasons. Hence there exists an element 𝑠1 ∈ 𝑆 such that 𝑠𝑠1 = 1. So 𝑆 is a field. �

Lemma 7.32.18. Suppose 𝑅 → 𝑆 is integral. Let 𝔮, 𝔮′ ∈ 𝑆𝑝𝑒𝑐(𝑆) be distinct primes
having the same image in 𝑆𝑝𝑒𝑐(𝑅). Then neither 𝔮 ⊂ 𝔮′ nor 𝔮′ ⊂ 𝔮.

Proof. Let 𝔭 ⊂ 𝑅 be the image. By Remark 7.16.8 the primes 𝔮, 𝔮′ correspond to ideals in
𝑆 ⊗𝑅 𝜅(𝔭). Thus the lemma follows from Lemma 7.32.17. �

Lemma 7.32.19. Suppose 𝑅 → 𝑆 is finite. Then the fibres of 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) are
finite.

Proof. By the discussion in Remark 7.16.8 the fibres are the spectra of the rings 𝑆⊗𝑅 𝜅(𝔭).
As 𝑅 → 𝑆 is finite, these fibre rings are finite over 𝜅(𝔭) hence Noetherian by Lemma 7.28.1.
By Lemma 7.32.18 every prime of 𝑆 ⊗𝑅 𝜅(𝔭) is a minimal prime. Hence by Lemma 7.28.6
there are at most finitely many. �
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Lemma 7.32.20. Let 𝑅 → 𝑆 be a ring map such that 𝑆 is integral over 𝑅. Let 𝔭 ⊂ 𝔭′ ⊂ 𝑅
be primes. Let 𝔮 be a prime of 𝑆 mapping to 𝔭. Then there exists a prime 𝔮′ with 𝔮 ⊂ 𝔮′

mapping to 𝔭′.

Proof. We may replace 𝑅 by 𝑅/𝔭 and 𝑆 by 𝑆/𝔮. This reduces us to the situation of having
an integral extension of domains 𝑅 ⊂ 𝑆 and a prime 𝔭′ ⊂ 𝑅. By Lemma 7.32.15 we
win. �

The property expressed in the lemma above is called the ``going up property'' for the ring
map 𝑅 → 𝑆, see Definition 7.36.1.

Lemma 7.32.21. Let 𝑅 be a ring. Let 𝑥, 𝑦 ∈ 𝑅 be nonzero divisors. Let 𝑅[𝑥/𝑦] ⊂
𝑅𝑥𝑦 be the 𝑅-subalgebra generated by 𝑥/𝑦, and similarly for the subalgebras 𝑅[𝑦/𝑥] and
𝑅[𝑥/𝑦, 𝑦/𝑥]. If 𝑅 is integrally closed in 𝑅𝑥 or 𝑅𝑦, then the sequence

0 → 𝑅
(−1,1)

−−−−−→ 𝑅[𝑥/𝑦] ⊕ 𝑅[𝑦/𝑥]
(1,1)

−−−→ 𝑅[𝑥/𝑦, 𝑦/𝑥] → 0
is a short exact sequence of 𝑅-modules.

Proof. Since 𝑥/𝑦 ⋅ 𝑦/𝑥 = 1 it is clear that the map 𝑅[𝑥/𝑦] ⊕ 𝑅[𝑦/𝑥] → 𝑅[𝑥/𝑦, 𝑦/𝑥] is
surjective. Let 𝛼 ∈ 𝑅[𝑥/𝑦] ∩ 𝑅[𝑦/𝑥]. To show exactness in the middle we have to prove
that 𝛼 ∈ 𝑅. By assumption we may write

𝛼 = 𝑎0 + 𝑎1𝑥/𝑦 + … + 𝑎𝑛(𝑥/𝑦)𝑛 = 𝑏0 + 𝑏1𝑦/𝑥 + … + 𝑏𝑚(𝑦/𝑥)𝑚

for some 𝑛, 𝑚 ≥ 0 and 𝑎𝑖, 𝑏𝑗 ∈ 𝑅. Pick some 𝑁 > max(𝑛, 𝑚). Consider the finite
𝑅-submodule 𝑀 of 𝑅𝑥𝑦 generated by the elements

(𝑥/𝑦)𝑁, (𝑥/𝑦)𝑁−1, … , 𝑥/𝑦, 1, 𝑦/𝑥, … , (𝑦/𝑥)𝑁−1, (𝑦/𝑥)𝑁

We claim that 𝛼𝑀 ⊂ 𝑀. Namely, it is clear that (𝑥/𝑦)𝑖(𝑏0 + 𝑏1𝑦/𝑥 + … + 𝑏𝑚(𝑦/𝑥)𝑚) ∈ 𝑀
for 0 ≤ 𝑖 ≤ 𝑁 and that (𝑦/𝑥)𝑖(𝑎0 + 𝑎1𝑥/𝑦 + … + 𝑎𝑛(𝑥/𝑦)𝑛) ∈ 𝑀 for 0 ≤ 𝑖 ≤ 𝑁. Hence 𝛼 is
integral over 𝑅 by Lemma 7.32.2. Note that 𝛼 ∈ 𝑅𝑥, so if 𝑅 is integrally closed in 𝑅𝑥 then
𝛼 ∈ 𝑅 as desired. �

7.33. Normal rings

We first introduce the notion of a normal domain, and then we introduce the (very general)
notion of a normal ring.

Definition 7.33.1. A domain 𝑅 is called normal if it is integrally closed in its field of
fractions.

Lemma 7.33.2. Let 𝑅 → 𝑆 be a ring map. If 𝑆 is a normal domain, then the integral
closure of 𝑅 in 𝑆 is a normal domain.

Proof. Omitted. �

The following notion is occasionally useful when studying normality.

Definition 7.33.3. Let 𝑅 be a domain.
(1) An element 𝑔 of the fraction field of 𝑅 is called almost integral over 𝑅 if there

exists an element 𝑟 ∈ 𝑅, 𝑟≠0 such that 𝑟𝑔𝑛 ∈ 𝑅 for all 𝑛 ≥ 0.
(2) The domain 𝑅 is called completely normal if every almost integral element of the

fraction field of 𝑅 is contained in 𝑅.

The following lemma shows that a Noetherian domain is normal if and only if it is com-
pletely normal.
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Lemma 7.33.4. Let 𝑅 be a domain with fraction field 𝐾. If 𝑢, 𝑣 ∈ 𝐾 are almost integral
over 𝑅, then so are 𝑢 + 𝑣 and 𝑢𝑣. Any element 𝑔 ∈ 𝐾 which is integral over 𝑅 is almost
integral over 𝑅. If 𝑅 is Noetherian then the converse holds as well.

Proof. If 𝑟𝑢𝑛 ∈ 𝑅 for all 𝑛 ≥ 0 and 𝑣𝑛𝑟′ ∈ 𝑅 for all 𝑛 ≥ 0, then (𝑢𝑣)𝑛𝑟𝑟′ and (𝑢 + 𝑣)𝑛𝑟𝑟′ are
in 𝑅 for all 𝑛 ≥ 0. Hence the first assertion. Suppose 𝑔 ∈ 𝐾 is integral over 𝑅. In this case
there exists an 𝑑 > 0 such that the ring 𝑅[𝑔] is generated by 1, 𝑔, … , 𝑔𝑑 as an 𝑅-module.
Let 𝑟 ∈ 𝑅 be a common denominator of the elements 1, 𝑔, … , 𝑔𝑑 ∈ 𝐾. It is follows that
𝑟𝑅[𝑔] ⊂ 𝑅, and hence 𝑔 is almost integral over 𝑅.

Suppose 𝑅 is Noetherian and 𝑔 ∈ 𝐾 is almost integral over 𝑅. Let 𝑟 ∈ 𝑅, 𝑟≠0 be as in the
definition. Then 𝑅[𝑔] ⊂ 1

𝑟 𝑅 as an 𝑅-module. Since 𝑅 is Noetherian this implies that 𝑅[𝑔]
is finite over 𝑅. Hence 𝑔 is integral over 𝑅, see Lemma 7.32.3. �

Lemma 7.33.5. Any localization of a normal domain is normal.

Proof. Let 𝑅 be a normal domain, and let 𝑆 ⊂ 𝑅 be a multiplicative subset. Suppose 𝑔 is
an element of the fraction field of 𝑅 which is integral over 𝑆−1𝑅. Let 𝑃 = 𝑥𝑑 + ∑𝑗<𝑑 𝑎𝑗𝑥𝑗

be a polynomial with 𝑎𝑖 ∈ 𝑆−1𝑅 such that 𝑃(𝑔) = 0. Choose 𝑠 ∈ 𝑆 such that 𝑠𝑎𝑖 ∈ 𝑅
for all 𝑖. Then 𝑠𝑔 satisfies the monic polynomial 𝑥𝑑 + ∑𝑗<𝑑 𝑠𝑑−𝑗𝑎𝑗𝑥𝑗 which has coefficients
𝑠𝑑−𝑗𝑎𝑗 in 𝑅. Hence 𝑠𝑔 ∈ 𝑅 because 𝑅 is normal. Hence 𝑔 ∈ 𝑆−1𝑅. �

Lemma 7.33.6. A principal ideal domain is normal.

Proof. Let 𝑅 be a principal ideal domain. Let 𝑔 = 𝑎/𝑏 be an element of the fraction field
of 𝑅 integral over 𝑅. Because 𝑅 is a principal ideal domain we may divide out a common
factor of 𝑎 and 𝑏 and assume (𝑎, 𝑏) = 𝑅. In this case, any equation (𝑎/𝑏)𝑛 + 𝑟𝑛−1(𝑎/𝑏)𝑛−1 +
… + 𝑟0 = 0 with 𝑟𝑖 ∈ 𝑅 would imply 𝑎𝑛 ∈ (𝑏). This contradicts (𝑎, 𝑏) = 𝑅 unless 𝑏 is a
unit in 𝑅. �

Lemma 7.33.7. Let 𝑅 be a domain with fraction field 𝐾. Suppose 𝑓 = ∑ 𝛼𝑖𝑥𝑖 is an element
of 𝐾[𝑥].

(1) If 𝑓 is integral over 𝑅[𝑥] then all 𝛼𝑖 are integral over 𝑅[𝑥], and
(2) If 𝑓 is almost integral over 𝑅[𝑥] then all 𝛼𝑖 are almost integral over 𝑅[𝑥].

Proof. We first prove the second statement. Write 𝑓 = 𝛼𝑑𝑥𝑑 + … + 𝛼𝑟𝑥𝑟 with 𝛼𝑟≠0. By
assumption there exists ℎ = 𝑏𝑑𝑥𝑑 + … + 𝑏𝑠𝑥𝑠 ∈ 𝑅[𝑥], 𝑏𝑠≠0 such that 𝑓𝑛ℎ ∈ 𝑅[𝑥] for
all 𝑛 ≥ 0. This implies that 𝑏𝑠𝛼𝑛

𝑟 ∈ 𝑅 for all 𝑛 ≥ 0. Hence 𝛼𝑟 is almost integral over
𝑅. Since the set of almost integral elements form a subring we deduce that 𝑓 − 𝛼𝑟𝑥𝑟 =
𝛼𝑑𝑥𝑑 + … + 𝛼𝑟−1𝑥𝑟−1 is almost integral over 𝑅[𝑥]. By induction on 𝑑 − 𝑟 we win.

In order to prove the first statement we will use absolute Noetherian reduction. Namely,
write 𝛼𝑖 = 𝑎𝑖/𝑏𝑖 and let 𝑃(𝑡) = 𝑡𝑑 + ∑𝑗<𝑑 𝑓𝑗𝑡𝑗 be a polynomial with coefficients 𝑓𝑗 ∈ 𝑅[𝑥]
such that 𝑃(𝑔) = 0. Let 𝑓𝑗 = ∑ 𝑓𝑗𝑖𝑥𝑖. Consider the subring 𝑅0 ⊂ 𝑅 generated by the finite
list of elements 𝑎𝑖, 𝑏𝑖, 𝑓𝑗𝑖 of 𝑅. It is a domain; let 𝐾0 be its field of fractions. Since 𝑅0 is a
finite type 𝐙-algebra it is Noetherian, see Lemma 7.28.3. It is still the case that 𝑔 ∈ 𝐾0[𝑥]
is integral over 𝑅0[𝑥], because all the identities in 𝑅 among the elements 𝑎𝑖, 𝑏𝑖, 𝑓𝑗𝑖 also hold
in 𝑅0. By Lemma 7.33.4 the element 𝑔 is almost integral over 𝑅0[𝑥]. By the first part of
the lemma, the elements 𝛼𝑖 are almost integral over 𝑅0. And since 𝑅0 is Noetherian, the
are integral over 𝑅0, see Lemma 7.33.4. Of course, then they are integral over 𝑅. �

Lemma 7.33.8. Let 𝑅 be a normal domain. Then 𝑅[𝑥] is a normal domain.
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Proof. The result is true if 𝑅 is a field 𝐾 because 𝐾[𝑥] is a euclidean domain and hence
a principal ideal domain and hence normal by Lemma 7.33.6. Let 𝑔 be an element of the
fraction field of 𝑅[𝑥] which is integral over 𝑅[𝑥]. Because 𝑔 is integral over 𝐾[𝑥] where
𝐾 is the fraction field of 𝑅 we may write 𝑔 = 𝛼𝑑𝑥𝑑 + 𝛼𝑑−1𝑥𝑑−1 + … + 𝛼0 with 𝛼𝑖 ∈ 𝐾. By
Lemma 7.33.7 the elements 𝛼𝑖 are integral over 𝑅 and hence are in 𝑅. �

Lemma 7.33.9. Let 𝑅 be a domain. The following are equivalent:
(1) The domain 𝑅 is a normal domain,
(2) for every prime 𝔭 ⊂ 𝑅 the local ring 𝑅𝔭 is a normal domain, and
(3) for every maximal ideal 𝔪 the ring 𝑅𝔪 is a normal domain.

Proof. This follows easily from the fact that for any domain 𝑅 we have

𝑅 = ⋂𝔪
𝑅𝔪

inside the fraction field of 𝑅. Namely, if 𝑔 is an element of the right hand side then the ideal
𝐼 = {𝑥 ∈ 𝑅 ∣ 𝑥𝑔 ∈ 𝑅} is not contained in any maximal ideal 𝔪, whence 𝐼 = 𝑅. �

Lemma 7.33.9 shows that the following definition is compatible with Definition 7.33.1. (It
is the definition from EGA -- see [DG67, IV, 5.13.5 and 0, 4.1.4].)

Definition 7.33.10. A ring 𝑅 is called normal if for every prime 𝔭 ⊂ 𝑅 the localization 𝑅𝔭
is a normal domain (see Definition 7.33.1).

Note that a normal ring is a reduced ring, as 𝑅 is a subring of the product of its localizations
at all primes (see for example Lemma 7.21.1).

Lemma 7.33.11. A normal ring is integrally closed in its total ring of fractions.

Proof. Let 𝑅 be a normal ring. Let 𝑥 ∈ 𝑄(𝑅) be an element of the total ring of fractions
of 𝑅 integral over 𝑅. Set 𝐼 = {𝑓 ∈ 𝑅, 𝑓𝑥 ∈ 𝑅}. Let 𝔭 ⊂ 𝑅 be a prime. As 𝑅 ⊂ 𝑅𝔭 is flat
we see that 𝑅𝔭 ⊂ 𝑄(𝑅) ⊗ 𝑅𝔭. As 𝑅𝔭 is a normal domain we see that 𝑥 ⊗ 1 is an element of
𝑅𝔭. Hence we can find 𝑎, 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that 𝑥 ⊗ 1 = 𝑎 ⊗ 1/𝑓. This means that 𝑓𝑥 − 𝑎
maps to zero in 𝑄(𝑅) ⊗𝑅 𝑅𝔭 = 𝑄(𝑅)𝔭, which in turn means that there exists an 𝑓′ ∈ 𝑅,
𝑓′∉𝔭 such that 𝑓′𝑓𝑥 = 𝑓′𝑎 in 𝑅. In other words, 𝑓𝑓′ ∈ 𝐼. Thus 𝐼 is an ideal which isn't
contained in any of the prime ideals of 𝑅, i.e., 𝐼 = 𝑅 and 𝑥 ∈ 𝑅. �

Lemma 7.33.12. A localization of a normal ring is a normal ring.

Proof. Omitted. �

Lemma 7.33.13. Let 𝑅 be a normal ring. Then 𝑅[𝑥] is a normal ring.

Proof. Let 𝔮 be a prime of 𝑅[𝑥]. Set 𝔭 = 𝑅∩𝔮. Then we see that 𝑅𝔭[𝑥] is a normal domain
by Lemma 7.33.8. Hence (𝑅[𝑥])𝔮 is a normal domain by Lemma 7.33.5. �

Lemma 7.33.14. Let 𝑅 be a ring. Assume 𝑅 is reduced and has finitely many minimal
primes. Then the following are equivalent:

(1) 𝑅 is a normal ring,
(2) 𝑅 is integrally closed in its total ring of fractions, and
(3) 𝑅 is a finite product of normal domains.

Proof. Let 𝔮1, … , 𝔮𝑡 be the minimal primes of 𝑅. By Lemma 7.22.2 we have 𝑄(𝑅) =
𝑅𝔮1

×…×𝑅𝔮𝑡
, and by Lemma 7.23.3 each factor is a field. Denote 𝑒𝑖 = (0, … , 0, 1, 0, … , 0)

the 𝑖th idempotent of 𝑄(𝑅).
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If 𝑅 is integrally closed in 𝑄(𝑅), then it contains in particular the idempotents 𝑒𝑖, and we
see that 𝑅 is a product of 𝑡 domains (see Sections 7.19 and 7.20). Hence it is clear that 𝑅
is a finite product of normal domains.
If 𝑅 is normal, then it is clear that 𝑒𝑖 ∈ 𝑅𝔭 for every prime ideal 𝔭 of 𝑅. Hence we see that 𝑅
contains the elements 𝑒𝑖 (see proof of Lemma 7.33.9). We conclude that 𝑅 is a product of 𝑡
domains as before. Each of these 𝑡 domains is normal by Lemma 7.33.9 and the assumption
that 𝑅 is a normal ring. Hence it follows that 𝑅 is a finite product of normal domains.
We omit the verification that (3) implies (1) and (2). �

Lemma 7.33.15. Let (𝑅𝑖, 𝜑𝑖𝑖′) be a directed system (Categories, Definition 7.8.2) of rings.
If each 𝑅𝑖 is a normal ring so is 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖.

Proof. Let 𝔭 ⊂ 𝑅 be a prime ideal. Set 𝔭𝑖 = 𝑅𝑖 ∩ 𝔭 (usual abuse of notation). Then we
see that 𝑅𝔭 = 𝑐𝑜𝑙𝑖𝑚𝑖(𝑅𝑖)𝔭𝑖

. Since each (𝑅𝑖)𝔭𝑖
is a normal domain we reduce to proving

the statement of the lemma for normal domains. If 𝑎, 𝑏 ∈ 𝑅 and 𝑎/𝑏 satisfies a monic
polynomial 𝑃(𝑇) ∈ 𝑅[𝑇], then we can find a (sufficiently large) 𝑖 ∈ 𝐼 such that 𝑎, 𝑏, 𝑃 all
come from objects 𝑎𝑖, 𝑏𝑖, 𝑃𝑖 over 𝑅𝑖. Since 𝑅𝑖 is normal we see 𝑎𝑖/𝑏𝑖 ∈ 𝑅𝑖 and hence also
𝑎/𝑏 ∈ 𝑅. �

7.34. Going down for integral over normal

We first play around a little bit with the notion of elements integral over an ideal, and then
we prove the theorem referred to in the section title.

Definition 7.34.1. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. We say an
element 𝑔 ∈ 𝑆 is integral over 𝐼 if there exists a monic polynomial 𝑃 = 𝑥𝑑 + ∑𝑗<𝑑 𝑎𝑗𝑥𝑗

with coefficients 𝑎𝑗 ∈ 𝐼𝑑−𝑗 such that 𝑃𝜑(𝑔) = 0 in 𝑆.

This is mostly used when 𝜑 = id𝑅 ∶ 𝑅 → 𝑅. In this case the set 𝐼′ of elements integral
over 𝐼 is called the integral closure of 𝐼. We will see that 𝐼′ is an ideal of 𝑅 (and of course
𝐼 ⊂ 𝐼′).

Lemma 7.34.2. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝐴 = ∑ 𝐼𝑛𝑡𝑛 ⊂
𝑅[𝑡] be the subring of the polynomial ring generated by 𝑅 ⊕ 𝐼𝑡 ⊂ 𝑅[𝑡]. An element 𝑠 ∈ 𝑆
is integral over 𝐼 if and only if the element 𝑠𝑡 ∈ 𝑆[𝑡] is integral over 𝐴.

Proof. Suppose 𝑠𝑡 is integral over 𝐴. Let 𝑃 = 𝑥𝑑 + ∑𝑗<𝑑 𝑎𝑗𝑥𝑗 be a monic polynomial
with coefficients in 𝐴 such that 𝑃𝜑(𝑠𝑡) = 0. Let 𝑎′

𝑗 ∈ 𝐴 be the degree 𝑑 − 𝑗 part of 𝑎𝑖,
in other words 𝑎′

𝑗 = 𝑎″
𝑗 𝑡𝑑−𝑗 with 𝑎″

𝑗 ∈ 𝐼𝑑−𝑗. For degree reasons we still have (𝑠𝑡)𝑑 +
∑𝑗<𝑑 𝜑(𝑎″

𝑗 )𝑡𝑑−𝑗(𝑠𝑡)𝑗 = 0. Hence we see that 𝑠 is integral over 𝐼.

Suppose that 𝑠 is integral over 𝐼. Say 𝑃 = 𝑥𝑑 + ∑𝑗<𝑑 𝑎𝑗𝑥𝑗 with 𝑎𝑗 ∈ 𝐼𝑑−𝑗. The we
immediately find a polynomial 𝑄 = 𝑥𝑑 + ∑𝑗<𝑑(𝑎𝑗𝑡𝑑−𝑗)𝑥𝑗 with coefficients in 𝐴 which
proves that 𝑠𝑡 is integral over 𝐴. �

Lemma 7.34.3. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. The set of elements
of 𝑆 which are integral over 𝐼 form a 𝑅-submodule of 𝑆. Furthermore, if 𝑠 ∈ 𝑆 is integral
over 𝑅, and 𝑠′ is integral over 𝐼, then 𝑠𝑠′ is integral over 𝐼.

Proof. Closure under addition is clear from the characterization of Lemma 7.34.2. Any
element 𝑠 ∈ 𝑆 which is integral over 𝑅 corresponds to the degree 0 element 𝑠 of 𝑆[𝑥]
which is integral over 𝐴 (because 𝑅 ⊂ 𝐴). Hence we see that multiplication by 𝑠 on 𝑆[𝑥]
preserves the property of being integral over 𝐴, by Lemma 7.32.7. �
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Lemma 7.34.4. Suppose 𝜑 ∶ 𝑅 → 𝑆 is integral. Suppose 𝐼 ⊂ 𝑅 is an ideal. Then every
element of 𝐼𝑆 is integral over 𝐼.

Proof. Immediate from Lemma 7.34.3. �

Lemma7.34.5. Let𝑅 be a domainwith field of fractions𝐾. Let 𝑛, 𝑚 ∈ 𝐍 and 𝑎0, … , 𝑎𝑛−1, 𝑏0, … , 𝑏𝑚−1 ∈
𝑅. If the polynomial 𝑥𝑛 +𝑎𝑛−1𝑥𝑛−1 +…+𝑎0 divides the polynomial 𝑥𝑚 +𝑏𝑚−1𝑥𝑚−1 +…+𝑏0
in 𝐾[𝑥] then

(1) 𝑎0, … , 𝑎𝑛−1 are integral over the subring of 𝑅 generated by 𝑏0, … , 𝑏𝑚−1, and
(2) each 𝑎𝑖 lies in √(𝑏0, … , 𝑏𝑚).

Proof. Let 𝐾 ⊃ 𝑅 be the fraction field of 𝑅. Let 𝐿 ⊃ 𝐾 be a field extension such that
we can write 𝑥𝑚 + 𝑏𝑚−1𝑥𝑚−1 + … + 𝑏0 = ∏𝑚

𝑖=1(𝑥 − 𝛽𝑖) with 𝛽𝑖 ∈ 𝐿. Each 𝛽𝑖 is integral
over the subring generated by 𝑏0, … , 𝑏𝑚−1. Since each 𝑎𝑖 is a homogeneous polynomial in
𝛽1, … , 𝛽𝑚 we deduce the same for the 𝑎𝑖.

Choose 𝑐0, … , 𝑐𝑚−𝑛−1 ∈ 𝐾 such that

𝑥𝑚 + 𝑏𝑚−1𝑥𝑚−1 + … + 𝑏0 =
(𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎0)(𝑥𝑚−𝑛 + 𝑐𝑚−𝑛−1𝑥𝑚−𝑛−1 + … + 𝑐0).

By the first part we see that the elements 𝑐𝑖 are integral over 𝑅. Let 𝑅′ be the sub 𝑅-algebra
of𝐾 generated by 𝑐0, … , 𝑐𝑚−𝑛−1. By Lemmas 7.32.15 and 7.27.3we see that𝑅∩√(𝑏0, … , 𝑏𝑚)𝑅′ =
√(𝑏0, … , 𝑏𝑚). Thus we may replace 𝑅 by 𝑅′ and assume 𝑐𝑖 ∈ 𝑅. Dividing out the radical
√(𝑏0, … , 𝑏𝑚) we get a reduced ring 𝑅. We have to show that the images 𝑎𝑖 ∈ 𝑅 are zero.
And in 𝑅[𝑥] we have the relation

𝑥𝑚 = 𝑥𝑚 + 𝑏𝑚−1𝑥𝑚−1 + … + 𝑏0 =
(𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎0)(𝑥𝑚−𝑛 + 𝑐𝑚−𝑛−1𝑥𝑚−𝑛−1 + … + 𝑐0).

It is easy to see that this implies 𝑎𝑖 = 0 for all 𝑖. For example one can see this by localizing
at all the minimal primes, see Lemma 7.23.6. �

Lemma 7.34.6. Let 𝑅 ⊂ 𝑆 be an inclusion of domains. Assume 𝑅 is normal. Let 𝑔 ∈ 𝑆 be
integral over 𝑅. Then the minimal polynomial of 𝑔 has coefficients in 𝑅.

Proof. Let 𝑃 = 𝑥𝑚 + 𝑏𝑚−1𝑥𝑚−1 + … + 𝑏0 be a polynomial with coefficients in 𝑅 such
that 𝑃(𝑔) = 0. Let 𝑄 = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎0 be the minimal polynomial for 𝑔 over
the fraction field 𝐾 of 𝑅. Then 𝑄 divides 𝑃 in 𝐾[𝑥]. By Lemma 7.34.5 we see the 𝑎𝑖 are
integral over 𝑅. Since 𝑅 is normal this means they are in 𝑅. �

Proposition 7.34.7. Let 𝑅 ⊂ 𝑆 be an inclusion of domains. Assume 𝑅 is normal and 𝑆
integral over 𝑅. Let 𝔭 ⊂ 𝔭′ ⊂ 𝑅 be primes. Let 𝔮′ be a prime of 𝑆 with 𝔭′ = 𝑅 ∩ 𝔮′. Then
there exists a prime 𝔮 with 𝔮 ⊂ 𝔮′ such that 𝔭 = 𝑅 ∩ 𝔮. In other words: the going down
property holds for 𝑅 → 𝑆, see Definition 7.36.1.

Proof. Let 𝔭, 𝔭′ and 𝔮′ be as in the statement. We have to show there is a prime 𝔮, 𝔮 ⊂ 𝔮′

such that 𝑅 ∩ 𝔮 = 𝔭. This is the same as finding a prime of 𝑆𝔮′ mapping to 𝔭. According
to Lemma 7.16.9 we have to show that 𝔭𝑆𝔮′ ∩ 𝑅 = 𝔭. Pick 𝑧 ∈ 𝔭𝑆𝔮′ ∩ 𝑅. We may write
𝑧 = 𝑦/𝑔 with 𝑦 ∈ 𝔭𝑆 and 𝑔 ∈ 𝑆, 𝑔∉𝔮′. Written differently we have 𝑧𝑔 = 𝑦.

By Lemma 7.34.4 there exists a monic polynomial 𝑃 = 𝑥𝑚 + 𝑏𝑚−1𝑥𝑚−1 + … + 𝑏0 with
𝑏𝑖 ∈ 𝔭 such that 𝑃(𝑦) = 0.
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By Lemma 7.34.6 the minimal polynomial of 𝑔 over 𝐾 has coefficients in 𝑅. Write it as
𝑄 = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎0. Note that not all 𝑎𝑖, 𝑖 = 𝑛 − 1, … , 0 are in 𝔭 since that would
imply 𝑔𝑛 = ∑𝑗<𝑛 𝑎𝑗𝑔𝑗 ∈ 𝔭𝑆 ⊂ 𝔭′𝑆 ⊂ 𝔮′ which is a contradiction.

Since 𝑦 = 𝑧𝑔 we see immediately from the above that 𝑄′ = 𝑥𝑛 + 𝑧𝑎𝑛−1𝑥𝑛−1 + … + 𝑧𝑛𝑎0
is the minimal polynomial for 𝑦. Hence 𝑄′ divides 𝑃 and by Lemma 7.34.5 we see that
𝑧𝑗𝑎𝑛−𝑗 ∈ √(𝑏0, … , 𝑏𝑚−1) ⊂ 𝔭, 𝑗 = 1, … , 𝑛. Because not all 𝑎𝑖, 𝑖 = 𝑛 − 1, … , 0 are in 𝔭 we
conclude 𝑧 ∈ 𝔭 as desired. �

7.35. Flat modules and flat ring maps

One often used result is that if 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈ℐ 𝑀𝑖 is a colimit of 𝑅-modules and if 𝑁 is
another then

𝑀 ⊗ 𝑁 = 𝑐𝑜𝑙𝑖𝑚𝑖∈ℐ 𝑀𝑖 ⊗𝑅 𝑁,
see Lemma 7.11.8. This property is usually expressed by saying that ⊗ commutes with
colimits. Another often used result is that if 0 → 𝑁1 → 𝑁2 → 𝑁3 → 0 is an exact
sequence and if 𝑀 is any 𝑅-module, then

𝑀 ⊗𝑅 𝑁1 → 𝑀 ⊗𝑅 𝑁2 → 𝑀 ⊗𝑅 𝑁3 → 0

is still exact, see Lemma 7.11.10. Both of these properties tell us that the functor 𝑁 ↦
𝑀 ⊗𝑅 𝑁 is right exact. See Categories, Section 4.21 and Homology, Section 10.5. An
𝑅-module 𝑀 is flat if this functor is also left exact. Here is the precise definition.

Definition 7.35.1. Let 𝑅 be a ring.
(1) An 𝑅-module 𝑀 is called flat if whenever 𝑁1 → 𝑁2 → 𝑁3 is an exact sequence

of 𝑅-modules the sequence 𝑀 ⊗𝑅 𝑁1 → 𝑀 ⊗𝑅 𝑁1 → 𝑀 ⊗𝑅 𝑁1 is exact as
well.

(2) An𝑅-module𝑀 is called faithfully flat if the complex of𝑅-modules𝑁1 → 𝑁2 →
𝑁3 is exact if and only if the sequence 𝑀 ⊗𝑅 𝑁1 → 𝑀 ⊗𝑅 𝑁1 → 𝑀 ⊗𝑅 𝑁1 is
exact.

(3) A ring map 𝑅 → 𝑆 is called flat if 𝑆 is flat as an 𝑅-module.
(4) A ring map 𝑅 → 𝑆 is called faithfully flat if 𝑆 is faithfully flat as an 𝑅-module.

Lemma 7.35.2. Let 𝑅 be a ring. Let {𝑀𝑖, 𝜑𝑖𝑖′} be a directed system of flat 𝑅-modules.
Then 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖 is a flat 𝑅-module.

Proof. This follows as ⊗ commutes with colimits and because directed colimits are exact,
see Lemma 7.8.9. �

Lemma 7.35.3. A composition of (faithfully) flat ring maps is (faithfully) flat. If 𝑅 → 𝑅′

is flat, and 𝑀′ is a flat 𝑅′-module, then 𝑀′ is a flat 𝑅-module.

Proof. Omitted. �

Lemma 7.35.4. Let 𝑀 be an 𝑅-module. The following are equivalent:
(1) 𝑀 is flat over 𝑅.
(2) for every injection of 𝑅-modules 𝑁 ⊂ 𝑁′ the map 𝑁 ⊗𝑅 𝑀 → 𝑁′ ⊗𝑅 𝑀 is

injective.
(3) for every ideal 𝐼 ⊂ 𝑅 the map 𝐼 ⊗𝑅 𝑀 → 𝑅 ⊗𝑅 𝑀 = 𝑀 is injective.
(4) for every finitely generated ideal 𝐼 ⊂ 𝑅 the map 𝐼 ⊗𝑅 𝑀 → 𝑅 ⊗𝑅 𝑀 = 𝑀 is

injective.
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Proof. The implications (1) implies (2) implies (3) implies (4) are all trivial. Thus we
prove (4) implies (1). Suppose that 𝑁1 → 𝑁2 → 𝑁3 is exact. Let 𝐾2 = Ker(𝑁2 → 𝑁3).
It is clear that the surjection 𝑁1 → 𝐾 induces a surjection 𝑁1 ⊗𝑅 𝑀 → 𝐾2 ⊗𝑅 𝑀. Hence
it suffices to show 𝐾2 ⊗𝑅 𝑀 → 𝑁2 ⊗𝑅 𝑀 is injective.

Let 𝑥 ∈ Ker(𝐾2 ⊗𝑅 𝑀 → 𝑁2 ⊗𝑅 𝑀). We have to show that 𝑥 is zero. Write 𝑥 =
∑𝑖=1,…,𝑟 𝑘𝑖 ⊗ 𝑚𝑖. By Lemma 7.8.13 we can find a finitely generated module 𝑁, a map
𝑁 → 𝑁2, and elements 𝑛𝑖 ∈ 𝑁, 𝑖 = 1, … , 𝑟 such that (a) 𝑛𝑖 maps to 𝑘𝑖, (b) the element
𝑦 = ∑𝑖 𝑛𝑖 ⊗ 𝑚𝑖 maps to zero in 𝑁 ⊗𝑅 𝑀. Let 𝐾 ⊂ 𝑁 be the submodule generated by the
𝑛𝑖. It suffices to show that 𝑦 is zero as an element of 𝐾′ ⊗𝑅 𝑀.

We do this by induction on the minimal number of generators of 𝑁. If this number is > 1
then we can find a short exact sequence 0 → 𝑁′ → 𝑁 → 𝑁″ → 0 such that 𝑁′ and 𝑁″ are
finitely generated with a smaller number of generators. By induction the element 𝑦 maps
to zero in 𝐾″ ⊗𝑅 𝑀 with 𝐾″ the image of 𝐾 in 𝑁″. And by the right exactness of ⊗ we
see that 𝑦 comes from some element of 𝐾′ ⊗𝑅 𝑀 where 𝐾′ is the intersection of 𝐾 with
𝑁′. Again by induction we see that 𝑦′ = 0.

The base case of the induction above is when 𝑁 is generated by 1 element. In other words
𝑁 = 𝑅/𝐼, and then 𝑦 = ∑ 𝑔𝑖 ⊗ 𝑚𝑖, Let 𝐽 = (𝑔1, … , 𝑔𝑟) ⊂ 𝑅. By right exactness, we see
that 𝑅/𝐼 ⊗𝑅 𝑀 = 𝑀/𝐼𝑀. Our assumption is that 𝑦 is zero in 𝑅/𝐼 ⊗𝑅 𝑀 = 𝑀/𝐼𝑀 in other
words ∑ 𝑔𝑖𝑚𝑖 ∈ 𝐼𝑀, in other words ∑ 𝑔𝑖𝑚𝑖 = ∑ ℎ𝑗𝑚′

𝑗 for suitable ℎ𝑗 ∈ 𝐼. We may replace
𝐼 by the finitely generated ideal (ℎ𝑗) without modifying the assumptions. In this case we
have 𝐾 = 𝐽 + 𝐼/𝐼

𝐾 ⊗𝑅 𝑀 = (𝐽 + 𝐼) ⊗𝑅 𝑀/𝐼 ⊗𝑅 𝑀 = (𝐽 + 𝐼)𝑀/𝐼𝑀

the first equality by right exactness and the second by assumption on 𝑀. Thus 𝑦 is zero in
𝐾 ⊗𝑅 𝑀 as desired. �

Lemma 7.35.5. Let {𝑅𝑖, 𝜑𝑖𝑖′} be a system of rings of the directed partially ordered set 𝐼.
Let 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖. Let 𝑀 be an 𝑅-module such that 𝑀 is flat as an 𝑅𝑖-module for all 𝑖.
Then 𝑀 is flat as an 𝑅-module.

Proof. Let 𝔞 ⊂ 𝑅 be a finitely generated ideal. By Lemma 7.35.4 it suffices to show that
𝔞 ⊗𝑅 𝑀 → 𝑀 is injective. We can find an 𝑖 ∈ 𝐼 and a finitely generated ideal 𝔞′ ⊂ 𝑅𝑖 such
that 𝔞 = 𝔞′𝑅. Then 𝔞 = 𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖 𝔞′𝑅𝑖′. Hence the map 𝔞 ⊗𝑅 𝑀 → 𝑀 is the colimit of
the maps

𝔞′𝑅𝑖′ ⊗𝑅𝑖′
𝑀 ⟶ 𝑀

which are all injective by assumption. Since ⊗ commutes with colimits and since colimits
over 𝐼 are exact by Lemma 7.8.9 we win. �

Lemma 7.35.6. Suppose that 𝑀 is flat over 𝑅, and that 𝑅 → 𝑅′ is a ring map. Then
𝑀 ⊗𝑅 𝑅′ is flat over 𝑅′.

Proof. For any 𝑅′-module 𝑁 we have a canonical isomorphism 𝑁⊗𝑅′ (𝑅′⊗𝑅𝑀) = 𝑁⊗𝑅
𝑀. Hence the exactness of − ⊗𝑅′ (𝑅′ ⊗𝑅 𝑀) follows from the exactness of − ⊗𝑅 𝑀. �

Lemma 7.35.7. Let 𝑅 → 𝑅′ be a faithfully flat ring map. Let 𝑀 be a module over 𝑅, and
set 𝑀′ = 𝑅′ ⊗𝑅 𝑀. Then 𝑀 is flat over 𝑅 if and only if 𝑀′ is flat over 𝑅′.

Proof. By Lemma 7.35.6 we see that if 𝑀 is flat then 𝑀′ is flat. For the converse, suppose
that 𝑀′ is flat. Let 𝑁1 → 𝑁2 → 𝑁3 be an exact sequence of 𝑅-modules. We want to
show that 𝑁1 ⊗𝑅 𝑀 → 𝑁2 ⊗𝑅 𝑀 → 𝑁3 ⊗𝑅 𝑀 is exact. We know that 𝑁1 ⊗𝑅 𝑅′ →
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𝑁2 ⊗𝑅 𝑅′ → 𝑁3 ⊗𝑅 𝑅′ is exact, because 𝑅 → 𝑅′ is flat. Flatness of 𝑀′ implies that
𝑁1 ⊗𝑅 𝑅′ ⊗𝑅′ 𝑀′ → 𝑁2 ⊗𝑅 𝑅′ ⊗𝑅′ 𝑀′ → 𝑁3 ⊗𝑅 𝑅′ ⊗𝑅′ 𝑀′ is exact. We may write
this as 𝑁1 ⊗𝑅 𝑀⊗𝑅 𝑅′ → 𝑁2 ⊗𝑅 𝑀⊗𝑅 𝑅′ → 𝑁3 ⊗𝑅 𝑀⊗𝑅 𝑅′. Finally, faithfull flatness
implies that 𝑁1 ⊗𝑅 𝑀 → 𝑁2 ⊗𝑅 𝑀 → 𝑁3 ⊗𝑅 𝑀 is exact. �

Lemma 7.35.8. Let 𝑅 be a ring. Let 𝑆 → 𝑆′ be a faithfully flat map of 𝑅-algebras. Let 𝑀
be a module over 𝑆, and set 𝑀′ = 𝑆′ ⊗𝑆 𝑀. Then 𝑀 is flat over 𝑅 if and only if 𝑀′ is flat
over 𝑅.

Proof. Let 𝑁 → 𝑁′ be an injection of 𝑅-modules. By the faithful flatness of 𝑆 → 𝑆′ we
have

Ker(𝑁 ⊗𝑅 𝑀 → 𝑁′ ⊗𝑅 𝑀) ⊗𝑆 𝑆′ = Ker(𝑁 ⊗𝑅 𝑀′ → 𝑁′ ⊗𝑅 𝑀′)
Hence the equivalence of the lemma follows from the second characterization of flatness in
Lemma 7.35.4. �

Lemma 7.35.9. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. If 𝑀 is flat as an
𝑅-module and faithfully flat as an 𝑆-module, then 𝑅 → 𝑆 is flat.

Proof. Let 𝑁1 → 𝑁2 → 𝑁3 be an exact sequence of 𝑅-modules. By assumption 𝑁1 ⊗𝑅
𝑀 → 𝑁2 ⊗𝑅 𝑀 → 𝑁3 ⊗𝑅 𝑀 is exact. We may write this as

𝑁1 ⊗𝑅 𝑆 ⊗𝑆 𝑀 → 𝑁2 ⊗𝑅 𝑆 ⊗𝑆 𝑀 → 𝑁3 ⊗𝑅 𝑆 ⊗𝑆 𝑀.

By faithful flatness of 𝑀 over 𝑆 we conclude that 𝑁1 ⊗𝑅 𝑆 → 𝑁2 ⊗𝑅 𝑆 → 𝑁3 ⊗𝑅 𝑆 is
exact. Hence 𝑅 → 𝑆 is flat. �

Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let ∑ 𝑓𝑖𝑥𝑖 = 0 be a relation in 𝑀. We say the
relation ∑ 𝑓𝑖𝑥𝑖 is trivial if there exist an integer 𝑚 ≥ 0, elements 𝑦𝑗 ∈ 𝑀, 𝑗 = 1, … , 𝑚,
and elements 𝑎𝑖𝑗 ∈ 𝑅, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚 such that

𝑥𝑖 = ∑𝑗
𝑎𝑖𝑗𝑦𝑗, ∀𝑖, and 0 = ∑𝑖

𝑓𝑖𝑎𝑖𝑗, ∀𝑗.

Lemma 7.35.10. (Equational criterion of flatness.) A module 𝑀 over 𝑅 is flat if and only
if every relation in 𝑀 is trivial.

Proof. Assume 𝑀 is flat and let ∑ 𝑓𝑖𝑥𝑖 be a relation. Let 𝐼 = (𝑓1, … , 𝑓𝑛), and let 𝐾 =
ker(𝑅𝑛 → 𝐼). So we have the short exact sequence 0 → 𝐾 → 𝑅𝑛 → 𝐼 → 0. Then ∑ 𝑓𝑖 ⊗𝑥𝑖
is an element of 𝐼⊗𝑅 𝑀 which maps to zero in 𝑅⊗𝑅 𝑀 = 𝑀. By flatness ∑ 𝑓𝑖 ⊗𝑥𝑖 is zero
in 𝐼 ⊗𝑅 𝑀. Thus there exists an element of 𝐾 ⊗𝑅 𝑀 mapping to ∑ 𝑒𝑖 ⊗ 𝑚𝑖 ∈ 𝑅𝑛 ⊗𝑅 𝑀.
Write this element as ∑ 𝑘𝑗 ⊗ 𝑦𝑗 and then write the image of 𝑘𝑗 in 𝑅𝑛 as ∑ 𝑎𝑖𝑗𝑒𝑖 to get the
result.

Assume every relation is trivial, let 𝐼 be a finitely generated ideal, and let 𝑥 = ∑ 𝑓𝑖 ⊗ 𝑥𝑖
be an element of 𝐼 ⊗𝑅 𝑀 mapping to zero in 𝑅 ⊗𝑅 𝑀 = 𝑀. This just means exactly that
∑ ℎ𝑖𝑥𝑖 is a relation in 𝑀. And the fact that it is trivial implies easily that 𝑥 is zero, because

𝑥 = ∑ 𝑓𝑖 ⊗ 𝑥𝑖 = ∑ 𝑓𝑖 ⊗ (∑ 𝑎𝑖𝑗𝑦𝑗) = ∑(∑ 𝑓𝑖𝑎𝑖𝑗) ⊗ 𝑦𝑗 = 0

�

Lemma 7.35.11. Suppose that 𝑅 is a ring, 0 → 𝑀″ → 𝑀′ → 𝑀 → 0 a short exact
sequence, and 𝑁 an 𝑅-module. If 𝑀 is flat then 𝑁 ⊗𝑅 𝑀″ → 𝑁 ⊗𝑅 𝑀′ is injective, i.e.,
the sequence

0 → 𝑁 ⊗𝑅 𝑀″ → 𝑁 ⊗𝑅 𝑀′ → 𝑁 ⊗𝑅 𝑀 → 0
is a short exact sequence.
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Proof. Let 𝑅(𝐼) → 𝑁 be a surjection from a free module onto 𝑁 with kernel 𝐾. The result
follows by a simple diagram chase from the following diagram

0 0 0
↑ ↑ ↑

𝑀″ ⊗𝑅 𝑁 → 𝑀′ ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 → 0
↑ ↑ ↑

0 → (𝑀″)(𝐼) → (𝑀′)(𝐼) → 𝑀(𝐼) → 0
↑ ↑ ↑

𝑀″ ⊗𝑅 𝑁 → 𝑀′ ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 → 0
↑
0

with exact rows and columns. The middle row is exact because tensoring with the free
module 𝑅(𝐼) is exact. �

Lemma 7.35.12. Suppose that 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 is a short exact sequence of
𝑅-modules. If 𝑀′ and 𝑀″ are flat so is 𝑀. If 𝑀 and 𝑀″ are flat so is 𝑀′.

Proof. We will use the criterion that a module 𝑁 is 𝑅 flat if for every ideal the map 𝑁 ⊗𝑅
𝐼 → 𝑁 is injective, see Lemma 7.35.4. Consider an ideal 𝐼 ⊂ 𝑅. Consider the diagram

0 → 𝑀′ → 𝑀 → 𝑀″ → 0
↑ ↑ ↑

𝑀′ ⊗𝑅 𝐼 → 𝑀 ⊗𝑅 𝐼 → 𝑀″ ⊗𝑅 𝐼 → 0
with exact rows. This immediately proves the first assertion. The second follows because
if 𝑀″ is flat then the lower left horizontal arrow is injective by Lemma 7.35.11. �

Lemma 7.35.13. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. The following are equivalent
(1) 𝑀 is faithfully flat, and
(2) 𝑀 is flat and for all 𝑅-module homomorpisms 𝛼 ∶ 𝑁 → 𝑁′ we have 𝛼 = 0 if and

only if 𝛼 ⊗ id𝑀 = 0.

Proof. If 𝑀 is faithfully flat, then 0 → Ker(𝛼) → 𝑁 → 0 is exact if and only if the same
holds after tensoring with 𝑀. This proves (1) implies (2). For the other, assume (2). Let
𝑁1 → 𝑁2 → 𝑁3 be a complex, and assume the complex 𝑁1 ⊗𝑅 𝑀 → 𝑁2 ⊗𝑅 𝑀 →
𝑁3 ⊗𝑅 𝑀 is exact. Take 𝑥 ∈ Ker(𝑁2 → 𝑁3), and consider the map 𝛼 ∶ 𝑅 → 𝑁2/Im(𝑁1),
𝑟 ↦ 𝑟𝑥 + Im(𝑁1). By the exactness of the complex − ⊗𝑅 𝑀 we see that 𝛼 ⊗ id𝑀 is zero.
By assumption we get that 𝛼 is zero. Hence 𝑥 is in the image of 𝑁1 → 𝑁2. �

Lemma 7.35.14. Let 𝑀 be a flat 𝑅-module. The following are equivalent:
(1) 𝑀 is faithfully flat,
(2) for all 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) the tensor product 𝑀 ⊗𝑅 𝜅(𝔭) is nonzero, and
(3) for all maximal ideals 𝔪 of 𝑅 the tensor product 𝑀 ⊗𝑅 𝜅(𝔪) = 𝑀/𝔪𝑀 is

nonzero.

Proof. Assume 𝑀 faithfully flat. Since 𝑅 → 𝜅(𝔭) is not zero we deduce that 𝑀 → 𝑀 ⊗𝑅
𝜅(𝔭) is not zero, see Lemma 7.35.13.

Conversely assume that 𝑀 is flat and that 𝑀/𝔪𝑀 is never zero. Suppose that 𝑁1 → 𝑁2 →
𝑁3 is a complex and suppose that 𝑁1 ⊗𝑅 𝑀 → 𝑁2 ⊗𝑅 𝑀 → 𝑁3 ⊗𝑅 𝑀 is exact. Let 𝐻
be the cohomology of the complex, so 𝐻 = Ker(𝑁2 → 𝑁3)/Im(𝑁1 → 𝑁2). By flatness
we see that 𝐻 ⊗𝑅 𝑀 = 0. Take 𝑥 ∈ 𝐻 and let 𝐼 = {𝑓 ∈ 𝑅 ∣ 𝑓𝑥 = 0} be its annihilator.
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Since 𝑅/𝐼 ⊂ 𝐻 we get 𝑀/𝐼𝑀 ⊂ 𝐻 ⊗𝑅 𝑀 = 0 by flatness of 𝑀. If 𝐼≠𝑅 we may choose a
maximal ideal 𝐼 ⊂ 𝔪 ⊂ 𝑅. This immediately gives a contradiction. �

Lemma 7.35.15. Let 𝑅 → 𝑆 be a flat ring map. The following are equivalent:
(1) 𝑅 → 𝑆 is faithfully flat,
(2) the induced map on 𝑆𝑝𝑒𝑐 is surjective, and
(3) any closed point 𝑥 ∈ 𝑆𝑝𝑒𝑐(𝑅) is in the image of the map 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅).

Proof. This follows quickly from Lemma 7.35.14, because we saw in Remark 7.16.8 that
𝔭 is in the image if and only if the ring 𝑆 ⊗𝑅 𝜅(𝔭) is nonzero. �

Lemma 7.35.16. A flat local ring homomorphism of local rings is faithfully flat.

Proof. Immediate from Lemma 7.35.15. �

Lemma 7.35.17. Let 𝑅 → 𝑆 be flat. Let 𝔭 ⊂ 𝔭′ be primes of 𝑅. Let 𝔮′ ⊂ 𝑆 be a prime of
𝑆 mapping to 𝔭′. Then there exists a prime 𝔮 ⊂ 𝔮′ mapping to 𝔭.

Proof. Namely, consider the flat local ring map 𝑅𝔭′ → 𝑆𝔮′. By Lemma 7.35.16 above this
is faithfully flat. By Lemma 7.35.15 there is a prime mapping to 𝔭𝑅𝔭′. The inverse image
of this prime in 𝑆 does the job. �

The property of 𝑅 → 𝑆 described in the lemma is called the ``going down property''. See
Definition 7.36.1.

Lemma 7.35.18. If 𝑅 → 𝑆 is a faithfully flat ring map then for every 𝑅-module 𝑀 the
map 𝑀 → 𝑆 ⊗𝑅 𝑀, 𝑥 ↦ 1 ⊗ 𝑥 is injective.

Proof. This is true because the base change 𝑆 ⊗𝑅 𝑀 → 𝑆 ⊗𝑅 𝑆 ⊗𝑅 𝑀 by the faithfully
flat ring map 𝑅 → 𝑆 is injective: It has a section, namely 𝑠 ⊗ 𝑠′ ⊗ 𝑚 ↦ 𝑠𝑠′ ⊗ 𝑚. �

We finish with some remarks on flatness and localization.

Lemma 7.35.19. Let 𝑅 be a ring. Let 𝑆 ⊂ 𝑅 be a multiplicative subset.
(1) The localization 𝑆−1𝑅 is a flat 𝑅-algebra.
(2) If 𝑀 is a 𝑆−1𝑅-module, then 𝑀 is a flat 𝑅-module if and only if 𝑀 is a flat

𝑆−1𝑅-module.
(3) Suppose 𝑀 is an 𝑅-module. Then 𝑀 is a flat 𝑅-module if and only if 𝑀𝔭 is a flat

𝑅𝔭-module for all primes 𝔭 of 𝑅.
(4) Suppose 𝑀 is an 𝑅-module. Then 𝑀 is a flat 𝑅-module if and only if 𝑀𝔪 is a

flat 𝑅𝔪-module for all maximal ideals 𝔪 of 𝑅.
(5) Suppose 𝑅 → 𝐴 is a ring map, 𝑀 is an 𝐴-module, and 𝑔1, … , 𝑔𝑚 ∈ 𝐴 are

elements generating the unit ideal of 𝐴. Then 𝑀 is flat over 𝑅 if and only if each
localization 𝑀𝑔𝑖

is flat over 𝑅.
(6) Suppose𝑅 → 𝐴 is a ring map, and𝑀 is an𝐴-module. Then𝑀 is a flat𝑅-module

if and only if the localization 𝑀𝔮 is a flat 𝑅𝔭-module (with 𝔭 the prime of 𝑅 lying
under 𝔮) for all primes 𝔮 of 𝐴.

(7) Suppose𝑅 → 𝐴 is a ring map, and𝑀 is an𝐴-module. Then𝑀 is a flat𝑅-module
if and only if the localization 𝑀𝔪 is a flat 𝑅𝔭-module (with 𝔭 = 𝑅 ∩ 𝔪) for all
maximal ideals 𝔪 of 𝐴.

Proof. Let us prove the last statement of the lemma. In the proof we will use repeatedly
that localization is exact and commutes with tensor product, see Sections 7.9 and 7.11.
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Suppose 𝑅 → 𝐴 is a ringmap, and 𝑀 is an 𝐴-module. Assume that 𝑀𝔪 is a flat 𝑅𝔭-module
for all maximal ideals 𝔪 of 𝐴 (with 𝔭 = 𝑅∩𝔪). Let 𝐼 ⊂ 𝑅 be an ideal. We have to show the
map 𝐼⊗𝑅𝑀 → 𝑀 is injective. We can think of this as a map of 𝐴-modules. By assumption
the localization (𝐼 ⊗𝑅 𝑀)𝔪 → 𝑀𝔪 is injective because (𝐼 ⊗𝑅 𝑀)𝔪 = 𝐼𝔭 ⊗𝑅𝔭

𝑀𝔪. Hence
the kernel of 𝐼 ⊗𝑅 𝑀 → 𝑀 is zero by Lemma 7.21.1. Hence 𝑀 is flat over 𝑅.

Conversely, assume 𝑀 is flat over 𝑅. Pick a prime 𝔮 of 𝐴 lying over the prime 𝔭 of 𝑅.
Suppose that 𝐼 ⊂ 𝑅𝔭 is an ideal. We have to show that 𝐼 ⊗𝑅𝔭

𝑀𝔮 → 𝑀𝔮 is injective.
We can write 𝐼 = 𝐽𝔭 for some ideal 𝐽 ⊂ 𝑅. Then the map 𝐼 ⊗𝑅𝔭

𝑀𝔮 → 𝑀𝔮 is just the
localization (at 𝔮) of the map 𝐽 ⊗𝑅 𝑀 → 𝑀 which is injective. Since localization is exact
we see that 𝑀𝔮 is a flat 𝑅𝔭-module.

This proves (7) and (6). The other statements follow in a straightforward way from the last
statement (proofs omitted). �

7.36. Going up and going down

Suppose 𝔭, 𝔭′ are primes of the ring 𝑅. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) with the Zariski topology. Denote
𝑥 ∈ 𝑋 the point corresponding to 𝔭 and 𝑥′ ∈ 𝑋 the point corresponding to 𝔭′. Then we
have:

𝑥′  𝑥 ⇔ 𝔭′ ⊂ 𝔭.
In words: 𝑥 is a specialization of 𝑥′ if and only if 𝔭′ ⊂ 𝔭. See Topology, Section 5.14 for
terminology and notation.

Definition 7.36.1. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map.
(1) We say a 𝜑 ∶ 𝑅 → 𝑆 satisfies going up if given primes 𝔭 ⊂ 𝔭′ in 𝑅 and a prime

𝔮 in 𝑆 lying over 𝔭 there exists a prime 𝔮′ of 𝑆 such that (a) 𝔮 ⊂ 𝔮′, and (b) 𝔮′

lies over 𝔭′.
(2) We say a 𝜑 ∶ 𝑅 → 𝑆 satisfies going down if given primes 𝔭 ⊂ 𝔭′ in 𝑅 and a

prime 𝔮′ in 𝑆 lying over 𝔭′ there exists a prime 𝔮 of 𝑆 such that (a) 𝔮 ⊂ 𝔮′, and
(b) 𝔮 lies over 𝔭.

Sofar we have see the following cases of this:
(1) An integral ring map satisfies going up, see Lemma 7.32.20.
(2) As a special case finite ring maps satisfy going up.
(3) As a special case quotient maps 𝑅 → 𝑅/𝐼 satisfy going up.
(4) A flat ring map satisfies going down, see Lemma 7.35.17
(5) As a special case any localization satisfies going down.
(6) An extension 𝑅 ⊂ 𝑆 of domains, with 𝑅 normal and 𝑆 integral over 𝑅 satisfies

going down, see Proposition 7.34.7.
Here is another case where going down holds.

Lemma 7.36.2. Let 𝑅 → 𝑆 be a ring map. If the induced map 𝜑 ∶ 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is
open, then 𝑅 → 𝑆 satisfies going down.

Proof. Suppose that 𝔭 ⊂ 𝔭′ ⊂ 𝑅 and 𝔮′ ⊂ 𝑆 lies over 𝔭′. As 𝜑 is open, for every 𝑔 ∈ 𝑆,
𝑔∉𝔮′ we see that 𝔭 is in the image of 𝐷(𝑔) ⊂ 𝑆𝑝𝑒𝑐(𝑆). In other words 𝑆𝑔 ⊗𝑅 𝜅(𝔭) is not
zero. Since 𝑆𝔮′ is the directed colimit of these 𝑆𝑔 this implies that 𝑆𝔮′ ⊗𝑅 𝜅(𝔭) is not
zero, see Lemmas 7.9.9 and 7.11.8. Hence 𝔭 is in the image of 𝑆𝑝𝑒𝑐(𝑆𝔮′) → 𝑆𝑝𝑒𝑐(𝑅) as
desired. �

Lemma 7.36.3. Let 𝑅 → 𝑆 be a ring map.
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(1) 𝑅 → 𝑆 satisfies going down if and only if generalizations lift along the map
𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅), see Topology, Definition 5.14.3.

(2) 𝑅 → 𝑆 satisfies going up if and only if specializations lift along themap𝑆𝑝𝑒𝑐(𝑆) →
𝑆𝑝𝑒𝑐(𝑅), see Topology, Definition 5.14.3.

Proof. Omitted. �

Lemma 7.36.4. Suppose 𝑅 → 𝑆 and 𝑆 → 𝑇 are ring maps satisfying going down. Then
so does 𝑅 → 𝑇. Similarly for going up.

Proof. According to Lemma 7.36.3 this follows from Topology, Lemma 5.14.4 �

Lemma 7.36.5. Let 𝑅 → 𝑆 be a ring map. Let 𝑇 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be the image of 𝑆𝑝𝑒𝑐(𝑆). If 𝑇
is stable under specialization, then 𝑇 is closed.

Proof. We give two proofs.

First proof. Let𝔭 ⊂ 𝑅 be a prime ideal such that the corresponding point of𝑆𝑝𝑒𝑐(𝑅) is in the
closure of 𝑇. This means that for ever 𝑓 ∈ 𝑅, 𝑓∉𝔭 we have 𝐷(𝑓)∩𝑇≠∅. Note that 𝐷(𝑓)∩𝑇
is the image of 𝑆𝑝𝑒𝑐(𝑆𝑓) in 𝑆𝑝𝑒𝑐(𝑅). Hence we conclude that 𝑆𝑓≠0. In other words, 1≠0
in the ring 𝑆𝑓. Since 𝑆𝔭 is the directed limit of the rings 𝑆𝑓 we conclude that 1≠0 in 𝑆𝔭.
In other words, 𝑆𝔭≠0 and considering the image of 𝑆𝑝𝑒𝑐(𝑆𝔭) → 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) we
see there exists a 𝔭′ ∈ 𝑇 with 𝔭′ ⊂ 𝔭. As we assumed 𝑇 closed under specialization we
conclude 𝔭 is a point of 𝑇 as desired.

Second proof. Let 𝐼 = Ker(𝑅 → 𝑆). We may replace 𝑅 by 𝑅/𝐼. In this case the ring map
𝑅 → 𝑆 is injective. By Lemma 7.27.5 all the minimal primes of 𝑅 are contained in the
image 𝑇. Hence if 𝑇 is stable under specialization then it contains all primes. �

Lemma 7.36.6. Let 𝑅 → 𝑆 be a ring map. The following are equivalent:
(1) Going up holds for 𝑅 → 𝑆, and
(2) the map 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is closed.

Proof. It is a general fact that specializations lift along a closed map of topological spaces,
see Topology, Lemma 5.14.6. Hence the second condition implies the first.

Assume that going up holds for 𝑅 → 𝑆. Let 𝑉(𝐼) ⊂ 𝑆𝑝𝑒𝑐(𝑆) be a closed set. We want
to show that the image of 𝑉(𝐼) in 𝑆𝑝𝑒𝑐(𝑅) is closed. The ring map 𝑆 → 𝑆/𝐼 obviously
satisfies going up. Hence 𝑅 → 𝑆 → 𝑆/𝐼 satisfies going up, by Lemma 7.36.4. Replacing
𝑆 by 𝑆/𝐼 it suffices to show the image 𝑇 of 𝑆𝑝𝑒𝑐(𝑆) in 𝑆𝑝𝑒𝑐(𝑅) is closed. By Topology,
Lemmas 5.14.2 and 5.14.5 this image is stable under specialization. Thus the result follows
from Lemma 7.36.5. �

Lemma 7.36.7. Let 𝑅 be a ring. Let 𝐸 ⊂ 𝑆𝑝𝑒𝑐(𝑅) be a constructible subset.
(1) If 𝐸 is stable under specialization, then 𝐸 is closed.
(2) If 𝐸 is stable under generalization, then 𝐸 is open.

Proof. The first assertion follows from Lemma 7.36.5 combined with Lemma 7.26.3. The
second follows because the complement of a constructible set is constructible (see Topol-
ogy, Lemma 5.10.2), the first part of the lemma and Topology, Lemma 5.14.2. �

Proposition 7.36.8. Let𝑅 → 𝑆 be flat and of finite presentation. Then𝑆𝑝𝑒𝑐(𝑅) → 𝑆𝑝𝑒𝑐(𝑆)
is open. More generally this holds for any ring map 𝑅 → 𝑆 of finite presentation which
satisfies going down.
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Proof. Assume that 𝑅 → 𝑆 has finite presentation and satisfies going down. It suffices to
prove that the image of a standard open 𝐷(𝑓) is open. Since 𝑆 → 𝑆𝑓 satsifies going down
as well, we see that 𝑅 → 𝑆𝑓 satisfies going down. Thus after replacing 𝑆 by 𝑆𝑓 we see it
suffices to prove the image is open. By Chevalley's theorem (Theorem 7.26.9) the image is
a constructible set 𝐸. And 𝐸 is stable under generalization because 𝑅 → 𝑆 satisfies going
down, see Topology, Lemmas 5.14.2 and 5.14.5. Hence 𝐸 is open by Lemma 7.36.7. �

Lemma 7.36.9. Let 𝑘 be a field, and let 𝑅, 𝑆 be 𝑘-algebras. Let 𝑆′ ⊂ 𝑆 be a sub 𝑘-algebra,
and let 𝑓 ∈ 𝑆′ ⊗𝑘 𝑅. In the commutative diagram

𝑆𝑝𝑒𝑐((𝑆 ⊗𝑘 𝑅)𝑓)

''

// 𝑆𝑝𝑒𝑐((𝑆′ ⊗𝑘 𝑅)𝑓)

ww
𝑆𝑝𝑒𝑐(𝑅)

the images of the diagonal arrows are the same.

Proof. Let 𝔭 ⊂ 𝑅 be in the image of the south-west arrow. This means (Lemma 7.16.9)
that

(𝑆′ ⊗𝑘 𝑅)𝑓 ⊗𝑅 𝜅(𝔭) = (𝑆′ ⊗𝑘 𝜅(𝔭))𝑓

is not the zero ring, i.e., 𝑆′ ⊗𝑘 𝜅(𝔭) is not the zero ring and the image of 𝑓 in it is not
nilpotent. The ring map 𝑆′ ⊗𝑘 𝜅(𝔭) → 𝑆 ⊗𝑘 𝜅(𝔭) is injective. Hence also 𝑆 ⊗𝑘 𝜅(𝔭) is not
the zero ring and the image of 𝑓 in it is not nilpotent. Hence (𝑆 ⊗𝑘 𝑅)𝑓 ⊗𝑅 𝜅(𝔭) is not the
zero ring. Thus (Lemma 7.16.9) we see that 𝔭 is in the image of the south-east arrow as
desired. �

Lemma 7.36.10. Let 𝑘 be a field. Let 𝑅 and 𝑆 be 𝑘-algebras. The map 𝑆𝑝𝑒𝑐(𝑆 ⊗𝑘 𝑅) →
𝑆𝑝𝑒𝑐(𝑅) is open.

Proof. Let 𝑓 ∈ 𝑅⊗𝑘𝑆. It suffices to prove that the image of the standard open 𝐷(𝑓) is open.
Let 𝑆′ ⊂ 𝑆 be a finite type 𝑘-subalgebra such that 𝑓 ∈ 𝑆′ ⊗𝑘 𝑅. The map 𝑅 → 𝑆′ ⊗𝑘 𝑅 is
flat and of finite presentation, hence the image 𝑈 of 𝑆𝑝𝑒𝑐((𝑆′ ⊗𝑘 𝑅)𝑓) → 𝑆𝑝𝑒𝑐(𝑅) is open
by Proposition 7.36.8. By Lemma 7.36.9 this is also the image of 𝐷(𝑓) and we win. �

Here is a tricky lemma that is sometimes useful.

Lemma 7.36.11. Let 𝑅 → 𝑆 be a ring map. Let 𝔭 ⊂ 𝑅 be a prime. Assume that
(1) there exists a unique prime 𝔮 ⊂ 𝑆 lying over 𝔭, and
(2) either

(a) going up holds for 𝑅 → 𝑆, or
(b) going down holds for 𝑅 → 𝑆 and there is at most one prime of 𝑆 above

every prime of 𝑅.
Then 𝑆𝔭 = 𝑆𝔮.

Proof. Consider any prime 𝔮′ ⊂ 𝑆 which corresponds to a point of 𝑆𝑝𝑒𝑐(𝑆𝔭). This means
that 𝔭′ = 𝑅 ∩ 𝔮′ is contained in 𝔭. Here is a picture

𝔮′ ? 𝑆

𝔭′ 𝔭 𝑅
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Assume (1) and (2)(a). By going up there exists a prime 𝔮″ ⊂ 𝑆 with 𝔮′ ⊂ 𝔮″ and 𝔮″ lying
over 𝔭. By the uniqueness of 𝔮 we conclude that 𝔮″ = 𝔮. In other words 𝔮′ defines a point
of 𝑆𝑝𝑒𝑐(𝑆𝔮).

Assume (1) and (2)(b). By going down there exists a prime 𝔮″ ⊂ 𝔮 lying over 𝔭′. By the
uniqueness of primes lying over 𝔭′ we see that 𝔮′ = 𝔮″. In other words 𝔮′ defines a point
of 𝑆𝑝𝑒𝑐(𝑆𝔮).

In both cases we conclude that the map 𝑆𝑝𝑒𝑐(𝑆𝔮) → 𝑆𝑝𝑒𝑐(𝑆𝔭) is bijective. Clearly this
means all the elements of 𝑆 − 𝔮 are all invertible in 𝑆𝔭, in other words 𝑆𝔭 = 𝑆𝔮. �

7.37. Transcendence

We recall the standard definitions.

Definition 7.37.1. Let 𝑘 ⊂ 𝐾 be a field extension.
(1) A collection of elements {𝑥𝑖}𝑖∈𝐼 of 𝐾 is called algebraically independent over 𝑘

if the map
𝑘[𝑋𝑖; 𝑖 ∈ 𝐼] ⟶ 𝐾

which maps 𝑋𝑖 to 𝑥𝑖 is injective.
(2) The field of fractions of a polynomial ring 𝑘[𝑥𝑖; 𝑖 ∈ 𝐼] is denoted 𝑘(𝑥𝑖; 𝑖 ∈ 𝐼).
(3) A purely transcendental extension of 𝑘 is any field extension 𝑘 ⊂ 𝐾 isomorphic

to the field of fractions of a polynomial ring over 𝑘.
(4) A transcendence basis of 𝐾/𝑘 is a collection of elements {𝑥𝑖}𝑖∈𝐼 which are al-

gebraically independent over 𝑘 and such that the extension 𝑘(𝑥𝑖; 𝑖 ∈ 𝐼) ⊂ 𝐾 is
algebraic.

Lemma 7.37.2. Let 𝑘 ⊂ 𝐾 be a field extension. A transcendence basis of 𝐾 over 𝑘 exists.
Any two transcendence bases have the same cardinality.

Proof. Omitted. Good exercise. �

Definition 7.37.3. Let 𝑘 ⊂ 𝐾 be a field extension. The transcendence degree of 𝐾 over 𝑘
is the cardinality of a transcendence basis of 𝐾 over 𝑘. It is denoted trdeg𝑘(𝐾).

Lemma 7.37.4. Let 𝑘 ⊂ 𝐾 ⊂ 𝐿 be field extensions. Then

trdeg𝑘(𝐿) = trdeg𝐾(𝐿) + trdeg𝑘(𝐾).

Proof. Omitted. �

7.38. Algebraic elements of field extensions

Let 𝑘 ⊂ 𝐾 be a field extension. Let 𝛼 ∈ 𝐾. Then we have the following possibilities:
(1) The element 𝛼 is transcendental over 𝑘.
(2) The element 𝛼 is algebraic over 𝑘. Denote 𝑃(𝑇) ∈ 𝑘[𝑇] its minimal polynomial.

This is a monic polynomial 𝑃(𝑇) = 𝑇𝑑 + 𝑎1𝑇𝑑−1 + … + 𝑎𝑑 with coefficients in
𝑘. It is irreducible and 𝑃(𝛼) = 0. These properties uniquely determine 𝑃, and the
integer 𝑑 is called the degree of 𝛼 over 𝑘. There are two subcases:
(a) The polynomial 𝑑𝑃/𝑑𝑇 is not identically zero. This is equivalent to the con-

dition that 𝑃(𝑇) = ∏𝑖=1,…,𝑑(𝑇 − 𝛼𝑖) for pairwise distinct elements 𝛼1, … , 𝛼𝑑
in the algebraic closure of 𝑘. In this case we say that 𝛼 is separable over 𝑘.
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(b) The 𝑑𝑃/𝑑𝑇 is identically zero. In this case the characteristic 𝑝 of 𝑘 is > 0,
and 𝑃 is actually a polynomial in 𝑇𝑝. Clearly there exists a largest power
𝑞 = 𝑝𝑒 such that 𝑃 is a polynomial in 𝑇𝑞. Then the element 𝛼𝑞 is separable
over 𝑘.

Definition 7.38.1. Algebraic field extensions.
(1) A field extension 𝑘 ⊂ 𝐾 is called algebraic if every element of 𝐾 is algebraic

over 𝑘.
(2) An algebraic extension 𝑘 ⊂ 𝑘′ is called separable if every 𝛼 ∈ 𝑘′ is separable

over 𝑘.
(3) An algebraic extension 𝑘 ⊂ 𝑘′ is called purely inseparable if the characteristic

of 𝑘 is 𝑝 > 0 and for every element 𝛼 ∈ 𝑘′ there exists a power 𝑞 of 𝑝 such that
𝛼𝑞 ∈ 𝑘.

(4) An algebraic extension 𝑘 ⊂ 𝑘′ is called normal if for every 𝛼 ∈ 𝑘′ the minimal
polynomial 𝑃(𝑇) ∈ 𝑘[𝑇] of 𝛼 over 𝑘 splits completely into linear factors over 𝑘′.

(5) An algebraic extension 𝑘 ⊂ 𝑘′ is called Galois if it is separable and normal.

Here are some well-known lemmas on field extensions.

Lemma 7.38.2. Let 𝑘 ⊂ 𝑘′ be an algebraic field extension. There exists a unique subfield
𝑘 ⊂ (𝑘′)𝑠𝑒𝑝 ⊂ 𝑘′ such that 𝑘 ⊂ (𝑘′)𝑠𝑒𝑝 is separable, and (𝑘′)𝑠𝑒𝑝 ⊂ 𝑘′ is purely inseparable.

Proof. The Lemma only makes sense if the characteristic of 𝑘 is 𝑝 > 0. Given an 𝛼 in
𝑘′ let 𝑞𝛼 be the smallest power of 𝑝 such that 𝛼𝑞𝛼 is separable over 𝑘 (see discussion at the
beginning of this section). Then let (𝑘′)𝑠𝑒𝑝 be the subfield of 𝑘′ generated by these elements.
Details omitted. �

Definition 7.38.3. Let 𝑘 ⊂ 𝑘′ be a finite field extension. Let 𝑘 ⊂ (𝑘′)𝑠𝑒𝑝 ⊂ 𝑘′ be the
subfield found in Lemma 7.38.2.

(1) The integer [(𝑘′)𝑠𝑒𝑝 ∶ 𝑘] is called the separable degree of the extension.
(2) The integer [𝑘′ ∶ (𝑘′)𝑠𝑒𝑝] is called the inseparable degree, or the degree of insep-

arability of the extension.

Lemma 7.38.4. Let 𝑘 ⊂ 𝑘′ be a normal algebraic field extension. There exists a unique
subfields 𝑘 ⊂ (𝑘′)𝑠𝑒𝑝 ⊂ 𝑘′ and 𝑘 ⊂ (𝑘′)𝑖𝑛𝑠𝑒𝑝 ⊂ 𝑘′ such that

(1) 𝑘 ⊂ (𝑘′)𝑠𝑒𝑝 is separable, and (𝑘′)𝑠𝑒𝑝 ⊂ 𝑘′ is purely inseparable,
(2) 𝑘 ⊂ (𝑘′)𝑖𝑛𝑠𝑒𝑝 is purely inseparable, and (𝑘′)𝑠𝑒𝑝 ⊂ 𝑘′ is separable,
(3) 𝑘′ = (𝑘′)𝑠𝑒𝑝 ⊗𝑘 (𝑘′)𝑖𝑛𝑠𝑒𝑝.

Proof. We found the subfield (𝑘′)𝑠𝑒𝑝 in Lemma 7.38.2. The subfield (𝑘′)𝑖𝑛𝑠𝑒𝑝 = (𝑘′)Aut(𝑘′/𝑘).
Details omitted. �

Lemma 7.38.5. Let 𝑘 ⊂ 𝑘′ be a finite separable field extension. Then there exists an 𝛼 ∈ 𝑘′

such that 𝑘′ = 𝑘(𝛼).

Proof. Omitted. �

Definition 7.38.6. Let 𝑘 ⊂ 𝐾 be a field extension.
(1) The algebraic closure of 𝑘 in 𝐾 is the subfield 𝑘′ of 𝐾 consisting of elements of

𝐾 which are algebraic over 𝑘.
(2) We say 𝑘 is algebraically closed in 𝐾 if every element of 𝐾 which is algebraic

over 𝑘 is contained in 𝑘.
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Lemma 7.38.7. Let 𝑘 ⊂ 𝐾 be a finitely generated field extension. The algebraic closure of
𝑘 in 𝐾 is finite over 𝑘.

Proof. Let 𝑥1, … , 𝑥𝑟 ∈ 𝐾 be a transcendence basis for 𝐾 over 𝑘. Then 𝑛 = [𝐾 ∶
𝑘(𝑥1, … , 𝑥𝑟)] < ∞. Suppose that 𝑘 ⊂ 𝑘′ ⊂ 𝐾 with 𝑘′/𝑘 finite. In this case [𝑘′(𝑥1, … , 𝑥𝑟) ∶
𝑘(𝑥1, … , 𝑥𝑟)] = [𝑘′ ∶ 𝑘] < ∞. Hence

[𝑘′ ∶ 𝑘] = [𝑘′(𝑥1, … , 𝑥𝑟) ∶ 𝑘(𝑥1, … , 𝑥𝑟)] < [𝐾 ∶ 𝑘(𝑥1, … , 𝑥𝑟)] = 𝑛.
In other words, the degrees of finite subextensions are bounded and the lemma follows. �

Lemma 7.38.8. Let 𝐾 be a field of characteristic 𝑝 > 0. Let 𝐾 ⊂ 𝐿 be a separable
algebraic extension. Let 𝛼 ∈ 𝐿. If the coefficients of the minimal polynomial of 𝛼 over 𝐾
are 𝑝th powers in 𝐾 then 𝛼 is a 𝑝th power in 𝐿.

Proof. We may assume that 𝐾 ⊂ 𝐿 is finite Galois. Let 𝑃(𝑇) = 𝑇𝑑 + ∑𝑑
𝑖=1 𝑎𝑖𝑇𝑑−𝑖 be the

minimal polynomial and assume 𝑎𝑖 = 𝑏𝑝
𝑖 . The polynomial 𝑄(𝑇) = 𝑇𝑑 + ∑𝑑

𝑖=1 𝑏𝑖𝑇𝑑−𝑖 is a
separable irreducible polynomial as well. Let 𝐿 ⊂ 𝐿′ be the field extension obtained by
adjoining a single root 𝛽 of 𝑄 to 𝐿. This is a separable extension on the one hand, and a
purely inseparable extension on the other hand, since clearly 𝛽𝑝 is equal to a conjugate of 𝛼.
Hence 𝐿 = 𝐿′ which means a conjugate of 𝛼 is a 𝑝th power. Hence 𝛼 is a 𝑝th power. �

7.39. Separable extensions

In this section we talk about separability for nonalgebraic field extensions. This is closely
related to the concept of geometrically reduced algebras, see Definition 7.40.1.

Definition 7.39.1. Let 𝑘 ⊂ 𝐾 be a field extension.
(1) We say 𝐾 is separably generated over 𝑘 if there exists a transcendence basis

{𝑥𝑖; 𝑖 ∈ 𝐼} of 𝐾/𝑘 such that the extension 𝑘(𝑥𝑖; 𝑖 ∈ 𝐼) ⊂ 𝐾 is a separable algebraic
extension.

(2) We say 𝐾 is separable over 𝑘 if for every subextension 𝑘 ⊂ 𝐾′ ⊂ 𝐾 with 𝐾′

finitely generated over 𝑘, the extension 𝑘 ⊂ 𝐾′ is separably generated.

With this awkward definition it is not clear that a separably generated field extension is
itself separable. It will turn out that this is the case, see Lemma 7.41.2.

Lemma 7.39.2. Let 𝑘 ⊂ 𝐾 be a separable field extension. For any subextension 𝑘 ⊂ 𝐾′ ⊂
𝐾 the field extension 𝑘 ⊂ 𝐾′ is separable.

Proof. This is direct from the definition. �

Lemma 7.39.3. Let 𝑘 ⊂ 𝐾 be a separably generated, and finitely generated field extension.
Set 𝑟 = trdeg𝑘(𝐾). Then there exist elements 𝑥1, … , 𝑥𝑟+1 of 𝐾 such that

(1) 𝑥1, … , 𝑥𝑟 is a transcendence basis of 𝐾 over 𝑘,
(2) 𝐾 = 𝑘(𝑥1, … , 𝑥𝑟+1), and
(3) 𝑥𝑟+1 is separable over 𝑘(𝑥1, … , 𝑥𝑟).

Proof. Combine the definition with Lemma 7.38.5. �

Lemma 7.39.4. Let 𝑘 ⊂ 𝐾 be a finitely generated field extension. There exists a diagram

𝐾 // 𝐾′

𝑘

OO

// 𝑘′

OO
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where 𝑘 ⊂ 𝑘′, 𝐾 ⊂ 𝐾′ are finite purely inseparable field extensions such that 𝑘′ ⊂ 𝐾′ is a
separably generated field extension.

Proof. This lemma is only interesting when the characteristic of 𝑘 is 𝑝 > 0. Choose
𝑥1, … , 𝑥𝑟 a transcendence basis of 𝐾 over 𝑘. As 𝐾 is finitely generated over 𝑘 the exten-
sion 𝑘(𝑥1, … , 𝑥𝑟) ⊂ 𝐾 is finite. Let 𝑘(𝑥1, … , 𝑥𝑟) ⊂ 𝐾𝑠𝑒𝑝 ⊂ 𝐾 be the subextension found in
Lemma 7.38.2. If 𝐾 = 𝐾𝑠𝑒𝑝 then we are done. We will use induction on 𝑑 = [𝐾 ∶ 𝐾𝑠𝑒𝑝].

Assume that 𝑑 > 1. Choose a 𝛽 ∈ 𝐾 with 𝛼 = 𝛽𝑝 ∈ 𝐾𝑠𝑒𝑝 and 𝛽∉𝐾𝑠𝑒𝑝. Let 𝑃 = 𝑇𝑑 +
𝑎1𝑇𝑑−1 + … + 𝑎𝑑 be the minimal polynomial of 𝛼 over 𝑘(𝑥1, … , 𝑥𝑟). Let 𝑘 ⊂ 𝑘′ be a finite
purely inseparable extension obtained by adjoining 𝑝th roots such that each 𝑎𝑖 is a 𝑝th power
in 𝑘′(𝑥1/𝑝

1 , … , 𝑥1/𝑝
𝑟 ). Such an extension exists; details omitted. Let 𝐿 be a field fitting into

the diagram
𝐾 // 𝐿

𝑘(𝑥1, … , 𝑥𝑟)

OO

// 𝑘′(𝑥1/𝑝
1 , … , 𝑥1/𝑝

𝑟 )

OO

and such that 𝐿 is the compositum of 𝐾 and 𝑘′(𝑥1/𝑝
1 , … , 𝑥1/𝑝

𝑟 ). Let

𝑘′(𝑥1/𝑝
1 , … , 𝑥1/𝑝

𝑟 ) ⊂ 𝐿𝑠𝑒𝑝 ⊂ 𝐿

be the subextesion found in Lemma 7.38.2. Then it is clear that 𝐿𝑠𝑒𝑝 is the compositum of
𝐾𝑠𝑒𝑝 and 𝑘′(𝑥1/𝑝

1 , … , 𝑥1/𝑝
𝑟 ). The element 𝛼 ∈ 𝐿𝑠𝑒𝑝 has a minimal polynomial 𝑃 all of whose

coefficients are 𝑝th powers in 𝑘′(𝑥1/𝑝
1 , … , 𝑥1/𝑝

𝑟 ). By Lemma 7.38.8 we see that 𝛼 = (𝛼′)𝑝 for
some 𝛼′ ∈ 𝐿𝑠𝑒𝑝. Clearly, this means that 𝛽 maps to 𝛼′ ∈ 𝐿𝑠𝑒𝑝. In other words, we get the
tower of fields

𝐾 // 𝐿

𝐾𝑠𝑒𝑝(𝛽) //

OO

𝐿𝑠𝑒𝑝

OO

𝐾𝑠𝑒𝑝
//

OO

𝐿𝑠𝑒𝑝

𝑘(𝑥1, … , 𝑥𝑟)

OO

// 𝑘′(𝑥1/𝑝
1 , … , 𝑥1/𝑝

𝑟 )

OO

𝑘 //

OO

𝑘′

OO

Thus this construction leads to a new situation with [𝐿 ∶ 𝐿𝑠𝑒𝑝] < [𝐾 ∶ 𝐾𝑠𝑒𝑝]. By induction
we can find 𝑘′ ⊂ 𝑘″ and 𝐿 ⊂ 𝐿′ as in the lemma for the extension 𝑘′ ⊂ 𝐿. Then the
extensions 𝑘 ⊂ 𝑘″ and 𝐾 ⊂ 𝐿″ work for the extension 𝑘 ⊂ 𝐾. This proves the lemma. �

7.40. Geometrically reduced algebras

The main result on geometrically reduced algebras is Lemma 7.41.3. We suggest the reader
skip to the lemma after reading the definition.
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Definition 7.40.1. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra. We say 𝑆 is geometrically reduced
over 𝑘 if for every field extension 𝑘 ⊂ 𝐾 the 𝐾-algebra 𝐾 ⊗𝑘 𝑆 is reduced.

Let 𝑘 be a field and let 𝑆 be a reduced 𝑘 algebra. To check that 𝑆 is geometrically reduced
it will suffice to check that 𝑘 ⊗𝑘 𝑆 is reduced (where 𝑘 denotes the algebraic closure of 𝑘).
In fact it is enough to check this for finite purely inseparable field extensions 𝑘 ⊂ 𝑘′. See
Lemma 7.41.3.

Lemma 7.40.2. Elementary properties of geometrically reducedness. Let 𝑘 be a field. Let
𝑆 be a 𝑘-algebra.

(1) If 𝑆 is geometrically reduced over 𝑘 so is every 𝑘-subalgebra.
(2) If all finitely generated 𝑘-subalgebras of 𝑆 are geometrically reduced, then 𝑆 is

geometrically reduced.
(3) A directed colimit of geometrically reduced 𝑘-algebras is geometrically reduced.
(4) If 𝑆 is geometrically reduced over 𝑘, then any localization of 𝑆 is geometrically

reduced over 𝑘.

Proof. Omitted. The second and third property follow from the fact that tensor product
commutes with colimits. �

Lemma 7.40.3. Let 𝑘 be a field. If 𝑅 is geometrically reduced over 𝑘, and 𝑆 ⊂ 𝑅 is a
multiplicative subset, then the localization 𝑆−1𝑅 is geometrically reduced over 𝑘. If 𝑅 is
geometrically reduced over 𝑘, then 𝑅[𝑥] is geometrically reduced over 𝑘.

Proof. Omitted. Hints: A localization of a reduced ring is reduced, and localization com-
mutes with tensor products. �

In the proofs of the following lemmas we will repeatedly use the following observation:
Suppose that 𝑅′ ⊂ 𝑅 and 𝑆′ ⊂ 𝑆 are inclusions of 𝑘-algebras. Then the map 𝑅′ ⊗𝑘 𝑆′ →
𝑅 ⊗𝑘 𝑆 is injective.

Lemma 7.40.4. Let 𝑘 be a field. Let 𝑅, 𝑆 be 𝑘-algebras.
(1) If 𝑅 ⊗𝑘 𝑆 is nonreduced, then there exist finitely generated subalgebras 𝑅′ ⊂ 𝑅,

𝑆′ ⊂ 𝑆 such that 𝑅′ ⊗𝑘 𝑆′ is not reduced.
(2) If 𝑅 ⊗𝑘 𝑆 contains a nonzero zero divisor, then there exist finitely generated

subalgebras 𝑅′ ⊂ 𝑅, 𝑆′ ⊂ 𝑆 such that 𝑅′ ⊗𝑘 𝑆′ contains a nonzero zero divisor.
(3) If 𝑅 ⊗𝑘 𝑆 contains a nontrivial idempotent, then there exist finitely generated

subalgebras𝑅′ ⊂ 𝑅, 𝑆′ ⊂ 𝑆 such that𝑅′⊗𝑘𝑆′ contains a nontrivial idempotent.

Proof. Suppose 𝑧 ∈ 𝑅 ⊗𝑘 𝑆 is nilpotent. We may write 𝑧 = ∑𝑖=1,…,𝑛 𝑥𝑖 ⊗ 𝑦𝑖. Thus we
may take 𝑅′ the 𝑘-subalgebra generated by the 𝑥𝑖 and 𝑆′ the 𝑘-subalgebra generated by the
𝑦𝑖. The second and third statements are proved in the same way. �

Lemma 7.40.5. Let 𝑘 be a field. Let 𝑆 be a geometrically reduced 𝑘-algebra. Let 𝑅 be any
reduced 𝑘-algebra. Then 𝑅 ⊗𝑘 𝑆 is reduced.

Proof. By Lemma 7.40.4 we may assume that 𝑅 is of finite type over 𝑘. Then 𝑅, as a
reduced Noetherian ring, embeds into a finite product of fields (see Lemmas 7.22.2, 7.28.6,
and 7.23.3). Hence we may assume 𝑅 is a finite product of fields. In this case the reduced-
ness follows from the definition. �

Lemma 7.40.6. Let 𝑘 be a field. Let 𝑆 be a reduced 𝑘-algebra. Let 𝑘 ⊂ 𝐾 be either a
separable field extension, or a separably generated field extension. Then 𝐾⊗𝑘𝑆 is reduced.
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Proof. Assume 𝑘 ⊂ 𝐾 is separable. By Lemma 7.40.4 we may assume that 𝑆 is of finite
type over 𝑘 and 𝐾 is finitely generated over 𝑘. Then 𝑆 embeds into a finite product of fields,
namely its total ring of fractions (see Lemmas 7.23.3 and 7.22.2). Hence we may actually
assume that 𝑆 is a domain. We choose 𝑥1, … , 𝑥𝑟+1 ∈ 𝐾 as in Lemma 7.39.3. Let 𝑃 ∈
𝑘(𝑥1, … , 𝑥𝑟)[𝑇] be the minimal polynomial of 𝑥𝑟+1. It is a separable polynomial. It is easy
to see that 𝑘[𝑥1, … , 𝑥𝑟] ⊗𝑘 𝑆 = 𝑆[𝑥1, … , 𝑥𝑟] is a domain. This implies 𝑘(𝑥1, … , 𝑥𝑟) ⊗𝑘 𝑆
is a domain as it is a localization of 𝑆[𝑥1, … , 𝑥𝑟]. The ring extension 𝑘(𝑥1, … , 𝑥𝑟) ⊗𝑘 𝑆 ⊂
𝐾 ⊗𝑘 𝑆 is generated by a single element 𝑥𝑟+1 with a single equation, namely 𝑃. Hence
𝐾 ⊗𝑘 𝑆 embeds into 𝑓.𝑓.(𝑘(𝑥1, … , 𝑥𝑛) ⊗𝑘 𝑆)[𝑇]/(𝑃). Since 𝑃 is separable this is a finite
product of fields and we win.

At this point we do not yet know that a separably generated field extension is separable, so
we have to prove the lemma in this case also. To do this suppose that {𝑥𝑖}𝑖∈𝐼 is a separating
transcendence basis for 𝐾 over 𝑘. For any finite set of elements 𝜆𝑗 ∈ 𝐾 there exists a finite
subset 𝑇 ⊂ 𝐼 such that 𝑘({𝑥𝑖}𝑖∈𝑇) ⊂ 𝑘({𝑥𝑖}𝑖∈𝑇 ∪ {𝜆𝑗}) is finite separable. Hence we see
that 𝐾 is a directed colimit of finitely generated and separably generated extensions of 𝑘.
Thus the argument of the preceding paragraph applies to this case as well. �

Lemma 7.40.7. Let 𝑘 be a field and let 𝑆 be a 𝑘-algebra. Assume that 𝑆 is reduced and
that 𝑆𝔭 is geometrically reduced for every minimal prime 𝔭 of 𝑆. Then 𝑆 is geometrically
reduced.

Proof. Since 𝑆 is reduced the map 𝑆 → ∏𝔭 minimal 𝑆𝔭 is injective, see Lemma 7.23.6. If
𝑘 ⊂ 𝐾 is a field extension, then the maps

𝑆 ⊗𝑘 𝐾 → (∏ 𝑆𝔭) ⊗𝑘 𝐾 → ∏ 𝑆𝔭 ⊗𝑘 𝐾

are injective: the first as 𝑘 → 𝐾 is flat and the second by inspection because 𝐾 is a free
𝑘-module. As 𝑆𝔭 is geometrically reduced the ring on the right is reduced. Thus we see
that 𝑆 ⊗𝑘 𝐾 is reduced as a subring of a reduced ring. �

7.41. Separable extensions, continued

In this section we continue the discussion started in Section 7.39. Let 𝑝 be a prime number
and let 𝑘 be a field of characteristic 𝑝. In this case we write 𝑘1/𝑝 for the extension of 𝑘 gotten
by adjoining 𝑝th roots of all the elements of 𝑘 to 𝑘. (In other words it is the subfield of an
algebraic closure of 𝑘 generated by the 𝑝th roots of elements of 𝑘.)

Lemma 7.41.1. Let 𝑘 be a field of characteristic 𝑝 > 0. Let 𝑘 ⊂ 𝐾 be a field extension.
The following are equivalent:

(1) 𝐾 is separable over 𝑘,
(2) the ring 𝐾 ⊗𝑘 𝑘1/𝑝 is reduced, and
(3) 𝐾 is geometrically reduced over 𝑘.

Proof. The implication (1) ⇒ (3) follows from Lemma 7.40.6. The implication (3) ⇒ (2)
is immediate.

Assume (2). Let 𝑘 ⊂ 𝐿 ⊂ 𝐾 be a subextension such that 𝐿 is a finitely generated field
extension of 𝑘. We have to show that we can find a separating transcendence basis of 𝐿.
The assumption implies that 𝐿 ⊗𝑘 𝑘1/𝑝 is reduced. Let 𝑥1, … , 𝑥𝑟 be a transcendence basis
of 𝐿 over 𝑘 such that the degree of inseparability of the finite extension 𝑘(𝑥1, … , 𝑥𝑟) ⊂
𝐿 is minimal. If 𝐿 is separable over 𝑘(𝑥1, … , 𝑥𝑟) then we win. Assume this is not the
case to get a contradiction. Then there exists an element 𝛼 ∈ 𝐿 which is not separable
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over 𝑘(𝑥1, … , 𝑥𝑟). Let 𝑃(𝑇) ∈ 𝑘(𝑥1, … , 𝑥𝑟)[𝑇] be its minimal polynomial. Because 𝛼 is
not separable actually 𝑃 is a polynomial in 𝑇𝑝. Clear denominators to get an irreducible
polynomial

𝐺(𝑋1, … , 𝑋𝑟, 𝑇) ∈ 𝑘[𝑋1, … , 𝑋𝑟, 𝑇]

such that 𝐺(𝑥1, … , 𝑥𝑟, 𝛼) = 0 in 𝐿. Note that this means 𝑘[𝑋1, … , 𝑋𝑟, 𝑇]/(𝐺) ⊂ 𝐿. We
claim that 𝑑𝐺/𝑑𝑋𝑖 is not identically zero for at least one 𝑖. Namely, if this was not the case,
then 𝐺 is actually a polynomial in 𝑋𝑝

1, … , 𝑋𝑝
𝑟 , 𝑇𝑝 and hence 𝐺1/𝑝 ∈ 𝑘1/𝑝[𝑋1, … , 𝑋𝑟, 𝑇]

would map to a nonzero nilpotent element of 𝑘1/𝑝 ⊗𝑘 𝐿! Thus, after renumbering, we
may assume that 𝑑𝐺/𝑑𝑋1 is not zero. Then we see that 𝑥1 is separably algebraic over
𝑘(𝑥2, … , 𝑥𝑟, 𝛼), and that 𝑥2, … , 𝑥𝑟, 𝛼 is a transcendence basis of 𝐿 over 𝑘. This means
that the degree of inseparability of the finite extension 𝑘(𝑥2, … , 𝑥𝑟, 𝛼) ⊂ 𝐿 is less than the
degree of inseparability of the finite extension 𝑘(𝑥1, … , 𝑥𝑟) ⊂ 𝐿, which is a contradiction.

�

Lemma 7.41.2. A separably generated field extension is separable.

Proof. Combine Lemma 7.40.6 with Lemma 7.41.1. �

In the following lemma we will use the notion of the perfect closure which is defined in
Definition 7.42.5.

Lemma 7.41.3. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra. The following are equivalent:
(1) 𝑘′ ⊗𝑘 𝑆 is reduced for every finite purely inseparable extension 𝑘′ of 𝑘,
(2) 𝑘1/𝑝 ⊗𝑘 𝑆 is reduced,
(3) 𝑘𝑝𝑒𝑟𝑓 ⊗𝑘 𝑆 is reduced, where 𝑘𝑝𝑒𝑟𝑓 is the perfect closure of 𝑘,
(4) 𝑘 ⊗𝑘 𝑆 is reduced, where 𝑘 is the algebraic closure of 𝑘, and
(5) 𝑆 is geometrically reduced over 𝑘.

Proof. Note that any finite purely inseparable extension 𝑘 ⊂ 𝑘′ embeds in 𝑘𝑝𝑒𝑟𝑓. Moreover,
𝑘1/𝑝 embeds into 𝑘𝑝𝑒𝑟𝑓 which embeds into 𝑘. Thus it is clear that (5) ⇒ (4) ⇒ (3) ⇒ (2) and
that (3) ⇒ (1).

We prove that (1) ⇒ (5). Assume 𝑘′ ⊗𝑘 𝑆 is reduced for every finite purely inseparable
extension 𝑘′ of 𝑘. Let 𝑘 ⊂ 𝐾 be an extension of fields. We have to show that 𝐾 ⊗𝑘 𝑆 is
reduced. By Lemma 7.40.4 we reduce to the case where 𝑘 ⊂ 𝐾 is a finitely generated field
extension. Choose a diagram

𝐾 // 𝐾′

𝑘

OO

// 𝑘′

OO

as in Lemma 7.39.4. By assumption 𝑘′ ⊗𝑘 𝑆 is reduced. By Lemma 7.40.6 it follows that
𝐾′ ⊗𝑘 𝑆 is reduced. Hence we conclude that 𝐾 ⊗𝑘 𝑆 is reduced as desired.

Finally we prove that (2) ⇒ (5). Assume 𝑘1/𝑝⊗𝑘𝑆 is reduced. Then 𝑆 is reduced. Moreover,
for each localization𝑆𝔭 at aminimal prime 𝔭, the ring 𝑘1/𝑝⊗𝑘𝑆𝔭 is a localization of 𝑘1/𝑝⊗𝑘𝑆
hence is reduced. But 𝑆𝔭 is a field by Lemma 7.23.3, hence 𝑆𝔭 is geometrically reduced by
Lemma 7.41.1. It follows from Lemma 7.40.7 that 𝑆 is geometrically reduced. �
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7.42. Perfect fields

Here is the definition.

Definition 7.42.1. Let 𝑘 be a field. We say 𝑘 is perfect if every field extension of 𝑘 is
separable over 𝑘.

Lemma 7.42.2. A field 𝑘 is perfect if and only if it is a field of characteristic 0 or a field of
characteristic 𝑝 > 0 such that every element has a 𝑝th root.

Proof. The characteristic zero case is clear. Assume the characteristic of 𝑘 is 𝑝 > 0. If 𝑘 is
perfect, then all the field extensions where we adjoin a 𝑝th root of an element of 𝑘 have to
be trivial, hence every element of 𝑘 has a 𝑝th root. Conversely if every element has a 𝑝th
root, then 𝑘 = 𝑘1/𝑝 and every field extension of 𝑘 is separable by Lemma 7.41.1. �

Lemma 7.42.3. Let 𝑘 ⊂ 𝐾 be a finitely generated field extension. There exists a diagram

𝐾 // 𝐾′

𝑘

OO

// 𝑘′

OO

where 𝑘 ⊂ 𝑘′, 𝐾 ⊂ 𝐾′ are finite purely inseparable field extensions such that 𝑘′ ⊂ 𝐾′ is a
separable field extension. In this situation we can assume that𝐾′ = 𝑘′𝐾 is the compositum,
and also that 𝐾′ = (𝑘′ ⊗𝑘 𝐾)𝑟𝑒𝑑.

Proof. By Lemma 7.39.4 we can find such a diagram with 𝑘′ ⊂ 𝐾′ separably generated.
By Lemma 7.41.2 this implies that 𝐾′ is separable over 𝑘′. The compositum 𝑘′𝐾 is a
subextension of 𝑘′ ⊂ 𝐾′ and hence 𝑘′ ⊂ 𝑘′𝐾 is separable by Lemma 7.39.2. The ring
(𝑘′ ⊗𝑘 𝐾)𝑟𝑒𝑑 is a domain as for some 𝑛 ≫ 0 the map 𝑥 ↦ 𝑥𝑝𝑛

maps it into 𝐾. Hence it is a
field by Lemma 7.32.17. Thus (𝑘′ ⊗𝑘 𝐾)𝑟𝑒𝑑 → 𝐾′ maps it isomorphically onto 𝑘′𝐾. �

Lemma 7.42.4. For every field 𝑘 there exists a purely inseparable extension 𝑘 ⊂ 𝑘′ such
that 𝑘′ is perfect. The field extension 𝑘 ⊂ 𝑘′ is unique up to unique isomorphism.

Proof. If the characteristic of 𝑘 is zero, then 𝑘′ = 𝑘 is the unique choice. Assume the
characteristic of 𝑘 is 𝑝 > 0. For every 𝑛 > 0 there exists a unique algebraic extension
𝑘 ⊂ 𝑘1/𝑝𝑛

such that (a) every element 𝜆 ∈ 𝑘 has a 𝑝𝑛th root in 𝑘1/𝑝𝑛
and (b) for every element

𝜇 ∈ 𝑘1/𝑝𝑛
we have 𝜇𝑝𝑛

∈ 𝑘. Namely, consider the ring map 𝑘 → 𝑘1/𝑝𝑛
= 𝑘, 𝑥 ↦ 𝑥𝑝𝑛

. This
is injective and satisfies (a) and (b). It is clear that 𝑘1/𝑝𝑛

⊂ 𝑘1/𝑝𝑛+1
as extensions of 𝑘 via the

map 𝑦 ↦ 𝑦𝑝. Then we can take 𝑘′ = ⋃ 𝑘1/𝑝𝑛
. Some details omitted. �

Definition 7.42.5. Let 𝑘 be a field. The field extension 𝑘 ⊂ 𝑘′ of Lemma 7.42.4 is called
the perfect closure of 𝑘. Notation 𝑘 ⊂ 𝑘𝑝𝑒𝑟𝑓.

Note that if 𝑘 ⊂ 𝑘′ is any algebraic purely inseparable extension, then 𝑘′ ⊂ 𝑘𝑝𝑒𝑟𝑓. Namely,
(𝑘′)𝑝𝑒𝑟𝑓 is isomorphic to 𝑘𝑝𝑒𝑟𝑓 by the uniqueness of Lemma 7.42.4.

Lemma 7.42.6. Let 𝑘 be a perfect field. Any reduced 𝑘 algebra is geometrically reduced
over 𝑘. Let 𝑅, 𝑆 be 𝑘-algebras. Assume both 𝑅 and 𝑆 are reduced. Then the 𝑘-algebra
𝑅 ⊗𝑘 𝑆 is reduced.

Proof. The first statement follows from Lemma 7.41.3. For the second statement use the
first statement and Lemma 7.40.5. �
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7.43. Geometrically irreducible algebras

Let 𝑘 ⊂ 𝑘′ be an algebraic purely inseparable field extension. Then for any 𝑘-algebra 𝑅
the ring map 𝑅 → 𝑘′ ⊗𝑘 𝑅 induces a homeomorphism of spectra. The reason for this is
the following slightly more general Lemma 7.43.2 below. The second part of this lemma
is often applied when 𝑅 ⊂ 𝑆 and there exists a prime number 𝑝 such that 𝑝𝑅 = 0 and 𝑆 is
generated over 𝑅 by elements 𝑥 such that 𝑥𝑝𝑓

∈ 𝑅 for some 𝑓 = 𝑓(𝑥) ≥ 0.

Lemma 7.43.1. Let 𝑛, 𝑚 > 0 be two integers. There exist 𝑎, 𝑏 ≥ 0 such that setting 𝑁 =
𝑛𝑎𝑚𝑏 we have (𝑥 + 𝑦)𝑁 ∈ 𝐙[𝑥𝑛, 𝑛𝑥, 𝑦𝑚, 𝑚𝑦].

Proof. Let 𝑘 = 𝑛𝑚. Then it suffices to prove that we can find a power 𝑁 = 𝑘𝑐 such that
(𝑥 + 𝑦)𝑁 ∈ 𝐙[𝑥𝑘, 𝑘𝑥, 𝑦𝑘, 𝑘𝑦]. Write

(𝑥 + 𝑦)𝑁 = ∑𝑖,𝑗≥0,𝑖+𝑗=𝑁 (
𝑁
𝑖, 𝑗)𝑥𝑖𝑦𝑗

The condition means that
𝑘𝑟+𝑟′

∣ (
𝑁
𝑖, 𝑗)

where 𝑖 = 𝑞𝑘 + 𝑟 with 𝑟 ∈ {0, … , 𝑘 − 1} and 𝑗 = 𝑞′𝑘 + 𝑟′ with 𝑟′ ∈ {0, … , 𝑘 − 1}. Choose
𝑁 = 𝑘𝑘+1. Then the fact that 𝑖 + 𝑗 = 𝑁 is divisible by 𝑘 implies that either 𝑟 = 𝑟′ = 0 if 𝑘
divides both 𝑖 and 𝑗, or else 𝑟 + 𝑟′ = 𝑘. The choice of 𝑁 works: If 𝑘 divides both 𝑖 and 𝑗
then the result is clear. If not then we write because (

𝑁

𝑖,𝑗
) = 𝑁

𝑖 ⋅ (
𝑁−1

𝑖−1
) and 𝑁/𝑖 is divisible

by 𝑘𝑘 because as 𝑟≠0 we see that gcd(𝑁, 𝑖) divides 𝑘 in this case. �

Lemma 7.43.2. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. If
(1) for any 𝑥 ∈ 𝑆 there exists 𝑛 > 0 such that 𝑥𝑛 is in the image of 𝜑, and
(2) for any 𝑥 ∈ Ker(𝜑) there exists 𝑛 > 0 such that 𝑥𝑛 = 0,

then 𝜑 induces a homeomorphism on spectra. If
(a) 𝑆 is generated as an 𝑅-algebra by elements 𝑥 such that there exists an 𝑛 > 0 with

𝑥𝑛 ∈ 𝜑(𝑅) and 𝑛𝑥 ∈ 𝜑(𝑅), and
(b) the kernel of 𝜑 is generated by nilpotent elements,

then (1) and (2) hold, and for any ring map 𝑅 → 𝑅′ the ring map 𝑅′ → 𝑅′ ⊗𝑅 𝑆 also
satisfies (a), (b), (1), and (2) and in particular induces a homeomorphism on spectra.

Proof. Assume (1) and (2). Let 𝔮, 𝔮′ be primes of 𝑆 lying over the same prime ideal 𝔭 of
𝑅. Suppose 𝑥 ∈ 𝑆 with 𝑥 ∈ 𝔮, 𝑥∉𝔮′. Then 𝑥𝑛 ∈ 𝔮 and 𝑥𝑛∉𝔮′ for all 𝑛 > 0. If 𝑥𝑛 = 𝜑(𝑦)
with 𝑦 ∈ 𝑅 for some 𝑛 > 0 then

𝑥𝑛 ∈ 𝔮 ⇒ 𝑦 ∈ 𝔭 ⇒ 𝑥𝑛 ∈ 𝔮′

which is a contradication. Hence there does not exist an 𝑥 as above and we conclude that
𝔮 = 𝔮′, i.e., the map on spectra is injective. By assumption (2) the kernel 𝐼 = Ker(𝜑)
is contained in every prime, hence 𝑆𝑝𝑒𝑐(𝑅) = 𝑆𝑝𝑒𝑐(𝑅/𝐼) as topological spaces. As the
induced map 𝑅/𝐼 → 𝑆 is integral by assumption (1) Lemma 7.32.15 shows that 𝑆𝑝𝑒𝑐(𝑆) →
𝑆𝑝𝑒𝑐(𝑅/𝐼) is surjective. Combining the above we see that 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is bijective.
If 𝑥 ∈ 𝑆 is arbitrary, and we pick 𝑦 ∈ 𝑅 such that 𝜑(𝑦) = 𝑥𝑛 for some 𝑛 > 0, then we see
that the open 𝐷(𝑥) ⊂ 𝑆𝑝𝑒𝑐(𝑆) corresponds to the open 𝐷(𝑦) ⊂ 𝑆𝑝𝑒𝑐(𝑅) via the bijection
above. Hence we see that the map 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is a homeomorphism.
Assume (a) and (b). Note that (b) is equivalent to (2). We claim that for any 𝑥 ∈ 𝑆 there
exists an integer 𝑛 > 0 such that 𝑥𝑛, 𝑛𝑥 ∈ 𝜑(𝑅). By assumption (a) it suffices to show
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that the set of elements with this property forms a 𝑅-sub algebra. Suppose 𝑥, 𝑦 ∈ 𝑆 and
𝑛, 𝑚 > 0 such that 𝑥𝑛, 𝑦𝑚, 𝑛𝑥, 𝑚𝑦 ∈ 𝜑(𝑅). Then (𝑥𝑦)𝑛𝑚, 𝑛𝑚𝑥𝑦 ∈ 𝜑(𝑅) and we see that
𝑥𝑦 satisfies the condition. Note that 𝑛𝑚(𝑥 + 𝑦) ∈ 𝜑(𝑅) and that there exists an integer
𝑁 = 𝑛𝑎𝑚𝑏, 𝑎, 𝑏 ≥ 0 such that (𝑥 + 𝑦)𝑁 ∈ 𝜑(𝑅), see Lemma 7.43.1. Thus 𝑥 + 𝑦 satisfies the
condition and the claim is proved. In particular it follows from the first part of the lemma
that 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is a homeomorphism. In particular it is surjective which is a
property preserved under any base change, see Lemma 7.27.3. Therefore for any 𝑅 → 𝑅′

the kernel of the ring map 𝑅′ → 𝑅′ ⊗𝑅 𝑆 consists of nilpotent elements, see Lemma 7.27.6,
in other words (b) holds for 𝑅′ → 𝑅′ ⊗𝑅 𝑆. Finally, it is clear that (a) is preserved under
base change which finishes the proof. �

Lemma 7.43.3. Let 𝑅 → 𝑆 be a ring map. Assume
(a) 𝑆𝑝𝑒𝑐(𝑅) is irreducible,
(b) 𝑅 → 𝑆 is flat,
(c) 𝑅 → 𝑆 is of finite presentation,
(d) the fibre rings 𝑆⊗𝑅 𝜅(𝔭) have irreducible spectra for a dense collection of primes

𝔭 of 𝑅.
Then 𝑆𝑝𝑒𝑐(𝑆) is irreducible. This is true more generally with (b) + (c) replaced by ``the
map 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is open''.

Proof. The assumptions (b) and (c) imply that the map on spectra is open, see Proposition
7.36.8. Hence the lemma follows from Topology, Lemma 5.5.7. �

Lemma 7.43.4. Let 𝑘 be a separably algebraically closed field. Let 𝑅, 𝑆 be 𝑘-algebras. If
𝑅, 𝑆 have a unique minimal prime, so does 𝑅 ⊗𝑘 𝑆.

Proof. Let 𝑘 ⊂ 𝑘 be a perfect closure, see Definition 7.42.5. By assumption 𝑘 is alge-
braically closed. The ringmaps𝑅 → 𝑅⊗𝑘𝑘 and𝑆 → 𝑆⊗𝑘𝑘 and𝑅⊗𝑘𝑆 → (𝑅⊗𝑘𝑆)⊗𝑘𝑘 =
(𝑅 ⊗𝑘 𝑘) ⊗𝑘 (𝑆 ⊗𝑘 𝑘) satisfy the assumptions of Lemma 7.43.2. Hence we may assume 𝑘
is algebraically closed.

We may replace 𝑅 and 𝑆 by their reductions. Hence we may assume that 𝑅 and 𝑆 are
domains. By Lemma 7.42.6 we see that 𝑅⊗𝑘 𝑆 is reduced. Hence its spectrum is reducible
if and only if it contains a nonzero zero divisor. By Lemma 7.40.4 we reduce to the case
where 𝑅 and 𝑆 are domains of finite type over 𝑘 algebraically closed.

Note that the ring map 𝑅 → 𝑅 ⊗𝑘 𝑆 is of finite presentation and flat. Moreover, for
every maximal ideal 𝔪 of 𝑅 we have (𝑅 ⊗𝑘 𝑆) ⊗𝑅 𝑅/𝔪 ≅ 𝑆 because 𝑘 ≅ 𝑅/𝔪 by the
Hilbert Nullstellensatz Theorem 7.30.1. Moreover, the set of maximal ideals is dense in the
spectrum of 𝑅 since 𝑆𝑝𝑒𝑐(𝑅) is Jacobson, see Lemma 7.31.2. Hence we see that Lemma
7.43.3 applies to the ring map 𝑅 → 𝑅 ⊗𝑘 𝑆 and we conclude that the spectrum of 𝑅 ⊗𝑘 𝑆
is irreducible as desired. �

Lemma 7.43.5. Let 𝑘 be a field. Let 𝑅 be a 𝑘-algebra. The following are equivalent
(1) for every field extension 𝑘 ⊂ 𝑘′ the spectrum of 𝑅 ⊗𝑘 𝑘′ is irreducible, and
(2) for every finite separable field extension 𝑘 ⊂ 𝑘′ the spectrum of 𝑅 ⊗𝑘 𝑘′ is irre-

ducible.

Proof. Let 𝑘 ⊂ 𝑘𝑝𝑒𝑟𝑓 be a perfect closure of 𝑘, see Definition 7.42.5. By Lemma 7.43.2
we may replace 𝑅 by (𝑅 ⊗𝑘 𝑘𝑝𝑒𝑟𝑓)𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 and 𝑘 by 𝑘𝑝𝑒𝑟𝑓 (some details omitted). Hence we
may assume that 𝑅 is geometrically reduced over 𝑘.
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Assume 𝑅 is geometrically reduced over 𝑘. For any extension of fields 𝑘 ⊂ 𝑘′ we see
irreducibility of the spectrum of 𝑅 ⊗𝑘 𝑘′ is equivalent to 𝑅 ⊗𝑘 𝑘′ being a domain. Assume
(2). Let 𝑘 ⊂ 𝑘 be a separable algebraic closure of 𝑘. Using Lemma 7.40.4 we see that (2)
is equivalent to 𝑅 ⊗𝑘 𝑘 being a domain. For any field extension 𝑘 ⊂ 𝑘′, there exists a field
extension 𝑘 ⊂ 𝑘′ with 𝑘′ ⊂ 𝑘′. By Lemma 7.43.4 we see that 𝑅 ⊗𝑘 𝑘′ is a domain. If
𝑅 ⊗𝑘 𝑘′ is not a domain, then also 𝑅 ⊗𝑘 𝑘′ is not a domain, contradiction. �

Definition 7.43.6. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra. We say 𝑆 is geometrically irre-
ducible over 𝑘 if for every field extension 𝑘 ⊂ 𝑘′ the spectrum of 𝑅 ⊗𝑘 𝑘′ is irreducible2.

By Lemma 7.43.5 it suffices to check this for finite separable field extensions 𝑘 ⊂ 𝑘′.

Lemma 7.43.7. Let 𝑘 be a field. Let𝑅 be a 𝑘-algebra. If 𝑘 is separably algebraically closed
then 𝑅 is geometrically irreducible over 𝑘 if and only if the spectrum of 𝑅 is irreducible.

Proof. Immediate from the remark following Definition 7.43.6. �

Lemma 7.43.8. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra.
(1) If 𝑆 is geometrically irreducible over 𝑘 so is every 𝑘-subalgebra.
(2) If all finitely generated 𝑘-subalgebras of 𝑆 are geometrically irreducible, then 𝑆

is geometrically irreducible.
(3) A directed colimit of geometrically irreducible 𝑘-algebras is geometrically irre-

ducible.

Proof. Let 𝑆′ ⊂ 𝑆 be a subalgebra. Then for any extension 𝑘 ⊂ 𝑘′ the ring map 𝑆′⊗𝑘𝑘′ →
𝑆 ⊗𝑘 𝑘′ is injective also. Hence (1) follows from Lemma 7.27.5 (and the fact that the
image of an irreducible space under a continuous map is irreducible). The second and third
property follow from the fact that tensor product commutes with colimits. �

Lemma 7.43.9. Let 𝑘 be a field. Let 𝑆 be a geometrically irreducible 𝑘-algebra. Let 𝑅 be
any 𝑘-algebra. The map

𝑆𝑝𝑒𝑐(𝑅 ⊗𝑘 𝑆) ⟶ 𝑆𝑝𝑒𝑐(𝑅)

induces a bijection on irreducible components.

Proof. Recall that irreducible components correspond to minimal primes (Lemma 7.23.1).
As 𝑅 → 𝑅 ⊗𝑘 𝑆 is flat we see by going down (Lemma 7.35.17) that any minimal prime of
𝑅 ⊗𝑘 𝑆 lies over a minimal prime of 𝑅. Conversely, if 𝔭 ⊂ 𝑅 is a (minimal) prime then

𝑅 ⊗𝑘 𝑆/𝔭(𝑅 ⊗𝑘 𝑆) = (𝑅/𝔭) ⊗𝑘 𝑆 ⊂ 𝑓.𝑓.(𝑅/𝔭) ⊗𝑘 𝑆

by flatness of 𝑅 → 𝑅 ⊗𝑘 𝑆. The ring 𝑓.𝑓.(𝑅/𝔭) ⊗𝑘 𝑆 has irreducible spectrum by assump-
tion. It follows that 𝑅 ⊗𝑘 𝑆/𝔭(𝑅 ⊗𝑘 𝑆) has a single minimal prime (Lemma 7.27.5). In
other words, the inverse image of the irreducible set 𝑉(𝔭) is irreducible. Hence the lemma
follows. �

Let us make some remarks on the notion of geometrically irreducible field extensions.

Lemma 7.43.10. Let 𝑘 ⊂ 𝐾 be a field extension. If 𝑘 is algebraically closed in 𝐾, then 𝐾
is geometrically irreducible over 𝑘.

2An irreducible space is nonempty.
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Proof. Let 𝑘 ⊂ 𝑘′ be a finite separable extension, say generated by 𝛼 ∈ 𝑘′ over 𝑘 (see
Lemma 7.38.5). Let 𝑃 = 𝑇𝑑 + 𝑎1𝑇𝑑−1 + … + 𝑎𝑑 ∈ 𝑘[𝑇] be the minimal polynomial of
𝛼. Then 𝐾 ⊗𝑘 𝑘′ ≅ 𝐾[𝑇]/(𝑃). The only way the spectrum of 𝐾[𝑇]/(𝑃) can be reducible
is if 𝑃 is reducible in 𝐾[𝑇]. Say 𝑃 = 𝑃1𝑃2 is a nontrivial factorization of 𝑃 into monic
polynomials. Let 𝑏1, … , 𝑏𝑡 ∈ 𝐾 be the coefficients of 𝑃1. Then we see that 𝑏𝑖 is algebraic
over 𝑘 by Lemma 7.34.5. Hence the lemma follows. �

Lemma 7.43.11. Let 𝑘 ⊂ 𝐾 be a field extension. Consider the subextension 𝑘 ⊂ 𝑘′ ⊂ 𝐾
such that 𝑘 ⊂ 𝑘′ is separable algebraic and 𝑘′ ⊂ 𝐾 maximal with this property. Then
𝐾 is geometrically irreducible over 𝑘′. If 𝐾/𝑘 is a finitely generated field extension, then
[𝑘′ ∶ 𝑘] < ∞.

Proof. Let 𝑘″ ⊂ 𝐾 be the algebraic closure of 𝑘 in 𝐾. By Lemma 7.43.10 we see that 𝐾 is
geometrically irreducible over 𝑘″. Since 𝑘′ ⊂ 𝑘″ is purely inseparable we see from Lemma
7.43.2 that also the extension 𝑘′ ⊂ 𝐾 is geometrically irreducible (some details omitted).
If 𝑘 ⊂ 𝐾 is finitely generated, then 𝑘′ is finite over 𝑘 by Lemma 7.38.7. �

Lemma 7.43.12. Let 𝑘 ⊂ 𝐾 be an extension of fields. Let 𝑘 ⊂ 𝑘 be a separable algebraic
closure. Then Gal(𝑘/𝑘) acts transitively on the primes of 𝑘 ⊗𝑘 𝐾.

Proof. Let 𝑘 ⊂ 𝑘′ ⊂ 𝐾 be the subextension found in Lemma 7.43.11. Note that as 𝑘 ⊂ 𝑘
is integral all the prime ideals of 𝑘 ⊗𝑘 𝐾 and 𝑘 ⊗𝑘 𝑘′ are maximal, see Lemma 7.32.18. In
particular the residue field of any prime ideal of 𝑘⊗𝑘𝑘′ is isomorphic to 𝑘. Hence the prime
ideals of 𝑘 ⊗𝑘 𝑘′ correspond one to one to elements of 𝐻𝑜𝑚𝑘(𝑘′, 𝑘) with 𝜎 ∈ 𝐻𝑜𝑚𝑘(𝑘′𝑘)
corresponding to the kernel 𝔭𝜎 of 1 ⊗ 𝜎 ∶ 𝑘 ⊗𝑘 𝑘′ → 𝑘. In particular Gal(𝑘/𝑘) acts
transitively on this set. Finally, since 𝐾 is geometrically irreducible over 𝑘′ we see that
there is a unique prime of 𝑘 ⊗𝑘 𝐾 lying over each 𝔭𝜎 since the set of these primes is the set
of primes in the ring

(𝑘 ⊗𝑘 𝐾) ⊗(𝑘⊗𝑘𝑘′),1⊗𝜎 𝜅(𝔭𝜎) = 𝑘 ⊗𝑘 (𝐾 ⊗𝑘′ 𝑘) = 𝐾 ⊗𝑘′,𝜎 𝑘

Thus the lemma holds. �

7.44. Geometrically connected algebras

Lemma 7.44.1. Let 𝑘 be a separably algebraically closed field. Let 𝑅, 𝑆 be 𝑘-algebras. If
𝑆𝑝𝑒𝑐(𝑅), and 𝑆𝑝𝑒𝑐(𝑆) are connected, then so is 𝑆𝑝𝑒𝑐(𝑅 ⊗𝑘 𝑆).

Proof. Recall that 𝑆𝑝𝑒𝑐(𝑅) is connected if and only if 𝑅 has no nontrivial idempotents,
see Lemma 7.18.4. Hence, by Lemma 7.40.4 we may assume 𝑅 and 𝑆 are of finite type
over 𝑘. In this case 𝑅 and 𝑆 are Noetherian, and have finitely many minimal primes, see
Lemma 7.28.6. Thus we may argue by induction on 𝑛 + 𝑚 where 𝑛, resp. 𝑚 is the number
of irreducible components of 𝑆𝑝𝑒𝑐(𝑅), resp. 𝑆𝑝𝑒𝑐(𝑆). Of course the case where either 𝑛
or 𝑚 is zero is trivial. If 𝑛 = 𝑚 = 1, i.e., 𝑆𝑝𝑒𝑐(𝑅) and 𝑆𝑝𝑒𝑐(𝑆) both have one irreducible
component, then the result holds by Lemma 7.43.4. Suppose that 𝑛 > 1. Let 𝔭 ⊂ 𝑅 be
a minimal prime corresponding to the irreducible closed subset 𝑇 ⊂ 𝑆𝑝𝑒𝑐(𝑅). Let 𝐼 ⊂ 𝑅
be such that 𝑇′ = 𝑉(𝐼) ⊂ 𝑆𝑝𝑒𝑐(𝑅) is the closure of the complement of 𝑇. Note that this
means that 𝑇′ = 𝑆𝑝𝑒𝑐(𝑅/𝐼) (Lemma 7.16.7) has 𝑛 − 1 irreducible components. Then
𝑇 ∪ 𝑇′ = 𝑆𝑝𝑒𝑐(𝑅), and 𝑇 ∩ 𝑇′ = 𝑉(𝔭 + 𝐼) = 𝑆𝑝𝑒𝑐(𝑅/(𝔭 + 𝐼)) is not empty as 𝑆𝑝𝑒𝑐(𝑅) is
assumed connected. The inverse image of 𝑇 in 𝑆𝑝𝑒𝑐(𝑅 ⊗𝑘 𝑆) is 𝑆𝑝𝑒𝑐(𝑅/𝔭 ⊗𝑘 𝑆), and the
inverse of 𝑇′ in 𝑆𝑝𝑒𝑐(𝑅 ⊗𝑘 𝑆) is 𝑆𝑝𝑒𝑐(𝑅/𝐼 ⊗𝑘 𝑆). By induction these are both connected.
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The inverse image of 𝑇∩𝑇′ is 𝑆𝑝𝑒𝑐(𝑅/(𝔭+𝐼)⊗𝑘𝑆) which is nonempty. Hence 𝑆𝑝𝑒𝑐(𝑅⊗𝑘𝑆)
is connected. �

Lemma 7.44.2. Let 𝑘 be a field. Let 𝑅 be a 𝑘-algebra. The following are equivalent
(1) for every field extension 𝑘 ⊂ 𝑘′ the spectrum of 𝑅 ⊗𝑘 𝑘′ is connected, and
(2) for every finite separable field extension 𝑘 ⊂ 𝑘′ the spectrum of 𝑅 ⊗𝑘 𝑘′ is con-

nected.

Proof. For any extension of fields 𝑘 ⊂ 𝑘′ the connectivity of the spectrum of 𝑅 ⊗𝑘 𝑘′ is
equivalent to 𝑅 ⊗𝑘 𝑘′ having no nontrivial idempotents, see Lemma 7.18.4. Assume (2).
Let 𝑘 ⊂ 𝑘 be a separable algebraic closure of 𝑘. Using Lemma 7.40.4 we see that (2) is
equivalent to 𝑅 ⊗𝑘 𝑘 having no nontrivial idempotents. For any field extension 𝑘 ⊂ 𝑘′,
there exists a field extension 𝑘 ⊂ 𝑘′ with 𝑘′ ⊂ 𝑘′. By Lemma 7.44.1 we see that 𝑅 ⊗𝑘 𝑘′

has no nontrivial idempotents. If 𝑅 ⊗𝑘 𝑘′ has a nontrivial idempotent, then also 𝑅 ⊗𝑘 𝑘′,
contradiction. �

Definition 7.44.3. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra. We say 𝑆 is geometrically con-
nected over 𝑘 if for every field extension 𝑘 ⊂ 𝑘′ the spectrum of 𝑅 ⊗𝑘 𝑘′ is connected.

By Lemma 7.44.2 it suffices to check this for finite separable field extensions 𝑘 ⊂ 𝑘′.

Lemma 7.44.4. Let 𝑘 be a field. Let𝑅 be a 𝑘-algebra. If 𝑘 is separably algebraically closed
then 𝑅 is geometrically connected over 𝑘 if and only if the spectrum of 𝑅 is connected.

Proof. Immediate from the remark following Definition 7.44.3. �

Lemma 7.44.5. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra.
(1) If 𝑆 is geometrically connected over 𝑘 so is every 𝑘-subalgebra.
(2) If all finitely generated 𝑘-subalgebras of 𝑆 are geometrically connected, then 𝑆

is geometrically connected.
(3) A directed colimit of geometrically irreducible 𝑘-algebras is geometrically con-

nected.

Proof. This follows from the characterization of connectedness in terms of the nonexis-
tence of nontrivial idempotents. The second and third property follow from the fact that
tensor product commutes with colimits. �

The following lemma will be superceded by the more general Varieties, Lemma 28.5.4.

Lemma 7.44.6. Let 𝑘 be a field. Let𝑆 be a geometrically connected and nonzero 𝑘-algebra.
Let 𝑅 be any 𝑘-algebra. The map

𝑅 ⟶ 𝑅 ⊗𝑘 𝑆
induces a bijection on idempotents, and the map

𝑆𝑝𝑒𝑐(𝑅 ⊗𝑘 𝑆) ⟶ 𝑆𝑝𝑒𝑐(𝑅)
induces a bijection on connected components.

Proof. The second assertion follows from the first combined with Lemma 7.19.2. By Lem-
mas 7.44.5 and 7.40.4 we may assume that 𝑅 and 𝑆 are of finite type over 𝑘. Then we see
that also 𝑅 ⊗𝑘 𝑆 is of finite type over 𝑘. Note that in this case all the rings are Noetherian
and hence their spectra have finitely many connected components (since they have finitely
many irreducible components, see Lemma 7.28.6). In particular, all connected components
in question are open! Hence via Lemma 7.20.3 we see that the first statement of the lemma
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in this case is equivalent to the second. Let's prove this. As the algebra 𝑆 is geometrically
connected and nonzero we see that all fibres of 𝑋 = 𝑆𝑝𝑒𝑐(𝑅 ⊗𝑘 𝑆) → 𝑆𝑝𝑒𝑐(𝑅) = 𝑌 are
connected and nonempty. Also, as 𝑅 → 𝑅⊗𝑘 𝑆 is flat of finite presentation the map 𝑋 → 𝑌
is open (Proposition 7.36.8). Topology, Lemma 5.4.5 shows that 𝑋 → 𝑌 induces bijection
on connected components. �

7.45. Geometrically integral algebras

Definition 7.45.1. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra. We say 𝑆 is geometrically integral
over 𝑘 if for every field extension 𝑘 ⊂ 𝑘′ the ring of 𝑅 ⊗𝑘 𝑘′ is a domain.

Any question about geometrically integral algebras can be translated in a question about
geometrically reduced and irreducible algebras.

Lemma 7.45.2. Let 𝑘 be a field. Let 𝑆 be a 𝑘-algebra. In this case 𝑆 is geometrically
integral over 𝑘 if and only if 𝑆 is geometrically irreducible as well as geometrically reduced
over 𝑘.

Proof. Omitted. �

7.46. Valuation rings

Here are some definitions.

Definition 7.46.1. Valuation rings.
(1) Let 𝐾 be a field. Let 𝐴, 𝐵 be local rings contained in 𝐾. We say that 𝐵 dominates

𝐴 if 𝐴 ⊂ 𝐵 and 𝔪𝐴 = 𝐴 ∩ 𝔪𝐵.
(2) Let 𝐴 be a ring. We say 𝐴 is a valuation ring if 𝐴 is a local domain, not a field,

and if 𝐴 is maximal for the relation of domination among local rings contained
in the fraction field of 𝐴.

(3) Let 𝐴 be a valuation ring with fraction field 𝐾. If 𝑅 ⊂ 𝐾 is a subring of 𝐾, then
we say 𝐴 is centered on 𝑅 if 𝑅 ⊂ 𝐴.

Lemma 7.46.2. Let 𝐾 be a field. Let 𝐴 ⊂ 𝐾 be a local subring which is not a field. Then
there exists a valuation ring with fraction field 𝐾 dominating 𝐴.

Proof. During this proof, and during this proof only, the phrase ``local ring'' will mean
``local ring, not a field''. We consider the collection of local subrings of 𝐾 as a partially
ordered set using the relation of domination. Suppose that {𝐴𝑖}𝑖∈𝐼 is a totally ordered
collection of local subrings of 𝐾. Then 𝐵 = ⋃ 𝐴𝑖 is a local subring which dominates all
of the 𝐴𝑖. Hence by Zorn's Lemma, it suffices to show that if 𝐴 ⊂ 𝐾 is a local ring whose
fraction field is not 𝐾, then there exists a local ring 𝐵 ⊂ 𝐾, 𝐵≠𝐴 dominating 𝐴.

Pick 𝑡 ∈ 𝐾 which is not in the fraction field of 𝐴. If 𝑡 is transcendental over 𝐴, then 𝐴[𝑡] ⊂ 𝐾
and hence 𝐴[𝑡](𝑡,𝔪) ⊂ 𝐾 is a local ring dominating 𝐴. Suppose 𝑡 is algebraic over 𝐴. Then
for some 𝑎 ∈ 𝐴 the element 𝑎𝑡 is integral over 𝐴. In this case the subring 𝐴′ ⊂ 𝐾 generated
by 𝐴 and 𝑡𝑎 is finite over 𝐴. By Lemma 7.32.15 there exists a prime ideal 𝔪′ ⊂ 𝐴′ lying
over 𝔪. Then 𝐴′

𝔪′ clearly dominates 𝐴 and we win. �

Lemma 7.46.3. Let 𝐴 be a valuation ring with maximal ideal 𝔪 and fraction field 𝐾. Let
𝑥 ∈ 𝐾. Then either 𝑥 ∈ 𝐴 or 𝑥−1 ∈ 𝐴 or both.
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Proof. Assume that 𝑥 is not in 𝐴. Let 𝐴′ denote the subring of 𝐴 generated by 𝐴 and 𝑥.
Since 𝐴 is a valuation ring we see that there is no prime of 𝐴′ lying over 𝔪. Hence we can
write 1 = ∑𝑑

𝑖=0 𝑡𝑖𝑥𝑖 with 𝑡𝑖 ∈ 𝔪. This implies that (1 − 𝑡0)(𝑥−1)𝑑 − ∑ 𝑡𝑖(𝑥−1)𝑑−𝑖 = 0. In
particular we see that 𝑥−1 is integral over 𝐴. Thus the subring 𝐴″ of 𝐾 generated by 𝐴 and
𝑥−1 is finite over 𝐴 and we see there exists a prime ideal 𝔪″ ⊂ 𝐴″ lying over 𝔪 by Lemma
7.32.15. Since 𝐴 is a valuation ring we conclude that 𝐴 = (𝐴″)𝔪″ and hence 𝑥−1 ∈ 𝐴. �

Lemma 7.46.4. Let 𝐴 ⊂ 𝐾 be a local domain contained in a field 𝐾. Assume that 𝐴 is not
a field, and for every 𝑥 ∈ 𝐾 either 𝑥 ∈ 𝐴 or 𝑥−1 ∈ 𝐴 or both. Then 𝐴 is a valuation ring.

Proof. Suppose that 𝐴′ is a local ring contained in 𝐾 which dominates 𝐴. Let 𝑥 ∈ 𝐴′.
We have to show that 𝑥 ∈ 𝐴. If not, then 𝑥−1 ∈ 𝐴, and of course 𝑥−1 ∈ 𝔪𝐴. But then
𝑥−1 ∈ 𝔪𝐴′ which contradicts 𝑥 ∈ 𝐴′. �

Lemma 7.46.5. Let 𝐾 ⊂ 𝐿 be an extension of fields. If 𝐵 ⊂ 𝐿 is a valuation ring, then
𝐴 = 𝐾 ∩ 𝐵 is either a field or a valuation ring.

Proof. Omitted. Hint: Combine Lemmas 7.46.3 and 7.46.4. �

Lemma 7.46.6. Let 𝐴 be a valuation ring. Then 𝐴 is a normal domain.

Proof. Suppose 𝑥 is in the field of fractions of𝐴 and integral over𝐴, say 𝑥𝑑+∑𝑖<𝑑 𝑎𝑖𝑥𝑖 = 0.
By Lemma 7.46.4 either 𝑥 ∈ 𝐴 (and we're done) or 𝑥−1 ∈ 𝐴. In the second case we see
that 𝑥 = − ∑ 𝑎𝑖𝑥𝑖−𝑑 ∈ 𝐴 as well. �

An totally ordered abelian group is a pair (Γ, ≥) consisting of an abelian group Γ endowed
with a total ordering ≥ such that 𝛾 ≥ 𝛾′ ⇒ 𝛾 + 𝛾″ ≥ 𝛾′ + 𝛾″ for all 𝛾, 𝛾′, 𝛾″ ∈ Γ.

Lemma 7.46.7. Let 𝐴 be a valuation ring with field of fractions 𝐾. Set Γ = 𝐾∗/𝐴∗ (with
group law written additively). For 𝛾, 𝛾′ ∈ Γ define 𝛾 ≥ 𝛾′ if and only if 𝛾 − 𝛾′ is in the image
of 𝐴 − {0} → Γ. Then (Γ, ≥) is a totally ordered abelian group.

Proof. Omitted, but follows easily from Lemma 7.46.3 above. �

Definition 7.46.8. Let 𝐴 be a valuation ring.
(1) The totally ordered abelian group (Γ, ≥) is called the value group of the valuation

ring 𝐴.
(2) The map 𝑣 ∶ 𝐴−{0} → Γ and also 𝑣 ∶ 𝐾∗ → Γ is called the valuation associated

to 𝐴.
(3) The valuation ring 𝐴 is called a discrete valuation ring if Γ ≅ 𝐙.

Note that if Γ ≅ 𝐙 then there is a unique such isomorphism such that 1 ≥ 0. If the isomor-
phism is chose in this way, then the ordering becomes the usual ordering of the integers.

Lemma 7.46.9. Let 𝐴 be a valuation ring. The valution 𝑣 ∶ 𝐴 − {0} → Γ≥0 has the
following properties:

(1) 𝑣(𝑎) = 0 ⇔ 𝑎 ∈ 𝐴∗,
(2) 𝑣(𝑎𝑏) = 𝑣(𝑎) + 𝑣(𝑏),
(3) 𝑣(𝑎 + 𝑏) ≥ min(𝑣(𝑎), 𝑣(𝑏)).

Proof. Omitted. �
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Lemma 7.46.10. Let (Γ, ≥) be a totally ordered abelian group. Let 𝐾 be a field. Let
𝑣 ∶ 𝐾∗ → Γ be a homomorphism of abelian groups. Then

𝐴 = {𝑥 ∈ 𝐾 ∣ 𝑥 = 0 or 𝑣(𝑥) ≥ 0}

is a valuation ring with value group Im(𝑣) ⊂ Γ, with maximal ideal

𝔪 = {𝑥 ∈ 𝐾 ∣ 𝑥 = 0 or 𝑣(𝑥) > 0}

and with group of units
𝐴∗ = {𝑥 ∈ 𝐾∗ ∣ 𝑣(𝑥) = 0}.

Proof. Omitted. �

Let (Γ, ≥) be a totally ordered abelian group. An ideal of Γ is a subset 𝐼 ⊂ Γ such that all
elements of 𝐼 are ≥ 0 and 𝛾 ∈ 𝐼, 𝛾′ ≥ 𝛾 implies 𝛾′ ∈ 𝐼. We say that such an ideal is prime
if 𝛾 + 𝛾′ ∈ 𝐼, 𝛾, 𝛾′ ≥ 0 ⇒ 𝛾 ∈ 𝐼 or 𝛾′ ∈ 𝐼.

Lemma 7.46.11. Let 𝐴 be a valuation ring. Ideals in 𝐴 correspond 1 − 1 with ideals of Γ.
This bijection is inclusion preserving, and maps prime ideals to prime ideals.

Proof. Omitted. �

Lemma 7.46.12. A valuation ring is Noetherian if and only if it is a discrete valuation ring.

Proof. Suppose 𝐴 is a discrete valutation ring with valuation 𝑣 ∶ 𝐴 ⧵ {0} → 𝐙 normalized
so that Im(𝑣) ⊂ 𝐙≥0. By Lemma 7.46.11 the ideals of𝐴 are the subsets 𝐼𝑛 = {0}∪𝑣−1(𝐙≥𝑛).
It is clear that any element 𝑥 ∈ 𝐴 with 𝑣(𝑥) = 𝑛 generates 𝐼𝑛. Hence 𝐴 is a PID so certainly
Noetherian.

Suppose 𝐴 is a Noetherian valuation ring with value group Γ. By Lemma 7.46.11 we see
the ascending chain condition holds for ideals in Γ. In particular, by considering the subsets
𝛾 + Γ≥0 with 𝛾 > 0 we see there exists a smallest element 𝛾0 which is bigger than 0. Let
𝛾 ∈ Γ be an element 𝛾 > 0. Consider the sequence of elements 𝛾, 𝛾 − 𝛾0, 𝛾 − 2𝛾0, etc. By
the ascending chain condition these cannot all be > 0. Let 𝛾 − 𝑛𝛾0 be the last one ≥ 0. By
minimality of 𝛾0 we see that 0 = 𝛾 − 𝑛𝛾0. Hence Γ is a cyclic group as desired. �

Lemma 7.46.13. Let (𝑅, 𝔪) be a local domain with fraction field 𝐾. Let 𝑅 ⊂ 𝐴 ⊂ 𝐾 be a
valuation ring which dominates 𝑅. Then

𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝑅[ 𝐼
𝑎 ]

is a directed colimit of affine blowups 𝑅 → 𝑅[ 𝐼
𝑎 ] with the following two properties

(1) 𝑎 ∈ 𝐼 ⊂ 𝔪,
(2) 𝐼 is finitely generated, and
(3) the fibre ring of 𝑅 → 𝑅[ 𝐼

𝑎 ] at 𝔪 is not zero.

Proof. Consider a finite subset 𝐸 ⊂ 𝐴. Say 𝐸 = {𝑒1, … , 𝑒𝑛}. Choose a nonzero 𝑎 ∈ 𝑅
such that we can write 𝑒𝑖 = 𝑓𝑖/𝑎 for all 𝑖 = 1, … , 𝑛. Set 𝐼 = (𝑓1, … , 𝑓𝑛, 𝑎). We claim that
𝑅[ 𝐼

𝑎 ] ⊂ 𝐴. This is clear as an element of 𝑅[ 𝐼
𝑎 ] can be represented as a polynomial in the

elements 𝑒𝑖. The lemma follows immediately from this observation. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00IG
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00IH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00II
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=052M


290 7. COMMUTATIVE ALGEBRA

7.47. More Noetherian rings

Lemma 7.47.1. Let 𝑅 be a Noetherian ring. Any finite 𝑅-module is of finite presentation.
Any submodule of a finite 𝑅-module is finite. The ascending chain condition holds for
𝑅-submodules of a finite 𝑅-module.

Proof. We first show that any submodule 𝑁 of a finite 𝑅-module 𝑀 is finite. We do this by
induction on the number of generators of 𝑀. If this number is 1, then 𝑁 = 𝐽/𝐼 ⊂ 𝑀 = 𝑅/𝐼
for some ideals 𝐼 ⊂ 𝐽 ⊂ 𝑅. Thus the definition of Noetherian implies the result. If
the number of generators of 𝑀 is greater than 1, then we can find a short exact sequence
0 → 𝑀′ → 𝑀 → 𝑀″ → 0 where 𝑀′ and 𝑀″ have fewer generators. Note that setting
𝑁′ = 𝑀′ ∩ 𝑁 and 𝑁″ = Im(𝑁 → 𝑀″) gives a similar short exact sequence for 𝑁. Hence
the result follows from the induction hypothesis since the number of generators of 𝑁 is at
most the number of generators of 𝑁′ plus the number of generators of 𝑁″.

To show that 𝑀 is finitely presented just apply the previous result to the kernel of a presen-
tation 𝑅𝑛 → 𝑀.

It is well known and easy to prove that the ascending chain condition for 𝑅-submodules of
𝑀 is equivalent to the condition that every submodule of 𝑀 is a finite 𝑅-module. We omit
the proof. �

Definition 7.47.2. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. We say 𝐼 is locally nilpotent if
for every 𝑥 ∈ 𝐼 there exists an 𝑛 ∈ 𝐍 such that 𝑥𝑛 = 0. We say 𝐼 is nilpotent if there exists
an 𝑛 ∈ 𝐍 such that 𝐼𝑛 = 0.

Lemma 7.47.3. Let 𝑅 be a Noetherian ring. Let 𝐼, 𝐽 be ideals of 𝑅. Suppose 𝐽 ⊂ √𝐼.
Then 𝐽𝑛 ⊂ 𝐼 for some 𝑛. In particular, in a Noetherian ring the notions of ``locally nilpotent
ideal'' and ``nilpotent ideal'' coincide.

Proof. Say 𝐽 = (𝑓1, … , 𝑓𝑠). By assumption 𝑓𝑑𝑖
𝑖 ∈ 𝐼. Take 𝑛 = 𝑑1 + 𝑑2 + … + 𝑑𝑠 + 1. �

Lemma 7.47.4. (Artin-Rees lemma) Suppose that 𝑅 is Noetherian, 𝐼 ⊂ 𝑅 an ideal. Let
𝑁 ⊂ 𝑀 be finite𝑅-modules. There exists a constant 𝑐 > 0 such that 𝐼𝑛𝑀∩𝑁 = 𝐼𝑛−𝑐(𝐼𝑐𝑀∩
𝑁).

Proof. Consider the ring 𝑆 = 𝑅 ⊕ 𝐼 ⊕ 𝐼2 ⊕ … = ⨁𝑛≥0 𝐼𝑛. Convention: 𝐼0 = 𝑅. Multi-
plication maps 𝐼𝑛 × 𝐼𝑚 into 𝐼𝑛+𝑚 by multiplication in 𝑅. Note that if 𝐼 = (𝑓1, … , 𝑓𝑡) then
𝑆 is a quotient of the Noetherian ring 𝑅[𝑋1, … , 𝑋𝑡]. The map just sends the monomial
𝑋𝑒1

1 … 𝑋𝑒𝑡
𝑡 to 𝑓𝑒1

1 … 𝑓𝑒𝑡
𝑡 . Thus 𝑆 is Noetherian. Similarly, consider the module 𝑀 ⊕ 𝐼𝑀 ⊕

𝐼2𝑀 ⊕ … = ⨁𝑛≥0 𝐼𝑛𝑀. This is a finitely generated 𝑆-module. Namely, if 𝑥1, … , 𝑥𝑟
generate 𝑀 over 𝑅, then they also generate ⨁𝑛≥0 𝐼𝑛𝑀 over 𝑆. Next, consider the sub-
module ⨁𝑛≥0 𝐼𝑛𝑀 ∩ 𝑁. This is an 𝑆-submodule, as is easily verified. By Lemma 7.47.1
it is finitely generated as an 𝑆-module, say by 𝜉𝑗 ∈ ⨁𝑛≥0 𝐼𝑛𝑀 ∩ 𝑁, 𝑗 = 1, … , 𝑠. We may
assume by decomposing each 𝜉𝑗 into its homogeneous pieces that each 𝜉𝑗 ∈ 𝐼𝑑𝑗𝑀 ∩ 𝑁 for
some 𝑑𝑗. Set 𝑐 = max{𝑑𝑗}. Then for all 𝑛 ≥ 𝑐 every element in 𝐼𝑛𝑀 ∩ 𝑁 is of the form
∑ ℎ𝑗𝜉𝑗 with ℎ𝑗 ∈ 𝐼𝑛−𝑑𝑗. The lemma now follows from this and the trivial observation that
𝐼𝑛−𝑑𝑗(𝐼𝑑𝑗𝑀 ∩ 𝑁) ⊂ 𝐼𝑛−𝑐(𝐼𝑐𝑀 ∩ 𝑁). �

Lemma 7.47.5. Suppose that 0 → 𝐾 → 𝑀
𝑓

−→ 𝑁 is an exact sequence of finitely generated
modules over a Noetherian ring 𝑅. Let 𝐼 ⊂ 𝑅 be an ideal. Then there exists a 𝑐 such that
𝑓−1(𝐼𝑛𝑁) = 𝐾 + 𝐼𝑛−𝑐𝑓−1(𝐼𝑐𝑁) for all 𝑛 ≥ 𝑐.
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Proof. Apply Lemma 7.47.4 to Im(𝑓) ⊂ 𝑁 and note that 𝑓 ∶ 𝐼𝑛−𝑐𝑀 → 𝐼𝑛−𝑐𝑓(𝑀) is
surjective. �

Lemma 7.47.6. Let 𝑅 be a Noetherian local ring. Let 𝐼 ⊂ 𝑅 be a proper ideal. Let 𝑀 be
a finite 𝑅-module. Then ⋂𝑛≥0 𝐼𝑛𝑀 = 0.

Proof. Let 𝑁 = ⋂𝑛≥0 𝐼𝑛𝑀. Then 𝑁 = 𝐼𝑛𝑀 ∩ 𝑁 for all 𝑛 ≥ 0. By the Artin-Rees Lemma
7.47.4 we see that 𝑁 = 𝐼𝑛𝑀 ∩ 𝑁 ⊂ 𝐼𝑁 for some suitably large 𝑛. By Nakayama's Lemma
7.14.5 we see that 𝑁 = 0. �

Lemma 7.47.7. Let 𝑅 be a Noetherian ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be a finite
𝑅-module. Let 𝑁 = ⋂𝑛 𝐼𝑛𝑀. For every prime 𝔭, 𝐼 ⊂ 𝔭 there exists a 𝑓 ∈ 𝑅, 𝑓∉𝔭 such
that 𝑁𝑓 = 0.

Proof. Let 𝑥1, … , 𝑥𝑛 be generators for the module 𝑁, see Lemma 7.47.1. For every prime
𝔭, 𝐼 ⊂ 𝔭 we see that the image of 𝑁 in the localization 𝑀𝔭 is zero, by Lemma 7.47.6.
Hence we can find 𝑔𝑖 ∈ 𝑅, 𝑔𝑖∉𝔭 such that 𝑥𝑖 maps to zero in 𝑁𝑔𝑖

. Thus 𝑁𝑔1𝑔2…𝑔𝑛
= 0. �

Remark 7.47.8. Lemma 7.47.6 in particular implies that ⋂𝑛 𝐼𝑛 = (0) when 𝐼 ⊂ 𝑅 is a
non-unit ideal in a Noetherian local ring 𝑅. More generally, let 𝑅 be a Noetherian ring and
𝐼 ⊂ 𝑅 an ideal. Suppose that 𝑓 ∈ ⋂𝑛∈𝐍 𝐼𝑛. Then Lemma 7.47.7 says that for every prime
ideal 𝐼 ⊂ 𝔭 there exists a 𝑔 ∈ 𝑅, 𝑔∉𝔭 such that 𝑓 maps to zero in 𝑅𝑔. In algebraic geometry
we express this by saying that ``𝑓 is zero in an open neighbourhood of the closed set 𝑉(𝐼)
of 𝑆𝑝𝑒𝑐(𝑅)''.

Lemma 7.47.9. (Artin-Tate) Let 𝑅 be a Noetherian ring. Let 𝑆 be a finitely generated
𝑅-algebra. If 𝑇 ⊂ 𝑆 is an 𝑅-subalgebra such that 𝑆 is finitely generated as a 𝑇-module,
then 𝑇 is a finite type over 𝑅.

Proof. Choose elements 𝑥1, … , 𝑥𝑛 ∈ 𝑆which generate𝑆 as an𝑅-algebra. Choose 𝑦1, … , 𝑦𝑚
in 𝑆 which generate 𝑆 as a 𝑇-module. Thus there exist 𝑎𝑖𝑗 ∈ 𝑇 such that 𝑥𝑖 = ∑ 𝑎𝑖𝑗𝑦𝑗. There
also exist 𝑏𝑖𝑗𝑘 ∈ 𝑇 such that 𝑦𝑖𝑦𝑗 = ∑ 𝑏𝑖𝑗𝑘𝑦𝑘. Let 𝑇′ ⊂ 𝑇 be the sub 𝑅-algebra generated by
𝑎𝑖𝑗 and 𝑏𝑖𝑗𝑘. This is a finitely generated 𝑅-algebra, hence Noetherian. Consider the algebra

𝑆′ = 𝑇′[𝑌1, … , 𝑌𝑚]/(𝑌𝑖𝑌𝑗 − ∑ 𝑏𝑖𝑗𝑘𝑌𝑘).

Note that 𝑆′ is finite over 𝑇′, namely as a 𝑇′-module it is generated by the classes of
1, 𝑌1, … , 𝑌𝑚. Consider the 𝑇′-algebra homomorphism 𝑆′ → 𝑆 which maps 𝑌𝑖 to 𝑦𝑖. Be-
cause 𝑎𝑖𝑗 ∈ 𝑇′ we see that 𝑥𝑗 is in the image of this map. Thus 𝑆′ → 𝑆 is surjective.
Therefore 𝑆 is finite over 𝑇′ as well. Since 𝑇′ is Noetherian and we conclude that 𝑇 ⊂ 𝑆 is
finite over 𝑇′ and we win. �

Lemma 7.47.10. Let 𝑅 be a ring. Let 𝛼 ∶ 𝐴 → 𝐵 and 𝛾 ∶ 𝐶 → 𝐵 be 𝑅-algebra maps.
Assume

(1) 𝐴 → 𝐵 is surjective, and
(2) 𝐵 is finite over 𝐶.

Then the fibre product ring 𝑇 = {(𝑎, 𝑐) ∣ 𝛼(𝑎) = 𝛾(𝑐)} is of finite type over 𝑅.

Proof. Note that there is a commutative diagram

0 // 𝐼 // 𝐴 // 𝐵 // 0

0 // 𝐼 //

OO

𝑇 //

OO

𝐶 //

OO

0
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with exact rows. Choose 𝑦1, … , 𝑦𝑛 which are generators for 𝐵 as a 𝐶-module. Choose
𝑥1, … , 𝑥𝑛 ∈ 𝐴 mapping to 𝑦𝑖. Then it is clear that 1, 𝑥1, … , 𝑥𝑛 are generators for 𝐴 as a
𝑇-module. By the diagram the map 𝑇 → 𝐴 × 𝐶 is injective, and by what we just said the
ring 𝐴 × 𝐶 is finite as a 𝑇-module (because it is the direct sum of the finite modules 𝐴 and
𝐶). Hence the lemma follows from the Artin-Tate Lemma 7.47.9. �

7.48. Length

Definition 7.48.1. Let 𝑅 be a ring. For any 𝑅-module 𝑀 we define the length of 𝑀 over
𝑅 by the formula

length𝑅(𝑀) = sup{𝑛 ∣ ∃ 0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀, 𝑀𝑖≠𝑀𝑖+1}.

In other words it is the supremum of the lengths of chains of submodules. There is an
obvious notion of when a chain of submodules is a refinement of another. This gives a
partial ordering on the collection of all chains of submodules, with the smallest chain having
the shape 0 = 𝑀0 ⊂ 𝑀1 = 𝑀 if 𝑀 is not zero. We note the obvious fact that if the length
of 𝑀 is finite, then every chain can be refined to a maximal chain. But it is not as obvious
that all maximal chains have the same length (as we will see later).

Lemma 7.48.2. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. If length𝑅(𝑀) < ∞ then 𝑀 is a
finite 𝑅-module.

Proof. Omitted. �

Lemma 7.48.3. If 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 is a short exact sequence of modules over
𝑅 then the length of 𝑀 is the sum of the lengths of 𝑀′ and 𝑀″.

Proof. Given filtrations of 𝑀′ and 𝑀″ of lengths 𝑛′, 𝑛″ it is easy to make a corresponding
filtration of 𝑀 of length 𝑛′ + 𝑛″. Thus we see that length𝑅𝑀 ≥ length𝑅𝑀′ + length𝑅𝑀″.
Conversely, given a filtration 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 of 𝑀 consider the induced filtrations
𝑀′

𝑖 = 𝑀𝑖 ∩ 𝑀′ and 𝑀″
𝑖 = Im(𝑀𝑖 → 𝑀″). Let 𝑛′ (resp. 𝑛″) be the number of steps in the

filtration {𝑀′
𝑖 } (resp. {𝑀″

𝑖 }). If 𝑀′
𝑖 = 𝑀′

𝑖+1 and 𝑀″
𝑖 = 𝑀″

𝑖+1 then 𝑀𝑖 = 𝑀𝑖+1. Hence we
conclude that 𝑛′ + 𝑛″ ≥ 𝑛. Combined with the earlier result we win. �

Lemma 7.48.4. Let 𝑅 be a local ring with maximal ideal 𝔪. Let 𝑀 be an 𝑅-module.
(1) If 𝑀 is a finite and 𝔪𝑛𝑀≠0 for all 𝑛 ≥ 0, then length𝑅(𝑀) = ∞.
(2) If 𝑀 has finite length then 𝔪𝑛𝑀 = 0 for some 𝑛.

Proof. Assume 𝑀 is finite and 𝔪𝑛𝑀≠0 for all 𝑛 ≥ 0. By NAK, Lemma 7.14.5 all the
steps in the filtration 0 ⊂ 𝔪𝑛𝑀 ⊂ 𝔪𝑛−1𝑀 ⊂ … ⊂ 𝔪𝑀 ⊂ 𝑀 are distinct. Hence the
length is infinite, i.e., (1) holds. Combine (1) and Lemma 7.48.2 to see (2). �

Lemma 7.48.5. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. We always have
length𝑅(𝑀) ≥ length𝑆(𝑀). If 𝑅 → 𝑆 is surjective then equality holds.

Proof. A filtration of 𝑀 by 𝑆-submodules gives rise a filtration of 𝑀 by 𝑅-submodules.
This proves the inequality. And if 𝑅 → 𝑆 is surjective, then any 𝑅-submodule of 𝑀 is
automatically a 𝑆-submodule. Hence equality in this case. �

Lemma 7.48.6. Let 𝑅 be a ring with maximal ideal 𝔪. Suppose that 𝑀 is an 𝑅-module
with 𝔪𝑀 = 0. Then the length of 𝑀 as an 𝑅-module agrees with the dimension of 𝑀 as a
𝑅/𝔪 vector space. The length is finite if and only if 𝑀 is a finite 𝑅-module.
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Proof. The first part is a special case of Lemma 7.48.5. Thus the length is finite if and only
if 𝑀 has a finite basis as a 𝑅/𝔪-vector space if and only if 𝑀 has a finite set of generators
as an 𝑅-module. �

Lemma 7.48.7. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑆 ⊂ 𝑅 be a multiplicative
subset. Then length𝑅(𝑀) ≥ length𝑆−1𝑅(𝑆−1𝑀).

Proof. Any submodule 𝑁′ ⊂ 𝑆−1𝑀 is of the form 𝑆−1𝑁 for some 𝑅-submodule 𝑁 ⊂ 𝑀,
by Lemma 7.9.15. The lemma follows. �

Lemma 7.48.8. Let 𝑅 be a ring with finitely generated maximal ideal 𝔪. (For example
𝑅 Noetherian.) Suppose that 𝑀 is a finite 𝑅-module with 𝔪𝑛𝑀 = 0 for some 𝑛. Then
length𝑅(𝑀) < ∞.

Proof. Consider the filtration 0 = 𝔪𝑛𝑀 ⊂ 𝔪𝑛−1𝑀 ⊂ … ⊂ 𝔪𝑀 ⊂ 𝑀. All of the sub-
quotients are finitely generated 𝑅-modules to which Lemma 7.48.6 applies. We conclude
by additivity, see Lemma 7.48.3. �

Definition 7.48.9. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. We say 𝑀 is simple if 𝑀≠0
and every submodule of 𝑀 is either equal to 𝑀 or to 0.

Lemma 7.48.10. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. The following are equivalent:
(1) 𝑀 is simple,
(2) length𝑅(𝑀) = 1, and
(3) 𝑀 ≅ 𝑅/𝔪 for some maximal ideal 𝔪 ⊂ 𝑅.

Proof. Let 𝔪 be a maximal ideal of 𝑅. By Lemma 7.48.6 the module 𝑅/𝔪 has length
1. The equivalence of the first two assertions is tautological. Suppose that 𝑀 is simple.
Choose 𝑥 ∈ 𝑀, 𝑥≠0. As 𝑀 is simple we have 𝑀 = 𝑅 ⋅ 𝑥. Let 𝐼 ⊂ 𝑅 be the annihilator
of 𝑥, i.e., 𝐼 = {𝑓 ∈ 𝑅 ∣ 𝑓𝑥 = 0}. The map 𝑅/𝐼 → 𝑀, 𝑓 mod 𝐼 ↦ 𝑓𝑥 is an isomorphism,
hence 𝑅/𝐼 is a simple 𝑅-module. Since 𝑅/𝐼≠0 we see 𝐼≠𝑅. Let 𝐼 ⊂ 𝔪 be a maximal
ideal containing 𝐼. If 𝐼≠𝔪, then 𝔪/𝐼 ⊂ 𝑅/𝐼 is a nontrivial submodule contradicting the
simplicity of 𝑅/𝐼. Hence we see 𝐼 = 𝔪 as desired. �

Lemma 7.48.11. Let 𝑅 be a ring. Let 𝑀 be a finite length 𝑅-module. Let ℓ = length𝑅(𝑀).
Choose any maximal chain of submodules

0 = 𝑀0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ … ⊂ 𝑀𝑛 = 𝑀

with 𝑀𝑖≠𝑀𝑖−1, 𝑖 = 1, … , 𝑛. Then
(1) 𝑛 = ℓ,
(2) each 𝑀𝑖/𝑀𝑖−1 is simple,
(3) each 𝑀𝑖/𝑀𝑖−1 is of the form 𝑅/𝔪𝑖 for some maximal ideal 𝔪𝑖,
(4) given a maximal ideal 𝔪 ⊂ 𝑅 we have

#{𝑖 ∣ 𝔪𝑖 = 𝔪} = length𝑅𝔪
(𝑀𝔪).

Proof. If 𝑀𝑖/𝑀𝑖−1 is not simple then we can refine the filtration and the filtration is not
maximal. Thus we see that 𝑀𝑖/𝑀𝑖−1 is simple. By Lemma 7.48.10 the modules 𝑀𝑖/𝑀𝑖−1
have length 1 and are of the form 𝑅/𝔪𝑖 for some maximal ideals 𝔪𝑖. By additivity of
length, Lemma 7.48.3, we see 𝑛 = ℓ. Since localization is exact, we see that

0 = (𝑀0)𝔪 ⊂ (𝑀1)𝔪 ⊂ (𝑀2)𝔪 ⊂ … ⊂ (𝑀𝑛)𝔪 = 𝑀𝔪
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is a filtration of 𝑀𝔪 with successive quotients (𝑀𝑖/𝑀𝑖−1)𝔪. Thus the last statement follows
directly from the fact that given maximal ideals 𝔪, 𝔪′ of 𝑅 we have

(𝑅/𝔪′)𝔪 ≅ {
0 if 𝔪≠𝔪′,

𝑅𝔪/𝔪𝑅𝔪 if 𝔪 = 𝔪′

This we leave to the reader. �

Lemma 7.48.12. Let 𝐴 be a local ring with maximal ideal 𝔪. Let 𝐵 be a semi-local ring
with maximal ideals 𝔪𝑖, 𝑖 = 1, … , 𝑛. Suppose that 𝐴 → 𝐵 is a homomorphism such that
each 𝔪𝑖 lies over 𝔪 and such that

[𝜅(𝔪𝑖) ∶ 𝜅(𝔪)] < ∞.

Let 𝑀 be a 𝐵-module of finite length. Then

length𝐴(𝑀) = ∑𝑖=1,…,𝑛
[𝜅(𝔪𝑖) ∶ 𝜅(𝔪)]length𝐵𝔪𝑖

(𝑀𝔪𝑖
),

in particular length𝐴(𝑀) < ∞.

Proof. Choose a maximal chain

0 = 𝑀0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ … ⊂ 𝑀𝑛 = 𝑀

by 𝐵-submodules as in Lemma 7.48.11. Then each quotient 𝑀𝑖/𝑀𝑖−1 is isomorphic to
𝜅(𝔪𝑗(𝑖)) for some 𝑗(𝑖) ∈ {1, … , 𝑛}. Moreover length𝐴(𝜅(𝔪𝑖)) = [𝜅(𝔪𝑖) ∶ 𝜅(𝔪)] by
Lemma 7.48.6. The lemma follows by additivity of lengths (Lemma 7.48.3). �

Lemma 7.48.13. Let 𝐴 → 𝐵 be a flat local homomorphism of local rings. Then for any
𝐴-module 𝑀 we have

length𝐴(𝑀)length𝐵(𝐵/𝔪𝐴𝐵) = length𝐵(𝑀 ⊗𝐴 𝐵).

In particular, if length𝐵(𝐵/𝔪𝐴𝐵) < ∞ then 𝑀 has finite length if and only if 𝑀 ⊗𝐴 𝐵 has
finite length.

Proof. The ring map 𝐴 → 𝐵 is faithfully flat by Lemma 7.35.16. Hence if 0 = 𝑀0 ⊂
𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀 is a chain of length 𝑛 in 𝑀, then the corresponding chain 0 =
𝑀0 ⊗𝐴 𝐵 ⊂ 𝑀1 ⊗𝐴 𝐵 ⊂ … ⊂ 𝑀𝑛 ⊗𝐴 𝐵 = 𝑀 ⊗𝐴 𝐵 has length 𝑛 also. This proves
length𝐴(𝑀) = ∞ ⇒ length𝐵(𝑀 ⊗𝐴 𝐵) = ∞. Next, assume length𝐴(𝑀) < ∞. In this
case we see that 𝑀 has a filtration of length ℓ = length𝐴(𝑀) whose quotients are 𝐴/𝔪𝐴.
Arguing as above we see that 𝑀 ⊗𝐴 𝐵 has a filtration of length ℓ whose quotients are
isomorphic to 𝐵 ⊗𝐴 𝐴/𝔪𝐴 = 𝐵/𝔪𝐴𝐵. Thus the lemma follows. �

Lemma 7.48.14. Let 𝐴 → 𝐵 → 𝐶 be flat local homomorphisms of local rings. Let 𝑀 be
an 𝐴-module of finite length. Then

length𝐵(𝐵/𝔪𝐴𝐵)length𝐶(𝐶/𝔪𝐵𝐶) = length𝐶(𝐶/𝔪𝐴𝐶)

Proof. Follows from Lemma 7.48.13 applied to the ring map 𝐵 → 𝐶 and the 𝐵-module
𝑀 = 𝐵/𝔪𝐴𝐵 �
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7.49. Artinian rings

Artinian rings, and especially local Artinian rings, play an important role in algebraic ge-
ometry, for example in deformation theory.

Definition 7.49.1. A ring 𝑅 is Artinian if it satisfies the descending chain condition for
ideals.

Lemma 7.49.2. Suppose 𝑅 is a finite dimensional algebra over a field. Then 𝑅 is Artinian.

Proof. The descending chain condition for ideals obviously holds. �

Lemma 7.49.3. If 𝑅 is Artinian then 𝑅 has only finitely many maximal ideals.

Proof. Suppose that 𝔪𝑖, 𝑖 = 1, 2, 3, … are maximal ideals. Then 𝔪1 ⊃ 𝔪1 ∩ 𝔪2 ⊃
𝔪1 ∩ 𝔪2 ∩ 𝔪3 ⊃ … is an infinite descending sequence (because by the Chinese remainder
theorem all the maps 𝑅 → ⊕𝑛

𝑖=1𝑅/𝔪𝑖 are surjective). �

Lemma 7.49.4. Let 𝑅 be Artinian. The radical rad(𝑅) of 𝑅 is a nilpotent ideal.

Proof. Denote the radical 𝐼. Note that 𝐼 ⊃ 𝐼2 ⊃ 𝐼3 ⊃ … is a descending sequence. Thus
𝐼𝑛 = 𝐼𝑛+1 for some 𝑛. Set 𝐽 = {𝑥 ∈ 𝑅 ∣ 𝑥𝐼𝑛 = 0}. We have to show 𝐽 = 𝑅. If not, choose
an ideal 𝐽′≠𝐽, 𝐽 ⊂ 𝐽′ minimal (possible by the Artinian property). Then 𝐽′ = 𝐽 + 𝑅𝑥 for
some 𝑥 ∈ 𝑅. ByNAK, Lemma 7.14.5, we have 𝐼𝐽′ ⊂ 𝐽. Hence 𝑥𝐼𝑛+1 ⊂ 𝑥𝐼⋅𝐼𝑛 ⊂ 𝐽⋅𝐼𝑛 = 0.
Since 𝐼𝑛+1 = 𝐼𝑛 we conclude 𝑥 ∈ 𝐽. Contradiction. �

Lemma 7.49.5. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be a locally nilpotent ideal. Then 𝑅 → 𝑅/𝐼
induces a bijection on idempotents.

First proof of Lemma 7.49.5. As 𝐼 is locally nilpotent it is contained in every prime ideal.
Hence 𝑆𝑝𝑒𝑐(𝑅/𝐼) = 𝑉(𝐼) = 𝑆𝑝𝑒𝑐(𝑅). Hence the lemma follows from Lemma 7.18.3. �

Second proof of Lemma 7.49.5. First assume 𝐼 is nilpotent. Suppose 𝑒 ∈ 𝑅/𝐼 is an idem-
potent. We have to lift 𝑒 to an idempotent of 𝑅. Choose a lift 𝑒 ∈ 𝑅 such that 𝑥 = 𝑒2−𝑒 ∈ 𝐼𝑘

for some 𝑘 ≥ 1. Let 𝑒′ = 𝑒 − (2𝑒 − 1)𝑥 = 3𝑒2 − 2𝑒3, which is another lift of 𝑒. Then

(𝑒′)2 − 𝑒′ = (4𝑒2 − 4𝑒 − 3)(𝑒2 − 𝑒)2 ∈ 𝐼2𝑘

by a simple computation. Hence 𝑒′ is an idempotent in 𝑅/𝐼2𝑘. By succesively improving
the approximation as above we reach a stage where 𝐼𝑘 = 0, and we win.

Next, suppose 𝐼 is locally nilpotent. Let 𝑒 ∈ 𝑅/𝐼 be an idempotent. Let 𝑓 ∈ 𝑅 be any
element lifting 𝑒. Denote 𝑅′ ⊂ 𝑅 the 𝐙-subalgebra of 𝑅 generated by 𝑓. Denote 𝐼′ = 𝑅′∩𝐼.
Since 𝑅′ is Noetherian, see Lemma 7.28.3 we see that 𝐼′ is nilpotent, see Lemma 7.47.3. On
the other hand we have 𝑅′/𝐼′ ⊂ 𝑅/𝐼 and hence the image 𝑓 ∈ 𝑅′/𝐼′ of 𝑓 is an idempotent.
Thus by the first part of the proof we see that we can find an idempotent 𝑒 ∈ 𝑅′ which is a
lift of 𝑓. Then 𝑒 ∈ 𝑅 is also a lift of 𝑒 in 𝑅/𝐼. �

Lemma 7.49.6. Let 𝐴 be a possibly noncommutative algebra. Let 𝑒 ∈ 𝐴 be an element
such that 𝑥 = 𝑒2 − 𝑒 is nilpotent. Then there exists an idempotent of the form 𝑒′ = 𝑒 +
𝑥(∑ 𝑎𝑖,𝑗𝑒𝑖𝑥𝑗) ∈ 𝐴 with 𝑎𝑖,𝑗 ∈ 𝐙.

Proof. Consider the ring 𝑅𝑛 = 𝐙[𝑒]/((𝑒2 −𝑒)𝑛). It is clear that if we can prove the result for
each 𝑅𝑛 then the lemma follows. In 𝑅𝑛 consider the ideal 𝐼 = (𝑒2 − 𝑒) and apply Lemma
7.49.5. �
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Lemma 7.49.7. Any ring with finitely many maximal ideals and locally nilpotent radical
is the product of its localizations at its maximal ideals. Also, all primes are maximal.

Proof. Let 𝑅 be a ring with finitely many maximal ideals 𝔪1, … , 𝔪𝑛. Let 𝐼 = ⋂𝑛
𝑖=1 𝔪𝑖

be the radical of 𝑅. Assume 𝐼 is locally nilpotent. Let 𝔭 be a prime ideal of 𝑅. Since
every prime contains every nilpotent element of 𝑅 we see 𝔭 ⊃ 𝔪1 ∩ … ∩ 𝔪𝑛. Since
𝔪1 ∩ … ∩ 𝔪𝑛 ⊃ 𝔪1 … 𝔪𝑛 we conclude 𝔭 ⊃ 𝔪1 … 𝔪𝑛. Hence 𝔭 ⊃ 𝔪𝑖 for some 𝑖, and
so 𝔭 = 𝔪𝑖. By the Chinese remainder theorem (Lemma 7.14.4) we have 𝑅/𝐼 ≅ ⨁ 𝑅/𝔪𝑖
which is a product of fields. Hence by Lemma 7.49.5 there are idempotents 𝑒𝑖, 𝑖 = 1, … , 𝑛
with 𝑒𝑖 mod 𝔪𝑗 = 𝛿𝑖𝑗. Hence 𝑅 = ∏ 𝑅𝑒𝑖, and each 𝑅𝑒𝑖 is a ring with exactly one maximal
ideal. �

Lemma 7.49.8. A ring 𝑅 is Artinian if and only if it has finite length as a module over
itself. Any such ring 𝑅 is both Artinian and Noetherian, any prime ideal of 𝑅 is a maximal
ideal, and 𝑅 is equal to the (finite) product of its localizations at its maximal ideals.

Proof. If 𝑅 has finite length over itself then it satisfies both the ascending chain condition
and the descending chain condition for ideals. Hence it is both Noetherian and Artinian.
Any Artinian ring is equal to product of its localizations at maximal ideals by Lemmas
7.49.3, 7.49.4, and 7.49.7.

Suppose that 𝑅 is Artinian. We will show 𝑅 has finite length over itself. It suffices to
exhibit a chain of submodules whose succesive quotients have finite length. By what we
said above we may assume that 𝑅 is local, with maximal ideal 𝔪. By Lemma 7.49.4 we
have 𝔪𝑛 = 0 for some 𝑛. Consider the sequence 0 = 𝔪𝑛 ⊂ 𝔪𝑛−1 ⊂ … ⊂ 𝔪 ⊂ 𝑅. By
Lemma 7.48.6 the length of each subquotient 𝔪𝑗/𝔪𝑗+1 is the dimension of this as a vector
space over 𝜅(𝔪). This has to be finite since otherwise we would have an infinite descending
chain of subvector spaces which would correspond to an infinite descending chain of ideals
in 𝑅. �

7.50. Homomorphisms essentially of finite type

Some simple remarks on localizations of finite type ring maps.

Definition 7.50.1. Let 𝑅 → 𝑆 be a ring map.
(1) We say that 𝑅 → 𝑆 is essentially of finite type if 𝑆 is the localization of an

𝑅-algebra of finite type.
(2) We say that 𝑅 → 𝑆 is essentially of finite presentation if 𝑆 is the localization of

an 𝑅-algebra of finite presentation.

Lemma 7.50.2. The class of ring maps which are essentially of finite type is preserved
under composition. Similarly for essentially of finite presentation.

Proof. Omitted. �

Lemma 7.50.3. Let𝑅 → 𝑆 be a ringmap. Assume𝑆 is an Artinian local ring with maximal
ideal 𝔪. Then

(1) 𝑅 → 𝑆 is finite if and only if 𝑅 → 𝑆/𝔪 is finite,
(2) 𝑅 → 𝑆 is of finite type if and only if 𝑅 → 𝑆/𝔪 is of finite type.
(3) 𝑅 → 𝑆 is essentially of finite type if and only if the composition 𝑅 → 𝑆/𝔪 is

essentially of finite type.
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Proof. If 𝑅 → 𝑆 is finite, then 𝑅 → 𝑆/𝔪 is finite by Lemma 7.7.3. Conversely, assume
𝑅 → 𝑆/𝔪 is finite. As 𝑆 has finite length over itself (Lemma 7.49.8) we can choose a
filtration

0 ⊂ 𝐼1 ⊂ … ⊂ 𝐼𝑛 = 𝑆
by ideals such that 𝐼𝑖/𝐼𝑖−1 ≅ 𝑆/𝔪 as 𝑆-modules. Thus 𝑆 has a filtration by 𝑅-submodules
𝐼𝑖 such that each successive quotient is a finite 𝑅-module. Thus 𝑆 is a finite 𝑆-module by
Lemma 7.5.4.

If 𝑅 → 𝑆 is of finite type, then 𝑅 → 𝑆/𝔪 is of finite type by Lemma 7.6.2. Conversely,
assume that 𝑅 → 𝑆/𝔪 is of finite type. Choose 𝑓1, … , 𝑓𝑛 ∈ 𝑆 which map to generators of
𝑆/𝔪. Then 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆, 𝑥𝑖 ↦ 𝑓𝑖 is a ring map such that 𝐴 → 𝑆/𝔪 is surjective
(in particular finite). Hence 𝐴 → 𝑆 is finite by part (1) and we see that 𝑅 → 𝑆 is of finite
type by Lemma 7.6.2.

If 𝑅 → 𝑆 is essentially of finite type, then 𝑅 → 𝑆/𝔪 is essentially of finite type by Lemma
7.50.2. Conversely, assume that 𝑅 → 𝑆/𝔪 is essentially of finite type. Suppose 𝑆/𝔪
is the localization of 𝑅[𝑥1, … , 𝑥𝑛]/𝐼. Choose 𝑓1, … , 𝑓𝑛 ∈ 𝑆 whose congruence classes
modulo 𝔪 correspond to the congruence classes of 𝑥1, … , 𝑥𝑛 modulo 𝐼. Consider the map
𝑅[𝑥1, … , 𝑥𝑛] → 𝑆, 𝑥𝑖 ↦ 𝑓𝑖 with kernel 𝐽. Set 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐽 ⊂ 𝑆 and 𝔭 = 𝐴 ∩ 𝔪.
Note that 𝐴/𝔭 ⊂ 𝑆/𝔪 is equal to the image of 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 in 𝑆/𝔪. Hence 𝜅(𝔭) = 𝑆/𝔪.
Thus 𝐴𝔭 → 𝑆 is finite by part (1). We conclude that 𝑆 is essentially of finite type by Lemma
7.50.2. �

7.51. K-groups

Let 𝑅 be a ring. We will introduce two abelian groups associated to 𝑅. The first of the two
is denoted 𝐾′

0(𝑅) and has the following properties:
(1) For every finite 𝑅-module 𝑀 there is given an element [𝑀] in 𝐾′

0(𝑅),
(2) for every short exact sequence 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 we have the relation

[𝑀] = [𝑀′] + [𝑀″],
(3) the group 𝐾′

0(𝑅) is generated by the elements [𝑀], and
(4) all relations in 𝐾′

0(𝑅) are 𝐙-linear combinations of the relations coming from
exact sequences as above.

The actual construction is a bit more annoying since one has to take care that the collection
of all finitely generated 𝑅-modules is a proper class. However, this problem can be over-
come by taking as set of generators of the group 𝐾′

0(𝑅) the elements [𝑅𝑛/𝐾] where 𝑛 ranges
over all integers and 𝐾 ranges over all submodules 𝐾 ⊂ 𝑅𝑛. The generators of for the sub-
group of relations imposed on these elements will be the relations coming from short exact
sequences whose terms are of the form 𝑅𝑛/𝐾. The element [𝑀] is defined by choosing 𝑛
and 𝐾 such that 𝑀 ≅ 𝑅𝑛/𝐾 and putting [𝑀] = [𝑅𝑛/𝐾]. Details left to the reader.

Lemma 7.51.1. If 𝑅 is an Artinian local ring then the length function defines a natural
abelian group homomorphism length𝑅 ∶ 𝐾′

0(𝑅) → 𝐙.

Proof. The length of any finite 𝑅-module is finite, because it is the quotient of 𝑅𝑛 which has
finite length by Lemma 7.49.8. And the length function is additive, see Lemma 7.48.3. �

The second of the two is denoted 𝐾0(𝑅) and has the following properties:
(1) For every finite projective 𝑅-module 𝑀 there is given an element [𝑀] in 𝐾0(𝑅),
(2) for every short exact sequence 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 of finite projective

𝑅-modules we have the relation [𝑀] = [𝑀′] + [𝑀″],
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(3) the group 𝐾0(𝑅) is generated by the elements [𝑀], and
(4) all relations in 𝐾0(𝑅) are 𝐙-linear combinations of the relations coming from

exact sequences as above.
The construction of this group is done as above.

We note that there is an obvious map 𝐾0(𝑅) → 𝐾′
0(𝑅) which is not an isomorphism in

general.

Example 7.51.2. Note that if 𝑅 = 𝑘 is a field then we clearly have 𝐾0(𝑘) = 𝐾′
0(𝑘) ≅ 𝐙

with the isomorphism given by the dimension function (which is also the length function).

Example 7.51.3. Let 𝑘 be a field. Then 𝐾0(𝑘[𝑥]) = 𝐾′
0(𝑘[𝑥]) = 𝐙.

Since 𝑅 = 𝑘[𝑥] is a principal ideal domain, any finite projective 𝑅-module is free. In a
short exact sequence of modules

0 → 𝑀′ → 𝑀 → 𝑀″ → 0

we have 𝑟𝑎𝑛𝑘(𝑀) = 𝑟𝑎𝑛𝑘(𝑀′) + 𝑟𝑎𝑛𝑘(𝑀″) , which gives 𝐾0(𝑘[𝑥]) = 𝑍.

As for 𝐾′
0, the structure theorem for modules of a PID says that any finitely generated

𝑅-module is of the form 𝑀 = 𝑅𝑟 ×𝑅/(𝑑1)×…×𝑅/(𝑑𝑘). Consider the short exact sequence

0 → (𝑑𝑖) → 𝑅 → 𝑅/(𝑑𝑖) → 0

Since the ideal (𝑑𝑖) is isomorphic to 𝑅 as a module (it is free with generator 𝑑𝑖), in 𝐾′
0(𝑅)

we have [(𝑑𝑖)] = [𝑅]. Then [𝑅/(𝑑𝑖)] = [(𝑑𝑖)]−[𝑅] = 0. From this it follows that any torsion
part ``disappears'' in 𝐾′

0. Again the rank of the free part determines that 𝐾′
0(𝑘[𝑥]) = 𝑍, and

the canonical homomorphism from 𝐾0 to 𝐾′
0 is an isomorphism.

Example 7.51.4. Let 𝑘 be a field. Let 𝑅 = {𝑓 ∈ 𝑘[𝑥] ∣ 𝑓(0) = 𝑓(1)}, compare Example
7.24.4. In this case 𝐾0(𝑅) ≅ 𝑘∗ ⊕ 𝐙, but 𝐾′

0(𝑅) = 𝐙.

Lemma 7.51.5. Let 𝑅 = 𝑅1 ×𝑅2. Then 𝐾0(𝑅) = 𝐾0(𝑅1)×𝐾0(𝑅2) and 𝐾′
0(𝑅) = 𝐾′

0(𝑅1)×
𝐾′

0(𝑅2)

Proof. Omitted. �

Lemma 7.51.6. Let 𝑅 be an Artinian local ring. The map length𝑅 ∶ 𝐾′
0(𝑅) → 𝐙 of Lemma

7.51.1 is an isomorphism.

Proof. Omitted. �

Lemma 7.51.7. Let 𝑅 be a local ring. Every finite projective 𝑅-module is finite free. The
map rank𝑅 ∶ 𝐾0(𝑅) → 𝐙 defined by [𝑀] → rank𝑅(𝑀) is well defined and an isomorphism.

Proof. Let 𝑃 be a finite projective 𝑅-module. The 𝑛 generators of 𝑃 give a surjection
𝑅𝑛 → 𝑃, and since 𝑃 is projective it follows that 𝑅𝑛 ≅ 𝑃 ⊕ 𝑄 for some projective module
𝑄.

If 𝔪 ⊂ 𝑅 is the maximal ideal, then 𝑃/𝔪 and 𝑄/𝔪 are 𝑅/𝔪-vector spaces, with 𝑃/𝔪 ⊕
𝑄/𝔪 ≅ (𝑅/𝔪)𝑛. Say that dim 𝑃 = 𝑝, dim 𝑄 = 𝑞, so 𝑝 + 𝑞 = 𝑛.

Choose elements 𝑎1, … , 𝑎𝑝 in 𝑃 and 𝑏1, … , 𝑏𝑞 in 𝑄 lying above bases for 𝑃/𝔪 and 𝑄/𝔪.
The homomorphism 𝑅𝑛 → 𝑃⊕𝑄 ≅ 𝑅𝑛 given by (𝑟1, … , 𝑟𝑛) ↦ 𝑟1𝑎1 +…+𝑟𝑝𝑎𝑝 +𝑟𝑝+1𝑏1 +
… + 𝑟𝑛𝑏𝑞 is a matrix 𝐴 which is invertible over 𝑅/𝔪. Let 𝐵 be a matrix over 𝑅 lying over
the inverse of 𝐴 in 𝑅/𝔪. 𝐴𝐵 = 𝐼 + 𝑀, where 𝑀 is a matrix whose entries all lie in 𝔪.
Thus det 𝐴𝐵 = 1 + 𝑥, for 𝑥 ∈ 𝔪, so 𝐴𝐵 is invertible, so 𝐴 is invertible.
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The homomorphism 𝑅𝑝 → 𝑃 given by (𝑟1, … , 𝑟𝑝) ↦ 𝑟1𝑎1 + … + 𝑟𝑝𝑎𝑝 inherits injectivity
and surjectivity from A. Hence, 𝑃 ≅ 𝑅𝑝.

Next we show that the rank of a finite projective module over 𝑅 is well defined: if 𝑃 ≅
𝑅𝛼 ≅ 𝑅𝛽, then 𝛼 = 𝛽. This is immediate in the vector space case, and so it is true in the
general module case as well, by dividing out the maximal ideal on both sides. If 0 → 𝑅𝛼 →
𝑅𝛽 → 𝑅𝛾 → 0 is exact, the sequence splits, so 𝑅𝛽 ≅ 𝑅𝛼 ⊕ 𝑅𝛾, so 𝛽 = 𝛼 + 𝛾.

So far we have seen that the map rank𝑅 ∶ 𝐾0(𝑅) → 𝐙 is a well-defined homomorphism. It
is surjective because rank𝑅[𝑅] = 1. It is injective because the element of 𝐾0(𝑅) with rank
±𝛼 is uniquely ±[𝑅𝛼]. �

Lemma 7.51.8. Let 𝑅 be a local Artinian ring. There is a commutative diagram

𝐾0(𝑅) //

rank𝑅
��

𝐾′
0(𝑅)

length𝑅
��

𝐙
length𝑅(𝑅) // 𝐙

where the vertical maps are isomorphisms by Lemmas 7.51.6 and 7.51.7.

Proof. By induction on the rank of 𝑀. Suppose [𝑀] ∈ 𝐾0(𝑅). Then 𝑀 is a finite pro-
jective 𝑅-module over a local ring, so M is free; 𝑀 ≅ 𝑅𝑛 for some 𝑛. The claim is that
rank(𝑀)length𝑅(𝑅) = length𝑅(𝑀), or equivalently that 𝑛length𝑅(𝑅) = length𝑅(𝑅𝑛) for all
𝑛 ≥ 1. When 𝑛 = 1, this is clearly true. Suppose that (𝑛 − 1)length𝑅(𝑅) = length𝑅(𝑅𝑛−1).
Then since there is a split short exact sequence

0 → 𝑅 → 𝑅𝑛 → 𝑅𝑛−1 → 0

by Lemma 7.48.3 we have

length𝑅(𝑅𝑛) = length𝑅(𝑅) + length𝑅(𝑅𝑛−1)
= length𝑅(𝑅) + (𝑛 − 1)length𝑅(𝑅)
= 𝑛length𝑅(𝑅)

as desired. �

7.52. Graded rings

A graded ring will be for us a ring 𝑆 endowed with a direct sum decomposition 𝑆 =
⨁𝑑≥0 𝑆𝑑 such that 𝑆𝑑 ⋅ 𝑆𝑒 ⊂ 𝑆𝑑+𝑒. Note that we do not allow nonzero elements in neg-
ative degrees. The irrelevant ideal is the ideal 𝑆+ = ⨁𝑑>0 𝑆𝑑. A graded module will
be an 𝑆-module 𝑀 endowed with a direct sum decomposition 𝑀 = ⨁𝑛∈𝐙 𝑀𝑛 such that
𝑆𝑑 ⋅ 𝑀𝑒 ⊂ 𝑀𝑑+𝑒. Note that for modules we do allow nonzero elements in negative de-
grees. We think of 𝑆 as a graded 𝑆-module by setting 𝑆−𝑘 = (0) for 𝑘 > 0. An element
𝑥 (resp. 𝑓) of 𝑀 (resp. 𝑆) is called homogeneous if 𝑥 ∈ 𝑀𝑑 (resp. 𝑓 ∈ 𝑆𝑑) for some 𝑑. A
map of graded 𝑆-modules is a map of 𝑆-modules 𝜑 ∶ 𝑀 → 𝑀′ such that 𝜑(𝑀𝑑) ⊂ 𝑀′

𝑑.
We do not allow maps to shift degrees. Let us denote GrHom0(𝑀, 𝑁) the 𝑆0-module of
homomorphisms of graded modules from 𝑀 to 𝑁.

At this point there are the notions of graded ideal, graded quotient ring, graded submodule,
graded quotient module, graded tensor product, etc. We leave it to the reader to find the
relevant definitions, and lemmas. For example: A short exact sequence of graded modules
is short exact in every degree.
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Given a graded ring 𝑆, a graded 𝑆-module 𝑀 and 𝑛 ∈ 𝐙 we denote 𝑀(𝑛) the graded
𝑆-module with 𝑀(𝑛)𝑑 = 𝑀𝑛+𝑑. This is called the twist of 𝑀 by 𝑛. In particular we get
modules 𝑆(𝑛), 𝑛 ∈ 𝐙 which will play an important role in the study of projective schemes.
There are some obvious functorial isomorphisms such as (𝑀 ⊕ 𝑁)(𝑛) = 𝑀(𝑛) ⊕ 𝑁(𝑛),
(𝑀 ⊗𝑆 𝑁)(𝑛) = 𝑀 ⊗𝑆 𝑁(𝑛) = 𝑀(𝑛) ⊗𝑆 𝑁. In addition we can define a graded 𝑆-module
structure on the 𝑆0-module

GrHom(𝑀, 𝑁) = ⨁𝑛∈𝐙
GrHom𝑛(𝑀, 𝑁), GrHom𝑛(𝑀, 𝑁) = GrHom0(𝑀, 𝑁(𝑛)).

We omit the definition of the multiplication.

Let 𝑆 be a graded ring. Let 𝑑 ≥ 1 be an integer. We set 𝑆(𝑑) = ⨁𝑛≥0 𝑆𝑛𝑑. We think of 𝑆(𝑑)

as a graded ring with degree 𝑛 summand (𝑆(𝑑))𝑛 = 𝑆𝑛𝑑. Given a graded 𝑆-module 𝑀 we
can similarly consider 𝑀(𝑑) = ⨁𝑛∈𝐙 𝑀𝑛𝑑 which is a graded 𝑆(𝑑)-module.

Lemma 7.52.1. Let 𝑅 → 𝑆 be a homomorphism of graded rings. Let 𝑆′ ⊂ 𝑆 be the
integral closure of 𝑅 in 𝑆. Then

𝑆′ = ⨁𝑑≥0
𝑆′ ∩ 𝑆𝑑,

i.e., 𝑆′ is a graded 𝑅-subalgebra of 𝑆.

Proof. We have to show the following: If 𝑠 = 𝑠𝑛 + 𝑠𝑛+1 + … + 𝑠𝑚 ∈ 𝑆′, then each homo-
geneous part 𝑠𝑗 ∈ 𝑆′. We will prove this by induction on 𝑚 − 𝑛 over all homomorphisms
𝑅 → 𝑆 of graded rings. First note that it is immediate that 𝑠0 is integral over 𝑅0 (hence
over 𝑅) as there is a ring map 𝑆 → 𝑆0 compatible with the ring map 𝑅 → 𝑅0. Thus,
after replacing 𝑠 by 𝑠 − 𝑠0, we may assume 𝑛 > 0. Consider the extension of graded rings
𝑅[𝑡, 𝑡−1] → 𝑆[𝑡, 𝑡−1] where 𝑡 has degree 0. There is a commutative diagram

𝑆[𝑡, 𝑡−1]
𝑠↦𝑡deg(𝑠)𝑠

// 𝑆[𝑡, 𝑡−1]

𝑅[𝑡, 𝑡−1]

OO

𝑟↦𝑟deg(𝑟)
// 𝑅[𝑡, 𝑡−1]

OO

where the horizontal maps are ring automorphisms. Hence the integral closure𝐶 of𝑆[𝑡, 𝑡−1]
over 𝑅[𝑡, 𝑡−1] maps into itself. Thus we see that

𝑡𝑚(𝑠𝑛 + 𝑠𝑛+1 + … + 𝑠𝑚) − (𝑡𝑛𝑠𝑛 + 𝑡𝑛+1𝑠𝑛+1 + … + 𝑡𝑚𝑠𝑚) ∈ 𝐶

which implies by induction hypothesis that each (𝑡𝑚 − 𝑡𝑖)𝑠𝑖 ∈ 𝐶 for 𝑖 = 𝑛, … , 𝑚 − 1. Note
that for any ring 𝐴 and 𝑚 > 𝑖 ≥ 𝑛 > 0 we have 𝐴[𝑡, 𝑡−1]/(𝑡𝑚 −𝑡𝑖 −1) ≅ 𝐴[𝑡]/(𝑡𝑚 −𝑡𝑖 −1) ⊃ 𝐴
because 𝑡(𝑡𝑚−1 − 𝑡𝑖−1) = 1 in 𝐴[𝑡]/(𝑡𝑚 − 𝑡𝑖 − 1). Since 𝑡𝑚 − 𝑡𝑖 maps to 1 we see the image of
𝑠𝑖 in the ring 𝑆[𝑡]/(𝑡𝑚 − 𝑡𝑖 − 1) is integral over 𝑅[𝑡]/(𝑡𝑚 − 𝑡𝑖 − 1) for 𝑖 = 𝑛, … , 𝑚 − 1. Since
𝑅 → 𝑅[𝑡]/(𝑡𝑚 − 𝑡𝑖 − 1) is finite we see that 𝑠𝑖 is integral over 𝑅 by transitivity, see Lemma
7.32.6. Finally, we also conclude that 𝑠𝑚 = 𝑠 − ∑𝑖=𝑛,…,𝑚−1 𝑠𝑖 is integral over 𝑅. �

7.53. Proj of a graded ring

Let 𝑆 be a graded ring. A homogeneous ideal is simply an ideal 𝐼 ⊂ 𝑆 which is also a
graded submodule of 𝑆. Equivalently, it is an ideal generated by homogeneous elements.
Equivalently, if 𝑓 ∈ 𝐼 and

𝑓 = 𝑓0 + 𝑓1 + … + 𝑓𝑛

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=077G


7.53. PROJ OF A GRADED RING 301

is the decomposition of 𝑓 into homogenous parts in 𝑆 then 𝑓𝑖 ∈ 𝐼 for each 𝑖. To check that
a homogeneous ideal 𝔭 is prime it suffices to check that if 𝑎𝑏 ∈ 𝔭 with 𝑎, 𝑏 homogeneous
then either 𝑎 ∈ 𝔭 or 𝑏 ∈ 𝔭.

Definition 7.53.1. Let 𝑆 be a graded ring. We define Proj(𝑆) to be the set of homogenous,
prime ideals 𝔭 of 𝑆 such that 𝑆+⊄𝔭. As Proj(𝑆) is a subset of 𝑆𝑝𝑒𝑐(𝑆) and we endow it with
the induced topology. The topological space Proj(𝑆) is called the homogeneous spectrum
of the graded ring 𝑆.

Note that by construction there is a continuous map

Proj(𝑆) ⟶ 𝑆𝑝𝑒𝑐(𝑆0)

Let 𝑆 = ⊕𝑑≥0𝑆𝑑 be a graded ring. Let 𝑓 ∈ 𝑆𝑑 and assume that 𝑑 ≥ 1. We define 𝑆(𝑓)
to be the subring of 𝑆𝑓 consisting of elements of the form 𝑟/𝑓𝑛 with 𝑟 homogenous and
deg(𝑟) = 𝑛𝑑. If 𝑀 is a graded 𝑆-module, then we define the 𝑆(𝑓)-module 𝑀(𝑓) as the sub
module of 𝑀𝑓 consisting of elements of the form 𝑥/𝑓𝑛 with 𝑥 homogeneous of degree 𝑛𝑑.

Lemma 7.53.2. Let 𝑆 be a 𝐙-graded ring. Let 𝑓 ∈ 𝑆𝑑, 𝑑 > 0 and assume 𝑓 is invert-
ible in 𝑆. The set 𝐺 ⊂ 𝑆𝑝𝑒𝑐(𝑆) of 𝐙-graded primes of 𝑆 (with induced topology) maps
homeomorphically to 𝑆𝑝𝑒𝑐(𝑆0).

Proof. First we show that the map is a bijection by constructing an inverse. Namely, if 𝔭0 is
a prime of 𝑆0, then 𝔭0𝑆 is a 𝐙-graded ideal of 𝑆 such that 𝔭0𝑆 ∩ 𝑆0 = 𝔭0. And if 𝑎𝑏 ∈ 𝔭0𝑆
with 𝑎, 𝑏 homogenenous, then 𝑎𝑑𝑏𝑑/𝑓deg(𝑎)+deg(𝑏) ∈ 𝔭0. Thus either 𝑎𝑑/𝑓deg(𝑎) ∈ 𝔭0 or
𝑏𝑑/𝑓deg(𝑏) ∈ 𝔭0, in other words either 𝑎𝑑 ∈ 𝔭0𝑆 or 𝑏𝑑 ∈ 𝔭0𝑆. It follows that √𝔭0𝑆 is a
𝐙-graded prime ideal of 𝑆 whose intersection with 𝑆0 is 𝔭0.

To show that the map is a homeomorphism we show that the image of 𝐺 ∩ 𝐷(𝑔) is open. If
𝑔 = ∑ 𝑔𝑖 with 𝑔𝑖 ∈ 𝑆𝑖, then by the above 𝐺 ∩ 𝐷(𝑔) maps onto the set ⋃ 𝐷(𝑔𝑑

𝑖 /𝑓𝑖) which is
open. �

For 𝑓 ∈ 𝑆 homogenenous of degree > 0 we define

𝐷+(𝑓) = {𝔭 ∈ Proj(𝑆) ∣ 𝑓∉𝔭}.

Finally, for a homogenous ideal 𝐼 ⊂ 𝑆 we define

𝑉+(𝐼) = {𝔭 ∈ Proj(𝑆) ∣ 𝐼 ⊂ 𝔭}.

We will use more generally the notation 𝑉+(𝐸) for any set 𝐸 of homogeneous elements
𝐸 ⊂ 𝑆.

Lemma 7.53.3. (Topology on Proj(𝑆).) Let 𝑆 = ⊕𝑑≥0𝑆𝑑 be a graded ring.
(1) The sets 𝐷+(𝑓) are open in Proj(𝑆).
(2) We have 𝐷+(𝑓𝑓′) = 𝐷+(𝑓) ∩ 𝐷+(𝑓′).
(3) Let 𝑔 = 𝑔0 + … + 𝑔𝑚 be an element of 𝑆 with 𝑔𝑖 ∈ 𝑆𝑖. Then

𝐷(𝑔) ∩ Proj(𝑆) = (𝐷(𝑔0) ∩ Proj(𝑆)) ∪ ⋃𝑖≥1
𝐷+(𝑔𝑖).

(4) Let 𝑔0 ∈ 𝑆0 be a homogenous element of degree 0. Then

𝐷(𝑔0) ∩ Proj(𝑆) = ⋃𝑓∈𝑆𝑑, 𝑑≥1
𝐷+(𝑔0𝑓).

(5) The open sets 𝐷+(𝑓) form a basis for the topology of Proj(𝑆).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00JN
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(6) Let 𝑓 ∈ 𝑆 be homogeneous of positive degree. The ring𝑆𝑓 has a natural𝐙-grading.
The ring maps 𝑆 → 𝑆𝑓 ← 𝑆(𝑓) induce homeomorphisms

𝐷+(𝑓) ← {𝐙-graded primes of 𝑆𝑓} → 𝑆𝑝𝑒𝑐(𝑆(𝑓)).

(7) There exists an 𝑆 such that Proj(𝑆) is not quasi-compact.
(8) The sets 𝑉+(𝐼) are closed.
(9) Any closed subset 𝑇 ⊂ Proj(𝑆) is of the form 𝑉+(𝐼) for some homogeneous ideal

𝐼 ⊂ 𝑆.
(10) For any graded ideal 𝐼 ⊂ 𝑆 we have 𝑉+(𝐼) = ∅ if and only if 𝑆+ ⊂ √𝐼.

Proof. Since 𝐷+(𝑓) = Proj(𝑆) ∩ 𝐷(𝑓), these sets are open. Similarly the sets 𝑉+(𝐼) =
Proj(𝑆) ∩ 𝑉(𝐸) are closed.

Suppose that 𝑇 ⊂ Proj(𝑆) is closed. Then we can write 𝑇 = Proj(𝑆) ∩ 𝑉(𝐽) for some ideal
𝐽 ⊂ 𝑆. By definition of a homogeneous ideal if 𝑔 ∈ 𝐽, 𝑔 = 𝑔0 + … + 𝑔𝑚 with 𝑔𝑑 ∈ 𝑆𝑑 then
𝑔𝑑 ∈ 𝔭 for all 𝔭 ∈ 𝑇. Thus, letting 𝐼 ⊂ 𝑆 be the ideal generated by the homogeneous parts
of the elements of 𝐽 we have 𝑇 = 𝑉+(𝐼).

The formula for Proj(𝑆) ∩ 𝐷(𝑔), with 𝑔 ∈ 𝑆 is direct from the definitions. Consider the
formula for Proj(𝑆) ∩ 𝐷(𝑔0). The inclusion of the right hand side in the left hand side is
obvious. For the other inclusion, suppose 𝑔0∉𝔭 with 𝔭 ∈ Proj(𝑆). If all 𝑔0𝑓 ∈ 𝔭 for all
homogeneous 𝑓 of positive degree, then we see that 𝑆+ ⊂ 𝔭 which is a contradiction. This
gives the other inclusion.

The collection of opens 𝐷(𝑔) ∩ Proj(𝑆) forms a basis for the topology since the standard
opens 𝐷(𝑔) ⊂ 𝑆𝑝𝑒𝑐(𝑆) form a basis for the topology on 𝑆𝑝𝑒𝑐(𝑆). By the formulas above
we can express 𝐷(𝑔) ∩ proj(𝑆) as a union of opens 𝐷+(𝑓). Hence the collection of opens
𝐷+(𝑓) forms a basis for the topology also.

First we note that 𝐷+(𝑓) may be identified with a subset (with induced topology) of 𝐷(𝑓) =
𝑆𝑝𝑒𝑐(𝑆𝑓) via Lemma 7.16.6. Note that the ring 𝑆𝑓 has a 𝐙-grading. The homogeneous
elements are of the form 𝑟/𝑓𝑛 with 𝑟 ∈ 𝑆 homogeneous and have degree deg(𝑟/𝑓𝑛) =
deg(𝑟) − 𝑛 deg(𝑓). The subset 𝐷+(𝑓) corresponds exactly to those prime ideals 𝔭 ⊂ 𝑆𝑓
which are 𝐙-graded ideals (i.e., generated by homogeneous elements). Hence we have to
show that the set of 𝐙-graded prime ideals of 𝑆𝑓 maps homeomorphically to 𝑆𝑝𝑒𝑐(𝑆(𝑓)).
This follows from Lemma 7.53.2.

Let 𝑆 = 𝐙[𝑋1, 𝑋2, 𝑋3, …] with grading such that each 𝑋𝑖 has degree 1. Then it is easy to
see that

Proj(𝑆) = ⋃
∞
𝑖=1

𝐷+(𝑋𝑖)

does not have a finite refinement.

Let 𝐼 ⊂ 𝑆 be a graded ideal. If √𝐼 ⊃ 𝑆+ then 𝑉+(𝐼) = ∅ since every prime 𝔭 ∈ Proj(𝑆)
does not contain 𝑆+ by definition. Conversely, suppose that 𝑆+⊄√𝐼. Then we can find an
element 𝑓 ∈ 𝑆+ such that 𝑓 is not nilpotent modulo 𝐼. Clearly this means that one of the
homogeneous parts of 𝑓 is not nilpotent modulo 𝐼, in other words we may (and do) assume
that 𝑓 is homogeneous. This implies that 𝐼𝑆𝑓≠0, in other words that (𝑆/𝐼)𝑓 is not zero.
Hence (𝑆/𝐼)(𝑓)≠0 since it is a ring which maps into (𝑆/𝐼)𝑓. Pick a prime 𝔮 ⊂ (𝑆/𝐼)(𝑓). This
corresponds to a graded prime of 𝑆/𝐼, not containing the irrelevant ideal (𝑆/𝐼)+. And this
in turn corresponds to a graded prime ideal 𝔭 of 𝑆, containing 𝐼 but not containing 𝑆+ as
desired. �
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Example 7.53.4. Let 𝑅 be a ring. If 𝑆 = 𝑅[𝑋] with deg(𝑋) = 1, then the natural map
Proj(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is a bijection and in fact a homeomorphism. Namely, suppose 𝔭 ∈
Proj(𝑆). Since 𝑆+⊄𝔭 we see that 𝑋∉𝔭. Thus if 𝑎𝑋𝑛 ∈ 𝔭 with 𝑎 ∈ 𝑅 and 𝑛 > 0, then
𝑎 ∈ 𝔭. It follows that 𝔭 = 𝔭0𝑆 with 𝔭0 = 𝔭 ∩ 𝑅.

If 𝔭 ∈ Proj(𝑆), then we define 𝑆(𝔭) to be the ring whose elements are fractions 𝑟/𝑓 where
𝑟, 𝑓 ∈ 𝑆 are homogeneous elements of the same degree such that 𝑓∉𝔭. As usual we say
𝑟/𝑓 = 𝑟′/𝑓′ if and only if there exists some 𝑓″ ∈ 𝑆 homogeneous, 𝑓″∉𝔭 such that 𝑓″(𝑟𝑓′ −
𝑟′𝑓) = 0. Given a graded 𝑆-module 𝑀 we let 𝑀(𝔭) be the 𝑆(𝔭)-module whose elements
are fractions 𝑥/𝑓 with 𝑥 ∈ 𝑀 and 𝑓 ∈ 𝑆 homogeneous of the same degree such that 𝑓∉𝔭.
We say 𝑥/𝑓 = 𝑥′/𝑓′ if and only if there exists some 𝑓″ ∈ 𝑆 homogeneous, 𝑓″∉𝔭 such that
𝑓″(𝑥𝑓′ − 𝑥′𝑓) = 0.

Lemma 7.53.5. Let 𝑆 be a graded ring. Let 𝑀 be a graded 𝑆-module. Let 𝔭 be an element
of Proj(𝑆). Let 𝑓 ∈ 𝑆 be a homogeneous element of positive degree such that 𝑓∉𝔭, i.e.,
𝔭 ∈ 𝐷+(𝑓). Let 𝔭′ ⊂ 𝑆(𝑓) be the element of 𝑆𝑝𝑒𝑐(𝑆(𝑓)) corresponding to 𝔭 as in Lemma
7.53.3. Then 𝑆(𝔭) = (𝑆(𝑓))𝔭′ and compatibly 𝑀(𝔭) = (𝑀(𝑓))𝔭′.

Proof. We define a map 𝜓 ∶ 𝑀(𝔭) → (𝑀(𝑓))𝔭′. Let 𝑥/𝑔 ∈ 𝑀(𝔭). We set 𝜓(𝑥/𝑔) =
(𝑥deg(𝑓)/𝑓deg(𝑥))/(𝑔deg(𝑓)/𝑓deg(𝑔)). Thismakes sense since deg(𝑥) = deg(𝑔), and since 𝑔deg(𝑓)/𝑓deg(𝑔)∉𝔭′.
We omit the verification that 𝜓 is well defined, a module map and an isomorphism. �

Here is a graded variant of Lemma 7.14.3.

Lemma 7.53.6. Suppose 𝑆 is a graded ring, 𝔭𝑖, 𝑖 = 1, … , 𝑟 homogeneous prime ideals and
𝐼 ⊂ 𝑆+ a graded ideal. Assume 𝐼⊄𝔭𝑖 for all 𝑖. Then there exists a homogeneous element
𝑥 ∈ 𝐼 of positive degree such that 𝑥∉𝔭𝑖 for all 𝑖.

Proof. We may assume there are no inclusions among the 𝔭𝑖. The result is true for 𝑟 = 1.
Suppose the result holds for 𝑟 − 1. Pick 𝑥 ∈ 𝐼 homogeneous of positive degree such that
𝑥∉𝔭𝑖 for all 𝑖 = 1, … , 𝑟 − 1. If 𝑥∉𝔭𝑟 we are done. So assume 𝑥 ∈ 𝔭𝑟. If 𝐼𝔭1 … 𝔭𝑟−1 ⊂
𝔭𝑟 then 𝐼 ⊂ 𝔭𝑟 a contradiction. Pick 𝑦 ∈ 𝐼𝔭1 … 𝔭𝑟−1 homogeneous and 𝑦∉𝔭𝑟. Then
𝑥deg(𝑦) + 𝑦deg(𝑥) works. �

Lemma 7.53.7. Let 𝑆 be a graded ring. Let 𝔭 ⊂ 𝑆 be a prime. Let 𝔮 be the homogeneous
ideal of 𝑆 generated by the homogeneous elements of 𝔭. Then 𝔮 is a prime ideal of 𝑆.

Proof. Suppose 𝑓, 𝑔 ∈ 𝑆 are such that 𝑓𝑔 ∈ 𝔮. Let 𝑓𝑑 (resp. 𝑔𝑒) be the homogeneous part
of 𝑓 (resp. 𝑔) of degree 𝑑 (resp. 𝑒). Assume 𝑑, 𝑒 are maxima such that 𝑓𝑑≠0 and 𝑔𝑒≠0. By
assumption we can write 𝑓𝑔 = ∑ 𝑎𝑖𝑓𝑖 with 𝑓𝑖 ∈ 𝔭 homogeneous. Say deg(𝑓𝑖) = 𝑑𝑖. Then
𝑓𝑑𝑔𝑒 = ∑ 𝑎′

𝑖 𝑓𝑖 with 𝑎′
𝑖 to homogeneous par of degree 𝑑+𝑒−𝑑𝑖 of 𝑎𝑖 (or 0 if 𝑑+𝑒−𝑑𝑖 < 0).

Hence 𝑓𝑑 ∈ 𝔭 or 𝑔𝑒 ∈ 𝔭. Hence 𝑓𝑑 ∈ 𝔮 or 𝑔𝑒 ∈ 𝔮. In the first case replace 𝑓 by 𝑓 − 𝑓𝑑,
in the second case replace 𝑔 by 𝑔 − 𝑔𝑒. Then still 𝑓𝑔 ∈ 𝔮 but the discrete invariant 𝑑 + 𝑒
has been decreased. Thus we may continue in this fashion until either 𝑓 or 𝑔 is zero. This
clearly shows that 𝑓𝑔 ∈ 𝔮 implies either 𝑓 ∈ 𝔮 or 𝑔 ∈ 𝔮 as desired. �

Lemma 7.53.8. Let 𝑆 be a graded ring.
(1) Any minimal prime of 𝑆 is a homogeneous ideal of 𝑆.
(2) Given a homogeneous ideal 𝐼 ⊂ 𝑆 any minimal prime over 𝐼 is homogeneous.

Proof. The first assertion holds because the prime 𝔮 constructed in Lemma 7.53.7 satisfies
𝔮 ⊂ 𝔭. The second because we may consider 𝑆/𝐼 and apply the first part. �
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Lemma 7.53.9. Let 𝑅 be a ring. Let 𝑅′ be a finite type 𝑅-algebra, and let 𝑀 be a finite
𝑅′-module. There exists a graded 𝑅-algebra 𝑆, a graded 𝑆-module 𝑁 and an element
𝑓 ∈ 𝑆 homogeneous of degree 1 such that

(1) 𝑅′ ≅ 𝑆(𝑓) and 𝑀 ≅ 𝑁(𝑓) (as modules),
(2) 𝑆0 = 𝑅 and 𝑆 is generated by finitely many elements of degree 1 over 𝑅, and
(3) 𝑁 is a finite 𝑆-module.

Proof. Wemaywrite𝑅′ = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 for some ideal 𝐼. For an element 𝑔 ∈ 𝑅[𝑥1, … , 𝑥𝑛]
denote ̃𝑔 ∈ 𝑅[𝑥0, … , 𝑥𝑛] the element homogeneous of minimal degree such that 𝑔 =

̃𝑔(1, 𝑥1, … , 𝑥𝑛). Let ̃𝐼 ⊂ 𝑅[𝑋0, … , 𝑋𝑛] generated by all elements ̃𝑔, 𝑔 ∈ 𝐼. Set 𝑆 =
𝑅[𝑋0, … , 𝑋𝑛]/ ̃𝐼 and denote 𝑓 the image of 𝑋0 in 𝑆. By construction we have an isomor-
phism

𝑆(𝑓) ⟶ 𝑅′, 𝑋𝑖/𝑋0 ⟼ 𝑥𝑖.
To do the same thing with the module 𝑀 we choose a presentation

𝑀 = (𝑅′)⊕𝑟/ ∑𝑗∈𝐽
𝑅′𝑘𝑗

with 𝑘𝑗 = (𝑘1𝑗, … , 𝑘𝑟𝑗). Let 𝑑𝑖𝑗 = deg(�̃�𝑖𝑗). Set 𝑑𝑗 = max{𝑑𝑖𝑗}. Set 𝐾𝑖𝑗 = 𝑋
𝑑𝑗−𝑑𝑖𝑗
0 �̃�𝑖𝑗 which

is homogeneous of degree 𝑑𝑗. With this notation we set

𝑁 = Coker( ⨁𝑗∈𝐽
𝑆(−𝑑𝑗)

(𝐾𝑖𝑗)
−−−−→ 𝑆⊕𝑟

)
which works. Some details omitted. �

7.54. Blow up algebras

In this section we make some elementary observations about blowing up.
Definition 7.54.1. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal.

(1) The blowup algebra, or the Rees algebra, associated to the pair (𝑅, 𝐼) is the the
graded 𝑅-algebra

Bl𝐼(𝑅) = ⨁𝑛≥0
𝐼𝑛 = 𝑅 ⊕ 𝐼 ⊕ 𝐼2 ⊕ …

where the summand 𝐼𝑛 is placed in degree 𝑛.
(2) If 𝑎 ∈ 𝐼 is an element, then the affine blowup algebra𝑅[ 𝐼

𝑎 ] is the algebra (Bl𝐼(𝑅))(𝑎)
constructed in Section 7.53.

In other words, an element of 𝑅[ 𝐼
𝑎 ] is represented by an expression of the form 𝑥/𝑎𝑛 with

𝑥 ∈ 𝐼𝑛. Two representatives 𝑥/𝑎𝑛 and 𝑦/𝑎𝑚 define the same element if and only if 𝑎𝑘(𝑎𝑚𝑥 −
𝑎𝑛𝑦) = 0 for some 𝑘 ≥ 0.
Lemma 7.54.2. If 𝑅 is a domain then every (affine) blowup algebra of 𝑅 is a domain.
Proof. Omitted. �

Lemma 7.54.3. If 𝑅 is reduced then every (affine) blowup algebra of 𝑅 is reduced.
Proof. Omitted. �

Lemma 7.54.4. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑎 ∈ 𝐼. If 𝑎 is not contained in
any minimal prime of 𝑅, then 𝑆𝑝𝑒𝑐(𝑅[ 𝐼

𝑎 ]) → 𝑆𝑝𝑒𝑐(𝑅) has dense image.

Proof. If 𝑎𝑘𝑥 = 0 for 𝑥 ∈ 𝑅, then 𝑥 is contained in all the minimal primes of 𝑅 and hence
nilpotent, see Lemma 7.16.2. Thus the kernel of 𝑅 → 𝑅[ 𝐼

𝑎 ] consists of nilpotent elements.
Hence the result follows from Lemma 7.27.6. �
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7.55. Noetherian graded rings

Lemma 7.55.1. A graded ring 𝑆 is Noetherian if and only if 𝑆0 is Noetherian and 𝑆+ is
finitely generated. Furthermore, a set of homogenenous elements 𝑓𝑖 ∈ 𝑆+ generates 𝑆 as
an algebra over 𝑆0 if and only if they generate 𝑆+ as an ideal.

Proof. It is clear that if 𝑆 is Noetherian then 𝑆0 = 𝑆/𝑆+ is Noetherian and 𝑆+ is finitely
generated. It is also clear that if 𝑓𝑖 generate 𝑆 over 𝑆0 then they generate 𝑆+ as an ideal.
Conversely, suppose that 𝑆+ = (𝑓1, … , 𝑓𝑛) and 𝑆0 Noetherian. By decomposing the 𝑓𝑖
into homogenous pieces we may assume each 𝑓𝑖 is homogeneous. Consider the map Ψ ∶
𝑆0[𝑋1, … 𝑋𝑛] → 𝑆 which maps 𝑋𝑖 to 𝑓𝑖. We claim this is surjective. Once we have
seent his the result follows from Lemma 7.28.1. Namely, suppose that 𝑓 ∈ 𝑆𝑑 for some
𝑑. By assumption we may write 𝑓 = ∑ 𝑎𝑖𝑓𝑖. We may replace 𝑎𝑖 by its piece of degree
deg(𝑓) − deg(𝑓𝑖) and still obtain a valid relation. Now each 𝑎𝑖 is homogenous of strictly
smaller degree than 𝑓𝑖, and hence by induction on the degree we may assume 𝑎𝑖 is in the
image of Ψ. Of course then 𝑓 is in the image too. �

Definition 7.55.2. Let 𝐴 be an abelian group. We say that a function 𝑓 ∶ 𝑛 ↦ 𝑓(𝑛) ∈ 𝐴
defined for all sufficient large integers 𝑛 is a numerical polynomial if there exists 𝑟 ≥ 0,
elements 𝑎0, … , 𝑎𝑟 ∈ 𝐴 such that

𝑓(𝑛) = ∑
𝑟
𝑖=0 (

𝑛
𝑖)𝑎𝑖

for all 𝑛 ≫ 0.

The reason for using the binomial coefficients is the elementary fact that any polynomial
𝑃 ∈ 𝐐[𝑇] all of whose values at integer points are integers, is equal to a sum 𝑃(𝑇) = ∑ 𝑎𝑖(

𝑇

𝑖
)

with 𝑎𝑖 ∈ 𝐙. Note that in particular the expressions (
𝑇+1

𝑖+1
) are of this form.

Lemma 7.55.3. If 𝐴 → 𝐴′ is a homomorphism of abelian groups and if 𝑓 ∶ 𝑛 ↦ 𝑓(𝑛) ∈ 𝐴
is a numerical polynomial, then so is the composition.

Proof. This is immediate from the definitions. �

Lemma 7.55.4. Suppose that 𝑓 ∶ 𝑛 ↦ 𝑓(𝑛) ∈ 𝐴 is defined for all 𝑛 sufficiently large
and suppose that 𝑛 ↦ 𝑓(𝑛) − 𝑓(𝑛 − 1) is a numerical polynomial. Then 𝑓 is a numerical
polynomial.

Proof. Let 𝑓(𝑛) − 𝑓(𝑛 − 1) = ∑𝑟
𝑖=0 (

𝑛

𝑖
)𝑎𝑖 for all 𝑛 ≫ 0. Set 𝑔(𝑛) = 𝑓(𝑛) − ∑𝑟

𝑖=0 (
𝑛+1

𝑖+1
)𝑎𝑖.

Then 𝑔(𝑛) − 𝑔(𝑛 − 1) = 0 for all 𝑛 ≫ 0. Hence 𝑔 is eventually constant, say equal to 𝑎−1.
We leave it to the reader to show that 𝑎−1 +∑𝑟

𝑖=0 (
𝑛+1

𝑖+1
)𝑎𝑖 has the required shape (see remark

above the lemma). �

Lemma 7.55.5. If 𝑀 is a finitely generated graded 𝑆-module, and if 𝑆 is finitely generated
over 𝑆0, then each 𝑀𝑛 is a finite 𝑆0-module.

Proof. Suppose the generators of 𝑀 are 𝑚𝑖 and the generators of 𝑆 are 𝑓𝑖. By taking
homogeneous components we may assume that the 𝑚𝑖 and the 𝑓𝑖 are homogeneous and we
may assume 𝑓𝑖 ∈ 𝑆+. In this case it is clear that each 𝑀𝑛 is generated over 𝑆0 by the
``monomials'' ∏ 𝑓𝑒𝑖

𝑖 𝑚𝑗 whose degree is 𝑛. �
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Proposition 7.55.6. Suppose that 𝑆 is a Noetherian graded ring and 𝑀 a finite graded
𝑆-module. Consider the function

𝐙 ⟶ 𝐾′
0(𝑆0), 𝑛 ⟼ [𝑀𝑛]

see Lemma 7.55.5 above. If 𝑆+ is generated by elements of degree 1, then this function is
a numerical polynomial.

Proof. We prove this by induction on the minimal number of generators of 𝑆1. If this
number is 0, then 𝑀𝑛 = 0 for all 𝑛 ≫ 0 and the result holds. To prove the induction step,
let 𝑥 ∈ 𝑆1 be one of a minimal set of generators, such that the induction hypothesis applies
to the graded ring 𝑆/(𝑥).

First we show the result holds if 𝑥 is nilpotent on 𝑀. This we do by induction on the
minimal integer 𝑟 such that 𝑥𝑟𝑀 = 0. If 𝑟 = 1, then 𝑀 is a module over 𝑆/𝑥𝑆 and the
result holds (by the other induction hypothesis). If 𝑟 > 1, then we can find a short exact
sequence 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 such that the integers 𝑟′, 𝑟″ are stricly smaller than
𝑟. Thus we know the result for 𝑀″ and 𝑀′. Hence we get the result for 𝑀 because of the
relation [𝑀𝑑] = [𝑀′

𝑑] + [𝑀″
𝑑 ] in 𝐾′

0(𝑅).

If 𝑥 is not nilpotent on 𝑀, let 𝑀′ ⊂ 𝑀 be the largest submodule on which 𝑥 is nilpotent.
Consider the exact sequence 0 → 𝑀′ → 𝑀 → 𝑀/𝑀′ → 0 we see again it suffices to prove
the result for 𝑀/𝑀′. In other words we may assume that multiplication by 𝑥 is injective.

Let 𝑀 = 𝑀/𝑥𝑀. Note that the map 𝑥 ∶ 𝑀 → 𝑀 is not a map of graded 𝑆-modules,
since it does not map 𝑀𝑑 into 𝑀𝑑. Namely, for each 𝑑 we have the following short exact
sequence

0 → 𝑀𝑑
𝑥

−→ 𝑀𝑑+1 → 𝑀𝑑+1 → 0

This proves that [𝑀𝑑+1] − [𝑀𝑑] = [𝑀𝑑+1]. Hence we win by Lemma 7.55.4. �

Remark 7.55.7. If 𝑆 is still Noetherian but 𝑆 is not generated in degree 1, then the function
associated to a graded 𝑆-module is a periodic polynomial (i.e., it is a numerical polynomial
on the congruence classes of integers modulo 𝑛 for some 𝑛).

Example 7.55.8. Suppose that 𝑆 = 𝑘[𝑋1, … , 𝑋𝑑]. By Example 7.51.2 we may identify
𝐾0(𝑘) = 𝐾′

0(𝑘) = 𝐙. Hence any finitely generated graded 𝑘[𝑋1, … , 𝑋𝑑]-module gives rise
to a numerical polynomial 𝑛 ↦ dim𝑘(𝑀𝑛).

Lemma 7.55.9. Let 𝑘 be a field. Suppose that 𝐼 ⊂ 𝑘[𝑋1, … , 𝑋𝑑] is a nonzero graded ideal.
Let 𝑀 = 𝑘[𝑋1, … , 𝑋𝑑]/𝐼. Then the numerical polynomial 𝑛 ↦ dim𝑘(𝑀𝑛) (see Example
7.55.8 above) has degree < 𝑑 − 1 (or is zero if 𝑑 = 1).

Proof. The numerical polynomial associated to the graded module 𝑘[𝑋1, … , 𝑋𝑛] is 𝑛 ↦
(

𝑛−1+𝑑

𝑑−1
). For any nonzero homogeneous 𝑓 ∈ 𝐼 of degree 𝑒 and any degree 𝑛 >> 𝑒 we

have 𝐼𝑛 ⊃ 𝑓 ⋅ 𝑘[𝑋1, … , 𝑋𝑑]𝑛−𝑒 and hence dim𝑘(𝐼𝑛) ≥ (
𝑛−𝑒−1+𝑑

𝑑−1
). Hence dim𝑘(𝑀𝑛) ≤

(
𝑛−1+𝑑

𝑑−1
) − (

𝑛−𝑒−1+𝑑

𝑑−1
). We win because the last expression has degree < 𝑑 − 1 (or is zero if

𝑑 = 1). �
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7.56. Noetherian local rings

In all of this section (𝑅, 𝔪, 𝜅) is a Noetherian local ring. We develop some theory onHilbert
functions of modules in this section. Let 𝑀 be a finite 𝑅-module. We define the Hilbert
function of 𝑀 to be the function

𝜑𝑀 ∶ 𝑛 ⟼ length𝑅(𝔪𝑛𝑀/𝔪𝑛+1𝑀).

Note that we have by Lemma 7.48.3 that

length𝑅(𝑀/𝔪𝑛+1𝑀) = ∑
𝑛
𝑖=0

𝜑𝑀(𝑖).

There is a variant of this construction which uses an ideal of definition.

Definition 7.56.1. Let (𝑅, 𝔪) be a local Noetherian ring. An ideal 𝐼 ⊂ 𝑅 such that √𝐼 = 𝔪
is called an ideal of definition of 𝑅.

Let 𝐼 ⊂ 𝑅 be an ideal of definition. Because 𝑅 is Noetherian this means that 𝔪𝑟 ⊂ 𝐼 for
some 𝑟, see Lemma 7.47.3. Hence any finite 𝑅-module annihilated by a power of 𝐼 has a
finite length, see Lemma 7.48.8. Thus in this case we may put

𝜑𝐼,𝑀 ∶ 𝑛 ⟼ length𝑅(𝐼𝑛𝑀/𝐼𝑛+1𝑀).

Again we have that
length𝑅(𝑀/𝐼𝑛+1𝑀) = ∑

𝑛
𝑖=0

𝜑𝐼,𝑀(𝑖).

Lemma 7.56.2. Suppose that 𝑀′ ⊂ 𝑀 are finite 𝑅-modules with finite length quotient.
Then there exists a constants 𝑐1, 𝑐2 such that for all 𝑛 ≫ 𝑐2 we have

𝑐1 + ∑
𝑛−𝑐2
𝑖=0

𝜑𝐼,𝑀′(𝑖) ≤ ∑
𝑛
𝑖=0

𝜑𝐼,𝑀(𝑖) ≤ 𝑐1 + ∑
𝑛
𝑖=0

𝜑𝐼,𝑀′(𝑖)

𝜑𝐼,𝑀(𝑛) ≥ 𝜑𝐼,𝑀′(𝑛 − 𝑐1) − 𝑐2 and 𝜑𝐼,𝑀′(𝑛) ≥ 𝜑𝐼,𝑀(𝑛) − 𝑐2.

Proof. Let 𝑐1 = length𝑅(𝑀/𝑀′). For 𝑛 ≥ 1 we have

∑
𝑛
𝑖=0

𝜑𝐼,𝑀(𝑖) = length𝑅(𝑀/𝐼𝑛+1𝑀)

= 𝑐1 + length𝑅(𝑀′/𝐼𝑛+1𝑀)
≤ 𝑐1 + length𝑅(𝑀′/𝐼𝑛+1𝑀′)

= 𝑐1 + ∑
𝑛
𝑖=0

𝜑𝐼,𝑀′(𝑖)

On the other hand, let 𝑐2 be such that 𝐼𝑐2𝑀 ⊂ 𝑀′, so 𝐼𝑛𝑀 ⊂ 𝐼𝑛−𝑐2𝑀′. We have

∑
𝑛
𝑖=0

𝜑𝐼,𝑀(𝑖) = length𝑅(𝑀/𝐼𝑛+1𝑀)

= 𝑐1 + length𝑅(𝑀′/𝐼𝑛+1𝑀)
≥ 𝑐1 + length𝑅(𝑀′/𝐼𝑛+1−𝑐2𝑀′)

= 𝑐1 + ∑
𝑛−𝑐2
𝑖=0

𝜑𝐼,𝑀′(𝑖)

This works as soon as 𝑛 ≥ 𝑐2. �

Lemma 7.56.3. Suppose that 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 is a short exact sequence of finite
𝑅-modules. Then there exists a submodule 𝑁 ⊂ 𝑀′ with finite colength and an integer 𝑐
such that 𝜑𝐼,𝑀(𝑛) = 𝜑𝐼,𝑀″(𝑛) + 𝜑𝐼,𝑁(𝑛 − 𝑐) for all 𝑛 large enough.
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Proof. Note that 𝑀/𝐼𝑛𝑀 → 𝑀″/𝐼𝑛𝑀″ is surjective with kernel 𝑀′/𝑀′ ∩ 𝐼𝑛𝑀. By the
Artin-Rees Lemma 7.47.4 there exists a constant 𝑐 such that 𝑀′ ∩ 𝐼𝑛𝑀 = 𝐼𝑛−𝑐(𝑀′ ∩ 𝐼𝑐𝑀).
Denote 𝑁 = 𝑀′ ∩ 𝐼𝑐𝑀. Note that 𝐼𝑐𝑀′ ⊂ 𝑁 ⊂ 𝑀′. Hence length𝑅(𝑀′/𝑀′ ∩ 𝐼𝑛𝑀) =
length𝑅(𝑀′/𝑁) + length𝑅(𝑁/𝐼𝑛−𝑐𝑁). Then we obtain the equality

𝑛−1

∑
𝑖=0

𝜑𝐼,𝑀(𝑖) =
𝑛−1

∑
𝑖=0

𝜑𝐼,𝑀″(𝑖) +
𝑛−𝑐−1

∑
𝑖=0

𝜑𝐼,𝑁(𝑖) + length𝑅(𝑀′/𝑁)

for 𝑛 large enough. Thus we get 𝜑𝐼,𝑀(𝑛) = 𝜑𝐼,𝑀″(𝑛) + 𝜑𝐼,𝑁(𝑛 − 𝑐) for 𝑛 large enough. �

Lemma 7.56.4. Suppose that 𝐼, 𝐼′ are two ideals of definition for the Noetherian local
ring 𝑅. Let 𝑀 be a finite 𝑅-module. There exists a constant 𝑎 such that ∑𝑛

𝑖=0 𝜑𝐼,𝑀(𝑖) ≤
∑𝑎𝑛

𝑖=0 𝜑𝐼′,𝑀(𝑖).

Proof. There exists an integer 𝑎 such that (𝐼′)𝑎 ⊂ 𝐼. Hencewe get a surjection𝑀/(𝐼′)𝑎(𝑛+1)𝑀 →
𝑀/𝐼𝑛+1𝑀. Whence the result (with 𝑎 + 1). �

Proposition 7.56.5. For every Noetherian local ring 𝑅, any 𝐼 ⊂ 𝑅 such that √𝐼 = 𝔪 and
every finite 𝑅-module 𝑀 the Hilbert function 𝜑𝐼,𝑀 is a numerical polynomial.

Proof. Consider the graded ring 𝑆 = 𝑅/𝐼 ⊕ 𝐼/𝐼2 ⊕ 𝐼2/𝐼3 ⊕ … = ⨁𝑑≥0 𝐼𝑑/𝐼𝑑+1. Consider
the graded 𝑆-module 𝑁 = 𝑀/𝐼𝑀 ⊕ 𝐼𝑀/𝐼2𝑀 ⊕ … = ⨁𝑑≥0 𝐼𝑑𝑀/𝐼𝑑+1𝑀. This pair
(𝑆, 𝑁) satisfies the hypotheses of Proposition 7.55.6. Hence the result follows from that
Proposition, and Lemma 7.51.1. �

Lemma 7.56.6. Suppose that 𝑀 is a finite 𝑅-module. The degree of the numerical poly-
nomial 𝜑𝐼,𝑀 is independent of the ideal of definition 𝐼.

Proof. This follows immediately from Lemma 7.56.4. �

Definition 7.56.7. If 𝑅 is a local Noetherian ring and 𝑀 a finite 𝑅-module. If 𝔪𝑛𝑀 = 0
for some 𝑛 ≥ 0 we set 𝑑(𝑀) = 0. Otherwise we denote 𝑑(𝑀) the degree +1 of any of the
numerical polynomials 𝜑𝐼,𝑀 above.

Thus 𝑑(𝑀) is the degree of the numerical polynomial 𝑛 ↦ length𝑅(𝑀/𝐼𝑛𝑀) for any ideal
of definition 𝐼. We will denote this function

𝜒𝐼,𝑀(𝑛) = length𝑅(𝑀/𝐼𝑛+1𝑀).

We will frequently use that 𝜒𝐼,𝑀(𝑛) = ∑𝑛
𝑖=0 𝜑𝐼,𝑀(𝑖) without further mention.

Lemma 7.56.8. Suppose 𝑀 ⊂ 𝑀′ with finite length quotient, but neither finite length.
Then 𝜒𝐼,𝑀 − 𝜒𝐼,𝑀′ is a polynomial of degree < degree of either polynomial.

Proof. Immediate from Lemma 7.56.2 by elementary calculus. �

Lemma 7.56.9. Suppose that 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 is a short exact sequence of finite
𝑅-modules. Then max{deg(𝜒𝐼,𝑀′), deg(𝜒𝐼,𝑀″)} = deg(𝜒𝐼,𝑀). Suppose the length of 𝑀′

is not finite. Then 𝜒𝐼,𝑀 − 𝜒𝐼,𝑀″ − 𝜒𝐼,𝑀′ is a numerical polynomial of degree < the degree
of 𝜒𝐼,𝑀′.

Proof. Immediate from Lemma 7.56.3, and 7.56.8 by elementary calculus. �
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7.57. Dimension

Definition 7.57.1. The Krull dimension of the ring 𝑅 is the Krull dimension of the topo-
logical space 𝑆𝑝𝑒𝑐(𝑅), see Topology, Definition 5.7.1. In other words it is the supremum
of the integers 𝑛 ≥ 0 such that there exists a chain of prime ideals of length 𝑛:

𝔭0 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑛, 𝔭𝑖≠𝔭𝑖+1.

Definition 7.57.2. The height of a prime ideal 𝔭 of a ring 𝑅 is the dimension of the local
ring 𝑅𝔭.

Lemma 7.57.3. The Krull dimension of 𝑅 is the supremum of the heights of its (maximal)
primes.

Proof. This is so because we can always add a maximal ideal at the end of a chain of prime
ideals. �

Lemma 7.57.4. A Noetherian ring of dimension 0 is Artinian. Conversely, any Artinian
ring is Noetherian of dimension zero.

Proof. By Lemma 7.28.5 the space 𝑆𝑝𝑒𝑐(𝑅) is Noetherian. By Topology, Lemma 5.6.2
we see that 𝑆𝑝𝑒𝑐(𝑅) has finitely many irreducible components, say 𝑆𝑝𝑒𝑐(𝑅) = 𝑍1 ∪ … 𝑍𝑟.
According to Lemma 7.23.1, each 𝑍𝑖 = 𝑉(𝔭𝑖) with 𝔭𝑖 a minimal ideal. Since the dimension
is 0 these 𝔭𝑖 are also maximal. Thus 𝑆𝑝𝑒𝑐(𝑅) is the discrete topological space with elements
𝔭𝑖. All elements 𝑓 of the radical 𝐼 = ∩𝔭𝑖 are nilpotent since otherwise 𝑅𝑓 would not be
the zero ring and we would have another prime. Since 𝐼 is finitely generated we conclude
that 𝐼 is nilpotent, Lemma 7.47.3. By Lemma 7.49.7 𝑅 is the product of its local rings. By
Lemma 7.48.8 each of these has finite length over 𝑅. Hence we conclude that 𝑅 is Artinian
by Lemma 7.49.8.

If 𝑅 is Artinian then by Lemma 7.49.8 it is Noetherian. All of its primes are maximal by a
combination of Lemmas 7.49.3, 7.49.4 and 7.49.7. �

In the following we will use the invariant 𝑑(−) defined in Definition 7.56.7. Here is a warm
up lemma.

Lemma 7.57.5. Let 𝑅 be a Noetherian local ring. Then dim(𝑅) = 0 ⇔ 𝑑(𝑅) = 0.

Proof. This is because 𝑑(𝑅) = 0 if and only if 𝑅 has finite length as an 𝑅-module. See
Lemma 7.49.8. �

Proposition 7.57.6. Let 𝑅 be a ring. The following are equivalent:
(1) 𝑅 is Artinian,
(2) 𝑅 is Noetherian and dim(𝑅) = 0,
(3) 𝑅 has finite length as a module over itself,
(4) 𝑅 is a finite product of Artinian local rings,
(5) 𝑅 is Noetherian and 𝑆𝑝𝑒𝑐(𝑅) is a finite discrete topological space,
(6) 𝑅 is a finite product of Noetherian local rings of dimension 0,
(7) 𝑅 is a finite product of Noetherian local rings 𝑅𝑖 with 𝑑(𝑅𝑖) = 0,
(8) 𝑅 is a finite product of Noetherian local rings 𝑅𝑖 whose maximal ideals are nilpo-

tent,
(9) 𝑅 is Noetherian, has finitely many maximal ideals and its radical ideal is nilpo-

tent, and
(10) 𝑅 is Noetherian and there are no strict inclusions among its primes.
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Proof. This is a combination of Lemmas 7.49.7, 7.49.8, 7.57.4, and 7.57.5. �

Lemma 7.57.7. Let 𝑅 be a local Noetherian ring. The following are equivalent:
(1) dim(𝑅) = 1,
(2) 𝑑(𝑅) = 1,
(3) there exists an 𝑥 ∈ 𝔪, 𝑥 not nilpotent such that 𝑉(𝑥) = {𝔪},
(4) there exists an 𝑥 ∈ 𝔪, 𝑥 not nilpotent such that 𝔪 = √(𝑥), and
(5) there exists an ideal of definition generated by 1 element, and no ideal of definition

is generated by 0 elements.

Proof. First, assume that dim(𝑅) = 1. Let 𝔭𝑖 be the minimal primes of 𝑅. Because the
dimension is 1 the only other prime of 𝑅 is 𝔪. According to Lemma 7.28.6 there are finitely
many. Hence we can find 𝑥 ∈ 𝔪, 𝑥∉𝔭𝑖, see Lemma 7.14.3. Thus the only prime containing
𝑥 is 𝔪 and hence (3).

If (3) then 𝔪 = √(𝑥) by Lemma 7.16.2, and hence (4). The converse is clear as well. The
equivalence of (4) and (5) follows from directly the definitions.

Assume (5). Let 𝐼 = (𝑥) be an ideal of definition. Note that 𝐼𝑛/𝐼𝑛+1 is a quotient of 𝑅/𝐼 via
multiplication by 𝑥𝑛 and hence length𝑅(𝐼𝑛/𝐼𝑛+1) is bounded. Thus 𝑑(𝑅) = 0 or 𝑑(𝑅) = 1,
but 𝑑(𝑅) = 0 is excluded by the assumption that 0 is not an ideal of definition.

Assume (2). To get a contradiction, assume there exist primes 𝔭 ⊂ 𝔮 ⊂ 𝔪, with both
inclusions strict. Pick some ideal of definition 𝐼 ⊂ 𝑅. We will repeatedly use Lemma
7.56.9. First of all it implies, via the exact sequence 0 → 𝔭 → 𝑅 → 𝑅/𝔭 → 0, that
𝑑(𝑅/𝔭) ≤ 1. But it clearly cannot be zero. Pick 𝑥 ∈ 𝔮, 𝑥∉𝔭. Consider the short exact
sequence

0 → 𝑅/𝔭 → 𝑅/𝔭 → 𝑅/(𝑥𝑅 + 𝔭) → 0.
This implies that 𝜒𝐼,𝑅/𝔭−𝜒𝐼,𝑅/𝔭−𝜒𝐼,𝑅/(𝑥𝑅+𝔭) = −𝜒𝐼,𝑅/(𝑥𝑅+𝔭) has degree < 1. In other words,
𝑑(𝑅/(𝑥𝑅 + 𝔭) = 0, and hence dim(𝑅/(𝑥𝑅 + 𝔭)) = 0, by Lemma 7.57.5. But 𝑅/(𝑥𝑅 + 𝔭) has
the distinct primes 𝔮/(𝑥𝑅 + 𝔭) and 𝔪/(𝑥𝑅 + 𝔭) which gives the desired contradiction. �

Proposition 7.57.8. Let 𝑅 be a local Noetherian ring. The following are equivalent:
(1) dim(𝑅) = 𝑑,
(2) 𝑑(𝑅) = 𝑑,
(3) there exists an ideal of definition generated by 𝑑 elements, and no ideal of defini-

tion is generated by fewer than 𝑑 elements.

Proof. This proof is really just the same as the proof of Lemma 7.57.7. We will prove the
proposition by induction on 𝑑. By Lemmas 7.57.5 and 7.57.7 we may assume that 𝑑 > 1.
Denote the minimal number of generators for an ideal of definition of 𝑅 by 𝑑′(𝑅). We will
prove that the inequalities dim(𝑅) ≥ 𝑑′(𝑅) ≥ 𝑑(𝑅) ≥ dim(𝑅), and hence they are all equal.

First, assume that dim(𝑅) = 𝑑. Let 𝔭𝑖 be the minimal primes of 𝑅. According to Lemma
7.28.6 there are finitely many. Hence we can find 𝑥 ∈ 𝔪, 𝑥∉𝔭𝑖, see Lemma 7.14.3. Note
that every maximal chain of primes starts with some 𝔭𝑖, hence the dimension of 𝑅/𝑥𝑅 is at
most 𝑑−1. By induction there are 𝑥2, … , 𝑥𝑑 which generate an ideal of definition in 𝑅/𝑥𝑅.
Hence 𝑅 has an ideal of definition generated by (at most) 𝑑 elements.

Assume 𝑑′(𝑅) = 𝑑. Let 𝐼 = (𝑥1, … , 𝑥𝑑) be an ideal of definition. Note that 𝐼𝑛/𝐼𝑛+1 is a
quotient of a direct sum of (

𝑑+𝑛−1

𝑑−1
) copies 𝑅/𝐼 via multiplication by all degree 𝑛 monomials
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in 𝑥1, … , 𝑥𝑛. Hence length𝑅(𝐼𝑛/𝐼𝑛+1) is bounded by a polynomial of degree 𝑑 − 1. Thus
𝑑(𝑅) ≤ 𝑑.

Assume 𝑑(𝑅) = 𝑑. Consider a chain of primes 𝔭 ⊂ 𝔮 ⊂ 𝔮2 ⊂ … ⊂ 𝔭𝑒 = 𝔪, with all
inclusions strict, and 𝑒 ≥ 2. Pick some ideal of definition 𝐼 ⊂ 𝑅. We will repeatedly use
Lemma 7.56.9. First of all it implies, via the exact sequence 0 → 𝔭 → 𝑅 → 𝑅/𝔭 → 0,
that 𝑑(𝑅/𝔭) ≤ 𝑑. But it clearly cannot be zero. Pick 𝑥 ∈ 𝔮, 𝑥∉𝔭. Consider the short exact
sequence

0 → 𝑅/𝔭 → 𝑅/𝔭 → 𝑅/(𝑥𝑅 + 𝔭) → 0.

This implies that 𝜒𝐼,𝑅/𝔭 − 𝜒𝐼,𝑅/𝔭 − 𝜒𝐼,𝑅/(𝑥𝑅+𝔭) = −𝜒𝐼,𝑅/(𝑥𝑅+𝔭) has degree < 𝑑. In other
words, 𝑑(𝑅/(𝑥𝑅 + 𝔭)) ≤ 𝑑 − 1, and hence dim(𝑅/(𝑥𝑅 + 𝔭)) ≤ 𝑑 − 1, by induction. Now
𝑅/(𝑥𝑅 + 𝔭) has the chain of prime ideals 𝔮/(𝑥𝑅 + 𝔭) ⊂ 𝔮2/(𝑥𝑅 + 𝔭) ⊂ … ⊂ 𝔮𝑒/(𝑥𝑅 + 𝔭)
which gives 𝑒 − 1 ≤ 𝑑 − 1. Since we started with an arbitrary chain of primes this proves
that dim(𝑅) ≤ 𝑑(𝑅).

Reading back the reader will see we proved the circular inequalities as desired. �

Let (𝑅, 𝔪) be a Noetherian local ring. From the above it is clear that 𝔪 cannot be gener-
ated by fewer than dim(𝑅) variables. By Nakayama's Lemma 7.14.5 the minimal number
of generators of 𝔪 equals dim𝜅(𝔪) 𝔪/𝔪2. Hence we have the following fundamental in-
equality

dim(𝑅) ≤ dim𝜅(𝔪) 𝔪/𝔪2.

It turns out that the rings where equality holds have a lot of good properties. They are called
regular local rings.

Definition 7.57.9. Let (𝑅, 𝔪) be a Noetherian local ring of dimension 𝑑.
(1) A system of parameters of 𝑅 is a sequence of elements 𝑥1, … , 𝑥𝑑 ∈ 𝔪 which

generates an ideal of definition of 𝑅,
(2) if there exist 𝑥1, … , 𝑥𝑑 ∈ 𝔪 such that 𝔪 = (𝑥1, … , 𝑥𝑑) then we call 𝑅 a regular

local ring and 𝑥1, … , 𝑥𝑑 a regular system of parameters.

The folllowing two lemmas are clear from the proofs of the lemmas and proposition above,
but we spell them out so we have convenient references.

Lemma 7.57.10. Let 𝑅 be a Noetherian ring.
(1) Let 𝑥 ∈ 𝑅, 𝔭, 𝔮 ∈ 𝑆𝑝𝑒𝑐(𝑅). Suppose that 𝔭 ⊂ (𝔭, 𝑥) ⊂ 𝔮 and 𝔮 minimal over

(𝔭, 𝑥). Then there is no prime strictly between 𝔭 and 𝔮.
(2) If 𝑥 ∈ 𝑅 and 𝑥 ∈ 𝔭 is minimal over (𝑥) then the height of 𝔭 is 0 or 1.

Proof. Consider the situation of the first assertion. The primes containing 𝔭 and contained
in 𝔮 correspond to primes of 𝑅𝔮/𝔭𝑅𝔮, and the primes containing 𝑥 correspond to the ones
containing the image of 𝑥. Thus we may assume 𝑅 is a Noetherian local domain, 𝔭 = (0)
and 𝔮 maximal. Now since √(𝑥) is the intersection of the prime ideals containing it, and
since 𝔮 is the only prime containing 𝑥 by minimality, we see that √(𝑥) = 𝔮. Hence Lemma
7.57.7 applies. The second assertion follows from the first. �

Lemma 7.57.11. Suppose that 𝑅 is a Noetherian local ring and 𝑥 ∈ 𝔪 an element of its
maximal ideal. Then dim 𝑅 ≤ dim 𝑅/𝑥𝑅 + 1. If 𝑥 is not contained in any of the minimal
primes of 𝑅 then equality holds. (For example if 𝑥 is a nonzero divisor.)
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Proof. If 𝑥1, … , 𝑥dim 𝑅/𝑥𝑅 ∈ 𝑅 map to elements of 𝑅/𝑥𝑅 which generate an ideal of defi-
nition for 𝑅/𝑥𝑅, then 𝑥, 𝑥1, … , 𝑥dim 𝑅/𝑥𝑅 generate an ideal of definition for 𝑅. Hence the
inequality by Proposition 7.57.8. On the other hand, if 𝑥 is not contained in any minimal
prime of 𝑅, then the chains of primes in 𝑅/𝑥𝑅 all give rise to chains in 𝑅 which are at least
one step away from being maximal. �

Lemma 7.57.12. Let (𝑅, 𝔪) be a Noetherian local ring. Suppose 𝑥1, … , 𝑥𝑑 ∈ 𝔪 generate
an ideal of definition and 𝑑 = dim(𝑅). Then dim(𝑅/(𝑥1, … , 𝑥𝑖)) = 𝑑−𝑖 for all 𝑖 = 1, … , 𝑑.

Proof. Clear from the proof of Proposition 7.57.8, or use induction on 𝑑 and Lemma
7.57.11 above. �

7.58. Applications of dimension theory

We can use the results on dimension to prove certain rings are Jacobson.

Lemma 7.58.1. Let 𝑅 be a Noetherian local domain of dimension ≥ 2. A nonempty open
subset 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) is infinite.

Proof. To get a constradiction, assume that 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) is finite. In this case (0) ∈ 𝑈 and
{(0)} is an open subset of 𝑈 (because the complement of {(0)} is the union of the closures
of the other points). Thus we may assume 𝑈 = {(0)}. Let 𝔪 ⊂ 𝑅 be the maximal ideal.
We can find an 𝑥 ∈ 𝔪, 𝑥≠0 such that 𝑉(𝑥) ∪ 𝑈 = 𝑆𝑝𝑒𝑐(𝑅). In other words we see that
𝐷(𝑥) = {(0)}. In particular we see that dim(𝑅/𝑥𝑅) = dim(𝑅) −1 ≥ 1, see Lemma 7.57.11.
Let 𝑦2, … , 𝑦dim(𝑅) ∈ 𝑅/𝑥𝑅 generate an ideal of definition of 𝑅/𝑥𝑅, see Proposition 7.57.8.
Choose lifts 𝑦2, … , 𝑦dim(𝑅) ∈ 𝑅, so that 𝑥, 𝑦2, … , 𝑦dim(𝑅) generate an ideal of definition
in 𝑅. This implies that dim(𝑅/(𝑦2)) = dim(𝑅) − 1 and dim(𝑅/(𝑦2, 𝑥)) = dim(𝑅) − 2, see
Lemma 7.57.12. Hence there exists a prime 𝔭 containing 𝑦2 but not 𝑥. This constradicts
the fact that 𝐷(𝑥) = {(0)}. �

Lemma 7.58.2. (Noetherian Jacobson rings.)
(1) AnyNoetherian domain𝑅 of dimension 1with infinitely many primes is Jacobson.
(2) Any Noetherian ring such that every prime 𝔭 is either maximal or contained in

infinitely many prime ideals is Jacobson.

Proof. Part (1) is a reformulation of Lemma 7.31.6.

Let 𝑅 be a Noetherian ring such that every non-maximal prime 𝔭 is contained in infinitely
many prime ideals. Assume 𝑆𝑝𝑒𝑐(𝑅) is not Jacobson to get a contradiction. By Lemmas
7.23.1 and 7.28.5 we see that 𝑆𝑝𝑒𝑐(𝑅) is a sober, Noetherian topological space. By Topol-
ogy, Lemma 5.13.3 we see that there exists a non-maximal ideal 𝔭 ⊂ 𝑅 such that {𝔭} is a
locally closed subset of 𝑆𝑝𝑒𝑐(𝑅). In other words, 𝔭 is not maximal and {𝔭} is an open subset
of 𝑉(𝔭). Consider a prime 𝔮 ⊂ 𝑅 with 𝔭 ⊂ 𝔮. Recall that the topology on the spectrum of
(𝑅/𝔭)𝔮 = 𝑅𝔮/𝔭𝑅𝔮 is induced from that of 𝑆𝑝𝑒𝑐(𝑅), see Lemmas 7.16.5 and 7.16.7. Hence
we see that {(0)} is a locally closed subset of 𝑆𝑝𝑒𝑐((𝑅/𝔭)𝔮). By Lemma 7.58.1 we conclude
that dim((𝑅/𝔭)𝔮) = 1. Since this holds for every 𝔮 ⊃ 𝔭 we conclude that dim(𝑅/𝔭) = 1. At
this point we use the assumption that 𝔭 is contained in infinitely many primes to see that
𝑆𝑝𝑒𝑐(𝑅/𝔭) is infinite. Hence by part (1) of the lemma we see that 𝑉(𝔭) ≅ 𝑆𝑝𝑒𝑐(𝑅/𝔭) is the
closure of its closed points. This is the desired contradiction since it means that {𝔭} ⊂ 𝑉(𝔭)
cannot be open. �
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7.59. Support and dimension of modules

Lemma 7.59.1. Let 𝑅 be a Noetherian ring, and let 𝑀 be a finite 𝑅-module. There exists
a filtration by 𝑅-submodules

0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀
such that each quotient 𝑀𝑖/𝑀𝑖−1 is isomorphic to 𝑅/𝔭𝑖 for some prime ideal 𝔭𝑖 of 𝑅.

Proof. By Lemma 7.5.5 it suffices to do the case 𝑀 = 𝑅/𝐼 for some ideal 𝐼. Consider
the set 𝑆 of ideals 𝐽 such that the lemma does not hold for the module 𝑅/𝐽, and order
it by inclusion. To arrive at a contradiction, assume that 𝑆 is not empty. Because 𝑅 is
Noetherian, 𝑆 has a maximal element 𝐽. By definition of 𝑆, the ideal 𝐽 cannot be prime.
Pick 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 ∈ 𝐽, but neither 𝑎 ∈ 𝐽 nor 𝑏 ∈ 𝐽. Consider the filtration
0 ⊂ 𝑎𝑅/(𝐽 ∩ 𝑎𝑅) ⊂ 𝑅/𝐽. Note that 𝑎𝑅/(𝐽 ∩ 𝑎𝑅) is a quotient of 𝑅/(𝐽 + 𝑏𝑅) and the second
quotient equals 𝑅/(𝑎𝑅 + 𝐽). Hence by maximality of 𝐽, each of these has a filtration as
above and hence so does 𝑅/𝐽. Contradiction. �

Definition 7.59.2. Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. The support of 𝑀 is the set
Supp(𝑀) = {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ 𝑀𝔭≠0}

Lemma 7.59.3. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Then

𝑀 = (0) ⇔ Supp(𝑀) = ∅.

Proof. Actually, Lemma 7.21.1 even shows that Supp(𝑀) always contains a maximal ideal
if 𝑀 is not zero. �

Lemma 7.59.4. Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. If 𝑀 is finite, then Supp(𝑀)
is closed. More precisely, let 𝐼 = {𝑓 ∈ 𝑅 ∣ 𝑓𝑀 = 0}. Then 𝑉(𝐼) = Supp(𝑀).

Proof. We will show that 𝑉(𝐼) = Supp(𝑀).
Suppose 𝔭 ∈ Supp(𝑀). Then 𝑀𝔭≠0. Hence by Nakayam's Lemma 7.14.5 we have 𝑀 ⊗𝑅
𝜅(𝔭)≠0. Hence 𝐼 ⊂ 𝔭.
Conversely, suppose that 𝔭∉Supp(𝑀). Then 𝑀𝔭 = 0. Let 𝑥1, … , 𝑥𝑟 ∈ 𝑀 be generators.
By Lemma 7.9.9 there exists an 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that 𝑥𝑖/1 = 0 in 𝑀𝑓. Hence 𝑓𝑛𝑖𝑥𝑖 = 0
for some 𝑛𝑖 ≥ 1. Hence 𝑓𝑛𝑀 = 0 for 𝑛 = max{𝑛𝑖} as desired. �

Lemma 7.59.5. Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. If 𝑀 is a finitely presented
𝑅-module, then Supp(𝑀) is a closed subset of𝑆𝑝𝑒𝑐(𝑅)whose complement is quasi-compact.

Proof. Choose a presentation
𝑅⊕𝑚 ⟶ 𝑅⊕𝑛 ⟶ 𝑀 → 0

Let 𝐴 ∈ Mat(𝑛 × 𝑚, 𝑅) be the matrix of the first map. By Nakayama's Lemma 7.14.5 we
see that

𝑀𝔭≠0 ⇔ 𝑀 ⊗ 𝜅(𝔭)≠0 ⇔ rank(𝐴 mod 𝔭) < 𝑛.
Hence, if 𝐼 is the ideal of 𝑅 generated by the 𝑛 × 𝑛 minors of 𝐴, then Supp(𝑀) = 𝑉(𝐼).
Since 𝐼 is finitely generated, say 𝐼 = (𝑓1, … , 𝑓𝑡), we see that 𝑆𝑝𝑒𝑐(𝑅) ⧵ 𝑉(𝐼) is a finite
union of the standard opens 𝐷(𝑓𝑖), hence quasi-compact. �

Lemma 7.59.6. Let 𝑅 be a ring and let 𝑀 be an 𝑅-module.
(1) If 𝑀 is finite then the support of 𝑀/𝐼𝑀 is Supp(𝑀) ∩ 𝑉(𝐼).
(2) If 𝑁 ⊂ 𝑀, then Supp(𝑁) ⊂ Supp(𝑀).
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(3) If 𝑄 is a quotient module of 𝑀 then Supp(𝑄) ⊂ Supp(𝑀).
(4) If 0 → 𝑁 → 𝑀 → 𝑄 → 0 is a short exact sequence then Supp(𝑀) = Supp(𝑄) ∪

Supp(𝑁).

Proof. The functors 𝑀 ↦ 𝑀𝔭 are exact. This immediately implies all but the first asser-
tion. For the first assertion we need to show that 𝑀𝔭≠0 and 𝐼 ⊂ 𝔭 implies (𝑀/𝐼𝑀)𝔭 =
𝑀𝔭/𝐼𝑀𝔭≠0. This follows from Nakayama's Lemma 7.14.5. �

Lemma 7.59.7. Let 𝑅, 𝑀, 𝑀𝑖, 𝔭𝑖 as in Lemma 7.59.1. All of the primes 𝔭𝑖 are in the
support of 𝑀.

Proof. Since localization is exact, we see that (𝑅/𝔭𝑖)𝔭𝑖
is a subquotient of 𝑀𝔭𝑖

. Hence 𝑀𝔭𝑖
is not zero. �

Lemma 7.59.8. Suppose that 𝑅 is a Noetherian local ring with maximal ideal 𝔪. Let 𝑀
be a finite 𝑅-module. Then Supp(𝑀) = {𝔪} if and only if 𝑀 has finite length over 𝑅.

Proof. Assume that Supp(𝑀) = {𝔪}. It suffices to show that all the primes 𝔭𝑖 in the
filtration of Lemma 7.59.1 are the maximal ideal. This is clear by Lemma 7.59.7.

Suppose that 𝑀 has finite length over 𝑅. Then 𝔪𝑛𝑀 = 0 by Lemma 7.48.4. Since some
element of 𝔪 maps to a unit in 𝑅𝔭 for any prime 𝔭≠𝔪 in 𝑅 we see 𝑀𝔭 = 0. �

Lemma 7.59.9. Let 𝑅 be a Noetherian ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be a finite
𝑅-module. Then 𝐼𝑛𝑀 = 0 for some 𝑛 ≥ 0 if and only if Supp(𝑀) ⊂ 𝑉(𝐼).

Proof. It is clear that 𝐼𝑛𝑀 = 0 for some 𝑛 ≥ 0 implies Supp(𝑀) ⊂ 𝑉(𝐼). Suppose that
Supp(𝑀) ⊂ 𝑉(𝐼). Choose a filtration 0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀 as in Lemma
7.59.1. Each of the primes 𝔭𝑖 is contained in 𝑉(𝐼) by Lemma 7.59.7. Hence 𝐼 ⊂ 𝔭𝑖 and 𝐼
annihilates 𝑀𝑖/𝑀𝑖−1. Hence 𝐼𝑛 annihilates 𝑀. �

Lemma 7.59.10. Let 𝑅, 𝑀, 𝑀𝑖, 𝔭𝑖 as in Lemma 7.59.1. The minimal elements of the set
{𝔭𝑖} are the minimal elements of Supp(𝑀), and the number of times a minimal prime 𝔭
occurs is

#{𝑖 ∣ 𝔭𝑖 = 𝔭} = length𝑅𝔭
𝑀𝔭.

Proof. We have already seen {𝔭𝑖} ⊂ Supp(𝑀), in Lemma 7.59.7. Let 𝔭 ∈ Supp(𝑀) be
minimal. The support of 𝑀𝔭 is the set consisting of the maximal ideal 𝔭𝑅𝔭. Hence by
Lemma 7.59.8 the length of 𝑀𝔭 is finite and > 0. Next we note that 𝑀𝔭 has a filtration
with subquotients (𝑅/𝔭𝑖)𝔭 = 𝑅𝔭/𝔭𝑖𝑅𝔭 These are zero if 𝔭𝑖⊄𝔭 and equal to 𝜅(𝔭) if 𝔭𝑖 ⊂ 𝔭
because by minimality of 𝔭 we have 𝔭𝑖 = 𝔭 in this case. The result follows since 𝜅(𝔭) has
length 1. �

Lemma 7.59.11. Let 𝑅 be a Noetherian local ring. Let 𝑀 be a finite 𝑅-module. Then
𝑑(𝑀) = dim(Supp(𝑀)).

Proof. Let 𝑀𝑖, 𝔭𝑖 be as in Lemma 7.59.1. By Lemma 7.56.9 we obtain the equality 𝑑(𝑀) =
max{𝑑(𝑅/𝔭𝑖)}. By Proposition 7.57.8 we have 𝑑(𝑅/𝔭𝑖) = dim(𝑅/𝔭𝑖). Trivially dim(𝑅/𝔭𝑖) =
dim 𝑉(𝔭𝑖). Since all minimal primes of Supp(𝑀) occur among the 𝔭𝑖 we win. �
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7.60. Associated primes

Here is the standard definition. For non-Noetherian rings and non-finite modules it may be
more appropriate to use the definition in Section 7.63.

Definition 7.60.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. A prime 𝔭 of 𝑅 is associated
to 𝑀 if there exists an element 𝑚 ∈ 𝑀 whose annihilator is 𝔭. The set of all such primes
is denoted Ass𝑅(𝑀) or Ass(𝑀).

Lemma 7.60.2. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Then Ass(𝑀) ⊂ Supp(𝑀).

Proof. If 𝑚 ∈ 𝑀 has annihilator 𝔭, then in particular no element of 𝑅 ⧵ 𝔭 annihilates 𝑚.
Hence 𝑚 is a nonzero element of 𝑀𝔭, i.e., 𝔭 ∈ Supp(𝑀). �

Lemma 7.60.3. Let 𝑅 be a ring. Let 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 be a short exact sequence
of 𝑅-modules. Then Ass(𝑀′) ⊂ Ass(𝑀) and Ass(𝑀) ⊂ Ass(𝑀′) ∪ Ass(𝑀″).

Proof. Omitted. �

Lemma 7.60.4. Let 𝑅 be a ring, and 𝑀 an 𝑅-module. Suppose there exists a filtration by
𝑅-submodules

0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀

such that each quotient 𝑀𝑖/𝑀𝑖−1 is isomorphic to 𝑅/𝔭𝑖 for some prime ideal 𝔭𝑖 of 𝑅. Then
Ass(𝑀) ⊂ {𝔭1, … , 𝔭𝑛}.

Proof. By induction on the length 𝑛 of the filtration {𝑀𝑖}. Pick 𝑚 ∈ 𝑀 whose annihilator
is a prime 𝔭. If 𝑚 ∈ 𝑀𝑛−1 we are done by induction. If not, then 𝑚 maps to a nonzero
element of 𝑀/𝑀𝑛−1 ≅ 𝑅/𝔭𝑛. Hence we have 𝔭 ⊂ 𝔭𝑛. If equality does not hold, then we
can find 𝑓 ∈ 𝔭𝑛, 𝑓∉𝔭. In this case the annihilator of 𝑓𝑚 is still 𝔭 and 𝑓𝑚 ∈ 𝑀𝑛−1. Thus
we win by induction. �

Lemma 7.60.5. Let 𝑅 be a Noetherian ring. Let 𝑀 be a finite 𝑅-module. Then Ass(𝑀) is
finite.

Proof. Immediate from Lemma 7.60.4 and Lemma 7.59.1. �

Proposition 7.60.6. Let𝑅 be a Noetherian ring. Let𝑀 be a finite𝑅-module. The following
sets of primes are the same:

(1) The minimal primes in the support of 𝑀.
(2) The minimal primes in Ass(𝑀).
(3) For any filtration 0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛−1 ⊂ 𝑀𝑛 = 𝑀 with 𝑀𝑖/𝑀𝑖−1 ≅

𝑅/𝔭𝑖 the minimal primes of the set {𝔭𝑖}.

Proof. Part of this we saw in Lemma 7.59.10. It suffices to prove that if 𝔭 is a minimal
element of the set {𝔭𝑖} then it is the annihilator of an element of 𝑀. Let 𝑖 be minimal such
that 𝔭 = 𝔭𝑖. Pick 𝑚 ∈ 𝑀𝑖, 𝑚∉𝑀𝑖−1. The annihilator of 𝑚 is contained in 𝔭𝑖 = 𝔭 and
contains 𝔭1𝔭2 … 𝔭𝑖. By our choice of 𝑖 we have 𝔭1𝔭2 … 𝔭𝑖−1⊄𝔭𝑖. Pick 𝑓 ∈ 𝔭1𝔭2 … 𝔭𝑖−1,
𝑓∉𝔭. Then 𝑓𝑚 has annihilator 𝔭. �

Lemma 7.60.7. Let 𝑅 be a Noetherian ring. Let 𝑀 be an 𝑅-module. Then

𝑀 = (0) ⇔ Ass(𝑀) = ∅.
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Proof. If 𝑀 = (0), then Ass(𝑀) = ∅ by definition. If 𝑀≠0, pick any nonzero finitely
generated submodule 𝑀′ ⊂ 𝑀, for example a submodule generated by a single nonzero
element. By Lemma 7.59.3 we see that Supp(𝑀′) is nonempty. By Proposition 7.60.6 this
implies that Ass(𝑀′) is nonempty. By Lemma 7.60.3 this implies Ass(𝑀)≠∅. �

Lemma 7.60.8. Let 𝑅 be a Noetherian ring. Let 𝑀 be an 𝑅-module. Any 𝔭 ∈ Supp(𝑀)
which is minimal among the elements of Supp(𝑀) is an element of Ass(𝑀).
Proof. If 𝑀 is a finite 𝑅-module, then this is a consequence of Proposition 7.60.6. In
general write 𝑀 = ⋃ 𝑀𝜆 as the union of its finite submodules, and use that Supp(𝑀) =
⋃Supp(𝑀𝜆) and Ass(𝑀) = ⋃Ass(𝑀𝜆). �

Lemma7.60.9. Let𝑅 be aNoetherian ring. Let𝑀 be an𝑅-module. The union⋃𝔮∈Ass(𝑀) 𝔮
is the set of elements of 𝑅 which are zero divisors on 𝑀.
Proof. Any element in any associated prime clearly is a zero divisor on 𝑀. Conversely,
suppose 𝑥 ∈ 𝑅 is a zero divisor on 𝑀. Consider the submodule 𝑁 = {𝑚 ∈ 𝑀 ∣ 𝑥𝑚 = 0}.
Since 𝑁 is not zero it has an associated prime 𝔮 by Lemma 7.60.7. Then 𝑥 ∈ 𝔮 and 𝔮 is an
associated prime of 𝑀 by Lemma 7.60.3. �

Lemma7.60.10. Let𝜑 ∶ 𝑅 → 𝑆 be a ringmap. Let𝑀 be an𝑆-module. Then𝑆𝑝𝑒𝑐(𝜑)(Ass𝑆(𝑀)) ⊂
Ass𝑅(𝑀).
Proof. If 𝔮 ∈ Ass𝑆(𝑀), then there exists an 𝑚 in 𝑀 such that the annihilator of 𝑚 in 𝑆 is
𝔮. Then the annihilator of 𝑚 in 𝑅 is 𝔮 ∩ 𝑅. �

Remark 7.60.11. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Then it is not
always the case that 𝑆𝑝𝑒𝑐(𝜑)(Ass𝑆(𝑀)) ⊃ Ass𝑅(𝑀). For example, consider the ring map
𝑅 = 𝑘 → 𝑆 = 𝑘[𝑥1, 𝑥2, 𝑥3, …]/(𝑥2

𝑖 ) and 𝑀 = 𝑆. Then Ass𝑅(𝑀) is not empty, but Ass𝑆(𝑆)
is empty.
Lemma 7.60.12. Let𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let𝑀 be an𝑆-module. If𝑆 is Noetherian,
then 𝑆𝑝𝑒𝑐(𝜑)(Ass𝑆(𝑀)) = Ass𝑅(𝑀).
Proof. We have already seen in Lemma 7.60.10 that 𝑆𝑝𝑒𝑐(𝜑)(Ass𝑆(𝑀)) ⊂ Ass𝑅(𝑀). For
the converse, choose a prime 𝔭 ∈ Ass𝑅(𝑀). Let 𝑚 ∈ 𝑀 be an element such that the
annihilator of 𝑥 in 𝑅 is 𝔭. Let 𝐼 = {𝑔 ∈ 𝑆 ∣ 𝑔𝑚 = 0} be the annihilator of 𝑚 in 𝑆. Then
𝑅/𝔭 ⊂ 𝑆/𝐼 is injective, hence there exists a prime 𝔮 ⊂ 𝑆 lying over 𝔭, see Lemma 7.27.5.
By Proposition 7.60.6 we see that 𝔮 is an associated prime of 𝑆/𝐼, hence an associated prime
of 𝑀 by Lemma 7.60.3 and we win. �

Lemma 7.60.13. Let 𝑅 be a ring. Let 𝐼 be an ideal. Let 𝑀 be an 𝑅/𝐼-module. Via the
canonical injection 𝑆𝑝𝑒𝑐(𝑅/𝐼) → 𝑆𝑝𝑒𝑐(𝑅) we have Ass𝑅/𝐼(𝑀) = Ass𝑅(𝑀).
Proof. Omitted. �

Lemma 7.60.14. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝔭 ⊂ 𝑅 be a prime.
(1) If 𝔭 ∈ Ass(𝑀) then 𝔭𝑅𝔭 ∈ Ass(𝑀𝔭).
(2) If 𝔭 is finitely generated then the converse holds as well.

Proof. If 𝔭 ∈ Ass(𝑀) there exists an element 𝑚 ∈ 𝑀 whose annihilator is 𝔭. As localiza-
tion is exact (Proposition 7.9.12) we see that the annihilator of 𝑚/1 in 𝑀𝔭 is 𝔭𝑅𝔭 hence (1)
holds. Assume 𝔭𝑅𝔭 ∈ Ass(𝑀𝔭) and 𝔭 = (𝑓1, … , 𝑓𝑛). Let 𝑚/𝑔 be an element of 𝑀𝔭 whose
annihilator is 𝔭𝑅𝔭. This implies that the annihilator of 𝑚 is contained in 𝔭. As 𝑓𝑖𝑚/𝑔 = 0
in 𝑀𝔭 we see there exists a 𝑔𝑖 ∈ 𝑅, 𝑔𝑖∉𝔭 such that 𝑔𝑖𝑓𝑖𝑚 = 0 in 𝑀. Combined we see the
annihilator of 𝑔1 … 𝑔𝑛𝑚 is 𝔭. Hence 𝔭 ∈ Ass(𝑀). �
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Lemma 7.60.15. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑆 ⊂ 𝑅 be a multiplicative
subset. Via the canonical injection 𝑆𝑝𝑒𝑐(𝑆−1𝑅) → 𝑆𝑝𝑒𝑐(𝑅) we have

(1) Ass𝑅(𝑆−1𝑀) = Ass𝑆−1𝑅(𝑆−1𝑀),
(2) Ass𝑅(𝑀) ∩ 𝑆𝑝𝑒𝑐(𝑆−1𝑅) ⊂ Ass𝑅(𝑆−1𝑀), and
(3) if 𝑅 is Noetherian this inclusion is an equality.

Proof. The first equality follows, since if 𝑚 ∈ 𝑆−1𝑀, then the annihilator of 𝑚 in 𝑅 is the
intersection of the annihilator of 𝑚 in 𝑆−1𝑅 with 𝑅. The displayed inclusion and equality
in the Noetherian case follows from Lemma 7.60.14 since for 𝔭 ∈ 𝑅, 𝑆 ∩ 𝔭 = ∅ we have
𝑀𝔭 = (𝑆−1𝑀)𝑆−1𝔭. �

Lemma 7.60.16. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑆 ⊂ 𝑅 be a multiplicative
subset. Assume that every 𝑠 ∈ 𝑆 is a nonzero divisor on 𝑀. Then

Ass𝑅(𝑀) = Ass𝑅(𝑆−1𝑀).

Proof. As 𝑀 ⊂ 𝑆−1𝑀 by assumption we get the inclusion Ass(𝑀) = Ass(𝑆−1𝑀) from
Lemma 7.60.3. Conversely, suppose that 𝑛/𝑠 ∈ 𝑆−1𝑀 is an element whose annihilator is a
prime ideal 𝔭. Then the annihilator of 𝑛 ∈ 𝑀 is also 𝔭. �

Lemma 7.60.17. Let 𝑅 be a Noetherian local ring with maximal ideal 𝔪. Let 𝐼 ⊂ 𝔪 be
an ideal. Let 𝑀 be a finite 𝑅-module. The following are equivalent:

(1) There exists an 𝑥 ∈ 𝐼 which is not a zero divisor on 𝑀.
(2) We have 𝐼⊄𝔮 for all 𝔮 ∈ Ass(𝑀).

Proof. If there exists a nonzero divisor 𝑥 in 𝐼, then 𝑥 clearly cannot be in any associated
prime of 𝑀. Conversely, suppose 𝐼⊄𝔮 for all 𝔮 ∈ Ass(𝑀). In this case we can choose
𝑥 ∈ 𝐼, 𝑥∉𝔮 for all 𝔮 ∈ Ass(𝑀) by Lemmas 7.60.5 and 7.14.3. By Lemma 7.60.9 the
element 𝑥 is not a zero divisor on 𝑀. �

Lemma 7.60.18. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. If 𝑅 is Noetherian the map

𝑀 ⟶ ∏𝔭∈Ass(𝑀)
𝑀𝔭

is injective.

Proof. Let 𝑥 ∈ 𝑀 be an element of the kernel of the map. Then if 𝔭 is an associated prime
of 𝑅𝑥 ⊂ 𝑀 we see on the one hand that 𝔭 ∈ Ass(𝑀) (Lemma 7.60.3) and on the other
hand that (𝑅𝑥)𝔭 ⊂ 𝑀𝔭 is not zero. This contradiction shows that Ass(𝑅𝑥) = ∅. Hence
𝑅𝑥 = 0 by Lemma 7.60.7. �

7.61. Symbolic powers

We only make the following definition in the case of a Noetherian ring although the formula
itself makes sense in general.
Definition 7.61.1. Let 𝑅 be a Noetherian ring. Let 𝔭 be a prime ideal. Let 𝑛 ≥ 1. The 𝑛th
symbolic power of 𝔭 is the ideal 𝔭(𝑛) = 𝑅 ∩ 𝔭𝑛𝑅𝔭.

Note that 𝔭𝑛 ⊂ 𝔭(𝑛) but equality does not always hold.
Lemma 7.61.2. Let 𝑅 be a Noetherian ring. Let 𝔭 be a prime ideal. Let 𝑛 > 0. Then
Ass(𝑅/𝔭(𝑛)) = {𝔭}.
Proof. If 𝔮 is an associated prime of 𝑅/𝔭(𝑛) then clearly 𝔭 ⊂ 𝔮. On the other hand, any
element 𝑥 ∈ 𝑅, 𝑥∉𝔭 is a nonzero divisor on 𝑅/𝔭(𝑛). Namely, if 𝑦 ∈ 𝑅 and 𝑥𝑦 ∈ 𝔭(𝑛) =
𝑅 ∩ 𝔭𝑛𝑅𝔭 then 𝑦 ∈ 𝔭𝑛𝑅𝔭, hence 𝑦 ∈ 𝔭(𝑛). Hence the lemma follows. �
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7.62. Relative assassin

Discussion of relative assassins. Let 𝑅 → 𝑆 be a ring map. Let 𝑁 be an 𝑆-module. In this
situation we can introduce the following sets of primes 𝔮 of 𝑆:

𝐴 with 𝔭 = 𝑅 ∩ 𝔮 we have that 𝔮 ∈ Ass𝑆(𝑁 ⊗𝑅 𝜅(𝔭)),
𝐴′ with 𝔭 = 𝑅 ∩ 𝔮 we have that 𝔮 is in the image of Ass𝑆⊗𝜅(𝔭)(𝑁 ⊗𝑅 𝜅(𝔭)) under

the canonical map 𝑆𝑝𝑒𝑐(𝑆 ⊗𝑅 𝜅(𝔭)) → 𝑆𝑝𝑒𝑐(𝑆),
𝐴𝑓𝑖𝑛 with 𝔭 = 𝑅 ∩ 𝔮 we have that 𝔮 ∈ Ass𝑆(𝑁/𝔭𝑁),
𝐴′

𝑓𝑖𝑛 for some prime 𝔭′ ⊂ 𝑅 we have 𝔮 ∈ Ass𝑆(𝑁/𝔭′𝑁),
𝐵 for some 𝑅-module 𝑀 we have 𝔮 ∈ Ass𝑆(𝑁 ⊗𝑅 𝑀), and

𝐵𝑓𝑖𝑛 for some finite 𝑅-module 𝑀 we have 𝔮 ∈ Ass𝑆(𝑁 ⊗𝑅 𝑀).
Let us determine some of the relations between theses sets.

Lemma 7.62.1. Let 𝑅 → 𝑆 be a ring map. Let 𝑁 be an 𝑆-module. Let 𝐴, 𝐴′, 𝐴𝑓𝑖𝑛, 𝐵, and
𝐵𝑓𝑖𝑛 be the subsets of 𝑆𝑝𝑒𝑐(𝑆) introduced above.

(1) We always have 𝐴 = 𝐴′.
(2) We always have 𝐴𝑓𝑖𝑛 ⊂ 𝐴, 𝐵𝑓𝑖𝑛 ⊂ 𝐵, 𝐴𝑓𝑖𝑛 ⊂ 𝐴′

𝑓𝑖𝑛 ⊂ 𝐵𝑓𝑖𝑛 and 𝐴 ⊂ 𝐵.
(3) If 𝑆 is Noetherian, then 𝐴 = 𝐴𝑓𝑖𝑛 and 𝐵 = 𝐵𝑓𝑖𝑛.
(4) If 𝑁 is flat over 𝑅, then 𝐴 = 𝐴𝑓𝑖𝑛 = 𝐴′

𝑓𝑖𝑛 and 𝐵 = 𝐵𝑓𝑖𝑛.
(5) If 𝑅 is Noetherian and 𝑁 is flat over 𝑅, then all of the sets are equal, i.e., 𝐴 =

𝐴′ = 𝐴𝑓𝑖𝑛 = 𝐴′
𝑓𝑖𝑛 = 𝐵 = 𝐵𝑓𝑖𝑛.

Proof. Some of the arguments in the proof will be repeated in the proofs of later lemmas
which are more precise than this one (because they deal with a given module 𝑀 or a given
prime 𝔭 and not with the collection of all of them).
Proof of (1). Let 𝔭 be a prime of 𝑅. Then we have

Ass𝑆(𝑁 ⊗𝑅 𝜅(𝔭)) = Ass𝑆/𝔭𝑆(𝑁 ⊗𝑅 𝜅(𝔭)) = Ass𝑆⊗𝑅𝜅(𝔭)(𝑁 ⊗𝑅 𝜅(𝔭))

the first equality by Lemma 7.60.13 and the second by Lemma 7.60.15 part (1). This prove
that 𝐴 = 𝐴′. The inclusion 𝐴𝑓𝑖𝑛 ⊂ 𝐴′

𝑓𝑖𝑛 is clear.

Proof of (2). Each of the inclusions is immediate from the definitions except perhaps
𝐴𝑓𝑖𝑛 ⊂ 𝐴 which follows from Lemma 7.60.15 and the fact that we require 𝔭 = 𝑅 ∩ 𝔮
in the formulation of 𝐴𝑓𝑖𝑛.
Proof of (3). The equality 𝐴 = 𝐴𝑓𝑖𝑛 follows fromLemma 7.60.15 part (3) if 𝑆 is Noetherian.
Let 𝔮 = (𝑔1, … , 𝑔𝑚) be a finitely generated prime ideal of 𝑆. Say 𝑧 ∈ 𝑁⊗𝑅𝑀 is an element
whose annihilator is 𝔮. We may pick a finite submodule 𝑀′ ⊂ 𝑀 such that 𝑧 is the image
of 𝑧′ ∈ 𝑁⊗𝑅 𝑀′. Then Ann𝑆(𝑧′) ⊂ 𝔮 = Ann𝑆(𝑧). Since 𝑁⊗𝑅 − commutes with colimits
and since 𝑀 is the directed colimit of finite 𝑅-modules we can find 𝑀′ ⊂ 𝑀″ ⊂ 𝑀 such
that the image 𝑧″ ∈ 𝑁 ⊗𝑅 𝑀″ is annihilated by 𝑔1, … , 𝑔𝑚. Hence Ann𝑆(𝑧″) = 𝔮. This
proves that 𝐵 = 𝐵𝑓𝑖𝑛 if 𝑆 is Noetherian.

Proof of (4). If 𝑁 is flat, then the functor 𝑁 ⊗𝑅 − is exact. In particular, if 𝑀′ ⊂ 𝑀, then
𝑁⊗𝑅 𝑀′ ⊂ 𝑁⊗𝑅 𝑀. Hence if 𝑧 ∈ 𝑁⊗𝑅 𝑀 is an element whose annihilator 𝔮 = Ann𝑆(𝑧)
is a prime, then we can pick any finite 𝑅-submodule 𝑀′ ⊂ 𝑀 such that 𝑧 ∈ 𝑁 ⊗𝑅 𝑀′ and
we see that the annihilator of 𝑧 as an element of 𝑁 ⊗𝑅 𝑀′ is equal to 𝔮. Hence 𝐵 = 𝐵𝑓𝑖𝑛.
Let 𝔭′ be a prime of 𝑅 and let 𝔮 be a prime of 𝑆 which is an associated prime of 𝑁/𝔭′𝑁.
This implies that 𝔭′𝑆 ⊂ 𝔮. As 𝑁 is flat over 𝑅 we see that 𝑁/𝔭′𝑁 is flat over the integral
domain 𝑅/𝔭′. Hence every nonzero element of 𝑅/𝔭′ is a nonzero divisor on 𝑁/𝔭′. Hence
none of these elements can map to an element of 𝔮 and we conclude that 𝔭′ = 𝑅∩𝔮. Hence
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𝐴𝑓𝑖𝑛 = 𝐴′
𝑓𝑖𝑛. Finally, by Lemma 7.60.16 we see that Ass𝑆(𝑁/𝔭′𝑁) = Ass𝑆(𝑁 ⊗𝑅 𝜅(𝔭′)),

i.e., 𝐴′
𝑓𝑖𝑛 = 𝐴.

Proof of (5). We only need to prove 𝐴′
𝑓𝑖𝑛 = 𝐵𝑓𝑖𝑛 as the other equalities have been proved

in (4). To see this let 𝑀 be a finite 𝑅-module. By Lemma 7.59.1 there exists a filtration by
𝑅-submodules

0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀
such that each quotient 𝑀𝑖/𝑀𝑖−1 is isomorphic to 𝑅/𝔭𝑖 for some prime ideal 𝔭𝑖 of 𝑅. Since
𝑁 is flat we obtain a filtration by 𝑆-submodules

0 = 𝑁 ⊗𝑅 𝑀0 ⊂ 𝑁 ⊗𝑅 𝑀1 ⊂ … ⊂ 𝑁 ⊗𝑅 𝑀𝑛 = 𝑁 ⊗𝑅 𝑀

such that each subquotient is isomorphic to 𝑁/𝔭𝑖𝑁. By Lemma 7.60.3 we conclude that
Ass𝑆(𝑁 ⊗𝑅 𝑀) ⊂ ⋃Ass𝑆(𝑁/𝔭𝑖𝑁). Hence we see that 𝐵𝑓𝑖𝑛 ⊂ 𝐴′

𝑓𝑖𝑛. Since the other
inclusion is part of (2) we win. �

We define the relative assassin of 𝑁 over 𝑆/𝑅 to be the set 𝐴 = 𝐴′ above. As a motivation
we point out that it depends only on the fibre modules 𝑁⊗𝑅 𝜅(𝔭) over the fibre rings. As in
the case of the assassin of a module we warn the reader that this notion makes most sense
when the fibre rings 𝑆 ⊗𝑅 𝜅(𝔭) are Noetherian, for example if 𝑅 → 𝑆 is of finite type.

Definition 7.62.2. Let 𝑅 → 𝑆 be a ring map. Let 𝑁 be an 𝑆-module. The relative assassin
of 𝑁 over 𝑆/𝑅 is the set

Ass𝑆/𝑅(𝑁) = {𝔮 ⊂ 𝑆 ∣ 𝔮 ∈ Ass𝑆(𝑁 ⊗𝑅 𝜅(𝔭)) with 𝔭 = 𝑅 ∩ 𝔮}.

This is the set named 𝐴 in Lemma 7.62.1.

The spirit of the next few results is that they are about the relative assassin, even though
this may not apparant.

Lemma 7.62.3. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑅-module, and let 𝑁 be an
𝑆-module. If 𝑁 is flat as 𝑅-module, then

Ass𝑆(𝑀 ⊗𝑅 𝑁) ⊃ ⋃𝔭∈Ass𝑅(𝑀)
Ass𝑆(𝑁/𝔭𝑁)

and if 𝑅 is Noetherian then we have equality.

Proof. If 𝔭 ∈ Ass𝑅(𝑀) then there exists an injection 𝑅/𝔭 → 𝑀. As 𝑁 is flat over 𝑅 we
obtain an injection 𝑅/𝔭 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑀. Since 𝑅/𝔭 ⊗𝑅 𝑁 = 𝑁/𝔭𝑁 we conclude that
Ass𝑆(𝑁/𝔭𝑁) ⊂ Ass𝑆(𝑀⊗𝑅 𝑁), see Lemma 7.60.3. Hence the right hand side is contained
in the left hand side.

Write 𝑀 = ⋃ 𝑀𝜆 as the union of its finitely generated 𝑅-submodules. Then also 𝑁 ⊗𝑅
𝑀 = ⋃ 𝑁 ⊗𝑅 𝑀𝜆 (as 𝑁 is 𝑅-flat). By definition of associated primes we see that
Ass𝑆(𝑁 ⊗𝑅 𝑀) = ⋃Ass𝑆(𝑁 ⊗𝑅 𝑀𝜆) and Ass𝑅(𝑀) = ⋃Ass(𝑀𝜆). Hence we may
assume 𝑀 is finitely generated.

Let 𝔮 ∈ Ass𝑆(𝑀⊗𝑅 𝑁), and assume 𝑅 is Noetherian and 𝑀 is a finite 𝑅-module. To finish
the proof we have to show that 𝔮 is an element of the right hand side. First we observe that
𝔮𝑆𝔮 ∈ Ass𝑆𝔮

((𝑀 ⊗𝑅 𝑁)𝔮), see Lemma 7.60.14. Let 𝔭 be the corresponding prime of 𝑅.
Note that

(𝑀 ⊗𝑅 𝑁)𝔮 = 𝑀 ⊗𝑅 𝑁𝔮 = 𝑀𝔭 ⊗𝑅𝔭
𝑁𝔮

If 𝔭𝑅𝔭∉Ass𝑅𝔭
(𝑀𝔭) then there exists an element 𝑥 ∈ 𝔭𝑅𝔭 which is a nonzero divisor in

𝑀𝔭 (see Lemma 7.60.17). Since 𝑁𝔮 is flat over 𝑅𝔭 we see that the image of 𝑥 in 𝔮𝑆𝔮 is
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a nonzero divisor on (𝑀 ⊗𝑅 𝑁)𝔮. This is a contradiction with the assumption that 𝔮𝑆𝔮 ∈
Ass𝑆((𝑀 ⊗𝑅 𝑁)𝔮). Hence we conclude that 𝔭 is one of the associated primes of 𝑀.

Continuing the argument we choose a filtration

0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀

such that each quotient 𝑀𝑖/𝑀𝑖−1 is isomorphic to 𝑅/𝔭𝑖 for some prime ideal 𝔭𝑖 of 𝑅, see
Lemma 7.59.1. (By Lemma 7.60.4 we have 𝔭𝑖 = 𝔭 for at least one 𝑖.) This gives a filtration

0 = 𝑀0 ⊗𝑅 𝑁 ⊂ 𝑀1 ⊗𝑅 𝑁 ⊂ … ⊂ 𝑀𝑛 ⊗𝑅 𝑁 = 𝑀 ⊗𝑅 𝑁

with subquotients isomorphic to 𝑁/𝔭𝑖𝑁. If 𝔭𝑖≠𝔭 then 𝔮 cannot be associated to the mod-
ule 𝑁/𝔭𝑖𝑁 by the result of the preceding paragraph (as Ass𝑅(𝑅/𝔭𝑖) = {𝔭𝑖}). Hence we
conclude that 𝔮 is associated to 𝑁/𝔭𝑁 as desired. �

Lemma 7.62.4. Let 𝑅 → 𝑆 be a ring map. Let 𝑁 be an 𝑆-module. Assume 𝑁 is flat as an
𝑅-module and 𝑅 is a domain with fraction field 𝐾. Then

Ass𝑆(𝑁) = Ass𝑆(𝑁 ⊗𝑅 𝐾) = Ass𝑆⊗𝑅𝐾(𝑁 ⊗𝑅 𝐾)

via the canonical inclusion 𝑆𝑝𝑒𝑐(𝑆 ⊗𝑅 𝐾) ⊂ 𝑆𝑝𝑒𝑐(𝑆).

Proof. Note that 𝑆 ⊗𝑅 𝐾 = (𝑅 ⧵ {0})−1𝑆 and 𝑁 ⊗𝑅 𝐾 = (𝑅 ⧵ {0})−1𝑁. For any nonzero
𝑥 ∈ 𝑅 multiplication by 𝑥 on 𝑁 is injective as 𝑁 is flat over 𝑅. Hence the lemma follows
from Lemma 7.60.16 combined with Lemma 7.60.15 part (1). �

Lemma 7.62.5. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑅-module, and let 𝑁 be an
𝑆-module. Assume 𝑁 is flat as 𝑅-module. Then

Ass𝑆(𝑀 ⊗𝑅 𝑁) ⊃ ⋃𝔭∈Ass𝑅(𝑀)
Ass𝑆⊗𝑅𝜅(𝔭)(𝑁 ⊗𝑅 𝜅(𝔭))

where we use Remark 7.16.8 to think of the spectra of fibre rings as subsets of 𝑆𝑝𝑒𝑐(𝑆). If
𝑅 is Noetherian then this inclusion is an equality.

Proof. This is equivalent to Lemma 7.62.3 by Lemmas 7.60.13, 7.35.6, and 7.62.4. �

Remark 7.62.6. Let 𝑅 → 𝑆 be a ring map. Let 𝑁 be an 𝑆-module. Let 𝔭 be a prime of 𝑅.
Then

Ass𝑆(𝑁 ⊗𝑅 𝜅(𝔭)) = Ass𝑆/𝔭𝑆(𝑁 ⊗𝑅 𝜅(𝔭)) = Ass𝑆⊗𝑅𝜅(𝔭)(𝑁 ⊗𝑅 𝜅(𝔭)).
The first equality by Lemma 7.60.13 and the second by Lemma 7.60.15 part (1).

7.63. Weakly associated primes

This is a variant on the notion of an associated prime that is useful for non-Noetherian ring
and non-finite modules.

Definition 7.63.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. A prime 𝔭 of 𝑅 is weakly
associated to 𝑀 if there exists an element 𝑚 ∈ 𝑀 such that 𝔭 is minimal among the prime
ideals containing the annihilator Ann(𝑚) = {𝑓 ∈ 𝑅 ∣ 𝑓𝑚 = 0}. The set of all such primes
is denoted WeakAss𝑅(𝑀) or WeakAss(𝑀).

Thus an associated prime is a weakly associated prime. Here is a characterization in terms
of the localization at the prime.

Lemma 7.63.2. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝔭 be a prime of 𝑅. The
following are equivalent:

(1) 𝔭 is weakly associated to 𝑀,
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(2) 𝔭𝑅𝔭 is weakly associated to 𝑀𝔭, and
(3) 𝑀𝔭 contains an element whose annihilator has radical equal to 𝔭𝑅𝔭.

Proof. Assume (1). Then there exists an element 𝑚 ∈ 𝑀 such that 𝔭 is minimal among the
primes containing the annihilator 𝐼 = {𝑥 ∈ 𝑅 ∣ 𝑥𝑚 = 0} of 𝑚. As localization is exact, the
annihilator of 𝑚 in 𝑀𝔭 is 𝐼𝔭. Hence 𝔭𝑅𝔭 is aminimal prime of 𝑅𝔭 containing the annihilator
𝐼𝔭 of 𝑚 in 𝑀𝔭. This implies (2) holds, and also (3) as it implies that √𝐼𝔭 = 𝔭𝑅𝔭.
Applying the implication (1) ⇒ (3) to 𝑀𝔭 over 𝑅𝔭 we see that (2) ⇒ (3).
Finally, assume (3). This means there exists an element 𝑚/𝑓 ∈ 𝑀𝔭 whose annihilator has
radical equal to 𝔭𝑅𝔭. Then the annihilator 𝐼 = {𝑥 ∈ 𝑅 ∣ 𝑥𝑚 = 0} of 𝑚 in 𝑀 is such
that √𝐼𝔭 = 𝔭𝑅𝔭. Clearly this means that 𝔭 contains 𝐼 and is minimal among the primes
containing 𝐼, i.e., (1) holds. �

Lemma 7.63.3. Let 𝑅 be a ring. Let 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 be a short exact sequence
of 𝑅-modules. Then WeakAss(𝑀′) ⊂ WeakAss(𝑀) and WeakAss(𝑀) ⊂ WeakAss(𝑀′) ∪
WeakAss(𝑀″).

Proof. We will use the characterization of weakly associated primes of Lemma 7.63.2.
Let 𝔭 be a prime of 𝑅. As localization is exact we obtain the short exact sequence 0 →
𝑀′

𝔭 → 𝑀𝔭 → 𝑀″
𝔭 → 0. Suppose that 𝑚 ∈ 𝑀𝔭 is an element whose annihilator has radical

𝔭𝑅𝔭. Then either the image 𝑚 of 𝑚 in 𝑀″
𝔭 is zero and 𝑚 ∈ 𝑀′

𝔭, or the annihilator of 𝑚
is 𝔭𝑅𝔭. This proves that WeakAss(𝑀) ⊂ WeakAss(𝑀′) ∪ WeakAss(𝑀″). The inclusion
WeakAss(𝑀′) ⊂ WeakAss(𝑀) is immediate from the definitions. �

Lemma 7.63.4. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Then
𝑀 = (0) ⇔ WeakAss(𝑀) = ∅

Proof. If 𝑀 = (0) then WeakAss(𝑀) = ∅ by definition. Conversely, suppose that 𝑀≠0.
Pick a nonzero element 𝑚 ∈ 𝑀. Write 𝐼 = {𝑥 ∈ 𝑅 ∣ 𝑥𝑚 = 0} the annihilator of 𝑚.
Then 𝑅/𝐼 ⊂ 𝑀. Hence WeakAss(𝑅/𝐼) ⊂ WeakAss(𝑀) by Lemma 7.63.3. But as 𝐼≠𝑅 we
have 𝑉(𝐼) = 𝑆𝑝𝑒𝑐(𝑅/𝐼) contains a minimal prime, see Lemmas 7.16.2 and 7.16.7, and we
win. �

Lemma 7.63.5. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Then
Ass(𝑀) ⊂ WeakAss(𝑀) ⊂ Supp(𝑀).

Proof. The first inclusion is immediate from the definitions. If 𝔭 ∈ WeakAss(𝑀), then by
Lemma 7.63.2 we have 𝑀𝔭≠0, hence 𝔭 ∈ Supp(𝑀). �

Lemma 7.63.6. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. The union ⋃𝔮∈WeakAss(𝑀) 𝔮 is the
set elements of 𝑅 which are zero divisors on 𝑀.

Proof. Suppose 𝑓 ∈ 𝔮 ∈ WeakAss(𝑀). Then there exists an element 𝑚 ∈ 𝑀 such that 𝔮 is
minimal over 𝐼 = {𝑥 ∈ 𝑅 ∣ 𝑥𝑚 = 0}. Hence there exists a 𝑔 ∈ 𝑅, 𝑔∉𝔭 and 𝑛 > 0 such that
𝑓𝑛𝑔𝑚 = 0. Note that 𝑔𝑚≠0 as 𝑔∉𝐼. If we take 𝑛 minimal as above, then 𝑓(𝑓𝑛−1𝑔𝑚) = 0
and 𝑓𝑛−1𝑔𝑚≠0, so 𝑓 is a zero divisor on 𝑀. Conversely, suppose 𝑓 ∈ 𝑅 is a zero divisor
on 𝑀. Consider the submodule 𝑁 = {𝑚 ∈ 𝑀 ∣ 𝑓𝑚 = 0}. Since 𝑁 is not zero it has a
weakly associated prime 𝔮 by Lemma 7.63.4. Clearly 𝑓 ∈ 𝔮 and by Lemma 7.63.3 𝔮 is an
associated prime of 𝑀. �

Lemma 7.63.7. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Any 𝔭 ∈ Supp(𝑀) which is
minimal among the elements of Supp(𝑀) is an element of WeakAss(𝑀).
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Proof. Note that Supp(𝑀𝔭) = {𝔭𝑅𝔭} in 𝑆𝑝𝑒𝑐(𝑅𝔭). In particular 𝑀𝔭 is nonzero, and hence
WeakAss(𝑀𝔭)≠∅ by Lemma 7.63.4. Since WeakAss(𝑀𝔭) ⊂ Supp(𝑀𝔭) by Lemma 7.63.5
we conclude that WeakAss(𝑀𝔭) = {𝔭𝑅𝔭}, whence 𝔭 ∈ WeakAss(𝑀) by Lemma 7.63.2.

�

Lemma 7.63.8. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝔭 be a prime ideal of 𝑅 which
is finitely generated. Then

𝔭 ∈ Ass(𝑀) ⇔ 𝔭 ∈ WeakAss(𝑀).

In particular, if 𝑅 is Noetherian, then Ass(𝑀) = WeakAss(𝑀).

Proof. Write 𝔭 = (𝑔1, … , 𝑔𝑛) for some 𝑔𝑖 ∈ 𝑅. It is enough the prove the implication ``⇐''
as the other implication holds in general, see Lemma 7.63.5. Assume 𝔭 ∈ WeakAss(𝑀).
By Lemma 7.63.2 there exists an element 𝑚 ∈ 𝑀𝔭 such that 𝐼 = {𝑥 ∈ 𝑅𝔭 ∣ 𝑥𝑚 = 0} has
radical 𝔭𝑅𝔭. Hence for each 𝑖 there exists a smallest 𝑒𝑖 > 0 such that 𝑔𝑒𝑖

𝑖 𝑚 = 0 in 𝑀𝔭. If
𝑒𝑖 > 1 for some 𝑖, then we can replace 𝑚 by 𝑔𝑒𝑖−1

𝑖 𝑚≠0 and decrease ∑ 𝑒𝑖. Hence we may
asssume that the annihilator of 𝑚 ∈ 𝑀𝔭 is (𝑔1, … , 𝑔𝑛)𝑅𝔭 = 𝔭𝑅𝔭. By Lemma 7.60.14 we
see that 𝔭 ∈ Ass(𝑀). �

Remark 7.63.9. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Then it is not
always the case that 𝑆𝑝𝑒𝑐(𝜑)(WeakAss𝑆(𝑀)) ⊂ WeakAss𝑅(𝑀) contrary to the case of
associated primes (see Lemma 7.60.10). An example is to consider the ring map

𝑅 = 𝑘[𝑥1, 𝑥2, 𝑥3, …] → 𝑆 = 𝑘[𝑥1, 𝑥2, 𝑥3, … , 𝑦1, 𝑦2, 𝑦3, …]/(𝑥1𝑦1, 𝑥2𝑦2, 𝑥3𝑦3, …)

and 𝑀 = 𝑆. In this case 𝔮 = ∑ 𝑥𝑖𝑆 is a minimal prime of 𝑆, hence a weakly associated
prime of 𝑀 = 𝑆 (see Lemma 7.63.7). But on the other hand, for any nonzero element
of 𝑆 the annihilator in 𝑅 is finitely generated, and hence does not have radical equal to
𝑅 ∩ 𝔮 = (𝑥1, 𝑥2, 𝑥3, …) (details omitted).

Lemma 7.63.10. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Then we have
𝑆𝑝𝑒𝑐(𝜑)(WeakAss𝑆(𝑀)) ⊃ WeakAss𝑅(𝑀).

Proof. Let 𝔭 be an element of WeakAss𝑅(𝑀). Then there exists an 𝑚 ∈ 𝑀𝔭 whose annihi-
lator 𝐼 = {𝑥 ∈ 𝑅𝔭 ∣ 𝑥𝑚 = 0} has radical 𝔭𝑅𝔭. Consider the radical 𝐽 = {𝑥 ∈ 𝑆𝔭 ∣ 𝑥𝑚 = 0}
of 𝑚 in 𝑆𝔭. As 𝐼𝑆𝔭 ⊂ 𝐽 we see that any minimal prime 𝔮 ⊂ 𝑆𝔭 over 𝐽 lies over 𝔭. Moreover
such a 𝔮 corresponds to a weakly associated prime of 𝑀 for example by Lemma 7.63.2. �

Remark 7.63.11. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Denote 𝑓 ∶
𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) the associated map on spectra. Then we have

𝑓(Ass𝑆(𝑀)) ⊂ Ass𝑅(𝑀) ⊂ WeakAss𝑅(𝑀) ⊂ 𝑓(WeakAss𝑆(𝑀))

see Lemmas 7.60.10, 7.63.10, and 7.63.5. In general all of the inclusions may be strict, see
Remarks 7.60.11 and 7.63.9. If 𝑆 is Noetherian, then all the inclusions are equalities as the
outer two are equal by Lemma 7.63.8.

Lemma 7.63.12. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Denote 𝑓 ∶
𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) the associated map on spectra. If 𝜑 is a finite ring map, then

WeakAss𝑅(𝑀) = 𝑓(WeakAss𝑆(𝑀)).

Proof. One of the inclusions has already been proved, see Remark 7.63.11. To prove the
other assume 𝔮 ∈ WeakAss𝑆(𝑀) and let 𝔭 be the corresponding prime of 𝑅. Let 𝑚 ∈ 𝑀 be
an element such that 𝔮 is a minimal prime over 𝐽 = {𝑔 ∈ 𝑆 ∣ 𝑔𝑚 = 0}. Thus the radical of

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=058A
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05C5
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05C6
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05C7
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05E1


7.63. WEAKLY ASSOCIATED PRIMES 323

𝐽𝑆𝔮 is 𝔮𝑆𝔮. As 𝑅 → 𝑆 is finite there are finitely many primes 𝔮 = 𝔮1, 𝔮2, … , 𝔮𝑙 over 𝔭, see
Lemma 7.32.19. Pick 𝑥 ∈ 𝔮 with 𝑥∉𝔮𝑖 for 𝑖 > 1, see Lemma 7.14.3. By the above there
exists an element 𝑦 ∈ 𝑆, 𝑦∉𝔮 and an integer 𝑡 > 0 such that 𝑦𝑥𝑡𝑚 = 0. Thus the element
𝑦𝑚 ∈ 𝑀 is annihilated by 𝑥𝑡, hence 𝑦𝑚 maps to zero in 𝑀𝔮𝑖

, 𝑖 = 2, … , 𝑙. To be sure, 𝑦𝑚
does not map to zero in 𝑆𝔮.
The ring 𝑆𝔭 is semi-local with maximal ideals 𝔮𝑖𝑆𝔭 by going up for finite ring maps, see
Lemma 7.32.20. If 𝑓 ∈ 𝔭𝑅𝔭 then some power of 𝑓 ends up in 𝐽𝑆𝔮 hence for some 𝑛 > 0
we see that 𝑓𝑡𝑦𝑚 maps to zero in 𝑀𝔮. As 𝑦𝑚 vanishes at the other maximal ideals of 𝑆𝔭 we
conclude that 𝑓𝑡𝑦𝑚 is zero in 𝑀𝔭, see Lemma 7.21.1. In this way we see that 𝔭 is a minimal
prime over the annihilator of 𝑦𝑚 in 𝑅 and we win. �

Lemma 7.63.13. Let 𝑅 be a ring. Let 𝐼 be an ideal. Let 𝑀 be an 𝑅/𝐼-module. Via the
canonical injection 𝑆𝑝𝑒𝑐(𝑅/𝐼) → 𝑆𝑝𝑒𝑐(𝑅) we have WeakAss𝑅/𝐼(𝑀) = WeakAss𝑅(𝑀).

Proof. Omitted. �

Lemma 7.63.14. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑆 ⊂ 𝑅 be a multiplicative
subset. Via the canonical injection 𝑆𝑝𝑒𝑐(𝑆−1𝑅) → 𝑆𝑝𝑒𝑐(𝑅) we have WeakAss𝑅(𝑆−1𝑀) =
WeakAss𝑆−1𝑅(𝑆−1𝑀) and

WeakAss(𝑀) ∩ 𝑆𝑝𝑒𝑐(𝑆−1𝑅) = WeakAss(𝑆−1𝑀).

Proof. Suppose that 𝑚 ∈ 𝑆−1𝑀. Let 𝐼 = {𝑥 ∈ 𝑅 ∣ 𝑥𝑚 = 0} and 𝐼′ = {𝑥′ ∈ 𝑆−1𝑅 ∣
𝑥′𝑚 = 0}. Then 𝐼′ = 𝑆−1𝐼 and 𝐼 ∩ 𝑆 = ∅ unless 𝐼 = 𝑅 (verifications omitted). Thus
primes in 𝑆−1𝑅 minimal over 𝐼′ correspond bijectively to primes in 𝑅 minimal over 𝐼
and avoiding 𝑆. This proves the equality WeakAss𝑅(𝑆−1𝑀) = WeakAss𝑆−1𝑅(𝑆−1𝑀).
The second equality follows from Lemma 7.60.14 since for 𝔭 ∈ 𝑅, 𝑆 ∩ 𝔭 = ∅ we have
𝑀𝔭 = (𝑆−1𝑀)𝑆−1𝔭. �

Lemma 7.63.15. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑆 ⊂ 𝑅 be a multiplicative
subset. Assume that every 𝑠 ∈ 𝑆 is a nonzero divisor on 𝑀. Then

WeakAss(𝑀) = WeakAss(𝑆−1𝑀).

Proof. As 𝑀 ⊂ 𝑆−1𝑀 by assumption we obtain WeakAss(𝑀) ⊂ WeakAss(𝑆−1𝑀) from
Lemma 7.63.3. Conversely, suppose that 𝑛/𝑠 ∈ 𝑆−1𝑀 is an element with annihilator 𝐼 and
𝔭 a prime which is minimal over 𝐼. Then the annihilator of 𝑛 ∈ 𝑀 is 𝐼 and 𝔭 is a prime
minimal over 𝐼. �

Lemma 7.63.16. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. The map

𝑀 ⟶ ∏𝔭∈WeakAss(𝑀)
𝑀𝔭

is injective.

Proof. Let 𝑥 ∈ 𝑀 be an element of the kernel of the map. Set 𝑁 = 𝑅𝑥 ⊂ 𝑀. If 𝔭 is
a weakly associated prime of 𝑁 we see on the one hand that 𝔭 ∈ WeakAss(𝑀) (Lemma
7.63.3) and on the other hand that 𝑁𝔭 ⊂ 𝑀𝔭 is not zero. This contradiction shows that
WeakAss(𝑁) = ∅. Hence 𝑁 = 0, i.e., 𝑥 = 0 by Lemma 7.63.4. �

Lemma 7.63.17. Let 𝑅 → 𝑆 be a ring map. Let 𝑁 be an 𝑆-module. Assume 𝑁 is flat as
an 𝑅-module and 𝑅 is a domain with fraction field 𝐾. Then

WeakAss𝑆(𝑁) = WeakAss𝑆⊗𝑅𝐾(𝑁 ⊗𝑅 𝐾)
via the canonical inclusion 𝑆𝑝𝑒𝑐(𝑆 ⊗𝑅 𝐾) ⊂ 𝑆𝑝𝑒𝑐(𝑆).
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Proof. Note that 𝑆 ⊗𝑅 𝐾 = (𝑅 ⧵ {0})−1𝑆 and 𝑁 ⊗𝑅 𝐾 = (𝑅 ⧵ {0})−1𝑁. For any nonzero
𝑥 ∈ 𝑅 multiplication by 𝑥 on 𝑁 is injective as 𝑁 is flat over 𝑅. Hence the lemma follows
from Lemma 7.63.15. �

7.64. Embedded primes

Here is the definition.

Definition 7.64.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module.
(1) The associated primes of 𝑀 which are not minimal among the associated primes

of 𝑀 are called the embedded associated primes of 𝑀.
(2) The embedded primes of𝑅 are the embedded associated primes of𝑅 as an𝑅-module.

Here is a way to get rid of these.

Lemma 7.64.2. Let 𝑅 be a Noetherian ring. Let 𝑀 be a finite 𝑅-module. Consider the set
of 𝑅-submodules

{𝐾 ⊂ 𝑀 ∣ Supp(𝐾) nowhere dense in Supp(𝑀)}.

This set has a maximal element 𝐾 and the quotient 𝑀′ = 𝑀/𝐾 has the following properties
(1) Supp(𝑀) = Supp(𝑀′),
(2) 𝑀′ has no embedded associated primes,
(3) for any 𝑓 ∈ 𝑅 which is contained in all embedded associated primes of 𝑀 we

have 𝑀𝑓 ≅ 𝑀′
𝑓.

Proof. Let 𝔮1, … , 𝔮𝑡 denote the minimal primes in the support of 𝑀. Let 𝔭1, … , 𝔭𝑠 denote
the embedded associated primes of 𝑀. Then Ass(𝑀) = {𝔮𝑗, 𝔭𝑖}. There are finitely many
of these, see Lemma 7.60.5. Set 𝐼 = ∏𝑖=1,…,𝑠 𝔭𝑖. Then 𝐼⊄𝔮𝑗 for any 𝑗. Hence by Lemma
7.14.3 we can find an 𝑓 ∈ 𝐼 such that 𝑓∉𝔮𝑗 for all 𝑗 = 1, … , 𝑡. Set 𝑀′ = Im(𝑀 → 𝑀𝑓).
This implies that 𝑀𝑓 ≅ 𝑀′

𝑓. Since 𝑀′ ⊂ 𝑀𝑓 we see that Ass(𝑀′) ⊂ Ass(𝑀𝑓) = {𝔮𝑗}.
Thus 𝑀′ has no embedded associated primes.

Moreover, the support of 𝐾 = Ker(𝑀 → 𝑀′) is contained in 𝑉(𝔭1) ∪ … ∪ 𝑉(𝔭𝑠), because
Ass(𝐾) ⊂ Ass(𝑀) (see Lemma 7.60.3) and Ass(𝐾) contains none of the 𝔮𝑖 by construction.
Clearly, 𝐾 is in fact the largest submodule of 𝑀 whose support is contained in 𝑉(𝔭1) ∪ … ∪
𝑉(𝔭𝑡). This implies that 𝐾 is the maximal element of the set displayed in the lemma. �

Lemma 7.64.3. Let 𝑅 be a Noetherian ring. Let 𝑀 be a finite 𝑅-module. For any 𝑓 ∈ 𝑅
we have (𝑀′)𝑓 = (𝑀𝑓)′ where 𝑀 → 𝑀′ and 𝑀𝑓 → (𝑀𝑓)′ are the quotients constructed
in Lemma 7.64.2.

Proof. Omitted. �

Lemma 7.64.4. Let 𝑅 be a Noetherian ring. Let 𝑀 be a finite 𝑅-module without embedded
associated primes. Let 𝐼 = {𝑥 ∈ 𝑅 ∣ 𝑥𝑀 = 0}. Then the ring𝑅/𝐼 has no embedded primes.

Proof. We may replace 𝑅 by 𝑅/𝐼. Hence we may assume every nonzero element of 𝑅 acts
nontrivially on 𝑀. By Lemma 7.59.4 this implies that 𝑆𝑝𝑒𝑐(𝑅) equals the support of 𝑀.
Suppose that 𝔭 is an embedded prime of 𝑅. Let 𝑥 ∈ 𝑅 be an element whose annihilator
is 𝔭. Consider the nonzero module 𝑁 = 𝑥𝑀 ⊂ 𝑀. It is annihilated by 𝔭. Hence any
associated prime 𝔮 of 𝑁 contains 𝔭 and is also an associated prime of 𝑀. Then 𝔮 would be
an embedded associated prime of 𝑀 which contradicts the assumption of the lemma. �
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7.65. Regular sequences and depth

There is a characterization of depth in terms of Ext-groups that we will discuss in Sec-
tion 7.67. Here we develop some basic properties of regular sequences and we prove the
inequality between depth and dimension.

Definition 7.65.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. A sequence of elements
𝑓1, … , 𝑓𝑟 of 𝑅 is called 𝑀-regular if the following conditions hold:

(1) 𝑓𝑖 is a nonzero divisor on 𝑀/(𝑓1, … , 𝑓𝑟−1)𝑀 for each 𝑖 = 1, … , 𝑟, and
(2) the module 𝑀/(𝑓1, … , 𝑓𝑟)𝑀 is not zero.

If 𝐼 is an ideal of 𝑅 and 𝑓1, … , 𝑓𝑟 ∈ 𝐼 then we call 𝑓1, … , 𝑓𝑟 a 𝑀-regular sequence in 𝐼.
If 𝑀 = 𝑅, we call 𝑓1, … , 𝑓𝑟 simply a regular sequence (in 𝐼).

Please pay attention to the fact that the definition depends on the order of the elements
𝑓1, … , 𝑓𝑟. Here are two examples.

Example 7.65.2. Let 𝑘 be a field. In the ring 𝑘[𝑥, 𝑦, 𝑧] the sequence 𝑥, 𝑦(1 − 𝑥), 𝑧(1 − 𝑥)
is regular but the sequence 𝑦(1 − 𝑥), 𝑧(1 − 𝑥), 𝑥 is not.

Example 7.65.3. Let 𝑘 be a field. Consider the ring 𝑘[𝑥, 𝑦, 𝑤0, 𝑤1, 𝑤2, …]/𝐼 where 𝐼 is
generated by 𝑦𝑤𝑖, 𝑖 = 0, 1, 2, … and 𝑤𝑖 − 𝑥𝑤𝑖+1, 𝑖 = 0, 1, 2, …. The sequence 𝑥, 𝑦 is
regular, but 𝑦 is a zero divisor. Moreover you can localize at the maximal ideal (𝑥, 𝑦, 𝑤𝑖)
and still get an example.

Definition 7.65.4. Let 𝑅 be a ring, and 𝐼 ⊂ 𝑅 an ideal. Let 𝑀 be an 𝑅-module. The
𝐼-depth of 𝑀 is the supremum of the lengths of 𝑀-regular sequences in 𝐼; we denote it
depth𝐼(𝑀). If (𝑅, 𝔪) is local we call depth𝔪(𝑀) simply the depth of 𝑀.

Example 7.65.2 shows depth does not behave well even if the ring is Noetherian, and Ex-
ample 7.65.3 shows that it does not behave well if the ring is local but non Noetherian. We
will see later depth behaves well if the ring is local Noetherian. The following two lemmas
are an indication of this.

Lemma 7.65.5. Let 𝑅 be a local Noetherian ring. Let 𝑀 be a finite 𝑅-module. Let
𝑥1, … , 𝑥𝑐 be an 𝑀-regular sequence. Then any permutation of the 𝑥𝑖 is a regular sequence
as well.

Proof. First we do the case 𝑐 = 2. Consider 𝐾 ⊂ 𝑀 the kernel of 𝑥2 ∶ 𝑀 → 𝑀. For any
𝑧 ∈ 𝐾 we know that 𝑧 = 𝑥1𝑧′ for some 𝑧′ ∈ 𝑀 because 𝑥2 is a nonzero divisor on 𝑀/𝑥1𝑀.
Because 𝑥1 is a nonzero divsor on 𝑀 we see that 𝑥2𝑧′ = 0 as well. Hence 𝑥1 ∶ 𝐾 → 𝐾
is surjective. Thus 𝐾 = 0 by Nakayama's Lemma 7.14.5. Next, consider multiplication
by 𝑥1 on 𝑀/𝑥2𝑀. If 𝑧 ∈ 𝑀 maps to an element 𝑧 ∈ 𝑀/𝑥2𝑀 in the kernel of this map,
then 𝑥1𝑧 = 𝑥2𝑦 for some 𝑦 ∈ 𝑀. But then since 𝑥1, 𝑥2 is a regular sequence we see that
𝑦 = 𝑥1𝑦′ for some 𝑦′ ∈ 𝑀. Hence 𝑥1(𝑧 − 𝑥2𝑦′) = 0 and hence 𝑧 = 𝑥2𝑦′ and hence 𝑧 = 0
as desired.
For the general case, observe that any permutation is a composition of transpositions of
adjacent indices. Hence it suffices to prove that

𝑥1, … , 𝑥𝑖−2, 𝑥𝑖, 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑐

is an 𝑀-regular sequence. This follows from the case we just did applied to the module
𝑀/(𝑥1, … , 𝑥𝑖−2) and the length 2 regular sequence 𝑥𝑖−1, 𝑥𝑖. �

Lemma 7.65.6. Let 𝑅 be a Noetherian local ring. Let 𝑀 be a finite 𝑅-module. Then
dim(Supp(𝑀)) ≥ depth(𝑀).
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Proof. By Lemma 7.59.11 it suffices to prove that if 𝑓 ∈ 𝔪 is a nonzero divisor on 𝑀,
then 𝑑(𝑀/𝑓𝑀) ≤ 𝑑(𝑀) − 1. The existence of 𝑓 shows that 𝑀 does not have finite length.
Consider the exact sequence

0 → 𝑀
𝑓

−→ 𝑀 → 𝑀/𝑓𝑀 → 0

and apply Lemma 7.56.9. It shows that 𝑑(𝑀/𝑓𝑀) < 𝑑(𝑀). �

Here are a few more results on depth.

Lemma 7.65.7. Let 𝑅, 𝑆 be local rings. Let 𝑅 → 𝑆 be a flat local ring homomorphism.
Let 𝑥1, … , 𝑥𝑟 be a sequence in 𝑅. Let 𝑀 be an 𝑅-module. The following are equivalent

(1) 𝑥1, … , 𝑥𝑟 is an 𝑀-regular sequence in 𝑅, and
(2) the images of 𝑥1, … , 𝑥𝑟 in 𝑆 form a 𝑀 ⊗𝑅 𝑆-regular sequence.

Proof. This is so because 𝑅 → 𝑆 is faithfully flat by Lemma 7.35.16. �

Lemma 7.65.8. Let 𝑅 be a Noetherian ring. Let 𝑀 be a finite 𝑅-module. Let 𝔭 be a prime.
Let 𝑥1, … , 𝑥𝑟 be a sequence in 𝑅 whose image in 𝑅𝔭 forms an 𝑀𝔭-regular sequence. Then
there exists a 𝑔 ∈ 𝑅, 𝑔∉𝔭 such that the image of 𝑥1, … , 𝑥𝑟 in 𝑅𝑔 forms an 𝑀𝑔-regular
sequence.

Proof. Set

𝐾𝑖 = Ker (𝑥𝑖 ∶ 𝑀/(𝑥1, … , 𝑥𝑖−1)𝑀 → 𝑀/(𝑥1, … , 𝑥𝑖−1)𝑀) .

This is a finite 𝑅-module whose localization at 𝔭 is zero by assumption. Hence there exists
a 𝑔 ∈ 𝑅, 𝑔∉𝔭 such that (𝐾𝑖)𝑔 = 0 for all 𝑖 = 1, … , 𝑟. This 𝑔 works. �

Lemma 7.65.9. Let 𝐴 be a ring. Let 𝐼 be an ideal generated by a regular sequence
𝑓1, … , 𝑓𝑛 in 𝐴. Let 𝑔1, … , 𝑔𝑚 ∈ 𝐴 be elements whose images 𝑔1, … , 𝑔𝑚 form a regular
sequence in 𝐴/𝐼. Then 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 is a regular sequence in 𝐴.

Proof. This follows immediately from the definitions. �

Lemma 7.65.10. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑓1, … , 𝑓𝑟 ∈ 𝑅 be 𝑀-regula.
Then for 𝑒1, … , 𝑒𝑟 > 0 the sequence 𝑓𝑒1

1 , … , 𝑓𝑒𝑟
𝑟 is𝑀-regular too.

Proof. We will show that 𝑓𝑒
1, 𝑓2, … , 𝑓𝑟 is an 𝑀-regular sequence by induction on 𝑒. The

case 𝑒 = 1 is trivial. Since 𝑓1 is a nonzero divisor we have a short exact sequence

0 → 𝑀/𝑓1𝑀
𝑓𝑒−1

1−−−→ 𝑀/𝑓𝑒
1𝑀 → 𝑀/𝑓𝑒−1

1 𝑀 → 0

By induction the elements 𝑓2, … , 𝑓𝑟 are 𝑀/𝑓1𝑀 and 𝑀/𝑓𝑒−1
1 𝑀-regular sequences. It fol-

lows from the snake lemma that they are also 𝑀/𝑓𝑒
1𝑀-regular sequences. �

Lemma 7.65.11. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑟 ∈ 𝑅 which do not generate the unit ideal.
The following are equivalent:

(1) any permutation of 𝑓1, … , 𝑓𝑟 is a regular sequence,
(2) any subsequence of 𝑓1, … , 𝑓𝑟 (in the given order) is a regular sequence, and
(3) 𝑓1𝑥1, … , 𝑓𝑟𝑥𝑟 is a regular sequence in the polynomial ring 𝑅[𝑥1, … , 𝑥𝑟].

Proof. It is clear that (1) implies (2). We prove (2) implies (1) by induction on 𝑟. The case
𝑟 = 1 is trivial. The case 𝑟 = 2 says that if 𝑎, 𝑏 ∈ 𝑅 are a regular sequence and 𝑏 is a nonzero
divisor, then 𝑏, 𝑎 is a regular sequence. This is clear because the kernel of 𝑎 ∶ 𝑅/(𝑏) → 𝑅/(𝑏)
is isomorphic to the kernel of 𝑏 ∶ 𝑅/(𝑎) → 𝑅/(𝑎) if both 𝑎 and 𝑏 are nonzero divisors. The
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case 𝑟 > 2. Assume (2) holds and say we want to prove 𝑓𝜎(1), … , 𝑓𝜎(𝑟) is a regular sequence
for some permutation 𝜎. We already know that 𝑓𝜎(1), … , 𝑓𝜎(𝑟−1) is a regular sequence by
induction. Hence it suffices to show that 𝑓𝑠 where 𝑠 = 𝜎(𝑟) is a nonzero divisor modulo
𝑓1, … , ̂𝑓𝑠, … , 𝑓𝑟. If 𝑠 = 𝑟 we are done. If 𝑠 < 𝑟, then note that 𝑓𝑠 and 𝑓𝑟 are both nonzero
divisors in the ring 𝑅/(𝑓1, … , ̂𝑓𝑠, … , 𝑓𝑟−1) (by induction hypothesis again). Since we know
𝑓𝑠, 𝑓𝑟 is a regular sequence in that ring we conclude by the case of sequence of length 2
that 𝑓𝑟, 𝑓𝑠 is too.
Note that 𝑅[𝑥1, … , 𝑥𝑟]/(𝑓1𝑥1, … , 𝑓𝑖𝑥𝑖) as an 𝑅-module is a direct sum of the modules

𝑅/𝐼𝐸 ⋅ 𝑥𝑒1
1 … 𝑥𝑒𝑟

𝑟

indexed by multi-indices 𝐸 = (𝑒1, … , 𝑒𝑟) where 𝐼𝐸 is the ideal generated by 𝑓
𝑒𝑗
𝑗 for 1 ≤

𝑗 ≤ 𝑖 with 𝑒𝑗 > 0. Hence 𝑓𝑖+1𝑥𝑖 is a nonzero divisor on this if and only if the maps
𝑓𝑖+1 is a nonzero divisor on 𝑅/𝐼𝐸 for all 𝐸. Thus it is clear that (3) implies (2) by taking
𝑒1, … , 𝑒𝑖 ∈ {0, 1}. Conversely, if (2) holds, then any sequence of the form 𝑓𝑒1

1 , … , 𝑓𝑒𝑖
𝑖 , 𝑓𝑖+1

(but omitting those powers with zero exponent) is a regular sequence by Lemma 7.65.10,
i.e., 𝑓𝑖+1 is a nonzero divisor on 𝑅/𝐼𝐸. �

7.66. Quasi-regular sequences

There is a notion of regular sequencewhich is slightly weaker than that of a regular sequence
and easier to use. Let 𝑅 be a ring and let 𝑓1, … , 𝑓𝑐 ∈ 𝑅. Set 𝐽 = (𝑓1, … , 𝑓𝑐). Let 𝑀 be
an 𝑅-module. Then there is a canonical map

(7.66.0.1) 𝑀/𝐽𝑀 ⊗𝑅/𝐽 𝑅/𝐽[𝑋1, … , 𝑋𝑐] ⟶ ⨁𝑛≥0
𝐽𝑛𝑀/𝐽𝑛+1𝑀

of graded 𝑅/𝐽[𝑋1, … , 𝑋𝑐]-modules defined by the rule

𝑚 ⊗ 𝑋𝑒1
1 … 𝑋𝑒𝑐

𝑐 ⟼ 𝑓𝑒1
1 … 𝑓𝑒𝑐

𝑐 𝑚 mod 𝐽𝑒1+…+𝑒𝑐+1𝑀.
Note that (7.66.0.1) is always surjective.

Definition 7.66.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. A sequence of elements
𝑓1, … , 𝑓𝑐 of 𝑅 is called 𝑀-quasi-regular if (7.66.0.1) is an isomorphism. If 𝑀 = 𝑅, we
call 𝑓1, … , 𝑓𝑐 simply a quasi-regular sequence.

So if 𝑓1, … , 𝑓𝑐 is a quasi-regular sequence, then

𝑅/𝐽[𝑋1, … , 𝑋𝑐] = ⨁𝑛≥0
𝐽𝑛/𝐽𝑛+1

where 𝐽 = (𝑓1, … , 𝑓𝑐). It is clear that being a quasi-regular sequence is independent of the
order of 𝑓1, … , 𝑓𝑐.

Lemma 7.66.2. Let 𝑅 be a ring.
(1) A regular sequence 𝑓1, … , 𝑓𝑐 of 𝑅 is a quasi-regular sequence.
(2) Suppose that 𝑀 is an 𝑅-module and that 𝑓1, … , 𝑓𝑐 is an 𝑀-regular sequence.

Then 𝑓1, … , 𝑓𝑐 is an 𝑀-quasi-regular sequence.

Proof. Set 𝐽 = (𝑓1, … , 𝑓𝑐). We prove the first assertion by induction on 𝑐. We have to
show that given any relation ∑|𝐼|=𝑛 𝑎𝐼𝑓𝐼 ∈ 𝐽𝑛+1 with 𝑎𝐼 ∈ 𝑅 we actually have 𝑎𝐼 ∈ 𝐽
for all multi-indices 𝐼. Since any element of 𝐽𝑛+1 is of the form ∑|𝐼|=𝑛 𝑏𝐼𝑓𝐼 with 𝑏𝐼 ∈ 𝐽
we may assume, after replacing 𝑎𝐼 by 𝑎𝐼 − 𝑏𝐼, the relation reads ∑|𝐼|=𝑛 𝑎𝐼𝑓𝐼 = 0. We can
rewrite this as

∑
𝑛
𝑒=0 (∑|𝐼′|=𝑛−𝑒

𝑎𝐼′,𝑒𝑓𝐼′

) 𝑓𝑒
𝑐 = 0
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Here and below the ``primed'' multi-indices 𝐼′ are required to be of the form 𝐼′ = (𝑖1, … , 𝑖𝑑−1, 0).
We will show by descending induction on 𝑙 ∈ {0, … , 𝑛} that if we have a relation

∑
𝑙
𝑒=0 (∑|𝐼′|=𝑛−𝑒

𝑎𝐼′,𝑒𝑓𝐼′

) 𝑓𝑒
𝑐 = 0

then 𝑎𝐼′,𝑒 ∈ 𝐽 for all 𝐼′, 𝑒. Namely, set 𝐽′ = (𝑓1, … , 𝑓𝑐−1). We observe that∑|𝐼′|=𝑛−𝑙 𝑎𝐼′,𝑙𝑓𝐼′

is mapped into 𝐽′ by 𝑓𝑙
𝑐 and hence (because 𝑓𝑐 is not a zero divisor on 𝑅/𝐽′) it is in 𝐽′. By in-

duction hypotheses (for the induction on 𝑐), we see that 𝑎𝐼′,𝑙 ∈ 𝐽′. This allows us to rewrite
the term (∑|𝐼′|=𝑛−𝑙 𝑎𝐼′,𝑙𝑓𝐼′

)𝑓𝑙
𝑐 in the form (∑|𝐼′|=𝑛−𝑙+1 𝑓𝑐𝑏𝐼′,𝑙−1𝑓𝐼′

)𝑓𝑙−1
𝑐 . This gives a new

relation of the form

∑|𝐼′|=𝑛−𝑙+1
(𝑎𝐼′,𝑙−1 + 𝑓𝑐𝑏𝐼′,𝑙−1)𝑓𝐼′

)𝑓𝑙−1
𝑐 + ∑

𝑙−2
𝑒=0 (∑|𝐼′|=𝑛−𝑒

𝑎𝐼′,𝑒𝑓𝐼′

) 𝑓𝑒
𝑐 = 0

Now by the induction hypothesis (on 𝑙 this time) we see that all 𝑎𝐼′,𝑙−1 + 𝑓𝑐𝑏𝐼′,𝑙−1 ∈ 𝐽 and
all 𝑎𝐼′,𝑒 ∈ 𝐽 for 𝑒 ≤ 𝑙 − 2. This, combined with 𝑎𝐼′,𝑙 ∈ 𝐽′ ⊂ 𝐽 seen above, finishes the
proof of the induction step.

The second assertion means that given any formal expression 𝐹 = ∑|𝐼|=𝑛 𝑚𝐼𝑋𝐼, 𝑚𝐼 ∈ 𝑀
with ∑ 𝑚𝐼𝑓𝐼 ∈ 𝐽𝑛+1𝑀, then all the coefficients 𝑚𝐼 are in 𝐽. This is proved in exactly the
same way as we prove the corresponding result for the first assertion above. �

Lemma 7.66.3. Let 𝑅 → 𝑅′ be a flat ring map. Let 𝑀 be an 𝑅-module. Suppose that
𝑓1, … , 𝑓𝑟 ∈ 𝑅 form an 𝑀-quasi-regular sequence. Then the images of 𝑓1, … , 𝑓𝑟 in 𝑅′

form a 𝑀 ⊗𝑅 𝑅′-quasi-regular sequence.

Proof. Set 𝐽 = (𝑓1, … , 𝑓𝑟), 𝐽′ = 𝐽𝑅′ and 𝑀′ = 𝑀 ⊗𝑅 𝑅′. Because 𝑅 → 𝑆 is flat the
sequences 0 → 𝐽𝑛+1𝑀 → 𝐽𝑛𝑀 → 𝐽𝑛𝑀/𝐽𝑛+1𝑀 → 0 remain exact on tensoring with 𝑆.
Hence (𝐽′)𝑛𝑀′/(𝐽′)𝑛+1𝑀′ = 𝐽𝑛𝑀/𝐽𝑛+1𝑀⊗𝑅𝑅′. Thus the isomorphism 𝐽𝑛/𝐽𝑛+1⊗𝑅𝑀 →
𝐽𝑛𝑀/𝐽𝑛+1𝑀 gives rise to the corresponding isomorphism for 𝑀′. �

Lemma 7.66.4. Let 𝑅 be a Noetherian ring. Let 𝑀 be a finite 𝑅-module. Let 𝔭 be a
prime. Let 𝑥1, … , 𝑥𝑐 be a sequence in 𝑅 whose image in 𝑅𝔭 forms an 𝑀𝔭-quasi-regular
sequence. Then there exists a 𝑔 ∈ 𝑅, 𝑔∉𝔭 such that the image of 𝑥1, … , 𝑥𝑐 in 𝑅𝑔 forms an
𝑀𝑔-quasi-regular sequence.

Proof. Consider the kernel 𝐾 of the map (7.66.0.1). As 𝑀/𝐽𝑀 ⊗𝑅/𝐽 𝑅/𝐽[𝑋1, … , 𝑋𝑐] is
a finite 𝑅/𝐽[𝑋1, … , 𝑋𝑐]-module and as 𝑅/𝐽[𝑋1, … , 𝑋𝑐] is Noetherian, we see that 𝐾 is
also a finite 𝑅/𝐽[𝑋1, … , 𝑋𝑐]-module. Pick homogeneous generators 𝑘1, … , 𝑘𝑡 ∈ 𝐾. By
assumption for each 𝑖 = 1, … , 𝑡 there exists a 𝑔𝑖 ∈ 𝑅, 𝑔𝑖∉𝔭 such that 𝑔𝑖𝑘𝑖 = 0. Hence
𝑔 = 𝑔1 … 𝑔𝑡 works. �

Lemma 7.66.5. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑓1, … , 𝑓𝑐 ∈ 𝑅 be an
𝑀-quasi-regular sequence. For any 𝑖 the sequence 𝑓𝑖+1, … , 𝑓𝑐 of 𝑅 = 𝑅/(𝑓1, … , 𝑓𝑖) is an
𝑀 = 𝑀/(𝑓1, … , 𝑓𝑖)𝑀-quasi-regular sequence.

Proof. It suffices to prove this for 𝑖 = 1. Set 𝐽 = (𝑓2, … , 𝑓𝑐) ⊂ 𝑅. Then

𝐽𝑛𝑀/𝐽𝑛+1𝑀 = (𝐽𝑛𝑀 + 𝑓1𝑀)/(𝐽𝑛+1𝑀 + 𝑓1𝑀)

= 𝐽𝑛𝑀/(𝐽𝑛+1𝑀 + 𝐽𝑛𝑀 ∩ 𝑓1𝑀).

Thus, in order to prove the lemma it suffices to show that 𝐽𝑛+1𝑀+𝐽𝑛𝑀∩𝑓1𝑀 = 𝐽𝑛+1𝑀+
𝑓1𝐽𝑛−1𝑀 because that will show that⨁𝑛≥0 𝐽𝑛𝑀/𝐽𝑛+1𝑀 is the quotient of⨁𝑛≥0 𝐽𝑛𝑀/𝐽𝑛+1 ≅
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𝑀/𝐽𝑀[𝑋1, … , 𝑋𝑐] by 𝑋1. Actually, we have 𝐽𝑛𝑀 ∩ 𝑓1𝑀 = 𝑓1𝐽𝑛−1𝑀. Namely, if
𝑚∉𝐽𝑛−1𝑀, then 𝑓1𝑚∉𝐽𝑛𝑀 because⨁ 𝐽𝑛𝑀/𝐽𝑛+1𝑀 is the polynomial algebra𝑀/𝐽[𝑋1, … , 𝑋𝑐]
by assumption. �

Lemma 7.66.6. Let (𝑅, 𝔪) be a local Noetherian ring. Let𝑀 be a nonzero finite𝑅-module.
Let 𝑓1, … , 𝑓𝑐 ∈ 𝔪 be an 𝑀-quasi-regular sequence. Then 𝑓1, … , 𝑓𝑐 is an 𝑀-regular
sequence.

Proof. Set 𝐽 = (𝑓1, … , 𝑓𝑐). Let us show that 𝑓1 is a nonzero divisor on 𝑀. Suppose
𝑥 ∈ 𝑀 is not zero. By the Artin-Rees lemma there exists an integer 𝑟 such that 𝑥 ∈
𝐽𝑟𝑀 but 𝑥∉𝐽𝑟+1𝑀, see Lemma 7.47.6. Then 𝑓1𝑥 ∈ 𝐽𝑟+1𝑀 is an element whose class in
𝐽𝑟+1𝑀/𝐽𝑟+2𝑀 is nonzero by the assumed structure of ⨁ 𝐽𝑛𝑀/𝐽𝑛+1𝑀. Whence 𝑓1𝑥≠0.

Now we can finish the proof by induction on 𝑐 using Lemma 7.66.5. �

Remark 7.66.7 (Koszul regular sequences). In the paper [Kab71] the author introduces
two more regularity conditions for sequences 𝑥1, … , 𝑥𝑟 of elements of a ring 𝑅. Namely,
we say the sequence isKoszul-regular if 𝐻𝑖(𝐾•(𝑅, 𝑥•)) = 0 for 𝑖 ≥ 1 where 𝐾•(𝑅, 𝑥•) is the
Koszul complex. The sequence is called 𝐻1-regular if 𝐻1(𝐾•(𝑅, 𝑥•)) = 0. If 𝑅 is a local
ring (possibly nonnoetherian) and the sequence consists of elements of the maximal ideal,
then one has the implications regular ⇒ Koszul-regular ⇒ 𝐻1-regular ⇒ quasi-regular.
By examples the author shows that these implications cannot be reversed in general. We
introduce these notions in more detail in More on Algebra, Section 12.22.

Remark 7.66.8. Let 𝑘 be a field. Consider the ring

𝐴 = 𝑘[𝑥, 𝑦, 𝑤, 𝑧0, 𝑧1, 𝑧2, …]/(𝑦2𝑧0 − 𝑤𝑥, 𝑧0 − 𝑦𝑧1, 𝑧1 − 𝑦𝑧2, …)

In this ring 𝑥 is a nonzero divisor and the image of 𝑦 in 𝐴/𝑥𝐴 gives a quasi-regular sequence.
But it is not true that 𝑥, 𝑦 is a quasi-regular sequence in 𝐴 because (𝑥, 𝑦)/(𝑥, 𝑦)2 isn't free
of rank two over 𝐴/(𝑥, 𝑦) due to the fact that 𝑤𝑥 = 0 in (𝑥, 𝑦)/(𝑥, 𝑦)2 but 𝑤 isn't zero in
𝐴/(𝑥, 𝑦). Hence the analogue of Lemma 7.65.9 does not hold for quasi-regular sequences.

Lemma 7.66.9. Let 𝑅 be a ring. Let 𝐽 = (𝑓1, … , 𝑓𝑟) be an ideal of 𝑅. Let 𝑀 be an
𝑅-module. Set 𝑅 = 𝑅/ ⋂𝑛≥0 𝐽𝑛, 𝑀 = 𝑀/ ⋂𝑛≥0 𝐽𝑛𝑀, and denote 𝑓𝑖 the image of 𝑓𝑖 in 𝑅.
Then 𝑓1, … , 𝑓𝑟 is 𝑀-quasi-regular if and only if 𝑓1, … , 𝑓𝑟 is 𝑀-quasi-regular.

Proof. This is true because 𝐽𝑛𝑀/𝐽𝑛+1𝑀 ≅ 𝐽𝑛𝑀/𝐽𝑛+1𝑀. �

7.67. Ext groups and depth

In this section we do a tiny bit of homological algebra, in order to establish some funda-
mental properties of depth over Noetherian local rings.

Lemma 7.67.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module.
(1) The exists an exact complex

… → 𝐹2 → 𝐹1 → 𝐹0 → 𝑀 → 0.

with 𝐹𝑖 free 𝑅-modules.
(2) If 𝑅 is Noetherian and 𝑀 finite 𝑅, then we choose the complex such that each 𝐹𝑖

is finite free. In other words, we may find an exact complex

… → 𝑅𝑛2 → 𝑅𝑛1 → 𝑅𝑛0 → 𝑀 → 0.
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Proof. Let us explain only the Noetherian case. As a first step choose a surjection 𝑅𝑛0 →
𝑀. Then having constructed an exact complex of length 𝑒 we simply choose a surjection
𝑅𝑛𝑒+1 → Ker(𝑅𝑛𝑒 → 𝑅𝑛𝑒−1) which is possible because 𝑅 is Noetherian. �

Definition 7.67.2. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module.
(1) A (left) resolution 𝐹• → 𝑀 of 𝑀 is an exact complex

… → 𝐹2 → 𝐹1 → 𝐹0 → 𝑀 → 0

of 𝑅-modules.
(2) A resolution of 𝑀 by free 𝑅-modules is a resolution 𝐹• → 𝑀 where each 𝐹𝑖 is a

free 𝑅-module.
(3) A resolution of 𝑀 by finite free 𝑅-modules is a resolution 𝐹• → 𝑀 where each

𝐹𝑖 is a finite free 𝑅-module.

We often use the notation 𝐹• to denote a complex of 𝑅-modules

… → 𝐹𝑖 → 𝐹𝑖−1 → …

In this case we often use 𝑑𝑖 or 𝑑𝐹,𝑖 to denote the map 𝐹𝑖 → 𝐹𝑖−1. In this section we are
always going to assume that 𝐹0 is the last nonzero term in the complex. The 𝑖th homology
group of the complex 𝐹• is the group 𝐻𝑖 = Ker(𝑑𝐹,𝑖)/Im(𝑑𝐹,𝑖+1). A map of complexes
𝛼 ∶ 𝐹• → 𝐺• is given by maps 𝛼𝑖 ∶ 𝐹𝑖 → 𝐺𝑖 such that 𝛼𝑖−1 ∘ 𝑑𝐹,𝑖 = 𝑑𝐺,𝑖−1 ∘ 𝛼𝑖. Such
a map induces a map on homology 𝐻𝑖(𝛼) ∶ 𝐻𝑖(𝐹•) → 𝐻𝑖(𝐺•). If 𝛼, 𝛽 ∶ 𝐹• → 𝐺• are
maps of complexes, then a homotopy between 𝛼 and 𝛽 is given by a collection of maps
ℎ𝑖 ∶ 𝐹𝑖 → 𝐺𝑖+1 such that 𝛼𝑖 − 𝛽𝑖 = 𝑑𝐺,𝑖+1 ∘ ℎ𝑖 + ℎ𝑖−1 ∘ 𝑑𝐹,𝑖.

We will use a very similar notation regarding complexes of the form 𝐹• which look like

… → 𝐹𝑖 𝑑𝑖

−−→ 𝐹𝑖+1 → …

There aremaps of complexes, homotopies, etc. In this casewe set𝐻𝑖(𝐹•) = Ker(𝑑𝑖)/Im(𝑑𝑖−1)
and we call it the 𝑖th cohomology group.

Lemma 7.67.3. Any two homotopic maps of complexes induce the same maps on (co)ho-
mology groups.

Proof. Omitted. �

Lemma 7.67.4. Let 𝑅 be a ring. Let 𝑀 → 𝑁 be a map of 𝑅-modules. Let 𝐹• → 𝑀 be a
resolution by free 𝑅-modules and let 𝑁• → 𝑁 be an arbitrary resolution. Then

(1) there exists a map of complexes 𝐹• → 𝑁• inducing the given map

𝑀 = Coker(𝐹1 → 𝐹0) → Coker(𝑁1 → 𝑁0) = 𝑁

(2) two maps 𝛼, 𝛽 ∶ 𝐹• → 𝑁• inducing the same map 𝑀 → 𝑁 are homotopic.

Proof. Proof of (1). Because 𝐹0 is free we can find a map 𝐹0 → 𝑁0 lifting the map
𝐹0 → 𝑀 → 𝑁. We obtain an induced map 𝐹1 → 𝐹0 → 𝑁0 wich ends up in the image of
𝑁1 → 𝑁0. Since 𝐹1 is free we may lift this to a map 𝐹1 → 𝑁1. This in turn induces a map
𝐹2 → 𝐹1 → 𝑁1 which maps to zero into 𝑁0. Since 𝑁• is exact we see that the image of
this map is contained in the image of 𝑁2 → 𝑁1. Hence we may lift to get a map 𝐹2 → 𝑁2.
Repeat.

Proof of (2). To show that 𝛼, 𝛽 are homotopic it suffices to show the difference 𝛾 = 𝛼 − 𝛽
is homotopic to zero. Note that the image of 𝛾0 ∶ 𝐹0 → 𝑁0 is contained in the image
of 𝑁1 → 𝑁0. Hence we may lift 𝛾0 to a map ℎ0 ∶ 𝐹0 → 𝑁1. Consider the map 𝛾′

1 =
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𝛾1 − ℎ0 ∘ 𝑑𝐹,1. By our choice of ℎ0 we see that the image of 𝛾′
1 is contained in the kernel of

𝑁1 → 𝑁0. Since 𝑁• is exact we may lift 𝛾′
1 to a map ℎ1 ∶ 𝐹1 → 𝑁2. At this point we have

𝛾1 = ℎ0 ∘ 𝑑𝐹,1 + 𝑑𝑁,2 ∘ ℎ1. Repeat. �

At this point we are ready to define the groups Ext𝑖𝑅(𝑀, 𝑁). Namely, choose a resolution
𝐹• of 𝑀 by free 𝑅-modules, see Lemma 7.67.1. Consider the (cohomological) complex

𝐻𝑜𝑚𝑅(𝐹•, 𝑁) ∶ 𝐻𝑜𝑚𝑅(𝐹0, 𝑁) → 𝐻𝑜𝑚𝑅(𝐹1, 𝑁) → 𝐻𝑜𝑚𝑅(𝐹2, 𝑁) → …

We define Ext𝑖𝑅(𝑀, 𝑁) to be the 𝑖th cohomology group of this complex.3 The following
lemma explains in what sense this is well defined.

Lemma 7.67.5. Let 𝑅 be a ring. Let 𝑀1, 𝑀2, 𝑁 be 𝑅-modules. Suppose that 𝐹• is a
free resolution of the module 𝑀1, and 𝐺• is a free resolution of the module 𝑀2. Let 𝜑 ∶
𝑀1 → 𝑀2 be a module map. Let 𝛼 ∶ 𝐹• → 𝐺• be a map of complexes inducing 𝜑 on
𝑀1 = Coker(𝑑𝐹,1) → 𝑀2 = Coker(𝑑𝐺,1), see Lemma 7.67.4. Then the induced maps

𝐻𝑖(𝛼) ∶ 𝐻𝑖(𝐻𝑜𝑚𝑅(𝐹•, 𝑁)) ⟶ 𝐻𝑖(𝐻𝑜𝑚𝑅(𝐺•, 𝑁))

are independent of the choice of 𝛼. If 𝜑 is an isomorphism, so are all the maps 𝐻𝑖(𝛼). If
𝑀1 = 𝑀2, 𝐹• = 𝐺•, and 𝜑 is the identity, so are all the maps 𝐻𝑖(𝛼).

Proof. Another map 𝛽 ∶ 𝐹• → 𝐺• inducing 𝜑 is homotopic to 𝛼 by Lemma 7.67.4. Hence
the maps 𝐻𝑜𝑚𝑅(𝐹•, 𝑁) → 𝐻𝑜𝑚𝑅(𝐺•, 𝑁) are homotopic. Hence the independence result
follows from Lemma 7.67.3.

Suppose that 𝜑 is an isomorphism. Let 𝜓 ∶ 𝑀2 → 𝑀1 be an inverse. Choose 𝛽 ∶ 𝐺• → 𝐹•
be a map inducing 𝜓 ∶ 𝑀2 = Coker(𝑑𝐺,1) → 𝑀1 = Coker(𝑑𝐹,1), see Lemma 7.67.4. Ok,
and now consider the map 𝐻𝑖(𝛼) ∘ 𝐻𝑖(𝛽) = 𝐻𝑖(𝛼 ∘ 𝛽). By the above the map 𝐻𝑖(𝛼 ∘ 𝛽) is the
same as the map 𝐻𝑖(id𝐺•

) = id. Similarly for the composition 𝐻𝑖(𝛽) ∘ 𝐻𝑖(𝛼). Hence 𝐻𝑖(𝛼)
and 𝐻𝑖(𝛽) are inverses of each other. �

Lemma 7.67.6. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 0 → 𝑁′ → 𝑁 → 𝑁″ → 0
be a short exact sequence. Then we get a long exact sequence

0 → 𝐻𝑜𝑚𝑅(𝑀, 𝑁′) → 𝐻𝑜𝑚𝑅(𝑀, 𝑁) → 𝐻𝑜𝑚𝑅(𝑀, 𝑁″)
→ Ext1𝑅(𝑀, 𝑁′) → Ext1𝑅(𝑀, 𝑁) → Ext1𝑅(𝑀, 𝑁″) → …

Proof. Pick a free resolution 𝐹• → 𝑀. Since each of the 𝐹𝑖 are free we see that we get a
short exact sequence of complexes

0 → 𝐻𝑜𝑚𝑅(𝐹•, 𝑁′) → 𝐻𝑜𝑚𝑅(𝐹•, 𝑁) → 𝐻𝑜𝑚𝑅(𝐹•, 𝑁″) → 0

Thus we get the long exact sequence from the snake lemma applied to this. �

Lemma 7.67.7. Let 𝑅 be a ring. Let 𝑁 be an 𝑅-module. Let 0 → 𝑀′ → 𝑀 → 𝑀″ → 0
be a short exact sequence. Then we get a long exact sequence

0 → 𝐻𝑜𝑚𝑅(𝑀″, 𝑁) → 𝐻𝑜𝑚𝑅(𝑀, 𝑁) → 𝐻𝑜𝑚𝑅(𝑀′, 𝑁)
→ Ext1𝑅(𝑀″, 𝑁) → Ext1𝑅(𝑀, 𝑁) → Ext1𝑅(𝑀′, 𝑁) → …

Proof. Pick sets of generators {𝑚′
𝑖′}𝑖′∈𝐼′ and {𝑚″

𝑖″}𝑖″∈𝐼″ of 𝑀′ and 𝑀″. For each 𝑖″ ∈ 𝐼″

choose a lift �̃�″
𝑖″ ∈ 𝑀 of the element 𝑚″

𝑖″ ∈ 𝑀″. Set 𝐹′ = ⨁𝑖′∈𝐼′ 𝑅, 𝐹″ = ⨁𝑖″∈𝐼″ 𝑅 and
𝐹 = 𝐹′ ⊕ 𝐹″. Mapping the generators of these free modules to the corresponding chosen

3At this point it would perhaps be more appropriate to say ``an'' in stead of ``the'' Ext-group.
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generators gives surjective 𝑅-module maps 𝐹′ → 𝑀′, 𝐹″ → 𝑀″, and 𝐹 → 𝑀. We obtain
a map of short exact sequences

0 → 𝑀′ → 𝑀 → 𝑀″ → 0
↑ ↑ ↑

0 → 𝐹′ → 𝐹 → 𝐹″ → 0

By the snake lemma we see that the sequence of kernels 0 → 𝐾′ → 𝐾 → 𝐾″ → 0 is short
exact sequence of 𝑅-modules. Hence we can continue this process indefinitively. In other
words we obtain a short exact sequence of resolutions fitting into the diagram

0 → 𝑀′ → 𝑀 → 𝑀″ → 0
↑ ↑ ↑

0 → 𝐹′
• → 𝐹• → 𝐹″

• → 0

Because each of the sequences 0 → 𝐹′
𝑛 → 𝐹𝑛 → 𝐹″

𝑛 → 0 is split exact (by construction)
we obtain a short exact sequence of complexes

0 → 𝐻𝑜𝑚𝑅(𝐹″
• , 𝑁) → 𝐻𝑜𝑚𝑅(𝐹•, 𝑁) → 𝐻𝑜𝑚𝑅(𝐹′

•, 𝑁) → 0

by applying the 𝐻𝑜𝑚𝑅(−, 𝑁) functor. Thus we get the long exact sequence from the snake
lemma applied to this. �

Lemma 7.67.8. Let 𝑅 be a ring. Let 𝑀, 𝑁 be 𝑅-modules. Any 𝑥 ∈ 𝑅 such that either
𝑥𝑁 = 0, or 𝑥𝑀 = 0 annihilates each of the modules Ext𝑖𝑅(𝑀, 𝑁).

Proof. Pick a free resolution 𝐹• of 𝑀. Since Ext𝑖𝑅(𝑀, 𝑁) is defined as the cohomology of
the complex 𝐻𝑜𝑚𝑅(𝐹•, 𝑁) the lemma is clear when 𝑥𝑁 = 0. If 𝑥𝑀 = 0, then we see that
multiplication by 𝑥 on 𝐹• lifts the zero map on 𝑀. Hence by Lemma 7.67.5 we see that it
induces the same map on Ext groups as the zero map. �

Lemma 7.67.9. Let 𝑅 be a Noetherian local ring with maximal ideal 𝔪. Let 𝑀 be a finite
𝑅-module. Then depth𝑅(𝑀) is equal to the smallest integer 𝑖 such that Ext𝑖𝑅(𝑅/𝔪, 𝑀) is
nonzero.

Proof. Let 𝛿(𝑀) denote the depth of 𝑀 and let 𝑖 = 𝑖(𝑀) denote the smallest integer such
that Ext𝑖𝑅(𝑅/𝔪, 𝑀) is nonzero. We will see in a moment that 𝑖(𝑀) < ∞. By Lemma
7.60.17 we have 𝛿(𝑀) = 0 if and only if 𝑖(𝑀) = 0, because 𝔪 ∈ Ass(𝑀) exactly means
that 𝑖(𝑀) = 0. Hence if 𝛿(𝑀) or 𝑖(𝑀) is > 0, then we may choose 𝑥 ∈ 𝔪 such that (a) 𝑥 is a
nonzero divisor on 𝑀, and (b) depth(𝑀/𝑥𝑀) = 𝛿(𝑀)−1. Consider the long exact sequence
of Ext-groups associated to the short exact sequence 0 → 𝑀 → 𝑀 → 𝑀/𝑥𝑀 → 0 by
Lemma 7.67.6:

0 → 𝐻𝑜𝑚𝑅(𝜅, 𝑀) → 𝐻𝑜𝑚𝑅(𝜅, 𝑀) → 𝐻𝑜𝑚𝑅(𝜅, 𝑀/𝑥𝑀)
→ Ext1𝑅(𝜅, 𝑀) → Ext1𝑅(𝜅, 𝑀) → Ext1𝑅(𝜅, 𝑀/𝑥𝑀) → …

Since 𝑥 ∈ 𝔪 all the maps Ext𝑖𝑅(𝜅, 𝑀) → Ext𝑖𝑅(𝜅, 𝑀) are zero, see Lemma 7.67.8. Thus
it is clear that 𝑖(𝑀/𝑥𝑀) = 𝑖(𝑀) − 1. Induction, e.g., on dim(Support(𝑀)), finishes the
proof. �

Lemma 7.67.10. Let 𝑅 be a local Noetherian ring. Let 0 → 𝑁′ → 𝑁 → 𝑁″ → 0 be a
short exact sequence of finite 𝑅-modules.

(1) depth(𝑁″) ≥ min{depth(𝑁), depth(𝑁′) − 1}
(2) depth(𝑁′) ≥ min{depth(𝑁), depth(𝑁″) + 1}

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00LV
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Proof. This is easy using the results above. Hint: Use the characterization of depth using
the Ext groups Ext𝑖(𝜅, 𝑁), see Lemma 7.67.9, and use the long exact cohomology sequence

0 → 𝐻𝑜𝑚𝑅(𝜅, 𝑁′) → 𝐻𝑜𝑚𝑅(𝜅, 𝑁) → 𝐻𝑜𝑚𝑅(𝜅, 𝑁″)
→ Ext1𝑅(𝜅, 𝑁′) → Ext1𝑅(𝜅, 𝑁) → Ext1𝑅(𝜅, 𝑁″) → …

from Lemma 7.67.6. �

7.68. An application of Ext groups

This section should briefly discuss the relationship between Ext1𝑅(𝑄, 𝑁) and extensions (see
Homology, Section 10.4). Omitted.

Lemma 7.68.1. Let 𝑅 be a Noetherian local ring with maximal ideal 𝔪. Let 𝑁 → 𝑀 be a
homomorphism of finite 𝑅-modules. Suppose that there exists arbitrarily large 𝑛 such that
𝑁/𝔪𝑛𝑁 → 𝑀/𝔪𝑛𝑀 is a split injection. Then 𝑁 → 𝑀 is a split injection.

Proof. Assume 𝜑 ∶ 𝑁 → 𝑀 satisfies the assumptions of the lemma. Note that this implies
that Ker(𝜑) ⊂ 𝔪𝑛𝑁 for arbitrarily large 𝑛. Hence by Lemma 7.47.6 we see that 𝜑 is
injection. Let 𝑄 = 𝑀/𝑁 so that we have a short exact sequence

0 → 𝑁 → 𝑀 → 𝑄 → 0.

Let

𝐹2
𝑑2−−→ 𝐹1

𝑑1−−→ 𝐹0 → 𝑄 → 0

be a finite free resolution of 𝑄. We can choose a map 𝛼 ∶ 𝐹0 → 𝑀 lifting the map 𝐹0 → 𝑄.
This induces a map 𝛽 ∶ 𝐹1 → 𝑁 such that 𝛽 ∘ 𝑑2 = 0. The extension above is split if and
only if there exists a map 𝛾 ∶ 𝐹0 → 𝑁 such that 𝛽 = 𝛾 ∘ 𝑑1. In other words, the class of 𝛽 in
Ext1𝑅(𝑄, 𝑁) is the obstruction to splitting the short exact sequence above.

Suppose 𝑛 is a large integer such that 𝑁/𝔪𝑛𝑁 → 𝑀/𝔪𝑛𝑀 is a split injection. This implies

0 → 𝑁/𝔪𝑛𝑁 → 𝑀/𝔪𝑛𝑀 → 𝑄/𝔪𝑛𝑄 → 0.

is still short exact. Also, the sequence

𝐹1/𝔪𝑛𝐹1
𝑑1−−→ 𝐹0/𝔪𝑛𝐹0 → 𝑄/𝔪𝑛𝑄 → 0

is still exact. Arguing as above we see that the map 𝛽 ∶ 𝐹1/𝔪𝑛𝐹1 → 𝑁/𝔪𝑛𝑁 induced by 𝛽
is equal to 𝛾𝑛 ∘ 𝑑1 for some map 𝛾𝑛 ∶ 𝐹0/𝔪𝑛𝐹0 → 𝑁/𝔪𝑛. Since 𝐹0 is free we can lift 𝛾𝑛 to
a map 𝛾𝑛 ∶ 𝐹0 → 𝑁 and then we see that 𝛽 − 𝛾𝑛 ∘ 𝑑1 is a map from 𝐹1 into 𝔪𝑛𝑁. In other
words we conclude that

𝛽 ∈ Im( 𝐻𝑜𝑚𝑅(𝐹0, 𝑁) → 𝐻𝑜𝑚𝑅(𝐹1, 𝑁)) + 𝔪𝑛 𝐻𝑜𝑚𝑅(𝐹1, 𝑁).

for this 𝑛.

Since we have this property for arbitrarily large 𝑛 by assumption we conclude (by Lemma
7.47.4) that 𝛽 is actually in the image of the map 𝐻𝑜𝑚𝑅(𝐹0, 𝑁) → 𝐻𝑜𝑚𝑅(𝐹1, 𝑁) as desired.

�
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7.69. Tor groups and flatness

In this section we use some of the homological algebra developed in the previous section
to explain what Tor groups are. Namely, suppose that 𝑅 is a ring and that 𝑀, 𝑁 are two
𝑅-modules. Choose a resolution 𝐹• of 𝑀 by free 𝑅-modules. See Lemma 7.67.1. Consider
the homological complex

𝐹• ⊗𝑅 𝑁 ∶ … → 𝐹2 ⊗𝑅 𝑁 → 𝐹1 ⊗𝑅 𝑁 → 𝐹0 ⊗𝑅 𝑁

We define Tor𝑅𝑖 (𝑀, 𝑁) to be the 𝑖th homology group of this complex. The following lemma
explains in what sense this is well defined.

Lemma 7.69.1. Let 𝑅 be a ring. Let 𝑀1, 𝑀2, 𝑁 be 𝑅-modules. Suppose that 𝐹• is a
free resolution of the module 𝑀1 and that 𝐺• is a free resolution of the module 𝑀2. Let
𝜑 ∶ 𝑀1 → 𝑀2 be a module map. Let 𝛼 ∶ 𝐹• → 𝐺• be a map of complexes inducing 𝜑 on
𝑀1 = Coker(𝑑𝐹,1) → 𝑀2 = Coker(𝑑𝐺,1), see Lemma 7.67.4. Then the induced maps

𝐻𝑖(𝛼) ∶ 𝐻𝑖(𝐹• ⊗𝑅 𝑁) ⟶ 𝐻𝑖(𝐺• ⊗𝑅 𝑁)

are independent of the choice of 𝛼. If 𝜑 is an isomorphism, so are all the maps 𝐻𝑖(𝛼). If
𝑀1 = 𝑀2, 𝐹• = 𝐺•, and 𝜑 is the identity, so are all the maps 𝐻𝑖(𝛼).

Proof. The proof of this lemma is identical to the proof of Lemma 7.67.5. �

Not only does this lemma imply that the Tor modules are well defined, but it also provides
for the functoriality of the constructions (𝑀, 𝑁) ↦ Tor𝑅𝑖 (𝑀, 𝑁) in the first variable. Of
course the functoriality in the second variable is evident. We leave it to the reader to see
that each of the Tor𝑅𝑖 is in fact a functor

Mod𝑅 × Mod𝑅 → Mod𝑅.

Here Mod𝑅 denotes the category of 𝑅-modules, and for the definition of the product cate-
gory see Categories, Definition 4.2.20. Namely, givenmorphisms of 𝑅-modules 𝑀1 → 𝑀2
and 𝑁1 → 𝑁2 we get a commutative diagram

Tor𝑅𝑖 (𝑀1, 𝑁1) //

��

Tor𝑅𝑖 (𝑀1, 𝑁2)

��
Tor𝑅𝑖 (𝑀2, 𝑁1) // Tor𝑅𝑖 (𝑀2, 𝑁2)

Lemma 7.69.2. Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. Suppose that 0 → 𝑁′ → 𝑁 →
𝑁″ → 0 is a short exact sequence of 𝑅-modules. There exists a long exact sequence

𝑀 ⊗𝑅 𝑁′ → 𝑀 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁″ → 0
Tor𝑅

1 (𝑀, 𝑁′) → Tor𝑅
1 (𝑀, 𝑁) → Tor𝑅

1 (𝑀, 𝑁″) →

Proof. The proof of this is the same as the proof of Lemma 7.67.6. �
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Consider a homological double complex of 𝑅-modules

… 𝑑 // 𝐴2,0
𝑑 // 𝐴1,0

𝑑 // 𝐴0,0

… 𝑑 // 𝐴2,1
𝑑 //

𝛿

OO

𝐴1,1
𝑑 //

𝛿

OO

𝐴0,1

𝛿

OO

… 𝑑 // 𝐴2,2
𝑑 //

𝛿

OO

𝐴1,2
𝑑 //

𝛿

OO

𝐴0,2

𝛿

OO

…

𝛿
OO

…

𝛿
OO

…

𝛿
OO

This means that 𝑑𝑖,𝑗 ∶ 𝐴𝑖,𝑗 → 𝐴𝑖−1,𝑗 and 𝛿𝑖,𝑗 ∶ 𝐴𝑖,𝑗 → 𝐴𝑖,𝑗−1 have the following properties
(1) Any composition of two 𝑑𝑖,𝑗 is zero. In other words the rows of the double com-

plex are complexes.
(2) Any composition of two 𝛿𝑖,𝑗 is zero. In other words the columns of the double

complex are complexes.
(3) For any pair (𝑖, 𝑗) we have 𝛿𝑖−1,𝑗 ∘𝑑𝑖,𝑗 = 𝑑𝑖,𝑗−1 ∘ 𝛿𝑖,𝑗. In other words, all the squares

commute.
The correct thing to do is to associate a spectral sequence to any such double complex.
However, for the moment we can get away with doing something slightly easier.

Namely, for the purposes of this section only, given a double complex (𝐴•,•, 𝑑, 𝛿) set𝑅(𝐴)𝑗 =
Coker(𝐴1,𝑗 → 𝐴0,𝑗) and 𝑈(𝐴)𝑖 = Coker(𝐴𝑖,1 → 𝐴𝑖,0). (The letters 𝑅 and 𝑈 are meant to
suggest Right and Up.) We endow 𝑅(𝐴)• with the structure of a complex using the maps
𝛿. Similarly we endow 𝑈(𝐴)• with the structure of a complex using the maps 𝑑. In other
words we obtain the following huge commutative diagram

… 𝑑 // 𝑈(𝐴)2
𝑑 // 𝑈(𝐴)1

𝑑 // 𝑈(𝐴)0

… 𝑑 // 𝐴2,0
𝑑 //

OO

𝐴1,0
𝑑 //

OO

𝐴0,0
//

OO

𝑅(𝐴)0

… 𝑑 // 𝐴2,1
𝑑 //

𝛿

OO

𝐴1,1
𝑑 //

𝛿

OO

𝐴0,1
//

𝛿

OO

𝑅(𝐴)1

𝛿

OO

… 𝑑 // 𝐴2,2
𝑑 //

𝛿

OO

𝐴1,2
𝑑 //

𝛿

OO

𝐴0,2
//

𝛿

OO

𝑅(𝐴)2

𝛿

OO

…

𝛿
OO

…

𝛿
OO

…

𝛿
OO

…

𝛿
OO

(This is no longer a double complex of course.) It is clear what amorphismΦ ∶ (𝐴•,•, 𝑑, 𝛿) →
(𝐵•,•, 𝑑, 𝛿) of double complexes is, and it is clear that this induces morphisms of complexes
𝑅(Φ) ∶ 𝑅(𝐴)• → 𝑅(𝐵)• and 𝑈(Φ) ∶ 𝑈(𝐴)• → 𝑈(𝐵)•.

Lemma 7.69.3. Let (𝐴•,•, 𝑑, 𝛿) be a double complex such that
(1) Each row 𝐴•,𝑗 is a resolution of 𝑅(𝐴)𝑗.
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(2) Each column 𝐴𝑖,• is a resolution of 𝑈(𝐴)𝑖.
Then there are canonical isomorphisms

𝐻𝑖(𝑅(𝐴)•) ≅ 𝐻𝑖(𝑈(𝐴)•).

The isomorphisms are functorial with respect to morphisms of double complexes with the
properties above.

Proof. Wewill show that 𝐻𝑖(𝑅(𝐴)•)) and 𝐻𝑖(𝑈(𝐴)•) are canonically isomorphic to a third
group. Namely

𝐇𝑖(𝐴) ∶=
{(𝑎𝑖,0, 𝑎𝑖−1,1, … , 𝑎0,𝑖) ∣ 𝑑(𝑎𝑖,0) = 𝛿(𝑎𝑖−1,1), … , 𝑑(𝑎1,𝑖−1) = 𝛿(𝑎0,𝑖)}

{𝑑(𝑎𝑖+1,0) − 𝛿(𝑎𝑖,1), 𝑑(𝑎𝑖,1) − 𝛿(𝑎𝑖−1,2), … , 𝑑(𝑎1,𝑖) − 𝛿(𝑎0,𝑖+1)}

Here we use the notational convention that 𝑎𝑖,𝑗 denotes an element of 𝐴𝑖,𝑗. In other words,
an element of 𝐇𝑖 is represented by a zig-zag, represented as follows for 𝑖 = 2

𝑎2,0
� // 𝑑(𝑎2,0) = 𝛿(𝑎1,1)

𝑎1,1
_

OO

� // 𝑑(𝑎1,1) = 𝛿(𝑎0,2)

𝑎0,2
_

OO

Naturally, we divide out by ``trivial'' zig-zags, namely the submodule generated by ele-
ments of the form (0, … , 0, −𝛿(𝑎𝑡+1,𝑡−𝑖), 𝑑(𝑎𝑡+1,𝑡−𝑖), 0, … , 0). Note that there are canonical
homomorphisms

𝐇𝑖(𝐴) → 𝐻𝑖(𝑅(𝐴)•), (𝑎𝑖,0, 𝑎𝑖−1,1, … , 𝑎0,𝑖) ↦ class of image of 𝑎0,𝑖

and
𝐇𝑖(𝐴) → 𝐻𝑖(𝑈(𝐴)•), (𝑎𝑖,0, 𝑎𝑖−1,1, … , 𝑎0,𝑖) ↦ class of image of 𝑎𝑖,0

First we show that these maps are surjective. Suppose that 𝑟 ∈ 𝐻𝑖(𝑅(𝐴)•). Let 𝑟 ∈ 𝑅(𝐴)𝑖
be a cocycle representing the class of 𝑟. Let 𝑎0,𝑖 ∈ 𝐴0,𝑖 be an element which maps to 𝑟.
Because 𝛿(𝑟) = 0, we see that 𝛿(𝑎0,𝑖) is in the image of 𝑑. Hence there exists an element
𝑎1,𝑖−1 ∈ 𝐴1,𝑖−1 such that 𝑑(𝑎1,𝑖−1) = 𝛿(𝑎0,𝑖). This in turn implies that 𝛿(𝑎1,𝑖−1) is in the
kernel of 𝑑 (because 𝑑(𝛿(𝑎1,𝑖−1)) = 𝛿(𝑑(𝑎1,𝑖−1)) = 𝛿(𝛿(𝑎0,𝑖)) = 0. By exactness of the rows
we find an element 𝑎2,𝑖−2 such that 𝑑(𝑎2,𝑖−2) = 𝛿(𝑎1,𝑖−1). And so on until a full zig-zag is
found. Of course surjectivity of 𝐇𝑖 → 𝐻𝑖(𝑈(𝐴)) is shown similarly.

To prove injectivity we argue in exactly the same way. Namely, suppose we are given a
zig-zag (𝑎𝑖,0, 𝑎𝑖−1,1, … , 𝑎0,𝑖) which maps to zero in 𝐻𝑖(𝑅(𝐴)•). This means that 𝑎0,𝑖 maps
to an element of Coker(𝐴𝑖,1 → 𝐴𝑖,0) which is in the image of 𝛿 ∶ Coker(𝐴𝑖+1,1 → 𝐴𝑖+1,0) →
Coker(𝐴𝑖,1 → 𝐴𝑖,0). In other words, 𝑎0,𝑖 is in the image of 𝛿 ⊕ 𝑑 ∶ 𝐴0,𝑖+1 ⊕ 𝐴1,𝑖 → 𝐴0,𝑖.
From the definition of trivial zig-zags we see that we may modify our zig-zag by a trivial
one and assume that 𝑎0,𝑖 = 0. This immediately implies that 𝑑(𝑎1,𝑖−1) = 0. As the rows
are exact this implies that 𝑎1,𝑖−1 is in the image of 𝑑 ∶ 𝐴2,𝑖−1 → 𝐴1,𝑖−1. Thus we may
modify our zig-zag once again by a trivial zig-zag and assume that our zig-zag looks like
(𝑎𝑖,0, 𝑎𝑖−1,1, … , 𝑎2,𝑖−2, 0, 0). Continuing like this we obtain the desired injectivity.
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If Φ ∶ (𝐴•,•, 𝑑, 𝛿) → (𝐵•,•, 𝑑, 𝛿) is a morphism of double complexes both of which satisfy
the conditions of the lemma, then we clearly obtain a commutative diagram

𝐻𝑖(𝑈(𝐴)•)

��

𝐇𝑖(𝐴) //oo

��

𝐻𝑖(𝑅(𝐴)•)

��
𝐻𝑖(𝑈(𝐵)•) 𝐇𝑖(𝐵) //oo 𝐻𝑖(𝑅(𝐵)•)

This proves the functoriality. �

Remark 7.69.4. The isomorphism constructed above is the ``correct'' one only up to signs.
A good part of homological algebra is concerned with choosing signs for various maps and
showing commutativity of diagrams with intervention of suitable signs. For the moment
we will simply use the isomorphism as given in the proof above, and worry about signs
later.

Lemma 7.69.5. Let 𝑅 be a ring. For any 𝑖 ≥ 0 the functors Mod𝑅 × Mod𝑅 → Mod𝑅,
(𝑀, 𝑁) ↦ Tor𝑅

𝑖 (𝑀, 𝑁) and (𝑀, 𝑁) ↦ Tor𝑅
𝑖 (𝑁, 𝑀) are canonically isomorphic.

Proof. Let 𝐹• be a free resolution of the module 𝑀 and let 𝐺• be a free resolution of the
module 𝑁. Consider the double complex (𝐴𝑖,𝑗, 𝑑, 𝛿) defined as follows:

(1) set 𝐴𝑖,𝑗 = 𝐹𝑖 ⊗𝑅 𝐺𝑗,
(2) set 𝑑𝑖,𝑗 ∶ 𝐹𝑖 ⊗𝑅 𝐺𝑗 → 𝐹𝑖−1 ⊗ 𝐺𝑗 equal to 𝑑𝐹,𝑖 ⊗ id, and
(3) set 𝛿𝑖,𝑗 ∶ 𝐹𝑖 ⊗𝑅 𝐺𝑗 → 𝐹𝑖 ⊗ 𝐺𝑗−1 equal to id ⊗ 𝑑𝐺,𝑗.

This double complex is usually simply denoted 𝐹• ⊗𝑅 𝐺•.

Since each 𝐺𝑗 is free, and hence flat we see that each row of the double complex is exact
except in homological degree 0. Since each 𝐹𝑖 is free and hence flat we see that each column
of the double complex is exact except in homological degree 0. Hence the double complex
satisfies the conditions of Lemma 7.69.3.

To see what the lemma says we compute 𝑅(𝐴)• and 𝑈(𝐴)•. Namely,

𝑅(𝐴)𝑖 = Coker(𝐴1,𝑖 → 𝐴0,𝑖)
= Coker(𝐹1 ⊗𝑅 𝐺𝑖 → 𝐹0 ⊗𝑅 𝐺𝑖)
= Coker(𝐹1 → 𝐹0) ⊗𝑅 𝐺𝑖

= 𝑀 ⊗𝑅 𝐺𝑖

In fact these isomorphisms are compatible with the differentials 𝛿 and we see that 𝑅(𝐴)• =
𝑀⊗𝑅𝐺• as homological complexes. In exactly the samewaywe see that𝑈(𝐴)• = 𝐹•⊗𝑅𝑁.
We get

Tor𝑅𝑖 (𝑀, 𝑁) = 𝐻𝑖(𝐹• ⊗𝑅 𝑁)
= 𝐻𝑖(𝑈(𝐴)•)
= 𝐻𝑖(𝑅(𝐴)•)
= 𝐻𝑖(𝑀 ⊗𝑅 𝐺•)
= 𝐻𝑖(𝐺• ⊗𝑅 𝑀)
= Tor𝑅𝑖 (𝑁, 𝑀)

Here the third equality is Lemma 7.69.3, and the fifth equality uses the isomorphism 𝑉 ⊗
𝑊 = 𝑊 ⊗ 𝑉 of the tensor product.
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Functoriality. Suppose that we have 𝑅-modules 𝑀𝜈, 𝑁𝜈, 𝜈 = 1, 2. Let 𝜑 ∶ 𝑀1 → 𝑀2 and
𝜓 ∶ 𝑁1 → 𝑁2 be morphisms of 𝑅-modules. Suppose that we have free resolutions 𝐹𝜈,• for
𝑀𝜈 and free resolutions 𝐺𝜈,• for 𝑁𝜈. By Lemma 7.67.4 we may choose maps of complexes
𝛼 ∶ 𝐹1,• → 𝐹2,• and 𝛽 ∶ 𝐺1,• → 𝐺2,• compatible with 𝜑 and 𝜓. We claim that the pair
(𝛼, 𝛽) induces a morphism of double complexes

𝛼 ⊗ 𝛽 ∶ 𝐹1,• ⊗𝑅 𝐺1,• ⟶ 𝐹2,• ⊗𝑅 𝐺2,•

This is really a very straightforward check using the rule that 𝐹1,𝑖 ⊗𝑅 𝐺1,𝑗 → 𝐹2,𝑖 ⊗𝑅 𝐺2,𝑗
is given by 𝛼𝑖 ⊗ 𝛽𝑗 where 𝛼𝑖, resp. 𝛽𝑗 is the degree 𝑖, resp. 𝑗 component of 𝛼, resp. 𝛽. The
reader also readily verifies that the induced maps 𝑅(𝐹1,• ⊗𝑅 𝐺1,•)• → 𝑅(𝐹2,• ⊗𝑅 𝐺2,•)•
agrees with the map 𝑀1 ⊗𝑅 𝐺1,• → 𝑀2 ⊗𝑅 𝐺2,• induced by 𝜑 ⊗ 𝛽. Similarly for the
map induced on the 𝑈(−)• complexes. Thus the statement on functoriality follows from
the statement on functoriality in Lemma 7.69.3. �

Remark 7.69.6. An interesting case occurs when 𝑀 = 𝑁 in the above. In this case we
get a canonical map Tor𝑅𝑖 (𝑀, 𝑀) → Tor𝑅𝑖 (𝑀, 𝑀). Note that this map is not the identity,
because even when 𝑖 = 0 this map is not the identity! For example, if 𝑉 is a vector space of
dimension 𝑛 over a field, then the switch map 𝑉 ⊗𝑘 𝑉 → 𝑉 ⊗𝑘 𝑉 has (𝑛2 + 𝑛)/2 eigenvalues
+1 and (𝑛2 − 𝑛)/2 eigenvalues −1. In characteristic 2 it is not even diagonalizable. Note
that even changing the sign of the map will not get rid of this.

Lemma 7.69.7. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. The following are equivalent:
(1) The module 𝑀 is flat over 𝑅.
(2) For all 𝑖 > 0 the functor Tor𝑅

𝑖 (𝑀, −) is zero.
(3) The functor Tor𝑅

1 (𝑀, −) is zero.
(4) For all ideals 𝐼 ⊂ 𝑅 we have Tor𝑅

1 (𝑀, 𝑅/𝐼) = 0.
(5) For all finitely generated ideals 𝐼 ⊂ 𝑅 we have Tor𝑅

1 (𝑀, 𝑅/𝐼) = 0.

Proof. Suppose 𝑀 is flat. Let 𝑁 be an 𝑅-module. Let 𝐹• be a free resolution of 𝑁. Then
𝐹• ⊗𝑅 𝑀 is a resolution of 𝑁 ⊗𝑅 𝑀, by flatness of 𝑀. Hence all higher Tor groups vanish.

It now suffices to show that the last condition implies that 𝑀 is flat. Let 𝐼 ⊂ 𝑅 be an ideal.
Consider the short exact sequence 0 → 𝐼 → 𝑅 → 𝑅/𝐼 → 0. Apply Lemma 7.69.2. We get
an exact sequence

Tor𝑅1 (𝑀, 𝑅/𝐼) → 𝑀 ⊗𝑅 𝐼 → 𝑀 ⊗𝑅 𝑅 → 𝑀 ⊗𝑅 𝑅/𝐼 → 0

Since obviously 𝑀⊗𝑅 𝑅 = 𝑀 we conclude that the last hypothesis implies that 𝑀⊗𝑅 𝐼 →
𝑀 is injective for every finitely generated ideal 𝐼. Thus 𝑀 is flat by Lemma 7.35.4. �

Remark 7.69.8. The proof of Lemma 7.69.7 actually shows that

Tor𝑅1 (𝑀, 𝑅/𝐼) = Ker(𝐼 ⊗𝑅 𝑀 → 𝑀).

7.70. Functorialities for Tor

In this section we briefly discuss the functoriality of Tor with respect to change of ring, etc.
Here is a list of items to work out.

(1) Given a ring map 𝑅 → 𝑅′, an 𝑅-module 𝑀 and an 𝑅′-module 𝑁′ the 𝑅-modules
Tor𝑅𝑖 (𝑀, 𝑁′) have a natural 𝑅′-module structure.

(2) Given a ring map 𝑅 → 𝑅′ and 𝑅-modules 𝑀, 𝑁 there is a natural 𝑅-module
map Tor𝑅𝑖 (𝑀, 𝑁) → Tor𝑅

′

𝑖 (𝑀 ⊗𝑅 𝑅′, 𝑁 ⊗𝑅 𝑅′).
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(3) Given a ring map 𝑅 → 𝑅′ an 𝑅-module 𝑀 and an 𝑅′-module 𝑁′ there exists a
natural 𝑅′-module map Tor𝑅𝑖 (𝑀, 𝑁′) → Tor𝑅

′

𝑖 (𝑀 ⊗𝑅 𝑅′, 𝑁′).

Lemma 7.70.1. Given a flat ring map 𝑅 → 𝑅′ and 𝑅-modules 𝑀, 𝑁 the natural 𝑅-module
map Tor𝑅

𝑖 (𝑀, 𝑁) ⊗𝑅 𝑅′ → Tor𝑅′

𝑖 (𝑀 ⊗𝑅 𝑅′, 𝑁 ⊗𝑅 𝑅′) is an isomorphism for all 𝑖.

Proof. Omitted. This is true because a free resolution 𝐹• of 𝑀 over 𝑅 stays exact when
tensoring with 𝑅′ over 𝑅 and hence (𝐹•⊗𝑅𝑁)⊗𝑅𝑅′ computes the Tor groups over 𝑅′. �

7.71. Projective modules

Some lemmas on projective modules.

Definition 7.71.1. Let 𝑅 be a ring. An 𝑅-module 𝑃 is projective if and only if the functor
𝐻𝑜𝑚𝑅(𝑃, −) ∶ Mod𝑅 → Mod𝑅 is an exact functor.

The functor 𝐻𝑜𝑚𝑅(𝑀, −) is left exact for any 𝑅-module 𝑀, see Lemma 7.10.1. Hence
the condition for 𝑃 to be projective really signifies that given a surjection of 𝑅-modules
𝑁 → 𝑁′ the map 𝐻𝑜𝑚𝑅(𝑃, 𝑁) → 𝐻𝑜𝑚𝑅(𝑃, 𝑁′) is surjective.

Lemma 7.71.2. Let 𝑅 be a ring. Let 𝑃 be an 𝑅-module. The following are equivalent
(1) 𝑃 is projective,
(2) 𝑃 is a direct summand of a free 𝑅-module, and
(3) Ext1𝑅(𝑃, 𝑀) = 0 for every 𝑅-module 𝑀.

Proof. Assume 𝑃 is projective. Choose a surjection 𝜋 ∶ 𝐹 → 𝑃 where 𝐹 is a free 𝑅-module.
As 𝑃 is projective there exists a 𝑖 ∈ 𝐻𝑜𝑚𝑅(𝑃, 𝐹) such that 𝑖 ∘ 𝜋 = id𝑃. In other words
𝐹 ≅ Ker(𝜋) ⊕ 𝑖(𝑃) and we see that 𝑃 is a direct summand of 𝐹.

Conversely, assume that 𝑃 ⊕ 𝑄 = 𝐹 is a free 𝑅-module. Note that the free module 𝐹 =
⨁𝑖∈𝐼 𝑅 is projective as 𝐻𝑜𝑚𝑅(𝐹, 𝑀) = ∏𝑖∈𝐼 𝑀 and the functor 𝑀 ↦ ∏𝑖∈𝐼 𝑀 is exact.
Then 𝐻𝑜𝑚𝑅(𝐹, −) = 𝐻𝑜𝑚𝑅(𝑃, −) × 𝐻𝑜𝑚𝑅(𝑄, −) as functors, hence both 𝑃 and 𝑄 are
projective.

Assume 𝑃 ⊕ 𝑄 = 𝐹 is a free 𝑅-module. Then we have a free resolution 𝐹• of the form

… 𝐹
𝑎

−→ 𝐹
𝑏

−→ 𝐹 → 𝑃 → 0

where the maps 𝑎, 𝑏 alternate and are equal to the projector onto 𝑃 and 𝑄. Hence the
complex 𝐻𝑜𝑚𝑅(𝐹•, 𝑀) is split exact in degrees ≥ 1, whence we see the vanishing in (3).

Assume Ext1𝑅(𝑃, 𝑀) = 0 for every 𝑅-module 𝑀. Pick a free resolution 𝐹• → 𝑃. Set
𝑀 = Im(𝐹1 → 𝐹0) = Ker(𝐹0 → 𝑀). Consider the element 𝜉 ∈ Ext1𝑅(𝑃, 𝑀) given by the
class of the quotient map 𝜋 ∶ 𝐹1 → 𝑀. Since 𝜉 is zero there exists a map 𝑠 ∶ 𝐹0 → 𝑀
such that 𝜋 = 𝑠 ∘ (𝐹1 → 𝐹0). Clearly, this means that

𝐹0 = Ker(𝑠) ⊕ Ker(𝐹0 → 𝑃) = 𝑃 ⊕ ker(𝐹0 → 𝑃)

and we win. �

Lemma 7.71.3. A direct sum of projective modules is projective.

Proof. This is true by the characterization of projectives as direct summands of free mod-
ules in Lemma 7.71.2. �

Lemma 7.71.4. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be a nilpotent ideal. Let 𝑃 be a projective
𝑅-module. Then there exists a projective 𝑅-module 𝑃 such that 𝑃/𝐼𝑃 ≅ 𝑃.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00M8
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Proof. We can choose a set 𝐴 and a direct sum decomposition ⨁𝛼∈𝐴 𝑅/𝐼 = 𝑃 ⊕ 𝐾 for
some 𝑅/𝐼-module 𝐾. Write 𝐹 = ⨁𝛼∈𝐴 𝑅 for the free 𝑅-module on 𝐴. Choose a lift
𝑝 ∶ 𝐹 → 𝐹 of the projector 𝑝 associated to the direct summand 𝑃 of ⨁𝛼∈𝐴 𝑅/𝐼. Note that
𝑝2 −𝑝 ∈ End𝑅(𝐹) is a nilpotent endomorphism of 𝐹 (as 𝐼 is nilpotent and the matrix entries
of 𝑝2 − 𝑝 are in 𝐼; more precisely, if 𝐼𝑛 = 0, then (𝑝2 − 𝑝)𝑛 = 0). Hence by Lemma 7.49.6
we can modify our choice of 𝑝 and assume that 𝑝 is a projector. Set 𝑃 = Im(𝑝). �

Lemma 7.71.5. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑅-module. Assume
(1) 𝐼 is nilpotent,
(2) 𝑀/𝐼𝑀 is a projective 𝑅/𝐼-module,
(3) 𝑀 is a flat 𝑅-module.

Then 𝑀 is a projective 𝑅-module.

Proof. ByLemma 7.71.4we can find a projective𝑅-module𝑃 and an isomorphism𝑃/𝐼𝑃 →
𝑀/𝐼𝑀. We are going to show that 𝑀 is isomorphic to 𝑃 which will finish the proof. Be-
cause 𝑃 is projective we can lift the map 𝑃 → 𝑃/𝐼𝑃 → 𝑀/𝐼𝑀 to an 𝑅-module map 𝑃 → 𝑀
which is an isomorphism modulo 𝐼. By Nakayama's Lemma 7.14.5 the map 𝑃 → 𝑀 is
surjective. It remains to show that 𝑃 → 𝑀 is injective. Since 𝐼𝑛 = 0 for some 𝑛, we can
use the filtrations

0 = 𝐼𝑛𝑀 ⊂ 𝐼𝑛−1𝑀 ⊂ … ⊂ 𝐼𝑀 ⊂ 𝑀

0 = 𝐼𝑛𝑃 ⊂ 𝐼𝑛−1𝑃 ⊂ … ⊂ 𝐼𝑃 ⊂ 𝑃

to see that it suffices to show that the induced maps 𝐼𝑎𝑃/𝐼𝑎+1𝑃 → 𝐼𝑎𝑀/𝐼𝑎+1𝑀 are injective.
Since both 𝑃 and 𝑀 are flat 𝑅-modules we can identify this with the map

𝐼𝑎/𝐼𝑎+1 ⊗𝑅/𝐼 𝑃/𝐼𝑃 ⟶ 𝐼𝑎/𝐼𝑎+1 ⊗𝑅/𝐼 𝑀/𝐼𝑀

induced by 𝑃 → 𝑀. Since we chose 𝑃 → 𝑀 such that the induced map 𝑃/𝐼𝑃 → 𝑀/𝐼𝑀 is
an isomorphism, we win. �

7.72. Finite projective modules

Definition 7.72.1. Let 𝑅 be a ring and 𝑀 an 𝑅-module. We say that 𝑀 is locally free if
we can cover 𝑆𝑝𝑒𝑐(𝑅) by standard opens 𝐷(𝑓𝑖), 𝑖 ∈ 𝐼 such that 𝑀𝑓𝑖

is a free 𝑅𝑓𝑖
-module

for all 𝑖 ∈ 𝐼. We say that 𝑀 is finite locally free if each 𝑀𝑓𝑖
is finite free.

Note that a finite locally free𝑅-module is automatically finitely presented by Lemma 7.21.2.

Lemma 7.72.2. Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. The following are equivalent
(1) 𝑀 is finitely presented and 𝑅-flat,
(2) 𝑀 is finite projective,
(3) 𝑀 is a direct summand of a finite free 𝑅-module,
(4) 𝑀 is finitely presented and for all 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) the localization 𝑀𝔭 is free,
(5) 𝑀 is finitely presented and for all maximal ideals 𝔪 ⊂ 𝑅 the localization 𝑀𝔪 is

free,
(6) 𝑀 is finite and locally free,
(7) 𝑀 is finite locally free, and
(8) 𝑀 is finite, for every prime 𝔭 the module 𝑀𝔭 is free, and the function

𝜌𝑀 ∶ 𝑆𝑝𝑒𝑐(𝑅) → 𝐙, 𝔭 ⟼ dim𝜅(𝔭) 𝑀 ⊗𝑅 𝜅(𝔭)

is locally constant in the Zariski topology.
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Proof. First suppose 𝑀 is finite projective, i.e., (2) holds. Take a surjection 𝑅𝑛 → 𝑀 and
let 𝐾 be the kernel. Since 𝑀 is projective, 0 → 𝐾 → 𝑅𝑛 → 𝑀 → 0 splits. Hence (2) ⇒
(3). The implication (3) ⇒ (2) follows from the fact that a direct summand of a projective
is projective, see Lemma 7.71.2.

Assume (3), so we can write 𝐾 ⊕ 𝑀 ≅ 𝑅⊕𝑛. So 𝐾 is a direct summand of 𝑅𝑛 and thus
finitely generated. This shows 𝑀 = 𝑅⊕𝑛/𝐾 is finitely presented. In other words, (3) ⇒ (1).

Assume 𝑀 is finitely presented and flat, i.e., (1) holds. We will prove that (7) holds. Pick
any prime 𝔭 and 𝑥1, … , 𝑥𝑟 ∈ 𝑀 which map to a basis of 𝑀 ⊗𝑅 𝜅(𝔭). By Nakayama's
Lemma 7.14.5 these elements generate 𝑀𝑔 for some 𝑔 ∈ 𝑅, 𝑔∉𝔭. The corresponding sur-
jection 𝜑 ∶ 𝑅⊕𝑟

𝑔 → 𝑀⊕𝑟
𝑔 has the following two properties: (a) Ker(𝜑) is a finite 𝑅𝑔-module

(see Lemma 7.5.3) and (b) Ker(𝜑) ⊗ 𝜅(𝔭) = 0 by flatness of 𝑀𝑔 over 𝑅𝑔 (see Lemma
7.35.11). Hence by Nakayama's lemma again there exists a 𝑔′ ∈ 𝑅𝑔 such that Ker(𝜑)𝑔′ = 0.
In other words, 𝑀𝑔𝑔′ is free.

A finite locally free module is a finite module, see Lemma 7.21.2, hence (7) ⇒ (6). It is
clear that (6) ⇒ (7) and that (7) ⇒ (8).

A finite locally free module is a finitely presented module, see Lemma 7.21.2, hence (7) ⇒
(4). Of course (4) implies (5). Since we may check flatness locally (see Lemma 7.35.19)
we conclude that (5) implies (1). At this point we have

(2) ks +3 (3) +3 (1) +3 (7) ks +3

�$��

(6)

(5)

KS

(4)ks (8)

Suppose that 𝑀 satisfies (1), (4), (5), (6), and (7). We will prove that (3) holds. It suffices
to show that 𝑀 is projective. We have to show that 𝐻𝑜𝑚𝑅(𝑀, −) is exact. Let 0 →
𝑁″ → 𝑁 → 𝑁′ → 0 be a short exact sequence of 𝑅-module. We have to show that
0 → 𝐻𝑜𝑚𝑅(𝑀, 𝑁″) → 𝐻𝑜𝑚𝑅(𝑀, 𝑁) → 𝐻𝑜𝑚𝑅(𝑀, 𝑁′) → 0 is exact. As 𝑀 is finite lo-
cally free there exist a covering 𝑆𝑝𝑒𝑐(𝑅) = ⋃ 𝐷(𝑓𝑖) such that 𝑀𝑓𝑖

is finite free. By Lemma
7.10.2 we see that

0 → 𝐻𝑜𝑚𝑅(𝑀, 𝑁″)𝑓𝑖
→ 𝐻𝑜𝑚𝑅(𝑀, 𝑁)𝑓𝑖

→ 𝐻𝑜𝑚𝑅(𝑀, 𝑁′)𝑓𝑖
→ 0

is equal to 0 → 𝐻𝑜𝑚𝑅𝑓𝑖
(𝑀𝑓𝑖

, 𝑁″
𝑓𝑖

) → 𝐻𝑜𝑚𝑅𝑓𝑖
(𝑀𝑓𝑖

, 𝑁𝑓𝑖
) → 𝐻𝑜𝑚𝑅𝑓𝑖

(𝑀𝑓𝑖
, 𝑁′

𝑓𝑖
) → 0

which is exact as 𝑀𝑓𝑖
is free and as the localization 0 → 𝑁″

𝑓𝑖
→ 𝑁𝑓𝑖

→ 𝑁′
𝑓𝑖

→ 0 is exact
(as localization is exact). Whence we see that 0 → 𝐻𝑜𝑚𝑅(𝑀, 𝑁″) → 𝐻𝑜𝑚𝑅(𝑀, 𝑁) →
𝐻𝑜𝑚𝑅(𝑀, 𝑁′) → 0 is exact by Lemma 7.21.2.

Finally, assume that (8) holds. Pick a maximal ideal 𝔪 ⊂ 𝑅. Pick 𝑥1, … , 𝑥𝑟 ∈ 𝑀 which
map to a 𝜅(𝔪)-basis of 𝑀 ⊗𝑅 𝜅(𝔪) = 𝑀/𝔪𝑀. In particular 𝜌𝑀(𝔪) = 𝑟. By Nakayama's
Lemma 7.14.5 there exists an 𝑓 ∈ 𝑅, 𝑓∉𝔪 such that 𝑥1, … , 𝑥𝑟 generate 𝑀𝑓 over 𝑅𝑓.
By the assumption that 𝜌𝑀 is locally constant there exists a 𝑔 ∈ 𝑅, 𝑔∉𝔪 such that 𝜌𝑀 is
constant equal to 𝑟 on 𝐷(𝑔). We claim that

Ψ ∶ 𝑅⊕𝑟
𝑓𝑔 ⟶ 𝑀𝑓𝑔, (𝑎1, … , 𝑎𝑟) ⟼ ∑ 𝑎𝑖𝑥𝑖

is an isomorphism. This claim will show that 𝑀 is finite locally free, i.e., that (7) holds.
To see the claim it suffices to show that the induced map on localizations Ψ𝔭 ∶ 𝑅⊕𝑟

𝔭 → 𝑀𝔭
is an isomorphism for all 𝔭 ∈ 𝐷(𝑓𝑔), see Lemma 7.21.1. By our choice of 𝑓 the map
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Ψ𝔭 is surjective. By assumption (8) we have 𝑀𝔭 ≅ 𝑅⊕𝜌𝑀(𝔭)
𝔭 and by our choice of 𝑔 we

have 𝜌𝑀(𝔭) = 𝑟. Hence Ψ𝔭 determines a surjection 𝑅⊕𝑟
𝔭 → 𝑀𝔭 ≅ 𝑅⊕𝑟

𝔭 whence is an
isomorphism by Lemma 7.15.4. (Of course this last fact follows from a simple matrix
argument also.) �

Remark 7.72.3. It is not true that a finite 𝑅-module which is 𝑅-flat is automatically pro-
jective. A counter example is where 𝑅 = 𝒞∞(𝐑) is the ring of infinitely differentiable
functions on 𝐑, and 𝑀 = 𝑅𝔪 = 𝑅/𝐼 where 𝔪 = {𝑓 ∈ 𝑅 ∣ 𝑓(0) = 0} and 𝐼 = {𝑓 ∈ 𝑅 ∣
∃𝜖, 𝜖 > 0 ∶ 𝑓(𝑥) = 0 ∀𝑥, |𝑥| < 𝜖}.

Lemma 7.72.4. (Warning: see Remark 7.72.3 above.) Suppose 𝑅 is a local ring, and 𝑀
is a finite flat 𝑅-module. Then 𝑀 is finite free.

Proof. Follows from the equational criterion of flatness, see Lemma 7.35.10. Namely,
suppose that 𝑥1, … , 𝑥𝑟 ∈ 𝑀 map to a basis of 𝑀/𝔪𝑀. By Nakayama's Lemma 7.14.5
these elements generate 𝑀. We want to show there is no relation among the 𝑥𝑖. Instead, we
will show by induction on 𝑛 that if 𝑥1, … , 𝑥𝑛 ∈ 𝑀 are linearly independent in the vector
space 𝑀/𝔪𝑀 then they are independent over 𝑅.
The base case of the induction is where we have 𝑥 ∈ 𝑀, 𝑥∉𝔪𝑀 and a relation 𝑓𝑥 = 0. By
the equational criterion there exist 𝑦𝑗 ∈ 𝑀 and 𝑎𝑗 ∈ 𝑅 such that 𝑥 = ∑ 𝑎𝑗𝑦𝑗 and 𝑓𝑎𝑗 = 0
for all 𝑗. Since 𝑥∉𝔪𝑀 we see that at least one 𝑎𝑗 is a unit and hence 𝑓 = 0.

Suppose that ∑ 𝑓𝑖𝑥𝑖 is a relation among 𝑥1, … , 𝑥𝑛. By our choice of 𝑥𝑖 we have 𝑓𝑖 ∈ 𝔪.
According to the equational criterion of flatness there exist 𝑎𝑖𝑗 ∈ 𝑅 and 𝑦𝑗 ∈ 𝑀 such that
𝑥𝑖 = ∑ 𝑎𝑖𝑗𝑦𝑗 and ∑ 𝑓𝑖𝑎𝑖𝑗 = 0. Since 𝑥𝑛∉𝔪𝑀 we see that 𝑎𝑛𝑗∉𝔪 for at least one 𝑗. Since
∑ 𝑓𝑖𝑎𝑖𝑗 = 0 we get 𝑓𝑛 = ∑𝑛−1

𝑖=1 (−𝑎𝑖𝑗/𝑎𝑛𝑗)𝑓𝑖. The relation ∑ 𝑓𝑖𝑥𝑖 = 0 now can be rewritten
as ∑𝑛−1

𝑖=1 𝑓𝑖(𝑥𝑖 + (−𝑎𝑖𝑗/𝑎𝑛𝑗)𝑥𝑛) = 0. Note that the elements 𝑥𝑖 + (−𝑎𝑖𝑗/𝑎𝑛𝑗)𝑥𝑛 map to 𝑛 − 1
linearly independent elements of 𝑀/𝔪𝑀. By induction assumption we get that all the 𝑓𝑖,
𝑖 ≤ 𝑛 − 1 have to be zero, and also 𝑓𝑛 = ∑𝑛−1

𝑖=1 (−𝑎𝑖𝑗/𝑎𝑛𝑗)𝑓𝑖. This proves the induction
step. �

Lemma 7.72.5. Let 𝑅 → 𝑆 be a flat local homomorphism of local rings. Let 𝑀 be a finite
𝑅-module. Then 𝑀 is finite projective over 𝑅 if and only if 𝑀 ⊗𝑅 𝑆 is finite projective over
𝑆.

Proof. Suppose that 𝑀 ⊗𝑅 𝑆 is finite projective over 𝑆. By Lemma 7.72.2 it is finite
free. Pick 𝑥1, … , 𝑥𝑟 ∈ 𝑀 whose residue classes generate 𝑀/𝔪𝑅𝑀. Clearly we see that
𝑥1 ⊗ 1, … , 𝑥𝑟 ⊗ 1 are a basis for 𝑀 ⊗𝑅 𝑆. This implies that the map 𝑅⊕𝑟 → 𝑀, (𝑎𝑖) ↦
∑ 𝑎𝑖𝑥𝑖 becomes an isomorphism after tensoring with 𝑆. By faithful flatness of 𝑅 → 𝑆, see
Lemma 7.35.16 we see that it is an isomorphism. �

Lemma 7.72.6. Let 𝑅 be a semi-local ring. Let 𝑀 be a finite locally free module. If 𝑀 has
constant rank, then 𝑀 is free. In particular, if 𝑅 has connected spectrum, then 𝑀 is free.

Proof. Omitted. Hints: First show that 𝑀/𝔪𝑖𝑀 has the same dimension 𝑑 for all maximal
ideal 𝔪1, … , 𝔪𝑛 of 𝑅 using the the spectrum is connected. Next, show that there exist
elements 𝑥1, … , 𝑥𝑑 ∈ 𝑀 which form a basis for each 𝑀/𝔪𝑖𝑀 by the Chinese remainder
theorem. Finally show that 𝑥1, … , 𝑥𝑑 is a basis for 𝑀. �

Here is a technical lemma that is used in the chapter on groupoids.

Lemma 7.72.7. Let 𝑅 be a local ring with maximal ideal 𝔪 and infinite residue field. Let
𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module and let 𝑁 ⊂ 𝑀 be an 𝑅-submodule. Assume
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(1) 𝑆 is semi-local and 𝔪𝑆 is contained in the radical of 𝑆,
(2) 𝑀 is a finite free 𝑆-module, and
(3) 𝑁 generates 𝑀 as an 𝑆-module.

Then 𝑁 contains an 𝑆-basis of 𝑀.

Proof. Assume 𝑀 is free of rank 𝑛. Let 𝐼 = rad(𝑆). By Nakayama's Lemma 7.14.5 a
sequence of elements 𝑚1, … , 𝑚𝑛 is a basis for 𝑀 if and only if 𝑚𝑖 ∈ 𝑀/𝐼𝑀 generate 𝑀/𝐼𝑀.
Hence we may replace 𝑀 by 𝑀/𝐼𝑀, 𝑁 by 𝑁/(𝑁 ∩ 𝐼𝑀), 𝑅 by 𝑅/𝔪, and 𝑆 by 𝑆/𝐼𝑆. In this
case we see that 𝑆 is a finite product of fields 𝑆 = 𝑘1 × … × 𝑘𝑟 and 𝑀 = 𝑘⊕𝑛

1 × … × 𝑘⊕𝑛
𝑟 .

The fact that 𝑁 ⊂ 𝑀 generates 𝑀 as an 𝑆-module means that there exist 𝑥𝑗 ∈ 𝑁 such
that a linear combination ∑ 𝑎𝑗𝑥𝑗 with 𝑎𝑗 ∈ 𝑆 has a nonzero component in each factor
𝑘⊕𝑛

𝑖 . Because 𝑅 = 𝑘 is an infinite field, this means that also some linear combination
𝑦 = ∑ 𝑐𝑗𝑥𝑗 with 𝑐𝑗 ∈ 𝑘 has a nonzero component in each factor. Hence 𝑦 ∈ 𝑁 generates
a free direct summand 𝑆𝑦 ⊂ 𝑀. By induction on 𝑛 the result holds for 𝑀/𝑆𝑦 and the
submodule 𝑁 = 𝑁/(𝑁 ∩ 𝑆𝑦). In other words there exist 𝑦2, … , 𝑦𝑛 in 𝑁 which (freely)
generate 𝑀/𝑆𝑦. Then 𝑦, 𝑦2, … , 𝑦𝑛 (freely) generate 𝑀 and we win. �

7.73. Open loci defined by module maps

The set of primes where a given module map is surjective, or an isomorphism is sometimes
open. In the case of finite projective modules we can look at the rank of the map.

Lemma 7.73.1. Let 𝑅 be a ring. Let 𝜑 ∶ 𝑀 → 𝑁 be a map of 𝑅-modules with 𝑁 a finite
𝑅-module. Then we have the equality

𝑈 = {𝔭 ⊂ 𝑅 ∣ 𝜑𝔭 ∶ 𝑀𝔭 → 𝑁𝔭 is surjective}
= {𝔭 ⊂ 𝑅 ∣ 𝜑 ⊗ 𝜅(𝔭) ∶ 𝑀 ⊗ 𝜅(𝔭) → 𝑁 ⊗ 𝜅(𝔭) is surjective}

and 𝑈 is an open subset of 𝑆𝑝𝑒𝑐(𝑅).

Proof. This is a reformulation of Nakayama's lemma, see Lemma 7.14.5. Details omitted.
�

Lemma 7.73.2. Let𝑅 be a ring. Let𝜑 ∶ 𝑀 → 𝑁 be a map of finitely presented𝑅-modules.
Then

𝑈 = {𝔭 ⊂ 𝑅 ∣ 𝜑𝔭 ∶ 𝑀𝔭 → 𝑁𝔭 is an isomorphism}
is an open subset of 𝑆𝑝𝑒𝑐(𝑅).

Proof. Let 𝔭 ∈ 𝑈. Pick a presentation 𝑁 = 𝑅⊕𝑛/ ∑𝑗=1,…,𝑚 𝑅𝑘𝑗. Denote 𝑒𝑖 the image in
𝑁 of the 𝑖th basis vector of 𝑅⊕𝑛. For each 𝑖 ∈ {1, … , 𝑛} choose an element 𝑚𝑖 ∈ 𝑀𝔭
such that 𝜑(𝑚𝑖) = 𝑓𝑖𝑒𝑖 for some 𝑓𝑖 ∈ 𝑅, 𝑓𝑖∉𝔭. This is possible as 𝜑𝔭 is an isomorphism.
Set 𝑓 = 𝑓1 … 𝑓𝑛 and let 𝜓 ∶ 𝑅⊕𝑛

𝑓 → 𝑀 be the map which maps the 𝑖th basis vector to
𝑚𝑖/𝑓𝑖. Note that 𝜑𝑓 ∘ 𝜓 is the localization at 𝑓 of the given map 𝑅⊕𝑛 → 𝑁. As 𝜑𝔭 is an
isomorphism we see that 𝜓(𝑘𝑗) is an element of 𝑀 which maps to zero in 𝑀𝔭. Hence we
see that there exist 𝑔𝑗 ∈ 𝑅, 𝑔𝑗∉𝔭 such that 𝑔𝑗𝜓(𝑘𝑗) = 0. Setting 𝑔 = 𝑔1 … 𝑔𝑚, we see that
𝜓𝑔 factors through 𝑁𝑓𝑔 to give a map 𝑁𝑓𝑔 → 𝑀𝑓𝑔. By construction this map is inverse to
𝜑𝑓𝑔. Hence 𝜑𝑓𝑔 is an isomorphism, which implies that 𝐷(𝑓𝑔) ⊂ 𝑈 as desired. �

Lemma 7.73.3. Let 𝑅 be a ring. Let 𝜑 ∶ 𝑃1 → 𝑃2 be a map of finite projective modules.
Then

(1) The set 𝑈 of primes 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) such that 𝜑 ⊗ 𝜅(𝔭) is injective is open.
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(2) For any 𝑓 ∈ 𝑅 such that 𝐷(𝑓) ⊂ 𝑈 the module Coker(𝜑)𝑓 is finite projective over
𝑅𝑓.

(3) The set 𝑉 of primes 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) such that 𝜑 ⊗ 𝜅(𝔭) is an isomorphism is open.
(4) For any 𝑓 ∈ 𝑅 such that 𝐷(𝑓) ⊂ 𝑉 the map 𝜑 ∶ 𝑃1,𝑓 → 𝑃2,𝑓 is an isomorphism

of modules over 𝑅𝑓.

Proof. To prove the sets 𝑈 and 𝑉 are open we may work locally on 𝑆𝑝𝑒𝑐(𝑅). Thus we may
replace 𝑅 by a suitable localization and assume that 𝑃1 = 𝑅𝑛1 and 𝑃2 = 𝑅𝑛2, see Lemma
7.72.2. In this case injectivity of 𝜑 ⊗ 𝜅(𝔭) is equivalent to some 𝑛1 × 𝑛1 minor 𝑓 of the
matrix of 𝜑 being invertible in 𝜅(𝔭). Thus 𝐷(𝑓) ⊂ 𝑈. Similarly for 𝑉, but in that case with
the added assumption that 𝑚 = 𝑛 (and hence 𝑓 is just the determinant of the map).

Now suppose 𝐷(𝑓) ⊂ 𝑈. By Lemma 7.72.2 it suffices to prove that Coker(𝜑) is finite
projective locally on 𝐷(𝑓). Thus, as we saw above, we may assume that 𝑃1 = 𝑅𝑛1 and
𝑃2 = 𝑅𝑛2 and that some minor of the matrix of 𝜑 is invertible in 𝑅. If the minor in question
corresponds to the first 𝑛1 basis vectors of 𝑅𝑛2, then using the last 𝑛2 − 𝑛1 basis vectors
we get a map 𝑅𝑛2−𝑛1 → 𝑅𝑛2 → Coker(𝜑) which is easily seen to be an isomorphism. If
𝐷(𝑓) ⊂ 𝑉 the argument is even easier. �

7.74. Faithfully flat descent for projectivity of modules

In the next few sections we prove, following Raynaud and Gruson [GR71], that the projec-
tivity of modules descends along faithfully flat ring maps. The idea of the proof is to use
dévissage à la Kaplansky [Kap58] to reduce to the case of countably generated modules.
Given a well-behaved filtration of a module 𝑀, dévissage allows us to express 𝑀 as a direct
sum of successive quotients of the filtering submodules (see Section 7.78). Using this tech-
nique, we prove that a projective module is a direct sum of countably generated modules
(Theorem 7.78.5). To prove descent of projectivity for countably generated modules, we
introduce a ``Mittag-Leffler'' condition on modules, prove that a countably generated mod-
ule is projective if and only if it is flat and Mittag-Leffler (Theorem 7.87.3), and then show
that the property of being a flat Mittag-Leffler module descends (Lemma 7.89.1). Finally,
given an arbitrary module 𝑀 whose base change by a faithfully flat ring map is projective,
we filter 𝑀 by submodules whose successive quotients are countably generated projective
modules, and then by dévissage conclude 𝑀 is a direct sum of projectives, hence projective
itself (Theorem 7.89.5).

We note that there is an error in the proof of faithfully flat descent of projectivity in [GR71].
There, descent of projectivity along faithfully flat ring maps is deduced from descent of
projectivity along a more general type of ring map ([GR71, Example 3.1.4(1) of Part II]).
However, the proof of descent along this more general type of map is incorrect, as explained
in [Gru73]. Patching this hole in the proof of faithfully flat descent of projectivity comes
down to proving that the property of being a flat Mittag-Leffler module descends along
faithfully flat ring maps. We do this in Lemma 7.89.1.

7.75. Characterizing flatness

In this section we discuss criteria for flatness. The main result in this section is Lazard's
theorem (Theorem 7.75.4 below), which says that a flat module is the colimit of a directed
system of free finite modules. We remind the reader of the ``equational criterion for flat-
ness'', see Lemma 7.35.10. It turns out that this can be massaged into a seemingly much
stronger property.
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Lemma 7.75.1. Let 𝑀 be an 𝑅-module. The following are equivalent:
(1) 𝑀 is flat.
(2) If 𝑓 ∶ 𝑅𝑛 → 𝑀 is a module map and 𝑥 ∈ ker(𝑓), then there are module maps

ℎ ∶ 𝑅𝑛 → 𝑅𝑚 and 𝑔 ∶ 𝑅𝑚 → 𝑀 such that 𝑓 = 𝑔 ∘ ℎ and 𝑥 ∈ ker(ℎ).
(3) Suppose 𝑓 ∶ 𝑅𝑛 → 𝑀 is a module map, 𝑁 ⊂ ker(𝑓) any submodule, and ℎ ∶

𝑅𝑛 → 𝑅𝑚 a map such that 𝑁 ⊂ ker(ℎ) and 𝑓 factors through ℎ. Then given any
𝑥 ∈ ker(𝑓) we can find a map ℎ′ ∶ 𝑅𝑛 → 𝑅𝑚′

such that 𝑁 + 𝑅𝑥 ⊂ ker(ℎ′) and
𝑓 factors through ℎ′.

(4) If 𝑓 ∶ 𝑅𝑛 → 𝑀 is a module map and 𝑁 ⊂ ker(𝑓) is a finitely generated sub-
module, then there are module maps ℎ ∶ 𝑅𝑛 → 𝑅𝑚 and 𝑔 ∶ 𝑅𝑚 → 𝑀 such that
𝑓 = 𝑔 ∘ ℎ and 𝑁 ⊂ ker(ℎ).

Proof. That (1) is equivalent to (2) is just a reformulation of the equational criterion for
flatness. To show (2) implies (3), let 𝑔 ∶ 𝑅𝑚 → 𝑀 be the map such that 𝑓 factors as
𝑓 = 𝑔 ∘ ℎ. By (2) find ℎ″ ∶ 𝑅𝑚 → 𝑅𝑚′

such that ℎ″ kills ℎ(𝑥) and 𝑔 ∶ 𝑅𝑚 → 𝑀 factors
through ℎ″. Then taking ℎ′ = ℎ″ ∘ ℎ works. (3) implies (4) by induction on the number of
generators of 𝑁 ⊂ ker(𝑓) in (4). Clearly (4) implies (2). �

Lemma 7.75.2. Let𝑀 be an𝑅-module. Then𝑀 is flat if and only if the following condition
holds: if 𝑃 is a finitely presented 𝑅-module and 𝑓 ∶ 𝑃 → 𝑀 a module map, then there is a
free finite 𝑅-module 𝐹 and module maps ℎ ∶ 𝑃 → 𝐹 and 𝑔 ∶ 𝐹 → 𝑀 such that 𝑓 = 𝑔 ∘ ℎ.

Proof. This is just a reformulation of condition (4) from Lemma 7.75.1. �

Lemma 7.75.3. Let𝑀 be an𝑅-module. Then𝑀 is flat if and only if the following condition
holds: for every finitely presented 𝑅-module 𝑃, if 𝑁 → 𝑀 is a surjective 𝑅-module map,
then the induced map 𝐻𝑜𝑚𝑅(𝑃, 𝑁) → 𝐻𝑜𝑚𝑅(𝑃, 𝑀) is surjective.

Proof. First suppose 𝑀 is flat. We must show that if 𝑃 is finitely presented, then given a
map 𝑓 ∶ 𝑃 → 𝑀, it factors through the map 𝑁 → 𝑀. By Lemma 7.75.2 the map 𝑓 factors
through a map 𝐹 → 𝑀 where 𝐹 is free and finite. Since 𝐹 is free, this map factors through
𝑁 → 𝑀. Thus 𝑓 factors through 𝑁 → 𝑀.
Conversely, suppose the condition of the lemma holds. Let 𝑓 ∶ 𝑃 → 𝑀 be a map from a
finitely presented module 𝑃. Choose a free module 𝑁 with a surjection 𝑁 → 𝑀 onto 𝑀.
Then 𝑓 factors through 𝑁 → 𝑀, and since 𝑃 is finitely generated, 𝑓 factors through a free
finite submodule of 𝑁. Thus 𝑀 satisfies the condition of Lemma 7.75.2, hence is flat. �

Theorem 7.75.4 (Lazard's theorem). Let 𝑀 be an 𝑅-module. Then 𝑀 is flat if and only if
it is the colimit of a directed system of free finite 𝑅-modules.

Proof. A colimit of a directed system of flat modules is flat, as taking directed colimits is
exact and commutes with tensor product. Hence if 𝑀 is the colimit of a directed system of
free finite modules then 𝑀 is flat.
For the converse, first recall that any module 𝑀 can be written as the colimit of a directed
system of finitely presented modules, in the following way. Choose a surjection 𝑓 ∶ 𝑅𝐼 →
𝑀 for some set 𝐼, and let 𝐾 be the kernel. Let 𝐸 be the set of ordered pairs (𝐽, 𝑁) where 𝐽
is a finite subset of 𝐼 and 𝑁 is a finitely generated submodule of 𝑅𝐽 ∩ 𝐾. Then 𝐸 is made
into a directed partially ordered set by defining (𝐽, 𝑁) ≤ (𝐽′, 𝑁′) if and only if 𝐽 ⊂ 𝐽′ and
𝑁 ⊂ 𝑁′. Define 𝑀𝑒 = 𝑅𝐽/𝑁 for 𝑒 = (𝐽, 𝑁), and define 𝑓𝑒𝑒′ ∶ 𝑀𝑒 → 𝑀𝑒′ to be the natural
map for 𝑒 ≤ 𝑒′. Then (𝑀𝑒, 𝑓𝑒𝑒′) is a directed system and the natural maps 𝑓𝑒 ∶ 𝑀𝑒 → 𝑀
induce an isomorphism 𝑐𝑜𝑙𝑖𝑚𝑒∈𝐸 𝑀𝑒

≅
−→ 𝑀.
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Now suppose 𝑀 is flat. Let 𝐼 = 𝑀 × 𝐙, write (𝑥𝑖) for the canonical basis of 𝑅𝐼, and take
in the above discussion 𝑓 ∶ 𝑅𝐼 → 𝑀 to be the map sending 𝑥𝑖 to the projection of 𝑖 onto
𝑀. To prove the theorem it suffices to show that the 𝑒 ∈ 𝐸 such that 𝑀𝑒 is free form a
cofinal subset of 𝐸. So let 𝑒 = (𝐽, 𝑁) ∈ 𝐸 be arbitrary. By Lemma 7.75.2 there is a free
finite module 𝐹 and maps ℎ ∶ 𝑅𝐽/𝑁 → 𝐹 and 𝑔 ∶ 𝐹 → 𝑀 such that the natural map
𝑓𝑒 ∶ 𝑅𝐽/𝑁 → 𝑀 factors as 𝑅𝐽/𝑁

ℎ
−→ 𝐹

𝑔
−→ 𝑀. We are going to realize 𝐹 as 𝑀𝑒′ for some

𝑒′ ≥ 𝑒.

Let {𝑏1, … , 𝑏𝑛} be a finite basis of 𝐹. Choose 𝑛 distinct elements 𝑖1, … , 𝑖𝑛 ∈ 𝐼 such that
𝑖ℓ ∉ 𝐽 for all ℓ, and such that the image of 𝑥𝑖ℓ under 𝑓 ∶ 𝑅𝐼 → 𝑀 equals the image of
𝑏ℓ under 𝑔 ∶ 𝐹 → 𝑀. This is possible by our choice of 𝐼. Now let 𝐽′ = 𝐽 ∪ {𝑖1, … , 𝑖𝑛},
and define 𝑅𝐽′

→ 𝐹 by 𝑥𝑖 ↦ ℎ(𝑥𝑖) for 𝑖 ∈ 𝐽 and 𝑥𝑖ℓ ↦ 𝑏ℓ for ℓ = 1, … , 𝑛. Let 𝑁′ =
ker(𝑅𝐽′

→ 𝐹). Observe:
(1) 𝑅𝐽′

→ 𝐹 factors 𝑓 ∶ 𝑅𝐼 → 𝑀, hence 𝑁′ ⊂ 𝐾 = ker(𝑓);
(2) 𝑅𝐽′

→ 𝐹 is a surjection onto a free finite module, hence it splits and so 𝑁′ is
finitely generated;

(3) 𝐽 ⊂ 𝐽′ and 𝑁 ⊂ 𝑁′.
By (1) and (2) 𝑒′ = (𝐽′, 𝑁′) is in 𝐸, by (3) 𝑒′ ≥ 𝑒, and by construction 𝑀𝑒′ = 𝑅𝐽′

/𝑁′ ≅ 𝐹
is free. �

7.76. Universally injective module maps

Next we discuss universally injective module maps, which are in a sense complementary to
flat modules (see Lemma 7.76.5). We follow Lazard's thesis [Laz67]; also see [Lam99].

Definition 7.76.1. Let 𝑓 ∶ 𝑀 → 𝑁 be a map of 𝑅-modules. Then 𝑓 is called universally
injective if for every 𝑅-module 𝑄, the map 𝑓 ⊗𝑅 id𝑄 ∶ 𝑀 ⊗𝑅 𝑄 → 𝑁 ⊗𝑅 𝑄 is injective.
A sequence 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 of 𝑅-modules is called universally exact if it is
exact and 𝑀1 → 𝑀2 is universally injective.

Example 7.76.2. Examples of universally exact maps.
(1) A split short exact sequence is universally exact since tensoring commutes with

taking direct sums.
(2) The colimit of a directed system of universally exact sequences is universally

exact. This follows from the fact that taking directed colimits is exact and that
tensoring commutes with taking colimits. In particular the colimit of a directed
system of split exact sequences is universally exact. We will see below that,
conversely, any universally exact sequence arises in this way.

Next we give a list of criteria for a short exact sequence to be universally exact. They are
analogues of criteria for flatness given above. Parts (3)-(6) below correspond, respectively,
to the criteria for flatness given in Lemmas 7.35.10, 7.75.1, 7.75.3, and Theorem 7.75.4.

Theorem 7.76.3. Let
0 → 𝑀1

𝑓1−−→ 𝑀2
𝑓2−−→ 𝑀3 → 0

be an exact sequence of 𝑅-modules. The following are equivalent:
(1) The sequence 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 is universally exact.
(2) For every finitely presented 𝑅-module 𝑄, the sequence

0 → 𝑀1 ⊗𝑅 𝑄 → 𝑀2 ⊗𝑅 𝑄 → 𝑀3 ⊗𝑅 𝑄 → 0

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=058I
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is exact.
(3) Given elements 𝑥𝑖 ∈ 𝑀1 (𝑖 = 1, … , 𝑛), 𝑦𝑗 ∈ 𝑀2 (𝑗 = 1, … , 𝑚), and 𝑎𝑖𝑗 ∈ 𝑅

(𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚) such that for all 𝑖

𝑓1(𝑥𝑖) = ∑𝑗
𝑎𝑖𝑗𝑦𝑗,

there exists 𝑧𝑗 ∈ 𝑀1 (𝑗 = 1, … , 𝑚) such that for all 𝑖,

𝑥𝑖 = ∑𝑗
𝑎𝑖𝑗𝑧𝑗.

(4) Given a commutative diagram of 𝑅-module maps

𝑅𝑛 //

��

𝑅𝑚

��
𝑀1

𝑓1 //𝑀2

where 𝑚 and 𝑛 are integers, there exists a map 𝑅𝑚 → 𝑀1 making the top triangle
commute.

(5) For every finitely presented 𝑅-module 𝑃, the 𝑅-module map 𝐻𝑜𝑚𝑅(𝑃, 𝑀2) →
𝐻𝑜𝑚𝑅(𝑃, 𝑀3) is surjective.

(6) The sequence 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 is the colimit of a directed system of
split exact sequences of the form

0 → 𝑀1 → 𝑀2,𝑖 → 𝑀3,𝑖 → 0
where the 𝑀3,𝑖 are finitely presented.

Proof. Obviously (1) implies (2).
Next we show (2) implies (3). Let 𝑓1(𝑥𝑖) = ∑𝑗 𝑎𝑖𝑗𝑦𝑗 be relations as in (3). Let (𝑓𝑗) be a basis
for 𝑅𝑚, (𝑒𝑖) a basis for 𝑅𝑛, and 𝑅𝑚 → 𝑅𝑛 the map given by 𝑓𝑗 ↦ ∑𝑖 𝑎𝑖𝑗𝑒𝑖. Let 𝑄 be the
cokernel of 𝑅𝑚 → 𝑅𝑛. Then tensoring 𝑅𝑚 → 𝑅𝑛 → 𝑄 → 0 by the map 𝑓1 ∶ 𝑀1 → 𝑀2,
we get a commutative diagram

𝑀⊕𝑚
1

//

��

𝑀⊕𝑛
1

//

��

𝑀1 ⊗𝑅 𝑄 //

��

0

𝑀⊕𝑚
2

//𝑀⊕𝑛
2

//𝑀2 ⊗𝑅 𝑄 // 0

where 𝑀⊕𝑚
1 → 𝑀⊕𝑛

1 is given by

(𝑧1, … , 𝑧𝑚) ↦ (∑𝑗 𝑎1𝑗𝑧𝑗, … , ∑𝑗 𝑎𝑛𝑗𝑧𝑗),

and 𝑀⊕𝑚
2 → 𝑀⊕𝑛

2 is given similarly. We want to show 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝑀⊕𝑛
1 is in

the image of 𝑀⊕𝑚
1 → 𝑀⊕𝑛

1 . By (2) the map 𝑀1 ⊗ 𝑄 → 𝑀2 ⊗ 𝑄 is injective, hence by
exactness of the top row it is enough to show 𝑥 maps to 0 in 𝑀2 ⊗𝑄, and so by exactness of
the bottom row it is enough to show the image of 𝑥 in 𝑀⊕𝑛

2 is in the image of 𝑀⊕𝑚
2 → 𝑀⊕𝑛

2 .
This is true by assumption.
Condition (4) is just a translation of (3) into diagram form.
Next we show (4) implies (5). Let 𝜑 ∶ 𝑃 → 𝑀3 be a map from a finitely presented
𝑅-module 𝑃. We must show that 𝜑 lifts to a map 𝑃 → 𝑀2. Choose a presentation of 𝑃,

𝑅𝑛 𝑔1−−→ 𝑅𝑚 𝑔2−−→ 𝑃 → 0.
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Using freeness of 𝑅𝑛 and 𝑅𝑚, we can construct ℎ2 ∶ 𝑅𝑚 → 𝑀2 and then ℎ1 ∶ 𝑅𝑛 → 𝑀1
such that the following diagram commutes

𝑅𝑛 𝑔1 //

ℎ1
��

𝑅𝑚 𝑔2 //

ℎ2
��

𝑃 //

𝜑
��

0

0 //𝑀1
𝑓1 //𝑀2

𝑓2 //𝑀3
// 0.

By (4) there is a map 𝑘1 ∶ 𝑅𝑚 → 𝑀1 such that 𝑘1 ∘ 𝑔1 = ℎ1. Now define ℎ′
2 ∶ 𝑅𝑚 → 𝑀2

by ℎ′
2 = ℎ2 − 𝑓1 ∘ 𝑘1. Then

ℎ′
2 ∘ 𝑔1 = ℎ2 ∘ 𝑔1 − 𝑓1 ∘ 𝑘1 ∘ 𝑔1 = ℎ2 ∘ 𝑔1 − 𝑓1 ∘ ℎ1 = 0.

Hence by passing to the quotient ℎ′
2 defines a map 𝜑′ ∶ 𝑃 → 𝑀2 such that 𝜑′ ∘ 𝑔2 = ℎ′

2. In
a diagram, we have

𝑅𝑚 𝑔2 //

ℎ′
2
��

𝑃

𝜑
��

𝜑′

||
𝑀2

𝑓2 //𝑀3.

where the top triangle commutes. We claim that 𝜑′ is the desired lift, i.e. that 𝑓2 ∘ 𝜑′ = 𝜑.
From the definitions we have

𝑓2 ∘ 𝜑′ ∘ 𝑔2 = 𝑓2 ∘ ℎ′
2 = 𝑓2 ∘ ℎ2 − 𝑓2 ∘ 𝑓1 ∘ 𝑘1 = 𝑓2 ∘ ℎ2 = 𝜑 ∘ 𝑔2.

Since 𝑔2 is surjective, this finishes the proof.

Now we show (5) implies (6). Write 𝑀3 as the colimit of a directed system of finitely pre-
sented modules 𝑀3,𝑖. Let 𝑀2,𝑖 be the fiber product of 𝑀3,𝑖 and 𝑀2 over 𝑀3---by definition
this is the submodule of 𝑀2 × 𝑀3,𝑖 consisting of elements whose two projections onto 𝑀3
are equal. Let 𝑀1,𝑖 be the kernel of the projection 𝑀2,𝑖 → 𝑀3,𝑖. Then we have a directed
system of exact sequences

0 → 𝑀1,𝑖 → 𝑀2,𝑖 → 𝑀3,𝑖 → 0,

and for each 𝑖 a map of exact sequences

0 //𝑀1,𝑖

��

//𝑀2,𝑖
//

��

𝑀3,𝑖

��

// 0

0 //𝑀1
//𝑀2

//𝑀3
// 0

compatible with the directed system. From the definition of the fiber product𝑀2,𝑖, it follows
that the map 𝑀1,𝑖 → 𝑀1 is an isomorphism. By (5) there is a map 𝑀3,𝑖 → 𝑀2 lifting
𝑀3,𝑖 → 𝑀3, and by the universal property of the fiber product this gives rise to a section
of 𝑀2,𝑖 → 𝑀3,𝑖. Hence the sequences

0 → 𝑀1,𝑖 → 𝑀2,𝑖 → 𝑀3,𝑖 → 0

split. Passing to the colimit, we have a commutative diagram

0 // 𝑐𝑜𝑙𝑖𝑚 𝑀1,𝑖

≅
��

// 𝑐𝑜𝑙𝑖𝑚 𝑀2,𝑖
//

��

𝑐𝑜𝑙𝑖𝑚 𝑀3,𝑖

≅
��

// 0

0 //𝑀1
//𝑀2

//𝑀3
// 0
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with exact rows and outer vertical maps isomorphisms. Hence 𝑐𝑜𝑙𝑖𝑚 𝑀2,𝑖 → 𝑀2 is also an
isomorphism and (6) holds.

Condition (6) implies (1) by Example 7.76.2 (2). �

The previous theorem shows that a universally exact sequence is always a colimit of split
short exact sequences. If the cokernel of a universally injective map is finitely presented,
then in fact the map itself splits:

Lemma 7.76.4. Let
0 → 𝑀1 → 𝑀2 → 𝑀3 → 0

be an exact sequence of 𝑅-modules. Suppose 𝑀3 is of finite presentation. Then

0 → 𝑀1 → 𝑀2 → 𝑀3 → 0

is universally exact if and only if it is split.

Proof. A split sequence is always universally exact. Conversely, if the sequence is univer-
sally exact, then by Theorem 7.76.3 (5) applied to 𝑃 = 𝑀3, the map 𝑀2 → 𝑀3 admits a
section. �

The following lemma shows how universally injectivemaps are complementary to flat mod-
ules.

Lemma 7.76.5. Let 𝑀 be an 𝑅-module. Then 𝑀 is flat if and only if any exact sequence
of 𝑅-modules

0 → 𝑀1 → 𝑀2 → 𝑀 → 0
is universally exact.

Proof. This follows from Lemma 7.75.3 and Theorem 7.76.3 (5). �

Example 7.76.6. Non-split and non-flat universally exact sequences.
(1) In spite of Lemma 7.76.4, it is possible to have a short exact sequence of𝑅-modules

0 → 𝑀1 → 𝑀2 → 𝑀3 → 0

that is universally exact but non-split. For instance, take 𝑅 = 𝐙, let 𝑀1 =
⨁∞

𝑛=1 𝐙, let 𝑀2 = ∏∞
𝑛=1 𝐙, and let 𝑀3 be the cokernel of the inclusion 𝑀1 →

𝑀2. Then 𝑀1, 𝑀2, 𝑀3 are all flat since they are torsion-free, so by Lemma
7.76.5,

0 → 𝑀1 → 𝑀2 → 𝑀3 → 0
is universally exact. However there can be no section 𝑠 ∶ 𝑀3 → 𝑀2. In fact, if 𝑥
is the image of (2, 22, 23, … ) ∈ 𝑀2 in 𝑀3, then any module map 𝑠 ∶ 𝑀3 → 𝑀2
must kill 𝑥. This is because 𝑥 ∈ 2𝑛𝑀3 for any 𝑛 ≥ 1, hence 𝑠(𝑥) is divisible by
2𝑛 for all 𝑛 ≥ 1 and so must be 0.

(2) In spite of Lemma 7.76.5, it is possible to have a short exact sequence of𝑅-modules

0 → 𝑀1 → 𝑀2 → 𝑀3 → 0

that is universally exact but with 𝑀1, 𝑀2, 𝑀3 all non-flat. In fact if 𝑀 is any
non-flat module, just take the split exact sequence

0 → 𝑀 → 𝑀 ⊕ 𝑀 → 𝑀 → 0.

For instance over 𝑅 = 𝐙, take 𝑀 to be any torsion module.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=058L
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(3) Taking the direct sum of an exact sequence as in (1) with one as in (2), we get a
short exact sequence of 𝑅-modules

0 → 𝑀1 → 𝑀2 → 𝑀3 → 0

that is universally exact, non-split, and such that 𝑀1, 𝑀2, 𝑀3 are all non-flat.

We end this section with a simple observation.

Lemma 7.76.7. Let 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 be a universally exact sequence of
𝑅-modules, and suppose 𝑀2 is flat. Then 𝑀1 and 𝑀3 are flat.

Proof. Let 0 → 𝑁 → 𝑁′ → 𝑁″ → 0 be a short exact sequence of 𝑅-modules. Consider
the commutative diagram

𝑀1 ⊗𝑅 𝑁 //

��

𝑀2 ⊗𝑅 𝑁 //

��

𝑀3 ⊗𝑅 𝑁

��
𝑀1 ⊗𝑅 𝑁′ //

��

𝑀2 ⊗𝑅 𝑁′ //

��

𝑀3 ⊗𝑅 𝑁′

��
𝑀1 ⊗𝑅 𝑁″ //𝑀2 ⊗𝑅 𝑁″ //𝑀3 ⊗𝑅 𝑁″

(we have dropped the 0's on the boundary). By assumption the rows give short exact
sequences and the arrow 𝑀2 ⊗ 𝑁 → 𝑀2 ⊗ 𝑁′ is injective. Clearly this implies that
𝑀1 ⊗ 𝑁 → 𝑀1 ⊗ 𝑁′ is injective and we see that 𝑀1 is flat. In particular the left and
middle columns give rise to short exact sequences. It follows from a diagram chase that the
arrow 𝑀3 ⊗ 𝑁 → 𝑀3 ⊗ 𝑁′ is injective. Hence 𝑀3 is flat. �

Lemma 7.76.8. Let 𝑅 be a ring. Let 𝑀 → 𝑀′ be a universally injective 𝑅-module map.
Then for any 𝑅-module 𝑁 the map 𝑀 ⊗𝑅 𝑁 → 𝑀′ ⊗𝑅 𝑁 is universally injective.

Proof. Omitted. �

Lemma 7.76.9. Let 𝑅 be a ring. A composition of universally injective 𝑅-module maps is
universally injective.

Proof. Omitted. �

Lemma 7.76.10. Let 𝑅 be a ring. Let 𝑀 → 𝑀′ and 𝑀 → 𝑀″ be 𝑅-module maps. If
𝑀 → 𝑀″ is universally injective, then 𝑀 → 𝑀′ is universally injective.

Proof. Omitted. �

Lemma 7.76.11. Let 𝑅 → 𝑆 be a faithfully flat ring map. Then 𝑅 → 𝑆 is universally
injective as a map of 𝑅-modules. In particular 𝑅 ∩ 𝐼𝑆 = 𝐼 for any ideal 𝐼 ⊂ 𝑅.

Proof. Let 𝑁 be an 𝑅-module. We have to show that 𝑁 → 𝑁 ⊗𝑅 𝑆 is injective. As 𝑆
is faithfully flat as an 𝑅-module, it suffices to prove this after tensoring with 𝑆. Hence it
suffices to show that 𝑁 ⊗𝑅 𝑆 → 𝑁 ⊗𝑅 𝑆 ⊗𝑅 𝑆, 𝑛 ⊗ 𝑠 ↦ 𝑁 ⊗ 1 ⊗ 𝑠 is injective. This is
true because there is a section, namely, 𝑛 ⊗ 𝑠 ⊗ 𝑠′ ↦ 𝑛 ⊗ 𝑠𝑠′. �

Lemma 7.76.12. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 → 𝑀′ be a map of 𝑆-modules. The
following are equivalent

(1) 𝑀 → 𝑀′ is universally injective as a map of 𝑅-modules,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=058P
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(2) for each prime 𝔮 of 𝑆 the map 𝑀𝔮 → 𝑀′
𝔮 is universally injective as a map of

𝑅-modules,
(3) for each maximal ideal 𝔪 of 𝑆 the map 𝑀𝔪 → 𝑀′

𝔪 is universally injective as a
map of 𝑅-modules,

(4) for each prime 𝔮 of 𝑆 the map 𝑀𝔮 → 𝑀′
𝔮 is universally injective as a map of

𝑅𝔭-modules, where 𝔭 is the inverse image of 𝔮 in 𝑅, and
(5) for each maximal ideal 𝔪 of 𝑆 the map 𝑀𝔪 → 𝑀′

𝔪 is universally injective as a
map of 𝑅𝔭-modules, where 𝔭 is the inverse image of 𝔪 in 𝑅.

Proof. Let 𝑁 be an 𝑅-module. Let 𝔮 be a prime of 𝑆 lying over the prime 𝔭 of 𝑅. Then
we have

(𝑀 ⊗𝑅 𝑁)𝔮 = 𝑀𝔮 ⊗𝑅 𝑁 = 𝑀𝔮 ⊗𝑅𝔭
𝑁𝔭.

Moreover, the same thing holds for𝑀′ and localization is exact. Also, if𝑁 is an𝑅𝔭-module,
then 𝑁𝔭 = 𝑁. Using this the equivalences can be proved in a straightforward manner.

For example, suppose that (5) holds. Let 𝐾 = Ker(𝑀 ⊗𝑅 𝑁 → 𝑀′ ⊗𝑅 𝑁). By the remarks
above we see that 𝐾𝔪 = 0 for each maximal ideal 𝔪 of 𝑆. Hence 𝐾 = 0 by Lemma 7.21.1.
Thus (1) holds. Conversely, suppose that (1) holds. Take any 𝔮 ⊂ 𝑆 lying over 𝔭 ⊂ 𝑅. Take
any module 𝑁 over 𝑅𝔭. Then by assumption Ker(𝑀⊗𝑅 𝑁 → 𝑀′ ⊗𝑅 𝑁) = 0. Hence by the
formulae above and the fact that 𝑁 = 𝑁𝔭 we see that Ker(𝑀𝔮 ⊗𝑅𝔭

𝑁 → 𝑀′
𝔮 ⊗𝑅𝔭

𝑁) = 0.
In other words (4) holds. Of course (4) ⇒ (5) is immediate. Hence (1), (4) and (5) are all
equivalent. We omit the proof of the other equivalences. �

Lemma 7.76.13. Let 𝜑 ∶ 𝐴 → 𝐵 be a ring map. Let 𝑆 ⊂ 𝐴 and 𝑆′ ⊂ 𝐵 be multiplicative
subsets such that 𝜑(𝑆) ⊂ 𝑆′. Let 𝑀 → 𝑀′ be a map of 𝐵-modules.

(1) If 𝑀 → 𝑀′ is universally injective as a map of 𝐴-modules, then (𝑆′)−1𝑀 →
(𝑆′)−1𝑀′ is universally injective as amap of𝐴-modules and as amap of𝑆−1𝐴-modules.

(2) If 𝑀 and 𝑀′ are (𝑆′)−1𝐵-modules, then 𝑀 → 𝑀′ is universally injective as a
map of𝐴-modules if and only if it is universally injective as amap of𝑆−1𝐴-modules.

Proof. You can prove this using Lemma 7.76.12 but you can also prove it directly as
follows. Assume 𝑀 → 𝑀′ is 𝐴-universally injective. Let 𝑄 be an 𝐴-module. Then
𝑄⊗𝐴𝑀 → 𝑄⊗𝐴𝑀′ is injective. Since localization is exact we see that (𝑆′)−1(𝑄⊗𝐴𝑀) →
(𝑆′)−1(𝑄 ⊗𝐴 𝑀′) is injective. As (𝑆′)−1(𝑄 ⊗𝐴 𝑀) = 𝑄 ⊗𝐴 (𝑆′)−1𝑀 and similarly for 𝑀′

we see that 𝑄 ⊗𝐴 (𝑆′)−1𝑀 → 𝑄 ⊗𝐴 (𝑆′)−1𝑀′ is injective, hence (𝑆′)−1𝑀 → (𝑆′)−1𝑀′

is universally injective as a map of 𝐴-modules. This proves the first part of (1). To see (2)
we can use the following two facts: (a) if 𝑄 is an 𝑆−1𝐴-module, then 𝑄 ⊗𝐴 𝑆−1𝐴 = 𝑄,
i.e., tensoring with 𝑄 over 𝐴 is the same thing as tensoring with 𝑄 over 𝑆−1𝐴, (b) if 𝑀 is
any 𝐴-module on which the elements of 𝑆 are invertible, then 𝑀 ⊗𝐴 𝑄 = 𝑀 ⊗𝑆−1𝐴 𝑆−1𝑄.
Part (2) follows from this immediately. �

7.77. Descent for finite projective modules

In this section we give an elementary proof of the fact that the property of being a finite
projective module descends along faithfully flat ring maps. The proof does not apply when
we drop the finiteness condition. However, the method is indicative of the one we shall use
to prove descent for the property of being a countably generated projective module---see
the comments at the end of this section.

Lemma 7.77.1. Let 𝑀 be an 𝑅-module. Then 𝑀 is finite projective if and only if 𝑀 is
finitely presented and flat.
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Proof. This is part of Lemma 7.72.2. However, at this point we can give a more elegant
proof of the implication (1) ⇒ (2) of that lemma as follows. If 𝑀 is finitely presented and
flat, then take a surjection 𝑅𝑛 → 𝑀. By Lemma 7.75.3 applied to 𝑃 = 𝑀, the map 𝑅𝑛 → 𝑀
admits a section. So 𝑀 is a direct summand of a free module and hence projective. �

Here are some properties of modules that descend.

Lemma 7.77.2. Let 𝑅 → 𝑆 be a faithfully flat ring map. Let 𝑀 be an 𝑅-module. Then
(1) if the 𝑆-module 𝑀 ⊗𝑅 𝑆 is of finite type, then 𝑀 is of finite type,
(2) if the 𝑆-module 𝑀 ⊗𝑅 𝑆 is of finite presentation, then 𝑀 is of finite presentation,
(3) if the 𝑆-module 𝑀 ⊗𝑅 𝑆 is flat, then 𝑀 is flat, and
(4) add more here as needed.

Proof. Assume 𝑀 ⊗𝑅 𝑆 is of finite type. Let 𝑦1, … , 𝑦𝑚 be generators of 𝑀 ⊗𝑅 𝑆 over 𝑆.
Write 𝑦𝑗 = ∑ 𝑥𝑖 ⊗ 𝑓𝑖 for some 𝑥1, … , 𝑥𝑛 ∈ 𝑀. Then we see that the map 𝜑 ∶ 𝑅⊕𝑛 → 𝑀
has the property that 𝜑 ⊗ id𝑆 ∶ 𝑆⊕𝑛 → 𝑀 ⊗𝑅 𝑆 is surjective. Since 𝑅 → 𝑆 is faithfully
flat we see that 𝜑 is surjective, and 𝑀 is finitely generated.
Assume 𝑀 ⊗𝑅 𝑆 is of finite presentation. By (1) we see that 𝑀 is of finite type. Choose
a surjection 𝑅⊕𝑛 → 𝑀 and denote 𝐾 the kernel. As 𝑅 → 𝑆 is flat we see that 𝐾 ⊗𝑅 𝑆 is
the kernel of the base change 𝑆⊕𝑛 → 𝑀 ⊗𝑅 𝑆. As 𝑀 ⊗𝑅 𝑆 is of finite presentation we
conclude that 𝐾 ⊗𝑅 𝑆 is of finite type. Hence by (1) we see that 𝐾 is of finite type and
hence 𝑀 is of finite presentation.
Part (3) is Lemma 7.35.7. �

Proposition 7.77.3. Let 𝑅 → 𝑆 be a faithfully flat ring map. Let 𝑀 be an 𝑅-module. If
the 𝑆-module 𝑀 ⊗𝑅 𝑆 is finite projective, then 𝑀 is finite projective.

Proof. Follows from Lemmas 7.77.1 and 7.77.2. �

The next few sections are about removing the finiteness assumption by using dévissage to
reduce to the countably generated case. In the countably generated case, the strategy is
to find a characterization of countably generated projective modules analogous to Lemma
7.77.1, and then to prove directly that this characterization descends. We do this by intro-
ducing the notion of a Mittag-Leffer module and proving that if a module 𝑀 is countably
generated, then it is projective if and only if it is flat and Mittag-Leffler (Theorem 7.87.3).
When 𝑀 is finitely generated, this statement reduces to Lemma 7.77.1 (since, according to
Example 7.85.1 (1), a finitely generated module is Mittag-Leffler if and only if it is finitely
presented).

7.78. Transfinite dévissage of modules

In this section we introduce a dévissage technique for decomposing a module into a direct
sum. The main result is that a projective module is a direct sum of countably generated
modules (Theorem 7.78.5 below). We follow [Kol96].

Definition 7.78.1. Let 𝑀 be an 𝑅-module. A direct sum dévissage of 𝑀 is a family of
submodules (𝑀𝛼)𝛼∈𝑆, indexed by an ordinal 𝑆 and increasing (with respect to inclusion),
such that:

(0) 𝑀0 = 0;
(1) 𝑀 = ⋃𝛼 𝑀𝛼;
(2) if 𝛼 ∈ 𝑆 is a limit ordinal, then 𝑀𝛼 = ⋃𝛽<𝛼 𝑀𝛽;
(3) if 𝛼 + 1 ∈ 𝑆, then 𝑀𝛼 is a direct summand of 𝑀𝛼+1.
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If moreover
(4) 𝑀𝛼+1/𝑀𝛼 is countably generated for 𝛼 + 1 ∈ 𝑆,

then (𝑀𝛼)𝛼∈𝑆 is called a Kaplansky dévissage of 𝑀.

The terminology is justified by the following lemma.

Lemma 7.78.2. Let 𝑀 be an 𝑅-module. If (𝑀𝛼)𝛼∈𝑆 is a direct sum dévissage of 𝑀, then
𝑀 ≅ ⨁𝛼+1∈𝑆 𝑀𝛼+1/𝑀𝛼.

Proof. By property (3) of a direct sum dévissage, there is an inclusion 𝑀𝛼+1/𝑀𝛼 → 𝑀 for
each 𝛼 ∈ 𝑆. Consider the map

𝑓 ∶ ⨁
𝛼+1∈𝑆

𝑀𝛼+1/𝑀𝛼 → 𝑀

given by the sum of these inclusions. Transfinite induction on 𝑆 shows that the image
contains 𝑀𝛼 for every 𝛼 ∈ 𝑆: for 𝛼 = 0 this is true by (0); if 𝛼 + 1 is a successor ordinal
then it is clearly true; and if 𝛼 is a limit ordinal and it is true for 𝛽 < 𝛼, then it is true for 𝛼
by (2). Hence 𝑓 is surjective by (1).

Transfinite induction on 𝑆 also shows that for every 𝛽 ∈ 𝑆 the restriction

𝑓𝛽 ∶ ⨁
𝛼+1≤𝛽

𝑀𝛼+1/𝑀𝛼 ⟶ 𝑀

of 𝑓 is injective: For 𝛽 = 0 it is true. If it is true for all 𝛽′ < 𝛽, then let 𝑥 be in the kernel and
write 𝑥 = (𝑥𝛼+1)𝛼+1≤𝛽 in terms of its components 𝑥𝛼+1 ∈ 𝑀𝛼+1/𝑀𝛼. By property (3) both
(𝑥𝛼+1)𝛼+1<𝛽 and 𝑥𝛽+1 map to 0. Hence 𝑥𝛽+1 = 0 and, by the assumption that the restriction
𝑓𝛽′ is injective for all 𝛽′ < 𝛽, also 𝑥𝛼+1 = 0 for every 𝛼 + 1 < 𝛽. So 𝑥 = 0 and 𝑓𝛽 is
injective, which finishes the induction. We conclude that 𝑓 is injective since 𝑓𝛽 is for each
𝛽 ∈ 𝑆. �

Lemma 7.78.3. Let 𝑀 be an 𝑅-module. Then 𝑀 is a direct sum of countably generated
𝑅-modules if and only if it admits a Kaplansky dévissage.

Proof. The lemma takes care of the ``if'' direction. Conversely, suppose 𝑀 = ⨁𝑖∈𝐼 𝑁𝑖
where each 𝑁𝑖 is a countably generated 𝑅-module. Well-order 𝐼 so that we can think of it
as an ordinal. Then setting 𝑀𝑖 = ⨁𝑗<𝑖 𝑁𝑗 gives a Kaplansky dévissage (𝑀𝑖)𝑖∈𝐼 of 𝑀. �

Theorem 7.78.4. Suppose 𝑀 is a direct sum of countably generated 𝑅-modules. If 𝑃 is a
direct summand of 𝑀, then 𝑃 is also a direct sum of countably generated 𝑅-modules.

Proof. Write 𝑀 = 𝑃 ⊕ 𝑄. We are going to construct a Kaplansky dévissage (𝑀𝛼)𝛼∈𝑆 of
𝑀 which, in addition to the defining properties (0)-(4), satisfies:

(5) Each 𝑀𝛼 is a direct summand of 𝑀;
(6) 𝑀𝛼 = 𝑃𝛼 ⊕ 𝑄𝛼, where 𝑃𝛼 = 𝑃 ∩ 𝑀𝛼 and 𝑄 = 𝑄 ∩ 𝑀𝛼.

(Note: if properties (0)-(2) hold, then in fact property (3) is equivalent to property (5).)

To see how this implies the theorem, it is enough to show that (𝑃𝛼)𝛼∈𝑆 forms a Kaplansky
dévissage of 𝑃. Properties (0), (1), and (2) are clear. By (5) and (6) for (𝑀𝛼), each 𝑃𝛼 is
a direct summand of 𝑀. Since 𝑃𝛼 ⊂ 𝑃𝛼+1, this implies 𝑃𝛼 is a direct summand of 𝑃𝛼+1;
hence (3) holds for (𝑃𝛼). For (4), note that

𝑀𝛼+1/𝑀𝛼 ≅ 𝑃𝛼+1/𝑃𝛼 ⊕ 𝑄𝛼+1/𝑄𝛼,

so 𝑃𝛼+1/𝑃𝛼 is countably generated because this is true of 𝑀𝛼+1/𝑀𝛼.
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It remains to construct the𝑀𝛼. Write𝑀 = ⨁𝑖∈𝐼 𝑁𝑖 where each𝑁𝑖 is a countably generated
𝑅-module. Choose a well-ordering of 𝐼. By transfinite induction we are going to define an
increasing family of submodules 𝑀𝛼 of 𝑀, one for each ordinal 𝛼, such that 𝑀𝛼 is a direct
sum of some subset of the 𝑁𝑖.

For 𝛼 = 0 let 𝑀0 = 0. If 𝛼 is a limit ordinal and 𝑀𝛽 has been defined for all 𝛽 < 𝛼, then
define 𝑀𝛼 = ⋃𝛽<𝛼 𝑀𝛽. Since each 𝑀𝛽 for 𝛽 < 𝛼 is a direct sum of a subset of the 𝑁𝑖, the
same will be true of 𝑀𝛼. If 𝛼+1 is a successor ordinal and 𝑀𝛼 has been defined, then define
𝑀𝛼+1 as follows. If 𝑀𝛼 = 𝑀, then let 𝑀𝛼+1 = 𝑀. If not, choose the smallest 𝑗 ∈ 𝐼 such
that 𝑁𝑗 is not contained in 𝑀𝛼. We will construct an infinite matrix (𝑥𝑚𝑛), 𝑚, 𝑛 = 1, 2, 3, …
such that:

(1) 𝑁𝑗 is contained in the submodule of 𝑀 generated by the entries 𝑥𝑚𝑛;
(2) if we write any entry 𝑥𝑘ℓ in terms of its 𝑃- and 𝑄-components, 𝑥𝑘ℓ = 𝑦𝑘ℓ + 𝑧𝑘ℓ,

then the matrix (𝑥𝑚𝑛) contains a set of generators for each 𝑁𝑖 for which 𝑦𝑘ℓ or
𝑧𝑘ℓ has nonzero component.

Then we define 𝑀𝛼+1 to be the submodule of 𝑀 generated by 𝑀𝛼 and all 𝑥𝑚𝑛; by property
(2) of the matrix (𝑥𝑚𝑛), 𝑀𝛼+1 will be a direct sum of some subset of the 𝑁𝑖. To construct
the matrix (𝑥𝑚𝑛), let 𝑥11, 𝑥12, 𝑥13, … be a countable set of generators for 𝑁𝑗. Then if 𝑥11 =
𝑦11+𝑧11 is the decomposition into𝑃- and𝑄-components, let 𝑥21, 𝑥22, 𝑥23, … be a countable
set of generators for the sum of the 𝑁𝑖 for which 𝑦11 or 𝑧11 have nonzero component. Repeat
this process on 𝑥12 to get elements 𝑥31, 𝑥32, … , the third row of our matrix. Repeat on
𝑥21 to get the fourth row, on 𝑥13 to get the fifth, and so on, going down along successive
anti-diagonals as indicated below:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑥11 𝑥12
{{

𝑥13
{{

𝑥14
{{

⋯

𝑥21 𝑥22
{{

𝑥23
{{

⋯

𝑥31 𝑥32
{{

⋯

𝑥41 ⋯

⋯

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Transfinite induction on 𝐼 (using the fact that we constructed 𝑀𝛼+1 to contain 𝑁𝑗 for the
smallest 𝑗 such that 𝑁𝑗 is not contained in 𝑀𝛼) shows that for each 𝑖 ∈ 𝐼, 𝑁𝑖 is contained
in some 𝑀𝛼. Thus, there is some large enough ordinal 𝑆 satisfying: for each 𝑖 ∈ 𝐼 there
is 𝛼 ∈ 𝑆 such that 𝑁𝑖 is contained in 𝑀𝛼. This means (𝑀𝛼)𝛼∈𝑆 satisfies property (1) of
a Kaplansky dévissage of 𝑀. The family (𝑀𝛼)𝛼∈𝑆 moreover satisfies the other defining
properties, and also (5) and (6) above: properties (0), (2), (4), and (6) are clear by construc-
tion; property (5) is true because each 𝑀𝛼 is by construction a direct sum of some 𝑁𝑖; and
(3) is implied by (5) and the fact that 𝑀𝛼 ⊂ 𝑀𝛼+1. �

As a corollary we get the result for projective modules stated at the beginning of the section.

Theorem 7.78.5. If 𝑃 is a projective 𝑅-module, then 𝑃 is a direct sum of countably gener-
ated projective 𝑅-modules.

Proof. Amodule is projective if and only if it is a direct summand of a free module, so this
follows from Theorem 7.78.4. �
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7.79. Projective modules over a local ring

In this section we prove a very cute result: a projective module 𝑀 over a local ring is free
(Theorem 7.79.4 below). Note that with the additional assumption that 𝑀 is finite, this
result is Lemma 7.72.4. In general we have:

Lemma 7.79.1. Let 𝑅 be a ring. Then every projective 𝑅-module is free if and only if every
countably generated projective 𝑅-module is free.

Proof. Follows immediately from Theorem 7.78.5. �

Here is a criterion for a countably generated module to be free.

Lemma 7.79.2. Let 𝑀 be a countably generated 𝑅-module. Suppose any direct summand
𝑁 of 𝑀 satisfies: any element of 𝑁 is contained in a free direct summand of 𝑁. Then 𝑀 is
free.

Proof. Let 𝑥1, 𝑥2, … be a countable set of generators for 𝑀. By the assumption on 𝑀, we
can construct by induction free 𝑅-modules 𝐹1, 𝐹2, … such that for every positive integer
𝑛, ⨁𝑛

𝑖=1 𝐹𝑖 is a direct summand of 𝑀 and contains 𝑥1, … , 𝑥𝑛. Then 𝑀 = ⨁∞
𝑖=1 𝐹𝑖. �

Lemma 7.79.3. Let 𝑃 be a projective module over a local ring 𝑅. Then any element of 𝑃
is contained in a free direct summand of 𝑃.

Proof. Since𝑃 is projective it is a direct summand of some free𝑅-module𝐹, say𝐹 = 𝑃⊕𝑄.
Let 𝑥 ∈ 𝑃 be the element that we wish to show is contained in a free direct summand of 𝑃.
Let 𝐵 be a basis of 𝐹 such that the number of basis elements needed in the expression of 𝑥
is minimal, say 𝑥 = ∑𝑛

𝑖=1 𝑎𝑖𝑒𝑖 for some 𝑒𝑖 ∈ 𝐵 and 𝑎𝑖 ∈ 𝑅. Then no 𝑎𝑗 can be expressed as
a linear combination of the other 𝑎𝑖; for if 𝑎𝑗 = ∑𝑖≠𝑗 𝑎𝑖𝑏𝑖 for some 𝑏𝑖 ∈ 𝑅, then replacing
𝑒𝑖 by 𝑒𝑖 + 𝑏𝑖𝑒𝑗 for 𝑖 ≠ 𝑗 and leaving unchanged the other elements of 𝐵, we get a new basis
for 𝐹 in terms of which 𝑥 has a shorter expression.

Let 𝑒𝑖 = 𝑦𝑖 + 𝑧𝑖, 𝑦𝑖 ∈ 𝑃, 𝑧𝑖 ∈ 𝑄 be the decomposition of 𝑒𝑖 into its 𝑃- and 𝑄-components.
Write 𝑦𝑖 = ∑𝑛

𝑗=1 𝑏𝑖𝑗𝑒𝑗 + 𝑡𝑖, where 𝑡𝑖 is a linear combination of elements in 𝐵 other than
𝑒1, … , 𝑒𝑛. To finish the proof it suffices to show that the matrix (𝑏𝑖𝑗) is invertible. For
then the map 𝐹 → 𝐹 sending 𝑒𝑖 ↦ 𝑦𝑖 for 𝑖 = 1, … , 𝑛 and fixing 𝐵 ⧵ {𝑒1, … , 𝑒𝑛} is an
isomorphism, so that 𝑦1, … , 𝑦𝑛 together with 𝐵 ⧵ {𝑒1, … , 𝑒𝑛} form a basis for 𝐹. Then the
submodule 𝑁 spanned by 𝑦1, … , 𝑦𝑛 is a free submodule of 𝑃; 𝑁 is a direct summand of 𝑃
since 𝑁 ⊂ 𝑃 and both 𝑁 and 𝑃 are direct summands of 𝐹; and 𝑥 ∈ 𝑁 since 𝑥 ∈ 𝑃 implies
𝑥 = ∑𝑛

𝑖=1 𝑎𝑖𝑒𝑖 = ∑𝑛
𝑖=1 𝑎𝑖𝑦𝑖.

Now we prove that (𝑏𝑖𝑗) is invertible. Plugging 𝑦𝑖 = ∑𝑛
𝑗=1 𝑏𝑖𝑗𝑒𝑗 + 𝑡𝑖 into ∑𝑛

𝑖=1 𝑎𝑖𝑒𝑖 =
∑𝑛

𝑖=1 𝑎𝑖𝑦𝑖 and equating the coefficients of 𝑒𝑗 gives 𝑎𝑗 = ∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖𝑗. But as noted above, our

choice of 𝐵 guarantees that no 𝑎𝑗 can be written as a linear combination of the other 𝑎𝑖.
Thus 𝑏𝑖𝑗 is a non-unit for 𝑖 ≠ 𝑗, and 1 − 𝑏𝑖𝑖 is a non-unit---so in particular 𝑏𝑖𝑖 is a unit---for
all 𝑖. But a matrix over a local ring having units along the diagonal and non-units elsewhere
is invertible, as its determinant is a unit. �

Theorem 7.79.4. If 𝑃 is a projective module over a local ring 𝑅, then 𝑃 is free.

Proof. Follows from Lemmas 7.79.1, 7.79.2, and 7.79.3. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0590
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0591
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0592
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0593


356 7. COMMUTATIVE ALGEBRA

7.80. Mittag-Leffler systems

The purpose of this section is to define Mittag-Leffler systems and why it is a useful prop-
erty.
In the following, 𝐼 will be a directed partially ordered set, see Categories, Definition 4.19.2.
Let (𝐴𝑖, 𝜑𝑗𝑖 ∶ 𝐴𝑗 → 𝐴𝑖) be an inverse system of sets or of modules indexed by 𝐼, see
Categories, Definition 4.19.2. This is a directed inverse system as we assumed 𝐼 directed.
For each 𝑖 ∈ 𝐼, the images 𝜑𝑗𝑖(𝐴𝑗) ⊂ 𝐴𝑖 for 𝑗 ≥ 𝑖 form a decreasing family. Let 𝐴′

𝑖 =
⋂𝑗≥𝑖 𝜑𝑗𝑖(𝐴𝑗). Then 𝜑𝑗𝑖(𝐴′

𝑗) ⊂ 𝐴′
𝑖 for 𝑗 ≥ 𝑖, hence by restricting we get a directed inverse

system (𝐴′
𝑖 , 𝜑𝑗𝑖|𝐴′

𝑗
). From the construction of the limit of an inverse system in the category

of sets or modules, we have 𝑙𝑖𝑚 𝐴𝑖 = 𝑙𝑖𝑚 𝐴′
𝑖 . The Mittag-Leffler condition on (𝐴𝑖, 𝜑𝑗𝑖) is

that 𝐴′
𝑖 equals 𝜑𝑗𝑖(𝐴𝑗) for some 𝑗 ≥ 𝑖 (and hence equals 𝜑𝑘𝑖(𝐴𝑘) for all 𝑘 ≥ 𝑗):

Definition 7.80.1. Let (𝐴𝑖, 𝜑𝑗𝑖) be a directed inverse system of sets over 𝐼. Then we say
(𝐴𝑖, 𝜑𝑗𝑖) is Mittag-Leffler inverse system if for each 𝑖 ∈ 𝐼, the decreasing family 𝜑𝑗𝑖(𝐴𝑗) ⊂
𝐴𝑖 for 𝑗 ≥ 𝑖 stabilizes. Explicitly, this means that for each 𝑖 ∈ 𝐼, there exists 𝑗 ≥ 𝑖 such that
for 𝑘 ≥ 𝑗 we have 𝜑𝑘𝑖(𝐴𝑘) = 𝜑𝑗𝑖(𝐴𝑗). If (𝐴𝑖, 𝜑𝑗𝑖) is a directed inverse system of modules
over a ring 𝑅, we say that it is Mittag-Leffler if the underlying inverse system of sets is
Mittag-Leffler.

Example 7.80.2. If (𝐴𝑖, 𝜑𝑗𝑖) is a directed inverse system of sets or of modules and the
maps 𝜑𝑗𝑖 are surjective, then clearly the system is Mittag-Leffler. Conversely, suppose
(𝐴𝑖, 𝜑𝑗𝑖) is Mittag-Leffler. Let 𝐴′

𝑖 ⊂ 𝐴𝑖 be the stable image of 𝜑𝑗𝑖(𝐴𝑗) for 𝑗 ≥ 𝑖. Then
𝜑𝑗𝑖|𝐴′

𝑗
∶ 𝐴′

𝑗 → 𝐴′
𝑖 is surjective for 𝑗 ≥ 𝑖 and 𝑙𝑖𝑚 𝐴𝑖 = 𝑙𝑖𝑚 𝐴′

𝑖 . Hence the limit of the
Mittag-Leffler system (𝐴𝑖, 𝜑𝑗𝑖) can also be written as the limit of a directed inverse system
over 𝐼 with surjective maps.

Lemma 7.80.3. Let (𝐴𝑖, 𝜑𝑗𝑖) be a directed inverse system over 𝐼. Suppose 𝐼 is countable.
If (𝐴𝑖, 𝜑𝑗𝑖) is Mittag-Leffler and the 𝐴𝑖 are nonempty, then 𝑙𝑖𝑚 𝐴𝑖 is nonempty.

Proof. Let 𝑖1, 𝑖2, 𝑖3, … be an enumeration of the elements of 𝐼. Define inductively a se-
quence of elements 𝑗𝑛 ∈ 𝐼 for 𝑛 = 1, 2, 3, … by the conditions: 𝑗1 = 𝑖1, and 𝑗𝑛 ≥ 𝑖𝑛 and
𝑗𝑛 ≥ 𝑗𝑚 for 𝑚 < 𝑛. Then the sequence 𝑗𝑛 is increasing and forms a cofinal subset of 𝐼.
Hence we may assume 𝐼 = {1, 2, 3, … }. So by Example 7.80.2 we are reduced to showing
that the limit of an inverse system of nonempty sets with surjective maps indexed by the
positive integers is nonempty. This is obvious. �

The Mittag-Leffler condition will be important for us because of the following exactness
property.

Lemma 7.80.4. Let
0 → 𝐴𝑖

𝑓𝑖−−→ 𝐵𝑖
𝑔𝑖−−→ 𝐶𝑖 → 0

be an exact sequence of directed inverse systems of abelian groups over 𝐼. Suppose 𝐼 is
countable. If (𝐴𝑖) is Mittag-Leffler, then

0 → 𝑙𝑖𝑚 𝐴𝑖 → 𝑙𝑖𝑚 𝐵𝑖 → 𝑙𝑖𝑚 𝐶𝑖 → 0
is exact.

Proof. Taking limits of directed inverse systems is left exact, hence we only need to prove
surjectivity of 𝑙𝑖𝑚 𝐵𝑖 → 𝑙𝑖𝑚 𝐶𝑖. So let (𝑐𝑖) ∈ 𝑙𝑖𝑚 𝐶𝑖. For each 𝑖 ∈ 𝐼, let 𝐸𝑖 = 𝑔−1

𝑖 (𝑐𝑖), which
is nonempty since 𝑔𝑖 ∶ 𝐵𝑖 → 𝐶𝑖 is surjective. The system of maps 𝜑𝑗𝑖 ∶ 𝐵𝑗 → 𝐵𝑖 for (𝐵𝑖)
restrict to maps 𝐸𝑗 → 𝐸𝑖 which make (𝐸𝑖) into an inverse system of nonempty sets. It is
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enough to show that (𝐸𝑖) is Mittag-Leffler. For then Lemma 7.80.3 would show 𝑙𝑖𝑚 𝐸𝑖 is
nonempty, and taking any element of 𝑙𝑖𝑚 𝐸𝑖 would give an element of 𝑙𝑖𝑚 𝐵𝑖 mapping to
(𝑐𝑖).

By the injection 𝑓𝑖 ∶ 𝐴𝑖 → 𝐵𝑖 we will regard 𝐴𝑖 as a subset of 𝐵𝑖. Since (𝐴𝑖) is Mittag-
Leffler, if 𝑖 ∈ 𝐼 then there exists 𝑗 ≥ 𝑖 such that 𝜑𝑘𝑖(𝐴𝑘) = 𝜑𝑗𝑖(𝐴𝑗) for 𝑘 ≥ 𝑗. We claim that
also 𝜑𝑘𝑖(𝐸𝑘) = 𝜑𝑗𝑖(𝐸𝑗) for 𝑘 ≥ 𝑗. Always 𝜑𝑘𝑖(𝐸𝑘) ⊂ 𝜑𝑗𝑖(𝐸𝑗) for 𝑘 ≥ 𝑗. For the reverse
inclusion let 𝑒𝑗 ∈ 𝐸𝑗, and we need to find 𝑥𝑘 ∈ 𝐸𝑘 such that 𝜑𝑘𝑖(𝑥𝑘) = 𝜑𝑗𝑖(𝑒𝑗). Let 𝑒′

𝑘 ∈ 𝐸𝑘
be any element, and set 𝑒′

𝑗 = 𝜑𝑘𝑗(𝑒′
𝑘). Then 𝑔𝑗(𝑒𝑗−𝑒′

𝑗) = 𝑐𝑗−𝑐𝑗 = 0, hence 𝑒𝑗−𝑒′
𝑗 = 𝑎𝑗 ∈ 𝐴𝑗.

Since 𝜑𝑘𝑖(𝐴𝑘) = 𝜑𝑗𝑖(𝐴𝑗), there exists 𝑎𝑘 ∈ 𝐴𝑘 such that 𝜑𝑘𝑖(𝑎𝑘) = 𝜑𝑗𝑖(𝑎𝑗). Hence

𝜑𝑘𝑖(𝑒′
𝑘 + 𝑎𝑘) = 𝜑𝑗𝑖(𝑒′

𝑗) + 𝜑𝑗𝑖(𝑎𝑗) = 𝜑𝑗𝑖(𝑒𝑗),

so we can take 𝑥𝑘 = 𝑒′
𝑘 + 𝑎𝑘. �

7.81. Inverse systems

In many papers (and in this section) the term inverse system is used to indicate an inverse
system over the partially ordered set (𝐍, ≥). We briefly discuss such systems in this section.
This material will be discussed more broadly in Homology, Section 10.23. Suppose we are
given a ring 𝑅 and a sequence of 𝑅-modules

𝑀1
𝜑2←−− 𝑀2

𝜑3←−− 𝑀3 ← …

with maps as indicated. By composing succesive maps we obtain maps 𝜑𝑖𝑖′ ∶ 𝑀𝑖 → 𝑀𝑖′
whenever 𝑖 ≥ 𝑖′ such that moreover 𝜑𝑖𝑖″ = 𝜑𝑖′𝑖″ ∘ 𝜑𝑖𝑖′ whenever 𝑖 ≥ 𝑖′ ≥ 𝑖″. Conversely,
given the system of maps 𝜑𝑖𝑖′ we can set 𝜑𝑖 = 𝜑𝑖(𝑖−1) and recover the maps displayed above.
In this case

𝑙𝑖𝑚 𝑀𝑖 = {(𝑥𝑖) ∈ ∏ 𝑀𝑖 ∣ 𝜑𝑖(𝑥𝑖) = 𝑥𝑖−1, 𝑖 = 2, 3, …}
compare with Categories, Section 4.14. As explained in Homology, Section 10.23 this is
actually a limit in the category of 𝑅-modules, as defined in Categories, Section 4.13.

Lemma 7.81.1. Let 𝑅 be a ring. Let 0 → 𝐾𝑖 → 𝐿𝑖 → 𝑀𝑖 → 0 be short exact sequences
of 𝑅-modules, 𝑖 ≥ 1 which fit into maps of short exact sequences

0 // 𝐾𝑖
// 𝐿𝑖

//𝑀𝑖
// 0

0 // 𝐾𝑖+1
//

OO

𝐿𝑖+1
//

OO

𝑀𝑖+1
//

OO

0

If for every 𝑖 there exists a 𝑐 = 𝑐(𝑖) ≥ 𝑖 such that Im(𝐾𝑐 → 𝐾𝑖) = Im(𝐾𝑗 → 𝐾𝑖) for all
𝑗 ≥ 𝑐, then the sequence

0 → 𝑙𝑖𝑚 𝐾𝑖 → 𝑙𝑖𝑚 𝐿𝑖 → 𝑙𝑖𝑚 𝑀𝑖 → 0

is exact.

Proof. This is a special case of the more general Lemma 7.80.4. �

7.82. Mittag-Leffler modules

AMittag-Leffler module is (very roughly) a module which can be written as a directed limit
whose dual is a Mittag-Leffler system. To be able to give a precise definition we need to
do a bit of work.
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Definition 7.82.1. Let (𝑀𝑖, 𝑓𝑖𝑗) be a directed system of 𝑅-modules. We say that (𝑀𝑖, 𝑓𝑖𝑗) is
aMittag-Leffler directed system of modules if each 𝑀𝑖 is an 𝑅-module of finite presentation
and if for every 𝑅-module 𝑁, the inverse system

(𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁), 𝐻𝑜𝑚𝑅(𝑓𝑖𝑗, 𝑁))
is Mittag-Leffler.

We are going to characterize those 𝑅-modules that are colimits of Mittag-Leffler directed
systems of modules.

Definition 7.82.2. Let 𝑓 ∶ 𝑀 → 𝑁 and 𝑔 ∶ 𝑀 → 𝑀′ be maps of 𝑅-modules. Then we
say 𝑔 dominates 𝑓 if for any 𝑅-module 𝑄, we have ker(𝑓 ⊗𝑅 id𝑄) ⊂ ker(𝑔 ⊗𝑅 id𝑄).

It is enough to check this condition for finitely presented modules.

Lemma 7.82.3. Let 𝑓 ∶ 𝑀 → 𝑁 and 𝑔 ∶ 𝑀 → 𝑀′ be maps of 𝑅-modules. Then 𝑔
dominates 𝑓 if and only if for any finitely presented 𝑅-module 𝑄, we have ker(𝑓 ⊗𝑅 id𝑄) ⊂
ker(𝑔 ⊗𝑅 id𝑄).

Proof. Suppose ker(𝑓 ⊗𝑅 id𝑄) ⊂ ker(𝑔 ⊗𝑅 id𝑄) for all finitely presented modules 𝑄.
If 𝑄 is an arbitrary module, write 𝑄 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑄𝑖 as a colimit of a directed system of
finitely presented modules 𝑄𝑖. Then ker(𝑓 ⊗𝑅 id𝑄𝑖

) ⊂ ker(𝑔 ⊗𝑅 id𝑄𝑖
) for all 𝑖. Since taking

directed colimits is exact and commutes with tensor product, it follows that ker(𝑓⊗𝑅 id𝑄) ⊂
ker(𝑔 ⊗𝑅 id𝑄). �

The above definition of domination is related to the usual notion of domination of maps as
follows.

Lemma 7.82.4. Let 𝑓 ∶ 𝑀 → 𝑁 and 𝑔 ∶ 𝑀 → 𝑀′ be maps of 𝑅-modules. Suppose
Coker(𝑓) is of finite presentation. Then 𝑔 dominates 𝑓 if and only if 𝑔 factors through 𝑓, i.e.
there exists a module map ℎ ∶ 𝑁 → 𝑀′ such that 𝑔 = ℎ ∘ 𝑓.

Proof. Consider the pushout of 𝑓 and 𝑔,

𝑀
𝑓 //

𝑔
��

𝑁

𝑔′

��
𝑀′ 𝑓′

// 𝑁′

where 𝑁′ is 𝑀′ ⊕ 𝑁 modulo the submodule consisting of elements (𝑔(𝑥), −𝑓(𝑥)) for 𝑥 ∈
𝑀. We are going to show that the two conditions we wish to prove equivalent are each
equivalent to 𝑓′ being universally injective.

From the definition of 𝑁′ we have a short exact sequence
0 → ker(𝑓) ∩ ker(𝑔) → ker(𝑓) → ker(𝑓′) → 0.

Since tensoring commutes with taking pushouts, we have such a short exact sequence
0 → ker(𝑓 ⊗ id𝑄) ∩ ker(𝑔 ⊗ id𝑄) → ker(𝑓 ⊗ id𝑄) → ker(𝑓′ ⊗ id𝑄) → 0

for every 𝑅-module 𝑄. So 𝑓′ is universally injective if and only if ker(𝑓 ⊗ id𝑄) ⊂ ker(𝑔 ⊗
id𝑄) for every 𝑄, if and only if 𝑔 dominates 𝑓.
On the other hand, from the definition of the pushout it follows that Coker(𝑓′) = Coker(𝑓),
so Coker(𝑓′) is of finite presentation. Then by Lemma 7.76.4, 𝑓′ is universally injective if
and only if

0 → 𝑀′ 𝑓′

−−→ 𝑁′ → Coker(𝑓′) → 0
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splits. This is the case if and only if there is a map ℎ′ ∶ 𝑁′ → 𝑀′ such that ℎ′ ∘ 𝑓′ = id𝑀′.
From the universal property of the pushout, the existence of such an ℎ′ is equivalent to 𝑔
factoring through 𝑓. �

Proposition 7.82.5. Let 𝑀 be an 𝑅-module. Let (𝑀𝑖, 𝑓𝑖𝑗) be a directed system of finitely
presented 𝑅-modules, indexed by 𝐼, such that 𝑀 = 𝑐𝑜𝑙𝑖𝑚 𝑀𝑖. Let 𝑓𝑖 ∶ 𝑀𝑖 → 𝑀 be the
canonical map. The following are equivalent:

(1) For every finitely presented 𝑅-module 𝑃 and module map 𝑓 ∶ 𝑃 → 𝑀, there
exists a finitely presented 𝑅-module 𝑄 and a module map 𝑔 ∶ 𝑃 → 𝑄 such that
𝑔 and 𝑓 dominate each other, i.e., ker(𝑓 ⊗𝑅 id𝑁) = ker(𝑔 ⊗𝑅 id𝑁) for every
𝑅-module 𝑁.

(2) For each 𝑖 ∈ 𝐼, there exists 𝑗 ≥ 𝑖 such that 𝑓𝑖𝑗 ∶ 𝑀𝑖 → 𝑀𝑗 dominates 𝑓𝑖 ∶ 𝑀𝑖 →
𝑀.

(3) For each 𝑖 ∈ 𝐼, there exists 𝑗 ≥ 𝑖 such that 𝑓𝑖𝑗 ∶ 𝑀𝑖 → 𝑀𝑗 factors through
𝑓𝑖𝑘 ∶ 𝑀𝑖 → 𝑀𝑘 for all 𝑘 ≥ 𝑖.

(4) For every 𝑅-module 𝑁, the inverse system (𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁), 𝐻𝑜𝑚𝑅(𝑓𝑖𝑗, 𝑁)) is
Mittag-Leffler.

(5) For 𝑁 = ∏𝑠∈𝐼 𝑀𝑠, the inverse system (𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁), 𝐻𝑜𝑚𝑅(𝑓𝑖𝑗, 𝑁)) is Mittag-
Leffler.

Proof. First we prove the equivalence of (1) and (2). Suppose (1) holds and let 𝑖 ∈ 𝐼.
Corresponding to the map 𝑓𝑖 ∶ 𝑀𝑖 → 𝑀, we can choose 𝑔 ∶ 𝑀𝑖 → 𝑄 as in (1). Since 𝑀𝑖
and 𝑄 are of finite presentation, so is Coker(𝑔). Then by Lemma 7.82.4, 𝑓𝑖 ∶ 𝑀𝑖 → 𝑀
factors through 𝑔 ∶ 𝑀𝑖 → 𝑄, say 𝑓𝑖 = ℎ ∘ 𝑔 for some ℎ ∶ 𝑄 → 𝑀. Then since 𝑄 is
finitely presented, ℎ factors through 𝑀𝑗 → 𝑀 for some 𝑗 ≥ 𝑖, say ℎ = 𝑓𝑗 ∘ ℎ′ for some
ℎ′ ∶ 𝑄 → 𝑀𝑗. In total we have a commutative diagram

𝑀

𝑀𝑖

𝑔
  

𝑓𝑖

>>

𝑓𝑖𝑗 //𝑀𝑗.

𝑓𝑗
aa

𝑄
ℎ′

>>

Thus 𝑓𝑖𝑗 dominates 𝑔. But 𝑔 dominates 𝑓𝑖, so 𝑓𝑖𝑗 dominates 𝑓𝑖.
Conversely, suppose (2) holds. Let 𝑃 be of finite presentation and 𝑓 ∶ 𝑃 → 𝑀 a module
map. Then 𝑓 factors through 𝑓𝑖 ∶ 𝑀𝑖 → 𝑀 for some 𝑖 ∈ 𝐼, say 𝑓 = 𝑓𝑖 ∘ 𝑔′ for some
𝑔′ ∶ 𝑃 → 𝑀𝑖. Choose by (2) a 𝑗 ≥ 𝑖 such that 𝑓𝑖𝑗 dominates 𝑓𝑖. We have a commutative
diagram

𝑃

𝑔′

��

𝑓 //𝑀

𝑀𝑖

𝑓𝑖

==

𝑓𝑖𝑗
//𝑀𝑗 .

𝑓𝑗

OO

From the diagram and the fact that 𝑓𝑖𝑗 dominates 𝑓𝑖, we find that 𝑓 and 𝑓𝑖𝑗 ∘ 𝑔′ dominate
each other. Hence taking 𝑔 = 𝑓𝑖𝑗 ∘ 𝑔′ ∶ 𝑃 → 𝑀𝑗 works.
Next we prove (2) is equivalent to (3). Let 𝑖 ∈ 𝐼. It is always true that 𝑓𝑖 dominates 𝑓𝑖𝑘
for 𝑘 ≥ 𝑖, since 𝑓𝑖 factors through 𝑓𝑖𝑘. If (2) holds, choose 𝑗 ≥ 𝑖 such that 𝑓𝑖𝑗 dominates
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𝑓𝑖. Then since domination is a transitive relation, 𝑓𝑖𝑗 dominates 𝑓𝑖𝑘 for 𝑘 ≥ 𝑖. All 𝑀𝑖
are of finite presentation, so Coker(𝑓𝑖𝑘) is of finite presentation for 𝑘 ≥ 𝑖. By Lemma
7.82.4, 𝑓𝑖𝑗 factors through 𝑓𝑖𝑘 for all 𝑘 ≥ 𝑖. Thus (2) implies (3). On the other hand, if
(3) holds then for any 𝑅-module 𝑁, 𝑓𝑖𝑗 ⊗𝑅 id𝑁 factors through 𝑓𝑖𝑘 ⊗𝑅 id𝑁 for 𝑘 ≥ 𝑖. So
ker(𝑓𝑖𝑘 ⊗𝑅 id𝑁) ⊂ ker(𝑓𝑖𝑗 ⊗𝑅 id𝑁) for 𝑘 ≥ 𝑖. But ker(𝑓𝑖 ⊗𝑅 id𝑁 ∶ 𝑀𝑖 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁)
is the union of ker(𝑓𝑖𝑘 ⊗𝑅 id𝑁) for 𝑘 ≥ 𝑖. Thus ker(𝑓𝑖 ⊗𝑅 id𝑁) ⊂ ker(𝑓𝑖𝑗 ⊗𝑅 id𝑁) for any
𝑅-module 𝑁, which by definition means 𝑓𝑖𝑗 dominates 𝑓𝑖.

It is trivial that (3) implies (4) implies (5). We show (5) implies (3). Let 𝑁 = ∏𝑠∈𝐼 𝑀𝑠. If
(5) holds, then given 𝑖 ∈ 𝐼 choose 𝑗 ≥ 𝑖 such that

Im(𝐻𝑜𝑚(𝑀𝑗, 𝑁) → 𝐻𝑜𝑚(𝑀𝑖, 𝑁)) = Im(𝐻𝑜𝑚(𝑀𝑘, 𝑁) → 𝐻𝑜𝑚(𝑀𝑖, 𝑁))
for all 𝑘 ≥ 𝑗. Passing the product over 𝑠 ∈ 𝐼 outside of the 𝐻𝑜𝑚's and looking at the maps
on each component of the product, this says

Im(𝐻𝑜𝑚(𝑀𝑗, 𝑀𝑠) → 𝐻𝑜𝑚(𝑀𝑖, 𝑀𝑠)) = Im(𝐻𝑜𝑚(𝑀𝑘, 𝑀𝑠) → 𝐻𝑜𝑚(𝑀𝑖, 𝑀𝑠))
for all 𝑘 ≥ 𝑗 and 𝑠 ∈ 𝐼. Taking 𝑠 = 𝑗 we have

Im(𝐻𝑜𝑚(𝑀𝑗, 𝑀𝑗) → 𝐻𝑜𝑚(𝑀𝑖, 𝑀𝑗)) = Im(𝐻𝑜𝑚(𝑀𝑘, 𝑀𝑗) → 𝐻𝑜𝑚(𝑀𝑖, 𝑀𝑗))
for all 𝑘 ≥ 𝑗. Since 𝑓𝑖𝑗 is the image of id ∈ 𝐻𝑜𝑚(𝑀𝑗, 𝑀𝑗) under 𝐻𝑜𝑚(𝑀𝑗, 𝑀𝑗) →
𝐻𝑜𝑚(𝑀𝑖, 𝑀𝑗), this shows that for any 𝑘 ≥ 𝑗 there is ℎ ∈ 𝐻𝑜𝑚(𝑀𝑘, 𝑀𝑗) such that 𝑓𝑖𝑗 =
ℎ ∘ 𝑓𝑖𝑘. If 𝑗 ≥ 𝑘 then we can take ℎ = 𝑓𝑘𝑗. Hence (3) holds. �

Definition 7.82.6. Let 𝑀 be an 𝑅-module. We say that 𝑀 isMittag-Leffler if the equivalent
conditions of Proposition 7.82.5 hold.

In particular a finitely presented module is Mittag-Leffler.

Remark 7.82.7. Let 𝑀 be a flat 𝑅-module. By Lazard's theorem (Theorem 7.75.4) we
can write 𝑀 = 𝑐𝑜𝑙𝑖𝑚 𝑀𝑖 as the colimit of a directed system (𝑀𝑖, 𝑓𝑖𝑗) where the 𝑀𝑖 are
free finite 𝑅-modules. For 𝑀 to be Mittag-Leffler, it is enough for the inverse system of
duals (𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅), 𝐻𝑜𝑚𝑅(𝑓𝑖𝑗, 𝑅)) to be Mittag-Leffler. This follows from criterion (4)
of Proposition 7.82.5 and the fact that for a free finite 𝑅-module 𝐹, there is a functorial
isomorphism 𝐻𝑜𝑚𝑅(𝐹, 𝑅) ⊗𝑅 𝑁 ≅ 𝐻𝑜𝑚𝑅(𝐹, 𝑁) for any 𝑅-module 𝑁.

Lemma 7.82.8. If 𝑅 is a ring and 𝑀, 𝑁 are Mittag-Leffler modules over 𝑅, then 𝑀 ⊗𝑅 𝑁
is a Mittag-Leffler module.

Proof. Write 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 and 𝑁 = 𝑐𝑜𝑙𝑖𝑚𝑗∈𝐽 𝑁𝑗 as directed colimits of finitely
presented 𝑅-modules. Denote 𝑓𝑖𝑖′ ∶ 𝑀𝑖 → 𝑀𝑖′ and 𝑔𝑗𝑗′ ∶ 𝑁𝑗 → 𝑁𝑗′ the transi-
tion maps. Then 𝑀𝑖 ⊗𝑅 𝑁𝑗 is a finitely presented 𝑅-module (see Lemma 7.11.14), and
𝑀 ⊗𝑅 𝑁 = 𝑐𝑜𝑙𝑖𝑚(𝑖,𝑗)∈𝐼×𝐽 𝑀𝑖 ⊗𝑅 𝑀𝑗. Pick (𝑖, 𝑗) ∈ 𝐼 × 𝐽. By the definition of a Mittag-
Leffler module we have Proposition 7.82.5 (3) for both systems. In other words there ex-
ist 𝑖′ ≥ 𝑖 and 𝑗′ ≥ 𝑗 such that for every choice of 𝑖″ ≥ 𝑖 and 𝑗″ ≥ 𝑗 there exist maps
𝑎 ∶ 𝑀𝑖″ → 𝑀𝑖′ and 𝑏 ∶ 𝑀𝑗″ → 𝑀𝑗′ such that 𝑓𝑖𝑖′ = 𝑎 ∘ 𝑓𝑖𝑖″ and 𝑔𝑗𝑗′ = 𝑏 ∘ 𝑔𝑗𝑗″. Then it
is clear that 𝑎 ⊗ 𝑏 ∶ 𝑀𝑖″ ⊗𝑅 𝑁𝑗″ → 𝑀𝑖′ ⊗𝑅 𝑁𝑗′ serves the same purpose for the system
(𝑀𝑖 ⊗𝑅 𝑁𝑗, 𝑓𝑖𝑖′ ⊗ 𝑔𝑗𝑗′). Thus by the characterization Proposition 7.82.5 (3) we conclude
that 𝑀 ⊗𝑅 𝑁 is Mittag-Leffler. �

Lemma 7.82.9. Let 𝑅 be a ring and 𝑀 an 𝑅-module. Then 𝑀 is Mittag-Leffler if and
only if for every finite free 𝑅-module 𝐹 and module map 𝑓 ∶ 𝐹 → 𝑀, there exists a finitely
presented 𝑅-module 𝑄 and a module map 𝑔 ∶ 𝐹 → 𝑄 such that 𝑔 and 𝑓 dominate each
other, i.e., ker(𝑓 ⊗𝑅 id𝑁) = ker(𝑔 ⊗𝑅 id𝑁) for every 𝑅-module 𝑁.
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Proof. Since the condition is clear weaker than condition (1) of Proposition 7.82.5 we see
that a Mittag-Leffler module satisfies the condition. Conversely, suppose that 𝑀 satisfies
the condition and that 𝑓 ∶ 𝑃 → 𝑀 is an 𝑅-module map from a finitely presented 𝑅-module
𝑃 into 𝑀. Choose a surjection 𝐹 → 𝑃 where 𝐹 is a finite free 𝑅-module. By assumption
we can find a map 𝐹 → 𝑄 where 𝑄 is a finitely presented 𝑅-module such that 𝐹 → 𝑄 and
𝐹 → 𝑀 dominate each other. In particular, the kernel of 𝐹 → 𝑄 contains the kernel of
𝐹 → 𝑃, hence we obtain an 𝑅-module map 𝑔 ∶ 𝑃 → 𝑄 such that 𝐹 → 𝑄 is equal to the
composition 𝐹 → 𝑃 → 𝑄. Let 𝑁 be any 𝑅-module and consider the commutative diagram

𝐹 ⊗𝑅 𝑁

��

// 𝑄 ⊗𝑅 𝑁

𝑃 ⊗𝑅 𝑁

99

//𝑀 ⊗𝑅 𝑁

By assumption the kernels of 𝐹 ⊗𝑅 𝑁 → 𝑄 ⊗𝑅 𝑁 and 𝐹 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 are equal.
Hence, as 𝐹 ⊗𝑅 𝑁 → 𝑃 ⊗𝑅 𝑁 is surjective, also the kernels of 𝑃 ⊗𝑅 𝑁 → 𝑄 ⊗𝑅 𝑁 and
𝑃 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 are equal. �

Lemma 7.82.10. Let 𝑅 → 𝑆 be a finite and finitely presented ring map. Let 𝑀 be an
𝑆-module. If 𝑀 is a Mittag-Leffler module over 𝑆 then 𝑀 is a Mittag-Leffler module over
𝑅.
Proof. Assume 𝑀 is a Mittag-Leffler module over 𝑆. Write 𝑀 = 𝑐𝑜𝑙𝑖𝑚 𝑀𝑖 as a directed
colimit of finitely presented 𝑆-modules 𝑀𝑖. As 𝑀 is Mittag-Leffler over 𝑆 there exists for
each 𝑖 an index 𝑗 ≥ 𝑖 such that for all 𝑘 ≥ 𝑗 there is a factorization 𝑓𝑖𝑗 = ℎ ∘ 𝑓𝑖𝑘 (where ℎ
depends on 𝑖, the choice of 𝑗 and 𝑘). Note that by Lemma 7.7.4 the modules 𝑀𝑖 are also
finitely presented as 𝑅-modules. Moreover, all the maps 𝑓𝑖𝑗, 𝑓𝑖𝑘, ℎ are maps of 𝑅-modules.
Thus we see that the system (𝑀𝑖, 𝑓𝑖𝑗) satisfies the same condition when viewed as a system
of 𝑅-modules. Thus 𝑀 is Mittag-Leffler as an 𝑅-module. �

Lemma 7.82.11. Let𝑅 be a ring. Let𝑆 = 𝑅/𝐼 for some finitely generated ideal 𝐼. Let𝑀 be
an 𝑆-module. Then 𝑀 is a Mittag-Leffler module over 𝑅 if and only if 𝑀 is a Mittag-Leffler
module over 𝑆.
Proof. One implication follows from Lemma 7.82.10. To prove the other, assume 𝑀 is
Mittag-Leffler as an 𝑅-module. Write 𝑀 = 𝑐𝑜𝑙𝑖𝑚 𝑀𝑖 as a directed colimit of finitely pre-
sented 𝑆-modules. As 𝐼 is finitely generated, the ring 𝑆 is finite and finitely presented as an
𝑅-algebra, hence the modules 𝑀𝑖 are finitely presented as 𝑅-modules, see Lemma 7.7.4.
Next, let 𝑁 be any 𝑆-module. Note that for each 𝑖 we have 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁) = 𝐻𝑜𝑚𝑆(𝑀𝑖, 𝑁)
as 𝑅 → 𝑆 is surjective. Hence the condition that the inverse system (𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁))𝑖 satis-
fies Mittag-Leffler, implies that the system (𝐻𝑜𝑚𝑆(𝑀𝑖, 𝑁))𝑖 satisfies Mittag-Leffler. Thus
𝑀 is Mittag-Leffler over 𝑆 by definition. �

Remark 7.82.12. Let 𝑅 → 𝑆 be a finite and finitely presented ring map. Let 𝑀 be an
𝑆-module which is Mittag-Leffler as an 𝑅-module. Then it is in general not the case that
if 𝑀 is Mittag-Leffler as an 𝑆-module. For example suppose that 𝑆 is the ring of dual
numbers over 𝑅, i.e., 𝑆 = 𝑅⊕𝑅𝜖 with 𝜖2 = 0. Then an 𝑆-module consists of an 𝑅-module
𝑀 endowedwith a square zero 𝑅-linear endomorphism 𝜖 ∶ 𝑀 → 𝑀. Now suppose that 𝑀0
is an 𝑅-module which is not Mittag-Leffler. Choose a presentation 𝐹1

𝑢
−→ 𝐹0 → 𝑀0 → 0

with 𝐹1 and 𝐹0 free 𝑅-modules. Set 𝑀 = 𝐹1 ⊕ 𝐹0 with

𝜖 = (
0 0
𝑢 0) ∶ 𝑀 ⟶ 𝑀.
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Then 𝑀/𝜖𝑀 ≅ 𝐹1 ⊕ 𝑀0 is not Mittag-Leffler over 𝑅 = 𝑆/𝜖𝑆, hence not Mittag-Leffler
over 𝑆 (see Lemma 7.82.11). On the other hand, 𝑀/𝜖𝑀 = 𝑀 ⊗𝑆 𝑆/𝜖𝑆 which would be
Mittag-Leffler over 𝑆 if 𝑀 was, see Lemma 7.82.8.

7.83. Interchanging direct products with tensor

Let 𝑀 be an 𝑅-module and let (𝑄𝛼)𝛼∈𝐴 be a family of 𝑅-modules. Then there is a canonical
map 𝑀⊗𝑅 (∏𝛼∈𝐴 𝑄𝛼) → ∏𝛼∈𝐴(𝑀⊗𝑅 𝑄𝛼) given on pure tensors by 𝑥⊗(𝑞𝛼) ↦ (𝑥⊗𝑞𝛼).
This map is not necessarily injective or surjective, as the following example shows.

Example 7.83.1. Take 𝑅 = 𝐙, 𝑀 = 𝐐, and consider the family 𝑄𝑛 = 𝐙/𝑛 for 𝑛 ≥ 1. Then
∏𝑛(𝑀⊗𝑄𝑛) = 0. However there is an injection 𝐐 → 𝑀⊗(∏𝑛 𝑄𝑛) obtained by tensoring
the injection 𝐙 → ∏𝑛 𝑄𝑛 by 𝑀, so 𝑀 ⊗ (∏𝑛 𝑄𝑛) is nonzero. Thus 𝑀 ⊗ (∏𝑛 𝑄𝑛) →
∏𝑛(𝑀 ⊗ 𝑄𝑛) is not injective.

On the other hand, take again 𝑅 = 𝐙, 𝑀 = 𝐐, and let 𝑄𝑛 = 𝐙 for 𝑛 ≥ 1. The image
of 𝑀 ⊗ (∏𝑛 𝑄𝑛) → ∏𝑛(𝑀 ⊗ 𝑄𝑛) = ∏𝑛 𝑀 consists precisely of sequences of the form
(𝑎𝑛/𝑚)𝑛≥1 with 𝑎𝑛 ∈ 𝐙 and 𝑚 some nonzero integer. Hence the map is not surjective.

We determine below the precise conditions needed on 𝑀 for the map 𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) →
∏𝛼(𝑀 ⊗𝑅 𝑄𝛼) to be surjective, bijective, or injective for all choices of (𝑄𝛼)𝛼∈𝐴. This is
relevant because the modules for which it is injective turn out to be exactly Mittag-Leffler
modules (Proposition 7.83.5). In what follows, if 𝑀 is an 𝑅-module and 𝐴 a set, we write
𝑀𝐴 for the product ∏𝛼∈𝐴 𝑀.

Proposition 7.83.2. Let 𝑀 be an 𝑅-module. The following are equivalent:
(1) 𝑀 is finitely generated.
(2) For every family (𝑄𝛼)𝛼∈𝐴 of 𝑅-modules, the canonical map 𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) →

∏𝛼(𝑀 ⊗𝑅 𝑄𝛼) is surjective.
(3) For every 𝑅-module 𝑄 and every set 𝐴, the canonical map 𝑀 ⊗𝑅 𝑄𝐴 → (𝑀 ⊗𝑅

𝑄)𝐴 is surjective.
(4) For every set 𝐴, the canonical map 𝑀 ⊗𝑅 𝑅𝐴 → 𝑀𝐴 is surjective.

Proof. First we prove (1) implies (2). Choose a surjection 𝑅𝑛 → 𝑀 and consider the
commutative diagram

𝑅𝑛 ⊗𝑅 (∏𝛼 𝑄𝛼) ≅ //

��

∏𝛼(𝑅𝑛 ⊗𝑅 𝑄𝛼)

��
𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) // ∏𝛼(𝑀 ⊗𝑅 𝑄𝛼).

The top arrow is an isomorphism and the vertical arrows are surjections. We conclude that
the bottom arrow is a surjection.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). In fact for
(1) to hold it suffices that the element 𝑑 = (𝑥)𝑥∈𝑀 of 𝑀𝑀 is in the image of the map
𝑓 ∶ 𝑀 ⊗𝑅 𝑅𝑀 → 𝑀𝑀. In this case 𝑑 = ∑𝑛

𝑖=1 𝑓(𝑥𝑖 ⊗ 𝑎𝑖) for some 𝑥𝑖 ∈ 𝑀 and 𝑎𝑖 ∈ 𝑅𝑀.
If for 𝑥 ∈ 𝑀 we write 𝑝𝑥 ∶ 𝑀𝑀 → 𝑀 for the projection onto the 𝑥-th factor, then

𝑥 = 𝑝𝑥(𝑑) =
𝑛

∑
𝑖=1

𝑝𝑥(𝑓(𝑥𝑖 ⊗ 𝑎𝑖)) =
𝑛

∑
𝑖=1

𝑝𝑥(𝑎𝑖)𝑥𝑖.

Thus 𝑥1, … , 𝑥𝑛 generate 𝑀. �
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Proposition 7.83.3. Let 𝑀 be an 𝑅-module. The following are equivalent:
(1) 𝑀 is finitely presented.
(2) For every family (𝑄𝛼)𝛼∈𝐴 of 𝑅-modules, the canonical map 𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) →

∏𝛼(𝑀 ⊗𝑅 𝑄𝛼) is bijective.
(3) For every 𝑅-module 𝑄 and every set 𝐴, the canonical map 𝑀 ⊗𝑅 𝑄𝐴 → (𝑀 ⊗𝑅

𝑄)𝐴 is bijective.
(4) For every set 𝐴, the canonical map 𝑀 ⊗𝑅 𝑅𝐴 → 𝑀𝐴 is bijective.

Proof. First we prove (1) implies (2). Choose a presentation 𝑅𝑚 → 𝑅𝑛 → 𝑀 and consider
the commutative diagram

𝑅𝑚 ⊗𝑅 (∏𝛼 𝑄𝛼) //

≅
��

𝑅𝑚 ⊗𝑅 (∏𝛼 𝑄𝛼) //

≅
��

𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) //

��

0

∏𝛼(𝑅𝑚 ⊗𝑅 𝑄𝛼) // ∏𝛼(𝑅𝑛 ⊗𝑅 𝑄𝛼) // ∏𝛼(𝑀 ⊗𝑅 𝑄𝛼) // 0.

The first two vertical arrows are isomorphisms and the rows are exact. This implies that the
map 𝑀⊗𝑅 (∏𝛼 𝑄𝛼) → ∏𝛼(𝑀⊗𝑅 𝑄𝛼) is surjective and, by a diagram chase, also injective.
Hence (2) holds.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). From Propo-
sition 7.83.2, if (4) holds we already know that 𝑀 is finitely generated. So we can choose
a surjection 𝐹 → 𝑀 where 𝐹 is free and finite. Let 𝐾 be the kernel. We must show 𝐾 is
finitely generated. For any set 𝐴, we have a commutative diagram

𝐾 ⊗𝑅 𝑅𝐴 //

𝑓3
��

𝐹 ⊗𝑅 𝑅𝐴 //

𝑓2 ≅
��

𝑀 ⊗𝑅 𝑅𝐴 //

𝑓1 ≅
��

0

0 // 𝐾𝐴 // 𝐹𝐴 //𝑀𝐴 // 0.
The map 𝑓1 is an isomorphism by assumption, the map 𝑓2 is a isomorphism since 𝐹 is free
and finite, and the rows are exact. A diagram chase shows that 𝑓3 is surjective, hence by
Proposition 7.83.2 we get that 𝐾 is finitely generated. �

We need the following lemma for the next proposition.

Lemma 7.83.4. Let 𝑀 be an 𝑅-module, 𝑃 a finitely presented 𝑅-module, and 𝑓 ∶ 𝑃 → 𝑀
a map. Let 𝑄 be an 𝑅-module and suppose 𝑥 ∈ ker(𝑃 ⊗ 𝑄 → 𝑀 ⊗ 𝑄). Then there exists a
finitely presented 𝑅-module 𝑃′ and a map 𝑓′ ∶ 𝑃 → 𝑃′ such that 𝑓 factors through 𝑓′ and
𝑥 ∈ ker(𝑃 ⊗ 𝑄 → 𝑃′ ⊗ 𝑄).

Proof. Write 𝑀 as a colimit 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 of a directed system of finitely presented
modules 𝑀𝑖. Since 𝑃 is finitely presented, the map 𝑓 ∶ 𝑃 → 𝑀 factors through 𝑀𝑗 → 𝑀
for some 𝑗 ∈ 𝐼. Upon tensoring by 𝑄 we have a commutative diagram

𝑀𝑗 ⊗ 𝑄

%%
𝑃 ⊗ 𝑄

99

//𝑀 ⊗ 𝑄.

The image 𝑦 of 𝑥 in 𝑀𝑗 ⊗ 𝑄 is in the kernel of 𝑀𝑗 ⊗ 𝑄 → 𝑀 ⊗ 𝑄. Since 𝑀 ⊗ 𝑄 =
𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼(𝑀𝑖 ⊗ 𝑄), this means 𝑦 maps to 0 in 𝑀𝑗′ ⊗ 𝑄 for some 𝑗′ ≥ 𝑗. Thus we may take
𝑃′ = 𝑀𝑗′ and 𝑓′ to be the composite 𝑃 → 𝑀𝑗 → 𝑀𝑗′. �
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Proposition 7.83.5. Let 𝑀 be an 𝑅-module. The following are equivalent:
(1) 𝑀 is Mittag-Leffler.
(2) For every family (𝑄𝛼)𝛼∈𝐴 of 𝑅-modules, the canonical map 𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) →

∏𝛼(𝑀 ⊗𝑅 𝑄𝛼) is injective.

Proof. First we prove (1) implies (2). Suppose 𝑀 is Mittag-Leffler and let 𝑥 be in the
kernel of 𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) → ∏𝛼(𝑀 ⊗𝑅 𝑄𝛼). Write 𝑀 as a colimit 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 of a
directed system of finitely presented modules 𝑀𝑖. Then 𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) is the colimit of
𝑀𝑖 ⊗𝑅 (∏𝛼 𝑄𝛼). So 𝑥 is the image of an element 𝑥𝑖 ∈ 𝑀𝑖 ⊗𝑅 (∏𝛼 𝑄𝛼). We must show
that 𝑥𝑖 maps to 0 in 𝑀𝑗 ⊗𝑅 (∏𝛼 𝑄𝛼) for some 𝑗 ≥ 𝑖. Since 𝑀 is Mittag-Leffler, we may
choose 𝑗 ≥ 𝑖 such that 𝑀𝑖 → 𝑀𝑗 and 𝑀𝑖 → 𝑀 dominate each other. Then consider the
commutative diagram

𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) // ∏𝛼(𝑀 ⊗𝑅 𝑄𝛼)

𝑀𝑖 ⊗𝑅 (∏𝛼 𝑄𝛼) ≅ //

��

OO

∏𝛼(𝑀𝑖 ⊗𝑅 𝑄𝛼)

��

OO

𝑀𝑗 ⊗𝑅 (∏𝛼 𝑄𝛼) ≅ // ∏𝛼(𝑀𝑗 ⊗𝑅 𝑄𝛼)

whose bottom two horizontal maps are isomorphisms, according to Proposition 7.83.3.
Since 𝑥𝑖 maps to 0 in ∏𝛼(𝑀⊗𝑅 𝑄𝛼), its image in ∏𝛼(𝑀𝑖 ⊗𝑅 𝑄𝛼) is in the kernel of the map
∏𝛼(𝑀𝑖 ⊗𝑅 𝑄𝛼) → ∏𝛼(𝑀 ⊗𝑅 𝑄𝛼). But this kernel equals the kernel of ∏𝛼(𝑀𝑖 ⊗𝑅 𝑄𝛼) →
∏𝛼(𝑀𝑗 ⊗𝑅 𝑄𝛼) according to the choice of 𝑗. Thus 𝑥𝑖 maps to 0 in ∏𝛼(𝑀𝑗 ⊗𝑅 𝑄𝛼) and
hence to 0 in 𝑀𝑗 ⊗𝑅 (∏𝛼 𝑄𝛼).

Now suppose (2) holds. We prove 𝑀 satisfies formulation (1) of being Mittag-Leffler from
Proposition 7.82.5. Let 𝑓 ∶ 𝑃 → 𝑀 be a map from a finitely presented module 𝑃 to
𝑀. Choose a set 𝐵 of representatives of the isomorphism classes of finitely presented
𝑅-modules. Let 𝐴 be the set of pairs (𝑄, 𝑥) where 𝑄 ∈ 𝐵 and 𝑥 ∈ ker(𝑃 ⊗ 𝑄 → 𝑀 ⊗ 𝑄).
For 𝛼 = (𝑄, 𝑥) ∈ 𝐴, we write 𝑄𝛼 for 𝑄 and 𝑥𝛼 for 𝑥. Consider the commutative diagram

𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼) // ∏𝛼(𝑀 ⊗𝑅 𝑄𝛼)

𝑃 ⊗𝑅 (∏𝛼 𝑄𝛼) ≅ //

OO

∏𝛼(𝑃 ⊗𝑅 𝑄𝛼)

OO

The top arrow is an injection by assumption, and the bottom arrow is an isomorphism
by Proposition 7.83.3. Let 𝑥 ∈ 𝑃 ⊗𝑅 (∏𝛼 𝑄𝛼) be the element corresponding to (𝑥𝛼) ∈
∏𝛼(𝑃 ⊗𝑅 𝑄𝛼) under this isomorphism. Then 𝑥 ∈ ker(𝑃 ⊗𝑅 (∏𝛼 𝑄𝛼) → 𝑀 ⊗𝑅 (∏𝛼 𝑄𝛼))
since the top arrow in the diagram is injective. By Lemma 7.83.4, we get a finitely pre-
sented module 𝑃′ and a map 𝑓′ ∶ 𝑃 → 𝑃′ such that 𝑓 ∶ 𝑃 → 𝑀 factors through 𝑓′ and
𝑥 ∈ ker(𝑃 ⊗𝑅 (∏𝛼 𝑄𝛼) → 𝑃′ ⊗𝑅 (∏𝛼 𝑄𝛼)). We have a commutative diagram

𝑃′ ⊗𝑅 (∏𝛼 𝑄𝛼) ≅ // ∏𝛼(𝑃′ ⊗𝑅 𝑄𝛼)

𝑃 ⊗𝑅 (∏𝛼 𝑄𝛼) ≅ //

OO

∏𝛼(𝑃 ⊗𝑅 𝑄𝛼)

OO
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where both the top and bottom arrows are isomorphisms by Proposition 7.83.3. Thus since
𝑥 is in the kernel of the left vertical map, (𝑥𝛼) is in the kernel of the right vertical map. This
means 𝑥𝛼 ∈ ker(𝑃 ⊗𝑅 𝑄𝛼 → 𝑃′ ⊗𝑅 𝑄𝛼) for every 𝛼 ∈ 𝐴. By the definition of 𝐴 this means
ker(𝑃 ⊗𝑅 𝑄 → 𝑃′ ⊗𝑅 𝑄) ⊃ ker(𝑃 ⊗𝑅 𝑄 → 𝑀 ⊗𝑅 𝑄) for all finitely presented 𝑄 and,
since 𝑓 ∶ 𝑃 → 𝑀 factors through 𝑓′ ∶ 𝑃 → 𝑃′, actually equality holds. By Lemma 7.82.3,
𝑓 and 𝑓′ dominate each other. �

Lemma 7.83.6. Let 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 be a universally exact sequence of
𝑅-modules. Then:

(1) If 𝑀2 is Mittag-Leffler, then 𝑀1 is Mittag-Leffler.
(2) If 𝑀1 and 𝑀3 are Mittag-Leffler, then 𝑀2 is Mittag-Leffler.

Proof. For any family (𝑄𝛼)𝛼∈𝐴 of 𝑅-modules we have a commutative diagram

0 //𝑀1 ⊗𝑅 (∏𝛼 𝑄𝛼) //

��

𝑀2 ⊗𝑅 (∏𝛼 𝑄𝛼) //

��

𝑀3 ⊗𝑅 (∏𝛼 𝑄𝛼) //

��

0

0 // ∏𝛼(𝑀1 ⊗ 𝑄𝛼) //∏𝛼(𝑀2 ⊗ 𝑄𝛼) // ∏𝛼(𝑀3 ⊗ 𝑄𝛼) // 0

with exact rows. Thus (1) and (2) follow from Proposition 7.83.5. �

Lemma 7.83.7. If 𝑀 = ⨁𝑖∈𝐼 𝑀𝑖 is a direct sum of 𝑅-modules, then 𝑀 is Mittag-Leffler
if and only if each 𝑀𝑖 is Mittag-Leffler.

Proof. The ``only if'' direction follows from Lemma 7.83.6 (1) and the fact that a split short
exact sequence is universally exact. For the converse, first note that if 𝐼 is finite then this
follows from Lemma 7.83.6 (2). For general 𝐼, if all 𝑀𝑖 are Mittag-Leffler then we prove
the same of 𝑀 by verifying condition (1) of Proposition 7.82.5. Let 𝑓 ∶ 𝑃 → 𝑀 be a map

from a finitely presented module 𝑃. Then 𝑓 factors as 𝑃
𝑓′

−−→ ⨁𝑖′∈𝐼′ 𝑀𝑖′ ↪ ⨁𝑖∈𝐼 𝑀𝑖 for
some finite subset 𝐼′ of 𝐼. By the finite case ⨁𝑖′∈𝐼′ 𝑀𝑖′ is Mittag-Leffler and hence there
exists a finitely presented module 𝑄 and a map 𝑔 ∶ 𝑃 → 𝑄 such that 𝑔 and 𝑓′ dominate
each other. Then also 𝑔 and 𝑓 dominate each other. �

Lemma 7.83.8. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. If 𝑆 is Mittag-Leffler
as an 𝑅-module, and 𝑀 is flat and Mittag-Leffler as an 𝑆-module, then 𝑀 is Mittag-Leffler
as an 𝑅-module.

Proof. We deduce using the characterization of Proposition 7.83.5. Namely, suppose that
𝑄𝛼 is a family of 𝑅-modules. Consider the composition

𝑀 ⊗𝑅 ∏𝛼 𝑄𝛼 = 𝑀 ⊗𝑆 𝑆 ⊗𝑅 ∏𝛼 𝑄𝛼

��
𝑀 ⊗𝑆 ∏𝛼(𝑆 ⊗𝑅 𝑄𝛼)

��
∏𝛼(𝑀 ⊗𝑆 ⊗𝑅𝑄𝛼) = ∏𝛼(𝑀 ⊗𝑅 𝑄𝛼)

The first arrows is injective as 𝑀 is flat over 𝑆 and 𝑆 is Mittag-Leffler over 𝑅 and the second
arrow is injective as 𝑀 is Mittag-Leffler over 𝑆. Hence 𝑀 is Mittag-Leffler over 𝑅. �
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7.84. Coherent rings

We use the discussion on interchanging ∏ and ⊗ to determine for which rings products of
flat modules are flat. It turns out that these are the so-called coherent rings. You may be
more familiar with the notion of a coherent 𝒪𝑋-module on a ringed space, see Modules,
Section 7.84.

Definition 7.84.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module.
(1) We say 𝑀 is a coherent module if it is finitely generated and every finitely gen-

erated submodule of 𝑀 is finitely presented over 𝑅.
(2) We say 𝑅 is a coherent ring if it is coherent as a module over itself.

Thus a ring is coherent if and only if every finitely generated ideal is finitely presented as a
module. The category of coherent modules is abelian.

Lemma 7.84.2. Let 𝑅 be a ring.
(1) A finite type submodule of a coherent module is coherent.
(2) Let 𝜑 ∶ 𝑁 → 𝑀 be a homomorphism from a finite module to a coherent module.

Then Ker(𝜑) is finite.
(3) Let 𝜑 ∶ 𝑁 → 𝑀 be a homomorphism of coherent modules. Then Ker(𝜑) and

Coker(𝜑) are coherent modules.
(4) The category of coherent modules is an abelian subcategory of Mod𝑅.
(5) Given a short exact sequence of 𝑅-modules 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 if two

out of three are coherent so is the third.

Proof. The first statement is immediate from the definition. During the rest of the proof
we will use the results of Lemma 7.5.4 without further mention.

Let 𝜑 ∶ 𝑁 → 𝑀 satisfy the assumptions of (2). Suppose that 𝑁 is generated by 𝑥1, … , 𝑥𝑛.
By Definition 7.84.1 the kernel 𝐾 of the induced map ⨁𝑛

𝑖=1 𝑅 → 𝑀, 𝑒𝑖 ↦ 𝜑(𝑥𝑖) is of finite
type. Hence Ker(𝜑) which is the image of the composition 𝐾 → ⨁𝑛

𝑖=1 𝑅 → 𝑁 is of finite
type. This proves (2).

Let 𝜑 ∶ 𝑁 → 𝑀 satisfy the assumptions of (3). By (2) the kernel of 𝜑 is of finite type and
hence by (1) it is coherent.

With the same hypotheses let us show that Coker(𝜑) is coherent. Since 𝑀 is finite so is
Coker(𝜑). Let 𝑥𝑖 ∈ Coker(𝜑). We have to show that the kernel of the associated morphism
Ψ ∶ ⨁𝑛

𝑖=1 𝑅 → Coker(𝜑) is finite. Choose 𝑥𝑖 ∈ 𝑀 lifting 𝑥𝑖. Thus Ψ lifts to Ψ ∶
⨁𝑛

𝑖=1 𝑅 → 𝑀. Consider the following diagram

0 // Ker(Ψ) //

��

⨁𝑛
𝑖=1 𝑅 // 𝑅 //

��

0

0 // Ker(Ψ) //⨁𝑛
𝑖=1 𝑅 // Coker(𝜑) // 0

By the snake lemma we get a short exact sequence 0 → Ker(Ψ) → Ker(Ψ) → Im(𝜑) → 0.
Hence we see that Ker(Ψ) is finite.

Statement (4) follows from (3).

Let 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 be a short exact sequence of 𝑅-modules. It suffices
to prove that if 𝑀1 and 𝑀3 are coherent so is 𝑀2. By Lemma 7.5.4 we see that 𝑀2 is
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finite. Let 𝑥1, … , 𝑥𝑛 be finitely many elements of 𝑀2. We have to show that the module of
relations 𝐾 between them is finite. Consider the following commutative diagram

0 // 0 //

��

⨁𝑛
𝑖=1 𝑅 //

��

⨁𝑛
𝑖=1 𝑅 //

��

0

0 //𝑀1
//𝑀2

//𝑀3
// 0

with obvious notation. By the snake lemma we get an exact sequence 0 → 𝐾 → 𝐾3 → 𝑀1
where 𝐾3 is themodule of relations among the images of the 𝑥𝑖 in 𝑀3. Since 𝑀3 is coherent
we see that 𝐾3 is a finite module. Since 𝑀1 is coherent we see that the image 𝐼 of 𝐾3 → 𝑀1
is coherent. Hence 𝐾 is the kernel of the map 𝐾3 → 𝐼 between a finite module and a
coherent module and hence finite by (2). �

Lemma 7.84.3. Let 𝑅 be a ring. If 𝑅 is coherent, then a module is coherent if and only if
it is finitely presented.

Proof. It is clear that a coherent module is finitely presented (over any ring). Coversely, if
𝑅 is coherent, then 𝑅⊕𝑛 is coherent and so is the cokernel of any map 𝑅⊕𝑚 → 𝑅⊕𝑛, see
Lemma 7.84.2. �

Lemma 7.84.4. A Noetherian ring is a coherent ring.

Proof. By Lemma 7.28.4 any finite 𝑅-module is finitely presented. In particular any ideal
of 𝑅 is finitely presented. �

Proposition 7.84.5. Let 𝑅 be a ring. The following are equivalent
(1) 𝑅 is coherent,
(2) any product of flat 𝑅-modules is flat, and
(3) for every set 𝐴 the module 𝑅𝐴 is flat.

Proof. Assume 𝑅 coherent, and let 𝑄𝛼, 𝛼 ∈ 𝐴 be a set of flat 𝑅-modules. We have to
show that 𝐼 ⊗𝑅 ∏𝛼 𝑄𝛼 → ∏ 𝑄𝛼 is injective for every finitely generated ideal 𝐼 of 𝑅,
see Lemma 7.35.4. Since 𝑅 is coherent 𝐼 is an 𝑅-module of finite presentation. Hence
𝐼 ⊗𝑅 ∏𝛼 𝑄𝛼 = ∏ 𝐼 ⊗𝑅 𝑄𝛼 by Proposition 7.83.3. The desired injectivity follows as
𝐼 ⊗𝑅 𝑄𝛼 → 𝑄𝛼 is injective by flatness of 𝑄𝛼.

The implication (2) ⇒ (3) is trivial.

Assume that the 𝑅-module 𝑅𝐴 is flat for every set 𝐴. Let 𝐼 be a finitely generated ideal
in 𝑅. Then 𝐼 ⊗𝑅 𝑅𝐴 → 𝑅𝐴 is injective by assumption. By Proposition 7.83.2 and the
finiteness of 𝐼 the image is equal to 𝐼𝐴. Hence 𝐼 ⊗𝑅 𝑅𝐴 = 𝐼𝐴 for every set 𝐴 and we
conclude that 𝐼 is finitely presented by Proposition 7.83.3. �

7.85. Examples and non-examples of Mittag-Leffler modules

We end this section with some examples and non-examples of Mittag-Leffler modules.

Example 7.85.1. Mittag-Leffler modules.
(1) Any finitely presented module is Mittag-Leffler. This follows, for instance, from

Proposition 7.82.5 (1). In general, it is true that a finitely generated module is
Mittag-Leffler if and only it is finitely presented. This follows from Propositions
7.83.2, 7.83.3, and 7.83.5.
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(2) A free module is Mittag-Leffler since it satisfies condition (1) of Proposition
7.82.5.

(3) By the previous example together with Lemma 7.83.7, projective modules are
Mittag-Leffler.

We also want to add to our list of examples power series rings over a Noetherian ring 𝑅.
This will be a consequence the following lemma.

Lemma 7.85.2. Let 𝑀 be a flat 𝑅-module. Suppose the following condition holds: if 𝐹 is
a free finite 𝑅-module and 𝑥 ∈ 𝐹 ⊗𝑅 𝑀, then there exists a smallest submodule 𝐹′ of 𝐹
such that 𝑥 ∈ 𝐹′ ⊗𝑅 𝑀. Then 𝑀 is Mittag-Leffler.

Proof. By Theorem 7.75.4 we can write 𝑀 as the colimit 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 of a directed
system (𝑀𝑖, 𝑓𝑖𝑗) of free finite 𝑅-modules. By Remark 7.82.7, it suffices to show that the
inverse system (𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅), 𝐻𝑜𝑚𝑅(𝑓𝑖𝑗, 𝑅)) is Mittag-Leffler. In other words, fix 𝑖 ∈ 𝐼
and for 𝑗 ≥ 𝑖 let 𝑄𝑗 be the image of 𝐻𝑜𝑚𝑅(𝑀𝑗, 𝑅) → 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅); we must show that
the 𝑄𝑗 stabilize.

Since𝑀𝑖 is free and finite, we canmake the identification𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑀𝑗) = 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅)⊗𝑅
𝑀𝑗 for all 𝑗. Using the fact that the 𝑀𝑗 are free, it follows that for 𝑗 ≥ 𝑖, 𝑄𝑗 is the
smallest submodule of 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) such that 𝑓𝑖𝑗 ∈ 𝑄𝑗 ⊗𝑅 𝑀𝑗. Under the identifica-
tion 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑀) = 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) ⊗𝑅 𝑀, the canonical map 𝑓𝑖 ∶ 𝑀𝑖 → 𝑀 is in
𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) ⊗𝑅 𝑀. By the assumption on 𝑀, there exists a smallest submodule 𝑄 of
𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) such that 𝑓𝑖 ∈ 𝑄 ⊗𝑅 𝑀. We are going to show that the 𝑄𝑗 stabilize to 𝑄.

For 𝑗 ≥ 𝑖 we have a commutative diagram

𝑄𝑗 ⊗𝑅 𝑀𝑗
//

��

𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) ⊗𝑅 𝑀𝑗

��
𝑄𝑗 ⊗𝑅 𝑀 // 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) ⊗𝑅 𝑀.

Since 𝑓𝑖𝑗 ∈ 𝑄𝑗 ⊗𝑅 𝑀𝑗 maps to 𝑓𝑖 ∈ 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) ⊗𝑅 𝑀, it follows that 𝑓𝑖 ∈ 𝑄𝑗 ⊗𝑅 𝑀.
Hence, by the choice of 𝑄, we have 𝑄 ⊂ 𝑄𝑗 for all 𝑗 ≥ 𝑖.

Since the 𝑄𝑗 are decreasing and 𝑄 ⊂ 𝑄𝑗 for all 𝑗 ≥ 𝑖, to show that the 𝑄𝑗 stabilize to 𝑄 it
suffices to find a 𝑗 ≥ 𝑖 such that 𝑄𝑗 ⊂ 𝑄. As an element of

𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) ⊗𝑅 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑗∈𝐽(𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) ⊗𝑅 𝑀𝑗),

𝑓𝑖 is the colimit of 𝑓𝑖𝑗 for 𝑗 ≥ 𝑖, and 𝑓𝑖 also lies in the submodule

𝑐𝑜𝑙𝑖𝑚𝑗∈𝐽(𝑄 ⊗𝑅 𝑀𝑗) ⊂ 𝑐𝑜𝑙𝑖𝑚𝑗∈𝐽(𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) ⊗𝑅 𝑀𝑗).

It follows that for some 𝑗 ≥ 𝑖, 𝑓𝑖𝑗 lies in 𝑄 ⊗𝑅 𝑀𝑗. Since 𝑄𝑗 is the smallest submodule of
𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅) with 𝑓𝑖𝑗 ∈ 𝑄𝑗 ⊗𝑅 𝑀𝑗, we conclude 𝑄𝑗 ⊂ 𝑄. �

Lemma 7.85.3. Let 𝑅 be a Noetherian ring and 𝐴 a set. Then 𝑀 = 𝑅𝐴 is a flat and
Mittag-Leffler 𝑅-module.

Proof. Combining Lemma 7.84.4 and Proposition 7.84.5 we see that 𝑀 is flat over 𝑅. We
show that 𝑀 satisfies the condition of Lemma 7.85.2. Let 𝐹 be a free finite 𝑅-module. If 𝐹′
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is any submodule of 𝐹 then it is finitely presented since 𝑅 is Noetherian. So by Proposition
7.83.3 we have a commutative diagram

𝐹′ ⊗𝑅 𝑀 //

≅
��

𝐹 ⊗𝑅 𝑀

≅
��

(𝐹′)𝐴 // 𝐹𝐴

by which we can identify the map 𝐹′ ⊗𝑅 𝑀 → 𝐹 ⊗𝑅 𝑀 with (𝐹′)𝐴 → 𝐹𝐴. Hence if
𝑥 ∈ 𝐹 ⊗𝑅 𝑀 corresponds to (𝑥𝛼) ∈ 𝐹𝐴, then the submodule of 𝐹′ of 𝐹 generated by the 𝑥𝛼
is the smallest submodule of 𝐹 such that 𝑥 ∈ 𝐹′ ⊗𝑅 𝑀. �

Lemma 7.85.4. Let 𝑅 be a Noetherian ring and 𝑛 a positive integer. Then the 𝑅-module
𝑀 = 𝑅[[𝑡1, … , 𝑡𝑛]] is flat and Mittag-Leffler.

Proof. As an 𝑅-module, we have 𝑀 = 𝑅𝐴 for a (countable) set 𝐴. Hence this lemma is a
special case of Lemma 7.85.3. �

Example 7.85.5. Non Mittag-Leffler modules.
(1) By Example 7.83.1 and Proposition 7.83.5, 𝐐 is not a Mittag-Leffler 𝐙-module.
(2) We prove below (Theorem 7.87.3) that for a flat and countably generated module,

projectivity is equivalent to being Mittag-Leffler. Thus any flat, countably gen-
erated, non-projective module 𝑀 is an example of a non-Mittag-Leffler module.
For such an example, see Remark 7.72.3.

(3) Let 𝑘 be a field. Let 𝑅 = 𝑘[[𝑥]]. The 𝑅-module 𝑀 = ∏𝑛∈𝐍 𝑅/(𝑥𝑛) is not
Mittag-Leffler. Namely, consider the element 𝜉 = (𝜉1, 𝜉2, 𝜉3, …) defined by 𝜉2𝑚 =
𝑥2𝑚−1

and 𝜉𝑛 = 0 else, so

𝜉 = (0, 𝑥, 0, 𝑥2, 0, 0, 0, 𝑥4, 0, 0, 0, 0, 0, 0, 0, 𝑥8, …)

Then the annihilator of 𝜉 in 𝑀/𝑥2𝑚
𝑀 is generated 𝑥2𝑚−1

for 𝑚 ≫ 0. But if 𝑀
was Mittag-Leffler, then there would exist a finite 𝑅-module 𝑄 and an element
𝜉′ ∈ 𝑄 such that the annihilator of 𝜉′ in 𝑄/𝑥𝑙𝑄 agrees with the annihilator of 𝜉 in
𝑀/𝑥𝑙𝑀 for all 𝑙 ≥ 1, see Proposition 7.82.5 (1). Now you can prove there exists
an integer 𝑎 ≥ 0 such that the annihilator of 𝜉′ in 𝑄/𝑥𝑙𝑄 is generated by either
𝑥𝑎 or 𝑥𝑙−𝑎 for all 𝑙 ≫ 0 (depending on whether 𝜉′ ∈ 𝑄 is torsion or not). The
combination of the above would give for all 𝑙 = 2𝑚 >> 0 the equality 𝑎 = 𝑙/2 or
𝑙 − 𝑎 = 𝑙/2 which is nonsensical.

(4) The same argument shows that (𝑥)-adic completion of⨁𝑛∈𝐍 𝑅/(𝑥𝑛) is notMittag-
Leffler over 𝑅 = 𝑘[[𝑥]] (hint: 𝜉 is actually an element of this completion).

(5) Let 𝑅 = 𝑘[𝑎, 𝑏]/(𝑎2, 𝑎𝑏, 𝑏2). Let 𝑆 be the finitely presented 𝑅-algebra with pre-
sentation 𝑆 = 𝑅[𝑡]/(𝑎𝑡 − 𝑏). Then as an 𝑅-module 𝑆 is countably generated
and indecomposable (details omitted). On the other hand, 𝑅 is Artinian local,
hence complete local, hence a henselian local ring, see Lemma 7.139.10. If
𝑆 was Mittag-Leffler as an 𝑅-module, then it would be a direct sum of finite
𝑅-modules by Lemma 7.139.26. Thus we conclude that 𝑆 is not Mittag-Leffler
as an 𝑅-module.

7.86. Countably generated Mittag-Leffler modules

It turns out that countably generated Mittag-Leffler modules have a particularly simple
structure.
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Lemma 7.86.1. Let 𝑀 be an 𝑅-module. Write 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 where (𝑀𝑖, 𝑓𝑖𝑗) is a
directed system of finitely presented 𝑅-modules. If 𝑀 is Mittag-Leffler and countably gen-
erated, then there is a directed countable subset 𝐼′ ⊂ 𝐼 such that 𝑀 ≅ 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼′ 𝑀𝑖.

Proof. Let 𝑥1, 𝑥2, … be a countable set of generators for 𝑀. For each 𝑥𝑛 choose 𝑖 ∈ 𝐼 such
that 𝑥𝑛 is in the image of the canonical map 𝑓𝑖 ∶ 𝑀𝑖 → 𝑀; let 𝐼′

0 ⊂ 𝐼 be the set of all these
𝑖. Now since 𝑀 is Mittag-Leffler, for each 𝑖 ∈ 𝐼′

0 we can choose 𝑗 ∈ 𝐼 such that 𝑗 ≥ 𝑖 and
𝑓𝑖𝑗 ∶ 𝑀𝑖 → 𝑀𝑗 factors through 𝑓𝑖𝑘 ∶ 𝑀𝑖 → 𝑀𝑘 for all 𝑘 ≥ 𝑖 (condition (3) of Proposition
7.82.5); let 𝐼′

1 be the union of 𝐼′
0 with all of these 𝑗. Since 𝐼′

1 is a countable, we can enlarge
it to a countable directed set 𝐼′

2 ⊂ 𝐼. Now we can apply the same procedure to 𝐼′
2 as we did

to 𝐼′
0 to get a new countable set 𝐼′

3 ⊂ 𝐼. Then we enlarge 𝐼′
3 to a countable directed set 𝐼′

4.
Continuing in this way---adding in a 𝑗 as in Proposition 7.82.5 (3) for each 𝑖 ∈ 𝐼′

ℓ if ℓ is
odd and enlarging 𝐼′

ℓ to a directed set if ℓ is even---we get a sequence of subsets 𝐼′
ℓ ⊂ 𝐼 for

ℓ ≥ 0. The union 𝐼′ = ⋃ 𝐼′
ℓ satisfies:

(1) 𝐼′ is countable and directed;
(2) each 𝑥𝑛 is in the image of 𝑓𝑖 ∶ 𝑀𝑖 → 𝑀 for some 𝑖 ∈ 𝐼′;
(3) if 𝑖 ∈ 𝐼′, then there is 𝑗 ∈ 𝐼′ such that 𝑗 ≥ 𝑖 and 𝑓𝑖𝑗 ∶ 𝑀𝑖 → 𝑀𝑗 factors through

𝑓𝑖𝑘 ∶ 𝑀𝑖 → 𝑀𝑘 for all 𝑘 ∈ 𝐼 with 𝑘 ≥ 𝑖. In particular ker(𝑓𝑖𝑘) ⊂ ker(𝑓𝑖𝑗) for
𝑘 ≥ 𝑖.

We claim that the canonical map 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼′ 𝑀𝑖 → 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 = 𝑀 is an isomorphism.
By (2) it is surjective. For injectivity, suppose 𝑥 ∈ 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼′ 𝑀𝑖 maps to 0 in 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖.
Representing 𝑥 by an element �̃� ∈ 𝑀𝑖 for some 𝑖 ∈ 𝐼′, this means that 𝑓𝑖𝑘(�̃�) = 0 for some
𝑘 ∈ 𝐼, 𝑘 ≥ 𝑖. But then by (3) there is 𝑗 ∈ 𝐼′, 𝑗 ≥ 𝑖, such that 𝑓𝑖𝑗(�̃�) = 0. Hence 𝑥 = 0 in
𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼′ 𝑀𝑖. �

Lemma 7.86.1 above implies that a countably generated Mittag-Leffler module 𝑀 over 𝑅
is the colimit of a system

𝑀1 → 𝑀2 → 𝑀3 → 𝑀4 → …

with each 𝑀𝑛 a finitely presented 𝑅-module. To see this argue as in the proof of Lemma
7.80.3 to see that a countable directed partially ordered set has a cofinal subset isomorphic
to (𝐍, ≥). Suppose 𝑅 = 𝑘[𝑥1, 𝑥2, 𝑥3, …] and 𝑀 = 𝑅/(𝑥𝑖). Then 𝑀 is finitely generated
but not finitely presented, hence not Mittag-Leffler (see Example 7.85.1 part (1)). But of
course you can write 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑛 𝑀𝑛 by taking 𝑀𝑛 = 𝑅/(𝑥1, … , 𝑥𝑛), hence the condition
that you can write 𝑀 as such a limit does not imply that 𝑀 is Mittag-Leffler.

Lemma 7.86.2. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Assume 𝑀 is Mittag-Leffler and
countably generated. For any 𝑅-module map 𝑓 ∶ 𝑃 → 𝑀 with 𝑃 finitely generated there
exists an endomorphism 𝛼 ∶ 𝑀 → 𝑀 such that

(1) 𝛼 ∶ 𝑀 → 𝑀 factors through a finitely presented 𝑅-module, and
(2) 𝛼 ∘ 𝑓 = 𝑓.

Proof. Write 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 as a directed colimit of finitely presented 𝑅-modules with
𝐼 countable, see Lemma 7.86.1. The transition maps are denoted 𝑓𝑖𝑗 and we use 𝑓𝑖 ∶ 𝑀𝑖 →
𝑀 to note the canonical maps into 𝑀. Set 𝑁 = ∏𝑠∈𝐼 𝑀𝑠. Denote

𝑀∗
𝑖 = 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁) = ∏

𝑠∈𝑆
𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑀𝑠)
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so that (𝑀∗
𝑖 ) is an inverse system of 𝑅-modules over 𝐼. Note that 𝐻𝑜𝑚𝑅(𝑀, 𝑁) = 𝑙𝑖𝑚 𝑀∗

𝑖 .
As 𝑀 is Mittag-Leffler, we find for every 𝑖 ∈ 𝐼 an index 𝑘(𝑖) ≥ 𝑖 such that

𝐸𝑖 ∶= ⋂𝑖′≥𝑖
Im(𝑀∗

𝑖′ → 𝑀∗
𝑖 ) = Im(𝑀∗

𝑘(𝑖) → 𝑀∗
𝑖 )

Choose 𝑖 ∈ 𝐼 such that Im(𝑃 → 𝑀) ⊂ Im(𝑀𝑖 → 𝑀). This is possible as 𝑃 is finitely
generated. Set 𝑘 = 𝑘(𝑖) for this i. Let 𝑥 = (0, … , 0, id𝑀𝑘

, 0, … , 0) ∈ 𝑀∗
𝑘 and note that

this maps to 𝑦 = (0, … , 0, 𝑓𝑖𝑘, 0, … , 0) ∈ 𝑀∗
𝑖 . By our choice of 𝑘 we see that 𝑦 ∈ 𝐸𝑖. By

Example 7.80.2 the transition maps 𝐸𝑖′ → 𝐸𝑖 are surjective for each 𝑖′ ≥ 𝑖 and 𝑙𝑖𝑚 𝐸𝑖 =
𝑙𝑖𝑚 𝑀∗

𝑖 = 𝐻𝑜𝑚𝑅(𝑀, 𝑁). Hence Lemma 7.80.3 guarantees there exists an element 𝑧 ∈
𝐻𝑜𝑚𝑅(𝑀, 𝑁) which maps to 𝑦 in 𝐸𝑖 ⊂ 𝑀∗

𝑖 . Let 𝑧𝑘 be the 𝑘th component of 𝑧. Then
𝑧𝑘 ∶ 𝑀 → 𝑀𝑘 is a homomorphism such that

𝑀 𝑧𝑘
//𝑀𝑘

𝑀𝑖

𝑓𝑖𝑘

==
𝑓𝑖

OO

commutes. Let 𝛼 ∶ 𝑀 → 𝑀 be the composition 𝑓𝑘 ∘ 𝑧𝑘 ∶ 𝑀 → 𝑀𝑘 → 𝑀. Then 𝛼 factors
through a finitely presented module by construction and 𝛼 ∘ 𝑓𝑖 = 𝑓𝑖. Since the image of 𝑓
is contained in the image of 𝑓𝑖 this also implies that 𝛼 ∘ 𝑓 = 𝑓. �

We will see later (see Lemma 7.139.26) that Lemma 7.86.2 means that a countably gener-
ated Mittag-Leffler module over a henselian local ring is a direct sum of finitely presented
modules.

7.87. Characterizing projective modules

The goal of this section is to prove that a module is projective if and only if it is flat, Mittag-
Leffler, and a direct sum of countably generated modules (Theorem 7.87.3 below).

Lemma 7.87.1. Let 𝑀 be an 𝑅-module. If 𝑀 is flat, Mittag-Leffler, and countably gener-
ated, then 𝑀 is projective.

Proof. By Lazard's theorem (Theorem 7.75.4), we can write 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 for a di-
rected system of finite free 𝑅-modules (𝑀𝑖, 𝑓𝑖𝑗) indexed by a set 𝐼. By Lemma 7.86.1, we
may assume 𝐼 is countable. Now let

0 → 𝑁1 → 𝑁2 → 𝑁3 → 0

be an exact sequence of 𝑅-modules. We must show that applying 𝐻𝑜𝑚𝑅(𝑀, −) preserves
exactness. Since 𝑀𝑖 is finite free,

0 → 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁1) → 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁2) → 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁3) → 0

is exact for each 𝑖. Since 𝑀 is Mittag-Leffler, (𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁1)) is a Mittag-Leffler inverse
system. So by Lemma 7.80.4,

0 → 𝑙𝑖𝑚𝑖∈𝐼 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁1) → 𝑙𝑖𝑚𝑖∈𝐼 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁2) → 𝑙𝑖𝑚𝑖∈𝐼 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁3) → 0

is exact. But for any 𝑅-module 𝑁 there is a functorial isomorphism 𝐻𝑜𝑚𝑅(𝑀, 𝑁) ≅
𝑙𝑖𝑚𝑖∈𝐼 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑁), so

0 → 𝐻𝑜𝑚𝑅(𝑀, 𝑁1) → 𝐻𝑜𝑚𝑅(𝑀, 𝑁2) → 𝐻𝑜𝑚𝑅(𝑀, 𝑁3) → 0

is exact. �
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Remark 7.87.2. Lemma 7.87.1 does not hold without the countable generation assumption.
For example, the 𝐙-module 𝑀 = 𝐙[[𝑥]] is flat and Mittag-Leffler but not projective. It
is Mittag-Leffler by Lemma 7.85.4. Subgroups of free abelian groups are free, hence a
projective 𝐙-module is in fact free and so are its submodules. Thus to show 𝑀 is not
projective it suffices to produce a non-free submodule. Fix a prime 𝑝 and consider the
submodule 𝑁 consisting of power series 𝑓(𝑥) = ∑ 𝑎𝑖𝑥𝑖 such that for every integer 𝑚 ≥ 1,
𝑝𝑚 divides 𝑎𝑖 for all but finitely many 𝑖. Then ∑ 𝑎𝑖𝑝𝑖𝑥𝑖 is in 𝑁 for all 𝑎𝑖 ∈ 𝐙, so 𝑁 is
uncountable. Thus if 𝑁 were free it would have uncountable rank and the dimension of
𝑁/𝑝𝑁 over 𝐙/𝑝 would be uncountable. This is not true as the elements 𝑥𝑖 ∈ 𝑁/𝑝𝑁 for
𝑖 ≥ 0 span 𝑁/𝑝𝑁.

Theorem 7.87.3. Let 𝑀 be an 𝑅-module. Then 𝑀 is projective if and only it satisfies:
(1) 𝑀 is flat,
(2) 𝑀 is Mittag-Leffler,
(3) 𝑀 is a direct sum of countably generated 𝑅-modules.

Proof. First suppose 𝑀 is projective. Then 𝑀 is a direct summand of a free module, so 𝑀
is flat and Mittag-Leffler since these properties pass to direct summands. By Kaplansky's
theorem (Theorem 7.78.5), 𝑀 satisfies (3).

Conversely, suppose 𝑀 satisfies (1)-(3). Since being flat and Mittag-Leffler passes to di-
rect summands, 𝑀 is a direct sum of flat, Mittag-Leffler, countably generated 𝑅-modules.
Lemma 7.87.1 implies 𝑀 is a direct sum of projective modules. Hence 𝑀 is projective. �

Lemma 7.87.4. Let 𝑓 ∶ 𝑀 → 𝑁 be universally injective map of 𝑅-modules. Suppose 𝑀 is
a direct sum of countably generated 𝑅-modules, and suppose 𝑁 is flat and Mittag-Leffler.
Then 𝑀 is projective.

Proof. By Lemmas 7.76.7 and 7.83.6, 𝑀 is flat and Mittag-Leffler, so the conclusion fol-
lows from Theorem 7.87.3. �

Lemma 7.87.5. Let 𝑅 be a Noetherian ring and let 𝑀 be a 𝑅-module. Suppose 𝑀 is a
direct sum of countably generated 𝑅-modules, and suppose there is a universally injective
map 𝑀 → 𝑅[[𝑡1, … , 𝑡𝑛]] for some 𝑛. Then 𝑀 is projective.

Proof. Follows from Lemmas 7.87.4 and 7.85.4. �

7.88. Ascending properties of modules

All of the properties of a module in Theorem 7.87.3 ascend along arbitrary ring maps:

Lemma 7.88.1. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑅-module. Then:
(1) If 𝑀 is flat, then the 𝑆-module 𝑀 ⊗𝑅 𝑆 is flat.
(2) If 𝑀 is Mittag-Leffler, then the 𝑆-module 𝑀 ⊗𝑅 𝑆 is Mittag-Leffler.
(3) If 𝑀 is a direct sum of countably generated 𝑅-modules, then the 𝑆-module 𝑀⊗𝑅

𝑆 is a direct sum of countably generated 𝑆-modules.
(4) If 𝑀 is projective, then the 𝑆-module 𝑀 ⊗𝑅 𝑆 is projective.

Proof. All are obvious except (2). For this, use formulation (3) of being Mittag-Leffler
from Proposition 7.82.5 and the fact that tensoring commutes with taking colimits. �
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7.89. Descending properties of modules

We address the faithfully flat descent of the properties from Theorem 7.87.3 that character-
ize projectivity. In the presence of flatness, the property of being a Mittag-Leffler module
descends:

Lemma 7.89.1. Let 𝑅 → 𝑆 be a faithfully flat ring map. Let 𝑀 be an 𝑅-module. If the
𝑆-module 𝑀 ⊗𝑅 𝑆 is flat and Mittag-Leffler, then 𝑀 is flat and Mittag-Leffler.

Proof. By Lemma 7.77.2, flatness descends, so 𝑀 is flat. Thus by Lazard's theorem (The-
orem 7.75.4) we can write 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀𝑖 where (𝑀𝑖, 𝑓𝑖𝑗) is a directed system of free
finite 𝑅-modules. According to Remark 7.82.7, to prove 𝑀 is Mittag-Leffler it is enough
to show that (𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅)) is a Mittag-Leffler inverse system.

Since tensoring commutes with colimits, 𝑀 ⊗𝑅 𝑆 = 𝑐𝑜𝑙𝑖𝑚(𝑀𝑖 ⊗𝑅 𝑆). Since 𝑀 ⊗𝑅 𝑆
is Mittag-Leffler this means (𝐻𝑜𝑚𝑆(𝑀𝑖 ⊗𝑅 𝑆, 𝑆)) is a Mittag-Leffler inverse system. So
for every 𝑖 ∈ 𝐼, the family Im(𝐻𝑜𝑚𝑆(𝑀𝑗 ⊗𝑅 𝑆, 𝑆) → 𝐻𝑜𝑚𝑆(𝑀𝑖 ⊗𝑅 𝑆, 𝑆)) for 𝑗 ≥ 𝑖
stabilizes. Because 𝑀𝑖 is free and finite there is a functorial isomorphism 𝐻𝑜𝑚𝑆(𝑀𝑖 ⊗𝑅
𝑆, 𝑆) ≅ 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅)⊗𝑅𝑆, and because 𝑅 → 𝑆 is faithfully flat, tensoring by 𝑆 commutes
with taking the image of a module map. Thus we find that for every 𝑖 ∈ 𝐼, the family
Im(𝐻𝑜𝑚𝑅(𝑀𝑗, 𝑅) → 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅)) ⊗𝑅 𝑆 for 𝑗 ≥ 𝑖 stabilizes. But if 𝑁 is an 𝑅-module
and 𝑁′ ⊂ 𝑁 a submodule such that 𝑁′ ⊗𝑅 𝑆 = 𝑁 ⊗𝑅 𝑆, then 𝑁′ = 𝑁 by faithful flatness
of 𝑆. We conclude that for every 𝑖 ∈ 𝐼, the family Im(𝐻𝑜𝑚𝑅(𝑀𝑗, 𝑅) → 𝐻𝑜𝑚𝑅(𝑀𝑖, 𝑅))
for 𝑗 ≥ 𝑖 stabilizes. So 𝑀 is Mittag-Leffler. �

At this point the faithfully flat descent of countably generated projective modules follows
easily.

Lemma 7.89.2. Let 𝑅 → 𝑆 be a faithfully flat ring map. Let 𝑀 be an 𝑅-module. If the
𝑆-module 𝑀 ⊗𝑅 𝑆 is countably generated and projective, then 𝑀 is countably generated
and projective.

Proof. Follows from Lemma 7.89.1, the fact that countable generation descends, and The-
orem 7.87.3. �

All that remains is to use dévissage to reduce descent of projectivity in the general case to
the countably generated case. First, two simple lemmas.

Lemma 7.89.3. Let 𝑅 → 𝑆 be a ring map, let 𝑀 be an 𝑅-module, and let 𝑄 be a countably
generated 𝑆-submodule of 𝑀 ⊗𝑅 𝑆. Then there exists a countably generated 𝑅-submodule
𝑃 of 𝑀 such that Im(𝑃 ⊗𝑅 𝑆 → 𝑀 ⊗𝑅 𝑆) contains 𝑄.

Proof. Let 𝑦1, 𝑦2, … be generators for 𝑄 and write 𝑦𝑗 = ∑𝑘 𝑥𝑗𝑘 ⊗ 𝑠𝑗𝑘 for some 𝑥𝑗𝑘 ∈ 𝑀
and 𝑠𝑗𝑘 ∈ 𝑆. Then take 𝑃 be the submodule of 𝑀 generated by the 𝑥𝑗𝑘. �

Lemma 7.89.4. Let 𝑅 → 𝑆 be a ring map, and let 𝑀 be an 𝑅-module. Suppose 𝑀 ⊗𝑅
𝑆 = ⨁𝑖∈𝐼 𝑄𝑖 is a direct sum of countably generated 𝑆-modules 𝑄𝑖. If 𝑁 is a countably
generated submodule of 𝑀, then there is a countably generated submodule 𝑁′ of 𝑀 such
that 𝑁′ ⊃ 𝑁 and Im(𝑁′ ⊗𝑅 𝑆 → 𝑀 ⊗𝑅 𝑆) = ⨁𝑖∈𝐼′ 𝑄𝑖 for some subset 𝐼′ ⊂ 𝐼.

Proof. Let 𝑁′
0 = 𝑁. We construct by induction an increasing sequence of countably gener-

ated submodules 𝑁′
ℓ ⊂ 𝑀 for ℓ = 0, 1, 2, … such that: if 𝐼′

ℓ is the set of 𝑖 ∈ 𝐼 such that the
projection of Im(𝑁′

ℓ⊗𝑅𝑆 → 𝑀⊗𝑅𝑆) onto 𝑄𝑖 is nonzero, then Im(𝑁′
ℓ+1⊗𝑅𝑆 → 𝑀⊗𝑅𝑆)

contains 𝑄𝑖 for all 𝑖 ∈ 𝐼′
ℓ. To construct 𝑁′

ℓ+1 from 𝑁′
ℓ, let 𝑄 be the sum of (the countably
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many) 𝑄𝑖 for 𝑖 ∈ 𝐼′
ℓ, choose 𝑃 as in Lemma 7.89.3, and then let 𝑁′

ℓ+1 = 𝑁′
ℓ + 𝑃. Having

constructed the 𝑁′
ℓ, just take 𝑁′ = ⋃ℓ 𝑁′

ℓ and 𝐼′ = ⋃ℓ 𝐼′
ℓ. �

Theorem 7.89.5. Let 𝑅 → 𝑆 be a faithfully flat ring map. Let 𝑀 be an 𝑅-module. If the
𝑆-module 𝑀 ⊗𝑅 𝑆 is projective, then 𝑀 is projective.

Proof. We are going to construct a Kaplansky dévissage of 𝑀 to show that it is a direct sum
of projective modules and hence projective. By Theorem 7.78.5 we can write 𝑀 ⊗𝑅 𝑆 =
⨁𝑖∈𝐼 𝑄𝑖 as a direct sum of countably generated 𝑆-modules 𝑄𝑖. Choose a well-ordering on
𝑀. By transfinite induction we are going to define an increasing family of submodules 𝑀𝛼
of 𝑀, one for each ordinal 𝛼, such that 𝑀𝛼 ⊗𝑅 𝑆 is a direct sum of some subset of the 𝑄𝑖.

For 𝛼 = 0 let 𝑀0 = 0. If 𝛼 is a limit ordinal and 𝑀𝛽 has been defined for all 𝛽 < 𝛼, then
define 𝑀𝛽 = ⋃𝛽<𝛼 𝑀𝛽. Since each 𝑀𝛽 ⊗𝑅 𝑆 for 𝛽 < 𝛼 is a direct sum of a subset of the
𝑄𝑖, the same will be true of 𝑀𝛼 ⊗𝑅 𝑆. If 𝛼 + 1 is a successor ordinal and 𝑀𝛼 has been
defined, then define 𝑀𝛼+1 as follows. If 𝑀𝛼 = 𝑀, then let 𝑀𝛼+1 = 𝑀. Otherwise choose
the smallest 𝑥 ∈ 𝑀 (with respect to the fixed well-ordering) such that 𝑥 ∉ 𝑀𝛼. Since 𝑆 is
flat over 𝑅, (𝑀/𝑀𝛼) ⊗𝑅 𝑆 = 𝑀 ⊗𝑅 𝑆/𝑀𝛼 ⊗𝑅 𝑆, so since 𝑀𝛼 ⊗𝑅 𝑆 is a direct sum of some
𝑄𝑖, the same is true of (𝑀/𝑀𝛼)⊗𝑅 𝑆. By Lemma 7.89.4, we can find a countably generated
𝑅-submodule 𝑃 of 𝑀/𝑀𝛼 containing the image of 𝑥 in 𝑀/𝑀𝛼 and such that 𝑃⊗𝑅 𝑆 (which
equals Im(𝑃 ⊗𝑅 𝑆 → 𝑀 ⊗𝑅 𝑆) since 𝑆 is flat over 𝑅) is a direct sum of some 𝑄𝑖. Since
𝑀 ⊗𝑅 𝑆 = ⨁𝑖∈𝐼 𝑄𝑖 is projective and projectivity passes to direct summands, 𝑃 ⊗𝑅 𝑆
is also projective. Thus by Lemma 7.89.2, 𝑃 is projective. Finally we define 𝑀𝛼+1 to be
the preimage of 𝑃 in 𝑀, so that 𝑀𝛼+1/𝑀𝛼 = 𝑃 is countably generated and projective. In
particular 𝑀𝛼 is a direct summand of 𝑀𝛼+1 since projectivity of 𝑀𝛼+1/𝑀𝛼 implies the
sequence 0 → 𝑀𝛼 → 𝑀𝛼+1 → 𝑀𝛼+1/𝑀𝛼 → 0 splits.

Transfinite induction on 𝑀 (using the fact that we constructed 𝑀𝛼+1 to contain the smallest
𝑥 ∈ 𝑀 not contained in 𝑀𝛼) shows that each 𝑥 ∈ 𝑀 is contained in some 𝑀𝛼. Thus, there
is some large enough ordinal 𝑆 satisfying: for each 𝑥 ∈ 𝑀 there is 𝛼 ∈ 𝑆 such that
𝑥 ∈ 𝑀𝛼. This means (𝑀𝛼)𝛼∈𝑆 satisfies property (1) of a Kaplansky dévissage of 𝑀. The
other properties are clear by construction. We conclude 𝑀 = ⨁𝛼+1∈𝑆 𝑀𝛼+1/𝑀𝛼. Since
each 𝑀𝛼+1/𝑀𝛼 is projective by construction, 𝑀 is projective. �

7.90. Completion

Suppose that 𝑅 is a ring and 𝐼 is an ideal. We define the completion of 𝑅 with respect to 𝐼
to be the limit

𝑅∧ = 𝑙𝑖𝑚𝑛 𝑅/𝐼𝑛.

An element of 𝑅∧ is simply given by a sequence of elements 𝑓𝑛 ∈ 𝑅/𝐼𝑛 such that 𝑓𝑛 ≡
𝑓𝑛+1 mod 𝐼𝑛 for all 𝑛. Similarly, if 𝑀 is an 𝑅-module then we define the completion of 𝑀
with respect to 𝐼 to be the limit

𝑀∧ = 𝑙𝑖𝑚𝑛 𝑀/𝐼𝑛𝑀.

An element of 𝑀∧ is simply given by a sequence of elements 𝑚𝑛 ∈ 𝑀/𝐼𝑛𝑀 such that 𝑚𝑛 ≡
𝑚𝑛+1 mod 𝐼𝑛𝑀 for all 𝑛. From this description it is clear that there are always canonical
maps

𝑀 ⟶ 𝑀∧, and 𝑀 ⊗𝑅 𝑅∧ ⟶ 𝑀∧.
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Moreover, given a map 𝜑 ∶ 𝑀 → 𝑁 of modules we get an induced map 𝜑∧ ∶ 𝑀∧ → 𝑁∧

on completions making the diagram

𝑀 //

��

𝑁

��
𝑀∧ // 𝑁∧

commute. In general completion is not an exact functor, see Examples, Section 64.4. Here
are some initial positive results.

Lemma 7.90.1. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝜑 ∶ 𝑀 → 𝑁 be a map of
𝑅-modules.

(1) If 𝑀/𝐼𝑀 → 𝑁/𝐼𝑁 is surjective, then 𝑀∧ → 𝑁∧ is surjective.
(2) If 𝑀 → 𝑁 is surjective, then 𝑀∧ → 𝑁∧ is surjective.
(3) If 0 → 𝐾 → 𝑀 → 𝑁 → 0 is a short exact sequence of 𝑅-modules and 𝑁 is flat,

then 0 → 𝐾∧ → 𝑀∧ → 𝑁∧ → 0 is a short exact sequence.
(4) The map 𝑀 ⊗𝑅 𝑅∧ → 𝑀∧ is surjective for any finite 𝑅-module 𝑀.

Proof. Assume 𝑀/𝐼𝑀 → 𝑁/𝐼𝑁 is surjective. Then the map 𝑀/𝐼𝑛𝑀 → 𝑁/𝐼𝑛𝑁 is surjec-
tive for each 𝑛 ≥ 1 by Nakayama's lemma (Lemma 7.14.5). Set 𝐾𝑛 = {𝑥 ∈ 𝑀 ∣ 𝜑(𝑥) ∈
𝐼𝑛𝑁}. Thus we get short exact sequences

0 → 𝐾𝑛/𝐼𝑛𝑀 → 𝑀/𝐼𝑛𝑀 → 𝑁/𝐼𝑛𝑁 → 0

We claim that the canonical map 𝐾𝑛+1/𝐼𝑛+1𝑀 → 𝐾𝑛/𝐼𝑛𝑀 is surjective. Namely, if 𝑥 ∈ 𝐾𝑛
write 𝜑(𝑥) = ∑ 𝑧𝑗𝑛𝑗 with 𝑧𝑗 ∈ 𝐼𝑛, 𝑛𝑗 ∈ 𝑁. By assumption we can write 𝑛𝑗 = 𝜑(𝑚𝑗) +
∑ 𝑧𝑗𝑘𝑛𝑗𝑘 with 𝑚𝑗 ∈ 𝑀, 𝑧𝑗𝑘 ∈ 𝐼 and 𝑛𝑗𝑘 ∈ 𝑁. Hence

𝜑(𝑥 − ∑ 𝑧𝑗𝑚𝑗) = ∑ 𝑧𝑗𝑧𝑗𝑘𝑛𝑗𝑘.

This means that 𝑥′ = 𝑥 − ∑ 𝑧𝑗𝑚𝑗 ∈ 𝐾𝑛+1 maps to 𝑥 which proves the claim. Now we may
apply Lemma 7.81.1 to the inverse system of short exact sequences above to see (1). Part
(2) is a special case of (1). If the assumptions of (3) hold, then for each 𝑛 the sequence

0 → 𝐾/𝐼𝑛𝐾 → 𝑀/𝐼𝑛𝑀 → 𝑁/𝐼𝑛𝑁 → 0

is short exact by Lemma 7.35.11. Hence we can directly apply Lemma 7.81.1 to conclude
(3) is true. To see (4) choose generators 𝑥𝑖 ∈ 𝑀, 𝑖 = 1, … , 𝑛. Then the map 𝑅⊕𝑛 → 𝑀,
(𝑎1, … , 𝑎𝑛) ↦ ∑ 𝑎𝑖𝑥𝑖 is surjective. Hence by (2) we see (𝑅∧)⊕𝑛 → 𝑀∧, (𝑎1, … , 𝑎𝑛) ↦
∑ 𝑎𝑖𝑥𝑖 is surjective. Assertion (4) follows from this. �

Lemma 7.90.2. Suppose 𝑅 is Noetherian.
(1) If 𝑁 → 𝑀 is an injective map of finite 𝑅-modules, then the map on completions

𝑁∧ → 𝑀∧ is injective.
(2) If 𝑀 is a finite 𝑅-module, then 𝑀∧ = 𝑀 ⊗𝑅 𝑅∧.

Proof. For the first statement, by the Artin-Rees Lemma 7.47.4, we have a constant 𝑐 such
that 𝐼𝑛𝑀 ∩ 𝑁 equals 𝐼𝑛−𝑐(𝐼𝑐𝑀 ∩ 𝑁) ⊂ 𝐼𝑛−𝑐𝑁. Thus if (𝑛𝑖) ∈ 𝑁∧ maps to zero in 𝑀∧, then
each 𝑛𝑖 maps to zero in 𝑁/𝐼𝑖−𝑐𝑁. And hence 𝑛𝑖−𝑐 = 0. Thus 𝑁∧ → 𝑀∧ is injective.

For the second statement let 0 → 𝐾 → 𝑅𝑡 → 𝑀 → 0 be a presentation of 𝑀, corresponding
the the generators 𝑥1, … , 𝑥𝑡 of 𝑀. By Lemma 7.90.1 (𝑅𝑡)∧ → 𝑀∧ is surjective, and for
any finitely generated 𝑅-module the canonical map 𝑀 ⊗𝑅 𝑅∧ → 𝑀∧ is surjective. Hence
to prove the second statement it suffices to prove the kernel of (𝑅𝑡)∧ → 𝑀∧ is exactly 𝐾∧.
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Let (𝑥𝑛) ∈ (𝑅𝑡)∧ be in the kernel. Note that each 𝑥𝑛 is in the image of the map 𝐾/𝐼𝑛𝐾 →
(𝑅/𝐼𝑛)𝑡. Choose 𝑐 such that (𝐼𝑛)𝑡 ∩ 𝐾 ⊂ 𝐼𝑛−𝑐𝐾, which is possible by Artin-Rees (Lemma
7.47.4). For each 𝑛 ≥ 0 choose 𝑦𝑛 ∈ 𝐾/𝐼𝑛+𝑐𝐾 mapping to 𝑥𝑛+𝑐, and set 𝑧𝑛 = 𝑦𝑛 mod 𝐼𝑛𝐾.
The elements 𝑧𝑛 satisfy 𝑧𝑛+1 − 𝑧𝑛 mod 𝐼𝑛𝐾 = 𝑦𝑛+1 − 𝑦𝑛 mod 𝐼𝑛𝐾, and 𝑦𝑛+1 − 𝑦𝑛 ∈ 𝐼𝑛+𝑐𝑅𝑡

by construction. Hence 𝑧𝑛+1 = 𝑧𝑛 mod 𝐼𝑛𝐾 by the choice of 𝑐 above. In other words
(𝑧𝑛) ∈ 𝐾∧ maps to (𝑥𝑛) as desired. �

Lemma 7.90.3. Let 𝑅 be a Noetherian ring. Let 𝐼 ⊂ 𝑅 be an ideal.
(1) The ring map 𝑅 → 𝑅∧ is flat.
(2) The functor 𝑀 ↦ 𝑀∧ is exact on the category of finitely generated 𝑅-modules.

Proof. Consider 𝐼⊗𝑅 𝑅∧ → 𝑅⊗𝑅 𝑅∧ = 𝑅∧. According to Lemma 7.90.2 this is identified
with 𝐼∧ → 𝑅∧ and 𝐼∧ → 𝑅∧ is injective. Part (1) follows from Lemma 7.35.4. Part (2)
follows from part (1) and Lemma 7.90.2 part (2). �

Lemma 7.90.4. Let 𝑅 be a Noetherian local ring. Let 𝔪 ⊂ 𝑅 be the maximal ideal. Let
𝐼 ⊂ 𝔪 be an ideal. The ring map 𝑅 → 𝑅∧ is faithfully flat. In particular the completion
with respect to 𝔪, namely 𝑙𝑖𝑚𝑛 𝑅/𝔪𝑛 is faithfully flat.

Proof. By Lemma 7.90.3 it is flat. The composition 𝑅 → 𝑅∧ → 𝑅/𝔪 where the last map
is the projection map 𝑅∧ → 𝑅/𝐼 combined with 𝑅/𝐼 → 𝑅/𝔪 shows that 𝔪 is in the image
of 𝑆𝑝𝑒𝑐(𝑅∧) → 𝑆𝑝𝑒𝑐(𝑅). Hence the map is faithfully flat by Lemma 7.35.14. �

Definition 7.90.5. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑅-module. We say
𝑀 is 𝐼-adically complete if the map

𝑀 ⟶ 𝑀∧ = 𝑙𝑖𝑚𝑛 𝑀/𝐼𝑛𝑀

is an isomorphism4. We say 𝑅 is 𝐼-adically complete if 𝑅 is complete as an 𝑅-module.

It is not true that the completion of an 𝑅-module 𝑀 with respect to 𝐼 is 𝐼-adically complete.
For an example see Examples, Section 64.2. Here is a lemma from an unpublished note of
Lenstra and de Smit.

Lemma 7.90.6. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑅-module. Denote
𝐾𝑛 = Ker(𝑀∧ → 𝑀/𝐼𝑛𝑀). Then 𝑀∧ is 𝐼-adically complete if and only if 𝐾𝑛 is equal to
𝐼𝑛𝑀∧ for all 𝑛 ≥ 1.

Proof. The module 𝐼𝑛𝑀∧ is contained in 𝐾𝑛. Thus for each 𝑛 ≥ 1 there is a canonical
exact sequence

0 → 𝐾𝑛/𝐼𝑛𝑀∧ → 𝑀∧/𝐼𝑛𝑀∧ → 𝑀/𝐼𝑛𝑀 → 0.

As 𝐼𝑛𝑀∧ maps onto 𝐼𝑛𝑀/𝐼𝑛+1𝑀 we see that 𝐾𝑛+1 + 𝐼𝑛𝑀∧ = 𝐾𝑛. Thus the inverse system
{𝐾𝑛/𝐼𝑛𝑀∧}𝑛≥1 has surjective transition maps. By Lemma 7.81.1 we see that there is a short
exact sequence

0 → 𝑙𝑖𝑚𝑛 𝐾𝑛/𝐼𝑛𝑀∧ → (𝑀∧)∧ → 𝑀∧ → 0
Hence 𝑀∧ is complete if and only if 𝐾𝑛/𝐼𝑛𝑀∧ = 0 for all 𝑛 ≥ 1. �

Lemma 7.90.7. Let 𝑅 be a ring. Let 𝐼 be a finitely generated ideal of 𝑅. For any 𝑅-module
𝑀 the completion 𝑀∧ is complete. In particular 𝑅∧ is complete.

4This includes the condition that ⋂ 𝐼𝑛𝑀 = (0).
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Proof. Let 𝐾𝑛 = Ker(𝑀∧ → 𝑀/𝐼𝑛𝑀). By Lemma 7.90.6 we have to show that 𝐾𝑛 =
𝐼𝑛𝑀∧. Write 𝐼 = (𝑓1, … , 𝑓𝑡). Let 𝑧 ∈ 𝐾𝑛. Write 𝑧 = (𝑧𝑚) with 𝑧𝑚 ∈ 𝑀/𝐼𝑚𝑀. Choose
𝑧𝑚 ∈ 𝑀 mapping to 𝑧𝑚 in 𝑀/𝐼𝑚𝑀. Then 𝑧𝑚+1 = 𝑧𝑚 mod 𝐼𝑚. Write 𝑧𝑛+1 = 𝑧𝑛 + 𝛿𝑛,
𝑧𝑛+2 = 𝑧𝑛+1 + 𝛿𝑛+1, etc. Then 𝛿𝑚 ∈ 𝐼𝑚𝑀. Thus the infinite sum

𝑧 = 𝑧𝑛 + 𝛿𝑛 + 𝛿𝑛+1 + 𝛿𝑛+2 + …
converges in 𝑀∧. For 𝑚 ≥ 𝑛 we have 𝛿𝑚 ∈ 𝐼𝑚𝑀 hence we can write

𝛿𝑚 = ∑𝑗1+…+𝑗𝑡=𝑛
𝑓𝑗1

1 … 𝑓𝑗𝑡
𝑡 𝛼𝐽,𝑚

with 𝛼𝐽,𝑚 ∈ 𝐼𝑚−𝑛𝑀. Our assumption 𝑧 ∈ 𝐾𝑛 means 𝑧𝑛 ∈ 𝐼𝑛𝑀 hence we can also write

𝑧𝑛 = ∑𝑗1+…+𝑗𝑡=𝑛
𝑓𝑗1

1 … 𝑓𝑗𝑡
𝑡 𝛼𝐽

with 𝛼𝐽 ∈ 𝑀. Then we can set
𝑧𝐽 = 𝛼𝐽 + 𝛼𝐽,𝑛 + 𝛼𝐽,𝑛+1 + 𝛼𝐽,𝑛+2 + …

as an element of 𝑀∧. By construction 𝑧 = ∑𝐽 𝑓𝑗1
1 … 𝑓𝑗𝑡

𝑡 𝑧𝐽. Hence 𝑧 is an element of 𝐼𝑛𝑀∧

as desired. �

Lemma 7.90.8. Let 𝑅 be a Noetherian ring. Let 𝐼 be an ideal of 𝑅. Let 𝑀 be an 𝑅-module.
Then the completion 𝑀∧ of 𝑀 with respect to 𝐼 is 𝐼-adically complete.

Proof. This is a special case of Lemma 7.90.7 because 𝐼 is a finitely generated ideal. �

Lemma 7.90.9. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Assume
(1) 𝑅/𝐼 is a Noetherian ring,
(2) 𝐼 is finitely generated.

Then 𝑅∧ is a Noetherian ring complete with respect to 𝐼𝑅∧.

Proof. ByLemma 7.90.7we see that𝑅∧ is 𝐼-adically complete. Hence it is also 𝐼𝑅∧-adically
complete. Since 𝑅∧/𝐼𝑅∧ = 𝑅/𝐼 is Noetherian we see that after replacing 𝑅 by 𝑅∧ we may
in addition to assumptions (1) and (2) assume that also 𝑅 is 𝐼-adically complete.
Let 𝑓1, … , 𝑓𝑡 be generators of 𝐼. Then there is a surjection of rings 𝑅/𝐼[𝑇1, … , 𝑇𝑡] →
⨁ 𝐼𝑛/𝐼𝑛+1 mapping 𝑇𝑖 to the element 𝑓𝑖 ∈ 𝐼/𝐼2. Hence ⨁ 𝐼𝑛/𝐼𝑛+1 is a Noetherian ring.
Let 𝐽 ⊂ 𝑅 be an ideal. Consider the ideal

⨁ 𝐽 ∩ 𝐼𝑛/𝐽 ∩ 𝐼𝑛+1 ⊂ ⨁ 𝐼𝑛/𝐼𝑛+1.

Let 𝑔1, … , 𝑔𝑚 be generators of this ideal. We may choose 𝑔𝑗 to be a homogeneous element
of degree 𝑑𝑗 and we may pick 𝑔𝑗 ∈ 𝐽 ∩ 𝐼𝑑𝑗 mapping to 𝑔𝑗 ∈ 𝐽 ∩ 𝐼𝑑𝑗/𝐽 ∩ 𝐼𝑑𝑗+1. We claim
that 𝑔1, … , 𝑔𝑚 generate 𝐽.

Let 𝑥 ∈ 𝐽 ∩ 𝐼𝑛. There exist 𝑎𝑗 ∈ 𝐼max(0,𝑛−𝑑𝑗) such that 𝑥 − ∑ 𝑎𝑗𝑔𝑗 ∈ 𝐽 ∩ 𝐼𝑛+1. The reason is
that 𝐽∩𝐼𝑛/𝐽∩𝐼𝑛+1 is equal to ∑ 𝑔𝑗𝐼

𝑛−𝑑𝑗/𝐼𝑛−𝑑𝑗+1 by our choice of 𝑔1, … , 𝑔𝑚. Hence starting
with 𝑥 ∈ 𝐽 we can find a sequence of vectors (𝑎1,𝑛, … , 𝑎𝑚,𝑛)𝑛≥0 with 𝑎𝑗,𝑛 ∈ 𝐼max(0,𝑛−𝑑𝑗) such
that

𝑥 = ∑𝑛=0,…,𝑁 ∑𝑗=1,…,𝑚
𝑎𝑗,𝑛𝑔𝑗 mod 𝐼𝑁+1

Setting 𝐴𝑗 = ∑𝑛≥0 𝑎𝑗,𝑛 we see that 𝑥 = ∑ 𝐴𝑗𝑔𝑗 as 𝑅 is complete. Hence 𝐽 is finitely
generated and we win. �

Lemma 7.90.10. Let 𝑅 be a Noetherian ring. Let 𝐼 be an ideal of 𝑅. The completion 𝑅∧

of 𝑅 with respect to 𝐼 is Noetherian.
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Proof. This is a direct consequence of Lemma 7.90.9. It can also be seen directly as fol-
lows. Choose generators 𝑓1, … , 𝑓𝑛 of 𝐼. Consider the map

𝑅[[𝑥1, … , 𝑥𝑛]] ⟶ 𝑅∧, 𝑥𝑖 ⟼ 𝑓𝑖.
This is a well defined and surjective ring map (details omitted). Since 𝑅[[𝑥1, … , 𝑥𝑛]] is
Noetherian (see Lemma 7.28.2) we win. �

Lemma 7.90.11. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Then
(1) any element of 1 + 𝐼 maps to an invertible element of 𝑅∧,
(2) any element of 1 + 𝐼𝑅∧ is invertible in 𝑅∧, and
(3) the ideal 𝐼𝑅∧ is contained in the radical of 𝑅∧.

Proof. Let 𝑥 ∈ 𝐼𝑅∧. Let 𝑢𝑛 be the image of 1 − 𝑥 + 𝑥2 − 𝑥3 + … + (−𝑥)𝑛 in 𝑅/𝐼𝑛+1.
Note that (𝑢𝑛) defines an element 𝑢 of 𝑅∧. By construction the element (1 + 𝑥)𝑢𝑛 in 𝑅/𝐼𝑛

is 1. Hence we see that 𝑢 is the inverse of 1 + 𝑥 in 𝑅∧. This proves (2) which implies
(1). Let 𝔪 ⊂ 𝑅∧ be a maximal ideal and set 𝑀 = 𝑅∧/𝔪. If 𝐼𝑅∧⊄𝔪 then 𝐼𝑀 = 𝑀. By
Nakayama's Lemma 7.14.5 there exists an 𝑓 ∈ 𝐼𝑅∧ such that (1 + 𝑓)𝑀 = 0. This is a
contradiction with (2). �

Lemma 7.90.12. Let 𝑅 be a ring. Let 𝐼, 𝐽 be ideals of 𝑅. Assume there exist integers
𝑐, 𝑑 > 0 such that 𝐼𝑐 ⊂ 𝐽 and 𝐽𝑑 ⊂ 𝐼. Then completion with respect to 𝐼 agrees with
completion with respect to 𝐽 for any 𝑅-module. In particular an 𝑅-module 𝑀 is 𝐼-adically
complete if and only if it is 𝐽-adically complete.

Proof. Consider the system of maps 𝑀/𝐼𝑛𝑀 → 𝑀/𝐽⌊𝑛/𝑑⌋𝑀 and the system of maps
𝑀/𝐽𝑚𝑀 → 𝑀/𝐼⌊𝑚/𝑐⌋𝑀 to get mutually inverse maps between the completions. �

Lemma 7.90.13. Let 𝑅 be a ring. Let 𝐼 be an ideal of 𝑅. Let 𝑀 be an 𝐼-adically complete
𝑅-module, and let 𝐾 ⊂ 𝑀 be an 𝑅-submodule. The following are equivalent

(1) 𝐾 = ⋂(𝐾 + 𝐼𝑛𝑀) and
(2) 𝑀/𝐾 is 𝐼-adically complete.

Proof. Set 𝑁 = 𝑀/𝐾. By Lemma 7.90.1 the map 𝑀 = 𝑀∧ → 𝑁∧ is surjective. Hence
𝑁 → 𝑁∧ is surjective. It is easy to see that the kernel of 𝑁 → 𝑁∧ is the module ⋂(𝐾 +
𝐼𝑛𝑀)/𝐾. �

Lemma 7.90.14. Let 𝑅 be a ring. Let 𝐼 be an ideal of 𝑅. Let 𝑀 be an 𝑅-module. If (a) 𝑅 is
𝐼-adically complete, (b) 𝑀 is a finite 𝑅-module, and (c) ⋂ 𝐼𝑛𝑀 = (0), then 𝑀 is 𝐼-adically
complete.

Proof. By Lemma 7.90.1 the map 𝑀 = 𝑀 ⊗𝑅 𝑅 = 𝑀 ⊗𝑅 𝑅∧ → 𝑀∧ is surjective.
The kernel of this map is ⋂ 𝐼𝑛𝑀 hence zero by assumption. Hence 𝑀 ≅ 𝑀∧ and 𝑀 is
complete. �

Lemma 7.90.15. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑅-module. Assume
(1) 𝑅 is 𝐼-adically complete,
(2) ⋂𝑛≥1 𝐼𝑛𝑀 = (0), and
(3) 𝑀/𝐼𝑀 is a finite 𝑅/𝐼-module.

Then 𝑀 is a finite 𝑅-module.

Proof. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑀 be elements whose images in 𝑀/𝐼𝑀 generate 𝑀/𝐼𝑀 as a
𝑅/𝐼-module. Denote 𝑀′ ⊂ 𝑀 the 𝑅-submodule generated by 𝑥1, … , 𝑥𝑛. By Lemma
7.90.1 the map (𝑀′)∧ → 𝑀∧ is surjective. Since ⋂ 𝐼𝑛𝑀 = 0 we see in particular that
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⋂ 𝐼𝑛𝑀′ = (0). Hence by Lemma 7.90.14 we see that 𝑀′ is complete, and we conclude
that 𝑀′ → 𝑀∧ is surjective. Finally, the kernel of 𝑀 → 𝑀∧ is zero since it is equal to
⋂ 𝐼𝑛𝑀 = (0). Hence we conclude that 𝑀 ≅ 𝑀′ ≅ 𝑀∧ is finitely generated. �

Suppose 𝑅 → 𝑆 is a local homomorphism of local rings (𝑅, 𝔪) and (𝑆, 𝔫). Let 𝑆∧ be the
completion of 𝑆 with respect to 𝔫. In general 𝑆∧ is not the 𝔪-adic completion of 𝑆. If
𝔫𝑡 ⊂ 𝔪𝑆 for some 𝑡 ≥ 1 then we do have 𝑆∧ = 𝑙𝑖𝑚 𝑆/𝔪𝑛𝑆 by Lemma 7.90.12. In some
cases this even implies that 𝑆∧ is finite over 𝑅∧.

Lemma 7.90.16. Let 𝑅 → 𝑆 be a local homomorphism of local rings (𝑅, 𝔪) and (𝑆, 𝔫).
Let 𝑅∧, resp. 𝑆∧ be the completion of 𝑅, resp. 𝑆 with respect to 𝔪, resp. 𝔫. If 𝔪 and 𝔫 are
finitely generated and dim𝜅(𝔪) 𝑆/𝔪𝑆 < ∞, then

(1) 𝑆∧ is equal to the 𝔪-adic completion of 𝑆, and
(2) 𝑆∧ is a finite 𝑅∧-module.

Proof. Wehave𝔪𝑆 ⊂ 𝔫 because𝑅 → 𝑆 is a local ringmap. The assumption dim𝜅(𝔪) 𝑆/𝔪𝑆 <
∞ implies that 𝑆/𝔪𝑆 is an Artinian ring, see Lemma 7.49.2. Hence has dimension 0, see
Lemma 7.57.4, hence 𝔫 = √𝔪𝑆. This and the fact that 𝔫 is finitely generated implies that
𝔫𝑡 ⊂ 𝔪𝑆 for some 𝑡 ≥ 1. By Lemma 7.90.12 we see that 𝑆∧ can be identified with the
𝔪-adic completion of 𝑆. As 𝔪 is finitely generated we see from Lemma 7.90.7 that 𝑆∧

and 𝑅∧ are 𝔪-adically complete. At this point we may apply Lemma 7.90.15 to 𝑆∧ as an
𝑅∧-module to conclude. �

Lemma 7.90.17. Let 𝑅 be a Noetherian ring. Let 𝑅 → 𝑆 be a finite ring map. Let 𝔭 ⊂ 𝑅
be a prime and let 𝔮1, … , 𝔮𝑚 be the primes of 𝑆 lying over 𝔭 (Lemma 7.32.19). Then

𝑅∧
𝔭 ⊗𝑅 𝑆 = 𝑆∧

𝔮1
× … × 𝑆∧

𝔮𝑚

where the local rings 𝑅𝔭 and 𝑆𝔮𝑖
are completed with respect to their maximal ideals.

Proof. We may replace 𝑅 by the localization 𝑅𝔭 and 𝑆 by 𝑆𝔭 = 𝑆 ⊗𝑅 𝑅𝔭. Hence we may
assume that 𝑅 is a local Noetherian ring and that 𝔭 = 𝔪 is its maximal ideal. The 𝔮𝑖𝑆𝔮𝑖

-adic
completion𝑆∧

𝔮𝑖
is equal to the𝔪-adic completion by Lemma 7.90.16. For every 𝑛 ≥ 1 prime

ideals of 𝑆/𝔪𝑛𝑆 are in 1-to-1 correspondence with the maximal ideals 𝔮1, … , 𝔮𝑚 of 𝑆 (by
going up for 𝑆 over 𝑅, see Lemma 7.32.20). Hence 𝑆/𝔪𝑛𝑆 = ∏ 𝑆𝔮𝑖

/𝔪𝑛𝑆𝔮𝑖
by Lemma

7.49.8 (using for example Proposition 7.57.6 to see that 𝑆/𝔪𝑛𝑆 is Artinian). Hence the
𝔪-adic completion 𝑆∧ of 𝑆 is equal to ∏ 𝑆∧

𝔮𝑖
. Finally, we have 𝑅∧ ⊗𝑅 𝑆 = 𝑆∧ by Lemma

7.90.2. �

Lemma 7.90.18. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 0 → 𝐾 → 𝑃 → 𝑀 → 0
be a short exact sequence of 𝑅-modules. If 𝑀 is flat over 𝑅 and 𝑀/𝐼𝑀 is a projective
𝑅/𝐼-module, then the sequence of 𝐼-adic completions

0 → 𝐾∧ → 𝑃∧ → 𝑀∧ → 0

is a split exact sequence.

Proof. As 𝑀 is flat, each of the sequences

0 → 𝐾/𝐼𝑛𝐾 → 𝑃/𝐼𝑛𝑃 → 𝑀/𝐼𝑛𝑀 → 0

is short exact, see Lemma 7.35.11 and the sequence 0 → 𝐾∧ → 𝑃∧ → 𝑀∧ → 0 is a
short exact sequence, see Lemma 7.90.1. It suffices to show that we can find spittings
𝑠𝑛 ∶ 𝑀/𝐼𝑛𝑀 → 𝑃/𝐼𝑛𝑃 such that 𝑠𝑛+1 mod 𝐼𝑛 = 𝑠𝑛. We will construct these 𝑠𝑛 by induction
on 𝑛. Pick any splitting 𝑠1, which exists as 𝑀/𝐼𝑀 is a projective 𝑅/𝐼-module. Assume
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given 𝑠𝑛 for some 𝑛 > 0. Set 𝑃𝑛+1 = {𝑥 ∈ 𝑃 ∣ 𝑥 mod 𝐼𝑛𝑃 ∈ Im(𝑠𝑛)}. The map 𝜋 ∶
𝑃𝑛+1/𝐼𝑛+1𝑃𝑛+1 → 𝑀/𝐼𝑛+1𝑀 is surjective (details omitted). As 𝑀/𝐼𝑛+1𝑀 is projective as a
𝑅/𝐼𝑛+1-module by Lemma 7.71.5 wemay choose a section 𝑡 ∶ 𝑀/𝐼𝑛+1𝑀 → 𝑃𝑛+1/𝐼𝑛+1𝑃𝑛+1
of 𝜋. Setting 𝑠𝑛+1 equal to the composition of 𝑡 with the canonical map 𝑃𝑛+1/𝐼𝑛+1𝑃𝑛+1 →
𝑃/𝐼𝑛+1𝑃 works. �

7.91. Criteria for flatness

In this section we prove some important technical lemmas in the Noetherian case. We will
(partially) generalize these to the non-Noetherian case in Section 7.119.

Lemma 7.91.1. Suppose that 𝑅 → 𝑆 is a local homomorphism of Noetherian local rings.
Denote 𝔪 the maximal ideal of 𝑅. Let 𝑢 ∶ 𝑀 → 𝑁 be a map of finite 𝑆-modules. Assume
𝑁 flat over 𝑅. If 𝑢 ∶ 𝑀/𝔪𝑀 → 𝑁/𝔪𝑁 is injective then 𝑢 is injective. In this case 𝑁/𝑢(𝑀)
is flat over 𝑅.

Proof. First we claim that 𝑢𝑛 ∶ 𝑀/𝔪𝑛𝑀 → 𝑁/𝔪𝑛𝑁 is injective for all 𝑛 ≥ 1. We proceed
by induction, the base case given by assumption. By our assumption that 𝑁 is flat over
𝑅 we have a short exact sequence 0 → 𝑁 ⊗𝑅 𝔪𝑛/𝔪𝑛+1 → 𝑁/𝔪𝑛+1𝑁 → 𝑁/𝔪𝑛𝑁 →
0. Also, 𝑁 ⊗𝑅 𝔪𝑛/𝔪𝑛+1 = 𝑁/𝔪𝑁 ⊗𝑅/𝔪 𝔪𝑛/𝔪𝑛+1. We have a similar exact sequence
𝑀 ⊗𝑅 𝔪𝑛/𝔪𝑛+1 → 𝑀/𝔪𝑛+1𝑀 → 𝑀/𝔪𝑛𝑀 → 0 for 𝑀 except we do not have the zero on
the left. We also have 𝑀 ⊗𝑅 𝔪𝑛/𝔪𝑛+1 = 𝑀/𝔪𝑀 ⊗𝑅/𝔪 𝔪𝑛/𝔪𝑛+1. Thus the map 𝑢𝑛+1 is
injective as both 𝑢𝑛 and the map 𝑢 ⊗ id𝔪𝑛/𝔪𝑛+1 are.

Note that 𝑙𝑖𝑚𝑛 𝑀/𝔪𝑛𝑀 is the completion of the module 𝑀 with respect to the ideal 𝐼 =
𝔪𝑆, and similarly for 𝑁. Since 𝑀 and 𝑁 are finite 𝑆-modules we have 𝑀∧ = 𝑀 ⊗ 𝑆∧

and similarly for 𝑁, see Lemma 7.90.2. We conclude that 𝑢 ⊗ 1 ∶ 𝑀 ⊗ 𝑆∧ → 𝑁 ⊗ 𝑆∧

is injective. Since 𝑆∧ is faithfully flat over 𝑆, see Lemma 7.90.4, we conclude that 𝑢 is
injective, see Lemma 7.35.4.

Finally, we have to prove that 𝐼 ⊗𝑅 𝑁/𝑢(𝑀) → 𝑁/𝑢(𝑀) is injective for every ideal 𝐼 ⊂ 𝑅.
Consider the diagram

0 0 0
↑ ↑ ↑

𝑀/𝐼𝑀 → 𝑁/𝐼𝑁 → 𝑁/(𝐼𝑁 + 𝑢(𝑀)) → 0
↑ ↑ ↑

0 → 𝑀 → 𝑁 → 𝑁/𝑢(𝑀) → 0
↑ ↑ ↑

𝑀 ⊗𝑅 𝐼 → 𝑁 ⊗𝑅 𝐼 → 𝑁/𝑢(𝑀) ⊗𝑅 𝐼 → 0
The arrow 𝑁 ⊗𝑅 𝐼 → 𝑁 is injective. Chasing through the diagram we see that it suffices
to prove that 𝑀/𝐼𝑀 injects into 𝑁/𝐼𝑁. Note that 𝑀/𝐼𝑀 and 𝑁/𝐼𝑁 are modules over the
Noetherian ring 𝑆/𝐼𝑆, 𝑁/𝐼𝑁 is flat over 𝑅/𝐼 and 𝑢 mod 𝐼 ∶ 𝑀/𝐼𝑀 → 𝑁/𝐼𝑁 is injective
module 𝔪 we may apply the result above to 𝑢 mod 𝐼, and we win. �

Lemma 7.91.2. Suppose that 𝑅 → 𝑆 is a flat and local ring homomorphism of Noetherian
local rings. Denote 𝔪 the maximal ideal of 𝑅. Suppose 𝑓 ∈ 𝑆 is a nonzero divisor in
𝑆/𝔪𝑆. Then 𝑆/𝑓𝑆 is flat over 𝑅, and 𝑓 is a nonzero divisor in 𝑆.

Proof. Follows directly from Lemma 7.91.1. �

Lemma 7.91.3. Suppose that 𝑅 → 𝑆 is a flat and local ring homomorphism of Noetherian
local rings. Denote 𝔪 the maximal ideal of 𝑅. Suppose 𝑓1, … , 𝑓𝑐 is a sequence of elements
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of 𝑆 such that the images 𝑓1, … , 𝑓𝑐 form a regular sequence in 𝑆/𝔪𝑆. Then 𝑓1, … , 𝑓𝑐 is
a regular sequence in 𝑆 and each of the quotients 𝑆/(𝑓1, … , 𝑓𝑖) is flat over 𝑅.

Proof. Induction and Lemma 7.91.2 above. �

Lemma 7.91.4. Let 𝑅 → 𝑆 be a local homomorphism of Noetherian local rings. Let 𝔪
be the maximal ideal of 𝑅. Let 𝑀 be a finite 𝑆-modules. Suppose that (a) 𝑀/𝔪𝑀 is a free
𝑆/𝔪𝑆-module, and (b) 𝑀 is flat over 𝑅. Then 𝑀 is free and 𝑆 is flat over 𝑅.

Proof. Let 𝑥1, … , 𝑥𝑛 be a basis for the free module 𝑀/𝔪𝑀. Choose 𝑥1, … , 𝑥𝑛 ∈ 𝑀 with
𝑥𝑖 mapping to 𝑥𝑖. Let 𝑢 ∶ 𝑆⊕𝑛 → 𝑀 be the map which maps the 𝑖th standard basis vector to
𝑥𝑖. By Lemma 7.91.1 we see that 𝑢 is injective. On the other hand, by Nakayama's Lemma
7.14.5 the map is surjective. The lemma follows. �

Lemma 7.91.5. Let 𝑅 → 𝑆 be a local homomorphism of local Noetherian rings. Let 𝔪
be the maximal ideal of 𝑅. Let 0 → 𝐹𝑒 → 𝐹𝑒−1 → … → 𝐹0 be a finite complex of
finite 𝑆-modules. Assume that each 𝐹𝑖 is 𝑅-flat, and that the complex 0 → 𝐹𝑒/𝔪𝐹𝑒 →
𝐹𝑒−1/𝔪𝐹𝑒−1 → … → 𝐹0/𝔪𝐹0 is exact. Then 0 → 𝐹𝑒 → 𝐹𝑒−1 → … → 𝐹0 is exact, and
moreover the module Coker(𝐹1 → 𝐹0) is 𝑅-flat.

Proof. By induction on 𝑒. If 𝑒 = 1, then this is exactly Lemma 7.91.1. If 𝑒 > 1, we
see by Lemma 7.91.1 that 𝐹𝑒 → 𝐹𝑒−1 is injective and that 𝐶 = Coker(𝐹𝑒 → 𝐹𝑒−1) is a
finite 𝑆-module flat over 𝑅. Hence we can apply the induction hypothesis to the complex
0 → 𝐶 → 𝐹𝑒−2 → … → 𝐹0. We deduce that 𝐶 → 𝐹𝑒−2 is injective and the exactness of
the complex follows, as well as the flatness of the cokernel of 𝐹1 → 𝐹0. �

In the rest of this section we prove two versions of what is called the ``local criterion of
flatness''. Note also the interesting Lemma 7.119.1 below.

Lemma 7.91.6. Let 𝑅 be a local ring with maximal ideal 𝔪 and residue field 𝜅 = 𝑅/𝔪.
Let 𝑀 be an 𝑅-module. If Tor𝑅

1 (𝜅, 𝑀) = 0, then for every finite length 𝑅-module 𝑁 we
have Tor𝑅

1 (𝑁, 𝑀) = 0.

Proof. By descending induction on the length of 𝑁. If the length of 𝑁 is 1, then 𝑁 ≅ 𝜅 and
we are done. If the length of 𝑁 is more than 1, then we can fit 𝑁 into a short exact sequence
0 → 𝑁′ → 𝑁 → 𝑁″ → 0where𝑁′, 𝑁″ are finite length𝑅-modules of smaller length. The
vanishing of Tor𝑅1 (𝑁, 𝑀) follows from the vanishing of Tor𝑅1 (𝑁′, 𝑀) and Tor𝑅1 (𝑁″, 𝑀)
(induction hypothesis) and the long exact sequence of Tor groups, see Lemma 7.69.2. �

Lemma 7.91.7 (Local criterion for flatness). Let 𝑅 → 𝑆 be a local homomorphism of local
Noetherian rings. Let 𝔪 be the maximal ideal of 𝑅, and let 𝜅 = 𝑅/𝔪. Let 𝑀 be a finite
𝑆-module. If Tor𝑅

1 (𝜅, 𝑀) = 0, then 𝑀 is flat over 𝑅.

Proof. Let 𝐼 ⊂ 𝑅 be an ideal. By Lemma 7.35.4 it suffices to show that 𝐼 ⊗𝑅 𝑀 → 𝑀 is
injective. By Remark 7.69.8 we see that this kernel is equal to Tor𝑅1 (𝑀, 𝑅/𝐼). By Lemma
7.91.6 we see that 𝐽 ⊗𝑅 𝑀 → 𝑀 is injective for all ideals of finite colength.

Choose 𝑛 >> 0 and consider the following short exact sequence

0 → 𝐼 ∩ 𝔪𝑛 → 𝐼 ⊕ 𝔪𝑛 → 𝐼 + 𝔪𝑛 → 0
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This is a sub sequence of the short exact sequence 0 → 𝑅 → 𝑅⊕2 → 𝑅 → 0. Thus we get
the diagram

(𝐼 ∩ 𝔪𝑛) ⊗𝑅 𝑀 //

��

𝐼 ⊗𝑅 𝑀 ⊕ 𝔪𝑛 ⊗𝑅 𝑀 //

��

(𝐼 + 𝔪𝑛) ⊗𝑅 𝑀

��
𝑀 //𝑀 ⊕ 𝑀 //𝑀

Note that 𝐼 + 𝔪𝑛 and 𝔪𝑛 are ideals of finite colength. Thus a diagram chase shows that
Ker((𝐼 ∩ 𝔪𝑛) ⊗𝑅 𝑀 → 𝑀) → Ker(𝐼 ⊗𝑅 𝑀 → 𝑀) is surjective. We conclude in particular
that 𝐾 = Ker(𝐼 ⊗𝑅 𝑀 → 𝑀) is contained in the image of (𝐼 ∩ 𝔪𝑛) ⊗𝑅 𝑀 in 𝐼 ⊗𝑅 𝑀. By
Artin-Rees, Lemma 7.47.4 we see that 𝐾 is contained in 𝔪𝑛−𝑐(𝐼⊗𝑅 𝑀) for some 𝑐 > 0 and
all 𝑛 >> 0. Since 𝐼 ⊗𝑅 𝑀 is a finite 𝑆-module (!) and since 𝑆 is Noetherian, we see that
this implies 𝐾 = 0. Namely, the above implies 𝐾 maps to zero in the 𝔪𝑆-adic completion
of 𝐼 ⊗𝑅 𝑀. But the map from 𝑆 to its 𝔪𝑆-adic completion is faithfully flat by Lemma
7.90.4. Hence 𝐾 = 0, as desired. �

In the followingwe often encounter the conditions ``𝑀/𝐼𝑀 is flat over𝑅/𝐼 and Tor𝑅1 (𝑅/𝐼, 𝑀) =
0''. The following lemma gives some consequences of these conditions (it is a generaliza-
tion of Lemma 7.91.6).

Lemma 7.91.8. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑅-module. If 𝑀/𝐼𝑀
is flat over 𝑅/𝐼 and Tor𝑅

1 (𝑅/𝐼, 𝑀) = 0 then
(1) 𝑀/𝐼𝑛𝑀 is flat over 𝑅/𝐼𝑛 for all 𝑛 ≥ 1, and
(2) for anymodule𝑁which is annihilated by 𝐼𝑚 for some𝑚 ≥ 0we have Tor𝑅

1 (𝑁, 𝑀) =
0.

In particular, if 𝐼 is nilpotent, then 𝑀 is flat over 𝑅.

Proof. Assume 𝑀/𝐼𝑀 is flat over 𝑅/𝐼 and Tor𝑅1 (𝑅/𝐼, 𝑀) = 0. Let 𝑁 be an 𝑅/𝐼-module.
Choose a short exact sequence

0 → 𝐾 → ⨁𝑖∈𝐼
𝑅/𝐼 → 𝑁 → 0

By the long exact sequence of Tor and the vanishing of Tor𝑅1 (𝑅/𝐼, 𝑀) we get

0 → Tor𝑅1 (𝑁, 𝑀) → 𝐾 ⊗𝑅 𝑀 → (⨁𝑖∈𝐼
𝑅/𝐼) ⊗𝑅 𝑀 → 𝑁 ⊗𝑅 𝑀 → 0

But since 𝐾, ⨁𝑖∈𝐼 𝑅/𝐼, and 𝑁 are all annihilated by 𝐼 we see that
𝐾 ⊗𝑅 𝑀 = 𝐾 ⊗𝑅/𝐼 𝑀/𝐼𝑀,

(⨁𝑖∈𝐼
𝑅/𝐼) ⊗𝑅 𝑀 = (⨁𝑖∈𝐼

𝑅/𝐼) ⊗𝑅/𝐼 𝑀/𝐼𝑀,

𝑁 ⊗𝑅 𝑀 = 𝑁 ⊗𝑅/𝐼 𝑀/𝐼𝑀.
As 𝑀/𝐼𝑀 is flat over 𝑅/𝐼 we conclude that

0 → 𝐾 ⊗𝑅/𝐼 𝑀/𝐼𝑀 → (⨁𝑖∈𝐼
𝑅/𝐼) ⊗𝑅/𝐼 𝑀/𝐼𝑀 → 𝑁 ⊗𝑅/ 𝑀/𝐼𝑀 → 0

is exact. Combining this with the abovewe conclude that Tor𝑅1 (𝑁, 𝑀) = 0 for any𝑅-module
𝑁 annihilated by 𝐼.
In particular, if we apply this to the module 𝐼/𝐼2, then we conclude that the sequence

0 → 𝐼2 ⊗𝑅 𝑀 → 𝐼 ⊗𝑅 𝑀 → 𝐼/𝐼2 ⊗𝑅 𝑀 → 0

is short exact. This implies that 𝐼2 ⊗𝑅 𝑀 → 𝑀 is injective and it implies that 𝐼/𝐼2 ⊗𝑅/𝐼
𝑀/𝐼𝑀 = 𝐼𝑀/𝐼2𝑀.
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Let us prove that 𝑀/𝐼2𝑀 is flat over 𝑅/𝐼2. Let 𝐼2 ⊂ 𝐽 be an ideal. We have to show that
𝐽/𝐼2 ⊗𝑅/𝐼2 𝑀/𝐼2𝑀 → 𝑀/𝐼2𝑀 is injective, see Lemma 7.35.4. As 𝑀/𝐼𝑀 is flat over 𝑅/𝐼
we know that the map (𝐼 + 𝐽)/𝐼 ⊗𝑅/𝐼 𝑀/𝐼𝑀 → 𝑀/𝐼𝑀 is injective. The sequence

(𝐼 ∩ 𝐽)/𝐼2 ⊗𝑅/𝐼2 𝑀/𝐼2𝑀 → 𝐽/𝐼2 ⊗𝑅/𝐼2 𝑀/𝐼2𝑀 → (𝐼 + 𝐽)/𝐼 ⊗𝑅/𝐼 𝑀/𝐼𝑀 → 0
is exact, as you get it by tensoring the exact sequence 0 → (𝐼 ∩ 𝐽) → 𝐽 → (𝐼 + 𝐽)/𝐼 → 0
by 𝑀/𝐼2𝑀. Hence suffices to prove the injectivity of the map (𝐼 ∩ 𝐽)/𝐼2 ⊗𝑅/𝐼 𝑀/𝐼𝑀 →
𝐼𝑀/𝐼2𝑀. However, the map (𝐼 ∩ 𝐽)/𝐼2 → 𝐼/𝐼2 is injective and as 𝑀/𝐼𝑀 is flat over 𝑅/𝐼
the map (𝐼 ∩ 𝐽)/𝐼2 ⊗𝑅/𝐼 𝑀/𝐼𝑀 → 𝐼/𝐼2 ⊗𝑅/𝐼 𝑀/𝐼𝑀 is injective. Since we have previously
seen that 𝐼/𝐼2 ⊗𝑅/𝐼 𝑀/𝐼𝑀 = 𝐼𝑀/𝐼2𝑀 we obtain the desired injectivity.

Hence we have proven that the assumptions imply: (a) Tor𝑅1 (𝑁, 𝑀) = 0 for all 𝑁 annihi-
lated by 𝐼, (b) 𝐼2 ⊗𝑅 𝑀 → 𝑀 is injective, and (c) 𝑀/𝐼2𝑀 is flat over 𝑅/𝐼2. Thus we can
continue by induction to get the same results for 𝐼𝑛 for all 𝑛 ≥ 1. �

Lemma 7.91.9 (Variant of the local criterion). Let 𝑅 → 𝑆 be a local homomorphism
of Noetherian local rings. Let 𝐼≠𝑅 be an ideal in 𝑅. Let 𝑀 be a finite 𝑆-module. If
Tor𝑅

1 (𝑀, 𝑅/𝐼) = 0 and 𝑀/𝐼𝑀 is flat over 𝑅/𝐼, then 𝑀 is flat over 𝑅.

Proof. First proof: By Lemma 7.91.8 we see that Tor𝑅1 (𝜅, 𝑀) is zero where 𝜅 is the residue
field of 𝑅. Hence we see that 𝑀 is flat over 𝑅 by Lemma 7.91.7.
Second proof: Let 𝔪 be the maximal ideal of 𝑅. We will show that 𝔪 ⊗𝑅 𝑀 → 𝑀 is
injective, and then apply Lemma 7.91.7. Suppose that ∑ 𝑓𝑖 ⊗ 𝑥𝑖 ∈ 𝔪 ⊗𝑅 𝑀 and that
∑ 𝑓𝑖𝑥𝑖 = 0 in 𝑀. By the equational criterion for flatness Lemma 7.35.10 applied to 𝑀/𝐼𝑀
over 𝑅/𝐼 we see there exist 𝑎𝑖𝑗 ∈ 𝑅/𝐼 and 𝑦𝑗 ∈ 𝑀/𝐼𝑀 such that 𝑥𝑖 mod 𝐼𝑀 = ∑𝑗 𝑎𝑖𝑗𝑦𝑗
and 0 = ∑𝑖(𝑓𝑖 mod 𝐼)𝑎𝑖𝑗. Let 𝑎𝑖𝑗 ∈ 𝑅 be a lift of 𝑎𝑖𝑗 and similarly let 𝑦𝑗 ∈ 𝑀 be a lift of
𝑦𝑗. Then we see that

∑ 𝑓𝑖 ⊗ 𝑥𝑖 = ∑ 𝑓𝑖 ⊗ 𝑥𝑖 + ∑ 𝑓𝑖𝑎𝑖𝑗 ⊗ 𝑦𝑗 − ∑ 𝑓𝑖 ⊗ 𝑎𝑖𝑗𝑦𝑗

= ∑ 𝑓𝑖 ⊗ (𝑥𝑖 − ∑ 𝑎𝑖𝑗𝑦𝑗) + ∑(∑ 𝑓𝑖𝑎𝑖𝑗) ⊗ 𝑦𝑗

Since 𝑥𝑖 − ∑ 𝑎𝑖𝑗𝑦𝑗 ∈ 𝐼𝑀 and ∑ 𝑓𝑖𝑎𝑖𝑗 ∈ 𝐼 we see that there exists an element in 𝐼 ⊗𝑅 𝑀
which maps to our given element ∑ 𝑓𝑖 ⊗ 𝑥𝑖 in 𝔪 ⊗𝑅 𝑀. But 𝐼 ⊗𝑅 𝑀 → 𝑀 is injective by
assumption (see Remark 7.69.8) and we win. �

In particular, in the situation of Lemma 7.91.9, suppose that 𝐼 = (𝑥) is generated by a single
element 𝑥 which is a nonzero divisor in 𝑅. Then Tor𝑅1 (𝑀, 𝑅/(𝑥)) = (0) if and only if 𝑥 is a
nonzero divisor on 𝑀.

Lemma 7.91.10. Let 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑆-module.
Assume

(1) 𝑅 is a Noetherian ring,
(2) 𝑆 is a Noetherian ring,
(3) 𝑀 is a finite 𝑆-module, and
(4) for each 𝑛 ≥ 1 the module 𝑀/𝐼𝑛𝑀 is flat over 𝑅/𝐼𝑛.

Then for every 𝔮 ∈ 𝑉(𝐼𝑆) the localization 𝑀𝔮 is flat over 𝑅. In particular, if 𝑆 is local and
𝐼𝑆 is contained in its maximal ideal, then 𝑀 is flat over 𝑅.

Proof. We are going to use Lemma 7.91.9. By assumption 𝑀/𝐼𝑀 is flat over 𝑅/𝐼. Hence
it suffices to check that Tor𝑅1 (𝑀, 𝑅/𝐼) is zero on localization at 𝔮. By Remark 7.69.8
this Tor group is equal to 𝐾 = Ker(𝐼 ⊗𝑅 𝑀 → 𝑀). We know for each 𝑛 ≥ 1 that
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the kernel Ker(𝐼/𝐼𝑛 ⊗𝑅/𝐼𝑛 𝑀/𝐼𝑛𝑀 → 𝑀/𝐼𝑛𝑀) is zero. Since there is a module map
𝐼/𝐼𝑛 ⊗𝑅/𝐼𝑛 𝑀/𝐼𝑛𝑀 → (𝐼 ⊗𝑅 𝑀)/𝐼𝑛−1(𝐼 ⊗𝑅 𝑀) we conclude that 𝐾 ⊂ 𝐼𝑛−1(𝐼 ⊗𝑅 𝑀)
for each 𝑛. By the Artin-Rees lemma, and more precisely Lemma 7.47.7 we conclude that
𝐾𝔮 = 0, as desired. �

Lemma 7.91.11. Let 𝑅 → 𝑅′ → 𝑅″ be ring maps. Let 𝑀 be an 𝑅-module. Suppose that
𝑀 ⊗𝑅 𝑅′ is flat over 𝑅′. Then the natural map Tor𝑅

1 (𝑀, 𝑅′) ⊗𝑅′ 𝑅″ → Tor𝑅
1 (𝑀, 𝑅″) is

onto.

Proof. Let 𝐹• be a free resolution of 𝑀 over 𝑅. The complex 𝐹2 ⊗𝑅 𝑅′ → 𝐹1 ⊗𝑅 𝑅′ →
𝐹0 ⊗𝑅 𝑅′ computes Tor𝑅1 (𝑀, 𝑅′). The complex 𝐹2 ⊗𝑅 𝑅″ → 𝐹1 ⊗𝑅 𝑅″ → 𝐹0 ⊗𝑅 𝑅″

computes Tor𝑅1 (𝑀, 𝑅″). Note that𝐹𝑖⊗𝑅𝑅′⊗𝑅′𝑅″ = 𝐹𝑖⊗𝑅𝑅″. Let𝐾′ = Ker(𝐹1⊗𝑅𝑅′ →
𝐹0 ⊗𝑅 𝑅′) and similarly 𝐾″ = Ker(𝐹1 ⊗𝑅 𝑅″ → 𝐹0 ⊗𝑅 𝑅″). Thus we have an exact
sequence

0 → 𝐾′ → 𝐹1 ⊗𝑅 𝑅′ → 𝐹0 ⊗𝑅 𝑅′ → 𝑀 ⊗𝑅 𝑅′ → 0.
By the assumption that 𝑀 ⊗𝑅 𝑅′ is flat over 𝑅′, the sequence 0 → 𝐾′ ⊗𝑅′ 𝑅″ → 𝐹1 ⊗𝑅
𝑅″ → 𝐹0 ⊗𝑅 𝑅″ → 𝑀 ⊗𝑅 𝑅″ → 0 is still exact. This means that 𝐾″ = 𝐾′ ⊗𝑅′ 𝑅″. Since
Tor𝑅1 (𝑀, 𝑅′) is a quotient of 𝐾′ and Tor𝑅1 (𝑀, 𝑅″) is a quotient of 𝐾″ we win. �

Lemma 7.91.12. Let 𝑅 → 𝑅′ be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal and 𝐼′ = 𝐼𝑅′.
Let 𝑀 be an 𝑅-module and set 𝑀′ = 𝑀 ⊗𝑅 𝑅′. The natural map Tor𝑅

1 (𝑅′/𝐼′, 𝑀) →
Tor𝑅′

1 (𝑅′/𝐼′, 𝑀′) is surjective.

Proof. Let 𝐹2 → 𝐹1 → 𝐹0 → 𝑀 → 0 be a free resolution of 𝑀 over 𝑅. Set 𝐹′
𝑖 = 𝐹𝑖⊗𝑅𝑅′.

The sequence 𝐹′
2 → 𝐹′

1 → 𝐹′
0 → 𝑀′ → 0 may no longer be exact at 𝐹′

1. A free resolution
of 𝑀′ over 𝑅′ therefore looks like

𝐹′
2 ⊕ 𝐹″

2 → 𝐹′
1 → 𝐹′

0 → 𝑀′ → 0

for a suitable free module 𝐹″
2 over 𝑅′. Next, note that 𝐹𝑖 ⊗𝑅 𝑅′/𝐼′ = 𝐹′

𝑖 /𝐼𝐹′
𝑖 = 𝐹′

𝑖 /𝐼
′𝐹′

𝑖 . So
the complex 𝐹′

2/𝐼′𝐹′
2 → 𝐹′

1/𝐼′𝐹′
1 → 𝐹′

0/𝐼′𝐹′
0 computes Tor𝑅1 (𝑀, 𝑅′/𝐼′). On the other hand

𝐹′
𝑖 ⊗𝑅′ 𝑅′/𝐼′ = 𝐹′

𝑖 /𝐼
′𝐹′

𝑖 and similarly for 𝐹″
2 . Thus the complex 𝐹′

2/𝐼′𝐹′
2 ⊕ 𝐹″

2 /𝐼′𝐹″
2 →

𝐹′
1/𝐼′𝐹′

1 → 𝐹′
0/𝐼′𝐹′

0 computes Tor𝑅
′

1 (𝑀′, 𝑅′/𝐼′). Since the vertical map on complexes

𝐹′
2/𝐼′𝐹′

2
//

��

𝐹′
1/𝐼′𝐹′

1
//

��

𝐹′
0/𝐼′𝐹′

0

��
𝐹′

2/𝐼′𝐹′
2 ⊕ 𝐹″

2 /𝐼′𝐹″
2

// 𝐹′
1/𝐼′𝐹′

1
// 𝐹′

0/𝐼′𝐹′
0

clearly induces a surjection on cohomology we win. �

Lemma 7.91.13. Let
𝑆 // 𝑆′

𝑅 //

OO

𝑅′

OO

be a commutative diagram of local homomorphisms of local Noetherian rings. Let 𝐼 ⊂ 𝑅
be an ideal. Let 𝑀 be an 𝑆-module. Denote 𝐼′ = 𝐼𝑅′ and 𝑀′ = 𝑀 ⊗𝑆 𝑆′. Assume that

(1) 𝑆′ is a localization of the tensor product 𝑆 ⊗𝑅 𝑅′,
(2) 𝑀/𝐼𝑀 is flat over 𝑅/𝐼,
(3) Tor𝑅

1 (𝑀, 𝑅/𝐼) → Tor𝑅′

1 (𝑀′, 𝑅′/𝐼′) is zero.
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Then 𝑀′ is flat over 𝑅′.

Proof. Since 𝑆′ is a localization of 𝑆 ⊗𝑅 𝑅′ we see that 𝑀′ is a localization of 𝑀 ⊗𝑅
𝑅′. Note that by Lemma 7.35.6 the module 𝑀/𝐼𝑀 ⊗𝑅/𝐼 𝑅′/𝐼′ = 𝑀 ⊗𝑅 𝑅′/𝐼′(𝑀 ⊗𝑅
𝑅′) is flat over 𝑅′/𝐼′. Hence also 𝑀′/𝐼′𝑀′ is flat over 𝑅′/𝐼′ as the localization of a flat
module is flat. By Lemma 7.91.9 it suffices to show that Tor𝑅

′

1 (𝑀′, 𝑅′/𝐼′) is zero. Since
𝑀′ is a localization of 𝑀 ⊗𝑅 𝑅′, the last assumption implies that it suffices to show that
Tor𝑅1 (𝑀, 𝑅/𝐼) ⊗𝑅 𝑅′ → Tor𝑅

′

1 (𝑀 ⊗𝑅 𝑅′, 𝑅′/𝐼′) is surjective.

By Lemma 7.91.12 we see that Tor𝑅1 (𝑀, 𝑅′/𝐼′) → Tor𝑅
′

1 (𝑀 ⊗𝑅 𝑅′, 𝑅′/𝐼′) is surjective.
So now it suffices to show that Tor𝑅1 (𝑀, 𝑅/𝐼) ⊗𝑅 𝑅′ → Tor𝑅1 (𝑀, 𝑅′/𝐼′) is surjective. This
follows from Lemma 7.91.11 by looking at the ring maps 𝑅 → 𝑅/𝐼 → 𝑅′/𝐼′ and the
module 𝑀. �

Please compare the lemma below to Lemma 7.93.8 (the case of a nilpotent ideal) and
Lemma 7.119.8 (the case of finitely presented algebras).

Lemma 7.91.14 (Critère de platitude par fibres; Noetherian case). Let 𝑅, 𝑆, 𝑆′ be Noe-
therian local rings and let 𝑅 → 𝑆 → 𝑆′ be local ring homomorphisms. Let 𝔪 ⊂ 𝑅 be the
maximal ideal. Let 𝑀 be an 𝑆′-module. Assume

(1) The module 𝑀 is finite over 𝑆′.
(2) The module 𝑀 is not zero.
(3) The module 𝑀/𝔪𝑀 is a flat 𝑆/𝔪𝑆-module.
(4) The module 𝑀 is a flat 𝑅-module.

Then 𝑆 is flat over 𝑅 and 𝑀 is a flat 𝑆-module.

Proof. Set 𝐼 = 𝔪𝑆 ⊂ 𝑆. Then we see that 𝑀/𝐼𝑀 is a flat 𝑆/𝐼-module because of (3).
Since 𝔪 ⊗𝑅 𝑆′ → 𝐼 ⊗𝑆 𝑆′ is surjective we see that also 𝔪 ⊗𝑅 𝑀 → 𝐼 ⊗𝑆 𝑀 is surjective.
Consider

𝔪 ⊗𝑅 𝑀 → 𝐼 ⊗𝑆 𝑀 → 𝑀.
As 𝑀 is flat over 𝑅 the composition is injective and so both arrows are injective. In par-
ticular Tor𝑆1 (𝑆/𝐼, 𝑀) = 0 see Remark 7.69.8. By Lemma 7.91.9 we conclude that 𝑀 is flat
over 𝑆. Note that since 𝑀/𝔪𝑆′𝑀 is not zero by Nakayama's Lemma 7.14.5 we see that
actually 𝑀 is faithfully flat over 𝑆 by Lemma 7.35.14 (since it forces 𝑀/𝔪𝑆𝑀≠0).
Consider the exact sequence 0 → 𝔪 → 𝑅 → 𝜅 → 0. This gives an exact sequence
0 → Tor𝑅1 (𝜅, 𝑆) → 𝔪 ⊗𝑅 𝑆 → 𝐼 → 0. Since 𝑀 is flat over 𝑆 this gives an exact sequence
0 → Tor𝑅1 (𝜅, 𝑆) ⊗𝑆 𝑀 → 𝔪 ⊗𝑅 𝑀 → 𝐼 ⊗𝑆 𝑀 → 0. By the above this implies that
Tor𝑅1 (𝜅, 𝑆) ⊗𝑆 𝑀 = 0. Since 𝑀 is faithfully flat over 𝑆 this implies that Tor𝑅1 (𝜅, 𝑆) = 0
and we conclude that 𝑆 is flat over 𝑅 by Lemma 7.91.7. �

7.92. Base change and flatness

Some lemmas which deal with what happens with flatness when doing a base change.

Lemma 7.92.1. Let
𝑆 // 𝑆′

𝑅 //

OO

𝑅′

OO

be a commutative diagram of local homomorphisms of local rings. Assume that 𝑆′ is a
localization of the tensor product 𝑆⊗𝑅 𝑅′. Let 𝑀 be an 𝑆-module and set 𝑀′ = 𝑆′ ⊗𝑆 𝑀.
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(1) If 𝑀 is flat over 𝑅 then 𝑀′ is flat over 𝑅′.
(2) If 𝑀′ is flat over 𝑅′ and 𝑅 → 𝑅′ is flat then 𝑀 is flat over 𝑅.

In particular we have
(3) If 𝑆 is flat over 𝑅 then 𝑆′ is flat over 𝑅′.
(4) If 𝑅′ → 𝑆′ and 𝑅 → 𝑅′ are flat then 𝑆 is flat over 𝑅.

Proof. Proof of (1). If 𝑀 is flat over 𝑅, then 𝑀 ⊗𝑅 𝑅′ is flat over 𝑅′ by Lemma 7.35.6.
If 𝑊 ⊂ 𝑆 ⊗𝑅 𝑅′ is the multiplicative subset such that 𝑊−1(𝑆 ⊗𝑅 𝑅′) = 𝑆′ then 𝑀′ =
𝑊−1(𝑀 ⊗𝑅 𝑅′). Hence 𝑀′ is flat over 𝑅′ as the localization of a flat module, see Lemma
7.35.19 part (5). This proves (1) and in particular, we see that (3) holds.
Proof of (2). Suppose that 𝑀′ is flat over 𝑅′ and 𝑅 → 𝑅′ is flat. By (3) applied to the
diagram reflected in the northwest diagonal we see that 𝑆 → 𝑆′ is flat. Thus 𝑆 → 𝑆′ is
faithfully flat by Lemma 7.35.16. We are going to use the criterion of Lemma 7.35.4 (3)
to show that 𝑀 is flat. Let 𝐼 ⊂ 𝑅 be an ideal. If 𝐼 ⊗𝑅 𝑀 → 𝑀 has a kernel, so does
(𝐼 ⊗𝑅 𝑀) ⊗𝑆 𝑆′ → 𝑀 ⊗𝑆 𝑆′ = 𝑀′. Note that 𝐼 ⊗𝑅 𝑅′ = 𝐼𝑅′ as 𝑅 → 𝑅′ is flat, and that

(𝐼 ⊗𝑅 𝑀) ⊗𝑆 𝑆′ = (𝐼 ⊗𝑅 𝑅′) ⊗𝑅′ (𝑀 ⊗𝑆 𝑆′) = 𝐼𝑅′ ⊗𝑅′ 𝑀′.
From flatness of 𝑀′ over 𝑅′ we conclude that this maps injectively into 𝑀′. This concludes
the proof of (2), and hence (4) is true as well. �

7.93. Flatness criteria over Artinian rings

We discuss some flatness criteria for modules over Artinian rings.

Lemma 7.93.1. Let (𝑅, 𝔪) be a local Artinian ring. Let 𝑀 be a flat 𝑅-module. If 𝐴 is a
set and 𝑥𝛼 ∈ 𝑀, 𝛼 ∈ 𝐴 is a collection of elements of 𝑀, then the following are equivalent:

(1) {𝑥𝛼}𝛼∈𝐴 forms a basis for the vector space 𝑀/𝔪𝑀 over 𝑅/𝔪, and
(2) {𝑥𝛼}𝛼∈𝐴 forms a basis for 𝑀 over 𝑅.

Proof. The implication (2) ⇒ (1) is immediate. We will prove the other implication by
using induction on 𝑛 to show that {𝑥𝛼}𝛼∈𝐴 forms a basis for 𝑀/𝔪𝑛𝑀 over 𝑅/𝔪𝑛. The case
𝑛 = 1 holds by assumption (1). Assume the statement holds for some 𝑛 ≥ 1. ByNakayama's
Lemma 7.14.5 the elements 𝑥𝛼 generate 𝑀, in particular 𝑀/𝔪𝑛+1𝑀. The exact sequence
0 → 𝔪𝑛/𝔪𝑛+1 → 𝑅/𝔪𝑛+1 → 𝑅/𝔪𝑛 → 0 gives on tensoring with 𝑀 the exact sequence

0 → 𝔪𝑛𝑀/𝔪𝑛+1𝑀 → 𝑀/𝔪𝑛+1𝑀 → 𝑀/𝔪𝑛𝑀 → 0
Here we are using that 𝑀 is flat. Moreover, we have 𝔪𝑛𝑀/𝔪𝑛+1𝑀 = 𝑀/𝔪𝑀 ⊗𝑅/𝔪
𝔪𝑛/𝔪𝑛+1 by flatness of 𝑀 again. Now suppose that ∑ 𝑓𝛼𝑥𝛼 = 0 in 𝑀/𝔪𝑛+1𝑀. Then
by induction hypothesis 𝑓𝛼 ∈ 𝔪𝑛 for each 𝛼. By the short exact sequence above we then
conclude that ∑ 𝑓𝛼 ⊗ 𝑥𝛼 is zero in 𝔪𝑛/𝔪𝑛+1 ⊗𝑅/𝔪 𝑀/𝔪𝑀. Since 𝑥𝛼 forms a basis we
conclude that each of the congruence classes 𝑓𝛼 ∈ 𝔪𝑛/𝔪𝑛+1 is zero and we win. �

Lemma 7.93.2. Let 𝑅 be an Artinian local ring. Let 𝑀 be an 𝑅-module. The following
are equivalent

(1) 𝑀 is flat over 𝑅,
(2) 𝑀 is a free 𝑅-module, and
(3) 𝑀 is a projective 𝑅-module.

Proof. Since any projective module is flat (as a direct summand of a free module) and
every free module is projective, it suffices to prove that a flat module is free. Let 𝑀 be a
flat module. Let 𝐴 be a set and let 𝑥𝛼 ∈ 𝑀, 𝛼 ∈ 𝐴 be elements such that 𝑥𝛼 ∈ 𝑀/𝔪𝑀
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forms a basis over the residue field of 𝑅. By Lemma 7.93.1 the 𝑥𝛼 are a basis for 𝑀 over
𝑅 and we win. �

Lemma 7.93.3. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑅-module. Let 𝐴 be
a set and let 𝑥𝛼 ∈ 𝑀, 𝛼 ∈ 𝐴 be a collection of elements of 𝑀. Assume

(1) 𝐼 is nilpotent,
(2) {𝑥𝛼}𝛼∈𝐴 forms a basis for 𝑀/𝐼𝑀 over 𝑅/𝐼, and
(3) Tor𝑅

1 (𝑅/𝐼, 𝑀) = 0.
Then 𝑀 is free on {𝑥𝛼}𝛼∈𝐴 over 𝑅.

Proof. Let 𝑅, 𝐼, 𝑀, {𝑥𝛼}𝛼∈𝐴 be as in the lemma and satisfy assumptions (1), (2), and
(3). By Nakayama's Lemma 7.14.5 the elements 𝑥𝛼 generate 𝑀 over 𝑅. The assumption
Tor𝑅1 (𝑅/𝐼, 𝑀) = 0 implies that we have a short exact sequence

0 → 𝐼 ⊗𝑅 𝑀 → 𝑀 → 𝑀/𝐼𝑀 → 0.
Let ∑ 𝑓𝛼𝑥𝛼 = 0 be a relation in 𝑀. By choice of 𝑥𝛼 we see that 𝑓𝛼 ∈ 𝐼. Hence we conclude
that ∑ 𝑓𝛼 ⊗ 𝑥𝛼 = 0 in 𝐼 ⊗𝑅 𝑀. The map 𝐼 ⊗𝑅 𝑀 → 𝐼/𝐼2 ⊗𝑅/𝐼 𝑀/𝐼𝑀 and the fact that
{𝑥𝛼}𝛼∈𝐴 forms a basis for 𝑀/𝐼𝑀 implies that 𝑓𝛼 ∈ 𝐼2! Hence we conclude that there are
no relations among the images of the 𝑥𝛼 in 𝑀/𝐼2𝑀. In other words, we see that 𝑀/𝐼2𝑀 is
free with basis the images of the 𝑥𝛼. Using the map 𝐼 ⊗𝑅 𝑀 → 𝐼/𝐼3 ⊗𝑅/𝐼2 𝑀/𝐼2𝑀 we then
conclude that 𝑓𝛼 ∈ 𝐼3! And so on. Since 𝐼𝑛 = 0 for some 𝑛 by assumption (1) we win. �

Lemma 7.93.4. Let 𝜑 ∶ 𝑅 → 𝑅′ be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an
𝑅-module. Assume

(1) 𝑀/𝐼𝑀 is flat over 𝑅/𝐼, and
(2) 𝑅′ ⊗𝑅 𝑀 is flat over 𝑅′.

Set 𝐼2 = 𝜑−1(𝜑(𝐼2)𝑅′). Then 𝑀/𝐼2𝑀 is flat over 𝑅/𝐼2.

Proof. We may replace 𝑅, 𝑀, and 𝑅′ by 𝑅/𝐼2, 𝑀/𝐼2𝑀, and 𝑅′/𝜑(𝐼)2𝑅′. Then 𝐼2 = 0
and 𝜑 is injective. By Lemma 7.91.8 and the fact that 𝐼2 = 0 it suffices to prove that
Tor𝑅1 (𝑅/𝐼, 𝑀) = 𝐾 = Ker(𝐼 ⊗𝑅 𝑀 → 𝑀) is zero. Set 𝑀′ = 𝑀 ⊗𝑅 𝑅′ and 𝐼′ = 𝐼𝑅′. By
assumption the map 𝐼′ ⊗𝑅′ 𝑀′ → 𝑀′ is injective. Hence 𝐾 maps to zero in

𝐼′ ⊗𝑅′ 𝑀′ = 𝐼′ ⊗𝑅 𝑀 = 𝐼′ ⊗𝑅/𝐼 𝑀/𝐼𝑀.
Then 𝐼 → 𝐼′ is an injective map of 𝑅/𝐼-modules. Since 𝑀/𝐼𝑀 is flat over 𝑅/𝐼 the map

𝐼 ⊗𝑅/𝐼 𝑀/𝐼𝑀 ⟶ 𝐼′ ⊗𝑅/𝐼 𝑀/𝐼𝑀
is injective. This implies that 𝐾 is zero in 𝐼 ⊗𝑅 𝑀 = 𝐼 ⊗𝑅/𝐼 𝑀/𝐼𝑀 as desired. �

Lemma 7.93.5. Let 𝜑 ∶ 𝑅 → 𝑅′ be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an
𝑅-module. Assume

(1) 𝐼 is nilpotent,
(2) 𝑅 → 𝑅′ is injective,
(3) 𝑀/𝐼𝑀 is flat over 𝑅/𝐼, and
(4) 𝑅′ ⊗𝑅 𝑀 is flat over 𝑅′.

Then 𝑀 is flat over 𝑅.

Proof. Define inductively 𝐼1 = 𝐼 and 𝐼𝑛+1 = 𝜑−1(𝜑(𝐼𝑛)2𝑅′) for 𝑛 ≥ 1. Note that by
Lemma 7.93.4 we find that 𝑀/𝐼𝑛𝑀 is flat over 𝑅/𝐼𝑛 for each 𝑛 ≥ 1. It is clear that 𝜑(𝐼𝑛) ⊂
𝜑(𝐼)2𝑛

𝑅′. Since 𝐼 is nilpotent we see that 𝜑(𝐼𝑛) = 0 for some 𝑛. As 𝜑 is injective we
conclude that 𝐼𝑛 = 0 for some 𝑛 and we win. �
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Here is the local Artinian version of the local criterion for flatness.

Lemma 7.93.6. Let 𝑅 be an Artinian local ring. Let 𝑀 be an 𝑅-module. Let 𝐼 ⊂ 𝑅 be a
proper ideal. The following are equivalent

(1) 𝑀 is flat over 𝑅, and
(2) 𝑀/𝐼𝑀 is flat over 𝑅/𝐼 and Tor𝑅

1 (𝑅/𝐼, 𝑀) = 0.

Proof. The implication (1)⇒ (2) follows immediately from the definitions. Assume𝑀/𝐼𝑀
is flat over 𝑅/𝐼 and Tor𝑅1 (𝑅/𝐼, 𝑀) = 0. By Lemma 7.93.2 this implies that 𝑀/𝐼𝑀 is free
over 𝑅/𝐼. Pick a set 𝐴 and elements 𝑥𝛼 ∈ 𝑀 such that the images in 𝑀/𝐼𝑀 form a basis.
By Lemma 7.93.3 we conclude that 𝑀 is free and in particular flat. �

It turns out that flatness descends along injective homomorphism whose source is an Ar-
tinian ring.

Lemma 7.93.7. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑅-module. Assume
(1) 𝑅 is Artinian
(2) 𝑅 → 𝑆 is injective, and
(3) 𝑀 ⊗𝑅 𝑆 is a flat 𝑆-module.

Then 𝑀 is a flat 𝑅-module.

Proof. First proof: Let 𝐼 ⊂ 𝑅 be the radical of 𝑅. Then 𝐼 is nilpotent and 𝑀/𝐼𝑀 is flat
over 𝑅/𝐼 as 𝑅/𝐼 is a product of fields, see Section 7.49. Hence 𝑀 is flat by an application
of Lemma 7.93.5.
Second proof: By Lemma 7.49.8 we may write 𝑅 = ∏ 𝑅𝑖 as a finite product of local
Artinian rings. This induces similar product decompositions for both 𝑅 and 𝑆. Hence we
reduce to the case where 𝑅 is local Artinian (details omitted).
Assume that 𝑅 → 𝑆, 𝑀 are as in the lemma satisfying (1), (2), and (3) and in addition that
𝑅 is local with maximal ideal 𝔪. Let 𝐴 be a set and 𝑥𝛼 ∈ 𝐴 be elements such that 𝑥𝛼 forms
a basis for 𝑀/𝔪𝑀 over 𝑅/𝔪. By Nakayama's Lemma 7.14.5 we see that the elements 𝑥𝛼
generate 𝑀 as an 𝑅-module. Set 𝑁 = 𝑆 ⊗𝑅 𝑀 and 𝐼 = 𝔪𝑆. Then {1 ⊗ 𝑥𝛼}𝛼∈𝐴 is a family
of elements of 𝑁 which form a basis for 𝑁/𝐼𝑁. Moreover, since 𝑁 is flat over 𝑆 we have
Tor𝑆1 (𝑆/𝐼, 𝑁) = 0. Thus we conclude from Lemma 7.93.3 that 𝑁 is free on {1 ⊗ 𝑥𝛼}𝛼∈𝐴.
The injectivity of 𝑅 → 𝑆 then guarantees that there cannot be a nontrivial relation among
the 𝑥𝛼 with coefficients in 𝑅. �

Please compare the lemma below to Lemma 7.91.14 (the case of Noetherian local rings)
and Lemma 7.119.8 (the case of finitely presented algebras).

Lemma 7.93.8 (Critère de platitude par fibres: Nilpotent case). Let

𝑆 // 𝑆′

𝑅

__ >>

be a commutative diagram in the category of rings. Let 𝐼 ⊂ 𝑅 be a nilpotent ideal and 𝑀
an 𝑆′-module. Assume

(1) The module 𝑀/𝐼𝑀 is a flat 𝑆/𝐼𝑆-module.
(2) The module 𝑀 is a flat 𝑅-module.

Then 𝑀 is a flat 𝑆-module and 𝑆𝔮 is flat over 𝑅 for every 𝔮 ⊂ 𝑆 such that 𝑀 ⊗𝑆 𝜅(𝔮) is
nonzero.
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Proof. As 𝑀 is flat over 𝑅 tensoring with the short exact sequence 0 → 𝐼 → 𝑅 → 𝑅/𝐼 → 0
gives a short exact sequence

0 → 𝐼 ⊗𝑅 𝑀 → 𝑀 → 𝑀/𝐼𝑀 → 0.

Note that 𝐼 ⊗𝑅 𝑀 → 𝐼𝑆 ⊗𝑆 𝑀 is surjective. Combined with the above this means both
maps in

𝐼 ⊗𝑅 𝑀 → 𝐼𝑆 ⊗𝑆 𝑀 → 𝑀
are injective. Hence Tor𝑆1 (𝐼𝑆, 𝑀) = 0 (see Remark 7.69.8) and we conclude that 𝑀 is a flat
𝑆-module by Lemma 7.91.8. To finish we need to show that 𝑆𝔮 is flat over 𝑅 for any prime
𝔮 ⊂ 𝑆 such that 𝑀 ⊗𝑆 𝜅(𝔮) is nonzero. This follows from Lemma 7.35.14 and 7.35.9. �

7.94. What makes a complex exact?

Some of this material can be found in the paper [BE73] by Buchsbaum and Eisenbud.

Situation 7.94.1. Here 𝑅 is a ring, and we have a complex

0 → 𝑅𝑛𝑒
𝜑𝑒−−→ 𝑅𝑛𝑒−1

𝜑𝑒−1−−−−→ …
𝜑𝑖+1−−−→ 𝑅𝑛𝑖

𝜑𝑖−−→ 𝑅𝑛𝑖−1
𝜑𝑖−1−−−→ …

𝜑1−−→ 𝑅𝑛0

In other words we require 𝜑𝑖 ∘ 𝜑𝑖+1 = 0 for 𝑖 = 1, … , 𝑒 − 1.

Lemma 7.94.2. In Situation 7.94.1. Suppose 𝑅 is a local ring with maximal ideal 𝔪.
Suppose that for some 𝑖, 𝑒 ≤ 𝑖 ≤ 1 some matrix coefficient of the map 𝜑𝑖 is invertible. Then
the complex 0 → 𝑅𝑛𝑒 → 𝑅𝑛𝑒−1 → … → 𝑅𝑛0 is isomorphic to the direct sum of a complex
0 → 𝑅𝑛𝑒 → … → 𝑅𝑛𝑖−1 → 𝑅𝑛𝑖−1−1 → … → 𝑅𝑛0 and the complex 0 → 0 → … → 𝑅 →
𝑅 → 0 → … → 0 where the map 𝑅 → 𝑅 is the identity map.

Proof. The assumption means, after a change of basis of 𝑅𝑛𝑖 and 𝑅𝑛𝑖−1 that the first basis
vector of 𝑅𝑛𝑖 is mapped via 𝜑𝑖 to the first basis vector of 𝑅𝑛𝑖−1. Let 𝑒𝑗 denote the 𝑗th basis
vector of 𝑅𝑛𝑖 and 𝑓𝑘 the 𝑘th basis vector of 𝑅𝑛𝑖−1. Write 𝜑𝑖(𝑒𝑗) = ∑ 𝑎𝑗𝑘𝑓𝑘. So 𝑎1𝑘 = 0
unless 𝑘 = 1 and 𝑎11 = 1. Change basis on 𝑅𝑛𝑖 again by setting 𝑒′

𝑗 = 𝑒𝑗 − 𝑎𝑗1𝑒1 for 𝑗 > 1.
After this change of coordinates we have 𝑎𝑗1 = 0 for 𝑗 > 1. Note the image of 𝑅𝑛𝑖+1 → 𝑅𝑛𝑖

is contained in the subspace spanned by 𝑒𝑗, 𝑗 > 1. Note also that 𝑅𝑛𝑖−1 → 𝑅𝑛𝑖−2 has to
annihilate 𝑓1 since it is in the image. These conditions and the shape of the matrix (𝑎𝑗𝑘) for
𝜑𝑖 imply the lemma. �

Let us say that an acyclic complex of the form … → 0 → 𝑅 → 𝑅 → 0 → … is trivial. The
lemma above clearly says that any finite complex of finite free modules over a local ring is
up to direct sums with trivial complexes the same as a complex all of whose maps have all
matrix coefficients in the maximal ideal.

Lemma 7.94.3. In Situation 7.94.1. Let 𝑅 be a Artinian local ring. Suppose that 0 →
𝑅𝑛𝑒 → 𝑅𝑛𝑒−1 → … → 𝑅𝑛0 is an exact complex. Then the complex is isomorphic to a direct
sum of trivial complexes.

Proof. By induction on the integer ∑ 𝑛𝑖. Clearly Ass(𝑅) = {𝔪}. Pick 𝑥 ∈ 𝑅, 𝑥≠0,
𝔪𝑥 = 0. Pick a basis vector 𝑒𝑖 ∈ 𝑅𝑛𝑒. Since 𝑥𝑒𝑖 is not be mapped to zero by exactness of
the complex we deduce that some matrix coefficient of the map 𝑅𝑛𝑒 → 𝑅𝑛𝑒−1 is not in 𝔪.
Lemma 7.94.2 then allows us to decrease ∑ 𝑛𝑖. �

Belowwe define the rank of a map of finite free modules. This is just one possible definition
of rank. It is just the definition that works in this section; there are others that may be more
convenient in other settings.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00MS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00MT
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00MU


390 7. COMMUTATIVE ALGEBRA

Definition 7.94.4. Let 𝑅 be a ring. Suppose that 𝜑 ∶ 𝑅𝑚 → 𝑅𝑛 is a map of finite free
modules.

(1) The rank of 𝜑 is the maximal 𝑟 such that ∧𝑟𝜑 ∶ ∧𝑟𝑅𝑚 → ∧𝑟𝑅𝑛 is nonzero.
(2) We let 𝐼(𝜑) ⊂ 𝑅 be the ideal generated by the 𝑟 × 𝑟 minors of the matrix of 𝜑,

where 𝑟 is the rank as defined above.

Lemma 7.94.5. In Situation 7.94.1, suppose the complex is isomorphic to a direct sum of
trivial complexes. Then we have

(1) the maps 𝜑𝑖 have rank 𝑟𝑖 = 𝑛𝑖 − 𝑛𝑖+1 + … + (−1)𝑒−𝑖−1𝑛𝑒−1 + (−1)𝑒−𝑖𝑛𝑒,
(2) for all 𝑖, 1 ≤ 𝑖 ≤ 𝑒 we have rank(𝜑𝑖+1) + rank(𝜑𝑖) = 𝑛𝑖,
(3) each 𝐼(𝜑𝑖) = 𝑅.

Proof. We may assume the complex is the direct sum of trivial complexes. Then for each
𝑖 we can split the standard basis elements of 𝑅𝑛𝑖 into those that map to a basis element
of 𝑅𝑛𝑖−1 and those that are mapped to zero (and these are mapped onto by basis elements
of 𝑅𝑛𝑖+1). Using descending induction starting with 𝑖 = 𝑒 it is easy to prove that there
are 𝑟𝑖+1-basis elements of 𝑅𝑛𝑖 which are mapped to zero and 𝑟𝑖 which are mapped to basis
elements of 𝑅𝑛𝑖−1. From this the result follows. �

Lemma 7.94.6. Let 𝑅 be a local Noetherian ring. Suppose that 𝜑 ∶ 𝑅𝑚 → 𝑅𝑛 is a map of
finite free modules. The following are equivalent

(1) 𝜑 is injective.
(2) the rank of 𝜑 is 𝑚 and either 𝐼(𝜑) = 𝑅 or it contains a non zero divisor.

Proof. If any matrix coefficient of 𝜑 is not in 𝔪, then we apply Lemma 7.94.2 to write 𝜑
as the sum of 1 ∶ 𝑅 → 𝑅 and a map 𝜑′ ∶ 𝑅𝑚−1 → 𝑅𝑛−1. It is easy to see that the lemma
for 𝜑′ implies the lemma for 𝜑. Thus we may assume from the outset that all the matrix
coefficients of 𝜑 are in 𝔪.

Suppose 𝜑 is injective. We may assume 𝑚 > 0. Let 𝔮 ∈ Ass(𝑅). Let 𝑥 ∈ 𝑅 be an
element whose annihilator is 𝔮. Note that 𝜑 induces a injective map 𝑥𝑅𝑚 → 𝑥𝑅𝑛 which
is isomorphic to the map 𝜑𝔮 ∶ (𝑅/𝔮)𝑚 → (𝑅/𝔮)𝑛 induced by 𝜑. Since 𝑅/𝔮 is a domain we
deduce immediately by localizing to its fraction field that the rank of 𝜑𝔮 is 𝑚 and that 𝐼(𝜑𝔮)
is not the zero ideal. Hence we conclude by Lemma 7.60.17.

Conversely, assume that the rank of 𝜑 is 𝑚 and that 𝐼(𝜑) contains a non zero divisor 𝑥. The
rank being 𝑚 implies 𝑛 ≥ 𝑚. By Lemma 7.14.6 we can find a map 𝜓 ∶ 𝑅𝑛 → 𝑅𝑚 such that
𝜓 ∘ 𝜑 = 𝑓id𝑅𝑚. Thus 𝜑 is injective. �

Lemma 7.94.7. In Situation 7.94.1. Suppose 𝑅 is a local Noetherian ring with maximal
ideal 𝔪. Assume 𝔪 ∈ Ass(𝑅), in other words 𝑅 has depth 0. Suppose that the complex is
exact. In this case the complex is isomorphic to a direct sum of trivial complexes.

Proof. The proof is the same as in Lemma 7.94.3, except using Lemma 7.94.6 to guarantee
that 𝐼(𝜑𝑒) = 𝑅, and hence some matrix coefficient of 𝜑𝑒 is not in 𝔪. �

Lemma 7.94.8. In Situation 7.94.1, suppose 𝑅 is a local Noetherian ring, and suppose that
the complex is exact. Let 𝑥 be an element of the maximal ideal which is a nonzero divisor.
The complex 0 → (𝑅/𝑥𝑅)𝑛𝑒 → … → (𝑅/𝑥𝑅)𝑛1 is still exact.

Proof. Follows easily from the snake lemma. �
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Lemma 7.94.9. (Acyclicity lemma.) Let 𝑅 be a local Noetherian ring. Let 0 → 𝑀𝑒 →
𝑀𝑒−1 → … → 𝑀0 be a complex of finite 𝑅-modules. Assume depth(𝑀𝑖) ≥ 𝑖. Let 𝑖
be the largest index such that the complex is not exact at 𝑀𝑖. If 𝑖 > 0 then Ker(𝑀𝑖 →
𝑀𝑖−1)/Im(𝑀𝑖+1 → 𝑀𝑖) has depth ≥ 1.

Proof. Let 𝐻 = Ker(𝑀𝑖 → 𝑀𝑖−1)/Im(𝑀𝑖+1 → 𝑀𝑖) be the cohomology group in question.
We may break the complex into short exact sequences 0 → 𝑀𝑒 → 𝑀𝑒−1 → 𝐾𝑒−2 → 0,
0 → 𝐾𝑗 → 𝑀𝑗 → 𝐾𝑗−1 → 0, for 𝑖 + 2 ≤ 𝑗 ≤ 𝑒 − 2, 0 → 𝐾𝑖+1 → 𝑀𝑖+1 → 𝐵𝑖 → 0,
0 → 𝐾𝑖 → 𝑀𝑖 → 𝑀𝑖−1, and 0 → 𝐵𝑖 → 𝐾𝑖 → 𝐻 → 0. We proceed up through these
complexes to prove the statements about depths, repeatedly using Lemma 7.67.10. First of
all, since depth(𝑀𝑒) ≥ 𝑒, and depth(𝑀𝑒−1) ≥ 𝑒−1 we deduce that depth(𝐾𝑒−2) ≥ 𝑒−1. At
this point the sequences 0 → 𝐾𝑗 → 𝑀𝑗 → 𝐾𝑗−1 → 0 for 𝑖 + 2 ≤ 𝑗 ≤ 𝑒 − 2 imply similarly
that depth(𝐾𝑗−1) ≥ 𝑗 for 𝑖 + 2 ≤ 𝑗 ≤ 𝑒 − 2. The sequence 0 → 𝐾𝑖+1 → 𝑀𝑖+1 → 𝐵𝑖 → 0
then shows that depth(𝐵𝑖) ≥ 𝑖 + 1. The sequence 0 → 𝐾𝑖 → 𝑀𝑖 → 𝑀𝑖−1 shows that
depth(𝐾𝑖) ≥ 1 since 𝑀𝑖 has depth ≥ 𝑖 ≥ 1 by assumption. The sequence 0 → 𝐵𝑖 → 𝐾𝑖 →
𝐻 → 0 then implies the result. �

Proposition 7.94.10. In Situation 7.94.1, suppose 𝑅 is a local Noetherian ring. The com-
plex is exact if and only if for all 𝑖, 1 ≤ 𝑖 ≤ 𝑒 the following two conditions are satisfied:

(1) we have rank(𝜑𝑖+1) + rank(𝜑𝑖) = 𝑛𝑖, and
(2) 𝐼(𝜑𝑖) = 𝑅, or 𝐼(𝜑𝑖) contains a regular sequence of length 𝑖.

Proof. This proof is very similar to the proof of Lemma 7.94.6. As in the proof of Lemma
7.94.6 we may assume that all matrix entries of each 𝜑𝑖 are elements of the maximal ideal.
We may also assume that 𝑒 ≥ 1.
Assume the complex is exact. Let 𝑞 ∈ Ass(𝑅). (There is at least one such prime.) Note
that the ring 𝑅𝔮 has depth 0. We apply Lemmas 7.94.7 and 7.94.5 to the localized complex
over 𝑅𝔮. all of the ideals 𝐼(𝜑𝑖)𝔮, 𝑒 ≥ 𝑖 ≥ 1 are equal to 𝑅𝔮. Thus none of the ideals
𝐼(𝜑𝑖) is contained in 𝔮. This implies that 𝐼(𝜑𝑒)𝐼(𝜑𝑒−1) … 𝐼(𝜑1) is not contained in any of
the associated primes of 𝑅. By Lemma 7.14.3 we may choose 𝑥 ∈ 𝐼(𝜑𝑒)𝐼(𝜑𝑒−1) … 𝐼(𝜑1),
𝑥∉𝔮 for all 𝑞 ∈ Ass(𝑅). According to Lemma 7.94.8 the complex 0 → (𝑅/𝑥𝑅)𝑛𝑒 → … →
(𝑅/𝑥𝑅)𝑛1 is exact. By induction on 𝑒 all the ideals 𝐼(𝜑𝑖)/𝑥𝑅 have a regular sequence of
length 𝑖 − 1. This proves that 𝐼(𝜑𝑖) contains a regular sequence of length 𝑖.
Assume the two conditions on the ranks of 𝜑𝑖 and the ideals 𝐼(𝜑𝑖) is satisfied. Note that
𝐼(𝜑𝑖) ⊂ 𝔪 for all 𝑖 because of what was said in the first paragraph of the proof. Hence the
assumption in particular implies that depth(𝑅) ≥ 𝑒. By induction on the dimension of 𝑅
we may assume the complex is exact when localized at any nonmaximal prime of 𝑅. Thus
Ker(𝜑𝑖)/Im(𝜑𝑖+1) has support {𝔪} and hence (if nonzero) depth 0. By Lemma 7.94.9 we
see that the complex is exact. �

7.95. Cohen-Macaulay modules

Here we just do a minimal amount of work to show that Cohen-Macaulay modules have
good properties. We postpone using Ext groups to esthablish the connection with duality
and so on.

Definition 7.95.1. Let 𝑅 be a Noetherian local ring. Let 𝑀 be a finite 𝑅-module. We say
𝑀 is Cohen-Macaulay if dim(Support(𝑀)) = depth(𝑀).

Let 𝑅 be a local Noetherian ring. Let 𝑀 be a Cohen-Macaulaymodule, and let 𝑓1, … , 𝑓𝑑 be
an 𝑀-regular sequence with 𝑑 = dim(Support(𝑀)). We say that 𝑔 ∈ 𝔪 is good with respect
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to (𝑀, 𝑓1, … , 𝑓𝑑) if for all 𝑖 = 0, 1, … , 𝑑−1 we have dim(Support(𝑀)∩𝑉(𝑔, 𝑓1, … , 𝑓𝑖)) =
𝑑 − 𝑖 − 1. This is equivalent to the condition that dim((Support(𝑀/(𝑓1, … , 𝑓𝑖)𝑀) ∩ 𝑉(𝑔) =
𝑑 − 𝑖 − 1 for 𝑖 = 0, 1, … , 𝑑 − 1.

Lemma7.95.2. Notation and assumptions as above. If 𝑔 is goodwith respect to (𝑀, 𝑓1, … , 𝑓𝑑),
then (a) 𝑔 is a nonzero-divisor on 𝑀, and (b) 𝑀/𝑔𝑀 is Cohen-Macaulay with maximal reg-
ular sequence 𝑓1, … , 𝑓𝑑−1.

Proof. We prove the lemma by induction on 𝑑. If 𝑑 = 0, then 𝑀 is finite and there is no
case to which the lemma applies. If 𝑑 = 1, then we have to show that 𝑔 ∶ 𝑀 → 𝑀 is
injective. The kernel 𝐾 has support {𝔪} because by assumption dimSupp(𝑀) ∩ 𝑉(𝑔) = 0.
Hence 𝐾 has finite length. Hence 𝑓1 ∶ 𝐾 → 𝐾 injective implies the length of the image is
the length of 𝐾, and hence 𝑓1𝐾 = 𝐾, which by Nakayama's Lemma 7.14.5 implies 𝐾 = 0.
Also, dimSupp(𝑀/𝑔𝑀) = 0 and so 𝑀/𝑔𝑀 is Cohen-Macaulay of depth 0.

For 𝑑 > 1 we essentially argue in the same way. Let 𝐾 ⊂ 𝑀 be the kernel of multiplication
by 𝑔. As above 𝑓1 ∶ 𝐾 → 𝐾 cannot be surjective if 𝐾≠0 Consider the commutative diagram

0 → 𝑀
𝑓1−−→ 𝑀 → 𝑀/𝑓1𝑀 → 0

↓ 𝑔 ↓ 𝑔 ↓ 𝑔
0 → 𝑀

𝑓1−−→ 𝑀 → 𝑀/𝑓1𝑀 → 0

This shows that the kernel 𝐾1 of 𝑔 ∶ 𝑀/𝑓1𝑀 → 𝑀/𝑓1𝑀 cannot be zero if 𝐾 is not zero.
But 𝑔 is good for (𝑀/𝑓1𝑀, 𝑓2, … , 𝑓𝑑), as is easy seen from the definition. We conclude
that 𝐾1 = 0, and so 𝐾 = 0. From the snake lemma we see that 0 → 𝑀/𝑔𝑀 → 𝑀/𝑔𝑀 →
𝑀/(𝑓1, 𝑔)𝑀 → 0 is exact. By induction, we have that 𝑀/(𝑔, 𝑓1)𝑀 is Cohen-Macaulay
with regular sequence 𝑓2, … , 𝑓𝑑−1. Thus 𝑀/𝑔𝑀 is Cohen-Macaulay with regular sequence
𝑓1, … , 𝑓𝑑−1. �

Lemma 7.95.3. Let 𝑅 be a Noetherian local ring. Let 𝑀 be a Cohen-Macaulay module
over 𝑅. Suppose 𝑔 ∈ 𝔪 is such that dim(Supp(𝑀) ∩ 𝑉(𝑔)) = dim(Supp(𝑀)) − 1. Then (a)
𝑔 is a nonzero divisor on 𝑀, and (b) 𝑀/𝑔𝑀 is Cohen-Macaulay of depth one less.

Proof. Choose a 𝑀-regular sequence 𝑓1, … , 𝑓𝑑 with 𝑑 = dim(Supp(𝑀)). If 𝑔 is is good
with respect to (𝑀, 𝑓1, … , 𝑓𝑑) we win by Lemma 7.95.2. In particular the lemma holds if
𝑑 = 1. (The case 𝑑 = 0 does not occur.) Assume 𝑑 > 1. Choose an element ℎ ∈ 𝑅 such
that (a) ℎ is good with respect to (𝑀, 𝑓1, … , 𝑓𝑑), and (b) dim(Supp(𝑀) ∩ 𝑉(ℎ, 𝑔) = 𝑑 − 2.
To see ℎ exists, let {𝔮𝑖} be the (finite) set of minimal primes of the closed sets Supp(𝑀),
Supp(𝑀) ∩ 𝑉(𝑓1, … , 𝑓𝑖), 𝑖 = 1, … , 𝑑 − 1, and Supp(𝑀) ∩ 𝑉(𝑔). None of these 𝔮𝑖 is equal to
𝔪 and hence we may find ℎ ∈ 𝔪, ℎ∉𝔮𝑖 by Lemma 7.14.3. It is clear that ℎ satisfies (a) and
(b). At this point we may apply Lemma 7.95.2 to conclude that 𝑀/ℎ𝑀 is Cohen-Macaulay.
By (b) we see that the pair (𝑀/ℎ𝑀, 𝑔) satisfies the induction hypothesis. Hence 𝑀/(ℎ, 𝑔)𝑀
is Cohen-Macaulay, and 𝑔 ∶ 𝑀/ℎ𝑀 → 𝑀/ℎ𝑀 is injective. From this it follows easily that
𝑔 ∶ 𝑀 → 𝑀 is injective, by a snake lemma argument. This in its turn implies that ℎ ∶
𝑀/𝑔𝑀 → 𝑀/𝑔𝑀 is injective. Combined with the fact that 𝑀/(𝑔, ℎ)𝑀 is Cohen-Macaulay
this finishes the proof. �

Proposition 7.95.4. Let 𝑅 be a Noetherian local ring, with maximal ideal 𝔪. Let 𝑀 be a
Cohen-Macaulay module over 𝑅 whose support has dimension 𝑑. Suppose that 𝑔1, … , 𝑔𝑐
are elements of 𝔪 such that dim(Supp(𝑀/(𝑔1, … , 𝑔𝑐)𝑀)) = 𝑑 − 𝑐. Then 𝑔1, … , 𝑔𝑐 is an
𝑀-regular sequence, and can be extended to a maximal 𝑀-regular sequence.
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Proof. Let 𝑍 = Supp(𝑀) ⊂ 𝑆𝑝𝑒𝑐(𝑅). By Lemma 7.57.11 in the chain 𝑍 ⊃ 𝑍 ∩ 𝑉(𝑔1) ⊃
… ⊃ 𝑍∩𝑉(𝑔1, … , 𝑔𝑐) each step decreases the dimension at most by 1. Hence by assumption
each step decreases the dimension by exactly 1 each time. Thus we may succesively apply
Lemma 7.95.3 above to the modules 𝑀/(𝑔1, … , 𝑔𝑖) and the element 𝑔𝑖+1.

To extend 𝑔1, … , 𝑔𝑐 by one element if 𝑐 < 𝑑 we simply choose an element 𝑔𝑐+1 ∈ 𝔪
which is not in any of the finitely many minimal primes of 𝑍 ∩ 𝑉(𝑔1, … , 𝑔𝑐), using Lemma
7.14.3. �

7.96. Cohen-Macaulay rings

Definition 7.96.1. A Noetherian local ring 𝑅 is called Cohen-Macaulay if it is Cohen-
Macaulay as a module over itself.

Note that this is equivalent to requiring the existence of a 𝑅-regular sequence 𝑥1, … , 𝑥𝑑
of the maximal ideal such that 𝑅/(𝑥1, … , 𝑥𝑑) has dimension 0. We will usually just say
``regular sequence'' and not ``𝑅-regular sequence''.

Lemma 7.96.2. Let 𝑅 be a Noetherian local Cohen-Macaulay ring with maximal ideal 𝔪.
Let 𝑥1, … , 𝑥𝑐 ∈ 𝔪 be elements. Then

𝑥1, … , 𝑥𝑐 is a regular sequence ⇔ dim(𝑅/(𝑥1, … , 𝑥𝑐)) = dim(𝑅) − 𝑐

If so 𝑥1, … , 𝑥𝑐 can be extended to a regular sequence of length dim(𝑅) and each quotient
𝑅/(𝑥1, … , 𝑥𝑖) is a Cohen-Macaulay ring of dimension dim(𝑅) − 𝑖.

Proof. This is a reformulation of Proposition 7.95.4 in the case where the module is equal
to 𝑅. �

Lemma 7.96.3. Let 𝑅 be Noetherian local. Suppose 𝑅 is Cohen-Macaulay of dimension
𝑑. Any maximal chain of ideals 𝔭0 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑛 has length 𝑛 = 𝑑.

Proof. Choose an element 𝑥 ∈ 𝔭1, with 𝑥 not in any of the minimal primes of 𝑅, and in
particular 𝑥∉𝔭0. (See Lemma 7.14.3.) Then dim(𝑅/𝑥𝑅) < dim(𝑅) and 𝑅/𝑥𝑅 is Cohen-
Macaulay by Proposition 7.95.4. By induction the chain 𝔭1/𝑥𝑅 ⊂ … ⊂ 𝔭𝑛/𝑥𝑅 has length
𝑑 − 1. �

Lemma 7.96.4. Suppose 𝑅 is a Noetherian local Cohen-Macaulay ring of dimension 𝑑.
For any prime 𝔭 ⊂ 𝑅 we have

dim(𝑅) = dim(𝑅𝔭) + dim(𝑅/𝔭).

Proof. This is immediate from the result on maximal sequences above, by looking at max-
imal sequences which have 𝔭 in them. �

Lemma 7.96.5. Suppose 𝑅 is a Cohen-Macaulay local ring. For any prime 𝔭 ⊂ 𝑅 the
ring 𝑅𝔭 is Cohen-Macaulay as well.

Proof. Suppose that dim(𝑅) = 𝑑 and that dim(𝑅/𝔭) = 𝑑−𝑐. Wemay choose 𝑓1, … , 𝑓𝑐 ∈ 𝔭
such that dim 𝑉(𝑓1, … , 𝑓𝑖) = 𝑑 − 𝑖, using Lemma 7.14.3 at each step to avoid minimal
primes of 𝑉(𝑓1, … , 𝑓𝑖−1). Then 𝔭 is minimal over (𝑓1, … , 𝑓𝑐) and hence the support of
𝑅𝔭/(𝑓1, … , 𝑓𝑐)𝑅𝔭 consists of the maximal ideal of 𝑅𝔭. In other words 𝑅𝔭 has an ideal of
definition generated by 𝑐 elements, and has dimension 𝑐 by Lemma 7.96.4. �

Definition 7.96.6. A Noetherian ring 𝑅 is called Cohen-Macaulay if all its local rings are
Cohen-Macaulay.
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Lemma 7.96.7. Suppose 𝑅 is a Cohen-Macaulay ring. Any polynomial algebra over 𝑅 is
Cohen-Macaulay.

Proof. By induction on the number of variables it suffices to prove that 𝑅[𝑥] is Cohen-
Macaulay if 𝑅 is. Let 𝔮 ⊂ 𝑅[𝑥] be a prime, and let 𝔭 be its image. Let 𝑓1, … , 𝑓𝑑 be a
regular sequence in the maximal ideal of 𝑅𝔭 of length 𝑑 = dim(𝑅𝔭). Note that since 𝑅[𝑥]
is flat over 𝑅 the localization 𝑅[𝑥]𝔮 is flat over 𝑅𝔭. Hence, by Lemma 7.65.7, the sequence
𝑓1, … , 𝑓𝑑 is a regular sequence of length 𝑑 in 𝑅[𝑥]𝔮. The quotient 𝑅[𝑥]𝔮/(𝑓1, … , 𝑓𝑑) is a lo-
calization of (𝑅𝔭/(𝑓1, … , 𝑓𝑑))[𝑥] at a prime 𝔮. It is clear that either 𝔮 contains a monic poly-
nomial 𝑓 in (𝑅𝔭/(𝑓1, … , 𝑓𝑑))[𝑥], or 𝔮 equals the kernel of (𝑅𝔭/(𝑓1, … , 𝑓𝑑))[𝑥] → 𝜅(𝔭)[𝑥].
In the first case the monic polynomial 𝑓 is a nonzero divisor in (𝑅𝔭/(𝑓1, … , 𝑓𝑑))[𝑥] and
hence in 𝑅[𝑥]𝔮/(𝑓1, … , 𝑓𝑑), and 𝑥1, … , 𝑥𝑑, 𝑓 is a regular sequence in 𝑅[𝑥]𝔮 such that
dim(𝑅[𝑥]𝔮/(𝑥1, … , 𝑥𝑑, 𝑓)) = 0. In the second case it is already the case that dim 𝑅[𝑥]𝔮/(𝑓1, … , 𝑓𝑑) =
0. �

Lemma 7.96.8. Suppose that 𝑅 is a Noetherian local Cohen-Macaulay ring of dimension
𝑑. Suppose that 𝑀 is a finite 𝑅-module, and suppose that 0 → 𝐾 → 𝑅𝑛 → 𝑀 → 0
is an exact sequence of 𝑅-modules. Then either depth(𝐾) > depth(𝑀), or depth(𝐾) =
depth(𝑀) = 𝑑.

Proof. If depth(𝑀) = 0 the lemma is clear. Let 𝑥 ∈ 𝔪 be a nonzero divisor on 𝑀 and on
𝑅. Then 𝑥 is a nonzero divisor on 𝑀 and on 𝐾 and it follows by an easy diagram chase that
0 → 𝐾/𝑥𝐾 → (𝑅/𝑥𝑅)𝑛 → 𝑀/𝑥𝑀 → 0 is exact. Thus the result follows from the result for
𝐾/𝑥𝐾 over 𝑅/𝑥𝑅 which has smaller dimension. �

Definition 7.96.9. Let 𝑅 be a Noetherian local Cohen-Macaulay ring. A finite module 𝑀
over 𝑅 is called a maximal Cohen-Macaulay module if depth(𝑀) = dim(𝑅).

Lemma 7.96.10. Let 𝑅 be a local Noetherian Cohen-Macaulay ring of dimension 𝑑 Let 𝑀
be a finite 𝑅 module of depth 𝑒. There exists an exact complex

0 → 𝐾 → 𝐹𝑑−𝑒−1 → … → 𝐹0 → 𝑀 → 0

with each 𝐹𝑖 finite free and 𝐾 maximal Cohen-Macaulay.

Proof. Immediate from the definition and Lemma 7.96.8. �

Lemma 7.96.11. Let 𝜑 ∶ 𝐴 → 𝐵 be a map of local rings. Assume that 𝐵 is Noetherian
and Cohen-Macaulay and that 𝔪𝐵 = √𝜑(𝔪𝐴)𝐵. Then there exists a sequence of elements
𝑓1, … , 𝑓dim(𝐵) in 𝐴 such that 𝜑(𝑓1), … , 𝜑(𝑓dim(𝐵)) is a regular sequence in 𝐵.

Proof. By induction on dim(𝐵) it suffices to prove: If dim(𝐵) ≥ 1, then we can find an
element 𝑓 of 𝐴 which maps to a nonzero divisor in 𝐵. By Lemma 7.96.2 it suffices to
find 𝑓 ∈ 𝐴 whose image in 𝐵 is not contained in any of the finitely many minimal primes
𝔮1, … , 𝔮𝑟 of 𝐵. By the assumption that 𝔪𝐵 = √𝜑(𝔪𝐴)𝐵 we see that 𝔪𝐴⊄𝜑−(𝔮𝑖). Hence
we can find 𝑓 by Lemma 7.14.3. �

7.97. Catenary rings

Definition 7.97.1. A ring 𝑅 is said to be catenary if for any pair of prime ideals 𝔭 ⊂ 𝔮, all
maximal chains of primes 𝔭 = 𝔭0 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑒 = 𝔮 have the same (finite) length.

Lemma 7.97.2. A ring 𝑅 is catenary if and only if the topological space 𝑆𝑝𝑒𝑐(𝑅) is cate-
nary (see Topology, Definition 5.8.1).
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Proof. Immediate from the definition and the characterization of irreducible closed subsets.
�

Lemma 7.97.3. Any localization of a catenary ring is catenary.

Proof. Omitted. �

Lemma 7.97.4. Any quotient of a catenary ring is catenary.

Proof. Omitted. �

In general it is not the case that a finitely generated 𝑅-algebra is catenary if 𝑅 is. Thus we
make the following definition.

Definition 7.97.5. A ring 𝑅 is said to be universally catenary if 𝑅 is Noetherian and every
𝑅 algebra of finite type is catenary.

By Lemma 7.97.4 this just means that 𝑅 is Noetherian and that each polynomial algebra
𝑅[𝑥1, … , 𝑥𝑛] is catenary.

Lemma 7.97.6. A Cohen-Macaulay ring is universally catenary.

Proof. Since a polynomial algebra over 𝑅 is Cohen-Macaulay, by Lemma 7.96.7, it suffices
to show that a Cohen-Macaulay ring is catenary. Let 𝑅 be Cohen-Macaulay and 𝔭 ⊂ 𝔮
primes of 𝑅. By definition 𝑅𝔮 and 𝑅𝔭 are Cohen-Macaulay. Take a maximal chain of
primes 𝔭 = 𝔭0 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑛 = 𝔮. Next choose a maximal chain of primes 𝔮0 ⊂ 𝔮1 ⊂
… ⊂ 𝔮𝑚 = 𝔭. By Lemma 7.96.3 we have 𝑛 + 𝑚 = dim(𝑅𝔮). And we have 𝑚 = dim(𝑅𝔭) by
the same lemma. Hence 𝑛 = dim(𝑅𝔮) − dim(𝑅𝔭) is independent of choices. �

7.98. Regular local rings

It is not that easy to show that all prime localizations of a regular local ring are regular. In
fact, quite a bit of the material developped sofar is geared towards a proof of this fact. See
Proposition 7.102.5, and trace back the references.

Lemma 7.98.1. Let 𝑅 be a regular local ring with maximal ideal 𝔪. The graded ring
⨁ 𝔪𝑛/𝔪𝑛+1 is isomorphic to the graded polynomial algebra 𝜅(𝔪)[𝑋1, … , 𝑋𝑑].

Proof. Let 𝑥1, … , 𝑥𝑑 be a minimal set of generators for the maximal ideal 𝔪. Write 𝜅 =
𝜅(𝔪). There is a surjection 𝜅[𝑋1, … , 𝑋𝑑] → ⨁ 𝔪𝑛/𝔪𝑛+1, which maps the class of 𝑥𝑖 in
𝔪/𝔪2 to 𝑋𝑖. Since 𝑑(𝑅) = 𝑑 we know that the numerical polynomial 𝑛 ↦ dim𝜅 𝔪𝑛/𝔪𝑛+1

has degree 𝑑. By Lemma 7.55.9we conclude that the surjection 𝜅[𝑋1, … , 𝑋𝑑] → ⨁ 𝔪𝑛/𝔪𝑛+1

is an isomorphism. �

Lemma 7.98.2. Any regular local ring is a domain.

Proof. We will use that ⋂ 𝔪𝑛 = 0 by Lemma 7.47.6. Let 𝑓, 𝑔 ∈ 𝑅 such that 𝑓𝑔 = 0.
Suppose that 𝑓 ∈ 𝔪𝑎 and 𝑔 ∈ 𝔪𝑏, with 𝑎, 𝑏 maximal. Since 𝑓𝑔 = 0 ∈ 𝔪𝑎+𝑏+1 we see
from the result of Lemma 7.98.1 that either 𝑓 ∈ 𝔪𝑎+1 or 𝑔 ∈ 𝔪𝑏+1. Contradiction. �

Lemma 7.98.3. Let 𝑅 be a regular local ring and let 𝑥1, … , 𝑥𝑑 be a minimal set of genera-
tors for themaximal ideal𝔪. Then 𝑥1, … , 𝑥𝑑 is a regular sequence, and each𝑅/(𝑥1, … , 𝑥𝑐)
is a regular local ring of dimension 𝑑 − 𝑐. In particular 𝑅 is Cohen-Macaulay.

Proof. Note that 𝑅/𝑥1𝑅 is a Noetherian local ring of dimension ≥ 𝑑−1 by Lemma 7.57.11
with 𝑥2, … , 𝑥𝑑 generating the maximal ideal. Hence it is a regular local ring by definition.
Since 𝑅 is a domain by Lemma 7.98.2 𝑥1 is a nonzero divisor. �
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Lemma 7.98.4. Let 𝑅 be a regular local ring. Let 𝐼 ⊂ 𝑅 be an ideal such that 𝑅/𝐼 is a
regular local ring as well. Then there exists a minimal set of generators 𝑥1, … , 𝑥𝑑 for the
maximal 𝔪 of 𝑅 such that 𝐼 = (𝑥1, … , 𝑥𝑐) for some 0 ≤ 𝑐 ≤ 𝑑.

Proof. Say dim(𝑅) = 𝑑 and dim(𝑅/𝐼) = 𝑑−𝑐. Denote 𝔪 = 𝔪/𝐼 the maximal ideal of 𝑅/𝐼.
Let 𝜅 = 𝑅/𝔪. We have dim𝜅(𝐼/𝔪2) = dim𝜅(𝔪/𝔪2) − dim(𝔪/𝔪2) = 𝑑 − (𝑑 − 𝑐) = 𝑐 by
the definition of a regular local ring. Hence we can choose 𝑥1, … , 𝑥𝑐 ∈ 𝐼 whose images in
𝔪/𝔪2 are linearly independent, and supplement with 𝑥𝑐+1, … , 𝑥𝑑 to get a minimal system
of generators. �

Lemma 7.98.5. Let 𝑅 be a Noetherian local ring. Let 𝑥 ∈ 𝔪. Let 𝑀 be a finite 𝑅-module
such that 𝑥 is a nonzero divisor on 𝑀 and 𝑀/𝑥𝑀 is free over 𝑅/𝑥𝑅. Then 𝑀 is free over
𝑅.

Proof. Let𝑚1, … , 𝑚𝑟 be elements of𝑀whichmap to a𝑅/𝑥𝑅-basis of𝑀/𝑥𝑀. ByNakayama's
Lemma 7.14.5 𝑚1, … , 𝑚𝑟 generate 𝑀. If ∑ 𝑎𝑖𝑚𝑖 = 0 is a relation, then 𝑎𝑖 ∈ 𝑥𝑅 for all 𝑖.
Hence 𝑎𝑖 = 𝑏𝑖𝑥 for some 𝑏𝑖 ∈ 𝑅. Hence the kernel 𝐾 of 𝑅𝑟 → 𝑀 satisfies 𝑥𝐾 = 𝐾 and
hence is zero by Nakayama's lemma. �

Lemma 7.98.6. Let 𝑅 be a regular local ring. Any maximal Cohen-Macaulay module over
𝑅 is free.

Proof. Let 𝑀 be a maximal Cohen-Macaulay module over 𝑅. Let 𝑥 ∈ 𝔪 be part of a
regular sequence generating 𝔪. Then 𝑥 is a nonzero divisor on 𝑀 by Proposition 7.95.4,
and 𝑀/𝑥𝑀 is a maximal Cohen-Macaulay module over 𝑅/𝑥𝑅. By induction on dim(𝑅) we
see that 𝑀/𝑥𝑀 is free. We win by Lemma 7.98.5. �

Lemma 7.98.7. Suppose 𝑅 is a Noetherian local ring. Let 𝑥 ∈ 𝔪 be a nonzero divisor
such that 𝑅/𝑥𝑅 is a regular local ring. Then 𝑅 is a regular local ring. More generally, if
𝑥1, … , 𝑥𝑟 is a regular sequence in 𝑅 such that 𝑅/(𝑥1, … , 𝑥𝑟) is a regular local ring, then
𝑅 is a regular local ring.

Proof. This is true because 𝑥 together with the lifts of a system of minimal generators of
the maximal ideal of 𝑅/𝑥𝑅 will give dim(𝑅) generators of 𝔪. Use Lemma 7.57.11. The
last statement follows from the first and induction. �

Lemma 7.98.8. Let (𝑅𝑖, 𝜑𝑖𝑖′) be a directed system of local rings whose transition maps are
local ring maps. If each 𝑅𝑖 is a regular local ring and 𝑅 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝑖 is Noetherian, then 𝑅
is a regular local ring.

Proof. Let 𝔪 ⊂ 𝑅 be the maximal ideal; it is the colimit of the maximal ideal 𝔪𝑖 ⊂ 𝑅𝑖.
We prove the lemma by induction on 𝑑 = dim 𝔪/𝔪2. If 𝑑 = 0, then 𝑅 = 𝑅/𝔪 is a field
and 𝑅 is a regular local ring. If 𝑑 > 0 pick an 𝑥 ∈ 𝔪, 𝑥∉𝔪2. For some 𝑖 we can find an
𝑥𝑖 ∈ 𝔪𝑖 mapping to 𝑥. Note that 𝑅/𝑥𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖 𝑅𝑖′/𝑥𝑖𝑅𝑖′ is a Noetherian local ring.
By Lemma 7.98.3 we see that 𝑅𝑖′/𝑥𝑖𝑅𝑖′ is a regular local ring. Hence by induction we see
that 𝑅/𝑥𝑅 is a regular local ring. Since each 𝑅𝑖 is a domain (Lemma 7.98.1) we see that 𝑅
is a domain. Hence 𝑥 is a nonzero divisor and we conclude that 𝑅 is a regular local ring by
Lemma 7.98.7. �

7.99. Epimorphisms of rings

In any category there is a notion of an epimorphism. Some of this material is taken from
[Laz69] and [Maz68].
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Lemma 7.99.1. Let 𝑅 → 𝑆 be a ring map. The following are equivalent
(1) 𝑅 → 𝑆 is an epimorphism,
(2) the two ring maps 𝑆 → 𝑆 ⊗𝑅 𝑆 are equal,
(3) either of the ring maps 𝑆 → 𝑆 ⊗𝑅 𝑆 is an isomorphism, and
(4) the ring map 𝑆 ⊗𝑅 𝑆 → 𝑆 is an isomorphism.

Proof. Omitted. �

Lemma 7.99.2. The composition of two epimorphisms of rings is an epimorphism.

Proof. Omitted. Hint: This is true in any category. �

Lemma 7.99.3. If 𝑅 → 𝑆 is an epimorphism of rings and 𝑅 → 𝑅′ is any ring map, then
𝑅′ → 𝑅′ ⊗𝑅 𝑆 is an epimorphism.

Proof. Omitted. Hint: True in any category with pushouts. �

Lemma 7.99.4. If 𝐴 → 𝐵 → 𝐶 are ring maps and 𝐴 → 𝐶 is an epimorphism, so is 𝐵 → 𝐶.

Proof. Omitted. Hint: This is true in any category. �

This means in particular, that if 𝑅 → 𝑆 is an epimorphism with image 𝑅 ⊂ 𝑆, then 𝑅 → 𝑆
is an epimorphism. Hence while proving results for epimorphisms we may often assume
the map is injective.

Lemma 7.99.5. Let 𝑅 → 𝑆 be a ring map. The following are equivalent:
(1) 𝑅 → 𝑆 is an epimorphism, and
(2) 𝑅𝔭 → 𝑆𝔭 is an epimorphism for each prime 𝔭 of 𝑅.

Proof. Since 𝑆𝔭 = 𝑅𝔭 ⊗𝑅 𝑆 (see Lemma 7.11.15) we see that (1) implies (2) by Lemma
7.99.3. Conversely, assume that (2) holds. Let 𝑎, 𝑏 ∶ 𝑆 → 𝐴 be two ring maps from 𝑆 to a
ring 𝐴 equalizing the maop 𝑅 → 𝑆. By assumption we see that for evey prime 𝔭 of 𝑅 the
induced maps 𝑎𝔭, 𝑏𝔭 ∶ 𝑆𝔭 → 𝐴𝔭 are the same. Hence 𝑎 = 𝑏 as 𝐴 ⊂ ∏𝔭 𝐴𝔭, see Lemma
7.21.1. �

Lemma 7.99.6. Let 𝑅 → 𝑆 be a ring map. The following are equivalent
(1) 𝑅 → 𝑆 is an epimorphism and finite, and
(2) 𝑅 → 𝑆 is surjective.

Proof. (This lemma seems to have been reproved many times in the literature, and has
many different proofs.) It is clear that a surjective ring map is an epimorphism. Suppose
that𝑅 → 𝑆 is a finite ringmap such that𝑆⊗𝑅𝑆 → 𝑆 is an isomorphism. Our goal is to show
that 𝑅 → 𝑆 is surjective. Assume 𝑆/𝑅 is not zero. The exact sequence 𝑅 → 𝑆 → 𝑆/𝑅 → 0
leads to an exact sequence

𝑅 ⊗𝑅 𝑆 → 𝑆 ⊗𝑅 𝑆 → 𝑆/𝑅 ⊗𝑅 𝑆 → 0.

Our assumption implies that the first arrow is an isomorphism, hence we conclude that
𝑆/𝑅 ⊗𝑅 𝑆 = 0. Hence also 𝑆/𝑅 ⊗𝑅 𝑆/𝑅 = 0. By Lemma 7.5.5 there exists a surjection
of 𝑅-modules 𝑆/𝑅 → 𝑅/𝐼 for some proper ideal 𝐼 ⊂ 𝑅. Hence there exists a surjection
𝑆/𝑅 ⊗𝑅 𝑆/𝑅 → 𝑅/𝐼 ⊗𝑅 𝑅/𝐼 = 𝑅/𝐼≠0, contradiction. �

Lemma 7.99.7. A faithfully flat epimorphism is an isomorphism.

Proof. This is clear from Lemma 7.99.1 part (3) as the map 𝑆 → 𝑆⊗𝑅 𝑆 is the map 𝑅 → 𝑆
tensored with 𝑆. �
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Lemma 7.99.8. If 𝑘 → 𝑆 is an epimorphism and 𝑘 is a field, then 𝑆 = 𝑘 or 𝑆 = 0.

Proof. This is clear from the result of Lemma 7.99.7 (as any nonzero algebra over 𝑘 is
faithfully flat), or by argueing directly that 𝑅 → 𝑅 ⊗𝑘 𝑅 cannot be surjective unless
dim𝑘(𝑅) ≤ 1. �

Lemma 7.99.9. Let 𝑅 → 𝑆 be an epimorphism of rings. Then 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is
injective.

Proof. Let 𝔭 be a prime of 𝑅. The fibre of the map is the spectrum of the fibre ring 𝑆 ⊗𝑅
𝜅(𝔭). By Lemma 7.99.3 the map 𝜅(𝔭) → 𝑆 ⊗𝑅 𝜅(𝔭) is an epimorphism, and hence by
Lemma 7.99.8 there is either one point or no points lying over 𝔭. �

Lemma 7.99.10. Let 𝑅 be a ring. Let 𝑀, 𝑁 be 𝑅-modules. Let {𝑥𝑖}𝑖∈𝐼 be a set of gener-
ators of 𝑀. Let {𝑦𝑗}𝑗∈𝐽 be a set of generators of 𝑁. Let {𝑚𝑗}𝑗∈𝐽 be a family of elements of
𝑀 with 𝑚𝑗 = 0 for all but finitely many 𝑗. Then

∑𝑗∈𝐽
𝑚𝑗 ⊗ 𝑦𝑗 = 0 in 𝑀 ⊗𝑅 𝑁

is equivalent to the following: There exist 𝑎𝑖,𝑗 ∈ 𝑅 with 𝑎𝑖,𝑗 = 0 for all but finitely many
pairs (𝑖, 𝑗) such that

𝑚𝑗 = ∑𝑖∈𝐼
𝑎𝑖,𝑗𝑥𝑖 for all 𝑗 ∈ 𝐽,

0 = ∑𝑗∈𝐽
𝑎𝑖,𝑗𝑦𝑗 for all 𝑖 ∈ 𝐼.

Proof. The sufficiency is immediate. Suppose that ∑𝑗∈𝐽 𝑚𝑗 ⊗ 𝑦𝑗 = 0. Consider the short
exact sequence

0 → 𝐾 → ⨁𝑗∈𝐽
𝑅 → 𝑁 → 0

where the 𝑗th basis vector of ⨁𝑗∈𝐽 𝑅 maps to 𝑦𝑗. Tensor this with 𝑀 to get the exact
sequence

𝐾 ⊗𝑅 𝑀 → ⨁𝑗∈𝐽
𝑀 → 𝑁 ⊗𝑅 𝑀 → 0.

The assumption implies that there exist elements 𝑘𝑖 ∈ 𝐾 such that ∑ 𝑘𝑖 ⊗ 𝑥𝑖 maps to the
element (𝑚𝑗)𝑗∈𝐽 of the middle. Writing 𝑘𝑖 = (𝑎𝑖,𝑗)𝑗∈𝐽 and we obtain what we want. �

Lemma 7.99.11. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝑔 ∈ 𝑆. The following are equivalent:
(1) 𝑔 ⊗ 1 = 1 ⊗ 𝑔 in 𝑆 ⊗𝑅 𝑆, and
(2) there exist 𝑛 ≥ 0 and elements 𝑦𝑖, 𝑧𝑗 ∈ 𝑆 and 𝑥𝑖,𝑗 ∈ 𝑅 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 such that

(a) 𝑔 = ∑𝑖,𝑗≤𝑛 𝑥𝑖,𝑗𝑦𝑖𝑧𝑗,
(b) for each 𝑗 we have ∑ 𝑥𝑖,𝑗𝑦𝑖 ∈ 𝜑(𝑅), and
(c) for each 𝑖 we have ∑ 𝑥𝑖,𝑗𝑧𝑗 ∈ 𝜑(𝑅).

Proof. It is clear that (2) implies (1). Conversely, suppose that 𝑔 ⊗ 1 = 1 ⊗ 𝑔. Choose
generators {𝑠𝑖}𝑖∈𝐼 of 𝑆 as an 𝑅-module with 0, 1 ∈ 𝐼 and 𝑠0 = 1 and 𝑠1 = 𝑔. Apply Lemma
7.99.10 to the relation 𝑔 ⊗ 𝑠0 + (−1) ⊗ 𝑠1 = 0. We see that there exist 𝑎𝑖,𝑗 ∈ 𝑅 such that
𝑔 = ∑𝑖 𝑎𝑖,0𝑠𝑖, −1 = ∑𝑖 𝑎𝑖,1𝑠𝑖, and for 𝑗≠0, 1 we have 0 = ∑𝑖 𝑎𝑖,𝑗𝑠𝑖, and moreover for all 𝑖
we have ∑𝑗 𝑎𝑖,𝑗𝑠𝑗 = 0. Then we have

∑𝑖,𝑗≠0
𝑎𝑖,𝑗𝑠𝑖𝑠𝑗 = −𝑔 + 𝑎0,0

and for each 𝑗≠0 we have ∑𝑖≠0 𝑎𝑖,𝑗𝑠𝑖 ∈ 𝑅. This proves that −𝑔 + 𝑎0,0 can be written as in
(2). It follows that 𝑔 can be written as in (2). Details omitted. Hint: Show that the set of
elements of 𝑆 which have an expression as in (2) form an 𝑅-subalgebra of 𝑆. �
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Remark 7.99.12. Let 𝑅 → 𝑆 be a ring map. Sometimes the set of elements 𝑔 ∈ 𝑆 such
that 𝑔 ⊗ 1 = 1 ⊗ 𝑔 is called the epicenter of 𝑆. It is an 𝑅-algebra. By the construction of
Lemma 7.99.11 we get for each 𝑔 in the epicenter a matrix factorization

(𝑔) = 𝑌𝑋𝑍

with 𝑋 ∈ Mat(𝑛 × 𝑛, 𝑅), 𝑌 ∈ Mat(1 × 𝑛, 𝑆), and 𝑍 ∈ Mat(𝑛 × 1, 𝑆). Namely, let 𝑥𝑖,𝑗, 𝑦𝑖, 𝑧𝑗
be as in part (2) of the lemma. Set 𝑋 = (𝑥𝑖,𝑗), let 𝑦 be the row vector whose entries are the
𝑦𝑖 and let 𝑧 be the column vector whose entries are the 𝑧𝑗. With this notation conditions (b)
and (c) of Lemma 7.99.11 mean exactly that 𝑌𝑋 ∈ Mat(1 × 𝑛, 𝑅), 𝑋𝑍 ∈ Mat(𝑛 × 1, 𝑅).
It turns out to be very convenient to consider the triple of matrices (𝑋, 𝑌𝑋, 𝑋𝑍). Given
𝑛 ∈ 𝐍 and a triple (𝑃, 𝑈, 𝑉) we say that (𝑃, 𝑈, 𝑉) is a 𝑛-triple associated to 𝑔 if there exists
a matrix factorization as above such that 𝑃 = 𝑋, 𝑈 = 𝑌𝑋 and 𝑉 = 𝑋𝑍.

Lemma 7.99.13. Let 𝑅 → 𝑆 be an epimorphism of rings. Then the cardinality of 𝑆 is at
most the cardinality of 𝑅. In a formula: |𝑆| ≤ |𝑅|.

Proof. The condition that 𝑅 → 𝑆 is an epimorphism means that each 𝑔 ∈ 𝑆 satisfies
𝑔 ⊗ 1 = 1 ⊗ 𝑔, see Lemma 7.99.1. We are going to use the notation introduced in Remark
7.99.12. Suppose that 𝑔, 𝑔′ ∈ 𝑆 and suppose that (𝑃, 𝑈, 𝑉) is an 𝑛-triple which is associated
to both 𝑔 and 𝑔′. Then we claim that 𝑔 = 𝑔′. Namely, write (𝑃, 𝑈, 𝑉) = (𝑋, 𝑌𝑋, 𝑋𝑍) for
a matrix factorization (𝑔) = 𝑌𝑋𝑍 of 𝑔 and write (𝑃, 𝑈, 𝑉) = (𝑋′, 𝑌′𝑋′, 𝑋′𝑍′) for a matrix
factorization (𝑔′) = 𝑌′𝑋′𝑍′ of 𝑔′. Then we see that

(𝑔) = 𝑌𝑋𝑍 = 𝑈𝑍 = 𝑌′𝑋′𝑍 = 𝑌′𝑃𝑍 = 𝑌′𝑋𝑍 = 𝑌′𝑉 = 𝑌′𝑋′𝑍′ = (𝑔′)

and hence 𝑔 = 𝑔′. This implies that the cardinality of 𝑆 is bounded by the number of
possible triples, which has cardinality at most sup𝑛∈𝐍 |𝑅|𝑛. If 𝑅 is infinite then this is at
most |𝑅|, see [Kun83, Ch. I, 10.13].

If 𝑅 is a finite ring then the argument above only proves that 𝑆 is at worst countable. In
fact in this case 𝑅 is Artinian and the map 𝑅 → 𝑆 is surjective. We omit the proof of this
case. �

7.100. Pure ideals

The material in this section is discussed in many papers, see for example [Laz67], [Bko70],
and [DM83].

Definition 7.100.1. Let 𝑅 be a ring. We say that 𝐼 ⊂ 𝑅 is pure if the quotient ring 𝑅/𝐼 is
flat over 𝑅.

Lemma 7.100.2. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. The following are equivalent:
(1) 𝐼 is pure,
(2) for every ideal 𝐽 ⊂ 𝑅 we have 𝐽 ∩ 𝐼 = 𝐼𝐽,
(3) for every finitely generated ideal 𝐽 ⊂ 𝑅 we have 𝐽 ∩ 𝐼 = 𝐽𝐼,
(4) for every 𝑥 ∈ 𝑅 we have (𝑥) ∩ 𝐼 = 𝑥𝐼,
(5) for every 𝑥 ∈ 𝐼 we have 𝑥 = 𝑦𝑥 for some 𝑦 ∈ 𝐼,
(6) for every 𝑥1, … , 𝑥𝑛 ∈ 𝐼 there exists a 𝑦 ∈ 𝐼 such that 𝑥𝑖 = 𝑦𝑥𝑖 for all 𝑖 = 1, … , 𝑛,
(7) for every prime 𝔭 of 𝑅 we have 𝐼𝑅𝔭 = 0 or 𝐼𝑅𝔭 = 𝑅𝔭,
(8) Supp(𝐼) = 𝑆𝑝𝑒𝑐(𝑅) ⧵ 𝑉(𝐼),
(9) 𝐼 is the kernel of the map 𝑅 → (1 + 𝐼)−1𝑅,

(10) 𝑅/𝐼 ≅ 𝑆−1𝑅 as 𝑅-algebras for some multiplicative subset 𝑆 of 𝑅, and
(11) 𝑅/𝐼 ≅ (1 + 𝐼)−1𝑅 as 𝑅-algebras.
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Proof. For any ideal 𝐽 of 𝑅 we have the short exact sequence 0 → 𝐽 → 𝑅 → 𝑅/𝐽 → 0.
Tensoring with 𝑅/𝐼 we get an exact sequence 𝐽 ⊗𝑅 𝑅/𝐼 → 𝑅/𝐼 → 𝑅/𝐼 + 𝐽 → 0 and
𝐽 ⊗𝑅 𝑅/𝐼 = 𝑅/𝐽𝐼. Thus the equivalence of (1), (2), and (3) follows from Lemma 7.35.4.
Moreover, these imply (4).

The implication (4) ⇒ (5) is trivial. Assume (5) and let 𝑥1, … , 𝑥𝑛 ∈ 𝐼. Choose 𝑦𝑖 ∈ 𝐼 such
that 𝑥𝑖 = 𝑦𝑖𝑥𝑖. Let 𝑦 ∈ 𝐼 be the element such that 1 − 𝑦 = ∏𝑖=1,…,𝑛(1 − 𝑦𝑖). Then 𝑥𝑖 = 𝑦𝑥𝑖
for all 𝑖 = 1, … , 𝑛. Hence (6) holds, and it follows that (5) ⇔ (6).

Assume (5). Let 𝑥 ∈ 𝐼. Then 𝑥 = 𝑦𝑥 for some 𝑦 ∈ 𝐼. Hence 𝑥(1 − 𝑦) = 0, which shows
that 𝑥 maps to zero in (1 + 𝐼)−1𝑅. Of course the kernel of the map 𝑅 → (1 + 𝐼)−1𝑅 is
always contained in 𝐼. Hence we see that (5) implies (9). Assume (9). Then for any 𝑥 ∈ 𝐼
we see that 𝑥(1 − 𝑦) = 0 for some 𝑦 ∈ 𝐼. In other words, 𝑥 = 𝑦𝑥. We conclude that (5) is
equivalent to (9).

Assume (5). Let 𝔭 be a prime of 𝑅. If 𝔭∉𝑉(𝐼), then 𝐼𝑅𝔭 = 𝑅𝔭. If 𝔭 ∈ 𝑉(𝐼), in other words,
if 𝐼 ⊂ 𝔭, then 𝑥 ∈ 𝐼 implies 𝑥(1 − 𝑦) = 0 for some 𝑦 ∈ 𝐼, implies 𝑥 maps to zero in 𝑅𝔭,
i.e., 𝐼𝑅𝔭 = 0. Thus we see that (7) holds.

Assume (7). Then (𝑅/𝐼)𝔭 is either 0 or 𝑅𝔭 for any prime 𝔭 of 𝑅. Hence by Lemma 7.35.19
we see that (1) holds. At this point we see that all of (1) -- (7) and (9) are equivalent.

As 𝐼𝑅𝔭 = 𝐼𝔭 we see that (7) implies (8). Finally, if (8) holds, then this means exactly that
𝐼𝔭 is the zero module if and only if 𝔭 ∈ 𝑉(𝐼), which is clearly saying that (7) holds. Now
(1) -- (9) are equivalent.

Assume (1) -- (9) hold. Then 𝑅/𝐼 ⊂ (1 + 𝐼)−1𝑅 by (9) and the map 𝑅/𝐼 → (1 + 𝐼)−1𝑅
is also surjective by the description of localizations at primes afforded by (7). Hence (11)
holds.

The implication (11) ⇒ (10) is trivial. And (10) implies that (1) holds because a localization
of 𝑅 is flat over 𝑅, see Lemma 7.35.19. �

Lemma 7.100.3. Let 𝑅 be a ring. If 𝐼, 𝐽 ⊂ 𝑅 are pure ideals, then 𝑉(𝐼) = 𝑉(𝐽) implies
𝐼 = 𝐽.

Proof. For example, by property (7) of Lemma 7.100.2we see that 𝐼 = ker(𝑅 → ∏𝔭∈𝑉(𝐼) 𝑅𝔭)
can be recovered from the closed subset associated to it. �

Lemma 7.100.4. Let 𝑅 be a ring. The rule 𝐼 ↦ 𝑉(𝐼) determines a bijection

{𝐼 ⊂ 𝑅 pure} ↔ {𝑍 ⊂ 𝑆𝑝𝑒𝑐(𝑅) closed and closed under generalizations}

Proof. Let 𝐼 be a pure ideal. Then since 𝑅 → 𝑅/𝐼 is flat, by going up generalizations lift
along the map 𝑆𝑝𝑒𝑐(𝑅/𝐼) → 𝑆𝑝𝑒𝑐(𝑅). Hence 𝑉(𝐼) is closed under generalizations. This
shows that the map is well defined. By Lemma 7.100.3 the map is injective. Suppose that
𝑍 ⊂ 𝑆𝑝𝑒𝑐(𝑅) is closed and closed under generalizations. Let 𝐽 ⊂ 𝑅 be the radical ideal
such that 𝑍 = 𝑉(𝐽). Let 𝐼 = {𝑥 ∈ 𝑅 ∶ 𝑥 ∈ 𝑥𝐽}. Note that 𝐼 is an ideal. We claim that 𝐼 is
pure and that 𝑉(𝐼) = 𝑉(𝐽). If the claim is true then the map of the lemma is surjective and
the lemma holds.

Note that 𝐼 ⊂ 𝐽, so that 𝑉(𝐽) ⊂ 𝑉(𝐼). Let 𝐼 ⊂ 𝔭 be a prime. Consider the multiplicative
subset 𝑆 = (𝑅 ⧵ 𝔭)(1 + 𝐽). By definition of 𝐼 and 𝐼 ⊂ 𝔭 we see that 0∉𝑆. Hence we can
find a prime 𝔮 of 𝑅 which is disjoint from 𝑆, see Lemmas 7.9.4 and 7.16.5. Hence 𝔮 ⊂ 𝔭
and 𝔮 ∩ (1 + 𝐽) = ∅. This implies that 𝔮 + 𝐽 is a proper ideal of 𝑅. Let 𝔪 be a maximal
ideal containing 𝔮 + 𝐽. Then we get 𝔪 ∈ 𝑉(𝐽) and hence 𝔮 ∈ 𝑉(𝐽) = 𝑍 as 𝑍 was assumed

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04PT
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04PU


7.100. PURE IDEALS 401

to be closed under generalization. This in turn implies 𝔭 ∈ 𝑉(𝐽) as 𝔮 ⊂ 𝔭. Thus we see that
𝑉(𝐼) = 𝑉(𝐽).

Finally, since 𝑉(𝐼) = 𝑉(𝐽) (and 𝐽 radical) we see that 𝐽 = √𝐼. Pick 𝑥 ∈ 𝐼, so that 𝑥 = 𝑥𝑦
for some 𝑦 ∈ 𝐽 by definition. Then 𝑥 = 𝑥𝑦 = 𝑥𝑦2 = … = 𝑥𝑦𝑛. Since 𝑦𝑛 ∈ 𝐼 for some
𝑛 > 0 we conclude that property (5) of Lemma 7.100.2 holds and we see that 𝐼 is indeed
pure. �

Lemma 7.100.5. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. The following are equivalent
(1) 𝐼 is pure and finitely generated,
(2) 𝐼 is generated by an idempotent,
(3) 𝐼 is pure and 𝑉(𝐼) is open, and
(4) 𝑅/𝐼 is a projective 𝑅-module.

Proof. If (1) holds, then 𝐼 = 𝐼 ∩ 𝐼 = 𝐼2 by Lemma 7.100.2. Hence 𝐼 is generated by an
idempotent by Lemma 7.18.5. Thus (1)⇒ (2). If (2) holds, then 𝐼 = (𝑒) and𝑅 = (1−𝑒)⊕(𝑒)
as an 𝑅-module hence 𝑅/𝐼 is flat and 𝐼 is pure and 𝑉(𝐼) = 𝐷(1 − 𝑒) is open. Thus (2) ⇒
(1) + (3). Finally, assume (3). Then 𝑉(𝐼) is open and closed, hence 𝑉(𝐼) = 𝐷(1 − 𝑒) for
some idempotent 𝑒 of 𝑅, see Lemma 7.18.3. The ideal 𝐽 = (𝑒) is a pure ideal such that
𝑉(𝐽) = 𝑉(𝐼) hence 𝐼 = 𝐽 by Lemma 7.100.3. In this way we see that (3) ⇒ (2). By Lemma
7.72.2 we see that (4) is equivalent to the assertion that 𝐼 is pure and 𝑅/𝐼 finitely presented.
Moreover, 𝑅/𝐼 is finitely presented if and only if 𝐼 is finitely generated, see Lemma 7.5.3.
Hence (4) is equivalent to (1). �

We can use the above to characterize those rings for which every finite flat module is finitely
presented.

Lemma 7.100.6. Let 𝑅 be a ring. The following are equivalent:
(1) every 𝑍 ⊂ 𝑆𝑝𝑒𝑐(𝑅) which is closed and closed under generalizations is also

open, and
(2) any finite flat 𝑅-module is finite locally free.

Proof. If any finite flat 𝑅-module is finite locally free then the support of 𝑅/𝐼 where 𝐼 is a
pure ideal is open. Hence the implication (2) ⇒ (1) follows from Lemma 7.100.3.

For the converse assume that 𝑅 satisfies (1). Let 𝑀 be a finite flat 𝑅-module. The support
𝑍 = Supp(𝑀) of 𝑀 is closed, see Lemma 7.59.4. On the other hand, if 𝔭 ⊂ 𝔭′, then by
Lemma 7.72.4 the module 𝑀𝔭′ is free, and 𝑀𝔭 = 𝑀𝔭′ ⊗𝑅𝔭′ 𝑅𝔭 Hence 𝔭′ ∈ Supp(𝑀) ⇒
𝔭 ∈ Supp(𝑀), in other words, the support is closed under generalization. As 𝑅 satisfies
(1) we see that the support of 𝑀 is open and closed. Suppose that 𝑀 is generated by
𝑟 elements 𝑚1, … , 𝑚𝑟. The modules ∧𝑖(𝑀), 𝑖 = 1, … , 𝑟 are finite flat 𝑅-modules also,
because ∧𝑖(𝑀)𝔭 = ∧𝑖(𝑀𝔭) is free over 𝑅𝔭. Note that Supp(∧𝑖+1(𝑀)) ⊂ Supp(∧𝑖(𝑀)).
Thus we see that there exists a decomposition

𝑆𝑝𝑒𝑐(𝑅) = 𝑈0 ∐ 𝑈1 ∐ … ∐ 𝑈𝑟

by open and closed subsets such that the support of ∧𝑖(𝑀) is 𝑈𝑟 ∪…∪𝑈𝑖 for all 𝑖 = 0, … , 𝑟.
Let 𝔭 be a prime of 𝑅, and say 𝔭 ∈ 𝑈𝑖. Note that ∧𝑖(𝑀) ⊗𝑅 𝜅(𝔭) = ∧𝑖(𝑀 ⊗𝑅 𝜅(𝔭)). Hence,
after possibly renumbering 𝑚1, … , 𝑚𝑟 we may assume that 𝑚1, … , 𝑚𝑖 generate 𝑀⊗𝑅 𝜅(𝔭).
By Nakayama's Lemma 7.14.5 we get a surjection

𝑅⊕𝑖
𝑓 ⟶ 𝑀𝑓, (𝑎1, … , 𝑎𝑖) ⟼ ∑ 𝑎𝑖𝑚𝑖
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for some 𝑓 ∈ 𝑅, 𝑓∉𝔭. We may also assume that 𝐷(𝑓) ⊂ 𝑈𝑖. This means that ∧𝑖(𝑀𝑓) =
∧𝑖(𝑀)𝑓 is a flat 𝑅𝑓 module whose support is all of 𝑆𝑝𝑒𝑐(𝑅𝑓). By the above it is generated
by a single element, namely 𝑚1 ∧ … ∧ 𝑚𝑖. Hence ∧𝑖(𝑀)𝑓 ≅ 𝑅𝑓/𝐽 for some pure ideal
𝐽 ⊂ 𝑅𝑓 with 𝑉(𝐽) = 𝑆𝑝𝑒𝑐(𝑅𝑓). Clearly this means that 𝐽 = (0), see Lemma 7.100.3. Thus
𝑚1 ∧ … ∧ 𝑚𝑖 is a basis for ∧𝑖(𝑀𝑓) and it follows that the displayed map is injective as well
as surjective. This proves that 𝑀 is finite locally free as desired. �

7.101. Rings of finite global dimension

The following lemma is often used to compare different projective resolutions of a given
module.

Lemma 7.101.1. (Schanuel's lemma.) Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Suppose
that 0 → 𝐾 → 𝑃1 → 𝑀 → 0 and 0 → 𝐿 → 𝑃2 → 𝑀 → 0 are two short exact sequences,
with 𝑃𝑖 projective. Then 𝐾 ⊕ 𝑃2 ≅ 𝐿 ⊕ 𝑃1.

Proof. Consider the module 𝑁 defined by the short exaxt sequence 0 → 𝑁 → 𝑃1 ⊕ 𝑃2 →
𝑀 → 0, where the last map is the sum of the two maps 𝑃𝑖 → 𝑀. It is easy to see that the
projection 𝑁 → 𝑃1 is surjective with kernel 𝐿, and that 𝑁 → 𝑃2 is surjective with kernel
𝐾. Since 𝑃𝑖 are projective we have 𝑁 ≅ 𝐾 ⊕ 𝑃2 ≅ 𝐿 ⊕ 𝑃1. �

Definition 7.101.2. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. We say 𝑀 has finite projective
dimension if it has a finite length resolution by projective 𝑅-modules. The minimal length
of such a resolution is called the projective dimension of 𝑀.

It is clear that the projective dimension of 𝑀 is 0 if and only if 𝑀 is a projective module.
The following lemma explains to what extend the projective dimension is independent of
the choice of a projective resolution.

Lemma 7.101.3. Let 𝑅 be a ring. Suppose that 𝑀 is an 𝑅-module of projective dimension
𝑑. Suppose that𝐹𝑒 → 𝐹𝑒−1 → … → 𝐹0 → 𝑀 → 0 is exact with𝐹𝑖 projective and 𝑒 ≥ 𝑑−1.
Then the kernel of 𝐹𝑒 → 𝐹𝑒−1 is projective (or the kernel of 𝐹0 → 𝑀 is projective in case
𝑒 = 0).

Proof. We prove this by induction on 𝑑. If 𝑑 = 0, then 𝑀 is projective. In this case there is
a splitting 𝐹0 = Ker(𝐹0 → 𝑀) ⊕ 𝑀, and hence Ker(𝐹0 → 𝑀) is projective. This finishes
the proof if 𝑒 = 0, and if 𝑒 > 0, then replacing 𝑀 by Ker(𝐹0 → 𝑀) we decrease 𝑒.

Next assume 𝑑 > 0. Let 0 → 𝑃𝑑 → 𝑃𝑑−1 → … → 𝑃0 → 𝑀 → 0 be a minimal
length finite resolution with 𝑃𝑖 projective. According to Schanuel's Lemma 7.101.1 we
have 𝑃0 ⊕ Ker(𝐹0 → 𝑀) ≅ 𝐹0 ⊕ Ker(𝑃0 → 𝑀). This proves the case 𝑑 = 1, 𝑒 = 0,
because then the right hand side is 𝐹0 ⊕𝑃1 which is projective. Hence now we may assume
𝑒 > 0. The module 𝐹0 ⊕Ker(𝑃0 → 𝑀) has the finite projective resolution 0 → 𝑃𝑑 ⊕ 𝐹0 →
𝑃𝑑−1 ⊕𝐹0 → … → 𝑃1 ⊕𝐹0 → Ker(𝑃0 → 𝑀)⊕𝐹0 → 0 of length 𝑑−1. By induction on 𝑑
we see that the kernel of 𝐹𝑒 ⊕ 𝑃0 → 𝐹𝑒−1 ⊕ 𝑃0 is projective. This implies the lemma. �

Lemma 7.101.4. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑛 ≥ 0. The following are
equivalent

(1) 𝑀 has projective dimension ≤ 𝑛,
(2) Ext𝑖𝑅(𝑀, 𝑁) = 0 for all 𝑅-modules 𝑁 and all 𝑖 ≥ 𝑛 + 1, and
(3) Ext𝑛+1

𝑅 (𝑀, 𝑁) = 0 for all 𝑅-modules 𝑁.
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Proof. Assume (1). Choose a free resolution 𝐹• → 𝑀 of 𝑀. Denote 𝑑𝑒 ∶ 𝐹𝑒 → 𝐹𝑒−1.
By Lemma 7.101.3 we see that 𝑃𝑒 = Ker(𝑑𝑒) is projective for 𝑒 ≥ 𝑛 − 1. This implies that
𝐹𝑒 ≅ 𝑃𝑒 ⊕𝑃𝑒−1 for 𝑒 ≥ 𝑛 where 𝑑𝑒 maps the summand 𝑃𝑒−1 isomorphically to 𝑃𝑒−1 in 𝐹𝑒−1.
Hence, for any 𝑅-module 𝑁 the complex 𝐻𝑜𝑚𝑅(𝐹•, 𝑁) is split exact in degrees ≥ 𝑛 + 1.
Whence (2) holds. The implication (2) ⇒ (3) is trivial.

Assume (3) holds. If 𝑛 = 0 then 𝑀 is projective by Lemma 7.71.2 and we see that (1) holds.
If 𝑛 > 0 choose a free 𝑅-module 𝐹 and a surjection 𝐹 → 𝑀 with kernel 𝐾. By Lemma
7.67.7 and the vanishing of Ext𝑖𝑅(𝐹, 𝑁) for all 𝑖 > 0 by part (1) we see that Ext𝑛𝑅(𝐾, 𝑁) = 0
for all 𝑅-modules 𝑁. Hence by induction we see that 𝑁 has projective dimension ≤ 𝑛 − 1.
Then 𝑀 has projective dimension ≤ 𝑛 as any finite projective resolution of 𝑁 gives a
projective resolution of length one more for 𝑀 by adding 𝐹 to the front. �

Lemma 7.101.5. Let 𝑅 be a ring. Let 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 be a short exact
sequence of 𝑅-modules.

(1) If 𝑀 has projective dimension ≤ 𝑛 and 𝑀″ has projective dimension ≤ 𝑛 + 1,
then 𝑀′ has projective dimension ≤ 𝑛.

(2) If 𝑀′ and 𝑀″ have projective dimension ≤ 𝑛 then 𝑀 has projective dimension
≤ 𝑛.

(3) If 𝑀′ has projective dimension ≤ 𝑛 and 𝑀 has projective dimension ≤ 𝑛 + 1 then
𝑀″ has projective dimension ≤ 𝑛 + 1.

Proof. Combine the characterization of projective dimension in Lemma 7.101.4 with the
long exact sequence of ext groups in Lemma 7.67.7. �

Definition 7.101.6. Let 𝑅 be a ring. The ring 𝑅 is said to have finite global dimension if
there exists an integer 𝑛 such that every 𝑅-module has a resolution by projective 𝑅-modules
of length at most 𝑛. The minimal such 𝑛 is then called the global dimension of 𝑅.

The argument in the proof of the following lemma can be found in the paper [Aus55] by
Auslander.

Lemma 7.101.7. Let 𝑅 be a ring. The following are equivalent
(1) 𝑅 has finite global dimension ≤ 𝑛,
(2) every finite 𝑅-module has projective dimension ≤ 𝑛, and
(3) every cyclic 𝑅-module 𝑅/𝐼 has projective dimension ≤ 𝑛.

Proof. It is clear that (1) ⇒ (3). Assume (3). Since every finite 𝑅-module has a finite
filtration by cyclic modules, see Lemma 7.5.5 we see that (2) follows by Lemma 7.101.5.

Assume (2). Let 𝑀 be an arbitrary 𝑅-module. Choose a set 𝐸 ⊂ 𝑀 of generators of 𝑀.
Choose a well ordering on 𝐸. For 𝑒 ∈ 𝐸 denote 𝑀𝑒 the submodule of 𝑀 generated by the
elements 𝑒′ ∈ 𝐸 with 𝑒′ ≤ 𝑒. Then 𝑀 = ⋃𝑒∈𝐸 𝑀𝑒. Note that for each 𝑒 ∈ 𝐸 the quotient

𝑀𝑒/ ⋃𝑒′<𝑒
𝑀𝑒′

is either zero or generated by one element, hence has projective dimension ≤ 𝑛. To finish
the proof we claim that any time we have a well ordered set 𝐸 and a module 𝑀 = ⋃𝑒∈𝐸 𝑀𝑒
such that the quotients 𝑀𝑒/ ⋃𝑒′<𝑒 𝑀𝑒′ have projective dimesion ≤ 𝑛, then 𝑀 has projective
dimension ≤ 𝑛.

We may prove this statement by induction on 𝑛. If 𝑛 = 0, then we will show, by transfinite
induction that 𝑀 is projective. Namely, for each 𝑒 ∈ 𝐸 we may choose a splitting 𝑀𝑒 =
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⋃𝑒′<𝑒 𝑀𝑒′ ⊕ 𝑃𝑒 because 𝑃𝑒 = 𝑀𝑒/ ⋃𝑒′<𝑒 𝑀𝑒′ is projective. Hence it follows that 𝑀 =
⨁𝑒∈𝐸 𝑃𝑒 and we conclude that 𝑀 is projective, see Lemma 7.71.3.

If 𝑛 > 0, then for 𝑒 ∈ 𝐸 we denote 𝐹𝑒 the free 𝑅-module on the set of elements of 𝑀𝑒.
Then we have a system of short exact sequences

0 → 𝐾𝑒 → 𝐹𝑒 → 𝑀𝑒 → 0

over the well ordered set 𝐸. Note that the transition maps 𝐹𝑒′ → 𝐹𝑒 and 𝐾𝑒′ → 𝐾𝑒 are
injective too. Set 𝐹 = ⋃ 𝐹𝑒 and 𝐾 = ⋃ 𝐾𝑒. Then

0 → 𝐾𝑒/ ⋃𝑒′<𝑒
𝐾𝑒′ → 𝐹𝑒/ ⋃𝑒′<𝑒

𝐹𝑒′ → 𝑀𝑒/ ⋃𝑒′<𝑒
𝑀𝑒′ → 0

is a short exact sequence of 𝑅-modules too and 𝐹𝑒/ ⋃𝑒′<𝑒 𝐹𝑒′ is the free 𝑅-module on the set
of elements in 𝑀𝑒 which are not contained in ⋃𝑒′<𝑒 𝑀𝑒′. Hence by Lemma 7.101.5 we see
that the projective dimension of 𝐾𝑒/ ⋃𝑒′<𝑒 𝐾𝑒′ is at most 𝑛 − 1. By induction we conclude
that 𝐾 has projective dimension at most 𝑛−1. Whence 𝑀 has projective dimension at most
𝑛 and we win. �

Lemma 7.101.8. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑆 ⊂ 𝑅 be a multiplicative
subset.

(1) If 𝑀 has projective dimension ≤ 𝑛, then 𝑆−1𝑀 has projective dimension ≤ 𝑛
over 𝑆−1𝑅.

(2) If 𝑅 has finite global dimension ≤ 𝑛, then 𝑆−1𝑅 has finite global dimension ≤ 𝑛.

Proof. Let 0 → 𝑃𝑛 → 𝑃𝑛−1 → … → 𝑃0 → 𝑀 → 0 be a projective resolution. As lo-
calization is exact, see Proposition 7.9.12, and as each 𝑆−1𝑃𝑖 is a projective 𝑆−1𝑅-module,
see Lemma 7.88.1, we see that 0 → 𝑆−1𝑃𝑛 → … → 𝑆−1𝑃0 → 𝑆−1𝑀 → 0 is a projective
resolution of 𝑆−1𝑀. This proves (1). Let 𝑀′ be an 𝑆−1𝑅-module. Note that 𝑀′ = 𝑆−1𝑀′.
Hence we see that (2) follows from (1). �

7.102. Regular rings and global dimension

We can use the material on rings of finite global dimension to give another characterization
of regular local rings.

Proposition 7.102.1. Let 𝑅 be a regular local ring of dimension 𝑑. Every finite 𝑅-module
𝑀 of depth 𝑒 has a finite free resolution

0 → 𝐹𝑑−𝑒 → … → 𝐹0 → 𝑀 → 0.

In particular a regular local ring has global dimension ≤ 𝑑.

Proof. This is clear in view of Lemma 7.98.6 and Lemma 7.96.10. �

Lemma 7.102.2. Let 𝑅 be a Noetherian ring. Then 𝑅 has finite global dimension if and
only if there exists an integer 𝑛 such that for all maximal ideals 𝔪 of 𝑅 the ring 𝑅𝔪 has
global dimension ≤ 𝑛.

Proof. We saw, Lemma 7.101.8 that if 𝑅 has finite global dimension 𝑛, then all the local-
izations 𝑅𝔪 have finite global dimension at most 𝑛. Conversely, suppose that all the 𝑅𝔪
have global dimension 𝑛. Let 𝑀 be a finite 𝑅-module. Let 0 → 𝐾𝑛 → 𝐹𝑛−1 → … → 𝐹0 →
𝑀 → 0. be a resolution with 𝐹𝑖 finite free. Then 𝐾𝑛 is a finite 𝑅-module. According to
Lemma 7.101.3 and the assumption all the modules 𝐾𝑛 ⊗𝑅 𝑅𝔪 are projective. Hence by
Lemma 7.72.2 the module 𝐾𝑛 is finite projective. �
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Lemma 7.102.3. Suppose that 𝑅 is a Noetherian local ring with maximal ideal 𝔪 and
residue field 𝜅. In this case the projective dimension of 𝜅 is ≥ dim𝜅 𝔪/𝔪2.

Proof. Let 𝑥1, … 𝑥𝑛 be elements of 𝔪 whose images in 𝔪/𝔪2 form a basis. Consider the
Koszul complex on 𝑥1, … , 𝑥𝑛. This is the complex

0 → ∧𝑛𝑅𝑛 → ∧𝑛−1𝑅𝑛 → ∧𝑛−2𝑅𝑛 → … → ∧𝑖𝑅𝑛 → … → 𝑅𝑛 → 𝑅

with maps given by

𝑒𝑗1
∧ … ∧ 𝑒𝑗𝑖

⟼
𝑖

∑
𝑎=1

(−1)𝑖+1𝑥𝑗𝑎
𝑒𝑗1

∧ … ∧ ̂𝑒𝑗𝑎
∧ … ∧ 𝑒𝑗𝑖

It is easy to see that this is a complex 𝐾•(𝑅, 𝑥•). Note that the cokernel of the last map of
𝐾•(𝑅, 𝑥•) is clearly 𝜅.

Now, let 𝐹• → 𝜅 by any finite resolution by finite free 𝑅-modules. By Lemma 7.94.2 we
may assume all the maps in the complex 𝐹• have to property that Im(𝐹𝑖 → 𝐹𝑖−1) ⊂ 𝔪𝐹𝑖−1,
because removing a trivial summand from the resolution can at worst shorten the resolution.
By Lemma 7.67.4 we can find a map of complexes 𝛼 ∶ 𝐾•(𝑅, 𝑥•) → 𝐹• inducing the
identity on 𝜅. We will prove by induction that the maps 𝛼𝑖 ∶ ∧𝑖𝑅𝑛 = 𝐾𝑖(𝑅, 𝑥•) → 𝐹𝑖 have
the property that 𝛼𝑖 ⊗ 𝜅 ∶ ∧𝑖𝜅𝑛 → 𝐹𝑖 ⊗ 𝜅 are injective. This will prove the lemma since it
clearly shows that 𝐹𝑛≠0.

The result is clear for 𝑖 = 0 because the composition 𝑅
𝛼0−−→ 𝐹0 → 𝜅 is nonzero. Note that

𝐹0 must have rank 1 since otherwise the map 𝐹1 → 𝐹0 whose cokernel is a single copy of
𝜅 cannot have image contained in 𝔪𝐹0. For 𝛼1 we use that 𝑥1, … , 𝑥𝑛 is a minimal set of
generators for 𝔪. Namely, we saw above that 𝐹0 = 𝑅 and 𝐹1 → 𝐹0 = 𝑅 has image 𝔪. We
have a commutative diagram

𝑅𝑛 = 𝐾1(𝑅, 𝑥•) → 𝐾0(𝑅, 𝑥•) = 𝑅
↓ ↓ ↓

𝐹1 → 𝐹0 = 𝑅

where the rightmost vertical arrow is given by multiplication by a unit. Hence we see that
the image of the composition 𝑅𝑛 → 𝐹1 → 𝐹0 = 𝑅 is also equal to 𝔪. Thus the map
𝑅𝑛 ⊗ 𝜅 → 𝐹1 ⊗ 𝜅 has to be injective since dim𝜅(𝔪/𝔪2) = 𝑛.

Suppose the injectivity of 𝛼𝑗⊗𝜅 has been proved for all 𝑗 ≤ 𝑖−1. Consider the commutative
diagram

∧𝑖𝑅𝑛 = 𝐾𝑖(𝑅, 𝑥•) → 𝐾𝑖−1(𝑅, 𝑥•) = ∧𝑖−1𝑅𝑛

↓ ↓
𝐹𝑖 → 𝐹𝑖−1

We know that ∧𝑖−1𝜅𝑛 → 𝐹𝑖−1 ⊗ 𝜅 is injective. This proves that ∧𝑖−1𝜅𝑛 ⊗𝜅 𝔪/𝔪2 →
𝐹𝑖−1 ⊗ 𝔪/𝔪2 is injective. Also, by our choice of the complex, 𝐹𝑖 maps into 𝔪𝐹𝑖−1, and
similarly for the Koszul complex. Hence we get a commutative diagram

∧𝑖𝜅𝑛 → ∧𝑖−1𝜅𝑛 ⊗ 𝔪/𝔪𝑛

↓ ↓
𝐹𝑖 ⊗ 𝜅 → 𝐹𝑖−1 ⊗ 𝔪/𝔪2

At this point it suffices to verify the map ∧𝑖𝜅𝑛 → ∧𝑖−1𝜅𝑛 ⊗ 𝔪/𝔪𝑛 is injective, which can
be done by hand. �
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Lemma 7.102.4. Let 𝑅 be a Noetherian local ring. Suppose that the residue field 𝜅 has
finite projective dimension 𝑛 over 𝑅. In this case dim(𝑅) ≥ 𝑛.

Proof. Let 𝐹• be a finite resolution of 𝜅 by finite free 𝑅-modules. By Lemma 7.94.2 we
may assume all the maps in the complex 𝐹• have to property that Im(𝐹𝑖 → 𝐹𝑖−1) ⊂ 𝔪𝐹𝑖−1,
because removing a trivial summand from the resolution can at worst shorten the resolution.
Say 𝐹𝑛≠0 and 𝐹𝑖 = 0 for 𝑖 > 𝑛, so that the projective dimension of 𝜅 is 𝑛. By Proposition
7.94.10 we see that depth(𝐼(𝜑𝑛)) ≥ 𝑛 since 𝐼(𝜑𝑛) cannot equal 𝑅 by our choice of the
complex. Thus by Lemma 7.65.6 also dim(𝑅) ≥ 𝑛. �

Proposition 7.102.5. A Noetherian local ring whose residue field has finite projective di-
mension is a regular local ring. In particular a Noetherian local ring of finite global di-
mension is a regular local ring.

Proof. By Lemmas 7.102.3 and 7.102.4 we see that dim(𝑅) ≥ dim𝜅(𝔪/𝔪2). Thus the
result follows immediately from Definition 7.57.9. �

By Propositions 7.102.5 and 7.102.1 we see that a Noetherian local ring is a regular local
ring if and only if it has finite global dimension. Furthermore, any localization 𝑅𝔭 has
finite global dimension, see Lemma 7.101.8, and hence is a regular local ring. Thus it now
makes sense to make the following definition, because it does not conclict with the earlier
definition of a regular local ring.

Definition 7.102.6. A Noetherian ring 𝑅 is said to be regular if all the localizations 𝑅𝔭 are
regular local rings.

Note that this is not the same as asking 𝑅 to have finite global dimension, even assuming 𝑅
is Noetherian. This is because there is an example of a regular Noetherian ring which does
not have finite global dimension, namely because it does not have finite dimension.

Lemma 7.102.7. Let 𝑅 be a Noetherian ring. The following are equivalent:

(1) 𝑅 has finite global dimension 𝑛,
(2) there exists an integer 𝑛 such that all the localizations 𝑅𝔪 at maximal ideals are

regular of dimension ≤ 𝑛 with equality for at least one 𝔪, and
(3) there exists an integer 𝑛 such that all the localizations 𝑅𝔭 at prime ideals are

regular of dimension ≤ 𝑛 with equality for at least one 𝔭.

Proof. This is a reformulation of Lemma 7.102.2 in view of the discussion surrouding
Definition 7.102.6. See especially Propositions 7.102.1 and 7.102.5. �

Lemma 7.102.8. Let 𝑅 → 𝑆 be a local homomorphism of local Noetherian rings. Assume
that 𝑅 → 𝑆 is flat and that 𝑆 is regular. Then 𝑅 is regular.

Proof. Let 𝔪 ⊂ 𝑅 be the maximal ideal and let 𝜅 = 𝑅/𝔪 be the residue field. Let 𝑑 =
dim 𝑆. Choose any resolution 𝐹• → 𝜅 with each 𝐹𝑖 a finite free 𝑅-module. Set 𝐾𝑑 =
Ker(𝐹𝑑−1 → 𝐹𝑑−2). By flatness of 𝑅 → 𝑆 the complex 0 → 𝐾𝑑 ⊗𝑅 𝑆 → 𝐹𝑑−1 ⊗𝑅 𝑆 →
… → 𝐹0 ⊗𝑅 𝑆 → 𝜅 ⊗𝑅 𝑆 → 0 is still exact. Because the global dimension of 𝑆 is 𝑑,
see Proposition 7.102.1, we see that 𝐾𝑑 ⊗𝑅 𝑆 is a finite free 𝑆-module (see also Lemma
7.101.3). By Lemma 7.72.5 we see that 𝐾𝑑 is a finite free 𝑅-module. Hence 𝜅 has finite
projective dimension and 𝑅 is regular by Proposition 7.102.5. �
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7.103. Homomorphisms and dimension

This section contains a collection of easy results relating dimensions of rings when there
are maps between them.

Lemma 7.103.1. Suppose 𝑅 → 𝑆 is a ring map satisfying either going up, see Definition
7.36.1, or going down see Definition 7.36.1. Assume in addition that 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅)
is surjective. Then dim(𝑅) ≤ dim(𝑆).

Proof. Assume going up. Take any chain 𝔭0 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑒 of prime ideals in 𝑅. By
surjectivity we may choose a prime 𝔮0 mapping to 𝔭0. By going up we may extend this
to a chain of length 𝑒 of primes 𝔮𝑖 lying over 𝔭𝑖. Thus dim(𝑆) ≥ dim(𝑅). The case of
going down is exactly the same. See also Topology, Lemma 5.14.8 for a purely topological
version. �

Lemma 7.103.2. Suppose that 𝑅 → 𝑆 is a ring map with the going up property, see
Definition 7.36.1. If 𝔮 ⊂ 𝑆 is a maximal ideal. Then the inverse image of 𝔮 in 𝑅 is a
maximal ideal too.

Proof. Trivial. �

Lemma 7.103.3. Suppose that 𝑅 → 𝑆 is a ring map such that 𝑆 is integral over 𝑅. Then
dim(𝑅) ≥ dim(𝑆), and every closed point of 𝑆𝑝𝑒𝑐(𝑆) maps to a closed point of 𝑆𝑝𝑒𝑐(𝑅).

Proof. Immediate from Lemmas 7.32.18 and 7.103.2 and the definitions. �

Lemma 7.103.4. Suppose 𝑅 ⊂ 𝑆 and 𝑆 integral over 𝑅. Then dim(𝑅) = dim(𝑆).

Proof. This is a combination of Lemmas 7.32.20, 7.32.15, 7.103.1, and 7.103.3. �

Definition 7.103.5. Suppose that 𝑅 → 𝑆 is a ring map. Let 𝔮 ⊂ 𝑆 be a prime lying over
the prime 𝔭 of 𝑅. The local ring of the fibre at 𝔮 is the local ring

𝑆𝔮/𝔭𝑆𝔮 = (𝑆/𝔭𝑆)𝔮 = (𝑆 ⊗𝑅 𝜅(𝔭))𝔮

Lemma 7.103.6. Let 𝑅 → 𝑆 be a homomorphism of Noetherian rings. Let 𝔮 ⊂ 𝑆 be a
prime lying over the prime 𝔭. Then

dim(𝑆𝔮) ≤ dim(𝑅𝔭) + dim(𝑆𝔮/𝔭𝑆𝔮).

Proof. We use the characterization of dimension of Proposition 7.57.8. Let 𝑥1, … , 𝑥𝑑 be
elements of 𝔭 generating an ideal of definition of 𝑅𝔭 with 𝑑 = dim(𝑅𝔭). Let 𝑦1, … , 𝑦𝑒 be
elements of 𝔮 generating an ideal of definition of 𝑆𝔮/𝔭𝑆𝔮 with 𝑒 = dim(𝑆𝔮/𝔭𝑆𝔮). It is clear
that 𝑆𝔮/(𝑥1, … , 𝑥𝑑, 𝑦1, … , 𝑦𝑒) has a nilpotent maximal ideal. Hence 𝑥1, … , 𝑥𝑑, 𝑦1, … , 𝑦𝑒
generate an ideal of definition if 𝑆𝔮. �

Lemma 7.103.7. Let 𝑅 → 𝑆 be a homomorphism of Noetherian rings. Let 𝔮 ⊂ 𝑆 be
a prime lying over the prime 𝔭. Assume the going down property holds for 𝑅 → 𝑆 (for
example if 𝑅 → 𝑆 is flat, see Lemma 7.35.17). Then

dim(𝑆𝔮) = dim(𝑅𝔭) + dim(𝑆𝔮/𝔭𝑆𝔮).

Proof. By Lemma 7.103.6 we have an inequality dim(𝑆𝔮) ≤ dim(𝑅𝔭) + dim(𝑆𝔮/𝔭𝑆𝔮). To
get equality, choose a chain of primes 𝔭𝑆 ⊂ 𝔮0 ⊂ 𝔮1 ⊂ … ⊂ 𝔮𝑑 = 𝔮 with 𝑑 = dim(𝑆𝔮/𝔭𝑆𝔮).
On the other hand, choose a chain of primes 𝔭0 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑒 = 𝔭 with 𝑒 = dim(𝑅𝔭). By
the going down theoremwemay choose 𝔮−1 ⊂ 𝔮0 lying over 𝔭𝑒−1. And then wemay choose
𝔮−2 ⊂ 𝔮𝑒−1 lying over 𝔭𝑒−2. Inductively we keep going until we get a chain 𝔮−𝑒 ⊂ … ⊂ 𝔮𝑑
of length 𝑒 + 𝑑. �
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Lemma 7.103.8. Let 𝑅 → 𝑆 be a local homomorphism of local Noetherian rings. Assume
(1) 𝑅 is regular,
(2) 𝑆/𝔪𝑅𝑆 is regular, and
(3) 𝑅 → 𝑆 is flat.

Then 𝑆 is regular.

Proof. By Lemma 7.103.7 we have dim(𝑆) = dim(𝑅) + dim(𝑆/𝔪𝑅𝑆). Pick generators
𝑥1, … , 𝑥𝑑 ∈ 𝔪𝑅 with 𝑑 = dim(𝑅), and pick 𝑦1, … , 𝑦𝑒 ∈ 𝔪𝑆 which generate the maximal
ideal of 𝑆/𝔪𝑅𝑆 with 𝑒 = dim(𝑆/𝔪𝑅𝑆). Then we see that 𝑥1, … , 𝑥𝑑, 𝑦1, … , 𝑦𝑒 are elements
which generate the maximal ideal of 𝑆 and 𝑒 + 𝑑 = dim(𝑆). �

The lemma below will later be used to show that rings of finite type over a field are Cohen-
Macaulay if and only if they are quasi-finite flat over a polynomial ring. It is a partial
converse to Lemma 7.119.1.

Lemma 7.103.9. Let 𝑅 → 𝑆 be a local homomorphism of Noetherian local rings. Assume
𝑅 Cohen-Macaulay. If 𝑆 is finite flat over 𝑅, or if 𝑆 is flat over 𝑅 and dim(𝑆) ≤ dim(𝑅),
then 𝑆 is Cohen-Macaulay and dim(𝑅) = dim(𝑆).

Proof. Let 𝑥1, … , 𝑥𝑑 ∈ 𝔪𝑅 be a regular sequence of length 𝑑 = dim(𝑅). By Lemma
7.65.7 this maps to a regular sequence in 𝑆. Hence 𝑆 is Cohen-Macaulay if dim(𝑆) ≤ 𝑑.
This is true if 𝑆 is finite flat over 𝑅 by Lemma 7.103.4. And in the second case we assumed
it. �

7.104. The dimension formula

Recall the definitions of catenary (Definition 7.97.1) and universally catenary (Definition
7.97.5).

Lemma 7.104.1. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 be a prime of 𝑆 lying over the prime 𝔭
of 𝑅. Assume that

(1) 𝑅 is Noetherian,
(2) 𝑅 → 𝑆 is of finite type,
(3) 𝑅, 𝑆 are domains, and
(4) 𝑅 ⊂ 𝑆.

Then we have
height(𝔮) ≤ height(𝔭) + trdeg𝑅(𝑆) − trdeg𝜅(𝔭)𝜅(𝔮)

with equality if 𝑅 is universally catenary.

Proof. Suppose that 𝑅 ⊂ 𝑆′ ⊂ 𝑆 is a finitely generated 𝑅-subalgebra of 𝑆. In this case set
𝔮′ = 𝑆′ ∩ 𝔮. The lemma for the ring maps 𝑅 → 𝑆′ and 𝑆′ → 𝑆 implies the lemma for 𝑅 →
𝑆 by additivity of transcendence degree in towers of fields. Hence we can use induction on
the number of generators of 𝑆 over 𝑅 and reduce to the case where 𝑆 is generated by one
element over 𝑅.
Case I: 𝑆 = 𝑅[𝑥] is a polynomial algebra over 𝑅. In this case we have trdeg𝑅(𝑆) = 1. Also
𝑅 → 𝑆 is flat and hence

dim(𝑆𝔮) = dim(𝑅𝔭) + dim(𝑆𝔮/𝔭𝑆𝔮)
see Lemma 7.103.7. Let 𝔯 = 𝔪𝑆. Then trdeg𝜅(𝔭)𝜅(𝔮) = 1 is equivalent to 𝔮 = 𝔯, and
implies that dim(𝑆𝔮/𝔭𝑆𝔮) = 0. In the same vein trdeg𝜅(𝔭)𝜅(𝔮) = 0 is equivalent to having a
strict inclusion 𝔮 ⊂ 𝔯, which implies that dim(𝑆𝔮/𝔭𝑆𝔮) = 1. Thus we are done with case I
with equality in every instance.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=031E
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00R5
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02IJ


7.105. DIMENSION OF FINITE TYPE ALGEBRAS OVER FIELDS 409

Case II: 𝑆 = 𝑅[𝑥]/𝔫 with 𝔫≠0. In this case we have trdeg𝑅(𝑆) = 0. Denote 𝔮′ ⊂ 𝑅[𝑥] the
prime corresponding to 𝔮. Thus we have

𝑆𝔮 = (𝑅[𝑥])𝔮′/𝔫(𝑅[𝑥])𝔮′

By the previous case we have dim((𝑅[𝑥])𝔮′) = dim(𝑅𝔭) + 1 − trdeg𝜅(𝔭)𝜅(𝔮). Since 𝔫≠0 we
see that the dimension of 𝑆𝔮 decreases by at least one, see Lemma 7.57.11, which proves
the inequality of the lemma. To see the equality in case 𝑅 is universally catenary note that
𝔫 ⊂ 𝑅[𝑥] is a height one prime as it corresponds to a nonzero prime in 𝑓.𝑓.(𝑅)[𝑥]. Hence
any maximal chain of primes in 𝑅[𝑥]𝔮′/𝔫 corresponds to a maximal chain of primes with
length 1 greater between 𝔮′ and (0) in 𝑅[𝑥]. If 𝑅 is universally catenary these all have the
same length equal to the height of 𝔮′. This proves that dim(𝑅[𝑥]𝔮′/𝔫) = dim(𝑅[𝑥]𝔮′) − 1
as desired. �

The following lemma says that generically finite maps tend to be quasi-finite in codimension
1.

Lemma 7.104.2. Let 𝐴 → 𝐵 be a ring map. Assume
(1) 𝐴 ⊂ 𝐵 is an extension of domains.
(2) 𝐴 is Noetherian,
(3) 𝐴 → 𝐵 is of finite type, and
(4) the extension 𝑓.𝑓.(𝐴) ⊂ 𝑓.𝑓.(𝐵) is finite.

Let 𝔭 ⊂ 𝐴 be a prime such that dim(𝐴𝔭) = 1. Then there are at most finitely many primes
of 𝐵 lying over 𝔭.

Proof. By the dimension formula (Lemma 7.104.1) for any prime 𝔮 lying over 𝔭 we have
dim(𝐵𝔮) ≤ dim(𝐴𝔭) − trdeg𝜅(𝔭)𝜅(𝔮).

As the domain 𝐵𝔮 has at least 2 prime ideals we see that dim(𝐵𝔮) ≥ 1. We conclude that
dim(𝐵𝔮) = 1 and that the extension 𝜅(𝔭) ⊂ 𝜅(𝔮) is algebraic. Hence 𝔮 defines a closed point
of its fibre 𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝜅(𝔭)), see Lemma 7.31.9. Since 𝐵 ⊗𝐴 𝜅(𝔭) is a Noetherian ring the
fibre 𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝜅(𝔭)) is a Noetherian topological space, see Lemma 7.28.5. A Noetherian
topological space consisting of closed points is finite, see for example Topology, Lemma
5.6.2. �

7.105. Dimension of finite type algebras over fields

In this section we compute the dimension of a polynomial ring over a field. We also prove
that the dimension of a finite type domain over a field is the dimension of its local rings at
maximal ideals. We will esthablish the connection with the transcendence degree over the
ground field in Section 7.107.

Lemma 7.105.1. Let 𝔪 be a maximal ideal in 𝑘[𝑥1, … , 𝑥𝑛]. The ideal 𝔪 is generated by
𝑛 elements. The dimension of 𝑘[𝑥1, … , 𝑥𝑛]𝔪 is 𝑛. Hence 𝑘[𝑥1, … , 𝑥𝑛]𝔪 is a regular local
ring of dimension 𝑛.

Proof. By the Hilbert Nullstellensatz (Theorem 7.30.1) we know the residue field 𝜅 =
𝜅(𝔪) is a finite extension of 𝑘. Denote 𝛼𝑖 ∈ 𝜅 the image of 𝑥𝑖. Denote 𝜅𝑖 = 𝑘(𝛼1, … , 𝛼𝑖) ⊂
𝜅, 𝑖 = 1, … , 𝑛 and 𝜅0 = 𝑘. Note that 𝜅𝑖 = 𝑘[𝛼1, … , 𝛼𝑖] by field theory. Define inductively
elements 𝑓𝑖 ∈ 𝔪 ∩ 𝑘[𝑥1, … , 𝑥𝑖] as follows: Let 𝑃𝑖(𝑇) ∈ 𝜅𝑖−1[𝑇] be the monic minimal
polynomial of 𝛼𝑖 over 𝜅𝑖−1. Let 𝑄𝑖(𝑇) ∈ 𝑘[𝑥1, … , 𝑥𝑖−1][𝑇] be a monic lift of 𝑃𝑖(𝑇) (of the
same degree). Set 𝑓𝑖 = 𝑄𝑖(𝑥𝑖). Note that if 𝑑𝑖 = deg𝑇(𝑃𝑖) = deg𝑇(𝑄𝑖) = deg𝑥𝑖

(𝑓𝑖) then
𝑑1𝑑2 … 𝑑𝑖 = [𝜅𝑖 ∶ 𝑘] by elementary field theory.
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We claim that for all 𝑖 = 0, 1, … , 𝑛 there is an isomorphism

𝜓𝑖 ∶ 𝑘[𝑥1, … , 𝑥𝑖]/(𝑓1, … , 𝑓𝑖) ≅ 𝜅𝑖.

By construction the composition 𝑘[𝑥1, … , 𝑥𝑖] → 𝑘[𝑥1, … , 𝑥𝑛] → 𝜅 is surjective onto 𝜅𝑖
and 𝑓1, … , 𝑓𝑖 are in the kernel. This gives a surjective homomorphism. We prove 𝜓𝑖 is
injective by induction. It is clear for 𝑖 = 0. Given the statement for 𝑖 we prove it for
𝑖 + 1. The ring extension 𝑘[𝑥1, … , 𝑥𝑖]/(𝑓1, … , 𝑓𝑖) → 𝑘[𝑥1, … , 𝑥𝑖+1]/(𝑓1, … , 𝑓𝑖+1) is gen-
erated by 1 element over a field and one irreducible equation. By elementrary field theory
𝑘[𝑥1, … , 𝑥𝑖+1]/(𝑓1, … , 𝑓𝑖+1) is a field, and hence 𝜓𝑖 is injective.

This implies that 𝔪 = (𝑓1, … , 𝑓𝑛). Moreover, we also conclude that

𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑖) ≅ 𝜅𝑖[𝑥𝑖+1, … , 𝑥𝑛].

Hence (𝑓1, … , 𝑓𝑖) is a prime ideal. Thus

(0) ⊂ (𝑓1) ⊂ (𝑓1, 𝑓2) ⊂ … ⊂ (𝑓1, … , 𝑓𝑛) = 𝔪

is a chain of primes of length 𝑛. The lemma follows. �

Proposition 7.105.2. A polynomial algebra in 𝑛 variables over a field is a regular ring.
It has global dimension 𝑛. All localizations at maximal ideals are regular local rings of
dimension 𝑛.

Proof. By Lemma 7.105.1 all localizations 𝑘[𝑥1, … , 𝑥𝑛]𝔪 at maximal ideals are regular
local rings of dimension 𝑛. Hence we conclude by Lemma 7.102.7. �

Lemma 7.105.3. Let 𝑘 be a field. Let 𝔭 ⊂ 𝔮 ⊂ 𝑘[𝑥1, … , 𝑥𝑛] be a pair of primes. Any
maximal chain of primes between 𝔭 and 𝔮 has length height(𝔮) − height(𝔭).

Proof. By Proposition 7.105.2 any local ring of 𝑘[𝑥1, … , 𝑥𝑛] is regular. Hence all local
rings are Cohen-Macaulay, see Lemma 7.98.3. The local rings at maximal ideals have
dimension 𝑛 hence every maximal chain of primes in 𝑘[𝑥1, … , 𝑥𝑛] has length 𝑛, see Lemma
7.96.3. Hence every maximal chain of primes between (0) and 𝔭 has length height(𝔭), see
Lemma 7.96.4 for example. Putting these together leads to the assertion of the lemma. �

Lemma 7.105.4. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra which is an integral
domain. Then dim(𝑆) = dim(𝑆𝔪) for any maximal ideal 𝔪 of 𝑆. In words: every maximal
chain of primes has length equal to the dimension of 𝑆.

Proof. Write 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝔭. By Proposition 7.105.2 and Lemma 7.105.3 above all
the maximal chains of primes in 𝑆 (which necessarily end with a maximal ideal) have length
𝑛 − height(𝔭). Thus this number is the dimension of 𝑆 and of 𝑆𝔪 for any maximal ideal 𝔪
of 𝑆. �

Recall that we defined the dimension dim𝑥(𝑋) of a topological space 𝑋 at a point 𝑥 in
Topology, Definition 5.7.1.

Lemma 7.105.5. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑆). Let
𝔭 ⊂ 𝑆 be a prime ideal and let 𝑥 ∈ 𝑋 be the associated point. The following numbers are
equal

(1) dim𝑥(𝑋),
(2) max dim(𝑍) where the maximum is over those irreducible components 𝑍 of 𝑋

passing through 𝑥, and
(3) min dim(𝑆𝔪) where the minimum is over maximal ideals 𝔪 with 𝔭 ⊂ 𝔪.
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Proof. Let 𝑋 = ⋃𝑖∈𝐼 𝑍𝑖 be the decomposition of 𝑋 into its irreducible components. There
are finitely many of them (see Lemmas 7.28.3 and 7.28.5). Let 𝐼′ = {𝑖 ∣ 𝑥 ∈ 𝑍𝑖}, and let
𝑇 = ⋃𝑥∉𝐼′ 𝑍𝑖. Then 𝑈 = 𝑋 ⧵ 𝑇 is an open subset of 𝑋 containing the point 𝑥. The number
(2) is max𝑖∈𝐼′ dim(𝑍𝑖). For any open 𝑊 ⊂ 𝑈, with 𝑥 ∈ 𝑊 the irreducible components of
𝑊 are the irreducible sets 𝑊𝑖 = 𝑍𝑖 ∩ 𝑊 for 𝑖 ∈ 𝐼′. Note that each 𝑊𝑖, 𝑖 ∈ 𝐼′ contains
a closed point because 𝑋 is Jacobson, see Section 7.31. By Lemma 7.105.4 we see that
dim(𝑊𝑖) = dim(𝑍𝑖) for any 𝑖 ∈ 𝐼′. Hence dim(𝑊) is equal to the number (2). This proves
that (1) = (2).
Let 𝔪 ⊃ 𝔭 be any maximal ideal containing 𝔭. Let 𝑥0 ∈ 𝑋 be the corresponding point.
First of all, 𝑥0 is contained in all the irreducible components 𝑍𝑖, 𝑖 ∈ 𝐼′. Let 𝔮𝑖 denote the
minimal primes of 𝑆 corresponding to the irreducible componenents 𝑍𝑖. For each 𝑖 such
that 𝑥0 ∈ 𝑍𝑖 (which is equivalent to 𝔪 ⊃ 𝔮𝑖) we have a surjection

𝑆𝔪 ⟶ 𝑆𝔪/𝔮𝑖𝑆𝔪 = (𝑆/𝔮𝑖)𝔪

Moreover, the primes 𝔮𝑖𝑆𝔪 so obtained exhaust the minimal primes of the Noetherian local
ring 𝑆𝔪, see Lemma 7.23.2. We conclude, using Lemma 7.105.4, that the dimension of
𝑆𝔪 is the maximum of the dimensions of the 𝑍𝑖 passing through 𝑥0. To finish the proof of
the lemma it suffices to show that we can choose 𝑥0 such that 𝑥0 ∈ 𝑍𝑖 ⇒ 𝑖 ∈ 𝐼′. Because
𝑆 is Jacobson (as we saw above) it is enough to show that 𝑉(𝔭) ⧵ 𝑇 (with 𝑇 as above) is
nonempty. And this is clear since it contains the point 𝑥 (i.e. 𝔭). �

Lemma 7.105.6. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑆). Let
𝔪 ⊂ 𝑆 be a maximal ideal and let 𝑥 ∈ 𝑋 be the associated closed point. Then dim𝑥(𝑋) =
dim(𝑆𝔪).

Proof. This is a special case of Lemma 7.105.5 above. �

Lemma 7.105.7. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘 algebra. Assume that 𝑆 is Cohen-
Macaulay. Then 𝑆𝑝𝑒𝑐(𝑆) = ∐ 𝑇𝑑 is a finite disjoint union of open and closed subsets 𝑇𝑑
with 𝑇𝑑 equidimensional (see Topology, Definition 5.7.4) of dimension 𝑑. Equivalently, 𝑆
is a product of rings 𝑆𝑑, 𝑑 = 0, … , dim(𝑆) such that every maximal ideal 𝔪 of 𝑆𝑑 has
height 𝑑.

Proof. The equivalence of the two statements follows from Lemma 7.20.3. Let 𝔪 ⊂ 𝑆
be a maximal ideal. Every maximal chain of primes in 𝑆𝔪 has the same length equal to
dim(𝑆𝔪), see Lemma 7.96.3. Hence, the dimension of the irreducible components passing
through the point corresponding to 𝔪 all have dimension equal to dim(𝑆𝔪), see Lemma
7.105.4. Since 𝑆𝑝𝑒𝑐(𝑆) is a Jacobson topological space the intersection of any two ir-
reducible components of it contains a closed point if nonempty, see Lemmas 7.31.2 and
7.31.4. Thus we have shown that any two irreducible components that meet have the same
dimension. The lemma follows easily from this, and the fact that 𝑆𝑝𝑒𝑐(𝑆) has a finite num-
ber of irreducible components (see Lemmas 7.28.3 and 7.28.5). �

7.106. Noether normalization

In this section we prove variants of the Noether normalization lemma. The key ingredient
we will use is contained in the following two lemmas.

Lemma 7.106.1. Let 𝑛 ∈ 𝐍. Let𝑁 be a finite nonempty set of multi-indices 𝜈 = (𝜈1, … , 𝜈𝑛).
Given 𝑒 = (𝑒1, … , 𝑒𝑛) we set 𝑒 ⋅ 𝜈 = ∑ 𝑒𝑖𝜈𝑖. Then for 𝑒1 ≫ 𝑒2 ≫ … ≫ 𝑒𝑛−1 ≫ 𝑒𝑛 we have:
If 𝜈, 𝜈′ ∈ 𝑁 then

(𝑒 ⋅ 𝜈 = 𝑒 ⋅ 𝜈′) ⇔ (𝜈 = 𝜈′)
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Proof. Let 𝐴𝑖 = max𝑖 𝜈𝑖 −min𝑖 𝜈𝑖. If for each 𝑖 we have 𝑒𝑖−1 > 𝐴𝑖𝑒𝑖 +𝐴𝑖+1𝑒𝑖+1 +…+𝐴𝑛𝑒𝑛
then the lemma holds. Details omitted. �

Lemma 7.106.2. Let 𝑅 be a ring. Let 𝑔 ∈ 𝑅[𝑥1, … , 𝑥𝑛] be an element which is noncon-
stant, i.e., 𝑔∉𝑅. For 𝑒1 ≫ 𝑒2 ≫ … ≫ 𝑒𝑛−1 ≫ 𝑒𝑛 = 1 the polynomial

𝑔(𝑥1 + 𝑥𝑒1
𝑛 , 𝑥2 + 𝑥𝑒2

𝑛 , … , 𝑥𝑛−1 + 𝑥𝑒𝑛−1
𝑛 , 𝑥𝑛) = 𝑎𝑥𝑑

𝑛 + lower order terms in 𝑥𝑛

where 𝑑 > 0 and 𝑎 ∈ 𝑅 is one of the nonzero coefficients of 𝑔.

Proof. Write 𝑔 = ∑𝜈∈𝑁 𝑎𝜈𝑥𝜈 with 𝑎𝜈 ∈ 𝑅 not zero. Here 𝑁 is a finite set of multi-indices
as in Lemma 7.106.1 and 𝑥𝜈 = 𝑥𝜈1

1 … 𝑥𝜈𝑛
𝑛 . Note that the leading term in

(𝑥1 + 𝑥𝑒1
𝑛 )𝜈1 … (𝑥𝑛−1 + 𝑥𝑒𝑛−1

𝑛 )𝜈𝑛−1𝑥𝜈𝑛
𝑛 is 𝑥𝑒1𝜈1+…+𝑒𝑛−1𝜈𝑛−1+𝜈𝑛

𝑛 .

Hence the lemma follows from Lemma 7.106.1 which garantees that there is exactly one
nonzero term 𝑎𝜈𝑥𝜈 of 𝑔 which gives rise to the leading term of 𝑔(𝑥1+𝑥𝑒1

𝑛 , 𝑥2+𝑥𝑒2
𝑛 , … , 𝑥𝑛−1+

𝑥𝑒𝑛−1
𝑛 , 𝑥𝑛), i.e., 𝑎 = 𝑎𝜈 for the unique 𝜈 ∈ 𝑁 such that 𝑒 ⋅ 𝜈 is maximal. �

Lemma 7.106.3. Let 𝑘 be a field. Let 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼 for some ideal 𝐼. If 𝐼≠0, then
there exist 𝑦1, … , 𝑦𝑛−1 ∈ 𝑘[𝑥1, … , 𝑥𝑛] such that 𝑆 is finite over 𝑘[𝑦1, … , 𝑦𝑛−1]. Moreover
we may choose 𝑦𝑖 to be in the 𝐙-subalgebra of 𝑘[𝑥1, … , 𝑥𝑛] generated by 𝑥1, … , 𝑥𝑛.

Proof. Pick 𝑓 ∈ 𝐼, 𝑓≠0. It suffices to show the lemma for 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓) since 𝑆 is a
quotient of that ring. We will take 𝑦𝑖 = 𝑥𝑖 − 𝑥𝑒𝑖

𝑛 , 𝑖 = 1, … , 𝑛 − 1 for suitable integers 𝑒𝑖.
When does this work? It suffices to show that 𝑥𝑛 ∈ 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓) is integral over the
ring 𝑘[𝑦1, … , 𝑦𝑛−1]. The equation for 𝑥𝑛 over this ring is

𝑓(𝑦1 + 𝑥𝑒1
𝑛 , … , 𝑦𝑛−1 + 𝑥𝑒𝑛−1

𝑛 , 𝑥𝑛) = 0.

Hence we are done if we can show there exists integers 𝑒𝑖 such that the leading coefficient
w.r.t. 𝑥𝑛 of the equation above is a nonzero element of 𝑘. This can be achieved for example
by choosing 𝑒1 ≫ 𝑒2 ≫ … ≫ 𝑒𝑛−1, see Lemma 7.106.2. �

Lemma 7.106.4. Let 𝑘 be a field. Let 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼 for some ideal 𝐼. There exist
𝑟 ≥ 0, and 𝑦1, … , 𝑦𝑟 ∈ 𝑘[𝑥1, … , 𝑥𝑛] such that (a) the map 𝑘[𝑦1, … , 𝑦𝑟] → 𝑆 is injective,
and (b) the map 𝑘[𝑦1, … , 𝑦𝑟] → 𝑆 is finite. In this case the integer 𝑟 is the dimension of
𝑆. Moreover we may choose 𝑦𝑖 to be in the 𝐙-subalgebra of 𝑘[𝑥1, … , 𝑥𝑛] generated by
𝑥1, … , 𝑥𝑛.

Proof. By induction on 𝑛, with 𝑛 = 0 being trivial. If 𝐼 = 0, then take 𝑟 = 𝑛 and 𝑦𝑖 = 𝑥𝑖. If
𝐼≠0, then choose 𝑦1, … , 𝑦𝑛−1 as in Lemma 7.106.3. Let 𝑆′ ⊂ 𝑆 be the subring generated
by the images of the 𝑦𝑖. By induction we can choose 𝑟 and 𝑧1, … , 𝑧𝑟 ∈ 𝑘[𝑦1, … , 𝑦𝑛−1] such
that (a), (b) hold for 𝑘[𝑧1, … , 𝑧𝑟] → 𝑆′. Since 𝑆′ → 𝑆 is injective and finite we see (a), (b)
hold for 𝑘[𝑧1, … , 𝑧𝑟] → 𝑆. The last assertion follows from Lemma 7.103.4. �

Lemma 7.106.5. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘 algebra and denote 𝑋 = 𝑆𝑝𝑒𝑐(𝑆).
Let 𝔮 be a prime of 𝑆, and let 𝑥 ∈ 𝑋 be the corresponding point. There exists a 𝑔 ∈ 𝑆,
𝑔∉𝔮 such that dim(𝑆𝑔) = dim𝑥(𝑋) =∶ 𝑑 and such that there exists a finite injective map
𝑘[𝑦1, … , 𝑦𝑑] → 𝑆𝑔.

Proof. Note that by definition dim𝑥(𝑋) is the minimum of the dimensions of 𝑆𝑔 for 𝑔 ∈ 𝑆,
𝑔∉𝔮, i.e., the minimum is attained. Thus the lemma follows from Lemma 7.106.4. �
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Lemma 7.106.6. Let 𝑘 be a field. Let 𝔮 ⊂ 𝑘[𝑥1, … , 𝑥𝑛] be a prime ideal. Set 𝑟 =
trdeg𝑘 𝜅(𝔮). Then there exists a finite ring map 𝜑 ∶ 𝑘[𝑦1, … , 𝑦𝑛] → 𝑘[𝑥1, … , 𝑥𝑛] such
that 𝜑−1(𝔮) = (𝑦𝑟+1, … , 𝑦𝑛).

Proof. By induction on 𝑛. The case 𝑛 = 0 is clear. Assume 𝑛 > 0. If 𝑟 = 𝑛, then 𝔮 = (0)
and the result is clear. Choose a nonzero 𝑓 ∈ 𝔮. Of course 𝑓 is nonconstant. After applying
an automorphism of the form

𝑘[𝑥1, … , 𝑥𝑛] ⟶ 𝑘[𝑥1, … , 𝑥𝑛], 𝑥𝑛 ↦ 𝑥𝑛, 𝑥𝑖 ↦ 𝑥𝑖 + 𝑥𝑒𝑖
𝑛 (𝑖 < 𝑛)

we may assume that 𝑓 is monic in 𝑥𝑛 over 𝑘[𝑥1, … , 𝑥𝑛], see Lemma 7.106.2. Hence the
ring map

𝑘[𝑦1, … , 𝑦𝑛] ⟶ 𝑘[𝑥1, … , 𝑥𝑛], 𝑦𝑛 ↦ 𝑓, 𝑦𝑖 ↦ 𝑥𝑖 (𝑖 < 𝑛)
is finite. Moreover 𝑦𝑛 ∈ 𝔮 ∩ 𝑘[𝑦1, … , 𝑦𝑛] by construction. Thus 𝔮 ∩ 𝑘[𝑦1, … , 𝑦𝑛] =
𝔭𝑘[𝑦1, … , 𝑦𝑛]+(𝑦𝑛) where 𝔭 ⊂ 𝑘[𝑦1, … , 𝑦𝑛−1] is a prime ideal. Note that 𝜅(𝔭) ⊂ 𝜅(𝔮) is fi-
nite, and hence 𝑟 = trdeg𝑘 𝜅(𝔭). Apply the induction hypothesis to the pair (𝑘[𝑦1, … , 𝑦𝑛−1], 𝔭)
andwe obtain a finite ringmap 𝑘[𝑧1, … , 𝑧𝑛−1] → 𝑘[𝑦1, … , 𝑦𝑛−1] such that 𝔭∩𝑘[𝑧1, … , 𝑧𝑛−1] =
(𝑧𝑟+1, … , 𝑧𝑛−1). We extend the ring map 𝑘[𝑧1, … , 𝑧𝑛−1] → 𝑘[𝑦1, … , 𝑦𝑛−1] to a ring map
𝑘[𝑧1, … , 𝑧𝑛] → 𝑘[𝑦1, … , 𝑦𝑛] by mapping 𝑧𝑛 to 𝑦𝑛. The composition of the ring maps

𝑘[𝑧1, … , 𝑧𝑛] → 𝑘[𝑦1, … , 𝑦𝑛] → 𝑘[𝑥1, … , 𝑥𝑛]

solves the problem. �

Lemma 7.106.7. Let 𝑅 → 𝑆 be an injective finite type map of domains. Then there exists
an integer 𝑑 and factorization

𝑅 → 𝑅[𝑦1, … , 𝑦𝑑] → 𝑆′ → 𝑆

by injective maps such that 𝑆′ is finite over 𝑅[𝑦1, … , 𝑦𝑑] and such that 𝑆′
𝑓 ≅ 𝑆𝑓 for some

nonzero 𝑓 ∈ 𝑅.

Proof. Pick 𝑥1, … , 𝑥𝑛 ∈ 𝑆 which generate 𝑆 over 𝑅. Let 𝐾 = 𝑓.𝑓.(𝑅) and 𝑆𝐾 = 𝑆 ⊗𝑅 𝐾.
By Lemma 7.106.4 we can find 𝑦1, … , 𝑦𝑑 ∈ 𝑆 such that 𝐾[𝑦1, … , 𝑦𝑑] → 𝑆𝐾 is a finite
injective map. Note that 𝑦𝑖 ∈ 𝑆 because we may pick the 𝑦𝑗 in the 𝐙-algebra generated
by 𝑥1, … , 𝑥𝑛. As a finite ring map is integral (see Lemma 7.32.3) we can find monic
𝑃𝑖 ∈ 𝐾[𝑦1, … , 𝑦𝑑][𝑇] such that 𝑃𝑖(𝑥𝑖) = 0 in 𝑆𝐾. Let 𝑓 ∈ 𝑅 be a nonzero element
such that 𝑓𝑃𝑖 ∈ 𝑅[𝑦1, … , 𝑦𝑑][𝑇] for all 𝑖. Set 𝑥′

𝑖 = 𝑓𝑥𝑖 and let 𝑆′ ⊂ 𝑆 be the subalgebra
generated by 𝑦1, … , 𝑦𝑑 and 𝑥′

1, … , 𝑥′
𝑛. Note that 𝑥′

𝑖 is integral over 𝑅[𝑦1, … , 𝑦𝑑] as we have
𝑄𝑖(𝑥′

𝑖 ) = 0 where 𝑄𝑖 = 𝑓− deg𝑇(𝑃𝑖)𝑃𝑖(𝑓𝑇) which is a monic polynomial in 𝑇 with coefficients
in 𝑅[𝑦1, … , 𝑦𝑑] by our choice of 𝑓. Hence 𝑅[𝑦1, … , 𝑦𝑛] ⊂ 𝑆′ is finite by Lemma 7.32.5.
By construction 𝑆′

𝑓 ≅ 𝑆𝑓 and we win. �

7.107. Dimension of finite type algebras over fields, reprise

This section is a continuation of Section 7.105. In this section we esthablish the connection
between dimension and transcendence degree over the ground field for finite type domains
over a field.

Lemma 7.107.1. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘 algebra which is an integral
domain. Let 𝐾 = 𝑓.𝑓.(𝑆) be the field of fractions of 𝑆. Let 𝑟 = trdeg(𝐾/𝑘) be the tran-
scendence degree of 𝐾 over 𝑘. Then dim(𝑆) = 𝑟. Moreover, the local ring of 𝑆 at every
maximal ideal has dimension 𝑟.
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Proof. We may write 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝔭. By Lemma 7.105.3 all local rings of 𝑆 at
maximal ideals have the same dimension. Apply Lemma 7.106.4 above. We get a finite
injective ring map

𝑘[𝑦1, … , 𝑦𝑑] → 𝑆
with 𝑑 = dim(𝑆). Clearly, 𝑘(𝑦1, … , 𝑦𝑑) ⊂ 𝐾 is a finite extension and we win. �

Lemma 7.107.2. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝔮 ⊂ 𝔮′ ⊂ 𝑆 be
distinct prime ideals. Then trdeg𝑘 𝜅(𝔮′) < trdeg𝑘 𝜅(𝔮).

Proof. By Lemma 7.107.1 we have dim 𝑉(𝔮) = trdeg𝑘 𝜅(𝔮) and similarly for 𝔮′. Hence the
result follows as the strict inclusion 𝑉(𝔮′) ⊂ 𝑉(𝔮) implies a strict inequality of dimensions.

�

The following lemma generalizes Lemma 7.105.6.

Lemma 7.107.3. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘 algebra. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑆). Let
𝔭 ⊂ 𝑆 be a prime ideal, and let 𝑥 ∈ 𝑋 be the corresponding point. Then we have

dim𝑥(𝑋) = dim(𝑆𝔭) + trdeg𝑘 𝜅(𝔭).

Proof. By Lemma 7.107.1 above we know that 𝑟 = trdeg𝑘 𝜅(𝔭) is equal to the dimension
of 𝑉(𝔭). Pick any maximal chain of primes 𝔭 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑟 starting with 𝔭 in 𝑆. This
has length 𝑟 by Lemma 7.105.4. Let 𝔮𝑖, 𝑖 ∈ 𝐼′ be the minimal primes of 𝑆 which are
contained in 𝔭. These correspond 1 − 1 to minimal primes in 𝑆𝔭 via the rule 𝔮𝑖 ↦ 𝔮𝑖𝑆𝔭.
By Lemma 7.105.5 we know that dim𝑥(𝑋) is equal to the maximum of the dimensions of
the rings 𝑆/𝔮𝑖. For each 𝑖 pick a maximal chain of primes 𝔮𝑖 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑠(𝑖) = 𝔭. Then
dim(𝑆𝔭) = max𝑖∈𝐼′ 𝑠(𝑖). Now, each chain

𝔮𝑖 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑠(𝑖) = 𝔭 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑟

is a maximal chain in 𝑆/𝔮𝑖, and by what was said before we have dim𝑥(𝑋) = max𝑖∈𝐼′ 𝑟+𝑠(𝑖).
The lemma follows. �

The following lemma says that the codimension of one finite type Spec in another is the
difference of heights.

Lemma 7.107.4. Let 𝑘 be a field. Let 𝑆′ → 𝑆 be a surjection of finite type 𝑘 algebras. Let
𝔭 ⊂ 𝑆 be a prime ideal, and let 𝔭′ be the corresponding prime ideal of𝑆′. Let𝑋 = 𝑆𝑝𝑒𝑐(𝑆),
resp. 𝑋′ = 𝑆𝑝𝑒𝑐(𝑆′), and let 𝑥 ∈ 𝑋, resp. 𝑥′ ∈ 𝑋′ be the point corrseponding to 𝔭, resp.
𝔭′. Then

dim𝑥′ 𝑋′ − dim𝑥 𝑋 = height(𝔭′) − height(𝔭).

Proof. Immediate from Lemma 7.107.3 above. �

Lemma 7.107.5. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝑘 ⊂ 𝐾 be a field
extension. Then dim(𝑆) = dim(𝐾 ⊗𝑘 𝑆).

Proof. By Lemma 7.106.4 there exists a finite injective map 𝑘[𝑦1, … , 𝑦𝑑] → 𝑆 with 𝑑 =
dim(𝑆). Since 𝐾 is flat over 𝑘 we also get a finite injective map 𝐾[𝑦1, … , 𝑦𝑑] → 𝐾 ⊗𝑘 𝑆.
The result follows from Lemma 7.103.4. �

Lemma 7.107.6. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Set 𝑋 = 𝑆𝑝𝑒𝑐(𝑆). Let
𝑘 ⊂ 𝐾 be a field extension. Set 𝑆𝐾 = 𝐾 ⊗𝑘 𝑆, and 𝑋𝐾 = 𝑆𝑝𝑒𝑐(𝑆𝐾). Let 𝔮 ⊂ 𝑆 be a prime
corresponding to 𝑥 ∈ 𝑋 and let 𝔮𝐾 ⊂ 𝑆𝐾 be a prime corresponding to 𝑥𝐾 ∈ 𝑋𝐾 lying over
𝔮. Then dim𝑥 𝑋 = dim𝑥𝐾

𝑋𝐾.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06RP
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00P1
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00P2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00P3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00P4


7.109. GENERIC FLATNESS 415

Proof. Choose a presentation 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼. This gives a presentation 𝐾 ⊗𝑘 𝑆 =
𝐾[𝑥1, … , 𝑥𝑛]/(𝐾 ⊗𝑘 𝐼). Let 𝔮′

𝐾 ⊂ 𝐾[𝑥1, … , 𝑥𝑛], resp. 𝔮′ ⊂ 𝑘[𝑥1, … , 𝑥𝑛] be the corre-
sponding primes. Consider the following commutative diagram of Noetherian local rings

𝐾[𝑥1, … , 𝑥𝑛]𝔮′
𝐾

// (𝐾 ⊗𝑘 𝑆)𝔮𝐾

𝑘[𝑥1, … , 𝑥𝑛]𝔮′ //

OO

𝑆𝔮

OO

Both vertical arrows are flat because they are localizations of the flat ring maps 𝑆 → 𝑆𝐾
and 𝑘[𝑥1, … , 𝑥𝑛] → 𝐾[𝑥1, … , 𝑥𝑛]. Moreover, the vertical arrows have the same fibre rings.
Hence, we see from Lemma 7.103.7 that height(𝔮′) −height(𝔮) = height(𝔮′

𝐾) −height(𝔮𝐾).
Denote 𝑥′ ∈ 𝑋′ = 𝑆𝑝𝑒𝑐(𝑘[𝑥1, … , 𝑥𝑛]) and 𝑥′

𝐾 ∈ 𝑋′
𝐾 = 𝑆𝑝𝑒𝑐(𝐾[𝑥1, … , 𝑥𝑛]) the points

corresponding to 𝔮′ and 𝔮′
𝐾. By Lemma 7.107.4 and what we showed above we have

𝑛 − dim𝑥 𝑋 = dim𝑥′ 𝑋′ − dim𝑥 𝑋
= height(𝔮′) − height(𝔮)
= height(𝔮′

𝐾) − height(𝔮𝐾)
= dim𝑥′

𝐾
𝑋′

𝐾 − dim𝑥𝐾
𝑋𝐾

= 𝑛 − dim𝑥𝐾
𝑋𝐾

and the lemma follows. �

7.108. Dimension of graded algebras over a field

Here is a basic result.

Lemma 7.108.1. Let 𝑘 be a field. Let 𝑆 be a finitely generated graded algebra over 𝑘.
Assume 𝑆0 = 𝑘. Let 𝑃(𝑇) ∈ 𝐐[𝑇] be the polynomial such that dim(𝑆𝑑) = 𝑃(𝑑) for all
𝑑 ≫ 0. See Proposition 7.55.6. Then

(1) The irrelevant ideal 𝑆+ is a maximal ideal 𝔪.
(2) Any minimal prime of 𝑆 is a homogeneous ideal and is contained in 𝑆+ = 𝔪.
(3) We have dim(𝑆) = deg(𝑃)+1 = dim𝑥 𝑆𝑝𝑒𝑐(𝑆) (with the convention that deg(0) =

−1) where 𝑥 is the point corresponding to the maximal ideal 𝑆+ = 𝔪.
(4) The Hilbert function of the local ring 𝑅 = 𝑆𝔪 is equal to the Hilbert function of

𝑆.

Proof. The first statement is obvious. The second follows from Lemma 7.53.8. The equal-
ity dim(𝑆) = dim𝑥 𝑆𝑝𝑒𝑐(𝑆) follows from the fact that every irreducible component passes
through 𝑥 according to (2). Hence we may compute this dimension as the dimension of the
local ring 𝑅 = 𝑆𝔪 with 𝔪 = 𝑆+ by Lemma 7.105.6. Since 𝔪𝑑/𝔪𝑑+1 ≅ 𝔪𝑑𝑅/𝔪𝑑+1𝑅 we
see that the Hilbert function of the local ring 𝑅 is equal to the Hilbert function of 𝑆, which
is (4). We conclude the last equality of (3) by Proposition 7.57.8. �

7.109. Generic flatness

Basically this says that a finite type algebra over a domain becomes flat after inverting a
single element of the domain. There are several versions of this result (in increasing order
of strength).

Lemma 7.109.1. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Assume
(1) 𝑅 is Noetherian,
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(2) 𝑅 is a domain,
(3) 𝑅 → 𝑆 is of finite type, and
(4) 𝑀 is a finite type 𝑆-module.

Then there exists a nonzero 𝑓 ∈ 𝑅 such that 𝑀𝑓 is a free 𝑅𝑓-module.

Proof. Let 𝐾 be the fraction field of 𝑅. Set 𝑆𝐾 = 𝐾 ⊗𝑅 𝑆. This is an algebra of finite
type over 𝐾. We will argue by induction on 𝑑 = dim(𝑆𝐾) (which is finite for example by
Noether normalization, see Section 7.106). Fix 𝑑 ≥ 0. Assume we know that the lemma
holds in all cases where dim(𝑆𝐾) < 𝑑.
Suppose given 𝑅 → 𝑆 and 𝑀 as in the lemma with dim(𝑆𝐾) = 𝑑. By Lemma 7.59.1 there
exists a filtration 0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ … ⊂ 𝑀𝑛 = 𝑀 so that 𝑀𝑖/𝑀𝑖−1 is isomorphic to 𝑆/𝔮
for some prime 𝔮 of 𝑆. Note that dim((𝑆/𝔮)𝐾) ≤ dim(𝑆𝐾). Also, note that an extension of
free modules is free (see basic notion 50). Thus we may assume 𝑀 = 𝑆 and that 𝑆 is a
domain of finite type over 𝑅.
If 𝑅 → 𝑆 has a nontrivial kernel, then take a nonzero 𝑓 ∈ 𝑅 in this kernel. In this case
𝑆𝑓 = 0 and the lemma holds. (This is really the case 𝑑 = −1 and the start of the induction.)
Hence we may assume that 𝑅 → 𝑆 is a finite type extension of Noetherian domains.
Apply Lemma 7.106.7 and replace 𝑅 by 𝑅𝑓 (with 𝑓 as in the lemma) to get a factorization

𝑅 ⊂ 𝑅[𝑦1, … , 𝑦𝑑] ⊂ 𝑆
where the second extension is finite. Note that 𝑓.𝑓.(𝑅[𝑦1, … , 𝑦𝑑]) ⊂ 𝑓.𝑓.(𝑆) is a finite ex-
tension of fields. Choose 𝑧1, … , 𝑧𝑟 ∈ 𝑆which form a basis for𝑓.𝑓.(𝑆) over 𝑓.𝑓.(𝑅[𝑦1, … , 𝑦𝑑]).
This gives a short exact sequence

0 → 𝑅[𝑦1, … , 𝑦𝑑]⊕𝑟 (𝑧1,…,𝑧𝑟)
−−−−−−−→ 𝑆 → 𝑁 → 0

By construction 𝑁 is a finite 𝑅[𝑦1, … , 𝑦𝑑]-module whose support does not contain the
generic point (0) of 𝑆𝑝𝑒𝑐(𝑅[𝑦1, … , 𝑦𝑑]). By Lemma 7.59.4 there exists a nonzero 𝑔 ∈
𝑅[𝑦1, … , 𝑦𝑑] such that 𝑔 annihilates 𝑁, so we may view 𝑁 as a finite module over 𝑆′ =
𝑅[𝑦1, … , 𝑦𝑑]/(𝑔). Since dim(𝑆′

𝐾) < 𝑑 by induction there exists a nonzero 𝑓 ∈ 𝑅 such that
𝑁𝑓 is a free 𝑅𝑓-module. Since (𝑅[𝑦1, … , 𝑦𝑑])𝑓 ≅ 𝑅𝑓[𝑦1, … , 𝑦𝑑] is free also we conclude
by the already mentioned fact that an extension of free modules is free. �

Lemma 7.109.2. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Assume
(1) 𝑅 is a domain,
(2) 𝑅 → 𝑆 is of finite presentation, and
(3) 𝑀 is an 𝑆-module of finite presentation.

Then there exists a nonzero 𝑓 ∈ 𝑅 such that 𝑀𝑓 is a free 𝑅𝑓-module.

Proof. Write 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑚). For 𝑔 ∈ 𝑅[𝑥1, … , 𝑥𝑛] denote 𝑔 its image
in 𝑆. We may write 𝑀 = 𝑆⊕𝑡/ ∑ 𝑆𝑛𝑖 for some 𝑛𝑖 ∈ 𝑆⊕𝑡. Write 𝑛𝑖 = (𝑔𝑖1, … , 𝑔𝑖𝑡) for
some 𝑔𝑖𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. Let 𝑅0 ⊂ 𝑅 be the subring generated by all the coefficients of
all the elements 𝑔𝑖, 𝑔𝑖𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. Define 𝑆0 = 𝑅0[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑚). Define
𝑀0 = 𝑆⊕𝑡

0 / ∑ 𝑆0𝑛𝑖. Then 𝑅0 is a domain of finite type over 𝐙 and hence Noetherian
(see Lemma 7.28.1). Moreover via the injection 𝑅0 → 𝑅 we have 𝑆 ≅ 𝑅 ⊗𝑅0

𝑆0 and
𝑀 ≅ 𝑅 ⊗𝑅0

𝑀0. Applying Lemma 7.109.1 we obtain a nonzero 𝑓 ∈ 𝑅0 such that (𝑀0)𝑓
is a free (𝑅0)𝑓-module. Hence 𝑀𝑓 = 𝑅𝑓 ⊗(𝑅0)𝑓

(𝑀0)𝑓 is a free 𝑅𝑓-module. �

Lemma 7.109.3. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Assume
(1) 𝑅 is a domain,
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(2) 𝑅 → 𝑆 is of finite type, and
(3) 𝑀 is a finite type 𝑆-module.

Then there exists a nonzero 𝑓 ∈ 𝑅 such that
(a) 𝑀𝑓 and 𝑆𝑓 are free as 𝑅𝑓-modules, and
(b) 𝑆𝑓 is a finitely presented 𝑅𝑓-algebra and 𝑀𝑓 is a finitely presented 𝑆𝑓-module.

Proof. We first prove the lemma for 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛], and then we deduce the result in
general.

Assume 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]. Choose elements 𝑚1, … , 𝑚𝑡 which generate 𝑀. This gives a
short exact sequence

0 → 𝑁 → 𝑆⊕𝑡 (𝑚1,…,𝑚𝑡)−−−−−−−→ 𝑀 → 0.
Denote 𝐾 the fraction field of 𝑅. Denote 𝑆𝐾 = 𝐾 ⊗𝑅 𝑆 = 𝐾[𝑥1, … , 𝑥𝑛], and similarly
𝑁𝐾 = 𝐾 ⊗𝑅 𝑁, 𝑀𝐾 = 𝐾 ⊗𝑅 𝑀. As 𝑅 → 𝐾 is flat the sequence remains flat after
tensoring with 𝐾. As 𝑆𝐾 = 𝐾[𝑥1, … , 𝑥𝑛] is a Noetherian ring (see Lemma 7.28.1) we can
find finitely many elements 𝑛′

1, … , 𝑛′
𝑠 ∈ 𝑁𝐾 which generate it. Choose 𝑛1, … , 𝑛𝑟 ∈ 𝑁 such

that 𝑛′
𝑖 = ∑ 𝑎𝑖𝑗𝑛𝑗 for some 𝑎𝑖𝑗 ∈ 𝐾. Set

𝑀′ = 𝑆⊕𝑡/ ∑𝑖=1,…,𝑟
𝑆𝑛𝑖

By construction 𝑀′ is a finitely presented 𝑆-module, and there is a surjection 𝑀′ → 𝑀
which induces an isomorphism 𝑀′

𝐾 ≅ 𝑀𝐾. We may apply Lemma 7.109.2 to 𝑅 → 𝑆 and
𝑀′ and we find an 𝑓 ∈ 𝑅 such that 𝑀′

𝑓 is a free 𝑅𝑓-module. Thus 𝑀′
𝑓 → 𝑀𝑓 is a surjection

of modules over the domain 𝑅𝑓 where the source is a free module and which becomes an
isomorphism upon tensoring with 𝐾. Thus it is injective as 𝑀′

𝑓 ⊂ 𝑀′
𝐾 as it is free over the

domain 𝑅𝑓. Hence 𝑀′
𝑓 → 𝑀𝑓 is an isomorphism and the result is proved.

For the general case, choose a surjection 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆. Think of both 𝑆 and 𝑀 as
finite modules over 𝑅[𝑥1, … , 𝑥𝑛]. By the special case proved above there exists a nonzero
𝑓 ∈ 𝑅 such that both𝑆𝑓 and𝑀𝑓 are free as𝑅𝑓-modules and finitely presented as𝑅𝑓[𝑥1, … , 𝑥𝑛]-modules.
Clearly this implies that 𝑆𝑓 is a finitely presented 𝑅𝑓-algebra and that 𝑀𝑓 is a finitely pre-
sented 𝑆𝑓-module. �

Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Consider the following condition on an
element 𝑓 ∈ 𝑅:

(7.109.3.1)
⎧⎪
⎨
⎪⎩

𝑆𝑓 is of finite presentation over 𝑅𝑓
𝑀𝑓 is of finite presentation as 𝑆𝑓-module

𝑆𝑓, 𝑀𝑓 are free as 𝑅𝑓-modules
We define

(7.109.3.2) 𝑈(𝑅 → 𝑆, 𝑀) = ⋃𝑓∈𝑅 with (7.109.3.1)
𝐷(𝑓)

which is an open subset of 𝑆𝑝𝑒𝑐(𝑅).

Lemma 7.109.4. Let 𝑅 → 𝑆 be a ring map. Let 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 be a short
exact sequence of 𝑆-modules. Then

𝑈(𝑅 → 𝑆, 𝑀1) ∩ 𝑈(𝑅 → 𝑆, 𝑀3) ⊂ 𝑈(𝑅 → 𝑆, 𝑀2).

Proof. Let 𝑢 ∈ 𝑈(𝑅 → 𝑆, 𝑀1) ∩ 𝑈(𝑅 → 𝑆, 𝑀3). Choose 𝑓1, 𝑓3 ∈ 𝑅 such that 𝑢 ∈ 𝐷(𝑓1),
𝑢 ∈ 𝐷(𝑓3) and such that (7.109.3.1) holds for 𝑓1 and 𝑀1 and for 𝑓3 and 𝑀3. Then set
𝑓 = 𝑓1𝑓3. Then 𝑢 ∈ 𝐷(𝑓) and (7.109.3.1) holds for 𝑓 and both 𝑀1 and 𝑀3. An extension
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of free modules is free, and an extension of finitely presented modules is finitely presented
(Lemma 7.5.4). Hence we see that (7.109.3.1) holds for 𝑓 and 𝑀2. Thus 𝑢 ∈ 𝑈(𝑅 →
𝑆, 𝑀2) and we win. �

Lemma 7.109.5. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Let 𝑓 ∈ 𝑅. Using the
identification 𝑆𝑝𝑒𝑐(𝑅𝑓) = 𝐷(𝑓) we have 𝑈(𝑅𝑓 → 𝑆𝑓, 𝑀𝑓) = 𝐷(𝑓) ∩ 𝑈(𝑅 → 𝑆, 𝑀).

Proof. Suppose that 𝑢 ∈ 𝑈(𝑅𝑓 → 𝑆𝑓, 𝑀𝑓). Then there exists an element 𝑔 ∈ 𝑅𝑓 such
that 𝑢 ∈ 𝐷(𝑔) and such that (7.109.3.1) holds for the pair ((𝑅𝑓)𝑔 → (𝑆𝑓)𝑔, (𝑀𝑓)𝑔). Write
𝑔 = 𝑎/𝑓𝑛 for some 𝑎 ∈ 𝑅. Set ℎ = 𝑎𝑓. Then 𝑅ℎ = (𝑅𝑓)𝑔, 𝑆ℎ = (𝑆𝑓)𝑔, and 𝑀ℎ = (𝑀𝑓)𝑔.
Moreover 𝑢 ∈ 𝐷(ℎ). Hence 𝑢 ∈ 𝑈(𝑅 → 𝑆, 𝑀). Conversely, suppose that 𝑢 ∈ 𝐷(𝑓) ∩
𝑈(𝑅 → 𝑆, 𝑀). Then there exists an element 𝑔 ∈ 𝑅 such that 𝑢 ∈ 𝐷(𝑔) and such that
(7.109.3.1) holds for the pair (𝑅𝑔 → 𝑆𝑔, 𝑀𝑔). Then it is clear that (7.109.3.1) also holds
for the pair (𝑅𝑓𝑔 → 𝑆𝑓𝑔, 𝑀𝑓𝑔) = ((𝑅𝑓)𝑔 → (𝑆𝑓)𝑔, (𝑀𝑓)𝑔). Hence 𝑢 ∈ 𝑈(𝑅𝑓 → 𝑆𝑓, 𝑀𝑓)
and we win. �

Lemma 7.109.6. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Let 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅)
be a dense open. Assume there is a covering 𝑈 = ⋃𝑖∈𝐼 𝐷(𝑓𝑖) of opens such that 𝑈(𝑅𝑓𝑖

→
𝑆𝑓𝑖

, 𝑀𝑓𝑖
) is dense in 𝐷(𝑓𝑖) for each 𝑖 ∈ 𝐼. Then 𝑈(𝑅 → 𝑆, 𝑀) is dense in 𝑆𝑝𝑒𝑐(𝑅).

Proof. In view of Lemma 7.109.5 this is a purely topological statement. Namely, by that
lemma we see that 𝑈(𝑅 → 𝑆, 𝑀) ∩ 𝐷(𝑓𝑖) is dense in 𝐷(𝑓𝑖) for each 𝑖 ∈ 𝐼. By Topology,
Lemma 5.17.4 we see that 𝑈(𝑅 → 𝑆, 𝑀) ∩ 𝑈 is dense in 𝑈. Since 𝑈 is dense in 𝑆𝑝𝑒𝑐(𝑅)
we conclude that 𝑈(𝑅 → 𝑆, 𝑀) is dense in 𝑆𝑝𝑒𝑐(𝑅). �

Lemma 7.109.7. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Assume
(1) 𝑅 → 𝑆 is of finite type,
(2) 𝑀 is a finite 𝑆-module, and
(3) 𝑅 is reduced.

Then there exists a subset 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) such that
(1) 𝑈 is open and dense in 𝑆𝑝𝑒𝑐(𝑅),
(2) for every 𝑢 ∈ 𝑈 there exists an 𝑓 ∈ 𝑅 such that 𝑢 ∈ 𝐷(𝑓) ⊂ 𝑈 and such that we

have
(a) 𝑀𝑓 and 𝑆𝑓 are free over 𝑅𝑓,
(b) 𝑆𝑓 is a finitely presented 𝑅𝑓-algebra, and
(c) 𝑀𝑓 is a finitely presented 𝑆𝑓-module.

Proof. Note that the lemma is equivalent to the statement that the open 𝑈(𝑅 → 𝑆, 𝑀), see
Equation (7.109.3.2), is dense in 𝑆𝑝𝑒𝑐(𝑅). We first prove the lemma for 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛],
and then we deduce the result in general.

Proof of the case 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛] and 𝑀 any finite module over 𝑆. Note that in this case
𝑆𝑓 = 𝑅𝑓[𝑥1, … , 𝑥𝑛] is free and of finite presentation over 𝑅𝑓, so we do not have to worry
about the conditions regarding 𝑆, only those that concern 𝑀. We will use induction on 𝑛.

There exists a finite filtration

0 ⊂ 𝑀1 ⊂ 𝑀2 ⊂ … ⊂ 𝑀𝑡 = 𝑀

such that 𝑀𝑖/𝑀𝑖−1 ≅ 𝑆/𝐽𝑖 for some ideal 𝐽𝑖 ⊂ 𝑆, see Lemma 7.5.5. Since a finite intersec-
tion of dense opens is dense open, we see from Lemma 7.109.4 that it suffices to prove the
lemma for each of the modules 𝑅/𝐽𝑖. Hence we may assume that 𝑀 = 𝑆/𝐽 for some ideal
𝐽 of 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛].
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Let 𝐼 ⊂ 𝑅 be the ideal generated by the coefficients of elements of 𝐽. Let 𝑈1 = 𝑆𝑝𝑒𝑐(𝑅) ⧵
𝑉(𝐼) and let

𝑈2 = 𝑆𝑝𝑒𝑐(𝑅) ⧵ 𝑈1.
Then it is clear that 𝑈 = 𝑈1 ∪ 𝑈2 is dense in 𝑆𝑝𝑒𝑐(𝑅). Let 𝑓 ∈ 𝑅 be an element such that
either (a) 𝐷(𝑓) ⊂ 𝑈1 or (b) 𝐷(𝑓) ⊂ 𝑈2. If for any such 𝑓 the lemma holds for the pair
(𝑅𝑓 → 𝑅𝑓[𝑥1, … , 𝑥𝑛], 𝑀𝑓) then by Lemma 7.109.6 we see that 𝑈(𝑅 → 𝑆, 𝑀) is dense in
𝑆𝑝𝑒𝑐(𝑅). Hence we may assume either (a) 𝐼 = 𝑅, or (b) 𝑉(𝐼) = 𝑆𝑝𝑒𝑐(𝑅).
In case (b) we actually have 𝐼 = 0 as 𝑅 is reduced! Hence 𝐽 = 0 and 𝑀 = 𝑆 and the lemma
holds in this case.
In case (a) we have to do a little bit more work. Note that every element of 𝐼 is actually the
coefficient of a monomial of an element of 𝐽, because the set of coefficients of elements of
𝐽 forms an ideal (details omitted). Hence we find an element

𝑔 = ∑𝐾∈𝐸
𝑎𝐾𝑥𝐾 ∈ 𝐽

where 𝐸 is a finite set of multi-indices 𝐾 = (𝑘1, … , 𝑘𝑛) with at least one coefficient 𝑎𝐾0
a unit in 𝑅. Actually we can find one which has a coefficient equal to 1 as 1 ∈ 𝐼 in case
(a). Let 𝑚 = #{𝐾 ∈ 𝐸 ∣ 𝑎𝐾 is not a unit}. Note that 0 ≤ 𝑚 ≤ #𝐸 − 1. We will argue by
induction on 𝑚.
The case 𝑚 = 0. In this case all the coefficients 𝑎𝐾, 𝐾 ∈ 𝐸 of 𝑔 are units and 𝐸≠∅. If
𝐸 = {𝐾0} is a singleton and 𝐾0 = (0, … , 0), then 𝑔 is a unit and 𝐽 = 𝑆 so the result
holds for sure. (This happens in particular when 𝑛 = 0 and it provides the base case of
the induction on 𝑛.) If not 𝐸 = {(0, … , 0)}, then at least one 𝐾 is not equal to (0, … , 0),
i.e., 𝑔∉𝑅. At this point we employ the usual trick of Noether normalization. Namely, we
consider

𝐺(𝑦1, … , 𝑦𝑛) = 𝑔(𝑦1 + 𝑦𝑒1
𝑛 , 𝑦2 + 𝑦𝑒2

𝑛 , … , 𝑦𝑛−1 + 𝑦𝑒𝑛−1
𝑛 , 𝑦𝑛)

with 0 ≪ 𝑒𝑛−1 ≪ 𝑒𝑛−2 ≪ … ≪ 𝑒1. By Lemma 7.106.2 it follows that 𝐺(𝑦1, … , 𝑦𝑛) as a
polynomial in 𝑦𝑛 looks like

𝑎𝐾𝑦
𝑘𝑛+∑𝑖=1,…,𝑛−1 𝑒𝑖𝑘𝑖
𝑛 + lower order terms in 𝑦𝑛

As 𝑎𝐾 is a unit we conclude that 𝑀 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐽 is finite over 𝑅[𝑦1, … , 𝑦𝑛−1]. Hence
𝑈(𝑅 → 𝑅[𝑥1, … , 𝑥𝑛], 𝑀) = 𝑈(𝑅 → 𝑅[𝑦1, … , 𝑦𝑛−1], 𝑀) and we win by induction on 𝑛.
The case 𝑚 > 0. Pick a multi-index 𝐾 ∈ 𝐸 such that 𝑎𝐾 is not a unit. As before set
𝑈1 = 𝑆𝑝𝑒𝑐(𝑅𝑎𝐾

) = 𝑆𝑝𝑒𝑐(𝑅) ⧵ 𝑉(𝑎𝐾) and set

𝑈2 = 𝑆𝑝𝑒𝑐(𝑅) ⧵ 𝑈1.
Then it is clear that 𝑈 = 𝑈1 ∪ 𝑈2 is dense in 𝑆𝑝𝑒𝑐(𝑅). Let 𝑓 ∈ 𝑅 be an element such that
either (a) 𝐷(𝑓) ⊂ 𝑈1 or (b) 𝐷(𝑓) ⊂ 𝑈2. If for any such 𝑓 the lemma holds for the pair
(𝑅𝑓 → 𝑅𝑓[𝑥1, … , 𝑥𝑛], 𝑀𝑓) then by Lemma 7.109.6 we see that 𝑈(𝑅 → 𝑆, 𝑀) is dense in
𝑆𝑝𝑒𝑐(𝑅). Hence we may assume either (a) 𝑎𝐾𝑅 = 𝑅, or (b) 𝑉(𝑎𝐾) = 𝑆𝑝𝑒𝑐(𝑅). In case
(a) the number 𝑚 drops, as 𝑎𝐾 has turned into a unit. In case (b), since 𝑅 is reduced, we
conclude that 𝑎𝐾 = 0. Hence the set 𝐸 decreases so the number 𝑚 drops as well. In both
cases we win by induction on 𝑚.
At this point we have proven the lemma in case 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]. Assume that (𝑅 →
𝑆, 𝑀) is an arbitrary pair satisfying the conditions of the lemma. Choose a surjection
𝑅[𝑥1, … , 𝑥𝑛] → 𝑆. Observe that, with the notation introduced in (7.109.3.2), we have

𝑈(𝑅 → 𝑆, 𝑀) = 𝑈(𝑅 → 𝑅[𝑥1, … , 𝑥𝑛], 𝑆) ∩ 𝑈(𝑅 → 𝑅[𝑥1, … , 𝑥𝑛], 𝑆)
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Hence as we've just finished proving the right two opens are dense also the open on the left
is dense. �

7.110. Around Krull-Akizuki

One application of Krull-Akizuki is to show that there are plenty of discrete valuation rings.
More generally in this section we show how to construct discrete valution rings dominating
Noetherian local rings.

First we show how to dominate a Noetherian local domain by a 1-dimensional Noetherian
local domain by blowing up the maximal ideal.

Lemma 7.110.1. Let 𝑅 be a local Noetherian domain with fraction field 𝐾. Assume 𝑅 is
not a field. Then there exist 𝑅 ⊂ 𝑅′ ⊂ 𝐾 with

(1) 𝑅′ local Noetherian of dimension 1,
(2) 𝑅 → 𝑅′ a local ring map, i.e., 𝑅′ dominates 𝑅, and
(3) 𝑅 → 𝑅′ essentially of finite type.

Proof. Choose any valuation ring 𝐴 ⊂ 𝐾 dominating 𝑅 (which exist by Lemma 7.46.2).
Denote 𝑣 the corresponding valuation. Let 𝑥1, … , 𝑥𝑟 be a minimal set of generators of
the maximal ideal 𝔪 of 𝑅. We may and do assume that 𝑣(𝑥𝑟) = min{𝑣(𝑥1), … , 𝑣(𝑥𝑟)}.
Consider the ring

𝑆 = 𝑅[𝑥1/𝑥𝑟, 𝑥2/𝑥𝑟, … , 𝑥𝑟−1/𝑥𝑟] ⊂ 𝐾.
Note that 𝔪𝑆 = 𝑥𝑟𝑆 is a principal ideal. Note that 𝑆 ⊂ 𝐴 and that 𝑣(𝑥𝑟) > 0, hence we see
that 𝑥𝑟𝑆≠𝑆. Choose a minimal prime 𝔮 over 𝑥𝑟𝑆. Then height(𝔮) = 1 by Lemma 7.57.10
and 𝔮 lies over 𝔪. Hence we see that 𝑅′ = 𝑆𝔮 is a solution. �

The spectrum of the ring 𝑅′ in the following lemma is really the blow up of 𝑆𝑝𝑒𝑐(𝑅) in the
maximal ideal of 𝑅 (at least if case 𝑅 is reduced).

Lemma 7.110.2. Let 𝑅 be a local ring with maximal ideal 𝔪. Assume 𝑅 is Noetherian,
dimension 1 and that dim(𝔪/𝔪2) > 1. Then there exists a ring map 𝑅 → 𝑅′ such that

(1) 𝑅 → 𝑅′ is finite,
(2) 𝑅 → 𝑅′ is not an isomorphism, and
(3) for every 𝑓 ∈ 𝔪 the map 𝑅𝑓 → 𝑅′

𝑓 is an isomorphism.

Proof. If 𝔪 is an associated prime of 𝑅 then we can take 𝑅′ = 𝑅/𝐼 with 𝐼 = {𝑥 ∈ 𝑅 ∣
𝔪𝑥 = 0}. Hence we may assume that depth(𝑅) = 1. In other words, we may assume 𝑅 is
Cohen-Macaulay.

Denote 𝜅 = 𝑅/𝔪 the residue field of𝑅. Consider the graded 𝜅-algebra𝑆 = ⨁𝑑≥0 𝔪𝑑/𝔪𝑑+1.
This is a Noetherian ring, and hence has finitely many minimal primes 𝔮𝑗. Since the dimen-
sion of 𝑅 is 1 we know the Hilbert function of 𝑅 is eventually constant, see Proposition
7.57.8. Hence there exists an integer 𝑑0 ≥ 0 and an integer 𝑟 > 0 such that dim𝜅(𝔪𝑛/𝔪𝑛+1) =
𝑟 for all 𝑑 ≥ 𝑑0. By Lemma 7.108.1 we have dim(𝑆) = 1 and each 𝔮𝑖 is a homogeneous
prime ideal. Note that dim(𝑆) = 1 implies none of the 𝔮𝑖 is equal to 𝑆+. Hence by Lemma
7.53.6 we may choose 𝑓 ∈ 𝑆+ homogeneous not contained in any 𝔮𝑗. Then dim(𝑆/𝑓𝑆) = 0.
This implies that dim𝜅(𝑆/𝑓𝑆) < ∞, see for example Lemma 7.106.4. Hence we see that
𝑓𝑆𝑛 = 𝑆𝑛+deg(𝑓) for all 𝑛 ≫ 0.

Set 𝑑 = deg(𝑓). Choose 𝑥 ∈ 𝔪𝑑 which maps to 𝑓. Note that since 𝑓𝑆𝑛 = 𝑆𝑛+𝑑 for 𝑛 ≫ 0
we have 𝑥𝔪𝑛 = 𝔪𝑛+𝑑 by Nakayama's Lemma 7.14.5 for 𝑛 ≫ 0. Hence 𝔪 = √(𝑥). Since
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𝑅 is Cohen-Macaulay this implies that 𝑥 is a nonzero divisor. Choose generators 𝑥1, … , 𝑥𝑡
of 𝔪𝑑 as an ideal of 𝑅. Set

𝑅′ = 𝑅[𝑥1/𝑥, 𝑥2/𝑥, … , 𝑥𝑡/𝑥] ⊂ 𝑅[1/𝑥].

Note that since 𝑥 is a nonzero divisor we have 𝑅 ⊂ 𝑅′. Since 𝔪 = √(𝑥) we see that 𝑥 is
invertible in 𝑅𝑔 for any 𝑔 ∈ 𝔪, whence (3).

We claim that 𝑅′ is finite over 𝑅. Namely, choose 𝑛 such that 𝑥𝔪𝑛𝑑 = 𝔪(𝑛+1)𝑑. Then
we can write 𝑥𝑛+1

𝑖 = 𝑥𝑓𝑖(𝑥1, … , 𝑥𝑡) with 𝑓𝑖 ∈ 𝑅[𝑋1, … , 𝑋𝑡] homogeneous of degree 𝑛.
Hence we see that

(𝑥𝑖/𝑥)𝑛+1 = 𝑓𝑖(𝑥1/𝑥, … , 𝑥𝑡/𝑥)
in 𝑅′ with the right hand side of degree ≤ 𝑛. Hence any element in 𝑅′ can be expressed as
a sum of (𝑥1/𝑥)𝑖1 … (𝑥𝑡/𝑥)𝑖𝑡 with 𝑖𝑗 ≤ 𝑛. This proves that 𝑅′ is finite over 𝑅.

Finally we show that 𝑅≠𝑅′. We argue by contradiction. Suppose 𝑅′ = 𝑅. This means that
𝑥1/𝑥, … , 𝑥𝑡/𝑥 ∈ 𝑅 for all 𝑖. In other words this means that 𝔪𝑑 = (𝑥). Choose 𝑦1, … , 𝑦𝑠 ∈
𝔪 a minimal generating set. The assumption of the lemma implies 𝑠 ≥ 2. For some
𝑖1, … , 𝑖𝑠 ≥ 0, ∑ 𝑖𝑗 = 𝑑 we have 𝑥 = 𝑢𝑦𝑖1

1 … 𝑦𝑖𝑠
𝑠 for some unit 𝑢 in 𝑅. We may assume

𝑖1 > 0. Then
𝑦𝑖1−1

1 𝑦𝑖2+1
2 𝑦𝑖3

3 … 𝑦𝑖𝑠
𝑠 ∈ 𝔪𝑑

is a multiple of 𝑥 hence a multiple of 𝑦𝑖1
1 … 𝑦𝑖𝑠

𝑠 . Hence we see that 𝑦2/𝑦1 ∈ 𝑅. This is a
contradiction with the minimality of 𝑦1, … , 𝑦𝑠. �

Example 7.110.3. Consider the Noetherian local ring

𝑅 = 𝑘[[𝑥, 𝑦]]/(𝑦2)

It has dimension 1 and it is Cohen-Macaulay. The result of applying the procedure of
Lemma 7.110.2 to 𝑅 is the extension

𝑘[[𝑥, 𝑦]]/(𝑦2) ⊂ 𝑘[[𝑥, 𝑧]]/(𝑧2), 𝑦 ↦ 𝑥𝑧

in other words it is gotten by adjoining 𝑦/𝑥 to 𝑅. The effect of repeating the construction
𝑛 > 1 times is to adjoin the element 𝑦/𝑥𝑛.

Example 7.110.4. Let 𝑘 be a field of characteristic 𝑝 > 0 such that 𝑘 has infinite degree
over its subfield 𝑘𝑝 of 𝑝th powers. For example 𝑘 = 𝐅𝑝(𝑡1, 𝑡2, 𝑡3, …). Consider the ring

𝐴 = {∑ 𝑎𝑖𝑥𝑖 ∈ 𝑘[[𝑥]] such that [𝑘𝑝(𝑎0, 𝑎1, 𝑎2, …) ∶ 𝑘𝑝] < ∞}
Then 𝐴 is a discrete valuation ring and its completion is 𝐴∧ = 𝑘[[𝑥]]. Note that the field
extension 𝑓.𝑓.(𝐴) ⊂ 𝑓.𝑓.(𝑘[[𝑥]]) is infinite purely inseparable. Choose any 𝑓 ∈ 𝑘[[𝑥]],
𝑓∉𝐴. Let 𝑅 = 𝐴[𝑓] ⊂ 𝑘[[𝑥]]. Then 𝑅 is a Noetherian local domain of dimension 1 whose
completion 𝑅∧ is nonreduced (think!).

Remark 7.110.5. Suppose that 𝑅 is a 1-dimensional semi-local Noetherian domain. If
there is a maximal ideal 𝔪 ⊂ 𝑅 such that 𝑅𝔪 is not regular, then we may apply the pro-
cedure of (the proof of) Lemma 7.110.2 to (𝑅, 𝔪) to get a finite ring extension 𝑅 ⊂ 𝑅1.
(Note that 𝑆𝑝𝑒𝑐(𝑅1) → 𝑆𝑝𝑒𝑐(𝑅) is the blow up of 𝑆𝑝𝑒𝑐(𝑅) in the ideal 𝔪.) Of course 𝑅1
is a 1-dimensional semi-local Noetherian domain with the same fraction field as 𝑅. If 𝑅1
is not a regular semi-liocal ring, then we may repeat the construction to get 𝑅1 ⊂ 𝑅2. Thus
we get a sequence

𝑅 ⊂ 𝑅1 ⊂ 𝑅2 ⊂ 𝑅3 ⊂ …
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of finite ring extensions which may stop if 𝑅𝑛 is regular for some 𝑛. Resolution of singular-
ities would be the claim that eventually 𝑅𝑛 is indeed regular. In reality this is not the case.
Namely, there exists a characteristic 0 Noetherian local domain 𝐴 of dimension 1 whose
completion is nonreduced, see [FR70, Proposition 3.1] or our Examples, Section 64.8. For
an example in characteristic 𝑝 > 0 see Example 7.110.4. Since the construction of blowing
up commutes with completion it is easy to see the sequence never stabilizes. See [Ben73]
for a discussion (mostly in positive characteristic). On the other hand, if the completion of
𝑅 in all of its maximal ideals is reduced, then the procedure stops (insert future reference
here).

Lemma 7.110.6. Let 𝐴 be a ring. The following are equivalent.
(1) The ring 𝐴 is a discrete valuation ring.
(2) The ring 𝐴 is a valuation ring and Noetherian.
(3) The ring 𝐴 is a regular local ring of dimension 1.
(4) The ring 𝐴 is a Noetherian local domain with maximal ideal 𝔪 generated by a

single nonzero element.
(5) The ring 𝐴 is a Noetherian local normal domain of dimension 1.

In this case if 𝜋 is a generator of the maximal ideal of 𝐴, then every element of 𝐴 can be
uniquely written as 𝑢𝜋𝑛, where 𝑢 ∈ 𝐴 is a unit.

Proof. The equivalence of (1) and (2) is Lemma 7.46.12. Moreover, in the proof of Lemma
7.46.12 we saw that if 𝐴 is a dscrete valuation ring, then 𝐴 is a PID, hence (3). Note that
a regular local ring is a domain (see Lemma 7.98.2). Using this the equivalence of (3) and
(4) follows from dimension theory, see Section 7.57.

Assume (3) and let 𝜋 be a generator of the maximal ideal 𝔪. For all 𝑛 ≥ 0 we have
dim𝐴/𝔪 𝔪𝑛/𝔪𝑛+1 = 1 because it is generated by 𝜋𝑛 (and it cannot be zero). In particular
𝔪𝑛 = (𝜋𝑛) and the graded ring ⨁ 𝔪𝑛/𝔪𝑛+1 is isomorphic to the polynomial ring 𝐴/𝔪[𝑇].
For 𝑥 ∈ 𝐴 ⧵ {0} define 𝑣(𝑥) = max{𝑛 ∣ 𝑥 ∈ 𝔪𝑛}. In other words 𝑥 = 𝑢𝜋𝑣(𝑥) with 𝑢 ∈ 𝐴∗.
By the remarks above we have 𝑣(𝑥𝑦) = 𝑣(𝑥) + 𝑣(𝑦) for all 𝑥, 𝑦 ∈ 𝐴 ⧵ {0}. We extend this to
the field of fractions 𝐾 of 𝐴 by setting 𝑣(𝑎/𝑏) = 𝑣(𝑎)−𝑣(𝑏) (well defined by multiplicativity
shown above). Then it is clear that 𝐴 is the set of elements of 𝐾 which have valuation ≥ 0.
Hence we see that 𝐴 is a valuation ring by Lemma 7.46.10.

A valuation ring is a normal domain by Lemma 7.46.6. Hence we see that the equivalent
conditions (1) -- (3) imply (5). Assume (5). Suppose that 𝔪 cannot be generated by 1
element to get a contradiction. Then Lemma 7.110.2 implies there is a finite ring map
𝐴 → 𝐴′ which is an isomorphism after inverting any nonzero element of 𝔪 but not an
isomorphism. In particular 𝐴′ ⊂ 𝑓.𝑓.(𝐴). Since 𝐴 → 𝐴′ is finite it is integral (see Lemma
7.32.3). Since 𝐴 is normal we get 𝐴 = 𝐴′ a contradiction. �

Lemma 7.110.7. Let 𝑅 be a domain with fraction field 𝐾. Let 𝑀 be an 𝑅-submodule of
𝐾⊕𝑟. Assume 𝑅 is local Noetherian of dimension 1. For any nonzero 𝑥 ∈ 𝑅 we have
length𝑅(𝑅/𝑥𝑅) < ∞ and

length𝑅(𝑀/𝑥𝑀) ≤ 𝑟 ⋅ length𝑅(𝑅/𝑥𝑅).

Proof. If 𝑥 is a unit then the result is true. Hence we may assume 𝑥 ∈ 𝔪 the maximal ideal
of 𝑅. Since 𝑥 is not zero and 𝑅 is a domain we have dim(𝑅/𝑥𝑅) = 0, and hence 𝑅/𝑥𝑅 has
finite length. Consider 𝑀 ⊂ 𝐾⊕𝑟 as in the lemma. We may assume that the elements of 𝑀
generate 𝐾⊕𝑟 as a 𝐾-vector space after replacing 𝐾⊕𝑟 by a smaller subspace if necessary.
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Suppose first that 𝑀 is a finite 𝑅-module. In that case we can clear denominators and
assume 𝑀 ⊂ 𝑅⊕𝑟. Since 𝑀 generates 𝐾⊕𝑟 as a vectors space we see that 𝑅⊕𝑟/𝑀 has
finite length. In particular there exists an integer 𝑐 ≥ 0 such that 𝑥𝑐𝑅⊕𝑟 ⊂ 𝑀. Note that
𝑀 ⊃ 𝑥𝑀 ⊃ 𝑥2𝑀 ⊃ … is a sequence of modules with succesive quotients each isomorphic
to 𝑀/𝑥𝑀. Hence we see that

𝑛length𝑅(𝑀/𝑥𝑀) = length𝑅(𝑀/𝑥𝑛𝑀).

The same argument for 𝑀 = 𝑅⊕𝑟 shows that

𝑛length𝑅(𝑅⊕𝑟/𝑥𝑅⊕𝑟) = length𝑅(𝑅⊕𝑟/𝑥𝑛𝑅⊕𝑟).

By our choice of 𝑐 above we see that 𝑥𝑛𝑀 is sandwiched between 𝑥𝑛𝑅⊕𝑟 and 𝑥𝑛+𝑐𝑅⊕𝑟.
This easily gives that

𝑟(𝑛 + 𝑐)length𝑅(𝑅/𝑥𝑅) ≥ 𝑛length𝑅(𝑀/𝑥𝑀) ≥ 𝑟(𝑛 − 𝑐)length𝑅(𝑅/𝑥𝑅)

Hence in the finite case we actually get the result of the lemma with equality.

Suppose now that 𝑀 is not finite. Suppose that the length of 𝑀/𝑥𝑀 is ≥ 𝑘 for some natural
number 𝑘. Then we can find

0 ⊂ 𝑁0 ⊂ 𝑁1 ⊂ 𝑁2 ⊂ … 𝑁𝑘 ⊂ 𝑀/𝑥𝑀

with 𝑁𝑖≠𝑁𝑖+1 for 𝑖 = 0, … 𝑘 − 1. Choose an element 𝑚𝑖 ∈ 𝑀 whose congruence class
mod 𝑥𝑀 falls into 𝑁𝑖 but not into 𝑁𝑖−1 for 𝑖 = 1, … , 𝑘. Consider the finite 𝑅-module
𝑀′ = 𝑅𝑚1 + … + 𝑅𝑚𝑘 ⊂ 𝑀. Let 𝑁′

𝑖 ⊂ 𝑀′/𝑥𝑀′ be the inverse image of 𝑁𝑖. It is clear
that 𝑁′

𝑖 ≠𝑁′
𝑖+1 by our choice of 𝑚𝑖. Hence we see that length𝑅(𝑀′/𝑥𝑀′) ≥ 𝑘. By the finite

case we conclude 𝑘 ≤ 𝑟length𝑅(𝑅/𝑥𝑅) as desired. �

Here is a first application.

Lemma 7.110.8. Let (𝑅, 𝔪) → (𝑆, 𝔫) be a local homomorphism of local domains with
fraction fields 𝐾 ⊂ 𝐿. If 𝑅 is Noetherian of dimension 1, and [𝐿 ∶ 𝐾] < ∞ then [𝜅(𝔫) ∶
𝜅(𝔪)] < ∞.

Proof. This is clear on applying Lemma 7.110.7 to the submodule 𝑆 ⊂ 𝐿 ≅ 𝐾⊕𝑛 where
𝑛 = [𝐿 ∶ 𝐾]. Namely, this shows that for any nonzero 𝑥 ∈ 𝔪 the ring 𝑆/𝑥𝑆 has finite length
over 𝑅, which shows that 𝜅(𝔫) has finite length over 𝑅, which implies that dim𝜅(𝔪) 𝜅(𝔫) is
finite (Lemma 7.48.6). �

Lemma 7.110.9. Let 𝑅 be a domain with fraction field 𝐾. Let 𝑀 be an 𝑅-submodule
of 𝐾⊕𝑟. Assume 𝑅 is Noetherian of dimension 1. For any nonzero 𝑥 ∈ 𝑅 we have
length𝑅(𝑀/𝑥𝑀) < ∞.

Proof. Since 𝑅 has dimension 1 we see that 𝑥 is contained in finitely many primes 𝔪𝑖, 𝑖 =
1, … , 𝑛, eachmaximal. Since 𝑅 is Noetherian we see that 𝑅/𝑥𝑅 is Artinian, see Proposition
7.57.6. Hence 𝑅/𝑥𝑅 is a quotient of ∏ 𝑅/𝔪𝑒𝑖

𝑖 for certain 𝑒𝑖 because that 𝔪𝑒1
1 … 𝔪𝑒𝑛

𝑛 ⊂
(𝑥) for suitably large 𝑒𝑖 as 𝑅/𝑥𝑅 is Artinian (see Section 7.49). Hence 𝑀/𝑥𝑀 similarly
decomposes as a product ∏(𝑀/𝑥𝑀)𝔪𝑖

= ∏ 𝑀/(𝔪𝑒𝑖
𝑖 , 𝑥)𝑀 of its localizations at the 𝔪𝑖.

By Lemma 7.110.7 applied to 𝑀𝔪𝑖
over 𝑅𝔪𝑖

we see each 𝑀𝔪𝑖
/𝑥𝑀𝔪𝑖

= (𝑀/𝑥𝑀)𝔪𝑖
has

finite length over 𝑅𝔪𝑖
. It easily follows that 𝑀/𝑥𝑀 has finite length over 𝑅. �

Lemma 7.110.10. (Krull-Akizuki) Let 𝑅 be a domain with fraction field 𝐾. Let 𝐾 ⊂ 𝐿 be
a finite extension of fields. Assume 𝑅 is Noetherian and dim(𝑅) = 1. In this case any ring
𝐴 with 𝑅 ⊂ 𝐴 ⊂ 𝐿 is Noetherian.
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Proof. To begin we may assume that 𝐿 is the fraction field of 𝐴 by replacing 𝐿 by the
fraction field of 𝐴 if necessary. Let 𝐼 ⊂ 𝐴 be an ideal. Clearly 𝐼 generates 𝐿 as a 𝐾-vectors
space. Hencewe see that 𝐼∩𝑅≠(0). Pick any nonzero 𝑥 ∈ 𝐼∩𝑅. Thenwe get 𝐼/𝑥𝐴 ⊂ 𝐴/𝑥𝐴.
By Lemma 7.110.9 the 𝑅-module 𝐴/𝑥𝐴 has finite length as an 𝑅-module. Hence 𝐼/𝑥𝐴 has
finite length as an 𝑅-module. Hence 𝐼 is finitely generated as an ideal in 𝐴. �

Lemma 7.110.11. Let 𝑅 be a Noetherian local domain with fraction field 𝐾. Assume that
𝑅 is not a field. Let 𝐾 ⊂ 𝐿 be a finitely generated field extension. Then there exists discrete
valuation ring 𝐴 with fraction field 𝐿 which dominates 𝑅.

Proof. If 𝐿 is not finite over 𝐾 choose a transcendence basis 𝑥1, … , 𝑥𝑟 of 𝐿 over 𝐾 and
replace 𝑅 by 𝑅[𝑥1, … , 𝑥𝑟] localized at the maximal ideal generated by 𝔪𝑅 and 𝑥1, … , 𝑥𝑟.
Thus we may assume 𝐾 ⊂ 𝐿 finite.
By Lemma 7.110.1 we may assume dim(𝑅) = 1.
Let 𝐴 ⊂ 𝐿 be the integral closure of 𝑅 in 𝐿. By Lemma 7.110.10 this is Noetherian. By
Lemma 7.32.15 there is a prime ideal 𝔮 ⊂ 𝐴 lying over the maximal ideal of 𝑅. By Lemma
7.110.6 the ring 𝐴𝔮 is a discrete valuation ring dominating 𝑅 as desired. �

7.111. Factorization

Here are some notions and relations between them that are typically taught in a first year
course on algebra at the undergraduate level.

Definition 7.111.1. Let 𝑅 be a domain.
(1) Elements 𝑥, 𝑦 ∈ 𝑅 are called associates if there exists a unit 𝑢 ∈ 𝑅∗ such that

𝑥 = 𝑢𝑦.
(2) An element 𝑥 ∈ 𝑅 is called irreducible if it is nonzero, not a unit and whenever

𝑥 = 𝑦𝑧, 𝑦, 𝑧 ∈ 𝑅, then 𝑦 is either a unit or an associate of 𝑥.
(3) An element 𝑥 ∈ 𝑅 is called prime if the ideal generated by 𝑥 is a prime ideal.

Lemma 7.111.2. Let 𝑅 be a domain. Let 𝑥, 𝑦 ∈ 𝑅. Then 𝑥, 𝑦 are associates if and only if
(𝑥) = (𝑦).

Proof. Omitted. �

Lemma 7.111.3. Let 𝑅 be a domain. Consider the following conditions:
(1) The ring 𝑅 satisfies the ascending chain condition for principal ideals.
(2) Every nonzero, nonunit element 𝑎 ∈ 𝑅 has a factorization 𝑎 = 𝑏1 … 𝑏𝑘 with each

𝑏𝑖 an irreducible element of 𝑅.
Then (1) implies (2).

Proof. Omitted. �

Definition 7.111.4. A unique factorization domain, abbreviated UFD, is a domain 𝑅 such
that if 𝑥 ∈ 𝑅 is a nonzero, nonunit, then 𝑥 has a factorization into irreducibles, and if

𝑥 = 𝑎1 … 𝑎𝑚 = 𝑏1 … 𝑏𝑛

are factorizations into irreducibles then 𝑛 = 𝑚 and there exists a permutation 𝜎 ∶ {1, … , 𝑛} →
{1, … , 𝑛} such that 𝑎𝑖 and 𝑏𝜎(𝑖) are associates.

Lemma 7.111.5. Let 𝑅 be a domain. Assume every nonzero, nonunit factors into irre-
ducibles. Then 𝑅 is a UFD if and only if every irreducible element is prime.

Proof. Omitted. �
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Definition 7.111.6. A principal ideal domain, abbreviated PID, is a domain 𝑅 such that
every ideal is a principal ideal.

Lemma 7.111.7. A principal ideal domain is a unique factorization domain.

Proof. Omitted. �

Definition 7.111.8. ADedekind domain is a domain 𝑅 such that every nonzero ideal 𝐼 ⊂ 𝑅
can be written

𝐼 = 𝔭1 … 𝔭𝑟
uniquely up to permutation of the prime ideals 𝔭𝑖.

Lemma 7.111.9. Let 𝑅 be a ring. The following are equivalent
(1) 𝑅 is a Dedeking domain,
(2) 𝑅 is a Noetherian domain, and for every maximal ideal 𝔪 the local ring 𝑅𝔪 is

a discrete valuation ring, and
(3) 𝑅 is a Noetherian, normal domain, and dim(𝑅) ≤ 1.

Proof. Omitted. �

7.112. Orders of vanishing

Lemma 7.112.1. Let 𝑅 be a semi-local Noetherian ring of dimension 1. If 𝑎, 𝑏 ∈ 𝑅 are
not zero divisors then

length𝑅(𝑅/(𝑎𝑏)) = length𝑅(𝑅/(𝑎)) + length𝑅(𝑅/(𝑏))
and these lengths are finite.

Proof. We saw the finiteness in Lemma 7.110.9. Additivity holds since there is a short
exact sequence 0 → 𝑅/(𝑎) → 𝑅/(𝑎𝑏) → 𝑅/(𝑏) → 0 where the first map is given by
multiplication by 𝑏. (Use length is additive, see Lemma 7.48.3.) �

Definition 7.112.2. Suppose that 𝐾 is a field, and 𝑅 ⊂ 𝐾 is a local5 Noetherian subring of
dimension 1 with fraction field 𝐾. In this case we define the order of vanishing along 𝑅

ord𝑅 ∶ 𝐾∗ ⟶ 𝐙
by the rule

ord𝑅(𝑥) = length𝑅(𝑅/(𝑥))
if 𝑥 ∈ 𝑅 and we set ord𝑅(𝑥/𝑦) = ord𝑅(𝑥) − ord𝑅(𝑦) for 𝑥, 𝑦 ∈ 𝑅 both nonzero.

We can use the order of vanishing to compare lattices in a vector space. Here is the defini-
tion.

Definition 7.112.3. Let 𝑅 be a Noetherian local domain of dimension 1 with fraction field
𝐾. Let 𝑉 be a finite dimensional 𝐾-vector space. A lattice in 𝑉 is a finite 𝑅-submodule
𝑀 ⊂ 𝑉 such that 𝑉 = 𝐾 ⊗𝑅 𝑀.

The condition 𝑉 = 𝐾 ⊗𝑅 𝑀 signifies that 𝑀 contains a basis for the vector space 𝐾. We
remark that in many places in the literature the notion of a lattice may be defined only in
case the ring 𝑅 is a discrete valuation ring. If 𝑅 is a discrete valuation ring then any lattice
is a free 𝑅-module, and this may not be the case in general.

Lemma 7.112.4. Let 𝑅 be a Noetherian local domain of dimension 1 with fraction field 𝐾.
Let 𝑉 be a finite dimensional 𝐾-vector space.

5We could also define this when 𝑅 is only semi-local but this is probably never really what you want!
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(1) If 𝑀 is a lattice in 𝑉 and 𝑀 ⊂ 𝑀′ ⊂ 𝑉 is an 𝑅-submodule of 𝑉 containing 𝑀
then the following are equivalent
(a) 𝑀′ is a lattice,
(b) length𝑅(𝑀′/𝑀) is finite, and
(c) 𝑀′ is finitely generated.

(2) If 𝑀 is a lattice in 𝑉 and 𝑀′ ⊂ 𝑀 is an 𝑅-submodule of 𝑀 then 𝑀′ is a lattice
if and only if length𝑅(𝑀/𝑀′) is finite.

(3) If 𝑀, 𝑀′ are lattices in 𝑉, then so are 𝑀 ∩ 𝑀′ and 𝑀 + 𝑀′.
(4) If 𝑀 ⊂ 𝑀′ ⊂ 𝑀″ ⊂ 𝑉 are lattices in 𝑉 then

length𝑅(𝑀″/𝑀) = length𝑅(𝑀′/𝑀) + length𝑅(𝑀″/𝑀′).
(5) If 𝑀, 𝑀′, 𝑁, 𝑁′ are lattices in 𝑉 and 𝑁 ⊂ 𝑀 ∩ 𝑀′, 𝑀 + 𝑀′ ⊂ 𝑁′, then we

have
length𝑅(𝑀/𝑀 ∩ 𝑀′) − length𝑅(𝑀′/𝑀 ∩ 𝑀′)

= length𝑅(𝑀/𝑁) − length𝑅(𝑀′/𝑁)
= length𝑅(𝑀 + 𝑀′/𝑀′) − length𝑅(𝑀 + 𝑀′/𝑀)
= length𝑅(𝑁′/𝑀′) − length𝑅(𝑁′/𝑀)

Proof. Proof of (1). Assume (1)(a). Say 𝑦1, … , 𝑦𝑚 generate 𝑀′. Then each 𝑦𝑖 = 𝑥𝑖/𝑓𝑖
for some 𝑥𝑖 ∈ 𝑀 and nonzero 𝑓𝑖 ∈ 𝑅. Hence we see that 𝑓1 … 𝑓𝑚𝑀′ ⊂ 𝑀. Since 𝑅
is Noetherian local of dimension 1 we see that 𝔪𝑛 ⊂ (𝑓1 … 𝑓𝑚) for some 𝑛 (for example
combine Lemmas 7.57.11 and Proposition 7.57.6 or combine Lemmas 7.110.7 and 7.48.4).
In other words 𝔪𝑛𝑀′ ⊂ 𝑀 for some 𝑛 Hence length(𝑀′/𝑀) < ∞ by Lemma 7.48.8, in
other words (1)(b) holds. Assume (1)(b). Then 𝑀′/𝑀 is a finite 𝑅-module (see Lemma
7.48.2). Hence 𝑀′ is a finite 𝑅-module as an extension of finite 𝑅-modules. Hence (1)(c).
The implication (1)(c) ⇒ (1)(a) follows from the remark following Definition 7.112.3.
Proof of (2). Suppose 𝑀 is a lattice in 𝑉 and 𝑀′ ⊂ 𝑀 is an 𝑅-submodule. We have
seen in (1) that if 𝑀′ is a lattice, then length𝑅(𝑀/𝑀′) < ∞. Conversely, assume that
length𝑅(𝑀/𝑀′) < ∞. Then 𝑀′ is finitely generated as 𝑅 is Noetherian and for some 𝑛 we
have 𝔪𝑛𝑀 ⊂ 𝑀′ (Lemma 7.48.4). Hence it follows that 𝑀′ contains a basis for 𝑉, and 𝑀′

is a lattice.
Proof of (3). Assume 𝑀, 𝑀′ are lattices in 𝑉. Since 𝑅 is Noetherian the submodule 𝑀∩𝑀′

of 𝑀 is finite. As 𝑀 is a lattice we can find 𝑥1, … , 𝑥𝑛 ∈ 𝑀 which form a 𝐾-basis for
𝑉. Because 𝑀′ is a lattice we can write 𝑥𝑖 = 𝑦𝑖/𝑓𝑖 with 𝑦𝑖 ∈ 𝑀′ and 𝑓𝑖 ∈ 𝑅. Hence
𝑓𝑖𝑥𝑖 ∈ 𝑀 ∩ 𝑀′. Hence 𝑀 ∩ 𝑀′ is a lattice also. The fact that 𝑀 + 𝑀′ is a lattice follows
from part (1).
Part (4) follows from additivity of lengths (Lemma 7.48.3) and the exact sequence

0 → 𝑀′/𝑀 → 𝑀″/𝑀 → 𝑀″/𝑀′ → 0
Part (5) follows from repeatedly applying part (4). �

Definition 7.112.5. Let 𝑅 be a Noetherian local domain of dimension 1 with fraction field
𝐾. Let 𝑉 be a finite dimensional 𝐾-vector space. Let 𝑀, 𝑀′ be two lattices in 𝑉. The
distance between 𝑀 and 𝑀′ is the integer

𝑑(𝑀, 𝑀′) = length𝑅(𝑀/𝑀 ∩ 𝑀′) − length𝑅(𝑀′/𝑀 ∩ 𝑀′)
of Lemma 7.112.4 part (5).

In particular, if 𝑀′ ⊂ 𝑀, then 𝑑(𝑀, 𝑀′) = length𝑅(𝑀/𝑀′).
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Lemma 7.112.6. Let 𝑅 be a Noetherian local domain of dimension 1 with fraction field 𝐾.
Let 𝑉 be a finite dimensional 𝐾-vector space. This distance function has the property that

𝑑(𝑀, 𝑀″) = 𝑑(𝑀, 𝑀′) + 𝑑(𝑀′, 𝑀″)

whenever given three lattices𝑀,𝑀′,𝑀″ of𝑉. In particular we have 𝑑(𝑀, 𝑀′) = −𝑑(𝑀′, 𝑀).

Proof. Omitted. �

Lemma 7.112.7. Let 𝑅 be a Noetherian local domain of dimension 1 with fraction field 𝐾.
Let 𝑉 be a finite dimensional 𝐾-vector space. Let 𝜑 ∶ 𝑉 → 𝑉 be a 𝐾-linear isomorphism.
For any lattice 𝑀 ⊂ 𝑉 we have

𝑑(𝑀, 𝜑(𝑀)) = ord𝑅(det(𝜑))

Proof. We can see that the integer 𝑑(𝑀, 𝜑(𝑀)) does not depend on the lattice 𝑀 as follows.
Suppose that 𝑀′ is a second such lattice. Then we see that

𝑑(𝑀, 𝜑(𝑀)) = 𝑑(𝑀, 𝑀′) + 𝑑(𝑀′, 𝜑(𝑀))
= 𝑑(𝑀, 𝑀′) + 𝑑(𝜑(𝑀′), 𝜑(𝑀)) + 𝑑(𝑀′, 𝜑(𝑀′))

Since 𝜑 is an isomorphism we see that 𝑑(𝜑(𝑀′), 𝜑(𝑀)) = 𝑑(𝑀′, 𝑀) = −𝑑(𝑀, 𝑀′), and
hence 𝑑(𝑀, 𝜑(𝑀)) = 𝑑(𝑀′, 𝜑(𝑀′)). Moreover, both sides of the equation (of the lemma)
are additive in 𝜑, i.e.,

ord𝑅(det(𝜑 ∘ 𝜓)) = ord𝑅(det(𝜑)) + ord𝑅(det(𝜓))

and also

𝑑(𝑀, 𝜑(𝜓((𝑀))) = 𝑑(𝑀, 𝜓(𝑀)) + 𝑑(𝜓(𝑀), 𝜑(𝜓(𝑀)))
= 𝑑(𝑀, 𝜓(𝑀)) + 𝑑(𝑀, 𝜑(𝑀))

by the independence shown above. Hence it suffices to prove the lemma for generators
of GL(𝑉). Choose an isomorphism 𝐾⊕𝑛 ≅ 𝑉. Then GL(𝑉) = GL𝑛(𝐾) is generated by
elementary matrices 𝐸. The result is clear for 𝐸 equal to the identity matrix. If 𝐸 = 𝐸𝑖𝑗(𝜆)
with 𝑖≠𝑗, 𝜆 ∈ 𝐾, 𝜆≠0, for example

𝐸12(𝜆) =
⎛
⎜
⎜
⎝

1 𝜆 …
0 1 …

… … …

⎞
⎟
⎟
⎠

then with respect to a different basis we get 𝐸12(1). The result is clear for 𝐸 = 𝐸12(1) by
taking as lattice 𝑅⊕𝑛 ⊂ 𝐾⊕𝑛. Finally, if 𝐸 = 𝐸𝑖(𝑎), with 𝑎 ∈ 𝐾∗ for example

𝐸1(𝑎) =
⎛
⎜
⎜
⎝

𝑎 0 …
0 1 …

… … …

⎞
⎟
⎟
⎠

then 𝐸1(𝑎)(𝑅⊕𝑏) = 𝑎𝑅 ⊕ 𝑅⊕𝑛−1 and it is clear that 𝑑(𝑅⊕𝑛, 𝑎𝑅 ⊕ 𝑅⊕𝑛−1) = ord𝑅(𝑎) as
desired. �

Lemma 7.112.8. Let 𝐴 → 𝐵 be a ring map. Assume
(1) 𝐴 is a Noetherian local domain of dimension 1,
(2) 𝐴 ⊂ 𝐵 is a finite extension of domains.
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Let 𝐾 = 𝑓.𝑓.(𝐴) and 𝐿 = 𝑓.𝑓.(𝐵) so that 𝐿 is a finite field extension of 𝐾. Let 𝑦 ∈ 𝐿∗ and
𝑥 = Nm𝐿/𝐾(𝑦). In this situation 𝐵 is semi-local. Let 𝔪𝑖, 𝑖 = 1, … , 𝑛 be the maximal ideals
of 𝐵. Then

ord𝐴(𝑥) = ∑𝑖
[𝜅(𝔪𝑖) ∶ 𝜅(𝔪𝐴)]ord𝐵𝔪𝑖

(𝑦)
where ord is defined as in Definition 7.112.2.

Proof. The ring 𝐵 is semi-local by Lemma 7.104.2. Write 𝑦 = 𝑏/𝑏′ for some 𝑏, 𝑏′ ∈ 𝐵. By
the additivity of ord and multiplicativity of Nm it suffices to prove the lemma for 𝑦 = 𝑏 or
𝑦 = 𝑏′. In other words we may assume 𝑦 ∈ 𝐵. In this case the left hand side of the formula
is

∑[𝜅(𝔪𝑖) ∶ 𝜅(𝔪𝐴)]length𝐵𝔪𝑖
((𝐵/𝑦𝐵)𝔪𝑖

)
By Lemma 7.48.12 this is equal to length𝐴(𝐵/𝑦𝐵). By Lemma 7.112.7 we have

length𝐴(𝐵/𝑦𝐵) = 𝑑(𝐵, 𝑦𝐵) = ord𝐴(det𝐾(𝐿
𝑦

−→ 𝐿)).

Since 𝑥 = Nm𝐿/𝐾(𝑦) = det𝐾(𝐿
𝑦

−→ 𝐿) by definition the lemma is proved. �

We can extend some of the results above to reduced 1-dimensional Noetherian local rings
which are not domains by the following lemma.

Lemma 7.112.9. Let (𝑅, 𝔪) be a reduced Noetherian local ring of dimension 1 and let
𝑥 ∈ 𝔪 be a nonzero divisor. Let 𝔮1, … , 𝔮𝑟 be the minimal primes of 𝑅. Then

length𝑅(𝑅/(𝑥)) = ∑𝑖
ord𝑅/𝔮𝑖

(𝑥)

Proof. Note that 𝑅𝑖 = 𝑅/𝔮𝑖 is a Noetherian 1-dimensional local domain. Denote 𝐾𝑖 =
𝑓.𝑓.(𝑅𝑖). If 𝑥 is a unit in 𝑅, then both sides are zero. Hence we may assume 𝑥 ∈ 𝔪. Con-
sider the map Ψ ∶ 𝑅 → ∏ 𝑅𝑖. As 𝑅 is reduced this map is injective, see Lemma 7.16.2. By
Lemma 7.22.2 we have 𝑄(𝑅) = ∏ 𝐾𝑖. Hence the finite 𝑅-module Coker(Ψ) is annihilated
by a nonzero divisor 𝑦 ∈ 𝑅, hence has support {𝔪}, is annihilated by some power of 𝑥 and
has finite length over 𝑅, see Lemma 7.59.8. Consider the short exact sequence

0 → 𝑅 → ∏ 𝑅𝑖 → Coker(Ψ) → 0

Applying multiplication by 𝑥𝑛 to this for 𝑛 ≫ 0 we obtain from the snake lemma

0 → Coker(Ψ) → 𝑅/𝑥𝑛𝑅 → ∏ 𝑅𝑖/𝑥𝑛𝑅𝑖 → Coker(Ψ) → 0

Thus we see that
length𝑅(𝑅/𝑥𝑛𝑅) = length𝑅(∏ 𝑅𝑖/𝑥𝑛𝑅𝑖) = ∑ length𝑅(𝑅𝑖/𝑥𝑛𝑅𝑖)

by Lemma 7.48.3. By Lemma 7.48.5 we have length𝑅(𝑅𝑖/𝑥𝑛𝑅𝑖) = length𝑅𝑖
(𝑅𝑖/𝑥𝑛𝑅𝑖).

Now the result follows from the additivity of Lemma 7.112.1 and the definition of the order
of vanishing along 𝑅𝑖. �

7.113. Quasi-finite maps

Consider a ring map 𝑅 → 𝑆 of finite type. A map 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is quasi-finite at a
point if that point is isolated in its fibre. This means that the fibre is zero dimensional at that
point. In this section we study the basic properties of this important but technical notion.
More advanced material can be found in the next section.

Lemma 7.113.1. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘 algebra. Let 𝔮 be a prime of 𝑆.
The following are equivalent:

(1) 𝔮 is an isolated point of 𝑆𝑝𝑒𝑐(𝑆),
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(2) 𝑆𝔮 is finite over 𝑘,
(3) there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝐷(𝑔) = {𝔮},
(4) dim𝔮 𝑆𝑝𝑒𝑐(𝑆) = 0,
(5) 𝔮 is a closed point of 𝑆𝑝𝑒𝑐(𝑆) and dim(𝑆𝔮) = 0, and
(6) the field extension 𝑘 ⊂ 𝜅(𝔮) is finite and dim(𝑆𝔮) = 0.

In this case 𝑆 = 𝑆𝔮 × 𝑆′ for some finite type 𝑘-algebra 𝑆′. Also, the element 𝑔 as in (3) has
the property 𝑆𝔮 = 𝑆𝑔.

Proof. Suppose 𝔮 is an isolated point of 𝑆𝑝𝑒𝑐(𝑆), i.e., {𝔮} is open in 𝑆𝑝𝑒𝑐(𝑆). Because
𝑆𝑝𝑒𝑐(𝑆) is a Jacobson space (see Lemmas 7.31.2 and 7.31.4) we see that 𝔮 is a closed
point. Hence {𝔮} is open and closed in 𝑆𝑝𝑒𝑐(𝑆). By Lemmas 7.18.3 and 7.20.3 we may
write 𝑆 = 𝑆1 × 𝑆2 with 𝔮 corresponding to the only point 𝑆𝑝𝑒𝑐(𝑆1). Hence 𝑆1 = 𝑆𝔮 is a
zero dimensional ring of finite type over 𝑘. Hence it is finite over 𝑘 for example by Lemma
7.106.4. We have proved (1) implies (2).

Suppose 𝑆𝔮 is finite over 𝑘. Then 𝑆𝔮 is Artinian local, see Lemma 7.49.2. So 𝑆𝑝𝑒𝑐(𝑆𝔮) =
{𝔮𝑆𝔮} by Lemma 7.49.8. Consider the exact sequence 0 → 𝐾 → 𝑆 → 𝑆𝔮 → 𝑄 → 0. It is
clear that 𝐾𝔮 = 𝑄𝔮 = 0. Also, 𝐾 is a finite 𝑆-module as 𝑆 is Noetherian and 𝑄 is a finite
𝑆-modules since 𝑆𝔮 is finite over 𝑘. Hence there exists 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝐾𝑔 = 𝑄𝑔 = 0.
Thus 𝑆𝔮 = 𝑆𝑔 and 𝐷(𝑔) = {𝔮}. We have proved that (2) implies (3).

Suppose 𝐷(𝑔) = {𝔮}. Since 𝐷(𝑔) is open by construction of the topology on 𝑆𝑝𝑒𝑐(𝑆) we
see that 𝔮 is an isolated point of 𝑆𝑝𝑒𝑐(𝑆). We have proved that (3) implies (1). In other
words (1), (2) and (3) are equivalent.

Assume dim𝔮 𝑆𝑝𝑒𝑐(𝑆) = 0. This means that there is some open neighbourhood of 𝔮 in
𝑆𝑝𝑒𝑐(𝑆) which has dimension zero. Then there is an open neighbourhood of the form 𝐷(𝑔)
which has dimension zero. Since 𝑆𝑔 is Noetherian we conclude that 𝑆𝑔 is Artinian and
𝐷(𝑔) = 𝑆𝑝𝑒𝑐(𝑆𝑔) is a finite discrete set, see Proposition 7.57.6. Thus 𝔮 is an isolated point
of 𝐷(𝑔) and, by the equivalence of (1) and (2) above applied to 𝔮𝑆𝑔 ⊂ 𝑆𝑔, we see that
𝑆𝔮 = (𝑆𝑔)𝔮𝑆𝑔

is finite over 𝑘. Hence (4) implies (2). It is clear that (1) implies (4). Thus
(1) -- (4) are all equivalent.

Lemma 7.105.6 gives the implication (5) ⇒ (4). The implication (4) ⇒ (6) follows from
Lemma 7.107.3. The implication (6) ⇒ (5) follows from Lemma 7.31.9. At this point we
know (1) -- (6) are equivalent.

The two statements at the end of the lemma we saw during the course of the proof of the
equivalence of (1), (2) and (3) above. �

Lemma 7.113.2. Let 𝑅 → 𝑆 be a ring map of finite type. Let 𝔮 ⊂ 𝑆 be a prime lying over
𝔭 ⊂ 𝑅. Let 𝐹 = 𝑆𝑝𝑒𝑐(𝑆 ⊗𝑅 𝜅(𝔭)) be the fibre of 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅), see Remark 7.16.8.
Denote 𝔮 ∈ 𝐹 the point corresponding to 𝔮. The following are equivalent

(1) 𝔮 is an isolated point of 𝐹,
(2) 𝑆𝔮/𝔭𝑆𝔮 is finite over 𝜅(𝔭),
(3) there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that the only prime of 𝐷(𝑔) mapping to 𝔭 is 𝔮,
(4) dim𝔮(𝐹) = 0,
(5) 𝔮 is a closed point of 𝐹 and dim(𝑆𝔮/𝔭𝑆𝔮) = 0, and
(6) the field extension 𝜅(𝔭) ⊂ 𝜅(𝔮) is finite and dim(𝑆𝔮/𝔭𝑆𝔮) = 0.
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Proof. Note that 𝑆𝔮/𝔭𝑆𝔮 = (𝑆 ⊗𝑅 𝜅(𝔭))𝔮. Moreover 𝑆 ⊗𝑅 𝜅(𝔭) is of finite type over 𝜅(𝔭).
The conditions correspong exactly to the conditions of Lemma 7.113.1 for the 𝜅(𝔭)-algebra
𝑆 ⊗𝑅 𝜅(𝔭) and the prime 𝔮, hence they are equivalent. �

Definition 7.113.3. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝔮 ⊂ 𝑆 be a prime.
(1) If the equivalent conditions of Lemma 7.113.2 are satisfied then we say 𝑅 → 𝑆

is quasi-finite at 𝔮.
(2) We say a ring map 𝐴 → 𝐵 is quasi-finite if it is of finite type and quasi-finite at

all primes of 𝐵.

Lemma 7.113.4. Let 𝑅 → 𝑆 be a finite type ring map. Then 𝑅 → 𝑆 is quasi-finite if and
only if for all primes 𝔭 ⊂ 𝑅 the fibre 𝑆 ⊗𝑅 𝜅(𝔭) is finite over 𝜅(𝔭).

Proof. If the fibres are finite then the map is clearly quasi-finite. For the converse, note
that 𝑆 ⊗𝑅 𝜅(𝔭) is a 𝜅(𝔭)-algebra of finite type over 𝑘 of dimension 0. Hence it is finite over
𝑘 for example by Lemma 7.106.4. �

Lemma 7.113.5. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝔮 ⊂ 𝑆 be a prime lying over
𝔭 ⊂ 𝑅. Let 𝑓 ∈ 𝑅, 𝑓∉𝔭 and 𝑔 ∈ 𝑆, 𝑔∉𝔮. Then 𝑅 → 𝑆 is quasi-finite at 𝔮 if and only if
𝑅𝑓 → 𝑆𝑓𝑔 is quasi-finite at 𝔮𝑆𝑓𝑔.

Proof. The fibre of Spec(𝑆𝑓𝑔) → Spec(𝑅𝑓) is homeomorphic to an open subset of the fibre
of Spec(𝑆) → Spec(𝑅). Hence the lemma follows from part (1) of the equivalent conditions
of Lemma 7.113.2. �

Lemma 7.113.6. Let

𝑆 // 𝑆′ 𝔮 𝔮′

𝑅

OO

// 𝑅′

OO

𝔭 𝔭′

be a commutative diagram of rings with primes as indicated. Assume 𝑅 → 𝑆 of finite type,
and 𝑆 ⊗𝑅 𝑅′ → 𝑆′ surjective. If 𝑅 → 𝑆 is quasi-finite at 𝔮, then 𝑅′ → 𝑆′ is quasi-finite
at 𝔮′.

Proof. Write 𝑆 ⊗𝑅 𝜅(𝔭) = 𝑆1 × 𝑆2 with 𝑆1 finite over 𝜅(𝔭) and such that 𝔮 corresponds to
a point of 𝑆1 as in Lemma 7.113.1. Because 𝑆 ⊗𝑅 𝑅′ → 𝑆′ surjective the canonical map
(𝑆 ⊗𝑅 𝜅(𝔭)) ⊗𝜅(𝔭) 𝜅(𝔭′) → 𝑆′ ⊗𝑅′ 𝜅(𝔭′) is surjective. Let 𝑆′

𝑖 be the image of 𝑆𝑖 ⊗𝜅(𝔭) 𝜅(𝔭′)
in 𝑆′ ⊗𝑅′ 𝜅(𝔭′). Then 𝑆′ ⊗𝑅′ 𝜅(𝔭′) = 𝑆′

1 × 𝑆′
2 and 𝑆′

1 is finite over 𝜅(𝔭′). The map
𝑆′ ⊗𝑅′ 𝜅(𝔭′) → 𝜅(𝔮′) factors through 𝑆′

1 (i.e. it annihilates the factor 𝑆′
2) because the map

𝑆⊗𝑅 𝜅(𝔭) → 𝜅(𝔮) factors through 𝑆1 (i.e. it annihilates the factor 𝑆2). Thus 𝔮′ corresponds
to a point of𝑆𝑝𝑒𝑐(𝑆′

1) in the disjoint union decomposition of the fibre: 𝑆𝑝𝑒𝑐(𝑆′⊗𝑅′𝜅(𝔭′)) =
𝑆𝑝𝑒𝑐(𝑆′

1) ⨿ 𝑆𝑝𝑒𝑐(𝑆′
1). (See Lemma 7.18.2.) Since 𝑆′

1 is finite over a field, it is Artinian
ring, and hence 𝑆𝑝𝑒𝑐(𝑆′

1) is a finite discrete set. (See Proposition 7.57.6.) We conclude 𝔮′

is isolated in its fibre as desired. �

Lemma 7.113.7. A composition of quasi-finite ring maps is quasi-finite.

Proof. Suppose 𝐴 → 𝐵 and 𝐵 → 𝐶 are quasi-finite ring maps. By Lemma 7.6.2 we see
that 𝐴 → 𝐶 is of finite type. Let 𝔯 ⊂ 𝐶 be a prime of 𝐶 lying over 𝔮 ⊂ 𝐵 and 𝔭 ⊂ 𝐴. Since
𝐴 → 𝐵 and 𝐵 → 𝐶 are quasi-finite at 𝔮 and 𝔯 respectively, then there exist 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶
such that 𝔮 is the only prime of 𝐷(𝑏) which maps to 𝔭 and similarly 𝔯 is the only prime of
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𝐷(𝑐) which maps to 𝔮. If 𝑐′ ∈ 𝐶 is the image of 𝑏 ∈ 𝐵, then 𝔯 is the only prime of 𝐷(𝑐𝑐′)
which maps to 𝔭. Therefore 𝐴 → 𝐶 is quasi-finite at 𝔯. �

Lemma 7.113.8. Let 𝑅 → 𝑆 be a ring map of finite type. Let 𝑅 → 𝑅′ be any ring map.
Set 𝑆′ = 𝑅′ ⊗𝑅 𝑆.

(1) The set {𝔮′ ∣ 𝑅′ → 𝑆′ quasi-finite at 𝔮′} is the inverse image of the correspond-
ing set of 𝑆𝑝𝑒𝑐(𝑆) under the canonical map 𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑆).

(2) If 𝑆𝑝𝑒𝑐(𝑅′) → 𝑆𝑝𝑒𝑐(𝑅) is surjective, then 𝑅 → 𝑆 is quasi-finite if and only if
𝑅′ → 𝑆′ is quasi-finite.

(3) Any base change of a quasi-finite ring map is quasi-finite.

Proof. Let 𝔭′ ⊂ 𝑅′ be a prime lying over 𝔭 ⊂ 𝑅. Then the fibre ring 𝑆′ ⊗𝑅′ 𝜅(𝔭′) is the
base change of the fibre ring 𝑆⊗𝑅 𝜅(𝔭) by the field extension 𝜅(𝔭) → 𝜅(𝔭′). Hence the first
assertion follows from the invariance of dimension under field extension (Lemma 7.107.6)
and Lemma 7.113.1. The stability of quasi-finite maps under base change follows from this
and the stability of finite type property under base change. The second assertion follows
since the assumption implies that given a prime 𝔮 ⊂ 𝑆 we can find a prime 𝔮′ ⊂ 𝑆′ lying
over it. �

The following lemma is not quite about quasi-finite ring maps, but it does not seem to fit
anywhere else so well.

Lemma 7.113.9. Let 𝑅 → 𝑆 be a ring map of finite type. Let 𝔭 ⊂ 𝑅 be a minimal prime.
Assume that there are at most finitely many primes of 𝑆 lying over 𝔭. Then there exists a
𝑔 ∈ 𝑅, 𝑔∉𝔭 such that the ring map 𝑅𝑔 → 𝑆𝑔 is finite.

Proof. Let 𝑥1, … , 𝑥𝑛 be generators of 𝑆 over 𝑅. Since 𝔭 is a minimal prime we have that
𝔭𝑅𝔭 is a locally nilpotent ideal, see Lemma 7.23.3. Hence 𝔭𝑆𝔭 is a locally nilpotent ideal,
see Lemma 7.14.1. By assumption the finite type 𝜅(𝔭)-algebra 𝑆𝔭/𝔭𝑆𝔭 has finitely many
primes. Hence (for example by Lemma 7.106.4) 𝜅(𝔭) → 𝑆𝔭/𝔭𝑆𝔭 is a finite ring map. Thus
we may find monic polynomials 𝑃𝑖 ∈ 𝑅𝔭[𝑋] such that 𝑃𝑖(𝑥𝑖) maps to zero in 𝑆𝔭/𝔭𝑆𝔭. By
what we said above there exist 𝑒𝑖 ≥ 1 such that 𝑃(𝑥𝑖)𝑒𝑖 = 0 in 𝑆𝔭. Let 𝑔1 ∈ 𝑅, 𝑔1∉𝔭 be an
element such that 𝑃𝑖 ∈ 𝑅[1/𝑔1] for all 𝑖. Next, let 𝑔2 ∈ 𝑅, 𝑔2∉𝔭 be an element such that
𝑃(𝑥𝑖) = 0 in 𝑆𝑔1𝑔2

. Setting 𝑔 = 𝑔1𝑔2 we win. �

7.114. Zariski's Main Theorem

In this section our aim is to prove the algebraic version of Zariski's Main theorem. This
theorem will be the basis of many further developments in the theory of schemes and mor-
phisms of schemes later in the project.

Let 𝑅 → 𝑆 be a ring map of finite type. Our goal in this section is to show that the set of
points of 𝑆𝑝𝑒𝑐(𝑆) where the map is quasi-finite is open (Theorem 7.114.13). In fact, it will
turn out that there exists a finite ring map 𝑅 → 𝑆′ such that in some sense the quasi-finite
locus of 𝑆/𝑅 is open in 𝑆𝑝𝑒𝑐(𝑆′) (but we will not prove this in the algebra chapter since we
do not develop the language of schemes here -- for the case where 𝑅 → 𝑆 is quasi-finite
see Lemma 7.114.15). These statements are somewhat tricky to prove and we do it by a
long list of lemmas concering integral and finite extensions of rings. This material may be
found in [Ray70], and [Pes66]. We also found notes by Thierry Coquand helpful.

Lemma 7.114.1. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Suppose 𝑡 ∈ 𝑆 satisfies the relation
𝜑(𝑎0) + 𝜑(𝑎1)𝑡 + … + 𝜑(𝑎𝑛)𝑡𝑛 = 0. Then 𝜑(𝑎𝑛)𝑡 is integral over 𝑅.
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Proof. Namely, multiply the equation 𝜑(𝑎0) + 𝜑(𝑎1)𝑡 + … + 𝜑(𝑎𝑛)𝑡𝑛 = 0 with 𝜑(𝑎𝑛)𝑛−1

and write it as 𝜑(𝑎0𝑎𝑛−1
𝑛 ) + 𝜑(𝑎1𝑎𝑛−2

𝑛 )(𝜑(𝑎𝑛)𝑡) + … + (𝜑(𝑎𝑛)𝑡)𝑛 = 0. �

The following lemma is in some sense the key lemma in this section.

Lemma 7.114.2. Let𝑅 be a ring. Let𝜑 ∶ 𝑅[𝑥] → 𝑆 be a ring map. Let 𝑡 ∈ 𝑆. Assume that
(a) 𝑡 is integral over 𝑅[𝑥], and (b) there exists a monic 𝑝 ∈ 𝑅[𝑥] such that 𝑡𝜑(𝑝) ∈ Im(𝜑).
Then there exists a 𝑞 ∈ 𝑅[𝑥] such that 𝑡 − 𝜑(𝑞) is integral over 𝑅.

Proof. Write 𝑡𝜑(𝑝) = 𝜑(𝑟) for some 𝑟 ∈ 𝑅[𝑥]. Using euclidean division, write 𝑟 = 𝑞𝑝 + 𝑟′

with 𝑞, 𝑟′ ∈ 𝑅[𝑥] and deg(𝑟′) < deg(𝑝). We may replace 𝑡 by 𝑡 − 𝜑(𝑞) which is still
integral over 𝑅[𝑥], so that we obtain 𝑡𝜑(𝑝) = 𝜑(𝑟′). In the ring 𝑆𝑡 we may write this as
𝜑(𝑝)−(1/𝑡)𝜑(𝑟′) = 0. This implies that 𝜑(𝑥) gives an element of the localization 𝑆𝑡 which is
integral over 𝜑(𝑅)[1/𝑡] ⊂ 𝑆𝑡. On the other hand, 𝑡 is integral over the subring 𝜑(𝑅)[𝜑(𝑥)] ⊂
𝑆. Combined we conclude that 𝑡 is integral over the subring 𝜑(𝑅)[1/𝑡] ⊂ 𝑆𝑡, see Lemma
7.32.6. In other words there exists an equation of the form 𝑡𝑑 + ∑𝑖<𝑑(𝜑(𝑟𝑖)/𝑡𝑛𝑖)𝑡𝑖 = 0 in 𝑆𝑡
with 𝑟𝑖 ∈ 𝑅. This means that 𝑡𝑑+𝑁 + ∑𝑖<𝑑 𝜑(𝑟𝑖)𝑡𝑖+𝑁−𝑛𝑖 = 0 in 𝑆 for some 𝑁 large enough.
In other words 𝑡 is integral over 𝑅. �

Lemma 7.114.3. Let 𝑅 be a ring and let 𝜑 ∶ 𝑅[𝑥] → 𝑆 be a ring map. Let 𝑡 ∈ 𝑆. If 𝑡 is
integral over 𝑅[𝑥], then there exists an ℓ ≥ 0 such that for every 𝑎 ∈ 𝑅 the element 𝜑(𝑎)ℓ𝑡
is integral over 𝜑𝑎 ∶ 𝑅[𝑦] → 𝑆, defined by 𝑦 ↦ 𝜑(𝑎𝑥) and 𝑟 ↦ 𝜑(𝑟) for 𝑟 ∈ 𝑅.

Proof. Say 𝑡𝑑 + ∑𝑖<𝑑 𝜑(𝑓𝑖)𝑡𝑖 = 0 with 𝑓𝑖 ∈ 𝑅[𝑥]. Let ℓ be the maximum degree in 𝑥 of
all the 𝑓𝑖. Multiply the equation by 𝜑(𝑎)ℓ to get 𝜑(𝑎)ℓ𝑡𝑑 + ∑𝑖<𝑑 𝜑(𝑎ℓ𝑓𝑖)𝑡𝑖 = 0. Note that
each 𝜑(𝑎ℓ𝑓𝑖) is in the image of 𝜑𝑎. The result follows from Lemma 7.114.1. �

Lemma 7.114.4. Let 𝑅 be a ring. Let 𝜑 ∶ 𝑅[𝑥] → 𝑆 be a ring map. Let 𝑡 ∈ 𝑆. Assume 𝑡
is integral over 𝑅[𝑥]. Let 𝑝 ∈ 𝑅[𝑥], 𝑝 = 𝑎0 + 𝑎1𝑥 + … + 𝑎𝑘𝑥𝑘 such that 𝑡𝜑(𝑝) ∈ Im(𝜑).
Then there exists a 𝑞 ∈ 𝑅[𝑥] and 𝑛 ≥ 0 such that 𝜑(𝑎𝑘)𝑛𝑡 − 𝜑(𝑞) is integral over 𝑅.

Proof. By Lemma 7.114.3 there exists an ℓ ≥ 0 such that the element 𝜑(𝑎𝑘)ℓ𝑡 is integral
over the map 𝜑′ ∶ 𝑅[𝑦] → 𝑆, 𝜑′(𝑦) = 𝜑(𝑎𝑘𝑥) and 𝜑′(𝑟) = 𝜑(𝑟), for 𝑟 ∈ 𝑅. The polynomial
𝑝′ = 𝑎𝑘−1

𝑘 𝑎0 + 𝑎𝑘−2
𝑘 𝑎1𝑦 + … + 𝑦𝑘 is monic and 𝑡𝜑′(𝑝′) = 𝜑(𝑎𝑘−1

𝑘 )𝑡𝜑(𝑝) ∈ Im(𝜑). By
definition of 𝜑′ this implies there exists a 𝑛 ≥ 𝑘 − 1 such that 𝜑(𝑎𝑛

𝑘)𝑡𝜑′(𝑝′) ∈ Im(𝜑′).
If also 𝑛 ≥ ℓ, then 𝜑(𝑎𝑘)𝑛𝑡 is still integral over 𝑅[𝑦]. By Lemma 7.114.2 we see that
𝜑(𝑎𝑘)𝑛𝑡 − 𝜑′(𝑞) is integral over 𝑅 for some 𝑞 ∈ 𝑅[𝑦]. Again by the simple relationship
between 𝜑′ and 𝜑 this implies the lemma. �

Situation 7.114.5. Let 𝑅 be a ring. Let 𝜑 ∶ 𝑅[𝑥] → 𝑆 be finite. Let
𝐽 = {𝑔 ∈ 𝑆 ∣ 𝑔𝑆 ⊂ Im(𝜑)}

be the ``conductor ideal'' of 𝜑. Assume 𝜑(𝑅) ⊂ 𝑆 integrally closed in 𝑆.

Lemma 7.114.6. In Situation 7.114.5. Suppose 𝑢 ∈ 𝑆, 𝑎0, … , 𝑎𝑘 ∈ 𝑅, 𝑢𝜑(𝑎0 + 𝑎1𝑥 + … +
𝑎𝑘𝑥𝑘) ∈ 𝐽. Then there exists an 𝑚 ≥ 0 such that 𝑢𝜑(𝑎𝑘)𝑚 ∈ 𝐽.

Proof. Assume that 𝑆 is generated by 𝑡1, … , 𝑡𝑛 as an 𝑅[𝑥]-module. In this case 𝐽 = {𝑔 ∈
𝑆 ∣ 𝑔𝑡𝑖 ∈ Im(𝜑) for all 𝑖}. Note that each element 𝑢𝑡𝑖 is integral over 𝑅[𝑥], see Lemma
7.32.3. We have 𝜑(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑘𝑥𝑘)𝑢𝑡𝑖 ∈ Im(𝜑). By Lemma 7.114.4, for each 𝑖 there
exists an integer 𝑛𝑖 and an element 𝑞𝑖 ∈ 𝑅[𝑥] such that 𝜑(𝑎𝑛𝑖

𝑘 )𝑢𝑡𝑖 − 𝜑(𝑞𝑖) is integral over
𝑅. By assumption this element is in 𝜑(𝑅) and hence 𝜑(𝑎𝑛𝑖

𝑘 )𝑢𝑡𝑖 ∈ Im(𝜑). It follows that
𝑚 = max{𝑛1, … , 𝑛𝑛} works. �
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Lemma 7.114.7. In Situation 7.114.5. Suppose 𝑢 ∈ 𝑆, 𝑎0, … , 𝑎𝑘 ∈ 𝑅, 𝑢𝜑(𝑎0 + 𝑎1𝑥 + … +
𝑎𝑘𝑥𝑘) ∈ √𝐽. Then 𝑢𝜑(𝑎𝑖) ∈ √𝐽 for all 𝑖.

Proof. Under the assumptions of the lemma we have 𝑢𝑛𝜑(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑘𝑥𝑘)𝑛 ∈ 𝐽 for
some 𝑛 ≥ 1. By Lemma 7.114.6 we deduce 𝑢𝑛𝜑(𝑎𝑛𝑚

𝑘 ) ∈ 𝐽 for some 𝑚 ≥ 1. Thus 𝑢𝜑(𝑎𝑘) ∈
√𝐽, and so 𝑢𝜑(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑘𝑥𝑘) − 𝑢𝜑(𝑎𝑘) = 𝑢𝜑(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑘−1𝑥𝑘−1) ∈ √𝐽.
We win by induction on 𝑘. �

This lemma suggests the following definition.

Definition 7.114.8. Given an inclusion of rings 𝑅 ⊂ 𝑆 and an element 𝑥 ∈ 𝑆 we say that
𝑥 is strongly transcendental over 𝑅 if whenever 𝑢(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑘𝑥𝑘) = 0 with 𝑢 ∈ 𝑆
and 𝑎𝑖 ∈ 𝑅, then we have 𝑢𝑎𝑖 = 0 for all 𝑖.

Note that if 𝑆 is a domain then this is the same as saying that 𝑥 as an element of the fraction
field of 𝑆 is transcendental over the fraction field of 𝑅.

Lemma 7.114.9. Suppose 𝑅 ⊂ 𝑆 is an inclusion of reduced rings and suppose that 𝑥 ∈ 𝑆
is strongly transcendental over 𝑅. Let 𝔮 ⊂ 𝑆 be a minimal prime and let 𝔭 = 𝑅 ∩ 𝔮. Then
the image of 𝑥 in 𝑆/𝔮 is strongly transcendental over the subring 𝑅/𝔭.

Proof. Suppose 𝑢(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑘𝑥𝑘) ∈ 𝔮. By Lemma 7.23.3 the local ring 𝑆𝔮 is a field,
and hence 𝑢(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑘𝑥𝑘) is zero in 𝑆𝔮. Thus 𝑢𝑢′(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑘𝑥𝑘) = 0 for
some 𝑢′ ∈ 𝑆, 𝑢′∉𝔮. Since 𝑥 is strongly transcendental over 𝑅 we get 𝑢𝑢′𝑎𝑖 = 0 for all 𝑖.
This in turn implies that 𝑢𝑎𝑖 ∈ 𝔮. �

Lemma 7.114.10. Suppose 𝑅 ⊂ 𝑆 is an inclusion of domains and let 𝑥 ∈ 𝑆. Assume
𝑥 is (strongly) transcendental over 𝑅 and that 𝑆 is finite over 𝑅[𝑥]. Then 𝑅 → 𝑆 is not
quasi-finite at any prime of 𝑆.

Proof. As a first case, assume that 𝑅 is normal, see Definition 7.33.10. By Lemma 7.33.13
we see that 𝑅[𝑥] is normal. Take a prime 𝔮 ⊂ 𝑆, and set 𝔭 = 𝑅 ∩ 𝔮. Assume that the
extension 𝜅(𝔭) ⊂ 𝜅(𝔮) is finite. This would be the case if 𝑅 → 𝑆 is quasi-finite at 𝔮. Let
𝔯 = 𝑅[𝑥] ∩ 𝔮. Then since 𝜅(𝔭) ⊂ 𝜅(𝔯) ⊂ 𝜅(𝔮) we see that the extension 𝜅(𝔭) ⊂ 𝜅(𝔯)
is finite too. Thus the inclusion 𝔯 ⊃ 𝔭𝑅[𝑥] is strict. By going down for 𝑅[𝑥] ⊂ 𝑆, see
Proposition 7.34.7, we find a prime 𝔮′ ⊂ 𝔮, lying over the prime 𝔭𝑅[𝑥]. Hence the fibre
𝑆𝑝𝑒𝑐(𝑆 ⊗𝑅 𝜅(𝔭)) contains a point not equal to 𝔮, namely 𝔮′, whose closure contains 𝔮 and
hence 𝔮 is not isolated in its fibre.

If 𝑅 is not normal, let 𝑅 ⊂ 𝑅′ ⊂ 𝐾 be the integral closure 𝑅′ of 𝑅 in its field of fractions
𝐾. Let 𝑆 ⊂ 𝑆′ ⊂ 𝐿 be the subring 𝑆′ of the field of fractions 𝐿 of 𝑆 generated by 𝑅′

and 𝑆. Note that by construction the map 𝑆 ⊗𝑅 𝑅′ → 𝑆′ is surjective. This implies that
𝑅′[𝑥] ⊂ 𝑆′ is finite. Also, the map 𝑆 ⊂ 𝑆′ induces a surjection on 𝑆𝑝𝑒𝑐, see Lemma
7.32.15. We conclude by Lemma 7.113.6 and the normal case we just discussed. �

Lemma 7.114.11. Suppose 𝑅 ⊂ 𝑆 is an inclusion of reduced rings. Assume 𝑥 ∈ 𝑆 be
strongly transcendental over 𝑅, and 𝑆 finite over 𝑅[𝑥]. Then 𝑅 → 𝑆 is not quasi-finite at
any prime of 𝑆.

Proof. Let 𝔮 ⊂ 𝑆 be any prime. Choose a minimal prime 𝔮′ ⊂ 𝔮. According to Lem-
mas 7.114.9 and 7.114.10 the extension 𝑅/(𝑅 ∩ 𝔮′) ⊂ 𝑆/𝔮′ is not quasi-finite at the prime
corresponding to 𝔮. By Lemma 7.113.6 the extension 𝑅 → 𝑆 is not quasi-finite at 𝔮. �
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Lemma 7.114.12. Let 𝑅 be a ring. Let 𝑆 = 𝑅[𝑥]/𝐼. Let 𝔮 ⊂ 𝑆 be a prime. Assume 𝑅 → 𝑆
is quasi-finite at 𝔮. Let 𝑆′ ⊂ 𝑆 be the integral closure of 𝑅 in 𝑆. Then there exists an
element 𝑔 ∈ 𝑆′, 𝑔∉𝔮 such that 𝑆′

𝑔 ≅ 𝑆𝑔.

Proof. Let 𝔭 be the image of 𝔮 in 𝑆𝑝𝑒𝑐(𝑅). The assumption that 𝑅 → 𝑆 is quasi-finite at 𝔮
implies there exists an 𝑓 ∈ 𝐼, 𝑓 = 𝑎𝑛𝑥𝑛 + … + 𝑎0 such that some 𝑎𝑖∉𝔭. In particular there
exists a relation 𝑏𝑚𝑥𝑚 + … + 𝑏0 = 0 with 𝑏𝑗 ∈ 𝑆′, 𝑗 = 0, … , 𝑚 and 𝑏𝑗∉𝔮 ∩ 𝑆′ for some 𝑗.
We prove the lemma by induction on 𝑚.

The case 𝑏𝑚 ∈ 𝔮. In this case we have 𝑏𝑚𝑥 ∈ 𝑆′ by Lemma 7.114.1. Set 𝑏′
𝑚−1 = 𝑏𝑚𝑥+𝑏𝑚−1.

Then
𝑏′

𝑚−1𝑥𝑚−1 + 𝑏𝑚−2𝑥𝑚−2 + … + 𝑏0 = 0
Since 𝑏′

𝑚−1 is congruent to 𝑏𝑚−1 modulo 𝑆′ ∩ 𝔮 we see that it is still the case that one of
𝑏′

𝑚−1, 𝑏𝑚−2, … , 𝑏0 is not in 𝑆′ ∩ 𝔮. Thus we win by induction on 𝑚.

The case 𝑏𝑚∉𝔮. In this case 𝑥 is intregral over 𝑆′
𝑏𝑚
, in fact 𝑏𝑚𝑥 ∈ 𝑆′ by Lemma 7.114.1.

Hence the injective map 𝑆′
𝑏𝑚

→ 𝑆𝑏𝑚
is also surjective, i.e., an isomorphism as desired. �

Theorem 7.114.13. (Zariski's Main Theorem.) Let 𝑅 be a ring. Let 𝑅 → 𝑆 be a finite type
𝑅-algebra. Let 𝑆′ ⊂ 𝑆 be the integral closure of 𝑅 in 𝑆. Let 𝔮 ⊂ 𝑆 be a prime of 𝑆. If
𝑅 → 𝑆 is quasi-finite at 𝔮 then there exists a 𝑔 ∈ 𝑆′, 𝑔∉𝔮 such that 𝑆′

𝑔 ≅ 𝑆𝑔.

Proof. There exist finitely many elements 𝑥1, … , 𝑥𝑛 ∈ 𝑆 such that 𝑆 is finite over the
𝑅-sub algebra generated by 𝑥1, … , 𝑥𝑛. (For example generators of 𝑆 over 𝑅.) We prove
the proposition by induction on the minimal such number 𝑛.

The case 𝑛 = 0 is trivial, because in this case 𝑆′ = 𝑆, see Lemma 7.32.3.

The case 𝑛 = 1. We may and do replace 𝑅 by its integral closure in 𝑆, in particular this
means that 𝑅 ⊂ 𝑆. Consider the map 𝜑 ∶ 𝑅[𝑥] → 𝑆, 𝑥 ↦ 𝑥1. (We will see that 𝜑 is not
injective below.) By assumption 𝜑 is finite. Hence we are in Situation 7.114.5. Let 𝐽 ⊂ 𝑆
be the ``conductor ideal'' defined in Situation 7.114.5. Consider the diagram

𝑅[𝑥] // 𝑆 // 𝑆/√𝐽 𝑅/(𝑅 ∩ √𝐽)[𝑥]oo

𝑅

__

//

OO

𝑅/(𝑅 ∩ √𝐽)

OO 77

According to Lemma 7.114.7 the image of 𝑥 in the quotient 𝑆/√𝐽 is strongly transcendental
over 𝑅/(𝑅 ∩ √𝐽). Hence by Lemma 7.114.11 the ring map 𝑅/(𝑅 ∩ √𝐽) → 𝑆/√𝐽 is not
quasi-finite at any prime of 𝑆/√𝐽. By Lemma 7.113.6 we deduce that 𝔮 does not lie in
𝑉(𝐽) ⊂ 𝑆𝑝𝑒𝑐(𝑆). Thus there exists an element 𝑠 ∈ 𝐽, 𝑠∉𝔮. By definition of 𝐽 we may write
𝑠 = 𝜑(𝑓) for some polynomial 𝑓 ∈ 𝑅[𝑥]. Now let 𝐼 = Ker(𝑅[𝑥] → 𝑆). Since 𝜑(𝑓) ∈ 𝐽 we
get (𝑅[𝑥]/𝐼)𝑓 ≅ 𝑆𝜑(𝑓). Also 𝑠∉𝔮 means that 𝑓∉𝜑−1(𝔮). Thus 𝜑−1(𝔮) is a prime of 𝑅[𝑥]/𝐼
at which 𝑅 → 𝑅[𝑥]/𝐼 is quasi-finite, see Lemma 7.113.5. Let 𝐶 ⊂ 𝑅[𝑥]/𝐼 be the integral
closure of 𝑅. By Lemma 7.114.12 there exists an element ℎ ∈ 𝐶, ℎ∉𝜑−1(𝔮) such that 𝐶ℎ ≅
(𝑅[𝑥]/𝐼)ℎ. We conclude that (𝑅[𝑥]/𝐼)𝑓ℎ = 𝑆𝜑(𝑓ℎ) is isomorphic to a principal localization
𝐶ℎ′ of 𝐶 for some ℎ′ ∈ 𝐶, ℎ′∉𝜑−1(𝔮). Since 𝜑(𝐶) ⊂ 𝑆′ we get 𝑔 = 𝜑(ℎ′) ∈ 𝑆′, 𝑔∉𝔮 and
moreover the injective map 𝑆′

𝑔 → 𝑆𝑔 is also surjective because by our choice of ℎ′ the map
𝐶ℎ′ → 𝑆𝑔 is surjective.
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The case 𝑛 > 1. Consider the subring𝑅′ ⊂ 𝑆which is the integral closure of𝑅[𝑥1, … , 𝑥𝑛−1]
in 𝑆. By Lemma 7.113.6 the extension 𝑆/𝑅′ is quasi-finite at 𝔮. Also, note that 𝑆 is finite
over 𝑅′[𝑥𝑛]. By the case 𝑛 = 1 above, there exists a 𝑔′ ∈ 𝑅′, 𝑔′∉𝔮 such that (𝑅′)𝑔′ ≅ 𝑆𝑔′.
At this point we cannot apply induction to 𝑅 → 𝑅′ since 𝑅′ may not be finite type over 𝑅.
Since 𝑆 is finitely generated over 𝑅 we deduce in particular that (𝑅′)𝑔′ is finitely generated
over 𝑅. Say the elements 𝑔′, and 𝑦1/(𝑔′)𝑛1, … , 𝑦𝑁/(𝑔′)𝑛𝑁 with 𝑦𝑖 ∈ 𝑅′ generate (𝑅′)𝑔′ over
𝑅. Let 𝑅″ be the 𝑅-sub algebra of 𝑅′ generated by 𝑥1, … , 𝑥𝑛−1, 𝑦1, … , 𝑦𝑁, 𝑔′. This has
the property (𝑅″)𝑔′ ≅ 𝑆𝑔′. Surjectivity because of how we chose 𝑦𝑖, injectivity because
𝑅″ ⊂ 𝑅′, and localization is exact. Note that 𝑅″ is finite over 𝑅[𝑥1, … , 𝑥𝑛−1] because of
our choice of 𝑅′, see Lemma 7.32.4. Let 𝔮″ = 𝑅″ ∩ 𝔮. Since (𝑅″)𝔮″ = 𝑆𝔮 we see that
𝑅 → 𝑅″ is quasi-finite at 𝔮″, see Lemma 7.113.2. We apply our induction hypothesis to
𝑅 → 𝑅″, 𝔮″ and 𝑥1, … , 𝑥𝑛−1 ∈ 𝑅″ and we find a subring 𝑅‴ ⊂ 𝑅″ which is integral
over 𝑅 and an element 𝑔″ ∈ 𝑅‴, 𝑔″∉𝔮″ such that (𝑅‴)𝑔″ ≅ (𝑅″)𝑔″. Write the image of
𝑔′ in (𝑅″)𝑔″ as 𝑔‴/(𝑔″)𝑛 for some 𝑔‴ ∈ 𝑅‴. Set 𝑔 = 𝑔″𝑔‴ ∈ 𝑅‴. Then it is clear that
𝑔∉𝔮 and (𝑅‴)𝑔 ≅ 𝑆𝑔. Since by construction we have 𝑅‴ ⊂ 𝑆′ we also have 𝑆′

𝑔 ≅ 𝑆𝑔 as
desired. �

Lemma 7.114.14. Let 𝑅 → 𝑆 be a finite type ring map. The set of points 𝔮 of 𝑆𝑝𝑒𝑐(𝑆) at
which 𝑆/𝑅 is quasi-finite is open in 𝑆𝑝𝑒𝑐(𝑆).

Proof. Let 𝔮 ⊂ 𝑆 be a point at which the ring map is quasi-finite. By Theorem 7.114.13
there exists an integral ring extension 𝑅 → 𝑆′, 𝑆′ ⊂ 𝑆 and an element 𝑔 ∈ 𝑆′, 𝑔∉𝔮 such
that 𝑆′

𝑔 ≅ 𝑆𝑔. Since 𝑆 and hence 𝑆𝑔 are of finite type over 𝑅 we may find finitely many
elements 𝑦1, … , 𝑦𝑁 of 𝑆′ such that 𝑆″

𝑔 ≅ 𝑆 where 𝑆″ ⊂ 𝑆′ is the sub 𝑅-algebra generated
by 𝑔, 𝑦1, … , 𝑦𝑁. Since 𝑆″ is finite over 𝑅 (see Lemma 7.32.4) we see that 𝑆″ is quasi-finite
over 𝑅 (see Lemma 7.113.4). It is easy to see that this implies that 𝑆″

𝑔 is quasi-finite over
𝑅, for example because the property of being quasi-finite at a prime depends only on the
local ring at the prime. Thus we see that 𝑆𝑔 is quasi-finite over 𝑅. By the same token this
implies that 𝑅 → 𝑆 is quasi-finite at every prime of 𝑆 which lies in 𝐷(𝑔). �

Lemma 7.114.15. Let 𝑅 → 𝑆 be a finite type ring map. Suppose that 𝑆 is quasi-finite over
𝑅. Let 𝑆′ ⊂ 𝑆 be the integral closure of 𝑅 in 𝑆. Then

(1) 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑆′) is a homeomorphism onto an open subset,
(2) if 𝑔 ∈ 𝑆′ and 𝐷(𝑔) is contained in the image of the map, then 𝑆′

𝑔 ≅ 𝑆𝑔, and
(3) there exists a finite 𝑅-algebra 𝑆″ ⊂ 𝑆′ such that (1) and (2) hold for the ring

map 𝑆″ → 𝑆.

Proof. Because 𝑆/𝑅 is quasi-finite we may apply Theorem 7.114.13 to each point 𝔮 of
𝑆𝑝𝑒𝑐(𝑆). Since 𝑆𝑝𝑒𝑐(𝑆) is quasi-compact, see Lemma 7.16.10, we may choose a finite
number of 𝑔𝑖 ∈ 𝑆′, 𝑖 = 1, … , 𝑛 such that 𝑆′

𝑔𝑖
= 𝑆𝑔𝑖

, and such that 𝑔1, … , 𝑔𝑛 generate the
unit ideal in 𝑆 (in other words the standard opens of 𝑆𝑝𝑒𝑐(𝑆) associated to 𝑔1, … , 𝑔𝑛 cover
all of 𝑆𝑝𝑒𝑐(𝑆)).
Suppose that 𝐷(𝑔) ⊂ 𝑆𝑝𝑒𝑐(𝑆′) is contained in the image. Then 𝐷(𝑔) ⊂ ⋃ 𝐷(𝑔𝑖). In other
words, 𝑔1, … , 𝑔𝑛 generate the unit ideal of 𝑆′

𝑔. Note that 𝑆′
𝑔𝑔𝑖

≅ 𝑆𝑔𝑔𝑖
by our choice of 𝑔𝑖.

Hence 𝑆′
𝑔 ≅ 𝑆𝑔 by Lemma 7.21.2.

We construct a finite algebra 𝑆″ ⊂ 𝑆′ as in (3). To do this note that each 𝑆′
𝑔𝑖

≅ 𝑆𝑔𝑖
is a

finite type 𝑅-algebra. For each 𝑖 pick some elements 𝑦𝑖𝑗 ∈ 𝑆′ such that each 𝑆′
𝑔𝑖
is generated

as 𝑅-algebra by 1/𝑔𝑖 and the elements 𝑦𝑖𝑗. Then set 𝑆″ equal to the sub 𝑅-algebra of 𝑆′

generated by all 𝑔𝑖 and all the 𝑦𝑖𝑗. Details omitted. �
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7.115. Applications of Zariski's Main Theorem

Here is an immediate application characterizing the finite maps of 1-dimensional semi-local
rings among the quasi-finite ones as those where equality always holds in the formula of
Lemma 7.112.8.

Lemma 7.115.1. Let 𝐴 ⊂ 𝐵 be an extension of domains. Assume
(1) 𝐴 is a local Noetherian ring of dimension 1,
(2) 𝐴 → 𝐵 is of finite type, and
(3) the extension 𝐾 = 𝑓.𝑓.(𝐴) ⊂ 𝐿 = 𝑓.𝑓.(𝐵) is a finite field extension.

Then 𝐵 is semi-local. Let 𝑥 ∈ 𝔪𝐴, 𝑥≠0. Let 𝔪𝑖, 𝑖 = 1, … , 𝑛 be the maximal ideals of 𝐵.
Then

[𝐿 ∶ 𝐾]ord𝐴(𝑥) ≥ ∑𝑖
[𝜅(𝔪𝑖) ∶ 𝜅(𝔪𝐴)]ord𝐵𝔪𝑖

(𝑥)

where ord is defined as in Definition 7.112.2. We have equality if and only if 𝐴 → 𝐵 is
finite.

Proof. The ring 𝐵 is semi-local by Lemma 7.104.2. Let 𝐵′ be the integral closure of 𝐴
in 𝐵. By Lemma 7.114.15 we can find a finite 𝐴-subalgebra 𝐶 ⊂ 𝐵′ such that on setting
𝔫𝑖 = 𝐶 ∩ 𝔪𝑖 we have 𝐶𝔫𝑖

≅ 𝐵𝔪𝑖
and the primes 𝔫1, … , 𝔫𝑛 are pairwise distinct. The ring

𝐶 is semi-local by Lemma 7.104.2. Let 𝔭𝑗, 𝑗 = 1, … , 𝑚 be the other maximal ideals of 𝐶
(the ``missing points''). By Lemma 7.112.8 we have

ord𝐴(𝑥[𝐿∶𝐾]) = ∑𝑖
[𝜅(𝔫𝑖) ∶ 𝜅(𝔪𝐴)]ord𝐶𝔫𝑖

(𝑥) + ∑𝑗
[𝜅(𝔭𝑗) ∶ 𝜅(𝔪𝐴)]ord𝐶𝔭𝑗

(𝑥)

hence the inequality follows. In case of equality we conclude that 𝑚 = 0 (no ``missing
points''). Hence 𝐶 ⊂ 𝐵 is an inclusion of semi-local rings inducing a bijection on maximal
ideals and an isomorphism on all localizations at maximal ideals. So if 𝑏 ∈ 𝐵, then 𝐼 =
{𝑥 ∈ 𝐶 ∣ 𝑥𝑏 ∈ 𝐶} is an ideal of 𝐶 which is not contained in any of the maximal ideals of
𝐶, and hence 𝐼 = 𝐶, hence 𝑏 ∈ 𝐶. Thus 𝐵 = 𝐶 and 𝐵 is finite over 𝐴. �

Here is a more standard application of Zariski's main theorem to the structure of local
homomorphisms of local rings.

Lemma 7.115.2. Let (𝑅, 𝔪𝑅) → (𝑆, 𝔪𝑆) be a local homomorphism of local rings. Assume
(1) 𝑅 → 𝑆 is essentially of finite type,
(2) 𝜅(𝔪𝑅) ⊂ 𝜅(𝔪𝑆) is finite, and
(3) dim(𝑆/𝔪𝑅𝑆) = 0.

Then 𝑆 is the localization of a finite 𝑅-algebra.

Proof. Let 𝑆′ be a finite type 𝑅-algebra such that 𝑆 = 𝑆′
𝔮′ for some prime 𝔮′ of 𝑆′. By

Definition 7.113.3 we see that 𝑅 → 𝑆′ is quasi-finite at 𝔮′. After replacing 𝑆′ by 𝑆′
𝑔′ for

some 𝑔′ ∈ 𝑆′, 𝑔′∉𝔮′ we may assume that 𝑅 → 𝑆′ is quasi-finite, see Lemma 7.114.14.
Then by Lemma 7.114.15 there exists a finite 𝑅-algebra 𝑆″ and elements 𝑔′ ∈ 𝑆′, 𝑔′∉𝔮′

and 𝑔″ ∈ 𝑆″ such that 𝑆′
𝑔′ ≅ 𝑆″

𝑔″ as 𝑅-algebras. This proves the lemma. �

Lemma 7.115.3. Let 𝑅 → 𝑆 be a ring map, 𝔮 a prime of 𝑆 lying over 𝔭 in 𝑅. If
(1) 𝑅 is Noetherian,
(2) 𝑅 → 𝑆 is of finite type, and
(3) 𝑅 → 𝑆 is quasi-finite at 𝔮,

then 𝑅∧
𝔭 ⊗𝑅 𝑆 = 𝑆∧

𝔮 × 𝐵 for some 𝑅∧
𝔭-algebra 𝐵.
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Proof. There exists a finite 𝑅-algebra 𝑆′ ⊂ 𝑆 and an element 𝑔 ∈ 𝑆′, 𝑔∉𝔮′ = 𝑆′ ∩ 𝔮 such
that 𝑆′

𝑔 = 𝑆𝑔 and in particular 𝑆′
𝔮′ = 𝑆𝔮, see Lemma 7.114.15. We have

𝑅∧
𝔭 ⊗𝑅 𝑆′ = (𝑆′

𝔮′)∧ × 𝐵′

by Lemma 7.90.17. Note that we have a commutative diagram

𝑅∧
𝔭 ⊗𝑅 𝑆 // 𝑆∧

𝔮

𝑅∧
𝔭 ⊗𝑅 𝑆′ //

OO

(𝑆′
𝔮′)∧

OO

where the right vertical is an isomorphism and the lower horizontal arrow is the projection
map of the product decomposition above. The lemma follows. �

7.116. Dimension of fibres

We study the behaviour of dimensions of fibres, using Zariski's main theorem. Recall that
we defined the dimension dim𝑥(𝑋) of a topological space 𝑋 at a point 𝑥 in Topology, Defi-
nition 5.7.1.

Definition 7.116.1. Suppose that 𝑅 → 𝑆 is of finite type, and let 𝔮 ⊂ 𝑆 be a prime lying
over a prime 𝔭 of 𝑅. We define the relative dimension of 𝑆/𝑅 at 𝔮, denoted dim𝔮(𝑆/𝑅), to
be the dimension of 𝑆𝑝𝑒𝑐(𝑆 ⊗𝑅 𝜅(𝔭)) at the point corresponding to 𝔮. We let dim(𝑆/𝑅) be
the supremum of dim𝔮(𝑆/𝑅) over all 𝔮. This is called the relative dimension of 𝑆/𝑅.

In particular, 𝑅 → 𝑆 is quasi-finite at 𝔮 if and only if dim𝔮(𝑆/𝑅) = 0. The following lemma
is more or less a reformulation of Zariski's Main Theorem.

Lemma 7.116.2. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝔮 ⊂ 𝑆 be a prime. Suppose that
dim𝔮(𝑆/𝑅) = 𝑛. There exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑆𝑔 is quasi-finite over a polynomial
algebra 𝑅[𝑡1, … , 𝑡𝑛].

Proof. The ring 𝑆 = 𝑆 ⊗𝑅 𝜅(𝔭) is of finite type over 𝜅(𝔭). Let 𝔮 be the prime of 𝑆
corresponding to 𝔮. By definition of the dimension of a topological space at a point there
exists an open 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑆) with 𝑞 ∈ 𝑈 and dim(𝑈) = 𝑛. Since the topology on 𝑆𝑝𝑒𝑐(𝑆) is
induced from the topology on 𝑆𝑝𝑒𝑐(𝑆) (see Remark 7.16.8), we can find a 𝑔 ∈ 𝑆, 𝑔∉𝔮 with
image 𝑔 ∈ 𝑆 such that 𝐷(𝑔) ⊂ 𝑈. Thus after replacing 𝑆 by 𝑆𝑔 we see that dim(𝑆) = 𝑛.

Next, choose generators 𝑥1, … , 𝑥𝑁 for 𝑆 as an 𝑅-algebra. By Lemma 7.106.4 there exist
elements 𝑦1, … , 𝑦𝑛 in the 𝐙-subalgebra of 𝑆 generated by 𝑥1, … , 𝑥𝑁 such that the map
𝑅[𝑡1, … , 𝑡𝑛] → 𝑆, 𝑡𝑖 ↦ 𝑦𝑖 has the property that 𝜅(𝔭)[𝑡1 … , 𝑡𝑛] → 𝑆 is finite. In particular,
𝑆 is quasi-finite over 𝑅[𝑡1, … , 𝑡𝑛] at 𝔮. Hence, by Lemma 7.114.14 we may replace 𝑆 by
𝑆𝑔 for some 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅[𝑡1, … , 𝑡𝑛] → 𝑆 is quasi-finite. �

Lemma 7.116.3. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 ⊂ 𝑆 be a prime lying over the prime 𝔭
of 𝑅. Assume

(1) 𝑅 → 𝑆 is of finite type,
(2) dim𝔮(𝑆/𝑅) = 𝑛, and
(3) trdeg𝜅(𝔭)𝜅(𝔮) = 𝑟.
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Then there exist 𝑓 ∈ 𝑅, 𝑓∉𝔭, 𝑔 ∈ 𝑆, 𝑔∉𝔮 and a quasi-finite ring map
𝜑 ∶ 𝑅𝑓[𝑥1, … , 𝑥𝑛] ⟶ 𝑆𝑔

such that 𝜑−1(𝔮𝑆𝑔) = (𝔭, 𝑥𝑟+1, … , 𝑥𝑛)𝑅𝑓[𝑥𝑟+1, … , 𝑥𝑛]

Proof. After replacing 𝑆 by a principal localization we may assume there exists a quasi-
finite ring map 𝜑 ∶ 𝑅[𝑡1, … , 𝑡𝑛] → 𝑆, see Lemma 7.116.2. Set 𝔮′ = 𝜑−1(𝔮). Let
𝔮′ ⊂ 𝜅(𝔭)[𝑡1, … , 𝑡𝑛] be the prime corresponding to 𝔮′. By Lemma 7.106.6 there exists
a finite ring map 𝜅(𝔭)[𝑥1, … , 𝑥𝑛] → 𝜅(𝔭)[𝑡1, … , 𝑡𝑛] such that the inverse image of 𝔮′ is
(𝑥𝑟+1, … , 𝑥𝑛). Let ℎ𝑖 ∈ 𝜅(𝔭)[𝑡1, … , 𝑡𝑛] be the image of 𝑥𝑖. We can find an element 𝑓 ∈ 𝑅,
𝑓∉𝔭 and ℎ𝑖 ∈ 𝑅𝑓[𝑡1, … , 𝑡𝑛] which map to ℎ𝑖 in 𝜅(𝔭)[𝑡1, … , 𝑡𝑛]. Then the ring map

𝑅𝑓[𝑥1, … , 𝑥𝑛] ⟶ 𝑅𝑓[𝑡1, … , 𝑡𝑛]
becomes finite after tensoring with 𝜅(𝔭). In particular, 𝑅𝑓[𝑡1, … , 𝑡𝑛] is quasi-finite over
𝑅𝑓[𝑥1, … , 𝑥𝑛] at the prime 𝔮′𝑅𝑓[𝑡1, … , 𝑡𝑛]. Hence, by Lemma 7.114.14 there exists a
𝑔 ∈ 𝑅𝑓[𝑡1, … , 𝑡𝑛], 𝑔∉𝔮′𝑅𝑓[𝑡1, … , 𝑡𝑛] such that 𝑅𝑓[𝑥1, … , 𝑥𝑛] → 𝑅𝑓[𝑡1, … , 𝑡𝑛, 1/𝑔] is
quasi-finite. Thus we see that the composition

𝑅𝑓[𝑥1, … , 𝑥𝑛] ⟶ 𝑅𝑓[𝑡1, … , 𝑡𝑛, 1/𝑔] ⟶ 𝑆𝜑(𝑔)

is quasi-finite and we win. �

Lemma 7.116.4. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝔮 ⊂ 𝑆 be a prime lying over
𝔭 ⊂ 𝑅. If 𝑅 → 𝑆 is quasi-finite at 𝔮, then dim(𝑆𝔮) ≤ dim(𝑅𝔭).

Proof. If 𝑅𝔭 is Noetherian (and hence 𝑆𝔮 Noetherian since it is essentially of finite type
over 𝑅𝔭) then this follows immediately from Lemma 7.103.6 and the definitions. In the
general case we can use Zariski's Main Theorem 7.114.13 to write 𝑆𝔮 = 𝑆′

𝔮′ for some ring
𝑆′ integral over 𝑅𝔭. Thus the result follows from Lemma 7.103.3. �

Lemma 7.116.5. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Suppose there is a
quasi-finite 𝑘-algebra map 𝑘[𝑡1, … , 𝑡𝑛] ⊂ 𝑆. Then dim(𝑆) ≤ 𝑛.

Proof. By Lemma 7.105.1 the dimension of any local ring of 𝑘[𝑡1, … , 𝑡𝑛] is at most 𝑛.
Thus the result follows from Lemma 7.116.4 above. �

Lemma 7.116.6. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝔮 ⊂ 𝑆 be a prime. Suppose
that dim𝔮(𝑆/𝑅) = 𝑛. There exists an open neighbourhood 𝑉 of 𝔮 in 𝑆𝑝𝑒𝑐(𝑆) such that
dim𝔮′(𝑆/𝑅) ≤ 𝑛 for all 𝔮′ ∈ 𝑉.

Proof. By Lemma 7.116.2 we see that we may assume that 𝑆 is quasi-finite over a polyno-
mial algebra 𝑅[𝑡1, … , 𝑡𝑛]. Considering the fibres, we reduce to Lemma 7.116.5. �

In other words, the lemma says that the set of points where the fibre has dimension ≤ 𝑛
is open in 𝑆𝑝𝑒𝑐(𝑆). The next lemma says that formation of this open commutes with base
change. If the ring map is of finite presentation then this set is quasi-compact open (see
below).

Lemma 7.116.7. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝑅 → 𝑅′ be any ring map.
Set 𝑆′ = 𝑅′ ⊗𝑅 𝑆 and denote 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑆) the associated map on spectra.
Let 𝑛 ≥ 0. The inverse image 𝑓−1({𝔮 ∈ 𝑆𝑝𝑒𝑐(𝑆) ∣ dim𝔮(𝑆/𝑅) ≤ 𝑛}) is equal to {𝔮′ ∈
𝑆𝑝𝑒𝑐(𝑆′) ∣ dim𝔮′(𝑆′/𝑅′) ≤ 𝑛}.

Proof. The condition is formulated in terms of dimensions of fibre rings which are of finite
type over a field. Combined with Lemma 7.107.6 this yields the lemma. �
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Lemma 7.116.8. Let 𝑅 → 𝑆 be a ring homomorphism of finite presentation. Let 𝑛 ≥ 0.
The set

𝑉𝑛 = {𝔮 ∈ 𝑆𝑝𝑒𝑐(𝑆) ∣ dim𝔮(𝑆/𝑅) ≤ 𝑛}
is a quasi-compact open subset of 𝑆𝑝𝑒𝑐(𝑆).

Proof. It is open by Lemma 7.116.6 above. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) be a pre-
sentation of 𝑆. Let 𝑅0 be the 𝐙-subalgebra of 𝑅 generated by the coefficients of the poly-
nomials 𝑓𝑖. Let 𝑆0 = 𝑅0[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚). Then 𝑆 = 𝑅 ⊗𝑅0

𝑆0. By Lemma
7.116.7 𝑉𝑛 is the inverse image of an open 𝑉0,𝑛 under the quasi-compact continuous map
𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑆0). Since 𝑆0 is Noetherian we see that 𝑉0,𝑛 is quasi-compact. �

Lemma 7.116.9. Let 𝑅 be a valuation ring with residue field 𝑘 and field of fractions 𝐾.
Let 𝑆 be a domain containing 𝑅 such that 𝑆 is of finite type over 𝑅. If 𝑆 ⊗𝑅 𝑘 is not the
zero ring then

dim(𝑆 ⊗𝑅 𝑘) = dim(𝑆 ⊗𝑅 𝐾)
In fact, 𝑆𝑝𝑒𝑐(𝑆 ⊗𝑅 𝑘) is equidimensional.

Proof. It suffices to show that dim𝔮(𝑆/𝑘) is equal to dim(𝑆 ⊗𝑅 𝐾) for every prime 𝔮 of
𝑆 containing 𝔪𝑅𝑆. Pick such a prime. By Lemma 7.116.6 the inequality dim𝔮(𝑆/𝑘) ≥
dim(𝑆 ⊗𝑅 𝐾) holds. Set 𝑛 = dim𝔮(𝑆/𝑘). By Lemma 7.116.2 after replacing 𝑆 by 𝑆𝑔 for
some 𝑔 ∈ 𝑆, 𝑔∉𝔮 there exists a quasi-finite ringmap𝑅[𝑡1, … , 𝑡𝑛] → 𝑆. If dim(𝑆⊗𝑅𝐾) < 𝑛,
then 𝐾[𝑡1, … , 𝑡𝑛] → 𝑆 ⊗𝑅 𝐾 has a nonzero kernel. Say 𝑓 = ∑ 𝑎𝐼𝑡𝑖1

1 … 𝑡𝑖𝑛
𝑛 . After dividing

𝑓 by a nonzero coefficient of 𝑓 with minimal valuation, we may assume 𝑓 ∈ 𝑅[𝑡1, … , 𝑡𝑛]
and some 𝑎𝐼 does not map to zero in 𝑘. Hence the ring map 𝑘[𝑡1, … , 𝑡𝑛] → 𝑆 ⊗𝑅 𝑘 has a
nonzero kernel which implies that dim(𝑆 ⊗𝑅 𝑘) < 𝑛. Contradiction. �

7.117. Algebras and modules of finite presentation

In this section we dicuss some standard results where the key feature is that the assumption
involves a finite type or finite presentation assumption.

Lemma 7.117.1. Let 𝑅 → 𝑆 be a ring map. Let 𝑅 → 𝑅′ be a faithfully flat ring map. Set
𝑆′ = 𝑅′ ⊗𝑅 𝑆. Then 𝑅 → 𝑆 is of finite type if and only if 𝑅′ → 𝑆′ is of finite type.

Proof. It is clear that if 𝑅 → 𝑆 is of finite type then 𝑅′ → 𝑆′ is of finite type. Assume
that 𝑅′ → 𝑆′ is of finite type. Say 𝑦1, … , 𝑦𝑚 generate 𝑆′ over 𝑅′. Write 𝑦𝑗 = ∑𝑖 𝑎𝑖𝑗 ⊗ 𝑥𝑗𝑖
for some 𝑎𝑖𝑗 ∈ 𝑅′ and 𝑥𝑗𝑖 ∈ 𝑆. Let 𝐴 ⊂ 𝑆 be the 𝑅-subalgebra generated by the 𝑥𝑖𝑗. By
flatness we have 𝐴′ ∶= 𝑅′ ⊗𝑅 𝐴 ⊂ 𝑆′, and by construction 𝑦𝑗 ∈ 𝐴′. Hence 𝐴′ = 𝑆′. By
faithful flatness 𝐴 = 𝑆. �

Lemma 7.117.2. Let 𝑅 → 𝑆 be a ring map. Let 𝑅 → 𝑅′ be a faithfully flat ring map. Set
𝑆′ = 𝑅′ ⊗𝑅 𝑆. Then 𝑅 → 𝑆 is of finite presentation if and only if 𝑅′ → 𝑆′ is of finite
presentation.

Proof. It is clear that if 𝑅 → 𝑆 is of finite presentation then 𝑅′ → 𝑆′ is of finite presenta-
tion. Assume that 𝑅′ → 𝑆′ is of finite presentation. By Lemma 7.117.1 above we see that
𝑅 → 𝑆 is of finite type. Write 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼. By flatness 𝑆′ = 𝑅′[𝑥1, … , 𝑥𝑛]/𝑅′⊗𝐼.
Say 𝑔1, … , 𝑔𝑚 generate 𝑅′ ⊗ 𝐼 over 𝑅′[𝑥1, … , 𝑥𝑛]. Write 𝑔𝑗 = ∑𝑖 𝑎𝑖𝑗 ⊗ 𝑓𝑗𝑖 for some
𝑎𝑖𝑗 ∈ 𝑅′ and 𝑓𝑗𝑖 ∈ 𝐼. Let 𝐽 ⊂ 𝐼 be the ideal generated by the 𝑓𝑖𝑗. By flatness we have
𝑅′ ⊗𝑅 𝐽 ⊂ 𝑅′ ⊗𝑅 𝐼, and both are ideals over 𝑅′[𝑥1, … , 𝑥𝑛]. By construction 𝑔𝑗 ∈ 𝑅′ ⊗𝑅 𝐽.
Hence 𝑅′ ⊗𝑅 𝐽 = 𝑅′ ⊗𝑅 𝐼. By faithful flatness 𝐽 = 𝐼. �
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Lemma 7.117.3. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑆 ⊂ 𝑅 be a multiplicative
subset. Set 𝑅′ = 𝑆−1(𝑅/𝐼) = 𝑆−1𝑅/𝑆−1𝐼.

(1) For any finite𝑅′-module𝑀′ there exists a finite𝑅-module𝑀 such that𝑆−1(𝑀/𝐼𝑀) ≅
𝑀′.

(2) For any finitely presented𝑅′-module𝑀′ there exists a finitely presented𝑅-module
𝑀 such that 𝑆−1(𝑀/𝐼𝑀) ≅ 𝑀′.

Proof. Proof of (1). Choose a short exact sequence 0 → 𝐾′ → (𝑅′)⊕𝑛 → 𝑀′ → 0. Let
𝐾 ⊂ 𝑅⊕𝑛 be the inverse image of 𝐾′ under the map 𝑅⊕𝑛 → (𝑅′)⊕𝑛. Then 𝑀 = 𝑅⊕𝑛/𝐾
works.

Proof of (2). Choose a presentation (𝑅′)⊕𝑚 → (𝑅′)⊕𝑛 → 𝑀′ → 0. Suppose that the first
map is given by the matrix 𝐴′ = (𝑎′

𝑖𝑗) and the second map is determined by generators
𝑥′

𝑖 ∈ 𝑀′, 𝑖 = 1, … , 𝑛. As 𝑅′ = 𝑆−1(𝑅/𝐼) we can choose 𝑠 ∈ 𝑆 and a matrix 𝐴 = (𝑎𝑖𝑗) with
coefficients in 𝑅 such that 𝑎′

𝑖𝑗 = 𝑎𝑖𝑗/𝑠 mod 𝑆−1𝐼. Let 𝑀 be the finitely presented 𝑅-module
with presentation 𝑅⊕𝑚 → 𝑅⊕𝑛 → 𝑀 → 0 where the first map is given by the matrix 𝐴 and
the second map is determined by generators 𝑥𝑖 ∈ 𝑀, 𝑖 = 1, … , 𝑛. Then the map 𝑀 → 𝑀′,
𝑥𝑖 ↦ 𝑥′

𝑖 induces an isomorphism 𝑆−1(𝑀/𝐼𝑀) ≅ 𝑀′. �

Lemma 7.117.4. Let 𝑅 be a ring. Let 𝑆 ⊂ 𝑅 be a multiplicative subset. Let 𝑀 be an
𝑅-module.

(1) If 𝑆−1𝑀 is a finite 𝑆−1𝑅-module then there exists a finite 𝑅-module 𝑀′ and a
map 𝑀′ → 𝑀 which induces an isomorphism 𝑆−1𝑀′ → 𝑆−1𝑀.

(2) If𝑆−1𝑀 is a finitely presented𝑆−1𝑅-module then there exists an𝑅-module𝑀′ of
finite presentation and amap𝑀′ → 𝑀which induces an isomorphism𝑆−1𝑀′ →
𝑆−1𝑀.

Proof. Proof of (1). Let 𝑥1, … , 𝑥𝑛 ∈ 𝑀 be elements which generate𝑆−1𝑀 as an𝑆−1𝑅-module.
Let 𝑀′ be the 𝑅-submodule of 𝑀 generated by 𝑥1, … , 𝑥𝑛.

Proof of (2). Let 𝑥1, … , 𝑥𝑛 ∈ 𝑀 be elements which generate 𝑆−1𝑀 as an 𝑆−1𝑅-module.
Let 𝐾 = Ker(𝑅⊕𝑛 → 𝑀) where the map is given by the rule (𝑎1, … , 𝑎𝑛) ↦ ∑ 𝑎𝑖𝑥𝑖. By
Lemma 7.5.3 we see that 𝑆−1𝐾 is a finite 𝑆−1𝑅-module. By (1) we can find a finite type
submodule 𝐾′ ⊂ 𝐾 with 𝑆−1𝐾′ = 𝑆−1𝐾. Take 𝑀′ = Coker(𝐾′ → 𝑅⊕𝑛). �

Lemma 7.117.5. Let 𝑅 be a ring. Let 𝔭 ⊂ 𝑅 be a prime ideal. Let 𝑀 be an 𝑅-module.
(1) If 𝑀𝔭 is a finite 𝑅𝔭-module then there exists a finite 𝑅-module 𝑀′ and a map

𝑀′ → 𝑀 which induces an isomorphism 𝑀′
𝔭 → 𝑀𝔭.

(2) If 𝑀𝔭 is a finitely presented 𝑅𝔭-module then there exists an 𝑅-module 𝑀′ of finite
presentation and a map 𝑀′ → 𝑀 which induces an isomorphism 𝑀′

𝔭 → 𝑀𝔭.

Proof. This is a special case of Lemma 7.117.4 �

Lemma 7.117.6. Let 𝑅 be a ring. Let 𝜑 ∶ 𝑆′ → 𝑆 be a homomorphism of 𝑅-algebras.
Assume

(1) 𝑆′ is of finite type over 𝑅,
(2) 𝑆 is of finite presentation over 𝑅, and
(3) 𝔮′ ⊂ 𝑆′ and 𝔮 ⊂ 𝑆 are primes such that 𝜑 induces an isomorphism 𝑆′

𝔮′ ≅ 𝑆𝔮.

Then there exist 𝑔 ∈ 𝑆′, 𝑔∉𝔮′ and such that 𝜑 induces an isomorphism 𝑆′
𝑔 ≅ 𝑆𝜑(𝑔).
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Proof. ByLemma 7.6.2 themap𝑆′ → 𝑆 is of finite presentation. Write𝑆 = 𝑆′[𝑦1, … , 𝑦𝑎]/(𝑔1, … , 𝑔𝑏).
We may, after replacing 𝑆′ by 𝑆′

𝑔 and 𝑆 by 𝑆𝜑(𝑔) for a suitable 𝑔, assume that the elements
𝑦𝑗 are in the image of 𝜑. This implies that 𝑆′ → 𝑆 is surjective. Say 𝑥𝑗 ∈ 𝑆′ maps to
𝑦𝑗. After further replacing 𝑆′ by 𝑆′

𝑔 and 𝑆 by 𝑆𝜑(𝑔) for a suitable 𝑔 we may assume the
expressions 𝑔𝑖(𝑥1, … , 𝑥𝑎) are zero in 𝑆′. This means that 𝑆′ → 𝑆 is an isomorphism. �

Lemma 7.117.7. Let 𝑅 be a ring. Let 𝑆, 𝑆′ be of finite presentation over 𝑅. Let 𝔮 ⊂ 𝑆 and
𝔮′ ⊂ 𝑆′ be primes. If 𝑆𝔮 ≅ 𝑆𝔮′ as 𝑅-algebras, then there exist 𝑔 ∈ 𝑆, 𝑔∉𝔮 and 𝑔′ ∈ 𝑆′,
𝑔′∉𝔮′ such that 𝑆𝑔 ≅ 𝑆′

𝑔′ as 𝑅-algebras.

Proof. Let 𝜓 ∶ 𝑆𝔮 → 𝑆𝔮′ be the isomorphism of the hypothesis of the lemma. Write
𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑟) and 𝑆′ = 𝑅[𝑦1, … , 𝑦𝑚]/𝐽. For each 𝑖 = 1, … , 𝑛 choose a
fraction ℎ𝑖/𝑔𝑖 with ℎ𝑖, 𝑔𝑖 ∈ 𝑅[𝑦1, … , 𝑦𝑚] and 𝑔𝑖 mod 𝐽 not in 𝔮′ which represents the image
of 𝑥𝑖 under 𝜓. After replacing 𝑆′ by 𝑆′

𝑔1…𝑔𝑛
and 𝑅[𝑦1, … , 𝑦𝑚, 𝑦𝑚+1] (mapping 𝑦𝑚+1 to

1/(𝑔1 … 𝑔𝑛)) we may assume that 𝜓(𝑥𝑖) is the image of some ℎ𝑖 ∈ 𝑅[𝑦1, … , 𝑦𝑚]. Consider
the elements 𝑓𝑗(ℎ1, … , ℎ𝑛) ∈ 𝑅[𝑦1, … , 𝑦𝑚]. Since 𝜓 kills each 𝑓𝑗 we see that there exists
a 𝑔 ∈ 𝑅[𝑦1, … , 𝑦𝑚], 𝑔 mod 𝐽∉𝔮′ such that 𝑔𝑓𝑗(ℎ1, … , ℎ𝑛) ∈ 𝐽 for each 𝑗 = 1, … , 𝑟. After
replacing 𝑆′ by 𝑆′

𝑔 and 𝑅[𝑦1, … , 𝑦𝑚, 𝑦𝑚+1] as before we may assume that 𝑓𝑗(ℎ1, … , ℎ𝑛) ∈
𝐽. Thus we obtain a ring map 𝑆 → 𝑆′, 𝑥𝑖 ↦ ℎ𝑖 which induces 𝜓 on local rings. We win
by Lemma 7.117.6 above. �

7.118. Colimits and maps of finite presentation

In this section we prove some preliminary lemmas which will eventually help us prove
result using absolute Noetherian reduction. we begin discussing how we will think about
colimits in this section.
Let (Λ, ≥) a partially ordered set. A system of rings over Λ is given by a ring 𝑅𝜆 for every
𝜆 ∈ Λ, and a morphism 𝑅𝜆 → 𝑅𝜇 whenever 𝜆 ≤ 𝜇. These morphisms have to satisfy
the rule that 𝑅𝜆 → 𝑅𝜇 → 𝑅𝜈 is equal to the map 𝑅𝜆 → 𝑅𝜈 for all 𝜆 ≤ 𝜇 ≤ 𝜈. See
Categories, Section 4.19. We will often assume that (𝐼, ≤) is directed, which means that Λ
is nonempty and given 𝜆, 𝜇 ∈ Λ there exists a 𝜈 ∈ Λ with 𝜆 ≤ 𝜈 and 𝜇 ≤ 𝜈. Recall that the
colimit 𝑐𝑜𝑙𝑖𝑚𝜆 𝑅𝜆 is sometimes called a ``direct limit'' in this case (but we will not use this
terminology).

Lemma7.118.1. Let𝑅 → 𝐴 be a ringmap. There exists a directed system𝐴𝜆 of𝑅-algebras
of finite presentation such that 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝜆 𝐴𝜆. If 𝐴 is of finite type over 𝑅 we may arrange
it so that all the transition maps are surjective.

Proof. Compare with the proof of Lemma 7.8.13. Consider any finite subset 𝑆 ⊂ 𝐴, and
any finite collection of polynomial relations 𝐸 among the elements of 𝑆. So each 𝑠 ∈ 𝑆
corresponds to 𝑥𝑠 ∈ 𝐴 and each 𝑒 ∈ 𝐸 consists of a polynomial 𝑓𝑒 ∈ 𝑅[𝑋𝑠; 𝑠 ∈ 𝑆]
such that 𝑓𝑒(𝑥𝑠) = 0. Let 𝐴𝑆,𝐸 = 𝑅[𝑋𝑠; 𝑠 ∈ 𝑆]/(𝑓𝑒; 𝑒 ∈ 𝐸) which is a finitely presented
𝑅-algebra. There are canonical maps 𝐴𝑆,𝐸 → 𝐴. If 𝑆 ⊂ 𝑆′ and if the elements of 𝐸
correspond, via the map 𝑅[𝑋𝑠; 𝑠 ∈ 𝑆] → 𝑅[𝑋𝑠; 𝑠 ∈ 𝑆′], to a subset of 𝐸′, then there is an
obvious map 𝐴𝑆,𝐸 → 𝐴𝑆′,𝐸′ commuting with the maps to 𝐴. Thus, setting Λ equal the set
of pairs (𝑆, 𝐸) with ordering by inclusion as above, we get a directed partially ordered set.
It is clear that the colimit of this directed system is 𝐴.
For the last statement, suppose 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼. In this case, consider the subset
Λ′ ⊂ Λ consisting of those systems (𝑆, 𝐸) above with 𝑆 = {𝑥1, … , 𝑥𝑛}. It is easy to see
that still 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝜆′∈Λ′ 𝐴𝜆′. Moreover, the transition maps are clearly surjective. �
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It turns out that we can characterize ring maps of finite presentation as follows. This in
some sense says that the algebras of finite presentation are the ``compact'' objects in the
category of 𝑅-algebras.

Lemma 7.118.2. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Then 𝜑 is of finite presentation if and
only if for every directed system 𝐴𝜆 of 𝑅-algebras we have

𝑐𝑜𝑙𝑖𝑚𝜆 𝐻𝑜𝑚𝑅(𝑆, 𝐴𝜆) = 𝐻𝑜𝑚𝑅(𝑆, 𝑐𝑜𝑙𝑖𝑚𝜆 𝐴𝜆)

Proof. Suppose 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚). If 𝜒 ∶ 𝑆 → 𝑐𝑜𝑙𝑖𝑚 𝐴𝜆 is a map, then each
𝑥𝑖 maps to some element in the image of some 𝐴𝜆𝑖

. We may pick 𝜇 ≥ 𝜆𝑖, 𝑖 = 1, … , 𝑛 and
assume 𝜒(𝑥𝑖) is the image of 𝑦𝑖 ∈ 𝐴𝜇 for 𝑖 = 1, … , 𝑛. Consider 𝑧𝑗 = 𝑓𝑗(𝑦1, … , 𝑦𝑛) ∈ 𝐴𝜇.
Since 𝜒 is a homomorphism the image of 𝑧𝑗 in 𝑐𝑜𝑙𝑖𝑚𝜆 𝐴𝜆 is zero. Hence there exists a
𝜇𝑗 ≥ 𝜇 such that 𝑧𝑗 maps to zero in 𝐴𝜇𝑗

. Pick 𝜈 ≥ 𝜇𝑗, 𝑗 = 1, … , 𝑚. Then the images of
𝑧1, … , 𝑧𝑚 are zero in 𝐴𝜈. This exactly means that the 𝑦𝑖 map to elements 𝑦′

𝑖 ∈ 𝐴𝜈 which
satsify the relations 𝑓𝑗(𝑦′

1, … , 𝑦′
𝑛) = 0. Thus we obtain a ring map 𝑆 → 𝐴𝜈 as desired.

Conversely, suppose the displayed formula holds always. By Lemma 7.118.1 we may write
𝑆 = 𝑐𝑜𝑙𝑖𝑚𝜆 𝑆𝜆 with 𝑆𝜆 of finite presentation over 𝑅. Then the identity map factors as

𝑆 → 𝑆𝜆 → 𝑆
for some 𝜆. Hence we see that 𝑆 is finitely generated over 𝑅 (because 𝑆𝜆 is). Thus we may
choose the system such that all transition maps are surjective. In this case a factorization
of the identity as above can only exist if 𝑆 = 𝑆𝜆. �

But more is true. Namely, given 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝜆 𝑅𝜆 we see that the category of finitely pre-
sented𝑅-modules is equivalent to the limit of the category of finitely presented𝑅𝜆-modules.
Similarly for the categories of finitely presented 𝑅-algebras.

Lemma7.118.3. Let𝐴 be a ring and let𝑀, 𝑁 be𝐴-modules. Suppose that𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑅𝑖
is a directed colimit of 𝐴-algebras.

(1) If 𝑀 is a finite 𝐴-module, and 𝑢, 𝑢′ ∶ 𝑀 → 𝑁 are 𝐴-module maps such that
𝑢 ⊗ 1 = 𝑢′ ⊗ 1 ∶ 𝑀 ⊗𝐴 𝑅 → 𝑁 ⊗𝐴 𝑅 then for some 𝑖 we have 𝑢 ⊗ 1 = 𝑢′ ⊗ 1 ∶
𝑀 ⊗𝐴 𝑅𝑖 → 𝑁 ⊗𝐴 𝑅𝑖.

(2) If 𝑁 is a finite 𝐴-module and 𝑢 ∶ 𝑀 → 𝑁 is an 𝐴-module map such that 𝑢 ⊗ 1 ∶
𝑀 ⊗𝐴 𝑅 → 𝑁 ⊗𝐴 𝑅 is surjective, then for some 𝑖 the map 𝑢 ⊗ 1 ∶ 𝑀 ⊗𝐴 𝑅𝑖 →
𝑁 ⊗𝐴 𝑅𝑖 is surjective.

(3) If𝑁 is a finitely presented𝐴-module, and 𝑣 ∶ 𝑁⊗𝐴𝑅 → 𝑀⊗𝐴𝑅 is an𝑅-module
map, then there exists an 𝑖 and an 𝑅𝑖-module map 𝑣𝑖 ∶ 𝑁 ⊗𝐴 𝑅𝑖 → 𝑀 ⊗𝐴 𝑅𝑖
such that 𝑣 = 𝑣𝑖 ⊗ 1.

(4) If 𝑀 is a finite 𝐴-module, 𝑁 is a finitely presented 𝐴-module, and 𝑢 ∶ 𝑀 → 𝑁
is an 𝑅-module map such that 𝑢 ⊗ 1 ∶ 𝑀 ⊗𝐴 𝑅 → 𝑁 ⊗𝐴 𝑅 is an isomorphism,
then for some 𝑖 the map 𝑢 ⊗ 1 ∶ 𝑀 ⊗𝐴 𝑅𝑖 → 𝑁 ⊗𝐴 𝑅𝑖 is an isomorphism.

Proof. To prove (1) assume 𝑢 is as in (1) and let 𝑥1, … , 𝑥𝑚 ∈ 𝑀 be generators. Since
𝑁 ⊗𝐴 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑁 ⊗𝐴 𝑅𝑖 we may pick an 𝑖 ∈ 𝐼 such that 𝑢(𝑥𝑗) ⊗ 1 = 𝑢′(𝑥𝑗) ⊗ 1 in
𝑀 ⊗𝐴 𝑅𝑖, 𝑗 = 1, … , 𝑚. For such an 𝑖 we have 𝑢 ⊗ 1 = 𝑢′ ⊗ 1 ∶ 𝑀 ⊗𝐴 𝑅𝑖 → 𝑁 ⊗𝐴 𝑅𝑖.
To prove (2) assume 𝑢⊗1 surjective and let 𝑦1, … , 𝑦𝑚 ∈ 𝑁 be generators. Since 𝑁⊗𝐴 𝑅 =
𝑐𝑜𝑙𝑖𝑚𝑖 𝑁 ⊗𝐴 𝑅𝑖 we may pick an 𝑖 ∈ 𝐼 and 𝑧𝑗 ∈ 𝑀 ⊗𝐴 𝑅𝑖, 𝑗 = 1, … , 𝑚 whose images in
𝑁 ⊗𝐴 𝑅 equal 𝑦𝑗 ⊗ 1. For such an 𝑖 the map 𝑢 ⊗ 1 ∶ 𝑀 ⊗𝐴 𝑅𝑖 → 𝑁 ⊗𝐴 𝑅𝑖 is surjective.

To prove (3) let 𝑦1, … , 𝑦𝑚 ∈ 𝑁 be generators. Let 𝐾 = Ker(𝐴⊕𝑚 → 𝑁) where the map
is given by the rule (𝑎1, … , 𝑎𝑚) ↦ ∑ 𝑎𝑗𝑥𝑗. Let 𝑘1, … , 𝑘𝑡 be generators for 𝐾. Say 𝑘𝑠 =
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(𝑘𝑠1, … , 𝑘𝑠𝑚). Since 𝑀 ⊗𝐴 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀 ⊗𝐴 𝑅𝑖 we may pick an 𝑖 ∈ 𝐼 and 𝑧𝑗 ∈ 𝑀 ⊗𝐴 𝑅𝑖,
𝑗 = 1, … , 𝑚 whose images in 𝑀 ⊗𝐴 𝑅 equal 𝑣(𝑦𝑗 ⊗ 1). We want to use the 𝑧𝑗 to define the
map 𝑣𝑖 ∶ 𝑁⊗𝐴 𝑅𝑖 → 𝑀⊗𝐴 𝑅𝑖. Since 𝐾⊗𝐴 𝑅𝑖 → 𝑅⊕𝑚

𝑖 → 𝑁⊗𝐴 𝑅𝑖 → 0 is a presentation,
it suffices to check that 𝜉𝑠 = ∑𝑗 𝑘𝑠𝑗𝑧𝑗 is zero in 𝑀 ⊗𝐴 𝑅𝑖 for each 𝑠 = 1, … , 𝑡. This may
not be the case, but since the image of 𝜉𝑠 in 𝑀 ⊗𝐴 𝑅 is zero we see that it will be the case
after increasing 𝑖 a bit.

To prove (4) assume 𝑢 ⊗ 1 is an isomorphism, that 𝑀 is finite, and that 𝑁 is finitely pre-
sented. Let 𝑣 ∶ 𝑁 ⊗𝐴 𝑅 → 𝑀 ⊗𝐴 𝑅 be an inverse to 𝑢 ⊗ 1. Apply part (3) to get a map
𝑣𝑖 ∶ 𝑁 ⊗𝐴 𝑅𝑖 → 𝑀 ⊗𝐴 𝑅𝑖 for some 𝑖. Apply part (1) to see that, after increasing 𝑖 we have
𝑣𝑖 ∘ (𝑢 ⊗ 1) = id𝑀⊗𝑅𝑅𝑖

and (𝑢 ⊗ 1) ∘ 𝑣𝑖 = id𝑁⊗𝑅𝑅𝑖
. �

Lemma 7.118.4. Suppose that 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑅𝑖 is a directed colimit of rings. Then the
category of finitely presented 𝑅-modules is the colimit of the categories of finitely presented
𝑅𝜆-modules. More precisely

(1) Given a finitely presented 𝑅-module 𝑀 there exists a 𝜆 ∈ Λ and a finitely pre-
sented 𝑅𝜆-module 𝑀𝜆 such that 𝑀 ≅ 𝑀𝜆 ⊗𝑅𝜆

𝑅.
(2) Given a 𝜆 ∈ Λ, finitely presented 𝑅𝜆-modules 𝑀𝜆, 𝑁𝜆, and an 𝑅-module map

𝜑 ∶ 𝑀𝜆 ⊗𝑅𝜆
𝑅 → 𝑁𝜆 ⊗𝑅𝜆

𝑅, then there exists a 𝜇 ≥ 𝜆 and an 𝑅𝜇-module map
𝜑𝜇 ∶ 𝑀𝜆 ⊗𝑅𝜆

𝑅𝜇 → 𝑁𝜆 ⊗𝑅𝜆
𝑅𝜇 such that 𝜑 = 𝜑𝜇 ⊗ 1𝑅.

(3) Given a 𝜆 ∈ Λ, finitely presented 𝑅𝜆-modules 𝑀𝜆, 𝑁𝜆, and 𝑅-module maps
𝜑𝜆, 𝜓𝜆 ∶ 𝑀𝜆 → 𝑁𝜆 such that 𝜑 ⊗ 1𝑅 = 𝜓 ⊗ 1𝑅, then 𝜑 ⊗ 1𝑅𝜇

= 𝜓 ⊗ 1𝑅𝜇
for

some 𝜇 ≥ 𝜆.

Proof. To prove (1) choose a presentation 𝑅⊕𝑚 → 𝑅⊕𝑛 → 𝑀 → 0. Suppose that the first
map is given by the matrix 𝐴 = (𝑎𝑖𝑗). We can choose a 𝜆 ∈ Λ and a matrix 𝐴𝜆 = (𝑎𝜆,𝑖𝑗)
with coefficients in 𝑅𝜆 which maps to 𝐴 in 𝑅. Then we simply let 𝑀𝜆 be the 𝑅𝜆-module
with presentation 𝑅⊕𝑚

𝜆 → 𝑅⊕𝑛
𝜆 → 𝑀𝜆 → 0 where the first arrow is given by 𝐴𝜆.

Parts (3) and (4) follow from Lemma 7.118.3. �

Lemma 7.118.5. Let 𝐴 be a ring and let 𝐵, 𝐶 be 𝐴-algebras. Suppose that 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑅𝑖
is a directed colimit of 𝐴-algebras.

(1) If 𝐵 is a finite type 𝐴-algebra, and 𝑢, 𝑢′ ∶ 𝐵 → 𝐶 are 𝐴-algebra maps such that
𝑢 ⊗ 1 = 𝑢′ ⊗ 1 ∶ 𝐵 ⊗𝐴 𝑅 → 𝐶 ⊗𝐴 𝑅 then for some 𝑖 we have 𝑢 ⊗ 1 = 𝑢′ ⊗ 1 ∶
𝐵 ⊗𝐴 𝑅𝑖 → 𝐶 ⊗𝐴 𝑅𝑖.

(2) If 𝐶 is a finite type 𝐴-algebra and 𝑢 ∶ 𝐵 → 𝐶 is an 𝐴-algebra map such that
𝑢 ⊗ 1 ∶ 𝐵 ⊗𝐴 𝑅 → 𝐶 ⊗𝐴 𝑅 is surjective, then for some 𝑖 the map 𝑢 ⊗ 1 ∶
𝐵 ⊗𝐴 𝑅𝑖 → 𝐶 ⊗𝐴 𝑅𝑖 is surjective.

(3) If 𝐶 is of finite presentation over 𝐴 and 𝑣 ∶ 𝐶 ⊗𝐴 𝑅 → 𝐵 ⊗𝐴 𝑅 is an 𝑅-algebra
map, then there exists an 𝑖 and an 𝑅𝑖-algebra map 𝑣𝑖 ∶ 𝐶 ⊗𝐴 𝑅𝑖 → 𝐵 ⊗𝐴 𝑅)𝑖
such that 𝑣 = 𝑣𝑖 ⊗ 1.

(4) If 𝐵 is a finite type 𝐴-algebra, 𝐶 is a finitely presented 𝐴-algebra, and 𝑢 ⊗ 1 ∶
𝐵⊗𝐴𝑅 → 𝐶⊗𝐴𝑅 is an isomorphism, then for some 𝑖 the map 𝑢⊗1 ∶ 𝐵⊗𝐴𝑅𝑖 →
𝐶 ⊗𝐴 𝑅𝑖 is an isomorphism.

Proof. To prove (1) assume 𝑢 is as in (1) and let 𝑥1, … , 𝑥𝑚 ∈ 𝐵 be generators. Since
𝐵 ⊗𝐴 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐵 ⊗𝐴 𝑅𝑖 we may pick an 𝑖 ∈ 𝐼 such that 𝑢(𝑥𝑗) ⊗ 1 = 𝑢′(𝑥𝑗) ⊗ 1 in
𝐵 ⊗𝐴 𝑅𝑖, 𝑗 = 1, … , 𝑚. For such an 𝑖 we have 𝑢 ⊗ 1 = 𝑢′ ⊗ 1 ∶ 𝐵 ⊗𝐴 𝑅𝑖 → 𝐶 ⊗𝐴 𝑅𝑖.
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To prove (2) assume 𝑢 ⊗ 1 surjective and let 𝑦1, … , 𝑦𝑚 ∈ 𝐶 be generators. Since 𝐵 ⊗𝐴 𝑅 =
𝑐𝑜𝑙𝑖𝑚𝑖 𝐵 ⊗𝐴 𝑅𝑖 we may pick an 𝑖 ∈ 𝐼 and 𝑧𝑗 ∈ 𝐵 ⊗𝐴 𝑅𝑖, 𝑗 = 1, … , 𝑚 whose images in
𝐶 ⊗𝐴 𝑅 equal 𝑦𝑗 ⊗ 1. For such an 𝑖 the map 𝑢 ⊗ 1 ∶ 𝐵 ⊗𝐴 𝑅𝑖 → 𝐶 ⊗𝐴 𝑅𝑖 is surjective.

To prove (3) let 𝑐1, … , 𝑐𝑚 ∈ 𝐶 be generators. Let 𝐾 = Ker(𝐴[𝑥1, … , 𝑥𝑚] → 𝑁) where
the map is given by the rule 𝑥𝑗 ↦ ∑ 𝑐𝑗. Let 𝑓1, … , 𝑓𝑡 be generators for 𝐾 as an ideal
in 𝐴[𝑥1, … , 𝑥𝑚]. We think of 𝑓𝑗 = 𝑓𝑗(𝑥1, … , 𝑥𝑚) as a polynomial. Since 𝐵 ⊗𝐴 𝑅 =
𝑐𝑜𝑙𝑖𝑚𝑖 𝐵 ⊗𝐴 𝑅𝑖 we may pick an 𝑖 ∈ 𝐼 and 𝑧𝑗 ∈ 𝐵 ⊗𝐴 𝑅𝑖, 𝑗 = 1, … , 𝑚 whose images in
𝐵 ⊗𝐴 𝑅 equal 𝑣(𝑐𝑗 ⊗ 1). We want to use the 𝑧𝑗 to define a map 𝑣𝑖 ∶ 𝐶 ⊗𝐴 𝑅𝑖 → 𝐵 ⊗𝐴 𝑅𝑖.
Since 𝐾 ⊗𝐴 𝑅𝑖 → 𝑅𝑖[𝑥1, … , 𝑥𝑚] → 𝐶 ⊗𝐴 𝑅𝑖 → 0 is a presentation, it suffices to check
that 𝜉𝑠 = 𝑓𝑗(𝑧1, … , 𝑧𝑚) is zero in 𝐵 ⊗𝐴 𝑅𝑖 for each 𝑠 = 1, … , 𝑡. This may not be the case,
but since the image of 𝜉𝑠 in 𝐵 ⊗𝐴 𝑅 is zero we see that it will be the case after increasing 𝑖
a bit.

To prove (4) assume 𝑢 ⊗ 1 is an isomorphism, that 𝐵 is a finite type 𝐴-algebra, and that 𝐶
is a finitely presented 𝐴-algebra. Let 𝑣 ∶ 𝐵 ⊗𝐴 𝑅 → 𝐶 ⊗𝐴 𝑅 be an inverse to 𝑢 ⊗ 1. let
𝑣𝑖 ∶ 𝐶 ⊗𝐴 𝑅𝑖 → 𝐵 ⊗𝐴 𝑅𝑖 be as in part (3). Apply part (1) to see that, after increasing 𝑖 we
have 𝑣𝑖 ∘ (𝑢 ⊗ 1) = id𝐵⊗𝑅𝑅𝑖

and (𝑢 ⊗ 1) ∘ 𝑣𝑖 = id𝐶⊗𝑅𝑅𝑖
. �

Lemma 7.118.6. Suppose that 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑅𝑖 is a directed colimit of rings. Then the
category of finitely presented 𝑅-algebras is the colimit of the categories of finitely presented
𝑅𝜆-algebras. More precisely

(1) Given a finitely presented 𝑅-algebra 𝐴 there exists a 𝜆 ∈ Λ and a finitely pre-
sented 𝑅𝜆-algebra 𝐴𝜆 such that 𝐴 ≅ 𝐴𝜆 ⊗𝑅𝜆

𝑅.
(2) Given a 𝜆 ∈ Λ, finitely presented 𝑅𝜆-algebras 𝐴𝜆, 𝐵𝜆, and an 𝑅-algebra map

𝜑 ∶ 𝐴𝜆 ⊗𝑅𝜆
𝑅 → 𝐵𝜆 ⊗𝑅𝜆

𝑅, then there exists a 𝜇 ≥ 𝜆 and an 𝑅𝜇-algebra map
𝜑𝜇 ∶ 𝐴𝜆 ⊗𝑅𝜆

𝑅𝜇 → 𝐵𝜆 ⊗𝑅𝜆
𝑅𝜇 such that 𝜑 = 𝜑𝜇 ⊗ 1𝑅.

(3) Given a 𝜆 ∈ Λ, finitely presented 𝑅𝜆-algebras 𝐴𝜆, 𝐵𝜆, and 𝑅-algebra maps
𝜑𝜆, 𝜓𝜆 ∶ 𝐴𝜆 → 𝐵𝜆 such that 𝜑 ⊗ 1𝑅 = 𝜓 ⊗ 1𝑅, then 𝜑 ⊗ 1𝑅𝜇

= 𝜓 ⊗ 1𝑅𝜇
for some 𝜇 ≥ 𝜆.

Proof. To prove (1) choose a presentation 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚). We can choose
a 𝜆 ∈ Λ and elements 𝑓𝜆,𝑗 ∈ 𝑅𝜆[𝑥1, … , 𝑥𝑛] mapping to 𝑓𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. Then we
simply let 𝐴𝜆 = 𝑅𝜆[𝑥1, … , 𝑥𝑛]/(𝑓𝜆,1, … , 𝑓𝜆,𝑚).

Parts (3) and (4) follow from Lemma 7.118.5. �

Lemma 7.118.7. Suppose 𝑅 → 𝑆 is a local homomorphism of local rings. There exists
a directed set (Λ, ≤), and a system of local homomorphisms 𝑅𝜆 → 𝑆𝜆 of local rings such
that

(1) The colimit of the system 𝑅𝜆 → 𝑆𝜆 is equal to 𝑅 → 𝑆.
(2) Each 𝑅𝜆 is essentially of finite type over 𝐙.
(3) Each 𝑆𝜆 is essentially of finite type over 𝑅𝜆.

Proof. Denote 𝜑 ∶ 𝑅 → 𝑆 the ring map. Let 𝔪 ⊂ 𝑅 be the maximal ideal of 𝑅 and let
𝔫 ⊂ 𝑆 be the maximal ideal of 𝑆. Let

Λ = {(𝐴, 𝐵) ∣ 𝐴 ⊂ 𝑅, 𝐵 ⊂ 𝑆, #𝐴 < ∞, #𝐵 < ∞, 𝜑(𝐴) ⊂ 𝐵}.

As partial ordering we take the inclusion relation. For each 𝜆 = (𝐴, 𝐵) ∈ Λ we let 𝑅′
𝜆 be

the sub 𝐙-algebra generated by 𝑎 ∈ 𝐴, and we let 𝑆′
𝜆 be the sub 𝐙-algebra generated by
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𝑏, 𝑏 ∈ 𝐵. Let 𝑅𝜆 be the localization of 𝑅′
𝜆 at the prime ideal 𝑅′

𝜆 ∩ 𝔪 and let 𝑆𝜆 be the
localization of 𝑆′

𝜆 at the prime ideal 𝑆′
𝜆 ∩ 𝔫. In a picture

𝐵 // 𝑆′
𝜆

// 𝑆𝜆
// 𝑆

𝐴 //

OO

𝑅′
𝜆

//

OO

𝑅𝜆
//

OO

𝑅

OO .

The transition maps are clear. We leave the proofs of the other assertions to the reader. �

Lemma 7.118.8. Suppose 𝑅 → 𝑆 is a local homomorphism of local rings. Assume that 𝑆
is essentially of finite type over 𝑅. Then there exists a directed set (Λ, ≤), and a system of
local homomorphisms 𝑅𝜆 → 𝑆𝜆 of local rings such that

(1) The colimit of the system 𝑅𝜆 → 𝑆𝜆 is equal to 𝑅 → 𝑆.
(2) Each 𝑅𝜆 is essentially of finite type over 𝐙.
(3) Each 𝑆𝜆 is essentially of finite type over 𝑅𝜆.
(4) For each 𝜆 ≤ 𝜇 the map 𝑆𝜆 ⊗𝑅𝜆

𝑅𝜇 → 𝑆𝜇 presents 𝑆𝜇 as the localization of a
quotient of 𝑆𝜆 ⊗𝑅𝜆

𝑅𝜇.

Proof. Denote 𝜑 ∶ 𝑅 → 𝑆 the ring map. Let 𝔪 ⊂ 𝑅 be the maximal ideal of 𝑅 and
let 𝔫 ⊂ 𝑆 be the maximal ideal of 𝑆. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑆 be elements such that 𝑆 is
a localization of the sub 𝑅-algebra of 𝑆 generated by 𝑥1, … , 𝑥𝑛. In other words, 𝑆 is a
quotient of a localization of the polynomial ring 𝑅[𝑥1, … , 𝑥𝑛].

Let Λ = {𝐴 ⊂ 𝑅 ∣ #𝐴 < ∞} be the set of finite subsets of 𝑅. As partial ordering we take
the inclusion relation. For each 𝜆 = 𝐴 ∈ Λ we let 𝑅′

𝜆 be the sub 𝐙-algebra generated by
𝑎 ∈ 𝐴, and we let 𝑆′

𝜆 be the sub 𝐙-algebra generated by 𝜑(𝑎), 𝑎 ∈ 𝐴 and the elements
𝑥1, … , 𝑥𝑛. Let 𝑅𝜆 be the localization of 𝑅′

𝜆 at the prime ideal 𝑅′
𝜆 ∩ 𝔪 and let 𝑆𝜆 be the

localization of 𝑆′
𝜆 at the prime ideal 𝑆′

𝜆 ∩ 𝔫. In a picture

𝜑(𝐴) ∐{𝑥𝑖} // 𝑆′
𝜆

// 𝑆𝜆
// 𝑆

𝐴 //

OO

𝑅′
𝜆

//

OO

𝑅𝜆
//

OO

𝑅

OO

It is clear that if 𝐴 ⊂ 𝐵 corresponds to 𝜆 ≤ 𝜇 in Λ, then there are canonical maps 𝑅𝜆 → 𝑅𝜇,
and 𝑆𝜆 → 𝑆𝜇 and we obtain a system over the directed set Λ.

The assertion that 𝑅 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝜆 is clear because all the maps 𝑅𝜆 → 𝑅 are injective and
any element of 𝑅 eventually is in the image. The same argument works for 𝑆 = 𝑐𝑜𝑙𝑖𝑚 𝑆𝜆.
Assertions (2), (3) are true by construction. The final assertion holds because clearly the
maps 𝑆′

𝜆 ⊗𝑅′
𝜆

𝑅′
𝜇 → 𝑆′

𝜇 are surjective. �

Lemma 7.118.9. Suppose 𝑅 → 𝑆 is a local homomorphism of local rings. Assume that
𝑆 is essentially of finite presentation over 𝑅. Then there exists a directed set (Λ, ≤), and a
system of local homomorphism 𝑅𝜆 → 𝑆𝜆 of local rings such that

(1) The colimit of the system 𝑅𝜆 → 𝑆𝜆 is equal to 𝑅 → 𝑆.
(2) Each 𝑅𝜆 is essentially of finite type over 𝐙.
(3) Each 𝑆𝜆 is essentially of finite type over 𝑅𝜆.
(4) For each 𝜆 ≤ 𝜇 the map 𝑆𝜆 ⊗𝑅𝜆

𝑅𝜇 → 𝑆𝜇 presents 𝑆𝜇 as the localization of
𝑆𝜆 ⊗𝑅𝜆

𝑅𝜇 at a prime ideal.
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Proof. By assumption we may choose an isomorphism Φ ∶ (𝑅[𝑥1, … , 𝑥𝑛]/𝐼)𝔮 → 𝑆 where
𝐼 ⊂ 𝑅[𝑥1, … , 𝑥𝑛] is a finitely generated ideal, and 𝔮 ⊂ 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 is a prime. (Note that
the pull back of 𝔮 to 𝑅 is equal to the maximal ideal 𝔪 of 𝑅.) We also choose generators
𝑓1, … , 𝑓𝑚 ∈ 𝐼 for the ideal 𝐼. Write 𝑅 in any way as a colimit 𝑅 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝜆 over a
directed set (Λ, ≤), with each 𝑅𝜆 local and essentially of finite type over 𝐙. There exists
some 𝜆0 ∈ Λ such that 𝑓𝑗 is the image of some 𝑓𝑗,𝜆0

∈ 𝑅𝜆0
[𝑥1, … , 𝑥𝑛]. For all 𝜆 ≥ 𝜆0

denote 𝑓𝑗,𝜆 ∈ 𝑅𝜆[𝑥1, … , 𝑥𝑛] the image of 𝑓𝑗,𝜆0
. Thus we obtain a system of ring maps

𝑅𝜆[𝑥1, … , 𝑥𝑛]/(𝑓1,𝜆, … , 𝑓𝑛,𝜆) → 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑛) → 𝑆

Set 𝔮𝜆 the inverse image of 𝔮. Set 𝑆𝜆 = (𝑅𝜆[𝑥1, … , 𝑥𝑛]/(𝑓1,𝜆, … , 𝑓𝑛,𝜆))𝔮𝜆
. We leave it to

the reader to see that this works. �

Remark 7.118.10. Suppose that 𝑅 → 𝑆 is a local homomorphism of local rings, which
is essentially of finite presentation. Take any system (Λ, ≤), 𝑅𝜆 → 𝑆𝜆 with the properties
listed in Lemma 7.118.8. What may happen is that this is the ``wrong'' system, namely, it
may happen that property (4) of Lemma 7.118.9 is not satisfied. Here is an example. Let 𝑘
be a field. Consider the ring

𝑅 = 𝑘[[𝑧, 𝑦1, 𝑦2, …]]/(𝑦2
𝑖 − 𝑧𝑦𝑖+1).

Set 𝑆 = 𝑅/𝑧𝑅. As system take Λ = 𝐍 and 𝑅𝑛 = 𝑘[[𝑧, 𝑦1, … , 𝑦𝑛]]/({𝑦2
𝑖 − 𝑧𝑦𝑖+1}𝑖≤𝑛−1) and

𝑆𝑛 = 𝑅𝑛/(𝑧, 𝑦2
𝑛). All the maps 𝑆𝑛 ⊗𝑅𝑛

𝑅𝑛+1 → 𝑆𝑛+1 are not localizations (i.e., isomor-
phisms in this case) since 1 ⊗ 𝑦2

𝑛+1 maps to zero. If we take instead 𝑆′
𝑛 = 𝑅𝑛/𝑧𝑅𝑛 then the

maps 𝑆′
𝑛 ⊗𝑅𝑛

𝑅𝑛+1 → 𝑆′
𝑛+1 are isomorphisms. The moral of this remark is that we do have

to be a little careful in choosing the systems.

Lemma 7.118.11. Suppose 𝑅 → 𝑆 is a local homomorphism of local rings. Assume that
𝑆 is essentially of finite presentation over 𝑅. Let 𝑀 be a finitely presented 𝑆-module. Then
there exists a directed set (Λ, ≤), and a system of local homomorphisms 𝑅𝜆 → 𝑆𝜆 of local
rings together with 𝑆𝜆-modules 𝑀𝜆, such that

(1) The colimit of the system 𝑅𝜆 → 𝑆𝜆 is equal to 𝑅 → 𝑆. The colimit of the system
𝑀𝜆 is 𝑀.

(2) Each 𝑅𝜆 is essentially of finite type over 𝐙.
(3) Each 𝑆𝜆 is essentially of finite type over 𝑅𝜆.
(4) Each 𝑀𝜆 is finite over 𝑆𝜆.
(5) For each 𝜆 ≤ 𝜇 the map 𝑆𝜆 ⊗𝑅𝜆

𝑅𝜇 → 𝑆𝜇 presents 𝑆𝜇 as the localization of
𝑆𝜆 ⊗𝑅𝜆

𝑅𝜇 at a prime ideal.
(6) For each 𝜆 ≤ 𝜇 the map 𝑀𝜆 ⊗𝑆𝜆

𝑆𝜇 → 𝑀𝜇 is an isomorphism.

Proof. As in the proof of Lemma 7.118.9 we may first write 𝑅 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝜆 as a directed
colimit of local 𝐙-algebras which are essentially of finite type. Next, we may assume that
for some 𝜆1 ∈ Λ there exist 𝑓𝑗,𝜆1

∈ 𝑅𝜆1
[𝑥1, … , 𝑥𝑛] such that

𝑆 = 𝑐𝑜𝑙𝑖𝑚𝜆≥𝜆1
𝑆𝜆, with 𝑆𝜆 = (𝑅𝜆[𝑥1, … , 𝑥𝑛]/(𝑓1,𝜆, … , 𝑓𝑚,𝜆))𝔮𝜆

Choose a presentation
𝑆⊕𝑠 → 𝑆⊕𝑡 → 𝑀 → 0

of 𝑀 over 𝑆. Let 𝐴 ∈ Mat(𝑡 × 𝑠, 𝑆) be the matrix of the presentation. For some 𝜆2 ∈ Λ,
𝜆2 ≥ 𝜆1 we can find a matrix 𝐴𝜆2

∈ Mat(𝑡 × 𝑠, 𝑆𝜆2
) which maps to 𝐴. For all 𝜆 ≥ 𝜆2 we let

𝑀𝜆 = Coker(𝑆⊕𝑠
𝜆

𝐴𝜆−−→ 𝑆⊕𝑡
𝜆 ). We leave it to the reader to see that this works. �
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Lemma 7.118.12. Suppose 𝑅 → 𝑆 is a ring map. Then there exists a directed set (Λ, ≤),
and a system of ring maps 𝑅𝜆 → 𝑆𝜆 such that

(1) The colimit of the system 𝑅𝜆 → 𝑆𝜆 is equal to 𝑅 → 𝑆.
(2) Each 𝑅𝜆 is of finite type over 𝐙.
(3) Each 𝑆𝜆 is of finite type over 𝑅𝜆.

Proof. This is the non-local version of Lemma 7.118.7. Proof is similar and left to the
reader. �

Lemma 7.118.13. Suppose 𝑅 → 𝑆 is a ring map. Assume that 𝑆 is of finite type over 𝑅.
Then there exists a directed set (Λ, ≤), and a system of ring maps 𝑅𝜆 → 𝑆𝜆 such that

(1) The colimit of the system 𝑅𝜆 → 𝑆𝜆 is equal to 𝑅 → 𝑆.
(2) Each 𝑅𝜆 is of finite type over 𝐙.
(3) Each 𝑆𝜆 is of finite type over 𝑅𝜆.
(4) For each 𝜆 ≤ 𝜇 the map 𝑆𝜆⊗𝑅𝜆

𝑅𝜇 → 𝑆𝜇 presents 𝑆𝜇 as a quotient of 𝑆𝜆⊗𝑅𝜆
𝑅𝜇.

Proof. This is the non-local version of Lemma 7.118.8. Proof is similar and left to the
reader. �

Lemma 7.118.14. Suppose 𝑅 → 𝑆 is a ring map. Assume that 𝑆 is of finite presentation
over 𝑅. Then there exists a directed set (Λ, ≤), and a system of ring maps 𝑅𝜆 → 𝑆𝜆 such
that

(1) The colimit of the system 𝑅𝜆 → 𝑆𝜆 is equal to 𝑅 → 𝑆.
(2) Each 𝑅𝜆 is of finite type over 𝐙.
(3) Each 𝑆𝜆 is of finite type over 𝑅𝜆.
(4) For each 𝜆 ≤ 𝜇 the map 𝑆𝜆 ⊗𝑅𝜆

𝑅𝜇 → 𝑆𝜇 is an isomorphism.

Proof. This is the non-local version of Lemma 7.118.9. Proof is similar and left to the
reader. �

Lemma 7.118.15. Suppose 𝑅 → 𝑆 is a ring map. Assume that 𝑆 is of finite presentation
over 𝑅. Let 𝑀 be a finitely presented 𝑆-module. Then there exists a directed set (Λ, ≤),
and a system of ring maps 𝑅𝜆 → 𝑆𝜆 together with 𝑆𝜆-modules 𝑀𝜆, such that

(1) The colimit of the system 𝑅𝜆 → 𝑆𝜆 is equal to 𝑅 → 𝑆. The colimit of the system
𝑀𝜆 is 𝑀.

(2) Each 𝑅𝜆 is of finite type over 𝐙.
(3) Each 𝑆𝜆 is of finite type over 𝑅𝜆.
(4) Each 𝑀𝜆 is finite over 𝑆𝜆.
(5) For each 𝜆 ≤ 𝜇 the map 𝑆𝜆 ⊗𝑅𝜆

𝑅𝜇 → 𝑆𝜇 is an isomorphism.
(6) For each 𝜆 ≤ 𝜇 the map 𝑀𝜆 ⊗𝑆𝜆

𝑆𝜇 → 𝑆𝜇 is an isomorphism.
In particular, for every 𝜆 ∈ Λ we have

𝑀 = 𝑀𝜆 ⊗𝑆𝜆
𝑆 = 𝑀𝜆 ⊗𝑅𝜆

𝑅.

Proof. This is the non-local version of Lemma 7.118.11. Proof is similar and left to the
reader. �

7.119. More flatness criteria

The following lemma is often used in algebraic geometry to show that a finite morphism
from a normal surface to a smooth surface is flat. It is a partial converse to Lemma 7.103.9
because a finite local ring map certainly satisfies condition (3).
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Lemma 7.119.1. Let 𝑅 → 𝑆 be a local homomorphism of Noetherian local rings. Assume
(1) 𝑅 is regular,
(2) 𝑆 Cohen-Macaulay,
(3) 𝔪𝑆 = √𝔪𝑅𝑆, and
(4) dim(𝑅) = dim(𝑆).

Then 𝑅 → 𝑆 is flat.

Proof. By induction on dim(𝑅). The case dim(𝑅) = 0 is trivial, because then 𝑅 is a field.
Assume dim(𝑅) > 0. By (4) this implies that dim(𝑆) > 0. Let 𝔮1, … , 𝔮𝑟 be the minimal
primes of 𝑆. Note that 𝔮𝑖≠𝔪𝑆, hence 𝔭𝑖 = 𝑅 ∩ 𝔮𝑖 is not equal to 𝔪𝑅 by (3). Pick 𝑥 ∈ 𝔪,
𝑥∉𝔪2, and 𝑥∉𝔭𝑖, see Lemma 7.14.3. Hence we see that 𝑥 is not contained in any of the
minimal primes of 𝑆. Hence 𝑥 is a nonzero divisor on 𝑆 by (2), see Lemma 7.96.2 and 𝑆/𝑥𝑆
is Cohen-Macaulay with dim(𝑆/𝑥𝑆) = dim(𝑆)−1. By (1) and Lemma 7.98.3 the ring 𝑅/𝑥𝑅
is regular with dim(𝑅/𝑥𝑅) = dim(𝑅) − 1. By induction we see that 𝑅/𝑥𝑅 → 𝑆/𝑥𝑆 is flat.
Hence we conclude by Lemma 7.91.9 (see also the remarks following it). �

Lemma 7.119.2. Let𝑅 → 𝑆 be a homomorphism of Noetherian local rings. Assume that𝑅
is a regular local ring and that a regular system of parameters maps to a regular sequence
in 𝑆. Then 𝑅 → 𝑆 is flat.

Proof. Suppose that 𝑥1, … , 𝑥𝑑 are a system of parameters of 𝑅 which map to a regu-
lar sequence in 𝑆. Note that 𝑆/(𝑥1, … , 𝑥𝑑)𝑆 is flat over 𝑅/(𝑥1, … , 𝑥𝑑) as the latter is a
field. Then 𝑥𝑑 is a nonzero divisor in 𝑆/(𝑥1, … , 𝑥𝑑−1)𝑆 hence 𝑆/(𝑥1, … , 𝑥𝑑−1)𝑆 is flat
over 𝑅/(𝑥1, … , 𝑥𝑑−1) by the local criterion of flatness (see Lemma 7.91.9 and remarks fol-
lowing). Then 𝑥𝑑−1 is a nonzero divisor in 𝑆/(𝑥1, … , 𝑥𝑑−2)𝑆 hence 𝑆/(𝑥1, … , 𝑥𝑑−2)𝑆 is
flat over 𝑅/(𝑥1, … , 𝑥𝑑−2) by the local criterion of flatness (see Lemma 7.91.9 and remarks
following). Continue till one reaches the conclusion that 𝑆 is flat over 𝑅. �

The following lemma is the key to proving that results for finitely presented modules over
finitely presented rings over a base ring follow from the corresponding results for finite
modules in the Noetherian case.

Lemma 7.119.3. Let 𝑅 → 𝑆, 𝑀, Λ, 𝑅𝜆 → 𝑆𝜆, 𝑀𝜆 be as in Lemma 7.118.11. Assume that
𝑀 is flat over 𝑅. Then for some 𝜆 ∈ Λ the module 𝑀𝜆 is flat over 𝑅𝜆.

Proof. Pick some 𝜆 ∈ Λ and consider
Tor𝑅𝜆

1 (𝑀𝜆, 𝑅𝜆/𝔪𝜆) = Ker(𝔪𝜆 ⊗𝑅𝜆
𝑀𝜆 → 𝑀𝜆).

See Remark 7.69.8. The right hand side shows that this is a finitely generated 𝑆𝜆-module
(because 𝑆𝜆 is Noetherian and the modules in question are finite). Let 𝜉1, … , 𝜉𝑛 be gen-
erators. Because 𝑀 is flat over 𝑅 we have that 0 = Ker(𝔪𝜆𝑅 ⊗𝑅 𝑀 → 𝑀). Since ⊗
commutes with colimits we see there exists a 𝜆′ ≥ 𝜆 such that each 𝜉𝑖 maps to zero in
𝔪𝜆𝑅𝜆′ ⊗𝑅𝜆′ 𝑀𝜆′. Hence we see that

Tor𝑅𝜆
1 (𝑀𝜆, 𝑅𝜆/𝔪𝜆) ⟶ Tor𝑅𝜆′

1 (𝑀𝜆, 𝑅𝜆′/𝔪𝜆𝑅𝜆′)
is zero. Note that 𝑀𝜆 ⊗𝑅𝜆

𝑅𝜆/𝔪𝜆 is flat over 𝑅𝜆/𝔪𝜆 because this last ring is a field. Hence
we may apply Lemma 7.91.13 to get that 𝑀𝜆′ is flat over 𝑅𝜆′. �

Using the lemma above we can start to reprove the results of Section 7.91 in the non-
Noetherian case.

Lemma 7.119.4. Suppose that 𝑅 → 𝑆 is a local homomorphism of local rings. Denote 𝔪
the maximal ideal of 𝑅. Let 𝑢 ∶ 𝑀 → 𝑁 be a map of 𝑆-modules. Assume
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(1) 𝑆 is essentially of finite presentation over 𝑅,
(2) 𝑀, 𝑁 are finitely presented over 𝑆,
(3) 𝑁 is flat over 𝑅, and
(4) 𝑢 ∶ 𝑀/𝔪𝑀 → 𝑁/𝔪𝑁 is injective.

Then 𝑢 is injective, and 𝑁/𝑢(𝑀) is flat over 𝑅.

Proof. By Lemma 7.118.11 and its proof we can find a system 𝑅𝜆 → 𝑆𝜆 of local ring maps
together with maps of 𝑆𝜆-modules 𝑢𝜆 ∶ 𝑀𝜆 → 𝑁𝜆 satisfying the conclusions (1) -- (6) for
both 𝑁 and 𝑀 of that lemma and such that the colimit of the maps 𝑢𝜆 is 𝑢. By Lemma
7.119.3 we may assume that 𝑁𝜆 is flat over 𝑅𝜆 for all sufficiently large 𝜆. Denote 𝔪𝜆 ⊂ 𝑅𝜆
the maximal ideal and 𝜅𝜆 = 𝑅𝜆/𝔪𝜆, resp. 𝜅 = 𝑅/𝔪 the residue fields.

Consider the map
Ψ𝜆 ∶ 𝑀𝜆/𝔪𝜆𝑀𝜆 ⊗𝜅𝜆

𝜅 ⟶ 𝑀/𝔪𝑀.
Since 𝑆𝜆/𝔪𝜆𝑆𝜆 is essentially of finite type over the field 𝜅𝜆 we see that the tensor product
𝑆𝜆/𝔪𝜆𝑆𝜆 ⊗𝜅𝜆

𝜅 is essentially of finite type over 𝜅. Hence it is a Noetherian ring and we
conclude the kernel of Ψ𝜆 is finitely generated. Since 𝑀/𝔪𝑀 is the colimit of the system
𝑀𝜆/𝔪𝜆𝑀𝜆 and 𝜅 is the colimit of the fields 𝜅𝜆 there exists a 𝜆′ > 𝜆 such that the kernel of
Ψ𝜆 is generated by the kernel of

Ψ𝜆,𝜆′ ∶ 𝑀𝜆/𝔪𝜆𝑀𝜆 ⊗𝜅𝜆
𝜅𝜆′ ⟶ 𝑀𝜆′/𝔪𝜆′𝑀𝜆′.

By construction there exists a multiplicative subset 𝑊 ⊂ 𝑆𝜆 ⊗𝑅𝜆
𝑅𝜆′ such that 𝑆𝜆′ =

𝑊−1(𝑆𝜆 ⊗𝑅𝜆
𝑅𝜆′) and

𝑊−1(𝑀𝜆/𝔪𝜆𝑀𝜆 ⊗𝜅𝜆
𝜅𝜆′) = 𝑀𝜆′/𝔪𝜆′𝑀𝜆′.

Now suppose that 𝑥 is an element of the kernel of

Ψ𝜆′ ∶ 𝑀𝜆′/𝔪𝜆′𝑀𝜆′ ⊗𝜅𝜆′ 𝜅 ⟶ 𝑀/𝔪𝑀.

Then for some𝑤 ∈ 𝑊we have𝑤𝑥 ∈ 𝑀𝜆/𝔪𝜆𝑀𝜆⊗𝜅. Hence𝑤𝑥 ∈ Ker(Ψ𝜆). Hence𝑤𝑥 is a
linear combination of elements in the kernel of Ψ𝜆,𝜆′. Hence 𝑤𝑥 = 0 in 𝑀𝜆′/𝔪𝜆′𝑀𝜆′ ⊗𝜅𝜆′
𝜅, hence 𝑥 = 0 because 𝑤 is invertible in 𝑆𝜆′. We conclude that the kernel of Ψ𝜆′ is zero
for all sufficiently large 𝜆′!

By the result of the preceding paragraph we may assume that the kernel of Ψ𝜆 is zero for all
𝜆 sufficiently large, which implies that the map 𝑀𝜆/𝔪𝜆𝑀𝜆 → 𝑀/𝔪𝑀 is injective. Com-
bined with 𝑢 being injective this formally implies that also 𝑢𝜆 ∶ 𝑀𝜆/𝔪𝜆𝑀𝜆 → 𝑁𝜆/𝔪𝜆𝑁𝜆
is injective. By Lemma 7.91.1 we conclude that (for all sufficiently large 𝜆) the map 𝑢𝜆 is
injective and that 𝑁𝜆/𝑢𝜆(𝑀𝜆) is flat over 𝑅𝜆. The lemma follows. �

Lemma 7.119.5. Suppose that𝑅 → 𝑆 is a local ring homomorphism of local rings. Denote
𝔪 the maximal ideal of 𝑅. Suppose

(1) 𝑆 is essentially of finite presentation over 𝑅,
(2) 𝑆 is flat over 𝑅, and
(3) 𝑓 ∈ 𝑆 is a nonzero divisor in 𝑆/𝔪𝑆.

Then 𝑆/𝑓𝑆 is flat over 𝑅, and 𝑓 is a nonzero divisor in 𝑆.

Proof. Follows directly from Lemma 7.119.4. �

Lemma 7.119.6. Suppose that𝑅 → 𝑆 is a local ring homomorphism of local rings. Denote
𝔪 the maximal ideal of 𝑅. Suppose

(1) 𝑅 → 𝑆 is essentially of finite presentation,
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(2) 𝑅 → 𝑆 is flat, and
(3) 𝑓1, … , 𝑓𝑐 is a sequence of elements of 𝑆 such that the images 𝑓1, … , 𝑓𝑐 form a

regular sequence in 𝑆/𝔪𝑆.
Then 𝑓1, … , 𝑓𝑐 is a regular sequence in 𝑆 and each of the quotients 𝑆/(𝑓1, … , 𝑓𝑖) is flat
over 𝑅.

Proof. Induction and Lemma 7.119.5 above. �

Here is the version of the local criterion of flatness for the case of local ring maps which
are locally of finite presentation.

Lemma 7.119.7. Let 𝑅 → 𝑆 be a local homomorphism of local rings. Let 𝐼≠𝑅 be an ideal
in 𝑅. Let 𝑀 be an 𝑆-module. Assume

(1) 𝑆 is essentially of finite presentation over 𝑅,
(2) 𝑀 is of finite presentation over 𝑆,
(3) Tor𝑅

1 (𝑀, 𝑅/𝐼) = 0, and
(4) 𝑀/𝐼𝑀 is flat over 𝑅/𝐼.

Then 𝑀 is flat over 𝑅.

Proof. Let Λ, 𝑅𝜆 → 𝑆𝜆, 𝑀𝜆 be as in Lemma 7.118.11. Denote 𝐼𝜆 ⊂ 𝑅𝜆 the inverse image
of 𝐼. In this case the system 𝑅/𝐼 → 𝑆/𝐼𝑆, 𝑀/𝐼𝑀, 𝑅𝜆 → 𝑆𝜆/𝐼𝜆𝑆𝜆, and 𝑀𝜆/𝐼𝜆𝑀𝜆 satisfies
the conclusions of Lemma 7.118.11 as well. Hence by Lemma 7.119.3 we may assume
(after shrinking the index set Λ) that 𝑀𝜆/𝐼𝜆𝑀𝜆 is flat for all 𝜆. Pick some 𝜆 and consider

Tor𝑅𝜆
1 (𝑀𝜆, 𝑅𝜆/𝐼𝜆) = Ker(𝐼𝜆 ⊗𝑅𝜆

𝑀𝜆 → 𝑀𝜆).

See Remark 7.69.8. The right hand side shows that this is a finitely generated 𝑆𝜆-module
(because 𝑆𝜆 is Noetherian and the modules in question are finite). Let 𝜉1, … , 𝜉𝑛 be gener-
ators. Because Tor1𝑅(𝑀, 𝑅/𝐼) = 0 and since ⊗ commutes with colimits we see there exists
a 𝜆′ ≥ 𝜆 such that each 𝜉𝑖 maps to zero in Tor𝑅𝜆′

1 (𝑀𝜆′, 𝑅𝜆′/𝐼𝜆′). The composition of the
maps

𝑅𝜆′ ⊗𝑅𝜆
Tor𝑅𝜆

1 (𝑀𝜆, 𝑅𝜆/𝐼𝜆)

surjective by Lemma 7.91.11
��

Tor𝑅𝜆
1 (𝑀𝜆, 𝑅𝜆′/𝐼𝜆𝑅𝜆′)

surjective up to localization by Lemma 7.91.12
��

Tor𝑅𝜆′
1 (𝑀𝜆′, 𝑅𝜆′/𝐼𝜆𝑅𝜆′)

surjective by Lemma 7.91.11
��

Tor𝑅𝜆′
1 (𝑀𝜆′, 𝑅𝜆′/𝐼𝜆′).

is surjective up to a localization by the reasons indicated. The localization is necessary
since 𝑀𝜆′ is not equal to 𝑀𝜆 ⊗𝑅𝜆

𝑅𝜆′. Namely, it is equal to 𝑀𝜆 ⊗𝑆𝜆
𝑆𝜆′ and 𝑆𝜆′ is the

localization of 𝑆𝜆 ⊗𝑅𝜆
𝑅𝜆′ whence the statement up to a localization (or tensoring with

𝑆𝜆′). Note that Lemma 7.91.11 applies to the first and third arrows because 𝑀𝜆/𝐼𝜆𝑀𝜆 is
flat over 𝑅𝜆/𝐼𝜆 and because 𝑀𝜆′/𝐼𝜆𝑀𝜆′ is flat over 𝑅𝜆′/𝐼𝜆𝑅𝜆′ as it is a base change of the
flat module 𝑀𝜆/𝐼𝜆𝑀𝜆. The composition maps the generators 𝜉𝑖 to zero as we explained

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0471


7.119. MORE FLATNESS CRITERIA 451

above. We finally conclude that Tor𝑅𝜆′
1 (𝑀𝜆′, 𝑅𝜆′/𝐼𝜆′) is zero. This implies that 𝑀𝜆′ is flat

over 𝑅𝜆′ by Lemma 7.91.9. �

Please compare the lemma below to Lemma 7.91.14 (the case of Noetherian local rings)
and Lemma 7.93.8 (the case of a nilpotent ideal in the base).

Lemma 7.119.8 (Critère de platitude par fibres). Let 𝑅, 𝑆, 𝑆′ be local rings and let 𝑅 →
𝑆 → 𝑆′ be local ring homomorphisms. Let𝑀 be an 𝑆′-module. Let 𝔪 ⊂ 𝑅 be the maximal
ideal. Assume

(1) The ring maps 𝑅 → 𝑆 and 𝑅 → 𝑆′ are essentially of finite presentation.
(2) The module 𝑀 is of finite presentation over 𝑆′.
(3) The module 𝑀 is not zero.
(4) The module 𝑀/𝔪𝑀 is a flat 𝑆/𝔪𝑆-module.
(5) The module 𝑀 is a flat 𝑅-module.

Then 𝑆 is flat over 𝑅 and 𝑀 is a flat 𝑆-module.

Proof. As in the proof of Lemma 7.118.9 we may first write 𝑅 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝜆 as a directed
colimit of local 𝐙-algebras which are essentially of finite type. Denote 𝔭𝜆 the maximal ideal
of 𝑅. Next, we may assume that for some 𝜆1 ∈ Λ there exist 𝑓𝑗,𝜆1

∈ 𝑅𝜆1
[𝑥1, … , 𝑥𝑛] such

that
𝑆 = 𝑐𝑜𝑙𝑖𝑚𝜆≥𝜆1

𝑆𝜆, with 𝑆𝜆 = (𝑅𝜆[𝑥1, … , 𝑥𝑛]/(𝑓1,𝜆, … , 𝑓𝑢,𝜆))𝔮𝜆

For some 𝜆2 ∈ Λ, 𝜆2 ≥ 𝜆1 there exist 𝑔𝑗,𝜆2
∈ 𝑅𝜆2

[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚] with images
𝑔𝑗,𝜆2

∈ 𝑆𝜆2
[𝑦1, … , 𝑦𝑚] such that

𝑆′ = 𝑐𝑜𝑙𝑖𝑚𝜆≥𝜆2
𝑆′

𝜆, with 𝑆′
𝜆 = (𝑆𝜆[𝑦1, … , 𝑦𝑚]/(𝑔1,𝜆, … , 𝑔𝑣,𝜆))𝔮′

𝜆

Note that this also implies that
𝑆′

𝜆 = (𝑅𝜆[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]/(𝑔1,𝜆, … , 𝑔𝑣,𝜆))𝔮′
𝜆

Choose a presentation
(𝑆′)⊕𝑠 → (𝑆′)⊕𝑡 → 𝑀 → 0

of 𝑀 over 𝑆′. Let 𝐴 ∈ Mat(𝑡 × 𝑠, 𝑆′) be the matrix of the presentation. For some 𝜆3 ∈ Λ,
𝜆3 ≥ 𝜆2 we can find a matrix 𝐴𝜆3

∈ Mat(𝑡 × 𝑠, 𝑆𝜆3
) which maps to 𝐴. For all 𝜆 ≥ 𝜆3 we let

𝑀𝜆 = Coker((𝑆′
𝜆)⊕𝑠 𝐴𝜆−−→ (𝑆′

𝜆)⊕𝑡).
With these choices, we have for each 𝜆3 ≤ 𝜆 ≤ 𝜇 that 𝑆𝜆 ⊗𝑅𝜆

𝑅𝜇 → 𝑆𝜇 is a localization,
𝑆′

𝜆 ⊗𝑆𝜆
𝑆𝜇 → 𝑆′

𝜇 is a localization, and the map 𝑀𝜆 ⊗𝑆′
𝜆

𝑆𝜇 → 𝑀𝜇 is an isomorphism.
This also implies that 𝑆′

𝜆 ⊗𝑅𝜆
𝑅𝜇 → 𝑆′

𝜇 is a localization. Thus, since 𝑀 is flat over
𝑅 we see by Lemma 7.119.3 that for all 𝜆 big enough the module 𝑀𝜆 is flat over 𝑅𝜆.
Moreover, note that 𝔪 = 𝑐𝑜𝑙𝑖𝑚 𝔭𝜆, 𝑆/𝔪𝑆 = 𝑐𝑜𝑙𝑖𝑚 𝑆𝜆/𝔭𝜆𝑆𝜆, 𝑆′/𝔪𝑆′ = 𝑐𝑜𝑙𝑖𝑚 𝑆′

𝜆/𝔭𝜆𝑆′
𝜆,

and 𝑀/𝔪𝑀 = 𝑐𝑜𝑙𝑖𝑚 𝑀𝜆/𝔭𝜆𝑀𝜆. Also, for each 𝜆3 ≤ 𝜆 ≤ 𝜇 we see (from the properties
listed above) that

𝑆′
𝜆/𝔭𝜆𝑆′

𝜆 ⊗𝑆𝜆/𝔭𝜆𝑆𝜆
𝑆𝜇/𝔭𝜇𝑆𝜇 ⟶ 𝑆′

𝜇/𝔭𝜇𝑆′
𝜇

is a localization, and the map
𝑀𝜆/𝔭𝜆𝑀𝜆 ⊗𝑆′

𝜆/𝔭𝜆𝑆′
𝜆

𝑆𝜇/𝔭𝜇𝑆′
𝜇 ⟶ 𝑀𝜇/𝔭𝜇𝑀𝜇

is an isomorphism. Hence the system (𝑆𝜆/𝔭𝜆𝑆𝜆 → 𝑆′
𝜆/𝔭𝜆𝑆′

𝜆, 𝑀𝜆/𝔭𝜆𝑀𝜆) is a system as in
Lemma 7.118.11 as well. We may apply Lemma 7.119.3 again because 𝑀/𝔪𝑀 is assumed
flat over 𝑆/𝔪𝑆 and we see that 𝑀𝜆/𝔭𝜆𝑀𝜆 is flat over 𝑆𝜆/𝔭𝜆𝑆𝜆 for all 𝜆 big enough. Thus
for 𝜆 big enough the data 𝑅𝜆 → 𝑆𝜆 → 𝑆′

𝜆, 𝑀𝜆 satisfies the hypotheses of Lemma 7.91.14.
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Pick such a 𝜆. Then 𝑆 = 𝑆𝜆 ⊗𝑅𝜆
𝑅 is flat over 𝑅, and 𝑀 = 𝑀𝜆 ⊗𝑆𝜆

𝑆′
𝜆 is flat over 𝑆 (since

the base change of a flat module is flat). �

The following is an easy consequence of the usual version of the ``critére de platitude par
fibres''. For more results of this kind see More on Flatness, Section 34.1.

Lemma 7.119.9. (Critère de platitude par fibres; the case of essentially finite presentation
over essentially finite type.) Let 𝑅, 𝑆, 𝑆′ be local rings and let 𝑅 → 𝑆 → 𝑆′ be local ring
homomorphisms. Let 𝑀 be an 𝑆′-module. Let 𝔪 ⊂ 𝑅 be the maximal ideal. Assume

(1) 𝑅 → 𝑆′ is essentially of finite presentation,
(2) 𝑅 → 𝑆 is essentially of finite type,
(3) 𝑀 is of finite presentation over 𝑆′,
(4) 𝑀 is not zero,
(5) 𝑀/𝔪𝑀 is a flat 𝑆/𝔪𝑆-module, and
(6) 𝑀 is a flat 𝑅-module.

Then 𝑆 is essentially of finite presentation and flat over 𝑅 and 𝑀 is a flat 𝑆-module.

Proof. As 𝑆 is essentially of finite presentation over 𝑅 we can write 𝑆 = 𝐶𝔮 for some finite
type 𝑅-algebra 𝐶. Write 𝐶 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼. Denote 𝔮 ⊂ 𝑅[𝑥1, … , 𝑥𝑛] be the prime ideal
corresponding to 𝔮. Then we see that 𝑆 = 𝐵/𝐽 where 𝐵 = 𝑅[𝑥1, … , 𝑥𝑛]𝔮 is essentially of
finite presentation over 𝑅 and 𝐽 = 𝐼𝐵. We can find 𝑓1, … , 𝑓𝑘 ∈ 𝐽 such that the images
𝑓𝑖 ∈ 𝐵/𝔪𝐵 generate the image 𝐽 of 𝐽 in the Noetherian ring 𝐵/𝔪𝐵. Hence there exist
finitely generated ideals 𝐽′ ⊂ 𝐽 such that 𝐵/𝐽′ → 𝐵/𝐽 induces an isomorphism

(𝐵/𝐽′) ⊗𝑅 𝑅/𝔪 ⟶ 𝐵/𝐽 ⊗𝑅 𝑅/𝔪 = 𝑆/𝔪𝑆.

For any 𝐽′ as above we see that Lemma 7.119.8 applies to the ring maps

𝑅 ⟶ 𝐵/𝐽′ ⟶ 𝑆′

and the module 𝑀. Hence we conclude that 𝐵/𝐽′ is flat over 𝑅 for any choice 𝐽′ as above.
Now, if 𝐽′ ⊂ 𝐽′ ⊂ 𝐽 are two finitely generated ideals as above, then we conclude that
𝐵/𝐽′ → 𝐵/𝐽″ is a surjective map between flat 𝑅-algebras which are essentially of finite
presentation which is an isomorphism modulo 𝔪. Hence Lemma 7.119.4 implies that
𝐵/𝐽′ = 𝐵/𝐽″, i.e., 𝐽′ = 𝐽″. Clearly this means that 𝐽 is finitely generated, i.e., 𝑆 is essen-
tially of finite presentation over 𝑅. Thus we may apply Lemma 7.119.8 to 𝑅 → 𝑆 → 𝑆′

and we win. �

7.120. Openness of the flat locus

Lemma 7.120.1. Let 𝑘 be a field. Let𝑆 be a finite type 𝑘-algebra. Let 𝑓1, … , 𝑓𝑖 be elements
of 𝑆. Assume that 𝑆 is Cohen-Macaulay and equidimensional of dimension 𝑑, and that
dim 𝑉(𝑓1, … , 𝑓𝑖) ≤ 𝑑 − 𝑖. Then equality holds and 𝑓1, … , 𝑓𝑖 forms a regular sequence in
𝑆𝔮 for every prime 𝔮 of 𝑉(𝑓1, … , 𝑓𝑖).

Proof. If𝑆 is Cohen-Macaulay and equidimensional of dimension 𝑑, thenwe have dim(𝑆𝔪) =
𝑑 for all maximal ideals 𝔪 of 𝑆, see Lemma 7.105.7. By Proposition 7.95.4 we see that
for all maximal ideals 𝔪 ∈ 𝑉(𝑓1, … , 𝑓𝑖) the sequence is a regular sequence in 𝑆𝔪 and the
local ring 𝑆𝔪/(𝑓1, … , 𝑓𝑖) is Cohen-Macaulay of dimension 𝑑 − 𝑖. This actually means that
𝑆/(𝑓1, … , 𝑓𝑖) is Cohen-Macaulay and equidimensional of dimension 𝑑 − 𝑖. �
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Lemma 7.120.2. Suppose that 𝑅 → 𝑆 is a ring map which is finite type, flat. Let 𝑑 be
an integer such that all fibres 𝑆 ⊗𝑅 𝜅(𝔭) are Cohen-Macaulay and equidimensional of
dimension 𝑑. Let 𝑓1, … , 𝑓𝑖 be elements of 𝑆. The set

{𝔮 ∈ 𝑉(𝑓1, … , 𝑓𝑖) ∣ 𝑓1, … , 𝑓𝑖 are a regular sequence in 𝑆𝔮/𝔭𝑆𝔮 where 𝔭 = 𝑅 ∩ 𝔮}

is open in 𝑉(𝑓1, … , 𝑓𝑖).

Proof. Write 𝑆 = 𝑆/(𝑓1, … , 𝑓𝑖). Suppose 𝔮 is an element of the set defined in the lemma,
and 𝔭 is the corresponding prime of 𝑅. We will use relative dimension as defined in Defi-
nition 7.116.1. First, note that 𝑑 = dim𝔮(𝑆/𝑅) = dim(𝑆𝔮/𝔭𝑆𝔮) + trdeg𝜅(𝔭) 𝜅(𝔮) by Lemma
7.107.3. Since 𝑓1, … , 𝑓𝑖 form a regular sequence in the Noetherian local ring 𝑆𝔮/𝔭𝑆𝔮 gen-
eral dimension theory tells us that dim(𝑆𝔮/𝔭𝑆𝔮) = dim(𝑆𝔮/𝔭𝑆𝔮) − 𝑖. By the same Lemma
7.107.3 we then conclude that dim𝔮(𝑆/𝑅) = dim(𝑆𝔮/𝔭𝑆𝔮) + trdeg𝜅(𝔭) 𝜅(𝔮) = 𝑑 − 𝑖. By
Lemma 7.116.6 we have dim𝔮′(𝑆/𝑅) ≤ 𝑑 − 𝑖 for all 𝔮′ ∈ 𝑉(𝑓1, … , 𝑓𝑖) = 𝑆𝑝𝑒𝑐(𝑆) in a
neighbourhood of 𝔮. Thus after replacing 𝑆 by 𝑆𝑔 for some 𝑔 ∈ 𝑆, 𝑔∉𝔮 we may assume
that the inequality holds for all 𝔮′. The result follows from Lemma 7.120.1. �

Lemma 7.120.3. Let 𝑅 → 𝑆 is a ring map. Consider a finite homological complex of finite
free 𝑆-modules:

𝐹• ∶ 0 → 𝑆𝑛𝑒
𝜑𝑒−−→ 𝑆𝑛𝑒−1

𝜑𝑒−1−−−−→ …
𝜑𝑖+1−−−→ 𝑆𝑛𝑖

𝜑𝑖−−→ 𝑆𝑛𝑖−1
𝜑𝑖−1−−−→ …

𝜑1−−→ 𝑆𝑛0

For every prime 𝔮 of 𝑆 consider the complex 𝐹•,𝔮 = 𝐹•,𝔮 ⊗𝑅 𝜅(𝔭) where 𝔭 is inverse image
of 𝔮 in 𝑅. Assume there exists an integer 𝑑 such that 𝑅 → 𝑆 is finite type, flat with fibres
𝑆 ⊗𝑅 𝜅(𝔭) Cohen-Macaulay of dimension 𝑑. The set

{𝔮 ∈ 𝑆𝑝𝑒𝑐(𝑆) ∣ 𝐹•,𝔮 is exact}

is open in 𝑆𝑝𝑒𝑐(𝑆).

Proof. Let 𝔮 be an element of the set defined in the lemma. We are going to use Proposition
7.94.10 to show there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝐷(𝑔) is contained in the set defined in
the lemma. In other words, we are going to show that after replacing 𝑆 by 𝑆𝑔, the set of the
lemma is all of 𝑆𝑝𝑒𝑐(𝑆). Thus during the proof we will, finitely often, replace 𝑆 by such a
localization. Recall that Proposition 7.94.10 characterizes exactness of complexes in terms
of ranks of the maps 𝜑𝑖 and the ideals 𝐼(𝜑𝑖), in case the ring is local. We first address the
rank condition. Set 𝑟𝑖 = 𝑛𝑖 − 𝑛𝑖+1 + … + (−1)𝑒−𝑖𝑛𝑒. Note that 𝑟𝑖 + 𝑟𝑖+1 = 𝑛𝑖 and note that
𝑟𝑖 is the expected rank of 𝜑𝑖 (in the exact case).

By Lemma 7.91.5 we see that if 𝐹•,𝔮 is exact, then the localization 𝐹•,𝔮 is exact. In particular
the complex 𝐹• becomes exact after localizing by an element 𝑔 ∈ 𝑆, 𝑔∉𝔮. In this case
Proposition 7.94.10 applied to all localizations of 𝑆 at prime ideals implies that all (𝑟𝑖 +
1) × (𝑟𝑖 + 1)-minors of 𝜑𝑖 are zero. Thus we see that the rank of of 𝜑𝑖 is at most 𝑟𝑖.

Let 𝐼𝑖 ⊂ 𝑆 denote the ideal generated by the 𝑟𝑖 × 𝑟𝑖-minors of the matrix of 𝜑𝑖. By Propo-
sition 7.94.10 the complex 𝐹•,𝔮 is exact if and only if for every 1 ≤ 𝑖 ≤ 𝑒 we have either
(𝐼𝑖)𝔮 = 𝑆𝔮 or (𝐼𝑖)𝔮 contains a 𝑆𝔮/𝔭𝑆𝔮-regular sequence of length 𝑖. Namely, by our choice
of 𝑟𝑖 above and by the bound on the ranks of the 𝜑𝑖 this is the only way the conditions of
Proposition 7.94.10 can be satisfied.

If (𝐼𝑖)𝔮 = 𝑆𝔮, then after localizing 𝑆 at some element 𝑔∉𝔮 we may assume that 𝐼𝑖 = 𝑆.
Clearly, this is an open condition.
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If (𝐼𝑖)𝔮≠𝑆𝔮, then we have a sequence 𝑓1, … , 𝑓𝑖 ∈ (𝐼𝑖)𝔮 which form a regular sequence in
𝑆𝔮/𝔭𝑆𝔮. Note that for any prime 𝔮′ ⊂ 𝑆 such that (𝑓1, … , 𝑓𝑖)⊄𝔮′ we have (𝐼𝑖)𝔮′ = 𝑆𝔮′.
Thus the result follows from Lemma 7.120.2. �

Theorem 7.120.4. Let 𝑅 be a ring. Let 𝑅 → 𝑆 be a ring map of finite presentation. Let
𝑀 be a finitely presented 𝑆-module. The set

{𝔮 ∈ 𝑆𝑝𝑒𝑐(𝑆) ∣ 𝑀𝔮 is flat over 𝑅}
is open in 𝑆𝑝𝑒𝑐(𝑆).

Proof. Let 𝔮 ∈ 𝑆𝑝𝑒𝑐(𝑆) be a prime. Let 𝔭 ⊂ 𝑅 be the inverse image of 𝔮 in 𝑅. Note that
𝑀𝔮 is flat over 𝑅 if and only if it is flat over 𝑅𝔭. Let us assume that 𝑀𝔮 is flat over 𝑅. We
claim that there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑀𝑔 is flat over 𝑅.
We first reduce to the case where 𝑅 and 𝑆 are of finite type over 𝐙. Choose a directed
partially ordered set Λ and a system (𝑅𝜆 → 𝑆Λ, 𝑀𝜆) as in Lemma 7.118.15. Set 𝔭𝜆 equal
to the inverse image of 𝔭 in 𝑅𝜆. Set 𝔮𝜆 equal to the inverse image of 𝔮 in 𝑆𝜆. Then the
system

((𝑅𝜆)𝔭𝜆
, (𝑆𝜆)𝔮𝜆

, (𝑀𝜆)𝔮𝜆
)

is a system as in Lemma 7.118.11. Hence by Lemma 7.119.3 we see that for some 𝜆 the
module 𝑀𝜆 is flat over 𝑅𝜆 at the prime 𝔮𝜆. Suppose we can prove our claim for the system
(𝑅𝜆 → 𝑆𝜆, 𝑀𝜆, 𝔮𝜆). In other words, suppose that we can find a 𝑔 ∈ 𝑆𝜆, 𝑔∉𝔮𝜆 such that
(𝑀𝜆)𝑔 is flat over 𝑅𝜆. By Lemma 7.118.15 we have 𝑀 = 𝑀𝜆 ⊗𝑅𝜆

𝑅 and hence also 𝑀𝑔 =
(𝑀𝜆)𝑔 ⊗𝑅𝜆

𝑅. Thus by Lemma 7.35.6 we deduce the claim for the system (𝑅 → 𝑆, 𝑀, 𝔮).
At this point we may assume that 𝑅 and 𝑆 are of finite type over 𝐙. We may write 𝑆 as a
quotient of a polynomial ring 𝑅[𝑥1, … , 𝑥𝑛]. Of course, we may replace 𝑆 by 𝑅[𝑥1, … , 𝑥𝑛]
and assume that 𝑆 is a polynomial ring over 𝑅. In particular we see that 𝑅 → 𝑆 is flat and
all fibres rings 𝑆 ⊗𝑅 𝜅(𝔭) have global dimension 𝑛.
Choose a resolution 𝐹• of 𝑀 over 𝑆 with each 𝐹𝑖 finite free, see Lemma 7.67.1. Let 𝐾𝑛 =
Ker(𝐹𝑛−1 → 𝐹𝑛−2). Note that (𝐾𝑛)𝔮 is flat over 𝑅, since each 𝐹𝑖 is flat over 𝑅 and by
assumption on 𝑀, see Lemma 7.35.12. In addition, the sequence

0 → 𝐾𝑛/𝔭𝐾𝑛 → 𝐹𝑛−1/𝔭𝐹𝑛−1 → … → 𝐹0/𝔭𝐹0 → 𝑀/𝔭𝑀 → 0

is exact upon localizing at 𝔮, because of vanishing of Tor
𝑅𝔭
𝑖 (𝜅(𝔭), 𝑀𝔮). Since the global

dimension of 𝑆𝔮/𝔭𝑆𝔮 is 𝑛 we conclude that 𝐾𝑛/𝔭𝐾𝑛 localized at 𝔮 is a finite free module
over 𝑆𝔮/𝔭𝑆𝔮. By Lemma 7.91.4 (𝐾𝑛)𝔮 is free over 𝑆𝔮. In particular, there exists a 𝑔 ∈ 𝑆,
𝑔∉𝔮 such that (𝐾𝑛)𝑔 is finite free over 𝑆𝑔.
By Lemma 7.120.3 there exists a further localization 𝑆𝑔 such that the complex

0 → 𝐾𝑛 → 𝐹𝑛−1 → … → 𝐹0

is exact on all fibres of 𝑅 → 𝑆. By Lemma 7.91.5 this implies that the cokernel of 𝐹1 → 𝐹0
is flat. This proves the theorem in the Noetherian case. �

Here is a technical application of the openness of flatness. It says that we can approximate
flat modules by flat modules which is sometimes useful. Please skip on a first reading.

Lemma 7.120.5. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Assume that
(1) 𝑅 → 𝑆 is of finite presentation,
(2) 𝑀 is a finitely presented 𝑆-module, and
(3) 𝑀 is flat over 𝑅.
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In this case we have the following:
(1) There exists a finite type 𝐙-algebra 𝑅0 and a finite type ring map 𝑅0 → 𝑆0 and

a finite 𝑆0-module 𝑀0 such that 𝑀0 is flat over 𝑅0, together with a ring maps
𝑅0 → 𝑅 and 𝑆0 → 𝑆 and an 𝑆0-module map 𝑀0 → 𝑀 such that 𝑆 ≅ 𝑅 ⊗𝑅0

𝑆0
and 𝑀 = 𝑆 ⊗𝑆0

𝑀0.
(2) If𝑅 = 𝑐𝑜𝑙𝑖𝑚𝜆∈Λ 𝑅𝜆 is written as a directed colimit, then there exists a 𝜆 and a ring

map 𝑅𝜆 → 𝑆𝜆 of finite presentation, and an 𝑆𝜆-module 𝑀𝜆 of finite presentation
such that 𝑀𝜆 is flat over 𝑅𝜆 and such that 𝑆 = 𝑅 ⊗𝑅𝜆

𝑆𝜆 and 𝑀 = 𝑆 ⊗𝑆𝜆
𝑀𝜆.

(3) If
(𝑅 → 𝑆, 𝑀) = 𝑐𝑜𝑙𝑖𝑚𝜆∈Λ(𝑅𝜆 → 𝑆𝜆, 𝑀𝜆)

is written as a directed colimit such that for 𝜇 ≥ 𝜆 the maps 𝑅𝜇 ⊗𝑅𝜆
𝑆𝜆 → 𝑆𝜇 and

𝑆𝜇 ⊗𝑆𝜆
𝑀𝜆 → 𝑀𝜇 are isomorphisms then for all sufficiently large 𝜆 the module

𝑀𝜆 is flat over 𝑅𝜆.

Proof. We first write (𝑅 → 𝑆, 𝑀) as the directed colimit of a system (𝑅𝜆 → 𝑆𝜆, 𝑀𝜆) as
in as in Lemma 7.118.15. Let 𝔮 ⊂ 𝑆 be a prime. Let 𝔭 ⊂ 𝑅, 𝔮𝜆 ⊂ 𝑆𝜆, and 𝔭𝜆 ⊂ 𝑅𝜆 the
corresponding primes. As seen in the proof of Theorem 7.120.4

((𝑅𝜆)𝔭𝜆
, (𝑆𝜆)𝔮𝜆

, (𝑀𝜆)𝔮𝜆
)

is a system as in Lemma 7.118.11, and hence by Lemma 7.119.3 we see that for some
𝜆𝔮 ∈ Λ for all 𝜆 ≥ 𝜆𝔮 the module 𝑀𝜆 is flat over 𝑅𝜆 at the prime 𝔮𝜆.

By Theorem 7.120.4 we get an open subset 𝑈𝜆 ⊂ 𝑆𝑝𝑒𝑐(𝑆𝜆) such that 𝑀𝜆 flat over 𝑅𝜆
at all the primes of 𝑈𝜆. Denote 𝑉𝜆 ⊂ 𝑆𝑝𝑒𝑐(𝑆) the inverse image of 𝑈𝜆 under the map
𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑆𝜆). The argument above shows that for every 𝔮 ∈ 𝑆𝑝𝑒𝑐(𝑆) there exists
a 𝜆𝔮 such that 𝔮 ∈ 𝑉𝜆 for all 𝜆 ≥ 𝜆𝔮. Since 𝑆𝑝𝑒𝑐(𝑆) is quasi-compact we see this implies
there exists a single 𝜆0 ∈ Λ such that 𝑉𝜆0

= 𝑆𝑝𝑒𝑐(𝑆).

The complement 𝑆𝑝𝑒𝑐(𝑆𝜆0
) ⧵ 𝑈𝜆0

is 𝑉(𝐼) for some ideal 𝐼 ⊂ 𝑆𝜆0
. As 𝑉𝜆0

= 𝑆𝑝𝑒𝑐(𝑆)
we see that 𝐼𝑆 = 𝑆. Choose 𝑓1, … , 𝑓𝑟 ∈ 𝐼 and 𝑠1, … , 𝑠𝑛 ∈ 𝑆 such that ∑ 𝑓𝑖𝑠𝑖 = 1.
Since 𝑐𝑜𝑙𝑖𝑚 𝑆𝜆 = 𝑆, after increasing 𝜆0 we may assume there exist 𝑠𝑖,𝜆0

∈ 𝑆𝜆0
such that

∑ 𝑓𝑖𝑠𝑖,𝜆0
= 1. Hence for this 𝜆0 we have 𝑈𝜆0

= 𝑆𝑝𝑒𝑐(𝑆𝜆0
). This proves (1).

It turns out that (2) and (3) follow in a mechanical way from part (1). Namely, let (𝑅0 →
𝑆0, 𝑀0) be as in (1) and suppose that 𝑅 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝜆. Since 𝑅0 is a finite type 𝐙 algebra,
there exists a lambda and a map 𝑅0 → 𝑅𝜆 such that 𝑅0 → 𝑅𝜆 → 𝑅 is the given map
𝑅0 → 𝑅. Then, part (2) follows by taking 𝑆𝜆 = 𝑅𝜆 ⊗𝑅0

𝑆0 and 𝑀𝜆 = 𝑆𝜆 ⊗𝑆0
𝑀0.

Finally, we come to the proof of (3). We strongly suggest not reading this proof ever!
Assume the directed system (𝑅𝜆 → 𝑆𝜆, 𝑀𝜆) satisfies the hypotheses of (3) and that (𝑅0 →
𝑆0, 𝑀0), 𝑅0 → 𝑅 satisfies the conclusion of (1). As above, there exits a 𝜆0 and a ring map
𝑅0 → 𝑅𝜆0

such that 𝑅0 → 𝑅𝜆0
→ 𝑅 is the given map 𝑅0 → 𝑅. Then for all 𝜆 ≥ 𝜆0 we

get an induced ring map 𝑅0 → 𝑅𝜆 with the same property. Then, since 𝑆0 is of finite type
over 𝐙 too, and as 𝑆 = 𝑐𝑜𝑙𝑖𝑚 𝑆𝜆 we see that for some 𝜆1 ≥ 𝜆0 we also get an 𝑅0-algebra
map 𝑆0 → 𝑆𝜆1

such that the composition 𝑆0 → 𝑆𝜆1
→ 𝑆 is the given map 𝑆0 → 𝑆. For

all 𝜆 ≥ 𝜆1 this gives maps

Ψ𝜆 ∶ 𝑅𝜆 ⊗𝑅0
𝑆0 ⟶ 𝑅𝜆 ⊗𝑅𝜆1

𝑆𝜆1
≅ 𝑆𝜆

the last isomorphism by assumption. Let us argue that this map is an isomorphism for all
𝜆 large enough. First, pick generators 𝑥1, … , 𝑥𝑛 of the finitely presented algebra 𝑆𝜆1

over
𝑅𝜆1

. Since 𝑆 = 𝑅 ⊗𝑅0
𝑆0 and since 𝑅 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝜆 hence 𝑆 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝜆 ⊗𝑅0

𝑆0 there exists
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a 𝜆2 ≥ 𝜆1 such that 𝑥𝑖 ∈ 𝑆𝜆2
is in the image of Ψ𝜆2

. Hence for 𝜆 ≥ 𝜆2 the map Ψ𝜆2
is

surjective. Write 𝑆0 = 𝑅0[𝑦1, … , 𝑦𝑚]/𝐼0. Write

𝑆𝜆2
= 𝑅𝜆2

[𝑦1, … , 𝑦𝑚]/(𝑔1, … , 𝑔𝑘).

We know that 𝑔1, … , 𝑔𝑘 ∈ 𝐼0𝑅[𝑦1, … , 𝑦𝑚] as 𝑆 = 𝑅[𝑦1, … , 𝑦𝑚]/(𝑔1, … , 𝑔𝑚) and also
𝑆 = 𝑅[𝑦1, … , 𝑦𝑚]/𝐼0𝑅[𝑦1, … , 𝑦𝑚] by all our assumptions. Hence for some 𝜆3 ≥ 𝜆2 we
see that 𝑔1, … , 𝑔𝑚 ∈ 𝐼0𝑅𝜆3

[𝑦1, … , 𝑦𝑚]. Then it is clear that Ψ𝜆 is an isomorphism for all
𝜆 ≥ 𝜆3. Phew!

In the same vein, there exists a 𝜆4 and an 𝑆0-module map 𝑀0 → 𝑀𝜆4
such that 𝑀0 →

𝑀𝜆4
→ 𝑀 is the given map 𝑀0 → 𝑀. We claim that for all 𝜆 large enough the induced

maps 𝑆𝜆 ⊗𝑆0
𝑀0 → 𝑀𝜆 are isomorphisms. This is proved in exactly the same way as

above and we omit it. Of course this implies (3), because 𝑀0 is flat over 𝑅0. �

Lemma 7.120.6. Let 𝑅 → 𝐴 → 𝐵 be ring maps. Assume 𝐴 → 𝐵 faithfully flat of finite
presentation. Then there exists a commutative diagram

𝑅 // 𝐴0

��

// 𝐵0

��
𝑅 // 𝐴 // 𝐵

with 𝑅 → 𝐴0 of finite presentation, 𝐴0 → 𝐵0 faithfully flat of finite presentation and
𝐵 = 𝐴 ⊗𝐴0

𝐵0.

Proof. We first prove the lemma with 𝑅 replaced 𝐙. By Lemma 7.120.5 there exists a
diagram

𝐴0
// 𝐴

𝐵0

OO

// 𝐵

OO

where 𝐴0 is of finite type over 𝐙, 𝐵0 is flat of finite presentation over 𝐴0 such that 𝐵 =
𝐴 ⊗𝐴0

𝐵0. As 𝐴0 → 𝐵0 is flat of finite presentation we see that the image of 𝑆𝑝𝑒𝑐(𝐵0) →
𝑆𝑝𝑒𝑐(𝐴0) is open, see Proposition 7.36.8. Hence the complement of the image is 𝑉(𝐼0) for
some ideal 𝐼0 ⊂ 𝐴0. As 𝐴 → 𝐵 is faithfully flat the map 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) is surjective,
see Lemma 7.35.15. Now we use that the base change of the image is the image of the
base change. Hence 𝐼0𝐴 = 𝐴. Pick a relation ∑ 𝑓𝑖𝑟𝑖 = 1, with 𝑟𝑖 ∈ 𝐴, 𝑓𝑖 ∈ 𝐼0. Then
after enlarging 𝐴0 to contain the elements 𝑟𝑖 (and correspondingly enlarging 𝐵0) we see
that 𝐴0 → 𝐵0 is surjective on spectra also, i.e., faithfully flat.

Thus the lemma holds in case 𝑅 = 𝐙. In the general case, take the solution 𝐴′
0 → 𝐵′

0 just
obtained and set 𝐴0 = 𝐴′

0 ⊗𝐙 𝑅, 𝐵0 = 𝐵′
0 ⊗𝐙 𝑅. �

7.121. Openness of Cohen-Macaulay loci

In this section we characterize the Cohen-Macaulay property of finite type algebras in terms
of flatness. We then use this to prove the set of points where such an algebra is Cohen-
Macaulay is open.

Lemma 7.121.1. Let 𝑆 be a finite type algebra over a field 𝑘. Let 𝜑 ∶ 𝑘[𝑦1, … , 𝑦𝑑] → 𝑆
be a finite ring map. As subsets of 𝑆𝑝𝑒𝑐(𝑆) we have

{𝔮 ∣ 𝑆𝔮 flat over 𝑘[𝑦1, … , 𝑦𝑑]} = {𝔮 ∣ 𝑆𝔮 CM and dim𝔮(𝑆/𝑘) = 𝑑}

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=034Y
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RE
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For notation see Definition 7.116.1.

Proof. Let 𝔮 ⊂ 𝑆 be a prime. Denote 𝔭 = 𝑘[𝑦1, … , 𝑦𝑑] ∩ 𝔮. Note that always dim(𝑆𝔮) ≤
dim(𝑘[𝑦1, … , 𝑦𝑑]𝔭) by Lemma 7.116.4 for example. Moreover, the field extension 𝜅(𝔭) ⊂
𝜅(𝔮) is finite and hence trdeg𝑘(𝜅(𝔭)) = trdeg𝑘(𝜅(𝔮)).

Let 𝔮 be an element of the left hand side. Then Lemma 7.103.9 applies and we conclude that
𝑆𝔮 is Cohen-Macaulay and dim(𝑆𝔮) = dim(𝑘[𝑦1, … , 𝑦𝑑]𝔭). Combined with the equality of
transcendence degrees above and Lemma 7.107.3 this implies that dim𝔮(𝑆/𝑘) = 𝑑. Hence
𝔮 is an element of the right hand side.

Let 𝔮 be an element of the right hand side. By the equality of transcendence degrees above,
the assumption that dim𝔮(𝑆/𝑘) = 𝑑 and Lemma 7.107.3 we conclude that dim(𝑆𝔮) =
dim(𝑘[𝑦1, … , 𝑦𝑑]𝔭). Hence Lemma 7.119.1 applies and we see that 𝔮 is an element of
the left hand side. �

Lemma 7.121.2. Let 𝑆 be a finite type algebra over a field 𝑘. The set of primes 𝔮 such that
𝑆𝔮 is Cohen-Macaulay is open in 𝑆.

This lemma is a special case of Lemma 7.121.4 below, so you can skip straight to the proof
of that lemma if you like.

Proof. Let 𝔮 ⊂ 𝑆 be a prime such that 𝑆𝔮 is Cohen-Macaulay. We have to show there
exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that the ring 𝑆𝑔 is Cohen-Macaulay. For any 𝑔 ∈ 𝑆, 𝑔∉𝔮 we
may replace 𝑆 by 𝑆𝑔 and 𝔮 by 𝔮𝑆𝑔. Combining this with Lemmas 7.106.5 and 7.107.3
we may assume that there exists a finite injective ring map 𝑘[𝑦1, … , 𝑦𝑑] → 𝑆 with 𝑑 =
dim(𝑆𝔮) + trdeg𝑘(𝜅(𝔮)). Set 𝔭 = 𝑘[𝑦1, … , 𝑦𝑑] ∩ 𝔮. By construction we see that 𝔮 is an
element of the right hand side of the displayed equality of Lemma 7.121.1. Hence it is also
an element of the left hand side.

By Theorem 7.120.4 we see that for some 𝑔 ∈ 𝑆, 𝑔∉𝔮 the ring 𝑆𝑔 is flat over 𝑘[𝑦1, … , 𝑦𝑑].
Hence by the equality of Lemma 7.121.1 again we conclude that all local rings of 𝑆𝑔 are
Cohen-Macaulay as desired. �

Lemma 7.121.3. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘 algebra. The set of Cohen-
Macaulay primes forms a dense open 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑆).

Proof. The set is open by Lemma 7.121.2 above. It contains all minimal primes 𝔮 ⊂ 𝑆 since
the local ring at a minimal prime 𝑆𝔮 has dimension zero and hence is Cohen-Macaulay. �

Lemma 7.121.4. Let 𝑅 be a ring. Let 𝑅 → 𝑆 be of finite presentation and flat. For any
𝑑 ≥ 0 the set

{
𝔮 ∈ 𝑆𝑝𝑒𝑐(𝑆) such that setting 𝔭 = 𝑅 ∩ 𝔮 the fibre ring

𝑆𝔮/𝔭𝑆𝔮 is Cohen-Macaulay and dim𝔮(𝑆/𝑅) = 𝑑 }

is open in 𝑆𝑝𝑒𝑐(𝑆).

Proof. Let 𝔮 be an element of the set indicated, with 𝔭 the corresponding prime of 𝑅. We
have to find a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that all fibre rings of 𝑅 → 𝑆𝑔 are Cohen-Macaulay. During
the course of the proof we may (finitely many times) replace 𝑆 by 𝑆𝑔 for a 𝑔 ∈ 𝑆, 𝑔∉𝔮.
Thus by Lemma 7.116.2 we may assume there is a quasi-finite ring map 𝑅[𝑡1, … , 𝑡𝑑] → 𝑆
with 𝑑 = dim𝔮(𝑆/𝑅). Let 𝔮′ = 𝑅[𝑡1, … , 𝑡𝑑] ∩ 𝔮. By Lemma 7.121.1 we see that the ring
map

𝑅[𝑡1, … , 𝑡𝑑]𝔮′/𝔭𝑅[𝑡1, … , 𝑡𝑑]𝔮′ ⟶ 𝑆𝔮/𝔭𝑆𝔮

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RF
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RG
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RH
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is flat. Hence by the critère de platitude par fibres Lemma 7.119.8we see that𝑅[𝑡1, … , 𝑡𝑑]𝔮′ →
𝑆𝔮 is flat. Hence by Theorem 7.120.4 we see that for some 𝑔 ∈ 𝑆, 𝑔∉𝔮 the ring map
𝑅[𝑡1, … , 𝑡𝑑] → 𝑆𝑔 is flat. Replacing 𝑆 by 𝑆𝑔 we see that for every prime 𝔯 ⊂ 𝑆, setting
𝔯′ = 𝑅[𝑡1, … , 𝑡𝑑] ∩ 𝔯 and 𝔭′ = 𝑅 ∩ 𝔯 the local ring map 𝑅[𝑡1, … , 𝑡𝑑]𝔯′ → 𝑆𝔯 is flat. Hence
also the base change

𝑅[𝑡1, … , 𝑡𝑑]𝔯′/𝔭′𝑅[𝑡1, … , 𝑡𝑑]𝔯′ ⟶ 𝑆𝔯/𝔭′𝑆𝔯

is flat. Hence by Lemma 7.121.1 applied with 𝑘 = 𝜅(𝔭′) we see 𝔯 is in the set of the lemma
as desired. �

Lemma 7.121.5. Let 𝑅 be a ring. Let 𝑅 → 𝑆 be flat of finite presentation. The set of
primes 𝔮 such that the fibre ring 𝑆𝔮 ⊗𝑅 𝜅(𝔭), with 𝔭 = 𝑅 ∩ 𝔮 is Cohen-Macaulay is open
and dense in every fibre of 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅).

Proof. The set, call it 𝑊, is open by Lemma 7.121.4 above. It is dense in the fibres because
the intersection of 𝑊 with a fibre is the corresponding set of the fibre to which Lemma
7.121.3 applies. �

Lemma 7.121.6. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝑘 ⊂ 𝐾 be a field
extension, and set 𝑆𝐾 = 𝐾 ⊗𝑘 𝑆. Let 𝔮 ⊂ 𝑆 be a prime of 𝑆. Let 𝔮𝐾 ⊂ 𝑆𝐾 be a prime of
𝑆𝐾 lying over 𝔮. Then 𝑆𝔮 is Cohen-Macaulay if and only if (𝑆𝐾)𝔮𝐾

is Cohen-Macaulay.

Proof. During the course of the proof we may (finitely many times) replace 𝑆 by 𝑆𝑔 for any
𝑔 ∈ 𝑆, 𝑔∉𝔮. Hence using Lemma 7.106.5 we may assume that dim(𝑆) = dim𝔮(𝑆/𝑘) =∶ 𝑑
and find a finite injective map 𝑘[𝑥1, … , 𝑥𝑑] → 𝑆. Note that this also induces a finite injec-
tive map 𝐾[𝑥1, … , 𝑥𝑑] → 𝑆𝐾 by base change. By Lemma 7.107.6 we have dim𝔮𝐾

(𝑆𝐾/𝐾) =
𝑑. Set 𝔭 = 𝑘[𝑥1, … , 𝑥𝑑] ∩ 𝔮 and 𝔭𝐾 = 𝐾[𝑥1, … , 𝑥𝑑] ∩ 𝔮𝐾. Consider the following com-
mutative diagram of Noetherian local rings

𝑆𝔮
// (𝑆𝐾)𝔮𝐾

𝑘[𝑥1, … , 𝑥𝑑]𝔭
//

OO

𝐾[𝑥1, … , 𝑥𝑑]𝔭𝐾

OO

By Lemma 7.121.1 above we have to show that the left vertical arrow is flat if and only if
the right vertical arrow is flat. Because the bottom arrow is flat this equivalence holds by
Lemma 7.92.1. �

Lemma 7.121.7. Let𝑅 be a ring. Let𝑅 → 𝑆 be of finite type. Let𝑅 → 𝑅′ be any ring map.
Set 𝑆′ = 𝑅′ ⊗𝑅 𝑆. Denote 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑆) the map associated to the ring map
𝑆 → 𝑆′. Set 𝑊 equal to the set of primes 𝔮 such that the fibre ring 𝑆𝔮 ⊗𝑅 𝜅(𝔭), 𝔭 = 𝑅 ∩ 𝔮
is Cohen-Macaulay, and let 𝑊′ denote the analogue for 𝑆′/𝑅′. Then 𝑊′ = 𝑓−1(𝑊).

Proof. Trivial from Lemma 7.121.6 and the definitions. �

Lemma 7.121.8. Let 𝑅 be a ring. Let 𝑅 → 𝑆 be a ring map which is (a) flat, (b) of finite
presentation, (c) has Cohen-Macaulay fibres. Then 𝑆 = 𝑆0 × … × 𝑆𝑛 is a product of rings
𝑆𝑑 such that each 𝑆𝑑 satisfies (a), (b), (c) and has all fibres equidimensional of dimension
𝑑.

Proof. For each integer 𝑑 denote 𝑊𝑑 ⊂ 𝑆𝑝𝑒𝑐(𝑆) the set defined in Lemma 7.121.4. Clearly
we have 𝑆𝑝𝑒𝑐(𝑆) = ∐ 𝑊𝑑, and each 𝑊𝑑 is open by the lemma we just quoted. Hence the
result follows from Lemma 7.20.3. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RI
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RJ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RL
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Lemma 7.121.9. Let 𝑅 → 𝑆 be a faithfully flat ring map of finite presentation. Then there
exists a commutative diagram

𝑆 // 𝑆′

𝑅

__ >>

where 𝑅 → 𝑆′ is quasi-finite, faithfully flat and of finite presentation.

Proof. As a first step we reduce this lemma to the case where 𝑅 is of finite type over 𝐙.
By Lemma 7.120.6 there exists a diagram

𝑆0
// 𝑆

𝑅0

OO

// 𝑅

OO

where 𝑅0 is of finite type over 𝐙, and 𝑆0 is faithfully flat of finite presentation over 𝑅0
such that 𝑆 = 𝑅 ⊗𝑅0

𝑆0. If we prove the lemma for the ring map 𝑅0 → 𝑆0, then the
lemma follows for 𝑅 → 𝑆 by base change, as the base change of a quasi-finite ring map is
quasi-finite, see Lemma 7.113.8. (Of course we also use that base changes of flat maps are
flat and base changes of maps of finite presentation are of finite presentation.)

Assume 𝑅 → 𝑆 is a faithfully flat ring map of finite presentation and that 𝑅 is Noetherian
(which we may assume by the preceding paragraph). Let 𝑊 ⊂ 𝑆𝑝𝑒𝑐(𝑆) be the open set of
Lemma 7.121.4. As 𝑅 → 𝑆 is faithfully flat the map 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is surjective, see
Lemma 7.35.15. By Lemma 7.121.5 the map 𝑊 → 𝑆𝑝𝑒𝑐(𝑅) is also surjective. Hence by
replacing 𝑆 with a product 𝑆𝑔1

× … × 𝑆𝑔𝑚
we may assume 𝑊 = 𝑆𝑝𝑒𝑐(𝑆); here we use that

𝑆𝑝𝑒𝑐(𝑅) is quasi-compact (Lemma 7.16.10), and that the map 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is open
(Proposition 7.36.8). Suppose that 𝔭 ⊂ 𝑅 is a prime. Choose a prime 𝔮 ⊂ 𝑆 lying over 𝔭
which corresponds to a maximal ideal of the fibre ring 𝑆 ⊗𝑅 𝜅(𝔭). The Noetherian local
ring 𝑆𝔮 = 𝑆𝔮/𝔭𝑆𝔮 is Cohen-Macaulay, say of dimension 𝑑. We may choose 𝑓1, … , 𝑓𝑑

in the maximal ideal of 𝑆𝔮 which map to a regular sequence in 𝑆𝔮. Choose a common
denominator 𝑔 ∈ 𝑆, 𝑔∉𝔮 of 𝑓1, … , 𝑓𝑑, and consider the 𝑅-algebra

𝑆′ = 𝑆𝑔/(𝑓1, … , 𝑓𝑑).

By construction there is a prime ideal 𝔮′ ⊂ 𝑆′ lying over 𝔭 and corresponding to 𝔮 (via
𝑆𝑔 → 𝑆′

𝑔). Also by construction the ring map 𝑅 → 𝑆′ is quasi-finite at 𝔮 as the local ring

𝑆′
𝔮′/𝔭𝑆′

𝔮′ = 𝑆𝔮/(𝑓1, … , 𝑓𝑑) + 𝔭𝑆𝔮 = 𝑆𝔮/(𝑓1, … , 𝑓𝑑)

has dimension zero, see Lemma 7.113.2. Also by construction 𝑅 → 𝑆′ is of finite presen-
tation. Finally, by Lemma 7.91.3 the local ring map 𝑅𝔭 → 𝑆′

𝔮′ is flat (this is where we use
that 𝑅 is Noetherian). Hence, by openness of flatness (Theorem 7.120.4), and openness of
quasi-finiteness (Lemma 7.114.14) we may after replacing 𝑔 by 𝑔𝑔′ for a suitable 𝑔′ ∈ 𝑆,
𝑔′∉𝔮 assume that 𝑅 → 𝑆′ is flat and quasi-finite. The image 𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑅) is open
and contains 𝔭. In other words we have shown a ring 𝑆′ as in the statement of the lemma
exists (except possibly the faithfulness part) whose image contains any given prime. Using
one more time the quasi-compactness of 𝑆𝑝𝑒𝑐(𝑅) we see that a finite product of such rings
does the job. �
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7.122. Differentials

Definition 7.122.1. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map and let 𝑀 be an 𝑆-module. A deriva-
tion, or more precisely an 𝑅-derivation into 𝑀 is a map 𝐷 ∶ 𝑆 → 𝑀 which is additive,
annihilates elements of 𝜑(𝑅), and satisfies the Leibniz rule: 𝐷(𝑎𝑏) = 𝑎𝐷(𝑏) + 𝐷(𝑎)𝑏.

Note that 𝐷(𝑟𝑎) = 𝑟𝐷(𝑎) if 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝑆. The set of all 𝑅-derivations forms an
𝑆-module: Given two 𝑅-derivations 𝐷, 𝐷′ the sum 𝐷 + 𝐷′ ∶ 𝑆 → 𝑀, 𝑎 ↦ 𝐷(𝑎) + 𝐷′(𝑎)
is an 𝑅-derivation, and given an 𝑅-derivation 𝐷 and an element 𝑐 ∈ 𝑆 the scalar multiple
𝑐𝐷 ∶ 𝑆 → 𝑀, 𝑎 ↦ 𝑐𝐷(𝑎) is an 𝑅-derivation. We denote this 𝑆-module

Der𝑅(𝑆, 𝑀).

Also, if 𝛼 ∶ 𝑀 → 𝑁 is an 𝑆-module map, then the composition 𝛼 ∘ 𝐷 is an 𝑅-derivation
into 𝑁. In this way the assignment 𝑀 ↦ Der𝑅(𝑆, 𝑀) is a covariant functor.

Consider the following map of free 𝑆-modules

⨁(𝑎,𝑏)∈𝑆2 𝑆[(𝑎, 𝑏)] ⊕ ⨁(𝑓,𝑔)∈𝑆2 𝑆[(𝑓, 𝑔)] ⊕ ⨁𝑟∈𝑅
𝑆[𝑟] ⟶ ⨁𝑎∈𝑆

𝑆[𝑎]

defined by the rules

[(𝑎, 𝑏)] ⟼ [𝑎 + 𝑏] − [𝑎] − [𝑏], [(𝑓, 𝑔)] ⟼ [𝑓𝑔] − 𝑓[𝑔] − 𝑔[𝑓], [𝑟] ⟼ [𝜑(𝑟)]

with obvious notation. Let Ω𝑆/𝑅 be the cokernel of this map. There is a map d ∶ 𝑆 → Ω𝑆/𝑅
which maps 𝑎 to the class d𝑎 of [𝑎] in the cokernel. This is an 𝑅-derivation by the relations
imposed on Ω𝑆/𝑅, in other words

d(𝑎 + 𝑏) = d𝑎 + d𝑏, d(𝑓𝑔) = 𝑓d𝑔 + 𝑔d𝑓, d𝑟 = 0

where 𝑎, 𝑏, 𝑓, 𝑔 ∈ 𝑆 and 𝑟 ∈ 𝑅.

Definition 7.122.2. The pair (Ω𝑆/𝑅, d) is called the module of Kähler diffentials or the
module of differentials of 𝑆 over 𝑅.

Lemma 7.122.3. The module of differentials of 𝑆 over 𝑅 has the following universal prop-
erty. The map

𝐻𝑜𝑚𝑆(Ω𝑆/𝑅, 𝑀) ⟶ Der𝑅(𝑆, 𝑀), 𝛼 ⟼ 𝛼 ∘ d
is an isomorphism of functors.

Proof. By definition an 𝑅-derivation is a rule which associates to each 𝑎 ∈ 𝑆 an element
𝐷(𝑎) ∈ 𝑀. Thus 𝐷 gives rise to a map [𝐷] ∶ ⨁ 𝑆[𝑎] → 𝑀. However, the conditions
of being an 𝑅-derivation exactly mean that [𝐷] annihilates the image of the map in the
displayed presentation of Ω𝑆/𝑅 above. �

Lemma 7.122.4. Let 𝐼 be a directed partially ordered set. Let (𝑅𝑖 → 𝑆𝑖, 𝜑𝑖𝑖′) be a system
of ring maps over 𝐼, see Categories, Section 4.19. Then we have

Ω𝑆/𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 Ω𝑆𝑖/𝑅𝑖
.

Proof. This is clear from the presentation of Ω𝑆/𝑅 given above. �

Lemma 7.122.5. Suppose that 𝑅 → 𝑆 is surjective. Then Ω𝑆/𝑅 = 0.

Proof. You can see this either because all 𝑅-derivations clearly have to be zero, or because
the map in the presentation of Ω𝑆/𝑅 is surjective. �
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Suppose that

(7.122.5.1)

𝑆 𝜑
// 𝑆′

𝑅
𝜓 //

𝛼

OO

𝑅′

𝛽

OO

is a commutative diagram of rings. In this case there is a natural map of modules of differ-
entials fitting into the commutative diagram

Ω𝑆/𝑅
// Ω𝑆′/𝑅′

𝑆

d

OO

// 𝑆′

d

OO

To construct the map just use the obvious map between the presentations for Ω𝑆/𝑅 and
Ω𝑆′/𝑅′. Namely,

⨁ 𝑆′[(𝑎′, 𝑏′)] ⊕ ⨁ 𝑆′[(𝑓′, 𝑔′)] ⊕ ⨁ 𝑆′[𝑟′] //⨁ 𝑆′[𝑎′]

⨁ 𝑆[(𝑎, 𝑏)] ⊕ ⨁ 𝑆[(𝑓, 𝑔)] ⊕ ⨁ 𝑆[𝑟] //

[(𝑎, 𝑏)] ↦ [(𝜑(𝑎), 𝜑(𝑏)]
[(𝑓, 𝑔)] ↦ [(𝜑(𝑓), 𝜑(𝑔)]

[𝑟] ↦ [𝜓(𝑟)]

OO

⨁ 𝑆[𝑎]

[𝑎]↦[𝜑(𝑎)]

OO

The result is simply that 𝑓d𝑔 ∈ Ω𝑆/𝑅 is mapped to 𝜑(𝑓)d𝜑(𝑔).

Lemma 7.122.6. In diagram (7.122.5.1), suppose that 𝑆 → 𝑆′ is surjective with kernel
𝐼 ⊂ 𝑆. Then Ω𝑆/𝑅 → Ω𝑆′/𝑅′ is surjective with kernel generated as an 𝑆-module by the
elements the elements d𝑎, where 𝑎 ∈ 𝑆 is such that 𝜑(𝑎) ∈ 𝛽(𝑅′). (This includes in
particular the elements d(𝑖), 𝑖 ∈ 𝐼.)

Proof. Consider the map of presentations above. Clearly the right vertical map of free
modules is surjective. Thus the map is surjective. A diagram chase shows that the following
elements generate the kernel as an 𝑆-module for sure: 𝑖d𝑎, 𝑖 ∈ 𝐼, 𝑎 ∈ 𝑆, and d𝑎, with 𝑎 ∈ 𝑆
such that 𝜑(𝑎) = 𝛽(𝑟′) for some 𝑟′ ∈ 𝑅′. Note that 𝜑(𝑖) = 𝜑(𝑖𝑎) = 0 = 𝛽(0), and that
d(𝑖𝑎) = 𝑖d𝑎 + 𝑎d𝑖. Hence 𝑖d𝑎 = d(𝑖𝑎) − 𝑎d𝑖 is an 𝑆-linear combination of elements of the
second kind. �

Lemma 7.122.7. Let 𝐴 → 𝐵 → 𝐶 be ring maps. Then there is a canonical exact sequence

𝐶 ⊗𝐵 Ω𝐵/𝐴 → Ω𝐶/𝐴 → Ω𝐶/𝐵 → 0

of 𝐶-modules.

Proof. We get a diagram (7.122.5.1) by putting 𝑅 = 𝐴, 𝑆 = 𝐶, 𝑅′ = 𝐵, and 𝑆′ = 𝐶.
By Lemma 7.122.6 the map Ω𝐶/𝐴 → Ω𝐶/𝐵 is surjective, and the kernel is generated by the
elements d(𝑐), where 𝑐 ∈ 𝐶 is in the image of 𝐵 → 𝐶. The lemma follows. �

Lemma 7.122.8. Let 𝜑 ∶ 𝐴 → 𝐵 be a ring map.
(1) If 𝑆 ⊂ 𝐴 is a multiplicative subset mapping to invertible elements of 𝐵, then

Ω𝐵/𝐴 = Ω𝐵/𝑆−1𝐴.
(2) If 𝑆 ⊂ 𝐵 is a multiplicative subset then 𝑆−1Ω𝐵/𝐴 = Ω𝑆−1𝐵/𝐴.
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Proof. To show the equality of (1) it is enough to show that any 𝐴-derivation 𝐷 ∶ 𝐵 →
𝑀 annihilates the elements 𝜑(𝑠)−1. This is clear from the Leibniz rule applied to 1 =
𝜑(𝑠)𝜑(𝑠)−1. To show (2) note that there is an obvious map 𝑆−1Ω𝐵/𝐴 → Ω𝑆−1𝐵/𝐴. To
show it is an isomorphism it is enough to show that there is a 𝐴-derivation d′ of 𝑆−1𝐵 into
𝑆−1Ω𝐵/𝐴. To define it we simply set d′(𝑏/𝑠) = (1/𝑠)d𝑏 − (1/𝑠2)𝑏d𝑠. Details omitted. �

Lemma 7.122.9. In diagram (7.122.5.1), suppose that 𝑆 → 𝑆′ is surjective with kernel
𝐼 ⊂ 𝑆, and assume that 𝑅′ = 𝑅. Then there is a canonical exact sequence of 𝑆′-modules

𝐼/𝐼2 ⟶ Ω𝑆/𝑅 ⊗𝑆 𝑆′ ⟶ Ω𝑆′/𝑅 ⟶ 0

The leftmost map is characterized by the rule that 𝑓 ∈ 𝐼 maps to d𝑓 ⊗ 1.

Proof. The middle term is Ω𝑆/𝑅 ⊗𝑆 𝑆/𝐼. For 𝑓 ∈ 𝐼 denote 𝑓 the image of 𝑓 in 𝐼/𝐼2. To
show that the map 𝑓 ↦ d𝑓 ⊗ 1 is well defined we just have to check that d𝑓1𝑓2 ⊗ 1 = 0 if
𝑓1, 𝑓2 ∈ 𝐼. And this is clear from the Leibniz rule d𝑓1𝑓2 ⊗ 1 = (𝑓1d𝑓2 + 𝑓2d𝑓1) ⊗ 1 =
d𝑓2 ⊗ 𝑓1 + d𝑓2 ⊗ 𝑓1 = 0. A similar computation show this map is 𝑆′ = 𝑆/𝐼-linear.

Themap Ω𝑆/𝑅⊗𝑆𝑆′ → Ω𝑆′/𝑅 is the canonical 𝑆′-linear map associated to the 𝑆-linear map
Ω𝑆/𝑅 → Ω𝑆′/𝑅. It is surjective because Ω𝑆/𝑅 → Ω𝑆′/𝑅 is surjective by Lemma 7.122.6.

The composite of the two maps is zero because d𝑓 maps to zero in Ω𝑆′/𝑅 for 𝑓 ∈ 𝐼. Note
that exactness just says that the kernel of Ω𝑆/𝑅 → Ω𝑆′/𝑅 is generated as an 𝑆-submodule
by the submodule 𝐼Ω𝑆/𝑅 together with the elements d𝑓, with 𝑓 ∈ 𝐼. We know by Lemma
7.122.6 that this kernel is generated by the elements d(𝑎) where 𝜑(𝑎) = 𝛽(𝑟) for some
𝑟 ∈ 𝑅. But then 𝑎 = 𝛼(𝑟) + 𝑎 − 𝛼(𝑟), so d(𝑎) = d(𝑎 − 𝛼(𝑟)). And 𝑎 − 𝛼(𝑟) ∈ 𝐼 since
𝜑(𝑎 − 𝛼(𝑟)) = 𝜑(𝑎) − 𝜑(𝛼(𝑟)) = 𝛽(𝑟) − 𝛽(𝑟) = 0. We conclude the elements d𝑓 with 𝑓 ∈ 𝐼
already generate the kernel as an 𝑆-module, as desired. �

Lemma 7.122.10. In diagram (7.122.5.1), suppose that 𝑆 → 𝑆′ is surjective with kernel
𝐼 ⊂ 𝑆, and assume that 𝑅′ = 𝑅. Moreover, assume that there exists an 𝑅-algebra map
𝑆′ → 𝑆 which is a right inverse to 𝑆′ → 𝑆. Then the exact sequence of 𝑆′-modules of
Lemma 7.122.9 turns into a short exact sequence

0 ⟶ 𝐼/𝐼2 ⟶ Ω𝑆/𝑅 ⊗𝑆 𝑆′ ⟶ Ω𝑆′/𝑅 ⟶ 0

which is even a split short exact sequence.

Proof. Let 𝛽 ∶ 𝑆′ → 𝑆 be the right inverse to the surjection 𝛼 ∶ 𝑆 → 𝑆′, so 𝑆 = 𝐼⊕𝛽(𝑆′).
Clearly we can use 𝛽 ∶ Ω𝑆′/𝑅 → Ω𝑆/𝑅, to get a right inverse to the map Ω𝑆/𝑅 ⊗𝑆 𝑆′ →
Ω𝑆′/𝑅. On the other hand, consider the map

𝐷 ∶ 𝑆 ⟶ 𝐼/𝐼2, 𝑥 ⟼ 𝑥 − 𝛽(𝛼(𝑥))

It is easy to show that 𝐷 is an 𝑅-derivation (omitted). Moreover 𝑥𝐷(𝑠) = 0 if 𝑥 ∈ 𝐼, 𝑠 ∈ 𝑆.
Hence, by the universal property 𝐷 induces a map 𝜏 ∶ Ω𝑆/𝑅 ⊗𝑅 𝑆′ → 𝐼/𝐼2. We omit the
verification that it is a left inverse to d ∶ 𝐼/𝐼2 → Ω𝑆/𝑅 ⊗𝑆 𝑆′. Hence we win. �

Lemma 7.122.11. Let 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑆 be an ideal. Let 𝑛 ≥ 1 be an
integer. Set 𝑆′ = 𝑆/𝐼𝑛+1. The map Ω𝑆/𝑅 → Ω𝑆′/𝑅 induces an isomorphism

Ω𝑆/𝑅 ⊗𝑆 𝑆/𝐼𝑛 ⟶ Ω𝑆′/𝑅 ⊗𝑆′ 𝑆/𝐼𝑛.

Proof. This follows fromLemma 7.122.9 and the fact that d(𝐼𝑛+1) ⊂ 𝐼𝑛Ω𝑆/𝑅 by the Leibniz
rule for d. �
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Lemma 7.122.12. Suppose that we have ringmaps𝑅 → 𝑅′ and𝑅 → 𝑆. Set𝑆′ = 𝑆⊗𝑅𝑅′,
so that we obtain a diagram (7.122.5.1). Then the canonical map defined above induces an
isomorphism Ω𝑆/𝑅 ⊗𝑅 𝑅′ = Ω𝑆′/𝑅′.

Proof. Let d′ ∶ 𝑆′ = 𝑆 ⊗𝑅 𝑅′ → Ω𝑆/𝑅 ⊗𝑅 𝑅′ denote the map d′(∑ 𝑎𝑖 ⊗ 𝑥𝑖) = d(𝑎𝑖) ⊗ 𝑥𝑖.
It exists because the map 𝑆 × 𝑅′ → Ω𝑆/𝑅 ⊗𝑅 𝑅′, (𝑎, 𝑥) ↦ d𝑎 ⊗𝑅 𝑥 is 𝑅-bilinear. This is
an 𝑅′-derivation, as can be verified by a simple computation. We will show that (Ω𝑆/𝑅 ⊗𝑅
𝑅′, d′) satisfies the universal property. Let 𝐷 ∶ 𝑆′ → 𝑀′ be an 𝑅′ derivation into an
𝑆′-module. The composition 𝑆 → 𝑆′ → 𝑀′ is an 𝑅-derivation, hence we get an 𝑆-linear
map 𝜑𝐷 ∶ Ω𝑆/𝑅 → 𝑀′. We may tensor this with 𝑅′ and get the map 𝜑′

𝐷 ∶ Ω𝑆/𝑅 ⊗𝑅 𝑅′ →
𝑀′, 𝜑′

𝐷(𝜂 ⊗ 𝑥) = 𝑥𝜑𝐷(𝜂). It is clear that 𝐷 = 𝜑′
𝐷 ∘ d′. �

The multiplication map 𝑆 ⊗𝑅 𝑆 → 𝑆 is the 𝑅-algebra map which maps 𝑎 ⊗ 𝑏 to 𝑎𝑏 in 𝑆.
It is also an 𝑆-algebra map, if we think of 𝑆 ⊗𝑅 𝑆 as an 𝑆-algebra via either of the maps
𝑆 → 𝑆 ⊗𝑅 𝑆.

Lemma 7.122.13. Let 𝑅 → 𝑆 be a ring map. Let 𝐽 = Ker(𝑆 ⊗𝑅 𝑆 → 𝑆) be the kernel
of the multiplication map. There is a canonical isomorphism of 𝑆-modules Ω𝑆/𝑅 → 𝐽/𝐽2,
𝑎d𝑏 ↦ 𝑎 ⊗ 𝑏 − 𝑎𝑏 ⊗ 1.

Proof. First we show that the rule 𝑎d𝑏 ↦ 𝑎 ⊗ 𝑏 − 𝑎𝑏 ⊗ 1 is well defined. In order to do this
we have to show that d𝑟 and 𝑎d𝑏+𝑏d𝑎−𝑑(𝑎𝑏) map to zero. The first because 𝑟⊗1−1⊗𝑟 = 0
by definition of the tensor product. The second because 𝑎 ⊗ 𝑏 − 𝑎𝑏 ⊗ 1 + 𝑏 ⊗ 𝑎 − 𝑏𝑎 ⊗ 1 =
(𝑎 ⊗ 1 − 1 ⊗ 𝑎)(1 ⊗ 𝑏 − 𝑏 ⊗ 1) is in 𝐽2.

We construct a map in the other direction. We may think of 𝑆 → 𝑆 ⊗𝑅 𝑆, 𝑎 ↦ 𝑎 ⊗ 1 as
the base change of 𝑅 → 𝑆. Hence we have Ω𝑆⊗𝑅𝑆/𝑆 = Ω𝑆/𝑅 ⊗𝑆 (𝑆 ⊗𝑅 𝑆), by Lemma
7.122.12. At this point the sequence of Lemma 7.122.9 gives a map

𝐽/𝐽2 → Ω𝑆⊗𝑅𝑆/𝑆 ⊗𝑆⊗𝑅𝑆 𝑆 = (Ω𝑆/𝑅 ⊗𝑆 (𝑆 ⊗𝑅 𝑆)) ⊗𝑆⊗𝑅𝑆 𝑆 = Ω𝑆/𝑅.

We leave it to the reader to see it is the inverse of the map above. �

Lemma 7.122.14. If 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛], then Ω𝑆/𝑅 is a finite free 𝑆-module with basis
d𝑥1, … , d𝑥𝑛.

Proof. We first show that d𝑥1, … , d𝑥𝑛 generate Ω𝑆/𝑅 as an 𝑆-module. To prove this we
show that d𝑔 can be expressed as a sum ∑ 𝑔𝑖d𝑥𝑖 for any 𝑔 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. We do this by
induction on the (total) degree of 𝑔. It is clear if the degree of 𝑔 is 0, because then d𝑔 = 0. If
the degree of 𝑔 is > 0, then we may write 𝑔 as 𝑐 + ∑ 𝑔𝑖𝑥𝑖 with 𝑐 ∈ 𝑅 and deg(𝑔𝑖) < deg(𝑔).
By the Leibnize rule we have d𝑔 = ∑ 𝑔𝑖d𝑥𝑖 + ∑ 𝑥𝑖d𝑔𝑖, and hence we win by induction.

Consider the 𝑅-derivation 𝜕/𝜕𝑥𝑖 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝑅[𝑥1, … , 𝑥𝑛]. (We leave it to the
reader to define this; the defining property being that 𝜕/𝜕𝑥𝑖(𝑥𝑗) = 𝛿𝑖𝑗.) By the universal
property this corresponds to an 𝑆-module map 𝑙𝑖 ∶ Ω𝑆/𝑅 → 𝑅[𝑥1, … , 𝑥𝑛] which maps d𝑥𝑖
to 1 and d𝑥𝑗 to 0 for 𝑗≠𝑖. Thus it is clear that there are no 𝑆-linear relations among the
elements d𝑥1, … , d𝑥𝑛. �

Lemma 7.122.15. Suppose 𝑅 → 𝑆 is of finite presentation. Then Ω𝑆/𝑅 is a finitely pre-
sented 𝑆-module.

Proof. Write 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚). Write 𝐼 = (𝑓1, … , 𝑓𝑚). According to
Lemma 7.122.9 there is an exact sequence of 𝑆-modules

𝐼/𝐼2 → Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 ⊗𝑅[𝑥1,…,𝑥𝑛] 𝑆 → Ω𝑆/𝑅 → 0

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RV
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RW
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RX
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00RY


464 7. COMMUTATIVE ALGEBRA

The result follows from the fact that 𝐼/𝐼2 is a finite 𝑆-module (generated by the images of
the 𝑓𝑖), and that the middle term is finite free by Lemma 7.122.14. �

Lemma 7.122.16. Suppose 𝑅 → 𝑆 is of finite type. Then Ω𝑆/𝑅 is finitely generated
𝑆-module.

Proof. This is very similar to, but easier than the proof of Lemma 7.122.15. �

7.123. The naive cotangent complex

Let 𝑅 → 𝑆 be a ring map. Denote 𝑅[𝑆] the polynomial ring whose variables are the
elements 𝑠 ∈ 𝑆. Let's denote [𝑠] ∈ 𝑅[𝑆] the variable corresponding to 𝑠 ∈ 𝑆. Thus
𝑅[𝑆] is a free 𝑅-module on the basis elements [𝑠1] … [𝑠𝑛] where 𝑠1, … , 𝑠𝑛 is an unordered
sequence of elements of 𝑆. There is a canonical surjection

(7.123.0.1) 𝑅[𝑆] ⟶ 𝑆, [𝑠] ⟼ 𝑠

whose kernel we denote 𝐼 ⊂ 𝑅[𝑆]. It is a simple observation that 𝐼 is generated by the
elements [𝑠][𝑠′] − [𝑠𝑠′] and 𝑟[𝑠] − [𝑟𝑠]. According to Lemma 7.122.9 there is a canonical
map

(7.123.0.2) 𝐼/𝐼2 ⟶ Ω𝑅[𝑆]/𝑆 ⊗𝑅 𝑆

whose cokernel is canonically isomorphic to Ω𝑆/𝑅. Observe that the 𝑆-module Ω𝑅[𝑆]/𝑅 ⊗𝑅
𝑆 is free on the generators d[𝑠].

Definition 7.123.1. Let 𝑅 → 𝑆 be a ring map. The naive cotangent complex 𝑁𝐿𝑆/𝑅 is the
chain complex (7.123.0.2)

𝑁𝐿𝑆/𝑅 = (𝐼/𝐼2 ⟶ Ω𝑅[𝑆]/𝑆 ⊗𝑅 𝑆)
with 𝐼/𝐼2 placed in (homological) degree 1 and Ω𝑅[𝑆]/𝑆 ⊗𝑅 𝑆 placed in degree 0. We will
denote 𝐻1(𝐿𝑆/𝑅) = 𝐻1(𝑁𝐿𝑆/𝑅)6 the homology in degree 1.

Before we continue let us say a few words about the actual cotangent complex (insert future
reference here). Given a ring map 𝑅 → 𝑆 there exists a canonical augmented cosimplicial
𝑅-algebra 𝑃𝑆/𝑅,• whose terms are polynomial algebras and which comes equipped with a
canonical homotopy equivalence

𝑃𝑆/𝑅,• ⟶ 𝑆
The cotangent complex 𝐿𝑆/𝑅 of 𝑆 over 𝑅 is defined as the chain complex associated to the
cosimplicial module

Ω𝑃𝑆/𝑅,•/𝑅 ⊗𝑃𝑆/𝑅,•
𝑆

The naive cotangent complex as defined above is canonically isomorphic to the truncation
𝜏≤1𝐿𝑆/𝑅 (seeHomology, Section 10.11). In particular, it is indeed the case that𝐻1(𝑁𝐿𝑆/𝑅) =
𝐻1(𝐿𝑆/𝑅) so our definition is compatible with the one using the cotangent complex. More-
over, 𝐻0(𝐿𝑆/𝑅) = 𝐻0(𝑁𝐿𝑆/𝑅) = Ω𝑆/𝑅 as we've seen above.

Let 𝑅 → 𝑆 be a ring map. A presentation of 𝑆 over 𝑅 is a surjection 𝛼 ∶ 𝑃 → 𝑆 of
𝑅-algebras where 𝑃 is a polynomial algebra (on a set of variables). Often, when 𝑆 is of
finite type over 𝑅 wewill indicate this by saying: ``Let 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆 be a presentation
of 𝑆/𝑅'', or ``Let 0 → 𝐼 → 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆 → 0 be a presentation of 𝑆/𝑅'' if we want to
indicate that 𝐼 is the kernel of the presentation. Note that the map 𝑅[𝑆] → 𝑆 used to define
the naive cotangent complex is an example of a presentation.

6This module is sometimes denoted Γ𝑆/𝑅 in the literature.
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Note that for every presentation 𝛼 we obtain a two term chain complex of 𝑆-modules

𝑁𝐿(𝛼) ∶ 𝐼/𝐼2 ⟶ Ω𝑃/𝑅 ⊗𝑃 𝑆.

Here the term 𝐼/𝐼2 is placed in degree 1 and the term Ω𝑃/𝑅 ⊗ 𝑆 is placed in degree 0. The
class of 𝑓 ∈ 𝐼 in 𝐼/𝐼2 is mapped to d𝑓 ⊗ 1 in Ω𝑃/𝑅 ⊗ 𝑆. The cokernel of this complex
is canonically Ω𝑆/𝑅, see Lemma 7.122.9. We call the complex 𝑁𝐿(𝛼) the naive cotangent
complex associated to the presentation 𝛼 ∶ 𝑃 → 𝑆 of 𝑆/𝑅. Note that if 𝑃 = 𝑅[𝑆] with
its canonical surjection onto 𝑆, then we recover 𝑁𝐿𝑆/𝑅. If 𝑃 = 𝑅[𝑥1, … , 𝑥𝑛] then will
sometimes use the notation 𝐼/𝐼2 → ⨁𝑖=1,…,𝑛 𝑆d𝑥𝑖 to denote this complex.
Suppose we are given a commutative diagram

(7.123.1.1)

𝑆
𝜙
// 𝑆′

𝑅 //

OO

𝑅′

OO

of rings. Let 𝛼 ∶ 𝑃 → 𝑆 be a presentation of 𝑆 over 𝑅 and let 𝛼 ∶ 𝑃′ → 𝑆′ be a presentation
of 𝑆′ over 𝑅′. A morphism of presentations from 𝛼 ∶ 𝑃 → 𝑆 to 𝛼′ ∶ 𝑃′ → 𝑆′ is defined to
be an 𝑅-algebra map

𝜑 ∶ 𝑃 → 𝑃′

such that 𝜙∘𝛼 = 𝛼′ ∘𝜑. Note that in this case 𝜑(𝐼) ⊂ 𝐼′, where 𝐼 = ker(𝛼) and 𝐼′ = ker(𝛼′).
Thus 𝜑 induces a map of 𝑆-modules 𝐼/𝐼2 → 𝐼′/(𝐼′)2 and by functoriality of differentials
also an 𝑆-module map Ω𝑃/𝑅 ⊗ 𝑆 → Ω𝑃′/𝑅′ ⊗ 𝑆′. These maps are compatible with the
differentials of 𝑁𝐿(𝛼) and 𝑁𝐿(𝛼′) and we obtain a map of naive cotangent complexes

𝑁𝐿(𝛼) ⟶ 𝑁𝐿(𝛼′).
It is often convenient to consider the induced map 𝑁𝐿(𝛼) ⊗𝑆 𝑆′ → 𝑁𝐿(𝛼′).
In the special case that 𝑃 = 𝑅[𝑆] and 𝑃′ = 𝑅′[𝑆′] the map 𝜙 ∶ 𝑆 → 𝑆′ induces a canonical
ring map 𝜑 ∶ 𝑃 → 𝑃′ by the rule [𝑠] ↦ [𝜙(𝑠)]. Hence the construction above determines a
canonical(!) maps of chain complexes

𝑁𝐿𝑆/𝑅 ⟶ 𝑁𝐿𝑆′/𝑅′, and 𝑁𝐿𝑆/𝑅 ⊗𝑆 𝑆′ ⟶ 𝑁𝐿𝑆′/𝑅′

associated to the diagram (7.123.1.1). Note that this construction is compatible with com-
position: given a commutative diagram

𝑆
𝜙
// 𝑆′

𝜙′
// 𝑆″

𝑅 //

OO

𝑅′

OO

// 𝑅″

OO

we see that the composition of
𝑁𝐿𝑆/𝑅 ⟶ 𝑁𝐿𝑆′/𝑅′ ⟶ 𝑁𝐿𝑆′/𝑅′

is the map 𝑁𝐿𝑆/𝑅 → 𝑁𝐿𝑆″/𝑅″ given by the outer square.
It turns out that 𝑁𝐿(𝛼) is homotopy equivalent to 𝑁𝐿𝑆/𝑅 and that the maps constructed
above are well defined up to homotopy (homotopies of maps of complexes are discussed in
Homology, Section 10.10 but we also spell out the exact meaning of the statements in the
lemma below in its proof).

Lemma 7.123.2. Suppose given a diagram (7.123.1.1). Let 𝛼 ∶ 𝑃 → 𝑆 and 𝛼′ ∶ 𝑃′ → 𝑆′

be presentations.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00S1
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(1) There exist a morphism of presentations from 𝛼 to 𝛼′.
(2) Any two morphisms of presentations induce homotopic morphisms of complexes

𝑁𝐿(𝛼) → 𝑁𝐿(𝛼′).
(3) The construction is compatible with compositions of morphisms of presentations

(see proof for exact statement).
(4) If 𝑅 → 𝑅′ and 𝑆 → 𝑆′ are isomorphisms, then for any map 𝜑 of presentations

from 𝛼 to 𝛼′ the induced map 𝑁𝐿(𝛼) → 𝑁𝐿(𝛼′) is a homotopy equivalence and
a quasi-isomorphism.

In particular, comparing 𝛼 to the canonical presentation (7.123.0.1) we conclude there is
a quasi-isomorphism 𝑁𝐿(𝛼) → 𝑁𝐿𝑆/𝑅 well defined up to homotopy and compatible with
all functorialities (up to homotopy).

Proof. To construct a morphism 𝜑 from 𝛼 to 𝛼′, write 𝑃 = 𝑅[𝑥𝑎, 𝑎 ∈ 𝐴]. Choose for every
𝑎 an element 𝑓𝑎 ∈ 𝑃′ such that 𝛼′(𝑓𝑎) = 𝜙(𝛼(𝑥𝑖)). Let 𝜑 ∶ 𝑃 = 𝑅[𝑥𝑎, 𝑎 ∈ 𝐴] → 𝑃′ be the
unique 𝑅-algebra map such that 𝜑(𝑥𝑎) = 𝑓𝑎. This gives the morphism.

Let 𝜑 and 𝜑′ morphisms of presentations from 𝛼 to 𝛼′. Let 𝐼 = Ker(𝛼) and 𝐼′ = Ker(𝛼′).
We have to construct the diagonal map ℎ in the diagram

𝐼/𝐼2 d //

𝜑′
1
��

𝜑1
��

Ω𝑃/𝑅 ⊗𝑃 𝑆

𝜑′
0
��

𝜑0

��

ℎ

yy
𝐽/𝐽2 d // Ω𝑃′/𝑅′ ⊗𝑃′ 𝑆′

where the vertical maps are induced by 𝜑, 𝜑′ such that

𝜑1 − 𝜑′
1 = ℎ ∘ 𝑑 and 𝜑0 − 𝜑′

0 = 𝑑 ∘ ℎ

Consider the map 𝐷 = 𝜑 − 𝜑′ ∶ 𝑃 → 𝑃′. Since both 𝜑 and 𝜑 are compatible with 𝛼 and
𝛼′ we conclude that 𝜑 − 𝜑′ ∶ 𝑃 → 𝐼′. Also 𝜑 − 𝜑′ is 𝑅-linear and

(𝜑 − 𝜑′)(𝑓𝑔) = 𝜑(𝑓)(𝜑 − 𝜑′)(𝑔) + (𝜑 − 𝜑′)(𝑓)𝜑′(𝑔)

Hence the induced map 𝐷 ∶ 𝑃 → 𝐼′/(𝐼′)2 is a 𝑅-derivation. Thus we obtain a canonical
map ℎ ∶ Ω𝑃/𝑆 ⊗𝑃 𝑆 → 𝐼′/(𝐼′)2 such that 𝐷 = ℎ ∘ d. A calculation (omitted) shows that ℎ
is the desired homotopy.

Suppose that we have a commutative diagram

𝑆
𝜙
// 𝑆′

𝜙′
// 𝑆″

𝑅 //

OO

𝑅′

OO

// 𝑅″

OO

with finite type vertical arrows. Suppose that
(1) 𝛼 ∶ 𝑃 → 𝑆,
(2) 𝛼′ ∶ 𝑃′ → 𝑆′, and
(3) 𝛼″ ∶ 𝑃″ → 𝑆″

are presentations. Suppose that
(1) 𝜑 ∶ 𝑃 → 𝑃 is a morphism of presentations from 𝛼 to 𝛼′ and
(2) 𝜑′ ∶ 𝑃′ → 𝑃″ is a morphism of presentations from 𝛼′ to 𝛼″.
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Then it is immediate that 𝜑′ ∘ 𝜑 ∶ 𝑃 → 𝑃″ is a morphism of presentations from 𝛼 to 𝛼″ and
that the induced map 𝑁𝐿(𝛼) → 𝑁𝐿(𝛼″) of naive cotangent complexes is the composition
of the maps 𝑁𝐿(𝛼) → 𝑁𝐿(𝛼′) and 𝑁𝐿(𝛼) → 𝑁𝐿(𝛼′) induced by 𝜑 and 𝜑′.

In the simple case of complexes with 2 terms a quasi-isomorphism is just a map that induces
an isomorphism on both the cokernel and the kernel of the maps between the terms. Note
that homotopic maps of 2 term complexes (as explained above) define the same maps on
kernel and cokernel. Hence if 𝜑 is a map from a presentation 𝛼 of 𝑆 over 𝑅 to itself, then the
induced map 𝑁𝐿(𝛼) → 𝑁𝐿(𝛼) is a quasi-isomorphism being homotopic to the identity by
part (2). To prove (4) in full generality, consider a morphism 𝜑′ from 𝛼′ to 𝛼 which exists
by (1). The compositions 𝑁𝐿(𝛼) → 𝑁𝐿(𝛼′) → 𝑁𝐿(𝛼) and 𝑁𝐿(𝛼′) → 𝑁𝐿(𝛼) → 𝑁𝐿(𝛼′)
are homotopic to the identity maps by (3), hence these maps are homotopy equivalences
by definition. It follows formally that both maps 𝑁𝐿(𝛼) → 𝑁𝐿(𝛼′) and 𝑁𝐿(𝛼′) → 𝑁𝐿(𝛼)
are quasi-isomorphisms. Some details omitted. �

The following lemma is part of the motivation for introducing the naive cotangent complex.
The cotangent complex extends this to a genuine long exact cohomology sequence. If 𝐵 →
𝐶 is a local complete intersection, then one can extend the sequence with a zero on the left,
see More on Algebra, Lemma 12.24.6.

Lemma 7.123.3 (Jacobi-Zariski sequence). Let 𝐴 → 𝐵 → 𝐶 be ring maps. Choose a
presentation 𝛼 ∶ 𝐴[𝑥𝑠, 𝑠 ∈ 𝑆] → 𝐵 with kernel 𝐼. Choose a presentation 𝛽 ∶ 𝐵[𝑦𝑡, 𝑡 ∈
𝑇] → 𝐶 with kernel 𝐽. Let 𝛾 ∶ 𝐴[𝑥𝑠, 𝑦𝑡] → 𝐶 be the induced presentation of 𝐶 with kernel
𝐾. Then we get a canonical commutative diagram

0 // Ω𝐴[𝑥𝑠]/𝐴 ⊗ 𝐶 // Ω𝐴[𝑥𝑠,𝑦𝑡]/𝐴 ⊗ 𝐶 // Ω𝐵[𝑦𝑡]/𝐵 ⊗ 𝐶 // 0

𝐼/𝐼2 ⊗ 𝐶 //

OO

𝐾/𝐾2 //

OO

𝐽/𝐽2 //

OO

0

with exact rows. We get the following exact sequence of homology groups

𝐻1(𝑁𝐿𝐵/𝐴 ⊗𝐵 𝐶) → 𝐻1(𝐿𝐶/𝐴) → 𝐻1(𝐿𝐶/𝐵) → 𝐶 ⊗𝐵 Ω𝐵/𝐴 → Ω𝐶/𝐴 → Ω𝐶/𝐵 → 0

of 𝐶-modules extending the sequence of Lemma 7.122.7. If Tor𝐵
1 (Ω𝐵/𝐴, 𝐶) = 0, then

𝐻1(𝑁𝐿𝐵/𝐴 ⊗𝐵 𝐶) = 𝐻1(𝐿𝐵/𝐴) ⊗𝐵 𝐶.

Proof. The precise definition of the maps is omitted. The exactness of the top row follows
as the d𝑥𝑠, d𝑦𝑡 form a basis for the middle module. The map 𝛾 factors

𝐴[𝑥𝑠, 𝑦𝑡] → 𝐵[𝑦𝑡] → 𝐶

with surjective first arrow and second arrow equal to 𝛽. Thus we see that 𝐾 → 𝐽 is surjec-
tive. Moreover, the kernel of the first displayed arrow is 𝐼𝐴[𝑥𝑠, 𝑦𝑡]. Hence 𝐼/𝐼2 ⊗𝐶 surjects
onto the kernel of 𝐽/𝐽2 → 𝐾/𝐾2. Finally, we can use Lemma 7.123.2 to identify the terms
as homology groups of the naive cotangent complexes. The final assertion follows as the
degree 0 term of the complex 𝑁𝐿𝐵/𝐴 is a free 𝐵-module. �

Lemma 7.123.4. Let 𝐴 → 𝐵 be a surjective ring map with kernel 𝐼. Then 𝑁𝐿𝐵/𝐴 is
homotopy equivalent to the chain complex (𝐼/𝐼2 → 0) with 𝐼/𝐼2 in degree 1. In particular
𝐻1(𝐿𝐵/𝐴) = 𝐼/𝐼2.

Proof. Follows from Lemma 7.123.2 and the fact that 𝐴 → 𝐵 is a presentation of 𝐵 over
𝐴. �
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Lemma 7.123.5. Let 𝐴 → 𝐵 → 𝐶 be ring maps. Assume 𝐴 → 𝐶 is surjective (so also
𝐵 → 𝐶 is). Denote 𝐼 = Ker(𝐴 → 𝐶) and 𝐽 = Ker(𝐵 → 𝐶). Then the sequence

𝐼/𝐼2 → 𝐽/𝐽2 → Ω𝐵/𝐴 ⊗𝐵 𝐵/𝐽 → 0

is exact.

Proof. Follows from Lemma 7.123.3 and the description of the naive cotangent complexes
𝑁𝐿𝐶/𝐵 and 𝑁𝐿𝐶/𝐴 in Lemma 7.123.4. �

Lemma 7.123.6 (Flat base change). Let 𝑅 → 𝑆 be a ring map. Let 𝛼 ∶ 𝑃 → 𝑆 be a
presentation. Let 𝑅 → 𝑅′ be a flat ring map. Let 𝛼′ ∶ 𝑃′ ⊗𝑅 𝑅′ → 𝑆′ = 𝑆 ⊗𝑅 𝑅′ be the
induced presentation. Then 𝑁𝐿(𝛼) ⊗𝑅 𝑅′ = 𝑁𝐿(𝛼) ⊗𝑆 𝑆′ = 𝑁𝐿(𝛼′). In particular, the
canonical map

𝑁𝐿𝑆/𝑅 ⊗𝑅 𝑅′ ⟶ 𝑁𝐿𝑆⊗𝑅𝑅′/𝑅′

is a homotopy equivalence if 𝑅 → 𝑅′ is flat.

Proof. This is true because Ker(𝛼′) = 𝑅′ ⊗𝑅 Ker(𝛼) since 𝑅 → 𝑅′ is flat. �

Lemma 7.123.7. Let 𝑅𝑖 → 𝑆𝑖 be a system of ring maps over the directed partially ordered
set 𝐼. Set 𝑅 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝑖 and 𝑆 = 𝑐𝑜𝑙𝑖𝑚 𝑆𝑖. Then 𝑁𝐿𝑆/𝑅 = 𝑐𝑜𝑙𝑖𝑚 𝑁𝐿𝑆𝑖/𝑅𝑖

.

Proof. Recall that 𝑁𝐿𝑆/𝑅 is the complex 𝐼/𝐼2 → ⨁𝑠∈𝑆 𝑆d[𝑠] where 𝐼 ⊂ 𝑅[𝑆] is the kernel
of the canonical presentation 𝑅[𝑆] → 𝑆. Now it is clear that 𝑅[𝑆] = 𝑐𝑜𝑙𝑖𝑚 𝑅𝑖[𝑆𝑖] and
similarly that 𝐼 = 𝑐𝑜𝑙𝑖𝑚 𝐼𝑖 where 𝐼𝑖 = Ker(𝑅𝑖[𝑆𝑖] → 𝑆𝑖). Hence the lemma is clear. �

Lemma 7.123.8. If 𝑆 ⊂ 𝐴 is a multiplicative subset of 𝐴, then 𝑁𝐿𝑆−1𝐴/𝐴 is homotopy
equivalent to the zero complex.

Proof. Since 𝐴 → 𝑆−1𝐴 is flat we see that 𝑁𝐿𝑆−1𝐴/𝐴 ⊗𝐴 𝑆−1𝐴 → 𝑁𝐿𝑆−1𝐴/𝑆−1𝐴 is a
homotopy equivalence. Since the source of the arrow is isomorphic to 𝑁𝐿𝑆−1𝐴/𝐴 and the
target of the arrow is zero (by Lemma 7.123.4) we win. �

Lemma 7.123.9. Let 𝑆 ⊂ 𝐴 is a multiplicative subset of 𝐴. Let 𝑆−1𝐴 → 𝐵 be a ring map.
Then 𝑁𝐿𝐵/𝐴 → 𝑁𝐿𝐵/𝑆−1𝐴 is an homotopy equivalence.

Proof. Follows from Lemmas 7.123.3 and 7.123.8. �

Lemma 7.123.10. Let 𝐴 → 𝐵 be a ring map. Let 𝑆 ⊂ 𝐵 be a multiplicative subset. Then
there exists a quasi-isomorphism 𝑁𝐿𝐵/𝐴 ⊗𝐵 𝑆−1𝐵 → 𝑁𝐿𝑆−1𝐵/𝐴.

Proof. Note that 𝑆−1𝐵 = 𝑐𝑜𝑙𝑖𝑚𝑔∈𝑆 𝐵𝑔 where we think of 𝑆 as a directed partially ordered
set (ordering by divisibility). Hence by Lemma 7.123.7 it suffices to prove 𝑁𝐿𝐵/𝐴⊗𝐵𝐵𝑔 →
𝑁𝐿𝐵𝑔/𝐴. Suppose 𝛼 ∶ 𝑃 → 𝐵 is a presentation with kernel 𝐼. Then a presentation of 𝐵𝑔
over 𝐴 is

𝛽 ∶ 𝑃[𝑥] ⟶ 𝐵𝑔
mapping 𝑥 to 1/𝑔 in 𝐵𝑔. Then kernel 𝐽 of 𝛽 is generated by 𝐼 and the element 𝑓𝑥 − 1. Here
𝑓 ∈ 𝑃 is a polynomial that maps to 𝑔 in 𝐵. In this case

𝐽/𝐽2 ≅ (𝐼/𝐼2)𝑔 ⊕ 𝐵𝑔 ⋅ (𝑓𝑥 − 1).

Moreover, the term of degree zero of the naive cotangent complex for the presentation of
𝐵𝑔 has one more summand, namely 𝐵𝑔d𝑥. Thus we see that there is a short exact sequence
of complexes

0 → 𝑁𝐿(𝛼) ⊗𝐵 𝐵𝑔 → 𝑁𝐿(𝛽) → (𝐵𝑔
𝑔

−→ 𝐵𝑔) → 0
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which proves that 𝑁𝐿(𝛽) is quasi-isomorphic to 𝑁𝐿(𝛼) ⊗𝑆 𝑆𝑔. By Lemma 7.123.2 this
implies 𝑁𝐿𝐵/𝐴 ⊗𝐵 𝐵𝑔 → 𝑁𝐿𝐵𝑔/𝐴 is a quasi-isomorphism as desired. �

Lemma 7.123.11. Let𝑅 be a ring. Let𝐴1 → 𝐴0, and𝐵1 → 𝐵0 be two two term complexes.
Suppose that there exist morphisms of complexes 𝜑 ∶ 𝐴• → 𝐵• and 𝜓 ∶ 𝐵• → 𝐴• such
that 𝜑 ∘ 𝜓 and 𝜓 ∘ 𝜑 are homotopic to the identity maps. Then 𝐴1 ⊕ 𝐵0 ≅ 𝐵1 ⊕ 𝐴0 as
𝑅-modules.

Proof. Choose a map ℎ ∶ 𝐴0 → 𝐵1 such that
id𝐴1

− 𝜓1 ∘ 𝜑1 = ℎ ∘ 𝑑𝐴 and id𝐴0
− 𝜓0 ∘ 𝜑0 = 𝑑𝐴 ∘ ℎ.

Similarly, choose a map ℎ′ ∶ 𝐵0 → 𝐴1 such that
id𝐵1

− 𝜑1 ∘ 𝜓1 = ℎ ∘ 𝑑𝐵 and id𝐵0
− 𝜑0 ∘ 𝜓0 = 𝑑𝐵 ∘ ℎ.

A trivial computation shows that

(
id𝐴1

−ℎ′ ∘ 𝜓1 + ℎ ∘ 𝜓0
0 id𝐵0

) = (
𝜓1 ℎ

−𝑑𝐵 𝜑0) (
𝜑1 −ℎ′

𝑑𝐴 𝜓0 )

This shows that both matrices on the right hand side are invertible and proves the lemma.
�

Lemma 7.123.12. Let 𝑅 → 𝑆 be a ring map of finite type. For any presentations 𝛼 ∶
𝑅[𝑥1, … , 𝑥𝑛] → 𝑆, and 𝛽 ∶ 𝑅[𝑦1, … , 𝑦𝑚] → 𝑆 we have

𝐼/𝐼2 ⊕ 𝑆⊕𝑚 ≅ 𝐽/𝐽2 ⊕ 𝑆⊕𝑛

as 𝑆-modules where 𝐼 = Ker(𝛼) and 𝐽 = ker(𝛽).

Proof. See Lemmas 7.123.2 and 7.123.11. �

Lemma 7.123.13. Let𝑅 → 𝑆 be a ring map of finite type. Let 𝑔 ∈ 𝑆. For any presentations
𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆, and 𝛽 ∶ 𝑅[𝑦1, … , 𝑦𝑚] → 𝑆𝑔 we have

(𝐼/𝐼2)𝑔 ⊕ 𝑆⊕𝑚
𝑔 ≅ 𝐽/𝐽2 ⊕ 𝑆⊕𝑛

𝑔

as 𝑆𝑔-modules where 𝐼 = Ker(𝛼) and 𝐽 = ker(𝛽).

Proof. By Lemma 7.123.12 above, we see that it suffices to prove this for a single choice
of 𝛼 and 𝛽. Thus take 𝛽 to be the presentation

𝛽 ∶ 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1] ⟶ 𝑆𝑔

which maps 𝑥𝑖 to 𝛼(𝑥𝑖) and 𝑥𝑛+1 to 1/𝑔. Clearly 𝐽 = 𝐼𝑘[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1] + (𝑥𝑛+1𝑔 − 1).
Hence 𝐽/𝐽2 ≅ (𝐼/𝐼2)𝑔 ⊕ 𝑆𝑔 and we win. �

7.124. Local complete intersections

The property of being a local complete intersection is somehow an intrinsic property of a
Noetherian local ring. However, for the moment we just define this property for finite type
algebras over a field.

Definition 7.124.1. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra.
(1) We say that 𝑆 is a global complete intersection over 𝑘 if there exists a presentation

𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) such that dim(𝑆) = 𝑛 − 𝑐.
(2) We say that 𝑆 is a local complete intersection over 𝑘 if there exists a covering

𝑆𝑝𝑒𝑐(𝑆) = ⋃ 𝐷(𝑔𝑖) such that each of the rings 𝑆𝑔𝑖
is a global complete intersec-

tion over 𝑘.
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We will also use the convention that the zero ring is a global complete intersection over 𝑘.

Suppose 𝑆 is a global complete intersection 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) as in the defini-
tion. Recall that dim(𝑆) = 𝑛 − 𝑐 means that all irreducible components of 𝑆𝑝𝑒𝑐(𝑆) have
dimension ≤ 𝑛 − 𝑐. Since all maximal ideals of the polynomial ring have local rings of di-
mension 𝑛 we conclude that all irreducible components of 𝑆𝑝𝑒𝑐(𝑆) have dimension ≥ 𝑛−𝑐.
See Section 7.57. In other words, 𝑆𝑝𝑒𝑐(𝑆) is equidimensional of dimension 𝑛 − 𝑐.

Lemma 7.124.2. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝑔 ∈ 𝑆.
(1) If 𝑆 is a global complete intersection so is 𝑆𝑔.
(2) If 𝑆 is a local complete intersection so is 𝑆𝑔.

Proof. The second statement follows immediately from the first. For the first, say that 𝑆 =
𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) with 𝑛 − 𝑐 = dim(𝑆). By the remarks above 𝑆 is equidimensional
of dimension 𝑛 − 𝑐, so dim(𝑆𝑔) = 𝑛 − 𝑐 as well (or it is the zero ring in which case the
lemma is true by convention). Let 𝑔′ ∈ 𝑘[𝑥1, … , 𝑥𝑛] be an element whose residue class
corresponds to 𝑔. Then 𝑆𝑔 = 𝑘[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑥𝑛+1𝑔′ − 1) as desired. �

Lemma 7.124.3. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. If 𝑆 is a local complete
intersection, then 𝑆 is a Cohen-Macaulay ring.

Proof. Choose a maximal prime 𝔪 of 𝑆. We have to show that 𝑆𝔪 is Cohen-Macaulay. By
assumption we may assume 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) with dim(𝑆) = 𝑛 − 𝑐. Let 𝔪′ ⊂
𝑘[𝑥1, … , 𝑥𝑛] be the maximal ideal corresponding to 𝔪. According to Proposition 7.105.2
the local ring 𝑘[𝑥1, … , 𝑥𝑛]𝔪′ is regular local of dimension 𝑛. Hence, by dimension theory
(see Section 7.57) the ring 𝑆𝔪 = 𝑘[𝑥1, … , 𝑥𝑛]𝔪′/(𝑓1, … , 𝑓𝑐) has dimension ≥ 𝑛 − 𝑐. By
assumption dim(𝑆𝔪) ≤ 𝑛−𝑐. Thus we get equality. This implies that 𝑓1, … , 𝑓𝑐 is a regular
sequence in 𝑘[𝑥1, … , 𝑥𝑛]𝔪′ and that 𝑆𝔪 is Cohen-Macaulay, see Proposition 7.95.4. �

The following is the technical key to the rest of the material in this section. An impor-
tant feature of this lemma is that we may choose any presentation for the ring 𝑆, but that
condition (1) does not depend on this choice.

Lemma 7.124.4. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝔮 be a prime of
𝑆. Choose any presentation 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼. Let 𝔮′ be the prime of 𝑘[𝑥1, … , 𝑥𝑛]
corresponding to 𝔮. Set 𝑐 = height(𝔮′) − height(𝔮), in other words dim𝔮(𝑆) = 𝑛 − 𝑐 (see
Lemma 7.107.4). The following are equivalent

(1) There exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑆𝑔 is a global complete intersection over 𝑘.
(2) The ideal 𝐼𝔮′ ⊂ 𝑘[𝑥1, … , 𝑥𝑛]𝔮′ can be generated by 𝑐 elements.
(3) The conormal module (𝐼/𝐼2)𝔮 can be generated by 𝑐 elements over 𝑆𝔮.
(4) The conormal module (𝐼/𝐼2)𝔮 is a free 𝑆𝔮-module of rank 𝑐.
(5) The ideal 𝐼𝔮′ can be generated by a regular sequence in the regular local ring

𝑘[𝑥1, … , 𝑥𝑛]𝔮′.
In this case any 𝑐 elements of 𝐼𝔮′ which generate 𝐼𝔮′/𝔮′𝐼𝔮′ form a regular sequence in the
local ring 𝑘[𝑥1, … , 𝑥𝑛]𝔮′.

Proof. Set 𝑅 = 𝑘[𝑥1, … , 𝑥𝑛]𝔮′. This is a regular local ring of dimension height(𝔮′). More-
over, 𝑅 = 𝑅/𝐼𝑅 = 𝑅/𝐼𝔮′ = 𝑆𝔮 is a quotient of dimension height(𝔮). Let 𝑓1, … , 𝑓𝑐 ∈ 𝐼𝔮′

be elements which generate (𝐼/𝐼2)𝔮. By Lemma 7.14.5 we see that 𝑓1, … , 𝑓𝑐 generate 𝐼𝔮′.
Since the dimensions work out, we conclude by Proposition 7.95.4 that 𝑓1, … , 𝑓𝑐 is a reg-
ular sequence in 𝑅. By Lemma 7.66.2 we see that (𝐼/𝐼2)𝔮 is free. These arguments show
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that (2), (3), (4) are equivalent and that they imply the last statement of the lemma, and
therefore they imply (5).

If (5) holds, say 𝐼𝔮′ is generated by a regular sequence of length 𝑒, then height(𝔮) =
dim(𝑆𝔮) = dim(𝑘[𝑥1, … , 𝑥𝑛]𝔮′) − 𝑒 = height(𝔮′) − 𝑒 by dimension theory, see Section
7.57. We conclude that 𝑒 = 𝑐. Thus (5) implies (2).

We continue with the notation introduced in the first paragraph. For each 𝑓𝑖 we may find
𝑑𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛], 𝑑𝑖∉𝔮′ such that 𝑓′

𝑖 = 𝑑𝑖𝑓𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛]. Then it is still true that 𝐼𝔮′ =
(𝑓′

1, … , 𝑓′
𝑐)𝑅. Hence there exists a 𝑔′ ∈ 𝑘[𝑥1, … , 𝑥𝑛], 𝑔′∉𝔮′ such that 𝐼𝑔′ = (𝑓′

1, … , 𝑓′
𝑐).

Moreover, pick 𝑔″ ∈ 𝑘[𝑥1, … , 𝑥𝑛], 𝑔″∉𝔮′ such that dim(𝑆𝑔″) = dim𝔮 𝑆𝑝𝑒𝑐(𝑆). By Lemma
7.107.4 this dimension is equal to 𝑛 − 𝑐. Finally, set 𝑔 equal to the image of 𝑔′𝑔″ in 𝑆. Then
we see that

𝑆𝑔 ≅ 𝑘[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓′
1, … , 𝑓′

𝑐, 𝑥𝑛+1𝑔′𝑔″ − 1)
and by our choice of 𝑔″ this ring has dimension 𝑛 − 𝑐. Therefore it is a global complete
intersection. Thus each of (2), (3), and (4) implies (1).

Assume (1). Let𝑆𝑔 ≅ 𝑘[𝑦1, … , 𝑦𝑚]/(𝑓1, … , 𝑓𝑡) be a presentation of𝑆𝑔 as a global complete
intersection. Write 𝐽 = (𝑓1, … , 𝑓𝑡). Let 𝔮″ ⊂ 𝑘[𝑦1, … , 𝑦𝑚] be the prime corresponding to
𝔮𝑆𝑔. Note that 𝑡 = 𝑚 − dim(𝑆𝑔) = height(𝔮) − height(𝔮″), see Lemma 7.107.4 for the last
equality. As seen in the proof of Lemma 7.124.3 (and also above) the elements 𝑓1, … , 𝑓𝑡
form a regular sequence in the local ring 𝑘[𝑦1, … , 𝑦𝑚]𝔮″. By Lemma 7.66.2 we see that
(𝐽/𝐽2)𝔮 is free of rank 𝑡. By Lemma 7.123.13 we have

𝐽/𝐽2 ⊕ 𝑆𝑛
𝑔 ≅ (𝐼/𝐼2)𝑔 ⊕ 𝑆𝑚

𝑔

Thus (𝐼/𝐼2)𝔮 is free of rank 𝑡 + 𝑛 − 𝑚 = 𝑚 − dim(𝑆𝑔) + 𝑛 − 𝑚 = 𝑛 − dim(𝑆𝑔) = height(𝔮) −
height(𝔮′) = 𝑐. Thus we obtain (4). �

The result of Lemma 7.124.4 suggests the following definition.

Definition 7.124.5. Let 𝑘 be a field. Let 𝑆 be a local 𝑘-algebra essentially of finite type
over 𝑘. We say 𝑆 is a complete intersection (over 𝑘) if there exists a local 𝑘-algebra 𝑅 and
elements 𝑓1, … , 𝑓𝑐 ∈ 𝔪𝑅 such that

(1) 𝑅 is essentially of finite type over 𝑘,
(2) 𝑅 is a regular local ring,
(3) 𝑓1, … , 𝑓𝑐 form a regular sequence in 𝑅, and
(4) 𝑆 ≅ 𝑅/(𝑓1, … , 𝑓𝑐) as 𝑘-algebras.

By the Cohen structure theorem (see Theorem 7.143.8) any complete Noetherian local ring
may be written as the quotient of some regular complete local ring. Hence we may use
the definition above to define the notion of a complete intersection ring for any complete
Noetherian local ring. We will discuss this later, see (insert future reference here). In the
meantime the following lemma shows that such a definition makes sense.

Lemma 7.124.6. Let 𝐴 → 𝐵 → 𝐶 be surjective local ring homomorphisms. Assume 𝐴
and 𝐵 are regular local rings. The following are equivalent

(1) Ker(𝐴 → 𝐶) is generated by a regular sequence,
(2) Ker(𝐴 → 𝐶) is generated by dim(𝐴) − dim(𝐶) elements,
(3) Ker(𝐵 → 𝐶) is generated by a regular sequence, and
(4) Ker(𝐵 → 𝐶) is generated by dim(𝐵) − dim(𝐶) elements.
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Proof. A regular local ring is Cohen-Macaulay, see Lemma 7.98.3. Hence the equivalences
(1) ⇔ (2) and (3) ⇔ (4), see Proposition 7.95.4. By Lemma 7.98.4 the ideal Ker(𝐴 → 𝐵)
can be generated by dim(𝐴) − dim(𝐵) elements. Hence we see that (4) implies (2).
It remains to show that (1) implies (4). We do this by induction on dim(𝐴) − dim(𝐵). The
case dim(𝐴) − dim(𝐵) = 0 is trivial. Assume dim(𝐴) > dim(𝐵). Write 𝐼 = Ker(𝐴 → 𝐶)
and 𝐽 = Ker(𝐴 → 𝐵). Note that 𝐽 ⊂ 𝐼. Our assumption is that the minimal number of
generators of 𝐼 is dim(𝐴) − dim(𝐶). Let 𝔪 ⊂ 𝐴 be the maximal ideal. Consider the maps

𝐽/𝔪𝐽 → 𝐼/𝔪𝐼 → 𝔪/𝔪2

By Lemma 7.98.4 and its proof the composition is injective. Take any element 𝑥 ∈ 𝐽 which
is not zero in 𝐽/𝔪𝐽. By the above and Nakayama's lemma 𝑥 is an element of a minimal set
of generators of 𝐼. Hence we may replace 𝐴 by 𝐴/𝑥𝐴 and 𝐼 by 𝐼/𝑥𝐴 which decreases both
dim(𝐴) and the minimal number of generators of 𝐼 by 1. Thus we win. �

Lemma 7.124.7. Let 𝑘 be a field. Let 𝑆 be a local 𝑘-algebra essentially of finite type over
𝑘. The following are equivalent:

(1) 𝑆 is a complete intersection over 𝑘,
(2) for any surjection 𝑅 → 𝑆 with 𝑅 a regular local ring essentially of finite presen-

tation over 𝑘 the ideal Ker(𝑅 → 𝑆) can be generated by a regular sequence,
(3) for some surjection 𝑅 → 𝑆 with 𝑅 a regular local ring essentially of finite pre-

sentation over 𝑘 the ideal Ker(𝑅 → 𝑆) can be generated by dim(𝑅) − dim(𝑆)
elements,

(4) there exists a global complete intersection 𝐴 over 𝑘 and a prime 𝔞 of 𝐴 such that
𝑆 ≅ 𝐴𝔞, and

(5) there exists a local complete intersection 𝐴 over 𝑘 and a prime 𝔞 of 𝐴 such that
𝑆 ≅ 𝐴𝔞.

Proof. It is clear that (2) implies (1) and (1) implies (3). It is also clear that (4) implies (5).
Let us show that (3) implies (4). Thus we assume there exists a surjection 𝑅 → 𝑆 with 𝑅 a
regular local ring essentially of finite presentation over 𝑘 such that the ideal Ker(𝑅 → 𝑆) can
be generated by dim(𝑅) − dim(𝑆) elements. We may write 𝑅 = (𝑘[𝑥1, … , 𝑥𝑛]/𝐽)𝔮 for some
𝐽 ⊂ 𝑘[𝑥1, … , 𝑥𝑛] and some prime 𝔮 ⊂ 𝑘[𝑥1, … , 𝑥𝑛] with 𝐽 ⊂ 𝔮. Let 𝐼 ⊂ 𝑘[𝑥1, … , 𝑥𝑛]
be the kernel of the map 𝑘[𝑥1, … , 𝑥𝑛] → 𝑆 so that 𝑆 ≅ (𝑘[𝑥1, … , 𝑥𝑛]/𝐼)𝔮. By assumption
(𝐼/𝐽)𝔮 is generated by dim(𝑅) − dim(𝑆) elements. We conclude that 𝐼𝔮 can be generated
by dim(𝑘[𝑥1, … , 𝑥𝑛]𝔮) − dim(𝑆) elements by Lemma 7.124.6. From Lemma 7.124.4 we
see that for some 𝑔 ∈ 𝑘[𝑥1, … , 𝑥𝑛], 𝑔∉𝔮 the algebra (𝑘[𝑥1, … , 𝑥𝑛]/𝐼)𝑔 is a global complete
intersection and 𝑆 is isomorphic to a local ring of it.
To finish the proof of the lemma we have to show that (5) implies (2). Assume (5) and let
𝜋 ∶ 𝑅 → 𝑆 be a surjection with 𝑅 a regular local 𝑘-algebra essentially of finite type over
𝑘. By assumption we have 𝑆 = 𝐴𝔞 for some local complete intersection 𝐴 over 𝑘. Choose
a presentation 𝑅 = (𝑘[𝑦1, … , 𝑦𝑚]/𝐽)𝔮 with 𝐽 ⊂ 𝔮 ⊂ 𝑘[𝑦1, … , 𝑦𝑚]. We may and do assume
that 𝐽 is the kernel of the map 𝑘[𝑦1, … , 𝑦𝑚] → 𝑅. Let 𝐼 ⊂ 𝑘[𝑦1, … , 𝑦𝑚] be the kernel of
the map 𝑘[𝑦1, … , 𝑦𝑚] → 𝑆 = 𝐴𝔞. Then 𝐽 ⊂ 𝐼 and (𝐼/𝐽)𝔮 is the kernel of the surjection
𝜋 ∶ 𝑅 → 𝑆. So 𝑆 = (𝑘[𝑦1, … , 𝑦𝑚]/𝐼)𝔮.

By Lemma 7.117.7 we see that there exist 𝑔 ∈ 𝐴, 𝑔∉𝔞 and 𝑔′ ∈ 𝑘[𝑦1, … , 𝑦𝑚], 𝑔′∉𝔮 such
that 𝐴𝑔 ≅ (𝑘[𝑦1, … , 𝑦𝑚]/𝐼)𝑔′. After replacing 𝐴 by 𝐴𝑔 and 𝑘[𝑦1, … , 𝑦𝑚] by 𝑘[𝑦1, … , 𝑦𝑚+1]
we may assume that 𝐴 ≅ 𝑘[𝑦1, … , 𝑦𝑚]/𝐼. Consider the surjective maps of local rings

𝑘[𝑦1, … , 𝑦𝑚]𝔮 → 𝑅 → 𝑆.
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We have to show that the kernel of 𝑅 → 𝑆 is generated by a regular sequence. By Lemma
7.124.4 we know that 𝑘[𝑦1, … , 𝑦𝑚]𝔮 → 𝐴𝔞 = 𝑆 has this property (as 𝐴 is a local complete
intersection over 𝑘). We win by Lemma 7.124.6. �

Lemma 7.124.8. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝔮 be a prime of 𝑆.
The following are equivalent:

(1) The local ring 𝑆𝔮 is a complete intersection ring (Definition 7.124.5).
(2) There exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑆𝑔 is a local complete intersection over 𝑘.
(3) There exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑆𝑔 is a global complete intersection over 𝑘.
(4) For any presentation 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼 with 𝔮′ ⊂ 𝑘[𝑥1, … , 𝑥𝑛] corresponding

to 𝔮 any of the equivalent conditions (1) -- (5) of Lemma 7.124.4 hold.

Proof. This is a combination of Lemmas 7.124.4 and 7.124.7 and the definitions. �

Lemma 7.124.9. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. The following are
equivalent:

(1) The ring 𝑆 is a local complete intersection over 𝑘.
(2) All local rings of 𝑆 are complete intersection rings over 𝑘.
(3) All localizations of 𝑆 at maximal ideals are complete intersection rings over 𝑘.

Proof. This follows from Lemma 7.124.8, the fact that 𝑆𝑝𝑒𝑐(𝑆) is quasi-compact and the
definitions. �

The following lemma says that being a complete intersection is preserved under change of
base field (in a strong sense).

Lemma 7.124.10. Let 𝑘 ⊂ 𝐾 be a field extension. Let 𝑆 be a finite type algebra over 𝑘.
Let 𝔮𝐾 be a prime of 𝑆𝐾 = 𝐾 ⊗𝑘 𝑆 and let 𝔮 be the corresponding prime of 𝑆. Then 𝑆𝔮
is a complete intersection over 𝑘 (Definition 7.124.5) if and only if (𝑆𝐾)𝔮𝐾

is a complete
intersection over 𝐾.

Proof. Choose a presentation𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼. This gives a presentation𝑆𝐾 = 𝐾[𝑥1, … , 𝑥𝑛]/𝐼𝐾
where 𝐼𝐾 = 𝐾 ⊗𝑘 𝐼. Let 𝔮′

𝐾 ⊂ 𝐾[𝑥1, … , 𝑥𝑛], resp. 𝔮′ ⊂ 𝑘[𝑥1, … , 𝑥𝑛] be the corresponding
prime. We will show that the equivalent conditions of Lemma 7.124.4 hold for the pair
(𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼, 𝔮) if and only if they hold for the pair (𝑆𝐾 = 𝐾[𝑥1, … , 𝑥𝑛]/𝐼𝐾, 𝔮𝐾).
The lemma will follow from this (see Lemma 7.124.8).

By Lemma 7.107.6 we have dim𝔮 𝑆 = dim𝔮𝐾
𝑆𝐾. Hence the integer 𝑐 occuring in Lemma

7.124.4 is the same for the pair (𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼, 𝔮) as for the pair (𝑆𝐾 = 𝐾[𝑥1, … , 𝑥𝑛]/𝐼𝐾, 𝔮𝐾).
On the other hand we have

𝐼 ⊗𝑘[𝑥1,…,𝑥𝑛] 𝜅(𝔮′) ⊗𝜅(𝔮′) 𝜅(𝔮′
𝐾) = 𝐼 ⊗𝑘[𝑥1,…,𝑥𝑛] 𝜅(𝔮′

𝐾)
= 𝐼 ⊗𝑘[𝑥1,…,𝑥𝑛] 𝐾[𝑥1, … , 𝑥𝑛] ⊗𝐾[𝑥1,…,𝑥𝑛] 𝜅(𝔮′

𝐾)
= (𝐾 ⊗𝑘 𝐼) ⊗𝐾[𝑥1,…,𝑥𝑛] 𝜅(𝔮′

𝐾)
= 𝐼𝐾 ⊗𝐾[𝑥1,…,𝑥𝑛] 𝜅(𝔮′

𝐾).

Therefore, dim𝜅(𝔮′) 𝐼⊗𝑘[𝑥1,…,𝑥𝑛]𝜅(𝔮′) = dim𝜅(𝔮′
𝐾) 𝐼𝐾⊗𝐾[𝑥1,…,𝑥𝑛]𝜅(𝔮′

𝐾). Thus it follows from
Nakayama's Lemma 7.14.5 that the minimal number of generators of 𝐼𝔮′ is the same as the
minimal number of generators of (𝐼𝐾)𝔮′

𝐾
. Thus the lemma follows from characterization

(2) of Lemma 7.124.4. �
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Lemma 7.124.11. Let 𝑘 → 𝐾 be a field extension. Let 𝑆 be a finite type 𝑘-algebra. Then 𝑆
is a local complete intersection over 𝑘 if and only if 𝑆 ⊗𝑘 𝐾 is a local complete intersection
over 𝐾.
Proof. This follows from a combination of Lemmas 7.124.9 and 7.124.10. But we also
give a different proof here (based on the same principles).
Set 𝑆′ = 𝑆 ⊗𝑘 𝐾. Let 𝛼 ∶ 𝑘[𝑥1, … , 𝑥𝑛] → 𝑆 be a presentation with kernel 𝐼. Let
𝛼′ ∶ 𝐾[𝑥1, … , 𝑥𝑛] → 𝑆′ be the induced presentation with kernel 𝐼′.
Suppose that 𝑆 is a local complete intersection. Pick a prime 𝔮 ⊂ 𝑆′. Denote 𝔮′ the corre-
sponding prime of 𝐾[𝑥1, … , 𝑥𝑛], 𝔭 the corresponding prime of 𝑆, and 𝔭′ the corresponding
prime of 𝑘[𝑥1, … , 𝑥𝑛]. Consider the following diagram of Noetherian local rings

𝑆′
𝔮 𝐾[𝑥1, … , 𝑥𝑛]𝔮′oo

𝑆𝔭

OO

𝑘[𝑥1, … , 𝑥𝑛]𝔭′

OO

oo

By Lemma 7.124.4 we know that 𝑆𝔭 is cut out by some regular sequence 𝑓1, … , 𝑓𝑒 in
𝑘[𝑥1, … , 𝑥𝑛]𝔭′. Since the right vertical arrow is flat we see that the images of 𝑓1, … , 𝑓𝑐
form a regular sequence in 𝐾[𝑥1, … , 𝑥𝑛]𝔮′. Because tensoring with 𝐾 over 𝑘 is an exact
functor we have 𝑆′

𝔮 = 𝐾[𝑥1, … , 𝑥𝑛]𝔮′/(𝑓1, … , 𝑓𝑒). Hence by Lemma 7.124.4 again we see
that 𝑆′ is a local complete intersection in a neighbourhood of 𝔮. Since 𝔮 was arbitrary we
see that 𝑆′ is a local complete intersection over 𝐾.
Suppose that 𝑆′ is a local complete intersection. Pick a maximal ideal 𝔪 of 𝑆. Let 𝔪′

denote the corresponding maximal ideal of 𝑘[𝑥1, … , 𝑥𝑛]. Denote 𝜅 = 𝜅(𝔪) the residue
field. By Remark 7.16.8 the primes of 𝑆′ lying over 𝔪 correspond to primes in 𝐾 ⊗𝑘 𝜅.
By the Hilbert-Nullstellensatz Theorem 7.30.1 we have [𝜅 ∶ 𝑘] < ∞. Hence 𝐾 ⊗𝑘 𝜅 is
finite nonzero over 𝐾. Hence 𝐾 ⊗𝑘 𝜅 has a finite number > 0 of primes which are all
maximal, each of which has a residue field finite over 𝐾 (see Section 7.49). Hence there
are finitely many > 0 prime ideals 𝔫 ⊂ 𝑆′ lying over 𝔪, each of which is maximal and has
a residue field which is finite over 𝐾. Pick one, say 𝔫 ⊂ 𝑆′, and let 𝔫′ ⊂ 𝐾[𝑥1, … , 𝑥𝑛]
denote the corresponding prime ideal of 𝐾[𝑥1, … , 𝑥𝑛]. Note that since 𝑉(𝔪𝑆′) is finite,
we see that 𝔫 is an isolated closed point of it, and we deduce that 𝔪𝑆′

𝔫 is an ideal of
definition of 𝑆′

𝔫. This implies that dim(𝑆𝔪) ≥ dim(𝑆′
𝔫), for example by Lemma 7.103.6 or

by the characterization of dimension in terms of minimal number of generators of ideal of
definition, see Section 7.57. (In reality the dimensions are equal but we do not need this.)
Consider the corresponding diagram of Noetherian local rings

𝑆′
𝔫 𝐾[𝑥1, … , 𝑥𝑛]𝔫′oo

𝑆𝔪

OO

𝑘[𝑥1, … , 𝑥𝑛]𝔪′

OO

oo

According to Lemma 7.123.6 we have 𝑁𝐿(𝛼) ⊗𝑆 𝑆′ = 𝑁𝐿(𝛼′), in particular 𝐼′/(𝐼′)2 =
𝐼/𝐼2 ⊗𝑆 𝑆′. Thus (𝐼/𝐼2)𝔪 ⊗𝑆𝔪

𝜅 and (𝐼′/(𝐼′)2)𝔫 ⊗𝑆′
𝔫

𝜅(𝔫) have the same dimension. Since
(𝐼′/(𝐼′)2)𝔫 is free of rank 𝑛 − dim 𝑆′

𝔫 we deduce that (𝐼/𝐼2)𝔪 can be generated by 𝑛 −
dim 𝑆′

𝔫 ≤ 𝑛 − dim 𝑆𝔪 elements. By Lemma 7.124.4 we see that 𝑆 is a local complete
intersection in a neighbourhood of 𝔪. Since 𝔪 was any maximal ideal we conclude that 𝑆
is a local complete intersection. �
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We end with a lemma which we will later use to prove that given ring maps 𝑇 → 𝐴 → 𝐵
where 𝐵 is syntomic over 𝑇, and 𝐵 is syntomic over 𝐴, then 𝐴 is syntomic over 𝑇.

Lemma 7.124.12. Let
𝐵 𝑆oo

𝐴

OO

𝑅oo

OO

be a commutative square of local rings. Assume
(1) 𝑅 and 𝑆 = 𝑆/𝔪𝑅𝑆 are regular local rings,
(2) 𝐴 = 𝑅/𝐼 and 𝐵 = 𝑆/𝐽 for some ideals 𝐼, 𝐽,
(3) 𝐽 ⊂ 𝑆 and 𝐽 = 𝐽/𝔪𝑅 ∩ 𝐽 ⊂ 𝑆 are generated by regular sequences, and
(4) 𝐴 → 𝐵 and 𝑅 → 𝑆 are flat.

Then 𝐼 is generated by a regular sequence.

Proof. Set 𝐵 = 𝐵/𝔪𝑅𝐵 = 𝐵/𝔪𝐴𝐵 so that 𝐵 = 𝑆/𝐽. Let 𝑓1, … , 𝑓𝑐 ∈ 𝐽 be elements
such that 𝑓1, … , 𝑓𝑐 ∈ 𝐽 form a regular sequence generating 𝐽. Note that 𝑐 = dim(𝑆) −
dim(𝐵), see Lemma 7.124.6. By Lemma 7.91.3 the ring 𝑆/(𝑓1, … , 𝑓𝑐) is flat over 𝑅. Hence
𝑆/(𝑓1, … , 𝑓𝑐)+𝐼𝑆 is flat over 𝐴. The map 𝑆/(𝑓1, … , 𝑓𝑐)+𝐼𝑆 → 𝐵 is therefore a surjection
of finite 𝑆/𝐼𝑆-modules flat over 𝐴 which is an isomorphism modulo 𝔪𝐴, and hence an
isomorphism by Lemma 7.91.1. In other words, 𝐽 = (𝑓1, … , 𝑓𝑐) + 𝐼𝑆.

By Lemma 7.124.6 again the ideal 𝐽 is generated by a regular sequence of 𝑐 = dim(𝑆) −
dim(𝐵) elements. Hence 𝐽/𝔪𝑆𝐽 is a vector space of dimension 𝑐. By the description of 𝐽
above there exist 𝑔1, … , 𝑔𝑐−𝑐 ∈ 𝐼 such that 𝐽 is generated by 𝑓1, … , 𝑓𝑐, 𝑔1, … , 𝑔𝑐−𝑐 (use
Nakayama's Lemma 7.14.5). Consider the ring 𝐴′ = 𝑅/(𝑔1, … , 𝑔𝑐−𝑐) and the surjection
𝐴′ → 𝐴. We see from the above that 𝐵 = 𝑆/(𝑓1, … , 𝑓𝑐, 𝑔1, … , 𝑔𝑐−𝑐) is flat over 𝐴′ (as
𝑆/(𝑓1, … , 𝑓𝑐) is flat over 𝑅). Hence 𝐴′ → 𝐵 is injective (as it is faithfully flat, see Lemma
7.35.16). Since this map factors through 𝐴 we get 𝐴′ = 𝐴. Note that dim(𝐵) = dim(𝐴) +
dim(𝐵), and dim(𝑆) = dim(𝑅) + dim(𝑆), see Lemma 7.103.7. Hence 𝑐 − 𝑐 = dim(𝑅) −
dim(𝐴) by elementary algebra. Thus 𝐼 = (𝑔1, … , 𝑔𝑐−𝑐) is generated by a regular sequence
according to Lemma 7.124.6. �

7.125. Syntomic morphisms

Definition 7.125.1. A ring map 𝑅 → 𝑆 is called syntomic, or we say 𝑆 is a flat local
complete intersection over 𝑅 if it is flat, of finite presentation, and if all of its fibre rings
𝑆 ⊗𝑅 𝜅(𝔭) are local complete intersections, see Definition 7.124.1.

Clearly, an algebra over a field is syntomic over the field if and only if it is a local complete
intersection. Here is a pleasing feature of this definition.

Lemma 7.125.2. Let 𝑅 → 𝑆 be a ring map. Let 𝑅 → 𝑅′ be a faithfully flat ring map. Set
𝑆′ = 𝑅′ ⊗𝑅 𝑆. Then 𝑅 → 𝑆 is syntomic if and only if 𝑅′ → 𝑆′ is syntomic.

Proof. By Lemma 7.117.2 and Lemma 7.35.7 this holds for the property of being flat and
for the property of being of finite presentation. The map 𝑆𝑝𝑒𝑐(𝑅′) → 𝑆𝑝𝑒𝑐(𝑅) is surjective,
see Lemma 7.35.15. Thus it suffices to show given primes 𝔭′ ⊂ 𝑅′ lying over 𝔭 ⊂ 𝑅 that
𝑆 ⊗𝑅 𝜅(𝔭) is a local complete intersection if and only if 𝑆′ ⊗𝑅′ 𝜅(𝔭′) is a local complete
intersection. Note that 𝑆′ ⊗𝑅′ 𝜅(𝔭′) = 𝑆 ⊗𝑅 𝜅(𝔭) ⊗𝜅(𝔭) 𝜅(𝔭′). Thus Lemma 7.124.11
applies. �
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Lemma 7.125.3. Any base change of a syntomic map is syntomic.

Proof. This is true for being flat, for being of finite presentation, and for having local com-
plete intersections as fibres by Lemmas 7.35.6, 7.6.2 and 7.124.11. �

Lemma 7.125.4. Let𝑅 → 𝑆 be a ring map. Suppose we have 𝑔1, … 𝑔𝑚 ∈ 𝑆which generate
the unit ideal such that each 𝑅 → 𝑆𝑔𝑖

is syntomic. Then 𝑅 → 𝑆 is syntomic.

Proof. This is true for being flat and for being of finite presentation by Lemmas 7.35.19
and 7.21.3. The property of having fibre rings which are local complete intersections is
local on 𝑆 by its very definition, see Definition 7.124.1. �

Definition 7.125.5. Let 𝑅 → 𝑆 be a ring map. We say that 𝑅 → 𝑆 is a relative global
complete intersection if we are given a presentation 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) such
that every nonempty fibre has dimension 𝑛 − 𝑐.

The following lemma is occasionally useful to find global presentations.

Lemma 7.125.6. Let 𝑆 be a finitely presented 𝑅-algebra which has a presentation 𝑆 =
𝑅[𝑥1, … , 𝑥𝑛]/𝐼 such that 𝐼/𝐼2 is free over𝑆. Then𝑆 has a presentation𝑆 = 𝑅[𝑦1, … , 𝑦𝑚]/(𝑓1, … , 𝑓𝑐)
such that (𝑓1, … , 𝑓𝑐)/(𝑓1, … , 𝑓𝑐)2 is free with basis given by the classes of 𝑓1, … , 𝑓𝑐.

Proof. Note that 𝐼 is a finitely generated ideal by Lemma 7.6.3. Let 𝑓1, … , 𝑓𝑐 ∈ 𝐼 be
elements which map to a basis of 𝐼/𝐼2. By Nakayama's lemma (Lemma 7.14.5) there exists
a 𝑔 ∈ 1 + 𝐼 such that

𝑔 ⋅ 𝐼 ⊂ (𝑓1, … , 𝑓𝑐)
Hence we see that

𝑆 ≅ 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)[1/𝑔] ≅ 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑔𝑥𝑛+1 − 1)
as desired. �

Example 7.125.7. Let 𝑛, 𝑚 ≥ 1 be integers. Consider the ring map
𝑅 = 𝐙[𝑎1, … , 𝑎𝑛+𝑚] ⟶ 𝑆 = 𝐙[𝑏1, … , 𝑏𝑛, 𝑐1, … , 𝑐𝑚]

𝑎1 ⟼ 𝑏1 + 𝑐1

𝑎2 ⟼ 𝑏2 + 𝑏1𝑐1 + 𝑐2

… … …
𝑎𝑛+𝑚 ⟼ 𝑏𝑛𝑐𝑚

In other words, this is the unique ring map of polynomial rings as indicated such that the
polynomial factorization

𝑥𝑛 + 𝑎1𝑥𝑛−1 + … + 𝑎𝑛+𝑚 = (𝑥𝑛 + 𝑏1𝑥𝑛−1 + … + 𝑏𝑛)(𝑥𝑚 + 𝑐1𝑥𝑚−1 + … + 𝑐𝑚)
holds. Note that 𝑆 is generated by 𝑛 + 𝑚 elements over 𝑅 (namely, 𝑏𝑖, 𝑐𝑗) and that there
are 𝑛 + 𝑚 equations (namely 𝑎𝑘 = 𝑎𝑘(𝑏𝑖, 𝑐𝑗)). In order to show that 𝑆 is a relative global
complete intersection over 𝑅 it suffices to prove that all fibres have dimension 0.
To prove this, let 𝑅 → 𝑘 be a ring map into a field 𝑘. Say 𝑎𝑖 maps to 𝛼𝑖 ∈ 𝑘. Consider the
fibre ring 𝑆𝑘 = 𝑘 ⊗𝑅 𝑆. Let 𝑘 → 𝐾 be a field extension. A 𝑘-algebra map of 𝑆𝑘 → 𝐾 is
the same thing as finding 𝛽1, … , 𝛽𝑛, 𝛾1, … , 𝛾𝑚 ∈ 𝐾 such that

𝑥𝑛 + 𝛼1𝑥𝑛−1 + … + 𝛼𝑛+𝑚 = (𝑥𝑛 + 𝛽1𝑥𝑛−1 + … + 𝛽𝑛)(𝑥𝑚 + 𝛾1𝑥𝑚−1 + … + 𝛾𝑚).
Hence we see there are at most finitely many choices of such 𝑛 + 𝑚-tuples in 𝐾. This
proves that all fibres have finitely many closed points (use Hilbert's Nullstellensatz to see
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they all correspond to solutions in 𝑘 for example) and hence that 𝑅 → 𝑆 is a relative global
complete intersection.

Another way to argue this is to show 𝐙[𝑎1, … , 𝑎𝑛+𝑚] → 𝐙[𝑏1, … , 𝑏𝑛, 𝑐1, … , 𝑐𝑚] is actually
also a finite ring map. Namely, by Lemma 7.34.5 each of 𝑏𝑖, 𝑐𝑗 is integral over 𝑅, and hence
𝑅 → 𝑆 is finite by Lemma 7.32.4.

Example 7.125.8. Consider the ring map

𝑅 = 𝐙[𝑎1, … , 𝑎𝑛] ⟶ 𝑆 = 𝐙[𝛼1, … , 𝛼𝑛]
𝑎1 ⟼ 𝛼1 + … + 𝛼𝑛

… … …
𝑎𝑛 ⟼ 𝛼1 … 𝛼𝑛

In other words this is the unique ring map of polynomial rings as indicated such that

𝑥𝑛 + 𝑎1𝑥𝑛−1 + … + 𝑎𝑛 = ∏
𝑛
𝑖=1

(𝑥 + 𝛼𝑖)

holds in 𝐙[𝛼𝑖, 𝑥]. Another way to say this is that 𝑎𝑖 maps to the 𝑖th elementary symmetric
function in 𝛼1, … , 𝛼𝑛. Note that 𝑆 is generated by 𝑛 elements over 𝑅 subject to 𝑛 equations.
Hence to show that 𝑆 is a global relative complete intersection over 𝑅 we have to show
that the fibre rings 𝑆 ⊗𝑅 𝜅(𝔭) have dimension 0. This follows as in Example 7.125.7 above
because the ring map 𝐙[𝑎1, … , 𝑎𝑛] → 𝐙[𝛼1, … , 𝛼𝑛] is actually finite since each 𝛼𝑖 ∈ 𝑆
satisfies the monic equation 𝑥𝑛 − 𝑎1𝑥𝑛−1 + … + (−1)𝑛𝑎𝑛 over 𝑅.

Lemma 7.125.9. Suppose that 𝐴 is a ring, and 𝑃(𝑥) = 𝑥𝑛 + 𝑏1𝑥𝑛−1 + … + 𝑏𝑛 ∈ 𝐴[𝑥] is
a monic polynomial over 𝐴. Then there exists a syntomic, finite locally free, faithfully flat
ring extension 𝐴 ⊂ 𝐴′ such that 𝑃(𝑥) = ∏𝑖=1,…,𝑛(𝑥 − 𝛽𝑖) for certain 𝛽𝑖 ∈ 𝐴′.

Proof. Take 𝐴′ = 𝐴⊗𝑅 𝑆, where 𝑅 and 𝑆 are as in Example 7.125.8 above, where 𝑅 → 𝐴
maps 𝑎𝑖 to 𝑏𝑖, and let 𝛽𝑖 = −1 ⊗ 𝛼𝑖. �

Lemma 7.125.10. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) be a relative global complete inter-
section over 𝑅.

(1) For any 𝑅 → 𝑅′ the base change 𝑅′ ⊗𝑅 𝑆 = 𝑅′[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is a
relative global complete intersection.

(2) For any 𝑔 ∈ 𝑆which is the image ofℎ ∈ 𝑅[𝑥1, … , 𝑥𝑛] the ring𝑆𝑔 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, ℎ𝑥𝑛+1−
1) is a relative global complete intersection.

(3) If 𝑅 → 𝑆 factors as 𝑅 → 𝑅𝑓 → 𝑆 for some 𝑓 ∈ 𝑅. Then the ring 𝑆 =
𝑅𝑓[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is a relative global complete intersection over 𝑅𝑓.

Proof. By Lemma 7.107.5 the fibres of a base change have the same dimension as the fibres
of the originalmap. Moreover𝑅′⊗𝑅𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) = 𝑅′[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐).
Thus (1) follows. The proof of (2) is that the localization at one element can be described
as 𝑆𝑔 ≅ 𝑆[𝑥𝑛+1]/(𝑔𝑥𝑛+1 − 1). Assertion (3) follows from (1) since under the assumptions
of (3) we have 𝑅𝑓 ⊗𝑅 𝑆 ≅ 𝑆. �

Lemma 7.125.11. Let 𝑅 be a ring. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐). Let 𝔮 ⊂ 𝑆 be a
prime lying over 𝔭 ⊂ 𝑅. If dim𝔮(𝑆/𝑅) = 𝑛 − 𝑐, then there exists a ℎ ∈ 𝑅[𝑥1, … , 𝑥𝑛] which
maps to 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that

𝑆𝑔 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, ℎ𝑥𝑛+1 − 1)

is a relative global complete intersection over 𝑅.
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Proof. By Lemma 7.116.6 there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that all nonempty fibres of
𝑅 → 𝑆𝑔 have dimension ≤ 𝑛−𝑐. Let ℎ ∈ 𝑅[𝑥1, … , 𝑥𝑛] be an element that maps to 𝑔. Then
𝑆𝑔 ≅ 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑓𝑐+1) with 𝑓𝑐+1 = ℎ𝑥𝑛+1 − 1. Thus 𝑆𝑔 is a relative
global complete intersection. �

The following lemma ``almost'' states that we can do absolute Noetherian approximation
for relative complete intersections. It is a bit awkward because we have not yet developed
enough theory to deal with the condition on the dimensions of fibres. We will state and
prove the correct version of this lemma in More on Morphisms, Lemma 33.24.10.

Lemma 7.125.12. Let 𝑅 be a ring. Let 𝑆 be a relative global complete intersection with
presentation 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐). Let 𝔮 ⊂ 𝑆 be a prime. There exist

(1) a finite type 𝐙-subalgebra 𝑅0 ⊂ 𝑅 such that 𝑓𝑖 ∈ 𝑅0[𝑥1, … , 𝑥𝑛], and
(2) an element ℎ ∈ 𝑅0[𝑥1, … , 𝑥𝑛]

such that with 𝑓𝑐+1 = ℎ𝑥𝑛+1 − 1 we have
(1) ℎ maps to an element 𝑔 of 𝑆 which is not in 𝔮, and
(2) 𝑅0[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑓𝑐+1) is a relative global complete intersection

over 𝑅0.
In particular 𝑆𝑔 is isomorphic to the base change of a relative global complete intersection
over 𝑅0.

Proof. Let 𝑅0 ⊂ 𝑅 be the 𝐙-algebra of 𝑅 generated by all the coefficients of the polyno-
mials 𝑓1, … , 𝑓𝑐. Let 𝑆0 = 𝑅0[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐). Clearly, 𝑆 = 𝑅 ⊗𝑅0

𝑆0. Sup-
pose our 𝔮 ⊂ 𝑆 lies over the prime 𝔭 ⊂ 𝑅, and let 𝔮0 ⊂ 𝑆0 be the corresponding
prime lying over the prime 𝔭0 of 𝑅0. Because dim(𝑆 ⊗𝑅 𝜅(𝔭)) = 𝑛 − 𝑐 we also have
dim(𝑆0 ⊗𝑅0

𝜅(𝔭0)) = 𝑛 − 𝑐, see Lemma 7.107.5 for example. By Lemma 7.125.11 we con-
clude that there exists a 𝑔 ∈ 𝑆0, 𝑔∉𝔮0 such that 𝑅0 → (𝑆0)𝑔 is a relative global complete
intersection. Let ℎ ∈ 𝑅0[𝑥1, … , 𝑥𝑛] be any element mapping to 𝑔. �

Lemma 7.125.13. Let 𝑅 be a ring. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) be a relative global
complete intersection. For every prime 𝔮 of 𝑆, let 𝔮′ denote the corresponding prime of
𝑅[𝑥1, … , 𝑥𝑛]. Then

(1) 𝑓1, … , 𝑓𝑐 is a regular sequence in the local ring 𝑅[𝑥1, … , 𝑥𝑛]𝔮′,
(2) each of the rings 𝑅[𝑥1, … , 𝑥𝑛]𝔮′/(𝑓1, … , 𝑓𝑖) is flat over 𝑅, and
(3) the 𝑆-module (𝑓1, … , 𝑓𝑐)/(𝑓1, … , 𝑓𝑐)2 is free with basis given by the elements

𝑓𝑖 mod (𝑓1, … , 𝑓𝑐)2.

Proof. First, by Lemma 7.66.2, the last statement follows from the first.

We first reduce (1) and (2) to the Noetherian case. Namely, assume the lemma holds in the
Noetherian case. For every 𝔮 we may choose 𝑅0, ℎ, 𝑓𝑐+1 = ℎ𝑥𝑛+1 − 1 and 𝑔 as in Lemma
7.125.12. Denote 𝔮″ ⊂ 𝑅[𝑥1, … , 𝑥𝑛+1] the unique prime containing 𝔮 and 𝑓𝑐+1, i.e., the one
that corresponds to the prime 𝔮𝑆𝑔 via the isomorphism𝑆𝑔 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑓𝑐+1).
Denote 𝔮″

0 ⊂ 𝑅0[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1] the prime corresponding to 𝑞″. Because𝑆0 = 𝑅0[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑓𝑐+1)
is a relative global complete intersection over a Noetherian ring we see that 𝑓𝑐+1, 𝑓1, … , 𝑓𝑐
is a regular sequence in 𝑅0[𝑥1, … , 𝑥𝑛+1]𝔮″

0
. Since after all we may reorder the elements at

will without destroying the property of being a relative global complete intersection. Sim-
ilarly each ring 𝑅0[𝑥1, … , 𝑥𝑛+1]𝔮″

0
/(𝑓𝑐+1, 𝑓1, … , 𝑓𝑖) is flat over 𝑅0. Thus each short exact
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sequence

0 →
(𝑃0)𝔮″

0

(𝑓𝑐+1, 𝑓1, … , 𝑓𝑖−1)
→

(𝑃0)𝔮″
0

(𝑓𝑐+1, 𝑓1, … , 𝑓𝑖−1)
→

(𝑃0)𝔮″
0

(𝑓𝑐+1, 𝑓1, … , 𝑓𝑖)
→ 0

and the short exact sequence

0 → (𝑃0)𝔮″
0

→ (𝑃0)𝔮″
0

→ (𝑃0)𝔮″
0

/(𝑓𝑐+1) → 0

with 𝑃0 = 𝑅0[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1] remain exact upon tensoring over 𝑅0 with 𝑅, see Lemma
7.35.11. Since𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]𝔮″ is a localization of𝑅⊗𝑅0

𝑃0 we conclude that 𝑓𝑐+1, 𝑓1, … , 𝑓𝑐
form a regular sequence in the local ring 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]𝔮″. Finally we use the obvious
isomorphism 𝑅[𝑥1, … , 𝑥𝑛+1]𝔮″/(𝑓𝑐+1) ≅ 𝑅[𝑥1, … , 𝑥𝑛]𝔮′, to conclude that 𝑓1, … , 𝑓𝑐 form
a regular sequence in the local ring 𝑅[𝑥1, … , 𝑥𝑛]𝔮′. Similarly the quotients

𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]𝔮″/(𝑓𝑐+1, 𝑓1, … , 𝑓𝑖) ≅ 𝑅[𝑥1, … , 𝑥𝑛]𝔮′/(𝑓1, … , 𝑓𝑖)

are flat over 𝑅 as desired.

It remains to show (1) and (2) in case 𝑅 is Noetherian. By Lemma 7.124.4 for example
we see that 𝑓1, … , 𝑓𝑐 form a regular sequence in the local ring 𝑅[𝑥1, … , 𝑥𝑛]𝔮′ ⊗𝑅 𝜅(𝔭).
Moreover, the local ring 𝑅[𝑥1, … , 𝑥𝑛]𝔮′ is flat over 𝑅𝔭. Since 𝑅, and hence 𝑅[𝑥1, … , 𝑥𝑛]𝔮′

is Noetherian we may apply Lemma 7.91.3 to conclude. �

Lemma 7.125.14. A relative global complete intersection is syntomic.

Proof. Let 𝑅 → 𝑆 be a relative global complete intersection. The fibres are global com-
plete intersections, and 𝑆 is of finite presentation over 𝑅. Thus the only thing to prove is
that 𝑅 → 𝑆 is flat. This is true by (2) of Lemma 7.125.13 above. �

The following technical lemma says that you can lift any sequence of relations from a fibre
to the whole space of a ring map which is essentially of finite type, in a suitable sense.

Lemma 7.125.15. Let 𝑅 → 𝑆 be a ring map. Let 𝔭 ⊂ 𝑅 be a prime. Let 𝔮 ⊂ 𝑆 be a prime
lying over 𝔭. Assume 𝑆𝔮 is essentially of finite type over 𝑅𝔭. Assume given

(1) an integer 𝑛 ≥ 0,
(2) a prime 𝔞 ⊂ 𝜅(𝔭)[𝑥1, … , 𝑥𝑛],
(3) a surjective 𝜅(𝔭)-homomorphism

𝜓 ∶ (𝜅(𝔭)[𝑥1, … , 𝑥𝑛])𝔞 ⟶ 𝑆𝔮/𝔭𝑆𝔮,

and
(4) elements 𝑓1, … , 𝑓𝑒 in Ker(𝜓).

Then there exist
(1) an integer 𝑚 ≥ 0,
(2) and element 𝑔 ∈ 𝑆, 𝑔∉𝔮,
(3) a map

Ψ ∶ 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1, … , 𝑥𝑛+𝑚] ⟶ 𝑆𝑔,

and
(4) elements 𝑓1, … , 𝑓𝑒, 𝑓𝑒+1, … , 𝑓𝑒+𝑚 of Ker(Ψ)

such that
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(1) the following diagram commutes

𝑅[𝑥1, … , 𝑥𝑛+𝑚]

Ψ
��

𝑥𝑛+𝑗↦0
// (𝜅(𝔭)[𝑥1, … , 𝑥𝑛])𝔞

𝜓
��

𝑆𝑔
// 𝑆𝔮/𝔭𝑆𝔮

,

(2) the element 𝑓𝑖, 𝑖 ≤ 𝑛 maps to a unit times 𝑓𝑖 in the local ring

(𝜅(𝔭)[𝑥1, … , 𝑥𝑛+𝑚])(𝔞,𝑥𝑛+1,…,𝑥𝑛+𝑚),

(3) the element 𝑓𝑒+𝑗 maps to a unit times 𝑥𝑛+𝑗 in the same local ring, and
(4) the induced map 𝑅[𝑥1, … , 𝑥𝑛+𝑚]𝔟 → 𝑆𝔮 is surjective, where 𝔟 = Ψ−1(𝔮𝑆𝑔).

Proof. We claim that it suffices to prove the lemma in case 𝑅 and 𝑆 are local with maximal
ideals 𝔭 and 𝔮. Namely, suppose we have constructed

Ψ′ ∶ 𝑅𝔭[𝑥1, … , 𝑥𝑛+𝑚] ⟶ 𝑆𝔮

and 𝑓′
1, … , 𝑓′

𝑒+𝑚 ∈ 𝑅𝔭[𝑥1, … , 𝑥𝑛+𝑚] with all the required properties. Then there exists
an element 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that each 𝑓𝑓′

𝑘 comes from an element 𝑓𝑘 ∈ 𝑅[𝑥1, … , 𝑥𝑛+𝑚].
Moreover, for a suitable 𝑔 ∈ 𝑆, 𝑔∉𝔮 the elements Ψ′(𝑥𝑖) are the image of elements 𝑦𝑖 ∈ 𝑆𝑔.
Let Ψ be the 𝑅-algebra map defined by the rule Ψ(𝑥𝑖) = 𝑦𝑖. Since Ψ(𝑓𝑖) is zero in the
localization 𝑆𝔮 we may after possibly replacing 𝑔 assume that Ψ(𝑓𝑖) = 0. This proves the
claim.

Thus we may assume 𝑅 and 𝑆 are local with maximal ideals 𝔭 and 𝔮. Pick 𝑦1, … , 𝑦𝑛 ∈
𝑆 such that 𝑦𝑖 mod 𝔭𝑆 = 𝜓(𝑥𝑖). Let 𝑦𝑛+1, … , 𝑦𝑛+𝑚 ∈ 𝑆 be elements which generate
an 𝑅-subalgebra of which 𝑆 is the localization. These exist by the assumption that 𝑆 is
essentially of finite type over 𝑅. Since 𝜓 is surjective we may write 𝑦𝑛+𝑗 mod 𝔭𝑆 = 𝜓(ℎ𝑗)
for some ℎ𝑗 ∈ 𝜅(𝔭)[𝑥1, … , 𝑥𝑛]𝔞. Write ℎ𝑗 = 𝑔𝑗/𝑑, 𝑔𝑗 ∈ 𝜅(𝔭)[𝑥1, … , 𝑥𝑛] for some common
denominator 𝑑 ∈ 𝜅(𝔭)[𝑥1, … , 𝑥𝑛], 𝑑∉𝔞. Choose lifts 𝐺𝑗, 𝐷 ∈ 𝑅[𝑥1, … , 𝑥𝑛] of 𝑔𝑗 and 𝑑.
Set 𝑦′

𝑛+𝑗 = 𝐷(𝑦1, … , 𝑦𝑛)𝑦𝑛+𝑗 − 𝐺𝑗(𝑦1, … , 𝑦𝑛). By construction 𝑦′
𝑛+𝑗 ∈ 𝔭𝑆. It is clear that

𝑦1, … , 𝑦𝑛, 𝑦′
𝑛, … , 𝑦′

𝑛+𝑚 generate an 𝑅-subalgebra of 𝑆 whose localization is 𝑆. We define

Ψ ∶ 𝑅[𝑥1, … , 𝑥𝑛+𝑚] → 𝑆

to be the map that sends 𝑥𝑖 to 𝑦𝑖 for 𝑖 = 1, … , 𝑛 and 𝑥𝑛+𝑗 to 𝑦′
𝑛+𝑗 for 𝑗 = 1, … , 𝑚. Prop-

erties (1) and (4) are clear by construction. Moreover the ideal 𝔟 maps onto the ideal
(𝔞, 𝑥𝑛+1, … , 𝑥𝑛+𝑚) in the polynomial ring 𝜅(𝔭)[𝑥1, … , 𝑥𝑛+𝑚].

Denote 𝐽 = Ker(Ψ). We have a short exact sequence

0 → 𝐽𝔟 → 𝑅[𝑥1, … , 𝑥𝑛+𝑚]𝔟 → 𝑆𝔮 → 0.

The surjectivity comes from our choice of 𝑦1, … , 𝑦𝑛, 𝑦′
𝑛, … , 𝑦′

𝑛+𝑚 above. This implies that

𝐽𝔟/𝔭𝐽𝔟 → 𝜅(𝔭)[𝑥1, … , 𝑥𝑛+𝑚](𝔞,𝑥𝑛+1,…,𝑥𝑛+𝑚) → 𝑆𝔮/𝔭𝑆𝔮 → 0

is exact. By construction 𝑥𝑖 maps to 𝜓(𝑥𝑖) and 𝑥𝑛+𝑗 maps to zero under the last map. Thus
it is easy to choose 𝑓𝑖 as in (2) and (3) of the lemma. �

Lemma 7.125.16. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 ⊂ 𝑆 be a prime lying over the prime 𝔭
of 𝑅. The following are equivalent:

(1) There exists an element 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is syntomic.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00SY
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(2) There exists an element 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑆𝑔 is a relative global complete
intersection over 𝑅.

(3) There exists an element 𝑔 ∈ 𝑆, 𝑔∉𝔮, such that 𝑅 → 𝑆𝑔 is of finite presentation,
the local ring map 𝑅𝔭 → 𝑆𝔮 is flat, and the local ring 𝑆𝔮/𝔭𝑆𝔮 is a complete
intersection ring over 𝜅(𝔭) (see Definition 7.124.5).

Proof. The implication (1) ⇒ (3) is clear (see Lemma 7.124.8). The implication (2) ⇒ (1)
follows from Lemma 7.125.14. Assume (3). After replacing 𝑆 by 𝑆𝑔 for some 𝑔 ∈ 𝑆, 𝑔∉𝔮
we may assume 𝑆 is finitely presented over 𝑅.

We use this to reduce to the case where 𝑅 is Noetherian. Namely, write 𝑅 → 𝑆 as a
directed colimit of map 𝑅𝜆 → 𝑆𝜆 as in Lemma 7.118.14. Denote 𝔮𝜆 ⊂ 𝑆𝜆 and 𝔭𝜆 ⊂ 𝑅𝜆
the corresponding prime ideals. Note that

𝑆𝜆 ⊗𝑅𝜆
𝜅(𝔭𝜆) ⊗𝜅(𝔭𝜆) 𝜅(𝔭) ≅ 𝑆 ⊗𝑅 𝜅(𝔭).

Our assumption implies that 𝑆 ⊗𝑅 𝜅(𝔭) satisfies any of the conditions (1) - (5) of Lemma
7.124.4 at the prime corresponding to 𝔮, see Lemma 7.124.8. By Lemma 7.124.10 we see
that the same holds for 𝑆𝜆 ⊗𝑅𝜆

𝜅(𝔭𝜆) at the prime corresponding to 𝔮𝜆. Moreover, for some
sufficiently large 𝜆 the local ring map (𝑅𝜆)𝔭𝜆

→ (𝑆𝜆)𝔮𝜆
is flat, by Lemma 7.119.3. In other

words, all the conditions of (3) hold for (𝑅𝜆 → 𝑆𝜆, 𝔮𝜆). If we can show that (2) holds for
(𝑅𝜆 → 𝑆𝜆, 𝔮𝜆) then it follows for (𝑅 → 𝑆, 𝔮). Thus we have reduced to the case where 𝑅
is Noetherian.

By the last statement of Lemma 7.124.4 we may find a surjective 𝜅(𝔭)-algebra map 𝜓 ∶
𝜅(𝔭)[𝑥1, … , 𝑥𝑛]𝔞 → 𝑆𝔮/𝔭𝑆𝔮 whose kernel is generated by a regular sequence 𝑓1, … , 𝑓𝑐
of 𝜅(𝔭)[𝑥1, … , 𝑥𝑛]𝔞. We apply Lemma 7.125.15. Thus we find a 𝑔 ∈ 𝑆, 𝑔∉𝔮, a map Ψ ∶
𝑅[𝑥1, … , 𝑥𝑛+𝑚] → 𝑆𝑔 and elements 𝑓1, … , 𝑓𝑐+𝑚 in the kernel of Ψ which (up to units) give
the elements 𝑓1, … , 𝑓𝑐, 𝑥𝑛+1, … , 𝑥𝑛+𝑚 in the local ring 𝜅(𝔭)[𝑥1, … , 𝑥𝑛+𝑚](𝔞,𝑥𝑛+1,…,𝑥𝑛+𝑚).
Moreover, the referenced lemma shows the induced map 𝑅[𝑥1, … , 𝑥𝑛+𝑚]𝔟 → 𝑆𝔮 is surjec-
tive, where 𝔟 ⊂ 𝑅[𝑥1, … , 𝑥𝑛+𝑚] is a suitable prime ideal. Consider the induced map

Ψ ∶ 𝑆′ ∶= 𝑅[𝑥1, … , 𝑥𝑛+𝑚]/(𝑓1, … , 𝑓𝑐+𝑚) ⟶ 𝑆𝑔.

We now know it has the following properties:
(1) it induces an surjection between the localizations at the primes 𝔮′ = 𝔟/(𝑓𝑖) and

𝔮𝑆𝑔
(2) it induces an isomorphism 𝑆′

𝔮′/𝔭𝑆′
𝔮′ → 𝑆𝔮/𝔭𝑆𝔮,

(3) the local ring 𝑆𝔮 is flat over 𝑅𝔭.

Denoting 𝐽 = Ker(Ψ), we see that 0 → 𝐽𝔮′ → 𝑆′
𝔮′ → 𝑆𝔮 → 0 is exact. By flatness of 𝑆𝔮

over 𝑅𝔭 we see that 0 → 𝐽𝔮′/𝔭𝐽𝔮′ → 𝑆′
𝔮′/𝔭𝑆𝔮 → 𝑆𝔮/𝔭𝑆𝔮 → 0 is exact. By the second

property above we conclude that 𝐽𝔮′/𝔭𝐽𝔮′ = 0. Because 𝑅 and hence 𝑆′ is Noetherian, we
conclude that 𝐽𝔮′ = 0, in other words 𝑆′

𝔮′ ≅ 𝑆𝔮. By Lemma 7.117.6, we conclude there
exists a 𝑔′ ∈ 𝑆′, 𝑔′∉𝔮′ such that 𝑆′

𝑔′ ≅ 𝑆𝑔Ψ(𝑔′). By Lemma 7.125.11 applied to 𝑆′ and
the prime 𝔮′ (note that dim𝔮′(𝑆′/𝑅) = 𝑛 + 𝑚 − (𝑐 + 𝑚) by the explicit description of the
sequence 𝑓𝑗) there exists a further element 𝑔″ ∈ 𝑆′, 𝑔″∉𝔮′ such that 𝑆′

𝑔″ is a relative global
complete intersection over 𝑅. By Lemma 7.125.10 we conclude that 𝑆′

𝑔′𝑔″ ≅ 𝑆𝑔Ψ(𝑔′𝑔″) is
a relative global complete intersection over 𝑅, as desired. �
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Lemma 7.125.17. Let 𝑅 be a ring. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 for some finitely generated
ideal 𝐼. If 𝑔 ∈ 𝑆 is such that 𝑆𝑔 is syntomic over 𝑅, then (𝐼/𝐼2)𝑔 is a finite projective
𝑆𝑔-module.

Proof. By Lemma 7.125.16 there exist finitely many elements 𝑔1, … , 𝑔𝑚 ∈ 𝑆 which gen-
erate the unit ideal in 𝑆𝑔 such that each 𝑆𝑔𝑔𝑗

is a relative global complete intersection over
𝑅. Since it suffices to prove that (𝐼/𝐼2)𝑔𝑔𝑗

is finite projective, see Lemma 7.72.2, we may
asssume that 𝑆𝑔 is a relative global complete intersection. In this case the result follows
from Lemmas 7.123.13 and 7.125.13. �

Lemma 7.125.18. Let 𝑅 → 𝑆, 𝑆 → 𝑆′ be ring maps.
(1) If 𝑅 → 𝑆 and 𝑆 → 𝑆′ are syntomic, then 𝑅 → 𝑆′ is syntomic.
(2) If 𝑅 → 𝑆 and 𝑆 → 𝑆′ are relative global complete intersections so is 𝑅 → 𝑆′.

Proof. Assume 𝑅 → 𝑆 and 𝑆 → 𝑆′ are syntomic. This implies that 𝑅 → 𝑆′ is flat by
Lemma 7.35.3. It also implies that 𝑅 → 𝑆′ is of finite presentation by Lemma 7.6.2. Thus
it suffices to show that the fibres of 𝑅 → 𝑆′ are local complete intersections. Choose a
prime 𝔭 ⊂ 𝑅. We have a factorization

𝜅(𝔭) → 𝑆 ⊗𝑅 𝜅(𝔭) → 𝑆′ ⊗𝑅 𝜅(𝔭).
By assumption 𝑆 ⊗𝑅 𝜅(𝔭) is a local complete intersection, and by Lemma 7.125.3 we see
that 𝑆 ⊗𝑅 𝜅(𝔭) is syntomic over 𝑆 ⊗𝑅 𝜅(𝔭). After replacing 𝑆 by 𝑆 ⊗𝑅 𝜅(𝔭) and 𝑆′ by
𝑆′ ⊗𝑅 𝜅(𝔭) we may assume that 𝑅 is a field. Say 𝑅 = 𝑘.

Choose a prime 𝔮′ ⊂ 𝑆′ lying over the prime 𝔮 of 𝑆. Our goal is to find a 𝑔′ ∈ 𝑆′, 𝑔′∉𝔮′

such that 𝑆′
𝑔′ is a global complete intersection over 𝑘. Choose a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that

𝑆𝑔 = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is a global complete intersection over 𝑘. Since 𝑆𝑔 → 𝑆′
𝑔

is still syntomic also, and 𝑔∉𝔮′ we may replace 𝑆 by 𝑆𝑔 and 𝑆′ by 𝑆′
𝑔 and assume that

𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is a global complete intersection over 𝑘. Next we choose
a 𝑔′ ∈ 𝑆′, 𝑔′∉𝔮′ such that 𝑆′ = 𝑆[𝑦1, … , 𝑦𝑚]/(ℎ1, … , ℎ𝑑) is a relative global complete
intersection over 𝑆. Hence we have reduced to part (2) of the lemma.
Suppose that 𝑅 → 𝑆 and 𝑆 → 𝑆′ are relative global complete intersections. Say 𝑆 =
𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) and 𝑆′ = 𝑆[𝑦1, … , 𝑦𝑚]/(ℎ1, … , ℎ𝑑). Then

𝑆′ ≅ 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]/(𝑓1, … , 𝑓𝑐, ℎ′
1, … , ℎ′

𝑑)

for some lifts ℎ′
𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚] of the ℎ𝑗. Hence it suffices to bound the di-

mensions of the fibres. Thus we may yet again assume 𝑅 = 𝑘 is a field. In this case we
see that we have a ring, namely 𝑆, which is of finite type over 𝑘 and equidimensional of
dimension 𝑛 − 𝑐, and a finite type ring map 𝑆 → 𝑆′ all of whose nonempty fibre rings
are equidimensional of dimension 𝑚 − 𝑑. Then, by Lemma 7.103.6 for example applied to
localizations at maximal ideals of 𝑆′, we see that dim(𝑆′) ≤ 𝑛 − 𝑐 + 𝑚 − 𝑑 as desired. �

Lemma 7.125.19. Let 𝑅 be a ring and let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑅/𝐼 → 𝑆 be a syntomic
map. Then there exists elements 𝑔𝑖 ∈ 𝑆 which generate the unit ideal of 𝑆 such that each
𝑆𝑔𝑖

≅ 𝑆𝑖/𝐼𝑆𝑖 for some relative global complete intersection 𝑆𝑖 over 𝑅.

Proof. By Lemma 7.125.16 we find a collection of elements 𝑔𝑖 ∈ 𝑆 which generate the unit
ideal of 𝑆 such that each 𝑆𝑔𝑖

is a relative global complete intersection over 𝑅/𝐼. Hence we
may assume that𝑆 is a relative global complete intersection. Write𝑆 = (𝑅/𝐼)[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)
as in Definition 7.125.5. Choose 𝑓1, … , 𝑓𝑐 ∈ 𝑅[𝑥1, … , 𝑥𝑛] lifting 𝑓1, … , 𝑓𝑐. Set 𝑆 =
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𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐). Note that 𝑆/𝐼𝑆 ≅ 𝑆. Choose a prime 𝔮 of 𝑆, and let 𝔮 ⊂ 𝑆 be
the corresponding prime of 𝑆. By Lemma 7.125.11 there exists an element 𝑔 ∈ 𝑆, 𝑔∉𝔮
such that 𝑆𝑔 is a relative global complete intersection over 𝑅. And 𝑆𝑔 ≅ 𝑆𝑔/𝐼𝑆𝑔. This
proves the lemma. �

7.126. Smooth ring maps

Let us motivate the definition of a smooth ring map by an example. Suppose 𝑅 is a ring
and 𝑆 = 𝑅[𝑥, 𝑦]/(𝑓) for some nonzero 𝑓 ∈ 𝑅[𝑥, 𝑦]. In this case there is an exact sequence

𝑆 → 𝑆d𝑥 ⊕ 𝑆d𝑦 → Ω𝑆/𝑅 → 0

where the first arrow maps 1 to 𝜕𝑓
𝜕𝑥d𝑥 + 𝜕𝑓

𝜕𝑦d𝑦 see Section 7.123. We conclude that Ω𝑆/𝑅 is
locally free of rank 1 if the partial derivatives of 𝑓 generate the unit ideal in 𝑆. In this case
𝑆 is smooth of relative dimension 1 over 𝑅. But it can happen that Ω𝑆/𝑅 is locally free of
rank 2 namely if both partial derivatives of 𝑓 are zero. For example if for a prime 𝑝 we have
𝑝 = 0 in 𝑅 and 𝑓 = 𝑥𝑝 + 𝑦𝑝 then this happens. Here 𝑅 → 𝑆 is a relative global complete
intersection of relative dimension 1 which is not smooth. Hence, in order to check that a
ring map is smooth it is not sufficient to check whether the module of differentials is free.
The correct condition is the following.

Definition 7.126.1. A ring map 𝑅 → 𝑆 is smooth if it is of finite presentation and the naive
cotangent complex 𝑁𝐿𝑆/𝑅 is quasi-isomorphic to a finite projective 𝑆-module placed in
degree 0.

In particular, if 𝑅 → 𝑆 is smooth then the module Ω𝑆/𝑅 is a finite projective 𝑆-module.
Moreover, by Lemma 7.126.2 the naive cotangent complex of any presentation has the same
structure. Thus, for a surjection 𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆 with kernel 𝐼 the map

𝐼/𝐼2 ⟶ Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 ⊗𝑅[𝑥1,…,𝑥𝑛] 𝑆

is a split injection. In other words ⨁𝑛
𝑖=1 𝑆d𝑥𝑖 ≅ 𝐼/𝐼2 ⊕ Ω𝑆/𝑅 as 𝑆-modules. This implies

that 𝐼/𝐼2 is a finite projective 𝑆-module too!

Lemma 7.126.2. Let 𝑅 → 𝑆 be a ring map of finite presentation. If for some presentation
𝛼 of 𝑆 over 𝑅 the naive cotangent complex 𝑁𝐿(𝛼) is quasi-isomorphic to a finite projective
𝑆-module placed in degree 0, then this holds for any presentation.

Proof. Immediate from Lemma 7.123.2. �

Lemma 7.126.3. Let 𝑅 → 𝑆 be a smooth ring map. Any localization 𝑆𝑔 is smooth over 𝑅.
If 𝑓 ∈ 𝑅 maps to an invertible element of 𝑆, then 𝑅𝑓 → 𝑆 is smooth.

Proof. By Lemma 7.123.10 we see that the naive cotangent complex for 𝑆𝑔 over 𝑅 is the
base change of the naive cotangent complex of 𝑆 over 𝑅. The assumption is that the naive
cotangent complex of 𝑆/𝑅 is Ω𝑆/𝑅 and that this is a finite projective 𝑆-module. Hence so
is its base change. Thus 𝑆𝑔 is smooth over 𝑅.

For the last assertion: A presentation of 𝑆 over 𝑅𝑓 is 𝑅𝑓[𝑥1, … , 𝑥𝑛]/𝐼𝑓. Since 𝐼𝑓/𝐼2
𝑓 =

(𝐼/𝐼2)𝑓 = 𝐼/𝐼2 we see that this presentation has isomorphic naive cotangent complex to the
presentation of 𝑆 over 𝑅. The result follows. �

Lemma 7.126.4. Let 𝑅 → 𝑆 be a smooth ring map. Let 𝑅 → 𝑅′ be any ring map. Then
the base change 𝑅′ → 𝑆′ = 𝑅′ ⊗𝑅 𝑆 is smooth.
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Proof. Let 𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆 be a presentationwith kernel 𝐼. Let 𝛼′ ∶ 𝑅′[𝑥1, … , 𝑥𝑛] →
𝑅′ ⊗𝑅 𝑆 be the induced presentation. Let 𝐼′ = Ker(𝛼′). Since 0 → 𝐼 → 𝑅[𝑥1, … , 𝑥𝑛] →
𝑆 → 0 is exact, the sequence 𝑅′ ⊗𝑅 𝐼 → 𝑅′[𝑥1, … , 𝑥𝑛] → 𝑅′ ⊗𝑟 𝑆 → 0 is exact. Thus
𝑅′ ⊗𝑅 𝐼 → 𝐼′ is surjective. By Definition 7.126.1 there is a short exact sequence

0 → 𝐼/𝐼2 → Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 ⊗𝑅[𝑥1,…,𝑥𝑛] 𝑆 → Ω𝑆/𝑅 → 0

and the 𝑆-module Ω𝑆/𝑅 is finite projective. In particular 𝐼/𝐼2 is a direct summand of
Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 ⊗𝑅[𝑥1,…,𝑥𝑛] 𝑆. Consider the commutative diagram

𝑅′ ⊗𝑅 (𝐼/𝐼2) //

��

𝑅′ ⊗𝑅 (Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 ⊗𝑅[𝑥1,…,𝑥𝑛] 𝑆)

��
𝐼′/(𝐼′)2 // Ω𝑅′[𝑥1,…,𝑥𝑛]/𝑅′ ⊗𝑅′[𝑥1,…,𝑥𝑛] (𝑅′ ⊗𝑅 𝑆)

Since the right vertical map is an isomorphism we see that the left vertical map is injective
and surjective by what was said above. Thus we conclude that 𝑁𝐿(𝛼′) is quasi-isomorphic
to Ω𝑆′/𝑅′ ≅ 𝑆′ ⊗𝑆 Ω𝑆/𝑅. And this is finite projective since it is the base change of a finite
projective module. �

Lemma 7.126.5. Let 𝑘 be a field. Let 𝑆 be a smooth 𝑘-algebra. Then 𝑆 is a local complete
intersection.

Proof. By Lemmas 7.126.4 and 7.124.11 it suffices to prove this when 𝑘 is algebraically
closed. Choose a presentation 𝛼 ∶ 𝑘[𝑥1, … , 𝑥𝑛] → 𝑆 with kernel 𝐼. Let 𝔪 be a maxi-
mal ideal of 𝑆, and let 𝔪′ ⊂ 𝐼 be the corresponding maximal ideal of 𝑘[𝑥1, … , 𝑥𝑛]. We
will show that condition (5) of Lemma 7.124.4 holds (with 𝔪 instead of 𝔮). We may write
𝔪′ = (𝑥1 −𝑎1, … , 𝑥𝑛 −𝑎𝑛) for some 𝑎𝑖 ∈ 𝑘, because 𝑘 is algebraically closed, see Theorem
7.30.1. By our assumption that 𝑘 → 𝑆 is smooth the 𝑆-module map d ∶ 𝐼/𝐼2 → ⨁𝑛

𝑖=1 𝑆d𝑥𝑖
is a split injection. Hence the corresponding map 𝐼/𝔪′𝐼 → ⨁ 𝜅(𝔪′)d𝑥𝑖 is injective. Say
dim𝜅(𝔪′)(𝐼/𝔪′𝐼) = 𝑐 and pick 𝑓1, … , 𝑓𝑐 ∈ 𝐼 which map to a 𝜅(𝔪′)-basis of 𝐼/𝔪′𝐼. By
Nakayama's Lemma 7.14.5 we see that 𝑓1, … , 𝑓𝑐 generate 𝐼𝔪′ over 𝑘[𝑥1, … , 𝑥𝑛]𝔪′. Con-
sider the commutative diagram

𝐼 //

��

𝐼/𝐼2 //

��

𝐼/𝔪′𝐼

��
Ω𝑘[𝑥1,…,𝑥𝑛]/𝑘

//⨁ 𝑆d𝑥𝑖
d𝑥𝑖↦𝑥𝑖−𝑎𝑖 // 𝔪′/(𝔪′)2

(proof commutativity omitted). Themiddle vertical map is the one defining the naive cotan-
gent complex of 𝛼. Note that the right lower horizontal arrow induces an isomorphism
⨁ 𝜅(𝔪′)d𝑥𝑖 → 𝔪′/(𝔪′)2. Hence our generators 𝑓1, … , 𝑓𝑐 of 𝐼𝔪′ map to a collection of
elements in 𝑘[𝑥1, … , 𝑥𝑛]𝔪′ whose classes in 𝔪′/(𝔪′)2 are linearly independent over 𝜅(𝔪′).
Therefore they form a regular sequence in the ring 𝑘[𝑥1, … , 𝑥𝑛]𝔪′ by Lemma 7.98.3. This
verifies condition (5) of Lemma 7.124.4 hence 𝑆𝑔 is a global complete intersection over 𝑘
for some 𝑔 ∈ 𝑆, 𝑔∉𝔪. As this works for any maximal ideal of 𝑆 we conclude that 𝑆 is a
local complete intersection over 𝑘. �

Definition 7.126.6. Let 𝑅 be a ring. A standard smooth algebra over 𝑅 is a an algebra 𝑆
with a (given) presentation

𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00T5
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such that the polynomial

𝑔 = det
⎛
⎜
⎜
⎜
⎝

𝜕𝑓1/𝜕𝑥1 𝜕𝑓2/𝜕𝑥1 … 𝜕𝑓𝑐/𝜕𝑥1
𝜕𝑓1/𝜕𝑥2 𝜕𝑓2/𝜕𝑥2 … 𝜕𝑓𝑐/𝜕𝑥2

… … … …
𝜕𝑓1/𝜕𝑥𝑐 𝜕𝑓2/𝜕𝑥𝑐 … 𝜕𝑓𝑐/𝜕𝑥𝑐

⎞
⎟
⎟
⎟
⎠

maps to an invertible element in 𝑆.

Lemma 7.126.7. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 be a standard
smooth algebra. Then

(1) the ring map 𝑅 → 𝑆 is smooth,
(2) the 𝑆-module Ω𝑆/𝑅 is free on d𝑥𝑐+1, … , d𝑥𝑛,
(3) the 𝑆-module 𝐼/𝐼2 is free on the classes of 𝑓1, … , 𝑓𝑐,
(4) for any 𝑔 ∈ 𝑆 the ring map 𝑅 → 𝑆𝑔 is standard smooth,
(5) for any ring map 𝑅 → 𝑅′ the base change 𝑅′ → 𝑅′ ⊗𝑅 𝑆 is standard smooth,
(6) if 𝑓 ∈ 𝑅 maps to an invertible element in 𝑆, then 𝑅𝑓 → 𝑆 is standard smooth,

and
(7) the ring 𝑆 is a relative global complete intersection over 𝑅.

Proof. Consider the naive cotangent complex of the given presentation

(𝑓1, … , 𝑓𝑐)/(𝑓1, … , 𝑓𝑐)2 ⟶ ⨁
𝑛
𝑖=1

𝑆d𝑥𝑖

Let us compose this map with the projection onto the first 𝑐 direct summands of the di-
rect sum. According to the definition of a standard smooth algebra the classes 𝑓𝑖 mod
(𝑓1, … , 𝑓𝑐)2 map to a basis of ⨁𝑐

𝑖=1 𝑆d𝑥𝑖. We conclude that (𝑓1, … , 𝑓𝑐)/(𝑓1, … , 𝑓𝑐)2 is
free of rank 𝑐 with a basis given by the elements 𝑓𝑖 mod (𝑓1, … , 𝑓𝑐)2, and that the homol-
ogy in degree 0, i.e., Ω𝑆/𝑅, of the naive cotangent complex is a free 𝑆-module with basis
the images of d𝑥𝑐+𝑗, 𝑗 = 1, … , 𝑛 − 𝑐. In particular, this proves 𝑅 → 𝑆 is smooth.

The proofs of (4) and (6) are omitted. But see the example below and the proof of Lemma
7.125.10.

Let 𝜑 ∶ 𝑅 → 𝑅′ be any ring map. Denote 𝑆′ = 𝑅′[𝑥1, … , 𝑥𝑛]/(𝑓𝜑
1 , … , 𝑓𝜑

𝑐 ) where 𝑓𝜑

is the polynomial obtained from 𝑓 ∈ 𝑅[𝑥1, … , 𝑥𝑛] by applying 𝜑 to all the coefficients.
Then 𝑆′ ≅ 𝑅′ ⊗𝑅 𝑆. Moreover, the determinant of Definition 7.126.6 for 𝑆′/𝑅′ is equal
to 𝑔𝜑. Its image in 𝑆′ is therefore the image of 𝑔 via 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆 → 𝑆′ and hence
invertible. This proves (5).

To prove (7) it suffices to show that 𝑆⊗𝑅𝜅(𝔭) has dimension 𝑛−𝑐. By (5) it suffices to prove
that any standard smooth algebra 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) over a field 𝑘 has dimension 𝑛−𝑐.
We already know that 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is a local complete intersection by Lemma
7.126.5 above. Hence, since 𝐼/𝐼2 is free of rank 𝑐 we see that it dimension 𝑛 − 𝑐, by Lemma
7.124.4 for example. �

Example 7.126.8. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑐 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. Let

ℎ = det
⎛
⎜
⎜
⎜
⎝

𝜕𝑓1/𝜕𝑥1 𝜕𝑓2/𝜕𝑥1 … 𝜕𝑓𝑐/𝜕𝑥1
𝜕𝑓1/𝜕𝑥2 𝜕𝑓2/𝜕𝑥2 … 𝜕𝑓𝑐/𝜕𝑥2

… … … …
𝜕𝑓1/𝜕𝑥𝑐 𝜕𝑓2/𝜕𝑥𝑐 … 𝜕𝑓𝑐/𝜕𝑥𝑐

⎞
⎟
⎟
⎟
⎠

.
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Set 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑥𝑛+1ℎ − 1). This is an example of a standard smooth
algebra, except that the presentation is wrong and the variables should be in the following
order: 𝑥1, … , 𝑥𝑐, 𝑥𝑛+1, 𝑥𝑐+1, … , 𝑥𝑛.

Lemma 7.126.9. A composition of standard smooth ring maps is standard smooth.

Proof. Suppose that 𝑅 → 𝑆 and 𝑆 → 𝑆′ are standard smooth. We choose presentations
𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) and 𝑆′ = 𝑆[𝑦1, … , 𝑦𝑚]/(𝑔1, … , 𝑔𝑑). Choose elements 𝑔′

𝑗 ∈
𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]mapping to the 𝑔𝑗. In this waywe see𝑆′ = 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]/(𝑓1, … , 𝑓𝑐, 𝑔′

1, … , 𝑔′
𝑑).

To show that 𝑆′ is standard smooth it suffices to verify that the determinant

det

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜕𝑓1/𝜕𝑥1 … 𝜕𝑓𝑐/𝜕𝑥1 𝜕𝑔1/𝜕𝑥1 … 𝜕𝑔𝑑/𝜕𝑥1
… … … … … …

𝜕𝑓1/𝜕𝑥𝑐 … 𝜕𝑓𝑐/𝜕𝑥𝑐 𝜕𝑔1/𝜕𝑥𝑐 … 𝜕𝑔𝑑/𝜕𝑥𝑐
0 … 0 𝜕𝑔1/𝜕𝑦1 … 𝜕𝑔𝑑/𝜕𝑦1

… … … … … …
0 … 0 𝜕𝑔1/𝜕𝑦𝑑 … 𝜕𝑔𝑑/𝜕𝑦𝑑

⎞
⎟
⎟
⎟
⎟
⎟
⎠

is invertible in 𝑆′. This is clear since it is the product of the two determinants which were
assumed to be invertible by hypothesis. �

Lemma 7.126.10. Let 𝑅 → 𝑆 be a smooth ring map. There exists an open covering of
𝑆𝑝𝑒𝑐(𝑆) by standard opens 𝐷(𝑔) such that each 𝑆𝑔 is standard smooth over 𝑅. In particular
𝑅 → 𝑆 is syntomic.

Proof. Choose a presentation 𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆 with kernel 𝐼 = (𝑓1, … , 𝑓𝑚). For
every subset 𝐸 ⊂ {1, … , 𝑚} consider the open subset 𝑈𝐸 where the classes 𝑓𝑒, 𝑒 ∈ 𝐸 freely
generate the finite projective 𝑆-module 𝐼/𝐼2, see Lemma 7.73.3. We may cover 𝑆𝑝𝑒𝑐(𝑆) by
standard opens 𝐷(𝑔) each completely contained in one of the opens 𝑈𝐸. For such a 𝑔 we
look at the presentation

𝑆𝑔 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑛, 𝑓𝑛+1) = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/𝐽

with 𝑓𝑛+1 = 𝑔𝑥𝑛+1 − 1. Since 𝐽/𝐽2 = (𝐼/𝐼2)𝑔 ⊕ 𝑆𝑔 ⋅ 𝑓𝑛+1 we see that 𝐽/𝐽2 is freely
generated by 𝑓𝑒, 𝑒 ∈ 𝐸 and 𝑓𝑛+1. This reduces us to the case where 𝑆 has a presentation
𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 with 𝐼 = (𝑓1, … , 𝑓𝑚) and with 𝐼/𝐼2 free on the classes of 𝑓1, … , 𝑓𝑐.
Next, wemore or less repeat this argumentwith the basis elements d𝑥1, … , d𝑥𝑛 ofΩ𝑅[𝑥1,…,𝑥𝑛]/𝑅⊗𝑅
𝑆. Namely, for any subset 𝐸 ⊂ {1, … , 𝑛} we may consider the open subset 𝑈𝐸 of 𝑆𝑝𝑒𝑐(𝑆),
where the differential of 𝑁𝐿(𝛼) composed with the projection

𝑆⊕𝑐 ≅ 𝐼/𝐼2 ⟶ Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 ⊗𝑅 𝑆 ⟶ ⨁𝑒∈𝐸
𝑆d𝑥𝑖

is an isomorphism. Again we may find a covering of 𝑆𝑝𝑒𝑐(𝑆) by (finitely many) standard
opens 𝐷(𝑔) such that each 𝐷(𝑔) is completely contained in one of the opens 𝑈𝐸. For a 𝑔
with 𝐷(𝑔) ⊂ 𝑈𝐸 we look at the presentation

𝑆𝑔 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑛, 𝑓𝑛+1) = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/𝐽

with 𝑓𝑛+1 = 𝑔𝑥𝑛+1−1. Ok, and nowwe have 𝐽/𝐽2 = (𝐼/𝐼2)𝑔⊕𝑆𝑔⋅𝑓𝑛+1, andΩ𝑅[𝑥1,…,𝑥𝑛+1]/𝑅⊗𝑅

𝑆𝑔 = ⨁𝑛+1
𝑖=1 𝑆𝑔d𝑥𝑖, and d(𝑓𝑛+1) = 𝑔d𝑥𝑛+1 + 𝑥𝑛+1d𝑔. From this we see that 𝐽/𝐽2 →

(⨁𝑒∈𝐸 𝑆𝑔d𝑥𝑒) ⊕ 𝑆𝑔d𝑥𝑛+1 is an isomorphism. This reduces us to the case where 𝑆 has
a presentation 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 with 𝐼 = (𝑓1, … , 𝑓𝑚) and with 𝐼/𝐼2 free on the classes
of 𝑓1, … , 𝑓𝑐, and furthermore the composition

𝐼/𝐼2 ⟶ Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 ⊗𝑅 𝑆 ⟶ ⨁
𝑐
𝑖=1

𝑆d𝑥𝑖

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00T9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00TA


7.126. SMOOTH RING MAPS 487

is an isomorphism.

At this point we consider the surjective map of 𝑅-algebras

𝑆′ ∶= 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) ⟶ 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚).

This is surjective. Let 𝐽 be the kernel. Note that 𝐽 is finitely generated (by the images of
𝑓𝑐+1, … , 𝑓𝑚 in 𝑆′). Since (𝑓1, … , 𝑓𝑚)/(𝑓1, … , 𝑓𝑚)2 is freely generated by 𝑓1, … , 𝑓𝑐 we
see that 𝐽/𝐽2 = 0. By Lemma 7.18.5 we see that 𝑆𝑝𝑒𝑐(𝑆′) contains 𝑆𝑝𝑒𝑐(𝑆) as an open
and closed subset, and moreover that 𝑆 is a localization 𝑆 = 𝑆′

𝑔′ for some element 𝑔′ ∈ 𝑆′.
Note that the determinant

𝑔 = det
⎛
⎜
⎜
⎜
⎝

𝜕𝑓1/𝜕𝑥1 𝜕𝑓2/𝜕𝑥1 … 𝜕𝑓𝑐/𝜕𝑥1
𝜕𝑓1/𝜕𝑥2 𝜕𝑓2/𝜕𝑥2 … 𝜕𝑓𝑐/𝜕𝑥2

… … … …
𝜕𝑓1/𝜕𝑥𝑐 𝜕𝑓2/𝜕𝑥𝑐 … 𝜕𝑓𝑐/𝜕𝑥𝑐

⎞
⎟
⎟
⎟
⎠

maps to an invertible element in 𝑆 (by the conclusion of the previous paragraph). Hence
we actually have 𝑆 ≅ 𝑆𝑔𝑔′. Since 𝑆′

𝑔 is standard smooth (see Example 7.126.8), we win be-
cause a principal localization of a standard smooth algebra is standard smooth, see Lemma
7.126.7. �

Definition 7.126.11. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 be a prime of 𝑆. We say 𝑅 → 𝑆 is
smooth at 𝔮 if there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is smooth.

For ring maps of finite presentation we can characterize this as follows.

Lemma 7.126.12. Let𝑅 → 𝑆 be of finite presentation. Let 𝔮 be a prime of𝑆. The following
are equivalent

(1) 𝑅 → 𝑆 is smooth at 𝔮,
(2) 𝐻1(𝐿𝑆/𝑅)𝔮 = 0 and Ω𝑆/𝑅,𝔮 is a projective 𝑆𝔮-module, and
(3) 𝐻1(𝐿𝑆/𝑅)𝔮 = 0 and Ω𝑆/𝑅,𝔮 is a flat 𝑆𝔮-module.

Proof. We will use without further mention that formation of the naive cotangent com-
plex commutes with localization, see Section 7.123, especially Lemma 7.123.10. It is
clear that (1) implies (2) implies (3). Assume (3) holds. Note that Ω𝑆/𝑅 is a finitely pre-
sented 𝑆-module, see Lemma 7.122.15. Hence Ω𝑆/𝑅,𝔮 is a finite free module by Lemma
7.72.4. Writing 𝑆𝔮 as the colimit of principal localizations we see from Lemma 7.118.4
that we can find a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that (Ω𝑆/𝑅)𝑔 is finite free. Choose a presentation
𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝑆 with kernel 𝐼. We may work with 𝑁𝐿(𝛼) instead of 𝑁𝐿𝑆/𝑅, see
Lemma 7.123.2. The surjection

Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 ⊗𝑅 𝑆 → Ω𝑆/𝑅 → 0

has a right inverse after inverting 𝑔 because (Ω𝑆/𝑅)𝑔 is projective. Hence the image of
d ∶ (𝐼/𝐼2)𝑔 → Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 ⊗𝑅 𝑆𝑔 is a direct summand and this map has a right inverse
too. We conclude that 𝐻1(𝐿𝑆/𝑅)𝑔 is a quotient of (𝐼/𝐼2)𝑔. In particular 𝐻1(𝐿𝑆/𝑅)𝑔 is a
finite 𝑆𝑔-module. Thus the vanishing of 𝐻1(𝐿𝑆/𝑅)𝔮 implies the vanishing of 𝐻1(𝐿𝑆/𝑅)𝑔𝑔′

for some 𝑔′ ∈ 𝑆, 𝑔′∉𝔮. Then 𝑅 → 𝑆𝑔𝑔′ is smooth by definition. �

Lemma 7.126.13. Let 𝑅 → 𝑆 be a ring map. Then 𝑅 → 𝑆 is smooth if and only if 𝑅 → 𝑆
is smooth at every prime 𝔮 of 𝑆.
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Proof. The direct implication is trivial. Suppose that 𝑅 → 𝑆 is smooth at every prime 𝔮
of 𝑆. Since 𝑆𝑝𝑒𝑐(𝑆) is quasi-compact, see Lemma 7.16.10, there exists a finite covering
𝑆𝑝𝑒𝑐(𝑆) = ⋃ 𝐷(𝑔𝑖) such that each 𝑆𝑔𝑖

is smooth. By Lemma 7.21.3 this implies that 𝑆
is of finite presentation over 𝑅. According to Lemma 7.123.10 we see that 𝑁𝐿𝑆/𝑅 ⊗𝑆 𝑆𝑔𝑖
is quasi-isomorphic to a finite projective 𝑆𝑔𝑖

-module. By Lemma 7.72.2 this implies that
𝑁𝐿𝑆/𝑅 is quasi-isomorphic to a finite projective 𝑆-module. �

Lemma 7.126.14. A composition of smooth ring maps is smooth.

Proof. This follows from a combination of Lemmas 7.126.10, 7.126.9 and 7.126.13. (You
can also prove this in many different ways; including easier ones.) �

Lemma 7.126.15. Let 𝑅 be a ring. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) be a relative global
complete intersection. Let 𝔮 ⊂ 𝑆 be a prime. Then 𝑅 → 𝑆 is smooth at 𝔮 if and only if
there exists a subset 𝐼 ⊂ {1, … , 𝑛} of cardinality 𝑐 such that the polynomial

𝑔𝐼 = det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑗=1,…,𝑐, 𝑖∈𝐼.

does not map to an element of 𝔮.

Proof. ByLemma 7.125.13we see that the naive cotangent complex associated to the given
presentation of 𝑆 is the complex

⨁
𝑐
𝑗=1

𝑆 ⋅ 𝑓𝑗 ⟶ ⨁
𝑛
𝑖=1

𝑆 ⋅ d𝑥𝑖, 𝑓𝑗 ⟼ ∑
𝜕𝑓𝑗

𝜕𝑥𝑖
d𝑥𝑖.

The maximal minors of the matrix giving the map are exactly the polynomials 𝑔𝐼.

Assume 𝑔𝐼 maps to 𝑔 ∈ 𝑆, with 𝑔∉𝔮. Then the algebra 𝑆𝑔 is smooth over 𝑅. Namely,
its naive cotangent complex is quasi-isomorphic to the complex above localized at 𝑔, see
Lemma 7.123.10. And by construction it is quasi-isomorphic to a free rank 𝑛 − 𝑐 module
in degree 0.

Conversely, suppose that all 𝑔𝐼 end up in 𝔮. In this case the complex above tensored with
𝜅(𝔮) does not have maximal rank, and hence there is no localization by an element 𝑔 ∈ 𝑆,
𝑔∉𝔮 where this map becomes a split injection. By Lemma 7.123.10 again there is no such
localization which is smooth over 𝑅. �

Lemma 7.126.16. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 ⊂ 𝑆 be a prime lying over the prime 𝔭
of 𝑅. Assume

(1) there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is of finite presentation,
(2) the local ring homomorphism 𝑅𝔭 → 𝑆𝔮 is flat,
(3) the fibre 𝑆 ⊗𝑅 𝜅(𝔭) is smooth over 𝜅(𝔭) at the prime corresponding to 𝔮.

Then 𝑅 → 𝑆 is smooth at 𝔮.

Proof. By Lemmas 7.125.16 and 7.126.5 we see that there exists a 𝑔 ∈ 𝑆 such that
𝑆𝑔 is a relative global complete intersection. Replacing 𝑆 by 𝑆𝑔 we may assume 𝑆 =
𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is a relative global complete intersection. For any subset 𝐼 ⊂
{1, … , 𝑛} of cardinality 𝑐 consider the polynomial 𝑔𝐼 = det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑗=1,…,𝑐,𝑖∈𝐼 of Lemma
7.126.15. Note that the image 𝑔𝐼 of 𝑔𝐼 in the polynomial ring 𝜅(𝔭)[𝑥1, … , 𝑥𝑛] is the determi-
nant of the partial derivatives of the images 𝑓𝑗 of the 𝑓𝑗 in the ring 𝜅(𝔭)[𝑥1, … , 𝑥𝑛]. Thus the
lemma follows by applying Lemma 7.126.15 both to 𝑅 → 𝑆 and to 𝜅(𝔭) → 𝑆⊗𝑅 𝜅(𝔭). �

Note that the sets 𝑈, 𝑉 in the following lemma are open by definition.
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Lemma 7.126.17. Let 𝑅 → 𝑆 be a ring map of finite presentation. Let 𝑅 → 𝑅′ be a flat
ring map. Denote 𝑆′ = 𝑅′ ⊗𝑅 𝑆 the base change. Let 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑆) be the set of primes at
which 𝑅 → 𝑆 is smooth. Let 𝑉 ⊂ 𝑆𝑝𝑒𝑐(𝑆′) the set of primes at which 𝑅′ → 𝑆′ is smooth.
Then 𝑉 is the inverse image of 𝑈 under the map 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑆).
Proof. By Lemma 7.123.6 we see that 𝑁𝐿𝑆/𝑅 ⊗𝑆 𝑆′ is homotopy equivalent to 𝑁𝐿𝑆′/𝑅′.
This already implies that 𝑓−1(𝑈) ⊂ 𝑉.
Let 𝔮′ ⊂ 𝑆′ be a prime lying over 𝔮 ⊂ 𝑆. Assume 𝔮′ ∈ 𝑉. We have to show that 𝔮 ∈ 𝑈.
Since 𝑆 → 𝑆′ is flat, we see that 𝑆𝔮 → 𝑆′

𝔮′ is faithfully flat (Lemma 7.35.16). Thus the
vanishing of 𝐻1(𝐿𝑆′/𝑅′)𝔮′ implies the vanishing of 𝐻1(𝐿𝑆/𝑅)𝔮. By Lemma 7.72.5 applied
to the 𝑆𝔮-module (Ω𝑆/𝑅)𝔮 and the map 𝑆𝔮 → 𝑆′

𝔮′ we see that (Ω𝑆/𝑅)𝔮 is projective. Hence
𝑅 → 𝑆 is smooth at 𝔮 by Lemma 7.126.12. �

Lemma 7.126.18. Let 𝑘 ⊂ 𝐾 be a field extension. Let 𝑆 be a finite type algebra over 𝑘.
Let 𝔮𝐾 be a prime of 𝑆𝐾 = 𝐾 ⊗𝑘 𝑆 and let 𝔮 be the corresponding prime of 𝑆. Then 𝑆 is
smooth over 𝑘 at 𝔮 if and only if 𝑆𝐾 is smooth at 𝔮𝐾 over 𝐾.
Proof. This is a special case of Lemma 7.126.17 above. �

Lemma 7.126.19. Let 𝑅 be a ring and let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑅/𝐼 → 𝑆 be a smooth
ring map. Then there exists elements 𝑔𝑖 ∈ 𝑆 which generate the unit ideal of 𝑆 such that
each 𝑆𝑔𝑖

≅ 𝑆𝑖/𝐼𝑆𝑖 for some (standard) smooth ring 𝑆𝑖 over 𝑅.

Proof. By Lemma 7.126.10 we find a collection of elements 𝑔𝑖 ∈ 𝑆 which generate the
unit ideal of 𝑆 such that each 𝑆𝑔𝑖

is standard smooth over 𝑅/𝐼. Hence we may assume that
𝑆 is standard smooth over 𝑅/𝐼. Write 𝑆 = (𝑅/𝐼)[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) as in Definition
7.126.6. Choose 𝑓1, … , 𝑓𝑐 ∈ 𝑅[𝑥1, … , 𝑥𝑛] lifting 𝑓1, … , 𝑓𝑐. Set𝑆 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑥𝑛+1Δ−
1) where Δ = det( 𝜕𝑓𝑖

𝜕𝑥𝑗
)𝑖,𝑗=1,…,𝑐 as in Example 7.126.8. This proves the lemma. �

7.127. Formally smooth maps

In this section we define formally smooth ring maps. It will turn out that a ring map of
finite presentation is formally smooth if and only if it is smooth, see Proposition 7.127.13.
Definition 7.127.1. Let 𝑅 → 𝑆 be a ring map. We say 𝑆 is formally smooth over 𝑅 if for
every commutative solid diagram

𝑆 //

!!

𝐴/𝐼

𝑅 //

OO

𝐴

OO

where 𝐼 ⊂ 𝐴 is an ideal of square zero, a dotted arrow exists which makes the diagram
commute.
Lemma 7.127.2. Let 𝑅 → 𝑆 be a formally smooth ring map. Let 𝑅 → 𝑅′ be any ring
map. Then the base change 𝑆′ = 𝑅′ ⊗𝑅 𝑆 is formally smooth over 𝑅′.
Proof. Let a solid diagram

𝑆 //

))

𝑅′ ⊗𝑅 𝑆 //

$$

𝐴/𝐼

𝑅

OO

// 𝑅′ //

OO

𝐴

OO
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as in Definition 7.127.1 be given. By assumption the longer dotted arrow exists. By the
universal property of tensor product we obtain the shorter dotted arrow. �

Lemma 7.127.3. A composition of formally smooth ring maps is formally smooth.

Proof. Omitted. (Hint: This is completely formal, and follows from considering a suitable
diagram.) �

Lemma 7.127.4. A polynomial ring over 𝑅 is formally smooth over 𝑅.

Proof. Suppose we have a diagram as in Definition 7.127.1 with 𝑆 = 𝑅[𝑥𝑗; 𝑗 ∈ 𝐽]. Then
there exists a dotted arrow simply by choosing lifts 𝑎𝑗 ∈ 𝐴 of the elements in 𝐴/𝐼 to which
the elements 𝑥𝑗 map to under the top horizontal arrow. �

Lemma 7.127.5. Let 𝑅 → 𝑆 be a ring map. Let 𝑃 → 𝑆 be a surjective 𝑅-algebra map
from a polynomial ring 𝑃 onto 𝑆. Denote 𝐽 ⊂ 𝑃 the kernel. Then 𝑅 → 𝑆 is formally smooth
if and only if there exists an 𝑅-algebra map 𝜎 ∶ 𝑆 → 𝑃/𝐽2 which is a right inverse to the
surjection 𝑃/𝐽2 → 𝑆.

Proof. Assume 𝑅 → 𝑆 is formally smooth. Consider the commutative diagram

𝑆 //

!!

𝑃/𝐽

𝑅 //

OO

𝑃/𝐽2

OO

By assumption the dotted arrow exists. This proves that 𝜎 exists.

Conversely, suppose we have a 𝜎 as in the lemma. Let a solid diagram

𝑆 //

!!

𝐴/𝐼

𝑅 //

OO

𝐴

OO

as in Definition 7.127.1 be given. Because 𝑃 is formally smooth by Lemma 7.127.4, there
exists an 𝑅-algebra homomorphism 𝜓 ∶ 𝑃 → 𝐴 which lifts the map 𝑃 → 𝑆 → 𝐴/𝐼. Clearly
𝜓(𝐽) ⊂ 𝐼 and since 𝐼2 = 0 we conclude that 𝜓(𝐽2) = 0. Hence 𝜓 factors as 𝜓 ∶ 𝑃/𝐽2 → 𝐴.
The desired dotted arrow is the composition 𝜓 ∘ 𝜎 ∶ 𝑆 → 𝐴. �

Remark 7.127.6. Lemma 7.127.5 above holds more generally whenever 𝑃 is formally
smooth over 𝑅.

Lemma 7.127.7. Let 𝑅 → 𝑆 be a ring map. Let 𝑃 → 𝑆 be a surjective 𝑅-algebra map
from a polynomial ring 𝑃 onto 𝑆. Denote 𝐽 ⊂ 𝑃 the kernel. Then 𝑅 → 𝑆 is formally smooth
if and only if the sequence

0 → 𝐽/𝐽2 → Ω𝑃/𝑅 ⊗𝑅 𝑆 → Ω𝑆/𝑅 → 0

of Lemma 7.122.9 is a split exact sequence.

Proof. Assume 𝑆 is formally smooth over 𝑅. By Lemma 7.127.5 this means there exists
an 𝑅-algebra map 𝑆 → 𝑃/𝐽2 which is a left inverse to the canonical map 𝑃/𝐽2 → 𝑆. This
means that

𝑃/𝐽2 ≅ 𝑆 ⊕ 𝐽/𝐽2
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as 𝑅-algebras. Note that the middle term of the exact sequence is Ω𝑃/𝑅 ⊗𝑃 𝑆 ≅ Ω(𝑃/𝐽2)/𝑅 ⊗𝑅
𝑆 by Lemma 7.122.11. A direct computation shows that

Ω(𝑆⊕𝐽/𝐽2)/𝑅 ⊗(𝑆⊕𝐽/𝐽2) 𝑆 = Ω𝑆/𝑅 ⊕ 𝐽/𝐽2

as desired.

Assume the exact sequence of the lemma is split exact. Choose a splitting 𝜎 ∶ Ω𝑆/𝑅 →
Ω𝑃/𝑅 ⊗𝑅 𝑆. For each 𝜆 ∈ 𝑆 choose 𝑥𝜆 ∈ 𝑃 which maps to 𝜆. Next, for each 𝜆 ∈ 𝑆 choose
𝑓𝜆 ∈ 𝐽 such that

d𝑓𝜆 = d𝑥𝜆 − 𝜎(d𝜆)
in the middle term of the exact sequence. We claim that 𝑠 ∶ 𝜆 ↦ 𝑥𝜆 − 𝑓𝜆 mod 𝐽2 is an
𝑅-algebra homomorphism 𝑠 ∶ 𝑆 → 𝑃/𝐽2. To prove this we will repeatedly use that if ℎ ∈ 𝐽
and dℎ = 0 in Ω𝑃/𝑅 ⊗𝑅 𝑆, then ℎ ∈ 𝐽2. Let 𝜆, 𝜇 ∈ 𝑆. Then 𝜎(d𝜆 + d𝜇 − d(𝜆 + 𝜇)) = 0.
This implies

d(𝑥𝜆 + 𝑥𝜇 − 𝑥𝜆+𝜇 − 𝑓𝜆 − 𝑓𝜇 + 𝑓𝜆+𝜇) = 0

which means that 𝑥𝜆 + 𝑥𝜇 − 𝑥𝜆+𝜇 − 𝑓𝜆 − 𝑓𝜇 + 𝑓𝜆+𝜇 ∈ 𝐽2, which in turn means that
𝑠(𝜆) + 𝑠(𝜇) = 𝑠(𝜆 + 𝜇). Similarly, we have 𝜎(𝜆d𝜇 + 𝜇d𝜆 − d𝜆𝜇) = 0 which implies that

𝜇(d𝑥𝜆 − d𝑓𝜆) + 𝜆(d𝑥𝜇 − d𝑓𝜇) − d𝑥𝜆𝜇 − d𝑓𝜆𝜇 = 0

in the middle term of the exact sequence. Moreover we have

d(𝑥𝜆𝑥𝜇) = 𝑥𝜆d𝑥𝜇 + 𝑥𝜇d𝑥𝜆 = 𝜆d𝑥𝜇 + 𝜇d𝑥𝜆

in the middle term again. Combined these equations mean that 𝑥𝜆𝑥𝜇 − 𝑥𝜆𝜇 − 𝜇𝑓𝜆 − 𝜆𝑓𝜇 +
𝑓𝜆𝜇 ∈ 𝐽2 which means that 𝑠(𝜆)𝑠(𝜇) = 𝑠(𝜆𝜇). If 𝜆 ∈ 𝑅, then d𝜆 = 0 and we see that
d𝑓𝜆 = d𝑥𝜆, hence 𝜆 − 𝑥𝜆 + 𝑓𝜆 ∈ 𝐽2 and hence 𝑠(𝜆) = 𝜆 as desired. At this point we can
apply Lemma 7.127.5 to conclude that 𝑆/𝑅 is formally smooth. �

Proposition 7.127.8. Let 𝑅 → 𝑆 be a ring map. Consider a formally smooth 𝑅-algebra 𝑃
and a surjection 𝑃 → 𝑆 with kernel 𝐽. The following are equivalent

(1) 𝑆 is formally smooth over 𝑅,
(2) for some 𝑃 → 𝑆 as above there exists a section to 𝑃/𝐽2 → 𝑆,
(3) for all 𝑃 → 𝑆 as above there exists a section to 𝑃/𝐽2 → 𝑆,
(4) for some 𝑃 → 𝑆 as above the sequence 0 → 𝐽/𝐽2 → Ω𝑃/𝑅 ⊗ 𝑆 → Ω𝑆/𝑅 → 0 is

split exact,
(5) for all 𝑃 → 𝑆 as above the sequence 0 → 𝐽/𝐽2 → Ω𝑃/𝑅 ⊗ 𝑆 → Ω𝑆/𝑅 → 0 is split

exact, and
(6) the naive cotangent complex𝑁𝐿𝑆/𝑅 is quasi-isomorphic to a projective𝑆-module

placed in degree 0.

Proof. It is clear that (1) implies (3) implies (2), see first part of the proof of Lemma
7.127.5. It is also true that (3) implies (5) implies (4) and that (2) implies (4), see first part
of the proof of Lemma 7.127.7. Finally, Lemma 7.127.7 applied to the canonical surjection
𝑅[𝑆] → 𝑆 (7.123.0.1) shows that (1) implies (6).

Assume (4) and let's prove (6). Consider the sequence of Lemma 7.123.3 associated to the
ring maps 𝑅 → 𝑃 → 𝑆. By the implication (1) ⇒ (6) proved above we see that 𝑁𝐿𝑃/𝑅 ⊗𝑅 𝑆
is quasi-isomorphic to Ω𝑃/𝑅 ⊗𝑃 𝑆 placed in degree 0. Hence 𝐻1(𝑁𝐿𝑃/𝑅 ⊗𝑃 𝑆) = 0.
Since 𝑃 → 𝑆 is surjective we see that 𝑁𝐿𝑆/𝑃 is homotopy equivalent to 𝐽/𝐽2 placed in
degee 1 (Lemma 7.123.4). Thus we obtain the exact sequence 0 → 𝐻1(𝐿𝑆/𝑅) → 𝐽/𝐽2 →
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Ω𝑃/𝑅 ⊗𝑃 𝑆 → Ω𝑆/𝑅 → 0. By assumption we see that 𝐻1(𝐿𝑆/𝑅) = 0 and that Ω𝑆/𝑅 is a
projective 𝑆-module. Thus (6) follows.

Finally, let's prove that (6) implies (1). The assumption means that the complex 𝐽/𝐽2 →
Ω𝑃/𝑅 ⊗ 𝑆 where 𝑃 = 𝑅[𝑆] and 𝑃 → 𝑆 is the canonical surjection (7.123.0.1). Hence
Lemma 7.127.7 shows that 𝑆 is formally smooth over 𝑅. �

Lemma 7.127.9. Let 𝐴 → 𝐵 → 𝐶 be ring maps. Assume 𝐵 → 𝐶 is formally smooth. Then
the sequence

0 → Ω𝐵/𝐴 ⊗𝐵 𝐶 → Ω𝐶/𝐴 → Ω𝐶/𝐵 → 0
of Lemma 7.122.7 is a split short exact sequence.

Proof. Follows from Proposition 7.127.8 and Lemma 7.123.3. �

Lemma 7.127.10. Let 𝐴 → 𝐵 → 𝐶 be ring maps with 𝐴 → 𝐶 formally smooth and 𝐵 → 𝐶
surjective with kernel 𝐽 ⊂ 𝐵. Then the exact sequence

0 → 𝐽/𝐽2 → Ω𝐵/𝐴 ⊗𝐵 𝐶 → Ω𝐶/𝐴 → 0

of Lemma 7.122.9 is split exact.

Proof. Follows from Proposition 7.127.8, Lemma 7.123.3, and Lemma 7.122.9. �

Lemma 7.127.11. Let 𝐴 → 𝐵 → 𝐶 be ring maps. Assume 𝐴 → 𝐶 is surjective (so also
𝐵 → 𝐶 is) and 𝐴 → 𝐵 formally smooth. Denote 𝐼 = Ker(𝐴 → 𝐶) and 𝐽 = Ker(𝐵 → 𝐶).
Then the sequence

0 → 𝐼/𝐼2 → 𝐽/𝐽2 → Ω𝐵/𝐴 ⊗𝐵 𝐵/𝐽 → 0
of Lemma 7.123.5 is split exact.

Proof. Since 𝐴 → 𝐵 is formally smooth there exists a ring map 𝜎 ∶ 𝐵 → 𝐴/𝐼2 whose
composition with 𝐴 → 𝐵 equals the quotient map 𝐴 → 𝐴/𝐼2. Then 𝜎 induces a map
𝐽/𝐽2 → 𝐼/𝐼2 which is inverse to the map 𝐼/𝐼2 → 𝐽/𝐽2. �

Lemma 7.127.12. Let 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Assume
(1) 𝐼2 = 0,
(2) 𝑅 → 𝑆 is flat, and
(3) 𝑅/𝐼 → 𝑆/𝐼𝑆 is formally smooth.

Then 𝑅 → 𝑆 is formally smooth.

Proof. Assume (1), (2) and (3). Let 𝑃 = 𝑅[{𝑥𝑡}𝑡∈𝑇] → 𝑆 be a surjection of 𝑅-algebras
with kernel 𝐽. Thus 0 → 𝐽 → 𝑃 → 𝑆 → 0 is a short exact sequence of flat 𝑅-modules.
This implies that 𝐼 ⊗𝑅 𝑆 = 𝐼𝑆, 𝐼 ⊗𝑅 𝑃 = 𝐼𝑃 and 𝐼 ⊗𝑅 𝐽 = 𝐼𝐽 as well as 𝐽 ∩ 𝐼𝑃 = 𝐼𝐽. We
will use throughout the proof that

Ω(𝑆/𝐼𝑆)/(𝑅/𝐼) = Ω𝑆/𝑅 ⊗𝑆 (𝑆/𝐼𝑆) = Ω𝑆/𝑅 ⊗𝑅 𝑅/𝐼 = Ω𝑆/𝑅/𝐼Ω𝑆/𝑅

and similarly for 𝑃 (see Lemma 7.122.12). By Lemma 7.127.7 the sequence

(7.127.12.1) 0 → 𝐽/(𝐼𝐽 + 𝐽2) → Ω𝑃/𝑅 ⊗𝑃 𝑆/𝐼𝑆 → Ω𝑆/𝑅 ⊗𝑆 𝑆/𝐼𝑆 → 0

is split exact. Of course the middle term is ⨁𝑡∈𝑇 𝑆/𝐼𝑆d𝑥𝑡. Choose a splitting 𝜎 ∶ Ω𝑃/𝑅 ⊗𝑃
𝑆/𝐼𝑆 → 𝐽/(𝐼𝐽 + 𝐽2). For each 𝑡 ∈ 𝑇 choose an element 𝑓𝑡 ∈ 𝐽 which maps to 𝜎(d𝑥𝑡) in
𝐽/(𝐼𝐽 + 𝐽2). This determines a unique 𝑆-module map

�̃� ∶ Ω𝑃/𝑅 ⊗𝑅 𝑆 = ⨁ 𝑆d𝑥𝑡 ⟶ 𝐽/𝐽2

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=031K
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06A6
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06A7
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=031L


7.127. FORMALLY SMOOTH MAPS 493

with the property that �̃�(d𝑥𝑡) = 𝑓𝑡. As 𝜎 is a section to d the difference

Δ = id𝐽/𝐽2 − �̃� ∘ d

is a self map 𝐽/𝐽2 → 𝐽/𝐽2 whose image is contained in (𝐼𝐽 + 𝐽2)/𝐽2. In particular Δ((𝐼𝐽 +
𝐽2)/𝐽2) = 0 because 𝐼2 = 0. This means that Δ factors as

𝐽/𝐽2 → 𝐽/(𝐼𝐽 + 𝐽2)
Δ

−−→ (𝐼𝐽 + 𝐽2)/𝐽2 → 𝐽/𝐽2

where Δ is a 𝑆/𝐼𝑆-module map. Using again that the sequence (7.127.12.1) is split, we can
find a 𝑆/𝐼𝑆-module map 𝛿 ∶ Ω𝑃/𝑅 ⊗𝑃 𝑆/𝐼𝑆 → (𝐼𝐽 + 𝐽2)/𝐽2 such that 𝛿 ∘ 𝑑 is equal to Δ. In
the same manner as above the map 𝛿 determines an 𝑆-module map 𝛿 ∶ Ω𝑃/𝑅 ⊗𝑃 𝑆 → 𝐽/𝐽2.
After replacing �̃� by �̃� + 𝛿 a simple computation shows that Δ = 0. In other words �̃� is a
section of 𝐽/𝐽2 → Ω𝑃/𝑅 ⊗𝑃 𝑆. By Lemma 7.127.7 we conclude that 𝑅 → 𝑆 is formally
smooth. �

Proposition 7.127.13. Let 𝑅 → 𝑆 be a ring map. The following are equivalent
(1) 𝑅 → 𝑆 is of finite presentation and formally smooth,
(2) 𝑅 → 𝑆 is smooth.

Proof. Follows from Proposition 7.127.8 and Definition 7.126.1. (Note that Ω𝑆/𝑅 is a
finitely presented 𝑆-module if 𝑅 → 𝑆 is of finite presentation, see Lemma 7.122.15.) �

Lemma 7.127.14. Let 𝑅 → 𝑆 be a smooth ring map. Then there exists a subring 𝑅0 ⊂ 𝑅
of finite type over 𝐙 and a smooth ring map 𝑅0 → 𝑆0 such that 𝑆 ≅ 𝑅 ⊗𝑅0

𝑆0.

Proof. We are going to use that smooth is equivalent to finite presentation and formally
smooth, see Proposition 7.127.13. Write 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) and denote 𝐼 =
(𝑓1, … , 𝑓𝑚). Choose a right inverse 𝜎 ∶ 𝑆 → 𝑅[𝑥1, … , 𝑥𝑛]/𝐼2 to the projection to 𝑆 as in
Lemma 7.127.5. Choose ℎ𝑖 ∈ 𝑅[𝑥1, … , 𝑥𝑛] such that 𝜎(𝑥𝑖 mod 𝐼) = ℎ𝑖 mod 𝐼2. The fact
that 𝜎 is an 𝑅-algebra homomorphism 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 → 𝑅[𝑥1, … , 𝑥𝑛]/𝐼2 is equivalent to
the condition that

𝑓𝑗(ℎ1, … , ℎ𝑛) = ∑𝑗1𝑗2
𝑎𝑗1𝑗2

𝑓𝑗1
𝑓𝑗2

for certain 𝑎𝑘𝑙 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. Let 𝑅0 ⊂ 𝑅 be the subring generated over 𝐙 by all the
coefficients of the polynomials 𝑓𝑗, ℎ𝑖, 𝑎𝑘𝑙. Set 𝑆0 = 𝑅0[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚), with 𝐼0 =
(𝑓1, … , 𝑓𝑚). Let 𝜎0 ∶ 𝑆0 → 𝑅0[𝑥1, … , 𝑥𝑛]/𝐼2

0 defined by the rule 𝑥𝑖 ↦ ℎ𝑖 mod 𝐼2
0; this

works since the 𝑎𝑙𝑘 are defined over 𝑅0 and satisfy the same relations. Thus by Lemma
7.127.5 the ring 𝑆0 is formally smooth over 𝑅0. �

Lemma 7.127.15. Let 𝑅 → 𝑆 be a ring map. Let 𝑅 → 𝑅′ be a faithfully flat ring map. Set
𝑆′ = 𝑆 ⊗𝑅 𝑅′. Then 𝑅 → 𝑆 is formally smooth if and only if 𝑅′ → 𝑆′ is formally smooth.

Proof. If 𝑅 → 𝑆 is formally smooth, then 𝑅′ → 𝑆′ is formally smooth by Lemma 7.127.2.
To prove the converse, assume 𝑅′ → 𝑆′ is formally smooth. Note that 𝑁⊗𝑅 𝑅′ = 𝑁⊗𝑆 𝑆′

for any 𝑆-module 𝑁. In particular 𝑆 → 𝑆′ is faithfully flat also. Choose a polynomial ring
𝑃 = 𝑅[{𝑥𝑖}𝑖∈𝐼] and a surjection of 𝑅-algebras𝑃 → 𝑆 with kernel 𝐽. Note that 𝑃′ = 𝑃⊗𝑅𝑅′

is a polynomial algebra over𝑅′. Since𝑅 → 𝑅′ is flat the kernel 𝐽′ of the surjection𝑃′ → 𝑆′

is 𝐽 ⊗𝑅 𝑅′. Hence the split exact sequence (see Lemma 7.127.7)

0 → 𝐽′/(𝐽′)2 → Ω𝑃′/𝑅′ ⊗𝑃′ 𝑆′ → Ω𝑆′/𝑅′ → 0

is the base change via 𝑆 → 𝑆′ of the corresponding sequence

𝐽/𝐽2 → Ω𝑃/𝑅 ⊗𝑃 𝑆 → Ω𝑆/𝑅 → 0
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see Lemma 7.122.9. As 𝑆 → 𝑆′ is faithfully flat we conclude two things: (1) this sequence
(without ′) is exact too, and (2) Ω𝑆/𝑅 is a projective 𝑆-module. Namely, Ω𝑆′/𝑅′ is projective
as a direct sum of the free module Ω𝑃′/𝑅′ ⊗𝑃′ 𝑆′ and Ω𝑆/𝑅 ⊗𝑆 𝑆′ = Ω𝑆′/𝑅′ by what we
said above. Thus (2) follows by descent of projectivity through faithfully flat ring maps,
see Theorem 7.89.5. Hence the sequence 0 → 𝐽/𝐽2 → Ω𝑃/𝑅 ⊗𝑃 𝑆 → Ω𝑆/𝑅 → 0 is exact
also and we win by applying Lemma 7.127.7 once more. �

It turns out that smooth ring maps satisfy the following strong lifting property.

Lemma 7.127.16. Let 𝑅 → 𝑆 be a smooth ring map. Given a commutative solid diagram

𝑆 //

!!

𝐴/𝐼

𝑅 //

OO

𝐴

OO

where 𝐼 ⊂ 𝐴 is a locally nilpotent ideal, a dotted arrow exists which makes the diagram
commute.

Proof. By Lemma 7.127.14 we can extend the diagram to a commutative diagram

𝑆0
// 𝑆 //

  

𝐴/𝐼

𝑅0
//

OO

𝑅 //

OO

𝐴

OO

with 𝑅0 → 𝑆0 smooth, 𝑅0 of finite type over 𝐙, and 𝑆 = 𝑆0 ⊗𝑅0
𝑅. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑆0 be

generators of 𝑆0 over 𝑅0. Let 𝑎1, … , 𝑎𝑛 be elements of 𝐴 which map to the same elements
in 𝐴/𝐼 as the elements 𝑥1, … , 𝑥𝑛. Denote 𝐴0 ⊂ 𝐴 the subring generated by the image of
𝑅0 and the elements 𝑎1, … , 𝑎𝑛. Set 𝐼0 = 𝐴0 ∩ 𝐼. Then 𝐴0/𝐼0 ⊂ 𝐴/𝐼 and 𝑆0 → 𝐴/𝐼 maps
into 𝐴0/𝐼0. Thus it suffices to find the dotted arrow in the diagram

𝑆0
//

""

𝐴0/𝐼0

𝑅0
//

OO

𝐴0

OO

The ring 𝐴0 is of finite type over 𝐙 by construction. Hence 𝐴0 is Noetherian, whence 𝐼0
is nilpotent, see Lemma 7.47.3. Say 𝐼𝑛

0 = 0. By Proposition 7.127.13 we can successively
lift the 𝑅0-algebra map 𝑆0 → 𝐴0/𝐼0 to 𝑆0 → 𝐴0/𝐼2

0, 𝑆0 → 𝐴0/𝐼3
0, …, and finally 𝑆0 →

𝐴0/𝐼𝑛
0 = 𝐴0. �

7.128. Smoothness and differentials

Some results on differentials and smooth ring maps.

Lemma 7.128.1. Given ring maps 𝐴 → 𝐵 → 𝐶 with 𝐵 → 𝐶 smooth, then the sequence

0 → 𝐶 ⊗𝐵 Ω𝐵/𝐴 → Ω𝐶/𝐴 → Ω𝐶/𝐵 → 0

of Lemma 7.122.7 is exact.

Proof. This follows from the more general Lemma 7.127.9 because a smooth ring map
is formally smooth, see Proposition 7.127.13. But it also follows directly from Lemma
7.123.3 since 𝐻1(𝐿𝐶/𝐵) = 0 is part of the definition of smoothness of 𝐵 → 𝐶. �
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Lemma 7.128.2. Let 𝐴 → 𝐵 → 𝐶 be ring maps with 𝐴 → 𝐶 smooth and 𝐵 → 𝐶 surjective
with kernel 𝐽 ⊂ 𝐵. Then the exact sequence

0 → 𝐽/𝐽2 → Ω𝐵/𝐴 ⊗𝐵 𝐶 → Ω𝐶/𝐴 → 0

of Lemma 7.122.9 is split exact.

Proof. This follows from the more general Lemma 7.127.10 because a smooth ring map is
formally smooth, see Proposition 7.127.13. �

Lemma 7.128.3. Let 𝐴 → 𝐵 → 𝐶 be ring maps. Assume 𝐴 → 𝐶 is surjective (so also
𝐵 → 𝐶 is) and 𝐴 → 𝐵 smooth. Denote 𝐼 = Ker(𝐴 → 𝐶) and 𝐽 = Ker(𝐵 → 𝐶). Then the
sequence

0 → 𝐼/𝐼2 → 𝐽/𝐽2 → Ω𝐵/𝐴 ⊗𝐵 𝐵/𝐽 → 0
of Lemma 7.123.5 is exact.

Proof. This follows from the more general Lemma 7.127.11 because a smooth ring map is
formally smooth, see Proposition 7.127.13. �

Lemma 7.128.4. Let 𝜑 ∶ 𝑅 → 𝑆 be a smooth ring map. Let 𝜎 ∶ 𝑆 → 𝑅 be a left inverse
to 𝜑. Set 𝐼 = Ker(𝜎). Then

(1) 𝐼/𝐼2 is a finite locally free 𝑅-module, and
(2) if 𝐼/𝐼2 is free, then 𝑆∧ ≅ 𝑅[[𝑡1, … , 𝑡𝑑]] as 𝑅-algebras, where 𝑆∧ is the 𝐼-adic

completion of 𝑆.

Proof. By Lemma 7.122.10 applied to 𝑅 → 𝑆 → 𝑅 we see that 𝐼/𝐼2 = Ω𝑆/𝑅 ⊗𝑆,𝜎 𝑅.
Since by definition of a smooth morphism the module Ω𝑆/𝑅 is finite locally free over 𝑆 we
deduce that (1) holds. If 𝐼/𝐼2 is free, then choose 𝑓1, … , 𝑓𝑑 ∈ 𝐼 whose images in 𝐼/𝐼2 form
an 𝑅-basis. Consider the 𝑅-algebra map defined by

Ψ ∶ 𝑅[[𝑥1, … , 𝑥𝑑]] ⟶ 𝑆∧, 𝑥𝑖 ⟼ 𝑓𝑖.

Denote 𝑃 = 𝑅[[𝑥1, … , 𝑥𝑑]] and 𝐽 = (𝑥1, … , 𝑥𝑑) ⊂ 𝑃. We write Ψ𝑛 ∶ 𝑃/𝐽𝑛 → 𝑆/𝐼𝑛 for the
induced map of quotient rings. Note that 𝑆/𝐼2 = 𝜑(𝑅) ⊕ 𝐼/𝐼2. Thus Ψ2 is an isomorphism.
Denote 𝜎2 ∶ 𝑆/𝐼2 → 𝑃/𝐽2 the inverse of Ψ2. We will prove by induction on 𝑛 that for all
𝑛 > 2 there exists an inverse 𝜎𝑛 ∶ 𝑆/𝐼𝑛 → 𝑃/𝐽𝑛 of Ψ𝑛. Namely, as 𝑆 is formally smooth
over 𝑅 (by Proposition 7.127.13) we see that in the solid diagram

𝑆 //

𝜎𝑛−1 ""

𝑃/𝐽𝑛

��
𝑃/𝐽𝑛−1

of 𝑅-algebras we can fill in the dotted arrow by some 𝑅-algebra map 𝜏 ∶ 𝑆 → 𝑃/𝐽𝑛 making
the diagram commute. This induces an 𝑅-algebra map 𝜏 ∶ 𝑆/𝐼𝑛 → 𝑃/𝐽𝑛 which is equal to
𝜎𝑛−1 modulo 𝐽𝑛. By construction the map Ψ𝑛 is surjective and now 𝜏 ∘ Ψ𝑛 is an 𝑅-algebra
endomorphism of 𝑃/𝐽𝑛 which maps 𝑥𝑖 to 𝑥𝑖 + 𝛿𝑖,𝑛 with 𝛿𝑖,𝑛 ∈ 𝐽𝑛−1/𝐽𝑛. It follows that Ψ𝑛 is
an isomorphism and hence it has an inverse 𝜎𝑛. This proves the lemma. �

7.129. Smooth algebras over fields

Warning: The following two lemmas do not hold over nonperfect fields in general.
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Lemma 7.129.1. Let 𝑘 be an algebraically closed field. Let 𝑆 be a finite type 𝑘-algebra.
Let 𝔪 ⊂ 𝑆 be a maximal ideal. Then

dim𝜅(𝔪) Ω𝑆/𝑘 ⊗𝑆 𝜅(𝔪) = dim𝜅(𝔪) 𝔪/𝔪2.

Proof. Since 𝑘 is algebraically closed we have 𝜅(𝔪) = 𝑘. We may choose a presentation
0 → 𝐼 → 𝑘[𝑥1, … , 𝑥𝑛] → 𝑆 → 0 such that all 𝑥𝑖 end up in 𝔪. Write 𝐼 = (𝑓1, … , 𝑓𝑚).
Note that each 𝑓𝑖 is contained in (𝑥1, … , 𝑥𝑛), i.e., each 𝑓𝑖 has zero constant term. Hence
we may write

𝑓𝑗 = ∑ 𝑎𝑖𝑗𝑥𝑖 + h.o.t.

By Lemma 7.122.9 there is an exact sequence

⨁ 𝑆 ⋅ 𝑓𝑗 → ⨁ 𝑆 ⋅ d𝑥𝑖 → Ω𝑆/𝑘 → 0.

Tensoring with 𝜅(𝔪) = 𝑘 we get an exact sequence

⨁ 𝑘 ⋅ 𝑓𝑗 → ⨁ 𝑘 ⋅ d𝑥𝑖 → Ω𝑆/𝑘 ⊗ 𝜅(𝔪) → 0.

The matrix of the map is given by the partial derivatives of the 𝑓𝑗 evaluated at 0. In other
words by the matrix (𝑎𝑖𝑗). Similarly there is a short exact sequence

(𝑓1, … , 𝑓𝑚)/(𝑥1𝑓1, … , 𝑥𝑛𝑓𝑚) → (𝑥1, … , 𝑥𝑛)/(𝑥1, … , 𝑥𝑛)2 → 𝔪/𝔪2 → 0.

Note that the first map is given by expanding the 𝑓𝑗 in terms of the 𝑥𝑖, i.e., by the same
matrix (𝑎𝑖𝑗). Hence the two numbers are the same. �

Lemma 7.129.2. Let 𝑘 be an algebraically closed field. Let 𝑆 be a finite type 𝑘-algebra.
Let 𝔪 ⊂ 𝑆 be a maximal ideal. The following are equivalent:

(1) The ring 𝑆𝔪 is a regular local ring.
(2) We have dim𝜅(𝔪) Ω𝑆/𝑘 ⊗𝑆 𝜅(𝔪) ≤ dim(𝑆𝔪).
(3) We have dim𝜅(𝔪) Ω𝑆/𝑘 ⊗𝑆 𝜅(𝔪) = dim(𝑆𝔪).
(4) There exists a 𝑔 ∈ 𝑆, 𝑔∉𝔪 such that 𝑆𝑔 is smooth over 𝑘. In other words 𝑆/𝑘 is

smooth at 𝔪.

Proof. Note that (1), (2) and (3) are equivalent by Lemma 7.129.1 and Definition 7.102.6.

Assume that 𝑆 is smooth at 𝔮. By Lemma 7.126.10 we see that 𝑆𝑔 is standard smooth over
𝑘 for a suitable 𝑔 ∈ 𝑆, 𝑔∉𝔪. Hence by Lemma 7.126.7 we see that Ω𝑆𝑔/𝑘 is free of rank
dim(𝑆𝑔). Hence by Lemma 7.129.1 we see that dim(𝑆𝑚) = dim(𝔪/𝔪2) in other words 𝑆𝔪
is regular.

Conversely, suppose that 𝑆𝔪 is regular. Let 𝑑 = dim(𝑆𝔪) = dim 𝔪/𝔪2. Choose a presen-
tation 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼 such that 𝑥𝑖 maps to an element of 𝔪 for all 𝑖. In other words,
𝔪″ = (𝑥1, … , 𝑥𝑛) is the corresponding maximal ideal of 𝑘[𝑥1, … , 𝑥𝑛]. Note that we have
a short exact sequence

𝐼/𝔪″𝐼 → 𝔪″/(𝔪″)2 → 𝔪/(𝔪)2 → 0

Pick 𝑐 = 𝑛 − 𝑑 elements 𝑓1, … , 𝑓𝑑 ∈ 𝐼 such that their images in 𝔪″/(𝔪″)2 span the
kernel of the map to 𝔪/(𝔪)2. This is clearly possible. Denote 𝐽 = (𝑓1, … , 𝑓𝑐). So 𝐽 ⊂ 𝐼.
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Denote 𝑆′ = 𝑘[𝑥1, … , 𝑥𝑛]/𝐽 so there is a surjection 𝑆′ → 𝑆. Denote 𝔪′ = 𝔪″𝑆′ the
corresponding maximal ideal of 𝑆′. Hence we have

𝑘[𝑥1, … , 𝑥𝑛] // 𝑆′ // 𝑆

𝔪″

OO

// 𝔪′ //

OO

𝔪

OO

By our choice of 𝐽 the exact sequence

𝐽/𝔪″𝐽 → 𝔪″/(𝔪″)2 → 𝔪′/(𝔪′)2 → 0

shows that dim(𝔪′/(𝔪′)2) = 𝑑. Since 𝑆′
𝔪′ surjects onto 𝑆𝔪 we see that dim(𝑆𝔪′) ≥ 𝑑.

Hence by the discussion preceding Definition 7.57.9 we conclude that 𝑆′
𝔪′ is regular of

dimension 𝑑 as well. Because 𝑆′ was cut out by 𝑐 = 𝑛 − 𝑑 equations we conclude that there
exists a 𝑔′ ∈ 𝑆′, 𝑔′∉𝔪′ such that 𝑆′

𝑔′ is a global complete intersection over 𝑘, see Lemma
7.124.4. Also the map 𝑆′

𝔪′ → 𝑆𝔪 is a surjection of Noetherian local domains of the same
dimension and hence an isomorphism. By Lemma 7.117.6 we see that 𝑆′

𝑔″ ≅ 𝑆𝑔″ for some
𝑔″ ∈ 𝑆′, 𝑔″∉𝔪′. All in all we conclude that after replacing 𝑆 by a principal localization
we may assume that 𝑆 is a global complete intersection.

At this point we may write 𝑆 = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) with dim 𝑆 = 𝑛 − 𝑐. Recall that
the naive cotangent complex of this algebra is given by

⨁ 𝑆 ⋅ 𝑓𝑗 → ⨁ 𝑆 ⋅ d𝑥𝑖

see Lemma 7.126.15. By this same lemma in order to show that 𝑆 is smooth at 𝔪 we have
to show that one of the 𝑐 × 𝑐 minors 𝑔𝐼 of the matrix ``𝐴'' giving the map above does not
vanish at 𝔪. By Lemma 7.129.1 the matrix 𝐴 mod 𝔪 has rank 𝑐. Thus we win. �

Lemma 7.129.3. Let 𝑘 be any field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑆).
Let 𝔮 ⊂ 𝑆 be a prime corresponding to 𝑥 ∈ 𝑋. The following are equivalent:

(1) The 𝑘-algebra 𝑆 is smooth at 𝔮 over 𝑘.
(2) We have dim𝜅(𝔮) Ω𝑆/𝑘 ⊗𝑆 𝜅(𝔮) ≤ dim𝑥 𝑋.
(3) We have dim𝜅(𝔮) Ω𝑆/𝑘 ⊗𝑆 𝜅(𝔮) = dim𝑥 𝑋.

Moreover, in this case the local ring 𝑆𝔮 is regular.

Proof. If 𝑆 is smooth at 𝔮 over 𝑘, then there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑆𝑔 is standard
smooth over 𝑘, see Lemma 7.126.10. A standard smooth algebra over 𝑘 has a module of
differentials which is free of rank equal to the dimension, see Lemma 7.126.7. Thus we see
that (1) implies (3). To finish the proof of the lemma it suffices to show that (2) implies (1)
and that it implies that 𝑆𝔮 is regular.

Assume (2). By Nakayama's Lemma 7.14.5 we see that Ω𝑆/𝑘,𝔮 can be generated by ≤
dim𝑥 𝑋 elements. We may replace 𝑆 by 𝑆𝑔 for some 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that Ω𝑆/𝑘 is generated
by at most dim𝑥 𝑋 elements. Let 𝐾 ⊃ 𝑘 be an algebraically closed field extension such that
there exists a 𝑘-algebra map 𝜓 ∶ 𝜅(𝔮) → 𝐾. Consider 𝑆𝐾 = 𝐾 ⊗𝑘 𝑆. Let 𝔪 ⊂ 𝑆𝐾 be the
maximal ideal corresponding to the surjection

𝑆𝐾 = 𝐾 ⊗𝑘 𝑆 // 𝐾 ⊗𝑘 𝜅(𝔮)
id𝐾⊗𝜓 // 𝐾.

Note that 𝔪 ∩ 𝑆 = 𝔮, in other words 𝔪 lies over 𝔮. By Lemma 7.107.6 the dimension
of 𝑋𝐾 = 𝑆𝑝𝑒𝑐(𝑆𝐾) at the point corresponding to 𝔪 is dim𝑥 𝑋. By Lemma 7.105.6 this is
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equal to dim((𝑆𝐾)𝔪). By Lemma 7.122.12 the module of differentials of 𝑆𝐾 over 𝐾 is the
base change of Ω𝑆/𝑘, hence also generated by at most dim𝑥 𝑋 = dim((𝑆𝐾)𝔪) elements. By
Lemma 7.129.2 we see that 𝑆𝐾 is smooth at 𝔪 over 𝐾. By Lemma 7.126.17 this implies
that 𝑆 is smooth at 𝔮 over 𝑘. This proves (1). Moreover, we know by Lemma 7.129.2 that
the local ring (𝑆𝐾)𝔪 is regular. Since 𝑆𝔮 → (𝑆𝐾)𝔪 is flat we conclude from Lemma 7.102.8
that 𝑆𝔮 is regular. �

The following lemma can be significantly generalized (in several different ways).

Lemma 7.129.4. Let 𝑘 be a field. Let 𝑅 be a Noetherian local ring containing 𝑘. Assume
that the residue field 𝜅 = 𝑅/𝔪 is a finitely generated separable extension of 𝑘. Then the
map

d ∶ 𝔪/𝔪2 ⟶ Ω𝑅/𝑘 ⊗𝑅 𝜅(𝔪)
is injective.

Proof. We may replace 𝑅 by 𝑅/𝔪2. Hence we may assume that 𝔪2 = 0. By assumption
we may write 𝜅 = 𝑘(𝑥1, … , 𝑥𝑟, 𝑦) where 𝑥1, … , 𝑥𝑟 is a transcendence basis of 𝜅 over 𝑘
and 𝑦 is separable algebraic over 𝑘(𝑥1, … , 𝑥𝑟). Say its minimal equation is 𝑃(𝑦) = 0 with
𝑃(𝑇) = 𝑇𝑑 + ∑𝑖<𝑑 𝑎𝑖𝑇𝑖, with 𝑎𝑖 ∈ 𝑘(𝑥1, … , 𝑥𝑟) and 𝑃′(𝑦)≠0. Choose any lifts 𝑥𝑖 ∈ 𝑅 of
the elements 𝑥𝑖 ∈ 𝜅. This gives a commutative diagram

𝑅 // 𝜅

𝑘(𝑥1, … , 𝑥𝑟)
𝜑

ee OO

of 𝑘-algebras. We want to extend the left upwards arrow 𝜑 to a 𝑘-algebra map from 𝜅 to
𝑅. To do this choose any 𝑦 ∈ 𝑅 lifting 𝑦. To see that it defines a 𝑘-algebra map defined on
𝜅 ≅ 𝑘(𝑥1, … , 𝑥𝑟)[𝑇]/(𝑃) all we have to show is that we may choose 𝑦 such that 𝑃𝜑(𝑦) = 0.
If not then we compute for 𝛿 ∈ 𝔪 that

𝑃(𝑦 + 𝛿) = 𝑃(𝑦) + 𝑃′(𝑦)𝛿

because 𝔪2 = 0. Since 𝑃′(𝑦)𝛿 = 𝑃′(𝑦)𝛿 we see that we can adjust our choice as desired.
This shows that 𝑅 ≅ 𝜅⊕𝔪 as 𝑘-algebras! From a direct computation of Ω𝜅⊕𝔪/𝑘 the lemma
follows. �

Lemma 7.129.5. Let 𝑘 be a field. Let 𝑆 be a finite type 𝑘-algebra. Let 𝔮 ⊂ 𝑆 be a prime.
Assume 𝜅(𝔮) is separable over 𝑘. The following are equivalent:

(1) The algebra 𝑆 is smooth at 𝔮 over 𝑘.
(2) The ring 𝑆𝔮 is regular.

Proof. Denote 𝑅 = 𝑆𝔮 and denote its maximal by 𝔪 and its residue field 𝜅. By Lemma
7.129.4 and 7.122.9 we see that there is a short exact sequence

0 → 𝔪/𝔪2 → Ω𝑅/𝑘 ⊗𝑅 𝜅 → Ω𝜅/𝑘 → 0

Note that Ω𝑅/𝑘 = Ω𝑆/𝑘,𝔮, see Lemma 7.122.8. Moreover, since 𝜅 is separable over 𝑘 we
have dim𝜅 Ω𝜅/𝑘 = trdeg𝑘(𝜅). Hence we get

dim𝜅 Ω𝑅/𝑘 ⊗𝑅 𝜅 = dim𝜅 𝔪/𝔪2 + trdeg𝑘(𝜅) ≥ dim 𝑅 + trdeg𝑘(𝜅) = dim𝔮 𝑆

(see Lemma 7.107.3 for the last equality) with equality if and only if 𝑅 is regular. Thus we
win by applying Lemma 7.129.3. �
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Lemma 7.129.6. Let 𝑅 → 𝑆 be a 𝐐-algebra map. Let 𝑓 ∈ 𝑆 be such that Ω𝑆/𝑅 = 𝑆d𝑓⊕𝐶
for some 𝑆-submodule 𝐶. Then

(1) 𝑓 is not nilpotent, and
(2) if 𝑆 is a Noetherian local ring, then 𝑓 is a nonzero divisor in 𝑆.

Proof. For 𝑎 ∈ 𝑆 write d(𝑎) = 𝜃(𝑎)d𝑓 + 𝑐(𝑎) for some 𝜃(𝑎) ∈ 𝑆 and 𝑐(𝑎) ∈ 𝐶. Consider
the 𝑅-derivation 𝑆 → 𝑆, 𝑎 ↦ 𝜃(𝑎). Note that 𝜃(𝑓) = 1.
If 𝑓𝑛 = 0 with 𝑛 > 1 minimal, then 0 = 𝜃(𝑓𝑛) = 𝑛𝑓𝑛−1 contradicting the minimality of 𝑛.
We conclude that 𝑓 is not nilpotent.
Suppose 𝑓𝑎 = 0. If 𝑓 is a unit then 𝑎 = 0 and we win. Assume 𝑓 is not a unit. Then
0 = 𝜃(𝑓𝑎) = 𝑓𝜃(𝑎) + 𝑎 by the Leibniz rule and hence 𝑎 ∈ (𝑓). By induction suppose
we have shown 𝑓𝑎 = 0 ⇒ 𝑎 ∈ (𝑓𝑛). Then writing 𝑎 = 𝑓𝑛𝑏 we get 0 = 𝜃(𝑓𝑛+1𝑏) =
(𝑛 + 1)𝑓𝑛𝑏 + 𝑓𝑛+1𝜃(𝑏). Hence 𝑎 = 𝑓𝑛𝑏 = −𝑓𝑛+1𝜃(𝑏)/(𝑛 + 1) ∈ (𝑓𝑛+1). Since in the
Noetherian local ring 𝑆 we have ⋂(𝑓𝑛) = 0, see Lemma 7.47.6 we win. �

The following is probably quite useless in applications.

Lemma 7.129.7. Let 𝑘 be a field of characteristic 0. Let 𝑆 be a finite type 𝑘-algebra. Let
𝔮 ⊂ 𝑆 be a prime. The following are equivalent:

(1) The algebra 𝑆 is smooth at 𝔮 over 𝑘.
(2) The 𝑆𝔮-module Ω𝑆/𝑘,𝔮 is (finite) free.
(3) The ring 𝑆𝔮 is regular.

Proof. In characteristic zero any field extension is separable and hence the equivalence of
(1) and (3) follows from Lemma 7.129.5. Also (1) implies (2) by definition of smooth alge-
bras. Assume that Ω𝑆/𝑘,𝔮 is free over 𝑆𝔮. We are going to use the notation and observations
made in the proof of Lemma 7.129.5. So 𝑅 = 𝑆𝔮 with maximal ideal 𝔪 and residue field
𝜅. Our goal is to prove 𝑅 is regular.

If 𝔪/𝔪2 = 0, then 𝔪 = 0 and 𝑅 ≅ 𝜅. Hence 𝑅 is regular and we win.

If 𝔪/𝔪2≠0, then choose any 𝑓 ∈ 𝔪 whose image in 𝔪/𝔪2 is not zero. By Lemma 7.129.4
we see that d𝑓 has nonzero image in Ω𝑅/𝑘/𝔪Ω𝑅/𝑘. By assumption Ω𝑅/𝑘 = Ω𝑆/𝑘,𝔮 is finite
free and hence by Nakayama's Lemma 7.14.5 we see that d𝑓 generates a direct summand.
We apply Lemma 7.129.6 to deduce that 𝑓 is a nonzero divisor in 𝑅. Furthermore, by
Lemma 7.122.9 we get an exact sequence

(𝑓)/(𝑓2) → Ω𝑅/𝑘 ⊗𝑅 𝑅/𝑓𝑅 → Ω(𝑅/𝑓𝑅)/𝑘 → 0
This implies that Ω(𝑅/𝑓𝑅)/𝑘 is finite free as well. Hence by induction we see that 𝑅/𝑓𝑅 is a
regular local ring. Since 𝑓 ∈ 𝔪 was a nonzero divisor we conclude that 𝑅 is regular, see
Lemma 7.98.7. �

Example 7.129.8. Lemma 7.129.7 does not hold in characteristic 𝑝 > 0. The standard
examples are the ring maps

𝐅𝑝 ⟶ 𝐅𝑝[𝑥]/(𝑥𝑝)
whose module of differentials is free but is clearly not smooth, and the ring map (𝑝 > 2)

𝐅𝑝(𝑡) → 𝐅𝑝(𝑡)[𝑥, 𝑦]/(𝑥𝑝 + 𝑦2 + 𝛼)

which is not smooth at the prime 𝔮 = (𝑦, 𝑥𝑝 − 𝛼) but is regular.

Using the material above we can characterize smoothness at the generic point in terms of
field extensions.
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Lemma 7.129.9. Let 𝑅 → 𝑆 be an injective finite type ring map with 𝑅 and 𝑆 domains.
Then 𝑅 → 𝑆 is smooth at 𝔮 = (0) if and only if 𝑓.𝑓.(𝑅) ⊂ 𝑓.𝑓.(𝑆) is a separable extension
of fields.

Proof. Assume 𝑅 → 𝑆 is smooth at (0). We may replace 𝑆 by 𝑆𝑔 for some nonzero 𝑔 ∈ 𝑆
and assume that 𝑅 → 𝑆 is smooth. Set 𝐾 = 𝑓.𝑓.(𝑅). Then 𝐾 → 𝑆 ⊗𝑅 𝐾 is smooth
(Lemma 7.126.4). Moreover, for any field extension 𝐾 ⊂ 𝐾′ the ring map 𝐾′ → 𝑆 ⊗𝑅 𝐾′

is smooth as well. Hence 𝑆⊗𝑅𝐾′ is a regular ring by Lemma 7.129.3, in particular reduced.
It follows that 𝑆 ⊗𝑅 𝐾 is a geometrically reduced over 𝐾. Hence 𝑓.𝑓.(𝑆) is geometricaly
reduced over 𝐾, see Lemma 7.40.3. Hence 𝑓.𝑓.(𝑆)/𝐾 is separable by Lemma 7.41.1.
Conversely, assume that 𝑓.𝑓.(𝑅) ⊂ 𝑓.𝑓.(𝑆) is separable. We may assume 𝑅 → 𝑆 is of finite
presentation, see Lemma 7.27.1. It suffices to prove that 𝐾 → 𝑆 ⊗𝑅 𝐾 is smooth at (0), see
Lemma 7.126.17. This follows from Lemma 7.129.5, the fact that a field is a regular ring,
and the assumption that 𝑓.𝑓.(𝑅) → 𝑓.𝑓.(𝑆) is separable. �

7.130. Smooth ring maps in the Noetherian case

Definition 7.130.1. Let 𝜑 ∶ 𝐵′ → 𝐵 be a ring map. We say 𝜑 is a small extension if 𝐵′

and 𝐵 are local Artinian rings, 𝜑 is surjective and 𝐼 = Ker(𝜑) has length 1 as a 𝐵′-module.

Clearly this means that 𝐼2 = 0 and that 𝐼 = (𝑥) for some 𝑥 ∈ 𝐵′ such that 𝔪′𝑥 = 0 where
𝔪′ ⊂ 𝐵′ is the maximal ideal.

Lemma 7.130.2. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 be a prime ideal of 𝑆 lying over 𝔭 ⊂ 𝑅.
Assume 𝑅 is Noetherian and 𝑅 → 𝑆 of finite type. The following are equivalent:

(1) 𝑅 → 𝑆 is smooth at 𝔮,
(2) for every surjection of local 𝑅-algebras (𝐵′, 𝔪′) → (𝐵, 𝔪) with Ker(𝐵′ → 𝐵)

having square zero and every solid commutative diagram

𝑆 //

  

𝐵

𝑅 //

OO

𝐵′

OO

such that 𝔮 = 𝑆 ∩ 𝔪 there exists a dotted arrow making the diagram commute,
(3) same as in (2) but with 𝐵′ → 𝐵 ranging over small extensions, and
(4) same as in (2) but with 𝐵′ → 𝐵 ranging over small extensions such that in addi-

tion 𝑆 → 𝑅 induces an isomorphism 𝜅(𝔮) ≅ 𝜅(𝔪).

Proof. Assume (1). This means there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is smooth.
By Proposition 7.127.13 we know that 𝑅 → 𝑆𝑔 is formally smooth. Note that given any
diagram as in (2) the map 𝑆 → 𝐵 factors automatically through 𝑆𝔮 and a fortiori through
𝑆𝑔. The formal smoothness of 𝑆𝑔 over 𝑅 gives us a morphism 𝑆𝑔 → 𝐵′ fitting into a similar
diagram with 𝑆𝑔 at the upper left corner. Composing with 𝑆 → 𝑆𝑔 gives the desired arrow.
In other words, we have shown that (1) implies (2).
Clearly (2) implies (3) and (3) implies (4).
Assume (4). We are going to show that (1) holds, thereby finishing the proof of the lemma.
Choose a presentation 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚). This is possible as 𝑆 is of finite
type over 𝑅 and therefore of finite presentation (see Lemma 7.28.4). Set 𝐼 = (𝑓1, … , 𝑓𝑚).
Consider the naive cotangent complex

d ∶ 𝐼/𝐼2 ⟶ ⨁
𝑚
𝑗=1

𝑆d𝑥𝑗

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07ND
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02HS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02HT
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of this presentation (see Section 7.123). It suffices to show that when we localize this
complex at 𝔮 then the map becomes a split injection, see Lemma 7.126.12. Denote 𝑆′ =
𝑅[𝑥1, … , 𝑥𝑛]/𝐼2. By Lemma 7.122.11 we have

𝑆 ⊗𝑆′ Ω𝑆′/𝑅 = 𝑆 ⊗𝑅[𝑥1,…,𝑥𝑛] Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 = ⨁
𝑚
𝑗=1

𝑆d𝑥𝑗.

Thus the map
d ∶ 𝐼/𝐼2 ⟶ 𝑆 ⊗𝑆′ Ω𝑆′/𝑅

is the same as the map in the naive cotangent complex above. In particular the truth of
the assertion we are trying to prove depends only on the three rings 𝑅 → 𝑆′ → 𝑆. Let
𝔮′ ⊂ 𝑅[𝑥1, … , 𝑥𝑛] be the prime ideal corresponding to 𝔮. Since localization commutes
with taking modules of differentials (Lemma 7.122.8) we see that it suffices to show that
the map

(7.130.2.1) d ∶ 𝐼𝔮′/𝐼2
𝔮′ ⟶ 𝑆𝔮 ⊗𝑆′

𝔮′
Ω𝑆′

𝔮′/𝑅

coming from 𝑅 → 𝑆′
𝔮′ → 𝑆𝔮 is a split injection.

Let 𝑁 ∈ 𝐍 be an integer. Consider the ring

𝐵′
𝑁 = 𝑆′

𝔮′/(𝔮′)𝑁𝑆′
𝔮′ = (𝑆′/(𝔮′)𝑁𝑆′)𝔮′

and its quotient 𝐵𝑁 = 𝐵′
𝑁/𝐼𝐵′

𝑁. Note that 𝐵𝑁 ≅ 𝑆𝔮/𝔮𝑁𝑆𝔮. Observe that 𝐵′
𝑁 is an Artinian

local ring since it is the quotient of a local Noetherian ring by a power of its maximal ideal.
Consider a filtration of the kernel 𝐼𝑁 of 𝐵′

𝑁 → 𝐵𝑁 by 𝐵′
𝑁-submodules

0 ⊂ 𝐽𝑁,1 ⊂ 𝐽𝑁,2 ⊂ … ⊂ 𝐽𝑁,𝑛(𝑁) = 𝐼𝑁

such that each successive quotient 𝐽𝑁,𝑖/𝐽𝑁,𝑖−1 has length 1. (As 𝐵′
𝑁 is Artinian such a

filtration exists.) This gives a sequence of small extensions

𝐵′
𝑁 → 𝐵′

𝑁/𝐽𝑁,1 → 𝐵′
𝑁/𝐽𝑁,2 → … → 𝐵′

𝑁/𝐽𝑁,𝑛(𝑁) = 𝐵′
𝑁/𝐼𝑁 = 𝐵𝑁 = 𝑆𝔮/𝔮𝑁𝑆𝔮

Applying condition (4) successively to these small extensions starting with the map 𝑆 →
𝐵𝑁 we see there exists a commutative diagram

𝑆 //

��

𝐵𝑁

𝑅 //

OO

𝐵′
𝑁

OO

Clearly the ring map 𝑆 → 𝐵′
𝑁 factors as 𝑆 → 𝑆𝔮 → 𝐵′

𝑁 where 𝑆𝔮 → 𝐵′
𝑁 is a local

homomorphism of local rings. Moreover, since the maximal ideal of 𝐵′
𝑁 to the 𝑁th power

is zero we conclude that 𝑆𝔮 → 𝐵′
𝑁 factors through 𝑆𝔮/(𝔮)𝑁𝑆𝔮 = 𝐵𝑁. In other words we

have shown that for all 𝑁 ∈ 𝐍 the surjection of 𝑅-algebras 𝐵′
𝑁 → 𝐵𝑁 has a splitting.

Consider the presentation

𝐼𝑁 → 𝐵𝑁 ⊗𝐵′
𝑁

Ω𝐵′
𝑁/𝑅 → Ω𝐵𝑁/𝑅 → 0

coming from the surjection 𝐵′
𝑁 → 𝐵𝑁 with kernel 𝐼𝑁 (see Lemma 7.122.9). By the above

the 𝑅-algebra map 𝐵′
𝑁 → 𝐵𝑁 has a right inverse. Hence by Lemma 7.122.10 we see that

the sequence above is split exact! Thus for every 𝑁 the map

𝐼𝑁 ⟶ 𝐵𝑁 ⊗𝐵′
𝑁

Ω𝐵′
𝑁/𝑅
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is a split injection. The rest of the proof is gotten by unwinding what this means exactly.
Note that

𝐼𝑁 = 𝐼𝔮′/(𝐼2
𝔮′ + (𝔮′)𝑁 ∩ 𝐼𝔮′)

By Artin-Rees (Lemma 7.47.4) we find a 𝑐 ≥ 0 such that

𝑆𝔮/𝔮𝑁−𝑐𝑆𝔮 ⊗𝑆𝔮
𝐼𝑁 = 𝑆𝔮/𝔮𝑁−𝑐𝑆𝔮 ⊗𝑆𝔮

𝐼𝔮′/𝐼2
𝔮′

for all 𝑁 ≥ 𝑐 (these tensor product are just a fancy way of dividing by 𝔮𝑁−𝑐). We may of
course assume 𝑐 ≥ 1. By Lemma 7.122.11 we see that

𝑆′
𝔮′/(𝔮′)𝑁−𝑐𝑆′

𝔮′ ⊗𝑆′
𝔮′

Ω𝐵′
𝑁/𝑅 = 𝑆′

𝔮′/(𝔮′)𝑁−𝑐𝑆′
𝔮′ ⊗𝑆′

𝔮′
Ω𝑆′

𝔮′/𝑅

we can further tensor this by 𝐵𝑁 = 𝑆𝔮/𝔮𝑁 to see that

𝑆𝔮/𝔮𝑁−𝑐𝑆𝔮 ⊗𝑆′
𝔮′

Ω𝐵′
𝑁/𝑅 = 𝑆𝔮/𝔮𝑁−𝑐𝑆𝔮 ⊗𝑆′

𝔮′
Ω𝑆′

𝔮′/𝑅.

Since a split injection remains a split injection after tensoring with anything we see that

𝑆𝔮/𝔮𝑁−𝑐𝑆𝔮 ⊗𝑆𝔮
(7.130.2.1) = 𝑆𝔮/𝔮𝑁−𝑐𝑆𝔮 ⊗𝑆𝔮

(𝐼𝑁 ⟶ 𝐵𝑁 ⊗𝐵′
𝑁

Ω𝐵′
𝑁/𝑅)

is a split injection for all 𝑁 ≥ 𝑐. By Lemma 7.68.1 we see that (7.130.2.1) is a split injection.
This finishes the proof. �

7.131. Overview of results on smooth ring maps

Here is a list of results on smooth ring maps that we proved in the preceding sections. For
more precise statements and definitions please consult the references given.

(1) A ring map 𝑅 → 𝑆 is smooth if it is of finite presentation and the naive cotangent
complex of 𝑆/𝑅 is quasi-isomorphic to a finite projective 𝑆-module in degree 0,
see Definition 7.126.1.

(2) If 𝑆 is smooth over 𝑅, then Ω𝑆/𝑅 is a finite projective 𝑆-module, see discussion
following Definition 7.126.1.

(3) The property of being smooth is local on 𝑆, see Lemma 7.126.13.
(4) The property of being smooth is stable under base change, see Lemma 7.126.4.
(5) The property of being smooth is stable under composition, see Lemma 7.126.14.
(6) A smooth ring map is syntomic, in particular flat, see Lemma 7.126.10.
(7) A finitely presented, flat ring map with smooth fibre rings is smooth, see Lemma

7.126.16.
(8) A finitely presented ringmap𝑅 → 𝑆 is smooth if and only if it is formally smooth,

see Proposition 7.127.13.
(9) If 𝑅 → 𝑆 is a finite type ring map with 𝑅 Noetherian then to check that 𝑅 → 𝑆 is

smooth it suffices to check the lifting property of formal smoothness along small
extensions of Artinian local rings, see Lemma 7.130.2.

(10) A smooth ring map 𝑅 → 𝑆 is the base change of a smooth ring map 𝑅0 → 𝑆0
with 𝑅0 of finite type over 𝐙, see Lemma 7.127.14.

(11) Formation of the set of points where a ring map is smooth commutes with flat
base change, see Lemma 7.126.17.

(12) If 𝑆 is of finite type over an algebraically closed field 𝑘, and 𝔪 ⊂ 𝑆 a maximal
ideal, then the following are equivalent
(a) 𝑆 is smooth over 𝑘 in a neighbourhood of 𝔪,
(b) 𝑆𝔪 is a regular local ring,
(c) dim(𝑆𝔪) = dim𝜅(𝑚) Ω𝑆/𝑘 ⊗𝑆 𝜅(𝔪).
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see Lemma 7.129.2.
(13) If 𝑆 is of finite type over a field 𝑘, and 𝔮 ⊂ 𝑆 a prime ideal, then the following

are equivalent
(a) 𝑆 is smooth over 𝑘 in a neighbourhood of 𝔮,
(b) dim𝔮(𝑆/𝑘) = dim𝜅(𝔮) Ω𝑆/𝑘 ⊗𝑆 𝜅(𝔮).
see Lemma 7.129.3.

(14) If 𝑆 is smooth over a field, then all its local rings are regular, see Lemma 7.129.3.
(15) If 𝑆 is of finite type over a field 𝑘, 𝔮 ⊂ 𝑆 a prime ideal, the field extension 𝑘 ⊂ 𝜅(𝔮)

is separable and 𝑆𝔮 is regular, then 𝑆 is smooth over 𝑘 at 𝔮, see Lemma 7.129.5.
(16) If 𝑆 is of finite type over a field 𝑘, if 𝑘 has characteristic 0, if 𝔮 ⊂ 𝑆 a prime ideal,

and if Ω𝑆/𝑘,𝔮 is free, then 𝑆 is smooth over 𝑘 at 𝔮, see Lemma 7.129.7.
Some of these results were proved using the notion of a standard smooth ring map, see
Definition 7.126.6. This is the analogue of what a relative global complete intersection
map is for the case of syntomic morphisms. It is also the easiest way to make examples.

7.132. Étale ring maps

An étale ring map is a smooth ring map whose relative dimension is equal to zero. This is
the same as the following slightly more direct definition.

Definition 7.132.1. Let 𝑅 → 𝑆 be a ring map. We say 𝑅 → 𝑆 is étale if it is of finite
presentation and the naive cotangent complex 𝑁𝐿𝑆/𝑅 is quasi-isomorphic to zero. Given a
prime 𝔮 of 𝑆 we say that 𝑅 → 𝑆 is étale at 𝔮 if there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅 → 𝑆𝑔
is étale.

In particular we see that Ω𝑆/𝑅 = 0 if 𝑆 is étale over 𝑅. If 𝑅 → 𝑆 is smooth, then 𝑅 → 𝑆 is
étale if and only if Ω𝑆/𝑅 = 0. From our results on smooth ring maps we automatically get
a whole host of results for étale maps. We summarize these in Lemma 7.132.3 below. But
before we do so we prove that any étale ring map is standard smooth.

Lemma 7.132.2. Any étale ring map is standard smooth. More precisely, if 𝑅 → 𝑆 is
étale, then there exists a presentation 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑛) such that the image of
det(𝜕𝑓𝑗/𝜕𝑥𝑖) is invertible in 𝑆.

Proof. Let 𝑅 → 𝑆 be étale. Choose a presentation 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼. As 𝑅 → 𝑆 is
étale we know that

d ∶ 𝐼/𝐼2 ⟶ ⨁𝑖=1,…,𝑛
𝑆d𝑥𝑖

is an isomorphism, in particular 𝐼/𝐼2 is a free 𝑆-module. Thus by Lemma 7.125.6 we may
assume (after possibly changing the presentation), that 𝐼 = (𝑓1, … , 𝑓𝑐) such that the classes
𝑓𝑖 mod 𝐼2 form a basis of 𝐼/𝐼2. It follows immediately from the fact that the displayed map
above is an isomorphism that 𝑐 = 𝑛 and that det(𝜕𝑓𝑗/𝜕𝑥𝑖) is invertible in 𝑆. �

Lemma 7.132.3. Results on étale ring maps.
(1) If 𝑅 → 𝑅𝑓 is étale for any ring 𝑅 and any 𝑓 ∈ 𝑅.
(2) Compositions of étale ring maps are étale.
(3) A base change of an étale ring map is étale.
(4) The property of being étale is local: Given a ring map 𝑅 → 𝑆 and elements

𝑔1, … , 𝑔𝑚 ∈ 𝑆 which generate the unit ideal such that 𝑅 → 𝑆𝑔𝑗
is étale for

𝑗 = 1, … , 𝑚 then 𝑅 → 𝑆 is étale.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00U1
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00U9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00U2
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(5) Given 𝑅 → 𝑆 of finite presentation, and a flat ring map 𝑅 → 𝑅′, set 𝑆′ =
𝑅′ ⊗𝑅 𝑆. The set of primes where 𝑅 → 𝑆′ is étale is the inverse image via
𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑆) of the set of primes where 𝑅 → 𝑆 is étale.

(6) An étale ring map is syntomic, in particular flat.
(7) If 𝑆 is finite type over a field 𝑘, then 𝑆 is étale over 𝑘 if and only if Ω𝑆/𝑘 = 0.
(8) Any étale ring map 𝑅 → 𝑆 is the base change of an étale ring map 𝑅0 → 𝑆0 with

𝑅0 of finite type over 𝐙.
(9) Let 𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 be a filtered colimit of rings. Let 𝐴 → 𝐵 be an étale ring map.

Then there exists an étale ring map 𝐴𝑖 → 𝐵𝑖 for some 𝑖 such that 𝐵 ≅ 𝐴 ⊗𝐴𝑖
𝐵𝑖.

(10) Let 𝐴 be a ring. Let 𝑆 be a multiplicative subset of 𝐴. Let 𝑆−1𝐴 → 𝐵′ be étale.
Then there exists an étale ring map 𝐴 → 𝐵 such that 𝐵′ ≅ 𝑆−1𝐵.

Proof. In each case we use the corresponding result for smooth ring maps with a small
argument added to show that Ω𝑆/𝑅 is zero.
Proof of (1). The ring map 𝑅 → 𝑅𝑓 is smooth and Ω𝑅𝑓/𝑅 = 0.

Proof of (2). The composition 𝐴 → 𝐶 of smooth maps 𝐴 → 𝐵 and 𝐵 → 𝐶 is smooth, see
Lemma 7.126.14. By Lemma 7.122.7 we see that Ω𝐶/𝐴 is zero as both Ω𝐶/𝐵 and Ω𝐵/𝐴 are
zero.
Proof of (3). Let 𝑅 → 𝑆 be étale and 𝑅 → 𝑅′ be arbitrary. Then 𝑅′ → 𝑆′ = 𝑅′ ⊗𝑅 𝑆 is
smooth, see Lemma 7.126.4. Since Ω𝑆′/𝑅′ = 𝑆′ ⊗𝑆 Ω𝑆/𝑅 by Lemma 7.122.12 we conclude
that Ω𝑆′/𝑅′ = 0. Hence 𝑅′ → 𝑆′ is étale.
Proof of (4). Assume the hypotheses of (4). By Lemma 7.126.13 we see that 𝑅 → 𝑆 is
smooth. We are also given that Ω𝑆𝑔𝑖/𝑅

= (Ω𝑆/𝑅)𝑔𝑖
= 0 for all 𝑖. Then Ω𝑆/𝑅 = 0, see Lemma

7.21.2.
Proof of (5). The result for smooth maps is Lemma 7.126.17. In the proof of that lemma we
used that 𝑁𝐿𝑆/𝑅⊗𝑆𝑆′ is homotopy equivalent to 𝑁𝐿𝑆′/𝑅′. This reduces us to showing that
if 𝑀 is a finitely presented 𝑆-module the set of primes 𝔮′ of 𝑆′ such that (𝑀⊗𝑆 𝑆′)𝔮′ = 0 is
the inverse image of the set of primes 𝔮 of 𝑆 such that 𝑀𝔮 = 0. This is true (proof omitted).
Proof of (6). Follows directly from the corresponding result for smooth ring maps (Lemma
7.126.10).
Proof of (7). Follows from Lemma 7.129.3 and the definitions.
Proof of (8). Lemma 7.127.14 gives the result for smooth ring maps. The resulting smooth
ring map 𝑅0 → 𝑆0 satisfies the hypotheses of Lemma 7.121.8, and hence we may replace
𝑆0 by the factor of relative dimension 0 over 𝑅0.
Proof of (9). Follows from (8) since 𝑅0 → 𝐴 will factor through 𝐴𝑖 for some 𝑖.

Proof of (10). Follows from (9), (1), and (2) since 𝑆−1𝐴 is a filtered colimit of principal
localizations of 𝐴. �

Next we work out in more detail what it means to be étale over a field.

Lemma 7.132.4. Let 𝑘 be a field. A ring map 𝑘 → 𝑆 is étale if and only if 𝑆 is isomorphic
as a 𝑘-algebra to a finite product of finite separable extensions of 𝑘.

Proof. If 𝑘 → 𝑘′ is a finite separable field extension then we can write 𝑘′ = 𝑘(𝛼) ≅
𝑘[𝑥]/(𝑓). Here 𝑓 is the minimal polynomial of the element 𝛼. Since 𝑘′ is separable over 𝑘
we have gcd(𝑓, 𝑓′) = 1. This implies that d ∶ 𝑘′ ⋅ 𝑓 → 𝑘′ ⋅ d𝑥 is an isomorphism. Hence
𝑘 → 𝑘′ is étale.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00U3
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Conversely, suppose that 𝑘 → 𝑆 is étale. Let 𝑘 be an algebraic closure of 𝑘. Then 𝑆 ⊗𝑘 𝑘
is étale over 𝑘. Suppose we have the result over 𝑘. Then 𝑆 ⊗𝑘 𝑘 is reduced and hence 𝑆
is reduced. Also, 𝑆 ⊗𝑘 𝑘 is finite over 𝑘 and hence 𝑆 is finite over 𝑘. Hence 𝑆 is a finite
product 𝑆 = ∏ 𝑘𝑖 of fields, see Lemma 7.49.2 and Proposition 7.57.6. The result over 𝑘
means 𝑆⊗𝑘𝑘 is isomorphic to a finite product of copies of 𝑘, which implies that each 𝑘 ⊂ 𝑘𝑖
is finite separable, see for example Lemmas 7.41.1 and 7.41.3. Thus we have reduced to
the case 𝑘 = 𝑘. In this case Lemma 7.129.2 (combined with Ω𝑆/𝑘 = 0) we see that 𝑆𝔪 ≅ 𝑘
for all maximal ideals 𝔪 ⊂ 𝑆. This implies the result because 𝑆 is the product of the
localizations at its maximal ideals by Lemma 7.49.2 and Proposition 7.57.6 again. �

Lemma 7.132.5. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 ⊂ 𝑆 be a prime lying over 𝔭 in 𝑅. If
𝑆/𝑅 is étale at 𝔮 then

(1) we have 𝔭𝑆𝔮 = 𝔮𝑆𝔮 is the maximal ideal of the local ring 𝑆𝔮, and
(2) the field extension 𝜅(𝔭) ⊂ 𝜅(𝔮) is finite separable.

Proof. First we may replace 𝑆 by 𝑆𝑔 for some 𝑔 ∈ 𝑆, 𝑔∉𝔮 and assume that 𝑅 → 𝑆 is étale.
Then the lemma follows from Lemma 7.132.4 by unwinding the fact that 𝑆⊗𝑅 𝜅(𝔭) is étale
over 𝜅(𝔭). �

Lemma 7.132.6. An étale ring map is quasi-finite.

Proof. Let 𝑅 → 𝑆 be an étale ring map. By definition 𝑅 → 𝑆 is of finite type. For any
prime 𝔭 ⊂ 𝑅 the fibre ring 𝑆 ⊗𝑅 𝜅(𝔭) is étale over 𝜅(𝔭) and hence a finite products of
fields finite separable over 𝜅(𝔭), in particular finite over 𝜅(𝔭). Thus 𝑅 → 𝑆 is quasi-finite
by Lemma 7.113.4. �

Lemma 7.132.7. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 be a prime of 𝑆 lying over a prime 𝔭 of
𝑅. If

(1) 𝑅 → 𝑆 is of finite presentation,
(2) 𝑅𝔭 → 𝑆𝔮 is flat
(3) 𝔭𝑆𝔮 is the maximal ideal of the local ring 𝑆𝔮, and
(4) the field extension 𝜅(𝔭) ⊂ 𝜅(𝔮) is finite separable,

then 𝑅 → 𝑆 is étale at 𝔮.

Proof. Apply Lemma 7.113.2 to find a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝔮 is the only prime of 𝑆𝑔
lying over 𝔭. We may and do replace 𝑆 by 𝑆𝑔. Then 𝑆 ⊗𝑅 𝜅(𝔭) has a unique prime, hence
is a local ring, hence is equal to 𝑆𝔮/𝔭𝑆𝔮 ≅ 𝜅(𝔮). By Lemma 7.126.16 there exists a 𝑔 ∈ 𝑆,
𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is smooth. Replace 𝑆 by 𝑆𝑔 again we may assume that 𝑅 → 𝑆 is
smooth. By Lemma 7.126.10 we may even assume that 𝑅 → 𝑆 is standard smooth, say
𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐). Since 𝑆 ⊗𝑅 𝜅(𝔭) = 𝜅(𝔮) has dimension 0 we conclude that
𝑛 = 𝑐, i.e., if 𝑅 → 𝑆 is étale. �

Here is a completely new phenomenon.

Lemma 7.132.8. Let 𝑅 → 𝑆 and 𝑅 → 𝑆′ be étale. Then any 𝑅-algebra map 𝑆′ → 𝑆 is
étale.

Proof. First of all we note that 𝑆′ → 𝑆 is of finite presentation by Lemma 7.6.2. Let 𝔮 ⊂ 𝑆
be a prime ideal lying over the primes 𝔮′ ⊂ 𝑆′ and 𝔭 ⊂ 𝑅. By Lemma 7.132.5 the ring
map 𝑆𝔮/𝔭𝑆𝔮 → 𝑆′

𝔮′/𝔭𝑆′
𝔮′ is a map finite separable extensions of 𝜅(𝔭). In particular it is flat.

Hence by Lemma 7.119.8 we see that 𝑆′
𝔮′ → 𝑆𝔮 is flat. Thus 𝑆′ → 𝑆 is flat. Moreover, the
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above also shows that 𝔮′𝑆𝔮 is the maximal ideal of 𝑆𝔮 and that the residue field extension of
𝑆′

𝔮′ → 𝑆𝔮 is finite separable. Hence from Lemma 7.132.7 above we conclude that 𝑆′ → 𝑆
is étale at 𝔮. Since being étale is local (see Lemma 7.132.3) we win. �

Lemma 7.132.9. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. If 𝑅 → 𝑆 is surjective, flat and finitely
presented then there exist an idempotent 𝑒 ∈ 𝑅 such that 𝑆 = 𝑅𝑒.

Proof. Since 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is a homeomorphism onto a closed subset (see Lemma
7.16.7) and is open (see Proposition 7.36.8) we see that the image is 𝐷(𝑒) for some idem-
potent 𝑒 ∈ 𝑅 (see Lemma 7.18.3). Thus 𝑅𝑒 → 𝑆 induces a bijection on spectra. Now this
map induces an isomorphism on all local rings for example by Lemmas 7.72.4 and 7.14.5.
Then it follows that 𝑅𝑒 → 𝑆 is also injective, for example see Lemma 7.21.1. �

Lemma 7.132.10. Let 𝑅 be a ring and let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑅/𝐼 → 𝑆 be an étale ring
map. Then there exists an étale ring map 𝑅 → 𝑆 such that 𝑆 ≅ 𝑆/𝐼𝑆 as 𝑅/𝐼-algebras.

Proof. By Lemma 7.132.2 we can write 𝑆 = (𝑅/𝐼)[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑛) as in Defini-
tion 7.126.6 with Δ = det( 𝜕𝑓𝑖

𝜕𝑥𝑗
)𝑖,𝑗=1,…,𝑛 invertible in 𝑆. Just take some lifts 𝑓𝑖 and set

𝑆 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑥𝑛+1Δ − 1) where Δ = det( 𝜕𝑓𝑖
𝜕𝑥𝑗

)𝑖,𝑗=1,…,𝑐 as in Example
7.126.8. This proves the lemma. �

Lemma 7.132.11. Consider a commutative diagram

0 // 𝐽 // 𝐵′ // 𝐵 // 0

0 // 𝐼 //

OO

𝐴′ //

OO

𝐴 //

OO

0

with exact rows where 𝐵′ → 𝐵 and 𝐴′ → 𝐴 are surjective ring maps whose kernels are
ideals of square zero. If 𝐴 → 𝐵 is étale, and 𝐽 = 𝐼 ⊗𝐴 𝐵, then 𝐴′ → 𝐵′ is étale.

Proof. By Lemma 7.132.10 there exists an étale ring map 𝐴′ → 𝐶 such that 𝐶/𝐼𝐶 = 𝐵.
Then 𝐴′ → 𝐶 is formally smooth (by Proposition 7.127.13) hence we get an 𝐴′-algebra
map 𝜑 ∶ 𝐶 → 𝐵′. Since 𝐴′ → 𝐶 is flat we have 𝐼 ⊗𝐴 𝐵 = 𝐼 ⊗𝐴 𝐶/𝐼𝐶 = 𝐼𝐶. Hence
the assumption that 𝐽 = 𝐼 ⊗𝐴 𝐵 implies that 𝜑 induces an isomorphism 𝐼𝐶 → 𝐽 and an
isomorphism 𝐶/𝐼𝐶 → 𝐵′/𝐼𝐵′, whence 𝜑 is an isomorphism. �

Example 7.132.12. Let 𝑛, 𝑚 ≥ 1 be integers. Consider the ring map

𝑅 = 𝐙[𝑎1, … , 𝑎𝑛+𝑚] ⟶ 𝑆 = 𝐙[𝑏1, … , 𝑏𝑛, 𝑐1, … , 𝑐𝑚]
𝑎1 ⟼ 𝑏1 + 𝑐1

𝑎2 ⟼ 𝑏2 + 𝑏1𝑐1 + 𝑐2

… … …
𝑎𝑛+𝑚 ⟼ 𝑏𝑛𝑐𝑚

of Example 7.125.7. Write symbolically

𝑆 = 𝑅[𝑏1, … , 𝑐𝑚]/({𝑎𝑘(𝑏𝑖, 𝑐𝑗) − 𝑎𝑘}𝑘=1,…,𝑛+𝑚)
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where for example 𝑎1(𝑏𝑖, 𝑐𝑗) = 𝑏1 + 𝑐1. The matrix of partial derivatives is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑐1 … 𝑐𝑚 0 … 0
0 1 𝑐1 … 𝑐𝑚 … 0
… … … … … … …
0 … 0 1 𝑐1 … 𝑐𝑚
1 𝑏1 … 𝑏𝑛 0 … 0
0 1 𝑏1 … 𝑏𝑛 … 0
… … … … … … …
0 … 0 1 𝑏1 … 𝑏𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The determinant Δ of this matrix is better known as the resultant of the polynomials 𝑔 =
𝑥𝑛 + 𝑏1𝑥𝑛−1 + … + 𝑏𝑛 and ℎ = 𝑥𝑚 + 𝑐1𝑥𝑚−1 + … + 𝑐𝑚, and the matrix above is known as
the Sylvester matrix associated to 𝑔, ℎ. In a formula Δ = Res𝑥(𝑔, ℎ). The Sylvester matrix
is the tranpose of the matrix of the linear map

𝑆[𝑥]<𝑚 ⊕ 𝑆[𝑥]<𝑛 ⟶ 𝑆[𝑥]<𝑛+𝑚

𝑎 ⊕ 𝑏 ⟼ 𝑎𝑔 + 𝑏ℎ
Let 𝔮 ⊂ 𝑆 be any prime. By the above the following are equivalent:

(1) 𝑅 → 𝑆 is étale at 𝔮,
(2) Δ = Res𝑥(𝑔, ℎ)∉𝔮,
(3) the images 𝑔, ℎ ∈ 𝜅(𝔮)[𝑥] of the polynomials 𝑔, ℎ are relatively prime in 𝜅(𝔮)[𝑥].

The equivalence of (2) and (3) holds because the image of the Sylvester matrix in Mat(𝑛 +
𝑚, 𝜅(𝔮)) has a kernel if and only if the polynomials 𝑔, ℎ have a factor in common. We
conclude that the ring map

𝑅 ⟶ 𝑆[ 1
Δ

] = 𝑆[ 1
Res𝑥(𝑔, ℎ)

]

is étale.

Lemma 7.132.2 tells us that it does not really make sense to define a standard étale mor-
phism to be a standard smooth morphism of relative dimension 0. As a model for an étale
morphism we take the example given by a finite separable extension 𝑘 ⊂ 𝑘′ of fields.
Namely, we can always find an element 𝛼 ∈ 𝑘′ such that 𝑘′ = 𝑘(𝛼) and such that the
minimal polynomial 𝑓(𝑥) ∈ 𝑘[𝑥] of 𝛼 has derivative 𝑓′ which is relatively prime to 𝑓.

Definition 7.132.13. Let 𝑅 be a ring. Let 𝑔, 𝑓 ∈ 𝑅[𝑥]. Assume that 𝑓 is monic and the
derivative 𝑓′ is invertible in the localization 𝑅[𝑥]𝑔. In this case the ringmap 𝑅 → 𝑅[𝑥]𝑔/(𝑓)
is said to be standard étale.

Lemma 7.132.14. Let 𝑅 → 𝑅[𝑥]𝑔/(𝑓) be standard étale.
(1) The ring map 𝑅 → 𝑅[𝑥]𝑔/(𝑓) is étale.
(2) For any ring map 𝑅 → 𝑅′ the base change 𝑅′ → 𝑅′[𝑥]𝑔/(𝑓) of the standard

étale ring map 𝑅 → 𝑅[𝑥]𝑔/(𝑓) is standard étale.
(3) Any principal localization of 𝑅[𝑥]𝑔/(𝑓) is standard étale over 𝑅.
(4) A composition of standard étale maps is not standard étale in general.

Proof. Omitted. Here is an example for (4). The ring map 𝐅2 → 𝐅22 is standard étale.
The ring map 𝐅22 → 𝐅22 × 𝐅22 × 𝐅22 × 𝐅22 is standard étale. But the ring map 𝐅2 →
𝐅22 × 𝐅22 × 𝐅22 × 𝐅22 is not standard étale. �

Standard étale morphisms are a convenient way to produce étale maps. Here is an example.
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Lemma 7.132.15. Let𝑅 be a ring. Let 𝔭 be a prime of𝑅. Let 𝜅(𝔭) ⊂ 𝐿 be a finite separable
field extension. There exists an étale ring map 𝑅 → 𝑅′ together with a prime 𝔭′ lying over
𝔭 such that the field extension 𝜅(𝔭) ⊂ 𝜅(𝔭′) is isomorphic to 𝜅(𝔭) ⊂ 𝐿.

Proof. By the theorem of the primitive element wemaywrite𝐿 = 𝜅(𝔭)[𝛼]. Let 𝑓 ∈ 𝜅(𝔭)[𝑥]
denote the minimal polynomial for 𝛼 (in particular this is monic). After replacing 𝛼 by 𝑐𝛼
for some 𝑐 ∈ 𝑅, 𝑐∉𝔭 we may assume all the coefficients of 𝑓 are in the image of 𝑅 → 𝜅(𝔭)
(verification omitted). Thus we can find a monic polynomial 𝑓 ∈ 𝑅[𝑥] which maps to 𝑓 in
𝜅(𝔭)[𝑥]. Since 𝜅(𝔭) ⊂ 𝐿 is separable, we see that gcd(𝑓, 𝑓′) = 1. Hence there is an element
𝛾 ∈ 𝐿 such that 𝑓′(𝛼)𝛾 = 1. Thus we get a 𝑅-algebra map

𝑅[𝑥, 1/𝑓′]/(𝑓) ⟶ 𝐿
𝑥 ⟼ 𝛼

1/𝑓′ ⟼ 𝛾

The left hand side is a standard étale algebra 𝑅′ over 𝑅 and the kernel of the ring map gives
the desired prime. �

Proposition 7.132.16. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 ⊂ 𝑆 be a prime. If 𝑅 → 𝑆 is étale
at 𝔮, then there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is standard étale.

Proof. The following proof is a little roundabout and there may be ways to shorten it.

Step 1. By Definition 7.132.1 there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is étale. Thus
we may assume that 𝑆 is étale over 𝑅.

Step 2. By Lemma 7.132.3 there exists an étale ring map 𝑅0 → 𝑆0 with 𝑅0 of finite type
over 𝐙, and a ring map 𝑅0 → 𝑅 such that 𝑅 = 𝑅 ⊗𝑅0

𝑆0. Denote 𝔮0 the prime of 𝑆0
corresponding to 𝔮. If we show the result for (𝑅0 → 𝑆0, 𝔮0) then the result follows for
(𝑅 → 𝑆, 𝔮) by base change. Hence we may assume that 𝑅 is Noetherian.

Step 3. Note that 𝑅 → 𝑆 is quasi-finite by Lemma 7.132.6. By Lemma 7.114.15 there
exists a finite ring map 𝑅 → 𝑆′, an 𝑅-algebra map 𝑆′ → 𝑆, an element 𝑔′ ∈ 𝑆′ such that
𝑔′∉𝔮 such that 𝑆′ → 𝑆 induces an isomorphism 𝑆′

𝑔′ ≅ 𝑆𝑔′. (Note that of course 𝑆′ is not
étale over 𝑅 in general.) Thus we may assume that (a) 𝑅 is Noetherian, (b) 𝑅 → 𝑆 is finite
and (c) 𝑅 → 𝑆 is étale at 𝔮 (but no longer necessarily étale at all primes).

Step 4. Let 𝔭 ⊂ 𝑅 be the prime corresponding to 𝔮. Consider the fibre ring 𝑆 ⊗𝑅 𝜅(𝔭).
This is a finite algebra over 𝜅(𝔭). Hence it is Artinian (see Lemma 7.49.2) and so a finite
product of local rings

𝑆 ⊗𝑅 𝜅(𝔭) = ∏
𝑛
𝑖=1

𝐴𝑖

see Proposition 7.57.6. One of the factors, say 𝐴1, is the local ring 𝑆𝔮/𝔭𝑆𝔮 which is iso-
morphic to 𝜅(𝔮), see Lemma 7.132.5. The other factors correspond to the other primes, say
𝔮2, … , 𝔮𝑛 of 𝑆 lying over 𝔭.

Step 5. We may choose a nonzero element 𝛼 ∈ 𝜅(𝔮) which generates the finite separable
field extension 𝜅(𝔭) ⊂ 𝜅(𝔮) (so even if the field extension is trivial we do not allow 𝛼 = 0).
Note that for any 𝜆 ∈ 𝜅(𝔭)∗ the element 𝜆𝛼 also generates 𝜅(𝔮) over 𝜅(𝔭). Consider the
element

𝑡 = (𝛼, 0, … , 0) ∈ ∏
𝑛
𝑖=1

𝐴𝑖 = 𝑆 ⊗𝑅 𝜅(𝔭).
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After possibly replacing 𝛼 by 𝜆𝛼 as above we may assume that 𝑡 is the image of 𝑡 ∈ 𝑆. Let
𝐼 ⊂ 𝑅[𝑥] be the kernel of the 𝑅-algebra map 𝑅[𝑥] → 𝑆 whichmaps 𝑥 to 𝑡. Set 𝑆′ = 𝑅[𝑥]/𝐼,
so 𝑆′ ⊂ 𝑆. Here is a diagram

𝑅[𝑥] // 𝑆′ // 𝑆

𝑅

OO == 66

By construction the primes 𝔮𝑗, 𝑗 ≥ 2 of 𝑆 all lie over the prime (𝔭, 𝑥) of 𝑅[𝑥], whereas the
prime 𝔮 lies over a different prime of 𝑅[𝑥] because 𝛼≠0.

Step 6. Denote 𝔮′ ⊂ 𝑆′ the prime of 𝑆′ corresponding to 𝔮. By the above 𝔮 is the only
prime of 𝑆 lying over 𝔮′. Thus we see that 𝑆𝔮 = 𝑆𝔮′, see Lemma 7.36.11 (we have going
up for 𝑆′ → 𝑆 by Lemma 7.32.20 since 𝑆′ → 𝑆 is finite as 𝑅 → 𝑆 is finite). It follows that
𝑆′

𝔮′ → 𝑆𝔮 is finite and injective as the localization of the finite injective ring map 𝑆′ → 𝑆.
Consider the maps of local rings

𝑅𝔭 → 𝑆′
𝔮′ → 𝑆𝔮

The secondmap is finite and injective. We have 𝑆𝔮/𝔭𝑆𝔮 = 𝜅(𝔮), see Lemma 7.132.5. Hence
a fortiori 𝑆𝔮/𝔮′𝑆𝔮 = 𝜅(𝔮). Since

𝜅(𝔭) ⊂ 𝜅(𝔮′) ⊂ 𝜅(𝔮)

and since 𝛼 is in the image of 𝜅(𝔮′) in 𝜅(𝔮) we conclude that 𝜅(𝔮′) = 𝜅(𝔮). Hence by
Nakayama's Lemma 7.14.5 applied to the 𝑆′

𝔮′-module map 𝑆′
𝔮′ → 𝑆𝔮, the map 𝑆′

𝔮′ → 𝑆𝔮
is surjective. In other words, 𝑆′

𝔮′ ≅ 𝑆𝔮.

Step 7. By Lemma 7.117.6 there exists a 𝑔′ ∈ 𝑆′, 𝑔′∉𝔮′ such that 𝑆′
𝑔′ ≅ 𝑆𝑔′. As 𝑅 is

Noetherian the ring 𝑆′ is finite over 𝑅 as it is an 𝑅-submodule of the finite 𝑅-module 𝑆.
Hence after replacing 𝑆 by 𝑆′ we may assume that (a) 𝑅 is Noetherian, (b) 𝑆 finite over 𝑅,
(c) 𝑆 is étale over 𝑅 at 𝔮, and (d) 𝑆 = 𝑅[𝑥]/𝐼.

Step 8. Consider the ring 𝑆⊗𝑅 𝜅(𝔭) = 𝜅(𝔭)[𝑥]/𝐼 where 𝐼 = 𝐼⋅𝜅(𝔭)[𝑥] is the ideal generated
by 𝐼 in 𝜅(𝔭)[𝑥]. As 𝜅(𝔭)[𝑥] is a PID we know that 𝐼 = (ℎ) for some monic ℎ ∈ 𝜅(𝔭). After
replacing ℎ by 𝜆⋅ℎ for some 𝜆 ∈ 𝜅(𝔭) wemay assume that ℎ is the image of some ℎ ∈ 𝑅[𝑥].
(The problem is that we do not know if we may choose ℎ monic.) Also, as in Step 4 we
know that 𝑆 ⊗𝑅 𝜅(𝔭) = 𝐴1 × … × 𝐴𝑛 with 𝐴1 = 𝜅(𝔮) a finite separable extension of 𝜅(𝔭)
and 𝐴2, … , 𝐴𝑛 local. This implies that

ℎ = ℎ1ℎ𝑒2
2 … ℎ𝑒𝑛

𝑛

for certain pairwise coprime irreduciblemonic polynomialsℎ𝑖 ∈ 𝜅(𝔭)[𝑥] and certain 𝑒2, … , 𝑒𝑛 ≥
1. Here the numbering is chosen so that 𝐴𝑖 = 𝜅(𝔭)[𝑥]/(ℎ𝑒𝑖

𝑖 ) as 𝜅(𝔭)[𝑥]-algebras. Note that
ℎ1 is theminimal polynomial of 𝛼 ∈ 𝜅(𝔮) and hence is a separable polynomial (its derivative
is prime to itself).

Step 9. Let 𝑚 ∈ 𝐼 be a monic element; such an element exists because the ring extension
𝑅 → 𝑅[𝑥]/𝐼 is finite hence integral. Denote 𝑚 the image in 𝜅(𝔭)[𝑥]. We may factor

𝑚 = 𝑘ℎ𝑑1
1 ℎ𝑑2

2 … ℎ𝑑𝑛
𝑛
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for some 𝑑1 ≥ 1, 𝑑𝑗 ≥ 𝑒𝑗, 𝑗 = 2, … , 𝑛 and 𝑘 ∈ 𝜅(𝔭)[𝑥] prime to all the ℎ𝑖. Set 𝑓 = 𝑚𝑙 + ℎ
where 𝑙 deg(𝑚) > deg(ℎ), and 𝑙 ≥ 2. Then 𝑓 is monic as a polynomial over 𝑅. Also, the
image 𝑓 of 𝑓 in 𝜅(𝔭)[𝑥] factors as

𝑓 = ℎ1ℎ𝑒2
2 … ℎ𝑒𝑛

𝑛 + 𝑘𝑙ℎ𝑙𝑑1
1 ℎ𝑙𝑑2

2 … ℎ𝑙𝑑𝑛
𝑛 = ℎ1(ℎ𝑒2

2 … ℎ𝑒𝑛
𝑛 + 𝑘𝑙ℎ𝑙𝑑1−1

1 ℎ𝑙𝑑2
2 … ℎ𝑙𝑑𝑛

𝑛 ) = ℎ1𝑤

with 𝑤 a polynomial relatively prime to ℎ1. Set 𝑔 = 𝑓′ (the derivative with respect to 𝑥).
Step 10. The ring map 𝑅[𝑥] → 𝑆 = 𝑅[𝑥]/𝐼 has the properties: (1) it maps 𝑓 to zero, and (2)
it maps 𝑔 to an element of 𝑆⧵𝔮. The first assertion is clear since 𝑓 is an element of 𝐼. For the
second assertion we just have to show that 𝑔 does not map to zero in 𝜅(𝔮) = 𝜅(𝔭)[𝑥]/(ℎ1).
The image of 𝑔 in 𝜅(𝔭)[𝑥] is the derivative of 𝑓. Thus (2) is clear because

𝑔 =
d𝑓
d𝑥

= 𝑤
dℎ1
d𝑥

+ ℎ1
d𝑤
d𝑥

,

𝑤 is prime to ℎ1 and ℎ1 is separable.
Step 11. We conclude that 𝜑 ∶ 𝑅[𝑥]/(𝑓) → 𝑆 is a surjective ring map, 𝑅[𝑥]𝑔/(𝑓) is étale
over 𝑅 (because it is standard étale, see Lemma 7.132.14) and 𝜑(𝑔)∉𝔮. Pick an element
𝑔′ ∈ 𝑅[𝑥]/(𝑓) such that also 𝜑(𝑔′)∉𝔮 and 𝑆𝜑(𝑔′) is étale over 𝑅 (which exists since 𝑆 is
étale over 𝑅 at 𝔮). Then the ring map 𝑅[𝑥]𝑔𝑔′/(𝑓) → 𝑆𝜑(𝑔) is a surjective map of étale
algebras over 𝑅. Hence it is étale by Lemma 7.132.8. Hence it is a localization by Lemma
7.132.9. Thus a localization of 𝑆 at an element not in 𝔮 is isomorphic to a localization of a
standard étale algebra over 𝑅 which is what we wanted to show. �

The following two lemmas say that the étale topology is coarser than the topology generated
by Zariski coverings and finite flat morphisms. They should be skipped on a first reading.

Lemma 7.132.17. Let 𝑅 → 𝑆 be a standard étale morphism. There exists a ring map
𝑅 → 𝑆′ with the following properties

(1) 𝑅 → 𝑆′ is finite, finitely presented, and flat (in other words 𝑆′ is finite projective
as an 𝑅-module),

(2) 𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑅) is surjective,
(3) for every prime 𝔮 ⊂ 𝑆, lying over 𝔭 ⊂ 𝑅 and every prime 𝔮′ ⊂ 𝑆′ lying over 𝔭

there exists a 𝑔′ ∈ 𝑆′, 𝑔′∉𝔮′ such that the ring map 𝑅 → 𝑆′
𝑔′ factors through a

map 𝜑 ∶ 𝑆 → 𝑆′
𝑔′ with 𝜑−1(𝔮′𝑆′

𝑔′) = 𝔮.

Proof. Let 𝑆 = 𝑅[𝑥]𝑔/(𝑓) be a presentation of 𝑆 as in Definition 7.132.13. Write 𝑓 =
𝑥𝑛 + 𝑎1𝑥𝑛−1 + … + 𝑎𝑛 with 𝑎𝑖 ∈ 𝑅. By Lemma 7.125.9 there exists a finite locally free
and faithfully flat ring map 𝑅 → 𝑆′ such that 𝑓 = ∏(𝑥 − 𝛼𝑖) for certain 𝛼𝑖 ∈ 𝑆′. Hence
𝑅 → 𝑆′ satisfies conditions (1), (2). Let 𝔮 ⊂ 𝑅[𝑥]/(𝑓) be a prime ideal with 𝑔∉𝔮 (i.e., it
corresponds to a prime of 𝑆). Let 𝔭 = 𝑅 ∩ 𝔮 and let 𝔮′ ⊂ 𝑆′ be a prime lying over 𝔭. Note
that there are 𝑛 maps of 𝑅-algebras

𝜑𝑖 ∶ 𝑅[𝑥]/(𝑓) ⟶ 𝑆′

𝑥 ⟼ 𝛼𝑖

To finish the proof we have to show that for some 𝑖 we have (a) the image of 𝜑𝑖(𝑔) in 𝜅(𝔮′)
is not zero, and (b) 𝜑−1

𝑖 (𝔮′) = 𝔮. Because then we can just take 𝑔′ = 𝜑𝑖(𝑔), and 𝜑 = 𝜑𝑖 for
that 𝑖.
Let 𝑓 denote the image of 𝑓 in 𝜅(𝔭)[𝑥]. Note that as a point of 𝑆𝑝𝑒𝑐(𝜅(𝔭)[𝑥]/(𝑓)) the prime
𝔮 corresponds to an irreducible factor 𝑓1 of 𝑓. Moreover, 𝑔∉𝔮 means that 𝑓1 does not divide
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the image 𝑔 of 𝑔 in 𝜅(𝔭)[𝑥]. Denote 𝛼1, … , 𝛼𝑛 the images of 𝛼1, … , 𝛼𝑛 in 𝜅(𝔮′). Note that
the polynomial 𝑓 splits completely in 𝜅(𝔮′)[𝑥], namely

𝑓 = ∏𝑖
(𝑥 − 𝛼𝑖)

Moreover 𝜑𝑖(𝑔) reduces to 𝑔(𝛼𝑖). It follows we may pick 𝑖 such that 𝑓1(𝛼𝑖) = 0 and 𝑔(𝛼𝑖)≠0.
For this 𝑖 properties (a) and (b) hold. Some details omitted. �

Lemma 7.132.18. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 → 𝑆 is étale, and
(2) 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is surjective.

Then there exists a ring map 𝑅 → 𝑆′ such that
(1) 𝑅 → 𝑆′ is finite, finitely presented, and flat (in other words it is finite projective

as an 𝑅-module),
(2) 𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑅) is surjective,
(3) for every prime 𝔮′ ⊂ 𝑆′ there exists a 𝑔′ ∈ 𝑆′, 𝑔′∉𝔮′ such that the ring map

𝑅 → 𝑆′
𝑔′ factors as 𝑅 → 𝑆 → 𝑆′

𝑔′.

Proof. ByProposition 7.132.16 and the quasi-compactness of𝑆𝑝𝑒𝑐(𝑆) (see Lemma 7.16.10)
we can find 𝑔1, … , 𝑔𝑛 ∈ 𝑆 generating the unit ideal of 𝑆 such that each 𝑅 → 𝑆𝑔𝑖

is standard
étale. If we prove the lemma for the ring map 𝑅 → ∏𝑖=1,…,𝑛 𝑆𝑔𝑖

then the lemma follows
for the ring map 𝑅 → 𝑆. Hence we may assume that 𝑆 = ∏𝑖=1,…,𝑛 𝑆𝑖 is a finite product of
standard étale morphisms.

For each 𝑖 choose a ring map 𝑅 → 𝑆′
𝑖 as in Lemma 7.132.17 adapted to the standard étale

morphism 𝑅 → 𝑆𝑖. Set 𝑆′ = 𝑆′
1 ⊗𝑅 … ⊗𝑅 𝑆′

𝑛; we will use the 𝑅-algebra maps 𝑆′
𝑖 → 𝑆′

without further mention below. We claim this works. Properties (1) and (2) are immediate.
For property (3) suppose that 𝔮′ ⊂ 𝑆′ is a prime. Denote 𝔭 its image in 𝑆𝑝𝑒𝑐(𝑅). Choose
𝑖 ∈ {1, … , 𝑛} such that 𝔭 is in the image of 𝑆𝑝𝑒𝑐(𝑆𝑖) → 𝑆𝑝𝑒𝑐(𝑅); this is possible by
assumption. Set 𝔮′

𝑖 ⊂ 𝑆′
𝑖 the image of 𝔮′ in the spectrum of 𝑆′

𝑖 . By construction of 𝑆′
𝑖 there

exists a 𝑔′
𝑖 ∈ 𝑆′

𝑖 such that 𝑅 → (𝑆′
𝑖 )𝑔′

𝑖
factors as 𝑅 → 𝑆𝑖 → (𝑆′

𝑖 )𝑔′
𝑖
. Hence also 𝑅 → 𝑆′

𝑔′
𝑖

factors as
𝑅 → 𝑆𝑖 → (𝑆′

𝑖 )𝑔′
𝑖

→ 𝑆′
𝑔′

𝑖

as desired. �

Lemma 7.132.19. Let 𝑅 be a ring. Let 𝑓 ∈ 𝑅[𝑥] be a monic polynomial. Let 𝔭 be a prime
of 𝑅. Let 𝑓 mod 𝔭 = 𝑔ℎ be a factorization of the image of 𝑓 in 𝜅(𝔭)[𝑥]. If gcd(𝑔, ℎ) = 1,
then there exist

(1) an étale ring map 𝑅 → 𝑅′,
(2) a prime 𝔭′ ⊂ 𝑅′ lying over 𝔭, and
(3) a factorization 𝑓 = 𝑔ℎ in 𝑅′[𝑥]

such that
(1) 𝜅(𝔭) = 𝜅(𝔭′),
(2) 𝑔 = 𝑔 mod 𝔭′, ℎ = ℎ mod 𝔭′, and
(3) the polynomials 𝑔, ℎ generate the unit ideal in 𝑅′[𝑥].

Proof. Suppose 𝑔 = 𝑏0𝑥𝑛 + 𝑏1𝑥𝑛−1 + … + 𝑏𝑛, and ℎ = 𝑐0𝑥𝑚 + 𝑐1𝑥𝑚−1 + … + 𝑐𝑚 with
𝑏0, 𝑐0 ∈ 𝜅(𝔭) nonzero. After localizing 𝑅 at some element of 𝑅 not contained in 𝔭 we may
assume 𝑏0 is the image of an invertible element 𝑏0 ∈ 𝑅. Replacing 𝑔 by 𝑔/𝑏0 andℎ by 𝑏0ℎwe
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reduce to the case where 𝑔, ℎ are monic (verification omitted). Say 𝑔 = 𝑥𝑛+𝑏1𝑥𝑛−1+…+𝑏𝑛,
and ℎ = 𝑥𝑚 + 𝑐1𝑥𝑚−1 + … + 𝑐𝑚. Write 𝑓 = 𝑥𝑛+𝑚 + 𝑎1𝑥𝑛−1 + … + 𝑎𝑛+𝑚. Consider the fibre
product

𝑅′ = 𝑅 ⊗𝐙[𝑎1,…,𝑎𝑛+𝑚] 𝐙[𝑏1, … , 𝑏𝑛, 𝑐1, … , 𝑐𝑚]
where the map 𝐙[𝑎𝑘] → 𝐙[𝑏𝑖, 𝑐𝑗] is as in Examples 7.125.7 and 7.132.12. By construction
there is an 𝑅-algebra map

𝑅′ = 𝑅 ⊗𝐙[𝑎1,…,𝑎𝑛+𝑚] 𝐙[𝑏1, … , 𝑏𝑛, 𝑐1, … , 𝑐𝑚] ⟶ 𝜅(𝔭)

whichmaps 𝑏𝑖 to 𝑏𝑖 and 𝑐𝑗 to 𝑐𝑗. Denote 𝔭′ ⊂ 𝑅′ the kernel of this map. Since by assumption
the polynomials 𝑔, ℎ are relatively prime we see that the element Δ = Res𝑥(𝑔, ℎ) ∈ 𝐙[𝑏𝑖, 𝑐𝑗]
(see Example 7.132.12) does not map to zero in 𝜅(𝔭) under the displayedmap. We conclude
that 𝑅 → 𝑅′ is étale at 𝔭′. In fact a solution to the problem posed in the lemma is the ring
map 𝑅 → 𝑅′[1/Δ] and the prime 𝔭′𝑅′[1/Δ]. Because Res𝑥(𝑓, 𝑔) is invertible in this ring
the Sylvester matrix is invertible over 𝑅′ and hence 1 = 𝑎𝑔 + 𝑏ℎ for some 𝑎, 𝑏 ∈ 𝑅′[𝑥] see
Example 7.132.12. �

The following lemmas say roughly that after an étale extension a quasi-finite ring map
becomes finite. To help interpret the results recall that the locus where a finite type ring
map is quasi-finite is open (see Lemma 7.114.14) and that formation of this locus commutes
with arbitrary base change (see Lemma 7.113.8).

Lemma 7.132.20. Let 𝑅 → 𝑆′ → 𝑆 be ring maps. Let 𝔭 ⊂ 𝑅 be a prime. Let 𝑔 ∈ 𝑆′ be
an element. Assume

(1) 𝑅 → 𝑆′ is integral,
(2) 𝑅 → 𝑆 is finite type,
(3) 𝑆′

𝑔 ≅ 𝑆𝑔, and
(4) 𝑔 invertible in 𝑆′ ⊗𝑅 𝜅(𝔭).

Then there exists a 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that 𝑅𝑓 → 𝑆𝑓 is finite.

Proof. By assumption the image 𝑇 of 𝑉(𝑔) ⊂ 𝑆𝑝𝑒𝑐(𝑆′) under the morphism 𝑆𝑝𝑒𝑐(𝑆′) →
𝑆𝑝𝑒𝑐(𝑅) does not contain 𝔭. By Section 7.36 especially, Lemma 7.36.6 we see 𝑇 is closed.
Pick 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that 𝑇 ∩ 𝑉(𝑓) = ∅. Then we see that 𝑔 becomes invertible in 𝑆′

𝑓.
Hence 𝑆′

𝑓 ≅ 𝑆𝑓. Thus 𝑆𝑓 is both of finite type and integral over 𝑅𝑓, hence finite. �

Lemma 7.132.21. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 ⊂ 𝑆 be a prime lying over the prime
𝔭 ⊂ 𝑅. Assume 𝑅 → 𝑆 finite type and quasi-finite at 𝔮. Then there exists

(1) an étale ring map 𝑅 → 𝑅′,
(2) a prime 𝔭′ ⊂ 𝑅′ lying over 𝔭,
(3) a product decomposition

𝑅′ ⊗𝑅 𝑆 = 𝐴 × 𝐵
with the following properties

(1) 𝜅(𝔭) = 𝜅(𝔭′),
(2) 𝑅′ → 𝐴 is finite,
(3) 𝐴 has exactly one prime 𝔯 lying over 𝔭′, and
(4) 𝔯 lies over 𝔮.

Proof. Let 𝑆′ ⊂ 𝑆 be the integral closure of 𝑅 in 𝑆. Let 𝔮′ = 𝑆′ ∩ 𝔮. By Zariski's Main
Theorem 7.114.13 there exists a 𝑔 ∈ 𝑆′, 𝑔∉𝔮′ such that 𝑆′

𝑔 ≅ 𝑆𝑔. Consider the fibre rings
𝐹 = 𝑆⊗𝑅 𝜅(𝔭) and 𝐹′ = 𝑆′ ⊗𝑅 𝜅(𝔭). Denote 𝔮′ the prime of 𝐹′ corresponding to 𝔮′. Since
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𝐹′ is integral over 𝜅(𝔭) we see that 𝔮′ is a closed point of 𝑆𝑝𝑒𝑐(𝐹′), see Lemma 7.32.17.
Note that 𝔮 defines an isolated closed point 𝔮 of 𝑆𝑝𝑒𝑐(𝐹) (see Definition 7.113.3). Since
𝑆′

𝑔 ≅ 𝑆𝑔 we have 𝐹′
𝑔 ≅ 𝐹𝑔, so 𝔮 and 𝔮′ have isomorphic open neighbourhoods in 𝑆𝑝𝑒𝑐(𝐹)

and 𝑆𝑝𝑒𝑐(𝐹′). We conclude the set {𝔮′} ⊂ 𝑆𝑝𝑒𝑐(𝐹′) is open. Combined with closedness
shown above we conclude that 𝔮′ defines an isolated closed point of 𝑆𝑝𝑒𝑐(𝐹′) as well.
An additional small remark is that under the map 𝑆𝑝𝑒𝑐(𝐹) → 𝑆𝑝𝑒𝑐(𝐹′) the point 𝔮 is the
only point mapping to 𝔮′. This follows from the discussion above.
By Lemma 7.20.3 we may write 𝐹′ = 𝐹′

1 × 𝐹′
2 with 𝑆𝑝𝑒𝑐(𝐹′

1) = {𝔮′}. Since 𝐹′ = 𝑆′ ⊗𝑅
𝜅(𝔭), there exists an 𝑠′ ∈ 𝑆′ which maps to the element (𝑟, 0) ∈ 𝐹′

1 × 𝐹′
2 = 𝐹′ for some

𝑟 ∈ 𝑅, 𝑟∉𝔭. In fact, what we will use about 𝑠′ is that it is an element of 𝑆′, not contained
in 𝔮′, and contained in any other prime lying over 𝔭.

Let 𝑓(𝑥) ∈ 𝑅[𝑥] be a monic polynomial such that 𝑓(𝑠′) = 0. Denote 𝑓 ∈ 𝜅(𝔭)[𝑥] the
image. We can factor it as 𝑓 = 𝑥𝑒ℎ where ℎ(0)≠0. By Lemma 7.132.19 we can find an
étale ring extension 𝑅 → 𝑅′, a prime 𝔭′ lying over 𝔭, and a factorization 𝑓 = ℎ𝑖 in 𝑅′[𝑥]
such that 𝜅(𝔭) = 𝜅(𝔭′), 𝑥𝑒 = ℎ mod 𝔭′, 𝑖 = 𝑖 mod 𝔭′, and we can write 𝑎ℎ + 𝑏𝑖 = 1 in
𝑅′[𝑥] (for suitable 𝑎, 𝑏).
Consider the elements ℎ(𝑠′), 𝑖(𝑠′) ∈ 𝑅′ ⊗𝑅 𝑆′. By construction we have ℎ(𝑠′)𝑖(𝑠′) =
𝑓(𝑠′) = 0. On the other hand they generate the unit ideal since 𝑎(𝑠′)ℎ(𝑠′) + 𝑏(𝑠′)𝑖(𝑠′) = 1.
Thus we see that 𝑅′ ⊗𝑅 𝑆′ is the product of the localizations at these elements:

𝑅′ ⊗𝑅 𝑆′ = (𝑅′ ⊗𝑅 𝑆′)ℎ(𝑠′) × (𝑅′ ⊗𝑅 𝑆′)𝑖(𝑠′) = 𝑆′
1 × 𝑆′

2

Moreover this product decomposition is compatible with the product decomposition we
found for the fibre ring 𝐹′; this comes from our choice of 𝑠′, ℎ which garantee that 𝔮′ is
the only prime of 𝐹′ which does not contain the image of ℎ(𝑠′) in 𝐹′. Here we use that the
fibre ring of 𝑅′ ⊗𝑅 𝑆′ over 𝑅′ at 𝔭′ is the same as 𝐹′ due to the fact that 𝜅(𝔭) = 𝜅(𝔭′). It
follows that 𝑆′

1 has exactly one prime, say 𝔯′, lying over 𝔭′ and that this prime lies over 𝔮.
Hence the element 𝑔 ∈ 𝑆′ maps to an element of 𝑆′

1 not contained in 𝔯′.

The base change 𝑅′ ⊗𝑅 𝑆 inherits a similar product decomposition
𝑅′ ⊗𝑅 𝑆 = (𝑅′ ⊗𝑅 𝑆)ℎ(𝑠′) × (𝑅′ ⊗𝑅 𝑆)𝑖(𝑠′) = 𝑆1 × 𝑆2

It follows from the above that 𝑆1 has exactly one prime, say 𝔯, lying over 𝔭′ (consider the
fibre ring as above), and that this prime lies over 𝔮.
Now we may apply Lemma 7.132.20 to the ring maps 𝑅′ → 𝑆′

1 → 𝑆1, the prime 𝔭′ and
the element 𝑔 to see that after replacing 𝑅′ by a principal localization we can assume that
𝑆1 is finite over 𝑅′ as desired. �

Lemma 7.132.22. Let 𝑅 → 𝑆 be a ring map. Let 𝔭 ⊂ 𝑅 be a prime. Assume 𝑅 → 𝑆 finite
type. Then there exists

(1) an étale ring map 𝑅 → 𝑅′,
(2) a prime 𝔭′ ⊂ 𝑅′ lying over 𝔭,
(3) a product decomposition

𝑅′ ⊗𝑅 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵
with the following properties

(1) we have 𝜅(𝔭) = 𝜅(𝔭′),
(2) each 𝐴𝑖 is finite over 𝑅′,
(3) each 𝐴𝑖 has exactly one prime 𝔯𝑖 lying over 𝔭′, and
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(4) 𝑅′ → 𝐵 not quasi-finite at any prime lying over 𝔭′.

Proof. Denote 𝐹 = 𝑆 ⊗𝑅 𝜅(𝔭) the fibre ring of 𝑆/𝑅 at the prime 𝔭. As 𝐹 is of finite type
over 𝜅(𝔭) it is Noetherian and hence 𝑆𝑝𝑒𝑐(𝐹) has finitely many isolated closed points. If
there are no isolated closed points, i.e., no primes 𝔮 of 𝑆 over 𝔭 such that 𝑆/𝑅 is quasi-finite
at 𝔮, then the lemma holds. If there exists at least one such prime 𝔮, then we may apply
Lemma 7.132.21 above. This gives a diagram

𝑆 // 𝑅′ ⊗𝑅 𝑆 𝐴1 × 𝐵′

𝑅 //

OO

𝑅′

OO 99

as in said lemma. Since the residue fields at 𝔭 and 𝔭′ are the same, the fibre rings of 𝑆/𝑅
and (𝐴 × 𝐵)/𝑅′ are the same. Hence, by induction on the number of isolated closed points
of the fibre we may assume that the lemma holds for 𝑅′ → 𝐵 and 𝔭′. Thus we get an étale
ring map 𝑅′ → 𝑅″, a prime 𝔭″ ⊂ 𝑅″ and a decomposition

𝑅″ ⊗𝑅′ 𝐵′ = 𝐴2 × … × 𝐴𝑛 × 𝐵

We omit the verification that the ring map 𝑅 → 𝑅″, the prime 𝔭″ and the resulting decom-
position

𝑅″ ⊗𝑅 𝑆 = (𝑅″ ⊗𝑅′ 𝐴1) × 𝐴2 × … × 𝐴𝑛 × 𝐵
is a solution to the problem posed in the lemma. �

Lemma 7.132.23. Let 𝑅 → 𝑆 be a ring map. Let 𝔭 ⊂ 𝑅 be a prime. Assume 𝑅 → 𝑆 finite
type. Then there exists

(1) an étale ring map 𝑅 → 𝑅′,
(2) a prime 𝔭′ ⊂ 𝑅′ lying over 𝔭,
(3) a product decomposition

𝑅′ ⊗𝑅 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵

with the following properties
(1) each 𝐴𝑖 is finite over 𝑅′,
(2) each 𝐴𝑖 has exactly one prime 𝔯𝑖 lying over 𝔭′,
(3) the finite field extensions 𝜅(𝔭′) ⊂ 𝜅(𝔯𝑖) are purely inseparable, and
(4) 𝑅′ → 𝐵 not quasi-finite at any prime lying over 𝔭′.

Proof. The strategy of the proof is to make two étale ring extensions: first we control the
residue fields, then we apply Lemma 7.132.22 above.

Denote 𝐹 = 𝑆 ⊗𝑅 𝜅(𝔭) the fibre ring of 𝑆/𝑅 at the prime 𝔭. As in the proof of Lemma
7.132.22 there are finitely may primes, say 𝔮1, … , 𝔮𝑛 of 𝑆 lying over 𝑅 at which the ring
map 𝑅 → 𝑆 is quasi-finite. Let 𝜅(𝔭) ⊂ 𝐿𝑖 ⊂ 𝜅(𝔮𝑖) be the subfield such that 𝜅(𝔭) ⊂ 𝐿𝑖 is
separable, and the field extension 𝐿𝑖 ⊂ 𝜅(𝔮𝑖) is purely inseparable. Let 𝜅(𝔭) ⊂ 𝐿 be a finite
Galois extension into which 𝐿𝑖 embeds for 𝑖 = 1, … , 𝑛. By Lemma 7.132.15 we can find
an étale ring extension 𝑅 → 𝑅′ together with a prime 𝔭′ lying over 𝔭 such that the field
extension 𝜅(𝔭) ⊂ 𝜅(𝔭′) is isomorphic to 𝜅(𝔭) ⊂ 𝐿. Thus the fibre ring of 𝑅′ ⊗𝑅 𝑆 at 𝔭′ is
isomorphic to 𝐹 ⊗𝜅(𝔭) 𝐿. The primes lying over 𝔮𝑖 correspond to primes of 𝜅(𝔮𝑖) ⊗𝜅(𝔭) 𝐿
which is a product of fields purely inseparable over 𝐿 by our choice of 𝐿 and elementary
field theory. These are also the only primes over 𝔭′ at which 𝑅′ → 𝑅′ ⊗𝑅 𝑆 is quasi-finite,
by Lemma 7.113.8. Hence after replacing 𝑅 by 𝑅′, 𝔭 by 𝔭′, and 𝑆 by 𝑅′ ⊗𝑅 𝑆 we may
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assume that for all primes 𝔮 lying over 𝔭 for which 𝑆/𝑅 is quasi-finite the field extensions
𝜅(𝔭) ⊂ 𝜅(𝔮) are purely inseparable.

Next apply Lemma 7.132.22. The result is what we want since the field extensions do not
change under this étale ring extension. �

7.133. Local homomorphisms

Lemma 7.133.1. Let (𝑅, 𝔪𝑅) → (𝑆, 𝔪𝑆) be a local homomorphism of local rings. Assume
𝑆 is the localization of an étale ring extension of 𝑅. Then there exists a finite, finitely
presented, faithfully flat ring map 𝑅 → 𝑆′ such that for every maximal ideal 𝔪′ of 𝑆′ there
is a factorization

𝑅 → 𝑆 → 𝑆′
𝔪′.

of the ring map 𝑅 → 𝑆′
𝔪′.

Proof. Write 𝑆 = 𝑇𝔮 for some étale 𝑅-algebra 𝑇. By Proposition 7.132.16 we may assume
𝑇 is standard étale. Apply Lemma 7.132.17 to the ring map 𝑅 → 𝑇 to get 𝑅 → 𝑆′.
Then in particular for every maximal ideal 𝔪′ of 𝑆′ we get a factorization 𝜑 ∶ 𝑇 → 𝑆′

𝑔′

for some 𝑔′∉𝔪′ such that 𝔮 = 𝜑−1(𝔪′𝑆′
𝑔′). Thus 𝜑 induces the desired local ring map

𝑆 → 𝑆′
𝔪′. �

7.134. Integral closure and smooth base change

Lemma 7.134.1. Let 𝑅 be a ring. Let 𝑓 ∈ 𝑅[𝑥] be a monic polynomial. Let 𝑅 → 𝐵 be
a ring map. If ℎ ∈ 𝐵[𝑥]/(𝑓) is integral over 𝑅, then the element 𝑓′ℎ can be written as
𝑓′ℎ = ∑𝑖 𝑏𝑖𝑥𝑖 with 𝑏𝑖 ∈ 𝐵 integral over 𝑅.

Proof. Say ℎ𝑒 + 𝑟1ℎ𝑒−1 + … + 𝑟𝑒 = 0 in the ring 𝐵[𝑥]/(𝑓) with 𝑟𝑖 ∈ 𝑅. There exists a finite
free ring extension 𝐵 ⊂ 𝐵′ such that 𝑓 = (𝑥 − 𝛼1) … (𝑥 − 𝛼𝑑) for some 𝛼𝑖 ∈ 𝐵′, see Lemma
7.125.9. Note that each 𝛼𝑖 is integral over𝑅. Wemay representℎ = ℎ0+ℎ1𝑥+…+ℎ𝑑−1𝑥𝑑−1

with ℎ𝑖 ∈ 𝐵. Then it is a universal fact that

𝑓′ℎ ≡ ∑𝑖=1,…,𝑑
ℎ(𝛼𝑖)(𝑥 − 𝛼1) … ̂(𝑥 − 𝛼𝑖) … (𝑥 − 𝛼𝑑)

as elements of 𝐵[𝑥]/(𝑓). You prove this by evaluating both sides at the points 𝛼𝑖 over the
ring 𝐵𝑢𝑛𝑖𝑣 = 𝐙[𝛼𝑖, ℎ𝑗] (some details omitted). By our assumption that ℎ satisfies ℎ𝑒 +
𝑟1ℎ𝑒−1 + … + 𝑟𝑒 = 0 in the ring 𝐵[𝑥]/(𝑓) we see that

ℎ(𝛼𝑖)𝑒 + 𝑟1ℎ(𝛼𝑖)𝑒−1 + … + 𝑟𝑒 = 0

in𝐵′. Henceℎ(𝛼𝑖) is integral over𝑅. Using the formula abovewe see that 𝑓′ℎ ≡ ∑𝑗=0,…,𝑑−1 𝑏′
𝑗𝑥

𝑗

in 𝐵′[𝑥]/(𝑓) with 𝑏′
𝑗 ∈ 𝐵′ integral over 𝑅. However, since 𝑓′ℎ ∈ 𝐵[𝑥]/(𝑓) and since

1, 𝑥, … , 𝑥𝑑−1 is a 𝐵′-basis for 𝐵′[𝑥]/(𝑓) we see that 𝑏′
𝑗 ∈ 𝐵 as desired. �

Lemma 7.134.2. Let 𝑅 → 𝑆 be an étale ring map. Let 𝑅 → 𝐵 be any ring map. Let 𝐴 ⊂ 𝐵
be the integral closure of 𝑅 in 𝐵. Let 𝐴′ ⊂ 𝑆 ⊗𝑅 𝐵 be the integral closure of 𝑆 in 𝑆 ⊗𝑅 𝐵.
Then the canonical map 𝑆 ⊗𝑅 𝐴 → 𝐴′ is an isomorphism.

Proof. The map 𝑆 ⊗𝑅 𝐴 → 𝐴′ is injective because 𝐴 ⊂ 𝐵 and 𝑅 → 𝑆 is flat. We
are going to use repeatedly that taking integral closure commutes with localization, see
Lemma 7.32.9. Hence we may localize on 𝑆, by Lemma 7.21.2 (the criterion for checking
whether an 𝑆-module map is an isomorphism). Thus we may assume that 𝑆 = 𝑅[𝑥]𝑔/(𝑓) =
(𝑅[𝑥]/(𝑓))𝑔 is standard étale over 𝑅, see Proposition 7.132.16. Applying localization one
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more time we see that 𝐴′ is (𝐴″)𝑔 where 𝐴″ is the integral closure of 𝑅[𝑥]/(𝑓) in 𝐵[𝑥]/(𝑓).
Suppose that 𝑎 ∈ 𝐴″. It suffices to show that 𝑎 is in 𝑆⊗𝑅 𝐴. By Lemma 7.134.1 we see that
𝑓′𝑎 = ∑ 𝑎𝑖𝑥𝑖 with 𝑎𝑖 ∈ 𝐴. Since 𝑓′ is invertible in 𝐵[𝑥]𝑔/(𝑓) (by definition of a standard
étale ring map) we conclude that 𝑎 ∈ 𝑆 ⊗𝑅 𝐴 as desired. �

Example 7.134.3. Let 𝑝 be a prime number. For every 𝑛 > 0 the ring extension

𝑅 = 𝐙[1/𝑝] ⊂ 𝑅′ = 𝐙[1/𝑝][𝑥]/(𝑥𝑝𝑛
− 1)

has the following property: For 𝑑 < 𝑝𝑛 there exist elements 𝛼0, … , 𝛼𝑑−1 ∈ 𝑅′ such that

∏0≤𝑖<𝑗<𝑑
(𝛼𝑖 − 𝛼𝑗)

is a unit in 𝑅′. Namely, take 𝛼𝑖 equal to the class of 𝑥𝑖 in 𝑅′. Then we have

𝑇𝑝𝑛
− 1 = ∏𝑖=0,…,𝑝𝑛−1

(𝑇 − 𝛼𝑖)

(for example because this is clear over 𝐐) and hence by taking derivatives on both sides

𝑝𝑛𝛼𝑝𝑛−1
𝑖 = (𝛼𝑖 − 𝛼1) … ̂(𝛼𝑖 − 𝛼𝑖) … (𝛼𝑖 − 𝛼1)

and we see this is invertible in 𝑅′.

Lemma 7.134.4. Let 𝑅 → 𝑆 be a smooth ring map. Let 𝑅 → 𝐵 be any ring map. Let
𝐴 ⊂ 𝐵 be the integral closure of 𝑅 in 𝐵. Let 𝐴′ ⊂ 𝑆 ⊗𝑅 𝐵 be the integral closure of 𝑆 in
𝑆 ⊗𝑅 𝐵. Then the canonical map 𝑆 ⊗𝑅 𝐴 → 𝐴′ is an isomorphism.

Proof. Arguing as in the proof of Lemma 7.134.2 we may localize on 𝑆. Hence we may
assume that 𝑅 → 𝑆 is a standard smooth ring map, see Lemma 7.126.10. By definition
of a standard smooth ring map we see that 𝑆 is étale over a polynomial ring 𝑅[𝑥1, … , 𝑥𝑛].
Since we have seen the result in the case of an étale ring extension (Lemma 7.134.2) this
reduces us to the case where 𝑆 = 𝑅[𝑥]. Thus we have to show

𝑓 = ∑ 𝑏𝑖𝑥𝑖 integral over 𝑅[𝑥] ⇔ each 𝑏𝑖 integral over 𝑅.

The implication from right to left holds because the set of elements in 𝐵[𝑥] integral over
𝑅[𝑥] is a ring (Lemma 7.32.7) and contains 𝑥.

Suppose that 𝑓 ∈ 𝐵[𝑥] is integral over 𝑅[𝑥], and assume that 𝑓 = ∑𝑖<𝑑 𝑏𝑖𝑥𝑖 has degree < 𝑑.
Since integral closure and localization commute, it suffices to show that each 𝑏𝑖 is integral
over 𝑅[1/2] and over 𝑅[1/3]. Hence, we can find a finite free ring extension 𝑅 ⊂ 𝑅′ such
that 𝑅′ contains 𝛼1, … , 𝛼𝑑 with the property that ∏𝑖<𝑗(𝛼𝑖 − 𝛼𝑗) is a unit in 𝑅′, see Example
7.134.3. In this case we have the universal equality

𝑓 = ∑
𝑖

𝑓(𝛼𝑖)
(𝑥 − 𝛼1) … ̂(𝑥 − 𝛼𝑖) … (𝑥 − 𝛼𝑑)

(𝛼𝑖 − 𝛼1) … ̂(𝛼𝑖 − 𝛼𝑖) … (𝛼𝑖 − 𝛼𝑑)
.

OK, and the elements 𝑓(𝛼𝑖) are integral over 𝑅′ since (𝑅′ ⊗𝑅 𝐵)[𝑥] → 𝑅′ ⊗𝑅 𝐵, ℎ ↦ ℎ(𝛼𝑖)
is a ring map. Hence we see that the coefficients of 𝑓 in (𝑅′ ⊗𝑅 𝐵)[𝑥] are integral over over
𝑅′. Since 𝑅′ is finite over 𝑅 (hence integral over 𝑅) we see that they are integral over 𝑅
also, as desired. �
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7.135. Formally unramified maps

It turns out to be logically more efficient to define the notion of a formally unramified map
before introducing the notion of a formally étale one.

Definition 7.135.1. Let 𝑅 → 𝑆 be a ring map. We say 𝑆 is formally unramified over 𝑅 if
for every commutative solid diagram

𝑆 //

!!

𝐴/𝐼

𝑅 //

OO

𝐴

OO

where 𝐼 ⊂ 𝐴 is an ideal of square zero, there exists at most one dotted arrow making the
diagram commute.

Lemma 7.135.2. Let 𝑅 → 𝑆 be a ring map. The following are equivalent:
(1) 𝑅 → 𝑆 is formally unramified,
(2) the module of differentials Ω𝑆/𝑅 is zero.

Proof. Let 𝐽 = Ker(𝑆 ⊗𝑅 𝑆 → 𝑆) be the kernel of the multiplication map. Let 𝐴𝑢𝑛𝑖𝑣 =
𝑆⊗𝑅𝑆/𝐽2. Recall that 𝐼𝑢𝑛𝑖𝑣 = 𝐽/𝐽2 is isomorphic to Ω𝑆/𝑅, see Lemma 7.122.13. Moreover,
the two 𝑅-algebra maps 𝜎1, 𝜎2 ∶ 𝑆 → 𝐴𝑢𝑛𝑖𝑣, 𝜎1(𝑠) = 𝑠 ⊗ 1 mod 𝐽2, and 𝜎2(𝑠) = 1 ⊗
𝑠 mod 𝐽2 differ by the universal derivation d ∶ 𝑆 → Ω𝑆/𝑅 = 𝐼𝑢𝑛𝑖𝑣.

Assume 𝑅 → 𝑆 formally unramified. Then we see that 𝜎1 = 𝜎2. Hence d(𝑠) = 0 for all
𝑠 ∈ 𝑆. Hence Ω𝑆/𝑅 = 0.

Assume that Ω𝑆/𝑅 = 0. Let 𝐴, 𝐼, 𝑅 → 𝐴, 𝑆 → 𝐴/𝐼 be a solid diagram as in Definition
7.135.1. Let 𝜏1, 𝜏2 ∶ 𝑆 → 𝐴 be two dotted arrows making the diagram commute. Consider
the 𝑅-algebra map 𝐴𝑢𝑛𝑖𝑣 → 𝐴 defined by the rule 𝑠1 ⊗ 𝑠2 ↦ 𝜏1(𝑠1)𝜏2(𝑠2). We omit the
verification that this is well defined. Since 𝐴𝑢𝑛𝑖𝑣 ≅ 𝑆 as 𝐼𝑢𝑛𝑖𝑣 = Ω𝑆/𝑅 = 0 we conclude that
𝜏1 = 𝜏2. �

Lemma 7.135.3. Let 𝑅 → 𝑆 be a ring map. The following are equivalent:
(1) 𝑅 → 𝑆 is formally unramified,
(2) 𝑅 → 𝑆𝔮 is formally unramified for all primes 𝔮 of 𝑆, and
(3) 𝑅𝔭 → 𝑆𝔮 is formally unramified for all primes 𝔮 of 𝑆 with 𝔭 = 𝑅 ∩ 𝔮.

Proof. We have seen in Lemma 7.135.2 that (1) is equivalent to Ω𝑆/𝑅 = 0. Similarly, by
Lemma 7.122.8 we see that (2) and (3) are equivalent to (Ω𝑆/𝑅)𝔮 = 0 for all 𝔮. Hence the
equivalence follows from Lemma 7.21.1. �

Lemma 7.135.4. Let 𝐴 → 𝐵 be a formally unramified ring map.
(1) For 𝑆 ⊂ 𝐴 a multiplicative subset, 𝑆−1𝐴 → 𝑆−1𝐵 is formally unramified.
(2) For 𝑆 ⊂ 𝐵 a multiplicative subset, 𝐴 → 𝑆−1𝐵 is formally unramified.

Proof. Follows from Lemma 7.135.3. (You can also deduce it from Lemma 7.135.2 com-
bined with Lemma 7.122.8.) �

7.136. Conormal modules and universal thickenings

It turns out that one can define the first infinitesimal neighbourhood not just for a closed
immersion of schemes, but already for any formally unramified morphism. This is based
on the following algebraic fact.
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Lemma 7.136.1. Let 𝑅 → 𝑆 be a formally unramified ring map. There exists a surjection
of 𝑅-algebras 𝑆′ → 𝑆 whose kernel is an ideal of square zero with the following universal
property: Given any commutative diagram

𝑆 𝑎
// 𝐴/𝐼

𝑅 𝑏 //

OO

𝐴

OO

where 𝐼 ⊂ 𝐴 is an ideal of square zero, there is a unique 𝑅-algebra map 𝑎′ ∶ 𝑆′ → 𝐴 such
that 𝑆′ → 𝐴 → 𝐴/𝐼 is equal to 𝑆′ → 𝑆 → 𝐴.

Proof. Choose a set of generators 𝑧𝑖 ∈ 𝑆, 𝑖 ∈ 𝐼 for𝑆 as an𝑅-algebra. Let𝑃 = 𝑅[{𝑥𝑖_𝑖 ∈ 𝐼]
denote the polynomial ring on generators 𝑥𝑖, 𝑖 ∈ 𝐼. Consider the 𝑅-algebra map 𝑃 → 𝑆
which maps 𝑥𝑖 to 𝑧𝑖. Let 𝐽 = Ker(𝑃 → 𝑆). Consider the map

d ∶ 𝐽/𝐽2 ⟶ Ω𝑃/𝑅 ⊗𝑃 𝑆
see Lemma 7.122.9. This is surjective since Ω𝑆/𝑅 = 0 by assumption, see Lemma 7.135.2.
Note that Ω𝑃/𝑅 is free on d𝑥𝑖, and hence the module Ω𝑃/𝑅 ⊗𝑃 𝑆 is free over 𝑆. Thus we
may choose a splitting of the surjection above and write

𝐽/𝐽2 = 𝐾 ⊕ Ω𝑃/𝑅 ⊗𝑃 𝑆

Let 𝐽2 ⊂ 𝐽′ ⊂ 𝐽 be the ideal of 𝑃 such that 𝐽′/𝐽2 is the second summand in the decompo-
sition above. Set 𝑆′ = 𝑃/𝐽′. We obtain a short exact sequence

0 → 𝐽/𝐽′ → 𝑆′ → 𝑆 → 0
and we see that 𝐽/𝐽′ ≅ 𝐾 is a square zero ideal in 𝑆′. Hence

𝑆
1
// 𝑆

𝑅 //

OO

𝑆′

OO

is a diagram as above. In fact we claim that this is an initial object in the category of
diagrams. Namely, let (𝐼 ⊂ 𝐴, 𝑎, 𝑏) be an arbitrary diagram. We may choose an 𝑅-algebra
map 𝛽 ∶ 𝑃 → 𝐴 such that

𝑆
1
// 𝑆 𝑎

// 𝐴/𝐼

𝑅 //

𝑏
33

OO

𝑃

OO

𝛽 // 𝐴

OO

is commutative. Now it may not be the case that 𝛽(𝐽′) = 0, in other words it may not
be true that 𝛽 factors through 𝑆′ = 𝑃/𝐽′. But what is clear is that 𝛽(𝐽′) ⊂ 𝐼 and since
𝛽(𝐽) ⊂ 𝐼 and 𝐼2 = 0 we have 𝛽(𝐽2) = 0. Thus the ``obstruction'' to finding a morphism from
(𝐽/𝐽′ ⊂ 𝑆′, 1, 𝑅 → 𝑆′) to (𝐼 ⊂ 𝐴, 𝑎, 𝑏) is the corresponding 𝑆-linear map 𝛽 ∶ 𝐽′/𝐽2 → 𝐼.
The choice in picking 𝛽 lies in the choice of 𝛽(𝑥𝑖). A different choice of 𝛽, say 𝛽′, is gotten
by taking 𝛽′(𝑥𝑖) = 𝛽(𝑥𝑖) + 𝛿𝑖 with 𝛿𝑖 ∈ 𝐼. In this case, for 𝑔 ∈ 𝐽′, we obtain

𝛽′(𝑔) = 𝛽(𝑔) + ∑𝑖
𝛿𝑖

𝜕𝑔
𝜕𝑥𝑖

.

Since the map d|𝐽′/𝐽2 ∶ 𝐽′/𝐽2 → Ω𝑃/𝑅 ⊗𝑃 𝑆 given by 𝑔 ↦ 𝜕𝑔
𝜕𝑥𝑖

d𝑥𝑖 is an isomorphism by
construction, we see that there is a unique choice of 𝛿𝑖 ∈ 𝐼 such that 𝛽′(𝑔) = 0 for all 𝑔 ∈ 𝐽′.
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(Namely, 𝛿𝑖 is −𝛽(𝑔) where 𝑔 ∈ 𝐽′/𝐽2 is the unique element with 𝜕𝑔
𝜕𝑥𝑗

= 1 if 𝑖 = 𝑗 and 0
else.) The uniqueness of the solution implies the uniqueness required in the lemma. �

In the situation of Lemma 7.136.1 the 𝑅-algebra map 𝑆′ → 𝑆 is unique up to unique
isomorphism.

Definition 7.136.2. Let 𝑅 → 𝑆 be a formally unramified ring map.

(1) The universal first order thickening of 𝑆 over 𝑅 is the surjection of 𝑅-algebras
𝑆′ → 𝑆 of Lemma 7.136.1.

(2) The conormal module of 𝑅 → 𝑆 is the kernel 𝐼 of the universal first order thick-
ening 𝑆′ → 𝑆, seen as a 𝑆-module.

We often denote the conormal module 𝐶𝑆/𝑅 in this situation.

Lemma 7.136.3. Let 𝐼 ⊂ 𝑅 be an ideal of a ring. The universal first order thickening
of 𝑅/𝐼 over 𝑅 is the surjection 𝑅/𝐼2 → 𝑅/𝐼. The conormal module of 𝑅/𝐼 over 𝑅 is
𝐶(𝑅/𝐼)/𝑅 = 𝐼/𝐼2.

Proof. Omitted. �

Lemma 7.136.4. Let 𝐴 → 𝐵 be a formally unramified ring map. Let 𝜑 ∶ 𝐵′ → 𝐵 be the
universal first order thickening of 𝐵 over 𝐴.

(1) Let 𝑆 ⊂ 𝐴 be a multiplicative subset. Then 𝑆−1𝐵′ → 𝑆−1𝐵 is the universal first
order thickening of 𝑆−1𝐵 over 𝑆−1𝐴. In particular 𝑆−1𝐶𝐵/𝐴 = 𝐶𝑆−1𝐵/𝑆−1𝐴.

(2) Let 𝑆 ⊂ 𝐵 be a multiplicative subset. Then 𝑆′ = 𝜑−1(𝑆) is a multiplicative subset
in 𝐵′ and (𝑆′)−1𝐵′ → 𝑆−1𝐵 is the universal first order thickening of 𝑆−1𝐵 over
𝐴. In particular 𝑆−1𝐶𝐵/𝐴 = 𝐶𝑆−1𝐵/𝐴.

Note that the lemma makes sense by Lemma 7.135.4.

Proof. With notation and assumptions as in (1). Let (𝑆−1𝐵)′ → 𝑆−1𝐵 be the univer-
sal first order thickening of 𝑆−1𝐵 over 𝑆−1𝐴. Note that 𝑆−1𝐵′ → 𝑆−1𝐵 is a surjection
of 𝑆−1𝐴-algebras whose kernel has square zero. Hence by definition we obtain a map
(𝑆−1𝐵)′ → 𝑆−1𝐵′ compatible with the maps towards 𝑆−1𝐵. Consider any commutative
diagram

𝐵 // 𝑆−1𝐵 // 𝐷/𝐼

𝐴 //

OO

𝑆−1𝐴 //

OO

𝐷

OO

where 𝐼 ⊂ 𝐷 is an ideal of square zero. Since 𝐵′ is the universal first order thickening of
𝐵 over 𝐴 we obtain an 𝐴-algebra map 𝐵′ → 𝐷. But it is clear that the image of 𝑆 in 𝐷 is
mapped to invertible elements of 𝐷, and hence we obtain a compatible map 𝑆−1𝐵′ → 𝐷.
Applying this to 𝐷 = (𝑆−1𝐵)′ we see that we get a map 𝑆−1𝐵′ → (𝑆−1𝐵)′. We omit the
verification that this map is inverse to the map described above.

With notation and assumptions as in (2). Let (𝑆−1𝐵)′ → 𝑆−1𝐵 be the universal first order
thickening of 𝑆−1𝐵 over 𝐴. Note that (𝑆′)−1𝐵′ → 𝑆−1𝐵 is a surjection of 𝐴-algebras
whose kernel has square zero. Hence by definition we obtain a map (𝑆−1𝐵)′ → (𝑆′)−1𝐵′
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compatible with the maps towards 𝑆−1𝐵. Consider any commutative diagram

𝐵 // 𝑆−1𝐵 // 𝐷/𝐼

𝐴 //

OO

𝐴 //

OO

𝐷

OO

where 𝐼 ⊂ 𝐷 is an ideal of square zero. Since 𝐵′ is the universal first order thickening of
𝐵 over 𝐴 we obtain an 𝐴-algebra map 𝐵′ → 𝐷. But it is clear that the image of 𝑆′ in 𝐷 is
mapped to invertible elements of 𝐷, and hence we obtain a compatible map (𝑆′)−1𝐵′ → 𝐷.
Applying this to 𝐷 = (𝑆−1𝐵)′ we see that we get a map (𝑆′)−1𝐵′ → (𝑆−1𝐵)′. We omit the
verification that this map is inverse to the map described above. �

Lemma 7.136.5. Let 𝑅 → 𝐴 → 𝐵 be ring maps. Assume 𝐴 → 𝐵 formally unramified. Let
𝐵′ → 𝐵 be the universal first order thickening of 𝐵 over 𝐴. Then 𝐵′ is formally unramified
over 𝐴, and the canonical map Ω𝐴/𝑅 ⊗𝐴 𝐵 → Ω𝐵′/𝑅 ⊗𝐵′ 𝐵 is an isomorphism.

Proof. We are going to use the construction of 𝐵′ from the proof of Lemma 7.136.1
allthough in principle it should be possible to deduce these results formally from the defi-
nition. Namely, we choose a presentation 𝐵 = 𝑃/𝐽, where 𝑃 = 𝐴[𝑥𝑖] is a polynomial ring
over 𝐴. Next, we choose elements 𝑓𝑖 ∈ 𝐽 such that d𝑓𝑖 = d𝑥𝑖 ⊗ 1 in Ω𝑃/𝐴 ⊗𝑃 𝐵. Having
made these choices we have 𝐵′ = 𝑃/𝐽′ with 𝐽′ = (𝑓𝑖) + 𝐽2, see proof of Lemma 7.136.1.
Consider the canonical exact sequence

𝐽′/(𝐽′)2 → Ω𝑃/𝐴 ⊗𝑃 𝐵′ → Ω𝐵′/𝐴 → 0
see Lemma 7.122.9. By construction the classes of the 𝑓𝑖 ∈ 𝐽′ map to elements of the
module Ω𝑃/𝐴 ⊗𝑃 𝐵′ which generate it modulo 𝐽′/𝐽2 by construction. Since 𝐽′/𝐽2 is a
nilpotent ideal, we see that these elements generate the module alltogether (by Nakayama's
Lemma 7.14.5). This proves that Ω𝐵′/𝐴 = 0 and hence that 𝐵′ is formally unramified over
𝐴, see Lemma 7.135.2.
Since 𝑃 is a polynomial ring over 𝐴 we have Ω𝑃/𝑅 = Ω𝐴/𝑅 ⊗𝐴 𝑃 ⊕ ⨁ 𝑃d𝑥𝑖. We are going
to use this decomposition. Consider the following exact sequence

𝐽′/(𝐽′)2 → Ω𝑃/𝑅 ⊗𝑃 𝐵′ → Ω𝐵′/𝑅 → 0
see Lemma 7.122.9. We may tensor this with 𝐵 and obtain the exact sequence

𝐽′/(𝐽′)2 ⊗𝐵′ 𝐵 → Ω𝑃/𝑅 ⊗𝑃 𝐵 → Ω𝐵′/𝑅 ⊗𝐵′ 𝐵 → 0

If we remember that 𝐽′ = (𝑓𝑖)+𝐽2 then we see that the first arrow annihilates the submodule
𝐽2/(𝐽′)2. In terms of the direct sum decomposition Ω𝑃/𝑅 ⊗𝑃 𝐵 = Ω𝐴/𝑅 ⊗𝐴 𝐵 ⊕ ⨁ 𝐵d𝑥𝑖
given we see that the submodule (𝑓𝑖)/(𝐽′)2 ⊗𝐵′ 𝐵 maps isomorphically onto the summand
⨁ 𝐵d𝑥𝑖. Hence what is left of this exact sequence is an isomorphism Ω𝐴/𝑅 ⊗𝐴 𝐵 →
Ω𝐵′/𝑅 ⊗𝐵′ 𝐵 as desired. �

7.137. Formally étale maps

Definition 7.137.1. Let 𝑅 → 𝑆 be a ring map. We say 𝑆 is formally étale over 𝑅 if for
every commutative solid diagram

𝑆 //

!!

𝐴/𝐼

𝑅 //

OO

𝐴

OO
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where 𝐼 ⊂ 𝐴 is an ideal of square zero, there exists a unique dotted arrow making the
diagram commute.

Clearly a ring map is formally étale if and only if it is booth formally smooth and formally
unramified.

Lemma 7.137.2. Let 𝑅 → 𝑆 be a ring map of finite presentation. The following are
equivalent:

(1) 𝑅 → 𝑆 is formally étale,
(2) 𝑅 → 𝑆 is étale.

Proof. Assume that 𝑅 → 𝑆 is formally étale. Then 𝑅 → 𝑆 is smooth by Proposition
7.127.13. By Lemma 7.135.2 we have Ω𝑆/𝑅 = 0. Hence 𝑅 → 𝑆 is étale by definition.
Assume that 𝑅 → 𝑆 is étale. Then 𝑅 → 𝑆 is formally smooth by Proposition 7.127.13. By
Lemma 7.135.2 it is formally unramified. Hence 𝑅 → 𝑆 is formally étale. �

Lemma 7.137.3. Let 𝑅 be a ring. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝜑𝑖𝑖′)
be a system of 𝑅-algebras over 𝐼. If each 𝑅 → 𝑆𝑖 is formally étale, then 𝑆 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑆𝑖 is
formally étale over 𝑅

Proof. Consider a diagram as inDefinition 7.137.1. By assumptionwe get unique𝑅-algebra
maps 𝑆𝑖 → 𝐴 lifting the compositions 𝑆𝑖 → 𝑆 → 𝐴/𝐼. Hence these are compatible with
the transition maps 𝜑𝑖𝑖′ and define a lift 𝑆 → 𝐴. This proves existence. The uniqueness is
clear by restricting to each 𝑆𝑖. �

Lemma 7.137.4. Let 𝑅 be a ring. Let 𝑆 ⊂ 𝑅 be any multiplicative subset. Then the ring
map 𝑅 → 𝑆−1𝑅 is formally étale.

Proof. Let 𝐼 ⊂ 𝐴 be an ideal of square zero. What we are saying here is that given a ring
map 𝜑 ∶ 𝑅 → 𝐴 such that 𝜑(𝑓) mod 𝐼 is invertible for all 𝑓 ∈ 𝑆 we have also that 𝜑(𝑓) is
invertible in 𝐴 for all 𝑓 ∈ 𝑆. This is true because 𝐴∗ is the inverse image of (𝐴/𝐼)∗ under
the canonical map 𝐴 → 𝐴/𝐼. �

7.138. Unramified ring maps

The definition of a G-unramified ring map is the one from EGA. The definition of an un-
ramified ring map is the one from [Ray70].

Definition 7.138.1. Let 𝑅 → 𝑆 be a ring map.
(1) We say 𝑅 → 𝑆 is unramified if 𝑅 → 𝑆 is of finite type and Ω𝑆/𝑅 = 0.
(2) We say 𝑅 → 𝑆 is G-unramified if 𝑅 → 𝑆 is of finite presentation and Ω𝑆/𝑅 = 0.
(3) Given a prime 𝔮 of 𝑆 we say that 𝑆 is unramified at 𝔮 if there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮

such that 𝑅 → 𝑆𝑔 is unramified.
(4) Given a prime 𝔮 of 𝑆 we say that 𝑆 is G-unramified at 𝔮 if there exists a 𝑔 ∈ 𝑆,

𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is G-unramified.

Of course a G-unramified map is unramified.

Lemma 7.138.2. Let 𝑅 → 𝑆 be a ring map. The following are equivalent
(1) 𝑅 → 𝑆 is formally unramified and of finite type, and
(2) 𝑅 → 𝑆 is unramified.

Moreover, also the following are equivalent
(1) 𝑅 → 𝑆 is formally unramified and of finite presentation, and
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(2) 𝑅 → 𝑆 is G-unramified.

Proof. Follows from Lemma 7.135.2 and the definitions. �

Lemma 7.138.3. Properties of unramified and G-unramified ring maps.
(1) The base change of an unramified ring map is unramified. The base change of a

G-unramified ring map is G-unramified.
(2) The composition of unramified ring maps is unramified. The composition of G-

unramified ring maps is G-unramified.
(3) Any principal localization 𝑅 → 𝑅𝑓 is G-unramified and unramified.
(4) If 𝐼 ⊂ 𝑅 is an ideal, then 𝑅 → 𝑅/𝐼 is unramified. If 𝐼 ⊂ 𝑅 is a finitely generated

ideal, then 𝑅 → 𝑅/𝐼 is G-unramified.
(5) An étale ring map is G-unramified and unramified.
(6) If 𝑅 → 𝑆 is of finite type (resp. finite presentation), 𝔮 ⊂ 𝑆 is a prime and

(Ω𝑆/𝑅)𝔮 = 0, then 𝑅 → 𝑆 is unramified (resp. G-unramified) at 𝔮.
(7) If 𝑅 → 𝑆 is of finite type (resp. finite presentation), 𝔮 ⊂ 𝑆 is a prime and Ω𝑆/𝑅 ⊗𝑆

𝜅(𝔮) = 0, then 𝑅 → 𝑆 is unramified (resp. G-unramified) at 𝔮.
(8) If 𝑅 → 𝑆 is of finite type (resp. finite presentation), 𝔮 ⊂ 𝑆 is a prime lying over

𝔭 ⊂ 𝑅 and (Ω𝑆⊗𝑅𝜅(𝔭)/𝜅(𝔭))𝔮 = 0, then 𝑅 → 𝑆 is unramified (resp. G-unramified)
at 𝔮.

(9) If 𝑅 → 𝑆 is of finite type (resp. presentation), 𝔮 ⊂ 𝑆 is a prime lying over
𝔭 ⊂ 𝑅 and (Ω𝑆⊗𝑅𝜅(𝔭)/𝜅(𝔭)) ⊗𝑆⊗𝑅𝜅(𝔭) 𝜅(𝔮) = 0, then 𝑅 → 𝑆 is unramified (resp.
G-unramified) at 𝔮.

(10) If 𝑅 → 𝑆 is a ring map, 𝑔1, … , 𝑔𝑚 ∈ 𝑆 generate the unit ideal and 𝑅 → 𝑆𝑔𝑗
is unramified (resp. G-unramified) for 𝑗 = 1, … , 𝑚, then 𝑅 → 𝑆 is unramified
(resp. G-unramified).

(11) If 𝑅 → 𝑆 is a ring map which is unramified (resp. G-unramified) at every prime
of 𝑆, then 𝑅 → 𝑆 is unramified (resp. G-unramified).

(12) If 𝑅 → 𝑆 is G-unramified, then there exists a finite type 𝐙-algebra 𝑅0 and a
G-unramified ring map 𝑅0 → 𝑆0 and a ring map 𝑅0 → 𝑅 such that 𝑆 = 𝑅 ⊗𝑅0
𝑆0.

(13) If 𝑅 → 𝑆 is unramified, then there exists a finite type 𝐙-algebra 𝑅0 and an un-
ramified ring map 𝑅0 → 𝑆0 and a ring map 𝑅0 → 𝑅 such that 𝑆 is a quotient of
𝑅 ⊗𝑅0

𝑆0.

Proof. We prove each point, in order.
Ad (1). Follows from Lemmas 7.122.12 and 7.13.2.
Ad (2). Follows from Lemmas 7.122.7 and 7.13.2.
Ad (3). Follows by direct computation of Ω𝑅𝑓/𝑅 which we omit.

Ad (4). We have Ω(𝑅/𝐼)/𝑅 = 0, see Lemma 7.122.5, and the ring map 𝑅 → 𝑅/𝐼 is of finite
type. If 𝐼 is a finitely generated ideal then 𝑅 → 𝑅/𝐼 is of finite presentation.
Ad (5). See discussion following Definition 7.132.1.
Ad (6). In this case Ω𝑆/𝑅 is a finite 𝑆-module (see Lemma 7.122.16) and hence there exists
a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that (Ω𝑆/𝑅)𝑔 = 0. By Lemma 7.122.8 this means that Ω𝑆𝑔/𝑅 = 0 and
hence 𝑅 → 𝑆𝑔 is unramified as desired.
Ad (7). Use Nakayama's lemma (Lemma 7.14.5) to see that the condition is equivalent to
the condition of (6).
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Ad (8) & (9). These are equivalent in the same manner that (6) and (7) are equivalent.
Moreover Ω𝑆⊗𝑅𝜅(𝔭)/𝜅(𝔭) = Ω𝑆/𝑅 ⊗𝑆 (𝑆 ⊗𝑅 𝜅(𝔭)) by Lemma 7.122.12. Hence we see that
(9) is equivalent to (7) since the 𝜅(𝔮) vector spaces in both are canonically isomorphic.
Ad (10). Follows from from Lemmas 7.21.2 and 7.122.8.
Ad (11). Follows from (6) and (7) and the fact that the spectrum of 𝑆 is quasi-compact.
Ad (12). Write 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑚). As Ω𝑆/𝑅 = 0 we can write

d𝑥𝑖 = ∑ ℎ𝑖𝑗d𝑔𝑗 + ∑ 𝑎𝑖𝑗𝑘𝑔𝑗d𝑥𝑘

inΩ𝑅[𝑥1,…,𝑥𝑛]/𝑅 for someℎ𝑖𝑗, 𝑎𝑖𝑗𝑘 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. Choose a finitely generated𝐙-subalgebra
𝑅0 ⊂ 𝑅 containing all the coefficients of the polynomials 𝑔𝑖, ℎ𝑖𝑗, 𝑎𝑖𝑗𝑘. Set𝑆0 = 𝑅0[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑚).
This works.
Ad (13). Write 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼. As Ω𝑆/𝑅 = 0 we can write

d𝑥𝑖 = ∑ ℎ𝑖𝑗d𝑔𝑖𝑗 + ∑ 𝑔′
𝑖𝑘d𝑥𝑘

in Ω𝑅[𝑥1,…,𝑥𝑛]/𝑅 for some ℎ𝑖𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛] and 𝑔𝑖𝑗, 𝑔′
𝑖𝑘 ∈ 𝐼. Choose a finitely generated

𝐙-subalgebra 𝑅0 ⊂ 𝑅 containing all the coefficients of the polynomials 𝑔𝑖𝑗, ℎ𝑖𝑗, 𝑔′
𝑖𝑘. Set

𝑆0 = 𝑅0[𝑥1, … , 𝑥𝑛]/(𝑔𝑖𝑗, 𝑔′
𝑖𝑘). This works. �

Lemma 7.138.4. Let 𝑅 → 𝑆 be a ring map. If 𝑅 → 𝑆 is unramified, then there exists an
idempotent 𝑒 ∈ 𝑆 ⊗𝑅 𝑆 such that 𝑆 ⊗𝑅 𝑆 → 𝑆 is isomorphic to 𝑆 ⊗𝑅 𝑆 → (𝑆 ⊗𝑅 𝑆)𝑒.

Proof. Let 𝐽 = Ker(𝑆 ⊗𝑅 𝑆 → 𝑆). By assumption 𝐽/𝐽2 = 0, see Lemma 7.122.13. Since
𝑆 is of finite type over 𝑅 we see that 𝐽 is finitely generated, namely by 𝑥𝑖 ⊗ 1 − 1 ⊗ 𝑥𝑖,
where 𝑥𝑖 generate 𝑆 over 𝑅. We win by Lemma 7.18.5. �

Lemma 7.138.5. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 ⊂ 𝑆 be a prime lying over 𝔭 in 𝑅. If
𝑆/𝑅 is unramified at 𝔮 then

(1) we have 𝔭𝑆𝔮 = 𝔮𝑆𝔮 is the maximal ideal of the local ring 𝑆𝔮, and
(2) the field extension 𝜅(𝔭) ⊂ 𝜅(𝔮) is finite separable.

Proof. We may first replace 𝑆 by 𝑆𝑔 for some 𝑔 ∈ 𝑆, 𝑔∉𝔮 and assume that 𝑅 → 𝑆
is unramified. The base change 𝑆 ⊗𝑅 𝜅(𝔭) is unramified over 𝜅(𝔭) by Lemma 7.138.3.
By Lemma 7.129.3 it is smooth hence étale over 𝜅(𝔭). Hence we see that 𝑆 ⊗𝑅 𝜅(𝔭) =
(𝑅 ⧵ 𝔭)−1𝑆/𝔭𝑆 is a product of finite separable field extensions of 𝜅(𝔭) by Lemma 7.132.4.
This implies the lemma. �

Lemma 7.138.6. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝔮 be a prime of 𝑆. If 𝑅 → 𝑆
is unramified at 𝔮 then 𝑅 → 𝑆 is quasi-finite at 𝔮. In particular, an unramified ring map is
quasi-finite.

Proof. An unramified ring map is of finite type. Thus it is clear that the second state-
ment follows from the first. To see the first statement apply the characterization of Lemma
7.113.2 part (2) using Lemma 7.138.5. �

Lemma 7.138.7. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 be a prime of 𝑆 lying over a prime 𝔭 of
𝑅. If

(1) 𝑅 → 𝑆 is of finite type,
(2) 𝔭𝑆𝔮 is the maximal ideal of the local ring 𝑆𝔮, and
(3) the field extension 𝜅(𝔭) ⊂ 𝜅(𝔮) is finite separable,

then 𝑅 → 𝑆 is unramified at 𝔮.
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Proof. By Lemma 7.138.3 (8) it suffices to show that Ω𝑆⊗𝑅𝜅(𝔭)/𝜅(𝔭) is zero when localized
at 𝔮. Hence we may replace 𝑆 by 𝑆⊗𝑅 𝜅(𝔭) and 𝑅 by 𝜅(𝔭). In other words, we may assume
that 𝑅 = 𝑘 is a field and 𝑆 is a finite type 𝑘-algebra. In this case the hypotheses imply that
𝑆𝔮 ≅ 𝜅(𝔮) and hence 𝑆 = 𝜅(𝔮) × 𝑆′ (see Lemma 7.113.1). Hence (Ω𝑆/𝑘)𝔮 = Ω𝜅(𝔮)/𝑘 which
is zero as desired. �

Proposition 7.138.8. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 ⊂ 𝑆 be a prime. If 𝑅 → 𝑆 is
unramified at 𝔮, then there exist

(1) a 𝑔 ∈ 𝑆, 𝑔∉𝔮,
(2) a standard étale ring map 𝑅 → 𝑆′, and
(3) a surjective 𝑅-algebra map 𝑆′ → 𝑆𝑔.

Proof. This proof is the ``same'' as the proof of Proposition 7.132.16. The proof is a little
roundabout and there may be ways to shorten it.

Step 1. By Definition 7.138.1 there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is unramified.
Thus we may assume that 𝑆 is unramified over 𝑅.

Step 2. By Lemma 7.138.3 there exists an unramified ring map 𝑅0 → 𝑆0 with 𝑅0 of finite
type over 𝐙, and a ring map 𝑅0 → 𝑅 such that 𝑆 is a quotient of 𝑅 ⊗𝑅0

𝑆0. Denote 𝔮0
the prime of 𝑆0 corresponding to 𝔮. If we show the result for (𝑅0 → 𝑆0, 𝔮0) then the result
follows for (𝑅 → 𝑆, 𝔮) by base change. Hence we may assume that 𝑅 is Noetherian.

Step 3. Note that 𝑅 → 𝑆 is quasi-finite by Lemma 7.138.6. By Lemma 7.114.15 there
exists a finite ring map 𝑅 → 𝑆′, an 𝑅-algebra map 𝑆′ → 𝑆, an element 𝑔′ ∈ 𝑆′ such
that 𝑔′∉𝔮 such that 𝑆′ → 𝑆 induces an isomorphism 𝑆′

𝑔′ ≅ 𝑆𝑔′. (Note that 𝑆′ may not
unramified over 𝑅.) Thus we may assume that (a) 𝑅 is Noetherian, (b) 𝑅 → 𝑆 is finite and
(c) 𝑅 → 𝑆 is unramified at 𝔮 (but no longer necessarily unramified at all primes).

Step 4. Let 𝔭 ⊂ 𝑅 be the prime corresponding to 𝔮. Consider the fibre ring 𝑆 ⊗𝑅 𝜅(𝔭).
This is a finite algebra over 𝜅(𝔭). Hence it is Artinian (see Lemma 7.49.2) and so a finite
product of local rings

𝑆 ⊗𝑅 𝜅(𝔭) = ∏
𝑛
𝑖=1

𝐴𝑖

see Proposition 7.57.6. One of the factors, say 𝐴1, is the local ring 𝑆𝔮/𝔭𝑆𝔮 which is iso-
morphic to 𝜅(𝔮), see Lemma 7.138.5. The other factors correspond to the other primes, say
𝔮2, … , 𝔮𝑛 of 𝑆 lying over 𝔭.

Step 5. We may choose a nonzero element 𝛼 ∈ 𝜅(𝔮) which generates the finite separable
field extension 𝜅(𝔭) ⊂ 𝜅(𝔮) (so even if the field extension is trivial we do not allow 𝛼 = 0).
Note that for any 𝜆 ∈ 𝜅(𝔭)∗ the element 𝜆𝛼 also generates 𝜅(𝔮) over 𝜅(𝔭). Consider the
element

𝑡 = (𝛼, 0, … , 0) ∈ ∏
𝑛
𝑖=1

𝐴𝑖 = 𝑆 ⊗𝑅 𝜅(𝔭).

After possibly replacing 𝛼 by 𝜆𝛼 as above we may assume that 𝑡 is the image of 𝑡 ∈ 𝑆. Let
𝐼 ⊂ 𝑅[𝑥] be the kernel of the 𝑅-algebra map 𝑅[𝑥] → 𝑆 whichmaps 𝑥 to 𝑡. Set 𝑆′ = 𝑅[𝑥]/𝐼,
so 𝑆′ ⊂ 𝑆. Here is a diagram

𝑅[𝑥] // 𝑆′ // 𝑆

𝑅

OO == 66
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By construction the primes 𝔮𝑗, 𝑗 ≥ 2 of 𝑆 all lie over the prime (𝔭, 𝑥) of 𝑅[𝑥], whereas the
prime 𝔮 lies over a different prime of 𝑅[𝑥] because 𝛼≠0.

Step 6. Denote 𝔮′ ⊂ 𝑆′ the prime of 𝑆′ corresponding to 𝔮. By the above 𝔮 is the only
prime of 𝑆 lying over 𝔮′. Thus we see that 𝑆𝔮 = 𝑆𝔮′, see Lemma 7.36.11 (we have going
up for 𝑆′ → 𝑆 by Lemma 7.32.20 since 𝑆′ → 𝑆 is finite as 𝑅 → 𝑆 is finite). It follows that
𝑆′

𝔮′ → 𝑆𝔮 is finite and injective as the localization of the finite injective ring map 𝑆′ → 𝑆.
Consider the maps of local rings

𝑅𝔭 → 𝑆′
𝔮′ → 𝑆𝔮

The secondmap is finite and injective. We have 𝑆𝔮/𝔭𝑆𝔮 = 𝜅(𝔮), see Lemma 7.138.5. Hence
a fortiori 𝑆𝔮/𝔮′𝑆𝔮 = 𝜅(𝔮). Since

𝜅(𝔭) ⊂ 𝜅(𝔮′) ⊂ 𝜅(𝔮)

and since 𝛼 is in the image of 𝜅(𝔮′) in 𝜅(𝔮) we conclude that 𝜅(𝔮′) = 𝜅(𝔮). Hence by
Nakayama's Lemma 7.14.5 applied to the 𝑆′

𝔮′-module map 𝑆′
𝔮′ → 𝑆𝔮, the map 𝑆′

𝔮′ → 𝑆𝔮
is surjective. In other words, 𝑆′

𝔮′ ≅ 𝑆𝔮.

Step 7. By Lemma 7.117.6 there exists a 𝑔′ ∈ 𝑆′, 𝑔′∉𝔮′ such that 𝑆′
𝑔′ ≅ 𝑆𝑔′. As 𝑅 is

Noetherian the ring 𝑆′ is finite over 𝑅 as it is an 𝑅-submodule of the finite 𝑅-module 𝑆.
Hence after replacing 𝑆 by 𝑆′ we may assume that (a) 𝑅 is Noetherian, (b) 𝑆 finite over 𝑅,
(c) 𝑆 is unramified over 𝑅 at 𝔮, and (d) 𝑆 = 𝑅[𝑥]/𝐼.

Step 8. Consider the ring 𝑆⊗𝑅 𝜅(𝔭) = 𝜅(𝔭)[𝑥]/𝐼 where 𝐼 = 𝐼⋅𝜅(𝔭)[𝑥] is the ideal generated
by 𝐼 in 𝜅(𝔭)[𝑥]. As 𝜅(𝔭)[𝑥] is a PID we know that 𝐼 = (ℎ) for some monic ℎ ∈ 𝜅(𝔭). After
replacing ℎ by 𝜆⋅ℎ for some 𝜆 ∈ 𝜅(𝔭) wemay assume that ℎ is the image of some ℎ ∈ 𝑅[𝑥].
(The problem is that we do not know if we may choose ℎ monic.) Also, as in Step 4 we
know that 𝑆 ⊗𝑅 𝜅(𝔭) = 𝐴1 × … × 𝐴𝑛 with 𝐴1 = 𝜅(𝔮) a finite separable extension of 𝜅(𝔭)
and 𝐴2, … , 𝐴𝑛 local. This implies that

ℎ = ℎ1ℎ𝑒2
2 … ℎ𝑒𝑛

𝑛

for certain pairwise coprime irreduciblemonic polynomialsℎ𝑖 ∈ 𝜅(𝔭)[𝑥] and certain 𝑒2, … , 𝑒𝑛 ≥
1. Here the numbering is chosen so that 𝐴𝑖 = 𝜅(𝔭)[𝑥]/(ℎ𝑒𝑖

𝑖 ) as 𝜅(𝔭)[𝑥]-algebras. Note that
ℎ1 is theminimal polynomial of 𝛼 ∈ 𝜅(𝔮) and hence is a separable polynomial (its derivative
is prime to itself).

Step 9. Let 𝑚 ∈ 𝐼 be a monic element; such an element exists because the ring extension
𝑅 → 𝑅[𝑥]/𝐼 is finite hence integral. Denote 𝑚 the image in 𝜅(𝔭)[𝑥]. We may factor

𝑚 = 𝑘ℎ𝑑1
1 ℎ𝑑2

2 … ℎ𝑑𝑛
𝑛

for some 𝑑1 ≥ 1, 𝑑𝑗 ≥ 𝑒𝑗, 𝑗 = 2, … , 𝑛 and 𝑘 ∈ 𝜅(𝔭)[𝑥] prime to all the ℎ𝑖. Set 𝑓 = 𝑚𝑙 + ℎ
where 𝑙 deg(𝑚) > deg(ℎ), and 𝑙 ≥ 2. Then 𝑓 is monic as a polynomial over 𝑅. Also, the
image 𝑓 of 𝑓 in 𝜅(𝔭)[𝑥] factors as

𝑓 = ℎ1ℎ𝑒2
2 … ℎ𝑒𝑛

𝑛 + 𝑘𝑙ℎ𝑙𝑑1
1 ℎ𝑙𝑑2

2 … ℎ𝑙𝑑𝑛
𝑛 = ℎ1(ℎ𝑒2

2 … ℎ𝑒𝑛
𝑛 + 𝑘𝑙ℎ𝑙𝑑1−1

1 ℎ𝑙𝑑2
2 … ℎ𝑙𝑑𝑛

𝑛 ) = ℎ1𝑤

with 𝑤 a polynomial relatively prime to ℎ1. Set 𝑔 = 𝑓′ (the derivative with respect to 𝑥).

Step 10. The ring map 𝑅[𝑥] → 𝑆 = 𝑅[𝑥]/𝐼 has the properties: (1) it maps 𝑓 to zero, and (2)
it maps 𝑔 to an element of 𝑆⧵𝔮. The first assertion is clear since 𝑓 is an element of 𝐼. For the
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second assertion we just have to show that 𝑔 does not map to zero in 𝜅(𝔮) = 𝜅(𝔭)[𝑥]/(ℎ1).
The image of 𝑔 in 𝜅(𝔭)[𝑥] is the derivative of 𝑓. Thus (2) is clear because

𝑔 =
d𝑓
d𝑥

= 𝑤
dℎ1
d𝑥

+ ℎ1
d𝑤
d𝑥

,

𝑤 is prime to ℎ1 and ℎ1 is separable.

Step 11. We conclude that 𝜑 ∶ 𝑅[𝑥]/(𝑓) → 𝑆 is a surjective ring map, 𝑅[𝑥]𝑔/(𝑓) is étale
over 𝑅 (because it is standard étale, see Lemma 7.132.14) and 𝜑(𝑔)∉𝔮. Thus the map
(𝑅[𝑥]/(𝑓))𝑔 → 𝑆𝜑(𝑔) is the desired surjection. �

Lemma 7.138.9. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 be a prime of 𝑆 lying over 𝔭 ⊂ 𝑅.
Assume that 𝑅 → 𝑆 is of finite type and unramified at 𝔮. Then there exist

(1) an étale ring map 𝑅 → 𝑅′,
(2) a prime 𝔭′ ⊂ 𝑅′ lying over 𝔭.
(3) a product decomposition

𝑅′ ⊗𝑅 𝑆 = 𝐴 × 𝐵

with the following properties
(1) 𝑅′ → 𝐴 is surjective, and
(2) 𝔭′𝐴 is a prime of 𝐴 lying over 𝔭′ and over 𝔮.

Proof. We may replace (𝑅 → 𝑆, 𝔭, 𝔮) with any base change (𝑅′ → 𝑅′ ⊗𝑅 𝑆, 𝔭′, 𝔮′) by a
étale ring map 𝑅 → 𝑅′ with a prime 𝔭′ lying over 𝔭, and a choice of 𝔮′ lying over both 𝔮
and 𝔭′. Note also that given 𝑅 → 𝑅′ and 𝔭′ a suitable 𝔮′ can always be found.

The assumption that 𝑅 → 𝑆 is of finite type means that we may apply Lemma 7.132.23.
Thus we may assume that 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵, that each 𝑅 → 𝐴𝑖 is finite with exactly
one prime 𝔯𝑖 lying over 𝔭 such that 𝜅(𝔭) ⊂ 𝜅(𝔯𝑖) is purely inseparable and that 𝑅 → 𝐵 is not
quasi-finite at any prime lying over 𝔭. Then clearly 𝔮 = 𝔯𝑖 for some 𝑖, since an unramified
morphism is quasi-finite (see Lemma 7.138.6). Say 𝔮 = 𝔯1. By Lemma 7.138.5 we see that
𝜅(𝔭) ⊂ 𝜅(𝔯1) is separable hence the trivial field extension, and that 𝔭(𝐴1)𝔯1

is the maximal
ideal. Also, by Lemma 7.36.11 (which applies to 𝑅 → 𝐴1 because a finite ringmap satisfies
going up by Lemma 7.32.20) we have (𝐴1)𝔯1

= (𝐴1)𝔭. It follows from Nakayama's Lemma
7.14.5 that the map of local rings 𝑅𝔭 → (𝐴1)𝔭 = (𝐴1)𝔯1

is surjective. Since 𝐴1 is finite
over 𝑅 we see that there exists a 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that 𝑅𝑓 → (𝐴1)𝑓 is surjective. After
replacing 𝑅 by 𝑅𝑓 we win. �

Lemma 7.138.10. Let 𝑅 → 𝑆 be a ring map. Let 𝔭 be a prime of 𝑅. If 𝑅 → 𝑆 is unramified
then there exist

(1) an étale ring map 𝑅 → 𝑅′,
(2) a prime 𝔭′ ⊂ 𝑅′ lying over 𝔭.
(3) a product decomposition

𝑅′ ⊗𝑅 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵

with the following properties
(1) 𝑅′ → 𝐴𝑖 is surjective,
(2) 𝔭′𝐴𝑖 is a prime of 𝐴𝑖 lying over 𝔭′, and
(3) there is no prime of 𝐵 lying over 𝔭′.
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Proof. We may apply Lemma 7.132.23. Thus, after an étale base change, we may assume
that 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵, that each 𝑅 → 𝐴𝑖 is finite with exactly one prime 𝔯𝑖 lying over
𝔭 such that 𝜅(𝔭) ⊂ 𝜅(𝔯𝑖) is purely inseparable, and that 𝑅 → 𝐵 is not quasi-finite at any
prime lying over 𝔭. Since 𝑅 → 𝑆 is quasi-finite (see Lemma 7.138.6) we see there is no
prime of 𝐵 lying over 𝔭. By Lemma 7.138.5 we see that 𝜅(𝔭) ⊂ 𝜅(𝔯𝑖) is separable hence
the trivial field extension, and that 𝔭(𝐴𝑖)𝔯𝑖

is the maximal ideal. Also, by Lemma 7.36.11
(which applies to 𝑅 → 𝐴𝑖 because a finite ring map satisfies going up by Lemma 7.32.20)
we have (𝐴𝑖)𝔯𝑖

= (𝐴𝑖)𝔭. It follows from Nakayama's Lemma 7.14.5 that the map of local
rings 𝑅𝔭 → (𝐴𝑖)𝔭 = (𝐴𝑖)𝔯𝑖

is surjective. Since 𝐴𝑖 is finite over 𝑅 we see that there exists a
𝑓 ∈ 𝑅, 𝑓∉𝔭 such that 𝑅𝑓 → (𝐴𝑖)𝑓 is surjective. After replacing 𝑅 by 𝑅𝑓 we win. �

7.139. Henselian local rings

In this section we discuss a bit the notion of a henselian local ring. Let (𝑅, 𝔪, 𝜅) be a local
ring. For 𝑎 ∈ 𝑅 we denote 𝑎 the image of 𝑎 in 𝜅. For a polynomial 𝑓 ∈ 𝑅[𝑇] we often
denote 𝑓 the image of 𝑓 in 𝜅[𝑇]. Given a polynomial 𝑓 ∈ 𝑅[𝑇] we denote 𝑓′ the derivative
of 𝑓 with respect to 𝑇. Note that 𝑓′ = 𝑓′.

Definition 7.139.1. Let (𝑅, 𝔪, 𝜅) be a local ring.
(1) We say 𝑅 is henselian if for every monic 𝑓 ∈ 𝑅[𝑇] and every root 𝑎0 ∈ 𝜅 of 𝑓

such that 𝑓′(𝑎0)≠0 there exists an 𝑎 ∈ 𝑅 such that 𝑓(𝑎) = 0 and 𝑎0 = 𝑎.
(2) We say 𝑅 is strictly henselian if 𝑅 is henselian and its residue field is separably

algebraically closed.

Note that the condition 𝑓′(𝑎0)≠0 is equivalent to the condition that 𝑎0 is a simple root of
the polynomial 𝑓. In fact, it implies that the lift 𝑎 ∈ 𝑅, if it exists, is unique.

Lemma 7.139.2. Let (𝑅, 𝔪, 𝜅) be a local ring. Let 𝑓 ∈ 𝑅[𝑇]. Let 𝑎, 𝑏 ∈ 𝑅 such that
𝑓(𝑎) = 𝑓(𝑏) = 0, 𝑎 = 𝑏 mod 𝔪, and 𝑓′(𝑎)∉𝔪. Then 𝑎 = 𝑏.

Proof. Write 𝑓(𝑥+𝑦)−𝑓(𝑥) = 𝑓′(𝑥)𝑦+𝑔(𝑥, 𝑦)𝑦2 in 𝑅[𝑥, 𝑦] (this is possible as one sees by
expaning 𝑓(𝑥+𝑦); details omitted). Thenwe see that 0 = 𝑓(𝑏)−𝑓(𝑎) = 𝑓(𝑎+(𝑏−𝑎))−𝑓(𝑎) =
𝑓′(𝑎)(𝑏 − 𝑎) + 𝑐(𝑏 − 𝑎)2 for some 𝑐 ∈ 𝑅. By assumption 𝑓′(𝑎) is a unit in 𝑅. Hence
(𝑏 − 𝑎)(1 + 𝑓′(𝑎)−1𝑐(𝑏 − 𝑎)) = 0. By assumption 𝑏 − 𝑎 ∈ 𝔪, hence 1 + 𝑓′(𝑎)−1𝑐(𝑏 − 𝑎) is
a unit in 𝑅. Hence 𝑏 − 𝑎 = 0 in 𝑅. �

Here is the characterization of henselian local rings.

Lemma 7.139.3. Let (𝑅, 𝔪, 𝜅) be a local ring. The following are equivalent
(1) 𝑅 is henselian,
(2) for every 𝑓 ∈ 𝑅[𝑇] and every root 𝑎0 ∈ 𝜅 of 𝑓 such that 𝑓′(𝑎0)≠0 there exists an

𝑎 ∈ 𝑅 such that 𝑓(𝑎) = 0 and 𝑎0 = 𝑎,
(3) for any monic 𝑓 ∈ 𝑅[𝑇] and any factorization 𝑓 = 𝑔0ℎ0 with gcd(𝑔0, ℎ0) = 1

there exists a factorization 𝑓 = 𝑔ℎ in 𝑅[𝑇] such that 𝑔0 = 𝑔 and ℎ0 = ℎ,
(4) for any monic 𝑓 ∈ 𝑅[𝑇] and any factorization 𝑓 = 𝑔0ℎ0 with gcd(𝑔0, ℎ0) = 1

there exists a factorization 𝑓 = 𝑔ℎ in 𝑅[𝑇] such that 𝑔0 = 𝑔 and ℎ0 = ℎ and
moreover deg𝑇(𝑔) = deg𝑇(𝑔0),

(5) for any 𝑓 ∈ 𝑅[𝑇] and any factorization 𝑓 = 𝑔0ℎ0 with gcd(𝑔0, ℎ0) = 1 there
exists a factorization 𝑓 = 𝑔ℎ in 𝑅[𝑇] such that 𝑔0 = 𝑔 and ℎ0 = ℎ,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04GF
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06RR
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04GG
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(6) for any 𝑓 ∈ 𝑅[𝑇] and any factorization 𝑓 = 𝑔0ℎ0 with gcd(𝑔0, ℎ0) = 1 there
exists a factorization 𝑓 = 𝑔ℎ in 𝑅[𝑇] such that 𝑔0 = 𝑔 and ℎ0 = ℎ and moreover
deg𝑇(𝑔) = deg𝑇(𝑔0),

(7) for any étale ring map 𝑅 → 𝑆 and prime 𝔮 of 𝑆 lying over 𝔪 with 𝜅 = 𝜅(𝔮) there
exists a section 𝜏 ∶ 𝑆 → 𝑅 of 𝑅 → 𝑆,

(8) for any étale ring map 𝑅 → 𝑆 and prime 𝔮 of 𝑆 lying over 𝔪 with 𝜅 = 𝜅(𝔮) there
exists a section 𝜏 ∶ 𝑆 → 𝑅 of 𝑅 → 𝑆 with 𝔮 = 𝜏−1(𝔪),

(9) any finite 𝑅-algebra is a product of local rings,
(10) any finite 𝑅-algebra is a finite product of local rings,
(11) any finite type 𝑅-algebra 𝑆 can be written as 𝐴×𝐵 with 𝑅 → 𝐴 finite and 𝑅 → 𝐵

not quasi-finite at any prime lying over 𝔪,
(12) any finite type 𝑅-algebra 𝑆 can be written as 𝐴 × 𝐵 with 𝑅 → 𝐴 finite such that

each irreducible component of 𝑆𝑝𝑒𝑐(𝐵 ⊗𝑅 𝜅) has dimension ≥ 1, and
(13) any quasi-finite 𝑅-algebra 𝑆 can be written as 𝑆 = 𝐴 × 𝐵 with 𝑅 → 𝐴 finite such

that 𝐵 ⊗𝑅 𝜅 = 0.

Proof. Here is a list of the easier implications:
2⇒1 because in (2) we consider all polynomials and in (1) only monic ones,
5⇒3 because in (5) we consider all polynomials and in (3) only monic ones,
6⇒4 because in (6) we consider all polynomials and in (4) only monic ones,
4⇒3 is obvious,
6⇒5 is obvious,
8⇒7 is obvious,

10⇒9 is obvious,
11⇔12 by definition of being quasi-finite at a prime,
11⇒13 by definition of being quasi-finite,

Proof of 1⇒8. Assume (1). Let 𝑅 → 𝑆 be étale, and let 𝔮 ⊂ 𝑆 be a prime ideal such that
𝜅(𝔮) ≅ 𝜅. By Proposition 7.132.16 we can find a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑅 → 𝑆𝑔 is standard
étale. After replacing 𝑆 by 𝑆𝑔 we may assume that 𝑆 = 𝑅[𝑡]𝑔/(𝑓) is standard étale. Since
the prime 𝔮 has residue field 𝜅 it corresponds to a root 𝑎0 of 𝑓 which is not a root of 𝑔. By
definition of a standard étale algebra this also means that 𝑓′(𝑎0)≠0. Since also 𝑓 is monic
by definition of a standard étale algebra again we may use that 𝑅 is henselian to conclude
that there exists an 𝑎 ∈ 𝑅 with 𝑎0 = 𝑎 such that 𝑓(𝑎) = 0. This implies that 𝑔(𝑎) is a
unit of 𝑅 and we obtain the desired map 𝜏 ∶ 𝑆 = 𝑅[𝑡]𝑔/(𝑓) → 𝑅 by the rule 𝑡 ↦ 𝑎. By
construction 𝜏−1(𝔮) = 𝔪. This proves (8) holds.

Proof of 7⇒8. (This is really unimportant and should be skipped.) Assume (7) holds and
assume 𝑅 → 𝑆 is étale. Let 𝔮1, … , 𝔮𝑟 be the other primes of 𝑆 lying over 𝔪. Then we can
find a 𝑔 ∈ 𝑆, 𝑔∉𝔮 and 𝑔 ∈ 𝔮𝑖 for 𝑖 = 1, … , 𝑟, see Lemma 7.14.3. Apply (7) to the étale
ring map 𝑅 → 𝑆𝑔 and the prime 𝔮𝑆𝑔. This gives a section 𝜏𝑔 ∶ 𝑆𝑔 → 𝑅 such that the
composition 𝜏 ∶ 𝑆 → 𝑆𝑔 → 𝑅 has the property 𝜏−1(𝔮) = 𝔪. Minor details omitted.

Proof of 8⇒11. Assume (8) and let 𝑅 → 𝑆 be a finite type ring map. Apply Lemma
7.132.22. We find an étale ring map 𝑅 → 𝑅′ and a prime 𝔪′ ⊂ 𝑅′ lying over 𝔪 with
𝜅 = 𝜅(𝔪′) such that 𝑅′ ⊗𝑅 𝑆 = 𝐴′ × 𝐵′ with 𝐴′ finite over 𝑅′ and 𝐵′ not quasi-finite over
𝑅′ at any prime lying over 𝔪′. Apply (8) to get a section 𝜏 ∶ 𝑅′ → 𝑅 with 𝔪 = 𝜏−1(𝔪′).
Then use that

𝑆 = (𝑆 ⊗𝑅 𝑅′) ⊗𝑅′,𝜏 𝑅 = (𝐴′ × 𝐵′) ⊗𝑅′,𝜏 𝑅 = (𝐴′ ⊗𝑅′,𝜏 𝑅) × (𝐵′ ⊗𝑅′,𝜏 𝑅)
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which gives a decomposition as in (11).

Proof of 8⇒10. Assume (8) and let 𝑅 → 𝑆 be a finite ring map. Apply Lemma 7.132.22.
We find an étale ring map 𝑅 → 𝑅′ and a prime 𝔪′ ⊂ 𝑅′ lying over 𝔪 with 𝜅 = 𝜅(𝔪′) such
that 𝑅′ ⊗𝑅 𝑆 = 𝐴′

1 × … × 𝐴′
𝑛 × 𝐵′ with 𝐴′

𝑖 finite over 𝑅′ having exactly one prime over
𝔪′ and 𝐵′ not quasi-finite over 𝑅′ at any prime lying over 𝔪′. Apply (8) to get a section
𝜏 ∶ 𝑅′ → 𝑅 with 𝔪 = 𝜏−1(𝔪′). Then we obtain

𝑆 = (𝑆 ⊗𝑅 𝑅′) ⊗𝑅′,𝜏 𝑅
= (𝐴′

1 × … × 𝐴′
𝑛 × 𝐵′) ⊗𝑅′,𝜏 𝑅

= (𝐴′
1 ⊗𝑅′,𝜏 𝑅) × … × (𝐴′

1 ⊗𝑅′,𝜏 𝑅) × (𝐵′ ⊗𝑅′,𝜏 𝑅)
= 𝐴1 × … × 𝐴𝑛 × 𝐵

The factor 𝐵 is finite over 𝑅 but 𝑅 → 𝐵 is not quasi-finite at any prime lying over 𝔪. Hence
𝐵 = 0. The factors 𝐴𝑖 are finite 𝑅-algebras having exactly one prime lying over 𝔪, hence
they are local rings. This proves that 𝑆 is a finite product of local rings.

Proof of 9⇒10. This holds because if 𝑆 is finite over the local ring 𝑅, then it has at most
finitely many maximal ideals. Namely, by going up for 𝑅 → 𝑆 the maximal ideals of 𝑆 all
lie over 𝔪, and 𝑆/𝔪𝑆 is Artinian hence has finitely many primes.

Proof of 10⇒1. Assume (10). Let 𝑓 ∈ 𝑅[𝑇] be a monic polynomial and 𝑎0 ∈ 𝜅 a simple
root of 𝑓. Then 𝑆 = 𝑅[𝑇]/(𝑓) is a finite 𝑅-algebra. Applying (10) we get 𝑆 = 𝐴1 × … × 𝐴𝑟
is a finite product of local 𝑅-algebras. In particular we see that 𝑆/𝔪𝑆 = ∏ 𝐴𝑖/𝔪𝐴𝑖 is the
decomposition of 𝜅[𝑇]/(𝑓) as a product of local rings. This means that one of the factors, say
𝐴1/𝔪𝐴1 is the quotient 𝜅[𝑇]/(𝑓) → 𝜅[𝑇]/(𝑇 − 𝑎0). Since 𝐴1 is a summand of the finite free
𝑅-module 𝑆 it is a finite free 𝑅-module itself. As 𝐴1/𝔪𝐴1 is a 𝜅-vector space of dimension
1 we see that 𝐴1 ≅ 𝑅 as an 𝑅-module. Clearly this means that 𝑅 → 𝐴1 is an isomorphism.
Let 𝑎 ∈ 𝑅 be the image of 𝑇 under the map 𝑅[𝑇] → 𝑆 → 𝐴1 → 𝑅. Then 𝑓(𝑎) = 0 and
𝑎 = 𝑎0 as desired.

Proof of 13⇒1. Assume (13). Let 𝑓 ∈ 𝑅[𝑇] be a monic polynomial and 𝑎0 ∈ 𝜅 a simple
root of 𝑓. Then 𝑆1 = 𝑅[𝑇]/(𝑓) is a finite 𝑅-algebra. Let 𝑔 ∈ 𝑅[𝑇] be any element such
that 𝑔 = 𝑓/(𝑇 − 𝑎0). Then 𝑆 = (𝑆1)𝑔 is a quasi-finite 𝑅-algebra such that 𝑆 ⊗𝑅 𝜅 ≅
𝜅[𝑇]𝑔/(𝑓) ≅ 𝜅[𝑇]/(𝑇 − 𝑎0) ≅ 𝜅. Applying (13) to 𝑆 we get 𝑆 = 𝐴 × 𝐵 with 𝐴 finite over 𝑅
and 𝐵 ⊗𝑅 𝜅 = 0. In particular we see that 𝜅 ≅ 𝑆/𝔪𝑆 = 𝐴/𝔪𝐴. Since 𝐴 is a summand of
the flat 𝑅-algebra 𝑆 we see that it is finite flat, hence free over 𝑅. As 𝐴/𝔪𝐴 is a 𝜅-vector
space of dimension 1 we see that 𝐴 ≅ 𝑅 as an 𝑅-module. Clearly this means that 𝑅 → 𝐴
is an isomorphism. Let 𝑎 ∈ 𝑅 be the image of 𝑇 under the map 𝑅[𝑇] → 𝑆 → 𝐴 → 𝑅.
Then 𝑓(𝑎) = 0 and 𝑎 = 𝑎0 as desired.

Proof of 8⇒2. Assume (8). Let 𝑓 ∈ 𝑅[𝑇] be any polynomial and let 𝑎0 ∈ 𝜅 be a simple
root. Then the algebra 𝑆 = 𝑅[𝑇]𝑓′/(𝑓) is étale over 𝑅. Let 𝔮 ⊂ 𝑆 be the prime generated
by 𝔪 and 𝑇 − 𝑏 where 𝑏 ∈ 𝑅 is any element such that 𝑏 = 𝑎0. Apply (8) to 𝑆 and 𝔮 to get
𝜏 ∶ 𝑆 → 𝑅. Then the image 𝜏(𝑇) = 𝑎 ∈ 𝑅 works in (2).

At this point we see that (1), (2), (7), (8), (9), (10), (11), (12), (13) are all equivalent. The
weakest assertion of (3), (4), (5) and (6) is (3) and the strongest is (6). Hence we still have
to prove that (3) implies (1) and (1) implies (6).

Proof of 3⇒1. Assume (3). Let 𝑓 ∈ 𝑅[𝑇] be monic and let 𝑎0 ∈ 𝜅 be a simple root
of 𝑓. This gives a factorization 𝑓 = (𝑇 − 𝑎0)ℎ0 with ℎ0(𝑎0)≠0, so gcd(𝑇 − 𝑎0, ℎ0) = 1.
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Apply (3) to get a factorization 𝑓 = 𝑔ℎ with 𝑔 = 𝑇 − 𝑎0 and ℎ = ℎ0. Set 𝑆 = 𝑅[𝑇]/(𝑓)
which is a finite free 𝑅-algebra. We will write 𝑔, ℎ also for the images of 𝑔 and ℎ in 𝑆.
Then 𝑔𝑆 + ℎ𝑆 = 𝑆 by Nakayama's Lemma 7.14.5 as the equality holds modulo 𝔪. Since
𝑔ℎ = 𝑓 = 0 in 𝑆 this also implies that 𝑔𝑆 ∩ ℎ𝑆 = 0. Hence by the Chinese Remainder
theorem we obtain 𝑆 = 𝑆/(𝑔) × 𝑆/(ℎ). This implies that 𝐴 = 𝑆/(𝑔) is a summand of a finite
free 𝑅-module, hence finite free. Moreover, the rank of 𝐴 is 1 as 𝐴/𝔪𝐴 = 𝜅[𝑇]/(𝑇 − 𝑎0).
Thus the map 𝑅 → 𝐴 is an isomorphism. Setting 𝑎 ∈ 𝑅 equal to the image of 𝑇 under the
maps 𝑅[𝑇] → 𝑆 → 𝐴 → 𝑅 gives an element of 𝑅 with 𝑓(𝑎) = 0 and 𝑎 = 𝑎0.

Proof of 1⇒6. Assume (1) or equivalently all of (1), (2), (7), (8), (9), (10), (11), (12), (13).
Let 𝑓 ∈ 𝑅[𝑇] be a polynomial. Suppose that 𝑓 = 𝑔0ℎ0 is a factorization with gcd(𝑔0, ℎ0) =
1. We may and do assume that 𝑔0 is monic. Consider 𝑆 = 𝑅[𝑇]/(𝑓). Because we have the
factorization we see that the coefficients of 𝑓 generate the unit ideal in 𝑅. This implies that
𝑆 has finite fibres over 𝑅, hence is quasi-finite over 𝑅. It also implies that 𝑆 is flat over 𝑅
by Lemma 7.91.2. Combining (13) and (10) we may write 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵 where
each 𝐴𝑖 is local and finite over 𝑅, and 𝐵 ⊗𝑅 𝜅 = 0. After reordering the factors 𝐴1, … , 𝐴𝑛
we may assume that

𝜅[𝑇]/(𝑔0) = 𝐴1/𝔪𝐴1 × … × 𝐴𝑟/𝔪𝐴𝑟, 𝜅[𝑇]/(ℎ0) = 𝐴𝑟+1/𝔪𝐴𝑟+1 × … × 𝐴𝑛/𝔪𝐴𝑛

as quotients of 𝜅[𝑇]. The finite flat 𝑅-algebra 𝐴 = 𝐴1 × … × 𝐴𝑟 is free as an 𝑅-module, see
Lemma 7.72.4. Its rank is deg𝑇(𝑔0). Let 𝑔 ∈ 𝑅[𝑇] be the characteristic polynomial of the
𝑅-linear operator 𝑇 ∶ 𝐴 → 𝐴. Then 𝑔 is a monic polynomial of degree deg𝑇(𝑔) = deg𝑇(𝑔0)
and moreover 𝑔 = 𝑔0. By Cayley-Hamilton (Lemma 7.15.1) we see that 𝑔(𝑇𝐴) = 0 where
𝑇𝐴 indicates the image of 𝑇 in 𝐴. Hence we obtain a well defined surjective map 𝑅[𝑇]/(𝑔) →
𝐴 which is an isomorphism by Nakayama's Lemma 7.14.5. The map 𝑅[𝑇] → 𝐴 factors
through 𝑅[𝑇]/(𝑓) by construction hence we may write 𝑓 = 𝑔ℎ for some ℎ. This finishes the
proof. �

Lemma 7.139.4. Let (𝑅, 𝔪, 𝜅) be a henselian local ring.
(1) If 𝑅 ⊂ 𝑆 is a finite ring extension then 𝑆 is a finite product of henselian local

rings.
(2) If 𝑅 ⊂ 𝑆 is a finite local homomorphism of local rings, then 𝑆 is a henselian

local ring.
(3) If 𝑅 → 𝑆 is a finite type ring map, and 𝔮 is a prime of 𝑆 lying over 𝔪 at which

𝑅 → 𝑆 is quasi-finite, then 𝑆𝔮 is henselian.
(4) If 𝑅 → 𝑆 is quasi-finite then 𝑆𝔮 is henselian for every prime 𝔮 lying over 𝔪.

Proof. Part (2) implies part (1) since 𝑆 as in part (1) is a finite product of its localizations
at the primes lying over 𝔪. Part (2) follows from Lemma 7.139.3 part (10) since any finite
𝑆-algebra is also a finite 𝑅-algebra. If 𝑅 → 𝑆 and 𝔮 are as in (3), then 𝑆𝔮 is a local ring of a
finite 𝑅-algebra by Lemma 7.139.3 part (11). Hence (3) follows from (1). Part (4) follows
from part (3). �

Lemma 7.139.5. A filtered colimit of henselian local rings along local homorphisms is
henselian.

Proof. Categories, Lemma 4.19.3 says that this is really just a question about a colimit of
henselian local rings over a directed partially ordered set. Let (𝑅𝑖, 𝜑𝑖𝑖′) be such a system
with each 𝜑𝑖𝑖′ local. Then 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖 is local, and its residue field 𝜅 is 𝑐𝑜𝑙𝑖𝑚 𝜅𝑖 (argu-
ment omitted). Suppose that 𝑓 ∈ 𝑅[𝑇] is monic and that 𝑎0 ∈ 𝜅 is a simple root of 𝑓. Then
for some large enough 𝑖 there exists an 𝑓𝑖 ∈ 𝑅𝑖[𝑇] mapping to 𝑓 and an 𝑎0,𝑖 ∈ 𝜅𝑖 mapping

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04GH
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to 𝑎0. Since 𝑓𝑖(𝑎0,𝑖) ∈ 𝜅𝑖, resp. 𝑓′
𝑖 (𝑎0,𝑖) ∈ 𝜅𝑖 maps to 0 = 𝑓(𝑎0) ∈ 𝜅, resp. 0≠𝑓′(𝑎0) ∈ 𝜅

we conclude that 𝑎0,𝑖 is a simple root of 𝑓𝑖. As 𝑅𝑖 is henselian we can find 𝑎𝑖 ∈ 𝑅𝑖 such
that 𝑓𝑖(𝑎𝑖) = 0 and 𝑎0,𝑖 = 𝑎𝑖. Then the image 𝑎 ∈ 𝑅 of 𝑎𝑖 is the desired solution. Thus 𝑅 is
henselian. �

Lemma 7.139.6. Let (𝑅, 𝔪, 𝜅) be a henselian local ring. Any finite type 𝑅-algebra 𝑆 can
be written as 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵 with 𝐴𝑖 local and finite over 𝑅 and 𝑅 → 𝐵 not
quasi-finite at any prime of 𝐵 lying over 𝔪.

Proof. This is a combination of parts (11) and (10) of Lemma 7.139.3. �

Lemma 7.139.7. Let (𝑅, 𝔪, 𝜅) be a strictly henselian local ring. Any finite type 𝑅-algebra
𝑆 can be written as 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵 with 𝐴𝑖 local and finite over 𝑅 and 𝜅 ⊂ 𝜅(𝔪𝐴𝑖

)
finite purely inseparable and 𝑅 → 𝐵 not quasi-finite at any prime of 𝐵 lying over 𝔪.

Proof. First write 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵 as in Lemma 7.139.6. The field extension 𝜅 ⊂
𝜅(𝔪𝐴𝑖

) is finite and 𝜅 is separably algebraically closed, hence it is finite purely inseparable.
�

Lemma 7.139.8. Let (𝑅, 𝔪, 𝜅) be a henselian local ring. The category of finite étale ring
extensions 𝑅 → 𝑆 is equivalent to the category of finite étale algebras 𝜅 → 𝑆 via the
functor 𝑆 ↦ 𝑆/𝔪𝑆.

Proof. Denote 𝒞 → 𝒟 the functor of categories of the statement. Suppose that 𝑅 → 𝑆 is
finite étale. Then we may write

𝑆 = 𝐴1 × … × 𝐴𝑛

with 𝐴𝑖 local and finite étale over 𝑆, use either Lemma 7.139.6 or Lemma 7.139.3 part (10).
In particular 𝐴𝑖/𝔪𝐴𝑖 is a finite separable field extension of 𝜅, see Lemma 7.132.5. Thus
we see that every object of 𝒞 and 𝒟 decomposes canonically into irreducible pieces which
correspond via the given functor. Next, suppose that 𝑆1, 𝑆2 are finite étale over 𝑅 such
that 𝜅1 = 𝑆1/𝔪𝑆1 and 𝜅2 = 𝑆2/𝔪𝑆2 are fields (finite separable over 𝜅). Then 𝑆1 ⊗𝑅 𝑆2 is
finite étale over 𝑅 and we may write

𝑆1 ⊗𝑅 𝑆2 = 𝐴1 × … × 𝐴𝑛

as before. Then we see that 𝐻𝑜𝑚𝑅(𝑆1, 𝑆2) is identified with the set of indices 𝑖 ∈ {1, … , 𝑛}
such that 𝑆2 → 𝐴𝑖 is an isomorphism. To see this use that given any 𝑅-algebra map
𝜑 ∶ 𝑆1 → 𝑆2 the map 𝜑 × 1 ∶ 𝑆1 ⊗𝑅 𝑆2 → 𝑆2 is surjective, and hence is equal to
projection onto one of the factors 𝐴𝑖. But in exectly the same way we see that 𝐻𝑜𝑚𝜅(𝜅1, 𝜅2)
is identifiedwith the set of indices 𝑖 ∈ {1, … , 𝑛} such that 𝜅2 → 𝐴𝑖/𝔪𝐴𝑖 is an isomorphism.
By the discussion above these sets of indices match, and we conclude that our functor is
fully faithful. Finally, let 𝜅 ⊂ 𝜅′ be a finite separable field extension. By Lemma 7.132.15
there exists an étale ring map 𝑅 → 𝑆 and a prime 𝔮 of 𝑆 lying over 𝔪 such that 𝜅 ⊂ 𝜅(𝔮) is
isomorphic to the given extension. By part (1) we may write 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵. Since
𝑅 → 𝑆 is quasi-finite we see that there exists no prime of 𝐵 over 𝔪. Hence 𝑆𝔮 is equal to
𝐴𝑖 for some 𝑖. Hence 𝑅 → 𝐴𝑖 is finite étale and produces the given residue field extension.
Thus the functor is essentially surjective and we win. �

Lemma 7.139.9. Let (𝑅, 𝔪, 𝜅) be a strictly henselian local ring. Let 𝑅 → 𝑆 be an unram-
ified ring map. Then

𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵
with each 𝑅 → 𝐴𝑖 surjective and no prime of 𝐵 lying over 𝔪.
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Proof. First write 𝑆 = 𝐴1 × … × 𝐴𝑛 × 𝐵 as in Lemma 7.139.6. Now we see that 𝑅 → 𝐴𝑖 is
finite unramified and 𝐴𝑖 local. Hence the maximal ideal of 𝐴𝑖 is 𝔪𝐴𝑖 and its residue field
𝐴𝑖/𝔪𝐴𝑖 is a finite separable extension of 𝜅, see Lemma 7.138.5. However, the condition
that 𝑅 is strictly henselian means that 𝜅 is separably algebraically closed, so 𝜅 = 𝐴𝑖/𝔪𝐴𝑖.
By Nakayama's Lemma 7.14.5 we conclude that 𝑅 → 𝐴𝑖 is surjective as desired. �

Lemma 7.139.10. Let (𝑅, 𝔪, 𝜅) be a complete local ring, see Definition 7.143.1. Then 𝑅
is henselian.

Proof. Let 𝑓 ∈ 𝑅[𝑇] be monic. Denote 𝑓𝑛 ∈ 𝑅/𝔪𝑛+1[𝑇] the image. Denote 𝑓′
𝑛 the deriva-

tive of 𝑓𝑛 with respect to 𝑇. Let 𝑎0 ∈ 𝜅 be a simple root of 𝑓0. We lift this to a solution of 𝑓
over 𝑅 inductively as follows: Suppose given 𝑎𝑛 ∈ 𝑅/𝔪𝑛+1 such that 𝑎𝑛 mod 𝔪 = 𝑎0
and 𝑓𝑛(𝑎𝑛) = 0. Pick any element 𝑏 ∈ 𝑅/𝔪𝑛+2 such that 𝑎𝑛 = 𝑏 mod 𝔪𝑛+1. Then
𝑓𝑛+1(𝑏) ∈ 𝔪𝑛+1/𝔪𝑛+2. Set

𝑎𝑛+1 = 𝑏 − 𝑓𝑛+1(𝑏)/𝑓′
𝑛+1(𝑏)

(Newton's method). This makes sense as 𝑓′
𝑛+1(𝑏) ∈ 𝑅𝑛+1 is invertible by the condition on

𝑎0. Then we compute 𝑓𝑛+1(𝑎𝑛+1) = 𝑓𝑛+1(𝑏) − 𝑓𝑛+1(𝑏) = 0 in 𝑅/𝔪𝑛+2. Since the system of
elements 𝑎𝑛 ∈ 𝑅/𝔪𝑛+1 so constructed is compatible we get an element 𝑎 ∈ 𝑙𝑖𝑚 𝑅/𝔪 = 𝑅
(here we use that 𝑅 is complete). Moreover, 𝑓(𝑎) = 0 since it maps to zero in each 𝑅/𝔪𝑛.
Finally 𝑎 = 𝑎0 and we win. �

Lemma 7.139.11. Let (𝑅, 𝔪) be a local ring of dimension 0. Then 𝑅 is henselian.

Proof. Let 𝑅 → 𝑆 be a finite ring map. By Lemma 7.139.3 it suffices to show that 𝑆 is a
product of local rings. By Lemma 7.32.19 𝑆 has finitely many primes 𝔪1, … , 𝔪𝑟 which all
lie over 𝔪. There are no inclusions among these primes, see Lemma 7.32.18, hence they
are all maximal. Every element of 𝔪1 ∩ … ∩ 𝔪𝑟 is nilpotent by Lemma 7.16.2. It follows
𝑆 is the product of the localizations of 𝑆 at the primes 𝔪𝑖 by Lemma 7.49.7. �

Lemma 7.139.12. Let (𝑅, 𝔪, 𝜅) be a local ring. There exists a canonical local ring map
𝑅 → 𝑅ℎ with the following properties

(1) 𝑅ℎ is henselian,
(2) 𝑅ℎ is a filtered colimit of étale 𝑅-algebras,
(3) 𝔪𝑅ℎ is the maximal ideal of 𝑅ℎ, and
(4) 𝜅 = 𝑅ℎ/𝔪𝑅ℎ.

Proof. Consider the cateory of pairs (𝑆, 𝔮) where 𝑅 → 𝑆 is an étale ring map, and 𝔮 is a
prime of 𝑆 lying over 𝔪 with 𝜅 = 𝜅(𝔮). A morphism of pairs (𝑆, 𝔮) → (𝑆′, 𝔮′) is given by
an 𝑅-algebra map 𝜑 ∶ 𝑆 → 𝑆′ such that 𝜑−1(𝔮′) = 𝔮. We set

𝑅ℎ = 𝑐𝑜𝑙𝑖𝑚(𝑆,𝔮) 𝑆.

This clearly implies that 𝑅ℎ is canonical, since no choices were made in this construction.
Moreover, property (2) is clear.

Let us show that the category of pairs is filtered, see Categories, Definition 4.17.1. The cat-
egory contains the pair (𝑅, 𝔪) and hence is not empty, which proves part (1) of Categories,
Definition 4.17.1. Note that for any pair (𝑆, 𝔮) the prime ideal 𝔮 is maximal, for example
since 𝜅 → 𝑆/𝔮 ⊂ 𝜅(𝔮) are isomorphisms. Suppose that (𝑆, 𝔮) and (𝑆′, 𝔮′) are two objects.
Set 𝑆″ = 𝑆⊗𝑅 𝑆′ and 𝔮″ = 𝔮𝑆″ +𝔮′𝑆″. Then 𝑆″/𝔮″ = 𝑆/𝔮⊗𝑅 𝑆′/𝔮′ = 𝜅 by what we said
above. Moreover, 𝑅 → 𝑆″ is étale by Lemma 7.132.3. This proves part (2) of Categories,
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Definition 4.17.1. Next, suppose that 𝜑, 𝜓 ∶ (𝑆, 𝔮) → (𝑆′, 𝔮′) are two morphisms of pairs.
Consider

𝑆″ = (𝑆′ ⊗𝜑,𝑆,𝜓 𝑆′) ⊗𝑆′⊗𝑅𝑆′ 𝑆′

with prime ideal

𝔮″ = (𝔮′ ⊗ 𝑆′ + 𝑆′ ⊗ 𝔮′) ⊗ 𝑆′ + (𝑆′ ⊗𝜑,𝑆,𝜓 𝑆′) ⊗ 𝔮′

Arguing as above (base change of étale maps is étale, composition of étale maps is étale)
we see that 𝑆″ is étale over 𝑅. Moreover, the canonical map 𝑆′ → 𝑆″ (using the right
most factor for example) equalizes 𝜑 and 𝜓. This proves part (3) of Categories, Definition
4.17.1. Hence we conclude that 𝑅ℎ consists of triples (𝑆, 𝔮, 𝑓) with 𝑓 ∈ 𝑆, and two such
triples (𝑆, 𝔮, 𝑓), (𝑆′, 𝔮′, 𝑓′) define the same element of 𝑅ℎ if and only if there exists a pair
(𝑆″, 𝔮″) and morphisms of pairs 𝜑 ∶ (𝑆, 𝔮) → (𝑆″, 𝔮″) and 𝜑′ ∶ (𝑆′, 𝔮′) → (𝑆″, 𝔮″) such
that 𝜑(𝑓) = 𝜑′(𝑓′).

Suppose that 𝑥 ∈ 𝑅ℎ. Represent 𝑥 by a triple (𝑆, 𝔮, 𝑓). Let 𝔮1, … , 𝔮𝑟 be the other primes
of 𝑆 lying over 𝔪. Then we can find a 𝑔 ∈ 𝑆, 𝑔∉𝔮 and 𝑔 ∈ 𝔮𝑖 for 𝑖 = 1, … , 𝑟, see Lemma
7.14.3. Consider the morphism of pairs (𝑆, 𝔮) → (𝑆𝑔, 𝔮𝑆𝑔). In this way we see that we may
always assume that 𝑥 is given by a triple (𝑆, 𝔮, 𝑓) where 𝔮 is the only prime of 𝑆 lying over
𝔪, i.e., √𝔪𝑆 = 𝔮. But since 𝑅 → 𝑆 is étale, we have 𝔪𝑆𝔮 = 𝔮𝑆𝔮, see Lemma 7.132.5.
Hence we actually get that 𝔪𝑆 = 𝔮.

Suppose that 𝑥∉𝔪𝑅ℎ. Represent 𝑥 by a triple (𝑆, 𝔮, 𝑓) with 𝔪𝑆 = 𝔮. Then 𝑓∉𝔪𝑆, i.e.,
𝑓∉𝔮. Hence (𝑆, 𝔮) → (𝑆𝑓, 𝔮𝑆𝑓) is a morphism of pairs such that the image of 𝑓 becomes
invertible. Hence 𝑥 is invertible with inverse represented by the triple (𝑆𝑓, 𝔮𝑆𝑓, 1/𝑓). We
conclude that 𝑅ℎ is a local ring with maximal ideal 𝔪𝑅ℎ. The residue field is 𝜅 since we
can define 𝑅ℎ/𝔪𝑅ℎ → 𝜅 by mapping a triple (𝑆, 𝔮, 𝑓) to the residue class of 𝑓 module 𝔮.

We still have to show that 𝑅ℎ is henselian. Namely, suppose that 𝑃 ∈ 𝑅ℎ[𝑇] is a monic
polynomial and 𝑎0 ∈ 𝜅 is a simple root of the reduction 𝑃 ∈ 𝜅[𝑇]. Then we can find a pair
(𝑆, 𝔮) such that 𝑃 is the image of a monic polynomial 𝑄 ∈ 𝑆[𝑇]. Since 𝑆 → 𝑅ℎ induces an
isomorphism of residue fields we see that 𝑆′ = 𝑆[𝑇]/(𝑄) has a prime ideal 𝔮′ = (𝔮, 𝑇 − 𝑎0)
at which 𝑆 → 𝑆′ is standard étale. Moreover, 𝜅 = 𝜅(𝔮′). Pick 𝑔 ∈ 𝑆′, 𝑔∉𝔮′ such that
𝑆″ = 𝑆′

𝑔 is étale over 𝑆. Then (𝑆, 𝔮) → (𝑆″, 𝔮′𝑆″) is a morphism of pairs. Now that triple
(𝑆″, 𝔮′𝑆″, class of 𝑇) determines an element 𝑎 ∈ 𝑅ℎ with the properties 𝑃(𝑎) = 0, and
𝑎 = 𝑎0 as desired. �

Lemma 7.139.13. Let (𝑅, 𝔪, 𝜅) be a local ring. Let 𝜅 ⊂ 𝜅𝑠𝑒𝑝 be a separable algebraic
closure. There exists a canonical commutative diagram

𝜅 // 𝜅 // 𝜅𝑠𝑒𝑝

𝑅 //

OO

𝑅ℎ //

OO

𝑅𝑠ℎ

OO

with the following properties
(1) the map 𝑅ℎ → 𝑅𝑠ℎ is local
(2) 𝑅𝑠ℎ is strictly henselian,
(3) 𝑅𝑠ℎ is a filtered colimit of étale 𝑅-algebras,
(4) 𝔪𝑅𝑠ℎ is the maximal ideal of 𝑅𝑠ℎ, and
(5) 𝜅𝑠𝑒𝑝 = 𝑅𝑠ℎ/𝔪𝑅𝑠ℎ.
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Proof. This can be proved using the method followed in the proof of Lemma 7.139.12.
The only difference is that, instead of pairs, one uses triples (𝑆, 𝔮, 𝛼) where 𝑅 → 𝑆 étale, 𝔮
is a prime of 𝑆 lying over 𝔪, and 𝛼 ∶ 𝜅(𝔮) → 𝜅𝑠𝑒𝑝 is an embedding of extensions of 𝜅.

But we can also deduce the result directly from the result of Lemma 7.139.12. Namely, for
any finite separable field sub extension 𝜅 ⊂ 𝜅′ ⊂ 𝜅𝑠𝑒𝑝 there exists a unique (up to unique
isomorphism) finite étale local ring extension 𝑅ℎ ⊂ 𝑅ℎ(𝜅′) whose residue field extension
extension reproduces the given extension, see Lemma 7.139.8. Hence we can set

𝑅𝑠ℎ = ⋃𝜅⊂𝜅′⊂𝜅𝑠𝑒𝑝 𝑅ℎ(𝜅′)

The arrows in this system, compatible with the arrows on the level of residue fields, exist by
Lemma 7.139.8. This will produce a henselian local ring by Lemma 7.139.5 since each of
the rings 𝑅ℎ(𝜅′) is henselian by Lemma 7.139.4. By construction the residue field extension
induced by 𝑅ℎ → 𝑅𝑠ℎ is the field extension 𝜅 ⊂ 𝜅𝑠𝑒𝑝. We omit the proof that 𝑅𝑠ℎ is a colimit
of étale 𝑅-algebras. �

Definition 7.139.14. Let (𝑅, 𝔪, 𝜅) be a local ring.
(1) The local ringmap𝑅 → 𝑅ℎ constructed in Lemma 7.139.12 is called the henseliza-

tion of 𝑅.
(2) Given a separable algebraic closure 𝜅 ⊂ 𝜅𝑠𝑒𝑝 the local ring map 𝑅 → 𝑅𝑠ℎ con-

structed in Lemma 7.139.13 is called the strict henselization of 𝑅 with respect to
𝜅 ⊂ 𝜅𝑠𝑒𝑝.

(3) A local ring map 𝑅 → 𝑅𝑠ℎ is called a strict henselization of 𝑅 if it is isomorphic
to one of the local ring maps constructed in Lemma 7.139.13

Note that 𝑅 → 𝑅ℎ → 𝑅𝑠ℎ are flat local ring homomorphisms. The first by the construction
of 𝑅ℎ in Lemma 7.139.12 as a directed colimit of étale hence flat 𝑅-algebras and the second
by the construction of 𝑅𝑠ℎ in the proof of Lemma 7.139.13 as a directed colimit of finite
étale hence flat 𝑅ℎ-algebras (see Lemma 7.35.2). In the following lemmas we discuss
functoriality properties of the (strict) henselizations. This should make it clear exactly how
canonical these constructions really are.

Lemma 7.139.15. Let 𝑅 → 𝑆 be a local map of local rings. Let 𝑆 → 𝑆ℎ be the henseliza-
tion. Let 𝑅 → 𝐴 be an étale ring map and let 𝔮 be a prime of 𝐴 lying over 𝔪𝑅 such that
𝑅/𝔪𝑅 ≅ 𝜅(𝔮). Then there exists a unique morphism of rings 𝑓 ∶ 𝐴 → 𝑆ℎ fitting into the
commutative diagram

𝐴
𝑓
// 𝑆ℎ

𝑅

OO

// 𝑆

OO

such that 𝑓−1(𝔪𝑆ℎ) = 𝔮.

Proof. Consider 𝐴⊗𝑅 𝑆ℎ. This is an étale algebra over 𝑆ℎ, see Lemma 7.132.3. Moreover
𝔮′ = 𝔮 ⊗ 𝑆ℎ + 𝐴 ⊗ 𝔪𝑆ℎ is a maximal ideal lying over 𝔪𝑆ℎ with residue field equal to
the residue field of 𝑆ℎ. Hence by Lemma 7.139.3 there exists a (unique) splitting 𝜏 ∶
𝐴 ⊗𝑅 𝑆ℎ → 𝑆ℎ with 𝜏−1(𝔪𝑆ℎ) = 𝔮′. Set 𝑓 equal to the composition 𝐴 → 𝐴 ⊗𝑅 𝑆ℎ → 𝑆ℎ.
Minor details omitted. �

Lemma 7.139.16. Let 𝑅 → 𝑆 be a local map of local rings. Let 𝑅 → 𝑅ℎ and 𝑆 →
𝑆ℎ be the henselizations. There exists a unique local ring map 𝑅ℎ → 𝑆ℎ fitting into the

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04GQ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04GR
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04GS


7.139. HENSELIAN LOCAL RINGS 535

commutative diagram
𝑅ℎ

𝑓
// 𝑆ℎ

𝑅

OO

// 𝑆

OO

Proof. Write 𝑅ℎ = 𝑐𝑜𝑙𝑖𝑚 𝑅𝑖 as a filtered colimit of étale 𝑅-algebras 𝑅𝑖. Note that 𝔪𝑖 =
𝔪𝑅ℎ ∩ 𝑅𝑖 is a maximal ideal of 𝑅𝑖 with residue field 𝜅. Hence by Lemma 7.139.15 we
obtain canonical ring maps 𝑓𝑖 ∶ 𝑅𝑖 → 𝑆ℎ. Setting 𝑓 = 𝑐𝑜𝑙𝑖𝑚 𝑓𝑖 we win. �

Lemma 7.139.17. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 be a prime of 𝑆 lying over 𝔭 in 𝑅.
Assume 𝑅 → 𝑆 is quasi-finite at 𝔮. The commutative diagram

𝑅ℎ
𝔭

// 𝑆ℎ
𝔮

𝑅𝔭

OO

// 𝑆𝔮

OO

of Lemma 7.139.16 identifies 𝑆ℎ
𝔮 with the localization of 𝑅ℎ

𝔭 ⊗𝑅𝔭
𝑆𝔮 at the prime generated

by 𝔮.

Proof. Note that 𝑅ℎ
𝔭 ⊗𝑅 𝑆 is quasi-finite over 𝑅ℎ

𝔭 at the prime ideal corresponding to 𝔮, see
Lemma 7.113.6. Hence the localization 𝑆′ of 𝑅ℎ

𝔭 ⊗𝑅𝔭
𝑆𝔮 is henselian, see Lemma 7.139.4.

On the other hand, since 𝑅ℎ
𝔭 is a filtered colimit of étale 𝑅-algebras, also 𝑅ℎ

𝔭 ⊗𝑅𝔭
𝑆𝔮 is a

filtered colimit of étale 𝑆𝔮-algebras, and hence 𝑆′ is a filtered colimit of étale 𝑆𝔮-algebras.
Moreover, each of those étale algebras occurs in the limit defining 𝑆ℎ

𝔮 . Hence the map 𝑆′ →
𝑆ℎ

𝔮 exihibits 𝑆ℎ
𝔮 as a colimit of étale algebras over 𝑆′ with trivial residue field extensions at

the primes lying over 𝔮. Since 𝑆′ is henselian, this map is an isomorphism. �

Lemma 7.139.18. Let 𝑅 be a local ring with henselization 𝑅ℎ. Let 𝐼 ⊂ 𝔪𝑅. Then 𝑅ℎ/𝐼𝑅ℎ

is the henselization of 𝑅/𝐼.

Proof. This is a special case of Lemma 7.139.17. �

Lemma 7.139.19. Let 𝜑 ∶ 𝑅 → 𝑆 be a local map of local rings. Let 𝑆/𝔪𝑆 ⊂ 𝜅𝑠𝑒𝑝 be a
separable algebraic closure. Let 𝑆 → 𝑆𝑠ℎ be the strict henselization of 𝑆 with respect to
𝑆/𝔪𝑆 ⊂ 𝜅𝑠𝑒𝑝. Let 𝑅 → 𝐴 be an étale ring map and let 𝔮 be a prime of 𝐴 lying over 𝔪𝑅.
Given any commutative diagram

𝜅(𝔮)
𝜙
// 𝜅𝑠𝑒𝑝

𝑅/𝔪𝑅
𝜑 //

OO

𝑆/𝔪𝑆

OO

there exists a unique morphism of rings 𝑓 ∶ 𝐴 → 𝑆𝑠ℎ fitting into the commutative diagram

𝐴
𝑓
// 𝑆𝑠ℎ

𝑅

OO

𝜑 // 𝑆

OO
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such that 𝑓−1(𝔪𝑆ℎ) = 𝔮 and the induced map 𝜅(𝔮) → 𝜅𝑠𝑒𝑝 is the given one.

Proof. Consider 𝐴⊗𝑅 𝑆ℎ. This is an étale algebra over 𝑆ℎ, see Lemma 7.132.3. Moreover
𝐼 = 𝔮 ⊗ 𝑆ℎ + 𝐴 ⊗ 𝔪𝑆ℎ is an ideal lying over 𝔪𝑆ℎ and our map 𝜙 induces a surjection

𝐴 ⊗𝑅 𝑆ℎ/𝐼 = 𝜅(𝔮) ⊗𝑅/𝔪𝑅
𝜅𝑠𝑒𝑝 𝜙⊗1

−−−−→ 𝜅𝑠𝑒𝑝

The kernel of this surjection determines a maximal ideal 𝔮′ of 𝐴 ⊗𝑅 𝑆ℎ. Hence by Lemma
7.139.3 there exists a (unique) splitting 𝜏 ∶ 𝐴 ⊗𝑅 𝑆ℎ → 𝑆ℎ with 𝜏−1(𝔪𝑆ℎ) = 𝔮′. Set 𝑓
equal to the composition 𝐴 → 𝐴 ⊗𝑅 𝑆ℎ → 𝑆ℎ. Minor details omitted. �

Lemma 7.139.20. Let 𝑅 → 𝑆 be a local map of local rings. Choose separable algebraic
closures 𝑅/𝔪𝑅 ⊂ 𝜅𝑠𝑒𝑝

1 and 𝑆/𝔪𝑆 ⊂ 𝜅𝑠𝑒𝑝
2 . Let 𝑅 → 𝑅𝑠ℎ and 𝑆 → 𝑆𝑠ℎ be the corresponding

strict henselizations. Given any commutative diagram

𝜅𝑠𝑒𝑝
1 𝜙

// 𝜅𝑠𝑒𝑝
2

𝑅/𝔪𝑅
𝜑 //

OO

𝑆/𝔪𝑆

OO

There exists a unique local ring map 𝑅𝑠ℎ → 𝑆𝑠ℎ fitting into the commutative diagram

𝑅𝑠ℎ
𝑓
// 𝑆𝑠ℎ

𝑅

OO

// 𝑆

OO

and inducing 𝜙 on the residue fields of 𝑅𝑠ℎ and 𝑆𝑠ℎ.

Proof. Write 𝑅𝑠ℎ = 𝑐𝑜𝑙𝑖𝑚 𝑅𝑖 as a filtered colimit of étale 𝑅-algebras 𝑅𝑖. Note that 𝔪𝑖 =
𝔪𝑅ℎ ∩ 𝑅𝑖 is a maximal ideal of 𝑅𝑖 with residue field contained in 𝜅𝑠𝑒𝑝

1 . Hence by Lemma
7.139.19 we obtain canonical ring maps 𝑓𝑖 ∶ 𝑅𝑖 → 𝑆𝑠ℎ. Setting 𝑓 = 𝑐𝑜𝑙𝑖𝑚 𝑓𝑖 we win. �

Lemma 7.139.21. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 be a prime of 𝑆 lying over 𝔭 in 𝑅.
Let 𝜅(𝔮) ⊂ 𝜅𝑠𝑒𝑝 be a separable algebraic closure. Assume 𝑅 → 𝑆 is quasi-finite at 𝔮. The
commutative diagram

𝑅𝑠ℎ
𝔭

// 𝑆𝑠ℎ
𝔮

𝑅𝔭

OO

// 𝑆𝔮

OO

of Lemma 7.139.20 identifies 𝑆𝑠ℎ
𝔮 with a localization of 𝑅𝑠ℎ

𝔭 ⊗𝑅𝔭
𝑆𝔮.

Proof. The residue field of 𝑅𝑠ℎ
𝔭 is the separable algebraic closure of 𝜅(𝔭) in 𝜅𝑠𝑒𝑝. Note that

𝑅𝑠ℎ
𝔭 ⊗𝑅 𝑆 is quasi-finite over 𝑅𝑠ℎ

𝔭 at the prime ideal corresponding to 𝔮, see Lemma 7.113.6.
Hence the localization 𝑆′ of 𝑅𝑠ℎ

𝔭 ⊗𝑅𝔭
𝑆𝔮 is henselian, see Lemma 7.139.4. Note that the

residue field of 𝑆′ is 𝜅𝑠𝑒𝑝 since it contains both the separable algebraic closure of 𝜅(𝔭) and
𝜅(𝔮). Since 𝑅𝑠ℎ

𝔭 is a filtered colimit of étale 𝑅-algebras, also 𝑅𝑠ℎ
𝔭 ⊗𝑅𝔭

𝑆𝔮 is a filtered colimit
of étale 𝑆𝔮-algebras, and hence 𝑆′ is a filtered colimit of étale 𝑆𝔮-algebras. Moreover, each
of those étale algebras occurs in the limit defining 𝑆𝑠ℎ

𝔮 . Hence the map 𝑆′ → 𝑆𝑠ℎ
𝔮 exihibits
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𝑆𝑠ℎ
𝔮 as a colimit of étale algebras over 𝑆′! Since 𝑆′ is strictly henselian, this map is an

isomorphism. �

Lemma 7.139.22. Let 𝑅 be a local ring with strict henselization 𝑅𝑠ℎ. Let 𝐼 ⊂ 𝔪𝑅. Then
𝑅𝑠ℎ/𝐼𝑅𝑠ℎ is a strict henselization of 𝑅/𝐼.

Proof. This is a special case of Lemma 7.139.21. �

Here is a slightly different construction of the henselization.

Lemma 7.139.23. Let 𝑅 be a ring. Let 𝔭 ⊂ 𝑅 be a prime ideal. Consider the category of
pairs (𝑆, 𝔮) where 𝑅 → 𝑆 is étale and 𝔮 is a prime lying over 𝔭 such that 𝜅(𝔭) = 𝜅(𝔮). This
category is filtered and

(𝑅𝔭)ℎ = 𝑐𝑜𝑙𝑖𝑚(𝑆,𝔮) 𝑆 = 𝑐𝑜𝑙𝑖𝑚(𝑆,𝔮) 𝑆𝔮

canonically.

Proof. A morphism of pairs (𝑆, 𝔮) → (𝑆′, 𝔮′) is given by an 𝑅-algebra map 𝜑 ∶ 𝑆 → 𝑆′

such that 𝜑−1(𝔮′) = 𝔮. Let us show that the category of pairs is filtered, see Categories,
Definition 4.17.1. The category contains the pair (𝑅, 𝔭) and hence is not empty, which
proves part (1) of Categories, Definition 4.17.1. Suppose that (𝑆, 𝔮) and (𝑆′, 𝔮′) are two
pairs. Note that 𝔮, resp. 𝔮′ correspond to primes of the fibre rings 𝑆 ⊗ 𝜅(𝔭), resp. 𝑆′ ⊗ 𝜅(𝔭)
with residue fields 𝜅(𝔭), hence they correspond to maximal ideals of 𝑆 ⊗ 𝜅(𝔭), resp. 𝑆′ ⊗
𝜅(𝔭). Set 𝑆″ = 𝑆⊗𝑅 𝑆′. By the above there exists a unique prime 𝔮″ ⊂ 𝑆″ lying over 𝔮 and
over 𝔮′ whose residue field is 𝜅(𝔭). The ring map 𝑅 → 𝑆″ is étale by Lemma 7.132.3. This
proves part (2) of Categories, Definition 4.17.1. Next, suppose that 𝜑, 𝜓 ∶ (𝑆, 𝔮) → (𝑆′, 𝔮′)
are two morphisms of pairs. Consider

𝑆″ = (𝑆′ ⊗𝜑,𝑆,𝜓 𝑆′) ⊗𝑆′⊗𝑅𝑆′ 𝑆′

Arguing as above (base change of étale maps is étale, composition of étale maps is étale)
we see that 𝑆″ is étale over 𝑅. The fibre ring of 𝑆″ over 𝔭 is

𝐹″ = (𝐹′ ⊗𝜑,𝐹,𝜓 𝐹′) ⊗𝐹′⊗𝜅(𝔭)𝐹′ 𝐹′

where 𝐹′, 𝐹 are the fibre rings of 𝑆′ and 𝑆. Since 𝜑 and 𝜓 are morphisms of pairs the map
𝐹′ → 𝜅(𝔭) corresponding to 𝔭′ extends to a map 𝐹″ → 𝜅(𝔭) and in turn corresponds to a
prime ideal 𝔮″ ⊂ 𝑆″ whose residue field is 𝜅(𝔭). The canonical map 𝑆′ → 𝑆″ (using the
right most factor for example) is a morphism of pairs (𝑆′, 𝔮′) → (𝑆″, 𝔮″) which equalizes
𝜑 and 𝜓. This proves part (3) of Categories, Definition 4.17.1. Hence we conclude that the
category is filtered.

Recall that in the proof of Lemma 7.139.12 we constructed (𝑅𝔭)ℎ as the corresponding
colimit but starting with 𝑅𝔭 and its maximal ideal 𝔭𝑅𝔭. Now, given any pair (𝑆, 𝔮) for
(𝑅, 𝔭) we obtain a pair (𝑆𝔭, 𝔮𝑆𝔭) for (𝑅𝔭, 𝔭𝑅𝔭). Moreover, in this situation

𝑆𝔭 = 𝑐𝑜𝑙𝑖𝑚𝑓∈𝑅,𝑓∉𝔭 𝑆𝑓.

Hence in order to show the equalities of the lemma, it suffices to show that any pair (𝑆𝑙𝑜𝑐, 𝔮𝑙𝑜𝑐)
for (𝑅𝔭, 𝔭𝑅𝔭) is of the form (𝑆𝔭, 𝔮𝑆𝔭) for some pair (𝑆, 𝔮) over (𝑅, 𝔭) (some details omit-
ted). This follows from Lemma 7.132.3. �

Lemma 7.139.24. Let 𝑅 be a ring. Let 𝔭 ⊂ 𝑅 be a prime ideal. Let 𝜅(𝔭) ⊂ 𝜅𝑠𝑒𝑝 be a
separable algebraic closure. Consider the category of triples (𝑆, 𝔮, 𝜙) where 𝑅 → 𝑆 is
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étale, 𝔮 is a prime lying over 𝔭, and 𝜙 ∶ 𝜅(𝔮) → 𝜅𝑠𝑒𝑝 is a 𝜅(𝔭)-algebra map. This category
is filtered and

(𝑅𝔭)𝑠ℎ = 𝑐𝑜𝑙𝑖𝑚(𝑆,𝔮,𝜙) 𝑆 = 𝑐𝑜𝑙𝑖𝑚(𝑆,𝔮,𝜙) 𝑆𝔮

canonically.

Proof. A morphism of triples (𝑆, 𝔮, 𝜙) → (𝑆′, 𝔮′, 𝜙′) is given by an 𝑅-algebra map 𝜑 ∶
𝑆 → 𝑆′ such that 𝜑−1(𝔮′) = 𝔮 and such that 𝜙′ ∘ 𝜑 = 𝜙. Let us show that the cate-
gory of pairs is filtered, see Categories, Definition 4.17.1. The category contains the triple
(𝑅, 𝔭, 𝜅(𝔭) ⊂ 𝜅𝑠𝑒𝑝) and hence is not empty, which proves part (1) of Categories, Defini-
tion 4.17.1. Suppose that (𝑆, 𝔮, 𝜙) and (𝑆′, 𝔮′, 𝜙′) are two triples. Note that 𝔮, resp. 𝔮′

correspond to primes of the fibre rings 𝑆 ⊗ 𝜅(𝔭), resp. 𝑆′ ⊗ 𝜅(𝔭) with residue fields fi-
nite separable over 𝜅(𝔭) and 𝜙, resp. 𝜙′ correspond to maps into 𝜅𝑠𝑒𝑝. Hence this data
corresponds to 𝜅(𝔭)-algebra maps

𝜙 ∶ 𝑆 ⊗𝑅 𝜅(𝔭) ⟶ 𝜅𝑠𝑒𝑝, 𝜙′ ∶ 𝑆′ ⊗𝑅 𝜅(𝔭) ⟶ 𝜅𝑠𝑒𝑝.

Set 𝑆″ = 𝑆 ⊗𝑅 𝑆′. Combining the maps the above we get a unique 𝜅(𝔭)-algerba map

𝜙″ = 𝜙 ⊗ 𝜙′ ∶ 𝑆″ ⊗𝑅 𝜅(𝔭) ⟶ 𝜅𝑠𝑒𝑝

whose kernel corresponds to a prime 𝔮″ ⊂ 𝑆″ lying over 𝔮 and over 𝔮′, and whose residue
field maps via 𝜙″ to the compositum of 𝜙(𝜅(𝔮)) and 𝜙′(𝜅(𝔮′)) in 𝜅𝑠𝑒𝑝. The ring map 𝑅 →
𝑆″ is étale by Lemma 7.132.3. Hence (𝑆″, 𝔮″, 𝜙″) is a triple dominating both (𝑆, 𝔮, 𝜙)
and (𝑆′, 𝔮′, 𝜙′). This proves part (2) of Categories, Definition 4.17.1. Next, suppose that
𝜑, 𝜓 ∶ (𝑆, 𝔮, 𝜙) → (𝑆′, 𝔮′, 𝜙′) are two morphisms of pairs. Consider

𝑆″ = (𝑆′ ⊗𝜑,𝑆,𝜓 𝑆′) ⊗𝑆′⊗𝑅𝑆′ 𝑆′

Arguing as above (base change of étale maps is étale, composition of étale maps is étale)
we see that 𝑆″ is étale over 𝑅. The fibre ring of 𝑆″ over 𝔭 is

𝐹″ = (𝐹′ ⊗𝜑,𝐹,𝜓 𝐹′) ⊗𝐹′⊗𝜅(𝔭)𝐹′ 𝐹′

where 𝐹′, 𝐹 are the fibre rings of 𝑆′ and 𝑆. Since 𝜑 and 𝜓 are morphisms of triples the map
𝜙′ ∶ 𝐹′ → 𝜅𝑠𝑒𝑝 extends to a map 𝜙″ ∶ 𝐹″ → 𝜅𝑠𝑒𝑝 which in turn corresponds to a prime
ideal 𝔮″ ⊂ 𝑆″. The canonical map 𝑆′ → 𝑆″ (using the right most factor for example) is a
morphism of triples (𝑆′, 𝔮′, 𝜙′) → (𝑆″, 𝔮″, 𝜙″) which equalizes 𝜑 and 𝜓. This proves part
(3) of Categories, Definition 4.17.1. Hence we conclude that the category is filtered.

We still have to show that the colimit 𝑅𝑐𝑜𝑙𝑖𝑚 of the system is equal to the strict henselization
of 𝑅𝔭 with respect to 𝜅𝑠𝑒𝑝. To see this note that the system of triples (𝑆, 𝔮, 𝜙) contains as
a subsystem the pairs (𝑆, 𝔮) of Lemma 7.139.23. Hence 𝑅𝑐𝑜𝑙𝑖𝑚 contains 𝑅ℎ

𝔭 by the result
of that lemma. Moreover, it is clear that 𝑅ℎ

𝔭 ⊂ 𝑅𝑐𝑜𝑙𝑖𝑚 is a directed colimit of étale ring
extensions. It follows that 𝑅𝑐𝑜𝑙𝑖𝑚 is henselian by Lemmas 7.139.4 and 7.139.5. Finally, by
Lemma 7.132.15 we see that the residue field of 𝑅𝑐𝑜𝑙𝑖𝑚 is equal to 𝜅𝑠𝑒𝑝. Hence we conclude
that 𝑅𝑐𝑜𝑙𝑖𝑚 is strictly henselian and hence equals the strict henselization of 𝑅𝔭 as desired.
Some details omitted. �

Lemma 7.139.25. Let 𝜑 ∶ 𝑅 → 𝑆 be a local homomorphism of strictly henselian local
rings. Let 𝑃1, … , 𝑃𝑛 ∈ 𝑅[𝑥1, … , 𝑥𝑛] be polynomials such that 𝑅[𝑥1, … , 𝑥𝑛]/(𝑃1, … , 𝑃𝑛)
is étale over 𝑅. Then the map

𝑅𝑛 ⟶ 𝑆𝑛, (ℎ1, … , ℎ𝑛) ⟼ (𝜑(ℎ1), … , 𝜑(ℎ𝑛))
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induces a bijection between

{(𝑟1, … , 𝑟𝑛) ∈ 𝑅𝑛 ∣ 𝑃𝑖(𝑟1, … , 𝑟𝑛) = 0, 𝑖 = 1, … , 𝑛}

and
{(𝑠1, … , 𝑠𝑛) ∈ 𝑆𝑛 ∣ 𝑃′

𝑖 (𝑠1, … , 𝑠𝑛) = 0, 𝑖 = 1, … , 𝑛}
where 𝑃′

𝑖 ∈ 𝑆[𝑥1, … , 𝑥𝑛] are the images of the 𝑃𝑖 under 𝜑.

Proof. The first solution set is canonically isomorphic to the set

𝐻𝑜𝑚𝑅(𝑅[𝑥1, … , 𝑥𝑛]/(𝑃1, … , 𝑃𝑛), 𝑅).

As 𝑅 is henselian the map 𝑅 → 𝑅/𝔪𝑅 induces a bijection between this set and the set
of solutions in the residue field 𝑅/𝔪𝑅, see Lemma 7.139.3. The same is true for 𝑆. Now
since 𝑅[𝑥1, … , 𝑥𝑛]/(𝑃1, … , 𝑃𝑛) is étale over 𝑅 and 𝑅/𝔪𝑅 is separably algebraically closed
we see that 𝑅/𝔪𝑅[𝑥1, … , 𝑥𝑛]/(𝑃1, … , 𝑃𝑛) is a finite product of copies of 𝑅/𝔪𝑅. Hence the
tensor product

𝑅/𝔪𝑅[𝑥1, … , 𝑥𝑛]/(𝑃1, … , 𝑃𝑛) ⊗𝑅/𝔪𝑅
𝑆/𝔪𝑆 = 𝑆/𝔪𝑆[𝑥1, … , 𝑥𝑛]/(𝑃′

1, … , 𝑃′
𝑛)

is also a finite product of copies of 𝑆/𝔪𝑆 with the same index set. This proves the lemma.
�

Lemma 7.139.26. Let 𝑅 be a henselian local ring. Any countably generated Mittag-Leffler
module over 𝑅 is a direct sum of finitely presented 𝑅-modules.

Proof. Let 𝑀 be a countably generated and Mittag-Leffler 𝑅-module. We claim that for
any element 𝑥 ∈ 𝑀 there exists a direct sum decomposition 𝑀 = 𝑁 ⊕ 𝐾 with 𝑥 ∈ 𝑁, the
module 𝑁 finitely presented, and 𝐾 Mittag-Leffler.

Suppose the claim is true. Choose generators 𝑥1, 𝑥2, 𝑥3, … of 𝑀. By the claim we can
inductively find direct sum decompositions

𝑀 = 𝑁1 ⊕ 𝑁2 ⊕ … ⊕ 𝑁𝑛 ⊕ 𝐾𝑛

with 𝑁𝑖 finitely presented, 𝑥1, … , 𝑥𝑛 ∈ 𝑁1 ⊕ … ⊕ 𝑁𝑛, and 𝐾𝑛 Mittag-Leffler. Repeating
ad infinitum we see that 𝑀 = ⨁ 𝑁𝑖.

We still have to prove the claim. Let 𝑥 ∈ 𝑀. By Lemma 7.86.2 there exists an endomor-
phism 𝛼 ∶ 𝑀 → 𝑀 such that 𝛼 factors through a finitely presented module, and 𝛼(𝑥) = 𝑥.
Say 𝛼 factors as

𝑀 𝜋 // 𝑃 𝑖 //𝑀
Set 𝑎 = 𝜋∘𝛼∘𝑖 ∶ 𝑃 → 𝑃, so 𝑖∘𝑎∘𝜋 = 𝛼3. By Lemma 7.15.2 there exists a monic polynomial
𝑃 ∈ 𝑅[𝑇] such that 𝑃(𝑎) = 0. Note that this implies formally that 𝛼2𝑃(𝛼) = 0. Hence we
may think of 𝑀 as a module over 𝑅[𝑇]/(𝑇2𝑃). Assume that 𝑥≠0. Then 𝛼(𝑥) = 𝑥 implies
that 0 = 𝛼2𝑃(𝛼)𝑥 = 𝑃(1)𝑥 hence 𝑃(1) = 0 in 𝑅/𝐼 where 𝐼 = {𝑟 ∈ 𝑅 ∣ 𝑟𝑥 = 0} is the
annihilator of 𝑥. As 𝑥≠0 we see 𝐼 ⊂ 𝔪𝑅, hence 1 is a root of 𝑃 = 𝑃 mod 𝔪𝑅 ∈ 𝑅/𝔪𝑅[𝑇].
As 𝑅 is henselian we can find a factorization

𝑇2𝑃 = (𝑇2𝑄1)𝑄2

for some 𝑄1, 𝑄2 ∈ 𝑅[𝑇] with 𝑄2 = (𝑇 − 1)𝑒 mod 𝔪𝑅𝑅[𝑇] and 𝑄1(1)≠0 mod 𝔪𝑅, see
Lemma 7.139.3. Let 𝑁 = Im(𝛼2𝑄1(𝛼) ∶ 𝑀 → 𝑀) and 𝐾 = Im(𝑄2(𝛼) ∶ 𝑀 → 𝑀). As
𝑇2𝑄1 and 𝑄2 generate the unit ideal of 𝑅[𝑇] we get a direct sum decomposition 𝑀 = 𝑁⊕𝐾.
Moreover, 𝑄2 acts as zero on 𝑁 and 𝑇2𝑄1 acts as zero on 𝐾. Note that 𝑁 is a quotient of
𝑃 hence is finitely generated. Also 𝑥 ∈ 𝑁 because 𝛼2𝑄1(𝛼)𝑥 = 𝑄1(1)𝑥 and 𝑄1(1) is a
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unit in 𝑅. By Lemma 7.83.7 the modules 𝑁 and 𝐾 are Mittag-Leffler. Finally, the finitely
generated module 𝑁 is finitely presented as a finitely generated Mittag-Leffler module is
finitely presented, see Example 7.85.1 part (1). �

7.140. Serre's criterion for normality

We introduce the following properties of Noetherian rings.

Definition 7.140.1. Let 𝑅 be a Noetherian ring. Let 𝑘 ≥ 0 be an integer.
(1) We say 𝑅 has property (𝑅𝑘) if for every prime 𝔭 of height ≤ 𝑘 the local ring 𝑅𝔭

is regular. We also say that 𝑅 is regular in codimension ≤ 𝑘.
(2) We say 𝑅 has property (𝑆𝑘) if for every prime 𝔭 the local ring 𝑅𝔭 has depth at

least min{𝑘, dim(𝑅𝔭)}.
(3) Let 𝑀 be a finite 𝑅-module. We say 𝑀 has property (𝑆𝑘) if for every prime 𝔭

the module 𝑀𝔭 has depth at least min{𝑘, dim(𝑀𝔭)}.

Any Noetherian ring has property (𝑆0) (and so does any finite module over it).

Lemma 7.140.2. Let 𝑅 be a Noetherian ring. Let 𝑀 be a finite 𝑅-module. The following
are equivalent:

(1) 𝑀 has no embedded associated prime, and
(2) 𝑀 has property (𝑆1).

Proof. Let 𝔭 be an embedded associated prime of 𝑀. Then there exists another associated
prime 𝔮 of 𝑀 such that 𝔭 ⊂ 𝔮. In particular this implies that dim(𝑀𝔭) ≥ 1 (since 𝔮 is in the
support as well). On the other hand 𝔭𝑅𝔭 is associated to 𝑀𝔭 (Lemma 7.60.14) and hence
depth(𝑀𝔭) = 0 (see Lemma 7.60.17). In other words (𝑆1) does not hold. Conversely, if
(𝑆1) does not then there exists a prime 𝔭 such that dim(𝑀𝔭) ≥ 1 and depth(𝑀𝔭) = 0. Then
we see (arguing backwards using the lemmas cited above) that 𝔭 is an embedded associated
prime. �

Lemma 7.140.3. Let 𝑅 be a Noetherian ring. The following are equivalent:
(1) 𝑅 is reduced, and
(2) 𝑅 has properties (𝑅0) and (𝑆1).

Proof. Suppose that 𝑅 is reduced. Then 𝑅𝔭 is a field for every minimal prime 𝔭 of 𝑅,
according to Lemma 7.23.3. Hence we have (𝑅0). Let 𝔭 be a prime of height ≥ 1. Then
𝐴 = 𝑅𝔭 is a reduced local ring of dimension ≥ 1. Hence its maximal ideal 𝔪 is not an
associated prime since this would mean there exists a 𝑥 ∈ 𝔪 with annihilator 𝔪 so 𝑥2 = 0.
Hence the depth of 𝐴 = 𝑅𝔭 is at least one, by Lemma 7.60.9. This shows that (𝑆1) holds.

Conversely, assume that 𝑅 satisfies (𝑅0) and (𝑆1). If 𝔭 is a minimal prime of 𝑅, then 𝑅𝔭
is a field by (𝑅0), and hence is reduced. If 𝔭 is not minimal, then we see that 𝑅𝔭 has depth
≥ 1 by (𝑆1) and we conclude there exists an element 𝑡 ∈ 𝔭𝑅𝔭 such that 𝑅𝔭 → 𝑅𝔭[1/𝑡] is
injective. This implies that 𝑅𝔭 is a subring of localizations of 𝑅 at primes of smaller height.
Thus by induction on the height we conclude that 𝑅 is reduced. �

Lemma 7.140.4. (Serre's criterion for normality) Let 𝑅 be a Noetherian ring. The follow-
ing are equivalent:

(1) 𝑅 is a normal ring, and
(2) 𝑅 has properties (𝑅1) and (𝑆2).
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Proof. Suppose that 𝑅 is normal. This means by definition that 𝑅 is reduced and all local-
izations 𝑅𝔭 are normal domains. In particular we see that 𝑅 has (𝑅0) and (𝑆1) by Lemma
7.140.3. Hence it suffices to show that a local Noetherian normal domain 𝑅 of dimension 𝑑
has depth ≥ min(2, 𝑑) and is regular if 𝑑 = 1. The assertion if 𝑑 = 1 follows from Lemma
7.110.6.
Let 𝑅 be a local Noetherian normal domain with maximal ideal 𝔪 and dimension 𝑑 ≥ 2.
Choose 𝑥 ∈ 𝔪, 𝑥∉𝔪2. If depth(𝑅/𝑥𝑅) ≥ 1 then depth(𝑅) ≥ 2 and we win. Assume
depth(𝑅/𝑥𝑅) = 0 to get a contradiction. This means that 𝔪/(𝑥) is an associated prime
of 𝑅/𝑥𝑅. In other words, there exists an element 𝑧 ∈ 𝑅 such that 𝔪𝑧 ⊂ (𝑥), but 𝑧∉(𝑥).
Consider the element 𝑧/𝑥 of the fraction field of 𝑅. Let 𝑐 ∈ 𝔪 be an arbitrary nonzero
element. We claim that 𝑐𝑧𝑛/𝑥𝑛 ∈ 𝑅. Namely, 𝑐𝑧𝑛/𝑥𝑛 = (𝑐𝑧/𝑥)𝑧𝑛−1/𝑥𝑛−1. By choice of 𝑧 we
have 𝑐𝑧 = 𝑐′𝑥 for some 𝑐′ ∈ 𝑅. Note that 𝑐′ ∈ 𝔪 since 𝑥∉𝔪2. Hence 𝑐𝑧𝑛/𝑥𝑛 = 𝑐′𝑧𝑛−1/𝑥𝑛−1

which is an element of 𝑅 by induction on 𝑛. In other words, this shows that 𝑧/𝑥 is almost
integral over 𝑅, see Definition 7.33.3. By Lemma 7.33.4 we see that 𝑧/𝑥 is integral over 𝑅.
As 𝑅 is normal we see that 𝑧/𝑥 ∈ 𝑅 which is the desired contradiction.
Suppose that 𝑅 satisfies (𝑅1) and (𝑆2). By Lemma 7.140.3 we conclude that 𝑅 is reduced.
Hence it suffices to show that if 𝑅 is a reduced local Noetherian ring of dimension 𝑑 satis-
fying (𝑆2) and (𝑅1) then 𝑅 is a normal domain. If 𝑑 = 0, the result is clear. If 𝑑 = 1, then
the result follows from Lemma 7.110.6.
Let 𝑅 be a reduced local Noetherian ring with maximal ideal 𝔪 and dimension 𝑑 which
satisfies (𝑅1) and (𝑆2). By Lemma 7.33.14 it suffices to show that 𝑅 is integrally closed
in its total ring of fractions. Pick 𝑥 = 𝑓/𝑔, with 𝑓, 𝑔 ∈ 𝑅 and 𝑔 a nonzero divisor which
satisfies a monic equation

(𝑓/𝑔)𝑛 + ∑
𝑛
𝑖=1

𝑎𝑖(𝑓/𝑔)𝑛−𝑖 = 0

with 𝑎𝑖 ∈ 𝑅. Our goal is to show that 𝑓 ∈ (𝑔) = 𝑔𝑅. We will prove this by induction on 𝑑.
By the remarks in the previous paragraph we know this is the case when 𝑑 = 0, and when
𝑑 = 1, which starts the induction. Assume 𝑑 ≥ 2. Consider the short exact sequence

0 → 𝑅 → 𝑅 → 𝑅/(𝑔) → 0.
By Lemma 7.67.10 this implies depth(𝑅/(𝑔)) ≥ 1. Hence there exists an element 𝑡 ∈ 𝔪
which is a nonzero divisor on 𝑅/(𝑔). Hence if 𝑓 has a nonzero image in 𝑅/(𝑔) then it has a
nonzero image in (𝑅/(𝑔))[1/𝑡] ≅ 𝑅𝑡/𝑔𝑅𝑡. But by induction on the dimension the image of
𝑓 is zero in 𝑅𝑡/𝑔𝑅𝑡 (for example by localizing at all the primes of 𝐷(𝑡) ⊂ 𝑆𝑝𝑒𝑐(𝑅)). Hence
we win. �

Lemma 7.140.5. A regular ring is normal.

Proof. Let 𝑅 be a regular ring. By Lemma 7.140.4 it suffices to prove that 𝑅 is (𝑅1) and
(𝑆2). As a regular local ring is Cohen-Macaulay, see Lemma 7.98.3, it is clear that 𝑅 is
(𝑆2). Property (𝑅1) is immediate. �

Lemma 7.140.6. Let 𝑅 be a Noetherian normal domain with fraction field 𝐾. Then
(1) for any nonzero 𝑎 ∈ 𝑅 the quotient 𝑅/𝑎𝑅 has no embedded primes, and all its

associated primes have height 1
(2)

𝑅 = ⋂height(𝔭)=1
𝑅𝔭

(3) For any nonzero 𝑥 ∈ 𝐾 the quotient 𝑅/(𝑅 ∩ 𝑥𝑅) has no embedded primes, and
all its associates primes have height 1.
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Proof. By Lemma 7.140.4 we see that 𝑅 has (𝑆2). Hence for any nonzero element 𝑎 ∈ 𝑅
we see that 𝑅/𝑎𝑅 has (𝑆1) (use Lemma 7.67.10 for example) Hence 𝑅/𝑎𝑅 has no embed-
ded primes (Lemma 7.140.2). We conclude the associated primes of 𝑅/𝑎𝑅 are exactly the
minimal primes 𝔭 over (𝑎), which have height 1 as 𝑎 is not zero (Lemma 7.57.10). This
proves (1).

Thus, given 𝑏 ∈ 𝑅 we have 𝑏 ∈ 𝑎𝑅 if and only if 𝑏 ∈ 𝑎𝑅𝔭 for every minimal prime 𝔭 over
(𝑎) (see Lemma 7.60.18). These primes all have height 1 as seen above so 𝑏/𝑎 ∈ 𝑅 if and
only if 𝑏/𝑎 ∈ 𝑅𝔭 for all height 1 primes. Hence (2) holds.

For (3) write 𝑥 = 𝑎/𝑏. Let 𝔭1, … , 𝔭𝑟 be the minimal primes over (𝑎𝑏). These all have
height 1 by the above. Then we see that 𝑅 ∩ 𝑥𝑅 = ⋂𝑖=1,…,𝑟(𝑅 ∩ 𝑥𝑅𝔭𝑖

) by part (2) of
the lemma. Hence 𝑅/(𝑅 ∩ 𝑥𝑅) is a submodule of ⨁ 𝑅/(𝑅 ∩ 𝑥𝑅𝔭𝑖

). As 𝑅𝔭𝑖
is a discrete

valuation ring (by property (𝑅1) for the Noetherian normal domain 𝑅, see Lemma 7.140.4)
we have 𝑥𝑅𝔭𝑖

= 𝔭𝑒𝑖
𝑖 𝑅𝔭𝑖

for some 𝑒𝑖 ∈ 𝐙. Hence the direct sum is equal to ⨁𝑒𝑖>0 𝑅/𝔭(𝑒𝑖)
𝑖 ,

see Definition 7.61.1. By Lemma 7.61.2 the only associated prime of the module 𝑅/𝔭(𝑛)

is 𝔭. Hence the set of associate primes of 𝑅/(𝑅 ∩ 𝑥𝑅) is a subset of {𝔭𝑖} and there are no
inclusion relations among them. This proves (3). �

7.141. Formal smoothness of fields

In this section we show that field extensions are formally smooth if and only if they are
separable.

Lemma 7.141.1. Let 𝐾 be a field of characteristic 𝑝 > 0. Let 𝑎 ∈ 𝐾. Then d𝑎 = 0 in Ω𝐾/𝐅𝑝
if and only if 𝑎 is a 𝑝th power.

Proof. By Lemma 7.122.4 we see that there exists a subfield 𝐅𝑝 ⊂ 𝐿 ⊂ 𝐾 such that
𝐅𝑝 ⊂ 𝐿 is a finitely generated field extension and such that d𝑎 is zero in Ω𝐿/𝐅𝑝

. Hence we
may assume that 𝐾 is a finitely generated field extension of 𝐅𝑝.

Choose a transcendence basis 𝑥1, … , 𝑥𝑟 ∈ 𝐾 such that𝐾 is finite separable over𝐅𝑝(𝑥1, … , 𝑥𝑟).
We remark that the result holds for the purely transcendental subfield 𝐅𝑝(𝑥1, … , 𝑥𝑟) ⊂ 𝐾.
Namely,

Ω𝐅𝑝(𝑥1,…,𝑥𝑟)/𝐅𝑝
= ⨁

𝑟
𝑖=1

𝐅𝑝(𝑥1, … , 𝑥𝑟)d𝑥𝑖

and any rational function all of whose partial derivatives are zero is a 𝑝th power. Moreover,
we also have

Ω𝐾/𝐅𝑝
= ⨁

𝑟
𝑖=1

𝐾d𝑥𝑖

since 𝐅𝑝(𝑥1, … , 𝑥𝑟) ⊂ 𝐾 is finite separable (computation omitted). Suppose 𝑎 ∈ 𝐾 is an
element such that d𝑎 = 0 in the module of differentials. By our choice of 𝑥𝑖 we see that the
minimal polynomial 𝑃(𝑇) ∈ 𝑘(𝑥1, … , 𝑥𝑟)[𝑇] of 𝑎 is separable. Write

𝑃(𝑇) = 𝑇𝑑 + ∑
𝑑
𝑖=1

𝑎𝑖𝑇𝑑−𝑖

and hence
0 = d𝑃(𝑎) = ∑

𝑑
𝑖=1

𝑎𝑑−𝑖d𝑎𝑖

in Ω𝐾/𝐅𝑝
. By the description of Ω𝐾/𝐅𝑝

above and the fact that 𝑃 was the minimal polynomial
of 𝑎, we see that this implies d𝑎𝑖 = 0. Hence 𝑎𝑖 = 𝑏𝑝

𝑖 for each 𝑖. Therefore by Lemma 7.38.8
we see that 𝑎 is a 𝑝th power. �
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Lemma 7.141.2. Let 𝑘 be a field of characteristic 𝑝 > 0. Let 𝑎1, … , 𝑎𝑛 ∈ 𝑘 be ele-
ments such that d𝑎1, … , d𝑎𝑛 are linearly independent in Ω𝑘/𝐅𝑝

. Then the field extension

𝑘(𝑎1/𝑝
1 , … , 𝑎1/𝑝

𝑛 ) has degree 𝑝𝑛 over 𝑘.

Proof. By induction on 𝑛. If 𝑛 = 1 the result is Lemma 7.141.1. For the induction step,
suppose that 𝑘(𝑎1/𝑝

1 , … , 𝑎1/𝑝
𝑛−1) has degree 𝑝𝑛−1 over 𝑘. We have to show that 𝑎𝑛 does not

map to a 𝑝th power in 𝑘(𝑎1/𝑝
1 , … , 𝑎1/𝑝

𝑛−1). If it does then we can write

𝑎𝑛 = (∑𝐼=(𝑖1,…,𝑖𝑛−1), 0≤𝑖𝑗≤𝑝−1
𝜆𝐼𝑎𝑖1/𝑝

1 … 𝑎𝑖𝑛−1/𝑝
𝑛−1 )

𝑝

= ∑𝐼=(𝑖1,…,𝑖𝑛−1), 0≤𝑖𝑗≤𝑝−1
𝜆𝑝

𝐼𝑎𝑖1
1 … 𝑎𝑖𝑛−1

𝑛−1

Applying d we see that d𝑎𝑛 is linearly dependent on d𝑎𝑖, 𝑖 < 𝑛. This is a contradiction. �

Lemma 7.141.3. Let 𝑘 be a field of characteristic 𝑝 > 0. The following are equivalent:
(1) the field extension 𝐾/𝑘 is separable (see Definition 7.39.1), and
(2) the map 𝐾 ⊗𝑘 Ω𝑘/𝐅𝑝

→ Ω𝐾/𝐅𝑝
is injective.

Proof. Write 𝐾 as a directed colimit 𝐾 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐾𝑖 of finitely generated field extensions
𝑘 ⊂ 𝐾𝑖. By definition 𝐾 is separable if and only if each 𝐾𝑖 is separable over 𝑘, and by
Lemma 7.122.4 we see that 𝐾 ⊗𝑘 Ω𝑘/𝐅𝑝

→ Ω𝐾/𝐅𝑝
is injective if and only if each 𝐾𝑖 ⊗𝑘

Ω𝑘/𝐅𝑝
→ Ω𝐾𝑖/𝐅𝑝

is injective. Hence we may assume that 𝐾/𝑘 is a finitely generated field
extension.
Assume 𝑘 ⊂ 𝐾 is a finitely generated field extensionwhich is separable. Choose 𝑥1, … , 𝑥𝑟+1 ∈
𝐾 as in Lemma 7.39.3. In this case there exists an irreducible polynomial𝐺(𝑋1, … , 𝑋𝑟+1) ∈
𝑘[𝑋1, … , 𝑋𝑟+1] such that 𝐺(𝑥1, … , 𝑥𝑟+1) = 0 and such that 𝜕𝐺/𝜕𝑋𝑟+1 is not identically
zero. Moreover 𝐾 is the field of fractions of the domain. 𝑆 = 𝐾[𝑋1, … , 𝑋𝑟+1]/(𝐺). Write

𝐺 = ∑ 𝑎𝐼𝑋𝐼, 𝑋𝐼 = 𝑋𝑖1
1 … 𝑋𝑖𝑟+1

𝑟+1.

Using the presentation of 𝑆 above we see that

Ω𝑆/𝐅𝑝
=

𝑆 ⊗𝑘 Ω𝑘 ⊕ ⨁𝑖=1,…,𝑟+1 𝑆d𝑋𝑖

⟨∑ 𝑋𝐼d𝑎𝐼 + ∑ 𝜕𝐺/𝜕𝑋𝑖d𝑋𝑖⟩
Since Ω𝐾/𝐅𝑝

is the localization of the 𝑆-module Ω𝑆/𝐅𝑝
(see Lemma 7.122.8) we conclude

that

Ω𝐾/𝐅𝑝
=

𝐾 ⊗𝑘 Ω𝑘 ⊕ ⨁𝑖=1,…,𝑟+1 𝐾d𝑋𝑖

⟨∑ 𝑋𝐼d𝑎𝐼 + ∑ 𝜕𝐺/𝜕𝑋𝑖d𝑋𝑖⟩
Now, since the polynomial 𝜕𝐺/𝜕𝑋𝑟+1 is not identically zero we conclude that the map 𝐾⊗𝑘
Ω𝑘/𝐅𝑝

→ Ω𝑆/𝐅𝑝
is injective as desired.

Assume 𝑘 ⊂ 𝐾 is a finitely generated field extension and that 𝐾 ⊗𝑘 Ω𝑘/𝐅𝑝
→ Ω𝐾/𝐅𝑝

is
injective. (This part of the proof is the same as the argument proving Lemma 7.41.1.) Let
𝑥1, … , 𝑥𝑟 be a transcendence basis of 𝐾 over 𝑘 such that the degree of inseparability of
the finite extension 𝑘(𝑥1, … , 𝑥𝑟) ⊂ 𝐾 is minimal. If 𝐾 is separable over 𝑘(𝑥1, … , 𝑥𝑟) then
we win. Assume this is not the case to get a contradiction. Then there exists an element
𝛼 ∈ 𝐾 which is not separable over 𝑘(𝑥1, … , 𝑥𝑟). Let 𝑃(𝑇) ∈ 𝑘(𝑥1, … , 𝑥𝑟)[𝑇] be its minimal
polynomial. Because 𝛼 is not separable actually𝑃 is a polynomial in 𝑇𝑝. Clear denominators
to get an irreducible polynomial

𝐺(𝑋1, … , 𝑋𝑟, 𝑇) = ∑ 𝑎𝐼,𝑖𝑋𝐼𝑇𝑖 ∈ 𝑘[𝑋1, … , 𝑋𝑟, 𝑇]
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such that 𝐺(𝑥1, … , 𝑥𝑟, 𝛼) = 0 in 𝐿. Note that this means 𝑘[𝑋1, … , 𝑋𝑟, 𝑇]/(𝐺) ⊂ 𝐿. We
may assume that for some pair (𝐼0, 𝑖0) the coefficient 𝑎𝐼0,𝑖0 = 1. We claim that 𝑑𝐺/𝑑𝑋𝑖 is
not identically zero for at least one 𝑖. Namely, if this is not the case, then 𝐺 is actually a
polynomial in 𝑋𝑝

1, … , 𝑋𝑝
𝑟 , 𝑇𝑝. Then this means that

∑(𝐼,𝑖)≠(𝐼0,𝑖0)
𝑥𝐼𝛼𝑖d𝑎𝐼,𝑖

is zero in Ω𝐾/𝐅𝑝
. Note that there is no 𝑘-linear relation among the elements

{𝑥𝐼𝛼𝑖 ∣ 𝑎𝐼,𝑖≠0 and (𝐼, 𝑖)≠(𝐼0, 𝑖0)}
of 𝐾. Hence the assumption that 𝐾⊗𝑘 Ω𝑘/𝐅𝑝

→ Ω𝐾/𝐅𝑝
is injective this implies that d𝑎𝐼,𝑖 = 0

in Ω𝑘/𝐅𝑝
for all (𝐼, 𝑖). By Lemma 7.141.1 we see that each 𝑎𝐼,𝑖 is a 𝑝th power, which implies

that 𝐺 is a 𝑝th power contradicting the irreducibility of 𝐺. Thus, after renumbering, we
may assume that 𝑑𝐺/𝑑𝑋1 is not zero. Then we see that 𝑥1 is separably algebraic over
𝑘(𝑥2, … , 𝑥𝑟, 𝛼), and that 𝑥2, … , 𝑥𝑟, 𝛼 is a transcendence basis of 𝐿 over 𝑘. This means
that the degree of inseparability of the finite extension 𝑘(𝑥2, … , 𝑥𝑟, 𝛼) ⊂ 𝐿 is less than the
degree of inseparability of the finite extension 𝑘(𝑥1, … , 𝑥𝑟) ⊂ 𝐿, which is a contradiction.

�

Lemma 7.141.4. Let 𝑘 ⊂ 𝐾 be an extension of fields. If 𝐾 is formally smooth over 𝑘, then
𝐾 is a separable extension of 𝑘.

Proof. Assume 𝐾 is formally smooth over 𝑘. By Lemma 7.127.9 we see that 𝐾⊗𝑘 Ω𝑘/𝐙 →
Ω𝐾/𝐙 is injective. Hence 𝐾 is separable over 𝑘 by Lemma 7.141.3 above. �

Lemma 7.141.5. Let 𝑘 ⊂ 𝐾 be an extension of fields. Then 𝐾 is formally smooth over 𝑘 if
and only if 𝐻1(𝐿𝐾/𝑘) = 0.

Proof. This follows from Proposition 7.127.8 and the fact that a vector spaces is free (hence
projective). �

Lemma 7.141.6. Let 𝑘 ⊂ 𝐾 be an extension of fields.
(1) If 𝐾 is purely transcendental over 𝑘, then 𝐾 is formally smooth over 𝑘.
(2) If 𝐾 is separable algebraic over 𝑘, then 𝐾 is formally smooth over 𝑘.
(3) If 𝐾 is separable over 𝑘, then 𝐾 is formally smooth over 𝑘.

Proof. For (1) write 𝐾 = 𝑘(𝑥𝑗; 𝑗 ∈ 𝐽). Suppose that 𝐴 is a 𝑘-algebra, and 𝐼 ⊂ 𝐴 is an
ideal of square zero. Let 𝜑 ∶ 𝐾 → 𝐴/𝐼 be a 𝑘-algebra map. Let 𝑎𝑗 ∈ 𝐴 be an element such
that 𝑎𝑗 mod 𝐼 = 𝜑(𝑥𝑗). Then it is easy to see that there is a unique 𝑘-algebra map 𝐾 → 𝐴
which maps 𝑥𝑗 to 𝑎𝑗 and which reduces to 𝜑 mod 𝐼. Hence 𝑘 ⊂ 𝐾 is formally smooth.
In case (2) we see that 𝑘 ⊂ 𝐾 is a colimit of étale ring extensions. An étale ring map
is formally étale (Lemma 7.137.2). Hence this case follows from Lemma 7.137.3 and the
trivial observation that a formally étale ring map is formally smooth.
In case (3), write𝐾 = 𝑐𝑜𝑙𝑖𝑚 𝐾𝑖 as the filtered colimit of its finitely generated sub 𝑘-extensions.
By Definition 7.39.1 each 𝐾𝑖 is separable algebraic over a purely transcendental exten-
sion of 𝑘. Hence 𝐾𝑖/𝑘 is formally smooth by cases (1) and (2) and Lemma 7.127.3. Thus
𝐻1(𝐿𝐾𝑖/𝑘) = 0 by Lemma 7.141.5. Hence 𝐻1(𝐿𝐾/𝑘) = 0 by Lemma 7.123.7. Hence 𝐾/𝑘
is formally smooth by Lemma 7.141.5 again. �

Lemma 7.141.7. Let 𝑘 be a field.
(1) If the characteristic of 𝑘 is zero, then any extension field of 𝑘 is formally smooth

over 𝑘.
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(2) If the characteristic of 𝑘 is 𝑝 > 0, then 𝑘 ⊂ 𝐾 is formally smooth if and only if it
is a separable field extension.

Proof. Combine Lemmas 7.141.4 and 7.141.6. �

Here we put together all the different characterizations of separable field extensions.

Proposition 7.141.8. Let 𝑘 ⊂ 𝐾 be a field extension. If the characteristic of 𝑘 is zero then

(1) 𝐾 is separable over 𝑘,
(2) 𝐾 is geometrically reduced over 𝑘,
(3) 𝐾 is formally smooth over 𝑘,
(4) 𝐻1(𝐿𝐾/𝑘) = 0, and
(5) the map 𝐾 ⊗𝑘 Ω𝑘/𝐙 → Ω𝐾/𝐙 is injective.

If the characteristic of 𝑘 is 𝑝 > 0, then the following are equivalent:

(1) 𝐾 is separable over 𝑘,
(2) the ring 𝐾 ⊗𝑘 𝑘1/𝑝 is reduced,
(3) 𝐾 is geometrically reduced over 𝑘,
(4) the map 𝐾 ⊗𝑘 Ω𝑘/𝐅𝑝

→ Ω𝐾/𝐅𝑝
is injective,

(5) 𝐻1(𝐿𝐾/𝑘) = 0, and
(6) 𝐾 is formally smooth over 𝑘.

Proof. This is a combination of Lemmas 7.41.1, 7.141.7 7.141.4, and 7.141.3. �

Here is yet another characterization of finitely generated separable field extensions.

Lemma 7.141.9. Let 𝑘 ⊂ 𝐾 be a finitely generated field extension. Then 𝐾 is separable
over 𝑘 if and only if 𝐾 is the localization of a smooth 𝑘-algebra.

Proof. Choose a finite type 𝑘-algebra 𝑅 which is a domain whose fraction field is 𝐾.
Lemma 7.129.9 says that 𝑘 → 𝑅 is smooth at (0) if and only if 𝐾/𝑘 is separable. This
proves the lemma. �

Lemma 7.141.10. Let 𝑘 ⊂ 𝐾 be a field extension. Then 𝐾 is a filtered colimit of global
complete intersection algebras over 𝑘. If 𝐾/𝑘 is separable, then 𝐾 is a filtered colimit of
smooth algebras over 𝑘.

Proof. Suppose that 𝐸 ⊂ 𝐾 is a finite subset. It suffices to show that there exists a 𝑘
subalgebra 𝐴 ⊂ 𝐾 which contains 𝐸 and which is a global complete intersection (resp.
smooth) over 𝑘. The separable/smooth case follows from Lemma 7.141.9. In general
let 𝐿 ⊂ 𝐾 be the subfield generated by 𝐸. Pick a transcendence basis 𝑥1, … , 𝑥𝑑 ∈ 𝐿
over 𝑘. The extension 𝑘(𝑥1, … , 𝑥𝑑) ⊂ 𝐿 is finite. Say 𝐿 = 𝑘(𝑥1, … , 𝑥𝑑)[𝑦1, … , 𝑦𝑟].
Pick inductively polynomials 𝑃𝑖 ∈ 𝑘(𝑥1, … , 𝑥𝑑)[𝑌1, … , 𝑌𝑟] such that 𝑃𝑖 = 𝑃𝑖(𝑌1, … , 𝑌𝑖)
is monic in 𝑌𝑖 over 𝑘(𝑥1, … , 𝑥𝑑)[𝑌1, … , 𝑌𝑖−1] and maps to the minimum polynomial of
𝑦𝑖 in 𝑘(𝑥1, … , 𝑥𝑑)[𝑦1, … , 𝑦𝑖−1][𝑌𝑖]. Then it is clear that 𝑃1, … , 𝑃𝑟 is a regular sequence
in 𝑘(𝑥1, … , 𝑥𝑟)[𝑌1, … , 𝑌𝑟] and that 𝐿 = 𝑘(𝑥1, … , 𝑥𝑟)[𝑌1, … , 𝑌𝑟]/(𝑃1, … , 𝑃𝑟). If ℎ ∈
𝑘[𝑥1, … , 𝑥𝑑] is a polynomial such that 𝑃𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑑, 1/ℎ, 𝑌1, … , 𝑌𝑟], then we see that
𝑃1, … , 𝑃𝑟 is a regular sequence in 𝑘[𝑥1, … , 𝑥𝑑, 1/ℎ, 𝑌1, … , 𝑌𝑟] and𝐴 = 𝑘[𝑥1, … , 𝑥𝑑, 1/ℎ, 𝑌1, … , 𝑌𝑟]/(𝑃1, … , 𝑃𝑟)
is a global complete intersection. After adjusting our choice of ℎ we may assume 𝐸 ⊂ 𝐴
and we win. �
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7.142. Constructing flat ring maps

The following lemma is occasionally useful.

Lemma 7.142.1. Let (𝑅, 𝔪, 𝑘) be a local ring. Let 𝑘 ⊂ 𝐾 be a field extension. There exists
a local ring 𝑅′, a flat local ring map 𝑅 → 𝑅′ such that 𝔪′ = 𝔪𝑅′ and the residue field
extension 𝑘 = 𝑅/𝔪 ⊂ 𝑅′/𝔪′ is isomorphic to 𝑘 ⊂ 𝐾.

Proof. Suppose that 𝑘 ⊂ 𝑘′ = 𝑘(𝛼) is a monogenic extension of fields. Then 𝑘′ is the
residue field of a flat local extension 𝑅 ⊂ 𝑅′ as in the lemma. Namely, if 𝛼 is transcendental
over 𝑘, then we let 𝑅′ be the localization of 𝑅[𝑥] at the prime 𝔪𝑅[𝑥]. If 𝛼 is algebraic with
minimal polynomial 𝑇𝑑 + ∑ 𝜆𝑖𝑇𝑑−𝑖, then we let 𝑅′ = 𝑅[𝑇]/(𝑇𝑑 + ∑ 𝜆𝑖𝑇𝑑−𝑖).

Consider the collection of triples (𝑘′, 𝑅 → 𝑅′, 𝜙), where 𝑘 ⊂ 𝑘′ ⊂ 𝐾 is a subfield,
𝑅 → 𝑅′ is a local ring map as in the lemma, and 𝜙 ∶ 𝑅′ → 𝑘′ induces an isomor-
phism 𝑅′/𝔪𝑅′ ≅ 𝑘′ of 𝑘-extensions. These form a ``big'' category 𝒞 with morphisms
(𝑘1, 𝑅1, 𝜙1) → (𝑘2, 𝑅2, 𝜙2) given by ring maps 𝜓 ∶ 𝑅1 → 𝑅2 such that

𝑅1

𝜓
��

𝜙1
// 𝑘1

// 𝐾

𝑅2
𝜙2 // 𝑘2

// 𝐾

commutes. This implies that 𝑘1 ⊂ 𝑘2.

Suppose that 𝐼 is a directed partially ordered set, and ((𝑅𝑖, 𝑘𝑖, 𝜙𝑖), 𝜓𝑖𝑖′) is a system over 𝐼,
see Categories, Section 4.19. In this case we can consider

𝑅′ = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑅𝑖

This is a local ring with maximal ideal 𝔪𝑅′, and residue field 𝑘′ = ⋃𝑖∈𝐼 𝑘𝑖. Moreover, the
ring map 𝑅 → 𝑅′ is flat as it is a colimit of flat maps (and tensor products commute with
directed colimits). Hence we see that (𝑅′, 𝑘′, 𝜙′) is an ``upper bound'' for the system.

An almost trivial application of Zorn's Lemma would finish the proof if 𝒞 was a set, but it
isn't. (Actually, you can make this work by finding a reasonable bound on the cardinals of
the local rings occuring.) To get around this problem we choose a total ordering on 𝐾. For
𝑥 ∈ 𝐾 we let 𝐾(𝑥) be the subfield of 𝐾 generated by all elements of 𝐾 which are ≤ 𝑥. By
transfinite induction on 𝑥 ∈ 𝐾 we will produce ring maps 𝑅 ⊂ 𝑅(𝑥) as in the lemma with
residue field extension 𝑘 ⊂ 𝐾(𝑥). Moreover, by construction we will have that 𝑅(𝑥) will
contain 𝑅(𝑦) for all 𝑦 ≤ 𝑥. Namely, if 𝑥 has a predecessor 𝑥′, then 𝐾(𝑥) = 𝐾(𝑥′)[𝑥] and
hence we can let 𝑅(𝑥′) ⊂ 𝑅(𝑥) be the local ring extension constructed in the first paragraph
of the proof. If 𝑥 does not have a predecessor, then we first set 𝑅′(𝑥) = 𝑐𝑜𝑙𝑖𝑚𝑥′<𝑥 𝑅(𝑥′)
as in the third paragraph of the proof. The residue field of 𝑅′(𝑥) is 𝐾′(𝑥) = ⋃𝑥′<𝑥 𝐾(𝑥′).
Since 𝐾(𝑥) = 𝐾′(𝑥)[𝑥] we see that we can use the construction of the first paragraph of the
proof to produce 𝑅′(𝑥) ⊂ 𝑅(𝑥). This finishes the proof of the lemma. �

Lemma 7.142.2. Let 𝑅 be a ring. Let 𝔭 ⊂ 𝑅 be a prime and let 𝜅(𝔭) ⊂ 𝐿 be a finite
extension of fields. Then there exists a finite free ring map 𝑅 → 𝑆 such that 𝔮 = 𝔭𝑆 is
prime and 𝜅(𝔭) ⊂ 𝜅(𝔮) is isomorphic to the given extension 𝜅(𝔭) ⊂ 𝐿.

Proof. By induction of the degree of 𝜅(𝔭) ⊂ 𝐿. If the degree is 1, then we take 𝑅 = 𝑆.
In general, if there exists a sub extension 𝜅(𝔭) ⊂ 𝐿′ ⊂ 𝐿 then we win by induction on
the degree (by first constructing 𝑅 ⊂ 𝑆′ corresponding to 𝐿′/𝜅(𝔭) and then construction
𝑆′ ⊂ 𝑆 corresponding to 𝐿/𝐿′). Thus we may assume that 𝐿 ⊃ 𝜅(𝔭) is generated by a
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single element 𝛼 ∈ 𝐿. Let 𝑋𝑑 + ∑𝑖<𝑑 𝑎𝑖𝑋𝑖 be the minimal polynomial of 𝛼 over 𝜅(𝔭),
so 𝑎𝑖 ∈ 𝜅(𝔭). We may write 𝑎𝑖 as the image of 𝑓𝑖/𝑔 for some 𝑓𝑖, 𝑔 ∈ 𝑅 and 𝑔∉𝔭. After
replacing 𝛼 by 𝑔𝛼 (and correspondingly replacing 𝑎𝑖 by 𝑔𝑑−𝑖𝑎𝑖) we may assume that 𝑎𝑖 is
the image of some 𝑓𝑖 ∈ 𝑅. Then we simply take 𝑆 = 𝑅[𝑥]/(𝑥𝑑 + ∑ 𝑓𝑖𝑥𝑖). �

7.143. The Cohen structure theorem

Here is a fundamental notion in commutative algebra.

Definition 7.143.1. Let (𝑅, 𝔪) be a local ring. We say 𝑅 is a complete local ring if the
canonical map

𝑅 ⟶ 𝑙𝑖𝑚𝑛 𝑅/𝔪𝑛

to the completion of 𝑅 with respect to 𝔪 is an isomorphism7.

Note that an Artinian local ring 𝑅 is a complete local ring because 𝔪𝑛
𝑅 = 0 for some 𝑛 > 0.

In this section we mostly focus on Noetherian complete local rings.

Lemma 7.143.2. Let 𝑅 be a Noetherian complete local ring. Any quotient of 𝑅 is also a
Noetherian complete local ring. Given a finite ring map 𝑅 → 𝑆, then 𝑆 is a product of
Noetherian complete local rings.

Proof. The ring 𝑆 is Noetherian by Lemma 7.28.1. As an 𝑅-module 𝑆 is complete by
Lemma 7.90.2. Hence 𝑆 is the product of the completions at its maximal ideals by Lemma
7.90.17. �

Lemma 7.143.3. Let (𝑅, 𝔪) be a complete local ring. If 𝔪 is a finitely generated ideal
then 𝑅 is Noetherian.

Proof. See Lemma 7.90.9. �

Definition 7.143.4. Let (𝑅, 𝔪) be a complete local ring. A subring Λ ⊂ 𝑅 is called a
coefficient ring if the following conditions hold:

(1) Λ is a complete local ring with maximal ideal Λ ∩ 𝔪,
(2) the residue field of Λ maps isomorphically to the residue field of 𝑅, and
(3) Λ ∩ 𝔪 = 𝑝Λ, where 𝑝 is the characteristic of the residue field of 𝑅.

Let us make some remarks on this definition. We split the discussion into the following
cases:

(1) The local ring 𝑅 contains a field. This happens if either 𝐐 ⊂ 𝑅, or 𝑝𝑅 = 0 where
𝑝 is the characteristic of 𝑅/𝔪. In this case a coefficient ring Λ is a field contained
in 𝑅 which maps isomorphically to 𝑅/𝔪.

(2) The characteristic of 𝑅/𝔪 is 𝑝 > 0 but no power of 𝑝 is zero in 𝑅. In this case Λ
is a complete discrete valuation ring with uniformizer 𝑝 and residue field 𝑅/𝔪.

(3) The characteristic of 𝑅/𝔪 is 𝑝 > 0, and for some 𝑛 > 1 we have 𝑝𝑛−1≠0, 𝑝𝑛 = 0
in 𝑅. In this case Λ is an Artinian local ring whose maximal ideal is generated
by 𝑝 and which has residue field 𝑅/𝔪.

The complete discrete valuation rings with uniformizer 𝑝 above play a special role and we
baptize them as follows.

7This includes the condition that ⋂ 𝔪𝑛 = (0); in some texts this may be indicated by saying that 𝑅 is
complete and separated. Warning: It can happen that the completion 𝑙𝑖𝑚𝑛 𝑅/𝔪𝑛 of a local ring is non-complete,
see Examples, Lemma 64.2.1. This does not happen when 𝔪 is finitely generated, see Lemma 7.90.7 in which
case the completion is Noetherian, see Lemma 7.90.9.
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Definition 7.143.5. A Cohen ring is a complete discrete valuation ring with uniformizer 𝑝
a prime number.

Lemma 7.143.6. Let 𝑝 be a prime number. Let 𝑘 be a field of characteristic 𝑝. There exists
a Cohen ring Λ with Λ/𝑝Λ ≅ 𝑘.

Proof. First note that the 𝑝-adic integers 𝐙𝑝 form a Cohen ring for 𝐅𝑝. Let 𝑘 be an arbitrary
field of characteristic 𝑝. Let 𝐙𝑝 → 𝑅 be a flat local ring map such that 𝔪𝑅 = 𝑝𝑅 and
𝑅/𝑝𝑅 = 𝑘, see Lemma 7.142.1. Then clearly 𝑅 is a discrete valuation ring. Hence its
completion is a Cohen ring for 𝑘. �

Lemma 7.143.7. Let 𝑝 > 0 be a prime. Let Λ be a Cohen ring with residue field of
characteristic 𝑝. For every 𝑛 ≥ 1 the ring map

𝐙/𝑝𝑛𝐙 → Λ/𝑝𝑛Λ

is formally smooth.

Proof. If 𝑛 = 1, this follows from Proposition 7.141.8. For general 𝑛 we argue by induction
on 𝑛. Namely, if 𝐙/𝑝𝑛𝐙 → Λ/𝑝𝑛Λ is formally smooth, then we can apply Lemma 7.127.12
to the ring map 𝐙/𝑝𝑛+1𝐙 → Λ/𝑝𝑛+1Λ and the ideal 𝐼 = (𝑝𝑛) ⊂ 𝐙/𝑝𝑛+1𝐙. �

Theorem 7.143.8. (Cohen structure theorem) Let (𝑅, 𝔪) be a complete local ring.
(1) 𝑅 has a coefficient ring (see Definition 7.143.4),
(2) if 𝔪 is a finitely generated ideal, then 𝑅 is isomorphic to a quotient

Λ[[𝑥1, … , 𝑥𝑛]]/𝐼

where Λ is either a field or a Cohen ring.

Proof. Let us prove a coefficient ring exists. First we prove this in case the characteristic
of the residue field 𝜅 is zero. Namely, in this case we will prove by induction on 𝑛 > 0 that
there exists a section

𝜑𝑛 ∶ 𝜅 ⟶ 𝑅/𝔪𝑛

to the canonical map 𝑅/𝔪𝑛 → 𝜅 = 𝑅/𝔪. This is trivial for 𝑛 = 1. If 𝑛 > 1, let 𝜑𝑛−1 be
given. The field extension 𝐐 ⊂ 𝜅 is formally smooth by Proposition 7.141.8. Hence we
can find the dotted arrow in the following diagram

𝑅/𝔪𝑛−1 𝑅/𝔪𝑛oo

𝜅

𝜑𝑛−1

OO ::

𝐐oo

OO

This proves the induction step. Putting these maps together

𝑙𝑖𝑚𝑛 𝜑𝑛 ∶ 𝜅 ⟶ 𝑅 = 𝑙𝑖𝑚𝑛 𝑅/𝔪𝑛

gives a map whose image is the desired coefficient ring.

Next, we prove the existence of a coefficient ring in the case where the characteristic of
the residue field 𝜅 is 𝑝 > 0. Namely, choose a Cohen ring Λ with 𝜅 = Λ/𝑝Λ, see Lemma
7.143.6. In this case we will prove by induction on 𝑛 > 0 that there exists a map

𝜑𝑛 ∶ Λ/𝑝𝑛Λ ⟶ 𝑅/𝔪𝑛

whose composition with the reduction map 𝑅/𝔪𝑛 → 𝜅 produces the given isomorphism
Λ/𝑝Λ = 𝜅. This is trivial for 𝑛 = 1. If 𝑛 > 1, let 𝜑𝑛−1 be given. The ring map 𝐙/𝑝𝑛𝐙 →
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Λ/𝑝𝑛Λ is formally smooth by Lemma 7.143.7. Hence we can find the dotted arrow in the
following diagram

𝑅/𝔪𝑛−1 𝑅/𝔪𝑛oo

Λ/𝑝𝑛Λ

𝜑𝑛−1

OO ::

𝐙/𝑝𝑛𝐙oo

OO

This proves the induction step. Putting these maps together
𝑙𝑖𝑚𝑛 𝜑𝑛 ∶ Λ = 𝑙𝑖𝑚𝑛 Λ/𝑝𝑛Λ ⟶ 𝑅 = 𝑙𝑖𝑚𝑛 𝑅/𝔪𝑛

gives a map whose image is the desired coefficient ring.
The final statement of the theorem is now clear. Namely, if 𝑦1, … , 𝑦𝑛 are generators of the
ideal 𝔪, then we can use the map Λ → 𝑅 just constructed to get a map

Λ[[𝑥1, … , 𝑥𝑛]] ⟶ 𝑅, 𝑥𝑖 ⟼ 𝑦𝑖.
This map is surjective on each 𝑅/𝔪𝑛 and hence is surjective as 𝑅 is complete. Some details
omitted. �

Remark 7.143.9. If 𝑘 is a field then the power series ring 𝑘[[𝑋1, … , 𝑋𝑑]] is a Noetherian
complete local regular ring of dimension 𝑑. If Λ is a Cohen ring then Λ[[𝑋1, … , 𝑋𝑑]] is
a complete local Noetherian regular ring of dimension 𝑑 + 1. Hence the Cohen structure
theorem implies that any Noetherian complete local ring is a quotient of a regular local
ring. In particular we see that a Noetherian complete local ring is universally catenary, see
Lemma 7.97.6 and Lemma 7.98.3.

Lemma 7.143.10. Let (𝑅, 𝔪) be a Noetherian complete local domain. Then there exists a
𝑅0 ⊂ 𝑅 with the following properties

(1) 𝑅0 is a regular complete local ring,
(2) 𝑅0 ⊂ 𝑅 is finite and induces an isomorphism on residue fields,
(3) 𝑅0 is either isomorphic to 𝑘[[𝑋1, … , 𝑋𝑑]] where 𝑘 is a field or Λ[[𝑋1, … , 𝑋𝑑]]

where Λ is a Cohen ring.

Proof. Let Λ be a coefficient ring of 𝑅. Since 𝑅 is a domain we see that either Λ is a field
or Λ is a Cohen ring.
Case I: Λ = 𝑘 is a field. Let 𝑑 = dim(𝑅). Choose 𝑥1, … , 𝑥𝑑 ∈ 𝔪 which generate an ideal
of definition 𝐼 ⊂ 𝑅. (See Section 7.57.) By Lemma 7.90.12 we see that 𝑅 is 𝐼-adically
complete as well. Consider the map 𝑅0 = 𝑘[[𝑋1, … , 𝑋𝑑]] → 𝑅 which maps 𝑋𝑖 to 𝑥𝑖. Note
that 𝑅0 is complete with respect to the ideal 𝐼0 = (𝑋1, … , 𝑋𝑑), and that 𝑅/𝐼0𝑅 ≅ 𝑅/𝐼𝑅 is
finite over 𝑘 = 𝑅0/𝐼0 (because dim(𝑅/𝐼) = 0, see Section 7.57.) Hence we conclude that
𝑅0 → 𝑅 is finite by Lemma 7.90.15. Since dim(𝑅) = dim(𝑅0) this implies that 𝑅0 → 𝑅 is
injective (see Lemma 7.103.3), and the lemma is proved.
Case II: Λ is a Cohen ring. Let 𝑑+1 = dim(𝑅). Let 𝑝 > 0 be the characteristic of the residue
field 𝑘. As 𝑅 is a domain we see that 𝑝 is a nonzero divisor in 𝑅. Hence dim(𝑅/𝑝𝑅) = 𝑑,
see Lemma 7.57.11. Choose 𝑥1, … , 𝑥𝑑 ∈ 𝑅 which generate an ideal of definition in 𝑅/𝑝𝑅.
Then 𝐼 = (𝑝, 𝑥1, … , 𝑥𝑑) is an ideal of definition of 𝑅. By Lemma 7.90.12 we see that
𝑅 is 𝐼-adically complete as well. Consider the map 𝑅0 = Λ[[𝑋1, … , 𝑋𝑑]] → 𝑅 which
maps 𝑋𝑖 to 𝑥𝑖. Note that 𝑅0 is complete with respect to the ideal 𝐼0 = (𝑝, 𝑋1, … , 𝑋𝑑), and
that 𝑅/𝐼0𝑅 ≅ 𝑅/𝐼𝑅 is finite over 𝑘 = 𝑅0/𝐼0 (because dim(𝑅/𝐼) = 0, see Section 7.57.)
Hence we conclude that 𝑅0 → 𝑅 is finite by Lemma 7.90.15. Since dim(𝑅) = dim(𝑅0)
this implies that 𝑅0 → 𝑅 is injective (see Lemma 7.103.3), and the lemma is proved. �
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7.144. Nagata and Japanese rings

In this section we discuss finiteness of integral closure. It turns out that this is closely
related to the relationship between a local ring and its completion.

Definition 7.144.1. Let 𝑅 be a a domain with field of fractions 𝐾.
(1) We say 𝑅 is N-1 if the integral closure of 𝑅 in 𝐾 is a finite 𝑅-module.
(2) We say 𝑅 is N-2, or Japanese if for any finite extension 𝐾 ⊂ 𝐿 of fields the

integral closure of 𝑅 in 𝐿 is finite over 𝑅.

The main interest in these notions is for Noetherian rings, but here is a non-Noetherian
example.

Example 7.144.2. Let 𝑘 be a field. The domain 𝑅 = 𝑘[𝑥1, 𝑥2, 𝑥3, …] is Japanese, but not
Noetherian. The reason is the following. Suppose that 𝑅 ⊂ 𝐿 and the field 𝐿 is a finite
extension of the fraction field of 𝑅. Then there exists an integer 𝑛 such that 𝐿 comes from a
finite extension 𝑘(𝑥1, … , 𝑥𝑛) ⊂ 𝐿0 by adjoining the (transcendental) elements 𝑥𝑛+1, 𝑥𝑛+2,
etc. Let 𝑆0 be the integral closure of 𝑘[𝑥1, … , 𝑥𝑛] in 𝐿0. By Proposition 7.144.31 below
it is true that 𝑆0 is finite over 𝑘[𝑥1, … , 𝑥𝑛]. Moreover, the integral closure of 𝑅 in 𝐿 is
𝑆 = 𝑆0[𝑥𝑛+1, 𝑥𝑛+2, …] (use Lemma 7.33.8) and hence finite over 𝑅. The same argument
works for 𝑅 = 𝐙[𝑥1, 𝑥2, 𝑥3, …].

Lemma 7.144.3. Let 𝑅 be a domain. If 𝑅 is N-1 then so is any localization of 𝑅. Same for
N-2.

Proof. These statements hold because taking integral closure commutes with localization,
see Lemma 7.32.9. �

Lemma 7.144.4. Let 𝑅 be a domain. Let 𝑓1, … , 𝑓𝑛 ∈ 𝑅 generate the unit ideal. If each
domain 𝑅𝑓𝑖

is N-1 then so is 𝑅. Same for N-2.

Proof. Assume 𝑅𝑓𝑖
is N-2 (or N-1). Let 𝐿 be a finite extension of the fraction field of 𝑅

(equal to the fraction field in the N-1 case). Let 𝑆 be the integral closure of 𝑅 in 𝐿. By
Lemma 7.32.9 we see that 𝑆𝑓𝑖

is the integral closure of 𝑅𝑓𝑖
in 𝐿. Hence 𝑆𝑓𝑖

is finite over
𝑅𝑓𝑖

by assumption. Thus 𝑆 is finite over 𝑅 by Lemma 7.21.2. �

Lemma 7.144.5. Let 𝑅 be a domain. Let 𝑅 ⊂ 𝑆 be a quasi-finite extension of domains (for
example finite). Assume 𝑅 is N-2 and Noetherian. Then 𝑆 is N-2.

Proof. Let 𝐾 = 𝑓.𝑓.(𝑅) ⊂ 𝐿 = 𝑓.𝑓.(𝑆). Note that this is a finite field extension (for exam-
ple by Lemma 7.113.2 (2) applied to the fibre 𝑆 ⊗𝑅 𝐾, and the definition of a quasi-finite
ring map). Let 𝑆′ be the integral closure of 𝑅 in 𝑆. Then 𝑆′ is contained in the integral
closure of 𝑅 in 𝐿 which is finite over 𝑅 by assumption. As 𝑅 is Noetherian this implies
𝑆′ is finite over 𝑅. By Lemma 7.114.15 there exist elements 𝑔1, … , 𝑔𝑛 ∈ 𝑆′ such that
𝑆′

𝑔𝑖
≅ 𝑆𝑔𝑖

and such that 𝑔1, … , 𝑔𝑛 generate the unit ideal in 𝑆. Hence it suffices to show
that 𝑆′ is N-2 by Lemmas 7.144.3 and 7.144.4. Thus we have reduced to the case where 𝑆
is finite over 𝑅.
Assume 𝑅 ⊂ 𝑆 with hypotheses as in the lemma and moreover that 𝑆 is finite over 𝑅.
Let 𝑀 be a finite field extension of the fraction field of 𝑆. Then 𝑀 is also a finite field
extension of 𝑓.𝑓(𝑅) and we conclude that the integral closure 𝑇 of 𝑅 in 𝑀 is finite over
𝑅. By Lemma 7.32.14 we see that 𝑇 is also the integral closure of 𝑆 in 𝑀 and we win by
Lemma 7.32.13. �

Lemma 7.144.6. Let 𝑅 be a Noetherian domain. If 𝑅[𝑧, 𝑧−1] is N-1, then so is 𝑅.
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Proof. Let 𝑅′ be the integral closure of 𝑅 in its field of fractions 𝐾. Let 𝑆′ be the inte-
gral closure of 𝑅[𝑧, 𝑧−1] in its field of fractions. Clearly 𝑅′ ⊂ 𝑆′. Since 𝐾[𝑧, 𝑧−1] is a
normal domain we see that 𝑆′ ⊂ 𝐾[𝑧, 𝑧−1]. Suppose that 𝑓1, … , 𝑓𝑛 ∈ 𝑆′ generate 𝑆′ as
𝑅[𝑧, 𝑧−1]-module. Say 𝑓𝑖 = ∑ 𝑎𝑖𝑗𝑧𝑗 (finite sum), with 𝑎𝑖𝑗 ∈ 𝐾. For any 𝑥 ∈ 𝑅′ we can
write

𝑥 = ∑ ℎ𝑖𝑓𝑖

with ℎ𝑖 ∈ 𝑅[𝑧, 𝑧−1]. Thus we see that 𝑅′ is contained in the finite 𝑅-submodule ∑ 𝑅𝑎𝑖𝑗 ⊂
𝐾. Since 𝑅 is Noetherian we conclude that 𝑅′ is a finite 𝑅-module. �

Lemma 7.144.7. Let 𝑅 be a Noetherian domain, and let 𝑅 ⊂ 𝑆 be a finite extension of
domains. If 𝑆 is N-1, then so is 𝑅. If 𝑆 is N-2, then so is 𝑅.

Proof. Omitted. (Hint: Integral closures of 𝑅 in extension fields are contained in integral
closures of 𝑆 in extension fields.) �

Lemma 7.144.8. Let 𝑅 be a Noetherian normal domain with fraction field 𝐾. Let 𝐾 ⊂ 𝐿
be a finite separable field extension. Then the integral closure of 𝑅 in 𝐿 is finite over 𝑅.

Proof. Consider the trace pairing
𝐿 × 𝐿 ⟶ 𝐾, (𝑥, 𝑦) ⟼ ⟨𝑥, 𝑦⟩ ∶= Tr𝐿/𝐾(𝑥𝑦).

Since 𝐿/𝐾 is separable this is nondegenerate (exercise in Galois theory). Moreover, if
𝑥 ∈ 𝐿 is integral over 𝑅, then Tr𝐿/𝐾(𝑥) is integral over 𝑅 also, and since 𝑅 is normal we
see Tr𝐿/𝐾(𝑥) ∈ 𝑅. Pick 𝑥1, … , 𝑥𝑛 ∈ 𝐿 which are integral over 𝑅 and which form a 𝐾-basis
of 𝐿. Then the integral closure 𝑆 ⊂ 𝐿 is contained in the 𝑅-module

𝑀 = {𝑦 ∈ 𝐿 ∣ ⟨𝑥𝑖, 𝑦⟩ ∈ 𝑅, 𝑖 = 1, … , 𝑛}
By linear algebra we see that 𝑀 ≅ 𝑅⊕𝑛 as an 𝑅-module. Hence 𝑆 ⊂ 𝑅⊕𝑛 is a finitely
generated 𝑅-module as 𝑅 is Noetherian. �

Example 7.144.9. Lemma 7.144.8 does not work if the ring is not Noetherian. For example
consider the action of 𝐺 = {+1, −1} on 𝐴 = 𝐂[𝑥1, 𝑥2, 𝑥3, …] where −1 acts by mapping
𝑥𝑖 to −𝑥𝑖. The invariant ring 𝑅 = 𝐴𝐺 is the 𝐂-algebra generated by all 𝑥𝑖𝑥𝑗. Hence 𝑅 ⊂ 𝐴
is not finite. But 𝑅 is a normal domain with fraction field 𝐾 = 𝐿𝐺 the 𝐺-invariants in the
fraction field 𝐿 of 𝐴. And clearly 𝐴 is the integral closure of 𝑅 in 𝐿.

Lemma 7.144.10. A Noetherian domain of characteristic zero is N-1 if and only if it is N-2
(i.e., Japanese).

Proof. This is clear from Lemma 7.144.8 since every field extension in characteristic zero
is separable. �

Lemma 7.144.11. Let 𝑅 be a Noetherian domain with fraction field 𝐾 of characteristic
𝑝 > 0. Then 𝑅 is Japanese if and only if for every finite purely inseparable extension
𝐾 ⊂ 𝐿 the integral closure of 𝑅 in 𝐿 is finite over 𝑅.

Proof. Assume the integral closure of 𝑅 in every finite purely inseparable field extension
of 𝐾 is finite. Let 𝐾 ⊂ 𝐿 be any finite extension. We have to show the integral closure of
𝑅 in 𝐿 is finite over 𝑅. Choose a finite normal field extension 𝐾 ⊂ 𝑀 containing 𝐿. As
𝑅 is Noetherian it suffices to show that the integral closure of 𝑅 in 𝑀 is finite over 𝑅. By
Lemma 7.38.4 there exists a subextension 𝐾 ⊂ 𝑀𝑖𝑛𝑠𝑒𝑝 ⊂ 𝑀 such that 𝑀𝑖𝑛𝑠𝑒𝑝/𝐾 is purely
inseparable, and 𝑀/𝑀𝑖𝑛𝑠𝑒𝑝 is separable. By assumption the integral closure 𝑅′ of 𝑅 in
𝑀𝑖𝑛𝑠𝑒𝑝 is finite over 𝑅. By Lemma 7.144.8 the integral closure 𝑅″ of 𝑅′ in 𝑀 is finite over
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𝑅′. Then 𝑅″ is finite over 𝑅 by Lemma 7.7.3. Since 𝑅″ is also the integral closure of 𝑅 in
𝑀 (see Lemma 7.32.14) we win. �

Lemma 7.144.12. Let 𝑅 be a Noetherian domain. If 𝑅 is N-1 then 𝑅[𝑥] is N-1. If 𝑅 is N-2
then 𝑅[𝑥] is N-2.

Proof. Assume 𝑅 is N-1. Let 𝑅′ be the integral closure of 𝑅 which is finite over 𝑅. Hence
also 𝑅′[𝑥] is finite over 𝑅[𝑥]. The ring 𝑅′[𝑥] is normal (see Lemma 7.33.8), hence N-1.
This proves the first assertion.
For the second assertion, by Lemma 7.144.7 it suffices to show that 𝑅′[𝑥] is N-2. In other
words we may and do assume that 𝑅 is a normal N-2 domain. In characteristic zero we are
done by Lemma 7.144.10. In characteristic 𝑝 > 0 we have to show that the integral closure
of 𝑅[𝑥] is finite in any finite purely inseparable extension of 𝑓.𝑓.(𝑅[𝑥]) = 𝐾(𝑥) ⊂ 𝐿 with
𝐾 = 𝑓.𝑓.(𝑅). Clearly there exists a finite purely inseparable field extension 𝐾 ⊂ 𝐿′ and
𝑞 = 𝑝𝑒 such that 𝐿 ⊂ 𝐿′(𝑥1/𝑞). As 𝑅[𝑥] is Noetherian it suffices to show that the integral
closure of 𝑅[𝑥] in 𝐿′(𝑥1/𝑞) is finite over 𝑅[𝑥]. And this integral closure is equal to 𝑅′[𝑥1/𝑞]
with 𝑅 ⊂ 𝑅′ ⊂ 𝐿′ the integral closure of 𝑅 in 𝐿′. Since 𝑅 is N-2 we see that 𝑅′ is finite
over 𝑅 and hence 𝑅′[𝑥1/𝑞] is finite over 𝑅[𝑥]. �

Lemma 7.144.13 (Tate). Let 𝑅 be a ring. Let 𝑥 ∈ 𝑅. Assume
(1) 𝑅 is a normal Noetherian domain,
(2) 𝑅/𝑥𝑅 is a Japanese domain,
(3) 𝑅 ≅ 𝑙𝑖𝑚𝑛 𝑅/𝑥𝑛𝑅 is complete with respect to 𝑥.

Then 𝑅 is Japanese.

Proof. Wemay assume 𝑥≠0 since otherwise the lemma is trivial. Let 𝐾 be the fraction field
of 𝑅. If the characteristic of 𝐾 is zero the lemma follows from (1), see Lemma 7.144.10.
Hence we may assume that the characteristic of 𝐾 is 𝑝 > 0, and we may apply Lemma
7.144.11. Thus given 𝐾 ⊂ 𝐿 be a finite purely inseparable field extension we have to show
that the integral closure 𝑆 of 𝑅 in 𝐿 is finite over 𝑅.
Let 𝑞 be a power of 𝑝 such that 𝐿𝑞 ⊂ 𝐾. By enlarging 𝐿 if necessary we may assume there
exists an element 𝑦 ∈ 𝐿 such that 𝑦𝑞 = 𝑥. Since 𝑅 → 𝑆 induces a homeomorphism of
spectra (see Lemma 7.43.2) there is a unique prime ideal 𝔮 ⊂ 𝑆 lying over the prime ideal
𝔭 = 𝑥𝑅. It is clear that

𝔮 = {𝑓 ∈ 𝑆 ∣ 𝑓𝑞 ∈ 𝔭} = 𝑦𝑆
since 𝑦𝑞 = 𝑥. Hence 𝑅𝔭 and 𝑆𝔮 are discrete valuation rings, see Lemma 7.110.6. By
Lemma 7.110.8 we see that 𝜅(𝔭) ⊂ 𝜅(𝔮) is a finite field extension. Hence the integral
closure 𝑆′ ⊂ 𝜅(𝔮) of 𝑅/𝑥𝑅 is finite over 𝑅/𝑥𝑅 by assumption (2). Since 𝑆/𝑦𝑆 ⊂ 𝑆′ this
implies that 𝑆/𝑦𝑆 is finite over 𝑅. Note that 𝑆/𝑦𝑛𝑆 has a finite filtration whose subquotients
are the modules 𝑦𝑖𝑆/𝑦𝑖+1𝑆 ≅ 𝑆/𝑦𝑆. Hence we see that each 𝑆/𝑦𝑛𝑆 is finite over 𝑅. In
particular 𝑆/𝑥𝑆 is finite over 𝑅. Also, it is clear that ⋂ 𝑥𝑛𝑆 = (0) since an element in the
intersection has 𝑞th power contained in ⋂ 𝑥𝑛𝑅 = (0) (Lemma 7.47.6). Thus we may apply
Lemma 7.90.15 to conclude that 𝑆 is finite over 𝑅, and we win. �

Lemma 7.144.14. Let𝑅 be a ring. If𝑅 is Noetherian, a domain, and N-2, then so is𝑅[[𝑥]].

Proof. Apply Lemma 7.144.13 to the element 𝑥 ∈ 𝑅[[𝑥]]. �

Definition 7.144.15. Let 𝑅 be a ring.
(1) We say 𝑅 is universally Japanese if for any finite type ring map 𝑅 → 𝑆 with 𝑆 a

domain we have that 𝑆 is Japanese (i.e., N-2).
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(2) We say that 𝑅 is a Nagata ring if 𝑅 is Noetherian and for every prime ideal 𝔭 the
ring 𝑅/𝔭 is Japanese.

It is clear that a Noetherian universally Japanese ring is a Nagata ring. It is our goal to
show that a Nagata ring is universally Japanese. This is not obvious at all, and requires
some work. But first, here is a useful lemma.

Lemma 7.144.16. Let 𝑅 be a Nagata ring. Let 𝑅 → 𝑆 be essentially of finite type with 𝑆
reduced. Then the integral closure of 𝑅 in 𝑆 is finite over 𝑅.

Proof. As 𝑆 is essentially of finite type over 𝑅 it is Noetherian and has finitely many min-
imal primes 𝔮1, … , 𝔮𝑚, see Lemma 7.28.6. Since 𝑆 is reduced we have 𝑆 ⊂ ∏ 𝑆𝔮𝑖

and
each 𝑆𝔮𝑖

= 𝐾𝑖 is a field, see Lemmas 7.22.2 and 7.23.3. It suffices to show that the inte-
gral closure 𝐴′

𝑖 of 𝑅 in each 𝐾𝑖 is finite over 𝑅. This is true because 𝑅 is Noetherian and
𝐴 ⊂ ∏ 𝐴′

𝑖 . Let 𝔭𝑖 ⊂ 𝑅 be the prime of 𝑅 corresponding to 𝔮𝑖. As 𝑆 is essentially of finite
type over 𝑅 we see that 𝐾𝑖 = 𝑆𝔮𝑖

= 𝜅(𝔮𝑖) is a finitely generated field extension of 𝜅(𝔭𝑖).
Hence the algebraic closure 𝐿𝑖 of 𝜅(𝔭𝑖) in ⊂ 𝐾𝑖 is finite over 𝜅(𝔭𝑖), see Lemma 7.38.7. It
is clear that 𝐴′

𝑖 is the integral closure of 𝑅/𝔭𝑖 in 𝐿𝑖, and hence we win by definition of a
Nagata ring. �

Lemma 7.144.17. Let 𝑅 be a ring. To check that 𝑅 is universally Japanese it suffices to
show: If 𝑅 → 𝑆 is of finite type, and 𝑆 a domain then 𝑆 is N-1.

Proof. Namely, assume the condition of the lemma. Let 𝑅 → 𝑆 be a finite type ring map
with 𝑆 a domain. Let 𝑓.𝑓.(𝑆) ⊂ 𝐿 be a finite extension of its fraction field. Then there
exists a finite ring extension 𝑆 ⊂ 𝑆′ ⊂ 𝐿 with 𝑓.𝑓.(𝑆′) = 𝐿. By assumption 𝑆′ is N-1, and
hence the integral closure 𝑆″ of 𝑆′ in 𝐿 is finite over 𝑆′. Thus 𝑆″ is finite over 𝑆 (Lemma
7.7.3) and 𝑆″ is the integral closure of 𝑆 in 𝐿 (Lemma 7.32.14). We conclude that 𝑅 is
universally Japanese. �

Lemma 7.144.18. If 𝑅 is universally Japanese then any algebra essentially of finite type
over 𝑅 is universally Japanese.

Proof. The case of an algebra of finite type over 𝑅 is immediate from the definition. The
general case follows on applying Lemma 7.144.3. �

Lemma 7.144.19. Let𝑅 be a Nagata ring. If𝑅 → 𝑆 is a quasi-finite ring map (for example
finite) then 𝑆 is a Nagata ring also.

Proof. First note that 𝑆 is Noetherian as 𝑅 is Noetherian and a quasi-finite ring map is of
finite type. Let 𝔮 ⊂ 𝑆 be a prime ideal, and set 𝔭 = 𝑅 ∩ 𝔮. Then 𝑅/𝔭 ⊂ 𝑆/𝔮 is quasi-finite
and hence we conclude that 𝑆/𝔮 is N-2 by Lemma 7.144.5 as desired. �

Lemma 7.144.20. A localization of a Nagata ring is a Nagata ring.

Proof. Clear from Lemma 7.144.3. �

Lemma 7.144.21. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑛 ∈ 𝑅 generate the unit ideal.
(1) If each 𝑅𝑓𝑖

is universally Japanese then so is 𝑅.
(2) If each 𝑅𝑓𝑖

is Nagata then so is 𝑅.

Proof. Let𝜑 ∶ 𝑅 → 𝑆 be a finite type ringmap so that𝑆 is a domain. Then𝜑(𝑓1), … , 𝜑(𝑓𝑛)
generate the unit ideal in 𝑆. Hence if each 𝑆𝑓𝑖

= 𝑆𝜑(𝑓𝑖) is N-1 then so is 𝑆, see Lemma
7.144.4. This proves (1).
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If each 𝑅𝑓𝑖
is Nagata, then each 𝑅𝑓𝑖

is Noetherian and hence 𝑅 is Noetherian, see Lemma
7.21.2. And if 𝔭 ⊂ 𝑅 is a prime, then we see each 𝑅𝑓𝑖

/𝔭𝑅𝑓𝑖
= (𝑅/𝔭)𝑓𝑖

is Japanese and
hence we conclude 𝑅/𝔭 is Japanese by Lemma 7.144.4. This proves (2). �

Lemma 7.144.22. A Noetherian complete local ring is a Nagata ring.

Proof. Let 𝑅 be a complete local Noetherian ring. Let 𝔭 ⊂ 𝑅 be a prime. Then 𝑅/𝔭 is
also a complete local Noetherian ring, see Lemma 7.143.2. Hence it suffices to show that a
Noetherian complete local domain 𝑅 is N-2. By Lemmas 7.144.5 and 7.143.10 we reduce
to the case 𝑅 = 𝑘[[𝑋1, … , 𝑋𝑑]] where 𝑘 is a field or 𝑅 = Λ[[𝑋1, … , 𝑋𝑑]] where Λ is a
Cohen ring.

In the case 𝑘[[𝑋1, … , 𝑋𝑑]]we reduce to the statement that a field is N-2 by Lemma 7.144.14.
This is clear. In the case Λ[[𝑋1, … , 𝑋𝑑]] we reduce to the statement that a Cohen ring Λ
is N-2. Applying Lemma 7.144.13 once more with 𝑥 = 𝑝 ∈ Λ we reduce yet again to the
case of a field. Thus we win. �

Definition 7.144.23. Let (𝑅, 𝔪) be a Noetherian local ring. We say 𝑅 is analytically un-
ramified if its completion 𝑅∧ = 𝑙𝑖𝑚𝑛 𝑅/𝔪𝑛 is reduced. A prime ideal 𝔭 ⊂ 𝑅 is said to be
analytically unramified if 𝑅/𝔭 is analytically unramified.

At this point we know the following are true for any Noetherian local ring 𝑅: The map
𝑅 → 𝑅∧ is a faithfully flat local ring homomorphism (Lemma 7.90.4). The completion 𝑅∧

is Noetherian (Lemma 7.90.9) and complete (Lemma 7.90.8). Hence the completion 𝑅∧

is a Nagata ring (Lemma 7.144.22). Moreover, we have seen in Section 7.143 that 𝑅∧ is a
quotient of a regular local ring (Theorem 7.143.8), and hence universally catenary (Remark
7.143.9).

Lemma 7.144.24. Let (𝑅, 𝔪) be a Noetherian local ring.
(1) If 𝑅 is analytically unramified, then 𝑅 is reduced.
(2) If 𝑅 is analytically unramified, then each minimal prime of 𝑅 is analytically un-

ramified.
(3) If 𝑅 is reduced with minimal primes 𝔮1, … , 𝔮𝑡, and each 𝔮𝑖 is analytically unram-

ified, then 𝑅 is analytically unramified.
(4) If 𝑅 is analytically unramified, then the integral closure of 𝑅 in its total ring of

fractions 𝑄(𝑅) is finite over 𝑅.
(5) If 𝑅 is a domain and analytically unramified, then 𝑅 is N-1.

Proof. In this proof we will use the remarks immediately following Definition 7.144.23.
As 𝑅 → 𝑅∧ is a faithfully flat local ring homomorphism it is injective and (1) follows.

Let 𝔮 be a minimal prime of 𝑅, and assume 𝑅 is analytically unramified. Then 𝔮 is an
associated prime of 𝑅 (see Proposition 7.60.6). Hence there exists an 𝑓 ∈ 𝑅 such that
{𝑥 ∈ 𝑅 ∣ 𝑓𝑥 = 0} = 𝔮. Note that (𝑅/𝔮)∧ = 𝑅∧/𝔮∧, and that {𝑥 ∈ 𝑅∧ ∣ 𝑓𝑥 = 0} = 𝔮∧,
because completion is exact (Lemma 7.90.3). If 𝑥 ∈ 𝑅∧ is such that 𝑥2 ∈ 𝔮∧, then 𝑓𝑥2 = 0
hence (𝑓𝑥)2 = 0 hence 𝑓𝑥 = 0 hence 𝑥 ∈ 𝔮∧. Thus 𝔮 is analytically unramified and (2)
holds.

Assume 𝑅 is reduced with minimal primes 𝔮1, … , 𝔮𝑡, and each 𝔮𝑖 is analytically unramified.
Then 𝑅 → 𝑅/𝔮1 × … × 𝑅/𝔮𝑡 is injective. Since completion is exact (see Lemma 7.90.3) we
see that 𝑅∧ ⊂ (𝑅/𝔮1)∧ × … × (𝑅/𝔮𝑡)∧. Hence (3) is clear.
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Assume 𝑅 is analytically unramified. Let 𝔭1, … , 𝔭𝑠 be the minimal primes of 𝑅∧. Then
we see that

𝑄(𝑅∧) = 𝑅𝔭1
× … × 𝑅𝔭𝑠

with each 𝑅𝔭𝑖
a field as 𝑅∧ is reduced (see Lemma 7.22.2). Hence the integral closure 𝑆 of

𝑅∧ in 𝑄(𝑅∧) is equal to 𝑆 = 𝑆1 × … × 𝑆𝑠 with 𝑆𝑖 the integral closure of 𝑅/𝔭𝑖 in its fraction
field. In particular 𝑆 is finite over 𝑅∧. Denote 𝑅′ the integral closure of 𝑅 in 𝑄(𝑅). As
𝑅 → 𝑅∧ is flat we see that 𝑅′ ⊗𝑅 𝑅∧ ⊂ 𝑄(𝑅) ⊗𝑅 𝑅∧ ⊂ 𝑄(𝑅∧). Moreover 𝑅′ ⊗𝑅 𝑅∧ is
integral over 𝑅∧ (Lemma 7.32.11). Hence 𝑅′ ⊗𝑅 𝑅∧ ⊂ 𝑆 is a 𝑅∧-submodule. As 𝑅∧ is
Noetherian it is a finite 𝑅∧-module. Thus we may find 𝑓1, … , 𝑓𝑛 ∈ 𝑅′ such that 𝑅′ ⊗𝑅 𝑅∧

is generated by the elements 𝑓𝑖 ⊗ 1 as a 𝑅∧-module. By faithful flatness we see that 𝑅′ is
generated by 𝑓1, … , 𝑓𝑛 as an 𝑅-module. This proves (4).

Part (5) is a special case of part (4). �

Lemma 7.144.25. Let 𝑅 be a Noetherian local ring. Let 𝔭 ⊂ 𝑅 be a prime. Assume
(1) 𝑅𝔭 is a discrete valuation ring, and
(2) 𝔭 is analytically unramified.

Then for any associated prime 𝔮 of 𝑅∧/𝔭𝑅∧ the local ring (𝑅∧)𝔮 is a discrete valuation
ring.

Proof. Assumption (2) says that 𝑅∧/𝔭𝑅∧ is a reduced ring. Hence an associated prime
𝔮 ⊂ 𝑅∧ of 𝑅∧/𝔭𝑅∧ is the same thing as a minimal prime over 𝔭𝑅∧. In particular we see
that the maximal ideal of (𝑅∧)𝔮 is 𝔭(𝑅∧)𝔮. Choose 𝑥 ∈ 𝑅 such that 𝑥𝑅𝔭 = 𝔭𝑅𝔭. By the
above we see that 𝑥 ∈ (𝑅∧)𝔮 generates the maximal ideal. As 𝑅 → 𝑅∧ is faithfully flat we
see that 𝑥 is a nonzero divisor in (𝑅∧)𝔮. Hence we win. �

Lemma 7.144.26. Let (𝑅, 𝔪) be a Noetherian local domain. Let 𝑥 ∈ 𝔪. Assume
(1) 𝑥≠0,
(2) 𝑅/𝑥𝑅 has no embedded primes, and
(3) for each associated prime 𝔭 ⊂ 𝑅 of 𝑅/𝑥𝑅 we have

(a) the local ring 𝑅𝔭 is regular, and
(b) 𝔭 is analytically unramified.

Then 𝑅 is analytically unramified.

Proof. Let 𝔭1, … , 𝔭𝑡 be the associated primes of the 𝑅-module 𝑅/𝑥𝑅. Since 𝑅/𝑥𝑅 has no
embedded primes we see that each 𝔭𝑖 has height 1, and is a minimal prime over (𝑥). For
each 𝑖, let 𝔮𝑖1, … , 𝔮𝑖𝑠𝑖

be the associated primes of the 𝑅∧-module 𝑅∧/𝔭𝑖𝑅∧. By Lemma
7.144.25. we see that (𝑅∧)𝔮𝑖𝑗

is regular. By Lemma 7.62.3 we see that

Ass𝑅∧(𝑅∧/𝑥𝑅∧) = ⋃𝔭∈Ass𝑅(𝑅/𝑥𝑅)
Ass𝑅∧(𝑅∧/𝔭𝑅∧) = {𝔮𝑖𝑗}.

Let 𝑦 ∈ 𝑅∧ with 𝑦2 = 0. As (𝑅∧)𝔮𝑖𝑗
is regular, and hence a domain (Lemma 7.98.2) we see

that 𝑦 maps to zero in (𝑅∧)𝔮𝑖𝑗
. Hence 𝑦 maps to zero in 𝑅∧/𝑥𝑅∧ by Lemma 7.60.18. Hence

𝑦 = 𝑥𝑦′. Since 𝑥 is a nonzero divisor (as 𝑅 → 𝑅∧ is flat) we see that (𝑦′)2 = 0. Hence we
conclude that 𝑦 ∈ ⋂ 𝑥𝑛𝑅∧ = (0) (Lemma 7.47.6). �

Lemma 7.144.27. Let (𝑅, 𝔪) be a local ring. If 𝑅 is Noetherian, a domain, and Nagata,
then 𝑅 is analytically unramified.
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Proof. By induction on dim(𝑅). The case dim(𝑅) = 0 is trivial. Hence we assume
dim(𝑅) = 𝑑 and that the lemma holds for all Noetherian Nagata domains of dimension
< 𝑑.

Let 𝑅 ⊂ 𝑆 be the integral closure of 𝑅 in the field of fractions of 𝑅. By assumption 𝑆 is a
finite 𝑅-module. By Lemma 7.144.19 we see that 𝑆 is Nagata. By Lemma 7.103.4 we see
dim(𝑅) = dim(𝑆). Let 𝔪1, … , 𝔪𝑡 be the maximal ideals of 𝑆. Each of these lies over the
maximal ideal 𝔪 of 𝑅. Moreover

(𝔪1 ∩ … ∩ 𝔪𝑡)𝑛 ⊂ 𝔪𝑆

for sufficiently large 𝑛 as 𝑆/𝔪𝑆 is Artinian. By Lemma 7.90.3 𝑅∧ → 𝑆∧ is an injective
map, and by the Chinese Remainder Lemma 7.14.4 combined with Lemma 7.90.12 we have
𝑆∧ = ∏ 𝑆∧

𝑖 where 𝑆∧
𝑖 is the completion of 𝑆 with respect to the maximal ideal 𝔪𝑖. Hence

it suffices to show that 𝑆𝔪𝑖
is analytically unramified. In other words, we have reduced to

the case where 𝑅 is a Noetherian normal Nagata domain.

Assume 𝑅 is a Noetherian, normal, local Nagata domain. Pick a nonzero 𝑥 ∈ 𝔪 in the
maximal ideal. We are going to apply Lemma 7.144.26. We have to check properties (1),
(2), (3)(a) and (3)(b). Property (1) is clear. We have that 𝑅/𝑥𝑅 has no embedded primes
by Lemma 7.140.6. Thus property (2) holds. The same lemma also tells us each associated
prime 𝔭 of 𝑅/𝑥𝑅 has height 1. Hence 𝑅𝔭 is a 1-dimensional normal domain hence regular
(Lemma 7.110.6). Thus (3)(a) holds. Finally (3)(b) holds by induction hypothesis, since
𝑅/𝔭 is Nagata (by Lemma 7.144.19 or directly from the definition). Thus we conclude 𝑅
is analytically unramified. �

Lemma 7.144.28. Let 𝑅 be a Noetherian domain. If there exists an 𝑓 ∈ 𝑅 such that 𝑅𝑓 is
normal then

𝑈 = {𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅) ∣ 𝑅𝔭 is normal}
is open in 𝑆𝑝𝑒𝑐(𝑅).

Proof. It is clear that the standard open 𝐷(𝑓) is contained in 𝑈. By Serre's criterion Lemma
7.140.4 we see that 𝔭∉𝑈 implies that for some 𝔮 ⊂ 𝔭 we have either

(1) Case I: depth(𝑅𝔮) < 2 and dim(𝑅𝔮) ≥ 2, and
(2) Case II: 𝑅𝔮 is not regular and dim(𝑅𝔮) = 1.

This in particular also means that 𝑅𝔮 is not normal, and hence 𝑓 ∈ 𝔮. In case I we see that
depth(𝑅𝔮) = depth(𝑅𝔮/𝑓𝑅𝔮) + 1. Hence such a prime 𝔮 is the same thing as an embedded
associated prime of 𝑅/𝑓𝑅. In case II 𝔮 is an associated prime of 𝑅/𝑓𝑅 of height 1. Thus
there is a finite set 𝐸 of such primes 𝔮 (see Lemma 7.60.5) and

𝑆𝑝𝑒𝑐(𝑅) ⧵ 𝑈 = ⋃𝔮∈𝐸
𝑉(𝔮)

as desired. �

Lemma 7.144.29. Let 𝑅 be a Noetherian domain. Assume
(1) there exists a nonzero 𝑓 ∈ 𝑅 such that 𝑅𝑓 is normal, and
(2) for every maximal ideal 𝔪 ⊂ 𝑅 the local ring 𝑅𝔪 is N-1.

Then 𝑅 is N-1.

Proof. Set 𝐾 = 𝑓.𝑓.(𝑅). Suppose that 𝑅 ⊂ 𝑅′ ⊂ 𝐾 is a finite extension of 𝑅 contained
in 𝐾. Note that 𝑅𝑓 = 𝑅′

𝑓 since 𝑅𝑓 is already normal. Hence by Lemma 7.144.28 the set
of primes 𝔭′ ∈ 𝑆𝑝𝑒𝑐(𝑅′) with 𝑅′

𝔭′ non-normal is closed in 𝑆𝑝𝑒𝑐(𝑅′). Since 𝑆𝑝𝑒𝑐(𝑅′) →
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𝑆𝑝𝑒𝑐(𝑅) is closed the image of this set is closed in 𝑆𝑝𝑒𝑐(𝑅). For such a ring 𝑅′ denote
𝑍𝑅′ ⊂ 𝑆𝑝𝑒𝑐(𝑅) this image.
Pick a maximal ideal 𝔪 ⊂ 𝑅. Let 𝑅𝔪 ⊂ 𝑅′

𝔪 be the integral closure of the local ring in 𝐾.
By assumption this is a finite ring extension. By Lemma 7.32.9 we can find finitely many
elements 𝑟1, … , 𝑟𝑛 ∈ 𝐾 integral over 𝑅 such that 𝑅′

𝔪 is generated by 𝑟1, … , 𝑟𝑛 over 𝑅𝔪.
Let 𝑅′ = 𝑅[𝑥1, … , 𝑥𝑛] ⊂ 𝐾. With this choice it is clear that 𝔪∉𝑍𝑅′.
As 𝑆𝑝𝑒𝑐(𝑅) is quasi-compact, the above shows that we can find a finite collection 𝑅 ⊂ 𝑅′

𝑖 ⊂
𝐾 such that ⋂ 𝑍𝑅′

𝑖
= ∅. Let 𝑅′ be the subring of 𝐾 generated by all of these. It is finite

over 𝑅. Also 𝑍𝑅′ = ∅. Namely, every prime 𝔭′ lies over a prime 𝔭′
𝑖 such that (𝑅′

𝑖 )𝔭′
𝑖
is

normal. This implies that 𝑅′
𝔭′ = (𝑅′

𝑖 )𝔭′
𝑖
is normal too. Hence 𝑅′ is normal, in other words

𝑅′ is the integral closure of 𝑅 in 𝐾. �

The following proposition says in particular that an algebra of finite type over a Nagata ring
is a Nagata ring.

Proposition 7.144.30 (Nagata). Let 𝑅 be a ring. The following are equivalent:
(1) 𝑅 is a Nagata ring,
(2) any finite type 𝑅-algebra is Nagata, and
(3) 𝑅 is universally Japanese and Noetherian.

Proof. It is clear that a Noetherian universally Japanese ring is universally Nagata (i.e.,
condition (2) holds). Let 𝑅 be a Nagata ring. We will show that any finitely generated
𝑅-algebra 𝑆 is Nagata. This will prove the proposition.
Step 1. There exists a sequence of ring maps 𝑅 = 𝑅0 → 𝑅1 → 𝑅2 → … → 𝑅𝑛 = 𝑆 such
that each 𝑅𝑖 → 𝑅𝑖+1 is generated by a single element. Hence by induction it suffices to
prove 𝑆 is Nagata if 𝑆 ≅ 𝑅[𝑥]/𝐼.
Step 2. Let 𝔮 ⊂ 𝑆 be a prime of 𝑆, and let 𝔭 ⊂ 𝑅 be the corresponding prime of 𝑅. We have
to show that 𝑆/𝔮 is N-2. Hence we have reduced to the proving the following: (*) Given a
Nagata domain 𝑅 and a monogenic extension 𝑅 ⊂ 𝑆 of domains then 𝑆 is N-2.
Step 3. Let 𝑅 be a Nagata domain and 𝑅 ⊂ 𝑆 a monogenic extension of domains. Let
𝑅 ⊂ 𝑅′ be the integral closure of 𝑅 in its fraction field. Let 𝑆′ be the subring of 𝑓.𝑓.(𝑆)
generated by 𝑅′ and 𝑆. As 𝑅′ is finite over 𝑅 (by the Nagata property) also 𝑆′ is finite
over 𝑆. Since 𝑆 is Noetherian it suffices to prove that 𝑆′ is N-2 (Lemma 7.144.7). Hence
we have reduced to proving the following: (**) Given a normal Nagata domain 𝑅 and a
monogenic extension 𝑅 ⊂ 𝑆 of domains then 𝑆 is N-2.
Step 4: Let 𝑅 be a normal Nagata domain and let 𝑅 ⊂ 𝑆 be a monogenic extension of do-
mains. Suppose the extension of fraction fields 𝑓.𝑓.(𝑅) ⊂ 𝑓.𝑓.(𝑆) is purely transcendental.
In this case 𝑆 = 𝑅[𝑥]. By Lemma 7.144.12 we see that 𝑆 is N-2. Hence we have reduced to
proving the following: (**) Given a normal Nagata domain 𝑅 and a monogenic extension
𝑅 ⊂ 𝑆 of domains inducing a finite extension of fraction fields then 𝑆 is N-2.
Step 5. Let 𝑅 be a normal Nagata domain and let 𝑅 ⊂ 𝑆 be a monogenic extension of
domains inducing a finite extension of fraction fields 𝐾 = 𝑓.𝑓.(𝑅) ⊂ 𝑓.𝑓.(𝑆) = 𝐿. Choose
an element 𝑥 ∈ 𝑆 which generates 𝑆 as an 𝑅-algebra. Let 𝐿 ⊂ 𝑀 be a finite extension of
fields. Let 𝑅′ be the integral closure of 𝑅 in 𝑀. Then the integral closure 𝑆′ of 𝑆 in 𝑀 is
equal to the integral closure of 𝑅′[𝑥] in 𝑀. Also 𝑓.𝑓.(𝑅′) = 𝑀, and 𝑅 ⊂ 𝑅′ is finite (by
the Nagata property of 𝑅). This implies that 𝑅′ is a Nagata ring (Lemma 7.144.19). To
show that 𝑆′ is finite over 𝑆 is the same as showing that 𝑆′ is finite over 𝑅′[𝑥]. Replace
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𝑅 by 𝑅′ and 𝑆 by 𝑆′ to reduce to the following statement: (***) Given a normal Nagata
domain 𝑅 with fraction field 𝐾, and 𝑥 ∈ 𝐾, the ring 𝑆 ⊂ 𝐾 generated by 𝑅 and 𝑥 is N-1.
Step 6. Let 𝑅 be a normal Nagata domain with fraction field 𝐾. Let 𝑥 = 𝑏/𝑎 ∈ 𝐾. We have
to show that the ring 𝑆 ⊂ 𝐾 generated by 𝑅 and 𝑥 is N-1. Note that 𝑆𝑎 ≅ 𝑅𝑎 is normal.
Hence by Lemma 7.144.29 it suffices to show that 𝑆𝔪 is N-1 for every maximal ideal 𝔪 of
𝑆.
With assumptions as in the preceding paragraph, pick such a maximal ideal and set 𝔫 =
𝑅 ∩ 𝔪. The residue field extension 𝜅(𝔫) ⊂ 𝜅(𝔪) is finite (Theorem 7.30.1) and generated
by the image of 𝑥. Hence there exists a monic polynomial 𝑓(𝑋) = 𝑋𝑑 + ∑𝑖=1,…,𝑑 𝑎𝑖𝑋𝑑−𝑖

with 𝑓(𝑥) ∈ 𝔪. Let 𝐾 ⊂ 𝐾″ be a finite extension of fields such that 𝑓(𝑋) splits completely
in 𝐾″[𝑋]. Let 𝑅′ be the integral closure of 𝑅 in 𝐾″. Let 𝑆′ ⊂ 𝐾′ be the subring generated
by 𝑅′ and 𝑥. As 𝑅 is Nagata we see 𝑅′ is finite over 𝑅 and Nagata (Lemma 7.144.19).
Moreover, 𝑆′ is finite over 𝑆. If for every maximal ideal 𝔪′ of 𝑆′ the local ring 𝑆′

𝔪′ is
N-1, then 𝑆′

𝔪 is N-1 by Lemma 7.144.29, which in turn implies that 𝑆𝔪 is N-1 by Lemma
7.144.7. After replacing 𝑅 by 𝑅′ and 𝑆 by 𝑆′, and 𝔪 by any of the maximal ideals 𝔪′

lying over 𝔪 we reach the situation where the polynomial 𝑓 above split completely: 𝑓(𝑋) =
∏𝑖=1,…,𝑑(𝑋 − 𝑎𝑖) with 𝑎𝑖 ∈ 𝑅. Since 𝑓(𝑥) ∈ 𝔪 we see that 𝑥 − 𝑎𝑖 ∈ 𝔪 for some 𝑖. Finally,
after replacing 𝑥 by 𝑥 − 𝑎𝑖 we may assume that 𝑥 ∈ 𝔪.
To recapitulate: 𝑅 is a normal Nagata domain with fraction field 𝐾, 𝑥 ∈ 𝐾 and 𝑆 is the
subring of 𝐾 generated by 𝑥 and 𝑅, finally 𝔪 ⊂ 𝑆 is a maximal ideal with 𝑥 ∈ 𝔪. We have
to show 𝑆𝔪 is N-1.
We will show that Lemma 7.144.26 applies to the local ring 𝑆𝔪 and the element 𝑥. This
will imply that 𝑆𝔪 is analytically unramified, whereupon we see that it is N-1 by Lemma
7.144.24.
We have to check properties (1), (2), (3)(a) and (3)(b). Property (1) is trivial. Let 𝐼 =
Ker(𝑅[𝑋] → 𝑆) where 𝑋 ↦ 𝑥. We claim that 𝐼 is generated by all linear forms 𝑎𝑋 + 𝑏
such that 𝑎𝑥 = 𝑏 in 𝐾. Clearly all these linear forms are in 𝐼. If 𝑔 = 𝑎𝑑𝑋𝑑+… 𝑎1𝑋+𝑎0 ∈ 𝐼,
then we see that 𝑎𝑑𝑥 is integral over 𝑅 (Lemma 7.114.1) and hence 𝑏 ∶= 𝑎𝑑𝑥 ∈ 𝑅 as 𝑅
is normal. Then 𝑔 − (𝑎𝑑𝑋 − 𝑏)𝑋𝑑−1 ∈ 𝐼 and we win by induction on the degree. As a
consequence we see that

𝑆/𝑥𝑆 = 𝑅[𝑋]/(𝑋, 𝐼) = 𝑅/𝐽
where

𝐽 = {𝑏 ∈ 𝑅 ∣ 𝑎𝑥 = 𝑏 for some 𝑎 ∈ 𝑅} = 𝑥𝑅 ∩ 𝑅
By Lemma 7.140.6 we see that 𝑆/𝑥𝑆 = 𝑅/𝐽 has no embedded primes as an 𝑅-module,
hence as an 𝑅/𝐽-module, hence as an 𝑆/𝑥𝑆-module, hence as an 𝑆-module. This proves
property (2). Take such an associated prime 𝔮 ⊂ 𝑆 with the property 𝔮 ⊂ 𝔪 (so that
it is an associated prime of 𝑆𝔪/𝑥𝑆𝔪 -- it does not matter for the arguments). Then 𝔮 is
minimal over 𝑥𝑆 and hence has height 1. By the sequence of equalities above we see that
𝔭 = 𝑅 ∩ 𝔮 is an associated prime of 𝑅/𝐽, and so has height 1 (see Lemma 7.140.6). Thus
𝑅𝔭 is a discrete valuation ring and therefore 𝑅𝔭 ⊂ 𝑆𝔮 is an equality. This shows that 𝑆𝔮
is regular. This proves property (3)(a). Finally, (𝑆/𝔮)𝔪 is a localization of 𝑆/𝔮, which is a
quotient of 𝑆/𝑥𝑆 = 𝑅/𝐽. Hence (𝑆/𝔮)𝔪 is a localization of a quotient of the Nagata ring 𝑅,
hence Nagata (Lemmas 7.144.19 and 7.144.20) and hence analytically unramified (Lemma
7.144.27). This shows (3)(b) holds and we are done. �

Proposition 7.144.31. The following types of rings are Nagata and in particular univer-
sally Japanese:
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(1) fields,
(2) Noetherian complete local rings,
(3) 𝐙,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. The Noetherian complete local ring case is Lemma 7.144.22. In the other cases you
just check if 𝑅/𝔭 is N-2 for every prime ideal 𝔭 of the ring. This is clear whenever 𝑅/𝔭 is
a field, i.e., 𝔭 is maximal. Hence for the Dedeking ring case we only need to check it when
𝔭 = (0). But since we assume the fraction field has characteristic zero Lemma 7.144.10
kicks in. �

7.145. Ascending properties

In this section we start proving some algebraic facts concerning the ``ascent'' of properties
of rings.

Lemma 7.145.1. Suppose that𝑅 → 𝑆 is a flat and local ring homomorphism of Noetherian
local rings. Then

depth𝑆(𝑆) = depth𝑅(𝑅) + depth𝑆(𝑆/𝔪𝑅𝑆).

Proof. Denote 𝑛 the right hand side of the equality of the lemma. First assume that 𝑛 is
zero. Then depth(𝑅) = 0 (resp. depth(𝑆/𝔪𝑅𝑆) = 0) which means there is a 𝑧 ∈ 𝑅 (resp.
𝑦 ∈ 𝑆/𝔪𝑅𝑆) whose annihilator is 𝔪𝑅 (resp. 𝔪𝑆/𝔪𝑅). Let 𝑦 ∈ 𝑆 be a lift of 𝑦. It follows
from the fact that 𝑅 → 𝑆 is flat that the annihilator of 𝑧 in 𝑆 is 𝔪𝑅𝑆, and hence the
annihilator of 𝑧𝑦 is 𝔪𝑆. Thus depth𝑆(𝑆) = 0 as well.
Assume 𝑛 > 0. If depth(𝑆/𝔪𝑅𝑆) > 0, then choose an 𝑓 ∈ 𝔪𝑆 which maps to a nonzero
divisor in 𝑆/𝔪𝑅𝑆. According to Lemma 7.91.2 the element 𝑓 ∈ 𝑆 is a nonzero divisor and
𝑆/𝑓𝑆 is flat over 𝑅. Hence by induction on 𝑛 we have

depth(𝑆/𝑓𝑆) = depth(𝑅) + depth(𝑆/(𝑓, 𝔪𝑅)).

Since 𝑓 and 𝑓 are nonzero divisors we see that depth(𝑆) = depth(𝑆/𝑓𝑆)+1 and depth(𝑆/𝔪𝑅𝑆) =
depth(𝑆/(𝑓, 𝔪𝑅))+1, see Lemma 7.67.10. Hence we see that the equality holds for 𝑅 → 𝑆
as well.
If 𝑛 > 0, but depth(𝑆/𝔪𝑅𝑆) = 0, then choose 𝑓 ∈ 𝔪𝑅 a nonzero divisor. As 𝑅 → 𝑆 is flat
it is also the case that 𝑓 is a nonzero divisor on 𝑆. By induction on 𝑛 again we have

depth(𝑆/𝑓𝑆) = depth(𝑅/𝑓𝑅) + depth(𝑆/𝔪𝑅).
By a similar argument as above we conclude that the equality holds for 𝑅 → 𝑆 as well. �

Here is a more general statement involving modules, see [DG67, IV, Proposition 6.3.1].

Lemma 7.145.2. We have
depth𝑆(𝑀 ⊗𝑅 𝑁) = depth𝑅(𝑀) + depth𝑆/𝔪𝑅𝑆(𝑁/𝔪𝑅𝑁)

where 𝑅 → 𝑆 is a local homomorphism of local Noetherian rings, 𝑀 is a finite 𝑅-module,
and 𝑁 is a finite 𝑆-module flat over 𝑅.

Proof. Omitted, but similar to the proof of Lemma 7.145.1. �

Lemma 7.145.3. Let 𝑅 → 𝑆 be a local homomorphism of local Noetherian rings. Assume
(1) 𝑆/𝔪𝑅𝑆 is Cohen-Macaulay, and
(2) 𝑅 → 𝑆 is flat.
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Then 𝑆 is Cohen-Macaulay if and only if 𝑅 is Cohen-Macaulay.

Proof. This follows from the definitions combined with Lemmas 7.145.1 and 7.103.7. �

Lemma 7.145.4. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Assume
(1) 𝑅 is Noetherian,
(2) 𝑆 is Noetherian,
(3) 𝜑 is flat,
(4) the fibre rings 𝑆 ⊗𝑅 𝜅(𝔭) are Cohen-Macaulay, and
(5) 𝑅 has property (𝑆𝑘).

Then 𝑆 has property (𝑆𝑘).

Proof. Let 𝔮 be a prime of 𝑆 lying over a prime 𝔭 of 𝑅. By Lemma 7.145.1 we have
depth(𝑆𝔮) = depth(𝑆𝔮/𝔭𝑆𝔮) + depth(𝑅𝔭).

On the other hand, we have
dim(𝑆𝔮) ≤ dim(𝑅𝔭) + dim(𝑆𝔮/𝔭𝑆𝔮).

by Lemma 7.103.6. (Actually equality holds, by Lemma 7.103.7 but strictly speaking we
do not need this.) Finally, as the fibre rings of the map are assumed Cohen-Macaulay we
see that depth(𝑆𝔮/𝔭𝑆𝔮) = dim(𝑆𝔮/𝔭𝑆𝔮). Thus the lemma follows by the following string of
inequalities

depth(𝑆𝔮) = dim(𝑆𝔮/𝔭𝑆𝔮) + depth(𝑅𝔭)
≥ dim(𝑆𝔮/𝔭𝑆𝔮) + min(𝑘, dim(𝑅𝔭))
= min(dim(𝑆𝔮/𝔭𝑆𝔮) + 𝑘, dim(𝑆𝔮/𝔭𝑆𝔮) + dim(𝑅𝔭))
≥ min(𝑘, dim(𝑆𝔮))

as desired. �

Lemma 7.145.5. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Assume
(1) 𝑅 is Noetherian,
(2) 𝑆 is Noetherian
(3) 𝜑 is flat,
(4) the fibre rings 𝑆 ⊗𝑅 𝜅(𝔭) are regular, and
(5) 𝑅 has property (𝑅𝑘).

Then 𝑆 has property (𝑅𝑘).

Proof. Let 𝔮 be a prime of 𝑆 lying over a prime 𝔭 of 𝑅. Assume that dim(𝑆𝔮) ≤ 𝑘. Since
dim(𝑆𝔮) = dim(𝑅𝔭) + dim(𝑆𝔮/𝔭𝑆𝔮) by Lemma 7.103.7 we see that dim(𝑅𝔭) ≤ 𝑘. Hence
𝑅𝔭 is regular by assumption. It follows that 𝑆𝔮 is regular by Lemma 7.103.8. �

Lemma 7.145.6. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Assume
(1) 𝜑 is smooth,
(2) 𝑅 is reduced.

Then 𝑆 is reduced.

Proof. First assume 𝑅 is Noetherian. In this case being reduced is the same as having
properties (𝑆1) and (𝑅0), see Lemma 7.140.3. Note that 𝑆 is noetherian, and 𝑅 → 𝑆 is flat
with regular fibres (see the list of results on smooth ring maps in Section 7.131). Hence we
may apply Lemmas 7.145.4 and 7.145.5 and we see that 𝑆 is (𝑆1) and (𝑅0), in other words
reduced by Lemma 7.140.3 again.
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In the general case wemay find a finitely generated 𝐙-subalgebra 𝑅0 ⊂ 𝑅 and a smooth ring
map 𝑅0 → 𝑆0 such that 𝑆 ≅ 𝑅 ⊗𝑅0

𝑆0, see remark (10) in Section 7.131. Now, if 𝑥 ∈ 𝑆 is
an element with 𝑥2 = 0, then we can enlarge 𝑅0 and assume that 𝑥 comes from an element
𝑥0 ∈ 𝑆0. After enlarging 𝑅0 once more we may assume that 𝑥2

0 = 0 in 𝑆0. However, since
𝑅0 ⊂ 𝑅 is reduced we see that 𝑆0 is reduced and hence 𝑥0 = 0 as desired. �

Lemma 7.145.7. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Assume
(1) 𝜑 is smooth,
(2) 𝑅 is normal.

Then 𝑆 is normal.

Proof. First assume 𝑅 is Noetherian. In this case being reduced is the same as having
properties (𝑆2) and (𝑅1), see Lemma 7.140.4. Note that 𝑆 is noetherian, and 𝑅 → 𝑆 is flat
with regular fibres (see the list of results on smooth ring maps in Section 7.131). Hence we
may apply Lemmas 7.145.4 and 7.145.5 and we see that 𝑆 is (𝑆2) and (𝑅1), in other words
reduced by Lemma 7.140.4 again.
The general case. First note that 𝑅 is reduced and hence 𝑆 is reduced by Lemma 7.145.6.
Let 𝔮 be a prime of 𝑆 and let 𝔭 be the corresponding prime of 𝑅. Note that 𝑅𝔭 is a normal
domain. We have to show that 𝑆𝔮 is a normal domain. To do this we may replace 𝑅 by 𝑅𝔭
and 𝑆 by 𝑆𝔭. Hence we may assume that 𝑅 is a normal domain.
Assume 𝑅 → 𝑆 smooth, and 𝑅 a normal domain. We may find a finitely generated
𝐙-subalgebra 𝑅0 ⊂ 𝑅 and a smooth ring map 𝑅0 → 𝑆0 such that 𝑆 ≅ 𝑅 ⊗𝑅0

𝑆0, see
remark (10) in Section 7.131. As 𝑅0 is a Nagata domain (see Proposition 7.144.31) we see
that its integral closure 𝑅′

0 is finite over 𝑅0. Moreover, as 𝑅 is a normal domain it is clear
that 𝑅′

0 ⊂ 𝑅. Hence we may replace 𝑅0 by 𝑅′
0 and 𝑆0 by 𝑅′

0 ⊗𝑅0
𝑆0 and assume that 𝑅0

is a normal Noetherian domain. By the first paragraph of the proof we conclude that 𝑆0 is
a normal ring (it need not be a domain of course). In this way we see that 𝑅 = ⋃ 𝑅𝜆 is
the union of normal Noetherian domains and correspondingly 𝑆 = 𝑐𝑜𝑙𝑖𝑚 𝑅𝜆 ⊗𝑅0

𝑆0 is the
colimit of normal rings. This implies that 𝑆 is a normal ring. Some details omitted. �

Lemma 7.145.8. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Assume
(1) 𝜑 is smooth,
(2) 𝑅 is a regular ring.

Then 𝑆 is regular.

Proof. This follows from Lemma 7.145.5 applied for all (𝑅𝑘) using Lemma 7.129.3 to see
that the hypotheses are satisfied. �

7.146. Descending properties

In this section we start proving some algebraic facts concerning the ``descent'' of properties
of rings. It turns out that it is often ``easier'' to descend properties than it is to ascend
them. In other words, the assumption on the ring map 𝑅 → 𝑆 are often weaker than the
assumptions in the corresponding lemma of the preceding section. However, we warn the
reader that the results on descent are often useless unless the corresponding ascent can also
be shown! Here is a typical result which illustrates this phenomenon.

Lemma 7.146.1. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 → 𝑆 is faithfully flat, and
(2) 𝑆 is Noetherian.
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Then 𝑅 is Noetherian.

Proof. Let 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ … be a growing sequence of ideals of 𝑅. By assumption we
have 𝐼𝑛𝑆 = 𝐼𝑛+1𝑆 = 𝐼𝑛+2𝑆 = … for some 𝑛. Since 𝑅 → 𝑆 is flat we have 𝐼𝑘𝑆 = 𝐼𝑘 ⊗𝑅 𝑆.
Hence, as 𝑅 → 𝑆 is faithfully flat we see that 𝐼𝑛𝑆 = 𝐼𝑛+1𝑆 = 𝐼𝑛+2𝑆 = … implies that
𝐼𝑛 = 𝐼𝑛+1 = 𝐼𝑛+2 = … as desired. �

Lemma 7.146.2. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 → 𝑆 is faithfully flat, and
(2) 𝑆 is reduced.

Then 𝑅 is reduced.

Proof. This is clear as 𝑅 → 𝑆 is injective. �

Lemma 7.146.3. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 → 𝑆 is faithfully flat, and
(2) 𝑆 is a normal ring.

Then 𝑅 is a normal ring.

Proof. Since 𝑆 is reduced it follows that 𝑅 is reduced. Let 𝔭 be a prime of 𝑅. We have to
show that 𝑅𝔭 is a normal domain. Since 𝑆𝔭 is faithfully over 𝑅𝔭 too we may assume that
𝑅 is local with maximal ideal 𝔪. Let 𝔮 be a prime of 𝑆 lying over 𝔪. Then we see that
𝑅 → 𝑆𝔮 is faithfully flat (Lemma 7.35.16). Hence we may assume 𝑆 is local as well. In
particular 𝑆 is a normal domain. Since 𝑅 → 𝑆 is faithfully flat and 𝑆 is a normal domain
we see that 𝑅 is a domain. Next, suppose that 𝑎/𝑏 is integral over 𝑅 with 𝑎, 𝑏 ∈ 𝑅. Then
𝑎/𝑏 ∈ 𝑆 as 𝑆 is normal. Hence 𝑎 ∈ 𝑏𝑆. This means that 𝑎 ∶ 𝑅 → 𝑅/𝑏𝑅 becomes the zero
map after base change to 𝑆. By faithful flatness we see that 𝑎 ∈ 𝑏𝑅, so 𝑎/𝑏 ∈ 𝑅. Hence 𝑅
is normal. �

Lemma 7.146.4. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 → 𝑆 is faithfully flat, and
(2) 𝑆 is a regular ring.

Then 𝑅 is a regular ring.

Proof. We see that 𝑅 is Noetherian by Lemma 7.146.1. Let 𝔭 ⊂ 𝑅 be a prime. Choose a
prime 𝔮 ⊂ 𝑆 lying over 𝔭. Then Lemma 7.102.8 applies to 𝑅𝔭 → 𝑆𝔮 and we conclude that
𝑅𝔭 is regular. Since 𝔭 was arbitrary we see 𝑅 is regular. �

Lemma 7.146.5. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 → 𝑆 is faithfully flat of finite presentation, and
(2) 𝑆 is Noetherian and has property (𝑆𝑘).

Then 𝑅 is Noetherian and has property (𝑆𝑘).

Proof. We have already seen that (1) and (2) imply that 𝑅 is Noetherian, see Lemma
7.146.1. Let 𝔭 ⊂ 𝑅 be a prime ideal. Choose a prime 𝔮 ⊂ 𝑆 lying over 𝔭 which cor-
responds to a minimal prime of the fibre ring 𝑆 ⊗𝑅 𝜅(𝔭). Then 𝐴 = 𝑅𝔭 → 𝑆𝔮 = 𝐵 is a
flat local ring homomorphism of Noetherian local rings with 𝔪𝐴𝐵 an ideal of definition of
𝐵. Hence dim(𝐴) = dim(𝐵) (Lemma 7.103.7) and depth(𝐴) = depth(𝐵) (Lemma 7.145.1).
Hence since 𝐵 has (𝑆𝑘) we see that 𝐴 has (𝑆𝑘). �

Lemma 7.146.6. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 → 𝑆 is faithfully flat and of finite presentation, and
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(2) 𝑆 is Noetherian and has property (𝑅𝑘).
Then 𝑅 is Noetherian and has property (𝑅𝑘).

Proof. We have already seen that (1) and (2) imply that 𝑅 is Noetherian, see Lemma
7.146.1. Let 𝔭 ⊂ 𝑅 be a prime ideal and assume dim(𝑅𝔭) ≤ 𝑘. Choose a prime 𝔮 ⊂ 𝑆
lying over 𝔭 which corresponds to a minimal prime of the fibre ring 𝑆 ⊗𝑅 𝜅(𝔭). Then
𝐴 = 𝑅𝔭 → 𝑆𝔮 = 𝐵 is a flat local ring homomorphism of Noetherian local rings with
𝔪𝐴𝐵 an ideal of definition of 𝐵. Hence dim(𝐴) = dim(𝐵) (Lemma 7.103.7). As 𝑆 has
(𝑅𝑘) we conclude that 𝐵 is a regular local ring. By Lemma 7.102.8 we conclude that 𝐴 is
regular. �

Lemma 7.146.7. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 → 𝑆 is smooth and surjective on spectra, and
(2) 𝑆 is a Nagata ring.

Then 𝑅 is a Nagata ring.

Proof. Recall that a Nagata ring is the same thing as a Noetherian universally Japanese ring
(Proposition 7.144.30). We have already seen that 𝑅 is Noetherian in Lemma 7.146.1. Let
𝑅 → 𝐴 be a finite type ring map into a domain. According to Lemma 7.144.17 it suffices
to check that 𝐴 is N-1. It is clear that 𝐵 = 𝐴 ⊗𝑅 𝑆 is a finite type 𝑆-algebra and hence
Nagata (Proposition 7.144.30). Since 𝐴 → 𝐵 is smooth (Lemma 7.126.4) we see that 𝐵
is reduced (Lemma 7.145.6). Since 𝐵 is Noetherian it has only a finite number of minimal
primes 𝔮1, … , 𝔮𝑡 (see Lemma 7.28.6). As 𝐴 → 𝐵 is flat each of these lies over (0) ⊂ 𝐴
(by going down, see Lemma 7.35.17) The total ring of fractions 𝑄(𝐵) is the product of the
𝐿𝑖 = 𝑓.𝑓.(𝐵/𝔮𝑖) (Lemmas 7.22.2 and 7.23.3). Moreover, the integral closure 𝐵′ of 𝐵 in
𝑄(𝐵) is the product of the integral closures 𝐵′

𝑖 of the 𝐵/𝔮𝑖 in the factors 𝐿𝑖 (compare with
Lemma 7.33.14). Since 𝐵 is universally Japanese the ring extensions 𝐵/𝔮𝑖 ⊂ 𝐵′

𝑖 are finite
and we conclude that 𝐵′ = ∏ 𝐵′

𝑖 is finite over 𝐵. Since 𝐴 → 𝐵 is flat we see that any
nonzero divisor on 𝐴 maps to a nonzero divisor on 𝐵. The corresponding map

𝑄(𝐴) ⊗𝐴 𝐵 = (𝐴 ⧵ {0})−1𝐴 ⊗𝐴 𝐵 = (𝐴 ⧵ {0})−1𝐵 → 𝑄(𝐵)

is injective (we used Lemma 7.11.15). Via this map 𝐴′ maps into 𝐵′. This induces a map

𝐴′ ⊗𝐴 𝐵 ⟶ 𝐵′

which is injective (by the above and the flatness of 𝐴 → 𝐵). Since 𝐵′ is a finite 𝐵-module
and 𝐵 is Noetherian we see that 𝐴′ ⊗𝐴 𝐵 is a finite 𝐵-module. Hence there exist finitely
many elements 𝑥𝑖 ∈ 𝐴′ such that the elements 𝑥𝑖 ⊗ 1 generate 𝐴′ ⊗𝐴 𝐵 as a 𝐵-module.
Finally, by faithful flatness of 𝐴 → 𝐵 we conclude that the 𝑥𝑖 also generated 𝐴′ as an
𝐴-module, and we win. �

Remark 7.146.8. The property of being ``universally catenary'' does not descend; not even
along étale ring maps. In Examples, Section 64.9 there is a construction of a finite ring
map 𝐴 → 𝐵 with 𝐴 local Noetherian and not universally catenary, 𝐵 semi-local with two
maximal ideals 𝔪, 𝔫 with 𝐵𝔪 and 𝐵𝔫 regular of dimension 2 and 1 respectively, and the
same residue fields as that of 𝐴. Moreover, 𝔪𝐴 generates the maximal ideal in both 𝐵𝔪
and 𝐵𝔫 (so 𝐴 → 𝐵 is unramified as well as finite). By Lemma 7.138.10 there exists a local
étale ring map 𝐴 → 𝐴′ such that 𝐵⊗𝐴 𝐴′ = 𝐵1 ×𝐵2 decomposes with 𝐴′ → 𝐵𝑖 surjective.
This shows that 𝐴′ has two minimal primes 𝔮𝑖 with 𝐴′/𝔮𝑖 ≅ 𝐵𝑖. Since 𝐵𝑖 is regular local
(since it is étale over either 𝐵𝔪 or 𝐵𝔫) we conclude that 𝐴′ is universally catenary.
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7.147. Geometrically normal algebras

In this section we put some applications of ascent and descent of properties of rings.

Lemma 7.147.1. Let 𝑘 be a field. Let 𝐴 be a 𝑘-algebra. The following properties of 𝐴 are
equivalent:

(1) 𝑘′ ⊗𝑘 𝐴 is a normal ring for every field extension 𝑘 ⊂ 𝑘′,
(2) 𝑘′ ⊗𝑘 𝐴 is a normal ring for every finitely generated field extension 𝑘 ⊂ 𝑘′, and
(3) 𝑘′ ⊗𝑘 𝐴 is a normal ring for every finite purely inseparable extension 𝑘 ⊂ 𝑘′.

where normal ring is as defined in Definition 7.33.10.

Proof. It is clear that (1) ⇒ (2) ⇒ (3).
Assume (2) and let 𝑘 ⊂ 𝑘′ be any field extension. Then we can write 𝑘′ = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑘𝑖 as
a directed colimit of finitely generated field extensions. Hence we see that 𝑘′ ⊗𝑘 𝐴 =
𝑐𝑜𝑙𝑖𝑚𝑖 𝑘𝑖 ⊗𝑘 𝐴 is a directed colimit of normal rings. Thus we see that 𝑘′ ⊗𝑘 𝐴 is a normal
ring by Lemma 7.33.15. Hence (1) holds.
Assume (3) and let 𝑘 ⊂ 𝐾 be a finitely generated field extension. By Lemma 7.42.3 we can
find a diagram

𝐾 // 𝐾′

𝑘

OO

// 𝑘′

OO

where 𝑘 ⊂ 𝑘′, 𝐾 ⊂ 𝐾′ are finite purely inseparable field extensions such that 𝑘′ ⊂ 𝐾′

is separable. By Lemma 7.141.9 there exists a smooth 𝑘′-algebra 𝐵 such that 𝐾′ is the
fraction field of 𝐵. Now we can argue as follows: Step 1: 𝑘′ ⊗𝑘 𝐴 is a normal ring because
we assumed (3). Step 2: 𝐵 ⊗𝑘′ 𝑘′ ⊗𝑘 𝐴 is a normal ring as 𝑘′ ⊗𝑘 𝐴 → 𝐵 ⊗𝑘′ 𝑘′ ⊗𝑘 𝐴
is smooth (Lemma 7.126.4) and ascent of normality along smooth maps (Lemma 7.145.7).
Step 3. 𝐾′ ⊗𝑘′ 𝑘′ ⊗𝑘 𝐴 = 𝐾′ ⊗𝑘 𝐴 is a normal ring as it is a localization of a normal
ring (Lemma 7.33.12). Step 4. Finally 𝐾 ⊗𝑘 𝐴 is a normal ring by descent of normality
along the faithfully flat ring map 𝐾 ⊗𝑘 𝐴 → 𝐾′ ⊗𝑘 𝐴 (Lemma 7.146.3). This proves the
lemma. �

Definition 7.147.2. Let 𝑘 be a field. A 𝑘-algebra 𝑅 is called geometrically normal over 𝑘
if the equivalent conditions of Lemma 7.147.1 hold.

Lemma 7.147.3. Let 𝑘 be a field. A localization of a geometrically normal 𝑘-algebra is
geometrically normal.

Proof. This is clear as being a normal ring is checked at the localizations at prime ideals.
�

Lemma 7.147.4. Let 𝑘 be a field. Let 𝐴, 𝐵 be 𝑘-algebras. Assume 𝐴 is geometrically
normal over 𝑘 and 𝐵 is a normal ring. Then 𝐴 ⊗𝑘 𝐵 is a normal ring.

Proof. Let 𝔯 be a prime ideal of 𝐴 ⊗𝑘 𝐵. Denote 𝔭, resp. 𝔮 the corresponding prime of 𝐴,
resp. 𝐵. Then (𝐴 ⊗𝑘 𝐵)𝔯 is a localization of 𝐴𝔭 ⊗𝑘 𝐵𝔮. Hence it suffices to prove the result
for the ring 𝐴𝔭 ⊗𝑘 𝐵𝔮, see Lemma 7.33.12 and Lemma 7.147.3. Thus we may assume 𝐴
and 𝐵 are domains.
Assume that 𝐴 and 𝐵 are domains with fractions fields 𝐾 and 𝐿. Note that 𝐵 is the fil-
tered colimit of its finite type normal 𝑘-sub algebras (as 𝑘 is a Nagata ring, see Proposition
7.144.31, and hence the integral closure of a finite type 𝑘-sub algebra is still a finite type
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𝑘-sub algebra by Proposition 7.144.30). By Lemma 7.33.15 we reduce to the case that 𝐵 is
of finite type over 𝑘.

Assume that 𝐴 and 𝐵 are domains with fractions fields 𝐾 and 𝐿 and 𝐵 of finite type over 𝑘.
In this case the ring 𝐾 ⊗𝑘 𝐵 is of finite type over 𝐾, hence Noetherian (Lemma 7.28.1). In
particular 𝐾 ⊗𝑘 𝐵 has finitely many minimal primes (Lemma 7.28.6). Since 𝐴 → 𝐴 ⊗𝑘 𝐵
is flat, this implies that 𝐴 ⊗𝑘 𝐵 has finitely many minimal primes (by going down for flat
ring maps -- Lemma 7.35.17 -- these primes all lie over (0) ⊂ 𝐴). Thus it suffices to prove
that 𝐴 ⊗𝑘 𝐵 is integrally closed in its total ring of fractions (Lemma 7.33.14).

We claim that 𝐾 ⊗𝑘 𝐵 and 𝐴 ⊗𝑘 𝐿 are both normal rings. If this is true then any element
𝑥 of 𝑄(𝐴 ⊗𝑘 𝐵) which is integral over 𝐴 ⊗𝑘 𝐵 is (by Lemma 7.33.11) contained in 𝐾 ⊗𝑘
𝐵 ∩ 𝐴 ⊗𝑘 𝐿 = 𝐴 ⊗𝑘 𝐵 and we're done. Since 𝐴 ⊗𝐾 𝐿 is a normal ring by assumption, it
suffices to prove that 𝐾 ⊗𝑘 𝐵 is normal.

As 𝐴 is geometrically normal over 𝑘 we see 𝐾 is geometrically normal over 𝑘 (Lemma
7.147.3) hence 𝐾 is geometrically reduced over 𝑘. Hence 𝐾 = ⋃ 𝐾𝑖 is the union of finitely
generated field extensions of 𝑘 which are geometrically reduced (Lemma 7.40.2). Each 𝐾𝑖
is the localization of a smooth 𝑘-algebra (Lemma 7.141.9). So 𝐾𝑖 ⊗𝑘 𝐵 is the localization
of a smooth 𝐵-algebra hence normal (Lemma 7.145.7). Thus 𝐾 ⊗𝑘 𝐵 is a normal ring
(Lemma 7.33.15) and we win. �

7.148. Geometrically regular algebras

Let 𝑘 be a field. Let 𝐴 be a Noetherian 𝑘-algebra. Let 𝑘 ⊂ 𝐾 be a finitely generated
field extension. Then the ring 𝐾 ⊗𝑘 𝐴 is Noetherian as well, see Lemma 7.28.7. Thus the
following lemma makes sense.

Lemma 7.148.1. Let 𝑘 be a field. Let 𝐴 be a 𝑘-algebra. Assume 𝐴 is Noetherian. The
following properties of 𝐴 are equivalent:

(1) 𝑘′ ⊗𝑘 𝐴 is a regular ring for every finitely generated field extension 𝑘 ⊂ 𝑘′, and
(2) 𝑘′ ⊗𝑘 𝐴 is a regular ring for every finite purely inseparable extension 𝑘 ⊂ 𝑘′.

where regular ring is as defined in Definition 7.102.6.

Proof. The lemma makes sense by the remarks preceding the lemma. It is clear that (1) ⇒
(2).

Assume (2) and let 𝑘 ⊂ 𝐾 be a finitely generated field extension. By Lemma 7.42.3 we can
find a diagram

𝐾 // 𝐾′

𝑘

OO

// 𝑘′

OO

where 𝑘 ⊂ 𝑘′, 𝐾 ⊂ 𝐾′ are finite purely inseparable field extensions such that 𝑘′ ⊂ 𝐾′

is separable. By Lemma 7.141.9 there exists a smooth 𝑘′-algebra 𝐵 such that 𝐾′ is the
fraction field of 𝐵. Now we can argue as follows: Step 1: 𝑘′ ⊗𝑘 𝐴 is a regular ring because
we assumed (2). Step 2: 𝐵 ⊗𝑘′ 𝑘′ ⊗𝑘 𝐴 is a regular ring as 𝑘′ ⊗𝑘 𝐴 → 𝐵 ⊗𝑘′ 𝑘′ ⊗𝑘 𝐴
is smooth (Lemma 7.126.4) and ascent of regularity along smooth maps (Lemma 7.145.8).
Step 3. 𝐾′ ⊗𝑘′ 𝑘′ ⊗𝑘 𝐴 = 𝐾′ ⊗𝑘 𝐴 is a regular ring as it is a localization of a regular ring
(immediate from the definition). Step 4. Finally 𝐾 ⊗𝑘 𝐴 is a regular ring by descent of
regularity along the faithfully flat ring map 𝐾 ⊗𝑘 𝐴 → 𝐾′ ⊗𝑘 𝐴 (Lemma 7.146.4). This
proves the lemma. �
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Definition 7.148.2. Let 𝑘 be a field. Let 𝑅 be a Noetherian 𝑘-algebra. The 𝑘-algebra 𝑅 is
called geometrically regular over 𝑘 if the equivalent conditions of Lemma 7.148.1 hold.

We will see later (More on Algebra, Proposition 12.26.1) that it suffices to check 𝑅 ⊗𝑘 𝑘′

is regular whenever 𝑘 ⊂ 𝑘′ ⊂ 𝑘1/𝑝 (finite).

Lemma 7.148.3. Let 𝑘 be a field. Let 𝐴 → 𝐵 be a faithfully flat 𝑘-algebra map. If 𝐵 is
geometrically regular over 𝑘, so is 𝐴.

Proof. Assume 𝐵 is geometrically regular over 𝑘. Let 𝑘 ⊂ 𝑘′ be a finite, purely inseparable
extension. Then 𝐴⊗𝑘𝑘′ → 𝐵⊗𝑘𝑘′ is faithfully flat as a base change of 𝐴 → 𝐵 (by Lemmas
7.27.3 and 7.35.6) and 𝐵 ⊗𝑘 𝑘′ is regular by our assumption on 𝐵 over 𝑘. Then 𝐴 ⊗𝑘 𝑘′ is
regular by Lemma 7.146.4. �

7.149. Geometrically Cohen-Macaulay algebras

This section is a bit of a misnomer, since Cohen-Macaulay algebras are automatically geo-
metrically Cohen-Macaulay. Namely, see Lemma 7.121.6 and Lemma 7.149.2 below.

Lemma 7.149.1. Let 𝑘 be a field and let 𝑘 ⊂ 𝐾 and 𝑘 ⊂ 𝐿 be two field extensions such that
one of them is a field extension of finite type. Then 𝐾⊗𝑘 𝐿 is a Noetherian Cohen-Macaulay
ring.

Proof. The ring 𝐾 ⊗𝑘 𝐿 is Noetherian by Lemma 7.28.7. Say 𝐾 is a finite extension of
the purely transcendental extension 𝑘(𝑡1, … , 𝑡𝑟). Then 𝑘(𝑡1, … , 𝑡𝑟) ⊗𝑘 𝐿 → 𝐾 ⊗𝑘 𝐿 is a
finite free ring map. By Lemma 7.103.9 it suffices to show that 𝑘(𝑡1, … , 𝑡𝑟) ⊗𝑘 𝐿 is Cohen-
Macaulay. This is clear because it is a localization of the polynomial ring 𝐿[𝑡1, … , 𝑡𝑟]. (See
for example Lemma 7.96.7 for the fact that a polynomial ring is Cohen-Macaulay.) �

Lemma 7.149.2. Let 𝑘 be a field. Let 𝑆 be a Noetherian 𝑘-algebra. Let 𝑘 ⊂ 𝐾 be a
finitely generated field extension, and set 𝑆𝐾 = 𝐾 ⊗𝑘 𝑆. Let 𝔮 ⊂ 𝑆 be a prime of 𝑆. Let
𝔮𝐾 ⊂ 𝑆𝐾 be a prime of 𝑆𝐾 lying over 𝔮. Then 𝑆𝔮 is Cohen-Macaulay if and only if (𝑆𝐾)𝔮𝐾
is Cohen-Macaulay.

Proof. By Lemma 7.28.7 the ring 𝑆𝐾 is Noetherian. Hence 𝑆𝔮 → (𝑆𝐾)𝔮𝐾
is a flat local

homomorphism of Noetherian local rings. Note that the fibre
(𝑆𝐾)𝔮𝐾

/𝔮(𝑆𝐾)𝔮𝐾
≅ (𝜅(𝔮) ⊗𝑘 𝐾)𝔮′

is the localization of the Cohen-Macaulay (Lemma 7.149.1) ring 𝜅(𝔮) ⊗𝑘 𝐾 at a suitable
prime ideal 𝔮′. Hence the lemma follows from Lemma 7.145.3. �
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CHAPTER 8

Brauer groups

8.1. Introduction

A reference are the lectures by Serre in the Seminaire Cartan, see [Ser55a]. Serre in turn
refers to [Deu68] and [ANT44]. We changed some of the proofs, in particular we used a
fun argument of Rieffel to prove Wedderburn's theorem. Very likely this change is not an
improvement and we strongly encourage the reader to read the original exposition by Serre.

8.2. Noncommutative algebras

Let 𝑘 be a field. In this chapter an algebra 𝐴 over 𝑘 is a possibly noncommutative ring 𝐴
together with a ring map 𝑘 → 𝐴 such that 𝑘 maps into the center of 𝐴 and such that 1 maps
to an identity element of 𝐴. An 𝐴-module is a right 𝐴-module such that the identity of 𝐴
acts as the identity.

Definition 8.2.1. Let 𝐴 be a 𝑘-algebra. We say 𝐴 is finite if dim𝑘(𝐴) < ∞. In this case we
write [𝐴 ∶ 𝑘] = dim𝑘(𝐴).

Definition 8.2.2. A skew field is a possibly noncommutative ring with an identity element
1, with 1≠0, such that in which every nonzero element has a multiplicative inverse.

A skew field is a 𝑘-algebra for some 𝑘 (e.g., for the prime field contained in it). We will use
below that any module over a skew field is free because a maximal linearly independent set
of vectors forms a basis and exists by Zorn's lemma.

Definition 8.2.3. Let 𝐴 be a 𝑘-algebra. We say an 𝐴-module 𝑀 is simple if it is nonzero
and the only 𝐴-submodules are 0 and 𝑀. We say 𝐴 is simple if the only two-sided ideals
of 𝐴 are 0 and 𝐴.

Definition 8.2.4. A 𝑘-algebra 𝐴 is central if the center of 𝐴 is the image of 𝑘 → 𝐴.

Definition 8.2.5. Given a 𝑘-algebra 𝐴 we denote 𝐴𝑜𝑝 the 𝑘-algebra we get by reversing the
order of multiplication in 𝐴. This is called the opposite algebra.

8.3. Wedderburn's theorem

The following cute argument can be found in a paper of Rieffel, see [Rie65]. The proof
could not be simpler (quote from Carl Faith's review).

Lemma8.3.1. Let𝐴 be a possibly noncommutative ringwith 1which contains no nontrivial
two-sided ideal. Let 𝑀 be a nonzero right ideal in 𝐴, and view 𝑀 as a right 𝐴-module.
Then 𝐴 coincides with the bicommutant of 𝑀.

Proof. Let 𝐴′ = End𝐴(𝑀), and let 𝐴″ = End𝐴′(𝑀) (the bicommutant of 𝑀). Let 𝑅 ∶
𝐴 → 𝐴″ be the natural homomorphism 𝑅(𝑎)(𝑚) = 𝑚𝑎. Then 𝑅 is injective, since 𝑅(1) =
id𝑀 and 𝐴 contains no nontrivial two-sided ideal. We claim that 𝑅(𝑀) is a right ideal in
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𝐴″. Namely, 𝑅(𝑚)𝑎″ = 𝑅(𝑚𝑎″) for 𝑎″ ∈ 𝐴″ and 𝑚 in 𝑀, because left multiplication of
𝑀 by any element 𝑛 of 𝑀 represents an element of 𝐴′, and so (𝑛𝑚)𝑎″ = 𝑛(𝑚𝑎″), that is,
(𝑅(𝑚)𝑎″)(𝑛) = 𝑅(𝑚𝑎″)(𝑛) for all 𝑛 in 𝑀. Finally, the product ideal 𝐴𝑀 is a two-sided
ideal, and so 𝐴 = 𝐴𝑀. Thus 𝑅(𝐴) = 𝑅(𝐴)𝑅(𝑀), so that 𝑅(𝐴) is a right ideal in 𝐴″. But
𝑅(𝐴) contains the identity element of 𝐴″, and so 𝑅(𝐴) = 𝐴″. �

Lemma 8.3.2. Let 𝐴 be a 𝑘-algebra. If 𝐴 is finite, then
(1) 𝐴 has a simple module,
(2) any nonzero module contains a simple submodule,
(3) a simple module over 𝐴 has finite dimension over 𝑘, and
(4) if 𝑀 is a simple 𝐴-module, then End𝐴(𝑀) is a skew field.

Proof. Of course (1) follows from (2) since 𝐴 is a nonzero 𝐴-module. For (2), any sub-
module of minimal (finite) dimension as a 𝑘-vector space will be simple. There exists a
finite dimensional one because a cyclic submodule is one. If 𝑀 is simple, then 𝑚𝐴 ⊂ 𝑀
is a sub-module, hence we see (3). Any nonzero element of End𝐴(𝑀) is an isomorphism,
hence (4) holds. �

Theorem 8.3.3. Let 𝐴 be a simple finite 𝑘-algebra. Then 𝐴 is a matrix algebra over a finite
𝑘-algebra 𝐾 which is a skew field.

Proof. We may choose a simple submodule 𝑀 ⊂ 𝐴 and then the 𝑘-algebra 𝐾 = End𝐴(𝑀)
is a skew field, see Lemma 8.3.2. By Lemma 8.3.1 we see that 𝐴 = End𝐾(𝑀). Since 𝐾 is
a skew field and 𝑀 is finitely generated (since dim𝑘(𝑀) < ∞) we see that 𝑀 is finite free
as a left 𝐾-module. It follows immediately that 𝐴 ≅ Mat(𝑛 × 𝑛, 𝐾𝑜𝑝). �

8.4. Lemmas on algebras

Let 𝐴 be a 𝑘-algebra. Let 𝐵 ⊂ 𝐴 be a subalgebra. The centralizer of𝐵 in𝐴 is the subalgebra
𝐶 = {𝑦 ∈ 𝐴 ∣ 𝑥𝑦 = 𝑦𝑥 for all 𝑥 ∈ 𝐵}.

It is a 𝑘-algebra.

Lemma 8.4.1. Let 𝐴, 𝐴′ be 𝑘-algebras. Let 𝐵 ⊂ 𝐴, 𝐵′ ⊂ 𝐴′ be subalgebras with central-
izers 𝐶, 𝐶′. Then the centralizer of 𝐵 ⊗𝑘 𝐵′ in 𝐴 ⊗𝑘 𝐴′ is 𝐶 ⊗𝑘 𝐶′.

Proof. Denote 𝐶″ ⊂ 𝐴 ⊗𝑘 𝐴′ the centralizer of 𝐵 ⊗𝑘 𝐵′. It is clear that 𝐶 ⊗𝑘 𝐶′ ⊂ 𝐶″.
Conversely, every element of 𝐶″ commutes with 𝐵 ⊗ 1 hence is contained in 𝐶 ⊗𝑘 𝐴′.
Similarly 𝐶″ ⊂ 𝐴 ⊗𝑘 𝐶′. Thus 𝐶″ ⊂ 𝐶 ⊗𝑘 𝐴′ ∩ 𝐴 ⊗𝑘 𝐶′ = 𝐶 ⊗𝑘 𝐶′. �

Lemma 8.4.2. Let 𝐴 be a finite simple 𝑘-algebra. Then the center 𝑘′ of 𝐴 is a finite field
extension of 𝑘.

Proof. Write 𝐴 = Mat(𝑛 × 𝑛, 𝐾) for some skew field 𝐾 finite over 𝑘, see Theorem 8.3.3.
By Lemma 8.4.1 the center of 𝐴 is 𝑘 ⊗𝑘 𝑘′ where 𝑘′ ⊂ 𝐾 is the center of 𝐾. Since the
center of a skew field is a field, we win. �

Lemma 8.4.3. Let 𝑉 be a 𝑘 vector space. Let 𝐾 be a central 𝑘-algebra which is a skew
field. Let 𝑊 ⊂ 𝑉 ⊗𝑘 𝐾 be a two-sided 𝐾-sub vector space. Then 𝑊 is generated as a left
𝐾-vector space by 𝑊 ∩ (𝑉 ⊗ 1).

Proof. Let 𝑉′ ⊂ 𝑉 be the 𝑘-sub vector space generated by 𝑣 ∈ 𝑉 such that 𝑣 ⊗ 1 ∈ 𝑊.
Then 𝑉′ ⊗𝑘 𝐾 ⊂ 𝑊 and we have

𝑊/𝑉′ ⊗𝑘 𝐾 ⊂ 𝑉/𝑉′ ⊗𝑘 𝐾.
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If 𝑣 ∈ 𝑉/𝑉′ is a nonzero vector such that 𝑣 ⊗ 1 is contained in 𝑊/𝑉′ ⊗𝑘 𝐾, then we see that
𝑣 ⊗ 1 ∈ 𝑊 where 𝑣 ∈ 𝑉 lifts 𝑣. This contradicts our construction of 𝑉′. Hence we may
replace 𝑉 by 𝑉/𝑉′ and 𝑊 by 𝑊/𝑉′ ⊗𝑘 𝐾 and it suffices to prove that 𝑊 ∩ (𝑉 ⊗ 1) is nonzero
if 𝑊 is nonzero.
To see this let 𝑤 ∈ 𝑊 be a nonzero element which can be written as 𝑊 = ∑𝑖=1,…,𝑛 𝑣𝑖 ⊗ 𝑘𝑖
with 𝑛 minimal. We may right multiply with 𝑘−1

1 and assume that 𝑘1 = 1. If 𝑛 = 1, then
we win because 𝑣1 ⊗ 1 ∈ 𝑊. If 𝑛 > 1, then we see that for any 𝑐 ∈ 𝐾

𝑐𝑣 − 𝑣𝑐 = ∑𝑖=2,…,𝑛
𝑣𝑖 ⊗ (𝑐𝑘𝑖 − 𝑘𝑖𝑐) ∈ 𝑊

and hence 𝑐𝑘𝑖 − 𝑘𝑖𝑐 = 0 by minimality of 𝑛. This implies that 𝑘𝑖 is in the center of 𝐾 which
is 𝑘 by assumption. Hence 𝑣 = (𝑣1 + ∑ 𝑘𝑖𝑣𝑖) ⊗ 1 contradicting the minimality of 𝑛. �

Lemma 8.4.4. Let 𝐴 be a 𝑘-algebra. Let 𝐾 be a central 𝑘-algebra which is a skew field.
Then any two-sided ideal 𝐼 ⊂ 𝐴⊗𝑘 𝐾 is of the form 𝐽⊗𝑘 𝐾 for some two-sided ideal 𝐽 ⊂ 𝐴.
In particular, if 𝐴 is simple, then so is 𝐴 ⊗𝑘 𝐾.

Proof. Set 𝐽 = {𝑎 ∈ 𝐴 ∣ 𝑎 ⊗ 1 ∈ 𝐼}. This is a two-sided ideal of 𝐴. And 𝐼 = 𝐽 ⊗𝑘 𝐾 by
Lemma 8.4.3. �

Lemma 8.4.5. Let 𝑅 be a possibly noncommutative ring. Let 𝑛 ≥ 1 be an integer. Let
𝑅𝑛 = Mat(𝑛 × 𝑛, 𝑅).

(1) The functors 𝑀 ↦ 𝑀⊕𝑛 and 𝑁 ↦ 𝑁𝑒11 define quasi-inverse equivalences of
categories Mod𝑅 ↔ Mod𝑅𝑛

.
(2) A two-sided ideal of 𝑅𝑛 is of the form 𝐼𝑅𝑛 for some two-sided ideal 𝐼 of 𝑅.
(3) The center of 𝑅𝑛 is equal to the center of 𝑅.

Proof. Part (1) proves itself. If 𝐽 ⊂ 𝑅𝑛 is a two-sided ideal, then 𝐽 = ⨁ 𝑒𝑖𝑖𝐽𝑒𝑗𝑗 and all of
the summands 𝑒𝑖𝑖𝐽𝑒𝑗𝑗 are equal to each other and are a two-sided ideal 𝐼 of 𝑅. This proves
(2). Part (3) is clear. �

Lemma 8.4.6. Let 𝐴 be a finite simple 𝑘-algebra.
(1) There exists exactly one simple 𝐴-module 𝑀 up to isomorphism.
(2) Any finite 𝐴-module is a direct sum of copies of a simple module.
(3) Two finite 𝐴-modules are isomorphic if and only if they have the same dimension

over 𝑘.
(4) If 𝐴 = Mat(𝑛 × 𝑛, 𝐾) with 𝐾 a finite skew field extension of 𝑘, then 𝑀 = 𝐾⊕𝑛 is

a simple 𝐴-module and End𝐴(𝑀) = 𝐾𝑜𝑝.
(5) If 𝑀 is a simple 𝐴-module, then 𝐿 = End𝐴(𝑀) is a skew field finite over 𝑘 acting

on the left on 𝑀, we have 𝐴 = End𝐿(𝑀), and the centers of 𝐴 and 𝐿 agree. Also
[𝐴 ∶ 𝑘][𝐿 ∶ 𝑘] = dim𝑘(𝑀)2.

(6) For a finite 𝐴-module 𝑁 the algebra 𝐵 = End𝐴(𝑁) is a matrix algebra over the
skew field 𝐿 of (3). Moreover End𝐵(𝑁) = 𝐴.

Proof. By Theorem 8.3.3 we can write 𝐴 = Mat(𝑛 × 𝑛, 𝐾) for some finite skew field
extension 𝐾 of 𝑘. By Lemma 8.4.5 the category of modules over 𝐴 is equivalent to the
category of modules over 𝐾. Thus (1), (2), and (3) hold because every module over 𝐾 is
free. Part (4) holds because the equivalence transforms the 𝐾-module 𝐾 to 𝑀 = 𝐾⊕𝑛.
Using 𝑀 = 𝐾⊕𝑛 in (5) we see that 𝐿 = 𝐾𝑜𝑝. The statement about the center of 𝐿 = 𝐾𝑜𝑝

follows from Lemma 8.4.5. The statement about End𝐿(𝑀) follows from the explicit form
of 𝑀. The formula of dimensions is clear. Part (6) follows as 𝑁 is isomorphic to a direct
sum of copies of a simple module. �
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Lemma 8.4.7. Let 𝐴, 𝐴′ be two simple 𝑘-algebras one of which is finite and central over
𝑘. Then 𝐴 ⊗𝑘 𝐴′ is simple.

Proof. Suppose that 𝐴′ is finite and central over 𝑘. Write 𝐴′ = Mat(𝑛×𝑛, 𝐾′), see Theorem
8.3.3. Then the center of 𝐾′ is 𝑘 and we conclude that 𝐴 ⊗𝑘 𝐾′ is simple by Lemma 8.4.4.
Hence 𝐴 ⊗𝑘 𝐴′ = Mat(𝑛 × 𝑛, 𝐴 ⊗𝑘 𝐾′) is simple by Lemma 8.4.5. �

Lemma 8.4.8. The tensor product of finite central simple algebras over 𝑘 is finite, central,
and simple.

Proof. Combine Lemmas 8.4.1 and 8.4.7. �

Lemma 8.4.9. Let 𝐴 be a finite central simple algebra over 𝑘. Let 𝑘 ⊂ 𝑘′ be a field
extension. Then 𝐴′ = 𝐴 ⊗𝑘 𝑘′ is a finite central simple algebra over 𝑘′.

Proof. Combine Lemmas 8.4.1 and 8.4.7. �

Lemma 8.4.10. Let 𝐴 be a finite central simple algebra over 𝑘. Then 𝐴 ⊗𝑘 𝐴𝑜𝑝 ≅ Mat(𝑛 ×
𝑛, 𝑘) where 𝑛 = [𝐴 ∶ 𝑘].

Proof. By Lemma 8.4.8 the algebra 𝐴 ⊗𝑘 𝐴𝑜𝑝 is simple. Hence the map

𝐴 ⊗𝑘 𝐴𝑜𝑝 ⟶ End𝑘(𝐴), 𝑎 ⊗ 𝑎′ ⟼ (𝑥 ↦ 𝑎𝑥𝑎′)

is injective. Since both sides of the arrow have the same dimension we win. �

8.5. The Brauer group of a field

Let 𝑘 be a field. Consider two finite central simple algebras 𝐴 and 𝐵 over 𝑘. We say 𝐴 and
𝐵 are similar if there exist 𝑛, 𝑚 > 0 such that Mat(𝑛 × 𝑛, 𝐴) ≅ Mat(𝑚 × 𝑚, 𝐵) as 𝑘-algebras.

Lemma 8.5.1. Similarity.
(1) Similarity defines an equivalence relation on the set of isomorphism classes of

finite central simple algebras over 𝑘.
(2) Every similarity class contains a unique (up to isomorphism) finite central skew

field extension of 𝑘.
(3) If 𝐴 = Mat(𝑛 × 𝑛, 𝐾) and 𝐵 = Mat(𝑚 × 𝑚, 𝐾′) for some finite central skew fields

𝐾, 𝐾′ over 𝑘 then 𝐴 and 𝐵 are similar if and only if 𝐾 ≅ 𝐾′ as 𝑘-algebras.

Proof. Note that by Wedderburn's theorem (Theorem 8.3.3) we can always write a finite
central simple algebra as a matrix algebra over a finite central skew field. Hence it suffices
to prove the third assertion. To see this it suffices to show that if 𝐴 = Mat(𝑛 × 𝑛, 𝐾) ≅
Mat(𝑚 × 𝑚, 𝐾′) = 𝐵 then 𝐾 ≅ 𝐾′. To see this note that for a simple module 𝑀 of 𝐴 we
have End𝐴(𝑀) = 𝐾𝑜𝑝, see Lemma 8.4.6. Hence 𝐴 ≅ 𝐵 implies 𝐾𝑜𝑝 ≅ (𝐾′)𝑜𝑝 and we
win. �

Given two finite central simple 𝑘-algebras 𝐴, 𝐵 the tensor product 𝐴 ⊗𝑘 𝐵 is another, see
Lemma 8.4.8. Moreover if 𝐴 is similar to 𝐴′, then 𝐴 ⊗𝑘 𝐵 is similar to 𝐴′ ⊗𝑘 𝐵 because
tensor products and taking matrix algebras commute. Hence tensor product defines an op-
eration on equivalence classes of finite central simple algebras which is clearly associative
and commutative. Finally, Lemma 8.4.10 shows that 𝐴 ⊗𝑘 𝐴𝑜𝑝 is isomorphic to a matrix
algebra, i.e., that 𝐴 ⊗𝑘 𝐴𝑜𝑝 is in the similarity class of 𝑘. Thus we obtain an abelian group.

Definition 8.5.2. Let 𝑘 be a field. The Brauer group of 𝑘 is the abelian group of similarity
classes of finite central simple 𝑘-algebras defined above. Notation Br(𝑘).
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For any map of fields 𝑘 → 𝑘′ we obtain a group homomorphism
Br(𝑘) ⟶ Br(𝑘′), 𝐴 ⟼ 𝐴 ⊗𝑘 𝑘′

see Lemma 8.4.9. In other words, Br(−) is a functor from the category of fields to the
category of abelian groups. Observe that the Brauer group of a field is zero if and only if
every finite central skew field extension 𝑘 ⊂ 𝐾 is trivial.

Lemma 8.5.3. The Brauer group of an algebraically closed field is zero.

Proof. Let 𝑘 ⊂ 𝐾 be a finite central skew field extension. For any element 𝑥 ∈ 𝐾 the
subring 𝑘[𝑥] ⊂ 𝐾 is a commutative finite integral 𝑘-sub algebra, hence a field, see Algebra,
Lemma 7.32.17. Since 𝑘 is algebraically closed we conclude that 𝑘[𝑥] = 𝑘. Since 𝑥 was
arbitrary we conclude 𝑘 = 𝐾. �

Lemma 8.5.4. Let 𝐴 be a finite central simple algebra over a field 𝑘. Then [𝐴 ∶ 𝑘] is a
square.

Proof. This is true because 𝐴 ⊗𝑘 𝑘 is a matrix algebra over 𝑘 by Lemma 8.5.3. �

8.6. Skolem-Noether

Theorem 8.6.1. Let𝐴 be a finite central simple 𝑘-algebra. Let𝐵 be a simple 𝑘-algebra. Let
𝑓, 𝑔 ∶ 𝐵 → 𝐴 be two 𝑘-algebra homomorphisms. Then there exists an invertible element
𝑥 ∈ 𝐴 such that 𝑓(𝑏) = 𝑥𝑔(𝑏)𝑥−1 for all 𝑏 ∈ 𝐵.

Proof. Choose a simple 𝐴-module 𝑀. Set 𝐿 = End𝐴(𝑀). Then 𝐿 is a skew field with
center 𝑘 which acts on the left on 𝑀, see Lemmas 8.3.2 and 8.4.6. Then 𝑀 has two 𝐵 ⊗𝑘
𝐿𝑜𝑝-module structures defined by 𝑚 ⋅1 (𝑏 ⊗ 𝑙) = 𝑙𝑚𝑓(𝑏) and 𝑚 ⋅2 (𝑏 ⊗ 𝑙) = 𝑙𝑚𝑔(𝑏). Since
𝐵⊗𝑘𝐿𝑜𝑝 is a finite simple 𝑘-algebra by Lemma 8.4.7 we see that thesemodule structures are
isomorphic by Lemma 8.4.6. Hence we find 𝜑 ∶ 𝑀 → 𝑀 intertwining these operations.
In particular 𝜑 is in the commutant of 𝐿 which implies that 𝜑 is multiplication by some
𝑥 ∈ 𝐴, see Lemma 8.4.6. Working out the definitions we see that 𝑥 is a solution to our
problem. �

Lemma 8.6.2. Let 𝐴 be a finite simple 𝑘-algebra. Any automorphism of 𝐴 is inner. In
particular, any automorphism of Mat(𝑛 × 𝑛, 𝑘) is inner.

Proof. Note that 𝐴 is a finite central simple algebra over the center of 𝐴 which is a finite
field extension of 𝑘, see Lemma 8.4.2. Hence the Skolem-Noether theorem (Theorem 8.6.1)
applies. �

8.7. The centralizer theorem

Theorem 8.7.1. Let 𝐴 be a finite central simple algebra over 𝑘, and let 𝐵 be a simple
subalgebra of 𝐴. Then

(1) the centralizer 𝐶 of 𝐵 in 𝐴 is simple,
(2) [𝐴 ∶ 𝑘] = [𝐵 ∶ 𝑘][𝐶 ∶ 𝑘], and
(3) the centralizer of 𝐶 in 𝐴 is 𝐵.

Proof. Throughout this proof we use the results of Lemma 8.4.6 freely. Choose a simple
𝐴-module 𝑀. Set 𝐿 = End𝐴(𝑀). Then 𝐿 is a skew field with center 𝑘 which acts on the
left on 𝑀 and 𝐴 = End𝐿(𝑀). Then 𝑀 is a right 𝐵⊗𝑘 𝐿𝑜𝑝-module and 𝐶 = End𝐵⊗𝑘𝐿𝑜𝑝(𝑀).
Since the algebra 𝐵 ⊗𝑘 𝐿𝑜𝑝 is simple by Lemma 8.4.7 we see that 𝐶 is simple (by Lemma
8.4.6 again).
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Write 𝐵 ⊗𝑘 𝐿𝑜𝑝 = Mat(𝑚 × 𝑚, 𝐾) for some skew field 𝐾 finite over 𝑘. Then 𝐶 = Mat(𝑛 ×
𝑛, 𝐾𝑜𝑝) if 𝑀 is isomorphic to a direct sum of 𝑛 copies of the simple 𝐵 ⊗𝑘 𝐿𝑜𝑝-module 𝐾⊕𝑚

(the lemma again). Thus we have dim𝑘(𝑀) = 𝑛𝑚[𝐾 ∶ 𝑘], [𝐵 ∶ 𝑘][𝐿 ∶ 𝑘] = 𝑚2[𝐾 ∶ 𝑘],
[𝐶 ∶ 𝑘] = 𝑛2[𝐾 ∶ 𝑘], and [𝐴 ∶ 𝑘][𝐿 ∶ 𝑘] = dim𝑘(𝑀)2 (by the lemma again). We conclude
that (2) holds.
Part (3) follows because of (2) applied to 𝐶 ⊂ 𝐴 shows that [𝐵 ∶ 𝑘] = [𝐶′ ∶ 𝑘] where 𝐶′

is the centralizer of 𝐶 in 𝐴 (and the obvious fact that 𝐵 ⊂ 𝐶′). �

Lemma 8.7.2. Let 𝐴 be a finite central simple algebra over 𝑘, and let 𝐵 be a simple sub-
algebra of 𝐴. If 𝐵 is a central 𝑘-algebra, then 𝐴 = 𝐵 ⊗𝑘 𝐶 where 𝐶 is the (central simple)
centralizer of 𝐵 in 𝐴.

Proof. We have dim𝑘(𝐴) = dim𝑘(𝐵 ⊗𝑘 𝐶) by Theorem 8.7.1. By Lemma 8.4.7 the tensor
product is simple. Hence the natural map 𝐵 ⊗𝑘 𝐶 → 𝐴 is injective hence an isomorphism.

�

Lemma 8.7.3. Let 𝐴 be a finite central simple algebra over 𝑘. If 𝐾 ⊂ 𝐴 is a subfield, then
the following are equivalent

(1) [𝐴 ∶ 𝑘] = [𝐾 ∶ 𝑘]2,
(2) 𝐾 is its own centralizer, and
(3) 𝐾 is a maximal commutative subring.

Proof. Theorem 8.7.1 shows that (1) and (2) are equivalent. It is clear that (3) and (2) are
equivalent. �

Lemma 8.7.4. Let 𝐴 be a finite central skew field over 𝑘. Then every maximal subfield
𝐾 ⊂ 𝐴 satisfies [𝐴 ∶ 𝑘] = [𝐾 ∶ 𝑘]2.

Proof. Special case of Lemma 8.7.3. �

8.8. Splitting fields

Definition 8.8.1. Let 𝐴 be a finite central simple 𝑘-algebra. We say a field extension 𝑘 ⊂ 𝑘′

splits 𝐴, or 𝑘′ is a splitting field for 𝐴 if 𝐴 ⊗𝑘 𝑘′ is a matrix algebra over 𝑘′.

Another way to say this is that the class of 𝐴 maps to zero under the map Br(𝑘) → Br(𝑘′).

Theorem 8.8.2. Let 𝐴 be a finite central simple 𝑘-algebra. Let 𝑘 ⊂ 𝑘′ be a finite field
extension. The following are equivalent

(1) 𝑘′ splits 𝐴, and
(2) there exists a finite central simple algebra 𝐵 similar to 𝐴 such that 𝑘′ ⊂ 𝐵 and

[𝐵 ∶ 𝑘] = [𝑘′ ∶ 𝑘]2.

Proof. Assume (2). It suffices to show that 𝐵 ⊗𝑘 𝑘′ is a matrix algebra. We know that
𝐵 ⊗𝑘 𝐵𝑜𝑝 ≅ End𝑘(𝐵). Since 𝑘′ is the centralizer of 𝑘′ in 𝐵𝑜𝑝 by Lemma 8.7.3 we see that
𝐵 ⊗𝑘 𝑘′ is the centralizer of 𝑘 ⊗ 𝑘′ in 𝐵 ⊗𝑘 𝐵𝑜𝑝 = End𝑘(𝐵). Of course this centralizer is
just End𝑘′(𝐵) where we view 𝐵 as a 𝑘′ vector space via the embedding 𝑘′ → 𝐵. Thus the
result.
Assume (1). This means that we have an isomorphism 𝐴 ⊗𝑘 𝑘′ ≅ End𝑘′(𝑉) for some
𝑘′-vector space 𝑉. Let 𝐵 be the commutant of 𝐴 in End𝑘(𝑉). Note that 𝑘′ sits in 𝐵. By
Lemma 8.7.2 the classes of 𝐴 and 𝐵 add up to zero in Br(𝑘). From the dimension formula
in Theorem 8.7.1 we see that

[𝐵 ∶ 𝑘][𝐴 ∶ 𝑘] = dim𝑘(𝑉)2 = [𝑘′ ∶ 𝑘]2 dim𝑘′(𝑉)2 = [𝑘′ ∶ 𝑘]2[𝐴 ∶ 𝑘].
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Hence [𝐵 ∶ 𝑘] = [𝑘′ ∶ 𝑘]2. Thus we have proved the result for the opposite to the Brauer
class of 𝐴. However, 𝑘′ splits the Brauer class of 𝐴 if and only if it splits the Brauer class
of the opposite algebra, so we win anyway. �

Lemma 8.8.3. A maximal subfield of a finite central skew field 𝐾 over 𝑘 is a splitting field
for 𝐾.

Proof. Combine Lemma 8.7.4 with Theorem 8.8.2. �

Lemma 8.8.4. Consider a finite central skew field 𝐾 over 𝑘. Let 𝑑2 = [𝐾 ∶ 𝑘]. For any
finite splitting field 𝑘′ for 𝐾 the degree [𝑘′ ∶ 𝑘] is divisible by 𝑑.

Proof. By Theorem 8.8.2 there exists a finite central simple algebra 𝐵 in the Brauer class
of 𝐾 such that [𝐵 ∶ 𝑘] = [𝑘′ ∶ 𝑘]2. By Lemma 8.5.1 we see that 𝐵 = Mat(𝑛 × 𝑛, 𝐾) for
some 𝑛. Then [𝑘′ ∶ 𝑘]2 = 𝑛2𝑑2 whence the result. �

Proposition 8.8.5. Consider a finite central skew field 𝐾 over 𝑘. There exists a maximal
subfield 𝑘 ⊂ 𝑘′ ⊂ 𝐾 which is separable over 𝑘. In particular, every Brauer class has a
finite separable spitting field.

Proof. Since every Brauer class is represented by a finite central skew field over 𝑘, we see
that the second statement follows from the first by Lemma 8.8.3.
To prove the first statement, suppose that we are given a separable subfield 𝑘′ ⊂ 𝐾. Then
the centralizer 𝐾′ of 𝑘′ in 𝐾 has center 𝑘′, and the problem reduces to finding a maximal
subfield of 𝐾′ separable over 𝑘′. Thus it suffices to prove, if 𝑘≠𝐾, that we can find an
element 𝑥 ∈ 𝐾, 𝑥∉𝐾 which is separable over 𝑘. This statement is clear in characteristic
zero. Hence we may assume that 𝑘 has characteristic 𝑝 > 0. If the ground field 𝑘 is finite
then, the result is clear as well (because extensions of finite fields are always separable).
Thus we may assume that 𝑘 is an infinite field of positive characteristic.
To get a contradiction assume no element of 𝐾 is separable over 𝑘. By the discussion in
Algebra, Section 7.38 this means the minimal polynomial of any 𝑥 ∈ 𝐾 is of the form 𝑇𝑞 −𝑎
where 𝑞 is a power of 𝑝 and 𝑎 ∈ 𝑘. Since it is clear that every element of 𝐾 has a minimal
polynomial of degree ≤ dim𝑘(𝐾) we conclude that there exists a fixed 𝑝-power 𝑞 such that
𝑥𝑞 ∈ 𝑘 for all 𝑥 ∈ 𝐾.
Consider the map

(−)𝑞 ∶ 𝐾 ⟶ 𝐾
and write it out in terms of a 𝑘-basis {𝑎1, … , 𝑎𝑛} of 𝐾 with 𝑎1 = 1. So

(∑ 𝑥𝑖𝑎𝑖)𝑞 = ∑ 𝑓𝑖(𝑥1, … , 𝑥𝑛)𝑎𝑖.

Since multiplication on 𝐴 is 𝑘-bilinear we see that each 𝑓𝑖 is a polynomial in 𝑥1, … , 𝑥𝑛
(details omitted). The choice of 𝑞 above and the fact that 𝑘 is infinite shows that 𝑓𝑖 is
identically zero for 𝑖 ≥ 2. Hence we see that it remains zero on extending 𝑘 to its algebraic
closure 𝑘. But the algebra 𝐴⊗𝑘𝑘 is a matrix algebra, which implies there are some elements
whose 𝑞th power is not central (e.g., 𝑒11). This is the desired contradiction. �

The results above allow us to characterize finite central simple algebras as follows.

Lemma 8.8.6. Let 𝑘 be a field. For a 𝑘-algebra 𝐴 the following are equivalent
(1) 𝐴 is finite central simple 𝑘-algebra,
(2) 𝐴 is a finite dimensional 𝑘-vector space, 𝑘 is the center of 𝐴, and 𝐴 has no non-

trivial two-sided ideal,
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(3) there exists 𝑑 ≥ 1 such that 𝐴 ⊗𝑘 �̄� ≅ Mat(𝑑 × 𝑑, �̄�),
(4) there exists 𝑑 ≥ 1 such that 𝐴 ⊗𝑘 𝑘𝑠𝑒𝑝 ≅ Mat(𝑑 × 𝑑, 𝑘𝑠𝑒𝑝),
(5) there exist 𝑑 ≥ 1 and a finite Galois extension 𝑘 ⊂ 𝑘′ such that 𝐴 ⊗𝑘′ 𝑘′ ≅

Mat(𝑑 × 𝑑, 𝑘′),
(6) there exist 𝑛 ≥ 1 and a finite central skew field 𝐾 over 𝑘 such that 𝐴 ≅ Mat(𝑛 ×

𝑛, 𝐾).
The integer 𝑑 is called the degree of 𝐴.

Proof. The equivalence of (1) and (2) is a consequence of the definitions, see Section 8.2.
Assume (1). By Proposition 8.8.5 there exists a separable splitting field 𝑘 ⊂ 𝑘′ for 𝐴. Of
course, then a Galois closure of 𝑘′/𝑘 is a splitting field also. Thus we see that (1) implies
(5). It is clear that (5) ⇒ (4) ⇒ (3). Assume (3). Then 𝐴 ⊗𝑘 𝑘 is a finite central simple
𝑘-algebra for example by Lemma 8.4.5. This trivially implies that 𝐴 is a finite central simple
𝑘-algebra. Finally, the equivalence of (1) and (6) is Wedderburn's theorem, see Theorem
8.3.3. �
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CHAPTER 9

Sites and Sheaves

9.1. Introduction

The notion of a site was introduced by Grothendieck to be able to study sheaves in the étale
topology of schemes. The basic reference for this notion is perhaps [MA71]. Our notion of
a site differs from that in [MA71]; what we call a site is called a category endowed with a
pretopology in [MA71, Exposé II, Définition 1.3]. The reason we do this is that in algebraic
geometry it is often convenient to work with a given class of coverings, for example when
defining when a property of schemes is local in a given topology, see Descent, Section
31.11. Our exposition will closely follow [Art62]. We will not use universes.

9.2. Presheaves

Let 𝒞 be a category. A presheaf of sets is a contravariant functor ℱ from 𝒞 to Sets (see
Categories, Remark 4.2.11). So for every object 𝑈 of 𝒞 we have a set ℱ(𝑈). The elements
of this set are called the sections of ℱ over 𝑈. For every morphism 𝑓 ∶ 𝑉 → 𝑈 the map
ℱ(𝑓) ∶ ℱ(𝑈) → ℱ(𝑉) is called the restricton map and is often denoted 𝑓∗ ∶ ℱ(𝑈) → ℱ(𝑉).
Another way of expressing this is to say that 𝑓∗(𝑠) is the pullback of 𝑠 via 𝑓. Functoriality
means that 𝑔∗𝑓∗(𝑠) = (𝑓 ∘ 𝑔)∗(𝑠). Sometimes we use the notation 𝑠|𝑉 ∶= 𝑓∗(𝑠). This
notation is consistent with the notion of restriction of functions from topology because if
𝑊 → 𝑉 → 𝑈 are morphisms in 𝒞 and 𝑠 is a section of ℱ over 𝑈 then 𝑠|𝑊 = (𝑠|𝑉)|𝑊 by the
functorial nature of ℱ. Of course we have to be careful since it may very well happen that
there is more than one morphism 𝑉 → 𝑈 and it is certainly not going to be the case that the
corresponding pull back maps are equal.

Definition 9.2.1. A presheaf of sets on 𝒞 is a contravariant functor from 𝒞 to Sets. Mor-
phisms of presheaves are transformations of functors. The category of presheaves of sets is
denoted PSh(𝒞).

Note that for any object 𝑈 of 𝒞 the functor of points ℎ𝑈, see Categories, Example 4.3.4
is a presheaf. These are called the representable presheaves. These presheaves have the
pleasing property that for any presheaf ℱ we have

𝑀𝑜𝑟PSh(𝒞)(ℎ𝑈, ℱ) = ℱ(𝑈).

This is similar to the Yoneda lemma (Categories, Lemma 4.3.5) and left as a good exercise
to the reader.

Similarly, we can define the notion of a presheaf of abelian groups, rings, etc. More gener-
ally we may define a presheaf with values in a category.

Definition 9.2.2. Let 𝒞, 𝒜 be categories. A presheaf ℱ on 𝒞 with values in 𝒜 is a con-
travariant functor from 𝒞 to 𝒜, i.e., ℱ ∶ 𝒞∘ → 𝒜. A morphism of presheaves ℱ → 𝒢 on 𝒞
with values in 𝒜 is a transformation of functors from ℱ to 𝒢.
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These form the objects and morphisms of the category of presheaves on 𝒞 with values in
𝒜.

Remark 9.2.3. As already pointed out we may consider the category presheaves with val-
ues in any of the ``big'' categories listed in Categories, Remark 4.2.2. These will be ``big''
categories as well and they will be listed in the above mentioned remark as we go along.

9.3. Injective and surjective maps of presheaves

Definition 9.3.1. Let 𝒞 be a category, and let 𝜑 ∶ ℱ → 𝒢 be a map of presheaves of sets.
(1) We say that 𝜑 is injective if for every object 𝑈 of 𝒞 we have 𝛼 ∶ ℱ(𝑈) → 𝒢(𝑈)

is injective.
(2) We say that 𝜑 is surjective if for every object 𝑈 of 𝒞 we have 𝛼 ∶ ℱ(𝑈) → 𝒢(𝑈)

is surjective.

Lemma9.3.2. The injective (resp. surjective) maps defined above are exactly themonomor-
phisms (resp. epimorphisms) of PSh(𝒞). A map is an isomorphism if and only if it is both
injective and surjective.

Proof. Omitted. �

Definition 9.3.3. We say ℱ is a subpresheaf of 𝒢 if for every object 𝑈 ∈ 𝑂𝑏(𝒞) the set
ℱ(𝑈) is a subset of 𝒢(𝑈), compatibly with the restriction mappings.

In other words, the inclusion maps ℱ(𝑈) → 𝒢(𝑈) glue together to give an (injective) mor-
phism of presheaves ℱ → 𝒢.

Lemma 9.3.4. Let 𝒞 be a category. Suppose that 𝜑 ∶ ℱ → 𝒢 is a morphism of presheaves
of setson 𝒞. There exists a unique subpresheaf 𝒢′ ⊂ 𝒢 such that 𝜑 factors as ℱ → 𝒢′ → 𝒢
and such that the first map is surjective.

Proof. Omitted. �

Definition 9.3.5. Notation as in Lemma 9.3.4. We say that 𝒢′ is the image of 𝜑.

9.4. Limits and colimits of presheaves

Let 𝒞 be a category. Limits and colimits exist in the category PSh(𝒞). In addition, for any
𝑈 ∈ ob(𝒞) the functor

PSh(𝒞) ⟶ Sets, ℱ ⟼ ℱ(𝑈)

commutes with limits and colimits. Perhaps the easiest way to prove these statement is the
following. Given a diagram ℱ ∶ ℐ → PSh(𝒞) define presheaves

ℱ𝑙𝑖𝑚 ∶ 𝑈 ⟼ 𝑙𝑖𝑚𝑖∈ℐ ℱ𝑖(𝑈) and ℱ𝑐𝑜𝑙𝑖𝑚 ∶ 𝑈 ⟼ 𝑐𝑜𝑙𝑖𝑚𝑖∈ℐ ℱ𝑖(𝑈)

There are clearly projection maps ℱ𝑙𝑖𝑚 → ℱ𝑖 and canonical maps ℱ𝑖 → ℱ𝑐𝑜𝑙𝑖𝑚. These
maps satisfy the requirements of the maps of a limit (reps. colimit) of Categories, Definition
4.13.1 (resp. Categories, Definition 4.13.2). Finally, if (𝒢, 𝑞𝑖 ∶ 𝒢 → ℱ𝑖) is another system
(as in the definition of a limit), then we get for every 𝑈 a system of maps 𝒢(𝑈) → ℱ𝑖(𝑈)
with suitable functoriality requirements. And thus a unique map 𝒢(𝑈) → ℱ𝑙𝑖𝑚(𝑈). It is
easy to verify these are compatible as we vary 𝑈 and arise from the desired map 𝒢 → ℱ𝑙𝑖𝑚.
A similar argument works in the case of the colimit.
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9.5. Functoriality of categories of presheaves

Let 𝑢 ∶ 𝒞 → 𝒟 be a functor between categories. In this case we denote

𝑢𝑝 ∶ PSh(𝒟) ⟶ PSh(𝒞)

the functor that associates to 𝒢 on 𝒟 the presheaf 𝑢𝑝𝒢 = 𝒢 ∘ 𝑢. Note that by the previous
section this functor commutes with all limits.

For 𝑉 ∈ ob(𝒟) let ℐ𝑢
𝑉 denote the category with

(9.5.0.1)
𝑂𝑏(ℐ𝑢

𝑉) = {(𝑈, 𝜙) ∣ 𝑈 ∈ 𝑂𝑏(𝒞), 𝜙 ∶ 𝑉 → 𝑢(𝑈)}
𝑀𝑜𝑟ℐ𝑢

𝑉
((𝑈, 𝜙), (𝑈′, 𝜙′)) = {𝑓 ∶ 𝑈 → 𝑈′ in 𝒞 ∣ 𝑢(𝑓) ∘ 𝜙 = 𝜙′}

We sometimes drop the subscript 𝑢 from the notation and we simply write ℐ𝑉. We will use
these categories to define a left adjoint to the functor 𝑢𝑝. Before we do so we prove a few
technical lemmas.

Lemma 9.5.1. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor between categories. Suppose that 𝒞 has
fibre products and equalizers, and that 𝑢 commutes with them. Then the categories (ℐ𝑉)𝑜𝑝𝑝

satisfy the hypotheses of Categories, Lemma 4.17.3.

Proof. There are two conditions to check.

First, suppose we are given three objects 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝜙′ ∶ 𝑉 → 𝑢(𝑈′), and 𝜙″ ∶ 𝑉 →
𝑢(𝑈″) and morphisms 𝑎 ∶ 𝑈′ → 𝑈, 𝑏 ∶ 𝑈″ → 𝑈 such that 𝑢(𝑎) ∘ 𝜙 = 𝜙′ and 𝑢(𝑏) ∘ 𝜙 = 𝜙″.
We have to show there exists another object 𝜙‴ ∶ 𝑉 → 𝑢(𝑈‴) andmorphisms 𝑐 ∶ 𝑈‴ → 𝑈′

and 𝑑 ∶ 𝑈‴ → 𝑈″ such that 𝑢(𝑐) ∘ 𝜙 = 𝜙‴, 𝑢(𝑑) ∘ 𝜙 = 𝜙‴ and 𝑎 ∘ 𝑐 = 𝑏 ∘ 𝑑. We take
𝑈‴ = 𝑈′ ×𝑈 𝑈″ with 𝑐 and 𝑑 the projection morphisms. This works as 𝑢 commutes with
fibre products; we omit the verification.

Second, suppose we are given two objects 𝜙 ∶ 𝑉 → 𝑢(𝑈) and 𝜙′ ∶ 𝑉 → 𝑢(𝑈′) and
morphisms 𝑎, 𝑏 ∶ (𝑈, 𝜙) → (𝑈′, 𝜙′). We have to find a morphism 𝑐 ∶ (𝑈″, 𝜙″) → (𝑈, 𝜙)
which equalizes 𝑎 and 𝑏. Let 𝑐 ∶ 𝑈″ → 𝑈 be the equalizer of 𝑎 and 𝑏 in the category 𝒞.
As 𝑢 commutes with equalizers and since 𝑢(𝑎) ∘ 𝜙 = 𝑢(𝑏) ∘ 𝜙 = 𝜙′ we obtain a morphism
𝜙″ ∶ 𝑉 → 𝑢(𝑈″). �

Lemma 9.5.2. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor between categories. Assume
(1) the category 𝒞 has a final object 𝑋 and 𝑢(𝑋) is a final object of 𝒟 , and
(2) the category 𝒞 has fibre products and 𝑢 commutes with them.

Then the index categories (ℐ𝑢
𝑉)𝑜𝑝𝑝 of are filtered (see Categories, Definition 4.17.1).

Proof. The assumptions imply that the assumptions of Lemma 9.5.1 are satisfied (see the
discussion in Categories, Section 4.16). By Categories, Lemma 4.17.3 we see that ℐ𝑉 is a
(possibly empty) disjoint union of directed categories. Hence it suffices to show that ℐ𝑉 is
nonempty and connected.

First, we show that ℐ𝑉 is nonempty. Namely, let 𝑋 be the final object of 𝒞, which exists by
assumption. Let 𝑉 → 𝑢(𝑋) be the morphism coming from the fact that 𝑢(𝑋) is final in 𝒟
by assumption. This gives an object of ℐ𝑉.

Second, we show that ℐ𝑉 is connected. Let 𝜙1 ∶ 𝑉 → 𝑢(𝑈1) and 𝜙2 ∶ 𝑉 → 𝑢(𝑈2) be
in 𝑂𝑏(ℐ𝑉). By assumption 𝑈1 × 𝑈2 exists and 𝑢(𝑈1 × 𝑈2) = 𝑢(𝑈1) × 𝑢(𝑈2). Consider
the morphism 𝜙 ∶ 𝑉 → 𝑢(𝑈1 × 𝑈2) corresponding to (𝜙1, 𝜙2) by the universal property
of products. Clearly the object 𝜙 ∶ 𝑉 → 𝑢(𝑈1 × 𝑈2) maps to both 𝜙1 ∶ 𝑉 → 𝑢(𝑈1) and
𝜙2 ∶ 𝑉 → 𝑢(𝑈2). �
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Given 𝑔 ∶ 𝑉′ → 𝑉 in 𝒟 we get a functor 𝑔 ∶ ℐ𝑉 → ℐ𝑉′ by setting 𝑔(𝑈, 𝜙) = (𝑈, 𝜙 ∘ 𝑔) on
objects. Given a presheaf ℱ on 𝒞 we obtain a functor

ℱ𝑉 ∶ ℐ𝑜𝑝𝑝
𝑉 ⟶ Sets, (𝑈, 𝜙) ⟼ ℱ(𝑈).

In other words, ℱ𝑉 is a presheaf of sets on ℐ𝑉. Note that we have ℱ𝑉′ ∘ 𝑔 = ℱ𝑉. We define

𝑢𝑝ℱ(𝑉) ∶= 𝑐𝑜𝑙𝑖𝑚ℐ𝑜𝑝𝑝
𝑉

ℱ𝑉

As a colimit we obtain for each (𝑈, 𝜙) ∈ 𝑂𝑏(ℐ𝑉) a canonical map ℱ(𝑈)
𝑐(𝜙)

−−−→ 𝑢𝑝ℱ(𝑉).
For 𝑔 ∶ 𝑉′ → 𝑉 as above there is a canonical restriction map 𝑔∗ ∶ 𝑢𝑝ℱ(𝑉) → 𝑢𝑝ℱ(𝑉′)
compatible with ℱ𝑉′ ∘ 𝑔 = ℱ𝑉 by Categories, Lemma 4.13.7. It is the unique map so that
for all (𝑈, 𝜙) ∈ 𝑂𝑏(ℐ𝑉) the diagram

ℱ(𝑈)
𝑐(𝜙) //

id
��

𝑢𝑝ℱ(𝑉)

𝑔∗

��
ℱ(𝑈)

𝑐(𝜙∘𝑔)// 𝑢𝑝ℱ(𝑉′)

commutes. The uniquess of these maps implies that we obtain a presheaf. This presheaf
will be denoted 𝑢𝑝ℱ.

Lemma 9.5.3. There is a canonical map ℱ(𝑈) → 𝑢𝑝ℱ(𝑢(𝑈)), which is compatible with
restriction maps (on ℱ and on 𝑢𝑝ℱ).

Proof. This is just the map 𝑐(id𝑢(𝑈)) introduced above. �

Note that any map of presheaves ℱ → ℱ′ gives rise to compatible systems of maps between
functors ℱ𝑌 → ℱ′

𝑌, and hence to a map of presheaves 𝑢𝑝ℱ → 𝑢𝑝ℱ′. In other words, we
have defined a functor

𝑢𝑝 ∶ PSh(𝒞) ⟶ PSh(𝒟)

Lemma 9.5.4. The functor 𝑢𝑝 is a left adjoint to the functor 𝑢𝑝. In other words the formula

𝑀𝑜𝑟PSh(𝒞)(ℱ, 𝑢𝑝𝒢) = 𝑀𝑜𝑟PSh(𝒟)(𝑢𝑝ℱ, 𝒢)

holds bifunctorially in ℱ and 𝒢.

Proof. Let 𝒢 be a presheaf on 𝒟 and let ℱ be a presheaf on 𝒞. We will show that the
displayed formula holds by constructing maps either way. We will leave it to the reader to
verify they are each others inverse.

Given a map 𝛼 ∶ 𝑢𝑝ℱ → 𝒢 we get 𝑢𝑝𝛼 ∶ 𝑢𝑝𝑢𝑝ℱ → 𝑢𝑝𝒢. Lemma 9.5.3 says that there is
a map ℱ → 𝑢𝑝𝑢𝑝ℱ. The composition of the two gives the desired map. (The good thing
about this construction is that it is clearly functorial in everything in sight.)

Conversely, given amap 𝛽 ∶ ℱ → 𝑢𝑝𝒢 we get a map 𝑢𝑝𝛽 ∶ 𝑢𝑝ℱ → 𝑢𝑝𝑢𝑝𝒢. We claim that the
functor 𝑢𝑝𝒢𝑌 on ℐ𝑌 has a canonical map to the constant functor with value 𝒢(𝑌). Namely,
for every object (𝑋, 𝜙) of ℐ𝑌, the value of 𝑢𝑝𝒢𝑌 on this object is 𝒢(𝑢(𝑋)) which maps to
𝒢(𝑌) by 𝒢(𝜙) = 𝜙∗. This is a transformation of functors because 𝒢 is a functor itself. This
leads to a map 𝑢𝑝𝑢𝑝𝒢(𝑌) → 𝒢(𝑌). Another trivial verification shows that this is functorial
in 𝑌 leading to a map of presheaves 𝑢𝑝𝑢𝑝𝒢 → 𝒢. The composition 𝑢𝑝ℱ → 𝑢𝑝𝑢𝑝𝒢 → 𝒢 is
the desired map. �
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Remark 9.5.5. Suppose that 𝒜 is a category such that any diagram ℐ𝑌 → 𝒜 has a colimit
in 𝒜. In this case it is clear that there are functors 𝑢𝑝 and 𝑢𝑝, defined in exactly the same
way as above, on the categories of presheaves with values in 𝒜. Moreover, the adjointness
of the pair 𝑢𝑝 and 𝑢𝑝 continues to hold in this setting.

Lemma 9.5.6. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor between categories. For any object 𝑈 of 𝒞 we
have 𝑢𝑝ℎ𝑈 = ℎ𝑢(𝑈).

Proof. By adjointness of 𝑢𝑝 and 𝑢𝑝 we have

𝑀𝑜𝑟PSh(𝒟)(𝑢𝑝ℎ𝑈, 𝒢) = 𝑀𝑜𝑟PSh(𝒞)(ℎ𝑈, 𝑢𝑝𝒢) = 𝑢𝑝𝒢(𝑈) = 𝒢(𝑢(𝑈))
and hence by Yoneda's lemma we see that 𝑢𝑝ℎ𝑈 = ℎ𝑢(𝑈) as presheaves. �

9.6. Sites

Our notion of a site uses the following type of structures.

Definition 9.6.1. Let 𝒞 be a category, see Conventions, Section 2.3. A family of morphisms
with fixed target in 𝒞 is given by an object 𝑈 ∈ 𝑂𝑏(𝒞), a set 𝐼 and for each 𝑖 ∈ 𝐼 a morphism
𝑈𝑖 → 𝑈 of 𝒞 with target 𝑈. We use the notation {𝑈𝑖 → 𝑈}𝑖∈𝐼 to indicate this.

It can happen that the set 𝐼 is empty! This notation is meant to suggest an open covering as
in topology.

Definition 9.6.2. A site1 is given by a category 𝒞 and a set Cov(𝒞) of families of morphisms
with fixed target {𝑈𝑖 → 𝑈}𝑖∈𝐼, called coverings of 𝒞, satisfying the following axioms

(1) If 𝑉 → 𝑈 is an isomorphism then {𝑉 → 𝑈} ∈ Cov(𝒞).
(2) If {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) and for each 𝑖 we have {𝑉𝑖𝑗 → 𝑈𝑖}𝑗∈𝐽𝑖

∈ Cov(𝒞), then
{𝑉𝑖𝑗 → 𝑈}𝑖∈𝐼,𝑗∈𝐽𝑖

∈ Cov(𝒞).
(3) If {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) and 𝑉 → 𝑈 is a morphism of 𝒞 then 𝑈𝑖 ×𝑈 𝑉 exists for

all 𝑖 and {𝑈𝑖 ×𝑈 𝑉 → 𝑉}𝑖∈𝐼 ∈ Cov(𝒞).

Remark 9.6.3. (On set theoretic issues -- skip on a first reading.) The main reason for
introducing sites is to study the category of sheaves on a site, because it is the generalization
of the category of sheaves on a topological space that has been so important in algebraic
geometry. In order to avoid thinking about things like ``classes of classes'' and so on, we
will not allow sites to be ``big'' categories, in contrast to what we do for categories and
2-categories.
Suppose that 𝒞 is a category and that Cov(𝒞) is a proper class of coverings satisfying (1),
(2) and (3) above. We will not allow this as a site either, mainly because we are going
to take limits over coverings. However, there are several natural ways to replace Cov(𝒞)
by a set of coverings or a slightly different structure that give rise to the same category of
sheaves. For example:

(1) In Sets, Section 3.11 we show how to pick a suitable set of coverings that gives
the same category of sheaves.

(2) Another thing we can do is to take the associated topology (see Definition 9.41.2).
The resulting topology on 𝒞 has the same category of sheaves. Two topologies
have the same categories of sheaves if and only if they are equal, see Theorem
9.43.2. A topology on a category is given by a choice of sieves on objects. The
collection of all possible sieves and even all possible topologies on 𝒞 is a set.

1This notation differs from that of [MA71], as explained in the introduction.
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(3) We could also slightly modify the notion of a site, see Remark 9.41.4 below, and
end up with a canonical set of coverings which is contained in the powerset of
the set of arrows of 𝒞.

Each of these solutions has some minor drawback. For the first, one has to check that
constructions later on do not depend on the choice of the set of coverings. For the second,
one has to learn about topologies and redo many of the arguments for sites. For the third,
see the last sentence of Remark 9.41.4.

Our approach will be to work with sites as in Definition 9.6.2 above. Given a category
𝒞 with a proper class of coverings as above, we will replace this by a set of coverings
producing a site using Sets, Lemma 3.11.1. It is shown in Lemma 9.8.6 below that the
resulting category of sheaves (the topos) is independent of this choice. We leave it to the
reader to use one of the other two strategies to deal with these issues if he/she so desires.

Example 9.6.4. Let 𝑋 be a topological space. Let 𝒯𝑋 be the category whose objects consist
of all the open sets 𝑈 in 𝑋 and whose morphisms are just the inclusion maps. That is, there
is at most one morphism between any two objects in 𝒯𝑋. Now define {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈
Cov(𝒯𝑋) if and only if ⋃ 𝑈𝑖 = 𝑈. Conditions (1) and (2) above are clear, and (3) is also
clear once we realize that in 𝒯𝑋 we have 𝑈×𝑉 = 𝑈∩𝑉. Note that in particular the empty set
has to be an element of 𝒯𝑋 since otherwise this would not work in general. Furthermore, it
is equally important, as we will see later, to allow the empty covering of the empty set as a
covering! We turn 𝒯𝑋 into a site by choosing a suitable set of coverings Cov(𝒯𝑋)𝜅,𝛼 as in
Sets, Lemma 3.11.1. Presheaves and sheaves (as defined below) on the site 𝒯𝑋 will agree
exactly with the usual notion of a presheaves and sheaves on a topological space, as defined
in Sheaves, Section 6.1.

Example 9.6.5. Let 𝐺 be a group. Consider the category 𝐺-Sets whose objects are sets 𝑋
with a left 𝐺-action, with 𝐺-equivariant maps as the morphisms. An important example is
𝐺𝐺 which is the 𝐺-set whose underlying set is 𝐺 and action given by left multiplication.
This category has fiber products, see Categories, Section 4.7. We declare {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼
to be a covering if ⋃𝑖∈𝐼 𝜑𝑖(𝑈𝑖) = 𝑈. This gives a class of coverings on 𝐺-Sets which is
easily see to satisfy conditions (1), (2), and (3) of Definition 9.6.2. The result is not a
site since both the collection of objects of the underlying category and the collection of
coverings form a proper class. We first replace by 𝐺-Sets by a full subcategory 𝐺-Sets𝛼 as
in Sets, Lemma 3.10.1. After this the site (𝐺-Sets𝛼,Cov𝜅,𝛼′(𝐺-Sets𝛼)) gotten by suitably
restricting the collection of coverings as in Sets, Lemma 3.11.1 will be denoted 𝒯𝐺.

Example 9.6.6. Let 𝒞 be a category. There is a canonical way to turn this into a site where
{id𝑈 ∶ 𝑈 → 𝑈} are the coverings. Sheaves on this site are the presheaves on 𝒞. This
corresponding topology is called the chaotic or indiscrete topology.

9.7. Sheaves

Let 𝒞 be a site. Before we introduce the notion of a sheaf with values in a category we
explain what it means for a presheaf of sets to be a sheaf. Let ℱ be a presheaf of sets on
𝒞 and let {𝑈𝑖 → 𝑈}𝑖∈𝐼 be an element of Cov(𝒞). By assumption all the fibre products
𝑈𝑖 ×𝑈 𝑈𝑗 exist in 𝒞. There are two natural maps

∏𝑖∈𝐼 ℱ(𝑈𝑖)
pr∗0 //

pr∗1
//∏(𝑖0,𝑖1)∈𝐼×𝐼 ℱ(𝑈𝑖0 ×𝑈 𝑈𝑖1)
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which we will denote pr∗𝑖 , 𝑖 = 0, 1 as indicated in the displayed equation. Namely, an
element of the left hand side corresponds to a family (𝑠𝑖)𝑖∈𝐼, where each 𝑠𝑖 is a section of
ℱ over 𝑈𝑖. For each pair (𝑖0, 𝑖1) ∈ 𝐼 × 𝐼 we have the projection morphisms

pr(𝑖0,𝑖1)
𝑖0

∶ 𝑈𝑖0 ×𝑈 𝑈𝑖1 ⟶ 𝑈𝑖0 and pr(𝑖0,𝑖1)
𝑖1

∶ 𝑈𝑖0 ×𝑈 𝑈𝑖1 ⟶ 𝑈𝑖1.

Thus we may pull back either the section 𝑠𝑖0 via the first of these maps or the section 𝑠𝑖1 via
the second. Explicitly the maps we refered to above are

pr∗0 ∶ (𝑠𝑖)𝑖∈𝐼 ⟼ (pr
(𝑖0,𝑖1),∗
𝑖0

(𝑠𝑖0))(𝑖0,𝑖1)∈𝐼×𝐼

and
pr∗1 ∶ (𝑠𝑖)𝑖∈𝐼 ⟼ (pr

(𝑖0,𝑖1),∗
𝑖1

(𝑠𝑖1))(𝑖0,𝑖1)∈𝐼×𝐼
.

Finally consider the natural map

ℱ(𝑈) ⟶ ∏𝑖∈𝐼
ℱ(𝑈𝑖), 𝑠 ⟼ (𝑠|𝑈𝑖

)𝑖∈𝐼

where we have used the notation 𝑠|𝑈𝑖
to indicate the pullback of 𝑠 via the map 𝑈𝑖 → 𝑈. It is

clear from the functorial natural of ℱ and the commutativity of the fibre product diagrams
that pr∗0((𝑠|𝑈𝑖

)𝑖∈𝐼) = pr∗1((𝑠|𝑈𝑖
)𝑖∈𝐼).

Definition 9.7.1. Let 𝒞 be a site, and let ℱ be a presheaf of sets on 𝒞. We say ℱ is a sheaf
if for every covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) the diagram

(9.7.1.1) ℱ(𝑈) // ∏𝑖∈𝐼 ℱ(𝑈𝑖)
pr∗0 //

pr∗1
//∏(𝑖0,𝑖1)∈𝐼×𝐼 ℱ(𝑈𝑖0 ×𝑈 𝑈𝑖1)

represents the first arrow as the equalizer of pr∗0 and pr∗1.

Loosely speaking this means that given sections 𝑠𝑖 ∈ ℱ(𝑈𝑖) such that

𝑠𝑖|𝑈𝑖×𝑈𝑈𝑗
= 𝑠𝑗|𝑈𝑖×𝑈𝑈𝑗

in ℱ(𝑈𝑖 ×𝑈 𝑈𝑗) for all pairs (𝑖, 𝑗) ∈ 𝐼 × 𝐼 then there exists a unique 𝑠 ∈ ℱ(𝑈) such that
𝑠𝑖 = 𝑠|𝑈𝑖

.

Remark 9.7.2. If the covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 is the empty family (this means that 𝐼 = ∅),
then the sheaf condition signifies that ℱ(𝑈) = {∗} is a singleton set. This is true because
in (9.7.1.1) the second and third sets are empty products in the category of sets, which are
final objects in the category of sets, hence singletons.

Example 9.7.3. Let 𝑋 be a topological space. Let 𝒯𝑋 be the site constructed in Example
9.6.4. The notion of a sheaf on 𝒯𝑋 coincides with the notion of a sheaf on 𝑋 introduced in
Sheaves, Definition 6.7.1.

Example 9.7.4. Let 𝑋 be a topological space. Let us consider the site 𝒯′
𝑋 which is the

same as the site 𝒯𝑋 of Example 9.6.4 except that we disallow the empty covering of the
empty set. In other words, we do allow the covering {∅ → ∅} but we do not allow the
covering whose index set is empty. It is easy to show that this still defines a site. However,
we claim that the sheaves on 𝒯′

𝑋 are different from the sheaves on 𝒯𝑋. For example, as an
extreme case consider the situation where 𝑋 = {𝑝} is a singleton. Then the objects of 𝒯′

𝑋
are ∅, 𝑋 and the coverings are {{∅ → ∅}, {𝑋 → 𝑋}}. Clearly, a sheaf on this is given
by any choice of a set ℱ(∅) and any choice of a set ℱ(𝑋), together with any restricion map
ℱ(𝑋) → ℱ(∅). Thus sheaves on 𝒯′

𝑋 are the same as usual sheaves on the two point space
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{𝜂, 𝑝} with open sets {∅, {𝜂}, {𝑝, 𝜂}}. In general sheaves on 𝒯′
𝑋 are the same as sheaves on

the space 𝑋 ⨿ {𝜂}, with opens given by the empty set and any set of the form 𝑈 ∪ {𝜂} for
𝑈 ⊂ 𝑋 open.

Definition 9.7.5. The category Sh(𝒞) of sheaves of sets is the full subcategory of the cate-
gory PSh(𝒞) whose objects are the sheaves of sets.

Let 𝒜 be a category. If products indexed by 𝐼, and 𝐼 × 𝐼 exist in 𝒜 for any 𝐼 that occurs as
an index set for covering families then Definition 9.7.1 above makes sense, and defines a
notion of a sheaf on 𝒞 with values in 𝒜. Note that the diagram in 𝒜

ℱ(𝑈) // ∏𝑖∈𝐼 ℱ(𝑈𝑖)
pr∗0 //

pr∗1
// ∏(𝑖0,𝑖1)∈𝐼×𝐼 ℱ(𝑈𝑖0 ×𝑈 𝑈𝑖1)

is an equalizer diagram if and only if for every object 𝑋 of 𝒜 the diagram of sets

𝑀𝑜𝑟𝒜(𝑋, ℱ(𝑈)) // ∏ 𝑀𝑜𝑟𝒜(𝑋, ℱ(𝑈𝑖))
pr∗0 //

pr∗1
//∏ 𝑀𝑜𝑟𝒜(𝑋, ℱ(𝑈𝑖0 ×𝑈 𝑈𝑖1))

is an equalizer diagram.
Suppose 𝒜 is arbitrary. Let ℱ be a presheaf with values in 𝒜. Choose any object 𝑋 ∈
𝑂𝑏(𝒜). Then we get a presheaf of sets ℱ𝑋 defined by the rule

ℱ𝑋(𝑈) = 𝑀𝑜𝑟𝒜(𝑋, ℱ(𝑈)).
From the above it follows that a good definition is obtained by requiring all the presheaves
ℱ𝑋 to be sheaves of sets.

Definition 9.7.6. Let 𝒞 be a site, let 𝒜 be a category and let ℱ be a presheaf on 𝒞 with
values in 𝒜. We say that ℱ is a sheaf if for all objects 𝑋 of 𝒜 the presheaf of sets ℱ𝑋
(defined above) is a sheaf.

9.8. Families of morphisms with fixed target

This section is meant to introduce some notions regarding families of morphisms with the
same target.

Definition 9.8.1. Let 𝒞 be a category. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms of
𝒞 with fixed target. Let 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽 be another.

(1) A morphism of families of maps with fixed target of 𝒞 from 𝒰 to 𝒱, or simply a
morphism from 𝒰 to 𝒱 is given by a morphism 𝑈 → 𝑉, a map of sets 𝛼 ∶ 𝐼 → 𝐽
and for each 𝑖 ∈ 𝐼 a morphism 𝑈𝑖 → 𝑉𝛼(𝑖) such that the diagram

𝑈𝑖
//

��

𝑉𝛼(𝑖)

��
𝑈 // 𝑉

is commutative.
(2) In the special case that 𝑈 = 𝑉 and 𝑈 → 𝑉 is the identity we call 𝒰 a refinement

of the family 𝒱.

A trivial but important remark is that if 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 is the empty family of maps, i.e.,
if 𝐼 = ∅, then no family 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽 with 𝐽≠∅ can refine 𝒰!
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Definition 9.8.2. Let 𝒞 be a category. Let 𝒰 = {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼, and 𝒱 = {𝜓𝑗 ∶ 𝑉𝑗 →
𝑈}𝑗∈𝐽 be two families of morphisms with fixed target.

(1) We say 𝒰 and 𝒱 are combinatorially equivalent if there exist maps 𝛼 ∶ 𝐼 → 𝐽
and 𝛽 ∶ 𝐽 → 𝐼 such that 𝜑𝑖 = 𝜓𝛼(𝑖) and 𝜓𝑗 = 𝜑𝛽(𝑗).

(2) We say 𝒰 and 𝒱 are tautologically equivalent if there exist maps 𝛼 ∶ 𝐼 → 𝐽 and
𝛽 ∶ 𝐽 → 𝐼 and for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 commutative diagrams

𝑈𝑖

��

// 𝑉𝛼(𝑖)

~~

𝑉𝑗

��

// 𝑈𝛽(𝑗)

}}
𝑈 𝑈

with isomorphisms as horizontal arrows.

Lemma 9.8.3. Let 𝒞 be a category. Let 𝒰 = {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼, and 𝒱 = {𝜓𝑗 ∶ 𝑉𝑗 →
𝑈}𝑗∈𝐽 be two families of morphisms with the same fixed target.

(1) If𝒰 and𝒱 are combinatorially equivalent then they are tautologically equivalent.
(2) If 𝒰 and 𝒱 are tautologically equivalent then 𝒰 is a refinement of 𝒱 and 𝒱 is a

refinement of 𝒰.
(3) The relation ``being combinatorially equivalent'' is an equivalence relation on

all families of morphisms with fixed target.
(4) The relation ``being tautologically equivalent'' is an equivalence relation on all

families of morphisms with fixed target.
(5) The relation ``𝒰 refines 𝒱 and 𝒱 refines 𝒰'' is an equivalence relation on all

families of morphisms with fixed target.

Proof. Omitted. �

In the following lemma, given a category 𝒞, a presheaf ℱ on 𝒞, a family 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼
such that all fibre products 𝑈𝑖×𝑈𝑈𝑖′ exist, we say that the sheaf condition for ℱ with respect
to 𝒰 holds if the diagram (9.7.1.1) is an equalizer diagram.

Lemma 9.8.4. Let 𝒞 be a category. Let 𝒰 = {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼, and 𝒱 = {𝜓𝑗 ∶
𝑉𝑗 → 𝑈}𝑗∈𝐽 be two families of morphisms with the same fixed target. Assume that the fibre
products 𝑈𝑖 ×𝑈 𝑈𝑖′ and 𝑉𝑗 ×𝑈 𝑉𝑗′ exist. If 𝒰 and 𝒱 are tautologically equivalent, then for
any presheaf ℱ on 𝒞 the sheaf condition for ℱ with respect to 𝒰 is equivalent to the sheaf
condition for ℱ with respect to 𝒱.

Proof. First, note that if 𝜑 ∶ 𝐴 → 𝐵 is an isomorphism in the category 𝒞, then 𝜑∗ ∶
ℱ(𝐵) → ℱ(𝐴) is an isomorphism. Let 𝛽 ∶ 𝐽 → 𝐼 be a map and let 𝜓𝑗 ∶ 𝑉𝑗 → 𝑈𝛽(𝑗) be
isomorphisms over 𝑈 which are assumed to exist by hypothesis. Let us show that the sheaf
condition for 𝒱 implies the sheaf condition for 𝒰. Suppose given sections 𝑠𝑖 ∈ ℱ(𝑈𝑖) such
that

𝑠𝑖|𝑈𝑖×𝑈𝑈𝑖′
= 𝑠𝑖′|𝑈𝑖×𝑈𝑈𝑖′

in ℱ(𝑈𝑖 ×𝑈 𝑈𝑖′) for all pairs (𝑖, 𝑖′) ∈ 𝐼 × 𝐼. Then we can define 𝑠𝑗 = 𝜓∗
𝑗 𝑠𝛽(𝑗). For any pair

(𝑗, 𝑗′) ∈ 𝐽 × 𝐽′ the morphism 𝜓𝑗 ×id𝑈
𝜓𝑗′ ∶ 𝑉𝑗 ×𝑈 𝑉𝑗′ → 𝑈𝛽(𝑗) ×𝑈 𝑈𝛽(𝑗′) is an isomorphism

as well. Hence by transport of structure we see that

𝑠𝑗|𝑉𝑗×𝑈𝑉𝑗′ = 𝑠𝑗′|𝑉𝑗×𝑈𝑉𝑗′

as well. The sheaf condition w.r.t. 𝒱 implies there exists a unique 𝑠 such that 𝑠|𝑉𝑗
= 𝑠𝑗 for

all 𝑗 ∈ 𝐽. By the first remark of the proof this implies that 𝑠|𝑈𝑖
= 𝑠𝑖 for all 𝑖 ∈ Im(𝛽) as well.
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Suppose that 𝑖 ∈ 𝐼, 𝑖∉Im(𝛽). For such an 𝑖 we have isomorphisms 𝑈𝑖 → 𝑉𝛼(𝑖) → 𝑈𝛽(𝛼(𝑖))
over 𝑈. This gives a morphism 𝑈𝑖 → 𝑈𝑖 ×𝑈 𝑈𝛽(𝛼(𝑖)) which is a section of the projection.
Because 𝑠𝑖 and 𝑠𝛽(𝛼(𝑖)) restrict to the same element on the fibre product we conclude that
𝑠𝛽(𝛼(𝑖)) pulls back to 𝑠𝑖 via 𝑈𝑖 → 𝑈𝛽(𝛼(𝑖)). Thus we see that also 𝑠𝑖 = 𝑠|𝑈𝑖

as desired. �

Lemma 9.8.5. Let 𝒞 be a category. Let Cov𝑖, 𝑖 = 1, 2 be two sets of families of morphisms
with fixed target which each define the structure of a site on 𝒞.

(1) If every𝒰 ∈ Cov1 is tautologically equivalent to some𝒱 ∈ Cov2, then Sh(𝒞,Cov2) ⊂
Sh(𝒞,Cov1). If also, every 𝒰 ∈ Cov2 is tautologically quivalent to some 𝒱 ∈
Cov1 then the category of sheaves are equal.

(2) Suppose that for each 𝒰 ∈ Cov1 there exists a 𝒱 ∈ Cov2 such that 𝒱 refines 𝒰.
In this case Sh(𝒞,Cov2) ⊂ Sh(𝒞,Cov1). If also for every 𝒰 ∈ Cov2 there exists
a 𝒱 ∈ Cov1 such that 𝒱 refines 𝒰, then the categories of sheaves are equal.

Proof. Part (1) follows directly from Lemma 9.8.4 and the definitions.

We advise the reader to skip the proof of (2) on a first reading. Let ℱ be a sheaf of sets for
the site (𝒞,Cov2). Let 𝒰 ∈ Cov1, say 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼. Choose a refinement 𝒱 ∈ Cov2
of 𝒰, say 𝒱 = {𝑉𝑗 → 𝑈}𝑗∈𝐽 and refinement given by 𝛼 ∶ 𝐽 → 𝐼 and 𝑓𝑗 ∶ 𝑉𝑗 → 𝑈𝛼(𝑗).

First let 𝑠, 𝑠′ ∈ ℱ(𝑈). If for all 𝑖 ∈ 𝐼 we have 𝑠|𝑈𝑖
= 𝑠′|𝑈𝑖

, then we also have 𝑠|𝑉𝑗
= 𝑠′|𝑉𝑗

for all 𝑗 ∈ 𝐽. This implies that 𝑠 = 𝑠′ by the sheaf condition for ℱ with respect to Cov2.
Hence we see that the unicity in the sheaf condition for ℱ and the site (𝒞,Cov1) holds.

Next, suppose given 𝑠𝑖 ∈ ℱ(𝑈𝑖) such that 𝑠𝑖|𝑈𝑖×𝑈𝑈𝑖′
= 𝑠𝑖′|𝑈𝑖×𝑈𝑈𝑖′

for all 𝑖, 𝑖′ ∈ 𝐼. Set
𝑠𝑗 = 𝑓∗

𝑗 (𝑠𝛼(𝑗)) ∈ ℱ(𝑉𝑗). Since the morphisms 𝑓𝑗 are morphisms over 𝑈 we obtain induced
morphisms 𝑓𝑗𝑗′ ∶ 𝑉𝑗 ×𝑈 𝑉𝑗′ → 𝑈𝛼(𝑖) ×𝑈 𝑈𝛼(𝑖′) compatible with the 𝑓𝑗, 𝑓𝑗′ via the projection
maps. It follows that

𝑠𝑗|𝑉𝑗×𝑈𝑉𝑗′ = 𝑓∗
𝑗𝑗′(𝑠𝛼(𝑗)|𝑈𝛼(𝑗)×𝑈𝑈𝛼(𝑗′)

) = 𝑓∗
𝑗𝑗′(𝑠𝛼(𝑗′)|𝑈𝛼(𝑗)×𝑈𝑈𝛼(𝑗′)

) = 𝑠𝑗′|𝑉𝑗×𝑈𝑉𝑗′

for all 𝑗, 𝑗′ ∈ 𝐽. Hence, by the sheaf condition for ℱ with respect to Cov2, we get a section
𝑠 ∈ ℱ(𝑈) which restricts to 𝑠𝑗 on each 𝑉𝑗. We are done if we show 𝑠 restricts to 𝑠𝑖0 on 𝑈𝑖0
for any 𝑖0 ∈ 𝐼. For each 𝑖0 ∈ 𝐼 the family 𝒰′ = {𝑈𝑖 ×𝑈 𝑈𝑖0 → 𝑈𝑖0}𝑖∈𝐼 is an element of Cov1
by the axioms of a site. Also, the family 𝒱′ = {𝑉𝑗 ×𝑈 𝑈𝑖0 → 𝑈𝑖0}𝑗∈𝐽 is an element of Cov2.
Then 𝒱′ refines 𝒰′ via 𝛼 ∶ 𝐽 → 𝐼 and the maps 𝑓′

𝑗 = 𝑓𝑗 × id𝑈𝑖0
. The element 𝑠𝑖0 restricts to

𝑠𝑖|𝑈𝑖×𝑈𝑈𝑖0
on the members of the covering 𝒰′ and hence via (𝑓′

𝑗)
∗ to the elements 𝑠𝑗|𝑉𝑗×𝑈𝑈𝑖0

on the members of the covering 𝒱′. By construction of 𝑠 this is the same as the family of
restrictions of 𝑠|𝑈𝑖0

to the members of the covering 𝒱′. Hence by the sheaf condition for ℱ
with respect to Cov2 we see that 𝑠|𝑈𝑖0

= 𝑠𝑖0 as desired. �

Lemma 9.8.6. Let 𝒞 be a category. Let Cov(𝒞) be a proper class of coverings satisfying
conditions (1), (2) and (3) of Definition 9.6.2. Let Cov1,Cov2 ⊂ Cov(𝒞) be two subsets
of Cov(𝒞) which endow 𝒞 with the structure of a site. If every covering 𝒰 ∈ Cov(𝒞)
is combinatorially equivalent to a covering in Cov1 and combinatorially equivalent to a
covering in Cov2, then Sh(𝒞,Cov1) = Sh(𝒞,Cov2).

Proof. This is clear from Lemmas 9.8.5 and 9.8.3 above as the hypothesis implies that
every covering 𝒰 ∈ Cov1 ⊂ Cov(𝒞) is combinatorially equivalent to an element of Cov2,
and similarly with the roles of Cov1 and Cov2 reversed. �
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9.9. The example of G-sets

As an example, consider the site 𝒯𝐺 of Example 9.6.5. We will describe the category of
sheaves on 𝒯𝐺. The answer will turn out to be independent of the choices made in defining
𝒯𝐺. In fact, during the proof we will need only the following properties of the site 𝒯𝐺:

(a) 𝒯𝐺 is a full subcategory of 𝐺-Sets,
(b) 𝒯𝐺 contains the 𝐺-set 𝐺𝐺,
(c) 𝒯𝐺 has fibre products and they are the same as in 𝐺-Sets,
(d) given 𝑈 ∈ 𝑂𝑏(𝒯𝐺) and a 𝐺-invariant subset 𝑂 ⊂ 𝑈, there exists an object of 𝒯𝐺

isomorphic to 𝑂, and
(e) any surjective family of maps {𝑈𝑖 → 𝑈}𝑖∈𝐼, with 𝑈, 𝑈𝑖 ∈ 𝑂𝑏(𝒯𝐺) is combinato-

rially equivalent to a covering of 𝒯𝐺.
These properties hold by Sets, Lemmas 3.10.2 and 3.11.1.
Remark that the map

𝐻𝑜𝑚𝐺(𝐺𝐺, 𝐺𝐺) ⟶ 𝐺𝑜𝑝𝑝, 𝜑 ⟼ 𝜑(1)
is an isomorphism of groups. The inverse map sends 𝑔 ∈ 𝐺 to the map 𝑅𝑔 ∶ 𝑠 ↦ 𝑠𝑔 (i.e.
right multiplication). Note that 𝑅𝑔1𝑔2

= 𝑅𝑔2
∘ 𝑅𝑔1

so the opposite is necessary.
This implies that for every presheaf ℱ on 𝒯𝐺 the value ℱ(𝐺𝐺) inherets the structure of a
𝐺-set as follows: 𝑔 ⋅ 𝑠 for 𝑔 ∈ 𝐺 and 𝑠 ∈ ℱ(𝐺𝐺) defined by ℱ(𝑅𝑔)(𝑠). This is a left action
because

(𝑔1𝑔2) ⋅ 𝑠 = ℱ(𝑅𝑔1𝑔2
)(𝑠) = ℱ(𝑅𝑔2

∘ 𝑅𝑔1
)(𝑠) = ℱ(𝑅𝑔1

)(ℱ(𝑅𝑔2
)(𝑠)) = 𝑔1 ⋅ (𝑔2 ⋅ 𝑠).

Here we've used that ℱ is contravariant. Note that if ℱ → 𝒢 is a morphism of presheaves
of sets on 𝒯𝐺 then we get a map ℱ(𝐺𝐺) → 𝒢(𝐺𝐺) which is compatible with the 𝐺-actions
we have just defined. All in all we have constructed a functor

PSh(𝒯𝐺) ⟶ 𝐺-Sets, ℱ ⟼ ℱ(𝐺𝐺).
We leave it to the reader to verify that this construction has the pleasing property that the
representable presheaf ℎ𝑈 is mapped to something canonically isomorphic to 𝑈. In a for-
mula ℎ𝑈(𝐺𝐺) = 𝐻𝑜𝑚𝐺(𝐺𝐺, 𝑈) ≅ 𝑈.

Suppose that 𝑆 is a 𝐺-set. We define a presheaf ℱ𝑆 by the formula2

ℱ𝑆(𝑈) = 𝑀𝑜𝑟𝐺-Sets(𝑈, 𝑆).
This is clearly a presheaf. On the other hand, suppose that {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering in
𝒯𝐺. This implies that ∐𝑖 𝑈𝑖 → 𝑈 is surjective. Thus it is clear that the map

ℱ𝑆(𝑈) = 𝑀𝑜𝑟𝐺-Sets(𝑈, 𝑆) ⟶ ∏ ℱ𝑆(𝑈𝑖) = ∏ 𝑀𝑜𝑟𝐺-Sets(𝑈𝑖, 𝑆)

is injective. And, given a family of 𝐺-equivariant maps 𝑠𝑖 ∶ 𝑈𝑖 → 𝑆, such that all the
diagrams

𝑈𝑖 ×𝑈 𝑈𝑗

��

// 𝑈𝑗

𝑠𝑗

��
𝑈𝑖

𝑠𝑖 // 𝑆
commute, there is a unique 𝐺-equivariant map 𝑠 ∶ 𝑈 → 𝑆 such that 𝑠𝑖 is the composition
𝑈𝑖 → 𝑈 → 𝑆. Namely, we just define 𝑠(𝑢) = 𝑠𝑖(𝑢𝑖) where 𝑖 ∈ 𝐼 is any index such that

2It may appear this is the representable presheaf defined by 𝑆. This may not be the case because 𝑆 may not
be an object of 𝒯𝐺 which was chosen to be a sufficiently large set of 𝐺-sets.
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there exists some 𝑢𝑖 ∈ 𝑈𝑖 mapping to 𝑢 under the map 𝑈𝑖 → 𝑈. The commutativity of the
diagrams above implies exactly that this construction is well defined. All in all we have
constructed a functor

𝐺-Sets ⟶ Sh(𝒯𝐺), 𝑆 ⟼ ℱ𝑆.

We now have the following diagram of categories and functors

PSh(𝒯𝐺)
ℱ↦ℱ(𝐺𝐺) // 𝐺-Sets

𝑆↦ℱ𝑆

zz
Sh(𝒯𝐺)

ee

It is immediate from the definitions that ℱ𝑆(𝐺𝐺) = 𝑀𝑜𝑟𝐺(𝐺𝐺, 𝑆) = 𝑆, the last equality by
evaluation at 1. This almost proves the following.

Proposition 9.9.1. The functors ℱ ↦ ℱ(𝐺𝐺) and 𝑆 ↦ ℱ𝑆 define quasi-inverse equiva-
lences between Sh(𝒯𝐺) and 𝐺-Sets.

Proof. We have already seen that composing the functors one way around is isomorphic to
the identity functor. In the other direction, for any sheaf ℋ there is a natural map of sheaves

𝑐𝑎𝑛 ∶ ℋ ⟶ ℱℋ(𝐺𝐺).

Namely, for any object 𝑈 of 𝒯𝐺 we let 𝑐𝑎𝑛𝑈 be the map

ℋ(𝑈) ⟶ ℱℋ(𝐺𝐺)(𝑈) = 𝑀𝑜𝑟𝐺(𝑈, ℋ(𝐺𝐺))
𝑠 ⟼ (𝑢 ↦ 𝛼∗

𝑢𝑠).

Here 𝛼𝑢 ∶ 𝐺𝐺 → 𝑈 is the map 𝛼𝑢(𝑔) = 𝑔𝑢 and 𝛼∗
𝑢 ∶ ℋ(𝑈) → ℋ(𝐺𝐺) is the pullback map. A

trivial but confusing verification shows that this is indeed a map of presheaves. We have to
show that 𝑐𝑎𝑛 is an isomorphism. We do this by showing 𝑐𝑎𝑛𝑈 is an isomorphism for all 𝑈 ∈
ob(𝒯𝐺). We leave the (important but easy) case that 𝑈 = 𝐺𝐺 to the reader. A general object
𝑈 of 𝒯𝐺 is a disjoint union of 𝐺-orbits: 𝑈 = ∐𝑖∈𝐼 𝑂𝑖. The family of maps {𝑂𝑖 → 𝑈}𝑖∈𝐼 is
tautologically equivalent to a covering in 𝒯𝐺 (by the properties of 𝒯𝐺 listed at the beginning
of this section). Hence by Lemma 9.8.4 the sheaf ℋ satisfies the sheaf property with respect
to {𝑂𝑖 → 𝑈}𝑖∈𝐼. The sheaf property for this covering implies ℋ(𝑈) = ∏𝑖 ℋ(𝑂𝑖). Hence it
suffices to show that 𝑐𝑎𝑛𝑈 is an isomorphismwhen 𝑈 consists of a single 𝐺-orbit. Let 𝑢 ∈ 𝑈
and let 𝐻 ⊂ 𝐺 be its stabilizer. Clearly, 𝑀𝑜𝑟𝐺(𝑈, ℋ(𝐺𝐺)) = ℋ(𝐺𝐺)𝐻 equals the subset
of 𝐻-invariant elements. On the other hand consider the covering {𝐺𝐺 → 𝑈} given by
𝑔 ↦ 𝑔𝑢 (again it is just combinatorially equivalent to some covering of 𝒯𝐺, and again this
doesn't matter). Note that the fibre product (𝐺𝐺) ×𝑈 (𝐺𝐺) is equal to {(𝑔, 𝑔ℎ), 𝑔 ∈ 𝐺, ℎ ∈
𝐻} ≅ ∏ℎ∈𝐻 𝐺𝐺. Hence the sheaf property for this covering reads as

ℋ(𝑈) // ℋ(𝐺𝐺)
pr∗0 //

pr∗1
// ∏ℎ∈𝐻 ℋ(𝐺𝐺).

The two maps pr∗𝑖 into the factor ℋ(𝐺𝐺) differ by multiplication by ℎ. Now the result
follows from this and the fact that 𝑐𝑎𝑛 is an isomorphism for 𝑈 = 𝐺𝐺. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00W0
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9.10. Sheafification

In order to define the sheafification we study the zeroth Cech cohomology group of a cov-
ering and its functoriality properties.

Let ℱ be a presheaf of sets on 𝒞, and let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of 𝒞. Let us use
the notation ℱ(𝒰) to indicate the equalizer

𝐻0(𝒰, ℱ) = {(𝑠𝑖)𝑖∈𝐼 ∈ ∏𝑖
ℱ(𝑈𝑖) ∣ 𝑠𝑖|𝑈𝑖×𝑈𝑈𝑗

= 𝑠𝑗|𝑈𝑖×𝑈𝑈𝑗
∀𝑖, 𝑗 ∈ 𝐼}.

As we will see later, this is the zeroth Cech cohomology of ℱ over 𝑈 with respect to the
covering 𝒰. A small remark is that we can define 𝐻0(𝒰, ℱ) as soon as all the morphisms
𝑈𝑖 → 𝑈 are representable, i.e., 𝒰 need not be a covering of the site. There is a canonicalmap
ℱ(𝑈) → 𝐻0(𝒰, ℱ). It is clear that a morphism of coverings 𝒰 → 𝒱 induces commutative
diagrams

𝑈𝑖
// 𝑉𝛼(𝑖)

𝑈𝑖 ×𝑈 𝑈𝑗
//

;;

##

𝑉𝛼(𝑖) ×𝑉 𝑉𝛼(𝑗)

99

%%
𝑈𝑗

// 𝑉𝛼(𝑗)

.

This in turn produces a map 𝐻0(𝒱, ℱ) → 𝐻0(𝒰, ℱ), compatible with the map ℱ(𝑉) →
ℱ(𝑈).

By construction, a presheaf ℱ is a sheaf if and only if for every covering 𝒰 of 𝒞 the natural
map ℱ(𝑈) → 𝐻0(𝒰, ℱ) is bijective. We will use this notion to prove the following simple
lemma about limits of sheaves.

Lemma 9.10.1. Let ℱ ∶ ℐ → Sh(𝒞) be a diagram. Then 𝑙𝑖𝑚ℐ ℱ exists and is equal to the
limit in the category of presheaves.

Proof. Let 𝑙𝑖𝑚𝑖 ℱ𝑖 be the limit as a presheaf. We will show that this is a sheaf and then it
will trivially follow that it is a limit in the category of sheaves. To prove the sheaf property,
let 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽 be a covering. Let (𝑠𝑗)𝑗∈𝐽 be an element of 𝐻0(𝒱, 𝑙𝑖𝑚𝑖 ℱ𝑖). Using
the projection maps we get elements (𝑠𝑗,𝑖)𝑗∈𝐽 in 𝐻0(𝒱, ℱ𝑖). By the sheaf poperty for ℱ𝑖 we
see that there is a unique 𝑠𝑖 ∈ ℱ𝑖(𝑉) such that 𝑠𝑗,𝑖 = 𝑠𝑖|𝑉𝑗

. Let 𝜙 ∶ 𝑖 → 𝑖′ be a morphism of
the index category. We would like to show that ℱ(𝜙) ∶ ℱ𝑖 → ℱ𝑖′ maps 𝑠𝑖 to 𝑠𝑖′. We know
this is true for the sections 𝑠𝑖,𝑗 and 𝑠𝑖′,𝑗 for all 𝑗 and hence by the sheaf property for ℱ𝑖′ this
is true. At this point we have an element 𝑠 = (𝑠𝑖)𝑖∈𝑂𝑏(ℐ) of (𝑙𝑖𝑚𝑖 ℱ𝑖)(𝑉). We leave it to the
reader to see this element has the required property that 𝑠𝑗 = 𝑠|𝑉𝑗

. �

Example 9.10.2. A particular example is the limit over the empty diagram. This gives the
final object in the category of (pre)sheaves. It is the sheaf that associates to each object 𝑈
of 𝒞 a singleton set, with unique restriction mappings. We often denote this sheaf by ∗.

Let 𝒥𝑈 be the category of all coverings of 𝑈. In other words, the objects of 𝒥𝑈 are the
coverings of 𝑈 in 𝒞, and the morphisms are the refinements. By our conventions on sites
this is indeed a category, i.e., the collection of objects and morphisms forms a set. Note

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00W2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00W3
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that 𝑂𝑏(𝒥𝑈) is not empty since {id𝑈} is an object of it. According to the remarks above the
construction 𝒰 ↦ 𝐻0(𝒰, ℱ) is a contravariant functor on 𝒥𝑈. We define

ℱ+(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝒥𝑜𝑝𝑝
𝑈

𝐻0(𝒰, ℱ)

See Categories, Section 4.13 for a discussion of limits and colimits. We point out that later
we will see that ℱ+(𝑈) is the zeroth Cech cohomology of ℱ over 𝑈.

Before we say more about the structure of the colimit, we turn the collection of sets ℱ+(𝑈),
𝑈 ∈ 𝑂𝑏(𝒞) into a presheaf. Namely, let 𝑉 → 𝑈 be a morphism of 𝒞. By the axioms of a
site there is a functor3

𝒥𝑈 ⟶ 𝒥𝑉, {𝑈𝑖 → 𝑈} ⟼ {𝑈𝑖 ×𝑈 𝑉 → 𝑉}.

Note that the projection maps furnish a functorial morphism of coverings {𝑈𝑖 ×𝑈 𝑉 →
𝑉} → {𝑈𝑖 → 𝑈} and hence, by the construction above, a functorial map of sets 𝐻0({𝑈𝑖 →
𝑈}, ℱ) → 𝐻0({𝑈𝑖×𝑈𝑉 → 𝑉}, ℱ). In other words, there is a transformation of functors from

𝐻0(−, ℱ) ∶ 𝒥𝑈 → Sets to the compostion 𝒥𝑈 → 𝒥𝑉
𝐻0(−,ℱ)

−−−−−−→ Sets. Hence by generalities
of colimits we obtain a canonical map ℱ+(𝑈) → ℱ+(𝑉). In terms of the description of the
set ℱ+(𝑈) above, it just takes the element associated with 𝑠 = (𝑠𝑖) ∈ 𝐻0({𝑈𝑖 → 𝑈}, ℱ) to
the element associated with (𝑠𝑖|𝑉×𝑈𝑈𝑖

) ∈ 𝐻0({𝑈𝑖 ×𝑈 𝑉 → 𝑉}, ℱ).

Lemma 9.10.3. The constructions above define a presheaf ℱ+ together with a canonical
map of presheaves ℱ → ℱ+.

Proof. All we have to do is to show that given morphisms 𝑊 → 𝑉 → 𝑈 the composition
ℱ+(𝑈) → ℱ+(𝑉) → ℱ+(𝑊) equals the map ℱ+(𝑈) → ℱ+(𝑊). This can be shown directly
by verifying that, given a covering {𝑈𝑖 → 𝑈} and 𝑠 = (𝑠𝑖) ∈ 𝐻0({𝑈𝑖 → 𝑈}, ℱ), we have
canonically 𝑊 ×𝑈 𝑈𝑖 ≅ 𝑊 ×𝑉 (𝑉 ×𝑈 𝑈𝑖), and 𝑠𝑖|𝑊×𝑈𝑈𝑖

corresponds to (𝑠𝑖|𝑉×𝑈𝑈𝑖
)|𝑊×𝑉(𝑉×𝑈𝑈𝑖)

via this isomorphism. �

More indirectly, the result of Lemma 9.10.6 shows that we may pullback an element 𝑠 as
above via any morphism from any covering of 𝑊 to {𝑈𝑖 → 𝑈} and we will always end up
with the same element in ℱ+(𝑊).

Lemma 9.10.4. The association ℱ ↦ (ℱ → ℱ+) is a functor.

Proof. Instead of proving this we state exactly what needs to be proven. Let ℱ → 𝒢 be a
map of presehaves. Prove the commutativity of:

ℱ //

��

ℱ+

��
𝒢 // 𝒢+

�

The next two lemmas imply that the colimits above are colimits over a directed partially
ordered set.

Lemma 9.10.5. Given a pair of coverings {𝑈𝑖 → 𝑈} and {𝑉𝑗 → 𝑈} of a given object 𝑈 of
the site 𝒞, there exists a covering which is a common refinement.

3This construction actually involves a choice of the fibre products 𝑈𝑖 ×𝑈 𝑉 and hence the axiom of choice.
The resulting map does not depend on the choices made, see below.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00W4
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00W5
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Proof. Since 𝒞 is a site we have that for every 𝑖 the family {𝑉𝑗 ×𝑈 𝑈𝑖 → 𝑈𝑖}𝑗 is a covering.
And, then another axiom implies that {𝑉𝑗 ×𝑈 𝑈𝑖 → 𝑈}𝑖,𝑗 is a covering of 𝑈. Clearly this
covering refines both given coverings. �

Lemma 9.10.6. Any two morphisms 𝑓, 𝑔 ∶ 𝒰 → 𝒱 of coverings inducing the same mor-
phism 𝑈 → 𝑉 induce the same map 𝐻0(𝒱, ℱ) → 𝐻0(𝒰, ℱ).

Proof. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 and 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽. The morphism 𝑓 consists of a
map 𝑈 → 𝑉, a map 𝛼∶ 𝐼 → 𝐽 and maps 𝑓𝑖 ∶ 𝑈𝑖 → 𝑉𝛼(𝑖). Likewise, 𝑔 determines a map
𝛽∶ 𝐼 → 𝐽 and maps 𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝛽(𝑖). As 𝑓 and 𝑔 induce the same map 𝑈 → 𝑉, the diagram

𝑉𝛼(𝑖)

  
𝑈𝑖

𝑓𝑖
>>

𝑔𝑖   

𝑉

𝑉𝛽(𝑖)

>>

is commutative for every 𝑖 ∈ 𝐼. Hence 𝑓 and 𝑔 factor through the fibre product

𝑉𝛼(𝑖)

𝑈𝑖
𝜑 //

𝑓𝑖
::

𝑔𝑖 $$

𝑉𝛼(𝑖) ×𝑉 𝑉𝛽(𝑖)

pr1

OO

pr2
��

𝑉𝛽(𝑖).

Now let 𝑠 = (𝑠𝑗)𝑗 ∈ 𝐻0(𝒱, ℱ). Then for all 𝑖 ∈ 𝐼:

(𝑓∗𝑠)𝑖 = 𝑓∗
𝑖 (𝑠𝛼(𝑖)) = 𝜑∗pr∗1(𝑠𝛼(𝑖)) = 𝜑∗pr∗2(𝑠𝛽(𝑖)) = 𝑔∗

𝑖 (𝑠𝛽(𝑖)) = (𝑔∗𝑠)𝑖,

where the middle equality is given by the definition of 𝐻0(𝒱, ℱ). This shows that the maps
𝐻0(𝒱, ℱ) → 𝐻0(𝒰, ℱ) induced by 𝑓 and 𝑔 are equal. �

Remark 9.10.7. In particular this lemma shows that if 𝒰 is a refinement of 𝒱, and if 𝒱 is
a refinement of 𝒰, then there is a canonical identification 𝐻0(𝒰, ℱ) = 𝐻0(𝒱, ℱ).

From these two lemmas, and the fact that 𝒥𝑈 is nonempty, it follows that the diagram
𝐻0(−, ℱ) ∶ 𝒥𝑜𝑝𝑝

𝑈 → Sets is filtered, see Categories, Definition 4.17.1. Hence, by Cate-
gories, Section 4.17 the colimit ℱ+(𝑈) may be described in the following straightforward
manner. Namely, every element in the set ℱ+(𝑈) arises from an element 𝑠 ∈ 𝐻0(𝒰, ℱ) for
some covering 𝒰 of 𝑈. Given a second element 𝑠′ ∈ 𝐻0(𝒰′, ℱ) then 𝑠 and 𝑠′ determine the
same element of the colimit if and only if there exists a covering 𝒱 of 𝑈 and refinements
𝑓 ∶ 𝒱 → 𝒰 and 𝑓′ ∶ 𝒱 → 𝒰′ such that 𝑓∗𝑠 = (𝑓′)∗𝑠′ in 𝐻0(𝒱, ℱ). Since the trivial
covering {id𝑈} is an object of 𝒥𝑈 we get a canonical map ℱ(𝑈) → ℱ+(𝑈).

Lemma 9.10.8. The map 𝜃 ∶ ℱ → ℱ+ has the following property: For every object 𝑈 of
𝒞 and every section 𝑠 ∈ ℱ+(𝑈) there exists a covering {𝑈𝑖 → 𝑈} such that 𝑠|𝑈𝑖

is in the
image of 𝜃 ∶ ℱ(𝑈𝑖) → ℱ+(𝑈𝑖).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00W7
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Proof. Namely, let {𝑈𝑖 → 𝑈} be a covering such that 𝑠 arises from the element (𝑠𝑖) ∈
𝐻0({𝑈𝑖 → 𝑈}, ℱ). According to Lemma 9.10.6 we may consider the covering {𝑈𝑖 → 𝑈𝑖}
and the (obvious) morphism of coverings {𝑈𝑖 → 𝑈𝑖} → {𝑈𝑖 → 𝑈} to compute the pullback
of 𝑠 to an element of ℱ+(𝑈𝑖). And indeed, using this covering we get exactly 𝜃(𝑠𝑖) for the
restriction of 𝑠 to 𝑈𝑖. �

Definition 9.10.9. We say that a presheaf of sets ℱ on a site 𝒞 is separated if, for all
coverings of {𝑈𝑖 → 𝑈}, the map ℱ(𝑈) → ∏ ℱ(𝑈𝑖) is injective.

Theorem 9.10.10. With ℱ as above
(1) The presheaf ℱ+ is separated.
(2) If ℱ is separated, then ℱ+ is a sheaf and the map of presheaves ℱ → ℱ+ is

injective.
(3) If ℱ is a sheaf, then ℱ → ℱ+ is an isomorphism.
(4) The presheaf ℱ++ is always a sheaf.

Proof. Proof of (1). Suppose that 𝑠, 𝑠′ ∈ ℱ+(𝑈) and suppose that there exists some cov-
ering {𝑈𝑖 → 𝑈} such that 𝑠|𝑈𝑖

= 𝑠′|𝑈𝑖
for all 𝑖. We now have three coverings of 𝑈: the

covering {𝑈𝑖 → 𝑈} above, a covering 𝒰 for 𝑠 as in Lemma 9.10.8, and a similar covering
𝒰′ for 𝑠′. By Lemma 9.10.5, we can find a common refinement, say {𝑊𝑗 → 𝑈}. This
means we have 𝑠𝑗, 𝑠′

𝑗 ∈ ℱ(𝑊𝑗) such that 𝑠|𝑊𝑗
= 𝜃(𝑠𝑗), similarly for 𝑠′|𝑊𝑗

, and such that
𝜃(𝑠𝑗) = 𝜃(𝑠′

𝑗). This last equality means that there exists some covering {𝑊𝑗𝑘 → 𝑊𝑗} such
that 𝑠𝑗|𝑊𝑗𝑘

= 𝑠′
𝑗|𝑊𝑗𝑘

. Then since {𝑊𝑗𝑘 → 𝑈} is a covering we see that 𝑠, 𝑠′ map to the same
element of 𝐻0({𝑊𝑗𝑘 → 𝑈}, ℱ) as desired.

Proof of (2). It is clear that ℱ → ℱ+ is injective because all the maps ℱ(𝑈) → 𝐻0(𝒰, ℱ)
are injective. It is also clear that, if 𝒰 → 𝒰′ is a refinement, then 𝐻0(𝒰′, ℱ) → 𝐻0(𝒰, ℱ)
is injective. Now, suppose that {𝑈𝑖 → 𝑈} is a covering, and let (𝑠𝑖) be a family of elements
of ℱ+(𝑈𝑖) satisfying the sheaf condition 𝑠𝑖|𝑈𝑖×𝑈𝑈𝑗

= 𝑠𝑗|𝑈𝑖×𝑈𝑈𝑗
for all 𝑖, 𝑗 ∈ 𝐼. Choose

coverings (as in Lemma 9.10.8) {𝑈𝑖𝑗 → 𝑈𝑖} such that 𝑠𝑖|𝑈𝑖𝑗
is the image of the (unique)

element 𝑠𝑖𝑗 ∈ ℱ(𝑈𝑖𝑗). The sheaf condition implies that 𝑠𝑖𝑗 and 𝑠𝑖′𝑗′ agree over 𝑈𝑖𝑗 ×𝑈 𝑈𝑖′𝑗′

because it maps to 𝑈𝑖 ×𝑈 𝑈𝑖′ and we have the equality there. Hence (𝑠𝑖𝑗) ∈ 𝐻0({𝑈𝑖𝑗 →
𝑈}, ℱ) gives rise to an element 𝑠 ∈ ℱ+(𝑈). We leave it to the reader to verify that 𝑠|𝑈𝑖

= 𝑠𝑖.

Proof of (3). This is immediate from the definitions because the sheaf property says exactly
that every map ℱ → 𝐻0(𝒰, ℱ) is bijective (for every covering 𝒰 of 𝑈).

Statement (4) is now obvious. �

Definition 9.10.11. Let 𝒞 be a site and let ℱ be a presheaf of sets on 𝒞. The sheaf ℱ# ∶=
ℱ++ together with the canonical map ℱ → ℱ# is called the sheaf associated to ℱ.

Proposition 9.10.12. The canonical map ℱ → ℱ# has the following universal property:
For any map ℱ → 𝒢, where 𝒢 is a sheaf of sets, there is a unique map ℱ# → 𝒢 such that
ℱ → ℱ# → 𝒢 equals the given map.

Proof. By Lemma 9.10.4 we get a commutative diagram

ℱ //

��

ℱ+ //

��

ℱ++

��
𝒢 // 𝒢+ // 𝒢++
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and by Theorem 9.10.10 the lower horizontal maps are isomorphisms. The uniqueness
follows fromLemma 9.10.8 which says that every section of ℱ# locally comes from sections
of ℱ. �

It is clear from this result that the functor ℱ ↦ (ℱ → ℱ#) is unique up to unique isomor-
phism of functors. Actually, let us temporarily denote 𝑖 ∶ Sh(𝒞) → PSh(𝒞) the functor of
inclusion. The result above actually says that

𝑀𝑜𝑟PSh(𝒞)(ℱ, 𝑖(𝒢)) = 𝑀𝑜𝑟Sh(𝒞)(ℱ#, 𝒢).

In other words, the functor of sheafification is the left adjoint to the inclusion functor 𝑖. We
finish this section with a couple of lemmas.

Lemma 9.10.13. Let ℱ ∶ ℐ → Sh(𝒞) be a diagram. Then 𝑐𝑜𝑙𝑖𝑚ℐ ℱ exists and is the
sheafification of the colimit in the category of presheaves.

Proof. Since the sheafification functor is a left adjoint it commutes with all colimits, see
Categories, Lemma 4.22.2. Hence, since PSh(𝒞) has colimits, we deduce that Sh(𝒞) has
colimits (which are the sheafifications of the colimits in presheaves). �

Lemma 9.10.14. The functor PSh(𝒞) → Sh(𝒞), ℱ ↦ ℱ# is exact.

Proof. Since it is a left adjoint it is right exact, see Categories, Lemma 4.22.3. On the
other hand, by Lemmas 9.10.5 and Lemma 9.10.6 the colimits in the construction of ℱ+

are really over the directed partially ordered set 𝑂𝑏(𝒥𝑈) where 𝒰 ≥ 𝒰′ if and only if 𝒰 is
a refinement of 𝒰′. Hence by Categories, Lemma 4.17.2 we see that ℱ → ℱ+ commutes
with finite limits (as a functor from presheaves to presheaves). Then we conclude using
Lemma 9.10.1. �

Lemma 9.10.15. Let 𝒞 be a site. Let ℱ be a presheaf of sets on 𝒞. Denote 𝜃2 ∶ ℱ → ℱ#

the canonical map of ℱ into its sheafification. Let 𝑈 be an object of 𝒞. Let 𝑠 ∈ ℱ#(𝑈).
There exists a covering {𝑈𝑖 → 𝑈} and sections 𝑠𝑖 ∈ ℱ(𝑈𝑖) such that

(1) 𝑠|𝑈𝑖
= 𝜃2(𝑠𝑖), and

(2) for every 𝑖, 𝑗 there exists a covering {𝑈𝑖𝑗𝑘 → 𝑈𝑖×𝑈𝑈𝑗} of𝒞 such that the pullback
of 𝑠𝑖 and 𝑠𝑗 to each 𝑈𝑖𝑗𝑘 agree.

Conversely, given any covering {𝑈𝑖 → 𝑈}, elements 𝑠𝑖 ∈ ℱ(𝑈𝑖) such that (2) holds, then
there exists a unique section 𝑠 ∈ ℱ#(𝑈) such that (1) holds.

Proof. Omitted. �

9.11. Injective and surjective maps of sheaves

Definition 9.11.1. Let 𝒞 be a site, and let 𝜑 ∶ ℱ → 𝒢 be a map of sheaves of sets.
(1) We say that 𝜑 is injective if for every object 𝑈 of 𝒞 the map 𝜑 ∶ ℱ(𝑈) → 𝒢(𝑈)

is injective.
(2) We say that 𝜑 is surjective if for every object 𝑈 of 𝒞 and every section 𝑠 ∈ ℱ(𝑈)

there exists a covering {𝑈𝑖 → 𝑈} such that for all 𝑖 the restriction 𝑠|𝑈𝑖
is in the

image of 𝜑 ∶ ℱ(𝑈𝑖) → 𝒢(𝑈𝑖).

Lemma9.11.2. The injective (resp. surjective) maps defined above are exactly themonomor-
phisms (resp. epimorphisms) of the category Sh(𝒞). A map of sheaves is an isomorphism
if and only if it is both injective and surjective.

Proof. Omitted. �
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9.12. Representable sheaves

Let𝒞 be a category. The canonical topology is the finest topology such that all representable
presheaves are sheaves (it is formally defined in Definition 9.40.12 but we will not need
this). This topology is not always the topology associated to the structure of a site on 𝒞.
We will give a collection of coverings that generates this topology in case 𝒞 has fibered
products. First we give the following general definition.

Definition 9.12.1. Let 𝒞 be a category. We say that a family {𝑈𝑖 → 𝑈} is an effective
epimorphism if all the morphisms 𝑈𝑖 → 𝑈 are representable (see Categories, Definition
4.6.3), and for any 𝑋 ∈ 𝑂𝑏(𝒞) the sequence

𝑀𝑜𝑟𝒞(𝑈, 𝑋) //𝑀𝑜𝑟𝒞(𝑈𝑖, 𝑋)
//
//𝑀𝑜𝑟𝒞(𝑈𝑖 ×𝑈 𝑈𝑗, 𝑋)

is an equalizer diagram. We say that a family {𝑈𝑖 → 𝑈} is a universal effective epimorphism
if for any morphism 𝑉 → 𝑈 the base change {𝑈𝑖 ×𝑈 𝑉 → 𝑉} is an effective epimorphism.

The class of families which are universal effective epimorphisms satisfies the axioms of
Definition 9.6.2. If 𝒞 has fibre products, then the associated topology is the canonical
topology. (In this case, to get a site argue as in Sets, Lemma 3.11.1.)

Conversely, suppose that 𝒞 is a site such that all representable presheaves are sheaves. Then
clearly, all coverings are universal effective epimorphisms. Thus the following definition
is the ``correct'' one in the setting of sites.

Definition 9.12.2. We say that the topology on a site 𝒞 is weaker than the canonical topol-
ogy, or that the topology is subcanonical if all the coverings of 𝒞 are universal effective
epimorphisms.

A representable sheaf is a representable presheaf which is also a sheaf. Since it is perhap
better to avoid this terminology when the topology is not subcanonical, we only define it
formally in that case.

Definition 9.12.3. Suppose that the topology on the site 𝒞 is weaker than the canonical
topology. The Yoneda embedding ℎ (see Categories, Section 4.3) actually presents 𝒞 as a
full subcategory of the category of sheaves of 𝒞. In this case we sometimes write 𝑈 = ℎ𝑈
or simply 𝑈 for the representable sheaf associated to the object 𝑈 of 𝒞.

Note that we have in the situation of the definition

𝑀𝑜𝑟Sh(𝒞)(𝑈, ℱ) = ℱ(𝑈)

for every sheaf ℱ, since after all the same thing was true for presheaves. In general (but
only rarely) the presheaves ℎ𝑈 are not sheaves and to get a sheaf you have to sheafifiy them.
In this case it will still be true that 𝑀𝑜𝑟Sh(𝒞)(ℎ#

𝑈, ℱ) = ℱ(𝑈) for every sheaf ℱ by the
adjointness property of #.

The next lemma says that, if the topology is weaker than the canonical topology, every
sheaf is made up out of representable sheaves in a way.

Lemma 9.12.4. Let 𝒞 be a site. Let ℱ be a sheaf of sets. There exists a diagram of sheaves
of sets

ℱ1
//
// ℱ0

// ℱ
which represents ℱ as a coequalizer, such that ℱ𝑖, 𝑖 = 0, 1 are coproducts of sheaves of the
form ℎ#

𝑈.
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Proof. First we show there is an epimorphism ℱ0 → ℱ of the desired type. Namely, just
take

ℱ0 = ∐𝑈∈𝑂𝑏(𝒞),𝑠∈ℱ(𝑈)
(ℎ𝑈)# ⟶ ℱ

Here the arrow restricted to the component corresponding to (𝑈, 𝑠) maps the element id𝑈 ∈
ℎ#

𝑈(𝑈) to the section 𝑠 ∈ ℱ(𝑈). This is an epimorphism according to Lemma 9.11.2 above.
To construct ℱ1 first set 𝒢 = ℱ0 ×ℱ ℱ0 and then construct an epimorphism ℱ1 → 𝒢 as
above. �

Lemma 9.12.5. Let 𝒞 be a site. If {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering of the site 𝒞, then the
morphism of presheaves of sets

∐𝑖∈𝐼
ℎ𝑈𝑖

→ ℎ𝑈

becomes surjective after sheafification.

Proof. By Lemma 9.11.2 above we have to show that ∐𝑖∈𝐼 ℎ#
𝑈𝑖

→ ℎ#
𝑈 is an epimorphism.

Let ℱ be a sheaf of sets. A morphism ℎ#
𝑈 → ℱ corresponds to a section 𝑠 ∈ ℱ(𝑈). Hence

the injectivity of 𝑀𝑜𝑟(ℎ#
𝑈, ℱ) → ∏𝑖 𝑀𝑜𝑟(ℎ#

𝑈𝑖
, ℱ) follows directly from the sheaf property

of ℱ. �

9.13. Continuous functors

Definition 9.13.1. Let 𝒞 and 𝒟 be sites. A functor 𝑢 ∶ 𝒞 → 𝒟 is called continuous if for
every {𝑉𝑖 → 𝑉}𝑖∈𝐼 ∈ Cov(𝒞) we have the following

(1) {𝑢(𝑉𝑖) → 𝑢(𝑉)}𝑖∈𝐼 is in Cov(𝒟), and
(2) for any morphism 𝑇 → 𝑉 in 𝒞 the morphism 𝑢(𝑇 ×𝑉 𝑉𝑖) → 𝑢(𝑇) ×𝑢(𝑉) 𝑢(𝑉𝑖) is an

isomorphism.

Recall that given a functor 𝑢 as above, and a presheaf of sets ℱ on 𝒟 we have defined 𝑢𝑝ℱ
to be simply the presheaf ℱ ∘ 𝑢, in other words

𝑢𝑝ℱ(𝑉) = ℱ(𝑢(𝑉))

for every object 𝑉 of 𝒞.

Lemma 9.13.2. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a continuous functor. If ℱ is a
sheaf on 𝒟 then 𝑢𝑝ℱ is a sheaf as well.

Proof. Let {𝑉𝑖 → 𝑉} be a covering. By assumption {𝑢(𝑉𝑖) → 𝑢(𝑉)} is a covering in 𝒟 and
𝑢(𝑉𝑖×𝑉𝑉𝑗) = 𝑢(𝑉𝑖)×𝑢(𝑉)𝑢(𝑉𝑗). Hence the sheaf condition for 𝑢𝑝ℱ and the covering {𝑉𝑖 → 𝑉}
is precisely the same as the sheaf condition for ℱ and the covering {𝑢(𝑉𝑖) → 𝑢(𝑉)}. �

In order to avoid confusion we sometimes denote

𝑢𝑠 ∶ Sh(𝒟) ⟶ Sh(𝒞)

the functor 𝑢𝑝 restricted to the subcategory of sheaves of sets.

Lemma 9.13.3. In the situation of Lemma 9.13.2. The functor 𝑢𝑠 ∶ 𝒢 ↦ (𝑢𝑝𝒢)# is a left
adjoint to 𝑢𝑠.

Proof. Follows directly from Lemma 9.5.4 and Proposition 9.10.12. �

Here is a technical lemma.

Lemma 9.13.4. In the situation of Lemma 9.13.2. For any presheaf 𝒢 on 𝒞 we have
(𝑢𝑝𝒢)# = (𝑢𝑝(𝒢#))#.
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Proof. For any sheaf ℱ on 𝒟 we have

𝑀𝑜𝑟Sh(𝒟)(𝑢𝑠(𝒢#), ℱ) = 𝑀𝑜𝑟Sh(𝒞)(𝒢#, 𝑢𝑠ℱ)

= 𝑀𝑜𝑟PSh(𝒞)(𝒢#, 𝑢𝑝ℱ)
= 𝑀𝑜𝑟PSh(𝒞)(𝒢, 𝑢𝑝ℱ)
= 𝑀𝑜𝑟PSh(𝒟)(𝑢𝑝𝒢, ℱ)

= 𝑀𝑜𝑟Sh(𝒟)((𝑢𝑝𝒢)#, ℱ)

and the result follows from the Yoneda lemma. �

Lemma 9.13.5. Let 𝑢 ∶ 𝒞 → 𝒟 be a continuous functor between sites. For any object 𝑈
of 𝒞 we have 𝑢𝑠ℎ#

𝑈 = ℎ#
𝑢(𝑈).

Proof. Follows from Lemmas 9.5.6 and 9.13.4. �

Remark 9.13.6. (Skip on first reading.) Let 𝒞 and 𝒟 be sites. Let us use the definition
of tautologically equivalent families of maps, see Definition 9.8.2 to (slightly) weaken the
conditions defining continuity. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Let us call 𝑢 quasi-continuous
if for every 𝒱 = {𝑉𝑖 → 𝑉}𝑖∈𝐼 ∈ Cov(𝒞) we have the following

(1') the family of maps {𝑢(𝑉𝑖) → 𝑢(𝑉)}𝑖∈𝐼 is tautologically equivalent to an element
of Cov(𝒟), and

(2) for any morphism 𝑇 → 𝑉 in 𝒞 the morphism 𝑢(𝑇 ×𝑉 𝑉𝑖) → 𝑢(𝑇) ×𝑢(𝑉) 𝑢(𝑉𝑖) is an
isomorphism.

We are going to see that Lemmas 9.13.2 and 9.13.3 hold in case 𝑢 is quasi-continuous as
well.

We first remark that the morphisms 𝑢(𝑉𝑖) → 𝑢(𝑉) are representable, since they are isomor-
phic to representable morphisms (by the first condition). In particular, the family 𝑢(𝒱) =
{𝑢(𝑉𝑖) → 𝑢(𝑉)}𝑖∈𝐼 gives rise to a zeroth Cech cohomology group 𝐻0(𝑢(𝒱), ℱ) for any
presheaf ℱ on 𝒟. Let 𝒰 = {𝑈𝑗 → 𝑢(𝑉)}𝑗∈𝐽 be an element of Cov(𝒟) tautologically
equivalent to {𝑢(𝑉𝑖) → 𝑢(𝑉)}𝑖∈𝐼. Note that 𝑢(𝒱) is a refinement of 𝒰 and vice versa.
Hence by Remark 9.10.7 we see that 𝐻0(𝑢(𝒱), ℱ) = 𝐻0(𝒰, ℱ). In particular, if ℱ is a
sheaf, then ℱ(𝑢(𝑉)) = 𝐻0(𝑢(𝒱), ℱ) because of the sheaf property expressed in terms of
zeroth Cech cohomology groups. We conclude that 𝑢𝑝ℱ is a sheaf if ℱ is a sheaf, since
𝐻0(𝒱, 𝑢𝑝ℱ) = 𝐻0(𝑢(𝒱), ℱ) which we just observed is equal to ℱ(𝑢(𝑉)) = 𝑢𝑝ℱ(𝑉). Thus
Lemma 9.13.2 holds. Lemma 9.13.3 follows immediately.

9.14. Morphisms of sites

Definition 9.14.1. Let 𝒞 and 𝒟 be sites. A morphism of sites 𝑓 ∶ 𝒟 → 𝒞 is given by a
continuous functor 𝑢 ∶ 𝒞 → 𝒟 such that the functor 𝑢𝑠 is exact.

Notice how the functor 𝑢 goes in the direction opposite the morphism 𝑓. If 𝑓 ↔ 𝑢 is a
morphism of sites then we use the notation 𝑓−1 = 𝑢𝑠 and 𝑓∗ = 𝑢𝑠. The functor 𝑓−1 is called
the pullback functor and the functor 𝑓∗ is called the push forward functor. As in topology
we have the following adjointness property

𝑀𝑜𝑟Sh(𝒟)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Sh(𝒞)(𝒢, 𝑓∗ℱ)

The motivation for this definition comes from the following example.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04D3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00WZ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=00X1


9.14. MORPHISMS OF SITES 599

Example 9.14.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. Recall
that we have sites 𝒯𝑋 and 𝒯𝑌, see Example 9.6.4. Consider the functor 𝑢 ∶ 𝒯𝑌 → 𝒯𝑋,
𝑉 ↦ 𝑓−1(𝑉). This functor is clearly continuous because inverse images of open coverings
are open coverings. (Actually, this depends on how you chose sets of coverings for 𝒯𝑋 and
𝒯𝑌. But in any case the functor is quasi-continuous, see Remark 9.13.6.) It is easy to verify
that the functor 𝑢𝑠 equals the usual pushforward functor 𝑓∗ from topology. Hence, since
𝑢𝑠 is an adjoint and since the usual topological pullback functor 𝑓−1 is an adjoint as well,
we get a canonical isomorphism 𝑓−1 ≅ 𝑢𝑠. Since 𝑓−1 is exact we deduce that 𝑢𝑠 is exact.
Hence 𝑢 defines a morphism of sites 𝑓 ∶ 𝒯𝑋 → 𝒯𝑌, which we may denote 𝑓 as well since
we've already seen the functors 𝑢𝑠, 𝑢𝑠 agree with their usual notions anyway.

Lemma 9.14.3. Let 𝒞𝑖, 𝑖 = 1, 2, 3 be sites. Let 𝑢 ∶ 𝒞2 → 𝒞1 and 𝑣 ∶ 𝒞3 → 𝒞2 be
continuous functors which induce morphisms of sites. Then the functor 𝑢 ∘ 𝑣 ∶ 𝒞3 → 𝒞1 is
continuous and defines a morphism of sites 𝒞1 → 𝒞3.

Proof. It is immediate from the definitions that 𝑢 ∘ 𝑣 is a continuous functor. In addition,
we clearly have (𝑢 ∘ 𝑣)𝑝 = 𝑣𝑝 ∘ 𝑢𝑝, and hence (𝑢 ∘ 𝑣)𝑠 = 𝑣𝑠 ∘ 𝑢𝑠. Hence functors (𝑢 ∘ 𝑣)𝑠 and
𝑢𝑠 ∘ 𝑣𝑠 are both left adjoints of (𝑢 ∘ 𝑣)𝑠. Therefore (𝑢 ∘ 𝑣)𝑠 ≅ 𝑢𝑠 ∘ 𝑣𝑠 and we conclude that
(𝑢 ∘ 𝑣)𝑠 is exact as a composition of exact functors. �

Definition 9.14.4. Let 𝒞𝑖, 𝑖 = 1, 2, 3 be sites. Let 𝑓 ∶ 𝒞1 → 𝒞2 and 𝑔 ∶ 𝒞2 → 𝒞3 be
morphisms of sites given by continuous functors 𝑢 ∶ 𝒞2 → 𝒞1 and 𝑣 ∶ 𝒞3 → 𝒞2. The
composition 𝑔 ∘ 𝑓 is the morphism of sites corresponding to the functor 𝑢 ∘ 𝑣.

In this situation we have (𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗ and (𝑔 ∘ 𝑓)−1 = 𝑓−1 ∘ 𝑔−1 (see proof of Lemma
9.14.3).

Lemma 9.14.5. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be continuous. Assume all the
categories (ℐ𝑢

𝑉)𝑜𝑝𝑝 of Section 9.5 are filtered. Then 𝑢 defines a morphism of sites 𝒟 → 𝒞,
in other words 𝑢𝑠 is exact.

Proof. Since 𝑢𝑠 is the left adjoint of 𝑢𝑠 we see that 𝑢𝑠 is right exact, see Categories, Lemma
4.22.3. Hence it suffices to show that 𝑢𝑠 is left exact. In other words we have to show that
𝑢𝑠 commutes with finite limits. Because the categories ℐ𝑜𝑝𝑝

𝑌 are filtered we see that 𝑢𝑝
commutes with finite limits, see Categories, Lemma 4.17.2 (this also uses the description
of limits in PSh, see Section 9.4). And since sheafification commutes with finite limits as
well (Lemma 9.10.14) we conclude because 𝑢𝑠 = # ∘ 𝑢𝑝. �

Proposition 9.14.6. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be continuous. Assume further-
more the following:

(1) the category 𝒞 has a final object 𝑋 and 𝑢(𝑋) is a final object of 𝒟 , and
(2) the category 𝒞 has fibre products and 𝑢 commutes with them.

Then 𝑢 defines a morphism of sites 𝒟 → 𝒞, in other words 𝑢𝑠 is exact.

Proof. This follows from Lemmas 9.5.2 and 9.14.5. �

Remark 9.14.7. The conditions of Proposition 9.14.6 above are equivalent to saying that 𝑢
is left exact, i.e., commutes with finite limits. See Categories, Lemmas 4.16.4 and 4.21.2. It
seems more natural to phrase it in terms of final objects and fibre products since this seems
to have more geometric meaning in the examples.

Remark 9.14.8. (Skip on first reading.) Let 𝒞 and 𝒟 be sites. Analogously to Definition
9.14.1 we say that a quasi-morphism of sites 𝑓 ∶ 𝒟 → 𝒞 is given by a quasi-continuous
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functor 𝑢 ∶ 𝒞 → 𝒟 (see Remark 9.13.6) such that 𝑢𝑠 is exact. The analogue of Propo-
sition 9.14.6 in this setting is obtained by replacing the word ``continuous'' by the word
``quasi-continuous'', and replacing the word ``morphism'' by ``quasi-morphism''. The proof
is literally the same.

9.15. Topoi

Here is a definition of a topos which is suitable for our purposes. Namely, a topos is the
category of sheaves on a site. In order to specify a topos you just specify the site. The real
difference between a topos and a site lies in the definition of morphisms. Namely, it turns
out that there are lots of morphisms of topoi which do not come from morphisms of the
underlying sites.

Definition 9.15.1. Topoi.
(1) A topos is the category Sh(𝒞) of sheaves of sets on a site 𝒞.
(2) Let 𝒞, 𝒟 be sites. A morphism of topoi 𝑓 from Sh(𝒟) to Sh(𝒞) is given by a pair

of functors 𝑓∗ ∶ Sh(𝒟) → Sh(𝒞) and 𝑓−1 ∶ Sh(𝒞) → Sh(𝒟) such that
(a) we have

𝑀𝑜𝑟Sh(𝒟)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Sh(𝒞)(𝒢, 𝑓∗ℱ)
bifunctorially, and

(b) the functor 𝑓−1 commutes with finite limits, i.e., is left exact.
(3) Let 𝒞, 𝒟, ℰ be sites. Given morphisms of topoi 𝑓 ∶ Sh(𝒟) → Sh(𝒞) and 𝑔 ∶

Sh(ℰ) → Sh(𝒟) the composition 𝑓 ∘ 𝑔 is the morphism of topoi defined by the
functors (𝑓 ∘ 𝑔)∗ = 𝑓∗ ∘ 𝑔∗ and (𝑓 ∘ 𝑔)−1 = 𝑔−1 ∘ 𝑓−1.

Note that, being an adjoint pair, the functor 𝑓∗ commutes with all limits and that 𝑓−1 com-
mutes with all colimits, see Categories, Lemma 4.22.2. In particular, 𝑓−1 is exact.
Suppose that 𝛼 ∶ 𝒮1 → 𝒮2 is an equivalence of (possibly ``big'') categories. If 𝒮1, 𝒮2
are topoi, then setting 𝑓∗ = 𝛼 and 𝑓−1 equal to the quasi-inverse of 𝛼 gives a morphism
𝑓 ∶ 𝒮1 → 𝒮2 of topoi. Moreover this morphism is an equivalence in the 2-category of
topoi (see Section 9.32). Thus it makes sense to say ``𝒮 is a topos'' if 𝒮 is equivalent to the
category of sheaves on a site (and not necessarily equal to the the category of sheaves on a
site). We will occasionally use this abuse of notation.

Remark 9.15.2. (Set theoretical issues related to morphisms of topoi. Skip on a first read-
ing.) A morphism of topoi as defined above is not a set but a class. In other words it is
given by a mathematical formula rather than a mathematical object. Allthough we may
contemplate the collection of all morphisms between two given topoi, it is not a good idea
to introduce it as a mathematical object. On the other hand, suppose 𝒞 and 𝒟 are given
sites. Consider a functor Φ ∶ 𝒞 → Sh(𝒟). Such a thing is a set, in other words, it is a
mathematical object. We may, in succession, ask the following questions on Φ.

(1) Is it true, given a sheaf ℱ on 𝒟, that the rule 𝑈 ↦ 𝑀𝑜𝑟Sh(𝒟)(Φ(𝑈), ℱ) defines a
sheaf on 𝒞? If so, this defines a functor Φ∗ ∶ Sh(𝒟) → Sh(𝒞).

(2) Is it true that Φ∗ has a left adjoint? If so, write Φ−1 for this left adjoint.
(3) Is it true that Φ−1 is exact?

If the last question still has the answer ``yes'', then we obtain amorphism of topoi (Φ∗, Φ−1).
Moreover, given any morphism of topoi (𝑓∗, 𝑓−1) we may set Φ(𝑈) = 𝑓−1(ℎ#

𝑈) and obtain a
functor Φ as above with 𝑓∗ ≅ Φ∗ and 𝑓−1 ≅ Φ−1 (compatible with adjoint property). The
upshot is that by working with the collection of Φ instead of morphisms of topoi, we (a)
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replaced the notion of a morphism of topoi by a mathematical object, and (b) the collection
of Φ forms a class (and not a collection of classes). Of course, more can be said, for example
one can work out more precisely the significance of condition (2) above for example; we
do this in the case of points of topoi in Section 9.28.

Most geometrically interesting morphisms of topoi come about via Lemma 9.19.1 and the
following lemma.

Lemma 9.15.3. Given a morphism of sites 𝑓 ∶ 𝒟 → 𝒞 corresponding to the functor
𝑢 ∶ 𝒞 → 𝒟 the pair of functors (𝑓−1 = 𝑢𝑠, 𝑓∗ = 𝑢𝑠) is a morphism of topoi.

Proof. This is obvious from Definition 9.14.1. �

The simplest example of a site is perhaps the site whose category has exactly one object
𝑝𝑡 and one morphism id𝑝𝑡 and whose only covering is the covering {id𝑝𝑡}. We will simply
write 𝑝𝑡 for this site. It is clear that the category of sheaves = the category of presheaves =
the category of sets. In a formula Sh(𝑝𝑡) = Sets.

Remark 9.15.4. There are many sites that give rise to the topos Sh(𝑝𝑡). A useful example
is the following. Suppose that 𝑆 is a set (of sets) which contains at least one nonempty
element. Let 𝒮 be the category whose objects are elements of 𝑆 and whose morphisms are
arbitrary set maps. Assume that 𝒮 has fibre products. For example this will be the case
if 𝑆 = 𝒫(infinite set) is the power set of any infinite set (exercise in set theory). Make 𝒮
into a site by declaring surjective families of maps to be coverings (and choose a suitable
sufficiently large set of covering families as in Sets, Section 3.11). We claim that Sh(𝒮) is
equivalent to the category of sets.

We first prove this in case 𝑆 contains 𝑒 ∈ 𝑆 which is a singleton. In this case, there is an
equivalence of topoi 𝑖 ∶ Sh(𝑝𝑡) → Sh(𝒮) given by the functors

(9.15.4.1) 𝑖−1ℱ = ℱ(𝑒), 𝑖∗𝐸 = (𝑈 ↦ 𝑀𝑜𝑟Sets(𝑈, 𝐸))

Namely, suppose that ℱ is a sheaf on 𝒮. For any 𝑈 ∈ 𝑂𝑏(𝒮) = 𝑆 we can find a covering
{𝜑𝑢 ∶ 𝑒 → 𝑈}𝑢∈𝑈, where 𝜑𝑢 maps the unique element of 𝑒 to 𝑢 ∈ 𝑈. The sheaf condition
implies in this case that ℱ(𝑈) = ∏𝑢∈𝑈 ℱ(𝑒). In other words ℱ(𝑈) = 𝑀𝑜𝑟Sets(𝑈, ℱ(𝑒)).
Moreover, this rule is compatible with restriction mappings. Hence the functor

𝑖∗ ∶ Sets = Sh(𝑝𝑡) ⟶ Sh(𝒮), 𝐸 ⟼ (𝑈 ↦ 𝑀𝑜𝑟Sets(𝑈, 𝐸))

is an equivalence of categories, and its inverse is the functor 𝑖−1 given above.

If 𝒮 does not contain a singleton, then the functor 𝑖∗ as defined above still makes sense.
To show that it is still an equivalence in this case, choose any nonempty ̃𝑒 ∈ 𝑆 and a map
𝜑 ∶ ̃𝑒 → ̃𝑒 whose image is a singleton. For any sheaf ℱ set

ℱ(𝑒) ∶= Im(ℱ(𝜑) ∶ ℱ( ̃𝑒) ⟶ ℱ( ̃𝑒))

and show that this is a quasi-inverse to 𝑖∗. Details omitted.

Remark 9.15.5. (Skip on first reading.) Let 𝒞 and 𝒟 be sites. A quasi-morphism of sites
𝑓 ∶ 𝒟 → 𝒞 (see Remark 9.14.8) gives rise to a morphis of topoi 𝑓 from Sh(𝒟) to Sh(𝒞)
exactly as in Lemma 9.15.3.
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9.16. G-sets and morphisms

Let 𝜑 ∶ 𝐺 → 𝐻 be a homomorphism of groups. Choose (suitable) sites 𝒯𝐺 and 𝒯𝐻 as in
Example 9.6.5 and Section 9.9. Let 𝑢 ∶ 𝒯𝐻 → 𝒯𝐺 be the functor which assigns to a 𝐻-set
𝑈 the 𝐺-set 𝑈𝜑 which has the same underlying set but 𝐺 action defined by 𝑔 ⋅ 𝑢 = 𝜑(𝑔)𝑢. It
is clear that 𝑢 commutes with finite limits and is continuous4. Applying Proposition 9.14.6
and Lemma 9.15.3 we obtain a morphism of topoi

𝑓 ∶ Sh(𝒯𝐺) ⟶ Sh(𝒯𝐻)
associated with 𝜑. Using Proposition 9.9.1 we see that we get a pair of adjoint functors

𝑓∗ ∶ 𝐺-Sets ⟶ 𝐻-Sets, 𝑓−1 ∶ 𝐻-Sets ⟶ 𝐺-Sets.
Let's work out what are these functors in this case.
We first work out a formula for 𝑓∗. Recall that given a 𝐺-set 𝑆 the corresponding sheaf ℱ𝑆
on 𝒯𝐺 is given by the rule ℱ𝑆(𝑈) = 𝑀𝑜𝑟𝐺(𝑈, 𝑆). And on the other hand, given a sheaf 𝒢
on 𝒯𝐻 the corresponding 𝐻-set is given by the rule 𝒢(𝐻𝐻). Hence we see that

𝑓∗𝑆 = 𝑀𝑜𝑟𝐺-Sets((𝐻𝐻)𝜑, 𝑆).
If we work this out a little bit more then we get

𝑓∗𝑆 = {𝑎 ∶ 𝐻 → 𝑆 ∣ 𝑎(𝑔ℎ) = 𝑔𝑎(ℎ)}
with left 𝐻-action given by (ℎ ⋅ 𝑎)(ℎ′) = 𝑎(ℎ′ℎ) for any element 𝑎 ∈ 𝑓∗𝑆.

Next, we explicitly compute 𝑓−1. Note that since the topology on 𝒯𝐺 and 𝒯𝐻 is subcanon-
ical, all representable presheaves are sheaves. Moreover, given an object 𝑉 of 𝒯𝐻 we see
that 𝑓−1ℎ𝑉 is equal to ℎ𝑢(𝑉) (see Lemma 9.13.5). Hence we see that 𝑓−1𝑆 = 𝑆𝜑 for rep-
resentable sheaves. Since every sheaf on 𝒯𝐻 is a coproduct of representable sheaves we
conclude that this is true in general. Hence we see that for any 𝐻-set 𝑇 we have

𝑓−1𝑇 = 𝑇𝜑.

The adjunction between 𝑓−1 and 𝑓∗ is evidenced by the formula
𝑀𝑜𝑟𝐺-Sets(𝑇𝜑, 𝑆) = 𝑀𝑜𝑟𝐻-Sets(𝑇, 𝑓∗𝑆)

with 𝑓∗𝑆 as above. This can be proved directly. Moreover, it is then clear that (𝑓−1, 𝑓∗)
form an adjoint pair and that 𝑓−1 is exact. So alternatively to the above the morphism of
topoi 𝑓 ∶ 𝐺-Sets → 𝐻-Sets can be defined directly in this manner.

9.17. More functoriality of presheaves

In this section we revisit the material of Section 9.5. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor between
categories. Recall that

𝑢𝑝 ∶ PSh(𝒟) ⟶ PSh(𝒞)
is the functor that associates to 𝒢 on 𝒟 the presheaf 𝑢𝑝𝒢 = 𝒢 ∘ 𝑢. It turns out that this
functor not only has a left adjoint (namely 𝑢𝑝) but also a right adjoint.

Namely, for any 𝑉 ∈ 𝑂𝑏(𝒟) we define a category 𝑉ℐ = 𝑢
𝑉ℐ. Its objects are pairs (𝑈, 𝜓 ∶

𝑢(𝑈) → 𝑉). Note that the arrow is in the opposite direction from the arrow we used in
defining the category ℐ𝑢

𝑉 in Section 9.5. A morphism (𝑈, 𝜓) → (𝑈′, 𝜓′) is given by a
morphism 𝛼 ∶ 𝑈 → 𝑈′ such that 𝜓 = 𝜓′ ∘ 𝑢(𝛼). In addition, given any presheaf of

4Set theoretical remark: First choose 𝒯𝐻. Then choose 𝒯𝐺 to contain 𝑢(𝒯𝐻) and such that every covering
in 𝒯𝐻 corresponds to a covering in 𝒯𝐺. This is possible by Sets, Lemmas 3.10.1, 3.10.2 and 3.11.1.
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sets ℱ on 𝒞 we introduce the functor 𝑉ℱ ∶ 𝑉ℐ𝑜𝑝𝑝 → Sets, which is defined by the rule
𝑉ℱ(𝑈, 𝜓) = ℱ(𝑈). We define

𝑝𝑢(ℱ)(𝑉) ∶= 𝑙𝑖𝑚
𝑉ℐ𝑜𝑝𝑝 𝑉ℱ

As a limit there are projection maps 𝑐(𝜓) ∶ 𝑝𝑢(ℱ)(𝑉) → ℱ(𝑈) for every object (𝑈, 𝜓) of
𝑉ℐ. In fact,

𝑝𝑢(ℱ)(𝑉) =
⎧⎪
⎨
⎪⎩

collections 𝑠(𝑈,𝜓) ∈ ℱ(𝑈)
∀𝛽 ∶ (𝑈1, 𝜓1) → (𝑈2, 𝜓2) in 𝑉ℐ
we have 𝛽∗𝑠(𝑈2,𝜓2) = 𝑠(𝑈1,𝜓1)

⎫⎪
⎬
⎪⎭

where the correspondence is given by 𝑠 ↦ 𝑠(𝑈,𝜓) = 𝑐(𝜓)(𝑠). We leave it to the reader to
define the restriction mappings 𝑝𝑢(ℱ)(𝑉) → 𝑝𝑢(ℱ)(𝑉′) associated to any morphism 𝑉′ → 𝑉
of 𝒟. The resulting presheaf will be denoted 𝑝𝑢ℱ.

Lemma 9.17.1. There is a canonical map 𝑝𝑢ℱ(𝑢(𝑈)) → ℱ(𝑈), which is compatible with
restriction maps.

Proof. This is just the projection map 𝑐(id𝑢(𝑈)) above. �

Note that any map of presheaves ℱ → ℱ′ gives rise to compatible systems of maps between
functors 𝑉ℱ → 𝑉ℱ′, and hence to a map of presheaves 𝑝𝑢ℱ → 𝑝𝑢ℱ′. In other words, we
have defined a functor

𝑝𝑢 ∶ PSh(𝒞) ⟶ PSh(𝒟)

Lemma 9.17.2. The functor 𝑝𝑢 is a right adjoint to the functor 𝑢𝑝. In other words the
formula

𝑀𝑜𝑟PSh(𝒞)(𝑢𝑝𝒢, ℱ) = 𝑀𝑜𝑟PSh(𝒟)(𝒢, 𝑝𝑢ℱ)
holds bifunctorially in ℱ and 𝒢.

Proof. This is proved in exactly the same way as the proof of Lemma 9.5.4. We note that
the map 𝑢𝑝

𝑝𝑢ℱ → ℱ from Lemma 9.17.1 is the map that is used to go from the right to the
left.

Alternately, think of a presheaf of sets ℱ on 𝒞 as a presheaf ℱ′ on 𝒞𝑜𝑝𝑝 with values in
Sets𝑜𝑝𝑝, and similarly on 𝒟. Check that (𝑝𝑢ℱ)′ = 𝑢𝑝(ℱ′), and that (𝑢𝑝𝒢)′ = 𝑢𝑝(𝒢′). By
Remark 9.5.5 we have the adjointness of 𝑢𝑝 and 𝑢𝑝 for presheaves with values in Sets𝑜𝑝𝑝.
The result then follows formally from this. �

9.18. Cocontinuous functors

There is another way to construct morphisms of topoi. This involves using cocontinuous
functors defined as follows.

Definition 9.18.1. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. The functor 𝑢 is
called cocontinuous if for every 𝑈 ∈ 𝑂𝑏(𝒞) and every covering {𝑉𝑗 → 𝑢(𝑈)}𝑗∈𝐽 of 𝒟 there
exists a covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 of 𝒞 such that the family of maps {𝑢(𝑈𝑖) → 𝑢(𝑈)}𝑖∈𝐼 refines
the covering {𝑉𝑗 → 𝑢(𝑈)}𝑗∈𝐽.

Note that {𝑢(𝑈𝑖) → 𝑢(𝑈)}𝑖∈𝐼 is in general not a covering of the site 𝒟.

Lemma 9.18.2. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be cocontinuous. Let ℱ be a sheaf
on 𝒞. Then 𝑝𝑢ℱ is a sheaf on 𝒟, which we will denote 𝑠𝑢ℱ.
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Proof. Let {𝑉𝑗 → 𝑉}𝑗∈𝐽 be a covering of the site 𝒟. We have to show that

𝑝𝑢ℱ(𝑉) //∏ 𝑝𝑢ℱ(𝑉𝑗)
//
// ∏ 𝑝𝑢ℱ(𝑉𝑗 ×𝑉 𝑉𝑗′)

is an equalizer diagram. Since 𝑝𝑢 is right adjoint to 𝑢𝑝 we have

𝑝𝑢ℱ(𝑉) = MorPSh(𝒟)(ℎ𝑉, 𝑝𝑢ℱ) = MorPSh(𝒞)(𝑢𝑝ℎ𝑉, ℱ) = MorSh(𝒞)((𝑢𝑝ℎ𝑉)#, ℱ)
Hence it suffices to show that
(9.18.2.1) ∐ 𝑢𝑝ℎ𝑉𝑗×𝑉𝑉𝑗′

//
// ∐ 𝑢𝑝ℎ𝑉𝑗

// 𝑢𝑝ℎ𝑉

becomes a coequalizer diagram after sheafification. (Recall that a coproduct in the category
of sheaves is the sheafification of the coproduct in the category of presheaves, see Lemma
9.10.13.)
We first show that the second arrow of (9.18.2.1) becomes surjective after sheafification.
To do this we use Lemma 9.11.2. Thus it suffices to show a section 𝑠 of 𝑢𝑝ℎ𝑉 over 𝑈
lifts to a section of ∐ 𝑢𝑝ℎ𝑉𝑗

on the members of a covering of 𝑈. Note that 𝑠 is a morphism
𝑠 ∶ 𝑢(𝑈) → 𝑉. Then {𝑉𝑗 ×𝑉,𝑠 𝑢(𝑈) → 𝑢(𝑈)} is a covering of 𝒟. Hence, as 𝑢 is cocontinuous,
there is a covering {𝑈𝑖 → 𝑈} such that {𝑢(𝑈𝑖) → 𝑢(𝑈)} refines {𝑉𝑗 ×𝑉,𝑠 𝑢(𝑈) → 𝑢(𝑈)}. This
means that each restriction 𝑠|𝑈𝑖

∶ 𝑢(𝑈𝑖) → 𝑉 factors through a morphism 𝑠𝑖 ∶ 𝑢(𝑈𝑖) → 𝑉𝑗
for some 𝑗, i.e., 𝑠|𝑈𝑖

is in the image of 𝑢𝑝ℎ𝑉𝑗
(𝑈𝑖) → 𝑢𝑝ℎ𝑉(𝑈𝑖) as desired.

Let 𝑠, 𝑠′ ∈ (∐ 𝑢𝑝ℎ𝑉𝑗
)#(𝑈) map to the same element of (𝑢𝑝ℎ𝑉)#(𝑈). To finish the proof of the

lemma we show that after replacing 𝑈 by the members of a covering that 𝑠, 𝑠′ are the image
of the same section of ∐ 𝑢𝑝ℎ𝑉𝑗×𝑉𝑉𝑗′ by the two maps of (9.18.2.1). We may first replace 𝑈
by the members of a covering and assume that 𝑠 ∈ 𝑢𝑝ℎ𝑉𝑗

(𝑈) and 𝑠′ ∈ 𝑢𝑝ℎ𝑉𝑗′(𝑈). A second
such replacement guarantees that 𝑠 and 𝑠′ have the same image in 𝑢𝑝ℎ𝑉(𝑈) instead of in the
sheafification. Hence 𝑠 ∶ 𝑢(𝑈) → 𝑉𝑗 and 𝑠′ ∶ 𝑢(𝑈) → 𝑉𝑗′ are morphisms of 𝒟 such that

𝑢(𝑈)
𝑠′
//

𝑠
��

𝑉𝑗′

��
𝑉𝑗

// 𝑉

is commutative. Thus we obtain 𝑡 = (𝑠, 𝑠′) ∶ 𝑢(𝑈) → 𝑉𝑗 ×𝑉 𝑉𝑗′, i.e., a section 𝑡 ∈
𝑢𝑝ℎ𝑉𝑗×𝑉𝑉𝑗′(𝑈) which maps to 𝑠, 𝑠′ as desired. �

Lemma 9.18.3. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be cocontinuous. The functor
Sh(𝒟) → Sh(𝒞), 𝒢 ↦ (𝑢𝑝𝒢)# is a left adjoint to the functor 𝑠𝑢 introduced in Lemma 9.18.2
above. Moreover, it is exact.

Proof. Let us prove the adjointness property as follows
𝑀𝑜𝑟Sh(𝒞)((𝑢𝑝𝒢)#, ℱ) = 𝑀𝑜𝑟PSh(𝒞)(𝑢𝑝𝒢, ℱ)

= 𝑀𝑜𝑟PSh(𝒟)(𝒢, 𝑝𝑢ℱ)
= 𝑀𝑜𝑟Sh(𝒟)(𝒢, 𝑠𝑢ℱ).

Thus it is a left adjoint and hence right exact, see Categories, Lemma 4.22.3. We have seen
that sheafification is left exact, see Lemma 9.10.14. Moreover, the inclusion 𝑖 ∶ Sh(𝒟) →
PSh(𝒟) is left exact by Lemma 9.10.1. Finally, the functor 𝑢𝑝 is left exact because it is
a right adjoint (namely to 𝑢𝑝). Thus the functor is the composition # ∘ 𝑢𝑝 ∘ 𝑖 of left exact
functors, hence left exact. �
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We finish this section with a technical lemma.

Lemma 9.18.4. In the situation of Lemma 9.18.3. For any presheaf 𝒢 on 𝒟 we have
(𝑢𝑝𝒢)# = (𝑢𝑝(𝒢#))#.

Proof. For any sheaf ℱ on 𝒞 we have
𝑀𝑜𝑟Sh(𝒞)((𝑢𝑝(𝒢#))#, ℱ) = 𝑀𝑜𝑟Sh(𝒟)(𝒢#, 𝑠𝑢ℱ)

= 𝑀𝑜𝑟PSh(𝒟)(𝒢#, 𝑝𝑢ℱ)
= 𝑀𝑜𝑟PSh(𝒟)(𝒢, 𝑝𝑢ℱ)
= 𝑀𝑜𝑟PSh(𝒞)(𝑢𝑝𝒢, ℱ)

= 𝑀𝑜𝑟Sh(𝒞)((𝑢𝑝𝒢)#, ℱ)
and the result follows from the Yoneda lemma. �

9.19. Cocontinuous functors and morphisms of topoi

It is clear from the above that a cocontinuous functor 𝑢 gives a morphism of topoi in the
same direction as 𝑢. Thus this is in the opposite direction from the morphism of topoi
associated (under certain conditions) to a continuous 𝑢 as in Definition 9.14.1, Proposition
9.14.6, and Lemma 9.15.3.

Lemma 9.19.1. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be cocontinuous. The functors
𝑔∗ = 𝑠𝑢 and 𝑔−1 = (𝑢𝑝 )# define a morphism of topoi 𝑔 from Sh(𝒞) to Sh(𝒟).

Proof. This is exactly the content of Lemma 9.18.3. �

Lemma 9.19.2. Let 𝑢 ∶ 𝒞 → 𝒟, and 𝑣 ∶ 𝒟 → ℰ be cocontinuous functors. Then 𝑣 ∘ 𝑢 is
cocontinuous and we have ℎ = 𝑔 ∘ 𝑓 where 𝑓 ∶ Sh(𝒞) → Sh(𝒟), resp. 𝑔 ∶ Sh(𝒟) → Sh(ℰ),
resp. ℎ ∶ Sh(𝒞) → Sh(ℰ) is the morphism of topoi associated to 𝑢, resp. 𝑣, resp. 𝑣 ∘ 𝑢.

Proof. Let 𝑈 ∈ 𝑂𝑏(𝒞). Let {𝐸𝑖 → 𝑣(𝑢(𝑈))} be a covering of 𝑈 in ℰ. By assumption there
exists a covering {𝐷𝑗 → 𝑢(𝑈)} in 𝒟 such that {𝑣(𝐷𝑗) → 𝑣(𝑢(𝑈))} refines {𝐸𝑖 → 𝑣(𝑢(𝑈))}.
Also by assumption there exists a covering {𝐶𝑙 → 𝑈} in 𝒞 such that {𝑢(𝐶𝑙) → 𝑢(𝑈)}
refines {𝐷𝑗 → 𝑢(𝑈)}. Then it is true that {𝑣(𝑢(𝐶𝑙)) → 𝑣(𝑢(𝑈))} refines the covering {𝐸𝑖 →
𝑣(𝑢(𝑈))}. This proves that 𝑣 ∘ 𝑢 is cocontinuous. To prove the last assertion it suffices to
show that 𝑠𝑣 ∘ 𝑠𝑢 = 𝑠(𝑣 ∘ 𝑢). It suffices to prove that 𝑝𝑣 ∘ 𝑝𝑢 = 𝑝(𝑣 ∘ 𝑢), see Lemma 9.18.2.
Since 𝑝𝑢, resp. 𝑝𝑣, resp. 𝑝(𝑣 ∘ 𝑢) is right adjoint to 𝑢𝑝, resp. 𝑣𝑝, resp. (𝑣 ∘ 𝑢)𝑝 it suffices to
prove that 𝑢𝑝 ∘ 𝑣𝑝 = (𝑣 ∘ 𝑢)𝑝. And this is direct from the definitions. �

Example 9.19.3. Let 𝑋 be a topological space. Let 𝑗 ∶ 𝑈 → 𝑋 be the inclusion of an open
subspace. Recall that we have sites 𝒯𝑋 and 𝒯𝑈, see Example 9.6.4. Recall that we have the
functor 𝑢 ∶ 𝒯𝑋 → 𝒯𝑈 associated to 𝑗 which is continuous and gives rise to a morphism of
sites 𝒯𝑈 → 𝒯𝑋, see Example 9.14.2. This also gives a morphism of topoi (𝑗∗, 𝑗−1). Next,
consider the functor 𝑣 ∶ 𝒯𝑈 → 𝒯𝑋, 𝑉 ↦ 𝑣(𝑉) = 𝑉 (just the same open but now thought
of as an object of 𝒯𝑋). This functor is cocontinuous. Namely, if 𝑣(𝑉) = ⋃𝑗∈𝐽 𝑊𝑗 is an
open covering in 𝑋, then each 𝑊𝑗 must be a subset of 𝑈 and hence is of the form 𝑣(𝑉𝑗), and
trivially 𝑉 = ⋃𝑗∈𝐽 𝑉𝑗 is an open covering in 𝑈. We conclude by Lemma 9.19.1 above that
there is a morphism of topoi associated to 𝑣

Sh(𝑈) ⟶ Sh(𝑋)
given by 𝑠𝑣 and (𝑣𝑝 )#. We claim that actually (𝑣𝑝 )# = 𝑗−1 and that 𝑠𝑣 = 𝑗∗, in other words,
that this is the same morphism of topoi as the one given above. Perhaps the easiest way to
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see this is to realize that for any sheaf 𝒢 on 𝑋 we have 𝑣𝑝𝒢(𝑉) = 𝒢(𝑉) which according
to Sheaves, Lemma 6.31.1 is a description of 𝑗−1𝒢 (and hence sheafification is superfluous
in this case). The equality of 𝑠𝑣 and 𝑗∗ follows by uniqueness of adjoint functors (but may
also be computed directly).

Example 9.19.4. This example is a slight generalization of Example 9.19.3. Let 𝑓 ∶ 𝑋 → 𝑌
be a continuous map of topological spaces. Assume that 𝑓 is open. Recall that we have sites
𝒯𝑋 and 𝒯𝑌, see Example 9.6.4. Recall that we have the functor 𝑢 ∶ 𝒯𝑌 → 𝒯𝑋 associated to
𝑓 which is continuous and gives rise to a morphism of sites 𝒯𝑋 → 𝒯𝑌, see Example 9.14.2.
This also gives a morphism of topoi (𝑓∗, 𝑓−1). Next, consider the functor 𝑣 ∶ 𝒯𝑋 → 𝒯𝑌,
𝑈 ↦ 𝑣(𝑈) = 𝑓(𝑈). This functor is cocontinuous. Namely, if 𝑓(𝑈) = ⋃𝑗∈𝐽 𝑉𝑗 is an open
covering in 𝑌, then setting 𝑈𝑗 = 𝑓−1(𝑉𝑗) ∩ 𝑈 we get an open covering 𝑈 = ⋃ 𝑈𝑗 such that
𝑓(𝑈) = ⋃ 𝑓(𝑈𝑗) is a refinement of 𝑓(𝑈) = ⋃ 𝑉𝑗. We conclude by Lemma 9.19.1 above
that there is a morphism of topoi associated to 𝑣

Sh(𝑋) ⟶ Sh(𝑌)

given by 𝑠𝑣 and (𝑣𝑝 )#. We claim that actually (𝑣𝑝 )# = 𝑓−1 and that 𝑠𝑣 = 𝑓∗, in other words,
that this is the samemorphism of topoi as the one given above. For any sheaf 𝒢 on 𝑌 we have
𝑣𝑝𝒢(𝑈) = 𝒢(𝑓(𝑈)). On the other hand, we may compute 𝑢𝑝𝒢(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑓(𝑈)⊂𝑉 𝒢(𝑉) =
𝒢(𝑓(𝑈)) because clearly (𝑓(𝑈), 𝑈 ⊂ 𝑓−1(𝑓(𝑈))) is an initial object of the category ℐ𝑢

𝑈 of
Section 9.5. Hence 𝑢𝑝 = 𝑣𝑝 and we conclude 𝑓−1 = 𝑢𝑠 = (𝑣𝑝 )#. The equality of 𝑠𝑣 and 𝑓∗
follows by uniqueness of adjoint functors (but may also be computed directly).

In the first Example 9.19.3 the functor 𝑣 is also continuous. But in the second Example
9.19.4 it is generally not continuous because condition (2) of Definition 9.13.1 may fail.
Hence the following lemma applies to the first example, but not to the second.

Lemma 9.19.5. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume that
(a) 𝑢 is cocontinuous, and
(b) 𝑢 is continuous.

Let 𝑔 ∶ Sh(𝒞) → Sh(𝒟) be the associated morphism of topoi. Then
(1) sheafification in the formula 𝑔−1 = (𝑢𝑝 )# is unnecessary, in other words 𝑔−1(𝒢)(𝑈) =

𝒢(𝑢(𝑈)),
(2) 𝑔−1 has a left adjoint 𝑔! = (𝑢𝑝 )#, and
(3) 𝑔−1 commutes with arbitrary limits and colimits.

Proof. By Lemma 9.13.2 for any sheaf 𝒢 on 𝒟 the presheaf 𝑢𝑝𝒢 is a sheaf on 𝒞. And then
we see the adjointness by the following string of equalities

𝑀𝑜𝑟Sh(𝒞)(ℱ, 𝑔−1𝒢) = 𝑀𝑜𝑟PSh(𝒞)(ℱ, 𝑢𝑝𝒢)
= 𝑀𝑜𝑟PSh(𝒟)(𝑢𝑝ℱ, 𝒢)
= 𝑀𝑜𝑟Sh(𝒟)(𝑔!ℱ, 𝒢)

The statement on limits and colimits follows from the discussion in Categories, Section
4.22. �

In the situation of Lemma 9.19.5 above we see that we have a sequence of adjoint functors

𝑔!, 𝑔−1, 𝑔∗.

The functor 𝑔! is not exact in general, because it does not transform a final object of Sh(𝒞)
into a final object of Sh(𝒟) in general. See Sheaves, Remark 6.31.13. On the other hand,
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in the topological setting of Example 9.19.3 the functor 𝑗! is exact on abelian sheaves, see
Modules, Lemma 15.3.5. The following lemma gives the generalization to the case of sites.

Lemma 9.19.6. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume that
(a) 𝑢 is cocontinuous,
(b) 𝑢 is continuous, and
(c) fibre products and equalizers exist in 𝒞 and 𝑢 commutes with them.

In this case the functor 𝑔! above commutes with fibre products and equalizers (and more
generally with any finite, nonempty connected limits).

Proof. Assume (a), (b), and (c). We have 𝑔! = (𝑢𝑝 )#. Recall (Lemma 9.10.1) that limits of
sheaves are equal to the corresponding limits as presheaves. And sheafification commutes
with finite limits (Lemma 9.10.14). Thus it suffices to show that 𝑢𝑝 commutes with fibre
products and equalizers. To do this it suffices that colimits over the categories (ℐ𝑢

𝑉)𝑜𝑝𝑝 of
Section 9.5 commute with fibre products and equalizers. This follows from Lemma 9.5.1
and Categories, Lemma 4.17.4. �

The following lemma deals with a case that is even more like the morphism associated to
an open immersion of topological spaces.

Lemma 9.19.7. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume that
(a) 𝑢 is cocontinuous,
(b) 𝑢 is continuous, and
(c) 𝑢 is fully faithful.

For 𝑔!, 𝑔−1, 𝑔∗ as above the canonical maps ℱ → 𝑔−1𝑔!ℱ and 𝑔−1𝑔∗ℱ → ℱ are isomor-
phisms for all sheaves ℱ on 𝒞.

Proof. Let 𝑋 be an object of 𝒞. In Lemmas 9.18.2 and 9.19.5 we have seen that sheafi-
fication is not necessary for the functors 𝑔−1 = (𝑢𝑝 )# and 𝑔∗ = (𝑝𝑢 )#. We may com-
pute (𝑔−1𝑔∗ℱ)(𝑋) = 𝑔∗ℱ(𝑢(𝑋)) = 𝑙𝑖𝑚 ℱ(𝑌). Here the limit is over the category of pairs
(𝑌, 𝑢(𝑌) → 𝑢(𝑋)) where the morphisms 𝑢(𝑌) → 𝑢(𝑋) are not required to be of the form
𝑢(𝛼) with 𝛼 a morphism of 𝒞. By assumption (c) we see that they automatically come from
morphisms of 𝒞 and we deduce that the limit is the value on (𝑋, 𝑢(id𝑋)), i.e., ℱ(𝑋). This
proves that 𝑔−1𝑔∗ℱ = ℱ.

On the other hand, (𝑔−1𝑔!ℱ)(𝑋) = 𝑔!ℱ(𝑢(𝑋)) = (𝑢𝑝ℱ)#(𝑢(𝑋)), and 𝑢𝑝ℱ(𝑢(𝑋)) = 𝑐𝑜𝑙𝑖𝑚 ℱ(𝑌).
Here the colimit is over the category of pairs (𝑌, 𝑢(𝑋) → 𝑢(𝑌)) where the morphisms
𝑢(𝑋) → 𝑢(𝑌) are not required to be of the form 𝑢(𝛼) with 𝛼 a morphism of 𝒞. By as-
sumption (c) we see that they automatically come from morphisms of 𝒞 and we deduce
that the colimit is the value on (𝑋, 𝑢(id𝑋)), i.e., ℱ(𝑋). Thus for every 𝑋 ∈ 𝑂𝑏(𝒞) we have
𝑢𝑝ℱ(𝑢(𝑋)) = ℱ(𝑋). Since 𝑢 is cocontinuous and continuous any covering of 𝑢(𝑋) in 𝒟
can be refined by a covering (!) {𝑢(𝑋𝑖) → 𝑢(𝑋)} of 𝒟 where {𝑋𝑖 → 𝑋} is a covering in
𝒞. This implies that (𝑢𝑝ℱ)+(𝑢(𝑋)) = ℱ(𝑋) also, since in the colimit defining the value
of (𝑢𝑝ℱ)+ on 𝑢(𝑋) we may restrict to the cofinal system of coverings {𝑢(𝑋𝑖) → 𝑢(𝑋)} as
above. Hence we see that (𝑢𝑝ℱ)+(𝑢(𝑋)) = ℱ(𝑋) for all objects 𝑋 of 𝒞 as well. Repeating
this argument one more time gives the equality (𝑢𝑝ℱ)#(𝑢(𝑋)) = ℱ(𝑋) for all objects 𝑋 of
𝒞. This produces the desired equality 𝑔−1𝑔!ℱ = ℱ. �

Finally, here is a case that does not have any corresponding topological example. Namely,
this lemma explains what happens whenwe enlarge a ``partial universe'' of schemes keeping
the same topology.
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Lemma 9.19.8. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume that
(a) 𝑢 is cocontinuous,
(b) 𝑢 is continuous,
(c) 𝑢 is fully faithful,
(d) fibre products exist in 𝒞 and 𝑢 commutes with them, and
(e) there exist final objects 𝑒𝒞 ∈ 𝑂𝑏(𝒞), 𝑒𝒟 ∈ 𝑂𝑏(𝒟) such that 𝑢(𝑒𝒞) = 𝑒𝒟.

Let 𝑔!, 𝑔−1, 𝑔∗ be as above. Then, 𝑢 defines a morphism of sites 𝑓 ∶ 𝒟 → 𝒞 with 𝑓∗ = 𝑔−1,
𝑓−1 = 𝑔!. The composition

Sh(𝒞)
𝑔 // Sh(𝒟)

𝑓 // Sh(𝒞)

is isomorphic to the identity morphism of the topos Sh(𝒞). Moreover, the functor 𝑓−1 is
fully faithful.

Proof. By assumption the functor 𝑢 satisfies the hypotheses of Proposition 9.14.6. Hence
𝑢 defines a morphism of sites and hence a morphism of topoi 𝑓 as in Lemma 9.15.3. The
formulas 𝑓∗ = 𝑔−1 and 𝑓−1 = 𝑔! are clear from the lemma cited and Lemma 9.19.5. We
have 𝑓∗ ∘ 𝑔∗ = 𝑔−1 ∘ 𝑔∗ ≅ id, and 𝑔−1 ∘ 𝑓−1 = 𝑔−1 ∘ 𝑔! ≅ id by Lemma 9.19.7.

We still have to show that 𝑓−1 is fully faithful. Let ℱ, 𝒢 ∈ 𝑂𝑏(Sh(𝒞)). We have to show
that the map

𝑀𝑜𝑟Sh(𝒞)(ℱ, 𝒢) ⟶ 𝑀𝑜𝑟Sh(𝒟)(𝑓−1ℱ, 𝑓−1𝒢)
is bijective. But the right hand side is equal to

𝑀𝑜𝑟Sh(𝒟)(𝑓−1ℱ, 𝑓−1𝒢) = 𝑀𝑜𝑟Sh(𝒞)(𝑓∗𝑓−1ℱ, 𝒢)

= 𝑀𝑜𝑟Sh(𝒞)(𝑔−1𝑓−1ℱ, 𝒢)
= 𝑀𝑜𝑟Sh(𝒞)(ℱ, 𝒢)

(the first equality by adjunction) which proves what we want. �

Example 9.19.9. Let 𝑋 be a topological space. Let 𝑖 ∶ 𝑍 → 𝑋 be the inclusion of a subset
(with induced topology). Consider the functor 𝑢 ∶ 𝒯𝑋 → 𝒯𝑍, 𝑈 ↦ 𝑢(𝑈) = 𝑍 ∩ 𝑈. At first
glance it may appear that this functor is cocontinuous as well. After all, since 𝑍 has the
induced topology, shouldn't any covering of 𝑈 ∩ 𝑍 it come from a covering of 𝑈 in 𝑋? Not
so! Namely, what if 𝑈 ∩ 𝑍 = ∅? In that case, the empty covering is a covering of 𝑈 ∩ 𝑍,
and the empty covering can only be refined by the empty covering. Thus we conclude that
𝑢 cocontinuous ⇒ every nonempty open 𝑈 of 𝑋 has nonempty intersection with 𝑍. But
this is not sufficient. For example, if 𝑋 = 𝐑 the real number line with the usual topology,
and 𝑍 = 𝐑⧵{0}, then there is an open covering of 𝑍, namely 𝑍 = {𝑥 < 0}∪⋃𝑛{1/𝑛 < 𝑥}
which cannot be refined by the restriction of any open covering of 𝑋.

9.20. Cocontinuous functors which have a right adjoint

It may happen that a cocontinuous functor 𝑢 has a right adjoint 𝑣. In this case it is often the
case that 𝑣 is continuous, and if so, then it defines a morphism of topoi (which is the same
as the one defined by 𝑢).

Lemma 9.20.1. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟, and 𝑣 ∶ 𝒟 → 𝒞 be functors. Assume
that 𝑢 is cocontinuous, and that 𝑣 is a right adjoint to 𝑢. Let 𝑔 ∶ Sh(𝒞) → Sh(𝒟) be the
morphism of topoi associated to 𝑢, see Lemma 9.19.1. Then 𝑔∗ℱ is equal to the presheaf
𝑣𝑝ℱ, in other words, (𝑔∗ℱ)(𝑉) = ℱ(𝑣(𝑉)).
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Proof. Let𝑉 be an object of𝒟. We have 𝑢𝑝ℎ𝑉 = ℎ𝑣(𝑉) because 𝑢𝑝ℎ𝑉(𝑈) = 𝑀𝑜𝑟𝒟(𝑢(𝑈), 𝑉) =
𝑀𝑜𝑟𝒞(𝑈, 𝑣(𝑉)) by assumption. By Lemma 9.18.4 this implies that 𝑔−1(ℎ#

𝑉) = (𝑢𝑝ℎ#
𝑉)# =

(𝑢𝑝ℎ𝑉)# = ℎ#
𝑣(𝑉). Hence for any sheaf ℱ on 𝒞 we have

(𝑔∗ℱ)(𝑉) = 𝑀𝑜𝑟Sh(𝒟)(ℎ#
𝑉, 𝑔∗ℱ)

= 𝑀𝑜𝑟Sh(𝒞)(𝑔−1(ℎ#
𝑉), ℱ)

= 𝑀𝑜𝑟Sh(𝒞)(ℎ#
𝑣(𝑉), ℱ)

= ℱ(𝑣(𝑉))
which proves the lemma. �

In the situation of the lemma we see that 𝑣𝑝 transforms sheaves into sheaves. Hence we can
define 𝑣𝑠 = 𝑣𝑝 restricted to sheaves. Just as in Lemma 9.13.3 we see that 𝑣𝑠 ∶ 𝒢 ↦ (𝑣𝑝𝒢)#

is a left adjoint to 𝑣𝑠. On the other hand, we have 𝑣𝑠 = 𝑔∗ and 𝑔−1 is a left adjoint of 𝑔∗ as
well. We conclude that 𝑔−1 = 𝑣𝑠 is exact.

Lemma 9.20.2. In the situation of Lemma 9.20.1. We have 𝑔∗ = 𝑣𝑠 = 𝑣𝑝 and 𝑔−1 = 𝑣𝑠 =
(𝑣𝑝 )#. If 𝑣 is continuous then 𝑣 defines a morphism of sites 𝑓 from 𝒞 to 𝒟 whose associated
morphism of topoi is equal to the morphism 𝑔 associated to the cocontinuous functor 𝑢.

Proof. Clear from the discussion above the lemma and Definitions 9.14.1 and Lemma
9.15.3. �

9.21. Localization

Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). See Categories, Example 4.2.13 for the definition of the
category 𝒞/𝑈 of objects over 𝑈. We turn 𝒞/𝑈 into a site by declaring a family of morphisms
{𝑉𝑗 → 𝑉} of objects over 𝑈 to be a covering of 𝒞/𝑈 if and only if it is a covering in 𝒞.
Consider the forgetful functor

𝑗𝑈 ∶ 𝒞/𝑈 ⟶ 𝒞.
This is clearly cocontinuous and continuous. Hence by the results of the previous sections
we obtain a morphism of topoi

𝑗𝑈 ∶ Sh(𝒞/𝑈) ⟶ Sh(𝒞)

given by 𝑗−1
𝑈 and 𝑗𝑈∗, as well as a functor 𝑗𝑈!.

Definition 9.21.1. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞).
(1) The site 𝒞/𝑈 is called the localization of the site 𝒞 at the object 𝑈.
(2) The morphism of topoi 𝑗𝑈 ∶ Sh(𝒞/𝑈) → Sh(𝒞) is called the localization mor-

phism.
(3) The functor 𝑗𝑈∗ is called the direct image functor.
(4) For a sheaf ℱ on 𝒞 the sheaf 𝑗−1

𝑈 ℱ is called the restriction of ℱ to 𝒞/𝑈.
(5) For a sheaf 𝒢 on 𝒞/𝑈 the sheaf 𝑗𝑈!𝒢 is called the extension of 𝒢 by the empty set.

The restriction 𝑗−1
𝑈 ℱ is the sheaf defined by the rule 𝑗−1

𝑈 ℱ(𝑋/𝑈) = ℱ(𝑋) as expected. The
extension by the empty set also has a very easy description in this case; here it is.

Lemma 9.21.2. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). Let 𝒢 be a presheaf on 𝒞/𝑈. Then 𝑗𝑈!(𝒢#)
is the sheaf associated to the presheaf

𝑉 ⟼ ∐𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝒢(𝑉

𝜑
−→ 𝑈)

with obvious restriction mappings.
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Proof. By Lemma 9.19.5 we have 𝑗𝑈!(𝒢#) = ((𝑗𝑈)𝑝𝒢#)#. By Lemma 9.13.4 this is equal
to ((𝑗𝑈)𝑝𝒢)#. Hence it suffices to prove that (𝑗𝑈)𝑝 is given by the formula above for any
presheaf 𝒢 on 𝒞/𝑈. OK, and by the definition in Section 9.5 we have

(𝑗𝑈)𝑝𝒢(𝑉) = 𝑐𝑜𝑙𝑖𝑚(𝑊/𝑈,𝑉→𝑊) 𝒢(𝑊)

Now it is clear that the category of pairs (𝑊/𝑈, 𝑉 → 𝑊) has an object 𝑂𝜑 = (𝜑 ∶ 𝑉 →
𝑈, id ∶ 𝑉 → 𝑉) for every 𝜑 ∶ 𝑉 → 𝑈, and moreover for any object there is a unique
morphism from one of the 𝑂𝜑 into it. The result follows. �

Lemma 9.21.3. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). Let 𝑋/𝑈 be an object of 𝒞/𝑈. Then we
have 𝑗𝑈!(ℎ#

𝑋/𝑈) = ℎ#
𝑋.

Proof. Denote 𝑝 ∶ 𝑋 → 𝑈 the structure morphism of 𝑋. By Lemma 9.21.2 we see
𝑗𝑈!(ℎ#

𝑋/𝑈) is the sheaf associated to the presheaf

𝑉 ⟼ ∐𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
{𝜓 ∶ 𝑉 → 𝑋 ∣ 𝑝 ∘ 𝜓 = 𝜑}

This is clearly the same thing as 𝑀𝑜𝑟𝒞(𝑉, 𝑋). Hence the lemma follows. �

We have 𝑗𝑈!(∗) = ℎ#
𝑈 by either of the two lemmas above. Hence for every sheaf 𝒢 over 𝒞/𝑈

there is a canonical map of sheaves 𝑗𝑈!𝒢 → ℎ#
𝑈. This characterizes sheaves in the essential

image of 𝑗𝑈!.

Lemma 9.21.4. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). The functor 𝑗𝑈! gives an equivalence of
categories

Sh(𝒞/𝑈) ⟶ Sh(𝒞)/ℎ#
𝑈

Proof. We explain how to get a functor from Sh(𝒞)/ℎ#
𝑈 to Sh(𝒞/𝑈). Suppose that 𝜑 ∶

ℱ → ℎ#
𝑈 is given. For any object 𝑎 ∶ 𝑋 → 𝑈 of 𝒞/𝑈 we consider the set ℱ𝜑(𝑋 → 𝑈)

of elements 𝑠 ∈ ℱ(𝑋) which under 𝜑 map to the image of 𝑎 ∈ 𝑀𝑜𝑟𝒞(𝑋, 𝑈) = ℎ𝑈(𝑋) in
ℎ#

𝑈(𝑋). It is easy to see that (𝑋 → 𝑈) ↦ ℱ𝜑(𝑋 → 𝑈) is a sheaf on 𝒞/𝑈. The verification
that (ℱ, 𝜑) ↦ ℱ𝜑 is an inverse to the functor 𝑗𝑈! is omitted. �

The lemma says the functor 𝑗𝑈! is the composition

Sh(𝒞/𝑈) → Sh(𝒞)/ℎ#
𝑈 → Sh(𝒞)

where the first arrow is an equivalence.

Lemma 9.21.5. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). The functor 𝑗𝑈! commutes with with
fibre products and equalizers (and more generally finite, nonempty, connected limits). In
particular, if ℱ ⊂ ℱ′ in Sh(𝒞/𝑈), then 𝑗𝑈!ℱ ⊂ 𝑗𝑈!ℱ′.

Proof. This follows from the fact that an isomorphism of categories commutes with all
limits and the functor Sh(𝒞)/ℎ#

𝑈 → Sh(𝒞) commutes with fibre products and equalizers.
Alternatively, one can prove this directly using the description of 𝑗𝑈! in Lemma 9.21.2
using that sheafification is exact. (Also, in case 𝒞 has fibre products and equalizers, the
result follows from Lemma 9.19.6.) �

Lemma 9.21.6. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). For any sheaf ℱ on 𝒞 we have 𝑗𝑈!𝑗−1
𝑈 ℱ =

ℱ × ℎ#
𝑈.

Proof. This is clear from the description of 𝑗𝑈! in Lemma 9.21.2. �
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Lemma 9.21.7. Let 𝒞 be a site. Let 𝑓 ∶ 𝑉 → 𝑈 be a morphism of 𝒞. Then there exists a
commutative diagram

𝒞/𝑉

𝑗𝑉 !!

𝑗
// 𝒞/𝑈

𝑗𝑈}}
𝒞

of cocontinuous functors. Here 𝑗 ∶ 𝒞/𝑉 → 𝒞/𝑈, (𝑎 ∶ 𝑊 → 𝑉) ↦ (𝑓 ∘ 𝑎 ∶ 𝑊 → 𝑈) is
identified with the functor 𝑗𝑉/𝑈 ∶ (𝒞/𝑈)/(𝑉/𝑈) → 𝒞/𝑈 via the identification (𝒞/𝑈)/(𝑉/𝑈) =
𝒞/𝑉. Moreover we have 𝑗𝑉! = 𝑗𝑈! ∘ 𝑗!, 𝑗−1

𝑉 = 𝑗−1 ∘ 𝑗−1
𝑈 , and 𝑗𝑉∗ = 𝑗𝑈∗ ∘ 𝑗∗.

Proof. The commutativity of the diagram is immediate. The agreement of 𝑗 with 𝑗𝑉/𝑈
follows from the definitions. By Lemma 9.19.2 we see that the following diagram of mor-
phisms of topoi

(9.21.7.1)

Sh(𝒞/𝑉)

𝑗𝑉 $$

𝑗
// Sh(𝒞/𝑈)

𝑗𝑈zz
Sh(𝒞)

is commutative. This proves that 𝑗−1
𝑉 = 𝑗−1∘𝑗−1

𝑈 and 𝑗𝑉∗ = 𝑗𝑈∗∘𝑗∗. The equality 𝑗𝑉! = 𝑗𝑈!∘𝑗!
follows formally from adjointness properties. �

Lemma 9.21.8. Notation 𝒞, 𝑓 ∶ 𝑉 → 𝑈, 𝑗𝑈, 𝑗𝑉, and 𝑗 as in Lemma 9.21.7. Via the
identifications Sh(𝒞/𝑉) = Sh(𝒞)/ℎ#

𝑉 and Sh(𝒞/𝑈) = Sh(𝒞)/ℎ#
𝑈 of Lemma 9.21.4 the functor

𝑗−1 has the following description

𝑗−1(ℋ
𝜑

−→ ℎ#
𝑈) = (ℋ ×𝜑,ℎ#

𝑈,𝑓 ℎ#
𝑉 → ℎ#

𝑉).

Proof. Suppose that 𝜑 ∶ ℋ → ℎ#
𝑈 is an object of Sh(𝒞)/ℎ#

𝑈. By the proof of Lemma 9.21.4
this corresponds to the sheaf ℋ𝜑 on 𝒞/𝑈 defined by the rule

(𝑎 ∶ 𝑊 → 𝑈) ⟼ {𝑠 ∈ ℋ(𝑊) ∣ 𝜑(𝑠) = 𝑎}

on 𝒞/𝑈. The pullback 𝑗−1ℋ𝜑 to 𝒞/𝑉 is given by the rule

(𝑎 ∶ 𝑊 → 𝑉) ⟼ {𝑠 ∈ ℋ(𝑊) ∣ 𝜑(𝑠) = 𝑓 ∘ 𝑎}

by the description of 𝑗−1 = 𝑗−1
𝑈/𝑉 as the restriction of ℋ𝜑 to 𝒞/𝑉. On the other hand, applying

the rule to the object

ℋ′ = ℋ ×𝜑,ℎ#
𝑈,𝑓 ℎ#

𝑉
𝜑′

// ℎ#
𝑉

of Sh(𝒞)/ℎ#
𝑉 we get ℋ′

𝜑′ given by

(𝑎 ∶ 𝑊 → 𝑉) ⟼{𝑠′ ∈ ℋ′(𝑊) ∣ 𝜑′(𝑠′) = 𝑎}

={(𝑠, 𝑎′) ∈ ℋ(𝑊) × ℎ#
𝑉(𝑊) ∣ 𝑎′ = 𝑎 and 𝜑(𝑠) = 𝑓 ∘ 𝑎′}

which is exactly the same rule as the one describing 𝑗−1ℋ𝜑 above. �

Remark 9.21.9. Localization and presheaves. Let 𝒞 be a category. Let 𝑈 be an object of
𝒞. Strictly speaking the functors 𝑗−1

𝑈 , 𝑗𝑈∗ and 𝑗𝑈! have not been defined for presheaves. But
of course, we can think of a presheaf as a sheaf for the chaotic topology on 𝒞 (see Example
9.6.6). Hence we also obtain a functor

𝑗−1
𝑈 ∶ PSh(𝒞) ⟶ PSh(𝒞/𝑈)
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and functors
𝑗𝑈∗, 𝑗𝑈! ∶ PSh(𝒞/𝑈) ⟶ PSh(𝒞)

which are right, left adjoint to 𝑗−1
𝑈 . By Lemma 9.21.2 we see that 𝑗𝑈!𝒢 is the presheaf

𝑉 ⟼ ∐𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝒢(𝑉

𝜑
−→ 𝑈)

In addition the functor 𝑗𝑈! commutes with fibre products and equalizers.

9.22. Glueing sheaves

This section is the analogue of Sheaves, Section 6.33.

Lemma 9.22.1. Let 𝒞 be a site. Let {𝑈𝑖 → 𝑈} be a covering of 𝒞. Let ℱ, 𝒢 be sheaves on
𝒞. Given a collection

𝜑𝑖 ∶ ℱ|𝒞/𝑈𝑖
⟶ 𝒢|𝒞/𝑈𝑖

of maps of sheaves such that for all 𝑖, 𝑗 ∈ 𝐼 the maps 𝜑𝑖, 𝜑𝑗 restrict to the same map
ℱ|𝒞/𝑈𝑖×𝑈𝑈𝑗

→ 𝒢|𝒞/𝑈𝑖×𝑈𝑈𝑗
then there exists a unique map of sheaves

𝜑 ∶ ℱ|𝒞/𝑈 ⟶ 𝒢|𝒞/𝑈

whose restriction to each 𝒞/𝑈𝑖 agrees with 𝜑𝑖.

Proof. Omitted. Note that the restrictions are always those of Lemma 9.21.7. �

The previous lemma implies that given two sheaves ℱ, 𝒢 on a site 𝒞 the rule

𝑈 ⟼ 𝑀𝑜𝑟Sh(𝒞/𝑈)(ℱ|𝒞/𝑈, 𝒢|𝒞/𝑈)

defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the setting of
sheaves of sets, and more usually in the setting of sheaves of modules, see Modules on
Sites, Section 16.25.

Let 𝒞 be a site. Let {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of 𝒞. For each 𝑖 ∈ 𝐼 let ℱ𝑖 be a sheaf of
sets on 𝒞/𝑈𝑖. For each pair 𝑖, 𝑗 ∈ 𝐼, let

𝜑𝑖𝑗 ∶ ℱ𝑖|𝒞/𝑈𝑖×𝑈𝑈𝑗
⟶ ℱ𝑗|𝒞/𝑈𝑖×𝑈𝑈𝑗

be an isomorphism of sheaves of sets. Assume in addition that for every triple of indices
𝑖, 𝑗, 𝑘 ∈ 𝐼 the following diagram is commutative

ℱ𝑖|𝒞/𝑈𝑖×𝑈𝑈𝑗×𝑈𝑈𝑘 𝜑𝑖𝑘
//

𝜑𝑖𝑗
((

ℱ𝑘|𝒞/𝑈𝑖×𝑈𝑈𝑗×𝑈𝑈𝑘

ℱ𝑗|𝒞/𝑈𝑖×𝑈𝑈𝑗×𝑈𝑈𝑘

𝜑𝑗𝑘

66

Wewill call such a collection of data (ℱ𝑖, 𝜑𝑖𝑗) a glueing data for sheaves of sets with respect
to the covering {𝑈𝑖 → 𝑈}𝑖∈𝐼.

Lemma 9.22.2. Let 𝒞 be a site. Let {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of 𝒞. Given any glueing
data (ℱ𝑖, 𝜑𝑖𝑗) for sheaves of sets with respect to the covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 there exists a
sheaf of sets ℱ on 𝒞/𝑈 together with isomorphisms

𝜑𝑖 ∶ ℱ|𝒞/𝑈𝑖
→ ℱ𝑖
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such that the diagrams
ℱ|𝒞/𝑈𝑖×𝑈𝑈𝑗

id
��

𝜑𝑖
// ℱ𝑖|𝒞/𝑈𝑖×𝑈𝑈𝑗

𝜑𝑖𝑗

��
ℱ|𝒞/𝑈𝑖×𝑈𝑈𝑗

𝜑𝑗 // ℱ𝑗|𝒞/𝑈𝑖×𝑈𝑈𝑗

are commutative.

Proof. Let us describe how to construct the sheaf ℱ on 𝒞/𝑈. Let 𝑎 ∶ 𝑉 → 𝑈 be an object
of 𝒞/𝑈. Then

ℱ(𝑉/𝑈) = {(𝑠𝑖)𝑖∈𝐼 ∈ ∏
𝑖∈𝐼

ℱ𝑖(𝑈𝑖 ×𝑈 𝑉/𝑈𝑖) ∣ 𝜑𝑖𝑗(𝑠𝑖|𝑈𝑖×𝑈𝑈𝑗×𝑈𝑉) = 𝑠𝑗|𝑈𝑖×𝑈𝑈𝑗×𝑈𝑉}

We omit the construction of the restriction mappings. We omit the verification that this
is a sheaf. We omit the construction of the isomorphisms 𝜑𝑖, and we omit proving the
commutativity of the diagrams of the lemma. �

Let 𝒞 be a site. Let {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of 𝒞. Let ℱ be a sheaf on 𝒞/𝑈. Associated
to ℱ we have its canonical glueing data given by the restrictions ℱ|𝒞/𝑈𝑖

and the canonical
isomorphisms

(ℱ|𝒞/𝑈𝑖) |𝒞/𝑈𝑖×𝑈𝑈𝑗
= (ℱ|𝒞/𝑈𝑗) |𝒞/𝑈𝑖×𝑈𝑈𝑗

coming from the fact that the composition of the functors 𝒞/𝑈𝑖 ×𝑈 𝑈𝑗 → 𝒞/𝑈𝑖 → 𝒞/𝑈 and
𝒞/𝑈𝑖 ×𝑈 𝑈𝑗 → 𝒞/𝑈𝑗 → 𝒞/𝑈 are equal.

Lemma 9.22.3. Let𝒞 be a site. Let {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of𝒞. The category Sh(𝒞/𝑈)
is equivalent to the category of glueing data via the functor that associates to ℱ on 𝒞/𝑈 the
canonical glueing data.

Proof. In Lemma 9.22.1 we saw that the functor is fully faithful, and in Lemma 9.22.2 we
proved that it is essentially surjective (by explicitly constructing a quasi-inverse functor).

�

9.23. More localization

In this section we prove a few lemmas on localization where we impose some additional
hypotheses on the site on or the object we are localizing at.

Lemma 9.23.1. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). If the topology on 𝒞 is subcanonical, see
Definition 9.12.2, and if 𝒢 is a sheaf on 𝒞/𝑈, then

𝑗𝑈!(𝒢)(𝑉) = ∐𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝒢(𝑉

𝜑
−→ 𝑈),

in other words sheafification is not necessary in Lemma 9.21.2.

Proof. Let 𝒱 = {𝑉𝑖 → 𝑉}𝑖∈𝐼 be a covering of 𝑉 in the site 𝒞. We are going to check the
sheaf condition for the presheaf ℋ of Lemma 9.21.2 directly. Let (𝑠𝑖, 𝜑𝑖)𝑖∈𝐼 ∈ ∏𝑖 ℋ(𝑉𝑖),
This means 𝜑𝑖 ∶ 𝑉𝑖 → 𝑈 is a morphism in 𝒞, and 𝑠𝑖 ∈ 𝒢(𝑉𝑖

𝜑𝑖−−→ 𝑈). The restriction of
the pair (𝑠𝑖, 𝜑𝑖) to 𝑉𝑖 ×𝑉 𝑉𝑗 is the pair (𝑠𝑖|𝑉𝑖×𝑉𝑉𝑗/𝑈, pr1 ∘ 𝜑𝑖), and likewise the restriction of
the pair (𝑠𝑗, 𝜑𝑗) to 𝑉𝑖 ×𝑉 𝑉𝑗 is the pair (𝑠𝑗|𝑉𝑖×𝑉𝑉𝑗/𝑈, pr2 ∘ 𝜑𝑗). Hence, if the family (𝑠𝑖, 𝜑𝑖)
lies in �̌�0(𝒱, ℋ), then we see that pr1 ∘ 𝜑𝑖 = pr2 ∘ 𝜑𝑗. The condition that the topology on
𝒞 is weaker than the canonical topology then implies that there exists a unique morphism
𝜑 ∶ 𝑉 → 𝑈 such that 𝜑𝑖 is the composition of 𝑉𝑖 → 𝑉 with 𝜑. At this point the sheaf
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condition for 𝒢 garantees that the sections 𝑠𝑖 glue to a unique section 𝑠 ∈ 𝒢(𝑉
𝜑

−→ 𝑈).
Hence (𝑠, 𝜑) ∈ ℋ(𝑉) as desired. �

Lemma 9.23.2. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). Assume 𝒞 has products of pairs of objects.
Then

(1) the functor 𝑗𝑈 has a continuous right adjoint, namely the functor 𝑣(𝑋) = 𝑋×𝑈/𝑈,
(2) the functor 𝑣 defines a morphism of sites 𝒞/𝑈 → 𝒞 whose associated morphism

of topoi equals 𝑗𝑈 ∶ Sh(𝒞/𝑈) → Sh(𝒞), and
(3) we have 𝑗𝑈∗ℱ(𝑋) = ℱ(𝑋 × 𝑈/𝑈).

Proof. The functor 𝑣 being right adjoint to 𝑗𝑈 means that given 𝑌/𝑈 and 𝑋 we have

𝑀𝑜𝑟𝒞(𝑌, 𝑋) = 𝑀𝑜𝑟𝒞/𝑈(𝑌/𝑈, 𝑋 × 𝑈/𝑈)

which is clear. To check that 𝑣 is continous let {𝑋𝑖 → 𝑋} be a convering of 𝒞. By the third
axiom of a site (Definition 9.6.2) we see that

{𝑋𝑖 ×𝑋 (𝑋 × 𝑈) → 𝑋 ×𝑋 (𝑋 × 𝑈)} = {𝑋𝑖 × 𝑈 → 𝑋 × 𝑈}

is a covering of 𝒞 also. Hence 𝑣 is continuous. The other statements of the lemma follow
from Lemmas 9.20.1 and 9.20.2. �

A fundamental property of an open immersion is that the restriction of the pushforward and
the restriction of the extension by the empty set produces back the original sheaf. This is
not always true for the functors associated to 𝑗𝑈 above. It is true when 𝑈 is a ``subobject of
the final object''.

Lemma 9.23.3. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). Assume that every 𝑋 in 𝒞 has at most
one morphism to 𝑈. Let ℱ be a sheaf on 𝒞/𝑈. The canonical maps ℱ → 𝑗−1

𝑈 𝑗𝑈!ℱ and
𝑗−1

𝑈 𝑗𝑈∗ℱ → ℱ are isomorphisms.

Proof. If 𝒞 has fibre products, then this is a special case of Lemma 9.19.7. In general we
have the following direct proof.

Let 𝑋/𝑈 be an object over 𝑈. In Lemmas 9.18.2 and 9.19.5 we have seen that sheafifi-
cation is not necessary for the functors 𝑗−1

𝑈 = (𝑢𝑝 )# and 𝑗𝑈∗ = (𝑝𝑢)#. We may compute
(𝑗−1

𝑈 𝑗𝑈∗ℱ)(𝑋/𝑈) = 𝑗𝑈∗ℱ(𝑋) = 𝑙𝑖𝑚 ℱ(𝑌/𝑈). Here the limit is over the category of pairs
(𝑌/𝑈, 𝑌 → 𝑋) where the morphisms 𝑌 → 𝑋 are not required to be over 𝑈. By our assump-
tion however we see that they are automatically morphisms over 𝑈 and we deduce that the
limit is the value on id𝑋, i.e., ℱ(𝑋/𝑈). This proves that 𝑗−1

𝑈 𝑗𝑈∗ℱ = ℱ.

On the other hand, (𝑗−1
𝑈 𝑗𝑈!ℱ)(𝑋/𝑈) = 𝑗𝑈!ℱ(𝑋) = (𝑢𝑝ℱ)#(𝑋), and 𝑢𝑝ℱ(𝑋) = 𝑐𝑜𝑙𝑖𝑚 ℱ(𝑌/𝑈).

Here the colimit is over the category of pairs (𝑌/𝑈, 𝑋 → 𝑌) where the morphisms 𝑋 → 𝑌
are not required to be over 𝑈. By our assumption however we see that they are automatically
morphisms over 𝑈 and we deduce that the colimit is the value on id𝑋, i.e., ℱ(𝑋/𝑈). This
shows that the sheafification is not necessary (since any object over 𝑋 is automatically in a
unique way an object over 𝑈) and the result follows. �

9.24. Localization and morphisms

The following lemma is important in order to understand relation between localization and
morphisms of sites and topoi.
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Lemma 9.24.1. Let 𝑓 ∶ 𝒞 → 𝒟 be a morphism of sites corresponding to the continuous
functor 𝑢 ∶ 𝒟 → 𝒞. Let 𝑉 ∈ 𝑂𝑏(𝒟) and set 𝑈 = 𝑢(𝑉). Then the functor 𝑢′ ∶ 𝒟/𝑉 → 𝒞/𝑈,
𝑉′/𝑉 ↦ 𝑢(𝑉′)/𝑈 determines a morphism of sites 𝑓′ ∶ 𝒞/𝑈 → 𝒟/𝑉. The morphism 𝑓′ fits
into a commutative diagram of topoi

Sh(𝒞/𝑈)
𝑗𝑈
//

𝑓′

��

Sh(𝒞)

𝑓
��

Sh(𝒟/𝑉)
𝑗𝑉 // Sh(𝒟).

Using the identifications Sh(𝒞/𝑈) = Sh(𝒞)/ℎ#
𝑈 and Sh(𝒟/𝑉) = Sh(𝒟)/ℎ#

𝑉 of Lemma 9.21.4
the functor (𝑓′)−1 is described by the rule

(𝑓′)−1(ℋ
𝜑

−→ ℎ#
𝑉) = (𝑓−1ℋ

𝑓−1𝜑
−−−−→ ℎ#

𝑈).

Finally, we have 𝑓′
∗𝑗−1

𝑈 = 𝑗−1
𝑉 𝑓∗.

Proof. It is clear that 𝑢′ is continuous, and hence we get functors 𝑓′
∗ = (𝑢′)𝑠 = (𝑢′)𝑝 (see

Sections 9.5 and 9.13) and an adjoint (𝑓′)−1 = (𝑢′)𝑠 = ((𝑢′)𝑝 )#. The assertion 𝑓′
∗𝑗−1

𝑈 =
𝑗−1

𝑉 𝑓∗ follows as

(𝑗−1
𝑉 𝑓∗ℱ)(𝑉′/𝑉) = 𝑓∗ℱ(𝑉′) = ℱ(𝑢(𝑉′)) = (𝑗−1

𝑈 ℱ)(𝑢(𝑉′)/𝑈) = (𝑓′
∗𝑗−1

𝑈 ℱ)(𝑉′/𝑉)

which holds even for presheaves. What isn't clear a priori is that (𝑓′)−1 is exact, that the
diagram commutes, and that the description of (𝑓′)−1 holds.

Let ℋ be a sheaf on 𝒟/𝑉. Let us compute 𝑗𝑈!(𝑓′)−1ℋ. We have

𝑗𝑈!(𝑓′)−1ℋ = ((𝑗𝑈)𝑝(𝑢′
𝑝ℋ)#)#

= ((𝑗𝑈)𝑝𝑢′
𝑝ℋ)#

= (𝑢𝑝(𝑗𝑉)𝑝ℋ)#

= 𝑓−1𝑗𝑉!ℋ

The first equality by unwinding the definitions. The second equality by Lemma 9.13.4. The
third equality because 𝑢 ∘ 𝑗𝑉 = 𝑗𝑈 ∘ 𝑢′. The fourth equality by Lemma 9.13.4 again. All
of the equalities above are isomorphisms of functors, and hence we may interpret this as
saying that the following diagram of categories and functors is commutative

Sh(𝒞/𝑈)
𝑗𝑈!
// Sh(𝒞)/ℎ#

𝑈
// Sh(𝒞)

Sh(𝒟/𝑉)
𝑗𝑉! //

(𝑓′)−1

OO

Sh(𝒟)/ℎ#
𝑉

//

𝑓−1

OO

Sh(𝒟)

𝑓−1

OO

The middle arrow makes sense as 𝑓−1ℎ#
𝑉 = (ℎ𝑢(𝑉))# = ℎ#

𝑈, see Lemma 9.13.5. In particular
this proves the description of (𝑓′)−1 given in the statement of the lemma. Since by Lemma
9.21.4 the left horizontal arrows are equivalences and since 𝑓−1 is exact by assumption we
conclude that (𝑓′)−1 = 𝑢′

𝑠 is exact. Namely, because it is a left adjoint it is already right
exact (Categories, Lemma 4.22.2). Hence we only need to show that it transforms a final
object into a final object and commutes with fibre products (Categories, Lemma 4.21.2).
Both are clear for the induced functor 𝑓−1 ∶ Sh(𝒟)/ℎ#

𝑉 → Sh(𝒞)/ℎ#
𝑈. This proves that 𝑓′ is

a morphism of sites.
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We still have to verify that (𝑓′)−1𝑗−1
𝑉 = 𝑗−1

𝑈 𝑓−1. To see this use the formula above and the
description in Lemma 9.21.6. Namely, combined these give, for any sheaf 𝒢 on 𝒟, that

𝑗𝑈!(𝑓′)−1𝑗−1
𝑉 𝒢 = 𝑓−1𝑗𝑉!𝑗−1

𝑉 𝒢 = 𝑓−1(𝒢 × ℎ#
𝑉) = 𝑓−1𝒢 × ℎ#

𝑈 = 𝑗𝑈!𝑗−1
𝑈 𝑓−1𝒢.

Since the functor 𝑗𝑈! induces an equivalence Sh(𝒞/𝑈) → Sh(𝒞)/ℎ#
𝑈 we conclude. �

The following lemma is a special case of the more general Lemma 9.24.1 above.

Lemma 9.24.2. Let 𝒞, 𝒟 be sites. Let 𝑢 ∶ 𝒟 → 𝒞 be a functor. Let 𝑉 ∈ 𝑂𝑏(𝒟). Set
𝑈 = 𝑢(𝑉). Assume that

(1) 𝒞 and 𝒟 have all finite limits,
(2) 𝑢 is continuous, and
(3) 𝑢 commutes with finite limits.

There exists a commutative diagram of morphisms of sites

𝒞/𝑈
𝑗𝑈
//

𝑓′

��

𝒞

𝑓
��

𝒟/𝑉
𝑗𝑉 // 𝒟

where the right vertical arrow corresponds to 𝑢, the left vertical arrow corresponds to the
functor 𝑢′ ∶ 𝒟/𝑉 → 𝒞/𝑈, 𝑉′/𝑉 ↦ 𝑢(𝑉′)/𝑢(𝑉) and the horizontal arrows correspond to the
functors 𝒞 → 𝒞/𝑈, 𝑋 ↦ 𝑋 × 𝑈 and 𝒟 → 𝒟/𝑉, 𝑌 ↦ 𝑌 × 𝑉 as in Lemma 9.23.2. Moreover,
the associated diagram of morphisms of topoi is equal to the diagram of Lemma 9.24.1. In
particular we have 𝑓′

∗𝑗−1
𝑈 = 𝑗−1

𝑉 𝑓∗.

Proof. Note that 𝑢 satisfies the assumptions of Proposition 9.14.6 and hence induces a
morphism of sites 𝑓 ∶ 𝒞 → 𝒟 by that proposition. It is clear that 𝑢 induces a functor
𝑢′ as indicated. It is clear that this functor also satisfies the assumptions of Proposition
9.14.6. Hence we get a morphism of sites 𝑓′ ∶ 𝒞/𝑈 → 𝒟/𝑉. The diagram commutes by
our definition of composition of morphisms of sites (see Definition 9.14.4) and because

𝑢(𝑌 × 𝑉) = 𝑢(𝑌) × 𝑢(𝑉) = 𝑢(𝑌) × 𝑈

which shows that the diagram of categories and functors opposite to the diagram of the
lemma commutes. �

At this point we can localize a site, we know how to relocalize, and we can localize a
morphism of sites at an object of the site downstairs. If we combine these then we get the
following kind of diagram.

Lemma 9.24.3. Let 𝑓 ∶ 𝒞 → 𝒟 be a morphism of sites corresponding to the continuous
functor 𝑢 ∶ 𝒞 → 𝒟. Let 𝑉 ∈ 𝑂𝑏(𝒟), 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑐 ∶ 𝑈 → 𝑢(𝑉) a morphism of 𝒞.
There exists a commutative diagram of topoi

Sh(𝒞/𝑈)
𝑗𝑈
//

𝑓𝑐
��

Sh(𝒞)

𝑓
��

Sh(𝒟/𝑉)
𝑗𝑉 // Sh(𝒟).

We have 𝑓𝑐 = 𝑓′ ∘ 𝑗𝑈/𝑢(𝑉) where 𝑓′ ∶ Sh(𝒞/𝑢(𝑉)) → Sh(𝒟/𝑉) is as in Lemma 9.24.1
and 𝑗𝑈/𝑢(𝑉) ∶ Sh(𝒞/𝑈) → Sh(𝒞/𝑢(𝑉)) is as in Lemma 9.21.7. Using the identifications
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Sh(𝒞/𝑈) = Sh(𝒞)/ℎ#
𝑈 and Sh(𝒟/𝑉) = Sh(𝒟)/ℎ#

𝑉 of Lemma 9.21.4 the functor (𝑓𝑐)−1 is
described by the rule

(𝑓𝑐)−1(ℋ
𝜑

−→ ℎ#
𝑉) = (𝑓−1ℋ ×𝑓−1𝜑,ℎ#

𝑢(𝑉),𝑐
ℎ#

𝑈 → ℎ#
𝑈).

Finally, given any morphisms 𝑏 ∶ 𝑉′ → 𝑉, 𝑎 ∶ 𝑈′ → 𝑈 and 𝑐′ ∶ 𝑈′ → 𝑢(𝑉′) such that

𝑈′
𝑐′
//

𝑎
��

𝑢(𝑉′)

𝑢(𝑏)
��

𝑈 𝑐 // 𝑢(𝑉)

commutes, then the diagram

Sh(𝒞/𝑈′)
𝑗𝑈′/𝑈

//

𝑓𝑐′
��

Sh(𝒞/𝑈)

𝑓𝑐
��

Sh(𝒟/𝑉′)
𝑗𝑉′/𝑉 // Sh(𝒟/𝑉).

commutes.

Proof. This lemma proves itself, and is more a collection of things we know at this stage of
the development of theory. For example the commutativity of the first square follows from
the commutativity of Diagram (9.21.7.1) and the commutativity of the diagram in Lemma
9.24.1. The description of 𝑓−1

𝑐 follows on combining Lemma 9.21.8 with Lemma 9.24.1.
The commutativity of the last square then follows from the equality

𝑓−1ℋ ×ℎ#
𝑢(𝑉),𝑐

ℎ#
𝑈 ×ℎ#

𝑈
ℎ#

𝑈′ = 𝑓−1(ℋ ×ℎ#
𝑉

ℎ#
𝑉′) ×ℎ#

𝑢(𝑉′),𝑐′
ℎ#

𝑈′

which is formal using that 𝑓−1ℎ#
𝑉 = ℎ#

𝑢(𝑉) and 𝑓−1ℎ#
𝑉′ = ℎ#

𝑢(𝑉′), see Lemma 9.13.5. �

In the following lemma we find another kind of functoriality of localization, in case the
morphism of topoi comes from a cocontinuous functor. This is a kind of diagram which
is different from the diagram in Lemma 9.24.1, and in particular, in general the equality
𝑓′

∗𝑗−1
𝑈 = 𝑗−1

𝑉 𝑓∗ seen in Lemma 9.24.1 does not hold in the situation of the following lemma.

Lemma 9.24.4. Let 𝒞, 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a cocontinuous functor. Let 𝑈 be an
object of 𝒞, and set 𝑉 = 𝑢(𝑈). We have a commutative diagram

𝒞/𝑈
𝑗𝑈
//

𝑢′

��

𝒞

𝑢
��

𝒟/𝑉
𝑗𝑉 // 𝒟

where the left vertical arrow is 𝑢′ ∶ 𝒞/𝑈 → 𝒟/𝑉, 𝑈′/𝑈 ↦ 𝑉′/𝑉. Then 𝑢′ is cocontinuous
also and we get a commutative diagram of topoi

Sh(𝒞/𝑈)
𝑗𝑈
//

𝑓′

��

Sh(𝒞)

𝑓
��

Sh(𝒟/𝑉)
𝑗𝑉 // Sh(𝒟)

where 𝑓 (resp. 𝑓′) corresponds to 𝑢 (resp. 𝑢′).
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Proof. The commutativity of the first diagram is clear. It implies the commutativity of the
second diagram provided we show that 𝑢′ is cocontinuous.

Let 𝑈′/𝑈 be an object of 𝒞/𝑈. Let {𝑉𝑗/𝑉 → 𝑢(𝑈′)/𝑉}𝑗∈𝐽 be a covering of 𝑢(𝑈′)/𝑉 in 𝒟/𝑉.
Since 𝑢 is cocontinuous there exists a covering {𝑈′

𝑖 → 𝑈′}𝑖∈𝐼 such that the family {𝑢(𝑈′
𝑖 ) →

𝑢(𝑈′)} refines the covering {𝑉𝑗 → 𝑢(𝑈′)} in 𝒟. In other words, there exists a map of index
sets 𝛼 ∶ 𝐼 → 𝐽 and morphisms 𝜙𝑖 ∶ 𝑢(𝑈′

𝑖 ) → 𝑉𝛼(𝑖) over 𝑈′. Think of 𝑈′
𝑖 as an object over

𝑈 via the composition 𝑈′
𝑖 → 𝑈′ → 𝑈. Then {𝑈′

𝑖 /𝑈 → 𝑈′/𝑈} is a covering of 𝒞/𝑈 such
that {𝑢(𝑈′

𝑖 )/𝑉 → 𝑢(𝑈′)/𝑉} refines {𝑉𝑗/𝑉 → 𝑢(𝑈′)/𝑉} (use the same 𝛼 and the same maps
𝜙𝑖). Hence 𝑢′ ∶ 𝒞/𝑈 → 𝒟/𝑉 is cocontinuous. �

9.25. Morphisms of topoi

In this section we show that any morphism of topoi is equivalent to a morphism of topoi
which comes from a morphism of sites.

Lemma 9.25.1. Let 𝒞, 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume that
(1) 𝑢 is cocontinuous,
(2) 𝑢 is continuous,
(3) given 𝑎, 𝑏 ∶ 𝑈′ → 𝑈 in 𝒞 such that 𝑢(𝑎) = 𝑢(𝑏), then there exists a covering

{𝑓𝑖 ∶ 𝑈′
𝑖 → 𝑈′} in 𝒞 such that 𝑎 ∘ 𝑓𝑖 = 𝑏 ∘ 𝑓𝑖,

(4) given 𝑈′, 𝑈 ∈ 𝑂𝑏(𝒞) and a morphism 𝑐 ∶ 𝑢(𝑈′) → 𝑢(𝑈) in 𝒟 there exists a
covering {𝑓𝑖 ∶ 𝑈′

𝑖 → 𝑈′} in 𝒞 and morphisms 𝑐𝑖 ∶ 𝑈′
𝑖 → 𝑈 such that 𝑢(𝑐𝑖) =

𝑐 ∘ 𝑢(𝑓𝑖), and
(5) given 𝑉 ∈ 𝑂𝑏(𝒟) there exists a covering of 𝑉 in 𝒟 of the form {𝑢(𝑈𝑖) → 𝑉}𝑖∈𝐼.

Then the morphism of topoi
𝑔 ∶ Sh(𝒞) ⟶ Sh(𝒟)

associated to the cocontinuous functor 𝑢 by Lemma 9.19.1 is an equivalence.

Proof. Assume 𝑢 satisfies properties (1) -- (5). We will show that the adjunction mappings

𝒢 ⟶ 𝑔∗𝑔−1𝒢 and 𝑔−1𝑔∗ℱ ⟶ ℱ

are isomorphisms.

Note that Lemma 9.19.5 applies and we have 𝑔−1𝒢(𝑈) = 𝒢(𝑢(𝑈)) for any sheaf 𝒢 on 𝒟.
Next, let ℱ be a sheaf on 𝒞, and let 𝑉 be an object of 𝒟. By definition we have 𝑔∗ℱ(𝑉) =
𝑙𝑖𝑚𝑢(𝑈)→𝑉 ℱ(𝑈). Hence

𝑔−1𝑔∗ℱ(𝑈) = 𝑙𝑖𝑚𝑈′,𝑢(𝑈′)→𝑢(𝑈) ℱ(𝑈′)

where the morphisms 𝜓 ∶ 𝑢(𝑈′) → 𝑢(𝑈) need not be of the form 𝑢(𝛼). The category of
such pairs (𝑈′, 𝜓) has a final object, namely (𝑈, id), which gives rise to the map from the
limit into ℱ(𝑈). Let (𝑠(𝑈′,𝜓)) be an element of the limit. We want to show that 𝑠(𝑈′,𝜓) is
uniquely determined by the value 𝑠(𝑈,id) ∈ ℱ(𝑈). By property (4) given any (𝑈′, 𝜓) there
exists a covering {𝑈′

𝑖 → 𝑈′} such that the compositions 𝑢(𝑈′
𝑖 ) → 𝑢(𝑈′) → 𝑢(𝑈) are of the

form 𝑢(𝑐𝑖) for some 𝑐𝑖 ∶ 𝑈′
𝑖 → 𝑈 in 𝒞. Hence

𝑠(𝑈′,𝜓)|𝑈′
𝑖

= 𝑐∗
𝑖 (𝑠𝑈,id).

Since ℱ is a sheaf it follows that indeed 𝑠(𝑈′,𝜓) is determined by 𝑠(𝑈,id). This proves unique-
ness. For existence, assume given any 𝑠 ∈ ℱ(𝑈), 𝜓 ∶ 𝑢(𝑈′) → 𝑢(𝑈), {𝑓𝑖 ∶ 𝑈′

𝑖 → 𝑈′} and
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𝑐𝑖 ∶ 𝑈′
𝑖 → 𝑈 such that 𝜓 ∘ 𝑢(𝑓𝑖) = 𝑢(𝑐𝑖) as above. We claim there exists a (unique) element

𝑠(𝑈′,𝜓) ∈ ℱ(𝑈′) such that
𝑠(𝑈′,𝜓)|𝑈′

𝑖
= 𝑐∗

𝑖 (𝑠).
Namely, a priori it is not clear the elements 𝑐∗

𝑖 (𝑠)|𝑈′
𝑖 ×𝑈′𝑈′

𝑗
and 𝑐∗

𝑗 (𝑠)|𝑈′
𝑖 ×𝑈′𝑈′

𝑗
agree, since the

diagram
𝑈′

𝑖 ×𝑈′ 𝑈′
𝑗 pr2

//

pr1
��

𝑈′
𝑗

𝑐𝑗

��
𝑈′

𝑖
𝑐𝑖 // 𝑈

need not commute. But condition (3) of the lemma garantees that there exist coverings
{𝑓𝑖𝑗𝑘 ∶ 𝑈′

𝑖𝑗𝑘 → 𝑈′
𝑖 ×𝑈′ 𝑈′

𝑗}𝑘∈𝐾𝑖𝑗
such that 𝑐𝑖 ∘ pr1 ∘ 𝑓𝑖𝑗𝑘 = 𝑐𝑗 ∘ pr2 ∘ 𝑓𝑖𝑗𝑘. Hence

𝑓∗
𝑖𝑗𝑘 (𝑐∗

𝑖 𝑠|𝑈′
𝑖 ×𝑈′𝑈′

𝑗 ) = 𝑓∗
𝑖𝑗𝑘 (𝑐∗

𝑗 𝑠|𝑈′
𝑖 ×𝑈′𝑈′

𝑗 )
Hence 𝑐∗

𝑖 (𝑠)|𝑈′
𝑖 ×𝑈′𝑈′

𝑗
= 𝑐∗

𝑗 (𝑠)|𝑈′
𝑖 ×𝑈′𝑈′

𝑗
by the sheaf condition for ℱ and hence the existence

of 𝑠𝑈′,𝜓 also by the sheaf condition for ℱ. The uniqueness garantees that the collection
(𝑠𝑈′,𝜓) so obtained is an element of the limit with 𝑠(𝑈,𝜓) = 𝑠. This proves that 𝑔−1𝑔∗ℱ → ℱ
is an isomorphism.
Let 𝒢 be a sheaf on 𝒟. Let 𝑉 be an object of 𝒟. Then we see that

𝑔∗𝑔−1𝒢(𝑉) = 𝑙𝑖𝑚𝑈,𝜓∶𝑢(𝑈)→𝑉 𝒢(𝑢(𝑈))

By the preceding paragraph we see that the value of the sheaf 𝑔∗𝑔−1𝒢 on an object 𝑉 of the
form 𝑉 = 𝑢(𝑈) is equal to 𝒢(𝑢(𝑈)). (Formally, this holds because we have 𝑔−1𝑔∗𝑔−1 ≅ 𝑔−1,
and the description of 𝑔−1 given at the beginning of the proof; informally just by comparing
limits here and above.) Hence the adjunction mapping 𝒢 → 𝑔∗𝑔−1𝒢 has the property that it
is a bijection on sections over any object of the form 𝑢(𝑈). Since by axiom (5) there exists
a covering of 𝑉 by objects of the form 𝑢(𝑈) we see easily that the adjunction map is an
isomorphism. �

It will be convenient to give cocontinuous functors as in Lemma 9.25.1 a name.

Definition 9.25.2. Let 𝒞, 𝒟 be sites. A special cocontinuous functor 𝑢 from 𝒞 to 𝒟 is a
cocontinuous functor 𝑢 ∶ 𝒞 → 𝒟 satisfying the assumptions and conclusions of Lemma
9.25.1.

Lemma 9.25.3. Let 𝒞, 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a special cocontinuous functor. For
every object 𝑈 of 𝒞 we have a commutative diagram

𝒞/𝑈
𝑗𝑈

//

��

𝒞

𝑢
��

𝒟/𝑢(𝑈)
𝑗𝑢(𝑈) // 𝒟

as in Lemma 9.24.4. The left vertical arrow is a special cocontinuous functor. Hence in the
commutative diagram of topoi

Sh(𝒞/𝑈)
𝑗𝑈

//

��

Sh(𝒞)

𝑢
��

Sh(𝒟/𝑢(𝑈))
𝑗𝑢(𝑈) // Sh(𝒟)
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the vertical arrows are equivalences.

Proof. We have seen the existence and commutativity of the diagrams in Lemma 9.24.4.
We have to check hypotheses (1) -- (5) of Lemma 9.25.1 for the induced functor 𝑢 ∶ 𝒞/𝑈 →
𝒟/𝑢(𝑈). This is completely mechanical.

Property (1). This is Lemma 9.24.4.

Property (2). Let {𝑈′
𝑖 /𝑈

′ → 𝑈′/𝑈}𝑖∈𝐼 be a covering of 𝑈′/𝑈 in 𝒞/𝑈. Because 𝑢 is con-
tinuous we see that {𝑢(𝑈′

𝑖 )/𝑢(𝑈′) → 𝑢(𝑈′)/𝑢(𝑈)}𝑖∈𝐼 is a covering of 𝑢(𝑈′)/𝑢(𝑈) in 𝒟/𝑢(𝑈).
Hence (2) holds for 𝑢 ∶ 𝒞/𝑈 → 𝒟/𝑢(𝑈).

Property (3). Let 𝑎, 𝑏 ∶ 𝑈″/𝑈 → 𝑈′/𝑈 in 𝒞/𝑈 be morphisms such that 𝑢(𝑎) = 𝑢(𝑏) in
𝒟/𝑢(𝑈). Because 𝑢 satisfies (3) we see there exists a covering {𝑓𝑖 ∶ 𝑈″

𝑖 → 𝑈″} in 𝒞 such
that 𝑎∘𝑓𝑖 = 𝑏∘𝑓𝑖. This gives a covering {𝑓𝑖 ∶ 𝑈″

𝑖 /𝑈 → 𝑈″/𝑈} in 𝒞/𝑈 such that 𝑎∘𝑓𝑖 = 𝑏∘𝑓𝑖.
Hence (3) holds for 𝑢 ∶ 𝒞/𝑈 → 𝒟/𝑢(𝑈).

Property (4). Let 𝑈″/𝑈, 𝑈′/𝑈 ∈ 𝑂𝑏(𝒞/𝑈) and a morphism 𝑐 ∶ 𝑢(𝑈″)/𝑢(𝑈) → 𝑢(𝑈′)/𝑢(𝑈) in
𝒟/𝑢(𝑈) be given. Because 𝑢 satisfies property (4) there exists a covering {𝑓𝑖 ∶ 𝑈″

𝑖 → 𝑈″}
in 𝒞 and morphisms 𝑐𝑖 ∶ 𝑈″

𝑖 → 𝑈′ such that 𝑢(𝑐𝑖) = 𝑐 ∘ 𝑢(𝑓𝑖). We think of 𝑈″
𝑖 as an object

over 𝑈 via the composition 𝑈″
𝑖 → 𝑈″ → 𝑈. It may not be true that 𝑐𝑖 is a morphism over 𝑈!

But since 𝑢(𝑐𝑖) is a morphism over 𝑢(𝑈) we may apply property (3) for 𝑢 and find coverings
{𝑓𝑖𝑘 ∶ 𝑈″

𝑖𝑘 → 𝑈″
𝑖 } such that 𝑐𝑖𝑘 = 𝑐𝑖 ∘ 𝑓𝑖𝑘 ∶ 𝑈″

𝑖𝑘 → 𝑈′ are morphisms over 𝑈. Hence
{𝑓𝑖 ∘ 𝑓𝑖𝑘 ∶ 𝑈″

𝑖𝑘/𝑈 → 𝑈″/𝑈} is a covering in 𝒞/𝑈 such that 𝑢(𝑐𝑖𝑘) = 𝑐 ∘ 𝑢(𝑓𝑖𝑘). Hence (4)
holds for 𝑢 ∶ 𝒞/𝑈 → 𝒟/𝑢(𝑈).

Property (5). Let ℎ ∶ 𝑉 → 𝑢(𝑈) be an object of 𝒟/𝑢(𝑈). Because 𝑢 saitisfies property
(5) there exists a covering {𝑐𝑖 ∶ 𝑢(𝑈𝑖) → 𝑉} in 𝒟. By property (3) we can find coverings
{𝑓𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝑈𝑖} and morphisms 𝑐𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝑈 such that 𝑢(𝑐𝑖𝑗) = ℎ ∘ 𝑐𝑖 ∘ 𝑢(𝑓𝑖𝑗). Hence
{𝑢(𝑈𝑖𝑗)/𝑢(𝑈) → 𝑉/𝑢(𝑈)} is a covering in 𝒟/𝑢(𝑈) of the desired shape and we conclude that
(5) holds for 𝑢 ∶ 𝒞/𝑈 → 𝒟/𝑢(𝑈). �

Lemma 9.25.4. Let 𝒞 be a site. Let 𝒞′ ⊂ Sh(𝒞) be a full subcategory (with a set of objects)
such that

(1) ℎ#
𝑈 ∈ 𝑂𝑏(𝒞′) for all 𝑈 ∈ 𝑂𝑏(𝒞), and

(2) 𝒞′ is preserved under fibre products in Sh(𝒞).

Declare a covering of 𝒞′ to be any family {ℱ𝑖 → ℱ}𝑖∈𝐼 of maps such that ∐𝑖∈𝐼 ℱ𝑖 → ℱ
is a surjective map of sheaves. Then

(1) 𝒞′ is a site (after choosing a set of coverings, see Sets, Lemma 3.11.1),
(2) representable presheaves on 𝒞′ are sheaves (i.e., the topology on 𝒞′ is subcanon-

ical, see Definition 9.12.2),
(3) the functor 𝑣 ∶ 𝒞 → 𝒞′, 𝑈 ↦ ℎ#

𝑈 is a special cocontinuous functor, hence
induces an equivalence 𝑔 ∶ Sh(𝒞) → Sh(𝒞′),

(4) for any ℱ ∈ 𝑂𝑏(𝒞′) we have 𝑔−1ℎℱ = ℱ, and
(5) for any 𝑈 ∈ 𝑂𝑏(𝒞) we have 𝑔∗ℎ#

𝑈 = ℎ𝑣(𝑈) = ℎℎ#
𝑈
.

Proof. Warning: Some of the statements above may look be a bit confusing at first; this
is because objects of 𝒞′ can also be viewed as sheaves on 𝒞! We omit the proof that the
coverings of 𝒞′ as described in the lemma satisfy the conditions of Definition 9.6.2.
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Suppose that {ℱ𝑖 → ℱ} is a surjective family of morphisms of sheaves. Let 𝒢 be another
sheaf. Part (2) of the lemma says that the equalizer of

𝑀𝑜𝑟Sh(𝒞)(∐𝑖∈𝐼 ℱ𝑖, 𝒢)
//
//𝑀𝑜𝑟Sh(𝒞)(∐(𝑖0,𝑖1)∈𝐼×𝐼 ℱ𝑖0 ×ℱ ℱ𝑖1, 𝒢)

is 𝑀𝑜𝑟Sh(𝒞)(ℱ, 𝒢). This is clear (for example use Lemma 9.11.2).

To prove (3) we have to check conditions (1) -- (5) of Lemma 9.25.1. The fact that 𝑣
is cocontinuous is equivalent to the description of surjective maps of sheaves in Lemma
9.11.2. The functor 𝑣 is continuous because 𝑈 ↦ ℎ#

𝑈 commutes with fibre products, and
transforms coverings into coverings (see Lemma 9.10.14, and Lemma 9.12.5). Properties
(3), (4) of Lemma 9.25.1 are statements about morphisms 𝑓 ∶ ℎ#

𝑈 → ℎ#
𝑈′. Such a morphism

is the same thing as an element of ℎ#
𝑈′(𝑈). Hence (3) and (4) are immediate from the

construction of the sheafification. Property (5) of Lemma 9.25.1 is Lemma 9.12.4. Denote
𝑔 ∶ Sh(𝒞) → Sh(𝒞′) the equivalence of topoi associated with 𝑣 by Lemma 9.25.1.

Let ℱ be as in part (4) of the lemma. For any 𝑈 ∈ 𝑂𝑏(𝒞) we have

𝑔−1ℎℱ(𝑈) = ℎℱ(𝑣(𝑈)) = 𝑀𝑜𝑟Sh(𝒞)(ℎ#
𝑈, ℱ) = ℱ(𝑈)

The first equality by Lemma 9.19.5. Thus part (4) holds.

Let ℱ ∈ 𝑂𝑏(𝒞′). Let 𝑈 ∈ 𝑂𝑏(𝒞). Then

𝑔∗ℎ#
𝑈(ℱ) = 𝑀𝑜𝑟Sh(𝒞′)(ℎℱ, 𝑔∗ℎ#

𝑈)

= 𝑀𝑜𝑟Sh(𝒞)(𝑔−1ℎℱ, ℎ#
𝑈)

= 𝑀𝑜𝑟Sh(𝒞)(ℱ, ℎ#
𝑈)

= 𝑀𝑜𝑟𝒞′(ℱ, ℎ#
𝑈)

as desired (where the third equality was shown above). �

Using this we can massage any topos to live over a site having all finite limits.

Lemma 9.25.5. Let Sh(𝒞) be a topos. There exists an equivalence of topoi 𝑔 ∶ Sh(𝒞) →
Sh(𝒞′) induced by a special cocontinuous functor 𝑢 ∶ 𝒞 → 𝒞′ such that 𝒞′ is a site with a
subcanonical topology having fibre products and a final object (in other words, 𝒞′ has all
finite limits). Moreover, given a set of sheaves {ℱ𝑖}𝑖∈𝐼 we may choose 𝒞′ such that each
𝑔∗ℱ𝑖 is a representable sheaf.

Proof. Consider the full subcategory 𝒞1 ⊂ Sh(𝒞) consisting of all ℎ#
𝑈 for all 𝑈 ∈ 𝑂𝑏(𝒞),

the given sheaves ℱ𝑖 and the final sheaf ∗ (see Example 9.10.2). Let 𝒞𝑛+1 be a full subcat-
egory consisting of all fibre products of objects of 𝒞𝑛. Set 𝒞′ = ⋃𝑛≥1 𝒞𝑛. A covering in
𝒞′ is any family {ℱ𝑖 → ℱ}𝑖∈𝐼 such that ∐𝑖∈𝐼 ℱ𝑖 → ℱ is surjective as a map of sheaves on
𝒞. The functor 𝑣 ∶ 𝒞 → 𝒞′ is given by 𝑈 ↦ ℎ#

𝑈. Apply Lemma 9.25.4. �

Here is the goal of the current section.

Lemma 9.25.6. Let 𝒞, 𝒟 be sites. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. Then
there exists a site 𝒞′ and a diagram of functors

𝒞 𝑣
// 𝒞′ 𝒟𝑢
oo

such that
(1) the functor 𝑣 is a special cocontinuous functor,
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(2) the functor 𝑢 commutes with fibre products, is continuous and defines a morphism
of sites 𝒞′ → 𝒟′, and

(3) the morphism of topoi 𝑓 agrees with the composition of morphisms of topoi

Sh(𝒞) ⟶ Sh(𝒞′) ⟶ Sh(𝒟)

where the first arrow comes from 𝑣 via Lemma 9.25.1 and the second arrow from
𝑢 via Lemma 9.15.3.

Proof. Consider the full subcategory 𝒞1 ⊂ Sh(𝒞) consisting of all ℎ#
𝑈 and all 𝑓−1ℎ#

𝑉 for
all 𝑈 ∈ 𝑂𝑏(𝒞) and all 𝑉 ∈ 𝑂𝑏(𝒟). Let 𝒞𝑛+1 be a full subcategory consisting of all fibre
products of objects of 𝒞𝑛. Set 𝒞′ = ⋃𝑛≥1 𝒞𝑛. A covering in 𝒞′ is any family {ℱ𝑖 → ℱ}𝑖∈𝐼
such that ∐𝑖∈𝐼 ℱ𝑖 → ℱ is surjective as a map of sheaves on 𝒞. The functor 𝑣 ∶ 𝒞 → 𝒞′ is
given by 𝑈 ↦ ℎ#

𝑈. The functor 𝑢 ∶ 𝒟 → 𝒞′ is given by 𝑉 ↦ 𝑓−1ℎ#
𝑉.

Part (1) follows from Lemma 9.25.4.

Proof of (2) and (3) of the lemma. The functor 𝑢 commutes with fibre products as both
𝑉 ↦ ℎ#

𝑉 and 𝑓−1 do. Moreover, since 𝑓−1 is exact and commutes with arbitrary colimits we
see that it transforms a covering into a surjective family of morphisms of sheaves. Hence
𝑢 is continuous. To see that it defines a morphism of sites we still have to see that 𝑢𝑠 is
exact. In order to do this we will show that 𝑔−1 ∘ 𝑢𝑠 = 𝑓−1. Namely, then since 𝑔−1 is
an equivalence and 𝑓−1 is exact we will conclude. Because 𝑔−1 is adjoint to 𝑔∗, and 𝑢𝑠 is
adjoint to 𝑢𝑠, and 𝑓−1 is adjoint to 𝑓∗ it also suffices to prove that 𝑢𝑠 ∘ 𝑔∗ = 𝑓∗. Let 𝑈 be an
object of 𝒞 and let 𝑉 be an object of 𝒟. Then

(𝑢𝑠𝑔∗ℎ#
𝑈)(𝑉) = 𝑔∗ℎ#

𝑈(𝑓−1ℎ#
𝑉)

= 𝑀𝑜𝑟Sh(𝒞)(𝑓−1ℎ#
𝑉, ℎ#

𝑈)

= 𝑀𝑜𝑟Sh(𝒟)(ℎ#
𝑉, 𝑓∗ℎ#

𝑈)

= 𝑓∗ℎ#
𝑈(𝑉)

The first equality because 𝑢𝑠 = 𝑢𝑝. The second equality by Lemma 9.25.4 (5). The third
equality by adjointness of 𝑓∗ and 𝑓−1 and the final equality by properties of sheafification
and the Yoneda lemma. We omit the verification that these identities are functorial in 𝑈
and 𝑉. Hence we see that we have 𝑢𝑠 ∘ 𝑔∗ = 𝑓∗ for sheaves of the form ℎ#

𝑈. This implies
that 𝑢𝑠 ∘ 𝑔∗ = 𝑓∗ and we win (some details omitted). �

Remark 9.25.7. Notation and assumptions as in Lemma 9.25.6. If the site 𝒟 has a final
object and fibre products then the functor 𝑢 ∶ 𝒟 → 𝒞′ satisfies all the assumptions of
Proposition 9.14.6. Namely, in addition to the properties mentioned in the lemma 𝑢 also
transforms the final object of𝒟 into the final object of𝒞′. This is clear from the construction
of 𝑢. Hence, if we first apply Lemmas 9.25.5 to 𝒟 and then Lemma 9.25.6 to the resulting
morphism of topoi Sh(𝒞) → Sh(𝒟′) we obtain the following statement: Any morphism of
topoi 𝑓 ∶ Sh(𝒞) → Sh(𝒟) fits into a commutative diagram

Sh(𝒞)

𝑔
��

𝑓
// Sh(𝒟)

𝑒
��

Sh(𝒞′)
𝑓′
// Sh(𝒟′)

where the following properties hold:
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(1) the morphisms 𝑒 and 𝑔 are equivalences given by special cocontinuous functors
𝒞 → 𝒞′ and 𝒟 → 𝒟′,

(2) the sites 𝒞′ and 𝒟′ have fibre products, final objects and have subcanonical
topologies,

(3) the morphism 𝑓′ ∶ 𝒞′ → 𝒟′ comes from a morphism of sites corresponding to a
functor 𝑢 ∶ 𝒟′ → 𝒞′ to which Proposition 9.14.6 applies, and

(4) given any set of sheaves ℱ𝑖 (resp. 𝒢𝑗) on 𝒞 (resp. 𝒟) we may assume each of
these is a representable sheaf on 𝒞′ (resp. 𝒟′).

It is often useful to replace 𝒞 and 𝒟 by 𝒞′ and 𝒟′.

Remark 9.25.8. Notation and assumptions as in Lemma 9.25.6. Suppose that in addition
the original morphism of topoi Sh(𝒞) → Sh(𝒟) is an equivalence. Then the construction
in the proof of Lemma 9.25.6 gives two functors

𝒞 → 𝒞′ ← 𝒟

which are both special continuous functors. Hence in this case we can actually factor the
morphism of topoi as a composition

Sh(𝒞) → Sh(𝒞′) = Sh(𝒟′) ← Sh(𝒟)

as in Remark 9.25.7, but with the middle morphism an identity.

9.26. Localization of topoi

We repeat some of the material on localization to the apparantly more general case of topoi.
In reality this is notmore general sincewemay always enlarge the underlying sites to assume
that we are localizing at objects of the site.

Lemma 9.26.1. Let 𝒞 be a site. Let ℱ be a sheaf on 𝒞. Then the category Sh(𝒞)/ℱ is a
topos. There is a canonical morphism of topoi

𝑗ℱ ∶ Sh(𝒞)/ℱ ⟶ Sh(𝒞)

which is a localization as in Section 9.21 such that
(1) the functor 𝑗−1

ℱ is the functor ℋ ↦ ℋ × ℱ/ℱ, and
(2) the functor 𝑗ℱ! is the forgetful functor 𝒢/ℱ ↦ 𝒢.

Proof. Apply Lemma 9.25.5. This means we may assume 𝒞 is a site with subcanonical
topology, and ℱ = ℎ𝑈 = ℎ#

𝑈 for some 𝑈 ∈ 𝑂𝑏(𝒞). Hence the material of Section 9.21 ap-
plies. In particular, there is an equivalence Sh(𝒞/𝑈) = Sh(𝒞)/ℎ#

𝑈 such that the composition

Sh(𝒞/𝑈) → Sh(𝒞)/ℎ#
𝑈 → Sh(𝒞)

is equal to 𝑗𝑈!, see Lemma 9.21.4. Denote 𝑎 ∶ Sh(𝒞)/ℎ#
𝑈 → Sh(𝒞/𝑈) the inverse functor,

so 𝑗ℱ! = 𝑗𝑈! ∘ 𝑎, 𝑗−1
ℱ = 𝑗−1

𝑈 ∘ 𝑎 and 𝑗ℱ,∗ = 𝑗𝑈,∗ ∘ 𝑎. The description of 𝑗ℱ! follows from the
above. The description of 𝑗−1

ℱ follows from Lemma 9.21.6. �

Remark 9.26.2. In the situation of Lemma 9.26.1 we can also describe the functor 𝑗ℱ,∗. It
is the functor which associates to 𝜑 ∶ 𝒢 → ℱ the sheaf

𝑈 ⟼ {𝛼 ∶ ℱ|𝑈 → 𝒢|𝑈 such that 𝛼 is a right inverse to 𝜑|𝑈}

In order to prove that this works the introduction of ℋ𝑜𝑚-sheaves is desirable, hence we
postpone this to a later time.
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Lemma 9.26.3. Let 𝒞 be a site. Let ℱ be a sheaf on 𝒞. Let 𝒞/ℱ be the category of pairs
(𝑈, 𝑠) where 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑠 ∈ ℱ(𝑈). Let a covering in 𝒞/ℱ be a family {(𝑈𝑖, 𝑠𝑖) →
(𝑈, 𝑠)} such that {𝑈𝑖 → 𝑈} is a covering of 𝒞. Then 𝑗 ∶ 𝒞/ℱ → 𝒞 is a continuous and
cocontinuous functor of sites which induces a morphism of topi 𝑗 ∶ Sh(𝒞/ℱ) → Sh(𝒞). In
fact, there is an equivalence Sh(𝒞/ℱ) = Sh(𝒞)/ℱ which turns 𝑗 into 𝑗ℱ.

Proof. We omit the verification that 𝒞/ℱ is a site and that 𝑗 is continuous and cocontinuous.
By Lemma 9.19.5 there exists a morphism of topoi 𝑗 as indicated, with 𝑗−1𝒢(𝑈, 𝑠) = 𝒢(𝑈),
and there is a left adjoint 𝑗! to 𝑗−1. A morphism 𝜑 ∶ ∗ → 𝑔−1𝒢 on 𝒞/ℱ is the same thing as
a rule which assigns to every pair (𝑈, 𝑠) a section 𝜑(𝑠) ∈ 𝒢(𝑈) compatible with restriction
maps. Hence this is the same thing as a morphism 𝜑 ∶ ℱ → 𝒢 over 𝒞. We conclude that
𝑗!∗ = ℱ. In particular, for every ℋ ∈ Sh(𝒞/ℱ) there is a canonical map

𝑗!ℋ → 𝑗!∗ = ℱ
i.e., we obtain a functor 𝑗′

! ∶ Sh(𝒞/ℱ) → Sh(𝒞)/ℱ. An inverse to this functor is the rule
which assigns to an object 𝜑 ∶ 𝒢 → ℱ of Sh(𝒞)/ℱ the sheaf

𝑎(𝒢/ℱ) ∶ (𝑈, 𝑠) ⟼ {𝑡 ∈ 𝒢(𝑈) ∣ 𝜑(𝑡) = 𝑠}
We omit the verification that 𝑎(𝒢/ℱ) is a sheaf and that 𝑎 is inverse to 𝑗′

! . �

Definition 9.26.4. Let 𝒞 be a site. Let ℱ be a sheaf on 𝒞.
(1) The topos Sh(𝒞)/ℱ is called the localization of the topos Sh(𝒞) at ℱ.
(2) The morphism of topoi 𝑗ℱ ∶ Sh(𝒞)/ℱ → Sh(𝒞) of Lemma 9.26.1 is called the

localization morphism.

We are going to show that whenever the sheaf ℱ is equal to ℎ#
𝑈 for some object 𝑈 of the

site, then the localization of the topos is equal to the category of sheaves on the localization
of the site at 𝑈. Moreover, we are going to check that any functorialities are compatible
with this identification.

Lemma 9.26.5. Let 𝒞 be a site. Let ℱ = ℎ#
𝑈 for some object 𝑈 of 𝒞. Then 𝑗ℱ ∶ Sh(𝒞)/ℱ →

Sh(𝒞) constructed in Lemma 9.26.1 agrees with the morphism of topoi 𝑗𝑈 ∶ Sh(𝒞/𝑈) →
Sh(𝒞) constructed in Section 9.21 via the identification Sh(𝒞/𝑈) = Sh(𝒞)/ℎ#

𝑈 of Lemma
9.21.4.

Proof. We have seen in Lemma 9.21.4 that the composition Sh(𝒞/𝑈) → Sh(𝒞)/ℎ#
𝑈 →

Sh(𝒞) is 𝑗𝑈!. The functor Sh(𝒞)/ℎ#
𝑈 → Sh(𝒞) is 𝑗ℱ! by Lemma 9.26.1. Hence 𝑗ℱ! = 𝑗𝑈!

via the identification. So 𝑗−1
ℱ = 𝑗−1

𝑈 (by adjointness) and so 𝑗ℱ,∗ = 𝑗𝑈,∗ (by adjointness
again). �

Lemma 9.26.6. Let 𝒞 be a site. If 𝑠 ∶ 𝒢 → ℱ is a morphism of sheaves on 𝒞 then there
exists a natural commutative diagram of morphisms of topoi

Sh(𝒞)/𝒢

𝑗𝒢 $$

𝑗
// Sh(𝒞)/ℱ

𝑗ℱzz
Sh(𝒞)

where 𝑗 = 𝑗𝒢/ℱ is the localization of the topos Sh(𝒞)/ℱ at the object 𝒢/ℱ. In particular we
have

𝑗−1(ℋ → ℱ) = (ℋ ×ℱ 𝒢 → 𝒢).
and

𝑗!(ℰ
𝑒

−→ ℱ) = (ℰ
𝑠∘𝑒

−−→ 𝒢).
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Proof. The description of 𝑗−1 and 𝑗! comes from the description of those functors in Lemma
9.26.1. The equality of functors 𝑗𝒢! = 𝑗ℱ! ∘ 𝑗! is clear from the description of these functors
(as forgetful functors). By adjointness we also obtain the equalities 𝑗−1

𝒢 = 𝑗−1 ∘ 𝑗−1
ℱ , and

𝑗𝒢,∗ = 𝑗ℱ,∗ ∘ 𝑗∗. �

Lemma 9.26.7. Assume 𝒞 and 𝑠 ∶ 𝒢 → ℱ are as in Lemma 9.26.6. If 𝒢 = ℎ#
𝑉 and

ℱ = ℎ#
𝑈 and 𝑠 ∶ 𝒢 → ℱ comes from a morphism 𝑉 → 𝑈 of 𝒞 then the diagram in Lemma

9.26.6 is identified with diagram (9.21.7.1) via the identifications Sh(𝒞/𝑉) = Sh(𝒞)/ℎ#
𝑉 and

Sh(𝒞/𝑈) = Sh(𝒞)/ℎ#
𝑈 of Lemma 9.21.4.

Proof. This is true because the descriptions of 𝑗−1 agree. See Lemma 9.21.8 and Lemma
9.26.6. �

9.27. Localization and morphisms of topoi

This section is the analogue of Section 9.24 for morphisms of topoi.

Lemma 9.27.1. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. Let 𝒢 be a sheaf on 𝒟.
Set ℱ = 𝑓−1𝒢. Then there exists a commutative diagram of topoi

Sh(𝒞)/ℱ
𝑗ℱ
//

𝑓′

��

Sh(𝒞)

𝑓
��

Sh(𝒟)/𝒢
𝑗𝒢 // Sh(𝒟).

The morphism 𝑓′ is characterized by the property that

(𝑓′)−1(ℋ
𝜑

−→ 𝒢) = (𝑓−1ℋ
𝑓−1𝜑

−−−−→ ℱ)

and we have 𝑓′
∗𝑗−1

ℱ = 𝑗−1
𝒢 𝑓∗.

Proof. Since the statement is about topoi and does not refer to the underlying sites we may
change sites at will. Hence by the discussion in Remark 9.25.7 we may assume that 𝑓 is
given by a continuous functor 𝑢 ∶ 𝒟 → 𝒞 satisfying the assumptions of Proposition 9.14.6
between sites having all finite limits and subcanonical topologies, and such that 𝒢 = ℎ𝑉 for
some object 𝑉 of 𝒟. Then ℱ = 𝑓−1ℎ𝑉 = ℎ𝑢(𝑉) by Lemma 9.13.5. By Lemma 9.24.1 we
obtain a commutative diagram of morphisms of topoi

Sh(𝒞/𝑈)
𝑗𝑈
//

𝑓′

��

Sh(𝒞)

𝑓
��

Sh(𝒟/𝑉)
𝑗𝑉 // Sh(𝒟),

and we have 𝑓′
∗𝑗−1

𝑈 = 𝑗−1
𝑉 𝑓∗. By Lemma 9.26.5 we may identify 𝑗ℱ and 𝑗𝑈 and 𝑗𝒢 and 𝑗𝑉.

The description of (𝑓′)−1 is given in Lemma 9.24.1. �

Lemma 9.27.2. Let 𝑓 ∶ 𝒞 → 𝒟 be a morphism of sites given by the continuous functor
𝑢 ∶ 𝒟 → 𝒞. Let 𝑉 be an object of 𝒟. Set 𝑈 = 𝑢(𝑉). Set 𝒢 = ℎ#

𝑉, and ℱ = ℎ#
𝑈 = 𝑓−1ℎ#

𝑉
(see Lemma 9.13.5). Then the diagram of morphisms of topoi of Lemma 9.27.1 agrees with
the diagram of morphisms of topoi of Lemma 9.24.1 via the identifications 𝑗ℱ = 𝑗𝑈 and
𝑗𝒢 = 𝑗𝑉 of Lemma 9.26.5.
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Proof. This is not a complete triviality as the choice of morphism of sites giving rise to 𝑓
made in the proof of Lemma 9.27.1 may be different from the morphisms of sites given to
us in the lemma. But in both cases the functor (𝑓′)−1 is described by the same rule. Hence
they agree and the associated morphism of topoi is the same. Some details omitted. �

Lemma 9.27.3. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. Let 𝒢 ∈ Sh(𝒟), ℱ ∈
Sh(𝒞) and 𝑠 ∶ ℱ → 𝑓−1𝒢 a morphism of sheaves. There exists a commutative diagram of
topoi

Sh(𝒞)/ℱ
𝑗ℱ
//

𝑓𝑠
��

Sh(𝒞)

𝑓
��

Sh(𝒟)/𝒢
𝑗𝒢 // Sh(𝒟).

We have 𝑓𝑠 = 𝑓′ ∘ 𝑗ℱ/𝑓−1𝒢 where 𝑓′ ∶ Sh(𝒞)/𝑓−1𝒢 → Sh(𝒟)/ℱ is as in Lemma 9.27.1 and
𝑗ℱ/𝑓−1𝒢 ∶ Sh(𝒞)/ℱ → Sh(𝒞)/𝑓−1𝒢 is as in Lemma 9.26.6. The functor (𝑓𝑠)−1 is described
by the rule

(𝑓𝑠)−1(ℋ
𝜑

−→ 𝒢) = (𝑓−1ℋ ×𝑓−1𝜑,𝑓−1𝒢,𝑠 ℱ → ℱ).

Finally, given any morphisms 𝑏 ∶ 𝒢′ → 𝒢, 𝑎 ∶ ℱ′ → ℱ and 𝑠′ ∶ ℱ′ → 𝑓−1𝒢′ such that

ℱ′
𝑠′
//

𝑎
��

𝑓−1𝒢′

𝑓−1𝑏
��

ℱ 𝑠 // 𝑓−1𝒢

commutes, then the diagram

Sh(𝒞)/ℱ′
𝑗ℱ′/ℱ

//

𝑓𝑠′
��

Sh(𝒞)/ℱ

𝑓𝑠
��

Sh(𝒟)/𝒢′ 𝑗𝒢′/𝒢 // Sh(𝒟)/𝒢.

commutes.

Proof. The commutativity of the first square follows from the commutativity of the di-
agram in Lemma 9.26.6 and the commutativity of the diagram in Lemma 9.27.1. The
description of 𝑓−1

𝑠 follows on combining the descriptions of (𝑓′)−1 in Lemma 9.27.1 with
the description of (𝑗ℱ/𝑓−1𝒢)−1 in Lemma 9.26.6. The commutativity of the last square then
follows from the equality

𝑓−1ℋ ×𝑓−1𝒢,𝑠 ℱ ×ℱ ℱ′ = 𝑓−1(ℋ ×𝒢 𝒢′) ×𝒢′,𝑠′ ℱ′

which is formal. �

Lemma 9.27.4. Let 𝑓 ∶ 𝒞 → 𝒟 be a morphism of sites given by the continuous functor
𝑢 ∶ 𝒟 → 𝒞. Let 𝑉 be an object of 𝒟. Let 𝑐 ∶ 𝑈 → 𝑢(𝑉) be a morphism. Set 𝒢 = ℎ#

𝑉
and ℱ = ℎ#

𝑈 = 𝑓−1ℎ#
𝑉. Let 𝑠 ∶ ℱ → 𝑓−1𝒢 be the map induced by 𝑐. Then the diagram

of morphisms of topoi of Lemma 9.24.3 agrees with the diagram of morphisms of topoi of
Lemma 9.27.3 via the identifications 𝑗ℱ = 𝑗𝑈 and 𝑗𝒢 = 𝑗𝑉 of Lemma 9.26.5.

Proof. This follows on combining Lemmas 9.26.7 and 9.27.2. �
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9.28. Points

Definition 9.28.1. Let 𝒞 be a site. A point of the topos Sh(𝒞) is a morphism of topoi 𝑝
from Sh(𝑝𝑡) to Sh(𝒞).

We will define a point of a site in terms of a functor 𝑢 ∶ 𝒞 → Sets. It will turn out later that
𝑢 will define a morphism of sites which gives rise to a point of the topos associated to 𝒞,
see Lemma 9.28.8.

Let 𝒞 be a site. Let 𝑝 = 𝑢 be a functor 𝑢 ∶ 𝒞 → Sets. This curious language is introduced
because it seems funny to talk about neighbourhoods of functors; so we think of a ``point''
𝑝 as a geometric thing which is given by a categorical datum, namely the functor 𝑢. The
fact that 𝑝 is actually equal to 𝑢 does not matter. A neighbourhood of 𝑝 is a pair (𝑈, 𝑥) with
𝑈 ∈ 𝑂𝑏(𝒞) and 𝑥 ∈ 𝑢(𝑈). A morphism of neighbourhoods (𝑉, 𝑦) → (𝑈, 𝑥) is given by a
morphism 𝛼 ∶ 𝑉 → 𝑈 of 𝒞 such that 𝑢(𝛼)(𝑦) = 𝑥. Note that the category of neighbourhoods
isn't a ``big'' category.

We define the stalk of a presheaf ℱ at 𝑝 as

(9.28.1.1) ℱ𝑝 = 𝑐𝑜𝑙𝑖𝑚{(𝑈,𝑥)}𝑜𝑝𝑝 ℱ(𝑈).

The colimit is over the opposite of the category of neighbourhoods of 𝑝. In other words,
an element of ℱ𝑝 is given by a triple (𝑈, 𝑥, 𝑠), where (𝑈, 𝑥) is a neighbourhood of 𝑝 and
𝑠 ∈ ℱ(𝑈). Equality of triples is the equivalence relation generated by (𝑈, 𝑥, 𝑠) ∼ (𝑉, 𝑦, 𝛼∗𝑠)
when 𝛼 is as above.

Note that if 𝜑 ∶ ℱ → 𝒢 is a morphism of presheaves of sets, then we get a canonical map
of stalks 𝜑𝑝 ∶ ℱ𝑝 → 𝒢𝑝. Thus we obtain a stalk functor

PSh(𝒞) ⟶ Sets, ℱ ⟼ ℱ𝑝.

We have defined the stalk functor using any functor 𝑝 = 𝑢 ∶ 𝒞 → Sets. No conditions are
necessary for the definition to work5. On the other hand, it is probably better not to use this
notion unless 𝑝 actually is a point (see definition below), since in general the stalk functor
does not have good properties.

Definition 9.28.2. Let 𝒞 be a site. A point 𝑝 of the site 𝒞 is given by a functor 𝑢 ∶ 𝒞 → Sets
such that

(1) For every covering {𝑈𝑖 → 𝑈} of 𝒞 the map ∐ 𝑢(𝑈𝑖) → 𝑢(𝑈) is surjective.
(2) For every covering {𝑈𝑖 → 𝑈} of 𝒞 and every morphism 𝑉 → 𝑈 the maps 𝑢(𝑈𝑖 ×𝑈

𝑉) → 𝑢(𝑈𝑖) ×𝑢(𝑈) 𝑢(𝑉) are bijective.
(3) The stalk functor Sh(𝒞) → Sets, ℱ → ℱ𝑝 is left exact.

The conditions should be familiar since they are modeled after those of Definitions 9.13.1
and 9.14.1. Note that (3) implies that ∗𝑝 = {∗}, see Example 9.10.2. Hence 𝑢(𝑈)≠∅ for
at least some 𝑈 (because the empty colimit produces the empty set). We will show below
(Lemma 9.28.7) that this does give rise to a point of the topos Sh(𝒞). Before we do so, we
prove some lemmas for general functors 𝑢.

Lemma 9.28.3. Let 𝒞 be a site. Let 𝑝 = 𝑢 ∶ 𝒞 → Sets be a functor. There are functorial
isomorphisms (ℎ𝑈)𝑝 = 𝑢(𝑈) for 𝑈 ∈ 𝑂𝑏(𝒞).

5One should try to avoid the case where 𝑢(𝑈) = ∅ for all 𝑈.
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Proof. An element of (ℎ𝑈)𝑝 is given by a triple (𝑉, 𝑦, 𝑓), where 𝑉 ∈ 𝑂𝑏(𝒞), 𝑦 ∈ 𝑢(𝑉) and
𝑓 ∈ ℎ𝑈(𝑉) = 𝑀𝑜𝑟𝒞(𝑉, 𝑈). Two such (𝑉, 𝑦, 𝑓), (𝑉′, 𝑦′, 𝑓′) determine the same object if there
exists a morphism 𝜙 ∶ 𝑉 → 𝑉′ such that 𝑢(𝜙)(𝑥) = 𝑥′ and 𝑓′ ∘ 𝜙 = 𝑓, and in general you
have to take chains of identities like this to get the correct equivalence relation. In any case,
every (𝑉, 𝑦, 𝑓) is equivalent to the element (𝑈, 𝑢(𝑓)(𝑦), id𝑈). If 𝜙 exists as above, then the
triples (𝑉, 𝑦, 𝑓), (𝑉′, 𝑦′, 𝑓′) determine the same triple (𝑈, 𝑢(𝑓)(𝑦), id𝑈) = (𝑈, 𝑢(𝑓′)(𝑦′), id𝑈).
This proves that the map 𝑢(𝑈) → (ℎ𝑈)𝑝, 𝑥 ↦ class of (𝑈, 𝑥, id𝑈) is bijective. �

Let 𝒞 be a site. Let 𝑝 = 𝑢 ∶ 𝒞 → Sets be a functor. In analogy with the constructions in
Section 9.5 given a set 𝐸 we define a presheaf 𝑢𝑝𝐸 by the rule

(9.28.3.1) 𝑈 ⟼ 𝑢𝑝𝐸(𝑈) = 𝑀𝑜𝑟Sets(𝑢(𝑈), 𝐸) = Map(𝑢(𝑈), 𝐸).

This defines a functor 𝑢𝑝 ∶ Sets → PSh(𝒞), 𝐸 ↦ 𝑢𝑝𝐸.

Lemma 9.28.4. For any functor 𝑢 ∶ 𝒞 → Sets. The functor 𝑢𝑝 is a right adjoint to the stalk
functor on presheaves.

Proof. Let ℱ be a presheaf on 𝒞. Let 𝐸 be a set. A morphism ℱ → 𝑢𝑝𝐸 is given by
a compatible system of maps ℱ(𝑈) → Map(𝑢(𝑈), 𝐸), i.e., a compatible system of maps
ℱ(𝑈) × 𝑢(𝑈) → 𝐸. And by definition of ℱ𝑝 a map ℱ𝑝 → 𝐸 is given by a rule associating
with each triple (𝑈, 𝑥, 𝜎) an element in 𝐸 such that equivalent triples map to the same
element, see discussion surrounding Equation (9.28.1.1). This also means a compatible
system of maps ℱ(𝑈) × 𝑢(𝑈) → 𝐸. �

In analogy with Section 9.13 we have the following lemma.

Lemma 9.28.5. Let 𝒞 be a site. Let 𝑝 = 𝑢 ∶ 𝒞 → Sets be a functor. Suppose that for every
covering {𝑈𝑖 → 𝑈} of 𝒞

(1) the map ∐ 𝑢(𝑈𝑖) → 𝑢(𝑈) is surjective and
(2) the maps 𝑢(𝑈𝑖 ×𝑈 𝑈𝑗) → 𝑢(𝑈𝑖) ×𝑢(𝑈) 𝑢(𝑈𝑗) are surjective.

Then we have
(1) the presheaf 𝑢𝑝𝐸 is a sheaf for all sets 𝐸, denote it 𝑢𝑠𝐸,
(2) the stalk functor Sh(𝒞) → Sets and the functor 𝑢𝑠 ∶ Sets → Sh(𝒞) are adjoint,

and
(3) we have ℱ𝑝 = ℱ#

𝑝 for every presheaf of sets ℱ.

Proof. The first assertion is immediate from the definition of a sheaf, assumptions (1) and
(2), and the definition of 𝑢𝑝𝐸. The second is a restatement of the adjointness of 𝑢𝑝 and the
stalk functor (but now restricted to sheaves). The third assertion follows as, for any set 𝐸,
we have

Map(ℱ𝑝, 𝐸) = 𝑀𝑜𝑟PSh(𝒞)(ℱ, 𝑢𝑝𝐸) = 𝑀𝑜𝑟Sh(𝒞)(ℱ#, 𝑢𝑠𝐸) = Map(ℱ#
𝑝, 𝐸)

by the adjointness property of sheafification. �

In particular Lemma 9.28.5 holds when 𝑝 = 𝑢 is a point. In this case we think of the sheaf
𝑢𝑠𝐸 as the ``skyscraper'' sheaf with value 𝐸 at 𝑝.

Definition 9.28.6. Let 𝑝 be a point of the site 𝒞 given by the functor 𝑢. For a set 𝐸 we
define 𝑝∗𝐸 = 𝑢𝑠𝐸 the sheaf described in Lemma 9.28.5 above. We sometimes call this a
skyscraper sheaf.
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In particular we have the following adjointness property of skyscraper sheaves and stalks:

𝑀𝑜𝑟Sh(𝒞)(ℱ, 𝑝∗𝐸) = Map(ℱ𝑝, 𝐸)

This motivates the notation 𝑝−1ℱ = ℱ𝑝 which we will sometimes use.

Lemma 9.28.7. Let 𝒞 be a site.
(1) Let 𝑝 be a point of the site 𝒞. Then the pair of functors (𝑝∗, 𝑝−1) introduced above

define a morphism of topoi Sh(𝑝𝑡) → Sh(𝒞).
(2) Let 𝑝 = (𝑝∗, 𝑝−1) be a point of the topos Sh(𝒞). Then the functor 𝑢 ∶ 𝑈 ↦

𝑝−1(ℎ#
𝑈) gives rise to a point 𝑝′ of the site 𝒞 whose associated morphism of topoi

(𝑝′
∗, (𝑝′)−1) is equal to 𝑝.

Proof. Proof of (1). By the above the functors 𝑝∗ and 𝑝−1 are adjoint. The functor 𝑝−1

is required to be exact by Definition 9.28.2. Hence the conditions imposed in Definition
9.15.1 are all satisfied and we see that (1) holds.

Proof of (2). Let {𝑈𝑖 → 𝑈} be a covering of 𝒞. Then ∐(ℎ𝑈𝑖
)# → ℎ#

𝑈 is surjective, see
Lemma 9.12.5. Since 𝑝−1 is exact (by definition of a morphism of topoi) we conclude that
∐ 𝑢(𝑈𝑖) → 𝑢(𝑈) is surjective. This proves part (1) of Definition 9.28.2. Sheafification is
exact, see Lemma 9.10.14. Hence if 𝑈 ×𝑉 𝑊 exists in 𝒞, then

ℎ#
𝑈×𝑉𝑊 = ℎ#

𝑈 ×ℎ#
𝑉

ℎ#
𝑊

and we see that 𝑢(𝑈 ×𝑉 𝑊) = 𝑢(𝑈) ×𝑢(𝑉) 𝑢(𝑊) since 𝑝−1 is exact. This proves part (2) of
Definition 9.28.2. Let 𝑝′ = 𝑢, and let ℱ𝑝′ be the stalk functor defined by Equation (9.28.1.1)
using 𝑢. There is a canonical comparison map 𝑐 ∶ ℱ𝑝′ → ℱ𝑝 = 𝑝−1ℱ. Namely, given a
triple (𝑈, 𝑥, 𝜎) representing an element 𝜉 of ℱ𝑝′ we think of 𝜎 as a map 𝜎 ∶ ℎ#

𝑈 → ℱ and
we can set 𝑐(𝜉) = 𝑝−1(𝜎)(𝑥) since 𝑥 ∈ 𝑢(𝑈) = 𝑝−1(ℎ#

𝑈). By Lemma 9.28.3 we see that
(ℎ𝑈)𝑝′ = 𝑢(𝑈). Since conditions (1) and (2) of Definition 9.28.2 hold for 𝑝′ we also have
(ℎ#

𝑈)𝑝′ = (ℎ𝑈)𝑝′ by Lemma 9.28.5. Hence we have

(ℎ#
𝑈)𝑝′ = (ℎ𝑈)𝑝′ = 𝑢(𝑈) = 𝑝−1(ℎ#

𝑈)

We claim this bijection equals the comparison map 𝑐 ∶ (ℎ#
𝑈)𝑝′ → 𝑝−1(ℎ#

𝑈) (verification
omitted). Any sheaf on 𝒞 is a coequalizer of maps of coproducts of sheaves of the form ℎ#

𝑈,
see Lemma 9.12.4. The stalk functor ℱ ↦ ℱ𝑝′ and the functor 𝑝−1 commute with arbitrary
colimits (as they are both left adjoints). We conclude 𝑐 is an isomorphism for every sheaf
ℱ. Thus the stalk functor ℱ ↦ ℱ𝑝′ is isomorphic to 𝑝−1 and we in particular see that it
is exact. This proves condition (3) of Definition 9.28.2 holds and 𝑝′ is a point. The final
assertion has already been shown above, since we saw that 𝑝−1 = (𝑝′)−1. �

Actually a point always corresponds to a morphism of sites as we show in the following
lemma.

Lemma 9.28.8. Let 𝒞 be a site. Let 𝑝 be a point of 𝒞 given by 𝑢 ∶ 𝒞 → Sets. Let 𝑆0 be an
infinite set such that 𝑢(𝑈) ⊂ 𝑆0 for all 𝑈 ∈ 𝑂𝑏(𝒞). Let 𝒮 be the site constructed out of the
powerset 𝑆 = 𝒫(𝑆0) in Remark 9.15.4. Then

(1) there is an equivalence 𝑖 ∶ Sh(𝑝𝑡) → Sh(𝒮),
(2) the functor 𝑢 ∶ 𝒞 → 𝒮 induces a morphism of sites 𝑓 ∶ 𝒮 → 𝒞, and
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(3) the composition

Sh(𝑝𝑡) → Sh(𝒮) → Sh(𝒞)

is the morphism of topoi (𝑝∗, 𝑝−1) of Lemma 9.28.7.

Proof. Part (1) we saw in Remark 9.15.4. Moreover, recall that the equivalence associates
to the set 𝐸 the sheaf 𝑖∗𝐸 on 𝒮 defined by the rule 𝑉 ↦ 𝑀𝑜𝑟Sets(𝑉, 𝐸). Part (2) is clear from
the definition of a point of 𝒞 (Definition 9.28.2) and the definition of a morphism of sites
(Definition 9.14.1). Finally, consider 𝑓∗𝑖∗𝐸. By construction we have

𝑓∗𝑖∗𝐸(𝑈) = 𝑖∗𝐸(𝑢(𝑈)) = 𝑀𝑜𝑟Sets(𝑢(𝑈), 𝐸)

which is equal to 𝑝∗𝐸(𝑈), see Equation (9.28.3.1). This proves (3). �

Contrary to what happens in the topological case it is not always true that the stalk of the
skyscraper sheaf with value 𝐸 is 𝐸. Here is what is true in general.

Lemma 9.28.9. Let 𝒞 be a site. Let 𝑝 ∶ Sh(𝑝𝑡) → Sh(𝒞) be a point of the topos associated
to 𝒞. For any set 𝐸 there are canonical maps

𝐸 ⟶ (𝑝∗𝐸)𝑝 ⟶ 𝐸

whose composition is id𝐸.

Proof. There is always an adjunction map (𝑝∗𝐸)𝑝 = 𝑝−1𝑝∗𝐸 → 𝐸. This map is an iso-
morphism when 𝐸 = {∗} because 𝑝∗ and 𝑝−1 are both left exact, hence transform the final
object into the final object. Hence given 𝑒 ∈ 𝐸 we can consider the map 𝑖𝑒 ∶ {∗} → 𝐸
which gives

𝑝−1𝑝∗{∗}
𝑝−1𝑝∗𝑖𝑒

//

≅
��

𝑝−1𝑝∗𝐸

��
{∗}

𝑖𝑒 // 𝐸

whence the map 𝐸 → (𝑝∗𝐸)𝑝 = 𝑝−1𝑝∗𝐸 as desired. �

Lemma 9.28.10. Let 𝒞 be a site. Let 𝑝 ∶ Sh(𝑝𝑡) → Sh(𝒞) be a point of the topos asso-
ciated to 𝒞. The functor 𝑝∗ ∶ Sets → Sh(𝒞) has the following properties: It commutes
with arbitrary limits, it is left exact, it is faithful, it transforms surjections into surjections,
it commutes with coequalizers, it reflects injections, it reflects surjections, and it reflects
isomorpisms.

Proof. Because 𝑝∗ is a right adjoint it commutes with arbitrary limits and it is left exact.
The fact that 𝑝−1𝑝∗𝐸 → 𝐸 is a canonically split surjection implies that 𝑝∗ is faithful, re-
flects injections, reflects surjections, and reflects isomorphisms. By Lemma 9.28.7 we may
assume that 𝑝 comes from a point 𝑢 ∶ 𝒞 → Sets of the underlying site 𝒞. In this case the
sheaf 𝑝∗𝐸 is given by

𝑝∗𝐸(𝑈) = 𝑀𝑜𝑟Sets(𝑢(𝑈), 𝐸)

see Equation (9.28.3.1) and Definition 9.28.6. It follows immediately from this formula
that 𝑝∗ transforms surjections into surjections and coequalizers into coequalizers. �
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9.29. Constructing points

In this section we give criteria for when a functor from a site to the category of sets defines
a point of that site.

Lemma 9.29.1. Let 𝒞 be a site. Assume that 𝒞 has a final object 𝑋 and fibred products.
Let 𝑝 = 𝑢 ∶ 𝒞 → Sets be a functor such that

(1) 𝑢(𝑋) is a singleton set, and
(2) for every pair of morphisms 𝑈 → 𝑊 and 𝑉 → 𝑊 with the same target the map

𝑢(𝑈 ×𝑊 𝑉) → 𝑢(𝑈) ×𝑢(𝑊) 𝑢(𝑉) is bijective.
Then the opposite of the category of neighbourhoods of 𝑝 is filtered. Moreover, the stalk
functor Sh(𝒞) → Sets, ℱ → ℱ𝑝 commutes with finite limits.

Proof. This is analogous to the proof of Lemma 9.5.2 above. The assumptions on 𝒞 imply
that 𝒞 has finite limits. See Categories, Lemma 4.16.4. Assumption (1) implies that the
category of neighbourhoods is nonempty. Suppose (𝑈, 𝑥) and (𝑉, 𝑦) are neighbourhoods.
Then 𝑢(𝑈 × 𝑉) = 𝑢(𝑈 ×𝑋 𝑉) = 𝑢(𝑈) ×𝑢(𝑋) 𝑢(𝑉) = 𝑢(𝑈) × 𝑢(𝑉) by (2). Hence there exists a
neighbourhood (𝑈 ×𝑋 𝑉, 𝑧) mapping to both (𝑈, 𝑥) and (𝑉, 𝑦). Let 𝑎, 𝑏 ∶ (𝑉, 𝑦) → (𝑈, 𝑥) be
two morphisms in the category of neighbourhoods. Let 𝑊 be the equalizer of 𝑎, 𝑏 ∶ 𝑉 → 𝑈.
As in the proof of Categories, Lemma 4.16.4 we may write 𝑊 in terms of fibre products:

𝑊 = (𝑉 ×𝑎,𝑈,𝑏 𝑉) ×(𝑝𝑟1,𝑝𝑟2),𝑉×𝑉,Δ 𝑉

The bijectivity in (2) garantees there exists an element 𝑧 ∈ 𝑢(𝑊) which maps to ((𝑦, 𝑦), 𝑦).
Then (𝑊, 𝑧) → (𝑉, 𝑦) equalizes 𝑎, 𝑏 as desired.

Let ℐ → Sh(𝒞), 𝑖 ↦ ℱ𝑖 be a finite diagram of sheaves. We have to show that the stalk of
the limit of this system agrees with the limit of the stalks. Let ℱ be the limit of the system
as a presheaf. According to Lemma 9.10.1 this is a sheaf and it is the limit in the category
of sheaves. Hence we have to show that ℱ𝑝 = 𝑙𝑖𝑚ℐ ℱ𝑖,𝑝. Recall also that ℱ has a simple
description, see Section 9.4. Thus we have to show that

𝑙𝑖𝑚𝑖 𝑐𝑜𝑙𝑖𝑚{(𝑈,𝑥)}𝑜𝑝𝑝 ℱ𝑖(𝑈) = 𝑐𝑜𝑙𝑖𝑚{(𝑈,𝑥)}𝑜𝑝𝑝 𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈).

This holds, by Categories, Lemma 4.17.2, because we just showed the opposite of the cat-
egory of neighbourhoods is filtered. �

Proposition 9.29.2. Let 𝒞 be a site. Assume that finite limits exist in 𝒞. (I.e., 𝒞 has fibre
products, and a final object.) A point 𝑝 of such a site 𝒞 is given by a functor 𝑢 ∶ 𝒞 → Sets
such that

(1) 𝑢 commutes with finite limits, and
(2) if {𝑈𝑖 → 𝑈} is a covering, then ∐𝑖 𝑢(𝑈𝑖) → 𝑢(𝑈) is surjective.

Proof. Suppose first that 𝑝 is a point (Definition 9.28.2) given by a functor 𝑢. Condition (2)
is satisfied directly from the definition of a point. By Lemma 9.28.3 we have (ℎ𝑈)𝑝 = 𝑢(𝑈).
By Lemma 9.28.5 we have (ℎ#

𝑈)𝑝 = (ℎ𝑈)𝑝. Thus we see that 𝑢 is equal to the composition
of functors

𝒞
ℎ

−→ PSh(𝒞)
#

−→ Sh(𝒞)
()𝑝

−−→ Sets
Each of these functors is left exact, and hence we see 𝑢 satisfies (1).

Conversely, suppose that 𝑢 satisfies (1) and (2). In this case we immediately see that 𝑢
satisfies the first two conditions of Definition 9.28.2. And its stalk functor is exact, because
it is a left adjoint by Lemma 9.28.5 and it commutes with finite limits by Lemma 9.29.1. �
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Remark 9.29.3. In fact, let 𝒞 be a site. Assume 𝒞 has a final object 𝑋 and fibre products.
Let 𝑝 = 𝑢 ∶ 𝒞 → Sets be a functor such that

(1) 𝑢(𝑋) = {∗} a singleton, and
(2) for every pair of morphisms 𝑈 → 𝑊 and 𝑉 → 𝑊 with the same target the map

𝑢(𝑈 ×𝑊 𝑉) → 𝑢(𝑈) ×𝑢(𝑊) 𝑢(𝑉) is surjective.
(3) for every covering {𝑈𝑖 → 𝑈} the map ∐ 𝑢(𝑈𝑖) → 𝑢(𝑈) is surjective.

Then, in general, 𝑝 is not a point of 𝒞. An example is the category 𝒞 with two objects
{𝑈, 𝑋} and exactly one non-identity arrow, namely 𝑈 → 𝑋. We endow 𝒞 with the trivial
topology, i.e., the only coverings are {𝑈 → 𝑈} and {𝑋 → 𝑋}. A sheaf ℱ is the same thing
as a presheaf and consists of a triple (𝐴, 𝐵, 𝐴 → 𝐵): namely 𝐴 = ℱ(𝑋), 𝐵 = ℱ(𝑈) and
𝐴 → 𝐵 is the restriction mapping corresponding to 𝑈 → 𝑋. Note that 𝑈 ×𝑋 𝑈 = 𝑈 so fibre
products exist. Consider the functor 𝑢 = 𝑝 with 𝑢(𝑋) = {∗} and 𝑢(𝑈) = {∗1, ∗2}. This
satisfies (1), (2), and (3), but the corresponding stalk functor (9.28.1.1) is the functor

(𝐴, 𝐵, 𝐴 → 𝐵) ⟼ 𝐵 ∐𝐴
𝐵

which isn't exact. Namely, consider (∅, {1}, ∅ → {1}) → ({1}, {1}, {1} → {1}) which is
an injective map of sheaves, but is transformed into the noninjective map of sets

{1} ∐{1} ⟶ {1} ∐{1}
{1}

by the stalk functor.

Example 9.29.4. Let 𝑋 be a topological space. Let 𝒯𝑋 be the site of Example 9.6.4. Let
𝑥 ∈ 𝑋 be a point. Consider the functor

𝑢 ∶ 𝒯𝑋 ⟶ Sets, 𝑈 ↦ {
∅ if 𝑥∉𝑈

{∗} if 𝑥 ∈ 𝑈
This functor commutes with product and fibred products, and turns coverings into surjective
families of maps. Hence we obtain a point 𝑝 of the site 𝒯𝑋. It is immediately verified that
the stalk functor agrees with the stalk at 𝑥 defined in Sheaves, Section 6.11.

Example 9.29.5. Let 𝑋 be a topological space. What are the points of the topos Sh(𝑋)? To
see this, let 𝒯𝑋 be the site of Example 9.6.4. By Lemma 9.28.7 a point of Sh(𝑋) corresponds
to a point of this site. Let 𝑝 be a point of the site 𝒯𝑋 given by the functor 𝑢 ∶ 𝒯𝑋 → Sets.
We are going to use the characterization of such a 𝑢 in Proposition 9.29.2. This implies
immediately that 𝑢(∅) = ∅ and 𝑢(𝑈 ∩ 𝑉) = 𝑢(𝑈) × 𝑢(𝑉). In particular we have 𝑢(𝑈) =
𝑢(𝑈) × 𝑢(𝑈) via the diagonal map which implies that 𝑢(𝑈) is either a singleton or empty.
Moreover, if 𝑈 = ⋃ 𝑈𝑖 is an open covering then

𝑢(𝑈) = ∅ ⇒ ∀𝑖, 𝑢(𝑈𝑖) = ∅ and 𝑢(𝑈)≠∅ ⇒ ∃𝑖, 𝑢(𝑈𝑖)≠∅.

We conclude that there is a unique largest open 𝑊 ⊂ 𝑋 with 𝑢(𝑊) = ∅, namely the union
of all the opens 𝑈 with 𝑢(𝑈) = ∅. Let 𝑍 = 𝑋 ⧵ 𝑊. If 𝑍 = 𝑍1 ∪ 𝑍2 with 𝑍𝑖 ⊂ 𝑍 closed,
then 𝑊 = (𝑋 ⧵ 𝑍1) ∩ (𝑋 ⧵ 𝑍2) so ∅ = 𝑢(𝑊) = 𝑢(𝑋 ⧵ 𝑍1) × 𝑢(𝑋 ⧵ 𝑍2) and we conclude that
𝑢(𝑋 ⧵ 𝑍1) = ∅ or that 𝑢(𝑋 ⧵ 𝑍2) = ∅. This means that 𝑋 ⧵ 𝑍1 = 𝑊 or that 𝑋 ⧵ 𝑍2 = 𝑊.
In other words, 𝑍 is irreducible. Now we see that 𝑢 is described by the rule

𝑢 ∶ 𝒯𝑋 ⟶ Sets, 𝑈 ↦ {
∅ if 𝑍 ∩ 𝑈 = ∅

{∗} if 𝑍 ∩ 𝑈≠∅
Note that for any irreducible closed 𝑍 ⊂ 𝑋 this functor satisfies assumptions (1), (2) of
Proposition 9.29.2 and hence defines a point. In other words we see that points of the site
𝒯𝑋 are in one-to-one correspondence with irreducible closed subsets of 𝑋. In particular,
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if 𝑋 is a sober topological space, then points of 𝒯𝑋 and points of 𝑋 are in one to one
correspondence, see Example 9.29.4.

Example 9.29.6. Consider the site 𝒯𝐺 described in Example 9.6.5 and Section 9.9. The
forgetful functor 𝑢 ∶ 𝒯𝐺 → Sets commutes with products and fibred products and turns
coverings into surjective families. Hence it defines a point of 𝒯𝐺. We identify Sh(𝒯𝐺) and
𝐺-Sets. The stalk functor

𝑝−1 ∶ Sh(𝒯𝐺) = 𝐺-Sets ⟶ Sets

is the forgetful functor. The pushforward 𝑝∗ is the functor

Sets ⟶ Sh(𝒯𝐺) = 𝐺-Sets

which maps a set 𝑆 to the 𝐺-set Map(𝐺, 𝑆) with action 𝑔 ⋅ 𝜓 = 𝜓 ∘ 𝑅𝑔 where 𝑅𝑔 is right
multiplication. In particular we have 𝑝−1𝑝∗𝑆 = Map(𝐺, 𝑆) as a set and the maps 𝑆 →
Map(𝐺, 𝑆) → 𝑆 of Lemma 9.28.9 are the obvious ones.

9.30. Points and and morphisms of topoi

In this section we make a few remarks about points and morphisms of topoi.

Lemma 9.30.1. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites given by a continuous functor
𝑢 ∶ 𝒞 → 𝒟. Let 𝑝 be a point of 𝒟 given by the functor 𝑣 ∶ 𝒟 → Sets, see Definition 9.28.2.
Then the functor 𝑣 ∘ 𝑢 ∶ 𝒞 → Sets defines a point 𝑞 of 𝒞 and moreover there is a canonical
identification

(𝑓−1ℱ)𝑝 = ℱ𝑞
for any sheaf ℱ on 𝒞.

First proof Lemma 9.30.1. Note that since 𝑢 is continuous and since 𝑣 defines a point, it
is immediate that 𝑣 ∘ 𝑢 satisfies conditions (1) and (2) of Definition 9.28.2. Let us prove the
displayed equality. Let ℱ be a sheaf on 𝒞. Then

ℱ𝑞 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑥) ℱ(𝑈)

where the colimit is over objects 𝑈 in 𝒞 and elements 𝑥 ∈ 𝑣(𝑢(𝑈)). Similarly, we have

(𝑓−1ℱ)𝑝 = (𝑢𝑝ℱ)𝑝

= 𝑐𝑜𝑙𝑖𝑚(𝑉,𝑥) 𝑐𝑜𝑙𝑖𝑚𝑈,𝜙∶𝑉→𝑢(𝑈) ℱ(𝑈)
= 𝑐𝑜𝑙𝑖𝑚(𝑉,𝑥,𝑈,𝜙∶𝑉→𝑢(𝑈)) ℱ(𝑈)
= 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑥) ℱ(𝑈)
= ℱ𝑞

Explanation: The first equality holds because 𝑓−1ℱ = (𝑢𝑝ℱ)# and because 𝒢𝑝 = 𝒢#
𝑝 for any

presheaf 𝒢, see Lemma 9.28.5. The second equality holds by the definition of 𝑢𝑝. In the
third equality we simply combine colimits. To see the fourth equality we apply Categories,
Lemma 4.15.5 to the functor 𝐹 of diagram categories defined by the rule 𝐹((𝑉, 𝑥, 𝑈, 𝜙 ∶
𝑉 → 𝑢(𝑈))) = (𝑈, 𝑣(𝜙)(𝑥)). The lemma applies, because 𝐹 has a right inverse, namely
(𝑈, 𝑥) ↦ (𝑢(𝑈), 𝑥, 𝑈, id ∶ 𝑢(𝑈) → 𝑢(𝑈)) and because there is always a morphism

(𝑉, 𝑥, 𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈)) ⟶ (𝑢(𝑈), 𝑣(𝜙)(𝑥), 𝑈, id ∶ 𝑢(𝑈) → 𝑢(𝑈))

in the fibre category over (𝑈, 𝑥) which shows the fibre categories are nonempty and con-
nected. The fifth equality is clear. Hence now we see that 𝑞 also satisfies condition (3) of
Definition 9.28.2 because it is a composition of exact functors. This finishes the proof. �
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Second proof Lemma 9.30.1. By Lemma 9.28.8 we may factor (𝑝∗, 𝑝−1) as

Sh(𝑝𝑡)
𝑖

−→ Sh(𝒮)
ℎ

−→ Sh(𝒟)
where the second morphism of topoi comes from a morphism of sites ℎ ∶ 𝒮 → 𝒟 induced
by the functor 𝑣 ∶ 𝒟 → 𝒮 (which makes sense as 𝒮 ⊂ Sets is a full subcategory containing
every object in the image of 𝑣). By Lemma 9.14.3 the composition 𝑣 ∘ 𝑢 ∶ 𝒞 → 𝒮 defines
a morphism of sites 𝑔 ∶ 𝒮 → 𝒞. In particular, the functor 𝑣 ∘ 𝑢 ∶ 𝒞 → 𝒮 is continuous
which by the definition of the coverings in 𝒮, see Remark 9.15.4, means that 𝑣 ∘ 𝑢 satisfies
conditions (1) and (2) of Definition 9.28.2. On the other hand, we see that

𝑔∗𝑖∗𝐸(𝑈) = 𝑖∗𝐸(𝑣(𝑢(𝑈)) = 𝑀𝑜𝑟Sets(𝑣(𝑢(𝑈)), 𝐸)
by the construction of 𝑖 in Remark 9.15.4. Note that this is the same as the formula for which
is equal to (𝑣∘𝑢)𝑝𝐸, see Equation (9.28.3.1). By Lemma 9.28.5 the functor 𝑔∗𝑖∗ = (𝑣∘𝑢)𝑝 =
(𝑣 ∘ 𝑢)𝑠 is right adjoint to the the stalk functor ℱ ↦ ℱ𝑞. Hence we see that the stalk functor
𝑞−1 is canonically isomorphic to 𝑖−1∘𝑔−1. Hence it is exact and we conclude that 𝑞 is a point.
Finally, as we have 𝑔 = 𝑓 ∘ ℎ by construction we see that 𝑞−1 = 𝑖−1 ∘ ℎ−1 ∘ 𝑓−1 = 𝑝−1 ∘ 𝑓−1,
i.e., we have the displayed formula of the lemma. �

Lemma 9.30.2. Let 𝑓 ∶ Sh(𝒟) → Sh(𝒞) be a morphism of topoi. Let 𝑝 ∶ Sh(𝑝𝑡) → Sh(𝒟)
be a point. Then 𝑞 = 𝑓∘𝑝 is a point of the topos Sh(𝒞) and we have a canonical identification

(𝑓−1ℱ)𝑝 = ℱ𝑞

for any sheaf ℱ on 𝒞.

Proof. This is immediate from the definitions and the fact that we can compose morphisms
of topoi. �

9.31. Localization and points

In this section we show that points of a localization 𝒞/𝑈 are constructed in a simple manner
from the points of 𝒞.

Lemma 9.31.1. Let 𝒞 be a site. Let 𝑝 be a point of 𝒞 given by 𝑢 ∶ 𝒞 → Sets. Let 𝑈 be an
object of 𝒞 and let 𝑥 ∈ 𝑢(𝑈). The functor

𝑣 ∶ 𝒞/𝑈 ⟶ Sets, (𝜑 ∶ 𝑉 → 𝑈) ⟼ {𝑦 ∈ 𝑢(𝑉) ∣ 𝑢(𝜑)(𝑦) = 𝑥}
defines a point 𝑞 of the site 𝒞/𝑈 such that the diagram

Sh(𝑝𝑡)

𝑝
��

𝑞

yy
Sh(𝒞/𝑈)

𝑗𝑈 // Sh(𝒞)

commutes. In other words ℱ𝑝 = (𝑗−1
𝑈 ℱ)𝑞 for any sheaf on 𝒞.

Proof. Choose 𝑆 and 𝒮 as in Lemma 9.28.8. We may identify Sh(𝑝𝑡) = Sh(𝒮) as in that
lemma, and we may write 𝑝 = 𝑓 ∶ Sh(𝒮) → Sh(𝒞) for the morphism of topoi induced by 𝑢.
By Lemma 9.24.1 we get a commutative diagram of topoi

Sh(𝒮/𝑢(𝑈))
𝑗𝑢(𝑈)
//

𝑝′

��

Sh(𝒮)

𝑝
��

Sh(𝒞/𝑈)
𝑗𝑈 // Sh(𝒞),
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where 𝑝′ is given by the functor 𝑢′ ∶ 𝒞/𝑈 → 𝒮/𝑢(𝑈), 𝑉/𝑈 ↦ 𝑢(𝑉)/𝑢(𝑈). Consider the
functor 𝑗𝑥 ∶ 𝒮 ≅ 𝒮/𝑥 obtained by assigning to a set 𝐸 the set 𝐸 endowed with the constant
map 𝐸 → 𝑢(𝑈) with value 𝑥. Then 𝑗𝑥 is a fully faithful cocontinuous functor which has a
continuous right adjoint 𝑣𝑥 ∶ (𝜓 ∶ 𝐸 → 𝑢(𝑈)) ↦ 𝜓−1({𝑥}). Note that 𝑗𝑈 ∘ 𝑗𝑥 = id𝒮, and
𝑣𝑥 ∘ 𝑢′ = 𝑣. These observations imply that we have the following commutative diagram of
topoi

Sh(𝒮)
𝑎

%%
𝑞

��

𝑝

oo

Sh(𝒮/𝑢(𝑈))
𝑗𝑢(𝑈)
//

𝑝′

��

Sh(𝒮)

𝑝
��

Sh(𝒞/𝑈)
𝑗𝑈 // Sh(𝒞)

Namely:
(1) Themorphism 𝑎 ∶ Sh(𝒮) → Sh(𝒮/𝑢(𝑈)) is themorphism of topoi assoicated to the

cocontinuous functor 𝑗𝑥, which equals the morphism associated to the continuous
functor 𝑣𝑥, see Lemma 9.19.1 and Section 9.20.

(2) The composition 𝑝 ∘ 𝑗𝑢(𝑈) ∘ 𝑎 = 𝑝 since 𝑗𝑢(𝑈) ∘ 𝑗𝑥 = id𝒮.
(3) The compostion 𝑝′ ∘ 𝑎 gives a morphism of topoi. Moreover, it is the morphism

of topoi associated to the continuous functor 𝑣𝑥 ∘ 𝑢′ = 𝑣. Hence 𝑣 does indeed
define a point 𝑞 of 𝒞/𝑈 which fits into the diagram above by construction.

This ends the proof of the lemma. �

Lemma 9.31.2. Let 𝒞, 𝑝, 𝑢, 𝑈 be as in Lemma 9.31.1. The construction of Lemma 9.31.1
gives a one to one correspondence between points 𝑞 of 𝒞/𝑈 lying over 𝑝 and elements 𝑥 of
𝑢(𝑈).

Proof. Let 𝑞 be a point of 𝒞/𝑈 given by the functor 𝑣 ∶ 𝒞/𝑈 → Sets such that 𝑗𝑈 ∘ 𝑞 = 𝑝
as morphisms of topoi. Recall that 𝑢(𝑉) = 𝑝−1(ℎ#

𝑉) for any object 𝑉 of 𝒞, see Lemma
9.28.7. Similarly 𝑣(𝑉/𝑈) = 𝑞−1(ℎ#

𝑉/𝑈) for any object 𝑉/𝑈 of 𝒞/𝑈. Consider the following
two diagrams

𝑀𝑜𝑟𝒞/𝑈(𝑊/𝑈, 𝑉/𝑈) //

��

𝑀𝑜𝑟𝒞(𝑊, 𝑉)

��
𝑀𝑜𝑟𝒞/𝑈(𝑊/𝑈, 𝑈/𝑈) //𝑀𝑜𝑟𝒞(𝑊, 𝑈)

ℎ#
𝑉/𝑈

//

��

𝑗−1
𝑈 (ℎ#

𝑉)

��
ℎ#

𝑈/𝑈
// 𝑗−1

𝑈 (ℎ#
𝑈)

The right hand diagram is the sheafification of the diagram of presheaves on 𝒞/𝑈 which
maps 𝑊/𝑈 to the left hand diagram of sets. (There is a small technical point to make here,
namely, that we have (𝑗−1

𝑈 ℎ𝑉)# = 𝑗−1
𝑈 (ℎ#

𝑉) and similarly for ℎ𝑈, see Lemma 9.18.4.) Note
that the left hand diagram of sets is cartesian. Since sheafification is exact (Lemma 9.10.14)
we conclude that the right hand diagram is cartesian.

Apply the exact functor 𝑞−1 to the right hand diagram to get a cartesian diagram

𝑣(𝑉/𝑈) //

��

𝑢(𝑉)

��
𝑣(𝑈/𝑈) // 𝑢(𝑈)
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of sets. Here we have used that 𝑞−1 ∘ 𝑗−1 = 𝑝−1. Since 𝑈/𝑈 is a final object of 𝒞/𝑈 we see
that 𝑣(𝑈/𝑈) is a singleton. Hence the image of 𝑣(𝑈/𝑈) in 𝑢(𝑈) is an element 𝑥, and the top
horizontal map gives a bijection 𝑣(𝑉/𝑈) → {𝑦 ∈ 𝑢(𝑉) ∣ 𝑦 ↦ 𝑥 in 𝑢(𝑈)} as desired. �

Lemma 9.31.3. Let 𝒞 be a site. Let 𝑝 be a point of 𝒞 given by 𝑢 ∶ 𝒞 → Sets. Let 𝑈 be an
object of 𝒞. For any sheaf 𝒢 on 𝒞/𝑈 we have

(𝑗𝑈!𝒢)𝑝 = ∐𝑞
𝒢𝑞

where the coproduct is over the points 𝑞 of 𝒞/𝑈 associated to elements 𝑥 ∈ 𝑢(𝑈) as in
Lemma 9.31.1.

Proof. Weuse the description of 𝑗𝑈!𝒢 as the sheaf associated to the presheaf𝑉 ↦ ∐𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈) 𝒢(𝑉/𝜑𝑈)
of Lemma 9.21.2. Also, the stalk of 𝑗𝑈!𝒢 at 𝑝 is equal to the stalk of this presheaf, see
Lemma 9.28.5. Hence we see that

(𝑗𝑈!𝒢)𝑝 = 𝑐𝑜𝑙𝑖𝑚(𝑉,𝑦) ∐𝜑∶𝑉→𝑈
𝒢(𝑉/𝜑𝑈)

To each element (𝑉, 𝑦, 𝜑, 𝑠) of this colimit, we can assign 𝑥 = 𝑢(𝜑)(𝑦) ∈ 𝑢(𝑈). Hence we
obtain

(𝑗𝑈!𝒢)𝑝 = ∐𝑥∈𝑢(𝑈)
𝑐𝑜𝑙𝑖𝑚(𝜑∶𝑉→𝑈,𝑦), 𝑢(𝜑)(𝑦)=𝑥 𝒢(𝑉/𝜑𝑈).

This is equal to the expression of the lemma by our construction of the points 𝑞. �

Remark 9.31.4. Warning: The result of Lemma 9.31.3 has no analogue for 𝑗𝑈,∗.

9.32. 2-morphisms of topoi

This is a brief section concerning the notion of a 2-morphism of topoi.

Definition 9.32.1. Let 𝑓, 𝑔 ∶ Sh(𝒞) → Sh(𝒟) be two morphisms of topoi. A 2-morphism
from 𝑓 to 𝑔 is given by a transformation of functors 𝑡 ∶ 𝑓∗ → 𝑔∗.

Pictorially we sometimes represent 𝑡 as follows:

Sh(𝒞)
𝑓

++

𝑔
33�� 𝑡 Sh(𝒟)

Note that since 𝑓−1 is adjoint to 𝑓∗ and 𝑔−1 is adjoint to 𝑔∗ we see that 𝑡 induces also a
transformation of functors 𝑡 ∶ 𝑔−1 → 𝑓−1 (usually denoted by the same symbol) uniquely
characterized by the condition that the diagram

𝑀𝑜𝑟Sh(𝒞)(𝒢, 𝑓∗ℱ)

𝑡∘−
��

𝑀𝑜𝑟Sh(𝒞)(𝑓−1𝒢, ℱ)

−∘𝑡
��

𝑀𝑜𝑟Sh(𝒞)(𝒢, 𝑔∗ℱ) 𝑀𝑜𝑟Sh(𝒞)(𝑔−1𝒢, ℱ)

commutes. Because of set theoretic difficulties (see Remark 9.15.2) we do not obtain a
2-category of topoi. But we can still define horizontal and vertical composition and show
that the axioms of a strict 2-category listed in Categories, Section 4.26 hold. Namely, verti-
cal composition of 2-morphisms is clear (just compose transformations of functors), com-
position of 1-morphisms has been defined in Definition 9.15.1, and horizontal composition
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of

Sh(𝒞)
𝑓

++

𝑔
33�� 𝑡 Sh(𝒟)

𝑓′
++

𝑔′
33�� 𝑠 Sh(ℰ)

is defined by the transformation of functors 𝑠⋆𝑡 introduced in Categories, Definition 4.25.1.
Explicitly, 𝑠 ⋆ 𝑡 is given by

𝑓′
∗𝑓∗ℱ

𝑓′
∗𝑡 // 𝑓′

∗𝑔∗ℱ 𝑠 // 𝑔′
∗𝑔∗ℱ or 𝑓′

∗𝑓∗ℱ 𝑠 // 𝑔′
∗𝑓∗ℱ

𝑔′
∗𝑡 // 𝑔′

∗𝑔∗ℱ

(these maps are equal). Since these definitions agree with the ones in Categories, Section
4.25 it follows from Categories, Lemma 4.25.2 that the axioms of a strict 2-category hold
with these definitions.

9.33. Morphisms between points

Lemma 9.33.1. Let 𝒞 be a site. Let 𝑢, 𝑢′ ∶ 𝒞 → Sets be two functors, and let 𝑡 ∶ 𝑢′ → 𝑢 be
a transformation of functors. Then we obtain a canonical transformation of stalk functors
𝑡𝑠𝑡𝑎𝑙𝑘 ∶ ℱ𝑝′ → ℱ𝑝 which agrees with 𝑡 via the identifications of Lemma 9.28.3.

Proof. Omitted. �

Definition 9.33.2. Let 𝒞 be a site. Let 𝑝, 𝑝′ be points of 𝒞 given by functors 𝑢, 𝑢′ ∶ 𝒞 →
Sets. A morphism 𝑓 ∶ 𝑝 → 𝑝′ is given by a transformation of functors

𝑓𝑢 ∶ 𝑢′ → 𝑢.

Note how the transformation of functors goes the other way. This makes sense, as we will
see later, by thinking of the morphism 𝑓 as a kind of 2-arrow pictorially as follows:

Sets = Sh(𝑝𝑡)
𝑝

++

𝑝′
33�� 𝑓 Sh(𝒞)

Namely, we will see later that 𝑓𝑢 induces a canonical transformation of functors 𝑝∗ → 𝑝′
∗

between the skyscraper sheaf constructions.

This is a fairly important notion, and deserves a more complete treatment here. List of
desiderata

(1) Describe the automorphisms of the point of 𝒯𝐺 described in Example 9.29.6.
(2) Describe 𝑀𝑜𝑟(𝑝, 𝑝′) in terms of 𝑀𝑜𝑟(𝑝∗, 𝑝′

∗).
(3) Specialization of points in topological spaces. Show that if 𝑥′ ∈ {𝑥} in the

topological space 𝑋, then there is a morphism 𝑝 → 𝑝′, where 𝑝 (resp. 𝑝′) is the
point of 𝒯𝑋 associated to 𝑥 (resp. 𝑥′).

9.34. Sites with enough points

Definition 9.34.1. Let 𝒞 be a site.
(1) A family of points {𝑝𝑖}𝑖∈𝐼 is called conservative if for every map of sheaves 𝜙 ∶

ℱ → 𝒢 which is an isomorphism on all the fibres ℱ𝑝𝑖
→ 𝒢𝑝𝑖

is an isomorphism.
(2) We say that 𝒞 has enough points if there exists a conservative family of points.

It turns out that you can then check ``exactness'' at the stalks.

Lemma 9.34.2. Let 𝒞 be a site and let {𝑝𝑖}𝑖∈𝐼 be a conservative family of points. Then
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(1) Given any map of sheaves 𝜑 ∶ ℱ → 𝒢 we have ∀𝑖, 𝜑𝑝𝑖
injective implies 𝜑 injec-

tive.
(2) Given any map of sheaves 𝜑 ∶ ℱ → 𝒢 we have ∀𝑖, 𝜑𝑝𝑖

surjective implies 𝜑
surjective.

(3) Given any pair of maps of sheaves 𝜑1, 𝜑2 ∶ ℱ → 𝒢 we have ∀𝑖, 𝜑1,𝑝𝑖
= 𝜑2,𝑝𝑖

implies 𝜑1 = 𝜑2.
(4) Given a finite diagram 𝒢 ∶ 𝒥 → Sh(𝒞), a sheaf ℱ and morphisms 𝑞𝑗 ∶ ℱ → 𝒢𝑗

then (ℱ, 𝑞𝑗) is a limit of the diagram if and only if for each 𝑖 the stalk (ℱ𝑝𝑖
, (𝑞𝑗)𝑝𝑖

)
is one.

(5) Given a finite diagram ℱ ∶ 𝒥 → Sh(𝒞), a sheaf 𝒢 and morphisms 𝑒𝑗 ∶ ℱ𝑗 → 𝒢
then (𝒢, 𝑒𝑗) is a colimit of the diagram if and only if for each 𝑖 the stalk (𝒢𝑝𝑖

, (𝑒𝑗)𝑝𝑖
)

is one.

Proof. We will use over and over again that all the stalk functors commute with any finite
limits and colimits and hence with products, fibred products, etc. We will also use that
injective maps are the monomorphisms and the surjective maps are the epimorphisms. A
map of sheaves 𝜑 ∶ ℱ → 𝒢 is injective if and only if ℱ → ℱ ×𝒢 ℱ is an isomorphism.
Hence (1). Similarly, 𝜑 ∶ ℱ → 𝒢 is surjective if and only if 𝒢⨿ℱ𝒢 → 𝒢 is an isomorphism.
Hence (2). The maps 𝑎, 𝑏 ∶ ℱ → 𝒢 are equal if and only if ℱ ×𝑎,𝒢,𝑏 ℱ → ℱ × ℱ is an
isomorphism. Hence (3). The assertions (4) and (5) follow immediately from the definitions
and the remarks at the start of this proof. �

Lemma 9.34.3. Let 𝒞 be a site and let {(𝑝𝑖, 𝑢𝑖)}𝑖∈𝐼 be a family of points. The family is
conservative if and only if for every sheaf ℱ and every 𝑈 ∈ 𝑂𝑏(𝒞) and every pair of
distinct sections 𝑠, 𝑠′ ∈ ℱ(𝑈), 𝑠≠𝑠′ there exists an 𝑖 and 𝑥 ∈ 𝑢𝑖(𝑈) such that the triples
(𝑈, 𝑥, 𝑠) and (𝑈, 𝑥, 𝑠′) define distinct elements of ℱ𝑝𝑖

.

Proof. Suppose that the family is conservative and that ℱ, 𝑈, and 𝑠, 𝑠′ are as in the lemma.
The sections 𝑠, 𝑠′ define maps 𝑎, 𝑎′ ∶ (ℎ𝑈)# → ℱ which are distinct. Hence, by Lemma
9.34.2 there is an 𝑖 such that 𝑎𝑝𝑖

≠𝑎′
𝑝𝑖
. Recall that (ℎ𝑈)#

𝑝𝑖
= 𝑢𝑖(𝑈), by Lemmas 9.28.3 and

9.28.5. Hence there exists an 𝑥 ∈ 𝑢𝑖(𝑈) such that 𝑎𝑝𝑖
(𝑥)≠𝑎′

𝑝𝑖
(𝑥) in ℱ𝑝𝑖

. Unwinding the
definitions you see that (𝑈, 𝑥, 𝑠) and (𝑈, 𝑥, 𝑠′) are as in the statement of the lemma.

To prove the converse, assume the condition on the existence of points of the lemma. Let
𝜙 ∶ ℱ → 𝒢 be a map of sheaves which is an isomorphism at all the stalks. We have to
show that 𝜙 is both injective and surjective, see Lemma 9.11.2. Injectivity is an immediate
consequence of the assumption. Let ∗ denote the final object of the category of sheaves,
see Example 9.10.2. Consider the sheaf ℋ = 𝒢 ∐ℱ ∗. The map ℱ → 𝒢 is surjective if
and only if the map ∗ → ℋ is an isomorphism. By construction all the maps on stalks
∗𝑝𝑖

= {∗} → ℋ𝑝𝑖
are bijective. If 𝜙 is not surjective, then there exists a 𝑈 and a section

𝑠 ∈ ℋ(𝑈) which is not equal to the section ∗. By assumption we see there exists an index
𝑖 and 𝑥 ∈ 𝑢𝑖(𝑈) such that (𝑈, 𝑥, 𝑠) and (𝑈, 𝑥, ∗) define distinct points of ℋ𝑝𝑖

. This is a
contradiction. �

In the following lemma the points 𝑞𝑖,𝑥 are exactly all the points of 𝒞/𝑈 lying over the point
𝑝𝑖 according to Lemma 9.31.2.

Lemma 9.34.4. Let 𝒞 be a site. Let 𝑈 be an object of 𝒞. let {(𝑝𝑖, 𝑢𝑖)}𝑖∈𝐼 be a family of
points of 𝒞. For 𝑥 ∈ 𝑢𝑖(𝑈) let 𝑞𝑖,𝑥 be the point of 𝒞/𝑈 constructed in Lemma 9.31.1. If {𝑝𝑖}
is a conservative family of points, then {𝑞𝑖,𝑥}𝑖∈𝐼,𝑥∈𝑢𝑖(𝑈) is a conservative family of points of
𝒞/𝑈. In particular, if 𝒞 has enough points, then so does every localization 𝒞/𝑈.
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Proof. We know that 𝑗𝑈! induces an equivalence 𝑗𝑈! ∶ Sh(𝒞/𝑈) → Sh(𝒞)/ℎ#
𝑈, see Lemma

9.21.4. Moreover, we know that (𝑗𝑈!𝒢)𝑝𝑖
= ∐𝑥 𝒢𝑞𝑖,𝑥

, see Lemma 9.31.3. Hence the result
follows formally. �

The following lemma tells us we can check the existence of points locally on the site.

Lemma 9.34.5. Let 𝒞 be a site. Let {𝑈𝑖}𝑖∈𝐼 be a family of objects of 𝒞. Assume
(1) ∐ ℎ#

𝑈𝑖
→ ∗ is a surjective map of sheaves, and

(2) each localization 𝒞/𝑈𝑖 has enough points.
Then 𝒞 has enough points.

Proof. For each 𝑖 ∈ 𝐼 let {𝑝𝑗}𝑗∈𝐽𝑖
be a conservative family of points of 𝒞/𝑈𝑖. For 𝑗 ∈

𝐽𝑖 denote 𝑞𝑗 ∶ Sh(𝑝𝑡) → Sh(𝒞) the composition of 𝑝𝑗 with the localization morphism
Sh(𝒞/𝑈𝑖) → Sh(𝒞). Then 𝑞𝑗 is a point, see Lemma 9.30.2. We claim that the family of
points {𝑞𝑗}𝑗∈∐ 𝐽𝑖

is conservative. Namely, let ℱ → 𝒢 be a map of sheaves on 𝒞 such that
ℱ𝑞𝑗

→ 𝒢𝑞𝑗
is an isomorphism for all 𝑗 ∈ ∐ 𝐽𝑖. Let 𝑊 be an object of 𝒞. By assumption (1)

there exists a covering {𝑊𝑎 → 𝑊} and morphisms 𝑊𝑎 → 𝑈𝑖(𝑎). Since (ℱ|𝒞/𝑈𝑖(𝑎)
)𝑝𝑗

= ℱ𝑞𝑗
and (𝒢|𝒞/𝑈𝑖(𝑎)

)𝑝𝑗
= 𝒢𝑞𝑗

by Lemma 9.30.2 we see that ℱ|𝑈𝑖(𝑎)
→ 𝒢|𝑈𝑖(𝑎)

is an isomorphism
since the family of points {𝑝𝑗}𝑗∈𝐽𝑖(𝑎)

is conservative. Hence ℱ(𝑊𝑎) → 𝒢(𝑊𝑎) is bijective
for each 𝑎. Similarly ℱ(𝑊𝑎 ×𝑊 𝑊𝑏) → 𝒢(𝑊𝑎 ×𝑊 𝑊𝑏) is bijective for each 𝑎, 𝑏. By the sheaf
condition this shows that ℱ(𝑊) → 𝒢(𝑊) is bijective, i.e., ℱ → 𝒢 is an isomorphism. �

9.35. Criterion for existence of points

This section corresponds to Deligne's appendix to [MA71, Exposé VI]. In fact it is almost
literally the same.

Let 𝒞 be a site. Suppose that (𝐼, ≥) is a directed partially ordered set, and that (𝑈𝑖, 𝑓𝑖𝑖′) is
an inverse system over 𝐼, see Categories, Definition 4.19.1. Given the data (𝐼, ≥, 𝑈𝑖, 𝑓𝑖𝑖′)
we define

𝑢 ∶ 𝒞 ⟶ Sets, 𝑢(𝑉) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝒞(𝑈𝑖, 𝑉)
Let ℱ ↦ ℱ𝑝 be the stalk functor associated to 𝑢 as in Section 9.28. It is direct from the
definition that actually

ℱ𝑝 = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ(𝑈𝑖)
in this special case. Note that 𝑢 commutes with all finite limits (I mean those that are
representable in 𝒞) because each of the functors 𝑉 ↦ 𝑀𝑜𝑟𝒞(𝑈𝑖, 𝑉) do, see Categories,
Lemma 4.17.2.

We say that a system (𝐼, ≥, 𝑈𝑖, 𝑓𝑖𝑖′) is a refinement of (𝐽, ≥, 𝑉𝑗, 𝑔𝑗𝑗′) if 𝐽 ⊂ 𝐼, the ordening
on 𝐽 induced from that of 𝐼 and 𝑉𝑗 = 𝑈𝑗, 𝑔𝑗𝑗′ = 𝑓𝑗𝑗′ (in words, the inverse system over 𝐽
is induced by that over 𝐼). Let 𝑢 be the functor associated to (𝐼, ≥, 𝑈𝑖, 𝑓𝑖𝑖′) and let 𝑢′ be the
functor associated to (𝐽, ≥, 𝑉𝑗, 𝑔𝑗𝑗′). This induces a transformation of functors

𝑢′ ⟶ 𝑢

simply because the colimits for 𝑢′ are over a subsystem of the systems in the colimits for 𝑢.
In particular we get an associated transformation of stalk functors ℱ𝑝′ → ℱ𝑝, see Lemma
9.33.1.

Lemma 9.35.1. Let 𝒞 be a site. Let (𝐽, ≥, 𝑉𝑗, 𝑔𝑗𝑗′) be a system as above with associated
pair of functors (𝑢′, 𝑝′). Let ℱ be a sheaf on 𝒞. Let 𝑠, 𝑠′ ∈ ℱ𝑝′ be distinct elements. Let
{𝑊𝑘 → 𝑊} be a finite covering of𝒞. Let 𝑓 ∈ 𝑢(𝑊). There exists a refinement (𝐼, ≥, 𝑈𝑖, 𝑓𝑖𝑖′)
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of (𝐽, ≥, 𝑉𝑗, 𝑔𝑗𝑗′) such that 𝑠, 𝑠′ map to distinct elements of ℱ𝑝 and that the image of 𝑓 in
𝑢′(𝑊) is in the image of one of the 𝑢′(𝑊𝑘).

Proof. There exists a 𝑗0 ∈ 𝐽 such that 𝑓 is defined by 𝑓′ ∶ 𝑉𝑗0
→ 𝑊. For 𝑗 ≥ 𝑗0 we

set 𝑉𝑗,𝑘 = 𝑉𝑗 ×𝑓′∘𝑓𝑗𝑗0,𝑊 𝑊𝑘. Then {𝑉𝑗,𝑘 → 𝑉𝑗} is a finite covering in the site 𝒞. Hence
ℱ(𝑉𝑗) ⊂ ∏𝑘 ℱ(𝑉𝑗,𝑘). By Categories, Lemma 4.17.2 once again we see that

ℱ𝑝′ = 𝑐𝑜𝑙𝑖𝑚𝑗 ℱ(𝑉𝑗) ⟶ ∏𝑘
𝑐𝑜𝑙𝑖𝑚𝑗 ℱ(𝑉𝑗,𝑘)

is injective. Hence there exists a 𝑘 such that 𝑠 and 𝑠′ have distinct image in 𝑐𝑜𝑙𝑖𝑚𝑗 ℱ(𝑉𝑗,𝑘).
Let 𝐽0 = {𝑗 ∈ 𝐽, 𝑗 ≥ 𝑗0} and 𝐼 = 𝐽 ⨿ 𝐽0. We order 𝐼 so that no element of the second
summand is smaller than any element of the first, but otherwise using the ordering on 𝐽. If
𝑗 ∈ 𝐼 is in the first summand then we use 𝑉𝑗 and if 𝑗 ∈ 𝐼 is in the second summand then we
use 𝑉𝑗,𝑘. We omit the definition of the transition maps of the inverse system. By the above
it follows that 𝑠, 𝑠′ have distinct image in ℱ𝑝. Moreover, the restriction of 𝑓′ to 𝑉𝑗,𝑘 factors
through 𝑊𝑘 by construction. �

Lemma 9.35.2. Let 𝒞 be a site. Let (𝐽, ≥, 𝑉𝑗, 𝑔𝑗𝑗′) be a system as above with associated
pair of functors (𝑢′, 𝑝′). Let ℱ be a sheaf on 𝒞. Let 𝑠, 𝑠′ ∈ ℱ𝑝′ be distinct elements. There
exists a refinement (𝐼, ≥, 𝑈𝑖, 𝑓𝑖𝑖′) of (𝐽, ≥, 𝑉𝑗, 𝑔𝑗𝑗′) such that 𝑠, 𝑠′ map to distinct elements
of ℱ𝑝 and such that for every finite covering {𝑊𝑘 → 𝑊} of the site 𝒞, and any 𝑓 ∈ 𝑢′(𝑊)
the image of 𝑓 in 𝑢(𝑊) is in the image of one of the 𝑢(𝑊𝑘).

Proof. Let 𝐸 be the set of pairs ({𝑊𝑘 → 𝑊}, 𝑓 ∈ 𝑢′(𝑊)). Consider pairs (𝐸′ ⊂ 𝐸, (𝐼, ≥
, 𝑈𝑖, 𝑓𝑖𝑖′)) such that

(1) (𝐼, ≥, 𝑈𝑖, 𝑔𝑖𝑖′) is a refinement of (𝐽, ≥, 𝑉𝑗, 𝑔𝑗𝑗′),
(2) 𝑠, 𝑠′ map to distinct elements of ℱ𝑝, and
(3) for every pair ({𝑊𝑘 → 𝑊}, 𝑓 ∈ 𝑢′(𝑊)) ∈ 𝐸′ we have that the image of 𝑓 in 𝑢(𝑊)

is in the image of one of the 𝑢(𝑊𝑘).
We order such pairs by inclusion in the first factor and by refinement in the second. Denote
𝒮 the class of all pairs (𝐸′ ⊂ 𝐸, (𝐼, ≥, 𝑈𝑖, 𝑓𝑖𝑖′)) as above. We claim that the hypothesis
of Zorn's lemma holds for 𝒮. Namely, suppose that (𝐸′

𝑎, (𝐼𝑎, ≥, 𝑈𝑖, 𝑓𝑖𝑖′))𝑎∈𝐴 is a totally
ordered subset of 𝒮. Then we can define 𝐸′ = ⋃𝑎∈𝐴 𝐸′

𝑎 and we can set 𝐼 = ⋃𝑎∈𝐴 𝐼𝑎. We
claim that the corresponding pair (𝐸′, (𝐼, ≥, 𝑈𝑖, 𝑓𝑖𝑖′)) is an element of 𝒮. Conditions (1)
and (3) are clear. For condition (2) you note that

𝑢 = 𝑐𝑜𝑙𝑖𝑚𝑎∈𝐴 𝑢𝑎 and correspondingly ℱ𝑝 = 𝑐𝑜𝑙𝑖𝑚𝑎∈𝐴 ℱ𝑝𝑎

The distinctness of the images of 𝑠, 𝑠′ in this stalk follows from the description of a di-
rected colimit of sets, see Categories, Section 4.17. We will simply write (𝐸′, (𝐼, …)) =
⋃𝑎∈𝐴(𝐸′

𝑎, (𝐼𝑎, …)) in this situation.

OK, so Zorn's Lemma would apply if 𝒮 was a set, and this would, combined with Lemma
9.35.1 above easily prove the lemma. It doesn't since 𝒮 is a class. In order to circumvent
this we choose a well ordering on 𝐸. For 𝑒 ∈ 𝐸 set 𝐸′

𝑒 = {𝑒′ ∈ 𝐸 ∣ 𝑒′ ≤ 𝑒}. By transfinite
induction we construct pairs (𝐸′

𝑒, (𝐼𝑒, …)) ∈ 𝒮 such that 𝑒1 ≤ 𝑒2 ⇒ (𝐸′
𝑒1

, (𝐼𝑒1
, …)) ≤

(𝐸′
𝑒2

, (𝐼𝑒2
, …)). Let 𝑒 ∈ 𝐸, say 𝑒 = ({𝑊𝑘 → 𝑊}, 𝑓 ∈ 𝑢′(𝑊)). If 𝑒 has a predecessor 𝑒 − 1,

then we let (𝐼𝑒, …) be a refinement of (𝐼𝑒−1, …) as in Lemma 9.35.1 with respect to the
system 𝑒 = ({𝑊𝑘 → 𝑊}, 𝑓 ∈ 𝑢′(𝑊)). If 𝑒 does not have a predecessor, then we let (𝐼𝑒, …)
be a refinement of ⋃𝑒′<𝑒(𝐼𝑒′, …) with respect to the system 𝑒 = ({𝑊𝑘 → 𝑊}, 𝑓 ∈ 𝑢′(𝑊)).
Finally, the union ⋃𝑒∈𝐸 𝐼𝑒 will be a solution to the problem posed in the lemma. �
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Proposition 9.35.3. Let 𝒞 be a site. Assume that
(1) finite limits exist in 𝒞, and
(2) every covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 has a refinement by a finite covering of 𝒞.

Then 𝒞 has enough points.

Proof. We have to show that given any sheaf ℱ on 𝒞, any 𝑈 ∈ 𝑂𝑏(𝒞), and any distinct
sections 𝑠, 𝑠′ ∈ ℱ(𝑈), there exists a point 𝑝 such that 𝑠, 𝑠′ have distinct image in ℱ𝑝. See
Lemma 9.34.3. Consider the system (𝐽, ≥, 𝑉𝑗, 𝑔𝑗𝑗′) with 𝐽 = {1}, 𝑉1 = 𝑈, 𝑔11 = id𝑈.
Apply Lemma 9.35.2. By the result of that lemma we get a system (𝐼, ≥, 𝑈𝑖, 𝑓𝑖𝑖′) refining
our system such that 𝑠𝑝≠𝑠′

𝑝 and such that moreover for every finite covering {𝑊𝑘 → 𝑊}
of the site 𝒞 the map ∐𝑘 𝑢(𝑊𝑘) → 𝑢(𝑊) is surjective. Since every covering of 𝒞 can
be refined by a finite covering we conclude that ∐𝑘 𝑢(𝑊𝑘) → 𝑢(𝑊) is surjective for any
covering {𝑊𝑘 → 𝑊} of the site 𝒞. This implies that 𝑢 = 𝑝 is a point, see Proposition 9.29.2
(and the discussion at the beginning of this section which garantees that 𝑢 commutes with
finite limits). �

9.36. Exactness properties of pushforward

Let 𝑓 be a morphism of topoi. The functor 𝑓∗ in general is only left exact. There are
many additional conditions one can impose on this functor to single out particular classes
of morphisms of topoi. We collect them here and note some of the logical dependencies.
Some parts of the following lemma are purely category theoretical (i.e., they do not depend
on having a morphism of topoi, just having a pair of adjoint functors is enough).

Lemma 9.36.1. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. Consider the following
properties (on sheaves of sets):

(1) 𝑓∗ is faithful,
(2) 𝑓∗ is fully faithful,
(3) 𝑓−1𝑓∗ℱ → ℱ is surjective for all ℱ in Sh(𝒞),
(4) 𝑓∗ transforms surjections into surjections,
(5) 𝑓∗ commutes with coequalizers,
(6) 𝑓∗ commutes with pushouts,
(7) 𝑓−1𝑓∗ℱ → ℱ is an isomorphism for all ℱ in Sh(𝒞),
(8) 𝑓∗ reflects injections,
(9) 𝑓∗ reflects surjections,

(10) 𝑓∗ reflects bijections, and
(11) for any surjection ℱ → 𝑓−1𝒢 there exists a surjection 𝒢′ → 𝒢 such that 𝑓−1𝒢′ →

𝑓−1𝒢 factors through ℱ → 𝑓−1𝒢.
Then we have the following implications

(a) (2) ⇒ (1),
(b) (3) ⇒ (1),
(c) (7) ⇒ (1), (2), (3), (8), (9), (10).
(d) (3) ⇔ (9),
(e) (6) ⇒ (4),
(f) (4) ⇔ (11), and
(g) (8) + (9) ⇒ (10).

Proof. Proof of (a): This is immediate from the definitions.
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Proof of (b). Suppose that 𝑎, 𝑏 ∶ ℱ → ℱ′ are maps of sheaves on 𝒞. If 𝑓∗𝑎 = 𝑓∗𝑏, then
𝑓−1𝑓∗𝑎 = 𝑓−1𝑓∗𝑏. Consider the commutative diagram

ℱ //
//
ℱ′

𝑓−1𝑓∗ℱ //
//

OO

𝑓−1𝑓∗ℱ′

OO

If the bottom two arrows are equal and the vertical arrows are surjective then the top two
arrows are equal. Hence (b) follows.

Proof of (c). Suppose that 𝑎 ∶ ℱ → ℱ′ is a map of sheaves on 𝒞. Consider the commutative
diagram

ℱ // ℱ′

𝑓−1𝑓∗ℱ //

OO

𝑓−1𝑓∗ℱ′

OO

If (7) holds, then the vertical arrows are isomorphisms. Hence if 𝑓∗𝑎 is injective (resp.
surjective, resp. bijective) then the bottom arrow is injective (resp. surjective, resp. bijec-
tive) and hence the top arrow is injective (resp. surjective, resp. bijective). Thus we see
that (7) implies (8), (9), (10). It is clear that (7) implies (3) and hence (1). Finally, if
𝛽 ∶ 𝑓∗ℱ → 𝑓∗ℱ′ is a map of sheaves, then 𝛼 = 𝑓−1𝛽 ∶ ℱ = 𝑓−1𝑓∗ℱ → 𝑓−1𝑓∗ℱ′ = ℱ′ is
a map of sheaves on 𝒞. Chasing diagrams we see that the following diagram

𝑓∗ℱ
𝑓∗𝛼 // 𝑓∗ℱ′

𝑓∗𝑓−1𝑓∗ℱ
𝑓∗𝑓−1𝛽//

OO

𝑓∗𝑓−1𝑓∗ℱ′

OO

𝑓∗ℱ

OO

𝛽 // 𝑓∗ℱ′

OO

is commutative, in other words 𝑓∗𝛼 = 𝛽. Hence we see that (2) holds.

Proof of (d). Assume (3). Suppose that 𝑎 ∶ ℱ → ℱ′ is a map of sheaves on 𝒞 such that 𝑓∗𝑎
is surjective. As 𝑓−1 is exact this implies that 𝑓−1𝑓∗𝑎 ∶ 𝑓−1𝑓∗ℱ → 𝑓−1𝑓∗ℱ′ is surjective.
Combined with (3) this implies that 𝑎 is surjective. This means that (9) holds. Assume (9).
Let ℱ be a sheaf on 𝒞. We have to show that the map 𝑓−1𝑓∗ℱ → ℱ is surjective. It suffices
to show that 𝑓∗𝑓−1𝑓∗ℱ → 𝑓∗ℱ is surjective. And this is true because there is a canonical
map 𝑓∗ℱ → 𝑓∗𝑓−1𝑓∗ℱ which is a one-sided inverse.

Proof of (e). If ℱ → ℱ′ is surjective then the map ℱ′ ⨿ℱ ℱ′ → ℱ′ is injective. Hence
(6) implies that 𝑓∗ℱ′ ⨿𝑓∗ℱ 𝑓∗ℱ′ → 𝑓∗ℱ′ is injective also. And this in turn implies that
𝑓∗ℱ → 𝑓∗ℱ′ is surjective. Hence we see that (6) implies (4).



9.36. EXACTNESS PROPERTIES OF PUSHFORWARD 643

Proof of (f). Assume (4). Let ℱ → 𝑓−1𝒢 be a surjective map of sheaves on 𝒞. By (4) we
see that 𝑓∗ℱ → 𝑓∗𝑓−1𝒢 is surjective. Let 𝒢′ be the fibre product

𝑓∗ℱ // 𝑓∗𝑓−1𝒢

𝒢′

OO

// 𝒢

OO

so that 𝒢′ → 𝒢 is surjective also. Consider the commutative diagram

ℱ // 𝑓−1𝒢

𝑓−1𝑓∗ℱ //

OO

𝑓−1𝑓∗𝑓−1𝒢

OO

𝑓−1𝒢′

OO

// 𝑓−1𝒢

OO

and we see the required result. Conversely, assume (11). Let 𝑎 ∶ ℱ → ℱ′ be surjective
map of sheaves on 𝒞. Consider the fibre product diagram

ℱ // ℱ′

ℱ″

OO

// 𝑓−1𝑓∗ℱ′

OO

Because the lower horizontal arrow is surjective and by (11) we can find a surjection 𝛾 ∶
𝒢′ → 𝑓∗ℱ′ such that 𝑓−1𝛾 factors through ℱ″ → 𝑓−1𝑓∗ℱ′:

ℱ // ℱ′

𝑓−1𝒢′ // ℱ″

OO

// 𝑓−1𝑓∗ℱ′

OO

Pushing this down using 𝑓∗ we get a commutative diagram

𝑓∗ℱ // 𝑓∗ℱ′

𝑓∗𝑓−1𝒢′ // 𝑓∗ℱ″

OO

// 𝑓∗𝑓−1𝑓∗ℱ′

OO

𝒢′

OO

// 𝑓∗ℱ′

OO

which proves that (4) holds.

Proof of (g). This is immediate from the definitions. �

Here is a condition on a morphism of sites which garantees that the functor 𝑓∗ transforms
surjective maps into surjective maps.
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Lemma 9.36.2. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites associated to the continuous functor
𝑢 ∶ 𝒞 → 𝒟. Assume that for any object 𝑈 of 𝒞 and any covering {𝑉𝑗 → 𝑢(𝑈)} in 𝒟 there
exists a covering {𝑈𝑖 → 𝑈} in 𝒞 such that the map of sheaves

∐ ℎ#
𝑢(𝑈𝑖)

→ ℎ#
𝑢(𝑈)

factors through the map of sheaves

∐ ℎ#
𝑉𝑗

→ ℎ#
𝑢(𝑈).

Then 𝑓∗ transforms surjective maps of sheaves into surjective maps of sheaves.

Proof. Let 𝑎 ∶ ℱ → 𝒢 be a surjective map of sheaves on 𝒟. Let 𝑈 be an object of 𝒞 and let
𝑠 ∈ 𝑓∗𝒢(𝑈) = 𝒢(𝑢(𝑈)). By assumption there exists a covering {𝑉𝑗 → 𝑢(𝑈)} and sections
𝑠𝑗 ∈ ℱ(𝑉𝑗) with 𝑎(𝑠𝑗) = 𝑠|𝑉𝑗

. Now we may think of the sections 𝑠, 𝑠𝑗 and 𝑎 as giving a
commutative diagram of maps of sheaves

∐ ℎ#
𝑉𝑗 ∐ 𝑠𝑗

//

��

ℱ

𝑎

��
ℎ#

𝑢(𝑈)
𝑠 // 𝒢

By assumption there exists a covering {𝑈𝑖 → 𝑈} such that we can enlarge the commutative
diagram above as follows

∐ ℎ#
𝑉𝑗 ∐ 𝑠𝑗

//

��

ℱ

𝑎

��
∐ ℎ#

𝑢(𝑈𝑖)
//

;;

ℎ#
𝑢(𝑈)

𝑠 // 𝒢

Becauseℱ is a sheaf themap from the left lower corner to the right upper corner corresponds
to a family of sections 𝑠𝑖 ∈ ℱ(𝑢(𝑈𝑖)), i.e., sections 𝑠𝑖 ∈ 𝑓∗ℱ(𝑈𝑖). The commutativity of
the diagram implies that 𝑎(𝑠𝑖) is equal to the restriction of 𝑠 to 𝑈𝑖. In other words we have
shown that 𝑓∗𝑎 is a surjective map of sheaves. �

Example 9.36.3. Assume 𝑓 ∶ 𝒟 → 𝒞 satisfies the assumptions of Lemma 9.36.2. Then
it is in general not the case that 𝑓∗ commutes with coequalizers or pushouts. Namely,
suppose that 𝑓 is the morphism of sites associated to the morphism of topological spaces
𝑋 = {1, 2} → 𝑌 = {∗} (see Example 9.14.2), where 𝑌 is a singleton space, and 𝑋 = {1, 2}
is a discrete space with two points. A sheaf ℱ on 𝑋 is given by a pair (𝐴1, 𝐴2) of sets.
Then 𝑓∗ℱ corresponds to the set 𝐴1 × 𝐴2. Hence if 𝑎 = (𝑎1, 𝑎2), 𝑏 = (𝑏1, 𝑏2) ∶ (𝐴1, 𝐴2) →
(𝐵1, 𝐵2) are maps of sheaves on 𝑋, then the coequalizer of 𝑎, 𝑏 is (𝐶1, 𝐶2) where 𝐶𝑖 is the
coequalizer of 𝑎𝑖, 𝑏𝑖, and the coequalizer of 𝑓∗𝑎, 𝑓∗𝑏 is the coequalizer of

𝑎1 × 𝑎2, 𝑏1 × 𝑏2 ∶ 𝐴1 × 𝐴2 ⟶ 𝐵1 × 𝐵2

which is in general different from 𝐶1 × 𝐶2. Namely, if 𝐴2 = ∅ then 𝐴1 × 𝐴2 = ∅, and
hence the coequalizer of the displayed arrows is 𝐵1 × 𝐵2, but in general 𝐶1≠𝐵1. A similar
example works for pushouts.

The following lemma gives a criterion for when a morphism of sites has a functor 𝑓∗ which
reflects injections and surjections. Note that this also implies that 𝑓∗ is faithful and that the
map 𝑓−1𝑓∗ℱ → ℱ is always surjective.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04D7
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Lemma 9.36.4. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites given by the functor 𝑢 ∶ 𝒞 → 𝒟 be
a functor. Assume that for every object 𝑉 of 𝒟 there exist objects 𝑈𝑖 of 𝒞 and morphisms
𝑢(𝑈𝑖) → 𝑉 such that {𝑢(𝑈𝑖) → 𝑉} is a covering of 𝒟. In this case the functor 𝑓∗ ∶ Sh(𝒟) →
Sh(𝒞) reflects injections and surjections.

Proof. Let 𝛼 ∶ ℱ → 𝒢 be maps of sheaves on 𝒟. By assumption for every object 𝑉 of 𝒟
we get ℱ(𝑉) ⊂ ∏ ℱ(𝑢(𝑈𝑖)) = ∏(𝑢𝑠ℱ)(𝑢(𝑈𝑖)) by the sheaf condition for some 𝑈𝑖 objects of
𝒞 and similarly for 𝒢. Hence it is clear that if 𝑓∗𝛼 is injective, then 𝛼 is injective. In other
words 𝑓∗ reflects injections.

Suppose that 𝑓∗𝛼 is surjective. Then for 𝑉, 𝑈𝑖, 𝑢(𝑈𝑖) → 𝑉 as above and a section 𝑠 ∈ 𝒢(𝑉),
there exist coverings {𝑈𝑖𝑗 → 𝑈𝑖} such that 𝑠|𝑢(𝑈𝑖𝑗) is in the image of ℱ(𝑢(𝑈𝑖𝑗)). Since
{𝑢(𝑈𝑖𝑗) → 𝑉} is a covering (as 𝑢 is continuous and by the axioms of a site) we conclude
that 𝑠 is locally in the image. Thus 𝛼 is surjective. In other words 𝑓∗ reflects surjections. �

9.37. Almost cocontinuous functors

Let 𝒞 be a site. The category PSh(𝒞) has an initial object, namely the presheaf which
assigns the empty set to each object of 𝒞. Let us denote this presheaf by ∅. It follows
from the properties of sheafification that the sheafification ∅# of ∅ is an initial object of
the category Sh(𝒞) of sheaves on 𝒞.

Definition 9.37.1. Let 𝒞 be a site. We say an object 𝑈 of 𝒞 is sheaf theoretically empty if
∅# → ℎ#

𝑈 is an isomorphism of sheaves.

The following lemma makes this notion more explicit.

Lemma 9.37.2. Let 𝒞 be a site. Let 𝑈 be an object of 𝒞. The following are equivalent:
(1) 𝑈 is sheaf theoretically empty,
(2) ℱ(𝑈) is a singleton for each sheaf ℱ,
(3) ∅#(𝑈) is a singleton,
(4) ∅#(𝑈) is nonempty, and
(5) the empty family is a covering of 𝑈 in 𝒞.

Moreover, if 𝑈 is sheaf theoretically empty, then for any morphism 𝑈′ → 𝑈 of 𝒞 the object
𝑈′ is sheaf theoretically empty.

Proof. For any sheaf ℱ we have ℱ(𝑈) = 𝑀𝑜𝑟Sh(𝒞)(ℎ#
𝑈, ℱ). Hence, we see that (1) and (2)

are equivalent. It is clear that (2) implies (3) implies (4). If every covering of 𝑈 is given by
a nonempty family, then ∅+(𝑈) is empty by definition of the plus construction. Note that
∅+ = ∅# as ∅ is a separated presheaf, see Theorem 9.10.10. Thus we see that (4) implies
(5). If (5) holds, then ℱ(𝑈) is a singleton for every sheaf ℱ by the sheaf condition for ℱ,
see Remark 9.7.2. Thus (5) implies (2) and (1) -- (5) are equivalent. The final assertion of
the lemma follows from Axiom (3) of Definition 9.6.2 applied the the empty covering of
𝑈. �

Definition 9.37.3. Let 𝒞, 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. We say 𝑢 is almost
cocontinuous if for every object 𝑈 of 𝒞 and every covering {𝑉𝑗 → 𝑢(𝑈)}𝑗∈𝐽 there exists a
covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 in 𝒞 such that for each 𝑖 in 𝐼 we have at least one of the following
two conditions

(1) 𝑢(𝑈𝑖) is sheaf theoretically empty, or
(2) the morphism 𝑢(𝑈𝑖) → 𝑢(𝑈) factors through 𝑉𝑗 for some 𝑗 ∈ 𝐽.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04D9
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Themotivation for this definition comes from a closed immersion 𝑖 ∶ 𝑍 → 𝑋 of topological
spaces. As discussed in Example 9.19.9 the continuous functor 𝒯𝑋 → 𝒯𝑍, 𝑈 ↦ 𝑍 ∩ 𝑈
is not cocontinuous. But it is almost continuous in the sense defined above. We know that
𝑖∗ while not exact on sheaves of sets, is exact on sheaves of abelian groups, see Sheaves,
Remark 6.32.5. And this holds in general for continuous and almost continuous functors.

Lemma 9.37.4. Let 𝒞, 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume that 𝑢 is continuous
and almost continuous. Let 𝒢 be a presheaf on 𝒟 such that 𝒢(𝑉) is a singleton whenever 𝑉
is sheaf theoretically empty. Then (𝑢𝑝𝒢)# = 𝑢𝑝(𝒢#).

Proof. Let 𝑈 ∈ 𝑂𝑏(𝒞). We have to show that (𝑢𝑝𝒢)#(𝑈) = 𝑢𝑝(𝒢#)(𝑈). It suffices to show
that (𝑢𝑝𝒢)+(𝑈) = 𝑢𝑝(𝒢+)(𝑈) since 𝒢+ is another presheaf for which the assumption of the
lemma holds. We have

𝑢𝑝(𝒢+)(𝑈) = 𝒢+(𝑢(𝑈)) = 𝑐𝑜𝑙𝑖𝑚𝒱 �̌�0(𝒱, 𝒢)
where the colimit is over the coverings 𝒱 of 𝑢(𝑈) in 𝒟. On the other hand, we see that

𝑢𝑝(𝒢)+(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝒰 �̌�0(𝑢(𝒰), 𝒢)
where the colimit is over the category of coverings 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 of 𝑈 in 𝒞 and
𝑢(𝒰) = {𝑢(𝑈𝑖) → 𝑢(𝑈)}𝑖∈𝐼. The condition that 𝑢 is continuous means that each 𝑢(𝒰) is a
covering. Write 𝐼 = 𝐼1 ⨿ 𝐼2, where

𝐼2 = {𝑖 ∈ 𝐼 ∣ 𝑢(𝑈𝑖) is sheaf theoretically empty}
Then 𝑢(𝒰)′ = {𝑢(𝑈𝑖) → 𝑢(𝑈)}𝑖∈𝐼1

is still a covering of because each of the other pieces can
be covered by the empty family and hence can be dropped by Axiom (2) of Definition 9.6.2.
Moreover, �̌�0(𝑢(𝒰), 𝒢) = �̌�0(𝑢(𝒰)′, 𝒢) by our assumption on 𝒢. Finally, the condition that
𝑢 is almost cocontinuous implies that for every covering 𝒱 of 𝑢(𝑈) there exists a covering
𝒰 of 𝑈 such that 𝑢(𝒰)′ refines 𝒱. It follows that the two colimits displayed above have the
same value as desired. �

Lemma 9.37.5. Let 𝒞, 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume that 𝑢 is continuous
and almost cocontinuous. Then 𝑢𝑠 = 𝑢𝑝 ∶ Sh(𝒟) → Sh(𝒞) commutes with pushouts and
coequalizers (and more generally finite, nonempty, connected colimits).

Proof. Let ℐ be a finite, nonempty, connected index category. Let ℐ → Sh(𝒟), 𝑖 ↦ 𝒢𝑖 by a
diagram. We know that the colimit of this diagram is the sheafification of the colimit in the
category of presheaves, see Lemma 9.10.13. Denote 𝑐𝑜𝑙𝑖𝑚𝑃𝑠ℎ the colimit in the category of
presheaves. Since ℐ is finite, nonempty and connected we see that 𝑐𝑜𝑙𝑖𝑚𝑃𝑠ℎ

𝑖 𝒢𝑖 is a presheaf
satisfying the assumptions of Lemma 9.37.4 (because a finite nonempty connected colimit
of singleton sets is a singleton). Hence that lemma gives

𝑢𝑠(𝑐𝑜𝑙𝑖𝑚𝑖 𝒢𝑖) = 𝑢𝑠((𝑐𝑜𝑙𝑖𝑚𝑃𝑠ℎ
𝑖 𝒢𝑖)#)

= (𝑢𝑝(𝑐𝑜𝑙𝑖𝑚𝑃𝑠ℎ
𝑖 𝒢𝑖))#

= (𝑐𝑜𝑙𝑖𝑚𝑃𝑆ℎ
𝑖 𝑢𝑝(𝒢𝑖))#

= 𝑐𝑜𝑙𝑖𝑚𝑖 𝑢𝑠(𝒢𝑖)
as desired. �

Lemma 9.37.6. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites associated to the continuous functor
𝑢 ∶ 𝒞 → 𝒟. If 𝑢 is almost cocontinuous then 𝑓∗ commutes with pushouts and coequalizers
(and more generally finite, nonempty, connected colimits).

Proof. This is a special case of Lemma 9.37.5. �
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9.38. Sheaves of algebraic structures

In Sheaves, Section 6.15 we introduced a type of algebraic struture to be a pair (𝒜, 𝑠), where
𝒜 is a category, and 𝑠 ∶ 𝒜 → Sets is a functor such that

(1) 𝑠 is faithful,
(2) 𝒜 has limits and 𝑠 commutes with limits,
(3) 𝒜 has filtered colimits and 𝑠 commutes with them, and
(4) 𝑠 reflects isomorphisms.

For such a type of algebraic structure we saw that a presheaf ℱ with values in 𝒜 on a space
𝑋 is a sheaf if and only if the associated presheaf of sets is a sheaf. Moreover, we worked
out the notion of stalk, and given a continuous map 𝑓 ∶ 𝑋 → 𝑌 we defined adjoint functors
pushforward and pullback on sheaves of algebraic structures which agrees with pushforward
and pullback on the underlying sheaves of sets. In addition extending a sheaf of algebraic
structures from a basis to all opens of a space, works as expected.
Part of this material still works in the setting of sites and sheaves. Let (𝒜, 𝑠) be a type of
algebraic structure. Let 𝒞 be a site. Let us denote PSh(𝒞, 𝒜), resp. Sh(𝒞, 𝒜) the category
of presheaves, resp. sheaves with values in 𝒜 on 𝒞.

(𝛼) A presheaf with values in 𝒜 is a sheaf if and only if its underlying presheaf of
sets is a sheaf. See the proof of Sheaves, Lemma 6.9.2.

(𝛽) Given a presheaf ℱ with values in 𝒜 the presheaf ℱ# = (ℱ+)+ is a sheaf. This is
true since the colimits in the sheafification process are filtered, and even colim-
its over directed partially ordered sets (see Section 9.10, especially the proof of
Lemma 9.10.14) and since 𝑠 commutes with filtered colimits.

(𝛾) We get the following commutative diagram

Sh(𝒞, 𝒜)
//

𝑠
��

PSh(𝒞, 𝒜)
#

oo

𝑠
��

Sh(𝒞)
//
PSh(𝒞)oo

(𝛿) We have ℱ = ℱ# if and only if ℱ is a sheaf of algebraic structures.
(𝜖) The functor # is adjoint to the inclusion functor:

𝑀𝑜𝑟PSh(𝒞,𝒜)(𝒢, ℱ) = 𝑀𝑜𝑟Sh(𝒞,𝒜)(𝒢#, ℱ)
The proof is the same as the proof of Proposition 9.10.12.

(𝜁) The functor ℱ ↦ ℱ# is left exact. The proof is the same as the proof of Lemma
9.10.14.

Definition 9.38.1. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites given by a functor 𝑢 ∶
𝒞 → 𝒟. We define the pushforward functor for presheaves of algebraic structures by the
rule 𝑢𝑝ℱ(𝑈) = ℱ(𝑢𝑈), and for sheaves of algebraic structures by the same rule, namely
𝑓∗ℱ(𝑈) = ℱ(𝑢𝑈).

The problem comes with trying the define the pullback. The reason is that the colimits
defining the functor 𝑢𝑝 in Section 9.5 may not be filtered. Thus the axioms above are not
enough in general to define the pullback of a (pre)sheaf of algebraic structures. Nonetheless,
in almost all cases the following lemma is sufficient to define pushfoward, and pullback of
(pre)sheaves of algebraic structures.

Lemma 9.38.2. Suppose the functor 𝑢 ∶ 𝒞 → 𝒟 satisfies the hypotheses of Proposition
9.14.6, and hence gives rise to a morphism of sites 𝑓 ∶ 𝒟 → 𝒞. In this case the pullback
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functor 𝑓−1 (resp. 𝑢𝑝) and the pushforward functor 𝑓∗ (resp. 𝑢𝑝) extend to an adjoint pair of
functors on the categories of sheaves (resp. presheaves) of algebraic structures. Moreover,
these functors commute with taking the underlying sheaf (resp. presheaf) of sets.

Proof. We have defined 𝑓∗ = 𝑢𝑝 above. In the course of the proof of Proposition 9.14.6
we saw that all the colimits used to define 𝑢𝑝 are filtered under the assumptions of the
proposition. Hence we conclude from the definition of a type of algebraic structure that we
may define 𝑢𝑝 by exactly the same colimits as a functor on presheaves of algebraic structures.
Adjointness of 𝑢𝑝 and 𝑢𝑝 is proved in exactly the same way as the proof of Lemma 9.5.4.
The discussion of sheafification of presheaves of algebraic structures above then implies
that we may define 𝑓−1(ℱ) = (𝑢𝑝ℱ)#. �

We briefly discuss a method for dealing with pullback and pushforward for a general mor-
phism of sites, and more generally for any morphism of topoi.

Let 𝒞 be a site. In the case 𝒜 = Ab, we may think of an abelian (pre)sheaf on 𝒞 as a
quadruple (ℱ, +, 0, 𝑖). Here the data are

(D1) ℱ is a sheaf of sets,
(D2) + ∶ ℱ × ℱ → ℱ is a morphism of sheaves of sets,
(D3) 0 ∶ ∗ → ℱ is a morphism from the singleton sheaf (see Example 9.10.2) to ℱ,

and
(D4) 𝑖 ∶ ℱ → ℱ is a morphism of sheaves of sets.

These data have to satisfy the following axioms
(A1) + is associative and commutative,
(A2) 0 is a unit for +, and
(A3) + ∘ (1, 𝑖) = 0 ∘ (ℱ → ∗).

Compare Sheaves, Lemma 6.4.3. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites. Note that since
𝑓−1 is exact we have 𝑓−1∗ = ∗ and 𝑓−1(ℱ × ℱ) = 𝑓−1ℱ × 𝑓−1ℱ. Thus we can define 𝑓−1ℱ
simply as the quadruple (𝑓−1ℱ, 𝑓−1+, 𝑓−10, 𝑓−1𝑖). The axioms are going to be preserved
because 𝑓−1 is a functor which commutes with finite limits. Finally it is not hard to check
that 𝑓∗ and 𝑓−1 are adjoint as usual.

In [MA71] this method is used. They introduce something called an ``espèce the structure
algébrique ≪définie par limites projectives finie≫''. For such an espèce you can use the
method described above to define a pair of adjoint functors 𝑓−1 and 𝑓∗ as above. This clearly
works for most algebraic structures that one encounters in practice. Instead of formalizing
this construction we simply list those algebraic structures for which this method works (to
be verified case by case). In fact, this method works for any morphism of topoi.

Proposition 9.38.3. Let 𝒞, 𝒟 be sites. Let 𝑓 = (𝑓−1, 𝑓∗) be a morphism of topoi from
Sh(𝒟) → Sh(𝒞). The method introduced above gives rise to an adjoint pair of functors
(𝑓−1, 𝑓∗) on sheaves of algebraic structures compatible with taking the underlying sheaves
of sets for the following types of algebraic structures:

(1) pointed sets,
(2) abelian groups,
(3) groups,
(4) monoids,
(5) rings,
(6) modules over a fixed ring, and
(7) lie algebras over a fixed field.
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Moreover, in each of these cases the results above labeled (𝛼), (𝛽), (𝛾), (𝛿), (𝜖), and (𝜁) hold.

Proof. The final statement of the proposition holds simply since each of the listed cate-
gories, endowed with the obvious forgetful functor, is indeed a type of algebraic structure
in the sense explained at the beginning of this section. See Sheaves, Lemma 6.15.2.

Proof of (2). We think of a sheaf of abelian groups as a quadruple (ℱ, +, 0, 𝑖) as explained
in the discussion preceding the proposition. If (ℱ, +, 0, 𝑖) lives on 𝒞, then its pullback
is defined as (𝑓−1ℱ, 𝑓−1+, 𝑓−10, 𝑓−1𝑖). If (𝒢, +, 0, 𝑖) lives on 𝒟, then its pushforward is
defined as (𝑓∗𝒢, 𝑓∗+, 𝑓∗0, 𝑓∗𝑖). This works because 𝑓∗(𝒢 × 𝒢) = 𝑓∗𝒢 × 𝑓∗𝒢. Adjointness
follows from adjointness of the set based functors, since

𝑀𝑜𝑟Ab(𝒞)((ℱ1, +, 0, 𝑖), (ℱ2, +, 0, 𝑖)) = {
𝜑 ∈ 𝑀𝑜𝑟Sh(𝒞)(ℱ1, ℱ2)

𝜑 is compatible with +, 0, 𝑖}

Details left to the reader.

This method also works for sheaves of rings by thinking of a sheaf of rings (with unit) as
a sixtuple (𝒪, +, 0, 𝑖, ⋅, 1) satisfying a list of axioms that you can find in any elementary
algebra book.

A sheaf of pointed sets is a pair (ℱ, 𝑝), where ℱ is a sheaf of sets, and 𝑝 ∶ ∗ → ℱ is a map
of sheaves of sets.

A sheaf of groups is given by a quadruple (ℱ, ⋅, 1, 𝑖) with suitable axioms.

A sheaf of monoids is given by a pair (ℱ, ⋅) with suitable axiom.

Let 𝑅 be a ring. An sheaf of 𝑅-modules is given by a quintuple (ℱ, +, 0, 𝑖, {𝜆𝑟}𝑟∈𝑅), where
the quadruple (ℱ, +, 0, 𝑖) is a sheaf of abelian groups as above, and 𝜆𝑟 ∶ ℱ → ℱ is a
family of morphisms of sheaves of sets such that 𝜆𝑟 ∘ 0 = 0, 𝜆𝑟 ∘ + = + ∘ (𝜆𝑟, 𝜆𝑟), 𝜆𝑟+𝑟′ =
+ ∘ 𝜆𝑟 × 𝜆𝑟′ ∘ (id, id), 𝜆𝑟𝑟′ = 𝜆𝑟 ∘ 𝜆𝑟′, 𝜆1 = id, 𝜆0 = 0 ∘ (ℱ → ∗). �

We will discuss the category of sheaves of modules over a sheaf of rings in Modules on
Sites, Section 16.10.

Remark 9.38.4. Let 𝒞, 𝒟 be sites. Let 𝑢 ∶ 𝒟 → 𝒞 be a continuous functor which gives
rise to a morphism of sites 𝒞 → 𝒟. Note that even in the case of abelian groups we
have not defined a pullback functor for presheaves of abelian groups. Since all colimits
are representable in the category of abelian groups, we certainly may define a functor 𝑢𝑎𝑏

𝑝
on abelian presheaves by the same colimits as we have used to define 𝑢𝑝 on presheaves of
sets. It will also be the case that 𝑢𝑎𝑏

𝑝 is adjoint to 𝑢𝑝 on the categories of abelian presheaves.
However, it will not always be the case that 𝑢𝑎𝑏

𝑝 agrees with 𝑢𝑝 on the underlying presheaves
of sets.

9.39. Pullback maps

It sometimes happens that a site 𝒞 does not have a final object. In this case we define the
global section functor as follows.

Definition 9.39.1. The global sections of a presheaf of sets ℱ over a site 𝒞 is the set

Γ(𝒞, ℱ) = 𝑀𝑜𝑟PSh(𝒞)(∗, ℱ)

where ∗ is the final object in the category of presheaves on 𝒞, i.e., the presheaf which
associates to every object a singleton.
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Of course the same definition applies to sheaves as well. Here is one way to compute global
sections.

Lemma 9.39.2. Let 𝒞 be a site. Let 𝑎, 𝑏 ∶ 𝑉 → 𝑈 be objects of 𝒞 such that

ℎ#
𝑉

//
// ℎ#

𝑈
// ∗

is a coequalizer in Sh(𝒞). Then Γ(𝒞, ℱ) is the equalizer of 𝑎∗, 𝑏∗ ∶ ℱ(𝑈) → ℱ(𝑉).

Proof. Since MorSh(𝒞)(ℎ#
𝑈, ℱ) = ℱ(𝑈) this is clear from the definitions. �

Now, let 𝑓 ∶ Sh(𝒟) → Sh(𝒞) be a morphism of topoi. Then for any sheaf 𝒢 on 𝒟 there is
a pullback map

𝑓−1 ∶ Γ(𝒟, ℱ) ⟶ Γ(𝒞, 𝑓−1ℱ)

Namely, as 𝑓−1 is exact it transforms ∗ into ∗. We can generalize this a bit by considering
a pair of sheaves ℱ, 𝒢 on 𝒞, 𝒟 together with a map 𝑓−1ℱ → 𝒢. Then we compose to get a
map

Γ(𝒟, ℱ) ⟶ Γ(𝒞, 𝒢)

A slightly more general construction which occurs frequently in nature is the following.
Suppose that we have a commutative diagram of morphisms of topoi

Sh(𝒟)

ℎ $$

𝑓
// Sh(𝒞)

𝑔
zz

Sh(ℬ)

Next, suppose that we have a sheaf ℱ on 𝒟. Then there is a pullback map

𝑓−1 ∶ 𝑔∗ℱ ⟶ ℎ∗𝑓−1ℱ

Namely, it is just the map coming from the identification ℎ∗𝑓−1ℱ = 𝑔∗𝑓∗𝑓−1ℱ together
with the canonical map ℱ → 𝑓∗𝑓−1ℱ pushed down to ℬ. Again, if we have a pair of
sheaves ℱ, 𝒢 on 𝒞, 𝒟 together with a map 𝑓−1ℱ → 𝒢, then we compose to get a map

𝑔∗ℱ ⟶ ℎ∗𝒢

Restricting to sections over an object of ℬ one recovers the pullback map on global sections
in many cases, see (insert future reference here). A seemingly more general situation is
where we have a commutative diagram of topoi

Sh(𝒟)

ℎ
��

𝑓
// Sh(𝒞)

𝑔
��

Sh(ℬ) 𝑒 // Sh(𝒜)

and a sheaf 𝒢 on 𝒞. Then there is a map 𝑒−1𝑔∗𝒢 → ℎ∗𝑓−1𝒢. Namely, this map is adjoint
to a map 𝑔∗𝒢 → 𝑒∗ℎ∗𝑓−1𝒢 = (𝑒 ∘ ℎ)∗𝑓−1𝒢 which is the pullback map just described.
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9.40. Topologies

In this section we define what a topology on a category is. However, the case of most
interest for algebraic geometry is the topology defined by a site on its underlying category.
We strongly suggest the first time reader skip this section and all other sections of this
chapter!

Definition 9.40.1. Let 𝒞 be a category. Let 𝑈 ∈ 𝑂𝑏(𝒞). A sieve 𝑆 on 𝑈 is a subpresheaf
𝑆 ⊂ ℎ𝑈.

In other words, a sieve on 𝑈 picks out for each object 𝑇 ∈ 𝑂𝑏(𝒞) a subset 𝑆(𝑇) of the set
of all morphisms 𝑇 → 𝑈. In fact, the only condition on the collection of subsets 𝑆(𝑇) ⊂
ℎ𝑈(𝑇) = 𝑀𝑜𝑟𝒞(𝑇, 𝑈) is the following rule

(9.40.1.1) (𝛼 ∶ 𝑇 → 𝑈) ∈ 𝑆(𝑇)
𝑔 ∶ 𝑇′ → 𝑇 } ⇒ (𝛼 ∘ 𝑔 ∶ 𝑇′ → 𝑈) ∈ 𝑆(𝑇′)

A good mental picture to keep in mind is to think of the map 𝑆 → ℎ𝑈 as a ``morphism from
𝑆 to 𝑈''.

Lemma 9.40.2. Let 𝒞 be a category. Let 𝑈 ∈ 𝑂𝑏(𝒞).
(1) The collection of sieves on 𝑈 is a set.
(2) Inclusion defines a partial ordering on this set.
(3) Unions and intersections of sieves are sieves.
(4) Given a family of morphisms {𝑈𝑖 → 𝑈}𝑖∈𝐼 of𝒞with target𝑈 there exists a unique

smallest sieve 𝑆 on 𝑈 such that each 𝑈𝑖 → 𝑈 belongs to 𝑆(𝑈𝑖).
(5) The sieve 𝑆 = ℎ𝑈 is the maximal sieve.
(6) The empty subpresheaf is the minimal sieve.

Proof. By our definition of subpresheaf, the collection of all subpresheaves of a presheaf
ℱ is a subset of ∏𝑈∈𝑂𝑏(𝒞) 𝒫(ℱ(𝑈)). And this is a set. (Here 𝒫(𝐴) denotes the powerset of
𝐴.) Hence the collection of sieves on 𝑈 is a set.

The partial ordering is defined by: 𝑆 ≤ 𝑆′ if and only if 𝑆(𝑇) ⊂ 𝑆′(𝑇) for all 𝑇 → 𝑈.
Notation: 𝑆 ⊂ 𝑆′.

Given a collection of sieves 𝑆𝑖, 𝑖 ∈ 𝐼 on 𝑈 we can define ⋃ 𝑆𝑖 as the sieve with values
(⋃ 𝑆𝑖)(𝑇) = ⋃ 𝑆𝑖(𝑇) for all 𝑇 ∈ 𝑂𝑏(𝒞). We define the intersection ⋂ 𝑆𝑖 in the same way.

Given {𝑈𝑖 → 𝑈}𝑖∈𝐼 as in the statement, consider the morphisms of presheaves ℎ𝑈𝑖
→

ℎ𝑈. We simply define 𝑆 as the union of the images (Definition 9.3.5) of these maps of
presheaves.

The last two statements of the lemma are obvious. �

Definition 9.40.3. Let 𝒞 be a category. Given a family of morphisms {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼
of 𝒞 with target 𝑈 we say the sieve 𝑆 on 𝑈 described in Lemma 9.40.2 part (4) is the sieve
on 𝑈 generated by the morphisms 𝑓𝑖.

Definition 9.40.4. Let 𝒞 be a category. Let 𝑓 ∶ 𝑉 → 𝑈 be a morphism of 𝒞. Let 𝑆 ⊂ ℎ𝑈
be a sieve. We define the pullback of 𝑆 by 𝑓 to be the sieve 𝑆 ×𝑈 𝑉 of 𝑉 defined by the rule

(𝛼 ∶ 𝑇 → 𝑉) ∈ (𝑆 ×𝑈 𝑉)(𝑇) ⇔ (𝑓 ∘ 𝛼 ∶ 𝑇 → 𝑈) ∈ 𝑆(𝑇)

We leave it to the reader to see that this is indeed a sieve (hint: use Equation 9.40.1.1). We
also sometimes call 𝑆 ×𝑈 𝑉 the base change of 𝑆 by 𝑓 ∶ 𝑉 → 𝑈.
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Lemma 9.40.5. Let 𝒞 be a category. Let 𝑈 ∈ 𝑂𝑏(𝒞). Let 𝑆 be a sieve on 𝑈. If 𝑓 ∶ 𝑉 → 𝑈
is in 𝑆, then 𝑆 ×𝑈 𝑉 = ℎ𝑉 is maximal.

Proof. Trivial from the definitions. �

Definition 9.40.6. Let 𝒞 be a category. A topology on 𝒞 is given by the following datum:
For every 𝑈 ∈ 𝑂𝑏(𝒞) a subset 𝐽(𝑈) of the set of all sieves on 𝑈.

These sets 𝐽(𝑈) have to satisfy the following conditions
(1) For every morphism 𝑓 ∶ 𝑉 → 𝑈 in 𝒞, and every element 𝑆 ∈ 𝐽(𝑈) the pullback

𝑆 ×𝑈 𝑉 is an element of 𝐽(𝑉).
(2) If 𝑆 and 𝑆′ are sieves on 𝑈 ∈ 𝑂𝑏(𝒞), if 𝑆 ∈ 𝐽(𝑈), and if for all 𝑓 ∈ 𝑆(𝑉) the

pullback 𝑆′ ×𝑈 𝑉 belongs to 𝐽(𝑉), then 𝑆′ belongs to 𝐽(𝑈).
(3) For every 𝑈 ∈ 𝑂𝑏(𝒞) the maximal sieve 𝑆 = ℎ𝑈 belongs to 𝐽(𝑈).

In this case, the sieves belonging to 𝐽(𝑈) are called the covering sieves.

Lemma 9.40.7. Let 𝒞 be a category. Let 𝐽 be a topology on 𝒞. Let 𝑈 ∈ 𝑂𝑏(𝒞).
(1) Finite intersections of elements of 𝐽(𝑈) are in 𝐽(𝑈).
(2) If 𝑆 ∈ 𝐽(𝑈) and 𝑆′ ⊃ 𝑆, then 𝑆′ ∈ 𝐽(𝑈).

Proof. Let 𝑆, 𝑆′ ∈ 𝐽(𝑈). Consider 𝑆″ = 𝑆 ∩ 𝑆′. For every 𝑉 → 𝑈 in 𝑆(𝑈) we have

𝑆′ ×𝑈 𝑉 = 𝑆″ ×𝑈 𝑉

simply because 𝑉 → 𝑈 already is in 𝑆. Hence by the second axiom of the definition we see
that 𝑆″ ∈ 𝐽(𝑈).

Let 𝑆 ∈ 𝐽(𝑈) and 𝑆′ ⊃ 𝑆. For every 𝑉 → 𝑈 in 𝑆(𝑈) we have 𝑆′ ×𝑈 𝑉 = ℎ𝑉 by Lemma
9.40.5. Thus𝑆′×𝑈𝑉 ∈ 𝐽(𝑉) by the third axiom. Hence𝑆′ ∈ 𝐽(𝑈) by the second axiom. �

Definition 9.40.8. Let 𝒞 be a category. Let 𝐽, 𝐽′ be two topologies on 𝒞. We say that 𝐽 is
finer than 𝐽′ if and only if for every object 𝑈 of 𝒞 we have 𝐽′(𝑈) ⊂ 𝐽(𝑈).

In other words, any covering sieve of 𝐽′ is a covering sieve of 𝐽. There exists a finest
topology on 𝒞, namely that topology where any sieve is a covering sieve. This is called the
discrete topology of 𝒞. There also exists a coarsest topology. Namely, the topology where
𝐽(𝑈) = {ℎ𝑈} for all objects 𝑈. This is called the chaotic or indiscrete topology.

Lemma 9.40.9. Let 𝒞 be a category. Let {𝐽𝑖}𝑖∈𝐼 be a set of topologies.
(1) The rule 𝐽(𝑈) = ⋂ 𝐽𝑖(𝑈) defines a topology on 𝒞.
(2) There is a coarsest topology finer than all of the topologies 𝐽𝑖.

Proof. The first part is direct from the definitions. The second follows by taking the inter-
section of all topologies finer than all of the 𝐽𝑖. �

At this point we can define without any motivation what a sheaf is.

Definition 9.40.10. Let 𝒞 be a category endowed with a topology 𝐽. Let ℱ be a presheaf
of sets on 𝒞. We say that ℱ is a sheaf on 𝒞 if for every 𝑈 ∈ 𝑂𝑏(𝒞) and for every covering
sieve 𝑆 of 𝑈 the canonical map

𝑀𝑜𝑟PSh(𝒞)(ℎ𝑈, ℱ) ⟶ 𝑀𝑜𝑟PSh(𝒞)(𝑆, ℱ)

is bijective.
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Recall that the left hand side of the displayed formula equals ℱ(𝑈). In other words, ℱ is a
sheaf if and only if a section of ℱ over 𝑈 is the same thing as a compatible collection of
sections 𝑠𝑇,𝛼 ∈ ℱ(𝑇) parametrized by (𝛼 ∶ 𝑇 → 𝑈) ∈ 𝑆(𝑇), and this for every covering
sieve 𝑆 on 𝑈.

Lemma 9.40.11. Let 𝒞 be a category. Let {ℱ𝑖}𝑖∈𝐼 be a collection of presheaves of sets on
𝒞. For each 𝑈 ∈ 𝑂𝑏(𝒞) denote 𝐽(𝑈) the set of sieves 𝑆 with the following property: For
every morphism 𝑉 → 𝑈, the maps

𝑀𝑜𝑟PSh(𝒞)(ℎ𝑉, ℱ𝑖) ⟶ 𝑀𝑜𝑟PSh(𝒞)(𝑆 ×𝑈 𝑉, ℱ𝑖)
are bijective for all 𝑖 ∈ 𝐼. Then 𝐽 defines a topology on 𝒞. This topology is the finest
topology in which all of the ℱ𝑖 are sheaves.

Proof. If we show that 𝐽 is a topology, then the last statement of the lemma immediately
follows. The first and second axioms of a topology are immediately verified. Thus, assume
that we have an object 𝑈, and sieves 𝑆, 𝑆′ of 𝑈 such that 𝑆 ∈ 𝐽(𝑈), and for all 𝑉 → 𝑈 in
𝑆(𝑉) we have 𝑆′ ×𝑈 𝑉 ∈ 𝐽(𝑉). We have to show that 𝑆′ ∈ 𝐽(𝑈). In other words, we have
to show that for any 𝑓 ∶ 𝑊 → 𝑈, the maps

ℱ𝑖(𝑊) = 𝑀𝑜𝑟PSh(𝒞)(ℎ𝑊, ℱ𝑖) ⟶ 𝑀𝑜𝑟PSh(𝒞)(𝑆′ ×𝑈 𝑊, ℱ𝑖)

are bijective for all 𝑖 ∈ 𝐼. Pick an element 𝑖 ∈ 𝐼 and pick an element 𝜑 ∈ 𝑀𝑜𝑟PSh(𝒞)(𝑆′ ×𝑈
𝑊, ℱ𝑖). We will construct a section 𝑠 ∈ ℱ𝑖(𝑊) mapping to 𝜑.
Suppose 𝛼 ∶ 𝑉 → 𝑊 is an element of 𝑆 ×𝑈 𝑊. According to the definition of pullbacks
we see that the composition 𝑓 ∘ 𝛼 ∶ 𝑉 → 𝑊 → 𝑈 is in 𝑆. Hence 𝑆′ ×𝑈 𝑉 is in 𝐽(𝑊) by
assumption on the pair of sieves 𝑆, 𝑆′. Now we have a commutative diagram of presheaves

𝑆′ ×𝑈 𝑉 //

��

ℎ𝑉

��
𝑆′ ×𝑈 𝑊 // ℎ𝑊

The restriction of 𝜑 to 𝑆′ ×𝑈 𝑉 corresponds to an element 𝑠𝑉,𝛼 ∈ ℱ𝑖(𝑉). This we see from
the definition of 𝐽, and because 𝑆′ ×𝑈 𝑉 is in 𝐽(𝑊). We leave it to the reader to check that
the rule (𝑉, 𝛼) ↦ 𝑠𝑉,𝛼 defines an element 𝜓 ∈ 𝑀𝑜𝑟PSh(𝒞)(𝑆 ×𝑈 𝑊, ℱ𝑖). Since 𝑆 ∈ 𝐽(𝑈) we
see immediately from the definition of 𝐽 that 𝜓 corresponds to an element 𝑠 of ℱ𝑖(𝑊).
We leave it to the reader to verify that the construction 𝜑 ↦ 𝑠 is inverse to the natural map
displayed above. �

Definition 9.40.12. Let 𝒞 be a category. The finest topology on 𝒞 such that all repre-
sentable presheaves are sheaves, see Lemma 9.40.11, is called the canonical topology of
𝒞.

9.41. The topology defined by a site

Suppose that 𝒞 is a category, and suppose that Cov1(𝒞) and Cov2(𝒞) are sets of coverings
that define the structure of a site on 𝒞. In this situation it can happen that the categories of
sheaves (of sets) for Cov1(𝒞) and Cov2(𝒞) are the same, see for example Lemma 9.8.5.
It turns out that the category of sheaves on 𝒞 with respect to some topology 𝐽 determines
and is determined by the topology 𝐽. This is a nontrivial statement which we will address
later, see Theorem 9.43.2.
Accepting this for the moment it makes sense to study the topology determined by a site.
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Lemma 9.41.1. Let 𝒞 be a site with coverings Cov(𝒞). For every object 𝑈 of 𝒞, let 𝐽(𝑈)
denote the set of sieves 𝑆 on 𝑈 with the following property: there exists a covering {𝑓𝑖 ∶
𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) so that the sieve 𝑆′ generated by the 𝑓𝑖 (see Definition 9.40.3) is
contained in 𝑆.

(1) This 𝐽 is a topology on 𝒞.
(2) A presheaf ℱ is a sheaf for this topology (see Definition 9.40.10) if and only if it

is a sheaf on the site (see Definition 9.7.1).

Proof. To prove the first assertion we just note that axioms (1), (2) and (3) of the definition
of a site (Definition 9.6.2) directly imply the axioms (3), (2) and (1) of the definition of a
topology (Definition 9.40.6). As an example we prove 𝐽 has property (2). Namely, let 𝑈
be an object of 𝒞, let 𝑆, 𝑆′ be sieves on 𝑈 such that 𝑆 ∈ 𝐽(𝑈), and such that for every
𝑉 → 𝑈 in 𝑆(𝑉) we have 𝑆′ ×𝑈 𝑉 ∈ 𝐽(𝑉). By definition of 𝐽(𝑈) we can find a covering
{𝑓𝑖 ∶ 𝑈𝑖 → 𝑈} of the site such that 𝑆 the image of ℎ𝑈𝑖

→ ℎ𝑈 is contained in 𝑆. Since
each 𝑆′ ×𝑈 𝑈𝑖 is in 𝐽(𝑈𝑖) we see that there are coverings {𝑈𝑖𝑗 → 𝑈𝑖} of the site such that
ℎ𝑈𝑖𝑗

→ ℎ𝑈𝑖
is contained in 𝑆′ ×𝑈 𝑈𝑖. By definition of the base change this means that

ℎ𝑈𝑖𝑗
→ ℎ𝑈 is contained in the subpresheaf 𝑆′ ⊂ ℎ𝑈. By axiom (2) for sites we see that

{𝑈𝑖𝑗 → 𝑈} is a covering of 𝑈 and we conclude that 𝑆′ ∈ 𝐽(𝑈) by definition of 𝐽.

Let ℱ be a presheaf. Suppose that ℱ is a sheaf in the topology 𝐽. We will show that ℱ is a
sheaf on the site as well. Let {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of the site. Let 𝑠𝑖 ∈ ℱ(𝑈𝑖) be
a family of sections such that 𝑠𝑖|𝑈𝑖×𝑈𝑈𝑗

= 𝑠𝑗|𝑈𝑖×𝑈𝑈𝑗
for all 𝑖, 𝑗. We have to show that there

exists a unique section 𝑠 ∈ ℱ(𝑈) restricting back to the 𝑠𝑖 on the 𝑈𝑖. Let 𝑆 ⊂ ℎ𝑈 be the
sieve generated by the 𝑓𝑖. Note that 𝑆 ∈ 𝐽(𝑈) by definition. In stead of constructing 𝑠, by
the sheaf condition in the topology, it suffices to construct an element

𝜑 ∈ 𝑀𝑜𝑟PSh(𝒞)(𝑆, ℱ).

Take 𝛼 ∈ 𝑆(𝑇) for some object 𝑇 ∈ 𝒰. This means exactly that 𝛼 ∶ 𝑇 → 𝑈 is a morphism
which factors through 𝑓𝑖 for some 𝑖 ∈ 𝐼 (and maybe more than 1). Pick such an index 𝑖 and
a factorization 𝛼 = 𝑓𝑖 ∘ 𝛼𝑖. Define 𝜑(𝛼) = 𝛼∗

𝑖 𝑠𝑖. If 𝑖′, 𝛼 = 𝑓𝑖 ∘ 𝛼′
𝑖′ is a second choice, then

𝛼∗
𝑖 𝑠𝑖 = (𝛼′

𝑖′)∗𝑠𝑖′ exactly because of our condition 𝑠𝑖|𝑈𝑖×𝑈𝑈𝑗
= 𝑠𝑗|𝑈𝑖×𝑈𝑈𝑗

for all 𝑖, 𝑗. Thus
𝜑(𝛼) is well defined. We leave it to the reader to verify that 𝜑, which in turn determines 𝑠
is correct in the sense that 𝑠 restricts back to 𝑠𝑖.

Let ℱ be a presheaf. Suppose that ℱ is a sheaf on the site (𝒞,Cov(𝒞)). We will show that
ℱ is a sheaf for the topology 𝐽 as well. Let 𝑈 be an object of 𝒞. Let 𝑆 be a covering sieve
on 𝑈 with respect to the topology 𝐽. Let

𝜑 ∈ 𝑀𝑜𝑟PSh(𝒞)(𝑆, ℱ).

We have to show there is a unique element in ℱ(𝑈) = 𝑀𝑜𝑟PSh(𝒞)(ℎ𝑈, ℱ) which restricts
back to 𝜑. By definition there exists a covering {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) such that
𝑓𝑖 ∶ 𝑈𝑖 ∈ 𝑈 belongs to 𝑆(𝑈𝑖). Hence we can set 𝑠𝑖 = 𝜑(𝑓𝑖) ∈ ℱ(𝑈𝑖). Then it is a pleasant
exercise to see that 𝑠𝑖|𝑈𝑖×𝑈𝑈𝑗

= 𝑠𝑗|𝑈𝑖×𝑈𝑈𝑗
for all 𝑖, 𝑗. Thus we obtain the desired section 𝑠

by the sheaf condition for ℱ on the site (𝒞,Cov(𝒞)). Details left to the reader. �

Definition 9.41.2. Let 𝒞 be a site with coverings Cov(𝒞). The topology associated to 𝒞 is
the topology 𝐽 contructed in Lemma 9.41.1 above.

Let 𝒞 be a category. Let Cov1(𝒞) and Cov2(𝒞) be two coverings defining the structure of
a site on 𝒞. It may very well happen that the topologies defined by these are the same. If
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this happens then we say Cov1(𝒞) and Cov2(𝒞) define the same topology on 𝒞. And if this
happens then the categories of sheaves are the same, by Lemma 9.41.1.

It is usually the case that we only care about the topology defined by a collection of cover-
ings, and we view the possibility of choosing different sets of coverings as a tool to study
the topology.

Remark 9.41.3. Enlarging the class of coverings. Clearly, if Cov(𝒞) defines the structure
of a site on 𝒞 then we may add to 𝒞 any set of families of morphisms with fixed target
tautologically equivalent (see Definition 9.8.2) to elements of Cov(𝒞) without changing
the topology.

Remark 9.41.4. Shrinking the class of coverings. Let 𝒞 be a site. Consider the power set
𝒮 = 𝑃(Arrow(𝒞)) (power set) of the set of morphisms, i.e., the set of all sets of morphisms.
Let 𝒮𝜏 ⊂ 𝒮 be the subset consisting of those 𝑇 ∈ 𝒮 such that (a) all 𝜑 ∈ 𝑇 have the same
target, (b) the collection {𝜑}𝜑∈𝑇 is tautologically equivalent (see Definition 9.8.2) to some
covering in Cov(𝒞). Clearly, considering the elements of 𝒮𝜏 as the coverings, we do not
get exactly the notion of a site as defined in Definition 9.6.2. The structure (𝒞, 𝒮𝜏) we get
satisfies slightly modified conditions. The modified conditions are:

(0') Cov(𝒞) ⊂ 𝑃(Arrow(𝒞)),
(1') If 𝑉 → 𝑈 is an isomorphism then {𝑉 → 𝑈} ∈ Cov(𝒞).
(2') If {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) and for each 𝑖 we have {𝑉𝑖𝑗 → 𝑈𝑖}𝑗∈𝐽𝑖

∈ Cov(𝒞), then
{𝑉𝑖𝑗 → 𝑈}𝑖∈𝐼,𝑗∈𝐽𝑖

is tautologically equivalent to an element of Cov(𝒞).
(3') If {𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) and 𝑉 → 𝑈 is a morphism of 𝒞 then 𝑈𝑖 ×𝑈 𝑉 exists for

all 𝑖 and {𝑈𝑖 ×𝑈 𝑉 → 𝑉}𝑖∈𝐼 is tautologically equivalent to an element of Cov(𝒞).
And it is easy to verify that, given a structure satisfying (0') -- (3') above, then after suit-
ably enlarging Cov(𝒞) (compare Sets, Section 3.11) we get a site. Obviously there is little
difference between this notion and the actual notion of a site, at least from the point of
view of the topology. There are two benefits: because of condition (0') above the coverings
automatically form a set, and because of (0') the totality of all structures of this type forms
a set as well. The price you pay for this is that you have to keep writing ``tautologically
equivalent'' everywhere.

9.42. Sheafification in a topology

In this section we explain the analogue of the sheafification construction in a topology.

Let 𝒞 be a category. Let 𝐽 be a topology on 𝒞. Let ℱ be a presheaf of sets. For every
𝑈 ∈ 𝑂𝑏(𝒞) we define

𝐿ℱ(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑆∈𝐽(𝑈)𝑜𝑝𝑝 𝑀𝑜𝑟PSh(𝒞)(𝑆, ℱ)

as a colimit. Here we think of 𝐽(𝑈) as a partially ordered set, ordered by inclusion, see
Lemma 9.40.2. The transition maps in the system are defined as follows. If 𝑆 ⊂ 𝑆′ are
in 𝐽(𝑈), then 𝑆 → 𝑆′ is a morphism of presheaves. Hence there is a natural restriction
mapping

𝑀𝑜𝑟PSh(𝒞)(𝑆, ℱ) ⟶ 𝑀𝑜𝑟PSh(𝒞)(𝑆′, ℱ).
Thus we see that 𝑆 ↦ 𝑀𝑜𝑟PSh(𝒞)(𝑆, ℱ) is a directed system as in Categories, Definition
4.19.1 provided we reverse the ordering on 𝐽(𝑈) (which is what the superscript 𝑜𝑝𝑝 is sup-
posed to indicate). In particular, since ℎ𝑈 ∈ 𝐽(𝑈) there is a canonical map

ℓ ∶ ℱ(𝑈) ⟶ 𝐿ℱ(𝑈)
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coming from the identification ℱ(𝑈) = 𝑀𝑜𝑟PSh(𝒞)(ℎ𝑈, ℱ). In addition, the colimit defining
𝐿ℱ(𝑈) is directed since for any pair of covering sieves 𝑆, 𝑆′ on 𝑈 the sieve 𝑆 ∩ 𝑆′ is a
covering sieve too, see Lemma 9.40.2.

Let 𝑓 ∶ 𝑉 → 𝑈 be a morphism in 𝒞. Let 𝑆 ∈ 𝐽(𝑈). There is a commutative diagram

𝑆 ×𝑈 𝑉 //

��

ℎ𝑉

��
𝑆 // ℎ𝑈

We can use the left vertical map to get canonical restriction maps

𝑀𝑜𝑟PSh(𝒞)(𝑆, ℱ) → 𝑀𝑜𝑟PSh(𝒞)(𝑆 ×𝑈 𝑉, ℱ).

Base change 𝑆 ↦ 𝑆 ×𝑈 𝑉 induces an order preserving map 𝐽(𝑈) → 𝐽(𝑉). And the restric-
tion maps define a transformation of functors as in Categories, Lemma categories-lemma-
functorial-colimit. Hence we get a natural retriction map

𝐿ℱ(𝑈) ⟶ 𝐿ℱ(𝑉).

Lemma 9.42.1. In the situation above.
(1) The assignment 𝑈 ↦ 𝐿ℱ(𝑈) combined with the restriction mappings defined

above is a presheaf.
(2) The maps ℓ glue to give a morphism of presheaves ℓ ∶ ℱ → 𝐿ℱ.
(3) The rule ℱ ↦ (ℱ

ℓ
−→ 𝐿ℱ) is a functor.

(4) If ℱ is a subpresheaf of 𝒢, then 𝐿ℱ is a subpresheaf of 𝐿𝒢.
(5) The map ℓ ∶ ℱ → 𝐿ℱ has the following property: For every section 𝑠 ∈ 𝐿ℱ(𝑈)

there exists a covering sieve 𝑆 on 𝑈 and an element 𝜑 ∈ 𝑀𝑜𝑟PSh(𝒞)(𝑆, ℱ) such
that ℓ(𝜑) equals the restriction of 𝑠 to 𝑆.

Proof. Omitted. �

Definition 9.42.2. Let 𝒞 be a category. Let 𝐽 be a topology on 𝒞. We say that a presheaf
of sets ℱ is separated if for every object 𝑈 and every covering sieve 𝑆 on 𝑈 the canonical
map ℱ(𝑈) → 𝑀𝑜𝑟PSh(𝒞)(𝑆, ℱ) is injective.

Theorem 9.42.3. Let 𝒞 be a category. Let 𝐽 be a topology on 𝒞. Let ℱ be a presheaf of
sets.

(1) The presheaf 𝐿ℱ is separated.
(2) If ℱ is separated, then 𝐿ℱ is a sheaf and the map of presheaves ℱ → 𝐿ℱ is

injective.
(3) If ℱ is a sheaf, then ℱ → 𝐿ℱ is an isomorphism.
(4) The presheaf 𝐿𝐿ℱ is always a sheaf.

Proof. Part (3) is trivial from the definition of 𝐿 and the definition of a sheaf (Definition
9.40.10). Part (4) follows formally from the others.

We sketch the proof of (1). Suppose 𝑆 is a covering sieve of the object 𝑈. Suppose that 𝜑𝑖 ∈
𝐿ℱ(𝑈), 𝑖 = 1, 2 map to the same element in 𝑀𝑜𝑟PSh(𝒞)(𝑆, 𝐿ℱ). We may find a single cov-
ering sieve 𝑆′ on 𝑈 such that both 𝜑𝑖 are represented by elements 𝜑𝑖 ∈ 𝑀𝑜𝑟PSh(𝒞)(𝑆′, ℱ).
We may assume that 𝑆′ = 𝑆 by replacing both 𝑆 and 𝑆′ by 𝑆′ ∩ 𝑆 which is also a covering
sieve, see Lemma 9.40.2. Suppose 𝑉 ∈ 𝑂𝑏(𝒞), and 𝛼 ∶ 𝑉 → 𝑈 in 𝑆(𝑉). Then we have
𝑆 ×𝑈 𝑉 = ℎ𝑉, see Lemma 9.40.5. Thus the restrictions of 𝜑𝑖 via 𝑉 → 𝑈 correspond to
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sections 𝑠𝑖,𝑉,𝛼 of ℱ over 𝑉. The assumption is that there exist a covering sieve 𝑆𝑉,𝛼 of 𝑉
such that 𝑠𝑖,𝑉,𝛼 restrict to the same element of 𝑀𝑜𝑟PSh(𝒞)(𝑆𝑉,𝛼, ℱ). Consider the sieve 𝑆″

on 𝑈 defined by the rule
(𝑓 ∶ 𝑇 → 𝑈) ∈ 𝑆″(𝑇) ⇔ ∃ 𝑉, 𝛼 ∶ 𝑉 → 𝑈, 𝛼 ∈ 𝑆(𝑉),

∃ 𝑔 ∶ 𝑇 → 𝑉, 𝑔 ∈ 𝑆𝑉,𝛼(𝑇),(9.42.3.1)
𝑓 = 𝛼 ∘ 𝑔

By axiom (2) of a topology we see that 𝑆″ is a covering sieve on 𝑈. By construction we
see that 𝜑1 and 𝜑2 restrict to the same element of 𝑀𝑜𝑟PSh(𝒞)(𝑆″, 𝐿ℱ) as desired.
We sketch the proof of (2). Assume that ℱ is a separated presheaf of sets on 𝒞 with respect
to the topology 𝐽. Let 𝑆 be a covering sieve of the object 𝑈 of 𝒞. Suppose that 𝜑 ∈
𝑀𝑜𝑟𝒞(𝑆, 𝐿ℱ). We have to find an element 𝑠 ∈ 𝐿ℱ(𝑈) restricting to 𝜑. Suppose 𝑉 ∈
𝑂𝑏(𝒞), and 𝛼 ∶ 𝑉 → 𝑈 in 𝑆(𝑉). The value 𝜑(𝛼) ∈ 𝐿ℱ(𝑉) is given by a covering sieve
𝑆𝑉,𝛼 of 𝑉 and a morphism of presheaves 𝜑𝑉,𝛼 ∶ 𝑆𝑉,𝛼 → ℱ. As in the proof above, define a
covering sieve 𝑆″ on 𝑈 by Equation (9.42.3.1). We define

𝜑″ ∶ 𝑆″ ⟶ ℱ
by the following simple rule: For every 𝑓 ∶ 𝑇 → 𝑈, 𝑓 ∈ 𝑆″(𝑇) choose 𝑉, 𝛼, 𝑔 as in Equation
(9.42.3.1). Then set

𝜑″(𝑓) = 𝜑𝑉,𝛼(𝑔).
Weclaim this is independent of the choice of𝑉, 𝛼, 𝑔. Consider a second such choice𝑉′, 𝛼′, 𝑔′.
The restrictions of 𝜑𝑉,𝛼 and 𝜑𝑉′,𝛼′ to the intersection of the following covering sieves on 𝑇

(𝑆𝑉,𝛼 ×𝑉,𝑔 𝑇) ∩ (𝑆𝑉′,𝛼′ ×𝑉′,𝑔′ 𝑇)
agree. Namely, these restrictions both correspond to the restriction of 𝜑 to 𝑇 (via 𝑓) and
the desired equality follows because ℱ is separated. Denote the common restriction 𝜓. The
independence of choice follows because 𝜑𝑉,𝛼(𝑔) = 𝜓(id𝑇) = 𝜑𝑉′,𝛼′(𝑔′). OK, so now 𝜑″

gives an element 𝑠 ∈ 𝐿ℱ(𝑈). We leave it to the reader to check that 𝑠 restricts to 𝜑. �

Definition 9.42.4. Let 𝒞 be a category endowed with a topology 𝐽. Let ℱ be a presheaf of
sets on 𝒞. The sheaf ℱ# ∶= 𝐿𝐿ℱ together with the canonical map ℱ → ℱ# is called the
sheaf associated to ℱ.

Proposition 9.42.5. Let 𝒞 be a category endowed with a topology. Let ℱ be a presheaf of
sets on 𝒞. The canonical map ℱ → ℱ# has the following universal property: For any map
ℱ → 𝒢, where 𝒢 is a sheaf of sets, there is a unique map ℱ# → 𝒢 such that ℱ → ℱ# → 𝒢
equals the given map.

Proof. Same as the proof of Proposition 9.10.12. �

9.43. Topologies and sheaves

Lemma 9.43.1. Let 𝒞 be a category endowed with a topology 𝐽. Let 𝑈 be an object of 𝒞.
Let 𝑆 be a sieve on 𝑈. The following are equivalent

(1) The sieve 𝑆 is a covering sieve.
(2) The sheafifcation 𝑆# → ℎ#

𝑈 of the map 𝑆 → ℎ𝑈 is an isomorphism.

Proof. First we make a couple of general remarks. We will use that 𝑆# = 𝐿𝐿𝑆, and
ℎ#

𝑈 = 𝐿𝐿ℎ𝑈. In particular, by Lemma 9.42.1, we see that 𝑆# → ℎ#
𝑈 is injective. Note that

id𝑈 ∈ ℎ𝑈(𝑈). Hence it gives rise to sections of 𝐿ℎ𝑈 and ℎ#
𝑈 = 𝐿𝐿ℎ𝑈 over 𝑈 which we will

also denote id𝑈.
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Suppose 𝑆 is a covering sieve. It clearly suffices to find a morphism ℎ𝑈 → 𝑆# such that
the composition ℎ𝑈 → ℎ#

𝑈 is the canonical map. To find such a map it suffices to find
a section 𝑠 ∈ 𝑆#(𝑈) wich restricts to id𝑈. But since 𝑆 is a covering sieve, the element
id𝑆 ∈ 𝑀𝑜𝑟PSh(𝒞)(𝑆, 𝑆) gives rise to a section of 𝐿𝑆 over 𝑈 which restricts to id𝑈 in 𝐿ℎ𝑈.
Hence we win.

Suppose that 𝑆# → ℎ#
𝑈 is an isomorphism. Let 1 ∈ 𝑆#(𝑈) be the element corresponding to

id𝑈 in ℎ#
𝑈(𝑈). Because 𝑆# = 𝐿𝐿𝑆 there exists a covering sieve 𝑆′ on 𝑈 such that 1 comes

from a
𝜑 ∈ 𝑀𝑜𝑟PSh(𝒞)(𝑆′, 𝐿𝑆).

This in turn means that for every 𝛼 ∶ 𝑉 → 𝑈, 𝛼 ∈ 𝑆′(𝑉) there exists a covering sieve 𝑆𝑉,𝛼
on 𝑉 such that 𝜑(id𝑉) corresponds to a morphism of presheaves 𝑆𝑉,𝛼 → 𝑆. In other words
𝑆𝑉,𝛼 is contained in 𝑆 ×𝑈 𝑉. By the second axiom of a topology we see that 𝑆 is a covering
sieve. �

Theorem 9.43.2. Let 𝒞 be a category. Let 𝐽, 𝐽′ be topologies on 𝒞. The following are
equivalent

(1) 𝐽 = 𝐽′,
(2) sheaves for the topology 𝐽 are the same as sheaves for the topology 𝐽′.

Proof. It is a tautology that if 𝐽 = 𝐽′ then the notions of sheaves are the same. Conversely,
Lemma 9.43.1 characterizes covering sieves in terms of the sheafification functor. But
the sheafification functor PSh(𝒞) → Sh(𝒞, 𝐽) is the right adjoint of the inclusion functor
Sh(𝒞, 𝐽) → PSh(𝒞). Hence if the subcategories Sh(𝒞, 𝐽) and Sh(𝒞, 𝐽′) are the same, then
the sheafification functors are the same and hence the collections of covering sieves are the
same. �

Lemma 9.43.3. Assumption and notation as in Theorem 9.43.2. Then 𝐽 ⊂ 𝐽′ if and only
if every sheaf for the topology 𝐽′ is a sheaf for the topology 𝐽.

Proof. One direction is clear. For the other direction suppose that Sh(𝒞, 𝐽′) ⊂ Sh(𝒞, 𝐽). By
formal nonsense this implies that if ℱ is a presheaf of sets, and ℱ → ℱ#, resp. ℱ → ℱ#,′

is the sheafification wrt 𝐽, resp. 𝐽′ then there is a canonical map ℱ# → ℱ#,′ such that
ℱ → ℱ# → ℱ#,′ equals the canonical map ℱ → ℱ#,′. Of course, ℱ# → ℱ#,′ identifies the
second sheaf as the sheafification of the first with respect to the topology 𝐽′. Apply this to
the map 𝑆 → ℎ𝑈 of Lemma 9.43.1. We get a commutative diagram

𝑆 //

��

𝑆# //

��

𝑆#,′

��
ℎ𝑈

// ℎ#
𝑈

// ℎ#,′
𝑈

And clearly, if 𝑆 is a covering sieve for the topology 𝐽 then the middle vertical map is an
isomorphism (by the lemma) and we conclude that the right vertical map is an isomorphism
as it is the sheafification of the one in the middle wrt 𝐽′. By the lemma again we conclude
that 𝑆 is a covering sieve for 𝐽′ as well. �

9.44. Topologies and continuous functors

Explain how a continous functor gives an adjoint pair of functors on sheaves.
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9.45. Points and topologies

Recall from Section 9.28 that given a functor 𝑝 = 𝑢 ∶ 𝒞 → Sets we can define a stalk
functor

PSh(𝒞) ⟶ Sets, ℱ ⟼ ℱ𝑝.

Definition 9.45.1. Let 𝒞 be a category. Let 𝐽 be a topology on 𝒞. A point 𝑝 of the topology
is given by a functor 𝑢 ∶ 𝒞 → Sets such that

(1) For every covering sieve 𝑆 on 𝑈 the map 𝑆𝑝 → (ℎ𝑈)𝑝 is surjective.
(2) The stalk functor Sh(𝒞) → Sets, ℱ → ℱ𝑝 is exact.
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CHAPTER 10

Homological Algebra

10.1. Introduction

Basic homological algebra will be explained in this document. We add as needed in the
other parts, since there is clearly an infinite amount of this stuff around. A reference is
[Mac63].

10.2. Basic notions

The following notions are considered basic and will not be defined, and or proved. This
does not mean they are all necessarily easy or well known.

(1) Nothing yet.

10.3. Abelian categories

An abelian category will be a category satisfying just enough axioms so the snake lemma
holds.

Definition 10.3.1. A category 𝒜 is called preadditive if each morphism set 𝑀𝑜𝑟𝒜(𝑥, 𝑦) is
endowed with the structure of an abelian group such that the compositions

𝑀𝑜𝑟(𝑥, 𝑦) × 𝑀𝑜𝑟(𝑦, 𝑧) ⟶ 𝑀𝑜𝑟(𝑥, 𝑧)

are bilinear. A functor 𝐹 ∶ 𝒜 → ℬ of preadditive categories is called additive if and
only if 𝐹 ∶ 𝑀𝑜𝑟(𝑥, 𝑦) → 𝑀𝑜𝑟(𝐹(𝑥), 𝐹(𝑦)) is a homomorphism of abelian groups for all
𝑥, 𝑦 ∈ 𝑂𝑏(𝒜).

In particular for every 𝑥, 𝑦 there exists at least one morphism 𝑥 → 𝑦, namely the zero map.

Lemma 10.3.2. Let 𝒜 be a preadditive category. Let 𝑥 be an object of 𝒜. The following
are equivalent

(1) 𝑥 is an initial object,
(2) 𝑥 is a final object, and
(3) id𝑥 = 0 in 𝑀𝑜𝑟𝒜(𝑥, 𝑥).

Furthermore, if such an object 0 exists, then a morphism 𝛼 ∶ 𝑥 → 𝑦 factors through 0 if
and only if 𝛼 = 0.

Proof. Omitted. �

Definition 10.3.3. In a preadditive category 𝒜 we call zero object, and we denote it 0 any
final and initial object as in Lemma 10.3.2 above.

Lemma 10.3.4. Let 𝒜 be a preadditive category. Let 𝑥, 𝑦 ∈ 𝑂𝑏(𝒜). If the product 𝑥 × 𝑦
exists, then so does the coproduct 𝑥 ∐ 𝑦. If the coproduct 𝑥 ∐ 𝑦 exists, then so does the
product 𝑥 × 𝑦. In this case also 𝑥 ∐ 𝑦 ≅ 𝑥 × 𝑦.
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Proof. Suppose that 𝑧 = 𝑥×𝑦 with projections 𝑝 ∶ 𝑧 → 𝑥 and 𝑞 ∶ 𝑧 → 𝑦. Denote 𝑖 ∶ 𝑥 → 𝑧
the morphism corresponding to (1, 0). Denote 𝑗 ∶ 𝑦 → 𝑧 the morphism corresponding to
(0, 1). Thus we have the commutative diagram

𝑥 1 //

𝑖

��

𝑥

𝑧

𝑝
??

𝑞

��
𝑦 1 //

𝑗
??

𝑦

where the diagonal compositions are zero. It follows that 𝑖 ∘ 𝑝 + 𝑗 ∘ 𝑞 ∶ 𝑧 → 𝑧 is the identity
since it is a morphism which upon composing with 𝑝 gives 𝑝 and upon composing with 𝑞
gives 𝑞. Suppose given morphisms 𝑎 ∶ 𝑥 → 𝑤 and 𝑏 ∶ 𝑦 → 𝑤. Then we can form the map
𝑎 ∘ 𝑝 + 𝑏 ∘ 𝑞 ∶ 𝑧 → 𝑤. In this way we get a bijection 𝑀𝑜𝑟(𝑧, 𝑤) = 𝑀𝑜𝑟(𝑥, 𝑤) × 𝑀𝑜𝑟(𝑦, 𝑤)
which show that 𝑧 = 𝑥 ∐ 𝑦.

We leave it to the reader to construct the morphisms 𝑝, 𝑞 given a coproduct 𝑥 ∐ 𝑦 instead
of a product. �

Definition 10.3.5. Given a pair of objects 𝑥, 𝑦 in a preadditive category 𝒜 we call direct
sum, and we denote it 𝑥 ⊕ 𝑦 the product 𝑥 × 𝑦 endowed with the morphisms 𝑖, 𝑗, 𝑝, 𝑞 as in
Lemma 10.3.4 above.

Remark 10.3.6. Note that the proof of Lemma 10.3.4 shows that given 𝑝 and 𝑞 the mor-
phisms 𝑖, 𝑗 are uniquely determined by the rules 𝑝 ∘ 𝑖 = id𝑥, 𝑞 ∘ 𝑗 = id𝑦, 𝑝 ∘ 𝑗 = 0, 𝑞 ∘ 𝑖 = 0.
Moreover, we automatically have 𝑖 ∘ 𝑝 + 𝑗 ∘ 𝑞 = id𝑥⊕𝑦. Similarly, given 𝑖, 𝑗 the morphisms
𝑝 and 𝑞 are uniquely determined. Finally, given objects 𝑥, 𝑦, 𝑧 and morphisms 𝑖 ∶ 𝑥 → 𝑧,
𝑗 ∶ 𝑦 → 𝑧, 𝑝 ∶ 𝑧 → 𝑥 and 𝑞 ∶ 𝑧 → 𝑦 such that 𝑝 ∘ 𝑖 = id𝑥, 𝑞 ∘ 𝑗 = id𝑦, 𝑝 ∘ 𝑗 = 0, 𝑞 ∘ 𝑖 = 0
and 𝑖 ∘ 𝑝 + 𝑗 ∘ 𝑞 = id𝑧, then 𝑧 is the direct sum of 𝑥 and 𝑦 with the four morphisms equal to
𝑖, 𝑗, 𝑝, 𝑞.

Lemma 10.3.7. Let 𝒜, ℬ be preadditive categories. Let 𝐹 ∶ 𝒜 → ℬ be an additive
functor. Then 𝐹 transforms direct sums to direct sums and zero to zero.

Proof. Suppose 𝐹 is additive. A direct sum 𝑧 of 𝑥 and 𝑦 is characterized by having mor-
phisms 𝑖 ∶ 𝑥 → 𝑧, 𝑗 ∶ 𝑦 → 𝑧, 𝑝 ∶ 𝑧 → 𝑥 and 𝑞 ∶ 𝑧 → 𝑦 such that 𝑝 ∘ 𝑖 = id𝑥,
𝑞 ∘ 𝑗 = id𝑦, 𝑝 ∘ 𝑗 = 0, 𝑞 ∘ 𝑖 = 0 and 𝑖 ∘ 𝑝 + 𝑗 ∘ 𝑞 = id𝑧, according to Remark 10.3.6. Clearly
𝐹(𝑥), 𝐹(𝑦), 𝐹(𝑧) and the morphisms 𝐹(𝑖), 𝐹(𝑗), 𝐹(𝑝), 𝐹(𝑞) satisfy exactly the same relations
(by additivity) and we see that 𝐹(𝑧) is a direct sum of 𝐹(𝑥) and 𝐹(𝑦). �

Definition 10.3.8. A category 𝒜 is called additive if it is preadditive and finite products
exist, in other words it has a zero object and direct sums.

Namely the empty product is a finite product and if it exists, then it is a final object.

Definition 10.3.9. Let 𝒜 be a preadditive category. Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism.
(1) A kernel of 𝑓 is a morphism 𝑖 ∶ 𝑧 → 𝑥 such that (a) 𝑓 ∘ 𝑖 = 0 and (b) for any

𝑖′ ∶ 𝑧′ → 𝑥 such that 𝑓 ∘ 𝑖′ = 0 there exists a unique morphism 𝑔 ∶ 𝑧′ → 𝑧 such
that 𝑖′ = 𝑖 ∘ 𝑔.

(2) If the kernel of 𝑓 exists, then we denote this Ker(𝑓) → 𝑥.
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(3) A cokernel of 𝑓 is a morphism 𝑝 ∶ 𝑦 → 𝑧 such that (a) 𝑝 ∘ 𝑓 = 0 and (b) for any
𝑝′ ∶ 𝑦 → 𝑧′ such that 𝑝′ ∘ 𝑓 = 0 there exists a unique morphism 𝑔 ∶ 𝑧 → 𝑧′ such
that 𝑝′ = 𝑔 ∘ 𝑝.

(4) If a cokernel of 𝑓 exists we denote this 𝑦 → Coker(𝑓).
(5) If a kernel of 𝑓 exists, then a coimage of 𝑓 is a cokernel for themorphismKer(𝑓) →

𝑥.
(6) If a kernel and coimage exist then we denote this 𝑥 → Coim(𝑓).
(7) If a cokernel of 𝑓 exists, then the image of 𝑓 is a kernel of the morphism 𝑦 →

Coker(𝑓).
(8) If a cokernel and image of 𝑓 exist then we denote this Im(𝑓) → 𝑦.

Lemma 10.3.10. Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in a preadditive category such that the
kernel, cokernel, image and coimage all exist. Then 𝑓 can be factored uniquely as 𝑥 →
Coim(𝑓) → Im(𝑓) → 𝑦.

Proof. There is a canonical morphism Coim(𝑓) → 𝑦 because Ker(𝑓) → 𝑥 → 𝑦 is zero.
The composition Coim(𝑓) → 𝑦 → Coker(𝑓) is zero, because it is the unique morphism
which gives rise to the morphism 𝑥 → 𝑦 → Coker(𝑓) which is zero. Hence Coim(𝑓) → 𝑦
factors uniquely through Im(𝑓) → 𝑦, which gives us the desired map. �

Example 10.3.11. Let 𝑘 be a field. Consider the category of filtered vector spaces over
𝑘. (See Definition 10.13.1.) Consider the filtered vector spaces (𝑉, 𝐹) and (𝑊, 𝐹) with
𝑉 = 𝑊 = 𝑘 and

𝐹𝑖𝑉 = {
𝑉 if 𝑖 < 0
0 if 𝑖 ≥ 0 and 𝐹𝑖𝑊 = {

𝑊 if 𝑖 ≤ 0
0 if 𝑖 > 0

The map 𝑓 ∶ 𝑉 → 𝑊 corresponding to id𝑘 on the underlying vector spaces has trivial kernel
and cokernel but is not an isomorphism. Note also that Coim(𝑓) = 𝑉 and Im(𝑓) = 𝑊. This
means that the category of filtered vector spaces over 𝑘 is not abelian.

Definition 10.3.12. A category 𝒜 is abelian if it is additive, if all kernels and cokernels
exist, and if the natural map Coim(𝑓) → Im(𝑓) is an isomorphism for all morphisms 𝑓 of
𝒜.

Lemma 10.3.13. Let 𝒜 be a preadditive category. The additions on sets of morphisms
make 𝒜𝑜𝑝𝑝 into a preadditive category. Furthermore, 𝒜 is additive if and only if 𝒜𝑜𝑝𝑝 is
additive, and 𝒜 is abelian if and only if 𝒜𝑜𝑝𝑝 is abelian.

Proof. Omitted. �

Definition 10.3.14. Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in an abelian category.
(1) We say 𝑓 is injective if Ker(𝑓) = 0.
(2) We say 𝑓 is surjective if Coker(𝑓) = 0.

If 𝑥 → 𝑦 is injective, then we say that 𝑥 is a subobject of 𝑦 and we use the notation 𝑥 ⊂ 𝑦.
If 𝑥 → 𝑦 is surjective, then we say that 𝑦 is a quotient of 𝑥.

Lemma 10.3.15. Let 𝑓 ∶ 𝑥 → 𝑦 be a morphism in an abelian category. Then
(1) 𝑓 is injective if and only if 𝑓 is a monomorphism, and
(2) 𝑓 is surjective if and only if 𝑓 is an epimorphism.

Proof. Omitted. �

In an abelian category, if 𝑥 ⊂ 𝑦 is a subobject, then we denote
𝑥/𝑦 = Coker(𝑥 → 𝑦).
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Lemma 10.3.16. Let 𝒜 be an abelian category. All finite limits and finite colimits exist in
𝒜.

Proof. To show that finite limits exist it suffices to show that finite products and equalizers
exist, see Categories, Lemma 4.16.4. Finite products exist by definition and the equalizer
of 𝑎, 𝑏 ∶ 𝑥 → 𝑦 is the kernel of 𝑎 − 𝑏. The argument for finite colimits is similar but dual
to this. �

Example 10.3.17. Let 𝒜 be an abelian category. Pushouts and fibre products in 𝒜 have the
following simple descriptions:

(1) If 𝑎 ∶ 𝑥 → 𝑦, 𝑏 ∶ 𝑧 → 𝑦 are morphisms in 𝒜, then we have the fibre product:
𝑥 ×𝑦 𝑧 = Ker((𝑎, −𝑏) ∶ 𝑥 ⊕ 𝑧 → 𝑦).

(2) If 𝑎 ∶ 𝑦 → 𝑥, 𝑏 ∶ 𝑦 → 𝑧 are morphisms in 𝒜, then we have the pushout:
𝑥 ⨿𝑦 𝑧 = Coker((𝑎, −𝑏) ∶ 𝑦 → 𝑥 ⊕ 𝑧).

Definition 10.3.18. Let 𝒜 be an additive category. We say a sequence of morphisms
… → 𝑥 → 𝑦 → 𝑧 → …

in 𝒜 is a complex if the composition of any two (drawn) arrows is zero. If 𝒜 is abelian then
we say a sequence as above is exact at 𝑦 if Im(𝑥 → 𝑦) = Ker(𝑦 → 𝑧). We say it is exact if
it is exact at every object. A short exact sequence is an exact complex of the form

0 → 𝐴 → 𝐵 → 𝐶 → 0.

In the following lemma we asssume the reader knows what it means for a sequence of
abelian groups to be exact.

Lemma 10.3.19. Let 𝒜 be an abelian category. Let 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 be a
complex of 𝒜.

(1) 𝑀1 → 𝑀2 → 𝑀3 → 0 is exact if and only if

0 → 𝐻𝑜𝑚𝒜(𝑀3, 𝑁) → 𝐻𝑜𝑚𝒜(𝑀2, 𝑁) → 𝐻𝑜𝑚𝒜(𝑀1, 𝑁)
is an exact sequence of abelian groups for all objects 𝑁 of 𝒜, and

(2) 0 → 𝑀1 → 𝑀2 → 𝑀3 is exact if and only if

0 → 𝐻𝑜𝑚𝒜(𝑁, 𝑀1) → 𝐻𝑜𝑚𝒜(𝑁, 𝑀2) → 𝐻𝑜𝑚𝒜(𝑁, 𝑀1)
is an exact sequence of abelian groups for all objects 𝑁 of 𝒜.

Proof. Omitted. Hint: See Algebra, Lemma 7.10.1. �

Definition 10.3.20. Let 𝒜 be an abelian category. Let 𝑖 ∶ 𝐴 → 𝐵 and 𝑞 ∶ 𝐵 → 𝐶 be
morphisms of 𝒜 such that 0 → 𝐴 → 𝐵 → 𝐶 → 0 is a short exact sequence. We say the
short exact sequence is split if there exist morphisms 𝑗 ∶ 𝐶 → 𝐵 and 𝑝 ∶ 𝐵 → 𝐴 such that
(𝐵, 𝑖, 𝑗, 𝑝, 𝑞) is the direct sum of 𝐴 and 𝐶.

Lemma 10.3.21. Let 𝒜 be an abelian category. Let 0 → 𝐴 → 𝐵 → 𝐶 → 0 be a short
exact sequence.

(1) Given a morphism 𝑠 ∶ 𝐶 → 𝐵 left inverse to 𝐵 → 𝐶, there exists a unique
𝜋 ∶ 𝐵 → 𝐴 such that (𝑠, 𝜋) splits the short exact sequence as in Definition
10.3.20.

(2) Given a morphism 𝜋 ∶ 𝐵 → 𝐴 right inverse to 𝐴 → 𝐵, there exists a unique
𝑠 ∶ 𝐶 → 𝐵 such that (𝑠, 𝜋) splits the short exact sequence as in Definition 10.3.20.

Proof. Omitted. �
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Lemma 10.3.22. Let 𝒜 be an abelian category.
(1) If 𝑥 → 𝑦 is surjective, then for every 𝑧 → 𝑦 the projection 𝑧×𝑦𝑧 → 𝑧 is surjective.
(2) If 𝑥 → 𝑦 is injective, then for every 𝑥 → 𝑧 the morpism 𝑧 → 𝑧 ⨿𝑥 𝑦 is injective.

Proof. We prove (1). Assume 𝑎 ∶ 𝑥 → 𝑦 surjective and 𝑏 ∶ 𝑧 → 𝑦 arbitrary. Let 𝑐 ∶ 𝑧 → 𝑡
be a morphism of 𝒜 such that 𝑧 ×𝑦 𝑧 → 𝑧 → 𝑡 is zero. Note that

0 → 𝑥 ×𝑦 𝑧 → 𝑥 ⊕ 𝑧 → 𝑦 → 0
is a short exact sequence, use Example 10.3.17 and the fact that 𝑎 is surjective. Consider
the map ̃𝑐 = (0, 𝑐) ∶ 𝑥 ⊕ 𝑧 → 𝑡. By assumption the composition 𝑥 ×𝑦 𝑧 → 𝑥 ⊕ 𝑧 → 𝑡 is
zero hence we see that ̃𝑐 can be factored as 𝑥 ⊕ 𝑧 → 𝑦 → 𝑡 for some morphism 𝑐′ ∶ 𝑦 → 𝑡,
see Lemma 10.3.19. This means that 𝑐 = 𝑐′ ∘ 𝑏 and that 0 = 𝑐′ ∘ 𝑎. As 𝑎 is surjective we
conclude that 𝑐′ = 0, hence 𝑐 = 0 as desired.
The proof of (2) is dual to the proof of (1) and is omitted. �

Lemma 10.3.23. Let 𝒜 be an abelian category. Suppose given a commutative diagram

𝑥 //

𝛼
��

𝑦 //

𝛽
��

𝑧 //

𝛾

��

0

0 // 𝑢 // 𝑣 // 𝑤
with exact rows, then there is a canonical exact sequence

Ker(𝛼) → Ker(𝛽) → Ker(𝛾) → Coker(𝛼) → Coker(𝛽) → Coker(𝛾)
Moreover, if 𝑥 → 𝑦 is injective, then the first map is injective, and if 𝑣 → 𝑤 is surjective,
then the last map is surjective.

Proof. Omitted. Let us sketch the construction of the map 𝛿 ∶ Ker(𝛾) → Coker(𝛼) is. Let
𝑇 ∈ 𝑂𝑏(𝒜). Consider a morphism 𝑎 ∶ 𝑇 → 𝑧 with 𝛾 ∘ 𝑎 = 0. In other words 𝑎 maps 𝑇 into
Ker(𝛾). We have to construct 𝛿 ∘ 𝑎 ∶ 𝑇 → Coker(𝛼). Because 𝑦 → 𝑧 is surjective, the fibre
product 𝑇′ = 𝑇 ×𝑧 𝑦 surjects onto 𝑇, see Lemma 10.3.22. Denote 𝑎′ ∶ 𝑇′ → 𝑦 the second
projection. Consider the morphism 𝛽∘𝑎′ ∶ 𝑇′ → 𝑣. Composing this morphism with 𝑣 → 𝑤
gives the same morphism as the composition 𝑇′ → 𝑇 → 𝑧 → 𝑤 in other words, it gives
the zero morphism. Because 𝑢 → 𝑣 is the kernel of 𝑣 → 𝑤 we conclude that 𝑎′ factors
through a morphism 𝑎″ ∶ 𝑇′ → 𝑢. Note that the kernel 𝑇″ of 𝑇′ → 𝑇 maps to zero under
the composition 𝑇′ → 𝑦 → 𝑧, and hence maps into Im(𝑥 → 𝑦). Thus 𝑎″|𝑇″ ∶ 𝑇″ → 𝑢 maps
into the image of 𝛼. We conclude that there exists a factorization

𝑇′
𝑎″

//

pr1
��

𝑢

��
𝑇 𝛿∘𝑎 // Coker(𝛼)

which gives the desired map 𝛿 ∘ 𝑎 ∶ 𝑇 → Coker(𝛼). �

Lemma 10.3.24. Let 𝒜 be an abelian category. Let
𝑤 //

𝛼
��

𝑥 //

𝛽
��

𝑦 //

𝛾
��

𝑧

𝛿
��

𝑤′ // 𝑥′ // 𝑦′ // 𝑧′

be a commutative diagram with exact rows.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05PK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=010H
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05QA


666 10. HOMOLOGICAL ALGEBRA

(1) If 𝛼, 𝛾 are surjective and 𝛿 is injective, then 𝛽 is surjective.
(2) If 𝛽, 𝛿 are injective and 𝛼 is surjective, then 𝛾 is injective.

Proof. Assume 𝛼, 𝛾 are surjective and 𝛿 is injective. We may replace 𝑤′ by Im(𝑤′ → 𝑥′),
i.e., we may assume that 𝑤′ → 𝑥′ is injective. We may replace 𝑧 by Im(𝑦 → 𝑧), i.e., we
may assume that 𝑦 → 𝑧 is surjective. Then we may apply Lemma 10.3.23 to

Ker(𝑦 → 𝑧) //

��

𝑦 //

��

𝑧 //

��

0

0 // Ker(𝑦′ → 𝑧′) // 𝑦′ // 𝑧′

to conclude that Ker(𝑦 → 𝑧) → Ker(𝑦′ → 𝑧′) is surjective. Finally, we apply Lemma
10.3.23 to

𝑤 //

��

𝑥 //

��

Ker(𝑦 → 𝑧) //

��

0

0 // 𝑤′ // 𝑥′ // Ker(𝑦′ → 𝑧′)

to conclude that 𝑥 → 𝑥′ is surjective. This proves (1). The proof of (2) is dual to this. �

Lemma 10.3.25. Let 𝒜 be an abelian category. Let

𝑣 //

𝛼
��

𝑤 //

𝛽
��

𝑥 //

𝛾
��

𝑦 //

𝛿
��

𝑧

𝜖
��

𝑣′ // 𝑤′ // 𝑥′ // 𝑦′ // 𝑧′

be a commutative diagram with exact rows. If 𝛽, 𝛿 are isomorphisms, 𝜖 is injective, and 𝛼
is surjective then 𝛾 is an isomorphism.

Proof. Immediate consequence of Lemma 10.3.24. �

10.4. Extensions

Definition 10.4.1. Let 𝒜 be an abelian category. Let 𝐴, 𝐶 ∈ 𝑂𝑏(𝒜). An extension 𝐸 of 𝐵
by 𝐴 is a short exact sequence

0 → 𝐴 → 𝐸 → 𝐵 → 0.

By abuse of language we often omit mention of the morphisms 𝐴 → 𝐸 and 𝐸 → 𝐵,
allthough they are definitively part of the structure of an extension.

Definition 10.4.2. Let 𝒜 be an abelian category. Let 𝐴, 𝐶 ∈ 𝑂𝑏(𝒜). The set of isomor-
phism classes of extensions of 𝐵 by 𝐴 is denoted

Ext𝒜(𝐵, 𝐴).

This is called the Ext-group.

This definition works, because by our conventions 𝒜 is a set, and hence Ext𝒜(𝐵, 𝐴) is a set.
In any of the cases of ``big'' abelian categories listed in Categories, Remark 4.2.2. one can
check by hand that Ext𝒜(𝐵, 𝐴) is a set as well. Also, we will see later that this is always
the case when 𝒜 has either enough projectives or enough injectives. Insert future reference
here.
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Actually we can turn Ext𝒜(−, −) into a functor
𝒜𝑜𝑝𝑝 × 𝒜 ⟶ Sets, (𝐴, 𝐵) ⟼ Ext𝒜(𝐴, 𝐵)

as follows:
(1) Given a morphism 𝐵′ → 𝐵 and an extension 𝐸 of 𝐵 by 𝐴 we define 𝐸′ = 𝐸×𝐵 𝐵′

so that we have the following commutative diagram of short exact sequences

0 // 𝐴 //

��

𝐸′ //

��

𝐵′ //

��

0

0 // 𝐴 // 𝐸 // 𝐵 // 0
The extension 𝐸′ is called the pullback of 𝐸 via 𝐵′ → 𝐵.

(2) Given a morphism 𝐴 → 𝐴′ and an extension 𝐸 of 𝐵 by 𝐴 we define 𝐸′ =
𝐴′ ∐𝐴 𝐸 so that we have the following commutative diagram of short exact se-
quences

0 // 𝐴 //

��

𝐸 //

��

𝐵 //

��

0

0 // 𝐴′ // 𝐸′ // 𝐵 // 0
The extension 𝐸′ is called the pushout of 𝐸 via 𝐴 → 𝐴′.

To see that this defines a functor as indicated above there are several things to verify. First
of all functoriality in the variable 𝐵 requires that (𝐸 ×𝐵 𝐵′) ×𝐵′ 𝐵″ = 𝐸 ×𝐵 𝐵″ which is
a general property of fibre products. Dually one deals with functoriality in the variable 𝐴.
Finally, given 𝐴 → 𝐴′ and 𝐵′ → 𝐵 we have to show that

𝐴′
∐𝐴

(𝐸 ×𝐵 𝐵′) ≅ (𝐴′
∐𝐴

𝐸) ×𝐵 𝐵′

as extensions of 𝐵′ by 𝐴′. Recall that 𝐴′ ∐𝐴 𝐸 is a quotient of 𝐴′ ⊕ 𝐸. Thus the right
hand side is a quotient of 𝐴′ ⊕ 𝐸 ×𝐵 𝐵′, and it is straightforward to see that the kernel is
exactly what you need in order to get the left hand side.
Note that if 𝐸1 and 𝐸2 are extensions of 𝐵 by 𝐴, then 𝐸1 ⊕ 𝐸2 is an extension of 𝐵 ⊕ 𝐵 by
𝐴 ⊕ 𝐴. We pull back by the diagonal map 𝐵 → 𝐵 ⊕ 𝐵 and we push out by the sum map
𝐴 ⊕ 𝐴 → 𝐴 to get an extension 𝐸1 + 𝐸2 of 𝐵 by 𝐴.

0 // 𝐴 ⊕ 𝐴 //

∑
��

𝐸1 ⊕ 𝐸2
//

��

𝐵 ⊕ 𝐵 //

��

0

0 // 𝐴 // 𝐸′ // 𝐵 ⊕ 𝐵 // 0

0 // 𝐴 //

OO

𝐸1 + 𝐸2
//

OO

𝐵 //

Δ

OO

0

The extension 𝐸1 + 𝐸2 is called the Baer sum of the given extensions.

Lemma 10.4.3. The construction (𝐸1, 𝐸2) ↦ 𝐸1 + 𝐸2 above defines a commutative group
law on Ext𝒜(𝐵, 𝐴) which is functorial in both variables.

Proof. Omitted. �

Lemma 10.4.4. Let 𝒜 be an abelian category. Let 0 → 𝑀1 → 𝑀2 → 𝑀3 → 0 be a short
exact sequence in 𝒜.
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(1) There is a canonical six term exact sequence of abelian groups

0 // 𝐻𝑜𝑚𝒜(𝑀3, 𝑁) // 𝐻𝑜𝑚𝒜(𝑀2, 𝑁) // 𝐻𝑜𝑚𝒜(𝑀1, 𝑁)

ss
Ext𝒜(𝑀3, 𝑁) // Ext𝒜(𝑀2, 𝑁) // Ext𝒜(𝑀1, 𝑁)

for all objects 𝑁 of 𝒜, and
(2) there is a canonical six term exact sequence of abelian groups

0 // 𝐻𝑜𝑚𝒜(𝑁, 𝑀1) // 𝐻𝑜𝑚𝒜(𝑁, 𝑀2) // 𝐻𝑜𝑚𝒜(𝑁, 𝑀1)

ss
Ext𝒜(𝑁, 𝑀1) // Ext𝒜(𝑁, 𝑀2) // Ext𝒜(𝑁, 𝑀1)

for all objects 𝑁 of 𝒜.

Proof. Omitted. Hint: The boundary maps are defined by using either push out or pull
back of the given short exact sequence. �

10.5. Additive functors

Recall that we defined, in Categories, Definition 4.21.1 the notion of a ``right exact'', ``left
exact'' and ``exact'' functor in the setting of a functor between categories that have finite
(co)limits. Thus this applies in particular to functors between abelian categories.

Lemma 10.5.1. Let 𝒜 and ℬ be abelian categories. Let 𝐹 ∶ 𝒜 → ℬ be a functor.
(1) If 𝐹 is either left or right exact, then it is additive.
(2) If 𝐹 is additive then it is left exact if and only if for every short exact sequence

0 → 𝐴 → 𝐵 → 𝐶 → 0 the sequence 0 → 𝐹(𝐴) → 𝐹(𝐵) → 𝐹(𝐶) is exact.
(3) If 𝐹 is additive then it is right exact if and only if for every short exact sequence

0 → 𝐴 → 𝐵 → 𝐶 → 0 the sequence 𝐹(𝐴) → 𝐹(𝐵) → 𝐹(𝐶) → 0 is exact.
(4) If 𝐹 is additive then it is exact if and only if for every short exact sequence 0 →

𝐴 → 𝐵 → 𝐶 → 0 the sequence 0 → 𝐹(𝐴) → 𝐹(𝐵) → 𝐹(𝐶) → 0 is exact.

Proof. Let us first note that if 𝐹 commutes with the empty limit or the empty colimit, then
𝐹(0) = 0. In particular 𝐹 applied to the zero morphism is zero. We will use this below
without mention.

Suppose that 𝐹 is left exact, i.e., commutes with finite limits. Then 𝐹(𝐴×𝐴) = 𝐹(𝐴)×𝐹(𝐴)
with projections 𝐹(𝑝) and 𝐹(𝑞). Hence 𝐹(𝐴 ⊕ 𝐴) = 𝐹(𝐴) ⊕ 𝐹(𝐴) with all four morphisms
𝐹(𝑖), 𝐹(𝑗), 𝐹(𝑝), 𝐹(𝑞) equal to their counterparts in ℬ as they satisfy the same relations, see
Remark 10.3.6. Then 𝑓 = 𝐹(𝑝 + 𝑞) is a morphism 𝑓 ∶ 𝐹(𝐴) ⊕ 𝐹(𝐴) → 𝐹(𝐴) such that
𝑓 ∘ 𝐹(𝑖) = 𝐹(𝑝 ∘ 𝑖 + 𝑞 ∘ 𝑖) = 𝐹(id𝐴) = id𝐹(𝐴). And similarly 𝑓 ∘ 𝐹(𝑗) = id𝐴. We conclude that
𝐹(𝑝+𝑞) = 𝐹(𝑝)+𝐹(𝑞). For any pair of morphisms 𝑎, 𝑏 ∶ 𝐵 → 𝐴 the map 𝑔 = 𝐹(𝑖∘𝑎+𝑗∘𝑏) ∶
𝐹(𝐵) → 𝐹(𝐴) ⊕ 𝐹(𝐴) is a morphism such that 𝐹(𝑝) ∘ 𝑔 = 𝐹(𝑝 ∘ (𝑖 ∘ 𝑎 + 𝑗 ∘ 𝑏)) = 𝐹(𝑎) and
similarly 𝐹(𝑞) ∘ 𝑔 = 𝐹(𝑏). Hence 𝑔 = 𝐹(𝑖) ∘ 𝐹(𝑎) + 𝐹(𝑗) ∘ 𝐹(𝑏). The sum of 𝑎 and 𝑏 is the
composition

𝐵
𝑖∘𝑎+𝑗∘𝑏 // 𝐴 ⊕ 𝐴

𝑝+𝑞 // 𝐴.
Applying 𝐹 we get

𝐹(𝐵)
𝐹(𝑖)∘𝐹(𝑎)+𝐹(𝑗)∘𝐹(𝑏) // 𝐹(𝐴) ⊕ 𝐹(𝐴)

𝐹(𝑝)+𝐹(𝑞) // 𝐴.
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where we used the expressions for 𝑓 and 𝑔 obtained above. Hence 𝐹 is additive.1

Denote 𝑓 ∶ 𝐵 → 𝐶 a map from 𝐵 to 𝐶. Exactness of 0 → 𝐴 → 𝐵 → 𝐶 just means that
𝐴 = Ker(𝑓). Clearly the kernel of 𝑓 is the equalizer of the two maps 𝑓 and 0 from 𝐵 to 𝐶.
Hence if 𝐹 commutes with limits, then 𝐹(Ker(𝑓)) = Ker(𝐹(𝑓)) which exactly means that
0 → 𝐹(𝐴) → 𝐹(𝐵) → 𝐹(𝐶) is exact.

Conversely, suppose that 𝐹 is additive and transforms any short exact sequence 0 → 𝐴 →
𝐵 → 𝐶 into an exact sequence 0 → 𝐹(𝐴) → 𝐹(𝐵) → 𝐹(𝐶). Because it is additive it
commutes with direct sums and hence finite products in 𝒜. To show it commutes with
finite limits it therefore suffices to show that it commutes with equalizers. But equalizers
in an abelian category are the same as the kernel of the difference map, hence it suffices
to show that 𝐹 commutes with taking kernels. Let 𝑓 ∶ 𝐴 → 𝐵 be a morphism. Factor 𝑓
as 𝐴 → 𝐼 → 𝐵 with 𝑓′ ∶ 𝐴 → 𝐼 surjective and 𝑖 ∶ 𝐼 → 𝐵 injective. (This is possible
by the definition of an abelian category.) Then it is clear that Ker(𝑓) = Ker(𝑓′). Also
0 → Ker(𝑓′) → 𝐴 → 𝐼 → 0 and 0 → 𝐼 → 𝐵 → 𝐵/𝐼 → 0 are short exact. By the
condition imposed on 𝐹 we see that 0 → 𝐹(Ker(𝑓′)) → 𝐹(𝐴) → 𝐹(𝐼) and 0 → 𝐹(𝐼) →
𝐹(𝐵) → 𝐹(𝐵/𝐼) are exact. Hence it is also the case that 𝐹(Ker(𝑓′)) is the kernel of the map
𝐹(𝐴) → 𝐹(𝐵), and we win.

The proof of (3) is similar to the proof of (2). Statement (4) is a combination of (2) and
(3). �

Lemma 10.5.2. Let 𝒜 and ℬ be abelian categories. Let 𝐹 ∶ 𝒜 → ℬ be an exact functor.
For every pair of objects 𝐴, 𝐵 of 𝒜 the functor 𝐹 induces an abelian group homomorphism

Ext𝒜(𝐵, 𝐴) ⟶ Extℬ(𝐹(𝐵), 𝐹(𝐴))

which maps the extension 𝐸 to 𝐹(𝐸).

Proof. Omitted. �

The following lemma is used in the proof that the category of abelian sheaves on a site is
abelian, where the functor 𝑏 is sheafification.

Lemma 10.5.3. Let 𝑎 ∶ 𝒜 → ℬ and 𝑏 ∶ ℬ → 𝒜 be functors. Assume that
(1) 𝒜, ℬ are additive categories, 𝑎, 𝑏 are additive functors, and 𝑎 is right adjoint to

𝑏,
(2) ℬ is abelian and 𝑏 is left exact, and
(3) 𝑏𝑎 ≅ id𝒜.

Then 𝒜 is abelian.

Proof. As ℬ is abelian we see that all finite limits and colimits exist in ℬ by Lemma
10.3.16. Since 𝑏 is a left adjoint we see that 𝑏 is also right exact and hence exact, see
Categories, Lemma 4.22.3. Let 𝜑 ∶ 𝐵1 → 𝐵2 be a morphism of ℬ. In particular, if
𝐾 = Ker(𝐵1 → 𝐵2), then 𝐾 is the equalizer of 0 and 𝜑 and hence 𝑏𝐾 is the equalizer
of 0 and 𝑏𝜑, hence 𝑏𝐾 is the kernel of 𝑏𝜑. Similarly, if 𝑄 = Coker(𝐵1 → 𝐵2), then 𝑄
is the coequalizer of 0 and 𝜑 and hence 𝑏𝑄 is the coequalizer of 0 and 𝑏𝜑, hence 𝑏𝑄 is
the cokernel of 𝑏𝜑. Thus we see that every morphism of the form 𝑏𝜑 in 𝒜 has a kernel
and a cokernel. However, since 𝑏𝑎 ≅ id we see that every morphism of 𝒜 is of this form,

1I'm sure there is an infinitely slicker proof of this.
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and we conclude that kernels and cokernels exist in 𝒜. In fact, the argument shows that if
𝜓 ∶ 𝐴1 → 𝐴2 is a morphism then

Ker(𝜓) = 𝑏Ker(𝑎𝜓), and Coker(𝜓) = 𝑏Coker(𝑎𝜓).
Now we still have to show that Coim(𝜓) = Im(𝜓). We do this as follows. First note
that since 𝒜 has kernels and cokernels it has all finite limits and colimits (see proof of
Lemma 10.3.16). Hence we see by Categories, Lemma 4.22.3 that 𝑎 is left exact and hence
transforms kernels (=equalizers) into kernels.

Coim(𝜓) = Coker(Ker(𝜓) → 𝐴1) by definition
= 𝑏Coker(𝑎(Ker(𝜓) → 𝐴1)) by formula above
= 𝑏Coker(Ker(𝑎𝜓) → 𝑎𝐴1)) 𝑎 preserves kernels
= 𝑏Coim(𝑎𝜓) by definition
= 𝑏Im(𝑎𝜓) ℬ is abelian
= 𝑏Ker(𝑎𝐴2 → Coker(𝑎𝜓)) by definition
= Ker(𝑏𝑎𝐴2 → 𝑏Coker(𝑎𝜓)) 𝑏 preserves kernels
= Ker(𝐴2 → 𝑏Coker(𝑎𝜓)) 𝑏𝑎 = id𝒜

= Ker(𝐴2 → Coker(𝜓)) by formula above
= Im(𝜓) by definition

Thus the lemma holds. �

10.6. Localization

In this section we note howGabriel-Zisman localization interacts with the additive structure
on a category.

Lemma 10.6.1. Let 𝒞 be a preadditive category. Let 𝑆 be a left or right multiplicative
system. There exists a canonical preadditive structure on 𝑆−1𝒞 such that the localization
functor 𝑄 ∶ 𝒞 → 𝑆−1𝒞 is additive.

Proof. Wewill prove this in the case 𝑆 is a left multiplicative system. The case where 𝑆 is a
right multiplicative system is dual. Suppose that 𝑋, 𝑌 are objects of 𝒞 and that 𝛼, 𝛽 ∶ 𝑋 → 𝑌
are morphisms in 𝑆−1𝒞. According to Categories, Lemma 4.24.3 we may represent these
by pairs 𝑠−1𝑓, 𝑠−1𝑔 with common denominator 𝑠. In this case we define 𝛼 + 𝛽 to be the
equivalence class of 𝑠−1(𝑓 + 𝑔). In the rest of the proof we show that this is well defined
and that composition is bilinear. Once this is done it is clear that 𝑄 is an additive functor.
Let us show construction above is well defined. An abstract way of saying this is that
filtered colimits of abelian groups agree with filtered colimits of sets and to use Categories,
Equation (4.24.5.1). We can work this out in a bit more detail as follows. Say 𝑠 ∶ 𝑌 → 𝑌1
and 𝑓, 𝑔 ∶ 𝑋 → 𝑌1. Suppose we have a second representation of 𝛼, 𝛽 as (𝑠′)−1𝑓′, (𝑠′)−1𝑔′

with 𝑠′ ∶ 𝑌 → 𝑌2 and 𝑓′, 𝑔′ ∶ 𝑋 → 𝑌2. By Categories, Remark 4.24.5 we can find a
morphism 𝑠3 ∶ 𝑌 → 𝑌3 and morphisms 𝑎1 ∶ 𝑌1 → 𝑌3, 𝑎2 ∶ 𝑌2 → 𝑌3 such that 𝑎1 ∘ 𝑠 =
𝑠3 = 𝑎2 ∘ 𝑠′ and also 𝑎1 ∘ 𝑓 = 𝑎2 ∘ 𝑓′ and 𝑎1 ∘ 𝑔 = 𝑎2 ∘ 𝑔′. Hence we see that 𝑠−1(𝑓 + 𝑔) is
equivalent to

𝑠−1
3 (𝑎1 ∘ (𝑓 + 𝑔)) = 𝑠−1

3 (𝑎1 ∘ 𝑓 + 𝑎2 ∘ 𝑔)

= 𝑠−1
3 (𝑎2 ∘ 𝑓′ + 𝑎2 ∘ 𝑔′)

= 𝑠−1
3 (𝑎2 ∘ (𝑓′ + 𝑔′))
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which is equivalent to (𝑠′)−1(𝑓′ + 𝑔′).

Fix 𝑠 ∶ 𝑌 → 𝑌′ and 𝑓, 𝑔 ∶ 𝑋 → 𝑌′ with 𝛼 = 𝑠−1𝑓 and 𝛽 = 𝑠−1𝑔 as morphisms 𝑋 → 𝑌 in
𝑆−1𝒞. To show that composition is bilinear first consider the case of amorphism 𝛾 ∶ 𝑌 → 𝑍
in 𝑆−1𝒞. Say 𝛾 = 𝑡−1ℎ for some ℎ ∶ 𝑌 → 𝑍′ and 𝑡 ∶ 𝑍 → 𝑍′ in 𝑆. Using LMS2 we
choose morphisms 𝑎 ∶ 𝑌′ → 𝑍″ and 𝑡′ ∶ 𝑍′ → 𝑍″ in 𝑆 such that 𝑎 ∘ 𝑠 = 𝑡′ ∘ ℎ. Picture

𝑍

𝑡
��

𝑌 ℎ //

𝑠
��

𝑍′

𝑡
��

𝑋
𝑓,𝑔 // 𝑌′ 𝑎 // 𝑍″

Then 𝛾 ∘ 𝛼 = (𝑡′ ∘ 𝑡)−1(𝑎 ∘ 𝑓) and 𝛾 ∘ 𝛽 = (𝑡′ ∘ 𝑡)−1(𝑎 ∘ 𝑔). Hence we see that 𝛾 ∘ (𝛼 + 𝛽) is
represented by (𝑡′ ∘ 𝑡)−1(𝑎 ∘ (𝑓 + 𝑔)) = (𝑡′ ∘ 𝑡)−1(𝑎 ∘ 𝑓 + 𝑎 ∘ 𝑔) which represents 𝛾 ∘ 𝛼 + 𝛾 ∘ 𝛽.

Finally, assume that 𝛿 ∶ 𝑊 → 𝑋 is another morphism of 𝑆−1𝒞. Say 𝛿 = 𝑟−1𝑖 for some
𝑖 ∶ 𝑊 → 𝑋′ and 𝑟 ∶ 𝑋 → 𝑋′ in 𝑆. We claim that we can find a morphism 𝑠 ∶ 𝑌′ → 𝑌″ in
𝑆 and morphisms 𝑎″, 𝑏″ ∶ 𝑋′ → 𝑌″ such that the following diagram commutes

𝑌

𝑠
��

𝑋
𝑓,𝑔,𝑓+𝑔 //

𝑠
��

𝑌′

𝑠′

��
𝑊 𝑖 // 𝑋′ 𝑎″,𝑏″,𝑎″+𝑏″

// 𝑌″

Namely, using LMS2we can first choose 𝑠1 ∶ 𝑌′ → 𝑌1, 𝑠2 ∶ 𝑌′ → 𝑌2 in𝑆 and 𝑎 ∶ 𝑋′ → 𝑌1,
𝑏 ∶ 𝑋′ → 𝑌2 such that 𝑎 ∘ 𝑠 = 𝑠1 ∘ 𝑓 and 𝑏 ∘ 𝑠 = 𝑠2 ∘ 𝑓. Then using that the category 𝑌′/𝑆
is filtered (see Categories, Remark 4.24.5), we can find a 𝑠′ ∶ 𝑌′ → 𝑌″ and morphisms
𝑎′ ∶ 𝑌1 → 𝑌″, 𝑏′ ∶ 𝑌2 → 𝑌″ such that 𝑠′ = 𝑎′ ∘ 𝑠1 and 𝑠′ = 𝑏′ ∘ 𝑠2. Setting 𝑎″ = 𝑎′ ∘ 𝑎 and
𝑏″ = 𝑏′ ∘ 𝑏 works. At this point we see that the compositions 𝛼 ∘ 𝛿 and 𝛽 ∘ 𝛿 are represented
by (𝑠′ ∘ 𝑠)−1𝑎″ and (𝑠′ ∘ 𝑠)−1𝑏″. Hence 𝛼 ∘ 𝛿 + 𝛽 ∘ 𝛿 is represented by (𝑠′ ∘ 𝑠)−1(𝑎″ + 𝑏″)
which by the diagram again is a representative of (𝛼 + 𝛽) ∘ 𝛿. �

Lemma 10.6.2. Let𝒞 be an additive category. Let𝑆 be a left or right multiplicative system.
Then 𝑆−1𝒞 is an additive category and the localization functor 𝑄 ∶ 𝒞 → 𝑆−1𝒞 is additive.

Proof. By Lemma 10.6.1 we see that 𝑆−1𝒞 is preadditive and that 𝑄 is additive. Recall that
the functor 𝑄 commutes with finite colimits (resp. finite limits), see Categories, Lemmas
4.24.7 and 4.24.14. We conclude that 𝑆−1𝒞 has a zero object and direct sums, see Lemmas
10.3.2 and 10.3.4. �

The following lemma describes the kernel (see Definition 10.7.5) of the localization functor
in case we invert a multiplicative system.

Lemma 10.6.3. Let 𝒞 be an additive category. Let 𝑆 be a multiplicative system compatible
with the triangulated structure. Let 𝑋 be an object of 𝒟. The following are equivalent

(1) 𝑄(𝑋) = 0 in 𝑆−1𝒞,
(2) there exists 𝑌 ∈ 𝑂𝑏(𝒞) such that 0 ∶ 𝑋 → 𝑌 is an element of 𝑆, and
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(3) there exists 𝑍 ∈ 𝑂𝑏(𝒞) such that 0 ∶ 𝑍 → 𝑋 is an element of 𝑆.

Proof. If (2) holds we see that 0 = 𝑄(0) ∶ 𝑄(𝑋) → 𝑄(𝑌) is an isomorphism. In the
additive category 𝑆−1𝒞 this implies that 𝑄(𝑋) = 0. Hence (2) ⇒ (1). Similarly, (3) ⇒ (1).
Suppose that 𝑄(𝑋) = 0. This implies that the morphism 𝑓 ∶ 0 → 𝑋 is transformed into
an isomorphism in 𝑆−1𝒞. Hence by Categories, Lemma 4.24.18 there exists a morphism
𝑔 ∶ 𝑍 → 0 such that 𝑓𝑔 ∈ 𝑆. This proves (1) ⇒ (3). Similarly, (1) ⇒ (2). �

Lemma 10.6.4. Let 𝒜 be an abelian category.
(1) If 𝑆 is a left multiplicative system, then the category 𝑆−1𝒜 has cokernels and the

functor 𝑄 ∶ 𝒜 → 𝑆−1𝒜 commutes with them.
(2) If 𝑆 is a right multiplicative system, then the category 𝑆−1𝒜 has kernels and the

functor 𝑄 ∶ 𝒜 → 𝑆−1𝒜 commutes with them.
(3) If 𝑆 is a multiplicative system, then the category 𝑆−1𝒜 is abelian and the functor

𝑄 ∶ 𝒜 → 𝑆−1𝒜 is exact.

Proof. Assume 𝑆 is a left multiplicative system. Let 𝑎 ∶ 𝑋 → 𝑌 be a morphism of 𝑆−1𝒜.
Then 𝑎 = 𝑠−1𝑓 for some 𝑠 ∶ 𝑌 → 𝑌′ in 𝑆 and 𝑓 ∶ 𝑋 → 𝑌′. Since 𝑄(𝑠) is an isomorphismwe
see that the existence of Coker(𝑎 ∶ 𝑋 → 𝑌) is equivalent to the existence of Coker(𝑄(𝑓) ∶
𝑋 → 𝑌′). Since Coker(𝑄(𝑓)) is the coequalizer of 0 and 𝑄(𝑓) we see that Coker(𝑄(𝑓)) is
represented by 𝑄(Coker(𝑓)) by Categories, Lemma 4.24.7. This proves (1).

Part (2) is dual to part (1).

If 𝑆 is a multiplicative system, then 𝑆 is both a left and a right multiplicative system. Thus
we see that 𝑆−1𝒜 has kernels and cokernels and 𝑄 commutes with kernels and cokernels.
To finish the proof of (3) we have to show that Coim = Im in 𝑆−1𝒜. Again using that any
arrow in 𝑆−1𝒜 is isomorphic to an arrow 𝑄(𝑓) we see that the result follows from the result
for 𝒜. �

10.7. Serre subcategories

In [Ser53, Chapter I, Section 1] a notion of a ``class'' of abelian groups is defined. This
notion has been extended to abelian categories by many authors (in slightly different ways).
We will use the following variant which is virtually identical to Serre's original definition.

Definition 10.7.1. Let 𝒜 be an abelian category.
(1) A Serre subcategory of 𝒜 is a nonempty full subcategory 𝒞 of 𝒜 such that given

an exact sequence
𝐴 → 𝐵 → 𝐶

with 𝐴, 𝐶 ∈ 𝑂𝑏(𝒞), then also 𝐵 ∈ 𝑂𝑏(𝒞).
(2) A weak Serre subcategory of 𝒜 is a nonempty full subcategory 𝒞 of 𝒜 such that

given an exact sequence

𝐴0 → 𝐴1 → 𝐴2 → 𝐴3 → 𝐴4

with 𝐴0, 𝐴1, 𝐴3, 𝐴4 in 𝒞, then also 𝐴2 in 𝒞.

In some references the second notion is called a ``thick'' subcategory and in other references
the first notion is called a ``thick'' subcategory. However, it seems that the notion of a Serre
subcagegory is universally accepted to be the one defined above. Note that in both cases the
category 𝒞 is abelian and that the inclusion functor 𝒞 → 𝒜 is a fully faithful exact functor.
Let's characterize these types of subcategories in more detail.
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Lemma 10.7.2. Let 𝒜 be an abelian category. Let 𝒞 be a subcategory of 𝒜. Then 𝒞 is a
Serre subcategory if and only if the following conditions are satisfied:

(1) 0 ∈ 𝑂𝑏(𝒞),
(2) 𝒞 is a strictly full subcategory of 𝒜,
(3) any subobject or quotient of an object of 𝒞 is an object of 𝒞,
(4) if 𝐴 ∈ 𝑂𝑏(𝒜) is an extension of objects of 𝒞 then also 𝐴 ∈ 𝑂𝑏(𝒞).

Moreover, a Serre subcategory is an abelian category and the inclusion functor is exact.

Proof. Omitted. �

Lemma 10.7.3. Let 𝒜 be an abelian category. Let 𝒞 be a subcategory of 𝒜. Then 𝒞 is a
weak Serre subcategory if and only if the following conditions are satisfied:

(1) 0 ∈ 𝑂𝑏(𝒞),
(2) 𝒞 is a strictly full subcategory of 𝒜,
(3) kernels and cokernels in 𝒜 of morphisms between objects of 𝒞 are in 𝒞,
(4) if 𝐴 ∈ 𝑂𝑏(𝒜) is an extension of objects of 𝒞 then also 𝐴 ∈ 𝑂𝑏(𝒞).

Moreover, a weak Serre subcategory is an abelian category and the inclusion functor is
exact.

Proof. Omitted. �

Lemma 10.7.4. Let 𝒜, ℬ be abelian categories. Let 𝐹 ∶ 𝒜 → ℬ be an exact functor.
Then the full subcategory of objects 𝐶 of 𝒜 such that 𝐹(𝐶) = 0 forms a Serre subcategory
of 𝒜.

Proof. Omitted. �

Definition 10.7.5. Let 𝒜, ℬ be abelian categories. Let 𝐹 ∶ 𝒜 → ℬ be an exact functor.
Then the full subcategory of objects 𝐶 of 𝒜 such that 𝐹(𝐶) = 0 is called the kernel of the
functor 𝐹, and is sometimes denoted Ker(𝐹).

Lemma 10.7.6. Let 𝒜 be an abelian category. Let 𝒞 ⊂ 𝒜 be a Serre subcategory. There
exists an abelian category 𝒜/𝒞 and an exact functor

𝐹 ∶ 𝒜 ⟶ 𝒜/𝒞

which is essentially surjective and whose kernel is 𝒞. The category 𝒜/𝒞 and the functor 𝐹
are characterized by the following universal property: For any exact functor 𝐺 ∶ 𝒜 → ℬ
such that 𝒞 ⊂ Ker(𝐺) there exists a factorization 𝐺 = 𝐻 ∘ 𝐹 for a unique exact functor
𝐻 ∶ 𝒜/𝒞 → ℬ.

Proof. Consider the set of arrows of 𝒜 defined by the following formula

𝑆 = {𝑓 ∈ Arrows(𝒜) ∣ Ker(𝑓),Coker(𝑓) ∈ 𝑂𝑏(𝒞)}.

We claim that 𝑆 is a multiplicative system. To prove this we have to check MS1, MS2,
MS3, see Categories, Definition 4.24.1.

It is clear that identities are elements of 𝑆. Suppose that 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 are
elements of 𝑆. There are exact sequences

0 → Ker(𝑓) → Ker(𝑔𝑓) → Ker(𝑔) → 0
0 → Coker(𝑓) → Coker(𝑔𝑓) → Coker(𝑔) → 0

Hence it follows that 𝑔𝑓 ∈ 𝑆. This proves MS1.
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Consider a solid diagram
𝐴

𝑡
��

𝑔
// 𝐵

𝑠
��

𝐶
𝑓 // 𝐶 ⨿𝐴 𝐵

with 𝑡 ∈ 𝑆. Set 𝑊 = 𝐶 ⨿𝐴 𝐵 = Coker((1, −1) ∶ 𝐴 → 𝐶 ⊕ 𝐵). Then Ker(𝑡) → Ker(𝑠) is
surjective and Coker(𝑡) → Coker(𝑠) is an isomorphism. Hence 𝑠 is an element of 𝑆. This
proves LMS2 and the proof of RMS2 is dual.

Finally, consider morphisms 𝑓, 𝑔 ∶ 𝐵 → 𝐶 and a morphism 𝑠 ∶ 𝐴 → 𝐵 in 𝑆 such that
𝑓 ∘ 𝑠 = 𝑔 ∘ 𝑠. This means that (𝑓 − 𝑔) ∘ 𝑠 = 0. In turn this means that 𝐼 = Im(𝑓 − 𝑔) ⊂ 𝐶 is a
quotient of Coker(𝑠) hence an object of 𝒞. Thus 𝑡 ∶ 𝐶 → 𝐶′ = 𝐶/𝐼 is an element of 𝑆 such
that 𝑡 ∘ (𝑓 − 𝑔) = 0, i.e., such that 𝑡 ∘ 𝑓 = 𝑡 ∘ 𝑔. This proves LMS3 and the proof of RMS3 is
dual.

Having proved that 𝑆 is a multiplicative system we set 𝒜/𝒞 = 𝑆−1𝒜, and we set 𝐹 equal to
the localization functor 𝑄. By Lemma 10.6.4 the category 𝒜/𝒞 is abelian and 𝐹 is exact. If
𝑋 is in the kernel of 𝐹 = 𝑄, then by Lemma 10.6.3 we see that 0 ∶ 𝑋 → 𝑍 is an element of
𝑆 and hence 𝑋 is an object of 𝒞, i.e., the kernel of 𝐹 is 𝒞. Finally, if 𝐺 is as in the statement
of the lemma, then 𝐺 turns every element of 𝑆 into an isomorphism. Hence we obtain the
functor 𝐻 ∶ 𝒜/𝒞 → ℬ from the universal property of localization, see Categories, Lemma
4.24.6. �

Lemma 10.7.7. Let 𝒜, ℬ be abelian categories. Let 𝐹 ∶ 𝒜 → ℬ be an exact functor. Let
𝒞 = Ker(𝐹). Then the induced functor 𝐹 ∶ 𝒜/𝒞 → ℬ is faithful.

Proof. This is true because the kernel of 𝐹 is zero by construction. Namely, if 𝑓 ∶ 𝑋 → 𝑌
is a morphism in 𝒜/𝒞 such that 𝐹(𝑓) = 0, then Ker(𝑓) → 𝑋 and 𝑌 → Coker(𝑓) are
transformed into isomorphisms by 𝐹, hence are isomorphisms by the remark on the kernel
of 𝐹. Thus 𝑓 = 0. �

10.8. K-groups

Definition 10.8.1. Let 𝒜 be an abelian category. We denote 𝐾0(𝒜) the zeroth 𝐾-group
of 𝒜. It is the abelian group constructed as follows. Take the free abelian group on the
objects on 𝒜 and for every short exact sequence 0 → 𝐴 → 𝐵 → 𝐶 → 0 impose the relation
[𝐵] − [𝐴] − [𝐶] = 0.

Another way to say this is that there is a presentation

⨁
𝐴→𝐵→𝐶 ses

𝐙[𝐴 → 𝐵 → 𝐶] ⟶ ⨁
𝐴∈𝑂𝑏(𝒜)

𝐙[𝐴] ⟶ 𝐾0(𝒜) ⟶ 0

with [𝐴 → 𝐵 → 𝐶] ↦ [𝐵] − [𝐴] − [𝐶] of 𝐾0(𝒜). The short exact sequence 0 → 0 →
0 → 0 → 0 leads to the relation [0] = 0 in 𝐾0(𝒜). There are no set-theoretical issues as all
of our categories are ``small'' if not mentioned otherwise. Some examples of 𝐾-groups for
categories of modules over rings where computed in Algebra, Section 7.51.

Lemma 10.8.2. Let 𝐹 ∶ 𝒜 → ℬ be an exact functor between abelian categories. Then
𝐹 induces a homomorphism of 𝐾-groups 𝐾0(𝐹) ∶ 𝐾0(𝒜) → 𝐾0(ℬ) by simply setting
𝐾0(𝐹)([𝐴]) = [𝐹(𝐴)].

Proof. Proves itself. �
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Suppose we are given an object 𝑀 of an abelian category 𝒜 and a complex of the form

(10.8.2.1) … //𝑀
𝜑 //𝑀

𝜓 //𝑀
𝜑 //𝑀 // …

In this situation we define

𝐻0(𝑀, 𝜑, 𝜓) = Ker(𝜓)/Im(𝜑), and 𝐻1(𝑀, 𝜑, 𝜓) = Ker(𝜑)/Im(𝜓).

Lemma 10.8.3. Let 𝒜 be an abelian category. Let 𝒞 ⊂ 𝒜 be a Serre subcategory and set
ℬ = 𝒜/𝒞.

(1) The exact functors 𝒞 → 𝒜 and 𝒜 → ℬ induce an exact sequence

𝐾0(𝒞) → 𝐾0(𝒜) → 𝐾0(ℬ) → 0

of 𝐾-groups, and
(2) the kernel of 𝐾0(𝒞) → 𝐾0(𝒜) is equal to the collection of elements of the form

[𝐻0(𝑀, 𝜑, 𝜓)] − [𝐻1(𝑀, 𝜑, 𝜓)]

where (𝑀, 𝜑, 𝜓) is a complex as in (10.8.2.1) with the property that it becomes
exact in ℬ; in other words that 𝐻0(𝑀, 𝜑, 𝜓) and 𝐻1(𝑀, 𝜑, 𝜓) are objects of 𝒞.

Proof. We omit the proof of (1). The proof of (2) is in a sense completely combinatorial.
First we remark that any class of the type [𝐻0(𝑀, 𝜑, 𝜓)] − [𝐻1(𝑀, 𝜑, 𝜓)] is zero in 𝐾0(𝒜)
by the following calculation

0 = [𝑀] − [𝑀]
= [Ker(𝜑)] + [Im(𝜑)] − [Ker(𝜓)] − [Im(𝜓)]
= [Ker(𝜑)/Im(𝜓)] − [Ker(𝜓)/Im(𝜑)]

= [𝐻1(𝑀, 𝜑, 𝜓)] − [𝐻0(𝑀, 𝜑, 𝜓)]

as desired. Hence it suffices to show that any element in the kernel of 𝐾0(𝒞) → 𝐾0(𝒜) is
of this form.

Any element 𝑥 in 𝐾0(𝒞) can be represented as the difference 𝑥 = [𝑃] − [𝑄] of two objects
of 𝒞 (fun exercise). Suppose that this element maps to zero in 𝐾0(𝒜). This means that
there exist

(1) a finite set 𝐼 = 𝐼+ ∐ 𝐼−,
(2) for each 𝑖 ∈ 𝐼 a short exact sequence

0 → 𝐴𝑖 → 𝐵𝑖 → 𝐶𝑖 → 0

in the abelian category 𝒜
such that

[𝑃] − [𝑄] = ∑𝑖∈𝐼+([𝐵𝑖] − [𝐴𝑖] − [𝐶𝑖]) − ∑𝑖∈𝐼−([𝐵𝑖] − [𝐴𝑖] − [𝐶𝑖])

in the free abelian group on the objects of 𝒜. We can rewrite this as

[𝑃] + ∑𝑖∈𝐼+([𝐴𝑖] + [𝐶𝑖]) + ∑𝑖∈𝐼−[𝐵𝑖] = [𝑄] + ∑𝑖∈𝐼−([𝐴𝑖] + [𝐶𝑖]) + ∑𝑖∈𝐼+[𝐵𝑖].

Since the right and left hand side should contain the same objects of 𝒜 counted with mul-
tiplicity, this means there should be a bijection 𝜏 between the terms which occur above.
Set

𝑇+ = {𝑝} ∐ {𝑎, 𝑐} × 𝐼+
∐ {𝑏} × 𝐼−

and
𝑇− = {𝑞} ∐ {𝑎, 𝑐} × 𝐼−

∐ {𝑏} × 𝐼+.
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Set 𝑇 = 𝑇+ ∐ 𝑇− = {𝑝, 𝑞} ∐{𝑎, 𝑏, 𝑐} × 𝐼. For 𝑡 ∈ 𝑇 define

𝑂(𝑡) =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑃 if 𝑡 = 𝑝
𝑄 if 𝑡 = 𝑞
𝐴𝑖 if 𝑡 = (𝑎, 𝑖)
𝐵𝑖 if 𝑡 = (𝑏, 𝑖)
𝐶𝑖 if 𝑡 = (𝑐, 𝑖)

Hence we can view 𝜏 ∶ 𝑇+ → 𝑇− as a bijection such that 𝑂(𝑡) = 𝑂(𝜏(𝑡)) for all 𝑡 ∈ 𝑇+. Let
𝑡−
0 = 𝜏(𝑝) and let 𝑡+

0 ∈ 𝑇+ be the unique element such that 𝜏(𝑡+
0 ) = 𝑞. Consider the object

𝑀+ = ⨁𝑡∈𝑇+ 𝑂(𝑡)

By using 𝜏 we see that it is equal to the object

𝑀− = ⨁𝑡∈𝑇− 𝑂(𝑡)

Consider the map
𝜑 ∶ 𝑀+ ⟶ 𝑀−

which on the summand 𝑂(𝑡) = 𝐴𝑖 corresponding to 𝑡 = (𝑎, 𝑖), 𝑖 ∈ 𝐼+ uses the map 𝐴𝑖 → 𝐵𝑖
into the summand 𝑂((𝑏, 𝑖)) = 𝐵𝑖 of 𝑀− and on the summand 𝑂(𝑡) = 𝐵𝑖 corresponding to
(𝑏, 𝑖), 𝑖 ∈ 𝐼− uses the map 𝐵𝑖 → 𝐶𝑖 into the summand 𝑂((𝑐, 𝑖)) = 𝐶𝑖 of 𝑀−. The map is
zero on the summands corresponding to 𝑝 and (𝑐, 𝑖), 𝑖 ∈ 𝐼+. Similarly, consider the map

𝜓 ∶ 𝑀− ⟶ 𝑀+

which on the summand 𝑂(𝑡) = 𝐴𝑖 corresponding to 𝑡 = (𝑎, 𝑖), 𝑖 ∈ 𝐼− uses the map 𝐴𝑖 → 𝐵𝑖
into the summand 𝑂((𝑏, 𝑖)) = 𝐵𝑖 of 𝑀+ and on the summand 𝑂(𝑡) = 𝐵𝑖 corresponding to
(𝑏, 𝑖), 𝑖 ∈ 𝐼+ uses the map 𝐵𝑖 → 𝐶𝑖 into the summand 𝑂((𝑐, 𝑖)) = 𝐶𝑖 of 𝑀+. The map is
zero on the summands corresponding to 𝑞 and (𝑐, 𝑖), 𝑖 ∈ 𝐼−.

Note that the kernel of 𝜑 is equal to the direct sum of the summand 𝑃 and the summands
𝑂((𝑐, 𝑖)) = 𝐶𝑖, 𝑖 ∈ 𝐼+ and the subobjects 𝐴𝑖 inside the summands 𝑂((𝑏, 𝑖)) = 𝐵𝑖, 𝑖 ∈ 𝐼−.
The image of 𝜓 is equal to the direct sum of the summands 𝑂((𝑐, 𝑖)) = 𝐶𝑖, 𝑖 ∈ 𝐼+ and the
subobjects 𝐴𝑖 inside the summands 𝑂((𝑏, 𝑖)) = 𝐵𝑖, 𝑖 ∈ 𝐼−. In other words we see that

𝑃 ≅ Ker(𝜑)/Im(𝜓).

In exactly the same way we see that

𝑄 ≅ Ker(𝜓)/Im(𝜑).

Since as we remarked above the existence of the bijection 𝜏 shows that 𝑀+ = 𝑀− we see
that the lemma follows. �

10.9. Cohomological delta-functors

Definition 10.9.1. Let 𝒜, ℬ be abelian categories. A cohomological 𝛿-functor or simply a
𝛿-functor from 𝒜 to ℬ is given by the following data:

(1) a collection 𝐹𝑛 ∶ 𝒜 → ℬ, 𝑛 ≥ 0 of additive functors, and
(2) for every short exact sequence 0 → 𝐴 → 𝐵 → 𝐶 → 0 of𝒜 a collection 𝛿𝐴→𝐵→𝐶 ∶

𝐹𝑛(𝐶) → 𝐹𝑛+1(𝐴), 𝑛 ≥ 0 of morphisms of ℬ.
These data are assumed to satisfy the following axioms
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(1) for every short exact sequence as above the sequence

0 // 𝐹0(𝐴) // 𝐹0(𝐵) // 𝐹0(𝐶)

𝛿𝐴→𝐵→𝐶uu
𝐹1(𝐴) // 𝐹1(𝐵) // 𝐹1(𝐶)

𝛿𝐴→𝐵→𝐶uu
𝐹2(𝐴) // 𝐹2(𝐵) //…

is exact, and
(2) for every morphism (𝐴 → 𝐵 → 𝐶) → (𝐴′ → 𝐵′ → 𝐶′) of short exact sequences

of 𝒜 the diagrams

𝐹𝑛(𝐶)

��

𝛿𝐴→𝐵→𝐶
// 𝐹𝑛+1(𝐴)

��
𝐹𝑛(𝐶′)

𝛿𝐴′→𝐵′→𝐶′ // 𝐹𝑛+1(𝐴′)

are commutative.

Note that this in particular implies that 𝐹0 is left exact.

Definition 10.9.2. Let 𝒜, ℬ be abelian categories. Let (𝐹𝑛, 𝛿𝐹) and (𝐺𝑛, 𝛿𝐺) be 𝛿-functors
from 𝒜 to ℬ. A morphism of 𝛿-functors from 𝐹 to 𝐺 is a collection of transformation of
functors 𝑡𝑛 ∶ 𝐹𝑛 → 𝐺𝑛, 𝑛 ≥ 0 such that for every short exact sequence 0 → 𝐴 → 𝐵 →
𝐶 → 0 of 𝒜 the diagrams

𝐹𝑛(𝐶)

𝑡𝑛

��

𝛿𝐹,𝐴→𝐵→𝐶
// 𝐹𝑛+1(𝐴)

𝑡𝑛+1

��
𝐺𝑛(𝐶)

𝛿𝐺,𝐴→𝐵→𝐶 // 𝐺𝑛+1(𝐴)

are commutative.

Definition 10.9.3. Let 𝒜, ℬ be abelian categories. Let 𝐹 = (𝐹𝑛, 𝛿𝐹) be a 𝛿-functor from
𝒜 to ℬ. We say 𝐹 is a universal 𝛿-functor if an only if for every 𝛿-functor 𝐺 = (𝐺𝑛, 𝛿𝐺)
and any morphism of functors 𝑡 ∶ 𝐹0 → 𝐺0 there exists a unique morphism of 𝛿-functors
{𝑡𝑛}𝑛≥0 ∶ 𝐹 → 𝐺 such that 𝑡 = 𝑡0.

Lemma 10.9.4. Let 𝒜, ℬ be abelian categories. Let 𝐹 = (𝐹𝑛, 𝛿𝐹) be a 𝛿-functor from 𝒜
to ℬ. Suppose that for every 𝑛 > 0 and any 𝐴 ∈ 𝑂𝑏(𝒜) there exists an injective morphism
𝑢 ∶ 𝐴 → 𝐵 (depending on 𝐴 and 𝑛) such that 𝐹𝑛(𝑢) ∶ 𝐹𝑛(𝐴) → 𝐹𝑛(𝐵) is zero. Then 𝐹 is a
universal 𝛿-functor.

Proof. Let 𝐺 = (𝐺𝑛, 𝛿𝐺) be a 𝛿-functor from 𝒜 to ℬ and let 𝑡 ∶ 𝐹0 → 𝐺0 be a morphism of
functors. We have to show there exists a unique morphism of 𝛿-functors {𝑡𝑛}𝑛≥0 ∶ 𝐹 → 𝐺
such that 𝑡 = 𝑡0. We construct 𝑡𝑛 by induction on 𝑛. For 𝑛 = 0 we set 𝑡0 = 𝑡. Suppose
we have already constructed a unique sequence of transformation of functors 𝑡𝑖 for 𝑖 ≤ 𝑛
compatible with the maps 𝛿 in degrees ≤ 𝑛.
Let 𝐴 ∈ 𝑂𝑏(𝒜). By assumption we may choose a embedding 𝑢 ∶ 𝐴 → 𝐵 such that
𝐹𝑛+1(𝑢) = 0. Let 𝐶 = 𝐵/𝑢(𝐴). The long exact cohomology sequence for the short exact
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sequence 0 → 𝐴 → 𝐵 → 𝐶 → 0 and the 𝛿-functor 𝐹 gives that 𝐹𝑛+1(𝐴) = Coker(𝐹𝑛(𝐵) →
𝐹𝑛(𝐶)) by our choice of 𝑢. Since we have already defined 𝑡𝑛 we can set

𝑡𝑛+1
𝐴 ∶ 𝐹𝑛+1(𝐴) → 𝐺𝑛+1(𝐴)

equal to the unique map such that

Coker(𝐹𝑛(𝐵) → 𝐹𝑛(𝐶))
𝑡𝑛
//

𝛿𝐹,𝐴→𝐵→𝐶
��

Coker(𝐺𝑛(𝐵) → 𝐺𝑛(𝐶))

𝛿𝐺,𝐴→𝐵→𝐶
��

𝐹𝑛+1(𝐴)
𝑡𝑛+1
𝐴 // 𝐺𝑛+1(𝐴)

commutes. This is clearly uniquely determined by the requirements imposed. We omit the
verification that this defines a transformation of functors. �

Lemma 10.9.5. Let 𝒜, ℬ be abelian categories. Let 𝐹 ∶ 𝒜 → ℬ be a functor. If there
exists a universal 𝛿-functor (𝐹𝑛, 𝛿𝐹) from 𝒜 to ℬ with 𝐹0 = 𝐹, then it is determined up to
unique isomorphism of 𝛿-functors.

Proof. Immediate from the definitions. �

10.10. Complexes

Of course the notions of a chain complex and a cochain complex are dual and you only
have to read one of the two parts of this section. So pick the one you like. (Actually, this
doesn't quite work right since the conventions on numbering things are not adapted to an
easy transition between chain and cochain complexes.)

A chain complex 𝐴• in an additive category 𝒜 is a complex

… → 𝐴𝑛+1
𝑑𝑛+1−−−→ 𝐴𝑛

𝑑𝑛−−→ 𝐴𝑛−1 → …

of 𝒜. In other words, we are given an object 𝐴𝑖 of 𝒜 for all 𝑖 ∈ 𝐙 and for all 𝑖 ∈ 𝐙 a
morphism 𝑑𝑖 ∶ 𝐴𝑖 → 𝐴𝑖−1 such that 𝑑𝑖−1 ∘ 𝑑𝑖 = 0 for all 𝑖. A morphism of chain complexes
𝑓 ∶ 𝐴• → 𝐵• is given by a family of morphisms 𝑓𝑖 ∶ 𝐴𝑖 → 𝐵𝑖 such that all the diagrams

𝐴𝑖 𝑑𝑖
//

𝑓𝑖
��

𝐴𝑖−1

𝑓𝑖−1
��

𝐵𝑖
𝑑𝑖 // 𝐵𝑖−1

commute. The category of chain complexes of 𝒜 is denoted Ch(𝒜). The full subcategory
consisting of objects of the form

… → 𝐴2 → 𝐴1 → 𝐴0 → 0 → 0 → …

is denoted Ch≥0(𝒜). In other words, a chain complex 𝐴• belongs to Ch≥0(𝒜) if and only
if 𝐴𝑖 = 0 for all 𝑖 < 0. A homotopy ℎ between a pair of morphisms of chain complexes
𝑓, 𝑔 ∶ 𝐴• → 𝐵• is is a collection of morphisms ℎ𝑖 ∶ 𝐴𝑖 → 𝐵𝑖+1 such that we have

𝑓𝑖 − 𝑔𝑖 = 𝑑𝑖+1 ∘ ℎ𝑖 + ℎ𝑖−1 ∘ 𝑑𝑖

for all 𝑖. Clearly, the notions of chain complex, morphism of chain complexes, and homo-
topies between morphisms of chain complexes makes sense even in a preadditive category.
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Lemma 10.10.1. Let𝒜 be an additive category. Let 𝑓, 𝑔 ∶ 𝐵• → 𝐶• be morphisms of chain
complexes. Suppose given morphisms of chain complexes 𝑎 ∶ 𝐴• → 𝐵•, and 𝑐 ∶ 𝐶• → 𝐷•.
If {ℎ𝑖 ∶ 𝐵𝑖 → 𝐶𝑖+1} defines a homotopy between 𝑓 and 𝑔, then {𝑐𝑖+1 ∘ ℎ𝑖 ∘ 𝑎𝑖} defines a
homotopy between 𝑐 ∘ 𝑓 ∘ 𝑎 and 𝑐 ∘ 𝑔 ∘ 𝑎.

Proof. Omitted. �

In particular this means that it makes sense to define the category of chain complexes with
maps up to homotopy. We'll return to this later.

Definition 10.10.2. Let 𝒜 be an additive category. We say a morphism 𝑎 ∶ 𝐴• → 𝐵• is
a homotopy equivalence if there exists a morphism 𝑏 ∶ 𝐵• → 𝐴• such that there exists
a homotopy between 𝑎 ∘ 𝑏 and id𝐴 and there exists a homotopy between 𝑏 ∘ 𝑎 and id𝐵. If
there exists such a morphism between 𝐴• and 𝐵•, then we say that 𝐴• and 𝐵• are homotopy
equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic in the
category of complexes up to homotopy.

Lemma 10.10.3. Let 𝒜 be an abelian category.
(1) The category of chain complexes in 𝒜 is abelian.
(2) A morphism of complexes 𝑓 ∶ 𝐴• → 𝐵• is injective if and only if each 𝑓𝑛 ∶ 𝐴𝑛 →

𝐵𝑛 is injective.
(3) A morphism of complexes 𝑓 ∶ 𝐴• → 𝐵• is surjective if and only if each 𝑓𝑛 ∶

𝐴𝑛 → 𝐵𝑛 is surjective.
(4) A sequence of chain complexes

𝐴•
𝑓

−→ 𝐵•
𝑔

−→ 𝐶•

is exact at 𝐵• if and only if each sequence

𝐴𝑖
𝑓𝑖−−→ 𝐵𝑖

𝑔𝑖−−→ 𝐶𝑖

is exact at 𝐵𝑖.

Proof. Omitted. �

For any 𝑖 ∈ 𝐙 the 𝑖th homology group of a chain complex 𝐴• in an abelian category is
defined by the following formula

𝐻𝑖(𝐴•) = Ker(𝑑𝑖)/Im(𝑑𝑖+1).
If 𝑓 ∶ 𝐴• → 𝐵• is a morphism of chain complexes of 𝒜 then we get an induced morphism
𝐻𝑖(𝑓) ∶ 𝐻𝑖(𝐴•) → 𝐻𝑖(𝐵•) because clearly 𝑓𝑖(Ker(𝑑𝑖 ∶ 𝐴𝑖 → 𝐴𝑖−1)) ⊂ Ker(𝑑𝑖 ∶ 𝐵𝑖 →
𝐵𝑖−1), and similarly for Im(𝑑𝑖+1). Thus we obtain a functor

𝐻𝑖 ∶ Ch(𝒜) ⟶ 𝒜.

Definition 10.10.4. Let 𝒜 be an abelian category.
(1) A morphism of chain complexes 𝑓 ∶ 𝐴• → 𝐵• is called a quasi-isomorphism if

the induced maps 𝐻𝑖(𝑓) ∶ 𝐻𝑖(𝐴•) → 𝐻𝑖(𝐵•) is an isomorphism for all 𝑖 ∈ 𝐙.
(2) A chain complex 𝐴• is called acyclic if all of its homology objects 𝐻𝑖(𝐴•) are

zero.

Lemma 10.10.5. Let 𝒜 be an abelian category.
(1) If the maps 𝑓, 𝑔 ∶ 𝐴• → 𝐵• are homotopic, then the induced maps 𝐻𝑖(𝑓) and

𝐻𝑖(𝑔) are equal.
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(2) If themap 𝑓 ∶ 𝐴• → 𝐵• is a homotopy equivalence, then𝑓 is a quisi-isomorphism.

Proof. Omitted. �

Lemma 10.10.6. Let 𝒜 be an abelian category. Suppose that

0 → 𝐴• → 𝐵• → 𝐶• → 0

is a short exact sequence of chain complexes of 𝒜. Then there is a canonical long exact
homology sequence

… … …

ss
𝐻𝑖(𝐴•) // 𝐻𝑖(𝐵•) // 𝐻𝑖(𝐶•)

tt
𝐻𝑖−1(𝐴•) // 𝐻𝑖−1(𝐵•) // 𝐻𝑖−1(𝐶•)

ss… … …

Proof. Omitted. The maps come from the Snake Lemma 10.3.23 applied to the diagrams

𝐴𝑖/Im(𝑑𝐴,𝑖+1) //

𝑑𝐴,𝑖
��

𝐵𝑖/Im(𝑑𝐵,𝑖+1) //

𝑑𝐵,𝑖
��

𝐶𝑖/Im(𝑑𝐶,𝑖+1) //

𝑑𝐶,𝑖
��

0

0 // Ker(𝑑𝐴,𝑖−1) // Ker(𝑑𝐵,𝑖−1) // Ker(𝑑𝐶,𝑖−1)

�

A cochain complex 𝐴• in an additive category 𝒜 is a complex

… → 𝐴𝑛−1 𝑑𝑛−1

−−−→ 𝐴𝑛 𝑑𝑛

−−→ 𝐴𝑛+1 → …

of 𝒜. In other words, we are given an object 𝐴𝑖 of 𝒜 for all 𝑖 ∈ 𝐙 and for all 𝑖 ∈ 𝐙
a morphism 𝑑𝑖 ∶ 𝐴𝑖 → 𝐴𝑖+1 such that 𝑑𝑖+1 ∘ 𝑑𝑖 = 0 for all 𝑖. A morphism of cochain
complexes 𝑓 ∶ 𝐴• → 𝐵• is given by a family of morphisms 𝑓𝑖 ∶ 𝐴𝑖 → 𝐵𝑖 such that all the
diagrams

𝐴𝑖
𝑑𝑖
//

𝑓𝑖

��

𝐴𝑖+1

𝑓𝑖+1

��
𝐵𝑖 𝑑𝑖

// 𝐵𝑖+1

commute. The category of cochain complexes of 𝒜 is denoted CoCh(𝒜). The full subcat-
egory consisting of objects of the form

… → 0 → 0 → 𝐴0 → 𝐴1 → 𝐴2 → …

is denoted CoCh≥0(𝒜). In other words, a cochain complex 𝐴• belongs to the subcategory
CoCh≥0(𝒜) if and only if 𝐴𝑖 = 0 for all 𝑖 < 0. A homotopy ℎ between a pair of morphisms
of cochain complexes 𝑓, 𝑔 ∶ 𝐴• → 𝐵• is is a collection of morphisms ℎ𝑖 ∶ 𝐴𝑖 → 𝐵𝑖−1 such
that we have

𝑓𝑖 − 𝑔𝑖 = 𝑑𝑖−1 ∘ ℎ𝑖 + ℎ𝑖+1 ∘ 𝑑𝑖

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0111
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for all 𝑖. Clearly, the notions of cochain complex, morphism of cochain complexes, and
homotopies between morphisms of cochain complexes makes sense even in a preadditive
category.

Lemma 10.10.7. Let 𝒜 be an additive category. Let 𝑓, 𝑔 ∶ 𝐵• → 𝐶• be morphisms of
cochain complexes. Suppose given morphisms of cochain complexes 𝑎 ∶ 𝐴• → 𝐵•, and
𝑐 ∶ 𝐶• → 𝐷•. If {ℎ𝑖 ∶ 𝐵𝑖 → 𝐶𝑖−1} defines a homotopy between 𝑓 and 𝑔, then {𝑐𝑖−1 ∘ℎ𝑖 ∘𝑎𝑖}
defines a homotopy between 𝑐 ∘ 𝑓 ∘ 𝑎 and 𝑐 ∘ 𝑔 ∘ 𝑎.

Proof. Omitted. �

In particular this means that it makes sense to define the category of cochain complexes
with maps up to homotopy. We'll return to this later.

Definition 10.10.8. Let 𝒜 be an additive category. We say a morphism 𝑎 ∶ 𝐴• → 𝐵• is
a homotopy equivalence if there exists a morphism 𝑏 ∶ 𝐵• → 𝐴• such that there exists
a homotopy between 𝑎 ∘ 𝑏 and id𝐴 and there exists a homotopy between 𝑏 ∘ 𝑎 and id𝐵. If
there exists such a morphism between 𝐴• and 𝐵•, then we say that 𝐴• and 𝐵• are homotopy
equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic in the
category of complexes up to homotopy.

Lemma 10.10.9. Let 𝒜 be an abelian category.
(1) The category of cochain complexes in 𝒜 is abelian.
(2) A morphism of cochain complexes 𝑓 ∶ 𝐴• → 𝐵• is injective if and only if each

𝑓𝑛 ∶ 𝐴𝑛 → 𝐵𝑛 is injective.
(3) A morphism of cochain complexes 𝑓 ∶ 𝐴• → 𝐵• is surjective if and only if each

𝑓𝑛 ∶ 𝐴𝑛 → 𝐵𝑛 is surjective.
(4) A sequence of cochain complexes

𝐴• 𝑓
−→ 𝐵• 𝑔

−→ 𝐶•

is exact at 𝐵• if and only if each sequence

𝐴𝑖 𝑓𝑖

−−→ 𝐵𝑖 𝑔𝑖

−−→ 𝐶𝑖

is exact at 𝐵𝑖.

Proof. Omitted. �

For any 𝑖 ∈ 𝐙 the 𝑖th cohomology group of a cochain complex 𝐴• is defined by the following
formula

𝐻𝑖(𝐴•) = Ker(𝑑𝑖)/Im(𝑑𝑖−1).
If 𝑓 ∶ 𝐴• → 𝐵• is a morphism of cochain complexes of 𝒜 then we get an inducedmorphism
𝐻𝑖(𝑓) ∶ 𝐻𝑖(𝐴•) → 𝐻𝑖(𝐵•) because clearly 𝑓𝑖(Ker(𝑑𝑖 ∶ 𝐴𝑖 → 𝐴𝑖+1)) ⊂ Ker(𝑑𝑖 ∶ 𝐵𝑖 →
𝐵𝑖+1), and similarly for Im(𝑑𝑖−1). Thus we obtain a functor

𝐻𝑖 ∶ CoCh(𝒜) ⟶ 𝒜.

Definition 10.10.10. Let 𝒜 be an abelian category.
(1) Amorphism of cochain complexes𝑓 ∶ 𝐴• → 𝐵• of𝒜 is called a quasi-isomorphism

if the induced maps 𝐻𝑖(𝑓) ∶ 𝐻𝑖(𝐴•) → 𝐻𝑖(𝐵•) is an isomorphism for all 𝑖 ∈ 𝐙.
(2) A cochain complex 𝐴• is called acyclic if all of its cohomology objects 𝐻𝑖(𝐴•)

are zero.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0112
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Lemma 10.10.11. Let 𝒜 be an abelian category.

(1) If the maps 𝑓, 𝑔 ∶ 𝐴• → 𝐵• are homotopic, then the induced maps 𝐻𝑖(𝑓) and
𝐻𝑖(𝑔) are equal.

(2) If 𝑓 ∶ 𝐴• → 𝐵• is a homotopy equivalence, then 𝑓 is a quasi-isomorphism.

Proof. Omitted. �

Lemma 10.10.12. Let 𝒜 be an abelian category. Suppose that

0 → 𝐴• → 𝐵• → 𝐶• → 0

is a short exact sequence of chain complexes of 𝒜. Then there is a canonical long exact
homology sequence

… … …

ss
𝐻𝑖(𝐴•) // 𝐻𝑖(𝐵•) // 𝐻𝑖(𝐶•)

tt
𝐻𝑖+1(𝐴•) // 𝐻𝑖+1(𝐵•) // 𝐻𝑖+1(𝐶•)

ss… … …

Proof. Omitted. The maps come from the Snake Lemma 10.3.23 applied to the diagrams

𝐴𝑖/Im(𝑑𝑖−1
𝐴 ) //

𝑑𝑖
𝐴
��

𝐵𝑖/Im(𝑑𝑖−1
𝐵 ) //

𝑑𝑖
𝐵
��

𝐶𝑖/Im(𝑑𝑖−1
𝐶 ) //

𝑑𝑖
𝐶
��

0

0 // Ker(𝑑𝑖+1
𝐴 ) // Ker(𝑑𝑖+1

𝐵 ) // Ker(𝑑𝑖+1
𝐶 )

�

10.11. Truncation of complexes

Let 𝒜 be an abelian category. Let 𝐴• be a chain complex. There are several ways to truncate
the complex 𝐴•.

(1) The ``stupid'' truncation 𝜎≤𝑛 is the the subcomplex 𝜎≤𝑛𝐴• defined by the rule
(𝜎≤𝑛𝐴•)𝑖 = 0 if 𝑖 > 𝑛 and (𝜎≤𝑛𝐴•)𝑖 = 𝐴𝑖 if 𝑖 ≤ 𝑛. In a picture

𝜎≤𝑛𝐴•

��

… // 0 //

��

𝐴𝑛
//

��

𝐴𝑛−1
//

��

…

𝐴• … // 𝐴𝑛+1
// 𝐴𝑛

// 𝐴𝑛−1
// …

Note the property 𝜎≤𝑛𝐴•/𝜎≤𝑛−1𝐴• = 𝐴𝑛[−𝑛].

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0116
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(2) The ``stupid'' truncation 𝜎≥𝑛 is the the quotient complex 𝜎≥𝑛𝐴• defined by the
rule (𝜎≥𝑛𝐴•)𝑖 = 𝐴𝑖 if 𝑖 ≥ 𝑛 and (𝜎≥𝑛𝐴•)𝑖 = 0 if 𝑖 < 𝑛. In a picture

𝐴•

��

… // 𝐴𝑛+1
//

��

𝐴𝑛
//

��

𝐴𝑛−1
//

��

…

𝜎≥𝑛𝐴• … // 𝐴𝑛+1
// 𝐴𝑛

// 0 // …

The map of complexes 𝜎≥𝑛𝐴• → 𝜎≥𝑛+1𝐴• is surjective with kernel 𝐴𝑛[−𝑛].
(3) The canonical truncation 𝜏≥𝑛𝐴• is defined by the picture

𝜏≥𝑛𝐴•

��

… // 𝐴𝑛+1
//

��

Ker(𝑑𝑛) //

��

0 //

��

…

𝐴• … // 𝐴𝑛+1
// 𝐴𝑛

// 𝐴𝑛−1
// …

Note that these complexes have the property that

𝐻𝑖(𝜏≥𝑛𝐴•) = {
𝐻𝑖(𝐴•) if 𝑖 ≥ 𝑛

0 if 𝑖 < 𝑛
(4) The canonical truncation 𝜏≤𝑛𝐴• is defined by the picture

𝐴•

��

… // 𝐴𝑛+1
//

��

𝐴𝑛
//

��

𝐴𝑛−1
//

��

…

𝜏≤𝑛𝐴• … // 0 // Coker(𝑑𝑛+1) // 𝐴𝑛−1
//…

Note that these complexes have the property that

𝐻𝑖(𝜏≤𝑛𝐴•) = {
𝐻𝑖(𝐴•) if 𝑖 ≤ 𝑛

0 if 𝑖 > 𝑛

Let 𝒜 be an abelian category. Let 𝐴• be a cochain complex. There are four ways to truncate
the complex 𝐴•.

(1) The ``stupid'' truncation 𝜎≥𝑛 is the subcomplex 𝜎≥𝑛𝐴• defined by the rule (𝜎≥𝑛𝐴•)𝑖 =
0 if 𝑖 < 𝑛 and (𝜎≥𝑛𝐴•)𝑖 = 𝐴𝑖 if 𝑖 ≥ 𝑛. In a picture

𝜎≥𝑛𝐴•

��

… // 0 //

��

𝐴𝑛 //

��

𝐴𝑛+1 //

��

…

𝐴• … // 𝐴𝑛−1 // 𝐴𝑛 // 𝐴𝑛+1 // …
Note the property 𝜎≥𝑛𝐴•/𝜎≥𝑛+1𝐴• = 𝐴𝑛[−𝑛].

(2) The ``stupid'' truncation 𝜎≤𝑛 is the quotient complex 𝜎≤𝑛𝐴• defined by the rule
(𝜎≥𝑛𝐴•)𝑖 = 0 if 𝑖 > 𝑛 and (𝜎≥𝑛𝐴•)𝑖 = 𝐴𝑖 if 𝑖 ≤ 𝑛. In a picture

𝐴•

��

… // 𝐴𝑛−1 //

��

𝐴𝑛 //

��

𝐴𝑛+1 //

��

…

𝜎≤𝑛𝐴• … // 𝐴𝑛−1 // 𝐴𝑛 // 0 // …

The map of complexes 𝜎≤𝑛𝐴• → 𝜎≤𝑛−1𝐴• is surjective with kernel 𝐴𝑛[−𝑛].
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(3) The canonical truncation 𝜏≤𝑛𝐴• is defined by the picture

𝜏≤𝑛𝐴•

��

… // 𝐴𝑛−1 //

��

Ker(𝑑𝑛) //

��

0 //

��

…

𝐴• … // 𝐴𝑛−1 // 𝐴𝑛 // 𝐴𝑛+1 // …
Note that these complexes have the property that

𝐻𝑖(𝜏≤𝑛𝐴•) = {
𝐻𝑖(𝐴•) if 𝑖 ≤ 𝑛

0 if 𝑖 > 𝑛
(4) The canonical truncation 𝜏≥𝑛𝐴• is defined by the picture

𝐴•

��

… // 𝐴𝑛−1 //

��

𝐴𝑛 //

��

𝐴𝑛+1 //

��

…

𝜏≥𝑛𝐴• … // 0 // Coker(𝑑𝑛−1) // 𝐴𝑛+1 //…

Note that these complexes have the property that

𝐻𝑖(𝜏≤𝑛𝐴•) = {
0 if 𝑖 < 𝑛

𝐻𝑖(𝐴•) if 𝑖 ≥ 𝑛

10.12. Homotopy and the shift functor

It is an annoying feature that signs and indices have to be part of any discussion of homo-
logical algebra2.

Definition 10.12.1. Let 𝒜 be an additive category. Let 𝐴• be a chain complex with bound-
ary maps 𝑑𝐴,𝑛 ∶ 𝐴𝑛 → 𝐴𝑛−1. For any 𝑘 ∈ 𝐙 we define the 𝑘-shifted chain complex 𝐴[𝑘]•
as follows:

(1) we set 𝐴[𝑘]𝑛 = 𝐴𝑛+𝑘, and
(2) we set 𝑑𝐴[𝑘],𝑛 ∶ 𝐴[𝑘]𝑛 → 𝐴[𝑘]𝑛−1 equal to 𝑑𝐴[𝑘],𝑛 = (−1)𝑘𝑑𝐴,𝑛+𝑘.

If 𝑓 ∶ 𝐴• → 𝐵• is a morphism of chain complexes, then we let 𝑓[𝑘] ∶ 𝐴[𝑘]• → 𝐵[𝑘]• be
the morphism of chain complexes with 𝑓[𝑘]𝑛 = 𝑓𝑘+𝑛.

Of course this means we have functors [𝑘] ∶ Ch(𝒜) → Ch(𝒜) which mutually commute (on
the nose, without any intervening isomorphisms of functors), such that 𝐴[𝑘][𝑙]• = 𝐴[𝑘+𝑙]•
and with [0] = idCh(𝒜).

Definition 10.12.2. Let 𝒜 be an abelian category. Let 𝐴• be a chain complexwith boundary
maps 𝑑𝐴,𝑛 ∶ 𝐴𝑛 → 𝐴𝑛−1. For any 𝑘 ∈ 𝐙 we identify 𝐻𝑖+𝑘(𝐴•) → 𝐻𝑖(𝐴[𝑘]•) via the
identification 𝐴𝑖+𝑘 = 𝐴[𝑘]𝑖.

This identification is functorial in 𝐴•. Note that since no signs are involved in this defi-
nition we actually get a compatible system of identifications of all the homology objects
𝐻𝑖−𝑘(𝐴[𝑘]•), which are further compatible with the identifications 𝐴[𝑘][𝑙]• = 𝐴[𝑘 + 𝑙]•
and with [0] = idCh(𝒜).
Let𝒜 be an additive category. Suppose that𝐴• and𝐵• are chain complexes, 𝑎, 𝑏 ∶ 𝐴• → 𝐵•
are morphsms of chain complexes, and {ℎ𝑖 ∶ 𝐴𝑖 → 𝐵𝑖+1} is a homotopy between 𝑎 and 𝑏.

2I am sure you think that my conventions are wrong. If so and if you feel strongly about it then drop me an
email with an explanation.
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Recall that this means that 𝑎𝑖 − 𝑏𝑖 = 𝑑𝑖+1 ∘ ℎ𝑖 + ℎ𝑖−1 ∘ 𝑑𝑖. What if 𝑎 = 𝑏? Then we obtain
the formula 0 = 𝑑𝑖+1 ∘ ℎ𝑖 + ℎ𝑖−1 ∘ 𝑑𝑖, in other words, −𝑑𝑖+1 ∘ ℎ𝑖 = ℎ𝑖−1 ∘ 𝑑𝑖. By definition
above this means the collection {ℎ𝑖} above defines a morphism of chain complexes

𝐴• ⟶ 𝐵[1]•.

Such a thing is the same as a morphism 𝐴[−1]• → 𝐵• by our remarks above. This proves
the following lemma.

Lemma 10.12.3. Let 𝒜 be an additive category. Suppose that 𝐴• and 𝐵• are chain com-
plexes. Given any morphism of chain complexes 𝑎 ∶ 𝐴• → 𝐵• there is a bijection between
the set of homotopies from 𝑎 to 𝑎 and 𝑀𝑜𝑟Ch(𝒜)(𝐴•, 𝐵[1]•). More generally, the set of ho-
motopies between 𝑎 and 𝑏 is either empty or a principal homogenous space under the group
𝑀𝑜𝑟Ch(𝒜)(𝐴•, 𝐵[1]•).

Proof. See above. �

Lemma 10.12.4. Let 𝒜 be an abelian category. Let

0 → 𝐴• → 𝐵• → 𝐶• → 0

be a sort exact sequence of complexes. Suppose that {𝑠𝑛 ∶ 𝐶𝑛 → 𝐵𝑛} is a family of
morphisms which split the short exact sequences 0 → 𝐴𝑛 → 𝐵𝑛 → 𝐶𝑛 → 0. Let 𝜋𝑛 ∶
𝐵𝑛 → 𝐴𝑛 be the associated projections, see Lemma 10.3.21. Then the family of morphisms

𝜋𝑛−1 ∘ 𝑑𝐵,𝑛 ∘ 𝑠𝑛 ∶ 𝐶𝑛 → 𝐴𝑛−1

define a morphism of complexes 𝛿(𝑠) ∶ 𝐶• → 𝐴[−1]•.

Proof. Denote 𝑖 ∶ 𝐴• → 𝐵• and 𝑞 ∶ 𝐵• → 𝐶• the maps of complexes in the short exact
sequence. Then 𝑖𝑛−1 ∘ 𝜋𝑛−1 ∘ 𝑑𝐵,𝑛 ∘ 𝑠𝑛 = 𝑑𝐵,𝑛 ∘ 𝑠𝑛 − 𝑠𝑛−1 ∘ 𝑑𝐶,𝑛. Hence 𝑖𝑛−2 ∘ 𝑑𝐴,𝑛−1 ∘ 𝜋𝑛−1 ∘
𝑑𝐵,𝑛 ∘ 𝑠𝑛 = 𝑑𝐵,𝑛−1 ∘ (𝑑𝐵,𝑛 ∘ 𝑠𝑛 − 𝑠𝑛−1 ∘ 𝑑𝐶,𝑛) = −𝑑𝐵,𝑛−1 ∘ 𝑠𝑛−1 ∘ 𝑑𝐶,𝑛 as desired. �

Lemma 10.12.5. Notation and assumptions as in Lemma 10.12.4 above. The morphism of
complexes 𝛿(𝑠) ∶ 𝐶• → 𝐴[−1]• induces the maps

𝐻𝑖(𝛿(𝑠)) ∶ 𝐻𝑖(𝐶•) ⟶ 𝐻𝑖(𝐴[−1]•) = 𝐻𝑖−1(𝐴•)

which occur in the long exact homology sequence associated to the short exact sequence of
chain complexes by Lemma 10.10.6.

Proof. Omitted. �

Lemma 10.12.6. Notation and assumptions as in Lemma 10.12.4 above. Suppose {𝑠′
𝑛 ∶

𝐶𝑛 → 𝐵𝑛} is a second choice of splittings. Write 𝑠′
𝑛 = 𝑠𝑛 + 𝜋𝑛 ∘ ℎ𝑛 for some unique

morphisms ℎ𝑛 ∶ 𝐶𝑛 → 𝐴𝑛. The family of maps {ℎ𝑛 ∶ 𝐶𝑛 → 𝐴[−1]𝑛+1} is a homotopy
between the associated morphisms 𝛿(𝑠), 𝛿(𝑠′) ∶ 𝐶• → 𝐴[−1]•.

Proof. Omitted. �

Definition 10.12.7. Let 𝒜 be an additive category. Let 𝐴• be a cochain complex with
boundary maps 𝑑𝑛

𝐴 ∶ 𝐴𝑛 → 𝐴𝑛−1. For any 𝑘 ∈ 𝐙 we define the 𝑘-shifted cochain complex
𝐴[𝑘]• as follows:

(1) we set 𝐴[𝑘]𝑛 = 𝐴𝑛+𝑘, and
(2) we set 𝑑𝑛

𝐴[𝑘] ∶ 𝐴[𝑘]𝑛 → 𝐴[𝑘]𝑛−1 equal to 𝑑𝑛
𝐴[𝑘] = (−1)𝑘𝑑𝑛+𝑘

𝐴 .
If 𝑓 ∶ 𝐴• → 𝐵• is a morphism of cochain complexes, then we let 𝑓[𝑘] ∶ 𝐴[𝑘]• → 𝐵[𝑘]•

be the morphism of cochain complexes with 𝑓[𝑘]𝑛 = 𝑓𝑘+𝑛.
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Of course this means we have functors [𝑘] ∶ CoCh(𝒜) → CoCh(𝒜) which mutually
commute (on the nose, without any intervening isomorphisms of functors) and such that
𝐴[𝑘][𝑙]• = 𝐴[𝑘 + 𝑙]• and with [0] = idCoCh(𝒜).

Definition 10.12.8. Let 𝒜 be an abelian category. Let 𝐴• be a cochain complexwith bound-
ary maps 𝑑𝑛

𝐴 ∶ 𝐴𝑛 → 𝐴𝑛+1. For any 𝑘 ∈ 𝐙 we identify 𝐻𝑖+𝑘(𝐴•) ⟶ 𝐻𝑖(𝐴[𝑘]•) via the
identification 𝐴𝑖+𝑘 = 𝐴[𝑘]𝑖.

This identification is functorial in 𝐴•. Note that since no signs are involved in this defi-
nition we actually get a compatible system of identifications of all the homology objects
𝐻𝑖−𝑘(𝐴[𝑘]•), which are further compatible with the identifications 𝐴[𝑘][𝑙]• = 𝐴[𝑘 + 𝑙]•

and with [0] = idCoCh(𝒜).

Let 𝒜 be an additive category. Suppose that 𝐴• and 𝐵• are cochain complexes, 𝑎, 𝑏 ∶ 𝐴• →
𝐵• are morphsms of cochain complexes, and {ℎ𝑖 ∶ 𝐴𝑖 → 𝐵𝑖−1} is a homotopy between 𝑎
and 𝑏. Recall that this means that 𝑎𝑖 − 𝑏𝑖 = 𝑑𝑖−1 ∘ ℎ𝑖 + ℎ𝑖+1 ∘ 𝑑𝑖. What if 𝑎 = 𝑏? Then
we obtain the formula 0 = 𝑑𝑖−1 ∘ ℎ𝑖 + ℎ𝑖+1 ∘ 𝑑𝑖, in other words, −𝑑𝑖−1 ∘ ℎ𝑖 = ℎ𝑖+1 ∘ 𝑑𝑖.
By definition above this means the collection {ℎ𝑖} above defines a morphism of cochain
complexes

𝐴• ⟶ 𝐵[−1]•.
Such a thing is the same as a morphism 𝐴[1]• → 𝐵• by our remarks above. This proves
the following lemma.

Lemma 10.12.9. Let 𝒜 be an additive category. Suppose that 𝐴• and 𝐵• are cochain
complexes. Given any morphism of cochain complexes 𝑎 ∶ 𝐴• → 𝐵• there is a bijection
between the set of homotopies from 𝑎 to 𝑎 and 𝑀𝑜𝑟CoCh(𝒜)(𝐴•, 𝐵[−1]•). More generally,
the set of homotopies between 𝑎 and 𝑏 is either empty or a principal homogenous space
under the group 𝑀𝑜𝑟CoCh(𝒜)(𝐴•, 𝐵[−1]•).

Proof. See above. �

Lemma 10.12.10. Let 𝒜 be an additive category. Let

0 → 𝐴• → 𝐵• → 𝐶• → 0

be a complex (!) of complexes. Suppose that we are given splittings 𝐵𝑛 = 𝐴𝑛 ⊕ 𝐶𝑛 com-
patible with the maps in the displayed sequence. Let 𝑠𝑛 ∶ 𝐶𝑛 → 𝐵𝑛 and 𝜋𝑛 ∶ 𝐵𝑛 → 𝐴𝑛 be
the corresponding maps. Then the family of morphisms

𝜋𝑛+1 ∘ 𝑑𝑛
𝐵 ∘ 𝑠𝑛 ∶ 𝐶𝑛 → 𝐴𝑛+1

define a morphism of complexes 𝛿 ∶ 𝐶• → 𝐴[1]•.

Proof. Denote 𝑖 ∶ 𝐴• → 𝐵• and 𝑞 ∶ 𝐵• → 𝐶• the maps of complexes in the short exact
sequence. Then 𝑖𝑛+1 ∘ 𝜋𝑛+1 ∘ 𝑑𝑛

𝐵 ∘ 𝑠𝑛 = 𝑑𝑛
𝐵 ∘ 𝑠𝑛 − 𝑠𝑛+1 ∘ 𝑑𝑛

𝐶. Hence 𝑖𝑛+2 ∘ 𝑑𝑛+1
𝐴 ∘ 𝜋𝑛+1 ∘ 𝑑𝑛

𝐵 ∘ 𝑠𝑛 =
𝑑𝑛+1

𝐵 ∘ (𝑑𝑛
𝐵 ∘ 𝑠𝑛 − 𝑠𝑛+1 ∘ 𝑑𝑛

𝐶) = −𝑑𝑛+1
𝐵 ∘ 𝑠𝑛+1 ∘ 𝑑𝑛

𝐶 as desired. �

Lemma 10.12.11. Notation and assumptions as in Lemma 10.12.10 above. Assume in
addition that 𝒜 is abelian. The morphism of complexes 𝛿 ∶ 𝐶• → 𝐴[1]• induces the maps

𝐻𝑖(𝛿) ∶ 𝐻𝑖(𝐶•) ⟶ 𝐻𝑖(𝐴[1]•) = 𝐻𝑖+1(𝐴•)

which occur in the long exact homology sequence associated to the short exact sequence of
cochain complexes by Lemma 10.10.12.

Proof. Omitted. �
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Lemma 10.12.12. Notation and assumptions as in Lemma 10.12.10 above. Let 𝛼 ∶ 𝐴•,
𝛽 ∶ 𝐵• → 𝐶𝑛 be the given morphisms of complexes. Suppose (𝑠′)𝑛 ∶ 𝐶𝑛 → 𝐵𝑛 and (𝜋′)𝑛 ∶
𝐵𝑛 → 𝐴𝑛 is a second choice of splittings. Write (𝑠′)𝑛 = 𝑠𝑛 + 𝛼𝑛 ∘ ℎ𝑛 and (𝜋′)𝑛 = 𝜋𝑛 + 𝑔𝑛 ∘ 𝛽𝑛

for some unique morphisms ℎ𝑛 ∶ 𝐶𝑛 → 𝐴𝑛 and 𝑔𝑛 ∶ 𝐶𝑛 → 𝐴𝑛. Then
(1) 𝑔𝑛 = −ℎ𝑛, and
(2) the family of maps {𝑔𝑛 ∶ 𝐶𝑛 → 𝐴[1]𝑛−1} is a homotopy between 𝛿, 𝛿′ ∶ 𝐶• →

𝐴[1]•, more precisely (𝛿′)𝑛 = 𝛿𝑛 + 𝑔𝑛+1 ∘ 𝑑𝑛
𝐶 + 𝑑𝑛−1

𝐴[1] ∘ 𝑔𝑛.

Proof. As (𝑠′)𝑛 and (𝜋′)𝑛 are splittings we have (𝜋′)𝑛 ∘ (𝑠′)𝑛 = 0. Hence
0 = (𝜋𝑛 + 𝑔𝑛 ∘ 𝛽𝑛) ∘ (𝑠𝑛 + 𝛼𝑛 ∘ ℎ𝑛) = 𝑔𝑛 ∘ 𝛽𝑛 ∘ 𝑠𝑛 + 𝜋𝑛 ∘ 𝛼𝑛 ∘ ℎ𝑛 = 𝑔𝑛 + ℎ𝑛

which proves (1). We compute (𝛿′)𝑛 as follows
(𝜋𝑛+1 + 𝑔𝑛+1 ∘ 𝛽𝑛+1) ∘ 𝑑𝑛

𝐵 ∘ (𝑠𝑛 + 𝛼𝑛 ∘ ℎ𝑛) = 𝛿𝑛 + 𝑔𝑛+1 ∘ 𝑑𝑛
𝐶 + 𝑑𝑛

𝐴 ∘ ℎ𝑛

Since ℎ𝑛 = −𝑔𝑛 and since 𝑑𝑛−1
𝐴[1] = −𝑑𝑛

𝐴 we conclude that (2) holds. �

10.13. Filtrations

Anice reference for thismaterial is [Del71, Section 1]. (Note that our conventions regarding
abelian categories are different.)

Definition 10.13.1. Let 𝒜 be an abelian category.
(1) A decreasing filtration 𝐹 on an object 𝐴 is a family (𝐹𝑛𝐴)𝑛∈𝐙 of subobjects of 𝐴

such that
𝐴 ⊃ … ⊃ 𝐹𝑛𝐴 ⊃ 𝐹𝑛+1𝐴 ⊃ … ⊃ 0

(2) A filtered object of𝒜 is pair (𝐴, 𝐹) consisting of an object 𝐴 of 𝒜 and a decreasing
filtration 𝐹 on 𝐴.

(3) A morphism (𝐴, 𝐹) → (𝐵, 𝐹) of filtered objects is given by a morphism 𝜑 ∶ 𝐴 →
𝐵 of 𝒜 such that 𝜑(𝐹𝑖𝐴) ⊂ 𝐹𝑖𝐵 for all 𝑖 ∈ 𝐙.

(4) The category of filtered objects is denoted Fil(𝒜).
(5) Given a filtered object (𝐴, 𝐹) and a subobject 𝑋 ⊂ 𝐴 the induced filtration on 𝑋

is the filtration with 𝐹𝑛𝑋 = 𝑋 ∩ 𝐹𝑛𝐴.
(6) Given a filtered object (𝐴, 𝐹) and a surjection 𝜋 ∶ 𝐴 → 𝑌 the quotient filtration

is the filtration with 𝐹𝑛𝑌 = 𝜋(𝐹𝑛𝐴).
(7) A filtration𝐹 on an object𝐴 is said to be finite if there exist 𝑛, 𝑚 such that𝐹𝑛𝐴 = 𝐴

and 𝐹𝑚𝐴 = 0.
(8) The filtration on a filtered object (𝐴, 𝐹) is said to be separated if ⋂𝑖 𝐹𝑖𝐴 = 0 and

exhaustive if ⋃ 𝐹𝑖𝐴 = 𝐴.

By abuse of notation we say that a morphism 𝑓 ∶ (𝐴, 𝐹) → (𝐵, 𝐹) of filtered objects
is injective if 𝑓 ∶ 𝐴 → 𝐵 is injective in the abelian category 𝒜. Similarly we say 𝑓 is
surjective if 𝑓 ∶ 𝐴 → 𝐵 is surjective in the category 𝒜. Being injective (resp. surjective)
is equivalent to being a monomorphism (resp. epimorphism) in Fil(𝒜). By Lemma 10.13.2
this is also equivalent to having zero kernel (resp. cokernel).

Lemma 10.13.2. Let 𝒜 be an abelian category. The category of filtered objects Fil(𝒜) has
the following properties:

(1) It is an additive category.
(2) It has a zero object.
(3) It has kernels and cokernels, images and coimages.
(4) In general it is not an abelian category.
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Proof. It is clear that Fil(𝒜) is additive with direct sum given by (𝐴, 𝐹) ⊕ (𝐵, 𝐹) = (𝐴 ⊕
𝐵, 𝐹) where 𝐹𝑝(𝐴 ⊕ 𝐵) = 𝐹𝑝𝐴 ⊕ 𝐹𝑝𝐵. The kernel of a morphism 𝑓 ∶ (𝐴, 𝐹) → (𝐵, 𝐹)
of filtered objects is the injection Ker(𝑓) ⊂ 𝐴 where Ker(𝑓) is endowed with the induced
filtration. The cokernel of a morphism 𝑓 ∶ 𝐴 → 𝐵 of filtered objects is the surjection
𝐵 → Coker(𝑓) where Coker(𝑓) is endowedwith the quotient filtration. Since all kernels and
cokernels exist, so do all coimages and images. See Example 10.3.11 for the last statement.

�

Definition 10.13.3. Let 𝒜 be an abelian category. A morphism 𝑓 ∶ 𝐴 → 𝐵 of filtered
objects of 𝒜 is said to be strict if 𝑓(𝐹𝑖𝐴) = 𝑓(𝐴) ∩ 𝐹𝑖𝐵 for all 𝑖 ∈ 𝐙.

This also equivalent to requiring that 𝑓−1(𝐹𝑖𝐵) = 𝐹𝑖𝐴 + Ker(𝑓) for all 𝑖 ∈ 𝐙. We charac-
terize strict morphisms as follows.

Lemma 10.13.4. Let 𝒜 be an abelian category. Let 𝑓 ∶ 𝐴 → 𝐵 be a morphism of filtered
objects of 𝒜. The following are equivalent

(1) 𝑓 is strict,
(2) the morphism Coim(𝑓) → Im(𝑓) of Lemma 10.3.10 is an isomorphism.

Proof. Note that Coim(𝑓) → Im(𝑓) is an isomorphism of objects of 𝒜, and that part (2)
signifies that it is an isomorphism of filtered objects. By the description of kernels and
cokernels in the proof of Lemma 10.13.2 we see that the filtration on Coim(𝑓) is the quotient
filtration coming from 𝐴 → Coim(𝑓). Similarly, the filtration on Im(𝑓) is the induced
filtration coming from the injection Im(𝑓) → 𝐵. The definition of strict is exactly that the
quotient filtration is the induced filtration. �

Lemma 10.13.5. Let 𝒜 be an abelian category. A composition of strict morphisms of
filtered objects is strict.

Proof. Let 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶 be strict morphisms of filtered objects. Then

𝑔(𝑓(𝐹𝑝𝐴)) = 𝑔(𝑓(𝐴) ∩ 𝐹𝑝𝐵)
⊃ 𝑔(𝑓(𝐴)) ∩ 𝑔(𝐹𝑝(𝐵))
= (𝑔 ∘ 𝑓)(𝐴) ∩ (𝑔(𝐵) ∩ 𝐹𝑝𝐶)
= (𝑔 ∘ 𝑓)(𝐴) ∩ 𝐹𝑝𝐶.

The inclusion 𝑔(𝑓(𝐹𝑝𝐴)) ⊂ (𝑔 ∘ 𝑓)(𝐴) ∩ 𝐹𝑝𝐶 is always true. �

Lemma 10.13.6. Let 𝒜 be an abelian category. Let 𝑓 ∶ 𝐴 → 𝐵 be a strict monomorphism
of filtered objects. Let 𝑔 ∶ 𝐴 → 𝐶 be a morphism of filtered objects. Then 𝑓 ⊕ 𝑔 ∶ 𝐴 →
𝐵 ⊕ 𝐶 is a strict monomorphism.

Proof. Clear from the definitions. �

Lemma 10.13.7. Let 𝒜 be an abelian category. Let 𝑓 ∶ 𝐵 → 𝐴 be a strict epimorphism of
filtered objects. Let 𝑔 ∶ 𝐶 → 𝐴 be a morphism of filtered objects. Then 𝑓⊕𝑔 ∶ 𝐵⊕𝐶 → 𝐴
is a strict epimorphism.

Proof. Clear from the definitions. �

Lemma 10.13.8. Let 𝒜 be an abelian category. Let (𝐴, 𝐹), (𝐵, 𝐹) be filtered objects. Let
𝑢 ∶ 𝐴 → 𝐵 be a morphism of filtered objects. If 𝑢 is injective then 𝑢 is strict if and only if
the filtration on 𝐴 is the induced filtration. If 𝑢 is surjective then 𝑢 is strict if and only if the
filtration on 𝐵 is the quotient filtration.
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Proof. This is immediate from the definition. �

The following lemma says that subobjects of a filtered object have a well defined filtration
independent of a choice of writing the object as a cokernel.

Lemma 10.13.9. Let 𝒜 be an abelian category. Let (𝐴, 𝐹) be a filtered object of 𝒜. Let
𝑋 ⊂ 𝑌 ⊂ 𝐴 be subobjects of 𝐴. On the object

𝑌/𝑋 = Ker(𝐴/𝑋 → 𝐴/𝑌)

the quotient filtration coming from the induced filtration on 𝑌 and the induced filtration
coming from the quotient filtration on 𝐴/𝑋 agree. Any of the morphisms 𝑋 → 𝑌, 𝑋 → 𝐴,
𝑌 → 𝐴, 𝑌 → 𝐴/𝑋, 𝑌 → 𝑌/𝑋, 𝑌/𝑋 → 𝐴/𝑋 are strict (with induced/quotient filtrations).

Proof. The quotient filtration 𝑌/𝑋 is given by 𝐹𝑝(𝑌/𝑋) = 𝐹𝑝𝑌/(𝑋 ∩ 𝐹𝑝𝑌) = 𝐹𝑝𝑌/𝐹𝑝𝑋
because 𝐹𝑝𝑌 = 𝑌 ∩ 𝐹𝑝𝐴 and 𝐹𝑝𝑋 = 𝑋 ∩ 𝐹𝑝𝐴. The induced filtration from the injection
𝑌/𝑋 → 𝐴/𝑋 is given by

𝐹𝑝(𝑌/𝑋) = 𝑌/𝑋 ∩ 𝐹𝑝(𝐴/𝑋)
= 𝑌/𝑋 ∩ (𝐹𝑝𝐴 + 𝑋)/𝑋
= (𝑌 ∩ 𝐹𝑝𝐴)/(𝑋 ∩ 𝐹𝑝𝐴)
= 𝐹𝑝𝑌/𝐹𝑝𝑋.

Hence the first statement of the lemma. The proof of the other cases is similar. �

Lemma 10.13.10. Let 𝒜 be an abelian category. Let 𝐴, 𝐵, 𝐶 ∈ Fil(𝒜). Let 𝑓 ∶ 𝐴 → 𝐵
and 𝑔 ∶ 𝐴 → 𝐶 be morphisms Then there exists a push out

𝐴
𝑓

//

𝑔
��

𝐵

𝑔′

��
𝐶

𝑓′
// 𝐶 ⨿𝐴 𝐵

in Fil(𝒜). If 𝑓 is strict, so is 𝑓′.

Proof. Set 𝐶 ⨿𝐴 𝐵 equal to Coker((1, −1) ∶ 𝐴 → 𝐶 ⊕ 𝐵) in Fil(𝒜). This cokernel exists,
by Lemma 10.13.2. It is a pushout, see Example 10.3.17. Note that 𝐹𝑝(𝐶×𝐴 𝐵) is the image
of 𝐹𝑝𝐶 ⊕ 𝐹𝑝𝐵. Hence

(𝑓′)−1(𝐹𝑝(𝐶 ×𝐴 𝐵)) = 𝑔(𝑓−1(𝐹𝑝𝐵))) + 𝐹𝑝𝐶

Whence the last statement. �

Lemma 10.13.11. Let 𝒜 be an abelian category. Let 𝐴, 𝐵, 𝐶 ∈ Fil(𝒜). Let 𝑓 ∶ 𝐵 → 𝐴
and 𝑔 ∶ 𝐶 → 𝐴 be morphisms Then there exists a push out

𝐵 ×𝐴 𝐶
𝑓′

//

𝑔′

��

𝐵

𝑔
��

𝐶
𝑓 // 𝐴

in Fil(𝒜). If 𝑓 is strict, so is 𝑓′.

Proof. This lemma is dual to Lemma 10.13.10. �
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Definition 10.13.12. Let 𝒜 be an abelian category. A graded object of 𝒜 is pair (𝐴, 𝑘)
consisting of an object 𝐴 of 𝒜 and a direct sum decomposition

𝐴 = ⨁𝑖∈𝐙
𝑘𝑖𝐴

by subobjects indexed by 𝐙. A morphism (𝐴, 𝑘) → (𝐵, 𝑘) of graded objects is given by a
morphism 𝜑 ∶ 𝐴 → 𝐵 of 𝒜 such that 𝜑(𝑘𝑖𝐴) ⊂ 𝑘𝑖𝐵 for all 𝑖 ∈ 𝐙. The category of graded
objects is denoted Gr(𝒜).

With our definitions an abelian category does not necessarily have all (countable) direct
sums. Of course the definition above still makes sense, but may be a little misleading in
case 𝒜 does not have infinite direct sums. For example, if 𝒜 = Vect𝑘 is the category
of finite dimensional vector spaces over a field 𝑘, then Gr(Vect𝑘) is the category of finite
dimensional vector spaces with a given gradation, and not the category of graded vector
spaces all of whose graded pieces are finite dimensional.

Lemma 10.13.13. Let 𝒜 be an abelian category. The category of graded objects Gr(𝒜) is
abelian.

Proof. Omitted. �

Let 𝒜 be an abelian category. Let (𝐴, 𝐹) be a filtered object of 𝒜. We denote gr𝑝𝐹(𝐴) =
gr𝑝(𝐴) the object 𝐹𝑝𝐴/𝐹𝑝+1𝐴 of 𝒜. This defines an additive functor

gr𝑝 ∶ Fil(𝒜) ⟶ 𝒜, (𝐴, 𝐹) ⟼ gr𝑝(𝐴).
Assume 𝒜 has countable direct sums. For (𝐴, 𝐹) in Fil(𝒜) we may set

gr(𝐴) = ⨁𝑝∈𝐙
gr𝑝(𝐴) = ⨁𝑝∈𝐙

𝐹𝑝𝐴/𝐹𝑝+1𝐴.

This defines an additive functor
gr ∶ Fil(𝒜) ⟶ Gr(𝒜), (𝐴, 𝐹) ⟼ gr(𝐴).

If 𝒜 does not have all countable direct sums this functor is still defined on the subcategory
of Fil(𝒜) consisting of all filtered objects whose filtrations are finite.

Lemma 10.13.14. Let 𝒜 be an abelian category.
(1) Let 𝐴 be a filtered object and 𝑋 ⊂ 𝐴. Then for each 𝑝 the sequence

0 → gr𝑝(𝑋) → gr𝑝(𝐴) → gr𝑝(𝐴/𝑋) → 0
is exact (with induced filtration on 𝑋 and quotient filtration on 𝐴/𝑋).

(2) Let 𝑓 ∶ 𝐴 → 𝐵 be a morphism of filtered objects of 𝒜. Then for each 𝑝 the
sequences

0 → gr𝑝(Ker(𝑓)) → gr𝑝(𝐴) → gr𝑝(Coim(𝑓)) → 0
and

0 → gr𝑝(Im(𝑓)) → gr𝑝(𝐵) → gr𝑝(Coker(𝑓)) → 0
are exact.

Proof. We have 𝐹𝑝+1𝑋 = 𝑋 ∩ 𝐹𝑝+1𝐴, hence map gr𝑝(𝑋) → gr𝑝(𝐴) is injective. Dually
the map gr𝑝(𝐴) → gr𝑝(𝐴/𝑋) is surjective. The kernel of 𝐹𝑝𝐴/𝐹𝑝+1𝐴 → 𝐴/𝑋 + 𝐹𝑝+1𝐴 is
clearly 𝐹𝑝+1𝐴 + 𝑋 ∩ 𝐹𝑝𝐴/𝐹𝑝+1𝐴 = 𝐹𝑝𝑋/𝐹𝑝+1𝑋 hence exactness in the middle. The two
short exact sequence of (2) are special cases of the short exact sequence of (1). �

Lemma 10.13.15. Let 𝒜 be an abelian category. Let 𝑓 ∶ 𝐴 → 𝐵 be a morphism of finite
filtered objects of 𝒜. The following are equivalent
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(1) 𝑓 is strict,
(2) the morphism Coim(𝑓) → Im(𝑓) is an isomorphism,
(3) gr(Coim(𝑓)) → gr(Im(𝑓)) is an isomorphism,
(4) the sequence gr(Ker(𝑓)) → gr(𝐴) → gr(𝐵) is exact,
(5) the sequence gr(𝐴) → gr(𝐵) → gr(Coker(𝑓)) is exact, and
(6) the sequence

0 → gr(Ker(𝑓)) → gr(𝐴) → gr(𝐵) → gr(Coker(𝑓)) → 0

is exact.

Proof. The equivalence of (1) and (2) is Lemma 10.13.4. By Lemma 10.13.14 we see that
(4), (5), (6) imply (3) and that (3) implies (4), (5), (6). Hence it suffices to show that (3)
implies (2). Thus we have to show that if 𝑓 ∶ 𝐴 → 𝐵 is an injective and surjective map
of finite filtered objects which induces and isomorphism gr(𝐴) → gr(𝐵), then 𝑓 induces an
isomorphism of filtered objects. In other words, we have to show that 𝑓(𝐹𝑝𝐴) = 𝐹𝑝𝐵 for
all 𝑝. As the filtrations are finite we may prove this by descending induction on 𝑝. Suppose
that 𝑓(𝐹𝑝+1𝐴) = 𝐹𝑝+1𝐵. Then commutative diagram

0 // 𝐹𝑝+1𝐴 //

𝑓
��

𝐹𝑝𝐴 //

𝑓
��

gr𝑝(𝐴) //

gr𝑝(𝑓)
��

0

0 // 𝐹𝑝+1𝐵 // 𝐹𝑝𝐵 // gr𝑝(𝐵) // 0

and the five lemma imply that 𝑓(𝐹𝑝𝐴) = 𝐹𝑝𝐵. �

Lemma 10.13.16. Let 𝒜 be an abelian category. Let 𝐴 → 𝐵 → 𝐶 be a complex of filtered
objects of 𝒜. Assume 𝛼 ∶ 𝐴 → 𝐵 and 𝛽 ∶ 𝐵 → 𝐶 are strict morphisms of filtered objects.
Then gr(Ker(𝛽)/Im(𝛼)) = Ker(gr(𝛽))/Im(gr(𝛼))).

Proof. This follows formally from Lemma 10.13.14 and the fact that Coim(𝛼) ≅ Im(𝛼) and
Coim(𝛽) ≅ Im(𝛽) by Lemma 10.13.4. �

Lemma 10.13.17. Let 𝒜 be an abelian category. Let 𝐴 → 𝐵 → 𝐶 be a complex of filtered
objects of 𝒜. Assume 𝐴, 𝐵, 𝐶 have finite filtrations and that gr(𝐴) → gr(𝐵) → gr(𝐶) is
exact. Then

(1) for each 𝑝 ∈ 𝐙 the sequence gr𝑝(𝐴) → gr𝑝(𝐵) → gr𝑝(𝐶) is exact,
(2) for each 𝑝 ∈ 𝐙 the sequence 𝐹𝑝(𝐴) → 𝐹𝑝(𝐵) → 𝐹𝑝(𝐶) is exact,
(3) for each 𝑝 ∈ 𝐙 the sequence 𝐴/𝐹𝑝(𝐴) → 𝐵/𝐹𝑝(𝐵) → 𝐶/𝐹𝑝(𝐶) is exact,
(4) the maps 𝐴 → 𝐵 and 𝐵 → 𝐶 are strict, and
(5) 𝐴 → 𝐵 → 𝐶 is exact (as a sequence in 𝒜).

Proof. Part (1) is immediate from the definitions. We will prove (3) by induction on the
length of the filtrations. If each of 𝐴, 𝐵, 𝐶 has only one nonzero graded part, then (3) holds
as gr(𝐴) = 𝐴, etc. Let 𝑛 be the largest integer such that at least one of 𝐹𝑛𝐴, 𝐹𝑛𝐵, 𝐹𝑛𝐶 is
nonzero. Set 𝐴′ = 𝐴/𝐹𝑛𝐴, 𝐵′ = 𝐵/𝐹𝑛𝐵, 𝐶′ = 𝐶/𝐹𝑛𝐶 with induced filtrations. Note that
gr(𝐴) = 𝐹𝑛𝐴 ⊕ gr(𝐴′) and similarly for 𝐵 and 𝐶. The induction hypothesis applies to
𝐴′ → 𝐵′ → 𝐶′, which implies that 𝐴/𝐹𝑝(𝐴) → 𝐵/𝐹𝑝(𝐵) → 𝐶/𝐹𝑝(𝐶) is exact for 𝑝 ≥ 𝑛.
To conclude the same for 𝑝 = 𝑛 + 1, i.e., to prove that 𝐴 → 𝐵 → 𝐶 is exact we use the
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commutative diagram

0 // 𝐹𝑛𝐴 //

��

𝐴 //

��

𝐴′ //

��

0

0 // 𝐹𝑛𝐵 //

��

𝐵 //

��

𝐵′ //

��

0

0 // 𝐹𝑛𝐶 // 𝐶 // 𝐶′ // 0
whose rows are short exact sequences of objects of 𝒜. The proof of (2) is dual. Of course
(5) follows from (2).

To prove (4) denote 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 the given morphisms. We know that
𝑓(𝐹𝑝(𝐴)) = Ker(𝐹𝑝(𝐵) → 𝐹𝑝(𝐶)) by (2) and 𝑓(𝐴) = Ker(𝑔) by (5). Hence 𝑓(𝐹𝑝(𝐴)) =
Ker(𝐹𝑝(𝐵) → 𝐹𝑝(𝐶)) = Ker(𝑔) ∩ 𝐹𝑝(𝐵) = 𝑓(𝐴) ∩ 𝐹𝑝(𝐵) which proves that 𝑓 is strict. The
proof that 𝑔 is strict is dual to this. �

10.14. Spectral sequences

A nice discussion of spectral sequences may be found in [Eis95]. See also [McC01],
[Lan02], etc.

Definition 10.14.1. Let 𝒜 be an abelian category.
(1) A spectral sequence in 𝒜 is given by a system (𝐸𝑟, 𝑑𝑟)𝑟≥1 where each 𝐸𝑟 is an

object of 𝒜, each 𝑑𝑟 ∶ 𝐸𝑟 → 𝐸𝑟 is a morphism such that 𝑑𝑟 ∘ 𝑑𝑟 = 0 and 𝐸𝑟+1 =
Ker(𝑑𝑟)/Im(𝑑𝑟) for 𝑟 ≥ 1.

(2) A morphism of spectral sequences 𝑓 ∶ (𝐸𝑟, 𝑑𝑟)𝑟≥1 → (𝐸′
𝑟, 𝑑′

𝑟)𝑟≥1 is given by a
family of morphisms 𝑓𝑟 ∶ 𝐸𝑟 → 𝐸′

𝑟 such that 𝑓𝑟 ∘ 𝑑𝑟 = 𝑑′
𝑟 ∘ 𝑓𝑟 and such that 𝑓𝑟+1

is the morphism induced by 𝑓𝑟 via the identifications 𝐸𝑟+1 = Ker(𝑑𝑟)/Im(𝑑𝑟) and
𝐸′

𝑟+1 = Ker(𝑑′
𝑟)/Im(𝑑′

𝑟).

We will sometimes loosen this definition somewhat and allow 𝐸𝑟+1 to be an object with
a given isomorphism 𝐸𝑟+1 → Ker(𝑑𝑟)/Im(𝑑𝑟). In addition we sometimes have a system
(𝐸𝑟, 𝑑𝑟)𝑟≥𝑟0

for some 𝑟0 satsifying the properties of the definition above for indices ≥ 𝑟.
We will also call this a spectral sequence since by a simple renumbering it falls under the
definition anyway. In fact, sometimes it makes sense to allow 𝑟0 = 0 or even 𝑟0 = −1 due
to conventions in the literature.

Given a spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥1 we define

0 = 𝐵1 ⊂ 𝐵2 ⊂ … ⊂ 𝐵𝑟 ⊂ … ⊂ 𝑍𝑟 ⊂ … ⊂ 𝑍2 ⊂ 𝑍1 = 𝐸1

by the following simple procedure. Set 𝐵2 = Im(𝑑1) and 𝑍2 = Ker(𝑑1). Then it is clear that
𝑑2 ∶ 𝑍2/𝐵2 → 𝑍2/𝐵2. Hence we can define 𝐵3 as the unique subobject of 𝐸1 containing 𝐵2
such that 𝐵3/𝐵2 is the image of 𝑑2. Similarly we can define 𝑍3 as the unique subobject of
𝐸1 containing 𝐵2 such that 𝑍3/𝐵2 is the kernel of 𝑑2. And so on and so forth. In particular
we have

𝐸𝑟 = 𝑍𝑟/𝐵𝑟

for all 𝑟 ≥ 1. I case the spectral sequence starts at 𝑟 = 𝑟0 then we can similarly construct
𝐵𝑖, 𝑍𝑖 as subobjects in 𝐸𝑟0

.

Definition 10.14.2. Let 𝒜 be an abelian category. Let (𝐸𝑟, 𝑑𝑟)𝑟≥1 be a spectral sequence.
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(1) If the subobjects 𝑍∞ = ⋂ 𝑍𝑟 and 𝐵∞ = ⋃ 𝐵𝑟 of 𝐸1 exist then we define the
limit of the spectral sequence to be the object

𝐸∞ = 𝑍∞/𝐵∞.
(2) We say that the spectral sequence collapses at 𝐸𝑟, or degenerates at 𝐸𝑟 if the

differentials 𝑑𝑟, 𝑑𝑟+1, … are all zero.

Note that if the spectral sequence collapses at 𝐸𝑟, then we have 𝐸𝑟 = 𝐸𝑟+1 = … = 𝐸∞
(and the limit exists of course). Also, almost any abelian category we will encounter has
countable sums and intersections.

10.15. Spectral sequences: exact couples

Definition 10.15.1. Let 𝒜 be an abelian category.
(1) An exact couple is a datum (𝐴, 𝐸, 𝛼, 𝑓, 𝑔) where 𝐴, 𝐸 are objects of 𝒜 and 𝛼, 𝑓,

𝑔 are morphisms as in the following diagram

𝐴 𝛼
// 𝐴

𝑔
��

𝐸
𝑓

__

with the property that the kernel of each arrow is the image of its predecessor. So
Ker(𝛼) = Im(𝑓), Ker(𝑓) = Im(𝑔), and Ker(𝑔) = Im(𝛼).

(2) A morphism of exact couples 𝑡 ∶ (𝐴, 𝐸, 𝛼, 𝑓, 𝑔) → (𝐴′, 𝐸′, 𝛼′, 𝑓′, 𝑔′) is given by
morphisms 𝑡𝐴 ∶ 𝐴 → 𝐴′ and 𝑡𝐸 ∶ 𝐸 → 𝐸′ such that 𝛼′∘𝑡𝐴 = 𝑡𝐴∘𝛼, 𝑓′∘𝑡𝐸 = 𝑡𝐴∘𝑓,
and 𝑔′ ∘ 𝑡𝐴 = 𝑡𝐸 ∘ 𝑔.

Lemma 10.15.2. Let 𝒜 be an abelian category. Let (𝐴, 𝐸, 𝛼, 𝑓, 𝑔) be an exact couple. Set
(1) 𝑑 = 𝑔 ∘ 𝑓 ∶ 𝐸 → 𝐸 so that 𝑑 ∘ 𝑑 = 0,
(2) 𝐸′ = Ker(𝑑)/Im(𝑑),
(3) 𝐴′ = Im(𝛼),
(4) 𝛼′ ∶ 𝐴′ → 𝐴′ induced by 𝛼,
(5) 𝑓′ ∶ 𝐸′ → 𝐴′ induced by 𝑓,
(6) 𝑔′ ∶ 𝐴′ → 𝐸′ induced by ``𝑔 ∘ 𝛼−1''.

Then we have
(1) Ker(𝑑) = 𝑓−1(ker(𝑔)) = 𝑓−1(Im(𝛼)),
(2) Im(𝑑) = 𝑔(Im(𝑓)) = 𝑔(Ker(𝛼)),
(3) (𝐴′, 𝐸′, 𝛼′, 𝑓′, 𝑔′) is an exact couple.

Proof. Omitted. �

Hence it is clear that given an exact couple (𝐴, 𝐸, 𝛼, 𝑓, 𝑔) we get a spectral sequence by
setting 𝐸1 = 𝐸, 𝑑1 = 𝑑, 𝐸2 = 𝐸′, 𝑑2 = 𝑑′ = 𝑔′ ∘ 𝑓′, 𝐸3 = 𝐸″, 𝑑3 = 𝑑″ = 𝑔″ ∘ 𝑓″, and so
on.

Definition 10.15.3. Let 𝒜 be an abelian category. Let (𝐴, 𝐸, 𝛼, 𝑓, 𝑔) be an exact couple.
The spectral sequence associated to the exact couple is the spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥1
with 𝐸1 = 𝐸, 𝑑1 = 𝑑, 𝐸2 = 𝐸′, 𝑑2 = 𝑑′ = 𝑔′ ∘ 𝑓′, 𝐸3 = 𝐸″, 𝑑3 = 𝑑″ = 𝑔″ ∘ 𝑓″, and so on.

Lemma 10.15.4. Let 𝒜 be an abelian category. Let (𝐴, 𝐸, 𝛼, 𝑓, 𝑔) be an exact couple. Let
(𝐸𝑟, 𝑑𝑟)𝑟≥1 be the spectral sequence associated to the exact couple. In this case we have

0 = 𝐵1 ⊂ … ⊂ 𝐵𝑟+1 = 𝑔(ker(𝛼𝑟)) ⊂ … ⊂ 𝑍𝑟+1 = 𝑓−1(Im(𝛼𝑟)) ⊂ … ⊂ 𝑍1 = 𝐸
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and the map 𝑑𝑟+1 ∶ 𝐸𝑟+1 → 𝐸𝑟+1 is described by the following rule: For any (test) object
𝑇 of 𝒜 and any elements 𝑥 ∶ 𝑇 → 𝑍𝑟+1 and 𝑦 ∶ 𝑇 → 𝐴 such that 𝑓 ∘ 𝑥 = 𝛼𝑟 ∘ 𝑦 we have

𝑑𝑟 ∘ 𝑥 = 𝑔 ∘ 𝑦

where 𝑥 ∶ 𝑇 → 𝐸𝑟+1 is the induced morphism.

Proof. Omitted. �

Note that in the situation of the lemma we obviously have

𝐵∞ = 𝑔 (⋃𝑟
Ker(𝛼𝑟)) ⊂ 𝑍∞ = 𝑓−1

(⋂𝑟
Im(𝛼𝑟))

provided this exist and in this case 𝐸∞ = 𝑍∞/𝐵∞.

10.16. Spectral sequences: differential objects

Definition 10.16.1. Let 𝒜 be an abelian category. A differential object of 𝒜 is a pair (𝐴, 𝑑)
consisting of an object 𝐴 of 𝒜 endowed with a selfmap 𝑑 such that 𝑑∘𝑑 = 0. Amorphism of
differential objects (𝐴, 𝑑) → (𝐵, 𝑑) is given by amorphism 𝛼 ∶ 𝐴 → 𝐵 such that 𝑑∘𝛼 = 𝛼∘𝑑.

Lemma 10.16.2. Let 𝒜 be an abelian category. The category of differential objects of 𝒜
is abelian.

Proof. Omitted. �

Definition 10.16.3. For a differential object (𝐴, 𝑑) we denote

𝐻(𝐴, 𝑑) = Ker(𝑑)/Im(𝑑)

its homology.

Lemma 10.16.4. Let 𝒜 be an abelian category. Let 0 → (𝐴, 𝑑) → (𝐵, 𝑑) → (𝐶, 𝑑) → 0 be
a short exact sequence of differential objects. Then we get an exact homology sequence

… → 𝐻(𝐶, 𝑑) → 𝐻(𝐴, 𝑑) → 𝐻(𝐵, 𝑑) → 𝐻(𝐶, 𝑑) → …

Proof. Apply Lemma 10.10.12 to the short exact sequence of complexes

0 → 𝐴 → 𝐵 → 𝐶 → 0
↓ ↓ ↓

0 → 𝐴 → 𝐵 → 𝐶 → 0
↓ ↓ ↓

0 → 𝐴 → 𝐵 → 𝐶 → 0
�

We come to an important example of a spectral sequence. Let 𝒜 be an abelian category.
Let (𝐴, 𝑑) be a differential object of 𝒜. Let 𝛼 ∶ (𝐴, 𝑑) → (𝐴, 𝑑) be an endomorphism of
this differential object. If we assume 𝛼 injective, then we get a short exact sequence

0 → (𝐴, 𝑑) → (𝐴, 𝑑) → (𝐴/𝛼𝐴, 𝑑) → 0

of differential objects. By the Lemma 10.16.4 we get an exact couple

𝐻(𝐴, 𝑑)
𝛼

// 𝐻(𝐴, 𝑑)

𝑔
xx

𝐻(𝐴/𝛼𝐴, 𝑑)
𝑓

ff
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where 𝑔 is the canonical map and 𝑓 is the map defined in the snake lemma. Thus we get
an associated spectral sequence! Since in this case we have 𝐸1 = 𝐻(𝐴/𝛼𝐴, 𝑑) we see that
it makes sense to define 𝐸0 = 𝐴/𝛼𝐴 and 𝑑0 = 𝑑. In other words, we start the spectral
sequence with 𝑟 = 0. According to our conventions in Section 10.14 we define a sequence
of subobjects

0 = 𝐵0 ⊂ … ⊂ 𝐵𝑟 ⊂ … ⊂ 𝑍𝑟 ⊂ … ⊂ 𝑍0 = 𝐸0
with the property that 𝐸𝑟 = 𝑍𝑟/𝐵𝑟. Namely we have for 𝑟 ≥ 1 that

(1) 𝐵𝑟 is the image of (𝛼𝑟−1)−1(𝑑𝐴) under the natural map 𝐴 → 𝐴/𝛼𝐴,
(2) 𝑍𝑟 is the image of 𝑑−1(𝛼𝑟𝐴) under the natural map 𝐴 → 𝐴/𝛼𝐴, and
(3) 𝑑𝑟 ∶ 𝐸𝑟 → 𝐸𝑟 is given as follows: given an element 𝑧 ∈ 𝑍𝑟 choose an element

𝑦 ∈ 𝐴 such that 𝑑(𝑧) = 𝛼𝑟(𝑦). Then 𝑑𝑟(𝑧 + 𝐵𝑟 + 𝛼𝐴) = 𝑦 + 𝐵𝑟 + 𝛼𝐴.
Warning: It is not necessarily the case that 𝛼𝐴 ⊂ (𝛼𝑟−1)−1(𝑑𝐴), nor 𝛼𝐴 ⊂ 𝑑−1(𝛼𝑟𝐴). It is
true that (𝛼𝑟−1)−1(𝑑𝐴) ⊂ 𝑑−1(𝛼𝑟𝐴). We have

𝐸𝑟 = 𝑑−1(𝛼𝑟𝐴) + 𝛼𝐴
(𝛼𝑟−1)−1(𝑑𝐴) + 𝛼𝐴

.

It is not hard to verify directly that (1) -- (3) give a spectral sequence.

Definition 10.16.5. Let 𝒜 be an abelian category. Let (𝐴, 𝑑) be a differential object of
𝒜. Let 𝛼 ∶ 𝐴 → 𝐴 be an injective selfmap of 𝐴 which commutes with 𝑑. The spectral
sequence associated to (𝐴, 𝑑, 𝛼) is the spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥0 described above.

10.17. Spectral sequences: filtered differential objects

Definition 10.17.1. Let 𝒜 be an abelian category. A filtered differential object (𝐾, 𝐹, 𝑑) is
a filtered object (𝐾, 𝐹) of 𝒜 endowed with an endomorphism 𝑑 ∶ (𝐾, 𝐹) → (𝐾, 𝐹) whose
square is zero: 𝑑 ∘ 𝑑 = 0.

Let 𝒜 be an abelian category. Let (𝐾, 𝐹, 𝑑) be a filtered differential object of 𝒜. Note that
each 𝐹𝑛𝐾 is a differential object by itself. Assume 𝒜 has countable direct sums. In this case
set 𝐴 = ⨁ 𝐹𝑛𝐾 and endow it with a differential 𝑑 by using 𝑑 on each summand. Consider
the map

𝛼 ∶ 𝐴 → 𝐴
which maps the summand 𝐹𝑛𝐴 into the summand 𝐹𝑛−1𝐴. This is clearly an injective mor-
phism of differential modules 𝛼 ∶ (𝐴, 𝑑) → (𝐴, 𝑑). Hence, by Definition 10.16.5 we get a
spectral sequence. We will call this the spectral sequence associated to the filtered differ-
ential object (𝐾, 𝐹, 𝑑).
Let us figure out the terms of this spectral sequence. First, note that 𝐴/𝛼𝐴 = gr(𝐾) endowed
with its differential 𝑑 = gr(𝑑). Hence we see that

𝐸0 = gr(𝐾), 𝑑0 = gr(𝑑).
Hence the homology of the graded differential object gr(𝐾) is the next term:

𝐸1 = 𝐻(gr(𝐾), gr(𝑑)).
In addition we see that 𝐸0 is a graded object of 𝒜 and that 𝑑0 is compatible with the grading.
Hence clearly 𝐸1 is a graded object as well. But it turns out that the differential 𝑑1 does not
preserve this grading; instead it shifts the degree by 1.
To work this out precisely, we define

𝑍𝑝
𝑟 = 𝐹𝑝𝐾 ∩ 𝑑−1(𝐹𝑝+𝑟𝐾) + 𝐹𝑝+1𝐾

𝐹𝑝+1𝐾
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and

𝐵𝑝
𝑟 = 𝐹𝑝𝐾 ∩ 𝑑(𝐹𝑝−𝑟+1𝐾) + 𝐹𝑝+1𝐾

𝐹𝑝+1𝐾
.

This notation, allthough quite natural, seems to be different from the notation in most places
in the literature. Perhaps it does not matter, since the literature does not seem to have a
consistent choice of notation either. With these choices we see that 𝐵𝑟 ⊂ 𝐸0, resp. 𝑍𝑟 ⊂ 𝐸0
(as defined in Section 10.16) is equal to ⨁𝑝 𝐵𝑝

𝑟 , resp. ⨁𝑝 𝑍𝑝
𝑟 . Hence if we define

𝐸𝑝
𝑟 = 𝑍𝑝

𝑟 /𝐵𝑝
𝑟

for 𝑟 ≥ 0 and 𝑝 ∈ 𝐙, then we have 𝐸𝑟 = ⨁𝑝 𝐸𝑝
𝑟 . We can define a differential 𝑑𝑝

𝑟 ∶ 𝐸𝑝
𝑟 →

𝐸𝑝+𝑟
𝑟 by the rule

𝑧 + 𝐹𝑝+1𝐾 ⟼ 𝑑𝑧 + 𝐹𝑝+𝑟+1𝐾
where 𝑧 ∈ 𝐹𝑝𝐾 ∩ 𝑑−1(𝐹𝑝+𝑟𝐾).

Lemma 10.17.2. Let𝒜 be an abelian category. Let (𝐾, 𝐹, 𝑑) be a filtered differential object
of 𝒜. Assume 𝒜 has countable direct sums. The spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥0 associated
to (𝐾, 𝐹, 𝑑) has terms

𝐸𝑟 = ⨁𝑝∈𝐙
𝐸𝑝

𝑟 , 𝑑𝑟 = ⨁𝑝∈𝐙
𝑑𝑝

𝑟 .

Furthermore, we have 𝐸𝑝
0 = gr𝑝𝐾, 𝑑0 = gr(𝑑), and 𝐸𝑝

1 = 𝐻(gr𝑝(𝐾), 𝑑).

Proof. Follows from the discussion above. �

Lemma 10.17.3. Let𝒜 be an abelian category. Let (𝐾, 𝐹, 𝑑) be a filtered differential object
of 𝒜. Assume 𝒜 has countable direct sums. The spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥0 associated
to (𝐾, 𝐹, 𝑑) has

𝑑𝑝
1 ∶ 𝐸𝑝

1 = 𝐻(gr𝑝(𝐾)) ⟶ 𝐸𝑝+1
1 = 𝐻(gr𝑝+1(𝐾))

equal to the boundary map in homology associated to the short exact sequence of differen-
tial objects

0 → gr𝑝+1(𝐾) → 𝐹𝑝𝐾/𝐹𝑝+2𝐾 → gr𝑝+1(𝐾) → 0.

Proof. Omitted. �

Definition 10.17.4. Let 𝒜 be an abelian category. Let (𝐾, 𝐹, 𝑑) be a filtered differential
object of 𝒜. The induced filtration on 𝐻(𝐾, 𝑑) is the filtration defined by 𝐹𝑝𝐻(𝐾, 𝑑) =
Im(𝐻(𝐹𝑝𝐾, 𝑑) → 𝐻(𝐾, 𝑑)).

Lemma 10.17.5. Let𝒜 be an abelian category. Let (𝐾, 𝐹, 𝑑) be a filtered differential object
of 𝒜. The associated graded gr(𝐻(𝐾)) of the cohomology of 𝐾 is a graded subquotient of
the graded object 𝐸∞ = ⨁ 𝐸𝑝

∞.

Proof. Recall that 𝐸∞ = 𝑍∞/𝐵∞ by definition, with 𝐵∞ = ⋃ 𝐵𝑟 and 𝑍∞ = ⋂ 𝑍𝑟. Hence
𝐸∞ = ⨁ 𝐸𝑝

∞ with 𝐸𝑝
∞ = 𝑍𝑝

∞/𝐵𝑝
∞ with 𝐵𝑝

∞ = ⋃ 𝐵𝑝
𝑟 and 𝑍𝑝

∞ = ⋂ 𝑍𝑝
𝑟 . Thus

𝐸𝑝
∞ =

⋂𝑟(𝐹
𝑝𝐾 ∩ 𝑑−1(𝐹𝑝+𝑟𝐾) + 𝐹𝑝+1𝐾)

⋃𝑟(𝐹𝑝𝐾 ∩ 𝑑(𝐹𝑝−𝑟+1𝐾) + 𝐹𝑝+1𝐾)
.

On the other hand, we have

gr𝑝𝐻(𝐾) = Ker(𝑑) ∩ 𝐹𝑝𝐾 + 𝐹𝑝+1𝐾
Im(𝑑) ∩ 𝐹𝑝𝐾 + 𝐹𝑝+1𝐾

The result follows since
(10.17.5.1) Ker(𝑑) ∩ 𝐹𝑝𝐾 + 𝐹𝑝+1𝐾 ⊂ ⋃𝑟 (𝐹𝑝𝐾 ∩ 𝑑−1(𝐹𝑝+𝑟𝐾) + 𝐹𝑝+1𝐾)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=012C
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=012D
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=012E
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=012F


10.18. SPECTRAL SEQUENCES: FILTERED COMPLEXES 697

and

(10.17.5.2) ⋂𝑟 (𝐹𝑝𝐾 ∩ 𝑑(𝐹𝑝−𝑟+1𝐾) + 𝐹𝑝+1𝐾) ⊂ Im(𝑑) ∩ 𝐹𝑝𝐾 + 𝐹𝑝+1𝐾.

�

Definition 10.17.6. Let 𝒜 be an abelian category. Let (𝐾, 𝐹, 𝑑) be a filtered differential
object of 𝒜. We say the spectral sequence associated to (𝐾, 𝐹, 𝑑) converges if gr(𝐻(𝐾)) =
𝐸∞ via Lemma 10.17.5. In this case we also say that (𝐸𝑟, 𝑑𝑟)𝑟≥0 abuts to or converges to
𝐻(𝐾).

In the literature one finds more refined notions distinguishing between ``weakly converg-
ing'', ``abutting'' and ``converging''. Namely, one can require the filtration on 𝐻(𝐾) to be
either ``arbitrary'', or ``exhaustive and separated'', or ``exhaustive and complete'' in addition
to the condition that gr(𝐻(𝐾)) = 𝐸∞. We try to avoid introducing this notation by simply
adding the relevant information in the statements of the results.

Lemma 10.17.7. Let𝒜 be an abelian category. Let (𝐾, 𝐹, 𝑑) be a filtered differential object
of 𝒜. The associated spectral sequence converges if and only if for every 𝑝 ∈ 𝐙 we have
equality in equations (10.17.5.2) and (10.17.5.1).

Proof. Immediate from the discussions above. �

10.18. Spectral sequences: filtered complexes

Definition 10.18.1. Let 𝒜 be an abelian category. A filtered complex 𝐾• of 𝒜 is a complex
of Fil(𝒜) (see Definition 10.13.1).

We will denote the filtration on the objects by 𝐹. Thus 𝐹𝑝𝐾𝑛 denotes the 𝑝th step in the
filtration of the 𝑛th term of the complex. Note that each 𝐹𝑝𝐾• is a complex of 𝒜. Hence
we could also have defined a filtered complex as a filtered object in the (abelian) category
of complexes of 𝒜. In particular gr𝐾• is a graded object of the category of complexes of
𝒜.

Let us denote 𝑑 the differential of 𝐾. Forgetting the grading we can think of ⨁ 𝐾𝑛 as a
filtered differential object of 𝒜. Hence according to Section 10.17 we obtain a spectral
sequence (𝐸𝑟, 𝑑𝑟)𝑟≥0. In this section we work out the terms of this spectral sequence, and
we endow the terms of this spectral seqeunce with additional structure coming from the
grading of 𝐾.

First we point out that 𝐸𝑝
0 = gr𝑝𝐾• is a complex and hence is graded. Thus 𝐸0 is bigraded

in a natural way. It is customary to use the bigrading

𝐸0 = ⨁𝑝,𝑞
𝐸𝑝,𝑞

0 , 𝐸𝑝,𝑞
0 = gr𝑝𝐾𝑝+𝑞

The idea is that 𝑝 + 𝑞 should be thought of as the total degree of the (co)homology classes.
Also, 𝑝 is called the filtration degree, and 𝑞 is called the complementary degree. The differ-
ential 𝑑0 is compatible with this bigrading in the following way

𝑑0 = ⨁ 𝑑𝑝,𝑞
0 , 𝑑𝑝,𝑞

0 ∶ 𝐸𝑝,𝑞
0 → 𝐸𝑝,𝑞+1

0 .

Namely, 𝑑𝑝
0 is just the differential on the complex gr𝑝𝐾• (which occurs as gr𝑝𝐸0 just shifted

a bit).

To go further we identify the objects 𝐵𝑝
𝑟 and 𝑍𝑝

𝑟 introduced in Section 10.17 as graded
objects and we work out the corresponding decompositions of the differentials. We do this
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in a completely straightforward manner, but again we warn the reader that our notation is
not the same as notation found elsewhere. We define

𝑍𝑝,𝑞
𝑟 = 𝐹𝑝𝐾𝑝+𝑞 ∩ 𝑑−1(𝐹𝑝+𝑟𝐾𝑝+𝑞+1) + 𝐹𝑝+1𝐾𝑝+𝑞

𝐹𝑝+1𝐾𝑝+𝑞

and

𝐵𝑝,𝑞
𝑟 = 𝐹𝑝𝐾𝑝+𝑞 ∩ 𝑑(𝐹𝑝−𝑟+1𝐾𝑝+𝑞−1) + 𝐹𝑝+1𝐾𝑝+𝑞

𝐹𝑝+1𝐾𝑝+𝑞 .

and of course 𝐸𝑝,𝑞
𝑟 = 𝑍𝑝,𝑞

𝑟 /𝐵𝑝,𝑞
𝑟 . With these definitions it is completely clear that 𝑍𝑝

𝑟 =
⨁𝑞 𝑍𝑝,𝑞

𝑟 , 𝐵𝑝
𝑟 = ⨁𝑞 𝐵𝑝,𝑞

𝑟 , and 𝐸𝑝
𝑟 = ⨁𝑞 𝐸𝑝,𝑞

𝑟 . Moreover,

0 ⊂ … ⊂ 𝐵𝑝,𝑞
𝑟 ⊂ … ⊂ 𝑍𝑝,𝑞

𝑟 ⊂ … ⊂ 𝐸𝑝,𝑞
0

and hence it makes sense to define 𝑍𝑝,𝑞
∞ = ⋂𝑟 𝑍𝑝,𝑞

𝑟 and 𝐵𝑝,𝑞
∞ = ⋃𝑟 𝐵𝑝,𝑞

𝑟 and 𝐸𝑝,𝑞
∞ = 𝑍𝑝,𝑞

∞ /𝐵𝑝,𝑞
∞ .

Also, the map 𝑑𝑝
𝑟 decomposes as the direct sum of the maps

𝑑𝑝,𝑞
𝑟 ∶ 𝐸𝑝,𝑞

𝑟 ⟶ 𝐸𝑝+𝑟,𝑞−𝑟+1
𝑟 , 𝑧 + 𝐹𝑝+1𝐾𝑝+𝑞 ↦ 𝑑𝑧 + 𝐹𝑝+𝑟+1𝐾𝑝+𝑞+1

where 𝑧 ∈ 𝐹𝑝𝐾𝑝+𝑞 ∩ 𝑑−1(𝐹𝑝+𝑟𝐾𝑝+𝑞+1).

Lemma 10.18.2. Let 𝒜 be an abelian category. Let (𝐾•, 𝐹) be a filtered complex of 𝒜. As-
sume 𝒜 has countable direct sums. The spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥0 associated to (𝐾•, 𝐹)
has bigraded terms

𝐸𝑟 = ⨁ 𝐸𝑝,𝑞
𝑟 , 𝑑𝑟 = ⨁ 𝑑𝑝,𝑞

𝑟 .

with 𝑑𝑟 of bidegree (𝑟, −𝑟 + 1). Furthermore, we have 𝐸𝑝,𝑞
0 = gr𝑝(𝐾𝑝+𝑞), 𝑑𝑝,𝑞

0 = gr𝑝(𝑑𝑝+𝑞),
and 𝐸𝑝,𝑞

1 = 𝐻𝑝+𝑞(gr𝑝(𝐾•)).

Proof. Follows from the discussion above. �

Lemma 10.18.3. Let 𝒜 be an abelian category. Let (𝐾•, 𝐹) be a filtered complex of 𝒜.
Assume 𝒜 has countable direct sums. Let (𝐸𝑟, 𝑑𝑟)𝑟≥0 be the spectral sequence associated
to (𝐾•, 𝐹).

(1) The map

𝑑𝑝,𝑞
1 ∶ 𝐸𝑝,𝑞

1 = 𝐻𝑝+𝑞(gr𝑝(𝐾•)) ⟶ 𝐸𝑝+1,𝑞
1 = 𝐻𝑝+𝑞+1(gr𝑝+1(𝐾•))

is equal to the boundary map in cohomology associated to the short exact se-
quence of complexes

0 → gr𝑝+1(𝐾•) → 𝐹𝑝𝐾•/𝐹𝑝+2𝐾• → gr𝑝+1(𝐾•) → 0.
(2) Assume that 𝑑(𝐹𝑝𝐾) ⊂ 𝐹𝑝+1𝐾 for all 𝑝 ∈ 𝐙. Then 𝑑 induces the zero differential

on gr𝑝(𝐾•) and hence 𝐸𝑝,𝑞
1 = gr𝑝(𝐾•)𝑝+𝑞. Furthermore, in this case

𝑑𝑝,𝑞
1 ∶ 𝐸𝑝,𝑞

1 = gr𝑝(𝐾•)𝑝+𝑞 ⟶ 𝐸𝑝,𝑞
1 = gr𝑝+1(𝐾•)𝑝+𝑞+1

is the morphism induced by 𝑑.

Proof. Omitted. But compare Lemma 10.17.3. �

Lemma 10.18.4. Let 𝒜 be an abelian category. Let 𝛼 ∶ (𝐾•, 𝐹) → (𝐿•, 𝐹) be a mor-
phism of filtered complexes of 𝒜. Assume 𝒜 has countable direct sums. Let (𝐸𝑟(𝐾), 𝑑𝑟)𝑟≥0,
resp. (𝐸𝑟(𝐿), 𝑑𝑟)𝑟≥0 be the spectral sequence associated to (𝐾•, 𝐹), resp. (𝐿•, 𝐹). The mor-
phism 𝛼 induces a canonical morphism of spectral sequences {𝛼𝑟 ∶ 𝐸𝑟(𝐾) → 𝐸𝑟(𝐿)}𝑟≥0
compatible with the bigradings.

Proof. Obvious from the explicit representation of the terms of the spectral sequences. �
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Definition 10.18.5. Let 𝒜 be an abelian category. Let (𝐾•, 𝐹) be a filtered complex of 𝒜.
The induced filtration on 𝐻𝑛(𝐾•) is the filtration defined by 𝐹𝑝𝐻𝑛(𝐾•) = Im(𝐻𝑛(𝐹𝑝𝐾•) →
𝐻𝑛(𝐾•)).

Lemma 10.18.6. Let 𝒜 be an abelian category. Let (𝐾•, 𝐹) be a filtered complex of 𝒜.
The associated graded gr(𝐻𝑛(𝐾•)) of the cohomology of 𝐾• is a graded subquotient of the
graded object ⨁𝑝+𝑞=𝑛 𝐸𝑝,𝑞

∞ .

Proof. Let 𝑞 = 𝑛 − 𝑝. As in the proof of Lemma 10.17.5 we see that

𝐸𝑝,𝑞
∞ =

⋂𝑟(𝐹
𝑝𝐾𝑛 ∩ 𝑑−1(𝐹𝑝+𝑟𝐾𝑛+1) + 𝐹𝑝+1𝐾𝑛)

⋃𝑟(𝐹𝑝𝐾𝑛 ∩ 𝑑(𝐹𝑝−𝑟+1𝐾𝑛−1) + 𝐹𝑝+1𝐾𝑛)
.

On the other hand, we have

(10.18.6.1) gr𝑝𝐻𝑛(𝐾) = Ker(𝑑) ∩ 𝐹𝑝𝐾𝑛 + 𝐹𝑝+1𝐾𝑛

Im(𝑑) ∩ 𝐹𝑝𝐾𝑛 + 𝐹𝑝+1𝐾𝑛

The result follows since

(10.18.6.2) Ker(𝑑) ∩ 𝐹𝑝𝐾𝑛 + 𝐹𝑝+1𝐾𝑛 ⊂ ⋃𝑟 (𝐹𝑝𝐾𝑛 ∩ 𝑑−1(𝐹𝑝+𝑟𝐾𝑛+1) + 𝐹𝑝+1𝐾𝑛)
and

(10.18.6.3) ⋂𝑟 (𝐹𝑝𝐾𝑛 ∩ 𝑑(𝐹𝑝−𝑟+1𝐾𝑛−1) + 𝐹𝑝+1𝐾𝑛) ⊂ Im(𝑑) ∩ 𝐹𝑝𝐾𝑛 + 𝐹𝑝+1𝐾𝑛.

�

Definition 10.18.7. Let 𝒜 be an abelian category. Let (𝐾•, 𝐹) be a filtered complex of 𝒜.
We say the spectral sequence associated to (𝐾•, 𝐹) converges if gr𝐻𝑛(𝐾•) = ⨁𝑝+𝑞=𝑛 𝐸𝑝,𝑞

∞
for every 𝑛 ∈ 𝐙.

This is often symbolized by the notation 𝐸𝑝,𝑞
𝑟 ⇒ 𝐻𝑝+𝑞(𝐾•). Please read the remarks fol-

lowing Definition 10.17.6.

Lemma 10.18.8. Let 𝒜 be an abelian category. Let (𝐾•, 𝐹) be a filtered complex of 𝒜. The
associated spectral sequence converges if and only if for every 𝑝, 𝑞 ∈ 𝐙 we have equality
in equations (10.18.6.3) and (10.18.6.2).

Proof. Immediate from the discussions above. �

Lemma 10.18.9. Let 𝒜 be an abelian category. Let (𝐾•, 𝐹) be a filtered complex of 𝒜.
Assume that the filtration on each 𝐾𝑛 is finite (see Definition 10.13.1). Then

(1) the filtration on each 𝐻𝑛(𝐾•) is finite, and
(2) the spectral sequence associated to (𝐾•, 𝐹) converges.

Proof. Part (1) is clear from Equation (10.18.6.1). We will use Lemma 10.18.8 to prove
part (2). Fix 𝑝, 𝑛 ∈ 𝐙. Look at the left hand side of Equation (10.18.6.3). The expression is
equal to the right hand side since 𝐹𝑚𝐾𝑛−1 = 0 for 𝑚 ≪ 0. Similarly, use 𝐹𝑚𝐾𝑛+1 = 𝐾𝑛+1

for 𝑚 ≫ 0 to prove equality in Equation (10.18.6.2). �

10.19. Spectral sequences: double complexes

Definition 10.19.1. Let 𝒜 be an additive category. A double complex in 𝒜 is given by a
system ({𝐴𝑝,𝑞, 𝑑𝑝,𝑞

1 , 𝑑𝑝,𝑞
2 }𝑝,𝑞∈𝐙), where each 𝐴𝑝,𝑞 is an object of 𝒜 and 𝑑𝑝,𝑞

1 ∶ 𝐴𝑝,𝑞 → 𝐴𝑝+1,𝑞

and 𝑑𝑝,𝑞
2 ∶ 𝐴𝑝,𝑞 → 𝐴𝑝,𝑞+1 are morphisms of 𝒜 such that the following rules hold:

(1) 𝑑𝑝+1,𝑞
1 ∘ 𝑑𝑝,𝑞

1 = 0
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(2) 𝑑𝑝,𝑞+1
2 ∘ 𝑑𝑝,𝑞

2 = 0
(3) 𝑑𝑝,𝑞+1

1 ∘ 𝑑𝑝,𝑞
2 = 𝑑𝑝+1,𝑞

2 ∘ 𝑑𝑝,𝑞
1

for all 𝑝, 𝑞 ∈ 𝐙.

This is just the cochain version of the definition. It says that each 𝐴𝑝,• is a cochain complex
and that each 𝑑𝑝,•

1 is a morphism of complexes 𝐴𝑝,• → 𝐴𝑝+1,• such that 𝑑𝑝+1,•
1 ∘ 𝑑𝑝,•

1 = 0
as morphisms of complexes. In other words a double complex can be seen as a complex of
complexes. So in the diagram

… … … …

… // 𝐴𝑝,𝑞+1 𝑑𝑝,𝑞+1
1 //

OO

𝐴𝑝+1,𝑞+1 //

OO

…

… // 𝐴𝑝,𝑞 𝑑𝑝,𝑞
1 //

𝑑𝑝,𝑞
2

OO

𝐴𝑝+1,𝑞 //

𝑑𝑝+1,𝑞
2

OO

…

… …

OO

…

OO

…
any square commutes. Warning: In the literature one encouters a different definition where
a ``bicomplex'' or a ``double complex'' has the property that the squares in the diagram
anti-commute.

It is customary to denote 𝐻𝑝
𝐼(𝐾•,•) the complex with terms Ker(𝑑𝑝,𝑞

1 )/Im(𝑑𝑝−1,𝑞
1 ) (varying

𝑞) and differential induced by 𝑑2. Then 𝐻𝑞
𝐼𝐼(𝐻𝑝

𝐼(𝐾•,•)) denotes its cohomology in degree
𝑞. It is also customary to denote 𝐻𝑞

𝐼𝐼(𝐾•,•) the complex with terms Ker(𝑑𝑝,𝑞
2 )/Im(𝑑𝑝,𝑞−1

2 )
(varying 𝑝) and differential induced by 𝑑1. Then 𝐻𝑝

𝐼(𝐻𝑞
𝐼𝐼(𝐾•,•)) denotes its cohomology in

degree 𝑞.

Definition 10.19.2. Let 𝒜 be an additive category. Let 𝐴•,• be a double complex. The
associated simple complex 𝑠𝐴•, also sometimes called the associated total complex is given
by

𝑠𝐴𝑛 = ⨁𝑛=𝑝+𝑞
𝐴𝑝,𝑞

(if it exists) with differential

𝑑𝑛
𝑠𝐴 = ∑𝑛=𝑝+𝑞

(𝑑𝑝,𝑞
1 + (−1)𝑝𝑑𝑝,𝑞

2 )

Alternatively, we sometimes write Tot(𝐴•,•) to denote this complex.

If countable direct sums exist in 𝒜 or if for each 𝑛 at most finitely many 𝐴𝑝,𝑛−𝑝 are nonzero,
then 𝑠𝐴• exists. Note that the definition is not symmetric in the indices (𝑝, 𝑞).

There are two natural filtrations on the simple complex 𝑠𝐴• associated to the double com-
plex 𝐴•,•. Namely, we define

𝐹𝑝
𝐼(𝑠𝐴𝑛) = ⨁𝑖+𝑗=𝑛, 𝑖≥𝑝

𝐴𝑖,𝑗 and 𝐹𝑝
𝐼𝐼(𝑠𝐴𝑛) = ⨁𝑖+𝑗=𝑛, 𝑗≥𝑝

𝐴𝑖,𝑗.

It is immediately verified that (𝑠𝐴•, 𝐹𝐼) and (𝑠𝐴•, 𝐹𝐼𝐼) are filtered complexes. By Section
10.18 we obtain two spectral sequences. It is customary to denote (′𝐸𝑟, ′𝑑𝑟)𝑟≥0 the spectral
sequence associated to the filtration 𝐹𝐼 and to denote (″𝐸𝑟, ″𝑑𝑟)𝑟≥0 the spectral sequence
associated to the filtration 𝐹𝐼𝐼. Here is a description of these spectral sequences.
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Lemma 10.19.3. Let𝒜 be an abelian category. Let𝐾•,• be a double complex. The spectral
sequences associated to 𝐾•,• have the following terms:

(1) ′𝐸𝑝,𝑞
0 = 𝐾𝑝,𝑞 with ′𝑑𝑝,𝑞

0 = (−1)𝑝𝑑𝑝,𝑞
2 ∶ 𝐾𝑝,𝑞 → 𝐾𝑝,𝑞+1,

(2) ″𝐸𝑝,𝑞
0 = 𝐾𝑞,𝑝 with ″𝑑𝑝,𝑞

0 = 𝑑𝑞,𝑝
1 ∶ 𝐾𝑞,𝑝 → 𝐾𝑞+1,𝑝,

(3) ′𝐸𝑝,𝑞
1 = 𝐻𝑞(𝐾𝑝,•) with ′𝑑𝑝,𝑞

1 = 𝐻𝑞(𝑑𝑝,•
1 ),

(4) ″𝐸𝑝,𝑞
1 = 𝐻𝑞(𝐾•,𝑝) with ″𝑑𝑝,𝑞

1 = (−1)𝑞𝐻𝑞(𝑑•,𝑝
2 ),

(5) ′𝐸𝑝,𝑞
2 = 𝐻𝑝

𝐼(𝐻𝑞
𝐼𝐼(𝐾•,•)),

(6) ″𝐸𝑝,𝑞
2 = 𝐻𝑝

𝐼𝐼(𝐻𝑞
𝐼(𝐾•,•)).

Proof. Omitted. �

These spectral sequences define two filtrations on 𝐻𝑛(𝑠𝐾•). We will denote these 𝐹𝐼 and
𝐹𝐼𝐼.

Definition 10.19.4. Let 𝒜 be an abelian category. Let 𝐾•,• be a double complex. We say
the spectral sequence (′𝐸𝑟, ′𝑑𝑟)𝑟≥0 converges if Definition 10.18.7 applies. In other words,
for all 𝑛

gr𝐹𝐼
(𝐻𝑛(𝑠𝐾•)) = ⊕𝑝+𝑞=𝑛

′𝐸𝑝,𝑞
∞

via the canonical comparison of Lemma 10.18.6. Similarly we say the spectral sequence
(″𝐸𝑟, ″𝑑𝑟)𝑟≥0 converges if Definition 10.18.7 applies. In other words for all 𝑛

gr𝐹𝐼𝐼
(𝐻𝑛(𝑠𝐾•)) = ⊕𝑝+𝑞=𝑛

″𝐸𝑝,𝑞
∞

via the canonical comparison of Lemma 10.18.6.

Same caveats as those following Definition 10.17.6.

Lemma 10.19.5. (First quadrant spectral sequence.) Let 𝒜 be an abelian category. Let
𝐾•,• be a double complex. Assume that for some 𝑖 ≪ 0 we have 𝐾𝑝,𝑞 = 0 whenever either
𝑝 < 𝑖 or 𝑞 < 𝑖. Then

(1) the filtrations 𝐹𝐼, 𝐹𝐼𝐼 on each 𝐻𝑛(𝐾•) are finite,
(2) the spectral sequence (′𝐸𝑟, ′𝑑𝑟)𝑟≥0 converges, and
(3) the spectral sequence (″𝐸𝑟, ″𝑑𝑟)𝑟≥0 converges.

Proof. Follows immediately from Lemma 10.18.9. �

Here is our first application of spectral sequences.

Lemma 10.19.6. Let 𝒜 be an abelian category. Let 𝐾• be a complex. Let 𝐴•,• be a double
complex. Let 𝛼𝑝 ∶ 𝐾𝑝 → 𝐴𝑝,0 be morphisms. Assume that

(1) There exists a 𝑖 ≪ 0 such that 𝐾𝑝 = 𝐴𝑝,𝑞 = 0 for all 𝑝 < 𝑖 and all 𝑞.
(2) We have 𝐴𝑝,𝑞 = 0 if 𝑞 < 0.
(3) The morphisms 𝛼𝑝 give rise to a morphism of complexes 𝛼 ∶ 𝐾• → 𝐴•,0.
(4) The complex 𝐴𝑝,• is exact in all degrees 𝑞≠0 and the morphism 𝐾𝑝 → 𝐴𝑝,0 in-

duces an isomorphism 𝐾𝑝 → Ker(𝑑𝑝,0
2 ).

Then 𝛼 induces a quasi-isomorphism

𝐾• ⟶ 𝑠𝐴•

of complexes. Moreover, there is a variant of this lemma involving the second variable 𝑞
instead of 𝑝.
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Proof. The map is simply the map given by the morphisms 𝐾𝑛 → 𝐴𝑛,0 → 𝑠𝐴𝑛, which are
easily seen to define amorphism of complexes. Consider the spectral sequence (′𝐸𝑟, ′𝑑𝑟)𝑟≥0
associated to the double complex 𝐴•,•. By Lemma 10.19.5 this spectral sequence converges
and the induced filtration on 𝐻𝑛(𝑠𝐴•) is finite for each 𝑛. By Lemma 10.19.3 and assump-
tion (4) we have ′𝐸𝑝,𝑞

1 = 0 unless 𝑞 = 0 and ′𝐸𝑝,0
1 = 𝐾𝑝 with differential ′𝑑𝑝,0

1 identified with
𝑑𝑝

𝐾. Hence ′𝐸𝑝,0
2 = 𝐻𝑝(𝐾•) and zero otherwise. This clearly implies 𝑑𝑝,𝑞

2 = 𝑑𝑝,𝑞
3 = … = 0

for degree reasons. Hence we conclude that 𝐻𝑛(𝑠𝐴•) = 𝐻𝑛(𝐾•). We omit the verifica-
tion that this identification is given by the morphism of complexes 𝐾• → 𝑠𝐴• introduced
above. �

Remark 10.19.7. Let 𝒜 be an abelian category. Let 𝒞 ⊂ 𝒜 be a weak Serre subcategory
(see Definition 10.7.1). Suppose that 𝐾•,• is a double complex to which Lemma 10.19.5
applies such that for some 𝑟 ≥ 0 all the objects ′𝐸𝑝,𝑞

𝑟 belong to 𝒞. We claim all the coho-
mology groups 𝐻𝑛(𝑠𝐾•) belong to 𝒞. Namely, the assumptions imply that the kernels and
images of ′𝑑𝑝,𝑞

𝑟 are in 𝒞. Whereupon we see that each ′𝐸𝑝,𝑞
𝑟+1 is in 𝒞. By induction we see

that each ′𝐸𝑝,𝑞
∞ is in 𝒞. Hence each 𝐻𝑛(𝑠𝐾•) has a finite filtration whose subquotients are

in 𝒞. Using that 𝒞 is closed under extensions we conclude that 𝐻𝑛(𝑠𝐾•) is in 𝒞 as claimed.
The same result holds for the second spectral sequence associated to 𝐾•,•. Similarly, if
(𝐾•, 𝐹) is a filtered complex to which Lemma 10.18.9 applies and for some 𝑟 ≥ 0 all the
objects 𝐸𝑝,𝑞

𝑟 belong to 𝒞, then each 𝐻𝑛(𝐾•) is an object of 𝒞.

10.20. Injectives

Definition 10.20.1. Let 𝒜 be an abelian category. An object 𝐽 ∈ 𝑂𝑏(𝒜) is called injective
if for every injection 𝐴 ↪ 𝐵 and every morphism 𝐴 → 𝐽 there exists a morphism 𝐵 → 𝐽
making the following diagram commute

𝐴 //

��

𝐵

��
𝐽

Here is the obligatory characterization of injective objects.

Lemma 10.20.2. Let 𝒜 be an abelian category. Let 𝐼 be an object of 𝒜. The following are
equivalent:

(1) The object 𝐼 is injective.
(2) The functor 𝐵 ↦ 𝐻𝑜𝑚𝒜(𝐵, 𝐼) is exact.
(3) Any short exact sequence

0 → 𝐼 → 𝐴 → 𝐵 → 0
in 𝒜 is split.

(4) We have Ext𝒜(𝐵, 𝐼) = 0 for all 𝐵 ∈ 𝑂𝑏(𝒜).

Proof. Omitted. �

Lemma 10.20.3. Let 𝒜 be an abelian category. Suppose 𝐼𝜔, 𝜔 ∈ Ω is a set of injective
objects of 𝒜. If ∏𝜔∈Ω 𝐼𝜔 exists then it is injective.

Proof. Omitted. �

Definition 10.20.4. Let 𝒜 be an abelian category. We say 𝒜 has enough injectives if every
object 𝐴 has an injective morphism 𝐴 → 𝐽 into an injective object 𝐽.
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Definition 10.20.5. Let 𝒜 be an abelian category. We say that 𝒜 has functorial injective
embeddings if there exists a functor

𝐽 ∶ 𝒜 ⟶ Arrows(𝒜)

such that
(1) 𝑠 ∘ 𝐽 = id𝒜,
(2) for any object 𝐴 ∈ 𝑂𝑏(𝒜) the morphism 𝐽(𝐴) is injective, and
(3) for any object 𝐴 ∈ 𝑂𝑏(𝒜) the object 𝑡(𝐽(𝐴)) is an injective object of 𝒜.

We will denote such a functor by 𝐴 ↦ (𝐴 → 𝐽(𝐴)).

10.21. Projectives

Definition 10.21.1. Let 𝒜 be an abelian category. An object 𝑃 ∈ 𝑂𝑏(𝒜) is called projective
if for every surjection 𝐴 → 𝐵 and every morphism 𝑃 → 𝐵 there exists a morphism 𝑃 → 𝐴
making the following diagram commute

𝐴 // 𝐵

𝑃

OO ??

Here is the obligatory characterization of projective objects.

Lemma 10.21.2. Let 𝒜 be an abelian category. Let 𝑃 be an object of 𝒜. The following are
equivalent:

(1) The object 𝑃 is projective.
(2) The functor 𝐵 ↦ 𝐻𝑜𝑚𝒜(𝑃, 𝐵) is exact.
(3) Any short exact sequence

0 → 𝐴 → 𝐵 → 𝑃 → 0

in 𝒜 is split.
(4) We have Ext𝒜(𝑃, 𝐴) = 0 for all 𝐴 ∈ 𝑂𝑏(𝒜).

Proof. Omitted. �

Lemma 10.21.3. Let 𝒜 be an abelian category. Suppose 𝑃𝜔, 𝜔 ∈ Ω is a set of projective
objects of 𝒜. If ∐𝜔∈Ω 𝑃𝜔 exists then it is projective.

Proof. Omitted. �

Definition 10.21.4. Let 𝒜 be an abelian category. We say 𝒜 has enough projectives if every
object 𝐴 has an surjective morphism 𝑃 → 𝐴 from an projective object 𝑃 onto it.

Definition 10.21.5. Let 𝒜 be an abelian category. We say that 𝒜 has functorial projective
surjections if there exists a functor

𝑃 ∶ 𝒜 ⟶ Arrows(𝒜)

such that
(1) 𝑡 ∘ 𝐽 = id𝒜,
(2) for any object 𝐴 ∈ 𝑂𝑏(𝒜) the morphism 𝑃(𝐴) is surjective, and
(3) for any object 𝐴 ∈ 𝑂𝑏(𝒜) the object 𝑠(𝑃(𝐴)) is an projective object of 𝒜.

We will denote such a functor by 𝐴 ↦ (𝑃(𝐴) → 𝐴).
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10.22. Injectives and adjoint functors

Here are some lemmas on adjoint functors and their relationship with injectives. See also
Lemma 10.5.3.

Lemma 10.22.1. Let 𝒜 and ℬ be abelian categories. Let 𝑢 ∶ 𝒜 → ℬ and 𝑣 ∶ ℬ → 𝒜 be
additive functors.

(1) 𝑢 is right adjoint to 𝑣, and
(2) 𝑣 transforms injective maps into injective maps.

Then 𝑢 transforms injectives into injectives.

Proof. Let 𝐼 be an injective object of 𝒜. Let 𝜑 ∶ 𝑁 → 𝑀 be an injective map in ℬ and
let 𝛼 ∶ 𝑁 → 𝑢𝐼 be a morphism. By adjointness we get a morphism 𝛼 ∶ 𝑣𝑁 → 𝐼 and
by assumption 𝑣𝜑 ∶ 𝑣𝑁 → 𝑣𝑀 is injective. Hence as 𝐼 is an injective object we get a
morphism 𝛽 ∶ 𝑣𝑀 → 𝐼 extending 𝛼. By adjointness again this corresponds to a morphism
𝛽 ∶ 𝑀 → 𝑢𝐼 as desired. �

Remark 10.22.2. Let 𝒜, ℬ, 𝑢 ∶ 𝒜 → ℬ and 𝑣 ∶ ℬ → 𝒜 be as in Lemma 10.22.1.
In the presence of assumption (1) assumption (2) is equivalent to requiring that 𝑣 is exact.
Moreover, condition (2) is necessary. Here is an example. Let 𝐴 → 𝐵 be a ring map. Let
𝑢 ∶ Mod𝐵 → Mod𝐴 be 𝑢(𝑁) = 𝑁𝐴 and let 𝑣 ∶ Mod𝐴 → Mod𝐵 be 𝑣(𝑀) = 𝑀 ⊗𝐴 𝐵. Then
𝑢 is right adjoint to 𝑣, and 𝑢 is exact and 𝑣 is right exact, but 𝑣 does not transform injective
maps into injective maps in general (i.e., 𝑣 is not left exact). Moreover, it is not the case
that 𝑢 transforms injective 𝐵-modules into injective 𝐴-modules. For example, if 𝐴 = 𝐙
and 𝐵 = 𝐙/𝑝𝐙, then the injective 𝐵-module 𝐙/𝑝𝐙 is not an injective 𝐙-module. In fact, the
lemma applies to this example if and only if the ring map 𝐴 → 𝐵 is flat.

Lemma 10.22.3. Let 𝒜 and ℬ be abelian categories. Let 𝑢 ∶ 𝒜 → ℬ and 𝑣 ∶ ℬ → 𝒜 be
additive functors. Assume

(1) 𝑢 is right adjoint to 𝑣,
(2) 𝑣 transforms injective maps into injective maps,
(3) 𝒜 has enough injectives, and
(4) 𝑣𝐵 = 0 implies 𝐵 = 0 for any 𝐵 ∈ 𝑂𝑏(ℬ).

Then ℬ has enough injectives.

Proof. Pick 𝐵 ∈ 𝑂𝑏(ℬ). Pick an injection 𝑣𝐵 → 𝐼 for 𝐼 an injective object of 𝒜. Accord-
ing to Lemma 10.22.1 and the assumptions the corresponding map 𝐵 → 𝑢𝐼 is the injection
of 𝐵 into an injective object. �

Remark 10.22.4. Let 𝒜, ℬ, 𝑢 ∶ 𝒜 → ℬ and 𝑣 ∶ ℬ → 𝒜 be as In Lemma 10.22.3. In the
presence of conditions (1) and (2) condition (4) is equivalent to 𝑣 being faithful. Moreover,
condition (4) is needed. An example is to consider the case where the functors 𝑢 and 𝑣 are
both the zero functor.

Lemma 10.22.5. Let 𝒜 and ℬ be abelian categories. Let 𝑢 ∶ 𝒜 → ℬ and 𝑣 ∶ ℬ → 𝒜 be
additive functors. Assume

(1) 𝑢 is right adjoint to 𝑣,
(2) 𝑣 transforms injective maps into injective maps,
(3) 𝒜 has enough injectives,
(4) 𝑣𝐵 = 0 implies 𝐵 = 0 for any 𝐵 ∈ 𝑂𝑏(ℬ), and
(5) 𝒜 has functorial injective hulls.

Then ℬ has functorial injective hulls.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=015Z
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03B8
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0160
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03B9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0161


10.23. INVERSE SYSTEMS 705

Proof. Let 𝐴 ↦ (𝐴 → 𝐽(𝐴)) be a functorial injective hull on 𝒜. Then 𝐵 ↦ (𝐵 → 𝑢𝐽(𝑣𝐵))
is a functorial injective hull on ℬ. Compare with the proof of Lemma 10.22.3. �

Lemma 10.22.6. Let 𝒜 and ℬ be abelian categories. Let 𝑢 ∶ 𝒜 → ℬ be a functor. If
there exists a subset 𝒫 ⊂ 𝑂𝑏(ℬ) such that

(1) every object of ℬ is a quotient of an element of 𝒫, and
(2) for every𝑃 ∈ 𝒫 there exists an object𝑄 of𝒜 such that𝐻𝑜𝑚𝒜(𝑄, 𝐴) = 𝐻𝑜𝑚ℬ(𝑃, 𝑢(𝐴))

functorially in 𝐴,
then there exists a left adjoint 𝑣 of 𝑢.

Proof. By the Yoneda lemma the object 𝑄 of 𝒜 corresponding to 𝑃 is defined up to unique
isomorphism by the formula 𝐻𝑜𝑚𝒜(𝑄, 𝐴) = 𝐻𝑜𝑚ℬ(𝑃, 𝑢(𝐴)). Let us write 𝑄 = 𝑣(𝑃). De-
note 𝑖𝑃 ∶ 𝑃 → 𝑢(𝑣(𝑃)) the map corresponding to id𝑣(𝑃) in 𝐻𝑜𝑚𝒜(𝑣(𝑃), 𝑣(𝑃)). Functoriality
in (2) implies that the bijection is given by

𝐻𝑜𝑚𝒜(𝑣(𝑃), 𝐴) → 𝐻𝑜𝑚ℬ(𝑃, 𝑢(𝐴)), 𝜑 ↦ 𝑢(𝜑) ∘ 𝑖𝑃

For any pair of elements 𝑃1, 𝑃2 ∈ 𝒫 there is a canonical map
𝐻𝑜𝑚ℬ(𝑃2, 𝑃1) → 𝐻𝑜𝑚𝒜(𝑣(𝑃2), 𝑣(𝑃1)), 𝜑 ↦ 𝑣(𝜑)

which is characterized, using by 𝑢(𝑣(𝜑)) ∘ 𝑖𝑃2
= 𝑖𝑃1

∘ 𝜑 in 𝐻𝑜𝑚ℬ(𝑃2, 𝑢(𝑣(𝑃1))). Note that
𝜑 ↦ 𝑣(𝜑) is additive and compatible with composition; this can be seen directly from the
characterization. Hence 𝑃 ↦ 𝑣(𝑃) is a functor from the full subcategory opf ℬ whose
objects are the elements of 𝒫.
Given an arbitrary object 𝐵 of ℬ choose an exact sequence

𝑃2 → 𝑃1 → 𝐵 → 0
which is possible by assumption (1). Define 𝑣(𝐵) to be the object of 𝒜 fitting into the exact
sequence

𝑣(𝑃2) → 𝑣(𝑃1) → 𝑣(𝐵) → 0
Then

𝐻𝑜𝑚𝒜(𝑣(𝐵), 𝐴) = Ker(𝐻𝑜𝑚𝒜(𝑣(𝑃1), 𝐴) → 𝐻𝑜𝑚𝒜(𝑣(𝑃2), 𝐴))
= Ker(𝐻𝑜𝑚ℬ(𝑃1, 𝑢(𝐴)) → 𝐻𝑜𝑚ℬ(𝑃2, 𝑢(𝐴)))
= 𝐻𝑜𝑚ℬ(𝐵, 𝑢(𝐴))

Hence we see that we may take 𝒫 = 𝑂𝑏(ℬ), i.e., we see that 𝑣 is everywhere defined. �

10.23. Inverse systems

Let 𝒞 be a category. In Categories, Section 4.19 we defined the notion of an inverse system
over a partially ordered set (with values in the category 𝒞). If the partially ordered set is
𝐍 = {1, 2, 3, …} with the usual ordering such an inverse system over 𝐍 is often simply
called an inverse system. It consists quite simply of a pair (𝑀𝑖, 𝑓𝑖𝑖′) where each 𝑀𝑖, 𝑖 ∈ 𝐍
is an object of 𝒞, and for each 𝑖 > 𝑖′, 𝑖, 𝑖′ ∈ 𝐍 a morphism 𝑓𝑖𝑖′ ∶ 𝑀𝑖 → 𝑀𝑖′ such that
moreover 𝑓𝑖′𝑖″ ∘ 𝑓𝑖𝑖′ = 𝑓𝑖𝑖″ whenever this makes sense. It is clear that in fact it suffices
to give the morphisms 𝑀2 → 𝑀1, 𝑀3 → 𝑀2, and so on. Hence an inverse system is
frequently pictured as follows

𝑀1
𝜑2←−− 𝑀2

𝜑3←−− 𝑀3 ← …
Moreover, we often omit the transition maps 𝜑𝑖 from the notation and we simply say ``let
(𝑀𝑖) be an inverse system''.
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The collection of all inverse systems with values in 𝒞 forms a category with the obvious
notion of morphism.

Lemma 10.23.1. Let 𝒞 be a category.
(1) If 𝒞 is an additive category, then the category of inverse systems with values in

𝒞 is an additive cateogry.
(2) If 𝒞 is an abelian category, then the category of inverse systems with values in

𝒞 is an abelian cateogry. A sequence (𝐾𝑖) → (𝐿𝑖) → (𝑀𝑖) of inverse systems is
exact if and only if each 𝐾𝑖 → 𝐿𝑖 → 𝑁𝑖 is exact.

Proof. Omitted. �

The limit (see Categories, Section 4.19) of such an inverse system is denoted 𝑙𝑖𝑚 𝑀𝑖, or
𝑙𝑖𝑚𝑖 𝑀𝑖. If 𝒞 is the category of abelian groups (or sets), then the limit always exists and in
fact can be described as follows

𝑙𝑖𝑚𝑖 𝑀𝑖 = {(𝑥𝑖) ∈ ∏ 𝑀𝑖 ∣ 𝜑𝑖(𝑥𝑖) = 𝑥𝑖−1, 𝑖 = 2, 3, …}

see Categories, Section 4.14. However, given a short exact sequence

0 → (𝐴𝑖) → (𝐵𝑖) → (𝐶𝑖) → 0

of inverse systems of abelian groups it is not always the case that the associated system of
limits is exact. In order to discuss this further we introduce the following notion.

Definition 10.23.2. Let 𝒞 be an abelian category. We say the inverse system (𝐴𝑖) satisfies
theMittag-Leffler condition, or for short isML, if for every 𝑖 there exists a 𝑐 = 𝑐(𝑖) ≥ 𝑖 such
that

Im(𝐴𝑘 → 𝐴𝑖) = Im(𝐴𝑐 → 𝐴𝑖)

for all 𝑘 ≥ 𝑐.

It turns out that theMittag-Leffler condition is good enough to ensure that the 𝑙𝑖𝑚-functor is
exact, provided one works within the abelian category of abelian groups, or abelian sheaves,
etc. It is shown in a paper by A. Neeman (see [Nee02]) that this condition is not strong
enough in a general abelian category (where limits of inverse systems exist).

Lemma 10.23.3. Let
0 → (𝐴𝑖) → (𝐵𝑖) → (𝐶𝑖) → 0

be a short exact sequence of inverse systems of abelian groups.
(1) In any case the sequence

0 → 𝑙𝑖𝑚𝑖 𝐴𝑖 → 𝑙𝑖𝑚𝑖 𝐵𝑖 → 𝑙𝑖𝑚𝑖 𝐶𝑖

is exact.
(2) If (𝐵𝑖) is ML, then also (𝐶𝑖) is ML.
(3) If (𝐴𝑖) is ML, then

0 → 𝑙𝑖𝑚𝑖 𝐴𝑖 → 𝑙𝑖𝑚𝑖 𝐵𝑖 → 𝑙𝑖𝑚𝑖 𝐶𝑖 → 0

is exact.

Proof. Nice exercise. See Algebra, Lemma 7.81.1 for part (3). �
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Lemma 10.23.4. Let
(𝐴𝑖) → (𝐵𝑖) → (𝐶𝑖) → (𝐷𝑖)

be an exact sequence of inverse systems of abelian groups. If the system (𝐴𝑖) is ML, then
the sequence

𝑙𝑖𝑚𝑖 𝐵𝑖 → 𝑙𝑖𝑚𝑖 𝐶𝑖 → 𝑙𝑖𝑚𝑖 𝐷𝑖
is exact.

Proof. Let 𝑍𝑖 = Ker(𝐶𝑖 → 𝐷𝑖) and 𝐼𝑖 = Im(𝐴𝑖 → 𝐵𝑖). Then 𝑙𝑖𝑚 𝑍𝑖 = Ker(𝑙𝑖𝑚 𝐶𝑖 →
𝑙𝑖𝑚 𝐷𝑖) and we get a short exact sequence of systems

0 → (𝐼𝑖) → (𝐵𝑖) → (𝑍𝑖) → 0

Moreover, by Lemma 10.23.3 we see that (𝐼𝑖) has (ML), thus another application of Lemma
10.23.3 shows that 𝑙𝑖𝑚 𝐵𝑖 → 𝑙𝑖𝑚 𝑍𝑖 is surjective which proves the lemma. �

The following characterization of essentially constant inverse systems shows in particular
that they have ML.

Lemma 10.23.5. Let 𝒜 be an abelian category. Let (𝐴𝑖) be an inverse system in 𝒜 with
limit 𝐴 = 𝑙𝑖𝑚 𝐴𝑖. Then (𝐴𝑖) is essentially constant (see Categories, Definition 4.20.1) if
and only if there exists an 𝑖 and for all 𝑗 ≥ 𝑖 a direct sum decomposition 𝐴𝑗 = 𝐴 ⊕ 𝑍𝑗 such
that (a) the maps 𝐴𝑗′ → 𝐴𝑗 are compatible with the direct sum decompositions, (b) for all
𝑗 there exists some 𝑗′ ≥ 𝑗 such that 𝑍𝑗′ → 𝑍𝑗 is zero.

Proof. Assume (𝐴𝑖) is essentially constant. Then there exists an 𝑖 and a morphism 𝐴𝑖 → 𝐴
such that for all 𝑗 ≥ 𝑖 there exists a 𝑗′ ≥ 𝑗 such that 𝐴𝑗′ → 𝐴𝑗 factors as 𝐴𝑗′ → 𝐴𝑖 → 𝐴 →
𝐴𝑗 (the last map comes from 𝐴 = 𝑙𝑖𝑚 𝐴𝑖). Hence setting 𝑍𝑗 = Ker(𝐴𝑗 → 𝐴) for all 𝑗 ≥ 𝑖
works. Proof of the converse is omitted. �

Lemma 10.23.6. Let
0 → (𝐴𝑖) → (𝐵𝑖) → (𝐶𝑖) → 0

be an exact sequence of inverse systems of abelian groups. If (𝐴𝑖) has ML and (𝐶𝑖) is
essentially constant, then (𝐵𝑖) has ML.

Proof. After renumbering we may assume that 𝐶𝑖 = 𝐶 ⊕ 𝑍𝑖 compatible with transition
maps and that for all 𝑖 there exists an 𝑖′ ≥ 𝑖 such that 𝑍𝑖′ → 𝑍𝑖 is zero, see Lemma 10.23.5.
Pick 𝑖. Let 𝑐 ≥ 𝑖 by an integer such that Im(𝐴𝑐 → 𝐴) = Im(𝐴𝑖′ → 𝐴𝑖) for all 𝑖′ ≥ 𝑐. Let
𝑐′ ≥ 𝑐 be an integer such that 𝑍𝑐′ → 𝑍𝑐 is zero. For 𝑖′ ≥ 𝑐′ consider the maps

0 // 𝐴𝑖′

��

// 𝐵𝑖′

��

// 𝐶 ⊕ 𝑍𝑖′

��

// 0

0 // 𝐴𝑐′

��

// 𝐵𝑐′

��

// 𝐶 ⊕ 𝑍𝑐′

��

// 0

0 // 𝐴𝑐

��

// 𝐵𝑐

��

// 𝐶 ⊕ 𝑍𝑐

��

// 0

0 // 𝐴𝑖
// 𝐵𝑖

// 𝐶 ⊕ 𝑍𝑖
// 0

Because 𝑍𝑐′ → 𝑍𝑐 is zero the image Im(𝐵𝑐′ → 𝐵𝑐) is an extension 𝐶 by a subgroup
𝐴′ ⊂ 𝐴𝑐 which contains the image of 𝐴𝑐′ → 𝐴𝑐. Hence Im(𝐵𝑐′ → 𝐵𝑖) is an extension of 𝐶
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by the image of 𝐴′ which is the image of 𝐴𝑐 → 𝐴𝑖 by our choice of 𝑐. In exactly the same
way one shows that Im(𝐵𝑖′ → 𝐵𝑖) is an extension of 𝐶 by the image of 𝐴𝑐 → 𝐴𝑖. Hence
Im(𝐵𝑐′ → 𝐵𝑖) = Im(𝐵𝑖′ → 𝐵𝑖) and we win. �

Lemma 10.23.7. Let
(𝐴−2

𝑖 → 𝐴−1
𝑖 → 𝐴0

𝑖 → 𝐴1
𝑖 )

be an inverse system of complexes of abelian groups and denote 𝐴−2 → 𝐴−1 → 𝐴0 → 𝐴1

its limit. Denote (𝐻−1
𝑖 ), (𝐻0

𝑖 ) the inverse systems of cohomologies, and denote 𝐻−1, 𝐻0

the cohomologies of 𝐴−2 → 𝐴−1 → 𝐴0 → 𝐴1. If (𝐴−2
𝑖 ) and (𝐴−1

𝑖 ) are ML and (𝐻−1
𝑖 ) is

essentially constant, then 𝐻0 = 𝑙𝑖𝑚 𝐻0
𝑖 .

Proof. Let 𝑍𝑗
𝑖 = Ker(𝐴𝑗

𝑖 → 𝐴𝑗+1
𝑖 ) and 𝐼𝑗

𝑖 = Im(𝐴𝑗−1
𝑖 → 𝐴𝑗

𝑖). Note that 𝑙𝑖𝑚 𝑍0
𝑖 =

Ker(𝑙𝑖𝑚 𝐴0
𝑖 → 𝑙𝑖𝑚 𝐴1

𝑖 ) as taking kernels commutes with limits. The systems (𝐼−1
𝑖 ) and

(𝐼0
𝑖 ) have ML as quotients of the systems (𝐴−2

𝑖 ) and (𝐴−1
𝑖 ), see Lemma 10.23.3. Thus an

exact sequence
0 → (𝐼−1

𝑖 ) → (𝑍−1
𝑖 ) → (𝐻−1

𝑖 ) → 0
of inverse systems where (𝐼−1

𝑖 ) has ML and where (𝐻−1
𝑖 ) is essentially constant by assump-

tion. Hence (𝑍−1
𝑖 ) has ML by Lemma 10.23.6. The exact sequence

0 → (𝑍−1
𝑖 ) → (𝐴−1

𝑖 ) → (𝐼0
𝑖 ) → 0

and an application of Lemma 10.23.3 shows that 𝑙𝑖𝑚 𝐴−1
𝑖 → 𝑙𝑖𝑚 𝐼0

𝑖 is surjective. Finally,
the exact sequence

0 → (𝐼0
𝑖 ) → (𝑍0

𝑖 ) → (𝐻0
𝑖 ) → 0

and Lemma 10.23.3 show that 𝑙𝑖𝑚 𝐼0
𝑖 → 𝑙𝑖𝑚 𝑍0

𝑖 → 𝑙𝑖𝑚 𝐻0
𝑖 → 0 is exact. Putting everything

together we win. �

10.24. Exactness of products

Lemma 10.24.1. Let 𝐼 be a set. For 𝑖 ∈ 𝐼 let 𝐿𝑖 → 𝑀𝑖 → 𝑁𝑖 be a complex of abelian
groups. Let 𝐻𝑖 = Ker(𝑀𝑖 → 𝑁𝑖)/Im(𝐿𝑖 → 𝑀𝑖) be the cohomology. Then

∏ 𝐿𝑖 → ∏ 𝑀𝑖 → ∏ 𝑁𝑖

is a complex of abelian groups with homology ∏ 𝐻𝑖.

Proof. Omitted. �

10.25. Differential graded algebras

Definition 10.25.1. Let 𝑅 be a (commutative) ring. A differential graded algebra is either
(1) a chain complex 𝐴• of 𝑅-modules endowed with 𝑅-bilinear maps 𝐴𝑛 × 𝐴𝑚 →

𝐴𝑛+𝑚, (𝑎, 𝑏) ↦ 𝑎𝑏 such that

𝑑𝑛+𝑚(𝑎𝑏) = 𝑑𝑛(𝑎)𝑏 + (−1)𝑛𝑎𝑑𝑚(𝑏)

and such that ⨁ 𝐴𝑛 becomes an associative and unital 𝑅-algebra, or
(2) a cochain complex 𝐴• of 𝑅-modules endowed with 𝑅-bilinear maps 𝐴𝑛 × 𝐴𝑚 →

𝐴𝑛+𝑚, (𝑎, 𝑏) ↦ 𝑎𝑏 such that

𝑑𝑛+𝑚(𝑎𝑏) = 𝑑𝑛(𝑎)𝑏 + (−1)𝑛𝑎𝑑𝑚(𝑏)

and such that ⨁ 𝐴𝑛 becomes an associative and unital 𝑅-algebra.
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We often just write 𝐴 = ⨁ 𝐴𝑛 or 𝐴 = ⨁ 𝐴𝑛 and think of this as an associative unital
𝑅-algebra endowed with a 𝐙-grading and an additive operator 𝑑 whose square is zero and
which satisfies the Leibniz rule as explained above. In this case we often say ``Let (𝐴, 𝑑)
be a differential graded algebra''.

Definition 10.25.2. A homomorphism of differential graded algebras 𝑓 ∶ (𝐴, 𝑑) → (𝐵, 𝑑)
is an algebra map 𝑓 ∶ 𝐴 → 𝐵 compatible with the gradings and 𝑑.

Definition 10.25.3. A differential graded algebra (𝐴, 𝑑) is commutative if 𝑎𝑏 = (−1)𝑛𝑚𝑏𝑎
for 𝑎 in degree 𝑛 and 𝑏 in degree 𝑚. We say 𝐴 is strictly commutative if in addition 𝑎2 = 0
for deg(𝑎) odd.

The following definition makes sense in general but is perhaps ``correct'' only when tensor-
ing commutative differential graded algebras.

Definition 10.25.4. Let 𝑅 be a ring. Let (𝐴, 𝑑), (𝐵, 𝑑) be differential graded algebras over
𝑅. The tensor product differential graded algebra of 𝐴 and 𝐵 is the algebra 𝐴 ⊗𝑅 𝐵 with
multiplication defined by

(𝑎 ⊗ 𝑏)(𝑎′ ⊗ 𝑏′) = (−1)deg(𝑎′) deg(𝑏)𝑎𝑎′ ⊗ 𝑏𝑏′

endowed with differential 𝑑 defined by the rule 𝑑(𝑎 ⊗ 𝑏) = 𝑑(𝑎) ⊗ 𝑏 + (−1)𝑚𝑎 ⊗ 𝑑(𝑏) where
𝑚 = deg(𝑏).

Lemma 10.25.5. Let 𝑅 be a ring. Let (𝐴, 𝑑), (𝐵, 𝑑) be differential graded algebras over 𝑅.
Denote 𝐴•, 𝐵• the underlying cochain complexes. As cochain complexes of 𝑅-modules we
have

(𝐴 ⊗𝑅 𝐵)• = Tot(𝐴• ⊗𝐴 𝐵•).

Proof. Recall that the differential of the total complex is given by 𝑑𝑝,𝑞
1 +(−1)𝑝𝑑𝑝,𝑞

2 on 𝐴𝑝⊗𝑅
𝐵𝑞. And this is exactly the same as the rule for the differential on 𝐴 ⊗𝑅 𝐵 in Definition
10.25.4. �
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CHAPTER 11

Derived Categories

11.1. Introduction

We first discuss triangulated categories and localization in triangulated categories. Next,
we prove that the homotopy category of complexes in an additive category is a triangu-
lated category. Once this is done we define the derived category of an abelian category as
the localization of the of homotopy category with respect to quasi-isomorphisms. A good
reference is Verdier's thesis [Ver96].

11.2. Triangulated categories

Triangulated categories are a convenient tool to describe the type of structure inherent in
the derived category of an abelian category. Some references are [Ver96] and [Nee01].

11.3. The definition of a triangulated category

In this sectionwe collectmost of the definitions concerning triangulated and pre-triangulated
categories.

Definition 11.3.1. Let 𝒟 be an additive category. Let [𝑛] ∶ 𝒟 → 𝒟, 𝐸 ↦ 𝐸[𝑛] be a
collection of additive functors indexed by 𝑛 ∈ 𝐙 such that [𝑛] ∘ [𝑚] = [𝑛 + 𝑚] and [0] = id
(equality as functors). In this situation we call triangle a sixtuple (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) where
𝑋, 𝑌, 𝑍 ∈ 𝑂𝑏(𝒟) and 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍 and ℎ ∶ 𝑍 → 𝑋[1] are morphisms of 𝒟.
A morphism of triangles (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) → (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′) is given by morphisms
𝑎 ∶ 𝑋 → 𝑋′, 𝑏 ∶ 𝑌 → 𝑌′ and 𝑐 ∶ 𝑍 → 𝑍′ of 𝒟 such that 𝑏 ∘ 𝑓 = 𝑓′ ∘ 𝑎, 𝑐 ∘ 𝑔 = 𝑔′ ∘ 𝑏 and
𝑎[1] ∘ ℎ = ℎ′ ∘ 𝑐.

A morphism of triangles is visualized by the following commutative diagram

𝑋 //

𝑎
��

𝑌 //

𝑏
��

𝑍 //

𝑐
��

𝑋[1]

𝑎[1]
��

𝑋′ // 𝑌′ // 𝑍′ // 𝑋′[1]

Here is the definition of a triangulated category as given in Verdier's thesis.

Definition 11.3.2. A triangulated category consists of a triple (𝒟, {[𝑛]}𝑛∈𝐙, 𝒯) where
(1) 𝒟 is an additive category,
(2) [𝑛] ∶ 𝒟 → 𝒟, 𝐸 ↦ 𝐸[𝑛] be a collection of additive functors indexed by 𝑛 ∈ 𝐙

such that [𝑛] ∘ [𝑚] = [𝑛 + 𝑚] and [0] = id (equality as functors), and
(3) 𝒯 is a set of triangles called the distinguished triangles

subject to the following conditions

711
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TR1 Any triangle isomorphic to a distinguished triangle is a distinguished triangle.
Any triangle of the form (𝑋, 𝑋, 0, id, 0, 0) is distinguished. For any morphism
𝑓 ∶ 𝑋 → 𝑌 of 𝒟 there exists a distinguished triangle of the form (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ).

TR2 The triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) is distinguished if and only if the triangle (𝑌, 𝑍, 𝑋[1], 𝑔, ℎ, −𝑓[1])
is.

TR3 Given a solid commutative square

𝑋 //

𝑎
��

𝑌 //

𝑏
��

𝑍 //

��

𝑋[1]

𝑎[1]
��

𝑋′ // 𝑌′ // 𝑍′ // 𝑋′[1]

whose rows are distinguished triangles there exists a morphism 𝑐 ∶ 𝑍 → 𝑍′ such
that (𝑎, 𝑏, 𝑐) is a morphism of triangles.

TR4 Given objects 𝑋, 𝑌, 𝑍 of 𝒟, and morphisms 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍, and distin-
guished triangles (𝑋, 𝑌, 𝑄1, 𝑓, 𝑝1, 𝑑1), (𝑋, 𝑍, 𝑄2, 𝑔∘𝑓, 𝑝2, 𝑑2), and (𝑌, 𝑍, 𝑄3, 𝑔, 𝑝3, 𝑑3),
there exist morphisms 𝑎 ∶ 𝑄1 → 𝑄2 and 𝑏 ∶ 𝑄2 → 𝑄3 such that
(a) (𝑄1, 𝑄2, 𝑄3, 𝑎, 𝑏, 𝑝1[1] ∘ 𝑑3) is a distinguished triangle,
(b) the triple (id𝑋, 𝑔, 𝑎) is amorphism of triangles (𝑋, 𝑌, 𝑄1, 𝑓, 𝑝1, 𝑑1) → (𝑋, 𝑍, 𝑄2, 𝑔∘

𝑓, 𝑝2, 𝑑2), and
(c) the triple (𝑓, id𝑍, 𝑏) is a morphism of triangles (𝑋, 𝑍, 𝑄2, 𝑔 ∘ 𝑓, 𝑝2, 𝑑2) →

(𝑌, 𝑍, 𝑄3, 𝑔, 𝑝3, 𝑑3).

We will call (𝒟, [ ], 𝒯) a pre-triangulated category if TR1, TR2 and TR3 hold.

The explanation of TR4 is that if you think of 𝑄1 as 𝑌/𝑋, 𝑄2 as 𝑍/𝑋 and 𝑄3 as 𝑍/𝑌, then
TR4(a) expresses the isomorphism (𝑍/𝑋)/(𝑌/𝑍) ≅ 𝑍/𝑌 and TR(b) and TR(c) express that
we can compare the triangles 𝑋 → 𝑌 → 𝑄1 → 𝑋[1] etc with morphisms of triangles. For
a more precise reformuation of this idea see the proof of Lemma 11.9.2.

The sign in TR2 means that if (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) is a distinguished triangle then in the long
sequence

(11.3.2.1) … → 𝑍[−1]
−ℎ[−1]

−−−−−→ 𝑋
𝑓

−→ 𝑌
𝑔

−→ 𝑍
ℎ

−→ 𝑋[1]
−𝑓[1]

−−−−→ 𝑌[1]
−𝑔[1]

−−−−→ 𝑍[1] → …

each four term sequence gives a distinguished triangle.

As usual we abuse notation and we simply speak of a (pre-)triangulated category 𝒟 without
explicitly introducing notation for the additional data. The notion of a pre-triangulated
category is useful in finding statements equivalent to TR4.

We have the following definition of a triangulated functor.

Definition 11.3.3. Let 𝒟, 𝒟′ be pre-triangulated categories. An exact functor, or a triangu-
lated functor from 𝒟 to 𝒟′ is a functor 𝐹 ∶ 𝒟 → 𝒟′ together with given functorial isomor-
phisms 𝜉𝑋 ∶ 𝐹(𝑋[1]) → 𝐹(𝑋)[1] such that for every distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ)
of 𝒟 the triangle (𝐹(𝑋), 𝐹(𝑌), 𝐹(𝑍), 𝐹(𝑓), 𝐹(𝑔), 𝜉𝑋 ∘ 𝐹(ℎ)) is a distinguished triangle of 𝒟′.

An exact functor is additive, see Lemma 11.4.15. When we say two triangulated categories
are equivalent wemean that they are equivalent in the 2-category of triangulated categories.
A 2-morphism 𝑎 ∶ (𝐹, 𝜉) → (𝐹′, 𝜉′) in this 2-category is simply a transformation of functors
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𝑎 ∶ 𝐹 → 𝐹′ which is compatible with 𝜉 and 𝜉′, i.e.,

𝐹 ∘ [1]
𝜉
//

𝑎⋆1
��

[1] ∘ 𝐹

1⋆𝑎
��

𝐹′ ∘ [1]
𝜉′
// [1] ∘ 𝐹′

commutes.

Definition 11.3.4. Let (𝒟, [ ], 𝒯) be a pre-triangulated category. A pre-triangulated sub-
category1 is a pair (𝒟′, 𝒯′) such that

(1) 𝒟′ is an additive subcategory of 𝒟 which is preserved under [1] and [−1],
(2) 𝒯′ ⊂ 𝒯 is a subset such that for every (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) ∈ 𝒯′ we have 𝑋, 𝑌, 𝑍 ∈

𝑂𝑏(𝒟′) and 𝑓, 𝑔, ℎ ∈ Arrows(𝒟′), and
(3) (𝒟′, [ ], 𝒯′) is a pre-triangulated category.

If 𝒟 is a triangulated category, then we say (𝒟′, 𝒯′) is a triangulated subcategory if it is a
pre-triangulated subcategory and (𝒟′, [ ], 𝒯′) is a triangulated category.

In this situation the inclusion functor 𝒟′ → 𝒟 is an exact functor with 𝜉𝑋 ∶ 𝑋[1] → 𝑋[1]
given by the identity on 𝑋[1].
We will see in Lemma 11.4.1 that for a distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) in a pre-
triangulated category the composition 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 is zero. Thus the sequence (11.3.2.1)
is a complex. A homological functor is one that turns this complex into a long exact se-
quence.

Definition 11.3.5. Let 𝒟 be a pre-triangulated category. Let 𝒜 be an abelian category.
An additive functor 𝐻 ∶ 𝒟 → 𝒜 is called homological if for every distinguished triangle
(𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) the sequence

𝐻(𝑋) → 𝐻(𝑌) → 𝐻(𝑍)
is exact in the abelian category 𝒜. An additive functor 𝐻 ∶ 𝒟𝑜𝑝𝑝 → 𝒜 is called cohomo-
logical if the corresponding functor 𝒟 → 𝒜𝑜𝑝𝑝 is homological.

If 𝐻 ∶ 𝒟 → 𝒜 is a homological functor we often write 𝐻𝑛(𝑋) = 𝐻(𝑋[𝑛]) so that
𝐻(𝑋) = 𝐻0(𝑋). Our discussion of TR2 above implies that says that a distinguished triangle
(𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) determines a long exact sequence

(11.3.5.1) 𝐻−1(𝑍)
ℎ[−1] // 𝐻0(𝑋)

𝑓 // 𝐻0(𝑌)
𝑔 // 𝐻0(𝑍) ℎ // 𝐻1(𝑋)

This will be called the long exact sequence associated to the distinguished triangle and the
homological functor. As indicated we will not use any signs for the morphisms in the long
exact sequence. This has the side effect that maps in the long exact sequence associated to
the rotation (TR2) of a distinguished triangle differ from the maps in the sequence above
by some signs.

Definition 11.3.6. Let 𝒜 be an abelian category. Let 𝒟 be a triangulated category. A
𝛿-functor from 𝒜 to 𝒟 is given by a functor 𝐺 ∶ 𝒜 → 𝒟 and a rule which assigns to every
short exact sequence

0 → 𝐴
𝑎

−→ 𝐵
𝑏

−→ 𝐶 → 0
a morphism 𝛿 = 𝛿𝐴→𝐵→𝐶 ∶ 𝐺(𝐶) → 𝐺(𝐴)[1] such that

1This definition may be nonstandard. If 𝒟′ is a full subcategory then 𝒯′ is the intersection of the set of
triangles in 𝒟′ with 𝒯, see Lemma 11.4.14. In this case we drop 𝒯′ from the notation.
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(1) the triangle (𝐺(𝐴), 𝐺(𝐵), 𝐺(𝐶), 𝐺(𝑎), 𝐺(𝑏), 𝛿𝐴→𝐵→𝐶) is a distinguished triangle
of 𝒟 for any short exact sequence as above, and

(2) for every morphism (𝐴 → 𝐵 → 𝐶) → (𝐴′ → 𝐵′ → 𝐶′) of short exact sequences
the diagram

𝐺(𝐶)

��

𝛿𝐴→𝐵→𝐶
// 𝐺(𝐴)[1]

��
𝐺(𝐶′)

𝛿𝐴′→𝐵′→𝐶′ // 𝐺(𝐴′)[1]
is commutative.

In this situation we call (𝐺(𝐴), 𝐺(𝐵), 𝐺(𝐶), 𝐺(𝑎), 𝐺(𝑏), 𝛿𝐴→𝐵→𝐶) the image of the short
exact sequence under the given 𝛿-functor.

Note how a 𝛿-functor comes equipped with additional structure. Strictly speaking it does
not make sense to say that a given functor 𝒜 → 𝒟 is a 𝛿-functor, but we will often do so
anyway.

11.4. Elementary results on triangulated categories

Most of the results in this section are proved for pre-triangulated categories and a fortiori
hold in any triangulated category.

Lemma 11.4.1. Let 𝒟 be a pre-triangulated category. Let (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) be a distin-
guished triangle. Then 𝑔 ∘ 𝑓 = 0, ℎ ∘ 𝑔 = 0 and 𝑓[1] ∘ ℎ = 0.

Proof. By TR1 we know (𝑋, 𝑋, 0, 1, 0, 0) is a distinguished triangle. Apply TR3 to

𝑋 //

1
��

𝑋 //

𝑓
��

0 //

��

𝑋[1]

1[1]
��

𝑋
𝑓 // 𝑌

𝑔 // 𝑍 ℎ // 𝑋[1]

Of course the dotted arrow is the zeromap. Hence the commutativity of the diagram implies
that 𝑔 ∘ 𝑓 = 0. For the other cases rotate the triangle, i.e., apply TR2. �

Lemma 11.4.2. Let 𝒟 be a pre-triangulated category. For any object 𝑊 of 𝒟 the functor
𝐻𝑜𝑚𝒟(𝑊, −) is homological, and the functor 𝐻𝑜𝑚𝒟(−, 𝑊) is cohomological.

Proof. Consider a distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ). We have already seen that 𝑔∘𝑓 =
0, see Lemma 11.4.1. Suppose 𝑎 ∶ 𝑊 → 𝑌 is a morphism such that 𝑔 ∘ 𝑎 = 0. Then we get
a commutative diagram

𝑊
1
//

𝑏
��

𝑊 //

𝑎
��

0 //

0
��

𝑊[1]

𝑏[1]
��

𝑋 // 𝑌 // 𝑍 // 𝑋[1]

Both rows are distinguished triangles (use TR1 for the top row). Hence we can fill the
dotted arrow 𝑏 (first rotate using TR2, then apply TR3, and then rotate back). This proves
the lemma. �

Lemma 11.4.3. Let 𝒟 be a pre-triangulated category. Let

(𝑎, 𝑏, 𝑐) ∶ (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) → (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′)
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be a morphism of distinguished triangles. If two among 𝑎, 𝑏, 𝑐 are isomorphisms so is the
third.

Proof. Assume that 𝑎 and 𝑐 are isomorphisms. For any object 𝑊 of 𝒟 write 𝐻𝑊(−) =
𝐻𝑜𝑚𝒟(𝑊, −). Then we get a commutative diagram of abelian groups

𝐻𝑊(𝑍[−1]) //

��

𝐻𝑊(𝑋) //

��

𝐻𝑊(𝑌) //

��

𝐻𝑊(𝑍) //

��

𝐻𝑊(𝑋[1])

��
𝐻𝑊(𝑍′[−1]) // 𝐻𝑊(𝑋′) // 𝐻𝑊(𝑌′) // 𝐻𝑊(𝑍′) // 𝐻𝑊(𝑋′[1])

By assumption the right two and left two vertical arrows are bijective. As 𝐻𝑊 is homo-
logical by Lemma 11.4.2 and the five lemma (Homology, Lemma 10.3.25) it follows that
the middle vertical arrow is an isomorphism. Hence by Yoneda's lemma, see Categories,
Lemma 4.3.5 we see that 𝑏 is an isomorphism. This implies the other cases by rotating
(using TR2). �

Lemma 11.4.4. Let 𝒟 be a pre-triangulated category. Let
(0, 𝑏, 0), (0, 𝑏′, 0) ∶ (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) → (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ)

be endomorphisms of a distinguished triangle. Then 𝑏𝑏′ = 0.

Proof. Picture
𝑋 //

0
��

𝑌 //

𝑏,𝑏′

��
𝛼

��

𝑍 //

0
��𝛽

��

𝑋[1]

0
��

𝑋 // 𝑌 // 𝑍 // 𝑋[1]
Applying Lemma 11.4.3 we find dotted arrows 𝛼 and 𝛽 such that 𝑏′ = 𝑓 ∘ 𝛼 and 𝑏 = 𝛽 ∘ 𝑔.
Then 𝑏𝑏′ = 𝛽 ∘ 𝑔 ∘ 𝑓 ∘ 𝛼 = 0 as 𝑔 ∘ 𝑓 = 0 by Lemma 11.4.1. �

Lemma 11.4.5. Let 𝒟 be a pre-triangulated category. Let (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) be a distin-
guished triangle. If

𝑍
𝑓
//

𝑐
��

𝑋[1]

𝑎[1]
��

𝑍
𝑓 // 𝑋[1]

is commutative and 𝑎2 = 𝑎, 𝑐2 = 𝑐, then there exists a morphism 𝑏 ∶ 𝑌 → 𝑌 with 𝑏2 = 𝑏
such that (𝑎, 𝑏, 𝑐) is an endomorphism of the triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ).

Proof. By TR3 there exists a morphism 𝑏′ such that (𝑎, 𝑏′, 𝑐) is an endormorphism of
(𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ). Then (0, (𝑏′)2 −𝑏′, 0) is also an endomorphism. By Lemma 11.4.4 we see
that (𝑏′)2−𝑏′ has square zero. Set 𝑏 = 𝑏′−(2𝑏′−1)((𝑏′)2−𝑏′) = 3(𝑏′)2−2(𝑏′)3. A computa-
tion shows that (𝑎, 𝑏, 𝑐) is an endomorphism and that 𝑏2−𝑏 = (4(𝑏′)2−4𝑏′−3)((𝑏′)2−𝑏′)2 =
0. �

Lemma 11.4.6. Let 𝒟 be a pre-triangulated category. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of 𝒟.
There exists a distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ)which is unique up to (nonunique) iso-
morphism of triangles. More precisely, given a second such distinguished triangle (𝑋, 𝑌, 𝑍′, 𝑓, 𝑔′, ℎ′)
there exists an isomorphism

(1, 1, 𝑐) ∶ (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) ⟶ (𝑋, 𝑌, 𝑍′, 𝑓, 𝑔′, ℎ′)

Proof. Existence by TR1. Uniqueness up to isomorphism by TR3 and Lemma 11.4.3. �
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Lemma 11.4.7. Let 𝒟 be a pre-triangulated category. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of
𝒟. The following are equivalent

(1) 𝑓 is an isomorphism,
(2) (𝑋, 𝑌, 0, 𝑓, 0, 0) is a distinguished triangle, and
(3) for any distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) we have 𝑍 = 0.

Proof. Immediate from Lemma 11.4.6 and TR1. �

Lemma11.4.8. Let𝒟 be a pre-triangulated category. Let (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) and (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′)
be triangles. The following are equivalent

(1) (𝑋 ⊕ 𝑋′, 𝑌 ⊕ 𝑌′, 𝑍 ⊕ 𝑍′, 𝑓 ⊕ 𝑓′, 𝑔 ⊕ 𝑔′, ℎ ⊕ ℎ′) is a distinguished triangle,
(2) both (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) and (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′) are distinguished triangles.

Proof. Assume (2). By TR1wemay choose a distinguished triangle (𝑋⊕𝑋′, 𝑌⊕𝑌′, 𝑄, 𝑓⊕
𝑓′, 𝑔″, ℎ″). By TR3 we can find morphisms of distinguished triangles (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) →
(𝑋 ⊕ 𝑋′, 𝑌 ⊕ 𝑌′, 𝑄, 𝑓 ⊕ 𝑓′, 𝑔″, ℎ″) and (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′) → (𝑋 ⊕ 𝑋′, 𝑌 ⊕ 𝑌′, 𝑄, 𝑓 ⊕
𝑓′, 𝑔″, ℎ″). Taking the direct sum of these morphisms we obtain a morphism of triangles

(𝑋 ⊕ 𝑋′, 𝑌 ⊕ 𝑌′, 𝑍 ⊕ 𝑍′, 𝑓 ⊕ 𝑓′, 𝑔 ⊕ 𝑔′, ℎ ⊕ ℎ′)

(1,1,𝑐)
��

(𝑋 ⊕ 𝑋′, 𝑌 ⊕ 𝑌′, 𝑄, 𝑓 ⊕ 𝑓′, 𝑔″, ℎ″).

Let 𝑊 be any object in 𝒟 and apply the functor 𝐻𝑊 = 𝐻𝑜𝑚𝒟(𝑊, −) to this diagram. By
Lemma 11.4.2 (applied three times) we deduce that 𝐻𝑊(𝑐) ∶ 𝐻𝑊(𝑍 ⊕ 𝑍′) → 𝐻𝑊(𝑄) is
an isomorphism. Hence 𝑐 is an isomorphism and we conclude that (1) holds.

Assume (1). We will show that (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) is a distinguished triangle. Let 𝑊 be
any object in 𝒟 and set 𝐻𝑊 = 𝐻𝑜𝑚𝒟(𝑊, −). By Lemma 11.4.2 we see that 𝐻𝑊(𝑋) →
𝐻𝑊(𝑌) → 𝐻𝑊(𝑍) → 𝐻𝑊(𝑍[1]) is exact as it is a direct summand of the exact sequence
associated to the distinguished triangle (𝑋⊕𝑋′, 𝑌⊕𝑌′, 𝑍⊕𝑍′, 𝑓⊕𝑓′, 𝑔⊕𝑔′, ℎ⊕ℎ′). Using
TR1 let (𝑋, 𝑌, 𝑄, 𝑓, 𝑔″, ℎ″) be a distinguished triangle. By TR3 there exists a morphism of
distinguished triangles (𝑋⊕𝑋′, 𝑌⊕𝑌′, 𝑍⊕𝑍′, 𝑓⊕𝑓′, 𝑔⊕𝑔′, ℎ⊕ℎ′) → (𝑋, 𝑌, 𝑄, 𝑓, 𝑔″, ℎ″).
Composing this with the inclusion map we get a morphism of triangles

(1, 1, 𝑐) ∶ (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) ⟶ (𝑋, 𝑌, 𝑄, 𝑓, 𝑔″, ℎ″)

Applying 𝐻𝑊 and using the above we once again see that 𝐻𝑊(𝑐) ∶ 𝐻𝑊(𝑍) → 𝐻𝑊(𝑄) is
an isomorphism and we conclude that 𝑐 is an isomorphism. Hence we win. �

Lemma 11.4.9. Let 𝒟 be a pre-triangulated category. Let (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) be a distin-
guished triangle.

(1) If ℎ = 0, then there exists a left inverse 𝑠 ∶ 𝑍 → 𝑌 to 𝑔.
(2) For any left inverse 𝑠 ∶ 𝑍 → 𝑌 of 𝑔 themap 𝑓⊕𝑠 ∶ 𝑋⊕𝑍 → 𝑌 is an isomorphism.
(3) For any objects 𝑋′, 𝑍′ of 𝒟 the triangle (𝑋′, 𝑋′ ⊕ 𝑍′, 𝑍′, (1, 0), (0, 1), 0) is dis-

tinguished.

Proof. To see (1) use that 𝐻𝑜𝑚𝒟(𝑍, 𝑌) → 𝐻𝑜𝑚𝒟(𝑍, 𝑍) → 𝐻𝑜𝑚𝒟(𝑍, 𝑋[1]) is exact by
Lemma 11.4.2. By the same token, if 𝑠 is as in (2), then ℎ = 0 and the sequence

0 → 𝐻𝑜𝑚𝒟(𝑊, 𝑋) → 𝐻𝑜𝑚𝒟(𝑊, 𝑌) → 𝐻𝑜𝑚𝒟(𝑊, 𝑍) → 0

is split exact (split by 𝑠 ∶ 𝑍 → 𝑌). Hence by Yoneda's lemma we see that 𝑋 ⊕ 𝑍 → 𝑌 is
an isomorphism. The last assertion follows from TR1 and Lemma 11.4.8. �
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Lemma 11.4.10. Let 𝒟 be a pre-triangulated category. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of
𝒟. The following are equivalent

(1) 𝑓 has a kernel,
(2) 𝑓 has a cokernel,
(3) 𝑓 is isomorphic to a map 𝐾 ⊕ 𝑍 → 𝑍 ⊕ 𝑄 induced by id𝑍.

Proof. Any morphism isomorphic to a map of the form 𝑋′ ⊕ 𝑍 → 𝑍 ⊕ 𝑌′ has both a
kernel and a cokernel. Hence (3) ⇒ (1), (2). Next we prove (1) ⇒ (3). Suppose first that
𝑓 ∶ 𝑋 → 𝑌 is a monomorphism, i.e., its kernel is zero. By TR1 there exists a distinguished
triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) and by Lemma 11.4.2 we see that ℎ = 0. Then Lemma 11.4.9
implies that 𝑌 = 𝑋 ⊕ 𝑍, i.e., we see that (3) holds. Next, assume 𝑓 has a kernel 𝐾.
As 𝐾 → 𝑋 is a monomorphism we conclude 𝑋 = 𝐾 ⊕ 𝑋′ and 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is a
monomorphism. Hence 𝑌 = 𝑋′ ⊕ 𝑌′ and we win. The implication (2) ⇒ (3) is dual to
this. �

Let 𝒟 be an additive category. Let 𝑒 ∶ 𝐴 → 𝐴 be an idempotent endomorphism of an object
of 𝒟. If Ker(𝑒) and Ker(1 − 𝑒) exist, then 𝐴 = Ker(𝑒) ⊕ Ker(1 − 𝑒) and moreover Ker(𝑒) =
Coker(1 − 𝑒). Dually, if Coker(𝑒) and Coker(1 − 𝑒) exist, then 𝐴 = Coker(𝑒) ⊕Coker(1 − 𝑒)
and moreover Ker(𝑒) = Coker(1 − 𝑒).

Lemma 11.4.11. Let 𝒟 be an additive category.
(1) If 𝒟 has countable products and kernels of maps which have a right inverse, then

𝒟 has kernels of idempotents.
(2) If 𝒟 has countable coproducts and cokernels of maps which have a left inverse,

then 𝒟 has cokernels of idempotents.

Proof. Let 𝑋 be an object of 𝒟 and let 𝑒 ∶ 𝑋 → 𝑋 be an idempotent. The functor

𝑊 ⟼ Ker(𝑀𝑜𝑟𝒟(𝑊, 𝑋)
𝑒

−→ 𝑀𝑜𝑟𝒟(𝑊, 𝑋))

if representable if and only if 𝑒 has a kernel. Note that for any abelian group 𝐴 and idem-
potent endomorphism 𝑒 ∶ 𝐴 → 𝐴 we have

Ker(𝑒 ∶ 𝐴 → 𝐴) = Ker(Φ ∶ ∏𝑛∈𝐍
𝐴 → ∏𝑛∈𝐍

𝐴)

where
Φ(𝑎1, 𝑎2, 𝑎3, …) = (𝑒𝑎1 + (1 − 𝑒)𝑎2, 𝑒𝑎2 + (1 − 𝑒)𝑎3, …)

Moreover, Φ has the right inverse

Ψ(𝑎1, 𝑎2, 𝑎3, …) = (𝑎1, (1 − 𝑒)𝑎1 + 𝑒𝑎2, (1 − 𝑒)𝑎2 + 𝑒𝑎3, …).

Hence (1) holds. The proof of (2) is dual. �

Lemma 11.4.12. Let 𝒟 be a pre-triangulated category. If 𝒟 has countable products, then
𝒟 has kernels of idempotents. If 𝒟 has countable coproducts, then 𝒟 has kernels of idem-
potents.

Proof. Assume 𝒟 has countable products. By Lemma 11.4.11 it suffices to check that mor-
phisms which have a right inverse have kernels. Any morphism which has a right inverse
is an epimorphism, hence has a kernel by Lemma 11.4.10. The second statement is dual to
the first (see also remark preceding Lemma 11.4.11). �

The following lemma makes it slightly easier to prove that a pre-triangulated category is
triangulated.
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Lemma 11.4.13. Let 𝒟 be a pre-triangulated category. In order to prove TR4 it suffices to
show that given any pair of composable morphisms 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 there exist

(1) isomorphisms 𝑖 ∶ 𝑋′ → 𝑋, 𝑗 ∶ 𝑌′ → 𝑌 and 𝑘 ∶ 𝑍′ → 𝑍, and then setting
𝑓′ = 𝑗−1𝑓𝑖 ∶ 𝑋′ → 𝑌′ and 𝑔′ = 𝑘−1𝑔𝑗 ∶ 𝑌′ → 𝑍′ there exist

(2) distinguished triangles (𝑋′, 𝑌′, 𝑄1, 𝑓′, 𝑝1, 𝑑1), (𝑋′, 𝑍′, 𝑄2, 𝑔′∘𝑓′, 𝑝2, 𝑑2) and (𝑌′, 𝑍′, 𝑄3, 𝑔′, 𝑝3, 𝑑3),
such that the assertion of TR4 holds.

Proof. The replacement of 𝑋, 𝑌, 𝑍 by 𝑋′, 𝑌′, 𝑍′ is harmless by our definition of distin-
guished triangles and their isomorphisms. The lemma follows from the fact that the distin-
guished triangles (𝑋′, 𝑌′, 𝑄1, 𝑓′, 𝑝1, 𝑑1), (𝑋′, 𝑍′, 𝑄2, 𝑔′∘𝑓′, 𝑝2, 𝑑2) and (𝑌′, 𝑍′, 𝑄3, 𝑔′, 𝑝3, 𝑑3)
are unique up to isomorphism by Lemma 11.4.6. �

Lemma 11.4.14. Let 𝒟 be a pre-triangulated category. Assume that 𝒟′ is an additive full
subcategory of 𝒟. The following are equivalent

(1) there exists a set of triangles 𝒯′ such that (𝒟′, 𝒯′) is a pre-triangulated subcat-
egory of 𝒟,

(2) 𝒟′ is preserved under [1], [−1] and given any morphism 𝑓 ∶ 𝑋 → 𝑌 in 𝒟′ there
exists a distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) in 𝒟 such that 𝑍 is isomorphic to
an object of 𝒟′.

In this case 𝒯′ is the set of distinguished triangles (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) of 𝒟 such that 𝑋, 𝑌, 𝑍 ∈
𝑂𝑏(𝒟′) and 𝑓, 𝑔, ℎ ∈ Arrows(𝒟′). Finally, if 𝒟 is a triangulated category, then (1) and (2)
are also equivalent to

(3) 𝒟′ is a triangulated subcategory.

Proof. Omitted. �

Lemma 11.4.15. An exact functor of pre-triangulated categories is additive.

Proof. Let𝐹 ∶ 𝒟 → 𝒟′ be an exact functor of pre-triangulated categories. Since (0, 0, 0, 10, 10, 0)
is a distinguished triangle of 𝒟 the triangle

(𝐹(0), 𝐹(0), 𝐹(0), 1𝐹(0), 1𝐹(0), 𝐹(0))

is distinguished in 𝒟′. This implies that 1𝐹(0) ∘ 1𝐹(0) is zero, see Lemma 11.4.1. Hence
𝐹(0) is the zero object of 𝒟′. This also implies that 𝐹 applied to any zero morphism is
zero (since a morphism in an additive category is zero if and only if it factors through the
zero objet). Next, using that (𝑋, 𝑋 ⊕ 𝑌, 𝑌, (1, 0), (0, 1), 0) is a distinguished triangle, we
see that (𝐹(𝑋), 𝐹(𝑋 ⊕ 𝑌), 𝐹(𝑌), 𝐹(1, 0), 𝐹(0, 1), 0) is one too. This implies that the map
𝐹(1, 0) ⊕ 𝐹(0, 1) ∶ 𝐹(𝑋) ⊕ 𝐹(𝑌) → 𝐹(𝑋 ⊕ 𝑌) is an isomorphism, see Lemma 11.4.9. We
omit the rest of the argument. �

Lemma 11.4.16. Let 𝐹 ∶ 𝒟 → 𝒟′ be a fully faithful exact functor of pre-triangulated cate-
gories. Then a triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) of𝒟 is distinguished if and only if (𝐹(𝑋), 𝐹(𝑌), 𝐹(𝑍), 𝐹(𝑓), 𝐹(𝑔), 𝐹(ℎ))
is distinguished in 𝒟′.

Proof. The ``if'' part is clear. Assume (𝐹(𝑋), 𝐹(𝑌), 𝐹(𝑍)) is distinguished in 𝒟′. Pick a dis-
tinguished triangle (𝑋, 𝑌, 𝑍′, 𝑓, 𝑔′, ℎ′) in 𝒟. By Lemma 11.4.6 there exists an isomorphism
of triangles

(1, 1, 𝑐′) ∶ (𝐹(𝑋), 𝐹(𝑌), 𝐹(𝑍)) ⟶ (𝐹(𝑋), 𝐹(𝑌), 𝐹(𝑍′)).
Since 𝐹 is fully faithful, there exists a morphism 𝑐 ∶ 𝑍 → 𝑍′ such that 𝐹(𝑐) = 𝑐′. Then
(1, 1, 𝑐) is an isomorphism between (𝑋, 𝑌, 𝑍) and (𝑋, 𝑌, 𝑍′). Hence (𝑋, 𝑌, 𝑍) is distin-
guished by TR1. �
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Lemma 11.4.17. Let 𝒟, 𝒟′, 𝒟″ be pre-triangulated categories. Let 𝐹 ∶ 𝒟 → 𝒟′ and
𝐹′ ∶ 𝒟′ → 𝒟″ be exact functors. Then 𝐹′ ∘ 𝐹 is an exact functor.

Proof. Omitted. �

Lemma 11.4.18. Let 𝒟 be a pre-triangulated category. Let 𝒜 be an abelian category. Let
𝐻 ∶ 𝒟 → 𝒜 be a homological functor.

(1) Let 𝒟′ be a pre-triangulated category. Let 𝐹 ∶ 𝒟′ → 𝒟 be an exact functor.
Then the composition 𝐺 ∘ 𝐹 is a homological functor as well.

(2) Let 𝒜′ be an abelian category. Hence 𝐺 ∶ 𝒜 → 𝒜′ be an exact functor. Hence
𝐺 ∘ 𝐻 is a homological functor as well.

Proof. Omitted. �

Lemma 11.4.19. Let 𝒟 be a triangulated category. Let 𝒜 be an abelian category. Let
𝐺 ∶ 𝒜 → 𝒟 be a 𝛿-functor.

(1) Let 𝒟′ be a triangulated category. Let 𝐹 ∶ 𝒟 → 𝒟′ be an exact functor. Then
the composition 𝐹 ∘ 𝐺 is a 𝛿-functor as well.

(2) Let 𝒜′ be an abelian category. Hence 𝐻 ∶ 𝒜′ → 𝒜 be an exact functor. Hence
𝐺 ∘ 𝐻 is a 𝛿-functor as well.

Proof. Omitted. �

Lemma 11.4.20. Let 𝒟 be a triangulated category. Let 𝒜 be an abelian category. Let
𝐺 ∶ 𝒜 → 𝒟 be a 𝛿-functor. Let 𝐻 ∶ 𝒟 → ℬ be a homological functor. Assume that
𝐻−1(𝐺(𝐴)) = 0 for all 𝐴 in 𝒜. Then the collection

{𝐻𝑛 ∘ 𝐺, 𝐻𝑛(𝛿𝐴→𝐵→𝐶)}𝑛≥0

is a 𝛿-functor from 𝒜 → ℬ, see Homology, Definition 10.9.1.

Proof. The notation signifies the following. If 0 → 𝐴
𝑎

−→ 𝐵
𝑏

−→ 𝐶 → 0 is a short exact
sequence in 𝒜, then

𝛿 = 𝛿𝐴→𝐵→𝐶 ∶ 𝐺(𝐶) → 𝐺(𝐴)[1]

is a morphism in 𝒟 such that (𝐺(𝐴), 𝐺(𝐵), 𝐺(𝐶), 𝑎, 𝑏, 𝛿) is a distinguished triangle, see Defi-
nition 11.3.6. Then 𝐻𝑛(𝛿) ∶ 𝐻𝑛(𝐺(𝐶)) → 𝐻𝑛(𝐺(𝐴)[1]) = 𝐻𝑛+1(𝐺(𝐴)) is clearly functo-
rial in the short exact sequence. Finally, the long exact cohomology sequence (11.3.5.1)
combined with the vanishing of 𝐻−1(𝐺(𝐶)) gives a long exact sequence

0 → 𝐻0(𝐺(𝐴)) → 𝐻0(𝐺(𝐵)) → 𝐻0(𝐺(𝐶))
𝐻0(𝛿)

−−−−→ 𝐻1(𝐺(𝐴)) → …

in ℬ as desired. �

The proof of the following result uses TR4.

Proposition 11.4.21. Let 𝒟 be a triangulated category. Any commutative diagram

𝑋 //

��

𝑌

��
𝑋′ // 𝑌′

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=014Y
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05QZ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0151
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05SR
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05R0
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can be extended to a diagram

𝑋 //

��

𝑌 //

��

𝑍 //

��

𝑋[1]

��
𝑋′ //

��

𝑌′ //

��

𝑍′ //

��

𝑋′[1]

��
𝑋″ //

��

𝑌″ //

��

𝑍″ //

��

𝑋″[1]

��
𝑋[1] // 𝑌[1] // 𝑍[1] // 𝑋[2]

where all the squares are commutative, except for the lower right square which is anticom-
mutative. Moreover, each of the rows and columns are distinguished triangles. Finally, the
morphisms on the bottom row (resp. right column) are obtained from the morphisms of the
top row (resp. left column) by applying [1].

Proof. During this proof we avoid writing the arrows in order to make the proof legi-
ble. Choose distinguished triangles (𝑋, 𝑌, 𝑍), (𝑋′, 𝑌′, 𝑍′), (𝑋, 𝑋′, 𝑋″), (𝑌, 𝑌′, 𝑌″), and and
(𝑋, 𝑌′, 𝐴). Note that the morphism 𝑋 → 𝑌′ is both equal to the composition 𝑋 → 𝑌 → 𝑌′

and equal to the composition 𝑋 → 𝑋′ → 𝑌′. Hence, we can find morphisms
(1) 𝑎 ∶ 𝑍 → 𝐴 and 𝑏 ∶ 𝐴 → 𝑌″, and
(2) 𝑎′ ∶ 𝑋″ → 𝐴 and 𝑏′ ∶ 𝐴 → 𝑍′

as in TR4. Denote 𝑐 ∶ 𝑌″ → 𝑍[1] the composition 𝑌″ → 𝑌[1] → 𝑍[1] and denote 𝑐′ ∶
𝑍′ → 𝑋″[1] the composition 𝑍′ → 𝑋′[1] → 𝑋″[1]. The conclusion of our application
TR4 are that

(1) (𝑍, 𝐴, 𝑌″, 𝑎, 𝑏, 𝑐), (𝑋″, 𝐴, 𝑍′, 𝑎′, 𝑏′, 𝑐′) are distinguished triangles,
(2) (𝑋, 𝑌, 𝑍) → (𝑋, 𝑌′, 𝐴), (𝑋, 𝑌′, 𝐴) → (𝑌, 𝑌′, 𝑌″), (𝑋, 𝑋′, 𝑋″) → (𝑋, 𝑌′, 𝐴),

(𝑋, 𝑌′, 𝐴) → (𝑋′, 𝑌′, 𝑍′) are morphisms of triangles.
First using that (𝑋, 𝑋′, 𝑋″) → (𝑋, 𝑌′, 𝐴) and (𝑋, 𝑌′, 𝐴) → (𝑌, 𝑌′, 𝑌″). are morphisms of
triangles we see the first of the commutative diagrams

𝑋′ //

��

𝑌′

��
𝑋″ 𝑏∘𝑎′

//

��

𝑌″

��
𝑋[1] // 𝑌[1]

𝑌 //

��

𝑍

𝑏′∘𝑎
��

// 𝑋[1]

��
𝑌′ // 𝑍′ // 𝑋′[1]

is commutative. The second is commutative too using that (𝑋, 𝑌, 𝑍) → (𝑋, 𝑌′, 𝐴) and
(𝑋, 𝑌′, 𝐴) → (𝑋′, 𝑌′, 𝑍′) are morphisms of triangles. At this point we choose a distin-
guished triangle (𝑋″, 𝑌″, 𝑍″) starting with the map 𝑏 ∘ 𝑎′ ∶ 𝑋″ → 𝑌″.

Next we apply TR4 one more time to the morphisms 𝑋″ → 𝐴 → 𝑌″ and the triangles
(𝑋″, 𝐴, 𝑍′, 𝑎′, 𝑏′, 𝑐′), (𝑋″, 𝑌″, 𝑍″), and (𝐴, 𝑌″, 𝑍[1], 𝑏, 𝑐, −𝑎[1]) to get morphisms 𝑎″ ∶
𝑍′ → 𝑍″ and 𝑏″ ∶ 𝑍″ → 𝑍[1]. Then (𝑍′, 𝑍″, 𝑍[1], 𝑎″, 𝑏″, −𝑏′[1]∘𝑎[1]) is a distinguished
triangle, hence also (𝑍, 𝑍′, 𝑍″, −𝑏′ ∘ 𝑎, 𝑎″, −𝑏″) and hence also (𝑍, 𝑍′, 𝑍″, 𝑏′ ∘ 𝑎, 𝑎″, 𝑏″).
Moreover, (𝑋″, 𝐴, 𝑍′) → (𝑋″, 𝑌″, 𝑍″) and (𝑋″, 𝑌″, 𝑍″) → (𝐴, 𝑌″, 𝑍[1], 𝑏, 𝑐, −𝑎[1]) are
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morphisms of triangles. At this point we have defined all the distinguished triangles and all
the morphisms, and all that's left is to verify some commutativity relations.

To see that the middle square in the diagram commutes, note that the arrow 𝑌′ → 𝑍′

factors as 𝑌′ → 𝐴 → 𝑍′ because (𝑋, 𝑌′, 𝐴) → (𝑋′, 𝑌′, 𝑍′) is a morphism of triangles.
Similarly, the morphism 𝑌′ → 𝑌″ factors as 𝑌′ → 𝐴 → 𝑌″ because (𝑋, 𝑌′, 𝐴) → (𝑌, 𝑌′, 𝑌″)
is a morphism of triangles. Hence the middle square commutes because the square with
sides (𝐴, 𝑍′, 𝑍″, 𝑌″) commutes as (𝑋″, 𝐴, 𝑍′) → (𝑋″, 𝑌″, 𝑍″) is a morphism of triangles
(by TR4). The square with sides (𝑌″, 𝑍″, 𝑌[1], 𝑍[1]) commutes because (𝑋″, 𝑌″, 𝑍″) →
(𝐴, 𝑌″, 𝑍[1], 𝑏, 𝑐, −𝑎[1]) is a morphism of triangles and 𝑐 ∶ 𝑌″ → 𝑍[1] is the composi-
tion 𝑌″ → 𝑌[1] → 𝑍[1]. The square with sides (𝑍′, 𝑋′[1], 𝑋″[1], 𝑍″) is commutative
because (𝑋″, 𝐴, 𝑍′) → (𝑋″, 𝑌″, 𝑍″) is a morphism of triangles and 𝑐′ ∶ 𝑍′ → 𝑋″[1]
is the composition 𝑍′ → 𝑋′[1] → 𝑋″[1]. Finally, we have to show that the square
with sides (𝑍″, 𝑋″[1], 𝑍[1], 𝑋[2]) anticommutes. This holds because (𝑋″, 𝑌″, 𝑍″) →
(𝐴, 𝑌″, 𝑍[1], 𝑏, 𝑐, −𝑎[1]) is a morphism of triangles and we're done. �

11.5. Localization of triangulated categories

In order to construct the derived category starting from the homotopy category of compexes,
we will use a localization process.

Definition 11.5.1. Let 𝒟 be a pre-triangulated category. We say a multiplicative system 𝑆
is compatible with the triangulated structure if the following two conditions hold:

MS5 For 𝑠 ∈ 𝑆 we have 𝑠[𝑛] ∈ 𝑆 for all 𝑛 ∈ 𝐙.
MS6 Given a solid commutative square

𝑋 //

𝑠
��

𝑌 //

𝑠′

��

𝑍 //

��

𝑋[1]

𝑠[1]
��

𝑋′ // 𝑌′ // 𝑍′ // 𝑋′[1]

whose rows are distinguished triangles with 𝑠, 𝑠′ ∈ 𝑆 there exists a morphism
𝑠″ ∶ 𝑍 → 𝑍′ in 𝑆 such that (𝑠, 𝑠′, 𝑠″) is a morphism of triangles.

It turns out that these axioms are not independent of the axioms defining multiplicative
systems.

Lemma 11.5.2. Let 𝒟 be a pre-triangulated category. Let 𝑆 be a set of morphisms of
𝒟 and assume that axioms MS1, MS5, MS6 hold (see Categories, Definition 4.24.1 and
Definition 11.5.1). Then MS2 holds.

Proof. Suppose that 𝑓 ∶ 𝑋 → 𝑌 is a morphism of 𝒟 and 𝑡 ∶ 𝑋 → 𝑋′ an element of
𝑆. Choose a distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ). Next, choose a distinguished triangle
(𝑋′, 𝑌′, 𝑍, 𝑓′, 𝑔′, 𝑡[1] ∘ ℎ) (here we use TR1 and TR2). By MS5, MS6 (and TR2 to rotate)
we can find the dotted arrow in the commutative diagram

𝑋 //

𝑡
��

𝑌 //

𝑠′

��

𝑍 //

1
��

𝑋[1]

𝑡[1]
��

𝑋′ // 𝑌′ // 𝑍 // 𝑋′[1]

with moreover 𝑠′ ∈ 𝑆. This proves LMS2. The proof of RMS2 is dual. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05R2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05R3
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Lemma 11.5.3. Let 𝐹 ∶ 𝒟 → 𝒟′ be an exact functor of pre-triangulated categories. Let
𝑆 = {𝑓 ∈ Arrows(𝒟) ∣ 𝐹(𝑓) is an isomorphism}

Then 𝑆 is a saturated (see Categories, Definition 4.24.17) multiplicative system compatible
with the triangulated structure on 𝒟.

Proof. We have to prove axioms MS1 -- MS6, see Categories, Definitions 4.24.1 and
4.24.17 and Definition 11.5.1. MS1, MS4, and MS5 are direct from the definitions. MS6
follows from TR3 and Lemma 11.4.3. By Lemma 11.5.2 we conclude that MS2 holds. To
finish the proof we have to show that MS3 holds. To do this let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be morphisms
of 𝒟, and let 𝑡 ∶ 𝑍 → 𝑋 be an element of 𝑆 such that 𝑓∘𝑡 = 𝑔∘𝑡. As 𝒟 is additive this simply
means that 𝑎 ∘ 𝑡 = 0 with 𝑎 = 𝑓 − 𝑔. Choose a distinguished triangle (𝑍, 𝑋, 𝑄, 𝑡, 𝑔, ℎ) using
TR1 and TR2. Since 𝑎 ∘ 𝑡 = 0 we see by Lemma 11.4.2 there exists a morphism 𝑖 ∶ 𝑄 → 𝑌
such that 𝑖 ∘𝑔 = 𝑎. Finally, using TR1 again we can choose a triangle (𝑄, 𝑌, 𝑊, 𝑖, 𝑗, 𝑘). Here
is a picture

𝑍 𝑡
// 𝑋 𝑔

//

1
��

𝑄 //

𝑖
��

𝑍[1]

𝑋 𝑎
// 𝑌

𝑗
��

𝑊
OK, and now we apply the functor 𝐹 to this diagram. Since 𝑡 ∈ 𝑆 we see that 𝐹(𝑄) = 0,
see Lemma 11.4.7. Hence 𝐹(𝑗) is an isomorphism by the same lemma, i.e., 𝑗 ∈ 𝑆. Finally,
𝑗 ∘ 𝑎 = 𝑗 ∘ 𝑖 ∘ 𝑔 = 0 as 𝑗 ∘ 𝑖 = 0. Thus 𝑗 ∘ 𝑓 = 𝑗 ∘ 𝑔 and we see that LMS3 holds. The proof
of RMS3 is dual. �

Lemma 11.5.4. Let 𝐻 ∶ 𝒟 → 𝒜 be a homological functor between a pre-triangulated
category and an abelian category. Let

𝑆 = {𝑓 ∈ Arrows(𝒟) ∣ 𝐻𝑖(𝑓) is an isomorphism for all 𝑖 ∈ 𝐙}
Then 𝑆 is a saturated (see Categories, Definition 4.24.17) multiplicative system compatible
with the triangulated structure on 𝒟.

Proof. We have to prove axioms MS1 -- MS6, see Categories, Definitions 4.24.1 and
4.24.17 and Definition 11.5.1. MS1, MS4, and MS5 are direct from the definitions. MS6
follows from TR3 and the long exact cohomology sequence (11.3.5.1). By Lemma 11.5.2
we conclude that MS2 holds. To finish the proof we have to show that MS3 holds. To do
this let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be morphisms of 𝒟, and let 𝑡 ∶ 𝑍 → 𝑋 be an element of 𝑆 such that
𝑓 ∘ 𝑡 = 𝑔 ∘ 𝑡. As 𝒟 is additive this simply means that 𝑎 ∘ 𝑡 = 0 with 𝑎 = 𝑓 − 𝑔. Choose
a distinguished triangle (𝑍, 𝑋, 𝑄, 𝑡, 𝑔, ℎ) using TR1 and TR2. Since 𝑎 ∘ 𝑡 = 0 we see by
Lemma 11.4.2 there exists a morphism 𝑖 ∶ 𝑄 → 𝑌 such that 𝑖 ∘ 𝑔 = 𝑎. Finally, using TR1
again we can choose a triangle (𝑄, 𝑌, 𝑊, 𝑖, 𝑗, 𝑘). Here is a picture

𝑍 𝑡
// 𝑋 𝑔

//

1
��

𝑄 //

𝑖
��

𝑍[1]

𝑋 𝑎
// 𝑌

𝑗
��

𝑊

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05R4
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OK, and now we apply the functors 𝐻𝑖 to this diagram. Since 𝑡 ∈ 𝑆 we see that 𝐻𝑖(𝑄) = 0
by the long exact cohomology sequence (11.3.5.1). Hence 𝐻𝑖(𝑗) is an isomorphism for all
𝑖 by the same argument, i.e., 𝑗 ∈ 𝑆. Finally, 𝑗 ∘ 𝑎 = 𝑗 ∘ 𝑖 ∘ 𝑔 = 0 as 𝑗 ∘ 𝑖 = 0. Thus 𝑗 ∘ 𝑓 = 𝑗 ∘ 𝑔
and we see that LMS3 holds. The proof of RMS3 is dual. �

Proposition 11.5.5. Let 𝒟 be a pre-triangulated category. Let 𝑆 be a multiplicative sys-
tem compatible with the triangulated structure. Then there exists a unique structure of a
pre-triangulated category on 𝑆−1𝒟 such that the localization functor 𝑄 ∶ 𝒟 → 𝑆−1𝒟 is
exact. Moreover, if 𝒟 is a triangulated category, so is 𝑆−1𝒟.

Proof. We have seen that 𝑆−1𝒟 is an additive category and that the localization functor 𝑄
is additive in Homology, Lemma 10.6.2, It is clear that we may define 𝑄(𝑋)[𝑛] = 𝑄(𝑋[𝑛])
since 𝒮 is preserved under the shift functors [𝑛] by MS5. Finally, we say a triangle of
𝑆−1𝒟 is distinguished if it is isomorphic to the image of a distinguished triangle under the
localization functor 𝑄.

Proof of TR1. The only thing to prove here is that if 𝑎 ∶ 𝑄(𝑋) → 𝑄(𝑌) is a morphism of
𝑆−1𝒟, then 𝑎 fits into a distinguish triangle. Write 𝑎 = 𝑄(𝑠)−1 ∘ 𝑄(𝑓) for some 𝑠 ∶ 𝑌 → 𝑌′

in 𝑆 and 𝑓 ∶ 𝑋 → 𝑌′. Choose a distinguished triangle (𝑋, 𝑌′, 𝑍, 𝑓, 𝑔, ℎ) in 𝒟. Then we see
that (𝑄(𝑋), 𝑄(𝑌), 𝑄(𝑍), 𝑎, 𝑄(𝑔) ∘ 𝑄(𝑠), 𝑄(ℎ)) is a distinguished triangle of 𝑆−1𝒟.

Proof of TR2. This is immediate from the definitions.

Proof of TR3. Note that the existence of the dotted arrow which is required to exist may
be proven after replacing the two triangles by isomorphic triangles. Hence we may as-
sume given distinguished triangles (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) and (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′) of 𝒟 and a
commutative diagram

𝑄(𝑋)
𝑄(𝑓)

//

𝑎
��

𝑄(𝑌)

𝑏
��

𝑄(𝑋′)
𝑄(𝑓′) // 𝑄(𝑌′)

in 𝑆−1𝒟. Now we apply Categories, Lemma 4.24.8 to find a morphism 𝑓″ ∶ 𝑋″ → 𝑌″ in
𝒟 and a commutative diagram

𝑋

𝑓
��

𝑘
// 𝑋″

𝑓″

��

𝑋′

𝑓′

��

𝑠
oo

𝑌 𝑙 // 𝑌″ 𝑌′𝑡oo

in 𝒟 with 𝑠, 𝑡 ∈ 𝑆 and 𝑎 = 𝑠−1𝑘, 𝑏 = 𝑡−1𝑙. At this point we can use TR3 for 𝒟 and MS6 to
find a commutative diagram

𝑋 //

𝑘
��

𝑌 //

𝑙
��

𝑍 //

𝑚
��

𝑋[1]

𝑔[1]
��

𝑋″ // 𝑌″ // 𝑍″ // 𝑋″[1]

𝑋′ //

𝑠

OO

𝑌′ //

𝑡

OO

𝑍′ //

𝑟

OO

𝑋′[1]

𝑠[1]

OO

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05R6
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with 𝑟 ∈ 𝑆. It follows that setting 𝑐 = 𝑄(𝑟)−1𝑄(𝑚) we obtain the desired morphism of
triangles

(𝑄(𝑋), 𝑄(𝑌), 𝑄(𝑍), 𝑄(𝑓), 𝑄(𝑔), 𝑄(ℎ))

(𝑎,𝑏,𝑐)
��

(𝑄(𝑋′), 𝑄(𝑌′), 𝑄(𝑍′), 𝑄(𝑓′), 𝑄(𝑔′), 𝑄(ℎ′))

This proves the first statement of the lemma. If 𝒟 is also a triangulated category, then
we still have to prove TR4 in order to show that 𝑆−1𝒟 is triangulated as well. To do this
we reduce by Lemma 11.4.13 to the following statement: Given composable morphisms
𝑎 ∶ 𝑄(𝑋) → 𝑄(𝑌) and 𝑏 ∶ 𝑄(𝑌) → 𝑄(𝑍) we have to produce an octahedron after possibly
replacing 𝑄(𝑋), 𝑄(𝑌), 𝑄(𝑍) by isomorphic objects. To do this we may first replace 𝑌 by
an object such that 𝑎 = 𝑄(𝑓) for some morphism 𝑓 ∶ 𝑋 → 𝑌 in 𝒟. (More precisely, write
𝑎 = 𝑠−1𝑓 with 𝑠 ∶ 𝑌 → 𝑌′ in 𝑆 and 𝑓 ∶ 𝑋 → 𝑌′. Then replace 𝑌 by 𝑌′.) After this
we similarly replace 𝑍 by an object such that 𝑏 = 𝑄(𝑔) for some morphism 𝑔 ∶ 𝑌 → 𝑍.
Now we can find distinguished triangles (𝑋, 𝑌, 𝑄1, 𝑓, 𝑝1, 𝑑1), (𝑋, 𝑍, 𝑄2, 𝑔 ∘ 𝑓, 𝑝2, 𝑑2), and
(𝑌, 𝑍, 𝑄3, 𝑔, 𝑝3, 𝑑3) in 𝒟 (by TR1), and morphisms 𝑎 ∶ 𝑄1 → 𝑄2 and 𝑏 ∶ 𝑄2 → 𝑄3 as in
TR4. Then it is immediately verified that applying the functor 𝑄 to all these data gives a
corresponding structure in 𝑆−1𝒟 �

The universal property of the localization of a triangulated category is as follows (we formu-
late this for pre-triangulated categories, hence it holds a fortiori for triangulated categories).

Lemma 11.5.6. Let 𝒟 be a pre-triangulated category. Let 𝑆 be a multiplicative system
compatible with the triangulated category. Let 𝑄 ∶ 𝒟 → 𝑆−1𝒟 be the localization functor,
see Proposition 11.5.5.

(1) If𝐻 ∶ 𝒟 → 𝒜 is a homological functor into an abelian category𝒜 such that𝐻(𝑠)
is an isomorphism for all 𝑠 ∈ 𝑆, then the unique factorization 𝐻′ ∶ 𝑆−1𝒟 → 𝒜
such that 𝐻 = 𝐻′ ∘ 𝑄 (see Categories, Lemma 4.24.6) is a homological functor
too.

(2) If 𝐹 ∶ 𝒟 → 𝒟′ is an exact functor into a pre-triangulated category 𝒟′ such that
𝐹(𝑠) is an isomorphism for all 𝑠 ∈ 𝑆, then the unique factorization 𝐹′ ∶ 𝑆−1𝒟 →
𝒟′ such that 𝐹 = 𝐹′ ∘ 𝑄 (see Categories, Lemma 4.24.6) is an exact functor too.

Proof. This lemma proves itself. Details omitted. �

The following lemma describes the kernel (see Definition 11.6.5) of the localization functor.

Lemma 11.5.7. Let 𝒟 be a pre-triangulated category. Let 𝑆 be a multiplicative system
compatible with the triangulated structure. Let 𝑍 be an object of 𝒟. The following are
equivalent

(1) 𝑄(𝑍) = 0 in 𝑆−1𝒟,
(2) there exists 𝑍′ ∈ 𝑂𝑏(𝒟) such that 0 ∶ 𝑍 → 𝑍′ is an element of 𝑆,
(3) there exists 𝑍′ ∈ 𝑂𝑏(𝒟) such that 0 ∶ 𝑍′ → 𝑍 is an element of 𝑆, and
(4) there exists an object 𝑍′ and a distinguished triangle (𝑋, 𝑌, 𝑍 ⊕ 𝑍′, 𝑓, 𝑔, ℎ) such

that 𝑓 ∈ 𝑆.
If 𝑆 is saturated, then these are also equivalent to

(4) the morphism 0 → 𝑍 is an element of 𝑆,
(5) the morphism 𝑍 → 0 is an element of 𝑆,
(6) there exists a distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) such that 𝑓 ∈ 𝑆.
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Proof. The equivalence of (1), (2), and (3) is Homology, Lemma 10.6.3. If (2) holds, then
(𝑍′[−1], 𝑍′[−1]⊕𝑍, 𝑍, (1, 0), (0, 1), 0) is a distinguised triangle (see Lemma 11.4.9) with
``0 ∈ 𝑆''. By rotating we conclude that (4) holds. If (𝑋, 𝑌, 𝑍⊕𝑍′, 𝑓, 𝑔, ℎ) is a distinguished
triangle with 𝑓 ∈ 𝑆 then 𝑄(𝑓) is an isomorphism hence 𝑄(𝑍 ⊕ 𝑍′) = 0 hence 𝑄(𝑍) = 0.
Thus (1) -- (4) are all equivalent.

Next, assume that 𝑆 is saturated. Note that each of (4), (5), (6) implies one of the equivalent
conditions (1) -- (4). Suppose that 𝑄(𝑍) = 0. Then 0 → 𝑍 is a morphism of 𝒟 which
becomes an isomorphism in 𝑆−1𝒟. According to Categories, Lemma 4.24.18 the fact that
𝑆 is saturated implies that 0 → 𝑍 is in 𝑆. Hence (1) ⇒ (4). Dually (1) ⇒ (5). Finally, if
0 → 𝑍 is in 𝑆, then the triangle (0, 𝑍, 𝑍, 0, id𝑍, 0) is distinguished by TR1 and TR2 and is
a triangle as in (4). �

Lemma 11.5.8. Let 𝒟 be a triangulated category. Let 𝑆 be a saturated multiplicative
system in 𝒟. Let (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) be a distinguished triangle in 𝒟. Consider the category
of morphisms of triangles

ℐ = {(𝑠, 𝑠′, 𝑠″) ∶ (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) → (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′) ∣ (𝑠, 𝑠′, 𝑠″) ∈ 𝑆}

Then ℐ is a filtered category and the functors ℐ → 𝑋/𝑆, ℐ → 𝑌/𝑆, and ℐ → 𝑍/𝑆 are
surjective on objects.

Proof. We strongly suggest the reader skip the proof of this lemma and instead works it out
on a napkin. The category ℐ is nonempty as the identity provides an object. This proves
the first condition of the definition of a filtered category, see Categories, Definition 4.17.1.

Note that if 𝑠 ∶ 𝑋 → 𝑋′ is a morphism of 𝑆, then using MS2 we can find 𝑠′ ∶ 𝑌 → 𝑌′ and
𝑓′ ∶ 𝑋′ → 𝑌′ such that 𝑓′ ∘ 𝑠 = 𝑠′ ∘ 𝑓, whereupon we can use MS6 to complete this into an
object of ℐ. Hence certainly the surjectivity statement is correct.

Next we check condition (3) of Categories, Definition 4.17.1. Suppose (𝑠1, 𝑠′
1, 𝑠″

1 ) ∶ (𝑋, 𝑌, 𝑍) →
(𝑋1, 𝑌1, 𝑍1) and (𝑠2, 𝑠′

2, 𝑠″
2 ) ∶ (𝑋, 𝑌, 𝑍) → (𝑋2, 𝑌2, 𝑍2) are objects of ℐ, and suppose

(𝑎, 𝑏, 𝑐), (𝑎′, 𝑏′, 𝑐′) are two morphisms between them. Since 𝑎 ∘ 𝑠1 = 𝑎′ ∘ 𝑠1 there exists a
morphism 𝑠3 ∶ 𝑋2 → 𝑋3 such that 𝑠3 ∘ 𝑎 = 𝑠3 ∘ 𝑎′. Using the surjectivity statement we can
complete this to a morphism of triangles (𝑠3, 𝑠′

3, 𝑠″
3 ) ∶ (𝑋2, 𝑌2, 𝑍2) → (𝑋3, 𝑌3, 𝑍3) with

𝑠3, 𝑠′
3, 𝑠″

3 ∈ 𝑆. Thus (𝑠3 ∘ 𝑠2, 𝑠′
3 ∘ 𝑠′

2, 𝑠″
3 ∘ 𝑠″

2 ) ∶ (𝑋, 𝑌, 𝑍) → (𝑋3, 𝑌3, 𝑍3) is also an object of
ℐ and after composing the maps (𝑎, 𝑏, 𝑐), (𝑎′, 𝑏′, 𝑐′) with (𝑠3, 𝑠′

3, 𝑠″
3 ) we obtain 𝑎 = 𝑎′. By

rotating we may do the same to get 𝑏 = 𝑏′ and 𝑐 = 𝑐′.

Finally, we check condition (2) of Categories, Definition 4.17.1. Suppose we are given two
objects (𝑠1, 𝑠′

1, 𝑠″
1 ) ∶ (𝑋, 𝑌, 𝑍) → (𝑋1, 𝑌1, 𝑍1) and (𝑠2, 𝑠′

2, 𝑠″
2 ) ∶ (𝑋, 𝑌, 𝑍) → (𝑋2, 𝑌2, 𝑍2)

of ℐ. Pick a morphism 𝑠3 ∶ 𝑋 → 𝑋3 in 𝑆 such that there exist morphisms 𝑎 ∶ 𝑋1 → 𝑋3
and 𝑎′ ∶ 𝑋2 → 𝑋3 with 𝑠3 = 𝑎 ∘ 𝑠1 and 𝑠3 = 𝑎′ ∘ 𝑠2. Because 𝑆 is a saturated multiplicative
system we see that 𝑎′ ∈ 𝑆 (because 𝑆 is the set of arrows of 𝒟 which are turned into iso-
morphisms in 𝑆−1𝒟, see Categories, Lemma 4.24.18). Hence, by the essential surjectivity
above, we can find a morphism (𝑎, 𝑏, 𝑐) ∶ (𝑋2, 𝑌2, 𝑍2) → (𝑋3, 𝑌3, 𝑍3) with 𝑎, 𝑏, 𝑐 ∈ 𝑆
such that 𝑋 → 𝑋3 factors through 𝑋 → 𝑋1. Replacing (𝑋2, 𝑌2, 𝑍2) by (𝑋3, 𝑌3, 𝑍3) and
repeating this argument twice more, we may assume that 𝑠2 = 𝑎 ∘ 𝑠1, 𝑠′

2 = 𝑏 ∘ 𝑠′
1, and

𝑠″
2 = 𝑐 ∘ 𝑠″

1 . The problem is that it may not be the case that 𝑏 ∘ 𝑓1 = 𝑓2 ∘ 𝑎, etc, i.e., we
don't know that (𝑎, 𝑏, 𝑐) is a morphism of triangles from (𝑋1, 𝑌1, 𝑍1) to (𝑋2, 𝑌2, 𝑍2). On
the other hand, we do know that (𝑎, 𝑏, 𝑐) ∘ (𝑠1, 𝑠′

1, 𝑠″
1 ) is a morphism of triangles. Using

MS3 one more time this means there exist morphisms 𝑠3 ∶ 𝑋2 → 𝑋3, 𝑠′
3 ∶ 𝑌2 → 𝑌3, and

𝑠″
3 ∶ 𝑍2 → 𝑍3 in 𝑆 such that the required equalities hold after post-composing with them,
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e.g., 𝑠′
3 ∘ 𝑏 ∘ 𝑓1 = 𝑠′

3 ∘ 𝑓2 ∘ 𝑎, etc. Using the essential surjectivity above once more we see
that we may find a morphism of triangles (𝑠4, 𝑠′

4, 𝑠″
4 ) ∶ (𝑋2, 𝑌2, 𝑍2) → (𝑋4, 𝑌4, 𝑍4) with

𝑠4, 𝑠′
4, 𝑠″

4 ∈ 𝑆 such that 𝑠4 factors through 𝑠3, 𝑠′
4 factors through 𝑠′

3, and 𝑠″
4 factors through

𝑠″
3 . We conclude that (𝑠4 ∘ 𝑎, 𝑠′

4 ∘ 𝑏, 𝑠″
4 ∘ 𝑐) is a morphism of triangles from (𝑋1, 𝑌1, 𝑍1) to

(𝑋4, 𝑌4, 𝑍4). �

11.6. Quotients of triangulated categories

Given a triangulated category and a triangulated subcategory we can construct another
triangulated category by taking the ``quotient''. The construction uses a localization. This
is similar to the quotient of an abelian category by a Serre subcategory, see Homology,
Section 10.7. Before we do the actual construction we briefly discuss kernels of exact
functors.

Definition 11.6.1. Let 𝒟 be a pre-triangulated category. We say a full pre-triangulated
subcategory 𝒟′ of 𝒟 is saturated if whenever 𝑋 ⊕ 𝑌 is isomorphic to an object of 𝒟′ then
both 𝑋 and 𝑌 are isomorphic to objects of 𝒟′.

Lemma 11.6.2. Let 𝐹 ∶ 𝒟 → 𝒟′ be an exact functor of pre-triangulated categories. Let
𝒟″ be the full subcategory of 𝒟 with objects

𝑂𝑏(𝒟″) = {𝑋 ∈ 𝑂𝑏(𝒟) ∣ 𝐹(𝑋) = 0}

Then𝒟″ is a strictly full saturated pre-triangulated subcategory of𝒟. If𝒟 is a triangulated
category, then 𝒟″ is a triangulated subcategory.

Proof. It is clear that 𝒟″ is preserved under [1] and [−1]. If (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) is a distin-
guished triangle of𝒟 and𝐹(𝑋) = 𝐹(𝑌) = 0, then also𝐹(𝑍) = 0 as (𝐹(𝑋), 𝐹(𝑌), 𝐹(𝑍), 𝐹(𝑓), 𝐹(𝑔), 𝐹(ℎ))
is distinguished. Hence we may apply Lemma 11.4.14 to see that 𝒟″ is a pre-triangulated
subcategory (respectively a triangulated subcategory if 𝒟 is a triangulated category). The
final assertion of being saturated follows from 𝐹(𝑋) ⊕ 𝐹(𝑌) = 0 ⇒ 𝐹(𝑋) = 𝐹(𝑌) = 0. �

Lemma 11.6.3. Let 𝐻 ∶ 𝒟 → 𝒜 be a homological functor of a pre-triangulated category
into an abelian category. Let 𝒟′ be the full subcategory of 𝒟 with objects

𝑂𝑏(𝒟′) = {𝑋 ∈ 𝑂𝑏(𝒟) ∣ 𝐻(𝑋[𝑛]) = 0 for all 𝑛 ∈ 𝐙}

Then 𝒟′ is a strictly full saturated pre-triangulated subcategory of 𝒟. If 𝒟 is a triangulated
category, then 𝒟′ is a triangulated subcategory.

Proof. It is clear that 𝒟′ is preserved under [1] and [−1]. If (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) is a distin-
guished triangle of 𝒟 and 𝐻(𝑋[𝑛]) = 𝐻(𝑌[𝑛]) = 0 for all 𝑛, then also 𝐻(𝑍[𝑛]) = 0 for
all 𝑛 by the long exact sequence (11.3.5.1). Hence we may apply Lemma 11.4.14 to see
that 𝒟′ is a pre-triangulated subcategory (respectively a triangulated subcategory if 𝒟 is a
triangulated category). The assertion of being saturated follows from

𝐻((𝑋 ⊕ 𝑌)[𝑛]) = 0 ⇒ 𝐻(𝑋[𝑛] ⊕ 𝑌[𝑛]) = 0
⇒ 𝐻(𝑋[𝑛]) ⊕ 𝐻(𝑌[𝑛]) = 0
⇒ 𝐻(𝑋[𝑛]) = 𝐻(𝑌[𝑛]) = 0

for all 𝑛 ∈ 𝐙. �
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Lemma 11.6.4. Let 𝐻 ∶ 𝒟 → 𝒜 be a homological functor of a pre-triangulated category
into an abelian category. Let 𝒟+

𝐻, 𝒟−
𝐻, 𝒟𝑏

𝐻 be the full subcategory of 𝒟 with objects

𝑂𝑏(𝒟+
𝐻) = {𝑋 ∈ 𝑂𝑏(𝒟) ∣ 𝐻(𝑋[𝑛]) = 0 for all 𝑛 ≪ 0}

𝑂𝑏(𝒟−
𝐻) = {𝑋 ∈ 𝑂𝑏(𝒟) ∣ 𝐻(𝑋[𝑛]) = 0 for all 𝑛 ≫ 0}

𝑂𝑏(𝒟𝑏
𝐻) = {𝑋 ∈ 𝑂𝑏(𝒟) ∣ 𝐻(𝑋[𝑛]) = 0 for all |𝑛| ≫ 0}

Each of these is a strictly full saturated pre-triangulated subcategory of 𝒟. If 𝒟 is a trian-
gulated category, then each is a triangulated subcategory.

Proof. Let us prove this for 𝒟+
𝐻. It is clear that it is preserved under [1] and [−1]. If

(𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) is a distinguished triangle of 𝒟 and 𝐻(𝑋[𝑛]) = 𝐻(𝑌[𝑛]) = 0 for all 𝑛 ≪ 0,
then also 𝐻(𝑍[𝑛]) = 0 for all 𝑛 ≪ 0 by the long exact sequence (11.3.5.1). Hence we
may apply Lemma 11.4.14 to see that 𝒟+

𝐻 is a pre-triangulated subcategory (respectively a
triangulated subcategory if 𝒟 is a triangulated category). The assertion of being saturated
follows from

𝐻((𝑋 ⊕ 𝑌)[𝑛]) = 0 ⇒ 𝐻(𝑋[𝑛] ⊕ 𝑌[𝑛]) = 0
⇒ 𝐻(𝑋[𝑛]) ⊕ 𝐻(𝑌[𝑛]) = 0
⇒ 𝐻(𝑋[𝑛]) = 𝐻(𝑌[𝑛]) = 0

for all 𝑛 ∈ 𝐙. �

Definition 11.6.5. Let 𝒟 be a (pre-)triangulated category.
(1) Let 𝐹 ∶ 𝒟 → 𝒟′ be an exact functor. The kernel of 𝐹 is the strictly full saturated

(pre-)triangulated subcategory described in Lemma 11.6.2.
(2) Let 𝐻 ∶ 𝒟 → 𝒜 be a homological functor. The kernel of 𝐻 is the strictly full

saturated (pre-)triangulated subcategory described in Lemma 11.6.3.
These are sometimes denoted Ker(𝐹) or Ker(𝐻).

The proof of the following lemma uses TR4.

Lemma 11.6.6. Let 𝒟 be a triangulated category. Let 𝒟′ ⊂ 𝒟 be a full triangulated
subcategory. Set

(11.6.6.1) 𝑆 = {
𝑓 ∈ Arrows(𝒟) such that there exists a distinguished triangle

(𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) of 𝒟 with 𝑍 isomorphic to an object of 𝒟′ }

Then 𝑆 is a multiplicative system compatible with the triangulated structure on 𝒟. In this
situation the following are equivalent

(1) 𝑆 is a saturated multiplicative system,
(2) 𝒟′ is a saturated triangulated subcategory.

Proof. To prove the first assertion we have to prove that MS1, MS2, MS3 and MS5, MS6
hold.

Proof of MS1. It is clear that identities are in 𝑆 because (𝑋, 𝑋, 0, 1, 0, 0) is distinguished
for every object 𝑋 of 𝒟 and because 0 is an object of 𝒟′. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be
composablemorphisms contained in𝑆. Choose distinguished triangles (𝑋, 𝑌, 𝑄1, 𝑓, 𝑝1, 𝑑1),
(𝑋, 𝑍, 𝑄2, 𝑔 ∘ 𝑓, 𝑝2, 𝑑2), and (𝑌, 𝑍, 𝑄3, 𝑔, 𝑝3, 𝑑3). By assumption we know that 𝑄1 and 𝑄3
are isomorphic to objects of 𝒟′. By TR4 we know there exists a distinguished triangle
(𝑄1, 𝑄2, 𝑄3, 𝑎, 𝑏, 𝑐). Since 𝒟′ is a triangulated subcategory we conclude that 𝑄2 is isomor-
phic to an object of 𝒟′. Hence 𝑔 ∘ 𝑓 ∈ 𝑆.
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Proof of MS3. Let 𝑎 ∶ 𝑋 → 𝑌 be a morphism and let 𝑡 ∶ 𝑍 → 𝑋 be an element of 𝑆
such that 𝑎 ∘ 𝑡 = 0. To prove LMS3 we have to find a 𝑠 ∈ 𝑆 such that 𝑠 ∘ 𝑎 = 0. Choose
a distinguished triangle (𝑍, 𝑋, 𝑄, 𝑡, 𝑔, ℎ) using TR1 and TR2. Since 𝑎 ∘ 𝑡 = 0 we see by
Lemma 11.4.2 there exists a morphism 𝑖 ∶ 𝑄 → 𝑌 such that 𝑖 ∘ 𝑔 = 𝑎. Finally, using TR1
again we can choose a triangle (𝑄, 𝑌, 𝑊, 𝑖, 𝑗, 𝑘). Here is a picture

𝑍 𝑡
// 𝑋 𝑔

//

1
��

𝑄 //

𝑖
��

𝑍[1]

𝑋 𝑎
// 𝑌

𝑗
��

𝑊

Since 𝑡 ∈ 𝑆 we see that 𝑄 is isomorphic to an object of 𝒟′. Hence 𝑗 ∈ 𝑆. Finally,
𝑗 ∘ 𝑎 = 𝑗 ∘ 𝑖 ∘ 𝑔 = 0 as 𝑗 ∘ 𝑖 = 0. Thus 𝑗 ∘ 𝑓 = 𝑗 ∘ 𝑔 and we see that LMS3 holds. The proof
of RMS3 is dual.

Proof of MS5. Follows as distinguished triangles and 𝒟′ are stable under translations

Proof of MS6. Suppose given a commutative diagram

𝑋 //

𝑠
��

𝑌

𝑠′

��
𝑋′ // 𝑌′

with 𝑠, 𝑠′ ∈ 𝑆. By Proposition 11.4.21 we can extend this to a nine square diagram. As
𝑠, 𝑠′ are elments of 𝑆 we see that 𝑋″, 𝑌″ are isomorphic to objects of 𝒟′. Since 𝒟′ is a full
triangulated subcategory we see that 𝑍″ is also an object of 𝒟′. Whence the morphism
𝑍′ → 𝑍″ is an element of 𝑆. This proves MS6.

MS2 is a formal consquence of MS1, MS5, and MS6, see Lemma 11.5.2. This finishes the
proof of the first assertion of the lemma.

Let's assume that 𝑆 is saturated. (In the following we will use rotation of distinguished
triangles without further mention.) Let 𝑋 ⊕ 𝑌 be an object isomorphic to an object of 𝒟′.
Consider the morphism 𝑓 ∶ 0 → 𝑋. The composition 0 → 𝑋 → 𝑋 ⊕ 𝑌 is an element of 𝑆
as (0, 𝑋 ⊕ 𝑌, 𝑋 ⊕ 𝑌, 0, 1, 0) is a distinguished triangle. The composition 𝑌[−1] → 0 → 𝑋
is an element of 𝑆 as (𝑋, 𝑋 ⊕ 𝑌, 𝑌, (1, 0), (0, 1), 0) is a distinguished triangle, see Lemma
11.4.9. Hence 0 → 𝑋 is an element of 𝑆 (as 𝑆 is saturated). Thus 𝑋 is isomorphic to an
object of 𝒟′ as desired.

Finally, assume 𝒟′ satisfies condition (2) of the lemma. Let

𝑊
ℎ

−→ 𝑋
𝑔

−→ 𝑌
𝑓

−→ 𝑍
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be composable morphisms of 𝒟 such that 𝑓𝑔, 𝑔ℎ ∈ 𝑆. We will build up a picture of objects
as in the diagram below.

𝑄12
+1

}}

𝑄23
+1

}}

+1oo

𝑄1
+1

~~

𝑄2
+1

}}

+1oo

aa

𝑄3
+1

}}

+1oo

aa

𝑊 // 𝑋

aa

// 𝑌

aa

// 𝑍

``

First choose distinguished triangles (𝑊, 𝑋, 𝑄1), (𝑋, 𝑌, 𝑄2), (𝑌, 𝑍, 𝑄3) (𝑊, 𝑌, 𝑄12), and (𝑋, 𝑍, 𝑄23).
Denote 𝑠 ∶ 𝑄2 → 𝑄1[1] the composition 𝑄2 → 𝑋[1] → 𝑄1[1]. Denote 𝑡 ∶ 𝑄3 → 𝑄2[1]
the composition 𝑄3 → 𝑌[1] → 𝑄2[1]. By TR4 applied to the composition 𝑊 → 𝑋 → 𝑌
and the composition 𝑋 → 𝑌 → 𝑍 there exist a distinguished triangles (𝑄1, 𝑄12, 𝑄2) and
(𝑄2, 𝑄23, 𝑄3) which use the morphisms 𝑠 and 𝑡. The objects 𝑄12 and 𝑄23 are isomorphic to
objects of𝒟′ as𝑊 → 𝑌 and𝑋 → 𝑍 are assumed in𝑆. Hence also 𝑠[1]𝑡 is an element of𝑆 as
𝑆 is closed under compositions and shifts. Note that 𝑠[1]𝑡 = 0 as 𝑌[1] → 𝑄2[1] → 𝑋[2] is
zero, see Lemma 11.4.1. Hence 𝑄3 ⊕ 𝑄1[2] is isomorphic to an object of 𝒟′, see Lemma
11.4.9. By assumption on 𝒟′ we conclude that 𝑄3, 𝑄1 are isomorphic to objects of 𝒟′.
Looking at the distinguished triangle (𝑄1, 𝑄12, 𝑄2) we conclude that 𝑄2 is also isomorphic
to an object of 𝒟′. Looking at the distinguished triangle (𝑋, 𝑌, 𝑄2) we finally conclude that
𝑔 ∈ 𝑆. (It is also follows that ℎ, 𝑓 ∈ 𝑆, but we don't need this.) �

Definition 11.6.7. Let 𝒟 be a triangulated category. Let ℬ be a full triangulated subcate-
gory. We define the quotient category 𝒟/ℬ by the formula 𝒟/ℬ = 𝑆−1𝒟, where 𝑆 is the
multiplicative system of 𝒟 associated to ℬ via Lemma 11.6.6. The localization functor
𝑄 ∶ 𝒟 → 𝒟/ℬ is called the quotient functor in this case.

Note that the quotient functor 𝑄 ∶ 𝒟 → 𝒟/ℬ is an exact functor of triangulated categories,
see Proposition 11.5.5. The universal property of this construction is the following.

Lemma 11.6.8. Let𝒟 be a triangulated category. Letℬ be a full triangulated subcategory
of 𝒟. Let 𝑄 ∶ 𝒟 → 𝒟/ℬ be the quotient functor.

(1) If 𝐻 ∶ 𝒟 → 𝒜 is a homological functor into an abelian category 𝒜 such that
ℬ ⊂ Ker(𝐻) then there exists a unique factorization 𝐻′ ∶ 𝒟/ℬ → 𝒜 such that
𝐻 = 𝐻′ ∘ 𝑄 and 𝐻′ is a homological functor too.

(2) If 𝐹 ∶ 𝒟 → 𝒟′ is an exact functor into a pre-triangulated category 𝒟′ such that
ℬ ⊂ Ker(𝐹) then there exists a unique factorization 𝐹′ ∶ 𝒟/ℬ → 𝒟′ such that
𝐹 = 𝐹′ ∘ 𝑄 and 𝐹′ is an exact functor too.

Proof. This lemma follows from Lemma 11.5.6. Namely, if 𝑓 ∶ 𝑋 → 𝑌 is a morphism
of 𝒟 such that for some distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) the object 𝑍 is isomorphic
to an object of ℬ, then 𝐻(𝑓), resp. 𝐹(𝑓) is an isomorphism under the assumptions of (1),
resp. (2). Details omitted. �

The kernel of the quotient functor can be described as follows.

Lemma 11.6.9. Let 𝒟 be a triangulated category. Let ℬ be a full triangulated subcate-
gory. The kernel of the quotient functor 𝑄 ∶ 𝒟 → 𝒟/ℬ is the strictly full subcategory of
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𝒟 whose objects are

𝑂𝑏(Ker(𝑄)) = {
𝑍 ∈ 𝑂𝑏(𝒟) such that there exists a 𝑍′ ∈ 𝑂𝑏(𝒟)
such that 𝑍 ⊕ 𝑍′ is isomorphic to an object of ℬ}

In other words it is the smallest strictly full saturated triangulated subcategory of 𝒟 con-
taining ℬ.

Proof. First note that the kernel is automatically a strictly full triangulated subcategory
stable containing summands of any of its objects, see Lemma 11.6.2. The description of its
objects follows from the definitions and Lemma 11.5.7 part (4). �

Let 𝒟 be a triangulated category. At this point we have constructions which induce order
preserving maps between

(1) the partially ordered set of multiplicative systems 𝑆 in 𝒟 compatible with the
triangulated structure, and

(2) the partially ordered set of full triangulated subcategories ℬ ⊂ 𝒟.
Namely, the constructions are given by 𝑆 ↦ ℬ(𝑆) = Ker(𝑄 ∶ 𝒟 → 𝑆−1𝒟) and ℬ ↦
𝑆(ℬ) where 𝑆(ℬ) is the multiplicative set of (11.6.6.1), i.e.,

𝑆(ℬ) = {
𝑓 ∈ Arrows(𝒟) such that there exists a distinguished triangle

(𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) of 𝒟 with 𝑍 isomorphic to an object of ℬ }

Note that it is not the case that these operations are mutually inverse.

Lemma 11.6.10. Let 𝒟 be a triangulated category. The operations described above have
the following properties

(1) 𝑆(ℬ(𝑆)) is the ``saturation'' of 𝑆, i.e., it is the smallest saturated multiplicative
system in 𝒟 containing 𝑆, and

(2) ℬ(𝑆(ℬ)) is the ``saturation'' of ℬ, i.e., it is the smallest strictly full saturated
triangulated subcategory of 𝒟 containing ℬ.

In particular, the constructions define mutually inverse maps between the (partially or-
dered) set of saturated multiplicative systems in 𝒟 compatible with the triangulated struc-
ture on𝒟 and the (partially ordered) set of strictly full saturated triangulated subcategories
of 𝒟.

Proof. First, let's start with a full triangulated subcategory ℬ. Then ℬ(𝑆(ℬ)) = Ker(𝑄 ∶
𝒟 → 𝒟/ℬ) and hence (2) is the content of Lemma 11.6.9.

Next, suppose that 𝑆 is multiplicative system in 𝒟 compatible with the triangulation on
𝒟. Then ℬ(𝑆) = Ker(𝑄 ∶ 𝒟 → 𝑆−1𝒟). Hence (using Lemma 11.4.7 in the localized
category)

𝑆(ℬ(𝑆)) = {
𝑓 ∈ Arrows(𝒟) such that there exists a distinguished

triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) of 𝒟 with 𝑄(𝑍) = 0 }
= {𝑓 ∈ Arrows(𝒟) ∣ 𝑄(𝑓) is an isomorphism}

= ̂𝑆 = 𝑆′

in the notation of Categories, Lemma 4.24.18. The final statement of that lemma finishes
the proof. �

Lemma 11.6.11. Let 𝐻 ∶ 𝒟 → 𝒜 be a homological functor from a triangulated category
𝒟 to an abelian category𝒜, see Definition 11.3.5. The subcategory Ker(𝐻) of𝒟 is a strictly
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full saturated triangulated subcategory of 𝒟 whose corresponding saturated multiplicative
system (see Lemma 11.6.10) is the set

𝑆 = {𝑓 ∣ 𝐻𝑖(𝑓) is an isomorphism for all 𝑖 ∈ 𝐙}.

The functor 𝐻 factors through the quotient functor 𝑄 ∶ 𝒟 → 𝒟/Ker(𝐻).

Proof. The category Ker(𝐻) is a strictly full saturated triangulated subcategory of 𝒟 by
Lemma 11.6.3. The set 𝑆 is a saturated multiplicative system compatible with the trian-
gulated structure by Lemma 11.5.4. Recall that the multiplicative system corresponding to
Ker(𝐻) is the set

{
𝑓 ∈ Arrows(𝐾(𝒜)) such that there exists a distinguished triangle

(𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) with 𝐻𝑖(𝑍) = 0 for all 𝑖 }

By the long exact cohomology sequence, see (11.3.5.1), it is clear that 𝑓 is an element of
this set if and only if 𝑓 is an element of 𝑆. Finally, the factorization of 𝐻 through 𝑄 is a
consequence of Lemma 11.6.8. �

It is clear that in the lemma above the factorization of 𝐻 through 𝒟/Ker(𝐻) is the universal
factorization. Namely, if 𝐹 ∶ 𝒟 → 𝒟′ is an exact functor of triangulated categories and
if there exists a homological functor 𝐻′ ∶ 𝒟′ → 𝒜 such that 𝐻 ≅ 𝐻′ ∘ 𝐹, then 𝐹 factors
through the quotient functor 𝑄 ∶ 𝒟 → 𝒟/Ker(𝐻).

11.7. The homotopy category

Let 𝒜 be an additive category. The homotopy category 𝐾(𝒜) of 𝒜 is the the category of
complexes of 𝒜 with morphisms given by morphisms of complexes up to homotopy. Here
is the formal definition.

Definition 11.7.1. Let 𝒜 be an additive category.
(1) We set Comp(𝒜) = CoCh(𝒜) be the category of (cochain) complexes.
(2) A complex 𝐾• is said to be bounded below if 𝐾𝑛 = 0 for all 𝑛 ≪ 0.
(3) A complex 𝐾• is said to be bounded above if 𝐾𝑛 = 0 for all 𝑛 ≫ 0.
(4) A complex 𝐾• is said to be bounded if 𝐾𝑛 = 0 for all |𝑛| ≫ 0.
(5) We let Comp+(𝒜), Comp−(𝒜), resp. Comp𝑏(𝒜) be the full subcategory of Comp(𝒜)

whose objects are the complexes which are bounded below, bounded above, resp.
bounded.

(6) We let 𝐾(𝒜) be the category with the same objects as Comp(𝒜) but as morphisms
homotopy classes of maps of complexes (see Homology, Lemma 10.10.7).

(7) We let 𝐾+(𝒜), 𝐾−(𝒜), resp. 𝐾𝑏(𝒜) be the full subcategory of 𝐾(𝒜) whose objects
are bounded below, bounded above, resp. bounded complexes of 𝒜.

It will turn out that the categories 𝐾(𝒜), 𝐾+(𝒜), 𝐾−(𝒜), and 𝐾𝑏(𝒜) are triangulated cat-
egories. To prove this we first develop some machinery related to cones and split exact
sequences.

11.8. Cones and termwise split sequences

Let 𝒜 be an additive category, and let 𝐾(𝒜) denote the category of complexes of 𝒜 with
morphisms given by morphisms of complexes up to homotopy. Note that the shift functors
[𝑛] on complexes, see Homology, Definition 10.12.7, give rise to functors [𝑛] ∶ 𝐾(𝒜) →
𝐾(𝒜) such that [𝑛] ∘ [𝑚] = [𝑛 + 𝑚] and [0] = id.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=013H


732 11. DERIVED CATEGORIES

Definition 11.8.1. Let 𝒜 be an additive category. Let 𝑓 ∶ 𝐾• → 𝐿• be a morphism of
complexes of 𝒜. The cone of 𝑓 is the complex 𝐶(𝑓)• given by 𝐶(𝑓)𝑛 = 𝐿𝑛 ⊕ 𝐾𝑛+1 and
differential

𝑑𝑛
𝐶(𝑓) = (

𝑑𝑛
𝐿 𝑓𝑛+1

0 −𝑑𝑛+1
𝐾 )

It comes equipped with canonical morphisms of complexes 𝑖 ∶ 𝐿• → 𝐶(𝑓)• and 𝑝 ∶
𝐶(𝑓)• → 𝐾•[1] induced by the obvious maps 𝐿𝑛 → 𝐶(𝑓)𝑛 → 𝐾𝑛+1.

In other words (𝐾, 𝐿, 𝐶(𝑓), 𝑓, 𝑖, 𝑝) forms a triangle:
𝐾• → 𝐿• → 𝐶(𝑓)• → 𝐾•[1]

The formation of this triangle is functorial in the following sense.

Lemma 11.8.2. Suppose that
𝐾•

1 𝑓1
//

𝑎
��

𝐿•
1

𝑏
��

𝐾•
2

𝑓2 // 𝐿•
2

is a diagram of morphisms of complexes which is commutative up to homotopy. Then
there exists a morphism 𝑐 ∶ 𝐶(𝑓1)• → 𝐶(𝑓2)• which gives rise to a morphism of trian-
gles (𝑎, 𝑏, 𝑐) ∶ (𝐾•

1, 𝐿•
1, 𝐶(𝑓1)•, 𝑓1, 𝑖1, 𝑝1) → (𝐾•

1, 𝐿•
1, 𝐶(𝑓1)•, 𝑓2, 𝑖2, 𝑝2) of 𝐾(𝒜).

Proof. Let ℎ𝑛 ∶ 𝐾𝑛
1 → 𝐿𝑛−1

2 be a family of morphisms such that 𝑓2 ∘𝑎−𝑏∘𝑓1 = 𝑑∘ℎ+ℎ∘𝑑.
Define 𝑐𝑛 by the matrix

𝑐𝑛 = (
𝑎𝑛 ℎ𝑛+1

0 𝑏𝑛 ) ∶ 𝐿𝑛
1 ⊕ 𝐾𝑛+1

1 → 𝐿𝑛
2 ⊕ 𝐾𝑛+1

2

Amatrix computation show that 𝑐 is a morphism of complexes. It is trivial that 𝑐∘𝑖1 = 𝑖2 ∘𝑏,
and it is trivial also to check that 𝑝2 ∘ 𝑐 = 𝑎 ∘ 𝑝1. �

Note that the morphism 𝑐 ∶ 𝐶(𝑓1)• → 𝐶(𝑓2)• constructed in the proof of Lemma 11.8.2 in
general depends on the chosen homotopy ℎ between 𝑓2 ∘ 𝑎 and 𝑏 ∘ 𝑓1.

Definition 11.8.3. Let 𝒜 be an additive category. A termwise split injection 𝛼 ∶ 𝐴• → 𝐵•

is a morphism of complexes such that each 𝐴𝑛 → 𝐵𝑛 is isomorphic to the inclusion of a
direct summand. A termwise split surjection 𝛽 ∶ 𝐵• → 𝐶• is a morphism of complexes
such that each 𝐵𝑛 → 𝐶𝑛 is isomorphic to the projection onto a direct summand.

Lemma 11.8.4. Let 𝒜 be an additive category. Let

𝐴•
𝑓
//

𝑎
��

𝐵•

𝑏
��

𝐶• 𝑔 // 𝐷•

be a diagram of morphisms of complexes commuting up to homotopy. If 𝑓 is a split injec-
tion, then 𝑏 is homotopic to a morphism which makes the diagram commute. If 𝑔 is a split
surjection, then 𝑎 is homotopic to a morphism which makes the diagram commute.

Proof. Let ℎ𝑛 ∶ 𝐴𝑛 → 𝐷𝑛−1 be a collection of morphisms such that 𝑏𝑓 − 𝑔𝑎 = 𝑑ℎ + ℎ𝑑.
Suppose that 𝜋𝑛 ∶ 𝐵𝑛 → 𝐴𝑛 are morphisms splitting the morphisms 𝑓𝑛. Take 𝑏′ = 𝑏 +
𝑑ℎ𝜋+ℎ𝜋𝑑. Suppose 𝑠𝑛 ∶ 𝐷𝑛 → 𝐶𝑛 are morphisms splitting the morphisms 𝑔𝑛 ∶ 𝐶𝑛 → 𝐷𝑛.
Take 𝑎′ = 𝑎 + 𝑑𝑠ℎ + 𝑠ℎ𝑑. Computations omitted. �
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The following lemma can be used to replace an morphism of complexes by a morphism
where in each degree the map is the injection of a direct summand.

Lemma 11.8.5. Let 𝒜 be an additive category. Let 𝛼 ∶ 𝐾• → 𝐿• be a morphism of
complexes of 𝒜. There exists a factorization

𝐾• �̃� //

𝛼

66�̃�• 𝜋 // 𝐿•

such that
(1) �̃� is a termwise split injection (see Definition 11.8.3),
(2) there is a map of complexes 𝑠 ∶ 𝐿• → �̃�• such that 𝜋 ∘ 𝑠 = id𝐿• and such that

𝑠 ∘ 𝜋 is homotopic to id�̃�•.
Moreover, if both 𝐾• and 𝐿• are in 𝐾+(𝒜), 𝐾−(𝒜), or 𝐾𝑏(𝒜), then so is �̃�•.

Proof. We set
�̃�𝑛 = 𝐿𝑛 ⊕ 𝐾𝑛 ⊕ 𝐾𝑛+1

and we define

𝑑𝑛
�̃� =

⎛
⎜
⎜
⎝

𝑑𝑛
𝐿 0 0
0 𝑑𝑛

𝐾 id𝐾𝑛+1

0 0 −𝑑𝑛+1
𝐾

⎞
⎟
⎟
⎠

Moreover, we set

�̃� =
⎛
⎜
⎜
⎝

𝛼
id𝐾𝑛

0

⎞
⎟
⎟
⎠

which is clearly a split injection. It is also clear that it defines a morphism of complexes.
We define

𝜋 = (id𝐿𝑛 0 0)
so that clearly 𝜋 ∘ �̃� = 𝛼. We set

𝑠 =
⎛
⎜
⎜
⎝

id𝐿𝑛

0
0

⎞
⎟
⎟
⎠

so that 𝜋 ∘ 𝑠 = id𝐿•. Finally, let ℎ𝑛 ∶ �̃�𝑛 → �̃�𝑛−1 be the map which maps the summand
𝐾𝑛 of �̃�𝑛 via the identity morphism to the summand 𝐾𝑛 of �̃�𝑛−1. Then it is a trivial matter
(see computations in remark below) to prove that

id�̃�• − 𝑠 ∘ 𝜋 = 𝑑 ∘ ℎ + ℎ ∘ 𝑑

which finishes the proof of the lemma. �

Remark 11.8.6. To see the last displayed equality in the proof above we can argue with
elements as follows. We have 𝑠𝜋(𝑙, 𝑘, 𝑘+) = (𝑙, 0, 0). Hence the morphism of the left hand
side maps (𝑙, 𝑘, 𝑘+) to (0, 𝑘, 𝑘+). On the other hand ℎ(𝑙, 𝑘, 𝑘+) = (0, 0, 𝑘) and 𝑑(𝑙, 𝑘, 𝑘+) =
(𝑑𝑙, 𝑑𝑘 + 𝑘+, −𝑑𝑘+). Hence (𝑑ℎ + ℎ𝑑)(𝑙, 𝑘, 𝑘+) = 𝑑(0, 0, 𝑘) + ℎ(𝑑𝑙, 𝑑𝑘 + 𝑘+, −𝑑𝑘+) =
(0, 𝑘, −𝑑𝑘) + (0, 0, 𝑑𝑘 + 𝑘+) = (0, 𝑘, 𝑘+) as desired.

Lemma 11.8.7. Let 𝒜 be an additive category. Let 𝛼 ∶ 𝐾• → 𝐿• be a morphism of
complexes of 𝒜. There exists a factorization

𝐾• 𝑖 //

𝛼

66̃𝐾• �̃� // 𝐿•
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such that
(1) �̃� is a termwise split surjection (see Definition 11.8.3),
(2) there is a map of complexes 𝑠 ∶ ̃𝐾• → 𝐾• such that 𝑠 ∘ 𝑖 = id𝐾• and such that

𝑖 ∘ 𝑠 is homotopic to id ̃𝐾•.
Moreover, if both 𝐾• and 𝐿• are in 𝐾+(𝒜), 𝐾−(𝒜), or 𝐾𝑏(𝒜), then so is ̃𝐾•.

Proof. Dual to Lemma 11.8.5. Take
̃𝐾𝑛 = 𝐾𝑛 ⊕ 𝐿𝑛 ⊕ 𝐿𝑛+1

and we define

𝑑𝑛
̃𝐾 =

⎛
⎜
⎜
⎝

𝑑𝑛
𝐾 0 0
0 𝑑𝑛

𝐿 id𝐿𝑛+1

0 0 −𝑑𝑛+1
𝐿

⎞
⎟
⎟
⎠

Moreover, we set
�̃� = (𝛼 id𝐿𝑛 0)

which is clearly a split surjection. It is also clear that it defines a morphism of complexes.
We define

𝑖 =
⎛
⎜
⎜
⎝

id𝐾𝑛

0
0

⎞
⎟
⎟
⎠

so that clearly �̃� ∘ 𝑖 = 𝛼. We set
𝑠 = (id𝐾𝑛 0 0)

so that 𝑠 ∘ 𝑖 = id𝐾•. Finally, let ℎ𝑛 ∶ ̃𝐾𝑛 → ̃𝐾𝑛−1 be the map which maps the summand 𝐿𝑛

of ̃𝐾𝑛 via the identity morphism to the summand 𝐿𝑛 of ̃𝐾𝑛−1. Then it is a trivial matter to
prove that

id ̃𝐾• − 𝑖 ∘ 𝑠 = 𝑑 ∘ ℎ + ℎ ∘ 𝑑
which finishes the proof of the lemma. �

Definition 11.8.8. Let 𝒜 be an additive category. A termwise split sequence of complexes
of 𝒜 is a complex of complexes

0 → 𝐴• 𝛼
−→ 𝐵• 𝛽

−→ 𝐶• → 0
together with given direct sum decompositions 𝐵𝑛 = 𝐴𝑛 ⊕ 𝐶𝑛 compatible with 𝛼𝑛 and 𝛽𝑛.
We often write 𝑠𝑛 ∶ 𝐶𝑛 → 𝐵𝑛 and 𝜋𝑛 ∶ 𝐵𝑛 → 𝐴𝑛 for the maps induced by the direct sum
decompositions. According to Homology, Lemma 10.12.10 we get an associated morphism
of complexes

𝛿 ∶ 𝐶• ⟶ 𝐴•[1]
which in degree 𝑛 is the map 𝜋𝑛+1 ∘ 𝑑𝑛

𝐶 ∘ 𝑠𝑛. In other words (𝐴•, 𝐵•, 𝐶•, 𝛼, 𝛽, 𝛿) forms a
triangle

𝐴• → 𝐵• → 𝐶• → 𝐴•[1]
This will be the triangle associated to the termwise split sequence of complexes.

Lemma 11.8.9. Let 𝒜 be an additive category. Let 0 → 𝐴• → 𝐵• → 𝐶• → 0 be
termwise split exact sequences as inDefinition 11.8.8. Let (𝜋′)𝑛, (𝑠′)𝑛 be a second collection
of splittings. Denote 𝛿′ ∶ 𝐶• ⟶ 𝐴•[1] the morphism associated to this second set of
splittings. Then

(1, 1, 1) ∶ (𝐴•, 𝐵•, 𝐶•, 𝛼, 𝛽, 𝛿) ⟶ (𝐴•, 𝐵•, 𝐶•, 𝛼, 𝛽, 𝛿′)
is an isomorphism of triangles in 𝐾(𝒜).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=014I
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05SS
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Proof. The statement simply means that 𝛿 and 𝛿′ are homotopic maps of complexes. This
is Homology, Lemma 10.12.12. �

Lemma 11.8.10. Let 𝒜 be an additive category. Let 0 → 𝐴•
𝑖 → 𝐵•

𝑖 → 𝐶•
𝑖 → 0, 𝑖 = 1, 2

be termwise split exact sequences. Suppose that 𝑎 ∶ 𝐴•
1 → 𝐴•

2, 𝑏 ∶ 𝐵•
1 → 𝐵•

2, and
𝑐 ∶ 𝐶•

1 → 𝐶•
2 are morphisms of complexes such that

𝐴•
1

𝑎
��

// 𝐵•
1

//

𝑏
��

𝐶•
1

𝑐
��

𝐴•
2

// 𝐵•
2

// 𝐶•
2

commutes in 𝐾(𝒜). Then there exists a morphism 𝑏′ ∶ 𝐵•
1 → 𝐵•

2 which is homotopic to 𝑏
such that the diagram above commutes in the category of complexes.

Proof. Let 𝑓𝑛 ∶ 𝐴𝑛
1 → 𝐵𝑛−1

2 be a collection ofmorphisms such that 𝑏∘𝛼1−𝛼2∘𝑎 = 𝑑∘𝑓+𝑓∘𝑑.
Let 𝑔𝑛 ∶ 𝐵𝑛

1 → 𝐶𝑛−1
2 be a collection of morphisms such that 𝑐 ∘ 𝛽1 − 𝛽2 ∘ 𝑏 = 𝑑 ∘ 𝑔 + 𝑔 ∘

𝑑. Suppose that 𝜋𝑛 ∶ 𝐵𝑛
1 → 𝐴𝑛

1 (resp. 𝑠𝑛 ∶ 𝐶𝑛
2 → 𝐵𝑛

2) are the morphisms splitting the
morphisms 𝛼𝑛

1 (resp. 𝛽𝑛
2). Set ℎ𝑛 = −𝑓𝑛 ∘ 𝜋𝑛 + 𝑠𝑛−1 ∘ 𝑔𝑛. Take 𝑏′ = 𝑏 + 𝑑 ∘ ℎ + ℎ ∘ 𝑑.

Computation omitted. �

Lemma 11.8.11. Let 𝒜 be an additive category. Let 𝑓1 ∶ 𝐾•
1 → 𝐿•

1 and 𝑓2 ∶ 𝐾•
2 → 𝐿•

2 be
morphisms of complexes. Let

(𝑎, 𝑏, 𝑐) ∶ (𝐾•
1, 𝐿•

1, 𝐶(𝑓1)•, 𝑓1, 𝑖1, 𝑝1) ⟶ (𝐾•
1, 𝐿•

1, 𝐶(𝑓1)•, 𝑓2, 𝑖2, 𝑝2)

be any morphism of triangles of 𝐾(𝒜). If 𝑎 and 𝑏 are homotopy equivalences then so is 𝑐.

Proof. Let 𝑎−1 ∶ 𝐾•
2 → 𝐾•

1 be a morphism of complexes which is inverse to 𝑎 in 𝐾(𝒜).
Let 𝑏−1 ∶ 𝐿•

2 → 𝐿•
1 be a morphism of complexes which is inverse to 𝑏 in 𝐾(𝒜). Let

𝑐′ ∶ 𝐶(𝑓2)• → 𝐶(𝑓1)• be the morphism from Lemma 11.8.2 applied to 𝑓1 ∘ 𝑎−1 = 𝑏−1 ∘ 𝑓2.
If we can show that 𝑐 ∘𝑐′ and 𝑐′ ∘ 𝑐 are isomorphisms in 𝐾(𝒜) then we win. Hence it suffices
to prove the following: Given a morphism of triangles (1, 1, 𝑐) ∶ (𝐾•, 𝐿•, 𝐶(𝑓)•, 𝑓, 𝑖, 𝑝) in
𝐾(𝒜) the morphism 𝑐 is an isomorphism in 𝐾(𝒜). By assumption the two squares in the
diagram

𝐿• //

1
��

𝐶(𝑓)• //

𝑐
��

𝐾•[1]

1
��

𝐿• // 𝐶(𝑓)• // 𝐾•[1]

commute up to homotopy. By construction of 𝐶(𝑓)• the rows form termwise split sequences
of complexes. By Lemma 11.8.10 wemay replace 𝑐 by amorphism homotopic to 𝑐 such that
the diagram commutes in the category of complexes. In this case each 𝑐𝑛 is an isomorphism
(because an upper triangular matrix with 1's on the diagonal is invertible). �

Hence if 𝑎 and 𝑏 are homotopy equivalences then the resulting morphism of triangles is
an isomorphism of triangles in 𝐾(𝒜). It turns out that the collection of triangles of 𝐾(𝒜)
given by cones and the collection of triangles of 𝐾(𝒜) given by termwise split sequences
of complexes are the same up to isomorphisms, at least up to sign!

Lemma 11.8.12. Let 𝒜 be an additive category.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=014J
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=014K
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(1) Given a termwise split sequence of complexes (𝛼 ∶ 𝐴• → 𝐵•, 𝛽 ∶ 𝐵• →
𝐶•, 𝑠𝑛, 𝜋𝑛) there exists a homotopy equivalence 𝐶(𝛼)• → 𝐶• such that the dia-
gram

𝐴• //

��

𝐵•

��

// 𝐶(𝛼)•
−𝑝
//

��

𝐴•[1]

��
𝐴• // 𝐵• // 𝐶• 𝛿 // 𝐴•[1]

defines an isomorphism of triangles in 𝐾(𝒜).
(2) Given a morphism of complexes 𝑓 ∶ 𝐾• → 𝐿• there exists an isomorphism of

triangles

𝐾• //

��

�̃�•

��

//𝑀•
𝛿
//

��

𝐾•[1]

��
𝐾• // 𝐿• // 𝐶(𝑓)• −𝑝 // 𝐾•[1]

where the upper triangle is the triangle associated to a termwise split exact se-
quence 𝐾• → �̃�• → 𝑀•.

Proof. Proof of (1). We have 𝐶(𝛼)𝑛 = 𝐵𝑛 ⊕ 𝐴𝑛+1 and we simply define 𝐶(𝛼)𝑛 → 𝐶𝑛 via
the projection onto 𝐵𝑛 followed by 𝛽𝑛. This defines a morphism of complexes because the
compositions 𝐴𝑛+1 → 𝐵𝑛+1 → 𝐵𝑛 → 𝐶𝑛 are zero. To get a homotopy inverse we take
𝐶• → 𝐶(𝛼)• given by (𝑠𝑛, −𝛿𝑛) in degree 𝑛. This is a morphism of complexes because the
morphism 𝛿𝑛 can be characterized as the uniquemorphism𝐶𝑛 → 𝐴𝑛+1 such that 𝑑∘𝑠𝑛−𝑠𝑛+1∘
𝑑 = 𝛼 ∘ 𝛿𝑛, see proof of Homology, Lemma 10.12.10. The composition 𝐶• → 𝐶(𝑓)• → 𝐶•

is the identity. The composition 𝐶(𝑓)• → 𝐶• → 𝐶(𝑓)• is equal to the morphism

(
𝑠𝑛 ∘ 𝛽𝑛 0

−𝛿𝑛 ∘ 𝛽𝑛 0)

To see that this is homotopic to the identity map use the homotopy ℎ𝑛 ∶ 𝐶(𝛼)𝑛 → 𝐶(𝛼)𝑛−1)
given by the matrix

(
0 0
𝜋𝑛 0) ∶ 𝐶(𝛼)𝑛 = 𝐵𝑛 ⊕ 𝐴𝑛+1 → 𝐵𝑛−1 ⊕ 𝐴𝑛 = 𝐶(𝛼)𝑛−1

It is trivial to verify that

(
1 0
0 1) − (𝑠𝑛 −𝛿𝑛) (

𝛽𝑛

0 ) = (
𝑑 𝛼𝑛+1

0 −𝑑 ) (
0 0
𝜋𝑛 0) + (

0 0
𝜋𝑛+1 0) (

𝑑 𝛼𝑛+1

0 −𝑑 )

To finish the proof of (1) we have to show that the morphisms −𝑝 ∶ 𝐶(𝛼)• → 𝐴•[1] (see
Definition 11.8.1) and 𝐶(𝛼)• → 𝐶• → 𝐴•[1] agree up to homotopy. This is clear from the
above. Namely, we can use the homotopy inverse (𝑠, −𝛿) ∶ 𝐶• → 𝐶(𝛼)• and check instead
that the two maps 𝐶• → 𝐴•[1] agree. And note that 𝑝 ∘ (𝑠, −𝛿) = −𝛿 as desired.

Proof of (2). We let ̃𝑓 ∶ 𝐾• → �̃�•, 𝑠 ∶ 𝐿• → �̃�• and 𝜋 ∶ 𝐿• → 𝐿• be as in Lemma 11.8.5.
By Lemmas 11.8.2 and 11.8.11 the triangles (𝐾•, 𝐿•, 𝐶(𝑓), 𝑖, 𝑝) and (𝐾•, �̃�•, 𝐶( ̃𝑓), ̃𝑖, ̃𝑝) are
isomorphic. Note that we can compose isomorphisms of triangles. Thus we may replace
𝐿• by �̃�• and 𝑓 by ̃𝑓. In other words we may assume that 𝑓 is a termwise split injection. In
this case the result follows from part (1). �
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Lemma 11.8.13. Let 𝒜 be an additive category. Let 𝐴•
1 → 𝐴•

2 → … → 𝐴•
𝑛 be a sequence

of composable morphisms of complexes. There exists a commutative diagram

𝐴•
1

// 𝐴•
2

//… // 𝐴•
𝑛

𝐵•
1

//

OO

𝐵•
2

//

OO

… // 𝐵•
𝑛

OO

such that each morphism 𝐵•
𝑖 → 𝐵•

𝑖+1 is a split injection and each 𝐵•
𝑖 → 𝐴•

𝑖 is a homotopy
equivalence. Moreover, if all 𝐴•

𝑖 are in 𝐾+(𝒜), 𝐾−(𝒜), or 𝐾𝑏(𝒜), then so are the 𝐵•
𝑖 .

Proof. The case 𝑛 = 1 is without content. Lemma 11.8.5 is the case 𝑛 = 2. Suppose we
have constructed the diagram except for 𝐵𝑛. Applying Lemma 11.8.5 to the composition
𝐵𝑛−1 → 𝐴𝑛−1 → 𝐴𝑛. The result is a factorization 𝐵𝑛−1 → ̃𝐵𝑛 → 𝐴𝑛 as desired. �

Lemma 11.8.14. Let 𝒜 be an additive category. Let (𝛼 ∶ 𝐴• → 𝐵•, 𝛽 ∶ 𝐵• → 𝐶•, 𝑠𝑛, 𝜋𝑛)
be a termwise split sequence of complexes. Let (𝐴•, 𝐵•, 𝐶•, 𝛼, 𝛽, 𝛿) be the associated trian-
gle. Then the triangle (𝐶•[−1], 𝐴•, 𝐵•, 𝛿[−1], 𝛼, 𝛽) is isomorphic to the triangle (𝐶•[−1], 𝐴•, 𝐶(𝛿[−1])•, 𝛿[−1], 𝑖, 𝑝).

Proof. We write 𝐵𝑛 = 𝐴𝑛 ⊕ 𝐶𝑛 and we identify 𝛼𝑛 and 𝛽𝑛 with the natural inclusion and
projection maps. By construction of 𝛿 we have

𝑑𝑛
𝐵 = (

𝑑𝑛
𝐴 𝛿𝑛

0 𝑑𝑛
𝐶)

On the other hand the cone of 𝛿[−1] ∶ 𝐶•[−1] → 𝐴• is given as 𝐶(𝛿[−1])𝑛 = 𝐴𝑛 ⊕ 𝐶𝑛

with differential identical with the matrix above! Whence the lemma. �

Lemma 11.8.15. Let 𝒜 be an additive category. Let 𝑓 ∶ 𝐾• → 𝐿• be a morphism of com-
plexes. The triangle (𝐿•, 𝐶(𝑓)•, 𝐾•[1], 𝑖, 𝑝, 𝑓[1]) is the triangle associated to the termwise
split sequence

0 → 𝐿• → 𝐶(𝑓)• → 𝐾•[1] → 0
coming from the definition of the cone of 𝑓.

Proof. Immediate from the definitions. �

11.9. Distinguished triangles in the homotopy category

Since wewant our boundarymaps in long exact sequences of cohomology to be given by the
maps in the snake lemma without signs we define distinguished triangles in the homotopy
category as follows.

Definition 11.9.1. Let 𝒜 be an additive category. A triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) of 𝐾(𝒜) is
called a distinguished triangle of 𝐾(𝒜) if it is isomorphic to the triangle associated to a
termwise split exact sequence of complexes, see Definition 11.8.8. Same definition for
𝐾+(𝒜), 𝐾−(𝒜), and 𝐾𝑏(𝒜).

Note that according to Lemma 11.8.12 a triangle of the form (𝐾•, 𝐿•, 𝐶(𝑓)•, 𝑓, 𝑖, −𝑝) is
a distinguished triangle. This does indeed lead to a triangulated category, see Lemma
11.8.12. Before we can prove the proposition we need one more lemma in order to be
able to prove TR4.

Lemma 11.9.2. Let 𝒜 be an additive category. Suppose that 𝛼 ∶ 𝐴• → 𝐵• and 𝛽 ∶ 𝐵• →
𝐶• are split injections of complexes. Then there exist distinguished triangles (𝐴•, 𝐵•, 𝑄•

1, 𝛼, 𝑝1, 𝑑1),
(𝐴•, 𝐶•, 𝑄•

2, 𝛽 ∘ 𝛼, 𝑝2, 𝑑2) and (𝐵•, 𝐶•, 𝑄•
3, 𝛽, 𝑝3, 𝑑3) for which TR4 holds.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=014M
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Proof. Say 𝜋𝑛
1 ∶ 𝐵𝑛 → 𝐴𝑛, and 𝜋𝑛

3 ∶ 𝐶𝑛 → 𝐵𝑛 are the splittings. Then also 𝐴• → 𝐶• is a
split injection with splittings 𝜋𝑛

2 = 𝜋𝑛
1 ∘ 𝜋𝑛

3. Let us write 𝑄•
1, 𝑄•

2 and 𝑄•
3 for the ``quotient''

complexes. In other words, 𝑄𝑛
1 = Ker(𝜋𝑛

1), 𝑄𝑛
3 = Ker(𝜋𝑛

3) and 𝑄𝑛
2 = Ker(𝜋𝑛

2). Note that the
kernels exist. Then 𝐵𝑛 = 𝐴𝑛 ⊕ 𝑄𝑛

1 and 𝐶𝑛 = 𝐵𝑛 ⊕ 𝑄𝑛
3, where we think of 𝐴𝑛 as a subobject

of 𝐵𝑛 and so on. This implies 𝐶𝑛 = 𝐴𝑛 ⊕ 𝑄𝑛
1 ⊕ 𝑄𝑛

3. Note that 𝜋𝑛
2 = 𝜋𝑛

1 ∘ 𝜋𝑛
3 is zero on both

𝑄𝑛
1 and 𝑄𝑛

3. Hence 𝑄𝑛
2 = 𝑄𝑛

1 ⊕ 𝑄𝑛
3. Consider the commutative diagram

0 → 𝐴• → 𝐵• → 𝑄•
1 → 0

↓ ↓ ↓
0 → 𝐴• → 𝐶• → 𝑄•

2 → 0
↓ ↓ ↓

0 → 𝐵• → 𝐶• → 𝑄•
3 → 0

The rows of this diagram are termwise split exact sequences, and hence determine dis-
tinguished triangles by definition. Moreover downward arrows in the diagram above are
compatible with the chosen splittings and hence define morphisms of triangles

(𝐴• → 𝐵• → 𝑄•
1 → 𝐴•[1]) ⟶ (𝐴• → 𝐶• → 𝑄•

2 → 𝐴•[1])

and
(𝐴• → 𝐶• → 𝑄•

2 → 𝐴•[1]) ⟶ (𝐵• → 𝐶• → 𝑄•
3 → 𝐵•[1]).

Note that the splittings 𝑄𝑛
3 → 𝐶𝑛 of the bottom split sequence in the diagram provides a

splitting for the split sequence 0 → 𝑄•
1 → 𝑄•

2 → 𝑄•
3 → 0 upon composing with 𝐶𝑛 →

𝑄𝑛
2. It follows easily from this that the morphism 𝛿 ∶ 𝑄•

3 → 𝑄•
1[1] in the corresponding

distinguished triangle
(𝑄•

1 → 𝑄•
2 → 𝑄•

3 → 𝑄•
1[1])

is equal to the composition 𝑄•
3 → 𝐵•[1] → 𝑄•

1[1]. Hence we get a structure as in the
conclusion of axiom TR4. �

Proposition 11.9.3. Let 𝒜 be an additive category. The category 𝐾(𝒜) of complexes up to
homotopy with its natural translation functors and distinguished triangles as defined above
is a triangulated category.

Proof. Proof of TR1. By definition every triangle isomorphic to a distinguished one is dis-
tinguished. Also, any triangle (𝐴•, 𝐴•, 0, 1, 0, 0) is distinguished since 0 → 𝐴• → 𝐴• →
0 → 0 is a termwise split sequence of complexes. Finally, given any morphism of com-
plexes 𝑓 ∶ 𝐾• → 𝐿• the triangle (𝐾, 𝐿, 𝐶(𝑓), 𝑓, 𝑖, −𝑝) is distinguished by Lemma 11.8.12.

Proof of TR2. Let (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) be a triangle. Assume (𝑌, 𝑍, 𝑋[1], 𝑔, ℎ, −𝑓[1]) is dis-
tinguished. Then there exists a termwise split sequence of complexes 𝐴• → 𝐵• → 𝐶• such
that the associated triangle (𝐴•, 𝐵•, 𝐶•, 𝛼, 𝛽, 𝛿) is isomorphic to (𝑌, 𝑍, 𝑋[1], 𝑔, ℎ, −𝑓[1]).
Rotating back we see that (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) is isomorphic to (𝐶•[−1], 𝐴•, 𝐵•, −𝛿[−1], 𝛼, 𝛽).
It follows from Lemma 11.8.14 that the triangle (𝐶•[−1], 𝐴•, 𝐵•, 𝛿[−1], 𝛼, 𝛽) is isomorphic
to (𝐶•[−1], 𝐴•, 𝐶(𝛿[−1])•, 𝛿[−1], 𝑖, 𝑝). Precomposing the previous isomorphism of trian-
gleswith−1 on 𝑌 it follows that (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) is isomorphic to (𝐶•[−1], 𝐴•, 𝐶(𝛿[−1])•, 𝛿[−1], 𝑖, −𝑝).
Hence it is distinguished by Lemma 11.8.12. On the other hand, suppose that (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ)
is distinguished. By Lemma 11.8.12 this means that it is isomorphic to a triangle of the
form (𝐾•, 𝐿•, 𝐶(𝑓), 𝑓, 𝑖, −𝑝) for some morphism of complexes 𝑓. Then the rotated triangle
(𝑌, 𝑍, 𝑋[1], 𝑔, ℎ, −𝑓[1]) is isomorphic to (𝐿•, 𝐶(𝑓), 𝐾•[1], 𝑖, −𝑝, −𝑓[1]) which is isomor-
phic to the triangle (𝐿•, 𝐶(𝑓), 𝐾•[1], 𝑖, 𝑝, 𝑓[1]). By Lemma 11.8.15 this triangle is distin-
guished. Hence (𝑌, 𝑍, 𝑋[1], 𝑔, ℎ, −𝑓[1]) is distinguished as desired.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=014S
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Proof of TR3. Let (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) and (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′) be distinguished triangles
of 𝐾(𝒜) and let 𝑎 ∶ 𝑋 → 𝑋′ and 𝑏 ∶ 𝑌 → 𝑌′ be morphisms such that 𝑓′ ∘ 𝑎 =
𝑏 ∘ 𝑓. By Lemma 11.8.2 we may assume that (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) = (𝑋, 𝑌, 𝐶(𝑓), 𝑓, 𝑖, 𝑝) and
(𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′) = (𝑋′, 𝑌′, 𝐶(𝑓′), 𝑓′, 𝑖′, 𝑝′). At this point we simply apply Lemma
11.8.2 to the commutative diagram given by 𝑓, 𝑓′, 𝑎, 𝑏.

Proof of TR4. At this point we know that 𝐾(𝒜) is a pre-triangulated category. Hence we can
use Lemma 11.4.13. Let 𝐴• → 𝐵• and 𝐵• → 𝐶• be composable morphisms of 𝐾(𝒜). By
Lemma 11.8.13 we may assume that 𝐴• → 𝐵• and 𝐵• → 𝐶• are split injective morphisms.
In this case the result follows from Lemma 11.9.2. �

Remark 11.9.4. Let 𝒜 be an additive category. Exactly the same proof as the proof of
Proposition 11.9.3 shows that the categories 𝐾+(𝒜), 𝐾−(𝒜), and 𝐾𝑏(𝒜) are triangulated
categories. Namely, the cone of a morphisms between bounded (above, below) is bounded
(above, below). But we prove below that these are triangulated subcategories of 𝐾(𝒜)
which gives another proof.

Lemma 11.9.5. Let 𝒜 be an additive subcategory. The categories 𝐾+(𝒜), 𝐾−(𝒜), and
𝐾𝑏(𝒜) are full triangulated subcategories of 𝐾(𝒜).

Proof. Each of the categories mentioned is a full additive subcategory. We use the crite-
rion of Lemma 11.4.14 to show that they are triangulated subcategories. It is clear that each
of the categories 𝐾+(𝒜), 𝐾−(𝒜), and 𝐾𝑏(𝒜) is preserved under the shift functors [1], [−1].
Finally, suppose that 𝑓 ∶ 𝐴• → 𝐵• is a morphism in 𝐾+(𝒜), 𝐾−(𝒜), or 𝐾𝑏(𝒜). Then
(𝐴•, 𝐵•, 𝐶(𝑓)•, 𝑓, 𝑖, −𝑝) is a distinguished triangle of 𝐾(𝒜) with 𝐶(𝑓)• ∈ 𝐾+(𝒜), 𝐾−(𝒜),
or 𝐾𝑏(𝒜) as is clear from the construction of the cone. Thus the lemma is proved. (Al-
ternatively, 𝐾• → 𝐿• is isomorphic to an termwise split injection of complexes in 𝐾+(𝒜),
𝐾−(𝒜), or 𝐾𝑏(𝒜), see Lemma 11.8.5 and then one can directly take the associated distin-
guished triangle.) �

Lemma 11.9.6. Let 𝒜, ℬ be additive categories. Let 𝐹 ∶ 𝒜 → ℬ be an additive functor.
The induced functors

𝐹 ∶ 𝐾(𝒜) ⟶ 𝐾(ℬ)
𝐹 ∶ 𝐾+(𝒜) ⟶ 𝐾+(ℬ)
𝐹 ∶ 𝐾−(𝒜) ⟶ 𝐾−(ℬ)
𝐹 ∶ 𝐾𝑏(𝒜) ⟶ 𝐾𝑏(ℬ)

are exact functors of triangulated categories.

Proof. Suppose 𝐴• → 𝐵• → 𝐶• is a termwise split sequence of complexes of 𝒜 with
splittings (𝑠𝑛, 𝜋𝑛) and associated morphism 𝛿 ∶ 𝐶• → 𝐴•[1], see Definition 11.8.8. Then
𝐹(𝐴•) → 𝐹(𝐵•) → 𝐹(𝐶•) is a termwise split sequence of complexeswith splittings (𝐹(𝑠𝑛), 𝐹(𝜋𝑛))
and associated morphism 𝐹(𝛿) ∶ 𝐹(𝐶•) → 𝐹(𝐴•)[1]. Thus 𝐹 transforms distinguished tri-
angles into distinguished triangles. �

11.10. Derived categories

In this section we construct the derived category of an abelian category 𝒜 by inverting the
quasi-isomorphisms in 𝐾(𝒜). Before we do this recall that the functors 𝐻𝑖 ∶ Comp(𝒜) →
𝒜 factor through 𝐾(𝒜), see Homology, Lemma 10.10.11. Moreover, in Homology, Defini-
tion 10.12.8 we have defined identifications 𝐻𝑖(𝐾•[𝑛]) = 𝐻𝑖+𝑛(𝐾•). At this point it makes
sense to redefine

𝐻𝑖(𝐾•) = 𝐻0(𝐾•[𝑖])
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in order to avoid confusion and possible sign errors.

Lemma 11.10.1. Let 𝒜 be an abelian category. The functor

𝐻0 ∶ 𝐾(𝒜) ⟶ 𝒜

is homological.

Proof. Because 𝐻0 is a functor, and by our definition of distinguished triangles it suffices
to prove that given a termwise split short exact sequence of complexes 0 → 𝐴• → 𝐵• →
𝐶• → 0 the sequence𝐻0(𝐴•) → 𝐻0(𝐵•) → 𝐻0(𝐶•) is exact. This follows fromHomology,
Lemma 10.10.12. �

In particular, this lemma implies that a distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) in 𝐾(𝒜) gives
rise to a long exact cohomology sequence

(11.10.1.1) … // 𝐻𝑖(𝑋)
𝐻𝑖(𝑓) // 𝐻𝑖(𝑌)

𝐻𝑖(𝑔) // 𝐻𝑖(𝑍)
𝐻𝑖(ℎ) // 𝐻𝑖+1(𝑋) // …

see (11.3.5.1). Moreover, there is a compatibility with the long exact sequence of cohomol-
ogy associated to a short exact sequence of complexes (insert future reference here). For
example, if (𝐴•, 𝐵•, 𝐶•, 𝛼, 𝛽, 𝛿) is the distinguished triangle associated to a termwise split
exact sequence of complexes (see Definition 11.8.8), then the cohomology sequence above
agrees with the one defined using the snake lemma, see Homology, Lemma 10.10.12 and
for agreement of sequences, see Homology, Lemma 10.12.11.

Recall that a complex 𝐾• is acyclic if 𝐻𝑖(𝐾•) = 0 for all 𝑖 ∈ 𝐙. Moreover, recall that a
morphism of complexes 𝑓 ∶ 𝐾• → 𝐿• is a quasi-isomorphism if and only if 𝐻𝑖(𝑓) is an
isomorphism for all 𝑖. See Homology, Definition 10.10.10.

Lemma 11.10.2. Let 𝒜 be an abelian category. The full subcategory Ac(𝒜) of 𝐾(𝒜) con-
sisting of acyclic complexes is a strictly full saturated triangulated subcategory of 𝐾(𝒜).
The corresponding saturated multiplicative system (see Lemma 11.6.10) of 𝐾(𝒜) is the
set Qis(𝒜) of quasi-isomorphisms. In particular, the kernel of the localization functor
𝑄 ∶ 𝐾(𝒜) → Qis(𝒜)−1𝐾(𝒜) is Ac(𝒜) and the functor 𝐻0 factors through 𝑄.

Proof. We know that 𝐻0 is a homological functor by Lemma 11.10.1. Thus this lemma is
a special case of Lemma 11.6.11. �

Definition 11.10.3. Let 𝒜 be an abelian category. Let Ac(𝒜) and Qis(𝒜) be as in Lemma
11.10.2. The derived category of 𝒜 is the triangulated category

𝐷(𝒜) = 𝐾(𝒜)/Ac(𝒜) = Qis(𝒜)−1𝐾(𝒜).

We denote 𝐻0 ∶ 𝐷(𝒜) → 𝒜 the unique functor whose composition with the quotient func-
tor gives back the functor 𝐻0 defined above. Using Lemma 11.6.4 we introduce the strictly
full saturated triangulated subcategories 𝐷+(𝒜), 𝐷−(𝒜), 𝐷𝑏(𝒜) whose sets of objects are

𝑂𝑏(𝐷+(𝒜)) = {𝑋 ∈ 𝑂𝑏(𝐷(𝒜)) ∣ 𝐻𝑛(𝑋) = 0 for all 𝑛 ≪ 0}
𝑂𝑏(𝐷−(𝒜)) = {𝑋 ∈ 𝑂𝑏(𝐷(𝒜)) ∣ 𝐻𝑛(𝑋) = 0 for all 𝑛 ≫ 0}
𝑂𝑏(𝐷𝑏(𝒜)) = {𝑋 ∈ 𝑂𝑏(𝐷(𝒜)) ∣ 𝐻𝑛(𝑋) = 0 for all |𝑛| ≫ 0}

The category 𝐷𝑏(𝒜) is called the bounded derived category of 𝒜.

Each of the variants 𝐷+(𝒜), 𝐷−(𝒜), 𝐷𝑏(𝒜) can be constructed as a localization of the cor-
responding homotopy category. This relies on the following simple lemma.

Lemma 11.10.4. Let 𝒜 be an abelian category. Let 𝐾• be a complex.
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(1) If 𝐻𝑛(𝐾•) = 0 for all 𝑛 ≪ 0, then there exists a quasi-isomorphism 𝐾• → 𝐿•

with 𝐿• bounded below.
(2) If 𝐻𝑛(𝐾•) = 0 for all 𝑛 ≫ 0, then there exists a quasi-isomorphism 𝑀• → 𝐾•

with 𝑀• bounded above.
(3) If 𝐻𝑛(𝐾•) = 0 for all |𝑛| ≫ 0, then there exists a commutative diagram of mor-

phisms of complexes
𝐾• // 𝐿•

𝑀•

OO

// 𝑁•

OO

where all the arrows are quasi-isomorphisms, 𝐿• bounded below, 𝑀• bounded
above, and 𝑁• a bounded complex.

Proof. Pick 𝑎 ≪ 0 ≪ 𝑏 and set 𝑀• = 𝜏≤𝑎𝐾•, 𝐿• = 𝐾•/𝜏≤𝑏𝐾•, and 𝑁• = 𝐿•/𝑀•. See
Homology, Section 10.11 for the truncation functors. �

To state the following lemma denote Ac+(𝒜), Ac−(𝒜), resp. Ac𝑏(𝒜) the intersection of
𝐾+(𝒜), 𝐾−(𝒜), resp. 𝐾𝑏(𝒜) with Ac(𝒜). Denote Qis+(𝒜), Qis−(𝒜), resp. Qis𝑏(𝒜) the
intersection of 𝐾+(𝒜), 𝐾−(𝒜), resp. 𝐾𝑏(𝒜) with Qis(𝒜).

Lemma 11.10.5. Let 𝒜 be an abelian category. The subcategories Ac+(𝒜), Ac−(𝒜),
resp. Ac𝑏(𝒜) are strictly full saturated triangulated subcategories of 𝐾+(𝒜), 𝐾−(𝒜), resp.
𝐾𝑏(𝒜). The corresponding saturated multiplicative systems (see Lemma 11.6.10) are the
sets Qis+(𝒜), Qis−(𝒜), resp. Qis𝑏(𝒜).

(1) The kernel of the functor 𝐾+(𝒜) → 𝐷+(𝒜) is Ac+(𝒜) and this induces an equiv-
alence of triangulated categories

𝐾+(𝒜)/Ac+(𝒜) = Qis+(𝒜)−1𝐾+(𝒜) ⟶ 𝐷+(𝒜)
(2) The kernel of the functor 𝐾−(𝒜) → 𝐷−(𝒜) is Ac−(𝒜) and this induces an equiv-

alence of triangulated categories

𝐾−(𝒜)/Ac−(𝒜) = Qis−(𝒜)−1𝐾−(𝒜) ⟶ 𝐷−(𝒜)
(3) The kernel of the functor 𝐾𝑏(𝒜) → 𝐷𝑏(𝒜) is Ac𝑏(𝒜) and this induces an equiva-

lence of triangulated categories

𝐾𝑏(𝒜)/Ac𝑏(𝒜) = Qis𝑏(𝒜)−1𝐾𝑏(𝒜) ⟶ 𝐷𝑏(𝒜)

Proof. The initial statements follow from Lemma 11.6.11 by considering the restriction
of the homological functor 𝐻0. The statement on kernels in (1), (2), (3) is a consequence
of the definitions in each case. Each of the functors is essentially surjective by Lemma
11.10.4. To finish the proof we have to show the functors are fully faithful. We first do this
for the bounded below version.
Suppose that 𝐾•, 𝐿• are bounded above complexes. A morphism between these in 𝐷(𝒜)
is of the form 𝑠−1𝑓 for a pair 𝑓 ∶ 𝐾• → (𝐿′)•, 𝑠 ∶ 𝐿• → (𝐿′)• where 𝑠 is a quasi-
isomorphism. This implies that (𝐿′)• has cohomology bounded below. Hence by Lemma
11.10.4 we can choose a quasi-isomorphism 𝑠′ ∶ (𝐿′)• → (𝐿″)• with (𝐿″)• bounded
below. Then the pair (𝑠′ ∘ 𝑓, 𝑠′ ∘ 𝑠) defines a morphism in Qis+(𝒜)−1𝐾+(𝒜). Hence the
functor is ``full''. Finally, suppose that the pair 𝑓 ∶ 𝐾• → (𝐿′)•, 𝑠 ∶ 𝐿• → (𝐿′)• defines a
morphism in Qis+(𝒜)−1𝐾+(𝒜) which is zero in 𝐷(𝒜). This means that there exists a quasi-
isomorphism 𝑠′ ∶ (𝐿′)• → (𝐿″)• such that 𝑠′ ∘ 𝑓 = 0. Using Lemma 11.10.4 once more
we obtain a quasi-isomorphism 𝑠″ ∶ (𝐿″)• → (𝐿‴)• with (𝐿‴)• bounded below. Thus we

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05RW


742 11. DERIVED CATEGORIES

see that 𝑠″ ∘ 𝑠′ ∘ 𝑓 = 0 which implies that 𝑠−1𝑓 is zero in Qis+(𝒜)−1𝐾+(𝒜). This finishes
the proof that the functor in (1) is an equivalence.

The proof of (2) is dual to the proof of (1). To prove (3) we may use the result of (2).
Hence it suffices to prove that the functor Qis𝑏(𝒜)−1𝐾𝑏(𝒜) → Qis−(𝒜)−1𝐾−(𝒜) is fully
faithful. The argument given in the previous paragraph applies directly to show this where
we consistently work with complexes which are already bounded above. �

11.11. The canonical delta-functor

The derived category should be the receptacle for the universal cohomology functor. In
order to state the result we use the notion of a 𝛿-functor from an abelian category into a
triangulated category, see Definition 11.3.6.

Consider the functor Comp(𝒜) → 𝐾(𝒜). This functor is not a 𝛿-functor in general. The
easiest way to see this is to consider a nonsplit short exact sequence 0 → 𝐴 → 𝐵 → 𝐶 → 0
of objects of 𝒜. Since 𝐻𝑜𝑚𝐾(𝒜)(𝐶[0], 𝐴[1]) = 0 we see that any distinguished triangle
arising from this short exact sequence would look like (𝐴[0], 𝐵[0], 𝐶[0], 𝑎, 𝑏, 0). But the
existence of such a distinguished triangle in 𝐾(𝒜) implies that the extension is split. A
contradiction.

It turns out that the functor Comp(𝒜) → 𝐷(𝒜) is a 𝛿-functor. In order to see this we have
to define the morphisms 𝛿 associated to a short exact sequence

0 → 𝐴• 𝑎
−→ 𝐵• 𝑏

−→ 𝐶• → 0

of complexes in the abelian category 𝒜. Consider the cone 𝐶(𝑎)• of the morphism 𝑎. We
have 𝐶(𝑎)𝑛 = 𝐵𝑛 ⊕ 𝐴𝑛+1 and we define 𝑞𝑛 ∶ 𝐶(𝑎)𝑛 → 𝐶𝑛 via the projection to 𝐵𝑛 followed
by 𝑏𝑛. Hence a morphism of complexes

𝑞 ∶ 𝐶(𝑎)• ⟶ 𝐶•.

It is clear that 𝑞 ∘ 𝑖 = 𝑏 where 𝑖 is as in Definition 11.8.1. Note that, as 𝑎• is injective in
each degree, the kernel of 𝑞 is identified with the cone of id𝐴• which is acyclic. Hence we
see that 𝑞 is a quasi-isomorphism. According to Lemma 11.8.12 the triangle

(𝐴, 𝐵, 𝐶(𝑎), 𝑎, 𝑖, −𝑝)

is a distinguished triangle in 𝐾(𝒜). As the localization functor 𝐾(𝒜) → 𝐷(𝒜) is exact
we see that (𝐴, 𝐵, 𝐶(𝑎), 𝑎, 𝑖, −𝑝) is a distinguished triangle in 𝐷(𝒜). Since 𝑞 is a quasi-
isomorphism we see that 𝑞 is an isomorphism in 𝐷(𝒜). Hence we deduce that

(𝐴, 𝐵, 𝐶, 𝑎, 𝑏, −𝑝 ∘ 𝑞−1)

is a distinguished triangle of 𝐷(𝒜). This suggests the following lemma.

Lemma 11.11.1. Let 𝒜 be an abelian category. The functor Comp(𝒜) → 𝐷(𝒜) defined
has the natural structure of a 𝛿-functor, with

𝛿𝐴•→𝐵•→𝐶• = −𝑝 ∘ 𝑞−1

with 𝑝 and 𝑞 as explained above. The same construction turns the functors Comp+(𝒜) →
𝐷+(𝒜), Comp−(𝒜) → 𝐷−(𝒜), and Comp𝑏(𝒜) → 𝐷𝑏(𝒜) into 𝛿-functors.
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Proof. We have already seen that this choice leads to a distinguished triangle whenever
given a short exact sequence of complexes. We have to show that given a commutative
diagram

0 // 𝐴•
𝑎
//

𝑓
��

𝐵•
𝑏
//

𝑔
��

𝐶• //

ℎ
��

0

0 // (𝐴′)• 𝑎′
// (𝐵′)• 𝑏′

// (𝐶′)• // 0
we get the desired commutative diagram of Definition 11.3.6 (2). By Lemma 11.8.2 the
pair (𝑓, 𝑔) induces a canonical morphism 𝑐 ∶ 𝐶(𝑎)• → 𝐶(𝑎′)•. It is a simple computation
to show that 𝑞′ ∘ 𝑐 = ℎ ∘ 𝑞 and 𝑓[1] ∘ 𝑝 = 𝑝′ ∘ 𝑐. From this the result follows directly. �

Lemma 11.11.2. Let 𝒜 be an abelian category. Let

0 // 𝐴• //

��

𝐵• //

��

𝐶• //

��

0

0 // 𝐷• // 𝐸• // 𝐹• // 0

be a commutative diagram of morphisms of complexes such that the rows are short exact
sequences of complexes, and the vertical arrows are quasi-isomorphisms. The 𝛿-functor of
Lemma 11.11.1 above maps the to short exact sequences 0 → 𝐴• → 𝐵• → 𝐶• → 0 and
0 → 𝐷• → 𝐸• → 𝐹• → 0 to isomorphic distinguished triangles.

Proof. Trivial from the fact that 𝐾(𝒜) → 𝐷(𝒜) transforms quasi-isomorphisms into iso-
morphisms and that the associated distinguished triangles are functorial. �

Lemma 11.11.3. Let 𝒜 be an abelian category. Let

0 // 𝐴• // 𝐵• // 𝐶• // 0

be a short exact sequences of complexes. Assume this short exact sequence is termwise split.
Let (𝐴•, 𝐵•, 𝐶•, 𝛼, 𝛽, 𝛿) be the distinguished triangle of 𝐾(𝒜) associated to the sequence.
The 𝛿-functor of Lemma 11.11.1 above maps the short exact sequences 0 → 𝐴• → 𝐵• →
𝐶• → 0 to a triangle isomorphic to the distinguished triangle

(𝐴•, 𝐵•, 𝐶•, 𝛼, 𝛽, 𝛿).

Proof. Follows from Lemma 11.8.12. �

11.12. Triangulated subcategories of the derived category

Let 𝒜 be an abelian category. In this section we are going to look for strictly full saturated
triangulated subcategories 𝒟′ ⊂ 𝐷(𝒜) and in the bounded versions.

Here is a simple construction. Let ℬ ⊂ 𝒜 be a weak Serre subcategory, see Homology,
Section 10.7. We let 𝐷ℬ(𝒜) the full subcategory of 𝐷(𝒜) whose objects are

𝑂𝑏(𝐷ℬ(𝒜)) = {𝑋 ∈ 𝑂𝑏(𝐷(𝒜)) ∣ 𝐻𝑛(𝑋) is an object of ℬ for all 𝑛}

We also define 𝐷+
ℬ(𝒜) = 𝐷+(𝒜) ∩ 𝐷ℬ(𝒜) and similarly for the other bounded versions.

Lemma 11.12.1. Let 𝒜 be an abelian category. Let ℬ ⊂ 𝒜 be a weak Serre subcategory.
The category 𝐷ℬ(𝒜) is a strictly full saturated abelian subcategory of 𝐷(𝒜). Similarly for
the bounded versions.
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Proof. It is clear that 𝐷ℬ(𝒜) is an additive subcategory preserved under the translation
functors. If 𝑋 ⊕ 𝑌 is in 𝐷ℬ(𝒜), then it is clear that both 𝑋 and 𝑌 are in 𝐷ℬ because
𝐻𝑛(𝑋 ⊕ 𝑌) = 𝐻𝑛(𝑋) ⊕ 𝐻𝑛(𝑌), hence both 𝐻𝑛(𝑋) and 𝐻𝑛(𝑌) are kernels of maps between
maps of an object of ℬ, hence objects of ℬ. By Lemma 11.4.14 it therefore suffices to
show that given a distinguished triangle (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) such that 𝑋 and 𝑌 are in 𝐷ℬ(𝒜)
then 𝑍 is an object of 𝐷ℬ(𝒜). The long exact cohomology sequence (11.10.1.1) and the
definition of a weak Serre subcategory (see Homology, Definition 10.7.1) show that 𝐻𝑛(𝑍)
is an object of ℬ for all 𝑛. Thus 𝑍 is an object of 𝐷ℬ(𝒜). �

An interesting feature of the situation of the lemma is that the functor 𝐷(ℬ) → 𝐷(𝒜)
factors through a canonical exact functor

(11.12.1.1) 𝐷(ℬ) ⟶ 𝐷ℬ(𝒜)

After all a complex made from objects of ℬ certainly gives rise to an object of 𝐷ℬ(𝒜)
and as distinguished triangles in 𝐷ℬ(𝒜) are exactly the distinguished triangles of 𝐷(𝒜)
whose vertices are in 𝐷ℬ(𝒜) we see that the functor is exact since 𝐷(ℬ) → 𝐷(𝒜) is exact.
Similarly we obtain functors 𝐷+(ℬ) ⟶ 𝐷+

ℬ(𝒜) etc for the bounded versions. A key
question in many cases is whether the displayed functor is an equivalence.

Now, suppose that ℬ is a Serre subcategory of 𝒜. In this case we have the quotient functor
𝒜 → 𝒜/ℬ, see Homology, Lemma 10.7.6. In this case 𝐷ℬ(𝒜) is the kernel of the functor
𝐷(𝒜) → 𝐷(𝒜/ℬ). Thus we obtain a canonical functor

𝐷(𝒜)/𝐷ℬ(𝒜) ⟶ 𝐷(𝒜/ℬ)

by Lemma 11.6.8. Similarly for the bounded versions.

Lemma 11.12.2. Let 𝒜 be an abelian category. Let ℬ ⊂ 𝒜 be a Serre subcategory. Then
𝐷(𝒜) → 𝐷(𝒜/ℬ) is essentially surjective.

Proof. Wewill use the description of the category 𝒜/ℬ in the proof of Homology, Lemma
10.7.6. Let (𝑋•, 𝑑•) be a complex of 𝒜/ℬ. For each 𝑖 we have an object 𝑋𝑖 of 𝒜 and
𝑑𝑖 = (𝑠𝑖, 𝑓𝑖) where 𝑠𝑖 ∶ 𝑌𝑖 → 𝑋𝑖 is a morphism of 𝒜 whose kernel and cokernel are in ℬ
and 𝑓𝑖 ∶ 𝑌𝑖 → 𝑋𝑖+1 is an arbitrary morphism of 𝒜. Next, consider the complex

… → 𝑋𝑖 ⊕ 𝑌𝑖 ⊕ 𝑌𝑖+1 → 𝑋𝑖+1 ⊕ 𝑌𝑖+1 ⊕ 𝑌𝑖+2 → …

in 𝒜 with differential given by

⎛
⎜
⎜
⎝

0 𝑓𝑖 𝑠𝑖+1

0 0 −id𝑌𝑖+1

0 0 0

⎞
⎟
⎟
⎠

.

This complex becomes quasi-isomorphic to the complex (𝑋•, 𝑑•) in 𝒜/ℬ by the maps

(id𝑋𝑖, 𝑠𝑖, 0) ∶ 𝑋𝑖 ⊕ 𝑌𝑖 ⊕ 𝑌𝑖+1 → 𝑋𝑖

Calculation omitted. �

Lemma 11.12.3. Let 𝒜 be an abelian category. Let ℬ ⊂ 𝒜 be a Serre subcategory.
Suppose that the functor 𝑣 ∶ 𝒜 → 𝒜/ℬ has a left adjoint 𝑢 ∶ 𝒜/ℬ → 𝒜 such that 𝑣𝑢 ≅ id.
Then

𝐷(𝒜)/𝐷ℬ(𝒜) = 𝐷(𝒜/ℬ)
and similarly for the bounded versions.
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Proof. The functor 𝐷(𝑣) ∶ 𝐷(𝒜) → 𝐷(𝒜/ℬ) is essentially surjective by Lemma 11.12.2.
For an object 𝑋 of 𝐷(𝒜) the adjunction mapping 𝑐𝑋 ∶ 𝑢𝑣𝑋 → 𝑋 maps to an isomorphism
in 𝐷(𝒜/ℬ) because 𝑣𝑢𝑣 ≅ 𝑣 by the assumption that 𝑣𝑢 ≅ id. Thus in a distinguished
triangle (𝑢𝑣𝑋, 𝑋, 𝑍, 𝑐𝑋, 𝑔, ℎ) the object 𝑍 is an object of 𝐷ℬ(𝒜) as we see by looking at
the long exact cohomology sequence. Hence 𝑐𝑋 is an element of the multiplicative sytem
used to define the quotient category 𝐷(𝒜)/𝐷ℬ(𝒜). Thus 𝑢𝑣𝑋 ≅ 𝑋 in 𝐷(𝒜)/𝐷ℬ(𝒜). For
𝑋, 𝑌 ∈ 𝑂𝑏(𝒜)) the map

𝐻𝑜𝑚𝐷(𝒜)/𝐷ℬ(𝒜)(𝑋, 𝑌) ⟶ 𝐻𝑜𝑚𝐷(𝒜/ℬ)(𝑣𝑋, 𝑣𝑌)
is bijective because 𝑢 gives an inverse (by the remarks above). �

11.13. Filtered derived categories

A reference for this section is [Ill72, I, Chapter V]. Let 𝒜 be an abelian category. The goal
is to define the filtered derived category 𝐷𝐹(𝒜) of 𝒜. In some sense this is the derived
category of the category Fil𝑓(𝒜) of objects with a finite filtration in 𝒜. We will slightly
generalize Illusie's discussion by allowing our filtered complexes to have infinitely many
nonzero gr𝑝(𝐾•) but we retaining the requirement that each term has a finite filtration. The
rationale for this generalization is that it is not harder and it allows us to apply the discussion
to the spectral sequences of Lemma 11.20.3, see also Remark 11.20.4.
We will use the notation regarding filtered objects introduced in Homology, Section 10.13.
The category of filtered objects of 𝒜 is denoted Fil(𝒜). All filtrations will be decreasing by
fiat.

Definition 11.13.1. Let 𝒜 be an abelian category. The category of finite filtered objects of
𝒜 is the category of filtered objects (𝐴, 𝐹) of 𝒜 whose filtration 𝐹 is finite. We denote it
Fil𝑓(𝒜).

Thus Fil𝑓(𝒜) is a full subcategory of Fil(𝒜). For each 𝑝 ∈ 𝐙 there is a functor gr𝑝 ∶
Fil𝑓(𝒜) → 𝒜. There is a functor gr = ⨁𝑝∈𝐙 gr𝑝 ∶ Fil𝑓(𝒜) → 𝒜. Finally, there is a functor

(forget 𝐹) ∶ Fil𝑓(𝒜) ⟶ 𝒜
which associates to the filtered object (𝐴, 𝐹) the underlying object of 𝒜. The category
Fil𝑓(𝒜) is an additive category, but not abelian in general, see Homology, Example 10.3.11.
The construction in this section is a special case of a more general construction of the
derived category of an ``exact category'', see for example [Büh10], [Kel90].
Because the functors gr𝑝, gr, (forget 𝐹) are additive they induce exact functors of triangu-
lated categories

gr𝑝, gr, (forget 𝐹) ∶ 𝐾(Fil𝑓(𝒜)) ⟶ 𝐾(𝒜)
by Lemma 11.9.6. By analogy with the case of the homotopy category of an abelian cate-
gory we make the following definitions.

Definition 11.13.2. Let 𝒜 be an abelian category.
(1) Let 𝛼 ∶ 𝐾• → 𝐿• be a morphism of 𝐾(Fil𝑓(𝒜)). We say that 𝛼 is a filtered

quasi-isomorphism if the morphism gr(𝛼) is a quasi-isomorphism.
(2) Let 𝐾• be an object of 𝐾(Fil𝑓(𝒜)). We say that 𝐾• is filtered acyclic if the com-

plex gr(𝐾•) is acyclic.

Note that 𝛼 ∶ 𝐾• → 𝐿• is a filtered quasi-isomorphism if and only if each gr𝑝(𝛼) is a
quasi-isomorphism. Similarly a complex 𝐾• is filtered acyclic if and only if each gr𝑝(𝐾•)
is acyclic.
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Lemma 11.13.3. Let 𝒜 be an abelian category.
(1) The functor 𝐾(Fil𝑓(𝒜)) ⟶ 𝒜, 𝐾• ⟼ 𝐻0(gr(𝐾•)) is homological.
(2) The functor 𝐾(Fil𝑓(𝒜)) → 𝒜, 𝐾• ⟼ 𝐻0(gr𝑝(𝐾•)) is homological.
(3) The functor 𝐾(Fil𝑓(𝒜)) ⟶ 𝒜, 𝐾• ⟼ 𝐻0((forget 𝐹)𝐾•) is homological.

Proof. This follows from the fact that 𝐻0 ∶ 𝐾(𝒜) → 𝒜 is homological, see Lemma 11.10.1
and the fact that the functors gr, gr𝑝, (forget 𝐹) are exact functors of triangulated categories.
See Lemma 11.4.18. �

Lemma 11.13.4. Let𝒜 be an abelian category. The full subcategory FAc(𝒜) of𝐾(Fil𝑓(𝒜))
consisting of filtered acyclic complexes is a strictly full saturated triangulated subcategory
of 𝐾(Fil𝑓(𝒜)). The corresponding saturated multiplicative system (see Lemma 11.6.10) of
𝐾(Fil𝑓(𝒜)) is the set FQis(𝒜) of filtered quasi-isomorphisms. In particular, the kernel of
the localization functor

𝑄 ∶ 𝐾(Fil𝑓(𝒜)) ⟶ FQis(𝒜)−1𝐾(Fil𝑓(𝒜))

is FAc(𝒜) and the functor 𝐻0 ∘ gr factors through 𝑄.

Proof. We know that 𝐻0 ∘gr is a homological functor by Lemma 11.13.3. Thus this lemma
is a special case of Lemma 11.6.11. �

Definition 11.13.5. Let 𝒜 be an abelian category. Let FAc(𝒜) and FQis(𝒜) be as in Lemma
11.13.4. The filtered derived category of 𝒜 is the triangulated category

𝐷𝐹(𝒜) = 𝐾(Fil𝑓(𝒜))/FAc(𝒜) = FQis(𝒜)−1𝐾(Fil𝑓(𝒜)).

Lemma 11.13.6. The functors gr𝑝, gr, (forget 𝐹) induce canonical exact functors

gr𝑝, gr, (forget 𝐹) ∶ 𝐷𝐹(𝒜) ⟶ 𝐷(𝒜)

which commute with the localization functors.

Proof. This follows from the universal propery of localization, see Lemma 11.5.6, pro-
vided we can show that a filtered quasi-isomorphism is turned into a quasi-isomorphism by
each of the functors gr𝑝, gr, (forget 𝐹). This is true by definition for the first two. For the last
one the statement we have to do a little bit of work. Let 𝑓 ∶ 𝐾• → 𝐿• be a filtered quasi-
isomorphism in 𝐾(Fil𝑓(𝒜)). Choose a distinguished triangle (𝐾•, 𝐿•, 𝑀•, 𝑓, 𝑔, ℎ) which
contains 𝑓. Then 𝑀• is filtered acyclic, see Lemma 11.13.4. Hence by the corresponding
lemma for 𝐾(𝒜) it suffices to show that a filtered acyclic complex is an acyclic complex if
we forget the filtration. This follows from Homology, Lemma 10.13.17. �

Definition 11.13.7. Let 𝒜 be an abelian category. The bounded filtered derived category
𝐷𝐹𝑏(𝒜) is the full subcategory of 𝐷𝐹(𝒜) with objects those 𝑋 such that gr(𝑋) ∈ 𝐷𝑏(𝒜).
Similarly for the bounded below filtered derived category 𝐷𝐹+(𝒜) and the bounded above
filtered derived category 𝐷𝐹−(𝒜).

Lemma 11.13.8. Let 𝒜 be an abelian category. Let 𝐾• ∈ 𝐾(Fil𝑓(𝒜)).
(1) If 𝐻𝑛(gr(𝐾•)) = 0 for all 𝑛 < 𝑎, then there exists a filtered quasi-isomorphism

𝐾• → 𝐿• with 𝐿𝑛 = 0 for all 𝑛 < 𝑎.
(2) If 𝐻𝑛(gr(𝐾•)) = 0 for all 𝑛 > 𝑏, then there exists a filtered quasi-isomorphism

𝑀• → 𝐾• with 𝑀𝑛 = 0 for all 𝑛 > 𝑏.
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(3) If 𝐻𝑛(gr(𝐾•)) = 0 for all |𝑛| ≫ 0, then there exists a commutative diagram of
morphisms of complexes

𝐾• // 𝐿•

𝑀•

OO

// 𝑁•

OO

where all the arrows are filtered quasi-isomorphisms, 𝐿• bounded below, 𝑀•

bounded above, and 𝑁• a bounded complex.

Proof. Suppose that 𝐻𝑛(gr(𝐾•)) = 0 for all 𝑛 < 𝑎. By Homology, Lemma 10.13.17 the
sequence

𝐾𝑎−1 𝑑𝑎−2

−−−→ 𝐾𝑎−1 𝑑𝑎−1

−−−→ 𝐾𝑎

is an exact sequence of objects of 𝒜 and the morphisms 𝑑𝑎−2 and 𝑑𝑎−1 are strict. Hence
Coim(𝑑𝑎−1) = Im(𝑑𝑎−1) in Fil𝑓(𝒜) and the map gr(Im(𝑑𝑎−1)) → gr(𝐾𝑎) is injective with
image equal to the image of gr(𝐾𝑎−1) → gr(𝐾𝑎), see Homology, Lemma 10.13.15. This
means that the map 𝐾• → 𝜏≥𝑎𝐾• into the truncation

𝜏≥𝑎𝐾• = (… → 0 → 𝐾𝑎/Im(𝑑𝑎−1) → 𝐾𝑎+1 → …)

is a filtered quasi-isomorphism. This proves (1). The proof of (2) is dual to the proof of
(1). Part (3) follows formally from (1) and (2). �

To state the following lemma denote FAc+(𝒜), FAc−(𝒜), resp. FAc𝑏(𝒜) the intersection of
𝐾+(Fil𝑓𝒜), 𝐾−(Fil𝑓𝒜), resp. 𝐾𝑏(Fil𝑓𝒜) with FAc(𝒜). Denote FQis+(𝒜), FQis−(𝒜), resp.
FQis𝑏(𝒜) the intersection of 𝐾+(Fil𝑓𝒜), 𝐾−(Fil𝑓𝒜), resp. 𝐾𝑏(Fil𝑓𝒜) with FQis(𝒜).

Lemma 11.13.9. Let 𝒜 be an abelian category. The subcategories FAc+(𝒜), FAc−(𝒜),
resp. FAc𝑏(𝒜) are strictly full saturated triangulated subcategories of𝐾+(Fil𝑓𝒜),𝐾−(Fil𝑓𝒜),
resp. 𝐾𝑏(Fil𝑓𝒜). The corresponding saturated multiplicative systems (see Lemma 11.6.10)
are the sets FQis+(𝒜), FQis−(𝒜), resp. FQis𝑏(𝒜).

(1) The kernel of the functor 𝐾+(Fil𝑓𝒜) → 𝐷𝐹+(𝒜) is FAc+(𝒜) and this induces an
equivalence of triangulated categories

𝐾+(Fil𝑓𝒜)/FAc+(𝒜) = FQis+(𝒜)−1𝐾+(Fil𝑓𝒜) ⟶ 𝐷𝐹+(𝒜)

(2) The kernel of the functor 𝐾−(Fil𝑓𝒜) → 𝐷𝐹−(𝒜) is FAc−(𝒜) and this induces an
equivalence of triangulated categories

𝐾−(Fil𝑓𝒜)/FAc−(𝒜) = FQis−(𝒜)−1𝐾−(Fil𝑓𝒜) ⟶ 𝐷𝐹−(𝒜)

(3) The kernel of the functor 𝐾𝑏(Fil𝑓𝒜) → 𝐷𝐹𝑏(𝒜) is FAc𝑏(𝒜) and this induces an
equivalence of triangulated categories

𝐾𝑏(Fil𝑓𝒜)/FAc𝑏(𝒜) = FQis𝑏(𝒜)−1𝐾𝑏(Fil𝑓𝒜) ⟶ 𝐷𝐹𝑏(𝒜)

Proof. This follows from the results above, in particular Lemma 11.13.8, by exactly the
same arguments as used in the proof of Lemma 11.10.5. �
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11.14. Derived functors in general

A reference for this section is Deligne's exposée XVII in [MA71]. A very general notion of
right and left derived functors exists where we have an exact functor between triangulated
categories, a multiplicative system in the source category and we want to find the ``correct''
extension of the exact functor to the localized category.

Situation 11.14.1. Here 𝐹 ∶ 𝒟 → 𝒟′ is an exact functor of triangulated categories and
𝑆 is a saturated multiplicative system in 𝒟 compatible with the structure of triangulated
category on 𝒟.

Let 𝑋 ∈ 𝑂𝑏(𝒟). Recall fromCategories, Remark 4.24.5 the filtered category 𝑋/𝑆 of arrows
𝑠 ∶ 𝑋 → 𝑋′ in 𝑆 with source 𝑋. Dually, in Categories, Remark 4.24.12 we defined the
cofiltered category 𝑆/𝑋 of arrows 𝑠 ∶ 𝑋′ → 𝑋 in 𝑆 with target 𝑋.

Definition 11.14.2. Assumptions and notation as in Situation 11.14.1. Let 𝑋 ∈ 𝑂𝑏(𝒟).
(1) we say the right derived functor 𝑅𝐹 is defined at 𝑋 if the ind-object

(𝑋/𝑆) ⟶ 𝒟′, (𝑠 ∶ 𝑋 → 𝑋′) ⟼ 𝐹(𝑋′)

is essentially constant2; in this case the value 𝑌 in 𝒟′ is called the value of 𝑅𝐹 at
𝑋.

(2) we say the left derived functor 𝐿𝐹 is defined at 𝑋 if the pro-object

(𝑆/𝑋) ⟶ 𝒟′, (𝑠 ∶ 𝑋′ → 𝑋) ⟼ 𝐹(𝑋′)

is essentially constant; in this case the value 𝑌 in 𝒟′ is called the value of 𝐿𝐹 at
𝑋.

By abuse of notation we often denote the values simply 𝑅𝐹(𝑋) or 𝐿𝐹(𝑋).

It will turn out that the full subcategory of 𝒟 consisting of objects where 𝑅𝐹 is defined is a
triangulated subcategory, and 𝑅𝐹 will define functor on this subcategory which transforms
morphisms of 𝑠 into isomorphisms.

Lemma 11.14.3. Assumptions and notation as in Situation 11.14.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a
morphism of 𝒟.

(1) If𝑅𝐹 is defined at𝑋 and 𝑌 then there exists a uniquemorphism𝑅𝐹(𝑓) ∶ 𝑅𝐹(𝑋) →
𝑅𝐹(𝑌) between the values such that for any commutative diagram

𝑋

𝑓
��

𝑠
// 𝑋′

𝑓′

��
𝑌 𝑠′

// 𝑌′

with 𝑠, 𝑠′ ∈ 𝑆 the diagram

𝐹(𝑋)

��

// 𝐹(𝑋′)

��

// 𝑅𝐹(𝑋)

��
𝐹(𝑌) // 𝐹(𝑌′) // 𝑅𝐹(𝑌)

commutes.

2For a discussion of when an ind-object or pro-object of a category is essentially constant we refer to Cate-
gories, Section 4.20.
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(2) If𝐿𝐹 is defined at𝑋 and 𝑌 then there exists a uniquemorphism𝐿𝐹(𝑓) ∶ 𝐿𝐹(𝑋) →
𝐿𝐹(𝑌) between the values such that for any commutative diagram

𝑋′

𝑓′

��

𝑠
// 𝑋

𝑓
��

𝑌′ 𝑠′
// 𝑌

with 𝑠, 𝑠′ in 𝑆 the diagram

𝐿𝐹(𝑋)

��

// 𝐹(𝑋′)

��

// 𝐹(𝑋)

��
𝐿𝐹(𝑌) // 𝐹(𝑌′) // 𝐹(𝑌)

commutes.

Proof. Part (1) holds if we only assume that the colimits

𝑅𝐹(𝑋) = 𝑐𝑜𝑙𝑖𝑚𝑠∶𝑋′→𝑋 𝐹(𝑋′) and 𝑅𝐹(𝑌) = 𝑐𝑜𝑙𝑖𝑚𝑠′∶𝑌′→𝑌 𝐹(𝑌′)

exist. Namely, to give a morphism 𝑅𝐹(𝑋) → 𝑅𝐹(𝑌) between the colimits is the same thing
as giving for each 𝑠 ∶ 𝑋 → 𝑋′ in 𝑂𝑏(𝑋/𝑆) a morphism 𝐹(𝑋′) → 𝑅𝐹(𝑌) compatible with
morphisms in the category 𝑋/𝑆. To get the morphism we choose a commutative diagram

𝑋

𝑓
��

𝑠
// 𝑋′

𝑓′

��
𝑌 𝑠′

// 𝑌′

with 𝑠, 𝑠′ in 𝑆 as is possible by MS2 and we set 𝐹(𝑋′) → 𝑅𝐹(𝑌) equal to the composition
𝐹(𝑋′) → 𝐹(𝑌′) → 𝑅𝐹(𝑌). To see that this is independent of the choice of the diagram
above use MS3. Details omitted. The proof of (2) is dual. �

Lemma 11.14.4. Assumptions and notation as in Situation 11.14.1. Let 𝑠 ∶ 𝑋 → 𝑌 be an
element of 𝑆.

(1) 𝑅𝐹 is defined at 𝑋 if and only if it is defined at 𝑌. In this case the map 𝑅𝐹(𝑠) ∶
𝑅𝐹(𝑋) → 𝑅𝐹(𝑌) between values is an isomorphism.

(2) 𝐿𝐹 is defined at 𝑋 if and only if it is defined at 𝑌. In this case the map 𝐿𝐹(𝑠) ∶
𝐿𝐹(𝑋) → 𝐿𝐹(𝑌) between values is an isomorphism.

Proof. Omitted. �

Lemma 11.14.5. Assumptions and notation as in Situation 11.14.1. Let 𝑋 be an object of
𝒟 and 𝑛 ∈ 𝐙.

(1) 𝑅𝐹 is defined at 𝑋 if and only if it is defined at 𝑋[𝑛]. In this case there is a
canonical isomorphism 𝑅𝐹(𝑋)[𝑛] = 𝑅𝐹(𝑋[𝑛]) between values.

(2) 𝐿𝐹 is defined at 𝑋 if and only if it is defined at 𝑋[𝑛]. In this case there is a
canonical isomorphism 𝐿𝐹(𝑋)[𝑛] → 𝐿𝐹(𝑋[𝑛]) between values.

Proof. Omitted. �
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Lemma 11.14.6. Assumptions and notation as in Situation 11.14.1. Let (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ)
be a distinguished triangle of 𝒟. If 𝑅𝐹 is defined at two out of three of 𝑋, 𝑌, 𝑍, then it is
defined at the third. Moreover, in this case

(𝑅𝐹(𝑋), 𝑅𝐹(𝑌), 𝑅𝐹(𝑍), 𝑅𝐹(𝑓), 𝑅𝐹(𝑔), 𝑅𝐹(ℎ))

is a distinguished triangle in 𝒟′. Similarly for 𝐿𝐹.

Proof. Say 𝑅𝐹 is defined at 𝑋, 𝑌 with values 𝐴, 𝐵. Let 𝑅𝐹(𝑓) ∶ 𝐴 → 𝐵 be the induced
morphism, see Lemma 11.14.3. Wemay choose a distinguished triangle (𝐴, 𝐵, 𝐶, 𝑅𝐹(𝑓), 𝑏, 𝑐)
in 𝒟′. We claim that 𝐶 is a value of 𝑅𝐹 at 𝑍.

To see this pick 𝑠 ∶ 𝑋 → 𝑋′ in 𝑆 such that there exists a morphism 𝛼 ∶ 𝐴 → 𝐹(𝑋′) as in
Categories, Definition 4.20.1. We may choose a commutative diagram

𝑋

𝑓
��

𝑠
// 𝑋′

𝑓′

��
𝑌 𝑠′

// 𝑌′

with 𝑠′ ∈ 𝑆 byMS2. Using that 𝑌/𝑆 is filtered we can (after replacing 𝑠′ by some 𝑠″ ∶ 𝑌 →
𝑌″ in 𝑆) assume that there exists a morphism 𝛽 ∶ 𝐵 → 𝐹(𝑌′) as in Categories, Definition
4.20.1. Picture

𝐴

𝑅𝐹(𝑓)
��

𝛼
// 𝐹(𝑋′) //

𝐹(𝑓′)
��

𝐴

𝑅𝐹(𝑓)
��

𝐵
𝛽 // 𝐹(𝑌′) // 𝐵

It may not be true that the left square commutes, but the outer and right squares commute.
The assumption that the ind-object {𝐹(𝑌′)}𝑠′∶𝑌′→𝑌 is essentially constant means that there
exists a 𝑠″ ∶ 𝑌 → 𝑌″ in 𝑆 and a morphism ℎ ∶ 𝑌′ → 𝑌″ with such that 𝑠″ = ℎ ∘ 𝑠′ and 𝐹(ℎ)
equal to 𝐹(𝑌′) → 𝐵 → 𝐹(𝑌′) → 𝐹(𝑌″). Hence after replacing 𝑌′ by 𝑌″ and 𝛽 by 𝐹(ℎ) ∘ 𝛽
the diagram will commute (by direct computation with arrows).

Using MS6 choose a morphism of triangles

(𝑠, 𝑠′, 𝑠″) ∶ (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ) ⟶ (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′)

with 𝑠″ ∈ 𝑆. By TR3 choose a morphism of triangles

(𝛼, 𝛽, 𝛾) ∶ (𝐴, 𝐵, 𝐶, 𝑅𝐹(𝑓), 𝑏, 𝑐) ⟶ (𝐹(𝑋′), 𝐹(𝑌′), 𝐹(𝑍′), 𝐹(𝑓′), 𝐹(𝑔′), 𝐹(ℎ′))

By Lemma 11.14.4 it suffices to prove that 𝑅𝐹(𝑍′) is defined and has value 𝐶. Consider
the category ℐ of Lemma 11.5.8 of triangles

ℐ = {(𝑡, 𝑡′, 𝑡″) ∶ (𝑋′, 𝑌′, 𝑍′, 𝑓′, 𝑔′, ℎ′) → (𝑋″, 𝑌″, 𝑍″, 𝑓″, 𝑔″, ℎ″) ∣ (𝑡, 𝑡′, 𝑡″) ∈ 𝑆}

To show that the system 𝐹(𝑍″) is essentially constant over the category 𝑍′/𝑆 is equivalent
to showing that the system of 𝐹(𝑍″) is essentially constant over ℐ by using the surjectivity
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of the functor ℐ → 𝑍′/𝑆. For any object 𝑊 in 𝒟′ we can consider the diagram

𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝐹(𝑋″), 𝑊) //𝑀𝑜𝑟𝒟′(𝐴, 𝑊)

𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝐹(𝑌″), 𝑊)

OO

//𝑀𝑜𝑟𝒟′(𝐵, 𝑊)

OO

𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝐹(𝑍″), 𝑊)

OO

//𝑀𝑜𝑟𝒟′(𝐶, 𝑊)

OO

𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝐹(𝑋″[1]), 𝑊)

OO

//𝑀𝑜𝑟𝒟′(𝐴[1], 𝑊)

OO

𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝐹(𝑌″[1]), 𝑊)

OO

//𝑀𝑜𝑟𝒟′(𝐵[1], 𝑊)

OO

which shows that the middle arrow is an isomorphism by the 5 lemma. In this way we con-
clude that 𝐶 is the colimit 𝑐𝑜𝑙𝑖𝑚ℐ 𝐹(𝑍″). To see that the ind-object is essentially constant
it now suffices to show that for any object 𝑊 in 𝒟′ the map

𝑐𝑜𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝑊, 𝐹(𝑍″)) ⟶ 𝑀𝑜𝑟𝒟′(𝑊, 𝐶)

is bijective, see Categories, Lemma 4.20.6. To see this we can use again the 5 lemma and
the commutative diagram

𝑐𝑜𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝑊, 𝐹(𝑋″)) //𝑀𝑜𝑟𝒟′(𝑊, 𝐴)

𝑐𝑜𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝑊, 𝐹(𝑌″))

OO

//𝑀𝑜𝑟𝒟′(𝑊, 𝐵)

OO

𝑐𝑜𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝑊, 𝐹(𝑍″))

OO

//𝑀𝑜𝑟𝒟′(𝑊, 𝐶)

OO

𝑐𝑜𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝑊, 𝐹(𝑋″[1]))

OO

//𝑀𝑜𝑟𝒟′(𝑊, 𝐴[1])

OO

𝑐𝑜𝑙𝑖𝑚ℐ 𝑀𝑜𝑟𝒟′(𝑊, 𝐹(𝑌″[1]))

OO

//𝑀𝑜𝑟𝒟′(𝑊, 𝐵[1])

OO

and the fact that Categories, Lemma 4.20.6 guarantees that the other horizontal arrows are
isomorphisms. �

Lemma 11.14.7. Assumptions and notation as in Situation 11.14.1. Let 𝑋, 𝑌 be objects
of 𝒟. If 𝑅𝐹 is defined at 𝑋 ⊕ 𝑌, then it is defined at 𝑋 and 𝑌. Moreover, in this case
𝑅𝐹(𝑋 ⊕ 𝑌) = 𝑅𝐹(𝑋) ⊕ 𝑅𝐹(𝑌). Similarly for 𝐿𝐹.

Proof. Since 𝑆 is a saturated system for any 𝑠 ∶ 𝑋 → 𝑋′ and 𝑠′ ∶ 𝑌 → 𝑌′ in 𝑆 the
morphism 𝑠 ⊕ 𝑠′ ∶ 𝑋 ⊕ 𝑌 → 𝑋′ ⊕ 𝑌′ is an element of 𝑆 (as 𝑆 is the set of arrows which
become invertible under the additive localization functor 𝑄 ∶ 𝒟 → 𝑆−1𝒟, see Categories,
Lemma 4.24.18). To prove the lemma for 𝑅𝐹 it suffices to show that these arrows 𝑠 ⊕ 𝑠′
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are cofinal in the filtered category (𝑋 ⊕ 𝑌)/𝑆. To do this pick any 𝑡 ∶ 𝑋 ⊕ 𝑌 → 𝑍 in 𝑆.
Using MS2 we can find morphisms 𝑍 → 𝑋′, 𝑍 → 𝑌′ and 𝑠 ∶ 𝑋 → 𝑋′, 𝑠′ ∶ 𝑌 → 𝑌′ in 𝑆
such that

𝑋

𝑠
��

𝑋 ⊕ 𝑌

��

oo // 𝑌

𝑠′

��
𝑋′ 𝑍oo // 𝑌′

commutes. Hence the desired result. The proof for 𝐿𝐹 is dual. �

Proposition 11.14.8. Assumptions and notation as in Situation 11.14.1. The full subcate-
gory ℰ of 𝒟 consisting of objects at which 𝑅𝐹 is defined is a strictly full saturated triangu-
lated subcategory of 𝒟. Choosing values using the axiom of choice gives rise to an exact
functor

𝑅𝐹 ∶ ℰ ⟶ 𝒟′

of triangulated categories. Elements of 𝑆 with either source or target in ℰ are morphisms
of ℰ. Any element of 𝑆ℰ = Arrows(ℰ) ∩ 𝑆 is transformed into an isomorphism by 𝑅𝐹.
Hence an exact functor

𝑅𝐹 ∶ 𝑆−1
ℰ ℰ ⟶ 𝒟′.

A similar result holds for 𝐿𝐹.

Proof. This is just a summary of the results obtained in Lemmas 11.14.3, 11.14.4, 11.14.5,
11.14.6, and 11.14.7. �

Definition 11.14.9. In Situation 11.14.1. We say 𝐹 is right deriveable, or that 𝑅𝐹 every-
where defined if 𝑅𝐹 is defined at every object of 𝒟. We say 𝐹 is left deriveable, or that 𝐿𝐹
everywhere defined if 𝐿𝐹 is defined at every object of 𝒟.

In this case we obtain a right (resp. left) derived functor

(11.14.9.1) 𝑅𝐹 ∶ 𝑆−1𝒟 ⟶ 𝒟′, (resp. 𝐿𝐹 ∶ 𝑆−1𝒟 ⟶ 𝒟′),

see Proposition 11.14.8. Inmost interesting situations it is not the case that 𝑅𝐹∘𝑄 is equal to
𝐹. In fact, it might happen that the canonical map 𝐹(𝑋) → 𝑅𝐹(𝑋) is never an isomorphism.
In practice this does not happen, because in practice we only know how to prove 𝐹 is right
deriveable by showing that 𝑅𝐹 can be computed by evaluating 𝐹 at judiciously chosen
objects of the triangulated category 𝒟. This warrents a definition.

Definition 11.14.10. In Situation 11.14.1.
(1) An object 𝑋 of 𝒟 computes 𝑅𝐹 if 𝑅𝐹 is defined at 𝑋 and the canonical map

𝐹(𝑋) → 𝑅𝐹(𝑋) is an isomorphism.
(2) An object 𝑋 of 𝒟 computes 𝐿𝐹 if 𝐿𝐹 is defined at 𝑋 and the canonical map

𝐿𝐹(𝑋) → 𝐹(𝑋) is an isomorphism.

Lemma 11.14.11. Assumptions and notation as in Situation 11.14.1. Let 𝑋 be an object
of 𝒟 and 𝑛 ∈ 𝐙.

(1) 𝑋 computes 𝑅𝐹 if and only if 𝑋[𝑛] computes 𝑅𝐹.
(2) 𝑋 computes 𝐿𝐹 if and only if 𝑋[𝑛] computes 𝐿𝐹.

Proof. Omitted. �

Lemma 11.14.12. Assumptions and notation as in Situation 11.14.1. Let (𝑋, 𝑌, 𝑍, 𝑓, 𝑔, ℎ)
be a distinguished triangle of 𝒟. If 𝑋, 𝑌 compute 𝑅𝐹 then so does 𝑍. Similar for 𝐿𝐹.
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Proof. By Lemma 11.14.6 we know that 𝑅𝐹 is defined at 𝑍 and that 𝑅𝐹 applied to the tri-
angle produces a distinguished triangle. Consider the morphism of distinguished triangles

(𝐹(𝑋), 𝐹(𝑌), 𝐹(𝑍), 𝐹(𝑓), 𝐹(𝑔), 𝐹(ℎ))

��
(𝑅𝐹(𝑋), 𝑅𝐹(𝑌), 𝑅𝐹(𝑍), 𝑅𝐹(𝑓), 𝑅𝐹(𝑔), 𝑅𝐹(ℎ))

Two out of three maps are isomorphisms, hence so is the third. �

Lemma 11.14.13. Assumptions and notation as in Situation 11.14.1. Let 𝑋, 𝑌 be objects
of 𝒟. If 𝑋 ⊕ 𝑌 computes 𝑅𝐹, then 𝑋 and 𝑌 compute 𝑅𝐹. Similarly for 𝐿𝐹.

Proof. By Lemma 11.14.7 we know that 𝑅𝐹 is defined at 𝑋 and 𝑌 and that 𝑅𝐹(𝑋 ⊕ 𝑌) =
𝑅𝐹(𝑋) ⊕ 𝑅𝐹(𝑌). Since the map

𝐹(𝑋) ⊕ 𝐹(𝑌) = 𝐹(𝑋 ⊕ 𝑌) ⟶ 𝑅𝐹(𝑋 ⊕ 𝑌) = 𝑅𝐹(𝑋) ⊕ 𝑅𝐹(𝑌)

is compatible with direct sum decompositions we win. �

Lemma 11.14.14. Assumptions and notation as in Situation 11.14.1.
(1) If for every object 𝑋 ∈ 𝑂𝑏(𝒟) there exists an arrow 𝑠 ∶ 𝑋 → 𝑋′ in 𝑆 such that

𝑋′ computes 𝑅𝐹, then 𝑅𝐹 is everywhere defined.
(2) If for every object 𝑋 ∈ 𝑂𝑏(𝒟) there exists an arrow 𝑠 ∶ 𝑋′ → 𝑋 in 𝑆 such that

𝑋′ computes 𝐿𝐹, then 𝐿𝐹 is everywhere defined.

Proof. This is clear from the definitions. �

Lemma 11.14.15. Assumptions and notation as in Situation 11.14.1. If there exists a subset
ℐ ⊂ 𝑂𝑏(𝒟) such that

(1) for all 𝑋 ∈ 𝑂𝑏(𝒟) there exists 𝑠 ∶ 𝑋 → 𝑋′ in 𝑆 with 𝑋′ ∈ ℐ, and
(2) for every arrow 𝑠 ∶ 𝑋 → 𝑋′ in 𝑆 with 𝑋, 𝑋′ ∈ ℐ the map 𝐹(𝑠) ∶ 𝐹(𝑋) → 𝐹(𝑋′)

is an isomorphism,
then 𝑅𝐹 is everywhere defined and every 𝑋 ∈ ℐ computes 𝑅𝐹. Dually, if there exists a
subset 𝒫 ⊂ 𝑂𝑏(𝒟) such that

(1) for all 𝑋 ∈ 𝑂𝑏(𝒟) there exists 𝑠 ∶ 𝑋′ → 𝑋 in 𝑆 with 𝑋′ ∈ 𝒫, and
(2) for every arrow 𝑠 ∶ 𝑋 → 𝑋′ in 𝑆 with 𝑋, 𝑋′ ∈ 𝒫 the map 𝐹(𝑠) ∶ 𝐹(𝑋) → 𝐹(𝑋′)

is an isomorphism,
then 𝐿𝐹 is everywhere defined and every 𝑋 ∈ 𝒫 computes 𝐿𝐹.

Proof. Let 𝑋 be an object of 𝒟. Assumption (1) implies that the arrows 𝑠 ∶ 𝑋 → 𝑋′ in 𝑆
with 𝑋′ ∈ ℐ are cofinal in the category 𝑋/𝑆. Assumption (2) implies that 𝐹 is constant on
this cofinal subcategory. Clearly this implies that 𝐹 ∶ (𝑋/𝑆) → 𝒟′ is essentially constant
with value 𝐹(𝑋′) for any 𝑠 ∶ 𝑋 → 𝑋′ in 𝑆 with 𝑋′ ∈ ℐ. �

Lemma 11.14.16. Let 𝒜, ℬ, 𝒞 be triangulated categories. Let 𝑆, resp. 𝑆′ be a saturated
multiplicative system in 𝒜, resp. ℬ compatible with the triangulated structure. Let 𝐹 ∶
𝒜 → ℬ and 𝐺 ∶ ℬ → 𝒞 be exact functors. Denote 𝐹′ ∶ 𝒜 → (𝑆′)−1ℬ the composition
of 𝐹 with the localization functor.

(1) If 𝑅𝐹′, 𝑅𝐺, 𝑅(𝐺 ∘ 𝐹) are everywhere defined, then there is a canonical transfor-
mation of functors 𝑡 ∶ 𝑅(𝐺 ∘ 𝐹) ⟶ 𝑅𝐺 ∘ 𝑅𝐹′.

(2) If 𝐿𝐹′, 𝐿𝐺, 𝐿(𝐺 ∘ 𝐹) are everywhere defined, then there is a canonical transfor-
mation of functors 𝑡 ∶ 𝐿𝐺 ∘ 𝐿𝐹′ → 𝐿(𝐺 ∘ 𝐹).
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Proof. In this proof we try to be careful. Hence let us think of the derived functors as the
functors

𝑅𝐹′ ∶ 𝑆−1𝒜 → (𝑆′)−1ℬ, 𝑅(𝐺 ∘ 𝐹) ∶ 𝑆−1𝒜 → 𝒞, 𝑅𝐺 ∶ (𝑆′)−1ℬ → 𝒞.

Let us denote 𝑄𝐴 ∶ 𝒜 → 𝑆−1𝒜 and 𝑄𝐵 ∶ ℬ → (𝑆′)−1ℬ the localization functors. Then
𝐹′ = 𝑄𝐵 ∘ 𝐹. Note that for every object 𝑌 of ℬ there is a canonical map

𝐺(𝑌) ⟶ 𝑅𝐺(𝑄𝐵(𝑌))

in other words, there is a transformation of functors 𝑡′ ∶ 𝐺 → 𝑅𝐺 ∘ 𝑄𝐵. Let 𝑋 be an object
of 𝒜. We have

𝑅(𝐺 ∘ 𝐹)(𝑄𝐴(𝑋)) = 𝑐𝑜𝑙𝑖𝑚𝑠∶𝑋→𝑋′∈𝑆 𝐺(𝐹(𝑋′))
𝑡′

−−→ 𝑐𝑜𝑙𝑖𝑚𝑠∶𝑋→𝑋′∈𝑆 𝑅𝐺(𝑄𝐵(𝐹(𝑋′)))
= 𝑐𝑜𝑙𝑖𝑚𝑠∶𝑋→𝑋′∈𝑆 𝑅𝐺(𝐹′(𝑋′))
= 𝑅𝐺(𝑐𝑜𝑙𝑖𝑚𝑠∶𝑋→𝑋′∈𝑆 𝐹′(𝑋′))
= 𝑅𝐺(𝑅𝐹′(𝑋)).

The system 𝐹′(𝑋′) is essentially constant in the category (𝑆′)−1ℬ. Hence we may pull the
colimit inside the functor 𝑅𝐺 in the third equality of the diagram above, see Categories,
Lemma 4.20.5 and its proof. We omit the proof this this defines a transformation of functors.
The case of left derived functors is similar. �

11.15. Derived functors on derived categories

In practice derived functors come about most often when given an additive functor between
abelian categories.

Situation 11.15.1. Here 𝐹 ∶ 𝒜 → ℬ is an additive functor between abelian categories.
This induces exact functors

𝐹 ∶ 𝐾(𝒜) → 𝐾(ℬ), 𝐾+(𝒜) → 𝐾+(ℬ), 𝐾−(𝒜) → 𝐾−(ℬ).

We also denote 𝐹 the composition 𝐾(𝒜) → 𝐷(ℬ), 𝐾+(𝒜) → 𝐷+(ℬ), and 𝐾−(𝒜) → 𝐷(ℬ)
of 𝐹 with the localization functor 𝐾(ℬ) → 𝐷(ℬ), etc. This situation leads to four derived
functors we will consider in the following.

(1) The right derived functor of 𝐹 ∶ 𝐾(𝒜) → 𝐷(ℬ) relative to the multiplicative
system Qis(𝒜).

(2) The right derived functor of 𝐹 ∶ 𝐾+(𝒜) → 𝐷+(ℬ) relative to the multiplicative
system Qis+(𝒜).

(3) The left derived functor of 𝐹 ∶ 𝐾(𝒜) → 𝐷(ℬ) relative to the multiplicative
system Qis(𝒜).

(4) The left derived functor of 𝐹 ∶ 𝐾−(𝒜) → 𝐷−(ℬ) relative to the multiplicative
system Qis(𝒜).

Each of these cases is an example of Situation 11.14.1.

Some of the ambiguity that may arise is alleviated by the following.

Lemma 11.15.2. In Situation 11.15.1.
(1) Let 𝑋 be an object of 𝐾+(𝒜). The right derived functor of 𝐾(𝒜) → 𝐷(ℬ) is

defined at 𝑋 if and only if the right derived functor of 𝐾+(𝒜) → 𝐷+(ℬ) is defined
at 𝑋. Moreover, the values are canonically isomorphic.
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(2) Let 𝑋 be an object of 𝐾+(𝒜). Then 𝑋 computes the right derived functor of
𝐾(𝒜) → 𝐷(ℬ) if and only if 𝑋 computes the right derived functor of 𝐾+(𝒜) →
𝐷+(ℬ).

(3) Let𝑋 be an object of 𝐾−(𝒜). The left derived functor of𝐾(𝒜) → 𝐷(ℬ) is defined
at 𝑋 if and only if the left derived functor of 𝐾−(𝒜) → 𝐷−(ℬ) is defined at 𝑋.
Moreover, the values are canonically isomorphic.

(4) Let𝑋 be an object of𝐾−(𝒜). Then𝑋 computes the left derived functor of𝐾(𝒜) →
𝐷(ℬ) if and only if 𝑋 computes the left derived functor of 𝐾−(𝒜) → 𝐷−(ℬ).

Proof. Let 𝑋 be an object of 𝐾+(𝒜). Consider a quasi-isomorphism 𝑠 ∶ 𝑋 → 𝑋′ in 𝐾(𝒜).
By Lemma 11.10.4 there exists quasi-isomorphism 𝑋′ → 𝑋″ with 𝑋″ bounded below.
Hence we see that 𝑋/Qis+(𝒜) is cofinal in 𝑋/Qis(𝒜). Thus it is clear that (1) holds. Part
(2) follows directly from part (1). Parts (3) and (4) are dual to parts (1) and (2). �

Given an object 𝐴 of an abelian category 𝒜 we get a complex

𝐴[0] = (… → 0 → 𝐴 → 0 → …)

where 𝐴 is placed in degree zero. Hence a functor 𝒜 → 𝐾(𝒜), 𝐴 ↦ 𝐴[0]. Let us tem-
porarily say that a partial functor is one that is defined on a subcategory.

Definition 11.15.3. In Situation 11.15.1.
(1) The right derived functors of 𝐹 are the partial functors 𝑅𝐹 associated to cases (1)

and (2) of Situation 11.15.1.
(2) The left derived functors of 𝐹 are the partial functors 𝐿𝐹 associated to cases (3)

and (4) of Situation 11.15.1.
(3) An object 𝐴 of 𝒜 is said to be right acyclic for 𝐹, or acyclic for 𝑅𝐹 if 𝐴[0]

computes 𝑅𝐹.
(4) An object 𝐴 of 𝒜 is said to be left acyclic for𝐹, or acyclic for𝐿𝐹 if 𝐴[0] computes

𝑅𝐹.

The following few lemmas give some criteria for the existence of enough acyclics.

Lemma 11.15.4. Let 𝒜 be an abelian category. Let ℐ ⊂ 𝑂𝑏(𝒜) be a subset such that
every object of 𝒜 is a subobject of an element of ℐ. For every 𝐾• with 𝐾𝑛 = 0 for 𝑛 < 𝑎
there exists a quasi-isomorphism 𝐾• → 𝐼• with 𝐼𝑛 = 0 for 𝑛 < 𝑎, each 𝐼𝑛 ∈ ℐ, and each
𝐾𝑛 → 𝐼𝑛 injective.

Proof. Consider the following induction hypothesis 𝐼𝐻𝑛: There are 𝐼𝑗 ∈ ℐ, 𝑗 ≤ 𝑛 almost
all zero, maps 𝑑𝑗 ∶ 𝐼𝑗 → 𝐼𝑗+1 for 𝑗 < 𝑛 and injective maps 𝛼𝑗 ∶ 𝐾𝑗 → 𝐼𝑗 for 𝑗 ≤ 𝑛 such
that the diagram

… // 𝐾𝑛−1

𝛼
��

// 𝐾𝑛

𝛼
��

// 𝐾𝑛+1 //…

… // 𝐼𝑛−1 // 𝐼𝑛

is commutative, such that 𝑑𝑗 ∘ 𝑑𝑗−1 = 0 for 𝑗 < 𝑛 and such that 𝛼 induces isomorphisms
𝐻𝑗(𝐾•) → Ker(𝑑𝑗)/Im(𝑑𝑗−1) for 𝑗 < 𝑛. Note that this implies

(11.15.4.1) 𝛼(Im(𝑑𝑛−1
𝐾 )) ⊂ 𝛼(Ker(𝑑𝑛

𝐾)) ∩ Im(𝑑𝑛−1) ⊂ 𝛼(𝐾𝑛) ∩ Im(𝑑𝑛−1).

If these inclusions are not equalities, then choose an injection

𝐼𝑛 ⊕ 𝐾𝑛/Im(𝑑𝑛−1
𝐾 ) ⟶ 𝐼
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with 𝐼 ∈ ℐ. Denote 𝛼′ ∶ 𝐾𝑛 → 𝐼 the map obtained by composing 𝛼 ⊕ 1 ∶ 𝐾𝑛 → 𝐼𝑛 ⊕
𝐾𝑛/Im(𝑑𝑛−1

𝐾 ) with the displayed injection. Denote 𝑑′ ∶ 𝐼𝑛−1 → 𝐼 the composition 𝐼𝑛−1 →
𝐼𝑛 → 𝐼 of 𝑑𝑛−1 by the inclusion of the first summand. Then 𝛼′(𝐾𝑛)∩Im(𝑑′) = 𝛼′(Im(𝑑𝑛−1

𝐾 ))
simply because the intersection of 𝛼′(𝐾𝑛) with the first summand of 𝐼𝑛 ⊕ 𝐾𝑛/Im(𝑑𝑛−1

𝐾 ) is
equal to 𝛼′(Im(𝑑𝑛−1

𝐾 )). Hence, after replacing 𝐼𝑛 by 𝐼, 𝛼 by 𝛼′ and 𝑑𝑛−1 by 𝑑′ we may
assume that we have equality in Equation (11.15.4.1). Once this is the case consider the
solid diagram

𝐾𝑛/Ker(𝑑𝑛
𝐾) //

��

𝐾𝑛+1

��
𝐼𝑛/(Im(𝑑𝑛−1) + 𝛼(Ker(𝑑𝑛

𝐾))) //𝑀

The horizontal arrow is injective by fiat and the vertical arrow is injective as we have
equality in (11.15.4.1). Hence the push-out 𝑀 of this diagram contains both 𝐾𝑛+1 and
𝐼𝑛/(Im(𝑑𝑛−1) + 𝛼(Ker(𝑑𝑛

𝐾))) as subobjects. Choose an injection 𝑀 → 𝐼𝑛+1 with 𝐼𝑛+1 ∈ ℐ.
By construction we get 𝑑𝑛 ∶ 𝐼𝑛 → 𝐼𝑛+1 and an injective map 𝛼𝑛+1 ∶ 𝐾𝑛+1 → 𝐼𝑛+1. The
equality in Equation (11.15.4.1) and the construction of 𝑑𝑛 guarantee that 𝛼 ∶ 𝐻𝑛(𝐾•) →
Ker(𝑑𝑛)/Im(𝑑𝑛−1) is an isomorphism. In other words 𝐼𝐻𝑛+1 holds.

We finish the proof of by the following observations. First we note that 𝐼𝐻𝑛 is true for 𝑛 = 𝑎
since we can just take 𝐼𝑗 = 0 for 𝑗 < 𝑎 and 𝐾𝑎 → 𝐼𝑎 an injection of 𝐾𝑎 into an element
of 𝒜. Next, we note that in the proof of 𝐼𝐻𝑛 ⇒ 𝐼𝐻𝑛+1 we only modified the object 𝐼𝑛,
the map 𝑑𝑛−1 and the map 𝛼𝑛. Hence we see that proceeding by induction we produce a
complex 𝐼• with 𝐼𝑛 = 0 for 𝑛 < 𝑎 consisting of objects from ℐ, and a termwise injective
quasi-isomorphism 𝛼 ∶ 𝐾• → 𝐼• as desired. �

Lemma 11.15.5. Let 𝒜 be an abelian category. Let 𝒫 ⊂ 𝑂𝑏(𝒜) be a subset such that every
object of 𝒜 is a quotient of an element of 𝒫. Then for every bounded above complex 𝐾•

there exists a quasi-isomorphism 𝑃• → 𝐾• with 𝑃• bounded above and each 𝑃𝑛 ∈ 𝒫.

Proof. This lemma is dual to Lemma 11.15.4. �

Lemma 11.15.6. In Situation 11.15.1. Let ℐ ⊂ 𝑂𝑏(𝒜) be a subset with the following
properties:

(1) every object of 𝒜 is a subobject of an element of ℐ,
(2) for any short exact sequence 0 → 𝑃 → 𝑄 → 𝑅 → 0 of 𝒜 with 𝑃, 𝑄 ∈ ℐ, then

𝑅 ∈ ℐ, and 0 → 𝐹(𝑃) → 𝐹(𝑄) → 𝐹(𝑅) → 0 is exact.
Then every object of ℐ is acyclic for 𝑅𝐹.

Proof. Pick 𝐴 ∈ ℐ. Let 𝐴[0] → 𝐾• be a quasi-isomorphism with 𝐿• bounded be-
low. Then we can find a quasi-isomorphism 𝐾• → 𝐼• with 𝐼• bounded below and each
𝐼𝑛 ∈ ℐ, see Lemma 11.15.4. Hence we see that these resolutions are cofinal in the cat-
egory 𝐴[0]/Qis+(𝒜). To finish the proof it therefore suffices to show that for any quasi-
isomorphism 𝐴[0] → 𝐼• with 𝐼• bounded above and 𝐼𝑛 ∈ ℐ we have 𝐹(𝐴)[0] → 𝐹(𝐼•)
is a quasi-isomorphism. To see this suppose that 𝐼𝑛 = 0 for 𝑛 < 𝑛0. Of course we may
assume that 𝑛0 < 0. Starting with 𝑛 = 𝑛0 we prove inductively that Im(𝑑𝑛−1) = Ker(𝑑𝑛)
and Im(𝑑−1) are elements of ℐ using propert (2) and the exact sequences

0 → Ker(𝑑𝑛) → 𝐼𝑛 → Im(𝑑𝑛) → 0.
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Moreover, property (2) also guarantees that the complex

0 → 𝐹(𝐼𝑛0) → 𝐹(𝐼𝑛0+1) → … → 𝐹(𝐼−1) → 𝐹(Im(𝑑−1)) → 0

is exact. The exact sequence 0 → Im(𝑑−1) → 𝐼0 → 𝐼0/Im(𝑑−1) → 0 implies that
𝐼0/Im(𝑑−1) is an element of ℐ. The exact sequence 0 → 𝐴 → 𝐼0/Im(𝑑−1) → Im(𝑑0) → 0
then implies that Im(𝑑0) = Ker(𝑑1) is an elements of ℐ and from then on one continues
as before to show that Im(𝑑𝑛−1) = Ker(𝑑𝑛) is an element of ℐ for all 𝑛 > 0. Applying
𝐹 to each of the short exact sequences mentioned above and using (2) we observe that
𝐹(𝐴)[0] → 𝐹(𝐼•) is an isomorphism as desired. �

Lemma 11.15.7. In Situation 11.15.1. Let 𝒫 ⊂ 𝑂𝑏(𝒜) be a subset with the following
properties:

(1) every object of 𝒜 is a quotient of an element of 𝒫,
(2) for any short exact sequence 0 → 𝑃 → 𝑄 → 𝑅 → 0 of 𝒜 with 𝑄, 𝑅 ∈ 𝒫, then

𝑃 ∈ 𝒫, and 0 → 𝐹(𝑃) → 𝐹(𝑄) → 𝐹(𝑅) → 0 is exact.
Then every object of 𝒫 is acyclic for 𝐿𝐹.

Proof. Dual to the proof of Lemma 11.15.6. �

Proposition 11.15.8. In Situation 11.15.1.
(1) If every object of 𝒜 injects into an object acyclic for 𝑅𝐹, then 𝑅𝐹 is defined on

all of 𝐾+(𝒜) and we obtain an exact functor

𝑅𝐹 ∶ 𝐷+(ℬ) ⟶ 𝐷+(𝒜)

see (11.14.9.1). Moreover, any bounded below complex 𝐾• whose terms are
acyclic for 𝑅𝐹 computes 𝑅𝐹.

(2) If every object of 𝒜 is quotient of an object acyclic for 𝐿𝐹, then 𝐿𝐹 is defined on
all of 𝐾−(𝒜) and we obtain an exact functor

𝐿𝐹 ∶ 𝐷−(ℬ) ⟶ 𝐷−(𝒜)

see (11.14.9.1). Moreover, any bounded above complex 𝐾• whose terms are
acyclic for 𝐿𝐹 computes 𝐿𝐹.

Proof. Suppose every object of 𝒜 injects into an object acyclic for 𝑅𝐹. Let ℐ be the
set of objects acyclic for 𝑅𝐹. Let 𝐾• be a bounded below complex with 𝐾𝑛 ∈ ℐ. By
Lemma 11.15.4 the quasi-isomorphisms 𝛼 ∶ 𝐾• → 𝐼• with 𝐼• bounded below and 𝐼𝑛 ∈ ℐ
are cofinal in the category 𝐾•/Qis+(𝒜). Hence in order to show that 𝐾• computes 𝑅𝐹 it
suffices to show that 𝐹(𝐾•) → 𝐹(𝐼•) is an isomorphism. Note that 𝐶(𝛼)• is an acyclic
bounded below complex all of whose terms are in ℐ. Hence it suffices to show: given an
acyclic bounded below complex 𝐼• all of whose terms are in ℐ the complex 𝐹(𝐼•) is acyclic.

Say 𝐼𝑛 = 0 for 𝑛 < 𝑛0. Then we break 𝐼• into short exact sequences 0 → Im(𝑑𝑛) →
𝐼𝑛+1 → Im(𝑑𝑛+1) → 0 for 𝑛 ≥ 𝑛0. These sequences induce distinguished triangles
(Im(𝑑𝑛), 𝐼𝑛+1, Im(𝑑𝑛+1)) by Lemma 11.11.1. This implies inductively that each Im(𝑑𝑛)
is acyclic for 𝑅𝐹 by Lemma 11.14.12. Moreover, the long exact cohomology sequences
(11.10.1.1) associated to the distinguished triangles (𝐹(Im(𝑑𝑛)), 𝐹(𝐼𝑛+1), 𝐹(Im(𝑑𝑛+1))) of
𝐷+(ℬ) imply that

0 → 𝐹(Im(𝑑𝑛)) → 𝐹(𝐼𝑛+1) → 𝐹(Im(𝑑𝑛+1)) → 0

is short exact, and this in turn proves that 𝐹(𝐼•) is exact.
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Finally, since by Lemma 11.15.4 every object of 𝐾+(𝒜) is quasi-isomorphic to such a
bounded below complex with terms in ℐ we see that 𝑅𝐹 is everywhere defined, see Lemma
11.14.14. The proof in the case of 𝐿𝐹 is dual. �

11.16. Higher derived functors

The following simple lemma shows that right derived functors ``move to the right''.

Lemma 11.16.1. Let 𝐹 ∶ 𝒜 → ℬ be an additive functor between abelian categories. Let
𝐾• ∈ 𝐾+(𝒜) and 𝑎 ∈ 𝐙 such that 𝐻𝑖(𝐾•) = 0 for all 𝑖 < 𝑎. If 𝑅𝐹 is defined at 𝐾•, then
𝐻𝑖(𝑅𝐹(𝐾•)) = 0 for all 𝑖 < 𝑎.

Proof. Let 𝐾• → 𝐿• be any quasi-isomorphism. Then it is also true that 𝐾• → 𝜏≥𝑎𝐿•

is a quasi-isomorphism by our assumption on 𝐾•. Hence in the category 𝐾•/Qis+(𝒜) the
quasi-isomorphisms 𝑠 ∶ 𝐾• → 𝐿• with 𝐿𝑛 = 0 for 𝑛 < 𝑎 are cofinal. Thus 𝑅𝐹 is the value
of the essentially constant ind-object 𝐹(𝐿•) for these 𝑠 it follows that 𝐻𝑖(𝑅𝐹(𝐾•)) = 0 for
𝑖 < 0. �

Definition 11.16.2. Let 𝐹 ∶ 𝒜 → ℬ be an additive functor between abelian categories.
Assume 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(ℬ) is everywhere defined. Let 𝑖 ∈ 𝐙. The 𝑖th right derived
functor 𝑅𝑖𝐹 of 𝐹 is the functor

𝑅𝑖𝐹 = 𝐻𝑖 ∘ 𝑅𝐹 ∶ 𝒜 ⟶ ℬ

The following lemma shows that it really does not make a lot of sense to take the right
derived functor unless the functor is left exact.

Lemma 11.16.3. Let 𝐹 ∶ 𝒜 → ℬ be an additive functor between abelian categories and
assume 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(ℬ) is everywhere defined.

(1) We have 𝑅𝑖𝐹 = 0 for 𝑖 < 0,
(2) 𝑅0𝐹 is left exact,
(3) the map 𝐹 → 𝑅0𝐹 is an isomorphism if and only if 𝐹 is left exact.

Proof. Let 𝐴 be an object of 𝒜. Let 𝐴[0] → 𝐾• be any quasi-isomorphism. Then it is also
true that 𝐴[0] → 𝜏≥0𝐾• is a quasi-isomorphism. Hence in the category 𝐴[0]/Qis+(𝒜) the
quasi-isomorphisms 𝑠 ∶ 𝐴[0] → 𝐾• with 𝐾𝑛 = 0 for 𝑛 < 0 are cofinal. Thus it is clear that
𝐻𝑖(𝑅𝐹(𝐴[0])) = 0 for 𝑖 < 0. Moreover, for such an 𝑠 the sequence

0 → 𝐴 → 𝐾0 → 𝐾1

is exact. Hence if 𝐹 is left exact, then 0 → 𝐹(𝐴) → 𝐹(𝐾0) → 𝐹(𝐾1) is exact as well, and we
see that 𝐹(𝐴) → 𝐻0(𝐹(𝐾•)) is an isomorphism for every 𝑠 ∶ 𝐴[0] → 𝐾• as above which
implies that 𝐻0(𝑅𝐹(𝐴[0])) = 𝐹(𝐴).

Let 0 → 𝐴 → 𝐵 → 𝐶 → 0 be a short exact sequence of 𝒜. By Lemma 11.11.1 we
obtain a distinguished triangle (𝐴[0], 𝐵[0], 𝐶[0], 𝑎, 𝑏, 𝑐) in 𝐾+(𝒜). From the long exact
cohomology sequence (and the vanishing for 𝑖 < 0 proved above) we deduce that 0 →
𝑅0𝐹(𝐴) → 𝑅0𝐹(𝐵) → 𝑅0𝐹(𝐶) is exact. Hence 𝑅0𝐹 is left exact. Of course this also
proves that if 𝐹 → 𝑅0𝐹 is an isomorphism, then 𝐹 is left exact. �

Lemma 11.16.4. Let 𝐹 ∶ 𝒜 → ℬ be an additive functor between abelian categories and
assume 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(ℬ) is everywhere defined. Let 𝐴 be an object of 𝒜.

(1) 𝐴 is right acyclic for 𝐹 if and only if 𝐹(𝐴) → 𝑅0𝐹(𝐴) is an isomorphism and
𝑅𝑖𝐹(𝐴) = 0 for all 𝑖 > 0,
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(2) if 𝐹 is left exact, then 𝐴 is right acyclic for 𝐹 if and only if 𝑅𝑖𝐹(𝐴) = 0 for all
𝑖 > 0.

Proof. If 𝐴 is right acyclic for 𝐹, then 𝑅𝐹(𝐴[0]) = 𝐹(𝐴)[0] and in particular 𝐹(𝐴) →
𝑅0𝐹(𝐴) is an isomorphism and 𝑅𝑖𝐹(𝐴) = 0 for 𝑖≠0. Conversely, if 𝐹(𝐴) → 𝑅0𝐹(𝐴)
is an isomorphism and 𝑅𝑖𝐹(𝐴) = 0 for all 𝑖 > 0 then 𝐹(𝐴[0]) → 𝑅𝐹(𝐴[0]) is a quasi-
isomorphism by Lemma 11.16.3 part (1) and hence 𝐴 is acyclic. If 𝐹 is left exact then
𝐹 = 𝑅0𝐹, see Lemma 11.16.3. �

Lemma 11.16.5. Let 𝐹 ∶ 𝒜 → ℬ be a left exact functor between abelian categories and
assume 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(ℬ) is everywhere defined. Let 0 → 𝐴 → 𝐵 → 𝐶 → 0 be a
short exact sequence of 𝒜.

(1) If 𝐴 and 𝐶 are right acyclic for 𝐹 then so is 𝐵.
(2) If 𝐴 and 𝐵 are right acyclic for 𝐹 then so is 𝐶.
(3) If 𝐵 and 𝐶 are right acyclic for 𝐹 and 𝐹(𝐵) → 𝐹(𝐶) is surjective then 𝐴 is right

acyclic for 𝐹.
In each of the three cases

0 → 𝐹(𝐴) → 𝐹(𝐵) → 𝐹(𝐶) → 0

is a short exact sequence of ℬ.

Proof. By Lemma 11.11.1 we obtain a distinguished triangle (𝐴[0], 𝐵[0], 𝐶[0], 𝑎, 𝑏, 𝑐) in
𝐾+(𝒜). As 𝑅𝐹 is an exact functor and since 𝑅𝑖𝐹 = 0 for 𝑖 < 0 and 𝑅0𝐹 = 𝐹 (Lemma
11.16.3) we obtain an exact cohomology sequence

0 → 𝐹(𝐴) → 𝐹(𝐵) → 𝐹(𝐶) → 𝑅1𝐹(𝐴) → …

in the abelian category ℬ. Thus the lemma follows from the characterization of acyclic
objects in Lemma 11.16.4. �

Lemma 11.16.6. Let 𝐹 ∶ 𝒜 → ℬ be an additive functor between abelian categories and
assume 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(ℬ) is everywhere defined.

(1) The functors 𝑅𝑖𝐹, 𝑖 ≥ 0 come equipped with a canonical structure of a 𝛿-functor
from 𝒜 → ℬ, see Homology, Definition 10.9.1.

(2) If every object of 𝒜 is a subobject of a right acyclic object for 𝐹, then {𝑅𝑖𝐹, 𝛿}𝑖≥0
is a universal 𝛿-functor, see Homology, Definition 10.9.3.

Proof. The functor 𝒜 → Comp+(𝒜), 𝐴 ↦ 𝐴[0] is exact. The functor Comp+(𝒜) →
𝐷+(𝒜) is a 𝛿-functor, see Lemma 11.11.1. The functor 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(ℬ) is exact.
Finally, the functor 𝐻0 ∶ 𝐷+(ℬ) → ℬ is a homological functor, see Definition 11.10.3.
Hence we get the structure of a 𝛿-functor fromLemma 11.4.20 and Lemma 11.4.19. Part (2)
follows from Homology, Lemma 10.9.4 and the description of acyclics in Lemma 11.16.4.

�

Lemma 11.16.7. (Leray's acyclicity lemma) Let 𝐹 ∶ 𝒜 → ℬ be an additive functor be-
tween abelian categories and assume 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(ℬ) is everywhere defined. Let
𝐴• be a bounded below complex of 𝐹-acyclic objects. The canonical map

𝐹(𝐴•) ⟶ 𝑅𝐹(𝐴•)

is an isomorphism in 𝐷+(ℬ), i.e., 𝐴• computes 𝑅𝐹.
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Proof. First we claim the lemma holds for a bounded complex of acyclic objects. Namely,
it holds for complexes with at most one nonzero object by definition. Suppose that 𝐴• is
a complex with 𝐴𝑛 = 0 for 𝑛∉[𝑎, 𝑏]. Using the ``stupid'' truncations we obtain a termwise
split short exact sequence of complexes

0 → 𝜎≥𝑎+1𝐴• → 𝐴• → 𝜎≤𝑎𝐴• → 0
see Homology, Section 10.11. Thus a distinguished triangle (𝜎≥𝑎+1𝐴•, 𝐴•, 𝜎≤𝑎𝐴•). By
induction hypothesis the two outer complexes compute 𝑅𝐹. Then the middle one does too
by Lemma 11.14.12.
Suppose that 𝐴• is a bounded below complex of acyclic objects. To show that 𝐹(𝐴) →
𝑅𝐹(𝐴) is an isomorphism in 𝐷+(ℬ) it suffices to show that 𝐻𝑖(𝐹(𝐴)) → 𝐻𝑖(𝑅𝐹(𝐴)) is an
isomorphism for all 𝑖. Pick 𝑖. Consider the termwise split short exact sequence of complexes

0 → 𝜎≥𝑖+2𝐴• → 𝐴• → 𝜎≤𝑖+1𝐴• → 0.
Note that this induces a termwise split short exact sequence

0 → 𝜎≥𝑖+2𝐹(𝐴•) → 𝐹(𝐴•) → 𝜎≤𝑖+1𝐹(𝐴•) → 0.
Hence we get distinguished triangles

(𝜎≥𝑖+2𝐴•, 𝐴•, 𝜎≤𝑖+1𝐴•)
(𝜎≥𝑎+1𝐹(𝐴•), 𝐹(𝐴•), 𝜎≤𝑎𝐹(𝐴•))

(𝑅𝐹(𝜎≥𝑎+1𝐴•), 𝑅𝐹(𝐴•), 𝑅𝐹(𝜎≤𝑎𝐴•))
Using the last two we obtain a map of exact sequences

𝐻𝑖(𝜎≥𝑖+2𝐹(𝐴•)) //

��

𝐻𝑖(𝐹(𝐴•)) //

𝛼
��

𝐻𝑖(𝜎≤𝑖+1𝐹(𝐴•)) //

𝛽
��

𝐻𝑖+1(𝜎≥𝑖+2𝐹(𝐴•))

��
𝑅𝑖𝐹(𝜎≥𝑖+2𝐴•) // 𝑅𝑖𝐹(𝐴•) // 𝑅𝑖𝐹(𝜎≤𝑖+1𝐴•) // 𝑅𝑖+1𝐹(𝜎≥𝑖+2𝐴•)

By the results of the first paragraph the map 𝛽 is an isomorphism. By inspection the objects
on the upper left and the upper right are zero. Hence to finish the proof we have to show
that 𝑅𝑖𝐹(𝜎≥𝑖+2𝐴•) = 0 and 𝑅𝑖+1𝐹(𝜎≥𝑖+2𝐴•) = 0. This follows immediately from Lemma
11.16.1. �

Lemma 11.16.8. Let 𝐹 ∶ 𝒜 → ℬ be an exact functor of abelian categories. Then
(1) every object of 𝒜 is right acyclic for 𝐹,
(2) 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(𝒜) is everywhere defined,
(3) 𝑅𝐹 ∶ 𝐷(𝒜) → 𝐷(𝒜) is everywhere defined,
(4) every complex computes𝑅𝐹, in other words, the canonical map𝐹(𝐾•) → 𝑅𝐹(𝐾•)

is an isomorphism for all complexes, and
(5) 𝑅𝑖𝐹 = 0 for 𝑖≠0.

Proof. This is true because 𝐹 transforms acyclic complexes into acyclic complexes and
quasi-isomorphisms into quasi-isomorphisms. Details omitted. �

11.17. Injective resolutions

In this section we prove some lemmas regarding the existence of injective resolutions in
abelian categories having enough injectives.

Definition 11.17.1. Let 𝒜 be an abelian category. Let 𝐴 ∈ 𝑂𝑏(𝒜). An injective resolution
of 𝐴 is a complex 𝐼• together with a map 𝐴 → 𝐼0 such that:

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=015F
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=013I


11.17. INJECTIVE RESOLUTIONS 761

(1) We have 𝐼𝑛 = 0 for 𝑛 < 0.
(2) Each 𝐼𝑛 is an injective object of 𝒜.
(3) The map 𝐴 → 𝐼0 is an isomorphism onto Ker(𝑑0).
(4) We have 𝐻𝑖(𝐼•) = 0 for 𝑖 > 0.

Hence 𝐴[0] → 𝐼• is a quasi-isomorphism. In other words the complex

… → 0 → 𝐴 → 𝐼0 → 𝐼1 → …

is acyclic. Let 𝐾• be a complex in 𝒜. An injective resolution of 𝐾• is a complex 𝐼• together
with a map 𝛼 ∶ 𝐾• → 𝐼• of complexes such that

(1) We have 𝐼𝑛 = 0 for 𝑛 ≪ 0, i.e., 𝐼• is bounded below.
(2) Each 𝐼𝑛 is an injective object of 𝒜.
(3) The map 𝛼 ∶ 𝐾• → 𝐼• is a quasi-isomorphism.

In other words an injective resolution 𝐾• → 𝐼• gives rise to a diagram

… // 𝐾𝑛−1

��

// 𝐾𝑛

��

// 𝐾𝑛+1

��

//…

… // 𝐼𝑛−1 // 𝐼𝑛 // 𝐼𝑛+1 //…

which induces an isomorphism on cohomology objects in each degree. An injective reso-
lution of an object 𝐴 of 𝒜 is almost the same thing as an injective resolution of the complex
𝐴[0].

Lemma 11.17.2. Let 𝒜 be an abelian category. Let 𝐾• be a complex of 𝒜.
(1) If 𝐾• has an injective resolution then 𝐻𝑛(𝐾•) = 0 for 𝑛 ≪ 0.
(2) If 𝐻𝑛(𝐾•) = 0 for all 𝑛 ≪ 0 then there exists a quasi-isomorphism 𝐾• → 𝐿•

with 𝐿• bounded below.

Proof. Omitted. For the second statement use 𝐿• = 𝐾•/𝜏≤𝑛𝐾• for some 𝑛 ≪ 0. See
Homology, Section 10.11 for the definition of the truncation 𝜏≤𝑛. �

Lemma 11.17.3. Let 𝒜 be an abelian category. Assume 𝒜 has enough injectives.
(1) Any object of 𝒜 has an injective resolution.
(2) If 𝐻𝑛(𝐾•) = 0 for all 𝑛 ≪ 0 then 𝐾• has an injective resolution.
(3) If 𝐾• is a complex with 𝐾𝑛 = 0 for 𝑛 < 𝑎, then there exists an injective resolution

𝛼 ∶ 𝐾• → 𝐼• with 𝐼𝑛 = 0 for 𝑛 < 𝑎 such that each 𝛼𝑛 ∶ 𝐾𝑛 → 𝐼𝑛 is injective.

Proof. Proof of (1). First choose an injection 𝐴 → 𝐼0 of 𝐴 into an injective object of 𝒜.
Next, choose an injection 𝐼0/𝐴 → 𝐼1 into an injective object of 𝒜. Denote 𝑑0 the induced
map 𝐼0 → 𝐼1. Next, choose an injection 𝐼1/Im(𝑑0) → 𝐼2 into an injective object of 𝒜.
Denote 𝑑1 the induced map 𝐼1 → 𝐼2. And so on. By Lemma 11.17.2 part (2) follows from
part (3). Part (3) is a special case of Lemma 11.15.4. �

Lemma 11.17.4. Let 𝒜 be an abelian category. Let 𝐾• be an acyclic complex. Let 𝐼• be
bounded below and consisting of injective objects. Any morphism 𝐾• → 𝐼• is homotopic
to zero.

Proof. Let 𝛼 ∶ 𝐾• → 𝐼• be a morphism of complexes. Assume that 𝛼𝑗 = 0 for 𝑗 < 𝑛. We
will show that there exists a morphism ℎ ∶ 𝐾𝑛+1 → 𝐼𝑛 such that 𝛼𝑛 = ℎ ∘ 𝑑. Thus 𝛼 will be
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homotopic to the morphism of complexes 𝛽 defined by

𝛽𝑗 =
⎧⎪
⎨
⎪⎩

0 if 𝑗 ≤ 𝑛
𝛼𝑛+1 − 𝑑 ∘ ℎ if 𝑗 = 𝑛 + 1

𝛼𝑗 if 𝑗 > 𝑛 + 1

This will clearly prove the lemma (by induction). To prove the existence of ℎ note that
𝛼𝑛|𝑑𝑛−1(𝐾𝑛−1) = 0 since 𝛼𝑛−1 = 0. Since 𝐾• is acyclic we have 𝑑𝑛−1(𝐾𝑛−1) = Ker(𝐾𝑛 →
𝐾𝑛+1). Hence we can think of 𝛼𝑛 as a map into 𝐼𝑛 defined on the subobject Im(𝐾𝑛 → 𝐾𝑛+1)
of 𝐾𝑛+1. By injectivity of the object 𝐼𝑛 we can extend this to a map ℎ ∶ 𝐾𝑛+1 → 𝐼𝑛 as
desired. �

Remark 11.17.5. Let 𝒜 be an abelian category. Using the fact that 𝐾(𝒜) is a triangulated
category we may use Lemma 11.17.4 to obtain proofs of some of the lemmas below which
are usually proved by chasing through diagrams. Namely, suppose that 𝛼 ∶ 𝐾• → 𝐿• is a
quasi-isomorphism of complexes. Then

(𝐾•, 𝐿•, 𝐶(𝛼)•, 𝛼, 𝑖, −𝑝)

is a distinguished triangle in 𝐾(𝒜) (Lemma 11.8.12) and 𝐶(𝑓)• is an acyclic complex
(Lemma 11.10.2). Next, let 𝐼• be a bounded below complex of injective objects. Then

𝐻𝑜𝑚𝐾(𝒜)(𝐶(𝛼)•, 𝐼•) // 𝐻𝑜𝑚𝐾(𝒜)(𝐿•, 𝐼•) // 𝐻𝑜𝑚𝐾(𝒜)(𝐾•, 𝐼•)

rr
𝐻𝑜𝑚𝐾(𝒜)(𝐶(𝛼)•[−1], 𝐼•)

is an exact sequence of abelian groups, see Lemma 11.4.2. At this point Lemma 11.17.4
guarantees that the outer two groups are zero and hence𝐻𝑜𝑚𝐾(𝒜)(𝐿•, 𝐼•) = 𝐻𝑜𝑚𝐾(𝒜)(𝐾•, 𝐼•).

Lemma 11.17.6. Let 𝒜 be an abelian category. Consider a solid diagram

𝐾•
𝛼
//

𝛾
��

𝐿•

𝛽}}
𝐼•

where 𝐼• is bounded below and consists of injective objects, and 𝛼 is a quasi-isomorphism.
(1) There exists a map of complexes 𝛽 making the diagram commute up to homotopy.
(2) If 𝛼 is injective in every degree then we can find a 𝛽 which makes the diagram

commute.

Proof. The ``correct'' proof of part (1) is explained in Remark 11.17.5. We also give a
direct proof here.

We first show that (2) implies (1). Namely, let �̃� ∶ 𝐾 → �̃�•, 𝜋, 𝑠 be as in Lemma 11.8.5.
Since �̃� is injective by (2) there exists a morphism ̃𝛽 ∶ �̃�• → 𝐼• such that 𝛾 = ̃𝛽 ∘ �̃�. Set
𝛽 = ̃𝛽 ∘ 𝑠. Then we have

𝛽 ∘ 𝛼 = ̃𝛽 ∘ 𝑠 ∘ 𝜋 ∘ �̃� ∼ ̃𝛽 ∘ �̃� = 𝛾
as desired.

Assume that 𝛼 ∶ 𝐾• → 𝐿• is injective. Suppose we have already defined 𝛽 in all degrees
≤ 𝑛 − 1 compatible with differentials and such that 𝛾𝑗 = 𝛽𝑗 ∘ 𝛼𝑗 for all 𝑗 ≤ 𝑛 − 1. Consider
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the commutative solid diagram

𝐾𝑛−1 //

𝛾

��

𝛼
��

𝐾𝑛

𝛾

��

𝛼
��

𝐿𝑛−1 //

𝛽
��

𝐿𝑛

��
𝐼𝑛−1 // 𝐼𝑛

Thus we see that the dotted arrow is prescribed on the subobjects 𝛼(𝐾𝑛) and 𝑑𝑛−1(𝐿𝑛−1).
Moreover, these two arrows agree on 𝛼(𝑑𝑛−1(𝐾𝑛−1)). Hence if

(11.17.6.1) 𝛼(𝑑𝑛−1(𝐾𝑛−1)) = 𝛼(𝐾𝑛) ∩ 𝑑𝑛−1(𝐿𝑛−1)

then these morphisms glue to a morphism 𝛼(𝐾𝑛) + 𝑑𝑛−1(𝐿𝑛−1) → 𝐼𝑛 and, using the injec-
tivity of 𝐼𝑛, we can extend this to a morphism from all of 𝐿𝑛 into 𝐼𝑛. After this by induction
we get the morphism 𝛽 for all 𝑛 simultaneously (note that we can set 𝛽𝑛 = 0 for all 𝑛 ≪ 0
since 𝐼• is bounded below -- in this way starting the induction).

It remains to prove the equality (11.17.6.1). The reader is encouraged to argue this for
themselves with a suitable diagram chase. Nonetheless here is our argument. Note that the
inclusion 𝛼(𝑑𝑛−1(𝐾𝑛−1)) ⊂ 𝛼(𝐾𝑛) ∩ 𝑑𝑛−1(𝐿𝑛−1) is obvious. Take an object 𝑇 of 𝒜 and a
morphism 𝑥 ∶ 𝑇 → 𝐿𝑛 whose image is contained in the subobject 𝛼(𝐾𝑛) ∩ 𝑑𝑛−1(𝐿𝑛−1).
Since 𝛼 is injective we see that 𝑥 = 𝛼 ∘ 𝑥′ for some 𝑥′ ∶ 𝑇 → 𝐾𝑛. Moreover, since 𝑥 lies in
𝑑𝑛−1(𝐿𝑛−1) we see that 𝑑𝑛 ∘𝑥 = 0. Hence using injectivity of 𝛼 again we see that 𝑑𝑛 ∘𝑥′ = 0.
Thus 𝑥′ gives a morphism [𝑥′] ∶ 𝑇 → 𝐻𝑛(𝐾•). On the other hand the corresponding map
[𝑥] ∶ 𝑇 → 𝐻𝑛(𝐿•) induced by 𝑥 is zero by assumption. Since 𝛼 is a quasi-isomorphism we
conclude that [𝑥′] = 0. This of course means exactly that the image of 𝑥′ is contained in
𝑑𝑛−1(𝐾𝑛−1) and we win. �

Lemma 11.17.7. Let 𝒜 be an abelian category. Consider a solid diagram

𝐾•
𝛼
//

𝛾
��

𝐿•

𝛽𝑖}}
𝐼•

where 𝐼• is bounded below and consists of injective objects, and 𝛼 is a quasi-isomorphism.
Any two morphisms 𝛽1, 𝛽2 making the diagram commute up to homotopy are homotopic.

Proof. This follows from Remark 11.17.5. We also give a direct argument here.

Let �̃� ∶ 𝐾 → �̃�•, 𝜋, 𝑠 be as in Lemma 11.8.5. If we can show that 𝛽1 ∘ 𝜋 is homotopic to
𝛽2 ∘ 𝜋, then we deduce that 𝛽1 ∼ 𝛽2 because 𝜋 ∘ 𝑠 is the identity. Hence we may assume
𝛼𝑛 ∶ 𝐾𝑛 → 𝐿𝑛 is the inclusion of a direct summand for all 𝑛. Thus we get a short exact
sequence of complexes

0 → 𝐾• → 𝐿• → 𝑀• → 0
which is termwise split and such that 𝑀• is acyclic. We choose splittings 𝐿𝑛 = 𝐾𝑛 ⊕ 𝑀𝑛,
so we have 𝛽𝑛

𝑖 ∶ 𝐾𝑛 ⊕ 𝑀𝑛 → 𝐼𝑛 and 𝛾𝑛 ∶ 𝐾𝑛 → 𝐼𝑛. In this case the condition on 𝛽𝑖 is that
there are morphisms ℎ𝑛

𝑖 ∶ 𝐾𝑛 → 𝐼𝑛−1 such that

𝛾𝑛 − 𝛽𝑛
𝑖 |𝐾𝑛 = 𝑑 ∘ ℎ𝑛

𝑖 + ℎ𝑛+1
𝑖 ∘ 𝑑
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Thus we see that

𝛽𝑛
1|𝐾𝑛 − 𝛽𝑛

2|𝐾𝑛 = 𝑑 ∘ (ℎ𝑛
1 − ℎ𝑛

2) + (ℎ𝑛+1
1 − ℎ𝑛+1

2 ) ∘ 𝑑

Consider the map ℎ𝑛 ∶ 𝐾𝑛 ⊕ 𝑀𝑛 → 𝐼𝑛−1 which equals ℎ𝑛
1 − ℎ𝑛

2 on the first summand and
zero on the second. Then we see that

𝛽𝑛
1 − 𝛽𝑛

2 − (𝑑 ∘ ℎ𝑛 + ℎ𝑛+1) ∘ 𝑑)

is a morphism of complexes 𝐿• → 𝐼• which is identically zero on the subcomplex 𝐾•.
Hence it factors as 𝐿• → 𝑀• → 𝐼•. Thus the result of the lemma follows from Lemma
11.17.4. �

Lemma 11.17.8. Let 𝒜 be an abelian category. Let 𝐼• be bounded below complex consist-
ing of injective objects. Let 𝐿• ∈ 𝐾(𝒜). Then

𝑀𝑜𝑟𝐾(𝒜)(𝐿•, 𝐼•) = 𝑀𝑜𝑟𝐷(𝒜)(𝐿•, 𝐼•).

Proof. Let 𝑎 be an element of the right hand side. We may represent 𝑎 = 𝛾𝛼−1 where
𝛼 ∶ 𝐾• → 𝐿• is a quasi-isomorphism and 𝛾 ∶ 𝐾• → 𝐼• is a map of complexes. By Lemma
11.17.6 we can find a morphism 𝛽 ∶ 𝐿• → 𝐼• such that 𝛽 ∘ 𝛼 is homotopic to 𝛾. This proves
that the map is surjective. Let 𝑏 be an element of the left hand side which maps to zero in
the right hand side. Then 𝑏 is the homotopy class of a morphism 𝛽 ∶ 𝐿• → 𝐼• such that
there exists a quasi-iomorphism 𝛼 ∶ 𝐾• → 𝐿• with 𝛽 ∘ 𝛼 homotopic to zero. Then Lemma
11.17.7 shows that 𝛽 is homotopic to zero also, i.e., 𝑏 = 0. �

Lemma 11.17.9. Let 𝒜 be an abelian category. Assume 𝒜 has enough injectives. For any
short exact sequence 0 → 𝐴• → 𝐵• → 𝐶• → 0 of Comp+(𝒜) there exists a commutative
diagram in Comp+(𝒜)

0 // 𝐴• //

��

𝐵• //

��

𝐶• //

��

0

0 // 𝐼•
1

// 𝐼•
2

// 𝐼•
3

// 0

where the vertical arrows are injective resolutions and the rows are short exact sequences
of complexes. In fact, given any injective resolution 𝐴• → 𝐼• we may assume 𝐼•

1 = 𝐼•.

Proof. Step 1. Choose an injective resolution 𝐴• → 𝐼• (see Lemma 11.17.3) or use the
given one. Recall that Comp+(𝒜) is an abelian category, see Homology, Lemma 10.10.9.
Hence we may form the pushout along the injective map 𝐴• → 𝐼• to get

0 // 𝐴• //

��

𝐵• //

��

𝐶• //

��

0

0 // 𝐼• // 𝐸• // 𝐶• // 0

Note that the lower short exact sequence is termwise split, see Homology, Lemma 10.20.2.
Hence it suffices to prove the lemma when 0 → 𝐴• → 𝐵• → 𝐶• → 0 is termwise split.

Step 2. Choose splittings. In other words, write 𝐵𝑛 = 𝐴𝑛 ⊕𝐶𝑛. Denote 𝛿 ∶ 𝐶• → 𝐴•[1] the
morphism as in Homology, Lemma 10.12.10. Choose injective resolutions 𝑓1 ∶ 𝐴• → 𝐼•

1
and 𝑓3 ∶ 𝐶• → 𝐼•

3. (If 𝐴• is a complex of injectives, then use 𝐼•
1 = 𝐴•.) We may assume 𝑓3
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is injective in every degree. By Lemma 11.17.6 we may find a morphism 𝛿′ ∶ 𝐼•
3 → 𝐼•

1[1]
such that 𝛿′ ∘𝑓3 = 𝑓1[1]∘𝛿 (equality of morphisms of complexes). Set 𝐼𝑛

2 = 𝐼𝑛
1 ⊕𝐼𝑛

3. Define

𝑑𝑛
𝐼2

=
(

𝑑𝑛
𝐼1

(𝛿′)𝑛

0 𝑑𝑛
𝐼3 )

and define the maps 𝐵𝑛 → 𝐼𝑛
2 to be given as the sum of the maps 𝐴𝑛 → 𝐼𝑛

1 and 𝐶𝑛 → 𝐼𝑛
3.

Everything is clear. �

11.18. Projective resolutions

This section is dual to Section 11.17. We give definitions and state results, but we do not
reprove the lemmas.

Definition 11.18.1. Let 𝒜 be an abelian category. Let 𝐴 ∈ 𝑂𝑏(𝒜). An projective resolution
of 𝐴 is a complex 𝑃• together with a map 𝑃0 → 𝐴 such that:

(1) We have 𝑃𝑛 = 0 for 𝑛 > 0.
(2) Each 𝑃𝑛 is an projective object of 𝒜.
(3) The map 𝑃0 → 𝐴 induces an isomorphism Coker(𝑑−1) → 𝐴.
(4) We have 𝐻𝑖(𝑃•) = 0 for 𝑖 < 0.

Hence 𝑃• → 𝐴[0] is a quasi-isomorphism. In other words the complex

… → 𝑃−1 → 𝑃0 → 𝐴 → 0 → …

is acyclic. Let 𝐾• be a complex in 𝒜. An projective resolution of 𝐾• is a complex 𝑃•

together with a map 𝛼 ∶ 𝑃• → 𝐾• of complexes such that
(1) We have 𝑃𝑛 = 0 for 𝑛 ≫ 0, i.e., 𝑃• is bounded above.
(2) Each 𝑃𝑛 is an projective object of 𝒜.
(3) The map 𝛼 ∶ 𝑃• → 𝐾• is a quasi-isomorphism.

Lemma 11.18.2. Let 𝒜 be an abelian category. Let 𝐾• be a complex of 𝒜.
(1) If 𝐾• has a projective resolution then 𝐻𝑛(𝐾•) = 0 for 𝑛 ≫ 0.
(2) If 𝐻𝑛(𝐾•) = 0 for 𝑛 ≫ 0 then there exists a quasi-isomorphism 𝐿• → 𝐾• with

𝐿• bounded above.

Proof. Dual to Lemma 11.17.2. �

Lemma 11.18.3. Let 𝒜 be an abelian category. Assume 𝒜 has enough projectives.
(1) Any object of 𝒜 has a projective resolution.
(2) If 𝐻𝑛(𝐾•) = 0 for all 𝑛 ≫ 0 then 𝐾• has a projective resolution.
(3) If 𝐾• is a complex with 𝐾𝑛 = 0 for 𝑛 > 𝑎, then there exists a projective resolution

𝛼 ∶ 𝑃• → 𝐾• with 𝑃𝑛 = 0 for 𝑛 > 𝑎 such that each 𝛼𝑛 ∶ 𝑃𝑛 → 𝐾𝑛 is surjective.

Proof. Dual to Lemma 11.17.3. �

Lemma 11.18.4. Let 𝒜 be an abelian category. Let 𝐾• be an acyclic complex. Let 𝑃• be
bounded above and consisting of projective objects. Any morphism 𝑃• → 𝐾• is homotopic
to zero.

Proof. Dual to Lemma 11.17.4. �
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Remark 11.18.5. Let 𝒜 be an abelian category. Suppose that 𝛼 ∶ 𝐾• → 𝐿• is a quasi-
isomorphism of complexes. Let 𝑃• be a bounded above complex of projectives. Then

𝐻𝑜𝑚𝐾(𝒜)(𝑃•, 𝐾•) ⟶ 𝐻𝑜𝑚𝐾(𝒜)(𝑃•, 𝐿•)
is an isomorphism. This is dual to Remark 11.17.5.

Lemma 11.18.6. Let 𝒜 be an abelian category. Consider a solid diagram

𝐾• 𝐿•
𝛼
oo

𝑃•

OO

𝛽

==

where𝑃• is bounded above and consists of projective objects, and 𝛼 is a quasi-isomorphism.
(1) There exists a map of complexes 𝛽 making the diagram commute up to homotopy.
(2) If 𝛼 is surjective in every degree then we can find a 𝛽 which makes the diagram

commute.

Proof. Dual to Lemma 11.17.6. �

Lemma 11.18.7. Let 𝒜 be an abelian category. Consider a solid diagram

𝐾• 𝐿•
𝛼
oo

𝑃•

OO

𝛽𝑖

==

where𝑃• is bounded above and consists of projective objects, and 𝛼 is a quasi-isomorphism.
Any two morphisms 𝛽1, 𝛽2 making the diagram commute up to homotopy are homotopic.

Proof. Dual to Lemma 11.17.7. �

Lemma 11.18.8. Let 𝒜 be an abelian category. Let 𝑃• be bounded above complex con-
sisting of projective objects. Let 𝐿• ∈ 𝐾(𝒜). Then

𝑀𝑜𝑟𝐾(𝒜)(𝑃•, 𝐿•) = 𝑀𝑜𝑟𝐷(𝒜)(𝑃•, 𝐿•).

Proof. Dual to Lemma 11.17.8. �

Lemma 11.18.9. Let𝒜 be an abelian category. Assume 𝒜 has enough projectives. For any
short exact sequence 0 → 𝐴• → 𝐵• → 𝐶• → 0 of Comp+(𝒜) there exists a commutative
diagram in Comp+(𝒜)

0 // 𝑃•
1

//

��

𝑃•
2

//

��

𝑃•
3

//

��

0

0 // 𝐴• // 𝐵• // 𝐶• // 0
where the vertical arrows are projective resolutions and the rows are short exact sequences
of complexes. In fact, given any projective resolution 𝑃• → 𝐶• we may assume 𝑃•

3 = 𝑃•.

Proof. Dual to Lemma 11.17.9. �

Lemma 11.18.10. Let 𝒜 be an abelian category. Let 𝑃•, 𝐾• be complexes. Let 𝑛 ∈ 𝐙.
Assume that

(1) 𝑃• is a bounded complex consisting of projective objects,
(2) 𝑃𝑖 = 0 for 𝑖 < 𝑛, and
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(3) 𝐻𝑖(𝐾•) = 0 for 𝑖 ≥ 𝑛.
Then 𝐻𝑜𝑚𝐾(𝒜)(𝑃•, 𝐾•) = 𝐻𝑜𝑚𝐷(𝒜)(𝑃•, 𝐾•) = 0.

Proof. The first equality follows from Lemma 11.18.8. Note that there is a distinguished
triangle

(𝜏≤𝑛−1𝐾•, 𝐾•, 𝜏≥𝑛𝐾•, 𝑓, 𝑔, ℎ)
because the complex 𝐾•/𝜏≤𝑛−1𝐾• is quasi-isomorphic to 𝜏≥𝑛𝐾•. Hence, by Lemma 11.4.2
it suffices to prove 𝐻𝑜𝑚𝐾(𝒜)(𝑃•, 𝜏≤𝑛−1𝐾•) = 0 and 𝐻𝑜𝑚𝐾(𝒜)(𝑃•, 𝜏≥𝑛𝐾•) = 0. The first
vanishing is trivial and the second is Lemma 11.18.4. �

Lemma 11.18.11. Let 𝒜 be an abelian category. Let 𝛽 ∶ 𝑃• → 𝐿• and 𝛼 ∶ 𝐸• → 𝐿• be
maps of complexes. Let 𝑛 ∈ 𝐙. Assume

(1) 𝑃• is a bounded complex of projectives and 𝑃𝑖 = 0 for 𝑖 < 𝑛,
(2) 𝐻𝑖(𝛼) is an isomorphism for 𝑖 > 𝑛 and surjective for 𝑖 = 𝑛.

Then there exists a map of complexes 𝛾 ∶ 𝑃• → 𝐸• such that 𝛼 ∘ 𝛾 and 𝛽 are homotopic.

Proof. Consider the cone 𝐶• = 𝐶(𝛼)• with map 𝑖 ∶ 𝐿• → 𝐶•. Note that 𝑖 ∘ 𝛽 is zero by
Lemma 11.18.10. Hence we can lift 𝛽 to 𝐸• by Lemma 11.4.2. �

11.19. Right derived functors and injective resolutions

At this point we can use the material above to define the right derived functors of an ad-
ditive functor between an abelian category having enough injectives and a general abelian
category.

Lemma 11.19.1. Let 𝒜 be an abelian category. Let 𝐼 ∈ 𝑂𝑏(𝒜) be an injective object. Let
𝐼• be a bounded below complex of injectives in 𝒜.

(1) 𝐼• computes 𝑅𝐹 relative to Qis+(𝒜) for any exact functor 𝐹 ∶ 𝐾+(𝒜) → 𝒟 into
any triangulated category 𝒟.

(2) 𝐼 is right acyclic for any additive functor 𝐹 ∶ 𝒜 → ℬ into any abelian category
ℬ.

Proof. Part (2) is a direct consequences of part (1) and Definition 11.15.3. To prove (1)
let 𝛼 ∶ 𝐼• → 𝐾• be a quasi-isomorphism into a complex. By Lemma 11.17.7 we see
that 𝛼 has a left inverse. Hence the category 𝐼•/Qis+(𝒜) is essentially constant with value
id ∶ 𝐼• → 𝐼•. Thus also the ind-object

𝐼•/Qis+(𝒜) ⟶ 𝒟, (𝐼• → 𝐾•) ⟼ 𝐹(𝐾•)

is essentially constant with value𝐹(𝐼•). This proves (1), seeDefinitions 11.14.2 and 11.14.10.
�

Lemma 11.19.2. Let 𝒜 be an abelian category with enough injectives.
(1) For any exact functor 𝐹 ∶ 𝐾+(𝒜) → 𝒟 into a triangulated category 𝒟 the right

derived functor
𝑅𝐹 ∶ 𝐷+(𝒜) ⟶ 𝒟

is everywhere defined.
(2) For any additive functor 𝐹 ∶ 𝒜 → ℬ into an abelian category ℬ the right

derived functor
𝑅𝐹 ∶ 𝐷+(𝒜) ⟶ 𝐷+(ℬ)

is everywhere defined.
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Proof. Combine Lemma 11.19.1 and Proposition 11.15.8 for the second assertion. To
see the first assertion combine Lemma 11.17.3, Lemma 11.19.1, Lemma 11.14.14, and
Equation (11.14.9.1). �

Lemma 11.19.3. Let 𝒜 be an abelian category with enough injectives. Let 𝐹 ∶ 𝒜 → ℬ
be an additive functor.

(1) The functor 𝑅𝐹 is an exact functor 𝐷+(𝒜) → 𝐷+(ℬ).
(2) The functor 𝑅𝐹 induces an exact functor 𝐾+(𝒜) → 𝐷+(ℬ).
(3) The functor 𝑅𝐹 induces a 𝛿-functor Comp+(𝒜) → 𝐷+(ℬ).
(4) The functor 𝑅𝐹 induces a 𝛿-functor 𝒜 → 𝐷+(ℬ).

Proof. This lemma simply reviews some of the results obtained sofar. Note that by Lemma
11.19.2 𝑅𝐹 is everywhere defined. Here are some references:

(1) The derived functor is exact: This boils down to Lemma 11.14.6.
(2) This is true because 𝐾+(𝒜) → 𝐷+(𝒜) is exact and compositions of exact functors

are exact.
(3) This is true because Comp+(𝒜) → 𝐷+(𝒜) is a 𝛿-functor, see Lemma 11.11.1.
(4) This is true because 𝒜 → Comp+(𝒜) is exact and precomposing a 𝛿-functor by

an exact functor gives a 𝛿-functor.
�

Lemma 11.19.4. Let 𝒜 be an abelian category with enough injectives. Let 𝐹 ∶ 𝒜 → ℬ
be a left exact functor.

(1) For any short exact sequence 0 → 𝐴• → 𝐵• → 𝐶• → 0 of complexes in
Comp+(𝒜) there is an associated long exact sequence

… → 𝐻𝑖(𝑅𝐹(𝐴•)) → 𝐻𝑖(𝑅𝐹(𝐵•)) → 𝐻𝑖(𝑅𝐹(𝐶•)) → 𝐻𝑖+1(𝑅𝐹(𝐴•)) → …
(2) The functors 𝑅𝑖𝐹 ∶ 𝒜 → ℬ are zero for 𝑖 < 0. Also 𝑅0𝐹 = 𝐹 ∶ 𝒜 → ℬ.
(3) We have 𝑅𝑖𝐹(𝐼) = 0 for 𝑖 > 0 and 𝐼 injective.
(4) The sequence (𝑅𝑖𝐹, 𝛿) forms a universal 𝛿-functor (see Homology, Definition

10.9.3) from 𝒜 to ℬ.

Proof. This lemma simply reviews some of the results obtained sofar. Note that by Lemma
11.19.2 𝑅𝐹 is everywhere defined. Here are some references:

(1) This follows from Lemma 11.19.3 part (3) combined with the long exact coho-
mology sequence (11.10.1.1) for 𝐷+(ℬ).

(2) This is Lemma 11.16.3.
(3) This is the fact that injective objects are acyclic.
(4) This is Lemma 11.16.6.

�

11.20. Cartan-Eilenberg resolutions

This section can be expanded. The material can be generalized and applied in more cases.
Resolutions need not use injectives and the method also works in the unbounded case in
some situations.

Definition 11.20.1. Let 𝒜 be an abelian category. Let 𝐾• be a bounded below complex. A
Cartan-Eilenberg resolution of 𝐾• is given by a double complex 𝐼•,• and a morphism of
complexes 𝜖 ∶ 𝐾• → 𝐼•,0 with the following properties:

(1) There exists a 𝑖 ≪ 0 such that 𝐼𝑝,𝑞 = 0 for all 𝑝 < 𝑖 and all 𝑞.
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(2) We have 𝐼𝑝,𝑞 = 0 if 𝑞 < 0.
(3) The complex 𝐼𝑝,• is an injective resolution of 𝐾𝑝.
(4) The complex Ker(𝑑𝑝,•

1 ) is an injective resolution of Ker(𝑑𝑝
𝐾).

(5) The complex Im(𝑑𝑝,•
1 ) is an injective resolution of Im(𝑑𝑝

𝐾).
(6) The complex 𝐻𝑝

𝐼(𝐼•,•) is an injective resolution of 𝐻𝑝(𝐾•).

Lemma 11.20.2. Let𝒜 be an abelian category with enough injectives. Let𝐾• be a bounded
below complex. There exists a Cartan-Eilenberg resolution of 𝐾•.

Proof. Suppose that 𝐾𝑝 = 0 for 𝑝 < 𝑛. Decompose 𝐾• into short exact sequences as
follows: Set 𝑍𝑝 = Ker(𝑑𝑝), 𝐵𝑝 = Im(𝑑𝑝−1), 𝐻𝑝 = 𝑍𝑝/𝐵𝑝, and consider

0 → 𝑍𝑛 → 𝐾𝑛 → 𝐵𝑛+1 → 0
0 → 𝐵𝑛+1 → 𝑍𝑛+1 → 𝐻𝑛+1 → 0
0 → 𝑍𝑛+1 → 𝐾𝑛+1 → 𝐵𝑛+2 → 0
0 → 𝐵𝑛+2 → 𝑍𝑛+2 → 𝐻𝑛+2 → 0

…

Set 𝐼𝑝,𝑞 = 0 for 𝑝 < 𝑛. Inductively we choose injective resolutions as follows:
(1) Choose an injective resolution 𝑍𝑛 → 𝐽𝑛,•

𝑍 .
(2) Using Lemma 11.17.9 choose injective resolutions 𝐾𝑛 → 𝐼𝑛,•, 𝐵𝑛+1 → 𝐽𝑛+1,•

𝐵 ,
and an exact sequence of complexes 0 → 𝐽𝑛,•

𝑍 → 𝐼𝑛,• → 𝐽𝑛+1,•
𝐵 → 0 compatible

with the short exact sequence 0 → 𝑍𝑛 → 𝐾𝑛 → 𝐵𝑛+1 → 0.
(3) Using Lemma 11.17.9 choose injective resolutions 𝑍𝑛+1 → 𝐽𝑛+1,•

𝑍 , 𝐻𝑛+1 →
𝐽𝑛+1,•

𝐻 , and an exact sequence of complexes 0 → 𝐽𝑛+1,•
𝐵 → 𝐽𝑛+1,•

𝑍 → 𝐽𝑛+1,•
𝐻 → 0

compatible with the short exact sequence 0 → 𝐵𝑛+1 → 𝑍𝑛+1 → 𝐻𝑛+1 → 0.
(4) Etc.

Taking as maps 𝑑•
1 ∶ 𝐼𝑝,• → 𝐼𝑝+1,• the compositions 𝐼𝑝,• → 𝐽𝑝+1,•

𝐵 → 𝐽𝑝+1,•
𝑍 → 𝐼𝑝+1,•

everything is clear. �

Lemma 11.20.3. Let 𝐹 ∶ 𝒜 → ℬ be a left exact functor of abelian categories. Let 𝐾•

be a bounded below complex of 𝒜. Let 𝐼•,• be a Cartan-Eilenberg resolution for 𝐾•. The
spectral sequences (′𝐸𝑟, ′𝑑𝑟)𝑟≥0 and (″𝐸𝑟, ″𝑑𝑟)𝑟≥0 associated to the double complex 𝐹(𝐼•,•)
satisfy the relations

′𝐸𝑝,𝑞
2 = 𝐻𝑝(𝑅𝑞𝐹(𝐾•))3 and ″𝐸𝑝,𝑞

2 = 𝑅𝑝𝐹(𝐻𝑞(𝐾•))

Moreover, these spectral sequences converge to 𝐻𝑝+𝑞(𝑅𝐹(𝐾•)) and the associated induced
filtrations on 𝐻𝑝+𝑞(𝑅𝐹(𝐾•)) are finite.

Proof. We will use the following remarks without further mention:
(1) As 𝐼𝑝,• is an injective resolution of 𝐾𝑝 we see that 𝑅𝐹 is defined at 𝐾𝑝[0] with

value 𝐹(𝐼𝑝,•).
(2) As 𝐻𝑝

𝐼(𝐼•,•) is an injective resolution of 𝐻𝑝(𝐾•) the derived functor 𝑅𝐹 is defined
at 𝐻𝑝(𝐾•)[0] with value 𝐹(𝐻𝑝

𝐼(𝐼•,•)).
(3) By Homology, Lemma 10.19.6 the total complex 𝑠𝐼• is an injective resolution of

𝐾•. Hence 𝑅𝐹 is defined at 𝐾• with value 𝐹(𝑠𝐼•).

3This notation sucks! It really means the 𝑝th cohomology group of the complex with terms 𝑅𝑞𝐹(𝐾𝑛). Not
the 𝑝th cohomology of the 𝑞th derived functor of 𝐹 applied to 𝐾•...
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Consider the spectral sequences associated to the double complex 𝐾•,• = 𝐹(𝐼•,•), see Ho-
mology, Lemma 10.19.3. These both converge, see Homology, Lemma 10.19.5, to the
cohomology groups of the associated total complex 𝑠(𝐹(𝐼•,•) = 𝐹(𝑠𝐼•) which computes
𝐻𝑛(𝑅𝐹(𝐾•)).

Computation of the first spectral sequence. We have ′𝐸𝑝,𝑞
1 = 𝐻𝑞(𝐾𝑝,•) in other words

′𝐸𝑝,𝑞
1 = 𝐻𝑞(𝐹(𝐼𝑝,•)) = 𝑅𝑞𝐹(𝐾𝑝)

and the maps ′𝐸𝑝,𝑞
1 → ′𝐸𝑝+1,𝑞 are the maps 𝑅𝑞𝐹(𝐾𝑝) → 𝑅𝑞𝐹(𝐾𝑝+1) as desired.

Computation of the second spectral sequence. We have ″𝐸𝑝,𝑞
1 = 𝐻𝑞(𝐾•,𝑝) = 𝐻𝑞(𝐹(𝐼•,𝑝)).

Note that the complex 𝐼•,𝑝 is bounded below, consists of injectives, and moreover each ker-
nel, image, and cohomology group of the differentials is an injective object of 𝒜. Hence we
can split the differentials, i.e., each differential is a split surjection onto a direct summand.
It follows that the same is true after applying 𝐹. Hence ″𝐸𝑝,𝑞

1 = 𝐹(𝐻𝑞(𝐼•,𝑝)) = 𝐹(𝐻𝑞
𝐼(𝐼•,𝑝)).

The differentials on this are (−1)𝑞 times 𝐹 applied to the differential of the complex 𝐻𝑝
𝐼(𝐼•,•)

which is an injective resolution of 𝐻𝑝(𝐾•). Hence the description of the 𝐸2 terms. �

Remark 11.20.4. The spectral sequences of Lemma 11.20.3 are functorial in the complex
𝐾•. This follows from functoriality properties of Cartan-Eilenberg resolutions. On the
other hand, they are both examples of a more general spectral sequence which may be
associated to a filtered complex of 𝒜. The functoriality will follow from its construction.
We will return to this in the section on the filtered derived category, see Remark 11.25.15.

11.21. Composition of right derived functors

Sometimes we can compute the right derived functor of a composition. Suppose that
𝒜, ℬ, 𝒞 be abelian categories. Let 𝐹 ∶ 𝒜 → ℬ and 𝐺 ∶ ℬ → 𝒞 be left exact functors.
Assume that the right derived functors 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(ℬ), 𝑅𝐺 ∶ 𝐷+(ℬ) → 𝐷+(𝒞),
and 𝑅(𝐺 ∘ 𝐹) ∶ 𝐷+(𝒜) → 𝐷+(𝒞) are everywhere defined. Then there exists a canonical
transformation

𝑡 ∶ 𝑅(𝐺 ∘ 𝐹) ⟶ 𝑅𝐺 ∘ 𝑅𝐹,
see Lemma 11.14.16. This transformation need not always be an isomorphism.

Lemma 11.21.1. Let 𝒜, ℬ, 𝒞 be abelian categories. Let 𝐹 ∶ 𝒜 → ℬ and 𝐺 ∶ ℬ → 𝒞 be
left exact functors. Assume 𝒜, ℬ have enough injectives. If 𝐹(𝐼) is right acyclic for 𝐺 for
each injective object 𝐼 of 𝒜, then we have an isomorphism of functors

𝑡 ∶ 𝑅(𝐺 ∘ 𝐹) ⟶ 𝑅𝐺 ∘ 𝑅𝐹.

Proof. Let 𝐴• be a bounded below complex of 𝒜. Choose an injective resolution 𝐴• → 𝐼•.
The map 𝑡 is given (see proof of Lemma 11.14.16) by the maps

𝑅(𝐺 ∘ 𝐹)(𝐴•) = (𝐺 ∘ 𝐹)(𝐼•) = 𝐺(𝐹(𝐼•))) → 𝑅𝐺(𝐹(𝐼•)) = 𝑅𝐺(𝑅𝐹(𝐴•))

where the arrow is an isomorphism by Lemma 11.16.7. �

Lemma11.21.2. (Grothendieck spectral sequence.) With assumptions as in Lemma 11.21.1.
Let 𝐴 be an object of 𝒜. There exists a spectral sequence (𝐸𝑝,𝑞

𝑟 , 𝑑𝑝,𝑞
𝑟 )𝑟≥0 associated to a fil-

tered complex with
𝐸𝑝,𝑞

2 = 𝑅𝑝𝐺(𝑅𝑞𝐹(𝐴))
converging to 𝑅𝑝+𝑞(𝐺 ∘ 𝐹)(𝐴). Moreover, the induced filtration on each 𝑅𝑛(𝐺 ∘ 𝐹)(𝐴) is
finite.
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Proof. Choose an injective resolution 𝐴 → 𝐼•. Choose a Cartan-Eilenberg resolution
𝐹(𝐼•) → 𝐼•,• using Lemma 11.20.2. Apply Lemma 11.20.3 (use the second spectral se-
quence). Details omitted. �

11.22. Resolution functors

Let 𝒜 be an abelian categorywith enough injectives. Denote ℐ the full additive subcategory
of 𝒜 whose objects are the injective objects of 𝒜. It turns out that 𝐾+(ℐ) and 𝐷+(𝒜) are
equivalent in this case (see Proposition 11.22.1). For many purposes it therefore makes
sense to think of 𝐷+(𝒜) as the (easier to grok) category 𝐾+(ℐ) in this case.
Proposition 11.22.1. Let 𝒜 be an abelian category. Assume 𝒜 has enough injectives.
Denote ℐ ⊂ 𝒜 the strictly full additive subcategory whose objects are the injective objects
of 𝒜. The functor

𝐾+(ℐ) ⟶ 𝐷+(𝒜)
is exact, fully faithful and essentially surjective, i.e., an equivalence of triangulated cate-
gories.
Proof. It is clear that the functor is exact. It is essentially surjective by Lemma 11.17.3.
Fully faithfulness is a consequence of Lemma 11.17.8. �

Proposition 11.22.1 implies that we can find resolution functors. It turns out that we can
prove resolution functors exist even in some cases where the abelian category 𝒜 is a ``big''
category, i.e., has a class of objects.
Definition 11.22.2. Let 𝒜 be an abelian category with enough injectives. A resolution
functor4 for 𝒜 is given by the following data:

(1) for all 𝐾• ∈ 𝑂𝑏(𝐾+(𝒜)) a bounded below complex of injectives 𝑗(𝐾•), and
(2) for all 𝐾• ∈ 𝑂𝑏(𝐾+(𝒜)) a quasi-isomorphism 𝑖𝐾• ∶ 𝐾• → 𝑗(𝐾•).

Lemma 11.22.3. Let 𝒜 be an abelian category with enough injectives. Given a resolution
functor (𝑗, 𝑖) there is a unique way to turn 𝑗 into a functor and 𝑖 into a 2-isomorphism
producing a 2-commutative diagram

𝐾+(𝒜)

$$

𝑗
// 𝐾+(ℐ)

zz
𝐷+(𝒜)

where ℐ is the full additive subcategory of 𝒜 consisting of injective objects.
Proof. For every morphism 𝛼 ∶ 𝐾• → 𝐿• of 𝐾+(𝒜) there is a unique morphism 𝑗(𝛼) ∶
𝑗(𝐾•) → 𝑗(𝐿•) in 𝐾+(ℐ) such that

𝐾•
𝛼
//

𝑖𝐾•
��

𝐿•

𝑖𝐿•
��

𝑗(𝐾•)
𝑗(𝛼) // 𝑗(𝐿•)

is commutative in 𝐾+(𝒜). To see this either use Lemmas 11.17.6 and 11.17.7 or the equiv-
alent Lemma 11.17.8. The uniqueness implies that 𝑗 is a functor, and the commutativity of
the diagram implies that 𝑖 gives a 2-morphism which witnesses the 2-commutativity of the
diagram of categories in the statement of the lemma. �

4This is likely nonstandard terminology.
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Lemma 11.22.4. Let 𝒜 be an abelian category. Assume 𝒜 has enough injectives. Then a
resolution functor 𝑗 exists and is unique up to unique isomorphism of functors.

Proof. Consider the set of all objects 𝐾• of 𝐾+(𝒜). (Recall that by our conventions any
category has a set of objects unless mentioned otherwise.) By Lemma 11.17.3 every object
has an injective resolution. By the axiom of choice we can choose for each 𝐾• an injective
resolution 𝑖𝐾• ∶ 𝐾• → 𝑗(𝐾•). �

Lemma 11.22.5. Let 𝒜 be an abelian category with enough injectives. Any resolution
functor 𝑗 ∶ 𝐾+(𝒜) → 𝐾+(ℐ) is exact.

Proof. Denote 𝑖𝐾• ∶ 𝐾• → 𝑗(𝐾•) the canonical maps of Definition 11.22.2. First we
discuss the existence of the functorial isomorphism 𝑗(𝐾•[1]) → 𝑗(𝐾•)[1]. Consider the
diagram

𝐾•[1]

𝑖𝐾•[1]
��

𝐾•[1]

𝑖𝐾•[1]
��

𝑗(𝐾•[1])
𝜉𝐾• // 𝑗(𝐾•)[1]

By Lemmas 11.17.6 and 11.17.7 there exists a unique dotted arrow 𝜉𝐾• in 𝐾+(ℐ) mak-
ing the diagram commute in 𝐾+(𝒜). We omit the verification that this gives a functorial
isomorphism. (Hint: use Lemma 11.17.7 again.)

Let (𝐾•, 𝐿•, 𝑀•, 𝑓, 𝑔, ℎ) be a distinguished triangle of𝐾+(𝒜). We have to show that (𝑗(𝐾•), 𝑗(𝐿•), 𝑗(𝑀•), 𝑗(𝑓), 𝑗(𝑔), 𝜉𝐾•∘
𝑗(ℎ)) is a distinguished triangle of 𝐾+(ℐ). Note that we have a commutative diagram

𝐾•
𝑓
//

��

𝐿•
𝑔
//

��

𝑀•
ℎ

//

��

𝐾•[1]

��
𝑗(𝐾•)

𝑗(𝑓) // 𝑗(𝐿•)
𝑗(𝑔) // 𝑗(𝑀•)

𝜉𝐾•∘𝑗(ℎ) // 𝑗(𝐾•)[1]

in 𝐾+(𝒜) whose vertical arrows are the quasi-isomorphisms 𝑖𝐾, 𝑖𝐿, 𝑖𝑀. Hence we see
that the image of (𝑗(𝐾•), 𝑗(𝐿•), 𝑗(𝑀•), 𝑗(𝑓), 𝑗(𝑔), 𝜉𝐾• ∘ 𝑗(ℎ)) in 𝐷+(𝒜) is isomorphic to
a distinguished triangle and hence a distinguished triangle by TR1. Thus we see from
Lemma 11.4.16 that (𝑗(𝐾•), 𝑗(𝐿•), 𝑗(𝑀•), 𝑗(𝑓), 𝑗(𝑔), 𝜉𝐾• ∘ 𝑗(ℎ)) is a distinguished triangle in
𝐾+(ℐ). �

Lemma 11.22.6. Let 𝒜 be an abelian category which has enough injectives. Let 𝑗 be a
resolution functor. Write 𝑄 ∶ 𝐾+(𝒜) → 𝐷+(𝒜) for the natural functor. Then 𝑗 = 𝑗′ ∘ 𝑄
for a unique functor 𝑗′ ∶ 𝐷+(𝒜) → 𝐾+(ℐ) which is quasi-inverse to the canonical functor
𝐾+(ℐ) → 𝐷+(𝒜).

Proof. ByLemma 11.10.5𝑄 is a localization functor. To prove the existence of 𝑗′ it suffices
to show that any element of Qis+(𝒜) is mapped to an isomorphism under the functor 𝑗, see
Lemma 11.5.6. This is true by the remarks following Definition 11.22.2. �

Remark 11.22.7. Suppose that 𝒜 is a ``big'' abelian category with enough injectives such
as the category of abelian groups. In this case we have to be slightly more careful in con-
structing our resolution functor since we cannot use the axiom of choice with a quantifier
ranging over a class. But note that the proof of the lemma does show that any two localiza-
tion functors are canonically isomorphic. Namely, given quasi-isomorphisms 𝑖 ∶ 𝐾• → 𝐼•

and 𝑖′ ∶ 𝐾• → 𝐽• of a bounded below complex 𝐾• into bounded below complexes of
injectives there exists a unique(!) morphism 𝑎 ∶ 𝐼• → 𝐽• in 𝐾+(ℐ) such that 𝑖′ = 𝑖 ∘ 𝑎 as
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morphisms in 𝐾+(ℐ). Hence the only issue is existence, and we will see how to deal with
this in the next section.

11.23. Functorial injective embeddings and resolution functors

In this section we redo the construction of a resolution functor 𝐾+(𝒜) → 𝐾+(ℐ) in case
the category 𝒜 has functorial injective embeddings. There are two reasons for this: (1) the
proof is easier and (2) the construction also works if 𝒜 is a ``big'' abelian category. See
Remark 11.23.3 below.
Let 𝒜 be an abelian category. As before denote ℐ the additive full subcategory of 𝒜 con-
sisting of injective objects. Consider the category InjRes(𝒜) of arrows 𝛼 ∶ 𝐾• → 𝐼• where
𝐾• is a bounded below complex of 𝒜, 𝐼• is a bounded below complex of injectives of 𝒜 and
𝛼 is a quasi-isomorphism. In other words, 𝛼 is an injective resolution and 𝐾• is bounded
below. There is an obvious functor

𝑠 ∶ InjRes(𝒜) ⟶ Comp+(𝒜)
defined by (𝛼 ∶ 𝐾• → 𝐼•) ↦ 𝐾•. There is also a functor

𝑡 ∶ InjRes(𝒜) ⟶ 𝐾+(ℐ)
defined by (𝛼 ∶ 𝐾• → 𝐼•) ↦ 𝐼•.

Lemma 11.23.1. Let 𝒜 be an abelian category. Assume 𝒜 has functorial injective embed-
dings, see Homology, Definition 10.20.5.

(1) There exists a functor 𝑖𝑛𝑗 ∶ Comp+(𝒜) → InjRes(𝒜) such that 𝑠 ∘ 𝑖𝑛𝑗 = id.
(2) For any functor 𝑖𝑛𝑗 ∶ Comp+(𝒜) → InjRes(𝒜) such that 𝑠 ∘ 𝑖𝑛𝑗 = id we obtain a

resolution functor, see Definition 11.22.2.

Proof. Let 𝐴 ↦ (𝐴 → 𝐽(𝐴)) be a functorial injective embedding, see Homology, Defini-
tion 10.20.5. We first note that we may assume 𝐽(0) = 0. Namely, if not then for any object
𝐴 we have 0 → 𝐴 → 0 which gives a direct sum decomposition 𝐽(𝐴) = 𝐽(0)⊕Ker(𝐽(𝐴) →
𝐽(0)). Note that the functorial morphism 𝐴 → 𝐽(𝐴) has to map into the second summand.
Hence we can replace our functor by 𝐽′(𝐴) = Ker(𝐽(𝐴) → 𝐽(0)) if needed.
Let 𝐾• be a bounded below complex of 𝒜. Say 𝐾𝑝 = 0 if 𝑝 < 𝐵. We are going to
construct a double complex 𝐼•,• of injectives, together with a map 𝛼 ∶ 𝐾• → 𝐼•,0 such that
𝛼 induces a quasi-isomorphism of 𝐾• with the associated total complex of 𝐼•,•. First we
set 𝐼𝑝,𝑞 = 0 whenever 𝑞 < 0. Next, we set 𝐼𝑝,0 = 𝐽(𝐾𝑝) and 𝛼𝑝 ∶ 𝐾𝑝 → 𝐼𝑝,0 the functorial
embedding. Since 𝐽 is a functor we see that 𝐼•,0 is a complex and that 𝛼 is a morphism of
complexes. Each 𝛼𝑝 is injective. And 𝐼𝑝,0 = 0 for 𝑝 < 𝐵 because 𝐽(0) = 0. Next, we set
𝐼𝑝,1 = 𝐽(Coker(𝐾𝑝 → 𝐼𝑝,0)). Again by functoriality we see that 𝐼•,1 is a complex. And
again we get that 𝐼𝑝,1 = 0 for 𝑝 < 𝐵. It is also clear that 𝐾𝑝 maps isomorphically onto
Ker(𝐼𝑝,0 → 𝐼𝑝,1). As our third step we take 𝐼𝑝,2 = 𝐽(Coker(𝐼𝑝,0 → 𝐼𝑝,1)). And so on and
so forth.
At this point we can apply Homology, Lemma 10.19.6 to get that the map

𝛼 ∶ 𝐾• → 𝑠𝐼•

is a quasi-isomorphism. To prove we get a functor 𝑖𝑛𝑗 it rests to show that the construction
above is functorial. This verification is omitted.
Suppose we have a functor 𝑖𝑛𝑗 such that 𝑠 ∘ 𝑖𝑛𝑗 = id. For every object 𝐾• of Comp+(𝒜) we
can write

𝑖𝑛𝑗(𝐾•) = (𝑖𝐾• ∶ 𝐾• → 𝑗(𝐾•))
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This provides us with a resolution functor as in Definition 11.22.2. �

Remark 11.23.2. Suppose 𝑖𝑛𝑗 is a functor such that 𝑠 ∘ 𝑖𝑛𝑗 = id as in part (2) of Lemma
11.23.1. Write 𝑖𝑛𝑗(𝐾•) = (𝑖𝐾• ∶ 𝐾• → 𝑗(𝐾•)) as in the proof of that lemma. Suppose
𝛼 ∶ 𝐾• → 𝐿• is a map of bounded below complexes. Consider the map 𝑖𝑛𝑗(𝛼) in the
category InjRes(𝒜). It induces a commutative diagram

𝐾• 𝛼 //

𝑖𝐾
��

𝐿•

𝑖𝐿
��

𝑗(𝐾)• 𝑖𝑛𝑗(𝛼) // 𝑗(𝐿)•

of morphisms of complexes. Hence, looking at the proof of Lemma 11.22.3 we see that the
functor 𝑗 ∶ 𝐾+(𝒜) → 𝐾+(ℐ) is given by the rule

𝑗(𝛼 up to homotopy) = 𝑖𝑛𝑗(𝛼) up to homotpy ∈ 𝐻𝑜𝑚𝐾+(ℐ)(𝑗(𝐾•), 𝑗(𝐿•))
Hence we see that 𝑗 matches 𝑡 ∘ 𝑖𝑛𝑗 in this case, i.e., the diagram

Comp+(𝒜)
𝑡∘𝑖𝑛𝑗

//

%%

𝐾+(ℐ)

𝐾+(𝒜)
𝑗

::

is commutative.
Remark 11.23.3. Let Mod(𝒪𝑋) be the category of 𝒪𝑋-modules on a ringed space (𝑋, 𝒪𝑋)
(or more generally on a ringed site). We will see later that Mod(𝒪𝑋) has enough injectives
and in fact functorial injective embeddings, see Injectives, Theorem 17.12.4. Note that the
proof of Lemma 11.22.4 does not apply toMod(𝒪𝑋). But the proof of Lemma 11.23.1 does
apply to Mod(𝒪𝑋). Thus we obtain

𝑗 ∶ 𝐾+(Mod(𝒪𝑋)) ⟶ 𝐾+(ℐ)
which is a resolution functor where ℐ is the additive category of injective 𝒪𝑋-modules.
This argument also works in the following cases:

(1) The category Mod𝑅 of 𝑅-modules over a ring 𝑅.
(2) The category PMod(𝒪) of presheaves of 𝒪-modules on a site endowed with a

presheaf of rings.
(3) The category Mod(𝒪) of sheaves of 𝒪-modules on a ringed site.
(4) Add more here as needed.

11.24. Right derived functors via resolution functors

The content of the following lemma is that we can simply define 𝑅𝐹(𝐾•) = 𝐹(𝑗(𝐾•) if we
are given a resolution functor 𝑗.
Lemma 11.24.1. Let 𝒜 be an abelian category with enough injectives Let 𝐹 ∶ 𝒜 → ℬ be
an additive functor into an abelian category. Let (𝑖, 𝑗) be a resolution functor, see Definition
11.22.2. The right derived functor 𝑅𝐹 of 𝐹 fits into the following 2-commutative diagram

𝐷+(𝒜)

𝑅𝐹 $$

𝑗′
// 𝐾+(ℐ)

𝐹zz
𝐷+(ℬ)
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where 𝑗′ is the functor from Lemma 11.22.6.

Proof. By Lemma 11.19.1 we have 𝑅𝐹(𝐾•) = 𝐹(𝑗(𝐾•)). �

Remark 11.24.2. In the situation of Lemma 11.24.1 we see that we have actually lifted
the right derived functor to an exact functor 𝐹 ∘ 𝑗′ ∶ 𝐷+(𝒜) → 𝐾+(ℬ). It is occasionally
useful to use such a factorization.

11.25. Filtered derived category and injective resolutions

If the underlying abelian category 𝒜 has enough injectives then the category Fil𝑓(𝒜) has
enough right acyclic objects relative to any left exact functor.

Definition 11.25.1. Let 𝒜 be an abelian category. We say an object 𝐼 of Fil𝑓(𝒜) is filtered
injective if each gr𝑝(𝐼) is an injective object of 𝒜.

This category is an example of an exact category, see Injectives, Remark 17.13.6. A spe-
cial role is played by the strict morphisms, see Homology, Definition 10.13.3, i.e., the mor-
phisms 𝑓 such that Coim(𝑓) = Im(𝑓). We will say that a complex 𝐴 → 𝐵 → 𝐶 in Fil𝑓(𝒜)
is exact if the sequence gr(𝐴) → gr(𝐵) → gr(𝐶) is exact in 𝒜. This implies that 𝐴 → 𝐵
and 𝐵 → 𝐶 are strict morphisms, see Homology, Lemma 10.13.17.

Lemma 11.25.2. Let 𝒜 be an abelian category. An object 𝐼 of Fil𝑓(𝒜) is filtered injective
if and only if there exist 𝑎 ≤ 𝑏, injective objects 𝐼𝑛, 𝑎 ≤ 𝑛 ≤ 𝑏 of 𝒜 and an isomorphism
𝐼 ≅ ⨁𝑎≤𝑛≤𝑏 𝐼𝑛 such that 𝐹𝑝𝐼 = ⨁𝑛≥𝑝 𝐼𝑛.

Proof. Follows from the fact that any injection 𝐽 → 𝑀 of 𝒜 is split if 𝐽 is an injective
object. Details omitted. �

Lemma 11.25.3. Let 𝒜 be an abelian category. Any strict monomorphism 𝑢 ∶ 𝐼 → 𝐴 of
Fil𝑓(𝒜) where 𝐼 is a filtered injective object is a split injection.

Proof. Let 𝑝 be the largest integer such that𝐹𝑝𝐼≠0. In particular gr𝑝(𝐼) = 𝐹𝑝𝐼. Let 𝐼′ be the
object of Fil𝑓(𝒜) whose underlying object of 𝒜 is 𝐹𝑝𝐼 and with filtration given by 𝐹𝑛𝐼′ = 0
for 𝑛 > 𝑝 and 𝐹𝑛𝐼′ = 𝐼′ = 𝐹𝑝𝐼 for 𝑛 ≤ 𝑝. Note that 𝐼′ → 𝐼 is a strict monomorphism too.
The fact that 𝑢 is a strict monomorphism implies that 𝐹𝑝𝐼 → 𝐴/𝐹𝑝+1(𝐴) is injective, see
Homology, Lemma 10.13.15. Choose a splitting 𝑠 ∶ 𝐴/𝐹𝑝+1𝐴 → 𝐹𝑝𝐼 in 𝒜. The induced
morphism 𝑠′ ∶ 𝐴 → 𝐼′ is a strict morphism of filtered objects splitting the composition
𝐼′ → 𝐼 → 𝐴. Hence we can write 𝐴 = 𝐼′ ⊕ Ker(𝑠′) and 𝐼 = 𝐼′ ⊕ Ker(𝑠′|𝐼). Note
that ker(𝑠′|𝐼) → ker(𝑠′) is a strict monomorphism and that ker(𝑠′|𝐼) is a filtered injective
object. By induction on the length of the filtration on 𝐼 the map ker(𝑠′|𝐼) → ker(𝑠′) is a
split injection. Thus we win. �

Lemma 11.25.4. Let 𝒜 be an abelian category. Let 𝑢 ∶ 𝐴 → 𝐵 be a strict monomorphism
of Fil𝑓(𝒜) and 𝑓 ∶ 𝐴 → 𝐼 a morphism from 𝐴 into a filtered injective object in Fil𝑓(𝒜).
Then there exists a morphism 𝑔 ∶ 𝐵 → 𝐼 such that 𝑓 = 𝑔 ∘ 𝑢.

Proof. The pushout 𝑓′ ∶ 𝐼 → 𝐼 ⨿𝐴 𝐵 of 𝑓 by 𝑢 is a strict monomorphism, see Homology,
Lemma 10.13.10. Hence the result follows formally from Lemma 11.25.3. �

Lemma 11.25.5. Let 𝒜 be an abelian category with enough injectives. For any object 𝐴
of Fil𝑓(𝒜) there exists a strict monomorphism 𝐴 → 𝐼 where 𝐼 is a filtered injective object.
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Proof. Pick 𝑎 ≤ 𝑏 such that gr𝑝(𝐴) = 0 unless 𝑝 ∈ {𝑎, 𝑎 + 1, … , 𝑏}. For each 𝑛 ∈
{𝑎, 𝑎 + 1, … , 𝑏} choose an injection 𝑢𝑛 ∶ 𝐴/𝐹𝑛𝐴 → 𝐼𝑛 with 𝐼𝑛 and injective object. Set
𝐼 = ⨁𝑎≤𝑛≤𝑏 𝐼𝑝 with filtration 𝐹𝑝𝐼 = ⨁𝑛≥𝑝 𝐼𝑛 and set 𝑢 ∶ 𝐴 → 𝐼 equal to the direct sum of
the maps 𝑢𝑛. �

Lemma 11.25.6. Let 𝒜 be an abelian category with enough injectives. For any object 𝐴
of Fil𝑓(𝒜) there exists a filtered quasi-isomorphism 𝐴[0] → 𝐼• where 𝐼• is a complex of
filtered injective objects with 𝐼𝑛 = 0 for 𝑛 < 0.

Proof. First choose a strict monomorphism 𝑢0 ∶ 𝐴 → 𝐼0 of 𝐴 into a filtered injective
object, see Lemma 11.25.5. Next, choose a strict monomorphism 𝑢1 ∶ Coker(𝑢0) → 𝐼1

into a filtered injective object of 𝒜. Denote 𝑑0 the induced map 𝐼0 → 𝐼1. Next, choose a
strict monomorphism 𝑢2 ∶ Coker(𝑢1) → 𝐼2 into a filtered injective object of 𝒜. Denote 𝑑1

the induced map 𝐼1 → 𝐼2. And so on. This works because each of the sequences

0 → Coker(𝑢𝑛) → 𝐼𝑛+1 → Coker(𝑢𝑛+1) → 0

is short exact, i.e., induces a short exact sequence on applying gr. To see this use Homology,
Lemma 10.13.15. �

Lemma 11.25.7. Let 𝒜 be an abelian category with enough injectives. Let 𝑓 ∶ 𝐴 → 𝐵
be a morphism of Fil𝑓(𝒜). Given filtered quasi-isomorphisms 𝐴[0] → 𝐼• and 𝐵[0] → 𝐽•

where 𝐼•, 𝐽• are complexes of filtered injective objects with 𝐼𝑛 = 𝐽𝑛 = 0 for 𝑛 < 0, then
there exists a commutative diagram

𝐴[0] //

��

𝐵[0]

��
𝐼• // 𝐽•

Proof. As 𝐴[0] → 𝐼• and 𝐶[0] → 𝐽• are filtered quasi-isomorphisms we conclude that
𝑎 ∶ 𝐴 → 𝐼0, 𝑏 ∶ 𝐵 → 𝐽0 and all the morphisms 𝑑𝑛

𝐼, 𝑑𝑛
𝐽 are strict, see Homology, Lemma

11.13.4. We will inductively construct the maps 𝑓𝑛 in the following commutative diagram

𝐴 𝑎
//

𝑓
��

𝐼0 //

𝑓0

��

𝐼1 //

𝑓1

��

𝐼2 //

𝑓2

��

…

𝐵 𝑏 // 𝐽0 // 𝐽1 // 𝐽2 // …

Because 𝐴 → 𝐼0 is a strict monomorphism and because 𝐽0 is filtered injective, we can find
a morphism 𝑓0 ∶ 𝐼0 → 𝐽0 such that 𝑓0 ∘ 𝑎 = 𝑏 ∘ 𝑓, see Lemma 11.25.4. The composition
𝑑0

𝐽 ∘ 𝑏 ∘ 𝑓 is zero, hence 𝑑0
𝐽 ∘ 𝑓0 ∘ 𝑎 = 0, hence 𝑑0

𝐽 ∘ 𝑓0 factors through a unique morphism

Coker(𝑎) = Coim(𝑑0
𝐼) = Im(𝑑0

𝐼) ⟶ 𝐽1.

As Im(𝑑0
𝐼) → 𝐼1 is a strict monomorphismwe can extend the displayed arrow to amorphism

𝑓1 ∶ 𝐼1 → 𝐽1 by Lemma 11.25.4 again. And so on. �

Lemma 11.25.8. Let 𝒜 be an abelian category with enough injectives. Let 0 → 𝐴 → 𝐵 →
𝐶 → 0 be a short exact sequence in Fil𝑓(𝒜). Given filtered quasi-isomorphisms 𝐴[0] → 𝐼•

and 𝐶[0] → 𝐽• where 𝐼•, 𝐽• are complexes of filtered injective objects with 𝐼𝑛 = 𝐽𝑛 = 0
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for 𝑛 < 0, then there exists a commutative diagram

0 // 𝐴[0] //

��

𝐵[0] //

��

𝐶[0] //

��

0

0 // 𝐼• //𝑀• // 𝐽• // 0
where the lower row is a termwise split sequence of complexes.

Proof. As 𝐴[0] → 𝐼• and 𝐶[0] → 𝐽• are filtered quasi-isomorphisms we conclude that
𝑎 ∶ 𝐴 → 𝐼0, 𝑐 ∶ 𝐶 → 𝐽0 and all the morphisms 𝑑𝑛

𝐼, 𝑑𝑛
𝐽 are strict, see Homology, Lemma

11.13.4. We are going to step by step construct the south-east and the south arrows in the
following commutative diagram

𝐵
𝛽
//

𝑏

��

𝐶 𝑐
//

𝑏

��

𝐽0

𝛿0
��

// 𝐽1

𝛿1
��

// …

𝐴

𝛼

OO

𝑎 // 𝐼0 // 𝐼1 // 𝐼2 // …

As 𝐴 → 𝐵 is a strict monomorphism, we can find a morphism 𝑏 ∶ 𝐵 → 𝐼0 such that
𝑏 ∘ 𝛼 = 𝑎, see Lemma 11.25.4. As 𝐴 is the kernel of the strict morphism 𝐼0 → 𝐼1 and
𝛽 = Coker(𝛼) we obtain a unique morphism 𝑏 ∶ 𝐶 → 𝐼1 fitting into the diagram. As 𝑐 is
a strict monomorphism and 𝐼1 is filtered injective we can find 𝛿0 ∶ 𝐽0 → 𝐼1, see Lemma
11.25.4. Because 𝐵 → 𝐶 is a strict epimorphism and because 𝐵 → 𝐼0 → 𝐼1 → 𝐼2 is zero,
we see that 𝐶 → 𝐼1 → 𝐼2 is zero. Hence 𝑑1

𝐼 ∘ 𝛿0 is zero on 𝐶 ≅ Im(𝑐). Hence 𝑑1
𝐼 ∘ 𝛿0 factors

through a unique morphism

Coker(𝑐) = Coim(𝑑0
𝐽) = Im(𝑑0

𝐽) ⟶ 𝐼2.

As 𝐼2 is filtered injective and Im(𝑑0
𝐽) → 𝐽1 is a strict monomorphism we can extend the

displayed morphism to a morphism 𝛿1 ∶ 𝐽1 → 𝐼2, see Lemma 11.25.4. And so on. We set
𝑀• = 𝐼• ⊕ 𝐽• with differential

𝑑𝑛
𝑀 = (

𝑑𝑛
𝐼 (−1)𝑛+1𝛿𝑛

0 𝑑𝑛
𝐽 )

Finally, the map 𝐵[0] → 𝑀• is given by 𝑏 ⊕ 𝑐 ∘ 𝛽 ∶ 𝑀 → 𝐼0 ⊕ 𝐽0. �

Lemma 11.25.9. Let 𝒜 be an abelian category with enough injectives. For every 𝐾• ∈
𝐾+(Fil𝑓(𝒜)) there exists a filtered quasi-isomorphism 𝐾• → 𝐼• with 𝐼• bounded below,
each 𝐼𝑛 a filtered injective object, and each 𝐾𝑛 → 𝐼𝑛 a strict monomorphism.

Proof. After replacing 𝐾• by a shift (which is harmless for the proof) we may assume that
𝐾𝑛 = 0 for 𝑛 < 0. Consider the short exact sequences

0 → ker(𝑑0
𝐾) → 𝐾0 → Coim(𝑑0

𝐾) → 0
0 → ker(𝑑1

𝐾) → 𝐾1 → Coim(𝑑1
𝐾) → 0

0 → ker(𝑑2
𝐾) → 𝐾2 → Coim(𝑑2

𝐾) → 0
…

of the exact category Fil𝑓(𝒜) and the maps 𝑢𝑖 ∶ Coim(𝑑𝑖
𝐾) → Ker(𝑑𝑖+1

𝐾 ). For each 𝑖 ≥ 0 we
may choose filtered quasi-isomorphisms

ker(𝑑𝑖
𝐾)[0] → 𝐼•

𝑘𝑒𝑟,𝑖
Coim(𝑑𝑖

𝐾)[0] → 𝐼•
𝑐𝑜𝑖𝑚,𝑖
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with 𝐼𝑛
𝑘𝑒𝑟,𝑖, 𝐼𝑛

𝑐𝑜𝑖𝑚,𝑖 filtered injective and zero for 𝑛 < 0, see Lemma 11.25.6. By Lemma
11.25.7 we may lift 𝑢𝑖 to a morphism of complexes 𝑢•

𝑖 ∶ 𝐼•
𝑐𝑜𝑖𝑚,𝑖 → 𝐼•

𝑘𝑒𝑟,𝑖+1. Finally, for each
𝑖 ≥ 0 we may complete the diagrams

0 // ker(𝑑𝑖
𝐾)[0] //

��

𝐾𝑖[0] //

��

Coim(𝑑𝑖
𝐾)[0] //

��

0

0 // 𝐼•
𝑘𝑒𝑟,𝑖

𝛼𝑖 // 𝐼•
𝑖

𝛽𝑖 // 𝐼•
𝑐𝑜𝑖𝑚,𝑖

// 0

with the lower sequence a termwise split exact sequence, see Lemma 11.25.8. For 𝑖 ≥ 0
set 𝑑𝑖 ∶ 𝐼•

𝑖 → 𝐼•
𝑖+1 equal to 𝑑𝑖 = 𝛼𝑖+1 ∘ 𝑢•

𝑖 ∘ 𝛽𝑖. Note that 𝑑𝑖 ∘ 𝑑𝑖−1 = 0 because 𝛽𝑖 ∘ 𝛼𝑖 = 0.
Hence we have constructed a commutative diagram

𝐼•
0

// 𝐼•
1

// 𝐼•
2

// …

𝐾0[0] //

OO

𝐾1[0] //

OO

𝐾2[0] //

OO

…

Here the vertical arrows are filtered quasi-isomorphisms. The upper row is a complex of
complexes and each complex consists of filtered injective objects with no nonzero objects
in degree < 0. Thus we obtain a double complex by setting 𝐼𝑎,𝑏 = 𝐼𝑏

𝑎 and using

𝑑𝑎,𝑏
1 ∶ 𝐼𝑎,𝑏 = 𝐼𝑏

𝑎 → 𝐼𝑏
𝑎+1 = 𝐼𝑎+1,𝑏

the map 𝑑𝑏
𝑎 and using for

𝑑𝑎,𝑏
2 ∶ 𝐼𝑎,𝑏 = 𝐼𝑏

𝑎 → 𝐼𝑏+1
𝑎 = 𝐼𝑎,𝑏+1

the map 𝑑𝑏
𝐼𝑎
. Denote Tot(𝐼•,•) the total complex associated to this double complex, see

Homology, Definition 10.19.2. Observe that the maps 𝐾𝑛[0] → 𝐼•
𝑛 come from maps 𝐾𝑛 →

𝐼𝑛,0 which give rise to a map of complexes

𝐾• ⟶ Tot(𝐼•,•)

We claim this is a filtered quasi-isomorphism. As gr(−) is an additive functor, we see that
gr(Tot(𝐼•,•)) = Tot(gr(𝐼•,•)). Thus we can use Homology, Lemma 10.19.6 to conclude that
gr(𝐾•) → gr(Tot(𝐼•,•)) is a quasi-isomorphism as desired. �

Lemma 11.25.10. Let 𝒜 be an abelian category. Let 𝐾•, 𝐼• ∈ 𝐾(Fil𝑓(𝒜)). Assume 𝐾•

is filtered acyclic and 𝐼• bounded below and consisting of filtered injective objects. Any
morphism 𝐾• → 𝐼• is homotopic to zero: 𝐻𝑜𝑚𝐾(Fil𝑓(𝒜))(𝐾•, 𝐼•) = 0.

Proof. Let 𝛼 ∶ 𝐾• → 𝐼• be a morphism of complexes. Assume that 𝛼𝑗 = 0 for 𝑗 < 𝑛. We
will show that there exists a morphism ℎ ∶ 𝐾𝑛+1 → 𝐼𝑛 such that 𝛼𝑛 = ℎ ∘ 𝑑. Thus 𝛼 will be
homotopic to the morphism of complexes 𝛽 defined by

𝛽𝑗 =
⎧⎪
⎨
⎪⎩

0 if 𝑗 ≤ 𝑛
𝛼𝑛+1 − 𝑑 ∘ ℎ if 𝑗 = 𝑛 + 1

𝛼𝑗 if 𝑗 > 𝑛 + 1
This will clearly prove the lemma (by induction). To prove the existence of ℎ note that
𝛼𝑛 ∘ 𝑑𝑛−1

𝐾 = 0 since 𝛼𝑛−1 = 0. Since 𝐾• is filtered acyclic we see that 𝑑𝑛−1
𝐾 and 𝑑𝑛

𝐾 are strict
and that

0 → Im(𝑑𝑛−1
𝐾 ) → 𝐾𝑛 → Im(𝑑𝑛

𝐾) → 0
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is an exact sequence of the exact category Fil𝑓(𝒜), see Homology, Lemma 10.13.17. Hence
we can think of 𝛼𝑛 as a map into 𝐼𝑛 defined on Im(𝑑𝑛

𝐾). Using that Im(𝑑𝑛
𝐾) → 𝐾𝑛+1 is a strict

monomorphism and that 𝐼𝑛 is filtered injective wemay lift this map to amap ℎ ∶ 𝐾𝑛+1 → 𝐼𝑛

as desired, see Lemma 11.25.4. �

Lemma 11.25.11. Let 𝒜 be an abelian category. Let 𝐼• ∈ 𝐾(Fil𝑓(𝒜)) be a bounded below
complex consisting of filtered injective objects.

(1) Let 𝛼 ∶ 𝐾• → 𝐿• in 𝐾(Fil𝑓(𝒜)) be a filtered quasi-isomorphism. Then the map

𝐻𝑜𝑚𝐾(Fil𝑓(𝒜))(𝐿•, 𝐼•) → 𝐻𝑜𝑚𝐾(Fil𝑓(𝒜))(𝐾•, 𝐼•)

is bijective.
(2) Let 𝐿• ∈ 𝐾(𝒜). Then

𝐻𝑜𝑚𝐾(Fil𝑓(𝒜))(𝐿•, 𝐼•) = 𝐻𝑜𝑚𝐷𝐹(𝒜)(𝐿•, 𝐼•).

Proof. Proof of (1). Note that

(𝐾•, 𝐿•, 𝐶(𝛼)•, 𝛼, 𝑖, −𝑝)

is a distinguished triangle in 𝐾(Fil𝑓(𝒜)) (Lemma 11.8.12) and 𝐶(𝑓)• is a filtered acyclic
complex (Lemma 11.13.4). Then

𝐻𝑜𝑚𝐾(Fil𝑓(𝒜))(𝐶(𝛼)•, 𝐼•) // 𝐻𝑜𝑚𝐾(Fil𝑓(𝒜))(𝐿•, 𝐼•) // 𝐻𝑜𝑚𝐾(Fil𝑓(𝒜))(𝐾•, 𝐼•)

rr
𝐻𝑜𝑚𝐾(Fil𝑓(𝒜))(𝐶(𝛼)•[−1], 𝐼•)

is an exact sequence of abelian groups, see Lemma 11.4.2. At this point Lemma 11.25.10
guarantees that the outer two groups are zero and hence𝐻𝑜𝑚𝐾(𝒜)(𝐿•, 𝐼•) = 𝐻𝑜𝑚𝐾(𝒜)(𝐾•, 𝐼•).

Proof of (2). Let 𝑎 be an element of the right hand side. We may represent 𝑎 = 𝛾𝛼−1 where
𝛼 ∶ 𝐾• → 𝐿• is a filtered quasi-isomorphism and 𝛾 ∶ 𝐾• → 𝐼• is a map of complexes. By
part (1) we can find a morphism 𝛽 ∶ 𝐿• → 𝐼• such that 𝛽 ∘ 𝛼 is homotopic to 𝛾. This proves
that the map is surjective. Let 𝑏 be an element of the left hand side which maps to zero in
the right hand side. Then 𝑏 is the homotopy class of a morphism 𝛽 ∶ 𝐿• → 𝐼• such that
there exists a filtered quasi-iomorphism 𝛼 ∶ 𝐾• → 𝐿• with 𝛽 ∘ 𝛼 homotopic to zero. Then
part (1) shows that 𝛽 is homotopic to zero also, i.e., 𝑏 = 0. �

Lemma 11.25.12. Let 𝒜 be an abelian category. Let ℐ𝑓 ⊂ Fil𝑓(𝒜) denote the strictly full
additive subcategory whose objects are the filtered injective objects. The canonical functor

𝐾+(ℐ𝑓) ⟶ 𝐷𝐹+(𝒜)

is exact, fully faithful and essentially surjective, i.e., an equivalence of triangulated cate-
gories. Furthermore the diagrams

𝐾+(ℐ𝑓)

gr𝑝

��

// 𝐷𝐹+(𝒜)

gr𝑝

��
𝐾+(ℐ) // 𝐷+(𝒜)

𝐾+(ℐ𝑓)

forget 𝐹
��

// 𝐷𝐹+(𝒜)

forget 𝐹
��

𝐾+(ℐ) // 𝐷+(𝒜)

are commutative, where ℐ ⊂ 𝒜 is the strictly full additive subcategory whose objects are
the injective objects.
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Proof. The functor 𝐾+(ℐ𝑓) → 𝐷𝐹+(𝒜) is essentially surjective by Lemma 11.25.9. It
is fully faithful by Lemma 11.25.11. It is an exact functor by our definitions regarding
distinguished triangles. The commutativity of the squares is immediate. �

Remark 11.25.13. We can invert the arrow of the lemma only if 𝒜 is a category in our
sense, namely if it has a set of objects. However, suppose given a big abelian category 𝒜
with enough injectives, such as Mod(𝒪𝑋) for example. Then for any given set of objects
{𝐴𝑖}𝑖∈𝐼 there is an abelian subcategory 𝒜′ ⊂ 𝒜 containing all of them and having enough
injectives, see Sets, Lemma 3.12.1. Thus we may use the lemma above for 𝒜′. This essen-
tially means that if we use a set worth of diagrams, etc then we will never run into trouble
using the lemma.

Let 𝒜, ℬ be abelian categories. Let 𝑇 ∶ 𝒜 → ℬ be a left exact functor. (We cannot use
the letter 𝐹 for the functor since this would conflict too much with our use of the letter 𝐹 to
indicate filtrations.) Note that 𝑇 induces an additive functor

𝑇 ∶ Fil𝑓(𝒜) → Fil𝑓(ℬ)

by the rule 𝑇(𝐴, 𝐹) = (𝑇(𝐴), 𝐹) where 𝐹𝑝𝑇(𝐴) = 𝑇(𝐹𝑝𝐴) which makes sense as 𝑇 is left
exact. (Warning: It may not be the case that gr(𝑇(𝐴)) = 𝑇(gr(𝐴)).) This induces functors
of triangulated categories

(11.25.13.1) 𝑇 ∶ 𝐾+(Fil𝑓(𝒜)) ⟶ 𝐾+(Fil𝑓(ℬ))

The filtered right derived functor of 𝑇 are is the right derived functor of Definition 11.14.2
for this exact functor composed with the exact functor 𝐾+(Fil𝑓(ℬ)) → 𝐷𝐹+(ℬ) and the
multiplicative set FQis+(𝒜). Assume 𝒜 has enough injectives. At this point we can redo
the discussion of Section 11.19 to define the filtered right derived functors

(11.25.13.2) 𝑅𝑇 ∶ 𝐷𝐹+(𝒜) ⟶ 𝐷𝐹+(ℬ)

of our functor 𝑇.

However, instead we will proceed as in Section 11.24, and it will turn out that we can define
𝑅𝑇 even if 𝑇 is just additive. Namely, we first choose a quasi-inverse 𝑗′ ∶ 𝐷𝐹+(𝒜) →
𝐾+(ℐ𝑓) of the equivalence of Lemma 11.25.12. By Lemma 11.4.16 we see that 𝑗′ is an
exact functor of triangulated categories. Next, we note that for a filtered injective object 𝐼
we have a (noncanonical) decomposition

(11.25.13.3) 𝐼 ≅ ⨁𝑝∈𝐙
𝐼𝑝, with 𝐹𝑝𝐼 = ⨁𝑞≥𝑝

𝐼𝑞

by Lemma 11.25.2. Hence if 𝑇 is any additive functor 𝑇 ∶ 𝒜 → ℬ then we get an additive
functor

(11.25.13.4) 𝑇𝑒𝑥𝑡 ∶ ℐ𝑓 → Fil𝑓(ℬ)

by setting 𝑇𝑒𝑥𝑡(𝐼) = ⨁ 𝑇(𝐼𝑝) with 𝐹𝑝𝑇𝑒𝑥𝑡(𝐼) = ⨁𝑞≥𝑝 𝑇(𝐼𝑞). Note that we have the property
gr(𝑇𝑒𝑥𝑡(𝐼)) = 𝑇(gr(𝐼)) by construction. Hence we obtain a functor

(11.25.13.5) 𝑇𝑒𝑥𝑡 ∶ 𝐾+(ℐ𝑓) → 𝐾+(Fil𝑓(ℬ))

which commutes with gr. Then we define (11.25.13.2) by the composition

(11.25.13.6) 𝑅𝑇 = 𝑇𝑒𝑥𝑡 ∘ 𝑗′.
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Since 𝑅𝑇 ∶ 𝐷+(𝒜) → 𝐷+(ℬ) is computed by injective resolutions as well, see Lemmas
11.19.1, the commutation of 𝑇 with gr, and the commutative diagrams of Lemma 11.25.12
imply that

(11.25.13.7) gr𝑝 ∘ 𝑅𝑇 ≅ 𝑅𝑇 ∘ gr𝑝

and

(11.25.13.8) (forget 𝐹) ∘ 𝑅𝑇 ≅ 𝑅𝑇 ∘ (forget 𝐹)

as functors 𝐷𝐹+(𝒜) → 𝐷+(ℬ).

The filtered derived functor 𝑅𝑇 (11.25.13.2) induces functors

𝑅𝑇 ∶ Fil𝑓(𝒜) → 𝐷𝐹+(ℬ),
𝑅𝑇 ∶ Comp+(Fil𝑓(𝒜)) → 𝐷𝐹+(ℬ),

𝑅𝑇 ∶ 𝐾𝐹+(𝒜) → 𝐷𝐹+(ℬ).

Note that since Fil𝑓(𝒜), and Comp+(Fil𝑓(𝒜)) are no longer abelian it does not make sense
to say that 𝑅𝑇 restricts to a 𝛿-functor on them. (This can be repaired by thinking of these
categories as exact categories and formulating the notion of a 𝛿-functor from an exact cat-
egory into a triangulated category.) But it does make sense, and it is true by construction,
that 𝑅𝑇 is an exact functor on the triangulated category 𝐾𝐹+(𝒜).

Lemma 11.25.14. Let 𝒜, ℬ be abelian categories. Let 𝑇 ∶ 𝒜 → ℬ be a left exact functor.
Assume 𝒜 has enough injectives. Let (𝐾•, 𝐹) be an object of Comp+(Fil𝑓(𝒜)). There exists
a spectral sequence (𝐸𝑝,𝑞

𝑟 , 𝑑𝑟)𝑟≥0 which is the spectral sequence associated to an object of
Comp+(Fil𝑓(ℬ)) with

𝐸𝑝,𝑞
1 = 𝑅𝑝+𝑞𝑇(gr𝑝(𝐾•))

which converges to 𝑅𝑝+𝑞𝑇(𝐾•) inducing a finite filtration on each 𝑅𝑛𝑇(𝐾•). Moreover the
construction of this spectral sequence is functorial in the object 𝐾• of Comp+(Fil𝑓(𝒜)). In
fact the terms (𝐸𝑟, 𝑑𝑟) for 𝑟 ≥ 2 do not depend on any choices.

Proof. Choose a filtered quasi-isomorphism 𝐾• → 𝐼• with 𝐼• a bounded below com-
plex of filtered injective objects, see Lemma 11.25.9. Consider the complex 𝑅𝑇(𝐾•) =
𝑇𝑒𝑥𝑡(𝐼•), see (11.25.13.6). Thus we can consider the spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥0 as-
sociated to this as a filtered complex in ℬ, see Homology, Section 10.18. By Homol-
ogy, Lemma 10.18.2 we have 𝐸𝑝,𝑞

1 = 𝐻𝑝+𝑞(gr𝑝(𝑇(𝐼•))). By Equation (11.25.13.3) we
have 𝐸𝑝,𝑞

1 = 𝐻𝑝+𝑞(𝑇(gr𝑝(𝐼•))), and by definition of a filtered injective resolution the map
gr𝑝(𝐾•) → gr𝑝(𝐼•) is an injective resolution. Hence 𝐸𝑝,𝑞

1 = 𝑅𝑝+𝑞𝑇(gr𝑝(𝐾•)).

On the other hand, each 𝐼𝑛 has a finite filtration and hence each 𝑇(𝐼𝑛) has a finite filtration.
Thus we may apply Homology, Lemma 10.18.9 to conclude that the spectral sequence con-
verges to 𝐻𝑛(𝑇(𝐼•)) = 𝑅𝑛𝑇(𝐾•) moreover inducing finite filtrations on each of the terms.

Suppose that𝐾• → 𝐿• is amorphism of Comp+(Fil𝑓(𝒜)). Choose a filtered quasi-isomorphism
𝐿• → 𝐽• with 𝐽• a bounded below complex of filtered injective objects, see Lemma
11.25.9. By our results above, for example Lemma 11.25.11, there exists a diagram

𝐾• //

��

𝐿•

��
𝐼• // 𝐽•
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which commutes up to homotopy. Hence we get a morphism of filtered complexes 𝑇(𝐼•) →
𝑇(𝐽•) which gives rise to the morphism of spectral sequences, see Homology, Lemma
10.18.4. The last statement follows from this. �

Remark 11.25.15. As promised in Remark 11.20.4 we discuss the connection of the lemma
above with the constructions using Cartan-Eilenberg resolutions. Namely, assume the nota-
tions of Lemma 11.20.3. In particular 𝐾• is a bounded below complex of 𝒜 and 𝑇 ∶ 𝒜 → ℬ
is a left exact functor. We give an alternative construction of the spectral sequences ′𝐸 and
″𝐸

First spectral sequence. Consider the ``stupid'' filtration on 𝐾• obtained by setting 𝐹𝑝(𝐾•) =
𝜎≥𝑝(𝐾•), see Homology, Section 10.11. Note that this stupid in the sense that 𝑑(𝐹𝑝(𝐾•)) ⊂
𝐹𝑝+1(𝐾•), compare Homology, Lemma 10.18.3. Note that gr𝑝(𝐾•) = 𝐾𝑝[𝑝] with this filtra-
tion. According to the above there is a spectral sequencewith𝐸1 term𝐸𝑝,𝑞

1 = 𝑅𝑝+𝑞𝑇(𝐾𝑝[𝑝]).
Then the 𝐸2 term is clearly 𝐸𝑝,𝑞

2 = 𝐻𝑝(𝑅𝑝+𝑞𝑇(𝐾•)) as in the spectral sequence ′𝐸𝑟.

Second spectral sequence. Consider the filtration on the complex 𝐾• obtained by setting
𝐹𝑝(𝐾•) = 𝜏≤−𝑝(𝐾•), see Homology, Section 10.11. The minus sign is necessary to get
a decreasing filtration. Note that gr𝑝(𝐾•) is quasi-isomorphic to 𝐻−𝑝(𝐾•)[−𝑝] with this
filtration. According to the above there is a spectral sequence with 𝐸1 term

𝐸𝑝,𝑞
1 = 𝑅𝑝+𝑞𝑇(𝐻−𝑝(𝐾•)[−𝑝]) = 𝑅2𝑝+𝑞𝑇(𝐻−𝑝(𝐾•)) = ″𝐸𝑖,𝑗

2

with 𝑖 = 2𝑝 + 𝑞 and 𝑗 = −𝑝. (This looks unnatural, but note that we could just have well
developped the whole theory of filtered complexes using increasing filtrations, with the end
result that this then looks natural, but the other one doesn't.) We leave it to the reader to see
that the differentials match up.

Actually, given a Cartan-Eilenberg resolution 𝐾• → 𝐼•,• the induced morphism 𝐾• → 𝑠𝐼•

into the associated simple complex will be a filtered injective resolution for either filtration
using suitable filtrations on 𝑠𝐼•. This can be used tomatch up the spectral sequences exactly.

11.26. Ext groups

In this section we start describing the ext groups of objects of an abelian category. First we
have the following very general definition.

Definition 11.26.1. Let 𝒜 be an abelian category. Let 𝑖 ∈ 𝐙. Let 𝑋, 𝑌 be objects of 𝐷(𝒜).
The 𝑖th extension group of 𝑋 by 𝑌 is the group

Ext𝑖𝒜(𝑋, 𝑌) = 𝐻𝑜𝑚𝐷(𝒜)(𝑋, 𝑌[𝑖]) = 𝐻𝑜𝑚𝐷(𝒜)(𝑋[−𝑖], 𝑌).

If 𝐴, 𝐵 ∈ 𝑂𝑏(𝒜) we set Ext𝑖𝒜(𝐴, 𝐵) = Ext𝑖𝒜(𝐴[0], 𝐵[0]).

Since 𝐻𝑜𝑚𝐷(𝒜)(𝑋, −), resp. 𝐻𝑜𝑚𝐷(𝒜)(−, 𝑌) is a homological, resp. cohomological functor,
see Lemma 11.4.2, we see that a distinguished triangle (𝑌, 𝑌′, 𝑌″), resp. (𝑋, 𝑋′, 𝑋″) leads
to a long exact sequence

… → Ext𝑖𝒜(𝑋, 𝑌) → Ext𝑖𝒜(𝑋, 𝑌′) → Ext𝑖𝒜(𝑋, 𝑌″) → Ext𝑖+1
𝒜 (𝑋, 𝑌) → …

respectively

… → Ext𝑖𝒜(𝑋″, 𝑌) → Ext𝑖𝒜(𝑋′, 𝑌) → Ext𝑖𝒜(𝑋, 𝑌) → Ext𝑖+1
𝒜 (𝑋″, 𝑌) → …

Note that since 𝐷+(𝒜), 𝐷−(𝒜), 𝐷𝑏(𝒜) are full subcategories we may compute the ext
groups by Hom groups in these categories provided 𝑋, 𝑌 are contained in them.
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In case the category 𝒜 has enough injectives or enough projectives we can compute the Ext
groups using injective or projective resolutions. To avoid confusion, recall that having an
injective (resp. projective) resolution implies vanishing of homology in all low (resp. high)
degrees, see Lemmas 11.17.2 and 11.18.2.

Lemma 11.26.2. Let 𝒜 be an abelian category. Let 𝑋•, 𝑌• ∈ 𝑂𝑏(𝐾(𝒜)).

(1) Let 𝑌• → 𝐼• be an injective resolution (Definition 11.17.1). Then

Ext𝑖𝒜(𝑋•, 𝑌•) = 𝐻𝑜𝑚𝐾(𝒜)(𝑋•, 𝐼•[𝑖]).

(2) Let 𝑃• → 𝑋• be a projective resolution (Definition 11.18.1). Then

Ext𝑖𝒜(𝑋•, 𝑌•) = 𝐻𝑜𝑚𝐾(𝒜)(𝑃•[−𝑖], 𝑌•).

Proof. Follows immediately from Lemma 11.17.8 and Lemma 11.18.8. �

In the rest of this section we discuss extensions of objects of the abelian category itself.
First we observe the following.

Lemma 11.26.3. Let 𝒜 be an abelian category and let 𝐴, 𝐵 ∈ 𝑂𝑏(𝒜). For 𝑖 < 0 we have
Ext𝑖𝒜(𝐵, 𝐴) = 0. We have Ext0𝒜(𝐵, 𝐴) = 𝐻𝑜𝑚𝒜(𝐵, 𝐴).

Proof. Let 𝐿• → 𝐵[0] be any quasi-isomorphism. Then it is also true that 𝜏≤0𝐿• → 𝐵[0]
is a quasi-isomorphism. Hence a morphism 𝐵[0] → 𝐴[𝑖] in 𝐷(𝒜) can be represented as
𝑓𝑠−1 where 𝑠 ∶ 𝐿• → 𝐵[0] is a quasi-isomorphism, 𝑓 ∶ 𝐿• → 𝐴[𝑖] a morphism, and
𝐿𝑛 = 0 for 𝑛 > 0. Thus 𝑓 = 0 if 𝑖 < 0. If 𝑖 = 0, then 𝑓 corresponds exactly to a morphism
𝐵 = Coker(𝐿−1 → 𝐿0) → 𝐴. �

Let 𝒜 be an abelian category. Suppose that 0 → 𝐴 → 𝐴′ → 𝐴″ → 0 is a short exact
sequence of objects of 𝒜. Then 0 → 𝐴[0] → 𝐴′[0] → 𝐴″[0] → 0 leads to a distiguished
triangle in 𝐷(𝒜) (see Lemma 11.11.1) hence a long exact sequence of Ext groups

0 → Ext0𝒜(𝐵, 𝐴) → Ext0𝒜(𝐵, 𝐴′) → Ext0𝒜(𝐵, 𝐴″) → Ext1𝒜(𝐵, 𝐴) → …

Similarly, given a short exact sequence 0 → 𝐵 → 𝐵′ → 𝐵″ → 0 we obtain a long exact
sequence of Ext groups

0 → Ext0𝒜(𝐵″, 𝐴) → Ext0𝒜(𝐵′, 𝐴) → Ext0𝒜(𝐵, 𝐴) → Ext1𝒜(𝐵″, 𝐴) → …

Wemay view these Ext groups as an application of the construction of the derived category.
It shows one can define Ext groups and construct the long exact sequence of Ext groups
without needing the existence of enough injectives or projectives. There is an alternative
construction of the Ext groups due to Yoneda which avoids the use of the derived category,
see [Yon60].

Definition 11.26.4. Let 𝒜 be an abelian category. Let 𝐴, 𝐵 ∈ 𝑂𝑏(𝒜). A degree 𝑖 Yoneda
extension of 𝐵 by 𝐴 is an exact sequence

𝐸 ∶ 0 → 𝐴 → 𝑍𝑖−1 → 𝑍𝑖−2 → … → 𝑍0 → 𝐵 → 0

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06XR
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06XS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06XT


784 11. DERIVED CATEGORIES

in 𝒜. We say two Yoneda extensions 𝐸 and 𝐸′ of the same degree are equivalent if there
exists a commutative diagram

0 // 𝐴 // 𝑍𝑖−1
// … // 𝑍0

// 𝐵 // 0

0 // 𝐴 //

OO

��

𝑍″
𝑖−1

//

OO

��

… // 𝑍″
0

//

OO

��

𝐵 //

OO

��

0

0 // 𝐴 // 𝑍′
𝑖−1

// … // 𝑍′
0

// 𝐵 // 0

where the middle row is a Yoneda extension as well.

It is not immediately clear that the equivalence of the definition is an equivalence relation.
Although it is instructive to prove this directly this will also follow from Lemma 11.26.5
below.
Let 𝒜 be an abelian category with objects 𝐴, 𝐵. Given a Yoneda extension 𝐸 ∶ 0 → 𝐴 →
𝑍𝑖−1 → 𝑍𝑖−2 → … → 𝑍0 → 𝐵 → 0 we define an associated element 𝛿(𝐸) ∈ Ext𝑖(𝐵, 𝐴)
as the morphism 𝛿(𝐸) = 𝑓𝑠−1 ∶ 𝐵[0] → 𝐴[𝑖] where 𝑠 is the quasi-isomorphism

(… → 0 → 𝐴 → 𝑍𝑖−1 → … → 𝑍0 → 0 → …) ⟶ 𝐵[0]
and 𝑓 is the morphism of complexes

(… → 0 → 𝐴 → 𝑍𝑖−1 → … → 𝑍0 → 0 → …) ⟶ 𝐴[𝑖]

We call 𝛿(𝐸) = 𝑓𝑠−1 the class of the Yoneda extension. It turns out that this class charac-
terizes the equivalence class of the Yoneda extension.

Lemma11.26.5. Let𝒜 be an abelian category with objects𝐴,𝐵. Any element in Ext𝑖𝒜(𝐵, 𝐴)
is 𝛿(𝐸) for some degree 𝑖 Yoneda extension of 𝐵 by 𝐴. Given two Yoneda extensions 𝐸, 𝐸′

of the same degree then 𝐸 is equivalent to 𝐸′ if and only if 𝛿(𝐸) = 𝛿(𝐸′).

Proof. Let 𝜉 ∶ 𝐵[0] → 𝐴[𝑖] be an element of Ext𝑖𝒜(𝐵, 𝐴). We may write 𝜉 = 𝑓𝑠−1 for
some quasi-isomorphism 𝑠 ∶ 𝐿• → 𝐵[0] and map 𝑓 ∶ 𝐿• → 𝐴[𝑖]. After replacing 𝐿• by
𝜏≤0𝐿• we may assume that 𝐿𝑖 = 0 for 𝑖 > 0. Picture

𝐿−𝑖−1 // 𝐿−𝑖 //

��

… // 𝐿0 // 𝐵 // 0

𝐴

Then setting 𝑍𝑖−1 = (𝐿−𝑖+1 ⊕ 𝐴)/𝐿−𝑖 and 𝑍𝑗 = 𝐿−𝑗 for 𝑗 = 𝑖 − 2, … , 0 we see that we
obtain a degree 𝑖 extension 𝐸 of 𝐵 by 𝐴 whose class 𝛿(𝐸) equals 𝜉.
It is immediate from the definitions that equivalent Yoneda extensions have the same class.
Suppose that 𝐸 ∶ 0 → 𝐴 → 𝑍𝑖−1 → 𝑍𝑖−2 → … → 𝑍0 → 𝐵 → 0 and 𝐸′ ∶ 0 →
𝐴 → 𝑍′

𝑖−1 → 𝑍′
𝑖−2 → … → 𝑍′

0 → 𝐵 → 0 are Yoneda extensions with the same class.
By construction of 𝐷(𝒜) as the localization of 𝐾(𝒜) at the set of quasi-isomorphisms, this
means there exists a complex 𝐿• and quasi-isomorphisms

𝑡 ∶ 𝐿• → (… → 0 → 𝐴 → 𝑍𝑖−1 → … → 𝑍0 → 0 → …)
and

𝑡′ ∶ 𝐿• → (… → 0 → 𝐴 → 𝑍′
𝑖−1 → … → 𝑍′

0 → 0 → …)
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such that 𝑠 ∘ 𝑡 = 𝑠′ ∘ 𝑡′ and 𝑓 ∘ 𝑡 = 𝑓′ ∘ 𝑡′, see Categories, Section 4.24. Let 𝐸″ be the
degree 𝑖 extension of 𝐵 by 𝐴 constructed from the pair 𝐿• → 𝐵[0] and 𝐿• → 𝐴[𝑖] in the
first paragraph of the proof. Then the reader sees readily that there exists ``morphisms''
of degree 𝑖 Yoneda extensions 𝐸″ → 𝐸 and 𝐸″ → 𝐸′ as in the definition of equivalent
Yoneda extensions (details omitted). This finishes the proof. �

Lemma 11.26.6. Let 𝒜 be an abelian category. Let 𝐴, 𝐵 be objects of 𝒜. Then Ext1𝒜(𝐵, 𝐴)
is the group Ext𝒜(𝐵, 𝐴) constructed in Homology, Definition 10.4.2.

Proof. This is the case 𝑖 = 1 of Lemma 11.26.5. �

11.27. Unbounded complexes

A reference for the material in this section is [Spa88]. The following lemma is useful to
find ``good'' left resolutions of unbounded complexes.

Lemma 11.27.1. Let 𝒜 be an abelian category. Let 𝒫 ⊂ 𝑂𝑏(𝒜) be a subset. Assume that
every object of 𝒜 is a quotient of an element of 𝒫. Let 𝐾• be a complex. There exists a
commutative diagram

𝑃•
1

��

// 𝑃•
2

��

// …

𝜏≤1𝐾• // 𝜏≤2𝐾• // …

in the category of complexes such that
(1) the vertical arrows are quasi-isomorphisms,
(2) 𝑃•

1 is a bounded above complex with terms in 𝒫,
(3) the arrows 𝑃•

𝑛 → 𝑃•
𝑛+1 are termwise split injections and each cokernel 𝑃𝑖

𝑛+1/𝑃𝑖
𝑛 is

an element of 𝒫.

Proof. By Lemma 11.15.5 any bounded above complex has a resolution by a bounded
above complex whose terms are in 𝒫. Thus we obtain the first complex 𝑃•

1. By induction it
suffices, given 𝑃•

1, … , 𝑃•
𝑛 to construct 𝑃•

𝑛+1 and the maps 𝑃•
𝑛 → 𝑃•

𝑛+1 and 𝑃•
𝑛 → 𝜏≤𝑛+1𝐾•.

Consider the cone 𝐶•
1 of the composition 𝑃•

𝑛 → 𝜏≤𝑛𝐾• → 𝜏≤𝑛+1𝐾•. This fits into the
distinguished triangle

𝑃•
𝑛 → 𝜏≤𝑛+1𝐾• → 𝐶•

1 → 𝑃•
𝑛[1]

Note that 𝐶•
1 is bounded above, hence we can choose a quasi-isomorphism 𝑄• → 𝐶•

1 where
𝑄• is a bounded above complex whose terms are elements of 𝒫. Take the cone 𝐶•

2 of the
map of complexes 𝑄• → 𝑃•

𝑛[1] to get the distinguished triangle

𝑄• → 𝑃•
𝑛[1] → 𝐶•

2 → 𝑄•[1]

By the axioms of triangulated categories we obtain a map of distinguished triangles

𝑃•
𝑛

//

��

𝐶•
2[−1] //

��

𝑄• //

��

𝑃•
𝑛[1]

��
𝑃•

𝑛
// 𝜏≤𝑛+1𝐾• // 𝐶•

1
// 𝑃•

𝑛[1]

in the triangulated category 𝐾(𝒜). Set 𝑃•
𝑛+1 = 𝐶•

2[−1]. Note that (3) holds by construction.
Choose an actual morphism of complexes 𝑓 ∶ 𝑃•

𝑛+1 → 𝜏≤𝑛+1𝐾•. The left square of the
diagram above commutes up to homotopy, but as 𝑃•

𝑛 → 𝑃•
𝑛+1 is a termwise split injection
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we can lift the homotopy and modify our choice of 𝑓 to make it commute. Finally, 𝑓 is a
quasi-isomorphism, because both 𝑃•

𝑛 → 𝑃•
𝑛 and 𝑄• → 𝐶•

1 are. �

In some cases we can use the lemma above to show that a left derived functor is everywhere
defined.

Proposition 11.27.2. Let 𝐹 ∶ 𝒜 → ℬ be a right exact functor of abelian categories. Let
𝒫 ⊂ 𝑂𝑏(𝒜) be a subset. Assume

(1) every object of 𝒜 is a quotient of an element of 𝒫,
(2) for any bounded above acyclic complex 𝑃• of 𝒜 with 𝑃𝑛 ∈ 𝒫 for all 𝑛 the complex

𝐹(𝑃•) is exact,
(3) 𝒜 and ℬ have colimits of systems over 𝐍,
(4) colimits over 𝐍 are exact in both 𝒜 and ℬ, and
(5) 𝐹 commutes with colimits over 𝐍.

Then 𝐿𝐹 is defined on all of 𝐷(𝒜).

Proof. By (1) and Lemma 11.15.5 for any bounded above complex 𝐾• there exists a quasi-
isomorphism 𝑃• → 𝐾• with 𝑃• bounded above and 𝑃𝑛 ∈ 𝒫 for all 𝑛. Suppose that
𝑠 ∶ 𝑃• → (𝑃′)• is a quasi-isomorphism of bounded above complexes consisting of ob-
jects of 𝒫. Then 𝐹(𝑃•) → 𝐹((𝑃′)•) is a quasi-isomorphism because 𝐹(𝐶(𝑠)•) is acyclic by
assumption (2). This already shows that 𝐿𝐹 is defined on 𝐷−(𝒜) and that a bounded above
complex consisting of objects of 𝒫 computes 𝐿𝐹, see Lemma 11.14.15.
Next, let 𝐾• be an arbitrary complex of 𝒜. Choose a diagram

𝑃•
1

��

// 𝑃•
2

��

// …

𝜏≤1𝐾• // 𝜏≤2𝐾• // …

as in Lemma 11.27.1. Note that the map 𝑐𝑜𝑙𝑖𝑚 𝑃•
𝑛 → 𝐾• is a quasi-isomorphism because

colimits over 𝐍 in 𝒜 are exact and 𝐻𝑖(𝑃•
𝑛) = 𝐻𝑖(𝐾•) for 𝑛 > 𝑖. We claim that

𝐹(𝑐𝑜𝑙𝑖𝑚 𝑃•
𝑛) = 𝑐𝑜𝑙𝑖𝑚 𝐹(𝑃•

𝑛)
(termwise colimits) is 𝐿𝐹(𝐾•), i.e., that 𝑐𝑜𝑙𝑖𝑚 𝑃•

𝑛 computes 𝐿𝐹. To see this, by Lemma
11.14.15, it suffices to prove the following claim. Suppose that

𝑐𝑜𝑙𝑖𝑚 𝑄•
𝑛 = 𝑄• 𝛼

−−→ 𝑃• = 𝑐𝑜𝑙𝑖𝑚 𝑃•
𝑛

is a quasi-isomorphism of complexes, such that each 𝑃•
𝑛, 𝑄•

𝑛 is a bounded above complex
whose terms are in 𝒫 and the maps 𝑃•

𝑛 → 𝜏≤𝑛𝑃• and 𝑄•
𝑛 → 𝜏≤𝑛𝑄• are quasi-isomorphisma.

Claim: 𝐹(𝛼) is a quasi-isomorphism.
The problem is that we do not assume that 𝛼 is given as a colimit of maps between the
complexes 𝑃•

𝑛 and 𝑄•
𝑛. However, for each 𝑛 we know that the solid arrows in the diagram

𝑅•

��
𝑃•

𝑛

��

𝐿•oo // 𝑄•
𝑛

��
𝜏≤𝑛𝑃• 𝜏≤𝑛𝛼

// 𝜏≤𝑛𝑄•
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are quasi-isomorphisms. Because quasi-isomorphisms form a multiplicative system in
𝐾(𝒜) (see Lemma 11.10.2) we can find a quasi-isomorphism 𝐿• → 𝑃•

𝑛 and map of com-
plexes𝐿• → 𝑄•

𝑛 such that the diagram above commutes up to homotopy. Then 𝜏≤𝑛𝐿• → 𝐿•

is a quasi-isomorphism. Hence (by the first part of the proof) we can find a bounded
above complex 𝑅• whose terms are in 𝒫 and a quasi-isomorphism 𝑅• → 𝐿• (as indi-
cated in the diagram). Using the result of the first paragraph of the proof we see that
𝐹(𝑅•) → 𝐹(𝑃•

𝑛) and 𝐹(𝑅•) → 𝐹(𝑄•
𝑛) are quasi-isomorphisms. Thus we obtain a iso-

morphisms 𝐻𝑖(𝐹(𝑃•
𝑛)) → 𝐻𝑖(𝐹(𝑄•

𝑛)) fitting into the commutative diagram

𝐻𝑖(𝐹(𝑃•
𝑛)) //

��

𝐻𝑖(𝐹(𝑄•
𝑛))

��
𝐻𝑖(𝐹(𝑃•)) // 𝐻𝑖(𝐹(𝑄•))

The exact same argument shows that these maps are also compatible as 𝑛 varies. Since by
(4) and (5) we have

𝐻𝑖(𝐹(𝑃•)) = 𝐻𝑖(𝐹(𝑐𝑜𝑙𝑖𝑚 𝑃•
𝑛)) = 𝐻𝑖(𝑐𝑜𝑙𝑖𝑚 𝐹(𝑃•

𝑛)) = 𝑐𝑜𝑙𝑖𝑚 𝐻𝑖(𝐹(𝑃•
𝑛))

and similarly for 𝑄• we conclude that 𝐻𝑖(𝛼) ∶ 𝐻𝑖(𝐹(𝑃•) → 𝐻𝑖(𝐹(𝑄•) is an isomorphism
and the claim follows. �

Lemma 11.27.3. Let 𝒜 be an abelian category. Let ℐ ⊂ 𝑂𝑏(𝒜) be a subset. Assume that
every object of 𝒜 is a subobject of an element of ℐ. Let 𝐾• be a complex. There exists a
commutative diagram

… // 𝜏≥−2𝐾• //

��

𝜏≥−1𝐾•

��
… // 𝐼•

2
// 𝐼•

1

in the category of complexes such that
(1) the vertical arrows are quasi-isomorphisms,
(2) 𝐼•

1 is a bounded above complex with terms in ℐ,
(3) the arrows 𝐼•

𝑛+1 → 𝐼•
𝑛 are termwise split surjections and Ker(𝐼𝑖

𝑛+1 → 𝐼𝑖
𝑛) is an

element of ℐ.

Proof. This lemma is dual to Lemma 11.27.1. �

11.28. K-injective complexes

The following types of complexes can be used to compute right derived functors on the
unbounded derived category.

Definition 11.28.1. Let 𝒜 be an abelian category. A complex 𝐼• is K-injective if for every
acyclic complex 𝑀• we have 𝐻𝑜𝑚𝐾(𝒜)(𝑀•, 𝐼•) = 0.

In the situation of the definition we have in fact 𝐻𝑜𝑚𝐾(𝒜)(𝑀•[𝑖], 𝐼•) = 0 for all 𝑖 as the
translate of an acyclic complex is acyclic.

Lemma 11.28.2. Let 𝒜 be an abelian category. Let 𝐼• be a complex. The following are
equivalent

(1) 𝐼• is K-injective,
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(2) for every quasi-isomorphism 𝑀• → 𝑁• the map

𝐻𝑜𝑚𝐾(𝒜)(𝑁•, 𝐼•) → 𝐻𝑜𝑚𝐾(𝒜)(𝑀•, 𝐼•)

is bijective, and
(3) for every complex 𝑁• the map

𝐻𝑜𝑚𝐾(𝒜)(𝑁•, 𝐼•) → 𝐻𝑜𝑚𝐷(𝒜)(𝑁•, 𝐼•)

is an isomorphism.

Proof. Assume (1). Then (2) holds because the functor 𝐻𝑜𝑚𝐾(𝒜)(−, 𝐼•) is cohomological
and the cone on a quasi-isomorphism is acyclic.

Assume (2). A morphism 𝑁• → 𝐼• in 𝐷(𝒜) is of the form 𝑓𝑠−1 ∶ 𝑁• → 𝐼• where
𝑠 ∶ 𝑀• → 𝑁• is a quasi-isomorphism and 𝑓 ∶ 𝑀• → 𝐼• is a map. By (2) this corresponds
to a unique morphism 𝑁• → 𝐼• in 𝐾(𝒜), i.e., (3) holds.

Assume (3). If 𝑀• is acyclic then 𝑀• is isomorphic to the zero complex in 𝐷(𝒜) hence
𝐻𝑜𝑚𝐷(𝒜)(𝑁•, 𝐼•) = 0, whence 𝐻𝑜𝑚𝐾(𝒜)(𝑁•, 𝐼•) = 0 by (3), i.e., (1) holds. �

Lemma 11.28.3. Let 𝒜 be an abelian category. A bounded below complex of injectives is
K-injective.

Proof. Follows from Lemmas 11.28.2 and 11.17.8. �

Lemma 11.28.4. Let 𝒜 be an abelian category. Let 𝐹 ∶ 𝐾(𝒜) → 𝒟′ be an exact functor
of triangulated categories. Then 𝑅𝐹 is defined at every complex in 𝐾(𝒜) which is quasi-
isomorphic to a K-injective complex. In fact, every K-injective complex computes 𝑅𝐹.

Proof. By Lemma 11.14.4 it suffices to show that 𝑅𝐹 is defined at a K-injective complex,
i.e., it suffices to show a K-injective complex 𝐼• computes 𝑅𝐹. Any quasi-isomorphism
𝐼• → 𝑁• is a homotopy equivalence as it has an inverse by Lemma 11.28.2. Thus 𝐼• → 𝐼•

is a final object of 𝐼•/Qis(𝒜) and we win. �

Lemma 11.28.5. Let 𝒜 be an abelian category. Assume every complex has a quasi-
isomorphism towards a K-injective complex. Then any exact functor 𝐹 ∶ 𝐾(𝒜) → 𝒟′

of triangulated categories has a right derived functor

𝑅𝐹 ∶ 𝐷(𝒜) ⟶ 𝒟′

and 𝑅𝐹(𝐼•) = 𝐼• for K-injective complexes 𝐼•.

Proof. To see this we apply Lemma 11.14.15 with ℐ the collection of K-injective com-
plexes. Since (1) holds by assumption, it suffices to prove that if 𝐼• → 𝐽• is a quasi-
isomorphism of K-injective complexes, then 𝐹(𝐼•) → 𝐹(𝐽•) is an isomorphism. This is
clear because 𝐼• → 𝐽• is a homotopy equivalence, i.e., an isomorphism in 𝐾(𝒜), by Lemma
11.28.2. �

The following lemma can be generalized to limits over bigger ordinals.

Lemma 11.28.6. Let 𝒜 be an abelian category. Let

… → 𝐼•
3 → 𝐼•

2 → 𝐼•
1

be an inverse system of K-injective complexes. Assume
(1) each 𝐼•

𝑛 is 𝐾-injective,
(2) each map 𝐼𝑚

𝑛+1 → 𝐼𝑚
𝑛 is a split surjection,

(3) the limits 𝐼𝑚 = 𝑙𝑖𝑚 𝐼𝑚
𝑛 exist.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=070J
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=070Y
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=070K
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=070L


11.29. BOUNDED COHOMOLOGICAL DIMENSION 789

Then the complex 𝐼• is K-injective.

Proof. Let 𝑀• be an acyclic complex. Let us abbreviate 𝐻𝑛(𝑎, 𝑏) = 𝐻𝑜𝑚𝒜(𝑀𝑎, 𝐼𝑏
𝑛). With

this notation 𝐻𝑜𝑚𝐾(𝒜)(𝑀•, 𝐼•) is the cohomology of the complex

∏
𝑚

𝑙𝑖𝑚
𝑛

𝐻𝑛(𝑚, 𝑚−2) → ∏
𝑚

𝑙𝑖𝑚
𝑛

𝐻𝑛(𝑚, 𝑚−1) → ∏
𝑚

𝑙𝑖𝑚
𝑛

𝐻𝑛(𝑚, 𝑚) → ∏
𝑚

𝑙𝑖𝑚
𝑛

𝐻𝑛(𝑚, 𝑚+1)

in the third spot from the left. We may exchange the order of ∏ and 𝑙𝑖𝑚 and each of the
complexes

∏
𝑚

𝐻𝑛(𝑚, 𝑚 − 2) → ∏
𝑚

𝐻𝑛(𝑚, 𝑚 − 1) → ∏
𝑚

𝐻𝑛(𝑚, 𝑚) → ∏
𝑚

𝐻𝑛(𝑚, 𝑚 + 1)

is exact by assumption (1). By assumption (2) the maps in the systems

… → ∏
𝑚

𝐻3(𝑚, 𝑚 − 2) → ∏
𝑚

𝐻2(𝑚, 𝑚 − 2) → ∏
𝑚

𝐻1(𝑚, 𝑚 − 2)

are surjective. Thus the lemma follows from Homology, Lemma 10.23.4. �

Remark 11.28.7. It appears that a combination of Lemmas 11.27.3, 11.28.5, and 11.28.6
produces ``enough K-injectives'' for any abelian category with enough injectives and count-
able limits. Actually, this may not work! Namely, suppose that 𝐾• is a complex and 𝐼•

𝑛 is
the system of bounded above complexes of injectives produced by Lemma 11.27.3. Let
𝐼• = 𝑙𝑖𝑚 𝐼•

𝑛 be the termwise limit which is K-injective by Lemma 11.28.6. The problem is
that the map 𝐾• → 𝐼• may not be a quasi-isomorphism. Namely, if 𝑙𝑖𝑚𝑛 is not exact in 𝒜
then there is no reason to think that it is a quasi-isomorphism in general.

11.29. Bounded cohomological dimension

There is another case where the unbounded derived functor exists. Namely, when the func-
tor has bounded cohomological dimension.

Lemma 11.29.1. Let 𝒜 be an abelian category. Let 𝑑 ∶ 𝑂𝑏(𝒜) → {0, 1, 2, … , ∞} be a
function. Assume that

(1) every object of 𝒜 is a subobject of an object 𝐴 with 𝑑(𝐴) = 0,
(2) if 0 → 𝐴 → 𝐵 → 𝐶 → 0 is a short exact sequence then 𝑑(𝐶) ≤ max{𝑑(𝐴) −

1, 𝑑(𝐵)}.
Let 𝐾• be a complex such that 𝑛 + 𝑑(𝐾𝑛) tends to −∞ as 𝑛 → −∞. Then there exists a
quasi-isomorphism 𝐾• → 𝐿• with 𝑑(𝐿𝑛) = 0 for all 𝑛 ∈ 𝐙.

Proof. By Lemma 11.15.4 we can find a quasi-isomorphism 𝜎≥0𝐾• → 𝑀• with 𝑀𝑛 = 0
for 𝑛 < 0 and 𝑑(𝑀𝑛) = 0 for 𝑛 ≥ 0. Then 𝐾• is quasi-isomorphic to the complex

… → 𝐾−2 → 𝐾−1 → 𝑀0 → 𝑀1 → …

Hence we may assume that 𝑑(𝐾𝑛) = 0 for 𝑛 ≫ 0. Note that the condition 𝑛 + 𝑑(𝐾𝑛) → −∞
as 𝑛 → −∞ is not violated by this replacement.

We are going to improve 𝐾• by an (infinite) sequence of elementary replacements. An
elementary replacement is the following. Choose an index 𝑛 such that 𝑑(𝐾𝑛) > 0. Choose
an injection 𝐾𝑛 → 𝑀 where 𝑑(𝑀) = 0. Set 𝑀′ = Coker(𝐾𝑛 → 𝑀 ⊕ 𝐾𝑛+1). Consider the
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map of complexes

𝐾• ∶

��

𝐾𝑛−1

��

// 𝐾𝑛

��

// 𝐾𝑛+1

��

// 𝐾𝑛+2

��
(𝐾′)• ∶ 𝐾𝑛−1 //𝑀 //𝑀′ // 𝐾𝑛+2

It is clear that 𝐾• → (𝐾′)• is a quasi-isomorphism. Moreover, it is clear that 𝑑((𝐾′)𝑛) = 0
and 𝑑((𝐾′)𝑛+1) ≤ max{𝑑(𝐾𝑛+1), 𝑑(𝐾𝑛) − 1} and the other values are unchanged.
To finish the proof we carefully choose the order in which to do the elementary replacements
so that for every integer 𝑚 the complex 𝜎≥𝑚𝐾• is changed only a finite number of times.
To do this set

𝜉(𝐾•) = max{𝑛 + 𝑑(𝐾𝑛) ∣ 𝑑(𝐾𝑛) > 0}
and

𝐼 = {𝑛 ∈ 𝐙 ∣ 𝜉(𝐾•) = 𝑛 + 𝑑(𝐾𝑛) ∧ 𝑑(𝐾𝑛) > 0}
Our assumption that 𝑛 + 𝑑(𝐾𝑛) tends to −∞ as 𝑛 → −∞ and the fact that 𝑑(𝐾𝑛) = 0 for
𝑛 >> 0 implies 𝜉(𝐾•) < +∞ and that 𝐼 is a finite set. It is clear that 𝜉((𝐾′)•) ≤ 𝜉(𝐾•) for an
elementary transformation as above. An elementary transformation changes the complex
in degrees ≤ 𝜉(𝐾•) + 1. Hence if we can find finite sequence of elementary transformations
which decrease 𝜉(𝐾•), then we win. However, note that if we do an elementary transfor-
mation starting with the smallest element 𝑛 ∈ 𝐼, then we either decrease the size of 𝐼, or
we increase min 𝐼. Since every element of 𝐼 is ≤ 𝜉(𝐾•) we see that we win after a finite
number of steps. �

Lemma 11.29.2. Let 𝐹 ∶ 𝒜 → ℬ be a left exact functor of abelian categories. If
(1) every object of 𝒜 is a subobject of an object which is right acyclic for 𝐹,
(2) there exists an integer 𝑛 such that 𝑅𝑛𝐹 = 0,

then 𝑅𝐹 ∶ 𝐷(𝒜) → 𝐷(ℬ) exists. Any complex consisting of right acyclic objects for 𝐹
computes 𝑅𝐹 and any complex is the source of a quasi-isomorphism into such a complex.

Proof. Note that the first condition implies that 𝑅𝐹 ∶ 𝐷+(𝒜) → 𝐷+(ℬ) exists, see Propo-
sition 11.15.8. Let 𝐴 be an object of 𝒜. Choose an injection 𝐴 → 𝐴′ with 𝐴′ acyclic. Then
we see that 𝑅𝑛+1𝐹(𝐴) = 𝑅𝑛𝐹(𝐴′/𝐴) = 0 by the long exact cohomology sequence. Hence
we conclude that 𝑅𝑛+1𝐹 = 0. Continuing like this using induction we find that 𝑅𝑚𝐹 = 0
for all 𝑚 ≥ 𝑛.
We are going to use Lemma 11.29.1 with the function 𝑑 ∶ 𝑂𝑏(𝒜) → {0, 1, 2, …} given
by 𝑑(𝐴) = min{0} ∪ {𝑖 ∣ 𝑅𝑖𝐹(𝐴)≠0}. The first assumption of Lemma 11.29.1 is our
assumption (3) and the second assumption of Lemma 11.29.1 follows from the long ex-
act cohomology sequence. Hence for every complex 𝐾• there exists a quasi-isomorphism
𝐾• → 𝐿• with 𝐿𝑛 right acyclic for 𝐹. We claim that if 𝐿• → 𝑀• is a quasi-isomorphism
of complexes of right acyclic objects for 𝐹, then 𝐹(𝐿•) → 𝐹(𝑀•) is a quasi-isomorphism.
If we prove this claim then we are done by Lemma 11.14.15. To prove the claim pick an
integer 𝑖 ∈ 𝐙. Consider the distinguished triangle

𝜎≥𝑖−𝑛−1𝐿• → 𝜎≥𝑖−𝑛−1𝑀• → 𝑄•,

i.e., let 𝑄• be the cone of the first map. Note that 𝑄• is bounded below and that 𝐻𝑗(𝑄•) is
zero except possibly for 𝑗 = 𝑖 − 𝑛 − 1 or 𝑗 = 𝑖 − 𝑛 − 2. We may apply 𝑅𝐹 to 𝑄•. Using
the spectral sequence of Lemma 11.20.3 and the assumed vanishing of cohomology (2) we
conclude that 𝑅𝑗𝐹(𝑄•) is zero except possibly for 𝑗 ∈ {𝑖 − 𝑛 − 2, … , 𝑖 − 1}. Hence we see
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that 𝑅𝐹(𝜎≥𝑖−𝑛−1𝐿•) → 𝑅𝐹(𝜎≥𝑖−𝑛−1𝐿•) induces an isomorphism of cohomology objects in
degrees ≥ 𝑖. By Proposition 11.15.8 we know that 𝑅𝐹(𝜎≥𝑖−𝑛−1𝐿•) = 𝜎≥𝑖−𝑛−1𝐹(𝐿•) and
𝑅𝐹(𝜎≥𝑖−𝑛−1𝑀•) = 𝜎≥𝑖−𝑛−1𝐹(𝑀•). We conclude that 𝐹(𝐿•) → 𝐹(𝑀•) is an isomorphism
in degree 𝑖 as desired. �

Lemma 11.29.3. Let 𝐹 ∶ 𝒜 → ℬ be a right exact functor of abelian categories. If
(1) every object of 𝒜 is a quotient of an object which is left acyclic for 𝐹,
(2) there exists an integer 𝑛 such that 𝐿𝑛𝐹 = 0,

then 𝐿𝐹 ∶ 𝐷(𝒜) → 𝐷(ℬ) exists. Any complex consisting of left acyclic objects for 𝐹
computes 𝐿𝐹 and any complex is the target of a quasi-isomorphism into such a complex.

Proof. This is dual to Lemma 11.29.2. �
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CHAPTER 12

More on Algebra

12.1. Introduction

In this chapter we prove some results in commutative algebra which are less elementary than
those in the first chapter on commutative algebra, see Algebra, Section 7.1. A reference is
[Mat70].

12.2. Computing Tor

Let 𝑅 be a ring. We denote 𝐷(𝑅) the derived category of the abelian category Mod𝑅 of
𝑅-modules. Note that Mod𝑅 has enough projectives as every free 𝑅-module is projective.
Thus we can define the left derived functors of any additive functor from Mod𝑅 to any
abelian category.

This implies in particular to the functor − ⊗𝑅 𝑀 ∶ Mod𝑅 → Mod𝑅 whose right derived
functors are the Tor functors Tor𝑅𝑖 (−, 𝑀), see Algebra, Section 7.69. There is also a total
right derived functor

(12.2.0.1) − ⊗𝐋
𝑅𝑀 ∶ 𝐷−(𝑅) ⟶ 𝐷−(𝑅)

which is denoted − ⊗𝐋
𝑅 𝑀. Its satellites are the Tor modules, i.e., we have

𝐻−𝑝(𝑁 ⊗𝐋
𝑅 𝑀) = Tor𝑅𝑝 (𝑁, 𝑀).

A special situation occurs when we consider the tensor product with an 𝑅-algebra 𝐴. In this
case we think of − ⊗𝑅 𝐴 as a functor from Mod𝑅 to Mod𝐴. Hence the total right derived
functor

(12.2.0.2) − ⊗𝐋
𝑅𝐴 ∶ 𝐷−(𝑅) ⟶ 𝐷−(𝐴)

which is denoted − ⊗𝐋
𝑅 𝐴. Its satellites are the tor groups, i.e., we have

𝐻−𝑝(𝑁 ⊗𝐋
𝑅 𝐴) = Tor𝑅𝑝 (𝑁, 𝐴).

In particular these Tor groups naturally have the structure of 𝐴-modules.

12.3. Derived tensor product

We can construct the derived tensor product in greater generality. In fact, it turns out that
the boundedness assumptions are not necessary, provided we choose K-flat resolutions.

Lemma 12.3.1. Let 𝑅 be a ring. Let 𝑃• be a complex of 𝑅-modules. Let 𝛼, 𝛽 ∶ 𝐿• → 𝑀•

be homotopy equivalent maps of complexes. Then 𝛼 and 𝛽 induce homotopy equivalent
maps

Tot(𝛼 ⊗ id𝑃),Tot(𝛽 ⊗ id𝑃) ∶ Tot(𝐿• ⊗𝑅 𝑃•) ⟶ Tot(𝑀• ⊗𝑅 𝑃•).
In particular the construction𝐿• ↦ Tot(𝐿•⊗𝑅𝑃•) defines an endo-functor of the homotopy
category of complexes.
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Proof. Say 𝛼 = 𝛽 + 𝑑ℎ + ℎ𝑑 for some homotopy ℎ defined by ℎ𝑛 ∶ 𝐿𝑛 → 𝑀𝑛−1. Set

𝐻𝑛 = ⨁𝑎+𝑏=𝑛
ℎ𝑎 ⊗ id𝑃𝑏 ∶ ⨁𝑎+𝑏=𝑛

𝐿𝑎 ⊗𝑅 𝑃𝑏 ⟶ ⨁𝑎+𝑏=𝑛
𝑀𝑎−1 ⊗𝑅 𝑃𝑏

Then a straightforward computation shows that

Tot(𝛼 ⊗ id𝑃) = Tot(𝛽 ⊗ id𝑃) + 𝑑𝐻 + 𝐻𝑑

as maps Tot(𝐿• ⊗𝑅 𝑃•) → Tot(𝑀• ⊗𝑅 𝑃•). �

Lemma 12.3.2. Let 𝑅 be a ring. Let 𝑃• be a complex of 𝑅-modules. The functor

𝐾(Mod𝑅) ⟶ 𝐾(Mod𝑅), 𝐿• ⟼ Tot(𝐿• ⊗𝑅 𝑃•)

is an exact functor of triangulated categories.

Proof. By our definition of the triangulated structure on 𝐾(Mod𝑅) we have to check that
our functor maps a termwise split short exact sequence of complexes to a termwise split
short exact sequence of complexes. As the terms of Tot(𝐿• ⊗𝑅 𝑃•) are direct sums of the
tensor products 𝐿𝑎 ⊗𝑅 𝑃𝑏 this is clear. �

The following definition will allow us to think intelligently about derived tensor products
of unbounded complexes.

Definition 12.3.3. Let 𝑅 be a ring. A complex 𝐾• is called K-flat if for every acyclic
complex 𝑀• the total complex Tot(𝑀• ⊗𝑅 𝐾•) is acyclic.

Lemma 12.3.4. Let 𝑅 be a ring. Let 𝐾• be a K-flat complex. Then the functor

𝐾(Mod𝑅) ⟶ 𝐾(Mod𝑅), 𝐿• ⟼ Tot(𝐿• ⊗𝑅 𝐾•)

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 12.3.2 and the fact that quasi-isomorphisms in 𝐾(Mod𝑅) and
𝐾(Mod𝐴) are characterized by having acyclic cones. �

Lemma 12.3.5. Let 𝑅 → 𝑅′ be a ring map. If 𝐾• is a K-flat complex of 𝑅-modules, then
𝐾• ⊗𝑅 𝑅′ is a K-flat complex of 𝑅′-modules.

Proof. Follows from the definitions and the fact that (𝐾• ⊗𝑅 𝑅′) ⊗𝑅′ 𝐿• = 𝐾• ⊗𝑅 𝐿• for
any complex 𝐿• of 𝑅′-modules. �

Lemma 12.3.6. Let 𝑅 be a ring. If 𝐾•, 𝐿• are K-flat complexes of 𝑅-modules, then
Tot(𝐾• ⊗𝑅 𝐿•) is a K-flat complex of 𝑅-modules.

Proof. Follows from the isomorphism

Tot(𝑀• ⊗𝑅 Tot(𝐾• ⊗𝑅 𝐿•)) = Tot(Tot(𝑀• ⊗𝑅 𝐾•) ⊗𝑅 𝐿•)

and the definition. �

Lemma 12.3.7. Let 𝑅 be a ring. Let (𝐾•
1, 𝐾•

2, 𝐾•
3) be a distinguished triangle in 𝐾(Mod𝑅).

If two out of three of 𝐾•
𝑖 are K-flat, so is the third.

Proof. Follows fromLemma 12.3.2 and the fact that in a distinguished triangle in𝐾(Mod𝐴)
if two out of three are acyclic, so is the third. �

Lemma 12.3.8. Let 𝑅 be a ring. Let 𝑃• be a bounded above complex of flat 𝑅-modules.
Then 𝑃• is K-flat.
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Proof. Let 𝐿• be an acyclic complex of 𝑅-modules. Let 𝜉 ∈ 𝐻𝑛(Tot(𝐿• ⊗𝑅 𝑃•)). We have
to show that 𝜉 = 0. Since Tot𝑛(𝐿• ⊗𝑅 𝑃•) is a direct sum with terms 𝐿𝑎 ⊗𝑅 𝑃𝑏 we see that
𝜉 comes from an element in 𝐻𝑛(Tot(𝜏≤𝑚𝐿• ⊗𝑅 𝑃•)) for some 𝑚 ∈ 𝐙. Since 𝜏≤𝑚𝐿• is also
acyclic we may replace 𝐿• by 𝜏≤𝑚𝐿•. Hence we may assume that 𝐿• is bounded above. In
this case the spectral sequence of Homology, Lemma 10.19.5 has

′𝐸𝑝,𝑞
1 = 𝐻𝑝(𝐿• ⊗𝑅 𝑃𝑞)

which is zero as 𝑃𝑞 is flat and 𝐿• acyclic. Hence 𝐻∗(Tot(𝐿• ⊗𝑅 𝑃•)) = 0. �

In the following lemma by a colimit of a system of complexeswemean the termwise colimit.

Lemma 12.3.9. Let 𝑅 be a ring. Let 𝐾•
1 → 𝐾•

2 → … be a system of K-flat complexes.
Then 𝑐𝑜𝑙𝑖𝑚𝑖 𝐾•

𝑖 is K-flat.

Proof. Because we are taking termwise colimits it is clear that

𝑐𝑜𝑙𝑖𝑚𝑖 Tot(𝑀• ⊗𝑅 𝐾•
𝑖 ) = Tot(𝑀• ⊗𝑅 𝑐𝑜𝑙𝑖𝑚𝑖 𝐾•

𝑖 )

Hence the lemma follows from the fact that filtered colimits are exact. �

Lemma 12.3.10. Let 𝑅 be a ring. For any complex 𝑀• there exists a 𝐾-flat complex 𝐾•

and a quasi-isomorphism 𝐾• → 𝑀•. Moreover each 𝐾𝑛 is a flat 𝑅-module.

Proof. Let 𝒫 ⊂ 𝑂𝑏(Mod𝑅) be the class of flat 𝑅-modules. By Derived Categories, Lemma
11.27.1 there exists a system 𝐾•

1 → 𝐾•
2 → … and a diagram

𝐾•
1

��

// 𝐾•
2

��

// …

𝜏≤1𝑀• // 𝜏≤2𝑀• // …

with the properties (1), (2), (3) listed in that lemma. These properties imply each complex
𝐾•

𝑖 is a bounded above complex of flat modules. Hence 𝐾•
𝑖 is K-flat by Lemma 12.3.8.

The induced map 𝑐𝑜𝑙𝑖𝑚𝑖 𝐾•
𝑖 → 𝑀• is a quasi-isomorphism by construction. The complex

𝑐𝑜𝑙𝑖𝑚𝑖 𝐾•
𝑖 is K-flat by Lemma 12.3.9. The final assertion of the lemma is true because the

colimit of a system of flat modules is flat, see Algebra, Lemma 7.35.2. �

Lemma 12.3.11. Let 𝑅 be a ring. Let 𝛼 ∶ 𝑃• → 𝑄• be a quasi-isomorphism of K-flat
complexes of 𝑅-modules. For every complex 𝐿• of 𝑅-modules the induced map

Tot(id𝐿 ⊗ 𝛼) ∶ Tot(𝐿• ⊗𝑅 𝑃•) ⟶ Tot(𝐿• ⊗𝑅 𝑄•)

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism 𝐾• → 𝐿• with 𝐾• a K-flat complex, see Lemma
12.3.10. Consider the commutative diagram

Tot(𝐾• ⊗𝑅 𝑃•) //

��

Tot(𝐾• ⊗𝑅 𝑄•)

��
Tot(𝐿• ⊗𝑅 𝑃•) // Tot(𝐿• ⊗𝑅 𝑄•)

The result follows as by Lemma 12.3.4 the vertical arrows and the top horizontal arrow are
quasi-isomorphisms. �
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Let 𝑅 be a ring. Let 𝑀• be an object of 𝐷(𝑅). Choose a K-flat resolution 𝐾• → 𝑀•, see
Lemma 12.3.10. By Lemmas 12.3.1 and 12.3.2 we obtain an exact functor of triangulated
categories

𝐾(Mod𝑅) ⟶ 𝐾(Mod𝑅), 𝐿• ⟼ Tot(𝐿• ⊗𝑅 𝐾•)

By Lemma 12.3.4 this functor induces a functor 𝐷(𝑅) → 𝐷(𝑅) simply because 𝐷(𝑅) is the
localization of 𝐾(Mod𝑅) at quasi-isomorphism. By Lemma 12.3.11 the resulting functor
(up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 12.3.12. Let 𝑅 be a ring. Let 𝑀• be an object of 𝐷(𝑅). The derived tensor
product

− ⊗𝐋
𝑅 𝑀• ∶ 𝐷(𝑅) ⟶ 𝐷(𝑅)

is the exact functor of triangulated categories described above.

This functor extends the functor (12.2.0.1). It is clear from our explicit constructions that
there is a canonical isomorphism

𝑀• ⊗𝐋
𝑅 𝐿• ≅ 𝐿• ⊗𝐋

𝑅 𝑀•

whenever both 𝐿• and 𝑀• are in 𝐷(𝑅). Hence when we write 𝑀• ⊗𝐋
𝑅 𝐿• we will usually

be agnostic about which variable we are using to define the derived tensor product with.

12.4. Derived change of rings

Let 𝑅 → 𝐴 be a ring map. We can also use K-flat resolutions to define a derived base
change functor

− ⊗𝐋
𝑅 𝐴 ∶ 𝐷(𝑅) → 𝐷(𝐴)

extending the functor (12.2.0.2). Namely, for every complex of 𝑅-modules 𝑀• we can
choose a K-flat resolution 𝐾• → 𝑀• and set 𝑀• ⊗𝐋

𝑅 𝐴 = 𝐾• ⊗𝑅 𝐴. You can use Lemmas
12.3.10 and 12.3.11 to see that this is well defined. However, to cross all the t's and dot all
the i's it is perhaps more convenient to use some general theory.

Lemma 12.4.1. The construction above is independent of choices and defines an exact
functor of triangulated categories 𝐷(𝑅) → 𝐷(𝐴).

Proof. To see this we use the general theory developed in Derived Categories, Section
11.14. Set 𝒟 = 𝐾(Mod𝑅) and 𝒟′ = 𝐷(𝐴). Let us write 𝐹 ∶ 𝒟 → 𝒟′ the exact functor
of triangulated categories defined by the rule 𝐹(𝑀•) = 𝑀• ⊗𝑅 𝐴. We let 𝑆 be the set of
quasi-isomorphisms in 𝒟 = 𝐾(Mod𝑅). This gives a situation as in Derived Categories,
Situation 11.14.1 so that Derived Categories, Definition 11.14.2 applies. We claim that
𝐿𝐹 is everywhere defined. This follows from Derived Categories, Lemma 11.14.15 with
𝒫 ⊂ 𝑂𝑏(𝒟) the collection of 𝐾-flat complexes: (1) follows from Lemma 12.3.10 and (2)
follows from Lemma 12.3.11. Thus we obtain a derived functor

𝐿𝐹 ∶ 𝐷(𝑅) = 𝑆−1𝒟 ⟶ 𝒟′ = 𝐷(𝐴)

seeDerivedCategories, Equation (11.14.9.1). Finally, DerivedCategories, Lemma 11.14.15
also guarantees that 𝐿𝐹(𝐾•) = 𝐹(𝐾•) = 𝐾• ⊗𝑅 𝐴 when 𝐾• is K-flat, i.e., 𝐿𝐹 is indeed
computed in the way described above. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=064M
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12.5. Tor independence

We often encounter the following situation. Suppose that

𝐴 // 𝐴′

𝑅 //

OO

𝑅′

OO

is a ``base change'' diagram of rings, i.e., 𝐴′ = 𝐴⊗𝑅 𝑅′. In this situation, for any 𝐴-module
𝑀 we have 𝑀 ⊗𝐴 𝐴′ = 𝑀 ⊗𝑅 𝑅′. Thus − ⊗𝑅 𝑅′ is equal to − ⊗𝐴 𝐴′ as a functor
Mod𝐴 → Mod𝐴′. In general this equality does not extend to derived tensor products. Let
𝐾• ∈ 𝐷−(𝐴). We have

𝐾• ⊗𝐋
𝐴 𝐴′ = 𝑃• ⊗𝐴 𝐴′

where 𝑃• → 𝐾• is a projective resolution in the category of 𝐴-modules. Pick a projective
resolution 𝐸• → 𝑃• in the category of 𝑅-modules. Then it is also the case that 𝐸• → 𝐾•

is a projective resolution in the category of 𝑅-modules. Hence

𝐾• ⊗𝐋
𝑅 𝑅′ = 𝐸• ⊗𝑅 𝑅′

The map 𝐸• → 𝑃• and the map 𝑅′ → 𝐴′ combined determine a comparison map

(12.5.0.1) 𝐾• ⊗𝐋
𝑅 𝑅′ = 𝐸• ⊗𝑅 𝑅′ ⟶ 𝑃• ⊗𝐴 𝐴′ = 𝐾• ⊗𝐋

𝐴 𝐴′

A simple example where this is not an isomorphism is to take 𝑅 = 𝑘[𝑥], 𝐴 = 𝑅′ = 𝐴′ =
𝑘[𝑥]/(𝑥) = 𝑘 and 𝐾• = 𝐴[0]. Clearly, a necessary condition is that Tor𝑅𝑝 (𝐴, 𝑅′) = 0 for all
𝑝 > 0.

Definition 12.5.1. Let 𝑅 be a ring. Let 𝐴, 𝐵 be 𝑅-algebras. We say 𝐴 and 𝐵 are Tor
independent over 𝑅 if Tor𝑅𝑝 (𝐴, 𝐵) = 0 for all 𝑝 > 0.

Lemma 12.5.2. The comparison map (12.5.0.1) is an isomorphism if 𝐴 and 𝑅′ are Tor
independent over 𝑅.

Proof. To prove this we choose a free resolution 𝐹• → 𝑅′ of 𝑅′ as an 𝑅-module. Because
𝐴 and 𝑅′ are Tor independent over 𝑅 we see that 𝐹• ⊗𝑅 𝐴 is a free 𝐴-module resolution
of 𝐴′ over 𝐴. By our general construction of the derived tensor product above we see that

𝑃• ⊗𝐴 𝐴′ ≅ Tot(𝑃• ⊗𝐴 (𝐹• ⊗𝑅 𝐴)) = Tot(𝑃• ⊗𝑅 𝐹•) ≅ Tot(𝐸• ⊗𝑅 𝐹•) ≅ 𝐸• ⊗𝑅 𝑅′

as desired. �

12.6. Spectral sequences for Tor

In this section we collect various spectral sequences that come up when considering the Tor
functors.

Example 12.6.1. Let 𝑅 be a ring. Let 𝐾• be a bounded above chain complex of 𝑅-modules.
Let 𝑀 be an 𝑅-module. Then there is a spectral sequence with 𝐸2-page

Tor𝑅𝑖 (𝐻𝑗(𝐾•), 𝑀) ⇒ 𝐻𝑖+𝑗(𝐾• ⊗𝐋
𝑅 𝑀)

and another spectral sequence with 𝐸1-page

Tor𝑅𝑖 (𝐾𝑗, 𝑀) ⇒ 𝐻𝑖+𝑗(𝐾• ⊗𝐋
𝑅 𝑀)

This follows from the dual to Derived Categories, Lemma 11.20.3.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0660
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0661
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Example 12.6.2. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑅-module and let 𝑁 be an
𝑆-module. Then there is a spectral sequence

Tor𝑆𝑛 (Tor𝑅𝑚(𝑀, 𝑆), 𝑁) ⇒ Tor𝑅𝑛+𝑚(𝑀, 𝑁).

To construct it choose a 𝑅-free resolution 𝑃• of 𝑀. Then we have

𝑀 ⊗𝐋
𝑅 𝑁 = 𝑃• ⊗𝑅 𝑁 = (𝑃• ⊗𝑅 𝑆) ⊗𝑆 𝑁

and then apply the first spectral sequence of Example 12.6.1.

Example 12.6.3. Consider a commutative diagram

𝐵 // 𝐵′ = 𝐵 ⊗𝐴 𝐴′

𝐴 //

OO

𝐴′

OO

and 𝐵-modules 𝑀, 𝑁. Set 𝑀′ = 𝑀 ⊗𝐴 𝐴′ = 𝑀 ⊗𝐵 𝐵′ and 𝑁′ = 𝑁 ⊗𝐴 𝐴′ = 𝑁 ⊗𝐵 𝐵′.
Assume that 𝐴 → 𝐵 is flat and that 𝑀 and 𝑁 are 𝐴-flat. Then there is a spectral sequence

Tor𝐴𝑖 (Tor𝐵𝑗 (𝑀, 𝑁), 𝐴′) ⇒ Tor𝐵
′

𝑖+𝑗(𝑀
′, 𝑁′)

The reason is as follows. Choose free resolution 𝐹• → 𝑀 as a 𝐵-module. As 𝐵 and 𝑀 are
𝐴-flat we see that 𝐹• ⊗𝐴 𝐴′ is a free 𝐵′-resolution of 𝑀′. Hence we see that the groups
Tor𝐵

′
𝑛 (𝑀′, 𝑁′) are computed by the complex

(𝐹• ⊗𝐴 𝐴′) ⊗𝐵′ 𝑁′ = (𝐹• ⊗𝐵 𝑁) ⊗𝐴 𝐴′ = (𝐹• ⊗𝐵 𝑁) ⊗𝐋
𝐴 𝐴′

the last equality because 𝐹• ⊗𝐵 𝑁 is a complex of flat 𝐴-modules as 𝑁 is flat over 𝐴. Hence
we obtain the spectral sequence by applying the spectral sequence of Example 12.6.1.

Example 12.6.4. Let 𝐾•, 𝐿• be objects of 𝐷−(𝑅). Then there are spectral sequences

𝐻𝑝(𝐾• ⊗𝐋
𝑅 𝐻𝑞(𝐿•)) ⇒ 𝐻𝑝+𝑞(𝐾• ⊗𝐋

𝑅 𝐿•)

and
𝐻𝑞(𝐻𝑝(𝐾•) ⊗𝐋

𝑅 𝐿•) ⇒ 𝐻𝑝+𝑞(𝐾• ⊗𝐋
𝑅 𝐿•)

After replacing 𝐾• and 𝐿• by bounded above complexes of projectives, these spectral se-
quences are simply the two spectral sequences for computing the cohomology of Tot(𝐾• ⊗
𝐿•) discussed in Homology, Section 10.19.

12.7. Products and Tor

The simplest example of the product maps comes from the following situation. Suppose
that 𝐾•, 𝐿• ∈ 𝐷(𝑅) with one of them contained in 𝐷−(𝑅). Then there are maps

(12.7.0.1) 𝐻𝑖(𝐾•) ⊗𝑅 𝐻𝑗(𝐿•) ⟶ 𝐻𝑖+𝑗(𝐾• ⊗𝐋
𝑅 𝐿•)

Namely, to define these maps we may assume that one of 𝐾•, 𝐿• is a bounded above
complex of projective 𝑅-modules. In that case 𝐾• ⊗𝐋

𝑅 𝐿• is represented by the complex
Tot(𝐾• ⊗𝑅 𝐿•), see Section 12.2. Next, suppose that 𝜉 ∈ 𝐻𝑖(𝐾•) and 𝜁 ∈ 𝐻𝑗(𝐿•). Choose
𝑘 ∈ Ker(𝐾𝑖 → 𝐾𝑖+1) and 𝑙 ∈ Ker(𝐿𝑗 → 𝐿𝑗+1) representing 𝜉 and 𝜁. Then we set

𝜉 ∪ 𝜁 = class of 𝑘 ⊗ 𝑙 in 𝐻𝑖+𝑗(Tot(𝐾• ⊗𝑅 𝐿•)).

This make sense because the formula (see Homology, Definition 10.19.2) for the differential
d on the total complex shows that 𝑘 ⊗ 𝑙 is a cocycle. Moreover, if 𝑘′ = 𝑑𝐾(𝑘″) for some
𝑘″ ∈ 𝐾𝑖−1, then 𝑘′ ⊗ 𝑙 = d(𝑘″ ⊗ 𝑙) because 𝑙 is a cocycle. Similarly, altering the choice of

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=068F
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0620
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0662
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𝑙 representing 𝜁 does not change the class of 𝑘 ⊗ 𝑙. It is equally clear that ∪ is bilinear, and
hence to a general element of 𝐻𝑖(𝐾•) ⊗𝑅 𝐻𝑗(𝐿•) we assign

∑ 𝜉𝑖 ⊗ 𝜁𝑖 ⟼ ∑ 𝜉𝑖 ∪ 𝜁𝑖

in 𝐻𝑖+𝑗(Tot(𝐾• ⊗𝑅 𝐿•)).

Let 𝑅 → 𝐴 be a ring map. Let 𝐾•, 𝐿• ∈ 𝐷−(𝑅). Then we have a canonical identification

(12.7.0.2) (𝐾• ⊗𝐋
𝑅 𝐴) ⊗𝐋

𝐴 (𝐿• ⊗𝐋
𝑅 𝐴) = (𝐾• ⊗𝐋

𝑅 𝐿•) ⊗𝐋
𝑅 𝐴

in 𝐷(𝐴). It is constructed as follows. First, choose projective resolutions 𝑃• → 𝐾• and
𝑄• → 𝐿• over 𝑅. Then the left hand side is represented by the complex Tot((𝑃• ⊗𝑅 𝐴) ⊗𝐴
(𝑄• ⊗𝑅 𝐴)) and the right hand side by the complex Tot(𝑃• ⊗𝑅 𝑄•)⊗𝑅 𝐴. These complexes
are canonically isomorphic. Thus the construction above induces products

Tor𝑅𝑛 (𝐾•, 𝐴) ⊗𝐴 Tor𝑅𝑚(𝐿•, 𝐴) ⟶ Tor𝑅𝑛+𝑚(𝐾• ⊗𝑅 𝐿•, 𝐴)

which are occasionally usefull.

Let 𝑀, 𝑁 be 𝑅-modules. Using the general construction above and functoriality of Tor we
obtain canonical maps

(12.7.0.3) Tor𝑅𝑛 (𝑀, 𝐴) ⊗𝐴 Tor𝑅𝑚(𝑁, 𝐴) ⟶ Tor𝑅𝑛+𝑚(𝑀 ⊗𝑅 𝑁, 𝐴)

Here is a direct construction using projective resolutions. First, choose projective resolu-
tions

𝑃• → 𝑀, 𝑄• → 𝑁, 𝑇• → 𝑀 ⊗𝑅 𝑁
over 𝑅. We have 𝐻0(Tot(𝑃• ⊗𝑅 𝑄•)) = 𝑀⊗𝑅 𝑁 by right exactness of ⊗𝑅. Hence Derived
Categories, Lemmas 11.18.6 and 11.18.7 guarantee the existence and uniqueness of a map
of complexes 𝜇 ∶ Tot(𝑃• ⊗𝑅 𝑄•) → 𝑇• such that 𝐻0(𝜇) = id𝑀⊗𝑅𝑁. This induces a
canonical map

(𝑀 ⊗𝐋
𝑅 𝐴) ⊗𝐋

𝐴 (𝑁 ⊗𝐋
𝑅 𝐴) = Tot((𝑃• ⊗𝑅 𝐴) ⊗𝐴 (𝑄• ⊗𝑅 𝐴))

= Tot(𝑃• ⊗𝑅 𝑄•) ⊗𝑅 𝐴
→ 𝑇• ⊗𝑅 𝐴

= (𝑀 ⊗𝑅 𝑁) ⊗𝐋
𝑅 𝐴

in 𝐷(𝐴). Hence the products (12.7.0.3) above are constructed using (12.7.0.1) over 𝐴 to
construct

Tor𝑅𝑛 (𝑀, 𝐴) ⊗𝐴 Tor𝑅𝑚(𝑁, 𝐴) → 𝐻−𝑛−𝑚((𝑀 ⊗𝐋
𝑅 𝐴) ⊗𝐋

𝐴 (𝑁 ⊗𝐋
𝑅 𝐴))

and then composing by the displayed map above to end up in Tor𝑅𝑛+𝑚(𝑀 ⊗𝑅 𝑁, 𝐴).

An interesting special case of the above occurs when 𝑀 = 𝑁 = 𝐵 where 𝐵 is an 𝑅-algebra.
In this case we obtain maps

Tor𝑅𝑛 (𝐵, 𝐴) ⊗𝐴 Tor𝑅𝑚(𝐵, 𝐴) ⟶ Tor𝑅𝑛 (𝐵 ⊗𝑅 𝐵, 𝐴) ⟶ Tor𝑅𝑛 (𝐵, 𝐴)

the second arrow being induced by the multiplication map 𝐵⊗𝑅𝐵 → 𝐵 via functoriality for
Tor. In other words we obtain an 𝐴-algebra structure on Tor𝑅⋆(𝐵, 𝐴). This algebra structure
has many intriguing properties (associativity, graded commutative, 𝐵-algebra structure, di-
vided powers in some case, etc) which we will discuss elsewhere (insert future reference
here).
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Lemma 12.7.1. Let 𝑅 be a ring. Let 𝐴, 𝐵, 𝐶 be 𝑅-algebras and let 𝐵 → 𝐶 be an 𝑅-algebra
map. Then the induced map

Tor𝑅
⋆(𝐵, 𝐴) ⟶ Tor𝑅

⋆(𝐶, 𝐴)

is an 𝐴-algebra homomorphism.

Proof. Omitted. Hint: You can prove this by working through the definitions, writing all
the complexes explicitly. �

12.8. Formal glueing of module categories

Fix a noetherian scheme 𝑋, and a closed subscheme 𝑍 with complement 𝑈. Our goal is
to explain a result of Artin that describes how coherent sheaves on 𝑋 can be constructed
(uniquely) from coherent sheaves on the formal completion of 𝑋 along 𝑍, and those on 𝑈
with a suitable compatibility on the overlap.

Definition 12.8.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module.
(1) Let 𝐼 ⊂ 𝑅 be an ideal. We say 𝑀 is an 𝐼-power torsion module if for every

𝑚 ∈ 𝑀 there exists an 𝑛 > 0 such that 𝐼𝑛𝑚 = 0.
(2) Let 𝑓 ∈ 𝑅. We say 𝑀 is an 𝑓-power torsion module if for each 𝑚 ∈ 𝑀, there

exists an 𝑛 > 0 such that 𝑓𝑛𝑚 = 0.

Thus an 𝑓-power torsion module is the same thing as a 𝐼-power torsion module for 𝐼 = (𝑓).
We sometimes use the notation 𝑀[𝐼𝑛] = {𝑚 ∈ 𝑀 ∣ 𝐼𝑛𝑚 = 0} and 𝑀[𝐼∞] = ⋃ 𝑀[𝐼𝑛]
for an 𝑅-module 𝑀. Thus 𝑀 is 𝐼-power torsion if and only if 𝑀 = 𝑀[𝐼∞] if and only if
𝑀 = ⋃ 𝑀[𝐼𝑛].

Lemma 12.8.2. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. The following are
equivalent

(1) 𝜑 is flat and 𝑅/𝐼 → 𝑆/𝐼𝑆 is faithfully flat,
(2) 𝜑 is flat, and the map 𝑆𝑝𝑒𝑐(𝑆/𝐼𝑆) → 𝑆𝑝𝑒𝑐(𝑅/𝐼) is surjective.
(3) 𝜑 is flat, and the base change functor 𝑀 ↦ 𝑀 ⊗𝑅 𝑆 is faithful on modules

annihilated by 𝐼, and
(4) 𝜑 is flat, and the base change functor 𝑀 ↦ 𝑀⊗𝑅 𝑆 is faithful on 𝐼-power torsion

modules.

Proof. If 𝑅 → 𝑆 is flat, then 𝑅/𝐼𝑛 → 𝑆/𝐼𝑛𝑆 is flat for every 𝑛, see Algebra, Lemma 7.35.6.
Hence (1) and (2) are equivalent by Algebra, Lemma 7.35.15. The equivalence of (1) with
(3) follows by identifying 𝐼-torsion 𝑅-modules with 𝑅/𝐼-modules, using that

𝑀 ⊗𝑅 𝑆 = 𝑀 ⊗𝑅/𝐼 𝑆/𝐼𝑆

for 𝑅-modules 𝑀 annihilated by 𝐼, and Algebra, Lemma 7.35.13. The implication (4) ⇒
(3) is immediate. Assume (3). We have seen above that 𝑅/𝐼𝑛 → 𝑆/𝐼𝑛𝑆 is flat, and by
assumption it induces a surjection on spectra, as 𝑆𝑝𝑒𝑐(𝑅/𝐼𝑛) = 𝑆𝑝𝑒𝑐(𝑅/𝐼) and similarly
for 𝑆. Hence the base change functor is faithful on modules annihilated by 𝐼𝑛. Since any
𝐼-power torsion module 𝑀 is the union 𝑀 = ⋃ 𝑀𝑛 where 𝑀𝑛 is annihilated by 𝐼𝑛 we see
that the base change functor is faithful on the category of all 𝐼-power torsion modules (as
tensor product commutes with colimits). �

Lemma 12.8.3. Let 𝑅 be a ring. Let 𝐼 be an ideal of 𝑅. Let 𝑀 be an 𝐼-power torsion
module. Then 𝑀 admits a resolution

… → 𝐾2 → 𝐾1 → 𝐾0 → 𝑀 → 0

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=068K
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with each 𝐾𝑖 a direct sum of copies of 𝑅/𝐼𝑛 for 𝑛 variable.

Proof. There is a canonical surjection

⊕𝑚∈𝑀𝑅/𝐼𝑛𝑚 → 𝑀 → 0

where 𝑛𝑚 is the smallest positive integer such that 𝐼𝑛𝑚 ⋅ 𝑚 = 0. The kernel of the preceding
surjection is also an 𝐼-power torsion module. Proceeding inductively, we construct the
desired resolution of 𝑀. �

Lemma 12.8.4. Assume (𝜑 ∶ 𝑅 → 𝑆, 𝐼) satisfies the equivalent conditions of Lemma
12.8.2. The following are equivalent

(1) for any 𝐼-power torsion module 𝑀, the natural map 𝑀 → 𝑀 ⊗𝑅 𝑆 is an isomor-
phism, and

(2) 𝑅/𝐼 → 𝑆/𝐼𝑆 is an isomorphism.

Proof. The implication (1) ⇒ (2) is immediate. Assume (2). First assume that 𝑀 is anni-
hilated by 𝐼. In this case, 𝑀 is an 𝑅/𝐼-module. Hence, we have an isomorphism

𝑀 ⊗𝑅 𝑆 = 𝑀 ⊗𝑅/𝐼 𝑆/𝐼𝑆 = 𝑀 ⊗𝑅/𝐼 𝑅/𝐼 = 𝑀

proving the claim. Next we prove by induction that 𝑀 → 𝑀 ⊗𝑅 𝑆 is an isomorphism
for any module 𝑀 is annihilated by 𝐼𝑛. Assume the induction hypothesis holds for 𝑛 and
assume 𝑀 is annihilated by 𝐼𝑛+1. Then we have a short exact sequence

0 → 𝐼𝑛𝑀 → 𝑀 → 𝑀/𝐼𝑛𝑀 → 0

and as 𝑅 → 𝑆 is flat this gives rise to a short exact sequence

0 → 𝐼𝑛𝑀 ⊗𝑅 𝑆 → 𝑀 ⊗𝑅 𝑆 → 𝑀/𝐼𝑛𝑀 ⊗𝑅 𝑆 → 0

Using that the canonical map is an isomorphism for 𝑀′ = 𝐼𝑛𝑀 and 𝑀″ = 𝑀/𝐼𝑛𝑀 (by
induction hypothesis) we conclude the same thing is true for 𝑀. Finally, suppose that 𝑀
is a general 𝐼-power torsion module. Then 𝑀 = ⋃ 𝑀𝑛 where 𝑀𝑛 is annihilated by 𝐼𝑛 and
we conclude using that tensor products commute with colimits. �

Lemma 12.8.5. Let 𝑅 be a ring. Let 𝐼 be an ideal of 𝑅. For any 𝑅-module 𝑀 set 𝑀[𝐼𝑛] =
{𝑚 ∈ 𝑀 ∣ 𝐼𝑛𝑚 = 0}. If 𝐼 is finitely generated then the following are equivalent

(1) 𝑀[𝐼] = 0,
(2) 𝑀[𝐼𝑛] = 0 for all 𝑛 ≥ 1, and
(3) if 𝐼 = (𝑓1, … , 𝑓𝑡), then the map 𝑀 → ⨁ 𝑀𝑓𝑖

is injective.

Proof. This follows from Algebra, Lemma 7.20.4. �

Lemma 12.8.6. Let 𝑅 be a ring. Let 𝐼 be an ideal of 𝑅. For any 𝑅-module 𝑀 set 𝑀[𝐼∞] =
⋃𝑛≥1 𝑀[𝐼𝑛]. If 𝐼 is finitely generated, then (𝑀/𝑀[𝐼∞])[𝐼] = 0.

Proof. Let 𝑚 ∈ 𝑀. If 𝑚 maps to an element of (𝑀/𝑀[𝐼∞])[𝐼] then 𝐼𝑚 ⊂ 𝑀[𝐼∞]. Write
𝐼 = (𝑓1, … , 𝑓𝑡). Then we see that 𝑓𝑖𝑚 ∈ 𝑀[𝐼∞], i.e., 𝐼𝑛𝑖𝑓𝑖𝑚 = 0 for some 𝑛𝑖 > 0. Thus
we see that 𝐼𝑁𝑚 = 0 with 𝑁 = ∑ 𝑛𝑖 + 2. Hence 𝑚 maps to zero in (𝑀/𝑀[𝐼∞]) which
proves the lemma. �

Lemma 12.8.7. Assume 𝜑 ∶ 𝑅 → 𝑆 is a flat ring map and 𝐼 ⊂ 𝑅 is a finitely generated
ideal such that 𝑅/𝐼 → 𝑆/𝐼𝑆 is an isomorphism. Then

(1) for any 𝑅-module 𝑀 the map 𝑀 → 𝑀 ⊗𝑅 𝑆 induces an isomorphism 𝑀[𝐼∞] →
(𝑀 ⊗𝑅 𝑆)[(𝐼𝑆)∞] of 𝐼-power torsion submodules,
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(2) the natural map

𝐻𝑜𝑚𝑅(𝑀, 𝑁) ⟶ 𝐻𝑜𝑚𝑆(𝑀 ⊗𝑅 𝑆, 𝑁 ⊗𝑅 𝑆)

is an isomorphism if either 𝑀 or 𝑁 is 𝐼-power torsion, and
(3) the base change functor 𝑀 ↦ 𝑀 ⊗𝑅 𝑆 defines an equivalence of categories

between 𝐼-power torsion modules and 𝐼𝑆-power torsion modules.

Proof. Note that the equivalent conditions of both Lemma 12.8.2 and Lemma 12.8.4 are
satisfied. We will use these without further mention. We first prove (1). Let 𝑀 be any
𝑅-module. Set 𝑀′ = 𝑀/𝑀[𝐼∞] and consider the exact sequence

0 → 𝑀[𝐼∞] → 𝑀 → 𝑀′ → 0

As 𝑀[𝐼∞] = 𝑀[𝐼∞] ⊗𝑅 𝑆 we see that it suffices to show that (𝑀′ ⊗𝑅 𝑆)[(𝐼𝑆)∞] = 0.
Write 𝐼 = (𝑓1, … , 𝑓𝑡). By Lemma 12.8.6 we see that 𝑀′[𝐼∞] = 0. Hence for every 𝑛 > 0
the map

𝑀′ ⟶ ⨁𝑖=1,…𝑡
𝑀′, 𝑥 ⟼ (𝑓𝑛

1𝑥, … , 𝑓𝑛
𝑡 𝑥)

is injective. As 𝑆 is flat over 𝑅 also the corresponding map 𝑀′ ⊗𝑅 𝑆 → ⨁𝑖=1,…𝑡 𝑀′ ⊗𝑅 𝑆
is injective. This means that (𝑀′ ⊗𝑅 𝑆)[𝐼𝑛] = 0 as desired.

Next we prove (2). If 𝑁 is 𝐼-power torsion, then 𝑁 ⊗𝑅 𝑆 = 𝑁 and the displayed map of (2)
is an isomorphism by Algebra, Lemma 7.11.17. If 𝑀 is 𝐼-power torsion, then the image of
any map 𝑀 → 𝑁 factors through 𝑀[𝐼∞] and the image of any map 𝑀 ⊗𝑅 𝑆 → 𝑁 ⊗𝑅 𝑆
factors through (𝑁 ⊗𝑅 𝑆)[(𝐼𝑆)∞]. Hence in this case part (1) guarantees that we may
replace 𝑁 by 𝑁[𝐼∞] and the result follows from the case where 𝑁 is 𝐼-power torsion we
just discussed.

Next we prove (3). The functor is fully faithful by (2). For essential surjectivity, we simply
note that for any 𝐼𝑆-power torsion 𝑆-module 𝑁, the natural map 𝑁 ⊗𝑅 𝑆 → 𝑁 is an
isomorphism. �

Lemma 12.8.8. Let 𝑅 be a ring. Let 𝐼 = (𝑓1, … , 𝑓𝑛) be a finitely generated ideal of 𝑅. Let
𝑀 be the 𝑅-module generated by elements 𝑒1, … , 𝑒𝑛 subject to the relations 𝑓𝑖𝑒𝑗 −𝑓𝑗𝑒𝑖 = 0.
There exists a short exact sequence

0 → 𝐾 → 𝑀 → 𝐼 → 0

such that 𝐾 is annihilated by 𝐼.

Proof. This is just a truncation of the Koszul complex, see (insert future reference here).
The map 𝑀 → 𝐼 is is determined by the rule 𝑒𝑖 ↦ 𝑓𝑖. If 𝑚 = ∑ 𝑎𝑖𝑒𝑖 is in the kernel of
𝑀 → 𝐼, i.e., ∑ 𝑎𝑖𝑓𝑖 = 0, then 𝑓𝑗𝑚 = ∑ 𝑓𝑗𝑎𝑖𝑒𝑖 = (∑ 𝑓𝑖𝑎𝑖)𝑒𝑗 = 0. �

Lemma 12.8.9. Let 𝑅 be a ring. Let 𝐼 = (𝑓1, … , 𝑓𝑛) be a finitely generated ideal of 𝑅.
For any 𝑅-module 𝑁 set

𝐻1(𝑁, 𝑓•) =
{(𝑥1, … , 𝑥𝑛) ∈ 𝑁⊕𝑛 ∣ 𝑓𝑖𝑥𝑗 = 𝑓𝑗𝑥𝑖}

{𝑓1𝑥, … , 𝑓𝑛𝑥) ∣ 𝑥 ∈ 𝑁}
For any 𝑅-module 𝑁 there exists a canonical short exact sequence

0 → Ext𝑅(𝑅/𝐼, 𝑁) → 𝐻1(𝑁, 𝑓•) → 𝐻𝑜𝑚𝑅(𝐾, 𝑁)

where 𝐾 is as in Lemma 12.8.8.
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Proof. The notation above indicates the Ext-groups in Mod𝑅 as defined in Homology, Sec-
tion 10.4. These are denoted Ext𝑅(𝑀, 𝑁). Using the long exact sequence of Homology,
Lemma 10.4.4 associated to the short exact sequence 0 → 𝐼 → 𝑅 → 𝑅/𝐼 → 0 and the fact
that Ext𝑅(𝑅, 𝑁) = 0 we see that

Ext𝑅(𝑅/𝐼, 𝑁) = Coker(𝑁 ⟶ 𝐻𝑜𝑚(𝐼, 𝑁))

Using the short exact sequence of Lemma 12.8.8 we see that we get a complex

𝑁 → 𝐻𝑜𝑚(𝑀, 𝑁) → 𝐻𝑜𝑚𝑅(𝐾, 𝑁)

whose homology in the middle is canonically isomorphic to Ext𝑅(𝑅/𝐼, 𝑁). The proof of
the lemma is now complete as the cokernel of the first map is canonically isomorphic to
𝐻1(𝑁, 𝑓•). �

Lemma 12.8.10. Let 𝑅 be a ring. Let 𝐼 = (𝑓1, … , 𝑓𝑛) be a finitely generated ideal of 𝑅.
For any 𝑅-module 𝑁 the Koszul homology group 𝐻1(𝑁, 𝑓•) defined in Lemma 12.8.9 is
annihilated by 𝐼.

Proof. Let (𝑥1, … , 𝑥𝑛) ∈ 𝑁⊕𝑛 with 𝑓𝑖𝑥𝑗 = 𝑓𝑗𝑥𝑖. Thenwe have 𝑓𝑖(𝑥1, … , 𝑥𝑛) = (𝑓𝑖𝑥𝑖, … , 𝑓𝑖𝑥𝑛).
In other words 𝑓𝑖 annihilates 𝐻1(𝑁, 𝑓•). �

We can improve on the full faithfulness of Lemma 12.8.7 by showing that Ext-groups whose
source is 𝐼-power torsion are insensitive to passing to 𝑆 as well. See Remark 12.8.12 below
for a more highbrow version of the following lemma.

Lemma 12.8.11. Assume 𝜑 ∶ 𝑅 → 𝑆 is a flat ring map and 𝐼 ⊂ 𝑅 is a finitely generated
ideal such that 𝑅/𝐼 → 𝑆/𝐼𝑆 is an isomorphism. Let 𝑀, 𝑁 be 𝑅-modules. Assume 𝑀 is
𝐼-power torsion. Given an short exact sequence

0 → 𝑁 ⊗𝑅 𝑆 → ̃𝐸 → 𝑀 ⊗𝑅 𝑆 → 0

there exists a commutative diagram

0 // 𝑁 //

��

𝐸 //

��

𝑀 //

��

0

0 // 𝑁 ⊗𝑅 𝑆 // ̃𝐸 //𝑀 ⊗𝑅 𝑆 // 0

with exact rows.

Proof. As 𝑀 is 𝐼-power torsion we see that 𝑀 ⊗𝑅 𝑆 = 𝑀, see Lemma 12.8.4. We will
use this identification without further mention. As 𝑅 → 𝑆 is flat, the base change functor
is exact and we obtain a functorial map of Ext-groups

Ext𝑅(𝑀, 𝑁) ⟶ Ext𝑆(𝑀 ⊗𝑅 𝑆, 𝑁 ⊗𝑅 𝑆),

see Homology, Lemma 10.5.2. The claim of the lemma is that this map is surjective when
𝑀 is 𝐼-power torsion. In fact we will show that it is an isomorphism. By Lemma 12.8.3 we
can find a surjection 𝑀′ → 𝑀 with 𝑀′ a direct sum of modules of the form 𝑅/𝐼𝑛. Using
the long exact sequence of Homology, Lemma 10.4.4 we see that it suffices to prove the
lemma for 𝑀′. Using compatibility of Ext with direct sums (details omitted) we reduce to
the case where 𝑀 = 𝑅/𝐼𝑛 for some 𝑛.
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Let 𝑓1, … , 𝑓𝑡 be generators for 𝐼𝑛. By Lemma 12.8.9 we have a commutative diagram

0 // Ext𝑅(𝑅/𝐼𝑛, 𝑁) //

��

𝐻1(𝑁, 𝑓•) //

��

𝐻𝑜𝑚𝑅(𝐾, 𝑁)

��
0 // Ext𝑆(𝑆/𝐼𝑛𝑆, 𝑁 ⊗ 𝑆) // 𝐻1(𝑁 ⊗ 𝑆, 𝑓•) // 𝐻𝑜𝑚𝑆(𝐾 ⊗ 𝑆, 𝑁 ⊗ 𝑆)

with exact rows where 𝐾 is as in Lemma 12.8.8. Hence it suffices to prove that the two right
vertical arrows are isomorphisms. Since 𝐾 is annihilated by 𝐼𝑛 we see that 𝐻𝑜𝑚𝑅(𝐾, 𝑁) =
𝐻𝑜𝑚𝑆(𝐾 ⊗𝑅 𝑆, 𝑁 ⊗𝑅 𝑆) by Lemma 12.8.7. As 𝑅 → 𝑆 is flat we have 𝐻1(𝑁, 𝑓•) ⊗𝑅
𝑆 = 𝐻1(𝑁 ⊗𝑅 𝑆, 𝑓•). As 𝐻1(𝑁, 𝑓•) is annihilated by 𝐼𝑛, see Lemma 12.8.10 we have
𝐻1(𝑁, 𝑓•) ⊗𝑅 𝑆 = 𝐻1(𝑁, 𝑓•) by Lemma 12.8.4. �

Remark 12.8.12. Assume 𝜑 ∶ 𝑅 → 𝑆 is a flat ring map and 𝐼 ⊂ 𝑅 is a finitely generated
ideal such that 𝑅/𝐼 → 𝑆/𝐼𝑆 is an isomorphism. Let 𝑀, 𝑁 be 𝑅-modules and assume 𝑀 is
𝐼-power torsion. Then the canonical map

Ext𝑖𝑅(𝑀, 𝑁) ⟶ Ext𝑖𝑆(𝑀 ⊗𝑅 𝑆, 𝑁 ⊗𝑅 𝑆)

is an isomorphism for all 𝑖. We sketch a proof of this strengthening of Lemma 12.8.11.
Consider the Koszul complex 𝐾• = 𝐾•(𝑅, 𝑓•) which is the complex

0 → ∧𝑛𝑅𝑛 → ∧𝑛−1𝑅𝑛 → … → ∧𝑖𝑅𝑛 → … → 𝑅𝑛 → 𝑅 → 0

where the last term 𝑅 is placed in degree 0 with maps given by

𝑒𝑗1
∧ … ∧ 𝑒𝑗𝑖

⟼ ∑
𝑖
𝑎=1

(−1)𝑖+1𝑓𝑗𝑎
𝑒𝑗1

∧ … ∧ ̂𝑒𝑗𝑎
∧ … ∧ 𝑒𝑗𝑖

Then 𝐻0(𝐾•) = 𝑅/𝐼 and every homology module 𝐻𝑖(𝐾•) is annihilated by 𝐼. Having said
this, we prove the statement on Ext-groups by induction on 𝑖. The case 𝑖 = 0 is Lemma
12.8.7. Assume that the result holds for all 𝑖 ≤ 𝑖0 and all modules 𝑁, 𝑀 with 𝑀 being
𝐼-power torsion. Pick a pair of modules 𝑁 and 𝑀 with 𝑀 being 𝐼-power torsion and
let's prove that the map Ext𝑖0+1

𝑅 (𝑀, 𝑁) → Ext𝑖0+1
𝑆 (𝑀 ⊗𝑅 𝑆, 𝑁 ⊗𝑅 𝑆) is an isomorphism.

By Lemma 12.8.3 and the long exact sequence of Ext-groups and compatibility of Ext
with direct sums we reduce to the case that 𝑀 = 𝑅/𝐼𝑛. Since 𝐼𝑛 is finitely generated
we can choose finitely many generators 𝑓1, … , 𝑓𝑡 ∈ 𝐼𝑛 and consider the Koszul complex
𝐾• = 𝐾•(𝑅, 𝑓•). Note that 𝐾• ⊗𝑅 𝑆 = 𝐾•(𝑆, 𝑓•). As 𝐾• is a finite complex of finite free
𝑅-modules we see that the map

(12.8.12.1) 𝐻𝑜𝑚𝑅(𝐾•, 𝑁) ⊗𝑅 𝑆 ⟶ 𝐻𝑜𝑚𝑆(𝐾• ⊗𝑅 𝑆, 𝑁 ⊗𝑅 𝑆)

is an isomorphism of complexes. As 𝑅 → 𝑆 is flat and using Lemmas 12.8.7 we see that

𝐻𝑏(𝐾•) = 𝐻𝑏(𝐾•) ⊗𝑅 𝑆 = 𝐻𝑏(𝐾• ⊗𝑅 𝑆).

Below we will use the spectral sequences

𝐸(𝑅)𝑎,𝑏
2 = Ext𝑎𝑅(𝐻𝑏(𝐾•), 𝑁) ⇒ 𝐻𝑎+𝑏(𝐻𝑜𝑚𝑅(𝐾•, 𝑁)),

𝐸(𝑆)𝑎,𝑏
2 = Ext𝑎𝑅(𝐻𝑏(𝐾• ⊗𝑅 𝑆), 𝑁 ⊗𝑅 𝑆) ⇒ 𝐻𝑎+𝑏(𝐻𝑜𝑚𝑅(𝐾• ⊗𝑅 𝑆, 𝑁 ⊗𝑅 𝑆))

see (insert future reference here). The first one combined with the fact that each 𝐻𝑏(𝐾•)
is annihilated by 𝐼𝑛 implies that 𝐻𝑐(𝐻𝑜𝑚𝑅(𝐾•, 𝑁)) is annihilated by 𝐼𝑛(𝑡+1). Hence using
Lemma 12.8.7 once more we see that

𝐻𝑐(𝐻𝑜𝑚𝑅(𝐾•, 𝑁)) = 𝐻𝑐(𝐻𝑜𝑚𝑅(𝐾•, 𝑁)) ⊗𝑅 𝑆 = 𝐻𝑐(𝐻𝑜𝑚𝑆(𝐾• ⊗𝑅 𝑆, 𝑁 ⊗𝑅 𝑆))
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because (12.8.12.1) is an isomorphism and 𝑅 → 𝑆 is flat. Combined we see that the map
𝐸(𝑅)𝑎,𝑏

𝑟 → 𝐸(𝑆)𝑎,𝑏
𝑟 of spectral sequences is an isomorphism for 𝑟 = 2 and 𝑎 ≤ 𝑖0 (induction

hypothesis) and an isomorphism on abutments in all degrees. Then a formal argument on
spectral sequences (insert future reference here) implies that 𝐸(𝑅)𝑖0+1,0

2 → 𝐸(𝑅)𝑖0+1,0
2 is an

isomorphism as well, which is the result we wanted to prove. This ends the sketch of the
proof of the result on Ext-groups; if we ever need to use this result in the stacks project we
will put in a detailed proof.

Let 𝑅 → 𝑆 be a ring map. Let 𝑓1, … , 𝑓𝑡 ∈ 𝑅 and 𝐼 = (𝑓1, … , 𝑓𝑡). Then for any 𝑅-module
𝑀 we can define a complex

(12.8.12.2) 0 → 𝑀
𝛼

−→ 𝑀 ⊗𝑅 𝑆 × ∏ 𝑀𝑓𝑖

𝛽
−→ ∏(𝑀 ⊗𝑅 𝑆)𝑓𝑖

× ∏ 𝑀𝑓𝑖𝑓𝑗

where 𝛼(𝑚) = (𝑚 ⊗ 1, 𝑚/1, … , 𝑚/1) and

𝛽(𝑚′, 𝑚1, … , 𝑚𝑡) = ((𝑚′/1 − 𝑚1 ⊗ 1, … , 𝑚′/1 − 𝑚𝑡 ⊗ 1), (𝑚1 − 𝑚2, … , 𝑚𝑡−1 − 𝑚𝑡).

We would like to know when this complex is exact.

Lemma 12.8.13. Assume 𝜑 ∶ 𝑅 → 𝑆 is a flat ring map and 𝐼 = (𝑓1, … , 𝑓𝑡) ⊂ 𝑅 is an
ideal such that 𝑅/𝐼 → 𝑆/𝐼𝑆 is an isomorphism. Let 𝑀 be an 𝑅-module. Then the complex
(12.8.12.2) is exact.

Proof. Let 𝑚 ∈ 𝑀. If 𝛼(𝑚) = 0, then 𝑚 ∈ 𝑀[𝐼∞], see Lemma 12.8.5. Pick 𝑛 such that
𝐼𝑛𝑚 = 0 and consider the map 𝜑 ∶ 𝑅/𝐼𝑛 → 𝑀. If 𝑚 ⊗ 1 = 0, then 𝜑 ⊗ 1𝑆 = 0, hence
𝜑 = 0 (see Lemma 12.8.7) hence 𝑚 = 0. In this way we see that 𝛼 is injective.

Let (𝑚′, 𝑚′
1, … , 𝑚′

𝑡 ) ∈ Ker(𝛽). Write 𝑚′
𝑖 = 𝑚𝑖/𝑓𝑛

𝑖 for some 𝑛 > 0 and 𝑚𝑖 ∈ 𝑀. We may,
after possibly enlarging 𝑛 assume that 𝑓𝑛

𝑖 𝑚′ = 𝑚𝑖 ⊗ 1 in 𝑀 ⊗𝑅 𝑆 and 𝑓𝑛
𝑗 𝑚𝑖 − 𝑓𝑛

𝑖 𝑚𝑗 = 0
in 𝑀. In particular we see that (𝑚1, … , 𝑚𝑡) defines an element 𝜉 of 𝐻1(𝑀, (𝑓𝑛

1, … , 𝑓𝑛
𝑡 )).

Since 𝐻1(𝑀, (𝑓𝑛
1, … , 𝑓𝑛

𝑡 )) is annihilated by 𝐼𝑡𝑛+1 (see Lemma 12.8.10) and since 𝑅 → 𝑆
is flat we see that

𝐻1(𝑀, (𝑓𝑛
1, … , 𝑓𝑛

𝑡 )) = 𝐻1(𝑀, (𝑓𝑛
1, … , 𝑓𝑛

𝑡 )) ⊗𝑅 𝑆 = 𝐻1(𝑀 ⊗𝑅 𝑆, (𝑓𝑛
1, … , 𝑓𝑛

𝑡 ))

by Lemma 12.8.4 The existence of 𝑚′ implies that 𝜉 maps to zero in the last group, i.e., the
element 𝜉 is zero. Thus there exists an 𝑚 ∈ 𝑀 such that 𝑚𝑖 = 𝑓𝑛

𝑖 𝑚. Then (𝑚′, 𝑚′
1, … , 𝑚′

𝑡 )−
𝛼(𝑚) = (𝑚″, 0, … , 0) for some 𝑚″ ∈ (𝑀 ⊗𝑅 𝑆)[(𝐼𝑆)∞]. By Lemma 12.8.7 we conclude
that 𝑚″ ∈ 𝑀[𝐼∞] and we win. �

Remark 12.8.14. In this remark we define a category of glueing data. Let 𝑅 → 𝑆 be
a ring map. Let 𝑓1, … , 𝑓𝑡 ∈ 𝑅 and 𝐼 = (𝑓1, … , 𝑓𝑡). Consider the category Glue(𝑅 →
𝑆, 𝑓1, … , 𝑓𝑡) as the category whose

(1) objects are systems (𝑀′, 𝑀𝑖, 𝛼𝑖, 𝛼𝑖𝑗), where𝑀′ is an𝑆-module, 𝑀𝑖 is an𝑅𝑓𝑖
-module,

𝛼𝑖 ∶ (𝑀′)𝑓𝑖
→ 𝑀𝑖 ⊗𝑅 𝑆 is an isomorphism, and 𝛼𝑖𝑗 ∶ (𝑀𝑖)𝑓𝑗

→ (𝑀𝑗)𝑓𝑖
are iso-

morphisms such that
(a) 𝛼𝑖𝑗 ∘ 𝛼𝑖 = 𝛼𝑗 as maps (𝑀′)𝑓𝑖𝑓𝑗

→ (𝑀𝑗)𝑓𝑖
, and

(b) 𝛼𝑗𝑘 ∘ 𝛼𝑖𝑗 = 𝛼𝑖𝑘 as maps (𝑀𝑖)𝑓𝑗𝑓𝑘
→ (𝑀𝑘)𝑓𝑖𝑓𝑗

(cocycle condition).
(2) morphisms (𝑀′, 𝑀𝑖, 𝛼𝑖, 𝛼𝑖𝑗) → (𝑁′, 𝑁𝑖, 𝛽𝑖, 𝛽𝑖𝑗) are given by maps 𝜑′ ∶ 𝑀′ →

𝑁′ and 𝜑𝑖 ∶ 𝑀𝑖 → 𝑁𝑖 compatible with the given maps 𝛼𝑖, 𝛽𝑖, 𝛼𝑖𝑗, 𝛽𝑖𝑗.
There is a canonical functor

Can ∶ Mod𝑅 ⟶ Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡), 𝑀 ⟼ (𝑀 ⊗𝑅 𝑆, 𝑀𝑓𝑖
, can𝑖, can𝑖𝑗)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05EK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05EL


806 12. MORE ON ALGEBRA

where can𝑖 ∶ (𝑀⊗𝑅𝑆)𝑓𝑖
→ 𝑀𝑓𝑖

⊗𝑅𝑆 and can𝑖𝑗 ∶ (𝑀𝑓𝑖
)𝑓𝑗

→ (𝑀𝑓𝑗
)𝑓𝑖

are the canonical iso-
morphisms. For any object 𝐌 = (𝑀′, 𝑀𝑖, 𝛼𝑖, 𝛼𝑖𝑗) of the category Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡)
we define

𝐻0(𝐌) = {(𝑚′, 𝑚𝑖) ∣ 𝛼𝑖(𝑚′) = 𝑚𝑖 ⊗ 1, 𝛼𝑖𝑗(𝑚𝑖) = 𝑚𝑗}
in other words defined by the exact sequence

0 → 𝐻0(𝐌) → 𝑀′ × ∏ 𝑀𝑖 → ∏ 𝑀′
𝑓𝑖

× ∏(𝑀𝑖)𝑓𝑗

similar to (12.8.12.2). We think of 𝐻0(𝐌) as an 𝑅-module. Thus we also get a functor

𝐻0 ∶ Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡) ⟶ Mod𝑅

Our next goal is to show that the functors Can and 𝐻0 are sometimes quasi-inverse to each
other.

Lemma 12.8.15. Assume 𝜑 ∶ 𝑅 → 𝑆 is a flat ring map and 𝐼 = (𝑓1, … , 𝑓𝑡) ⊂ 𝑅 is an
ideal such that 𝑅/𝐼 → 𝑆/𝐼𝑆 is an isomorphism. Then the functor 𝐻0 is a left quasi-inverse
to the functor Can of Remark 12.8.14.

Proof. This is a reformulation of Lemma 12.8.13. �

Lemma 12.8.16. Assume 𝜑 ∶ 𝑅 → 𝑆 is a flat ring map and let 𝐼 = (𝑓1, … , 𝑓𝑡) ⊂ 𝑅 be an
ideal. Then Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡) is an abelian category, and the functor Can is exact
and commutes with arbitrary colimits.

Proof. Given a morphism (𝜑′, 𝜑𝑖) ∶ (𝑀′, 𝑀𝑖, 𝛼𝑖, 𝛼𝑖𝑗) → (𝑁′, 𝑁𝑖, 𝛽𝑖, 𝛽𝑖𝑗) of the category
Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡)we see that its kernel exists and is equal to the object (Ker(𝜑′),Ker(𝜑𝑖), 𝛼𝑖, 𝛼𝑖𝑗)
and its cokernel exists and is equal to the object (Coker(𝜑′),Coker(𝜑𝑖), 𝛽𝑖, 𝛽𝑖𝑗). This works
because 𝑅 → 𝑆 is flat, hence taking kernels/cokernels commutes with − ⊗𝑅 𝑆. Details
omitted. The exactness follows from the 𝑅-flatness of 𝑅𝑓𝑖

and 𝑆, while commuting with
colimits follows as tensor products commute with colimits. �

Lemma 12.8.17. Let 𝜑 ∶ 𝑅 → 𝑆 be a flat ring map and (𝑓1, … , 𝑓𝑡) = 𝑅. Then Can and
𝐻0 are quasi-inverse equivalences of categories

Mod𝑅 = Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡)

Proof. Consider an object 𝐌 = (𝑀′, 𝑀𝑖, 𝛼𝑖, 𝛼𝑖𝑗) of Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡). By Algebra,
Lemma 7.21.4 there exists a uniquemodule 𝑀 and isomorphisms 𝑀𝑓𝑖

→ 𝑀𝑖 which recover
the glueing data 𝛼𝑖𝑗. Then both 𝑀′ and 𝑀 ⊗𝑅 𝑆 are 𝑆-modules which recover the modules
𝑀𝑖 ⊗𝑅 𝑆 upon localizing at 𝑓𝑖. Whence there is a canonical isomorphism 𝑀 ⊗𝑅 𝑆 → 𝑀′.
This shows that 𝐌 is in the essential image of Can. Combined with Lemma 12.8.15 the
lemma follows. �

Lemma 12.8.18. Let 𝜑 ∶ 𝑅 → 𝑆 be a flat ring map and 𝐼 = (𝑓1, … , 𝑓𝑡) and ideal. Let
𝑅 → 𝑅′ be a flat ring map, and set 𝑆′ = 𝑆 ⊗𝑅 𝑅′. Then we obtain a commutative diagram
of categories and functors

Mod𝑅 Can
//

−⊗𝑅𝑅′

��

Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡)
𝐻0
//

−⊗𝑅𝑅′

��

Mod𝑅

−⊗𝑅𝑅′

��
Mod𝑅′

Can // Glue(𝑅′ → 𝑆′, 𝑓1, … , 𝑓𝑡)
𝐻0
// Mod𝑅′

Proof. Omitted. �
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Proposition 12.8.19. Assume 𝜑 ∶ 𝑅 → 𝑆 is a flat ring map and 𝐼 = (𝑓1, … , 𝑓𝑡) ⊂ 𝑅 is
an ideal such that 𝑅/𝐼 → 𝑆/𝐼𝑆 is an isomorphism. Then Can and 𝐻0 are quasi-inverse
equivalences of categories

Mod𝑅 = Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡)

Proof. We have already seen that 𝐻0∘Can is isomorphic to the identity functor, see Lemma
12.8.15. Consider an object 𝐌 = (𝑀′, 𝑀𝑖, 𝛼𝑖, 𝛼𝑖𝑗) of Glue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡). We get a
natural morphism

Ψ ∶ (𝐻0(𝐌) ⊗𝑅 𝑆, 𝐻0(𝐌)𝑓𝑖
, can𝑖, can𝑖𝑗) ⟶ (𝑀′, 𝑀𝑖, 𝛼𝑖, 𝛼𝑖𝑗).

Namely, by definition 𝐻0(𝐌) comes equipped with compatible 𝑅-module maps 𝐻0(𝐌) →
𝑀′ and 𝐻0(𝐌) → 𝑀𝑖. We have to show that this map is an isomorphism.

Pick an index 𝑖 and set 𝑅′ = 𝑅𝑓𝑖
. Combining Lemmas 12.8.18 and 12.8.17 we see that

Ψ ⊗𝑅 𝑅′ is an isomorphism. Hence the kernel, resp. cokernel of Ψ is a system of the form
(𝐾, 0, 0, 0), resp. (𝑄, 0, 0, 0). Note that 𝐻0((𝐾, 0, 0, 0)) = 𝐾, that 𝐻0 is left exact, and that
by construction 𝐻0(Ψ) is bijective. Hence we see 𝐾 = 0, i.e., the kernel of Ψ is zero.

The conclusion of the above is that we obtain a short exact sequence

0 → 𝐻0(𝐌) ⊗𝑅 𝑆 → 𝑀′ → 𝑄 → 0

and that 𝑀𝑖 = 𝐻0(𝐌)𝑓𝑖
. Note that we may think of 𝑄 as an 𝑅-module which is 𝐼-power

torsion so that 𝑄 = 𝑄 ⊗𝑅 𝑆. By Lemma 12.8.11 we see that there exists a commutative
diagram

0 // 𝐻0(𝐌) //

��

𝐸 //

��

𝑄 //

��

0

0 // 𝐻0(𝐌) ⊗𝑅 𝑆 //𝑀′ // 𝑄 // 0

with exact rows. This clearly determines an isomorphism Can(𝐸) → (𝑀′, 𝑀𝑖, 𝛼𝑖, 𝛼𝑖𝑗) in the
categoryGlue(𝑅 → 𝑆, 𝑓1, … , 𝑓𝑡) andwewin. (Of course, a posteriori we have 𝑄 = 0.) �

Next, we specialize this very general proposition to get something more useable. Namely,
if 𝐼 = (𝑓) is a principal ideal then the objects of Glue(𝑅 → 𝑆, 𝑓) are simply triples
(𝑀′, 𝑀1, 𝛼1) and there is no cocycle condition to check!

Theorem 12.8.20. Let 𝑅 be a ring, and let 𝑓 ∈ 𝑅. Let 𝜑 ∶ 𝑅 → 𝑆 be a flat ring map
inducing an isomorphism 𝑅/𝑓𝑅 → 𝑆/𝑓𝑆. Then the functor

Mod𝑅 ⟶ Mod𝑆 ×Mod𝑆𝑓
Mod𝑅𝑓

, 𝑀 ⟼ (𝑀 ⊗𝑅 𝑆, 𝑀𝑓, can)

is an equivalence.

Proof. The category appearing on the right side of the arrow is the category of triples
(𝑀′, 𝑀1, 𝛼1) where 𝑀′ is an 𝑆-module, 𝑀1 is a 𝑅𝑓-module, and 𝛼1 ∶ 𝑀′

𝑓 → 𝑀1 ⊗𝑅 𝑆 is
a 𝑆𝑓-isomorphism, see Categories, Example 4.28.3. Hence this theorem is a special case
of Proposition 12.8.19. �

A useful special case of Theorem 12.8.20 is when 𝑅 is noetherian, and 𝑆 is a completion
of 𝑅 at an element 𝑓. The completion 𝑅 → 𝑆 is flat, and the functor 𝑀 ↦ 𝑀 ⊗𝑅 𝑆 can
be identified with the 𝑓-adic completion functor when 𝑀 is finitely generated. To state this
more precisely, let Mod𝑓𝑔(𝑅) denote the category of finitely generated 𝑅-modules.
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Proposition 12.8.21. Let 𝑅 be a noetherian ring. Let 𝑓 ∈ 𝑅 be an element. Let 𝑅∧ be the
𝑓-adic completion of 𝑅. Then the functor 𝑀 ↦ (𝑀∧, 𝑀𝑓, can) defines an equivalence

Mod𝑓𝑔(𝑅) ⟶ Mod𝑓𝑔(𝑅∧) ×Mod𝑓𝑔(𝑅∧
𝑓) Mod𝑓𝑔(𝑅𝑓)

Proof. The ring map 𝑅 → 𝑅∧ is flat by Algebra, Lemma 7.90.3. It is clear that 𝑅/𝑓𝑅 =
𝑅∧/𝑓𝑅∧. By Algebra, Lemma 7.90.2 the completion of a finite 𝑅-module 𝑀 is equal to
𝑀⊗𝑅 𝑅∧. Hence the displayed functor of the proposition is equal to the functor occuring in
Theorem 12.8.20. In particular it is fully faithful. Let (𝑀1, 𝑀2, 𝜓) be an object of the right
hand side. By Theorem 12.8.20 there exists an 𝑅-module 𝑀 such that 𝑀1 = 𝑀⊗𝑅 𝑅∧ and
𝑀2 = 𝑀𝑓. As 𝑅 → 𝑅∧ × 𝑅𝑓 is faithfully flat we conclude from Algebra, Lemma 7.21.2
that 𝑀 is finitely generated, i.e., 𝑀 ∈ Mod𝑓𝑔(𝑅). This proves the proposition. �

Remark 12.8.22. The equivalences of Proposition 12.8.19, Theorem 12.8.20, and Propo-
sition 12.8.21 preserve the ⊗-structures on either side. Thus, it defines equivalences of
various categories built out of the pair (Mod𝑅, ⊗), such as the category of 𝑅-algebras.

Remark 12.8.23. Given a differential manifold 𝑋 with a compact closed submanifold 𝑍
having complement 𝑈, specifying a sheaf on 𝑋 is the same as specifying a sheaf on 𝑈, a
sheaf on an unspecified tubular neighbourhood 𝑇 of 𝑍 in 𝑋, and an isomorphism between
the two resulting sheaves along 𝑇∩𝑈. Tubular neighbourhoods do not exist in algebraic ge-
ometry as such, but results such as Proposition 12.8.19, Theorem 12.8.20, and Proposition
12.8.21 allow us to work with formal neighbourhoods instead.

12.9. Lifting

In this section we collection some lemmas concerning lifting statements of the following
kind: If 𝐴 is a ring and 𝐼 ⊂ 𝐴 is an ideal, and 𝜉 is some kind of structure over 𝐴/𝐼, then we
can lift 𝜉 to a similar kind of structure 𝜉 over 𝐴 or over some étale extension of 𝐴. Here are
some types of structure for which we have already proved some results:

(1) idempotents, see Algebra, Lemmas 7.49.5 and 7.49.6,
(2) projective modules, see Algebra, Lemma 7.71.4,
(3) basis elements, see Algebra, Lemmas 7.93.1 and 7.93.3,
(4) ringmaps, i.e., proving certain algebras are formally smooth, seeAlgebra, Lemma

7.127.4, Proposition 7.127.13, and Lemma 7.127.16,
(5) syntomic ring maps, see Algebra, Lemma 7.125.19,
(6) smooth ring maps, see Algebra, Lemma 7.126.19,
(7) étale ring maps, see Algebra, Lemma 7.132.10,
(8) factoring polynomials, see Algebra, Lemma 7.132.19, and
(9) Algebra, Section 7.139 discusses henselian local rings.

The interested reader will find more results of this nature in Smoothing Ring Maps, Section
13.4 in particular Smoothing Ring Maps, Proposition 13.4.2.

Let 𝐴 be a ring and let 𝐼 ⊂ 𝐴 be an ideal. Let 𝜉 be some kind of structure over 𝐴/𝐼. In
the following lemmas we look for étale ring maps 𝐴 → 𝐴′ which induce isomorphisms
𝐴/𝐼 → 𝐴′/𝐼𝐴′ and objects 𝜉′ over 𝐴′ lifting 𝜉. A general remark is that given étale ring
maps 𝐴 → 𝐴′ → 𝐴″ such that 𝐴/𝐼 ≅ 𝐴′/𝐼𝐴′ and 𝐴′/𝐼𝐴′ ≅ 𝐴″/𝐼𝐴″ the composition
𝐴 → 𝐴″ is also étale (Algebra, Lemma 7.132.3) and also satisfies 𝐴/𝐼 ≅ 𝐴″/𝐼𝐴″. We
will frequently use this in the following lemmas without further mention. Here is a trivial
example of the type of result we are looking for.
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Lemma 12.9.1. Let 𝐴 be a ring, let 𝐼 ⊂ 𝐴 be an ideal, let 𝑢 ∈ 𝐴/𝐼 be an invertible element.
There exists an étale ring map 𝐴 → 𝐴′ which induces an isomorphism 𝐴/𝐼 → 𝐴′/𝐼𝐴′ and
an invertible element 𝑢′ ∈ 𝐴′ lifting 𝑢.

Proof. Choose any lift 𝑓 ∈ 𝐴 of 𝑢 and set 𝐴′ = 𝐴𝑓 and 𝑢 the image of 𝑓 in 𝐴′. �

Lemma 12.9.2. Let 𝐴 be a ring, let 𝐼 ⊂ 𝐴 be an ideal, let 𝑒 ∈ 𝐴/𝐼 be an idempotent. There
exists an étale ring map 𝐴 → 𝐴′ which induces an isomorphism 𝐴/𝐼 → 𝐴′/𝐼𝐴′ and an
idempotent 𝑒′ ∈ 𝐴′ lifting 𝑒.

Proof. Choose any lift 𝑥 ∈ 𝐴 of 𝑒. Set

𝐴′ = 𝐴[𝑡]/(𝑡2 − 𝑡) [
1

𝑡 − 1 + 𝑥] .

The ring map 𝐴 → 𝐴′ is étale because (2𝑡 − 1)d𝑡 = 0 and (2𝑡 − 1)(2𝑡 − 1) = 1 which
is invertible. We have 𝐴′/𝐼𝐴′ = 𝐴/𝐼[𝑡]/(𝑡2 − 𝑡)[ 1

𝑡−1+𝑒 ] ≅ 𝐴/𝐼 the last map sending 𝑡 to 𝑒
which works as 𝑒 is a root of 𝑡2 − 𝑡. This also shows that setting 𝑒′ equal to the class of 𝑡 in
𝐴′ works. �

Lemma 12.9.3. Let 𝐴 be a ring, let 𝐼 ⊂ 𝐴 be an ideal. Let 𝑆𝑝𝑒𝑐(𝐴/𝐼) = ∐𝑗∈𝐽 𝑈𝑗 be a
finite disjoint open covering. Then there exists an étale ring map 𝐴 → 𝐴′ which induces
an isomorphism 𝐴/𝐼 → 𝐴′/𝐼𝐴′ and a finite disjoint open covering 𝑆𝑝𝑒𝑐(𝐴′) = ∐𝑗∈𝐽 𝑈′

𝑗
lifting the given covering.

Proof. This follows fromLemma 12.9.2 and the fact that open and closed subsets of Spectra
correspond to idempotents, see Algebra, Lemma 7.18.3. �

Lemma 12.9.4. Let 𝐴 → 𝐵 be a ring map and 𝐽 ⊂ 𝐵 an ideal. If 𝐴 → 𝐵 is étale at every
prime of 𝑉(𝐽), then there exists a 𝑔 ∈ 𝐵 mapping to an invertible element of 𝐵/𝐽 such that
𝐴′ = 𝐵𝑔 is étale over 𝐴.

Proof. The set of points of 𝑆𝑝𝑒𝑐(𝐵) where 𝐴 → 𝐵 is not étale is a closed subset of 𝑆𝑝𝑒𝑐(𝐵),
see Algebra, Definition 7.132.1. Write this as 𝑉(𝐽′) for some ideal 𝐽′ ⊂ 𝐵. Then 𝑉(𝐽′) ∩
𝑉(𝐽) = ∅ hence 𝐽 + 𝐽′ = 𝐵 by Algebra, Lemma 7.16.2. Write 1 = 𝑓 + 𝑔 with 𝑓 ∈ 𝐽 and
𝑔 ∈ 𝐽′. Then 𝑔 works. �

The assumption on the leading coefficient in the following lemma will be removed in
Lemma 12.9.6.

Lemma 12.9.5. Let𝐴 be a ring, let 𝐼 ⊂ 𝐴 be an ideal. Let 𝑓 ∈ 𝐴[𝑥] be amonic polynomial.
Let 𝑓 = 𝑔ℎ be a factorization of 𝑓 in 𝐴/𝐼[𝑥] and assume

(1) the leading coefficient of 𝑔 is an invertible element of 𝐴/𝐼, and
(2) 𝑔, ℎ generate the unit ideal in 𝐴/𝐼[𝑥].

Then there exists an étale ring map 𝐴 → 𝐴′ which induces an isomorphism 𝐴/𝐼 → 𝐴′/𝐼𝐴′

and a factorization 𝑓 = 𝑔′ℎ′ in 𝐴′[𝑥] lifting the given factorization over 𝐴/𝐼.

Proof. Applying Lemma 12.9.1 we may assume that the leading coefficient of 𝑔 is the
reduction of an invertible element 𝑢 ∈ 𝐴. Then we may replace 𝑔 by 𝑢−1𝑔 and ℎ by 𝑢ℎ.
Thus we may assume that 𝑔 is monic. Since 𝑓 is monic we conclude that ℎ is monic too.
Say deg(𝑔) = 𝑛 and deg(ℎ) = 𝑚 so that deg(𝑓) = 𝑛 + 𝑚. Write 𝑓 = 𝑥𝑛+𝑚 + ∑ 𝛼𝑖𝑥𝑛+𝑚−𝑖 for
some 𝛼1, … , 𝛼𝑛+𝑚 ∈ 𝐴. Consider the ring map

𝑅 = 𝐙[𝑎1, … , 𝑎𝑛+𝑚] ⟶ 𝑆 = 𝐙[𝑏1, … , 𝑏𝑛, 𝑐1, … , 𝑐𝑚]
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of Algebra, Example 7.132.12. Let 𝑅 → 𝐴 be the ring map which sends 𝑎𝑖 to 𝛼𝑖. Set

𝐵 = 𝐴 ⊗𝑅 𝑆

By construction the image of 𝑓 in 𝐵[𝑥] factors. Write 𝑔 = 𝑥𝑛 + ∑ 𝛽𝑖𝑥𝑛−𝑖 and ℎ = 𝑥𝑚 +
∑ 𝛾𝑖𝑥𝑚−𝑖. The 𝐴-algebra map

𝐵 ⟶ 𝐴/𝐼, 1 ⊗ 𝑏𝑖 ↦ 𝛽𝑖, 1 ⊗ 𝑐𝑖 ↦ 𝛾𝑖

maps the factorization of 𝑓 over 𝐵 to the given factorization over 𝐴/𝐼. The displayed map
is surjective; denote 𝐽 ⊂ 𝐵 its kernel. From the discussion in Algebra, Example 7.132.12
it is clear that 𝐴 → 𝐵 is etale at all points of 𝑉(𝐽) ⊂ 𝑆𝑝𝑒𝑐(𝐵). Choose 𝑔 ∈ 𝐵 as in Lemma
12.9.4 and set 𝐴′ = 𝐵𝑔. �

Lemma 12.9.6. Let𝐴 be a ring, let 𝐼 ⊂ 𝐴 be an ideal. Let 𝑓 ∈ 𝐴[𝑥] be amonic polynomial.
Let 𝑓 = 𝑔ℎ be a factorization of 𝑓 in 𝐴/𝐼[𝑥] and assume that 𝑔, ℎ generate the unit ideal
in 𝐴/𝐼[𝑥]. Then there exists an étale ring map 𝐴 → 𝐴′ which induces an isomorphism
𝐴/𝐼 → 𝐴′/𝐼𝐴′ and a factorization 𝑓 = 𝑔′ℎ′ in 𝐴′[𝑥] lifting the given factorization over
𝐴/𝐼.

Proof. Say 𝑓 = 𝑥𝑑 + 𝑎1𝑥𝑑−1 + … + 𝑎𝑑 has degree 𝑑. Write 𝑔 = ∑ 𝑏𝑗𝑥𝑗 and ℎ =
∑ 𝑐𝑗𝑥𝑗. Then we see that 1 = ∑ 𝑏𝑗𝑐𝑑−𝑗. It follows that 𝑆𝑝𝑒𝑐(𝐴/𝐼) is covered by the
standard opens 𝐷(𝑏𝑗𝑐𝑑−𝑗). However, each point 𝔭 of 𝑆𝑝𝑒𝑐(𝐴/𝐼) is contained in at most
one of these as by looking at the induced factorization of 𝑓 over the field 𝜅(𝔭) we see that
deg(𝑔 mod 𝔭) + deg(ℎ mod 𝔭) = 𝑑. Hence our open covering is a disjoint open covering.
Applying Lemma 12.9.3 (and replacing 𝐴 by 𝐴′) we see that we may assume there is a
corresponding disjoint open covering of 𝑆𝑝𝑒𝑐(𝐴). This disjoint open covering corresponds
to a product decomposition of 𝐴, see Algebra, Lemma 7.20.3. It follows that

𝐴 = 𝐴0 × … × 𝐴𝑑, 𝐼 = 𝐼0 × … × 𝐼𝑑,

where the image of 𝑔, resp. ℎ in 𝐴𝑗/𝐼𝑗 has degree 𝑗, resp. 𝑑 − 𝑗 with invertible leading
coefficient. Clearly, it suffices to prove the result for each factor 𝐴𝑗 separatedly. Hence the
lemma follows from Lemma 12.9.5. �

Lemma 12.9.7. Let 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal of 𝑅 and let 𝐽 ⊂ 𝑆 be an
ideal of 𝑆. If the closure of the image of 𝑉(𝐽) in 𝑆𝑝𝑒𝑐(𝑅) is disjoint from 𝑉(𝐼), then there
exists an element 𝑓 ∈ 𝑅 which maps to 1 in 𝑅/𝐼 and to an element of 𝐽 in 𝑆.

Proof. Let 𝐼′ ⊂ 𝑅 be an ideal such that 𝑉(𝐼′) is the closure of the image of 𝑉(𝐽). Then
𝑉(𝐼) ∩ 𝑉(𝐼′) = ∅ by assumption and hence 𝐼 + 𝐼′ = 𝑅 by Algebra, Lemma 7.16.2. Write
1 = 𝑔 + 𝑓 with 𝑔 ∈ 𝐼 and 𝑓 ∈ 𝐼′. We have 𝑉(𝑓′) ⊃ 𝑉(𝐽) where 𝑓′ is the image of 𝑓 in 𝑆.
Hence (𝑓′)𝑛 ∈ 𝐽 for some 𝑛, see Algebra, Lemma 7.16.2. Replacing 𝑓 by 𝑓𝑛 we win. �

Lemma 12.9.8. Let 𝐴 be a ring, let 𝐼 ⊂ 𝐴 be an ideal. Let 𝐴 → 𝐵 be an integral ring
map. Let 𝑒 ∈ 𝐵/𝐼𝐵 be an idempotent. Then there exists an étale ring map 𝐴 → 𝐴′ which
induces an isomorphism 𝐴/𝐼 → 𝐴′/𝐼𝐴′ and an idempotent 𝑒′ ∈ 𝐵 ⊗𝐴 𝐴′ lifting 𝑒.

Proof. Choose an element 𝑦 ∈ 𝐵 lifting 𝑒. Then 𝑧 = 𝑦2−𝑦 is an element of 𝐼𝐵. ByAlgebra,
Lemma 7.34.4 there exist a monic polynomial 𝑔(𝑥) = 𝑥𝑑 + ∑ 𝑎𝑗𝑥𝑗 of degree 𝑑 with 𝑎𝑗 ∈ 𝐼
such that 𝑔(𝑧) = 0 in 𝐵. Hence 𝑓(𝑥) = 𝑔(𝑥2 − 𝑥) ∈ 𝐴[𝑥] is a monic polynomial such that
𝑓(𝑥) ≡ 𝑥𝑑(𝑥 − 1)𝑑 mod 𝐼 and such that 𝑓(𝑦) = 0 in 𝐵. By Lemma 12.9.5 we can find an
étale ring map 𝐴 → 𝐴′ which induces an isomorphism 𝐴/𝐼 → 𝐴′/𝐼𝐴′ and such that 𝑓 = 𝑔ℎ
in 𝐴[𝑥] with 𝑔(𝑥) = 𝑥𝑑 mod 𝐼𝐴′ and ℎ(𝑥) = (𝑥−1)𝑑 mod 𝐼𝐴′. After replacing 𝐴 by 𝐴′ we
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may assume that the factorization is defined over 𝐴. In that case we see that 𝑏1 = 𝑔(𝑦) ∈ 𝐵
is a lift of 𝑒𝑑 = 𝑒 and 𝑏2 = ℎ(𝑦) ∈ 𝐵 is a lift of (𝑒 − 1)𝑑 = (−1)𝑑(1 − 𝑒)𝑑 = (−1)𝑑(1 − 𝑒) and
moreover 𝑏1𝑏2 = 0. Thus (𝑏1, 𝑏2)𝐵/𝐼𝐵 = 𝐵/𝐼𝐵 and 𝑉(𝑏1, 𝑏2) ⊂ 𝑆𝑝𝑒𝑐(𝐵) is disjoint from
𝑉(𝐼𝐵). Since 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) is closed (see Algebra, Lemmas 7.32.20 and 7.36.6)
we can find an 𝑎 ∈ 𝐴 which maps to an invertible element of 𝐴/𝐼 whose image in 𝐵
lies in (𝑏1, 𝑏2), see Lemma 12.9.7. After replacing 𝐴 by the localization 𝐴𝑎 we get that
(𝑏1, 𝑏2) = 𝐵. Then 𝑆𝑝𝑒𝑐(𝐵) = 𝐷(𝑏1) ⨿ 𝐷(𝑏2); disjoint union because 𝑏1𝑏2 = 0. Let 𝑒 ∈ 𝐵
be the idempotent corresponding to the open and closed subset 𝐷(𝑏1), see Algebra, Lemma
7.18.3. Since 𝑏1 is a lift of 𝑒 and 𝑏2 is a lift of ±(1 − 𝑒) we conclude that 𝑒 is a lift of 𝑒 by
the uniqueness statement in Algebra, Lemma 7.18.3. �

Lemma12.9.9. Let𝐴 be a ring, let 𝐼 ⊂ 𝐴 be an ideal. Let𝑃 be finite projective𝐴/𝐼-module.
Then there exists an étale ring map 𝐴 → 𝐴′ which induces an isomorphism 𝐴/𝐼 → 𝐴′/𝐼𝐴′

and a finite projective 𝐴′-module 𝑃′ lifting 𝑃.

Proof. We can choose an integer 𝑛 and a direct sum decomposition (𝐴/𝐼)⊕𝑛 = 𝑃 ⊕ 𝐾 for
some 𝑅/𝐼-module 𝐾. Choose a lift 𝜑 ∶ 𝐴⊕𝑛 → 𝐴⊕𝑛 of the projector 𝑝 associated to the
direct summand 𝑃. Let 𝑓 ∈ 𝐴[𝑥] be the characteristic polynomial of 𝜑. Set 𝐵 = 𝐴[𝑥]/(𝑓).
By Cayley-Hamilton (Algebra, Lemma 7.15.1) there is a map 𝐵 → End𝐴(𝐴⊕𝑛) mapping 𝑥
to 𝜑. For every prime 𝔭 ⊃ 𝐼 the image of 𝑓 in 𝜅(𝔭) is (𝑥 − 1)𝑟𝑥𝑛−𝑟 where 𝑟 is the dimension
of 𝑃 ⊗𝐴/𝐼 𝜅(𝔭). Hence (𝑥 − 1)𝑛𝑥𝑛 maps to zero in 𝐵 ⊗𝐴 𝜅(𝔭) for all 𝔭 ⊃ 𝐼. Hence the image
of (𝑥 − 1)𝑛𝑥𝑛 in 𝐵 is contained in

⋃𝔭⊃𝐼
𝔭𝐵 = (⋃𝔭⊃𝐼

𝔭)𝐵 = √𝐼𝐵

the first equality because 𝐵 is a free 𝐴-module and the second by Algebra, Lemma 7.16.2.
Thus (𝑥 − 1)𝑁𝑥𝑁 is contained in 𝐼𝐵 for some 𝑁. It follows that 𝑥𝑁 + (1 − 𝑥)𝑁 is a unit in
𝐵/𝐼𝐵 and that

𝑒 = image of 𝑥𝑁

𝑥𝑁 + (1 − 𝑥)𝑁 in 𝐵/𝐼𝐵

is an idempotent as both assertions hold in𝐙[𝑥]/(𝑥𝑛(𝑥−1)𝑁). The image of 𝑒 in End𝐴/𝐼((𝐴/𝐼)⊕𝑛)
is

𝑝𝑁

𝑝𝑁 + (1 − 𝑝)𝑁
= 𝑝

as 𝑝 is an idempotent. After replacing 𝐴 by an étale extension 𝐴′ as in the lemma, we may
assume there exists an idempotent 𝑒 ∈ 𝐵 which maps to 𝑒 in 𝐵/𝐼𝐵, see Lemma 12.9.8.
Then the image of 𝑒 under the map

𝐵 = 𝐴[𝑥]/(𝑓) ⟶ End𝐴(𝐴⊕𝑛).

is an idempotent element 𝑝 which lifts 𝑝. Setting 𝑃 = Im(𝑝) we win. �

Lemma 12.9.10. Let 𝐴 be a ring. Let 0 → 𝐾 → 𝐴⊕𝑚 → 𝑀 → 0 be a sequence of
𝐴-modules. Consider the𝐴-algebra𝐶 = Sym∗

𝐴(𝑀)with its presentation 𝛼 ∶ 𝐴[𝑦1, … , 𝑦𝑚] →
𝐶 coming from the surjection 𝐴⊕𝑚 → 𝑀. Then

𝑁𝐿(𝛼) = (𝐾 ⊗𝐴 𝐶 → ⨁𝑗=1,…,𝑚
𝐶d𝑦𝑗)

(see Algebra, Section 7.123) in particular Ω𝐶/𝐴 = 𝑀 ⊗𝐴 𝐶.
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Proof. Let 𝐽 = Ker(𝛼). The lemma asserts that 𝐽/𝐽2 ≅ 𝐾⊗𝐴 𝐶. Note that 𝛼 is a homomor-
phism of graded algebras. We will prove that in degree 𝑑 we have (𝐽/𝐽2)𝑑 = 𝐾 ⊗𝐴 𝐶𝑑−1.
Note that

𝐽𝑑 = Ker(Sym𝑑
𝐴(𝐴⊕𝑚) → Sym𝑑

𝐴(𝑀)) = Im(𝐾 ⊗𝐴 Sym𝑑−1
𝐴 (𝐴⊕𝑚) → Sym𝑑

𝐴(𝐴⊕𝑚)),

see Algebra, Lemma 7.12.2. It follows that (𝐽2)𝑑 = ∑𝑎+𝑏=𝑑 𝐽𝑎 ⋅ 𝐽𝑏 is the image of

𝐾 ⊗𝐴 𝐾 ⊗𝐴 Sym𝑑−2
𝐴 (𝐴⊗𝑚) → Sym𝑑

𝐴(𝐴⊕𝑚).

The cokernel of the map 𝐾 ⊗𝐴 Sym𝑑−2
𝐴 (𝐴⊗𝑚) → Sym𝑑−1

𝐴 (𝐴⊕𝑚) is Sym𝑑−1
𝐴 (𝑀) by the

lemma referenced above. Hence it is clear that (𝐽/𝐽2)𝑑 = 𝐽𝑑/(𝐽2)𝑑 is equal to

Coker(𝐾 ⊗𝐴 𝐾 ⊗𝐴 Sym𝑑−2
𝐴 (𝐴⊗𝑚) → 𝐾 ⊗𝐴 Sym𝑑−1

𝐴 (𝐴⊗𝑚)) = 𝐾 ⊗𝐴 Sym𝑑−1
𝐴 (𝑀)

= 𝐾 ⊗𝐴 𝐶𝑑−1

as desired. �

Lemma 12.9.11. Let 𝐴 be a ring. Let 𝑀 be an 𝐴-module. Then 𝐶 = Sym∗
𝐴(𝑀) is smooth

over 𝐴 if and only if 𝑀 is a finite projective 𝐴-module.

Proof. Let 𝜎 ∶ 𝐶 → 𝐴 be the projection onto the degree 0 part of 𝐶. Then 𝐽 = Ker(𝜎)
is the part of degree > 0 and we see that 𝐽/𝐽2 = 𝑀 as an 𝐴-module. Hence if 𝐴 → 𝐶 is
smooth then 𝑀 is a finite projective 𝐴-module by Algebra, Lemma 7.128.4.

Conversely, assume that 𝑀 is finite projective and choose a surjection 𝐴⊕𝑛 → 𝑀 with
kernel 𝐾. Of course the sequence 0 → 𝐾 → 𝐴⊕𝑛 → 𝑀 → 0 is split as 𝑀 is projective. In
particular we see that 𝐾 is a finite 𝐴-module and hence 𝐶 is of finite presentation over 𝐴
as 𝐶 is a quotient of 𝐴[𝑥1, … , 𝑥𝑛] by the ideal generated by 𝐾 ⊂ ⨁ 𝐴𝑥𝑖. The computation
of Lemma 12.9.10 shows that 𝑁𝐿𝐶/𝐴 is homotopy equivalent to (𝐾 → 𝑀) ⊗𝐴 𝐶. Hence
𝑁𝐿𝐶/𝐴 is quasi-isomorphic to 𝐶 ⊗𝐴 𝑀 placed in degree 0 which means that 𝐶 is smooth
over 𝐴 by Algebra, Definition 7.126.1. �

Lemma 12.9.12. Let 𝐴 be a ring, let 𝐼 ⊂ 𝐴 be an ideal. Consider a commutative diagram

𝐵

!!
𝐴

OO

// 𝐴/𝐼
where 𝐵 is a smooth 𝐴-algebra. Then there exists an étale ring map 𝐴 → 𝐴′ which induces
an isomorphism 𝐴/𝐼 → 𝐴′/𝐼𝐴′ and an 𝐴-algebra map 𝐵 → 𝐴′ lifting the ring map 𝐵 →
𝐴/𝐼.

Proof. Let 𝐽 ⊂ 𝐵 be the kernel of 𝐵 → 𝐴/𝐼 so that 𝐵/𝐽 = 𝐴/𝐼. By Algebra, Lemma
7.128.3 the sequence

0 → 𝐼/𝐼2 → 𝐽/𝐽2 → Ω𝐵/𝐴 ⊗𝐵 𝐵/𝐽 → 0

is split exact. Thus 𝑃 = 𝐽/(𝐽2 + 𝐼𝐵) = Ω𝐵/𝐴 ⊗𝐵 𝐵/𝐽 is a finite projective 𝐴/𝐼-module.
Choose an integer 𝑛 and a direct sum decomposition 𝐴/𝐼⊕𝑛 = 𝑃 ⊕ 𝐾. By Lemma 12.9.9
we can find an étale ring map 𝐴 → 𝐴′ which induces an isomorphism 𝐴/𝐼 → 𝐴′/𝐼𝐴′

and a finite projective 𝐴-module 𝐾 which lifts 𝐾. We may and do replace 𝐴 by 𝐴′. Set
𝐵′ = 𝐵 ⊗𝐴 Sym∗

𝐴(𝐾). Since 𝐴 → Sym∗
𝐴(𝐾) is smooth by Lemma 12.9.11 we see that

𝐵 → 𝐵′ is smooth which in turn implies that 𝐴 → 𝐵′ is smooth (see Algebra, Lemmas
7.126.4 and 7.126.13). Moreover the section Sym∗

𝐴(𝐾) → 𝐴 determines a section 𝐵′ → 𝐵
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and we let 𝐵′ → 𝐴/𝐼 be the composition 𝐵′ → 𝐵 → 𝐴/𝐼. Let 𝐽′ ⊂ 𝐵′ be the kernel
of 𝐵′ → 𝐴/𝐼. We have 𝐽𝐵′ ⊂ 𝐽′ and 𝐵 ⊗𝐴 𝐾 ⊂ 𝐽′. These maps combine to give an
isomorphism

(𝐴/𝐼)⊕𝑛 ≅ 𝐽/𝐽2 ⊕ 𝐾 ⟶ 𝐽′/((𝐽′)2 + 𝐼𝐵′)
Thus, after replacing 𝐵 by 𝐵′ we may assume that 𝐽/(𝐽2 + 𝐼𝐵) = Ω𝐵/𝐴 ⊗𝐵 𝐵/𝐽 is a free
𝐴/𝐼-module of rank 𝑛.

In this case, choose 𝑓1, … , 𝑓𝑛 ∈ 𝐽 which map to a basis of 𝐽/(𝐽2 + 𝐼𝐵). Consider the
finitely presented 𝐴-algebra 𝐶 = 𝐵/(𝑓1, … , 𝑓𝑛). Note that we have an exact sequence

0 → 𝐻1(𝐿𝐶/𝐴) → (𝑓1, … , 𝑓𝑛)/(𝑓1, … , 𝑓𝑛)2 → Ω𝐵/𝐴 ⊗𝐵 𝐶 → Ω𝐶/𝐴 → 0

see Algebra, Lemma 7.123.3 (note that 𝐻1(𝐿𝐵/𝐴) = 0 and that Ω𝐵/𝐴 is finite projective, in
particular flat so the Tor group vanishes). For any prime 𝔮 ⊃ 𝐽 of 𝐵 the module Ω𝐵/𝐴,𝔮 is
free of rank 𝑛 because Ω𝐵/𝐴 is finite projective and because Ω𝐵/𝐴 ⊗𝐵 𝐵/𝐽 is free of rank 𝑛.
By our choice of 𝑓1, … , 𝑓𝑛 the map

((𝑓1, … , 𝑓𝑛)/(𝑓1, … , 𝑓𝑛)2)𝔮 → Ω𝐵/𝐴,𝔮

is surjective modulo 𝐼. Hence we see that this map of modules over the local ring 𝐶𝔮 has to
be an isomorphism. Thus 𝐻1(𝐿𝐶/𝐴)𝔮 = 0 and Ω𝐶/𝐴,𝔮 = 0. By Algebra, Lemma 7.126.12
we see that 𝐴 → 𝐶 is smooth at the prime 𝔮 of 𝐶 corresponding to 𝔮. Since Ω𝐶/𝐴,𝔮 = 0 it is
actually étale at 𝔮. Thus 𝐴 → 𝐶 is étale at all primes of 𝐶 containing 𝐽𝐶. By Lemma 12.9.4
we can find an 𝑓 ∈ 𝐶 mapping to an invertible element of 𝐶/𝐽𝐶 such that 𝐴 → 𝐶𝑓 is étale.
By our choice of 𝑓 it is still true that 𝐶𝑓/𝐽𝐶𝑓 = 𝐴/𝐼. The map 𝐶𝑓/𝐼𝐶𝑓 → 𝐴/𝐼 is surjective
and étale by Algebra, Lemma 7.132.8. Hence 𝐴/𝐼 is isomorphic to the localization of
𝐶𝑓/𝐼𝐶𝑓 at some element 𝑔 ∈ 𝐶, see Algebra, Lemma 7.132.9. Set 𝐴′ = 𝐶𝑓𝑔 to conclude
the proof. �

12.10. Auto-associated rings

Some of this material is in [Laz69].

Definition 12.10.1. A ring 𝑅 is said to be auto-associated if 𝑅 is local and its maximal
ideal 𝔪 is weakly associated to 𝑅.

Lemma 12.10.2. An auto-associated ring 𝑅 has the following property: (P) Every proper
finitely generated ideal 𝐼 ⊂ 𝑅 has a nonzero annihilator.

Proof. By assumption there exists a nonzero element 𝑥 ∈ 𝑅 such that for every 𝑓 ∈ 𝔪 we
have 𝑓𝑛𝑥 = 0. Say 𝐼 = (𝑓1, … , 𝑓𝑟). Then 𝑥 is in the kernel of 𝑅 → ⨁ 𝑅𝑓𝑖

. Hence we see
that there exists a nonzero 𝑦 ∈ 𝑅 such that 𝑓𝑖𝑦 = 0 for all 𝑖, see Algebra, Lemma 7.20.4.
As 𝑦 ∈ Ann𝑅(𝐼) we win. �

Lemma 12.10.3. Let 𝑅 be a ring having property (P) of Lemma 12.10.2. Let 𝑢 ∶ 𝑁 → 𝑀
be a homomorphism of projective 𝑅-modules. Then 𝑢 is universally injective if and only if
𝑢 is injective.

Proof. Assume 𝑢 is injective. Our goal is to show 𝑢 is universally injective. First we choose
a module 𝑄 such that 𝑁 ⊕ 𝑄 is free. On considering the map 𝑁 ⊕ 𝑄 → 𝑀 ⊕ 𝑄 we see
that it suffices to prove the lemma in case 𝑁 is free. In this case 𝑁 is a directed colimit
of finite free 𝑅-modules. Thus we reduce to the case that 𝑁 is a finite free 𝑅-module, say
𝑁 = 𝑅⊕𝑛. We prove the lemma by induction on 𝑛. The case 𝑛 = 0 is trivial.
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Let 𝑢 ∶ 𝑅⊕𝑛 → 𝑀 be an injective module map with 𝑀 projective. Choose an 𝑅-module
𝑄 such that 𝑀 ⊕ 𝑄 is free. After replacing 𝑢 by the composition 𝑅⊕𝑛 → 𝑀 → 𝑀 ⊕ 𝑄
we see that we may assume that 𝑀 is free. Then we can find a direct summand 𝑅⊕𝑚 ⊂ 𝑀
such that 𝑢(𝑅⊕𝑛) ⊂ 𝑅⊕𝑚. Hence we may assume that 𝑀 = 𝑅⊕𝑚. In this case 𝑢 is given
by a matrix 𝐴 = (𝑎𝑖𝑗) so that 𝑢(𝑥1, … , 𝑥𝑛) = (∑ 𝑥𝑖𝑎𝑖1, … , ∑ 𝑥𝑖𝑎𝑖𝑚). As 𝑢 is injective, in
particular 𝑢(𝑥, 0, … , 0) = (𝑥𝑎11, 𝑥𝑎12, … , 𝑥𝑎1𝑚)≠0 if 𝑥≠0, and as 𝑅 has property (P) we
see that 𝑎11𝑅 + 𝑎12𝑅 + … + 𝑎1𝑚𝑅 = 𝑅. Hence see that 𝑅(𝑎11, … , 𝑎1𝑚) ⊂ 𝑅⊕𝑚 is a direct
summand of 𝑅⊕𝑚, in particular 𝑅⊕𝑚/𝑅(𝑎11, … , 𝑎1𝑚) is a projective 𝑅-module. We get a
commutative diagram

0 // 𝑅 //

1
��

𝑅⊕𝑛 //

𝑢
��

𝑅⊕𝑛−1 //

��

0

0 // 𝑅
(𝑎11,…,𝑎1𝑚) // 𝑅⊕𝑚 // 𝑅⊕𝑚/𝑅(𝑎11, … , 𝑎1𝑚) // 0

with split exact rows. Thus the right vertical arrow is injective and we may apply the induc-
tion hypothesis to conclude that the right verical arrow is universally injective. It follows
that the middle vertical arrow is universally injective. �

Lemma 12.10.4. Let 𝑅 be a ring. The following are equivalent
(1) 𝑅 has property (P) of Lemma 12.10.2,
(2) any injective map of projective 𝑅-modules is universally injective,
(3) if 𝑢 ∶ 𝑁 → 𝑀 is injective and 𝑁, 𝑀 are finite projective 𝑅-modules then

Coker(𝑢) is a finite projective 𝑅-module,
(4) if 𝑁 ⊂ 𝑀 and 𝑁, 𝑀 are finite projective as 𝑅-modules, then 𝑁 is a direct sum-

mand of 𝑀, and
(5) any injective map 𝑅 → 𝑅⊕𝑛 is a split injection.

Proof. The implication (1) ⇒ (2) is Lemma 12.10.3. It is clear that (3) and (4) are equiv-
alent. We have (2) ⇒ (3), (4) by Algebra, Lemma 7.76.4. Part (5) is a special case of (4).
Assume (5). Let 𝐼 = (𝑎1, … , 𝑎𝑛) be a proper finitely generated ideal of 𝑅. As 𝐼≠𝑅 we see
that 𝑅 → 𝑅⊕𝑛, 𝑥 ↦ (𝑥𝑎1, … , 𝑥𝑎𝑛) is not a split injection. Hence it has a nonzero kernel
and we conclude that Ann𝑅(𝐼)≠0. Thus (1) holds. �

Example 12.10.5. If the equivalent conditions of Lemma 12.10.4 hold, then it is not always
the case that every injectivemap of free 𝑅-modules is a split injection. For example suppose
that 𝑅 = 𝑘[𝑥1, 𝑥2, 𝑥3, …]/(𝑥2

𝑖 ). This is an auto-associated ring. Consider the map of free
𝑅-modules

𝑢 ∶ ⨁𝑖≥1
𝑅𝑒𝑖 ⟶ ⨁𝑖≥1

𝑅𝑓𝑖, 𝑒𝑖 ⟼ 𝑓𝑖 − 𝑥𝑖𝑓𝑖+1.

For any integer 𝑛 the restriction of 𝑢 to⨁𝑖=1,…,𝑛 𝑅𝑒𝑖 is injective as the images 𝑢(𝑒1), … , 𝑢(𝑒𝑛)
are 𝑅-linearly independent. Hence 𝑢 is injective and hence universally injective by the
lemma. Since 𝑢 ⊗ id𝑘 is bijective we see that if 𝑢 were a split injection then 𝑢 would be
surjective. But 𝑢 is not surjective because the inverse image of 𝑓1 would be the element

∑𝑖≥0
𝑥1 … 𝑥𝑖𝑒𝑖+1 = 𝑒1 + 𝑥1𝑒2 + 𝑥1𝑥2𝑒3 + …

which is not an element of the direct sum. A side remark is that Coker(𝑢) is a flat (because
𝑢 is universally injective), countably generated 𝑅-module which is not projective (as 𝑢 is
not split), hence not Mittag-Leffler (see Algebra, Lemma 7.87.1).
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12.11. Flattening stratification

Let 𝑅 → 𝑆 be a ring map and let 𝑁 be an 𝑆-module. For any 𝑅-algebra 𝑅′ we can consider
the base changes 𝑆′ = 𝑆 ⊗𝑅 𝑅′ and 𝑀′ = 𝑀 ⊗𝑅 𝑅′. We say 𝑅 → 𝑅′ flattens 𝑀 if the
module 𝑀′ is flat over 𝑅′. We would like to understand the structure of the collection of
ring maps 𝑅 → 𝑅′ which flatten 𝑀. In particular we would like to know if there exists a
universal flattening 𝑅 → 𝑅𝑢𝑛𝑖𝑣 of 𝑀, i.e., a ring map 𝑅 → 𝑅𝑢𝑛𝑖𝑣 which flattens 𝑀 and has
the property that any ring map 𝑅 → 𝑅′ which flattens 𝑀 factors through 𝑅 → 𝑅𝑢𝑛𝑖𝑣. It
turns out that such a universal solution usually does not exist.

We will discuss universal flattenings and flattening stratifications in a scheme theoretic
setting ℱ/𝑋/𝑆 in More on Flatness, Section 34.21. If the universal flattening 𝑅 → 𝑅𝑢𝑛𝑖𝑣
exists then the morphism of schemes 𝑆𝑝𝑒𝑐(𝑅𝑢𝑛𝑖𝑣) → 𝑆𝑝𝑒𝑐(𝑅) is the universal flattening of
the quasi-coherent module 𝑀 on 𝑆𝑝𝑒𝑐(𝑆).

In this and the next few sections we prove some basic algebra facts related to this. The most
basic result is perhaps the following.

Lemma 12.11.1. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝐼1, 𝐼2 be ideals of 𝑅. If
𝑀/𝐼1𝑀 is flat over 𝑅/𝐼1 and 𝑀/𝐼2𝑀 is flat over 𝑅/𝐼2, then 𝑀/(𝐼1 ∩ 𝐼2)𝑀 is flat over
𝑅/(𝐼1 ∩ 𝐼2).

Proof. By replacing 𝑅 with 𝑅/(𝐼1 ∩ 𝐼2) and 𝑀 by 𝑀/(𝐼1 ∩ 𝐼2)𝑀 we may assume that
𝐼1 ∩ 𝐼2 = 0. Let 𝐽 ⊂ 𝑅 be an ideal. To prove that 𝑀 is flat over 𝑅 we have to show that
𝐽 ⊗𝑅 𝑀 → 𝑀 is injective, see Algebra, Lemma 7.35.4. By flatness of 𝑀/𝐼1𝑀 over 𝑅/𝐼1
the map

𝐽/(𝐽 ∩ 𝐼1) ⊗𝑅 𝑀 = (𝐽 + 𝐼1)/𝐼1 ⊗𝑅/𝐼1
𝑀/𝐼1𝑀 ⟶ 𝑀/𝐼1𝑀

is injective. As 0 → (𝐽 ∩ 𝐼1) → 𝐽 → 𝐽/(𝐽 ∩ 𝐼1) → 0 is exact we obtain a diagram

(𝐽 ∩ 𝐼1) ⊗𝑅 𝑀 //

��

𝐽 ⊗𝑅 𝑀 //

��

𝐽/(𝐽 ∩ 𝐼1) ⊗𝑅 𝑀 //

��

0

𝑀 𝑀 //𝑀/𝐼1𝑀

hence it suffices to show that (𝐽 ∩ 𝐼1) ⊗𝑅 𝑀 → 𝑀 is injective. Since 𝐼1 ∩ 𝐼2 = 0 the
ideal 𝐽 ∩ 𝐼1 maps isomorphically to an ideal 𝐽′ ⊂ 𝑅/𝐼2 and we see that (𝐽 ∩ 𝐼1) ⊗𝑅 𝑀 =
𝐽′ ⊗𝑅/𝐼2

𝑀/𝐼2𝑀. By flatness of 𝑀/𝐼2𝑀 over 𝑅/𝐼2 the map 𝐽′ ⊗𝑅/𝐼2
𝑀/𝐼2𝑀 → 𝑀/𝐼2𝑀

is injective, which clearly implies that (𝐽 ∩ 𝐼1) ⊗𝑅 𝑀 → 𝑀 is injective. �

12.12. Flattening over an Artinian ring

A universal flattening exists when the base ring is an Artinian local ring. It exists for an
arbitrary module. Hence, as we will see later, a flatting stratification exists when the base
scheme is the spectrum of an Artinian local ring.

Lemma 12.12.1. Let 𝑅 be an Artinian ring. Let 𝑀 be an 𝑅-module. Then there exists a
smallest ideal 𝐼 ⊂ 𝑅 such that 𝑀/𝐼𝑀 is flat over 𝑅/𝐼.

Proof. This follows directly from Lemma 12.11.1 and the Artinian property. �

This ideal has the following universal property.
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Lemma 12.12.2. Let 𝑅 be an Artinian ring. Let 𝑀 be an 𝑅-module. Let 𝐼 ⊂ 𝑅 be the
smallest ideal 𝐼 ⊂ 𝑅 such that 𝑀/𝐼𝑀 is flat over 𝑅/𝐼. Then 𝐼 has the following universal
property: For every ring map 𝜑 ∶ 𝑅 → 𝑅′ we have

𝑅′ ⊗𝑅 𝑀 is flat over 𝑅′ ⇔ we have 𝜑(𝐼) = 0.

Proof. Note that 𝐼 exists by Lemma 12.12.1. The implication ⇒ follows from Algebra,
Lemma 7.35.6. Let 𝜑 ∶ 𝑅 → 𝑅′ be such that 𝑀 ⊗𝑅 𝑅′ is flat over 𝑅′. Let 𝐽 = Ker(𝜑).
By Algebra, Lemma 7.93.7 and as 𝑅′ ⊗𝑅 𝑀 = 𝑅′ ⊗𝑅/𝐽 𝑀/𝐽𝑀 is flat over 𝑅′ we conclude
that 𝑀/𝐽𝑀 is flat over 𝑅/𝐽. Hence 𝐼 ⊂ 𝐽 as desired. �

12.13. Flattening over a closed subset of the base

Let 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑆-module. In the following
we will consider the following condition

(12.13.0.1) ∀𝔮 ∈ 𝑉(𝐼𝑆) ⊂ 𝑆𝑝𝑒𝑐(𝑆) ∶ 𝑀𝔮 is flat over 𝑅.

Geometrically, this means that 𝑀 is flat over 𝑅 along the inverse image of 𝑉(𝐼) in 𝑆𝑝𝑒𝑐(𝑆).
If 𝑅 and 𝑆 are Noetherian rings and 𝑀 is a finite 𝑆-module, then (12.13.0.1) is equivalent
to the condition that 𝑀/𝐼𝑛𝑀 is flat over 𝑅/𝐼𝑛 for all 𝑛 ≥ 1, see Algebra, Lemma 7.91.10.

Lemma 12.13.1. Let 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑆-module.
Let 𝑅 → 𝑅′ be a ring map and 𝐼𝑅′ ⊂ 𝐼′ ⊂ 𝑅′ an ideal. If (12.13.0.1) holds for (𝑅 →
𝑆, 𝐼, 𝑀), then (12.13.0.1) holds for (𝑅′ → 𝑆 ⊗𝑅 𝑅′, 𝐼′, 𝑀 ⊗𝑅 𝑅′).

Proof. Assume (12.13.0.1) holds for (𝑅 → 𝑆, 𝐼 ⊂ 𝑅, 𝑀). Let 𝐼′(𝑆 ⊗𝑅 𝑅′) ⊂ 𝔮′ be a
prime of 𝑆 ⊗𝑅 𝑅′. Let 𝔮 ⊂ 𝑆 be the corresponding prime of 𝑆. Then 𝐼𝑆 ⊂ 𝔮. Note that
(𝑀 ⊗𝑅 𝑅′)𝔮′ is a localization of the base change 𝑀𝔮 ⊗𝑅 𝑅′. Hence (𝑀 ⊗𝑅 𝑅′)𝔮′ is flat
over 𝑅′ as a localization of a flat module, see Algebra, Lemmas 7.35.6 and 7.35.19. �

Lemma 12.13.2. Let 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑆-module.
Let 𝑅 → 𝑅′ be a ring map and 𝐼𝑅′ ⊂ 𝐼′ ⊂ 𝑅′ an ideal such that

(1) the map 𝑉(𝐼′) → 𝑉(𝐼) induced by 𝑆𝑝𝑒𝑐(𝑅′) → 𝑆𝑝𝑒𝑐(𝑅) is surjective, and
(2) 𝑅′

𝔭′ is flat over 𝑅 for all primes 𝔭′ ∈ 𝑉(𝐼′).

If (12.13.0.1) holds for (𝑅′ → 𝑆 ⊗𝑅 𝑅′, 𝐼′, 𝑀 ⊗𝑅 𝑅′), then (12.13.0.1) holds for (𝑅 →
𝑆, 𝐼, 𝑀).

Proof. Assume (12.13.0.1) holds for (𝑅′ → 𝑆 ⊗𝑅 𝑅′, 𝐼𝑅′, 𝑀 ⊗𝑅 𝑅′). Pick a prime
𝐼𝑆 ⊂ 𝔮 ⊂ 𝑆. Let 𝐼 ⊂ 𝔭 ⊂ 𝑅 be the corresponding prime of 𝑅. By assumption there
exists a prime 𝔭′ ∈ 𝑉(𝐼′) of 𝑅′ lying over 𝔭 and 𝑅𝔭 → 𝑅′

𝔭′ is flat. Choose a prime
𝔮′ ⊂ 𝜅(𝔮) ⊗𝜅(𝔭) 𝜅(𝔭′) which corresponds to a prime 𝔮′ ⊂ 𝑆 ⊗𝑅 𝑅′ which lies over 𝔮 and
over 𝔭′. Note that (𝑆 ⊗𝑅 𝑅′)𝔮′ is a localization of 𝑆𝔮 ⊗𝑅𝔭

𝑅′
𝔭′. By assumption the module

(𝑀 ⊗𝑅 𝑅′)𝔮′ is flat over 𝑅′
𝔭′. Hence Algebra, Lemma 7.92.1 implies that 𝑀𝔮 is flat over

𝑅𝔭 which is what we wanted to prove. �

Lemma 12.13.3. Let 𝑅 → 𝑆 be a ring map of finite presentation. Let 𝑀 be an 𝑆-module of
finite presentation. Let 𝑅′ = 𝑐𝑜𝑙𝑖𝑚𝜆∈Λ 𝑅𝜆 be a directed colimit of 𝑅-algebras. Let 𝐼𝜆 ⊂ 𝑅𝜆
be ideals such that 𝐼𝜆𝑅𝜇 ⊂ 𝐼𝜇 for all 𝜇 ≥ 𝜆 and set 𝐼′ = 𝑐𝑜𝑙𝑖𝑚𝜆 𝐼𝜆. If (12.13.0.1) holds for
(𝑅′ → 𝑆 ⊗𝑅 𝑅′, 𝐼′, 𝑀 ⊗𝑅 𝑅′), then there exists a 𝜆 ∈ Λ such that (12.13.0.1) holds for
(𝑅𝜆 → 𝑆 ⊗𝑅 𝑅𝜆, 𝐼𝜆, 𝑀 ⊗𝑅 𝑅𝜆).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0525
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=052X
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05LL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05LM


12.14. FLATTENING OVER A CLOSED SUBSETS OF SOURCE AND BASE 817

Proof. We are going to write 𝑆𝜆 = 𝑆 ⊗𝑅 𝑅𝜆, 𝑆′ = 𝑆 ⊗𝑅 𝑅′, 𝑀𝜆 = 𝑀 ⊗𝑅 𝑅𝜆, and
𝑀′ = 𝑀 ⊗𝑅 𝑅′. The base change 𝑆′ is of finite presentation over 𝑅′ and 𝑀′ is of finite
presentation over 𝑆′ and similarly for the versions with subscript 𝜆, see Algebra, Lemma
7.13.2. By Algebra, Theorem 7.120.4 the set

𝑈′ = {𝔮′ ∈ 𝑆𝑝𝑒𝑐(𝑆′) ∣ 𝑀′
𝔮′ is flat over 𝑅′}

is open in 𝑆𝑝𝑒𝑐(𝑆′). Note that 𝑉(𝐼′𝑆′) is a quasi-compact space which is contained in 𝑈′

by assumption. Hence there exist finitely many 𝑔′
𝑗 ∈ 𝑆′, 𝑗 = 1, … , 𝑚 such that 𝐷(𝑔′

𝑗) ⊂ 𝑈′

and such that 𝑉(𝐼′𝑆′) ⊂ ⋃ 𝐷(𝑔′
𝑗). Note that in particular (𝑀′)𝑔′

𝑗
is a flat module over 𝑅′.

We are going to pick increasingly large elements 𝜆 ∈ Λ. First we pick it large enough so
that we can find 𝑔𝑗,𝜆 ∈ 𝑆𝜆 mapping to 𝑔′

𝑗. The inclusion 𝑉(𝐼′𝑆′) ⊂ ⋃ 𝐷(𝑔′
𝑗) means that

𝐼′𝑆′ + (𝑔′
1, … , 𝑔′

𝑚) = 𝑆′ which can be expressed as 1 = ∑ 𝑧𝑠ℎ𝑠 + ∑ 𝑓𝑗𝑔′
𝑗 for some 𝑧𝑠 ∈ 𝐼′,

ℎ𝑠, 𝑓𝑗 ∈ 𝑆′. After increasing 𝜆 we may assume such an equation holds in 𝑆𝜆. Hence we
may assume that 𝑉(𝐼𝜆𝑆𝜆) ⊂ ⋃ 𝐷(𝑔𝑗,𝜆). By Algebra, Lemma 7.120.5 we see that for some
sufficiently large 𝜆 the modules (𝑀𝜆)𝑔𝑗,𝜆

are flat over 𝑅𝜆. In particular the module 𝑀𝜆 is
flat over 𝑅𝜆 at all the primes lying over the ideal 𝐼𝜆. �

12.14. Flattening over a closed subsets of source and base

In this section we slightly generalize the discussion in Section 12.13. We strongly suggest
the reader first read and understand that section.

Situation 12.14.1. Let 𝑅 → 𝑆 be a ring map. Let 𝐽 ⊂ 𝑆 be an ideal. Let 𝑀 be an
𝑆-module.

In this situation, given an 𝑅-algebra 𝑅′ and an ideal 𝐼′ ⊂ 𝑅′ we set 𝑆′ = 𝑆 ⊗𝑅 𝑅′ and
𝑀′ = 𝑀 ⊗𝑅 𝑅′. We will consider the condition

(12.14.1.1) ∀𝔮′ ∈ 𝑉(𝐼′𝑆′ + 𝐽𝑆′) ⊂ 𝑆𝑝𝑒𝑐(𝑆′) ∶ 𝑀′
𝔮′ is flat over 𝑅′.

Geometrically, this means that 𝑀′ is flat over 𝑅′ along the intersection of the inverse im-
age of 𝑉(𝐼′) with the inverse image of 𝑉(𝐽). Since (𝑅 → 𝑆, 𝐽, 𝑀) are fixed, condition
(12.14.1.1) only depends on the pair (𝑅′, 𝐼′) where 𝑅′ is viewed as an 𝑅-algebra.

Lemma 12.14.2. In Situation 12.14.1 let 𝑅′ → 𝑅″ be an 𝑅-algebra map. Let 𝐼′ ⊂ 𝑅′

and 𝐼′𝑅″ ⊂ 𝐼″ ⊂ 𝑅″ be ideals. If (12.14.1.1) holds for (𝑅′, 𝐼′), then (12.14.1.1) holds for
(𝑅″, 𝐼″).

Proof. Assume (12.14.1.1) holds for (𝑅′, 𝐼′). Let 𝐼″𝑆″ + 𝐽𝑆″ ⊂ 𝔮″ be a prime of 𝑆″. Let
𝔮′ ⊂ 𝑆′ be the corresponding prime of 𝑆′. Then both 𝐼′𝑆′ ⊂ 𝔮′ and 𝐽𝑆′ ⊂ 𝔮′ because
the corresponding conditions hold for 𝔮″. Note that (𝑀″)𝔮″ is a localization of the base
change 𝑀′

𝔮′ ⊗𝑅 𝑅″. Hence (𝑀″)𝔮″ is flat over 𝑅″ as a localization of a flat module, see
Algebra, Lemmas 7.35.6 and 7.35.19. �

Lemma 12.14.3. In Situation 12.14.1 let 𝑅′ → 𝑅″ be an 𝑅-algebra map. Let 𝐼′ ⊂ 𝑅′ and
𝐼′𝑅″ ⊂ 𝐼″ ⊂ 𝑅″ be ideals. Assume

(1) the map 𝑉(𝐼″) → 𝑉(𝐼′) induced by 𝑆𝑝𝑒𝑐(𝑅″) → 𝑆𝑝𝑒𝑐(𝑅′) is surjective, and
(2) 𝑅″

𝔭″ is flat over 𝑅′ for all primes 𝔭″ ∈ 𝑉(𝐼″).

If (12.14.1.1) holds for (𝑅″, 𝐼″), then (12.14.1.1) holds for (𝑅′, 𝐼′).
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Proof. Assume (12.14.1.1) holds for (𝑅″, 𝐼″). Pick a prime 𝐼′𝑆′+𝐽𝑆′ ⊂ 𝔮′ ⊂ 𝑆′. Let 𝐼′ ⊂
𝔭′ ⊂ 𝑅′ be the corresponding prime of 𝑅′. By assumption there exists a prime 𝔭″ ∈ 𝑉(𝐼″)
of 𝑅″ lying over 𝔭′ and 𝑅′

𝔭′ → 𝑅″
𝔭″ is flat. Choose a prime 𝔮″ ⊂ 𝜅(𝔮′) ⊗𝜅(𝔭′) 𝜅(𝔭″). This

corresponds to a prime 𝔮″ ⊂ 𝑆″ = 𝑆′ ⊗𝑅′ 𝑅″ which lies over 𝔮′ and over 𝔭″. In particular
we see that 𝐼″𝑆″ ⊂ 𝔮″ and that 𝐽𝑆″ ⊂ 𝔮″. Note that (𝑆′ ⊗𝑅′ 𝑅″)𝔮″ is a localization of
𝑆′

𝔮′ ⊗𝑅′
𝔭′

𝑅″
𝔭″. By assumption the module (𝑀′ ⊗𝑅′ 𝑅″)𝔮″ is flat over 𝑅″

𝔭″. Hence Algebra,
Lemma 7.92.1 implies that 𝑀′

𝔮′ is flat over 𝑅′
𝔭′ which is what we wanted to prove. �

Lemma 12.14.4. In Situation 12.14.1 assume 𝑅 → 𝑆 is essentially of finite presentation
and 𝑀 is an 𝑆-module of finite presentation. Let 𝑅′ = 𝑐𝑜𝑙𝑖𝑚𝜆∈Λ 𝑅𝜆 be a directed colimit of
𝑅-algebras. Let 𝐼𝜆 ⊂ 𝑅𝜆 be ideals such that 𝐼𝜆𝑅𝜇 ⊂ 𝐼𝜇 for all𝜇 ≥ 𝜆 and set 𝐼′ = 𝑐𝑜𝑙𝑖𝑚𝜆 𝐼𝜆.
If (12.14.1.1) holds for (𝑅′, 𝐼′), then there exists a 𝜆 ∈ Λ such that (12.14.1.1) holds for
(𝑅𝜆, 𝐼𝜆).

Proof. Wefirst prove the lemma in case 𝑅 → 𝑆 is of finite presentation and then we explain
what needs to be changed in the general case. We are going to write 𝑆𝜆 = 𝑆 ⊗𝑅 𝑅𝜆,
𝑆′ = 𝑆 ⊗𝑅 𝑅′, 𝑀𝜆 = 𝑀 ⊗𝑅 𝑅𝜆, and 𝑀′ = 𝑀 ⊗𝑅 𝑅′. The base change 𝑆′ is of finite
presentation over 𝑅′ and 𝑀′ is of finite presentation over 𝑆′ and similarly for the versions
with subscript 𝜆, see Algebra, Lemma 7.13.2. By Algebra, Theorem 7.120.4 the set

𝑈′ = {𝔮′ ∈ 𝑆𝑝𝑒𝑐(𝑆′) ∣ 𝑀′
𝔮′ is flat over 𝑅′}

is open in 𝑆𝑝𝑒𝑐(𝑆′). Note that 𝑉(𝐼′𝑆′ + 𝐽𝑆′) is a quasi-compact space which is contained
in 𝑈′ by assumption. Hence there exist finitely many 𝑔′

𝑗 ∈ 𝑆′, 𝑗 = 1, … , 𝑚 such that
𝐷(𝑔′

𝑗) ⊂ 𝑈′ and such that 𝑉(𝐼′𝑆′ + 𝐽𝑆′) ⊂ ⋃ 𝐷(𝑔′
𝑗). Note that in particular (𝑀′)𝑔′

𝑗
is a flat

module over 𝑅′.

We are going to pick increasingly large elements 𝜆 ∈ Λ. First we pick it large enough so
that we can find 𝑔𝑗,𝜆 ∈ 𝑆𝜆 mapping to 𝑔′

𝑗. The inclusion 𝑉(𝐼′𝑆′ + 𝐽𝑆′) ⊂ ⋃ 𝐷(𝑔′
𝑗) means

that 𝐼′𝑆′ + 𝐽𝑆′ + (𝑔′
1, … , 𝑔′

𝑚) = 𝑆′ which can be expressed as

1 = ∑ 𝑦𝑡𝑘𝑡 + ∑ 𝑧𝑠ℎ𝑠 + ∑ 𝑓𝑗𝑔′
𝑗

for some 𝑧𝑠 ∈ 𝐼′, 𝑦𝑡 ∈ 𝐽, 𝑘𝑡, ℎ𝑠, 𝑓𝑗 ∈ 𝑆′. After increasing 𝜆 we may assume such an
equation holds in 𝑆𝜆. Hence we may assume that 𝑉(𝐼𝜆𝑆𝜆 +𝐽𝑆𝜆) ⊂ ⋃ 𝐷(𝑔𝑗,𝜆). By Algebra,
Lemma 7.120.5 we see that for some sufficiently large 𝜆 the modules (𝑀𝜆)𝑔𝑗,𝜆

are flat over
𝑅𝜆. In particular the module 𝑀𝜆 is flat over 𝑅𝜆 at all the primes corresponding to points
of 𝑉(𝐼𝜆𝑆𝜆 + 𝐽𝑆𝜆).

In the case that 𝑆 is essentially of finite presentation, we can write 𝑆 = Σ−1𝐶 where 𝑅 → 𝐶
is of finite presentation and Σ ⊂ 𝐶 is a multiplicative subset. We can also write 𝑀 = Σ−1𝑁
for some finitely presented 𝐶-module 𝑁, see Algebra, Lemma 7.117.3. At this point we
introduce 𝐶𝜆, 𝐶′, 𝑁𝜆, 𝑁′. Then in the discussion above we obtain an open 𝑈′ ⊂ 𝑆𝑝𝑒𝑐(𝐶′)
over which 𝑁′ is flat over 𝑅′. The assumption that (12.14.1.1) is true means that 𝑉(𝐼′𝑆′ +
𝐽𝑆′) maps into 𝑈′, because for a prime 𝔮′ ⊂ 𝑆′, corresponding to a prime 𝔯′ ⊂ 𝐶′ we
have 𝑀′

𝔮′ = 𝑁′
𝔯′. Thus we can find 𝑔′

𝑗 ∈ 𝐶′ such that ⋃ 𝐷(𝑔′
𝑗) contains the image of

𝑉(𝐼′𝑆′ + 𝐽𝑆′). The rest of the proof is exactly the same as before. �

Lemma 12.14.5. In Situation 12.14.1. Let 𝐼 ⊂ 𝑅 be an ideal. Assume
(1) 𝑅 is a Noetherian ring,
(2) 𝑆 is a Noetherian ring,
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(3) 𝑀 is a finite 𝑆-module, and
(4) for each 𝑛 ≥ 1 and any prime 𝔮 ∈ 𝑉(𝐽 + 𝐼𝑆) the module (𝑀/𝐼𝑛𝑀)𝔮 is flat over

𝑅/𝐼𝑛.
Then (12.14.1.1) holds for (𝑅, 𝐼), i.e., for every prime 𝔮 ∈ 𝑉(𝐽 + 𝐼𝑆) the localization 𝑀𝔮
is flat over 𝑅.

Proof. Let 𝔮 ∈ 𝑉(𝐽 + 𝐼𝑆). Then Algebra, Lemma 7.91.10 applied to 𝑅 → 𝑆𝔮 and 𝑀𝔮
implies that 𝑀𝔮 is flat over 𝑅. �

12.15. Flattening over a Noetherian complete local ring

The following three lemmas give a completely algebraic proof of the existence of the ``local''
flattening stratification when the base is a complete local Noetherian ring 𝑅 and the given
module is finite over a finite type 𝑅-algebra 𝑆.

Lemma 12.15.1. Let 𝑅 → 𝑆 be a ring map. Let 𝑀 be an 𝑆-module. Assume
(1) (𝑅, 𝔪) is a complete local Noetherian ring,
(2) 𝑆 is a Noetherian ring, and
(3) 𝑀 is finite over 𝑆.

Then there exists an ideal 𝐼 ⊂ 𝔪 such that
(1) (𝑀/𝐼𝑀)𝔮 is flat over 𝑅/𝐼 for all primes 𝔮 of 𝑆/𝐼𝑆 lying over 𝔪, and
(2) if 𝐽 ⊂ 𝑅 is an ideal such that (𝑀/𝐽𝑀)𝔮 is flat over 𝑅/𝐽 for all primes 𝔮 lying over

𝔪, then 𝐼 ⊂ 𝐽.
In other words, 𝐼 is the smallest ideal of 𝑅 such that (12.13.0.1) holds for (𝑅 → 𝑆, 𝔪, 𝑀)
where 𝑅 = 𝑅/𝐼, 𝑆 = 𝑆/𝐼𝑆, 𝔪 = 𝔪/𝐼 and 𝑀 = 𝑀/𝐼𝑀.

Proof. Let 𝐽 ⊂ 𝑅 be an ideal. Apply Algebra, Lemma 7.91.10 to the module 𝑀/𝐽𝑀 over
the ring 𝑅/𝐽. Then we see that (𝑀/𝐽𝑀)𝔮 is flat over 𝑅/𝐽 for all primes 𝔮 of 𝑆/𝐽𝑆 if and
only if 𝑀/(𝐽 + 𝔪𝑛)𝑀 is flat over 𝑅/(𝐽 + 𝔪𝑛) for all 𝑛 ≥ 1. We will use this remark below.
For every 𝑛 ≥ 1 the local ring 𝑅/𝔪𝑛 is Artinian. Hence, by Lemma 12.12.1 there exists
a smallest ideal 𝐼𝑛 ⊃ 𝔪𝑛 such that 𝑀/𝐼𝑛𝑀 is flat over 𝑅/𝐼𝑛. It is clear that 𝐼𝑛+1 + 𝔪𝑛 is
contains 𝐼𝑛 and applying Lemma 12.11.1we see that 𝐼𝑛 = 𝐼𝑛+1+𝔪𝑛. Since𝑅 = 𝑙𝑖𝑚𝑛 𝑅/𝔪𝑛

we see that 𝐼 = 𝑙𝑖𝑚𝑛 𝐼𝑛/𝔪𝑛 is an ideal in 𝑅 such that 𝐼𝑛 = 𝐼 + 𝔪𝑛 for all 𝑛 ≥ 1. By the
initial remarks of the proof we see that 𝐼 verifies (1) and (2). Some details omitted. �

Lemma 12.15.2. With notation 𝑅 → 𝑆, 𝑀, and 𝐼 and assumptions as in Lemma 12.15.1.
Consider a local homomorphism of local rings 𝜑 ∶ (𝑅, 𝔪) → (𝑅′, 𝔪′) such that 𝑅′ is
Noetherian. Then the following are equivalent

(1) condition (12.13.0.1) holds for (𝑅′ → 𝑆 ⊗𝑅 𝑅′, 𝔪′, 𝑀 ⊗𝑅 𝑅′), and
(2) 𝜑(𝐼) = 0.

Proof. The implication (2) ⇒ (1) follows from Lemma 12.13.1. Let 𝜑 ∶ 𝑅 → 𝑅′ be as
in the lemma satisfying (1). We have to show that 𝜑(𝐼) = 0. This is equivalent to the
condition that 𝜑(𝐼)𝑅′ = 0. By Artin-Rees in the Noetherian local ring 𝑅′ (see Algebra,
Lemma 7.47.6) this is equivalent to the condition that 𝜑(𝐼)𝑅′+(𝔪′)𝑛 = (𝔪′)𝑛 for all 𝑛 > 0.
Hence this is equivalent to the condition that the composition 𝜑𝑛 ∶ 𝑅 → 𝑅′ → 𝑅′/(𝔪′)𝑛

annihilates 𝐼 for each 𝑛. Now assumption (1) for 𝜑 implies assumption (1) for 𝜑𝑛 by Lemma
12.13.1. This reduces us to the case where 𝑅′ is Artinian local.
Assume 𝑅′ Artinian. Let 𝐽 = Ker(𝜑). We have to show that 𝐼 ⊂ 𝐽. By the construction of
𝐼 in Lemma 12.15.1 it suffices to show that (𝑀/𝐽𝑀)𝔮 is flat over 𝑅/𝐽 for every prime 𝔮 of
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𝑆/𝐽𝑆 lying over 𝔪. As 𝑅′ is Artinian, condition (1) signifies that 𝑀 ⊗𝑅 𝑅′ is flat over 𝑅′.
As 𝑅′ is Artinian and 𝑅/𝐽 → 𝑅′ is a local injective ring map, it follows that 𝑅/𝐽 is Artinian
too. Hence the flatness of 𝑀 ⊗𝑅 𝑅′ = 𝑀/𝐽𝑀 ⊗𝑅/𝐽 𝑅′ over 𝑅′ implies that 𝑀/𝐽𝑀 is flat
over 𝑅/𝐽 by Algebra, Lemma 7.93.7. This concludes the proof. �

Lemma 12.15.3. With notation 𝑅 → 𝑆, 𝑀, and 𝐼 and assumptions as in Lemma 12.15.1.
In addition assume that 𝑅 → 𝑆 is of finite type. Then for any local homomorphism of local
rings 𝜑 ∶ (𝑅, 𝔪) → (𝑅′, 𝔪′) the following are equivalent

(1) condition (12.13.0.1) holds for (𝑅′ → 𝑆 ⊗𝑅 𝑅′, 𝔪′, 𝑀 ⊗𝑅 𝑅′), and
(2) 𝜑(𝐼) = 0.

Proof. The implication (2) ⇒ (1) follows from Lemma 12.13.1. Let 𝜑 ∶ 𝑅 → 𝑅′ be as in
the lemma satisfying (1). As 𝑅 is Noetherian we see that 𝑅 → 𝑆 is of finite presentation
and 𝑀 is an 𝑆-module of finite presentation. Write 𝑅′ = 𝑐𝑜𝑙𝑖𝑚𝜆 𝑅𝜆 as a directed colimit
of local 𝑅-subalgebras 𝑅𝜆 ⊂ 𝑅′, with maximal ideals 𝔪𝜆 = 𝑅𝜆 ∩ 𝔪′ such that each 𝑅𝜆
is essentially of finite type over 𝑅. By Lemma 12.13.3 we see that condition (12.13.0.1)
holds for (𝑅𝜆 → 𝑆 ⊗𝑅 𝑅𝜆, 𝔪𝜆, 𝑀 ⊗𝑅 𝑅𝜆) for some 𝜆. Hence Lemma 12.15.2 applies to
the ring map 𝑅 → 𝑅𝜆 and we see that 𝐼 maps to zero in 𝑅𝜆, a fortiori it maps to zero in
𝑅′. �

12.16. Descent flatness along integral maps

First a few simple lemmas.

Lemma 12.16.1. Let 𝑅 be a ring. Let 𝑃(𝑇) be a monic polynomial with coefficients in 𝑅.
If there exists an 𝛼 ∈ 𝑅 such that 𝑃(𝛼) = 0, then 𝑃(𝑇) = (𝑇 − 𝛼)𝑄(𝑇) for some monic
polynomial 𝑄(𝑇) ∈ 𝑅[𝑇].

Proof. By induction on the degree of 𝑃. If deg(𝑃) = 1, then 𝑃(𝑇) = 𝑇 − 𝛼 and the result
is true. If deg(𝑃) > 1, then we can write 𝑃(𝑇) = (𝑇 − 𝛼)𝑄(𝑇) + 𝑟 for some polynomial
𝑄 ∈ 𝑅[𝑇] of degree < deg(𝑃) and some 𝑟 ∈ 𝑅 by long division. By assumption 0 =
𝑃(𝛼) = (𝛼 − 𝛼)𝑄(𝛼) + 𝑟 = 𝑟 and we conclude that 𝑟 = 0 as desired. �

Lemma 12.16.2. Let 𝑅 be a ring. Let 𝑃(𝑇) be a monic polynomial with coefficients in 𝑅.
There exists a finite free ring map 𝑅 → 𝑅′ such that 𝑃(𝑇) = (𝑇 − 𝛼)𝑄(𝑇) for some 𝛼 ∈ 𝑅′

and some monic polynomial 𝑄(𝑇) ∈ 𝑅′[𝑇].

Proof. Write 𝑃(𝑇) = 𝑇𝑑 + 𝑎1𝑇𝑑−1 + … + 𝑎0. Set 𝑅′ = 𝑅[𝑥]/(𝑥𝑑 + 𝑎1𝑥𝑑−1 + … + 𝑎0). Set 𝛼
equal to the congruence class of 𝑥. Then it is clear that 𝑃(𝛼) = 0. Thus we win by Lemma
12.16.1. �

Lemma 12.16.3. Let 𝑅 → 𝑆 be a finite ring map. There exists a finite free ring extension
𝑅 ⊂ 𝑅′ such that 𝑆 ⊗𝑅 𝑅′ is a quotient of a ring of the form

𝑅′[𝑇1, … , 𝑇𝑛]/(𝑃1(𝑇1), … , 𝑃𝑛(𝑇𝑛))

with 𝑃𝑖(𝑇) = ∏𝑗=1,…,𝑑𝑖
(𝑇 − 𝛼𝑖𝑗) for some 𝛼𝑖𝑗 ∈ 𝑅′.

Proof. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑆 be generators of 𝑆 over 𝑅. For each 𝑖 we can choose a monic
polynomial 𝑃𝑖(𝑇) ∈ 𝑅[𝑇] such that 𝑃(𝑥𝑖) = 0 in 𝑆, see Algebra, Lemma 7.32.3. Say
deg(𝑃𝑖) = 𝑑𝑖. By Lemma 12.16.2 (applied ∑ 𝑑𝑖 times) there exists a finite free ring exten-
sion 𝑅 ⊂ 𝑅′ such that each 𝑃𝑖 splits completely:

𝑃𝑖(𝑇) = ∏𝑗=1,…,𝑑𝑖
(𝑇 − 𝛼𝑖𝑗)
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for certain 𝛼𝑖𝑘 ∈ 𝑅′. Let 𝑅′[𝑇1, … , 𝑇𝑛] → 𝑆 ⊗𝑅 𝑅′ be the 𝑅′-algebra map which maps 𝑇𝑖
to 𝑥𝑖 ⊗ 1. As this maps 𝑃𝑖(𝑇𝑖) to zero, this induces the desired surjection. �

Lemma 12.16.4. Let 𝑅 be a ring. Let 𝑆 = 𝑅[𝑇1, … , 𝑇𝑛]/𝐽. Assume 𝐽 contains elements
of the form 𝑃𝑖(𝑇𝑖) with 𝑃𝑖(𝑇) = ∏𝑗=1,…,𝑑𝑖

(𝑇 − 𝛼𝑖𝑗) for some 𝛼𝑖𝑗 ∈ 𝑅. For 𝑘 = (𝑘1, … , 𝑘𝑛)
with 1 ≤ 𝑘𝑖 ≤ 𝑑𝑖 consider the ring map

Φ𝑘 ∶ 𝑅[𝑇1, … , 𝑇𝑛] → 𝑅, 𝑇𝑖 ⟼ 𝛼𝑖𝑘𝑖

Set 𝐽𝑘 = Φ𝑘(𝐽). Then the image of 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is equal to 𝑉(⋂ 𝐽𝑘).

Proof. This lemma proves itself. Hint: 𝑉(⋂ 𝐽𝑘) = ⋃ 𝑉(𝐽𝑘). �

The following result is due to Ferrand, see [Fer69].

Lemma 12.16.5. Let 𝑅 → 𝑆 be a finite injective homomorphism of Noetherian rings. Let
𝑀 be an 𝑅-module. If 𝑀 ⊗𝑅 𝑆 is a flat 𝑆-module, then 𝑀 is a flat 𝑅-module.

Proof. Let 𝑀 be an 𝑅-module such that 𝑀⊗𝑅 𝑆 is flat over 𝑆. By Algebra, Lemma 7.35.7
in order to prove that 𝑀 is flat we may replace 𝑅 by any faithfully flat ring extension. By
Lemma 12.16.3 we can find a finite locally free ring extension 𝑅 ⊂ 𝑅′ such that 𝑆′ =
𝑆⊗𝑅 𝑅′ = 𝑅′[𝑇1, … , 𝑇𝑛]/𝐽 for some ideal 𝐽 ⊂ 𝑅′[𝑇1, … , 𝑇𝑛] which contains the elements
of the form 𝑃𝑖(𝑇𝑖) with 𝑃𝑖(𝑇) = ∏𝑗=1,…,𝑑𝑖

(𝑇 − 𝛼𝑖𝑗) for some 𝛼𝑖𝑗 ∈ 𝑅′. Note that 𝑅′ is
Noetherian and that 𝑅′ ⊂ 𝑆′ is a finite extension of rings. Hence we may replace 𝑅 by 𝑅′

and assume that 𝑆 has a presentation as in Lemma 12.16.4. Note that 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅)
is surjective, see Algebra, Lemma 7.32.15. Thus, using Lemma 12.16.4 we conclude that
𝐼 = ⋂ 𝐽𝑘 is an ideal such that 𝑉(𝐼) = 𝑆𝑝𝑒𝑐(𝑅). This means that 𝐼 ⊂ √(0), and since 𝑅 is
Noetherian that 𝐼 is nilpotent. The maps Φ𝑘 induce commutative diagrams

𝑆 // 𝑅/𝐽𝑘

𝑅

^^ ==

from which we conclude that 𝑀/𝐽𝑘𝑀 is flat over 𝑅/𝐽𝑘. By Lemma 12.11.1 we see that
𝑀/𝐼𝑀 is flat over 𝑅/𝐼. Finally, applying Algebra, Lemma 7.93.5 we conclude that 𝑀 is
flat over 𝑅. �

Lemma 12.16.6. Let𝑅 → 𝑆 be an injective integral ringmap. Let𝑀 be a finitely presented
module over 𝑅[𝑥1, … , 𝑥𝑛]. If 𝑀 ⊗𝑅 𝑆 is flat over 𝑆, then 𝑀 is flat over 𝑅.

Proof. Choose a presentation

𝑅[𝑥1, … , 𝑥𝑛]⊕𝑡 → 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑟 → 𝑀 → 0.

Let's say that the first map is given by the 𝑟 × 𝑡-matrix 𝑇 = (𝑓𝑖𝑗) with 𝑓𝑖𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛].
Write 𝑓𝑖𝑗 = ∑ 𝑓𝑖𝑗,𝐼𝑥𝐼 with 𝑓𝑖𝑗,𝐼 ∈ 𝑅 (multi-index notation). Consider diagrams

𝑅 // 𝑆

𝑅𝜆

OO

// 𝑆𝜆

OO

where 𝑅𝜆 is a finitely generated 𝐙-subalgebra of 𝑅 containing all 𝑓𝑖𝑗,𝐼 and 𝑆𝜆 is a finite
𝑅𝜆-subalgebra of 𝑆. Let 𝑀𝜆 be the finite 𝑅𝜆[𝑥1, … , 𝑥𝑛]-module defined by a presentation
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as above, using the same matrix 𝑇 but now viewed as a matrix over 𝑅𝜆[𝑥1, … , 𝑥𝑛]. Note
that 𝑆 is the directed colimit of the 𝑆𝜆 (details omitted). By Algebra, Lemma 7.120.5 we
see that for some 𝜆 the module 𝑀𝜆 ⊗𝑅𝜆

𝑆𝜆 is flat over 𝑆𝜆. By Lemma 12.16.5 we conclude
that 𝑀𝜆 is flat over 𝑅𝜆. Since 𝑀 = 𝑀𝜆 ⊗𝑅𝜆

𝑅 we win by Algebra, Lemma 7.35.6. �

12.17. Torsion and flatness

In this section we discuss the relationship between torsion and flatness.

Definition 12.17.1. Let 𝑅 be a domain. Let 𝑀 be an 𝑅-module.
(1) We say an element 𝑥 ∈ 𝑀 is torsion if there exists a nonzero 𝑓 ∈ 𝑅 such that

𝑓𝑥 = 0.
(2) We say 𝑀 is torsion free if the only torsion element of 𝑀 is 0.

Lemma 12.17.2. Let 𝑅 be a domain. Let 𝑀 be an 𝑅-module. The set of torsion elements
of 𝑀 forms a submodule 𝑀𝑡𝑜𝑟𝑠 ⊂ 𝑀. The quotient module 𝑀/𝑀𝑡𝑜𝑟𝑠 is torsion free.

Proof. Omitted. �

Lemma 12.17.3. Let 𝑅 be a domain. Any flat 𝑅-module is torsion free.

Proof. If 𝑥 ∈ 𝑅 is nonzero, then 𝑥 ∶ 𝑅 → 𝑅 is injective, and hence if 𝑀 is flat over 𝑅,
then 𝑥 ∶ 𝑀 → 𝑀 is injective. Thus if 𝑀 is flat over 𝑅, then 𝑀 is torsion free. �

Lemma 12.17.4. Let 𝐴 be a valuation ring. An 𝐴-module 𝑀 is flat over 𝐴 if and only if
𝑀 is torsion free.

Proof. The implication ``flat ⇒ torsion free'' is Lemma 12.17.3. For the converse, assume
𝑀 is torsion free. By the equational criterion of flatness (see Algebra, Lemma 7.35.10) we
have to show that every relation in 𝑀 is trivial. To do this assume that ∑𝑖=1,…,𝑛 𝑎𝑖𝑥𝑖 = 0
with 𝑥𝑖 ∈ 𝑀 and 𝑓𝑖 ∈ 𝐴. After renumbering we may assume that 𝑣(𝑎1) ≤ 𝑣(𝑎𝑖) for all 𝑖.
Hence we can write 𝑎𝑖 = 𝑎′

𝑖 𝑎1 for some 𝑎′
𝑖 ∈ 𝐴. Note that 𝑎′

1 = 1. As 𝐴 is torsion free we
see that 𝑥1 = − ∑𝑖≥2 𝑎′

𝑖 𝑥𝑖. Thus, if we choose 𝑦𝑖 = 𝑥𝑖, 𝑖 = 2, … , 𝑛 then

𝑥1 = ∑𝑗≥2
−𝑎′

𝑗𝑦𝑗, 𝑥𝑖 = 𝑦𝑖, (𝑖 ≥ 2) 0 = 𝑎1 ⋅ (−𝑎′
𝑗) + 𝑎𝑗 ⋅ 1(𝑗 ≥ 2)

shows that the relation was trivial (to be explicit the elements 𝑎𝑖𝑗 are defined by setting
𝑎1𝑗 = −𝑎′

𝑗 and 𝑎𝑖𝑗 = 𝛿𝑖𝑗 for 𝑖, 𝑗 ≥ 2). �

12.18. Flatness and finiteness conditions

In this section we discuss some implications of the type ``flat + finite type ⇒ finite presen-
tation''. We will revisit this result in the chapter on flatness, see More on Flatness, Section
34.1. A first result of this type was proved in Algebra, Lemma 7.100.6.

Lemma 12.18.1. Let 𝑅 be a ring. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛] be a polynomial ring over 𝑅. Let
𝑀 be an 𝑆-module. Assume

(1) there exist finitely many primes 𝔭1, … , 𝔭𝑚 of 𝑅 such that the map 𝑅 → ∏ 𝑅𝔭𝑗
is

injective,
(2) 𝑀 is a finite 𝑆-module,
(3) 𝑀 flat over 𝑅, and
(4) for every prime 𝔭 of 𝑅 the module 𝑀𝔭 is of finite presentation over 𝑆𝔭.

Then 𝑀 is of finite presentation over 𝑆.
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Proof. Choose a presentation
0 → 𝐾 → 𝑆⊕𝑟 → 𝑀 → 0

of 𝑀 as an 𝑆-module. Let 𝔮 be a prime ideal of 𝑆 lying over a prime 𝔭 of 𝑅. By assumption
there exist finitely many elements 𝑘1, … , 𝑘𝑡 ∈ 𝐾 such that if we set 𝐾′ = ∑ 𝑆𝑘𝑗 ⊂ 𝐾 then
𝐾′

𝔭 = 𝐾𝔭 and 𝐾′
𝔭𝑗

= 𝐾𝔭𝑗
for 𝑗 = 1, … , 𝑚. Setting 𝑀′ = 𝑆⊕𝑟/𝐾′ we deduce that in

particular 𝑀′
𝔮 = 𝑀𝔮. By openness of flatness, see Algebra, Theorem 7.120.4 we conclude

that there exists a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝑀′
𝑔 is flat over 𝑅. Thus 𝑀′

𝑔 → 𝑀𝑔 is a surjective
map of flat 𝑅-modules. Consider the commutative diagram

𝑀′
𝑔

//

��

𝑀𝑔

��
∏(𝑀′

𝑔)𝔭𝑗
// ∏(𝑀𝑔)𝔭𝑗

The bottom arrow is an isomorphism by choice of 𝑘1, … , 𝑘𝑡. The left vertical arrow is an
injective map as 𝑅 → ∏ 𝑅𝔭𝑗

is injective and 𝑀′
𝑔 is flat over 𝑅. Hence the top horizontal

arrow is injective, hence an isomorphism. This proves that 𝑀𝑔 is of finite presentation over
𝑆𝑔. We conclude by applying Algebra, Lemma 7.21.2. �

Lemma 12.18.2. Let 𝑅 → 𝑆 be a ring homomorphism. Assume
(1) there exist finitely many primes 𝔭1, … , 𝔭𝑚 of 𝑅 such that the map 𝑅 → ∏ 𝑅𝔭𝑗

is
injective,

(2) 𝑅 → 𝑆 is of finite type,
(3) 𝑆 flat over 𝑅, and
(4) for every prime 𝔭 of 𝑅 the ring 𝑆𝔭 is of finite presentation over 𝑅𝔭.

Then 𝑆 is of finite presentation over 𝑅.

Proof. By assumption 𝑆 is a quotient of a polynomial ring over 𝑅. Thus the result follows
directly from Lemma 12.18.1. �

Lemma 12.18.3. Let 𝑅 be a ring. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛] be a graded polynomial algebra
over 𝑅, i.e., deg(𝑥𝑖) > 0 but not necessarily equal to 1. Let 𝑀 be a graded 𝑆-module.
Assume

(1) 𝑅 is a local ring,
(2) 𝑀 is a finite 𝑆-module, and
(3) 𝑀 is flat over 𝑅.

Then 𝑀 is finitely presented as an 𝑆-module.

Proof. Let 𝑀 = ⨁ 𝑀𝑑 be the grading on 𝑀. Pick homogeneous generators 𝑚1, … , 𝑚𝑟 ∈
𝑀 of 𝑀. Say deg(𝑚𝑖) = 𝑑𝑖 ∈ 𝐙. This gives us a presentation

0 → 𝐾 → ⨁𝑖=1,…,𝑟
𝑆(−𝑑𝑖) → 𝑀 → 0

which in each degree 𝑑 leads to the short exact sequence

0 → 𝐾𝑑 → ⨁𝑖=1,…,𝑟
𝑆𝑑−𝑑𝑖

→ 𝑀𝑑 → 0.

By assumption each 𝑀𝑑 is a finite flat 𝑅-module. By Algebra, Lemma 7.72.4 this implies
each 𝑀𝑑 is a finite free 𝑅-module. Hence we see each 𝐾𝑑 is a finite 𝑅-module. Also each
𝐾𝑑 is flat over 𝑅 by Algebra, Lemma 7.35.12. Hence we conclude that each 𝐾𝑑 is finite
free by Algebra, Lemma 7.72.4 again.
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Let 𝔪 be the maximal ideal of 𝑅. By the flatness of 𝑀 over 𝑅 the short exact sequences
above remain short exact after tensoring with 𝜅 = 𝜅(𝔪). As the ring 𝑆 ⊗𝑅 𝜅 is Noether-
ian we see that there exist homogeneous elements 𝑘1, … , 𝑘𝑡 ∈ 𝐾 such that the images 𝑘𝑗
generate 𝐾 ⊗𝑅 𝜅 over 𝑆 ⊗𝑅 𝜅. Say deg(𝑘𝑗) = 𝑒𝑗. Thus for any 𝑑 the map

⨁𝑗=1,…,𝑡
𝑆𝑑−𝑒𝑗

⟶ 𝐾𝑑

becomes surjective after tensoring with 𝜅. By Nakayama's lemma (Algebra, Lemma 7.14.5)
this implies the map is surjective over 𝑅. Hence 𝐾 is generated by 𝑘1, … , 𝑘𝑡 over 𝑆 and we
win. �

Lemma 12.18.4. Let 𝑅 be a ring. Let 𝑆 = ⨁𝑛≥0 𝑆𝑛 be a graded 𝑅-algebra. Let 𝑀 =
⨁𝑑∈𝐙 𝑀𝑑 be a graded 𝑆-module. Assume 𝑆 is finitely generated as an 𝑅-algebra, assume
𝑆0 is a finite 𝑅-algebra, and assume there exist finitely many primes 𝔭𝑗, 𝑖 = 1, … , 𝑚 such
that 𝑅 → ∏ 𝑅𝔭𝑗

is injective.
(1) If 𝑆 is flat over 𝑅, then 𝑆 is a finitely presented 𝑅-algebra.
(2) If 𝑀 is flat as an 𝑅-module and finite as an 𝑆-module, then 𝑀 is finitely presented

as an 𝑆-module.

Proof. As 𝑆 is finitely generated as an 𝑅-algebra, it is finitely generated as an 𝑆0 alge-
bra, say by homogeneous elements 𝑡1, … , 𝑡𝑛 ∈ 𝑆 of degrees 𝑑1, … , 𝑑𝑛 > 0. Set 𝑃 =
𝑅[𝑥1, … , 𝑥𝑛] with deg(𝑥𝑖) = 𝑑𝑖. The ring map 𝑃 → 𝑆, 𝑥𝑖 → 𝑡𝑖 is finite as 𝑆0 is a finite
𝑅-module. To prove (1) it suffices to prove that 𝑆 is a finitely presented 𝑃-module. To prove
(2) it suffices to prove that 𝑀 is a finitely presented 𝑃-module. Thus it suffices to prove that
if 𝑆 = 𝑃 is a graded polynomial ring and 𝑀 is a finite 𝑆-module flat over 𝑅, then 𝑀 is
finitely presented as an 𝑆-module. By Lemma 12.18.3 we see 𝑀𝔭 is a finitely presented
𝑆𝔭-module for every prime 𝔭 of 𝑅. Thus the result follows from Lemma 12.18.1. �

Remark 12.18.5. Let𝑅 be a ring. When does𝑅 satisfy the conditionmentioned in Lemmas
12.18.1, 12.18.2, and 12.18.4? This holds if

(1) 𝑅 is local,
(2) 𝑅 is Noetherian,
(3) 𝑅 is a domain,
(4) 𝑅 is a reduced ring with finitely many minimal primes, or
(5) 𝑅 has finitely many weakly associated primes, see Algebra, Lemma 7.63.16.

Thus these lemmas hold in all cases listed above.

The following lemma wil be improved below, see Proposition 12.18.8.

Lemma 12.18.6. Let 𝐴 be a valuation ring. Let 𝐴 → 𝐵 be a ring map of finite type. Let
𝑀 be a finite 𝐵-module.

(1) If 𝐵 is flat over 𝐴, then 𝐵 is a finitely presented 𝐴-algebra.
(2) If 𝑀 is flat as an 𝐴-module, then 𝑀 is finitely presented as a 𝐵-module.

Proof. We are going to use that an 𝐴-module is flat if and only if it is torsion free, see
Lemma 12.17.4. By Algebra, Lemma 7.53.9 we can find a graded 𝐴-algebra 𝑆 with 𝑆0 = 𝐴
and generated by finitely many elements in degree 1, an element 𝑓 ∈ 𝑆1 and a finite graded
𝑆-module 𝑁 such that 𝐵 ≅ 𝑆(𝑓) and 𝑀 ≅ 𝑁(𝑓). If 𝑀 is torsion free, then we can take 𝑁
torsion free by replacing it by 𝑁/𝑁𝑡𝑜𝑟𝑠, see Lemma 12.17.2. Similarly, if 𝐵 is torsion free,
then we can take 𝑆 torsion free by replacing it by 𝑆/𝑆𝑡𝑜𝑟𝑠. Hence in case (1), we may apply
Lemma 12.18.4 to see that 𝑆 is a finitely presented 𝐴-algebra, which implies that 𝐵 = 𝑆(𝑓)
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is a finitely presented 𝐴-algebra. To see (2) we may first replace 𝑆 by a graded polynomial
ring, and then we may apply Lemma 12.18.3 to conclude. �

Lemma 12.18.7. Let 𝑅 be a domain with fraction field 𝐾. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛] be a
polynomial ring over 𝑅. Let 𝑀 be a finite 𝑆-module. Assume that 𝑀 is flat over 𝑅. If for
every subring 𝑅 ⊂ 𝑅′ ⊂ 𝐾, 𝑅≠𝑅′ the module 𝑀⊗𝑅 𝑅′ is finitely presented over 𝑆⊗𝑅 𝑅′,
then 𝑀 is finitely presented over 𝑆.

Proof. Suppose that 𝑓1, … , 𝑓𝑛 ∈ 𝑅 are elements which generate the unit ideal. If 𝑅≠𝑅𝑓𝑖
for each 𝑖 = 1, … , 𝑛, then we conclude that 𝑀𝑓𝑖

is finitely presented over 𝑆𝑓𝑖
for each 𝑖,

and hence 𝑀 is finitely presented over 𝑆 by Algebra, Lemma 7.21.2. Thus we are done if
such a sequence of elements exists. Assume this is not the case. In particular, for every
𝑥 ∈ 𝑅 we have either 𝑥 ∈ 𝑅∗, or 1 − 𝑥 ∈ 𝑅∗. This implies that 𝑅 is local, see Algebra,
Lemma 7.17.2.
Choose a presentation

0 → 𝐾 → 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑟 → 𝑀 → 0.
Throughout the rest of the proof we will use that this sequence stays exact after tensoring
with any 𝑅-algebra, see Algebra, Lemma 7.35.11. Let 𝑅′ be the integral closure of 𝑅 in its
fraction field. If 𝑅≠𝑅′, then we see that 𝑀 ⊗𝑅 𝑅′ is finitely presented over 𝑅′[𝑥1, … , 𝑥𝑛].
In particular, the module 𝐾 ⊗𝑅 𝑅′ is finitely generated. Thus we may pick 𝑘1, … , 𝑘𝑡 ∈ 𝐾
such that 𝑘1 ⊗ 1, … , 𝑘𝑡 ⊗ 1 generate 𝐾 ⊗𝑅 𝑅′. Set 𝐾′ = ∑ 𝑅[𝑥1, … , 𝑥𝑛]𝑘𝑖 ⊂ 𝐾. Set
𝑀′ = 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑡/𝐾′. Then 𝑀′ is a finitely presented module over 𝑅[𝑥1, … , 𝑥𝑛] such
that 𝑀′ ⊗𝑅 𝑅′ ≅ 𝑀 ⊗𝑅 𝑅′ is flat over 𝑅′. By Lemma 12.16.6 we conclude that 𝑀′ is
flat over 𝑅. Hence the surjective map 𝑀′ → 𝑀 is also injective as 𝑀′ is torsion free, see
Lemma 12.17.3. In other words, 𝑀′ ≅ 𝑀 and we conclude that 𝑀 is finitely presented.
Thus we are done if 𝑅 is not a normal domain. Assume this is not the case. This reduces
us to the case where 𝑅 is a normal local domain.
Pick any pair of nonzero elements 𝑥, 𝑦 ∈ 𝑅. Consider the inclusions 𝑅 ⊂ 𝑅[𝑥/𝑦] and
𝑅[𝑦/𝑥]. As 𝑅 is a normal domain we get a short exact sequence

0 → 𝑅
(−1,1)

−−−−−→ 𝑅[𝑥/𝑦] ⊕ 𝑅[𝑦/𝑥]
(1,1)

−−−→ 𝑅[𝑥/𝑦, 𝑦/𝑥] → 0
see Algebra, Lemma 7.32.21. If 𝑅≠𝑅[𝑥/𝑦] and 𝑅≠𝑅[𝑦/𝑥] then we see that 𝐾 ⊗𝑅 𝑅[𝑥/𝑦]
and 𝐾 ⊗𝑅 𝑅[𝑦/𝑥] are finitely generated as 𝑅[𝑥/𝑦][𝑥1, … , 𝑥𝑛] and 𝑅[𝑦/𝑥][𝑥1, … , 𝑥𝑛] mod-
ules. Thus we can find 𝑘1, … , 𝑘𝑡 ∈ 𝐾 such that the elements 𝑘𝑖 ⊗ 1 generate 𝐾 ⊗𝑅
𝑅[𝑥/𝑦] and 𝐾 ⊗𝑅 𝑅[𝑦/𝑥] as 𝑅[𝑥/𝑦][𝑥1, … , 𝑥𝑛] and 𝑅[𝑦/𝑥][𝑥1, … , 𝑥𝑛] modules. Set 𝐾′ =
∑ 𝑅[𝑥1, … , 𝑥𝑛]𝑘𝑖 ⊂ 𝐾. Tensoring the sequence above with 𝐾′ ⊂ 𝐾 we get the diagram

𝐾′

��

// 𝐾′ ⊗𝑅 𝑅[𝑥/𝑦] ⊕ 𝐾′ ⊗𝑅 𝑅[𝑦/𝑥]

��

// 𝐾′ ⊗𝑅 𝑅[𝑥/𝑦, 𝑦/𝑥]

��

// 0

0 // 𝐾 // 𝐾 ⊗𝑅 𝑅[𝑥/𝑦] ⊕ 𝐾 ⊗𝑅 𝑅[𝑦/𝑥] // 𝐾 ⊗𝑅 𝑅[𝑥/𝑦, 𝑦/𝑥] // 0

Nowwe know that the vertical arrows in the middle and on the right are isomorphisms. The
lower row is exact as 𝐾 is flat over 𝑅. Hence the left vertical arrow is surjective, i.e., an
isomorphism. Thus we win if there exists a pair of nonzero elements such that neither 𝑥/𝑦
nor 𝑦/𝑥 is an element of 𝑅. Assume this is not the case. Then we know that 𝑅 ⊂ 𝑓.𝑓.(𝑅)
is a normal local domain such that for every 𝑥 ∈ 𝑓.𝑓.(𝑅) either 𝑥 ∈ 𝑅, or 𝑥−1 ∈ 𝑅. In
other words, 𝑅 is a valuation ring, see Algebra, Lemma 7.46.4. In this case 𝑀 is finitely
presented by Lemma 12.18.6 and we win. �
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The following result is a special case of results in [GR71] which we discuss in great detail
in More on Flatness, Section 34.1.

Proposition 12.18.8. Let 𝑅 be a domain. Let 𝑅 → 𝑆 be a ring map of finite type. Let 𝑀
be a finite 𝑆-module.

(1) If 𝑆 is flat over 𝑅, then 𝑆 is a finitely presented 𝑅-algebra.
(2) If 𝑀 is flat as an 𝑅-module, then 𝑀 is finitely presented as a 𝑆-module.

Proof. It suffices to prove part (2) in case 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]. Choose a presentation

0 → 𝐾 → 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑟 → 𝑀 → 0.

Throughout the rest of the proof we will use that this sequence stays exact after tensoring
with any 𝑅-algebra, see Algebra, Lemma 7.35.11. Let 𝐿 be the fraction field of 𝑅. Consider
the set

ℛ = {𝑅′ ∣ 𝑅 ⊂ 𝑅′ ⊂ 𝐿 and 𝑀 ⊗𝑅 𝑅′ not of finite presentation over 𝑆 ⊗𝑅 𝑅′}

We order ℛ by inclusion. Suppose that {𝑅𝑖}𝑖∈𝐼 is a totally ordered subset of ℛ. Set
𝑅∞ = ⋃𝑖∈𝐼 𝑅𝑖. We claim that 𝑅∞ ∈ ℛ. Namely, if 𝑀 ⊗𝑅 𝑅∞ is finitely presented over
𝑆 ⊗𝑅 𝑅∞, then 𝐾 ⊗𝑅 𝑅∞ is finitely generated, say by 𝑘1, … , 𝑘𝑡. Then for some 𝑖 ∈ 𝐼 we
have 𝑘1, … , 𝑘𝑡 ∈ 𝐾 ⊗𝑅 𝑅𝑖. For any 𝑖′ ≥ 𝑖 set 𝑀𝑖′ = 𝑅𝑖[𝑥1, … , 𝑥𝑛]⊕𝑟/ ∑ 𝑅𝑖[𝑥1, … , 𝑥𝑛]𝑘𝑖.
By Algebra, Lemma 7.120.5 we see that 𝑀𝑖′ is flat over 𝑅𝑖 for some sufficiently large
𝑖′ ∈ 𝐼. For such an 𝑖′ the surjective map 𝑀𝑖′ → 𝑀 ⊗𝑅 𝑅𝑖 is also injective as 𝑀𝑖′ is torsion
free. Hence we conclude that 𝑀 ⊗𝑅 𝑅𝑖 is finitely presented which is a contradiction. In
other words 𝑅∞ ∈ ℛ. This shows that Zorn's lemma applies to ℛ if ℛ is not empty. But
Lemma 12.18.7 shows that ℛ does not have any maximal elements and the proposition is
proved. �

12.19. Blowing up and flatness

In this section we begin our discussion of results of the form: ``After a blow up the strict
transform becomes flat''.

Definition 12.19.1. Let𝑅 be a domain. Let𝑀 be an𝑅-module. Let𝑅 ⊂ 𝑅′ be an extension
of domains. The strict transform of 𝑀 along 𝑅 → 𝑅′ is the torsion free 𝑅′-module

𝑀′ = (𝑀 ⊗𝑅 𝑅′)/(𝑀 ⊗𝑅 𝑅′)𝑡𝑜𝑟𝑠.

The following is a very weak version of flattening by blowing up, but it is already sometimes
a useful result.

Lemma 12.19.2. Let (𝑅, 𝔪) be a local domain with fraction field 𝐾. Let 𝑆 be a finite type
𝑅-algebra. Let 𝑀 be a finite 𝑆-module. For every valuation ring 𝐴 ⊂ 𝐾 dominating 𝑅
there exists an ideal 𝐼 ⊂ 𝔪 and a nonzero element 𝑎 ∈ 𝐼 such that

(1) 𝐼 is finitely generated,
(2) 𝐴 has center on 𝑅[ 𝐼

𝑎 ],
(3) the fibre ring of 𝑅 → 𝑅[ 𝐼

𝑎 ] at 𝔪 is not zero, and
(4) the strict transform 𝑆𝐼,𝑎 of 𝑆 along 𝑅 → 𝑅[ 𝐼

𝑎 ] is flat and of finite presentation
over 𝑅, and the strict transform 𝑀𝐼,𝑎 of 𝑀 along 𝑅 → 𝑅[ 𝐼

𝑎 ] is flat over 𝑅 and
finitely presented over 𝑆𝐼,𝑎.
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Proof. Note that the assertion makes sense as 𝑅[ 𝐼
𝑎 ] is a domain, and 𝑅 → 𝑅[ 𝐼

𝑎 ] is injective,
see Algebra, Lemmas 7.54.2 and 7.54.4. Before we start the proof of the Lemma, note that
there is no loss in generality assuming that 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛] is a polynomial ring over 𝑅.
We also fix a presentation

0 → 𝐾 → 𝑆⊕𝑟 → 𝑀 → 0.
Let 𝑀𝐴 be the strict transform of 𝑀 along 𝑅 → 𝐴. It is a finite module over 𝑆𝐴 =
𝐴[𝑥1, … , 𝑥𝑛]. By Lemma 12.17.4 we see that 𝑀𝐴 is flat over 𝐴. By Lemma 12.18.6 we
see that 𝑀𝐴 is finitely presented. Hence there exist finitely many elements 𝑘1, … , 𝑘𝑡 ∈ 𝑆⊕𝑟

𝐴
which generate the kernel of the presentation 𝑆⊕𝑟

𝐴 → 𝑀𝐴 as an 𝑆𝐴-module. For any choice
of 𝑎 ∈ 𝐼 ⊂ 𝔪 satisfying (1), (2), and (3) we denote 𝑀𝐼,𝑎 the strict transform of 𝑀 along
𝑅 → 𝑅[ 𝐼

𝑎 ]. It is a finite module over 𝑆𝐼,𝑎 = 𝑅[ 𝐼
𝑎 ][𝑥1, … , 𝑥𝑛]. By Algebra, Lemma 7.46.13

we have 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝐼,𝑎 𝑅[ 𝐼
𝑎 ]. This implies that 𝑆𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝑆𝐼,𝑎 and 𝑀𝐴 = 𝑐𝑜𝑙𝑖𝑚𝐼,𝑎 𝑀𝐼,𝑎.

Thus we may choose 𝑎 ∈ 𝐼 ⊂ 𝑅 such that 𝑘1, … , 𝑘𝑡 are elements of 𝑆⊕𝑟
𝐼,𝑎 and map to zero

in 𝑀𝐼,𝑎. For any such pair (𝐼, 𝑎) we set

𝑀′
𝐼,𝑎 = 𝑆⊕𝑟

𝐼,𝑎/ ∑ 𝑆𝐼,𝑎𝑘𝑗.

Since 𝑀𝐴 = 𝑆⊕𝑟
𝐴 / ∑ 𝑆𝐴𝑘𝑗 we see that also 𝑀𝐴 = 𝑐𝑜𝑙𝑖𝑚𝐼,𝑎 𝑀′

𝐼,𝑎. At this point we may
apply Algebra, Lemma 7.120.5 (3) to conclude that 𝑀′

𝐼,𝑎 is flat for some pair (𝐼, 𝑎). (This
lemma does not apply a priori to the system 𝑀𝐼,𝑎 as the transition maps may not satisfy the
assumptions of the lemma.) Since flatness implies torsion free ( Lemma 12.17.3), we also
conclude that 𝑀′

𝐼,𝑎 = 𝑀𝐼,𝑎 for such a pair and we win. �

12.20. Completion and flatnes

In this section we discuss when the completion of a ``big'' flat module is flat.

Lemma 12.20.1. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝐴 be a set. Assume 𝑅 is
Noetherian and complete with respect to 𝐼. There is a canonical map

(⨁𝛼∈𝐴
𝑅)

∧
⟶ ∏𝛼∈𝐴

𝑅

from the 𝐼-adic completion of the direct sum into the product which is universally injective.

Proof. By definition an element 𝑥 of the left hand side is 𝑥 = (𝑥𝑛) where 𝑥𝑛 = (𝑥𝑛,𝛼) ∈
⨁𝛼∈𝐴 𝑅/𝐼𝑛 such that 𝑥𝑛,𝛼 = 𝑥𝑛+1,𝛼 mod 𝐼𝑛. As 𝑅 = 𝑅∧ we see that for any 𝛼 there exists a
𝑦𝛼 ∈ 𝑅 such that 𝑥𝑛,𝛼 = 𝑦𝛼 mod 𝐼𝑛. Note that for each 𝑛 there are only finitely many 𝛼 such
that the elements 𝑥𝑛,𝛼 are nonzero. Conversely, given (𝑦𝛼) ∈ ∏𝛼 𝑅 such that for each 𝑛
there are only finitely many 𝛼 such that 𝑦𝛼 mod 𝐼𝑛 is nonzero, then this defines an element
of the left hand side. Hence we can think of an element of the left hand side as infinite
``convergent sums'' ∑𝛼 𝑦𝛼 with 𝑦𝛼 ∈ 𝑅 such that for each 𝑛 there are only finitely many 𝑦𝛼
which are nonzero modulo 𝐼𝑛. The displayed map maps this element to the element to (𝑦𝛼)
in the product. In particular the map is injective.

Let 𝑄 be a finite 𝑅-module. We have to show that the map

𝑄 ⊗𝑅 (⨁𝛼∈𝐴
𝑅)

∧
⟶ 𝑄 ⊗𝑅 (∏𝛼∈𝐴

𝑅)

is injective, see Algebra, Theorem 7.76.3. Choose a presentation 𝑅⊕𝑘 → 𝑅⊕𝑚 → 𝑄 → 0
and denote 𝑞1, … , 𝑞𝑚 ∈ 𝑄 the corresponding generators for 𝑄. By Artin-Rees (Alge-
bra, Lemma 7.47.4) there exists a constant 𝑐 such that Im(𝑅⊕𝑘 → 𝑅⊕𝑚) ∩ (𝐼𝑁)⊕𝑚 ⊂
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Im((𝐼𝑁−𝑐)⊕𝑘 → 𝑅⊕𝑚). Let us contemplate the diagram

⨁𝑘
𝑙=1 (⨁𝛼∈𝐴 𝑅)

∧ //

��

⨁𝑚
𝑗=1 (⨁𝛼∈𝐴 𝑅)

∧ //

��

𝑄 ⊗𝑅 (⨁𝛼∈𝐴 𝑅)
∧ //

��

0

⨁𝑘
𝑙=1 (∏𝛼∈𝐴 𝑅) //⨁𝑚

𝑗=1 (∏𝛼∈𝐴 𝑅) // 𝑄 ⊗𝑅 (∏𝛼∈𝐴 𝑅) // 0

with exact rows. Pick an element ∑𝑗 ∑𝛼 𝑦𝑗,𝛼 of ⨁𝑗=1,…,𝑚 (⨁𝛼∈𝐴 𝑅)
∧. If this element

maps to zero in the module 𝑄⊗𝑅 (∏𝛼∈𝐴 𝑅), then we see in particular that ∑𝑗 𝑞𝑗 ⊗𝑦𝑗,𝛼 = 0
in 𝑄 for each 𝛼. Thus we can find an element (𝑧1,𝛼, … , 𝑧𝑘,𝛼) ∈ ⨁𝑙=1,…,𝑘 𝑅 which maps
to (𝑦1,𝛼, … , 𝑦𝑚,𝛼) ∈ ⨁𝑗=1,…,𝑚 𝑅. Moreover, if 𝑦𝑗,𝛼 ∈ 𝐼𝑁𝛼 for 𝑗 = 1, … , 𝑚, then we may
assume that 𝑧𝑙,𝛼 ∈ 𝐼𝑁𝛼−𝑐 for 𝑙 = 1, … , 𝑘. Hence the sum ∑𝑙 ∑𝛼 𝑧𝑙,𝛼 is ``convergent''
and defines an element of ⨁𝑙=1,…,𝑘 (⨁𝛼∈𝐴 𝑅)

∧ which maps to the element ∑𝑗 ∑𝛼 𝑦𝑗,𝛼 we
started out with. Thus the right vertical arrow is injective and we win. �

Lemma 12.20.2. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝐴 be a set. Assume 𝑅 is
Noetherian. The completion (⨁𝛼∈𝐴 𝑅)∧ is a flat 𝑅-module.

Proof. Denote 𝑅∧ the completion of 𝑅 with respect to 𝐼. As 𝑅 → 𝑅∧ is flat by Algebra,
Lemma 7.90.3 it suffices to prove that (⨁𝛼∈𝐴 𝑅)∧ is a flat 𝑅∧-module (use Algebra, Lemma
7.35.3). Since

(⨁𝛼∈𝐴
𝑅)∧ = (⨁𝛼∈𝐴

𝑅∧)∧

we may replace 𝑅 by 𝑅∧ and assume that 𝑅 is complete with respect to 𝐼 (see Algebra,
Lemma 7.90.8). In this case Lemma 12.20.1 tells us the map (⨁𝛼∈𝐴 𝑅)∧ → ∏𝛼∈𝐴 𝑅 is
universally injective. Thus, by Algebra, Lemma 7.76.7 it suffices to show that ∏𝛼∈𝐴 𝑅 is
flat. By Algebra, Proposition 7.84.5 (and Algebra, Lemma 7.84.4) we see that ∏𝛼∈𝐴 𝑅 is
flat. �

12.21. The Koszul complex

We define the Koszul complex as follows.

Definition 12.21.1. Let 𝑅 be a ring. Let 𝜑 ∶ 𝐸 → 𝑅 be an 𝑅-module map. The Koszul
complex 𝐾•(𝜑) associated to 𝜑 is the commutative differential graded algebra defined as
follows:

(1) the underlying graded algebra is the exterior algebra 𝐾•(𝜑) = ∧(𝐸),
(2) the differential 𝑑 ∶ 𝐾•(𝜑) → 𝐾•(𝜑) is the unique derivation such that 𝑑(𝑒) = 𝜑(𝑒)

for all 𝑒 ∈ 𝐸 = 𝐾1(𝜑).

Explicitly, if 𝑒1 ∧ … ∧ 𝑒𝑛 is one of the generators of degree 𝑛 in 𝐾•(𝜑), then

𝑑(𝑒1 ∧ … ∧ 𝑒𝑛) = ∑𝑖=1,…,𝑛
(−1)𝑖+1𝜑(𝑒𝑖)𝑒1 ∧ … ∧ 𝑒𝑖 ∧ … ∧ 𝑒𝑛.

It is straightforward to see that this gives a well defined derivation on the tensor algebra,
which annihilates 𝑒 ⊗ 𝑒 and hence factors through the exterior algebra.
We often assume that 𝐸 is a finite free module, say 𝐸 = 𝑅⊕𝑛. In this case the map 𝜑 is
given by a sequence of elements 𝑓1, … , 𝑓𝑛 ∈ 𝑅.

Definition 12.21.2. Let 𝑅 be a ring and let 𝑓1, … , 𝑓𝑛 ∈ 𝑅. The Koszul complex on
𝑓1, … , 𝑓𝑟 is the Koszul complex associated to the map (𝑓1, … , 𝑓𝑛) ∶ 𝑅⊕𝑛 → 𝑅. Nota-
tion 𝐾•(𝑓•), 𝐾•(𝑓1, … , 𝑓𝑛), 𝐾•(𝑅, 𝑓1, … , 𝑓𝑛), or 𝐾•(𝑅, 𝑓•).
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Of course, if 𝐸 is finite locally free, then 𝐾•(𝜑) is locally on 𝑆𝑝𝑒𝑐(𝑅) isomorphic to a
Koszul complex 𝐾•(𝑓1, … , 𝑓𝑛). This complex has many interesting formal properties.

Lemma 12.21.3. Let 𝜑 ∶ 𝐸 → 𝑅 and 𝜑 ∶ 𝐸′ → 𝑅 be an 𝑅-module maps. Let 𝜓 ∶ 𝐸 → 𝐸′

be an 𝑅-module map such that 𝜑′ ∘𝜓 = 𝜑. Then 𝜓 induces a homomorphism of differential
graded algebras 𝐾•(𝜑) → 𝐾•(𝜑′).

Proof. This is immediate from the definitions. �

Lemma 12.21.4. Let 𝑓1, … , 𝑓𝑐 ∈ 𝑅 be a sequence. Let (𝑥𝑖𝑗) be an invertible 𝑐 × 𝑐-matrix
with coefficients in 𝑅. Then the complexes 𝐾•(𝑓•) and

𝐾•(∑ 𝑥1𝑗𝑓𝑗, ∑ 𝑥2𝑗𝑓𝑗, … , ∑ 𝑥𝑐𝑗𝑓𝑗)

are isomorphic.

Proof. Set 𝑔𝑖 = ∑ 𝑥𝑖𝑗𝑓𝑗. The matrix (𝑥𝑖𝑗) gives an isomorphism 𝑥 ∶ 𝑅⊕𝑐 → 𝑅⊕𝑐 such
that (𝑔1, … , 𝑔𝑐) ∘ 𝑥 = (𝑓1, … , 𝑓𝑐). Hence this follows from the functoriality of the Koszul
complex described in Lemma 12.21.3. �

Lemma 12.21.5. Let 𝑅 be a ring. Let 𝜑 ∶ 𝐸 → 𝑅 be an 𝑅-module map. Let 𝑒 ∈ 𝐸 with
image 𝑓 = 𝜑(𝑒) in 𝑅. Then

𝑓 = 𝑑𝑒 + 𝑒𝑑
as endomorphisms of 𝐾•(𝜑).

Proof. This is true because 𝑑(𝑒𝑎) = 𝑑(𝑒)𝑎 − 𝑒𝑑(𝑎) = 𝑓𝑎 − 𝑒𝑑(𝑎). �

Lemma 12.21.6. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑐 ∈ 𝑅 be a sequence. Multiplication by 𝑓𝑖
on 𝐾•(𝑓•) is homotopic to zero, and in particular the cohomology modules 𝐻𝑖(𝐾•(𝑓•)) are
annihilated by the ideal (𝑓1, … , 𝑓𝑟).

Proof. Special case of Lemma 12.21.5. �

In Derived Categories, Section 11.8 we defined the cone of a morphism of cochain com-
plexes. The cone 𝐶(𝑓)• of a morphism of chain complexes 𝑓 ∶ 𝐴• → 𝐵• is the complex
𝐶(𝑓)• given by 𝐶(𝑓)𝑛 = 𝐵𝑛 ⊕ 𝐴𝑛−1 and differential

(12.21.6.1) 𝑑𝐶(𝑓),𝑛 = (
𝑑𝐵,𝑛 𝑓𝑛−1

0 −𝑑𝐴,𝑛−1)
It comes equipped with canonical morphisms of complexes 𝑖 ∶ 𝐵• → 𝐶(𝑓)• and 𝑝 ∶
𝐶(𝑓)• → 𝐴•[−1] induced by the obvious maps 𝐵𝑛 → 𝐶(𝑓)𝑛 → 𝐴𝑛−1.

Lemma 12.21.7. Let 𝑅 be a ring. Let 𝜑 ∶ 𝐸 → 𝑅 be an 𝑅-module map. Let 𝑓 ∈ 𝑅. Set
𝐸′ = 𝐸⊕𝑅 and define 𝜑′ ∶ 𝐸′ → 𝑅 by 𝜑 on 𝐸 and multiplication by 𝑓 on 𝑅. The complex
𝐾•(𝜑′) is isomorphic to the cone of the map of complexes

𝑓 ∶ 𝐾•(𝜑) ⟶ 𝐾•(𝜑).

Proof. Denote 𝑒0 ∈ 𝐸′ the element 1 ∈ 𝑅 ⊂ 𝑅 ⊕ 𝐸. By our definition of the cone above
we see that

𝐶(𝑓)𝑛 = 𝐾𝑛(𝜑) ⊕ 𝐾𝑛−1(𝜑) = ∧𝑛(𝐸) ⊕ ∧𝑛−1(𝐸) = ∧𝑛(𝐸′)
where in the last = we map (0, 𝑒1 ∧ … ∧ 𝑒𝑛−1) to 𝑒0 ∧ 𝑒1 ∧ … ∧ 𝑒𝑛−1 in ∧𝑛(𝐸′). A computa-
tion shows that this isomorphism is compatible with differentials. Namely, this is clear for
elements of the first summand as 𝜑′|𝐸 = 𝜑 and 𝑑𝐶(𝑓) restricted to the first summand is just
𝑑𝐾•(𝜑). On the other hand, if 𝑒1 ∧ … ∧ 𝑒𝑛−1 is in the first summand, then

𝑑𝐶(𝑓)(0, 𝑒1 ∧ … ∧ 𝑒𝑛−1) = 𝑓𝑒1 ∧ … ∧ 𝑒𝑛−1 − 𝑑𝐾•(𝜑)(𝑒1 ∧ … ∧ 𝑒𝑛−1)
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and on the other hand
𝑑𝐾•(𝜑′)(𝑒0 ∧ 𝑒1 ∧ … ∧ 𝑒𝑛−1)
= ∑𝑖=0,…,𝑛−1(−1)𝑖𝜑′(𝑒𝑖)𝑒0 ∧ … ∧ 𝑒𝑖 ∧ … ∧ 𝑒𝑛−1
= 𝑓𝑒1 ∧ … ∧ 𝑒𝑛−1 + ∑𝑖=1,…,𝑛−1(−1)𝑖𝜑(𝑒𝑖)𝑒0 ∧ … ∧ 𝑒𝑖 ∧ … ∧ 𝑒𝑛−1
= 𝑓𝑒1 ∧ … ∧ 𝑒𝑛−1 − 𝑒0 (∑𝑖=1,…,𝑛−1(−1)𝑖+1𝜑(𝑒𝑖)𝑒1 ∧ … ∧ 𝑒𝑖 ∧ … ∧ 𝑒𝑛−1)

which is the image of the result of the previous computation. �

Lemma 12.21.8. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑛 be a sequence of elements of 𝑅. The
complex 𝐾•(𝑓1, … , 𝑓𝑛) is isomorphic to the cone of the map of complexes

𝑓𝑛 ∶ 𝐾•(𝑓1, … , 𝑓𝑛−1) ⟶ 𝐾•(𝑓1, … , 𝑓𝑛−1).

Proof. Special case of Lemma 12.21.7. �

Lemma 12.21.9. Let 𝑅 be a ring. Let 𝐴• be a complex of 𝑅-modules. Let 𝑓, 𝑔 ∈ 𝑅. Let
𝐶(𝑓)• be the cone of 𝑓 ∶ 𝐴• → 𝐴•. Define similarly 𝐶(𝑔)• and 𝐶(𝑓𝑔)•. Then 𝐶(𝑓𝑔)• is
homotopy equivalent to the cone of a map

𝐶(𝑓)•[1] ⟶ 𝐶(𝑔)•

Proof. We first prove this if 𝐴• is the complex consisting of 𝑅 placed in degree 0. In this
case the map we use is

0 //

��

0 //

��

𝑅
𝑓 //

1
��

𝑅 //

��

0

��
0 // 𝑅

𝑔 // 𝑅 // 0 // 0
The cone of this is the chain complex consisting of 𝑅 ⊕ 𝑅 placed in degrees 1 and 0 and
differential (12.21.6.1)

(
𝑔 1
0 −𝑓) ∶ 𝑅⊕2 ⟶ 𝑅⊕2

We leave it to the reader to show this this chain complex is homotopic to the complex
𝑓𝑔 ∶ 𝑅 → 𝑅. In general we write 𝐶(𝑓)• and 𝐶(𝑔)• as the total complex of the double
complexes

(𝑅
𝑓

−→ 𝑅) ⊗𝑅 𝐴• and (𝑅
𝑔

−→ 𝑅) ⊗𝑅 𝐴•
and in this way we deduce the result from the special case discussed above. Some details
omitted. �

Lemma 12.21.10. Let 𝑅 be a ring. Let 𝜑 ∶ 𝐸 → 𝑅 be an 𝑅-module map. Let 𝑓, 𝑔 ∈ 𝑅.
Set 𝐸′ = 𝐸 ⊕ 𝑅 and define 𝜑′

𝑓, 𝜑′
𝑔, 𝜑′

𝑓𝑔 ∶ 𝐸′ → 𝑅 by 𝜑 on 𝐸 and multiplication by 𝑓, 𝑔, 𝑓𝑔
on 𝑅. The complex 𝐾•(𝜑′

𝑓𝑔) is isomorphic to the cone of a map of complexes

𝐾•(𝜑′
𝑓)[1] ⟶ 𝐾•(𝜑′

𝑔).

Proof. By Lemma 12.21.7 the complex 𝐾•(𝜑′
𝑓) is isomorphic to the cone of multiplication

by 𝑓 on 𝐾•(𝜑) and similarly for the other two cases. Hence the the lemma follows from
Lemma 12.21.9. �

Lemma 12.21.11. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑛−1 be a sequence of elements of 𝑅. Let
𝑓, 𝑔 ∈ 𝑅. The complex 𝐾•(𝑓1, … , 𝑓𝑛−1, 𝑓𝑔) is homotopy equivalent to the cone of a map
of complexes

𝐾•(𝑓1, … , 𝑓𝑛−1, 𝑓)[1] ⟶ 𝐾•(𝑓1, … , 𝑓𝑛−1, 𝑔)
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Proof. Special case of Lemma 12.21.10. �

Lemma 12.21.12. Let 𝐴 be a ring. Let 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 be elements of 𝐴. Then there
is an isomorphism of Koszul complexes

𝐾•(𝐴, 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚) = Tot(𝐾•(𝐴, 𝑓1, … , 𝑓𝑛) ⊗𝐴 𝐾•(𝐴, 𝑔1, … , 𝑔𝑚)).

Proof. We first show that 𝐾•(𝐴, 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚) is isomorphic to the tensor product
𝐾•(𝐴, 𝑓1, … , 𝑓𝑛) ⊗𝐴 𝐾•(𝐴, 𝑔1, … , 𝑔𝑚) as a differential graded 𝐴-algebra. This is clear as
the multiplication map

∧(𝐴⊕𝑛) ⊗𝐴 ∧(𝐴⊕𝑚) ⟶ ∧(𝐴⊕𝑛 ⊕ 𝐴⊕𝑚)

is an isomorphism and the fact that the 𝑑 of generators agree. Thus the lemma follows from
Homology, Lemma 10.25.5. �

12.22. Koszul regular sequences

Please take a look at Algebra, Sections 7.65 and 7.66 before looking at this one.

Definition 12.22.1. Let 𝑅 be a ring. A sequence of elements 𝑓1, … , 𝑓𝑐 of 𝑅 is called
Koszul-regular if 𝐻𝑖(𝐾•(𝑓1, … , 𝑓𝑟)) = 0 for all 𝑖≠0. A sequence of elements 𝑓1, … , 𝑓𝑐 of
𝑅 is called 𝐻1-regular if 𝐻1(𝐾•(𝑓1, … , 𝑓𝑟)) = 0.

Clear a Koszul-regular sequence is 𝐻1-regular. If 𝑓 = 𝑓1 ∈ 𝑅 is a length 1 sequence then
it is clear that the following are all equivalent

(1) 𝑓 is a regular sequence of length one,
(2) 𝑓 is a Koszul-regular sequence of length one, and
(3) 𝑓 is a 𝐻1-regular sequence of length one.

It is also clear that these imply that 𝑓 is a quasi-regular sequence of length one. But there
do exist quasi-regular sequences of length 1 which are not regular sequences. Namely, let

𝑅 = 𝑘[𝑥, 𝑦0, 𝑦1, …]/(𝑥𝑦0, 𝑥𝑦1 − 𝑦0, 𝑥𝑦2 − 𝑦1, …)

and let 𝑓 be the image of 𝑥 in 𝑅. Then 𝑓 is a zero divisor, but ⨁𝑛≥0(𝑓𝑛)/(𝑓𝑛+1) ≅ 𝑘[𝑥] is
a polynomial ring.

Lemma 12.22.2. A regular sequence is Koszul-regular.

Proof. Let 𝑓1, … , 𝑓𝑐 be a regular sequence. Then 𝑓1 is a nonzero divisor in 𝑅. Hence

0 → 𝐾•(𝑅, 𝑓2, … , 𝑓𝑐)
𝑓1−−→ 𝐾•(𝑅, 𝑓2, … , 𝑓𝑐) → 𝐾•(𝑅/(𝑓1), 𝑓2, … , 𝑓𝑐) → 0

is a short exact sequence of complexes. By Lemma 12.21.8 the complex 𝐾•(𝑅, 𝑓1, … , 𝑓𝑐)
is isomorphic to the cone of the first map. Hence 𝐾•(𝑅/(𝑓1), 𝑓2, … , 𝑓𝑐) is quasi-isomorphic
to 𝐾•(𝑅, 𝑓1, … , 𝑓𝑐). As 𝑓2, … , 𝑓𝑐 is a regular sequence in 𝑅/(𝑓1) the result follows from
the case 𝑐 = 1 discussed above and induction. �

Lemma 12.22.3. Let 𝑓1, … , 𝑓𝑐−1 ∈ 𝑅 be a sequence and 𝑓, 𝑔 ∈ 𝑅.
(1) If 𝑓1, … , 𝑓𝑐−1, 𝑓 and 𝑓1, … , 𝑓𝑐−1, 𝑔 are 𝐻1-regular then 𝑓1, … , 𝑓𝑐−1, 𝑓𝑔 is an

𝐻1-regular sequence too.
(2) If 𝑓1, … , 𝑓𝑐−1, 𝑓 and 𝑓1, … , 𝑓𝑐−1, 𝑓 are Koszul-regular then 𝑓1, … , 𝑓𝑐−1, 𝑓𝑔 is a

Koszul-regular sequence too.
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Proof. By Lemma 12.21.11 we have exact sequences

𝐻𝑖(𝐾•(𝑓1, … , 𝑓𝑐−1, 𝑓)) → 𝐻𝑖(𝐾•(𝑓1, … , 𝑓𝑐−1, 𝑓𝑔)) → 𝐻𝑖(𝐾•(𝑓1, … , 𝑓𝑐−1, 𝑔))

for all 𝑖. �

Lemma 12.22.4. Let 𝜑 ∶ 𝑅 → 𝑆 be a flat ring map.
(1) If 𝑓1, … , 𝑓𝑟 is a 𝐻1-regular sequence in 𝑅, then 𝜑(𝑓1), … , 𝜑(𝑓𝑟) is a 𝐻1-regular

sequence in 𝑆.
(2) If 𝑓1, … , 𝑓𝑟 is a Koszul-regular sequence in 𝑅, then 𝜑(𝑓1), … , 𝜑(𝑓𝑟) is a Koszul-

regular sequence in 𝑆.

Proof. This is true because 𝐾•(𝑓1, … , 𝑓𝑟) ⊗𝑅 𝑆 = 𝐾•(𝜑(𝑓1), … , 𝜑(𝑓𝑟)). �

Lemma 12.22.5. An 𝐻1-regular sequence is quasi-regular.

Proof. Let 𝑓1, … , 𝑓𝑐 be an 𝐻1-regular sequence. Denote 𝐽 = (𝑓1, … , 𝑓𝑐). The assumption
means that we have an exact sequence

∧2(𝑅𝑐) → 𝑅⊕𝑐 → 𝐽 → 0

where the first arrow is given by 𝑒𝑖 ∧ 𝑒𝑗 ↦ 𝑓𝑖𝑒𝑗 − 𝑓𝑗𝑒𝑖. In particular this implies that

𝐽/𝐽2 = 𝐽 ⊗𝑅 𝑅/𝐽 = (𝑅/𝐽)𝑐

is a finite free module. To finish the proof we have to prove for every 𝑛 ≥ 2 the following:
if

𝜉 = ∑|𝐼|=𝑛,𝐼=(𝑖1,…,𝑖𝑐)
𝑎𝐼𝑓𝑖1

1 … 𝑓𝑖𝑐
𝑐 ∈ 𝐽𝑛+1

then 𝑎𝐼 ∈ 𝐽 for all 𝐼. Note that 𝑓1, … , 𝑓𝑐−1, 𝑓𝑛
𝑐 is a 𝐻1-regular sequence by Lemma 12.22.3.

Hence we see that the required result holds for the multi-index 𝐼 = (0, … , 0, 𝑛). It turns out
that we can reduce the general case to this case as follows.

Let 𝑆 = 𝑅[𝑥1, 𝑥2, … , 𝑥𝑐, 1/𝑥𝑐]. The ring map 𝑅 → 𝑆 is faithfully flat, hence 𝑓1, … , 𝑓𝑐 is
an 𝐻1-regular sequence in 𝑆, see Lemma 12.22.4. By Lemma 12.21.4 we see that

𝑔1 = 𝑓1 − 𝑥1/𝑥𝑐𝑓𝑐, … 𝑔𝑐−1 = 𝑓𝑐−1 − 𝑥𝑐−1/𝑥𝑐𝑓𝑐, 𝑔𝑐 = (1/𝑥𝑐)𝑓𝑐

is an 𝐻1-regular sequence in 𝑆. Finally, note that our element 𝜉 can be rewritten

𝜉 = ∑|𝐼|=𝑛,𝐼=(𝑖1,…,𝑖𝑐)
𝑎𝐼(𝑔1 + 𝑥𝑐𝑔𝑐)𝑖1 … (𝑔𝑐−1 + 𝑥𝑐𝑔𝑐)𝑖𝑐−1(𝑥𝑐𝑔𝑐)𝑖𝑐

and the coefficient of 𝑔𝑛
𝑐 in this expression is

∑ 𝑎𝐼𝑥𝑖1
1 … 𝑥𝑖𝑐

𝑐 ∈ 𝐽𝑆.

Since the monomials 𝑥𝑖1
1 … 𝑥𝑖𝑐

𝑐 form part of an 𝑅-basis of 𝑆 over 𝑅 we conclude that 𝑎𝐼 ∈ 𝐽
for all 𝐼 as desired. �

Lemma 12.22.6. Let 𝐴 be a ring. Let 𝐼 ⊂ 𝐴 be an ideal. Let 𝑔1, … , 𝑔𝑚 be a sequence in
𝐴 whose image in 𝐴/𝐼 is 𝐻1-regular. Then 𝐼 ∩ (𝑔1, … , 𝑔𝑚) = 𝐼(𝑔1, … , 𝑔𝑚).

Proof. Consider the exact sequence of complexes

0 → 𝐼 ⊗𝐴 𝐾•(𝐴, 𝑔1, … , 𝑔𝑚) → 𝐾•(𝐴, 𝑔1, … , 𝑔𝑚) → 𝐾•(𝐴/𝐼, 𝑔1, … , 𝑔𝑚) → 0

Since the complex on the right has 𝐻1 = 0 by assumption we see that

Coker(𝐼⊕𝑚 → 𝐼) ⟶ Coker(𝐴⊕𝑚 → 𝐴)

is injective. This is equivalent to the assertion of the lemma. �
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Lemma 12.22.7. Let 𝐴 be a ring. Let 𝐼 ⊂ 𝐽 ⊂ 𝐴 be ideals. Assume that 𝐽/𝐼 ⊂ 𝐴/𝐼 is
generated by an 𝐻1-regular sequence. Then 𝐼 ∩ 𝐽2 = 𝐼𝐽.

Proof. To prove this choose 𝑔1, … , 𝑔𝑚 ∈ 𝐽 whose images in 𝐴/𝐼 form a 𝐻1-regular se-
quence which generates 𝐽/𝐼. In particular 𝐽 = 𝐼 + (𝑔1, … , 𝑔𝑚). Suppose that 𝑥 ∈ 𝐼 ∩ 𝐽2.
Because 𝑥 ∈ 𝐽2 can write

𝑥 = ∑ 𝑎𝑖𝑗𝑔𝑖𝑔𝑗 + ∑ 𝑎𝑗𝑔𝑗 + 𝑎

with 𝑎𝑖𝑗 ∈ 𝐴, 𝑎𝑗 ∈ 𝐼 and 𝑎 ∈ 𝐼2. Then ∑ 𝑎𝑖𝑗𝑔𝑖𝑔𝑗 ∈ 𝐼 ∩ (𝑔1, … , 𝑔𝑚) hence by Lemma
12.22.6 we see that ∑ 𝑎𝑖𝑗𝑔𝑖𝑔𝑗 ∈ 𝐼(𝑔1, … , 𝑔𝑚). Thus 𝑥 ∈ 𝐼𝐽 as desired. �

Lemma 12.22.8. Let 𝐴 be a ring. Let 𝐼 be an ideal generated by a quasi-regular se-
quence 𝑓1, … , 𝑓𝑛 in 𝐴. Let 𝑔1, … , 𝑔𝑚 ∈ 𝐴 be elements whose images 𝑔1, … , 𝑔𝑚 form an
𝐻1-regular sequence in 𝐴/𝐼. Then 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 is a quasi-regular sequence in 𝐴.

Proof. We claim that 𝑔1, … , 𝑔𝑚 forms an 𝐻1-regular sequence in 𝐴/𝐼𝑑 for every 𝑑. By
induction assume that this holds in 𝐴/𝐼𝑑−1. We have a short exact sequence of complexes

0 → 𝐾•(𝐴, 𝑔•) ⊗𝐴 𝐼𝑑−1/𝐼𝑑 → 𝐾•(𝐴/𝐼𝑑, 𝑔•) → 𝐾•(𝐴/𝐼𝑑−1, 𝑔•) → 0
Since 𝑓1, … , 𝑓𝑛 is quasi-regular we see that the first complex is a direct sum of copies of
𝐾•(𝐴/𝐼, 𝑔1, … , 𝑔𝑚) hence acyclic in degree 1. By induction hypothesis the last complex is
acyclic in degree 1. Hence also themiddle complex is. In particular, the sequence 𝑔1, … , 𝑔𝑚
forms a quasi-regular sequence in 𝐴/𝐼𝑑 for every 𝑑 ≥ 1, see Lemma 12.22.5. Now we are
ready to prove that 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 is a quasi-regular sequence in 𝐴. Namely, set
𝐽 = (𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚) and suppose that (with multinomial notation)

∑|𝑁|+|𝑀|=𝑑
𝑎𝑁,𝑀𝑓𝑁𝑔𝑀 ∈ 𝐽𝑑+1

for some 𝑎𝑁,𝑀 ∈ 𝐴. We have to show that 𝑎𝑁,𝑀 ∈ 𝐽 for all 𝑁, 𝑀. Let 𝑒 ∈ {0, 1, … , 𝑑}.
Then

∑|𝑁|=𝑑−𝑒, |𝑀|=𝑒
𝑎𝑁,𝑀𝑓𝑁𝑔𝑀 ∈ (𝑔1, … , 𝑔𝑚)𝑒+1 + 𝐼𝑑−𝑒+1

Because 𝑔1, … , 𝑔𝑚 is a quasi-regular sequence in 𝐴/𝐼𝑑−𝑒+1 we deduce

∑|𝑁|=𝑑−𝑒
𝑎𝑁,𝑀𝑓𝑁 ∈ (𝑔1, … , 𝑔𝑚) + 𝐼𝑑−𝑒+1

for each 𝑀 with |𝑀| = 𝑒. By Lemma 12.22.6 applied to 𝐼𝑑−𝑒/𝐼𝑑−𝑒+1 in the ring 𝐴/𝐼𝑑−𝑒+1

this implies ∑|𝑁|=𝑑−𝑒 𝑎𝑁,𝑀𝑓𝑁 ∈ 𝐼𝑑−𝑒(𝑔1, … , 𝑔𝑚). Since 𝑓1, … , 𝑓𝑛 is quasi-regular in 𝐴
this implies that 𝑎𝑁,𝑀 ∈ 𝐽 for each 𝑁, 𝑀 with |𝑁| = 𝑑 − 𝑒 and |𝑀| = 𝑒. This proves the
lemma. �

Lemma 12.22.9. Let 𝐴 be a ring. Let 𝐼 be an ideal generated by an 𝐻1-regular se-
quence 𝑓1, … , 𝑓𝑛 in 𝐴. Let 𝑔1, … , 𝑔𝑚 ∈ 𝐴 be elements whose images 𝑔1, … , 𝑔𝑚 form
an 𝐻1-regular sequence in 𝐴/𝐼. Then 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 is an 𝐻1-regular sequence in
𝐴.

Proof. We have to show that 𝐻1(𝐴, 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚) = 0. To do this consider the
commutative diagram

∧2(𝐴⊕𝑛+𝑚) //

��

𝐴⊕𝑛+𝑚 //

��

𝐴 //

��

0

∧2(𝐴/𝐼⊕𝑚) // 𝐴/𝐼⊕𝑚 // 𝐴/𝐼 // 0
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Consider an element (𝑎1, … , 𝑎𝑛+𝑚) ∈ 𝐴⊕𝑛+𝑚 which maps to zero in 𝐴. Because 𝑔1, … , 𝑔𝑚
form an 𝐻1-regular sequence in 𝐴/𝐼 we see that (𝑎𝑛+1, … , 𝑎𝑛+𝑚) is the image of some ele-
ment 𝛼 of ∧2(𝐴/𝐼⊕𝑚). We can lift 𝛼 to an element 𝛼 ∈ ∧2(𝐴⊕𝑛+𝑚) and substract the image of
it in 𝐴⊕𝑛+𝑚 from our element (𝑎1, … , 𝑎𝑛+𝑚). Thus we may assume that 𝑎𝑛+1, … , 𝑎𝑛+𝑚 ∈ 𝐼.
Since 𝐼 = (𝑓1, … , 𝑓𝑛) we can modify our element (𝑎1, … , 𝑎𝑛+𝑚) by linear combinations of
the elements

(0, … , 𝑔𝑗, 0, … , 0, 𝑓𝑖, 0, … , 0)

in the image of the top left horizontal arrow to reduce to the case that 𝑎𝑛+1, … , 𝑎𝑛+𝑚 are
zero. In this case (𝑎1, … , 𝑎𝑛, 0, … , 0) defines an element of 𝐻1(𝐴, 𝑓1, … , 𝑓𝑛) which we
assumed to be zero. �

Lemma 12.22.10. Let 𝐴 be a ring. Let 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 ∈ 𝐴 be an 𝐻1-regular se-
quence. Then the images 𝑔1, … , 𝑔𝑚 in 𝐴/(𝑓1, … , 𝑓𝑛) form an 𝐻1-regular sequence.

Proof. Set 𝐼 = (𝑓1, … , 𝑓𝑛). We have to show that any relation ∑𝑗=1,…,𝑚 𝑎𝑗𝑔𝑗 in 𝐴/𝐼 is a
linear combination of trivial relations. Because 𝐼 = (𝑓1, … , 𝑓𝑛) we can lift this relation to
a relation

∑𝑗=1,…,𝑚
𝑎𝑗𝑔𝑗 + ∑𝑖=1,…,𝑛

𝑏𝑖𝑓𝑖 = 0

in 𝐴. By assumption this relation in 𝐴 is a linear combination of trivial relations. Taking
the image in 𝐴/𝐼 we obtain what we want. �

Lemma 12.22.11. Let 𝐴 be a ring. Let 𝐼 be an ideal generated by a Koszul-regular se-
quence 𝑓1, … , 𝑓𝑛 in 𝐴. Let 𝑔1, … , 𝑔𝑚 ∈ 𝐴 be elements whose images 𝑔1, … , 𝑔𝑚 form a
Koszul-regular sequence in 𝐴/𝐼. Then 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 is a Koszul-regular sequence
in 𝐴.

Proof. Our assumptions say that 𝐾•(𝐴, 𝑓1, … , 𝑓𝑛) is a finite free resolution of 𝐴/𝐼 and
𝐾•(𝐴/𝐼, 𝑔1, … , 𝑔𝑚) is a finite free resolution of 𝐴/(𝑓𝑖, 𝑔𝑗) over 𝐴/𝐼. Then

𝐾•(𝐴, 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚) = Tot(𝐾•(𝐴, 𝑓1, … , 𝑓𝑛) ⊗𝐴 𝐾•(𝐴, 𝑔1, … , 𝑔𝑚))
≅ Tot(𝐴/𝐼 ⊗𝐴 𝐾•(𝐴, 𝑔1, … , 𝑔𝑚))
= 𝐾•(𝐴/𝐼, 𝑔1, … , 𝑔𝑚)
≅ 𝐴/(𝑓𝑖, 𝑔𝑗)

The first equality by Lemma 12.21.12. The first quasi-isomorphism by Lemma 12.3.8. The
second equality is clear. The last quasi-isomorphism by assumption. Hence we win. �

To conclude in the following lemma it is necessary to assume that both 𝑓1, … , 𝑓𝑛 and
𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 are Koszul-regular. A counter example to dropping the assumption
that 𝑓1, … , 𝑓𝑛 is Koszul-regular is Examples, Lemma 64.6.1.

Lemma 12.22.12. Let 𝐴 be a ring. Let 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 ∈ 𝐴. If both 𝑓1, … , 𝑓𝑛 and
𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 are Koszul-regular sequences in 𝐴, then 𝑔1, … , 𝑔𝑚 in 𝐴/(𝑓1, … , 𝑓𝑛)
form a Koszul-regular sequence.

Proof. Set 𝐼 = (𝑓1, … , 𝑓𝑛). Our assumptions say that 𝐾•(𝐴, 𝑓1, … , 𝑓𝑛) is a finite free
resolution of 𝐴/𝐼 and 𝐾•(𝐴, 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚) is a finite free resolution of 𝐴/(𝑓𝑖, 𝑔𝑗)
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over 𝐴. Then

𝐴/(𝑓𝑖, 𝑔𝑗) ≅ 𝐾•(𝐴, 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚)
= Tot(𝐾•(𝐴, 𝑓1, … , 𝑓𝑛) ⊗𝐴 𝐾•(𝐴, 𝑔1, … , 𝑔𝑚))
≅ Tot(𝐴/𝐼 ⊗𝐴 𝐾•(𝐴, 𝑔1, … , 𝑔𝑚))
= 𝐾•(𝐴/𝐼, 𝑔1, … , 𝑔𝑚)

The first quasi-isomorphism by assumption. The first equality by Lemma 12.21.12. The
second quasi-isomorphism by Lemma 12.3.8. The second equality is clear. Hence we
win. �

Lemma 12.22.13. Let 𝑅 be a ring. Let 𝐼 be an ideal generated by 𝑓1, … , 𝑓𝑟 ∈ 𝑅.
(1) If 𝐼 can be generated by a quasi-regular sequence of length 𝑟, then 𝑓1, … , 𝑓𝑟 is

a quasi-regular sequence.
(2) If 𝐼 can be generated by an 𝐻1-regular sequence of length 𝑟, then 𝑓1, … , 𝑓𝑟 is

an 𝐻1-regular sequence.
(3) If 𝐼 can be generated by a Koszul-regular sequence of length 𝑟, then 𝑓1, … , 𝑓𝑟 is

a Koszul-regular sequence.
In other words, a minimal set of generators of an ideal generated by a quasi-regular (resp.
𝐻1-regular, Koszul-regular) sequence is a quasi-regular (resp.𝐻1-regular, Koszul-regular)
sequence.

Proof. If 𝐼 can be generated by a quasi-regular sequence of length 𝑟, then 𝐼/𝐼2 is free of
rank 𝑟 over 𝑅/𝐼. Since 𝑓1, … , 𝑓𝑟 generate by assumption we see that the images 𝑓𝑖 form a
basis of 𝐼/𝐼2 over 𝑅/𝐼. It follows that 𝑓1, … , 𝑓𝑟 is a quasi-regular sequence as all this means,
besides the freeness of 𝐼/𝐼2, is that the maps Sym𝑛

𝑅/𝐼(𝐼/𝐼2) → 𝐼𝑛/𝐼𝑛+1 are isomorphisms.

We continue to assume that 𝐼 can be generated by a quasi-regular sequence, say 𝑔1, … , 𝑔𝑟.
Write 𝑔𝑗 = ∑ 𝑎𝑖𝑗𝑓𝑖. As 𝑓1, … , 𝑓𝑟 is quasi-regular according to the previous paragraph, we
see that det(𝑎𝑖𝑗) is invertiblemod 𝐼. Thematrix 𝑎𝑖𝑗 gives amap 𝑅⊕𝑟 → 𝑅⊕𝑟 which induces a
map of Koszul complexes 𝛼 ∶ 𝐾•(𝑅, 𝑓1, … , 𝑓𝑟) → 𝐾•(𝑅, 𝑔1, … , 𝑔𝑟), see Lemma 12.21.3.
This map becomes an isomorphism on inverting det(𝑎𝑖𝑗). Since the cohomologymodules of
both 𝐾•(𝑅, 𝑓1, … , 𝑓𝑟) and 𝐾•(𝑅, 𝑔1, … , 𝑔𝑟) are annihilated by 𝐼, see Lemma 12.21.6, we
see that 𝛼 is a quasi-isomorphism. Hence if 𝑔1, … , 𝑔𝑟 is 𝐻1-regular, then so is 𝑓1, … , 𝑓𝑟.
Similarly for Koszul-regular. �

Lemma 12.22.14. Let 𝐴 → 𝐵 be a ring map. Let 𝑓1, … , 𝑓𝑟 be a sequence in 𝐵 such that
𝐵/(𝑓1, … , 𝑓𝑟) is 𝐴-flat. Let 𝐴 → 𝐴′ be a ring map. Then the canonical map

𝐻1(𝐾•(𝐵, 𝑓1, … , 𝑓𝑟)) ⊗𝐴 𝐴′ ⟶ 𝐻1(𝐾•(𝐵′, 𝑓′
1, … , 𝑓′

𝑟))

is surjective, where 𝐵′ = 𝐵 ⊗𝐴 𝐴′ and 𝑓′
𝑖 ∈ 𝐵′ is the image of 𝑓𝑖.

Proof. The sequence
∧2(𝐵⊕𝑟) → 𝐵⊕𝑟 → 𝐵 → 𝐵/𝐽 → 0

is a complex of𝐴-moduleswith𝐵/𝐽flat over𝐴 and cohomology group𝐻1 = 𝐻1(𝐾•(𝐵, 𝑓1, … , 𝑓𝑟))
in the spot 𝐵⊕𝑟. If we tensor this with 𝐴′ we obtain a complex

∧2((𝐵′)⊕𝑟) → (𝐵′)⊕𝑟 → 𝐵′ → 𝐵′/𝐽′ → 0

which is exact at𝐵′ and𝐵′/𝐽′. In order to compute its cohomology group𝐻′
1 = 𝐻1(𝐾•(𝐵′, 𝑓′

1, … , 𝑓′
𝑟))

at (𝐵′)⊕𝑟 we split the first sequence above into short exact sequences 0 → 𝐽 → 𝐵 → 𝐵/𝐽 →
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0 and 0 → 𝐾 → 𝐵⊕𝑟 → 𝐽 → 0 and ∧2(𝐵⊕𝑟) → 𝐾 → 𝐻1 → 0. Tensoring with 𝐴′ over 𝐴
we obtain the exact sequences

0 → 𝐽 ⊗𝐴 𝐴′ → 𝐵 ⊗𝐴 𝐴′ → (𝐵/𝐽) ⊗𝐴 𝐴′ → 0
𝐾 ⊗𝐴 𝐴′ → 𝐵⊕𝑟 ⊗𝐴 𝐴′ → 𝐽 ⊗𝐴 𝐴′ → 0

∧2(𝐵⊕𝑟) ⊗𝐴 𝐴′ → 𝐾 ⊗𝐴 𝐴′ → 𝐻1 ⊗𝐴 𝐴′ → 0

where the first one is exact as 𝐵/𝐽 is flat over 𝐴, see Algebra, Lemma 7.35.11. Hence we
conclude what we want. �

Lemma 12.22.15. Let 𝑅 be a ring. Let 𝑎1, … , 𝑎𝑛 ∈ 𝑅 be elements such that 𝑅 → 𝑅⊕𝑛,
𝑥 ↦ (𝑥𝑎1, … , 𝑥𝑎𝑛) is injective. Then the element ∑ 𝑎𝑖𝑡𝑖 of the polynomial ring 𝑅[𝑡1, … , 𝑡𝑛]
is a nonzero divisor.

Proof. If one of the 𝑎𝑖 is a unit this is just the statement that any element of the form
𝑡1 + 𝑎2𝑡2 + … + 𝑎𝑛𝑡𝑛 is a nonzero divisor in the polynomial ring over 𝑅.

Case I: 𝑅 is Noetherian. Let 𝔮𝑗, 𝑗 = 1, … , 𝑚 be the associated primes of 𝑅. We have to
show that each of the maps

∑ 𝑎𝑖𝑡𝑖 ∶ Sym𝑑(𝑅⊕𝑛) ⟶ Sym𝑑+1(𝑅⊕𝑛)

is injective. As Sym𝑑(𝑅⊕𝑛) is a free 𝑅-module its associated primes are 𝔮𝑗, 𝑗 = 1, … , 𝑚.
For each 𝑗 there exists an 𝑖 = 𝑖(𝑗) such that 𝑎𝑖∉𝔮𝑗 because there exists an 𝑥 ∈ 𝑅 with
𝔮𝑗𝑥 = 0 but 𝑎𝑖𝑥≠0 for some 𝑖 by assumption. Hence 𝑎𝑖 is a unit in 𝑅𝔮𝑗

and the map is
injective after localizing at 𝔮𝑗. Thus the map is injective, see Algebra, Lemma 7.60.18.

Case II: 𝑅 general. We can write 𝑅 as the union of Noetherian rings 𝑅𝜆 with 𝑎1, … , 𝑎𝑛 ∈
𝑅𝜆. For each 𝑅𝜆 the result holds, hence the result holds for 𝑅. �

Lemma 12.22.16. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑛 be a Koszul-regular sequence in 𝑅.
Consider the faithfully flat, smooth ring map

𝑅 ⟶ 𝑆 = 𝑅[{𝑡𝑖𝑗}𝑖≤𝑗, 𝑡−1
11 , 𝑡−1

22 , … , 𝑡−1
𝑛𝑛 ]

For 1 ≤ 𝑖 ≤ 𝑛 set
𝑔𝑖 = ∑𝑖≤𝑗

𝑡𝑖𝑗𝑓𝑗 ∈ 𝑆.

Then 𝑔1, … , 𝑔𝑛 is a regular sequence in 𝑆 and (𝑓1, … , 𝑓𝑛)𝑆 = (𝑔1, … , 𝑔𝑛).

Proof. The equality of ideals is obvious as the matrix

⎛
⎜
⎜
⎜
⎝

𝑡11 𝑡12 𝑡13 …
0 𝑡22 𝑡23 …
0 0 𝑡33 …
… … … …

⎞
⎟
⎟
⎟
⎠

is invertible in 𝑆. Because 𝑓1, … , 𝑓𝑛 is a Koszul-regular sequence we see that the kernel of
𝑅 → 𝑅⊕𝑛, 𝑥 ↦ (𝑥𝑓1, … , 𝑥𝑓𝑛) is zero (as it computes the 𝑛the Koszul homology of 𝑅 w.r.t.
𝑓1, … , 𝑓𝑛). Hence by Lemma 12.22.15 we see that 𝑔1 = 𝑓1𝑡11 + … + 𝑓𝑛𝑡1𝑛 is a nonzero
divisor in 𝑆′ = 𝑅[𝑡11, 𝑡12, … , 𝑡1𝑛, 𝑡−1

11 ]. We see that 𝑔1, 𝑓2, … , 𝑓𝑛 is a Koszul-sequence
in 𝑆′ by Lemma 12.22.4 and 12.22.13. We conclude that 𝑓2, … , 𝑓𝑛 is a Koszul-regular
sequence in 𝑆′/(𝑔2) by Lemma 12.22.12. Hence by induction on 𝑛 we see that the images
𝑔2, … , 𝑔𝑛 of 𝑔2, … , 𝑔𝑛 in 𝑆′/(𝑔2)[{𝑡𝑖𝑗}2≤𝑖≤𝑗, 𝑡−1

22 , … , 𝑡−1
𝑛𝑛 ] form a regular sequence. This in

turn means that 𝑔1, … , 𝑔𝑛 forms a regular sequence in 𝑆. �
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12.23. Regular ideals

We will discuss the notion of a regular ideal sheaf in great generality in Divisors, Section
26.12. Here we define the corresponding notion in the affine case, i.e., in the case of an
ideal in a ring.

Definition 12.23.1. Let 𝑅 be a ring and let 𝐼 ⊂ 𝑅 be an ideal.
(1) We say 𝐼 is a regular ideal if for every 𝔭 ∈ 𝑉(𝐼) there exists a 𝑔 ∈ 𝑅, 𝑔∉𝔭 and a

regular sequence 𝑓1, … , 𝑓𝑟 ∈ 𝑅𝑔 such that 𝐼𝑔 is generated by 𝑓1, … , 𝑓𝑟.
(2) We say 𝐼 is a Koszul-regular ideal if for every 𝔭 ∈ 𝑉(𝐼) there exists a 𝑔 ∈ 𝑅,

𝑔∉𝔭 and a Koszul-regular sequence 𝑓1, … , 𝑓𝑟 ∈ 𝑅𝑔 such that 𝐼𝑔 is generated by
𝑓1, … , 𝑓𝑟.

(3) We say 𝐼 is a 𝐻1-regular ideal if for every 𝔭 ∈ 𝑉(𝐼) there exists a 𝑔 ∈ 𝑅, 𝑔∉𝔭 and
an 𝐻1-regular sequence 𝑓1, … , 𝑓𝑟 ∈ 𝑅𝑔 such that 𝐼𝑔 is generated by 𝑓1, … , 𝑓𝑟.

(4) We say 𝐼 is a quasi-regular ideal if for every 𝔭 ∈ 𝑉(𝐼) there exists a 𝑔 ∈ 𝑅,
𝑔∉𝔭 and a quasi-regular sequence 𝑓1, … , 𝑓𝑟 ∈ 𝑅𝑔 such that 𝐼𝑔 is generated by
𝑓1, … , 𝑓𝑟.

It is clear that given 𝐼 ⊂ 𝑅 we have the implications
𝐼 is a regular ideal ⇒ 𝐼 is a Koszul-regular ideal

⇒ 𝐼 is a 𝐻1-regular ideal
⇒ 𝐼 is a quasi-regular ideal

see Lemmas 12.22.2 and 12.22.5. Such an ideal is always finitely generated.

Lemma 12.23.2. A quasi-regular ideal is finitely generated.

Proof. Let 𝐼 ⊂ 𝑅 be a quasi-regular ideal. Since𝑉(𝐼) is quasi-compact, there exist 𝑔1, … , 𝑔𝑚 ∈
𝑅 such that 𝑉(𝐼) ⊂ 𝐷(𝑔1) ∪ … ∪ 𝐷(𝑔𝑚) and such that 𝐼𝑔𝑗

is generated by a quasi-regular

sequence 𝑔𝑗1, … , 𝑔𝑗𝑟𝑗
∈ 𝑅𝑔𝑗

. Write 𝑔𝑗𝑖 = 𝑔′
𝑗𝑖/𝑔

𝑒𝑖𝑗
𝑗 for some 𝑔′

𝑖𝑗 ∈ 𝐼. Write 1 + 𝑥 = ∑ 𝑔𝑗ℎ𝑗
for some 𝑥 ∈ 𝐼 which is possible as 𝑉(𝐼) ⊂ 𝐷(𝑔1) ∪ … ∪ 𝐷(𝑔𝑚). Note that 𝑆𝑝𝑒𝑐(𝑅) =
𝐷(𝑔1) ∪ … ∪ 𝐷(𝑔𝑚) ⋃ 𝐷(𝑥) Then 𝐼 is generated by the elements 𝑔′

𝑖𝑗 and 𝑥 as these generate
on each of the pieces of the cover, see Algebra, Lemma 7.21.2. �

We prove flat descent for Koszul-regular, 𝐻1-regular, quasi-regular ideals.

Lemma 12.23.3. Let 𝐴 → 𝐵 be a faithfully flat ring map. Let 𝐼 ⊂ 𝐴 be an ideal. If 𝐼𝐵 is a
Koszul-regular (resp.𝐻1-regular, resp. quasi-regular) ideal in𝐵, then 𝐼 is a Koszul-regular
(resp. 𝐻1-regular, resp. quasi-regular) ideal in 𝐴.

Proof. We fix the prime 𝔭 ⊃ 𝐼 throughout the proof. Assume 𝐼𝐵 is quasi-regular. By
Lemma 12.23.2 𝐼𝐵 is a finite module, hence 𝐼 is a finite 𝐴-module by Algebra, Lemma
7.77.2. As 𝐴 → 𝐵 is flat we see that

𝐼/𝐼2 ⊗𝐴/𝐼 𝐵/𝐼𝐵 = 𝐼/𝐼2 ⊗𝐴 𝐵 = 𝐼𝐵/(𝐼𝐵)2.

As 𝐼𝐵 is quasi-regular, the 𝐵/𝐼𝐵-module 𝐼𝐵/(𝐼𝐵)2 is finite locally free. Hence 𝐼/𝐼2 is finite
projective, see Algebra, Proposition 7.77.3. In particular, after replacing 𝐴 by 𝐴𝑓 for some
𝑓 ∈ 𝐴, 𝑓∉𝔭 we may assume that 𝐼/𝐼2 is free of rank 𝑟. Pick 𝑓1, … , 𝑓𝑟 ∈ 𝐼 which give
a basis of 𝐼/𝐼2. By Nakayama's lemma (see Algebra, Lemma 7.14.5) we see that, after
another replacement 𝐴 𝐴𝑓 as above, 𝐼 is generated by 𝑓1, … , 𝑓𝑟.

Proof of the ``quasi-regular'' case. Above we have seen that 𝐼/𝐼2 is free on the 𝑟-generators
𝑓1, … , 𝑓𝑟. To finish the proof in this case we have to show that the maps Sym𝑑(𝐼/𝐼2) →
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𝐼𝑑/𝐼𝑑+1 are isomorphisms for each 𝑑 ≥ 2. This is clear as the faithfully flat base changes
Sym𝑑(𝐼𝐵/(𝐼𝐵)2) → (𝐼𝐵)𝑑/(𝐼𝐵)𝑑+1 are isomorphisms locally on 𝐵 by assumption. Details
omitted.

Proof of the ``𝐻1-regular'' and ``Koszul-regular'' case. Consider the sequence of elements
𝑓1, … , 𝑓𝑟 generating 𝐼 we constructed above. By Lemma 12.22.13 we see that 𝑓1, … , 𝑓𝑟
map to a 𝐻1-regular or Koszul-regular sequence in 𝐵𝑔 for any 𝑔 ∈ 𝐵 such that 𝐼𝐵 is gener-
ated by an 𝐻1-regular or Koszul-regular sequence. Hence 𝐾•(𝐴, 𝑓1, … , 𝑓𝑟)⊗𝐴 𝐵𝑔 has van-
ishing 𝐻1 or 𝐻𝑖, 𝑖 > 0. Since the homology of 𝐾•(𝐵, 𝑓1, … , 𝑓𝑟) = 𝐾•(𝐴, 𝑓1, … , 𝑓𝑟) ⊗𝐴 𝐵
is annihilated by 𝐼𝐵 (see Lemma 12.21.6) and since 𝑉(𝐼𝐵) ⊂ ⋃𝑔 as above 𝐷(𝑔) we conclude
that 𝐾•(𝐴, 𝑓1, … , 𝑓𝑟)⊗𝐴 𝐵 has vanishing homology in degree 1 or all positive degrees. Us-
ing that 𝐴 → 𝐵 is faithfully flat we conclude that the same is true for 𝐾•(𝐴, 𝑓1, … , 𝑓𝑟). �

Lemma 12.23.4. Let 𝐴 be a ring. Let 𝐼 ⊂ 𝐽 ⊂ 𝐴 be ideals. Assume that 𝐽/𝐼 ⊂ 𝐴/𝐼 is a
𝐻1-regular ideal. Then 𝐼 ∩ 𝐽2 = 𝐼𝐽.

Proof. Follows immediately from Lemma 12.22.7 by localizing. �

12.24. Local complete intersection maps

We can use the material above to define a local complete intersection map between rings
using presentations by (finite) polynomial algebras.

Lemma 12.24.1. Let 𝐴 → 𝐵 be a finite type ring map. If for some presentation 𝛼 ∶
𝐴[𝑥1, … , 𝑥𝑛] → 𝐵 the kernel 𝐼 is a Koszul-regular ideal then for any presentation 𝛽 ∶
𝐴[𝑦1, … , 𝑦𝑚] → 𝐵 the kernel 𝐽 is a Koszul-regular ideal.

Proof. Choose 𝑓𝑗 ∈ 𝐴[𝑥1, … , 𝑥𝑛] with 𝛼(𝑓𝑗) = 𝛽(𝑦𝑗) and 𝑔𝑖 ∈ 𝐴[𝑦1, … , 𝑦𝑚] with 𝛽(𝑔𝑖) =
𝛼(𝑥𝑖). Then we get a commutative diagram

𝐴[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]

𝑥𝑖↦𝑔𝑖
��

𝑦𝑗↦𝑓𝑗
// 𝐴[𝑥1, … , 𝑥𝑛]

��
𝐴[𝑦1, … , 𝑦𝑚] // 𝐵

Note that the kernel 𝐾 of 𝐴[𝑥𝑖, 𝑦𝑗] → 𝐵 is equal to 𝐾 = (𝐼, 𝑦𝑗 − 𝑓𝑗) = (𝐽, 𝑥𝑖 − 𝑓𝑖). In
particular, as 𝐼 is finitely generated by Lemma 12.23.2 we see that 𝐽 = 𝐾/(𝑥𝑖 − 𝑓𝑖) is
finitely generated too.

Pick a prime 𝔮 ⊂ 𝐵. Since 𝐼/𝐼2 ⊕ 𝐵⊕𝑚 = 𝐽/𝐽2 ⊕ 𝐵⊕𝑛 (Algebra, Lemma 7.123.12) we see
that

dim 𝐽/𝐽2 ⊗𝐵 𝜅(𝔮) + 𝑛 = dim 𝐼/𝐼2 ⊗𝐵 𝜅(𝔮) + 𝑚.
Pick 𝑝1, … , 𝑝𝑡 ∈ 𝐼 which map to a basis of 𝐼/𝐼2 ⊗ 𝜅(𝔮) = 𝐼 ⊗𝐴[𝑥𝑖] 𝜅(𝔮). Pick 𝑞1, … , 𝑞𝑠 ∈ 𝐽
which map to a basis of 𝐽/𝐽2 ⊗ 𝜅(𝔮) = 𝐽 ⊗𝐴[𝑦𝑗] 𝜅(𝔮). So 𝑠 + 𝑛 = 𝑡 + 𝑚. By Nakayama's
lemma there exist ℎ ∈ 𝐴[𝑥𝑖] and ℎ′ ∈ 𝐴[𝑦𝑗] both mapping to a nonzero element of 𝜅(𝔮)
such that 𝐼ℎ = (𝑝1, … , 𝑝𝑡) in 𝐴[𝑥𝑖, 1/ℎ] and 𝐽ℎ′ = (𝑞1, … , 𝑞𝑠) in 𝐴[𝑦𝑗, 1/ℎ′]. As 𝐼 is
Koszul-regular we may also assume that 𝐼ℎ is generated by a Koszul regular sequence. This
sequence must necessarily have length 𝑡 = dim 𝐼/𝐼2 ⊗𝐵 𝜅(𝔮), hence we see that 𝑝1, … , 𝑝𝑡 is
a Koszul-regular sequence by Lemma 12.22.13. As also 𝑦1 − 𝑓1, … , 𝑦𝑚 − 𝑓𝑚 is a regular
sequence we conclude

𝑦1 − 𝑓1, … , 𝑦𝑚 − 𝑓𝑚, 𝑝1, … , 𝑝𝑡
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is a Koszul-regular sequence in 𝐴[𝑥𝑖, 𝑦𝑗, 1/ℎ] (see Lemma 12.22.11). This sequence gener-
ates the ideal 𝐾ℎ. Hence the ideal 𝐾ℎℎ′ is generated by a Koszul-regular sequence of length
𝑚 + 𝑡 = 𝑛 + 𝑠. But it is also generated by the sequence

𝑥1 − 𝑔1, … , 𝑥𝑛 − 𝑔𝑛, 𝑞1, … , 𝑞𝑠

of the same length which is thus a Koszul-regular sequence by Lemma 12.22.13. Finally,
by Lemma 12.22.12 we conclude that the images of 𝑞1, … , 𝑞𝑠 in

𝐴[𝑥𝑖, 𝑦𝑗, 1/ℎℎ′]/(𝑥1 − 𝑔1, … , 𝑥𝑛 − 𝑔𝑛) ≅ 𝐴[𝑦𝑗, 1/ℎ″]

form a Koszul-regular sequence generating 𝐽ℎ″. Since ℎ″ is the image of ℎℎ′ it doesn't
map to zero in 𝜅(𝔮) and we win. �

This lemma allows us to make the following definition.

Definition 12.24.2. A ring map 𝐴 → 𝐵 is called a local complete intersection if it is of
finite type and for some (equivalently any) presentation 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 the ideal 𝐼 is
Koszul-regular.

This notion is local.

Lemma 12.24.3. Let 𝑅 → 𝑆 be a ring map. Let 𝑔1, … , 𝑔𝑚 ∈ 𝑆 generate the unit ideal. If
each 𝑅 → 𝑆𝑔𝑗

is a local complete intersection so is 𝑅 → 𝑆.

Proof. Let 𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 be a presentation. Pick ℎ𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛] mapping to 𝑔𝑗 in
𝑆. Then 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝐼, 𝑥𝑛+1ℎ𝑗−1) is a presentation of 𝑆𝑔𝑗

. Hence 𝐼𝑗 = (𝐼, 𝑥𝑛+1ℎ𝑗−
1) is a Koszul-regular ideal in 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]. Pick a prime 𝐼 ⊂ 𝔮 ⊂ 𝑅[𝑥1, … , 𝑥𝑛].
Then ℎ𝑗∉𝔮 for some 𝑗 and 𝔮𝑗 = (𝔮, 𝑥𝑛+1ℎ𝑗 − 1) is a prime ideal of 𝑉(𝐼𝑗) lying over 𝔮.
Pick 𝑓1, … , 𝑓𝑟 ∈ 𝐼 which map to a basis of 𝐼/𝐼2 ⊗ 𝜅(𝔮). Then 𝑥𝑛+1ℎ𝑗 − 1, 𝑓1, … , 𝑓𝑟 is a
sequence of elements of 𝐼𝑗 which map to a basis of 𝐼𝑗 ⊗ 𝜅(𝔮𝑗). By Nakayma's lemma there
exists an ℎ ∈ 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1] such that (𝐼𝑗)ℎ is generated by 𝑥𝑛+1ℎ𝑗 − 1, 𝑓1, … , 𝑓𝑟. We
may also assume that (𝐼𝑗)ℎ is generated by a Koszul regular sequence of some length 𝑒.
Looking at the dimension of 𝐼𝑗 ⊗ 𝜅(𝔮𝑗) we see that 𝑒 = 𝑟 + 1. Hence by Lemma 12.22.13
we see that 𝑥𝑛+1ℎ𝑗 − 1, 𝑓1, … , 𝑓𝑟 is a Koszul-regular sequence generating (𝐼𝑗)ℎ for some
ℎ ∈ 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1], ℎ∉𝔮𝑗. By Lemma 12.22.12 we see that 𝐼ℎ′ is generated by a
Koszul-regular sequence for some ℎ′ ∈ 𝑅[𝑥1, … , 𝑥𝑛], ℎ′∉𝔮 as desired. �

Lemma 12.24.4. Let 𝑅 be a ring. Let 𝑅[𝑥1, … , 𝑥𝑛]. If 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) be a
relative global complete intersection. Then 𝑓1, … , 𝑓𝑐 is a Koszul regular sequence.

Proof. Recall that the homology groups𝐻𝑖(𝐾•(𝑓•)) are annihilated by the ideal (𝑓1, … , 𝑓𝑐).
Hence it suffices to show that 𝐻𝑖(𝐾•(𝑓•))𝔮 is zero for all primes 𝔮 ⊂ 𝑅[𝑥1, … , 𝑥𝑛] contain-
ing (𝑓1, … , 𝑓𝑐). This follows from Algebra, Lemma 7.125.13 and the fact that a regular
sequence is Koszul regular (Lemma 12.22.2). �

Lemma 12.24.5. A syntomic ring map is a local complete intersection.

Proof. Combine Lemmas 12.24.4 and 12.24.3 and Algebra, Lemma 7.125.16. �

For a local complete intersection 𝑅 → 𝑆 we have 𝐻𝑛(𝐿𝑆/𝑅) = 0 for 𝑛 ≥ 2. Since we
haven't (yet) defined the full cotangent complex we can't state and prove this, but we can
deduce one of the consequences.
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Lemma 12.24.6. Let 𝐴 → 𝐵 → 𝐶 be ring maps. Assume 𝐵 → 𝐶 is a local complete
intersection homomorphism. Choose a presentation 𝛼 ∶ 𝐴[𝑥𝑠, 𝑠 ∈ 𝑆] → 𝐵 with kernel 𝐼.
Choose a presentation 𝛽 ∶ 𝐵[𝑦1, … , 𝑦𝑚] → 𝐶 with kernel 𝐽. Let 𝛾 ∶ 𝐴[𝑥𝑠, 𝑦𝑡] → 𝐶 be the
induced presentation of 𝐶 with kernel 𝐾. Then we get a canonical commutative diagram

0 // Ω𝐴[𝑥𝑠]/𝐴 ⊗ 𝐶 // Ω𝐴[𝑥𝑠,𝑦𝑡]/𝐴 ⊗ 𝐶 // Ω𝐵[𝑦𝑡]/𝐵 ⊗ 𝐶 // 0

0 // 𝐼/𝐼2 ⊗ 𝐶 //

OO

𝐾/𝐾2 //

OO

𝐽/𝐽2 //

OO

0

with exact rows. In particular, the six term exact sequence of Algebra, Lemma 7.123.3 can
be completed with a zero on the left, i.e., the sequence

0 → 𝐻1(𝑁𝐿𝐵/𝐴 ⊗𝐵 𝐶) → 𝐻1(𝐿𝐶/𝐴) → 𝐻1(𝐿𝐶/𝐵) → Ω𝐵/𝐴 ⊗𝐵 𝐶 → Ω𝐶/𝐴 → Ω𝐶/𝐵 → 0

is exact.

Proof. The only thing to prove is the injectivity of the map 𝐼/𝐼2 ⊗ 𝐶 → 𝐾/𝐾2. By as-
sumption the ideal 𝐽 is Koszul-regular. Hence we have 𝐼𝐴[𝑥𝑠, 𝑦𝑗] ∩ 𝐾2 = 𝐼𝐾 by Lemma
12.23.4. This means that the kernel of 𝐾/𝐾2 → 𝐽/𝐽2 is isomorphic to 𝐼𝐴[𝑥𝑠, 𝑦𝑗]/𝐼𝐾. Since
𝐼/𝐼2 ⊗𝐴 𝐶 = 𝐼𝐴[𝑥𝑠, 𝑦𝑗]/𝐼𝐾 this provides us with the desired injectivity of 𝐼/𝐼2 ⊗𝐴 𝐶 →
𝐾/𝐾2 so that the result follows from the snake lemma, see Homology, Lemma 10.3.23. �

Lemma 12.24.7. Let 𝐴 → 𝐵 → 𝐶 be ring maps. If 𝐵 → 𝐶 is a filtered colimit of lo-
cal complete intersection homomorphisms then the conclusion of Lemma 12.24.6 remains
valid.

Proof. Follows from Lemma 12.24.6 and Algebra, Lemma 7.123.7. �

12.25. Cartier's equality and geometric regularity

A reference for this section and the next is [Mat70, Section 39]. In order to comfortably
read this section the reader should be familiar with the naive cotangent complex and its
properties, see Algebra, Section 7.123.

Lemma 12.25.1 (Cartier equality). Let 𝐾/𝑘 be a finitely generated field extension. Then
Ω𝐾/𝑘 and 𝐻1(𝐿𝐾/𝑘) are finite dimensional and trdeg𝑘(𝐾) = dim𝐾 Ω𝐾/𝑘 − dim𝑘 𝐻1(𝐿𝐾/𝑘).

Proof. We can find a global complete intersection 𝐴 = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) over 𝑘
such that 𝐾 is isomorphic to the fraction field of 𝐴, see Algebra, Lemma 7.141.10 and its
proof. In this case we see that 𝑁𝐿𝐾/𝑘 is homotopy equivalent to the complex

⨁𝑗=1,…,𝑐
𝐾 ⟶ ⨁𝑖=1,…,𝑛

𝐾d𝑥𝑖

by Algebra, Lemmas 7.123.2 and 7.123.10. The transcendence degree of 𝐾 over 𝑘 is the
dimension of 𝐴 (by Algebra, Lemma 7.107.1) which is 𝑛 − 𝑐 and we win. �

Lemma 12.25.2. Let 𝐾 ⊂ 𝐿 ⊂ 𝑀 be field extensions. Then the Jacobi-Zariski sequence

0 → 𝐻1(𝐿𝐿/𝐾) ⊗𝐿 𝑀 → 𝐻1(𝐿𝑀/𝐾) → 𝐻1(𝐿𝑀/𝐿) → Ω𝐿/𝐾 ⊗𝐿 𝑀 → Ω𝑀/𝐾 → Ω𝑀/𝐿 → 0

is exact.

Proof. Combine Lemma 12.24.7 with Algebra, Lemma 7.141.10. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07D4
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07D5
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07E1
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07E2
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Lemma 12.25.3. Given a commutative diagram of fields

𝐾 // 𝐾′

𝑘

OO

// 𝑘′

OO

with 𝑘 ⊂ 𝑘′ and 𝐾 ⊂ 𝐾′ finitely generated field extensions the kernel and cokernel of the
maps

𝛼 ∶ Ω𝐾/𝑘 ⊗𝐾 𝐾′ → Ω𝐾′/𝑘′ and 𝛽 ∶ 𝐻1(𝐿𝐾/𝑘) ⊗𝐾 𝐾′ → 𝐻1(𝐿𝐾′/𝑘′)

are finite dimensional and

dimKer(𝛼) − dimCoker(𝛼) − dimKer(𝛽) + dimCoker(𝛽) = trdeg𝑘(𝑘′) − trdeg𝐾(𝐾′)

Proof. The Jacobi-Zariski sequences for 𝑘 ⊂ 𝑘′ ⊂ 𝐾′ and 𝑘 ⊂ 𝐾 ⊂ 𝐾′ are

0 → 𝐻1(𝐿𝑘′/𝑘) ⊗ 𝐾′ → 𝐻1(𝐿𝐾′/𝑘) → 𝐻1(𝐿𝐾′/𝑘′) → Ω𝑘′/𝑘 ⊗ 𝐾′ → Ω𝐾′/𝑘 → Ω𝐾′/𝑘 → 0

and

0 → 𝐻1(𝐿𝐾/𝑘) ⊗ 𝐾′ → 𝐻1(𝐿𝐾′/𝑘) → 𝐻1(𝐿𝐾′/𝐾) → Ω𝐾/𝑘 ⊗ 𝐾′ → Ω𝐾′/𝑘 → Ω𝐾′/𝐾 → 0

By Lemma 12.25.1 the vector spaces Ω𝑘′/𝑘, Ω𝐾′/𝐾, 𝐻1(𝐿𝐾′/𝐾), and 𝐻1(𝐿𝑘′/𝑘) are finite
dimensional and the alternating sum of their dimensions is trdeg𝑘(𝑘′) − trdeg𝐾(𝐾′). The
lemma follows. �

12.26. Geometric regularity

Let 𝑘 be a field. Let (𝐴, 𝔪, 𝐾) be a Noetherian local 𝑘-algebra. The Jacobi-Zariski sequence
(Algebra, Lemma 7.123.3) is a canonical exact sequence

𝐻1(𝐿𝐾/𝑘) → 𝔪/𝔪2 → Ω𝐴/𝑘 ⊗𝐴 𝐾 → Ω𝐾/𝑘 → 0

because 𝐻1(𝐿𝐾/𝐴) = 𝔪/𝔪2 by Algebra, Lemma 7.123.4. We will show that exactness on
the left of this sequence characterizes whether or not a regular local ring 𝐴 is geometrically
regular over 𝑘. We will link this to the notion of formal smoothness in Section 12.30.

Proposition 12.26.1. Let 𝑘 be a field of characteristic 𝑝 > 0. Let (𝐴, 𝔪, 𝐾) be a Noetherian
local 𝑘-algebra. The following are equivalent

(1) 𝐴 is geometrically regular over 𝑘,
(2) for all 𝑘 ⊂ 𝑘′ ⊂ 𝑘1/𝑝 finite over 𝑘 the ring 𝐴 ⊗𝑘 𝑘′ is regular,
(3) 𝐴 is regular and the canonical map 𝐻1(𝐿𝐾/𝑘) → 𝔪/𝔪2 is injective, and
(4) 𝐴 is regular and the map Ω𝑘/𝐅𝑝

⊗𝑘 𝐾 → Ω𝐴/𝐅𝑝
⊗𝐴 𝐾 is injective.

Proof. Proof of (3) ⇒ (1). Assume (3). Let 𝑘 ⊂ 𝑘′ be a finite purely inseparable extension.
Set 𝐴′ = 𝐴 ⊗𝑘 𝑘′. This is a local ring with maximal ideal 𝔪′. Set 𝐾′ = 𝐴′/𝔪′. We get a
commutative diagram

0 // 𝐻1(𝐿𝐾/𝑘) ⊗ 𝐾′ //

𝛽
��

𝔪/𝔪2 ⊗ 𝐾′ //

��

Ω𝐴/𝑘 ⊗𝐴 𝐾′ //

≅
��

Ω𝐾/𝑘 ⊗ 𝐾′ //

𝛼
��

0

𝐻1(𝐿𝐾′/𝑘′) // 𝔪′/(𝔪′)2 // Ω𝐴′/𝑘′ ⊗𝐴′ 𝐾′ // Ω𝐾′/𝑘′ // 0

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07E3
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with exact rows. The third vertical arrow is an isomorphism by base change for modules of
differentials (Algebra, Lemma 7.122.12). Thus 𝛼 is surjective. By Lemma 12.25.3 we have

dimKer(𝛼) − dimKer(𝛽) + dimCoker(𝛽) = 0

(and these dimensions are all finite). A diagram chase shows that dim 𝔪′/(𝔪′)2 ≤ dim 𝔪/𝔪2.
However, since 𝐴 → 𝐴′ is finite flat we see that dim(𝐴) = dim(𝐴′), see Algebra, Lemma
7.103.6. Hence 𝐴′ is regular by definition.

Equivalence of (3) and (4). Consider the Jacobi-Zariski sequences for rows of the commu-
tative diagram

𝐅𝑝
// 𝐴 // 𝐾

𝐅𝑝
//

OO

𝑘 //

OO

𝐾

OO

to get a commutative diagram

0 // 𝔪/𝔪2 // Ω𝐴/𝐅𝑝
⊗𝐴 𝐾 // Ω𝐾/𝐅𝑝

// 0

0 // 𝐻1(𝐿𝐾/𝑘) //

OO

Ω𝑘/𝐅𝑝
⊗𝑘 𝐾 //

OO

Ω𝐾/𝐅𝑝
//

OO

Ω𝐾/𝑘
//

OO

0

with exact rows. We have used that 𝐻1(𝐿𝐾/𝐴) = 𝔪/𝔪2 and that 𝐻1(𝐿𝐾/𝐅𝑝
) = 0 as 𝐾/𝐅𝑝 is

separable, see Algebra, Proposition 7.141.8. Thus it is clear that the kernels of 𝐻1(𝐿𝐾/𝑘) →
𝔪/𝔪2 and Ω𝑘/𝐅𝑝

⊗𝑘 𝐾 → Ω𝐴/𝐅𝑝
⊗𝐴 𝐾 have the same dimension.

Proof of (2) ⇒ (4) following Faltings, see [Fal78]. Let 𝑎1, … , 𝑎𝑛 ∈ 𝑘 be elements such
that d𝑎1, … , d𝑎𝑛 are linearly independent in Ω𝑘/𝐅𝑝

. Consider the field extension 𝑘′ =

𝑘(𝑎1/𝑝
1 , … , 𝑎1/𝑝

𝑛 ). ByAlgebra, Lemma 7.141.2we see that 𝑘′ = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑥𝑝
1−𝑎1, … , 𝑥𝑝

𝑛−
𝑎𝑛). In particular we see that the naive cotangent complex of 𝑘′/𝑘 is homotopic to the com-
plex ⨁𝑗=1,…,𝑛 𝑘′ → ⨁𝑖=1,…,𝑛 𝑘′ with the zero differential as d(𝑥𝑝

𝑗 −𝑎𝑗) = 0 in Ω𝑘[𝑥1,…,𝑥𝑛]/𝑘.
Set 𝐴′ = 𝐴 ⊗𝑘 𝑘′ and 𝐾′ = 𝐴′/𝔪′ as above. By Algebra, Lemma 7.123.6 we see that
𝑁𝐿𝐴′/𝐴 is homotopy equivalent to the complex ⨁𝑗=1,…,𝑛 𝐴′ → ⨁𝑖=1,…,𝑛 𝐴′ with the zero
differential, i.e., 𝐻1(𝐿𝐴′/𝐴) and Ω𝐴′/𝐴 are free of rank 𝑛. The Jacobi-Zariski sequence for
𝐅𝑝 → 𝐴 → 𝐴′ is

𝐻1(𝐿𝐴′/𝐴) → Ω𝐴/𝐅𝑝
⊗𝐴 𝐴′ → Ω𝐴′/𝐅𝑝

→ Ω𝐴′/𝐴 → 0

Using the presentation 𝐴[𝑥1, … , 𝑥𝑛] → 𝐴′ with kernel (𝑥𝑝
𝑗 − 𝑎𝑗) we see, unwinding the

maps in Algebra, Lemma 7.123.3, that the 𝑗th basis vector of 𝐻1(𝐿𝐴′/𝐴) maps to d𝑎𝑗 ⊗ 1
in Ω𝐴/𝐅𝑝

⊗ 𝐴′. As Ω𝐴′/𝐴 is free (hence flat) we get on tensoring with 𝐾′ an exact sequence

𝐾′⊕𝑛 → Ω𝐴/𝐅𝑝
⊗𝐴 𝐾′ 𝛽

−→ Ω𝐴′/𝐅𝑝
⊗𝐴′ 𝐾′ → 𝐾′⊕𝑛 → 0
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We conclude that the elements d𝑎𝑗 ⊗1 generate Ker(𝛽) and we have to show that are linearly
independent, i.e., we have to show dim(ker(𝛽)) = 𝑛. Consider the following big diagram

0 // 𝔪′/(𝔪′)2 // Ω𝐴′/𝐅𝑝
⊗ 𝐾′ // Ω𝐾′/𝐅𝑝

// 0

0 // 𝔪/𝔪2 ⊗ 𝐾′ //

𝛼

OO

Ω𝐴/𝐅𝑝
⊗ 𝐾′ //

𝛽

OO

Ω𝐾/𝐅𝑝
⊗ 𝐾′ //

𝛾
OO

0

By Lemma 12.25.1 and the Jacobi-Zariski sequence for 𝐅𝑝 → 𝐾 → 𝐾′ we see that the
kernel and cokernel of 𝛾 have the same finite dimension. By assumption 𝐴′ is regular (and
of the same dimension as 𝐴, see above) hence the kernel and cokernel of 𝛼 have the same
dimension. It follows that the kernel and cokernel of 𝛽 have the same dimension which is
what we wanted to show.

The implication (1) ⇒ (2) is trivial. This finishes the proof of the proposition. �

Lemma 12.26.2. Let 𝑘 be a field of characteristic 𝑝 > 0. Let (𝐴, 𝔪, 𝐾) be a Noetherian
local 𝑘-algebra. Assume 𝐴 is geometrically regular over 𝑘. Let 𝑘 ⊂ 𝐹 ⊂ 𝐾 be a finitely
generated subextension. Let 𝜑 ∶ 𝑘[𝑦1, … , 𝑦𝑚] → 𝐴 be a 𝑘-algebra map such that 𝑦𝑖 maps
to an element of 𝐹 in 𝐾 and such that d𝑦1, … , d𝑦𝑚 map to a basis of Ω𝐹/𝑘. Set 𝔭 = 𝜑−1(𝔪).
Then

𝑘[𝑦1, … , 𝑦𝑚]𝔭 → 𝐴
is flat and 𝐴/𝔭𝐴 is regular.

Proof. Set 𝐴0 = 𝑘[𝑦1, … , 𝑦𝑚]𝔭 with maximal ideal 𝔪0 and residue field 𝐾0. Note that
Ω𝐴0/𝑘 is free of rank 𝑚 and Ω𝐴0/𝑘 ⊗ 𝐾0 → Ω𝐾0/𝑘 is an isomorphism. It is clear that 𝐴0 is
geometrically regular over 𝑘. Hence 𝐻1(𝐿𝐾0/𝑘) → 𝔪0/𝔪2

0 is an isomorphism, see Propo-
sition 12.26.1. Now consider

𝐻1(𝐿𝐾0/𝑘) ⊗ 𝐾

��

// 𝔪0/𝔪2
0 ⊗ 𝐾

��
𝐻1(𝐿𝐾/𝑘) // 𝔪/𝔪2

Since the left vertical arrow is injective by Lemma 12.25.2 and the lower horizontal by
Proposition 12.26.1 we conclude that the right vertical one is too. Hence a regular system
of parameters in 𝐴0 maps to part of a regular system of parameters in 𝐴. Wewin byAlgebra,
Lemmas 7.119.2 and 7.98.3. �

12.27. Topological rings and modules

Let's quickly discuss some properties of topological abelian groups. An abelian group 𝑀 is
a topological abelian group if 𝑀 is endowed with a topology such that addition 𝑀 × 𝑀 →
𝑀 is continuous. A homomorphism of topological abelian groups is just a homomorphism
of abelian groups which is continuous. The category of commutative topological groups is
additive and has kernels and cokernels, but is not abelian (as the axiom Im = Coim doesn't
hold). If 𝑁 ⊂ 𝑀 is a subgroup, then we think of 𝑁 and 𝑀/𝑁 as topological groups also,
namely using the induced topology on 𝑁 and the quotient topology on 𝑀/𝑁 (i.e., such that
𝑀 → 𝑀/𝑁 is submersive). Note that if 𝑁 ⊂ 𝑀 is an open subgroup, then the topology on
𝑀/𝑁 is discrete.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07E6
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We say the topology on 𝑀 is linear if there exists a fundamental system of neighbourhoods
of 0 consisting of subgroups. If so then these subgroups are also open. An example is
the following. Let 𝐼 be a directed partially ordered set and let 𝐺𝑖 be an inverse system of
(discrete) abelian groups over 𝐼. Then

𝐺 = 𝑙𝑖𝑚𝑖∈𝐼 𝐺𝑖

with the inverse limit topology is linearly topologized with a fundamental system of neigh-
bourhoods of 0 given by Ker(𝐺 → 𝐺𝑖). Conversely, let 𝑀 be a linearly topologized abelian
group. Choose any fundamental system of open subgroups 𝑈𝑖 ⊂ 𝑀, 𝑖 ∈ 𝐼 (i.e., the 𝑈𝑖
form a fundamental system of open neighbourhoods and each 𝑈𝑖 is a subgroup of 𝑀). Set-
ting 𝑖 ≥ 𝑖′ ⇔ 𝑈𝑖 ⊂ 𝑈𝑖′ we see that 𝐼 is a directed partially ordered set. We obtain a
homomorphism of linearly topologized abelian groups

𝑐 ∶ 𝑀 ⟶ 𝑙𝑖𝑚𝑖∈𝐼 𝑀/𝑈𝑖.
It is clear that 𝑀 is separated (as a topological space) if and only if 𝑐 is injective. We say
that 𝑀 is complete if 𝑐 is an isomorphism1. We leave it to the reader to check that this
condition is independent of the choice of fundamental system of open subgroups {𝑈𝑖}𝑖∈𝐼
chosen above. In fact the topological abelian group 𝑀∧ = 𝑙𝑖𝑚𝑖∈𝐼 𝑀/𝑈𝑖 is independent of
this choice and is sometimes called the completion of 𝑀. Any 𝐺 = 𝑙𝑖𝑚 𝐺𝑖 as above is
complete, in particular, the completion 𝑀∧ is always complete.

Definition 12.27.1 (Topological rings). Let 𝑅 be a ring and let 𝑀 be an 𝑅-module.
(1) We say 𝑅 is a topological ring if 𝑅 is endowed with a topology such that both

addition and multiplication are continuous as maps 𝑅 × 𝑅 → 𝑅 where 𝑅 × 𝑅 has
the product topology. In this case we say 𝑀 is a topological module if 𝑀 is en-
dowed with a topology such that addition 𝑀 × 𝑀 → 𝑀 and scalar multiplication
𝑅 × 𝑀 → 𝑀 are continuous.

(2) A homomorphism of topological modules is just a continuous 𝑅-module map. A
homomorphism of topological rings is a ring homomorphismwhich is continuous
for the given topologies.

(3) We say 𝑀 is linearly topologized if 0 has a fundamental system of neighbour-
hoods consisting of submodules. We say 𝑅 is linearly topologized if 0 has a
fundamental system of neighbourhoods consisting of ideals.

(4) If 𝑅 is linearly topologized, we say that 𝐼 ⊂ 𝑅 is an ideal of definition if 𝐼 is open
and if every neighbourhood of 0 contains 𝐼𝑛 for some 𝑛.

(5) If 𝑅 is linearly topologized, we say that 𝑅 is pre-admissible if 𝑅 has an ideal of
definition.

(6) If 𝑅 is linearly topologized, we say that 𝑅 is admissible if it is pre-admissible and
complete2.

(7) If 𝑅 is linearly topologized, we say that 𝑅 is pre-adic if there exists an ideal of
definition 𝐼 such that {𝐼𝑛}𝑛≥0 forms a fundamental system of neighbourhoods of
0.

(8) If 𝑅 is linearly topologized, we say that 𝑅 is adic if 𝑅 is pre-adic and complete.
Note that a (pre)adic ring is the same thing as a (pre)admissible ring which has an ideal of
definition 𝐼 such that 𝐼𝑛 is open for all 𝑛 ≥ 1.

1We include being separated as part of being complete as we'd like to have a unique limits in complete
groups. There is a definition of completeness for any topological group, agreeing, modulo the separation issue,
with this one in our special case.

2By our conventions this includes separated.
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Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. Let 𝐼 ⊂ 𝑅 be an ideal. Then we can consider
the linear topology on 𝑅 which has {𝐼𝑛}𝑛≥0 as a fundamental system of neighbourhoods of
0. This topology is called the 𝐼-adic topology; 𝑅 is a pre-adic toplogical ring in the 𝐼-adic
topology3. Moreover, the linear topology on 𝑀 which has {𝐼𝑛𝑀}𝑛≥0 as a fundamental
system of open neighbourhoods of 0 turns 𝑀 into a topological 𝑅-module. This is called
the 𝐼-adic topology on 𝑀. We see that 𝑀 is 𝐼-adically complete (as defined in Algebra,
Definition 7.90.5) if and only 𝑀 is complete in the 𝐼-adic topology4. In particular, we
see that 𝑅 is 𝐼-adically complete if and only if 𝑅 is an adic topological ring in the 𝐼-adic
topology.

As a special case, note that the discrete topology is the 0-adic topology and that any ring in
the discrete topology is adic.

Lemma 12.27.2. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Let 𝐼 ⊂ 𝑅 and 𝐽 ⊂ 𝑆 be ideals and endow
𝑅 with the 𝐼-adic topology and 𝑆 with the 𝐽-adic topology. Then 𝜑 is a homomorphism of
topological rings if and only if 𝜑(𝐼𝑛) ⊂ 𝐽 for some 𝑛 ≥ 1.

Proof. Omitted. �

12.28. Formally smooth maps of topological rings

There is a version of formal smoothness which applies to homomorphisms of topological
rings.

Definition 12.28.1. Let 𝑅 → 𝑆 be a homomorphism of topological rings with 𝑅 and 𝑆
linearly topologized. We say 𝑆 is formally smooth over 𝑅 if for every commutative solid
diagram

𝑆 //

!!

𝐴/𝐽

𝑅 //

OO

𝐴

OO

of homomorphisms of topological rings where 𝐴 is a discrete ring and 𝐽 ⊂ 𝐴 is an ideal of
square zero, a dotted arrow exists which makes the diagram commute.

We will mostly use this notion when given ideals 𝔪 ⊂ 𝑅 and 𝔫 ⊂ 𝑆 and we endow 𝑅 with
the 𝔪-adic topology and 𝑆 with the 𝔫-adic topology. Continuity of 𝜑 ∶ 𝑅 → 𝑆 holds if
and only if 𝜑(𝔪𝑚) ⊂ 𝔫 for some 𝑚 ≥ 1, see Lemma 12.27.2. It turns out that in this case
only the topology on 𝑆 is relevant.

Lemma 12.28.2. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map.
(1) If 𝑅 → 𝑆 is formally smooth in the sense of Algebra, Definition 7.127.1, then

𝑅 → 𝑆 is formally smooth for any linear topology on𝑅 and any pre-adic topology
on 𝑆 such that 𝑅 → 𝑆 is continuous.

(2) Let 𝔫 ⊂ 𝑆 and 𝔪 ⊂ 𝑅 ideals such that 𝜑 is continuous for the 𝔪-adic topology
on 𝑅 and the 𝔫-adic topology on 𝑆. Then the following are equivalent
(a) 𝜑 is formally smooth for the 𝔪-adic topology on 𝑅 and the 𝔫-adic topology

on 𝑆, and

3Thus the 𝐼-adic topology is sometimes called the 𝐼-pre-adic topology.
4 It may happen that the 𝐼-adic completion 𝑀∧ is not 𝐼-adically complete, even though 𝑀∧ is always com-

plete with respect to the limit topology. If 𝐼 is finitely generated then the 𝐼-adic topology and the limit topology
on 𝑀∧ agree, see Algebra, Lemma 7.90.7 and its proof.
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(b) 𝜑 is formally smooth for the discrete topology on 𝑅 and the 𝔫-adic topology
on 𝑆.

Proof. Assume 𝑅 → 𝑆 is formally smooth in the sense of Algebra, Definition 7.127.1.
If 𝑆 has a pre-adic topology, then there exists an ideal 𝔫 ⊂ 𝑆 such that 𝑆 has the 𝔫-adic
topology. Suppose given a solid commutative diagram as in Definition 12.28.1. Continuity
of 𝑆 → 𝐴/𝐽 means that 𝔫𝑘 maps to zero in 𝐴/𝐽 for some 𝑘 ≥ 1, see Lemma 12.27.2. We
obtain a ring map 𝜓 ∶ 𝑆 → 𝐴 from the assumed formal smoothness of 𝑆 over 𝑅. Then
𝜓(𝔫𝑘) ⊂ 𝐽 hence 𝜓(𝔫2𝑘) = 0 as 𝐽2 = 0. Hence 𝜓 is continuous by Lemma 12.27.2. This
proves (1).

The proof of (2)(b) ⇒ (2)(a) is the same as the proof of (1). Assume (2)(a). Suppose given
a solid commutative diagram as in Definition 12.28.1 where we use the discrete topology
on 𝑅. Since 𝜑 is continuos we see that 𝜑(𝔪𝑛) ⊂ 𝔫 for some 𝑚 ≥ 1. As 𝑆 → 𝐴/𝐽 is
continuous we see that 𝔫𝑘 maps to zero in 𝐴/𝐽 for some 𝑘 ≥ 1. Hence 𝔪𝑛𝑘 maps in 𝐽 under
the map 𝑅 → 𝐴. Thus 𝔪2𝑛𝑘 maps to zero in 𝐴 and we see that 𝑅 → 𝐴 is continuous in the
𝔪-adic topology. Thus (2)(a) gives a dotted arrow as desired. �

Definition 12.28.3. Let 𝑅 → 𝑆 be a ring map. Let 𝔫 ⊂ 𝑆 be an ideal. If the equivalent
conditions (2)(a) and (2)(b) of Lemma 12.28.2 hold, then we say 𝑅 → 𝑆 is formally smooth
for the 𝔫-adic topology.

This property is inherited by the completions.

Lemma 12.28.4. Let (𝑅, 𝔪) and (𝑆, 𝔫) be rings endowed with finitely generated ideals.
Endow 𝑅 and 𝑆 with the 𝔪-adic and 𝔫-adic topologies. Let 𝑅 → 𝑆 be a homomorphism
of topological rings. The following are equivalent

(1) 𝑅 → 𝑆 is formally smooth for the 𝔫-adic topology,
(2) 𝑅 → 𝑆∧ is formally smooth for the 𝔫∧-adic topology,
(3) 𝑅∧ → 𝑆∧ is formally smooth for the 𝔫∧-adic topology.

Here 𝑅∧ and 𝑆∧ are the 𝔪-adic and 𝔫-adic completions of 𝑅 and 𝑆.

Proof. The assumption that 𝔪 is finitely generated implies that 𝑅∧ is 𝔪𝑅∧-adically com-
plete, that 𝔪𝑅∧ = 𝔪∧ and that 𝑅∧/𝔪𝑛𝑅∧ = 𝑅/𝔪𝑛, see Algebra, Lemma 7.90.7 and its
proof. Similarly for (𝑆, 𝔫). Thus it is clear that diagrams as in Definition 12.28.1 for the
cases (1), (2), and (3) are in 1-to-1 correspondence. �

The advantage of working with adic rings is that one gets a stronger lifting property.

Lemma 12.28.5. Let 𝑅 → 𝑆 be a ring map. Let 𝔫 be an ideal of 𝑆. Assume that 𝑅 → 𝑆
is formally smooth in the 𝔫-adic topology. Consider a solid commutative diagram

𝑆 𝜓
//

!!

𝐴/𝐽

𝑅 //

OO

𝐴

OO

of homomorphisms of topological rings where 𝐴 is adic and 𝐴/𝐽 is the quotient (as topo-
logical ring) of 𝐴 by a closed ideal 𝐽 ⊂ 𝐴 such that 𝐽𝑡 is contained in an ideal of definition
of 𝐴 for some 𝑡 ≥ 1. Then there exists a dotted arrow in the category of topological rings
which makes the diagram commute.
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Proof. Let 𝐼 ⊂ 𝐴 be an ideal of definition so that 𝐼 ⊃ 𝐽𝑡 for some 𝑛. Then 𝐴 = 𝑙𝑖𝑚 𝐴/𝐼𝑛

and 𝐴/𝐽 = 𝑙𝑖𝑚 𝐴/𝐽 + 𝐼𝑛 because 𝐽 is assumed closed. Consider the following diagram of
discrete 𝑅 algebras 𝐴𝑛,𝑚 = 𝐴/𝐽𝑛 + 𝐼𝑚:

𝐴/𝐽3 + 𝐼3 //

��

𝐴/𝐽2 + 𝐼3 //

��

𝐴/𝐽 + 𝐼3

��
𝐴/𝐽3 + 𝐼2 //

��

𝐴/𝐽2 + 𝐼2 //

��

𝐴/𝐽 + 𝐼2

��
𝐴/𝐽3 + 𝐼 // 𝐴/𝐽2 + 𝐼 // 𝐴/𝐽 + 𝐼

Note that each of the commutative squares defines a surjection

𝐴𝑛+1,𝑚+1 ⟶ 𝐴𝑛+1,𝑚 ×𝐴𝑛,𝑚
𝐴𝑛,𝑚+1

of 𝑅-algebras whose kernel has square zero. We will inductively construct 𝑅-algebra maps
𝜑𝑛,𝑚 ∶ 𝑆 → 𝐴𝑛,𝑚. Namely, we have the maps 𝜑1,𝑚 = 𝜓 mod 𝐽 + 𝐼𝑚. Note that each
of these maps is continuous as 𝜓 is. We can inductively choose the maps 𝜑𝑛,1 by starting
with our choice of 𝜑1,1 and lifting up, using the formal smoothness of 𝑆 over 𝑅, along the
right column of the diagram above. We construct the remaining maps 𝜑𝑛,𝑚 by induction on
𝑛 + 𝑚. Namely, we choose 𝜑𝑛+1,𝑚+1 by lifting the pair (𝜑𝑛+1,𝑚, 𝜑𝑛,𝑚+1) along the displayed
surjection above (again using the formal smoothness of 𝑆 over 𝑅). In this way all of the
maps 𝜑𝑛,𝑚 are compatible with the transition maps of the system. As 𝐽𝑡 ⊂ 𝐼 we see that
for example 𝜑𝑛 = 𝜑𝑛𝑡,𝑛 mod 𝐼𝑛 induces a map 𝑆 → 𝐴/𝐼𝑛. Taking the limit 𝜑 = 𝑙𝑖𝑚 𝜑𝑛
we obtain a map 𝑆 → 𝐴 = 𝑙𝑖𝑚 𝐴/𝐼𝑛. The composition into 𝐴/𝐽 agrees with 𝜓 as we have
seen that 𝐴/𝐽 = 𝑙𝑖𝑚 𝐴/𝐽 + 𝐼𝑛. Finally we show that 𝜑 is continuous. Namely, we know that
𝜓(𝔫𝑟) ⊂ 𝐽 + 𝐼𝑟/𝐽 for some 𝑟 by our assumption that 𝜓 is a morphism of topological rings,
see Lemma 12.27.2. Hence 𝜑(𝔫𝑟) ⊂ 𝐽 + 𝐼 hence 𝜑(𝔫𝑟𝑡) ⊂ 𝐼 as desired. �

Lemma 12.28.6. Let 𝑅 → 𝑆 be a ring map. Let 𝔫 ⊂ 𝔫′ ⊂ 𝑆 be ideals. If 𝑅 → 𝑆 is
formally smooth for the 𝔫-adic topology, then 𝑅 → 𝑆 is formally smooth for the 𝔫′-adic
topology.

Proof. Omitted. �

Lemma 12.28.7. A composition of formally smooth continuous homomorphisms of linearly
topologized rings is formally smooth.

Proof. Omitted. (Hint: This is completely formal, and follows from considering a suitable
diagram.) �

Lemma 12.28.8. Let 𝑅, 𝑆 be rings. Let 𝔫 ⊂ 𝑆 be an ideal. Let 𝑅 → 𝑆 be formally smooth
for the 𝔫-adic topology. Let 𝑅 → 𝑅′ be any ring map. Then 𝑅′ → 𝑆′ = 𝑆 ⊗𝑅 𝑅′ is
formally smooth in the 𝔫′ = 𝔫𝑆′-adic topology.

Proof. Let a solid diagram
𝑆 //

((

𝑆′ //

!!

𝐴/𝐽

𝑅

OO

// 𝑅′ //

OO

𝐴

OO
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as in Definition 12.28.1 be given. Then the composition 𝑆 → 𝑆′ → 𝐴/𝐽 is continuous. By
assumption the longer dotted arrow exists. By the universal property of tensor product we
obtain the shorter dotted arrow. �

We have seen descent for formal smoothness along faithfully flat ring maps in Algebra,
Lemma 7.127.15. Something similar holds in the current setting of topological rings. How-
ever, here we just prove the following very simple and easy to prove version which is already
quite useful.

Lemma 12.28.9. Let 𝑅, 𝑆 be rings. Let 𝔫 ⊂ 𝑆 be an ideal. Let 𝑅 → 𝑅′ be a ring map.
Set 𝑆′ = 𝑆 ⊗𝑅 𝑅′ and 𝔫′ = 𝔫𝑆. If

(1) the map 𝑅 → 𝑅′ embeds 𝑅 as a direct summand of 𝑅′ as an 𝑅-module, and
(2) 𝑅′ → 𝑆′ is formally smooth for the 𝔫′-adic topology,

then 𝑅 → 𝑆 is formally smooth in the 𝔫-adic topology.

Proof. Let a solid diagram
𝑆 // 𝐴/𝐽

𝑅

OO

// 𝐴

OO

as in Definition 12.28.1 be given. Set 𝐴′ = 𝐴 ⊗𝑅 𝑅′ and 𝐽′ = Im(𝐽 ⊗𝑅 𝑅′ → 𝐴′). The
base change of the diagram above is the diagram

𝑆′ //

𝜓′

""

𝐴′/𝐽′

𝑅′

OO

// 𝐴′

OO

with continuous arrows. By condition (2) we obtain the dotted arrow 𝜓′ ∶ 𝑆′ → 𝐴′.
Using condition (1) choose a direct summand decomposition 𝑅′ = 𝑅 ⊕ 𝐶 as 𝑅-modules.
(Warning: 𝐶 isn't an ideal in 𝑅′.) Then 𝐴′ = 𝐴 ⊕ 𝐴 ⊗𝑅 𝐶. Set

𝐽″ = Im(𝐽 ⊗𝑅 𝐶 → 𝐴 ⊗𝑅 𝐶) ⊂ 𝐽′ ⊂ 𝐴′.

Then 𝐽′ = 𝐽 ⊕ 𝐽″ as 𝐴-modules. The image of the composition 𝜓 ∶ 𝑆 → 𝐴′ of 𝜓′ with
𝑆 → 𝑆′ is contained in 𝐴 + 𝐽′ = 𝐴 ⊕ 𝐽″. However, in the ring 𝐴 + 𝐽′ = 𝐴 ⊕ 𝐽″ the
𝐴-submodule 𝐽″ is an ideal! (Use that 𝐽2 = 0.) Hence the composition 𝑆 → 𝐴 + 𝐽′ →
(𝐴 + 𝐽′)/𝐽″ = 𝐴 is the arrow we were looking for. �

The following lemma will be improved on in Section 12.30.

Lemma 12.28.10. Let 𝑘 be a field and let (𝐴, 𝔪, 𝐾) be a Noetherian local 𝑘-algebra. If
𝑘 → 𝐴 is formally smooth for the 𝔪-adic topology, then 𝐴 is a regular local ring.

Proof. Let 𝑘0 ⊂ 𝑘 be the prime field. Then 𝑘0 is perfect, hence 𝑘/𝑘0 is separable, hence
formally smooth by Algebra, Lemma 7.141.6. By Lemmas 12.28.2 and 12.28.7 we see that
𝑘0 → 𝐴 is formally smooth for the 𝔪-adic topology on 𝐴. Hence we may assume 𝑘 = 𝐐
or 𝑘 = 𝐅𝑝.

By Algebra, Lemmas 7.90.4 and 7.102.8 it suffices to prove the completion 𝐴∧ is regular.
By Lemma 12.28.4 we may replace 𝐴 by 𝐴∧. Thus we may assume that 𝐴 is a Noetherian
complete local ring. By the Cohen structure theorem (Algebra, Theorem 7.143.8) there
exist a map 𝐾 → 𝐴. As 𝑘 is the prime field we see that 𝐾 → 𝐴 is a 𝑘-algebra map.
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Let 𝑥1, … , 𝑥𝑛 ∈ 𝔪 be elements whose images form a basis of𝔪/𝔪2. Set 𝑇 = 𝐾[[𝑋1, … , 𝑋𝑛]].
Note that

𝐴/𝑚2 ≅ 𝐾[𝑥1, … , 𝑥𝑛]/(𝑥𝑖𝑥𝑗)

and

𝑇/𝔪2
𝑇 ≅ 𝐾[𝑋1, … , 𝑋𝑛]/(𝑋𝑖𝑋𝑗).

Let 𝐴/𝔪2 → 𝑇/𝑚2
𝑇 be the local 𝐾-algebra isomorphism given by mapping the class of 𝑥𝑖

to the class of 𝑋𝑖. Denote 𝑓1 ∶ 𝐴 → 𝑇/𝔪2
𝑇 the composition of this isomorphism with the

quotient map 𝐴 → 𝐴/𝔪2. The assumption that 𝑘 → 𝐴 is formally smooth in the 𝔪-adic
topology means we can lift 𝑓1 to a map 𝑓2 ∶ 𝐴 → 𝑇/𝔪3

𝑇, then to a map 𝑓3 ∶ 𝐴 → 𝑇/𝔪4
𝑇,

and so on, for all 𝑛 ≥ 1. Warning: the maps 𝑓𝑛 are continuous 𝑘-algebra maps and may not
be 𝐾-algebra maps. We get an induced map 𝑓 ∶ 𝐴 → 𝑇 = 𝑙𝑖𝑚 𝑇/𝔪𝑛

𝑇 of local 𝑘-algebras.
By our choice of 𝑓1, the map 𝑓 induces an isomorphism 𝔪/𝔪2 → 𝔪𝑇/𝔪2

𝑇 hence each
𝑓𝑛 is surjective and we conclude 𝑓 is surjective as 𝐴 is complete. This implies dim(𝐴) ≥
dim(𝑇) = 𝑛. Hence𝐴 is regular by definition. (It also follows that 𝑓 is an isomorphism.) �

The following result will be improved on in Section 12.30

Lemma 12.28.11. Let 𝑘 be a field. Let (𝐴, 𝔪, 𝐾) be a regular local 𝑘-algebra such that
𝐾/𝑘 is separable. Then 𝑘 → 𝐴 is formally smooth in the 𝔪-adic topology.

Proof. It suffices to prove that the completion of 𝐴 is formally smooth over 𝑘, see Lemma
12.28.4. Hence we may assume that 𝐴 is a complete local regular 𝑘-algebra with residue
field 𝐾 separable over 𝑘. Since 𝐾 is formally smooth over 𝑘 byAlgebra, Proposition 7.141.8
we can successively find maps

𝐾

ss uu zz ��
… // 𝐴/𝔪4 // 𝐴/𝔪3 // 𝐴/𝔪2 // 𝐾

of 𝑘-algebras. Since 𝐴 is complete this defines a 𝑘-algebra map 𝐾 → 𝐴. Pick 𝑎1, … , 𝑎𝑛 ∈
𝔪 which map to a 𝐾-basis of 𝔪/𝔪2. Consider the 𝐾-algebra map

𝑐 ∶ 𝐾[[𝑥1, … , 𝑥𝑛]] ⟶ 𝐴

which maps 𝑥𝑖 to 𝑎𝑖 (existence of 𝑐 follows from the universal property of the powerseries
ring). By construction the maps 𝐾[[𝑥1, … , 𝑥𝑛]] → 𝐴/𝔪𝑒 are surjective for all 𝑒 ≥ 1. Since
𝐾[[𝑥1, … , 𝑥𝑛]] is complete we see that 𝑐 is surjective. Since dim(𝐴) = 𝑛 as 𝐴 is regular
and since 𝐾[[𝑥1, … , 𝑥𝑛]] is a domain of dimension 𝑛 we see that the kernel of 𝑐 is zero.
Hence 𝑐 is an isomorphism.

We win because the power series ring 𝐾[[𝑥1, … , 𝑥𝑛]] is formally smooth over 𝑘. Namely,
𝐾 is formally smooth over 𝑘 and 𝐾[𝑥1, … , 𝑥𝑛] is formally smooth over 𝐾 as a polynomial
algebra. Hence 𝐾[𝑥1, … , 𝑥𝑛] is formally smooth over 𝑘 by Algebra, Lemma 7.127.3. It
follows that 𝑘 → 𝐾[𝑥1, … , 𝑥𝑛] is formally smooth for the (𝑥1, … , 𝑥𝑛)-adic topology by
Lemma 12.28.2. Finally, it follows that 𝑘 → 𝐾[[𝑥1, … , 𝑥𝑛]] is formally smooth for the
(𝑥1, … , 𝑥𝑛)-adic topology by Lemma 12.28.4. �
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12.29. Some results on power series rings

Questions on formally smooth maps between Noetherian local rings can often be reduced
to questions on maps between power series rings. In this section we prove some helper
lemmas to facilitate this kind of argument.

Lemma 12.29.1. Let 𝐾 be a field of characteristic 0 and 𝐴 = 𝐾[[𝑥1, … , 𝑥𝑛]]. Let 𝐿 be
a field of characteristic 𝑝 > 0 and 𝐵 = 𝐿[[𝑥1, … , 𝑥𝑛]]. Let Λ be a Cohen ring. Let
𝐶 = Λ[[𝑥1, … , 𝑥𝑛]].

(1) 𝐐 → 𝐴 is formally smooth in the 𝔪-adic topology.
(2) 𝐅𝑝 → 𝐵 is formally smooth in the 𝔪-adic topology.
(3) 𝐙 → 𝐶 is formally smooth in the 𝔪-adic topology.

Proof. By the universal property of power series rings it suffices to prove:
(1) 𝐐 → 𝐾 is formally smooth.
(2) 𝐅𝑝 → 𝐿 is formally smooth.
(3) 𝐙 → Λ is formally smooth in the 𝔪-adic topology.

The first two are Algebra, Proposition 7.141.8. The third follows from Algebra, Lemma
7.143.7 since for any test diagram as in Definition 12.28.1 some power of 𝑝 will be zero in
𝐴/𝐽 and hence some power of 𝑝 will be zero in 𝐴. �

Lemma 12.29.2. Let 𝐾 be a field and 𝐴 = 𝐾[[𝑥1, … , 𝑥𝑛]]. Let Λ be a Cohen ring and let
𝐵 = Λ[[𝑥1, … , 𝑥𝑛]].

(1) If 𝑦1, … , 𝑦𝑛 ∈ 𝐴 is a regular system of parameters then 𝐾[[𝑦1, … , 𝑦𝑛]] → 𝐴 is
an isomorphism.

(2) If 𝑧1, … , 𝑧𝑟 ∈ 𝐴 form part of a regular system of parameters for 𝐴, then 𝑟 ≤ 𝑛
and 𝐴/(𝑧1, … , 𝑧𝑟) ≅ 𝐾[[𝑦1, … , 𝑦𝑛−𝑟]].

(3) If 𝑝, 𝑦1, … , 𝑦𝑛 ∈ 𝐵 is a regular system of parameters then Λ[[𝑦1, … , 𝑦𝑛]] → 𝐵 is
an isomorphism.

(4) If 𝑝, 𝑧1, … , 𝑧𝑟 ∈ 𝐵 form part of a regular system of parameters for 𝐵, then 𝑟 ≤ 𝑛
and 𝐵/(𝑧1, … , 𝑧𝑟) ≅ Λ[[𝑦1, … , 𝑦𝑛−𝑟]].

Proof. Proof of (1). Set 𝐴′ = 𝐾[[𝑦1, … , 𝑦𝑛]]. It is clear that the map 𝐴′ → 𝐴 induces an
isomorphism 𝐴′/𝔪𝑛

𝐴′ → 𝐴/𝔪𝑛
𝐴 for all 𝑛 ≥ 1. Since 𝐴 and 𝐴′ are both complete we deduce

that 𝐴′ → 𝐴 is an isomorphism. Proof of (2). Extend 𝑧1, … , 𝑧𝑟 to a regular system of pa-
rameters 𝑧1, … , 𝑧𝑟, 𝑦1, … , 𝑦𝑛−𝑟 of𝐴. Consider themap𝐴′ = 𝐾[[𝑧1, … , 𝑧𝑟, 𝑦1, … , 𝑦𝑛−𝑟]] →
𝐴. This is an isomorphism by (1). Hence (2) follows as it is clear that 𝐴′/(𝑧1, … , 𝑧𝑟) ≅
𝐾[[𝑦1, … , 𝑦𝑛−𝑟]]. The proofs of (3) and (4) are exactly the same as the proofs of (1) and
(2). �

Lemma 12.29.3. Let𝐴 → 𝐵 be a local homomorphism of Noetherian complete local rings.
Then there exists a commutative diagram

𝑆 // 𝐵

𝑅

OO

// 𝐴

OO

with the following properties:
(1) the horizontal arrows are surjective,
(2) if the characteristic of 𝐴/𝔪𝐴 is zero, then 𝑆 and 𝑅 are power series rings over

fields,
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(3) if the characteristic of 𝐴/𝔪𝐴 is 𝑝 > 0, then 𝑆 and 𝑅 are power series rings over
Cohen rings, and

(4) 𝑅 → 𝑆 maps a regular system of parameters of 𝑅 to part of a regular system of
parameters of 𝑆.

In particular 𝑅 → 𝑆 is flat (see Algebra, Lemma 7.119.2) with regular fibre 𝑆/𝔪𝑅𝑆 (see
Algebra, Lemma 7.98.3).

Proof. Use the Cohen structure theorem (Algebra, Theorem 7.143.8) to choose a surjection
𝑆 → 𝐵 as in the statement of the lemma where we choose 𝑆 to be a power series over a
Cohen ring if the residue characteristic is 𝑝 > 0 and a power series over a field else. Let
𝐽 ⊂ 𝑆 be the kernel of 𝑆 → 𝐵. Next, choose a surjection 𝑅 = Λ[[𝑥1, … , 𝑥𝑛]] → 𝐴 where
we choose Λ to be a Cohen ring if the residue characteristic of 𝐴 is 𝑝 > 0 and Λ equal to
the residue field of 𝐴 otherwise. We lift the composition Λ[[𝑥1, … , 𝑥𝑛]] → 𝐴 → 𝐵 to a
map 𝜑 ∶ 𝑅 → 𝑆. This is possible because Λ[[𝑥1, … , 𝑥𝑛]] is formally smooth over 𝐙 in the
𝔪-adic topology (see Lemma 12.29.1) by an application of Lemma 12.28.5. Finally, we
replace 𝜑 by the map 𝜑′ ∶ 𝑅 = Λ[[𝑥1, … , 𝑥𝑛]] → 𝑆′ = 𝑆[[𝑦1, … , 𝑦𝑛]] with 𝜑′|Λ = 𝜑|Λ
and 𝜑′(𝑥𝑖) = 𝜑(𝑥𝑖) + 𝑦𝑖. We also replace 𝑆 → 𝐵 by the map 𝑆′ → 𝐵 which maps 𝑦𝑖 to
zero. After this replacement it is clear that a regular system of parameters of 𝑅 maps to
part of a regular sequence in 𝑆′ and we win. �

12.30. Geometric regularity and formal smoothness

In this section we combine the results of the previous sections to prove the following char-
acterization of geometrically regular local rings over fields. We then recycle some of our
arguments to prove a characterization of formally smooth maps in the 𝔪-adic topology
between Noetherian local rings.

Theorem 12.30.1. Let 𝑘 be a field. Let (𝐴, 𝔪, 𝐾) be a Noetherian local 𝑘-algebra. If the
characteristic of 𝑘 is zero then the following are equivalent

(1) 𝐴 is a regular local ring, and
(2) 𝑘 → 𝐴 is formally smooth in the 𝔪-adic topology.

If the characteristic of 𝑘 is 𝑝 > 0 then the following are equivalent

(1) 𝐴 is geometrically regular over 𝑘,
(2) 𝑘 → 𝐴 is formally smooth in the 𝔪-adic topology.
(3) for all 𝑘 ⊂ 𝑘′ ⊂ 𝑘1/𝑝 finite over 𝑘 the ring 𝐴 ⊗𝑘 𝑘′ is regular,
(4) 𝐴 is regular and the canonical map 𝐻1(𝐿𝐾/𝑘) → 𝔪/𝔪2 is injective, and
(5) 𝐴 is regular and the map Ω𝑘/𝐅𝑝

⊗𝑘 𝐾 → Ω𝐴/𝐅𝑝
⊗𝐴 𝐾 is injective.

Proof. If the characteristic of 𝑘 is zero, then the equivalence of (1) and (2) follows from
Lemmas 12.28.10 and 12.28.11.

If the characteristic of 𝑘 is 𝑝 > 0, then it follows from Proposition 12.26.1 that (1), (3),
(4), and (5) are equivalent. Assume (2) holds. By Lemma 12.28.8 we see that 𝑘′ → 𝐴′ =
𝐴 ⊗𝑘 𝑘′ is formally smooth for the 𝔪′ = 𝔪𝐴-adic topology. Hence if 𝑘 ⊂ 𝑘′ is finite
purely inseparable, then 𝐴′ is a regular local ring by Lemma 12.28.10. Thus we see that
(1) holds.
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Finally, we will prove that (5) implies (2). Choose a solid diagram

𝐴
�̄�
//

!!

𝐵/𝐽

𝑘

𝑖

OO

𝜑 // 𝐵

𝜋

OO

as in Definition 12.28.1. As 𝐽2 = 0 we see that 𝐽 has a canonical 𝐵/𝐽 module structure
and via �̄� an 𝐴-module structure. As �̄� is continuous for the 𝔪-adic topology we see that
𝔪𝑛𝐽 = 0 for some 𝑛. Hence we can filter 𝐽 by 𝐵/𝐽-submodules 0 ⊂ 𝐽1 ⊂ 𝐽2 ⊂ … ⊂ 𝐽𝑛 = 𝐽
such that each quotient 𝐽𝑡+1/𝐽𝑡 is annihilated by 𝔪. Considering the sequence of ring maps
𝐵 → 𝐵/𝐽1 → 𝐵/𝐽2 → … → 𝐵/𝐽 we see that it suffices to prove the existence of the dotted
arrow when 𝐽 is annihilated by 𝔪, i.e., when 𝐽 is a 𝐾-vector space.

Assume given a diagram as above such that 𝐽 is annihilated by 𝔪. By Lemma 12.28.11 we
see that 𝐅𝑝 → 𝐴 is formally smooth in the 𝔪-adic topology. Hence we can find a ring map
𝜓 ∶ 𝐴 → 𝐵 such that 𝜋 ∘ 𝜓 = �̄�. Then 𝜓 ∘ 𝑖, 𝜑 ∶ 𝑘 → 𝐵 are two maps whose compositions
with 𝜋 are equal. Hence 𝐷 = 𝜓 ∘ 𝑖 − 𝜑 ∶ 𝑘 → 𝐽 is a derivation. By Algebra, Lemma
7.122.3 we can write 𝐷 = 𝜉 ∘ d for some 𝑘-linear map 𝜉 ∶ Ω𝑘/𝐅𝑝

→ 𝐽. Using the 𝐾-vector
space structure on 𝐽 we extend 𝜉 to a 𝐾-linear map 𝜉′ ∶ Ω𝑘/𝐅𝑝

⊗𝑘 𝐾 → 𝐽. Using (5) we can
find a 𝐾-linear map 𝜉″ ∶ Ω𝐴/𝐅𝑝

⊗𝐴 𝐾 whose restriction to Ω𝑘/𝐅𝑝
⊗𝑘 𝐾 is 𝜉′. Write

𝐷′ ∶ 𝐴
d

−→ Ω𝐴/𝐅𝑝
→ Ω𝐴/𝐅𝑝

⊗𝐴 𝐾
𝜉″

−−→ 𝐽.

Finally, set 𝜓′ = 𝜓 − 𝐷′ ∶ 𝐴 → 𝐵. The reader verifies that 𝜓′ is a ring map such that
𝜋 ∘ 𝜓′ = �̄� and such that 𝜓′ ∘ 𝑖 = 𝜑 as desired. �

Example 12.30.2. Let 𝑘 be a field of characteristic 𝑝 > 0. Suppose that 𝑎 ∈ 𝑘 is an element
which is not a 𝑝th power. A standard example of a geometrically regular local 𝑘-algebra
whose residue field is purely inseparable over 𝑘 is the ring

𝐴 = 𝑘[𝑥, 𝑦](𝑥,𝑦𝑝−𝑎)/(𝑦𝑝 − 𝑎 − 𝑥)

Namely, 𝐴 is a localization of a smooth algebra over 𝑘 hence 𝑘 → 𝐴 is formally smooth,
hence 𝑘 → 𝐴 is formally smooth for the 𝔪-adic topology. A closely related example is the
following. Let 𝑘 = 𝐅𝑝(𝑠) and 𝐾 = 𝐅𝑝(𝑡)𝑝𝑒𝑟𝑓. We claim the ring map

𝑘 ⟶ 𝐴 = 𝐾[[𝑥]], 𝑠 ⟼ 𝑡 + 𝑥

is formally smooth for the (𝑥)-adic topology on 𝐴. Namely, Ω𝑘/𝐅𝑝
is 1-dimensional with

basis d𝑠. It maps to the element d𝑥+d𝑡 = d𝑥 in Ω𝐴/𝐅𝑝
. We leave it to the reader to show that

Ω𝐴/𝐅𝑝
is free on d𝑥 as an 𝐴-module. Hence we see that condition (5) of Theorem 12.30.1

holds and we conclude that 𝑘 → 𝐴 is formally smooth in the (𝑥)-adic topology.

Lemma 12.30.3. Let 𝐴 → 𝐵 be a local homomorphism of Noetherian local rings. Assume
𝐴 → 𝐵 is formally smooth in the 𝔪𝐵-adic topology. Then 𝐴 → 𝐵 is flat.

Proof. Wemay assume that 𝐴 and 𝐵 a Noetherian complete local rings by Lemma 12.28.4
and Algebra, Lemma 7.90.10 (this also uses Algebra, Lemma 7.35.8 and 7.90.4 to see that
flatness of the map on completions implies flatness of 𝐴 → 𝐵). Choose a commutative
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diagram
𝑆 // 𝐵

𝑅

OO

// 𝐴

OO

as in Lemma 12.29.3 with 𝑅 → 𝑆 flat. Let 𝐼 ⊂ 𝑅 be the kernel of 𝑅 → 𝐴. Because 𝐵 is
formally smooth over 𝐴 we see that the 𝐴-algebra map

𝑆/𝐼𝑆 ⟶ 𝐵

has a section, see Lemma 12.28.5. Hence 𝐵 is a direct summand of the flat 𝐴-module 𝑆/𝐼𝑆
(by base change of flatness, see Algebra, Lemma 7.35.6), whence flat. �

Proposition 12.30.4. Let 𝐴 → 𝐵 be a local homomorphism of Noetherian local rings. Let
𝑘 be the residue field of 𝐴 and 𝐵 = 𝐵 ⊗𝐴 𝑘 the special fibre. The following are equivalent

(1) 𝐴 → 𝐵 is flat and 𝐵 is geometrically regular over 𝑘,
(2) 𝐴 → 𝐵 is flat and 𝑘 → 𝐵 is formally smooth in the 𝔪𝐵-adic topology, and
(3) 𝐴 → 𝐵 is formally smooth in the 𝔪𝐵-adic topology.

Proof. The equivalence of (1) and (2) follows from Theorem 12.30.1.

Assume (3). By Lemma 12.30.3 we see that 𝐴 → 𝐵 is flat. By Lemma 12.28.8 we see that
𝑘 → 𝐵 is formally smooth in the 𝔪𝐵-adic topology. Thus (2) holds.

Assume (2). Lemma 12.28.4 tells us formal smoothness is preserved under completion.
The same is true for flatness by Algebra, Lemma 7.90.4. Hence we may replace 𝐴 and 𝐵
by their respective completions and assume that 𝐴 and 𝐵 are Noetherian complete local
rings. In this case choose a diagram

𝑆 // 𝐵

𝑅

OO

// 𝐴

OO

as in Lemma 12.29.3. We will use all of the properties of this diagram without further men-
tion. Fix a regular system of parameters 𝑡1, … , 𝑡𝑑 of 𝑅 with 𝑡1 = 𝑝 in case the characteristic
of 𝑘 is 𝑝 > 0. Set 𝑆 = 𝑆 ⊗𝑅 𝑘. Consider the short exact sequence

0 → 𝐽 → 𝑆 → 𝐵 → 0

Since 𝐵 is flat over 𝐴 we see that 𝐽⊗𝑅 𝑘 is the kernel of 𝑆 → 𝐵. As 𝐵 and 𝑆 are regular we
see that 𝐽 ⊗𝑅 𝑘 is generated by elements 𝑥1, … , 𝑥𝑟 which form part of a regular system of
parameters of 𝑆, see Algebra, Lemma 7.98.4. Lift these elements to 𝑥1, … , 𝑥𝑟 ∈ 𝐽. Then
𝑡1, … , 𝑡𝑑, 𝑥1, … , 𝑥𝑟 is part of a regular system of parameters for 𝑆. Hence 𝑆/(𝑥1, … , 𝑥𝑟) is
a power series ring over a field (if the characteristic of 𝑘 is zero) or a power series ring over
a Cohen ring (if the characteristic of 𝑘 is 𝑝 > 0), see Lemma 12.29.2. Moreover, it is still
the case that 𝑅 → 𝑆/(𝑥1, … , 𝑥𝑟) maps 𝑡1, … , 𝑡𝑑 to a part of a regular system of parameters
of 𝑆/(𝑥1, … , 𝑥𝑟). In other words, we may replace 𝑆 by 𝑆/(𝑥1, … , 𝑥𝑟) and assume we have
a diagram

𝑆 // 𝐵

𝑅

OO

// 𝐴

OO
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as in Lemma 12.29.3 with moreover 𝑆 = 𝐵. In this case the map

𝑆 ⊗𝑅 𝐴 ⟶ 𝐵

is an isomorphism as it is surjective and an isomorphism on special fibres, see Algebra,
Lemma 7.91.1. Thus by Lemma 12.28.8 it suffices to show that 𝑅 → 𝑆 is formally smooth
in the 𝔪𝑆-adic topology. Of course, since 𝑆 = 𝐵, we have that 𝑆 is formally smooth over
𝑘 = 𝑅/𝔪𝑅.

Choose elements 𝑦1, … , 𝑦𝑚 ∈ 𝑆 such that 𝑡1, … , 𝑡𝑑, 𝑦1, … , 𝑦𝑚 is a regular system of param-
eters for 𝑆. If the characteristic of 𝑘 is zero, choose a coefficient field 𝐾 ⊂ 𝑆 and if the char-
acteristic of 𝑘 is 𝑝 > 0 choose a Cohen ringΛ ⊂ 𝑆with residue field𝐾. At this point themap
𝐾[[𝑡1, … , 𝑡𝑑, 𝑦1, … , 𝑦𝑚]] → 𝑆 (characteristic zero case) or Λ[[𝑡2, … , 𝑡𝑑, 𝑦1, … , 𝑦𝑚]] → 𝑆
(characteristic 𝑝 > 0 case) is an isomorphism, see Lemma 12.29.2. From now on we think
of 𝑆 as the above power series ring.

The rest of the proof is analogous to the argument in the proof of Theorem 12.30.1. Choose
a solid diagram

𝑆
�̄�
//

!!

𝑁/𝐽

𝑅

𝑖

OO

𝜑 // 𝑁

𝜋

OO

as in Definition 12.28.1. As 𝐽2 = 0 we see that 𝐽 has a canonical 𝑁/𝐽 module structure
and via �̄� a 𝑆-module structure. As �̄� is continuous for the 𝔪𝑆-adic topology we see that
𝔪𝑛

𝑆𝐽 = 0 for some 𝑛. Hence we can filter 𝐽 by 𝑁/𝐽-submodules 0 ⊂ 𝐽1 ⊂ 𝐽2 ⊂ … ⊂ 𝐽𝑛 =
𝐽 such that each quotient 𝐽𝑡+1/𝐽𝑡 is annihilated by 𝔪𝑆. Considering the sequence of ring
maps 𝑁 → 𝑁/𝐽1 → 𝑁/𝐽2 → … → 𝑁/𝐽 we see that it suffices to prove the existence of the
dotted arrow when 𝐽 is annihilated by 𝔪𝑆, i.e., when 𝐽 is a 𝐾-vector space.

Assume given a diagram as above such that 𝐽 is annihilated by 𝔪𝑆. As 𝐐 → 𝑆 (charac-
teristic zero case) or 𝐙 → 𝑆 (characteristic 𝑝 > 0 case) is formally smooth in the 𝔪𝑆-adic
topology (see Lemma 12.29.1), we can find a ring map 𝜓 ∶ 𝑆 → 𝑁 such that 𝜋 ∘ 𝜓 = �̄�.
Since 𝑆 is a power series ring in 𝑡1, … , 𝑡𝑑 (characteristic zero) or 𝑡2, … , 𝑡𝑑 (characteristic
𝑝 > 0) over a subring, it follows from the universal property of power series rings that we
can change our choice of 𝜓 so that 𝜓(𝑡𝑖) equals 𝜑(𝑡𝑖) (automatic for 𝑡1 = 𝑝 in the charac-
teristic 𝑝 case). Then 𝜓 ∘ 𝑖 and 𝜑 ∶ 𝑅 → 𝑁 are two maps whose compositions with 𝜋 are
equal and which agree on 𝑡1, … , 𝑡𝑑. Hence 𝐷 = 𝜓 ∘ 𝑖 − 𝜑 ∶ 𝑅 → 𝐽 is a derivation which
annihilates 𝑡1, … , 𝑡𝑑. By Algebra, Lemma 7.122.3 we can write 𝐷 = 𝜉∘d for some 𝑅-linear
map 𝜉 ∶ Ω𝑅/𝐙 → 𝐽 which annihilates d𝑡1, … , d𝑡𝑑 (by construction) and 𝔪𝑅Ω𝑅/𝐙 (as 𝐽 is
annihilated by 𝔪𝑅). Hence 𝜉 factors as a composition

Ω𝑅/𝐙 → Ω𝑘/𝐙
𝜉′

−−→ 𝐽

where 𝜉′ is 𝑘-linear. Using the 𝐾-vector space structure on 𝐽 we extend 𝜉′ to a 𝐾-linear
map

𝜉″ ∶ Ω𝑘/𝐙 ⊗𝑘 𝐾 ⟶ 𝐽.

Using that 𝑆/𝑘 is formally smooth we see that

Ω𝑘/𝐙 ⊗𝑘 𝐾 → Ω𝑆/𝐙 ⊗𝑆 𝐾

is injective by Theorem 12.30.1 (this is true also in the characteristic zero case as it is even
true that Ω𝑘/𝐙 → Ω𝐾/𝐙 is injective in characteristic zero, see Algebra, Proposition 7.141.8).
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Hence we can find a 𝐾-linear map 𝜉‴ ∶ Ω𝑆/𝐙 ⊗𝑆 𝐾 → 𝐽 whose restriction to Ω𝑘/𝐙 ⊗𝑘 𝐾
is 𝜉″. Write

𝐷′ ∶ 𝑆
d

−→ Ω𝑆/𝐙 → Ω𝑆/𝐙 → Ω𝑆/𝐙 ⊗𝑆 𝐾
𝜉‴

−−→ 𝐽.

Finally, set 𝜓′ = 𝜓 − 𝐷′ ∶ 𝑆 → 𝑁. The reader verifies that 𝜓′ is a ring map such that
𝜋 ∘ 𝜓′ = �̄� and such that 𝜓′ ∘ 𝑖 = 𝜑 as desired. �

As an application of the result above we prove that deformations of formally smooth alge-
bras are unobstructed.

Lemma 12.30.5. Let 𝐴 be a Noetherian complete local ring with residue field 𝑘. Let 𝐵 be
a Noetherian complete local 𝑘-algebra. Assume 𝑘 → 𝐵 is formally smooth in the 𝔪𝐵-adic
topology. Then there exists a Noetherian complete local ring 𝐶 and a local homomorphism
𝐴 → 𝐶 which is formally smooth in the 𝔪𝐶-adic topology such that 𝐶 ⊗𝐴 𝑘 ≅ 𝐵.

Proof. Choose a diagram

𝑆 // 𝐵

𝑅

OO

// 𝐴

OO

as in Lemma 12.29.3. Let 𝑡1, … , 𝑡𝑑 be a regular system of parameters for 𝑅 with 𝑡1 = 𝑝
in case the characteristic of 𝑘 is 𝑝 > 0. As 𝐵 and 𝑆 = 𝑆 ⊗𝐴 𝑘 are regular we see that
Ker(𝑆 → 𝐵) is generated by elements 𝑥1, … , 𝑥𝑟 which form part of a regular system of
parameters of 𝑆, see Algebra, Lemma 7.98.4. Lift these elements to 𝑥1, … , 𝑥𝑟 ∈ 𝑆. Then
𝑡1, … , 𝑡𝑑, 𝑥1, … , 𝑥𝑟 is part of a regular system of parameters for 𝑆. Hence 𝑆/(𝑥1, … , 𝑥𝑟) is
a power series ring over a field (if the characteristic of 𝑘 is zero) or a power series ring over
a Cohen ring (if the characteristic of 𝑘 is 𝑝 > 0), see Lemma 12.29.2. Moreover, it is still
the case that 𝑅 → 𝑆/(𝑥1, … , 𝑥𝑟) maps 𝑡1, … , 𝑡𝑑 to a part of a regular system of parameters
of 𝑆/(𝑥1, … , 𝑥𝑟). In other words, we may replace 𝑆 by 𝑆/(𝑥1, … , 𝑥𝑟) and assume we have
a diagram

𝑆 // 𝐵

𝑅

OO

// 𝐴

OO

as in Lemma 12.29.3 with moreover 𝑆 = 𝐵. In this case 𝑅 → 𝑆 is formally smooth in the
𝔪𝑆-adic topology by Proposition 12.30.4. Hence the base change 𝐶 = 𝑆 ⊗𝑅 𝐴 is formally
smooth over 𝐴 in the 𝔪𝐶-adic topology by Lemma 12.28.8. �

Remark 12.30.6. The assertion of Lemma 12.30.5 is quite strong. Namely, suppose that
we have a diagram

𝐵

𝐴 // 𝐴′

OO

of local homomorphisms of Noetherian complete local rings where 𝐴 → 𝐴′ induces an
isomorphism of residue fields 𝑘 = 𝐴/𝔪𝐴 = 𝐴′/𝔪𝐴′ and with 𝐵 ⊗𝐴′ 𝑘 formally smooth
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over 𝑘. Then we can extend this to a commutative diagram

𝐶 // 𝐵

𝐴 //

OO

𝐴′

OO

of local homomorphisms of Noetherian complete local rings where 𝐴 → 𝐶 is formally
smooth in the 𝔪𝐶-adic topology and where 𝐶 ⊗𝐴 𝑘 ≅ 𝐵 ⊗𝐴′ 𝑘. Namely, pick 𝐴 → 𝐶 as
in Lemma 12.30.5 lifting 𝐵 ⊗𝐴′ 𝑘 over 𝑘. By formal smoothness we can find the arrow
𝐶 → 𝐵, see Lemma 12.28.5. Denote 𝐶 ⊗∧

𝐴 𝐴′ the completion of 𝐶 ⊗𝐴 𝐴′ with respect to
the ideal 𝐶 ⊗𝐴 𝔪𝐴′. Note that 𝐶 ⊗∧

𝐴 𝐴′ is a Noetherian complete local ring (see Algebra,
Lemma 7.90.9) which is flat over 𝐴′ (see Algebra, Lemma 7.91.10). We have moreover

(1) 𝐶 ⊗∧
𝐴 𝐴′ → 𝐵 is surjective,

(2) if 𝐴 → 𝐴′ is surjective, then 𝐶 → 𝐵 is surjective,
(3) if 𝐴 → 𝐴′ is finite, then 𝐶 → 𝐵 is finite, and
(4) if 𝐴′ → 𝐵 is flat, then 𝐶 ⊗∧

𝐴 𝐴′ ≅ 𝐵.
Namely, by Nakayama's lemma for nilpotent ideals (see Algebra, Lemma 7.14.5) we see
that 𝐶 ⊗𝐴 𝑘 ≅ 𝐵 ⊗𝐴′ 𝑘 implies that 𝐶 ⊗𝐴 𝐴′/𝔪𝑛

𝐴′ → 𝐵/𝔪𝑛
𝐴′𝐵 is surjective for all 𝑛. This

proves (1). Parts (2) and (3) follow from part (1). Part (4) follows from Algebra, Lemma
7.91.1.

12.31. Regular ring maps

Let 𝑘 be a field. Recall that a Noetherian 𝑘-algebra 𝐴 is said to be geometrically regular
over 𝑘 if and only if 𝐴 ⊗𝑘 𝑘′ is regular for all finite purely inseparable extensions 𝑘′ of 𝑘,
see Algebra, Definition 7.148.2. Moreover, if this is the case then 𝐴 ⊗𝑘 𝑘′ is regular for
every finitely generated field extension 𝑘 ⊂ 𝑘′, see Algebra, Lemma 7.148.1. We use this
notion in the following definition.

Definition 12.31.1. A ring map 𝑅 → Λ is regular if it is flat and for every prime 𝔭 ⊂ 𝑅
the fibre ring

Λ ⊗𝑅 𝜅(𝔭) = Λ𝔭/𝔭Λ𝔭
is Noetherian and geometrically regular over 𝜅(𝔭).

If 𝑅 → Λ is a ring map with Λ Noetherian, then the fibre rings are always Noetherian.

Lemma 12.31.2 (Regular is a local property). Let𝑅 → Λ be a ring map withΛNoetherian.
Then 𝑅 → Λ is regular if and only if the local ring maps 𝑅𝔭 → Λ𝔮 are regular for all 𝔮 ⊂ Λ
lying over 𝔭 ⊂ 𝑅.

Proof. This is true because a Noetherian ring is regular if and only if all the local rings are
regular local rings, see Algebra, Definition 12.31.1 and a ring map is flat if and only if all
the induced maps of local rings are flat, see Algebra, Lemma 7.35.19. �

Lemma 12.31.3 (Regular maps and base change). Let 𝑅 → Λ be a regular ring map. For
any finite type ring map 𝑅 → 𝑅′ the base change 𝑅′ → Λ ⊗𝑅 𝑅′ is regular too.

Proof. Flatness is preserved under any base change, see Algebra, Lemma 7.35.6. Consider
a prime 𝔭′ ⊂ 𝑅′ lying over 𝔭 ⊂ 𝑅. The residue field extension 𝜅(𝔭) ⊂ 𝜅(𝔭′) is finitely
generated as 𝑅′ is of finite type over 𝑅. Hence the fibre ring

(Λ ⊗𝑅 𝑅′) ⊗𝑅′ 𝜅(𝔭′) = Λ ⊗𝑅 𝜅(𝔭) ⊗𝜅(𝔭) 𝜅(𝔭′)
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is Noetherian by Algebra, Lemma 7.28.7 and the assumption on the fibre rings of 𝑅 → Λ.
Geometric regularity of the fibres is preserved by Algebra, Lemma 7.148.1. �

Lemma 12.31.4. Let 𝑅 be a ring. Let (𝐴𝑖, 𝜑𝑖𝑖′) be a directed system of smooth 𝑅-algebras.
Set Λ = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖. If the fibre rings Λ ⊗𝑅 𝜅(𝔭) are Noetherian for all 𝔭 ⊂ 𝑅, then 𝑅 → Λ
is regular.

Proof. Note that Λ is flat over 𝑅 by Algebra, Lemmas 7.35.2 and 7.126.10. Let 𝜅(𝔭) ⊂ 𝑘
be a finite purely inseparable extension. Note that

Λ ⊗𝑅 𝜅(𝔭) ⊗𝜅(𝔭) 𝑘 = Λ ⊗𝑅 𝑘 = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 ⊗𝑅 𝑘
is a colimit of smooth 𝑘-algebras, see Algebra, Lemma 7.126.4. Since each local ring of a
smooth 𝑘-algebra is regular by Algebra, Lemma 7.129.3 we conclude that all local rings of
Λ ⊗𝑅 𝑘 are regular by Algebra, Lemma 7.98.8. This proves the lemma. �

Let's see when a field extension defines a regular ring map.

Lemma 12.31.5. Let 𝑘 ⊂ 𝐾 be a field extension. Then 𝑘 → 𝐾 is a regular ring map if and
only if 𝐾 is a separable field extension of 𝑘.

Proof. If 𝑘 → 𝐾 is regular, then 𝐾 is geometrically reduced over 𝑘, hence 𝐾 is separable
over 𝑘 by Algebra, Proposition 7.141.8. Conversely, if 𝐾/𝑘 is separable, then 𝐾 is a colimit
of smooth 𝑘-algebras, see Algebra, Lemma 7.141.10 hence is regular by Lemma 12.31.4.

�

Lemma 12.31.6. Let 𝐴 → 𝐵 → 𝐶 be ring maps. If 𝐴 → 𝐶 is regular and 𝐵 → 𝐶 is flat
and surjective on spectra, then 𝐴 → 𝐵 is regular.

Proof. By Algebra, Lemma 7.35.9 we see that 𝐴 → 𝐵 is flat. Let 𝔭 ⊂ 𝐴 be a prime. The
ring map 𝐵 ⊗𝐴 𝜅(𝔭) → 𝐶 ⊗𝐴 𝜅(𝔭) is flat and surjective on spectra. Hence 𝐵 ⊗𝐴 𝜅(𝔭) is
geometrically regular by Algebra, Lemma 7.148.3. �

12.32. Ascending properties along regular ring maps

This section is the analogue of Algebra, Section 7.145 but where the ring map 𝑅 → 𝑆 is
regular.

Lemma 12.32.1. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Assume
(1) 𝜑 is regular,
(2) 𝑆 is Noetherian, and
(3) 𝑅 is Noetherian and reduced.

Then 𝑆 is reduced.

Proof. For Noetherian rings being reduced is the same as having properties (𝑆1) and (𝑅0),
see Algebra, Lemma 7.140.3. Hence we may apply Algebra, Lemmas 7.145.4 and 7.145.5.

�

12.33. Permanence of properties under completion

Given a Noetherian local ring 𝐴 we denote 𝐴∧ the completion of 𝐴 with respect to its
maximal ideal. We will use without further mention that 𝐴∧ is a Noetherian complete local
ring (Algebra, Lemmas 7.90.10 and 7.90.7) and that 𝐴 → 𝐴∧ is flat (Algebra, Lemma
7.90.3).

Lemma 12.33.1. Let 𝐴 be a Noetherian local ring. Then dim(𝐴) = dim(𝐴∧).
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Proof. See for example Algebra, Lemma 7.103.7. �

Lemma 12.33.2. Let 𝐴 be a Noetherian local ring. Then depth(𝐴) = depth(𝐴∧).

Proof. See Algebra, Lemma 7.145.1. �

Lemma 12.33.3. Let 𝐴 be a Noetherian local ring. Then 𝐴 is Cohen-Macaulay if and only
if 𝐴∧ is so.

Proof. A local ring 𝐴 is Cohen-Macaulay if and only dim(𝐴) = depth(𝐴). As both of
these invariants are preserved under completion (Lemmas 12.33.1 and 12.33.2) the claim
follows. �

Lemma 12.33.4. Let 𝐴 be a Noetherian local ring. Then 𝐴 is regular if and only if 𝐴∧ is
so.

Proof. If 𝐴∧ is regular, then 𝐴 is regular by Algebra, Lemma 7.102.8. Assume 𝐴 is regular.
Let 𝔪 be the maximal ideal of 𝐴. Then dim𝜅(𝔪) 𝔪/𝔪2 = dim(𝐴) = dim(𝐴∧) (Lemma
12.33.1). On the other hand, 𝔪𝐴∧ is the maximal ideal of 𝐴∧ and hence 𝔪𝐴∧ is generated
by at most dim(𝐴∧) elements. Thus 𝐴∧ is regular. (You can also use Algebra, Lemma
7.103.8.) �

Lemma 12.33.5. Let 𝐴 be a Noetherian local ring.
(1) If 𝐴∧ is reduced, then so is 𝐴.
(2) In general 𝐴 reduced does not imply 𝐴∧ is reduced.
(3) If 𝐴 is Nagata, then 𝐴 is reduced if and only if 𝐴∧ is reduced.

Proof. As 𝐴 → 𝐴∧ is faithfully flat we have (1) by Algebra, Lemma 7.146.2. For (2)
see Algebra, Example 7.110.4 (there are also examples in characteristic zero, see Algebra,
Remark 7.110.5). For (3) see Algebra, Lemmas 7.144.27 and 7.144.24. �

12.34. Field extensions, revisited

In this section we study some peculiarities of field extensions in characteristic 𝑝 > 0.

Definition 12.34.1. Let 𝑝 be a prime number. Let 𝑘 → 𝐾 be an extension of fields of
characteristic 𝑝. Denote 𝑘𝐾𝑝 the compositum of 𝑘 and 𝐾𝑝 in 𝐾.

(1) A subset {𝑥𝑖} ⊂ 𝐾 is called p-independent over 𝑘 if the elements 𝑥𝐸 = ∏ 𝑥𝑒𝑖
𝑖

where 0 ≤ 𝑒𝑖 < 𝑝 are linearly independent over 𝑘𝐾𝑝.
(2) A subset {𝑥𝑖} of 𝐾 is called a p-basis of 𝐾 over 𝑘 if the elements 𝑥𝐸 form a basis

of 𝐾 over 𝑘𝐾𝑝.

This is related to the notion of a 𝑝-basis of a 𝐅𝑝-algebra which we will discuss later (insert
future reference here).

Lemma 12.34.2. Let 𝑘 ⊂ 𝐾 be a field extension. Assume 𝑘 has characteristic 𝑝 > 0. Let
{𝑥𝑖} be a subset of 𝐾. The following are equivalent

(1) the elements {𝑥𝑖} are 𝑝-independent over 𝑘, and
(2) the elements d𝑥𝑖 are 𝐾-linearly independent in Ω𝐾/𝑘.

Any 𝑝-independent collection can be extended to a 𝑝-basis of 𝐾 over 𝑘. In particular, the
field 𝐾 has a 𝑝-basis over 𝑘. Moreover, the following are equivalent:

(a) {𝑥𝑖} is a 𝑝-basis of 𝐾 over 𝑘, and
(b) d𝑥𝑖 is a basis of the 𝐾-vector space Ω𝐾/𝑘.
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Proof. Assume (2) and suppose that ∑ 𝑎𝐸𝑥𝐸 = 0 is a linear relation with 𝑎𝐸 ∈ 𝑘𝐾𝑝.
Let 𝜃𝑖 ∶ 𝐾 → 𝐾 be a 𝑘-derivation such that 𝜃𝑖(𝑥𝑗) = 𝛿𝑖𝑗 (Kronecker delta). Note that
any 𝑘-derivation of 𝐾 annihilates 𝑘𝐾𝑝. Applying 𝜃𝑖 to the given relation we obtain new
relations

∑𝐸,𝑒𝑖>0
𝑒𝑖𝑎𝐸𝑥𝑒1

1 … 𝑥𝑒𝑖−1
𝑖 … 𝑥𝑒𝑛

𝑛 = 0

Hence if we pick ∑ 𝑎𝐸𝑥𝐸 as the relation with minimal total degree |𝐸| = ∑ 𝑒𝑖 for some
𝑎𝐸≠0, then we get a contradiction. Hence (2) holds.

If {𝑥𝑖} is a 𝑝-basis for 𝐾 over 𝑘, then 𝐾 ≅ 𝑘𝐾𝑝[𝑋𝑖]/(𝑋
𝑝
𝑖 − 𝑥𝑝

𝑖 ). Hence we see that d𝑥𝑖 forms
a basis for Ω𝐾/𝑘 over 𝐾. Thus (a) implies (b).

Let {𝑥𝑖} be a 𝑝-independent subset of 𝐾 over 𝑘. An application of Zorn's lemma shows
that we can enlarge this to a maximal 𝑝-independent subset of 𝐾 over 𝑘. We claim that any
maximal 𝑝-independent subset {𝑥𝑖} of 𝐾 is a 𝑝-basis of 𝐾 over 𝑘. The claim will imply
that (1) implies (2) and establish the existence of 𝑝-bases. To prove the claim let 𝐿 be the
subfield of 𝐾 generated by 𝑘𝐾𝑝 and the 𝑥𝑖. We have to show that 𝐿 = 𝐾. If 𝑥 ∈ 𝐾 but
𝑥∉𝐿, then 𝑥𝑝 ∈ 𝐿 and 𝐿(𝑥) ≅ 𝐿[𝑧]/(𝑧𝑝 − 𝑥). Hence {𝑥𝑖} ∪ {𝑥} is 𝑝-independent over 𝑘, a
contradiction.

Finally, we have to show that (b) implies (a). By the equivalence of (1) and (2) we see
that {𝑥𝑖} is a maximal 𝑝-independent subset of 𝐾 over 𝑘. Hence by the claim above it is a
𝑝-basis. �

Lemma 12.34.3. Let 𝑘 ⊂ 𝐾 be a field extension. Let {𝐾𝛼}𝛼∈𝐴 be a collection of subfields
of 𝐾 with the following properties

(1) 𝑘 ⊂ 𝐾𝛼 for all 𝛼 ∈ 𝐴,
(2) 𝑘 = ⋂𝛼∈𝐴 𝐾𝛼,
(3) for 𝛼, 𝛼′ ∈ 𝐴 there exists an 𝛼″ ∈ 𝐴 such that 𝐾𝛼″ ⊂ 𝐾𝛼 ∩ 𝐾𝛼′.

Then for 𝑛 ≥ 1 and 𝑉 ⊂ 𝐾⊕𝑛 a 𝐾-vector space we have 𝑉∩𝑘⊕𝑛≠0 if and only if 𝑉∩𝐾⊕𝑛
𝛼 ≠0

for all 𝛼 ∈ 𝐴.

Proof. By induction on 𝑛. The case 𝑛 = 1 follows from the assumptions. Assume the
result proven for subspaces of 𝐾⊕𝑛−1. Assume that 𝑉 ⊂ 𝐾⊕𝑛 has nonzero intersection with
𝐾⊕𝑛

𝛼 for all 𝛼 ∈ 𝐴. If 𝑉 ∩ 0 ⊕ 𝑘⊕𝑛−1 is nonzero then we win. Hence we may assume this is
not the case. By induction hypothesis we can find an 𝛼 such that 𝑉 ∩ 0 ⊕ 𝐾⊕𝑛−1

𝛼 is zero. Let
𝑣 = (𝑥1, … , 𝑥𝑛) ∈ 𝑉 ∩ 𝐾𝛼 be a nonzero element. By our choice of 𝛼 we see that 𝑥1 is not
zero. Replace 𝑣 by 𝑥−1

1 𝑣 so that 𝑣 = (1, 𝑥2, … , 𝑥𝑛). Note that if 𝑣′ = (𝑥′
1, … , 𝑥′

𝑛) ∈ 𝑉 ∩ 𝐾𝛼,
then 𝑣′ −𝑥′

1𝑣 = 0 by our choice of 𝛼. Hence we see that 𝑉∩𝐾⊕𝑛
𝛼 = 𝐾𝛼𝑣. If we choose some

𝛼′ such that 𝐾𝛼′ ⊂ 𝐾𝛼, then we see that necessarily 𝑣 ∈ 𝑉 ∩ 𝐾⊕𝑛
𝛼′ (by the same arguments

applied to 𝛼′). Hence
𝑥2, … , 𝑥𝑛 ∈ ⋂𝛼′∈𝐴,𝐾𝛼′⊂𝐾𝛼

𝐾𝛼′

which equals 𝑘 by (2) and (3). �

Lemma 12.34.4. Let 𝐾 be a field of characteristic 𝑝. Let {𝐾𝛼}𝛼∈𝐴 be a collection of
subfields of 𝐾 with the following properties

(1) 𝐾𝑝 ⊂ 𝐾𝛼 for all 𝛼 ∈ 𝐴,
(2) 𝐾𝑝 = ⋂𝛼∈𝐴 𝐾𝛼,
(3) for 𝛼, 𝛼′ ∈ 𝐴 there exists an 𝛼″ ∈ 𝐴 such that 𝐾𝛼″ ⊂ 𝐾𝛼 ∩ 𝐾𝛼′.

Then
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(1) the intersection of the kernels of the maps Ω𝐾/𝐅𝑝
→ Ω𝐾/𝐾𝛼

is zero,
(2) for any finite extension 𝐾 ⊂ 𝐿 we have 𝐿𝑝 = ⋂𝛼∈𝐴 𝐿𝑝𝐾𝛼.

Proof. Proof of (1). Choose a 𝑝-basis {𝑥𝑖} for 𝐾 over 𝐅𝑝. Suppose that 𝜂 = ∑𝑖∈𝐼′ 𝑦𝑖d𝑥𝑖
maps to zero in Ω𝐾/𝐾𝛼

for every 𝛼 ∈ 𝐴. Here the index set 𝐼′ is finite. By Lemma 12.34.2
this means that for every 𝛼 there exists a relation

∑𝐸
𝑎𝐸,𝛼𝑥𝐸, 𝑎𝐸,𝛼 ∈ 𝐾𝛼

where 𝐸 runs over multi-indices 𝐸 = (𝑒𝑖)𝑖∈𝐼′ with 0 ≤ 𝑒𝑖 < 𝑝. On the other hand, Lemma
12.34.2 guarantees there is no such relation ∑ 𝑎𝐸𝑥𝐸 = 0 with 𝑎𝐸 ∈ 𝐾𝑝. This is a contra-
diction by Lemma 12.34.3.

Proof of (2). Suppose that we have a tower 𝐾 ⊂ 𝑀 ⊂ 𝐿 of finite extensions of fields. Set
𝑀𝛼 = 𝑀𝑝𝐾𝛼 and 𝐿𝛼 = 𝐿𝑝𝐾𝛼 = 𝐿𝑝𝑀𝛼. Then we can first prove that 𝑀𝑝 = ⋂𝛼∈𝐴 𝑀𝛼,
and after that prove that 𝐿𝑝 = ⋂𝛼∈𝐴 𝐿𝛼. Hence it suffices to prove (2) for primitive field
extensions having no nontrivial subfields. First, assume that 𝐿 = 𝐾(𝜃) is separable over 𝐾.
Then 𝐿 is generated by 𝜃𝑝 over 𝐾, hence we may assume that 𝜃 ∈ 𝐿𝑝. In this case we see
that

𝐿𝑝 = 𝐾𝑝 ⊕ 𝐾𝑝𝜃 ⊕ … 𝐾𝑝𝜃𝑑−1 and 𝐿𝑝𝐾𝛼 = 𝐾𝛼 ⊕ 𝐾𝛼𝜃 ⊕ … 𝐾𝛼𝜃𝑑−1

where 𝑑 = [𝐿 ∶ 𝐾]. Thus the conclusion is clear in this case. The other case is where
𝐿 = 𝐾(𝜃) with 𝜃𝑝 = 𝑡 ∈ 𝐾, 𝑡∉𝐾𝑝. In this case we have

𝐿𝑝 = 𝐾𝑝 ⊕ 𝐾𝑝𝑡 ⊕ … 𝐾𝑝𝑡𝑝−1 and 𝐿𝑝𝐾𝛼 = 𝐾𝛼 ⊕ 𝐾𝛼𝑡 ⊕ … 𝐾𝛼𝑡𝑝−1

Again the result is clear. �

Lemma 12.34.5. Let 𝑘 be a field of characteristic 𝑝 > 0. Let 𝑛, 𝑚 ≥ 0. As 𝑘′ ranges
through all subfields 𝑘𝑝 ⊂ 𝑘′ ⊂ 𝑘 with [𝑘 ∶ 𝑘′] < ∞ the subfields

𝑓.𝑓.(𝑘′[[𝑥𝑝
1, … , 𝑥𝑝

𝑛]][𝑦𝑝
1, … , 𝑦𝑝

𝑚]) ⊂ 𝑓.𝑓.(𝑘[[𝑥1, … , 𝑥𝑑]][𝑦1, … , 𝑦𝑚])

form a family of subfields as in Lemma 12.34.4. Moreover, each of the ring extensions
𝑘′[[𝑥𝑝

1, … , 𝑥𝑝
𝑛]][𝑦𝑝

1, … , 𝑦𝑝
𝑚] ⊂ 𝑘[[𝑥1, … , 𝑥𝑛]][𝑦1, … , 𝑦𝑚] is finite.

Proof. Write 𝐴 = 𝑘[[𝑥1, … , 𝑥𝑛]][𝑦1, … , 𝑦𝑚] and 𝐴′ = 𝑘′[[𝑥𝑝
1, … , 𝑥𝑝

𝑛]][𝑦𝑝
1, … , 𝑦𝑝

𝑚]. We
also set𝐾 = 𝑓.𝑓.(𝐴) and𝐾′ = 𝑓.𝑓.(𝐴′). The ring extension 𝑘′[[𝑥𝑝

1, … , 𝑥𝑝
𝑑]] ⊂ 𝑘[[𝑥1, … , 𝑥𝑑]]

is finite by Algebra, Lemma 7.90.16 which implies that 𝐴 → 𝐴′ is finite. For 𝑓 ∈ 𝐴 we see
that 𝑓𝑝 ∈ 𝐴′. Hence 𝐾𝑝 ⊂ 𝐾′. Any element of 𝐾′ can be written as 𝑎/𝑏𝑝 with 𝑎 ∈ 𝐴′ and
𝑏 ∈ 𝐴 nonzero. Suppose that 𝑓/𝑔𝑝 ∈ 𝐾, 𝑓, 𝑔 ∈ 𝐴, 𝑔≠0 is contained in 𝐾′ for every choice
of 𝑘′. Fix a choice of 𝑘′ for the moment. By the above we see 𝑓/𝑔𝑝 = 𝑎/𝑏𝑝 for some 𝑎 ∈ 𝐴′

and some nonzero 𝑏 ∈ 𝐴. Hence 𝑏𝑝𝑓 ∈ 𝐴′. For any 𝐴′-derivation 𝐷 ∶ 𝐴 → 𝐴 we see
that 0 = 𝐷(𝑏𝑝𝑓) = 𝑏𝑝𝐷(𝑓) hence 𝐷(𝑓) = 0 as 𝐴 is a domain. Taking 𝐷 = 𝜕𝑥𝑖

and 𝐷 = 𝜕𝑦𝑗

we conclude that that 𝑓 ∈ 𝑘[[𝑥𝑝
1, … , 𝑥𝑝

𝑛]][𝑦𝑝
1, … , 𝑦𝑝

𝑑]. Applying a 𝑘′-derivation 𝜃 ∶ 𝑘 → 𝑘
we similarly conclude that all coefficients of 𝑓 are in 𝑘′, i.e., 𝑓 ∈ 𝐴′. Since it is clear that
𝐴 = ⋂𝑘′ 𝐴′ where 𝑘′ ranges over all subfields as in the lemma we win. �

12.35. The singular locus

Let 𝑅 be a Noetherian ring. The regular locus Reg(𝑋) of 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) is the set of primes
𝔭 such that 𝑅𝔭 is a regular local ring. The singular locus Sing(𝑋) of 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) is the
complement 𝑋 ⧵ Reg(𝑋), i.e., the set of primes 𝔭 such that 𝑅𝔭 is not a regular local ring.
By the discussion preceding Algebra, Definition 7.102.6 we see that Reg(𝑋) is stable under
generalization In the section we study conditions that guarantee that Reg(𝑋) is open.
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Definition 12.35.1. Let 𝑅 be a Noetherian ring. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅).
(1) We say 𝑅 is J-0 if Reg(𝑋) contains a nonempty open.
(2) We say 𝑅 is J-1 if Reg(𝑋) is open.
(3) We say 𝑅 is J-2 if any finite type 𝑅-algebra is J-1.

The ring 𝐐[𝑥]/(𝑥2) does not satisfy J-0. On the other hand J-1 implies J-0 for domains and
even reduced rings as such a ring is regular at the minimal primes. Here is a characterization
of the J-1 property.

Lemma 12.35.2. Let 𝑅 be a Noetherian ring. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅). The ring 𝑅 is J-1 if and
only if 𝑉(𝔭) ∩ Reg(𝑋) contains a nonempty open subset of 𝑉(𝔭) for all 𝔭 ∈ Reg(𝑋).

Proof. This follows immediately from Topology, Lemma 5.11.5. �

Lemma 12.35.3. Let 𝑅 be a Noetherian ring. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅). Assume that for all 𝔭 ⊂ 𝑅
the ring 𝑅/𝔭 is J-0. Then 𝑅 is J-1.

Proof. We will show that the criterion of Lemma 12.35.2 applies. Let 𝔭 ∈ Reg(𝑋) be a
prime of height 𝑟. Pick 𝑓1, … , 𝑓𝑟 ∈ 𝔭 which map to generators of 𝔭𝑅𝔭. Since 𝔭 ∈ Reg(𝑋)
we see that 𝑓1, … , 𝑓𝑟 maps to a regular sequence in 𝑅𝔭, see Algebra, Lemma 7.98.3. Thus
by Algebra, Lemma 7.65.8 we see that after replacing 𝑅 by 𝑅𝑔 for some 𝑔 ∈ 𝑅, 𝑔∉𝔭 the
sequence 𝑓1, … , 𝑓𝑟 is a regular sequence in 𝑅. Next, let 𝔭 ⊂ 𝔮 be a prime ideal such that
(𝑅/𝔭)𝔮 is a regular local ring. By the assumption of the lemma there exists a non-empty
open subset of 𝑉(𝔭) consisting of such primes, hence it suffices to prove 𝑅𝔮 is regular. Note
that 𝑓1, … , 𝑓𝑟 is a regular sequence in 𝑅𝔮 such that 𝑅𝔮/(𝑓1, … , 𝑓𝑟)𝑅𝔮 is regular. Hence 𝑅𝔮
is regular by Algebra, Lemma 7.98.7. �

Lemma 12.35.4. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 is a Noetherian domain,
(2) 𝑅 → 𝑆 is injective and of finite type, and
(3) 𝑆 is a domain and J-0.

Then 𝑅 is J-0.

Proof. After replacing 𝑆 by 𝑆𝑔 for some nonzero 𝑔 ∈ 𝑆 we may assume that 𝑆 is a regular
ring. By generic flatness we may assume that also 𝑅 → 𝑆 is faithfully flat, see Algebra,
Lemma 7.109.1. Then 𝑅 is regular by Algebra, Lemma 7.146.4. �

Lemma 12.35.5. Let 𝑅 → 𝑆 be a ring map. Assume that
(1) 𝑅 is a Noetherian domain and J-0,
(2) 𝑅 → 𝑆 is injective and of finite type, and
(3) 𝑆 is a domain and 𝑓.𝑓.(𝑅) → 𝑓.𝑓.(𝑆) is separable.

Then 𝑆 is J-0.

Proof. We may replace 𝑅 by a principal localization and assume 𝑅 is a regular ring. By
Algebra, Lemma 7.129.9 the ring map 𝑅 → 𝑆 is smooth at (0). Hence after replacing 𝑆 by
a principal localization we may assume that 𝑆 is smooth over 𝑅. Then 𝑆 is regular too, see
Algebra, Lemma 7.145.8. �

Lemma 12.35.6. Let 𝑅 be a Noetherian ring. The following are equivalent
(1) 𝑅 is J-2,
(2) every finite type 𝑅-algebra which is a domain is J-0,
(3) every finite 𝑅-algebra is J-1,
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(4) for every prime 𝔭 and every finite purely inseparable extension 𝜅(𝔭) ⊂ 𝐿 there
exists a finite 𝑅-algebra 𝑅′ which is a domain, which is J-0, and whose field of
fractions is 𝐿.

Proof. It is clear that we have the implications (1) ⇒ (2) and (2) ⇒ (4). Recall that a
domain which is J-1 is J-0. Hence we also have the implications (1) ⇒ (3) and (3) ⇒ (4).

Let 𝑅 → 𝑆 be a finite type ring map and let's try to show 𝑆 is J-1. By Lemma 12.35.3 it
suffices to prove that 𝑆/𝔮 is J-0 for every prime 𝔮 of 𝑆. In this way we see (2) ⇒ (1).

Assume (4). We will show that (2) holds which will finish the proof. Let 𝑅 → 𝑆 be a finite
type ring map with 𝑆 a domain. Let 𝔭 = Ker(𝑅 → 𝑆). Set 𝐾 = 𝑓.𝑓.(𝑆). There exists a
diagram of fields

𝐾 // 𝐾′

𝜅(𝔭)

OO

// 𝐿

OO

where the horizontal arrows are finite purely inseparable field extensions and where 𝐾′/𝐿
is separable, see Algebra, Lemma 7.39.4. Choose 𝑅′ ⊂ 𝐿 as in (4) and let 𝑆′ be the image
of the map 𝑆 ⊗𝑅 𝑅′ → 𝐾′. Then 𝑆′ is a domain whose fraction field is 𝐾′, hence 𝑆′ is J-0
by Lemma 12.35.5 and our choice of 𝑅′. Then we apply Lemma 12.35.4 to see that 𝑆 is
J-0 as desired. �

12.36. Regularity and derivations

Let 𝑅 → 𝑆 be a ring map. Let 𝐷 ∶ 𝑅 → 𝑅 be a derivation. We say that 𝐷 extends to 𝑆 if
there exists a derivation 𝐷′ ∶ 𝑆 → 𝑆 such that

𝑆
𝐷′
// 𝑆

𝑅

OO

𝐷 // 𝑅

OO

is commutative.

Lemma 12.36.1. Let 𝑅 be a ring. Let 𝐷 ∶ 𝑅 → 𝑅 be a derivation.
(1) For any ideal 𝐼 ⊂ 𝑅 the derivation 𝐷 extends canonically to a derication 𝐷∧ ∶

𝑅∧ → 𝑅∧ on the 𝐼-adic completion.
(2) For any mulitplicative subset 𝑆 ⊂ 𝑅 the derivation 𝐷 extends uniquely to the

localization 𝑆−1𝑅 of 𝑅.
If 𝑅 ⊂ 𝑅′ is an finite type extension of rings such that 𝑅𝑔 ≅ 𝑅′

𝑔 for some nonzero divisor
𝑔 ∈ 𝑅, then 𝑔𝑁𝐷 extends to 𝑅′ for some 𝑁 ≥ 0.

Proof. Proof of (1). For 𝑛 ≥ 2 we have 𝐷(𝐼𝑛) ⊂ 𝐼𝑛−1 by the Leibniz rule. Hence 𝐷 induces
maps 𝐷𝑛 ∶ 𝑅/𝐼𝑛 → 𝑅/𝐼𝑛−1. Taking the limit we obtain 𝐷∧. We omit the verification that
𝐷∧ is a derivation.

Proof of (2). To extend 𝐷 to 𝑆−1𝑅 just set 𝐷(𝑟/𝑠) = 𝐷(𝑟)/𝑠 − 𝑟𝐷(𝑠)/𝑠2 and check the
axioms.

Proof of the final statement. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑅′ be generators of 𝑅′ over 𝑅. Choose an 𝑁
such that 𝑔𝑁𝑥𝑖 ∈ 𝑅. Consider 𝑔𝑁+1𝐷. By (2) this extends to 𝑅𝑔. Moreover, by the Leibniz
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rule and our construction of the extension above we have

𝑔𝑁+1𝐷(𝑥𝑖) = 𝑔𝑁+1𝐷(𝑔−𝑁𝑔𝑁𝑥𝑖) = −𝑁𝑔𝑁𝑥𝑖𝐷(𝑔) + 𝑔𝐷(𝑔𝑁𝑥𝑖)

and both terms are in 𝑅. This implies that

𝑔𝑁+1𝐷(𝑥𝑒1
1 … 𝑥𝑒𝑛

𝑛 ) = ∑ 𝑒𝑖𝑥
𝑒1
1 … 𝑥𝑒𝑖−1

𝑖 … 𝑥𝑒𝑛
𝑛 𝑔𝑁+1𝐷(𝑥𝑖)

is an element of 𝑅′. Hence every element of 𝑅′ (which can be written as a sum of mono-
mials in the 𝑥𝑖 with coefficients in 𝑅) is mapped to an element of 𝑅′ by 𝑔𝑁+1𝐷 and we
win. �

Lemma 12.36.2. Let 𝑅 be a regular ring. Let 𝑓 ∈ 𝑅. Assume there exists a derivation
𝐷 ∶ 𝑅 → 𝑅 such that 𝐷(𝑓) is a unit of 𝑅/(𝑓). Then 𝑅/(𝑓) is regular.

Proof. It suffices to prove this when 𝑅 is a local ring with maximal ideal 𝔪 and residue
field 𝜅. In this case it suffices to prove that 𝑓∉𝔪2, see Algebra, Lemma 7.98.3. However,
if 𝑓 ∈ 𝔪2 then 𝐷(𝑓) ∈ 𝔪 by the Leibniz rule, a contradiction. �

Lemma 12.36.3. Let 𝑅 be a regular 𝐅𝑝-algebra. Let 𝑓 ∈ 𝑅. Assume there exists a deriva-
tion 𝐷 ∶ 𝑅 → 𝑅 such that 𝐷(𝑓) is a unit of 𝑅. Then 𝑅[𝑧]/(𝑧𝑝 − 𝑓) is regular.

Proof. Apply Lemma 12.36.2 to the extension of 𝐷 to 𝑅[𝑧] which maps 𝑧 to zero. �

Lemma 12.36.4. Let 𝑝 be a prime number. Let 𝐵 be a domain with 𝑝 = 0 in 𝐵. Let 𝑓 ∈ 𝐵
be an element which is not a 𝑝th power in the fraction field of 𝐵. If 𝐵 is of finite type over a
Noetherian complete local ring, then there exists a derivation 𝐷 ∶ 𝐵 → 𝐵 such that 𝐷(𝑓)
is not zero.

Proof. Let 𝑅 be a Noetherian complete local ring such that there exists a finite type ring
map 𝑅 → 𝐵. Of course we may replace 𝑅 by its image in 𝐵, hence we may assume 𝑅 is a
domain of characteristic 𝑝 > 0 (as well as Noetherian complete local). By Algebra, Lemma
7.143.10 we can write 𝑅 as a finite extension of 𝑘[[𝑥1, … , 𝑥𝑛]] for some field 𝑘 and integer
𝑛. Hence we may replace 𝑅 by 𝑘[[𝑥1, … , 𝑥𝑛]]. Next, we use Algebra, Lemma 7.106.7 to
factor 𝑅 → 𝐵 as

𝑅 ⊂ 𝑅[𝑦1, … , 𝑦𝑑] ⊂ 𝐵′ ⊂ 𝐵

with 𝐵′ finite over 𝑅[𝑦1, … , 𝑦𝑑] and 𝐵′
𝑔 ≅ 𝐵𝑔 for some nonzero 𝑔 ∈ 𝑅. Note that 𝑓′ =

𝑔𝑝𝑁𝑓 ∈ 𝐵′ for some large integer 𝑁. It is clear that 𝑓′ is not a 𝑝th power in 𝑓.𝑓.(𝐵′) =
𝑓.𝑓.(𝐵). If we can find a derivation 𝐷′ ∶ 𝐵′ → 𝐵′ with 𝐷′(𝑓′)≠0, then Lemma 12.36.1
guarantees that 𝐷 = 𝑔𝑀𝐷′ extends to 𝑆 for some 𝑀 > 0. Then 𝐷(𝑓) = 𝑔𝑁𝐷′(𝑓) =
𝑔𝑀𝐷′(𝑔−𝑝𝑁𝑓′) = 𝑔𝑀−𝑝𝑁𝐷′(𝑓′) is nonzero. Thus it suffices to prove the lemma in case 𝐵
is a finite exteion of 𝐴 = 𝑘[[𝑥1, … , 𝑥𝑛]][𝑦1, … , 𝑦𝑚].

Note that d𝑓 is not zero in Ω𝑓.𝑓.(𝐵)/𝐅𝑝
, see Algebra, Lemma 7.141.1. We apply Lemma

12.34.5 to find a subfield 𝑘′ ⊂ 𝑘 of finite index such that with𝐴′ = 𝑘′[[𝑥𝑝
1, … , 𝑥𝑝

𝑛]][𝑦𝑝
1, … , 𝑦𝑝

𝑚]
the element d𝑓 does notmap to zero inΩ𝑓.𝑓.(𝐵)/𝑓.𝑓.(𝐴′). Thuswe can choose a 𝑓.𝑓.(𝐴′)-derivation
𝐷′ ∶ 𝑓.𝑓.(𝐵) → 𝑓.𝑓.(𝐵) with 𝐷′(𝑓)≠0. Since 𝐴′ ⊂ 𝐴 and 𝐴 ⊂ 𝐵 are finite by construction
we see that 𝐴′ ⊂ 𝐵 is finite. Choose 𝑏1, … , 𝑏𝑡 ∈ 𝐵 which generate 𝐵 as an 𝐴′-module.
Then 𝐷′(𝑏𝑖) = 𝑓𝑖/𝑔𝑖 for some 𝑓𝑖, 𝑔𝑖 ∈ 𝐵 with 𝑔𝑖≠0. Setting 𝐷 = 𝑔1 … 𝑔𝑡𝐷′ we win. �

Lemma 12.36.5. Let 𝐴 be a Noetherian complete local domain. Then 𝐴 is J-0.
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Proof. By Algebra, Lemma 7.143.10 we can find a regular subring 𝐴0 ⊂ 𝐴 with 𝐴 finite
over 𝐴0. If 𝑓.𝑓.(𝐴0) ⊂ 𝑓.𝑓.(𝐴) is separable, then we are done by Lemma 12.35.5. If
not, then 𝐴0 and 𝐴 have characteristic 𝑝 > 0. For any subextension 𝑓.𝑓.(𝐴0) ⊂ 𝑀 ⊂
𝑓.𝑓.(𝐴) there exists a finite subextension 𝐴0 ⊂ 𝐵 ⊂ 𝐴 such that 𝑓.𝑓.(𝐵) = 𝑀. Hence,
arguing by induction on [𝑓.𝑓.(𝐴) ∶ 𝑓.𝑓.(𝐴0)] we may assume there exists 𝐴0 ⊂ 𝐵 ⊂ 𝐴
such that 𝐵 is J-0 and 𝑓.𝑓.(𝐵) ⊂ 𝑓.𝑓.(𝐴) has no nontrivial subextensions. In this case, if
𝑓.𝑓.(𝐵) ⊂ 𝑓.𝑓.(𝐴) is separable, then we see that 𝐴 is J-0 by Lemma 12.35.5. If not, then
𝑓.𝑓.(𝐴) = 𝑓.𝑓.(𝐵)[𝑧]/(𝑧𝑝 − 𝑏) for some 𝑏 ∈ 𝐵 which is not a 𝑝th power in 𝑓.𝑓.(𝐵). By
Lemma 12.36.4 we can find a derivation 𝐷 ∶ 𝐵 → 𝐵 with 𝐷(𝑓)≠0. Applying Lemma
12.36.3 we see that 𝐴𝔭 is regular for any prime 𝔭 of 𝐴 lying over a regular prime of 𝐵 and
not containing 𝐷(𝑓). As 𝐵 is J-0 we conclude 𝐴 is too. �

Proposition 12.36.6. The following types of rings are J-2:
(1) fields,
(2) Noetherian complete local rings,
(3) 𝐙,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. For fields, 𝐙 and Dedekind domains of characteristic zero you just check condition
(4) of Lemma 12.35.6. In the case of Noetherian complete local rings, note that if 𝑅 → 𝑅′ is
finite and 𝑅 is a Noetherian complete local ring, then 𝑅′ is a product of Noetherian complete
local rings, see Algebra, Lemma 7.143.2. Hence it suffices to prove that a Noetherian
complete local ring which is a domain is J-0, which is Lemma 12.36.5. �

12.37. Formal smoothness and regularity

The title of this section refers to Proposition 12.37.2.

Lemma 12.37.1. Let 𝐴 → 𝐵 be a local homomorphism of Noetherian local rings. Let
𝐷 ∶ 𝐴 → 𝐴 be a derivation. Assume that 𝐵 is complete and 𝐴 → 𝐵 is formally smooth in
the 𝔪𝐵-adic topology. Then there exists an extension 𝐷′ ∶ 𝐵 → 𝐵 of 𝐷.

Proof. Denote 𝐵[𝜖] = 𝐵[𝑥]/(𝑥2) the ring of dual numbers over 𝐵. Consider the ring map
𝜓 ∶ 𝐴 → 𝐵[𝜖], 𝑎 ↦ 𝑎 + 𝜖𝐷(𝑎). Consider the commutative diagram

𝐵
1
// 𝐵

𝐴

OO

𝜓 // 𝐵[𝜖]

OO

By Lemma 12.28.5 and the assumption of formal smoothness of 𝐵/𝐴 we find a map 𝜑 ∶
𝐵 → 𝐵[𝜖] fitting into the diagram. Write 𝜑(𝑏) = 𝑏 + 𝜖𝐷′(𝑏). Then 𝐷′ ∶ 𝐵 → 𝐵 is the
desired extension. �

Proposition 12.37.2. Let 𝐴 → 𝐵 be a local homomorphism of Noetherian complete local
rings. The following are equivalent

(1) 𝐴 → 𝐵 is regular,
(2) 𝐴 → 𝐵 is flat and 𝐵 is geometrically regular over 𝑘,
(3) 𝐴 → 𝐵 is flat and 𝑘 → 𝐵 is formally smooth in the 𝔪𝐵-adic topology, and
(4) 𝐴 → 𝐵 is formally smooth in the 𝔪𝐵-adic topology.
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Proof. We have seen the equivalence of (2), (3), and (4) in Proposition 12.30.4. It is clear
that (1) implies (2). Thus we assume the equivalent conditions (2), (3), and (4) hold and
we prove (1).

Let 𝔭 be a prime of 𝐴. We will show that 𝐵 ⊗𝐴 𝜅(𝔭) is geometrically regular over 𝜅(𝔭). By
Lemma 12.28.8 we may replace 𝐴 by 𝐴/𝔭 and 𝐵 by 𝐵/𝔭𝐵. Thus we may assume that 𝐴 is
a domain and that 𝔭 = (0).

Choose 𝐴0 ⊂ 𝐴 as in Algebra, Lemma 7.143.10. We will use all the properties stated in
that lemma without further mention. As 𝐴0 → 𝐴 induces an isomorphism on residue fields,
and as 𝐵/𝔪𝐴𝐵 is geometrically regular over 𝐴/𝔪𝐴 we can find a diagram

𝐶 // 𝐵

𝐴0
//

OO

𝐴

OO

with 𝐴0 → 𝐶 formally smooth in the 𝔪𝐶-adic topology such that 𝐵 = 𝐶⊗𝐴0
𝐴, see Remark

12.30.6. (Completion in the tensor product is not needed as 𝐴0 → 𝐴 is finite, see Algebra,
Lemma 7.90.2.) Hence it suffices to show that 𝐶 ⊗𝐴0

𝑓.𝑓.(𝐴0) is a geometrically regular
algebra over 𝑓.𝑓.(𝐴0).

The upshot of the preceding paragraph is that we may assume that 𝐴 = 𝑘[[𝑥1, … , 𝑥𝑛]]
where 𝑘 is a field or 𝐴 = Λ[[𝑥1, … , 𝑥𝑛]] where Λ is a Cohen ring. In this case 𝐵 is a
regular ring, see Algebra, Lemma 7.103.8. Hence 𝐵 ⊗𝐴 𝑓.𝑓.(𝐴) is a regular ring too and
we win if the characteristic of 𝑓.𝑓.(𝐴) is zero.

Thus we are left with the case where 𝐴 = 𝑘[[𝑥1, … , 𝑥𝑛]] and 𝑘 is a field of characteristic
𝑝 > 0. Set 𝐾 = 𝑓.𝑓.(𝐴). Let 𝐿 ⊃ 𝐾 be a finite purely inseparable field extension. We
will show by induction on [𝐿 ∶ 𝐾] that 𝐵 ⊗𝐴 𝐿 is regular. The base case is 𝐿 = 𝐾 which
we've seen above. Let 𝐾 ⊂ 𝑀 ⊂ 𝐿 be a subfield such that 𝐿 is a degree 𝑝 extension of
𝑀 obtained by adjoining a 𝑝th root of an element 𝑓 ∈ 𝑀. Let 𝐴′ be a finite 𝐴-subalgebra
of 𝑀 with fraction field 𝑀. Clearing denominators, we may and do assume 𝑓 ∈ 𝐴′. Set
𝐴″ = 𝐴′[𝑧]/(𝑧𝑝 − 𝑓) and note that 𝐴′ ⊂ 𝐴″ is finite and that the fraction field of 𝐴″ is 𝐿.
By induction we know that 𝐵 ⊗𝐴 𝑀 ring is regular. We have

𝐵 ⊗𝐴 𝐿 = 𝐵 ⊗𝐴 𝑀[𝑧]/(𝑧𝑝 − 𝑓)

By Lemma 12.36.4 we know there exists a derivation 𝐷 ∶ 𝐴′ → 𝐴′ such that 𝐷(𝑓)≠0.
As 𝐴′ → 𝐵 ⊗𝐴 𝐴′ is formally smooth in the 𝔪-adic topology by Lemma 12.28.9 we can
use Lemma 12.37.1 to extend 𝐷 to a derivation 𝐷′ ∶ 𝐵 ⊗𝐴 𝐴′ → 𝐵 ⊗𝐴 𝐴′. Note that
𝐷′(𝑓) = 𝐷(𝑓) is a unit in 𝐵 ⊗𝐴 𝑀 as 𝐷(𝑓) is not zero in 𝐴′ ⊂ 𝑀. Hence 𝐵 ⊗𝐴 𝐿 is regular
by Lemma 12.36.3 and we win. �

12.38. G-rings

Let 𝐴 be a Noetherian local ring 𝐴. In Section 12.33 we have seen that some but not all
properties of 𝐴 are reflected in the completion 𝐴∧ of 𝐴. To study this further we introduce
some terminology. For a prime 𝔮 of 𝐴 the fibre ring

(𝐴∧) ⊗𝐴 𝜅(𝔮) = (𝐴∧)𝔮/𝔮(𝐴∧)𝔮

is called a formal fibre of 𝐴. We think of the formal fibre as an algebra over 𝜅(𝔮). Thus 𝐴 →
𝐴∧ is a regular ring homomorphism if and only if all the formal fibres are geometrically
regular algebras.
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Definition 12.38.1. A ring 𝑅 is called a G-ring if 𝑅 is Noetherian and for every prime 𝔭
of 𝑅 the ring map 𝑅𝔭 → (𝑅𝔭)∧ is regular.

By the discussion above we see that 𝑅 is a G-ring if and only if every local ring 𝑅𝔭 has
geometrically regular formal fibres. Note that if 𝐐 ⊂ 𝑅, then it suffices to check the formal
fibres are regular. Another way to express the G-ring condition is described in the following
lemma.

Lemma 12.38.2. Let 𝑅 be a Noetherian ring. Then 𝑅 is a G-ring if and only if for every
pair of primes 𝔮 ⊂ 𝔭 ⊂ 𝑅 the algebra

(𝑅/𝔮)∧
𝔭 ⊗𝑅/𝔮 𝜅(𝔮)

is geometrically regular over 𝜅(𝔮).

Proof. This follows from the fact that

𝑅∧
𝔭 ⊗𝑅 𝜅(𝔮) = (𝑅/𝔮)∧

𝔭 ⊗𝑅/𝔮 𝜅(𝔮)

as algebras over 𝜅(𝔮). �

Lemma 12.38.3. Let 𝑅 → 𝑅′ be a finite type map of Noetherian rings and let

𝔮′ // 𝔭′ // 𝑅′

𝔮 // 𝔭 // 𝑅

OO

be primes. Assume 𝑅 → 𝑅′ is quasi-finite at 𝔭′.
(1) If the formal fibre 𝑅∧

𝔭 ⊗𝑅 𝜅(𝔮) is geometrically regular over 𝜅(𝔮), then the formal
fibre 𝑅′

𝔭′ ⊗𝑅′ 𝜅(𝔮′) is geometrically regular over 𝜅(𝔮′).
(2) If the formal fibres of 𝑅𝔭 are geometrically regular, then the formal fibres of 𝑅′

𝔭′

are geometrically regular.
(3) If 𝑅 → 𝑅′ is quasi-finite and 𝑅 is a G-ring, then 𝑅′ is a G-ring.

Proof. It is clear that (1) ⇒ (2) ⇒ (3). Assume 𝑅∧
𝔭 ⊗𝑅 𝜅(𝔮) is geometrically regular over

𝜅(𝔮). By Algebra, Lemma 7.115.3 we see that

𝑅∧
𝔭 ⊗𝑅 𝑅′ = (𝑅′

𝔭′)∧ × 𝐵

for some 𝑅∧
𝔭-algebra 𝐵. Hence 𝑅′

𝔭′ → (𝑅′
𝔭′)∧ is a factor of a base change of the map

𝑅𝔭 → 𝑅∧
𝔭 . It follows that (𝑅′

𝔭′)∧ ⊗𝑅′ 𝜅(𝔮′) is a factor of

𝑅∧
𝔭 ⊗𝑅 𝑅′ ⊗𝑅′ 𝜅(𝔮′) = 𝑅∧

𝔭 ⊗𝑅 𝜅(𝔮) ⊗𝜅(𝔮) 𝜅(𝔮′).

Thus the result follows as extension of base field preserves geometric regularity, see Alge-
bra, Lemma 7.148.1. �

Lemma 12.38.4. Let 𝑅 be a Noetherian ring. Then 𝑅 is a G-ring if and only if for every
finite free ring map 𝑅 → 𝑆 the formal fibres of 𝑆 are regular rings.

Proof. Assume that for any finite free ring map 𝑅 → 𝑆 the ring 𝑆 has regular formal fibres.
Let 𝔮 ⊂ 𝔭 ⊂ 𝑅 be primes and let 𝜅(𝔮) ⊂ 𝐿 be a finite purely inseparable extension. To
show that 𝑅 is a G-ring it suffices to show that

𝑅∧
𝔭 ⊗𝑅 𝜅(𝔮) ⊗𝜅(𝔮) 𝐿
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is a regular ring. Choose a finite free extension 𝑅 → 𝑅′ such that 𝔮′ = 𝔮𝑅′ is a prime and
such that 𝜅(𝔮′) is isomorphic to 𝐿 over 𝜅(𝔮), see Algebra, Lemma 7.142.2. By Algebra,
Lemma 7.90.17 we have

𝑅∧
𝔭 ⊗𝑅 𝑅′ = ∏(𝑅′

𝔭′
𝑖
)∧

where 𝔭′
𝑖 are the primes of 𝑅′ lying over 𝔭. Thus we have

𝑅∧
𝔭 ⊗𝑅 𝜅(𝔮) ⊗𝜅(𝔮) 𝐿 = 𝑅∧

𝔭 ⊗𝑅 𝑅′ ⊗𝑅′ 𝜅(𝔮′) = ∏(𝑅′
𝔭′

𝑖
)∧ ⊗𝑅′

𝔭′
𝑖

𝜅(𝔮′)

Our assumption is that the rings on the right are regular, hence the ring on the left is regular
too. Thus 𝑅 is a G-ring. The converse follows from Lemma 12.38.3. �

Lemma 12.38.5. Let 𝑘 be a field of characteristic 𝑝. Let 𝐴 = 𝑘[[𝑥1, … , 𝑥𝑛]][𝑦1, … , 𝑦𝑛]
and denote 𝐾 = 𝑓.𝑓.(𝐴). Let 𝔭 ⊂ 𝐴 be a prime. Then 𝐴∧

𝔭 ⊗𝐴 𝐾 is geometrically regular
over 𝐾.

Proof. Let 𝐿 ⊃ 𝐾 be a finite purely inseparable field extension. We will show by induction
on [𝐿 ∶ 𝐾] that 𝐴∧

𝔭 ⊗ 𝐿 is regular. The base case is 𝐿 = 𝐾: as 𝐴 is regular, 𝐴∧
𝔭 is regular

(Lemma 12.33.4), hence the localization 𝐴∧
𝔭 ⊗ 𝐾 is regular. Let 𝐾 ⊂ 𝑀 ⊂ 𝐿 be a subfield

such that 𝐿 is a degree 𝑝 extension of 𝑀 obtained by adjoining a 𝑝th root of an element
𝑓 ∈ 𝑀. Let 𝐵 be a finite 𝐴-subalgebra of 𝑀 with fraction field 𝑀. Clearing denominators,
we may and do assume 𝑓 ∈ 𝐵. Set 𝐶 = 𝐵[𝑧]/(𝑧𝑝 − 𝑓) and note that 𝐵 ⊂ 𝐶 is finite and that
the fraction field of 𝐶 is 𝐿. Since 𝐴 ⊂ 𝐵 ⊂ 𝐶 are finite and 𝐿/𝑀/𝐾 are purely inseparable
we see that for every element of 𝐵 or 𝐶 some power of it lies in 𝐴. Hence there is a unique
prime 𝔯 ⊂ 𝐵, resp. 𝔮 ⊂ 𝐶 lying over 𝔭. Note that

𝐴∧
𝔭 ⊗𝐴 𝑀 = 𝐵∧

𝔯 ⊗𝐵 𝑀

see Algebra, Lemma 7.90.17. By induction we know that this ring is regular. In the same
manner we have

𝐴∧
𝔭 ⊗𝐴 𝐿 = 𝐶∧

𝔯 ⊗𝐶 𝐿 = 𝐵∧
𝔯 ⊗𝐵 𝑀[𝑧]/(𝑧𝑝 − 𝑓)

the last equality because the completion of 𝐶 = 𝐵[𝑧]/(𝑧𝑝 − 𝑓) equals 𝐵∧
𝔯 [𝑧]/(𝑧𝑝 − 𝑓). By

Lemma 12.36.4 we know there exists a derivation 𝐷 ∶ 𝐵 → 𝐵 such that 𝐷(𝑓)≠0. In other
words, 𝑔 = 𝐷(𝑓) is a unit in 𝑀! By Lemma 12.36.1 𝐷 extends to a derivation of 𝐵𝔯, 𝐵∧

𝔯 and
𝐵∧

𝔯 ⊗𝐵 𝑀 (successively extending through a localization, a completion, and a localization).
Since it is an extension we end up with a derivation of 𝐵∧

𝔯 ⊗𝐵 𝑀 which maps 𝑓 to 𝑔 and 𝑔 is
a unit of the ring 𝐵∧

𝔯 ⊗𝐵 𝑀. Hence 𝐴∧
𝔭 ⊗𝐴 𝐿 is regular by Lemma 12.36.3 and we win. �

Proposition 12.38.6. A Noetherian complete local ring is a G-ring.

Proof. Let 𝐴 be a Noetherian complete local ring. By Lemma 12.38.2 it suffices to check
that 𝐵 = 𝐴/𝔮 has geometrically regular formal fibres over the minimal prime (0) of 𝐵. Thus
we may assume that 𝐴 is a domain and it suffices to check the condition for the formal fibres
over the minimal prime (0) of 𝐴. Set 𝐾 = 𝑓.𝑓(𝐴).

We can choose a subring 𝐴0 ⊂ 𝐴 which is a regular complete local ring such that 𝐴 is finite
over 𝐴0, see Algebra, Lemma 7.143.10. Moreover, we may assume that 𝐴0 is a power
series ring over a field or a Cohen ring. By Lemma 12.38.3 we see that it suffices to prove
the result for 𝐴0.

Assume that 𝐴 is a power series ring over a field or a Cohen ring. Since 𝐴 is regular the
localizations 𝐴𝔭 are regular (see Algebra, Definition 7.102.6 and the discussion preceding
it). Hence the completions 𝐴∧

𝔭 are regular, see Lemma 12.33.4. Hence the fibre 𝐴∧
𝔭 ⊗𝐴 𝐾
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is, as a localization of 𝐴∧
𝔭 , also regular. Thus we are done if the characteristic of 𝐾 is 0.

The positive characteristic case is the case 𝐴 = 𝑘[[𝑥1, … , 𝑥𝑑]] which is a special case of
Lemma 12.38.5. �

Lemma 12.38.7. Let 𝑅 be a Noetherian ring. Then 𝑅 is a G-ring if and only if 𝑅𝔪 has
geometrically regular formal fibres for every maximal ideal 𝔪 of 𝑅.

Proof. Assume 𝑅𝔪 → 𝑅∧
𝔪 is regular for every maximal ideal 𝔪 of 𝑅. Let 𝔭 be a prime of

𝑅 and choose a maximal ideal 𝔭 ⊂ 𝔪. Since 𝑅𝔪 → 𝑅∧
𝔪 is faithfully flat we can choose a

prime 𝔭′ if 𝑅∧
𝔪 lying over 𝔭𝑅𝔪. Consider the commutative diagram

𝑅∧
𝔪

// (𝑅∧
𝔪)𝔭′ // (𝑅∧

𝔪)∧
𝔭′

𝑅𝔪

OO

// 𝑅𝔭

OO

// 𝑅∧
𝔭

OO

By assumption the ring map 𝑅𝔪 → 𝑅∧
𝔪 is regular. By Proposition 12.38.6 (𝑅∧

𝔪)𝔭′ →
(𝑅∧

𝔪)∧
𝔭′ is regular. Hence 𝑅𝔪 → (𝑅∧

𝔪)∧
𝔭′ is regular and since it factors through the local-

ization 𝑅𝔭, also the ring map 𝑅𝔭 → (𝑅∧
𝔪)∧

𝔭′ is regular. Thus we may apply Lemma 12.31.6
to see that 𝑅𝔭 → 𝑅∧

𝔭 is regular. �

Lemma 12.38.8. Let 𝑝 be a prime number. Let 𝐴 be a Noetherian complete local domain
with fraction field 𝐾 of characteristic 𝑝. Let 𝔮 ⊂ 𝐴[𝑥] be a maximal ideal lying over the
maximal ideal of 𝐴 and let 𝔯 ⊂ 𝔮 be a prime lying over (0) ⊂ 𝐴. Then 𝐴[𝑥]∧

𝔮 ⊗𝐴[𝑥] 𝜅(𝔯) is
geometrically regular over 𝜅(𝔯).

Proof. Note that 𝐾 ⊂ 𝜅(𝑟) is finite. Hence, given a finite purely inseparable extension
𝜅(𝑟) ⊂ 𝐿 there exists a finite extension of Noetherian complete local domains 𝐴 ⊂ 𝐵 such
that 𝜅(𝑟)⊗𝐴𝐵 surjects onto 𝐿. Namely, you take 𝐵 ⊂ 𝐿 a finite 𝐴-subalgebra whose field of
fractions is𝐿. Denote 𝔯′ ⊂ 𝐵[𝑥] the kernel of themap𝐵[𝑥] = 𝐴[𝑥]⊗𝐴𝐵 → 𝜅(𝔯)⊗𝐴𝐵 → 𝐿
so that 𝜅(𝔯′) = 𝐿. Then

𝐴[𝑥]∧
𝔮 ⊗𝐴[𝑥] 𝐿 = 𝐴[𝑥]∧

𝔮 ⊗𝐴[𝑥] 𝐵[𝑥] ⊗𝐵[𝑥] 𝜅(𝔯′) = ∏ 𝐵[𝑥]∧
𝔮𝑖

⊗𝐵[𝑥] 𝜅(𝔯′)

where 𝔮1, … , 𝔮𝑡 are the primes of 𝐵[𝑥] lying over 𝔮, see Algebra, Lemma 7.90.17. Thus
we see that it suffices to prove the rings 𝐵[𝑥]∧

𝔮𝑖
⊗𝐵[𝑥] 𝜅(𝔯′) are regular. This reduces us to

showing that 𝐴[𝑥]∧
𝔮 ⊗𝐴[𝑥] 𝜅(𝔯) is regular in the special case that 𝐾 = 𝜅(𝔯).

Assume 𝐾 = 𝜅(𝔯). In this case we see that 𝔯𝐾[𝑥] is generated by 𝑥 − 𝑓 for some 𝑓 ∈ 𝐾 and
𝐴[𝑥]∧

𝔮 ⊗𝐴[𝑥] 𝜅(𝔯) = (𝐴[𝑥]∧
𝔮 ⊗𝐴 𝐾)/(𝑥 − 𝑓)

The derivation 𝐷 = d/d𝑥 of 𝐴[𝑥] extends to 𝐾[𝑥] and maps 𝑥 − 𝑓 to a unit of 𝐾[𝑥].
Moreover 𝐷 extends to 𝐴[𝑥]∧

𝔮 ⊗𝐴 𝐾 by Lemma 12.36.1. As 𝐴 → 𝐴[𝑥]∧
𝔮 is formally smooth

(see Lemmas 12.28.2 and 12.28.4) the ring 𝐴[𝑥]∧
𝔮 ⊗𝐴 𝐾 is regular by Proposition 12.37.2

(the arguments of the proof of that proposition simplify significantly in this particular case).
We conclude by Lemma 12.36.2. �

Proposition 12.38.9. Let 𝑅 be a G-ring. If 𝑅 → 𝑆 is essentially of finite type then 𝑆 is a
G-ring.

Proof. Since being a G-ring is a property of the local rings it is clear that a localization of a
G-ring is a G-ring. Conversely, if every localization at a prime is a G-ring, then the ring is
a G-ring. Thus it suffices to show that 𝑆𝔮 is a G-ring for every finite type 𝑅-algebra 𝑆 and
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every prime 𝔮 of 𝑆. Writing 𝑆 as a quotient of 𝑅[𝑥1, … , 𝑥𝑛] we see from Lemma 12.38.3
that it suffices to prove that 𝑅[𝑥1, … , 𝑥𝑛] is a G-ring. By induction on 𝑛 it suffices to prove
that 𝑅[𝑥] is a G-ring. Let 𝔮 ⊂ 𝑅[𝑥] be a maximal ideal. By Lemma 12.38.7 it suffices to
show that

𝑅[𝑥]𝔮 ⟶ 𝑅[𝑥]∧
𝔮

is regular. If 𝔮 lies over 𝔭 ⊂ 𝑅, then we may replace 𝑅 by 𝑅𝔭. Hence we may assume that
𝑅 is a Noetherian local G-ring with maximal ideal 𝔪 and that 𝔮 ⊂ 𝑅[𝑥] lies over 𝔪. Note
that there is a unique prime 𝔮′ ⊂ 𝑅∧[𝑥] lying over 𝔮. Consider the diagram

𝑅[𝑥]∧
𝔮

// (𝑅∧[𝑥]𝔮′)∧

𝑅[𝑥]𝔮
//

OO

𝑅∧[𝑥]𝔮′

OO

Since 𝑅 is a G-ring the lower horizontal arrow is regular (as a localization of a base change
of the regular ring map 𝑅 → 𝑅∧). Suppose we can prove the right vertical arrow is regular.
Then it follows that the composition 𝑅[𝑥]𝔮 → (𝑅∧[𝑥]𝔮′)∧ is regular, and hence the left
vertical arrow is regular by Lemma 12.31.6. Hence we see that we may assume 𝑅 is a
Noetherian complete local ring and 𝔮 a prime lying over the maximal ideal of 𝑅.

Let 𝑅 be a Noetherian complete local ring and let 𝔮 ⊂ 𝑅[𝑥] be a maximal ideal lying over
the maximal ideal of 𝑅. Let 𝔯 ⊂ 𝔮 be a prime ideal. We want to show that 𝑅[𝑥]∧

𝔮 ⊗𝑅[𝑥] 𝜅(𝔯)
is a geometrically regular algebra over 𝜅(𝔯). Set 𝔭 = 𝑅 ∩ 𝔯. Then we can replace 𝑅 by 𝑅/𝔭
and 𝔮 and 𝔯 by their images in 𝑅/𝔭[𝑥], see Lemma 12.38.2. Hence we may assume that 𝑅
is a domain and that 𝔯 ∩ 𝑅 = (0).

By Algebra, Lemma 7.143.10 we can find 𝑅0 ⊂ 𝑅 which is regular and such that 𝑅 is
finite over 𝑅0. Applying Lemma 12.38.3 we see that it suffices to prove 𝑅[𝑥]∧

𝔮 ⊗𝑅[𝑥] 𝜅(𝔯)
is geometrically regular over 𝜅(𝑟) when, in addition to the above, 𝑅 is a regular complete
local ring.

Now 𝑅 is a regular complete local ring, we have 𝔮 ⊂ 𝔯 ⊂ 𝑅[𝑥], we have (0) = 𝑅 ∩ 𝔯 and
𝔮 is a maximal ideal lying over the maximal ideal of 𝑅. Since 𝑅 is regular the ring 𝑅[𝑥]
is regular (Algebra, Lemma 7.145.8). Hence the localization 𝑅[𝑥]𝔮 is regular. Hence the
completions 𝑅[𝑥]∧

𝔮 are regular, see Lemma 12.33.4. Hence the fibre 𝑅[𝑥]∧
𝔮 ⊗𝑅[𝑥] 𝜅(𝔯) is,

as a localization of 𝑅[𝑥]∧
𝔮 , also regular. Thus we are done if the characteristic of 𝑓.𝑓.(𝑅) is

0.

If the characteristic of 𝑅 is positive, then 𝑅 = 𝑘[[𝑥1, … , 𝑥𝑛]]. In this case we split the
argument in two subcases:

(1) The case 𝔯 = (0). The result is a direct consequence of Lemma 12.38.5.
(2) The case 𝔯≠(0). This is Lemma 12.38.8.

�

Remark 12.38.10. Let 𝑅 be a G-ring and let 𝐼 ⊂ 𝑅 be an ideal. In general it is not the case
that the 𝐼-adic completion 𝑅∧ is a G-ring. An example was given by Nishimura in [Nis81].
A generalization and, in some sense, clarification of this example can be found in the last
section of [Dum00].

Proposition 12.38.11. The following types of rings are G-rings:
(1) fields,
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(2) Noetherian complete local rings,
(3) 𝐙,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. For fields, 𝐙 and Dedekind domains of characteristic zero this follows immediately
from the definition and the fact that the completion of a discrete valuation ring is a discrete
valuation ring. A Noetherian complete local ring is a G-ring by Proposition 12.38.6. The
statement on finite type overrings is Proposition 12.38.9. �

12.39. Excellent rings

In this section we discuss Grothendieck's notion of excellent rings. For the definitions of
G-rings, J-2 rings, and universally catenary rings we refer to Definition 12.38.1, Definition
12.35.1, and Algebra, Definition 7.97.5.

Definition 12.39.1. Let 𝑅 be a ring.
(1) We say 𝑅 is quasi-excellent if 𝑅 is Noetherian, a G-ring, and J-2.
(2) We say 𝑅 is excellent if 𝑅 is quasi-excellent and universally catenary.

Thus a Noetherian ring is quasi-excellent if it has geometrically regular formal fibres and
if any finite type algebra over it has closed singular set. For such a ring to be excellent we
require in addition that there exists (locally) a good dimension function.

Lemma 12.39.2. Any localization of a finite type ring over a (quasi-)excellent ring is
(quasi-)excellent.

Proof. For finite type algebras this follows from the definitions for the properties J-2 and
universally catenary. For G-rings, see Proposition 12.38.9. We omit the proof that local-
ization preserves (quasi-)excellency. �

Lemma 12.39.3. A quasi-excellent ring is Nagata.

Proof. Let 𝑅 be quasi-excellent. Using that a finite type algebra over 𝑅 is quasi-excellent
(Lemma 12.39.2) we see that it suffices to show that any quasi-excellent domain is N-1, see
Algebra, Lemma 7.144.17. Applying Algebra, Lemma 7.144.29 (and using that a quasi-
excellent ring is J-2) we reduce to showing that a quasi-excellent local domain 𝑅 is N-1.
As 𝑅 → 𝑅∧ is regular we see that 𝑅∧ is reduced by Lemma 12.32.1. In other words, 𝑅 is
analytically unramified. Hence 𝑅 is N-1 by Algebra, Lemma 7.144.24. �

Proposition 12.39.4. The following types of rings are excellent:
(1) fields,
(2) Noetherian complete local rings,
(3) 𝐙,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. See Propositions 12.38.11 and 12.36.6 to see that these rings are G-rings and have
J-2. Any Cohen-Macaulay ring is universally catenary (in particular fields, Dedekind rings,
andmore generally regular rings are universally catenary). Via the Cohen structure theorem
we see that complete local rings are universally catenary, see Algebra, Remark 7.143.9. �
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12.40. Pseudo-coherent modules

Suppose that 𝑅 is a ring. Recall that an 𝑅-module 𝑀 is of finite type if there exists a sur-
jection 𝑅⊕𝑎 → 𝑀 and of finite presentation if there exists a presentation 𝑅⊕𝑎1 → 𝑅⊕𝑎0 →
𝑀 → 0. Similarly, we can consider those 𝑅-modules for which there exists a length 𝑛
resolution

(12.40.0.1) 𝑅⊕𝑎𝑛 → 𝑅⊕𝑎𝑛−1 → … → 𝑅⊕𝑎0 → 𝑀 → 0

by finite free 𝑅-modules. A module is called pseudo-coherent of we can find such a reso-
lution for every 𝑛. Here is the formal definition.

Definition 12.40.1. Let 𝑅 be a ring. Denote 𝐷(𝑅) its derived category. Let 𝑚 ∈ 𝐙.
(1) An object 𝐾• of 𝐷(𝑅) is 𝑚-pseudo-coherent if there exists a bounded complex

𝐸• of finite free 𝑅-modules and a morphism 𝛼 ∶ 𝐸• → 𝐾• such that 𝐻𝑖(𝛼) is an
isomorphism for 𝑖 > 𝑚 and 𝐻𝑚(𝛼) is surjective.

(2) An object 𝐾• of 𝐷(𝑅) is pseudo-coherent if it is quasi-isomorphic to a bounded
above complex of finite free 𝑅-modules.

(3) An 𝑅-module 𝑀 is called 𝑚-pseudo-coherent if if 𝑀[0] is an 𝑚-pseudo-coherent
object of 𝐷(𝑅).

(4) An 𝑅-module 𝑀 is called pseudo-coherent5 if 𝑀[0] is a pseudo-coherent object
of 𝐷(𝑅).

As usual we apply this terminology also to complexes of 𝑅-modules. Since any morphism
𝐸• → 𝐾• in 𝐷(𝑅) is represented by an actual map of complexes, see Derived Categories,
Lemma 11.18.8, there is no ambiguity. It turns out that 𝐾• is pseudo-coherent if and only if
𝐾• is 𝑚-pseudo-coherent for all 𝑚 ∈ 𝐙, see Lemma 12.40.5. Also, if the ring is Noetherian
the condition can be understood as a finite generation condition on the cohomology, see
Lemma 12.40.16. Let us first relate this to the informal discussion above.

Lemma 12.40.2. Let 𝑅 be a ring and 𝑚 ∈ 𝐙. Let (𝐾•, 𝐿•, 𝑀•, 𝑓, 𝑔, ℎ) be a distinguished
triangle in 𝐷(𝑅).

(1) If𝐾• is (𝑚+1)-pseudo-coherent and𝐿• is𝑚-pseudo-coherent then𝑀• is𝑚-pseudo-
coherent.

(2) If 𝐾•, 𝑀• are 𝑚-pseudo-coherent, then 𝐿• is 𝑚-pseudo-coherent.
(3) If 𝐿• is (𝑚 + 1)-pseudo-coherent and 𝑀• is 𝑚-pseudo-coherent, then 𝐾• is (𝑚 +

1)-pseudo-coherent.

Proof. Proof of (1). Choose 𝛼 ∶ 𝑃• → 𝐾• with 𝑃• a bounded complex of finite free
modules such that 𝐻𝑖(𝛼) is an isomorphism for 𝑖 > 𝑚 + 1 and surjective for 𝑖 = 𝑚 + 1. We
may replace 𝑃• by 𝜎≥𝑚+1𝑃• and hence we may assume that 𝑃𝑖 = 0 for 𝑖 < 𝑚 + 1. Choose
𝛽 ∶ 𝐸• → 𝐿• with 𝐸• a bounded complex of finite free modules such that 𝐻𝑖(𝛽) is an
isomorphism for 𝑖 > 𝑚 and surjective for 𝑖 = 𝑚. By Derived Categories, Lemma 11.18.11
we can find a map 𝛼 ∶ 𝑃• → 𝐸• such that the diagram

𝐾• // 𝐿•

𝑃•

OO

𝛼 // 𝐸•

OO

5This clashes with what is meant by a pseudo-coherent module in [Bou61].
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is commutative in 𝐷(𝑅). The cone 𝐶(𝛼)• is a bounded complex of finite free 𝑅-modules,
and the commutativity of the diagram implies that there exists a morphism of distinguished
triangles

(𝑃•, 𝐸•, 𝐶(𝛼)•) ⟶ (𝐾•, 𝐿•, 𝑀•).
It follows from the inducedmap on long exact cohomology sequences and Homology, Lem-
mas 10.3.24 and 10.3.25 that 𝐶(𝛼)• → 𝑀• induces an isomorpism on cohomology in de-
grees > 𝑚 and a surjection in degree 𝑚. Hence 𝑀• is 𝑚-pseudo-coherent.
Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. �

Lemma 12.40.3. Let 𝑅 be a ring. Let 𝐾• be a complex of 𝑅-modules. Let 𝑚 ∈ 𝐙.
(1) If 𝐾• is 𝑚-pseudo-coherent and 𝐻𝑖(𝐾•) = 0 for 𝑖 > 𝑚, then 𝐻𝑚(𝐾•) is a finite

type 𝑅-module.
(2) If 𝐾• is 𝑚-pseudo-coherent and 𝐻𝑖(𝐾•) = 0 for 𝑖 > 𝑚 + 1, then 𝐻𝑚+1(𝐾•) is a

finitely presented 𝑅-module.

Proof. Proof of (1). Choose a bounded complex 𝐸• of finite projective 𝑅-modules and a
map 𝛼 ∶ 𝐸• → 𝐾• which induces an isomorphism on cohomology in degrees > 𝑚 and a
surjection in degree 𝑚. It is clear that it suffices to prove the result for 𝐸•. Let 𝑛 be the
largest integer such that 𝐸𝑛≠0. If 𝑛 = 𝑚, then the result is clear. If 𝑛 > 𝑚, then 𝐸𝑛−1 → 𝐸𝑛

is surjective as 𝐻𝑛(𝐸•) = 0. As 𝐸𝑛 is finite projective we see that 𝐸𝑛−1 = 𝐸′ ⊕ 𝐸𝑛. Hence
it suffices to prove the result for the complex (𝐸′)• which is the same as 𝐸• except has 𝐸′

in degree 𝑛 − 1 and 0 in degree 𝑛. We win by induction on 𝑛.
Proof of (2). Choose a bounded complex 𝐸• of finite projective 𝑅-modules and a map 𝛼 ∶
𝐸• → 𝐾• which induces an isomorphism on cohomology in degrees > 𝑚 and a surjection in
degree 𝑚. As in the proof of (1) we can reduce to the case that 𝐸𝑖 = 0 for 𝑖 > 𝑚+1. Then we
see that 𝐻𝑚+1(𝐾•) ≅ 𝐻𝑚+1(𝐸•) = Coker(𝐸𝑚 → 𝐸𝑚+1) which is of finite presentation. �

Lemma 12.40.4. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Then
(1) 𝑀 is 0-pseudo-coherent if and only if 𝑀 is a finite type 𝑅-module,
(2) 𝑀 is (−1)-pseudo-coherent if and only if 𝑀 is a finitely presented 𝑅-module,
(3) 𝑀 is (−𝑑)-pseudo-coherent if and only if there exists a resolution

𝑅⊕𝑎𝑑 → 𝑅⊕𝑎𝑑−1 → … → 𝑅⊕𝑎0 → 𝑀 → 0
of length 𝑑, and

(4) 𝑀 is pseudo-coherent if and only if there exists an infinite resolution

… → 𝑅⊕𝑎1 → 𝑅⊕𝑎0 → 𝑀 → 0
by finite free 𝑅-modules.

Proof. If 𝑀 is of finite type (resp. of finite presentation), then 𝑀 is 0-pseudo-coherent
(resp. (−1)-pseudo-coherent) as follows from the discussion preceding Definition 12.40.1.
Conversely, if 𝑀 is 0-pseudo-coherent, then 𝑀 = 𝐻0(𝑀[0]) is of finite type by Lemma
12.40.3. If 𝑀 is (−1)-pseudo-coherent, then it is 0-pseudo-coherent hence of finite type.
Choose a surjection 𝑅⊕𝑎 → 𝑀 and denote 𝐾 = Ker(𝑅⊕𝑎 → 𝑀). By Lemma 12.40.2 we
see that 𝐾 is 0-pseudo-coherent, hence of finite type, whence 𝑀 is of finite presentation.
To prove the third and fourth statement use induction and an argument similar to the above
(details omitted). �

Lemma 12.40.5. Let 𝑅 be a ring. Let 𝐾• be a complex of 𝑅-modules. The following are
equivalent
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(1) 𝐾• is pseudo-coherent,
(2) 𝐾• is 𝑚-pseudo-coherent for every 𝑚 ∈ 𝐙, and
(3) 𝐾• is quasi-isomorphic to a bounded above complex of finite projective𝑅-modules.

Proof. We see that (1) ⇒ (3) as a finite free module is a finite projective 𝑅-module. Con-
versely, suppose 𝑃• is a bounded above complex of finite projective 𝑅-modules. Say 𝑃𝑖 = 0
for 𝑖 > 𝑛0. We choose a direct sum decompositions 𝐹𝑛0 = 𝑃𝑛0 ⊕ 𝐶𝑛0 with 𝐹𝑛0 a finite free
𝑅-module, and inductively

𝐹𝑛−1 = 𝑃𝑛−1 ⊕ 𝐶𝑛 ⊕ 𝐶𝑛−1

for 𝑛 ≤ 𝑛0 with 𝐹𝑛0 a finite free 𝑅-module. As a complex 𝐹• has maps 𝐹𝑛−1 → 𝐹𝑛 which
agree with 𝑃𝑛−1 → 𝑃𝑛, induce the identity 𝐶𝑛 → 𝐶𝑛, and are zero on 𝐶𝑛−1. The map
𝐹• → 𝑃• is a quasi-isomorphism (even a homotopy equivalence) and hence (3) implies (1).
Assume (1). Let 𝐸• be a bounded above complex of finite free 𝑅-modules and let 𝐸• → 𝐾•

be a quasi-isomorphism. Then the induced maps 𝜎≥𝑚𝐸• → 𝐾• from the stupid truncation
of 𝐸• to 𝐾• show that 𝐾• is 𝑚-pseudo-coherent. Hence (1) implies (2).
Assume (2). We first apply (2) for 𝑛 = 0 to obtain a map of complexes 𝛼 ∶ 𝐹• → 𝐾•

where 𝐹• is bounded above, consists of finite free 𝑅-modules and such that 𝐻𝑖(𝛼) is an
isomorphism for 𝑖 > 0 and surjective for 𝑖 = 0. Note that these conditions remain satisfied
after replacing 𝐹• by 𝜎≥0𝐹•. Picture

𝐹0 //

𝛼
��

𝐹1

𝛼
��

// …

𝐾−1 // 𝐾0 // 𝐾1 // …

By induction on 𝑛 < 0 we are going to extend 𝐹• to a complex 𝐹𝑛 → 𝐹𝑛+1 → … → 𝐹−1 →
𝐹0 → … of finite free 𝑅-modules and extend 𝛼 such that 𝐻𝑖(𝛼) is an isomorphism for 𝑖 > 𝑛
and surjective for 𝑖 = 𝑛. By shifting it suffices to prove the induction step for 𝑛 = −1.
By Lemma 12.40.3 the kernel of 𝐻0(𝐹•) = Ker(𝑑0

𝐹) → 𝐻0(𝐾•) is a finitely generated
𝑅-module. Hence we can choose a finite free 𝑅-module 𝐹−1 and a map 𝑑−1

𝐹 ∶ 𝐹−1 → 𝐹0

whose image is this kernel. Then 𝛼(Im(𝑑−1
𝐹 )) ⊂ Im(𝑑−1

𝐾 ) and as 𝐹−1 is projective we can a
lift 𝛼 ∶ 𝐹−1 → 𝐾−1 fitting into the diagram

𝐹−1

��

// 𝐹0 //

𝛼
��

𝐹1

𝛼
��

// …

𝐾−1 // 𝐾0 // 𝐾1 // …

By Lemma 12.40.3 the cokernel of 𝐻−1(𝐹•) → 𝐻−1(𝐾•) is a finitely generated 𝑅-module.
Hence we can add a finite free summand to 𝐹−1 which is annihilated by 𝑑−1

𝐹 but via 𝛼 maps
to generators of this cokernel. This proves the lemma. �

Lemma 12.40.6. Let 𝑅 be a ring. Let (𝐾•, 𝐿•, 𝑀•, 𝑓, 𝑔, ℎ) be a distinguished triangle in
𝐷(𝑅). If two out of three of 𝐾•, 𝐿•, 𝑀• are pseudo-coherent then the third is also pseudo-
coherent.

Proof. Combine Lemmas 12.40.2 and 12.40.5. �

Lemma 12.40.7. Let 𝑅 be a ring. Let 𝐾• be a complex of 𝑅-modules. Let 𝑚 ∈ 𝐙.
(1) If 𝐻𝑖(𝐾•) = 0 for all 𝑖 ≥ 𝑚, then 𝐾• is 𝑚-pseudo-coherent.
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(2) If 𝐻𝑖(𝐾•) = 0 for 𝑖 > 𝑚 and 𝐻𝑚(𝐾•) is a finite 𝑅-module, then 𝐾• is 𝑚-pseudo-
coherent.

(3) If 𝐻𝑖(𝐾•) = 0 for 𝑖 > 𝑚 + 1, the module 𝐻𝑚+1(𝐾•) is of finite presentation, and
𝐻𝑚(𝐾•) is of finite type, then 𝐾• is 𝑚-pseudo-coherent.

Proof. It suffices to prove (3). Set 𝑀 = 𝐻𝑚+1(𝐾•). Note that 𝜏≥𝑚+1𝐾• is quasi-isomorphic
to 𝑀[−𝑚 − 1]. By Lemma 12.40.4 we see that 𝑀[−𝑚 − 1] is 𝑚-pseudo-coherent. Since
we have the distinguished triangle

(𝜏≤𝑚𝐾•, 𝐾•, 𝜏≥𝑚+1𝐾•)

by Lemma 12.40.2 it suffices to prove that 𝜏≤𝑚𝐾• is pseudo-coherent. By assumption
𝐻𝑚(𝜏≤𝑚𝐾•) is a finite type 𝑅-module. Hence we can find a finite free 𝑅-module 𝐸 and
a map 𝐸 → Ker(𝑑𝑚

𝐾) such that the composition 𝐸 → Ker(𝑑𝑚
𝐾) → 𝐻𝑚(𝜏≤𝑚𝐾•) is surjective.

Then 𝐸[−𝑚] → 𝜏≤𝑚𝐾• witnesses the fact that 𝜏≤𝑚𝐾• is 𝑚-pseudo-coherent. �

Lemma 12.40.8. Let 𝑅 be a ring. Let 𝑚 ∈ 𝐙. If 𝐾• ⊕ 𝐿• is 𝑚-pseudo-coherent (resp.
pseudo-coherent) so are 𝐾• and 𝐿•.

Proof. In this proof we drop the superscript •. Assume that 𝐾 ⊕ 𝐿 is 𝑚-pseudo-coherent.
It is clear that 𝐾, 𝐿 ∈ 𝐷−(𝑅). Note that there is a distinguished triangle

(𝐾 ⊕ 𝐿, 𝐾 ⊕ 𝐿, 𝐾 ⊕ 𝐿[1]) = (𝐾, 𝐾, 0) ⊕ (𝐿, 𝐿, 𝐿 ⊕ 𝐿[1])

see Derived Categories, Lemma 11.4.8. By Lemma 12.40.2 we see that 𝐿 ⊕ 𝐿[1] is
𝑚-pseudo-coherent. Hence also 𝐿[1] ⊕ 𝐿[2] is 𝑚-pseudo-coherent. By induction 𝐿[𝑛] ⊕
𝐿[𝑛 + 1] is 𝑚-pseudo-coherent. By Lemma 12.40.7 we see that 𝐿[𝑛] is 𝑚-pseudo-coherent
for large 𝑛. Hence working backwards, using the distinguished triangles

(𝐿[𝑛], 𝐿[𝑛] ⊕ 𝐿[𝑛 − 1], 𝐿[𝑛 − 1])

we conclude that 𝐿[𝑛], 𝐿[𝑛 − 1], … , 𝐿 are 𝑚-pseudo-coherent as desired. The pseudo-
coherent case follows from this and Lemma 12.40.5. �

Lemma 12.40.9. Let 𝑅 be a ring. Let 𝑚 ∈ 𝐙. Let 𝐾• be a bounded above complex of
𝑅-modules such that 𝐾𝑖 is (𝑚−𝑖)-pseudo-coherent for all 𝑖. Then 𝐾• is 𝑚-pseudo-coherent.
In particular, if 𝐾• is a bounded above complex of pseudo-coherent 𝑅-modules, then 𝐾• is
pseudo-coherent.

Proof. Wemay replace𝐾• by 𝜎≥𝑚−1𝐾• (for example) and hence assume that𝐾• is bounded.
Then the complex 𝐾• is 𝑚-pseudo-coherent as each 𝐾𝑖[−𝑖] is 𝑚-pseudo-coherent by induc-
tion on the length of the complex: use Lemma 12.40.6 and the stupid truncations. For the
final statement, it suffices to prove that 𝐾• is 𝑚-pseudo-coherent for all 𝑚 ∈ 𝐙, see Lemma
12.40.5. This follows from the first part. �

Lemma 12.40.10. Let 𝑅 be a ring. Let 𝑚 ∈ 𝐙. Let 𝐾• ∈ 𝐷−(𝑅) such that 𝐻𝑖(𝐾•) is
(𝑚 − 𝑖)-pseudo-coherent (resp. pseudo-coherent) for all 𝑖. Then 𝐾• is 𝑚-pseudo-coherent
(resp. pseudo-coherent).

Proof. Assume 𝐾• is an object of 𝐷−(𝑅) such that each 𝐻𝑖(𝐾•) is (𝑚−𝑖)-pseudo-coherent.
Let 𝑛 be the largest integer such that 𝐻𝑛(𝐾•) is nonzero. We will prove the lemma by
induction on 𝑛. If 𝑛 < 𝑚, then 𝐾• is 𝑚-pseudo-coherent by Lemma 12.40.7. If 𝑛 ≥ 𝑚, then
we have the distinguished triangle

(𝜏≤𝑛−1𝐾•, 𝐾•, 𝐻𝑛(𝐾•)[−𝑛])
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Since 𝐻𝑛(𝐾•)[−𝑛] is 𝑚-pseudo-coherent by assumption, we can use Lemma 12.40.2 to see
that it suffices to prove that 𝜏≤𝑛−1𝐾• is 𝑚-pseudo-coherent. By induction on 𝑛 we win. (The
pseudo-coherent case follows from this and Lemma 12.40.5.) �

Lemma 12.40.11. Let 𝐴 → 𝐵 be a ring map. Assume that 𝐵 is pseudo-coherent as an
𝐴-module. Let 𝐾• be a complex of 𝐵-modules. The following are equivalent

(1) 𝐾• is 𝑚-pseudo-coherent as a complex of 𝐵-modules, and
(2) 𝐾• is 𝑚-pseudo-coherent as a complex of 𝐴-modules.

The same equivalence holds for pseudo-coherence.

Proof. Assume (1). Choose a bounded complex of finite free 𝐵-modules 𝐸• and a map
𝛼 ∶ 𝐸• → 𝐾• which is an isomorphism on cohomology in degrees > 𝑚 and a surjection in
degree 𝑚. Consider the distinguished triangle (𝐸•, 𝐾•, 𝐶(𝛼)•). By Lemma 12.40.7 𝐶(𝛼)•

is 𝑚-pseudo-coherent as a complex of 𝐴-modules. Hence it suffices to prove that 𝐸• is
pseudo-coherent as a complex of 𝐴-modules, which follows from Lemma 12.40.9. The
pseudo-coherent case of (1) ⇒ (2) follows from this and Lemma 12.40.5.

Assume (2). Let 𝑛 be the largest integer such that 𝐻𝑛(𝐾•)≠0. We will prove that 𝐾• is
𝑚-pseudo-coherent as a complex of 𝐵-modules by induction on 𝑛 − 𝑚. The case 𝑛 < 𝑚
follows from Lemma 12.40.7. Choose a bounded complex of finite free 𝐴-modules 𝐸•

and a map 𝛼 ∶ 𝐸• → 𝐾• which is an isomorphism on cohomology in degrees > 𝑚 and a
surjection in degree 𝑚. Consider the induced map of complexes

𝛼 ⊗ 1 ∶ 𝐸• ⊗𝐴 𝐵 → 𝐾•.

Note that 𝐶(𝛼 ⊗ 1)• is acyclic in degrees ≥ 𝑛 as 𝐻𝑛(𝐸) → 𝐻𝑛(𝐸• ⊗𝐴 𝐵) → 𝐻𝑛(𝐾•) is
surjective by construction and since 𝐻𝑖(𝐸• ⊗𝐴 𝐵) = 0 for 𝑖 > 𝑛 by the spectral sequence
of Example 12.6.4. On the other hand, 𝐶(𝛼 ⊗ 1)• is 𝑚-pseudo-coherent as a complex of
𝐴-modules because both 𝐾• and 𝐸• ⊗𝐴 𝐵 (see Lemma 12.40.9) are so, see Lemma 12.40.2.
Hence by induction we see that 𝐶(𝛼⊗1)• is 𝑚-pseudo-coherent as a complex of 𝐵-modules.
Finally another application of Lemma 12.40.2 shows that 𝐾• is 𝑚-pseudo-coherent as a
complex of 𝐵-modules (as clearly 𝐸•⊗𝐴𝐵 is pseudo-coherent as a complex of 𝐵-modules).
The pseudo-coherent case of (2) ⇒ (1) follows from this and Lemma 12.40.5. �

Lemma 12.40.12. Let 𝐴 → 𝐵 be a ring map. Let 𝐾• be an 𝑚-pseudo-coherent (resp.
pseudo-coherent) complex of 𝐴-modules. Then 𝐾• ⊗𝐋

𝐴 𝐵 is an 𝑚-pseudo-coherent (resp.
pseudo-coherent) complex of 𝐵-modules.

Proof. First we note that the statement of the lemma makes sense as 𝐾• is bounded above
and hence 𝐾• ⊗𝐋

𝐴 𝐵 is defined by Equation (12.2.0.2). Having said this, choose a bounded
complex 𝐸• of finite free 𝐴-modules and 𝛼 ∶ 𝐸• → 𝐾• with 𝐻𝑖(𝛼) an isomorphism for
𝑖 > 𝑚 and surjective for 𝑖 = 𝑚. Then the cone 𝐶(𝛼)• is acyclic in degrees ≥ 𝑚. Since
− ⊗𝐋

𝐴 𝐵 is an exact functor we get a distinguished triangle

(𝐸• ⊗𝐋
𝐴 𝐵, 𝐾• ⊗𝐋

𝐴 𝐵, 𝐶(𝛼)• ⊗𝐋
𝐴 𝐵)

of complexes of 𝐵-modules. By the dual to Derived Categories, Lemma 11.16.1 we see
that 𝐻𝑖(𝐶(𝛼)• ⊗𝐋

𝐴 𝐵) = 0 for 𝑖 ≥ 𝑚. Since 𝐸• is a complex of projective 𝑅-modules we see
that 𝐸• ⊗𝐋

𝐴 𝐵 = 𝐸• ⊗𝐴 𝐵 and hence

𝐸• ⊗𝐴 𝐵 ⟶ 𝐾• ⊗𝐋
𝐴 𝐵
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is a morphism of complexes of 𝐵-modules that witnesses the fact that 𝐾•⊗𝐋
𝐴𝐵 is 𝑚-pseudo-

coherent. The case of pseudo-coherent complexes follows from the case of 𝑚-pseudo-
coherent complexes via Lemma 12.40.5. �

Lemma 12.40.13. Let 𝐴 → 𝐵 be a flat ring map. Let 𝑀 be an 𝑚-pseudo-coherent
(resp. pseudo-coherent) 𝐴-module. Then 𝑀 ⊗𝐴 𝐵 is an 𝑚-pseudo-coherent (resp. pseudo-
coherent) 𝐵-module.

Proof. Immediate consequence of Lemma 12.40.12 and the fact that 𝑀 ⊗𝐋
𝐴 𝐵 = 𝑀 ⊗𝐴 𝐵

because 𝐵 is flat over 𝐴. �

The following lemma also follows from the stronger Lemma 12.40.14.

Lemma 12.40.14. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑟 ∈ 𝑅 be elements which generate the
unit ideal. Let 𝑚 ∈ 𝐙. Let 𝐾• be a complex of 𝑅-modules. If for each 𝑖 the complex
𝐾• ⊗𝑅 𝑅𝑓𝑖

is 𝑚-pseudo-coherent (resp. pseudo-coherent), then 𝐾• is 𝑚-pseudo-coherent
(resp. pseudo-coherent).

Proof. We will use without further mention that − ⊗𝑅 𝑅𝑓𝑖
is an exact functor and that

therefore
𝐻𝑖(𝐾•)𝑓𝑖

= 𝐻𝑖(𝐾•) ⊗𝑅 𝑅𝑓𝑖
= 𝐻𝑖(𝐾• ⊗𝑅 𝑅𝑓𝑖

).
Assume 𝐾• ⊗𝑅 𝑅𝑓𝑖

is 𝑚-pseudo-coherent for 𝑖 = 1, … , 𝑟. Let 𝑛 ∈ 𝐙 be the largest integer
such that 𝐻𝑛(𝐾• ⊗𝑅 𝑅𝑓𝑖

) is nonzero for some 𝑖. This implies in particular that 𝐻𝑖(𝐾•) = 0
for 𝑖 > 𝑛 (and that 𝐻𝑛(𝐾•)≠0) see Algebra, Lemma 7.21.2. We will prove the lemma by
induction on 𝑛 − 𝑚. If 𝑛 < 𝑚, then the lemma is true by Lemma 12.40.7. If 𝑛 ≥ 𝑚, then
𝐻𝑛(𝐾•)𝑓𝑖

is a finite 𝑅𝑓𝑖
-module for each 𝑖, see Lemma 12.40.3. Hence 𝐻𝑛(𝐾•) is a finite

𝑅-module, see Algebra, Lemma 7.21.2. Choose a finite free 𝑅-module 𝐸 and a surjection
𝐸 → 𝐻𝑛(𝐾•). As 𝐸 is projective we can lift this to a map of complexes 𝛼 ∶ 𝐸[−𝑛] → 𝐾•.
Then the cone 𝐶(𝛼)• has vanishing cohomology in degrees ≥ 𝑛. On the other hand, the
complexes 𝐶(𝛼)• ⊗𝑅 𝑅𝑓𝑖

are 𝑚-pseudo-coherent for each 𝑖, see Lemma 12.40.2. Hence by
induction we see that 𝐶(𝛼)• is 𝑚-pseudo-coherent as a complex of 𝑅-modules. Applying
Lemma 12.40.2 once more we conclude. �

Lemma 12.40.15. Let 𝑅 be a ring. Let 𝑚 ∈ 𝐙. Let 𝐾• be a complex of 𝑅-modules. Let
𝑅 → 𝑅′ be a faithfully flat ring map. If the complex 𝐾• ⊗𝑅 𝑅′ is 𝑚-pseudo-coherent (resp.
pseudo-coherent), then 𝐾• is 𝑚-pseudo-coherent (resp. pseudo-coherent).

Proof. We will use without further mention that − ⊗𝑅 𝑅′ is an exact functor and that
therefore

𝐻𝑖(𝐾•) ⊗𝑅 𝑅′ = 𝐻𝑖(𝐾• ⊗𝑅 𝑅′).
Assume 𝐾• ⊗𝑅 𝑅′ is 𝑚-pseudo-coherent. Let 𝑛 ∈ 𝐙 be the largest integer such that 𝐻𝑛(𝐾•)
is nonzero; then 𝑛 is also the largest integer such that 𝐻𝑛(𝐾• ⊗𝑅 𝑅′) is nonzero. We will
prove the lemma by induction on 𝑛 − 𝑚. If 𝑛 < 𝑚, then the lemma is true by Lemma
12.40.7. If 𝑛 ≥ 𝑚, then 𝐻𝑛(𝐾•) ⊗𝑅 𝑅′ is a finite 𝑅′-module, see Lemma 12.40.3. Hence
𝐻𝑛(𝐾•) is a finite 𝑅-module, see Algebra, Lemma 7.77.2. Choose a finite free 𝑅-module
𝐸 and a surjection 𝐸 → 𝐻𝑛(𝐾•). As 𝐸 is projective we can lift this to a map of complexes
𝛼 ∶ 𝐸[−𝑛] → 𝐾•. Then the cone 𝐶(𝛼)• has vanishing cohomology in degrees ≥ 𝑛. On the
other hand, the complex 𝐶(𝛼)• ⊗𝑅 𝑅′ is 𝑚-pseudo-coherent, see Lemma 12.40.2. Hence by
induction we see that 𝐶(𝛼)• is 𝑚-pseudo-coherent as a complex of 𝑅-modules. Applying
Lemma 12.40.2 once more we conclude. �

Lemma 12.40.16. Let 𝑅 be a Noetherian ring. Then
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(1) A complex of 𝑅-modules 𝐾• is 𝑚-pseudo-coherent if and only if 𝐾• ∈ 𝐷−(𝑅)
and 𝐻𝑖(𝐾•) is a finite 𝑅-module for 𝑖 ≥ 𝑚.

(2) A complex of 𝑅-modules 𝐾• is pseudo-coherent if and only if 𝐾• ∈ 𝐷−(𝑅) and
𝐻𝑖(𝐾•) is a finite 𝑅-module for all 𝑖.

(3) An 𝑅-module is pseudo-coherent if and only if it is finite.

Proof. InAlgebra, Lemma 7.67.1we have seen that any finite𝑅-module is pseudo-coherent.
On the other hand, a pseudo-coherentmodule is finite, see Lemma 12.40.4. Hence (3) holds.
Suppose that 𝐾• is an 𝑚-pseudo-coherent complex. Then there exists a bounded complex
of finite free 𝑅-modules 𝐸• such that 𝐻𝑖(𝐾•) is isomorphic to 𝐻𝑖(𝐸•) for 𝑖 > 𝑚 and such
that 𝐻𝑚(𝐾•) is a quotient of 𝐻𝑚(𝐸•). Thus it is clear that each 𝐻𝑖(𝐾•), 𝑖 ≥ 𝑚 is a finite
module. The converse implication in (1) follows from Lemma 12.40.10 and part (3). Part
(2) follows from (1) and Lemma 12.40.5. �

12.41. Tor dimension

Instead of resolving by projective modules we can look at resolutions by flat modules. This
leads to the following concept.

Definition 12.41.1. Let 𝑅 be a ring. Denote 𝐷(𝑅) its derived category. Let 𝑎, 𝑏 ∈ 𝐙.
(1) An object 𝐾• of 𝐷(𝑅) has tor-amplitude in [𝑎, 𝑏] if 𝐻𝑖(𝐾• ⊗𝐋

𝑅 𝑀) = 0 for all
𝑅-modules 𝑀 and all 𝑖∉[𝑎, 𝑏].

(2) An object 𝐾• of 𝐷(𝑅) has finite tor dimension if it has tor-amplitude in [𝑎, 𝑏] for
some 𝑎, 𝑏.

(3) An 𝑅-module 𝑀 has tor dimension ≤ 𝑑 if if 𝑀[0] as an object of 𝐷(𝑅) has
tor-amplitude in [−𝑑, 0].

(4) An 𝑅-module 𝑀 has finite tor dimension if 𝑀[0] as an object of 𝐷(𝑅) has finite
tor dimension.

We observe that if 𝐾• has finite tor dimension, then 𝐾• ∈ 𝐷𝑏(𝑅).

Lemma 12.41.2. Let 𝑅 be a ring. Let 𝐾• be a bounded above complex of flat 𝑅-modules
with tor-amplitude in [𝑎, 𝑏]. Then Coker(𝑑𝑎−1

𝐾 ) is a flat 𝑅-module.

Proof. As 𝐾• is a bounded above complex of flat modules we see that 𝐾• ⊗𝑅 𝑀 = 𝐾• ⊗𝐋
𝑅

𝑀. Hence for every 𝑅-module 𝑀 the sequence

𝐾𝑎−2 ⊗𝑅 𝑀 → 𝐾𝑎−1 ⊗𝑅 𝑀 → 𝐾𝑎 ⊗𝑅 𝑀

is exact in the middle. Since 𝐾𝑎−2 → 𝐾𝑎−1 → 𝐾𝑎 → Coker(𝑑𝑎−1
𝐾 ) → 0 is a flat resolu-

tion this implies that Tor𝑅1 (Coker(𝑑𝑎−1
𝐾 ), 𝑀) = 0 for all 𝑅-modules 𝑀. This means that

Coker(𝑑𝑎−1
𝐾 ) is flat, see Algebra, Lemma 7.69.7. �

Lemma 12.41.3. Let 𝑅 be a ring. Let 𝐾• be an object of 𝐷(𝑅). Let 𝑎, 𝑏 ∈ 𝐙. The following
are equivalent

(1) 𝐾• has tor-amplitude in [𝑎, 𝑏].
(2) 𝐾• is quasi-isomorphic to a complex 𝐸• of flat 𝑅-modules with 𝐸𝑖 = 0 for

𝑖∉[𝑎, 𝑏].

Proof. If (2) holds, then we may compute 𝐾• ⊗𝐋
𝑅 𝑀 = 𝐸• ⊗𝑅 𝑀 and it is clear that (1)

holds. Assume that (1) holds. We may replace 𝐾• by a projective resolution. Let 𝑛 be the
largest integer such that 𝐾𝑛≠0. If 𝑛 > 𝑏, then 𝐾𝑛−1 → 𝐾𝑛 is surjective as 𝐻𝑛(𝐾•) = 0. As
𝐾𝑛 is projective we see that 𝐾𝑛−1 = 𝐾′ ⊕ 𝐾𝑛. Hence it suffices to prove the result for the
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complex (𝐾′)• which is the same as 𝐾• except has 𝐾′ in degree 𝑛 − 1 and 0 in degree 𝑛.
Thus, by induction on 𝑛, we reduce to the case that 𝐾• is a complex of projective 𝑅-modules
with 𝐾𝑖 = 0 for 𝑖 > 𝑏.

Set 𝐸• = 𝜏≥𝑎𝐾•. Everything is clear except that 𝐸𝑎 is flat which follows immediately from
Lemma 12.41.2 and the definitions. �

Lemma 12.41.4. Let 𝑅 be a ring and 𝑚 ∈ 𝐙. Let (𝐾•, 𝐿•, 𝑀•, 𝑓, 𝑔, ℎ) be a distinguished
triangle in 𝐷(𝑅). Let 𝑎, 𝑏 ∈ 𝐙.

(1) If 𝐾• has tor-amplitude in [𝑎 + 1, 𝑏 + 1] and 𝐿• has tor-amplitude in [𝑎, 𝑏] then
𝑀• has tor-amplitude in [𝑎, 𝑏].

(2) If 𝐾•, 𝑀• have tor-amplitude in [𝑎, 𝑏], then 𝐿• has tor-amplitude in [𝑎, 𝑏].
(3) If 𝐿• has tor-amplitude in [𝑎 + 1, 𝑏 + 1] and 𝑀• has tor-amplitude in [𝑎, 𝑏], then

𝐾• has tor-amplitude in [𝑎 + 1, 𝑏 + 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence associ-
ated to a distinguished triangle and the fact that − ⊗𝐋

𝑅 𝑀 preserves distinguished triangles.
The easiest one to prove is (2) and the others follow from it by translation. �

Lemma 12.41.5. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝑑 ≥ 0. The following are
equivalent

(1) 𝑀 has tor dimension ≤ 𝑑, and
(2) there exists a resolution

0 → 𝐹𝑑 → … → 𝐹1 → 𝐹0 → 𝑀 → 0

with 𝐹𝑖 a flat 𝑅-module.
In particular an 𝑅-module has tor dimension 0 if and only if it is a flat 𝑅-module.

Proof. Assume (2). Then the complex 𝐸• with 𝐸−𝑖 = 𝐹𝑖 is quasi-isomorphic to 𝑀. Hence
the Tor dimension of 𝑀 is at most 𝑑 by Lemma 12.41.3. Conversely, assume (1). Let
𝑃• → 𝑀 be a projective resolution of 𝑀. By Lemma 12.41.2 we see that 𝜏≥−𝑑𝑃• is a flat
resolution of 𝑀 of length 𝑑, i.e., (2) holds. �

Lemma 12.41.6. Let 𝑅 be a ring. Let 𝑎, 𝑏 ∈ 𝐙. If 𝐾• ⊕ 𝐿• has tor amplitude in [𝑎, 𝑏] so
do 𝐾• and 𝐿•.

Proof. Clear from the fact that the Tor functors are additive. �

Lemma 12.41.7. Let 𝑅 be a ring. Let 𝐾• be a bounded complex of 𝑅-modules such that
𝐾𝑖 has tor amplitude in [𝑎 − 𝑖, 𝑏 − 𝑖] for all 𝑖. Then 𝐾• has tor amplitude in [𝑎, 𝑏]. In
particular if 𝐾• is a finite complex of 𝑅-modules of finite tor dimension, then 𝐾• has finite
tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma 12.41.4 and
the stupid truncations. �

Lemma 12.41.8. Let 𝑅 be a ring. Let 𝑎, 𝑏 ∈ 𝐙. Let 𝐾• ∈ 𝐷𝑏(𝑅) such that 𝐻𝑖(𝐾•) has
tor amplitude in [𝑎 − 𝑖, 𝑏 − 𝑖] for all 𝑖. Then 𝐾• has tor amplitude in [𝑎, 𝑏]. In particular
if 𝐾• ∈ 𝐷−(𝑅) and all its cohomology groups have finite tor dimension then 𝐾• has finite
tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma 12.41.4 and
the canonical truncations. �
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Lemma 12.41.9. Let 𝐴 → 𝐵 be a ring map. Assume that 𝐵 is flat as an 𝐴-module. Let
𝐾• be a complex of 𝐵-modules. Let 𝑎, 𝑏 ∈ 𝐙. If 𝐾• as a complex of 𝐵-modules has tor
amplitude in [𝑎, 𝑏], then 𝐾• as a complex of 𝐴-modules has tor amplitude in [𝑎, 𝑏].

Proof. This is true because 𝐾• ⊗𝐋
𝐴 𝑀 = 𝐾• ⊗𝐋

𝐵 (𝑀 ⊗𝐴 𝐵) since any projective resolution
of 𝐾• as a complex of 𝐵-modules is a flat resolution of 𝐾• as a complex of 𝐴-modules and
can be used to compute 𝐾• ⊗𝐋

𝐴 𝑀. �

Lemma 12.41.10. Let 𝐴 → 𝐵 be a ring map. Assume that 𝐵 has tor dimension ≤ 𝑑
as an 𝐴-module. Let 𝐾• be a complex of 𝐵-modules. Let 𝑎, 𝑏 ∈ 𝐙. If 𝐾• as a complex of
𝐵-modules has tor amplitude in [𝑎, 𝑏], then𝐾• as a complex of𝐴-modules has tor amplitude
in [𝑎 − 𝑑, 𝑏].

Proof. Let 𝑀 be an 𝐴-module. Choose a free resolution 𝐹• → 𝑀. Then

𝐾• ⊗𝐋
𝐴 𝑀 = Tot(𝐾• ⊗𝐴 𝐹•) = Tot(𝐾• ⊗𝐵 (𝐹• ⊗𝐴 𝐵)) = 𝐾• ⊗𝐋

𝐵 (𝑀 ⊗𝐋
𝐴 𝐵).

By our assumption on 𝐵 as an 𝐴-module we see that 𝑀 ⊗𝐋
𝐴 𝐵 has cohomology only in

degrees −𝑑, −𝑑 + 1, … , 0. Because 𝐾• has tor amplitude in [𝑎, 𝑏] we see from the spectral
sequence in Example 12.6.4 that 𝐾• ⊗𝐋

𝐵 (𝑀 ⊗𝐋
𝐴 𝐵) has cohomology only in degrees [−𝑑 +

𝑎, 𝑏] as desired. �

Lemma 12.41.11. Let 𝐴 → 𝐵 be a ring map. Let 𝑎, 𝑏 ∈ 𝐙. Let 𝐾• be a complex of
𝐴-modules with tor amplitude in [𝑎, 𝑏]. Then 𝐾• ⊗𝐋

𝐴 𝐵 as a complex of 𝐵-modules has tor
amplitude in [𝑎, 𝑏].

Proof. By Lemma 12.41.3 we can find a quasi-isomorphism 𝐸• → 𝐾• where 𝐸• is a
complex of flat 𝐴-modules with 𝐸𝑖 = 0 for 𝑖∉[𝑎, 𝑏]. Then 𝐸• ⊗𝐴 𝐵 computes 𝐾• ⊗𝐋

𝐴 𝐵 by
construction and each 𝐸𝑖 ⊗𝐴 𝐵 is a flat 𝐵-module by Algebra, Lemma 7.35.6. Hence we
conclude by Lemma 12.41.3. �

Lemma 12.41.12. Let 𝐴 → 𝐵 be a flat ring map. Let 𝑑 ≥ 0. Let 𝑀 be an 𝐴-module of tor
dimension ≤ 𝑑. Then 𝑀 ⊗𝐴 𝐵 is a 𝐵-module of tor dimension ≤ 𝑑.

Proof. Immediate consequence of Lemma 12.41.11 and the fact that 𝑀 ⊗𝐋
𝐴 𝐵 = 𝑀 ⊗𝐴 𝐵

because 𝐵 is flat over 𝐴. �

Lemma 12.41.13. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑟 ∈ 𝑅 be elements which generate the unit
ideal. Let 𝑎, 𝑏 ∈ 𝐙. Let 𝐾• be a complex of 𝑅-modules. If for each 𝑖 the complex 𝐾• ⊗𝑅 𝑅𝑓𝑖
has tor amplitude in [𝑎, 𝑏], then 𝐾• has tor amplitude in [𝑎, 𝑏].

Proof. Note that − ⊗𝑅 𝑅𝑓𝑖
is an exact functor and that therefore

𝐻𝑖(𝐾•)𝑓𝑖
= 𝐻𝑖(𝐾•) ⊗𝑅 𝑅𝑓𝑖

= 𝐻𝑖(𝐾• ⊗𝑅 𝑅𝑓𝑖
).

and similarly for every 𝑅-module 𝑀 we have

𝐻𝑖(𝐾• ⊗𝐋
𝑅 𝑀)𝑓𝑖

= 𝐻𝑖(𝐾• ⊗𝐋
𝑅 𝑀) ⊗𝑅 𝑅𝑓𝑖

= 𝐻𝑖(𝐾• ⊗𝑅 𝑅𝑓𝑖
⊗𝐋

𝑅𝑓𝑖
𝑀𝑓𝑖

).

Hence the result follows from the fact that an 𝑅-module 𝑁 is zero if and only if 𝑁𝑓𝑖
is zero

for each 𝑖, see Algebra, Lemma 7.21.2. �

Lemma 12.41.14. Let 𝑅 be a ring. Let 𝑎, 𝑏 ∈ 𝐙. Let 𝐾• be a complex of 𝑅-modules. Let
𝑅 → 𝑅′ be a faithfully flat ring map. If the complex 𝐾• ⊗𝑅 𝑅′ has tor amplitude in [𝑎, 𝑏],
then 𝐾• has tor amplitude in [𝑎, 𝑏].
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Proof. Let 𝑀 be an 𝑅-module. Since 𝑅 → 𝑅′ is flat we see that
(𝑀 ⊗𝐋

𝑅 𝐾•) ⊗𝑅 𝑅′ = ((𝑀 ⊗𝑅 𝑅′) ⊗𝐋
𝑅′ (𝐾• ⊗𝑅 𝑅′)

and taking cohomology commuteswith tensoringwith𝑅′. Hence Tor𝑅𝑖 (𝑀, 𝐾•) = Tor𝑅
′

𝑖 (𝑀⊗𝑅
𝑅′, 𝐾•⊗𝑅𝑅′). Since 𝑅 → 𝑅′ is faithfully flat, the vanishing of Tor𝑅

′

𝑖 (𝑀⊗𝑅𝑅′, 𝐾•⊗𝑅𝑅′)
for 𝑖∉[𝑎, 𝑏] implies the same thing for Tor𝑅𝑖 (𝑀, 𝐾•). �

Lemma 12.41.15. Let 𝑅 be a ring of finite global dimension 𝑑. Then
(1) every module has finite tor dimension ≤ 𝑑,
(2) a complex of 𝑅-modules 𝐾• with 𝐻𝑖(𝐾•)≠0 only if 𝑖 ∈ [𝑎, 𝑏] has tor amplitude

in [𝑎 − 𝑑, 𝑏], and
(3) a complex of 𝑅-modules 𝐾• has finite tor dimension if and only if 𝐾• ∈ 𝐷𝑏(𝑅).

Proof. The assumption on 𝑅 means that every module has a finite projective resolution of
length at most 𝑑, in particular every module has finite tor dimension. The second statement
follows from Lemma 12.41.8 and the definitions. The third statement is a rephrasing of the
second. �

12.42. Perfect complexes

A perfect complex is a pseudo-coherent complex of finite tor dimension. But we can also
define the directly as follows.

Definition 12.42.1. Let 𝑅 be a ring. Denote 𝐷(𝑅) the derived category of the abelian
category of 𝑅-modules.

(1) An object 𝐾 of 𝐷(𝑅) is perfect if it is quasi-isomorphic to a bounded complex of
finite projective 𝑅-modules.

(2) An 𝑅-module 𝑀 is perfect if 𝑀[0] is a perfect object in 𝐷(𝑅).

Lemma 12.42.2. Let 𝐾• be an object of 𝐷(𝑅). The following are equivalent
(1) 𝐾• is perfect, and
(2) 𝐾• is pseudo-coherent and has finite tor dimension.

Proof. It is clear that (1) implies (2), see Lemmas 12.40.5 and 12.41.3. Assume (2).
Choose a bounded above complex 𝐹• of finite free 𝑅-modules and a quasi-isomorphism
𝐹• → 𝐾•. Assume that 𝐾• has tor-amplitude in [𝑎, 𝑏]. Set 𝐸• = 𝜏≥𝑎𝐹•. Note that 𝐸𝑖 is
finite free except 𝐸𝑎 which is a finitely presented 𝑅-module. By Lemma 12.41.2 𝐸𝑎 is flat.
Hence by Algebra, Lemma 7.72.2 we see that 𝐸𝑎 is finite projective. �

Lemma 12.42.3. Let 𝑀 be a module over a ring 𝑅. The following are equivalent
(1) 𝑀 is a perfect module, and
(2) there exists a resolution

0 → 𝐹𝑑 → … → 𝐹1 → 𝐹0 → 𝑀 → 0
with each 𝐹𝑖 a finite projective 𝑅-module.

Proof. Assume (2). Then the complex 𝐸• with 𝐸−𝑖 = 𝐹𝑖 is quasi-isomorphic to 𝑀[0].
Hence 𝑀 is perfect. Conversely, assume (1). By Lemmas 12.42.2 and 12.40.4 we can
find resolution 𝐸• → 𝑀 with 𝐸−𝑖 a finite free 𝑅-module. By Lemma 12.41.2 we see that
𝐹𝑑 = Coker(𝐸𝑑−1 → 𝐸𝑑) is flat for some 𝑑 sufficiently large. By Algebra, Lemma 7.72.2
we see that 𝐹𝑑 is finite projective. Hence

0 → 𝐹𝑑 → 𝐸−𝑑+1 → … → 𝐸0 → 𝑀 → 0
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is the desired resolution. �

Lemma 12.42.4. Let 𝑅 be a ring. Let (𝐾•, 𝐿•, 𝑀•, 𝑓, 𝑔, ℎ) be a distinguished triangle in
𝐷(𝑅). If two out of three of 𝐾•, 𝐿•, 𝑀• are perfect then the third is also perfect.

Proof. Combine Lemmas 12.42.2, 12.40.6, and 12.41.4. �

Lemma 12.42.5. Let 𝑅 be a ring. If 𝐾• ⊕ 𝐿• is perfect, then so are 𝐾• and 𝐿•.

Proof. Follows from Lemmas 12.42.2, 12.40.8, and 12.41.6. �

Lemma 12.42.6. Let 𝑅 be a ring. Let 𝐾• be a bounded complex of perfect 𝑅-modules.
Then 𝐾• is a perfect complex.

Proof. Follows by induction on the length of the finite complex: use Lemma 12.42.4 and
the stupid truncations. �

Lemma 12.42.7. Let 𝑅 be a ring. If 𝐾• ∈ 𝐷−(𝑅) and all its cohomology modules are
perfect, then 𝐾• is perfect.

Proof. Follows by induction on the length of the finite complex: use Lemma 12.42.4 and
the canonical truncations. �

Lemma 12.42.8. Let 𝐴 → 𝐵 be a ring map. Assume that 𝐵 is perfect as an 𝐴-module. Let
𝐾• be a perfect complex of 𝐵-modules. Then 𝐾• is perfect as a complex of 𝐴-modules.

Proof. Using Lemma 12.42.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 12.41.10 and Lemma
12.40.11 for those results. �

Lemma 12.42.9. Let 𝐴 → 𝐵 be a ring map. Let 𝐾• be a perfect complex of 𝐴-modules.
Then 𝐾• ⊗𝐋

𝐴 𝐵 is a perfect complex of 𝐵-modules.

Proof. Using Lemma 12.42.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 12.41.11 and Lemma
12.40.12 for those results. �

Lemma 12.42.10. Let 𝐴 → 𝐵 be a flat ring map. Let 𝑀 be a perfect 𝐴-module. Then
𝑀 ⊗𝐴 𝐵 is a perfect 𝐵-module.

Proof. ByLemma 12.42.3 the assumption implies that 𝑀 has a finite resolution 𝐹• by finite
projective 𝑅-modules. As 𝐴 → 𝐵 is flat the complex 𝐹• ⊗𝐴 𝐵 is a finite length resolution
of 𝑀 ⊗𝐴 𝐵 by finite projective modules over 𝐵. Hence 𝑀 ⊗𝐴 𝐵 is perfect. �

Lemma 12.42.11. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑟 ∈ 𝑅 be elements which generate the unit
ideal. Let 𝐾• be a complex of 𝑅-modules. If for each 𝑖 the complex 𝐾• ⊗𝑅 𝑅𝑓𝑖

is perfect,
then 𝐾• is perfect.

Proof. Using Lemma 12.42.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 12.41.13 and Lemma
12.40.14 for those results. �

Lemma 12.42.12. Let 𝑅 be a ring. Let 𝑎, 𝑏 ∈ 𝐙. Let 𝐾• be a complex of 𝑅-modules. Let
𝑅 → 𝑅′ be a faithfully flat ring map. If the complex 𝐾• ⊗𝑅 𝑅′ has tor amplitude in [𝑎, 𝑏],
then 𝐾• has tor amplitude in [𝑎, 𝑏].
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Proof. Using Lemma 12.42.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 12.41.14 and Lemma
12.40.15 for those results. �

Lemma 12.42.13. Let 𝑅 be a regular ring of finite dimension. Then
(1) an 𝑅-module is perfect if and only if it is a finite 𝑅-module, and
(2) a complex of 𝑅-modules 𝐾• is perfect if and only if 𝐾• ∈ 𝐷𝑏(𝑅) and each 𝐻𝑖(𝐾•)

is a finite 𝑅-module.

Proof. By Algebra, Lemma 7.102.7 the assumption on 𝑅 means that 𝑅 has finite global
dimension. Hence every module has finite tor dimension, see Lemma 12.41.15. On the
other hand, as 𝑅 is Noetherian, a module is pseudo-coherent if and only if it is finite, see
Lemma 12.40.16. This proves part (1).

Let 𝐾• be a complex of 𝑅-modules. If 𝐾• is perfect, then it is in 𝐷𝑏(𝑅) and it is quasi-
isomorphic to a finite complex of finite projective 𝑅-modules so certainly each 𝐻𝑖(𝐾•) is
a finite 𝑅-module (as 𝑅 is Noetherian). Conversely, suppose that 𝐾• is in 𝐷𝑏(𝑅) and each
𝐻𝑖(𝐾•) is a finite 𝑅-module. Then by (1) each 𝐻𝑖(𝐾•) is a perfect 𝑅-module, whence 𝐾•

is perfect by Lemma 12.42.7 �

Lemma 12.42.14. Let 𝑅 be a ring. Let 𝔭 ⊂ 𝑅 be a prime ideal. Let 𝑖 ∈ 𝐙. Let 𝐾• be a
pseudo-coherent complex of 𝑅-modules such that 𝐻𝑖(𝐾• ⊗𝐋

𝑅 𝜅(𝔭)) = 0. Then there exists
an 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that

𝐾• ⊗𝑅 𝑅𝑓 = 𝜏≥𝑖+1𝐾• ⊗𝑅 𝑅𝑓 ⊕ 𝜏≤𝑖−1𝐾• ⊗𝑅 𝑅𝑓

in 𝐷(𝑅𝑓) with 𝜏≥𝑖+1𝐾• ⊗𝑅 𝑅𝑓 a perfect complex with tor amplitude in [𝑖 + 1, 𝑗] for some
𝑗 ∈ 𝐙.

Proof. We may assume that 𝐾• is a bounded above complex of finite free 𝑅-modules. Let
us inspect what is happening in degree 𝑖:

… → 𝐾𝑖−2 → 𝑅⊕𝑙 → 𝑅⊕𝑚 → 𝑅⊕𝑛 → 𝐾𝑖+2 → …

Let 𝐴 be the 𝑚 × 𝑙 matrix corresponding to 𝐾𝑖−1 → 𝐾𝑖 and let 𝐵 be the 𝑛 × 𝑚 matrix
corresponding to 𝐾𝑖 → 𝐾𝑖+1. The assumption is that 𝐴 mod 𝔭 has rank 𝑟 and that 𝐵 mod 𝔭
has rank 𝑚 − 𝑟. In other words, there is some 𝑟 × 𝑟 minor 𝑎 of 𝐴 which is not in 𝔭 and there
is some (𝑚 − 𝑟) × (𝑚 − 𝑟)-minor 𝑏 of 𝐵 which is not in 𝔭. Set 𝑓 = 𝑎𝑏. Then after inverting
𝑓 we can find direct sum decompositions 𝐾𝑖−1 = 𝑅⊕𝑙−𝑟 ⊕ 𝑅⊕𝑟, 𝐾𝑖 = 𝑅⊕𝑟 ⊕ 𝑅⊕𝑚−𝑟,
𝐾𝑖+1 = 𝑅⊕𝑚−𝑟 ⊕𝑅⊕𝑛−𝑚+𝑟 such that the module map 𝐾𝑖−1 → 𝐾𝑖 kills of 𝑅⊕𝑙−𝑟 and induces
an isomorphism of 𝑅⊕𝑟 onto the corresponding summand of 𝐾𝑖 and such that the module
map 𝐾𝑖 → 𝐾𝑖+1 kills of 𝑅⊕𝑟 and induces an isomorphism of 𝑅⊕𝑚−𝑟 onto the corresponding
summand of 𝐾𝑖+1. Thus 𝐾• becomes quasi-isomorphic to

… → 𝐾𝑖−2 → 𝑅⊕𝑙−𝑟 → 0 → 𝑅⊕𝑛−𝑚+𝑟 → 𝐾𝑖+2 → …

and everything is clear. �

Lemma 12.42.15. Let 𝑅 be a ring. Let 𝑎, 𝑏 ∈ 𝐙. Let 𝐾• be a pseudo-coherent complex of
𝑅-modules. The following are equivalent

(1) 𝐾• is perfect with tor amplitude in [𝑎, 𝑏],
(2) for every prime 𝔭 we have 𝐻𝑖(𝐾• ⊗𝐋

𝑅 𝜅(𝔭)) = 0 for all 𝑖∉[𝑎, 𝑏], and
(3) for every maximal ideal 𝔪 we have 𝐻𝑖(𝐾• ⊗𝐋

𝑅 𝜅(𝔪)) = 0 for all 𝑖∉[𝑎, 𝑏].
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Proof. We omit the proof of the implications (1) ⇒ (2) ⇒ (3). Assume (3). Let 𝑖 ∈ 𝐙 with
𝑖∉[𝑎, 𝑏]. By Lemma 12.42.14 we see that the assumption implies that 𝐻𝑖(𝐾•)𝔪 = 0 for all
maximal ideals of 𝑅. Hence 𝐻𝑖(𝐾•) = 0, see Algebra, Lemma 7.21.1. Moreover, Lemma
12.42.14 now also implies that for every maximal ideal 𝔪 there exists an element 𝑓 ∈ 𝑅,
𝑓∉𝔪 such that 𝐾• ⊗𝑅 𝑅𝑓 is perfect with tor amplitude in [𝑎, 𝑏]. Hence we conclude by
applealing to Lemmas 12.42.11 and 12.41.13. �

Lemma 12.42.16. Let 𝑅 be a ring. Let 𝐾• be a pseudo-coherent complex of 𝑅-modules.
The following are equivalent

(1) 𝐾• is perfect,
(2) for every prime ideal 𝔭 the complex 𝐾• ⊗𝑅 𝑅𝔭 is perfect,
(3) for every prime 𝔭 we have 𝐻𝑖(𝐾• ⊗𝐋

𝑅 𝜅(𝔭)) = 0 for all 𝑖 ≪ 0,
(4) for every maximal ideal 𝔪 the complex 𝐾• ⊗𝑅 𝑅𝔪 is perfect,
(5) for every maximal ideal 𝔪 we have 𝐻𝑖(𝐾• ⊗𝐋

𝑅 𝜅(𝔪)) = 0 for all 𝑖 ≪ 0.

Proof. Assume (5). Pick a maximal ideal 𝔪 of 𝑅. By Lemma 12.42.14 we see that the
assumption implies that 𝐾• ⊗𝑅 𝑅𝑓 is a perfect complex for some 𝑓 ∈ 𝑅, 𝑓∉𝔪. Since
𝑆𝑝𝑒𝑐(𝑅) is quasi-compact we conclude that 𝐾• is perfect by Lemmas 12.42.11. The proof
of the other implications is omitted. �

The following lemma useful in order to find perfect complexes over a polynomial ring 𝐵 =
𝐴[𝑥1, … , 𝑥𝑑].

Lemma 12.42.17. Let 𝐴 → 𝐵 be a ring map. Let 𝑎, 𝑏 ∈ 𝐙. Let 𝑑 ≥ 0. Let 𝐾• be a complex
of 𝐵-modules. Assume

(1) the ring map 𝐴 → 𝐵 is flat,
(2) for every prime 𝔭 ⊂ 𝐴 the ring 𝐵 ⊗𝐴 𝜅(𝔭) has finite global dimension ≤ 𝑑,
(3) 𝐾• is pseudo-coherent as a complex of 𝐵-modules, and
(4) 𝐾• has tor amplitude in [𝑎, 𝑏] as a complex of 𝐴-modules.

Then 𝐾• is perfect as a complex of 𝐵-modules with tor amplitude in [𝑎 − 𝑑, 𝑏].

Proof. We may assume that 𝐾• is a bounded above complex of finite free 𝐵-modules. In
particular, 𝐾• is flat as a complex of 𝐴-modules and 𝐾• ⊗𝐴 𝑀 = 𝐾•⊗𝐋

𝐴 for any 𝐴-module
𝑀. For every prime 𝔭 of 𝐴 the complex

𝐾• ⊗𝐴 𝜅(𝔭)

is a bounded above complex of finite free modules over 𝐵⊗𝐴 𝜅(𝔭) with vanishing 𝐻𝑖 except
for 𝑖 ∈ [𝑎, 𝑏]. As 𝐵 ⊗𝐴 𝜅(𝔭) has global dimension 𝑑 we see from Lemma 12.41.15 that
𝐾• ⊗𝐴 𝜅(𝔭) has tor amplitude in [𝑎 − 𝑑, 𝑏]. Let 𝔮 be a prime of 𝐵 lying over 𝔭. Since
𝐾• ⊗𝐴 𝜅(𝔭) is a bounded above complex of free 𝐵 ⊗𝐴 𝜅(𝔮)-modules we see that

𝐾• ⊗𝐋
𝐵 𝜅(𝔮) = 𝐾• ⊗𝐵 𝜅(𝔮)

= (𝐾• ⊗𝐴 𝜅(𝔭)) ⊗𝐵⊗𝐴𝜅(𝔮) 𝜅(𝔮)

= (𝐾• ⊗𝐴 𝜅(𝔭)) ⊗𝐋
𝐵⊗𝐴𝜅(𝔮) 𝜅(𝔮)

Hence the arguments above imply that 𝐻𝑖(𝐾• ⊗𝐋
𝐵 𝜅(𝔮)) = 0 for 𝑖∉[𝑎 − 𝑑, 𝑏]. We conclude

by Lemma 12.42.15. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=068W
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=068X


884 12. MORE ON ALGEBRA

12.43. Characterizing perfect complexes

Let 𝑅 be a ring. Recall that 𝐷(𝑅) has direct sums which are given simply by taking direct
sums of complexes, see Injectives, Lemma 17.17.4. We will use this in the lemmas of this
section without further mention.

Lemma 12.43.1. Let 𝑅 be a ring. Let 𝐾 ∈ 𝐷(𝑅) be an object such that for every countable
set of objects 𝐸𝑛 ∈ 𝐷(𝑅) the canonical map

⨁ 𝐻𝑜𝑚𝐷(𝑅)(𝐾, 𝐸𝑛) ⟶ 𝐻𝑜𝑚𝐷(𝑅)(𝐾, ⨁ 𝐸𝑛)

is a bijection. Then, given any system 𝐿•
𝑛 of complexes over 𝐍 we have that

𝑐𝑜𝑙𝑖𝑚 𝐻𝑜𝑚𝐷(𝑅)(𝐾, 𝐿•
𝑛) ⟶ 𝐻𝑜𝑚𝐷(𝑅)(𝐾, 𝐿•)

is a bijection, where 𝐿• is the termwise colimit, i.e., 𝐿𝑚 = 𝑐𝑜𝑙𝑖𝑚 𝐿𝑚
𝑛 for all 𝑚 ∈ 𝐙.

Proof. Consider the short exact sequence of complexes

0 → ⨁ 𝐿•
𝑛 → ⨁ 𝐿•

𝑛 → 𝐿• → 0

where the first map is given by 1−𝑡𝑛 in degree 𝑛 where 𝑡𝑛 ∶ 𝐿•
𝑛 → 𝐿•

𝑛+1 is the transitionmap.
By Derived Categories, Lemma 11.11.1 this is a distinguished triangle in 𝐷(𝑅). Apply the
homological functor 𝐻𝑜𝑚𝐷(𝑅)(𝐾, −), see Derived Categories, Lemma 11.4.2. Thus a long
exact cohomology sequence

… // 𝐻𝑜𝑚𝐷(𝑅)(𝐾, 𝑐𝑜𝑙𝑖𝑚 𝐿•
𝑛[−1])

rr
𝐻𝑜𝑚𝐷(𝑅)(𝐾, ⨁ 𝐿•

𝑛) // 𝐻𝑜𝑚𝐷(𝑅)(𝐾, ⨁ 𝐿•
𝑛) // 𝐻𝑜𝑚𝐷(𝑅)(𝐾, 𝑐𝑜𝑙𝑖𝑚 𝐿•

𝑛)

rr
𝐻𝑜𝑚𝐷(𝑅)(𝐾, ⨁ 𝐿•

𝑛[1]) // …

Since we have assumed that 𝐻𝑜𝑚𝐷(𝑅)(𝐾, ⨁ 𝐿•
𝑛) is equal to ⨁ 𝐻𝑜𝑚𝐷(𝑅)(𝐾, 𝐿•

𝑛) we see that
the first map on every row of the diagram is injective (by the explicit description of this map
as the sum of the maps induced by 1 − 𝑡𝑛). Hence we conclude that 𝐻𝑜𝑚𝐷(𝑅)(𝐾, 𝑐𝑜𝑙𝑖𝑚 𝐿•

𝑛)
is the cokernel of the first map of the middle row in the diagram above which is what we
had to show. �

Definition 12.43.2. Let 𝒟 be an additive category with arbitrary direct sums. A compact
object of 𝒟 is an object 𝐾 such that the map

⨁𝑖∈𝐼
𝐻𝑜𝑚𝒟(𝐾, 𝐸𝑖) ⟶ 𝐻𝑜𝑚𝒟(𝐾, ⨁𝑖∈𝐼

𝐸𝑖)

is bijective for any set 𝐼 and objects 𝐸𝑖 ∈ 𝑂𝑏(𝒟) parametrized by 𝑖 ∈ 𝐼.

The following proposition shows up in various places. See for example [Ric89, proof
of Proposition 6.3] (this treats the bounded case), [TT90, Theorem 2.4.3] (the statement
doesn't match exactly), and [BN93, Proposition 6.4] (watch out for horrendous notational
conventions).

Proposition 12.43.3. Let 𝑅 be a ring. For an object 𝐾 of 𝐷(𝑅) the following are equivalent
(1) 𝐾 is perfect, and
(2) 𝐾 is a compact object of 𝐷(𝑅).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07LR
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07LS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07LT
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Proof. Assume 𝐾 is perfect, i.e., 𝐾 is quasi-isomorphic to a bounded complex 𝑃• of finite
projective modules, see Definition 12.42.1. If 𝐸𝑖 is represented by the complex 𝐸•

𝑖 , then
⨁ 𝐸𝑖 is represented by the complex whose degree 𝑛 term is ⨁ 𝐸𝑛

𝑖 . On the other hand, as
𝑃𝑛 is projective for all 𝑛 we have 𝐻𝑜𝑚𝐷(𝑅)(𝑃•, 𝐾•) = 𝐻𝑜𝑚𝐾(𝑅)(𝑃•, 𝐾•) for every complex
of 𝑅-modules 𝐾•, see Derived Categories, Lemma 11.18.8. Thus 𝐻𝑜𝑚𝐷(𝑅)(𝑃•, 𝐸•) is the
cohomology of the complex

∏ 𝐻𝑜𝑚𝑅(𝑃𝑛, 𝐸𝑛−1) → ∏ 𝐻𝑜𝑚𝑅(𝑃𝑛, 𝐸𝑛) → ∏ 𝐻𝑜𝑚𝑅(𝑃𝑛, 𝐸𝑛+1).

Since 𝑃• is bounded we see that we may replace the ∏ signs by ⨁ signs in the complex
above. Since each𝑃𝑛 is a finite𝑅-modulewe see that𝐻𝑜𝑚𝑅(𝑃𝑛, ⨁𝑖 𝐸𝑚

𝑖 ) = ⨁𝑖 𝐻𝑜𝑚𝑅(𝑃𝑛, 𝐸𝑚
𝑖 )

for all 𝑛, 𝑚. Combining these remarks we see that the map of Definition 12.43.2 is a bijec-
tion.

Conversely, assume 𝐾 is compact. Represent 𝐾 by a complex 𝐾• and consider the map

𝐾• ⟶ ⨁𝑛≥0
𝜏≥𝑛𝐾•

where we have used the canonical truncations, see Homology, Section 10.11. This makes
sense as in each degree the direct sum on the right is finite. By assumption this map factors
through a finite direct sum. We conclude that 𝐾 → 𝜏≥𝑛𝐾 is zero for at least one 𝑛, i.e., 𝐾
is in 𝐷−(𝑅).

Since 𝐾 ∈ 𝐷−(𝑅) and since every 𝑅-module is a quotient of a free module, we may repre-
sent 𝐾 by a bounded above complex 𝐾• of free 𝑅-modules, see Derived Categories, Lemma
11.15.5. Note that we have

𝐾• = ⋃𝑛≤0
𝜎≥𝑛𝐾•

where we have used the stupid truncations, see Homology, Section 10.11. Hence by Lemma
12.43.1 we see that 1 ∶ 𝐾• → 𝐾• factors through 𝜎≥𝑛𝐾• → 𝐾• in 𝐷(𝑅). Thus we see that
1 ∶ 𝐾• → 𝐾• factors as

𝐾• 𝜑
−→ 𝐿• 𝜓

−→ 𝐾•

in 𝐷(𝑅) for some complex 𝐿• which is bounded and whose terms are free 𝑅-modules. Say
𝐿𝑖 = 0 for 𝑖∉[𝑎, 𝑏]. Fix 𝑎, 𝑏 from now on. Let 𝑐 be the largest integer ≤ 𝑏 + 1 such that we
can find a factorization of 1𝐾• as above with 𝐿𝑖 is finite free for 𝑖 < 𝑐. We will show by
induction that 𝑐 = 𝑏 + 1. Namely, write 𝐿𝑐 = ⨁𝜆∈Λ 𝑅. Since 𝐿𝑐−1 is finite free we can
find a finite subset Λ′ ⊂ Λ such that 𝐿𝑐−1 → 𝐿𝑐 factors through ⨁𝜆∈Λ′ 𝑅 ⊂ 𝐿𝑐. Consider
the map of complexes

𝜋 ∶ 𝐿• ⟶ (⨁𝜆∈Λ⧵Λ′ 𝑅)[−𝑖]

given by the projection onto the factors corresponding to Λ ⧵ Λ′ in degree 𝑖. By our as-
sumption on 𝐾 we see that, after possibly replacing Λ′ by a larger finite subset, we may
assume that 𝜋 ∘ 𝜑 = 0 in 𝐷(𝑅). Let (𝐿′)• ⊂ 𝐿• be the kernel of 𝜋. Since 𝜋 is surjective we
get a short exact sequence of complexes, which gives a distinguished triangle in 𝐷(𝑅) (see
Derived Categories, Lemma 11.11.1). Since 𝐻𝑜𝑚𝐷(𝑅)(𝐾, −) is homological (see Derived
Categories, Lemma 11.4.2) and 𝜋 ∘ 𝜑 = 0, we can find a morphism 𝜑′ ∶ 𝐾• → (𝐿′)• in
𝐷(𝑅) whose composition with (𝐿′)• → 𝐿• gives 𝜑. Setting 𝜓′ equal to the composition
of 𝜓 with (𝐿′)• → 𝐿• we obtain a new factorization. Since (𝐿′)• agrees with 𝐿• except in
degree 𝑐 and since (𝐿′)𝑐 = ⨁𝜆∈Λ′ 𝑅 the induction step is proved.

The conclusion of the discussion of the preceding paragraph is that 1𝐾 ∶ 𝐾 → 𝐾 factors as

𝐾
𝜑

−→ 𝐿
𝜓

−→ 𝐾
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in 𝐷(𝑅) where 𝐿 can be represented by a finite complex of free 𝑅-modules. In particular we
see that 𝐿 is perfect. Note that 𝑒 = 𝜑∘𝜓 ∈ End𝐷(𝑅)(𝐿) is an idempotent. By Derived Cate-
gories, Lemma 11.4.12 we see that 𝐿 = Ker(𝑒) ⊕Ker(1 − 𝑒) (see also discussion preceding
Derived Categories, Lemma 11.4.11). The map 𝜑 ∶ 𝐾 → 𝐿 induces an isomorphism with
Ker(1 − 𝑒) in 𝐷(𝑅). Hence we finally conclude that 𝐾 is perfect by Lemma 12.42.5. �

Lemma 12.43.4. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝐾 be an object of 𝐷(𝑅).
Assume that

(1) 𝐾 ⊗𝐋
𝑅 𝑅/𝐼 is perfect in 𝐷(𝑅/𝐼), and

(2) 𝐼 is a nilpotent ideal.
Then 𝐾 is perfect in 𝐷(𝑅).

Proof. Assumption (2) means that 𝐼𝑛 = 0 for some 𝑛. The result holds if 𝑛 = 1. Below we
will prove the result holds for 𝑛 = 2. This will imply that the complex 𝐾 ⊗𝐋

𝑅 𝑅/𝐼2 is perfect
in 𝐷(𝑅/𝐼2). Since (𝐼2)⌈𝑛/2⌉ = 0 we see that we win by induction on 𝑛.

We prove the lemma in case 𝐼2 = 0. First, we may represent 𝐾 by a 𝐾-flat complex 𝐾•

with all 𝐾𝑛 flat, see Lemma 12.3.10. Then we see that we have a short exact sequence of
complexes

0 → 𝐾• ⊗𝑅 𝐼 → 𝐾• → 𝐾• ⊗𝑅 𝑅/𝐼 → 0

Note that 𝐾• ⊗𝑅 𝑅/𝐼 represents 𝐾 ⊗𝐋
𝑅 𝑅/𝐼 by constuction of the derived tensor product.

Also
𝐾• ⊗𝑅 𝐼 ≅ 𝐾• ⊗𝑅 𝑅/𝐼 ⊗𝑅/𝐼 𝐼

represents 𝐾 ⊗𝐋
𝑅 𝑅/𝐼 ⊗𝐋

𝑅/𝐼 𝐼 because 𝐾• ⊗𝑅 𝑅/𝐼 is a K-flat complex over 𝑅/𝐼, see Lemma
12.3.5. By assumption (1) we see that both 𝐾• ⊗𝑅 𝑅/𝐼 and 𝐾• ⊗𝑅 𝐼 have finitely many
nonzero cohomology groups (since a perfect complex has finite Tor-amplitude, see Lemma
12.42.2). We conclude that 𝐾 ∈ 𝐷𝑏(𝑅) by the long exact cohomology sequence associated
to short exact sequence of complexes displayed above. In particular we can represent 𝐾 by
a bounded above complex 𝐾• of free 𝑅-modules (see Derived Categories, Lemma 11.15.5).
Then for any complex 𝐸• of 𝑅-modules we have

𝐻𝑜𝑚𝐷(𝑅)(𝐾, 𝐸•) = 𝐻𝑜𝑚𝐾(𝑅)(𝐾•, 𝐸•)

see Derived Categories, Lemma 11.18.8.

We will now show that 𝐾 is perfect using the criterion of Proposition 12.43.3. Thus we let
𝐸𝑗 ∈ 𝐷(𝑅) be a family of objects parametrized by a set 𝐽. We choose complexes 𝐸•

𝑗 with
flat terms representing 𝐸𝑗, see for example Lemma 12.3.10. It is clear that

0 → 𝐸•
𝑗 ⊗𝑅 𝐼 → 𝐸•

𝑗 → 𝐸•
𝑗 ⊗𝑅 𝑅/𝐼 → 0

is a short exact sequence of complexes. Taking direct sums we obtain a similar short exact
sequence

0 → ⨁ 𝐸•
𝑗 ⊗𝑅 𝐼 → ⨁ 𝐸•

𝑗 → ⨁ 𝐸•
𝑗 ⊗𝑅 𝑅/𝐼 → 0

(Note that −⊗𝑅 𝐼 and −⊗𝑅 𝑅/𝐼 commute with direct sums.) This short exact sequence de-
termines a distinguished triangle in 𝐷(𝑅), see Derived Categories, Lemma 11.11.1. Apply
the homological functor 𝐻𝑜𝑚𝐷(𝑅)(𝐾, −) (see Derived Categories, Lemma 11.4.2) to get a

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07LU
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commutative diagram

⨁ 𝐻𝑜𝑚𝐷(𝑅)(𝐾•, 𝐸•
𝑗 ⊗𝑅 𝑅/𝐼)[−1] //

��

𝐻𝑜𝑚𝐷(𝑅)(𝐾•, ⨁ 𝐸•
𝑗 ⊗𝑅 𝑅/𝐼)[−1]

��
⨁ 𝐻𝑜𝑚𝐷(𝑅)(𝐾•, 𝐸•

𝑗 ⊗𝑅 𝐼) //

��

𝐻𝑜𝑚𝐷(𝑅)(𝐾•, ⨁ 𝐸•
𝑗 ⊗𝑅 𝐼)

��
⨁ 𝐻𝑜𝑚𝐷(𝑅)(𝐾•, 𝐸•

𝑗 ) //

��

𝐻𝑜𝑚𝐷(𝑅)(𝐾•, ⨁ 𝐸•
𝑗 )

��
⨁ 𝐻𝑜𝑚𝐷(𝑅)(𝐾•, 𝐸•

𝑗 ⊗𝑅 𝑅/𝐼) //

��

𝐻𝑜𝑚𝐷(𝑅)(𝐾•, ⨁ 𝐸•
𝑗 ⊗𝑅 𝑅/𝐼)

��
⨁ 𝐻𝑜𝑚𝐷(𝑅)(𝐾•, 𝐸•

𝑗 ⊗𝑅 𝐼)[1] // 𝐻𝑜𝑚𝐷(𝑅)(𝐾•, ⨁ 𝐸•
𝑗 ⊗𝑅 𝐼)[1]

with exact columns. Note that the complexes 𝐸•
𝑗 ⊗𝑅𝑅/𝐼 and 𝐸•

𝑗 ⊗𝑅𝐼 have terms annihilated
by 𝐼. Hence the 5 lemma (see Homology, Lemma 10.3.25) shows it suffices to show that
given any collection of complexes 𝑀•

𝑗 with 𝐼𝑀𝑛
𝑗 = 0 for all 𝑛, 𝑗 the map

⨁ 𝐻𝑜𝑚𝐷(𝑅)(𝐾•, 𝑀•
𝑗 ) ⟶ 𝐻𝑜𝑚𝐷(𝑅)(𝐾•, ⨁ 𝑀•

𝑗 )

is a bijection. By our choice of 𝐾• we can rewrite this as

⨁ 𝐻𝑜𝑚𝐾(𝑅)(𝐾•, 𝑀•
𝑗 ) ⟶ 𝐻𝑜𝑚𝐾(𝑅)(𝐾•, ⨁ 𝑀•

𝑗 )

Since 𝐼 annihilates 𝑀𝑛
𝑗 we see this is equal to

⨁ 𝐻𝑜𝑚𝐾(𝑅/𝐼)(𝐾• ⊗𝑅 𝑅/𝐼, 𝑀•
𝑗 ) ⟶ 𝐻𝑜𝑚𝐾(𝑅)(𝐾• ⊗𝑅 𝑅/𝐼, ⨁ 𝑀•

𝑗 ).

Using that 𝐾• ⊗𝑅 𝑅/𝐼 is a bounded above complex of free 𝑅/𝐼-modules we see this is equal
to the map

⨁ 𝐻𝑜𝑚𝐷(𝑅/𝐼)(𝐾• ⊗𝑅 𝑅/𝐼, 𝑀•
𝑗 ) ⟶ 𝐻𝑜𝑚𝐷(𝑅)(𝐾• ⊗𝑅 𝑅/𝐼, ⨁ 𝑀•

𝑗 )

by Derived Categories, Lemma 11.18.8 as before. The complex 𝐾• ⊗𝑅 𝑅/𝐼 represents
𝐾 ⊗𝐋

𝑅 𝑅/𝐼 since 𝐾• is K-flat (Lemma 12.3.8). We conclude that 𝐾• ⊗𝑅 𝑅/𝐼 is compact (by
Proposition 12.43.3). Hence the last displayed map is a bijection and we win. �

12.44. Relatively finitely presented modules

Let 𝑅 be a ring. Let 𝐴 → 𝐵 be a finite map of finite type 𝑅-algebras. Let 𝑀 be a finite
𝐵-module. In this case it is not true that

𝑀 of finite presentation over 𝐵 ⇔ 𝑀 of finite presentation over 𝐴

A counter example is 𝑅 = 𝑘[𝑥1, 𝑥2, 𝑥3, …], 𝐴 = 𝑅, 𝐵 = 𝑅/(𝑥𝑖), and 𝑀 = 𝐵. To ``fix'' this
we introduce a relative notion of finite presentation.

Lemma 12.44.1. Let 𝑅 → 𝐴 be a ring map of finite type. Let 𝑀 be an 𝐴-module. The
following are equivalent

(1) for some presentation 𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴 the module𝑀 is a finitely presented
𝑅[𝑥1, … , 𝑥𝑛]-module,
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(2) for all presentations 𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴 the module 𝑀 is a finitely presented
𝑅[𝑥1, … , 𝑥𝑛]-module, and

(3) for any surjection 𝐴′ → 𝐴 where 𝐴′ is a finitely presented 𝑅-algebra, the module
𝑀 is finitely presented as 𝐴′-module.

In this case 𝑀 is a finitely presented 𝐴-module.

Proof. If 𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴 and 𝛽 ∶ 𝑅[𝑦1, … , 𝑦𝑚] → 𝐴 are presentations. Choose
𝑓𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛] with 𝛼(𝑓𝑗) = 𝛽(𝑦𝑗) and 𝑔𝑖 ∈ 𝑅[𝑦1, … , 𝑦𝑚] with 𝛽(𝑔𝑖) = 𝛼(𝑥𝑖). Then we
get a commutative diagram

𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]

𝑥𝑖↦𝑔𝑖
��

𝑦𝑗↦𝑓𝑗
// 𝑅[𝑥1, … , 𝑥𝑛]

��
𝑅[𝑦1, … , 𝑦𝑚] // 𝐴

Hence the equivalence of (1) and (2) follows by applying Algebra, Lemmas 7.6.4 and 7.7.4.
The equivalence of (2) and (3) follows by choosing a presentation𝐴′ = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚)
and using Algebra, Lemma 7.7.4 to show that 𝑀 is finitely presented as 𝐴′-module if and
only if 𝑀 is finitely presented as a 𝑅[𝑥1, … , 𝑥𝑛]-module. �

Definition 12.44.2. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑀 be an 𝐴-module. We say
𝑀 is an 𝐴-module finitely presented relative to 𝑅 if the equivalent conditions of Lemma
12.44.1 hold.

Note that if 𝑅 → 𝐴 is of finite presentation, then 𝑀 is an 𝐴-module finitely presented
relative to 𝑅 if and only if 𝑀 is a finitely presented 𝐴-module. It is equally clear that 𝐴 as
an 𝐴-module is finitely presented relative to 𝑅 if and only if 𝐴 is of finite presentation over
𝑅. If 𝑅 is Noetherian the notion is uninteresting. Now we can formulate the result we were
looking for.

Lemma 12.44.3. Let 𝑅 be a ring. Let 𝐴 → 𝐵 be a finite map of finite type 𝑅-algebras. Let
𝑀 be a 𝐵-module. Then 𝑀 is an 𝐴-module finitely presented relative to 𝑅 if and only if 𝑀
is a 𝐵-module finitely presented relative to 𝑅.

Proof. Choose a surjection 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴. Choose 𝑦1, … , 𝑦𝑚 ∈ 𝐵 which generate 𝐵
over 𝐴. As 𝐴 → 𝐵 is finite each 𝑦𝑖 satisfies a monic equation with coefficients in 𝐴. Hence
we can find monic polynomials 𝑃𝑗(𝑇) ∈ 𝑅[𝑥1, … , 𝑥𝑛][𝑇] such that 𝑃𝑗(𝑦𝑗) = 0 in 𝐵. Then
we get a commutative diagram

𝑅[𝑥1, … , 𝑥𝑛]

��

// 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]/(𝑃𝑗(𝑦𝑗))

��
𝐴 // 𝐵

Since the top arrow is a finite and finitely presented ring map we conclude by Algebra,
Lemma 7.7.4 and the definition. �

With this result in hand we see that the relative notion makes sense and behaves well with
regards to finite maps of rings of finite type over 𝑅. It is also stable under localization,
stable under base change, and "glues" well.

Lemma 12.44.4. Let 𝑅 be a ring, 𝑓 ∈ 𝑅 an element, 𝑅𝑓 → 𝐴 is a finite type ring map,
𝑔 ∈ 𝐴, and 𝑀 an 𝐴-module. If 𝑀 of finite presentation relative to 𝑅𝑓, then 𝑀𝑔 is an
𝐴𝑔-module of finite presentation relative to 𝑅.
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Proof. Choose a presentation 𝑅𝑓[𝑥1, … , 𝑥𝑛] → 𝐴. We write 𝑅𝑓 = 𝑅[𝑥0]/(𝑓𝑥0 − 1).
Consider the presentation 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 𝑥𝑛+1] → 𝐴𝑔 which extends the givenmap, maps
𝑥0 to the image of 1/𝑓, and maps 𝑥𝑛+1 to 1/𝑔. Choose 𝑔′ ∈ 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛] which maps
to 𝑔 (this is possible). Suppose that

𝑅𝑓[𝑥1, … , 𝑥𝑛]⊕𝑠 → 𝑅𝑓[𝑥1, … , 𝑥𝑛]⊕𝑡 → 𝑀 → 0

is a presentation of 𝑀 given by a matrix (ℎ𝑖𝑗). Pick ℎ′
𝑖𝑗 ∈ 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛] which map to

ℎ𝑖𝑗. Then

𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]⊕𝑠+2𝑡 → 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]⊕𝑡 → 𝑀𝑔 → 0

is a presentation of 𝑀𝑓. Here the 𝑡 × (𝑠 + 2𝑡) matrix defining the map has a first 𝑡 × 𝑠 block
consisting of the matrix ℎ′

𝑖𝑗, a second 𝑡 × 𝑡 block which is (𝑥0𝑓−)𝐼𝑡, and a third block which
is (𝑥𝑛+1𝑔′ − 1)𝐼𝑡. �

Lemma 12.44.5. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑀 be an 𝐴-module finitely
presented relative to 𝑅. For any ring map 𝑅 → 𝑅′ the 𝐴 ⊗𝑅 𝑅′-module

𝑀 ⊗𝐴 𝐴′ = 𝑀 ⊗𝑅 𝑅′

is finitely presented relative to 𝑅′.

Proof. Choose a surjection 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴. Choose a presentation

𝑅[𝑥1, … , 𝑥𝑛]⊕𝑠 → 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑡 → 𝑀 → 0

Then
𝑅′[𝑥1, … , 𝑥𝑛]⊕𝑠 → 𝑅′[𝑥1, … , 𝑥𝑛]⊕𝑡 → 𝑀 ⊗𝑅 𝑅′ → 0

is a presentation of the base change and we win. �

Lemma 12.44.6. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑀 be an 𝐴-module finitely
presented relative to 𝑅. Let 𝐴 → 𝐴′ be a ring map of finite presentation. 𝐴′-module
𝑀 ⊗𝐴 𝐴′ is finitely presented relative to 𝑅.

Proof. Choose a surjection𝑅[𝑥1, … , 𝑥𝑛] → 𝐴. Choose a presentation𝐴′ = 𝐴[𝑦1, … , 𝑦𝑚]/(𝑔1, … , 𝑔𝑙).
Pick 𝑔′

𝑖 ∈ 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚] mapping to 𝑔𝑖. Say

𝑅[𝑥1, … , 𝑥𝑛]⊕𝑠 → 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑡 → 𝑀 → 0

is a presentation of 𝑀 given by a matrix (ℎ𝑖𝑗). Then

𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]⊕𝑠+𝑡𝑙 → 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]⊕𝑡 → 𝑀 ⊗𝐴 𝐴′ → 0

is a presentation of 𝑀 ⊗𝐴 𝐴′. Here the 𝑡 × (𝑠 + 𝑙𝑡) matrix defining the map has a first 𝑡 × 𝑠
block consisting of the matrix ℎ𝑖𝑗, followed by 𝑙 blocks of size 𝑡 × 𝑡 which are 𝑔′

𝑖 𝐼𝑡. �

Lemma 12.44.7. Let 𝑅 → 𝐴 → 𝐵 be finite type ring maps. Let 𝑀 be a 𝐵-module. If 𝑀
is finitely presented relative to 𝐴 and 𝐴 is of finite presentation over 𝑅, then 𝑀 is finitely
presented relative to 𝑅.

Proof. Choose a surjection 𝐴[𝑥1, … , 𝑥𝑛] → 𝐵. Choose a presentation

𝐴[𝑥1, … , 𝑥𝑛]⊕𝑠 → 𝐴[𝑥1, … , 𝑥𝑛]⊕𝑡 → 𝑀 → 0

given by a matrix (ℎ𝑖𝑗). Choose a presentation

𝐴 = 𝑅[𝑦1, … , 𝑦𝑚]/(𝑔1, … , 𝑔𝑢).
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Choose ℎ′
𝑖𝑗 ∈ 𝑅[𝑦1, … , 𝑦𝑚, 𝑥1, … , 𝑥𝑛] mapping to ℎ𝑖𝑗. Then we obtain the presentation

𝑅[𝑦1, … , 𝑦𝑚, 𝑥1, … , 𝑥𝑛]⊕𝑠+𝑡𝑢 → 𝑅[𝑦1, … , 𝑦𝑚, 𝑥1, … , 𝑥𝑛]⊕𝑡 → 𝑀 → 0

where the 𝑡 × (𝑠 + 𝑡𝑢)-matrix is given by a first 𝑡 × 𝑠 block consisting of ℎ′
𝑖𝑗 followed by 𝑢

blocks of size 𝑡 × 𝑡 given by 𝑔𝑖𝐼𝑡, 𝑖 = 1, … , 𝑢. �

Lemma 12.44.8. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑀 be an 𝐴-module. Let
𝑓1, … , 𝑓𝑟 ∈ 𝐴 generate the unit ideal. The following are equivalent

(1) each 𝑀𝑓𝑖
is finitely presented relative to 𝑅, and

(2) 𝑀 is finitely presented relative to 𝑅.

Proof. The implication (2) ⇒ (1) is in Lemma 12.44.4. Assume (1). Write 1 = ∑ 𝑓𝑖𝑔𝑖 in
𝐴. Choose a surjection 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑟, 𝑧1, … , 𝑧𝑟] → 𝐴. such that 𝑦𝑖 maps to 𝑓𝑖
and 𝑧𝑖 maps to 𝑔𝑖. Then we see that there exists a surjection

𝑃 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑟, 𝑧1, … , 𝑧𝑟]/(∑ 𝑦𝑖𝑧𝑖 − 1) ⟶ 𝐴.

By Lemma 12.44.1 we see that 𝑀𝑓𝑖
is a finitely presented 𝐴𝑓𝑖

-module, hence by Alge-
bra, Lemma 7.21.2 we see that 𝑀 is a finitely presented 𝐴-module. Hence 𝑀 is a finite
𝑃-module (with 𝑃 as above). Choose a surjection 𝑃⊕𝑡 → 𝑀. We have to show that the ker-
nel 𝐾 of this map is a finite 𝑃-module. Since 𝑃𝑦𝑖

surjects onto 𝐴𝑓𝑖
we see by Lemma 12.44.1

and Algebra, Lemma 7.5.3 that the localization 𝐾𝑦𝑖
is a finitely generated 𝑃𝑦𝑖

-module.
Choose elements 𝑘𝑖,𝑗 ∈ 𝐾, 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑠𝑖 such that the images of 𝑘𝑖,𝑗 in 𝐾𝑦𝑖
generate. Set 𝐾′ ⊂ 𝐾 equal to the 𝑃-module generated by the elements 𝑘𝑖,𝑗. Then 𝐾/𝐾′

is a module whose localization at 𝑦𝑖 is zero for all 𝑖. Since (𝑦1, … , 𝑦𝑟) = 𝑃 we see that
𝐾/𝐾′ = 0 as desired. �

Lemma 12.44.9. Let 𝑅 → 𝐴 be a finite type ring map. Let 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 be
a short exact sequence of 𝐴-modules.

(1) If 𝑀′, 𝑀″ are finitely presented relative to 𝑅, then so is 𝑀.
(2) If 𝑀′ is finite a type 𝐴-module and 𝑀 is finitely presented relative to 𝑅, then 𝑀″

is finitely presented relative to 𝑅.

Proof. Follows immediately from Algebra, Lemma 7.5.4. �

Lemma 12.44.10. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑀, 𝑀′ be 𝐴-modules. If
𝑀 ⊕ 𝑀′ is finitely presented relative to 𝑅, then so are 𝑀 and 𝑀′.

Proof. Omitted. �

12.45. Relatively pseudo-coherent modules

This section is the analogue of Section 12.44 for pseudo-coherence.

Lemma 12.45.1. Let 𝑅 be a ring. Let 𝐾• be an object of 𝐷−(𝑅). Consider the 𝑅-algebra
map 𝑅[𝑥] → 𝑅 which maps 𝑥 to zero. Then

𝐾• ⊗𝐋
𝑅[𝑥] 𝑅 ≅ 𝐾• ⊕ 𝐾•[1]

in 𝐷(𝑅).

Proof. Choose a projective resolution 𝑃• → 𝐾• over 𝑅. Then

𝑃• ⊗𝑅 𝑅[𝑥]
𝑥

−→ 𝑃• ⊗𝑅 𝑅[𝑥]
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is a double complex of projective 𝑅[𝑥]-modules whose associated total complex is quasi-
isomorphic to 𝑃•. Hence

𝐾• ⊗𝐋
𝑅[𝑥] 𝑅 ≅ Tot(𝑃• ⊗𝑅 𝑅[𝑥]

𝑥
−→ 𝑃• ⊗𝑅 𝑅[𝑥]) ⊗𝑅[𝑥] 𝑅 = Tot(𝑃• 0

−→ 𝑃•)
= 𝑃• ⊕ 𝑃•[1] ≅ 𝐾• ⊕ 𝐾•[1]

as desired. �

Lemma 12.45.2. Let𝑅 be a ring and𝐾• a complex of𝑅-modules. Let𝑚 ∈ 𝐙. Consider the
𝑅-algebra map 𝑅[𝑥] → 𝑅 which maps 𝑥 to zero. Then 𝐾• is 𝑚-pseudo-coherent as a com-
plex of 𝑅-modules if and only if 𝐾• is 𝑚-pseudo-coherent as a complex of 𝑅[𝑥]-modules.

Proof. This is a special case of Lemma 12.40.11. We also prove it in another way as
follows.

Note that 0 → 𝑅[𝑥] → 𝑅[𝑥] → 𝑅 → 0 is exact. Hence 𝑅 is pseudo-coherent as an
𝑅[𝑥]-module. Thus one implication of the lemma follows from Lemma 12.40.11. To prove
the other implication, assume that 𝐾• is 𝑚-pseudo-coherent as a complex of 𝑅[𝑥]-modules.
ByLemma 12.40.12we see that𝐾•⊗𝐋

𝑅[𝑥]𝑅 is𝑚-pseudo-coherent as a comples of𝑅-modules.
ByLemma 12.45.1we see that𝐾•⊕𝐾•[1] is𝑚-pseudo-coherent as a complex of𝑅-modules.
Finally, we conclude that𝐾• is𝑚-pseudo-coherent as a complex of𝑅-modules fromLemma
12.40.8. �

Lemma 12.45.3. Let 𝑅 → 𝐴 be a ring map of finite type. Let 𝐾• be a complex of
𝐴-modules. Let 𝑚 ∈ 𝐙. The following are equivalent

(1) for some presentation 𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴 the complex 𝐾• is an 𝑚-pseudo-
coherent complex of 𝑅[𝑥1, … , 𝑥𝑛]-modules,

(2) for all presentations 𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴 the complex 𝐾• is an 𝑚-pseudo-
coherent complex of 𝑅[𝑥1, … , 𝑥𝑛]-modules.

In particular the same equivalence holds for pseudo-coherence.

Proof. If 𝛼 ∶ 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴 and 𝛽 ∶ 𝑅[𝑦1, … , 𝑦𝑚] → 𝐴 are presentations. Choose
𝑓𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛] with 𝛼(𝑓𝑗) = 𝛽(𝑦𝑗) and 𝑔𝑖 ∈ 𝑅[𝑦1, … , 𝑦𝑚] with 𝛽(𝑔𝑖) = 𝛼(𝑥𝑖). Then we
get a commutative diagram

𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]

𝑥𝑖↦𝑔𝑖
��

𝑦𝑗↦𝑓𝑗
// 𝑅[𝑥1, … , 𝑥𝑛]

��
𝑅[𝑦1, … , 𝑦𝑚] // 𝐴

After a change of coordinates the ring homomorphism𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚] → 𝑅[𝑥1, … , 𝑥𝑛]
is isomorphic to the ring homomorphism which maps each 𝑦𝑖 to zero. Similarly for the left
vertical map in the diagram. Hence, by induction on the number of variables this lemma
follows from Lemma 12.45.2. The pseudo-coherent case follows from this and Lemma
12.40.5. �

Definition 12.45.4. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝐾• be a complex of
𝐴-modules. Let 𝑀 be an 𝐴-module. Let 𝑚 ∈ 𝐙.

(1) We say 𝐾• is 𝑚-pseudo-coherent relative to 𝑅 if the equivalent conditions of
Lemma 12.45.3 hold.

(2) We say 𝐾• is pseudo-coherent relative to 𝑅 if 𝐾• is 𝑚-pseudo-coherent relative
to 𝑅 for all 𝑚 ∈ 𝐙.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=065G
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=065H
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=065I


892 12. MORE ON ALGEBRA

(3) We say 𝑀 is 𝑚-pseudo-coherent relative to 𝑅 if 𝑀[0] is 𝑚-pseudo-coherent.
(4) We say 𝑀 is pseudo-coherent relative to 𝑅 if 𝑀[0] is pseudo-coherent relative

to 𝑅.
Part (2) means that 𝐾• is pseudo-coherent as a complex of 𝑅[𝑥1, … , 𝑥𝑛]-modules for any
surjection 𝑅[𝑦1, … , 𝑦𝑚] → 𝐴, see Lemma 12.40.5. This definition has the following pleas-
ing property.
Lemma 12.45.5. Let 𝑅 be a ring. Let 𝐴 → 𝐵 be a finite map of finite type 𝑅-algebras. Let
𝑚 ∈ 𝐙. Let 𝐾• be a complex of 𝐵-modules. Then 𝐾• is 𝑚-pseudo-coherent (resp. pseudo-
coherent) relative to 𝑅 if and only if 𝐾• seen as a complex of 𝐴-modules is 𝑚-pseudo-
coherent (pseudo-coherent) relative to 𝑅.
Proof. Choose a surjection 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴. Choose 𝑦1, … , 𝑦𝑚 ∈ 𝐵 which generate 𝐵
over 𝐴. As 𝐴 → 𝐵 is finite each 𝑦𝑖 satisfies a monic equation with coefficients in 𝐴. Hence
we can find monic polynomials 𝑃𝑗(𝑇) ∈ 𝑅[𝑥1, … , 𝑥𝑛][𝑇] such that 𝑃𝑗(𝑦𝑗) = 0 in 𝐵. Then
we get a commutative diagram

𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]

��
𝑅[𝑥1, … , 𝑥𝑛]

��

// 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]/(𝑃𝑗(𝑦𝑗))

��
𝐴 // 𝐵

The top horizontal arrow and the top right vertial arrow satisfy the assumptions of Lemma
12.40.11. Hence𝐾• is𝑚-pseudo-coherent (resp. pseudo-coherent) as a complex of𝑅[𝑥1, … , 𝑥𝑛]-modules
if and only if𝐾• is𝑚-pseudo-coherent (resp. pseudo-coherent) as a complex of𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]-modules.

�

Lemma 12.45.6. Let 𝑅 be a ring. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑚 ∈ 𝐙. Let
(𝐾•, 𝐿•, 𝑀•, 𝑓, 𝑔, ℎ) be a distinguished triangle in 𝐷(𝐴).

(1) If 𝐾• is (𝑚 + 1)-pseudo-coherent relative to 𝑅 and 𝐿• is 𝑚-pseudo-coherent rel-
ative to 𝑅 then 𝑀• is 𝑚-pseudo-coherent relative to 𝑅.

(2) If 𝐾•, 𝑀• are 𝑚-pseudo-coherent relative to 𝑅, then 𝐿• is 𝑚-pseudo-coherent
relative to 𝑅.

(3) If 𝐿• is (𝑚 + 1)-pseudo-coherent relative to 𝑅 and 𝑀• is 𝑚-pseudo-coherent
relative to 𝑅, then 𝐾• is (𝑚 + 1)-pseudo-coherent relative to 𝑅.

Moreover, if two out of three of 𝐾•, 𝐿•, 𝑀• are pseudo-coherent relative to 𝑅, the so is the
third.
Proof. Follows immediately from Lemma 12.40.2 and the definitions. �

Lemma 12.45.7. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑀 be an 𝐴-module. Then
(1) 𝑀 is 0-pseudo-coherent relative to 𝑅 if and only if 𝑀 is a finite type 𝐴-module,
(2) 𝑀 is (−1)-pseudo-coherent relative to 𝑅 if and only if 𝑀 is a finitely presented

relative to 𝑅,
(3) 𝑀 is (−𝑑)-pseudo-coherent relative to𝑅 if and only if for every surjection𝑅[𝑥1, … , 𝑥𝑛] →

𝐴 there exists a resolution
𝑅[𝑥1, … , 𝑥𝑛]⊕𝑎𝑑 → 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑎𝑑−1 → … → 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑎0 → 𝑀 → 0

of length 𝑑, and
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(4) 𝑀 is pseudo-coherent relative to𝑅 if and only if for every presentation𝑅[𝑥1, … , 𝑥𝑛] →
𝐴 there exists an infinite resolution

… → 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑎1 → 𝑅[𝑥1, … , 𝑥𝑛]⊕𝑎0 → 𝑀 → 0

by finite free 𝑅[𝑥1, … , 𝑥𝑛]-modules.

Proof. Follows immediately from Lemma 12.40.4 and the definitions. �

Lemma 12.45.8. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑚 ∈ 𝐙. Let 𝐾•, 𝐿• ∈ 𝐷(𝐴). If
𝐾• ⊕ 𝐿• is 𝑚-pseudo-coherent (resp. pseudo-coherent) relative to 𝑅 so are 𝐾• and 𝐿•.

Proof. Immediate from Lemma 12.40.8 and the definitions. �

Lemma 12.45.9. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑚 ∈ 𝐙. Let 𝐾• be a bounded
above complex of 𝐴-modules such that 𝐾𝑖 is (𝑚 − 𝑖)-pseudo-coherent relative to 𝑅 for all
𝑖. Then 𝐾• is 𝑚-pseudo-coherent relative to 𝑅. In particular, if 𝐾• is a bounded above
complex of 𝐴-modules pseudo-coherent relative to 𝑅, then 𝐾• is pseudo-coherent relative
to 𝑅.

Proof. Immediate from Lemma 12.40.9 and the definitions. �

Lemma 12.45.10. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑚 ∈ 𝐙. Let 𝐾• ∈ 𝐷−(𝐴) such
that 𝐻𝑖(𝐾•) is (𝑚−𝑖)-pseudo-coherent (resp. pseudo-coherent) relative to 𝑅 for all 𝑖. Then
𝐾• is 𝑚-pseudo-coherent (resp. pseudo-coherent) relative to 𝑅.

Proof. Immediate from Lemma 12.40.10 and the definitions. �

Lemma 12.45.11. Let𝑅 be a ring, 𝑓 ∈ 𝑅 an element, 𝑅𝑓 → 𝐴 is a finite type ring map, 𝑔 ∈
𝐴, and 𝐾• a complex of 𝐴-modules. If 𝐾• is 𝑚-pseudo-coherent (resp. pseudo-coherent)
relative to 𝑅𝑓, then 𝐾• ⊗𝐴 𝐴𝑔 is 𝑚-pseudo-coherent (resp. pseudo-coherent) relative to 𝑅.

Proof. First we show that𝐾• is𝑚-pseudo-coherent relative to𝑅. Namely, suppose𝑅𝑓[𝑥1, … , 𝑥𝑛] →
𝐴 is surjective. Write 𝑅𝑓 = 𝑅[𝑥0]/(𝑓𝑥0 −1). Then 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛] → 𝐴 is surjective, and
𝑅𝑓[𝑥1, … , 𝑥𝑛] is pseudo-coherent as an 𝑅[𝑥0, … , 𝑥𝑛]-module. Hence by Lemma 12.40.11
we see that 𝐾• is 𝑚-pseudo-coherent as a complex of 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛]-modules.

Choose an element 𝑔′ ∈ 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛] which maps to 𝑔 ∈ 𝐴. By Lemma 12.40.12 we
see that

𝐾• ⊗𝐋
𝑅[𝑥0,𝑥1,…,𝑥𝑛] 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 1

𝑔′ ] = 𝐾• ⊗𝑅[𝑥0,𝑥1,…,𝑥𝑛] 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 1
𝑔′ ]

= 𝐾• ⊗𝐴 𝐴𝑓

is 𝑚-pseudo-coherent as a complex of 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 1
𝑔′ ]-modules. write

𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 1
𝑔′ ] = 𝑅[𝑥0, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑥𝑛+1𝑔′ − 1).

As 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 1
𝑔′ ] is pseudo-coherent as a 𝑅[𝑥0, … , 𝑥𝑛, 𝑥𝑛+1]-module we conclude

(see Lemma 12.40.11) that𝐾•⊗𝐴𝐴𝑔 is𝑚-pseudo-coherent as a complex of𝑅[𝑥0, … , 𝑥𝑛, 𝑥𝑛+1]-modules
as desired. �

Lemma 12.45.12. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑚 ∈ 𝐙. Let 𝐾• be a complex of
𝐴-modules which is 𝑚-pseudo-coherent (resp. pseudo-coherent) relative to 𝑅. Let 𝑅 → 𝑅′

be a ring map such that 𝐴 and 𝑅′ are Tor independent over 𝑅. Set 𝐴′ = 𝐴 ⊗𝑅 𝑅′. Then
𝐾• ⊗𝐋

𝐴 𝐴′ is is 𝑚-pseudo-coherent (resp. pseudo-coherent) relative to 𝑅′.
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Proof. Choose a surjection 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴. Note that

𝐾• ⊗𝐋
𝐴 𝐴′ = 𝐾• ⊗𝐋

𝑅 𝑅′ = 𝐾• ⊗𝐋
𝑅[𝑥1,…,𝑥𝑛] 𝑅′[𝑥1, … , 𝑥𝑛]

by Lemma 12.5.2 applied twice. Hence we win by Lemma 12.40.12. �

Lemma 12.45.13. Let 𝑅 → 𝐴 → 𝐵 be finite type ring maps. Let 𝑚 ∈ 𝐙. Let 𝐾• be a
complex of 𝐴-modules. Assume 𝐵 as a 𝐵-module is pseudo-coherent relative to 𝐴. If 𝐾•

is 𝑚-pseudo-coherent (resp. pseudo-coherent) relative to 𝑅, then 𝐾• ⊗𝐋
𝐴 𝐵 is 𝑚-pseudo-

coherent (resp. pseudo-coherent) relative to 𝑅.

Proof. Choose a surjection 𝐴[𝑦1, … , 𝑦𝑚] → 𝐵. Choose a surjection 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴.
Combined we get a surjection 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … 𝑦𝑚] → 𝐵. Choose a resolution 𝐸• → 𝐵
of 𝐵 by a complex of finite free 𝐴[𝑦1, … , 𝑦𝑛]-modules (which is possible by our assumption
on the ring map 𝐴 → 𝐵). We may assume that 𝐾• is a bounded above complex of flat
𝐴-modules. Then

𝐾• ⊗𝐋
𝐴 𝐵 = Tot(𝐾• ⊗𝐴 𝐵[0])

= Tor(𝐾• ⊗𝐴 𝐴[𝑦1, … , 𝑦𝑚] ⊗𝐴[𝑦1,…,𝑦𝑚] 𝐵[0])

≅ Tot((𝐾• ⊗𝐴 𝐴[𝑦1, … , 𝑦𝑚]) ⊗𝐴[𝑦1,…,𝑦𝑚] 𝐸•
)

= Tot(𝐾• ⊗𝐴 𝐸•)
in 𝐷(𝐴[𝑦1, … , 𝑦𝑚]). The quasi-isomorphism ≅ comes from an application of Lemma
12.3.8. Thus we have to show that Tot(𝐾• ⊗𝐴 𝐸•) is 𝑚-pseudo-coherent as a complex of
𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … 𝑦𝑚]-modules. Note that Tot(𝐾•⊗𝐴𝐸•) has a filtration by subcomplexes
with successive quotients the complexes 𝐾• ⊗𝐴 𝐸𝑖[−𝑖]. Note that for 𝑖 ≪ 0 the complexes
𝐾• ⊗𝐴 𝐸𝑖[−𝑖] have zero cohomology in degrees ≤ 𝑚 and hence are 𝑚-pseudo-coherent
(over any ring). Hence, applying Lemma 12.45.6 and induction, it suffices to show that
𝐾• ⊗𝐴 𝐸𝑖[−𝑖] is pseudo-coherent relative to 𝑅 for all 𝑖. Note that 𝐸𝑖 = 0 for 𝑖 > 0. Since
also 𝐸𝑖 is finite free this reduces to proving that 𝐾• ⊗𝐴 𝐴[𝑦1, … , 𝑦𝑚] is 𝑚-pseudo-coherent
relative to 𝑅 which follows from Lemma 12.45.12 for instance. �

Lemma 12.45.14. Let 𝑅 → 𝐴 → 𝐵 be finite type ring maps. Let 𝑚 ∈ 𝐙. Let 𝑀 be
an 𝐴-module. Assume 𝐵 as a 𝐵-module is flat and pseudo-coherent relative to 𝐴. If 𝑀
is 𝑚-pseudo-coherent (resp. pseudo-coherent) relative to 𝑅, then 𝑀 ⊗𝐴 𝐵 is 𝑚-pseudo-
coherent (resp. pseudo-coherent) relative to 𝑅.

Proof. Immediate from Lemma 12.45.13. �

Lemma 12.45.15. Let 𝑅 be a ring. Let 𝐴 → 𝐵 be a map of finite type 𝑅-algebras. Let
𝑚 ∈ 𝐙. Let 𝐾• be a complex of 𝐵-modules. Assume 𝐴 is pseudo-coherent relative to 𝑅.
Then the following are equivalent

(1) 𝐾• is 𝑚-pseudo-coherent (resp. pseudo-coherent) relative to 𝐴, and
(2) 𝐾• is 𝑚-pseudo-coherent (resp. pseudo-coherent) relative to 𝑅.

Proof. Choose a surjection 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴. Choose a surjection 𝐴[𝑦1, … , 𝑦𝑚] → 𝐵.
Then we get a surjection

𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚] → 𝐴[𝑦1, … , 𝑦𝑚]
which is a flat base change of 𝑅[𝑥1, … , 𝑥𝑛] → 𝐴. By assumption 𝐴 is a pseudo-coherent
module over 𝑅[𝑥1, … , 𝑥𝑛] hence by Lemma 12.40.13 we see that 𝐴[𝑦1, … , 𝑦𝑚] is pseudo-
coherent over 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]. Thus the lemma follows from Lemma 12.40.11 and
the definitions. �
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Lemma 12.45.16. Let 𝑅 → 𝐴 be a finite type ring map. Let 𝐾• be a complex of 𝐴-modules.
Let 𝑚 ∈ 𝐙. Let 𝑓1, … , 𝑓𝑟 ∈ 𝐴 generate the unit ideal. The following are equivalent

(1) each 𝐾• ⊗𝐴 𝐴𝑓𝑖
is 𝑚-pseudo-coherent relative to 𝑅, and

(2) 𝐾• is 𝑚-pseudo-coherent relative to 𝑅.
The same equivalence holds for pseudo-coherence.

Proof. The implication (2) ⇒ (1) is in Lemma 12.45.11. Assume (1). Write 1 = ∑ 𝑓𝑖𝑔𝑖
in 𝐴. Choose a surjection 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑟, 𝑧1, … , 𝑧𝑟] → 𝐴. such that 𝑦𝑖 maps to 𝑓𝑖
and 𝑧𝑖 maps to 𝑔𝑖. Then we see that there exists a surjection

𝑃 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑟, 𝑧1, … , 𝑧𝑟]/(∑ 𝑦𝑖𝑧𝑖 − 1) ⟶ 𝐴.

Note that 𝑃 is pseudo-coherent as an 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑟, 𝑧1, … , 𝑧𝑟]-module and that
𝑃[1/𝑦𝑖] is pseudo-coherent as an 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑟, 𝑧1, … , 𝑧𝑟, 1/𝑦𝑖]-module. Hence by
Lemma 12.40.11we see that𝐾•⊗𝐴𝐴𝑓𝑖

is an𝑚-pseudo-coherent complex of𝑃[1/𝑦𝑖]-modules
for each 𝑖. Thus by Lemma 12.40.14 we see that 𝐾• is pseudo-coherent as a complex
of 𝑃-modules, and Lemma 12.40.11 shows that 𝐾• is pseudo-coherent as a complex of
𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑟, 𝑧1, … , 𝑧𝑟]-modules. �

Lemma 12.45.17. Let 𝑅 be a Noetherian ring. Let 𝑅 → 𝐴 be a finite type ring map. Then
(1) A complex of 𝐴-modules 𝐾• is 𝑚-pseudo-coherent relative to 𝑅 if and only if

𝐾• ∈ 𝐷−(𝐴) and 𝐻𝑖(𝐾•) is a finite 𝐴-module for 𝑖 ≥ 𝑚.
(2) A complex of 𝐴-modules 𝐾• is pseudo-coherent relative to 𝑅 if and only if 𝐾• ∈

𝐷−(𝐴) and 𝐻𝑖(𝐾•) is a finite 𝐴-module for all 𝑖.
(3) An 𝐴-module is pseudo-coherent relative to 𝑅 if and only if it is finite.

Proof. Immediate consequence of Lemma 12.40.16 and the definitions. �

12.46. Pseudo-coherent and perfect ring maps

We can define these types of ring maps as follows.

Definition 12.46.1. Let 𝐴 → 𝐵 be a ring map.
(1) We say 𝐴 → 𝐵 is a pseudo-coherent ring map if it is of finite type and 𝐵, as a

𝐵-module, is pseudo-coherent relative to 𝐴.
(2) We say 𝐴 → 𝐵 is a perfect ring map if it is a pseudo-coherent ring map such that

𝐵 as an 𝐴-module has finite tor dimension.

This terminologymay be nonstandard. Using Lemma 12.45.7 we see that 𝐴 → 𝐵 is pseudo-
coherent if and only if 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 and 𝐵 as an 𝐴[𝑥1, … , 𝑥𝑛]-module has a reso-
lution by finite free 𝐴[𝑥1, … , 𝑥𝑛]-modules. The motivation for the definition of a perfect
ring map is Lemma 12.42.2. The following lemmas gives a more useful and intuitive char-
acterization of a perfect ring map.

Lemma 12.46.2. A ring map 𝐴 → 𝐵 is perfect if and only if 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 and 𝐵 as
an 𝐴[𝑥1, … , 𝑥𝑛]-module has a finite resolution by finite projective 𝐴[𝑥1, … , 𝑥𝑛]-modules.

Proof. If 𝐴 → 𝐵 is perfect, then 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 and 𝐵 is pseudo-coherent as an
𝐴[𝑥1, … , 𝑥𝑛]-module and has finite tor dimension as an 𝐴-module. Hence Lemma 12.42.17
implies that𝐵 is perfect as a𝐴[𝑥1, … , 𝑥𝑛]-module, i.e., it has a finite resolution by finite pro-
jective 𝐴[𝑥1, … , 𝑥𝑛]-modules (Lemma 12.42.3). Conversely, if 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 and 𝐵
as an𝐴[𝑥1, … , 𝑥𝑛]-module has a finite resolution by finite projective𝐴[𝑥1, … , 𝑥𝑛]-modules
then 𝐵 is pseudo-coherent as an 𝐴[𝑥1, … , 𝑥𝑛]-module, hence 𝐴 → 𝐵 is pseudo-coherent.
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Moreover, the given resolution over 𝐴[𝑥1, … , 𝑥𝑛] is a finite resolution by flat 𝐴-modules
and hence 𝐵 has finite tor dimension as an 𝐴-module. �

Lots of the results of the preceding sections can be reformulated in terms of this terminol-
ogy. We also refer to More on Morphisms, Sections 33.36 and 33.37 for the corresponding
discussion concerning morphisms of schemes.

Lemma 12.46.3. A finite type ring map of Noetherian rings is pseudo-coherent.

Proof. See Lemma 12.45.17. �

Lemma 12.46.4. A ring map which is flat and of finite presentation is perfect.

Proof. Let 𝐴 → 𝐵 be a ring map which is flat and of finite presentation. It is clear that 𝐵
has finite tor dimension. By Algebra, Lemma 7.120.5 there exists a finite type 𝐙-algebra
𝐴0 ⊂ 𝐴 and a flat finite type ring map 𝐴0 → 𝐵0 such that 𝐵 = 𝐵0 ⊗𝐴0

𝐴. By Lemma
12.45.17 we see that 𝐴0 → 𝐵0 is pseudo-coherent. As 𝐴0 → 𝐵0 is flat we see that 𝐵0 and
𝐴 are tor independent over 𝐴0, hence we may use Lemma 12.45.12 to conclude that 𝐴 → 𝐵
is pseudo-coherent. �

Lemma 12.46.5. Let 𝐴 → 𝐵 be a finite type ring map with 𝐴 a regular ring of finite
dimension. Then 𝐴 → 𝐵 is perfect.

Proof. By Algebra, Lemma 7.102.7 the assumption on 𝐴 means that 𝐴 has finite global
dimension. Hence everymodule has finite tor dimension, see Lemma 12.41.15, in particular
𝐵 does. By Lemma 12.46.3 the map is pseudo-coherent. �

Lemma 12.46.6. A local complete intersection homomorphism is perfect.

Proof. Let 𝐴 → 𝐵 he a local complete intersection homomorphism. By Definition 12.24.2
this means that 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 where 𝐼 is a Koszul ideal in 𝐴[𝑥1, … , 𝑥𝑛]. By Lemmas
12.46.2 and 12.42.3 it suffices to show that 𝐼 is a perfect module over 𝐴[𝑥1, … , 𝑥𝑛]. By
Lemma 12.42.11 this is a local question. Hence we may assume that 𝐼 is generated by a
Koszul-regular sequence (by Definition 12.23.1). Of course this means that 𝐼 has a finite
free resolution and we win. �
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CHAPTER 13

Smoothing Ring Maps

13.1. Introduction

The main result of this chapter is the following:

A regular map of Noetherian rings is a filtered colimit of smooth ones.

This theorem is due to Popescu, see [Pop90]. A readable exposition of Popescu's proof was
given by Richard Swan, see [Swa98] who used notes by André and a paper of Ogoma, see
[Ogo94].
Our exposition follows Swan's, but we first prove an intermediate result which let's us work
in a slightly simpler situation. Here is an overview. We first solve the following ``lifting
problem'': A flat infinitesimal deformation of a filtered colimit of smooth algebras is a
filtered colimit of smooth algebras. This result essentially says that it suffices to prove the
main theorem for maps between reduced Noetherian rings. Next we prove two very clever
lemmas called the ``lifting lemma'' and the ``desingularization lemma''. We show that these
lemmas combined reduce the main theorem to proving a Noetherian, geometrically regular
𝑘-algebra Λ is a filtered limit of smooth 𝑘-algebras. Next, we discuss the necessary local
tricks that go into the Popescu-Ogoma-Swan-André proof. Finally, in the last three sections
we give the proof.
We end this introduction with some pointers to references. Let 𝐴 be a henselian Noetherian
local ring. We say 𝐴 has the approximation property if for any 𝑓1, … , 𝑓𝑚 ∈ 𝐴[𝑥1, … , 𝑥𝑛]
the system of equations 𝑓1 = 0, … , 𝑓𝑚 = 0 has a solution in the completion of 𝐴 if and only
if it has a solution in 𝐴. This definition is due to Artin. Artin first proved the approxima-
tion property for analytic systems of equations, see [Art68]. In [Art69a] Artin proved the
approximation property for local rings essentially of finite type over an excellent discrete
valuation ring. Artin conjectured (page 26 of [Art69a]) that every excellent henselian local
ring should have the approximation property.
At some point in time it became a conjecture that that every regular homomorphism of
Noetherian rings is a filtered colimit of smooth algebras (see for example [Ray72], [Pop81],
[Art82], [AD83]). We're not sure who this conjecture1 is due to. The relationship with
the approximation property is that if 𝐴 → 𝐴∧ is a colimit of smooth algebras, then the
approximation property holds (insert future reference here). Moreover, the main theorem
applies to the map 𝐴 → 𝐴∧ if 𝐴 is an excellent local ring, as one of the conditions of an
excellent local ring is that the formal fibres are geometrically regular. Note that excellent
local rings were defined by Grothendieck and their definition appeared in print in 1965.
In [Art82] it was shown that 𝑅 → 𝑅∧ is a filtered colimit of smooth algebras for any local
ring 𝑅 essentially of finite type over a field. In [AR88] it was shown that 𝑅 → 𝑅∧ is a

1The question/conjecture as formulated in [Art82], [AD83], and [Pop81] is stronger and was shown to be
equivalent to the original version in [CP84].
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filtered colimit of smooth algebras for any local ring 𝑅 essentially of finite type over an
excellent discrete valution ring. Finally, the main theorem was shown in [Pop85], [Pop86],
[Pop90], [Ogo94], and [Swa98] as discussed above.

Conversely, using some of the results above, in [Rot90] it was shown that any local ring
with the approximation property is excellent.

The paper [Spi99] provides an alternative approach to the main theorem, but it seems hard
to read (for example [Spi99, Lemma 5.2] appears to be an incorrectly reformulated version
of [Elk73, Lemma 3]). There is also a Bourbaki lecture about this material, see [Tei95].

13.2. Colimits

In Categories, Section 4.17 we discuss filtered colimits. In particular, note that Categories,
Lemma 4.19.3 tells us that colimits over filtered index categories are the same thing as
colimits over directed partially ordered sets.

Lemma 13.2.1. Let 𝑅 → Λ be a ring map. Let ℰ be a set of 𝑅-algebras such that each
𝐴 ∈ ℰ is of finite presentation over 𝑅. Then the following two statements are equivalent

(1) Λ is a filtered colimit of elements of ℰ, and
(2) for any 𝑅 algebra map 𝐴 → Λ with 𝐴 of finite presentation over 𝑅 we can find a

factorization 𝐴 → 𝐵 → Λ with 𝐵 ∈ ℰ.

Proof. Suppose that ℐ → ℰ, 𝑖 ↦ 𝐴𝑖 is a diagram such that Λ = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖. Let 𝐴 → Λ
with 𝐴 of finite presentation over 𝑅. Pick a presentation 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚).
Say 𝐴 → Λ maps 𝑥𝑠 to 𝜆𝑠 ∈ Λ. We can find an 𝑖 ∈ 𝑂𝑏(ℐ) and elements 𝑎𝑠 ∈ 𝐴𝑖 whose
image in Λ is 𝜆𝑠. Increasing 𝑖 if necessary we may also assume that 𝑓𝑡(𝑎1, … , 𝑎𝑛) = 0 in
𝐴𝑖. Hence we can factor 𝐴 → Λ through 𝐴𝑖 by mapping 𝑥𝑠 to 𝑎𝑠.

Conversely, suppose that (2) holds. Consider the category ℐ whose objects are 𝑅-algebra
maps 𝐴 → Λ with 𝐴 ∈ ℰ and whose morphisms are commutative diagrams

𝐴 //

��

𝐴′

~~
Λ

of 𝑅-algebras. We claim that ℐ is a filtered index category and that Λ = 𝑐𝑜𝑙𝑖𝑚ℐ 𝐴. To see
that ℐ is filtered, let 𝐴 → Λ and 𝐴′ → Λ be two objects. Then we can factor 𝐴 ⊗𝑅 𝐴′ → Λ
through an object of ℐ by assumption (2) and the fact that the elements of ℰ are of finite
presentation over 𝑅. Suppose that 𝜑, 𝜓 ∶ 𝐴 → 𝐴′ are two morphisms of ℐ. Let 𝑥1, … , 𝑥𝑛
be generators of 𝐴 as an 𝑅-algebra. By assumption (2) we can factor the 𝑅-algebra map
𝐴′/(𝜑(𝑥𝑖) − 𝜓(𝑥𝑖)) → Λ through an object of ℐ. This proves that ℐ is filtered. We omit the
proof that Λ = 𝑐𝑜𝑙𝑖𝑚ℐ 𝐴. �

13.3. Singular ideals

Let 𝑅 → 𝐴 be a ring map. The singular ideal of 𝐴 over 𝑅 is the radical ideal in 𝐴 cutting
out the singular locus of the morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝑅). Here is a formal definition.

Definition 13.3.1. Let 𝑅 → 𝐴 be a ring map. The singular ideal of 𝐴 over 𝑅, denoted
𝐻𝐴/𝑅 is the unique radical ideal 𝐻𝐴/𝑅 ⊂ 𝐴 with

𝑉(𝐻𝐴/𝑅) = {𝔮 ∈ 𝑆𝑝𝑒𝑐(𝐴) ∣ 𝑅 → 𝐴 not smooth at 𝔮}
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This makes sense because the set of primes where 𝑅 → 𝐴 is smooth is open, see Algebra,
Definition 7.126.11. In order to find an explicit set of generators for the singular ideal we
first prove the following lemma.

Lemma 13.3.2. Let 𝑅 be a ring. Let 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚). Let 𝔮 ⊂ 𝐴. Assume
𝑅 → 𝐴 is smooth at 𝔮. Then there exists an 𝑎 ∈ 𝐴, 𝑎∉𝔮, an integer 𝑐, 0 ≤ 𝑐 ≤ min(𝑛, 𝑚),
subsets 𝑈 ⊂ {1, … , 𝑛}, 𝑉 ⊂ {1, … , 𝑚} of cardinality 𝑐 such that

𝑎 = 𝑎′ det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑗∈𝑉,𝑖∈𝑈

for some 𝑎′ ∈ 𝐴 and
𝑎𝑓ℓ ∈ (𝑓𝑗, 𝑗 ∈ 𝑉) + (𝑓1, … , 𝑓𝑚)2

for all ℓ ∈ {1, … , 𝑚}.

Proof. Set 𝐼 = (𝑓1, … , 𝑓𝑚) so that the the naive cotangent complex of 𝐴 over 𝑅 is homo-
topy equivalent to 𝐼/𝐼2 → ⨁ 𝐴d𝑥𝑖, seeAlgebra, Lemma 7.123.2. Wewill use the formation
of the naive cotangent complex commutes with localization, see Algebra, Section 7.123,
especially Algebra, Lemma 7.123.10. By Algebra, Definitions 7.126.1 and 7.126.11 we
see that (𝐼/𝐼2)𝑎 → ⨁ 𝐴𝑎d𝑥𝑖 is a split injection for some 𝑎 ∈ 𝐴, 𝑎∉𝔭. After renumbering
𝑥1, … , 𝑥𝑛 and 𝑓1, … , 𝑓𝑚 we may assume that 𝑓1, … , 𝑓𝑐 form a basis for the vector space
𝐼/𝐼2 ⊗𝐴 𝜅(𝔮) and that d𝑥𝑐+1, … , d𝑥𝑛 map to a basis of Ω𝐴/𝑅 ⊗𝐴 𝜅(𝔮). Hence after replacing
𝑎 by 𝑎𝑎′ for some 𝑎′ ∈ 𝐴, 𝑎′∉𝔮 we may assume 𝑓1, … , 𝑓𝑐 form a basis for (𝐼/𝐼2)𝑎 and
that d𝑥𝑐+1, … , d𝑥𝑛 map to a basis of (Ω𝐴/𝑅)𝑎. In this situation 𝑎𝑁 for some large integer 𝑁
satisfies the conditions of the lemma (with 𝑈 = 𝑉 = {1, … , 𝑐}). �

We will use the notion of a strictly standard element in a 𝐴 over 𝑅. Our notion is slightly
weaker than the one in Swan's paper [Swa98]. We also define an elementary standard
element to be one of the type we found in the lemma above. We compare the different
types of elements in Lemma 13.4.7.

Definition 13.3.3. Let 𝑅 → 𝐴 be a ring map of finite presentation. We say an element 𝑎 ∈
𝐴 is elementary standard in𝐴 over𝑅 if there exists a presentation𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚)
and 0 ≤ 𝑐 ≤ min(𝑛, 𝑚) such that

(13.3.3.1) 𝑎 = 𝑎′ det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐

for some 𝑎′ ∈ 𝐴 and

(13.3.3.2) 𝑎𝑓𝑐+𝑗 ∈ (𝑓1, … , 𝑓𝑐) + (𝑓1, … , 𝑓𝑚)2

for 𝑗 = 1, … , 𝑚 − 𝑐. We say 𝑎 ∈ 𝐴 is strictly standard in 𝐴 over 𝑅 if there exists a
presentation 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) and 0 ≤ 𝑐 ≤ min(𝑛, 𝑚) such that

(13.3.3.3) 𝑎 = ∑𝐼⊂{1,…,𝑛}, |𝐼|=𝑐
𝑎𝐼 det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑗=1,…,𝑐, 𝑖∈𝐼

for some 𝑎𝐼 ∈ 𝐴 and

(13.3.3.4) 𝑎𝑓𝑐+𝑗 ∈ (𝑓1, … , 𝑓𝑐) + (𝑓1, … , 𝑓𝑚)2

for 𝑗 = 1, … , 𝑚 − 𝑐.

The following lemma is useful to find implications of (13.3.3.3).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07C6
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07C7


902 13. SMOOTHING RING MAPS

Lemma 13.3.4. Let 𝑅 be a ring. Let 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) and write 𝐼 =
(𝑓1, … , 𝑓𝑛). Let 𝑎 ∈ 𝐴. Then (13.3.3.3) implies there exists an𝐴-linearmap𝜓 ∶ ⨁𝑖=1,…,𝑛 𝐴d𝑥𝑖 →
𝐴⊕𝑐 such that the composition

𝐴⊕𝑐 (𝑓1,…,𝑓𝑐)
−−−−−−−→ 𝐼/𝐼2 𝑓↦d𝑓

−−−−→ ⨁𝑖=1,…,𝑛
𝐴d𝑥𝑖

𝜓
−→ 𝐴⊕𝑐

is multiplication by 𝑎. Conversely, if such a 𝜓 exists, then 𝑎𝑐 satisfies (13.3.3.3).

Proof. This is a special case of Algebra, Lemma 7.14.6. �

Lemma 13.3.5 (Elkik). Let 𝑅 → 𝐴 be a ring map of finite presentation. The singular ideal
𝐻𝐴/𝑅 is the radical of the ideal generated by strictly standard elements in 𝐴 over 𝑅 and
also the radical of the ideal generated by elementary standard elements in 𝐴 over 𝑅.

Proof. Assume 𝑎 is strictly standard in 𝐴 over 𝑅. We claim that 𝐴𝑎 is smooth over 𝑅,
which proves that 𝑎 ∈ 𝐻𝐴/𝑅. Namely, let 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚), 𝑐, and 𝑎′ ∈ 𝐴
be as in Definition 13.3.3. Write 𝐼 = (𝑓1, … , 𝑓𝑚) so that the naive cotangent complex
of 𝐴 over 𝑅 is given by 𝐼/𝐼2 → ⨁ 𝐴d𝑥𝑖. Assumption (13.3.3.4) implies that (𝐼/𝐼2)𝑎 is
generated by the classes of 𝑓1, … , 𝑓𝑐. Assumption (13.3.3.3) implies that the differential
(𝐼/𝐼2)𝑎 → ⨁ 𝐴𝑎d𝑥𝑖 has a left inverse, see Lemma 13.3.4. Hence 𝑅 → 𝐴𝑎 is smooth by
definition and Algebra, Lemma 7.123.10.

Let 𝐻𝑒, 𝐻𝑠 ⊂ 𝐴 be the radical of the ideal generated by elementary, resp. strictly standard
elements of 𝐴 over 𝑅. By definition and what we just proved we have 𝐻𝑒 ⊂ 𝐻𝑠 ⊂ 𝐻𝐴/𝑅.
The inclusion 𝐻𝐴/𝑅 ⊂ 𝐻𝑒 follows from Lemma 13.3.2. �

Example 13.3.6. The set of points where a finitely presented ring map is smooth needn't
be a quasi-compact open. For example, let 𝑅 = 𝑘[𝑥, 𝑦1, 𝑦2, 𝑦3, …]/(𝑥𝑦𝑖) and 𝐴 = 𝑅/(𝑥).
Then the smooth locus of 𝑅 → 𝐴 is ⋃ 𝐷(𝑦𝑖) which is not quasi-compact.

Lemma 13.3.7. Let 𝑅 → 𝐴 be a ring map of finite presentation. Let 𝑅 → 𝑅′ be a ring
map. If 𝑎 ∈ 𝐴 is elementary, resp. strictly standard in 𝐴 over 𝑅, then 𝑎 ⊗ 1 is elementary,
resp. strictly standard in 𝐴 ⊗𝑅 𝑅′ over 𝑅′.

Proof. If 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) is a presentation of 𝐴 over 𝑅, then 𝐴 ⊗𝑅 𝑅′ =
𝑅′[𝑥1, … , 𝑥𝑛]/(𝑓′

1, … , 𝑓′
𝑚) is a presentation of 𝐴 ⊗𝑅 𝑅′ over 𝑅′. Here 𝑓′

𝑗 is the image of
𝑓𝑗 in 𝑅′[𝑥1, … , 𝑥𝑛]. Hence the result follows from the definitions. �

Lemma 13.3.8. Let𝑅 → 𝐴 → Λ be ring maps with𝐴 of finite presentation over𝑅. Assume
that 𝐻𝐴/𝑅Λ = Λ. Then there exists a factorization 𝐴 → 𝐵 → Λ with 𝐵 smooth over 𝑅.

Proof. Choose 𝑓1, … , 𝑓𝑟 ∈ 𝐻𝐴/𝑅 and 𝜆1, … , 𝜆𝑟 ∈ Λ such that ∑ 𝑓𝑖𝜆𝑖 = 1 in Λ. Set
𝐵 = 𝐴[𝑥1, … , 𝑥𝑟]/(𝑓1𝑥1 + … + 𝑓𝑟𝑥𝑟 − 1) and define 𝐵 → Λ by mapping 𝑥𝑖 to 𝜆𝑖. Details
omitted. �

13.4. Presentations of algebras

Some of the results in this section are due to Elkik. Note that the algebra 𝐶 in the following
lemma is a symmetric algebra over 𝐴. Moreover, if 𝑅 is Noetherian, then 𝐶 is of finite
presentation over 𝑅.

Lemma 13.4.1. Let 𝑅 be a ring and let 𝐴 be a finitely presented 𝑅-algebra. There exists
finite type 𝑅-algebra map 𝐴 → 𝐶 which has a retraction with the following two properties
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(1) for each 𝑎 ∈ 𝐴 such that 𝐴𝑎 is syntomic2 over 𝑅 the ring 𝐶𝑎 is smooth over 𝐴𝑎
and has a presentation 𝐶𝑎 = 𝑅[𝑦1, … , 𝑦𝑚]/𝐽 such that 𝐽/𝐽2 is free over 𝐶𝑎, and

(2) for each 𝑎 ∈ 𝐴 such that 𝐴𝑎 is smooth over 𝑅 the module Ω𝐶𝑎/𝑅 is free over 𝐶𝑎.

Proof. Choose a presentation 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 and write 𝐼 = (𝑓1, … , 𝑓𝑚). Define the
𝐴-module 𝐾 by the short exact sequence

0 → 𝐾 → 𝐴⊕𝑚 → 𝐼/𝐼2 → 0

where the 𝑗th basis vector 𝑒𝑗 in the middle is mapped to the class of 𝑓𝑗 on the right. Set

𝐶 = Sym∗
𝐴(𝐼/𝐼2).

The retraction is just the projection onto the degree 0 part of 𝐶. We have a surjection
𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚] → 𝐶 which maps 𝑦𝑗 to the class of 𝑓𝑗 in 𝐼/𝐼2. The kernel 𝐽
of this map is generated by the elements 𝑓1, … , 𝑓𝑚 and by elements ∑ ℎ𝑗𝑦𝑗 with ℎ𝑗 ∈
𝑅[𝑥1, … , 𝑥𝑛] such that ∑ ℎ𝑗𝑒𝑗 defines an element of 𝐾. By Algebra, Lemma 7.123.3 ap-
plied to 𝑅 → 𝐴 → 𝐶 and the presentations above and More on Algebra, Lemma 12.9.10
there is a short exact sequence

(13.4.1.1) 𝐼/𝐼2 ⊗𝐴 𝐶 → 𝐽/𝐽2 → 𝐾 ⊗𝐴 𝐶 → 0

of 𝐶-modules. Let ℎ ∈ 𝑅[𝑥1, … , 𝑥𝑛] be an element with image 𝑎 ∈ 𝐴. We will use as
presentations for the localized rings

𝐴𝑎 = 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛]/𝐼′ and 𝐶𝑎 = 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]/𝐽′

where 𝐼′ = (ℎ𝑥0 − 1, 𝐼) and 𝐽′ = (ℎ𝑥0 − 1, 𝐽). Hence 𝐼′/(𝐼′)2 = 𝐶𝑎 ⊕ 𝐼/𝐼2 ⊗𝐴 𝐶𝑎 and
𝐽′/(𝐽′)2 = 𝐶𝑎 ⊕ (𝐽/𝐽2)𝑎 as 𝐶𝑎-modules. Thus we obtain

(13.4.1.2) 𝐶𝑎 ⊕ 𝐼/𝐼2 ⊗𝐴 𝐶𝑎 → 𝐶𝑎 ⊕ (𝐽/𝐽2)𝑎 → 𝐾 ⊗𝐴 𝐶𝑎 → 0

as the sequence of Algebra, Lemma 7.123.3 corresponding to 𝑅 → 𝐴𝑎 → 𝐶𝑎 and the
presentations above.

Next, assume that 𝑎 ∈ 𝐴 is such that 𝐴𝑎 is syntomic over 𝑅. Then (𝐼/𝐼2)𝑎 is finite projective
over 𝐴𝑎, see Algebra, Lemma 7.125.17. Hence we see 𝐾𝑎 ⊕ (𝐼/𝐼2)𝑎 ≅ 𝐴⊕𝑚

𝑎 is free. In
particular 𝐾𝑎 is finite projective too. By More on Algebra, Lemma 12.24.6 the sequence
(13.4.1.2) is exact on the left. Hence

𝐽′/(𝐽′)2 ≅ 𝐶𝑎 ⊕ 𝐼/𝐼2 ⊗𝐴 𝐶𝑎 ⊕ 𝐾 ⊗𝐴 𝐶𝑎 ≅ 𝐶⊕𝑚+1
𝑎

This proves (1). Finally, suppose that in addition 𝐴𝑎 is smooth over 𝑅. Then the same
presentation shows that Ω𝐶𝑎/𝑅 is the cokernel of the map

𝐽′/(𝐽′)2 ⟶ ⨁𝑖
𝐶𝑎d𝑥𝑖 ⊕ ⨁𝑗

𝐶𝑎d𝑦𝑗

The summand 𝐶𝑎 of 𝐽′/(𝐽′)2 in the decomposition above corresponds to ℎ𝑥0 − 1 and hence
maps isomorphically to the summand 𝐶𝑎d𝑥0. The summand 𝐼/𝐼2 ⊗𝐴 𝐶𝑎 of 𝐽′/(𝐽′)2 maps
injectively to ⨁𝑖=1,…,𝑛 𝐶𝑎d𝑥𝑖 with quotient Ω𝐴𝑎/𝑅 ⊗𝐴𝑎

𝐶𝑎. The summand 𝐾 ⊗𝐴 𝐶𝑎 maps
injectively to ⨁𝑗≥1 𝐶𝑎d𝑦𝑗 with quotient isomorphic to 𝐼/𝐼2 ⊗𝐴 𝐶𝑎. Thus the cokernel of
the last displayed map is the module 𝐼/𝐼2 ⊗𝐴 𝐶𝑎 ⊕ Ω𝐴𝑎/𝑅 ⊗𝐴𝑎

𝐶𝑎. Since (𝐼/𝐼2)𝑎 ⊕ Ω𝐴𝑎/𝑅
is free (from the definition of smooth ring maps) we see that (2) holds. �

2Or just that 𝑅 → 𝐴𝑎 is a local complete intersection, see More on Algebra, Definition 12.24.2.
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The following proposition was proved for henselian pairs by Elkik in [Elk73]. In the form
stated below it can be found in [Ara01], where they also prove that ring maps between
smooth algebras can be lifted.

Proposition 13.4.2. Let 𝑅 be a ring and let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑅/𝐼 → 𝐴 be a smooth
ring map. Then there exists a smooth ring map 𝑅 → 𝐴 such that 𝐴/𝐼𝐴 is isomorphic to 𝐴.

Proof. Choose a presentation 𝐴 = (𝑅/𝐼)[𝑥1, … , 𝑥𝑛]/𝐽. Set 𝐶 = Sym∗
𝐴

(𝐽/𝐽2). Note that

𝐽/𝐽2 is a finite projective 𝐴-module (follows from the definition of smoothness). By Lemma
13.4.1 and its proof the ring map 𝐴 → 𝐶 is smooth and we can find a presentation 𝐶 =
𝑅/𝐼[𝑦1, … , 𝑦𝑚]/𝐾 with 𝐾/𝐾2 free over 𝐶. By Algebra, Lemma 7.125.6 we can even assume
that 𝐶 = 𝑅/𝐼[𝑦1, … , 𝑦𝑚]/(𝑓1, … , 𝑓𝑐) where 𝑓1, … , 𝑓𝑐 maps to a basis of 𝐾/𝐾2 over 𝐶.
Choose 𝑓1, … , 𝑓𝑐 ∈ 𝑅[𝑦1, … , 𝑦𝑐] lifting 𝑓1, … , 𝑓𝑐 and set

𝐶 = 𝑅[𝑦1, … , 𝑦𝑚]/(𝑓1, … , 𝑓𝑐)

By construction 𝐶/𝐼𝐶 = 𝐶. Consider the naive cotangent complex

(𝑓1, … , 𝑓𝑐)/(𝑓1, … , 𝑓𝑐)2 ⟶ ⨁𝑖=1,…,𝑚
𝐶d𝑦𝑖

associated to the presentation of 𝐶. For every prime 𝔮 ⊃ 𝐼𝐶 of 𝐶 the images d𝑓𝑗 are
linearly independent in ⨁ 𝜅(𝔮)d𝑦𝑖 because 𝐶 is smooth over 𝑅/𝐼. Hence we conclude that
((𝑓1, … , 𝑓𝑐)/(𝑓1, … , 𝑓𝑐)2)𝔮 is free of rank 𝑐 and maps to a direct summand of ⨁ 𝐶𝔮d𝑦𝑗.
Hence 𝑅 → 𝐶 is smooth at 𝔮, see Algebra, Lemma 7.126.12. Thus we can find a 𝑔 ∈
𝐶 mapping to an invertible element of 𝐶/𝐼𝐶 such that 𝑅 → 𝐶𝑔 is smooth, see More on
Algebra, Lemma 12.9.4. We conclude that there exists a finite projective 𝐴-module 𝑃 such
that 𝐶 = Sym∗

𝐴
(𝑃) is isomorphic to 𝐶/𝐼𝐶 for some smooth 𝑅-algebra 𝐶.

Choose an integer 𝑛 and a direct sum decomposition 𝐴⊕𝑛 = 𝑃 ⊕ 𝑄. By More on Algebra,
Lemma 12.9.9 we can find an étale ring map 𝐶 → 𝐶′ which induces an isomorphism
𝐶/𝐼𝐶 → 𝐶′/𝐼𝐶′ and a finite projective 𝐶′-module 𝑄 such that 𝑄/𝐼𝑄 is isomorphic to
𝑄 ⊗𝐴 𝐶/𝐼𝐶. Then 𝐷 = Sym∗

𝐶′(𝑄) is a smooth 𝐶′-algebra (see More on Algebra, Lemma
12.9.11). Picture

𝑅

��

// 𝐶 //

��

𝐶′ //

��

𝐷

��
𝑅/𝐼 // 𝐴 // 𝐶/𝐼𝐶 ≅ // 𝐶′/𝐼𝐶′ // 𝐷/𝐼𝐷

Observe that our choice of 𝑄 gives

𝐷/𝐼𝐷 = Sym∗
𝐶/𝐼𝐶(𝑄 ⊗𝐴 𝐶/𝐼𝐶)

= Sym∗
𝐴

(𝑄) ⊗𝐴 𝐶/𝐼𝐶

= Sym∗
𝐴

(𝑄) ⊗𝐴 Sym∗
𝐴

(𝑃)

= Sym∗
𝐴

(𝑄 ⊕ 𝑃)

= Sym∗
𝐴

(𝐴⊕𝑛)

= 𝐴[𝑥1, … , 𝑥𝑛]

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07M8
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Choose 𝑓1, … , 𝑓𝑛 ∈ 𝐷 which map to 𝑥1, … , 𝑥𝑛 in 𝐷/𝐼𝐷 = 𝐴[𝑥1, … , 𝑥𝑛]. Set 𝐴 =
𝐷/(𝑓1, … , 𝑓𝑛). Note that 𝐴 = 𝐴/𝐼𝐴. By an argument similar to the argument in the first
paragraph of the proof we see that 𝑅 → 𝐴 is smooth at all primes of 𝐼𝐴. Hence, after
replacing 𝐴 by 𝐴𝑓 for a suitable 𝑓 ∈ 𝐴 (see More on Algebra, Lemma 12.9.4) we win. �

We know that any syntomic ring map 𝑅 → 𝐴 is locally a relative global complete intersec-
tion, see Algebra, Lemma 7.125.16. The next lemma says that a vector bundle over 𝑆𝑝𝑒𝑐(𝐴)
is a relative global complete intersection.

Lemma 13.4.3. Let 𝑅 → 𝐴 be a syntomic ring map. Then there exists a smooth 𝑅-algebra
map 𝐴 → 𝐶 with a retraction such that 𝐶 is a global relative complete intersection over 𝑅,
i.e.,

𝐶 ≅ 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)
flat over 𝑅 and all fibres of dimension 𝑛 − 𝑐.

Proof. Apply Lemma 13.4.1 to get 𝐴 → 𝐶. By Algebra, Lemma 7.125.6 we can write
𝐶 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) with 𝑓𝑖 mapping to a basis of 𝐽/𝐽2. The ring map 𝑅 → 𝐶
is syntomic (hence flat) as it is a composition of a syntomic and a smooth ring map. The
dimension of the fibres is 𝑛 − 𝑐 by Algebra, Lemma 7.124.4 (the fibres are local complete
intersections, so the lemma applies). �

Lemma 13.4.4. Let 𝑅 → 𝐴 be a smooth ring map. Then there exists a smooth 𝑅-algebra
map 𝐴 → 𝐵 with a retraction such that 𝐵 is standard smooth over 𝑅, i.e.,

𝐵 ≅ 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)

and det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 is invertible in 𝐵.

Proof. Apply Lemma 13.4.3 to get a smooth 𝑅-algebra map 𝐴 → 𝐶 with a retraction such
that 𝐶 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is a relative global complete intersection over 𝑅. As 𝐶
is smooth over 𝑅 we have a short exact sequence

0 → ⨁𝑗=1,…,𝑐
𝐶𝑓𝑗 → ⨁𝑖=1,…,𝑛

𝐶d𝑥𝑖 → Ω𝐶/𝑅 → 0

Since Ω𝐶/𝑅 is a projective 𝐶-module this sequence is split. Choose a left inverse 𝑡 to the
first map. Say 𝑡(d𝑥𝑖) = ∑ 𝑐𝑖𝑗𝑓𝑗 so that ∑𝑖

𝜕𝑓𝑗
𝜕𝑥𝑖

𝑐𝑖ℓ = 𝛿𝑗ℓ (Kronecker delta). Let

𝐵′ = 𝐶[𝑦1, … , 𝑦𝑐] = 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑐]/(𝑓1, … , 𝑓𝑐)

The 𝑅-algebra map 𝐶 → 𝐵′ has a retraction given by mapping 𝑦𝑗 to zero. We claim that
the map

𝑅[𝑧1, … , 𝑧𝑛] ⟶ 𝐵′, 𝑧𝑖 ⟼ 𝑥𝑖 − ∑𝑗
𝑐𝑖𝑗𝑦𝑗

is étale at every point in the image of 𝑆𝑝𝑒𝑐(𝐶) → 𝑆𝑝𝑒𝑐(𝐵′). In Ω𝐵′/𝑅[𝑧1,…,𝑧𝑛] we have

0 = d𝑓𝑗 − ∑𝑖

𝜕𝑓𝑗

𝜕𝑥𝑖
d𝑧𝑖 ≡ ∑𝑖,ℓ

𝜕𝑓𝑗

𝜕𝑥𝑖
𝑐𝑖ℓd𝑦ℓ ≡ d𝑦𝑗 mod (𝑦1, … , 𝑦𝑐)Ω𝐵′/𝑅[𝑧1,…,𝑧𝑛]

Since 0 = d𝑧𝑖 = d𝑥𝑖 modulo ∑ 𝐵′d𝑦𝑗 + (𝑦1, … , 𝑦𝑐)Ω𝐵′/𝑅[𝑧1,…,𝑧𝑛] we conclude that

Ω𝐵′/𝑅[𝑧1,…,𝑧𝑛]/(𝑦1, … , 𝑦𝑐)Ω𝐵′/𝑅[𝑧1,…,𝑧𝑛] = 0.

As Ω𝐵′/𝑅[𝑧1,…,𝑧𝑛] is a finite 𝐵′-module by Nakayama's lemma there exists a 𝑔 ∈ 1 +
(𝑦1, … , 𝑦𝑐) that (Ω𝐵′/𝑅[𝑧1,…,𝑧𝑛])𝑔 = 0. This proves that 𝑅[𝑧1, … , 𝑧𝑛] → 𝐵′

𝑔 is unrami-
fied, see Algebra, Definition 7.138.1. For any ring map 𝑅 → 𝑘 where 𝑘 is a field we
obtain an unramified ring map 𝑘[𝑧1, … , 𝑧𝑛] → (𝐵′

𝑔) ⊗𝑅 𝑘 between smooth 𝑘-algebras

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07CG
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of dimension 𝑛. It follows that 𝑘[𝑧1, … , 𝑧𝑛] → (𝐵′
𝑔) ⊗𝑅 𝑘 is flat by Algebra, Lemmas

7.119.1 and 7.129.2. By the critère de platitude par fibre (Algebra, Lemma 7.119.8) we
conclude that 𝑅[𝑧1, … , 𝑧𝑛] → 𝐵′

𝑔 is flat. Finally, Algebra, Lemma 7.132.7 implies that
𝑅[𝑧1, … , 𝑧𝑛] → 𝐵′

𝑔 is étale. Set 𝐵 = 𝐵′
𝑔. Note that 𝐶 → 𝐵 is smooth and has a retraction,

so also 𝐴 → 𝐵 is smooth and has a retraction. Moreover, 𝑅[𝑧1, … , 𝑧𝑛] → 𝐵 is étale. By
Algebra, Lemma 7.132.2 we can write

𝐵 = 𝑅[𝑧1, … , 𝑧𝑛, 𝑤1, … , 𝑤𝑐]/(𝑔1, … , 𝑔𝑐)

with det(𝜕𝑔𝑗/𝜕𝑤𝑖) invertible in 𝐵. This proves the lemma. �

Lemma 13.4.5. Let 𝑅 → Λ be a ring map. If Λ is a filtered colimit of smooth 𝑅-algebras,
then Λ is a filtered colimit of standard smooth 𝑅-algebras.

Proof. Let 𝐴 → Λ be an 𝑅-algebra map with 𝐴 of finite presentation over 𝑅. According to
Lemma 13.2.1 we have to factor this map through a standard smooth algebra, and we know
we can factor it as 𝐴 → 𝐵 → Λ with 𝐵 smooth over 𝑅. Choose an 𝑅-algebra map 𝐵 → 𝐶
with a retraction 𝐶 → 𝐵 such that 𝐶 is standard smooth over 𝑅, see Lemma 13.4.4. Then
the desired factorization is 𝐴 → 𝐵 → 𝐶 → 𝐵 → Λ. �

Lemma 13.4.6. Let 𝑅 → 𝐴 be a standard smooth ring map. Let 𝐸 ⊂ 𝐴 be a finite subset
of order |𝐸| = 𝑛. Then there exists a presentation 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛+𝑚]/(𝑓1, … , 𝑓𝑐) with
𝑐 ≥ 𝑛, with det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 invertible in 𝐴, and such that 𝐸 is the set of congruence
classes of 𝑥1, … , 𝑥𝑛.

Proof. Choose a presentation𝐴 = 𝑅[𝑦1, … , 𝑦𝑚]/(𝑔1, … , 𝑔𝑑) such that the image of det(𝜕𝑔𝑗/𝜕𝑦𝑖)𝑖,𝑗=1,…,𝑑
is invertible in 𝐴. Choose an enumerations 𝐸 = {𝑎1, … , 𝑎𝑛} and choose ℎ𝑖 ∈ 𝑅[𝑦1, … , 𝑦𝑚]
whose image in 𝐴 is 𝑎𝑖. Consider the presentation

𝐴 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]/(𝑥1 − ℎ1, … , 𝑥𝑛 − ℎ𝑛, 𝑔1, … , 𝑔𝑑)

and set 𝑐 = 𝑛 + 𝑑. �

Lemma 13.4.7. Let 𝑅 → 𝐴 be a ring map of finite presentation. Let 𝑎 ∈ 𝐴. Consider the
following conditions on 𝑎:

(1) 𝐴𝑎 is smooth over 𝑅,
(2) 𝐴𝑎 is smooth over 𝑅 and Ω𝐴𝑎/𝑅 is stably free,
(3) 𝐴𝑎 is smooth over 𝑅 and Ω𝐴𝑎/𝑅 is free,
(4) 𝐴𝑎 is standard smooth over 𝑅,
(5) 𝑎 is strictly standard in 𝐴 over 𝑅,
(6) 𝑎 is elementary standard in 𝐴 over 𝑅.

Then we have
(a) (4) ⇒ (3) ⇒ (2) ⇒ (1),
(b) (6) ⇒ (5),
(c) (6) ⇒ (4),
(d) (5) ⇒ (2),
(e) (2) ⇒ the elements 𝑎𝑒, 𝑒 ≥ 𝑒0 are strictly standard in 𝐴 over 𝑅,
(f) (4) ⇒ the elements 𝑎𝑒, 𝑒 ≥ 𝑒0 are elementary standard in 𝐴 over 𝑅.

Proof. Part (a) is clear from the definitions and Algebra, Lemma 7.126.7. Part (b) is clear
from Definition 13.3.3.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07CI
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Proof of (c). Choose a presentation 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) such that (13.3.3.1) and
(13.3.3.2) hold. Choose ℎ ∈ 𝑅[𝑥1, … , 𝑥𝑛] mapping to 𝑎. Then

𝐴𝑎 = 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛]/(𝑥0ℎ − 1, 𝑓1, … , 𝑓𝑛).

Write 𝐽 = (𝑥0ℎ − 1, 𝑓1, … , 𝑓𝑛). By (13.3.3.2) we see that the 𝐴𝑎-module 𝐽/𝐽2 is generated
by 𝑥0ℎ − 1, 𝑓1, … , 𝑓𝑐 over 𝐴𝑎. Hence, as in the proof of Algebra, Lemma 7.125.6, we can
choose a 𝑔 ∈ 1 + 𝐽 such that

𝐴𝑎 = 𝑅[𝑥0, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑥0ℎ − 1, 𝑓1, … , 𝑓𝑛, 𝑔𝑥𝑛+1 − 1).

At this point (13.3.3.1) implies that 𝑅 → 𝐴𝑎 is standard smooth (use the coordinates
𝑥0, 𝑥1, … , 𝑥𝑐, 𝑥𝑛+1 to take derivatives).

Proof of (d). Choose a presentation 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) such that (13.3.3.3) and
(13.3.3.4) hold. We already know that 𝐴𝑎 is smooth over 𝑅, see Lemma 13.3.5. As above
we get a presentation 𝐴𝑎 = 𝑅[𝑥0, 𝑥1, … , 𝑥𝑛]/𝐽 with 𝐽/𝐽2 free. Then Ω𝐴𝑎/𝑅 ⊕𝐽/𝐽2 ≅ 𝐴⊕𝑛+1

𝑎
by the definition of smooth ring maps, hence we see that Ω𝐴𝑎/𝑅 is stably free.

Proof of (e). Choose a presentation 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 with 𝐼 finitely generated. By
assumption we have a short exact sequence

0 → (𝐼/𝐼2)𝑎 → ⨁𝑖=1,…,𝑛
𝐴𝑎d𝑥𝑖 → Ω𝐴𝑎/𝑅 → 0

which is split exact. Hence we see that (𝐼/𝐼2)𝑎 ⊕ Ω𝐴𝑎/𝑅 is a free 𝐴𝑎-module. Since Ω𝐴𝑎/𝑅
is stably free we see that (𝐼/𝐼2)𝑎 is stably free as well. Thus replacing the presentation cho-
sen above by 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1, … , 𝑥𝑛+𝑟]/𝐽 with 𝐽 = (𝐼, 𝑥𝑛+1, … , 𝑥𝑛+𝑟) for some
𝑟 we get that (𝐽/𝐽2)𝑎 is (finite) free. Choose 𝑓1, … , 𝑓𝑐 ∈ 𝐽 which map to a basis of
(𝐽/𝐽2)𝑎. Extend this to a list of generators 𝑓1, … , 𝑓𝑚 ∈ 𝐽. Consider the presentation
𝐴 = 𝑅[𝑥1, … , 𝑥𝑛+𝑟]/(𝑓1, … , 𝑓𝑚). Then (13.3.3.4) holds for 𝑎𝑒 for all sufficiently large 𝑒 by
construction. Moreover, since (𝐽/𝐽2)𝑎 → ⨁𝑖=1,…,𝑛 𝐴𝑎d𝑥𝑖 is a split injection we can find an
𝐴𝑎-linear left inverse. Writing this left inverse in terms of the basis 𝑓1, … , 𝑓𝑐 and clearing
denominators we find a linear map 𝜓0 ∶ 𝐴⊕𝑛 → 𝐴⊕𝑐 such that

𝐴⊕𝑐 (𝑓1,…,𝑓𝑐)
−−−−−−−→ 𝐽/𝐽2 𝑓↦d𝑓

−−−−→ ⨁𝑖=1,…,𝑛
𝐴d𝑥𝑖

𝜓0−−→ 𝐴⊕𝑐

is multiplication by 𝑎𝑒0 for some 𝑒0 ≥ 1. By Lemma 13.3.4 we see (13.3.3.3) holds for all
𝑎𝑐𝑒0 and hence for 𝑎𝑒 for all 𝑒 with 𝑒 ≥ 𝑐𝑒0.

Proof of (f). Choose a presentation𝐴𝑎 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) such that det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐
is invertible in 𝐴𝑎. We may assume that for some 𝑚 < 𝑛 the classes of the elements
𝑥1, … , 𝑥𝑚 correspond 𝑎𝑖/1 where 𝑎1, … , 𝑎𝑚 ∈ 𝐴 are generators of 𝐴 over 𝑅, see Lemma
13.4.6. After replacing 𝑥𝑖 by 𝑎𝑁𝑥𝑖 for 𝑚 < 𝑖 ≤ 𝑛 wemay assume the class of 𝑥𝑖 is 𝑎𝑖/1 ∈ 𝐴𝑎
for some 𝑎𝑖 ∈ 𝐴. Consider the ring map

Ψ ∶ 𝑅[𝑥1, … , 𝑥𝑛] ⟶ 𝐴, 𝑥𝑖 ⟼ 𝑎𝑖.

This is a surjective ringmap. By replacing𝑓𝑗 by 𝑎𝑁𝑓𝑗 wemay assume that 𝑓𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛]
and that Ψ(𝑓𝑗) = 0 (since after all 𝑓𝑗(𝑎1/1, … , 𝑎𝑛/1) = 0 in 𝐴𝑎). Let 𝐽 = Ker(Ψ). Then
𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐽 is a presentation and 𝑓1, … , 𝑓𝑐 ∈ 𝐽 are elements such that (𝐽/𝐽2)𝑎
is freely generated by 𝑓1, … , 𝑓𝑐 and such that det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 maps to an invertible
element of 𝐴𝑎. It follows that (13.3.3.1) and (13.3.3.2) hold for 𝑎𝑒 and all large enough 𝑒
as desired. �
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13.5. The lifting problem

The goal in this section is to prove (Proposition 13.5.3) that the collection of algebras which
are filtered colimits of smooth algebras is closed under infinitesimal flat deformations. The
proof is elementary and only uses the results on presentations of smooth algebras from
Section 13.4.

Lemma 13.5.1. Let 𝑅 → Λ be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Assume that
(1) 𝐼2 = 0, and
(2) Λ/𝐼Λ is a filtered colimit of smooth 𝑅/𝐼-algebras.

Let 𝜑 ∶ 𝐴 → Λ be an 𝑅-algebra map with 𝐴 of finite presentation over 𝑅. Then there exists
a factorization

𝐴 → 𝐵/𝐽 → Λ
where 𝐵 is a smooth 𝑅-algebra and 𝐽 ⊂ 𝐼𝐵 is a finitely generated ideal.

Proof. Choose a factorization

𝐴/𝐼𝐴 → ̄𝐵 → Λ/𝐼Λ

with ̄𝐵 standard smooth over 𝑅/𝐼; this is possible by assumption and Lemma 13.4.5. Write
̄𝐵 = 𝐴/𝐼𝐴[𝑡1, … , 𝑡𝑟]/( ̄𝑔1, … , ̄𝑔𝑠)

and say ̄𝐵 → Λ/𝐼Λ maps 𝑡𝑖 to the class of 𝜆𝑖 modulo 𝐼Λ. Choose 𝑔1, … , 𝑔𝑠 ∈ 𝐴[𝑡1, … , 𝑡𝑟]
lifting ̄𝑔1, … , ̄𝑔𝑠. Write 𝜑(𝑔𝑖)(𝜆1, … , 𝜆𝑟) = ∑ 𝜖𝑖𝑗𝜇𝑖𝑗 for some 𝜖𝑖𝑗 ∈ 𝐼 and 𝜇𝑖𝑗 ∈ Λ. Define

𝐴′ = 𝐴[𝑡1, … , 𝑡𝑟, 𝛿𝑖,𝑗]/(𝑔𝑖 − ∑ 𝜖𝑖𝑗𝛿𝑖𝑗)

and consider the map

𝐴′ ⟶ Λ, 𝑎 ⟼ 𝜑(𝑎), 𝑡𝑖 ⟼ 𝜆𝑖, 𝛿𝑖𝑗 ⟼ 𝜇𝑖𝑗

We have
𝐴′/𝐼𝐴′ = 𝐴/𝐼𝐴[𝑡1, … , 𝑡𝑟]/( ̄𝑔1, … , ̄𝑔𝑠)[𝛿𝑖𝑗] ≅ ̄𝐵[𝛿𝑖𝑗]

This is a standard smooth algebra over 𝑅/𝐼 as ̄𝐵 is standard smooth. Choose a presenta-
tion 𝐴′/𝐼𝐴′ = 𝑅/𝐼[𝑥1, … , 𝑥𝑛]/( ̄𝑓1, … , ̄𝑓𝑐) with det(𝜕 ̄𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 invertible in 𝐴′/𝐼𝐴′.
Choose lifts 𝑓1, … , 𝑓𝑐 ∈ 𝑅[𝑥1, … , 𝑥𝑛] of ̄𝑓1, … , ̄𝑓𝑐. Then

𝐵 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑥𝑛+1]/(𝑓1, … , 𝑓𝑐, 𝑥𝑛+1 det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 − 1)

is smooth over 𝑅. Since smooth ring maps are formally smooth (Algebra, Proposition
7.127.13) there exists an 𝑅-algebra map 𝐵 → 𝐴′ which is an isomorphism modulo 𝐼. Then
𝐵 → 𝐴′ is surjective by Nakayama's lemma (Algebra, Lemma 7.14.5). Thus 𝐴′ = 𝐵/𝐽
with 𝐽 ⊂ 𝐼𝐵 finitely generated (see Algebra, Lemma 7.6.3). �

Lemma 13.5.2. Let 𝑅 → Λ be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Assume that
(1) 𝐼2 = 0,
(2) Λ/𝐼Λ is a filtered colimit of smooth 𝑅/𝐼-algebras, and
(3) 𝑅 → Λ is flat.

Let 𝜑 ∶ 𝐵 → Λ be an 𝑅-algebra map with 𝐵 smooth over 𝑅. Let 𝐽 ⊂ 𝐼𝐵 be a finitely
generated ideal. Then there exists 𝑅-algebra maps

𝐵
𝛼

−→ 𝐵′ 𝛽
−→ Λ

such that 𝐵′ is smooth over 𝑅, such that 𝛼(𝐽) = 0 and such that 𝛽 ∘ 𝛼 = 𝜑 mod 𝐼Λ.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07CK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07CL
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Proof. If we can prove the lemma in case 𝐽 = (ℎ), then we can prove the lemma by in-
duction on the number of generators of 𝐽. Namely, suppose that 𝐽 can be generated by 𝑛
elements ℎ1, … , ℎ𝑛 and the lemma holds for all cases where 𝐽 is generated by 𝑛 − 1 ele-
ments. Then we apply the case 𝑛 = 1 to produce 𝐵 → 𝐵′ → Λ where the first map kills of
ℎ𝑛. Then we let 𝐽′ be the ideal of 𝐵′ generated by the images of ℎ1, … , ℎ𝑛−1 and we apply
the case for 𝑛 − 1 to produce 𝐵′ → 𝐵″ → Λ. It is easy to verify that 𝐵 → 𝐵″ → Λ does
the job.

Assume 𝐽 = (ℎ) and write ℎ = ∑ 𝜖𝑖𝑏𝑖 for some 𝜖𝑖 ∈ 𝐼 and 𝑏𝑖 ∈ 𝐵. Note that 0 =
𝜑(ℎ) = ∑ 𝜖𝑖𝜑(𝑏𝑖). As Λ is flat over 𝑅, the equational criterion for flatness (Algebra, Lemma
7.35.10) implies that we can find 𝜆𝑗 ∈ Λ, 𝑗 = 1, … , 𝑚 and 𝑎𝑖𝑗 ∈ 𝑅 such that 𝜑(𝑏𝑖) =
∑𝑗 𝑎𝑖𝑗𝜆𝑗 and ∑𝑖 𝜖𝑖𝑎𝑖𝑗 = 0. Set

𝐶 = 𝐵[𝑥1, … , 𝑥𝑚]/(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗)

with 𝐶 → Λ given by 𝜑 and 𝑥𝑗 ↦ 𝜆𝑗. Choose a factorization

𝐶 → 𝐵′/𝐽′ → Λ

as in Lemma 13.5.1. Since 𝐵 is smooth over 𝑅 we can lift the map 𝐵 → 𝐶 → 𝐵′/𝐽′ to a map
𝜓 ∶ 𝐵 → 𝐵′. We claim that 𝜓(ℎ) = 0. Namely, the fact that 𝜓 agrees with 𝐵 → 𝐶 → 𝐵′/𝐽′

mod 𝐼 implies that
𝜓(𝑏𝑖) = ∑ 𝑎𝑖𝑗𝜉𝑗 + 𝜃𝑖

for some 𝜉𝑖 ∈ 𝐵′ and 𝜃𝑖 ∈ 𝐼𝐵′. Hence we see that

𝜓(ℎ) = 𝜓(∑ 𝜖𝑖𝑏𝑖) = ∑ 𝜖𝑖𝑎𝑖𝑗𝜉𝑗 + ∑ 𝜖𝑖𝜃𝑖 = 0

because of the relations above and the fact that 𝐼2 = 0. �

Proposition 13.5.3. Let 𝑅 → Λ be a ring map. Let 𝐼 ⊂ 𝑅 be an ideal. Assume that
(1) 𝐼 is nilpotent,
(2) Λ/𝐼Λ is a filtered colimit of smooth 𝑅/𝐼-algebras, and
(3) 𝑅 → Λ is flat.

Then Λ is a colimit of smooth 𝑅-algebras.

Proof. Since 𝐼𝑛 = 0 for some 𝑛, it follows by induction on 𝑛 that it suffices to consider the
case where 𝐼2 = 0. Let 𝜑 ∶ 𝐴 → Λ be an 𝑅-algebra map with 𝐴 of finite presentation over
𝑅. We have to find a factorization 𝐴 → 𝐵 → Λ with 𝐵 smooth over 𝑅, see Lemma 13.2.1.
By Lemma 13.5.1 wemay assume that 𝐴 = 𝐵/𝐽 with 𝐵 smooth over 𝑅 and 𝐽 ⊂ 𝐼𝐵 a finitely
generated ideal. By Lemma 13.5.2 we can find a (possibly noncommutative) diagram

𝐵 𝛼
//

𝜑
��

𝐵′

𝛽~~
Λ

of 𝑅-algebras which commutes modulo 𝐼 and such that 𝛼(𝐽) = 0. The map

𝐷 ∶ 𝐵 ⟶ 𝐼Λ, 𝑏 ⟼ 𝜑(𝑏) − 𝛽(𝛼(𝑏))

is a derivation over 𝑅 hence we can write it as 𝐷 = 𝜉 ∘ d𝐵/𝑅 for some 𝐵-linear map 𝜉 ∶
Ω𝐵/𝑅 → 𝐼Λ. Since Ω𝐵/𝑅 is a finite projective 𝐵-module we can write 𝜉 = ∑𝑖=1,…,𝑛 𝜖𝑖Ξ𝑖 for

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07CM
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some 𝜖𝑖 ∈ 𝐼 and 𝐵-linear maps Ξ𝑖 ∶ Ω𝐵/𝑅 → Λ. (Details omitted. Hint: write Ω𝐵/𝑅 as a
direct sum of a finite free module to reduce to the finite free case.) We define

𝐵″ = Sym∗
𝐵′ (⨁𝑖=1,…,𝑛

Ω𝐵/𝑅 ⊗𝐵,𝛼 𝐵′
)

and we define 𝛽′ ∶ 𝐵″ → Λ by 𝛽 on 𝐵′ and by

𝛽′|𝑖th summand Ω𝐵/𝑅⊗𝐵,𝛼𝐵′ = Ξ𝑖 ⊗ 𝛽

and 𝛼′ ∶ 𝐵 → 𝐵″ by

𝛼′(𝑏) = 𝛼(𝑏) ⊕ ∑ 𝜖𝑖d𝐵/𝑅(𝑏) ⊗ 1 ⊕ 0 ⊕ …

At this point the diagram
𝐵

𝛼′
//

𝜑
��

𝐵″

𝛽′
~~

Λ
does commute. Moreover, it is direct from the definitions that 𝛼′(𝐽) = 0 as 𝐼2 = 0. Hence
the desired factorization. �

13.6. The lifting lemma

Here is a fiendishly clever lemma.

Lemma 13.6.1. Let 𝑅 be a Noetherian ring. Let Λ be an 𝑅-algebra. Let 𝜋 ∈ 𝑅 and
assume that Ann𝑅(𝜋) = Ann𝑅(𝜋2) and AnnΛ(𝜋) = AnnΛ(𝜋2). Suppose we have 𝑅-algebra
maps 𝑅/𝜋2𝑅 → ̄𝐶 → Λ/𝜋2Λ with ̄𝐶 of finite presentation. Then there exists an 𝑅-algebra
homomorphism 𝐷 → Λ and a commutative diagram

𝑅/𝜋2𝑅 //

��

̄𝐶 //

��

Λ/𝜋2Λ

��
𝑅/𝜋𝑅 // 𝐷/𝜋𝐷 // Λ/𝜋Λ

with the following properties
(a) 𝐷 is of finite presentation,
(b) 𝑅 → 𝐷 is smooth at any prime 𝔮 with 𝜋∉𝔮,
(c) 𝑅 → 𝐷 is smooth at any prime 𝔮 with 𝜋 ∈ 𝔮 lying over a prime of ̄𝐶 where

𝑅/𝜋2𝑅 → ̄𝐶 is smooth, and
(d) ̄𝐶/𝜋 ̄𝐶 → 𝐷/𝜋𝐷 is smooth at any prime lying over a prime of ̄𝐶 where 𝑅/𝜋2𝑅 → ̄𝐶

is smooth.

Proof. We choose a presentation
̄𝐶 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚)

We also denote 𝐼 = (𝑓1, … , 𝑓𝑚) and ̄𝐼 the image of 𝐼 in 𝑅/𝜋2𝑅[𝑥1, … , 𝑥𝑛]. Since 𝑅
is Noetherian, so is ̄𝐶. Hence the smooth locus of 𝑅/𝜋2𝑅 → ̄𝐶 is quasi-compact, see
Topology, Lemma 5.6.2. Applying Lemma 13.3.2 we may choose a finite list of elements
𝑎1, … , 𝑎𝑟 ∈ 𝑅[𝑥1, … , 𝑥𝑛] such that

(1) the union of the open subspaces 𝑆𝑝𝑒𝑐( ̄𝐶𝑎𝑘
) ⊂ 𝑆𝑝𝑒𝑐( ̄𝐶) cover the smooth locus of

𝑅/𝜋2𝑅 → ̄𝐶, and

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07CP
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(2) for each 𝑘 = 1, … , 𝑟 there exists a finite subset 𝐸𝑘 ⊂ {1, … , 𝑚} such that ( ̄𝐼/ ̄𝐼2)𝑎𝑘
is freely generated by the classes of 𝑓𝑗, 𝑗 ∈ 𝐸𝑘.

Set 𝐼𝑘 = (𝑓𝑗, 𝑗 ∈ 𝐸𝑘) ⊂ 𝐼 and denote ̄𝐼𝑘 the image of 𝐼𝑘 in 𝑅/𝜋2𝑅[𝑥1, … , 𝑥𝑛]. By (2)
and Nakayama's lemma we see that ( ̄𝐼/ ̄𝐼𝑘)𝑎𝑘

is annihilated by 1 + 𝑏′
𝑘 for some 𝑏′

𝑘 ∈ ̄𝐼𝑎𝑘
.

Suppose 𝑏′
𝑘 is the image of 𝑏𝑘/(𝑎𝑘)𝑁 for some 𝑏𝑘 ∈ 𝐼 and some integer 𝑁. After replacing

𝑎𝑘 by 𝑎𝑘𝑏𝑘 we get
(3) ( ̄𝐼𝑘)𝑎𝑘

= ( ̄𝐼)𝑎𝑘
.

Thus, after possibly replacing 𝑎𝑘 by a high power, we may write

(4) 𝑎𝑘𝑓ℓ = ∑𝑗∈𝐸𝑘
ℎ𝑗

𝑘,ℓ𝑓𝑗 + 𝜋2𝑔𝑘,ℓ

for any ℓ ∈ {1, … , 𝑚} and some ℎ𝑗
𝑖,ℓ, 𝑔𝑖,ℓ ∈ 𝑅[𝑥1, … , 𝑥𝑛]. If ℓ ∈ 𝐸𝑘 we choose ℎ𝑗

𝑘,ℓ =
𝑎𝑘𝛿ℓ,𝑗 (Kronecker delta) and 𝑔𝑘,ℓ = 0. Set

𝐷 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑧1, … , 𝑧𝑚]/(𝑓𝑗 − 𝜋𝑧𝑗, 𝑝𝑘,ℓ).

Here 𝑗 ∈ {1, … , 𝑚}, 𝑘 ∈ {1, … , 𝑟}, ℓ ∈ {1, … , 𝑚}, and

𝑝𝑘,ℓ = 𝑎𝑘𝑧ℓ − ∑𝑗∈𝐸𝑘
ℎ𝑗

𝑘,ℓ𝑧𝑗 − 𝜋𝑔𝑘,ℓ.

Note that for ℓ ∈ 𝐸𝑘 we have 𝑝𝑘,ℓ = 0 by our choices above.

The map 𝑅 → 𝐷 is the given one. Say ̄𝐶 → Λ/𝜋2Λ maps 𝑥𝑖 to the class of 𝜆𝑖 modulo 𝜋2.
For an element 𝑓 ∈ 𝑅[𝑥1, … , 𝑥𝑛] we denote 𝑓(𝜆) ∈ Λ the result of subsituting 𝜆𝑖 for 𝑥𝑖.
Then we know that 𝑓𝑗(𝜆) = 𝜋2𝜇𝑗 for some 𝜇𝑗 ∈ Λ. Define 𝐷 → Λ by the rules 𝑥𝑖 ↦ 𝜆𝑖
and 𝑧𝑗 ↦ 𝜋𝜇𝑗. This is well defined because

𝑝𝑘,ℓ ↦ 𝑎𝑘(𝜆)𝜋𝜇ℓ − ∑𝑗∈𝐸𝑘
ℎ𝑗

𝑘,ℓ(𝜆)𝜋𝜇𝑗 − 𝜋𝑔𝑘,ℓ(𝜆)

= 𝜋 (𝑎𝑘(𝜆)𝜇ℓ − ∑𝑗∈𝐸𝑘
ℎ𝑗

𝑘,ℓ(𝜆)𝜇𝑗 − 𝑔𝑘,ℓ(𝜆))

Substituting 𝑥𝑖 = 𝜆𝑖 in (4) above we see that the expression inside the brackets is annihilated
by 𝜋2, hence it is annihilated by 𝜋 as we have assumed AnnΛ(𝜋) = AnnΛ(𝜋2). The map

̄𝐶 → 𝐷/𝜋𝐷 is determined by 𝑥𝑖 ↦ 𝑥𝑖 (clearly well defined). Thus we are done if we can
prove (b), (c), and (d).

Using (4) we obtain the following key equality

𝜋𝑝𝑘,ℓ = 𝜋𝑎𝑘𝑧ℓ − ∑𝑗∈𝐸𝑘
𝜋ℎ𝑗

𝑘,ℓ𝑧𝑗 − 𝜋2𝑔𝑘,ℓ

= −𝑎𝑘(𝑓ℓ − 𝜋𝑧ℓ) + 𝑎𝑘𝑓ℓ + ∑𝑗∈𝐸𝑘
ℎ𝑗

𝑘,ℓ(𝑓𝑗 − 𝜋𝑧𝑗) − ∑𝑗∈𝐸𝑘
ℎ𝑗

𝑘,ℓ𝑓𝑗 − 𝜋2𝑔𝑘,ℓ

= −𝑎𝑘(𝑓ℓ − 𝜋𝑧ℓ) + ∑𝑗∈𝐸𝑘
ℎ𝑗

𝑘,ℓ(𝑓𝑗 − 𝜋𝑧𝑗)

The end result is an element of the ideal generated by 𝑓𝑗 − 𝜋𝑧𝑗. In particular, we see that
𝐷[1/𝜋] is isomorphic to 𝑅[1/𝜋][𝑥1, … , 𝑥𝑛, 𝑧1, … , 𝑧𝑚]/(𝑓𝑗 − 𝜋𝑧𝑗) which is isomorphic to
𝑅[1/𝜋][𝑥1, … , 𝑥𝑛] hence smooth over 𝑅. This proves (b).

For fixed 𝑘 ∈ {1, … , 𝑟} consider the ring

𝐷𝑘 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑧1, … , 𝑧𝑚]/(𝑓𝑗 − 𝜋𝑧𝑗, 𝑗 ∈ 𝐸𝑘, 𝑝𝑘,ℓ)
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The number of equations is 𝑚 = |𝐸𝑘| + (𝑚 − |𝐸𝑘|) as 𝑝𝑘,ℓ is zero if ℓ ∈ 𝐸𝑘. Also, note that

(𝐷𝑘/𝜋𝐷𝑘)𝑎𝑘
= 𝑅/𝜋𝑅[𝑥1, … , 𝑥𝑛, 1/𝑎𝑘, 𝑧1, … , 𝑧𝑚]/(𝑓𝑗, 𝑗 ∈ 𝐸𝑘, 𝑝𝑘,ℓ)

= ( ̄𝐶/𝜋 ̄𝐶)𝑎𝑘
[𝑧1, … , 𝑧𝑚]/(𝑎𝑘𝑧ℓ − ∑𝑗∈𝐸𝑘

ℎ𝑗
𝑘,ℓ𝑧𝑗)

≅ ( ̄𝐶/𝜋 ̄𝐶)𝑎𝑘
[𝑧𝑗, 𝑗 ∈ 𝐸𝑘]

In particular (𝐷𝑘/𝜋𝐷𝑘)𝑎𝑘
is smooth over ( ̄𝐶/𝜋 ̄𝐶)𝑎𝑘

. By our choice of 𝑎𝑘 we have that
( ̄𝐶/𝜋 ̄𝐶)𝑎𝑘

is smooth over 𝑅/𝜋𝑅 of relative dimension 𝑛 − |𝐸𝑘|, see (2). Hence for a prime
𝔮𝑘 ⊂ 𝐷𝑘 containing 𝜋 and lying over 𝑆𝑝𝑒𝑐( ̄𝐶𝑎𝑘

) the fibre ring of 𝑅 → 𝐷𝑘 is smooth at
𝔮𝑘 of dimension 𝑛. Thus 𝑅 → 𝐷𝑘 is syntomic at 𝔮𝑘 by our count of the number of equa-
tions above, see Algebra, Lemma 7.125.11. Hence 𝑅 → 𝐷𝑘 is smooth at 𝔮𝑘, see Algebra,
Lemma 7.126.16.

To finish the proof, let 𝔮 ⊂ 𝐷 be a prime containing 𝜋 lying over a prime where 𝑅/𝜋2𝑅 → ̄𝐶
is smooth. Then 𝑎𝑘∉𝔮 for some 𝑘 by (1). We will show that the surjection 𝐷𝑘 → 𝐷 induces
an isomorphism on local rings at 𝔮. Since we know that the ring maps ̄𝐶/𝜋 ̄𝐶 → 𝐷𝑘/𝜋𝐷𝑘
and 𝑅 → 𝐷𝑘 are smooth at the corresponding prime 𝔮𝑘 by the preceding paragraph this
will prove (c) and (d) and thus finish the proof.

First, note that for any ℓ the equation 𝜋𝑝𝑘,ℓ = −𝑎𝑘(𝑓ℓ −𝜋𝑧ℓ)+∑𝑗∈𝐸𝑘
ℎ𝑗

𝑘,ℓ(𝑓𝑗 −𝜋𝑧𝑗) proved
above shows that 𝑓ℓ − 𝜋𝑧ℓ maps to zero in (𝐷𝑘)𝑎𝑘

and in particular in (𝐷𝑘)𝔮𝑘
. The relations

(4) imply that 𝑎𝑘𝑓ℓ = ∑𝑗∈𝐸𝑘
ℎ𝑗

𝑘,ℓ𝑓𝑗 in 𝐼/𝐼2. Since ( ̄𝐼𝑘/ ̄𝐼2
𝑘)𝑎𝑘

is free on 𝑓𝑗, 𝑗 ∈ 𝐸𝑘 we see
that

𝑎𝑘′ℎ𝑗
𝑘,ℓ − ∑𝑗′∈𝐸𝑘′

ℎ𝑗′

𝑘′,ℓℎ𝑗
𝑘,𝑗′

is zero in ̄𝐶𝑎𝑘
for every 𝑘, 𝑘′, ℓ and 𝑗 ∈ 𝐸𝑘. Hence we can find a large integer 𝑁 such that

𝑎𝑁
𝑘 (𝑎𝑘′ℎ𝑗

𝑘,ℓ − ∑𝑗′∈𝐸𝑘′
ℎ𝑗′

𝑘′,ℓℎ𝑗
𝑘,𝑗′)

is in 𝐼𝑘 + 𝜋2𝑅[𝑥1, … , 𝑥𝑛]. Computing modulo 𝜋 we have

𝑎𝑘𝑝𝑘′,ℓ − 𝑎𝑘′𝑝𝑘,ℓ + ∑ ℎ𝑗′

𝑘′,ℓ𝑝𝑘,𝑗′

= −𝑎𝑘 ∑ ℎ𝑗′

𝑘′,ℓ𝑧𝑗′ + 𝑎𝑘′ ∑ ℎ𝑗
𝑘,ℓ𝑧𝑗 + ∑ ℎ𝑗′

𝑘′,ℓ𝑎𝑘𝑧𝑗′ − ∑ ∑ ℎ𝑗′

𝑘′,ℓℎ𝑗
𝑘,𝑗′𝑧𝑗

= ∑ (𝑎𝑘′ℎ𝑗
𝑘,ℓ − ∑ ℎ𝑗′

𝑘′,ℓℎ𝑗
𝑘,𝑗′) 𝑧𝑗

with Einstein summation convention. Combining with the above we see 𝑎𝑁+1
𝑘 𝑝𝑘′,ℓ is con-

tained in the ideal generated by 𝐼𝑘 and 𝜋 in 𝑅[𝑥1, … , 𝑥𝑛, 𝑧1, … , 𝑧𝑚]. Thus 𝑝𝑘′,ℓ maps into
𝜋(𝐷𝑘)𝑎𝑘

. On the other hand, the equation

𝜋𝑝𝑘′,ℓ = −𝑎𝑘′(𝑓ℓ − 𝜋𝑧ℓ) + ∑𝑗′∈𝐸𝑘′
ℎ𝑗′

𝑘′,ℓ(𝑓𝑗′ − 𝜋𝑧𝑗′)

shows that 𝜋𝑝𝑘′,ℓ is zero in (𝐷𝑘)𝑎𝑘
. Since we have assumed that Ann𝑅(𝜋) = Ann𝑅(𝜋2) and

since (𝐷𝑘)𝔮𝑘
is smooth hence flat over 𝑅 we see that Ann(𝐷𝑘)𝔮𝑘

(𝜋) = Ann(𝐷𝑘)𝔮𝑘
(𝜋2). We

conclude that 𝑝𝑘′,ℓ maps to zero as well, hence 𝐷𝔮 = (𝐷𝑘)𝔮𝑘
and we win. �
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13.7. The desingularization lemma

Here is another fiendishly clever lemma.

Lemma 13.7.1. Let 𝑅 be a Noetherian ring. Let Λ be an 𝑅-algebra. Let 𝜋 ∈ 𝑅 and assume
that AnnΛ(𝜋) = AnnΛ(𝜋2). Let 𝐴 → Λ be an 𝑅-algebra map with 𝐴 of finite presentation.
Assume

(1) the image of 𝜋 is strictly standard in 𝐴 over 𝑅, and
(2) there exists a section 𝜌 ∶ 𝐴/𝜋4𝐴 → 𝑅/𝜋4𝑅 which is compatible with the map to

Λ/𝜋4Λ.
Then we can find 𝑅-algebra maps 𝐴 → 𝐵 → Λ with 𝐵 of finite presentation such that
𝔞𝐵 ⊂ 𝐻𝐵/𝑅 where 𝔞 = Ann𝑅(Ann𝑅(𝜋2)/Ann𝑅(𝜋)).

Proof. Choose a presentation
𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚)

and 0 ≤ 𝑐 ≤ min(𝑛, 𝑚) such that (13.3.3.3) holds for 𝜋 and such that
(13.7.1.1) 𝜋𝑓𝑐+𝑗 ∈ (𝑓1, … , 𝑓𝑐) + (𝑓1, … , 𝑓𝑚)2

for 𝑗 = 1, … , 𝑚− 𝑐. Say 𝜌 maps 𝑥𝑖 to the class of 𝑟𝑖 ∈ 𝑅. Then we can replace 𝑥𝑖 by 𝑥𝑖 −𝑟𝑖.
Hence we may assume 𝜌(𝑥𝑖) = 0 in 𝑅/𝜋4𝑅. This implies that 𝑓𝑗(0) ∈ 𝜋4𝑅 and that 𝐴 → Λ
maps 𝑥𝑖 to 𝜋4𝜆𝑖 for some 𝜆𝑖 ∈ Λ. Write

𝑓𝑗 = 𝑓𝑗(0) + ∑𝑖=1,…,𝑛
𝑟𝑗𝑖𝑥𝑖 + h.o.t.

This implies that the constant term of 𝜕𝑓𝑗/𝜕𝑥𝑖 is 𝑟𝑗𝑖. Apply 𝜌 to (13.3.3.3) for 𝜋 and we see
that

𝜋 = ∑𝐼⊂{1,…,𝑛}, |𝐼|=𝑐
𝑟𝐼 det(𝑟𝑗𝑖)𝑗=1,…,𝑐, 𝑖∈𝐼 mod 𝜋4𝑅

for some 𝑟𝐼 ∈ 𝑅. Thus we have

𝑢𝜋 = ∑𝐼⊂{1,…,𝑛}, |𝐼|=𝑐
𝑟𝐼 det(𝑟𝑗𝑖)𝑗=1,…,𝑐, 𝑖∈𝐼

for some 𝑢 ∈ 1 + 𝜋3𝑅. By Algebra, Lemma 7.14.6 this implies there exists a 𝑛 × 𝑐 matrix
(𝑠𝑖𝑘) such that

𝑢𝜋𝛿𝑗𝑘 = ∑𝑖=1,…,𝑛
𝑟𝑗𝑖𝑐𝑖𝑘 for all 𝑗, 𝑘 = 1, … , 𝑐

(Kronecker delta). We introduce auxiliary variables 𝑣1, … , 𝑣𝑐, 𝑤1, … , 𝑤𝑛 and we set

ℎ𝑖 = 𝑥𝑖 − 𝜋2
∑𝑗=1,…𝑐

𝑠𝑖𝑗𝑣𝑗 − 𝜋3𝑤𝑖

In the following we will use that
𝑅[𝑥1, … , 𝑥𝑛, 𝑣1, … , 𝑣𝑐, 𝑤1, … , 𝑤𝑛]/(ℎ1, … , ℎ𝑛) = 𝑅[𝑣1, … , 𝑣𝑐, 𝑤1, … , 𝑤𝑛]

without further mention. In 𝑅[𝑥1, … , 𝑥𝑛, 𝑣1, … , 𝑣𝑐, 𝑤1, … , 𝑤𝑛]/(ℎ1, … , ℎ𝑛) we have
𝑓𝑗 = 𝑓𝑗(𝑥1 − ℎ1, … , 𝑥𝑛 − ℎ𝑛)

= ∑𝑖
𝜋2𝑟𝑗𝑖𝑠𝑖𝑘𝑣𝑘 + ∑𝑖

𝜋3𝑟𝑗𝑖𝑤𝑖 mod 𝜋4

= 𝜋3𝑣𝑗 + ∑ 𝜋3𝑟𝑗𝑖𝑤𝑖 mod 𝜋4

for 1 ≤ 𝑗 ≤ 𝑐. Hence we can choose elements 𝑔𝑗 ∈ 𝑅[𝑣1, … , 𝑣𝑐, 𝑤1, … , 𝑤𝑛] such that 𝑔𝑗 =
𝑣𝑗+∑ 𝑟𝑗𝑖𝑤𝑖 mod 𝜋 and such that 𝑓𝑗 = 𝜋3𝑔𝑗 in the𝑅-algebra𝑅[𝑥1, … , 𝑥𝑛, 𝑣1, … , 𝑣𝑐, 𝑤1, … , 𝑤𝑛]/(ℎ1, … , ℎ𝑛).
We set

𝐵 = 𝑅[𝑥1, … , 𝑥𝑛, 𝑣1, … , 𝑣𝑐, 𝑤1, … , 𝑤𝑛]/(𝑓1, … , 𝑓𝑛, ℎ1, … , ℎ𝑛, 𝑔1, … , 𝑔𝑐).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07CR
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The map 𝐴 → 𝐵 is clear. We define 𝐵 → Λ by mapping 𝑥𝑖 → 𝜋4𝜆𝑖, 𝑣𝑖 ↦ 0, and 𝑤𝑖 ↦ 𝜋𝜆𝑖.
Then it is clear that the elements 𝑓𝑗 and ℎ𝑖 are mapped to zero in Λ. Moreover, it is clear
that 𝑔𝑖 is mapped to an element 𝑡 of 𝜋Λ such that 𝜋3𝑡 = 0 (as 𝑓𝑖 = 𝜋3𝑔𝑖 modulo the ideal
generated by the ℎ's). Hence our assumption that AnnΛ(𝜋) = AnnΛ(𝜋2) implies that 𝑡 = 0.
Thus we are done if we can prove the statement about smoothness.

Note that 𝐵𝜋 ≅ 𝐴𝜋[𝑣1, … , 𝑣𝑐] because the equations 𝑔𝑖 = 0 are implied by 𝑓𝑖 = 0. Hence
𝐵𝜋 is smooth over 𝑅 as 𝐴𝜋 is smooth over 𝑅 by the assumption that 𝜋 is strictly standard
in 𝐴 over 𝑅, see Lemma 13.3.5.

Set 𝐵′ = 𝑅[𝑣1, … , 𝑣𝑐, 𝑤1, … , 𝑤𝑛]/(𝑔1, … , 𝑔𝑐). As 𝑔𝑖 = 𝑣𝑖 + ∑ 𝑟𝑗𝑖𝑤𝑖 mod 𝜋 we see that
𝐵′/𝜋𝐵′ = 𝑅/𝜋𝑅[𝑤1, … , 𝑤𝑛]. Hence 𝑅 → 𝐵′ is smooth of relative dimension 𝑛 at every
point of 𝑉(𝜋) by Algebra, Lemmas 7.125.11 and 7.126.16 (the first lemma shows it is syn-
tomic at those primes, in particular flat, whereupon the second lemma shows it is smooth).

Let 𝔮 ⊂ 𝐵 be a primewith 𝜋 ∈ 𝔮 and for some 𝑟 ∈ 𝔞, 𝑟∉𝔮. Denote 𝔮′ = 𝐵′∩𝔮. We claim the
surjection 𝐵′ → 𝐵 induces an isomorphism of local rings (𝐵′)𝔮′ → 𝐵𝔮. This will conclude
the proof of the lemma. Note that 𝐵𝔮 is the quotient of (𝐵′)𝔮′ by the ideal generated by 𝑓𝑐+𝑗,
𝑗 = 1, … , 𝑚 − 𝑐. We observe two things: first the image of 𝑓𝑐+𝑗 in (𝐵′)𝔮′ is divisible by 𝜋2

and second the image of 𝜋𝑓𝑐+𝑗 in (𝐵′)𝔮′ can be written as ∑ 𝑏𝑗1𝑗2
𝑓𝑐+𝑗1

𝑓𝑐+𝑗2
by (13.7.1.1).

Thus we see that the image of each 𝜋𝑓𝑐+𝑗 is contained in the ideal generated by the elements
𝜋2𝑓𝑐+𝑗′. Hence 𝜋𝑓𝑐+𝑗 = 0 in (𝐵′)𝔮′ as this is a Noetherian local ring, see Algebra, Lemma
7.47.6. As 𝑅 → (𝐵′)𝔮′ is flat we see that

(Ann𝑅(𝜋2)/Ann𝑅(𝜋)) ⊗𝑅 (𝐵′)𝔮′ = Ann(𝐵′)𝔮′(𝜋2)/Ann(𝐵′)𝔮′(𝜋)

Because 𝑟 ∈ 𝔞 is invertible in (𝐵′)𝔮′ we see that this module is zero. Hence we see that the
image of 𝑓𝑐+𝑗 is zero in (𝐵′)𝔮′ as desired. �

Lemma 13.7.2. Let 𝑅 be a Noetherian ring. Let Λ be an 𝑅-algebra. Let 𝜋 ∈ 𝑅 and assume
that Ann𝑅(𝜋) = Ann𝑅(𝜋2) and AnnΛ(𝜋) = AnnΛ(𝜋2). Let 𝐴 → Λ and 𝐷 → Λ be 𝑅-algebra
maps with 𝐴 and 𝐷 of finite presentation. Assume

(1) 𝜋 is strictly standard in 𝐴 over 𝑅, and
(2) there exists an 𝑅-algebra map 𝐴/𝜋4𝐴 → 𝐷/𝜋4𝐷 compatible with the maps to

Λ/𝜋4Λ.
Then we can find an 𝑅-algebra map 𝐵 → Λ with 𝐵 of finite presentation and 𝑅-algebra
maps 𝐴 → 𝐵 and 𝐷 → 𝐵 compatible with the maps to Λ such that 𝐻𝐷/𝑅𝐵 ⊂ 𝐻𝐵/𝐷 and
𝐻𝐷/𝑅𝐵 ⊂ 𝐻𝐵/𝑅.

Proof. We apply Lemma 13.7.1 to

𝐷 ⟶ 𝐴 ⊗𝑅 𝐷 ⟶ Λ

and the image of 𝜋 in 𝐷. By Lemma 13.3.7 we see that 𝜋 is strictly standard in 𝐴⊗𝑅 𝐷 over
𝐷. As our section 𝜌 ∶ (𝐴 ⊗𝑅 𝐷)/𝜋4(𝐴 ⊗𝑅 𝐷) → 𝐷/𝜋4𝐷 we take the map induced by the
map in (2). Thus Lemma 13.7.1 applies and we obtain a factorization 𝐴 ⊗𝑅 𝐷 → 𝐵 → Λ
with 𝐵 of finite presentation and 𝔞𝐵 ⊂ 𝐻𝐵/𝐷 where

𝔞 = Ann𝐷(Ann𝐷(𝜋2)/Ann𝐷(𝜋)).

For any prime 𝔮 of 𝐷 such that 𝐷𝔮 is flat over 𝑅 we have Ann𝐷𝔮
(𝜋2)/Ann𝐷𝔮

(𝜋) = 0 be-
cause annihilators of elements commutes with flat base change and we assumed Ann𝑅(𝜋) =
Ann𝑅(𝜋2). Because 𝐷 is Noetherian we see that Ann𝐷(𝜋2)/Ann𝐷(𝜋) is a finite 𝐷-module,
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hence formation of its annihilator commutes with localization. Thus we see that 𝔞⊄𝔮.
Hence we see that 𝐷 → 𝐵 is smooth at any prime of 𝐵 lying over 𝔮. Since any prime of 𝐷
where 𝑅 → 𝐷 is smooth is one where 𝐷𝔮 is flat over 𝑅 we conclude that 𝐻𝐷/𝑅𝐵 ⊂ 𝐻𝐵/𝐷.
The final inclusion 𝐻𝐷/𝑅𝐵 ⊂ 𝐻𝐵/𝑅 follows because compositions of smooth ring maps are
smooth (Algebra, Lemma 7.126.14). �

Lemma 13.7.3. Let 𝑅 be a Noetherian ring. Let Λ be an 𝑅-algebra. Let 𝜋 ∈ 𝑅 and assume
that Ann𝑅(𝜋) = Ann𝑅(𝜋2) and AnnΛ(𝜋) = AnnΛ(𝜋2). Let 𝐴 → Λ be an 𝑅-algebra map
with 𝐴 of finite presentation and assume 𝜋 is strictly standard in 𝐴 over 𝑅. Let

𝐴/𝜋8𝐴 → ̄𝐶 → Λ/𝜋8Λ

be a factorization with ̄𝐶 of finite presentation. Then we can find a factorization 𝐴 → 𝐵 →
Λ with 𝐵 of finite presentation such that 𝑅𝜋 → 𝐵𝜋 is smooth and such that

𝐻 ̄𝐶/(𝑅/𝜋8𝑅) ⋅ Λ/𝜋8Λ ⊂ √𝐻𝐵/𝑅Λ mod 𝜋8Λ.

Proof. Apply Lemma 13.6.1 to get 𝑅 → 𝐷 → Λ with a factorization ̄𝐶/𝜋4 ̄𝐶 → 𝐷/𝜋4𝐷 →
Λ/𝜋4Λ such that 𝑅 → 𝐷 is smooth at any prime not containing 𝜋 and at any prime lying
over a prime of ̄𝐶/𝜋4 ̄𝐶 where 𝑅/𝜋8𝑅 → ̄𝐶 is smooth. By Lemma 13.7.2 we can find a
finitely presented 𝑅-algebra 𝐵 and factorizations 𝐴 → 𝐵 → Λ and 𝐷 → 𝐵 → Λ such that
𝐻𝐷/𝑅𝐵 ⊂ 𝐻𝐵/𝑅. We omit the verification that this is a solution to the problem posed by
the lemma. �

13.8. Warmup: reduction to a base field

In this section we apply the lemmas in the previous sections to prove that it suffices to prove
the main result when the base ring is a field, see Lemma 13.8.4.

Situation 13.8.1. Here 𝑅 → Λ is a regular ring map of Noetherian rings.

Let 𝑅 → Λ be as in Situation 13.8.1. We say PT holds for 𝑅 → Λ if Λ is a filtered colimit
of smooth 𝑅-algebras.

Lemma 13.8.2. Let 𝑅𝑖 → Λ𝑖, 𝑖 = 1, 2 be as in Situation 13.8.1. If PT holds for 𝑅𝑖 → Λ𝑖,
𝑖 = 1, 2, then PT holds for 𝑅1 × 𝑅2 → Λ1 × Λ2.

Proof. Omitted. Hint: A product of colimits is a colimit. �

Lemma 13.8.3. Let 𝑅 → 𝐴 → Λ be ring maps with 𝐴 of finite presentation over 𝑅. Let
𝑆 ⊂ 𝑅 be a multiplicative set. Let 𝑆−1𝐴 → 𝐵′ → 𝑆−1Λ be a factorization with 𝐵′ smooth
over 𝑆−1𝑅. Then we can find a factorization 𝐴 → 𝐵 → Λ such that some 𝑠 ∈ 𝑆 maps to
an elementary standard element in 𝐵 over 𝑅.

Proof. We first apply Lemma 13.4.4 to 𝑆−1𝑅 → 𝐵′. Thus we may assume 𝐵′ is standard
smooth over 𝑆−1𝑅. Write 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑡) and say 𝑥𝑖 ↦ 𝜆𝑖 in Λ. We may
write 𝐵′ = 𝑆−1𝑅[𝑥1, … , 𝑥𝑛+𝑚]/(𝑓1, … , 𝑓𝑐) for some 𝑐 ≥ 𝑛 where det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 is
invertible in 𝐵′ and such that 𝐴 → 𝐵′ is given by 𝑥𝑖 ↦ 𝑥𝑖, see Lemma 13.4.6. After
multiplying 𝑥𝑖, 𝑖 > 𝑛 by an element of 𝑆 and correspondingly modifying the equations 𝑓𝑗
we may assume 𝐵′ → 𝑆−1Λ maps 𝑥𝑖 to 𝜆𝑖/1 for some 𝜆𝑖 ∈ Λ for 𝑖 > 𝑛. Choose a relation

1 = 𝑎0 det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 + ∑𝑗=1,…,𝑐
𝑎𝑗𝑓𝑗
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for some 𝑎𝑗 ∈ 𝑆−1𝑅[𝑥1, … , 𝑥𝑛+𝑚]. Since each element of 𝑆 is invertible in 𝐵′ we may (by
clearing denominators) assume that 𝑓𝑗, 𝑎𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛+𝑚] and that

𝑠0 = 𝑎0 det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 + ∑𝑗=1,…,𝑐
𝑎𝑗𝑓𝑗

for some 𝑠0 ∈ 𝑆. Since 𝑔𝑗 maps to zero in 𝑆−1𝑅[𝑥1, … , 𝑥𝑛+𝑚]/(𝑓1, … , 𝑥𝑐) we can find
elements 𝑠𝑗 ∈ 𝑆 such that 𝑠𝑗𝑔𝑗 = 0 in 𝑅[𝑥1, … , 𝑥𝑛+𝑚]/(𝑓1, … , 𝑓𝑐). Since 𝑓𝑗 maps to zero
in 𝑆−1Λ we can find 𝑠′

𝑗 ∈ 𝑆 such that 𝑠′
𝑗𝑓𝑗(𝜆1, … , 𝜆𝑛+𝑚) = 0 in Λ. Consider the ring

𝐵 = 𝑅[𝑥1, … , 𝑥𝑛+𝑚]/(𝑠′
1𝑓1, … , 𝑠′

𝑐𝑓𝑐, 𝑔1, … , 𝑔𝑡)

and the factorization 𝐴 → 𝐵 → Λ with 𝐵 → Λ given by 𝑥𝑖 ↦ 𝜆𝑖. We claim that 𝑠 =
𝑠0𝑠1 … 𝑠𝑡𝑠′

1 … 𝑠′
𝑐 is elementary standard in 𝐵 over 𝑅 which finishes the proof. Namely,

𝑠𝑗𝑔𝑗 ∈ (𝑓1, … , 𝑓𝑐) and hence 𝑠𝑔𝑗 ∈ (𝑠′
1𝑓1, … , 𝑠′

𝑐𝑓𝑐). Finally, we have

𝑎0 det(𝜕𝑠′
𝑗𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 + ∑𝑗=1,…,𝑐

(𝑠′
1 … ̂𝑠′

𝑗 … 𝑠′
𝑐)𝑎𝑗𝑠′

𝑗𝑓𝑗 = 𝑠0𝑠′
1 … 𝑠′

𝑐

which divides 𝑠 as desired. �

Lemma 13.8.4. If for every Situation 13.8.1 where 𝑅 is a field PT holds, then PT holds in
general.

Proof. Assume PT holds for any Situation 13.8.1 where 𝑅 is a field. Let 𝑅 → Λ be as in
Situation 13.8.1 arbitrary. Note that 𝑅/𝐼 → Λ/𝐼Λ is another regular ring map of Noetherian
rings, see More on Algebra, Lemma 12.31.3. Consider the set of ideals

ℐ = {𝐼 ⊂ 𝑅 ∣ 𝑅/𝐼 → Λ/𝐼Λ does not have PT}

We have to show that ℐ is empty. If this set is nonempty, then it contains a maxmimal
element because 𝑅 is Noetherian. Replacing 𝑅 by 𝑅/𝐼 and Λ by Λ/𝐼 we obtain a situation
where PT holds for 𝑅/𝐼 → Λ/𝐼Λ for any nonzero ideal of 𝑅. In particular, we see by
applying Proposition 13.5.3 that 𝑅 is a reduced ring.

Let 𝐴 → Λ be an 𝑅-algebra homomorphism with 𝐴 of finite presentation. We have to find
a factorization 𝐴 → 𝐵 → Λ with 𝐵 smooth over 𝑅, see Lemma 13.2.1.

Let 𝑆 ⊂ 𝑅 be the set of nonzero divisors and consider the total ring of fractions 𝑄 = 𝑆−1𝑅
of 𝑅. We know that 𝑄 = 𝐾1×…×𝐾𝑛 is a product of fields, see Algebra, Lemmas 7.22.2 and
7.28.6. By Lemma 13.8.2 and our assumption PT holds for the ring map 𝑆−1𝑅 → 𝑆−1Λ.
Hence we can find a factorization 𝑆−1𝐴 → 𝐵′ → Λ with 𝐵′ smooth over 𝑆−1𝑅.

We apply Lemma 13.8.3 and find a factorization 𝐴 → 𝐵 → Λ such that some 𝜋 ∈ 𝑆
is elementary standard in 𝐵 over 𝑅. After replacing 𝐴 by 𝐵 we may assume that 𝜋 is
elementary standard, hence strictly standard in 𝐴. We know that 𝑅/𝜋8𝑅 → Λ/𝜋8Λ satisfies
PT. Hence we can find a factorization 𝑅/𝜋8𝑅 → 𝐴/𝜋8𝐴 → ̄𝐶 → Λ/𝜋8Λ with 𝑅/𝜋8𝑅 → ̄𝐶
smooth. By Lemma 13.6.1 we can find an 𝑅-algebra map 𝐷 → Λ with 𝐷 smooth over 𝑅
and a factorization 𝑅/𝜋4𝑅 → 𝐴/𝜋4𝐴 → 𝐷/𝜋4𝐷 → Λ/𝜋4Λ. By Lemma 13.7.2 we can find
𝐴 → 𝐵 → Λ with 𝐵 smooth over 𝑅 which finishes the proof. �

13.9. Local tricks

Situation 13.9.1. We are given a Noetherian ring 𝑅 and an 𝑅-algebra map 𝐴 → Λ and a
prime 𝔮 ⊂ Λ. We assume 𝐴 is of finite presentation over 𝑅. In this situation we denote
𝔥𝐴 = √𝐻𝐴/𝑅Λ.
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Let 𝑅 → 𝐴 → Λ ⊃ 𝔮 be as in Situation 13.9.1. We say 𝑅 → 𝐴 → Λ ⊃ 𝔮 can be resolved
if there exists a factorization 𝐴 → 𝐵 → Λ with 𝐵 of finite presentation and 𝔥𝐴 ⊂ 𝔥𝐵⊄𝔮. In
this case we will call the factorization 𝐴 → 𝐵 → Λ a resolution of 𝑅 → 𝐴 → Λ ⊃ 𝔮.

Lemma 13.9.2. Let 𝑅 → 𝐴 → Λ ⊃ 𝔮 be as in Situation 13.9.1. Let 𝑟 ≥ 1 and 𝜋1, … , 𝜋𝑟 ∈
𝑅 map to elements of 𝔮. Assume

(1) for 𝑖 = 1, … , 𝑟 we have

Ann𝑅/(𝜋8
1,…,𝜋8

𝑖−1)𝑅(𝜋𝑖) = Ann𝑅/(𝜋8
1,…,𝜋8

𝑖−1)𝑅(𝜋2
𝑖 )

and
AnnΛ/(𝜋8

1,…,𝜋8
𝑖−1)Λ(𝜋𝑖) = AnnΛ/(𝜋8

1,…,𝜋8
𝑖−1)Λ(𝜋2

𝑖 )
(2) for 𝑖 = 1, … , 𝑟 the element 𝜋𝑖 maps to a strictly standard element in 𝐴 over 𝑅.

Then, if

𝑅/(𝜋8
1, … , 𝜋8

𝑟 )𝑅 → 𝐴/(𝜋8
1, … , 𝜋8

𝑟 )𝐴 → Λ/(𝜋8
1, … , 𝜋8

𝑟 )Λ ⊃ 𝔮/(𝜋8
1, … , 𝜋8

𝑟 )Λ

can be resolved, so can 𝑅 → 𝐴 → Λ ⊃ 𝔮.

Proof. We are going to prove this by induction on 𝑟.

The case 𝑟 = 1. Here the assumption is that there exists a factorization 𝐴/𝜋8
1 → ̄𝐶 → Λ/𝜋8

1
which resolves the situation modulo 𝜋8

1. Conditions (1) and (2) are the assumptions needed
to apply Lemma 13.7.3. Thus we can ``lift'' the resolution ̄𝐶 to a resolution of 𝑅 → 𝐴 →
Λ ⊃ 𝔮.

The case 𝑟 > 1. In this case we apply the induction hypothesis for 𝑟 − 1 to the situation
𝑅/𝜋8

1 → 𝐴/𝜋8
1 → Λ/𝜋8

1 ⊃ 𝔮/𝜋8
1Λ. Note that property (2) is preserved by Lemma 13.3.7. �

Lemma 13.9.3. Let 𝑅 → 𝐴 → Λ ⊃ 𝔮 be as in Situation 13.9.1. Let 𝔭 = 𝑅 ∩ 𝔮. Assume
that 𝔮 is minimal over 𝔥𝐴 and that 𝑅𝔭 → 𝐴𝔭 → Λ𝔮 ⊃ 𝔮Λ𝔮 can be resolved. Then there
exists a factorization 𝐴 → 𝐶 → Λ with 𝐶 of finite presentation such that 𝐻𝐶/𝑅Λ⊄𝔮.

Proof. Let 𝐴𝔭 → 𝐶 → Λ𝔮 be a resolution of 𝑅𝔭 → 𝐴𝔭 → Λ𝔮 ⊃ 𝔮Λ𝔮. By our assump-
tion that 𝔮 is minimal over 𝔥𝐴 this means that 𝐻𝐶/𝑅𝔭

Λ𝔮 = Λ𝔮. By Lemma 13.3.8 we may
assume that 𝐶 is smooth over Λ𝔭. By Lemma 13.4.4 we may assume that 𝐶 is standard
smooth over 𝑅𝔭. Write 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑡) and say 𝐴 → Λ is given by 𝑥𝑖 ↦ 𝜆𝑖.
Write 𝐶 = 𝑅𝔭[𝑥1, … , 𝑥𝑛+𝑚]/(𝑓1, … , 𝑓𝑐) for some 𝑐 ≥ 𝑛 such that 𝐴 → 𝐶 maps 𝑥𝑖 to
𝑥𝑖 and such that det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 is invertible in 𝐶, see Lemma 13.4.6. After clear-
ing denominators we may assume 𝑓1, … , 𝑓𝑐 are elements of 𝑅[𝑥1, … , 𝑥𝑛+𝑚]. Of course
det(𝜕𝑓𝑗/𝜕𝑥𝑖)𝑖,𝑗=1,…,𝑐 is not invertible in 𝑅[𝑥1, … , 𝑥𝑛+𝑚]/(𝑓1, … , 𝑓𝑐) but it becomes invert-
ible after inverting some element 𝑠0 ∈ 𝑅, 𝑠0∉𝔭. As 𝑔𝑗 maps to zero under 𝑅[𝑥1, … , 𝑥𝑛] →
𝐴 → 𝐶 we can find 𝑠𝑗 ∈ 𝑅, 𝑠𝑗∉𝔭 such that 𝑠𝑗𝑔𝑗 is zero in 𝑅[𝑥1, … , 𝑥𝑛+𝑚]/(𝑓1, … , 𝑓𝑐).
Write 𝑓𝑗 = 𝐹𝑗(𝑥1, … , 𝑥𝑛+𝑚, 1) for some polynomial 𝐹𝑗 ∈ 𝑅[𝑥1, … , 𝑥𝑛, 𝑋𝑛+1, … , 𝑋𝑛+𝑚+1]
homogeneous in 𝑋𝑛+1, … , 𝑋𝑛+𝑚+1. Pick 𝜆𝑛+𝑖 ∈ Λ, 𝑖 = 1, … , 𝑚 + 1 with 𝜆𝑛+𝑚+1∉𝔮 such
that 𝑥𝑛+𝑖 maps to 𝜆𝑛+𝑖/𝜆𝑛+𝑚+1 in Λ𝔮. Then

𝐹𝑗(𝜆1, … , 𝜆𝑛+𝑚+1) = (𝜆𝑛+𝑚+1)deg(𝐹𝑗)𝐹𝑗(𝜆1, … , 𝜆𝑛,
𝜆𝑛+1

𝜆𝑛+𝑚+1
, … ,

𝜆𝑛+𝑚
𝜆𝑛+𝑚+1

, 1)

= (𝜆𝑛+𝑚+1)deg(𝐹𝑗)𝑓𝑗(𝜆1, … , 𝜆𝑛,
𝜆𝑛+1

𝜆𝑛+𝑚+1
, … ,

𝜆𝑛+𝑚
𝜆𝑛+𝑚+1

)

= 0
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in Λ𝔮. Thus we can find 𝜆0 ∈ Λ, 𝜆0∉𝔮 such that 𝜆0𝐹𝑗(𝜆1, … , 𝜆𝑛+𝑚+1) = 0 in Λ. Now we
set 𝐵 equal to

𝑅[𝑥0, … , 𝑥𝑛+𝑚+1]/(𝑔1, … , 𝑔𝑡, 𝑥0𝐹1(𝑥1, … , 𝑥𝑛+𝑚+1), … , 𝑥0𝐹𝑐(𝑥1, … , 𝑥𝑛+𝑚+1))
which we map to Λ by mapping 𝑥𝑖 to 𝜆𝑖. Let 𝑏 be the image of 𝑥0𝑥1𝑠0𝑠1 … 𝑠𝑡 in 𝐵. Then
𝐵𝑏 is isomorphic to

𝑅𝑠0𝑠1
[𝑥0, 𝑥1, … , 𝑥𝑛+𝑚+1, 1/𝑥0𝑥𝑛+𝑚+1]/(𝑓1, … , 𝑓𝑐)

which is smooth over 𝑅 by construction. Since 𝑏 does not map to an element of 𝔮, we
win. �

Lemma 13.9.4. Let 𝑅 → 𝐴 → Λ ⊃ 𝔮 be as in Situation 13.9.1. Let 𝔭 = 𝑅 ∩ 𝔮. Assume
(1) 𝔮 is minimal over 𝔥𝐴,
(2) 𝑅𝔭 → 𝐴𝔭 → Λ𝔮 ⊃ 𝔮Λ𝔮 can be resolved, and
(3) dim(Λ𝔮) = 0.

Then 𝑅 → 𝐴 → Λ ⊃ 𝔮 can be resolved.

Proof. By (3) the ring Λ𝔮 is Artinian local hence 𝔮Λ𝔮 is nilpotent. Thus (𝔥𝐴)𝑁Λ𝔮 = 0 for
some 𝑁 > 0. Thus there exists a 𝜆 ∈ Λ, 𝜆∉𝔮 such that 𝜆(𝔥𝐴)𝑁 = 0 in Λ. Say 𝐻𝐴/𝑅 =
(𝑎1, … , 𝑎𝑟) so that 𝜆𝑎𝑁

𝑖 = 0 in Λ. By Lemma 13.9.3 we can find a factorization 𝐴 → 𝐶 → Λ
with 𝐶 of finite presentation such that 𝔥𝐶⊄𝔮. Write 𝐶 = 𝐴[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚). Set

𝐵 = 𝐴[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑟, 𝑧, 𝑡𝑖𝑗]/(𝑓𝑗 − ∑ 𝑦𝑖𝑡𝑖𝑗, 𝑧𝑦𝑖)

where 𝑡𝑖𝑗 is a set of 𝑟𝑚 variables. Note that there is a map 𝐵 → 𝐶[𝑦𝑖, 𝑧]/(𝑦𝑖𝑧) given by
setting 𝑡𝑖𝑗 equal to zero. The map 𝐵 → Λ is the composition 𝐵 → 𝐶[𝑦𝑖, 𝑧]/(𝑦𝑖𝑧) → Λ
where 𝐶[𝑦𝑖, 𝑧]/(𝑦𝑖𝑧) → Λ is the given map 𝐶 → Λ, maps 𝑧 to 𝜆, and maps 𝑦𝑖 to the image
of 𝑎𝑁

𝑖 in Λ.
We claim that 𝐵 is a solution for 𝑅 → 𝐴 → Λ ⊃ 𝔮. First note that 𝐵𝑧 is isomorphic to
𝐶[𝑦1, … , 𝑦𝑟, 𝑧, 𝑧−1] and hence is smooth. On the other hand, 𝐵𝑦ℓ

≅ 𝐴[𝑥𝑖, 𝑦𝑖, 𝑦−1
ℓ , 𝑡𝑖𝑗, 𝑖≠ℓ]

which is smooth over 𝐴. Thus we see that 𝑧 and 𝑎ℓ𝑦ℓ (compositions of smooth maps are
smooth) are all elements of 𝐻𝐵/𝑅. This proves the lemma. �

13.10. Separable residue fields

In this section we explain how to solve a local problem in the case of a separable residue
field extension.

Lemma 13.10.1 (Ogoma). Let 𝐴 be a Noetherian ring and let 𝑀 be a finite 𝐴-module.
Let 𝑆 ⊂ 𝐴 be a multiplicative set. If 𝜋 ∈ 𝐴 and Ker(𝜋 ∶ 𝑆−1𝑀 → 𝑆−1𝑀) = Ker(𝜋2 ∶
𝑆−1𝑀 → 𝑆−1𝑀) then there exists an 𝑠 ∈ 𝑆 such that for any 𝑛 > 0 we have Ker(𝑠𝑛𝜋 ∶
𝑀 → 𝑀) = Ker((𝑠𝑛𝜋)2 ∶ 𝑀 → 𝑀).

Proof. Let 𝐾 = Ker(𝜋 ∶ 𝑀 → 𝑀) and 𝐾′ = {𝑚 ∈ 𝑀 ∣ 𝜋2𝑚 = 0 in 𝑆−1𝑀} and
𝑄 = 𝐾′/𝐾. Note that 𝑆−1𝑄 = 0 by assumption. Since 𝐴 is Noetherian we see that 𝑄 is a
finite 𝐴-module. Hence we can find an 𝑠 ∈ 𝑆 such that 𝑠 annihilates 𝑄. Then 𝑠 works. �

Lemma 13.10.2. Let Λ be a Noetherian ring. Let 𝐼 ⊂ Λ be an ideal. Let 𝐼 ⊂ 𝔮 be a prime.
Let 𝑛, 𝑒 be positive integers Assume that 𝔮𝑛Λ𝔮 ⊂ 𝐼Λ𝔮 and that Λ𝔮 is a regular local ring of
dimension 𝑑. Then there exists an 𝑛 > 0 and 𝜋1, … , 𝜋𝑑 ∈ Λ such that

(1) (𝜋1, … , 𝜋𝑑)Λ𝔮 = 𝔮Λ𝔮,
(2) 𝜋𝑛

1, … , 𝜋𝑛
𝑑 ∈ 𝐼, and

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07FA
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07FC
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07FD


13.10. SEPARABLE RESIDUE FIELDS 919

(3) for 𝑖 = 1, … , 𝑑 we have

AnnΛ/(𝜋𝑒
1,…,𝜋𝑒

𝑖−1)Λ(𝜋𝑖) = AnnΛ/(𝜋𝑒
1,…,𝜋𝑒

𝑖−1)Λ(𝜋2
𝑖 ).

Proof. Set 𝑆 = Λ⧵𝔮 so that Λ𝔮 = 𝑆−1Λ. First pick 𝜋1, … , 𝜋𝑑 with (1) which is possible as
Λ𝔮 is regular. By assumption 𝜋𝑛

𝑖 ∈ 𝐼Λ𝔮. Thus we can find 𝑠1, … , 𝑠𝑑 ∈ 𝑆 such that 𝑠𝑖𝜋𝑛
𝑖 ∈ 𝐼.

Replacing 𝜋𝑖 by 𝑠𝑖𝜋𝑖 we get (2). Note that (1) and (2) are preserved by further multiplying
by elements of 𝑆. Suppose that (3) holds for 𝑖 = 1, … , 𝑡 for some 𝑡 ∈ {0, … , 𝑑}. Note
that 𝜋1, … , 𝜋𝑑 is a regular sequence in 𝑆−1Λ, see Algebra, Lemma 7.98.3. In particular
𝜋𝑒

1, … , 𝜋𝑒
𝑡 , 𝜋𝑡+1 is a regular sequence in 𝑆−1Λ = Λ𝔮 by Algebra, Lemma 7.65.10. Hence

we see that
Ann𝑆−1Λ/(𝜋𝑒

1,…,𝜋𝑒
𝑖−1)(𝜋𝑖) = Ann𝑆−1Λ/(𝜋𝑒

1,…,𝜋𝑒
𝑖−1)(𝜋2

𝑖 ).
Thus we get (3) for 𝑖 = 𝑡 + 1 after replacing 𝜋𝑡+1 by 𝑠𝜋𝑡+1 for some 𝑠 ∈ 𝑆 by Lemma
13.10.1. By induction on 𝑡 this produces a sequence satisfying (1), (2), and (3). �

Lemma 13.10.3. Let 𝑘 → 𝐴 → Λ ⊃ 𝔮 be as in Situation 13.9.1 where
(1) 𝑘 is a field,
(2) Λ is Noetherian,
(3) 𝔮 is minimal over 𝔥𝐴,
(4) Λ𝔮 is a regular local ring, and
(5) the field extension 𝑘 ⊂ 𝜅(𝔮) is separable.

Then 𝑘 → 𝐴 → Λ ⊃ 𝔮 can be resolved.

Proof. Set 𝑑 = dim Λ𝔮. Set 𝑅 = 𝑘[𝑥1, … , 𝑥𝑑]. Choose 𝑛 > 0 such that 𝔮𝑛Λ𝔮 ⊂ 𝔥𝐴Λ𝔮
which is possible as 𝔮 is minimal over 𝔥𝐴. Choose generators 𝑎1, … , 𝑎𝑟 of 𝐻𝐴/𝑅. Set

𝐵 = 𝐴[𝑥1, … , 𝑥𝑑, 𝑧𝑖𝑗]/(𝑥𝑛
𝑖 − ∑ 𝑧𝑖𝑗𝑎𝑗)

Each 𝐵𝑎𝑗
is smooth over 𝑅 it is a polynomial algebra over 𝐴𝑎𝑗

[𝑥1, … , 𝑥𝑑] and 𝐴𝑎𝑗
is smooth

over 𝑘. Hence 𝐵𝑥𝑖
is smooth over 𝑅. Let 𝐵 → 𝐶 be the 𝑅-algebra map constructed in

Lemma 13.4.1 which comes with a 𝑅-algebra retraction 𝐶 → 𝐵. In particular a map 𝐶 → Λ
fitting into the diagram above. By construction 𝐶𝑥𝑖

is a smooth 𝑅-algebra with Ω𝐶𝑥𝑖/𝑅
free.

Hence we can find 𝑐 > 0 such that 𝑥𝑐
𝑖 is strictly standard in 𝐶/𝑅, see Lemma 13.4.7. Now

choose 𝜋1, … , 𝜋𝑑 ∈ Λ as in Lemma 13.10.2 where 𝑛 = 𝑛, 𝑒 = 8𝑐, 𝔮 = 𝔮 and 𝐼 = 𝔥𝐴. Write
𝜋𝑛

𝑖 = ∑ 𝜆𝑖𝑗𝑎𝑗 for some 𝜋𝑖𝑗 ∈ Λ. There is a map 𝐵 → Λ given by 𝑥𝑖 ↦ 𝜋𝑖 and 𝑧𝑖𝑗 ↦ 𝜆𝑖𝑗.
Set 𝑅 = 𝑘[𝑥1, … , 𝑥𝑑]. Diagram

𝑅 // 𝐵

��
𝑘

OO

// 𝐴

OO

// Λ
Now we apply Lemma 13.9.2 to 𝑅 → 𝐶 → Λ ⊃ 𝔮 and the sequence of elements 𝑥𝑐

1, … , 𝑥𝑐
𝑑

of 𝑅. Assumption (2) is clear. Assumption (1) holds for 𝑅 by inspection and for Λ by
our choice of 𝜋1, … , 𝜋𝑑. (Note that if AnnΛ(𝜋) = AnnΛ(𝜋2), then we have AnnΛ(𝜋) =
AnnΛ(𝜋𝑐) for all 𝑐 > 0.) Thus it suffices to resolve

𝑅/(𝑥𝑒
1, … , 𝑥𝑒

𝑑) → 𝐶/(𝑥𝑒
1, … , 𝑥𝑒

𝑑) → Λ/(𝜋𝑒
1, … , 𝜋𝑒

𝑑) ⊃ 𝔮/(𝜋𝑒
1, … , 𝜋𝑒

𝑑)
for 𝑒 = 8𝑐. By Lemma 13.9.4 it suffices to resolve this after localizing at 𝔮. But since
𝑥1, … , 𝑥𝑑 map to a regular sequence in Λ𝔮 we see that 𝑅 → Λ is flat, see Algebra, Lemma
7.119.2. Hence

𝑅/(𝑥𝑒
1, … , 𝑥𝑒

𝑑) → Λ𝔮/(𝜋𝑒
1, … , 𝜋𝑒

𝑑)
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is a flat ring map of Artinian local rings. Moreover, this map induces a separable field
extension on residue fields by assumption. Thus this map is a filtered colimit of smooth
algebras by Algebra, Lemma 7.141.10 and Proposition 13.5.3. Existence of the desired
solution follows from Lemma 13.2.1. �

13.11. Inseparable residue fields

In this section we explain how to solve a local problem in the case of an inseparable residue
field extension.

Lemma 13.11.1. Let 𝑘 be a field of characteristic 𝑝 > 0. Let (Λ, 𝔪, 𝐾) be an Artinian
local 𝑘-algebra. Assume that dim 𝐻1(𝐿𝐾/𝑘) < ∞. Then Λ is a filtered colimit of Artinian
local 𝑘-algebras 𝐴 with each map 𝐴 → Λ flat, with 𝔪𝐴Λ = 𝔪, and with 𝐴 essentially of
finite type over 𝑘.

Proof. Note that the flatness of 𝐴 → Λ implies that 𝐴 → Λ is injective, so the lemma
really tells us that Λ is a directed union of these types of subrings 𝐴 ⊂ Λ. Let 𝑛 be the
minimal integer such that 𝔪𝑛 = 0. We will prove this lemma by induction on 𝑛. The case
𝑛 = 1 is clear as a field extension is a union of finitely generated field extensions.

Pick 𝜆1, … , 𝜆𝑑 ∈ 𝔪 which generate 𝔪. As 𝐾 is formally smooth over 𝐅𝑝 (see Algebra,
Lemma 7.141.6) we can find a ring map 𝜎 ∶ 𝐾 → Λ which is a section of the quotient map
Λ → 𝐾. In general 𝜎 is not a 𝑘-algebra map. Given 𝜎 we define

Ψ𝜎 ∶ 𝐾[𝑥1, … , 𝑥𝑑] ⟶ Λ

using 𝜎 on elements of 𝐾 and mapping 𝑥𝑖 to 𝜆𝑖. Claim: there exists a 𝜎 ∶ 𝐾 → Λ and a
subfield 𝑘 ⊂ 𝐹 ⊂ 𝐾 finitely generated over 𝑘 such that the image of 𝑘 in Λ is contained in
Ψ𝜎(𝐹[𝑥1, … , 𝑥𝑑]).

We will prove the claim by induction on the least integer 𝑛 such that 𝔪𝑛 = 0. It is clear
for 𝑛 = 1. If 𝑛 > 1 set 𝐼 = 𝔪𝑛−1 and Λ′ = Λ/𝐼. By induction we may assume given
𝜎′ ∶ 𝐾 → Λ′ and 𝑘 ⊂ 𝐹′ ⊂ 𝐾 finitely generated such that the image of 𝑘 → Λ → Λ′ is
contained in 𝐴′ = Ψ𝜎′(𝐹′[𝑥1, … , 𝑥𝑑]). Denote 𝜏′ ∶ 𝑘 → 𝐴′ the induced map. Choose a lift
𝜎 ∶ 𝐾 → Λ of 𝜎′ (this is possible by the formal smoothness of 𝐾/𝐅𝑝 we mentioned above).
For later reference we note that we can change 𝜎 to 𝜎 + 𝐷 for some derivation 𝐷 ∶ 𝐾 → 𝐼.
Set 𝐴 = 𝐹[𝑥1, … , 𝑥𝑑]/(𝑥1, … , 𝑥𝑑)𝑛. Then Ψ𝜎 induces a ring map Ψ𝜎 ∶ 𝐴 → Λ. The
composition with the quotient map Λ → Λ′ induces a surjectivemap 𝐴 → 𝐴′ with nilpotent
kernel. Choose a lift 𝜏 ∶ 𝑘 → 𝐴 of 𝜏′ (possible as 𝑘/𝐅𝑝 is formally smooth). Thus we obtain
two maps 𝑘 → Λ, namely Ψ𝜎 ∘ 𝜏 ∶ 𝑘 → Λ and the given map 𝑖 ∶ 𝑘 → Λ. These maps agree
modulo 𝐼, whence the difference is a derivation 𝜃 = 𝑖 − Ψ𝜎 ∘ 𝜏 ∶ 𝑘 → 𝐼. Note that if we
change 𝜎 into 𝜎 + 𝐷 then we change 𝜃 into 𝜃 − 𝐷|𝑘.

Choose a set of elements {𝑦𝑗}𝑗∈𝐽 of 𝑘 whose differentials d𝑦𝑗 form a basis of Ω𝑘/𝐅𝑝
. The

Jacobi-Zariski sequence for 𝐅𝑝 ⊂ 𝑘 ⊂ 𝐾 is

0 → 𝐻1(𝐿𝐾/𝑘) → Ω𝑘/𝐅𝑝
⊗ 𝐾 → Ω𝐾/𝐅𝑝

→ Ω𝐾/𝑘 → 0

As dim 𝐻1(𝐿𝐾/𝑘) < ∞ we can find a finite subset 𝐽0 ⊂ 𝐽 such that the image of the first
map is contained in ⨁𝑗∈𝐽0

𝐾d𝑦𝑗. Hence the elements d𝑦𝑗, 𝑗 ∈ 𝐽 ⧵ 𝐽0 map to 𝐾-linearly
independent elements of Ω𝐾/𝐅𝑝

. Therefore we can choose a 𝐷 ∶ 𝐾 → 𝐼 such that 𝜃−𝐷|𝑘 =
𝜉 ∘ d where 𝜉 is a composition

Ω𝑘/𝐅𝑝
= ⨁𝑗∈𝐽

𝑘d𝑦𝑗 ⟶ ⨁𝑗∈𝐽0
𝑘d𝑦𝑗 ⟶ 𝐼
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Let 𝑓𝑗 = 𝜉(d𝑦𝑗) ∈ 𝐼 for 𝑗 ∈ 𝐽0. Change 𝜎 into 𝜎 + 𝐷 as above. Then we see that
𝜃(𝑎) = ∑𝑗∈𝐽0

𝑎𝑗𝑓𝑗 for 𝑎 ∈ 𝑘 where d𝑎 = ∑ 𝑎𝑗d𝑦𝑗 in Ω𝑘/𝐅𝑝
. Note that 𝐼 is generated by

the monomials 𝜆𝐸 = 𝜆𝑒1
1 … 𝜆𝑒𝑑

𝑑 of total degree |𝐸| = ∑ 𝑒𝑖 = 𝑛 − 1 in 𝜆1, … , 𝜆𝑑. Write
𝑓𝑗 = ∑𝐸 𝑐𝑗,𝐸𝜆𝐸 with 𝑐𝑗,𝐸 ∈ 𝐾. Replace 𝐹′ by 𝐹 = 𝐹′(𝑐𝑗,𝐸). Then the claim holds.

Choose 𝜎 and 𝐹 as in the claim. The kernel of Ψ𝜎 is generated by finitely many poly-
nomials 𝑔1, … , 𝑔𝑡 ∈ 𝐾[𝑥1, … , 𝑥𝑑] and we may assume their coefficients are in 𝐹 after
enlarging 𝐹 by adjoining finitely many elements. In this case it is clear that the map
𝐴 = 𝐹[𝑥1, … , 𝑥𝑑]/(𝑔1, … , 𝑔𝑡) → 𝐾[𝑥1, … , 𝑥𝑑]/(𝑔1, … , 𝑔𝑡) = Λ is flat. By the claim 𝐴
is a 𝑘-subalgebra of Λ. It is clear that Λ is the filtered colimit of these algebras, as 𝐾 is the
filtered union of the subfields 𝐹. Finally, these algebras are essentially of finite type over 𝑘
by Algebra, Lemma 7.50.3. �

Lemma 13.11.2. Let 𝑘 be a field of characteristic 𝑝 > 0. Let Λ be a Noetherian geomet-
rically regular 𝑘-algebra. Let 𝔮 ⊂ Λ be a prime ideal. Let 𝑛 ≥ 1 be an integer and let
𝐸 ⊂ Λ𝔮/𝔮𝑛Λ𝔮 be a finite subset. Then we can find 𝑚 ≥ 0 and 𝜑 ∶ 𝑘[𝑦1, … , 𝑦𝑚] → Λ with
the following properties

(1) setting 𝔭 = 𝜑−1(𝔮) we have 𝔮Λ𝔮 = 𝔭Λ𝔮 and 𝑘[𝑦1, … , 𝑦𝑚]𝔭 → Λ𝔮 is flat,
(2) there is a factorization by homomorphisms of local Artinian rings

𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛𝑘[𝑦1, … , 𝑦𝑚]𝔭 → 𝐷 → Λ𝔮/𝔮𝑛Λ𝔮

where the first arrow is essentially smooth and the second is flat,
(3) 𝐸 is contained in 𝐷 modulo 𝔮𝑛Λ𝔮.

Proof. Set Λ̄ = Λ𝔮/𝔮𝑛Λ𝔮. Note that dim 𝐻1(𝐿𝜅(𝔮)/𝑘) < ∞ byMore on Algebra, Proposition
12.26.1. Pick 𝐴 ⊂ Λ̄ containing 𝐸 such that 𝐴 is local Artinian, essentially of finite type
over 𝑘, the map 𝐴 → Λ̄ is flat, and 𝔪𝐴 generates the maximal ideal of Λ̄, see Lemma
13.11.1. Denote 𝐹 = 𝐴/𝔪𝐴 the residue field so that 𝑘 ⊂ 𝐹 ⊂ 𝐾. Pick 𝜆1, … , 𝜆𝑡 ∈ Λ which
map to elements of 𝐴 in Λ̄ such that moreover the images of d𝜆1, … , d𝜆𝑡 form a basis of
Ω𝐹/𝑘. Consider the map 𝜑′ ∶ 𝑘[𝑦1, … , 𝑦𝑡] → Λ sending 𝑦𝑗 to 𝜆𝑗. Set 𝔭′ = (𝜑′)−1(𝔮). By
More on Algebra, Lemma 12.26.2 the ring map 𝑘[𝑦1, … , 𝑦𝑡]𝔭′ → Λ𝔮 is flat and Λ𝔮/𝔭′Λ𝔮 is
regular. Thus we can choose further elements 𝜆𝑡+1, … , 𝜆𝑚 ∈ Λ which map into 𝐴 ⊂ Λ̄ and
whichmap to a regular system of parameters of Λ𝔮/𝔭′Λ𝔮. We obtain 𝜑 ∶ 𝑘[𝑦1, … , 𝑦𝑚] → Λ
having property (1) such that 𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛𝑘[𝑦1, … , 𝑦𝑚]𝔭 → Λ̄ factors through 𝐴. Thus
𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛𝑘[𝑦1, … , 𝑦𝑚]𝔭 → 𝐴 is flat by Algebra, Lemma 7.35.8. By construction
the residue field extension 𝜅(𝔭) ⊂ 𝐹 is finitely generated and Ω𝐹/𝜅(𝔭) = 0. Hence it is finite
separable byMore onAlgebra, Lemma 12.25.1. Thus 𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛𝑘[𝑦1, … , 𝑦𝑚]𝔭 → 𝐴
is finite by Algebra, Lemma 7.50.3. Finally, we conclude that it is étale by Algebra, Lemma
7.132.7. Since an étale ring map is certainly essentially smooth we win. �

Lemma 13.11.3. Let 𝜑 ∶ 𝑘[𝑦1, … , 𝑦𝑚] → Λ, 𝑛, 𝔮, 𝔭 and

𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛 → 𝐷 → Λ𝔮/𝔮𝑛Λ𝔮

be as in Lemma 13.11.2. Then for any 𝜆 ∈ Λ ⧵ 𝔮 there exists an integer 𝑞 > 0 and a
factorization

𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛 → 𝐷 → 𝐷′ → Λ𝔮/𝔮𝑛Λ𝔮

such that 𝐷 → 𝐷′ is an essentially smooth map of local Artinian rings, the last arrow is
flat, and 𝜆𝑞 is in 𝐷′.
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Proof. Set Λ̄ = Λ𝔮/𝔮𝑛Λ𝔮. Let ̄𝜆 be the image of 𝜆 in Λ̄. Let 𝛼 ∈ 𝜅(𝔮) be the image of 𝜆
in the residue field. Let 𝑘 ⊂ 𝐹 ⊂ 𝜅(𝔮) be the residue field of 𝐷. If 𝛼 is in 𝐹 then we can
find an 𝑥 ∈ 𝐷 such that 𝑥 ̄𝜆 = 1 mod 𝔮. Hence (𝑥 ̄𝜆)𝑞 = 1 mod (𝔮)𝑞 if 𝑞 is divisible by 𝑝.
Hence ̄𝜆𝑞 is in 𝐷. If 𝛼 is transcendental over 𝐹, then we can take 𝐷′ = (𝐷[ ̄𝜆])𝔪 equal to
the subring generated by 𝐷 and ̄𝜆 localized at 𝔪 = 𝐷[ ̄𝜆] ∩ 𝔮Λ̄. This works because 𝐷[ ̄𝜆]
is in fact a polynomial algebra over 𝐷 in this case. Finally, if 𝜆 mod 𝔮 is algebraic over
𝐹, then we can find a 𝑝-power 𝑞 such that 𝛼𝑞 is separable algebraic over 𝐹, see Algebra,
Section 7.38. Note that 𝐷 and Λ̄ are henselian local rings, see Algebra, Lemma 7.139.11.
Let 𝐷 → 𝐷′ be a finite étale extension whose residue field extension is 𝐹 ⊂ 𝐹(𝛼𝑞), see
Algebra, Lemma 7.139.8. Since Λ̄ is henselian and 𝐹(𝛼𝑞) is contained in its residue field
we can find a factorization 𝐷′ → Λ̄. By the first part of the argument we see that ̄𝜆𝑞𝑞′

∈ 𝐷′

for some 𝑞′ > 0. �

Lemma 13.11.4. Let 𝑘 → 𝐴 → Λ ⊃ 𝔮 be as in Situation 13.9.1 where
(1) 𝑘 is a field of characteristic 𝑝 > 0,
(2) Λ is Noetherian and geometrically regular over 𝑘,
(3) 𝔮 is minimal over 𝔥𝐴.

Then 𝑘 → 𝐴 → Λ ⊃ 𝔮 can be resolved.

Proof. The lemma is proven by the following steps in the given order. We will justify each
of these steps below.

(1) Pick an integer 𝑁 > 0 such that 𝔮𝑁Λ𝔮 ⊂ 𝐻𝐴/𝑘Λ𝔮.
(2) Pick generators 𝑎1, … , 𝑎𝑡 ∈ 𝐴 of the ideal 𝐻𝐴/𝑅.
(3) Set 𝑑 = dim(Λ𝔮).
(4) Set 𝐵 = 𝐴[𝑥1, … , 𝑥𝑑, 𝑧𝑖𝑗]/(𝑥2𝑁

𝑖 − ∑ 𝑧𝑖𝑗𝑎𝑗).
(5) Consider 𝐵 as a 𝑘[𝑥1, … , 𝑥𝑑]-algebra and let 𝐵 → 𝐶 be as in Lemma 13.4.1. We

also obtain a section 𝐶 → 𝐵.
(6) Choose 𝑐 > 0 such that each 𝑥𝑐

𝑖 is strictly standard in 𝐶 over 𝑘[𝑥1, … , 𝑥𝑑].
(7) Set 𝑛 = 𝑁 + 𝑑𝑐 and 𝑒 = 8𝑐.
(8) Let 𝐸 ⊂ Λ𝔮/𝔮𝑛Λ𝔮 be the images of generators of 𝐴 as a 𝑘-algebra.
(9) Choose an integer 𝑚 and a 𝑘-algebra map 𝜑 ∶ 𝑘[𝑦1, … , 𝑦𝑚] → Λ and a factor-

ization by local Artinian rings

𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛𝑘[𝑦1, … , 𝑦𝑚]𝔭 → 𝐷 → Λ𝔮/𝔮𝑛Λ𝔮

such that the first arrow is essentially smooth, the second is flat, 𝐸 is contained
in 𝐷, with 𝔭 = 𝜑−1(𝔮) the map 𝑘[𝑦1, … , 𝑦𝑚]𝔭 → Λ𝔮 is flat, and 𝔭Λ𝔮 = 𝔮Λ𝔮.

(10) Choose𝜋1, … , 𝜋𝑑 ∈ 𝔭whichmap to a regular system of parameters of 𝑘[𝑦1, … , 𝑦𝑚]𝔭.
(11) Let 𝑅 = 𝑘[𝑦1, … , 𝑦𝑚, 𝑡1, … , 𝑡𝑚] and 𝛾𝑖 = 𝜋𝑖𝑡𝑖.
(12) If necessary modify the choice of 𝜋𝑖 such that for 𝑖 = 1, … , 𝑑 we have

Ann𝑅/(𝛾𝑒
1,…,𝛾𝑒

𝑖−1)𝑅(𝛾𝑖) = Ann𝑅/(𝛾𝑒
1,…,𝛾𝑒

𝑖−1)𝑅(𝛾2
𝑖 )

(13) There exist 𝛿1, … , 𝛿𝑑 ∈ Λ, 𝛿𝑖∉𝔮 and a factorization 𝐷 → 𝐷′ → Λ𝔮/𝔮𝑛Λ𝔮 with
𝐷′ local Artinian, 𝐷 → 𝐷′ essentially smooth, the map 𝐷′ → Λ𝔮/𝔮𝑛Λ𝔮 flat such
that, with 𝜋′

𝑖 = 𝛿𝑖𝜋𝑖, we have for 𝑖 = 1, … , 𝑑
(a) (𝜋′

𝑖 )
2𝑁 = ∑ 𝑎𝑗𝜆𝑖𝑗 in Λ where 𝜆𝑖𝑗 mod 𝔮𝑛Λ𝔮 is an element of 𝐷′,

(b) AnnΛ/(𝜋′𝑒
1,…,𝜋′𝑒

𝑖−1)(𝜋′
𝑖) = AnnΛ/(𝜋′𝑒

1,…,𝜋′𝑒
𝑖−1)(𝜋′2

𝑖 ),
(c) 𝛿𝑖 mod 𝔮𝑛Λ𝔮 is an element of 𝐷′.
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(14) Define 𝐵 → Λ by sending 𝑥𝑖 to 𝜋′
𝑖 and 𝑧𝑖𝑗 to 𝜆𝑖𝑗 found above. Define 𝐶 → Λ by

composing the map 𝐵 → Λ with the retraction 𝐶 → 𝐵.
(15) Map 𝑅 → Λ by 𝜑 on 𝑘[𝑦1, … , 𝑦𝑚] and by sending 𝑡𝑖 to 𝛿𝑖. Further introduce a

map
𝑘[𝑥1, … , 𝑥𝑑] ⟶ 𝑅 = 𝑘[𝑦1, … , 𝑦𝑚, 𝑡1, … , 𝑡𝑑]

by sending 𝑥𝑖 to 𝛾𝑖 = 𝜋𝑖𝑡𝑖.
(16) It suffices to resolve

𝑅 → 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] 𝑅 → Λ ⊃ 𝔮

(17) Set 𝐼 = (𝛾𝑒
1, … , 𝛾𝑒

𝑑) ⊂ 𝑅.
(18) It suffices to resolve

𝑅/𝐼 → 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] 𝑅/𝐼 → Λ/𝐼Λ ⊃ 𝔮/𝐼Λ

(19) We denote 𝔯 ⊂ 𝑅 = 𝑘[𝑦1, … , 𝑦𝑚, 𝑡1, … , 𝑡𝑑] the inverse image of 𝔮.
(20) It suffices to resolve

(𝑅/𝐼)𝔯 → 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] (𝑅/𝐼)𝔯 → Λ𝔮/𝐼Λ𝔮 ⊃ 𝔮Λ𝔮/𝐼Λ𝔮

(21) Set 𝐽 = (𝜋𝑒
1, … , 𝜋𝑒

𝑑) in 𝑘[𝑦1, … , 𝑦𝑚].
(22) It suffices to resolve

(𝑅/𝐽𝑅)𝔭 → 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] (𝑅/𝐽𝑅)𝔭 → Λ𝔮/𝐽Λ𝔮 ⊃ 𝔮Λ𝔮/𝐽Λ𝔮

(23) It suffices to resolve

(𝑅/𝔭𝑛𝑅)𝔭 → 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] (𝑅/𝔭𝑛𝑅)𝔭 → Λ𝔮/𝔮𝑛Λ𝔮 ⊃ 𝔮Λ𝔮/𝔮𝑛Λ𝔮

(24) It suffices to resolve

(𝑅/𝔭𝑛𝑅)𝔭 → 𝐵 ⊗𝑘[𝑥1,…,𝑥𝑑] (𝑅/𝔭𝑛𝑅)𝔭 → Λ𝔮/𝔮𝑛Λ𝔮 ⊃ 𝔮Λ𝔮/𝔮𝑛Λ𝔮

(25) The ring 𝐷′[𝑡1, … , 𝑡𝑑] is given the structure of an 𝑅𝔭/𝔭𝑛𝑅𝔭-algebra by the given
map 𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛𝑘[𝑦1, … , 𝑦𝑚]𝔭 → 𝐷′ and by sending 𝑡𝑖 to 𝑡𝑖. It suffices to
find a factorization

𝐵 ⊗𝑘[𝑥1,…,𝑥𝑑] (𝑅/𝔭𝑛𝑅)𝔭 → 𝐷′[𝑡1, … , 𝑡𝑑] → Λ𝔮/𝔮𝑛Λ𝔮

where the second arrow sends 𝑡𝑖 to 𝛿𝑖 and induces the given homomorphism 𝐷′ →
Λ𝔮/𝔮𝑛Λ𝔮.

(26) Such a factorization exists by our choice of 𝐷′ above.
We now give the justification for each of the steps, except that we skip justifying the steps
which just introduce notation.

Ad (1). This is possible as 𝔮 is minimal over 𝔥𝐴 = √𝐻𝐴/𝑘Λ.

Ad (6). Note that 𝐴𝑎𝑖
is smooth over 𝑘. Hence 𝐵𝑎𝑗

, which is isomorphic to a polyno-
mial algebra over 𝐴𝑎𝑗

[𝑥1, … , 𝑥𝑑], is smooth over 𝑘[𝑥1, … , 𝑥𝑑]. Thus 𝐵𝑥𝑖
is smooth over

𝑘[𝑥1, … , 𝑥𝑑]. By Lemma 13.4.1 we see that 𝐶𝑥𝑖
is smooth over 𝑘[𝑥1, … , 𝑥𝑑] with finite free

module of differentials. Hence some power of 𝑥𝑖 is strictly standard in 𝐶 over 𝑘[𝑥1, … , 𝑥𝑛]
by Lemma 13.4.7.

Ad (9). This follows by applying Lemma 13.11.2.

Ad (10). Since 𝑘[𝑦1, … , 𝑦𝑚]𝔭 → Λ𝔮 is flat and 𝔭Λ𝔮 = 𝔮Λ𝔮 by construction we see that
dim(𝑘[𝑦1, … , 𝑦𝑚]𝔭) = 𝑑 by Algebra, Lemma 7.103.7. Thus we can find 𝜋1, … , 𝜋𝑑 ∈ Λ
which map to a regular system of parameters in Λ𝔮.
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Ad (12). By Algebra, Lemma 7.98.3 any permutation of the sequence 𝜋1, … , 𝜋𝑑 is a regular
sequence in 𝑘[𝑦1, … , 𝑦𝑚]𝔭. Hence 𝛾1 = 𝜋1𝑡1, … , 𝛾𝑑 = 𝜋𝑑𝑡𝑑 is a regular sequence in 𝑅𝔭 =
𝑘[𝑦1, … , 𝑦𝑚]𝔭[𝑡1, … , 𝑡𝑑], see Algebra, Lemma 7.65.11. Let 𝑆 = 𝑘[𝑦1, … , 𝑦𝑚] ⧵ 𝔭 so that
𝑅𝔭 = 𝑆−1𝑅. Note that 𝜋1, … , 𝜋𝑑 and 𝛾1, … , 𝛾𝑑 remain regular sequences if we multiply
our 𝜋𝑖 by elements of 𝑆. Suppose that

Ann𝑅/(𝛾𝑒
1,…,𝛾𝑒

𝑖−1)𝑅(𝛾𝑖) = Ann𝑅/(𝛾𝑒
1,…,𝛾𝑒

𝑖−1)𝑅(𝛾2
𝑖 )

holds for 𝑖 = 1, … , 𝑡 for some 𝑡 ∈ {0, … , 𝑑}. Note that 𝛾𝑒
1, … , 𝛾𝑒

𝑡 , 𝛾𝑡+1 is a regular sequence
in 𝑆−1𝑅 by Algebra, Lemma 7.65.10. Hence we see that

Ann𝑆−1𝑅/(𝛾𝑒
1,…,𝛾𝑒

𝑖−1)(𝛾𝑖) = Ann𝑆−1𝑅/(𝛾𝑒
1,…,𝛾𝑒

𝑖−1)(𝛾2
𝑖 ).

Thus we get
Ann𝑅/(𝛾𝑒

1,…,𝛾𝑒
𝑡 )𝑅(𝛾𝑡+1) = Ann𝑅/(𝛾𝑒

1,…,𝛾𝑒
𝑡 )𝑅(𝛾2

𝑡+1)
after replacing 𝜋𝑡+1 by 𝑠𝜋𝑡+1 for some 𝑠 ∈ 𝑆 by Lemma 13.10.1. By induction on 𝑡 this
produces the desired sequence.

Ad (13). Let 𝑆 = Λ ⧵ 𝔮 so that Λ𝔮 = 𝑆−1Λ. Set Λ̄ = Λ𝔮/𝔮𝑛Λ𝔮. Suppose that we have a
𝑡 ∈ {0, … , 𝑑} and 𝛿1, … , 𝛿𝑡 ∈ 𝑆 and a factorization 𝐷 → 𝐷′ → Λ̄ as in (13) such that (a),
(b), (c) hold for 𝑖 = 1, … , 𝑡. We have 𝜋𝑁

𝑡+1 ∈ 𝐻𝐴/𝑘Λ𝔮 as 𝔮𝑁Λ𝔮 ⊂ 𝐻𝐴/𝑘Λ𝔮 by (1). Hence
𝜋𝑁

𝑡+1 ∈ 𝐻𝐴/𝑘Λ̄. Hence 𝜋𝑁
𝑡+1 ∈ 𝐻𝐴/𝑘𝐷′ as 𝐷′ → Λ̄ is faithfully flat, see Algebra, Lemma

7.76.11. Recall that 𝐻𝐴/𝑘 = (𝑎1, … , 𝑎𝑡). Say 𝜋𝑁
𝑡+1 = ∑ 𝑎𝑗𝑑𝑗 in 𝐷′ and choose 𝑐𝑗 ∈ Λ𝔮

lifting 𝑑𝑗 ∈ 𝐷′. Then 𝜋𝑁
𝑡+1 = ∑ 𝑐𝑗𝑎𝑗 + 𝜖 with 𝜖 ∈ 𝔮𝑛Λ𝔮 ⊂ 𝔮𝑛−𝑁𝐻𝐴/𝑘Λ𝔮. Write 𝜖 = ∑ 𝑎𝑗𝑐′

𝑗
for some 𝑐′

𝑗 ∈ 𝔮𝑛−𝑁Λ𝔮. Hence 𝜋2𝑁
𝑡+1 = ∑(𝜋𝑁

𝑡+1𝑐𝑗 + 𝜋𝑁
𝑡+1𝑐′

𝑗)𝑎𝑗. Note that 𝜋𝑁
𝑡+1𝑐′

𝑗 maps to zero
in Λ̄; this trivial but key observation will ensure later that (a) holds. Now we choose 𝑠 ∈ 𝑆
such that there exist 𝜇𝑡+1𝑗 ∈ Λ such that on the one hand 𝜋𝑁

𝑡+1𝑐𝑗 + 𝜋𝑁
𝑡+1𝑐′

𝑗 = 𝜇𝑡+1𝑗/𝑠2𝑁 in
𝑆−1Λ and on the other (𝑠𝜋𝑡+1)2𝑁 = ∑ 𝜇𝑡+1𝑗𝑎𝑗 in Λ (minor detail omitted). We may further
replace 𝑠 by a power and enlarge 𝐷′ such that 𝑠 maps to an element of 𝐷′. With these
choices 𝜇𝑡+1𝑗 maps to 𝑠2𝑁𝑑𝑗 which is an element of 𝐷′. Note that 𝜋1, … , 𝜋𝑑 are a regular
sequence of parameters in 𝑆−1Λ by our choice of 𝜑. Hence 𝜋1, … , 𝜋𝑑 forms a regular
sequence in Λ𝔮 by Algebra, Lemma 7.98.3. It follows that 𝜋′𝑒

1, … , 𝜋′𝑒
𝑡 , 𝑠𝜋𝑡+1 is a regular

sequence in 𝑆−1Λ by Algebra, Lemma 7.65.10. Thus we get

Ann𝑆−1Λ/(𝜋′𝑒
1,…,𝜋′𝑒

𝑡 )(𝑠𝜋𝑡+1) = Ann𝑆−1Λ/(𝜋′𝑒
1,…,𝜋′𝑒

𝑡 )((𝑠𝜋𝑡+1)2).

Hence we may apply Lemma 13.10.1 to find an 𝑠′ ∈ 𝑆 such that

AnnΛ/(𝜋′𝑒
1,…,𝜋′𝑒

𝑡 )((𝑠′)𝑞𝑠𝜋𝑡+1) = AnnΛ/(𝜋′𝑒
1,…,𝜋′𝑒

𝑡 )(((𝑠′)𝑞𝑠𝜋𝑡+1)2).

for any 𝑞 > 0. By Lemma 13.11.3 we can choose 𝑞 and enlarge 𝐷′ such that (𝑠′)𝑞 maps
to an element of 𝐷′. Setting 𝛿𝑡+1 = (𝑠′)𝑞𝑠 and we conclude that (a), (b), (c) hold for
𝑖 = 1, … , 𝑡 + 1. For (a) note that 𝜆𝑡+1𝑗 = (𝑠′)2𝑁𝑞𝜇𝑡+1𝑗 works. By induction on 𝑡 we win.

Ad (16). By construction the radical of 𝐻(𝐶⊗𝑘[𝑥1,…,𝑥𝑑]𝑅)/𝑅Λ contains 𝔥𝐴. Namely, the el-
ements 𝑎𝑗 ∈ 𝐻𝐴/𝑘 map to elements of 𝐻𝐵/𝑘[𝑥1,…,𝑥𝑛], hencemap to elements of 𝐻𝐶/𝑘[𝑥1,…,𝑥𝑛],
hence 𝑎𝑗⊗1map to elements of𝐻𝐶⊗𝑘[𝑥1,…,𝑥𝑑]𝑅/𝑅. Moreover, if we have a solution𝐶⊗𝑘[𝑥1,…,𝑥𝑛]
𝑅 → 𝑇 → Λ of

𝑅 → 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] 𝑅 → Λ ⊃ 𝔮
then 𝐻𝑇/𝑅 ⊂ 𝐻𝑇/𝑘 as 𝑅 is smooth over 𝑘. Hence 𝑇 will also be a solution for the original
situation 𝑘 → 𝐴 → Λ ⊃ 𝔮.
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Ad (18). Follows on applying Lemma 13.9.2 to 𝑅 → 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] 𝑅 → Λ ⊃ 𝔮 and
the sequence of elements 𝛾𝑐

1, … , 𝛾𝑐
𝑑. We note that since 𝑥𝑐

𝑖 are strictly standard in 𝐶 over
𝑘[𝑥1, … , 𝑥𝑑] the elements 𝛾𝑐

𝑖 are strictly standard in 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] 𝑅 over 𝑅 by Lemma
13.3.7. The other assumption of Lemma 13.9.2 holds by steps (12) and (13).
Ad (20). Apply Lemma 13.9.4 to the situation in (18). In the rest of the arguments the
target ring is local Artinian, hence we are looking for a factorization by a smooth algebra 𝑇
over the source ring.
Ad (22). Suppose that 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] (𝑅/𝐽𝑅)𝔭 → 𝑇 → Λ𝔮/𝐽Λ𝔮 is a solution to

(𝑅/𝐽𝑅)𝔭 → 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] (𝑅/𝐽𝑅)𝔭 → Λ𝔮/𝐽Λ𝔮 ⊃ 𝔮Λ𝔮/𝐽Λ𝔮

Then 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] (𝑅/𝐼)𝔯 → 𝑇𝔯 → Λ𝔮/𝐼Λ𝔮 is a solution to the situation in (20).

Ad (23). Our 𝑛 = 𝑁 + 𝑑𝑐 is large enough so that 𝔭𝑛𝑘[𝑦1, … , 𝑦𝑚]𝔭 ⊂ 𝐽𝔭 and 𝔮𝑛Λ𝔮 ⊂ 𝐽Λ𝔮.
Hence if we have a solution 𝐶 ⊗𝑘[𝑥1,…,𝑥𝑑] (𝑅/𝔭𝑛𝑅)𝔭 → 𝑇 → Λ𝔮/𝔮𝑛Λ𝔮 of (22 then we can
take 𝑇/𝐽𝑇 as the solution for (23).
Ad (24). This is true because we have a section 𝐶 → 𝐵 in the category of 𝑅-algebras.
Ad (25). This is true because𝐷′ is essentially smooth over the local Artinian ring 𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛𝑘[𝑦1, … , 𝑦𝑚]𝔭
and

𝑅𝔭/𝔭𝑛𝑅𝔭 = 𝑘[𝑦1, … , 𝑦𝑚]𝔭/𝔭𝑛𝑘[𝑦1, … , 𝑦𝑚]𝔭[𝑡1, … , 𝑡𝑑].
Hence 𝐷′[𝑡1, … , 𝑡𝑑] is a filtered colimit of smooth 𝑅𝔭/𝔭𝑛𝑅𝔭-algebras and 𝐵 ⊗𝑘[𝑥1,…,𝑥𝑑]
(𝑅𝔭/𝔭𝑛𝑅𝔭) factors through one of these.

Ad (26). The final twist of the proof is that we cannot just use the map 𝐵 → 𝐷′ which maps
𝑥𝑖 to the image of 𝜋′

𝑖 in 𝐷′ and 𝑧𝑖𝑗 to the image of 𝜆𝑖𝑗 in 𝐷′ because we need the diagram

𝐵 // 𝐷′[𝑡1, … , 𝑡𝑑]

𝑘[𝑥1, … , 𝑥𝑑] //

OO

𝑅𝔭/𝔭𝑛𝑅𝔭

OO

to commute and we need the compostion 𝐵 → 𝐷′[𝑡1, … , 𝑡𝑑] → Λ𝔮/𝔮𝑛Λ𝔮 to be the map of
(14). This requires us to map 𝑥𝑖 to the image of 𝜋𝑖𝑡𝑖 in 𝐷′[𝑡1, … , 𝑡𝑑]. Hence we map 𝑧𝑖𝑗 to
the image of 𝜆𝑖𝑗𝑡2𝑁

𝑖 /𝛿2𝑁
𝑖 in 𝐷′[𝑡1, … , 𝑡𝑑] and everything is clear. �

13.12. The main theorem

In this section we wrap up the discussion.

Theorem 13.12.1 (Popescu). Any regular homomorphism of Noetherian rings is a filtered
colimit of smooth ring maps.

Proof. By Lemma 13.8.4 it suffices to prove this for 𝑘 → Λ where Λ is Noetherian and
geometrically regular over 𝑘. Let 𝑘 → 𝐴 → Λ be a factorization with 𝐴 a finite type
𝑘-algebra. It suffices to construct a factorization 𝐴 → 𝐵 → Λ with 𝐵 of finite type such
that 𝔥𝐵 = Λ, see Lemma 13.3.8. Hence we may perform Noetherian induction on the
ideal 𝔥𝐴. Pick a prime 𝔮 ⊃ 𝔥𝐴 such that 𝔮 is minimal over 𝔥𝐴. It now suffices to resolve
𝑘 → 𝐴 → Λ ⊃ 𝔮 (as defined in the text following Situation 13.9.1). If the characteristic of
𝑘 is zero, this follows from Lemma 13.10.3. If the characteristic of 𝑘 is 𝑝 > 0, this follows
from Lemma 13.11.4. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07GC


926 13. SMOOTHING RING MAPS

13.13. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups
(9) Sites and Sheaves

(10) Homological Algebra
(11) Derived Categories
(12) More on Algebra
(13) Smoothing Ring Maps
(14) Simplicial Methods
(15) Sheaves of Modules
(16) Modules on Sites
(17) Injectives
(18) Cohomology of Sheaves
(19) Cohomology on Sites
(20) Hypercoverings
(21) Schemes
(22) Constructions of Schemes
(23) Properties of Schemes
(24) Morphisms of Schemes
(25) Coherent Cohomology
(26) Divisors
(27) Limits of Schemes
(28) Varieties
(29) Chow Homology
(30) Topologies on Schemes
(31) Descent
(32) Adequate Modules
(33) More on Morphisms
(34) More on Flatness
(35) Groupoid Schemes
(36) More on Groupoid Schemes

(37) Étale Morphisms of Schemes
(38) Étale Cohomology
(39) Crystalline Cohomology
(40) Algebraic Spaces
(41) Properties of Algebraic Spaces
(42) Morphisms of Algebraic Spaces
(43) Decent Algebraic Spaces
(44) Topologies on Algebraic Spaces
(45) Descent and Algebraic Spaces
(46) More on Morphisms of Spaces
(47) Quot and Hilbert Spaces
(48) Spaces over Fields
(49) Cohomology of Algebraic Spaces
(50) Stacks
(51) Formal Deformation Theory
(52) Groupoids in Algebraic Spaces
(53) More on Groupoids in Spaces
(54) Bootstrap
(55) Examples of Stacks
(56) Quotients of Groupoids
(57) Algebraic Stacks
(58) Sheaves on Algebraic Stacks
(59) Criteria for Representability
(60) Properties of Algebraic Stacks
(61) Morphisms of Algebraic Stacks
(62) Cohomology of Algebraic Stacks
(63) Introducing Algebraic Stacks
(64) Examples
(65) Exercises
(66) Guide to Literature
(67) Desirables
(68) Coding Style
(69) Obsolete
(70) GNU Free Documentation Li-

cense
(71) Auto Generated Index



CHAPTER 14

Simplicial Methods

14.1. Introduction

This is a minimal introduction to simplicial methods. We just add here whenever something
is needed later on. A general reference to this material is perhaps [GJ99]. An example of
the things you can do is the paper by Quillen on Homotopical Algebra, see [Qui67] or the
paper on Etale Homotopy by Artin and Mazur, see [AM69].

14.2. The category of finite ordered sets

The category Δ is the category with

(1) objects [0], [1], [2], … with [𝑛] = {0, 1, 2, … , 𝑛} and
(2) a morphism [𝑛] → [𝑚] is the set of nondecreasing maps of the corresponding sets

{0, 1, 2, … , 𝑛} → {0, 1, 2, … , 𝑚}.

Here nondecreasing for a map 𝜑 ∶ [𝑛] → [𝑚] means by definition that 𝜑(𝑖) ≥ 𝜑(𝑗) if 𝑖 ≥ 𝑗.
In other words, Δ is a category equivalent to the ``big'' category of finite totally ordered
sets and nondecreasing maps. There are exactly 𝑛 + 1 morphisms [0] → [𝑛] and there is
exactly 1 morphism [𝑛] → [0]. There are exactly (𝑛 + 1)(𝑛 + 2)/2 morphisms [1] → [𝑛] and
there are exactly 𝑛 + 2 morphisms [𝑛] → [1]. And so on and so forth.

Definition 14.2.1. For any integer 𝑛 ≥ 1, and any 0 ≤ 𝑗 ≤ 𝑛 we let 𝛿𝑛
𝑗 ∶ [𝑛−1] → [𝑛] denote

the injective order preserving map skipping 𝑗. For any integer 𝑛 ≥ 0, and any 0 ≤ 𝑗 ≤ 𝑛 we
denote 𝜎𝑛

𝑗 ∶ [𝑛+1] → [𝑛] the surjective order preserving map with (𝜎𝑛
𝑗 )−1({𝑗}) = {𝑗, 𝑗+1}.

Lemma 14.2.2. Any morphism in Δ can be written as a composition of an identity mor-
phism, and the morphisms 𝛿𝑛

𝑗 and 𝜎𝑛
𝑗 .

Proof. Let 𝜑 ∶ [𝑛] → [𝑚] be a morphism of Δ. If 𝑗∉Im(𝜑), then we can write 𝜑 as 𝛿𝑚
𝑗 ∘ 𝜓

for some morphism 𝜓 ∶ [𝑛] → [𝑚 − 1]. If 𝜑(𝑗) = 𝜑(𝑗 + 1) then we can write 𝜑 as 𝜓 ∘ 𝜎𝑛−1
𝑗

for some morphism 𝜓 ∶ [𝑛 − 1] → [𝑚]. The result follows because each replacement as
above lowers 𝑛 + 𝑚 and hence at some point 𝜑 is both injective and surjective, hence an
identity morphism. �

Lemma 14.2.3. The morphisms 𝛿𝑛
𝑗 and 𝜎𝑛

𝑗 satisfy the following relations.
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(1) If 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1, then 𝛿𝑛+1
𝑗 ∘ 𝛿𝑛

𝑖 = 𝛿𝑛+1
𝑖 ∘ 𝛿𝑛

𝑗−1. In other words the diagram

[𝑛]
𝛿𝑛+1

𝑗

##
[𝑛 − 1]

𝛿𝑛
𝑖

;;

𝛿𝑛
𝑗−1 ##

[𝑛 + 1]

[𝑛]
𝛿𝑛+1

𝑖

;;

commutes.
(2) If 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1, then 𝜎𝑛−1

𝑗 ∘ 𝛿𝑛
𝑖 = 𝛿𝑛−1

𝑖 ∘ 𝜎𝑛−2
𝑗−1 . In other words the diagram

[𝑛]
𝜎𝑛−1

𝑗

$$
[𝑛 − 1]

𝛿𝑛
𝑖

::

𝜎𝑛−2
𝑗−1 $$

[𝑛 − 1]

[𝑛 − 2]
𝛿𝑛−1

𝑖

::

commutes.
(3) If 0 ≤ 𝑗 ≤ 𝑛 − 1, then 𝜎𝑛−1

𝑗 ∘ 𝛿𝑛
𝑗 = id[𝑛−1] and 𝜎𝑛−1

𝑗 ∘ 𝛿𝑛
𝑗+1 = id[𝑛−1]. In other words

the diagram

[𝑛]
𝜎𝑛−1

𝑗

##
[𝑛 − 1]

𝛿𝑛
𝑗

;;

𝛿𝑛
𝑗+1 ##

id[𝑛−1] // [𝑛 − 1]

[𝑛]
𝜎𝑛−1

𝑗

;;

commutes.
(4) If 0 < 𝑗 + 1 < 𝑖 ≤ 𝑛, then 𝜎𝑛−1

𝑗 ∘ 𝛿𝑛
𝑖 = 𝛿𝑛−1

𝑖−1 ∘ 𝜎𝑛−2
𝑗 . In other words the diagram

[𝑛]
𝜎𝑛−1

𝑗

$$
[𝑛 − 1]

𝛿𝑛
𝑖

::

𝜎𝑛−2
𝑗 $$

[𝑛 − 1]

[𝑛 − 2]
𝛿𝑛−1

𝑖−1

::

commutes.
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(5) If 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 − 1, then 𝜎𝑛−1
𝑗 ∘ 𝜎𝑛

𝑖 = 𝜎𝑛−1
𝑖 ∘ 𝜎𝑛

𝑗+1. In other words the diagram

[𝑛]
𝜎𝑛−1

𝑗

##
[𝑛 + 1]

𝜎𝑛
𝑖

;;

𝜎𝑛
𝑗+1 ##

[𝑛 − 1]

[𝑛]
𝜎𝑛−1

𝑖

;;

commutes.

Proof. Omitted. �

Lemma 14.2.4. The category Δ is the universal category with objects [𝑛], 𝑛 ≥ 0 and
morphisms 𝛿𝑛

𝑗 and 𝜎𝑛
𝑗 such that (a) every morphism is a composition of these morphisms, (b)

the relations listed in Lemma 14.2.3 are satisfied, and (c) any relation among the morphisms
is a consquence of those relations.

Proof. Omitted. �

14.3. Simplicial objects

Definition 14.3.1. Let 𝒞 be a category.
(1) A simplicial object 𝑈 of 𝒞 is a contravariant functor 𝑈 from Δ to 𝒞, in a formula:

𝑈 ∶ Δ𝑜𝑝𝑝 ⟶ 𝒞

(2) If 𝒞 is the category of sets, then we call 𝑈 a simplicial set.
(3) If 𝒞 is the category of abelian groups, then we call 𝑈 a simplicial abelian group.
(4) A morphism of simplicial objects 𝑈 → 𝑈′ is a transformation of functors.
(5) The category of simplicial objects of 𝒞 is denoted Simp(𝒞).

This means there are objects 𝑈([0]), 𝑈([1]), 𝑈([2]), … and for 𝜑 any nondecreasing map
𝜑 ∶ [𝑚] → [𝑛] a morphism 𝑈(𝜑) ∶ 𝑈([𝑛]) → 𝑈([𝑚]), satisfying 𝑈(𝜑 ∘ 𝜓) = 𝑈(𝜓) ∘ 𝑈(𝜑).

In particular there is a unique morphism 𝑈([0]) → 𝑈([𝑛]) and there are exactly 𝑛 + 1
morphisms 𝑈([𝑛]) → 𝑈([0]) corresponding to the 𝑛 + 1 maps [0] → [𝑛]. Obviously we
need some more notation to be able to talk intelligently about these simplicial objects. We
do this by considering the morphisms we singled out in Section 14.2 above.

Lemma 14.3.2. Let 𝒞 be a category.
(1) Given a simplicial object 𝑈 in 𝒞 we obtain a sequence of objects 𝑈𝑛 = 𝑈([𝑛])

endowed with the morphisms 𝑑𝑛
𝑗 = 𝑈(𝛿𝑛

𝑗 ) ∶ 𝑈𝑛 → 𝑈𝑛−1 and 𝑠𝑛
𝑗 = 𝑈(𝜎𝑛

𝑗 ) ∶ 𝑈𝑛 →
𝑈𝑛+1. These morphisms satisfy the opposites of the relations displayed in Lemma
14.2.3.

(2) Conversely, given a sequence of objects 𝑈𝑛 and morphisms 𝑑𝑛
𝑗 , 𝑠𝑛

𝑗 satisfying these
relations there exists a unique simplicial object 𝑈 in 𝒞 such that 𝑈𝑛 = 𝑈([𝑛]),
𝑑𝑛

𝑗 = 𝑈(𝛿𝑛
𝑗 ), and 𝑠𝑛

𝑗 = 𝑈(𝜎𝑛
𝑗 ).

(3) A morphism between simplicial objects 𝑈 and 𝑈′ is given by a family of mor-
phisms 𝑈𝑛 → 𝑈′

𝑛 commuting with the morphisms 𝑑𝑛
𝑗 and 𝑠𝑛

𝑗 .

Proof. This follows from Lemma 14.2.4. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0168
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Remark 14.3.3. By abuse of notation we sometimes write 𝑑𝑖 ∶ 𝑈𝑛 → 𝑈𝑛−1 instead of 𝑑𝑛
𝑖 ,

and similarly for 𝑠𝑖 ∶ 𝑈𝑛 → 𝑈𝑛+1. The relations among the morphisms 𝑑𝑛
𝑖 and 𝑠𝑛

𝑖 may be
expressed as follows:

(1) If 𝑖 < 𝑗, then 𝑑𝑖 ∘ 𝑑𝑗 = 𝑑𝑗−1 ∘ 𝑑𝑖.
(2) If 𝑖 < 𝑗, then 𝑑𝑖 ∘ 𝑠𝑗 = 𝑠𝑗−1 ∘ 𝑑𝑖.
(3) We have id = 𝑑𝑗 ∘ 𝑠𝑗 = 𝑑𝑗+1 ∘ 𝑠𝑗.
(4) If 𝑖 > 𝑗 + 1, then 𝑑𝑖 ∘ 𝑠𝑗 = 𝑠𝑗 ∘ 𝑑𝑖−1.
(5) If 𝑖 ≤ 𝑗, then 𝑠𝑖 ∘ 𝑠𝑗 = 𝑠𝑗+1 ∘ 𝑠𝑖.

This means that whenever the compositions on both the left and the right are defined then
the corresponding equality should hold.

We get a unique morphism 𝑠0
0 = 𝑈(𝜎0

0) ∶ 𝑈0 → 𝑈1 and two morphisms 𝑑1
0 = 𝑈(𝛿1

0),
and 𝑑1

1 = 𝑈(𝛿1
1) which are morphisms 𝑈1 → 𝑈0. There are two morphisms 𝑠1

0 = 𝑈(𝜎1
0),

𝑠1
1 = 𝑈(𝜎1

1) which are morphsms 𝑈1 → 𝑈2. Three morphisms 𝑑2
0 = 𝑈(𝛿2

0), 𝑑2
1 = 𝑈(𝛿2

1),
𝑑2

2 = 𝑈(𝛿2
2) which are morphisms 𝑈3 → 𝑈2. And so on.

Pictorially we think of 𝑈 as follows:

𝑈2

//
//
//
𝑈1

//
//oo

oo
𝑈0

oo

Here the 𝑑-morphisms are the arrows pointing right and the 𝑠-morphisms are the arrows
pointing left.

Example 14.3.4. The simplest example is the constant simplicial object with value 𝑋 ∈
𝑂𝑏(𝒞). In other words, 𝑈𝑛 = 𝑋 and all maps are id𝑋.

Example 14.3.5. Suppose that 𝑌 → 𝑋 is a morphism of 𝒞 such that all the fibred products
𝑌 ×𝑋 𝑌 ×𝑋 … ×𝑋 𝑌 exist. Then we set 𝑈𝑛 equal to the (𝑛 + 1)-fold fibre product, and we let
𝜑 ∶ [𝑛] → [𝑚] correspond to the map (on ``coordinates'') (𝑦0, … , 𝑦𝑚) ↦ (𝑦𝜑(0), … , 𝑦𝜑(𝑛)).
In other words, the map 𝑈0 = 𝑌 → 𝑈1 = 𝑌 ×𝑋 𝑌 is the diagonal map. The two maps
𝑈1 = 𝑌 ×𝑋 𝑌 → 𝑈0 = 𝑌 are the projection maps.

Geometrically Example 14.3.5 above is an important example. It tells us that it is a good
idea to think of the maps 𝑑𝑛

𝑗 ∶ 𝑈𝑛+1 → 𝑈𝑛 as projection maps (forgetting the 𝑗th com-
ponent), and to think of the maps 𝑠𝑛

𝑗 ∶ 𝑈𝑛 → 𝑈𝑛+1 as diagonal maps (repeating the 𝑗th
coordinate). We will return to this in the sections below.

Lemma 14.3.6. Let 𝒞 be a category. Let 𝑈 be a simplicial object of 𝒞. Each of the
morphisms 𝑠𝑛

𝑖 ∶ 𝑈𝑛 → 𝑈𝑛+1 has a left inverse. In particular 𝑠𝑛
𝑖 is a monomorphism.

Proof. This is true because 𝑑𝑛+1
𝑖 ∘ 𝑠𝑛

𝑖 = id𝑈𝑛
. �

14.4. Simplicial objects as presheaves

Another observation is that we may think of a simplicial object of 𝒞 as a presheaf with
values in 𝒞 over Δ. See Sites, Definition 9.2.2. And in fact, if 𝑈, 𝑈′ are simplicial objects
of 𝒞, then we have

(14.4.0.1) 𝑀𝑜𝑟(𝑈, 𝑈′) = 𝑀𝑜𝑟PSh(Δ)(𝑈, 𝑈′).

Some of the material below could be replace by the more general constructions in the chap-
ter on sites. However, it seems a clearer picture arises from the arguments specific to sim-
plicial objects.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=016C
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14.5. Cosimplicial objects

A cosimplicial object of a category 𝒞 could be defined simply as a simplicial object of the
opposite category 𝒞𝑜𝑝𝑝. This is not really how the human brain works, so we introduce
them separately here and point out some simple properties.

Definition 14.5.1. Let 𝒞 be a category.
(1) A cosimplicial object 𝑈 of 𝒞 is a covariant functor 𝑈 from Δ to 𝒞, in a formula:

𝑈 ∶ Δ ⟶ 𝒞

(2) If 𝒞 is the category of sets, then we call 𝑈 a cosimplicial set.
(3) If 𝒞 is the category of abelian groups, thenwe call 𝑈 a cosimplicial abelian group.
(4) A morphism of cosimplicial objects 𝑈 → 𝑈′ is a transformation of functors.
(5) The category of cosimplicial objects of 𝒞 is denoted CoSimp(𝒞).

This means there are objects 𝑈([0]), 𝑈([1]), 𝑈([2]), … and for 𝜑 any nondecreasing map
𝜑 ∶ [𝑚] → [𝑛] a morphism 𝑈(𝜑) ∶ 𝑈([𝑚]) → 𝑈([𝑛]), satisfying 𝑈(𝜑 ∘ 𝜓) = 𝑈(𝜑) ∘ 𝑈(𝜓).

In particular there is a unique morphism 𝑈([𝑛]) → 𝑈([0]) and there are exactly 𝑛 + 1
morphisms 𝑈([0]) → 𝑈([𝑛]) corresponding to the 𝑛 + 1 maps [0] → [𝑛]. Obviously we
need some more notation to be able to talk intelligently about these simplicial objects. We
do this by considering the morphisms we singled out in Section 14.2 above.

Lemma 14.5.2. Let 𝒞 be a category.
(1) Given a cosimplicial object 𝑈 in 𝒞 we obtain a sequence of objects 𝑈𝑛 = 𝑈([𝑛])

endowed with the morphisms 𝛿𝑛
𝑗 = 𝑈(𝛿𝑛

𝑗 ) ∶ 𝑈𝑛−1 → 𝑈𝑛 and 𝜎𝑛
𝑗 = 𝑈(𝜎𝑛

𝑗 ) ∶
𝑈𝑛+1 → 𝑈𝑛. These morphisms satisfy the relations displayed in Lemma 14.2.3.

(2) Conversely, given a sequence of objects 𝑈𝑛 and morphisms 𝛿𝑛
𝑗 , 𝜎𝑛

𝑗 satisfying these
relations there exists a unique cosimplicial object 𝑈 in 𝒞 such that 𝑈𝑛 = 𝑈([𝑛]),
𝛿𝑛

𝑗 = 𝑈(𝛿𝑛
𝑗 ), and 𝜎𝑛

𝑗 = 𝑈(𝜎𝑛
𝑗 ).

(3) A morphism between simplicial objects 𝑈 and 𝑈′ is given by a family of mor-
phisms 𝑈𝑛 → 𝑈′

𝑛 commuting with the morphisms 𝛿𝑛
𝑗 and 𝜎𝑛

𝑗 .

Proof. This follows from Lemma 14.2.4. �

Remark 14.5.3. By abuse of notation we sometimes write 𝛿𝑖 ∶ 𝑈𝑛−1 → 𝑈𝑛 instead of 𝛿𝑛
𝑖 ,

and similarly for 𝜎𝑖 ∶ 𝑈𝑛+1 → 𝑈𝑛. The relations among the morphisms 𝛿𝑛
𝑖 and 𝜎𝑛

𝑖 may be
expressed as follows:

(1) If 𝑖 < 𝑗, then 𝛿𝑗 ∘ 𝛿𝑖 = 𝛿𝑖 ∘ 𝛿𝑗−1.
(2) If 𝑖 < 𝑗, then 𝜎𝑗 ∘ 𝛿𝑖 = 𝛿𝑖 ∘ 𝜎𝑗−1.
(3) We have id = 𝜎𝑗 ∘ 𝛿𝑗 = 𝜎𝑗 ∘ 𝛿𝑗+1.
(4) If 𝑖 > 𝑗 + 1, then 𝜎𝑗 ∘ 𝛿𝑖 = 𝛿𝑖−1 ∘ 𝜎𝑗.
(5) If 𝑖 ≤ 𝑗, then 𝜎𝑗 ∘ 𝜎𝑖 = 𝜎𝑖 ∘ 𝜎𝑗+1.

This means that whenever the compositions on both the left and the right are defined then
the corresponding equality should hold.

We get a unique morphism 𝜎0
0 = 𝑈(𝜎0

0) ∶ 𝑈1 → 𝑈0 and two morphisms 𝛿1
0 = 𝑈(𝛿1

0),
and 𝛿1

1 = 𝑈(𝛿1
1) which are morphisms 𝑈0 → 𝑈1. There are two morphisms 𝜎1

0 = 𝑈(𝜎1
0),

𝜎1
1 = 𝑈(𝜎1

1) which are morphsms 𝑈2 → 𝑈1. Three morphisms 𝛿2
0 = 𝑈(𝛿2

0), 𝛿2
1 = 𝑈(𝛿2

1),
𝛿2

2 = 𝑈(𝛿2
2) which are morphisms 𝑈2 → 𝑈3. And so on.
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Pictorially we think of 𝑈 as follows:

𝑈0
//
// 𝑈1

oo
//
//
//
𝑈2oo

oo

Here the 𝛿-morphisms are the arrows pointing right and the 𝜎-morphisms are the arrows
pointing left.

Example 14.5.4. The simplest example is the constant cosimplicial object with value 𝑋 ∈
𝑂𝑏(𝒞). In other words, 𝑈𝑛 = 𝑋 and all maps are id𝑋.

Example 14.5.5. Suppose that 𝑌 → 𝑋 is a morphism of 𝐶 such that all the push outs
𝑌 ∐𝑋 𝑌 ∐𝑋 … ∐𝑋 𝑌 exist. Then we set 𝑈𝑛 equal to the (𝑛 + 1)-fold push out, and we let
𝜑 ∶ [𝑛] → [𝑚] correspond to the map

(𝑦 in 𝑖th component) ↦ (𝑦 in 𝜑(𝑖)th component)

on ``coordinates''. In other words, the map 𝑈1 = 𝑌 ∐𝑋 𝑌 → 𝑈0 = 𝑌 is the identity on each
component. The two maps 𝑈0 = 𝑌 → 𝑈1 = 𝑌 ∐𝑋 𝑌 are the two natural maps.

Lemma 14.5.6. Let 𝒞 be a category. Let 𝑈 be a cosimplicial object of 𝒞. Each of the
morphisms 𝛿𝑛

𝑖 ∶ 𝑈𝑛−1 → 𝑈𝑛 has a left inverse. In particular 𝛿𝑛
𝑖 is a monomorphism.

Proof. This is true because 𝜎𝑛−1
𝑖 ∘ 𝛿𝑛

𝑖 = id𝑈𝑛
for 𝑗 < 𝑛. �

14.6. Products of simplicial objects

Of course we should define the product of simplicial objects as the product in the category
of simplicial objects. This may lead to the potentially confusing situation where the product
exists but is not described as below. To avoid this we define the product directly as follows.

Definition 14.6.1. Let 𝒞 be a category. Let 𝑈 and 𝑉 be simplicial objects of 𝒞. Assume the
products 𝑈𝑛 × 𝑉𝑛 exist in 𝒞. The product of 𝑈 and 𝑉 is the simplicial object 𝑈 × 𝑉 defined
as follows:

(1) (𝑈 × 𝑉)𝑛 = 𝑈𝑛 × 𝑉𝑛,
(2) 𝑑𝑛

𝑖 = (𝑑𝑛
𝑖 , 𝑑𝑛

𝑖 ), and
(3) 𝑠𝑛

𝑖 = (𝑠𝑛
𝑖 , 𝑠𝑛

𝑖 ).
In other words, 𝑈 × 𝑉 is the product of the presheaves 𝑈 and 𝑉 on Δ.

Lemma 14.6.2. If 𝑈 and 𝑉 are simplicial objects in the category 𝒞, and if 𝑈 × 𝑉 exists,
then we have

𝑀𝑜𝑟(𝑊, 𝑈 × 𝑉) = 𝑀𝑜𝑟(𝑊, 𝑈) × 𝑀𝑜𝑟(𝑊, 𝑉)
for any third simplicial object 𝑊 of 𝒞.

Proof. Omitted. �

14.7. Fibre products of simplicial objects

Of course we should define the fibre product of simplicial objects as the fibre product in the
category of simplicial objects. This may lead to the potentially confusing situation where
the fibre product exists but is not described as below. To avoid this we define the fibre
product directly as follows.

Definition 14.7.1. Let 𝒞 be a category. Let 𝑈, 𝑉, 𝑊 be simplicial objects of 𝒞. Let 𝑎 ∶
𝑉 → 𝑈, 𝑏 ∶ 𝑊 → 𝑈 be morphisms. Assume the fibre products 𝑉𝑛 ×𝑈𝑛

𝑊𝑛 exist in 𝒞. The
fibre product of 𝑉 and 𝑊 over 𝑈 is the simplicial object 𝑉 ×𝑈 𝑊 defined as follows:

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=016M
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=016N
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=016O
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=016Q
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=016R
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=016T


14.9. PRODUCTS OF COSIMPLICIAL OBJECTS 933

(1) (𝑉 ×𝑈 𝑊)𝑛 = 𝑉𝑛 ×𝑈𝑛
𝑊𝑛,

(2) 𝑑𝑛
𝑖 = (𝑑𝑛

𝑖 , 𝑑𝑛
𝑖 ), and

(3) 𝑠𝑛
𝑖 = (𝑠𝑛

𝑖 , 𝑠𝑛
𝑖 ).

In other words, 𝑉 ×𝑈 𝑊 is the fibre product of the presheaves 𝑉 and 𝑊 over the presheaf 𝑈
on Δ.

Lemma 14.7.2. If 𝑈, 𝑉, 𝑊 are simplicial objects in the category 𝒞, and if 𝑎 ∶ 𝑉 → 𝑈,
𝑏 ∶ 𝑊 → 𝑈 are morphisms and if 𝑉 ×𝑈 𝑊 exists, then we have

𝑀𝑜𝑟(𝑇, 𝑉 ×𝑈 𝑉) = 𝑀𝑜𝑟(𝑇, 𝑉) ×𝑀𝑜𝑟(𝑇,𝑈) 𝑀𝑜𝑟(𝑇, 𝑊)

for any fourth simplicial object 𝑇 of 𝒞.

Proof. Omitted. �

14.8. Push outs of simplicial objects

Of course we should define the push out of simplicial objects as the push out in the category
of simplicial objects. This may lead to the potentially confusing situation where the push
outs exist but are not as described below. To avoid this we define the push out directly as
follows.

Definition 14.8.1. Let 𝒞 be a category. Let 𝑈, 𝑉, 𝑊 be simplicial objects of 𝒞. Let 𝑎 ∶
𝑈 → 𝑉, 𝑏 ∶ 𝑈 → 𝑊 be morphisms. Assume the psuh outs 𝑉𝑛 ⨿𝑈𝑛

𝑊𝑛 exist in 𝒞. The push
out of 𝑉 and 𝑊 over 𝑈 is the simplicial object 𝑉 ⨿𝑈 𝑊 defined as follows:

(1) (𝑉 ⨿𝑈 𝑊)𝑛 = 𝑉𝑛 ⨿𝑈𝑛
𝑊𝑛,

(2) 𝑑𝑛
𝑖 = (𝑑𝑛

𝑖 , 𝑑𝑛
𝑖 ), and

(3) 𝑠𝑛
𝑖 = (𝑠𝑛

𝑖 , 𝑠𝑛
𝑖 ).

In other words, 𝑉 ⨿𝑈 𝑊 is the push out of the presheaves 𝑉 and 𝑊 over the presheaf 𝑈 on
Δ.

Lemma 14.8.2. If 𝑈, 𝑉, 𝑊 are simplicial objects in the category 𝒞, and if 𝑎 ∶ 𝑈 → 𝑉,
𝑏 ∶ 𝑈 → 𝑊 are morphisms and if 𝑉 ⨿𝑈 𝑊 exists, then we have

𝑀𝑜𝑟(𝑉 ⨿𝑈 𝑊, 𝑇) = 𝑀𝑜𝑟(𝑉, 𝑇) ×𝑀𝑜𝑟(𝑈,𝑇) 𝑀𝑜𝑟(𝑊, 𝑇)

for any fourth simplicial object 𝑇 of 𝒞.

Proof. Omitted. �

14.9. Products of cosimplicial objects

Of course we should define the product of cosimplicial objects as the product in the category
of cosimplicial objects. This may lead to the potentially confusing situation where the
product exists but is not described as below. To avoid this we define the product directly as
follows.

Definition 14.9.1. Let 𝒞 be a category. Let 𝑈 and 𝑉 be cosimplicial objects of 𝒞. Assume
the products 𝑈𝑛 × 𝑉𝑛 exist in 𝒞. The product of 𝑈 and 𝑉 is the cosimplicial object 𝑈 × 𝑉
defined as follows:

(1) (𝑈 × 𝑉)𝑛 = 𝑈𝑛 × 𝑉𝑛,
(2) for any 𝜑 ∶ [𝑛] → [𝑚] the map (𝑈 × 𝑉)(𝜑) ∶ 𝑈𝑛 × 𝑉𝑛 → 𝑈𝑚 × 𝑉𝑚 is the product

𝑈(𝜑) × 𝑉(𝜑).
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Lemma 14.9.2. If 𝑈 and 𝑉 are cosimplicial objects in the category 𝒞, and if 𝑈 × 𝑉 exists,
then we have

𝑀𝑜𝑟(𝑊, 𝑈 × 𝑉) = 𝑀𝑜𝑟(𝑊, 𝑈) × 𝑀𝑜𝑟(𝑊, 𝑉)
for any third cosimplicial object 𝑊 of 𝒞.

Proof. Omitted. �

14.10. Fibre products of cosimplicial objects

Of course we should define the fibre product of cosimplicial objects as the fibre product in
the category of cosimplicial objects. This may lead to the potentially confusing situation
where the product exists but is not described as below. To avoid this we define the fibre
product directly as follows.

Definition 14.10.1. Let 𝒞 be a category. Let 𝑈, 𝑉, 𝑊 be cosimplicial objects of 𝒞. Let
𝑎 ∶ 𝑉 → 𝑈 and 𝑏 ∶ 𝑊 → 𝑈 be morphisms. Assume the fibre products 𝑉𝑛 ×𝑈𝑛

𝑊𝑛 exist
in 𝒞. The fibre product of 𝑉 and 𝑊 over 𝑈 is the cosimplicial object 𝑉 ×𝑈 𝑊 defined as
follows:

(1) (𝑉 ×𝑈 𝑊)𝑛 = 𝑉𝑛 ×𝑈𝑛
𝑊𝑛,

(2) for any 𝜑 ∶ [𝑛] → [𝑚] the map (𝑉 ×𝑈 𝑊)(𝜑) ∶ 𝑉𝑛 ×𝑈𝑛
𝑊𝑛 → 𝑉𝑚 ×𝑈𝑚

𝑊𝑚 is the
product 𝑉(𝜑) ×𝑈(𝜑) 𝑊(𝜑).

Lemma 14.10.2. If 𝑈, 𝑉, 𝑊 are cosimplicial objects in the category 𝒞, and if 𝑎 ∶ 𝑉 → 𝑈,
𝑏 ∶ 𝑊 → 𝑈 are morphisms and if 𝑉 ×𝑈 𝑊 exists, then we have

𝑀𝑜𝑟(𝑇, 𝑉 ×𝑈 𝑊) = 𝑀𝑜𝑟(𝑇, 𝑉) ×𝑀𝑜𝑟(𝑇,𝑈) 𝑀𝑜𝑟(𝑇, 𝑊)
for any fourth cosimplicial object 𝑇 of 𝒞.

Proof. Omitted. �

14.11. Simplicial sets

Let 𝑈 be a simplical set. It is a good idea to think of 𝑈0 as the 0-simplices, the set 𝑈1 as
the 1-simplices, the set 𝑈2 as the 2-simplices, and so on.
We think of the maps 𝑠𝑛

𝑗 ∶ 𝑈𝑛 → 𝑈𝑛+1 as the map that associates to an 𝑛-simplex 𝐴 the
degenerate (𝑛 + 1)-simplex 𝐵 whose (𝑗, 𝑗 + 1)-edge is collapsed to the vertex 𝑗 of 𝐴. We
think of the map 𝑑𝑛

𝑗 ∶ 𝑈𝑛 → 𝑈𝑛−1 as the map that associates to an 𝑛-simplex 𝐴 one of the
faces, namely the face that omits the vertex 𝑗. In this way it become possible to visualize
the relations among the maps 𝑠𝑛

𝑗 and 𝑑𝑛
𝑗 geometrically.

Definition 14.11.1. Let 𝑈 be a simplicial set. We say 𝑥 is an 𝑛-simplex of 𝑈 to signify
that 𝑥 is an element of 𝑈𝑛. We say that 𝑦 is the 𝑗the face of 𝑥 to signify that 𝑑𝑛

𝑗 𝑥 = 𝑦. We
say that 𝑧 is the 𝑗th degeneracy of 𝑥 if 𝑧 = 𝑠𝑛

𝑗 𝑥. A simplex is called degenerate if it is the
degeneracy of another simplex.

Here are a few fundamental examples.

Example 14.11.2. For every 𝑛 ≥ 0 we denote Δ[𝑛] the simplicial set
Δ𝑜𝑝𝑝 ⟶ Sets

[𝑘] ⟼ 𝑀𝑜𝑟Δ([𝑘], [𝑛])
We leave it to the reader to verify the following statements. Every 𝑚-simplex of Δ[𝑛] with
𝑚 > 𝑛 is degenerate. There is a unique nondegenerate 𝑛-simplex of Δ[𝑛], namely id[𝑛].
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Lemma 14.11.3. Let 𝑈 be a simplicial set. Let 𝑛 ≥ 0 be an integer. There is a canonical
bijection

𝑀𝑜𝑟(Δ[𝑛], 𝑈) ⟶ 𝑈𝑛

which maps a morphism 𝜑 to the value of 𝜑 on the unique nondegenerate 𝑛-simplex of Δ[𝑛].

Proof. Omitted. �

Example 14.11.4. Consider the category Δ/[𝑛] of objects over [𝑛] in Δ, see Categories,
Example 4.2.13. There is a functor 𝑝 ∶ Δ/[𝑛] → Δ. The fibre category of 𝑝 over [𝑘],
see Categories, Section 4.32, has as objects the set Δ[𝑛]𝑘 of 𝑘-simplices in Δ[𝑛], and as
morphisms only identities. For every morphism 𝜑 ∶ [𝑘] → [𝑙] of Δ, and every object
𝜓 ∶ [𝑙] → [𝑛] in the fibre category over [𝑙] there is a unique object over [𝑘] with a morphism
covering 𝜑, namely 𝜓 ∘ 𝜑 ∶ [𝑘] → [𝑛]. Thus Δ/[𝑛] is fibred in sets over Δ. In other words,
we may think of Δ/[𝑛] as a presheaf of sets over Δ. See also, Categories, Example 4.35.7.
And this presheaf of sets agrees with the simplicial set Δ[𝑛]. In particular, from Equation
(14.4.0.1) and Lemma 14.11.3 above we get the formula

𝑀𝑜𝑟PSh(Δ)(Δ/[𝑛], 𝑈) = 𝑈𝑛

for any simplicial set 𝑈.

Lemma 14.11.5. Let 𝑈, 𝑉 be simplicial sets. Let 𝑎, 𝑏 ≥ 0 be integers. Assume every
𝑛-simplex of 𝑈 is degenerate if 𝑛 > 𝑎. Assume every 𝑛-simplex of 𝑉 is degenerate if 𝑛 > 𝑏.
Then every 𝑛-simplex of 𝑈 × 𝑉 is degenerate if 𝑛 > 𝑎 + 𝑏.

Proof. Suppose 𝑛 > 𝑎 + 𝑏. Let (𝑢, 𝑣) ∈ (𝑈 × 𝑉)𝑛 = 𝑈𝑛 × 𝑉𝑛. By assumption, there exists a
𝛼 ∶ [𝑛] → [𝑎] and a 𝑢′ ∈ 𝑈𝑎 and a 𝛽 ∶ [𝑛] → [𝑏] and a 𝑣′ ∈ 𝑉𝑏 such that 𝑢 = 𝑈(𝛼)(𝑢′) and
𝑣 = 𝑉(𝛽)(𝑣′). Because 𝑛 > 𝑎 + 𝑏, there exists an 0 ≤ 𝑖 ≤ 𝑎 + 𝑏 such that 𝛼(𝑖) = 𝛼(𝑖 + 1) and
𝛽(𝑖) = 𝛽(𝑖 + 1). It follows immediately that (𝑢, 𝑣) is in the image of 𝑠𝑛−1

𝑖 . �

14.12. Products with simplicial sets

Let 𝒞 be a category. Let 𝑈 be a simplicial set. Let 𝑉 be a simplicial object of 𝒞. We can
consider the covariant functor which associates to a simplicial object 𝑊 of 𝒞 the set

(14.12.0.1) {(𝑓𝑛,𝑢 ∶ 𝑉𝑛 → 𝑊𝑛)𝑛≥0,𝑢∈𝑈𝑛
such that ∀𝜑 ∶ [𝑚] → [𝑛]

𝑓𝑚,𝜑(𝑢) ∘ 𝑉(𝜑) = 𝑊(𝜑) ∘ 𝑓𝑛,𝑢}

If this functor is of the form 𝑀𝑜𝑟Simp(𝒞)(𝑄, −) then we can think of 𝑄 as the product of 𝑈
with 𝑉. Instead of formalizing this in this way we just directly define the product as follows.

Definition 14.12.1. Let 𝒞 be a category such that the coproduct of any two objects of 𝒞
exists. Let 𝑈 be a simplicial set. Let 𝑉 be a simplicial object of 𝒞. Assume that each 𝑈𝑛 is
finite nonempty. In this case we define the product 𝑈 × 𝑉 of 𝑈 and 𝑉 to be the simplicial
object of 𝒞 whose 𝑛th term is the object

(𝑈 × 𝑉)𝑛 = ∐𝑢∈𝑈𝑛
𝑉𝑛

with maps for 𝜑 ∶ [𝑚] → [𝑛] given by the morphism

∐𝑢∈𝑈𝑛
𝑉𝑛 ⟶ ∐𝑢′∈𝑈𝑚

𝑉𝑚

which maps the component 𝑉𝑛 corresponding to 𝑢 to the component 𝑉𝑚 corresponding to
𝑢′ = 𝑈(𝜑)(𝑢) via the morphism 𝑉(𝜑). More loosely, if all of the coproducts displayed above
exist (without assuming anything about 𝒞) we will say that the product 𝑈 × 𝑉 exists.
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Lemma 14.12.2. Let 𝒞 be a category such that the coproduct of any two objects of 𝒞 exists.
Let 𝑈 be a simplicial set. Let 𝑉 be a simplicial object of 𝒞. Assume that each 𝑈𝑛 is finite
nonempty. The functor 𝑊 ↦ 𝑀𝑜𝑟Simp(𝒞)(𝑈×𝑉, 𝑊) is canonically isomorphic to the functor
which maps 𝑊 to the set in Equation (14.12.0.1).

Proof. Omitted. �

Lemma 14.12.3. Let 𝒞 be a category such that the coproduct of any two objects of 𝒞 exists.
Let us temporarily denote FSSets the category of simplicial sets all of whose components
are finite nonempty.

(1) The rule (𝑈, 𝑉) ↦ 𝑈 × 𝑉 defines a functor FSSets × Simp(𝒞) → Simp(𝒞).
(2) For every 𝑈, 𝑉 as above there is a canonical map of simplicial objects

𝑈 × 𝑉 ⟶ 𝑉

defined by taking the identity on each component of (𝑈 × 𝑉)𝑛 = ∐𝑢 𝑉𝑛.

Proof. Omitted. �

We briefly study a special case of the construction above. Let 𝒞 be a category. Let 𝑋 be an
object of 𝒞. Let 𝑘 ≥ 0 be an integer. If all coproducts 𝑋 ∐ … ∐ 𝑋 exist then according to
the definition above the product

𝑋 × Δ[𝑘]
exists, where we think of 𝑋 as the corresponding constant simplicial object.

Lemma 14.12.4. With 𝑋 and 𝑘 as above. For any simplicial object 𝑉 of 𝒞 we have the
following canonical bijection

𝑀𝑜𝑟Simp(𝒞)(𝑋 × Δ[𝑘], 𝑉) ⟶ 𝑀𝑜𝑟𝒞(𝑋, 𝑉𝑘).

wich maps 𝛾 to the restriction of the morphism 𝛾𝑘 to the component corresponding to id[𝑘].
Similarly, for any 𝑛 ≥ 𝑘, if 𝑊 is an 𝑛-truncated simplicial object of 𝒞, then we have

𝑀𝑜𝑟Simp𝑛(𝒞)(sk𝑛(𝑋 × Δ[𝑘]), 𝑊) = 𝑀𝑜𝑟𝒞(𝑋, 𝑊𝑘).

Proof. A morphism 𝛾 ∶ 𝑋 × Δ[𝑘] → 𝑉 is given by a family of morphisms 𝛾𝛼 ∶ 𝑋 → 𝑉𝑛
where 𝛼 ∶ [𝑛] → [𝑘]. The morphisms have to satisfy the rules that for all 𝜑 ∶ [𝑚] → [𝑛]
the diagrams

𝑋
𝛾𝛼 //

id𝑋
��

𝑉𝑛

𝑉(𝜑)
��

𝑋
𝛾𝛼∘𝜑 // 𝑉𝑚

commute. Taking 𝛼 = id[𝑘], we see that for any 𝜑 ∶ [𝑚] → [𝑘] we have 𝛾𝜑 = 𝑉(𝜑) ∘ 𝛾id[𝑘]
.

Thus the morphism 𝛾 is determined by the value of 𝛾 on the component corresponding to
id[𝑘]. Conversely, given such a morphism 𝑓 ∶ 𝑋 → 𝑉𝑘 we easily construct a morphism 𝛾
by putting 𝛾𝛼 = 𝑉(𝛼) ∘ 𝑓.

The truncated case is similar, and left to the reader. �

A particular example of this is the case 𝑘 = 0. In this case the formula of the lemma just
says that

𝑀𝑜𝑟𝒞(𝑋, 𝑉0) = 𝑀𝑜𝑟Simp(𝒞)(𝑋, 𝑉)
where on the right hand side 𝑋 indicates the constant simplicial object with value 𝑋. We
will use this formula without further mention in the following.
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14.13. Hom from simplicial sets into cosimplicial objects

Let 𝒞 be a category. Let 𝑈 be a simplicial object of 𝒞, and let 𝑉 be a cosimplicial object of
𝒞. Then we get a cosimplicial set 𝐻𝑜𝑚𝒞(𝑈, 𝑉) as follows:

(1) we set 𝐻𝑜𝑚𝒞(𝑈, 𝑉)𝑛 = 𝑀𝑜𝑟𝒞(𝑈𝑛, 𝑉𝑛), and
(2) for 𝜑 ∶ [𝑚] → [𝑛] we take the map 𝐻𝑜𝑚𝒞(𝑈, 𝑉)𝑚 → 𝐻𝑜𝑚𝒞(𝑈, 𝑉)𝑛 given by

𝑓 ↦ 𝑉(𝜑) ∘ 𝑓 ∘ 𝑈(𝜑).
This is our motivation for the following definition.

Definition 14.13.1. Let 𝒞 be a category with finite products. Let 𝑉 be a cosimplicial object
of 𝒞. Let 𝑈 be a simplicial set such that each 𝑈𝑛 is finite nonempty. We define 𝐻𝑜𝑚(𝑈, 𝑉)
to be the cosimplicial object of 𝒞 defined as follows:

(1) we set 𝐻𝑜𝑚(𝑈, 𝑉)𝑛 = ∏𝑢∈𝑈𝑛
𝑉𝑛, in other words the unique object of 𝒞 such that

its 𝑋-valued points satisfy

𝑀𝑜𝑟𝒞(𝑋, 𝐻𝑜𝑚(𝑈, 𝑉)𝑛) = Map(𝑈𝑛, 𝑀𝑜𝑟𝒞(𝑋, 𝑉𝑛))

and
(2) for 𝜑 ∶ [𝑚] → [𝑛] we take the map 𝐻𝑜𝑚(𝑈, 𝑉)𝑚 → 𝐻𝑜𝑚(𝑈, 𝑉)𝑛 given by 𝑓 ↦

𝑉(𝜑) ∘ 𝑓 ∘ 𝑈(𝜑) on 𝑋-valued points as above.

We leave it to the reader to spell out the definition in terms of maps between products. We
also point out that the construction is functorial in both 𝑈 (contravariantly) and 𝑉 (covari-
antly), exactly as in Lemma 14.12.3 in the case of products of simplicial sets with simplicial
objects.

14.14. Internal Hom

Let 𝒞 be a category with finite nonempty products. Let 𝑈, 𝑉 be simplicial objects 𝒞. In
some cases the functor

Simp(𝒞)𝑜𝑝𝑝 ⟶ Sets
𝑊 ⟼ 𝑀𝑜𝑟Simp(𝒞)(𝑊 × 𝑉, 𝑈)

is representable. In this case we denote ℋ𝑜𝑚(𝑉, 𝑈) the resulting simplicial object of 𝒞, and
we say that the internal hom of 𝑉 into 𝑈 exists. Moreover, in this case we would have

𝑀𝑜𝑟𝒞(𝑋, ℋ𝑜𝑚(𝑉, 𝑈)𝑛) = 𝑀𝑜𝑟Simp(𝒞)(𝑋 × Δ[𝑛], ℋ𝑜𝑚(𝑉, 𝑈))
= 𝑀𝑜𝑟Simp(𝒞)(𝑋 × Δ[𝑛] × 𝑉, 𝑈)
= 𝑀𝑜𝑟Simp(𝒞)(𝑋, ℋ𝑜𝑚(Δ[𝑛] × 𝑉, 𝑈))
= 𝑀𝑜𝑟𝒞(𝑋, ℋ𝑜𝑚(Δ[𝑛] × 𝑉, 𝑈)0)

provided that ℋ𝑜𝑚(Δ[𝑛] × 𝑉, 𝑈) exists also. Here we have used the material from Section
14.12.

The lesson we learn from this is that, given 𝑈 and 𝑉, if we want to construct the internal
hom then we should try to construct the objects

ℋ𝑜𝑚(Δ[𝑛] × 𝑉, 𝑈)0

because these should be the 𝑛th term of ℋ𝑜𝑚(𝑉, 𝑈). In the next section we study a construc-
tion of simplicial objects ``𝐻𝑜𝑚(Δ[𝑛], 𝑈)''.
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14.15. Hom from simplicial sets into simplicial objects

Motivated by the discussion on internal hom we define what should be the simplicial object
classifying morphisms from a simplicial set into a given simplicial object of the category
𝒞.
Definition 14.15.1. Let 𝒞 be a category such that the coproduct of any two objects exists.
Let 𝑈 be a simplicial set, with 𝑈𝑛 finite nonempty for all 𝑛 ≥ 0. Let 𝑉 be a simplicial object
of 𝒞. We denote 𝐻𝑜𝑚(𝑈, 𝑉) any simplicial object of 𝒞 such that

𝑀𝑜𝑟Simp(𝒞)(𝑊, 𝐻𝑜𝑚(𝑈, 𝑉)) = 𝑀𝑜𝑟Simp(𝒞)(𝑊 × 𝑈, 𝑉)
functorially in the simplicial object 𝑊 of 𝒞.
Of course 𝐻𝑜𝑚(𝑈, 𝑉) need not exist. Also, by the discussion in Section 14.14 we expect that
if it does exist, then 𝐻𝑜𝑚(𝑈, 𝑉)𝑛 = 𝐻𝑜𝑚(𝑈 × Δ[𝑛], 𝑉)0. We do not use the italic notation
for these Hom objects since 𝐻𝑜𝑚(𝑈, 𝑉) is not an internal hom.
Lemma 14.15.2. Assume the category 𝒞 has coproducts of any two objects and countable
limits. Let 𝑈 be a simplicial set, with 𝑈𝑛 finite nonempty for all 𝑛 ≥ 0. Let 𝑉 be a simplicial
object of 𝒞. Then the functor

𝒞𝑜𝑝𝑝 ⟶ Sets
𝑋 ⟼ 𝑀𝑜𝑟Simp(𝒞)(𝑋 × 𝑈, 𝑉)

is representable.

Proof. Amorphism from 𝑋 × 𝑈 into 𝑉 is given by a collection of morphisms 𝑓𝑢 ∶ 𝑋 → 𝑉𝑛
with 𝑛 ≥ 0 and 𝑢 ∈ 𝑈𝑛. And such a collection actually defines a morphism if and only if
for all 𝜑 ∶ [𝑚] → [𝑛] all the diagrams

𝑋
𝑓𝑢 //

id𝑋
��

𝑉𝑛

𝑉(𝜑)
��

𝑋
𝑓𝑈(𝜑)(𝑢)// 𝑉𝑚

commute. Thus it is natural to introduce a category 𝒰 and a functor 𝒱 ∶ 𝒰𝑜𝑝𝑝 → 𝒞 as
follows:

(1) The set of objects of 𝒰 is ∐𝑛≥0 𝑈𝑛,
(2) a morphism from 𝑢′ ∈ 𝑈𝑚 to 𝑢 ∈ 𝑈𝑛 is a 𝜑 ∶ [𝑚] → [𝑛] such that 𝑈(𝜑)(𝑢) = 𝑢′

(3) for 𝑢 ∈ 𝑈𝑛 we set 𝒱(𝑢) = 𝑉𝑛, and
(4) for 𝜑 ∶ [𝑚] → [𝑛] such that 𝑈(𝜑)(𝑢) = 𝑢′ we set 𝒱(𝜑) = 𝑉(𝜑) ∶ 𝑉𝑛 → 𝑉𝑚.

At this point it is clear that our functor is nothing but the functor defining
𝑙𝑖𝑚𝒰𝑜𝑝𝑝 𝒱

Thus if 𝒞 has countable limits then this limit and hence an object representing the functor
of the lemma exist. �

Lemma 14.15.3. Assume the category𝒞 has coproducts of any two objects and finite limits.
Let 𝑈 be a simplicial set, with 𝑈𝑛 finite nonempty for all 𝑛 ≥ 0. Assume that all 𝑛-simplices
of 𝑈 are degenerate for all 𝑛 ≫ 0. Let 𝑉 be a simplicial object of 𝒞. Then the functor

𝒞𝑜𝑝𝑝 ⟶ Sets
𝑋 ⟼ 𝑀𝑜𝑟Simp(𝒞)(𝑋 × 𝑈, 𝑉)

is representable.
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Proof. We have to show that the category 𝒰 described in the proof of Lemma 14.15.2 has
a finite subcategory 𝒰′ such that the limit of 𝒱 over 𝒰′ is the same as the limit of 𝒱 over
𝒰. We will use Categories, Lemma 4.15.4. For 𝑚 > 0 let 𝒰≤𝑚 denote the full subcategory
with objects ∐0≤𝑛≤𝑚 𝑈𝑚. Let 𝑚0 be an integer such that every 𝑛-simplex of the simplicial
set 𝑈 is degenerate if 𝑛 > 𝑚0. For any 𝑚 ≥ 𝑚0 large enough, the subcategory 𝒰≤𝑚 satisfies
property (1) of the lemma cited above.
Suppose that 𝑢 ∈ 𝑈𝑛 and 𝑢′ ∈ 𝑈𝑛′ with 𝑛, 𝑛′ ≤ 𝑚0 and suppose that 𝜑 ∶ [𝑘] → [𝑛],
𝜑′ ∶ [𝑘] → [𝑛′] are morphisms such that 𝑈(𝜑)(𝑢) = 𝑈(𝜑′)(𝑢′). A simple combinatorial
argument shows that if 𝑘 > 2𝑚0, then there exists an index 0 ≤ 𝑖 ≤ 2𝑚0 such that 𝜑(𝑖) =
𝜑(𝑖 + 1) and 𝜑′(𝑖) = 𝜑′(𝑖 + 1). (The pidgeon hole principle would tell you this works
if 𝑘 > 𝑚2

0 which is good enough for the argument below anyways.) Hence, if 𝑘 > 2𝑚0,
we may write 𝜑 = 𝜓 ∘ 𝜎𝑘−1

𝑖 and 𝜑′ = 𝜓′ ∘ 𝜎𝑘−1
𝑖 for some 𝜓 ∶ [𝑘 − 1] → [𝑛] and some

𝜓′ ∶ [𝑘 − 1] → [𝑛′]. Since 𝑠𝑘−1
𝑖 ∶ 𝑈𝑘−1 → 𝑈𝑘 is injective, see Lemma 14.3.6, we

conclude that 𝑈(𝜓)(𝑢) = 𝑈(𝜓′)(𝑢′) also. Continuing in this fashion we conclude that given
morphisms 𝑢 → 𝑧 and 𝑢′ → 𝑧 of 𝒰 with 𝑢, 𝑢′ ∈ 𝒰≤𝑚0

, there exists a commutative diagram

𝑢

  ''𝑎 // 𝑧

𝑢′

?? 77

with 𝑎 ∈ 𝒰≤2𝑚0
.

It is easy to deduce from this that the finite subcategory 𝒰≤2𝑚0
works. Namely, suppose

given 𝑥′ ∈ 𝑈𝑛 and 𝑥″ ∈ 𝑈𝑛′ with 𝑛, 𝑛′ ≤ 2𝑚0 as well as morphisms 𝑥′ → 𝑥 and 𝑥″ → 𝑥
of 𝒰 with the same target. By our choice of 𝑚0 we can find objects 𝑢, 𝑢′ of 𝒰≤𝑚0

and
morphisms 𝑢 → 𝑥′, 𝑢′ → 𝑥″. By the above we can find 𝑎 ∈ 𝒰≤2𝑚0

and morphisms 𝑢 → 𝑎,
𝑢′ → 𝑎 such that

𝑢

  ((

// 𝑥′

  
𝑎 // 𝑥

𝑢′

>> 66

// 𝑥″

>>

is commutative. Turning this diagram 90 degrees clockwise we get the desired diagram as
in (2) of the cited lemma. �

Lemma 14.15.4. Assume the category𝒞 has coproducts of any two objects and finite limits.
Let 𝑈 be a simplicial set, with 𝑈𝑛 finite nonempty for all 𝑛 ≥ 0. Assume that all 𝑛-simplices
of 𝑈 are degenerate for all 𝑛 ≫ 0. Let 𝑉 be a simplicial object of 𝒞. Then 𝐻𝑜𝑚(𝑈, 𝑉) exists,
moreover we have the expected equalities

𝐻𝑜𝑚(𝑈, 𝑉)𝑛 = 𝐻𝑜𝑚(𝑈 × Δ[𝑛], 𝑉)0.

Proof. We construct this simplicial object as follows. For 𝑛 ≥ 0 let 𝐻𝑜𝑚(𝑈, 𝑉)𝑛 denote the
object of 𝒞 representing the functor

𝑋 ⟼ 𝑀𝑜𝑟Simp(𝒞)(𝑋 × 𝑈 × Δ[𝑛], 𝑉)
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This exists by Lemma 14.15.3 because 𝑈 × Δ[𝑛] is a simplicial set with finite sets of sim-
plices and no nondegenerate simplices in high enough degree, see Lemma 14.11.5. For
𝜑 ∶ [𝑚] → [𝑛] we obtain an induced map of simplicial sets 𝜑 ∶ Δ[𝑚] → Δ[𝑛]. Hence we
obtain a morphism 𝑋×𝑈×Δ[𝑚] → 𝑋×𝑈×Δ[𝑛] functorial in 𝑋, and hence a transformation
of functors, which in turn gives

𝐻𝑜𝑚(𝑈, 𝑉)(𝜑) ∶ 𝐻𝑜𝑚(𝑈, 𝑉)𝑛 ⟶ 𝐻𝑜𝑚(𝑈, 𝑉)𝑚.

Clearly this defines a contravariant functor 𝐻𝑜𝑚(𝑈, 𝑉) from Δ into the category 𝒞. In other
words, we have a simplicial object of 𝒞.

We have to show that 𝐻𝑜𝑚(𝑈, 𝑉) satisfies the desired universal property

𝑀𝑜𝑟Simp(𝒞)(𝑊, 𝐻𝑜𝑚(𝑈, 𝑉)) = 𝑀𝑜𝑟Simp(𝒞)(𝑊 × 𝑈, 𝑉)

To see this, let 𝑓 ∶ 𝑊 → 𝐻𝑜𝑚(𝑈, 𝑉) be given. We want to construct the element 𝑓′ ∶
𝑊 × 𝑈 → 𝑉 of the right hand side. By construction, each 𝑓𝑛 ∶ 𝑊𝑛 → 𝐻𝑜𝑚(𝑈, 𝑉)𝑛
corresponds to a morphism 𝑓𝑛 ∶ 𝑊𝑛 × 𝑈 × Δ[𝑛] → 𝑉. Further, for every morphism
𝜑 ∶ [𝑚] → [𝑛] the diagram

𝑊𝑛 × 𝑈 × Δ[𝑚]
𝑊(𝜑)×id×id

//

id×id×𝜑
��

𝑊𝑚 × 𝑈 × Δ[𝑚]

𝑓𝑚
��

𝑊𝑛 × 𝑈 × Δ[𝑛]
𝑓𝑛 // 𝑉

is commutative. For 𝜓 ∶ [𝑛] → [𝑘] in (Δ[𝑛])𝑘 we denote (𝑓𝑛)𝑘,𝜓 ∶ 𝑊𝑛 × 𝑈𝑘 → 𝑉𝑘 the
component of (𝑓𝑛)𝑘 corresponding to the element 𝜓. We define 𝑓′

𝑛 ∶ 𝑊𝑛 × 𝑈𝑛 → 𝑉𝑛 as
𝑓′

𝑛 = (𝑓𝑛)𝑛,id, in other words, as the restriction of (𝑓𝑛)𝑛 ∶ 𝑊𝑛 × 𝑈𝑛 × (Δ[𝑛])𝑛 → 𝑉𝑛 to
𝑊𝑛 ×𝑈𝑛 × id[𝑛]. To see that the collection (𝑓′

𝑛) defines a morphism of simplicial objects, we
have to show for any 𝜑 ∶ [𝑚] → [𝑛] that 𝑉(𝜑) ∘ 𝑓′

𝑛 = 𝑓′
𝑚 ∘ 𝑊(𝜑) × 𝑈(𝜑). The commutative

diagram above says that (𝑓𝑛)𝑚,𝜑 ∶ 𝑊𝑛 × 𝑈𝑚 → 𝑉𝑚 is equal to (𝑓𝑚)𝑚,id ∘ 𝑊(𝜑) ∶ 𝑊𝑛 × 𝑈𝑚 →
𝑉𝑚. But then the fact that 𝑓𝑛 is a morphism of simplicial objects implies that the diagram

𝑊𝑛 × 𝑈𝑛 × (Δ[𝑛])𝑛 (𝑓𝑛)𝑛

//

id×𝑈(𝜑)×𝜑
��

𝑉𝑛

𝑉(𝜑)
��

𝑊𝑛 × 𝑈𝑚 × (Δ[𝑛])𝑚
(𝑓𝑛)𝑚 // 𝑉𝑚

is commutative. And this implies that (𝑓𝑛)𝑚,𝜑 ∘ 𝑈(𝜑) is equal to 𝑉(𝜑) ∘ (𝑓𝑛)𝑛,id. Alltogether
we obtain 𝑉(𝜑)∘(𝑓𝑛)𝑛,id = (𝑓𝑛)𝑚,𝜑 ∘𝑈(𝜑) = (𝑓𝑚)𝑚,id ∘𝑊(𝜑)∘𝑈(𝜑) = (𝑓𝑚)𝑚,id ∘𝑊(𝜑)×𝑈(𝜑)
as desired.

On the other hand, given a morphism 𝑓′ ∶ 𝑊 × 𝑈 → 𝑉 we define a morphism 𝑓 ∶ 𝑊 →
𝐻𝑜𝑚(𝑈, 𝑉) as follows. By Lemma 14.12.4 the morphisms id ∶ 𝑊𝑛 → 𝑊𝑛 corresponds to a
unique morphism 𝑐𝑛 ∶ 𝑊𝑛 × Δ[𝑛] → 𝑊. Hence we can consider the composition

𝑊𝑛 × Δ[𝑛] × 𝑈
𝑐𝑛−−→ 𝑊 × 𝑈

𝑓′

−−→ 𝑉.

By construction this corresponds to a unique morphism 𝑓𝑛 ∶ 𝑊𝑛 → 𝐻𝑜𝑚(𝑈, 𝑉)𝑛. We leave
it to the reader to see that these define a morphism of simplicial sets as desired.

We also leave it to the reader to see that 𝑓 ↦ 𝑓′ and 𝑓′ ↦ 𝑓 are mutually inverse operations.
�



14.15. HOM FROM SIMPLICIAL SETS INTO SIMPLICIAL OBJECTS 941

We spell out the construction above in a special case. Let 𝑋 be an object of a category 𝒞.
Assume that self products 𝑋 × … × 𝑋 exist. Let 𝑘 be an integer. Consider the simplicial
object 𝑈 with terms

𝑈𝑛 = ∏𝛼∈𝑀𝑜𝑟([𝑘],[𝑛])
𝑋

and maps given 𝜑 ∶ [𝑚] → [𝑛]

𝑈(𝜑) ∶ ∏𝛼∈𝑀𝑜𝑟([𝑘],[𝑛])
𝑋 ⟶ ∏𝛼′∈𝑀𝑜𝑟([𝑘],[𝑚])

𝑋

(𝑓𝛼)𝛼 ⟼ (𝑓𝜑∘𝛼′)𝛼′

In terms of ``coordinates'', the element (𝑥𝛼)𝛼 is mapped to the element (𝑥𝜑∘𝛼′)𝛼′. We claim
this object is equal to

𝐻𝑜𝑚(Δ[𝑘], 𝑋)
where we think of 𝑋 as the constant simplicial object 𝑋.

Lemma 14.15.5. With 𝑋, 𝑘 and 𝑈 as above.
(1) For any simplicial object 𝑉 of 𝒞 we have the following canonical bijection

𝑀𝑜𝑟Simp(𝒞)(𝑉, 𝑈) ⟶ 𝑀𝑜𝑟𝒞(𝑉𝑘, 𝑋).

wich maps 𝛾 to the morphism 𝛾𝑘 composed with the projection onto the factor
corresponding to id[𝑘].

(2) Similarly, if 𝑊 is an 𝑘-truncated simplicial object of 𝒞, then we have

𝑀𝑜𝑟Simp𝑘(𝒞)(𝑊, sk𝑘𝑈) = 𝑀𝑜𝑟𝒞(𝑊𝑘, 𝑋).

(3) The object 𝑈 constructed above is an incarnation of 𝐻𝑜𝑚(Δ[𝑘], 𝑋).

Proof. We first prove (1). Suppose that 𝛾 ∶ 𝑉 → 𝑈 is a morphism. This is given by a
family of morphisms 𝛾𝛼 ∶ 𝑉𝑛 → 𝑋 for 𝛾 ∶ [𝑘] → [𝑛]. The morphisms have to satisfy the
rules that for all 𝜑 ∶ [𝑚] → [𝑛] the diagrams

𝑋

id𝑋
��

𝑉𝑛

𝑉(𝜑)
��

𝛾𝜑∘𝛼′
oo

𝑋 𝑉𝑚
𝛾𝛼′oo

commute for all 𝛼′ ∶ [𝑘] → [𝑚]. Taking 𝛼′ = id[𝑘], we see that for any 𝜑 ∶ [𝑘] → [𝑛]
we have 𝛾𝜑 = 𝛾id[𝑘]

∘ 𝑉(𝜑). Thus the morphism 𝛾 is determined by the component of 𝛾𝑘
corresponding to id[𝑘]. Conversely, given such a morphism 𝑓 ∶ 𝑉𝑘 → 𝑋 we easily construct
a morphism 𝛾 by putting 𝛾𝛼 = 𝑓 ∘ 𝑉(𝛼).

The truncated case is similar, and left to the reader.

To see (3) we argue as follows:

𝑀𝑜𝑟(𝑉, 𝐻𝑜𝑚(Δ[𝑘], 𝑋)) = 𝑀𝑜𝑟(𝑉 × Δ[𝑘], 𝑋)
= {(𝑓𝑛 ∶ 𝑉𝑛 × Δ[𝑘]𝑛 → 𝑋) ∣ 𝑓𝑛 compatible}

= {(𝑓𝑛 ∶ 𝑉𝑛 → ∏Δ[𝑘]𝑛
𝑋) ∣ 𝑓𝑛 compatible}

= 𝑀𝑜𝑟(𝑉, 𝑈)

Thus 𝑈 and 𝐻𝑜𝑚(Δ[𝑘], 𝑋) define the same functor on the category of simplicial objects
and hence are canonically isomorphic. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=017M
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Lemma 14.15.6. Assume the category𝒞 has coproducts of any two objects and finite limits.
Let 𝑎 ∶ 𝑈 → 𝑉, 𝑏 ∶ 𝑈 → 𝑊 be morphisms of simplicial sets. Assume 𝑈𝑛, 𝑉𝑛, 𝑊𝑛 finite
nonempty for all 𝑛 ≥ 0. Assume that all 𝑛-simplices of𝑈, 𝑉, 𝑊 are degenerate for all 𝑛 ≫ 0.
Let 𝑇 be a simplicial object of 𝒞. Then

𝐻𝑜𝑚(𝑉, 𝑇) ×𝐻𝑜𝑚(𝑈,𝑇) 𝐻𝑜𝑚(𝑊, 𝑇) = 𝐻𝑜𝑚(𝑉 ⨿𝑈 𝑊, 𝑇)
In other words, the fibre product on the left hand side is represented by the Hom object on
the right hand side.

Proof. By Lemma 14.15.4 all the required 𝐻𝑜𝑚 objects exist and satisfy the correct func-
torial properties. Now we can identify the 𝑛th term on the left hand side as the object repre-
senting the functor that associates to 𝑋 the first set of the following sequence of functorial
equalities

𝑀𝑜𝑟(𝑋 × Δ[𝑛], 𝐻𝑜𝑚(𝑉, 𝑇) ×𝐻𝑜𝑚(𝑈,𝑇) 𝐻𝑜𝑚(𝑊, 𝑇))
= 𝑀𝑜𝑟(𝑋 × Δ[𝑛], 𝐻𝑜𝑚(𝑉, 𝑇)) ×𝑀𝑜𝑟(𝑋×Δ[𝑛],𝐻𝑜𝑚(𝑈,𝑇)) 𝑀𝑜𝑟(𝑋 × Δ[𝑛], 𝐻𝑜𝑚(𝑊, 𝑇))
= 𝑀𝑜𝑟(𝑋 × Δ[𝑛] × 𝑉, 𝑇) ×𝑀𝑜𝑟(𝑋×Δ[𝑛]×𝑈,𝑇) 𝑀𝑜𝑟(𝑋 × Δ[𝑛] × 𝑊, 𝑇)
= 𝑀𝑜𝑟(𝑋 × Δ[𝑛] × (𝑉 ⨿𝑈 𝑊), 𝑇))

Here we have used the fact that
(𝑋 × Δ[𝑛] × 𝑉) ×𝑋×Δ[𝑛]×𝑈 (𝑋 × Δ[𝑛] × 𝑊) = 𝑋 × Δ[𝑛] × (𝑉 ⨿𝑈 𝑊)

which is easy to verify term by term. The result of the lemma follows as the last term in the
displayed sequence of equalities corresponds to 𝐻𝑜𝑚(𝑉 ⨿𝑈 𝑊, 𝑇)𝑛. �

14.16. Splitting simplicial objects

A subobject 𝑁 of an object 𝑋 of the category 𝒞 is an object 𝑁 of 𝒞 together with a
monomorphism 𝑁 → 𝑋. Of course we say (by abouse of notation) that the subobjects
𝑁, 𝑁′ are equal if there exists an isomorphism 𝑁 → 𝑁′ compatible with the morphisms to
𝑋. The collection of subobjects forms a partially ordered set. (Because of our conventions
on categories; not true for category of spaces up to homotopy for example.)
Definition 14.16.1. Let 𝒞 be a category which admits finite nonempty coproducts. We say
a simplicial object 𝑈 of 𝒞 is split if there exist subobjects 𝑁(𝑈𝑚) of 𝑈𝑚, 𝑚 ≥ 0 with the
property that

(14.16.1.1) ∐𝜑∶[𝑛]→[𝑚] surjective
𝑁(𝑈𝑚) ⟶ 𝑈𝑛

is an isomorphism for all 𝑛 ≥ 0.
If this is the case, then 𝑁(𝑈0) = 𝑈0. Next, we have 𝑈1 = 𝑈0 ∐ 𝑁(𝑈1). Second we have

𝑈2 = 𝑈0 ∐ 𝑁(𝑈1) ∐ 𝑁(𝑈1) ∐ 𝑁(𝑈2).

It turns out that in many categories 𝒞 every simplicial object is split.
Lemma 14.16.2. Let 𝑈 be a simplicial set. Then 𝑈 has a splitting with 𝑁(𝑈𝑚) equal to the
set of nondegenerate 𝑚-simplices.

Proof. Let 𝑥 ∈ 𝑈𝑛. Suppose that there are surjections 𝜑 ∶ [𝑛] → [𝑘] and 𝜓 ∶ [𝑛] → [𝑙]
and nondegenerate simplices 𝑦 ∈ 𝑈𝑘, 𝑧 ∈ 𝑈𝑙 such that 𝑥 = 𝑈(𝜑)(𝑦) and 𝑥 = 𝑈(𝜓)(𝑧).
Choose a right inverse 𝜉 ∶ [𝑙] → [𝑛] of 𝜓, i.e., 𝜓 ∘ 𝜉 = id[𝑙]. Then 𝑧 = 𝑈(𝜉)(𝑥). Hence
𝑧 = 𝑈(𝜉)(𝑥) = 𝑈(𝜑 ∘ 𝜉)(𝑦). Since 𝑧 is nondegenerate we conclude that 𝜑 ∘ 𝜉 ∶ [𝑙] → [𝑘] is
surjective, and hence 𝑙 ≥ 𝑘. Similarly 𝑘 ≥ 𝑙. Hence we see that 𝜑 ∘ 𝜉 ∶ [𝑙] → [𝑘] has to be
the identity map for any choice of right inverse 𝜉 of 𝜓. This easily implies that 𝜓 = 𝜑. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=017N
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=017P
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=017R
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Of course it can happen that a map of simplicial sets maps a nondegenerate 𝑛-simplex to
a degenerate 𝑛-simplex. Thus the splitting of Lemma 14.16.2 is not functorial. Here is a
case where it is functorial.

Lemma 14.16.3. Let 𝑓 ∶ 𝑈 → 𝑉 be a morphism of simplicial sets. Suppose that (a) the
image of every nondegenerate simplex of 𝑈 is a nondegerate simplex of 𝑉 and (b) no two
nondegenerate simplices of 𝑈 are mapped to the same simplex of 𝑉. Then 𝑓𝑛 is injective for
all 𝑛. Same holds with ``injective'' replaced by ``surjective'' or ``bijective''.

Proof. Under hypothesis (a) we see that the map 𝑓 preserves the disjoint union decompo-
sitions of the splitting of Lemma 14.16.2, in other words that we get commutative diagrams

∐𝜑∶[𝑛]→[𝑚] surjective 𝑁(𝑈𝑚) //

��

𝑈𝑛

��
∐𝜑∶[𝑛]→[𝑚] surjective 𝑁(𝑉𝑚) // 𝑉𝑛.

And then (b) clearly shows that the left vertical arrow is injective (resp. surjective, resp.
bijective). �

Lemma 14.16.4. Let 𝑈 be a simplicial set. Let 𝑛 ≥ 0 be an integer. The rule

𝑈′
𝑚 = ⋃𝜑∶[𝑚]→[𝑖], 𝑖≤𝑛

Im(𝑈(𝜑))

defines a sub simplicial set 𝑈′ ⊂ 𝑈 with 𝑈′
𝑖 = 𝑈𝑖 for 𝑖 ≤ 𝑛. Moreover, all 𝑚-simplices of

𝑈′ are degenerate for all 𝑚 > 𝑛.

Proof. If 𝑥 ∈ 𝑈𝑚 and 𝑥 = 𝑈(𝜑)(𝑦) for some 𝑦 ∈ 𝑈𝑖, 𝑖 ≤ 𝑛 and some 𝜑 ∶ [𝑚] → [𝑖] then
any image 𝑈(𝜓)(𝑥) for any 𝜓 ∶ [𝑚′] → [𝑚] is equal to 𝑈(𝜑 ∘ 𝜓)(𝑦) and 𝜑 ∘ 𝜓 ∶ [𝑚′] → [𝑖].
Hence 𝑈′ is a simplicial set. By construction all simplices in dimension 𝑛 + 1 and higher
are degenerate. �

Lemma 14.16.5. Let 𝑈 be a simplicial abelian group. Then 𝑈 has a splitting obtained by
taking 𝑁(𝑈0) = 𝑈0 and for 𝑚 ≥ 1 taking

𝑁(𝑈𝑚) = ⋂
𝑚−1
𝑖=0

Ker(𝑑𝑚
𝑖 ).

Moreover, this splitting is functorial on the category of simplicial abelian groups.

Proof. By induction on 𝑛 we will show that the choice of 𝑁(𝑈𝑚) in the lemma garantees
that (14.16.1.1) is an isomorphism for 𝑚 ≤ 𝑛. This is clear for 𝑛 = 0. In the rest of this
proof we are going to drop the superscripts from the maps 𝑑𝑖 and 𝑠𝑖 in order to improve
readability. We will also repeatedly use the relations from Remark 14.3.3.

First we make a general remark. For 0 ≤ 𝑖 ≤ 𝑚 and 𝑧 ∈ 𝑈𝑚 we have 𝑑𝑖(𝑠𝑖(𝑧)) = 𝑧. Hence
we can write any 𝑥 ∈ 𝑈𝑚+1 uniquely as 𝑥 = 𝑥′ + 𝑥″ with 𝑑𝑖(𝑥′) = 0 and 𝑥″ ∈ Im(𝑠𝑖) by
taking 𝑥′ = (𝑥 − 𝑠𝑖(𝑑𝑖(𝑥))) and 𝑥″ = 𝑠𝑖(𝑑𝑖(𝑥)). Moreover, the element 𝑧 ∈ 𝑈𝑚 such that
𝑥″ = 𝑠𝑖(𝑧) is unique because 𝑠𝑖 is injective.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=017S
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=017T
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=017U
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Here is a procedure for decomposing any 𝑥 ∈ 𝑈𝑛+1. First, write 𝑥 = 𝑥0 + 𝑠0(𝑧0) with
𝑑0(𝑥0) = 0. Next, write 𝑥0 = 𝑥1 + 𝑠1(𝑧1) with 𝑑𝑛(𝑥1) = 0. Continue like this to get

𝑥 = 𝑥0 + 𝑠0(𝑧0),
𝑥0 = 𝑥1 + 𝑠1(𝑧1),
𝑥1 = 𝑥2 + 𝑠2(𝑧2),
… … …

𝑥𝑛−1 = 𝑥𝑛 + 𝑠𝑛(𝑧𝑛)

where 𝑑𝑖(𝑥𝑖) = 0 for all 𝑖 = 𝑛, … , 0. By our general remark above all of the 𝑥𝑖 and 𝑧𝑖 are
determined uniquely by 𝑥. We claim that 𝑥𝑖 ∈ Ker(𝑑0) ∩ Ker(𝑑1) ∩ … ∩ Ker(𝑑𝑖) and 𝑧𝑖 ∈
Ker(𝑑0) ∩ … ∩ Ker(𝑑𝑖−1) for 𝑖 = 𝑛, … , 0. Here and in the following an empty intersection
of kernels indicates the whole space; i.e., the notation 𝑧0 ∈ Ker(𝑑0) ∩ … ∩ Ker(𝑑𝑖−1) when
𝑖 = 0 means 𝑧0 ∈ 𝑈𝑛 with no restriction.

We prove this by ascending induction on 𝑖. It is clear for 𝑖 = 0 by construction of 𝑥0 and
𝑧0. Let us prove it for 0 < 𝑖 ≤ 𝑛 assuming the result for 𝑖 − 1. First of all we have 𝑑𝑖(𝑥𝑖) = 0
by construction. So pick a 𝑗 with 0 ≤ 𝑗 < 𝑖. We have 𝑑𝑗(𝑥𝑖−1) = 0 by induction. Hence

0 = 𝑑𝑗(𝑥𝑖−1) = 𝑑𝑗(𝑥𝑖) + 𝑑𝑗(𝑠𝑖(𝑧𝑖)) = 𝑑𝑗(𝑥𝑖) + 𝑠𝑖−1(𝑑𝑗(𝑧𝑖)).

The last equality by the relations of Remark 14.3.3. These relations also imply that 𝑑𝑖−1(𝑑𝑗(𝑥𝑖)) =
𝑑𝑗(𝑑𝑖(𝑥𝑖)) = 0 because 𝑑𝑖(𝑥𝑖) = 0 by construction. Then the uniqueness in the general re-
mark above shows the equality 0 = 𝑥′ + 𝑥″ = 𝑑𝑗(𝑥𝑖) + 𝑠𝑖−1(𝑑𝑗(𝑧𝑖)) can only hold if both
terms are zero. We conclude that 𝑑𝑗(𝑥𝑖) = 0 and by injectivity of 𝑠𝑖−1 we also conclude
that 𝑑𝑗(𝑧𝑖) = 0. This proves the claim.

The claim implies we can uniquely write

𝑥 = 𝑠0(𝑧0) + 𝑠1(𝑧1) + … + 𝑠𝑛(𝑧𝑛) + 𝑥0

with 𝑥0 ∈ 𝑁(𝑈𝑛+1) and 𝑧𝑖 ∈ Ker(𝑑0) ∩ … ∩ Ker(𝑑𝑖−1). We can reformulate this as saying
that we have found a direct sum decomposition

𝑈𝑛+1 = 𝑁(𝑈𝑛+1) ⊕ ⨁
𝑖=𝑛
𝑖=0

𝑠𝑖(Ker(𝑑0) ∩ … ∩ Ker(𝑑𝑖−1))

with the property that

Ker(𝑑0) ∩ … ∩ Ker(𝑑𝑗) = 𝑁(𝑈𝑛+1) ⊕ ⨁
𝑖=𝑛
𝑖=𝑗+1

𝑠𝑖(Ker(𝑑𝑛) ∩ … ∩ Ker(𝑑𝑖−1))

for 𝑗 = 0, … , 𝑛. The result follows from this statement as follows. Each of the 𝑧𝑖 in the
expression for 𝑥 can be written uniquely as

𝑧𝑖 = 𝑠𝑖(𝑧′
𝑖,𝑖) + … + 𝑠𝑛−1(𝑧′

𝑖,𝑛−1) + 𝑧𝑖,0

with 𝑧𝑖,0 ∈ 𝑁(𝑈𝑛) and 𝑧′
𝑖,𝑗 ∈ Ker(𝑑0) ∩ … ∩Ker(𝑑𝑗−1). The first few steps in the decompo-

sition of 𝑧𝑖 are zero because 𝑧𝑖 already is in the kernel of 𝑑0, … , 𝑑𝑖. This in turn uniquely
gives

𝑥 = 𝑥0 + 𝑠0(𝑧0,0) + 𝑠1(𝑧1,0) + … + 𝑠𝑛(𝑧𝑛,0) + ∑0≤𝑖≤𝑗≤𝑛−1
𝑠𝑖(𝑠𝑗(𝑧′

𝑖,𝑗)).

Continuing in this fashion we see that we in the end obtain a decomposition of 𝑥 as a sum
of terms of the form

𝑠𝑖1𝑠𝑖2 … 𝑠𝑖𝑘(𝑧)
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with 0 ≤ 𝑖1 ≤ 𝑖2 ≤ … ≤ 𝑖𝑘 ≤ 𝑛 − 𝑘 + 1 and 𝑧 ∈ 𝑁(𝑈𝑛+1−𝑘). This is exactly the required
decomposition, because any surjective map [𝑛+1] → [𝑛+1−𝑘] can be uniquely expressed
in the form

𝜎𝑛−𝑘
𝑖𝑘

… 𝜎𝑛−1
𝑖2

𝜎𝑛
𝑖1

with 0 ≤ 𝑖1 ≤ 𝑖2 ≤ … ≤ 𝑖𝑘 ≤ 𝑛 − 𝑘 + 1. �

Lemma 14.16.6. Let 𝒜 be an abelian category. Let 𝑈 be a simplicial object in 𝒜. Then 𝑈
has a splitting obtained by taking 𝑁(𝑈0) = 𝑈0 and for 𝑚 ≥ 1 taking

𝑁(𝑈𝑚) = ⋂
𝑚−1
𝑖=0

Ker(𝑑𝑚
𝑖 ).

Moreover, this splitting is functorial on the category of simplicial objects of 𝒜.

Proof. For any object 𝐴 of 𝒜 we obtain a simplicial abelian group 𝑀𝑜𝑟𝒜(𝐴, 𝑈). Each of
these are canonically split by Lemma 14.16.5. Moreover,

𝑁(𝑀𝑜𝑟𝒜(𝐴, 𝑈𝑚)) = ⋂
𝑚−1
𝑖=0

Ker(𝑑𝑚
𝑖 ) = 𝑀𝑜𝑟𝒜(𝐴, 𝑁(𝑈𝑚)).

Hence we see that the morphism (14.16.1.1) becomes an isomorphism after applying the
functor 𝑀𝑜𝑟𝒜(𝐴, −) for any object of 𝒜. Hence it is an isomorphism by the Yoneda lemma.

�

Lemma 14.16.7. Let𝒜 be an abelian category. Let 𝑓 ∶ 𝑈 → 𝑉 be a morphism of simplicial
objects of 𝒜. If the induced morphisms 𝑁(𝑓)𝑖 ∶ 𝑁(𝑈)𝑖 → 𝑁(𝑉)𝑖 are injective for all 𝑖,
then 𝑓𝑖 is injective for all 𝑖. Same holds with ``injective'' replaced with ``surjective'', or
``isomorphism''.

Proof. This is clear from Lemma 14.16.6 and the definition of a splitting. �

Lemma 14.16.8. Let 𝒜 be an abelian category. Let 𝑈 be a simplicial object in 𝒜. Let
𝑁(𝑈𝑚) as in Lemma 14.16.6 above. Then 𝑑𝑚

𝑚(𝑁(𝑈𝑚)) ⊂ 𝑁(𝑈𝑚−1).

Proof. For 𝑗 = 0, … , 𝑚 − 2 we have 𝑑𝑚−1
𝑗 𝑑𝑚

𝑚 = 𝑑𝑚−1
𝑚−1𝑑𝑚

𝑗 by the relations in Remark 14.3.3.
The result follows. �

Lemma 14.16.9. Let 𝒜 be an abelian category. Let 𝑈 be a simplicial object of 𝒜. Let
𝑛 ≥ 0 be an integer. The rule

𝑈′
𝑚 = ∑𝜑∶[𝑚]→[𝑖], 𝑖≤𝑛

Im(𝑈(𝜑))

defines a sub simplicial object 𝑈′ ⊂ 𝑈 with 𝑈′
𝑖 = 𝑈𝑖 for 𝑖 ≤ 𝑛. Moreover, 𝑁(𝑈′

𝑚) = 0 for
all 𝑚 > 𝑛.

Proof. Pick 𝑚, 𝑖 ≤ 𝑛 and some 𝜑 ∶ [𝑚] → [𝑖]. The image under 𝑈(𝜓) of Im(𝑈(𝜑)) for
any 𝜓 ∶ [𝑚′] → [𝑚] is equal to the image of 𝑈(𝜑 ∘ 𝜓) and 𝜑 ∘ 𝜓 ∶ [𝑚′] → [𝑖]. Hence 𝑈′

is a simplicial object. Pick 𝑚 > 𝑛. We have to show 𝑁(𝑈′
𝑚) = 0. By definition of 𝑁(𝑈𝑚)

and 𝑁(𝑈′
𝑚) we have 𝑁(𝑈′

𝑚) = 𝑈′
𝑚 ∩ 𝑁(𝑈𝑚) (intersection of subobjects). Since 𝑈 is split by

Lemma 14.16.6, it suffices to show that 𝑈′
𝑚 is contained in the sum

∑𝜑∶[𝑚]→[𝑚′] surjective, 𝑚′<𝑚
Im(𝑈(𝜑)|𝑁(𝑈𝑚′)).

By the splitting each 𝑈𝑚′ is the sum of images of 𝑁(𝑈𝑚″) via 𝑈(𝜓) for surjective maps
𝜓 ∶ [𝑚′] → [𝑚″]. Hence the displayed sum above is the same as

∑𝜑∶[𝑚]→[𝑚′] surjective, 𝑚′<𝑚
Im(𝑈(𝜑)).
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Clearly 𝑈′
𝑚 is contained in this by the simple fact that any 𝜑 ∶ [𝑚] → [𝑖], 𝑖 ≤ 𝑛 occuring in

the definition of 𝑈′
𝑚 may be factored as [𝑚] → [𝑚′] → [𝑖] with [𝑚] → [𝑚′] surjective and

𝑚′ < 𝑚 as in the last displayed sum above. �

14.17. Skelet and coskelet functors

Let Δ≤𝑛 denote the full subcategory of Δ with objects [0], [1], [2], … , [𝑛]. Let 𝒞 be a
category.

Definition 14.17.1. An 𝑛-truncated simplicial object of 𝒞 is a contravariant functor from
Δ≤𝑛 to 𝒞. A morphism of 𝑛-truncated simplicial objects is a transformation of functors.
We denote the category of 𝑛-truncated simplicial objects of 𝒞 by the symbol Simp𝑛(𝒞).

Given a simplicial object𝑈 of𝒞 the truncation sk𝑛𝑈 is the restriction of𝑈 to the subcategory
Δ≤𝑛. This defines a skelet functor

sk𝑛 ∶ Simp(𝒞) ⟶ Simp𝑛(𝒞)

from the category of simplicial objects of 𝒞 to the category of 𝑛-truncated simplicial objects
of 𝒞. See Remark 14.19.6 to avoid possible confusion with other functors in the literature.

The coskelet functor (if it exists) is a functor

cosk𝑛 ∶ Simp(𝒞) ⟶ Simp𝑛(𝒞)

which is right adjoint to the skelet functor. In a formula

(14.17.1.1) 𝑀𝑜𝑟Simp(𝒞)(𝑈, cosk𝑛𝑉) = 𝑀𝑜𝑟Simp𝑛(𝒞)(sk𝑛𝑈, 𝑉)

Given a 𝑛-truncated simplicial object 𝑉 we say that cosk𝑛𝑉 exists if there exists a cosk𝑛𝑉 ∈
𝑂𝑏(Simp(𝒞)) and a morphism sk𝑛cosk𝑛𝑉 → 𝑉 such that the displayed formula holds, in
other words if the functor 𝑈 ↦ 𝑀𝑜𝑟Simp𝑛(𝒞)(sk𝑛𝑈, 𝑉) is representable. If it exists it is
unique up to unique isomorphism by the Yoneda lemma. See Categories, Section 4.3.

Example 14.17.2. Suppose the category𝒞 has finite nonempty self products. A 0-truncated
simplicial object of 𝒞 is the same as an object 𝑋 of 𝒞. In this case we claim that cosk0(𝑋) is
the simplicial object 𝑈 with 𝑈𝑛 = 𝑋𝑛+1 the (𝑛 + 1)-fold self product of 𝑋, and structure of
simplicial object as in Example 14.3.5. Namely, a morphism 𝑉 → 𝑈 where 𝑉 is a simplicial
object is given by morphisms 𝑉𝑛 → 𝑋𝑛+1, such that all the diagrams

𝑉𝑛
//

𝑉([0]→[𝑛],0↦𝑖)
��

𝑋𝑛+1

pr𝑖
��

𝑉0
// 𝑋

commute. Clearly this means that the map determines and is determined by a unique mor-
phism 𝑉0 → 𝑋. This proves that formula (14.17.1.1) holds.

Recall the category Δ/[𝑛], see Example 14.11.4. We let (Δ/[𝑛])≤𝑚 denote the full subcate-
gory of Δ/[𝑛] consisting of objects [𝑘] → [𝑛] of Δ/[𝑛] with 𝑘 ≤ 𝑚. In other words we have
the following commutative diagram of categories and functors

(Δ/[𝑛])≤𝑚
//

��

Δ/[𝑛]

��
Δ≤𝑚

// Δ

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0180
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0182


14.17. SKELET AND COSKELET FUNCTORS 947

Given a 𝑚-truncated simplicial object 𝑈 of 𝒞 we define a functor
𝑈(𝑛) ∶ (Δ/[𝑛])𝑜𝑝𝑝

≤𝑚 ⟶ 𝒞
by the rules

([𝑘] → [𝑛]) ⟼ 𝑈𝑘

(𝜓 ∶ ([𝑘′] → [𝑛]) → ([𝑘] → [𝑛])) ⟼ 𝑈(𝜓) ∶ 𝑈𝑘 → 𝑈𝑘′

For a given morphism 𝜑 ∶ [𝑛] → [𝑛′] of Δ we have an associated functor
"𝜑" ∶ (Δ/[𝑛])≤𝑚 ⟶ (Δ/[𝑛′])≤𝑚

which maps 𝛼 ∶ [𝑘] → [𝑛] to 𝜑 ∘ 𝛼 ∶ [𝑘] → [𝑛′]. The composition 𝑈(𝑛′) ∘ "𝜑" is equal to
the functor 𝑈(𝑛).

Lemma 14.17.3. If the category 𝒞 has finite limits, then cosk𝑚 functors exist for all 𝑚.
Moreover, for any𝑚-truncated simplicial object𝑈 the simplicial object cosk𝑚𝑈 is described
by the formula

(cosk𝑚𝑈)𝑛 = 𝑙𝑖𝑚(Δ/[𝑛])𝑜𝑝𝑝
≤𝑚

𝑈(𝑛)

and for 𝜑 ∶ [𝑛] → [𝑛′] the map cosk𝑚𝑈(𝜑) comes from the identification 𝑈(𝑛′)∘"𝜑" = 𝑈(𝑛)
above via Categories, Lemma 4.13.8.

Proof. During the proof of this lemmawe denote cosk𝑚𝑈 the simplicial object with (cosk𝑚𝑈)𝑛
equal to 𝑙𝑖𝑚(Δ/[𝑛])𝑜𝑝𝑝

≤𝑚
𝑈(𝑛). We will conclude at the end of the proof that it does satsify the

required mapping property.
Suppose that 𝑉 is a simplicial object. A morphism 𝛾 ∶ 𝑉 → cosk𝑚𝑈 is given by a sequence
of morphisms 𝛾𝑛 ∶ 𝑉𝑛 → (cosk𝑚𝑈)𝑛. By definition of a limit, this is given by a collection
of morphisms 𝛾(𝛼) ∶ 𝑉𝑛 → 𝑈𝑘 where 𝛼 ranges over all 𝛼 ∶ [𝑘] → [𝑛] with 𝑘 ≤ 𝑚. These
morphisms then also satisfy the rules that

𝑉𝑛 𝛾(𝛼)
// 𝑈𝑘

𝑉𝑛′
𝛾(𝛼′) //

𝑉(𝜑)

OO

𝑈𝑘′

𝑈(𝜓)

OO

are commutative, given any 0 ≤ 𝑘, 𝑘′ ≤ 𝑚, 0 ≤ 𝑛, 𝑛′ and any 𝜓 ∶ [𝑘] → [𝑘′], 𝜑 ∶ [𝑛] →
[𝑛′], 𝛼 ∶ [𝑘] → [𝑛] and 𝛼′ ∶ [𝑘′] → [𝑛′] in Δ such that 𝜑∘𝛼 = 𝛼′ ∘𝜓. Taking 𝑛 = 𝑘, 𝜑 = 𝛼′,
and 𝛼 = 𝜓 = id[𝑘] we deduce that 𝛾(𝛼′) = 𝛾(id[𝑘]) ∘ 𝑉(𝛼′). In other words, the morphisms
𝛾(id[𝑘]), 𝑘 ≤ 𝑚 determine the morphism 𝛾. And it is easy to see that these morphisms form
a morphism sk𝑚𝑉 → 𝑈.
Conversely, given amorphism 𝛾 ∶ sk𝑚𝑉 → 𝑈, we obtain a family of morphsms 𝛾(𝛼) where 𝛼
ranges over all 𝛼 ∶ [𝑘] → [𝑛] with 𝑘 ≤ 𝑚 by setting 𝛾(𝛼) = 𝛾(id[𝑘]) ∘𝑉(𝛼). These morphisms
satisfy all the displayed commutativity restraints pictured above, and hence give rise to a
morphism 𝑉 → cosk𝑚𝑈. �

Lemma 14.17.4. Let 𝒞 be a category. Let 𝑈 be an 𝑚-truncated simplicial object of 𝒞. For
𝑛 ≤ 𝑚 the limit 𝑙𝑖𝑚(Δ/[𝑛])𝑜𝑝𝑝

≤𝑚
𝑈(𝑛) exists and is canonically isomorphic to 𝑈𝑛.

Proof. This is true because the category (Δ/[𝑛])≤𝑚 has an final object in this case, namely
the identity map [𝑛] → [𝑛]. �

Lemma 14.17.5. Let 𝒞 be a category with finite limits. Let 𝑈 be an 𝑛-truncated simplicial
object of 𝒞. The morphism sk𝑛cosk𝑛𝑈 → 𝑈 is an isomorphism.
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Proof. Combine Lemmas 14.17.3 and 14.17.4. �

Let us describe a particular instance of the coskelet functor in more detail. By abuse of
notation we will denote sk𝑛 also the restriction functor Simp𝑛′(𝒞) → Simp𝑛(𝒞) for any
𝑛′ ≥ 𝑛. We are going to describe a right adjoint of the functor sk𝑛 ∶ Simp𝑛+1(𝒞) →
Simp𝑛(𝒞). For 𝑛 ≥ 1, 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1 define 𝛿𝑛+1

𝑖,𝑗 ∶ [𝑛 − 1] → [𝑛 + 1] to be the increasing
map omitting 𝑖 and 𝑗. Note that 𝛿𝑛+1

𝑖,𝑗 = 𝛿𝑛+1
𝑗 ∘ 𝛿𝑛

𝑖 = 𝛿𝑛+1
𝑖 ∘ 𝛿𝑛

𝑗−1, see Lemma 14.2.3. This
motivates the following lemma.

Lemma 14.17.6. Let 𝑛 be an integer ≥ 1. Let 𝑈 be a 𝑛-truncated simplicial object of 𝒞.
Consider the contravariant functor from 𝒞 to Sets which associates to an object 𝑇 the set

{(𝑓0, … , 𝑓𝑛+1) ∈ 𝑀𝑜𝑟𝒞(𝑇, 𝑈𝑛) ∣ 𝑑𝑛
𝑗−1 ∘ 𝑓𝑖 = 𝑑𝑛

𝑖 ∘ 𝑓𝑗 ∀ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1}

If this functor is representable by some object 𝑈𝑛+1 of 𝒞, then

𝑈𝑛+1 = 𝑙𝑖𝑚(Δ/[𝑛+1])𝑜𝑝𝑝
≤𝑛

𝑈(𝑛)

Proof. The limit, if it exists, represents the functor that associates to an object 𝑇 the set
{(𝑓𝛼)𝛼∶[𝑘]→[𝑛+1],𝑘≤𝑛 ∣ 𝑓𝛼∘𝜓 = 𝑈(𝜓) ∘ 𝑓𝛼 ∀ 𝜓 ∶ [𝑘′] → [𝑘], 𝛼 ∶ [𝑘] → [𝑛 + 1]}.

In fact we will show this functor is isomorphic to the one displayed in the lemma. The map
in one direction is given by the rule

(𝑓𝛼)𝛼 ⟼ (𝑓𝛿𝑛+1
0

, … , 𝑓𝛿𝑛+1
𝑛+1

).

This satisfies the conditions of the lemma because
𝑑𝑛

𝑗−1 ∘ 𝑓𝛿𝑛+1
𝑖

= 𝑓𝛿𝑛+1
𝑖 ∘𝛿𝑛

𝑗−1
= 𝑓𝛿𝑛+1

𝑗 ∘𝛿𝑛
𝑖

= 𝑑𝑛
𝑖 ∘ 𝑓𝛿𝑛+1

𝑗

by the relations we recalled above the lemma. To construct a map in the other direction
we have to associate to a system (𝑓0, … , 𝑓𝑛+1) as in the displayed formula of the lemma a
system of maps 𝑓𝛼. Let 𝛼 ∶ [𝑘] → [𝑛 + 1] be given. Since 𝑘 ≤ 𝑛 the map 𝛼 is not surjective.
Hence we can write 𝛼 = 𝛿𝑛+1

𝑖 ∘ 𝜓 for some 0 ≤ 𝑖 ≤ 𝑛 + 1 and some 𝜓 ∶ [𝑘] → [𝑛]. We have
no choice but to define

𝑓𝛼 = 𝑈(𝜓) ∘ 𝑓𝑖.
Of course we have to check that this is independent of the choice of the pair (𝑖, 𝜓). First,
observe that given 𝑖 there is a unique 𝜓 which works. Second, suppose that (𝑗, 𝜙) is another
pair. Then 𝑖≠𝑗 and we may assume 𝑖 < 𝑗. Since both 𝑖, 𝑗 are not in the image of 𝛼 we may
actually write 𝛼 = 𝛿𝑛+1

𝑖,𝑗 ∘ 𝜉 and then we see that 𝜓 = 𝛿𝑛
𝑗−1 ∘ 𝜉 and 𝜙 = 𝛿𝑛

𝑖 ∘ 𝜉. Thus

𝑈(𝜓) ∘ 𝑓𝑖 = 𝑈(𝛿𝑛
𝑗−1 ∘ 𝜉) ∘ 𝑓𝑖

= 𝑈(𝜉) ∘ 𝑑𝑛
𝑗−1 ∘ 𝑓𝑖

= 𝑈(𝜉) ∘ 𝑑𝑛
𝑖 ∘ 𝑓𝑗

= 𝑈(𝛿𝑛
𝑖 ∘ 𝜉) ∘ 𝑓𝑗

= 𝑈(𝜙) ∘ 𝑓𝑗

as desired. We still have to verify that the maps 𝑓𝛼 so defined satisfy the rules of a system
of maps (𝑓𝛼)𝛼. To see this suppose that 𝜓 ∶ [𝑘′] → [𝑘], 𝛼 ∶ [𝑘] → [𝑛 + 1] with 𝑘, 𝑘′ ≤ 𝑛.
Set 𝛼′ = 𝛼 ∘ 𝜓. Choose 𝑖 not in the image of 𝛼. Then clearly 𝑖 is not in the image of 𝛼′

also. Write 𝛼 = 𝛿𝑛
𝑖 ∘ 𝜙 (we cannot use the letter 𝜓 here because we've already used it). Then

obviously 𝛼′ = 𝛿𝑛
𝑖 ∘ 𝜙 ∘ 𝜓. By construction above we then have

𝑈(𝜓) ∘ 𝑓𝛼 = 𝑈(𝜓) ∘ 𝑈(𝜙) ∘ 𝑓𝑖 = 𝑈(𝜙 ∘ 𝜓) ∘ 𝑓𝑖 = 𝑓𝛼∘𝜓 = 𝑓𝛼′
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as desired. We leave to the reader the pleasant task of verifying that our constructions are
mutually inverse bijections, and are functorial in 𝑇. �

Lemma 14.17.7. Let 𝑛 be an integer ≥ 1. Let 𝑈 be a 𝑛-truncated simplicial object of 𝒞.
Consider the contravariant functor from 𝒞 to Sets which associates to an object 𝑇 the set

{(𝑓0, … , 𝑓𝑛+1) ∈ 𝑀𝑜𝑟𝒞(𝑇, 𝑈𝑛) ∣ 𝑑𝑛
𝑗−1 ∘ 𝑓𝑖 = 𝑑𝑛

𝑖 ∘ 𝑓𝑗 ∀ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1}

If this functor is representable by some object𝑈𝑛+1 of𝒞, then there exists an (𝑛+1)-truncated
simplicial object �̃�, with sk𝑛�̃� = 𝑈 and �̃�𝑛+1 = 𝑈𝑛+1 such that the following adjointness
holds

𝑀𝑜𝑟Simp𝑛+1(𝒞)(𝑉, �̃�) = 𝑀𝑜𝑟Simp𝑛(𝒞)(sk𝑛𝑉, 𝑈)

Proof. By Lemma 14.17.4 there are identifications

𝑈𝑖 = 𝑙𝑖𝑚(Δ/[𝑖])𝑜𝑝𝑝
≤𝑛

𝑈(𝑖)

for 0 ≤ 𝑖 ≤ 𝑛. By Lemma 14.17.6 we have

𝑈𝑛+1 = 𝑙𝑖𝑚(Δ/[𝑛+1])𝑜𝑝𝑝
≤𝑛

𝑈(𝑛).

Thus we may define for any 𝜑 ∶ [𝑖] → [𝑗] with 𝑖, 𝑗 ≤ 𝑛 + 1 the corresponding map
�̃�(𝜑) ∶ �̃�𝑗 → �̃�𝑖 exactly as in Lemma 14.17.3. This defines an (𝑛 + 1)-truncated simplicial
object �̃� with sk𝑛�̃� = 𝑈.

To see the adjointness we argue as follows. Given any element 𝛾 ∶ sk𝑛𝑉 → 𝑈 of the right
hand side of the formula consider the morphisms 𝑓𝑖 = 𝛾𝑛 ∘ 𝑑𝑛+1

𝑖 ∶ 𝑉𝑛+1 → 𝑉𝑛 → 𝑈𝑛.
These clearly satisfy the relations 𝑑𝑛

𝑗−1 ∘ 𝑓𝑖 = 𝑑𝑛
𝑖 ∘ 𝑓𝑗 and hence define a unique morphism

𝑉𝑛+1 → 𝑈𝑛+1 by our choice of 𝑈𝑛+1. Conversely, given a morphsm 𝛾′ ∶ 𝑉 → �̃� of the left
hand side we can simply restrict to Δ≤𝑛 to get an element of the right hand side. We leave
it to the reader to show these are mutually inverse constructions. �

Remark 14.17.8. Let 𝑈, and 𝑈𝑛+1 be as in Lemma 14.17.7. On 𝑇-valued points we can
easily describe the face and degeneracy maps of �̃�. Explicitly, the maps 𝑑𝑛+1

𝑖 ∶ 𝑈𝑛+1 → 𝑈𝑛
are given by

(𝑓0, … , 𝑓𝑛+1) ⟼ 𝑓𝑖.
And the maps 𝑠𝑛

𝑗 ∶ 𝑈𝑛 → 𝑈𝑛+1 are given by

𝑓 ⟼ (𝑠𝑛−1
𝑗−1 ∘ 𝑑𝑛−1

0 ∘ 𝑓,

𝑠𝑛−1
𝑗−1 ∘ 𝑑𝑛−1

1 ∘ 𝑓,
…
𝑠𝑛−1

𝑗−1 ∘ 𝑑𝑛−1
𝑗−1 ∘ 𝑓,

𝑓,
𝑓,
𝑠𝑛−1

𝑗 ∘ 𝑑𝑛−1
𝑗+1 ∘ 𝑓,

𝑠𝑛−1
𝑗 ∘ 𝑑𝑛−1

𝑗+2 ∘ 𝑓,
…
𝑠𝑛−1

𝑗 ∘ 𝑑𝑛−1
𝑛 ∘ 𝑓)

where we leave it to the reader to verify that the RHS is an element of the displayed set of
Lemma 14.17.7. For 𝑛 = 0 there is one map, namely 𝑓 ↦ (𝑓, 𝑓). For 𝑛 = 1 there are two
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maps, namely 𝑓 ↦ (𝑓, 𝑓, 𝑠0𝑑1𝑓) and 𝑓 ↦ (𝑠0𝑑0𝑓, 𝑓, 𝑓). For 𝑛 = 2 there are three maps,
namely 𝑓 ↦ (𝑓, 𝑓, 𝑠0𝑑1𝑓, 𝑠0𝑑2𝑓), 𝑓 ↦ (𝑠0𝑑0𝑓, 𝑓, 𝑓, 𝑠1𝑑2𝑓), and 𝑓 ↦ (𝑠1𝑑0𝑓, 𝑠1𝑑1𝑓, 𝑓, 𝑓).
And so on and so forth.

Remark 14.17.9. The construction of Lemma 14.17.7 above in the case of simplicial sets is
the following. Given an 𝑛-truncated simplicial set 𝑈, we make a canonical (𝑛+1)-truncated
simplicial set �̃� as follows. We add a set of (𝑛 + 1)-simplices 𝑈𝑛+1 by the formula of
the lemma. Namely, an element of 𝑈𝑛+1 is a numbered collection of (𝑓0, … , 𝑓𝑛+1) of
𝑛-simplices, with the property that they glue as they would in a (𝑛 + 1)-simplex. In other
words, the 𝑖th face of 𝑓𝑗 is the (𝑗 − 1)st face of 𝑓𝑖 for 𝑖 < 𝑗. Geometrically it is obvious how
to define the face and degeneracy maps for �̃�. If 𝑉 is an (𝑛 + 1)-truncated simplicial set,
then its (𝑛 + 1)-simplices give rise to compatible collections of 𝑛-simplices (𝑓0, … , 𝑓𝑛+1)
with 𝑓𝑖 ∈ 𝑉𝑛. Hence there is a natural map 𝑀𝑜𝑟(sk𝑛𝑉, 𝑈) → 𝑀𝑜𝑟(𝑉, �̃�) which is inverse
to the canonical restriction mapping the other way.

Also, it is enough to do the combinatorics of the construction in the case of truncated sim-
plicial sets. Namely, for any object 𝑇 of the category 𝒞, and any 𝑛-truncated simplicial
object 𝑈 of 𝒞 we can consider the 𝑛-truncated simplicial set 𝑀𝑜𝑟(𝑇, 𝑈). We may apply the
construction to this, and take its set of (𝑛+1)-simplices, and require this to be representable.
This is a good way to think about the result of Lemma 14.17.7.

Remark 14.17.10. Inductive construction of coskelets. Suppose that 𝒞 is a category with
finite limits. Suppose that 𝑈 is an 𝑚-truncated simplicial object in 𝒞. Then we can induc-
tively construct 𝑛-truncated objects 𝑈𝑛 as follows:

(1) To start, set 𝑈𝑚 = 𝑈.
(2) Given 𝑈𝑛 for 𝑛 ≥ 𝑚 set 𝑈𝑛+1 = �̃�𝑛, where �̃�𝑛 is constructed from 𝑈𝑛 as in Lemma

14.17.7.
Since the construction of Lemma 14.17.7 has the property that it leaves the 𝑛-skeleton of 𝑈𝑛

unchanged, we can then define cosk𝑚𝑈 to be the simplicial object with (cosk𝑚𝑈)𝑛 = 𝑈𝑛
𝑛 =

𝑈𝑛+1
𝑛 = …. And it follows formally from Lemma 14.17.7 that 𝑈𝑛 satisfies the formula

𝑀𝑜𝑟Simp𝑛(𝒞)(𝑉, 𝑈𝑛) = 𝑀𝑜𝑟Simp𝑚(𝒞)(sk𝑚𝑉, 𝑈)

for all 𝑛 ≥ 𝑚. It also then follows formally from this that

𝑀𝑜𝑟Simp(𝒞)(𝑉, cosk𝑚𝑈) = 𝑀𝑜𝑟Simp𝑚(𝒞)(sk𝑚𝑉, 𝑈)

with cosk𝑚𝑈 chosen as above.

Lemma 14.17.11. Let 𝒞 be a category which has finite limits.
(1) For every 𝑛 the functor sk𝑛 ∶ Simp(𝒞) → Simp𝑛(𝒞) has a right adjoint cosk𝑛.
(2) For every 𝑛′ ≥ 𝑛 the functor sk𝑛 ∶ Simp𝑛′(𝒞) → Simp𝑛(𝒞) has a right adjoint,

namely sk𝑛′cosk𝑛.
(3) For every 𝑚 ≥ 𝑛 ≥ 0 and every 𝑛-truncated simplicial object 𝑈 of 𝒞 we have

cosk𝑚sk𝑚cosk𝑛𝑈 = cosk𝑛𝑈.
(4) If 𝑈 is a simplicial object of 𝒞 such that the canonical map 𝑈 → cosk𝑛sk𝑛𝑈 is

an isomorphism for some 𝑛 ≥ 0, then the canonical map 𝑈 → cosk𝑚sk𝑚𝑈 is an
isomorphism for all 𝑚 ≥ 𝑛.

Proof. The existence in (1) follows from Lemma 14.17.3 above and the equality in (2), and
(3) follows from the discussion in Remark 14.17.10. After this (4) is obvious. �
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Lemma 14.17.12. Let 𝑈, 𝑉 be 𝑛-truncated simplicial objects of a category 𝒞. Then
cosk𝑛(𝑈 × 𝑉) = cosk𝑛𝑈 × cosk𝑛𝑉

whenever the left and right hand sides exist.

Proof. Let 𝑊 be a simplicial object. We have
𝑀𝑜𝑟(𝑊, cosk𝑛(𝑈 × 𝑉)) = 𝑀𝑜𝑟(sk𝑛𝑊, 𝑈 × 𝑉)

= 𝑀𝑜𝑟(sk𝑛𝑊, 𝑈) × 𝑀𝑜𝑟(sk𝑛𝑊, 𝑉)
= 𝑀𝑜𝑟(𝑊, cosk𝑛𝑈) × 𝑀𝑜𝑟(𝑊, cosk𝑛𝑉)
= 𝑀𝑜𝑟(𝑊, cosk𝑛𝑈 × cosk𝑛𝑉)

The lemma follows. �

Lemma 14.17.13. Assume 𝒞 has fibre products. Let 𝑈, 𝑉, 𝑊 be 𝑛-truncated simplicial
objects of the category 𝒞. Then

cosk𝑛(𝑉 ×𝑈 𝑊) = cosk𝑛𝑈 ×cosk𝑛𝑈 cosk𝑛𝑉

Proof. Omitted, but very similar to the proof of Lemma 14.17.12 above. �

Lemma 14.17.14. The canonical map Δ[𝑛] → cosk1sk1Δ[𝑛] is an isomorphism.

Proof. Consider a simplicial set 𝑈 and a morphism 𝑓 ∶ 𝑈 → Δ[𝑛]. This is a rule that
associates to each 𝑢 ∈ 𝑈𝑖 a map 𝑓𝑢 ∶ [𝑖] → [𝑛] in Δ. Furthermore, these maps should have
the property that 𝑓𝑢 ∘ 𝜑 = 𝑓𝑈(𝜑)(𝑢) for any 𝜑 ∶ [𝑗] → [𝑖]. Denote 𝜖𝑖

𝑗 ∶ [0] → [𝑖] the map
which maps 0 to 𝑗. Denote 𝐹 ∶ 𝑈0 → [𝑛] the map 𝑢 ↦ 𝑓𝑢(0). Then we see that

𝑓𝑢(𝑗) = 𝐹(𝜖𝑖
𝑗(𝑢))

for all 0 ≤ 𝑗 ≤ 𝑖 and 𝑢 ∈ 𝑈𝑖. In particular, if we know the function 𝐹 then we know the
maps 𝑓𝑢 for all 𝑢 ∈ 𝑈𝑖 all 𝑖. Conversely, given a map 𝐹 ∶ 𝑈0 → [𝑛], we can set for any 𝑖,
and any 𝑢 ∈ 𝑈𝑖 and any 0 ≤ 𝑗 ≤ 𝑖

𝑓𝑢(𝑗) = 𝐹(𝜖𝑖
𝑗(𝑢))

This does not in general define a morphism 𝑓 of simplicial sets as above. Namely, the con-
dition is that all the maps 𝑓𝑢 are nondecreasing. This clearly is equivalent to the condition
that 𝐹(𝜖𝑖

𝑗(𝑢)) ≤ 𝐹(𝜖𝑖
𝑗′(𝑢)) whenever 0 ≤ 𝑗 ≤ 𝑗′ ≤ 𝑖 and 𝑢 ∈ 𝑈𝑖. But in this case the

morphisms
𝜖𝑖

𝑗, 𝜖𝑖
𝑗′ ∶ [0] → [𝑖]

both factor through the map 𝜖𝑖
𝑗,𝑗′ ∶ [1] → [𝑖] defined by the rules 0 ↦ 𝑗, 1 ↦ 𝑗′. In other

words, it is enough to check the inequalities for 𝑖 = 1 and 𝑢 ∈ 𝑋1. In other words, we have
𝑀𝑜𝑟(𝑈, Δ[𝑛]) = 𝑀𝑜𝑟(sk1𝑈, sk1Δ[𝑛])

as desired. �

14.18. Augmentations

Definition 14.18.1. Let 𝒞 be a category. Let 𝑈 be a simplicial object of 𝒞. An augmen-
tation 𝜖 ∶ 𝑈 → 𝑋 of 𝑈 towards an object 𝑋 of 𝒞 is a morphism from 𝑈 into the constant
simplicial object 𝑋.

Lemma 14.18.2. Let 𝒞 be a category. Let 𝑥 ∈ 𝑂𝑏(𝒞). Let 𝑈 be a simplicial object of 𝒞.
To give an augmentation of 𝑈 towards 𝑋 is the same as giving a morphism 𝜖0 ∶ 𝑈0 → 𝑋
such that 𝜖0 ∘ 𝑑1

0 = 𝜖0 ∘ 𝑑1
1.
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Proof. Given a morphism 𝜖 ∶ 𝑈 → 𝑋 we certainly obtain an 𝜖0 as in the lemma. Con-
versely, given 𝜖0 as in the lemma, define 𝜖𝑛 ∶ 𝑈𝑛 → 𝑋 by choosing any morphism
𝛼 ∶ [0] → [𝑛] and taking 𝜖𝑛 = 𝜖0 ∘ 𝑈(𝛼). Namely, if 𝛽 ∶ [0] → [𝑛] is another choice, then
there exists a morphism 𝛾 ∶ [1] → [𝑛] such that 𝛼 and 𝛽 both factor as [0] → [1] → [𝑛].
Hence the condition on 𝜖0 shows that 𝜖𝑛 is well defined. Then it is easy to show that
(𝜖𝑛) ∶ 𝑈 → 𝑋 is a morphism of simplicial objects. �

Lemma 14.18.3. Let 𝒞 be a category with fibred products. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism
of 𝒞. Let 𝑈 be the simplicial object of 𝒞 whose 𝑛th term is the (𝑛 + 1)fold fibred product
𝑌 ×𝑋 𝑌 ×𝑋 … ×𝑋 𝑌. See Example 14.3.5. For any simplicial object 𝑉 of 𝒞 we have

𝑀𝑜𝑟Simp(𝒞)(𝑉, 𝑈) = 𝑀𝑜𝑟Simp≤1(𝒞)(sk1𝑉, sk1𝑈)

= {𝑔0 ∶ 𝑉0 → 𝑌 ∣ 𝑓 ∘ 𝑔0 ∘ 𝑑1
0 = 𝑓 ∘ 𝑔0 ∘ 𝑑1

1}
In particular we have 𝑈 = cosk1sk1𝑈.
Proof. Suppose that 𝑔 ∶ sk1𝑉 → sk1𝑈 is a morphism of 1-truncated simplicial objects.
Then the diagram

𝑉1

𝑑1
0 //

𝑑1
1

//

𝑔1
��

𝑉0

𝑔0

��
𝑌 ×𝑋 𝑌

𝑝𝑟1 //

𝑝𝑟0
// 𝑌 // 𝑋

is commutative, which proves that the relation shown in the lemma holds. We have to show
that, conversely, given a morphism 𝑔0 satisfying the relation 𝑓 ∘ 𝑔0 ∘ 𝑑1

0 = 𝑓 ∘ 𝑔0 ∘ 𝑑1
1 we

get a unique morphism of simplicial objects 𝑔 ∶ 𝑉 → 𝑈. This is done as follows. For any
𝑛 ≥ 1 let 𝑔𝑛,𝑖 = 𝑔0 ∘ 𝑉([0] → [𝑛], 0 ↦ 𝑖) ∶ 𝑉𝑛 → 𝑌. The equality above implies that
𝑓 ∘ 𝑔𝑛,𝑖 = 𝑓 ∘ 𝑔𝑛,𝑖+1 because of the commutative diagram

[0]

0↦0   

0↦𝑖

++[1] 0↦𝑖,1↦𝑖+1 // [𝑛]

[0]

0↦1
>>

0↦𝑖+1

33

Hence we get (𝑔𝑛,0, … , 𝑔𝑛,𝑛) ∶ 𝑉𝑛 → 𝑌 ×𝑋 … ×𝑋 𝑌 = 𝑈𝑛. We leave it to the reader to see
that this is a morphism of simplicial objects. The last assertion of the lemma is equivalent
to the first equality in the displayed formula of the lemma. �

Remark 14.18.4. Let 𝒞 be a category with fibre products. Let 𝑉 be a simplicial object.
Let 𝜖 ∶ 𝑉 → 𝑋 be an augmentation. Let 𝑈 be the simplicial object whose 𝑛th term is the
(𝑛 + 1)st fibred product of 𝑉0 over 𝑋. By a simple combination of Lemmas 14.18.2 and
14.18.3 we obtain a canonical morphism 𝑉 → 𝑈.

14.19. Left adjoints to the skeleton functors

In this section we construct a left adjoint 𝑖𝑚! of the skeleton functor sk𝑚 in certain cases.
The adjointness formula is

𝑀𝑜𝑟Simp𝑚(𝒞)(𝑈, sk𝑚𝑉) = 𝑀𝑜𝑟Simp(𝒞)(𝑖𝑚!𝑈, 𝑉).
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It turns out that this left adjoint exists when the category 𝒞 has finite colimits.
We use a similar construction as in Section 14.17. Recall the category [𝑛]/Δ of objects
under [𝑛], see Categories, Example 4.2.14. Its objects are morphisms 𝛼 ∶ [𝑛] → [𝑘] and
its morphisms are commutative triangles. We let ([𝑛]/Δ)≤𝑚 denote the full subcategory of
[𝑛]/Δ consisting of objects [𝑛] → [𝑘] with 𝑘 ≤ 𝑚. Given a 𝑚-truncated simplicial object 𝑈
of 𝒞 we define a functor

𝑈(𝑛) ∶ ([𝑛]/Δ)𝑜𝑝𝑝
≤𝑚 ⟶ 𝒞

by the rules
([𝑛] → [𝑘]) ⟼ 𝑈𝑘

(𝜓 ∶ ([𝑛] → [𝑘′]) → ([𝑛] → [𝑘])) ⟼ 𝑈(𝜓) ∶ 𝑈𝑘 → 𝑈𝑘′

For a given morphism 𝜑 ∶ [𝑛] → [𝑛′] of Δ we have an associated functor
"𝜑" ∶ ([𝑛′]/Δ)≤𝑚 ⟶ ([𝑛]/Δ)≤𝑚

which maps 𝛼 ∶ [𝑛′] → [𝑘] to 𝜑 ∘ 𝛼 ∶ [𝑛] → [𝑘]. The composition 𝑈(𝑛) ∘ "𝜑" is equal to
the functor 𝑈(𝑛′).

Lemma 14.19.1. Let 𝒞 be a category which has finite colimits. The functors 𝑖𝑚! exist for all
𝑚. Let 𝑈 be an 𝑚-truncated simplicial object of 𝒞. The simplicial object 𝑖𝑚!𝑈 is described
by the formula

(𝑖𝑚!𝑈)𝑛 = 𝑐𝑜𝑙𝑖𝑚([𝑛]/Δ)𝑜𝑝𝑝
≤𝑚

𝑈(𝑛)

and for 𝜑 ∶ [𝑛] → [𝑛′] the map 𝑖𝑚!𝑈(𝜑) comes from the identification 𝑈(𝑛) ∘ "𝜑" = 𝑈(𝑛′)
above via Categories, Lemma 4.13.7.

Proof. In this proof we denote 𝑖𝑚!𝑈 the simplicial object whose 𝑛th term is given by the
displayed formula of the lemma. We will show it satisfies the adjointness property.
Let 𝑉 be a simplicial object of 𝒞. Let 𝛾 ∶ 𝑈 → sk𝑚𝑉 be given. A morphism

𝑐𝑜𝑙𝑖𝑚([𝑛]/Δ)𝑜𝑝𝑝
≤𝑚

𝑈(𝑛) → 𝑇

is given by a compatible system of morphisms 𝑓𝛼 ∶ 𝑈𝑘 → 𝑇 where 𝛼 ∶ [𝑛] → [𝑘] with
𝑘 ≤ 𝑚. Certainly, we have such a system of morphisms by taking the compositions

𝑈𝑘
𝛾𝑘−−→ 𝑉𝑘

𝑉(𝛼)
−−−→ 𝑉𝑛.

Hence we get an induced morphism (𝑖𝑚!𝑈)𝑛 → 𝑉𝑛. We leave it to the reader to see that
these form a morphism of simplicial objects 𝛾′ ∶ 𝑖𝑚!𝑈 → 𝑉.
Coversely, given a morphism 𝛾′ ∶ 𝑖𝑚!𝑈 → 𝑉 we obtain a morphism 𝛾 ∶ 𝑈 → sk𝑚𝑉 by
setting 𝛾𝑖 ∶ 𝑈𝑖 → 𝑉𝑖 equal to the composition

𝑈𝑖
id[𝑖]

−−−→ 𝑐𝑜𝑙𝑖𝑚([𝑖]/Δ)𝑜𝑝𝑝
≤𝑚

𝑈(𝑖)
𝛾′

𝑖−−→ 𝑉𝑖

for 0 ≤ 𝑖 ≤ 𝑛. We leave it to the reader to see that this is the inverse of the construction
above. �

Lemma 14.19.2. Let 𝒞 be a category. Let 𝑈 be an 𝑚-truncated simplicial object of 𝒞. For
any 𝑛 ≤ 𝑚 the colimit

𝑐𝑜𝑙𝑖𝑚([𝑛]/Δ)𝑜𝑝𝑝
≤𝑚

𝑈(𝑛)
exists and is equal to 𝑈𝑛.

Proof. This is so because the category ([𝑛]/Δ)≤𝑚 has an initial object, namely id ∶ [𝑛] →
[𝑛]. �
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Lemma 14.19.3. Let 𝒞 be a category which has finite colimits. Let 𝑈 be an 𝑚-truncated
simplicial object of 𝒞. The map 𝑈 → sk𝑚𝑖𝑚!𝑈 is an isomorphism.

Proof. Combine Lemmas 14.19.1 and 14.19.2. �

Lemma 14.19.4. If 𝑈 is an 𝑚-truncated simplicial set and 𝑛 > 𝑚 then all 𝑛-simplices of
𝑖𝑚!𝑈 are degenerate.

Proof. This can be seen from the construction of 𝑖𝑚!𝑈 in Lemma 14.19.1, but we can also
argue directly as follows. Write 𝑉 = 𝑖𝑚!𝑈. Let 𝑉′ ⊂ 𝑉 be the simplicial subset with 𝑉′

𝑖 = 𝑉𝑖
for 𝑖 ≤ 𝑚 and all 𝑖 simplices degenerate for 𝑖 > 𝑚, see Lemma 14.16.4. By the adjunction
formula, since sk𝑚𝑉′ = 𝑈, there is an inverse to the injection 𝑉′ → 𝑉. Hence 𝑉′ = 𝑉. �

Lemma 14.19.5. Let 𝑈 be a simplicial set. Let 𝑛 ≥ 0 be an integer. The morphism
𝑖𝑛!sk𝑛𝑈 → 𝑈 identifies 𝑖𝑛!sk𝑛𝑈 with the simplicial set 𝑈′ ⊂ 𝑈 defined in Lemma 14.16.4.

Proof. By Lemma 14.19.4 the only nondegenerate simplices of 𝑖𝑛!sk𝑛𝑈 are in degrees ≤ 𝑛.
The map 𝑖𝑛!sk𝑛𝑈 → 𝑈 is an isomorphism in degrees ≤ 𝑛. Combined we conclude that
the map 𝑖𝑛!sk𝑛𝑈 → 𝑈 maps nondegenerate simplices to nondegenerate simplices and no
two nondegenerate simplices have the same image. Hence Lemma 14.16.3 applies. Thus
𝑖𝑛!sk𝑛𝑈 → 𝑈 is injective. The result follows easily from this. �

Remark 14.19.6. In some texts the composite functor

Simp(𝒞)
sk𝑚−−−→ Simp𝑚(𝒞)

𝑖𝑚!−−→ Simp(𝒞)
is denoted sk𝑚. This makes sense because Lemma 14.19.5 says that 𝑖𝑚!sk𝑚𝑉 is just the sub
simplicial set of 𝑉 consisting of all 𝑖-simplices of 𝑉, 𝑖 ≤ 𝑚 and their degeneracies. In those
texts it is also customary to denote the composition

Simp(𝒞)
sk𝑚−−−→ Simp𝑚(𝒞)

cosk𝑚−−−−→ Simp(𝒞)
by cosk𝑚.

Lemma 14.19.7. Let 𝑈 ⊂ 𝑉 be simplicial sets. Suppose 𝑛 ≥ 0 and 𝑥 ∈ 𝑉𝑛, 𝑥∉𝑈𝑛 are such
that

(1) 𝑉𝑖 = 𝑈𝑖 for 𝑖 < 𝑛,
(2) 𝑉𝑛 = 𝑈𝑛 ∪ {𝑥},
(3) any 𝑧 ∈ 𝑉𝑗, 𝑧∉𝑈𝑗 for 𝑗 > 𝑛 is degenerate.

Let Δ[𝑛] → 𝑉 be the unique morphism mapping the nondegenerate 𝑛-simplex of Δ[𝑛] to 𝑥.
In this case the diagram

Δ[𝑛] // 𝑉

𝑖(𝑛−1)!sk𝑛−1Δ[𝑛] //

OO

𝑈

OO

is a push out diagram.

Proof. Let us denote 𝜕Δ[𝑛] = 𝑖(𝑛−1)!sk𝑛−1Δ[𝑛] for convenience. There is a natural map
𝑈⨿𝜕Δ[𝑛] Δ[𝑛] → 𝑉. We have to show that it is bijective in degree 𝑗 for all 𝑗. This is clear for
𝑗 ≤ 𝑛. Let 𝑗 > 𝑛. The third condition means that any 𝑧 ∈ 𝑉𝑗, 𝑧∉𝑈𝑗 is a degenerate simplex,
say 𝑧 = 𝑠𝑗−1

𝑖 (𝑧′). Of course 𝑧′∉𝑈𝑗−1. By induction it follows that 𝑧′ is a degeneracy of
𝑥. Thus we conclude that all 𝑗-simplices of 𝑉 are either in 𝑈 or degeneracies of 𝑥. This
implies that the map 𝑈 ⨿𝜕Δ[𝑛] Δ[𝑛] → 𝑉 is surjective. Note that a nondegerate simplex
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of 𝑈 ⨿𝜕Δ[𝑛] Δ[𝑛] is either the image of a nondegenerate simplex of 𝑈, or the image of the
(unique) nondegenerate 𝑛-simplex of Δ[𝑛]. Since clearly 𝑥 is nondegenerate we deduce
that 𝑈 ⨿𝜕Δ[𝑛] Δ[𝑛] → 𝑉 maps nondegenerate simplices to nondegenerate simplices and is
injective on nondegenerate simplices. Hence it is injective, by Lemma 14.16.3. �

Lemma 14.19.8. Let𝑈 ⊂ 𝑉 be simplicial sets, with𝑈𝑛, 𝑉𝑛 finite nonempty for all 𝑛. Assume
that 𝑈 and 𝑉 have finitely many nondegenerate simplices. Then there exists a sequence of
sub simplicial sets

𝑈 = 𝑊0 ⊂ 𝑊1 ⊂ 𝑊2 ⊂ … 𝑊𝑟 = 𝑉
such that Lemma 14.19.7 applies to each of the inclusions 𝑊𝑖 ⊂ 𝑊𝑖+1.

Proof. Let 𝑛 be the smallest integer such that 𝑉 has a nondegenerate simplex that does not
belong to 𝑈. Let 𝑥 ∈ 𝑉𝑛, 𝑥∉𝑈𝑛 be such a nondegenerate simplex. Let 𝑊 ⊂ 𝑉 be the set of
elements which are either in 𝑈, or are a (repeated) degeneracy of 𝑥 (in other words, are of
the form 𝑉(𝜑)(𝑥) with 𝜑 ∶ [𝑚] → [𝑛] surjective). It is easy to see that 𝑊 is a simplicial set.
The inclusion 𝑈 ⊂ 𝑊 satisfies the conditions of Lemma 14.19.7. Moreover the number
of nondegenerate simplices of 𝑉 which are not contained in 𝑊 is exactly one less than the
number of nondegenerate simplices of 𝑉 which are not contained in 𝑈. Hence we win by
induction on this number. �

Lemma 14.19.9. Let 𝒜 be an abelian category Let 𝑈 be an 𝑚-truncated simplicial object
of 𝒜. For 𝑛 > 𝑚 we have 𝑁(𝑖𝑚!𝑈)𝑛 = 0.

Proof. Write 𝑉 = 𝑖𝑚!𝑈. Let 𝑉′ ⊂ 𝑉 be the simplicial subobject of 𝑉 with 𝑉′
𝑖 = 𝑉𝑖 for 𝑖 ≤ 𝑚

and 𝑁(𝑉′
𝑖 ) = 0 for 𝑖 > 𝑚, see Lemma 14.16.9. By the adjunction formula, since sk𝑚𝑉′ = 𝑈,

there is an inverse to the injection 𝑉′ → 𝑉. Hence 𝑉′ = 𝑉. �

Lemma 14.19.10. Let 𝒜 be an abelian category. Let 𝑈 be a simplicial object of 𝒜. Let
𝑛 ≥ 0 be an integer. The morphism 𝑖𝑛!sk𝑛𝑈 → 𝑈 identifies 𝑖𝑛!sk𝑛𝑈 with the simplicial
subobject 𝑈′ ⊂ 𝑈 defined in Lemma 14.16.9.

Proof. By Lemma 14.19.9 we have 𝑁(𝑖𝑛!sk𝑛𝑈)𝑖 = 0 for 𝑖 > 𝑛. The map 𝑖𝑛!sk𝑛𝑈 → 𝑈 is
an isomorphism in degrees ≤ 𝑛, see Lemma 14.19.3. Combined we conclude that the map
𝑖𝑛!sk𝑛𝑈 → 𝑈 induces injective maps 𝑁(𝑖𝑛!sk𝑛𝑈)𝑖 → 𝑁(𝑈)𝑖 for all 𝑖. Hence Lemma 14.16.7
applies. Thus 𝑖𝑛!sk𝑛𝑈 → 𝑈 is injective. The result follows easily from this. �

Here is another way to think about the coskelet functor using the material above.

Lemma 14.19.11. Let 𝒞 be a category with finite coproducts and finite limits. Let 𝑉 be a
simplicial object of 𝒞. In this case

(cosk𝑛sk𝑛𝑉)𝑛+1 = 𝐻𝑜𝑚(𝑖𝑛!sk𝑛Δ[𝑛 + 1], 𝑉)0.

Proof. By Lemma 14.12.4 the object on the left represents the functor which assigns to 𝑋
the first set of the following equalities

𝑀𝑜𝑟(𝑋 × Δ[𝑛 + 1], cosk𝑛sk𝑛𝑉) = 𝑀𝑜𝑟(𝑋 × sk𝑛Δ[𝑛 + 1], sk𝑛𝑉)
= 𝑀𝑜𝑟(𝑋 × 𝑖𝑛!sk𝑛Δ[𝑛 + 1], 𝑉).

The object on the right in the formula of the lemma is represented by the functor which
assigns to 𝑋 the last set in the sequence of equalities. This proves the result.

In the sequence of equalities we have used that sk𝑛(𝑋×Δ[𝑛+1]) = 𝑋×sk𝑛Δ[𝑛+1] and that
𝑖𝑛!(𝑋 × sk𝑛Δ[𝑛 + 1]) = 𝑋 × 𝑖𝑛!sk𝑛Δ[𝑛 + 1]. The first equality is obvious. For any (possibly
truncated) simplicial object 𝑊 of 𝒞 and any object 𝑋 of 𝒞 denote temporarily 𝑀𝑜𝑟𝒞(𝑋, 𝑊)
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the (possibly truncted) simplicial set [𝑛] ↦ 𝑀𝑜𝑟𝒞(𝑋, 𝑊𝑛). From the definitions it follows
that 𝑀𝑜𝑟(𝑈 × 𝑋, 𝑊) = 𝑀𝑜𝑟(𝑈, 𝑀𝑜𝑟𝒞(𝑋, 𝑊)) for any (possibly truncted) simplicial set 𝑈.
Hence

𝑀𝑜𝑟(𝑋 × 𝑖𝑛!sk𝑛Δ[𝑛 + 1], 𝑊) = 𝑀𝑜𝑟(𝑖𝑛!sk𝑛Δ[𝑛 + 1], 𝑀𝑜𝑟𝒞(𝑋, 𝑊))
= 𝑀𝑜𝑟(sk𝑛Δ[𝑛 + 1], sk𝑛 𝑀𝑜𝑟𝒞(𝑋, 𝑊))
= 𝑀𝑜𝑟(𝑋 × sk𝑛Δ[𝑛 + 1], sk𝑛𝑊)
= 𝑀𝑜𝑟(𝑖𝑛!(𝑋 × sk𝑛Δ[𝑛 + 1]), 𝑊).

This proves the second equality used, and ends the proof of the lemma. �

Lemma 14.19.12. Let 𝒞 be a category with finite coproducts and finite limits. Let 𝑋 be an
object of 𝒞. Let 𝑘 ≥ 0. The canonical map

𝐻𝑜𝑚(Δ[𝑘], 𝑋) ⟶ cosk1sk1 𝐻𝑜𝑚(Δ[𝑘], 𝑋)
is an isomorphism.

Proof. For any simplicial object 𝑉 we have
𝑀𝑜𝑟(𝑉, cosk1sk1 𝐻𝑜𝑚(Δ[𝑘], 𝑋)) = 𝑀𝑜𝑟(sk1𝑉, sk1 𝐻𝑜𝑚(Δ[𝑘], 𝑋))

= 𝑀𝑜𝑟(𝑖1!sk1𝑉, 𝐻𝑜𝑚(Δ[𝑘], 𝑋))
= 𝑀𝑜𝑟(𝑖1!sk1𝑉 × Δ[𝑘], 𝑋)

The first equality by the adjointness of sk and cosk, the second equality by the adjointness
of 𝑖1! and sk1, and the first equality by Definition 14.15.1 where the last 𝑋 denotes the
constant simplicial object with value 𝑋. By Lemma 14.18.2 an element in this set depends
only on the terms of degree 0 and 1 of 𝑖1!sk1𝑉 × Δ[𝑘]. These agree with the degree 0 and 1
terms of 𝑉 × Δ[𝑘], see Lemma 14.19.3. Thus the set above is equal to 𝑀𝑜𝑟(𝑉 × Δ[𝑘], 𝑋) =
𝑀𝑜𝑟(𝑉, 𝐻𝑜𝑚(Δ[𝑘], 𝑋)). �

Lemma 14.19.13. Let 𝒞 be a category with finite coproducts and finite limits. Let 𝑋 be an
object of 𝒞. Let 𝑘 ≥ 0. The canonical map

𝐻𝑜𝑚(Δ[𝑘], 𝑋)1 ⟶ (cosk0sk0 𝐻𝑜𝑚(Δ[𝑘], 𝑋))1

is identified with the map

∏𝛼∶[𝑘]→[1]
𝑋 ⟶ 𝑋 × 𝑋

which is the projection onto the factors where 𝛼 is a constant map.

Proof. It is shown in Example 14.17.2 that cosk0𝑍 equals 𝑍 × 𝑍 in degree 1. Moreover,
it is true in general that the morphism 𝑉1 → (cosk0sk0𝑉)1 is the morphism (𝑑1

0, 𝑑1
1) ∶ 𝑉1 →

𝑉0 × 𝑉0 (left to the reader). Thus we simply have to compute the 0th and 1st term of
𝐻𝑜𝑚(Δ[𝑘], 𝑋). According to Lemma 14.15.5 we have 𝐻𝑜𝑚(Δ[𝑘], 𝑋)0 = ∏𝛼∶[𝑘]→[0] 𝑋 =
𝑋, and 𝐻𝑜𝑚(Δ[𝑘], 𝑋)0 = ∏𝛼∶[𝑘]→[1] 𝑋. The lemma follows from the description of the
morphisms of the simplicial object just above Lemma 14.15.5. �

14.20. Simplicial objects in abelian categories

Recall that an abelian category is defined in Homology, Section 10.3.

Lemma 14.20.1. Let 𝒜 be an abelian category.
(1) The categories Simp(𝒜) and CoSimp(𝒜) are abelian.
(2) A morphism of (co)simplicial objects 𝑓 ∶ 𝐴 → 𝐵 is injective if and only if each

𝑓𝑛 ∶ 𝐴𝑛 → 𝐵𝑛 is injective.
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(3) A morphism of (co)simplicial objects 𝑓 ∶ 𝐴 → 𝐵 is surjective if and only if each
𝑓𝑛 ∶ 𝐴𝑛 → 𝐵𝑛 is surjective.

(4) A sequence of (co)simplicial objects

𝐴
𝑓

−→ 𝐵
𝑔

−→ 𝐶
is exact at 𝐵 if and only if each sequence

𝐴𝑖
𝑓𝑖−−→ 𝐵𝑖

𝑔𝑖−−→ 𝐶𝑖

is exact at 𝐵𝑖.

Proof. Pre-additivity is easy. A final object is given by 𝑈𝑛 = 0 in all degrees. Existence of
direct products we saw in Lemmas 14.6.2 and 14.9.2. Kernels and cokernels are obtained
by taking termwise kernels and cokernels. �

For an object 𝐴 of 𝒜 and an integer 𝑘 consider the 𝑘-truncated simplicial object 𝑈 with
(1) 𝑈𝑖 = 0 for 𝑖 < 𝑘,
(2) 𝑈𝑘 = 𝐴,
(3) all morphisms 𝑈(𝜑) equal to zero, except 𝑈(id[𝑘]) = id𝐴.

Since 𝒜 has both finite limits and finite colimits we see that both cosk𝑘𝑈 and 𝑖𝑘!𝑈 exist.
We will describe both of these and the canonical map 𝑖𝑘!𝑈 → cosk𝑘𝑈.

Lemma 14.20.2. With 𝐴, 𝑘 and 𝑈 as above, so 𝑈𝑖 = 0, 𝑖 < 𝑘 and 𝑈𝑘 = 𝐴.
(1) Given a 𝑘-truncated simplicial object 𝑉 we have

𝑀𝑜𝑟(𝑈, 𝑉) = {𝑓 ∶ 𝐴 → 𝑉𝑘 ∣ 𝑑𝑘
𝑖 ∘ 𝑓 = 0, 𝑖 = 0, … , 𝑘}

and

𝑀𝑜𝑟(𝑉, 𝑈) = {𝑓 ∶ 𝑉𝑘 → 𝐴 ∣ 𝑓 ∘ 𝑠𝑘−1
𝑖 = 0, 𝑖 = 0, … , 𝑘 − 1}.

(2) The object 𝑖𝑘!𝑈 has 𝑛th term equal to ⨁𝛼 𝐴 where 𝛼 runs over all surjective
morphisms 𝛼 ∶ [𝑛] → [𝑘].

(3) For any 𝜑 ∶ [𝑚] → [𝑛] the map 𝑖𝑘!𝑈(𝜑) is described as the mapping ⨁𝛼 𝐴 →
⨁𝛼′ 𝐴 which maps to component corresponding to 𝛼 ∶ [𝑛] → [𝑘] to zero if 𝛼 ∘ 𝜑
is not surjective and by the identity to the component corresponding to 𝛼 ∘ 𝜑 if it
is surjective.

(4) The object cosk𝑘𝑈 has 𝑛th term equal to ⨁𝛽 𝐴, where 𝛽 runs over all injective
morphisms 𝛽 ∶ [𝑘] → [𝑛].

(5) For any 𝜑 ∶ [𝑚] → [𝑛] the map cosk𝑘𝑈(𝜑) is described as the mapping ⨁𝛽 𝐴 →
⨁𝛽′ 𝐴 which maps to component corresponding to 𝛽 ∶ [𝑘] → [𝑛] to zero if 𝛽 does
not factor through 𝜑 and by the identity to each of the components corresponding
to 𝛽′ such that 𝛽 = 𝜑 ∘ 𝛽′ if it does.

(6) The canonical map 𝑐 ∶ 𝑖𝑘!𝑈 → cosk𝑘𝑈 in degree 𝑛 has (𝛼, 𝛽) coefficient 𝐴 → 𝐴
equal to zero if 𝛼 ∘ 𝛽 is not the identity and equal to id𝐴 if it is.

(7) The canonical map 𝑐 ∶ 𝑖𝑘!𝑈 → cosk𝑘𝑈 is injective.

Proof. The proof of (1) is left to the reader.
Let us take the rules of (2) and (3) as the definition of a simplicial object, call it �̃�. We will
show that it is an incarnation of 𝑖𝑘!𝑈. This will prove (2), (3) at the same time. We have
to show that given a morphism 𝑓 ∶ 𝑈 → sk𝑘𝑉 there exists a unique morphism ̃𝑓 ∶ �̃� → 𝑉
which recovers 𝑓 upon taking the 𝑘-skeleton. From (1) we see that 𝑓 corresponds with a
morphism 𝑓𝑘 ∶ 𝐴 → 𝑉𝑘 which maps into the kernel of 𝑑𝑘

𝑖 for all 𝑖. For any surjective
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𝛼 ∶ [𝑛] → [𝑘] we set ̃𝑓𝛼 ∶ 𝐴 → 𝑉𝑛 equal to the composition ̃𝑓𝛼 = 𝑉(𝛼) ∘ 𝑓𝑘 ∶ 𝐴 → 𝑉𝑛. We
define ̃𝑓𝑛 ∶ �̃�𝑛 → 𝑉𝑛 as the sum of the ̃𝑓𝛼 over 𝛼 ∶ [𝑛] → [𝑘] surjective. Such a collection
of ̃𝑓𝛼 defines a morphism of simplicial objects if and only if for any 𝜑 ∶ [𝑚] → [𝑛] the
diagram

⨁𝛼∶[𝑛]→[𝑘] surjective 𝐴
̃𝑓𝑛

//

(3)
��

𝑉𝑛

𝑉(𝜑)
��

⨁𝛼′∶[𝑚]→[𝑘] surjective 𝐴
̃𝑓𝑚 // 𝑉𝑚

is commutative. Choosing 𝜑 = 𝛼 shows our choice of ̃𝑓𝛼 is uniquely determined by 𝑓𝑘.
The commutativity in general may be checked for each summand of the left upper corner
separately. It is clear for the summands corresponding to 𝛼 where 𝛼∘𝜑 is surjective, because
those get mapped by id𝐴 to the summand with 𝛼′ = 𝛼 ∘ 𝜑, and we have ̃𝑓𝛼′ = 𝑉(𝛼′) ∘ 𝑓𝑘 =
𝑉(𝛼 ∘ 𝜑) ∘ 𝑓𝑘 = 𝑉(𝜑) ∘ ̃𝑓𝛼. For those where 𝛼 ∘ 𝜑 is not surjective, we have to show that
𝑉(𝜑) ∘ ̃𝑓𝛼 = 0. By definition this is equal to 𝑉(𝜑) ∘𝑉(𝛼) ∘𝑓𝑘 = 𝑉(𝛼∘𝜑) ∘𝑓𝑘. Since 𝛼∘𝜑 is not
surjective we can write it as 𝛿𝑘

𝑖 ∘ 𝜓, and we deduce that 𝑉(𝜑) ∘ 𝑉(𝛼) ∘ 𝑓𝑘 = 𝑉(𝜓) ∘ 𝑑𝑘
𝑖 ∘ 𝑓𝑘 = 0

see above.

Let us take the rules of (4) and (5) as the definition of a simplicial object, call it �̃�. We
will show that it is an incarnation of cosk𝑘𝑈. This will prove (4), (5) at the same time. The
argument is completely dual to the proof of (2), (3) above, but we give it anyway. We have
to show that given a morphism 𝑓 ∶ sk𝑘𝑉 → 𝑈 there exists a unique morphism ̃𝑓 ∶ 𝑉 → �̃�
which recovers 𝑓 upon taking the 𝑘-skeleton. From (1) we see that 𝑓 corresponds with a
morphism 𝑓𝑘 ∶ 𝑉𝑘 → 𝐴 which is zero on the image of 𝑠𝑘−1

𝑖 for all 𝑖. For any injective
𝛽 ∶ [𝑘] → [𝑛] we set ̃𝑓𝛽 ∶ 𝑉𝑛 → 𝐴 equal to the composition ̃𝑓𝛽 = 𝑓𝑘 ∘ 𝑉(𝛽) ∶ 𝑉𝑛 → 𝐴. We
define ̃𝑓𝑛 ∶ 𝑉𝑛 → �̃�𝑛 as the sum of the ̃𝑓𝛽 over 𝛽 ∶ [𝑘] → [𝑛] injective. Such a collection
of ̃𝑓𝛽 defines a morphism of simplicial objects if and only if for any 𝜑 ∶ [𝑚] → [𝑛] the
diagram

𝑉𝑛

𝑉(𝜑)
��

̃𝑓𝑛

//⨁𝛽∶[𝑘]→[𝑛] injective 𝐴

(5)
��

𝑉𝑚
̃𝑓𝑚 //⨁𝛽′∶[𝑘]→[𝑚] injective 𝐴

is commutative. Choosing 𝜑 = 𝛽 shows our choice of ̃𝑓𝛽 is uniquely determined by 𝑓𝑘.
The commutativity in general may be checked for each summand of the right lower corner
separately. It is clear for the summands corresponding to 𝛽′ where 𝜑∘𝛽′ is injective, because
these summands get mapped into by exactly the summand with 𝛽 = 𝜑 ∘ 𝛽′ and we have in
that case ̃𝑓𝛽′ ∘ 𝑉(𝜑) = 𝑓𝑘 ∘ 𝑉(𝛽′) ∘ 𝑉(𝜑) = 𝑓𝑘 ∘ 𝑉(𝛽) = ̃𝑓𝛽. For those where 𝜑 ∘ 𝛽′ is not
injective, we have to show that ̃𝑓𝛽′ ∘𝑉(𝜑) = 0. By definition this is equal to 𝑓𝑘∘𝑉(𝛽′)∘𝑉(𝜑) =
𝑓𝑘 ∘ 𝑉(𝜑 ∘ 𝛽′). Since 𝜑 ∘ 𝛽′ is not injective we can write it as 𝜓 ∘ 𝜎𝑘−1

𝑖 , and we deduce that
𝑓𝑘 ∘ 𝑉(𝛽′) ∘ 𝑉(𝜑) = 𝑓𝑘 ∘ 𝑠𝑘−1

𝑖 ∘ 𝑉(𝜓) = 0 see above.

The composition 𝑖𝑘!𝑈 → cosk𝑘𝑈 is the unique map of simplicial objects which is the
identity on 𝐴 = 𝑈𝑘 = (𝑖𝑘!𝑈)𝑘 = (cosk𝑘𝑈)𝑘. Hence it suffices to check that the proposed
rule defines a morphism of simplicial objects. To see this we have to show that for any
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𝜑 ∶ [𝑚] → [𝑛] the diagram

⨁𝛼∶[𝑛]→[𝑘] surjective 𝐴

(3)
��

(6)
//⨁𝛽∶[𝑘]→[𝑛] injective 𝐴

(5)
��

⨁𝛼′∶[𝑚]→[𝑘] surjective 𝐴
(6) //⨁𝛽′∶[𝑘]→[𝑚] injective 𝐴

is commutative. Now we can think of this in terms of matrices filled with only 0's and 1's
as follows: The matrix of (3) has a nonzero (𝛼′, 𝛼) entry if and only if 𝛼′ = 𝛼 ∘ 𝜑. Likewise
the matrix of (5) has a nonzero (𝛽′, 𝛽) entry if and only if 𝛽 = 𝜑 ∘ 𝛽′. The upper matrix of
(6) has a nonzero (𝛼, 𝛽) entry if and only if 𝛼 ∘ 𝛽 = id[𝑘]. Similarly for the lower matrix of
(6). The commutativity of the diagram then comes down to computing the (𝛼, 𝛽′) entry for
both compositions and seeing they are equal. This comes down to the following equality

# {𝛽 ∣ 𝛽 = 𝜑 ∘ 𝛽′ ∧ 𝛼 ∘ 𝛽 = id[𝑘]} = # {𝛼′ ∣ 𝛼′ = 𝛼 ∘ 𝜑 ∧ 𝛼′ ∘ 𝛽′ = id[𝑘]}

whose proof may safely be left to the reader.

Finally, we prove (7). This follows directly from Lemmas 14.16.7, 14.17.5, 14.19.3 and
14.19.9. �

Definition 14.20.3. Let 𝒜 be an abelian category. Let 𝐴 be an object of 𝒜 and let 𝑘 be an
integer ≥ 0. The Eilenberg-Maclane object 𝐾(𝐴, 𝑘) is given by the object 𝐾(𝐴, 𝑘) = 𝑖𝑘!𝑈
which is described in Lemma 14.20.2 above.

Lemma 14.20.4. Let 𝒜 be an abelian category. Let 𝐴 be an object of 𝒜 and let 𝑘 be an
integer ≥ 0. Consider the simplicial object 𝐸 defined by the following rules

(1) 𝐸𝑛 = ⨁𝛼 𝐴, where the sum is over 𝛼 ∶ [𝑛] → [𝑘 + 1] whose image is either [𝑘]
or [𝑘 + 1].

(2) Given 𝜑 ∶ [𝑚] → [𝑛] the map 𝐸𝑛 → 𝐸𝑚 maps the summand corresponding to 𝛼
via id𝐴 to the summand corresponding to 𝛼 ∘ 𝜑, provided Im(𝛼 ∘ 𝜑) is equal to [𝑘]
or [𝑘 + 1].

Then there exists a short exact sequence

0 → 𝐾(𝐴, 𝑘) → 𝐸 → 𝐾(𝐴, 𝑘 + 1) → 0

which is term by term split exact.

Proof. The maps 𝐾(𝐴, 𝑘)𝑛 → 𝐸𝑛 resp. 𝐸𝑛 → 𝐾(𝐴, 𝑘 + 1)𝑛 are given by the inclusion of
direct sums, resp. projection of direct sums which is obvious from the inclusions of index
sets. It is clear that these are maps of simplicial objects. �

Lemma 14.20.5. Let 𝒜 be an abelian category. For any simplicial object 𝑉 of 𝒜 we have

𝑉 = 𝑐𝑜𝑙𝑖𝑚𝑛 𝑖𝑛!sk𝑛𝑉

where all the transition maps are injections.

Proof. This is true simply because each 𝑉𝑚 is equal to (𝑖𝑛!sk𝑛𝑉)𝑚 as soon as 𝑛 ≥ 𝑚. See
also Lemma 14.19.10 for the transition maps. �
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14.21. Simplicial objects and chain complexes

Let 𝒜 be an abelian category. See Homology, Section 10.10 for conventions and nota-
tion regarding chain complexes. Let 𝑈 be a simplicial object of 𝒜. The associated chain
complex 𝑠(𝑈) of 𝑈, sometimes called the Moore complex, is the chain complex

… → 𝑈2 → 𝑈1 → 𝑈0 → 0 → 0 → …

with boundary maps 𝑑𝑛 ∶ 𝑈𝑛 → 𝑈𝑛−1 given by the formula

𝑑𝑛 = ∑
𝑛
𝑖=0

(−1)𝑖𝑑𝑛
𝑖 .

This is a complex because, by the relations listed in Remark 14.3.3, we have

𝑑𝑛 ∘ 𝑑𝑛+1 = (∑
𝑛
𝑖=0

(−1)𝑖𝑑𝑛
𝑖 ) ∘ (∑

𝑛+1
𝑗=0

(−1)𝑗𝑑𝑛+1
𝑗 )

= ∑0≤𝑖<𝑗≤𝑛+1
(−1)𝑖+𝑗𝑑𝑛

𝑗−1 ∘ 𝑑𝑛+1
𝑖 + ∑𝑛≥𝑖≥𝑗≥0

(−1)𝑖+𝑗𝑑𝑛
𝑖 ∘ 𝑑𝑛+1

𝑗

= 0.

The signs cancel! We denote the associated chain complex 𝑠(𝑈). Clearly, the construction
is functorial and hence defines a functor

𝑠 ∶ Simp(𝒜) ⟶ Ch≥0(𝒜).

Thus we have the confusing but correct formula 𝑠(𝑈)𝑛 = 𝑈𝑛.

Lemma 14.21.1. The functor 𝑠 is exact.

Proof. Clear from Lemma 14.20.1. �

Lemma 14.21.2. Let 𝒜 be an abelian category. Let 𝐴 be an object of 𝒜 and let 𝑘 be an
integer. Let 𝐸 be the object described in Lemma 14.20.4. Then the complex 𝑠(𝐸) is acyclic.

Proof. For a morphism 𝛼 ∶ [𝑛] → [𝑘 + 1] we define 𝛼′ ∶ [𝑛 + 1] → [𝑘 + 1] to be the map
such that 𝛼′|[𝑛] = 𝛼 and 𝛼′(𝑛 + 1) = 𝑘 + 1. Note that if the image of 𝛼 is [𝑘] or [𝑘 + 1],
then the image of 𝛼′ is [𝑘 + 1]. Consider the family of maps ℎ𝑛 ∶ 𝐸𝑛 → 𝐸𝑛+1 which maps
the summand corresponding to 𝛼 to the summand corresponding to 𝛼′ via the identity on
𝐴. Let us compute 𝑑𝑛+1 ∘ ℎ𝑛 − ℎ𝑛−1 ∘ 𝑑𝑛. We will first do this in case the category 𝒜 is the
category of abelian groups. Let us use the notation 𝑥𝛼 to indicate the element 𝑥 ∈ 𝐴 in the
summand of 𝐸𝑛 corresponding to the map 𝛼 occuring in the index set. Let us also adopt the
convention that 𝑥𝛼 designates the zero element of 𝐸𝑛 whenever Im(𝛼) is not [𝑘] or [𝑘 + 1].
With these conventions we see that

𝑑𝑛+1(ℎ𝑛(𝑥𝛼)) = ∑
𝑛+1
𝑖=0

(−1)𝑖𝑥𝛼′∘𝛿𝑛+1
𝑖

and
ℎ𝑛−1(𝑑𝑛(𝑥𝛼)) = ∑

𝑛
𝑖=0

(−1)𝑖𝑥(𝛼∘𝛿𝑛
𝑖 )′

It is easy to see that 𝛼′∘𝛿𝑛+1
𝑖 = (𝛼∘𝛿𝑛

𝑖 )′ for 𝑖 = 0, … , 𝑛. It is also easy to see that 𝛼′∘𝛿𝑛+1
𝑛+1 = 𝛼.

Thus we see that
(𝑑𝑛+1 ∘ ℎ𝑛 − ℎ𝑛−1 ∘ 𝑑𝑛)(𝑥𝛼) = (−1)𝑛+1𝑥𝛼

These identities continue to hold if 𝒜 is any abelian category because they hold in the
simplicial abelian group [𝑛] ↦ 𝐻𝑜𝑚(𝐴, 𝐸𝑛); details left to the reader. We conclude that
the identity map on 𝐸 is homotopic to zero, with homotopy given by the system of maps
ℎ′

𝑛 = (−1)𝑛+1ℎ𝑛 ∶ 𝐸𝑛 → 𝐸𝑛+1. Hence we see that 𝐸 is acyclic, for example by Homology,
Lemma 10.10.5. �
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Lemma 14.21.3. Let 𝒜 be an abelian category. Let 𝐴 be an object of 𝒜 and let 𝑘 be an
integer. We have 𝐻𝑖(𝑠(𝐾(𝐴, 𝑘))) = 𝐴 if 𝑖 = 𝑘 and 0 else.

Proof. First, let us prove this if 𝑘 = 0. In this case we have 𝐾(𝐴, 0)𝑛 = 𝐴 for all 𝑛.
Furthermore, all the maps in this simplicial abelian group are id𝐴, in other words 𝐾(𝐴, 0)
is the constant simplicial object with value 𝐴. The boundary maps 𝑑𝑛 = ∑𝑛

𝑖=0(−1)𝑖id𝐴 = 0
if 𝑛 odd and = id𝐴 if 𝑛 is even. Thus 𝑠(𝐾(𝐴, 0)) looks like this

… → 𝐴
0

−→ 𝐴
1

−→ 𝐴
0

−→ 𝐴 → 0

and the result is clear.

Next, we prove the result for all 𝑘 by induction. Given the result for 𝑘 consider the short
exact sequence

0 → 𝐾(𝐴, 𝑘) → 𝐸 → 𝐾(𝐴, 𝑘 + 1) → 0
from Lemma 14.20.4. By Lemma 14.20.1 the associated sequence of chain complexes is
exact. By Lemma 14.21.2 we see that 𝑠(𝐸) is acyclic. Hence the result for 𝑘 + 1 follows
from the long exact sequence of homlogy, see Homology, Lemma 10.10.6. �

There is a second chain complex we can associate to a simplicial object of 𝒜. Recall
that by Lemma 14.16.6 any simplicial object 𝑈 of 𝒜 is canonically split with 𝑁(𝑈𝑚) =
⋂𝑚−1

𝑖=0 Ker(𝑑𝑚
𝑖 ). We define the normalized chain complex 𝑁(𝑈) to be the chain complex

… → 𝑁(𝑈2) → 𝑁(𝑈1) → 𝑁(𝑈0) → 0 → 0 → …

with boundary map 𝑑𝑛 ∶ 𝑁(𝑈𝑛) → 𝑁(𝑈𝑛−1) given by the restriction of (−1)𝑛𝑑𝑛
𝑛 to the direct

summand 𝑁(𝑈𝑛) of 𝑈𝑛. Note that Lemma 14.16.8 implies that 𝑑𝑛
𝑛(𝑁(𝑈𝑛)) ⊂ 𝑁(𝑈𝑛−1). It

is a complex because 𝑑𝑛
𝑛 ∘ 𝑑𝑛+1

𝑛+1 = 𝑑𝑛
𝑛 ∘ 𝑑𝑛+1

𝑛 and 𝑑𝑛+1
𝑛 is zero on 𝑁(𝑈𝑛+1) by definition. Thus

we obtain a second functor

𝑁 ∶ Simp(𝒜) ⟶ Ch≥0(𝒜).

Here is the reason for the sign in the differential.

Lemma 14.21.4. Let 𝒜 be an abelian category. Let 𝑈 be a simplicial object of 𝒜. The
canonical map 𝑁(𝑈𝑛) → 𝑈𝑛 gives rise to a morphism of complexes 𝑁(𝑈) → 𝑠(𝑈).

Proof. This is clear because the differential on 𝑠(𝑈)𝑛 = 𝑈𝑛 is ∑(−1)𝑖𝑑𝑛
𝑖 and the maps 𝑑𝑛

𝑖 ,
𝑖 < 𝑛 are zero on 𝑁(𝑈𝑛), whereas the restriction of (−1)𝑛𝑑𝑛

𝑛 is the boundary map of 𝑁(𝑈)
by definition. �

Lemma 14.21.5. Let 𝒜 be an abelian category. Let 𝐴 be an object of 𝒜 and let 𝑘 be an
integer. We have 𝑁(𝐾(𝐴, 𝑘))𝑖 = 𝐴 if 𝑖 = 𝑘 and 0 else.

Proof. It is clear that 𝑁(𝐾(𝐴, 𝑘))𝑖 = 0 when 𝑖 < 𝑘 because 𝐾(𝐴, 𝑘)𝑖 = 0 in that case.
It is clear that 𝑁(𝐾(𝐴, 𝑘))𝑘 = 𝐴 since 𝐾(𝐴, 𝑘)𝑘−1 = 0 and 𝐾(𝐴, 𝑘)𝑘 = 𝐴. For 𝑖 > 𝑘
we have 𝑁(𝐾(𝐴, 𝑘))𝑖 = 0 by Lemma 14.19.9 and the definition of 𝐾(𝐴, 𝑘), see Definition
14.20.3. �

Lemma 14.21.6. Let 𝒜 be an abelian category. Let 𝑈 be a simplicial object of 𝒜. The
canonical morphism of chain complexes 𝑁(𝑈) → 𝑠(𝑈) is split. In fact,

𝑠(𝑈) = 𝑁(𝑈) ⊕ 𝐴(𝑈)

for some complex 𝐴(𝑈). The construction 𝑈 ↦ 𝐴(𝑈) is functorial.
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Proof. Define 𝐴(𝑈)𝑛 to be the image of

⨁𝜑∶[𝑛]→[𝑚] surjective, 𝑚<𝑛
𝑁(𝑈𝑚)

⨁ 𝑈(𝜑)
−−−−−−→ 𝑈𝑛

which is a subobject of 𝑈𝑛 complementary to 𝑁(𝑈𝑛) according to Lemma 14.16.6 and
Definition 14.16.1. We show that 𝐴(𝑈) is a subcomplex. Pick a surjective map 𝜑 ∶ [𝑛] →
[𝑚] with 𝑚 < 𝑛 and consider the composition

𝑁(𝑈𝑚)
𝑈(𝜑)

−−−−→ 𝑈𝑛
𝑑𝑛−−→ 𝑈𝑛−1.

This composition is the sum of the maps

𝑁(𝑈𝑚)
𝑈(𝜑∘𝛿𝑛

𝑖 )
−−−−−−→ 𝑈𝑛−1

with sign (−1)𝑖, 𝑖 = 0, … , 𝑛.

First we will prove by ascending induction on 𝑚, 0 ≤ 𝑚 < 𝑛 − 1 that all the maps 𝑈(𝜑 ∘ 𝛿𝑛
𝑖 )

map 𝑁(𝑈𝑚) into 𝐴(𝑈)𝑛−1. (The case 𝑚 = 𝑛 − 1 is treated below.) Whenever the map
𝜑 ∘ 𝛿𝑛

𝑖 ∶ [𝑛 − 1] → [𝑚] is surjective then the image of 𝑁(𝑈𝑚) under 𝑈(𝜑 ∘ 𝛿𝑛
𝑖 ) is contained in

𝐴(𝑈)𝑛−1 by definition. If 𝜑 ∘ 𝛿𝑛
𝑖 ∶ [𝑛 − 1] → [𝑚] is not surjective, set 𝑗 = 𝜑(𝑖) and observe

that 𝑖 is the unique indexwhose image under 𝜑 is 𝑗. Wemaywrite 𝜑∘𝛿𝑛
𝑖 = 𝛿𝑚

𝑗 ∘𝜓∘𝛿𝑛
𝑖 for some

𝜓 ∶ [𝑛−1] → [𝑚−1]. Hence 𝑈(𝜑∘𝛿𝑛
𝑖 ) = 𝑈(𝜓∘𝛿𝑛

𝑖 )∘𝑑𝑚
𝑗 which is zero on 𝑁(𝑈𝑚) unless 𝑗 = 𝑚.

If 𝑗 = 𝑚, then 𝑑𝑚
𝑚(𝑁(𝑈𝑚)) ⊂ 𝑁(𝑈𝑚−1) and hence 𝑈(𝜑 ∘ 𝛿𝑛

𝑖 )(𝑁(𝑈𝑚)) ⊂ 𝑈(𝜓 ∘ 𝛿𝑛
𝑖 )(𝑁(𝑈𝑚−1))

and we win by induction hypothesis.

To finish proving that 𝐴(𝑈) is a subcomplex we still have to deal with the composition

𝑁(𝑈𝑚)
𝑈(𝜑)

−−−−→ 𝑈𝑛
𝑑𝑛−−→ 𝑈𝑛−1.

in case 𝑚 = 𝑛 − 1. In this case 𝜑 = 𝜎𝑛−1
𝑗 for some 0 ≤ 𝑗 ≤ 𝑛 − 1 and 𝑈(𝜑) = 𝑠𝑛−1

𝑗 . Thus
the composition is given by the sum

∑(−1)𝑖𝑑𝑛
𝑖 ∘ 𝑠𝑛−1

𝑗

Recall from Remark 14.3.3 that 𝑑𝑛
𝑗 ∘ 𝑠𝑛−1

𝑗 = 𝑑𝑛
𝑗+1 ∘ 𝑠𝑛−1

𝑗 = id and these drop out because the
corresponding terms have opposite signs. The map 𝑑𝑛

𝑛 ∘ 𝑠𝑛−1
𝑗 , if 𝑗 < 𝑛 − 1, is equal to 𝑠𝑛−2

𝑗 ∘
𝑑𝑛−1

𝑛−1. Since 𝑑𝑛−1
𝑛−1 maps 𝑁(𝑈𝑛−1) into 𝑁(𝑈𝑛−2), we see that the image 𝑑𝑛

𝑛(𝑠𝑛−1
𝑗 (𝑁(𝑈𝑛−1))

is contained in 𝑠𝑛−2
𝑗 (𝑁(𝑈𝑛−2)) which is contained in 𝐴(𝑈𝑛−1) by definition. For all other

combinations of (𝑖, 𝑗) we have either 𝑑𝑛
𝑖 ∘𝑠𝑛−1

𝑗 = 𝑠𝑛−2
𝑗−1 ∘𝑑𝑛−1

𝑖 (if 𝑖 < 𝑗), or 𝑑𝑛
𝑖 ∘𝑠𝑛−1

𝑗 = 𝑠𝑛−2
𝑗 ∘𝑑𝑛−1

𝑖−1
(if 𝑛 > 𝑖 > 𝑗+1) and in these cases themap is zero because of the definition of 𝑁(𝑈𝑛−1). �

Lemma 14.21.7. The functor 𝑁 is exact.

Proof. By Lemma 14.21.1 and the functorial decomposition of Lemma 14.21.5. �

Lemma 14.21.8. Let 𝒜 be an abelian category. Let 𝑉 be a simplicial object of 𝒜. The
canonical morphism of chain complexes 𝑁(𝑉) → 𝑠(𝑉) is a quasi-isomorphism. In other
words, the complex 𝐴(𝑉) of Lemma 14.21.6 is acyclic.

Proof. Note that the result holds for 𝐾(𝐴, 𝑘) for any object 𝐴 and any 𝑘 ≥ 0, by Lemmas
14.21.3 and 14.21.5. Consider the hypothesis 𝐼𝐻𝑛,𝑚: for all 𝑉 such that 𝑉𝑗 = 0 for 𝑗 ≤ 𝑚
and all 𝑖 ≤ 𝑛 the map 𝑁(𝑉) → 𝑠(𝑉) induces an isomorphism 𝐻𝑖(𝑁(𝑉)) → 𝐻𝑖(𝑠(𝑉)).

To start of the induction, note that 𝐼𝐻𝑛,𝑛 is trivially true, because in that case 𝑁(𝑉)𝑛 = 0
and 𝑠(𝑉)𝑛 = 0.
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Assume 𝐼𝐻𝑛,𝑚, with 𝑚 ≤ 𝑛. Pick a simplicial object 𝑉 such that 𝑉𝑗 = 0 for 𝑗 < 𝑚. By
Lemma 14.20.2 and Definition 14.20.3 we have 𝐾(𝑉𝑚, 𝑚) = 𝑖𝑚!sk𝑚𝑉. By Lemma 14.19.10
the natural morphism

𝐾(𝑉𝑚, 𝑚) = 𝑖𝑚!sk𝑚𝑉 → 𝑉
is injective. Thus we get a short exact sequence

0 → 𝐾(𝑉𝑚, 𝑚) → 𝑉 → 𝑊 → 0

for some 𝑊 with 𝑊𝑖 = 0 for 𝑖 = 0, … , 𝑚. This short exact sequence induces a morphism
of short exact sequence of associated complexes

0 // 𝑁(𝐾(𝑉𝑚, 𝑚)) //

��

𝑁(𝑉) //

��

𝑁(𝑊) //

��

0

0 // 𝑠(𝐾(𝑉𝑚, 𝑚)) // 𝑠(𝑉) // 𝑠(𝑊) // 0

see Lemmas 14.21.1 and 14.21.7. Hence we deduce the result for 𝑉 from the result on the
ends. �

14.22. Dold-Kan

Lemma 14.22.1. Let 𝒜 be an abelian category. The functor 𝑁 is faithful, and reflects
isomorphisms, injections and surjections.

Proof. The faithfulness is immediate from the canonical splitting of Lemma 14.16.6. The
statement on reflecting injections, surjections, and isomorphisms follows from Lemma
14.16.7. �

Lemma 14.22.2. Let 𝒜 and ℬ be abelian categories. Let 𝑁 ∶ 𝒜 → ℬ, and 𝑆 ∶ ℬ → 𝒜
be functors. Suppose that

(1) the functors 𝑆 and 𝑁 are exact,
(2) there is an isomorphism 𝑔 ∶ 𝑁 ∘ 𝑆 → idℬ to the identity functor of ℬ,
(3) 𝑁 is faithful, and
(4) 𝑆 is essentially surjective.

Proof. It suffices to construct a functorial isomorphism 𝑆(𝑁(𝐴)) ≅ 𝐴. To do this choose
𝐵 and an isomorphism 𝑓 ∶ 𝐴 → 𝑆(𝐵). Consider the map

𝑓−1 ∘ 𝑔𝑆(𝐵) ∘ 𝑆(𝑁(𝑓)) ∶ 𝑆(𝑁(𝐴)) → 𝑆(𝑁(𝑆(𝐵))) → 𝑆(𝐵) → 𝐴.

It is easy to show this does not depend on the choice of 𝑓, 𝐵 and gives the desired isomor-
phism 𝑆 ∘ 𝑁 → id𝒜. �

Theorem 14.22.3. Let 𝒜 be an abelian category. The functor 𝑁 induces an equivalence
of categories

𝑁 ∶ Simp(𝒜) ⟶ Ch≥0(𝒜)

Proof. We will describe a functor in the reverse direction inspired by the construction of
Lemma 14.20.4 (except that we throw in a sign to get the boundaries right). Let 𝐴• be a
chain complex with boundary maps 𝑑𝐴,𝑛 ∶ 𝐴𝑛 → 𝐴𝑛−1. For each 𝑛 ≥ 0 denote

𝐼𝑛 = {𝛼 ∶ [𝑛] → {0, 1, 2, …} ∣ Im(𝛼) = [𝑘] for some 𝑘}.

For 𝛼 ∈ 𝐼𝑛 we denote 𝑘(𝛼) the unique integer such that Im(𝛼) = [𝑘]. We define a simplicial
object 𝑆(𝐴•) as follows:

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=019E
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=019F
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=019G
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(1) 𝑆(𝐴•)𝑛 = ⨁𝛼∈𝐼𝑛
𝐴𝑘(𝛼), which wewill write as ⨁𝛼∈𝐼𝑛

𝐴𝑘(𝛼)⋅𝛼 to suggest thinking
of ``𝛼'' as a basis vector for the summand corresponding to it,

(2) given 𝜑 ∶ [𝑚] → [𝑛] we define 𝑆(𝐴•)(𝜑) by its restriction to the direct summand
𝐴𝑘(𝛼) ⋅ 𝛼 of 𝑆(𝐴•)𝑛 as follows
(a) 𝛼 ∘ 𝜑∉𝐼𝑚 then we set it equal to zero,
(b) 𝛼 ∘ 𝜑 ∈ 𝐼𝑚 but 𝑘(𝛼 ∘ 𝜑) not equal to either 𝑘(𝛼) or 𝑘(𝛼) − 1 then we set it

equal to zero as well,
(c) if 𝛼∘𝜑 ∈ 𝐼𝑚 and 𝑘(𝛼∘𝜑) = 𝑘(𝛼) then we use the identity map to the summand

𝐴𝑘(𝛼∘𝜑) ⋅ (𝛼 ∘ 𝜑) of 𝑆(𝐴•)𝑚, and
(d) if 𝛼 ∘ 𝜑 ∈ 𝐼𝑚 and 𝑘(𝛼 ∘ 𝜑) = 𝑘(𝛼) − 1 then we use (−1)𝑘(𝛼)𝑑𝐴,𝑘(𝛼) to the

summand 𝐴𝑘(𝛼∘𝜑) ⋅ (𝛼 ∘ 𝜑) of 𝑆(𝐴•)𝑚.
It is an exercise (FIXME) to show that this is a simplicial complex; one has to use in par-
ticular that the compositions 𝑑𝐴,𝑘 ∘ 𝑑𝐴,𝑘−1 are all zero.

Having verified this, the correct way to proceed with the proof would be to prove directly
that 𝑁 and 𝑆 are quasi-inverse functors (FIXME). Instead we prove this by an indirect
method using Eilenberg-Maclane objects and truncations. It is clear that 𝐴• ↦ 𝑆(𝐴•) is
an exact functor from chain complexes to simplicial objects. If 𝐴𝑖 = 0 for 𝑖 = 0, … , 𝑛
then 𝑆(𝐴•)𝑖 = 0 for 𝑖 = 0, … , 𝑛. The objects 𝐾(𝐴, 𝑘), see Definition 14.20.3, are equal to
𝑆(𝐴[−𝑘]) where 𝐴[−𝑘] is the chain complex with 𝐴 in degree 𝑘 and zero elsewhere.

Moreover, for each integer 𝑘 we get a sub simplicial object 𝑆≤𝑘(𝐴•) by considering only
those 𝛼 with 𝑘(𝛼) ≤ 𝑘. In fact this is nothing but 𝑆(𝜎≤𝑘𝐴•), where 𝜎≤𝑘𝐴• is the ``stupid''
truncation of 𝐴• at 𝑘 (which simply replaces 𝐴𝑖 by 0 for 𝑖 > 𝑘). Also, by Lemma 14.19.10
we see that it is equal to 𝑖𝑘!sk𝑘𝑆(𝐴•). Clearly, the quotient 𝑆≤𝑘(𝐴•)/𝑆≤𝑘−1(𝐴•) = 𝐾(𝐴𝑘, 𝑘)
and the quotient 𝑆(𝐴•)/𝑆≤𝑘(𝐴•) = 𝑆(𝐴/𝜎≤𝑘𝐴•) is a simplicial object whose 𝑖th term is
zero for 𝑖 = 0, … , 𝑘. Since 𝑆≤𝑘−1(𝐴•) is filtered with subquotients 𝐾(𝐴𝑖, 𝑖), 𝑖 < 𝑘 we see
that 𝑁(𝑆≤𝑘−1(𝐴•))𝑘 = 0 by exactness of the functor 𝑁, see Lemma 14.21.7. All in all we
conclude that the maps

𝑁(𝑆(𝐴•))𝑘 ← 𝑁(𝑆≤𝑘(𝐴•))𝑘 → 𝑁(𝑆(𝐴𝑘[−𝑘])) = 𝑁(𝐾(𝐴𝑘, 𝑘))𝑘 = 𝐴𝑘

are functorial isomorphisms.

It is actually easy to identify the map 𝐴𝑘 → 𝑁(𝑆(𝐴•))𝑘. Note that there is a unique map
𝐴𝑘 → 𝑆(𝐴•)𝑘 corresponding to the summand 𝛼 = id[𝑘]. Note that Im(id[𝑘] ∘ 𝛿𝑘

𝑖 ) has car-
dinality 𝑘 − 1 but does not have image [𝑘 − 1] unless 𝑖 = 𝑘. Hence 𝑑𝑘

𝑖 kills the summand
𝐴𝑘 ⋅ id[𝑘] for 𝑖 = 0, … , 𝑘 − 1. From the abstract computation of 𝑁(𝑆(𝐴•))𝑘 above we
conclude that the summand 𝐴𝑘 ⋅ id[𝑘] is equal to 𝑁(𝑆(𝐴•))𝑘.

In order to show that 𝑁 ∘ 𝑆 is the identity functor on Ch≥0(𝒜), the last thing we have to
verify is that we recover the map 𝑑𝐴,𝑘+1 ∶ 𝐴𝑘+1 → 𝐴𝑘 as the differential on the complex
𝑁(𝑆(𝐴•)) as follows

𝐴𝑘+1 = 𝑁(𝑆(𝐴•))𝑘+1 → 𝑁(𝑆(𝐴•))𝑘 = 𝐴𝑘

By definition themap𝑁(𝑆(𝐴•))𝑘+1 → 𝑁(𝑆(𝐴•))𝑘 corresponds to the restriction of (−1)𝑘+1𝑑𝑘+1
𝑘+1

to 𝑁(𝑆(𝐴•)) which is the summand 𝐴𝑘+1 ⋅ id[𝑘+1]. And by the definition of 𝑆(𝐴•) above
the map 𝑑𝑘+1

𝑘+1 maps 𝐴𝑘+1 ⋅ id[𝑘+1] into 𝐴𝑘 ⋅ id[𝑘] by (−1)𝑘+1𝑑𝐴,𝑘+1. The signs cancel and
hence the desired equality.

We know that 𝑁 is faithful, see Lemma 14.22.1. If we can show that 𝑆 is essentially
surjective, then it will follow that 𝑁 is an equivalence, see Homology, Lemma 14.22.2.
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Note that if 𝐴• is a chain complex then 𝑆(𝐴•) = 𝑐𝑜𝑙𝑖𝑚𝑛 𝑆≤𝑛(𝐴•) = 𝑐𝑜𝑙𝑖𝑚𝑛 𝑆(𝜎≤𝑛𝐴•) =
𝑐𝑜𝑙𝑖𝑚𝑛 𝑖𝑛!sk𝑛𝑆(𝐴•) by construction of 𝑆. By Lemma 14.20.5 it suffices to show that 𝑖𝑛!𝑉 is
in the essential image for any 𝑛-truncated simplicial object 𝑉. By induction on 𝑛 it suffices
to show that any extension

0 → 𝑆(𝐴•) → 𝑉 → 𝐾(𝐴, 𝑛) → 0
where 𝐴𝑖 = 0 for 𝑖 ≥ 𝑛 is in the essential image of 𝑆. By Homology, Lemma 10.5.2 we
have abelian group homomorphisms

ExtSimp(𝒜)(𝐾(𝐴, 𝑛), 𝑆(𝐴•))
𝑁 //

ExtCh≥0(𝒜)(𝐴[−𝑛], 𝐴•)
𝑆
oo

between ext groups (see Homology, Definition 10.4.2). We want to show that 𝑆 is surjec-
tive. We know that 𝑁 ∘ 𝑆 = id. Hence it suffices to show that Ker(𝑁) = 0. Clearly an
extension

0 // 0 //

��

𝐴𝑛−1
//

��

𝐴𝑛−2
//

��

… // 𝐴0
//

��

0

𝐸 ∶ 0 // 𝐴 //

��

𝐴𝑛−1
//

��

𝐴𝑛−2
//

��

… // 𝐴0
//

��

0

0 // 𝐴 // 0 // 0 // … // 0 // 0
of 𝐴• by 𝐴[−𝑛] in Ch(𝒜) is zero if and only if the map 𝐴 → 𝐴𝑛−1 is zero. Thus we have to
show that any extension

0 → 𝑆(𝐴•) → 𝑉 → 𝐾(𝐴, 𝑛) → 0
such that 𝐴 = 𝑁(𝑉)𝑛 → 𝑁(𝑉)𝑛−1 is zero is split. By Lemma 14.20.2 we have

𝑀𝑜𝑟(𝐾(𝐴, 𝑛), 𝑉) = {𝑓 ∶ 𝐴 → ⋂
𝑛
𝑖=0

ker(𝑑𝑛
𝑖 ∶ 𝑉𝑛 → 𝑉𝑛−1)}

and if 𝐴 = 𝑁(𝑉)𝑛 → 𝑁(𝑉)𝑛−1 is zero, then the intersection occuring in the formula above
is equal to 𝐴. Let 𝑖 ∶ 𝐾(𝐴, 𝑛) → 𝑉 be the morphism corresponding to id𝐴 on the right hand
side of the displayed formula. Clearly this is a section to the map 𝑉 → 𝐾(𝐴, 𝑛) and the
extension is split as desired. �

14.23. Dold-Kan for cosimplicial objects

Let 𝒜 be an abelian category. According to Homology, Lemma 10.3.13 also 𝒜𝑜𝑝𝑝 is abelian.
It follows formally from the definitions that

CoSimp(𝒜) = Simp(𝒜𝑜𝑝𝑝)𝑜𝑝𝑝.
Thus Dold-Kan (Theorem 14.22.3) implies that CoSimp(𝒜) is equivalent to the category
Ch≥0(𝒜𝑜𝑝𝑝)𝑜𝑝𝑝. And it follows formally from the definitions that

CoCh≥0(𝒜) = Ch≥0(𝒜𝑜𝑝𝑝)𝑜𝑝𝑝.
Putting these arrows together we obtain an equivalence

𝑄 ∶ CoSimp(𝒜) ⟶ CoCh≥0(𝒜).
In this section we describe 𝑄.
First we define the cochain complex 𝑠(𝑈) associated to a cosimplicial object 𝑈. It is the
cochain complex with terms zero in negative degrees, and 𝑠(𝑈)𝑛 = 𝑈𝑛 for 𝑛 ≥ 0. As
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differentials we use the maps 𝑑𝑛 ∶ 𝑠(𝑈)𝑛 → 𝑠(𝑈)𝑛+1 defined by 𝑑𝑛 = ∑𝑛+1
𝑖=0 (−1)𝑖𝛿𝑛+1

𝑖 . In
other words the complex 𝑠(𝑈) looks like

0 // 𝑈0
𝛿1

0−𝛿1
1 // 𝑈1

𝛿2
0−𝛿2

1+𝛿2
2 // 𝑈2

// …

This is sometimes also called the Moore complex associated to 𝑈.

On the other hand, given a cosimplicial object 𝑈 of 𝒜 set 𝑄(𝑈)0 = 𝑈0 and

𝑄(𝑈)𝑛 = Coker( ⨁𝑛−1
𝑖=0 𝑈𝑛−1

𝛿𝑛
𝑖 // 𝑈𝑛 ).

The differential 𝑑𝑛 ∶ 𝑄(𝑈)𝑛 → 𝑄(𝑈)𝑛+1 is induced by (−1)𝑛+1𝛿𝑛+1
𝑛+1, i.e., by fitting the

morphism (−1)𝑛+1𝛿𝑛+1
𝑛+1 into a commutative diagram

𝑈𝑛
(−1)𝑛+1𝛿𝑛+1

𝑛+1

//

��

𝑈𝑛+1

��
𝑄(𝑈)𝑛 𝑑𝑛 // 𝑄(𝑈)𝑛+1.

We leave it to the reader to show that this diagram makes sense, i.e., that the image of 𝛿𝑛
𝑖

maps into the kernel of the right vertical arrow for 𝑖 = 0, … , 𝑛 − 1. (This is dual to Lemma
14.16.8.) Thus our cochain complex 𝑄(𝑈) looks like this

0 → 𝑄(𝑈)0 → 𝑄(𝑈)1 → 𝑄(𝑈)2 → …

This is called the normalized cochain complex associated to 𝑈. The dual to the Dold-Kan
Theorem 14.22.3 is the following.

Lemma 14.23.1. Let 𝒜 be an abelian category.
(1) The functor 𝑠 ∶ CoSimp(𝒜) → CoCh≥0(𝒜) is exact.
(2) The maps 𝑠(𝑈)𝑛 → 𝑄(𝑈)𝑛 define a morphism of cochain complexes.
(3) There exists a functorial direct sum decomposition 𝑠(𝑈) = 𝐴(𝑈) ⊕ 𝑄(𝑈) in

CoCh≥0(𝒜).
(4) The functor 𝑄 is exact.
(5) The morphism of complexes 𝑠(𝑈) → 𝑄(𝑈) is a quasi-isomorphism.
(6) The functor 𝑈 ↦ 𝑄(𝑈)• defines an equivalence of categories CoSimp(𝒜) →

CoCh≥0(𝒜).

Proof. Omitted. But the results are the exact dual statements to Lemmas 14.21.1, 14.21.4,
14.21.6, 14.21.7, 14.21.8, and Theorem 14.22.3. �

14.24. Homotopies

Consider the simplicial sets Δ[0] and Δ[1]. Recall that there are two morphisms

𝑒0, 𝑒1 ∶ Δ[0] ⟶ Δ[1],

coming from the morphisms [0] → [1] mapping 0 to an element of [1] = {0, 1}. Recall
also that each set Δ[1]𝑘 is finite. Hence, if the category 𝒞 has finite coproducts, then we
can form the product

𝑈 × Δ[1]

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=019I
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for any simplicial object 𝑈 of 𝒞, see Definition 14.12.1. Note that Δ[0] has the property
that Δ[0]𝑘 = {∗} is a singleton for all 𝑘 ≥ 0. Hence 𝑈 × Δ[0] = 𝑈. Thus 𝑒0, 𝑒1 above gives
rise to morphisms

𝑒0, 𝑒1 ∶ 𝑈 → 𝑈 × Δ[1].

Definition 14.24.1. Let 𝒞 be a category having finite coproducts. Suppose that 𝑈 and 𝑉
are two simplicial objects of 𝒞. We say morphisms 𝑎, 𝑏 ∶ 𝑈 → 𝑉 are homotopic if there
exists a morphism

ℎ ∶ 𝑈 × Δ[1] ⟶ 𝑉
such that 𝑎 = ℎ ∘ 𝑒0 and 𝑏 = ℎ ∘ 𝑒1. In this case ℎ is called a homotopy connecting 𝑎 and 𝑏.

It is possible to define this notion for pairs of maps between simplicial objects in any cate-
gory. To do this you just work out what it means to have the morphisms ℎ𝑛 ∶ (𝑈×Δ[1])𝑛 →
𝑉𝑛 in terms of the mapping property of coproducts.
Let 𝒞 be a category with finite coproducts. Let 𝑈, 𝑉 be simplicial objects of 𝒞. Let 𝑎, 𝑏 ∶
𝑈 → 𝑉 be morphisms. Further, suppose that ℎ ∶ 𝑈 × Δ[1] → 𝑉 is a homotopy connecting
𝑎 and 𝑏. For every 𝑛 ≥ 0 let us write

Δ[1]𝑛 = {𝛼𝑛
0, … , 𝛼𝑛

𝑛+1}
where 𝛼𝑖 ∶ [𝑛] → [1] is the map such that

𝛼𝑛
𝑖 (𝑗) = {

0 if 𝑗 < 𝑖
1 if 𝑗 ≥ 𝑖

Thus
ℎ𝑛 ∶ (𝑈 × Δ[1])𝑛 = ∐ 𝑈𝑛 ⋅ 𝛼𝑛

𝑖 ⟶ 𝑉𝑛

has a component ℎ𝑛,𝑖 ∶ 𝑈𝑛 → 𝑉𝑛 which is the restriction to the summand corresponding to
𝛼𝑛

𝑖 for all 𝑖 = 0, … , 𝑛 + 1.

Lemma 14.24.2. In the situation above, we have the following relations:
(1) We have ℎ𝑛,0 = 𝑏𝑛 and ℎ𝑛,𝑛+1 = 𝑎𝑛.
(2) We have 𝑑𝑛

𝑗 ∘ ℎ𝑛,𝑖 = ℎ𝑛−1,𝑖−1 ∘ 𝑑𝑛
𝑗 for 𝑖 > 𝑗.

(3) We have 𝑑𝑛
𝑗 ∘ ℎ𝑛,𝑖 = ℎ𝑛−1,𝑖 ∘ 𝑑𝑛

𝑗 for 𝑖 ≤ 𝑗.
(4) We have 𝑠𝑛

𝑗 ∘ ℎ𝑛,𝑖 = ℎ𝑛+1,𝑖+1 ∘ 𝑠𝑛
𝑗 for 𝑖 > 𝑗.

(5) We have 𝑠𝑛
𝑗 ∘ ℎ𝑛,𝑖 = ℎ𝑛+1,𝑖 ∘ 𝑠𝑛

𝑗 for 𝑖 ≤ 𝑗.
Conversely, given a system of maps ℎ𝑛,𝑖 satisfying the properties listed above, then these
define a morphisms ℎ which is a homotopy between 𝑎 and 𝑏.

Proof. Omitted. You can prove the last statement using the fact, see Lemma 14.2.4 that to
give a morphism of simplicial objects is the same as giving a sequence of morphisms ℎ𝑛
commuting with all 𝑑𝑛

𝑗 and 𝑠𝑛
𝑗 . �

Example 14.24.3. Suppose in the situation above 𝑎 = 𝑏. Then there is a trivial homotopy
between 𝑎 and 𝑏, namely the one with ℎ𝑛,𝑖 = 𝑎𝑛 = 𝑏𝑛.

Remark 14.24.4. Let 𝒞 be any category (no assumptions whatsoever). We say that a pair
of morphisms 𝑎, 𝑏 ∶ 𝑈 → 𝑉 of simplicial objects are homotopic if there exist morphisms1
ℎ𝑛,𝑖 ∶ 𝑈𝑛 → 𝑉𝑛, for 𝑛 ≥ 0, 𝑖 = 0, … , 𝑛 + 1 satisfying the relations of Lemma 14.24.2.
This is a ``better'' definition, because it applies to any category. Also it has the following

1In the literature, often the maps ℎ𝑛+1,𝑖 ∘ 𝑠𝑖 ∶ 𝑈𝑛 → 𝑉𝑛+1 are used instead of the maps ℎ𝑛,𝑖. Of course the
relations these maps satisfy are different from the ones in Lemma 14.24.2.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=019K
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=019L
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07KA
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=019M
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property: if 𝐹 ∶ 𝒞 → 𝒞′ is any functor then 𝑎 homotopic to 𝑏 implies trivially that 𝐹(𝑎) is
homotopic to 𝐹(𝑏). Since the lemma says that the newer notion is the same as the old one
in case finite coproduct exist, we deduce in particular that functors preserve the old notion
whenever both categories have finite coproducts.

Definition 14.24.5. Let 𝒞 be a category having finite coproducts. Suppose that 𝑈 and 𝑉 are
two simplicial objects of 𝒞. We say a morphism 𝑎 ∶ 𝑈 → 𝑉 is a homotopy equivalence if
there exists a morphism 𝑏 ∶ 𝑉 → 𝑈 such that 𝑎∘𝑏 is homotopic to id𝑉 and 𝑏∘𝑎 is homotopic
to id𝑈. If there exists such a morphism between 𝑈 and 𝑉, then we say that 𝑈 and 𝑉 are
homotopy equivalent.

The following lemma says that 𝑈 × Δ[1] is homotopy equivalent to 𝑈.

Lemma 14.24.6. Let 𝒞 be a category with finite coproducts. Let 𝑈 be a simplicial object
of 𝒞. Consider the maps 𝑒1, 𝑒0 ∶ 𝑈 → 𝑈 × Δ[1], and 𝜋 ∶ 𝑈 × Δ[1] → 𝑈, see Lemma
14.12.3.

(1) We have 𝜋 ∘ 𝑒1 = 𝜋 ∘ 𝑒0 = id𝑈, and
(2) The morphisms id𝑈×Δ[1], and 𝑒0 ∘ 𝜋 are homotopic.
(3) The morphisms id𝑈×Δ[1], and 𝑒1 ∘ 𝜋 are homotopic.

Proof. The first assertion is trivial. For the second, consider the map of simplicial sets
Δ[1] × Δ[1] ⟶ Δ[1] which in degree 𝑛 assigns to a pair (𝛽1, 𝛽2), 𝛽𝑖 ∶ [𝑛] → [1] the
morphism 𝛽 ∶ [𝑛] → [1] defined by the rule

𝛽(𝑖) = max{𝛽1(𝑖), 𝛽2(𝑖)}.

It is a morphism of simplicial sets, because the action Δ[1](𝜑) ∶ Δ[1]𝑛 → Δ[1]𝑚 of 𝜑 ∶
[𝑚] → [𝑛] is by precomposing. Clearly, using notation from Section 14.24, we have 𝛽 = 𝛽1
if 𝛽2 = 𝛼𝑛

0 and 𝛽 = 𝛼𝑛
𝑛+1 if 𝛽2 = 𝛼𝑛

𝑛+1. This implies easily that the induced morphism

𝑈 × Δ[1] × Δ[1] ⟶ 𝑈 × Δ[1]

of Lemma 14.12.3 is a homotopy between id𝑈×Δ[1] and 𝑒0 ∘ 𝜋. Similarly for 𝑒1 ∘ 𝜋 (use
minimum instead of maximum). �

Lemma 14.24.7. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism of a category 𝒞 with fibre products.
Assume 𝑓 has a section 𝑠. Consider the simplicial object 𝑈 constructed in Example 14.3.5
starting with 𝑓. The morphism 𝑈 → 𝑈 which in each degree is the self map (𝑠 ∘ 𝑓)𝑛+1 of
𝑌 ×𝑋 … ×𝑋 𝑌 given by 𝑠 ∘ 𝑓 on each factor is homotopic to the identity on 𝑈. In particular,
𝑈 is homotopy equivalent to the constant simplicial object 𝑋.

Proof. Set 𝑔0 = id𝑌 and 𝑔1 = 𝑠 ∘ 𝑓. We use the morphisms

𝑌 ×𝑋 … ×𝑋 𝑌 × 𝑀𝑜𝑟([𝑛], [1]) → 𝑌 ×𝑋 … ×𝑋 𝑌
(𝑦0, … , 𝑦𝑛) × 𝛼 ↦ (𝑔𝛼(0)(𝑦0), … , 𝑔𝛼(𝑛)(𝑦𝑛))

where we use the functor of points point of view to define the maps. Another way to say
this is to say that ℎ𝑛,0 = id, ℎ𝑛,𝑛+1 = (𝑠 ∘ 𝑓)𝑛+1 and ℎ𝑛,𝑖 = id𝑖+1

𝑌 × (𝑠 ∘ 𝑓)𝑛+1−𝑖. We leave it to
the reader to show that these satsify the relations of Lemma 14.24.2. Hence they define the
desired homotopy. See also Remark 14.24.4 which shows that we do not need to assume
anything else on the category 𝒞. �
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14.25. Homotopies in abelian categories

Let 𝒜 be an abelian category. Let 𝑈, 𝑉 be simplicial objects of 𝒜. Let 𝑎, 𝑏 ∶ 𝑈 → 𝑉 be
morphisms. Further, suppose that ℎ ∶ 𝑈 × Δ[1] → 𝑉 is a homotopy connecting 𝑎 and 𝑏.
Consider the two morphisms of chain complexes 𝑠(𝑎), 𝑠(𝑏) ∶ 𝑠(𝑈) ⟶ 𝑠(𝑉). Using the
notation introduced above Lemma 14.24.2 we define

𝑠(ℎ)𝑛 ∶ 𝑈𝑛 ⟶ 𝑉𝑛+1

by the formula

(14.25.0.1) 𝑠(ℎ)𝑛 = ∑
𝑛
𝑖=0

(−1)𝑖+1ℎ𝑛+1,𝑖+1 ∘ 𝑠𝑛
𝑖 .

Let us compute 𝑑𝑛+1 ∘ 𝑠(ℎ)𝑛 + 𝑠(ℎ)𝑛−1 ∘ 𝑑𝑛. We first compute

𝑑𝑛+1 ∘ 𝑠(ℎ)𝑛 = ∑
𝑛+1
𝑗=0 ∑

𝑛
𝑖=0

(−1)𝑗+𝑖+1𝑑𝑛+1
𝑗 ∘ ℎ𝑛+1,𝑖+1 ∘ 𝑠𝑛

𝑖

= ∑1≤𝑖+1≤𝑗≤𝑛+1
(−1)𝑗+𝑖+1ℎ𝑛,𝑖+1 ∘ 𝑑𝑛+1

𝑗 ∘ 𝑠𝑛
𝑖

+ ∑𝑛≥𝑖≥𝑗≥0
(−1)𝑖+𝑗+1ℎ𝑛,𝑖 ∘ 𝑑𝑛+1

𝑗 ∘ 𝑠𝑛
𝑖

= ∑1≤𝑖+1<𝑗≤𝑛+1
(−1)𝑗+𝑖+1ℎ𝑛,𝑖+1 ∘ 𝑠𝑛−1

𝑖 ∘ 𝑑𝑛
𝑗−1

+ ∑1≤𝑖+1=𝑗≤𝑛+1
(−1)𝑗+𝑖+1ℎ𝑛,𝑖+1

+ ∑𝑛≥𝑖=𝑗≥0
(−1)𝑖+𝑗+1ℎ𝑛,𝑖

+ ∑𝑛≥𝑖>𝑗≥0
(−1)𝑖+𝑗+1ℎ𝑛,𝑖 ∘ 𝑠𝑛−1

𝑖−1 ∘ 𝑑𝑛
𝑗

We leave it to the reader to see that the first and the last of the four sums cancel exactly
against all the terms of

𝑠(ℎ)𝑛−1 ∘ 𝑑𝑛 =
𝑛−1

∑
𝑖=0

𝑛

∑
𝑗=0

(−1)𝑖+1+𝑗ℎ𝑛,𝑖+1 ∘ 𝑠𝑛−1
𝑖 ∘ 𝑑𝑛

𝑗 .

Hence we obtain

𝑑𝑛+1 ∘ 𝑠(ℎ)𝑛 + 𝑠(ℎ)𝑛−1 ∘ 𝑑𝑛 =
𝑛+1

∑
𝑗=1

(−1)2𝑗ℎ𝑛,𝑗 +
𝑛

∑
𝑖=0

(−1)2𝑖+1ℎ𝑛,𝑖

= ℎ𝑛,𝑛+1 − ℎ𝑛,0

= 𝑎𝑛 − 𝑏𝑛

Thus we've proved part of the following lemma.

Lemma 14.25.1. Let 𝒜 be an abelian category. Let 𝑎, 𝑏 ∶ 𝑈 → 𝑉 be morphisms of simpli-
cial objects of 𝒜. If 𝑎, 𝑏 are homotopic, then 𝑠(𝑎), 𝑠(𝑏) ∶ 𝑠(𝑈) → 𝑠(𝑉), and 𝑁(𝑎), 𝑁(𝑏) ∶
𝑁(𝑈) → 𝑁(𝑉) are homotopic maps of chain complexes.

Proof. The part about 𝑠(𝑎) and 𝑠(𝑏) is clear from the calculation above the lemma. On the
other hand, if follows from Lemma 14.21.6 that 𝑁(𝑎), 𝑁(𝑏) are compositions

𝑁(𝑈) → 𝑠(𝑈) → 𝑠(𝑉) → 𝑁(𝑉)

where we use 𝑠(𝑎), 𝑠(𝑏) in the middle. Hence the assertion follows fromHomology, Lemma
10.10.1. �
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Lemma 14.25.2. Let𝒜 be an abelian category. Let 𝑎 ∶ 𝑈 → 𝑉 be a morphism of simplicial
objects of 𝒜. If 𝑎 is a homotopy equivalence, then 𝑠(𝑎) ∶ 𝑠(𝑈) → 𝑠(𝑉), and 𝑁(𝑎) ∶ 𝑁(𝑈) →
𝑁(𝑉) are homotopy equivalences of chain complexes.

Proof. Omitted. See Lemma 14.25.1 above. �

14.26. Homotopies and cosimplicial objects

Let 𝒞 be a category with finite products. Let 𝑉 be a cosimplicial object and consider
𝐻𝑜𝑚(Δ[1], 𝑉), see Section 14.13. The morphisms 𝑒0, 𝑒1 ∶ Δ[0] → Δ[1] produce two
morphisms 𝑒0, 𝑒1 ∶ 𝐻𝑜𝑚(Δ[1], 𝑉) → 𝑉.

Definition 14.26.1. Let 𝒞 be a category having finite products. Suppose that 𝑈 and 𝑉 are
two cosimplicial objects of 𝒞. We say morphisms 𝑎, 𝑏 ∶ 𝑈 → 𝑉 are homotopic if there
exists a morphism

ℎ ∶ 𝑈 ⟶ 𝐻𝑜𝑚(Δ[1], 𝑉)
such that 𝑎 = 𝑒0 ∘ ℎ and 𝑏 = 𝑒1 ∘ ℎ. In this case ℎ is called a homotopy connecting 𝑎 and 𝑏.

This is really exactly the same as the notion we introduced for simplicial objects earlier. In
particular, recall that Δ[1]𝑛 is a finite set, and that

ℎ𝑛 = (ℎ𝑛,𝛼) ∶ 𝑈 ⟶ ∏𝛼∈Δ[1]𝑛
𝑉𝑛

is given by a collection of maps ℎ𝑛,𝛼 ∶ 𝑈𝑛 → 𝑉𝑛 parametrized by elements of Δ[1]𝑛 =
𝑀𝑜𝑟Δ([𝑛], [1]). As in Lemma 14.24.2 these morphisms satisfy some relations. Namely, for
every 𝑓 ∶ [𝑛] → [𝑚] in Δ we should have
(14.26.1.1) ℎ𝑚,𝛼 ∘ 𝑈(𝑓) = 𝑉(𝑓) ∘ ℎ𝑛,𝛼∘𝑓

The condition that 𝑎 = 𝑒0∘ℎ means that 𝑎𝑛 = ℎ𝑛,0∶[𝑛]→[1] where 0 ∶ [𝑛] → [1] is the constant
map with value zero. Similarly, we should have 𝑏𝑛 = ℎ𝑛,1∶[𝑛]→[1]. In particular we deduce
once more that the notion of homotopy can be formulated between cosimplicial objects of
any category, i.e., existence of products is not necessary. Here is a precise formulation of
why this is dual to the notion of a homotopy between morphisms of simplicial objects.

Lemma 14.26.2. Let 𝒞 be a category having finite products. Suppose that 𝑈 and 𝑉 are
two cosimplicial objects of 𝒞. Let 𝑎, 𝑏 ∶ 𝑈 → 𝑉 be morphisms of cosimplicial objects.
Recall that 𝑈, 𝑉 correspond to simplicial objects 𝑈′, 𝑉′ of 𝒞𝑜𝑝𝑝. Moreover 𝑎, 𝑏 correspond
to morphisms 𝑎′, 𝑏′ ∶ 𝑉′ → 𝑈′. The following are equivalent

(1) The morphisms 𝑎, 𝑏 ∶ 𝑈 → 𝑉 of cosimplicial objects are homotopic.
(2) The morphisms 𝑎′, 𝑏′ ∶ 𝑉′ → 𝑈′ of simplicial objects of 𝒞𝑜𝑝𝑝 are homotopic.

Proof. If 𝒞 has finite products, then 𝒞𝑜𝑝𝑝 has finite coproducts. And the contravariant
functor (−)′ ∶ 𝒞 → 𝒞𝑜𝑝𝑝 transforms products into coproducts. Then it is immediate from
the definitions that (𝐻𝑜𝑚(Δ[1], 𝑉))′ = 𝑉′ × Δ[1]. And so on and so forth. �

Lemma 14.26.3. Let 𝒞, 𝒞′, 𝒟𝒟′ be categories such that 𝒞, 𝒞′ have finite products, and
𝒟, 𝒟′ have finite coproducts.

(1) Let 𝑎, 𝑏 ∶ 𝑈 → 𝑉 be morphisms of simplicial objects of 𝒟. Let 𝐹 ∶ 𝒟 → 𝒟′

be a covariant functor. If 𝑎 and 𝑏 are homotopic, then 𝐹(𝑎), 𝐹(𝑏) are homotopic
morphisms 𝐹(𝑈) → 𝐹(𝑉) of simplicial objects.

(2) Let 𝑎, 𝑏 ∶ 𝑈 → 𝑉 be morphisms of cosimplicial objects of 𝒞. Let 𝐹 ∶ 𝒞 → 𝒞′

be a covariant functor. If 𝑎 and 𝑏 are homotopic, then 𝐹(𝑎), 𝐹(𝑏) are homotopic
morphisms 𝐹(𝑈) → 𝐹(𝑉) of cosimplicial objects.
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(3) Let 𝑎, 𝑏 ∶ 𝑈 → 𝑉 be morphisms of simplicial objects of 𝒟. Let 𝐹 ∶ 𝒟 → 𝒞 be a
contravariant functor. If 𝑎 and 𝑏 are homotopic, then 𝐹(𝑎), 𝐹(𝑏) are homotopic
morphisms 𝐹(𝑉) → 𝐹(𝑈) of cosimplicial objects.

(4) Let 𝑎, 𝑏 ∶ 𝑈 → 𝑉 be morphisms of cosimplicial objects of 𝒞. Let 𝐹 ∶ 𝒞 → 𝒟 be
a contravariant functor. If 𝑎 and 𝑏 are homotopic, then 𝐹(𝑎), 𝐹(𝑏) are homotopic
morphisms 𝐹(𝑉) → 𝐹(𝑈) of simplicial objects.

Proof. By Lemma 14.26.2 above, we can turn 𝐹 into a covariant functor between a pair
of categories which have finite coproducts, and we have to show that the functor preserves
homotopic pairs of maps. It is explained in Remark 14.24.4 how this is the case. Even if
the functor does not commute with coproducts! �

Lemma 14.26.4. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism of a category 𝒞 with push outs. Assume 𝑓
has a section 𝑠. Consider the cosimplicial object 𝑈 constructed in Example 14.5.5 starting
with 𝑓. The morphism 𝑈 → 𝑈 which in each degree is the self map of 𝑌 ⨿𝑋 … ⨿𝑋 𝑌 given
by 𝑠 ∘ 𝑓 on each factor is homotopic to the identity on 𝑈. In particular, 𝑈 is homotopy
equivalent to the constant cosimplicial object 𝑋.

Proof. The dual statement which is Lemma 14.24.7. Hence this lemma follows on applying
Lemma 14.26.2. �

Lemma 14.26.5. Let 𝒜 be an abelian category. Let 𝑎, 𝑏 ∶ 𝑈 → 𝑉 be morphisms of
cosimplicial objects of 𝒜. If 𝑎, 𝑏 are homotopic, then 𝑠(𝑎), 𝑠(𝑏) ∶ 𝑠(𝑈) → 𝑠(𝑉), and
𝑄(𝑎), 𝑄(𝑏) ∶ 𝑄(𝑈) → 𝑄(𝑉) are homotopic maps of cochain complexes.

Proof. Let (−)′ ∶ 𝒜 → 𝒜𝑜𝑝𝑝 be the contravariant functor 𝐴 ↦ 𝐴. By Lemma 14.26.4 the
maps 𝑎′ and 𝑏′ are homotopic. By Lemma 14.25.1 we see that 𝑠(𝑎′) and 𝑠(𝑏′) are homotopic
maps of chain complexes. Since 𝑠(𝑎′) = (𝑠(𝑎))′ and 𝑠(𝑏′) = (𝑠(𝑏))′ we conclude that also
𝑠(𝑎) and 𝑠(𝑏) are homotopic by applying the additive contravariant functor (−)″ ∶ 𝒜𝑜𝑝𝑝 →
𝒜. The result for the 𝑄-complexes follows from the direct sum decomposition of Lemma
14.23.1 for example. �

14.27. More homotopies in abelian categories

Let 𝒜 be an abelian category. In this section we show that a homotopy between morphisms
in Ch≥0(𝒜) always comes from a morphism 𝑈 × Δ[1] → 𝑉 in the category of simplicial
objects. In some sense this will provide a converse to Lemma 14.25.1. We first develop
some material on homotopies between morphisms of chain complexes.

Lemma 14.27.1. Let 𝒜 be an abelian category. Let 𝐴 be a chain complex. Consider the
covariant functor

𝐵 ⟼ {(𝑎, 𝑏, ℎ) ∣ 𝑎, 𝑏 ∶ 𝐴 → 𝐵 and ℎ a homotopy between 𝑎, 𝑏}

There exists a chain complex ⋄𝐴 such that 𝑀𝑜𝑟Ch(𝒜)(⋄𝐴, −) is isomorphic to the displayed
functor. The construction 𝐴 ↦ ⋄𝐴 is functorial.

Proof. We set ⋄𝐴𝑛 = 𝐴𝑛 ⊕ 𝐴𝑛 ⊕ 𝐴𝑛−1, and we define 𝑑⋄𝐴,𝑛 by the matrix

𝑑⋄𝐴,𝑛 =
⎛
⎜
⎜
⎝

𝑑𝐴,𝑛 0 id𝐴𝑛−1
0 𝑑𝐴,𝑛 −id𝐴𝑛−1
0 0 −𝑑𝐴,𝑛−1

⎞
⎟
⎟
⎠

∶ 𝐴𝑛 ⊕ 𝐴𝑛 ⊕ 𝐴𝑛−1 → 𝐴𝑛−1 ⊕ 𝐴𝑛−1 ⊕ 𝐴𝑛−2

If 𝒜 is the category of abelian groups, and (𝑥, 𝑦, 𝑧) ∈ 𝐴𝑛 ⊕ 𝐴𝑛 ⊕ 𝐴𝑛−1 then 𝑑⋄𝐴,𝑛(𝑥, 𝑦, 𝑧) =
(𝑑𝑛(𝑥) + 𝑧, 𝑑𝑛(𝑦) − 𝑧, −𝑑𝑛−1(𝑧)). It is easy to verify that 𝑑2 = 0. Clearly, there are two maps
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⋄𝑎, ⋄𝑏 ∶ 𝐴 → ⋄𝐴 (first summand and second summand), and a map ⋄𝐴 → 𝐴[−1] which
give a short exact sequence

0 → 𝐴 ⊕ 𝐴 → ⋄𝐴 → 𝐴[−1] → 0

which is termwise split. Moreover, there is a sequence of maps ⋄ℎ𝑛 ∶ 𝐴𝑛 → ⋄𝐴𝑛+1, namely
the identity from 𝐴𝑛 to the summand 𝐴𝑛 of ⋄𝐴𝑛+1, such that ⋄ℎ is a homotopy between ⋄𝑎
and ⋄𝑏.

We conclude that any morphism 𝑓 ∶ ⋄𝐴 → 𝐵 gives rise to a triple (𝑎, 𝑏, ℎ) by setting
𝑎 = 𝑓 ∘ ⋄𝑎, 𝑏 = 𝑓 ∘ ⋄𝑏 and ℎ𝑛 = 𝑓𝑛+1 ∘ ⋄ℎ𝑛. Conversely, given a triple (𝑎, 𝑏, ℎ) we get a
morphism 𝑓 ∶ ⋄𝐴 → 𝐵 by taking

𝑓𝑛 = (𝑎𝑛, 𝑏𝑛, ℎ𝑛−1).

To see that this is a morphism of chain complexes you have to do a calculation. We only do
this in case 𝒜 is the category of abelian groups: Say (𝑥, 𝑦, 𝑧) ∈ ⋄𝐴𝑛 = 𝐴𝑛 ⊕ 𝐴𝑛 ⊕ 𝐴𝑛−1.
Then

𝑓𝑛−1(𝑑𝑛(𝑥, 𝑦, 𝑧)) = 𝑓𝑛−1(𝑑𝑛(𝑥) + 𝑧, 𝑑𝑛(𝑦) − 𝑧, −𝑑𝑛−1(𝑧))
= 𝑎𝑛(𝑑𝑛(𝑥)) + 𝑎𝑛(𝑧) + 𝑏𝑛(𝑑𝑛(𝑦)) − 𝑏𝑛(𝑧) − ℎ𝑛−2(𝑑𝑛−1(𝑧))

and

𝑑𝑛(𝑓𝑛(𝑥, 𝑦, 𝑧) = 𝑑𝑛(𝑎𝑛(𝑥) + 𝑏𝑛(𝑦) + ℎ𝑛−1(𝑧))
= 𝑑𝑛(𝑎𝑛(𝑥)) + 𝑑𝑛(𝑏𝑛(𝑦)) + 𝑑𝑛(ℎ𝑛−1(𝑧))

which are the same by definition of a homotopy. �

Note that the extension
0 → 𝐴 ⊕ 𝐴 → ⋄𝐴 → 𝐴[−1] → 0

comes with sections of the morphisms ⋄𝐴𝑛 → 𝐴[−1]𝑛 with the property that the associated
morphism 𝛿 ∶ 𝐴[−1] → (𝐴⊕𝐴)[−1], see Homology, Lemma 10.12.4 equals the morphism
(1, −1) ∶ 𝐴[−1] → 𝐴[−1] ⊕ 𝐴[−1].

Lemma 14.27.2. Let 𝒜 be an abelian category. Let

0 → 𝐴 ⊕ 𝐴 → 𝐵 → 𝐶 → 0

be a short exact sequence of chain complexes of 𝒜. Suppose given in addition morphisms
𝑠𝑛 ∶ 𝐶𝑛 → 𝐵𝑛 splitting the associated short exact sequence in degree 𝑛. Let 𝛿(𝑠) ∶ 𝐶 →
(𝐴 ⊕ 𝐴)[−1] = 𝐴[−1] ⊕ 𝐴[−1] be the associated morphism of complexes, see Homology,
Lemma 10.12.4. If 𝛿(𝑠) factors through the morphism (1, −1) ∶ 𝐴[−1] → 𝐴[−1] ⊕ 𝐴[−1],
then there is a unique morphism 𝐵 → ⋄𝐴 fitting into a commutative diagram

0 // 𝐴 ⊕ 𝐴

��

// 𝐵 //

��

𝐶

��

// 0

0 // 𝐴 ⊕ 𝐴 // ⋄𝐴 // 𝐴[−1] // 0

where the vertical maps are compatible with the splittings 𝑠𝑛 and the splittings of ⋄𝐴𝑛 →
𝐴[−1]𝑛 as well.

Proof. Denote (𝑝𝑛, 𝑞𝑛) ∶ 𝐵𝑛 → 𝐴𝑛 ⊕ 𝐴𝑛 the morphism 𝜋𝑛 of Homology, Lemma 10.12.4.
Also write (𝑎, 𝑏) ∶ 𝐴 ⊕ 𝐴 → 𝐵, and 𝑟 ∶ 𝐵 → 𝐶 for the maps in the short exact sequence.
Write the factorization of 𝛿(𝑠) as 𝛿(𝑠) = (1, −1) ∘ 𝑓. This means that 𝑝𝑛−1 ∘ 𝑑𝐵,𝑛 ∘ 𝑠𝑛 = 𝑓𝑛,
and 𝑞𝑛−1 ∘ 𝑑𝐵,𝑛 ∘ 𝑠𝑛 = −𝑓𝑛, and Set 𝐵𝑛 → ⋄𝐴𝑛 = 𝐴𝑛 ⊕ 𝐴𝑛 ⊕ 𝐴𝑛−1 equal to (𝑝𝑛, 𝑞𝑛, 𝑓𝑛 ∘ 𝑟𝑛).
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Now we have to check that this actually defines a morphism of complexes. We will only
do this in the case of abelian grous. Pick 𝑥 ∈ 𝐵𝑛. Then 𝑥 = 𝑎𝑛(𝑥1) + 𝑏𝑛(𝑥2) + 𝑠𝑛(𝑥3) and
it suffices to show that our definition commutes with differential for each term separately.
For the term 𝑎𝑛(𝑥1) we have (𝑝𝑛, 𝑞𝑛, 𝑓𝑛 ∘ 𝑟𝑛)(𝑎𝑛(𝑥1)) = (𝑥1, 0, 0) and the result is obvious.
Similarly for the term 𝑏𝑛(𝑥2). For the term 𝑠𝑛(𝑥3) we have

(𝑝𝑛, 𝑞𝑛, 𝑓𝑛 ∘ 𝑟𝑛)(𝑑𝑛(𝑠𝑛(𝑥3))) = (𝑝𝑛, 𝑞𝑛, 𝑓𝑛 ∘ 𝑟𝑛)(
𝑎𝑛(𝑓𝑛(𝑥3)) − 𝑏𝑛(𝑓𝑛(𝑥3)) + 𝑠𝑛(𝑑𝑛(𝑥3)))

= (𝑓𝑛(𝑥3), −𝑓𝑛(𝑥3), 𝑓𝑛(𝑑𝑛(𝑥3)))

by definition of 𝑓𝑛. And

𝑑𝑛(𝑝𝑛, 𝑞𝑛, 𝑓𝑛 ∘ 𝑟𝑛)(𝑠𝑛(𝑥3)) = 𝑑𝑛(0, 0, 𝑓𝑛(𝑥3))
= (𝑓𝑛(𝑥3), −𝑓𝑛(𝑥3), 𝑑𝐴[−1],𝑛(𝑓𝑛(𝑥3)))

The result follows as 𝑓 is a morphism of complexes. �

Lemma 14.27.3. Let 𝒜 be an abelian category. Let 𝑈, 𝑉 be simplicial objects of 𝒜. Let
𝑎, 𝑏 ∶ 𝑈 → 𝑉 be a pair of morphisms. Assume the corresponding maps of chain complexes
𝑁(𝑎), 𝑁(𝑏) ∶ 𝑁(𝑈) → 𝑁(𝑉) are homotopic by a homotopy {𝑁𝑛 ∶ 𝑁(𝑈)𝑛 → 𝑁(𝑉)𝑛+1}.
Then 𝑎, 𝑏 are homotopic in the sense of Definition 14.24.1. Moreover, one can choose the
homotopy ℎ ∶ 𝑈 × Δ[1] → 𝑉 such that 𝑁𝑛 = 𝑁(ℎ)𝑛 where 𝑁(ℎ) is the homotopy coming
from ℎ as in Section 14.25.

Proof. Let (⋄𝑁(𝑈), ⋄𝑎, ⋄𝑏, ⋄ℎ) be as in Lemma 14.27.1 and its proof. By that lemma there
exists a morphism ⋄𝑁(𝑈) → 𝑁(𝑉) representing the triple (𝑁(𝑎), 𝑁(𝑏), {𝑁𝑛}). We will
show there exists a morphism 𝜓 ∶ 𝑁(𝑈 × Δ[1]) → ⋄𝑁(𝑈) such that ⋄𝑎 = 𝜓 ∘ 𝑁(𝑒0),
and ⋄𝑏 = 𝜓 ∘ 𝑁(𝑒1). Moreover, we will show that the homotopy between 𝑁(𝑒0), 𝑁(𝑒1) ∶
𝑁(𝑈) → 𝑁(𝑈 × Δ[1]) coming from (14.25.0.1) and Lemma 14.25.1 with ℎ = id𝑈×Δ[1]
is mapped via 𝜓 to the canonical homotopy ⋄ℎ between the two maps ⋄𝑎, ⋄𝑏 ∶ 𝑁(𝑈) →
⋄𝑁(𝑈). Certainly this will imply the lemma.

Note that 𝑁 ∶ Simp(𝒜) → Ch≥0(𝒜) as a functor is a direct summand of the functor
𝑁 ∶ Simp(𝒜) → Ch≥0(𝒜). Also, the functor ⋄ is compatible with direct sums. Thus it
suffices instead to construct a morphism Ψ ∶ 𝑠(𝑈 × Δ[1]) → ⋄𝑠(𝑈) with the corresponding
properties. This is what we do below.

By Definition 14.24.1 the morphisms 𝑒0 ∶ 𝑈 → 𝑈 × Δ[1] and 𝑒1 ∶ 𝑈 → 𝑈 × Δ[1]
are homotopic with homotopy id𝑈×Δ[1]. By Lemma 14.25.1 we get an explicit homotopy
{ℎ𝑛 ∶ 𝑠(𝑈)𝑛 → 𝑠(𝑈 × Δ[1])𝑛+1} between the morphisms of chain complexes 𝑠(𝑒0) ∶
𝑠(𝑈) → 𝑠(𝑈 × Δ[1]) and 𝑠(𝑒1) ∶ 𝑠(𝑈) → 𝑠(𝑈 × Δ[1]). By Lemma 14.27.2 above we get a
corresponding morphism

Φ ∶ ⋄𝑠(𝑈) → 𝑠(𝑈 × Δ[1])
According to the construction, Φ𝑛 restricted to the summand 𝑠(𝑈)[−1]𝑛 = 𝑠(𝑈)𝑛−1 of
⋄𝑠(𝑈)𝑛 is equal to ℎ𝑛−1. And

ℎ𝑛−1 = ∑
𝑛−1
𝑖=0

(−1)𝑖+1𝑠𝑛
𝑖 ⋅ 𝛼𝑛

𝑖+1 ∶ 𝑈𝑛−1 → ⨁𝑗
𝑈𝑛 ⋅ 𝛼𝑛

𝑗 .

with obvious notation.

On the other hand, themorphisms 𝑒𝑖 ∶ 𝑈 → 𝑈×Δ[1] induce amorphism (𝑒0, 𝑒1) ∶ 𝑈⊕𝑈 →
𝑈×Δ[1]. Denote𝑊 the cokernel. Note that, if wewrite (𝑈×Δ[1])𝑛 = ⨁𝛼∶[𝑛]→[1] 𝑈𝑛⋅𝛼, then
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we may identify 𝑊𝑛 = ⨁𝑛
𝑖=1 𝑈𝑛 ⋅ 𝛼𝑛

𝑖 with 𝛼𝑛
𝑖 as in Section 14.24. We have a commutative

diagram
0 // 𝑈 ⊕ 𝑈

(1,1)
%%

// 𝑈 × Δ[1]

𝜋
��

// 𝑊 // 0

𝑈
This implies we have a similar commutative diagram after applying the functor 𝑠. Next, we
choose the splittings 𝜎𝑛 ∶ 𝑠(𝑊)𝑛 → 𝑠(𝑈 × Δ[1])𝑛 by mapping the summand 𝑈𝑛 ⋅ 𝛼𝑛

𝑖 ⊂ 𝑊𝑛
via (−1, 1) to the summands 𝑈𝑛 ⋅ 𝛼𝑛

0 ⊕ 𝑈𝑛 ⋅ 𝛼𝑛
𝑖 ⊂ (𝑈 × Δ[1])𝑛. Note that 𝑠(𝜋)𝑛 ∘ 𝜎𝑛 = 0. It

follows that (1, 1) ∘ 𝛿(𝜎)𝑛 = 0. Hence 𝛿(𝜎) factors as in Lemma 14.27.2. By that lemma we
obtain a canonical morphism Ψ ∶ 𝑠(𝑈 × Δ[1]) → ⋄𝑠(𝑈).

To compute Ψ we first compute the morphism 𝛿(𝜎) ∶ 𝑠(𝑊) → 𝑠(𝑈)[−1] ⊕ 𝑠(𝑈)[−1].
According to Homology, Lemma 10.12.4 and its proof, to do this we have compute

𝑑𝑠(𝑈×𝛿[1]),𝑛 ∘ 𝜎𝑛 − 𝜎𝑛−1 ∘ 𝑑𝑠(𝑊),𝑛

and write it as a morphism into 𝑈𝑛−1 ⋅ 𝛼𝑛−1
0 ⊕ 𝑈𝑛−1 ⋅ 𝛼𝑛−1

𝑛 . We only do this in case 𝒜 is
the category of abelian groups. We use the short hand notation 𝑥𝛼 for 𝑥 ∈ 𝑈𝑛 to denote the
element 𝑥 in the summand 𝑈𝑛 ⋅ 𝛼 of (𝑈 × Δ[1])𝑛. Recall that

𝑑𝑠(𝑈×𝛿[1]),𝑛 = ∑
𝑛
𝑖=0

(−1)𝑖𝑑𝑛
𝑖

where 𝑑𝑛
𝑖 maps the summand 𝑈𝑛 ⋅ 𝛼 to the summand 𝑈𝑛−1 ⋅ (𝛼 ∘ 𝛿𝑛

𝑖 ) via the morphism 𝑑𝑛
𝑖 of

the simplicial object 𝑈. In terms of the notation above this means

𝑑𝑠(𝑈×𝛿[1]),𝑛(𝑥𝛼) = ∑
𝑛
𝑖=0

(−1)𝑖(𝑑𝑛
𝑖 (𝑥))𝛼∘𝛿𝑛

𝑖

Starting with 𝑥𝛼 ∈ 𝑊𝑛, in other words 𝛼 = 𝛼𝑛
𝑗 for some 𝑗 ∈ {1, … , 𝑛}, we see that 𝜎𝑛(𝑥𝛼) =

𝑥𝛼 − 𝑥𝛼𝑛
0
and hence

(𝑑𝑠(𝑈×𝛿[1]),𝑛 ∘ 𝜎𝑛)(𝑥𝛼) = ∑
𝑛
𝑖=0

(−1)𝑖(𝑑𝑛
𝑖 (𝑥))𝛼∘𝛿𝑛

𝑖
− ∑

𝑛
𝑖=0

(−1)𝑖(𝑑𝑛
𝑖 (𝑥))𝛼𝑛

0∘𝛿𝑛
𝑖

To compute 𝑑𝑠(𝑊),𝑛(𝑥𝛼), we have to omit all terms where 𝛼 ∘ 𝛿𝑛
𝑖 = 𝛼𝑛−1

0 , 𝛼𝑛−1
𝑛 . Hence we get

(𝜎𝑛−1 ∘ 𝑑𝑠(𝑊),𝑛)(𝑥𝛼) =
∑𝑖=0,…,𝑛 and 𝛼∘𝛿𝑛

𝑖 ≠𝛼𝑛−1
0 or 𝛼𝑛−1

𝑛 ((−1)𝑖(𝑑𝑛
𝑖 (𝑥))𝛼∘𝛿𝑛

𝑖
− (−1)𝑖(𝑑𝑛

𝑖 (𝑥))𝛼𝑛−1
0 )

Clearly the difference of the two terms is the sum

∑𝑖=0,…,𝑛 and 𝛼∘𝛿𝑛
𝑖 =𝛼𝑛−1

0 or 𝛼𝑛−1
𝑛 ((−1)𝑖(𝑑𝑛

𝑖 (𝑥))𝛼∘𝛿𝑛
𝑖

− (−1)𝑖(𝑑𝑛
𝑖 (𝑥))𝛼𝑛−1

0 )

Of course, if 𝛼 ∘ 𝛿𝑛
𝑖 = 𝛼𝑛−1

0 then the term drops out. Recall that 𝛼 = 𝛼𝑛
𝑗 for some 𝑗 ∈

{1, … , 𝑛}. The only way 𝛼𝑛
𝑗 ∘ 𝛿𝑛

𝑖 = 𝛼𝑛−1
𝑛 is if 𝑗 = 𝑛 and 𝑖 = 𝑛. Thus we actually get 0

unless 𝑗 = 𝑛 and in that case we get (−1)𝑛(𝑑𝑛
𝑛(𝑥))𝛼𝑛−1

𝑛
− (−1)𝑛(𝑑𝑛

𝑛(𝑥))𝛼𝑛−1
0

. In other words,
we conclude the morphism

𝛿(𝜎)𝑛 ∶ 𝑊𝑛 → (𝑠(𝑈)[−1] ⊕ 𝑠(𝑈)[−1])𝑛 = 𝑈𝑛−1 ⊕ 𝑈𝑛−1

is zero on all summands except𝑈𝑛⋅𝛼𝑛
𝑛 and on that summand it is equal to ((−1)𝑛𝑑𝑛

𝑛, −(−1)𝑛𝑑𝑛
𝑛).

(Namely, the first summand of the two corresponds to the factor with 𝛼𝑛−1
𝑛 because that is

the map [𝑛 − 1] → [1] which maps everybody to 0, and hence corresponds to 𝑒0.)
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We obtain a canonical diagram

0 // 𝑠(𝑈) ⊕ 𝑠(𝑈) //

��

⋄𝑠(𝑈) //

Φ
��

𝑠(𝑈)[−1] //

��

0

0 // 𝑠(𝑈) ⊕ 𝑠(𝑈) //

��

𝑠(𝑈 × Δ[1]) //

Ψ
��

𝑠(𝑊) //

��

0

0 // 𝑠(𝑈) ⊕ 𝑠(𝑈) // ⋄𝑠(𝑈) // 𝑠(𝑈)[−1] // 0

We claim that Φ∘Ψ is the identity. To see this it is enough to prove that the composition of Φ
and 𝛿(𝜎) as a map 𝑠(𝑈)[−1] → 𝑠(𝑊) → 𝑠(𝑈)[−1]⊕𝑠(𝑈)[−1] is the identity in the first factor
and minus identity in the second. By the computations above it is ((−1)𝑛𝑑𝑛

0, −(−1)𝑛𝑑𝑛
0) ∘

(−1)𝑛𝑠𝑛
𝑛 = (1, −1) as desired. �

14.28. A homotopy equivalence

Suppose that 𝐴, 𝐵 are sets, and that 𝑓 ∶ 𝐴 → 𝐵 is a map. Consider the associated map of
simplicial sets

cosk0(𝐴) ( … 𝐴 × 𝐴 × 𝐴

��

//
//
//
𝐴 × 𝐴

��

//
//oo

oo
𝐴)

��

oo

cosk0(𝐵) ( … 𝐵 × 𝐵 × 𝐵
//
//
//
𝐵 × 𝐵

//
//oo

oo
𝐵)oo

See Example 14.17.2. The case 𝑛 = 0 of the following lemma says that this map of simpli-
cial sets has a section if 𝑓 is surjective. The proof: choose a section of 𝑓.

Lemma 14.28.1. Let 𝑓 ∶ 𝑉 → 𝑈 be a morphism of simplicial sets. Let 𝑛 ≥ 0 be an integer.
Assume

(1) The map 𝑓𝑖 ∶ 𝑉𝑖 → 𝑈𝑖 is a bijection for 𝑖 < 𝑛.
(2) The map 𝑓𝑛 ∶ 𝑉𝑛 → 𝑈𝑛 is a surjection.
(3) The canonical morphism 𝑈 → cosk𝑛sk𝑛𝑈 is an isomorphism.
(4) The canonical morphism 𝑉 → cosk𝑛sk𝑛𝑉 is an isomorphism.

Then there exists a morphism of simplicial sets 𝑔 ∶ 𝑈 → 𝑉 such that 𝑓 ∘ 𝑔 = id𝑈.

Proof. By Lemma 14.16.2 both 𝑈 and 𝑉 have canonical splittings with 𝑁(𝑈𝑖) and 𝑁(𝑉𝑖)
equal to the sets of nondegenerate simplices. We have to find maps 𝑔𝑚 ∶ 𝑈𝑚 → 𝑉𝑚 for
𝑚 ≥ 0 such that

𝑑𝑘
𝑖 ∘ 𝑔𝑘 = 𝑔𝑘−1 ∘ 𝑑𝑘

𝑖(14.28.1.1)
𝑠𝑘

𝑖 ∘ 𝑔𝑘 = 𝑔𝑘+1 ∘ 𝑠𝑘
𝑖(14.28.1.2)

for all 𝑘. By induction on 𝑚 we will show that we can find maps 𝑔0, … , 𝑔𝑚 such that
(14.28.1.1) holds for 1 ≤ 𝑘 ≤ 𝑚 and (14.28.1.2) holds for 0 ≤ 𝑘 ≤ 𝑚−1. We set 𝑔𝑖 equal to
the inverse of 𝑓𝑖 for 𝑖 = 0, … , 𝑛 − 1. Clearly the induction hypothesis holds for 𝑚 = 𝑛 − 1.
We define 𝑔𝑛 ∶ 𝑈𝑛 → 𝑉𝑛 as follows. Pick 𝑢 ∈ 𝑈𝑛, then

(1) if 𝑢 is degenerate, write 𝑢 = 𝑈(𝜑)(𝑢′) for some nondegenerate 𝑢′ ∈ 𝑈𝑚 and some
surjective 𝜑 ∶ [𝑛] → [𝑚]. We set 𝑔𝑛(𝑢) = 𝑉(𝜑)(𝑔𝑚(𝑢′)). This is well defined as
the pair (𝜑, 𝑢′) is unique.

(2) if 𝑢 is nondegenerate, we choose any 𝑣 ∈ 𝑉𝑛 mapping to 𝑢 and we set 𝑔𝑛(𝑢) = 𝑣.
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This choice of 𝑔𝑛 garantees that the induction hypothesis holds for 𝑚 = 𝑛. Namely, we
forced (14.28.1.2) with 𝑘 = 𝑛−1 by our choice of 𝑔𝑛 on degenerate simplices, and (14.28.1.1)
with 𝑘 = 𝑛 holds because the equality takes place in 𝑉𝑛−1 = 𝑈𝑛−1.

Oneway to finish the proof at this point is to show that the family ofmaps 𝑔0, … , 𝑔𝑛 defines a
morphism of 𝑛-truncated simplicial sets sk𝑛𝑈 → sk𝑛𝑉 which is a right inverse to sk𝑛𝑓. Then
since cosk𝑛 is a functor and by the hypothesis of the lemma we get 𝑔 as cosk𝑛(𝑔0, … , 𝑔𝑛).
But we can also see this directly as follows.

Given the induction hypothesis for 𝑚 ≥ 𝑛 we inductively define 𝑔𝑚+1 as follows. Since
𝑈 → cosk𝑛sk𝑛𝑈 is an isomorphism, we see that also 𝑈 → cosk𝑚sk𝑚𝑈 is an isomorphism.
Hence elements of 𝑈𝑚+1 are (𝑚 + 2)-tuples (𝑢0, … , 𝑢𝑚+1) with 𝑢𝑖 ∈ 𝑈𝑚 satisfying the
equalities 𝑑𝑚

𝑗−1(𝑢𝑖) = 𝑑𝑚
𝑖 (𝑢𝑗) ∀ 0 ≤ 𝑖 < 𝑗 ≤ 𝑚 + 1. Similarly for 𝑉𝑚+1. Thus we may

simply map the element (𝑢0, … , 𝑢𝑚+1) to the element (𝑔𝑚(𝑢0), … , 𝑔𝑚(𝑢𝑚+1)). To verify the
induction hypothesis for 𝑚 + 1 with this choice of 𝑔𝑚+1 we will use the explicit form of
the maps 𝑑𝑖 and 𝑠𝑖 as given in Remark 14.17.8. This remark shows immediately that the
commutation of 𝑔0, … , 𝑔𝑚 with 𝑑𝑖 and 𝑠𝑖 implies the desired commutation for 𝑔𝑚+1. �

Let 𝐴, 𝐵 be sets. Let 𝑓0, 𝑓1 ∶ 𝐴 → 𝐵 be maps of sets. Consider the induced maps 𝑓0, 𝑓1 ∶
cosk0(𝐴) → cosk0(𝐵) abusively denoted by the same symbols. The following lemma for
𝑛 = 0 says that 𝑓0 is homotopic to 𝑓1. In fact, the homotopy is given by the map ℎ ∶
cosk0(𝐴) × Δ[1] → cosk0(𝐴) with components

ℎ𝑚 ∶ 𝐴 × … × 𝐴 × 𝑀𝑜𝑟Δ([𝑚], [1]) ⟶ 𝐴 × … × 𝐴,
(𝑎0, … , 𝑎𝑚, 𝛼) ⟼ (𝑓𝛼(0)(𝑎0), … , 𝑓𝛼(𝑚)(𝑎𝑚))

To check that this works, note that for a map 𝜑 ∶ [𝑘] → [𝑚] the induced maps are
(𝑎0, … , 𝑎𝑚) ↦ (𝑎𝜑(0), … , 𝑎𝜑(𝑘)) and 𝛼 ↦ 𝛼 ∘ 𝜑. Thus ℎ = (ℎ𝑚)𝑚≥0 is clearly a map of
simplicial sets as desired.

Lemma 14.28.2. Let 𝑓0, 𝑓1 ∶ 𝑉 → 𝑈 be maps of a simplicial sets. Let 𝑛 ≥ 0 be an integer.
Assume

(1) The maps 𝑓𝑗
𝑖 ∶ 𝑉𝑖 → 𝑉𝑖, 𝑗 = 0, 1 are equal for 𝑖 < 𝑛.

(2) The canonical morphism 𝑈 → cosk𝑛sk𝑛𝑈 is an isomorphism.
(3) The canonical morphism 𝑉 → cosk𝑛sk𝑛𝑉 is an isomorphism.

Then 𝑓0 is homotopic to 𝑓1.

Proof. We have to construct a morphism of simplicial sets ℎ ∶ 𝑉 × Δ[1] → 𝑈 which
recovers 𝑓𝑖 on composing with 𝑒𝑖. The case 𝑛 = 0 was dealt with above the lemma. Thus
we may assume that 𝑛 ≥ 1. The map Δ[1] → cosk1sk1Δ[1] is an isomorphism, see Lemma
14.17.14. Thus we see that Δ[1] → cosk𝑛sk𝑛Δ[1] is an isomorphism as 𝑛 ≥ 1, see Lemma
14.17.11. And hence 𝑉 × Δ[1] → cosk𝑛sk𝑛(𝑉 × Δ[1]) is an isomorphism too, see Lemma
14.17.12. In other words, in order to construct the homotopy it suffices to construct a
suitable morphism of 𝑛-truncated simplicial sets ℎ ∶ sk𝑛𝑉 × sk𝑛Δ[1] → sk𝑛𝑈.

For 𝑘 = 0, … , 𝑛 − 1 we define ℎ𝑘 by the formula ℎ𝑘(𝑣, 𝛼) = 𝑓0(𝑣) = 𝑓1(𝑣). The map
ℎ𝑛 ∶ 𝑉𝑛 × 𝑀𝑜𝑟Δ([𝑘], [1]) → 𝑈𝑛 is defined as follows. Pick 𝑣 ∈ 𝑉𝑛 and 𝛼 ∶ [𝑛] → [1]:

(1) If Im(𝛼) = {0}, then we set ℎ𝑛(𝑣, 𝛼) = 𝑓0(𝑣).
(2) If Im(𝛼) = {0, 1}, then we set ℎ𝑛(𝑣, 𝛼) = 𝑓0(𝑣).
(3) If Im(𝛼) = {1}, then we set ℎ𝑛(𝑣, 𝛼) = 𝑓1(𝑣).
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Let 𝜑 ∶ [𝑘] → [𝑙] be a morphism of Δ≤𝑛. We will show that the diagram

𝑉[𝑙] × 𝑀𝑜𝑟([𝑙], [1]) //

��

𝑈[𝑙]

��
𝑉[𝑘] × 𝑀𝑜𝑟([𝑘], [1]) // 𝑈[𝑘]

commutes. Pick 𝑣 ∈ 𝑉[𝑙] and 𝛼 ∶ [𝑙] → [1]. The commutativity means that
ℎ𝑘(𝑉(𝜑)(𝑣), 𝛼 ∘ 𝜑) = 𝑈(𝜑)(ℎ𝑙(𝑣, 𝛼)).

In almost every case this holds becauseℎ𝑘(𝑉(𝜑)(𝑣), 𝛼∘𝜑) = 𝑓0(𝑉(𝜑)(𝑣)) and𝑈(𝜑)(ℎ𝑙(𝑣, 𝛼)) =
𝑈(𝜑)(𝑓0(𝑣)), combined with the fact that 𝑓0 is a morphism of simplicial sets. The only cases
where this does not hold is when either (A) Im(𝛼) = {1} and 𝑙 = 𝑛 or (B) Im(𝛼 ∘ 𝜑) = {1}
and 𝑘 = 𝑛. Observe moreover that necessarily 𝑓0(𝑣) = 𝑓1(𝑣) for any degenerate 𝑛-simplex
of 𝑉. Thus we can narrow the cases above down even further to the cases (A) Im(𝛼) = {1},
𝑙 = 𝑛 and 𝑣 nondegenerate, and (B) Im(𝛼 ∘ 𝜑) = {1}, 𝑘 = 𝑛 and 𝑉(𝜑)(𝑣) nondegenerate.
In case (A), we see that also Im(𝛼 ∘ 𝜑) = {1}. Hence we see that not only ℎ𝑙(𝑣, 𝛼) = 𝑓1(𝑣)
but also ℎ𝑘(𝑉(𝜑)(𝑣), 𝛼 ∘ 𝜑) = 𝑓1(𝑉(𝜑)(𝑣)). Thus we see that the relation holds because 𝑓1

is a morphism of simplicial sets.
In case (B) we conclude that 𝑙 = 𝑘 = 𝑛 and 𝜑 is bijective, since otherwise 𝑉(𝜑)(𝑣) is
degenerate. Thus 𝜑 = id[𝑛], which is a trivial case. �

Lemma 14.28.3. With assumptions and notation as in Lemma 14.28.1 above. The compo-
sition 𝑔 ∘ 𝑓 is homotopy equivalent to the identity on 𝑉. In particular, the morphism 𝑓 is a
homotopy equivalence.

Proof. Immediate from Lemma 14.28.2 above. �

Lemma 14.28.4. Let 𝐴, 𝐵 be sets, and that 𝑓 ∶ 𝐴 → 𝐵 is a map. Consider the simplicial
set 𝑈 with 𝑛-simplices

𝐴 ×𝐵 𝐴 ×𝐵 … ×𝐵 𝐴 (𝑛 + 1 factors).
see Example 14.3.5. If 𝑓 is surjective, the morphism

𝑈 → 𝐵
where 𝐵 indicates the constant simplicial set with value 𝐵 is a homotopy equivalence.

Proof. For 𝑏 ∈ 𝐵, write 𝐴𝑏 = 𝑓−1(𝑏). It is a nonempty set. It is clear that 𝐵 = ∐𝑏∈𝐵{𝑏}
and that 𝑈 = ∐𝑏∈𝐵 cosk0𝐴𝑏. Each of the morphisms cosk0𝐴𝑏 → {𝑏} is a homotopy
equivalence by Lemma 14.28.3. It follows easily that 𝑈 → 𝐵 is a homotopy equivalence.

�
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CHAPTER 15

Sheaves of Modules

15.1. Introduction

In this chapter we work out basic notions of sheaves of modules. This in particular includes
the case of abelian sheaves, since these may be viewed as sheaves of 𝐙-modules. Basic
references are [Ser55b], [DG67] and [MA71].

We work out what happens for sheaves of modules on ringed topoi in another chapter (see
Modules on Sites, Section 16.1), allthough there wewill mostly just duplicate the discussion
from this chapter.

15.2. Pathology

A ringed space is a pair consisting of a topological space 𝑋 and a sheaf of rings 𝒪. We allow
𝒪 = 0 in the definition. In this case the category of modules has a single object (namely 0).
It is still an abelian category etc, but it is a little degenerate. Similarly the sheaf 𝒪 may be
zero over open subsets of 𝑋, etc.

This doesn't happen when considering locally ringed spaces (as we will do later).

15.3. The abelian category of sheaves of modules

Let (𝑋, 𝒪𝑋) be a ringed space, see Sheaves, Definition 6.25.1. Let ℱ, 𝒢 be sheaves of
𝒪𝑋-modules, see Sheaves, Definition 6.10.1. Let 𝜑, 𝜓 ∶ ℱ → 𝒢 be morphisms of sheaves
of 𝒪𝑋-modules. We define 𝜑 + 𝜓 ∶ ℱ → 𝒢 to be the map which on each open 𝑈 ⊂ 𝑋 is the
sum of the maps induced by 𝜑, 𝜓. This is clearly again a map of sheaves of 𝒪𝑋-modules.
It is also clear that composition of maps of 𝒪𝑋-modules is bilinear with respect to this
addition. Thus Mod(𝒪𝑋) is a pre-additive category, see Homology, Definition 10.3.1.

We will denote 0 the sheaf of 𝒪𝑋-modules which has constant value {0} for all open 𝑈 ⊂
𝑋. Clearly this is both a final and an initial object of Mod(𝒪𝑋). Given a morphism of
𝒪𝑋-modules 𝜑 ∶ ℱ → 𝒢 the following are equivalent: (a) 𝜑 is zero, (b) 𝜑 factors through
0, (c) 𝜑 is zero on sections over each open 𝑈, and (d) 𝜑𝑥 = 0 for all 𝑥 ∈ 𝑋. See Sheaves,
Lemma 6.16.1.

Moreover, given a pair ℱ, 𝒢 of sheaves of 𝒪𝑋-modules we may define the direct sum as

ℱ ⊕ 𝒢 = ℱ × 𝒢

with obvious maps (𝑖, 𝑗, 𝑝, 𝑞) as in Homology, Definition 10.3.5. ThusMod(𝒪𝑋) is an addi-
tive category, see Homology, Definition 10.3.8.

Let 𝜑 ∶ ℱ → 𝒢 be a morphism of 𝒪𝑋-modules. We may define Ker(𝜑) to be the subsheaf
of ℱ with sections

Ker(𝜑)(𝑈) = {𝑠 ∈ ℱ(𝑈) ∣ 𝜑(𝑠) = 0 in 𝒢(𝑈)}

979
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for all open 𝑈 ⊂ 𝑋. It is easy to see that this is indeed a kernel in the category of
𝒪𝑋-modules. In other words, a morphism 𝛼 ∶ ℋ → ℱ factors through Ker(𝜑) if and
only if 𝜑 ∘ 𝛼 = 0. Moreover, on the level of stalks we have Ker(𝜑)𝑥 = Ker(𝜑𝑥).

On the other hand, we defineCoker(𝜑) as the sheaf of𝒪𝑋-modules associated to the presheaf
of 𝒪𝑋-modules defined by the rule

𝑈 ⟼ Coker(𝒢(𝑈) → ℱ(𝑈)) = ℱ(𝑈)/𝜑(𝒢(𝑈)).

Since taking stalks commutes with taking sheafification, see Sheaves, Lemma 6.17.2 we
see that Coker(𝜑)𝑥 = Coker(𝜑𝑥). Thus the map 𝒢 → Coker(𝜑) is surjective (as a map of
sheaves of sets), see Sheaves, Section 6.16. To show that this is a cokernel, note that if
𝛽 ∶ 𝒢 → ℋ is a morphism of 𝒪𝑋-modules such that 𝛽 ∘ 𝜑 is zero, then you get for every
open 𝑈 ⊂ 𝑋 a map induced by 𝛽 from 𝒢(𝑈)/𝜑(ℱ(𝑈)) into ℋ(𝑈). By the universal property
of sheafification (see Sheaves, Lemma 6.20.1) we obtain a canonical map Coker(𝜑) → ℋ
such that the original 𝛽 is equal to the composition 𝒢 → Coker(𝜑) → ℋ. The morphism
Coker(𝜑) → ℋ is unique because of the surjectivity mentioned above.

Lemma 15.3.1. Let (𝑋, 𝒪𝑋) be a ringed space. The category Mod(𝒪𝑋) is an abelian cat-
egory. Moreover a complex

ℱ → 𝒢 → ℋ
is exact at 𝒢 if and only if for all 𝑥 ∈ 𝑋 the complex

ℱ𝑥 → 𝒢𝑥 → ℋ𝑥

is exact at 𝒢𝑥.

Proof. By Homology, Definition 10.3.12 we have to show that image and coimage agree.
By Sheaves, Lemma 6.16.1 it is enough to show that image and coimage have the same
stalk at every 𝑥 ∈ 𝑋. By the constructions of kernels and cokernels above these stalks are
the coimage and image in the categories of 𝒪𝑋,𝑥-modules. Thus we get the result from the
fact that the category of modules over a ring is abelian. �

Actually the category Mod(𝒪𝑋) has many more properties. Here are two constructions we
can do.

(1) Given any set 𝐼 and for each 𝑖 ∈ 𝐼 a 𝒪𝑋-module we can form the product

∏𝑖∈𝐼
ℱ𝑖

which is the sheaf that associates to each open 𝑈 the product of the modules
ℱ𝑖(𝑈). This is also the categorical product, as in Categories, Definition 4.13.5.

(2) Given any set 𝐼 and for each 𝑖 ∈ 𝐼 a 𝒪𝑋-module we can form the direct sum

⨁𝑖∈𝐼
ℱ𝑖

which is the sheafification of the presheaf that associates to each open 𝑈 the di-
rect sum of the modules ℱ𝑖(𝑈). This is also the categorical coproduct, as in Cat-
egories, Definition 4.13.6. To see this you use the universal property of sheafifi-
cation.

Since any abelian category has equalizers and coequalizers we conclude that all limits and
colimits exist in Mod(𝒪𝑋), see Categories, Lemmas 4.13.10 and 4.13.11.

Lemma 15.3.2. Let (𝑋, 𝒪𝑋) be a ringed space. All limits and colimits exist in Mod(𝒪𝑋).
Limits are the same as the corresponding limits of presheaves of 𝒪𝑋-modules (i.e., commute
with taking sections over opens). Finite direct sums are the same as the correponding finite
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direct sums of pre-sheaves of 𝒪𝑋-modules. A colimit is the sheafification of the correspond-
ing colimit in the category of presheaves.

Proof. Omitted. But see discussion above. �

Lemma 15.3.3. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝐼 be a set. For 𝑖 ∈ 𝐼, let ℱ𝑖 be a sheaf
of 𝒪𝑋-modules. For 𝑈 ⊂ 𝑋 quasi-compact open the map

⨁𝑖∈𝐼
ℱ𝑖(𝑈) ⟶ (⨁𝑖∈𝐼

ℱ𝑖) (𝑈)

is bijective.

Proof. If 𝑠 is an element of the right hand side, then there exists an open covering 𝑈 =
⋃𝑗∈𝐽 𝑈𝑗 such that 𝑠|𝑈𝑗

is a finite sum ∑𝑖∈𝐼𝑗
𝑠𝑗𝑖 with 𝑠𝑗𝑖 ∈ ℱ𝑖(𝑈𝑗). Because 𝑈 is quasi-

compact we may assume that the covering is finite, i.e., that 𝐽 is finite. Then 𝐼′ = ⋃𝑗∈𝐽 𝐼𝑗
is a finite subset of 𝐼. Clearly, 𝑠 is a section of the subsheaf ⨁𝑖∈𝐼′ ℱ𝑖. The result follows
from the fact that for a finite direct sum sheafification is not needed, see Lemma 15.3.2
above. �

The existence of limits and colimits allows us to consider exactness properties of functors
defined on the category of 𝒪-modules in terms of limits and colimits, as in Categories,
Section 4.21. See Homology, Lemma 10.5.1 for a description of exactness properties in
terms of short exact sequences.

Lemma 15.3.4. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces.
(1) The functor 𝑓∗ ∶ Mod(𝒪𝑋) → Mod(𝒪𝑌) is left exact. In fact it commutes with all

limits.
(2) The functor 𝑓∗ ∶ Mod(𝒪𝑌) → Mod(𝒪𝑋) is right exact. In fact it commutes with

all colimits.
(3) Pullback 𝑓−1 ∶ Ab(𝑌) → Ab(𝑋) on abelian sheaves is exact.

Proof. Parts (1) and (2) hold because (𝑓∗, 𝑓∗) is an adjoint pair of functors, see Sheaves,
Lemma 6.26.2 and Categories, Section 4.22. Part (3) holds because exactness can be
checked on stalks (Lemma 15.3.1) and the description of stalks of the pullback, see Sheaves,
Lemma 6.22.1. �

Lemma 15.3.5. Let 𝑗 ∶ 𝑈 → 𝑋 be an open immersion of topological spaces. The functor
𝑗! ∶ Ab(𝑈) → Ab(𝑋) is exact.

Proof. This is clear from the description of stalks given in Sheaves, Lemma 6.31.6. �

15.4. Sections of sheaves of modules

Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. Let 𝑠 ∈ Γ(𝑋, ℱ) = ℱ(𝑋)
be a global section. There is a unique map of 𝒪𝑋-modules

𝒪𝑋 ⟶ ℱ, 𝑓 ⟼ 𝑓𝑠

associated to 𝑠. The notation above signifies that a local section 𝑓 of 𝒪𝑋, i.e., a section
𝑓 over some open 𝑈, is mapped to the multiplication of 𝑓 with the restriction of 𝑠 to 𝑈.
Conversely, any map 𝜑 ∶ 𝒪𝑋 → ℱ gives rise to a section 𝑠 = 𝜑(1) such that 𝜑 is the
morphism associated to 𝑠.
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Definition 15.4.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. We say
that ℱ is generated by global sections if there exist a set 𝐼, and global sections 𝑠𝑖 ∈ Γ(𝑋, ℱ),
𝑖 ∈ 𝐼 such that the map

⨁𝑖∈𝐼
𝒪𝑋 ⟶ ℱ

which is the map associated to 𝑠𝑖 on the summand corresponding to 𝑖, is surjective. In this
case we say that the sections 𝑠𝑖 generate ℱ.

We often use the abuse of notation introduced in Sheaves, Section 6.11 where, given a local
section 𝑠 of ℱ defined in an open neighbourhood of a point 𝑥 ∈ 𝑋, we denote 𝑠𝑥, or even
𝑠 the image of 𝑠 in the stalk ℱ𝑥.

Lemma 15.4.2. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. Let 𝐼 be
a set. Let 𝑠𝑖 ∈ Γ(𝑋, ℱ), 𝑖 ∈ 𝐼. be global sections. The sections 𝑠𝑖 generate ℱ if and only if
for all 𝑥 ∈ 𝑋 the elements 𝑠𝑖,𝑥 ∈ ℱ𝑥 generate the 𝒪𝑋,𝑥-module ℱ𝑥.

Proof. Omitted. �

Lemma 15.4.3. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ, 𝒢 be sheaves of 𝒪𝑋-modules. If ℱ
and 𝒢 are generated by global sections then so is ℱ ⊗𝒪𝑋

𝒢.

Proof. Omitted. �

Lemma 15.4.4. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. Let 𝐼
be a set. Let 𝑠𝑖, 𝑖 ∈ 𝐼 be a collection of local sections of ℱ, i.e., 𝑠𝑖 ∈ ℱ(𝑈𝑖) for some
opens 𝑈𝑖 ⊂ 𝑋. There exists a unique smallest subsheaf of 𝒪𝑋-modules 𝒢 such that each 𝑠𝑖
corresponds to a local section of 𝒢.

Proof. Consider the subpresheaf of 𝒪𝑋-modules defined by the rule

𝑈 ⟼ {sums ∑𝑖∈𝐽
𝑓𝑖(𝑠𝑖|𝑈) where 𝐽 is finite, 𝑈 ⊂ 𝑈𝑖 for 𝑖 ∈ 𝐽, and 𝑓𝑖 ∈ 𝒪𝑋(𝑈)}

Let 𝒢 be the sheafification of this subpresheaf. This is a subsheaf of ℱ by Sheaves, Lemma
6.16.3. Since all the finite sums clearly have to be in 𝒢 this is the smallest subsheaf as
desired. �

Definition 15.4.5. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. Given
a set 𝐼, and local sections 𝑠𝑖, 𝑖 ∈ 𝐼 of ℱ we say that the subsheaf 𝒢 of Lemma 15.4.4 above
is the subsheaf generated by the 𝑠𝑖.

Lemma 15.4.6. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. Given
a set 𝐼, and local sections 𝑠𝑖, 𝑖 ∈ 𝐼 of ℱ. Let 𝒢 be the subsheaf generated by the 𝑠𝑖 and
let 𝑥 ∈ 𝑋. Then 𝒢𝑥 is the 𝒪𝑋,𝑥-submodule of ℱ𝑥 generated by the elements 𝑠𝑖,𝑥 for those 𝑖
such that 𝑠𝑖 is defined at 𝑥.

Proof. This is clear from the construction of 𝒢 in the proof of Lemma 15.4.4. �

15.5. Supports of modules and sections

Definition 15.5.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules.
(1) The support of ℱ is the set of points 𝑥 ∈ 𝑋 such that ℱ𝑥≠0.
(2) We denote Supp(ℱ) the support of ℱ.
(3) Let 𝑠 ∈ Γ(𝑋, ℱ) be a global section. The support of 𝑠 is the set of points 𝑥 ∈ 𝑋

such that the image 𝑠𝑥 ∈ ℱ𝑥 of 𝑠 is not zero.

Of course the support of a local section is then defined also since a local section is a global
section of the restriction of ℱ.
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Lemma 15.5.2. Let (𝑋, 𝒪𝑋) be a ringed space. Letℱ be a sheaf of𝒪𝑋-modules. Let𝑈 ⊂ 𝑋
open.

(1) The support of 𝑠 ∈ ℱ(𝑈) is closed in 𝑈.
(2) The support of 𝑓𝑠 is contained in the intersections of the supports of 𝑓 ∈ 𝒪𝑋(𝑈)

and 𝑠 ∈ ℱ(𝑈)
(3) The support of 𝑠 + 𝑠′ is contained in the union of the supports of 𝑠, 𝑠′ ∈ ℱ(𝑈).
(4) The support of ℱ is the union of the supports of all local sections of ℱ.
(5) If 𝜑 ∶ ℱ → 𝒢 is a morphism of 𝒪𝑋-modules, then the support of 𝜑(𝑠) is contained

in the support of 𝑠 ∈ ℱ(𝑈).

Proof. This is true because if 𝑠𝑥 = 0, then 𝑠 is zero in an open neighbourhood of 𝑥 by
definition of stalks. Similarly for 𝑓. Details omitted. �

In general the support of a sheaf of modules is not closed. Namely, the sheaf could be
an abelian sheaf on 𝐑 (with the usual archimedean topology) which is the direct sum of
infinitely many nonzero skyscraper sheaves each supported at a single point 𝑝𝑖 of 𝐑. Then
the support would be the set of points 𝑝𝑖 which may not be closed.
Another example is to consider the open immersion 𝑗 ∶ 𝑈 = (0, ∞) → 𝐑 = 𝑋, and the
abelian sheaf 𝑗!𝐙𝑈. By Sheaves, Section 6.31 the support of this sheaf is exactly 𝑈.

Lemma 15.5.3. Let 𝑋 be a topological space. The support of a sheaf of rings is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only if 1 = 0,
and hence the support of a sheaf of rings is the support of the unit section. �

15.6. Closed immersions and abelian sheaves

Recall that we think of an abelian sheaf on a topological space 𝑋 as a sheaf of 𝐙𝑋-modules.
Thus we may apply any results, definitions for sheaves of modules to abelian sheaves.

Lemma 15.6.1. Let 𝑋 be a topological space. Let 𝑍 ⊂ 𝑋 be a closed subset. Denote
𝑖 ∶ 𝑍 → 𝑋 the inclusion map. The functor

𝑖∗ ∶ Ab(𝑍) ⟶ Ab(𝑋)
is exact, fully faithful, with essential image exactly those abelian sheaves whose support is
contained in 𝑍.

Proof. Exactness follows from the description of stalks in Sheaves, Lemma 6.32.1 and
Lemma 15.3.1. The rest was shown in Sheaves, Lemma 6.31.10. �

Let ℱ be a sheaf on 𝑋. There is a canonical subsheaf of ℱ which consists of exactly those
sections whose support is contained in 𝑍. Here is the exact statement.

Lemma 15.6.2. Let 𝑋 be a topological space. Let 𝑍 ⊂ 𝑋 be a closed subset. Let ℱ be a
sheaf on 𝑋. For 𝑈 ⊂ 𝑋 open set

Γ(𝑈, ℋ𝑍(ℱ)) = {𝑠 ∈ ℱ(𝑈) ∣ the support of 𝑠 is contained in 𝑍 ∩ 𝑈}
Then ℋ𝑍(ℱ) is an abelian subsheaf of ℱ. It is the largest abelian subsheaf of ℱ whose
support is contained in 𝑍. The construction ℱ ↦ ℋ𝑍(ℱ) is functorial in the abelian sheaf
ℱ.

Proof. This follows from Lemma 15.5.2. �

This seems like a good opportunity to show that the functor 𝑖∗ has a right adjoint on abelian
sheaves.
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Lemma 15.6.3. Denote1 𝑖! ∶ Ab(𝑋) → Ab(𝑍) the functor ℱ ↦ 𝑖−1ℋ𝑍(ℱ). Then 𝑖! is a
right adjoint to 𝑖∗, in a formula

𝑀𝑜𝑟Ab(𝑋)(𝑖∗𝒢, ℱ) = 𝑀𝑜𝑟Ab(𝑍)(𝒢, 𝑖!ℱ).

In particular 𝑖∗ commutes with arbitrary colimits.

Proof. Note that 𝑖∗𝑖!ℱ = ℋ𝑍(ℱ). Since 𝑖∗ is fully faithful we are reduced to showing that

𝑀𝑜𝑟Ab(𝑋)(𝑖∗𝒢, ℱ) = 𝑀𝑜𝑟Ab(𝑋)(𝑖∗𝒢, ℋ𝑍(ℱ)).

This follows since the support of the image via any homomorphism of a section of 𝑖∗𝒢 is
supported on 𝑍, see Lemma 15.5.2. �

Remark 15.6.4. In Sheaves, Remark 6.32.5 we showed that 𝑖∗ as a functor on the categories
of sheaves of sets does not have a right adjoint simply because it is not exact. However, it is
very close to being true, in fact, the functor 𝑖∗ is exact on sheaves of pointed sets, sections
with support in 𝑍 can be defined for sheaves of pointed sets, and 𝑖! makes sense and is a
right adjoint to 𝑖∗.

15.7. A canonical exact sequence

We give this exact sequence its own section.

Lemma 15.7.1. Let 𝑋 be a topological space. Let 𝑈 ⊂ 𝑋 be an open subset with com-
plement 𝑍 ⊂ 𝑋. Denote 𝑗 ∶ 𝑈 → 𝑋 the open immersion and 𝑖 ∶ 𝑍 → 𝑋 the closed
immersion. For any sheaf of abelian groups ℱ on 𝑋 the adjunction mappings 𝑗!𝑗∗ℱ → ℱ
and ℱ → 𝑖∗𝑖∗ℱ give a short exact sequence

0 → 𝑗!𝑗∗ℱ → ℱ → 𝑖∗𝑖∗ℱ → 0

of sheaves of abelian groups. For any morphism 𝜑 ∶ ℱ → 𝒢 of abelian sheaves on 𝑋 we
obtain a morphism of short exact sequences

0 // 𝑗!𝑗∗ℱ //

��

ℱ //

��

𝑖∗𝑖∗ℱ //

��

0

0 // 𝑗!𝑗∗𝒢 // 𝒢 // 𝑖∗𝑖∗𝒢 // 0

Proof. We may check exactness on stalks (Lemma 15.3.1). For a description of the stalks
in question see Sheaves, Lemmas 6.31.6 and 6.32.1. We omit the proof of the functorial
behaviour of the exact sequence. �

15.8. Modules locally generated by sections

Let (𝑋, 𝒪𝑋) be a ringed space. In this and the following sectionwewill often restrict sheaves
to open subspaces 𝑈 ⊂ 𝑋, see Sheaves, Section 6.31. In particular, we will often denote
the open subspace by (𝑈, 𝒪𝑈) instead of the more correct notation (𝑈, 𝒪𝑋|𝑈), see Sheaves,
Definition 6.31.2.

Consider the open immersion 𝑗 ∶ 𝑈 = (0, ∞) → 𝐑 = 𝑋, and the abelian sheaf 𝑗!𝐙𝑈. By
Sheaves, Section 6.31 the stalk of 𝑗!𝐙𝑈 at 𝑥 = 0 is 0. In fact the sections of this sheaf over
any open interval containing 0 are 0. Thus there is no open neighbourhood of the point 0
over which the sheaf can be generated by sections.

1This is likely nonstandard notation.
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Definition 15.8.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. We
say that ℱ is locally generated by sections if for every 𝑥 ∈ 𝑋 there exists an open neigh-
bourhood 𝑈 such that ℱ|𝑈 is globally generated as a sheaf of 𝒪𝑈-modules.

In other words there exists a set 𝐼 and for each 𝑖 a section 𝑠𝑖 ∈ ℱ(𝑈) such that the associated
map

⨁𝑖∈𝐼
𝒪𝑈 ⟶ ℱ|𝑈

is surjective.

Lemma 15.8.2. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. The pullback
𝑓∗𝒢 is locally generated by sectons if 𝒢 is locally generated by sections.

Proof. Given an open subspace 𝑉 of𝑋wemay consider the commutative diagram of ringed
spaces

(𝑓−1𝑉, 𝒪𝑓−1𝑉)
𝑗′

//

𝑓′

��

(𝑋, 𝒪𝑋)

𝑓
��

(𝑉, 𝒪𝑉)
𝑗 // (𝑌, 𝒪𝑌)

We know that 𝑓∗𝒢|𝑓−1𝑉 ≅ (𝑓′)∗(𝒢|𝑉), see Sheaves, Lemma 6.26.3. Thus we may assume
that 𝒢 is globally generated.
We have seen that 𝑓∗ commutes with all colimits, and is right exact, see Lemma 15.3.4.
Thus if we have a surjection

⨁𝑖∈𝐼
𝒪𝑌 → 𝒢 → 0

then upon applying 𝑓∗ we obtain the surjection

⨁𝑖∈𝐼
𝒪𝑋 → 𝑓∗𝒢 → 0.

This implies the lemma. �

15.9. Modules of finite type

Definition 15.9.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. We
say that ℱ is of finite type if for every 𝑥 ∈ 𝑋 there exists an open neighbourhood 𝑈 such
that ℱ|𝑈 is generated by finitely many sections.

Lemma 15.9.2. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. The pullback
𝑓∗𝒢 of a finite type 𝒪𝑌-module is a finite type 𝒪𝑋-module.

Proof. Arguing as in the proof of Lemma 15.8.2 we may assume 𝒢 is globally generated
by finitely many sections. We have seen that 𝑓∗ commutes with all colimits, and is right
exact, see Lemma 15.3.4. Thus if we have a surjection

⨁𝑖=1,…,𝑛
𝒪𝑌 → 𝒢 → 0

then upon applying 𝑓∗ we obtain the surjection

⨁𝑖=1,…,𝑛
𝒪𝑋 → 𝑓∗𝒢 → 0.

This implies the lemma. �

Lemma 15.9.3. Let 𝑋 be a ringed space. The image of a morphism of 𝒪𝑋-modules of
finite type is of finite type. Let 0 → ℱ1 → ℱ2 → ℱ3 → 0 be a short exact sequence of
𝒪𝑋-modules. If ℱ1 and ℱ3 are of finite type, so is ℱ2.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01B2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01B3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01B5
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01B6
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01B7


986 15. SHEAVES OF MODULES

Proof. The statement on images is trivial. The statement on short exact sequences comes
from the fact that sections of ℱ3 locally lift to sections of ℱ2 and the corresponding result
in the category of modules over a ring (applied to the stalks for example). �

Lemma 15.9.4. Let 𝑋 be a ringed space. Let 𝜑 ∶ 𝒢 → ℱ be a homomorphism of
𝒪𝑋-modules. Let 𝑥 ∈ 𝑋. Assume ℱ of finite type and the map on stalks 𝜑𝑥 ∶ 𝒢𝑥 → ℱ𝑥
surjective. Then there exists an open neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 such that𝜑|𝑈 is surjective.

Proof. Choose an open neighbourhood 𝑈 ⊂ 𝑋 such that ℱ is generated by 𝑠1, … , 𝑠𝑛 ∈
ℱ(𝑈) over 𝑈. By assumption of surjectivity of 𝜑𝑥, after shrinking 𝑉 we may assume that
𝑠𝑖 = 𝜑(𝑡𝑖) for some 𝑡𝑖 ∈ 𝒢(𝑈). Then 𝑈 works. �

Lemma 15.9.5. Let 𝑋 be a ringed space. Let ℱ be an 𝒪𝑋-module. Let 𝑥 ∈ 𝑋. Assume ℱ
of finite type and ℱ𝑥 = 0. Then there exists an open neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 such that
ℱ|𝑈 is zero.

Proof. This is a special case of Lemma 15.9.4 applied to the morphism 0 → ℱ. �

Lemma 15.9.6. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. If ℱ is of
finite type then support of ℱ is closed.

Proof. This is a reformulation of Lemma 15.9.5. �

Lemma 15.9.7. Let 𝑋 be a ringed space. Let 𝐼 be a partially ordered set and let (ℱ𝑖, 𝑓𝑖𝑖′)
be a system over 𝐼 consisting of sheaves of 𝒪𝑋-modules (see Categories, Section 4.19). Let
ℱ = 𝑐𝑜𝑙𝑖𝑚 ℱ𝑖 be the colimit. Assume (a) 𝐼 is directed, (b) ℱ is a finite type 𝒪𝑋-module
and (c) 𝑋 is quasi-compact. Then there exists an 𝑖 such that ℱ𝑖 → ℱ is surjective. If the
transition maps 𝑓𝑖𝑖′ are injective then we conclude that ℱ = ℱ𝑖 for some 𝑖 ∈ 𝐼.

Proof. Let 𝑥 ∈ 𝑋. There exists an open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 and finitely many
sections 𝑠𝑗 ∈ ℱ(𝑈), 𝑗 = 1, … , 𝑚 such that 𝑠1, … , 𝑠𝑚 generate ℱ as 𝒪𝑈-module. After
possibly shrinking 𝑈 to a smaller open neighbourhood of 𝑥 we may assume that each 𝑠𝑗
comes from a section of ℱ𝑖 for some 𝑖 ∈ 𝐼. Hence, since 𝑋 is quasi-compact we can find a
finite open covering 𝑋 = ⋃𝑗=1,…,𝑚 𝑈𝑗, and for each 𝑗 an index 𝑖𝑗 and finitely many sections
𝑠𝑗𝑙 ∈ ℱ𝑖𝑗(𝑈𝑗) whose images generate the restriction of ℱ to 𝑈𝑗. Clearly, the lemma holds
for any index 𝑖 ∈ 𝐼 which is ≥ all 𝑖𝑗. �

Lemma 15.9.8. Let 𝑋 be a ringed space. There exists a set of 𝒪𝑋-modules {ℱ𝑖}𝑖∈𝐼 of finite
type such that each finite type 𝒪𝑋-module on 𝑋 is isomorphic to exactly one of the ℱ𝑖.

Proof. For each open covering 𝒰 ∶ 𝑋 = ⋃ 𝑈𝑗 consider the sheaves of 𝒪𝑋-modules ℱ such
that each restriction ℱ|𝑈𝑗

is a quotient of 𝒪⊕𝑟
𝑈𝑗

for some 𝑟𝑗 ≥ 0. These are parametrized by

subsheaves 𝒦𝑖 ⊂ 𝒪
⊕𝑟𝑗
𝑈𝑗

and glueing data

𝜑𝑗𝑗′ ∶ 𝒪
⊕𝑟𝑗
𝑈𝑗∩𝑈𝑗′ /(𝒦𝑗|𝑈𝑗∩𝑈𝑗′) ⟶ 𝒪

⊕𝑟𝑗′

𝑈𝑗∩𝑈𝑗′ /(𝒦𝑗′|𝑈𝑗∩𝑈𝑗′)

see Sheaves, Section 6.33. Note that the collection of all glueing data forms a set. The
collection of all coverings 𝒰 ∶ 𝑋 = ⋃𝑗∈𝐽 𝑈𝑖 where 𝐽 → 𝒫(𝑋), 𝑗 ↦ 𝑈𝑗 is injective
forms a set as well. Hence the collection of all sheaves of 𝒪𝑋-modules gotten from glueing
quotients as above forms a set ℐ. By definition every finite type 𝒪𝑋-module is isomorphic
to an element of ℐ. Choosing an element out of each isomorphism class inside ℐ gives the
desired set of sheaves (uses axiom of choice). �
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15.10. Quasi-coherent modules

In this section we introduce an abstract notion of quasi-coherent 𝒪𝑋-module. This notion is
very useful in algebraic geometry, since quasi-coherent modules on a scheme have a good
description on any affine open. However, we warn the reader that in the general setting
of (locally) ringed spaces this notion is not well behaved at all. The category of quasi-
coherent sheaves is not abelian in general, infinite direct sums of quasi-coherent sheaves
aren't quasi-coherent, etc, etc.

Definition 15.10.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. We
say that ℱ is a quasi-coherent sheaf of 𝒪𝑋-modules if for every point 𝑥 ∈ 𝑋 there exists an
open neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 such that ℱ|𝑈 is isomorphic to the cokernel of a map

⨁𝑗∈𝐽
𝒪𝑈 ⟶ ⨁𝑖∈𝐼

𝒪𝑈

The category of quasi-coherent 𝒪𝑋-modules is denoted QCoh(𝒪𝑋).

The definition means that 𝑋 is covered by open sets 𝑈 such that ℱ|𝑈 has a presentation of
the form

⨁𝑗∈𝐽
𝒪𝑈 ⟶ ⨁𝑖∈𝐼

𝒪𝑈 → ℱ|𝑈 → 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point 𝑥 of 𝑋 there exists an open neighbourhood such that ℱ|𝑈 is gen-

erated by global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection is

also generated by global sections.

Lemma 15.10.2. Let (𝑋, 𝒪𝑋) be a ringed space. The direct sum of two quasi-coherent
𝒪𝑋-modules is a quasi-coherent 𝒪𝑋-module

Proof. Omitted. �

Remark 15.10.3. Warning: It is not true in general that an infinite direct sum of quasi-
coherent 𝒪𝑋-modules is quasi-coherent. For more esoteric behaviour of quasi-coherent
modules see Example 15.10.9.

Lemma 15.10.4. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. The pullback
𝑓∗𝒢 of a quasi-coherent 𝒪𝑌-module is quasi-coherent.

Proof. Arguing as in the proof of Lemma 15.8.2wemay assume𝒢 has a global presentation
by direct sums of copies of 𝒪𝑌. We have seen that 𝑓∗ commutes with all colimits, and is
right exact, see Lemma 15.3.4. Thus if we have an exact sequence

⨁𝑗∈𝐽
𝒪𝑌 ⟶ ⨁𝑖∈𝐼

𝒪𝑌 → 𝒢 → 0

then upon applying 𝑓∗ we obtain the exact sequence

⨁𝑗∈𝐽
𝒪𝑋 ⟶ ⨁𝑖∈𝐼

𝒪𝑋 → 𝑓∗𝒢 → 0.

This implies the lemma. �

This gives plenty of examples of quasi-coherent sheaves.

Lemma 15.10.5. Let (𝑋, 𝒪𝑋) be ringed space. Let 𝛼 ∶ 𝑅 → Γ(𝑋, 𝒪𝑋) be a ring homo-
morphism from a ring 𝑅 into the ring of global sections on 𝑋. Let 𝑀 be an 𝑅-module. The
following three constructions give canonically isomorphic sheaves of 𝒪𝑋-modules:
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(1) Let 𝜋 ∶ (𝑋, 𝒪𝑋) ⟶ ({∗}, 𝑅) be the morphism of ringed spaces with 𝜋 ∶ 𝑋 →
{∗} the unique map and with 𝜋-map 𝜋♯ the given map 𝛼 ∶ 𝑅 → Γ(𝑋, 𝒪𝑋). Set
ℱ1 = 𝜋∗𝑀.

(2) Choose a presentation ⨁𝑗∈𝐽 𝑅 → ⨁𝑖∈𝐼 𝑅 → 𝑀 → 0. Set

ℱ2 = Coker(⨁𝑗∈𝐽
𝒪𝑋 → ⨁𝑖∈𝐼

𝒪𝑋) .

Here the map on the component 𝒪𝑋 corresponding to 𝑗 ∈ 𝐽 given by the section
∑𝑖 𝛼(𝑟𝑖𝑗) where the 𝑟𝑖𝑗 are the matrix coefficients of the map in the presentation
of 𝑀.

(3) Set ℱ3 equal to the sheaf associated to the presheaf 𝑈 ↦ 𝒪𝑋(𝑈) ⊗𝑅 𝑀, where
the map 𝑅 → 𝒪𝑋(𝑈) is the composition of 𝛼 and the restriction map 𝒪𝑋(𝑋) →
𝒪𝑋(𝑈).

This construction has the following properties:
(1) The resulting sheaf of 𝒪𝑋-modules ℱ𝑀 = ℱ1 = ℱ2 = ℱ3 is quasi-coherent.
(2) The construction gives a functor from the category of 𝑅-modules to the category

of quasi-coherent sheaves on 𝑋 which commutes with arbitrary colimits.
(3) For any 𝑥 ∈ 𝑋 we have ℱ𝑀,𝑥 = 𝒪𝑋,𝑥 ⊗𝑅 𝑀 functorial in 𝑀.
(4) Given any 𝒪𝑋-module 𝒢 we have

𝑀𝑜𝑟𝒪𝑋
(ℱ𝑀, 𝒢) = 𝐻𝑜𝑚𝑅(𝑀, Γ(𝑋, 𝒢))

where the𝑅-module structure onΓ(𝑋, 𝒢) comes from theΓ(𝑋, 𝒪𝑋)-module struc-
ture via 𝛼.

Proof. The isomorphism between ℱ1 and ℱ2 comes from the fact that 𝜋∗ is defined as the
sheafification of the presheaf in (3), see Sheaves, Section 6.26. The isomorphism between
the constructions in (2) and (1) comes from the fact that the functor 𝜋∗ is right exact, so
𝜋∗(⨁𝑗∈𝐽 𝑅) → 𝜋∗(⨁𝑖∈𝐼 𝑅) → 𝜋∗𝑀 → 0 is exact, 𝜋∗ commutes with arbitrary direct
sums, see Lemma 15.3.4, and finally the fact that 𝜋∗(𝑅) = 𝒪𝑋.

Assertion (1) is clear from construction (2). Assertion (2) is clear since 𝜋∗ has these proper-
ties. Assertion (3) follows from the description of stalks of pullback sheaves, see Sheaves,
Lemma 6.26.4. Assertion (4) follows from adjointness of 𝜋∗ and 𝜋∗. �

Definition 15.10.6. In the situation of Lemma 15.10.5 we say ℱ𝑀 is the sheaf associated
to the module 𝑀 and the ring map 𝛼. If 𝑅 = Γ(𝑋, 𝒪𝑋) and 𝛼 = id𝑅 we simply say ℱ𝑀 is
the sheaf associated to the module 𝑀.

Lemma 15.10.7. Let (𝑋, 𝒪𝑋) be ringed space. Set 𝑅 = Γ(𝑋, 𝒪𝑋). Let 𝑀 be an 𝑅-module.
Let ℱ𝑀 be the quasi-coherent sheaf of 𝒪𝑋-modules associated to 𝑀. If 𝑔 ∶ (𝑌, 𝒪𝑌) →
(𝑋, 𝒪𝑋) is amorphism of ringed spaces, then 𝑔∗ℱ𝑀 is the sheaf associated to theΓ(𝑌, 𝒪𝑌)-module
Γ(𝑌, 𝒪𝑌) ⊗𝑅 𝑀.

Proof. The assertion follows from the first description of ℱ𝑀 in Lemma 15.10.5 as 𝜋∗𝑀,
and the following commutative diagram of ringed spaces

(𝑋, 𝒪𝑋) 𝜋
//

𝑔
��

({∗}, Γ(𝑋, 𝒪𝑋))

𝑔♯

��
(𝑌, 𝒪𝑌) 𝜋 // ({∗}, Γ(𝑌, 𝒪𝑌))

(Also use Sheaves, Lemma 6.26.3.) �
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Lemma 15.10.8. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝑥 ∈ 𝑋 be a point. Assume that 𝑥
has a fundamental system of quasi-compact neighbourhoods. Consider any quasi-coherent
𝒪𝑋-moduleℱ. Then there exists an open neighbourhood𝑈 of 𝑥 such thatℱ|𝑈 is isomorphic
to the sheaf of modules ℱ𝑀 on (𝑈, 𝒪𝑈) associated to some Γ(𝑈, 𝒪𝑈)-module 𝑀.

Proof. First we may replace 𝑋 by an open neighbourhood of 𝑥 and assume that ℱ is iso-
morphic to the cokernel of a map

Ψ ∶ ⨁𝑗∈𝐽
𝒪𝑋 ⟶ ⨁𝑖∈𝐼

𝒪𝑋.

The problem is that this map may not be given by a ``matrix'', because the module of global
sections of a direct sum is in general different from the direct sum of the modules of global
sections.

Let 𝑥 ∈ 𝐸 ⊂ 𝑋 be a quasi-compact neighbourhood of 𝑥 (note: 𝐸 may not be open). Let
𝑥 ∈ 𝑈 ⊂ 𝐸 be an open neighbourhood of 𝑥 contained in 𝐸. Next, we proceed as in the proof
of Lemma 15.3.3. For each 𝑗 ∈ 𝐽 denote 𝑠𝑗 ∈ Γ(𝑋, ⨁𝑖∈𝐼 𝒪𝑋) the image of the section 1 in
the summand 𝒪𝑋 corresponding to 𝑗. There exists a finite collection of opens 𝑈𝑗𝑘, 𝑘 ∈ 𝐾𝑗
such that 𝐸 ⊂ ⋃𝑘∈𝐾𝑗

𝑈𝑗𝑘 and such that each restriction 𝑠𝑗|𝑈𝑗𝑘
is a finite sum ∑𝑖∈𝐼𝑗𝑘

𝑓𝑗𝑘𝑖
with 𝐼𝑗𝑘 ⊂ 𝐼, and 𝑓𝑗𝑘𝑖 in the summand 𝒪𝑋 corresponding to 𝑖 ∈ 𝐼. Set 𝐼𝑗 = ⋃𝑘∈𝑘𝐽

𝐼𝑗𝑘.
This is a finite set. Since 𝑈 ⊂ 𝐸 ⊂ ⋃𝑘∈𝐾𝑗

𝑈𝑗𝑘 the section 𝑠𝑗|𝑈 is a section of the finite
direct sum ⨁𝑖∈𝐼𝑗

𝒪𝑋. By Lemma 15.3.2 we see that actually 𝑠𝑗|𝑈 is a sum ∑𝑖∈𝐼𝑗
𝑓𝑖𝑗 and

𝑓𝑖𝑗 ∈ 𝒪𝑋(𝑈) = Γ(𝑈, 𝒪𝑈).

At this point we can define a module 𝑀 as the cokernel of the map

⨁𝑗∈𝐽
Γ(𝑈, 𝒪𝑈) ⟶ ⨁𝑖∈𝐼

Γ(𝑈, 𝒪𝑈)

with matrix given by the (𝑓𝑖𝑗). By construction (2) of Lemma 15.10.5 we see that ℱ𝑀 has
the same presentation as ℱ|𝑈 and therefore ℱ𝑀 ≅ ℱ|𝑈. �

Example 15.10.9. Let 𝑋 be countably many copies 𝐿1, 𝐿2, 𝐿3, … of the real line all glued
together at 0; a fundamental system of neighbourhoods of 0 being the collection {𝑈𝑛}𝑛∈𝐍,
with 𝑈𝑛 ∩ 𝐿𝑖 = (−1/𝑛, 1/𝑛). Let 𝒪𝑋 be the sheaf of continuous real valued functions. Let
𝑓 ∶ 𝐑 → 𝐑 be a continuous function which is identically zero on (−1, 1) and identically 1
on (−∞, −2)∪(2, ∞). Denote 𝑓𝑛 the continuous function on 𝑋 which is equal to 𝑥 ↦ 𝑓(𝑛𝑥)
on each 𝐿𝑗 = 𝐑. Let 1𝐿𝑗

be the characteristic function of 𝐿𝑗. We consider the map

⨁𝑗∈𝐍
𝒪𝑋 ⟶ ⨁𝑗,𝑖∈𝐍

𝒪𝑋, 𝑒𝑗 ⟼ ∑𝑗∈𝐍
𝑓𝑖1𝐿𝑗

𝑒𝑖𝑗

with obvious notation. This makes sense because this sum is locally finite. Clearly, there
is no neighbourhood of 0 ∈ 𝑋 such that this map is given by a ``matrix'' as in the proof of
Lemma 15.10.8 above.

Note that ⨁𝑗∈𝐍 𝒪𝑋 is the sheaf associated to the free module with basis 𝑒𝑗 and similarly
for the other direct sum. Thus we see that a morphism of sheaves associated to modules
in general even locally on 𝑋 does not come from a morphism of modules. Similarly there
should be an example of a ringed space 𝑋 and a quasi-coherent 𝒪𝑋-module ℱ such that
ℱ is not locally of the form ℱ𝑀. (Please email if you find one.) Moreover, there should
be examples of locally compact spaces 𝑋 and maps ℱ𝑀 → ℱ𝑁 which also do not locally
come from maps of modules (the proof of Lemma 15.10.8 shows this cannot happen if 𝑁
is free).
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15.11. Modules of finite presentation

Definition 15.11.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. We say
that ℱ is of finite presentation if for every point 𝑥 ∈ 𝑋 there exists an open neighbourhood
𝑥 ∈ 𝑈 ⊂ 𝑋, and 𝑛, 𝑚 ∈ 𝐍 such that ℱ|𝑈 is isomorphic to the cokernel of a map

⨁𝑗=1,…,𝑚
𝒪𝑈 ⟶ ⨁𝑖=1,…,𝑛

𝒪𝑈

This means that 𝑋 is covered by open sets 𝑈 such that ℱ|𝑈 has a presentation of the form

⨁𝑗=1,…,𝑚
𝒪𝑈 ⟶ ⨁𝑖=1,…,𝑛

𝒪𝑈 → ℱ|𝑈 → 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point 𝑥 of 𝑋 there exists an open neighbourhood such that ℱ|𝑈 is gen-

erated by finitely many global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection is

also generated by finitely many global sections.

Lemma 15.11.2. Let (𝑋, 𝒪𝑋) be a ringed space. Any 𝒪𝑋-module of finite presentation is
quasi-coherent.

Proof. Immediate from defintions. �

Lemma 15.11.3. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a 𝒪𝑋-module of finite presenta-
tion. Let 𝜓 ∶ 𝒪⊕𝑟

𝑋 → ℱ be a surjection. Then Ker(𝜓) is an 𝒪𝑋-module of finite type.

Proof. Let 𝑥 ∈ 𝑋. Choose an open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such that there exists a
presentation

𝒪⊕𝑚
𝑈

𝜒
−→ 𝒪⊕𝑛

𝑈
𝜑

−→ ℱ|𝑈 → 0.

Let 𝑒𝑘 be the section generating the 𝑘th factor of 𝒪⊕𝑟
𝑋 . For every 𝑘 = 1, … , 𝑟 we can, after

shrinking 𝑈 to a small neighbourhood of 𝑥, lift 𝜓(𝑒𝑘) to a section ̃𝑒𝑘 of 𝒪⊕𝑛
𝑈 over 𝑈. This

gives a morphism of sheaves 𝛼 ∶ 𝒪⊕𝑟
𝑈 → 𝒪⊕𝑛

𝑈 such that 𝜑∘𝛼 = 𝜓. Similarly, after shrinking
𝑈, we can find a morphism 𝛽 ∶ 𝒪⊕𝑛

𝑈 → 𝒪⊕𝑟
𝑈 such that 𝜓 ∘ 𝛽 = 𝜑. Then the map

𝒪⊕𝑚
𝑈 ⊕ 𝒪⊕𝑟

𝑈
𝛽∘𝜒,1−𝛽∘𝛼

−−−−−−−→ 𝒪⊕𝑟
𝑈

is a surjection onto the kernel of 𝜓. �

Lemma 15.11.4. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. The pullback
𝑓∗𝒢 of a module of finite presentation is of finite presentation.

Proof. Exactly the same as the proof of Lemma 15.10.4 but with finite index sets. �

Lemma15.11.5. Let (𝑋, 𝒪𝑋) be a ringed space. Set𝑅 = Γ(𝑋, 𝒪𝑋). Let𝑀 be an𝑅-module.
The 𝒪𝑋-module ℱ𝑀 associated to 𝑀 is a directed colimit of finitely presented 𝒪𝑋-modules.

Proof. This follows immediately from Lemma 15.10.5 and the fact that any module is a
directed colimit of finitely presented modules, see Algebra, Lemma 7.8.13. �

Lemma 15.11.6. Let 𝑋 be a ringed space. Let 𝐼 be a partially ordered set and let (ℱ𝑖, 𝜑𝑖𝑖′)
be a system over 𝐼 consisting of sheaves of 𝒪𝑋-modules (see Categories, Section 4.19).
Assume

(1) 𝐼 is directed,
(2) 𝒢 is an 𝒪𝑋-module of finite presentation, and
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(3) 𝑋 has a cofinal system of open coverings 𝒰 ∶ 𝑋 = ⋃𝑗∈𝐽 𝑈𝑗 with 𝐽 finite and
𝑈𝑗 ∩ 𝑈𝑗′ quasi-compact for all 𝑗, 𝑗′ ∈ 𝐽

Then we have
𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑜𝑚𝑋(𝒢, ℱ𝑖) = 𝐻𝑜𝑚𝑋(𝒢, 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖).

Proof. Let 𝛼 be an element of the right hand side. For every point 𝑥 ∈ 𝑋 wemay choose an
open neighbourhood 𝑈 ⊂ 𝑋 and finitely many sections 𝑠𝑗 ∈ 𝒢(𝑈) which generate 𝒢 over 𝑈
and finitely many relations ∑ 𝑓𝑘𝑗𝑠𝑗 = 0, 𝑘 = 1, … , 𝑛 with 𝑓𝑘𝑗 ∈ 𝒪𝑋(𝑈) which generate the
kernel of ⨁𝑗=1,…,𝑚 𝒪𝑈 → 𝒢. After possibly shrinking 𝑈 to a smaller open neighbourhood
of 𝑥 we may assume there exists an index 𝑖 ∈ 𝐼 such that the sections 𝛼(𝑠𝑗) all come from
sections 𝑠′

𝑗 ∈ ℱ𝑖(𝑈). After possibly shrinking 𝑈 to a smaller open neighbourhood of 𝑥 and
increasing 𝑖 we may assume the relations ∑ 𝑓𝑘𝑗𝑠′

𝑗 = 0 hold in ℱ𝑖(𝑈). Hence we see that
𝛼|𝑈 lifts to a morphism 𝒢|𝑈 → ℱ𝑖|𝑈 for some index 𝑖 ∈ 𝐼.

By condition (3) and the preceding arguments, we may choose a finite open covering 𝑋 =
⋃𝑗=1,…,𝑚 𝑈𝑗 such that (a) 𝒢|𝑈𝑗

is generated by finitely many sections 𝑠𝑗𝑘 ∈ 𝒢(𝑈𝑗), (b)
the restriction 𝛼|𝑈𝑗

comes from a morphism 𝛼𝑗 ∶ 𝒢 → ℱ𝑖𝑗 for some 𝑖𝑗 ∈ 𝐼, and (c) the
intersections 𝑈𝑗 ∩ 𝑈𝑗′ are all quasi-compact. For every pair (𝑗, 𝑗′) ∈ {1, … , 𝑚}2 and any 𝑘
we can find we can find an index 𝑖 ≥ max(𝑖𝑗, 𝑖𝑗′) such that

𝜑𝑖𝑗𝑖(𝛼𝑗(𝑠𝑗𝑘|𝑈𝑗∩𝑈𝑗′)) = 𝜑𝑖𝑗′𝑖(𝛼𝑗′(𝑠𝑗𝑘|𝑈𝑗∩𝑈𝑗′))

see Sheaves, Lemma 6.29.1 (2). Since there are finitely many of these pairs (𝑗, 𝑗′) and
finitely many 𝑠𝑗𝑘 we see that we can find a single 𝑖 which works for all of them. For this
index 𝑖 all of the maps 𝜑𝑖𝑗𝑖 ∘ 𝛼𝑗 agree on the overlaps 𝑈𝑗 ∩ 𝑈𝑗′ as the sections 𝑠𝑗𝑘 generate
𝒢 over this overlap. Hence we get a morphism 𝒢 → ℱ𝑖 as desired. �

Remark 15.11.7. In the lemma above some condition beyond the condition that 𝑋 is quasi-
compact is necessary. See Sheaves, Example 6.29.2.

15.12. Coherent modules

The category of coherent sheaves on a ringed space 𝑋 is a more reasonable object than the
category of quasi-coherent sheaves, in the sense that it is at least an abelian subcategory of
Mod(𝒪𝑋) no matter what 𝑋 is. On the other hand, the pull back of a coherent module is
``almost never'' coherent in the general setting of ringed spaces.

Definition 15.12.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. We
say that ℱ is a coherent 𝒪𝑋-module if the following two conditions hold:

(1) ℱ is of finite type, and
(2) for every open 𝑈 ⊂ 𝑋 and every finite collection 𝑠𝑖 ∈ ℱ(𝑈), 𝑖 = 1, … , 𝑛 the

kernel of the associated map ⨁𝑖=1,…,𝑛 𝒪𝑈 → ℱ|𝑈 is of finite type.
The category of coherent 𝒪𝑋-modules is denoted Coh(𝒪𝑋).

Lemma 15.12.2. Let (𝑋, 𝒪𝑋) be a ringed space. Any coherent 𝒪𝑋-module is of finite pre-
sentation and hence quasi-coherent.

Proof. Let ℱ be a coherent sheaf on 𝑋. Pick a point 𝑥 ∈ 𝑋. By (1) of the definition of
coherent, we may find an open neighbourhood 𝑈 and sections 𝑠𝑖, 𝑖 = 1, … , 𝑛 of ℱ over 𝑈
such that Ψ ∶ ⨁𝑖=1,…,𝑛 𝒪𝑈 → ℱ is surjective. By (2) of the definition of coherent, we may
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find an open neighbourhood 𝑉, 𝑥 ∈ 𝑉 ⊂ 𝑈 and sections 𝑡1, … , 𝑡𝑚 of ⨁𝑖=1,…,𝑛 𝒪𝑉 which
generate the kernel of Ψ|𝑉. Then over 𝑉 we get the presentation

⨁𝑗=1,…,𝑚
𝒪𝑉 ⟶ ⨁𝑖=1,…,𝑛

𝒪𝑉 → ℱ|𝑉 → 0

as desired. �

Example 15.12.3. Suppose that 𝑋 is a point. In this case the definition above gives a notion
for modules over rings. What does the definition of coherent mean? It is closely related to
the notion of Noetherian, but it is not the same: Namely, the ring 𝑅 = 𝐂[𝑥1, 𝑥2, 𝑥3, …] is
coherent as a module over itself but not Noetherian as a module over itself. See Algebra,
Section 7.84 for more discussion.

Lemma 15.12.4. Let (𝑋, 𝒪𝑋) be a ringed space.
(1) Any finite type subsheaf of a coherent sheaf is coherent.
(2) Let 𝜑 ∶ ℱ → 𝒢 be a morphism from a finite type sheaf ℱ to a coherent sheaf 𝒢.

Then Ker(𝜑) is finite type.
(3) Let 𝜑 ∶ ℱ → 𝒢 be a morphism of coherent 𝒪𝑋-modules. Then Ker(𝜑) and

Coker(𝜑) are coherent.
(4) The category of coherent sheaves on 𝑋 is abelian.
(5) Given a short exact sequence of 𝒪𝑋-modules 0 → ℱ1 → ℱ2 → ℱ3 → 0 if two

out of three are coherent so is the third.

Proof. Condition (2) of Definition 15.12.1 holds for any subsheaf of a coherent sheaf. Thus
we get the first statement.
Assume the hypotheses of (2). Let us show that Ker(𝜑) is of finite type. Pick 𝑥 ∈ 𝑋.
Choose an open neighbourhood 𝑈 of 𝑥 in 𝑋 such that ℱ|𝑈 is generated by 𝑠1, … , 𝑠𝑛. By
Definition 15.12.1 the kernel 𝒦 of the induced map ⨁𝑛

𝑖=1 𝒪𝑈 → 𝒢, 𝑒𝑖 ↦ 𝜑(𝑠𝑖) is of finite
type. Hence Ker(𝜑) which is the image of the composition 𝒦 → ⨁𝑛

𝑖=1 𝒪𝑈 → ℱ is of finite
type.
Assume the hypotheses of (3). By (2) the kernel of 𝜑 is of finite type and hence by (1) it is
coherent.
With the same hypotheses let us show that Coker(𝜑) is coherent. Since 𝒢 is of finite type
so is Coker(𝜑). Let 𝑈 ⊂ 𝑋 be open and let 𝑠𝑖 ∈ Coker(𝜑)(𝑈), 𝑖 = 1, … , 𝑛 be sections.
We have to show that the kernel of the associated morphism Ψ ∶ ⨁𝑛

𝑖=1 𝒪𝑈 → Coker(𝜑)
has finite type. There exists an open covering of 𝑈 such that on each open all the sections
𝑠𝑖 lift to sections 𝑠𝑖 of 𝒢. Hence we may assume this is the case over 𝑈. Thus Ψ lifts to
Ψ ∶ ⨁𝑛

𝑖=1 𝒪𝑈 → 𝒢 Consider the following diagram

0 // Ker(Ψ) //

��

⨁𝑛
𝑖=1 𝒪𝑈

// 𝒢 //

��

0

0 // Ker(Ψ) //⨁𝑛
𝑖=1 𝒪𝑈

// Coker(𝜑) // 0

By the snake lemma we get a short exact sequence 0 → Ker(Ψ) → Ker(Ψ) → Im(𝜑) → 0.
Hence by Lemma 15.9.3 we see that Ker(Ψ) has finite type.
Statement (4) follows from (3).
Let 0 → ℱ1 → ℱ2 → ℱ3 → 0 be a short exact sequence of 𝒪𝑋-modules. It suffices to
prove that if ℱ1 and ℱ3 are coherent so is ℱ2. By Lemma 15.9.3 we see that ℱ2 has finite
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type. Let 𝑠1, … , 𝑠𝑛 be finitely many local sections of ℱ2 defined over a common open 𝑈 of
𝑋. We have to show that the module of relations 𝒦 between them is of finite type. Consider
the following commutative diagram

0 // 0 //

��

⨁𝑛
𝑖=1 𝒪𝑈

//

��

⨁𝑛
𝑖=1 𝒪𝑈

//

��

0

0 // ℱ1
// ℱ2

// ℱ3
// 0

with obvious notation. By the snake lemma we get a short exact sequence 0 → 𝒦 → 𝒦3 →
ℱ1 where 𝒦3 is the module of relations among the images of the sections 𝑠𝑖 in ℱ3. Since
ℱ3 is coherent we see that 𝒦3 is finite type. Since ℱ1 is coherent we see that the image ℐ
of 𝒦3 → ℱ1 is coherent. Hence 𝒦 is the kernel of the map 𝒦3 → ℐ between a finite type
sheaf and a coherent sheaves and hence finite type by (2). �

Lemma 15.12.5. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be an 𝒪𝑋-module. Assume 𝒪𝑋 is a
coherent 𝒪𝑋-module. Then ℱ is coherent if and only if it is of finite presentation.

Proof. Omitted. �

Lemma 15.12.6. Let 𝑋 be a ringed space. Let 𝜑 ∶ 𝒢 → ℱ be a homomorphism of
𝒪𝑋-modules. Let 𝑥 ∈ 𝑋. Assume 𝒢 of finite type, ℱ coherent and the map on stalks
𝜑𝑥 ∶ 𝒢𝑥 → ℱ𝑥 injective. Then there exists an open neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 such that
𝜑|𝑈 is injective.

Proof. Denote 𝒦 ⊂ 𝒢 the kernel of 𝜑. By Lemma 15.12.4 we see that 𝒦 is a finite type
𝒪𝑋-module. Our assumption is that 𝒦𝑥 = 0. By Lemma 15.9.5 there exists an open
neighbourhood 𝑈 of 𝑥 such that 𝒦|𝑈 = 0. Then 𝑈 works. �

15.13. Closed immersions of ringed spaces

When do we declare a morphism of ringed spaces 𝑖 ∶ (𝑍, 𝒪𝑍) → (𝑋, 𝒪𝑋) to be a closed
immersion? It depends on what types of sheaves of modules you want to consider. For
example, we saw in Section 15.6 that if 𝑖 ∶ 𝑍 → 𝑋 is the inclusion of a closed subspace
and 𝒪𝑍 = 𝐙𝑍, 𝒪𝑋 = 𝐙𝑋 then we obtain a good notion in the setting of abelian sheaves.

On the other hand, if we want 𝑖∗ and 𝑖∗ to provide an equivalence between (certain) cate-
gories of quasi-coherent sheaves, then this doesn't work. Namely, typically the sheaf 𝑖∗𝐙𝑍
isn't a quasi-coherent 𝐙𝑋-module. This already happens in case 𝑋 = 𝐑 and 𝑍 is a point.
A minimal condition is that 𝑖∗𝒪𝑍 is a quasi-coherent sheaf of 𝒪𝑋-modules. On the other
hand, it seems reasonable to assume that every local section of 𝑖∗𝒪𝑍 comes (locally) from
a local section of 𝒪𝑋, in other words to assume that 𝒪𝑋 → 𝑖∗𝒪𝑍 is surjective. In this
case the kernel ℐ is a sheaf of ideals of 𝒪𝑋, i.e., a submodule of 𝒪𝑋. And an easy way to
garantee that 𝑖∗𝒪𝑍 is a quasi-coherent 𝒪𝑋-module is to assume that ℐ is locally generated
by sections. This leads to the following (nonstandard) definition.

Definition 15.13.1. A closed immersion of ringed spaces2 is a morphism 𝑖 ∶ (𝑍, 𝒪𝑍) →
(𝑋, 𝒪𝑋) with the following properties:

(1) The map 𝑖 is a closed immersion of topological spaces.
(2) The associated map 𝒪𝑋 → 𝑖∗𝒪𝑍 is surjective. Denote the kernel by ℐ.
(3) The 𝒪𝑋-module ℐ is locally generated by sections.

2This is likely nonstandard notation; we chose it because it works well for schemes.
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Actually, this definition still does not garantee that 𝑖∗ of a quasi-coherent 𝒪𝑍-module is
a quasi-coherent 𝒪𝑋-module. The problem is that it is not clear how to convert a local
presentation of a quasi-coherent 𝒪𝑍-module into a local presentation for the pushforward.
However, the following is trivial.

Lemma 15.13.2. Let 𝑖 ∶ (𝑍, 𝒪𝑍) → (𝑋, 𝒪𝑋) be a closed immersion of locally ringed
spaces. Let ℱ be a quasi-coherent 𝒪𝑍-module. Then 𝑖∗ℱ is locally on 𝑋 the cokernel of a
map of quasi-coherent 𝒪𝑋-modules.

Proof. This is true because 𝑖∗𝒪𝑍 is quasi-coherent by definition. And locally on𝑍 the sheaf
ℱ is a cokernel of a map between direct sums of copies of 𝒪𝑍. Moreover, any direct sum
of copies of the the same quasi-coherent sheaf is quasi-coherent. And finally, 𝑖∗ commutes
with arbitrary colimits, see Lemma 15.6.3. Some details omitted. �

Lemma 15.13.3. Let 𝑖 ∶ (𝑍, 𝒪𝑍) → (𝑋, 𝒪𝑋) be a closed immersion of locally ringed
spaces. Let ℱ be an 𝒪𝑍-module. Then 𝑖∗ℱ is of finite type if and only if ℱ is of finite type.

Proof. Suppose that ℱ is of finite type. Pick 𝑥 ∈ 𝑋. If 𝑥∉𝑍, then 𝑖∗ℱ is zero in a neigh-
bourhood of 𝑥 and hence finitely generated in a neighbourhood of 𝑥. If 𝑥 = 𝑖(𝑧), then
choose an open neighbourhood 𝑧 ∈ 𝑉 ⊂ 𝑍 and sections 𝑠1, … , 𝑠𝑛 ∈ ℱ(𝑉) which generate
ℱ over 𝑉. Write 𝑉 = 𝑍 ∩ 𝑈 for some open 𝑈 ⊂ 𝑋. Note that 𝑈 is a neighbourhood of 𝑥.
Clearly the sections 𝑠𝑖 give sections 𝑠𝑖 of 𝑖∗ℱ over 𝑈. The resulting map

⨁𝑖=1,…,𝑛
𝒪𝑈 ⟶ 𝑖∗ℱ|𝑈

is surjective by inspection of what it does on stalks (the only thing you use is that 𝒪𝑋 →
𝑖∗𝒪𝑍 is surjective). Hence 𝑖∗ℱ is of finite type.
Conversely, suppose that 𝑖∗ℱ is of finite type. Choose 𝑧 ∈ 𝑍. Set 𝑥 = 𝑖(𝑧). By assumption
there exists an open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥, and sections 𝑠1, … , 𝑠𝑛 ∈ (𝑖∗ℱ)(𝑈) which
generate 𝑖∗ℱ over 𝑈. Set 𝑉 = 𝑍 ∩ 𝑈. By definition of 𝑖∗ the sections 𝑠𝑖 correspond to
sections 𝑠𝑖 of ℱ over 𝑉. The resulting map

⨁𝑖=1,…,𝑛
𝒪𝑉 ⟶ ℱ|𝑉

is surjective by inspection of what it does on stalks (the only thing you use is that 𝒪𝑋 →
𝑖∗𝒪𝑍 is surjective). Hence ℱ is of finite type. �

15.14. Locally free sheaves

Let (𝑋, 𝒪𝑋) be a ringed space. Our conventions allow (some of) the stalks 𝒪𝑋,𝑥 to be the
zero ring. This means we have to be a little carefull when defining the rank of a locally free
sheaf.

Definition 15.14.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. We
say ℱ is locally free if for every point 𝑥 ∈ 𝑋 there exists a set 𝐼 and an open neighbourhood
𝑥 ∈ 𝑈 ⊂ 𝑋 such that ℱ|𝑈 is isomorphic to ⨁𝑖∈𝐼 𝒪𝑋|𝑈 as an 𝒪𝑋|𝑈-module. We say ℱ is
finite locally free if we may choose the index set 𝐼 to be finite always.

A finite direct sum of (finite) locally free sheaves is (finite) locally free. However, it may
not be the case that an infinite direct sum of locally free sheaves is locally free.

Lemma 15.14.2. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. If ℱ is
locally free then it is quasi-coherent.

Proof. Omitted. �
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Lemma 15.14.3. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. If 𝒢 is a
locally free 𝒪𝑌-module, then 𝑓∗𝒢 is a locally free 𝒪𝑋-module.

Proof. Omitted. �

Lemma 15.14.4. Let (𝑋, 𝒪𝑋) be a ringed space. Suppose that the support of 𝒪𝑋 is 𝑋, i.e.,
all stalk of 𝒪𝑋 are nonzero rings. Let ℱ be a locally free sheaf of 𝒪𝑋-modules. There exists
a locally constant function

rankℱ ∶ 𝑋 ⟶ {0, 1, 2, …} ∪ {∞}
such that for any point 𝑥 ∈ 𝑋 the cardinality of any set 𝐼 such that ℱ is isomorphic to
⨁𝑖∈𝐼 𝒪𝑋 in a neighbourhood of 𝑥 is rankℱ(𝑥).

Proof. Under the assumption of the lemma the cardinality of 𝐼 can be read off from the
rank of the free module ℱ𝑥 over the nonzero ring 𝒪𝑋,𝑥, and it is constant in a neighbourhood
of 𝑥. �

15.15. Tensor product

Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ, 𝒢 be 𝒪𝑋-modules. We have briefly discussed the
tensor product in the setting of change of rings in Sheaves, Sections 6.6 and 6.20. In exactly
the same way we define first the tensor product presheaf

ℱ ⊗𝑝,𝒪𝑋
𝒢

as the rule which assigns to 𝑈 ⊂ 𝑋 open the 𝒪𝑋(𝑈)-module ℱ(𝑈) ⊗𝒪𝑋(𝑈) 𝒢(𝑈). Having
defined this we define the tensor product sheaf as the sheafification of the above:

ℱ ⊗𝒪𝑋
𝒢 = (ℱ ⊗𝑝,𝒪𝑋

𝒢)#

This can be characterized as the sheaf of 𝒪𝑋-modules such that for any third sheaf of
𝒪𝑋-modules ℋ we have

𝐻𝑜𝑚𝒪𝑋
(ℱ ⊗𝒪𝑋

𝒢, ℋ) = Bilin𝒪𝑋
(ℱ × 𝒢, ℋ).

Here the right hand side indicates the set of bilinear maps of sheaves of 𝒪𝑋-modules (defi-
nition omitted).
The tensor product of modules 𝑀, 𝑁 over a ring 𝑅 satisfies symmetry, namely 𝑀 ⊗𝑅 𝑁 =
𝑁 ⊗𝑅 𝑀, hence the same holds for tensor products of sheaves of modules, i.e., we have

ℱ ⊗𝒪𝑋
𝒢 = 𝒢 ⊗𝒪𝑋

ℱ
functorial in ℱ, 𝒢. And since tensor product of modules satisfies associativity we also get
canonical functorial isomorphisms

(ℱ ⊗𝒪𝑋
𝒢) ⊗𝒪𝑋

ℋ = ℱ ⊗𝒪𝑋
(𝒢 ⊗𝒪𝑋

ℋ)
functorial in ℱ, 𝒢, and ℋ.

Lemma 15.15.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ, 𝒢 be 𝒪𝑋-modules. Let 𝑥 ∈ 𝑋.
There is a canonical isomorphism of 𝒪𝑋,𝑥-modules

(ℱ ⊗𝒪𝑋
𝒢)𝑥 = ℱ𝑥 ⊗𝒪𝑋,𝑥

𝒢𝑥

functorial in ℱ and 𝒢.

Proof. Omitted. �

Lemma 15.15.2. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ′, 𝒢′ be presheaves of 𝒪𝑋-modules
with sheafifications ℱ, 𝒢. Then ℱ ⊗𝒪𝑋

𝒢 = (ℱ′ ⊗𝑝,𝒪𝑋
𝒢′)#.
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Proof. Omitted. �

Lemma 15.15.3. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝒢 be an 𝒪𝑋-module. If ℱ1 → ℱ2 →
ℱ3 → 0 is an exact sequence of 𝒪𝑋-modules then the induced sequence

ℱ1 ⊗𝒪𝑋
𝒢 → ℱ2 ⊗𝒪𝑋

𝒢 → ℱ3 ⊗𝒪𝑋
𝒢 → 0

is exact.

Proof. This follows from the fact that exactness may be checked at stalks (Lemma 15.3.1),
the description of stalks (Lemma 15.15.1) and the corresponding result for tensor products
of modules (Algebra, Lemma 7.11.10). �

Lemma 15.15.4. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. Let ℱ, 𝒢 be
𝒪𝑌-modules. Then 𝑓∗(ℱ ⊗𝒪𝑌

𝒢) = 𝑓∗ℱ ⊗𝒪𝑋
𝑓∗𝒢 functorially in ℱ, 𝒢.

Proof. Omitted. �

Lemma 15.15.5. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ, 𝒢 be 𝒪𝑋-modules.
(1) If ℱ, 𝒢 are locally generated by sections, so is ℱ ⊗𝒪𝑋

𝒢.
(2) If ℱ, 𝒢 are of finite type, so is ℱ ⊗𝒪𝑋

𝒢.
(3) If ℱ, 𝒢 are quasi-coherent, so is ℱ ⊗𝒪𝑋

𝒢.
(4) If ℱ, 𝒢 are of finite presentation, so is ℱ ⊗𝒪𝑋

𝒢.
(5) If ℱ is of finite presentation and 𝒢 is coherent, then ℱ ⊗𝒪𝑋

𝒢 is coherent.
(6) If ℱ, 𝒢 are coherent, so is ℱ ⊗𝒪𝑋

𝒢.
(7) If ℱ, 𝒢 are locally free, so is ℱ ⊗𝒪𝑋

𝒢.

Proof. Wefirst prove that the tensor product of locally free𝒪𝑋-modules is locally free. This
follows if we show that (⨁𝑖∈𝐼 𝒪𝑋) ⊗𝒪𝑋

(⨁𝑗∈𝐽 𝒪𝑋) ≅ ⨁(𝑖,𝑗)∈𝐼×𝐽 𝒪𝑋. The sheaf ⨁𝑖∈𝐼 𝒪𝑋
is the sheaf associated to the presheaf 𝑈 ↦ ⨁𝑖∈𝐼 𝒪𝑋(𝑈). Hence the tensor product is the
sheaf associated to the presheaf

𝑈 ⟼ (⨁𝑖∈𝐼
𝒪𝑋(𝑈)) ⊗𝒪𝑋(𝑈) (⨁𝑗∈𝐽

𝒪𝑋(𝑈)).

Wededucewhat wewant since for any ring𝑅we have (⨁𝑖∈𝐼 𝑅)⊗𝑅(⨁𝑗∈𝐽 𝑅) = ⨁(𝑖,𝑗)∈𝐼×𝐽 𝑅.

If ℱ2 → ℱ1 → ℱ → 0 is exact, then by Lemma 15.15.3 the complex ℱ2 ⊗ 𝒢 → ℱ1 ⊗ 𝒢 →
ℱ ⊗ 𝒢 → 0 is exact. Using this we can prove (5). Namely, in this case there exists locally
such an exact sequence with ℱ𝑖, 𝑖 = 1, 2 finite free. Hence the two terms ℱ2 ⊗ 𝒢 are
isomorphic to finite direct sums of 𝒢. Since finite direct sums are coherent sheaves, these
are coherent and so is the cokernel of the map, see Lemma 15.12.4.

And if also 𝒢2 → 𝒢1 → 𝒢 → 0 is exact, then we see that

ℱ2 ⊗𝒪𝑋
𝒢1 ⊕ ℱ1 ⊗𝒪𝑋

𝒢2 → ℱ1 ⊗𝒪𝑋
𝒢1 → ℱ ⊗𝒪𝑋

𝒢 → 0

is exact. Using this we can for example prove (3). Namely, the assumption means that
we can locally find presentations as above with ℱ𝑖 and 𝒢𝑖 free 𝒪𝑋-modules. Hence the
displayed presentation is a presentation of the tensor product by free sheaves as well.

The proof of the other statements is omitted. �

Lemma 15.15.6. Let (𝑋, 𝒪𝑋) be a ringed space. For any 𝒪𝑋-module ℱ the functor

Mod(𝒪𝑋) ⟶ Mod(𝒪𝑋), 𝒢 ⟼ ℱ ⊗𝒪 𝒢

commutes with arbitrary colimits.
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Proof. Let 𝐼 be a partially ordered set and let {𝒢𝑖} be a system over 𝐼. Set 𝒢 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝒢𝑖.
Recall that 𝒢 is the sheaf associated to the presheaf 𝒢′ ∶ 𝑈 ↦ 𝑐𝑜𝑙𝑖𝑚𝑖 𝒢𝑖(𝑈), see Sheaves,
Section 6.29. By Lemma 15.15.2 the tensor product ℱ ⊗𝒪𝑋

𝒢 is the sheafification of the
presheaf

𝑈 ⟼ ℱ(𝑈) ⊗𝒪𝑋(𝑈) 𝑐𝑜𝑙𝑖𝑚𝑖 𝒢𝑖(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ(𝑈) ⊗𝒪𝑋(𝑈) 𝒢𝑖(𝑈)
where the equality sign is Algebra, Lemma 7.11.8. Hence the lemma follows from the
description of colimits in Mod(𝒪𝑋). �

15.16. Flat modules

We can define flat modules exactly as in the case of modules over rings.

Definition 15.16.1. Let (𝑋, 𝒪𝑋) be a ringed space. An 𝒪𝑋-module ℱ is flat if the functor

Mod(𝒪𝑋) ⟶ Mod(𝒪𝑋), 𝒢 ↦ 𝒢 ⊗𝒪 ℱ

is exact.

We can characterize flatness by looking at the stalks.

Lemma 15.16.2. Let (𝑋, 𝒪𝑋) be a ringed space. An 𝒪𝑋-module ℱ is flat if and only if the
stalk ℱ𝑥 is a flat 𝒪𝑋,𝑥-module for all 𝑥 ∈ 𝑋.

Proof. Assume ℱ𝑥 is a flat 𝒪𝑋,𝑥-module for all 𝑥 ∈ 𝑋. In this case, if 𝒢 → ℋ → 𝒦 is
exact, then also 𝒢⊗𝒪𝑋

ℱ → 𝒢⊗𝒪𝑋
ℱ → 𝒢⊗𝒪𝑋

ℱ is exact because we can check exactness
at stalks and because tensor product commutes with taking stalks, see Lemma 15.15.1.
Conversely, suppose that ℱ is flat, and let 𝑥 ∈ 𝑋. Consider the skyscraper sheaves 𝑖𝑥,∗𝑀
where 𝑀 is a 𝒪𝑋,𝑥-module. Note that

𝑀 ⊗𝒪𝑋,𝑥
ℱ𝑥 = (𝑖𝑥,∗𝑀 ⊗𝒪𝑋

ℱ))𝑥

again by Lemma 15.15.1. Since 𝑖𝑥,∗ is exact, we see that the fact that ℱ is flat implies that
𝑀 ↦ 𝑀 ⊗𝒪𝑋,𝑥

ℱ𝑥 is exact. Hence ℱ𝑥 is a flat 𝒪𝑋,𝑥-module. �

Thus the following definition makes sense.

Definition 15.16.3. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝑥 ∈ 𝑋 An 𝒪𝑋-module ℱ is flat at
𝑥 if ℱ𝑥 is a flat 𝒪𝑋,𝑥-module.

Hence we see that ℱ is a flat 𝒪𝑋-module if and only if it is flat at every point.

Lemma 15.16.4. Let (𝑋, 𝒪𝑋) be a ringed space. A filtered colimit of flat 𝒪𝑋-modules is
flat. A direct sum of flat 𝒪𝑋-modules is flat.

Proof. This follows from Lemma 15.15.6, Lemma 15.15.1, Algebra, Lemma 7.8.9, and the
fact that we can check exactness at stalks. �

Lemma 15.16.5. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝑈 ⊂ 𝑋 be open. The sheaf 𝑗𝑈!𝒪𝑈 is
a flat sheaf of 𝒪𝑋-modules.

Proof. The stalks of 𝑗!𝒪𝑈 are either zero of equal to 𝒪𝑋,𝑥. Apply Lemma 15.16.2. �

Lemma 15.16.6. Let (𝑋, 𝒪𝑋) be a ringed space.
(1) Any sheaf of 𝒪𝑋-modules is a quotient of a direct sum ⨁ 𝑗𝑈𝑖!𝒪𝑈𝑖

.
(2) Any 𝒪𝑋-module is a quotient of a flat 𝒪𝑋-module.
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Proof. Let ℱ be an 𝒪𝑋-module. For every open 𝑈 ⊂ 𝑋 and every 𝑠 ∈ ℱ(𝑈) we get a
morphism 𝑗𝑈!𝒪𝑈 → ℱ, namely the adjoint to the morphism 𝒪𝑈 → ℱ|𝑈, 1 ↦ 𝑠. Clearly the
map

⨁(𝑈,𝑠)
𝑗𝑈!𝒪𝑈 ⟶ ℱ

is surjective, and the source is flat by combining Lemmas 15.16.4 and 15.16.5. �

Lemma 15.16.7. Let (𝑋, 𝒪𝑋) be a ringed space. Let
0 → ℱ″ → ℱ′ → ℱ → 0

be a short exact sequence of 𝒪𝑋-modules. Assume ℱ is flat. Then for any 𝒪𝑋-module 𝒢 the
sequence

0 → ℱ″ ⊗𝒪 𝒢 → ℱ′ ⊗𝒪 𝒢 → ℱ ⊗𝒪 𝒢 → 0
is exact.

Proof. Using that ℱ𝑥 is a flat 𝒪𝑋,𝑥-module for every 𝑥 ∈ 𝑋 and that exactness can be
checked on stalks, this follows from Algebra, Lemma 7.35.11. �

Lemma 15.16.8. Let (𝑋, 𝒪𝑋) be a ringed space. Let
0 → ℱ2 → ℱ1 → ℱ0 → 0

be a short exact sequence of 𝒪𝑋-modules.
(1) If ℱ2 and ℱ0 are flat so is ℱ1.
(2) If ℱ1 and ℱ0 are flat so is ℱ2.

Proof. Since exactness and flatness may be checked at the level of stalks this follows from
Algebra, Lemma 7.35.12. �

Lemma 15.16.9. Let (𝑋, 𝒪𝑋) be a ringed space. Let
… → ℱ2 → ℱ1 → ℱ0 → 𝒬 → 0

be an exact complex of 𝒪𝑋-modules. If 𝒬 and all ℱ𝑖 are flat 𝒪𝑋-modules, then for any
𝒪𝑋-module 𝒢 the complex

… → ℱ2 ⊗𝒪𝑋
𝒢 → ℱ1 ⊗𝒪𝑋

𝒢 → ℱ0 ⊗𝒪𝑋
𝒢 → 𝒬 ⊗𝒪𝑋

𝒢 → 0
is exact also.

Proof. Follows from Lemma 15.16.7 by splitting the complex into short exact sequences
and using Lemma 15.16.8 to prove inductively that Im(ℱ𝑖+1 → ℱ𝑖) is flat. �

15.17. Flat morphisms of ringed spaces

The pointwise definition is motivated by Lemma 15.16.2 and Definition 15.16.3 above.

Definition 15.17.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let 𝑥 ∈ 𝑋. We say 𝑓
is said to be flat at 𝑥 if the map of rings 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥 is flat. We say 𝑓 is flat if 𝑓 is flat at
every 𝑥 ∈ 𝑋.

Consider the map of sheaves of rings 𝑓♯ ∶ 𝑓−1𝒪𝑌 → 𝒪𝑋. We see that the stalk at 𝑥 is
the ring map 𝑓♯

𝑥 ∶ 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥. Hence 𝑓 is flat at 𝑥 if and only if 𝒪𝑋 is flat at 𝑥 as an
𝑓−1𝒪𝑌-module. And 𝑓 is flat if and only if 𝒪𝑋 is flat as an 𝑓−1𝒪𝑌-module. A very special
case of a flat morphism is an open immersion.

Lemma 15.17.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat morphism of ringed spaces. Then the pullback
functor 𝑓∗ ∶ Mod(𝒪𝑌) → Mod(𝒪𝑋) is exact.
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Proof. The functor𝑓∗ is the composition of the exact functor 𝑓−1 ∶ Mod(𝒪𝑌) → Mod(𝑓−1𝒪𝑌)
and the change of rings functor

Mod(𝑓−1𝒪𝑌) → Mod(𝒪𝑋), ℱ ⟼ ℱ ⊗𝑓−1𝒪𝑌
𝒪𝑋.

Thus the result follows from the discussion following Definition 15.17.1. �

15.18. Symmetric and exterior powers

Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be an 𝒪𝑋-algebra. We define the tensor algebra of ℱ
to be the sheaf of noncommutative 𝒪𝑋-algebras

T(ℱ) = T𝒪𝑋
(ℱ) = ⨁𝑛≥0

T𝑛(ℱ).

Here T0(ℱ) = 𝒪𝑋, T1(ℱ) = ℱ and for 𝑛 ≥ 2 we have
T𝑛(ℱ) = ℱ ⊗𝒪𝑋

… ⊗𝒪𝑋
ℱ (𝑛 factors)

We define ∧(ℱ) to be the quotient of T(ℱ) by the two sided ideal generated by local sections
𝑠 ⊗ 𝑠 of T2(ℱ) where 𝑠 is a local section of ℱ. This is called the exterior algebra of ℱ.
Similarly, we define Sym(ℱ) to be the quotient of T(ℱ) by the two sided ideal generated by
local sections of the form 𝑠 ⊗ 𝑡 − 𝑡 ⊗ 𝑠 of T2(ℱ).
Both ∧(ℱ) and Sym(ℱ) are graded 𝒪𝑋-algebras, with grading inherited from T(ℱ). More-
over Sym(ℱ) is commutative, and ∧(ℱ) is graded commutative.

Lemma 15.18.1. In the situation described above. The sheaf ∧𝑛ℱ is the sheafification of
the presheaf

𝑈 ⟼ ∧𝑛
𝒪𝑋(𝑈)(ℱ(𝑈)).

See Algebra, Section 7.12. Similarly, the sheaf Sym𝑛ℱ is the sheafification of the presheaf
𝑈 ⟼ Sym𝑛

𝒪𝑋(𝑈)(ℱ(𝑈)).

Proof. Omitted. It may be more efficient to define Sym(ℱ) and ∧(ℱ) in this way instead
of the method given above. �

Lemma 15.18.2. In the situation described above. Let 𝑥 ∈ 𝑋. There are canonical iso-
morphisms of 𝒪𝑋,𝑥-modules T(ℱ)𝑥 = T(ℱ𝑥), Sym(ℱ)𝑥 = Sym(ℱ𝑥), and ∧(ℱ)𝑥 = ∧(ℱ𝑥).

Proof. Clear from Lemma 15.18.1 above, and Algebra, Lemma 7.12.4. �

Lemma 15.18.3. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. Let ℱ be a
sheaf of 𝒪𝑌-modules. Then 𝑓∗T(ℱ) = T(𝑓∗ℱ), and similarly for the exterior and symmetric
algebras associated to ℱ.

Proof. Omitted. �

Lemma 15.18.4. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ2 → ℱ1 → ℱ → 0 be an exact
sequence of sheaves of 𝒪𝑋-modules. For each 𝑛 ≥ 1 there is an exact sequence

ℱ2 ⊗𝒪𝑋
Sym𝑛−1(ℱ1) → Sym𝑛(ℱ1) → Sym𝑛(ℱ) → 0

and similarly an exact sequence

ℱ2 ⊗𝒪𝑋
∧𝑛−1(ℱ1) → ∧𝑛(ℱ1) → ∧𝑛(ℱ) → 0

Proof. See Algebra, Lemma 7.12.2. �

Lemma 15.18.5. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules.
(1) If ℱ is locally generated by sections, then so is each T𝑛(ℱ), ∧𝑛(ℱ), and Sym𝑛(ℱ).
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(2) If ℱ is of finite type, then so is each T𝑛(ℱ), ∧𝑛(ℱ), and Sym𝑛(ℱ).
(3) If ℱ is of finite presentation, then so is each T𝑛(ℱ), ∧𝑛(ℱ), and Sym𝑛(ℱ).
(4) If ℱ is coherent, then for 𝑛 > 0 each T𝑛(ℱ), ∧𝑛(ℱ), and Sym𝑛(ℱ) is coherent.
(5) If ℱ is quasi-coherent, then so is each T𝑛(ℱ), ∧𝑛(ℱ), and Sym𝑛(ℱ).
(6) If ℱ is locally free, then so is each T𝑛(ℱ), ∧𝑛(ℱ), and Sym𝑛(ℱ).

Proof. These statements for T𝑛(ℱ) follow from Lemma 15.15.5.

Statements (1) and (2) follow from the fact that ∧𝑛(ℱ) and Sym𝑛(ℱ) are quotients of T𝑛(ℱ).

Statement (6) follows from Algebra, Lemma 7.12.1.

For (3) and (5) we will use Lemma 15.18.4 above. By locally choosing a presentation
ℱ2 → ℱ1 → ℱ → 0 with ℱ𝑖 free, or finite free and applying the lemma we see that
Sym𝑛(ℱ), ∧𝑛(ℱ) has a similar presentation; here we use (6) and Lemma 15.15.5.

To prove (4) we will use Algebra, Lemma 7.12.3. We may localize on 𝑋 and assume that ℱ
is generated by a finite set (𝑠𝑖)𝑖∈𝐼 of global sections. The lemmamentioned above combined
with Lemma 15.18.1 above implies that for 𝑛 ≥ 2 there exists an exact sequence

⨁
𝑗∈𝐽

T𝑛−2(ℱ) → T𝑛(ℱ) → Sym𝑛(ℱ) → 0

where the index set 𝐽 is finite. Now we know that T𝑛−2(ℱ) is finitely generated and hence
the image of the first arrow is a coherent subsheaf of T𝑛(ℱ), see Lemma 15.12.4. By that
same lemma we conclude that Sym𝑛(ℱ) is coherent. �

Lemma 15.18.6. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules.
(1) If ℱ is quasi-coherent, then so is each T(ℱ), ∧(ℱ), and Sym(ℱ).
(2) If ℱ is locally free, then so is each T(ℱ), ∧(ℱ), and Sym(ℱ).

Proof. It is not true that an infinite direct sum ⨁ 𝒢𝑖 of locally free modules is locally free,
or that an infinite direct sum of quasi-coherent modules is quasi-coherent. The problem is
that given a point 𝑥 ∈ 𝑋 the open neighbourhoods 𝑈𝑖 of 𝑥 on which 𝒢𝑖 becomes free (resp.
has a suitable presentation) may have an intersection which is not an open neighbourhood of
𝑥. However, in the proof of Lemma 15.18.5we saw that once a suitable open neighbourhood
for ℱ has been chosen, then this open neighbourhood works for each of the sheaves T𝑛(ℱ),
∧𝑛(ℱ) and Sym𝑛(ℱ). The lemma follows. �

15.19. Internal Hom

Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ, 𝒢 be 𝒪𝑋-modules. Consider the rule

𝑈 ⟼ 𝐻𝑜𝑚𝒪𝑋|𝑈
(ℱ|𝑈, 𝒢|𝑈).

It follows from the discussion in Sheaves, Section 6.33 that this is a sheaf of abelian groups.
In addition, given an element 𝜑 ∈ 𝐻𝑜𝑚𝒪𝑋|𝑈

(ℱ|𝑈, 𝒢|𝑈) and a section 𝑓 ∈ 𝒪𝑋(𝑈) then we
can define 𝑓𝜑 ∈ 𝐻𝑜𝑚𝒪𝑋|𝑈

(ℱ|𝑈, 𝒢|𝑈) by either precomposing with multiplication by 𝑓 on
ℱ|𝑈 or postcomposing with multiplication by 𝑓 on 𝒢|𝑈 (it gives the same result). Hence
we in fact get a sheaf of 𝒪𝑋-modules. We will denote this sheaf ℋ𝑜𝑚𝒪𝑋

(ℱ, 𝒢). There is a
canonical ``evaluation'' morphism

ℱ ⊗𝒪𝑋
ℋ𝑜𝑚𝒪𝑋

(ℱ, 𝒢) ⟶ 𝒢.

For every 𝑥 ∈ 𝑋 there is also a canonical morphism

ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢)𝑥 → 𝐻𝑜𝑚𝒪𝑋,𝑥

(ℱ𝑥, 𝒢𝑥)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01CL


15.19. INTERNAL HOM 1001

which is rarely an isomorphism.

Lemma 15.19.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ, 𝒢, ℋ be 𝒪𝑋-modules. There is a
canonical isomorphism

ℋ𝑜𝑚𝒪𝑋
(ℱ ⊗𝒪𝑋

𝒢, ℋ) ⟶ ℋ𝑜𝑚𝒪𝑋
(ℱ, ℋ𝑜𝑚𝒪𝑋

(𝒢, ℋ))

which is functorial in all three entries (sheaf Hom in all three spots). In particular, to give
a morphism ℱ ⊗𝒪𝑋

𝒢 → ℋ is the same as giving a morphism ℱ → ℋ𝑜𝑚𝒪𝑋
(𝒢, ℋ).

Proof. This is the analogue of Algebra, Lemma 7.11.9. The proof is the same, and is
omitted. �

Lemma 15.19.2. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ, 𝒢 be 𝒪𝑋-modules.

(1) If ℱ2 → ℱ1 → ℱ → 0 is an exact sequence of 𝒪𝑋-modules, then

0 → ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢) → ℋ𝑜𝑚𝒪𝑋

(ℱ1, 𝒢) → ℋ𝑜𝑚𝒪𝑋
(ℱ2, 𝒢)

is exact.
(2) If 0 → 𝒢 → 𝒢1 → 𝒢2 is an exact sequence of 𝒪𝑋-modules, then

0 → ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢) → ℋ𝑜𝑚𝒪𝑋

(ℱ, 𝒢1) → ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢2)

is exact.

Proof. Omitted. �

Lemma 15.19.3. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ, 𝒢 be 𝒪𝑋-modules. If ℱ is finitely
presented then the canonical map

ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢)𝑥 → 𝐻𝑜𝑚𝒪𝑋,𝑥

(ℱ𝑥, 𝒢𝑥)

is an isomorphism.

Proof. By localizing on 𝑋 we may assume that ℱ has a presentation

⨁𝑗=1,…,𝑚
𝒪𝑋 ⟶ ⨁𝑖=1,…,𝑛

𝒪𝑋 → ℱ → 0.

By Lemma 15.19.2 this gives an exact sequence 0 → ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢) → ⨁𝑖=1,…,𝑛 𝒢 ⟶

⨁𝑗=1,…,𝑚 𝒢.Taking stalkswe get an exact sequence 0 → ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢)𝑥 → ⨁𝑖=1,…,𝑛 𝒢𝑥 ⟶

⨁𝑗=1,…,𝑚 𝒢𝑥 and the result follows since ℱ𝑥 sits in an exact sequence ⨁𝑗=1,…,𝑚 𝒪𝑋,𝑥 ⟶
⨁𝑖=1,…,𝑛 𝒪𝑋,𝑥 → ℱ𝑥 → 0 which induces the exact sequence 0 → 𝐻𝑜𝑚𝒪𝑋,𝑥

(ℱ𝑥, 𝒢𝑥) →
⨁𝑖=1,…,𝑛 𝒢𝑥 ⟶ ⨁𝑗=1,…,𝑚 𝒢𝑥 which is the same as the one above. �

Lemma 15.19.4. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ, 𝒢 be 𝒪𝑋-modules. If ℱ is finitely
presented then the sheaf ℋ𝑜𝑚𝒪𝑋

(ℱ, 𝒢) is locally a kernel of a map between finite direct
sums of copies of 𝒢. In particular, if 𝒢 is coherent then ℋ𝑜𝑚𝒪𝑋

(ℱ, 𝒢) is coherent too.

Proof. The first assertion we saw in the proof of Lemma 15.19.3. And the result for coher-
ent sheaves then follows from Lemma 15.12.4. �
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15.20. Koszul complexes

We suggest first reading the section on Koszul complexes in More on Algebra, Section
12.21. We define the Koszul complex in the category of 𝒪𝑋-modules as follows.

Definition 15.20.1. Let 𝑋 be a ringed space. Let 𝜑 ∶ ℰ → 𝒪𝑋 be an 𝒪𝑋-module map.
The Koszul complex 𝐾•(𝜑) associated to 𝜑 is the sheaf of commutative differential graded
algebras defined as follows:

(1) the underlying graded algebra is the exterior algebra 𝐾•(𝜑) = ∧(ℰ),
(2) the differential 𝑑 ∶ 𝐾•(𝜑) → 𝐾•(𝜑) is the unique derivation such that 𝑑(𝑒) = 𝜑(𝑒)

for all local sections 𝑒 of ℰ = 𝐾1(𝜑).

Explicitly, if 𝑒1 ∧ … ∧ 𝑒𝑛 is a wedge product of local sections of ℰ, then

𝑑(𝑒1 ∧ … ∧ 𝑒𝑛) = ∑𝑖=1,…,𝑛
(−1)𝑖+1𝜑(𝑒𝑖)𝑒1 ∧ … ∧ 𝑒𝑖 ∧ … ∧ 𝑒𝑛.

It is straightforward to see that this gives a well defined derivation on the tensor algebra,
which annihilates 𝑒 ∧ 𝑒 and hence factors through the exterior algebra.

Definition 15.20.2. Let 𝑋 be a ringed space and let 𝑓1, … , 𝑓𝑛 ∈ Γ(𝑋, 𝒪𝑋). The Koszul
complex on 𝑓1, … , 𝑓𝑟 is the Koszul complex associated to the map (𝑓1, … , 𝑓𝑛) ∶ 𝒪⊕𝑛

𝑋 →
𝒪𝑋. Notation 𝐾•(𝒪𝑋, 𝑓1, … , 𝑓𝑛), or 𝐾•(𝒪𝑋, 𝑓•).

Of course, given an 𝒪𝑋-module map 𝜑 ∶ ℰ → 𝒪𝑋, if ℰ is finite locally free, then 𝐾•(𝜑) is
locally on 𝑋 isomorphic to a Koszul complex 𝐾•(𝒪𝑋, 𝑓1, … , 𝑓𝑛).

15.21. Invertible sheaves

Definition 15.21.1. Let (𝑋, 𝒪𝑋) be a ringed space. Assume that all stalks 𝒪𝑋,𝑥 are local
rings3. An invertible𝒪𝑋-module is a sheaf of 𝒪𝑋-modules ℒ such that for each point 𝑥 ∈ 𝑋
there exists an open neighbourhood 𝑈 ⊂ 𝑋 and an isomorphism ℒ|𝑈 ≅ 𝒪𝑋|𝑈. We say that
ℒ is trivial if it is isomorphic as an 𝒪𝑋-module to 𝒪𝑋.

Lemma 15.21.2. Let (𝑋, 𝒪𝑋) be a ringed space. Assume that all stalks 𝒪𝑋,𝑥 are local
rings.

(1) If ℒ, 𝒩 are invertible 𝒪𝑋-modules, then so is ℒ ⊗𝒪𝑋
𝒩.

(2) If ℒ is an invertible 𝒪𝑋-modules, then so is ℒ⊗−1 = ℋ𝑜𝑚𝒪𝑋
(ℒ, 𝒪𝑋).

(3) If ℒ is an invertible 𝒪𝑋-modules, then the evaluation map ℒ ⊗𝒪𝑋
ℒ⊗−1 → 𝒪𝑋

is an isomorphism.

Proof. Omitted. �

Definition 15.21.3. Let (𝑋, 𝒪𝑋) be a ringed space. Assume that all stalks 𝒪𝑋,𝑥 are local
rings. Given an invertible sheaf ℒ on 𝑋 we define the 𝑛th tensor power of ℒ by the rule

ℒ⊗𝑛 =
⎧
⎪
⎨
⎪
⎩

𝒪𝑋 if 𝑛 = 0
ℋ𝑜𝑚𝒪𝑋

(ℒ, 𝒪𝑋) if 𝑛 = −1
ℒ ⊗𝒪𝑋

… ⊗𝒪𝑋
ℒ if 𝑛 > 0

ℒ⊗−1 ⊗𝒪𝑋
… ⊗𝒪𝑋

ℒ⊗−1 if 𝑛 < −1

3We should at least assume that they are nonzero. However, in this generality the stalks 𝒪𝑋,𝑥 can have
nontrivial Picard groups, and then there are two possible definitions. One were we require ℒ to be locally free
of rank 1, and the other where we require ℒ to be a flat, finite presentation 𝒪𝑋-module such that there exists a
second such sheaf ℒ⊗−1 with ℒ ⊗𝒪𝑋

ℒ⊗−1 ≅ 𝒪𝑋.
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With this definition we have canonical isomorphisms ℒ⊗𝑛 ⊗𝒪𝑋
ℒ⊗𝑚 → ℒ⊗𝑛+𝑚, and

these isomorphisms statisfy a commutativity and an associativity constraint (formulation
omitted). Thus we can define a 𝐙-graded ring structure on ⨁ Γ(𝑋, ℒ⊗𝑛) by mapping
𝑠 ∈ Γ(𝑋, ℒ⊗𝑛) and 𝑡 ∈ Γ(𝑋, ℒ⊗𝑚) to the section corresponding to 𝑠 ⊗ 𝑡 in Γ(𝑋, ℒ⊗𝑛+𝑚).
We omit the verification that this defines a commutative and associative ring with 1. How-
ever, by our conventions in Algebra, Section 7.52 a graded ring has no nonzero elements
in negative degrees. This leads to the following definition.

Definition 15.21.4. Let (𝑋, 𝒪𝑋) be a ringed space. Assume that all stalks 𝒪𝑋,𝑥 are local
rings. Given an invertible sheaf ℒ on 𝑋 we define the associated graded ring to be

Γ∗(𝑋, ℒ) = ⨁𝑛≥0
Γ(𝑋, ℒ⊗𝑛)

Given a sheaf of 𝒪𝑋-modules ℱ we set

Γ∗(𝑋, ℒ, ℱ) = ⨁𝑛∈𝐙
Γ(𝑋, ℱ ⊗𝒪𝑋

ℒ⊗𝑛)

which we think of as a graded Γ∗(𝑋, ℒ)-module.

We oftenwrite simplyΓ∗(ℒ) and Γ∗(ℱ) (allthough this is ambiguous if ℱ is invertible). The
multiplication of Γ∗(ℒ) on Γ∗(ℱ) is defined using the isomorphisms above. If 𝛾 ∶ ℱ → 𝒢
is a 𝒪𝑋-module map, then we get an Γ∗(ℒ)-module homomorphism 𝛾 ∶ Γ∗(ℱ) → Γ∗(𝒢).
If 𝛼 ∶ ℒ → 𝒩 is an 𝒪𝑋-module map between invertible 𝒪𝑋-modules, then we obtain a
graded ring homomorphism Γ∗(ℒ) → Γ∗(𝒩). If 𝑓 ∶ (𝑌, 𝒪𝑌) → (𝑋, 𝒪𝑋) is a morphism of
locally ringed spaces (see Schemes, Definition 21.2.1), and if ℒ is invertible on 𝑋, then we
get an invertible sheaf 𝑓∗ℒ on 𝑌 and an induced homomorphism of graded rings

𝑓∗ ∶ Γ∗(𝑋, ℒ) ⟶ Γ∗(𝑌, 𝑓∗ℒ)

Furthermore, there are some compatibilties between the constructions above whose state-
ments we omit.

Lemma 15.21.5. Let (𝑋, 𝒪𝑋) be a ringed space. Assume that all stalks 𝒪𝑋,𝑥 are local
rings. There exists a set of invertible modules {ℒ𝑖}𝑖∈𝐼 such that each invertible module on
𝑋 is isomorphic to exactly one of the ℒ𝑖.

Proof. For each open covering 𝒰 ∶ 𝑋 = ⋃ 𝑈𝑗 consider the sheaves of 𝒪𝑋-modules gotten
from glueing the sheaves 𝒪𝑋|𝑈𝑗

, see Sheaves, Section 6.33. Note that the collection of
all glueing data forms a set. The collection of all coverings 𝒰 ∶ 𝑋 = ⋃𝑗∈𝐽 𝑈𝑖 where
𝐽 → 𝒫(𝑋), 𝑗 ↦ 𝑈𝑗 is injective forms a set as well. Hence the collection of all sheaves of of
𝒪𝑋-modules gotten from glueing trivial invertible 𝒪𝑋-modules forms a set ℐ. By definition
every invertible 𝒪𝑋-module is isomorphic to an element of ℐ. Choosing an element out of
each isomorphism class inside ℐ gives the desired set of invertible sheaves (uses axiom of
choice). �

This lemma says roughly speaking that the collection of isomorphism classes of invertible
sheaves forms a set. Lemma 15.21.2 says that tensor product defines the structure of an
abelian group on this set.

Definition 15.21.6. Let (𝑋, 𝒪𝑋) be a ringed space. Assume all stalks 𝒪𝑋,𝑥 are local rings.
The Picard group Pic(𝑋) of 𝑋 is the abelian group whose elements are isomorphism classes
of invertible 𝒪𝑋-modules, with addition corresponding to tensor product.
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Lemma 15.21.7. Let 𝑋 be a ringed space. Assume that each stalk 𝒪𝑋,𝑥 is a local ring with
maximal ideal 𝔪𝑥. Let ℒ be an invertible 𝒪𝑋-module. For any section 𝑠 ∈ Γ(𝑋, ℒ) the
set

𝑋𝑠 = {𝑥 ∈ 𝑋 ∣ image 𝑠∉𝔪𝑥ℒ𝑥}
is open in 𝑋. The map 𝑠 ∶ 𝒪𝑋𝑠

→ ℒ|𝑋𝑠
is an isomorphism, and there exists a section 𝑠′ of

ℒ⊗−1 over 𝑋𝑠 such that 𝑠′(𝑠|𝑋𝑠
) = 1.

Proof. Suppose 𝑥 ∈ 𝑋𝑠. We have an isomorphism

ℒ𝑥 ⊗𝒪𝑋,𝑥
(ℒ⊗−1)𝑥 ⟶ 𝒪𝑋,𝑥

by Lemma 15.21.2. Both ℒ𝑥 and (ℒ⊗−1)𝑥 are free 𝒪𝑋,𝑥-modules of rank 1. We conclude
from Algebra, Nakayama's Lemma 7.14.5 that 𝑠𝑥 is a basis for ℒ𝑥. Hence there exists a
basis element 𝑡𝑥 ∈ (ℒ⊗−1)𝑥 such that 𝑠𝑥 ⊗ 𝑡𝑥 maps to 1. Choose an open neighbourhood
𝑈 of 𝑥 such that 𝑡𝑥 comes from a section 𝑡 of (ℒ⊗−1)𝑥 over 𝑈 and such that 𝑠 ⊗ 𝑡 maps
to 1 ∈ 𝒪𝑋(𝑈). Clearly, for every 𝑥′ ∈ 𝑈 we see that 𝑠 generates the module ℒ𝑥′. Hence
𝑈 ⊂ 𝑋𝑠. This proves that 𝑋𝑠 is open. Moreover, the section 𝑡 constructed over 𝑈 above is
unique, and hence these glue to give te section 𝑠′ of the lemma. �

It is also true that, given a morphism of locally ringed spaces 𝑓 ∶ 𝑌 → 𝑋 (see Schemes,
Definition 21.2.1) that the inverse image 𝑓−1(𝑋𝑠) is equal to 𝑌𝑓∗𝑠, where 𝑓∗𝑠 ∈ Γ(𝑌, 𝑓∗ℒ)
is the pull back of 𝑠.

15.22. Localizing sheaves of rings

Let 𝑋 be a topological space and let 𝒪𝑋 be a presheaf of rings. Let 𝒮 ⊂ 𝒪𝑋 be a presheaf
of sets contained in 𝒪𝑋. Suppose that for every open 𝑈 ⊂ 𝑋 the set 𝒮(𝑈) ⊂ 𝒪𝑋(𝑈) is
a multiplicative subset, see Algebra, Definition 7.9.1. In this case we can consider the
presheaf of rings

𝒮−1𝒪𝑋 ∶ 𝑈 ⟼ 𝒮(𝑈)−1𝒪𝑋(𝑈).
The restriction mapping sends the section 𝑓/𝑠, 𝑓 ∈ 𝒪𝑋(𝑈), 𝑠 ∈ 𝒮(𝑈) to (𝑓|𝑉)/(𝑠|𝑉) if 𝑉 ⊂ 𝑈
are opens of 𝑋.

Lemma 15.22.1. Let 𝑋 be a topological space and let 𝒪𝑋 be a presheaf of rings. Let
𝒮 ⊂ 𝒪𝑋 be a pre-sheaf of sets contained in 𝒪𝑋. Suppose that for every open 𝑈 ⊂ 𝑋 the set
𝒮(𝑈) ⊂ 𝒪𝑋(𝑈) is a multiplicative subset.

(1) There is a map of presheaves of rings 𝒪𝑋 → 𝒮−1𝒪𝑋 such that every local section
of 𝒮 maps to an invertible section of 𝒪𝑋.

(2) For any homomorphism of presheaves of rings 𝒪𝑋 → 𝒜 such that each local
section of 𝒮 maps to an invertible section of 𝒜 there exists a unique factorization
𝒮−1𝒪𝑋 → 𝒜.

(3) For any 𝑥 ∈ 𝑋 we have

(𝒮−1𝒪𝑋)𝑥 = 𝒮−1
𝑥 𝒪𝑋,𝑥.

(4) The sheafification (𝒮−1𝒪𝑋)# is a sheaf of rings with a map of sheaves of rings
(𝒪𝑋)# → (𝒮−1𝒪𝑋)# which is universal for maps of (𝒪𝑋)# into sheaves of rings
such that each local section of 𝒮 maps to an invertible section.

(5) For any 𝑥 ∈ 𝑋 we have

(𝒮−1𝒪𝑋)#
𝑥 = 𝒮−1

𝑥 𝒪𝑋,𝑥.

Proof. Omitted. �
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Let 𝑋 be a topological space and let 𝒪𝑋 be a presheaf of rings. Let 𝒮 ⊂ 𝒪𝑋 be a presheaf
of sets contained in 𝒪𝑋. Suppose that for every open 𝑈 ⊂ 𝑋 the set 𝒮(𝑈) ⊂ 𝒪𝑋(𝑈) is a
multiplicative subset. Let ℱ be a presheaf of 𝒪𝑋-modules In this case we can consider the
presheaf of 𝒮−1𝒪𝑋-modules

𝒮−1ℱ ∶ 𝑈 ⟼ 𝒮(𝑈)−1ℱ(𝑈).
The restriction mapping sends the section 𝑡/𝑠, 𝑡 ∈ ℱ(𝑈), 𝑠 ∈ 𝒮(𝑈) to (𝑡|𝑉)/(𝑠|𝑉) if 𝑉 ⊂ 𝑈
are opens of 𝑋.

Lemma 15.22.2. Let 𝑋 be a topological space. Let 𝒪𝑋 be a presheaf of rings. Let 𝒮 ⊂ 𝒪𝑋
be a pre-sheaf of sets contained in 𝒪𝑋. Suppose that for every open 𝑈 ⊂ 𝑋 the set 𝒮(𝑈) ⊂
𝒪𝑋(𝑈) is a multiplicative subset. For any presheaf of 𝒪𝑋-modules ℱ we have

𝒮−1ℱ = 𝒮−1𝒪𝑋 ⊗𝑝,𝒪𝑋
ℱ

(see Sheaves, Section 6.6 for notation) and if ℱ and 𝒪𝑋 are sheaves then

(𝒮−1ℱ)# = (𝒮−1𝒪𝑋)# ⊗𝒪𝑋
ℱ

(see Sheaves, Section 6.20 for notation).

Proof. Omitted. �
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CHAPTER 16

Modules on Sites

16.1. Introduction

In this document we work out basic notions of sheaves of modules on ringed topoi or ringed
sites. We first work out some basic facts on abelian sheaves. After this we introduce ringed
sites and ringed topoi. We work through some of the very basic notions on (pre)sheaves
of 𝒪-modules, analogous to the material on (pre)sheaves of 𝒪-modules in the chapter on
sheaves on spaces. Having done this, we duplicate much of the discussion in the chapter on
sheaves of modules (see Modules, Section 15.1). Basic references are [Ser55b], [DG67]
and [MA71].

16.2. Abelian presheaves

Let 𝒞 be a category. Abelian presheaves were introduced in Sites, Sections 9.2 and 9.7
and discussed a bit more in Sites, Section 9.38. We will follow the convention of this
last reference, in that we think of an abelian presheaf as a presheaf of sets endowed with
addition rules on all sets of sections compatible with the restriction mappings. Recall that
the category of abelian presheaves on 𝒞 is denoted PAb(𝒞).

The categoryPAb(𝒞) is abelian as defined in Homology, Definition 10.3.12. Given amap of
presheaves 𝜑 ∶ 𝒢1 → 𝒢2 the kernel of 𝜑 is the abelian presheaf 𝑈 ↦ Ker(𝒢1(𝑈) → 𝒢2(𝑈))
and the cokernel of 𝜑 is the presheaf 𝑈 ↦ Coker(𝒢1(𝑈) → 𝒢2(𝑈)). Since the category
of abelian groups is abelian it follows that Coim = Im because this holds over each 𝑈. A
sequence of abelian presheaves

𝒢1 ⟶ 𝒢2 ⟶ 𝒢3

is exact if and only if 𝒢1(𝑈) → 𝒢2(𝑈) → 𝒢3(𝑈) is an exact sequence of abelian groups for
all 𝑈 ∈ 𝑂𝑏(𝒞). We leave the verifications to the reader.

Lemma 16.2.1. Let 𝒞 be a category.
(1) All limits and colimits exist in PAb(𝒞).
(2) All limits and colimits commute with taking sections over objects of 𝒞.

Proof. Let ℐ → PAb(𝒞), 𝑖 ↦ ℱ𝑖 be a diagram. We can simply define abelian presheaves
𝐿 and 𝐶 by the rules

𝐿 ∶ 𝑈 ⟼ 𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈)
and

𝐶 ∶ 𝑈 ⟼ 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈).
It is clear that there are maps of abelian presheaves 𝐿 → ℱ𝑖 and ℱ𝑖 → 𝐶, by using the
corresponding maps on groups of sections over each 𝑈. It is straightforward to check that
𝐿 and 𝐶 endowed with these maps are the limit and colimit of the diagram in PAb(𝒞). This
proves (1) and (2). Details omitted. �
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16.3. Abelian sheaves

Let 𝒞 be a site. The category of abelian sheaves on 𝒞 is denoted Ab(𝒞). It is the full
subcategory of PAb(𝒞) consisting of those abelian presheaves whose underlying presheaves
of sets are sheaves. Properties (𝛼) -- (𝜁) of Sites, Section 9.38 hold, see Sites, Proposition
9.38.3. In particular the inclusion functor Ab(𝒞) → PAb(𝒞) has a left adjoint, namely the
sheafification functor 𝒢 ↦ 𝒢#.

We suggest the reader prove the lemma on a piece of scratch paper rather than reading the
proof.

Lemma 16.3.1. Let 𝒞 be a site. Let 𝜑 ∶ ℱ → 𝒢 be a morphism of abelian sheaves on 𝒞.
(1) The category Ab(𝒞) is an abelian category.
(2) The kernel Ker(𝜑) of𝜑 is the same as the kernel of𝜑 as amorphism of presheaves.
(3) The morphism 𝜑 is injective (Homology, Definition 10.3.14) if and only if 𝜑 is in-

jective as a map of presheaves (Sites, Definition 9.3.1), if and only if 𝜑 is injective
as a map of sheaves (Sites, Definition 9.11.1).

(4) The cokernel Coker(𝜑) of 𝜑 is the sheafification of the cokernel of 𝜑 as a mor-
phism of presheaves.

(5) The morphism 𝜑 is surjective (Homology, Definition 10.3.14) if and only if 𝜑 is
surjective as a map of sheaves (Sites, Definition 9.11.1).

(6) A complex of abelian sheaves

ℱ → 𝒢 → ℋ

is exact at 𝒢 if and only if for all 𝑈 ∈ 𝑂𝑏(𝒞) and all 𝑠 ∈ 𝒢(𝑈) mapping to zero
in ℋ(𝑈) there exists a covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 in 𝒞 such that each 𝑠|𝑈𝑖

is in the
image of ℱ(𝑈𝑖) → 𝒢(𝑈𝑖).

Proof. We claim that Homology, Lemma 10.5.3 applies to the categories 𝒜 = Ab(𝒞) and
ℬ = PAb(𝒞), and the functors 𝑎 ∶ 𝒜 → ℬ (inclusion), and 𝑏 ∶ ℬ → 𝒜 (sheafification).
Let us check the assumptions of Homology, Lemma 10.5.3. Assumption (1) is that 𝒜, ℬ
are additive categories, 𝑎, 𝑏 are additive functors, and 𝑎 is right adjoint to 𝑏. The first two
statements are clear and adjointness is Sites, Section 9.38 (𝜖). Assumption (2) says that
PAb(𝒞) is abelian which we saw in Section 16.2 and that sheafification is left exact, which
is Sites, Section 9.38 (𝜁). The final assumption is that 𝑏𝑎 ≅ id𝒜 which is Sites, Section 9.38
(𝛿). Hence Homology, Lemma 10.5.3 applies and we conclude that Ab(𝒞) is abelian.

In the proof of Homology, Lemma 10.5.3 it is shown that Ker(𝜑) and Coker(𝜑) are equal to
the sheafification of the kernel and cokernel of 𝜑 as a morphism of abelian presheaves. This
proves (4). Since the kernel is a equalizer (i.e., a limit) and since sheafifcation commutes
with finite limits, we conclude that (2) holds.

Statement (2) implies (3). Statement (4) implies (5) by our description of sheafification. The
characterization of exactness in (6) follows from (2) and (5), and the fact that the sequence
is exact if and only if Im(ℱ → 𝒢) = Ker(𝒢 → ℋ). �

Another way to say part (6) of the lemma is that a sequence of abelian sheaves

ℱ1 ⟶ ℱ2 ⟶ ℱ3

is exact if and only if the sheafification of 𝑈 ↦ ℱ2(𝑈)/ℱ1(𝑈) is equal to the kernel of
ℱ2 → ℱ3.

Lemma 16.3.2. Let 𝒞 be a site.
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(1) All limits and colimits exist in Ab(𝒞).
(2) Limits are the same as the corresponding limits of abelian presheaves over𝒞 (i.e.,

commute with taking sections over objects of 𝒞).
(3) Finite direct sums are the same as the correponding finite direct sums in the cat-

egory of abelian pre-sheaves over 𝒞.
(4) A colimit is the sheafification of the corresponding colimit in the category of

abelian presheaves.

Proof. By Lemma 16.2.1 limits and colimits of abelian presheaves exist, and are described
by taking limits and colimits on the level of sections over objects.

Let ℐ → Ab(𝒞), 𝑖 ↦ ℱ𝑖 be a diagram. Let 𝑙𝑖𝑚𝑖 ℱ𝑖 be the limit of the diagram as an abelian
presheaf. By Sites, Lemma 9.10.1 this is an abelian sheaf. Then it is quite easy to see that
𝑙𝑖𝑚𝑖 ℱ𝑖 is the limit of the diagram in Ab(𝒞). This proves limits exist and (2) holds.

By Categories, Lemma 4.22.2, and because sheafification is left adjoint to the inclusion
functor we see that 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ exists and is the sheafification of the colimit in PAb(𝒞). This
proves colimits exist and (4) holds.

Finite direct sums are the same thing as finite products in any abelian category. Hence (3)
follows from (2). �

16.4. Free abelian presheaves

In order to prepare notation for the following definition, let us agree to denote the free
abelian group on a set 𝑆 as1 𝐙[𝑆] = ⨁𝑠∈𝑆 𝐙. It is characterized by the property

𝑀𝑜𝑟Ab(𝐙[𝑆], 𝐴) = 𝑀𝑜𝑟Sets(𝑆, 𝐴)

In other words the construction𝑆 ↦ 𝐙[𝑆] is a left adjoint to the forgetful functorAb → Sets.

Definition 16.4.1. Let 𝒞 be a category. Let 𝒢 be a presheaf of sets. The free abelian
presheaf 𝐙𝒢 on 𝒢 is the abelian presheaf defined by the rule

𝑈 ⟼ 𝐙[𝒢(𝑈)].

In the special case 𝒢 = ℎ𝑋 of a representable presheaf associated to an object 𝑋 of 𝒞 we
use the notation 𝐙𝑋 = 𝐙ℎ𝑋

. In other words

𝐙𝑋(𝑈) = 𝐙[𝑀𝑜𝑟𝒞(𝑈, 𝑋)].

This construction is clearly functorial in the presheaf 𝒢. In fact it is adjoint to the forgetful
functor PAb(𝒞) → PSh(𝒞). Here is the precise statement.

Lemma 16.4.2. Let 𝒞 be a category. Let 𝒢, ℱ be a presheaves of sets. Let 𝒜 be an abelian
presheaf. Let 𝑈 be an object of 𝒞. Then we have

𝑀𝑜𝑟PSh(𝒞)(ℎ𝑈, ℱ) = ℱ(𝑈),
𝑀𝑜𝑟PAb(𝒞)(𝐙𝒢, 𝒜) = 𝑀𝑜𝑟PSh(𝒞)(𝒢, 𝒜),
𝑀𝑜𝑟PAb(𝒞)(𝐙𝑈, 𝒜) = 𝒜(𝑈).

All of these equalities are functorial.

Proof. Omitted. �

1In other chapters the notation 𝐙[𝑆] sometimes indicates the polynomial ring over 𝐙 on 𝑆.
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Lemma 16.4.3. Let 𝒞 be a category. Let 𝐼 be a set. For each 𝑖 ∈ 𝐼 let 𝒢𝑖 be a presheaf of
sets. Then

𝐙∐𝑖 𝒢𝑖
= ⨁𝑖∈𝐼

𝐙𝒢𝑖

in PAb(𝒞).

Proof. Omitted. �

16.5. Free abelian sheaves

Here is the notion of a free abelian sheaf on a sheaf of sets.

Definition 16.5.1. Let 𝒞 be a site. Let 𝒢 be a presheaf of sets. The free abelian sheaf 𝐙#
𝒢

on 𝒢 is the abelian sheaf 𝐙#
𝒢 which is the sheafification of the abelian presheaf on 𝒢. In the

special case 𝒢 = ℎ𝑋 of a representable presheaf associated to an object 𝑋 of 𝒞 we use the
notation 𝐙#

𝑋.

This construction is clearly functorial in the presheaf 𝒢. In fact it provides an adjoint to the
forgetful functor Ab(𝒞) → Sh(𝒞). Here is the precise statement.

Lemma 16.5.2. Let 𝒞 be a site. Let 𝒢, ℱ be a sheaves of sets. Let 𝒜 be an abelian sheaf.
Let 𝑈 be an object of 𝒞. Then we have

𝑀𝑜𝑟Sh(𝒞)(ℎ#
𝑈, ℱ) = ℱ(𝑈),

𝑀𝑜𝑟Ab(𝒞)(𝐙#
𝒢, 𝒜) = 𝑀𝑜𝑟Sh(𝒞)(𝒢, 𝒜),

𝑀𝑜𝑟Ab(𝒞)(𝐙#
𝑈, 𝒜) = 𝒜(𝑈).

All of these equalities are functorial.

Proof. Omitted. �

Lemma 16.5.3. Let 𝒞 be a site. Let 𝒢 be a presheaf of sets. Then 𝐙#
𝒢 = (𝐙𝒢#)#.

Proof. Omitted. �

16.6. Ringed sites

In this chapter we mainly work with sheaves of modules on a ringed site. Hence we need
to define this notion.

Definition 16.6.1. Ringed sites.
(1) A ringed site is a pair (𝒞, 𝒪) where 𝒞 is a site and 𝒪 is a sheaf of rings on 𝒞. The

sheaf 𝒪 is called the structure sheaf of the ringed site.
(2) Let (𝒞, 𝒪), (𝒞′, 𝒪′) be ringed sites. A morphism of ringed sites

(𝑓, 𝑓♯) ∶ (𝒞, 𝒪) ⟶ (𝒞′, 𝒪′)

is given by a morphism of sites 𝑓 ∶ 𝒞 → 𝒞′ (see Sites, Definition 9.14.1) together
with a map of sheaves of rings 𝑓♯ ∶ 𝑓−1𝒪′ → 𝒪, which by adjunction is the same
thing as a map of sheaves of rings 𝑓♯ ∶ 𝒪′ → 𝑓∗𝒪.

(3) Let (𝑓, 𝑓♯) ∶ (𝒞1, 𝒪1) → (𝒞2, 𝒪2) and (𝑔, 𝑔♯) ∶ (𝒞2, 𝒪2) → (𝒞3, 𝒪3) be mor-
phisms of ringed sites. Then we define the composition of morphisms of ringed
sites by the rule

(𝑔, 𝑔♯) ∘ (𝑓, 𝑓♯) = (𝑔 ∘ 𝑓, 𝑓♯ ∘ 𝑔♯).
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Here we use composition of morphisms of sites defined in Sites, Definition 9.14.4
and 𝑓♯ ∘ 𝑔♯ indicates the morphism of sheaves of rings

𝒪3
𝑔♯

−−→ 𝑔∗𝒪2
𝑔∗𝑓♯

−−−→ 𝑔∗𝑓∗𝒪1 = (𝑔 ∘ 𝑓)∗𝒪1

16.7. Ringed topoi

A ringed topos is just a ringed site, except that the notion of a morphism of ringed topoi is
different from the notion of a morphism of ringed sites.

Definition 16.7.1. Ringed topoi.
(1) A ringed topos is a pair (Sh(𝒞), 𝒪) where 𝒞 is a site and 𝒪 is a sheaf of rings on

𝒞. The sheaf 𝒪 is called the structure sheaf of the ringed site.
(2) Let (Sh(𝒞), 𝒪), (Sh(𝒞′), 𝒪′) be ringed topoi. A morphism of ringed topoi

(𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪) ⟶ (Sh(𝒞′), 𝒪′)

is given by a morphism of topoi 𝑓 ∶ 𝒞 → 𝒞′ (see Sites, Definition 9.15.1)
together with a map of sheaves of rings 𝑓♯ ∶ 𝑓−1𝒪′ → 𝒪, which by adjunction is
the same thing as a map of sheaves of rings 𝑓♯ ∶ 𝒪′ → 𝑓∗𝒪.

(3) Let (𝑓, 𝑓♯) ∶ (Sh(𝒞1), 𝒪1) → (Sh(𝒞2), 𝒪2) and (𝑔, 𝑔♯) ∶ (Sh(𝒞2), 𝒪2) → (Sh(𝒞3), 𝒪3)
be morphisms of ringed topoi. Then we define the composition of morphisms of
ringed topoi by the rule

(𝑔, 𝑔♯) ∘ (𝑓, 𝑓♯) = (𝑔 ∘ 𝑓, 𝑓♯ ∘ 𝑔♯).

Herewe use composition ofmorphisms of topoi defined in Sites, Definition 9.15.1
and 𝑓♯ ∘ 𝑔♯ indicates the morphism of sheaves of rings

𝒪3
𝑔♯

−−→ 𝑔∗𝒪2
𝑔∗𝑓♯

−−−→ 𝑔∗𝑓∗𝒪1 = (𝑔 ∘ 𝑓)∗𝒪1

Every morphism of ringed topoi is the composition of an equivalence of ringed topoi with
a morphism of ringed topoi associated to a morpism of ringed sites. Here is the precise
statement.

Lemma 16.7.2. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi.
There exists a factorization

(Sh(𝒞), 𝒪𝒞)
(𝑓,𝑓♯)

//

(𝑔,𝑔♯)
��

(Sh(𝒟), 𝒪𝒟)

(𝑒,𝑒♯)
��

(Sh(𝒞′), 𝒪𝒞′)
(ℎ,ℎ♯) // (Sh(𝒟′), 𝒪𝒟′)

where
(1) 𝑔 ∶ Sh(𝒞) → Sh(𝒞′) is an equivalence of topoi induced by a special cocontinuous

functor 𝒞 → 𝒞′ (see Sites, Definition 9.25.2),
(2) 𝑒 ∶ Sh(𝒟) → Sh(𝒟′) is an equivalence of topoi induced by a special cocontinuous

functor 𝒟 → 𝒟′ (see Sites, Definition 9.25.2),
(3) 𝒪𝒞′ = 𝑔∗𝒪𝒞 and 𝑔♯ is the obvious map,
(4) 𝒪𝒟′ = 𝑒∗𝒪𝒟 and 𝑒♯ is the obvious map,
(5) the sites 𝒞′ and 𝒟′ have final objects and fibre products (i.e., all finite limits),
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(6) ℎ is a morphism of sites induced by a continuous functor 𝑢 ∶ 𝒟′ → 𝒞′ which
commutes with all finite limits (i.e., it satisfies the assumptions of Sites, Proposi-
tion 9.14.6), and

(7) given any set of sheaves ℱ𝑖 (resp. 𝒢𝑗) on 𝒞 (resp. 𝒟) we may assume each of these
is a representable sheaf on 𝒞′ (resp. 𝒟′).

Moreover, if (𝑓, 𝑓♯) is an equivalence of ringed topoi, then we can choose the diagram such
that 𝒞′ = 𝒟′, 𝒪𝒞′ = 𝒪𝒟′ and (ℎ, ℎ♯) is the identiy.

Proof. This follows from Sites, Lemma 9.25.6, and Sites, Remarks 9.25.7 and 9.25.8. You
just have to carry along the sheaves of rings. Some details omitted. �

16.8. 2-morphisms of ringed topoi

This is a brief section concerning the notion of a 2-morphism of ringed topoi.

Definition 16.8.1. Let 𝑓, 𝑔 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be two morphisms of ringed
topoi. A 2-morphism from 𝑓 to 𝑔 is given by a transformation of functors 𝑡 ∶ 𝑓∗ → 𝑔∗ such
that

𝒪𝒟
𝑓♯

||

𝑔♯

""
𝑓∗𝒪𝒞

𝑡 // 𝑔∗𝒪𝒞

is commutative.

Pictorially we sometimes represent 𝑡 as follows:

(Sh(𝒞), 𝒪𝒞)
𝑓 ,,

𝑔
22�� 𝑡 (Sh(𝒟), 𝒪𝒟)

As in Sites, Section 9.32 giving a 2-morphism 𝑡 ∶ 𝑓∗ → 𝑔∗ is equivalent to giving 𝑡 ∶
𝑔−1 → 𝑓−1 (usually denoted by the same symbol) such that the diagram

𝑓−1𝒪𝒟

𝑓♯ ""

𝑔−1𝒪𝒟𝑡
oo

𝑔♯||
𝒪𝒞

is commutative. As in Sites, Section 9.32 the axioms of a strict 2-category hold with hori-
zontal and vertical compositions defined as explained in loc. cit.

16.9. Presheaves of modules

Let 𝒞 be a category. Let 𝒪 be a presheaf of rings on 𝒞. At this point we have not yet defined
a presheaf of 𝒪-modules. Thus we do so right now.

Definition 16.9.1. Let 𝒞 be a category, and let 𝒪 be a presheaf of rings on 𝒞.
(1) A presheaf of 𝒪-modules is given by an abelian presheaf ℱ together with a map

of presheaves of sets
𝒪 × ℱ ⟶ ℱ

such that for every object 𝑈 of 𝒞 the map 𝒪(𝑈) × ℱ(𝑈) → ℱ(𝑈) defines the
structure of an 𝒪(𝑈)-module structure on the abelian group ℱ(𝑈).
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(2) A morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of 𝒪-modules is a morphism of abelian
presheaves 𝜑 ∶ ℱ → 𝒢 such that the diagram

𝒪 × ℱ //

id×𝜑
��

ℱ

𝜑
��

𝒪 × 𝒢 // 𝒢
commutes.

(3) The set of 𝒪-module morphisms as above is denoted 𝐻𝑜𝑚𝒪(ℱ, 𝒢).
(4) The category of presheaves of 𝒪-modules is denoted PMod(𝒪).

Suppose that 𝒪1 → 𝒪2 is a morphism of presheaves of rings on the category 𝒞. In this case,
if ℱ is a presheaf of 𝒪2-modules then we can think of ℱ as a presheaf of 𝒪1-modules by
using the composition

𝒪1 × ℱ → 𝒪2 × ℱ → ℱ.
We sometimes denote this by ℱ𝒪1

to indicate the restriction of rings. We call this the
restriction of ℱ. We obtain the restriction functor

PMod(𝒪2) ⟶ PMod(𝒪1)

On the other hand, given a presheaf of 𝒪1-modules 𝒢 we can construct a presheaf of
𝒪2-modules 𝒪2 ⊗𝑝,𝒪1

𝒢 by the rule

𝑈 ⟼ (𝒪2 ⊗𝑝,𝒪1
𝒢) (𝑈) = 𝒪2(𝑈) ⊗𝒪1(𝑈) 𝒢(𝑈)

where 𝑈 ∈ 𝑂𝑏(𝒞), with obvious restriction mappings. The index 𝑝 stands for ``presheaf''
and not ``point''. This presheaf is called the tensor product presheaf. We obtain the change
of rings functor

PMod(𝒪1) ⟶ PMod(𝒪2)

Lemma 16.9.2. With 𝒞, 𝒪1 → 𝒪2, ℱ and 𝒢 as above there exists a canonical bijection

𝐻𝑜𝑚𝒪1
(𝒢, ℱ𝒪1

) = 𝐻𝑜𝑚𝒪2
(𝒪2 ⊗𝑝,𝒪1

𝒢, ℱ)

In other words, the restriction and change of rings functors defined above are adjoint to
each other.

Proof. This follows from the fact that for a ring map 𝐴 → 𝐵 the restriction functor and the
change of ring functor are adjoint to each other. �

16.10. Sheaves of modules

Definition 16.10.1. Let 𝒞 be a site. Let 𝒪 be a sheaf of rings on 𝒞.
(1) A sheaf of 𝒪-modules is a presheaf of 𝒪-modules ℱ, see Definition 16.9.1, such

that the underlying presheaf of abelian groups ℱ is a sheaf.
(2) Amorphism of sheaves of 𝒪-modules is a morphism of presheaves of 𝒪-modules.
(3) Given sheaves of 𝒪-modules ℱ and 𝒢 we denote 𝐻𝑜𝑚𝒪(ℱ, 𝒢) the set of morphism

of sheaves of 𝒪-modules.
(4) The category of sheaves of 𝒪-modules is denoted Mod(𝒪).

This definition kind of makes sense even if 𝒪 is just a presheaf of rings, allthough we do not
know any examples where this is useful, and we will avoid using the terminology ``sheaves
of 𝒪-modules'' in case 𝒪 is not a sheaf of rings.
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16.11. Sheafification of presheaves of modules

Lemma 16.11.1. Let 𝒞 be a site. Let 𝒪 be a presheaf of rings on 𝒞 Let ℱ be a presheaf
𝒪-modules. Let 𝒪# be the sheafification of 𝒪 as a presheaf of rings, see Sites, Section 9.38.
Let ℱ# be the sheafification of ℱ as a presheaf of abelian groups. There exists a map of
sheaves of sets

𝒪# × ℱ# ⟶ ℱ#

which makes the diagram
𝒪 × ℱ //

��

ℱ

��
𝒪# × ℱ# // ℱ#

commute and which makes ℱ# into a sheaf of 𝒪#-modules. In addition, if 𝒢 is a sheaf of
𝒪#-modules, then any morphism of presheaves of 𝒪-modules ℱ → 𝒢 (into the restriction
of 𝒢 to a 𝒪-module) factors uniquely as ℱ → ℱ# → 𝒢 where ℱ# → 𝒢 is a morphism of
𝒪#-modules.
Proof. Omitted. �

This actually means that the functor 𝑖 ∶ Mod(𝒪#) → PMod(𝒪) (combining restriction
and including sheaves into presheaves) and the sheafification functor of the lemma # ∶
PMod(𝒪) → Mod(𝒪#) are adjoint. In a formula

𝑀𝑜𝑟PMod(𝒪)(ℱ, 𝑖𝒢) = 𝑀𝑜𝑟Mod(𝒪#)(ℱ#, 𝒢)
An important case happens when 𝒪 is already a sheaf of rings. In this case the formula
reads

𝑀𝑜𝑟PMod(𝒪)(ℱ, 𝑖𝒢) = 𝑀𝑜𝑟Mod(𝒪)(ℱ#, 𝒢)
because 𝒪 = 𝒪# in this case.
Lemma 16.11.2. Let 𝒞 be a site. Let 𝒪 be a presheaf of rings on 𝒞 The sheafification
functor

PMod(𝒪) ⟶ Mod(𝒪#), ℱ ⟼ ℱ#

is exact.
Proof. This is true because it holds for sheafification PAb(𝒞) → Ab(𝒞). See the discussion
in Section 16.3. �

Let 𝒞 be a site. Let 𝒪1 → 𝒪2 be a morphism of sheaves of rings on 𝒞. In Section 16.9
we defined a restriction functor and a change of rings functor on presheaves of modules
associated to this situation.
If ℱ is a sheaf of 𝒪2-modules then the restriction ℱ𝒪1

of ℱ is clearly a sheaf of 𝒪1-modules.
We obtain the restriction functor

Mod(𝒪2) ⟶ Mod(𝒪1)

On the other hand, given a sheaf of 𝒪1-modules 𝒢 the presheaf of 𝒪2-modules 𝒪2 ⊗𝑝,𝒪1
𝒢

is in general not a sheaf. Hence we define the tensor product sheaf 𝒪2 ⊗𝒪1
𝒢 by the formula

𝒪2 ⊗𝒪1
𝒢 = (𝒪2 ⊗𝑝,𝒪1

𝒢)#

as the sheafification of our construction for presheaves. We obtain the change of rings
functor

Mod(𝒪1) ⟶ Mod(𝒪2)
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Lemma 16.11.3. With 𝑋, 𝒪1, 𝒪2, ℱ and 𝒢 as above there exists a canonical bijection

𝐻𝑜𝑚𝒪1
(𝒢, ℱ𝒪1

) = 𝐻𝑜𝑚𝒪2
(𝒪2 ⊗𝒪1

𝒢, ℱ)

In other words, the restriction and change of rings functors are adjoint to each other.

Proof. This follows fromLemma 16.9.2 and the fact that𝐻𝑜𝑚𝒪2
(𝒪2⊗𝒪1

𝒢, ℱ) = 𝐻𝑜𝑚𝒪2
(𝒪2⊗𝑝,𝒪1

𝒢, ℱ) because ℱ is a sheaf. �

16.12. Morphisms of topoi and sheaves of modules

All of this material is completely straightforward. We formulate everything in the case of
morphisms of topoi, but of course the results also hold in the case of morphisms of sites.

Lemma 16.12.1. Let 𝒞, 𝒟 be sites. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. Let 𝒪
be a sheaf of rings on 𝒞. Let ℱ be a sheaf of 𝒪-modules. There is a natural map of sheaves
of sets

𝑓∗𝒪 × 𝑓∗ℱ ⟶ 𝑓∗ℱ

which turns 𝑓∗ℱ into a sheaf of 𝑓∗𝒪-modules. This construction is functorial in ℱ.

Proof. Denote 𝜇 ∶ 𝒪 × ℱ → ℱ the multiplication map. Recall that 𝑓∗ (on sheaves of sets)
is left exact and hence commutes with products. Hence 𝑓∗𝜇 is a map as indicated. This
proves the lemma. �

Lemma 16.12.2. Let 𝒞, 𝒟 be sites. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. Let 𝒪
be a sheaf of rings on 𝒟. Let 𝒢 be a sheaf of 𝒪-modules. There is a natural map of sheaves
of sets

𝑓−1𝒪 × 𝑓−1𝒢 ⟶ 𝑓−1𝒢

which turns 𝑓−1𝒢 into a sheaf of 𝑓−1𝒪-modules. This construction is functorial in 𝒢.

Proof. Denote 𝜇 ∶ 𝒪 × 𝒢 → 𝒢 the multiplication map. Recall that 𝑓−1 (on sheaves of sets)
is exact and hence commutes with products. Hence 𝑓−1𝜇 is a map as indicated. This proves
the lemma. �

Lemma 16.12.3. Let 𝒞, 𝒟 be sites. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. Let 𝒪
be a sheaf of rings on 𝒟. Let 𝒢 be a sheaf of 𝒪-modules. Let ℱ be a sheaf of 𝑓−1𝒪-modules.
Then

𝑀𝑜𝑟Mod(𝑓−1𝒪)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝒪)(𝒢, 𝑓∗ℱ).

Here we use Lemmas 16.12.2 and 16.12.1, and we think of 𝑓∗ℱ as an 𝒪-module by restric-
tion via 𝒪 → 𝑓∗𝑓−1𝒪.

Proof. First we note that we have

𝑀𝑜𝑟Ab(𝒞)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Ab(𝒟)(𝒢, 𝑓∗ℱ).

by Sites, Proposition 9.38.3. Suppose that 𝛼 ∶ 𝑓−1𝒢 → ℱ and 𝛽 ∶ 𝒢 → 𝑓∗ℱ are morphisms
of abelian sheaves which correspond via the formula above. We have to show that 𝛼 is
𝑓−1𝒪-linear if and only if 𝛽 is 𝒪-linear. For example, suppose 𝛼 is 𝑓−1𝒪-linear, then clearly
𝑓∗𝛼 is 𝑓∗𝑓−1𝒪-linear, and hence (as restriction is a functor) is 𝒪-linear. Hence it suffices
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to prove that the adjunction map 𝒢 → 𝑓∗𝑓−1𝒢 is 𝒪-linear. Using that both 𝑓∗ and 𝑓−1

commute with products (on sheaves of sets) this comes down to showing that

𝒪 × 𝒢 //

��

𝑓∗𝑓−1(𝒪 × 𝒢)

��
𝒢 // 𝑓∗𝑓−1𝒢

is commutative. This holds because the adjunction mapping idSh(𝒟) → 𝑓∗𝑓−1 is a transfor-
mation of functors. We omit the proof of the implication 𝛽 linear ⇒ 𝛼 linear. �

Lemma 16.12.4. Let 𝒞, 𝒟 be sites. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. Let 𝒪
be a sheaf of rings on 𝒞. Let ℱ be a sheaf of 𝒪-modules. Let 𝒢 be a sheaf of 𝑓∗𝒪-modules.
Then

𝑀𝑜𝑟Mod(𝒪)(𝒪 ⊗𝑓−1𝑓∗𝒪 𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝑓∗𝒪)(𝒢, 𝑓∗ℱ).

Here we use Lemmas 16.12.2 and 16.12.1, and we use the canonical map 𝑓−1𝑓∗𝒪 → 𝒪 in
the definition of the tensor product.

Proof. Note that we have

𝑀𝑜𝑟Mod(𝒪)(𝒪 ⊗𝑓−1𝑓∗𝒪 𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝑓−1𝑓∗𝒪)(𝑓−1𝒢, ℱ𝑓−1𝑓∗𝒪)

by Lemma 16.11.3. Hence the result follows from Lemma 16.12.3. �

16.13. Morphisms of ringed topoi and modules

We have now introduced enough notation so that we are able to define the pullback and
pushforward of modules along a morphism of ringed topoi.

Definition 16.13.1. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed
topoi or ringed sites.

(1) Let ℱ be a sheaf of 𝒪𝒞-modules. We define the pushforward of ℱ as the sheaf
of 𝒪𝒟-modules which as a sheaf of abelian groups equals 𝑓∗ℱ and with module
structure given by the restriction via 𝑓♯ ∶ 𝒪𝒟 → 𝑓∗𝒪𝒞 of the module structure

𝑓∗𝒪𝒞 × 𝑓∗ℱ ⟶ 𝑓∗ℱ

from Lemma 16.12.1.
(2) Let 𝒢 be a sheaf of 𝒪𝒟-modules. We define the pullback 𝑓∗𝒢 to be the sheaf of

𝒪𝒞-modules defined by the formula

𝑓∗ℱ = 𝒪𝒞 ⊗𝑓−1𝒪𝒟
𝑓−1ℱ

where the ring map 𝑓−1𝒪𝒟 → 𝒪𝒞 is 𝑓♯, and where the module structure is given
by Lemma 16.12.2.

Thus we have defined functors

𝑓∗ ∶ Mod(𝒪𝒞) ⟶ Mod(𝒪𝒟)
𝑓∗ ∶ Mod(𝒪𝒟) ⟶ Mod(𝒪𝒞)

The final result on these functors is that they are indeed adjoint as expected.
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Lemma 16.13.2. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi
or ringed sites. Let ℱ be a sheaf of 𝒪𝒞-modules. Let 𝒢 be a sheaf of 𝒪𝒟-modules. There is
a canonical bijection

𝐻𝑜𝑚𝒪𝒞
(𝑓∗𝒢, ℱ) = 𝐻𝑜𝑚𝒪𝒟

(𝒢, 𝑓∗ℱ).
In other words: the functor 𝑓∗ is the left adjoint to 𝑓∗.

Proof. This follows from the work we did before:

𝐻𝑜𝑚𝒪𝒞
(𝑓∗𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝒪𝒞)(𝒪𝒞 ⊗𝑓−1𝒪𝒟

𝑓−1𝒢, ℱ)

= 𝑀𝑜𝑟Mod(𝑓−1𝒪𝒟)(𝑓−1𝒢, ℱ𝑓−1𝒪𝒟
)

= 𝐻𝑜𝑚𝒪𝒟
(𝒢, 𝑓∗ℱ).

Here we use Lemmas 16.11.3 and 16.12.3. �

Lemma 16.13.3. (𝑓, 𝑓♯) ∶ (Sh(𝒞1), 𝒪1) → (Sh(𝒞2), 𝒪2) and (𝑔, 𝑔♯) ∶ (Sh(𝒞2), 𝒪2) →
(Sh(𝒞3), 𝒪3) be morphisms of ringed topoi. There are canonical isomorphisms of functors
(𝑔 ∘ 𝑓)∗ ≅ 𝑔∗ ∘ 𝑓∗ and (𝑔 ∘ 𝑓)∗ ≅ 𝑓∗ ∘ 𝑔∗.

Proof. This is clear from the definitions. �

16.14. The abelian category of sheaves of modules

Let (Sh(𝒞), 𝒪) be a ringed topos. Let ℱ, 𝒢 be sheaves of 𝒪-modules, see Sheaves, Definition
6.10.1. Let 𝜑, 𝜓 ∶ ℱ → 𝒢 be morphisms of sheaves of 𝒪𝑋-modules. We define 𝜑 + 𝜓 ∶
ℱ → 𝒢 to be the sum of 𝜑 and 𝜓 as morphisms of abelian sheaves. This is clearly again a
map of 𝒪-modules. It is also clear that composition of maps of 𝒪-modules is bilinear with
respect to this addition. ThusMod(𝒪) is a pre-additive category, see Homology, Definition
10.3.1.

We will denote 0 the sheaf of 𝒪-modules which has constant value {0} for all objects 𝑈
of 𝒞. Clearly this is both a final and an initial object of Mod(𝒪). Given a morphism of
𝒪-modules 𝜑 ∶ ℱ → 𝒢 the following are equivalent: (a) 𝜑 is zero, (b) 𝜑 factors through 0,
(c) 𝜑 is zero on sections over each opject 𝑈.

Moreover, given a pair ℱ, 𝒢 of sheaves of 𝒪-modules we may define the direct sum as

ℱ ⊕ 𝒢 = ℱ × 𝒢

with obvious maps (𝑖, 𝑗, 𝑝, 𝑞) as in Homology, Definition 10.3.5. ThusMod(𝒪) is an additive
category, see Homology, Definition 10.3.8.

Let 𝜑 ∶ ℱ → 𝒢 be a morphism of 𝒪-modules. We may define Ker(𝜑) to be the kernel of 𝜑
as a map of abelian sheaves. By Section 16.3 this is the subsheaf of ℱ with sections

Ker(𝜑)(𝑈) = {𝑠 ∈ ℱ(𝑈) ∣ 𝜑(𝑠) = 0 in 𝒢(𝑈)}

for all objects 𝑈 of 𝒞. It is easy to see that this is indeed a kernel in the category of
𝒪-modules. In other words, a morphism 𝛼 ∶ ℋ → ℱ factors through Ker(𝜑) if and only if
𝜑 ∘ 𝛼 = 0.

Similarly, we define Coker(𝜑) as the cokernel of 𝜑 as a map of abelian sheaves. There is a
unique multiplication map

𝒪 × Coker(𝜑) ⟶ Coker(𝜑)

such that the map 𝒢 → Coker(𝜑) becomes a morphism of 𝒪-modules (verification omitted).
The map 𝒢 → Coker(𝜑) is surjective (as a map of sheaves of sets, see Section 16.3). To
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show that Coker(𝜑) is a cokernel in Mod(𝒪), note that if 𝛽 ∶ 𝒢 → ℋ is a morphism of
𝒪-modules such that 𝛽 ∘ 𝜑 is zero, then you get for every object 𝑈 of 𝒞 a map induced by
𝛽 from 𝒢(𝑈)/𝜑(ℱ(𝑈)) into ℋ(𝑈). By the universal property of sheafification (see Sheaves,
Lemma 6.20.1) we obtain a canonical map Coker(𝜑) → ℋ such that the original 𝛽 is equal
to the composition 𝒢 → Coker(𝜑) → ℋ. The morphism Coker(𝜑) → ℋ is unique because
of the surjectivity mentioned above.

Lemma 16.14.1. Let (Sh(𝒞), 𝒪) be a ringed topos. The category Mod(𝒪) is an abelian
category. The forgetful functor Mod(𝒪) → Ab(𝒞) is exact, hence kernels, cokernels and
exactness of 𝒪-modules, correspond to the corresponding notions for abelian sheaves.

Proof. Above we have seen thatMod(𝒪) is an additive category, with kernels and cokernels
and that Mod(𝒪) → Ab(𝒞) preserves kernels and cokernels. By Homology, Definition
10.3.12 we have to show that image and coimage agree. This is clear because it is true in
Ab(𝒞). The lemma follows. �

Lemma 16.14.2. Let (Sh(𝒞), 𝒪) be a ringed topos. All limits and colimits exist in Mod(𝒪),
and the forgetful functor Mod(𝒪) → Ab(𝒞) commutes with them.

Proof. Let ℐ → Mod(𝒞), 𝑖 ↦ ℱ𝑖 be a diagram. Let 𝑙𝑖𝑚𝑖 ℱ𝑖 be the limit of the diagram
in Ab(𝒞). By the description of this limit in Lemma 16.3.2 we see immediately that there
exists a multiplication

𝒪 × 𝑙𝑖𝑚𝑖 ℱ𝑖 ⟶ 𝑙𝑖𝑚𝑖 ℱ𝑖

which turns 𝑙𝑖𝑚𝑖 ℱ𝑖 into a sheaf of 𝒪-modules. It is easy to see that this is the limit of
the diagram in Mod(𝒞). Let 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 be the colimit of the diagram in PAb(𝒞). By the
description of this colimit in the proof of Lemma 16.2.1 we see immediately that there
exists a multiplication

𝒪 × 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 ⟶ 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖

which turns 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 into a presheaf of 𝒪-modules. Applying sheafification we get a sheaf
of 𝒪-modules (𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)#, see Lemma 16.11.1. It is easy to see that (𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)# is the
colimit of the diagram inMod(𝒞), and by Lemma 16.3.2 forgetting the 𝒪-module structure
is the colimit in Ab(𝒞). �

The existence of limits and colimits allows us to consider exactness properties of functors
defined on the category of 𝒪-modules in terms of limits and colimits, as in Categories,
Section 4.21. See Homology, Lemma 10.5.1 for a description of exactness properties in
terms of short exact sequences.

Lemma 16.14.3. Let 𝑓 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi.
(1) The functor 𝑓∗ is left exact. In fact it commutes with all limits.
(2) The functor 𝑓∗ is right exact. In fact it commutes with all colimits.

Proof. This is true because (𝑓∗, 𝑓∗) is an adjoint pair of functors, see Lemma 16.13.2. See
Categories, Section 4.22. �

Lemma 16.14.4. Let 𝒞 be a site with enough points. In this case exactness of a sequence
of abelian sheaves may be checked on stalks.

Proof. This is immediate from Sites, Lemma 9.34.2. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DA
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DC
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05V3


16.15. EXACTNESS OF PUSHFORWARD 1019

16.15. Exactness of pushforward

Some technical lemmas concerning exactness properties of pushforward.

Lemma 16.15.1. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. The following are
equivalent:

(1) 𝑓−1𝑓∗ℱ → ℱ is surjective for all ℱ in Ab(𝒞), and
(2) 𝑓∗ ∶ Ab(𝒞) → Ab(𝒟) reflects surjections.

In this case the functor 𝑓∗ ∶ Ab(𝒞) → Ab(𝒟) is faithful.

Proof. Assume (1). Suppose that 𝑎 ∶ ℱ → ℱ′ is a map of abelian sheaves on 𝒞 such
that 𝑓∗𝑎 is surjective. As 𝑓−1 is exact this implies that 𝑓−1𝑓∗𝑎 ∶ 𝑓−1𝑓∗ℱ → 𝑓−1𝑓∗ℱ′ is
surjective. Combined with (1) this implies that 𝑎 is surjective. This means that (2) holds.

Assume (2). Let ℱ be an abelian sheaf on 𝒞. We have to show that the map 𝑓−1𝑓∗ℱ → ℱ
is surjective. By (2) it suffices to show that 𝑓∗𝑓−1𝑓∗ℱ → 𝑓∗ℱ is surjective. And this is
true because there is a canonical map 𝑓∗ℱ → 𝑓∗𝑓−1𝑓∗ℱ which is a one-sided inverse.

We omit the proof of the final assertion. �

Lemma 16.15.2. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi. Assume at least one of
the following properties holds

(1) 𝑓∗ transforms surjections of sheaves of sets into surjections,
(2) 𝑓∗ transforms surjections of abelian sheaves into surjections,
(3) 𝑓∗ commutes with coequalizers on sheaves of sets,
(4) 𝑓∗ commutes with pushouts on sheaves of sets,

Then 𝑓∗ ∶ Ab(𝒞) → Ab(𝒟) is exact.

Proof. Since 𝑓∗ ∶ Ab(𝒞) → Ab(𝒟) is a right adjoint we already know that it transforms
a short exact sequence 0 → ℱ1 → ℱ2 → ℱ3 → 0 of abelian sheaves on 𝒞 into an exact
sequence

0 → 𝑓∗ℱ1 → 𝑓∗ℱ2 → 𝑓∗ℱ3

see Categories, Sections 4.21 and 4.22 and Homology, Section 10.5. Hence it suffices to
prove that the map 𝑓∗ℱ2 → 𝑓∗ℱ3 is surjective. If (1), (2) holds, then this is clear from the
definitions. By Sites, Lemma 9.36.1 we see that (4) formally implies (1), hence in this case
we are done also. Assume (3). Then ℱ3 is the coequalizer of two maps ℱ1 → ℱ2 (the zero
map and the given map). Hence also 𝑓∗ℱ3 is the coequalizer of two maps 𝑓∗ℱ1 → 𝑓∗ℱ2.
In particular we see that 𝑓∗ℱ2 → 𝑓∗ℱ3 is surjective. �

Lemma 16.15.3. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites associated to the continuous
functor 𝑢 ∶ 𝒞 → 𝒟. Assume 𝑢 is almost cocontinuous. Then

(1) 𝑓∗ ∶ Ab(𝒟) → Ab(𝒞) is exact.
(2) if 𝑓♯ ∶ 𝑓−1𝒪𝒞 → 𝒪𝒟 is given so that 𝑓 becomes a morphism of ringed sites, then

𝑓∗ ∶ Mod(𝒪𝒟) → Mod(𝒪𝒞) is exact.

Proof. Part (2) follows from part (1) by Lemma 16.14.2. Part (1) follows from Sites, Lem-
mas 9.37.6 and 9.36.1. �
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16.16. Exactness of lower shriek

Let 𝑢 ∶ 𝒞 → 𝒟 be a functor between sites. Assume that
(a) 𝑢 is cocontinuous, and
(b) 𝑢 is continuous.

Let 𝑔 ∶ Sh(𝒞) → Sh(𝒟) be the morphism of topoi associated with 𝑢, see Sites, Lemma
9.19.1. Recall that 𝑔−1 = 𝑢𝑝, i.e., 𝑔−1 is given by the simple formula (𝑔−1𝒢)(𝑈) = 𝒢(𝑢(𝑈)),
see Sites, Lemma 9.19.5. We would like to show that 𝑔−1 ∶ Ab(𝒟) → Ab(𝒞) has a left
adjoint 𝑔!. By Sites, Lemma 9.19.5 the functor 𝑔𝑆ℎ

! = (𝑢𝑝 )# is a left adjoint on sheaves of
sets. Moreover, we know that 𝑔𝑆ℎ

! ℱ is the sheaf associated to the presheaf

𝑉 ⟼ 𝑐𝑜𝑙𝑖𝑚𝑉→𝑢(𝑈) ℱ(𝑈)

where the colimit is over (ℐ𝑢
𝑉)𝑜𝑝𝑝 and is taken in the category of sets. Hence the following

definition is natural.

Definition 16.16.1. With 𝑢 ∶ 𝒞 → 𝒟 satisfying (a), (b) above. For ℱ ∈ PAb(𝒞) we define
𝑔𝑝!ℱ as the presheaf

𝑉 ⟼ 𝑐𝑜𝑙𝑖𝑚𝑉→𝑢(𝑈) ℱ(𝑈)

with colimits over (ℐ𝑢
𝑉)𝑜𝑝𝑝 taken in Ab. For ℱ ∈ PAb(𝒞) we set 𝑔!ℱ = (𝑔𝑝!ℱ)#.

The reason for being so explicit with this is that the functors the functors 𝑔𝑆ℎ
! and 𝑔! are

different. Whenever we use both we have to be careful to make the distinction clear.

Lemma 16.16.2. The functor 𝑔𝑝! is a left adjoint to the functor 𝑢𝑝. The functor 𝑔! is a left
adjoint to the functor 𝑔−1. In other words the formulas

𝑀𝑜𝑟PAb(𝒞)(ℱ, 𝑢𝑝𝒢) = 𝑀𝑜𝑟PAb(𝒟)(𝑔𝑝!ℱ, 𝒢),

𝑀𝑜𝑟Ab(𝒞)(ℱ, 𝑔−1𝒢) = 𝑀𝑜𝑟Ab(𝒟)(𝑔!ℱ, 𝒢)

hold bifunctorially in ℱ and 𝒢.

Proof. The second formula follows formally from the first, since if ℱ and 𝒢 are abelian
sheaves then

𝑀𝑜𝑟Ab(𝒞)(ℱ, 𝑔−1𝒢) = 𝑀𝑜𝑟PAb(𝒟)(𝑔𝑝!ℱ, 𝒢)
= 𝑀𝑜𝑟Ab(𝒟)(𝑔!ℱ, 𝒢)

by the universal property of sheafification.

To prove the first formula, let ℱ, 𝒢 be abelian presheaves. To prove the lemma we will
construct maps from the group on the left to the group on the right and omit the verification
that these are mutually inverse.

Note that there is a canonical map of abelian presheaves ℱ → 𝑢𝑝𝑔𝑝!ℱ which on sections
over 𝑈 is the natural map ℱ(𝑈) → 𝑐𝑜𝑙𝑖𝑚𝑢(𝑈)→𝑢(𝑈′) ℱ(𝑈′), see Sites, Lemma 9.5.3. Given
a map 𝛼 ∶ 𝑔𝑝!ℱ → 𝒢 we get 𝑢𝑝𝛼 ∶ 𝑢𝑝𝑔𝑝!ℱ → 𝑢𝑝𝒢. which we can precompose by the map
ℱ → 𝑢𝑝𝑔𝑝!ℱ.

Note that there is a canonical map of abelian presheaves 𝑔𝑝!𝑢𝑝𝒢 → 𝒢 which on sections
over 𝑉 is the natural map 𝑐𝑜𝑙𝑖𝑚𝑉→𝑢(𝑈) 𝒢(𝑢(𝑈)) → 𝒢(𝑉). It maps a section 𝑠 ∈ 𝑢(𝑈) in the
summand corresponding to 𝑡 ∶ 𝑉 → 𝑢(𝑈) to 𝑡∗𝑠 ∈ 𝒢(𝑉). Hence, given a map 𝛽 ∶ ℱ → 𝑢𝑝𝒢
we get a map 𝑔𝑝!𝛽 ∶ 𝑔𝑝!ℱ → 𝑔𝑝!𝑢𝑝𝒢 which we can postcompose with the map 𝑔𝑝!𝑢𝑝𝒢 → 𝒢
above. �
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Lemma 16.16.3. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume that
(a) 𝑢 is cocontinuous,
(b) 𝑢 is continuous, and
(c) fibre products and equalizers exist in 𝒞 and 𝑢 commutes with them.

In this case the functor 𝑔! ∶ Ab(𝒞) → Ab(𝒟) is exact.

Proof. Compare with Sites, Lemma 9.19.6. Assume (a), (b), and (c). We already know
that 𝑔! is right exact as it is a left adjoint, see Categories, Lemma 4.22.3 and Homology,
Section 10.5. We have 𝑔! = (𝑔𝑝! )#. We have to show that 𝑔! transforms injective maps
of abelian sheaves into injective maps of abelian presheaves. Recall that sheafification of
abelian presheaves is exact, see Lemma 16.3.2. Thus it suffices to show that 𝑔𝑝! transforms
injective maps of abelian presheaves into injective maps of abelian presheaves. To do this
it suffices that colimits over the categories (ℐ𝑢

𝑉)𝑜𝑝𝑝 of Sites, Section 9.5 transform injective
maps between diagrams into injections. This follows from Sites, Lemma 9.5.1 and Algebra,
Lemma 7.8.11. �

Lemma 16.16.4. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume that
(a) 𝑢 is cocontinuous,
(b) 𝑢 is continuous, and
(c) 𝑢 is fully faithful.

For 𝑔 and 𝑔! as above the canonical map ℱ → 𝑔−1𝑔!ℱ is an isomorphism for all abelian
sheaves ℱ on 𝒞.

Proof. Pick𝑈 ∈ 𝑂𝑏(𝒞). Wewill show that 𝑔−1𝑔1ℱ(𝑈) = ℱ(𝑈). First, note that 𝑔−1𝑔1ℱ(𝑈) =
𝑔!ℱ(𝑢(𝑈)). Hence it suffices to show that 𝑔!ℱ(𝑢(𝑈)) = ℱ(𝑈). We know that 𝑔!ℱ is the
(abelian) sheaf associated to the presheaf 𝑔𝑝!ℱ which is defined by the rule

𝑉 ⟼ 𝑐𝑜𝑙𝑖𝑚𝑉→𝑢(𝑈′) ℱ(𝑈′)

with colimit taken in Ab. If 𝑉 = 𝑢(𝑈), then, as 𝑢 is fully faithful this colimit is over 𝑈 → 𝑈′.
Hence we conclude that 𝑔𝑝!ℱ(𝑢(𝑈) = ℱ(𝑈). Since 𝑢 is cocontinuous and continuous any
covering of 𝑢(𝑈) in 𝒟 can be refined by a covering (!) {𝑢(𝑈𝑖) → 𝑢(𝑈)} of 𝒟 where {𝑈𝑖 →
𝑈} is a covering in 𝒞. This implies that (𝑔𝑝!ℱ)+(𝑢(𝑈)) = ℱ(𝑈) also, since in the colimit
defining the value of (𝑔𝑝!ℱ)+ on 𝑢(𝑈) we may restrict to the cofinal system of coverings
{𝑢(𝑈𝑖) → 𝑢(𝑈)} as above. Hence we see that (𝑔𝑝!ℱ)+(𝑢(𝑈)) = ℱ(𝑈) for all objects 𝑈 of 𝒞
as well. Repeating this argument one more time gives the equality (𝑔𝑝!ℱ)#(𝑢(𝑈)) = ℱ(𝑈)
for all objects 𝑈 of 𝒞. This produces the desired equality 𝑔−1𝑔!ℱ = ℱ. �

Remark 16.16.5. In general the functor 𝑔! cannot be extended to categories of modules
in case 𝑔 is (part of) a morphism of ringed topoi. Namely, given any ring map 𝐴 → 𝐵
the functor 𝑀 ↦ 𝐵 ⊗𝐴 𝑀 has a right adjoint (restriction) but not in general a left adjoint
(because its existence would imply that 𝐴 → 𝐵 is flat). We will see in Section 16.19 below
that it is possible to define 𝑗! on sheaves of modules in the case of a localization of sites.
We will discuss this in greater generality in Section 16.35 below.

16.17. Global types of modules

Definition 16.17.1. Let (Sh(𝒞), 𝒪) be a ringed topos. Let ℱ be a sheaf of 𝒪-modules.
(1) We say ℱ is a free 𝒪-module if ℱ is isomorphic as an 𝒪-module to a sheaf of the

form ⨁𝑖∈𝐼 𝒪.
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(2) We say ℱ is finite free if ℱ is isomorphic as an 𝒪-module to a sheaf of the form
⨁𝑖∈𝐼 𝒪 with a finite index set 𝐼.

(3) We say ℱ is generated by global sections if there exists a surjection

⨁𝑖∈𝐼
𝒪 ⟶ ℱ

from a free 𝒪-module onto ℱ.
(4) We say ℱ is generated by finitely many global sections if there exists a surjection

⨁𝑖∈𝐼
𝒪 ⟶ ℱ

with 𝐼 finite.
(5) We say ℱ has a global presentation if there exists an exact sequence

⨁𝑗∈𝐽
𝒪 ⟶ ⨁𝑖∈𝐼

𝒪 ⟶ ℱ

of 𝒪-modules.
(6) We say ℱ has a global finite presentation if there exists an exact sequence

⨁𝑗∈𝐽
𝒪 ⟶ ⨁𝑖∈𝐼

𝒪 ⟶ ℱ

of 𝒪-modules with 𝐼 and 𝐽 finite sets.

Note that for any set 𝐼 the direct sum ⨁𝑖∈𝐼 𝒪 exists (Lemma 16.14.2) and is the sheafifica-
tion of the presheaf 𝑈 ↦ ⨁𝑖∈𝐼 𝒪(𝑈). This module is called the free 𝒪-module on the set
𝐼.

Lemma 16.17.2. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi.
Let ℱ be an 𝒪𝒟-module.

(1) If ℱ is free then 𝑓∗ℱ is free.
(2) If ℱ is finite free then 𝑓∗ℱ is finite free.
(3) If ℱ is generated by global sections then 𝑓∗ℱ is generated by global sections.
(4) If ℱ is generated by finitely many global sections then 𝑓∗ℱ is generated by finitely

many global sections.
(5) If ℱ has a global presentation then 𝑓∗ℱ has a global presentation.
(6) If ℱ has a finite global presentation then 𝑓∗ℱ has a finite global presentation.

Proof. This is true because 𝑓∗ commutes with arbitrary colimits (Lemma 16.14.3) and
𝑓∗𝒪𝒟 = 𝒪𝒞. �

16.18. Intrinsic properties of modules

Let 𝒫 be a property of sheaves of modules on ringed topoi. We say 𝒫 is an intrinsic property
if we have 𝒫(ℱ) ⇔ 𝒫(𝑓∗ℱ) whenever (𝑓, 𝑓♯) ∶ (Sh(𝒞′), 𝒪′) → (Sh(𝒞), 𝒪) is an equiva-
lence of ringed topoi. For example, the property of being free is intrinsic. Indeed, the free
𝒪-module on the set 𝐼 is characterized by the property that

𝑀𝑜𝑟Mod(𝒪)(⨁𝑖∈𝐼
𝒪, ℱ) = ∏𝑖∈𝐼

𝑀𝑜𝑟Sh(𝒞)({∗}, ℱ)

for a variable ℱ inMod(𝒪). Alternatively, we can also use Lemma 16.17.2 to see that being
free is intrinsic. In fact, each of the properties defined in Definition 16.17.1 is intrinsic for
the same reason. How will we go about defining other intrinsic properties of 𝒪-modules?

The upshot of Lemma 16.7.2 is the following: Suppose you want to define an intrinsic
property 𝒫 of an 𝒪-module on a topos. Then you can proceed as follows:
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(1) Given any site 𝒞, any sheaf of rings 𝒪 on 𝒞 and any 𝒪-module ℱ define the
corresponding property 𝒫(𝒞, 𝒪, ℱ).

(2) For any pair of sites 𝒞, 𝒞′, any special cocontinuous functor 𝑢 ∶ 𝒞 → 𝒞′, any
sheaf of rings 𝒪 on 𝒞 any 𝒪-module ℱ, show that

𝒫(𝒞, 𝒪, ℱ) ⇔ 𝒫(𝒞′, 𝑔∗𝒪, 𝑔∗ℱ)

where 𝑔 ∶ Sh(𝒞) → Sh(𝒞′) is the equivalence of topoi associated to 𝑢.
In this case, given any ringed topos (Sh(𝒞), 𝒪) and any sheaf of 𝒪-modules ℱ we simply say
that ℱ has property 𝒫 if 𝒫(𝒞, 𝒪, ℱ) is true. And Lemma 16.7.2 combined with (2) above
garantees that this is well defined.

Moreover, the same Lemma 16.7.2 also garantees that if in addition
(3) For any morphism of ringed sites (𝑓, 𝑓♯) ∶ (𝒞, 𝒪𝒞) → (𝒟, 𝒪𝒟) such that 𝑓 is

given by a functor 𝑢 ∶ 𝒟 → 𝒞 satisfying the assumptions of Sites, Proposition
9.14.6, and any 𝒪𝒟-module 𝒢 we have

𝒫(𝒟, 𝒪𝒟, ℱ) ⇒ 𝒫(𝒞, 𝒪𝒞, 𝑓∗ℱ)

then it is true that 𝒫 is preserved under pullback of modules w.r.t. arbitrary morphisms of
ringed topoi.

We will use this method in the following sections to see that: locally free, locally gener-
ated by sections, finite type, finite presentation, quasi-coherent, and coherent are intrinsic
properties of modules.

Perhaps a more satisfying method would be to find an intrinsic definition of these notions,
rather than the laborious process sketched here. On the other hand, in many geometric
situations where we want to apply these definitions we are given a definite ringed site,
and a definite sheaf of modules, and it is nice to have a definition already adapted to this
language.

16.19. Localization of ringed sites

Let (𝒞, 𝒪) be a ringed site. Let 𝑈 ∈ 𝑂𝑏(𝒞). We explain the counterparts of the results in
Sites, Section 9.21 in this setting.

Denote 𝒪𝑈 = 𝑗−1
𝑈 𝒪 the restriction of 𝒪 to the site 𝒞/𝑈. It is described by the simple rule

𝒪𝑈(𝑉/𝑈) = 𝒪(𝑉). With this notation the localization morphism 𝑗𝑈 becomes a morphism of
ringed topoi

(𝑗𝑈, 𝑗♯
𝑈) ∶ (Sh(𝒞/𝑈), 𝒪𝑈) ⟶ (Sh(𝒞), 𝒪)

namely, we take 𝑗♯
𝑈 ∶ 𝑗−1

𝑈 𝒪 → 𝒪𝑈 the identity map. Moreover, we obtain the following
descriptions for pushforward and pullback of modules.

Definition 16.19.1. Let (𝒞, 𝒪) be a ringed site. Let 𝑈 ∈ 𝑂𝑏(𝒞).
(1) The ringed site (𝒞/𝑈, 𝒪𝑈) is called the localization of the ringed site (𝒞, 𝒪) at the

object 𝑈.
(2) The morphism of ringed topoi (𝑗𝑈, 𝑗♯

𝑈) ∶ (Sh(𝒞/𝑈), 𝒪𝑈) → (Sh(𝒞), 𝒪) is called
the localization morphism.

(3) The functor 𝑗𝑈∗ ∶ Mod(𝒪𝑈) → Mod(𝒪) is called the direct image functor.
(4) For a sheaf of 𝒪-modules ℱ on 𝒞 the sheaf 𝑗∗

𝑈ℱ is called the restriction of ℱ to
𝒞/𝑈. We will sometimes denote it by ℱ|𝒞/𝑈 or even ℱ|𝑈. It is described by the
simple rule 𝑗∗

𝑈(ℱ)(𝑋/𝑈) = ℱ(𝑋).
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(5) The left adjoint 𝑗𝑈! ∶ Mod(𝒪𝑈) → Mod(𝒪) of restriction is called extension by
zero. It exists and is exact by Lemmas 16.19.2 and 16.19.3.

As in the topological case, see Sheaves, Section 6.31, the extension by zero 𝑗𝑈! functor is
different from extension by the empty set 𝑗𝑈! defined on sheaves of sets. Here is the lemma
defining extension by zero.

Lemma 16.19.2. Let (𝒞, 𝒪) be a ringed site. Let 𝑈 ∈ 𝑂𝑏(𝒞). The restriction functor
𝑗∗

𝑈 ∶ Mod(𝒪) → Mod(𝒪𝑈) has a left adjoint 𝑗𝑈! ∶ Mod(𝒪𝑈) → Mod(𝒪). So

𝑀𝑜𝑟Mod(𝒪𝑈)(𝒢, 𝑗∗
𝑈ℱ) = 𝑀𝑜𝑟Mod(𝒪)(𝑗𝑈!𝒢, ℱ)

for ℱ ∈ 𝑂𝑏(Mod(𝒪)) and 𝒢 ∈ 𝑂𝑏(Mod(𝒪𝑈)). Moreover, the extension by zero 𝑗𝑈!𝒢 of 𝒢 is
the sheaf associated to the presheaf

𝑉 ⟼ ⨁𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝒢(𝑉

𝜑
−→ 𝑈)

with obvious restriction mappings and an obvious 𝒪-module structure.

Proof. The 𝒪-module structure on the presheaf is defined as follows. If 𝑓 ∈ 𝒪(𝑉) and
𝑠 ∈ 𝒢(𝑉

𝜑
−→ 𝑈), then we define 𝑓 ⋅ 𝑠 = 𝑓𝑠 where 𝑓 ∈ 𝒪𝑈(𝜑 ∶ 𝑉 → 𝑈) = 𝒪(𝑉) (because 𝒪𝑈

is the restriction of 𝒪 to 𝒞/𝑈).

Similarly, let 𝛼 ∶ 𝒢 → ℱ|𝑈 be a morphism of 𝒪𝑈-modules. In this case we can define a
map from the presheaf of the lemma into ℱ by mapping

⨁𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝒢(𝑉

𝜑
−→ 𝑈) ⟶ ℱ(𝑉)

by the rule that 𝑠 ∈ 𝒢(𝑉
𝜑

−→ 𝑈) maps to 𝛼(𝑠) ∈ ℱ(𝑉). It is clear that this is 𝒪-linear, and
hence induces a morphism of 𝒪-modules 𝛼′ ∶ 𝑗𝑈!𝒢 → ℱ by the properties of sheafification
of modules (Lemma 16.11.1).

Conversely, let 𝛽 ∶ 𝑗𝑈!𝒢 → ℱ by a map of 𝒪-modules. Recall from Sites, Section 9.21 that
there exists an extension by the empty set 𝑗𝑆ℎ

𝑈! ∶ Sh(𝒞/𝑈) → Sh(𝒞) on sheaves of sets which
is left adjoint to 𝑗−1

𝑈 . Moreover, 𝑗𝑆ℎ
𝑈! 𝒢 is the sheaf associated to the presheaf

𝑉 ⟼ ∐𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝒢(𝑉

𝜑
−→ 𝑈)

Hence there is a natural map 𝑗𝑆ℎ
𝑈! 𝒢 → 𝑗𝑈!𝒢 of sheaves of sets. Hence precomposing 𝛽

by this map we get a map of sheaves of sets 𝑗𝑆ℎ
𝑈! 𝒢 → ℱ which by adjunction corresponds

to a map of sheaves of sets 𝛽′ ∶ 𝒢 → ℱ|𝑈. We claim that 𝛽′ is 𝒪𝑈-linear. Namely,
suppose that 𝜑 ∶ 𝑉 → 𝑈 is an object of 𝒞/𝑈 and that 𝑠, 𝑠′ ∈ 𝒢(𝜑 ∶ 𝑉 → 𝑈), and
𝑓 ∈ 𝒪(𝑉) = 𝒪𝑈(𝜑 ∶ 𝑉 → 𝑈). Then by the discussion above we see that 𝛽′(𝑠 + 𝑠′), resp.
𝛽′(𝑓𝑠) in ℱ|𝑈(𝜑 ∶ 𝑉 → 𝑈) correspond to 𝛽(𝑠 + 𝑠′), resp. 𝛽(𝑓𝑠) in ℱ(𝑉). Since 𝛽 is a
homomorphism we conclude.

To conclude the proof of the lemma we have to show that the constructions 𝛼 ↦ 𝛼′ and
𝛽 ↦ 𝛽′ are mutually inverse. We omit the verifications. �

Lemma16.19.3. Let (𝒞, 𝒪) be a ringed site. Let𝑈 ∈ 𝑂𝑏(𝒞). The functor 𝑗𝑈! ∶ Mod(𝒪𝑈) →
Mod(𝒪) is exact.

Proof. Since 𝑗𝑈! is a left adjoint to 𝑗∗
𝑈 we see that it is right exact (see Categories, Lemma

4.22.3 and Homology, Section 10.5). Hence it suffices to show that if 𝒢1 → 𝒢2 is an
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injective map of 𝒪𝑈-modules, then 𝑗𝑈!𝒢1 → 𝑗𝑈!𝒢2 is injective. The map on sections of
presheaves over an object 𝑉 (as in Lemma 16.19.2) is the map

⨁𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝒢1(𝑉

𝜑
−→ 𝑈) ⟶ ⨁𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)

𝒢2(𝑉
𝜑

−→ 𝑈)

which is injective by assumption. Since sheafification is exact by Lemma 16.11.2 we con-
clude 𝑗𝑈!𝒢1 → 𝑗𝑈!𝒢2 is injective and we win. �

Lemma 16.19.4. Let (𝒞, 𝒪) be a ringed site. Let 𝑓 ∶ 𝑉 → 𝑈 be a morphism of 𝒞. Then
there exists a commutative diagram

(Sh(𝒞/𝑉), 𝒪𝑉)

(𝑗𝑉,𝑗♯
𝑉) ''

(𝑗,𝑗♯)
// (Sh(𝒞/𝑈), 𝒪𝑈)

(𝑗𝑈,𝑗♯
𝑈)ww

(Sh(𝒞), 𝒪)

of ringed topoi. Here (𝑗, 𝑗♯) is the localization morphism associated to the object 𝑈/𝑉 of the
ringed site (𝒞/𝑉, 𝒪𝑉).

Proof. The only thing to check is that 𝑗♯
𝑉 = 𝑗♯ ∘ 𝑗−1(𝑗♯

𝑈), since everything else follows
directly from Sites, Lemma 9.21.7 and Sites, Equation (9.21.7.1). We omit the verification
of the equality. �

Remark 16.19.5. Localization and presheaves of modules; see Sites, Remark 9.21.9. Let
𝒞 be a category. Let 𝒪 be a presheaf of rings. Let 𝑈 be an object of 𝒞. Strictly speaking the
functors 𝑗∗

𝑈, 𝑗𝑈∗ and 𝑗𝑈! have not been defined for presheaves of 𝒪-modules. But of course,
we can think of a presheaf as a sheaf for the chaotic topology on 𝒞 (see Sites, Examples
9.6.6). Hence we also obtain a functor

𝑗∗
𝑈 ∶ PMod(𝒪) ⟶ PMod(𝒪𝑈)

and functors
𝑗𝑈∗, 𝑗𝑈! ∶ PMod(𝒪𝑈) ⟶ PMod(𝒪)

which are right, left adjoint to 𝑗∗
𝑈. Inspecting the proof of Lemma 16.19.2 we see that 𝑗𝑈!𝒢

is the presheaf

𝑉 ⟼ ⨁𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝒢(𝑉

𝜑
−→ 𝑈)

In addition the functor 𝑗𝑈! is exact (by Lemma 16.19.3 in the case of the discrete topologies).
Moreover, if 𝒞 is actually a site, and 𝒪 is actually a sheaf of rings, then the diagram

Mod(𝒪𝑈)
𝑗𝑈!

//

𝑓𝑜𝑟𝑔𝑒𝑡
��

Mod(𝒪)

PMod(𝒪𝑈)
𝑗𝑈! // PMod(𝒪)

( )#

OO

commutes.

16.20. Localization of morphisms of ringed sites

This section is the analogue of Sites, Section 9.24.
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Lemma 16.20.1. Let (𝑓, 𝑓♯) ∶ (𝒞, 𝒪) ⟶ (𝒟, 𝒪′) be a morphism of ringed sites where 𝑓 is
given by the continuous functor 𝑢 ∶ 𝒟 → 𝒞. Let 𝑉 be an object of 𝒟 and set 𝑈 = 𝑢(𝑉). Then
there is a canonical map of sheaves of rings (𝑓′)♯ such that the diagram of Sites, Lemma
9.24.1 is turned into a commutative diagram of ringed topoi

(Sh(𝒞/𝑈), 𝒪𝑈)
(𝑗𝑈,𝑗♯

𝑈)
//

(𝑓′,(𝑓′)♯)
��

(Sh(𝒞), 𝒪)

(𝑓,𝑓♯)
��

(Sh(𝒟/𝑉), 𝒪′
𝑉)

(𝑗𝑉,𝑗♯
𝑉)

// (Sh(𝒟), 𝒪′).

Moreover, in this situation we have 𝑓′
∗𝑗−1

𝑈 = 𝑗−1
𝑉 𝑓∗ and 𝑓′

∗𝑗∗
𝑈 = 𝑗∗

𝑉𝑓∗.

Proof. Just take (𝑓′)♯ to be

(𝑓′)−1𝒪′
𝑉 = (𝑓′)−1𝑗−1

𝑉 𝒪′ = 𝑗−1
𝑈 𝑓−1𝒪′ 𝑗−1

𝑈 𝑓♯

−−−−→ 𝑗−1
𝑈 𝒪 = 𝒪𝑈

and everything else follows from Sites, Lemma 9.24.1. (Note that 𝑗−1 = 𝑗∗ on sheaves
of modules if 𝑗 is a localization morphism, hence the first equality of functors implies the
second.) �

Lemma 16.20.2. Let (𝑓, 𝑓♯) ∶ (𝒞, 𝒪) ⟶ (𝒟, 𝒪′) be a morphism of ringed sites where 𝑓 is
given by the continuous functor 𝑢 ∶ 𝒟 → 𝒞. Let 𝑉 ∈ 𝑂𝑏(𝒟), 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑐 ∶ 𝑈 → 𝑢(𝑉)
a morphism of 𝒞. There exists a commutative diagram of ringed topoi

(Sh(𝒞/𝑈), 𝒪𝑈)
(𝑗𝑈,𝑗♯

𝑈)
//

(𝑓𝑐,𝑓♯
𝑐)
��

(Sh(𝒞), 𝒪)

(𝑓,𝑓♯)
��

(Sh(𝒟/𝑉), 𝒪′
𝑉)

(𝑗𝑉,𝑗♯
𝑉)

// (Sh(𝒟), 𝒪′).

The morphism (𝑓𝑐, 𝑓♯
𝑐) is equal to the composition of the morphism

(𝑓′, (𝑓′)♯) ∶ (Sh(𝒞/𝑢(𝑉)), 𝒪𝑢(𝑉)) ⟶ (Sh(𝒟/𝑉), 𝒪′
𝑉)

of Lemma 16.20.1 and the morphism

(𝑗, 𝑗♯) ∶ (Sh(𝒞/𝑈), 𝒪𝑈) → (Sh(𝒞/𝑢(𝑉)), 𝒪𝑢(𝑉))

of Lemma 16.19.4. Given any morphisms 𝑏 ∶ 𝑉′ → 𝑉, 𝑎 ∶ 𝑈′ → 𝑈 and 𝑐′ ∶ 𝑈′ → 𝑢(𝑉′)
such that

𝑈′
𝑐′
//

𝑎
��

𝑢(𝑉′)

𝑢(𝑏)
��

𝑈 𝑐 // 𝑢(𝑉)
commutes, then the following diagram of ringed topoi

(Sh(𝒞/𝑈′), 𝒪𝑈′)
(𝑗𝑈′/𝑈,𝑗♯

𝑈′/𝑈
)
//

(𝑓𝑐′,𝑓♯
𝑐′)
��

(Sh(𝒞/𝑈), 𝒪𝑈)

(𝑓𝑐,𝑓♯
𝑐)

��
(Sh(𝒟/𝑉′), 𝒪′

𝑉′)
(𝑗𝑉′/𝑉,𝑗♯

𝑉′/𝑉
)
// (Sh(𝒟/𝑉), 𝒪′

𝑉′)

commutes.
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Proof. On the level of morphisms of topoi this is Sites, Lemma 9.24.3. To check that the
diagrams commute as morphisms of ringed topoi use Lemmas 16.19.4 and 16.20.1 exactly
as in the proof of Sites, Lemma 9.24.3. �

16.21. Localization of ringed topoi

This section is the analogue of Sites, Section 9.26 in the setting of ringed topoi.

Lemma 16.21.1. Let (Sh(𝒞), 𝒪) be a ringed topos. Let ℱ ∈ Sh(𝒞) be a sheaf. For a sheaf
ℋ on 𝒞 denote ℋℱ the sheaf ℋ × ℱ seen as an object of the category Sh(𝒞)/ℱ. The pair
(Sh(𝒞)/ℱ, 𝒪ℱ) is a ringed topos and there is a canonical morphism of ringed topoi

(𝑗ℱ, 𝑗♯
ℱ) ∶ (Sh(𝒞)/ℱ, 𝒪ℱ) ⟶ (Sh(𝒞), 𝒪)

which is a localization as in Section 16.19 such that
(1) the functor 𝑗−1

ℱ is the functor ℋ ↦ ℋℱ,
(2) the functor 𝑗∗

ℱ is the functor ℋ ↦ ℋℱ,
(3) the functor 𝑗ℱ! on sheaves of sets is the forgetful functor 𝒢/ℱ ↦ 𝒢,
(4) the functor 𝑗ℱ! on sheaves of modules associates to the 𝒪ℱ-module 𝜑 ∶ 𝒢 → ℱ

the 𝒪-module which is the sheafification of the presheaf

𝑉 ⟼ ⨁𝑠∈ℱ(𝑉)
{𝜎 ∈ 𝒢(𝑉) ∣ 𝜑(𝜎) = 𝑠}

for 𝑉 ∈ 𝑂𝑏(𝒞).

Proof. By Sites, Lemma 9.26.1 we see that Sh(𝒞)/ℱ is a topos and that (1) and (3) are true.
In particular this shows that 𝑗−1

ℱ 𝒪 = 𝒪ℱ and shows that 𝒪ℱ is a sheaf of rings. Thus we
may choose the map 𝑗♯

ℱ to be the identity, in particular we see that (2) is true. Moreover,
the proof of Sites, Lemma 9.26.1 shows that we may assume 𝒞 is a site with all finite limits
and a subcanonical topology and that ℱ = ℎ𝑈 for some object 𝑈 of 𝒞. Then (4) follows
from the description of 𝑗ℱ! in Lemma 16.19.2. Alternatively one could show directly that
the functor described in (4) is a left adjoint to 𝑗∗

ℱ. �

Definition 16.21.2. Let (Sh(𝒞), 𝒪) be a ringed topos. Let ℱ ∈ Sh(𝒞).
(1) The ringed topos (Sh(𝒞)/ℱ, 𝒪ℱ) is called the localization of the ringed topos

(Sh(𝒞), 𝒪) at ℱ.
(2) The morphism of ringed topoi (𝑗ℱ, 𝑗♯

ℱ) ∶ (Sh(𝒞)/ℱ, 𝒪ℱ) → (Sh(𝒞), 𝒪) of Lemma
16.21.1 is called the localization morphism.

We continue the tradition, esthablished in the chapter on sites, that we check the localiza-
tion constructions on topoi are compatible with the constructions of localization on sites,
whenever this makes sense.

Lemma 16.21.3. With (Sh(𝒞), 𝒪) and ℱ ∈ Sh(𝒞) as in Lemma 16.21.1. If ℱ = ℎ#
𝑈 for

some object 𝑈 of 𝒞 then via the identification Sh(𝒞/𝑈) = Sh(𝒞)/ℎ#
𝑈 of Sites, Lemma 9.21.4

we have
(1) canonically 𝒪𝑈 = 𝒪ℱ, and
(2) with these identifications we have (𝑗ℱ, 𝑗♯

ℱ) = (𝑗𝑈, 𝑗♯
𝑈).

Proof. The assertion for underlying topoi is Sites, Lemma 9.26.5. Note that 𝒪𝑈 is the
restriction of 𝒪 which by Sites, Lemma 9.21.6 corresponds to 𝒪×ℎ#

𝑈 under the equivalence
of Sites, Lemma 9.21.4. By definition of 𝒪ℱ we get (1). What's left is to prove that 𝑗♯

ℱ = 𝑗♯
𝑈

under this identification. We omit the verification. �
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Localization is functorial in the following two ways: We can ``relocalize'' a localization
(see Lemma 16.21.4) or we can given a morphism of ringed topoi, localize upstairs at the
inverse image of a sheaf downstairs and get a commutative diagram of locally ringed spaces
(see Lemma 16.22.1).

Lemma 16.21.4. Let (Sh(𝒞), 𝒪) be a ringed topos. If 𝑠 ∶ 𝒢 → ℱ is a morphism of sheaves
on 𝒞 then there exists a natural commutative diagram of morphisms of ringed topoi

(Sh(𝒞)/𝒢, 𝒪𝒢)

(𝑗𝒢,𝑗♯
𝒢) ''

(𝑗,𝑗♯)
// (Sh(𝒞)/ℱ, 𝒪ℱ)

(𝑗ℱ,𝑗♯
ℱ)ww

(Sh(𝒞), 𝒪)

where (𝑗, 𝑗♯) is the localization morphism of the ringed topos (Sh(𝒞)/ℱ, 𝒪ℱ) at the object
𝒢/ℱ.

Proof. All assertions follow from Sites, Lemma 9.26.6 except the assertion that 𝑗♯
𝒢 = 𝑗♯ ∘

𝑗−1(𝑗♯
ℱ). We omit the verification. �

Lemma 16.21.5. With (Sh(𝒞), 𝒪), 𝑠 ∶ 𝒢 → ℱ as in Lemma 16.21.4. If there exist a
morphism 𝑓 ∶ 𝑉 → 𝑈 of 𝒞 such that 𝒢 = ℎ#

𝑉 and ℱ = ℎ#
𝑈 and 𝑠 is induced by 𝑓, then the

diagrams of Lemma 16.19.4 and Lemma 16.21.4 agree via the identifications (𝑗ℱ, 𝑗♯
ℱ) =

(𝑗𝑈, 𝑗♯
𝑈) and (𝑗𝒢, 𝑗♯

𝒢) = (𝑗𝑉, 𝑗♯
𝑉) of Lemma 16.21.3.

Proof. All assertions follow from Sites, Lemma 9.26.7 except for the assertion that the two
maps 𝑗♯ agree. This holds since in both cases the map 𝑗♯ is simply the identity. Some details
omitted. �

16.22. Localization of morphisms of ringed topoi

This section is the analogue of Sites, Section 9.27.

Lemma 16.22.1. Let
𝑓 ∶ (Sh(𝒞), 𝒪) ⟶ (Sh(𝒟), 𝒪′)

be a morphism of ringed topoi. Let 𝒢 be a sheaf on 𝒟. Set ℱ = 𝑓−1𝒢. Then there exists a
commutative diagram of ringed topoi

(Sh(𝒞)/ℱ, 𝒪ℱ)
(𝑗ℱ,𝑗♯

ℱ)
//

(𝑓′,(𝑓′)♯)
��

(Sh(𝒞), 𝒪)

(𝑓,𝑓♯)
��

(Sh(𝒟)/𝒢, 𝒪′
𝒢)

(𝑗𝒢,𝑗♯
𝒢)

// (Sh(𝒟), 𝒪′)

We have 𝑓′
∗𝑗−1

ℱ = 𝑗−1
𝒢 𝑓∗ and 𝑓′

∗𝑗∗
ℱ = 𝑗∗

𝒢𝑓∗. Moreover, the morphism 𝑓′ is characterized by
the rule

(𝑓′)−1(ℋ
𝜑

−→ 𝒢) = (𝑓−1ℋ
𝑓−1𝜑

−−−−→ ℱ).

Proof. By Sites, Lemma 9.27.1 we have the diagram of underlying topoi, the equality
𝑓′

∗𝑗−1
ℱ = 𝑗−1

𝒢 𝑓∗, and the description of (𝑓′)−1. To define (𝑓′)♯ we use the map

(𝑓′)♯ ∶ 𝒪′
𝒢 = 𝑗−1

𝒢 𝒪′
𝑗−1
𝒢 𝑓♯

−−−−→ 𝑗−1
𝒢 𝑓∗𝒪 = 𝑓′

∗𝑗−1
ℱ 𝒪 = 𝑓′

∗𝒪ℱ
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or equivalently the map

(𝑓′)♯ ∶ (𝑓′)−1𝒪′
𝒢 = (𝑓′)−1𝑗−1

𝒢 𝒪′ = 𝑗−1
ℱ 𝑓−1𝒪′

𝑗−1
ℱ 𝑓♯

−−−−→ 𝑗−1
ℱ 𝒪 = 𝒪ℱ.

We omit the verification that these two maps are indeed adjoint to each other. The second
construction of (𝑓′)♯ shows that the diagram commutes in the 2-category of ringed topoi
(as the maps 𝑗♯

ℱ and 𝑗♯
𝒢 are identities). Finally, the equality 𝑓′

∗𝑗∗
ℱ = 𝑗∗

𝒢𝑓∗ follows from the
equality 𝑓′

∗𝑗−1
ℱ = 𝑗−1

𝒢 𝑓∗ and the fact that pullbacks of sheaves of modules and sheaves of
sets agree, see Lemma 16.21.1. �

Lemma 16.22.2. Let
𝑓 ∶ (Sh(𝒞), 𝒪) ⟶ (Sh(𝒟), 𝒪′)

be a morphism of ringed topoi. Let 𝒢 be a sheaf on 𝒟. Set ℱ = 𝑓−1𝒢. If 𝑓 is given by
a continuous functor 𝑢 ∶ 𝒟 → 𝒞 and 𝒢 = ℎ#

𝑉, then the commutative diagrams of Lemma
16.20.1 and Lemma 16.22.1 agree via the identifications of Lemma 16.21.3.

Proof. At the level of morphisms of topoi this is Sites, Lemma 9.27.2. This works also on
the level of morphisms of ringed topoi since the formulas defining (𝑓′)♯ in the proofs of
Lemma 16.20.1 and Lemma 16.22.1 agree. �

Lemma 16.22.3. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪) → (Sh(𝒟), 𝒪′) be a morphism of ringed topoi.
Let 𝒢 be a sheaf on 𝒟, let ℱ be a sheaf on 𝒞, and let 𝑠 ∶ ℱ → 𝑓−1𝒢 a morphism of sheaves.
There exists a commutative diagram of ringed topoi

(Sh(𝒞)/ℱ, 𝒪ℱ)
(𝑗ℱ,𝑗♯

ℱ)
//

(𝑓𝑐,𝑓♯
𝑐)
��

(Sh(𝒞), 𝒪)

(𝑓,𝑓♯)
��

(Sh(𝒟)/𝒢, 𝒪′
𝒢)

(𝑗𝒢,𝑗♯
𝒢)

// (Sh(𝒟), 𝒪′).

The morphism (𝑓𝑠, 𝑓♯
𝑠) is equal to the composition of the morphism

(𝑓′, (𝑓′)♯) ∶ (Sh(𝒞)/𝑓−1𝒢, 𝒪𝑓−1𝒢) ⟶ (Sh(𝒟)/𝒢, 𝒪′
𝒢)

of Lemma 16.22.1 and the morphism

(𝑗, 𝑗♯) ∶ (Sh(𝒞)/ℱ, 𝒪ℱ) → (Sh(𝒞)/𝑓−1𝒢, 𝒪𝑓−1𝒢)

of Lemma 16.21.4. Given any morphisms 𝑏 ∶ 𝒢′ → 𝒢, 𝑎 ∶ ℱ′ → ℱ, and 𝑠′ ∶ ℱ′ → 𝑓−1𝒢′

such that
ℱ′

𝑠′
//

𝑎
��

𝑓−1𝒢′

𝑓−1𝑏
��

ℱ 𝑠 // 𝑓−1𝒢
commutes, then the following diagram of ringed topoi

(Sh(𝒞)/ℱ′, 𝒪ℱ′)
(𝑗ℱ′/ℱ,𝑗♯

ℱ′/ℱ
)
//

(𝑓𝑠′,𝑓♯
𝑠′)
��

(Sh(𝒞)/ℱ, 𝒪ℱ)

(𝑓𝑠,𝑓♯
𝑠)

��
(Sh(𝒟)/𝒢′, 𝒪′

𝒢′)
(𝑗𝒢′/𝒢,𝑗♯

𝒢′/𝒢
)
// (Sh(𝒟)/𝒢, 𝒪′

𝒢′)

commutes.
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Proof. On the level of morphisms of topoi this is Sites, Lemma 9.27.3. To check that the
diagrams commute as morphisms of ringed topoi use the commutative diagrams of Lemmas
16.21.4 and 16.22.1. �

Lemma 16.22.4. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪) → (Sh(𝒟), 𝒪′), 𝑠 ∶ ℱ → 𝑓−1𝒢 be as in Lemma
16.22.3. If 𝑓 is given by a continuous functor 𝑢 ∶ 𝒟 → 𝒞 and 𝒢 = ℎ#

𝑉, ℱ = ℎ#
𝑈 and 𝑠

comes from a morphism 𝑐 ∶ 𝑈 → 𝑢(𝑉), then the commutative diagrams of Lemma 16.20.2
and Lemma 16.22.3 agree via the identifications of Lemma 16.21.3.

Proof. This is formal using Lemmas 16.21.5 and 16.22.2. �

16.23. Local types of modules

According to our general strategy explained in Section 16.18 we first define the local types
for sheaves of modules on a ringed site, and then we immediately show that these types are
intrinsic, hence make sense for sheaves of modules on ringed topoi.

Definition 16.23.1. Let (𝒞, 𝒪) be a ringed site. Let ℱ be a sheaf of 𝒪-modules. We will
freely use the notions defined in Definition 16.17.1.

(1) We say ℱ is locally free if for every object 𝑈 of 𝒞 there exists a covering {𝑈𝑖 →
𝑈}𝑖∈𝐼 of 𝒞 such that each restriction ℱ|𝒞/𝑈𝑖

is a free 𝒪𝑈𝑖
-module.

(2) We say ℱ is finite locally free if for every object 𝑈 of 𝒞 there exists a covering
{𝑈𝑖 → 𝑈}𝑖∈𝐼 of 𝒞 such that each restriction ℱ|𝒞/𝑈𝑖

is a finite free 𝒪𝑈𝑖
-module.

(3) We say ℱ is locally generated by sections if for every object 𝑈 of 𝒞 there exists
a covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 of 𝒞 such that each restriction ℱ|𝒞/𝑈𝑖

is an 𝒪𝑈𝑖
-module

generated by global sections.
(4) We say ℱ is of finite type if for every object 𝑈 of 𝒞 there exists a covering {𝑈𝑖 →

𝑈}𝑖∈𝐼 of 𝒞 such that each restriction ℱ|𝒞/𝑈𝑖
is an 𝒪𝑈𝑖

-module generated by finitely
many global sections.

(5) We say ℱ is quasi-coherent if for every object 𝑈 of 𝒞 there exists a covering
{𝑈𝑖 → 𝑈}𝑖∈𝐼 of 𝒞 such that each restriction ℱ|𝒞/𝑈𝑖

is an 𝒪𝑈𝑖
-module which has

a global presentation.
(6) We say ℱ is of finite presentation if for every object 𝑈 of 𝒞 there exists a covering

{𝑈𝑖 → 𝑈}𝑖∈𝐼 of 𝒞 such that each restriction ℱ|𝒞/𝑈𝑖
is an 𝒪𝑈𝑖

-module which has
a finite global presentation.

(7) We say ℱ is coherent if and only if ℱ is of finite type, and for every object 𝑈 of 𝒞
and any 𝑠1, … , 𝑠𝑛 ∈ ℱ(𝑈) the kernel of the map ⨁𝑖=1,…,𝑛 𝒪𝑈 → ℱ|𝑈 is of finite
type on (𝒞/𝑈, 𝒪𝑈).

Lemma 16.23.2. Any of the properties (1) -- (7) of Definition 16.23.1 is intrinsic (see
discussion in Section 16.18).

Proof. Let 𝒞, 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a special cocontinuous functor. Let 𝒪 be a
sheaf of rings on 𝒞. Let ℱ be a sheaf of 𝒪-modules on 𝒞. Let 𝑔 ∶ Sh(𝒞) → Sh(𝒟) be the
equivalence of topoi associated to 𝑢. Set 𝒪′ = 𝑔∗𝒪, and let 𝑔♯ ∶ 𝒪′ → 𝑔∗𝒪 be the identity.
Finally, set ℱ′ = 𝑔∗ℱ. Let 𝒫𝑙 be one of the properties (1) -- (6) listed in Definition 16.23.1.
(We will discuss the coherent case at the end of the proof.) Let 𝒫𝑔 denote the corresponding
property listed in Definition 16.17.1. We have already seen that 𝒫𝑔 is intrinsic. We have to
show that 𝒫𝑙(𝒞, 𝒪, ℱ) holds if and only if 𝒫𝑙(𝒟, 𝒪′, ℱ′) holds.

Assume that ℱ has 𝒫𝑙. Let 𝑉 be an object of 𝒟. One of the properties of a special cocon-
tinuous functor is that there exists a covering {𝑢(𝑈𝑖) → 𝑉}𝑖∈𝐼 in the site 𝒟. By assumption,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04J9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DM
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for each 𝑖 there exists a covering {𝑈𝑖𝑗 → 𝑈𝑖}𝑗∈𝐽𝑖
in 𝒞 such that each restriction ℱ|𝑈𝑖𝑗

is 𝒫𝑔.
By Sites, Lemma 9.25.3 we have commutative diagrams of ringed topoi

(Sh(𝒞/𝑈𝑖𝑗), 𝒪𝑈𝑖𝑗
) //

��

(Sh(𝒞), 𝒪)

��
(Sh(𝒟/𝑢(𝑈𝑖𝑗)), 𝒪′

𝑢(𝑈𝑖𝑗)
) // (Sh(𝒟), 𝒪′)

where the vertical arrows are equivalences. Hence we conclude that ℱ′|𝑢(𝑈𝑖𝑗) has property
𝒫𝑔 also. And moreover, {𝑢(𝑈𝑖𝑗) → 𝑉}𝑖∈𝐼,𝑗∈𝐽𝑖

is a covering of the site 𝒟. Hence ℱ′ has
property 𝒫𝑙.

Assume that ℱ′ has 𝒫𝑙. Let 𝑈 be an object of 𝒞. By assumption, there exists a covering
{𝑉𝑖 → 𝑢(𝑈)}𝑖∈𝐼 such that ℱ′|𝑉𝑖

has property 𝒫𝑔. Because 𝑢 is cocontinuous we can refine
this covering by a family {𝑢(𝑈𝑗) → 𝑢(𝑈)}𝑗∈𝐽 where {𝑈𝑗 → 𝑈}𝑗∈𝐽 is a covering in 𝒞. Say
the refinement is given by 𝛼 ∶ 𝐽 → 𝐼 and 𝑢(𝑈𝑗) → 𝑉𝛼(𝑗). Restricting is transitive, i.e.,
(ℱ′|𝑉𝛼(𝑗)

)|𝑢(𝑈𝑗) = ℱ′|𝑢(𝑈𝑗). Hence by Lemma 16.17.2 we see that ℱ′|𝑢(𝑈𝑗) has property 𝒫𝑔.
Hence the diagram

(Sh(𝒞/𝑈𝑗), 𝒪𝑈𝑗
) //

��

(Sh(𝒞), 𝒪)

��
(Sh(𝒟/𝑢(𝑈𝑗)), 𝒪′

𝑢(𝑈𝑗)
) // (Sh(𝒟), 𝒪′)

where the vertical arrows are equivalences shows that ℱ|𝑈𝑗
has property 𝒫𝑔 also. Thus ℱ

has property 𝒫𝑙 as desired.

Finally, we prove the lemma in case 𝒫𝑙 = 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡2. Assume ℱ is coherent. This implies
that ℱ is of finite type and hence ℱ′ is of finite type also by the first part of the proof.
Let 𝑉 be an object of 𝒟 and let 𝑠1, … , 𝑠𝑛 ∈ ℱ′(𝑉). We have to show that the kernel 𝒦′ of
⨁𝑗=1,…,𝑛 𝒪𝑉 → ℱ′|𝑉 is of finite type on 𝒟/𝑉. This means we have to show that for any 𝑉′/𝑉
there exists a covering {𝑉′

𝑖 → 𝑉′} such that ℱ′|𝑉′
𝑖
is generated by finitely many sections.

Replacing 𝑉 by 𝑉′ (and restricting the sections 𝑠𝑗 to 𝑉′) we reduce to the case where 𝑉′ = 𝑉.
Since 𝑢 is a special cocontinuous functor, there exists a covering {𝑢(𝑈𝑖) → 𝑉}𝑖∈𝐼 in the
site 𝒟. Using the isomorphism of topoi Sh(𝒞/𝑈𝑖) = Sh(𝒟/𝑢(𝑈𝑖)) we see that 𝒦′|𝑢(𝑈𝑖)
corresponds to the kernel 𝒦𝑖 of a map ⨁𝑗=1,…,𝑛 𝒪𝑈𝑖

→ ℱ|𝑈𝑖
. Since ℱ is coherent we see

that 𝒦𝑖 is of finite type. Hence we conclude (by the first part of the proof again) that 𝒦|𝑢(𝑈𝑖)
is of finite type. Thus there exist coverings {𝑉𝑖𝑙 → 𝑢(𝑈𝑖)} such that 𝒦|𝑉𝑖𝑙

is generated by
finitely many global sections. Since {𝑉𝑖𝑙 → 𝑉} is a covering of 𝒟 we conclude that 𝒦 is of
finite type as desired.

Assume ℱ′ is coherent. This implies that ℱ′ is of finite type and hence ℱ is of finite type
also by the first part of the proof. Let 𝑈 be an object of 𝒞, and let 𝑠1, … , 𝑠𝑛 ∈ ℱ(𝑈). We
have to show that the kernel 𝒦 of ⨁𝑗=1,…,𝑛 𝒪𝑈 → ℱ|𝑈 is of finite type on 𝒞/𝑈. Using the
isomorphism of topoi Sh(𝒞/𝑈) = Sh(𝒟/𝑢(𝑈)) we see that 𝒦|𝑈 corresponds to the kernel
𝒦′ of a map ⨁𝑗=1,…,𝑛 𝒪𝑢(𝑈) → ℱ′|𝑢(𝑈). As ℱ′ is coherent, we see that 𝒦′ is of finite type.
Hence, by the first part of the proof again, we conclude that 𝒦 is of finite type. �

2The mechanics of this are a bit awkward, and we suggest the reader skip this part of the proof.
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Hence from now on we may refer to the properties of 𝒪-modules defined in Definition
16.23.1 without specifying a site.

Lemma 16.23.3. Let (Sh(𝒞), 𝒪) be a ringed topos. Let ℱ be an 𝒪-module. Assume that the
site 𝒞 has a final object 𝑋. Then

(1) The following are equivalent
(a) ℱ is locally free,
(b) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
a locally free 𝒪𝑋𝑖

-module, and
(c) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
a free 𝒪𝑋𝑖

-module.
(2) The following are equivalent

(a) ℱ is finite locally free,
(b) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
a finite locally free 𝒪𝑋𝑖

-module, and
(c) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
a finite free 𝒪𝑋𝑖

-module.
(3) The following are equivalent

(a) ℱ is locally generated by sections,
(b) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
an 𝒪𝑋𝑖

-module locally generated by sections, and
(c) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
an 𝒪𝑋𝑖

-module globally generated by sections.
(4) The following are equivalent

(a) ℱ is of finite type,
(b) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
an 𝒪𝑋𝑖

-module of finite type, and
(c) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
an 𝒪𝑋𝑖

-module globally generated by finitely many sections.
(5) The following are equivalent

(a) ℱ is quasi-coherent,
(b) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
a quasi-coherent 𝒪𝑋𝑖

-module, and
(c) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
an 𝒪𝑋𝑖

-module which has a global presentation.
(6) The following are equivalent

(a) ℱ is of finite presentation,
(b) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
an 𝒪𝑋𝑖

-module of finite presentation, and
(c) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
an 𝒪𝑋𝑖

-module has a finite global presentation.
(7) The following are equivalent

(a) ℱ is coherent, and
(b) there exists a covering {𝑋𝑖 → 𝑋} in 𝒞 such that each restriction ℱ|𝒞/𝑋𝑖

is
a coherent 𝒪𝑋𝑖

-module.

Proof. In each case we have (a) ⇒ (𝑏). In each of the cases (1) - (6) condition (b) implies
condition (c) by axiom (2) of a site (see Sites, Definition 9.6.2) and the definition of the
local types of modules. Suppose {𝑋𝑖 → 𝑋} is a covering. Then for every object 𝑈 of 𝒞 we

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DN
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get an induced covering {𝑋𝑖 ×𝑋 𝑈 → 𝑈}. Moreover, the global property for ℱ|𝒞/𝑋𝑖
in part

(c) implies the corresponding global property for ℱ|𝒞/𝑋𝑖×𝑋𝑈 by Lemma 16.17.2, hence the
sheaf has property (a) by definition. We omit the proof of (b) ⇒ (a) in case (7). �

Lemma 16.23.4. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi.
Let ℱ be an 𝒪𝒟-module.

(1) If ℱ is locally free then 𝑓∗ℱ is locally free.
(2) If ℱ is finite locally free then 𝑓∗ℱ is finite locally free.
(3) If ℱ is locally generated by sections then 𝑓∗ℱ is locally generated by sections.
(4) If ℱ is of finite type then 𝑓∗ℱ is of finite type.
(5) If ℱ is quasi-coherent then 𝑓∗ℱ is quasi-coherent.
(6) If ℱ is of finite presentation then 𝑓∗ℱ is of finite presentation.

Proof. According to the discussion in Section 16.18 we need only check preservation under
pullback for a morphism of ringed sites (𝑓, 𝑓♯) ∶ (𝒞, 𝒪𝒞) → (𝒟, 𝒪𝒟) such that 𝑓 is given by
a left exact, continuous functor 𝑢 ∶ 𝒟 → 𝒞 between sites which have all finite limits. Let 𝒢
be a sheaf of 𝒪𝒟-modules which has one of the properties (1) -- (6) of Definition 16.23.1.
We know 𝒟 has a final object 𝑌 and 𝑋 = 𝑢(𝑌) is a final object for 𝒞. By assumption we have
a covering {𝑌𝑖 → 𝑌} such that 𝒢|𝒟/𝑌𝑖

has the corresponding global property. Set 𝑋𝑖 = 𝑢(𝑌𝑖)
so that {𝑋𝑖 → 𝑋} is a covering in 𝒞. We get a commutative diagram of morphisms ringed
sites

(𝒞/𝑋𝑖, 𝒪𝒞|𝑋𝑖
) //

��

(𝒞, 𝒪𝒞)

��
(𝒟/𝑌𝑖, 𝒪𝒟|𝑌𝑖

) // (𝒟, 𝒪𝒟)

by Sites, Lemma 9.24.2. Hence by Lemma 16.17.2 that 𝑓∗𝒢|𝑋𝑖
has the corresponding

global property. Hence we conclude that 𝒢 has the local property we started out with by
Lemma 16.23.3. �

16.24. Tensor product

In Sections 16.9 and 16.11 we defined the change of rings functor by a tensor product
construction. To be sure this construction makes sense also to define the tensor product of
presheaves of 𝒪-modules. To be precise, suppose 𝒞 is a category, 𝒪 is a presheaf of rings,
and ℱ, 𝒢 are presheaves of 𝒪-modules. In this case we define ℱ ⊗𝑝,𝒪 𝒢 to be the presheaf

𝑈 ⟼ (ℱ ⊗𝑝,𝒪 𝒢)(𝑈) = ℱ(𝑈) ⊗𝒪(𝑈) 𝒢(𝑈)

If 𝒞 is a site, 𝒪 is a sheaf of rings and ℱ, 𝒢 are sheaves of 𝒪-modules then we define

ℱ ⊗𝒪 𝒢 = (ℱ ⊗𝑝,𝒪 𝒢)#

to be the sheaf of 𝒪-modules associated to the presheaf ℱ ⊗𝑝,𝒪 𝒢.

Here are some formulas which we will use below without further mention:

(ℱ ⊗𝑝,𝒪 𝒢) ⊗𝑝,𝒪 ℋ = ℱ ⊗𝑝,𝒪 (𝒢 ⊗𝑝,𝒪 ℋ),

and similarly for sheaves. If 𝒪1 → 𝒪2 is a map of presheaves of rings, then

(ℱ ⊗𝑝,𝒪1
𝒢) ⊗𝑝,𝒪1

𝒪2 = (ℱ ⊗𝑝,𝒪1
𝒪2) ⊗𝑝,𝒪2

(𝒢 ⊗𝑝,𝒪1
𝒪2),

and similarly for sheaves. These follow from their algebraic counterparts and sheafification.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DO
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Let 𝒞 be a site, let 𝒪 be a sheaf of rings and let ℱ, 𝒢, ℋ be sheaves of 𝒪-modules. In this
case we define

Bilin𝒪(ℱ × 𝒢, ℋ) = {𝜑 ∈ 𝑀𝑜𝑟Sh(𝒞)(ℱ × 𝒢, ℋ) ∣ 𝜑 is 𝒪-bilinear}.

With this definition we have

𝐻𝑜𝑚𝒪(ℱ ⊗𝒪 𝒢, ℋ) = Bilin𝒪(ℱ × 𝒢, ℋ).

In other words ℱ ⊗𝒪 𝒢 represents the functor which associates to ℋ the set of bilinear
maps ℱ×𝒢 → ℋ. In particular, since the notion of a bilinear map makes sense for a pair of
modules on a ringed topos, we see that the tensor product of sheaves of modules is intrinsic
to the topos (compare the discussion in Section 16.18). In fact we have the following.

Lemma 16.24.1. Let 𝑓 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi. Let
ℱ, 𝒢 be 𝒪𝒟-modules. Then 𝑓∗(ℱ ⊗𝒪𝒟

𝒢) = 𝑓∗ℱ ⊗𝒪𝒞
𝑓∗𝒢 functorially in ℱ, 𝒢.

Proof. For a sheaf ℋ of 𝒪𝒞 modules we have

𝐻𝑜𝑚𝒪𝒞
(𝑓∗(ℱ ⊗𝒪 𝒢), ℋ) = 𝐻𝑜𝑚𝒪𝒟

(ℱ ⊗𝒪 𝒢, 𝑓∗ℋ)
= Bilin𝒪𝒟

(ℱ × 𝒢, 𝑓∗ℋ)

= Bilin𝑓−1𝒪𝒟
(𝑓−1ℱ × 𝑓−1𝒢, ℋ)

= 𝐻𝑜𝑚𝑓−1𝒪𝒟
(𝑓−1ℱ ⊗𝑓−1𝒪𝒟

𝑓−1𝒢, ℋ)
= 𝐻𝑜𝑚𝒪𝒞

(𝑓∗ℱ ⊗𝑓∗𝒪𝒟
𝑓∗𝒢, ℋ)

The interesting ``='' in this sequence of equalities is the third equality. It follows from the
definition and adjointness of 𝑓∗ and 𝑓−1 (as discussed in previous sections) in a straight-
forward manner. �

Lemma 16.24.2. Let (𝒞, 𝒪) be a ringed site. Let ℱ, 𝒢 be sheaves of 𝒪-modules.
(1) If ℱ, 𝒢 are locally free, so is ℱ ⊗𝒪 𝒢.
(2) If ℱ, 𝒢 are finite locally free, so is ℱ ⊗𝒪 𝒢.
(3) If ℱ, 𝒢 are locally generated by sections, so is ℱ ⊗𝒪 𝒢.
(4) If ℱ, 𝒢 are of finite type, so is ℱ ⊗𝒪 𝒢.
(5) If ℱ, 𝒢 are quasi-coherent, so is ℱ ⊗𝒪 𝒢.
(6) If ℱ, 𝒢 are of finite presentation, so is ℱ ⊗𝒪 𝒢.
(7) If ℱ is of finite presentation and 𝒢 is coherent, then ℱ ⊗𝒪 𝒢 is coherent.
(8) If ℱ, 𝒢 are coherent, so is ℱ ⊗𝒪 𝒢.

Proof. Omitted. Hint: Compare with Sheaves of Modules, Lemma 15.15.5. �

16.25. Internal Hom

Let 𝒞 be a category and let 𝒪 be a presheaf of rings. Let ℱ, 𝒢 be presheaves of 𝒪-modules.
Consider the rule

𝑈 ⟼ 𝐻𝑜𝑚𝒪𝑈
(ℱ|𝑈, 𝒢|𝑈).

For 𝜑 ∶ 𝑉 → 𝑈 in 𝒞 we define a restriction mapping

𝐻𝑜𝑚𝒪𝑈
(ℱ|𝑈, 𝒢|𝑈) ⟶ 𝐻𝑜𝑚𝒪𝑉

(ℱ|𝑉, 𝒢|𝑉)

by restricting via the relocalization morphism 𝑗 ∶ 𝒞/𝑉 → 𝒞/𝑈, see Sites, Lemma 9.21.7.
Hence this defines a presheafℋ𝑜𝑚𝒪(ℱ, 𝒢). In addition, given an element𝜑 ∈ 𝐻𝑜𝑚𝒪|𝑈

(ℱ|𝑈, 𝒢|𝑈)
and a section 𝑓 ∈ 𝒪(𝑈) then we can define 𝑓𝜑 ∈ 𝐻𝑜𝑚𝒪|𝑈

(ℱ|𝑈, 𝒢|𝑈) by either precompos-
ing with multiplication by 𝑓 on ℱ|𝑈 or postcomposing with multiplication by 𝑓 on 𝒢|𝑈 (it

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03EL
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gives the same result). Hence we in fact get a presheaf of 𝒪-modules. There is a canonical
``evaluation'' morphism

ℱ ⊗𝑝,𝒪 ℋ𝑜𝑚𝒪(ℱ, 𝒢) ⟶ 𝒢.

Lemma 16.25.1. If 𝒞 is a site, 𝒪 is a sheaf of rings, ℱ is a presheaf of 𝒪-modules, and 𝒢
is a sheaf of 𝒪-modules, then ℋ𝑜𝑚𝒪(ℱ, 𝒢) is a sheaf of 𝒪-modules.

Proof. Omitted. Hints: Note first that ℋ𝑜𝑚𝒪(ℱ, 𝒢) = ℋ𝑜𝑚𝒪(ℱ#, 𝒢), which reduces the
question to the case where both ℱ and 𝒢 are sheaves. The result for sheaves of sets is Sites,
Lemma 9.22.1. �

In the situation of the lemma the ``evaluation'' morphism factors through the tensor product
of sheaves of modules

ℱ ⊗𝒪 ℋ𝑜𝑚𝒪(ℱ, 𝒢) ⟶ 𝒢.

Lemma 16.25.2. Internal hom and (co)limits. Let 𝒞 be a category and let 𝒪 be a presheaf
of rings.

(1) For any presheaf of 𝒪-modules ℱ the functor

PMod(𝒪) ⟶ PMod(𝒪), 𝒢 ⟼ ℋ𝑜𝑚𝒪(ℱ, 𝒢)

commutes with arbitrary limits.
(2) For any presheaf of 𝒪-modules 𝒢 the functor

PMod(𝒪) ⟶ PMod(𝒪)𝑜𝑝𝑝, ℱ ⟼ ℋ𝑜𝑚𝒪(ℱ, 𝒢)

commutes with arbitrary colimits, in a formula

ℋ𝑜𝑚𝒪(𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖, 𝒢) = 𝑙𝑖𝑚𝑖 ℋ𝑜𝑚𝒪(ℱ𝑖, 𝒢).

Suppose that 𝒞 is a site, and 𝒪 is a sheaf of rings.
(3) For any sheaf of 𝒪-modules ℱ the functor

Mod(𝒪) ⟶ Mod(𝒪), 𝒢 ⟼ ℋ𝑜𝑚𝒪(ℱ, 𝒢)

commutes with arbitrary limits.
(4) For any sheaf of 𝒪-modules 𝒢 the functor

Mod(𝒪) ⟶ Mod(𝒪)𝑜𝑝𝑝, ℱ ⟼ ℋ𝑜𝑚𝒪(ℱ, 𝒢)

commutes with arbitrary colimits, in a formula

ℋ𝑜𝑚𝒪(𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖, 𝒢) = 𝑙𝑖𝑚𝑖 ℋ𝑜𝑚𝒪(ℱ𝑖, 𝒢).

Proof. Let ℐ → PMod(𝒪), 𝑖 ↦ 𝒢𝑖 be a diagram. Let 𝑈 be an object of the category 𝒞. As
𝑗∗

𝑈 is both a left and a right adjoint we see that 𝑙𝑖𝑚𝑖 𝑗∗
𝑈𝒢𝑖 = 𝑗∗

𝑈 𝑙𝑖𝑚𝑖 𝒢𝑖. Hence we have

ℋ𝑜𝑚𝒪(ℱ, 𝑙𝑖𝑚𝑖 𝒢𝑖)(𝑈) = 𝐻𝑜𝑚𝒪𝑈
(ℱ|𝑈, 𝑙𝑖𝑚𝑖 𝒢𝑖|𝑈)

= 𝑙𝑖𝑚𝑖 𝐻𝑜𝑚𝒪𝑈
(ℱ|𝑈, 𝒢𝑖|𝑈)

= 𝑙𝑖𝑚𝑖 ℋ𝑜𝑚𝒪(ℱ, 𝒢𝑖)(𝑈)

by definition of a limit. This proves (1). Part (2) is proved in exactly the same way. Part (3)
follows from (1) because the limit of a diagram of sheaves is the same as the limit in the
category of presheaves. Finally, (4) follow because, in the formula we have

𝑀𝑜𝑟Mod(𝒪)(𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖, 𝒢) = 𝑀𝑜𝑟PMod(𝒪)(𝑐𝑜𝑙𝑖𝑚𝑃𝑆ℎ
𝑖 ℱ𝑖, 𝒢)

as the colimit 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 is the sheafification of the colimit 𝑐𝑜𝑙𝑖𝑚𝑃𝑆ℎ
𝑖 ℱ𝑖 in PMod(𝒪). Hence

(4) follows from (2) (by the remark on limits above again). �
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Lemma 16.25.3. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings.
(1) Let ℱ, 𝒢, ℋ be presheaves of 𝒪-modules. There is a canonical isomorphism

ℋ𝑜𝑚𝒪(ℱ ⊗𝑝,𝒪 𝒢, ℋ) ⟶ ℋ𝑜𝑚𝒪(ℱ, ℋ𝑜𝑚𝒪(𝒢, ℋ))

which is functorial in all three entries (sheaf Hom in all three spots). In particular,

𝑀𝑜𝑟PMod(𝒪)(ℱ ⊗𝑝,𝒪 𝒢, ℋ) = 𝑀𝑜𝑟PMod(𝒪)(ℱ, ℋ𝑜𝑚𝒪(𝒢, ℋ))

(2) Suppose that 𝒞 is a site, 𝒪 is a sheaf of rings, and ℱ, 𝒢, ℋ are sheaves of
𝒪-modules. There is a canonical isomorphism

ℋ𝑜𝑚𝒪(ℱ ⊗𝒪 𝒢, ℋ) ⟶ ℋ𝑜𝑚𝒪(ℱ, ℋ𝑜𝑚𝒪(𝒢, ℋ))

which is functorial in all three entries (sheaf Hom in all three spots). In particular,

𝑀𝑜𝑟Mod(𝒪)(ℱ ⊗𝒪 𝒢, ℋ) = 𝑀𝑜𝑟Mod(𝒪)(ℱ, ℋ𝑜𝑚𝒪(𝒢, ℋ))

Proof. This is the analogue of Algebra, Lemma 7.11.9. The proof is the same, and is
omitted. �

Lemma 16.25.4. Tensor product and (co)limits. Let𝒞 be a category and let𝒪 be a presheaf
of rings.

(1) For any presheaf of 𝒪-modules ℱ the functor

PMod(𝒪) ⟶ PMod(𝒪), 𝒢 ⟼ ℱ ⊗𝑝,𝒪 𝒢

commutes with arbitrary colimits.
(2) Suppose that 𝒞 is a site, and 𝒪 is a sheaf of rings. For any sheaf of 𝒪-modules ℱ

the functor

PMod(𝒪) ⟶ PMod(𝒪), 𝒢 ⟼ ℱ ⊗𝒪 𝒢

commutes with arbitrary colimits.

Proof. This is because tensor product is adjoint to internal hom according to Lemma 16.25.3.
See Categories, Lemma 4.22.2. �

16.26. Flat modules

We can define flat modules exactly as in the case of modules over rings.

Definition 16.26.1. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings.
(1) A presheaf ℱ of 𝒪-modules is called flat if the functor

PMod(𝒪) ⟶ PMod(𝒪), 𝒢 ↦ 𝒢 ⊗𝑝,𝒪 ℱ

is exact.
(2) A map 𝒪 → 𝒪′ of presheaves of rings is called flat if 𝒪′ is flat as a presheaf of

𝒪-modules.
(3) If 𝒞 is a site, 𝒪 is a sheaf of rings and ℱ is a sheaf of 𝒪-modules, then we say ℱ

is flat if the functor

Mod(𝒪) ⟶ Mod(𝒪), 𝒢 ↦ 𝒢 ⊗𝒪 ℱ

is exact.
(4) A map 𝒪 → 𝒪′ of sheaves of rings on a site is called flat if 𝒪′ is flat as a sheaf of

𝒪-modules.

The notion of a flat module or flat ring map is intrinsic (Section 16.18).
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Lemma 16.26.2. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings. Let ℱ be a presheaf
of 𝒪-modules. If each ℱ(𝑈) is a flat 𝒪(𝑈)-module, then ℱ is flat.

Proof. This is immediate from the definitions. �

Lemma 16.26.3. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings. Let ℱ be a presheaf
of 𝒪-modules. If ℱ is a flat 𝒪-module, then ℱ# is a flat 𝒪#-module.

Proof. Omitted. (Hint: Sheafification is exact.) �

Lemma 16.26.4. (Colimits and tensor product.)
(1) Afiltered colimit of flat presheaves of modules is flat. A direct sum of flat presheaves

of modules is flat.
(2) A filtered colimit of flat sheaves of modules is flat. A direct sum of flat sheaves of

modules is flat.

Proof. Part (1) follows from Lemma 16.25.4 and Algebra, Lemma 7.8.9 by looking at
sections over objects. To see part (2), use Lemma 16.25.4 and the fact that a filtered colimit
of exact complexes is an exact complex (this uses that sheafification is exact and commutes
with colimits). Some details omitted. �

Lemma 16.26.5. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings. Let 𝑈 be an object of
𝒞. Consider the functor 𝑗𝑈 ∶ 𝒞/𝑈 → 𝒞.

(1) The presheaf of 𝒪-modules 𝑗𝑈!𝒪𝑈 (see Remark 16.19.5) is flat.
(2) If 𝒞 is a site, 𝒪 is a sheaf of rings, 𝑗𝑈!𝒪𝑈 is a flat sheaf of 𝒪-modules.

Proof. Proof of (1). By the discussion in Remark 16.19.5 we see that

𝑗𝑈!𝒪𝑈(𝑉) = ⨁𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈)
𝒪(𝑉)

which is a flat 𝒪(𝑉)-module. Hence (1) follows from Lemma 16.26.2. Then (2) follows as
𝑗𝑈!𝒪𝑈 = (𝑗𝑈!𝒪𝑈)# (the first 𝑗𝑈! on sheaves, the second on presheaves) and Lemma 16.26.3.

�

Lemma 16.26.6. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings.
(1) Any presheaf of 𝒪-modules is a quotient of a direct sum ⨁ 𝑗𝑈𝑖!𝒪𝑈𝑖

.
(2) Any presheaf of 𝒪-modules is a quotient of a flat presheaf of 𝒪-modules.
(3) If 𝒞 is a site, 𝒪 is a sheaf of rings, then any sheaf of 𝒪-modules is a quotient of a

direct sum ⨁ 𝑗𝑈𝑖!𝒪𝑈𝑖
.

(4) If 𝒞 is a site, 𝒪 is a sheaf of rings, then any sheaf of 𝒪-modules is a quotient of a
flat sheaf of 𝒪-modules.

Proof. Proof of (1). For every object 𝑈 of 𝒞 and every 𝑠 ∈ ℱ(𝑈) we get a morphism
𝑗𝑈!𝒪𝑈 → ℱ, namely the adjoint to the morphism 𝒪𝑈 → ℱ|𝑈, 1 ↦ 𝑠. Clearly the map

⨁(𝑈,𝑠)
𝑗𝑈!𝒪𝑈 ⟶ ℱ

is surjective. The source is flat by combining Lemmas 16.26.4 and 16.26.5which proves (2).
The sheaf case follows from this either by sheafifying or repeating the same argument. �

Lemma 16.26.7. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings. Let

0 → ℱ″ → ℱ′ → ℱ → 0

be a short exact sequence of presheaves of 𝒪-modules. Assume ℱ is flat. Then
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(1) For any presheaf 𝒢 of 𝒪-modules, the sequence
0 → ℱ″ ⊗𝑝,𝒪 𝒢 → ℱ′ ⊗𝑝,𝒪 𝒢 → ℱ ⊗𝑝,𝒪 𝒢 → 0

is exact.
(2) If 𝒞 is a site, and 𝒪, ℱ, ℱ′, ℱ″, and 𝒢 are all sheaves, the sequence

0 → ℱ″ ⊗𝒪 𝒢 → ℱ′ ⊗𝒪 𝒢 → ℱ ⊗𝒪 𝒢 → 0
is exact.

Proof. Choose a flat presheaf of 𝒪-modules 𝒢′ which surjects onto 𝒢. This is possible by
Lemma 16.26.6. Let 𝒢″ = Ker(𝒢′ → 𝒢). The lemma follows by applying the snake lemma
to the following diagram

0 0 0
↑ ↑ ↑

ℱ″ ⊗𝑝,𝒪 𝒢 → ℱ′ ⊗𝑝,𝒪 𝒢 → ℱ ⊗𝑝,𝒪 𝒢 → 0
↑ ↑ ↑

0 → ℱ″ ⊗𝑝,𝒪 𝒢′ → ℱ′ ⊗𝑝,𝒪 𝒢′ → ℱ ⊗𝑝,𝒪 𝒢′ → 0
↑ ↑ ↑

ℱ″ ⊗𝑝,𝒪 𝒢″ → ℱ′ ⊗𝑝,𝒪 𝒢″ → ℱ ⊗𝑝,𝒪 𝒢″ → 0
↑
0

with exact rows and columns. The middle row is exact because tensoring with the flat
module 𝒢′ is exact. The sheaf case follows from the presheaf case as sheafification is
exact. �

Lemma 16.26.8. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings. Let
0 → ℱ2 → ℱ1 → ℱ0 → 0

be a short exact sequence of presheaves of 𝒪-modules.
(1) If ℱ2 and ℱ0 are flat so is ℱ1.
(2) If ℱ1 and ℱ0 are flat so is ℱ2.

If 𝒞 is a site and 𝒪 is a sheaf of rings then the same result holds Mod(𝒪).

Proof. Let 𝒢• be an arbitrary exact complex of presheaves of 𝒪-modules. Assume that ℱ0
is flat. By Lemma 16.26.7 we see that

0 → 𝒢• ⊗𝑝,𝒪 ℱ2 → 𝒢• ⊗𝑝,𝒪 ℱ1 → 𝒢• ⊗𝑝,𝒪 ℱ0 → 0
is a short exact sequence of complexes of presheaves of 𝒪-modules. Hence (1) and (2)
follow from the snake lemma. The case of sheaves of modules is proved in the same way.

�

Lemma 16.26.9. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings. Let
… → ℱ2 → ℱ1 → ℱ0 → 𝒬 → 0

be an exact complex of presheaves of 𝒪-modules. If 𝒬 and all ℱ𝑖 are flat 𝒪-modules, then
for any presheaf 𝒢 of 𝒪-modules the complex

… → ℱ2 ⊗𝑝,𝒪 𝒢 → ℱ1 ⊗𝑝,𝒪 𝒢 → ℱ0 ⊗𝑝,𝒪 𝒢 → 𝒬 ⊗𝑝,𝒪 𝒢 → 0
is exact also. If 𝒞 is a site and 𝒪 is a sheaf of rings then the same result holds Mod(𝒪).

Proof. Follows from Lemma 16.26.7 by splitting the complex into short exact sequences
and using Lemma 16.26.8 to prove inductively that Im(ℱ𝑖+1 → ℱ𝑖) is flat. �
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Lemma 16.26.10. Let 𝒪1 → 𝒪2 be a map of sheaves of rings on a site 𝒞. If 𝒢 is a flat
𝒪1-module, then 𝒢 ⊗𝒪1

𝒪2 is a flat 𝒪2-module.

Proof. This is true because

(𝒢 ⊗𝒪1
𝒪2) ⊗𝒪2

ℋ = 𝒢 ⊗𝒪1
ℱ

(as sheaves of abelian groups for example). �

16.27. Flat morphisms

Definition 16.27.1. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪) ⟶ (Sh(𝒞′), 𝒪′) be a morphism of ringed
topoi. We say (𝑓, 𝑓♯) is flat if the ring map 𝑓♯ ∶ 𝑓−1𝒪′ → 𝒪 is flat. We say a morphism of
ringed sites is flat if the associated morphism of ringed topoi is flat.

Lemma 16.27.2. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒞′) be a morphism of ringed topoi. Then

𝑓−1 ∶ Ab(𝒞′) ⟶ Ab(𝒞), ℱ ⟼ 𝑓−1ℱ

is exact. If (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪) → (Sh(𝒞′), 𝒪′) is a flat morphism of ringed topoi then

𝑓∗ ∶ Mod(𝒪′) ⟶ Mod(𝒪), ℱ ⟼ 𝑓∗ℱ

is exact.

Proof. Given an abelian sheaf 𝒢 on 𝒞′ the underlying sheaf of sets of 𝑓−1𝒢 is the same as
𝑓−1 of the underlying sheaf of sets of 𝒢, see Sites, Section 9.38. Hence the exactness of 𝑓−1

for sheaves of sets (required in the definition of a morphism of topoi, see Sites, Definition
9.15.1) implies the exactness of 𝑓−1 as a functor on abelian sheaves.

To see the statement onmodules recall that 𝑓∗ℱ is defined as the tensor product𝑓−1ℱ⊗𝑓−1𝒪′,𝑓♯

𝒪. Hence 𝑓∗ is a composition of functors both of which are exact. �

16.28. Invertible modules

Here is the definition.

Definition 16.28.1. Let (𝒞, 𝒪) be a ringed site.
(1) A finite locally free 𝒪-module ℱ is said to have rank 𝑟 if for every object 𝑈 of 𝒞

there exists a covering {𝑈𝑖 → 𝑈} of 𝑈 such that ℱ|𝑈𝑖
is isomorphic to 𝒪⊕𝑟

𝑈𝑖
as an

𝒪𝑈𝑖
-module.

(2) An invertible 𝒪-module is a finite locally free 𝒪-module of rank 1.
(3) The sheaf 𝒪∗ is the subsheaf of 𝒪 defined by the rule

𝑈 ⟼ 𝒪∗(𝑈) = {𝑓 ∈ 𝒪(𝑈) ∣ ∃𝑔 ∈ 𝒪(𝑈) such that 𝑓𝑔 = 1}

It is a sheaf of abelian groups with multiplication as the group law.

Lemma 16.28.2. Let (𝒞, 𝒪) be a ringed space.
(1) If ℒ, 𝒩 are invertible 𝒪-modules, then so is ℒ ⊗𝒪 𝒩.
(2) If ℒ is an invertible 𝒪-modules, then so is ℒ⊗−1 = ℋ𝑜𝑚𝒪(ℒ, 𝒪).
(3) If ℒ is an invertible 𝒪-module, then the evaluation map ℒ ⊗𝒪 ℒ⊗−1 → 𝒪 is an

isomorphism.

Proof. Omitted. �

Lemma 16.28.3. Let (𝒞, 𝒪) be a ringed space. There exists a set of invertible modules
{ℒ𝑖}𝑖∈𝐼 such that each invertible module on (𝒞, 𝒪) is isomorphic to exactly one of the ℒ𝑖.
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Proof. Omitted, but see Sheaves of Modules, Lemma 15.21.5. �

This lemma says roughly speaking that the collection of isomorphism classes of invertible
sheaves forms a set. Lemma 16.28.2 says that tensor product defines the structure of an
abelian group on this set.

Definition 16.28.4. Let (𝒞, 𝒪) be a ringed site. The Picard group Pic(𝒪) the ringed site is
the abelian group whose elements are isomorphism classes of invertible 𝒪-modules, with
addition corresponding to tensor product.

16.29. Modules of differentials

In this section we briefly explain how to define the module of relative differentials for a
morphism of ringed topoi. We suggest the reader take a look at the corresponding section
in the chapter on commutative algebra (Algebra, Section 7.122).

Definition 16.29.1. Let 𝒞 be a site. Let 𝜑 ∶ 𝒪1 → 𝒪2 be a homomorphism of sheaves of
rings. Let ℱ be an 𝒪2-module. A 𝒪1-derivation or more precisely a 𝜑-derivation into ℱ is
a map 𝐷 ∶ 𝒪2 → ℱ which is additive, annihilates the image of 𝒪1 → 𝒪2, and satisfies the
Leibniz rule

𝐷(𝑎𝑏) = 𝑎𝐷(𝑏) + 𝐷(𝑎)𝑏

for all 𝑎, 𝑏 local sections of 𝒪2 (wherever they are both defined). We denote Der𝒪1
(𝒪2, ℱ)

the set of 𝜑-derivations into ℱ.

This is the sheaf theoretic analogue of Algebra, Definition 16.29.1. Given a derivation
𝐷 ∶ 𝒪2 → ℱ as in the definition the map on global sections

𝐷 ∶ Γ(𝒪2) ⟶ Γ(ℱ)

clearly is a Γ(𝒪1)-derivation as in the algebra definition. Note that if 𝛼 ∶ ℱ → 𝒢 is a map
of 𝒪2-modules, then there is an induced map

Der𝒪1
(𝒪2, ℱ) ⟶ Der𝒪1

(𝒪2, 𝒢)

given by the rule 𝐷 ↦ 𝛼 ∘ 𝐷. In other words we obtain a functor.

Lemma 16.29.2. Let 𝒞 be a site. Let 𝜑 ∶ 𝒪1 → 𝒪2 be a homomorphism of sheaves of
rings. The functor

Mod(𝒪2) ⟶ Ab, ℱ ⟼ Der𝒪1
(𝒪2, ℱ)

is representable.

Proof. This is proved in exactly the same way as the analogous statement in algebra. Dur-
ing this proof, for any sheaf of sets ℱ on 𝒞, let us denote

𝒪2[ℱ] = ⨁𝑈∈𝑂𝑏(𝒞),𝑠∈ℱ(𝑈)
𝑗𝑈!(𝒪2|𝑈).

This is a sheaf of 𝒪2-modules. If ℱ is actually a sheaf of 𝒪2-modules, then there is a
canonical map

𝑐 ∶ 𝒪2[ℱ] ⟶ ℱ

which maps the summand 𝑗𝑈!(𝒪2|𝑈) corresponding to 𝑠 ∈ 𝒪2(𝑈) into ℱ by the map which
is adjoint to the map 𝒪2|𝑈 → ℱ|𝑈 determined by 𝑠. We will employ the short hand [𝑠] ↦ 𝑠
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to describe this map and similarly for other maps below. OK, and now consider the map of
𝒪2-modules

(16.29.2.1)

𝒪2[𝒪2 × 𝒪2] ⊕ 𝒪2[𝒪2 × 𝒪2] ⊕ 𝒪2[𝒪1] ⟶ 𝒪2[𝒪2]
[(𝑎, 𝑏)] ⊕ [(𝑓, 𝑔)] ⊕ [ℎ] ⟼ [𝑎 + 𝑏] − [𝑎] − [𝑏]+

[𝑓𝑔] − 𝑔[𝑓] − 𝑓[𝑔]+
[𝜑(ℎ)]

with short hand notation as above. Set Ω𝒪2/𝒪1
equal to the cokernel of this map. Then it is

clear that there exists a map of sheaves of sets

d ∶ 𝒪2 ⟶ Ω𝒪2/𝒪1

mapping a local section 𝑓 to the image of [𝑓] in Ω𝒪2/𝒪1
. By construction d is a 𝒪1-derivation.

Next, let ℱ be a sheaf of 𝒪2-modules and let 𝐷 ∶ 𝒪2 → ℱ be a 𝒪1-derivation. Then we can
define

𝛼𝐷 ∶ Ω𝒪2/𝒪1
⟶ ℱ

by setting 𝛼𝐷(𝑓[𝑔]) = 𝑓𝐷(𝑔) for local sections 𝑓, 𝑔 of 𝒪2. It follows from the definition of
a derivation that this map annihilates sections in the image of the map (16.29.2.1), so that
we get the desired map. Since it is clear that 𝛼𝐷 ∘ d = 𝐷 the lemma is proved. �

Definition 16.29.3. Let 𝒞 be a site. Let 𝜑 ∶ 𝒪1 → 𝒪2 be a homomorphism of sheaves of
rings. The module of differentials of the ring map 𝜑 is the object representing the functor
ℱ ↦ Der𝒪1

(𝒪2, ℱ) which exists by Lemma 16.29.2. It is denoted Ω𝒪2/𝒪1
, and the universal

𝜑-derivation is denoted d ∶ 𝒪2 → Ω𝒪2/𝒪1
.

Since this module and the derivation form the universal object representing a functor, this
notion is clearly intrinsic (i.e., does not depend on the choice of the site underlying the
ringed topos, see Section 16.18). Note that Ω𝒪2/𝒪1

is the cokernel of the map (16.29.2.1) of
𝒪2-modules. Moreover the map d is described by the rule that d𝑓 is the image of the local
section [𝑓].

Lemma 16.29.4. Let 𝒞 be a site. Let 𝜑 ∶ 𝒪1 → 𝒪2 be a homomorphism of sheaves of
rings. For any object 𝑈 of 𝒞 there is a canonical isomorphism

Ω𝒪2/𝒪1
|𝑈 = Ω(𝒪2|𝑈)/(𝒪1|𝑈)

compatible with universal derivations.

Proof. Let us denote 𝑗 ∶ 𝒞/𝑈 → 𝒞 the usual localization functor. We are trying to show
that 𝑗−1Ω𝒪2/𝒪1

= Ω𝑗−1𝒪2/𝑗−1𝒪1
. Note that on the one hand

𝐻𝑜𝑚𝑗−1𝒪2
(𝑗−1Ω𝒪2/𝒪1

, ℱ) = 𝐻𝑜𝑚𝒪2
(Ω𝒪2/𝒪1

, 𝑗∗ℱ) = Der𝒪1
(𝒪2, 𝑗∗ℱ)

and on the other hand

𝐻𝑜𝑚𝑗−1𝒪2
(Ω𝑗−1𝒪2/𝑗−1𝒪1

, ℱ) = Der𝑗−1𝒪1
(𝑗−1𝒪2, ℱ)

Hence we have to show that Der𝒪1
(𝒪2, 𝑗∗ℱ) = Der𝑗−1𝒪1

(𝑗−1𝒪2, ℱ). By adjunction there is
a natural identification

𝑀𝑜𝑟Sh(𝒞)(𝒪2, 𝑗∗ℱ) = 𝑀𝑜𝑟Sh(𝒞/𝑈)(𝑗−1𝒪2, ℱ)

and it suffices to prove that𝒪1-derivations on the left hand side correspond to 𝑗−1𝒪1-derivations
on the right hand side and vice versa. We omit the verification that this is so. �

Here is a particular situation where derivations come up naturally.
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Lemma 16.29.5. Let 𝒞 be a site. Let 𝜑 ∶ 𝒪1 → 𝒪2 be a homomorphism of sheaves of
rings. Consider a short exact sequence

0 → ℱ → 𝒜 → 𝒪2 → 0

Here 𝒜 is a sheaf of 𝒪1-algebras, 𝜋 ∶ 𝒜 → 𝒪2 is a surjection of sheaves of 𝒪1-algebras,
and ℱ = Ker(𝜋) is its kernel. Assume ℱ an ideal sheaf with square zero in 𝒜. So ℱ has a
natural structure of an 𝒪2-module. A section 𝑠 ∶ 𝒪2 → 𝒜 of 𝜋 is a 𝒪1-algebra map such
that 𝜋 ∘ 𝑠 = id. Given any section 𝑠 ∶ 𝒪2 → ℱ of 𝜋 and any 𝜑-derivation 𝐷 ∶ 𝒪1 → ℱ the
map

𝑠 + 𝐷 ∶ 𝒪1 → 𝒜
is a section of 𝜋 and every section 𝑠′ is of the form 𝑠 + 𝐷 for a unique 𝜑-derivation 𝐷.

Proof. Recall that the 𝒪2-module structure on ℱ is given by ℎ𝜏 = ℎ̃𝜏 (multiplication in 𝒜)
where ℎ is a local section of 𝒪2, and ℎ̃ is a local lift of ℎ to a local section of 𝒜, and 𝜏 is a
local section of ℱ. In particular, given 𝑠, we may use ℎ̃ = 𝑠(ℎ). To verify that 𝑠 + 𝐷 is a
homomorphism of sheaves of rings we compute

(𝑠 + 𝐷)(𝑎𝑏) = 𝑠(𝑎𝑏) + 𝐷(𝑎𝑏)
= 𝑠(𝑎)𝑠(𝑏) + 𝑎𝐷(𝑏) + 𝐷(𝑎)𝑏
= 𝑠(𝑎)𝑠(𝑏) + 𝑠(𝑎)𝐷(𝑏) + 𝐷(𝑎)𝑠(𝑏)
= (𝑠(𝑎) + 𝐷(𝑎))(𝑠(𝑏) + 𝐷(𝑏))

by the Leibniz rule. In the same manner one shows 𝑠 + 𝐷 is a 𝒪1-algebra map because 𝐷
is an 𝒪1-derivation. Conversely, given 𝑠′ we set 𝐷 = 𝑠′ − 𝑠. Details omitted. �

Definition 16.29.6. Let 𝑋 = (Sh(𝒞), 𝒪) and 𝑌 = (Sh(𝒞′), 𝒪′) be ringed topoi. Let (𝑓, 𝑓♯) ∶
𝑋 → 𝑌 be a morphism of ringed topoi. In this situation

(1) for a sheaf ℱ of 𝒪-modules a 𝑌-derivation 𝐷 ∶ 𝒪 → ℱ is just a 𝑓♯-derivation,
and

(2) the sheaf of differentials Ω𝑋/𝑌 of 𝑋 over 𝑌 is the module of differentials of 𝑓♯ ∶
𝑓−1𝒪′ → 𝒪, see Definition 16.29.3.

Thus Ω𝑋/𝑌 comes equipped with a universal 𝑌-derivation d𝑋/𝑌 ∶ 𝒪 ⟶ Ω𝑋/𝑌.

Recall that 𝑓♯ ∶ 𝑓−1𝒪′ → 𝒪 so that this definition makes sense.

Lemma 16.29.7. Let 𝑋 = (Sh(𝒞𝑋), 𝒪𝑋), 𝑌 = (Sh(𝒞𝑌), 𝒪𝑌), 𝑋′ = (Sh(𝒞𝑋′), 𝒪𝑋′), and
𝑌′ = (Sh(𝒞𝑌′), 𝒪𝑌′) be ringed topoi. Let

𝑋′

��

𝑓
// 𝑋

��
𝑌′ // 𝑌

be a commutative diagram of morphisms of ringed topoi. The map 𝑓♯ ∶ 𝒪𝑋 → 𝑓∗𝒪𝑋′

composed with the map 𝑓∗d𝑋′/𝑌′ ∶ 𝑓∗𝒪𝑋′ → 𝑓∗Ω𝑋′/𝑌′ is a 𝑌-derivation. Hence we obtain
a canonical map of 𝒪𝑋-modules Ω𝑋/𝑌 → 𝑓∗Ω𝑋′/𝑌′, and by adjointness of 𝑓∗ and 𝑓∗ a
canonical 𝒪𝑋′-module homomorphism

𝑐𝑓 ∶ 𝑓∗Ω𝑋/𝑌 ⟶ Ω𝑋′/𝑌′.

It is uniquely characterized by the property that 𝑓∗d𝑋/𝑌(𝑡) mapsto d𝑋′/𝑌′(𝑓∗𝑡) for any local
section 𝑡 of 𝒪𝑋.
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Proof. This is clear except for the last assertion. Let us explain the meaning of this. Let
𝑈 ∈ 𝑂𝑏(𝒞𝑋) and let 𝑡 ∈ 𝒪𝑋(𝑈). This is what it means for 𝑡 to be a local section of 𝒪𝑋. Now,
we may think of 𝑡 as a map of sheaves of sets 𝑡 ∶ ℎ#

𝑈 → 𝒪𝑋. Then 𝑓−1𝑡 ∶ 𝑓−1ℎ#
𝑈 → 𝑓−1𝒪𝑋.

By 𝑓∗𝑡 we mean the composition

𝑓−1ℎ#
𝑈

𝑓−1𝑡 //

𝑓∗𝑡

))
𝑓−1𝒪𝑋

𝑓♯
// 𝒪𝑋′

Note that d𝑋/𝑌(𝑡) ∈ Ω𝑋/𝑌(𝑈). Hence wemay think of d𝑋/𝑌(𝑡) as a map d𝑋/𝑌(𝑡) ∶ ℎ#
𝑈 → Ω𝑋/𝑌.

Then 𝑓−1d𝑋/𝑌(𝑡) ∶ 𝑓−1ℎ#
𝑈 → 𝑓−1Ω𝑋/𝑌. By 𝑓∗d𝑋/𝑌(𝑡) we mean the composition

𝑓−1ℎ#
𝑈

𝑓−1d𝑋/𝑌(𝑡) //

𝑓∗d𝑋/𝑌(𝑡)

**
𝑓−1Ω𝑋/𝑌

1⊗id // 𝑓∗Ω𝑋/𝑌

OK, and now the statement of the lemma means that we have

𝑐𝑓 ∘ 𝑓∗𝑡 = 𝑓∗d𝑋/𝑌(𝑡)

as maps from 𝑓−1ℎ#
𝑈 to Ω𝑋′/𝑌′. We omit the verification that this property holds for 𝑐𝑓 as

defined in the lemma. (Hint: The first map 𝑐′
𝑓 ∶ Ω𝑋/𝑌 → 𝑓∗Ω𝑋′/𝑌′ satisfies 𝑐′

𝑓(d𝑋/𝑌(𝑡)) =
𝑓∗d𝑋′/𝑌′(𝑓♯(𝑡)) as sections of 𝑓∗Ω𝑋′/𝑌′ over 𝑈, and you have to turn this into the equality
above by using adjunction.) The reason that this uniquely characterizes 𝑐𝑓 is that the images
of 𝑓∗d𝑋/𝑌(𝑡) generate the 𝒪𝑋′-module 𝑓∗Ω𝑋/𝑌 simply because the local sections d𝑋/𝑌(𝑡)
generate the 𝒪𝑋-module Ω𝑋/𝑌. �

16.30. Stalks of modules

We have to be a bit careful when taking stalks at points, since the colimit defining a stalk
(see Sites, Equation 9.28.1.1) may not be filtered3. On the other hand, by definition of a
point of a site the stalk functor is exact and commutes with arbitrary colimits. In other
words, it behaves exactly as if the colimit were filtered.

Lemma 16.30.1. Let 𝒞 be a site. Let 𝑝 be a point of 𝒞.
(1) We have (ℱ#)𝑝 = ℱ𝑝 for any presheaf of sets on 𝒞.
(2) The stalk functor Sh(𝒞) → Sets, ℱ ↦ ℱ𝑝 is exact (see Categories, Definition

4.21.1) and commutes with arbitrary colimits.
(3) The stalk functor PSh(𝒞) → Sets, ℱ ↦ ℱ𝑝 is exact (see Categories, Definition

4.21.1) and commutes with arbitrary colimits.

Proof. BySites, Lemma 9.28.5we have (1). By Sites, Lemmas 9.28.4we see thatPSh(𝒞) →
Sets, ℱ ↦ ℱ𝑝 is a left adjoint, and by Sites, Lemma 9.28.5 we see the same thing for
PSh(𝒞) → Sets, ℱ ↦ ℱ𝑝. Hence the stalk functor commutes with arbitrary colimits (see
Categories, Lemma 4.22.2). It follows from the definition of a point of a site, see Sites,
Definition 9.28.2 that Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) → Sets, ℱ ↦ ℱ𝑝 is exact. Since sheafification is exact
(Sites, Lemma 9.10.14) it follows that PSh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) → Sets, ℱ ↦ ℱ𝑝 is exact. �

3Of course in almost any naturally occurring case the colimit is filtered and some of the discussion in this
section may be simplified.
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In particular, since the stalk functor ℱ ↦ ℱ𝑝 on presheaves commutes with all finite limits
and colimits we may apply the reasoning of the proof of Sites, Proposition 9.38.3. The
result of such an argument is that if ℱ is a (pre)sheaf of algebraic structures listed in Sites,
Proposition 9.38.3 then the stalk ℱ𝑝 is naturally an algebraic structure of the same kind.
Let us explain this in detail when ℱ is an abelian presheaf. In this case the addition map
+ ∶ ℱ × ℱ → ℱ induces a map

+ ∶ ℱ𝑝 × ℱ𝑝 = (ℱ × ℱ)𝑝 ⟶ ℱ𝑝

where the equal sign uses that stalk functor on presheaves of sets commutes with finite
limits. This defines a group structure on the stalk ℱ𝑝. In this way we obtain our stalk
functor

PAb(𝒞) ⟶ Ab, ℱ ⟼ ℱ𝑝
By construction the underlying set of ℱ𝑝 is the stalk of the underlying presheaf of sets.
This also defines our stalk functor for sheaves of abelian groups by precomposing with the
inclusion Ab(𝒞) ⊂ PAb(𝒞).
Lemma 16.30.2. Let 𝒞 be a site. Let 𝑝 be a point of 𝒞.

(1) The functor Ab(𝒞) → Ab, ℱ ↦ ℱ𝑝 is exact.
(2) The stalk functor PAb(𝒞) → Ab, ℱ ↦ ℱ𝑝 is exact.
(3) For ℱ ∈ 𝑂𝑏(PAb(𝒞)) we have ℱ𝑝 = ℱ#

𝑝.
Proof. This is formal from the results of Lemma 16.30.1 and the construction of the stalk
functor above. �

Next, we turn to the case of sheaves of modules. Let (𝒞, 𝒪) be a ringed site. (It suffices for
the discussion that 𝒪 be a presheaf of rings.) Let ℱ be a presheaf of 𝒪-modules. Let 𝑝 be a
point of 𝒞. In this case we get a map

⋅ ∶ 𝒪𝑝 × 𝒪𝑝 = (𝒪 × 𝒪)𝑝 ⟶ 𝒪𝑝

which is the stalk of the multiplication map and
⋅ ∶ 𝒪𝑝 × ℱ𝑝 = (𝒪 × ℱ)𝑝 ⟶ ℱ𝑝

which is the stalk of the multiplication map. We omit the verification that this defines a
ring structure on 𝒪𝑝 and an 𝒪𝑝-module structure on ℱ𝑝. In this way we obtain a functor

PMod(𝒪) ⟶ Mod(𝒪𝑝), ℱ ⟼ ℱ𝑝

By construction the underlying set of ℱ𝑝 is the stalk of the underlying presheaf of sets. This
also defines our stalk functor for sheaves of 𝒪-modules by precomposing with the inclusion
Mod(𝒪) ⊂ PMod(𝒪).
Lemma 16.30.3. Let (𝒞, 𝒪) be a ringed site. Let 𝑝 be a point of 𝒞.

(1) The functor Mod(𝒪) → Mod(𝒪𝑝), ℱ ↦ ℱ𝑝 is exact.
(2) The stalk functor PMod(𝒪) → Mod(𝒪𝑝), ℱ ↦ ℱ𝑝 is exact.
(3) For ℱ ∈ 𝑂𝑏(PMod(𝒪)) we have ℱ𝑝 = ℱ#

𝑝.
Proof. This is formal from the results of Lemma 16.30.2, the construction of the stalk
functor above, and Lemma 16.14.1. �

Lemma 16.30.4. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi
or ringed sites. Let 𝑝 be a point of 𝒞 or Sh(𝒞) and set 𝑞 = 𝑓 ∘ 𝑝. Then

(𝑓∗ℱ)𝑝 = ℱ𝑞 ⊗𝒪𝒟,𝑞
𝒪𝒞,𝑝

for any 𝒪𝒟-module ℱ.
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Proof. We have
𝑓∗ℱ = 𝑓−1ℱ ⊗𝑓−1𝒪𝒟

𝒪𝒞

by definition. Since taking stalks at 𝑝 (i.e., applying 𝑝−1) commutes with ⊗ by Lemma
16.24.1 we win by the relation between the stalk of pullbacks at 𝑝 and stalks at 𝑞 explained
in Sites, Lemma 9.30.1 or Sites, Lemma 9.30.2. �

16.31. Skyscraper sheaves

Let 𝑝 be a point of a site 𝒞 or a topos Sh(𝒞). In this section we study the exactness properties
of the functor which associates to an abelian group 𝐴 the skyscraper sheaf 𝑝∗𝐴. First, recall
that 𝑝∗ ∶ Sets → Sh(𝒞) has a lot of exactness properties, see Sites, Lemmas 9.28.9 and
9.28.10.

Lemma 16.31.1. Let 𝒞 be a site. Let 𝑝 be a point of 𝒞 or of its associated topos.
(1) The functor 𝑝∗ ∶ Ab → Ab(𝒞), 𝐴 ↦ 𝑝∗𝐴 is exact.
(2) There is a functorial direct sum decomposition

𝑝−1𝑝∗𝐴 = 𝐴 ⊕ 𝐼(𝐴)

for 𝐴 ∈ 𝑂𝑏(Ab).

Proof. By Sites, Lemma 9.28.9 there are functorial maps 𝐴 → 𝑝−1𝑝∗𝐴 → 𝐴 whose com-
position equals id𝐴. Hence a functorial direct sum decomposition as in (2) with 𝐼(𝐴) the
kernel of the adjunction map 𝑝−1𝑝∗𝐴 → 𝐴. The functor 𝑝∗ is left exact by Lemma 16.14.3.
The functor 𝑝∗ transforms surjections into surjections by Sites, Lemma 9.28.10. Hence (1)
holds. �

To do the same thing for sheaves of modules, suppose given a point 𝑝 of a ringed topos
(Sh(𝒞), 𝒪). Recall that 𝑝−1 is just the stalk functor. Hence we can think of 𝑝 as a morphism
of ringed topoi

(𝑝, id𝒪𝑝
) ∶ (Sh(𝑝𝑡), 𝒪𝑝) ⟶ (Sh(𝒞), 𝒪).

Thus we get a pullback functor 𝑝∗ ∶ Mod(𝒪) → Mod(𝒪𝑝) which equals the stalk functor,
and which we discussed in Lemma 16.30.3. In this section we consider the functor 𝑝∗ ∶
Mod(𝒪𝑝) → Mod(𝒪).

Lemma 16.31.2. Let (Sh(𝒞), 𝒪) be a ringed topos. Let 𝑝 be a point of the topos Sh(𝒞).
(1) The functor 𝑝∗ ∶ Mod(𝒪𝑝) → Mod(𝒪), 𝑀 ↦ 𝑝∗𝑀 is exact.
(2) There is a functorial direct sum decomposition of 𝒪𝑝-modules

𝑝−1𝑝∗𝑀 = 𝑀 ⊕ 𝐼(𝑀)

for 𝑀 a 𝒪𝑝-module.

Proof. This follows immediately from the corresponding result for abelian sheaves in Lemma
16.31.1. �

Example 16.31.3. Let 𝐺 be a group. Consider the site 𝒯𝐺 and its point 𝑝, see Sites, Ex-
ample 9.29.6. Let 𝑅 be a ring with a 𝐺-action which corresponds to a sheaf of rings 𝒪 on
𝒯𝐺. Then 𝒪𝑝 = 𝑅 where we forget the 𝐺-action. In this case 𝑝−1𝑝∗𝑀 = Map(𝐺, 𝑀) and
𝐼(𝑀) = {𝑓 ∶ 𝐺 → 𝑀 ∣ 𝑓(1𝐺) = 0} and 𝑀 → Map(𝐺, 𝑀) assigns to 𝑚 ∈ 𝑀 the constant
function with value 𝑚.
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http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05V9
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16.32. Localization and points

Lemma 16.32.1. Let (𝒞, 𝒪) be a ringed site. Let 𝑝 be a point of 𝒞. Let 𝑈 be an object of
𝒞. For 𝒢 in Mod(𝒪𝑈) we have

(𝑗𝑈!𝒢)𝑝 = ⨁𝑞
𝒢𝑞

where the coproduct is over the points 𝑞 of 𝒞/𝑈 lying over 𝑝, see Sites, Lemma 9.31.2.

Proof. Weuse the description of 𝑗𝑈!𝒢 as the sheaf associated to the presheaf𝑉 ↦ ⨁𝜑∈𝑀𝑜𝑟𝒞(𝑉,𝑈) 𝒢(𝑉/𝜑𝑈)
of Lemma 16.19.2. The stalk of 𝑗𝑈!𝒢 at 𝑝 is equal to the stalk of this presheaf, see Lemma
16.30.3. Let 𝑢 ∶ 𝒞 → Sets be the functor corresponding to 𝑝 (see Sites, Section 9.28).
Hence we see that

(𝑗𝑈!𝒢)𝑝 = 𝑐𝑜𝑙𝑖𝑚(𝑉,𝑦) ⨁𝜑∶𝑉→𝑈
𝒢(𝑉/𝜑𝑈)

where the colimit is taken in the category of abelian groups. To a quadruple (𝑉, 𝑦, 𝜑, 𝑠)
occuring in this colimit, we can assign 𝑥 = 𝑢(𝜑)(𝑦) ∈ 𝑢(𝑈). Hence we obtain

(𝑗𝑈!𝒢)𝑝 = ⨁𝑥∈𝑢(𝑈)
𝑐𝑜𝑙𝑖𝑚(𝜑∶𝑉→𝑈,𝑦), 𝑢(𝜑)(𝑦)=𝑥 𝒢(𝑉/𝜑𝑈).

This is equal to the expression of the lemma by the description of the points 𝑞 lying over 𝑥
in Sites, Lemma 9.31.2. �

Remark 16.32.2. Warning: The result of Lemma 16.32.1 has no analogue for 𝑗𝑈,∗.

16.33. Pullbacks of flat modules

The pullback of a flat module along a morphism of ringed topoi is flat. This is quite tricky
to prove, except when there are enough points. Here we prove it only in this case and we
will add the general case if we ever need it.

Lemma 16.33.1. Let (𝒞, 𝒪) be a ringed site. Let 𝑝 be a point of 𝒞. If ℱ is a flat 𝒪-module,
then ℱ𝑝 is a flat 𝒪𝑝-module.

Proof. Let 𝑀 be an 𝒪𝑝-module. Then

(𝑝∗𝑀 ⊗𝒪 ℱ)𝑝 = 𝑝−1(𝑝∗𝑀 ⊗𝒪 ℱ)

= 𝑝−1𝑝∗𝑀 ⊗𝒪𝑝
ℱ𝑝

= 𝑀 ⊗𝒪𝑝
ℱ𝑝 ⊕ 𝐼(𝑀) ⊗𝒪𝑝

ℱ𝑝

where we have used the description of the stalk functor as a pullback, Lemma 16.24.1, and
Lemma 16.31.2. Since 𝑝∗ is exact by Lemma 16.31.2, it is clear that if ℱ is exact, then also
the functor 𝑀 ↦ 𝑀 ⊗𝒪𝑝

ℱ𝑝 is exact, i.e., ℱ𝑝 is flat. �

Lemma 16.33.2. Let (𝒞, 𝒪) be a ringed site. Let ℱ be a sheaf of 𝒪-modules. If 𝒞 has
enough points, then ℱ is flat if and only if ℱ𝑝 is a flat 𝒪𝑝-module for all points 𝑝 of 𝒞.

Proof. By Lemma 16.33.1 we see one of the implications. For the converse, use that (ℱ⊗𝒪
𝒢)𝑝 = ℱ𝑝 ⊗𝒪𝑝

𝒢𝑝 by Lemma 16.24.1 and Lemma 16.14.4. �

Lemma 16.33.3. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi
or ringed sites. Assume 𝒞 has enough points4. Then 𝑓∗ℱ is a flat 𝒪𝒞-module whenever ℱ
is a flat 𝒪𝒟-module.

4This assumption is not necessary, see introduction to this section.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0710
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0711
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Proof. Let 𝑝 be a point of 𝒞 and set 𝑞 = 𝑓 ∘ 𝑝. Then
(𝑓∗ℱ)𝑝 = ℱ𝑞 ⊗𝒪𝒟,𝑞

𝒪𝒞,𝑝

by Lemma 16.30.4. Hence if ℱ is flat, then ℱ𝑞 is a flat 𝒪𝒟,𝑞-module by Lemma 16.33.1 and
hence by Algebra, Lemma 7.35.6 we see that (𝑓∗ℱ)𝑝 is a flat 𝒪𝒞,𝑝-module. This implies
that 𝑓∗ℱ is a flat 𝒪𝒞-module by Lemma 16.33.2. �

16.34. Locally ringed topoi

A reference for this section is [MA71, Exposé IV, Exercice 13.9].

Lemma 16.34.1. Let (𝒞, 𝒪) be a ringed site. The following are equivalent
(1) For every object 𝑈 of 𝒞 and 𝑓 ∈ 𝒪(𝑈) there exists a covering {𝑈𝑗 → 𝑈} such

that for each 𝑗 either 𝑓|𝑈𝑗
is invertible or (1 − 𝑓)|𝑈𝑗

is invertible.
(2) For every object 𝑈 of 𝒞 and 𝑓1, … , 𝑓𝑛 ∈ 𝒪(𝑈) which generate the unit ideal in

𝒪(𝑈) there exists a covering {𝑈𝑗 → 𝑈} such that for each 𝑗 there exists an 𝑖 such
that 𝑓𝑖|𝑈𝑗

is invertible.
(3) The map of sheaves of sets

(𝒪 × 𝒪) ⨿ (𝒪 × 𝒪) ⟶ 𝒪 × 𝒪
which maps (𝑓, 𝑎) in the first component to (𝑓, 𝑎𝑓) and (𝑓, 𝑏) in the second com-
ponent to (𝑓, 𝑏(1 − 𝑓)) is surjective.

Proof. It is clear that (2) implies (1). To show that (1) implies (2) we argue by induction
on 𝑛. The first case is 𝑛 = 2 (since 𝑛 = 1 is trivial). In this case we have 𝑎1𝑓1 + 𝑎2𝑓2 = 1
for some 𝑎1, 𝑎2 ∈ 𝒪(𝑈). By assumption we can find a covering {𝑈𝑗 → 𝑈} such that for
each 𝑗 either 𝑎1𝑓1|𝑈𝑗

is invertible or 𝑎2𝑓2|𝑈𝑗
is invertible. Hence either 𝑓1|𝑈𝑗

is invertible
or 𝑓2|𝑈𝑗

is invertible as desired. For 𝑛 > 2 we have 𝑎1𝑓1 + … + 𝑎𝑛𝑓𝑛 = 1 for some
𝑎1, … , 𝑎𝑛 ∈ 𝒪(𝑈). By the case 𝑛 = 2 we see that we have some covering {𝑈𝑗 → 𝑈}𝑗∈𝐽
such that for each 𝑗 either 𝑓𝑛|𝑈𝑗

is invertible or 𝑎1𝑓1 + … + 𝑎𝑛−1𝑓𝑛−1|𝑈𝑗
is invertible. Say

the first case happens for 𝑗 ∈ 𝐽𝑛. Set 𝐽′ = 𝐽 ⧵ 𝐽𝑛. By induction hypothesis, for each
𝑗 ∈ 𝐽′ we can find a covering {𝑈𝑗𝑘 → 𝑈𝑗}𝑘∈𝐾𝑗

such that for each 𝑘 ∈ 𝐾𝑗 there exists
an 𝑖 ∈ {1, … , 𝑛 − 1} such that 𝑓𝑖|𝑈𝑗𝑘

is invertible. By the axioms of a site the family
of morphisms {𝑈𝑗 → 𝑈}𝑗∈𝐽𝑛

∪ {𝑈𝑗𝑘 → 𝑈}𝑗∈𝐽′,𝑘∈𝐾𝑗
is a covering which has the desired

property.
Assume (1). To see that the map in (3) is surjective, let (𝑓, 𝑐) be a section of 𝒪 × 𝒪 over
𝑈. By assumption there exists a covering {𝑈𝑗 → 𝑈} such that for each 𝑗 either 𝑓 or 1 − 𝑓
restricts to an invertible section. In the first case we can take 𝑎 = 𝑐|𝑈𝑗

(𝑓|𝑈𝑗
)−1, and in the

second case we can take 𝑏 = 𝑐|𝑈𝑗
(1 − 𝑓|𝑈𝑗

)−1. Hence (𝑓, 𝑐) is in the image of the map on
each of the members. Conversely, assume (3) holds. For any 𝑈 and 𝑓 ∈ 𝒪(𝑈) there exists
a covering {𝑈𝑗 → 𝑈} of 𝑈 such that the section (𝑓, 1)|𝑈𝑗

is in the image of the map in (3)
on sections over 𝑈𝑗. This means precisely that either 𝑓 or 1 − 𝑓 restricts to an invertible
section over 𝑈𝑗, and we see that (1) holds. �

Lemma 16.34.2. Let (𝒞, 𝒪) be a ringed site. Consider the following conditions
(1) For every object 𝑈 of 𝒞 and 𝑓 ∈ 𝒪(𝑈) there exists a covering {𝑈𝑗 → 𝑈} such

that for each 𝑗 either 𝑓|𝑈𝑗
is invertible or (1 − 𝑓)|𝑈𝑗

is invertible.
(2) For every point 𝑝 of 𝒞 the stalk 𝒪𝑝 is either the zero ring or a local ring.

We always have (1) ⇒ (2). If 𝒞 has enough points then (1) and (2) are equivalent.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04ES
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Proof. Assume (1). Let 𝑝 be a point of 𝒞 given by a functor 𝑢 ∶ 𝒞 → Sets. Let 𝑓𝑝 ∈ 𝒪𝑝.
Since 𝒪𝑝 is computed by Sites, Equation (9.28.1.1) we may represent 𝑓𝑝 by a triple (𝑈, 𝑥, 𝑓)
where 𝑥 ∈ 𝑈(𝑈) and 𝑓 ∈ 𝒪(𝑈). By assumption there exists a covering {𝑈𝑖 → 𝑈} such
that for each 𝑖 either 𝑓 or 1 − 𝑓 is invertible on 𝑈𝑖. Because 𝑢 defines a point of the site we
see that for some 𝑖 there exists an 𝑥𝑖 ∈ 𝑢(𝑈𝑖) which maps to 𝑥 ∈ 𝑢(𝑈). By the discussion
surrounding Sites, Equation (9.28.1.1) we see that (𝑈, 𝑥, 𝑓) and (𝑈𝑖, 𝑥𝑖, 𝑓|𝑈𝑖

) define the same
element of 𝒪𝑝. Hence we conclude that either 𝑓𝑝 or 1 − 𝑓𝑝 is invertible. Thus 𝒪𝑝 is a ring
such that for every element 𝑎 either 𝑎 or 1 − 𝑎 is invertible. This means that 𝒪𝑝 is either
zero or a local ring, see Algebra, Lemma 7.17.2.

Assume (2) and assume that 𝒞 has enough points. Consider the map of sheaves of sets

𝒪 × 𝒪 ⨿ 𝒪 × 𝒪 ⟶ 𝒪 × 𝒪

of Lemma 16.34.1 part (3). For any local ring 𝑅 the correspondingmap (𝑅×𝑅)⨿(𝑅×𝑅) →
𝑅 × 𝑅 is surjective, see for example Algebra, Lemma 7.17.2. Since each 𝒪𝑝 is a local ring
or zero the map is surjective on stalks. Hence, by our assumption that 𝒞 has enough points
it is surjective and we win. �

In Modules, Section 15.2 we pointed out how in a ringed space (𝑋, 𝒪𝑋) there can be an
open subspace over which the structure sheaf is zero. To prevent this we can require the
sections 1 and 0 to have different values in every stalk of the space 𝑋. In the setting of
ringed topoi and ringed sites the condition is that

(16.34.2.1) ∅# ⟶ Equalizer(0, 1 ∶ ∗ ⟶ 𝒪)

is an isomorphism of sheaves. Here ∗ is the singleton sheaf, resp. ∅# is the ``empty sheaf'',
i.e., the final, resp. initial object in the category of sheaves, see Sites, Example 9.10.2,
resp. Section 9.37. In other words, the condition is that whenever 𝑈 ∈ 𝑂𝑏(𝒞) is not sheaf
theoretically empty, then 1, 0 ∈ 𝒪(𝑈) are not equal. Let us state the obligatory lemma.

Lemma 16.34.3. Let (𝒞, 𝒪) be a ringed site. Consider the statements
(1) (16.34.2.1) is an isomorphism, and
(2) for every point 𝑝 of 𝒞 the stalk 𝒪𝑝 is not the zero ring.

We always have (1) ⇒ (2) and if 𝒞 has enough points then (1) ⇔ (2).

Proof. Omitted. �

Lemmas 16.34.1, 16.34.2, and 16.34.3 motivate the following definition.

Definition 16.34.4. A ringed site (𝒞, 𝒪) is said to be locally ringed site if (16.34.2.1) is an
isomorphism, and the equivalent properties of Lemma 16.34.1 are satisfied.

In [MA71, Exposé IV, Exercice 13.9] the condition that (16.34.2.1) be an isomorphism
is missing leading to a slightly different notion of a locally ringed site and locally ringed
topos. As we are motivated by the notion of a locally ringed space we decided to add this
condition (see explanation above).

Lemma 16.34.5. Being a locally ringed site is an intrinsic property. More precisely,
(1) if 𝑓 ∶ Sh(𝒞′) → Sh(𝒞) is a morphism of topoi and (𝒞, 𝒪) is a locally ringed site,

then (𝒞′, 𝑓−1𝒪) is a locally ringed site, and
(2) if (𝑓, 𝑓♯) ∶ (Sh(𝒞′), 𝒪′) → (Sh(𝒞), 𝒪) is an equivalence of ringed topoi, then

(𝒞, 𝒪) is locally ringed if and only if (𝒞′, 𝒪′) is locally ringed.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05D8
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Proof. It is clear that (2) follows from (1). To prove (1) note that as 𝑓−1 is exact we have
𝑓−1∗ = ∗, 𝑓−1∅# = ∅#, and 𝑓−1 commutes with products, equalizers and transforms
isomorphisms and surjections into isomorphisms and surjections. Thus 𝑓−1 transforms the
isomorphism (16.34.2.1) into its analogue for 𝑓−1𝒪 and transforms the surjection of Lemma
16.34.1 part (3) into the corresponding surjection for 𝑓−1𝒪. �

In fact Lemma 16.34.5 part (2) is the analogue of Schemes, Lemma 21.2.2. It assures us
that the following definition makes sense.

Definition 16.34.6. A ringed topos (Sh(𝒞), 𝒪) is said to be locally ringed if the underlying
ringed site (𝒞, 𝒪) is locally ringed.

Next, we want to work out what it means to have a morphism of locally ringed spaces. In
order to do this we have the following lemma.

Lemma 16.34.7. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi.
Consider the following conditions

(1) The diagram of sheaves

𝑓−1(𝒪∗
𝒟)

𝑓♯
//

��

𝒪∗
𝒞

��
𝑓−1(𝒪𝒟)

𝑓♯
// 𝒪𝒞

is cartesian.
(2) For any point 𝑝 of 𝒞, setting 𝑞 = 𝑓 ∘ 𝑝, the diagram

𝒪∗
𝒟,𝑞

//

��

𝒪∗
𝒞,𝑝

��
𝒪𝒟,𝑞

// 𝒪𝒞,𝑝

of sets is cartesian.
We always have (1) ⇒ (2). If 𝒞 has enough points then (1) and (2) are equivalent. If
(Sh(𝒞), 𝒪𝒞) and (Sh(𝒟), 𝒪𝒟) are locally ringed topoi then (2) is equivalent to

(3) For any point 𝑝 of 𝒞, setting 𝑞 = 𝑓 ∘ 𝑝, the ring map 𝒪𝒟,𝑞 → 𝒪𝒞,𝑝 is a local ring
map.

In fact, properties (2), or (3) for a conservative family of points implies (1).

Proof. This lemma proves itself, in other words, it follows by unwinding the definitions.
�

Definition 16.34.8. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed
topoi. Assume (Sh(𝒞), 𝒪𝒞) and (Sh(𝒟), 𝒪𝒟) are locally ringed topoi. We say that (𝑓, 𝑓♯) is
a morphism of locally ringed topoi if and only if the diagram of sheaves

𝑓−1(𝒪∗
𝒟)

𝑓♯
//

��

𝒪∗
𝒞

��
𝑓−1(𝒪𝒟)

𝑓♯
// 𝒪𝒞

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04H8
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(see Lemma 16.34.7) is cartesian. If (𝑓, 𝑓♯) is a morphism of ringed sites, then we say
that it is a morphism of locally ringed sites if the associated morphism of ringed topoi is a
morphism of locally ringed topoi.

It is clear that an isomorphism of ringed topoi between locally ringed topoi is automatically
an isomorphism of locally ringed topoi.

Lemma 16.34.9. Let (𝑓, 𝑓♯) ∶ (Sh(𝒞1), 𝒪1) → (Sh(𝒞2), 𝒪2) and (𝑔, 𝑔♯) ∶ (Sh(𝒞2), 𝒪2) →
(Sh(𝒞3), 𝒪3) be morphisms of locally ringed topoi. Then the composition (𝑔, 𝑔♯) ∘ (𝑓, 𝑓♯)
(see Definition 16.7.1) is also a morphism of locally ringed topoi.

Proof. Omitted. �

Lemma 16.34.10. If 𝑓 ∶ Sh(𝒞′) → Sh(𝒞) is a morphism of topoi. If 𝒪 is a sheaf of rings
on 𝒞, then

𝑓−1(𝒪∗) = (𝑓−1𝒪)∗.

In particular, if 𝒪 turns 𝒞 into a locally ringed site, then setting 𝑓♯ = id the morphism of
ringed topoi

(𝑓, 𝑓♯) ∶ (Sh(𝒞′), 𝑓−1𝒪) → (Sh(𝒞, 𝒪)
is a morphism of locally ringed topoi.

Proof. Note that the diagram

𝒪∗ //

𝑢↦(𝑢,𝑢−1)
��

∗

1
��

𝒪 × 𝒪
(𝑎,𝑏)↦𝑎𝑏 // 𝒪

is cartesian. Since 𝑓−1 is exact we conclude that

𝑓−1(𝒪∗)

𝑢↦(𝑢,𝑢−1)
��

// ∗

1
��

𝑓−1𝒪 × 𝑓−1𝒪
(𝑎,𝑏)↦𝑎𝑏 // 𝑓−1𝒪

is cartesian which implies the first assertion. For the second, note that (𝒞′, 𝑓−1𝒪) is a locally
ringed site by Lemma 16.34.5 so that the assertion makes sense. Now the first part implies
that the morphism is a morphism of locally ringed topoi. �

Lemma 16.34.11. Localization of locally ringed sites and topoi.
(1) Let (𝒞, 𝒪) be a locally ringed site. Let 𝑈 be an object of 𝒞. Then the localization

(𝒞/𝑈, 𝒪𝑈) is a locally ringed site, and the localization morphism

(𝑗𝑈, 𝑗♯
𝑈) ∶ (Sh(𝒞/𝑈), 𝒪𝑈) → (Sh(𝒞), 𝒪)

is a morphism of locally ringed topoi.
(2) Let (𝒞, 𝒪) be a locally ringed site. Let 𝑓 ∶ 𝑉 → 𝑈 be a morphism of 𝒞. Then the

morphism
(𝑗, 𝑗♯) ∶ (Sh(𝒞/𝑉), 𝒪𝑉) → (Sh(𝒞/𝑈), 𝒪𝑈)

of Lemma 16.19.4 is a morphism of locally ringed topoi.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04IG
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(3) Let (𝑓, 𝑓♯) ∶ (𝒞, 𝒪) ⟶ (𝒟, 𝒪′) be a morphism of locally ringed sites where 𝑓
is given by the continuous functor 𝑢 ∶ 𝒟 → 𝒞. Let 𝑉 be an object of 𝒟 and let
𝑈 = 𝑢(𝑉). Then the morphism

(𝑓′, (𝑓′)♯) ∶ (Sh(𝒞/𝑈), 𝒪𝑈) → (Sh(𝒟/𝑉), 𝒪′
𝑉)

of Lemma 16.20.1 is a morphism of locally ringed sites.
(4) Let (𝑓, 𝑓♯) ∶ (𝒞, 𝒪) ⟶ (𝒟, 𝒪′) be a morphism of locally ringed sites where 𝑓 is

given by the continuous functor 𝑢 ∶ 𝒟 → 𝒞. Let 𝑉 ∈ 𝑂𝑏(𝒟), 𝑈 ∈ 𝑂𝑏(𝒞), and
𝑐 ∶ 𝑈 → 𝑢(𝑉). Then the morphism

(𝑓𝑐, (𝑓𝑐)♯) ∶ (Sh(𝒞/𝑈), 𝒪𝑈) → (Sh(𝒟/𝑉), 𝒪′
𝑉)

of Lemma 16.20.2 is a morphism of locally ringed topoi.
(5) Let (Sh(𝒞), 𝒪) be a locally ringed topos. Let ℱ be a sheaf on 𝒞. Then the local-

ization (Sh(𝒞)/ℱ, 𝒪ℱ) is a locally ringed topos and the localization morphism

(𝑗ℱ, 𝑗♯
ℱ) ∶ (Sh(𝒞)/ℱ, 𝒪ℱ) → (Sh(𝒞), 𝒪)

is a morphism of locally ringed topoi.
(6) Let (Sh(𝒞), 𝒪) be a locally ringed topos. Let 𝑠 ∶ 𝒢 → ℱ be a map of sheaves on

𝒞. Then the morphism

(𝑗, 𝑗♯) ∶ (Sh(𝒞)/𝒢, 𝒪𝒢) ⟶ (Sh(𝒞)/ℱ, 𝒪ℱ)

of Lemma 16.21.4 is a morphism of locally ringed topoi.
(7) Let 𝑓 ∶ (Sh(𝒞), 𝒪) ⟶ (Sh(𝒟), 𝒪′) be a morphism of locally ringed topoi. Let 𝒢

be a sheaf on 𝒟. Set ℱ = 𝑓−1𝒢. Then the morphism

(𝑓′, (𝑓′)♯) ∶ (Sh(𝒞)/ℱ, 𝒪ℱ) ⟶ (Sh(𝒟)/𝒢, 𝒪′
𝒢)

of Lemma 16.22.1 is a morphism of locally ringed topoi.
(8) Let 𝑓 ∶ (Sh(𝒞), 𝒪) ⟶ (Sh(𝒟), 𝒪′) be a morphism of locally ringed topoi. Let 𝒢

be a sheaf on 𝒟, let ℱ be a sheaf on 𝒞, and let 𝑠 ∶ ℱ → 𝑓−1𝒢 be a morphism of
sheaves. Then the morphism

(𝑓𝑠, (𝑓𝑠)♯) ∶ (Sh(𝒞)/ℱ, 𝒪ℱ) ⟶ (Sh(𝒟)/𝒢, 𝒪′
𝒢)

of Lemma 16.22.3 is a morphism of locally ringed topoi.

Proof. Part (1) is clear since 𝒪𝑈 is just the restriction of 𝒪, so Lemmas 16.34.5 and 16.34.10
apply. Part (2) is clear as the morphism (𝑗, 𝑗♯) is actually a localization of a locally ringed
site so (1) applies. Part (3) is clear also since (𝑓′)♯ is just the restriction of 𝑓♯ to the topos
Sh(𝒞)/ℱ, see proof of Lemma 16.22.1 (hence the diagram of Definition 16.34.8 for the
morphism 𝑓′ is just the restriction of the corresponding diagram for 𝑓, and restriction is
an exact functor). Part (4) follows formally on combining (2) and (3). Parts (5), (6), (7),
and (8) follow from their counterparts (1), (2), (3), and (4) by enlarging the sites as in
Lemma 16.7.2 and translating everything in terms of sites and morphisms of sites using the
comparisons of Lemmas 16.21.3, 16.21.5, 16.22.2, and 16.22.4. (Alternatively one could
use the same arguments as in the proofs of (1), (2), (3), and (4) to prove (5), (6), (7), and
(8) directly.) �
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16.35. Lower shriek for modules

In this section we extend the construction of 𝑔! discussed in Section 16.16 to the case of
sheaves of modules.

Lemma 16.35.1. Let 𝑢 ∶ 𝒞 → 𝒟 be a continuous and concontinuous functor between sites.
Denote 𝑔 ∶ Sh(𝒞) → Sh(𝒪𝒟) the associated morphism of topoi. Let 𝒪𝒟 be a sheaf of rings
on 𝒟. Set 𝒪𝒞 = 𝑔−1𝒪𝒟. Hence 𝑔 becomes a morphism of ringed topoi with 𝑔∗ = 𝑔−1. In
this case there exists a functor

𝑔! ∶ Mod(𝒪𝒞) ⟶ Mod(𝒪𝒟)
which is left adjoint to 𝑔∗.

Proof. Let 𝑈 be an object of 𝒞. For any 𝒪𝒟-module 𝒢 we have

𝐻𝑜𝑚𝒪𝒞
(𝑗𝑈!𝒪𝑈, 𝑔−1𝒢) = 𝑔−1𝒢(𝑈)

= 𝒢(𝑢(𝑈))
= 𝐻𝑜𝑚𝒪𝒞

(𝑗𝑢(𝑈)!𝒪𝑢(𝑈), 𝒢)

because 𝑔−1 is described by restriction, see Sites, Lemma 9.19.5. Of course a similar for-
mula holds a direct sum of modules of the form 𝑗𝑈!𝒪𝑈. By Homology, Lemma 10.22.6 and
Lemma 16.26.6 we see that 𝑔! exists. �

Remark 16.35.2. Warning! Let 𝑢 ∶ 𝒞 → 𝒟, 𝑔, 𝒪𝒟, and 𝒪𝒞 be as in Lemma 16.35.1. In
general it is not the case that the diagram

Mod(𝒪𝒞) 𝑔!
//

𝑓𝑜𝑟𝑔𝑒𝑡
��

Mod(𝒪𝒟)

𝑓𝑜𝑟𝑔𝑒𝑡
��

Ab(𝒞)
𝑔𝐴𝑏

! // Ab(𝒟)

commutes (here 𝑔𝐴𝑏
! is the one from Lemma 16.16.2). There is a transformation of functors

𝑔𝐴𝑏
! ∘ 𝑓𝑜𝑟𝑔𝑒𝑡 ⟶ 𝑓𝑜𝑟𝑔𝑒𝑡 ∘ 𝑔!

From the proof of Lemma 16.35.1we see that this is an isomorphism if and only if 𝑔!𝑗𝑈!𝒪𝑈 =
𝑔𝐴𝑏

! 𝑗𝑈!𝒪𝑈 for all objects 𝑈 of 𝒞, in other words, if and only if

𝑔𝐴𝑏
! 𝑗𝑈!𝒪𝑈 = 𝑗𝑢(𝑈)!𝒪𝑢(𝑈)

for all objects 𝑈 of 𝒞. Note that for such a 𝑈 we obtain a commutative diagram

𝒞/𝑈
𝑢′
//

𝑗𝑈
��

𝒟/𝑢(𝑈)

𝑗𝑢(𝑈)
��

𝒞 𝑢 // 𝒟

of cocontinuous functors of sites, see Sites, Lemma 9.24.4. Hence we see that 𝑔! = 𝑔𝐴𝑏
! if

the canonical map
(16.35.2.1) (𝑔′)𝐴𝑏

! 𝒪𝑈 ⟶ 𝒪𝑢(𝑈)

is an isomorphism for all objects 𝑈 of 𝒞. Here 𝑔′ ∶ Sh(𝒞/𝑈) → Sh(𝒟/𝑢(𝑈)) is the morphism
of topoi induced by the cocontinuous functor 𝑢′.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0797
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0798
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CHAPTER 17

Injectives

17.1. Introduction

We will use the existence of sufficiently many injectives to do cohomology of abelian
sheaves on a site. So we briefly explain why there are enough injectives. At the end we
explain the more general story.

17.2. Abelian groups

In this section we show the category of abelian groups has enough injectives. Recall that
an abelian group 𝑀 is divisible if and only if for every 𝑥 ∈ 𝑀 and every 𝑛 ∈ 𝐍 there exists
a 𝑦 ∈ 𝑀 such that 𝑛𝑦 = 𝑥.

Lemma 17.2.1. An abelian group 𝐽 is an injective object in the category of abelian groups
if and only if 𝐽 is divisible.

Proof. Suppose that 𝐽 is not divisible. Then there exists an 𝑥 ∈ 𝐽 and 𝑛 ∈ 𝐍 such that
there is no 𝑦 ∈ 𝐽 with 𝑛𝑦 = 𝑥. Then the morphism 𝐙 → 𝐽, 𝑚 ↦ 𝑚𝑥 does not extend to
1
𝑛 𝐙 ⊃ 𝐙. Hence 𝐽 is not injective.

Let 𝐴 ⊂ 𝐵 be abelian groups. Assume that 𝐽 is a divisible abelian group. Let 𝜑 ∶ 𝐴 → 𝐽
be a morphism. Consider the set of homomorphisms 𝜑′ ∶ 𝐴′ → 𝐽 with 𝐴 ⊂ 𝐴′ ⊂ 𝐵
and 𝜑′|𝐴 = 𝜑. Define (𝐴′, 𝜑′) ≥ (𝐴″, 𝜑″) if and only if 𝐴′ ⊃ 𝐴″ and 𝜑′|𝐴″ = 𝜑″. If
(𝐴𝑖, 𝜑𝑖)𝑖∈𝐼 is a totally ordered collection of such pairs, then we obtain a map ⋃𝑖∈𝐼 𝐴𝑖 → 𝐽
defined by 𝑎 ∈ 𝐴𝑖 maps to 𝜑𝑖(𝑎). Thus Zorn's lemma applies. To conclude we have to
show that if the pair (𝐴′, 𝜑′) is maximal then 𝐴′ = 𝐵. In other words, it suffices to show,
given any subgroup 𝐴 ⊂ 𝐵, 𝐴≠𝐵 and any 𝜑 ∶ 𝐴 → 𝐽, then we can find 𝜑′ ∶ 𝐴′ → 𝐽 with
𝐴 ⊂ 𝐴′ ⊂ 𝐵 such that (a) the inclusion 𝐴 ⊂ 𝐴′ is strict, and (b) the morphism 𝜑′ extends
𝜑.

To prove this, pick 𝑥 ∈ 𝐵, 𝑥∉𝐴. If there exists no 𝑛 ∈ 𝐍 such that 𝑛𝑥 ∈ 𝐴, then 𝐴 ⊕ 𝐙 ≅
𝐴 + 𝐙𝑥. Hence we can extend 𝜑 to 𝐴′ = 𝐴 + 𝐙𝑥 by using 𝜑 on 𝐴 and mapping 𝑥 to zero
for example. If there does exist an 𝑛 ∈ 𝐍 such that 𝑛𝑥 ∈ 𝐴, then let 𝑛 be the minimal such
integer. Let 𝑧 ∈ 𝐽 be an element such that 𝑛𝑧 = 𝜑(𝑛𝑥). Define a morphism �̃� ∶ 𝐴 ⊕ 𝐙 → 𝐽
by (𝑎, 𝑚) ↦ 𝜑(𝑎) + 𝑚𝑧. By our choice of 𝑧 the kernel of �̃� contains the kernel of the map
𝐴 ⊕ 𝐙 → 𝐵, (𝑎, 𝑚) ↦ 𝑎 + 𝑚𝑥. Hence �̃� factors through the image 𝐴′ = 𝐴 + 𝐙𝑥, and this
extends the morphism 𝜑. �

We can use this lemma to show that every abelian group can be embbeded in a injective
abelian group. But this is a special case of the result of the following section.

1055
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17.3. Modules

As an example theorem let us try to prove that there are enough injective modules over a
ring 𝑅. We start with the fact that 𝐐/𝐙 is an injective abelian group. This follows from
Lemma 17.2.1 above.

Definition 17.3.1. Let 𝑅 be a ring.
(1) For any 𝑅-module 𝑀 over 𝑅 we denote 𝑀∨ = 𝐻𝑜𝑚(𝑀, 𝐐/𝐙) with its natural

𝑅-module structure. We think of 𝑀 ↦ 𝑀∨ as a contravariant functor from the
category of 𝑅-modules to itself.

(2) For any 𝑅-module 𝑀 we denote

𝐹(𝑀) = ⨁𝑚∈𝑀
𝑅[𝑚]

the free module with basis given by the elements [𝑚] with 𝑚 ∈ 𝑀. We let
𝐹(𝑀) → 𝑀, ∑ 𝑓𝑖[𝑚𝑖] ↦ ∑ 𝑓𝑖𝑚𝑖 be the natural surjection of 𝑅-modules. We
think of 𝑀 ↦ (𝐹(𝑀) → 𝑀) as a functor from the category of 𝑅-modules to the
category of arrows in 𝑅-modules.

Lemma 17.3.2. Let 𝑅 be a ring. The functor 𝑀 ↦ 𝑀∨ is exact.

Proof. This because 𝐐/𝐙 is an injective abelian group. �

There is a canonical map 𝑒𝑣 ∶ 𝑀 → (𝑀∨)∨ given by evaluation: given 𝑥 ∈ 𝑀 we let
𝑒𝑣(𝑥) ∈ (𝑀∨)∨ = 𝐻𝑜𝑚(𝑀∨, 𝐐/𝐙) be the map 𝜑 ↦ 𝜑(𝑥).

Lemma 17.3.3. For any 𝑅-module 𝑀 the evaluation map 𝑒𝑣 ∶ 𝑀 → (𝑀∨)∨ is injective.

Proof. You can check this using that 𝐐/𝐙 is an injective abelian group. Namely, if 𝑥 ∈ 𝑀
is not zero, then let 𝑀′ ⊂ 𝑀 be the cyclic group it generates. There exists a nonzero map
𝑀′ → 𝐐/𝐙 which necessarily does not annihilate 𝑥. This extends to a map 𝜑 ∶ 𝑀 → 𝐐/𝐙
And then 𝑒𝑣(𝑥)(𝜑) = 𝜑(𝑥)≠0. �

The canonical surjection 𝐹(𝑀) → 𝑀 of 𝑅-modules turns into a a canonical injection, see
above, of 𝑅-modules

(𝑀∨)∨ ⟶ (𝐹(𝑀∨))∨.
Set 𝐽(𝑀) = (𝐹(𝑀∨))∨. The composition of 𝑒𝑣 with this the displayed map gives 𝑀 →
𝐽(𝑀) functorially in 𝑀.

Lemma 17.3.4. Let 𝑅 be a ring. For every 𝑅-module 𝑀 the 𝑅-module 𝐽(𝑀) is injective.

Proof. Note that 𝐽(𝑀) ≅ ∏𝑚∈𝑀 𝑅∨ as an 𝑅-module. As the product of injective modules
is injective, it suffices to show that 𝑅∨ is injective. For this we use that

𝐻𝑜𝑚𝑅(𝑁, 𝑅∨) = 𝐻𝑜𝑚𝑅(𝑁, 𝐻𝑜𝑚𝐙(𝑅, 𝐐/𝐙)) = 𝑁∨

and the fact that (−)∨ is an exact functor by Lemma 17.3.2. �

Lemma 17.3.5. Let 𝑅 be a ring. The construction above defines a covariant functor 𝑀 ↦
(𝑀 → 𝐽(𝑀)) from the category of 𝑅-modules to the category of arrows of 𝑅-modules such
that for every module 𝑀 the output 𝑀 → 𝐽(𝑀) is an injective map of 𝑀 into an injective
𝑅-module 𝐽(𝑀).

Proof. Follows from the above. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01D9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01DA
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01DB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01DC
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01DD
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In particular, for any map of 𝑅-modules 𝑀 → 𝑁 there is an associated morphism 𝐽(𝑀) →
𝐽(𝑁) making the following diagram commute:

𝑀

��

// 𝑁

��
𝐽(𝑀) // 𝐽(𝑁)

This the kind of construction we would like to have in general. In Homology, Section 10.20
we introduced terminology to express this. Namely, we say this means that the category of
𝑅-modules has functorial injective embeddings.

17.4. Projective resolutions

Totally unimportant. Skip this section.
For any set 𝑆 we let 𝐹(𝑆) denote the free 𝑅-module on 𝑆. Then any left 𝑅-module has the
following two step resolution

𝐹(𝑀 × 𝑀) ⊕ 𝐹(𝑅 × 𝑀) → 𝐹(𝑀) → 𝑀 → 0.
The first map is given by the rule

[𝑚1, 𝑚2] ⊕ [𝑟, 𝑚] ↦ [𝑚1 + 𝑚2] − [𝑚1] − [𝑚2] + [𝑟𝑚] − 𝑟[𝑚].

17.5. Modules over noncommutative rings

In the stacks project a ring is always commutative with 1. The material of Section 17.3 con-
tinues to work when 𝑅 is only a noncommutative ring, except that if 𝑀 is a right 𝑅-module,
then 𝑀∧ is a left 𝑅-module and vice-versa. The conclusion is that the category of right
𝑅-modules and the category of left 𝑅-modules have functorial injective embeddings.
Precise statements and proofs omitted.

17.6. Baer's argument for modules

There is another, more set-theoretic approach to showing that any 𝑅-module 𝑀 can be
imbedded in an injective module. This approach constructs the injective module by a trans-
finite colimit of push-outs. While this method is somewhat abstract and more complicated
than the one of Section 17.3, it is also more general. Apparently this method originates with
Baer, andwas revisited byCartan and Eilenberg in [CE56] and byGrothendieck in [Gro57].
There Grothendieck uses it to show that many other abelian categories have enough injec-
tives. We will get back to the general case later (insert future reference here).
We begin with a few set theoretic remarks. Let {𝐵𝛽}𝛽∈𝛼 be an inductive system of objects
in some category 𝒞, indexed by an ordinal 𝛼. Assume that 𝑐𝑜𝑙𝑖𝑚𝛽∈𝛼 𝐵𝛽 exists in 𝒞. If 𝐴 is
an object of 𝒞, then there is a natural map
(17.6.0.1) 𝑐𝑜𝑙𝑖𝑚𝛽∈𝛼 𝑀𝑜𝑟𝒞(𝐴, 𝐵𝛽) ⟶ 𝑀𝑜𝑟𝒞(𝐴, 𝑐𝑜𝑙𝑖𝑚𝛽∈𝛼 𝐵𝛽).
because if one is given a map 𝐴 → 𝐵𝛽 for some 𝛽, one naturally gets a map from 𝐴 into the
colimit by composing with 𝐵𝛽 → 𝑐𝑜𝑙𝑖𝑚𝛽∈𝛼 𝐵𝛼. Note that the left colimit is one of sets! In
general, (17.6.0.1) is neither injective or surjective.

Example 17.6.1. Consider the category of sets. Let 𝐴 = 𝐍 and 𝐵𝑛 = {1, … , 𝑛} be the
inductive system indexed by the natural numbers where 𝐵𝑛 → 𝐵𝑚 for 𝑛 ≤ 𝑚 is the obvious
map. Then 𝑐𝑜𝑙𝑖𝑚 𝐵𝑛 = 𝐍, so there is a map 𝐴 → lim−−→ 𝐵𝑛, which does not factor as 𝐴 → 𝐵𝑚
for any 𝑚. Consequently, 𝑐𝑜𝑙𝑖𝑚 𝑀𝑜𝑟(𝐴, 𝐵𝑛) → 𝑀𝑜𝑟(𝐴, 𝑐𝑜𝑙𝑖𝑚 𝐵𝑛) is not surjective.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05NP
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Example 17.6.2. Next we give an example where the map fails to be injective. Let 𝐵𝑛 =
𝐍/{1, 2, … , 𝑛}, that is, the quotient set of 𝐍 with the first 𝑛 elements collapsed to one
element. There are natural maps 𝐵𝑛 → 𝐵𝑚 for 𝑛 ≤ 𝑚, so the {𝐵𝑛} form a system of
sets over 𝐍. It is easy to see that 𝑐𝑜𝑙𝑖𝑚 𝐵𝑛 = {∗}: it is the one-point set. So it follows
that 𝑀𝑜𝑟(𝐴, 𝑐𝑜𝑙𝑖𝑚 𝐵𝑛) is a one-element set for every set 𝐴. However, 𝑐𝑜𝑙𝑖𝑚 𝑀𝑜𝑟(𝐴, 𝐵𝑛)
is not a one-element set. Consider the family of maps 𝐴 → 𝐵𝑛 which are just the natural
projections 𝐍 → 𝐍/{1, 2, … , 𝑛} and the family of maps 𝐴 → 𝐵𝑛 which map the whole of
𝐴 to the class of 1. These two families of maps are distinct at each step and thus are distinct
in 𝑐𝑜𝑙𝑖𝑚 𝑀𝑜𝑟(𝐴, 𝐵𝑛), but they induce the same map 𝐴 → 𝑐𝑜𝑙𝑖𝑚 𝐵𝑛.

Nonetheless, if we map out of a finite set then (17.6.0.1) is an isomorphism always.

Lemma 17.6.3. Suppose that, in (17.6.0.1), 𝒞 is the category of sets and 𝐴 is a finite set,
then the map is a bijection.

Proof. Let 𝑓 ∶ 𝐴 → 𝑐𝑜𝑙𝑖𝑚 𝐵𝛽. The range of 𝑓 is finite, containing say elements 𝑐1, … , 𝑐𝑟 ∈
𝑐𝑜𝑙𝑖𝑚 𝐵𝛽. These all come from some elements in 𝐵𝛽 for 𝛽 ∈ 𝛼 large by definition of the
colimit. Thus we can define ̃𝑓 ∶ 𝐴 → 𝐵𝛽 lifting 𝑓 at a finite stage. This proves that
(17.6.0.1) is surjective. Next, suppose two maps 𝑓 ∶ 𝐴 → 𝐵𝛾, 𝑓′ ∶ 𝐴 → 𝐵𝛾′ define the
same map 𝐴 → 𝑐𝑜𝑙𝑖𝑚 𝐵𝛽. Then each of the finitely many elements of 𝐴 gets sent to the
same point in the colimit. By definition of the colimit for sets, there is 𝛽 ≥ 𝛾, 𝛾′ such that the
finitely many elements of 𝐴 get sent to the same points in 𝐵𝛽 under 𝑓 and 𝑓′. This proves
that (17.6.0.1) is injective. �

The most interesting case of the lemma is when 𝛼 = 𝜔, i.e., when the system {𝐵𝛽} is a
system {𝐵𝑛}𝑛∈𝐍 over the natural numbers as in Examples 17.6.1 and 17.6.2. The essential
idea is that 𝐴 is ``small'' relative to the long chain of compositions 𝐵1 → 𝐵2 → … , so that
it has to factor through a finite step. A more general version of this lemma can be found in
Sets, Lemma 3.7.1. Next, we generalize this to the category of modules.

Definition 17.6.4. Let 𝒞 be a category, let 𝐼 ⊂ Arrow(𝒞), and let 𝛼 be an ordinal. An
object 𝐴 of 𝒞 is said to be 𝛼-small with respect to 𝐼 if whenever {𝐵𝛽} is a system over 𝛼
with transition maps in 𝐼, then the map (17.6.0.1) is an isomorphism.

In the rest of this section we shall restrict ourselves to the category of 𝑅-modules for a fixed
commutative ring 𝑅. We shall also take 𝐼 to be the collection of injective maps, i.e., the
monomorphisms in the category of modules over 𝑅. In this case, for any system {𝐵𝛽} as in
the definition each of the maps

𝐵𝛽 → 𝑐𝑜𝑙𝑖𝑚𝛽∈𝛼 𝐵𝛽

is an injection. It follows that the map (17.6.0.1) is an injection. We can in fact interpret
the 𝐵𝛽's as submodules of the module 𝐵 = 𝑐𝑜𝑙𝑖𝑚𝛽∈𝛼 𝐵𝛽, and then we have 𝐵 = ⋃𝛽∈𝛼 𝐵𝛽.
This is not an abuse of notation if we identify 𝐵𝛼 with the image in the colimit. We now
want to show that modules are always small for ``large'' ordinals 𝛼.

Proposition 17.6.5. Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. Let 𝜅 the cardinality of the
set of submodules of 𝑀. If 𝛼 is an ordinal whose cofinality is bigger than 𝜅, then 𝑀 is
𝛼-small with respect to injections.

Proof. The proof is straightforward, but let us first think about a special case. If 𝑀 is
finite, then the claim is that for any inductive system {𝐵𝛽} with injections between them,
parametrized by a limit ordinal, any map 𝑀 → 𝑐𝑜𝑙𝑖𝑚 𝐵𝛽 factors through one of the 𝐵𝛽.
And this we proved in Lemma 17.6.3.
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Now we start the proof in the general case. We need only show that the map (17.6.0.1)
is a surjection. Let 𝑓 ∶ 𝑀 → 𝑐𝑜𝑙𝑖𝑚 𝐵𝛽 be a map. Consider the subobjects {𝑓−1(𝐵𝛽)} of
𝑀, where 𝐵𝛽 is considered as a subobject of the colimit 𝐵 = ⋃𝛽 𝐵𝛽. If one of these, say
𝑓−1(𝐵𝛽), fills 𝑀, then the map factors through 𝐵𝛽.

So suppose to the contrary that all of the 𝑓−1(𝐵𝛽) were proper subobjects of 𝑀. However,
we know that

⋃ 𝑓−1(𝐵𝛽) = 𝑓−1
(⋃ 𝐵𝛽) = 𝑀.

Now there are at most 𝜅 different subobjects of 𝑀 that occur among the 𝑓−1(𝐵𝛼), by hy-
pothesis. Thus we can find a subset 𝑆 ⊂ 𝛼 of cardinality at most 𝜅 such that as 𝛽′ ranges
over 𝑆, the 𝑓−1(𝐵𝛽′) range over all the 𝑓−1(𝐵𝛼).

However, 𝑆 has an upper bound �̃� < 𝛼 as 𝛼 has cofinality bigger than 𝜅. In particular, all
the 𝑓−1(𝐵𝛽′), 𝛽′ ∈ 𝑆 are contained in 𝑓−1(𝐵�̃�). It follows that 𝑓−1(𝐵�̃�) = 𝑀. In particular,
the map 𝑓 factors through 𝐵�̃�. �

From this lemma we will be able to deduce the existence of lots of injectives. Let us recall
the criterion of Baer.

Lemma 17.6.6. Let 𝑅 be a ring. An 𝑅-module 𝑄 is injective if and only if in every com-
mutative diagram

𝔞

��

// 𝑄

𝑅

??

for 𝔞 ⊂ 𝑅 an ideal, the dotted arrow exists.

Proof. Assume 𝑄 satisfies the assumption of the lemma. Let 𝑀 ⊂ 𝑁 be 𝑅-modules, and
let 𝜑 ∶ 𝑀 → 𝑄 be an 𝑅-module map. Arguing as in the proof of Lemma 17.2.1 we see that
it suffices to prove that if 𝑀≠𝑁, then we can find an 𝑅-module 𝑀′, 𝑀 ⊂ 𝑀′ ⊂ 𝑁 such
that (a) the inclusion 𝑀 ⊂ 𝑀′ is strict, and (b) 𝜑 can be extended to 𝑀′. To find 𝑀′, let
𝑥 ∈ 𝑁, 𝑥∉𝑀. Let 𝜓 ∶ 𝑅 → 𝑁, 𝑟 ↦ 𝑟𝑥. Set 𝔞 = 𝜓−1(𝑀). By assumption the morphism

𝔞
𝜓

−→ 𝑀
𝜑

−→ 𝑄

can be extended to a morphism 𝜑′ ∶ 𝑅 → 𝑄. Note that 𝜑′ annihilates the kernel of 𝜓 (as
this is true for 𝜑). Thus 𝜑′ gives rise to a morphism 𝜑″ ∶ Im(𝜓) → 𝑄 which agrees with
𝜑 on the intersection 𝑀 ∩ Im(𝜓) by construction. Thus 𝜑 and 𝜑″ glue to give an extension
of 𝜑 to the strictly bigger module 𝑀′ = ℱ + Im(𝜓). �

If 𝑀 is an 𝑅-module, then in general we may have a semi-complete diagram as in Lemma
17.6.6. In it, we can form the push-out

𝔞

��

// 𝑄

��
𝑅 // 𝑅 ⊕𝔞 𝑄.

Here the vertical map is injective, and the diagram commutes. The point is that we can
extend 𝔞 → 𝑄 to 𝑅 if we extend 𝑄 to the larger module 𝑅 ⊕𝔞 𝑄.
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The key point of Baer's argument is to repeat this procedure transfinitely many times. To
do this we first define, given an 𝑅-module 𝑀 the following (huge) pushout

(17.6.6.1)

⨁𝔞 ⨁𝜑∈𝐻𝑜𝑚𝑅(𝔞,𝑀) 𝔞 //

��

𝑀

��
⨁𝔞 ⨁𝜑∈𝐻𝑜𝑚𝑅(𝔞,𝑀) 𝑅 // 𝐌(𝑀).

Here the top horizontal arrowmaps the element 𝑎 ∈ 𝔞 in the summand corresponding to𝜑 to
the element 𝜑(𝑎) ∈ 𝑀. The left vertical arrow maps 𝑎 ∈ 𝔞 in the summand corresponding
to 𝜑 simply to the element 𝑎 ∈ 𝑅 in the summand corresponding to 𝜑. The fundamental
properties of this construction are formulated in the following lemma.

Lemma 17.6.7. Let 𝑅 be a ring.
(1) The construction 𝑀 ↦ (𝑀 → 𝐌(𝑀)) is functorial in 𝑀.
(2) The map 𝑀 → 𝐌(𝑀) is injective.
(3) For any ideal 𝔞 and any 𝑅-module map 𝜑 ∶ 𝔞 → 𝑀 there is an 𝑅-module map

𝜑′ ∶ 𝑅 → 𝐌(𝑀) such that

𝔞

��

𝜑
//𝑀

��
𝑅

𝜑′
// 𝐌(𝑀)

commutes.

Proof. Parts (2) and (3) are immediate from the construction. To see (1), let 𝜒 ∶ 𝑀 → 𝑁
be an 𝑅-module map. We claim there exists a canonical commutative diagram

⨁𝔞 ⨁𝜑∈𝐻𝑜𝑚𝑅(𝔞,𝑀) 𝔞 //

�� ++

𝑀
𝜒

++⨁𝔞 ⨁𝜑∈𝐻𝑜𝑚𝑅(𝔞,𝑀) 𝑅

++

⨁𝔞 ⨁𝜓∈𝐻𝑜𝑚𝑅(𝔞,𝑁) 𝔞 //

��

𝑁

⨁𝔞 ⨁𝜓∈𝐻𝑜𝑚𝑅(𝔞,𝑁) 𝑅

which induces the desired map 𝐌(𝑀) → 𝐌(𝑁). The middle east-south-east arrow maps
the summand 𝔞 corresponding to 𝜑 via id𝔞 to the summand 𝔞 corresponding to 𝜓 = 𝜒 ∘ 𝜑.
Similarly for the lower east-south-east arrow. Details omitted. �

The idea will now be to apply the functor 𝐌 a transfinite number of times. We define for
each ordinal 𝛼 a functor 𝐌𝛼 on the category of 𝑅-modules, together with a natural injection
𝑁 → 𝐌𝛼(𝑁). We do this by transfinite induction. First, 𝐌1 = 𝐌 is the functor defined
above. Now, suppose given an ordinal 𝛼, and suppose 𝐌𝛼′ is defined for 𝛼′ < 𝛼. If 𝛼 has
an immediate predecessor �̃�, we let

𝐌𝛼 = 𝐌 ∘ 𝐌�̃�.

If not, i.e., if 𝛼 is a limit ordinal, we let

𝐌𝛼(𝑁) = 𝑐𝑜𝑙𝑖𝑚𝛼′<𝛼 𝐌𝛼′(𝑁).
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It is clear (e.g., inductively) that the 𝐌𝛼(𝑁) form an inductive system over ordinals, so this
is reasonable.

Theorem 17.6.8. Let 𝜅 be the cardinality of the set of ideals in 𝑅, and let 𝛼 be an ordinal
whose cofinality is greater than 𝜅. Then 𝐌𝛼(𝑁) is an injective 𝑅-module, and 𝑁 → 𝐌𝛼(𝑁)
is a functorial injective embedding.

Proof. By Baer's criterion Lemma 17.6.6, it suffices to show that if 𝔞 ⊂ 𝑅 is an ideal, then
any map 𝑓 ∶ 𝔞 → 𝐌𝛼(𝑁) extends to 𝑅 → 𝐌𝛼(𝑁). However, we know since 𝛼 is a limit
ordinal that

𝐌𝛼(𝑁) = 𝑐𝑜𝑙𝑖𝑚𝛽<𝛼 𝐌𝛽(𝑁),
so by Proposition 17.6.5, we find that

𝐻𝑜𝑚𝑅(𝔞, 𝐌𝛼(𝑁)) = 𝑐𝑜𝑙𝑖𝑚𝛽<𝛼 𝐻𝑜𝑚𝑅(𝔞, 𝐌𝛽(𝑁)).

This means in particular that there is some 𝛽′ < 𝛼 such that 𝑓 factors through the submodule
𝐌𝛽′(𝑁), as

𝑓 ∶ 𝔞 → 𝐌𝛽′(𝑁) → 𝐌𝛼(𝑁).
However, by the fundamental property of the functor 𝐌, see Lemma 17.6.7 part (3), we
know that the map 𝔞 → 𝐌𝛽′(𝑁) can be extended to

𝑅 → 𝐌(𝐌𝛽′(𝑁)) = 𝐌𝛽′+1(𝑁),

and the last object imbeds in 𝐌𝛼(𝑁) (as 𝛽′ + 1 < 𝛼 since 𝛼 is a limit ordinal). In particular,
𝑓 can be extended to 𝐌𝛼(𝑁). �

17.7. G-modules

Lemma 17.7.1. Let 𝐺 be a topological group. The category Mod𝐺 of discrete 𝐺-modules,
see Étale Cohomology, Definition 38.57.1 has functorial injective hulls.

Proof. By Section 17.5 the category Mod𝐙[𝐺] has functorial injective embeddings. Con-
sider the forgetful functor 𝑣 ∶ Mod𝐺 → Mod𝐙[𝐺]. This functor is fully faithful, transforms
injective maps into injective maps and has a right adjoint, namely

𝑢 ∶ 𝑀 ↦ 𝑢(𝑀) = {𝑥 ∈ 𝑀 ∣ stabilizer of 𝑥 is open}
Since it is true that 𝑣(𝑀) = 0 ⇒ 𝑀 = 0 we conclude by Homology, Lemma 10.22.5. �

17.8. Abelian sheaves on a space

Lemma 17.8.1. Let 𝑋 be a topological space. The category of abelian sheaves on 𝑋 has
enough injectives. In fact it has functorial injective embeddings.

Proof. For an abelian group 𝐴 we denote 𝑗 ∶ 𝐴 → 𝐽(𝐴) the functorial injective embedding
constructed in Section 17.3. Let ℱ be an abelian sheaf on 𝑋. By Sheaves, Example 6.7.5
the assignment

ℐ ∶ 𝑈 ↦ ℐ(𝑈) = ∏𝑥∈𝑈
𝐽(ℱ𝑥)

is an abelian sheaf. There is a canonical map ℱ → ℐ given by mapping 𝑠 ∈ ℱ(𝑈) to
∏𝑥∈𝑈 𝑗(𝑠𝑥) where 𝑠𝑥 ∈ ℱ𝑥 denotes the germ of 𝑠 at 𝑥. This map is injective, see Sheaves,
Lemma 6.11.1 for example.
It remains to prove the following: Given a rule 𝑥 ↦ 𝐼𝑥 which assigns to each point 𝑥 ∈ 𝑋
an injective abelian group the sheaf ℐ ∶ 𝑈 ↦ ∏𝑥∈𝑈 𝐼𝑥 is injective. Note that

ℐ = ∏𝑥∈𝑋
𝑖𝑥,∗𝐼𝑥
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is the product of the skyscraper sheaves 𝑖𝑥,∗𝐼𝑥 (see Sheaves, Section 6.27 for notation.) We
have

𝑀𝑜𝑟Ab(ℱ𝑥, 𝐼𝑥) = 𝑀𝑜𝑟Ab(𝑋)(ℱ, 𝑖𝑥,∗𝐼𝑥).
see Sheaves, Lemma 6.27.3. Hence it is clear that each 𝑖𝑥,∗𝐼𝑥 is injective. Hence the injec-
tivity of ℐ follows from Homology, Lemma 10.20.3. �

17.9. Sheaves of modules on a ringed space

Lemma 17.9.1. Let (𝑋, 𝒪𝑋) be a ringed space, see Sheaves, Section 6.25. The category
of sheaves of 𝒪𝑋-modules on 𝑋 has enough injectives. In fact it has functorial injective
embeddings.

Proof. For any ring 𝑅 and any 𝑅-module 𝑀 we denote 𝑗 ∶ 𝑀 → 𝐽𝑅(𝑀) the functorial
injective embedding constructed in Section 17.3. Let ℱ be a sheaf of 𝒪𝑋-modules on 𝑋.
By Sheaves, Examples 6.7.5 and 6.15.6 the assignment

ℐ ∶ 𝑈 ↦ ℐ(𝑈) = ∏𝑥∈𝑈
𝐽𝒪𝑋,𝑥

(ℱ𝑥)

is an abelian sheaf. There is a canonical map ℱ → ℐ given by mapping 𝑠 ∈ ℱ(𝑈) to
∏𝑥∈𝑈 𝑗(𝑠𝑥) where 𝑠𝑥 ∈ ℱ𝑥 denotes the germ of 𝑠 at 𝑥. This map is injective, see Sheaves,
Lemma 6.11.1 for example.

It remains to prove the following: Given a rule 𝑥 ↦ 𝐼𝑥 which assigns to each point 𝑥 ∈ 𝑋
an injective 𝒪𝑋,𝑥-module the sheaf ℐ ∶ 𝑈 ↦ ∏𝑥∈𝑈 𝐼𝑥 is injective. Note that

ℐ = ∏𝑥∈𝑋
𝑖𝑥,∗𝐼𝑥

is the product of the skyscraper sheaves 𝑖𝑥,∗𝐼𝑥 (see Sheaves, Section 6.27 for notation.) We
have

𝐻𝑜𝑚𝒪𝑋,𝑥
(ℱ𝑥, 𝐼𝑥) = 𝐻𝑜𝑚𝒪𝑋

(ℱ, 𝑖𝑥,∗𝐼𝑥).
see Sheaves, Lemma 6.27.3. Hence it is clear that each 𝑖𝑥,∗𝐼𝑥 is an injective 𝒪𝑋-module
(see Homology, Lemma 10.22.1 or argue directly). Hence the injectivity of ℐ follows from
Homology, Lemma 10.20.3. �

17.10. Abelian presheaves on a category

Let 𝒞 be a category. Recall that this means that 𝑂𝑏(𝒞) is a set. On the one hand, consider
abelian presheaves on 𝒞, see Sites, Section 9.2. On the other hand, consider families of
abelian groups indexed by elements of 𝑂𝑏(𝒞); in other words presheaves on the discrete
category with underlying set of objects 𝑂𝑏(𝒞). Let us denote this discrete category simply
𝑂𝑏(𝒞). There is a natural functor

𝑖 ∶ 𝑂𝑏(𝒞) ⟶ 𝒞

and hence there is a natural restriction or forgetful functor

𝑣 = 𝑖𝑝 ∶ PAb(𝒞) ⟶ PAb(𝑂𝑏(𝒞))

compare Sites, Section 9.5. We will denote presheaves on 𝒞 by 𝐵 and presheaves on 𝑂𝑏(𝒞)
by 𝐴.

There are also two functors, namely 𝑖𝑝 and 𝑝𝑖 which assign an abelian presheaf on 𝒞 to an
abelian presheaf on 𝑂𝑏(𝒞), see Sites, Sections 9.5 and 9.17. Here we will use 𝑢 = 𝑝𝑖 which
is defined (in the case at hand) as follows:

𝑢𝐴(𝑈) = ∏𝑈′→𝑈
𝐴(𝑈′).
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So an element is a family (𝑎𝜙)𝜙 with 𝜙 ranging through all morphisms in 𝒞 with target 𝑈.
The restriction map on 𝑢𝐴 corresponding to 𝑔 ∶ 𝑉 → 𝑈 maps our element (𝑎𝜙)𝜙 to the
element (𝑎𝑔∘𝜓)𝜓.

There is a canonical surjective map 𝑣𝑢𝐴 → 𝐴 and a canonical injective map 𝐵 → 𝑢𝑣𝐵. We
leave it to the reader to show that

𝑀𝑜𝑟PAb(𝑂𝑏(𝒞))(𝐵, 𝑢𝐴) = 𝑀𝑜𝑟PAb(𝒞)(𝑣𝐵, 𝐴).

in this simple case; the general case is in Sites, Section 9.5. Thus the pair (𝑢, 𝑣) is an
example of a pair of adjoint functors, see Categories, Section 4.22.

At this point we can list the following facts about the situation above.
(1) The functors 𝑢 and 𝑣 are exact. This follows from the explicit description of these

functors given above.
(2) In particular the functor 𝑣 transforms injective maps into injective maps.
(3) The category PAb(𝑂𝑏(𝒞)) has enough injectives.
(4) In fact there is a functorial injective embedding 𝐴 ↦ (𝐴 → 𝐽(𝐴)) as in Ho-

mology, Definition 10.20.5. Namely, we can take 𝐽(𝐴) to be the presheaf 𝑈 ↦
𝐽(𝐴(𝑈)), where 𝐽(−) is the functor constructed in Section 17.3 for the ring 𝐙.

Putting all of this together gives us the following procedure for embedding objects 𝐵 of
PAb(𝒞)) into an injective object: 𝐵 → 𝑢𝐽(𝑣𝐵). See Homology, Lemma 10.22.5.

Proposition 17.10.1. For abelian presheaves on a category there is a functorial injective
embedding.

Proof. See discussion above. �

17.11. Abelian Sheaves on a site

Let 𝒞 be a site. In this section we prove that there are enough injectives for abelian sheaves
on 𝒞.

Denote 𝑖 ∶ Ab(𝒞) ⟶ PAb(𝒞) the forgetful functor from abelian sheaves to abelian
presheaves. Let # ∶ PAb(𝒞) ⟶ Ab(𝒞) denote the sheafification functor. Recall that #

is a left adjoint to 𝑖, that # is exact, and that 𝑖ℱ# = ℱ for any abelian sheaf ℱ. Finally, let
𝒢 → 𝐽(𝒢) denote the canonical embedding into an injective presheaf we found in Section
17.10.

For any sheaf ℱ in Ab(𝒞) and any ordinal 𝛽 we define a sheaf 𝐽𝛽(ℱ) by transfinite induction.
We set 𝐽0(ℱ) = ℱ. We define 𝐽1(ℱ) = 𝐽(𝑖ℱ)#. Sheafification of the canonical map
𝑖ℱ → 𝐽(𝑖ℱ) gives a functorial map

ℱ ⟶ 𝐽1(ℱ)

which is injective as # is exact. We set 𝐽𝛼+1(ℱ) = 𝐽1(𝐽𝛼(ℱ)). So that there are canonical
injective maps 𝐽𝛼(ℱ) → 𝐽𝛼+1(ℱ). For a limit ordinal 𝛽, we define

𝐽𝛽(ℱ) = 𝑐𝑜𝑙𝑖𝑚𝛼<𝛽 𝐽𝛼(ℱ).

Note that this is a directed colimit. Hence for any ordinals 𝛼 < 𝛽 we have an injective map
𝐽𝛼(ℱ) → 𝐽𝛽(ℱ).
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Lemma 17.11.1. With notation as above. Suppose that 𝒢1 → 𝒢2 is an injective map of
abelian sheaves on 𝒞. Let 𝛼 be an ordinal and let 𝒢1 → 𝐽𝛼(ℱ) be a morphism of sheaves.
There exists a morphism 𝒢2 → 𝐽𝛼+1(ℱ) such that the following diagram commutes

𝒢1

��

// 𝒢2

��
𝐽𝛼(ℱ) // 𝐽𝛼+1(ℱ)

Proof. This is because the map 𝑖𝒢1 → 𝑖𝒢2 is injective and hence 𝑖𝒢1 → 𝑖𝐽𝛼(ℱ) extends to
𝑖𝒢2 → 𝐽(𝑖𝐽𝛼(ℱ)) which gives the desired map after applying the sheafification functor. �

This lemma says that somehow the system {𝐽𝛼(ℱ)} is an injective embedding of ℱ. Of
course we cannot take the limit over all 𝛼 because they form a class and not a set. However,
the idea is now that you don't have to check injectivity on all injections 𝒢1 → 𝒢2, plus the
following lemma.

Lemma 17.11.2. Suppose that 𝒢𝑖, 𝑖 ∈ 𝐼 is set of abelian sheaves on 𝒞. There exists an
ordinal 𝛽 such that for any sheaf ℱ, any 𝑖 ∈ 𝐼, and any map 𝜑 ∶ 𝒢𝑖 → 𝐽𝛽(ℱ) there exists
an 𝛼 < 𝛽 such that 𝜑 factors through 𝐽𝛼(ℱ).

Proof. This reduces to the case of a single sheaf 𝒢 by taking the direct sum of all the 𝒢𝑖.

Consider the sets
𝑆 = ∐𝑈∈𝑂𝑏(𝒞)

𝒢(𝑈).

and
𝑇𝛽 = ∐𝑈∈𝑂𝑏(𝒞)

𝐽𝛽(ℱ)(𝑈)

Then 𝑇𝛽 = 𝑐𝑜𝑙𝑖𝑚𝛼<𝛽 𝑇𝛼 with injective transition maps. A morphism 𝒢 → 𝐽𝛽(ℱ) factors
through 𝐽𝛼(ℱ) if and only if the associated map 𝑆 → 𝑇𝛽 factors through 𝑇𝛼. By Sets,
Lemma 3.7.1 the cofinality of 𝛽 is bigger than the cardinality of 𝑆, then the result of the
lemma is true. Hence the lemma follows from the fact that there are ordinals with arbitrarily
large cofinality, see Sets, Proposition 3.7.2. �

Recall that for an object 𝑋 of 𝒞 we denote 𝐙𝑋 the presheaf of abelian groups Γ(𝑈, 𝐙𝑋) =
⊕𝑈→𝑋𝐙, see Modules on Sites, Section 16.4. The sheaf associated to this presheaf is de-
noted 𝐙#

𝑋, see Modules on Sites, Section 16.5. It can be characterized by the property

(17.11.2.1) 𝑀𝑜𝑟Ab(𝒞)(𝐙#
𝑋, 𝒢) = 𝒢(𝑋)

where the element 𝜑 of the left hand side is mapped to 𝜑(1 ⋅ id𝑋) in the right hand side. We
can use these sheaves to characterize injective abelian sheaves.

Lemma 17.11.3. Suppose 𝒥 is a sheaf of abelian groups with the following property: For
all 𝑋 ∈ 𝑂𝑏(𝒞), for any abelian subsheaf 𝒮 ⊂ 𝐙#

𝑋 and any morphism 𝜑 ∶ 𝒮 → 𝒥, there
exists a morphism 𝐙#

𝑋 → 𝒥 extending 𝜑. Then 𝒥 is an injective sheaf of abelian groups.

Proof. Let ℱ → 𝒢 be an injective map of abelian sheaves. Suppose 𝜑 ∶ ℱ → 𝒥 is a
morphism. Arguing as in the proof of Lemma 17.2.1 we see that it suffices to prove that
if ℱ≠𝒢, then we can find an abelian sheaf ℱ′, ℱ ⊂ ℱ′ ⊂ 𝒢 such that (a) the inclusion
ℱ ⊂ ℱ′ is strict, and (b) 𝜑 can be extended to ℱ′. To find ℱ′, let 𝑋 be an object of 𝒞 such
that the inclusion ℱ(𝑋) ⊂ 𝒢(𝑋) is strict. Pick 𝑠 ∈ 𝒢(𝑋), 𝑠∉ℱ(𝑋). Let 𝜓 ∶ 𝐙#

𝑋 → 𝒢 be the
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morphism corresponding to the section 𝑠 via (17.11.2.1). Set 𝒮 = 𝜓−1(ℱ). By assumption
the morphism

𝒮
𝜓

−→ ℱ
𝜑

−→ 𝒥
can be extended to a morphism 𝜑′ ∶ 𝐙#

𝑋 → 𝒥. Note that 𝜑′ annihilates the kernel of 𝜓 (as
this is true for 𝜑). Thus 𝜑′ gives rise to a morphism 𝜑″ ∶ Im(𝜓) → 𝒥 which agrees with 𝜑
on the intersection ℱ ∩ Im(𝜓) by construction. Thus 𝜑 and 𝜑″ glue to give an extension of
𝜑 to the strictly bigger subsheaf ℱ′ = ℱ + Im(𝜓). �

Theorem 17.11.4. The category of sheaves of abelian groups on a site has enough in-
jectives. In fact there exists a functorial injective embedding, see Homology, Definition
10.20.5.

Proof. Let 𝒢𝑖, 𝑖 ∈ 𝐼 be a set of abelian sheaves such that every subsheaf of every 𝐙#
𝑋 occurs

as one of the 𝒢𝑖. Apply Lemma 17.11.2 to this collection to get an ordinal 𝛽. We claim that
for any sheaf of abelian groups ℱ the map ℱ → 𝐽𝛽(ℱ) is an injection of ℱ into an injective.
Note that by construction the assigment ℱ ↦ (ℱ → 𝐽𝛽(ℱ)) is indeed functorial.
The proof of the claim comes from the fact that by Lemma 17.11.3 it suffices to extend any
morphism 𝛾 ∶ 𝒢 → 𝐽𝛽(ℱ) from a subsheaf 𝒢 of some 𝐙#

𝑋 to all of 𝐙#
𝑋. Then by Lemma

17.11.2 the map 𝛾 lifts into 𝐽𝛼(ℱ) for some 𝛼 < 𝛽. Finally, we apply Lemma 17.11.1 to get
the desired extension of 𝛾 to a morphism into 𝐽𝛼+1(ℱ) → 𝐽𝛽(ℱ). �

17.12. Modules on a ringed site

Let 𝒞 be a site. Let 𝒪 be a sheaf of rings on 𝒞. By analogy with Section 17.3 let us
try to prove that there are enough injective 𝒪-modules. First of all, we pick an injective
embedding

⨁𝑈,ℐ
𝑗𝑈!𝒪𝑈/ℐ ⟶ 𝒥

where 𝒥 is an injective abelian sheaf (which exists by the previous section). Here the direct
sum is over all objects 𝑈 of 𝒞 and over all 𝒪-submodules ℐ ⊂ 𝑗𝑈!𝒪𝑈. Please see Modules
on Sites, Section 16.19 to read about the functors restriction and extension by 0 for the
localization functor 𝑗𝑈 ∶ 𝒞/𝑈 → 𝒞.
For any sheaf of 𝒪-modules ℱ denote

ℱ∨ = ℋ𝑜𝑚(ℱ, 𝒥)
with its natural 𝒪-module structure. Insert here future reference to internal hom. We will
also need a canonical flat resolution of a sheaf of 𝒪-modules. This we can do as follows:
For any 𝒪-module ℱ we denote

𝐹(ℱ) = ⨁𝑈∈𝑂𝑏(𝒞),𝑠∈ℱ(𝑈)
𝑗𝑈!𝒪𝑈.

This is a flat sheaf of 𝒪-modules which comes equipped with a canonical surjection 𝐹(ℱ) →
ℱ, see Modules on Sites, Lemma 16.26.6. Moreover the construction ℱ ↦ 𝐹(ℱ) is func-
torial in ℱ.

Lemma 17.12.1. The functor ℱ ↦ ℱ∨ is exact.

Proof. This because 𝒥 is an injective abelian sheaf. �

There is a canonical map 𝑒𝑣 ∶ ℱ → (ℱ∨)∨ given by evaluation: given 𝑥 ∈ ℱ(𝑈) we let
𝑒𝑣(𝑥) ∈ (ℱ∨)∨ = ℋ𝑜𝑚(ℱ∨, 𝒥) be the map 𝜑 ↦ 𝜑(𝑥).

Lemma 17.12.2. For any 𝒪-module ℱ the evaluation map 𝑒𝑣 ∶ ℱ → (ℱ∨)∨ is injective.
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Proof. You can check this using the definition of 𝒥. Namely, if 𝑠 ∈ ℱ(𝑈) is not zero,
then let 𝑗𝑈!𝒪𝑈 → ℱ be the map of 𝒪-modules it corresponds to via adjunction. Let ℐ be
the kernel of this map. There exists a nonzero map ℱ ⊃ 𝑗𝑈!𝒪𝑈/ℐ → 𝒥 which does not
annihilate 𝑠. As 𝒥 is an injective 𝒪-module, this extends to a map 𝜑 ∶ ℱ → 𝒥. Then
𝑒𝑣(𝑠)(𝜑) = 𝜑(𝑠)≠0 which is what we had to prove. �

The canonical surjection 𝐹(ℱ) → ℱ of 𝒪-modules turns into a a canonical injection, see
above, of 𝒪-modules

(ℱ∨)∨ ⟶ (𝐹(ℱ∨))∨.
Set 𝐽(ℱ) = (𝐹(ℱ∨))∨. The composition of 𝑒𝑣 with this the displayed map gives ℱ → 𝐽(ℱ)
functorially in ℱ.

Lemma 17.12.3. Let 𝒪 be a sheaf of rings. For every 𝒪-module ℱ the 𝒪-module 𝐽(ℱ) is
injective.

Proof. We have to show that the functor 𝐻𝑜𝑚𝒪(𝒢, 𝐽(ℱ)) is exact. Note that

𝐻𝑜𝑚𝒪(𝒢, 𝐽(ℱ)) = 𝐻𝑜𝑚𝒪(𝒢, (𝐹(ℱ∨))∨)
= 𝐻𝑜𝑚𝒪(𝒢, ℋ𝑜𝑚(𝐹(ℱ∨), 𝒥))
= 𝐻𝑜𝑚(𝒢 ⊗𝒪 𝐹(ℱ∨), 𝒥)

Thus what we want follows from the fact that 𝐹(ℱ∨) is flat and 𝒥 is injective. �

Theorem 17.12.4. Let 𝒞 be a site. Let 𝒪 be a sheaf of rings on 𝒞. The category of sheaves
of 𝒪-modules on a site has enough injectives. In fact there exists a functorial injective
embedding, see Homology, Definition 10.20.5.

Proof. From the discussion in this section. �

Proposition 17.12.5. Let 𝒞 be a category. Let 𝒪 be a presheaf of rings on 𝒞. The category
PMod(𝒪) of presheaves of 𝒪-modules has functorial injective embeddings.

Proof. We could prove this along the lines of the discussion in Section 17.10. But instead
we argue using the theorem above. Endow 𝒞 with the structure of a site by letting the set of
coverings of an object 𝑈 consist of all singletons {𝑓 ∶ 𝑉 → 𝑈} where 𝑓 is an isomorphism.
We omit the verification that this defines a site. A sheaf for this topology is the same as a
presheaf (proof omitted). Hence the theorem applies. �

17.13. Embedding abelian categories

In this section we show that an abelian category embeds in the category of abelian sheaves
on a site having enough points. The site will be the one described in the following lemma.

Lemma 17.13.1. Let 𝒜 be an abelian category. Let

Cov = {{𝑓 ∶ 𝑉 → 𝑈} ∣ 𝑓 is surjective}.

Then (𝒜,Cov) is a site, see Sites, Definition 9.6.2.

Proof. Note that 𝑂𝑏(𝒜) is a set by our conventions about categories. An isomorphism is a
surjective morphism. The composition of surjective morphisms is surjective. And the base
change of a surjective morphism in 𝒜 is surjective, see Homology, Lemma 10.3.22. �

Let𝒜 be a pre-additive category. In this case theYoneda embedding𝒜 → PSh(𝒜), 𝑋 ↦ ℎ𝑋
factors through a functor 𝒜 → PAb(𝒜).
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Lemma 17.13.2. Let 𝒜 be an abelian category. Let 𝒞 = (𝒜,Cov) be the site defined in
Lemma 17.13.1. Then 𝑋 ↦ ℎ𝑋 defines a fully faithful, exact functor

𝒜 ⟶ Ab(𝒞).

Moreover, the site 𝒞 has enough points.

Proof. Suppose that 𝑓 ∶ 𝑉 → 𝑈 is a surjective morphism of 𝒜. Let 𝐾 = Ker(𝑓). Recall
that 𝑉 ×𝑈 𝑉 = Ker((𝑓, −𝑓) ∶ 𝑉 ⊕ 𝑉 → 𝑈), see Homology, Example 10.3.17. In particular
there exists an injection 𝐾 ⊕ 𝐾 → 𝑉 ×𝑈 𝑉. Let 𝑝, 𝑞 ∶ 𝑉 ×𝑈 𝑉 → 𝑉 be the two projection
morphisms. Note that 𝑝 − 𝑞 ∶ 𝑉 ×𝑈 𝑉 → 𝑉 is a morphism such that 𝑓 ∘ (𝑝 − 𝑞) = 0. Hence
𝑝 − 𝑞 factors through 𝐾 → 𝑉. Let us denote this morphism by 𝑐 ∶ 𝑉 ×𝐾 𝑉 → 𝐾. And since
the composition 𝐾 ⊕ 𝐾 → 𝑉 ×𝑈 𝑉 → 𝐾 is surjective, we conclude that 𝑐 is surjective. It
follows that

𝑉 ×𝐾 𝑉
𝑝−𝑞

−−−→ 𝑉 → 𝑈 → 0
is an exact sequence of 𝒜. Hence for an object 𝑋 of 𝒜 the sequence

0 → 𝐻𝑜𝑚𝒜(𝑈, 𝑋) → 𝐻𝑜𝑚𝒜(𝑉, 𝑋) → 𝐻𝑜𝑚𝒜(𝑉 ×𝑈 𝑉, 𝑋)

is an exact sequence of abelian groups, see Homology, Lemma 10.3.19. This means that
ℎ𝑋 satisfies the sheaf condition on 𝒞.

The functor is fully faithful by Categories, Lemma 4.3.5. The functor is a left exact functor
between abelian categories by Homology, Lemma 10.3.19. To show that it is right exact,
let 𝑋 → 𝑌 be a surjective morphism of 𝒜. Let 𝑈 be an object of 𝒜, and let 𝑠 ∈ ℎ𝑌(𝑈) =
𝑀𝑜𝑟𝒜(𝑈, 𝑌) be a section of ℎ𝑌 over 𝑈. By Homology, Lemma 10.3.22 the projection 𝑈 ×𝑌
𝑋 → 𝑈 is surjective. Hence {𝑉 = 𝑈 ×𝑌 𝑋 → 𝑈} is a covering of 𝑈 such that 𝑠|𝑉 lifts to
a section of ℎ𝑋. This proves that ℎ𝑋 → ℎ𝑌 is a surjection of abelian sheaves, see Sites,
Lemma 9.11.2.

The site 𝒞 has enough points by Sites, Proposition 9.35.3. �

Remark 17.13.3. The Freyd-Mitchell embedding theorem says there exists a fully faithful
exact functor from any abelian category 𝒜 to the category of modules over a ring. Lemma
17.13.2 is not quite as strong. But the result is suitable for the stacks project as we have to
understand sheaves of abelian groups on sites in detail anyway. Moreover, ``diagram chas-
ing'' works in the category of abelian sheaves on 𝒞, for example by working with sections
over objects, or by working on the level of stalks using that 𝒞 has enough points. To see
how to deduce the Freyd-Mitchell embedding theorem from Lemma 17.13.2 see Remark
17.13.5.

Remark 17.13.4. If 𝒜 is a ``big'' abelian category, i.e., if 𝒜 has a class of objects, then
Lemma 17.13.2 does not work. In this case, given any set of objects 𝐸 ⊂ 𝑂𝑏(𝒜) there
exists an abelian full subcategory 𝒜′ ⊂ 𝒜 such that 𝑂𝑏(𝒜′) is a set and 𝐸 ⊂ 𝑂𝑏(𝒜′). Then
one can apply Lemma 17.13.2 to 𝒜′. One can use this to prove that results depending on a
diagram chase hold in 𝒜.

Remark 17.13.5. Let 𝒞 be a site. Note that Ab(𝒞) has enough injectives, see Theorem
17.11.4. (In the case that 𝒞 has enough points this is straightforward because 𝑝∗𝐼 is an
injective sheaf if 𝐼 is an injective 𝐙-module and 𝑝 is a point.) Also, Ab(𝒞) has a cogen-
erator (details omitted). Hence Lemma 17.13.2 proves that we have a fully faithful, exact
embedding 𝒜 → ℬ where ℬ has a cogenerator and enough injectives. We can apply this
to 𝒜𝑜𝑝𝑝 and we get a fully faithful exact functor 𝑖 ∶ 𝒜 → 𝒟 = ℬ𝑜𝑝𝑝 where 𝒟 has enough
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projectives and a generator. Hence 𝒟 has a projective generator 𝑃. Set 𝑅 = 𝑀𝑜𝑟𝒟(𝑃, 𝑃).
Then

𝒜 ⟶ Mod𝑅, 𝑋 ⟼ 𝐻𝑜𝑚𝒟(𝑃, 𝑋).
One can check this is a fully faithful, exact functor. In other words, one retrieves the Freyd-
Mitchell theorem mentioned in Remark 17.13.3 above.

Remark 17.13.6. The arguments proving Lemmas 17.13.1 and 17.13.2 work also for exact
categories, see [Büh10, Appendix A] and [BBD82, 1.1.4]. We quickly review this here and
we add more details if we ever need it in the stacks project.

Let 𝒜 be an additive category. A kernel-cokernel pair is a pair (𝑖, 𝑝) of morphisms of 𝒜 with
𝑖 ∶ 𝐴 → 𝐵, 𝑝 ∶ 𝐵 → 𝐶 such that 𝑖 is the kernel of 𝑝 and 𝑝 is the cokernel of 𝑖. Given a set ℰ
of kernel-cokernel pairs we say 𝑖 ∶ 𝐴 → 𝐵 is an admissible monomorphism if (𝑖, 𝑝) ∈ ℰ for
some morphism 𝑝. Similarly we say a morphism 𝑝 ∶ 𝐵 → 𝐶 is an admissible epimorphism
if (𝑖, 𝑝) ∈ ℰ for some morphism 𝑖. The pair (𝒜, ℰ) is said to be an exact category if the
following axioms hold

(1) ℰ is closed under isomorphisms of kernel-cokernel pairs,
(2) for any object 𝐴 the pairs 1𝐴 is both an admissible epimorphism and an admissible

monomorphism,
(3) admissible monomorphisms are stable under composition,
(4) admissible epimorphisms are stable under composition,
(5) the push-out of an admissible monomorphism 𝑖 ∶ 𝐴 → 𝐵 via any morphism 𝐴 →

𝐴′ exist and the induced morphism 𝑖′ ∶ 𝐴′ → 𝐵′ is an admissible monomor-
phism, and

(6) the base change of an admissible epimorphism 𝑝 ∶ 𝐵 → 𝐶 via any morphism
𝐶′ → 𝐶 exist and the induced morphism 𝑝′ ∶ 𝐵′ → 𝐶′ is an admissible epimor-
phism.

Given such a structure let 𝒞 = (𝒜,Cov) where coverings (i.e., elements of Cov) are given
by admissible epimorphisms. The axioms listed above immediately imply that this is a site.
Consider the functor

𝐹 ∶ 𝒜 ⟶ Ab(𝒞), 𝑋 ⟼ ℎ𝑋
exactly as in Lemma 17.13.2. It turns out that this functor is fully faithful, exact, and reflects
exactness. Moreover, any extension of objects in the essential image of 𝐹 is in the essential
image of 𝐹.

17.14. Grothendieck's AB conditions

This and the next few sections are mostly interesting for ``big'' abelian categories, i.e., those
categories listed in Categories, Remark 4.2.2. A good case to keep in mind is the category
of sheaves of modules on a ringed site.

Grothendieck proved the existence of injectives in great generality in the paper [Gro57].
He used the following conditions to single out abelian categories with special properties.

Definition 17.14.1. Let 𝒜 be an abelian category. We name some conditions
AB3 𝒜 has direct sums,
AB4 𝒜 has AB3 and direct sums are exact,
AB5 𝒜 has AB3 and filtered colimits are exact.

Here are the dual notions
AB3* 𝒜 has products,
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AB4* 𝒜 has AB3* and products are exact,
AB5* 𝒜 has AB3* and filtered limits are exact.

We say an object 𝑈 of 𝒜 is a generator if for every 𝑁 ⊂ 𝑀, 𝑁≠𝑀 in 𝒜 there exists a
morphism 𝑈 → 𝑀 which does not factor through 𝑁. We say 𝒜 is a Grothendieck abelian
category if it has AB5 and a generator.

Discussion: A direct sum in an abelian category is a coproduct. If an abelian category has
direct sums (i.e., AB3), then it has colimits, see Categories, Lemma 4.13.11. Similarly if
𝒜 has AB3* then it has limits, see Categories, Lemma 4.13.10. Exactness of direct sums
means the following: given an index set 𝐼 and short exact sequences

0 → 𝐴𝑖 → 𝐵𝑖 → 𝐶𝑖 → 0, 𝑖 ∈ 𝐼
in 𝒜 then the sequence

0 → ⨁𝑖∈𝐼
𝐴𝑖 → ⨁𝑖∈𝐼

𝐵𝑖 → ⨁𝑖∈𝐼
𝐶𝑖 → 0

is exact as well. Without assuming AB4 it is only true in general that the sequence is exact
on the right (i.e., taking direct sums is a right exact functor if direct sums exist). Similarly,
exactness of filtered colimits means the following: given a directed partially ordered set 𝐼
and a system of short exact sequences

0 → 𝐴𝑖 → 𝐵𝑖 → 𝐶𝑖 → 0
over 𝐼 in 𝒜 then the sequence

0 → 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝐴𝑖 → 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝐵𝑖 → 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝐶𝑖 → 0
is exact as well. Without assuming AB5 it is only true in general that the sequence is
exact on the right (i.e., taking colimits is a right exact functor if colimits exist). A similar
explanation holds for AB4* and AB5*.

17.15. Injectives in Grothendieck categories

The existence of a generator implies that given an object 𝑀 of a Grothendieck abelian
category 𝒜 there is a set of subobjects. (This may not be true for a general ``big'' abelian
category.)

Definition 17.15.1. Let 𝒜 be a Grothendieck abelian category. Let 𝑀 be an object of 𝒜.
The size |𝑀| of 𝑀 is the cardinality of the set of subobjects of 𝑀.

Lemma 17.15.2. Let 𝒜 be a Grothendieck abelian category. If 0 → 𝑀′ → 𝑀 → 𝑀″ → 0
is a short exact sequence of 𝒜, then |𝑀′|, |𝑀″| ≤ |𝑀|.

Proof. Immediate from the definitions. �

Lemma 17.15.3. Let 𝒜 be a Grothendieck abelian category with generator 𝑈.
(1) If |𝑀| ≤ 𝜅, then 𝑀 is the quotient of a direct sum of at most 𝜅 copies of 𝑈.
(2) For every cardinal 𝜅 there exists a set of isomorphism classes of objects 𝑀 with

|𝑀| ≤ 𝜅.

Proof. For (1) choose for every proper subobject 𝑀′ ⊂ 𝑀 a morphism 𝜑𝑀′ ∶ 𝑈 → 𝑀
whose image is not contained in 𝑀′. Then ⨁𝑀′⊂𝑀 𝜑𝑀′ ∶ ⨁𝑀′⊂𝑁 𝑈 → 𝑀 is surjective.
It is clear that (1) implies (2). �

Proposition 17.15.4. Let 𝒜 be a Grothendieck abelian category. Let 𝑀 be an object of 𝒜.
Let 𝜅 = |𝑀|. If 𝛼 is an ordinal whose cofinality is bigger than 𝜅, then 𝑀 is 𝛼-small with
respect to injections.
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Proof. Please compare with Proposition 17.6.5. We need only show that the map (17.6.0.1)
is a surjection. Let 𝑓 ∶ 𝑀 → 𝑐𝑜𝑙𝑖𝑚 𝐵𝛽 be a map. Consider the subobjects {𝑓−1(𝐵𝛽)} of
𝑀, where 𝐵𝛽 is considered as a subobject of the colimit 𝐵 = ⋃𝛽 𝐵𝛽. If one of these, say
𝑓−1(𝐵𝛽), fills 𝑀, then the map factors through 𝐵𝛽.

So suppose to the contrary that all of the 𝑓−1(𝐵𝛽) were proper subobjects of 𝑀. However,
because 𝒜 has AB5 we have

𝑐𝑜𝑙𝑖𝑚 𝑓−1(𝐵𝛽) = 𝑓−1 (𝑐𝑜𝑙𝑖𝑚 𝐵𝛽) = 𝑀.

Now there are at most 𝜅 different subobjects of 𝑀 that occur among the 𝑓−1(𝐵𝛼), by hy-
pothesis. Thus we can find a subset 𝑆 ⊂ 𝛼 of cardinality at most 𝜅 such that as 𝛽′ ranges
over 𝑆, the 𝑓−1(𝐵𝛽′) range over all the 𝑓−1(𝐵𝛼).

However, 𝑆 has an upper bound �̃� < 𝛼 as 𝛼 has cofinality bigger than 𝜅. In particular, all
the 𝑓−1(𝐵𝛽′), 𝛽′ ∈ 𝑆 are contained in 𝑓−1(𝐵�̃�). It follows that 𝑓−1(𝐵�̃�) = 𝑀. In particular,
the map 𝑓 factors through 𝐵�̃�. �

Lemma 17.15.5. Let 𝒜 be a Grothendieck abelian category with generator 𝑈. An object
𝐼 of 𝒜 is injective if and only if in every commutative diagram

𝑀

��

// 𝐼

𝑈

??

for 𝑀 ⊂ 𝑈 a subobject, the dotted arrow exists.

Proof. Please see Lemma 17.6.6 for the case of modules. Choose an injection 𝐴 ⊂ 𝐵 and
a morphism 𝜑 ∶ 𝐴 → 𝐼. Consider the set 𝑆 of pairs (𝐴′, 𝜑′) consisting of subobjects
𝐴 ⊂ 𝐴′ ⊂ 𝐵 and a morphism 𝜑′ ∶ 𝐴′ → 𝐼 extending 𝜑. Define a partial ordering on this
set in the obvious manner. Choose a totally ordered subset 𝑇 ⊂ 𝑆. Then

𝐴′ = 𝑐𝑜𝑙𝑖𝑚𝑡∈𝑇 𝐴𝑡
𝑐𝑜𝑙𝑖𝑚𝑡∈𝑇 𝜑𝑡−−−−−−−−→ 𝐼

is an upper bound. Hence by Zorn's lemma the set 𝑆 has a maximal element (𝐴′, 𝜑′). We
claim that 𝐴′ = 𝐵. If not, then choose a morphism 𝜓 ∶ 𝑈 → 𝐵 which does not factor
through 𝐴′. Set 𝑁 = 𝐴′ ∩ 𝜓(𝑈). Set 𝑀 = 𝜓−1(𝑁). Then the map

𝑀 → 𝑁 → 𝐴′ 𝜑′

−−→ 𝐼

can be extended to a morphism 𝜒 ∶ 𝑈 → 𝐼. Since 𝜒|Ker(𝜓) = 0 we see that 𝜒 factors as

𝑈 → Im(𝜓)
𝜑″

−−−→ 𝐼

Since 𝜑′ and 𝜑″ agree on 𝑁 = 𝐴′ ∩ Im(𝜓) we see that combined the define a morphism
𝐴′ + Im(𝜓) → 𝐼 contradicting the assumed maximality of 𝐴′. �

Theorem 17.15.6. Let 𝒜 be a Grothendieck abelian category. Then 𝒜 has functorial in-
jective embeddings.
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Proof. Please compare with the proof of Theorem 17.6.8. Choose a generator 𝑈 of 𝒜. For
an object 𝑀 we define 𝐌(𝑀) by the following pushout diagram

⨁𝑁⊂𝑈 ⨁𝜑∈𝐻𝑜𝑚(𝑁,𝑀) 𝑁 //

��

𝑀

��
⨁𝑁⊂𝑈 ⨁𝜑∈𝐻𝑜𝑚(𝑈,𝑀) 𝑈 // 𝐌(𝑀).

Note that 𝑀 → 𝐌(𝑁) is a functor and that there exist functorial injective maps 𝑀 →
𝐌(𝑀). By transfinite induction we define functors 𝐌𝛼(𝑀) for every ordinal 𝛼. Namely,
set 𝐌0(𝑀) = 𝑀. Given 𝐌𝛼(𝑀) set 𝐌𝛼+1(𝑀) = 𝐌(𝐌𝛼(𝑀)). For a limit ordinal 𝛽 set

𝐌𝛽(𝑀) = 𝑐𝑜𝑙𝑖𝑚𝛼<𝛽 𝐌𝛼(𝑀).

Finally, choose an ordinal 𝛼 whose cofinality is greater than |𝑈|, see Sets, Proposition 3.7.2.
We claim that 𝑀 → 𝐌𝛼(𝑀) is the desired functorial injective embedding. Namely, if
𝑁 ⊂ 𝑈 is a subobject and 𝜑 ∶ 𝑁 → 𝐌𝛼(𝑀) is a morphism, then we see that 𝜑 factors
through 𝐌𝛼′(𝑀) for some 𝛼′ < 𝛼 by Proposition 17.15.4. By construction of 𝐌(−) we see
that 𝜑 extends to a morphism from 𝑈 into 𝐌𝛼′+1(𝑀) and hence into 𝐌𝛼(𝑀). By Lemma
17.15.5 we conclude that 𝐌𝛼(𝑀) is injective. �

17.16. K-injectives in Grothendieck categories

Most of the material in this section is taken from the paper [Ser03] which generalizes some
of the results in the paper [Spa88] by Spaltenstein to general Grothendieck abelian cate-
gories. The exposition is also simplified somewhat: Lemma 17.16.3 gives a new character-
ization of K-injective complexes, and we have consistently tried to mimick Grothendieck's
approach (see proof of Theorem 17.15.6).

Lemma 17.16.1. Let 𝒜 be a Grothendieck abelian category with generator 𝑈. Let 𝑐 be the
function on cardinals defined by 𝑐(𝜅) = | ⨁𝛼∈𝜅 𝑈|. If 𝜋 ∶ 𝑀 → 𝑁 is a surjection then
there exists a subobject 𝑀′ ⊂ 𝑀 which surjects onto 𝑁 with |𝑁′| ≤ 𝑐(|𝑁|).

Proof. For every proper subobject 𝑁′ ⊂ 𝑁 choose a morphism 𝜑𝑁′ ∶ 𝑈 → 𝑀 such that
𝑈 → 𝑀 → 𝑁 does not factor through 𝑁′. Set

𝑁′ = Im(⨁𝑁′⊂𝑁
𝜑𝑁′ ∶ ⨁𝑁′⊂𝑁

𝑈 ⟶ 𝑀)

Then 𝑁′ works. �

Lemma 17.16.2. Let 𝒜 be a Grothendieck abelian category. The exists a cardinal 𝜅 such
that given any acyclic complex 𝑀• there exists a surjection of complexes

⨁𝑖∈𝐼
𝑀•

𝑖 ⟶ 𝑀•

where 𝑀•
𝑖 is bounded above, acyclic and |𝑀𝑛

𝑖 | ≤ 𝜅.

Proof. Choose a generator 𝑈 of 𝒜. Denote 𝑐 the function of Lemma 17.16.1. Set 𝜅 =
sup{𝑐𝑛(|𝑈|), 𝑛 = 1, 2, 3, …}. It suffices to prove that for every 𝜑 ∶ 𝑈 → 𝑀𝑛 there exists a
morphism of complexes 𝜑• ∶ 𝑁• → 𝑀• with 𝑁𝑛 = 𝑈, 𝜑𝑛 = 𝜑, 𝑁• bounded above, acyclic
and |𝑁𝑚| ≤ 𝜅 for all 𝑚. To do this set 𝑁𝑛 = 𝑈, 𝜑𝑛 = 𝜑, 𝑁𝑛+1 = Im(𝑈 → 𝑀𝑛 → 𝑀𝑛+1)
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and 𝜑𝑛+1 ∶ 𝑁𝑛+1 → 𝑀𝑛+1 the inclusion map. Moreover, we set 𝑁𝑚 = 0 for 𝑚 ≥ 𝑛 + 2.
Suppose we have constructed 𝜑𝑚 ∶ 𝑁𝑚 → 𝑀𝑚 and 𝑁𝑚 → 𝑀𝑚 for all 𝑚 ≥ 𝑘 such that

𝑁𝑘 //

��

𝑁𝑘+1 //

��

...

𝑀𝑘−1 //𝑀𝑘 //𝑀𝑘+1 // ...

commutes, such that |𝑁𝑚| ≤ 𝑐max{𝑛−𝑚,1}(|𝑈|), and such that Im(𝑁𝑚−1 → 𝑁𝑚) = Ker(𝑁𝑚 →
𝑁𝑚+1) for all 𝑚 ≥ 𝑘 + 1. Then we can choose

𝑁𝑘−1 ⟶ Ker(𝑁𝑘 → 𝑁𝑘+1) ×𝑀𝑘 𝑀𝑘−1

surjecting onto Ker(𝑁𝑘 → 𝑁𝑘+1) as in Lemma 17.16.1. This is possible as the complex
𝑀• is exact by assumption. Hence we win by induction. �

Lemma 17.16.3. Let 𝒜 be a Grothendieck abelian category. Let 𝜅 be a cardinal as in
Lemma 17.16.2. Suppose that 𝐼• is a complex such that

(1) each 𝐼𝑗 is injective, and
(2) for every bounded above acyclic complex 𝑀• such that |𝑀𝑛| ≤ 𝜅 we have

Hom𝐾(𝒜)(𝑀•, 𝐼•) = 0.
Then 𝐼• is an 𝐾-injective complex.

Proof. Let 𝑀• be an acyclic complex. By Lemma 17.16.2 andDerived Categories, Lemma
11.15.5 we can find a resolution

… → 𝑀•
2 → 𝑀•

1 → 𝑀•
0 → 𝑀• → 0

(in the abelian category of complexes) where each 𝑀•
𝑘 is a direct sum of complexes which

satisfy the hypotheses of (2). Then we obtain a short exact sequence of complexes

0 → ⨁𝑖≥1
𝑀•

𝑖 → ⨁𝑖≥0
𝑀•

𝑖 → 𝑀• → 0

In other words we have constructed a short exact sequence of complexes 0 → 𝐾• → 𝐿• →
𝑀• → 0 where 𝐾• and 𝐿• is a direct sum of complexes as in (2). Since each component
of 𝐼• is injective we see that we obtain an exact sequence

Hom𝐾(𝒜)(𝐾•[1], 𝐼•) → Hom𝐾(𝒜)(𝑀•, 𝐼•) → Hom𝐾(𝒜)(𝐿•, 𝐼•)

Hence we see that it suffices to prove Hom𝐾(𝒜)(𝑀•, 𝐼•) is zero when 𝑀• is a direct sum of
complexes as in (2). This follows from assumption (2). �

Lemma 17.16.4. Let 𝒜 be a Grothendieck abelian category. Let (𝐾•
𝑖 )𝑖∈𝐼 be a set of acyclic

complexes. There exists a functor 𝑀• ↦ 𝐌•(𝑀•) and a natural transformation 𝑗𝑀• ∶
𝑀• → 𝐌•(𝑀•) such

(1) 𝑗𝑀• is a (termwise) injective quasi-isomorphism, and
(2) for every 𝑖 ∈ 𝐼 and 𝑤 ∶ 𝐾•

𝑖 → 𝑀• the morphism 𝑗𝑀• ∘ 𝑤 is homotopic to zero.

Proof. For every 𝑖 ∈ 𝐼 choose a (termwise) injective map of complexes 𝐾•
𝑖 → 𝐿•

𝑖 which is
homotopic to zero with 𝐿•

𝑖 quasi-isomorphic to zero. For example, take 𝐿•
𝑖 to be the cone
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on the identity of 𝐾•
𝑖 . We define 𝐌•(𝑀•) by the following pushout diagram

⨁𝑖∈𝐼 ⨁𝑤∶𝐾•
𝑖 →𝑀• 𝐾•

𝑖
//

��

𝑀•

��
⨁𝑖∈𝐼 ⨁𝑤∶𝐾•

𝑖 →𝑀• 𝐿•
𝑖

// 𝐌•(𝑀•).

Then 𝑀• → 𝐌•(𝑀•) is a functor. The right vertical arrow defines the functorial injective
map 𝑗𝑀•. The cokernel of 𝑗𝑀• is isomorphic to the direct sum of the cokernels of the maps
𝐾•

𝑖 → 𝐿•
𝑖 hence acyclic. Thus 𝑗𝑀• is a quasi-isomorphism. Part (2) holds by construction.

�

Lemma 17.16.5. Let 𝒜 be a Grothendieck abelian category. There exists a functor 𝑀• ↦
𝐍•(𝑀•) and a natural transformation 𝑗𝑀• ∶ 𝑀• → 𝐍•(𝑀•) such

(1) 𝑗𝑀• is a (termwise) injective quasi-isomorphism, and
(2) for every 𝑛 ∈ 𝐙 the map 𝑀𝑛 → 𝐍𝑛(𝑀•) factors through a subobject 𝐼𝑛 ⊂

𝐍𝑛(𝑀•) where 𝐼𝑛 is an injective object of 𝒜.

Proof. Choose a functorial injective embeddings 𝑖𝑀 ∶ 𝑀 → 𝐼(𝑀), see Theorem 17.15.6.
For every complex 𝑀• denote 𝐽•(𝑀•) the complex with terms 𝐽𝑛(𝑀•) = 𝐼(𝑀𝑛)⊕𝐼(𝑀𝑛+1)
and differential

𝑑𝐽•(𝑀•) = (
0 1
0 0)

There exists a canonical injective map of complexes 𝑢𝑀• ∶ 𝑀• → 𝐽•(𝑀•) by mapping 𝑀𝑛

to 𝐼(𝑀𝑛) ⊕ 𝐼(𝑀𝑛+1) via the maps 𝑖𝑀𝑛 ∶ 𝑀𝑛 → 𝐼(𝑀𝑛) and 𝑖𝑀𝑛+1 ∘ 𝑑 ∶ 𝑀𝑛 → 𝑀𝑛+1 →
𝐼(𝑀𝑛+1). Hence a short exact sequence of complexes

0 → 𝑀• 𝑢𝑀•
−−−→ 𝐽•(𝑀•)

𝑣𝑀•
−−−→ 𝑄•(𝑀•) → 0

functorial in 𝑀•. Set
𝐍•(𝑀•) = 𝐶(𝑣𝑀•)•[−1].

Note that
𝐍𝑛(𝑀•) = 𝑄𝑛−1(𝑀•) ⊕ 𝐽𝑛(𝑀•)

with differential

(
−𝑑𝑛−1

𝑄•(𝑀•) −𝑣𝑛
𝑀•

0 𝑑𝑛
𝐽•(𝑀))

Hence we see that there is a map of complexes 𝑗𝑀• ∶ 𝑀• → 𝐍•(𝑀•) induced by 𝑢. It
is injective and factors through an injective subobject by construction. The map 𝑗𝑀• is a
quasi-isomorphism as one can prove by looking at the long exact sequence of cohomology
associated to the short exact sequences of complexes above. �

Theorem 17.16.6. Let 𝒜 be a Grothendieck abelian category. For every complex 𝑀• there
exists a quasi-isomorphism 𝑀• → 𝐼• where 𝐼• is a K-injective complex. In fact, we may
also assume that 𝐼𝑛 is an injective object of 𝒜 for all 𝑛. Moreover, there exists a functorial
injective quasi-isomorphism into such a K-injective complex.

Proof. Please compare with the proof of Theorem 17.6.8 and Theorem 17.15.6. Choose
a cardinal 𝜅 as in Lemmas 17.16.2 and 17.16.3. Choose a set (𝐾•

𝑖 )𝑖∈𝐼 of bounded above,
acyclic complexes such that every bounded above acyclic complex 𝐾• such that |𝐾𝑛| ≤ 𝜅
is isomorphic to 𝐾•

𝑖 for some 𝑖 ∈ 𝐼. This is possible by Lemma 17.15.3. Denote 𝐌•(−) the
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functor constructed in Lemma 17.16.4. Denote 𝐍•(−) the functor constructed in Lemma
17.16.5. Both of these functors come with injective transformations id → 𝐌 and id → 𝐍.

By transfinite induction we define a sequence of functors 𝐓𝛼(−) and corresponding trans-
formations id → 𝐓𝛼. Namely we set 𝐓0(𝑀•) = 𝑀•. If 𝐓𝛼 is given then we set

𝐓𝛼+1(𝑀•) = 𝐍•(𝐌•(𝐓𝛼(𝑀•)))

If 𝛽 is a limit ordinal we set

𝐓𝛽(𝑀•) = 𝑐𝑜𝑙𝑖𝑚𝛼<𝛽 𝐓𝛼(𝑀•)

The transition maps of the system are injective quasi-isomorphisms. By AB5 we see that
the colimit is still quasi-isomorphic to 𝑀•. We claim that 𝑀• → 𝐓𝛼(𝑀•) does the job if
the cofinality of 𝛼 is larger than max(𝜅, |𝑈|) where 𝑈 is a generator of 𝒜. Namely, it suffices
to check conditions (1) and (2) of Lemma 17.16.3.

For (1) we use the criterion of Lemma 17.15.5. Suppose that 𝑀 ⊂ 𝑈 and 𝜑 ∶ 𝑀 → 𝐓𝑛
𝛼(𝑀•)

is a morphism for some 𝑛 ∈ 𝐙. By Proposition 17.15.4 we see that 𝜑 factor through
𝐓𝑛

𝛼′(𝑀•) for some 𝛼′ < 𝛼. In particular, by the construction of the functor 𝐍•(−) we
see that 𝜑 factors through an injective object of 𝒜 which shows that 𝜑 lifst to a morphism
on 𝑈.

For (2) let 𝑤 ∶ 𝐾• → 𝐓𝛼(𝑀•) be a morphism of complexes where 𝐾• is a bounded above
acyclic complex such that |𝐾𝑛| ≤ 𝜅. Then 𝐾• ≅ 𝐾•

𝑖 for some 𝑖 ∈ 𝐼. Moreover, by
Proposition 17.15.4 once again we see that 𝑤 factor through 𝐓𝑛

𝛼′(𝑀•) for some 𝛼′ < 𝛼. In
particular, by the construction of the functor 𝐌•(−) we see that 𝑤 is homotopic to zero.
This finishes the proof. �

17.17. Additional remarks on Grothendieck abelian categories

In this section we put some results on Grothendieck abelian categories which are folklore.

Lemma 17.17.1. Let 𝒜 be a Grothendieck abelian category. Let 𝐹 ∶ 𝒜𝑜𝑝𝑝 → Sets be a
functor. Then 𝐹 is representable if and only if 𝐹 commutes with colimits, i.e.,

𝐹(𝑐𝑜𝑙𝑖𝑚𝑖 𝑁𝑖) = 𝑙𝑖𝑚 𝐹(𝑁𝑖)

for any diagram ℐ → 𝒜, 𝑖 ∈ ℐ.

Proof. If 𝐹 is representable, then it commutes with colimits by definition of colimits.

Assume that 𝐹 commutes with colimits. Then 𝐹(𝑀 ⊕ 𝑁) = 𝐹(𝑀) ∏ 𝐹(𝑁) and we can use
this to define a group structure on 𝐹(𝑀). Hence we get 𝐹 ∶ 𝒜 → Ab which is additive and
right exact, i.e., transforms a short exact sequence 0 → 𝐾 → 𝐿 → 𝑀 → 0 into an exact
sequence 𝐹(𝐾) ← 𝐹(𝐿) ← 𝐹(𝑀) ← 0 (compare with Homology, Section 10.5).

Let 𝑈 be a generator for 𝒜. Set 𝐴 = ⨁𝑠∈𝐹(𝑈) 𝑈. Let 𝑠𝑢𝑛𝑖𝑣 = (𝑠)𝑠∈𝐹(𝑈) ∈ 𝐹(𝐴) =
∏𝑠∈𝐹(𝑈) 𝐹(𝑈). Let 𝐴′ ⊂ 𝐴 be the largest subobject such that 𝑠𝑢𝑛𝑖𝑣 restricts to zero on
𝐴′. This exists because 𝒜 is a grothendieck category and because 𝐹 commutes with col-
imits. Because 𝐹 commutes with colimits there exists a unique element 𝑠𝑢𝑛𝑖𝑣 ∈ 𝐹(𝐴/𝐴′)
which maps to 𝑠𝑢𝑛𝑖𝑣 in 𝐹(𝐴). We claim that 𝐴/𝐴′ represents 𝐹, in other words, the Yoneda
map

𝑠𝑢𝑛𝑖𝑣 ∶ ℎ𝐴/𝐴′ ⟶ 𝐹
is an isomorphism. Let 𝑀 ∈ 𝑂𝑏(𝒜) and 𝑠 ∈ 𝐹(𝑀). Consider the surjection

𝑐𝑀 ∶ 𝐴𝑀 = ⨁𝜑∈𝐻𝑜𝑚𝒜(𝑈,𝑀)
𝑈 ⟶ 𝑀.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07D7
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This gives 𝐹(𝑐𝑀)(𝑠) = (𝑠𝜑) ∈ ∏𝜑 𝐹(𝑈). Consider the map

𝜓 ∶ 𝐴𝑀 = ⨁𝜑∈𝐻𝑜𝑚𝒜(𝑈,𝑀)
𝑈 ⟶ ⨁𝑠∈𝐹(𝑈)

𝑈 = 𝐴

which maps the summand corresponding to 𝜑 to the summand corresponding to 𝑠𝜑 by the
identity map on 𝑈. Then 𝑠𝑢𝑛𝑖𝑣 maps to (𝑠𝜑)𝜑 by construction. in other words the right
square in the diagram

𝐴′ // 𝐴 𝑠𝑢𝑛𝑖𝑣
// 𝐹

𝐾 //

?

OO

𝐴𝑀

𝜓

OO

//𝑀

𝑠

OO

commutes. Let 𝐾 = Ker(𝐴𝑀 → 𝑀). Since 𝑠 restricts to zero on 𝐾 we see that 𝜓(𝐾) ⊂ 𝐴′

by definition of 𝐴′. Hence there is an induced morphism 𝑀 → 𝐴/𝐴′. This construction
gives an inverse to the map ℎ𝐴/𝐴′(𝑀) → 𝐹(𝑀) (details omitted). �

Lemma 17.17.2. A Grothendieck abelian category has Ab3*.

Proof. Let 𝑀𝑖, 𝑖 ∈ 𝐼 be a family of objects of 𝒜 indexed by a set 𝐼. The functor 𝐹 =
∏𝑖∈𝐼 ℎ𝑀𝑖

commutes with colimits. Hence Lemma 17.17.1 applies. �

Remark 17.17.3. In the chapter on derived categories we consistently work with ``small''
abelian categories (as is the convention in the stacks project). For a ``big'' abelian category
𝒜 it isn't clear that the derived category 𝐷(𝒜) exists because it isn't clear that morphisms
in the derived category are sets (in general they aren't, insert future reference here). How-
ever, if 𝒜 is a Grothendieck abelian category, then we can use Theorem 17.16.6 to see
that Hom𝐷(𝒜)(𝐾•, 𝐿•) = Hom𝐾(𝒜)(𝐾•, 𝐼•) where 𝐿• → 𝐼• is a quasi-isomorphism into a
K-injective complex. And Hom𝐾(𝒜)(𝐾•, 𝐼•) is a set.

Lemma 17.17.4. Let 𝒜 be a Grothendieck abelian category. Then 𝐷(𝒜) has both direct
sums and products.

Proof. Let 𝐾•
𝑖 , 𝑖 ∈ 𝐼 be a family of objects of 𝐷(𝒜) indexed by a set 𝐼. We claim that

the termwise direct sum ⨁𝑖∈𝐼 𝐾•
𝑖 is a direct sum in 𝐷(𝒜). Namely, let 𝐼• be a K-injective

complex. Then we have

𝐻𝑜𝑚𝐷(𝒜)(⨁𝑖∈𝐼
𝐾•

𝑖 , 𝐼•) = 𝐻𝑜𝑚𝐾(𝒜)(⨁𝑖∈𝐼
𝐾•

𝑖 , 𝐼•)

= ∏𝑖∈𝐼
𝐻𝑜𝑚𝐾(𝒜)(𝐾•

𝑖 , 𝐼•)

= ∏𝑖∈𝐼
𝐻𝑜𝑚𝐷(𝒜)(𝐾•

𝑖 , 𝐼•)

as desired. This is sufficient since any complex can be represented by a K-injective complex
by Theorem 17.16.6. To construct the product, choose a K-injective resolution 𝐾•

𝑖 → 𝐼•
𝑖 for

each 𝑖. Then we claim that ∏𝑖∈𝐼 𝐼•
𝑖 is a product in 𝐷(𝒜). Namely, let 𝐾• be an complex.

Note that a product of K-injective complexes is K-injective (follows immediately from the
definition). Thus we have

𝐻𝑜𝑚𝐷(𝒜)(𝐾•, ∏𝑖∈𝐼
𝐼•

𝑖 ) = 𝐻𝑜𝑚𝐾(𝒜)(𝐾•, ∏𝑖∈𝐼
𝐼•

𝑖 )

= ∏𝑖∈𝐼
𝐻𝑜𝑚𝐾(𝒜)(𝐾•, 𝐼•

𝑖 )

= ∏𝑖∈𝐼
𝐻𝑜𝑚𝐷(𝒜)(𝐾•, 𝐼•

𝑖 )

which proves the result. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07D8
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=079Q
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07D9
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Remark 17.17.5. Let 𝑅 be a ring. Suppose that 𝑀𝑛, 𝑛 ∈ 𝐙 are 𝑅-modules. Denote
𝐸𝑛 = 𝑀𝑛[−𝑛] ∈ 𝐷(𝑅). We claim that 𝐸 = ⨁ 𝑀𝑛[−𝑛] is both the direct sum and the
product of the objects 𝐸𝑛 in 𝐷(𝑅). To see that it is the direct sum, take a look at the proof
of Lemma 17.17.4. To see that it is the direct product, take injective resolutions 𝑀𝑛 → 𝐼•

𝑛.
By the proof of Lemma 17.17.4 we have

∏ 𝐸𝑛 = ∏ 𝐼•
𝑛[−𝑛]

in 𝐷(𝑅). Since products inMod𝑅 are exact, we see that ∏ 𝐼•
𝑛 is quasi-isomorphic to 𝐸. This

works more generally in 𝐷(𝒜) where 𝒜 is a Grothendieck abelian category with Ab4*.

Remark 17.17.6. Let 𝒜 be a Grothendieck abelian category with Ab4*. Let 𝐾•
𝑒 be a col-

lection of complexes indexed by 𝑒 ∈ 𝐍. Then the termwise product ∏𝑒 𝐾•
𝑒 represents the

product in 𝐷(𝒜). Namely, choose injective resolutions 𝐾•
𝑒 → 𝐼•

𝑒 . The proof of Lemma
17.17.4 shows that the product in 𝐷(𝒜) is equal to ∏𝑒 𝐼•

𝑒 and Ab4* shows that this is iso-
morphic to ∏𝑒 𝐾•

𝑒 . This works more generally in 𝐷(𝒜) where 𝒜 is a Grothendieck abelian
category with exact countable products.
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CHAPTER 18

Cohomology of Sheaves

18.1. Introduction

In this document wework out some topics on cohomology of sheaves on topological spaces.
We mostly work in the generality of modules over a sheaf of rings and we work with mor-
phisms of ringed spaces. To see what happens for sheaves on sites as well, see the chapter
Cohomology on Sites, Section 19. Basic references are [God73] and [Ive86].

18.2. Topics

Here are some topics that should be discussed in this chapter, and have not yet been written.
(1) Ext-groups.
(2) Ext sheaves.
(3) Tor functors.
(4) Derived pullback for morphisms between ringed spaces.
(5) Cup-product.
(6) Etc, etc, etc.

18.3. Cohomology of sheaves

Let 𝑋 be a topological space. Let ℱ be a abelian sheaf. We know that the category of
abelian sheaves on 𝑋 has enough injectives, see Injectives, Lemma 17.8.1. Hence we can
choose an injective resolution ℱ[0] → ℐ•. As is customary we define

(18.3.0.1) 𝐻𝑖(𝑋, ℱ) = 𝐻𝑖(Γ(𝑋, ℐ•))

to be the 𝑖th cohomology group of the abelian sheaf ℱ. The family of functors 𝐻𝑖((𝑋, −)
forms a universal 𝛿-functor from Ab(𝑋) → Ab.

Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map of topological spaces. With ℱ[0] → ℐ• as above we
define

(18.3.0.2) 𝑅𝑖𝑓∗ℱ = 𝐻𝑖(𝑓∗ℐ•)

to be the 𝑖th higher direct image of ℱ. The family of functors 𝑅𝑖𝑓∗ forms a universal
𝛿-functor from Ab(𝑋) → Ab(𝑌).

Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ be an 𝒪𝑋-module. We know that the category of
𝒪𝑋-modules on 𝑋 has enough injectives, see Injectives, Lemma 17.9.1. Hence we can
choose an injective resolution ℱ[0] → ℐ•. As is customary we define

(18.3.0.3) 𝐻𝑖(𝑋, ℱ) = 𝐻𝑖(Γ(𝑋, ℐ•))

to be the 𝑖th cohomology group of ℱ. The family of functors 𝐻𝑖((𝑋, −) forms a universal
𝛿-functor from Mod(𝒪𝑋) → Mod(𝒪𝑋(𝑋)).

1079



1080 18. COHOMOLOGY OF SHEAVES

Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. With ℱ[0] → ℐ• as above we
define

(18.3.0.4) 𝑅𝑖𝑓∗ℱ = 𝐻𝑖(𝑓∗ℐ•)

to be the 𝑖th higher direct image of ℱ. The family of functors 𝑅𝑖𝑓∗ forms a universal
𝛿-functor from Mod(𝒪𝑋) → Mod(𝒪𝑌).

18.4. Derived functors

We briefly explain an approach to right derived functors using resolution functors. Let
(𝑋, 𝒪𝑋) be a ringed space. The categoryMod(𝒪𝑋) is abelian, see Modules, Lemma 15.3.1.
In this chapter we will write

𝐾(𝑋) = 𝐾(𝒪𝑋) = 𝐾(Mod(𝒪𝑋)) and 𝐷(𝑋) = 𝐷(𝒪𝑋) = 𝐷(Mod(𝒪𝑋)).

and similarly for the bounded versions for the triangulated categories introduced in De-
rived Categories, Definition 11.7.1 and Definition 11.10.3. By Derived Categories, Remark
11.23.3 there exists a resolution functor

𝑗 = 𝑗𝑋 ∶ 𝐾+(Mod(𝒪𝑋)) ⟶ 𝐾+(ℐ)

where ℐ is the strictly full additive subcategory ofMod(𝒪𝑋) consisting of injective sheaves.
For any left exact functor 𝐹 ∶ Mod(𝒪𝑋) → ℬ into any abelian category ℬ we will de-
note 𝑅𝐹 the right derived functor described in Derived Categories, Section 11.19 and con-
structed using the resolution functor 𝑗𝑋 just described:

(18.4.0.5) 𝑅𝐹 = 𝐹 ∘ 𝑗′
𝑋 ∶ 𝐷+(𝑋) ⟶ 𝐷+(ℬ)

see Derived Categories, Lemma 11.24.1 for notation. Note that we may think of 𝑅𝐹 as
defined on Mod(𝒪𝑋), Comp+(Mod(𝒪𝑋)), 𝐾+(𝑋), or 𝐷+(𝑋) depending on the situation.
According to Derived Categories, Definition 11.16.2 we obtain the 𝑖the right derived func-
tor

(18.4.0.6) 𝑅𝑖𝐹 = 𝐻𝑖 ∘ 𝑅𝐹 ∶ Mod(𝒪𝑋) ⟶ ℬ

so that 𝑅0𝐹 = 𝐹 and {𝑅𝑖𝐹, 𝛿}𝑖≥0 is universal 𝛿-functor, see Derived Categories, Lemma
11.19.4.

Here are two special cases of this construction. Given a ring 𝑅 we write 𝐾(𝑅) = 𝐾(Mod𝑅)
and 𝐷(𝑅) = 𝐷(Mod𝑅) and similarly for bounded versions. For any open 𝑈 ⊂ 𝑋 we have a
left exact functor Γ(𝑈, −) ∶ Mod(𝒪𝑋) ⟶ Mod(𝒪𝑋(𝑈)) which gives rise to

(18.4.0.7) 𝑅Γ(𝑈, −) ∶ 𝐷+(𝑋) ⟶ 𝐷+(𝒪𝑋(𝑈))

by the discussion above. We set 𝐻𝑖(𝑈, −) = 𝑅𝑖Γ(𝑈, −). If 𝑈 = 𝑋 we recover (18.3.0.3).
If 𝑓 ∶ 𝑋 → 𝑌 is a morphism of ringed spaces, then we have the left exact functor 𝑓∗ ∶
Mod(𝒪𝑋) ⟶ Mod(𝒪𝑌) which gives rise to the derived pushforward

(18.4.0.8) 𝑅𝑓∗ ∶ 𝐷+(𝑋) ⟶ 𝐷+(𝑌)

The 𝑖th cohomology sheaf of 𝑅𝑓∗ℱ• is denoted 𝑅𝑖𝑓∗ℱ• and called the 𝑖th higher direct
image in accordance with (18.3.0.4). The two displayed functors above are exact functor
of derived categories.

Abuse of notation: When the functor 𝑅𝑓∗, or any other derived functor, is applied to
a sheaf ℱ on 𝑋 or a complex of sheaves it is understood that ℱ has been replaced by a
suitable resolution of ℱ. To facilitate this kind of operation we will say, given an object
ℱ• ∈ 𝐷(𝑋), that a bounded below complex ℐ• of injectives of Mod(𝒪𝑋) represents ℱ• in
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the derived category if there exists a quasi-isomorphism ℱ• → ℐ•. In the same vein the
phrase ``let 𝛼 ∶ ℱ• → 𝒢• be a morphism of 𝐷(𝑋)'' does not mean that 𝛼 is represented by
a morphism of complexes. If we have an actual morphism of complexes we will say so.

18.5. First cohomology and torsors

Definition 18.5.1. Let𝑋 be a topological space. Let𝒢 be a sheaf of (possibly non-commutative)
groups on 𝑋. A torsor, or more precisely a 𝒢-torsor, is a sheaf of sets ℱ on 𝑋 endowed
with an action 𝒢 × ℱ → ℱ such that

(1) whenever ℱ(𝑈) is nonempty the action 𝒢(𝑈)×ℱ(𝑈) → ℱ(𝑈) is simply transitive,
and

(2) for every 𝑥 ∈ 𝑋 the stalk ℱ𝑥 is nonempty.
Amorphism of 𝒢-torsors ℱ → ℱ′ is simply a morphism of sheaves of sets compatible with
the 𝒢-actions. The trivial 𝒢-torsor is the sheaf 𝒢 endowed with the obvious left 𝒢-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma18.5.2. Let𝑋 be a topological space. Let𝒢 be a sheaf of (possibly non-commutative)
groups on 𝑋. A 𝒢-torsor ℱ is trivial if and only if ℱ(𝑋)≠∅.

Proof. Omitted. �

Lemma 18.5.3. Let 𝑋 be a topological space. Let ℋ be an abelian sheaf on 𝑋. There is a
canonical bijection between the set of isomorphism classes of ℋ-torsors and 𝐻1(𝑋, ℋ).

Proof. Let ℱ be a ℋ-torsor. Consider the free abelian sheaf 𝐙[ℱ] on ℱ. It is the sheafi-
fication of the rule which associates to 𝑈 ⊂ 𝑋 open the collection of finite formal sums
∑ 𝑛𝑖[𝑠𝑖] with 𝑛𝑖 ∈ 𝐙 and 𝑠𝑖 ∈ ℱ(𝑈). There is a natural map

𝜎 ∶ 𝐙[ℱ] ⟶ 𝐙

which to a local section ∑ 𝑛𝑖[𝑠𝑖] associates ∑ 𝑛𝑖. The kernel of 𝜎 is generated by the local
section of the form [𝑠] − [𝑠′]. There is a canonical map 𝑎 ∶ Ker(𝜎) → ℋ which maps
[𝑠] − [𝑠′] ↦ ℎ where ℎ is the local section of ℋ such that ℎ ⋅ 𝑠 = 𝑠′. Consider the push out
diagram

0 // Ker(𝜎) //

𝑎
��

𝐙[ℱ] //

��

𝐙 //

��

0

0 // ℋ // ℰ // 𝐙 // 0

Here ℰ is the extension obtained by push out. From the long exact cohomology sequence
associated to the lower short exact sequence we obtain an element 𝜉 = 𝜉ℱ ∈ 𝐻1(𝑋, ℋ) by
applying the boundary operator to 1 ∈ 𝐻0(𝑋, 𝐙).

Conversely, given 𝜉 ∈ 𝐻1(𝑋, ℋ) we can associate to 𝜉 a torsor as follows. Choose an
embedding ℋ → ℐ of ℋ into an injective abelian sheaf ℐ. We set 𝒬 = ℐ/ℋ so that we
have a short exact sequence

0 // ℋ // ℐ // 𝒬 // 0

The element 𝜉 is the image of a global section 𝑞 ∈ 𝐻0(𝑋, 𝒬) because 𝐻1(𝑋, ℐ) = 0 (see
Derived Categories, Lemma 11.19.4). Let ℱ ⊂ ℐ be the subsheaf (of sets) of sections that
map to 𝑞 in the sheaf 𝒬. It is easy to verify that ℱ is a torsor.

We omit the verification that the two constructions given above are mutually inverse. �
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18.6. Locality of cohomology

The following lemma says there is no ambguity in defining the cohomology of a sheaf ℱ
over an open.

Lemma 18.6.1. Let 𝑋 be a ringed space. Let 𝑈 ⊂ 𝑋 be an open subspace.
(1) If ℐ is an injective 𝒪𝑋-module then ℐ|𝑈 is an injective 𝒪𝑈-module.
(2) For any sheaf of 𝒪𝑋-modules ℱ we have 𝐻𝑝(𝑈, ℱ) = 𝐻𝑝(𝑈, ℱ|𝑈).

Proof. Denote 𝑗 ∶ 𝑈 → 𝑋 the open immersion. Recall that the functor 𝑗−1 of restriction
to 𝑈 is a right adjoint to the functor 𝑗! of extension by 0, see Sheaves, Lemma 6.31.8.
Moreover, 𝑗! is exact. Hence (1) follows from Homology, Lemma 10.22.1.
By definition 𝐻𝑝(𝑈, ℱ) = 𝐻𝑝(Γ(𝑈, ℐ•)) where ℱ → ℐ• is an injective resolution in
Mod(𝒪𝑋). By the above we see that ℱ|𝑈 → ℐ•|𝑈 is an injective resolution in Mod(𝒪𝑈).
Hence 𝐻𝑝(𝑈, ℱ|𝑈) is equal to 𝐻𝑝(Γ(𝑈, ℐ•|𝑈)). Of course Γ(𝑈, ℱ) = Γ(𝑈, ℱ|𝑈) for any
sheaf ℱ on 𝑋. Hence the equality in (2). �

Let 𝑋 be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. Let 𝑈 ⊂ 𝑉 ⊂ 𝑋 be open subsets.
Then there is a canonical restriction mapping

(18.6.1.1) 𝐻𝑛(𝑉, ℱ) ⟶ 𝐻𝑛(𝑈, ℱ), 𝜉 ⟼ 𝜉|𝑈

functorial inℱ. Namely, choose any injective resolutionℱ → ℐ•. The restrictionmappings
of the sheaves ℐ𝑝 give a morphism of complexes

Γ(𝑉, ℐ•) ⟶ Γ(𝑈, ℐ•)
The LHS is a complex representing 𝑅Γ(𝑉, ℱ) and the RHS is a complex representing
𝑅Γ(𝑈, ℱ). We get the map on cohomology groups by applying the functor 𝐻𝑛. As in-
dicated we will use the notation 𝜉 ↦ 𝜉|𝑈 to denote this map. Thus the rule 𝑈 ↦ 𝐻𝑛(𝑈, ℱ)
is a presheaf of 𝒪𝑋-modules. This presheaf is customarily denoted 𝐻𝑛(ℱ). We will give
another interpretation of this presheaf in Lemma 18.11.3.

Lemma 18.6.2. Let 𝑋 be a ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. Let 𝑈 ⊂ 𝑋 be
an open subspace. Let 𝑛 > 0 and let 𝜉 ∈ 𝐻𝑛(𝑈, ℱ). Then there exists an open covering
𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 such that 𝜉|𝑈𝑖

= 0 for all 𝑖 ∈ 𝐼.

Proof. Let ℱ → ℐ• be an injective resolution. Then

𝐻𝑛(𝑈, ℱ) = Ker(ℐ𝑛(𝑈) → ℐ𝑛+1(𝑈))
Im(ℐ𝑛−1(𝑈) → ℐ𝑛(𝑈))

.

Pick an element ̃𝜉 ∈ ℐ𝑛(𝑈) representing the cohomology class in the presentation above.
Since ℐ• is an injective resolution of ℱ and 𝑛 > 0 we see that the complex ℐ• is exact in
degree 𝑛. Hence Im(ℐ𝑛−1 → ℐ𝑛) = Ker(ℐ𝑛 → ℐ𝑛+1) as sheaves. Since ̃𝜉 is a section of
the kernel sheaf over 𝑈 we conclude there exists an open covering 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 such that

̃𝜉|𝑈𝑖
is the image under 𝑑 of a section 𝜉𝑖 ∈ ℐ𝑛−1(𝑈𝑖). By our definition of the restriction

𝜉|𝑈𝑖
as corresponding to the class of ̃𝜉|𝑈𝑖

we conclude. �

Lemma 18.6.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let ℱ be a 𝒪𝑋-module.
The sheaves 𝑅𝑖𝑓∗ℱ are the sheaves associated to the presheaves

𝑉 ⟼ 𝐻𝑖(𝑓−1(𝑉), ℱ)
with restriction mappings as in Equation (18.6.1.1). There is a similar statement for 𝑅𝑖𝑓∗
applied to a bounded below complex ℱ•.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01E1
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Proof. Let ℱ → ℐ• be an injective resolution. Then 𝑅𝑖𝑓∗ℱ is by definition the 𝑖th coho-
mology sheaf of the complex

𝑓∗ℐ0 → 𝑓∗ℐ1 → 𝑓∗ℐ2 → …

By definition of the abelian category structure on 𝒪𝑌-modules this cohomology sheaf is the
sheaf associated to the presheaf

𝑉 ⟼
Ker(𝑓∗ℐ𝑖(𝑉) → 𝑓∗ℐ𝑖+1(𝑉))
Im(𝑓∗ℐ𝑖−1(𝑉) → 𝑓∗ℐ𝑖(𝑉))

and this is obviously equal to

Ker(ℐ𝑖(𝑓−1(𝑉)) → ℐ𝑖+1(𝑓−1(𝑉)))
Im(ℐ𝑖−1(𝑓−1(𝑉)) → ℐ𝑖(𝑓−1(𝑉)))

which is equal to 𝐻𝑖(𝑓−1(𝑉), ℱ) and we win. �

Lemma 18.6.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let ℱ be an 𝒪𝑋-module.
Let 𝑉 ⊂ 𝑌 be an open subspace. Denote 𝑔 ∶ 𝑓−1(𝑉) → 𝑉 the restriction of 𝑓. Then we have

𝑅𝑝𝑔∗(ℱ|𝑓−1(𝑉)) = (𝑅𝑝𝑓∗ℱ)|𝑉

There is a similar statement for the derived image 𝑅𝑓∗ℱ• where ℱ• is a bounded below
complex of 𝒪𝑋-modules.

Proof. First proof. Apply Lemmas 18.6.3 and 18.6.1 to see the displayed equality. Second
proof. Choose an injective resolution ℱ → ℐ• and use that ℱ|𝑓−1(𝑉) → ℐ•|𝑓−1(𝑉) is an
injective resolution also. �

Remark 18.6.5. Here is a different approach to the proofs of Lemmas 18.6.2 and 18.6.3
above. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝑖𝑋 ∶ Mod(𝒪𝑋) → Mod(𝒪𝑋) be the inclusion
functor and let # be the sheafification functor. Recall that 𝑖𝑋 is left exact and # is exact.

(1) First prove Lemma 18.11.3 below which says that the right derived functors of
𝑖𝑋 are given by 𝑅𝑝𝑖𝑋ℱ = 𝐻𝑝(ℱ). Here is another proof: The equality is clear for
𝑝 = 0. Both (𝑅𝑝𝑖𝑋)𝑝≥0 and (𝐻𝑝)𝑝≥0 are delta functors vanishing on injectives,
hence both are universal, hence they are isomorphic. See Homology, Section
10.9.

(2) A restatement of Lemma 18.6.2 is that (𝐻𝑝(ℱ))# = 0, 𝑝 > 0 for any sheaf of
𝒪𝑋-modules ℱ. To see this is true, use that # is exact so

(𝐻𝑝(ℱ))# = (𝑅𝑝𝑖𝑋ℱ)# = 𝑅𝑝(# ∘ 𝑖𝑋)(ℱ) = 0

because # ∘ 𝑖𝑋 is the identity functor.
(3) Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let ℱ be an 𝒪𝑋-module.

The presheaf 𝑉 ↦ 𝐻𝑝(𝑓−1𝑉, ℱ) is equal to 𝑅𝑝(𝑖𝑌 ∘ 𝑓∗)ℱ. You can prove this by
noticing that both give universal delta functors as in the argument of (1) above.
Hence Lemma 18.6.3 says that 𝑅𝑝𝑓∗ℱ = (𝑅𝑝(𝑖𝑌 ∘ 𝑓∗)ℱ)#. Again using that # is
exact a that # ∘ 𝑖𝑌 is the identity functor we see that

𝑅𝑝𝑓∗ℱ = 𝑅𝑝(# ∘ 𝑖𝑌 ∘ 𝑓∗)ℱ = (𝑅𝑝(𝑖𝑌 ∘ 𝑓∗)ℱ)#

as desired.
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18.7. Projection formula

In this section we collect variants of the projection formula. The most basic version is
Lemma 18.7.2.

Lemma 18.7.1. Let 𝑋 be a ringed space. Let ℐ be an injective 𝒪𝑋-module. Let ℰ be an
𝒪𝑋-module. Assume ℰ is finite locally free on 𝑋, see Modules, Definition 15.14.1. Then
ℰ ⊗𝒪𝑋

ℐ is an injective 𝒪𝑋-module.

Proof. This is true because under the assumptions of the lemma we have
𝐻𝑜𝑚𝒪𝑋

(ℱ, ℰ ⊗𝒪𝑋
ℐ) = 𝐻𝑜𝑚𝒪𝑋

(ℱ ⊗𝒪𝑋
ℰ∧, ℐ)

where ℰ∧ = ℋ𝑜𝑚𝒪𝑋
(ℰ, 𝒪𝑋) is the dual of ℰ which is finite locally free also. Since tensoring

with a finite locally free sheaf is an exact functor wewin byHomology, Lemma 10.20.2. �

Lemma 18.7.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let ℱ be an 𝒪𝑋-module.
Letℰ be an𝒪𝑌-module. Assumeℰ is finite locally free on 𝑌, seeModules, Definition 15.14.1.
Then there exist isomorphisms

ℰ ⊗𝒪𝑌
𝑅𝑞𝑓∗ℱ ⟶ 𝑅𝑞𝑓∗(𝑓∗ℰ ⊗𝒪𝑋

ℱ)
for all 𝑞 ≥ 0. In fact there exists an isomorphism

ℰ ⊗𝒪𝑌
𝑅𝑓∗ℱ ⟶ 𝑅𝑓∗(𝑓∗ℰ ⊗𝒪𝑋

ℱ)

in 𝐷+(𝑌) functorial in ℱ.

Proof. Choose an injective resolution ℱ → ℐ• on 𝑋. Note that 𝑓∗ℰ is finite locally free
also, hence we get a resolution

𝑓∗ℰ ⊗𝒪𝑋
ℱ ⟶ 𝑓∗ℰ ⊗𝒪𝑋

ℐ•

which is an injective resolution by Lemma 18.7.1. Apply 𝑓∗ to see that
𝑅𝑓∗(𝑓∗ℰ ⊗𝒪𝑋

ℱ) = 𝑓∗(𝑓∗ℰ ⊗𝒪𝑋
ℐ•).

Hence the lemma follows if we can show that 𝑓∗(𝑓∗ℰ⊗𝒪𝑋
ℱ) = ℰ⊗𝒪𝑌

𝑓∗(ℱ) functorially in
the 𝒪𝑋-module ℱ. This is clear when ℰ = 𝒪⊕𝑛

𝑌 , and follows in general by working locally
on 𝑌. Details omitted. �

18.8. Mayer-Vietoris

Below will construct the Čech-to-cohomology spectral sequence, see Lemma 18.11.4. A
special case of that spectral sequence is the Mayer-Vietoris long exact sequence. Since it is
such a basic, useful and easy to understand variant of the spectral sequence we treat it here
separately.

Lemma 18.8.1. Let 𝑋 be a ringed space. Let 𝑈′ ⊂ 𝑈 ⊂ 𝑋 be open subspaces. For any
injective 𝒪𝑋-module ℐ the restriction mapping ℐ(𝑈) → ℐ(𝑈′) is surjective.

Proof. Let 𝑗 ∶ 𝑈 → 𝑋 and 𝑗′ ∶ 𝑈′ → 𝑋 be the open immersions. Recall that 𝑗!𝒪𝑈 is the
extension by zero of 𝒪𝑈 = 𝒪𝑋|𝑈, see Sheaves, Section 6.31. Since 𝑗! is a left adjoint to
restriction we see that for any sheaf ℱ of 𝒪𝑋-modules

𝐻𝑜𝑚𝒪𝑋
(𝑗!𝒪𝑈, ℱ) = 𝐻𝑜𝑚𝒪𝑈

(𝒪𝑈, ℱ|𝑈) = ℱ(𝑈)

see Sheaves, Lemma 6.31.8. Similarly, the sheaf 𝑗′
!𝒪𝑈′ represents the functor ℱ ↦ ℱ(𝑈′).

Moreover there is an obvious canonical map of 𝒪𝑋-modules
𝑗′

!𝒪𝑈′ ⟶ 𝑗!𝒪𝑈

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01E7
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which corresponds to the restriction mapping ℱ(𝑈) → ℱ(𝑈′) via Yoneda's lemma (Cate-
gories, Lemma 4.3.5). By the description of the stalks of the sheaves 𝑗′

!𝒪𝑈′, 𝑗!𝒪𝑈 we see
that the displayed map above is injective (see lemma cited above). Hence if ℐ is an injective
𝒪𝑋-module, then the map

𝐻𝑜𝑚𝒪𝑋
(𝑗!𝒪𝑈, ℱ) ⟶ 𝐻𝑜𝑚𝒪𝑋

(𝑗′
!𝒪𝑈′, ℱ)

is surjective, see Homology, Lemma 10.20.2. Putting everything together we obtain the
lemma. �

Lemma 18.8.2. (Mayer-Vietoris.) Let 𝑋 be a ringed space. Suppose that 𝑋 = 𝑈 ∪ 𝑉 is a
union of two open subsets. For every 𝒪𝑋-module ℱ there exists a long exact cohomology
sequence

0 → 𝐻0(𝑋, ℱ) → 𝐻0(𝑈, ℱ) ⊕ 𝐻0(𝑉, ℱ) → 𝐻0(𝑈 ∩ 𝑉, ℱ) → 𝐻1(𝑋, ℱ) → …

This long exact sequence is functorial in ℱ.

Proof. The sheaf condition says that the kernel of (1, −1) ∶ ℱ(𝑈) ⊕ ℱ(𝑉) → ℱ(𝑈 ∩ 𝑉) is
equal to the image of ℱ(𝑋) by the first map for any abelian sheaf ℱ. Lemma 18.8.1 above
implies that the map (1, −1) ∶ ℐ(𝑈) ⊕ ℐ(𝑉) → ℐ(𝑈 ∩ 𝑉) is surjective whenever ℐ is an
injective 𝒪𝑋-module. Hence if ℱ → ℐ• is an injective resolution of ℱ, then we get a short
exact sequence of complexes

0 → ℐ•(𝑋) → ℐ•(𝑉) ⊕ ℐ•(𝑉) → ℐ•(𝑈 ∩ 𝑉) → 0.

Taking cohomology gives the result (use Homology, Lemma 10.10.12). We omit the proof
of the functoriality of the sequence. �

Lemma 18.8.3. (Relative Mayer-Vietoris.) Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed
spaces. Suppose that 𝑋 = 𝑈 ∪ 𝑉 is a union of two open subsets. Denote 𝑎 = 𝑓|𝑈 ∶ 𝑈 → 𝑌,
𝑏 = 𝑓|𝑉 ∶ 𝑉 → 𝑌, and 𝑐 = 𝑓|𝑈∩𝑉 ∶ 𝑈 ∩ 𝑉 → 𝑌. For every 𝒪𝑋-module ℱ there exists a long
exact sequence

0 → 𝑓∗ℱ → 𝑎∗(ℱ|𝑈) ⊕ 𝑏∗(ℱ|𝑉) → 𝑐∗(ℱ|𝑈∩𝑉) → 𝑅1𝑓∗ℱ → …

This long exact sequence is functorial in ℱ.

Proof. Let ℱ → ℐ• be an injective resolution of ℱ. We claim that we get a short exact
sequence of complexes

0 → 𝑓∗ℐ• → 𝑎∗ℐ•|𝑉 ⊕ 𝑏∗ℐ•|𝑉 → 𝑐∗ℐ•|𝑈∩𝑉 → 0.

Namely, for any open 𝑊 ⊂ 𝑌, and for any 𝑛 ≥ 0 the corresponding sequence of groups of
sections over 𝑊

0 → ℐ𝑛(𝑓−1(𝑊)) → ℐ𝑛(𝑉 ∩ 𝑓−1(𝑊)) ⊕ ℐ𝑛(𝑉 ∩ 𝑓−1(𝑊)) → ℐ𝑛(𝑈 ∩ 𝑉 ∩ 𝑓−1(𝑊)) → 0

was shown to be short exact in the proof of Lemma 18.8.2. The lemma follows by taking
cohomology sheaves and using the fact that ℐ•|𝑈 is an injective resolution of ℱ|𝑈 and
similarly for ℐ•|𝑉, ℐ•|𝑈∩𝑉 see Lemma 18.6.1. �
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18.9. The Čech complex and Čech cohomology

Let 𝑋 be a topological space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering, see Topology,
Basic notion (6). As is customary we denote 𝑈𝑖0…𝑖𝑝 = 𝑈𝑖0 ∩ … ∩ 𝑈𝑖𝑝 for the (𝑝 + 1)-fold
intersection of members of 𝒰. Let ℱ be an abelian presheaf on 𝑋. Set

̌𝒞𝑝(𝒰, ℱ) = ∏(𝑖0,…,𝑖𝑝)∈𝐼𝑝+1 ℱ(𝑈𝑖0…𝑖𝑝).

This is an abelian group. For 𝑠 ∈ ̌𝒞𝑝(𝒰, ℱ) we denote 𝑠𝑖0…𝑖𝑝 its value in ℱ(𝑈𝑖0…𝑖𝑝). Note
that if 𝑠 ∈ ̌𝒞2(𝒰, ℱ) and 𝑖, 𝑗 ∈ 𝐼 then 𝑠𝑖𝑗 and 𝑠𝑗𝑖 are both elements of ℱ(𝑈𝑖 ∩𝑈𝑗) but there is
no imposed relation between 𝑠𝑖𝑗 and 𝑠𝑗𝑖. In other words, we are notworking with alternating
cochains (these will be defined in Section 18.17). We define

𝑑 ∶ ̌𝒞𝑝(𝒰, ℱ) ⟶ ̌𝒞𝑝+1(𝒰, ℱ)

by the formula

(18.9.0.1) 𝑑(𝑠)𝑖0…𝑖𝑝+1
= ∑

𝑝+1
𝑗=0

(−1)𝑗𝑠𝑖0… ̂𝑖𝑗…𝑖𝑝|𝑈𝑖0…𝑖𝑝+1

It is straightforward to see that 𝑑 ∘ 𝑑 = 0. In other words ̌𝒞•(𝒰, ℱ) is a complex.

Definition 18.9.1. Let 𝑋 be a topological space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering.
Let ℱ be an abelian presheaf on 𝑋. The complex ̌𝒞•(𝒰, ℱ) is the Čech complex associated
to ℱ and the open covering 𝒰. Its cohomology groups 𝐻𝑖( ̌𝒞•(𝒰, ℱ)) are called the Čech
cohomology groups associated to ℱ and the covering 𝒰. They are denoted �̌�𝑖(𝒰, ℱ).

Lemma 18.9.2. Let 𝑋 be a topological space. Let ℱ be an abelian presheaf on 𝑋. The
following are equivalent

(1) ℱ is an abelian sheaf and
(2) for every open covering 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 the natural map

ℱ(𝑈) → �̌�0(𝒰, ℱ)

is bijective.

Proof. This is true since the sheaf condition is exactly that ℱ(𝑈) → �̌�0(𝒰, ℱ) is bijective
for every open covering. �

18.10. Cech cohomology as a functor on presheaves

Warning: In this section we work almost exclusively with presheaves and categories of
presheaves and the results are completely wrong in the setting of sheaves and categories of
sheaves!

Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering. Let ℱ be a presheaf of
𝒪𝑋-modules. We have the Čech complex ̌𝒞•(𝒰, ℱ) of ℱ just by thinking of ℱ as a presheaf
of abelian groups. However, each term ̌𝒞𝑝(𝒰, ℱ) has a natural structure of a 𝒪𝑋(𝑈)-module
and the differential is given by 𝒪𝑋(𝑈)-module maps. Moreover, it is clear that the construc-
tion

ℱ ⟼ ̌𝒞•(𝒰, ℱ)
is functorial in ℱ. In fact, it is a functor

(18.10.0.1) ̌𝒞•(𝒰, −) ∶ PMod(𝒪𝑋) ⟶ Comp+(Mod(𝒪𝑋(𝑈)))

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01EF
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see Derived Categories, Definition 11.7.1 for notation. Recall that the category of bounded
below complexes in an abelian category is an abelian category, see Homology, Lemma
10.10.9.

Lemma 18.10.1. The functor given by Equation (18.10.0.1) is an exact functor (see Ho-
mology, Lemma 10.5.1).

Proof. For any open 𝑊 ⊂ 𝑈 the functor ℱ ↦ ℱ(𝑊) is an additive exact functor from
PMod(𝒪𝑋) to Mod(𝒪𝑋(𝑈)). The terms ̌𝒞𝑝(𝒰, ℱ) of the complex are products of these
exact functors and hence exact. Moreover a sequence of complexes is exact if and only if
the sequence of terms in a given degree is exact. Hence the lemma follows. �

Lemma 18.10.2. Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering.
The functors ℱ ↦ �̌�𝑛(𝒰, ℱ) form a 𝛿-functor from the abelian category of presheaves of
𝒪𝑋-modules to the category of 𝒪𝑋(𝑈)-modules (see Homology, Definition 10.9.1).

Proof. By Lemma 18.10.1 a short exact sequence of presheaves of 𝒪𝑋-modules 0 → ℱ1 →
ℱ2 → ℱ3 → 0 is turned into a short exact sequence of complexes of 𝒪𝑋(𝑈)-modules.
Hence we can use Homology, Lemma 10.10.12 to get the boundary maps 𝛿ℱ1→ℱ2→ℱ3

∶
�̌�𝑛(𝒰, ℱ3) → �̌�𝑛+1(𝒰, ℱ1) and a corresponding long exact sequence. We omit the verifica-
tion that thesemaps are compatible withmaps between short exact sequences of presheaves.

�

In the formulation of the following lemma we use the functor 𝑗𝑝! of extension by 0 for
presheaves of modules relative to an open immersion 𝑗 ∶ 𝑈 → 𝑋. See Sheaves, Section
6.31. For any open 𝑊 ⊂ 𝑋 and any presheaf 𝒢 of 𝒪𝑋|𝑈-modules we have

(𝑗𝑝!𝒢)(𝑊) = {
𝒢(𝑊) if 𝑊 ⊂ 𝑈

0 else.

Moreover, the functor 𝑗𝑝! is a left adjoint to the restriction functor see Sheaves, Lemma
6.31.8. In particular we have the following formula

𝐻𝑜𝑚𝒪𝑋
(𝑗𝑝!𝒪𝑈, ℱ) = 𝐻𝑜𝑚𝒪𝑈

(𝒪𝑈, ℱ|𝑈) = ℱ(𝑈).

Since the functor ℱ ↦ ℱ(𝑈) is an exact functor on the category of presheaves we conclude
that the presheaf 𝑗𝑝!𝒪𝑈 is a projective object in the category PMod(𝒪𝑋), see Homology,
Lemma 10.21.2.

Note that if we are given open subsets 𝑈 ⊂ 𝑉 ⊂ 𝑋 with associated open immersions 𝑗𝑈, 𝑗𝑉,
then we have a canonical map (𝑗𝑈)𝑝!𝒪𝑈 → (𝑗𝑉)𝑝!𝒪𝑉. It is the identity on sections over
any open 𝑊 ⊂ 𝑈 and 0 else. In terms of the identification 𝐻𝑜𝑚𝒪𝑋

((𝑗𝑈)𝑝!𝒪𝑈, (𝑗𝑉)𝑝!𝒪𝑉) =
(𝑗𝑉)𝑝!𝒪𝑉(𝑈) = 𝒪𝑉(𝑈) it corresponds to the element 1 ∈ 𝒪𝑉(𝑈).

Lemma 18.10.3. Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be a covering. Denote
𝑗𝑖0…𝑖𝑝 ∶ 𝑈𝑖0…𝑖𝑝 → 𝑋 the open immersion. Consider the chain complex𝐾(𝒰)• of presheaves
of 𝒪𝑋-modules

… → ⨁
𝑖0𝑖1𝑖2

(𝑗𝑖0𝑖1𝑖2)𝑝!𝒪𝑈𝑖0𝑖1𝑖2
→ ⨁

𝑖0𝑖1

(𝑗𝑖0𝑖1)𝑝!𝒪𝑈𝑖0𝑖1
→ ⨁

𝑖0

(𝑗𝑖0)𝑝!𝒪𝑈𝑖0
→ 0 → …

where the last nonzero term is placed in degree 0 and where the map

(𝑗𝑖0…𝑖𝑝+1
)𝑝!𝒪𝑈𝑖0…𝑖𝑝+1

⟶ (𝑗𝑖0… ̂𝑖𝑗…𝑖𝑝+1
)𝑝!𝒪𝑈𝑖0… ̂𝑖𝑗…𝑖𝑝+1

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01EJ
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is given by (−1)𝑗 times the canonical map. Then there is an isomorphism

𝐻𝑜𝑚𝒪𝑋
(𝐾(𝒰)•, ℱ) = ̌𝒞•(𝒰, ℱ)

functorial in ℱ ∈ 𝑂𝑏(PMod(𝒪𝑋)).

Proof. We saw in the discussion just above the lemma that
𝐻𝑜𝑚𝒪𝑋

((𝑗𝑖0…𝑖𝑝)𝑝!𝒪𝑈𝑖0…𝑖𝑝
, ℱ) = ℱ(𝑈𝑖0…𝑖𝑝).

Hence we see that it is indeed the case that the direct sum

⨁𝑖0…𝑖𝑝
(𝑗𝑖0…𝑖𝑝)𝑝!𝒪𝑈𝑖0…𝑖𝑝

represents the functor
ℱ ⟼ ∏𝑖0…𝑖𝑝

ℱ(𝑈𝑖0…𝑖𝑝).

Hence by Categories, Yoneda Lemma 4.3.5 we see that there is a complex 𝐾(𝒰)• with
terms as given. It is a simple matter to see that the maps are as given in the lemma. �

Lemma 18.10.4. Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be a covering. Let
𝒪𝒰 ⊂ 𝒪𝑋 be the image presheaf of the map ⨁ 𝑗𝑝!𝒪𝑈𝑖

→ 𝒪𝑋. The chain complex 𝐾(𝒰)• of
presheaves of Lemma 18.10.3 above has homology presheaves

𝐻𝑖(𝐾(𝒰)•) = {
0 if 𝑖≠0

𝒪𝒰 if 𝑖 = 0

Proof. Consider the extended complex 𝐾𝑒𝑥𝑡
• one gets by putting 𝒪𝒰 in degree −1 with the

obvious map 𝐾(𝒰)0 = ⨁𝑖0
(𝑗𝑖0)𝑝!𝒪𝑈𝑖0

→ 𝒪𝒰. It suffices to show that taking sections of this
extended complex over any open 𝑊 ⊂ 𝑋 leads to an acyclic complex. In fact, we claim
that for every 𝑊 ⊂ 𝑋 the complex 𝐾𝑒𝑥𝑡

• (𝑊) is homotopy equivalent to the zero complex.
Write 𝐼 = 𝐼1 ⊔ 𝐼2 where 𝑊 ⊂ 𝑈𝑖 if and only if 𝑖 ∈ 𝐼1.
If 𝐼1 = ∅, then the complex 𝐾𝑒𝑥𝑡

• (𝑊) = 0 so there is nothing to prove.
If 𝐼1≠∅, then 𝒪𝒰(𝑊) = 𝒪𝑋(𝑊) and

𝐾𝑒𝑥𝑡
𝑝 (𝑊) = ⨁𝑖0…𝑖𝑝∈𝐼1

𝒪𝑋(𝑊).

This is true because of the simple description of the presheaves (𝑗𝑖0…𝑖𝑝)𝑝!𝒪𝑈𝑖0…𝑖𝑝
. Moreover,

the differential of the complex 𝐾𝑒𝑥𝑡
• (𝑊) is given by

𝑑(𝑠)𝑖0…𝑖𝑝 = ∑𝑗=0,…,𝑝+1 ∑𝑖∈𝐼1
(−1)𝑗𝑠𝑖0…𝑖𝑗−1𝑖𝑖𝑗…𝑖𝑝.

The sum is finite as the element 𝑠 has finite support. Fix an element 𝑖fix ∈ 𝐼1. Define a map
ℎ ∶ 𝐾𝑒𝑥𝑡

𝑝 (𝑊) ⟶ 𝐾𝑒𝑥𝑡
𝑝+1(𝑊)

by the rule

ℎ(𝑠)𝑖0…𝑖𝑝+1
= {

0 if 𝑖0≠𝑖
𝑠𝑖1…𝑖𝑝+1

if 𝑖0 = 𝑖fix
We will use the shorthand ℎ(𝑠)𝑖0…𝑖𝑝+1

= (𝑖0 = 𝑖fix)𝑠𝑖1…𝑖𝑝 for this. Then we compute

(𝑑ℎ + ℎ𝑑)(𝑠)𝑖0…𝑖𝑝

= ∑
𝑗

∑
𝑖∈𝐼1

(−1)𝑗ℎ(𝑠)𝑖0…𝑖𝑗−1𝑖𝑖𝑗…𝑖𝑝 + (𝑖 = 𝑖0)𝑑(𝑠)𝑖1…𝑖𝑝

= 𝑠𝑖0…𝑖𝑝 + ∑
𝑗≥1

∑
𝑖∈𝐼1

(−1)𝑗(𝑖0 = 𝑖fix)𝑠𝑖1…𝑖𝑗−1𝑖𝑖𝑗…𝑖𝑝 + (𝑖0 = 𝑖fix)𝑑(𝑠)𝑖1…𝑖𝑝
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which is equal to 𝑠𝑖0…𝑖𝑝 as desired. �

Lemma 18.10.5. Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering
of 𝑈 ⊂ 𝑋. The Čech cohomology functors �̌�𝑝(𝒰, −) are canonically isomomorphic as a
𝛿-functor to the right derived functors of the functor

�̌�0(𝒰, −) ∶ PMod(𝒪𝑋) ⟶ Mod(𝒪𝑋(𝑈)).

Moreover, there is a functorial quasi-isomorphism
̌𝒞•(𝒰, ℱ) ⟶ 𝑅�̌�0(𝒰, ℱ)

where the right hand side indicates the right derived functor

𝑅�̌�0(𝒰, −) ∶ 𝐷+(PMod(𝒪𝑋)) ⟶ 𝐷+(𝒪𝑋(𝑈))

of the left exact functor �̌�0(𝒰, −).

Proof. Note that the category of presheaves of 𝒪𝑋-modules has enough injectives, see
Injectives, Proposition 17.12.5. Note that �̌�0(𝒰, −) is a left exact functor from the category
of presheaves of 𝒪𝑋-modules to the category of 𝒪𝑋(𝑈)-modules. Hence the derived functor
and the right derived fuctor exist, see Derived Categories, Section 11.19.

Let ℐ be a injective presheaf of 𝒪𝑋-modules. In this case the functor 𝐻𝑜𝑚𝒪𝑋
(−, ℐ) is exact

on PMod(𝒪𝑋). By Lemma 18.10.3 we have

𝐻𝑜𝑚𝒪𝑋
(𝐾(𝒰)•, ℐ) = ̌𝒞•(𝒰, ℐ).

By Lemma 18.10.4 we have that 𝐾(𝒰)• is quasi-isomorphic to 𝒪𝒰[0]. Hence by the ex-
actness of Hom into ℐ mentioned above we see that �̌�𝑖(𝒰, ℐ) = 0 for all 𝑖 > 0. Thus
the 𝛿-functor (�̌�𝑛, 𝛿) (see Lemma 18.10.2) satisfies the assumptions of Homology, Lemma
10.9.4, and hence is a universal 𝛿-functor.

By Derived Categories, Lemma 11.19.4 also the sequence 𝑅𝑖�̌�0(𝒰, −) forms a universal
𝛿-functor. By the uniqueness of universal 𝛿-functors, see Homology, Lemma 10.9.5 we
conclude that 𝑅𝑖�̌�0(𝒰, −) = �̌�𝑖(𝒰, −). This is enough for most applications and the reader
is suggested to skip the rest of the proof.

Let ℱ be any presheaf of 𝒪𝑋-modules. Choose an injective resolution ℱ → ℐ• in the
category PMod(𝒪𝑋). Consider the double complex 𝐴•,• with terms

𝐴𝑝,𝑞 = ̌𝒞𝑝(𝒰, ℐ𝑞).

Consider the simple complex 𝑠𝐴• associated to this double complex. There is a map of
complexes

̌𝒞•(𝒰, ℱ) ⟶ 𝑠𝐴•

coming from the maps ̌𝒞𝑝(𝒰, ℱ) → 𝐴𝑝,0 = ̌𝒞•(𝒰, ℐ0) and there is a map of complexes

�̌�0(𝒰, ℐ•) ⟶ 𝑠𝐴•

coming from the maps �̌�0(𝒰, ℐ𝑞) → 𝐴0,𝑞 = ̌𝒞0(𝒰, ℐ𝑞). Both of these maps are quasi-
isomorphisms by an application of Homology, Lemma 10.19.6. Namely, the columns of
the double complex are exact in positive degrees because the Čech complex as a functor is
exact (Lemma 18.10.1) and the rows of the double complex are exact in positive degrees
since as we just saw the higher Čech cohomology groups of the injective presheaves ℐ𝑞

are zero. Since quasi-isomorphisms become invertible in 𝐷+(𝒪𝑋(𝑈)) this gives the last
displayed morphism of the lemma. We omit the verification that this morphism is functo-
rial. �
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18.11. Cech cohomology and cohomology

Lemma 18.11.1. Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be a covering. Let ℐ be
an injective 𝒪𝑋-module. Then

�̌�𝑝(𝒰, ℐ) = {
ℐ(𝑈) if 𝑝 = 0

0 if 𝑝 > 0

Proof. An injective 𝒪𝑋-module is also injective as an object in the category PMod(𝒪𝑋)
(for example since sheafification is an exact left adjoint to the inclusion functor, using Ho-
mology, Lemma 10.22.1). Hence we can apply Lemma 18.10.5 (or its proof) to see the
result. �

Lemma 18.11.2. Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be a covering. There is
a transformation

̌𝒞•(𝒰, −) ⟶ 𝑅Γ(𝑈, −)
of functorsMod(𝒪𝑋) → 𝐷+(𝒪𝑋(𝑈)). In particular this provides canonical maps �̌�𝑝(𝒰, ℱ) →
𝐻𝑝(𝑈, ℱ) for ℱ ranging over Mod(𝒪𝑋).

Proof. Let ℱ be an 𝒪𝑋-module. Choose an injective resolution ℱ → ℐ•. Consider the
double complex 𝐴•,• with terms 𝐴𝑝,𝑞 = ̌𝒞𝑝(𝒰, ℐ𝑞). Moreover, consider the associated
simple complex 𝑠𝐴•, see Homology, Definition 10.19.2. There is a map of complexes

𝛼 ∶ Γ(𝑈, ℐ•) ⟶ 𝑠𝐴•

coming from the maps ℐ𝑞(𝑈) → �̌�0(𝒰, ℐ𝑞) and a map of complexes

𝛽 ∶ ̌𝒞•(𝒰, ℱ) ⟶ 𝑠𝐴•

coming from the map ℱ → ℐ0. We can apply Homology, Lemma 10.19.6 to see that 𝛼
is a quasi-isomorphism. Namely, Lemma 18.11.1 implies that the 𝑞th row of the double
complex 𝐴•,• is a resolution of Γ(𝑈, ℐ𝑞). Hence 𝛼 becomes invertible in 𝐷+(𝒪𝑋(𝑈)) and
the transformation of the lemma is the composition of 𝛽 followed by the inverse of 𝛼. We
omit the verification that this is functorial. �

Lemma18.11.3. Let𝑋 be a ringed space. Consider the functor 𝑖 ∶ Mod(𝒪𝑋) → PMod(𝒪𝑋).
It is a left exact functor with right derived functors given by

𝑅𝑝𝑖(ℱ) = 𝐻𝑝(ℱ) ∶ 𝑈 ⟼ 𝐻𝑝(𝑈, ℱ)

see discussion in Section 18.6.

Proof. It is clear that 𝑖 is left exact. Choose an injective resolution ℱ → ℐ•. By definition
𝑅𝑝𝑖 is the 𝑝th cohomology presheaf of the complex ℐ•. In other words, the sections of
𝑅𝑝𝑖(ℱ) over an open 𝑈 are given by

Ker(ℐ𝑛(𝑈) → ℐ𝑛+1(𝑈))
Im(ℐ𝑛−1(𝑈) → ℐ𝑛(𝑈))

.

which is the definition of 𝐻𝑝(𝑈, ℱ). �

Lemma 18.11.4. Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be a covering. For any
sheaf of 𝒪𝑋-modules ℱ there is a spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥0 with

𝐸𝑝,𝑞
2 = �̌�𝑝(𝒰, 𝐻𝑞(ℱ))

converging to 𝐻𝑝+𝑞(𝑈, ℱ). This spectral sequence is functorial in ℱ.
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Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma 11.21.2)
for the functors

𝑖 ∶ Mod(𝒪𝑋) → PMod(𝒪𝑋) and �̌�0(𝒰, −) ∶ PMod(𝒪𝑋) → Mod(𝒪𝑋(𝑈)).

Namely, we have �̌�0(𝒰, 𝑖(ℱ)) = ℱ(𝑈) by Lemma 18.9.2. We have that 𝑖(ℐ) is Cech acyclic
by Lemma 18.11.1. And we have that �̌�𝑝(𝒰, −) = 𝑅𝑝�̌�0(𝒰, −) as functors on PMod(𝒪𝑋)
by Lemma 18.10.5. Putting everything together gives the lemma. �

Lemma 18.11.5. Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be a covering. Let ℱ be
an 𝒪𝑋-module. Assume that 𝐻𝑖(𝑈𝑖0…𝑖𝑝, ℱ) = 0 for all 𝑖 > 0, all 𝑝 ≥ 0 and all 𝑖0, … , 𝑖𝑝 ∈ 𝐼.
Then �̌�𝑝(𝒰, ℱ) = 𝐻𝑝(𝑈, ℱ) as 𝒪𝑋(𝑈)-modules.

Proof. We will use the spectral sequence of Lemma 18.11.4. The assumptions mean that
𝐸𝑝,𝑞

2 = 0 for all (𝑝, 𝑞) with 𝑞≠0. Hence the spectral sequence degenerates at 𝐸2 and the
result follows. �

Lemma 18.11.6. Let 𝑋 be a ringed space. Let
0 → ℱ → 𝒢 → ℋ → 0

be a short exact sequence of 𝒪𝑋-modules. Let 𝑈 ⊂ 𝑋 be an open subset. If there exists a
cofinal system of open coverings 𝒰 of 𝑈 such that �̌�1(𝒰, ℱ) = 0, then the map 𝒢(𝑈) →
ℋ(𝑈) is surjective.

Proof. Take an element 𝑠 ∈ ℋ(𝑈). Choose an open covering 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 such that
(a) �̌�1(𝒰, ℱ) = 0 and (b) 𝑠|𝑈𝑖

is the image of a section 𝑠𝑖 ∈ 𝒢(𝑈𝑖). Since we can certainly
find a covering such that (b) holds it follows from the assumptions of the lemma that we
can find a covering such that (a) and (b) both hold. Consider the sections

𝑠𝑖0𝑖1 = 𝑠𝑖1|𝑈𝑖0𝑖1
− 𝑠𝑖0|𝑈𝑖0𝑖1

.

Since 𝑠𝑖 lifts 𝑠 we see that 𝑠𝑖0𝑖1 ∈ ℱ(𝑈𝑖0𝑖1). By the vanishing of �̌�1(𝒰, ℱ) we can find
sections 𝑡𝑖 ∈ ℱ(𝑈𝑖) such that

𝑠𝑖0𝑖1 = 𝑡𝑖1|𝑈𝑖0𝑖1
− 𝑡𝑖0|𝑈𝑖0𝑖1

.

Then clearly the sections 𝑠𝑖 − 𝑡𝑖 satsify the sheaf condition and glue to a section of 𝒢 over
𝑈 which maps to 𝑠. Hence we win. �

Lemma 18.11.7. Let 𝑋 be a ringed space. Let ℱ be an 𝒪𝑋-module such that

�̌�𝑝(𝒰, ℱ) = 0
for all 𝑝 > 0 and any open covering 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 of 𝑋. Then 𝐻𝑝(𝑈, ℱ) = 0 for all
𝑝 > 0 and any open 𝑈 ⊂ 𝑋.

Proof. Let ℱ be a sheaf satisfying the assumption of the lemma. We will indicate this
by saying ``ℱ has vanishing higher Cech cohomology for any open covering''. Choose an
embedding ℱ → ℐ into an injective 𝒪𝑋-module. By Lemma 18.11.1 ℐ has vanishing
higher Cech cohomology for any open covering. Let 𝒬 = ℐ/ℱ so that we have a short
exact sequence

0 → ℱ → ℐ → 𝒬 → 0.
By Lemma 18.11.6 and our assumptions this sequence is actually exact as a sequence of
presheaves! In particular we have a long exact sequence of Čech cohomology groups for
any open covering 𝒰, see Lemma 18.10.2 for example. This implies that 𝒬 is also an
𝒪𝑋-module with vanishing higher Čech cohomology for all open coverings.
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Next, we look at the long exact cohomology sequence

0 // 𝐻0(𝑈, ℱ) // 𝐻0(𝑈, ℐ) // 𝐻0(𝑈, 𝒬)

tt
𝐻1(𝑈, ℱ) // 𝐻1(𝑈, ℐ) // 𝐻1(𝑈, 𝒬)

ss… … …

for any open 𝑈 ⊂ 𝑋. Since ℐ is injective we have 𝐻𝑛(𝑈, ℐ) = 0 for 𝑛 > 0 (see Derived
Categories, Lemma 11.19.4). By the above we see that 𝐻0(𝑈, ℐ) → 𝐻0(𝑈, 𝒬) is surjective
and hence 𝐻1(𝑈, ℱ) = 0. Since ℱ was an arbitrary 𝒪𝑋-module with vanishing higher Čech
cohomology we conclude that also 𝐻1(𝑈, 𝒬) = 0 since 𝒬 is another of these sheaves (see
above). By the long exact sequence this in turn implies that 𝐻2(𝑈, ℱ) = 0. And so on and
so forth. �

Lemma 18.11.8. (Variant of Lemma 18.11.7.) Let 𝑋 be a ringed space. Let ℬ be a basis
for the topology on 𝑋. Let ℱ be an 𝒪𝑋-module. Assume there exists a set of open coverings
Cov with the following properties:

(1) For every 𝒰 ∈ Cov with 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 we have 𝑈, 𝑈𝑖 ∈ ℬ and every
𝑈𝑖0…𝑖𝑝 ∈ ℬ.

(2) For every 𝑈 ∈ ℬ the open coverings of 𝑈 occuring in Cov is a cofinal system of
open coverings of 𝑈.

(3) For every 𝒰 ∈ Cov we have �̌�𝑝(𝒰, ℱ) = 0 for all 𝑝 > 0.

Then 𝐻𝑝(𝑈, ℱ) = 0 for all 𝑝 > 0 and any 𝑈 ∈ ℬ.

Proof. Let ℱ and Cov be as in the lemma. Wewill indicate this by saying ``ℱ has vanishing
higher Cech cohomology for any 𝒰 ∈ Cov''. Choose an embedding ℱ → ℐ into an injective
𝒪𝑋-module. By Lemma 18.11.1 ℐ has vanishing higher Čech cohomology for any 𝒰 ∈
Cov. Let 𝒬 = ℐ/ℱ so that we have a short exact sequence

0 → ℱ → ℐ → 𝒬 → 0.

By Lemma 18.11.6 and our assumption (2) this sequence gives rise to an exact sequence

0 → ℱ(𝑈) → ℐ(𝑈) → 𝒬(𝑈) → 0.

for every 𝑈 ∈ ℬ. Hence for any 𝒰 ∈ Cov we get a short exact sequence of Čech complexes

0 → ̌𝒞•(𝒰, ℱ) → ̌𝒞•(𝒰, ℐ) → ̌𝒞•(𝒰, 𝒬) → 0

since each term in the Čech complex is made up out of a product of values over elements
of ℬ by assumption (1). In particular we have a long exact sequence of Čech cohomology
groups for any open covering 𝒰 ∈ Cov. This implies that 𝒬 is also an 𝒪𝑋-module with
vanishing higher Čech cohomology for all 𝒰 ∈ Cov.
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Next, we look at the long exact cohomology sequence

0 // 𝐻0(𝑈, ℱ) // 𝐻0(𝑈, ℐ) // 𝐻0(𝑈, 𝒬)

tt
𝐻1(𝑈, ℱ) // 𝐻1(𝑈, ℐ) // 𝐻1(𝑈, 𝒬)

ss… … …
for any 𝑈 ∈ ℬ. Since ℐ is injective we have 𝐻𝑛(𝑈, ℐ) = 0 for 𝑛 > 0 (see Derived
Categories, Lemma 11.19.4). By the above we see that 𝐻0(𝑈, ℐ) → 𝐻0(𝑈, 𝒬) is surjective
and hence 𝐻1(𝑈, ℱ) = 0. Since ℱ was an arbitrary 𝒪𝑋-module with vanishing higher Čech
cohomology for all 𝒰 ∈ Covwe conclude that also 𝐻1(𝑈, 𝒬) = 0 since 𝒬 is another of these
sheaves (see above). By the long exact sequence this in turn implies that 𝐻2(𝑈, ℱ) = 0.
And so on and so forth. �

Lemma 18.11.9. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let ℐ be an injective
𝒪𝑋-module. Then

(1) �̌�𝑝(𝒱, 𝑓∗ℐ) = 0 for all 𝑝 > 0 and any open covering 𝒱 ∶ 𝑉 = ⋃𝑗∈𝐽 𝑉𝑗 of 𝑌.
(2) 𝐻𝑝(𝑉, 𝑓∗ℐ) = 0 for all 𝑝 > 0 and every open 𝑉 ⊂ 𝑌.

In other words, 𝑓∗ℐ is right acyclic forΓ(𝑈, −) (seeDerivedCategories, Definition 11.15.3)
for any 𝑈 ⊂ 𝑋 open.

Proof. Set 𝒰 ∶ 𝑓−1(𝑉) = ⋃𝑗∈𝐽 𝑓−1(𝑉𝑗). It is an open covering of 𝑋 and

̌𝒞•(𝒱, 𝑓∗ℐ) = ̌𝒞•(𝒰, ℐ).

This is true because

𝑓∗ℐ(𝑉𝑗0…𝑗𝑝
) = ℐ(𝑓−1(𝑉𝑗0…𝑗𝑝

)) = ℐ(𝑓−1(𝑉𝑗0
) ∩ … ∩ 𝑓−1(𝑉𝑗𝑝

)) = ℐ(𝑈𝑗0…𝑗𝑝
).

Thus the first statement of the lemma follows from Lemma 18.11.1. The second statement
follows from the first and Lemma 18.11.7. �

The following lemma implies in particular that 𝑓∗ ∶ Ab(𝑋) → Ab(𝑌) transforms injective
abelian sheaves into injective abelian sheaves.

Lemma 18.11.10. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Assume 𝑓 is flat. Then
𝑓∗ℐ is an injective 𝒪𝑌-module for any injective 𝒪𝑋-module ℐ.

Proof. In this case the functor 𝑓∗ transforms injections into injections. Hence the result
follows from Modules, Lemma 15.17.2 and Homology, Lemma 10.22.1 �

18.12. The Leray spectral sequence

Lemma 18.12.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. There is a commutative
diagram

𝐷+(𝑋)
𝑅Γ(𝑋,−)

//

𝑅𝑓∗
��

𝐷+(𝒪𝑋(𝑋))

restriction
��

𝐷+(𝑌)
𝑅Γ(𝑌,−) // 𝐷+(𝒪𝑌(𝑌))

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01EX
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More generally for any 𝑉 ⊂ 𝑌 open and 𝑈 = 𝑓−1(𝑉) there is a commutative diagram

𝐷+(𝑋)
𝑅Γ(𝑈,−)

//

𝑅𝑓∗
��

𝐷+(𝒪𝑋(𝑈))

restriction
��

𝐷+(𝑌)
𝑅Γ(𝑉,−) // 𝐷+(𝒪𝑌(𝑉))

See also Remark 18.12.2 for more explanation.

Proof. LetΓ𝑟𝑒𝑠 ∶ Mod(𝒪𝑋) → Mod(𝒪𝑌(𝑌)) be the functor which associates to an𝒪𝑋-module
ℱ the global sections of ℱ viewed as a 𝒪𝑌(𝑌)-module via the map 𝑓♯ ∶ 𝒪𝑌(𝑌) → 𝒪𝑋(𝑋).
Let 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∶ Mod(𝒪𝑋(𝑋)) → Mod(𝒪𝑌(𝑌)) be the restriction functor induced by 𝑓♯ ∶
𝒪𝑌(𝑌) → 𝒪𝑋(𝑋). Note that 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is exact so that its right derived functor is computed
by simply applying the restriction functor, see Derived Categories, Lemma 11.16.8. It is
clear that

Γ𝑟𝑒𝑠 = 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∘ Γ(𝑋, −) = Γ(𝑌, −) ∘ 𝑓∗
We claim that Derived Categories, Lemma 11.21.1 applies to both compositions. For the
first this is clear by our remarks above. For the second, it follows from Lemma 18.11.9
which implies that injective 𝒪𝑋-modules are mapped to Γ(𝑌, −)-acyclic sheaves on 𝑌. �

Remark 18.12.2. Here is a down-to-earth explanation of the meaning of Lemma 18.12.1.
It says that given 𝑓 ∶ 𝑋 → 𝑌 and ℱ ∈ Mod(𝒪𝑋) and given an injective resolution ℱ → ℐ•

we have
𝑅Γ(𝑋, ℱ) is represented by Γ(𝑋, ℐ•)

𝑅𝑓∗ℱ is represented by 𝑓∗ℐ•

𝑅Γ(𝑌, 𝑅𝑓∗ℱ) is represented by Γ(𝑌, 𝑓∗ℐ•)
the last fact coming from Leray's acyclicity lemma (Derived Categories, Lemma 11.16.7)
and Lemma 18.11.9. Finally, it combines this with the trivial observation that

Γ(𝑋, ℐ•) = Γ(𝑌, 𝑓∗ℐ•).
to arrive at the commutativity of the diagram of the lemma.

Lemma 18.12.3. Let 𝑋 be a ringed space. Let ℱ be an 𝒪𝑋-module.
(1) The cohomology groups𝐻𝑖(𝑈, ℱ) for𝑈 ⊂ 𝑋 open ofℱ computed as an𝒪𝑋-module,

or computed as an abelian sheaf are identical.
(2) Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. The higher direct images 𝑅𝑖𝑓∗ℱ

of ℱ computed as an 𝒪𝑋-module, or computed as an abelian sheaf are identical.
There are similar statements in the case of bounded below complexes of 𝒪𝑋-modules.

Proof. Consider the morphism of ringed spaces (𝑋, 𝒪𝑋) → (𝑋, 𝐙𝑋) given by the identity
on the underlying topological space and by the unique map of sheaves of rings 𝐙𝑋 → 𝒪𝑋.
Let ℱ be an 𝒪𝑋-module. Denote ℱ𝑎𝑏 the same sheaf seens as an 𝐙𝑋-module, i.e., seens as
a sheaf of abelian groups. Let ℱ → ℐ• be an injective resolution. By Remark 18.12.2 we
see that Γ(𝑋, ℐ•) computes both 𝑅Γ(𝑋, ℱ) and 𝑅Γ(𝑋, ℱ𝑎𝑏). This proves (1).
To prove (2) we use (1) and Lemma 18.6.3. The result follows immediately. �

Lemma 18.12.4. (Leray spectral sequence.) Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed
spaces. Let ℱ• be a bounded below complex of 𝒪𝑋-modules. There is a spectral sequence

𝐸𝑝,𝑞
2 = 𝐻𝑝(𝑌, 𝑅𝑞𝑓∗(ℱ•))

converging to 𝐻𝑝+𝑞(𝑋, ℱ•).
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Proof. This is just the Grothendieck spectral sequenceDerived Categories, Lemma 11.21.2
coming from the composition of functors Γ𝑟𝑒𝑠 = Γ(𝑌, −) ∘ 𝑓∗ where Γ𝑟𝑒𝑠 is as in the proof
of Lemma 18.12.1. To see that the assumptions of Derived Categories, Lemma 11.21.2 are
satisfied, see the proof of Lemma 18.12.1 or Remark 18.12.2. �

Remark 18.12.5. The Leray spectral sequence, the way we proved it in Lemma 18.12.4 is
a spectral sequence of Γ(𝑌, 𝒪𝑌)-modules. However, it is quite easy to see that it is in fact a
spectral sequence of Γ(𝑋, 𝒪𝑋)-modules. For example 𝑓 gives rise to a morphism of ringed
spaces 𝑓′ ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝑓∗𝒪𝑋). By Lemma 18.12.3 the terms 𝐸𝑝,𝑞

𝑟 of the Leray spectral
sequence for an 𝒪𝑋-module ℱ and 𝑓 are identical with those for ℱ and 𝑓′ at least for 𝑟 ≥ 2.
Namely, they both agree with the terms of the Leray spectral sequence for ℱ as an abelian
sheaf. And since (𝑓∗𝒪𝑋)(𝑌) = 𝒪𝑋(𝑋) we see the result. It is often the case that the Leray
spectral sequence carries additional structure.

Lemma 18.12.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let ℱ be an 𝒪𝑋-module.
(1) If 𝑅𝑞𝑓∗ℱ = 0 for 𝑞 > 0, then 𝐻𝑝(𝑋, ℱ) = 𝐻𝑝(𝑌, 𝑓∗ℱ) for all 𝑝.
(2) If 𝐻𝑝(𝑌, 𝑅𝑞𝑓∗ℱ) = 0 for all 𝑞 and 𝑝 > 0, then 𝐻𝑞(𝑋, ℱ) = 𝐻0(𝑌, 𝑅𝑞𝑓∗ℱ) for all

𝑞.

Proof. These are two simple conditions that force the Leray spectral sequence to converge.
You can also prove these facts directly (without using the spectral sequence) which is a
good exercise in cohomology of sheaves. �

Lemma 18.12.7. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms of ringed spaces. In this
case 𝑅𝑔∗ ∘ 𝑅𝑓∗ = 𝑅(𝑔 ∘ 𝑓)∗ as functors from 𝐷+(𝑋) → 𝐷+(𝑍).

Proof. We are going to apply Derived Categories, Lemma 11.21.1. It is clear that 𝑔∗ ∘𝑓∗ =
(𝑔 ∘ 𝑓)∗, see Sheaves, Lemma 6.21.2. It remains to show that 𝑓∗ℐ is 𝑔∗-acyclic. This
follows fromLemma 18.11.9 and the description of the higher direct images 𝑅𝑖𝑔∗ in Lemma
18.6.3. �

Lemma 18.12.8. (Relative Leray spectral sequence.) Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be
morphisms of ringed spaces. Let ℱ be an 𝒪𝑋-module. There is a spectral sequence with

𝐸𝑝,𝑞
2 = 𝑅𝑝𝑔∗(𝑅𝑞𝑓∗ℱ)

converging to 𝑅𝑝+𝑞(𝑔 ∘ 𝑓)∗ℱ. This spectral sequence is functorial in ℱ, and there is a
version for bounded below complexes of 𝒪𝑋-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors and follows
from Lemma 18.12.7 and Derived Categories, Lemma 11.21.2. �

18.13. Functoriality of cohomology

Lemma 18.13.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let 𝒢•, resp. ℱ• be
a bounded below complex of 𝒪𝑌-modules, resp. 𝒪𝑋-modules. Let 𝜑 ∶ 𝒢• → 𝑓∗ℱ• be a
morphism of complexes. There is a canonical morphism

𝒢• ⟶ 𝑅𝑓∗(ℱ•)

in 𝐷+(𝑌). Moreover this construction is functorial in the triple (𝒢•, ℱ•, 𝜑).

Proof. Choose an injective resolution ℱ• → ℐ•. By definition 𝑅𝑓∗(ℱ•) is represented by
𝑓∗ℐ• in 𝐾+(𝒪𝑌). The composition

𝒢• → 𝑓∗ℱ• → 𝑓∗ℐ•

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01F3
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is a morphism in 𝐾+(𝑌) which turns into the morphism of the lemma upon applying the
localization functor 𝑗𝑌 ∶ 𝐾+(𝑌) → 𝐷+(𝑌). �

Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let 𝒢 be an 𝒪𝑌-module and let ℱ be an
𝒪𝑋-module. Recall that an 𝑓-map 𝜑 from 𝒢 to ℱ is a map 𝜑 ∶ 𝒢 → 𝑓∗ℱ, or what is the
same thing, a map 𝜑 ∶ 𝑓∗𝒢 → ℱ. See Sheaves, Definition 6.21.7. Such an 𝑓-map gives
rise to a morphism of complexes

(18.13.1.1) 𝜑 ∶ 𝑅Γ(𝑌, 𝒢) ⟶ 𝑅Γ(𝑋, ℱ)

in 𝐷+(𝒪𝑌(𝑌)). Namely, we use the morphism 𝒢 → 𝑅𝑓∗ℱ in 𝐷+(𝑌) of Lemma 18.13.1, and
we apply 𝑅Γ(𝑌, −). By Lemma 18.12.1 we see that 𝑅Γ(𝑋, ℱ) = 𝑅Γ(𝑌, 𝑅𝑓∗ℱ) and we get
the displayed arrow. We spell this out completely in Remark 18.13.2 below. In particular it
gives rise to maps on cohomology

(18.13.1.2) 𝜑 ∶ 𝐻𝑖(𝑌, 𝒢) ⟶ 𝐻𝑖(𝑋, ℱ).

Remark 18.13.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let 𝒢 be an 𝒪𝑌-module.
Let ℱ be an 𝒪𝑋-module. Let 𝜑 be an 𝑓-map from 𝒢 to ℱ. Choose a resolution ℱ → ℐ•

by a complex of injective 𝒪𝑋-modules. Choose resolutions 𝒢 → 𝐽• and 𝑓∗ℐ → (𝒥′)• by
complexes of injective 𝒪𝑌-modules. By Derived Categories, Lemma 11.17.6 there exists a
map of complexes 𝛽 such that the diagram

(18.13.2.1) 𝒢

��

// 𝑓∗ℱ // 𝑓∗ℐ•

��
𝒥• 𝛽 // (𝒥′)•

commutes. Applying global section functors we see that we get a diagram

Γ(𝑌, 𝑓∗ℐ•)

𝑞𝑖𝑠
��

Γ(𝑋, ℐ•)

Γ(𝑌, 𝒥•)
𝛽 // Γ(𝑌, (𝒥′)•)

The complex on the bottom left represents 𝑅Γ(𝑌, 𝒢) and the complex on the top right rep-
resents 𝑅Γ(𝑋, ℱ). The vertical arrow is a quasi-isomorphism by Lemma 18.12.1 which
becomes invertible after applying the localization functor 𝐾+(𝒪𝑌(𝑌)) → 𝐷+(𝒪𝑌(𝑌)). The
arrow (18.13.1.1) is given by the composition of the horizontal map by the inverse of the
vertical map.

Lemma 18.13.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed spaces. Let ℱ be an 𝒪𝑋-module.
Let 𝒢 be an 𝒪𝑌-module. Let 𝜑 ∶ 𝑓∗𝒢 → ℱ be an 𝑓-map. Let 𝒰 ∶ 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 be an
open covering. Let 𝒱 ∶ 𝑌 = ⋃𝑗∈𝐽 𝑉𝑗 be an open covering. Assume that 𝒰 is a refinement
of 𝑓−1𝒱 ∶ 𝑋 = ⋃𝑗∈𝐽 𝑓−1(𝑉𝑗). In this case there exists a commutative diagram

̌𝒞•(𝒰, ℱ) // 𝑅Γ(𝑋, ℱ)

̌𝒞•(𝒱, 𝒢) //

𝛾

OO

𝑅Γ(𝑌, 𝒢)

OO

in𝐷+(𝒪𝑋(𝑋))where the horizontal arrows come from Lemma 18.11.2 and the right vertical
arrow is Equation (18.13.1.1). In particular we get commutative diagrams of cohomology

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01FB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01FD


18.14. THE BASE CHANGE MAP 1097

groups
�̌�𝑝(𝒰, ℱ) // 𝐻𝑝(𝑋, ℱ)

�̌�𝑝(𝒱, 𝒢) //

𝛾

OO

𝐻𝑝(𝑌, 𝒢)

OO

where the right vertical arrow is (18.13.1.2)

Proof. We first define the left vertical arrow. Namely, choose a map 𝑐 ∶ 𝐼 → 𝐽 such that
𝑈𝑖 ⊂ 𝑓−1(𝑉𝑐(𝑖)) for all 𝑖 ∈ 𝐼. In degree 𝑝 we define the map by the rule

𝛾(𝑠)𝑖0…𝑖𝑝 = 𝜑(𝑠)𝑐(𝑖0)…𝑐(𝑖𝑝)

This makes sense because 𝜑 does indeed induce maps 𝒢(𝑉𝑐(𝑖0)…𝑐(𝑖𝑝)) → ℱ(𝑈𝑖0…𝑖𝑝) by as-
sumption. It is also clear that this defines a morphism of complexes. Choose injective
resolutions ℱ → ℐ• on 𝑋 and 𝒢 → 𝐽• on 𝑌. According to the proof of Lemma 18.11.2 we
introduce the double complexes 𝐴•,• and 𝐵•,• with terms

𝐵𝑝,𝑞 = ̌𝒞𝑝(𝒱, 𝒥𝑞) and 𝐴𝑝,𝑞 = ̌𝒞𝑝(𝒰, ℐ𝑞).
As in Remark 18.13.2 above we also choose an injective resolution 𝑓∗ℐ → (𝒥′)• on 𝑌 and
a morphism of complexes 𝛽 ∶ 𝒥 → (𝒥′)• making (18.13.2.1) commutes. We introduce
some more double complexes, namely (𝐵′)•,• and (𝐵″)•, • with

(𝐵′)𝑝,𝑞 = ̌𝒞𝑝(𝒱, (𝒥′)𝑞) and (𝐵″)𝑝,𝑞 = ̌𝒞𝑝(𝒱, 𝑓∗ℐ𝑞).
Note that there is an 𝑓-map of complexes from 𝑓∗ℐ• to ℐ•. Hence it is clear that the same
rule as above defines a morphism of double complexes

𝛾 ∶ (𝐵″)•,• ⟶ 𝐴•,•.
Consider the diagram of complexes

̌𝒞•(𝒰, ℱ) // 𝑠𝐴• Γ(𝑋, ℐ•)
𝑞𝑖𝑠

oo

̌𝒞•(𝒱, 𝒢) //

𝛾

OO

𝑠𝐵• 𝛽 // 𝑠(𝐵′)• 𝑠(𝐵″)•oo

𝑠𝛾

jj

Γ(𝑌, 𝒥•)

𝑞𝑖𝑠

OO

𝛽 // Γ(𝑌, (𝒥′)•)

OO

Γ(𝑌, 𝑓∗ℐ•)

OO

𝑞𝑖𝑠oo

The two horizontal arrows with targets 𝑠𝐴• and 𝑠𝐵• are the ones explained in Lemma
18.11.2. The left upper shape (a pentagon) is commutative simply because (18.13.2.1) is
commutative. The two lower squares are trivially commutative. It is also immediate from
the definitions that the right upper shape (a square) is commutative. The result of the lemma
now follows from the definitions and the fact that going around the diagram on the outer
sides from ̌𝒞•(𝒱, 𝒢) to Γ(𝑋, ℐ•) either on top or on bottom is the same (where you have to
invert any quasi-isomorphisms along the way). �

18.14. The base change map

We will need to know how to construct the base change map in some cases. Since we have
not yet discussed derived pullback we only discuss this in the case of a base change by a
flat morphism of ringed spaces. Before we state the result, let us discuss flat pullback on
the derived category. Namely, suppose that 𝑔 ∶ 𝑋 → 𝑌 is a flat morphism of ringed spaces.
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By Modules, Lemma 15.17.2 the functor 𝑔∗ ∶ Mod(𝒪𝑌) → Mod(𝒪𝑋) is exact. Hence it has
a derived functor

𝑔∗ ∶ 𝐷+(𝑌) → 𝐷+(𝑋)
which is computed by simply pulling back an representative of a given object in 𝐷+(𝑌),
see Derived Categories, Lemma 11.16.8. Hence as indicated we indicate this functor by 𝑔∗

rather than 𝐿𝑔∗.

Lemma 18.14.1. Let
𝑋′

𝑔′
//

𝑓′

��

𝑋

𝑓
��

𝑆′ 𝑔 // 𝑆
be a commutative diagram of ringed spaces. Let ℱ• be a bounded below complex of
𝒪𝑋-modules. Assume both 𝑔 and 𝑔′ are flat. Then there exists a canonical base change
map

𝑔∗𝑅𝑓∗ℱ• ⟶ 𝑅(𝑓′)∗(𝑔′)∗ℱ•

in 𝐷+(𝑆′).

Proof. Choose injective resolutions ℱ• → ℐ• and (𝑔′)∗ℱ• → 𝒥•. By Lemma 18.11.10 we
see that (𝑔′)∗𝒥• is a complex of injectives representing 𝑅(𝑔′)∗(𝑔′)∗ℱ•. Hence by Derived
Categories, Lemmas 11.17.6 and 11.17.7 the arrow 𝛽 in the diagram

(𝑔′)∗(𝑔′)∗ℱ• // (𝑔′)∗𝒥•

ℱ•

𝑎𝑑𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

OO

// ℐ•

𝛽

OO

exists and is unique up to homotopy. Pushing down to 𝑆 we get

𝑓∗𝛽 ∶ 𝑓∗ℐ• ⟶ 𝑓∗(𝑔′)∗𝒥• = 𝑔∗(𝑓′)∗𝒥•

By adjunction of 𝑔∗ and 𝑔∗ we get a map of complexes 𝑔∗𝑓∗ℐ• → (𝑓′)∗𝒥•. Note that this
map is unique up to homotopy since the only choice in the whole process was the choice of
the map 𝛽 and everything was done on the level of complexes. �

Remark 18.14.2. The ``correct'' version of the base change map is map

𝐿𝑔∗𝑅𝑓∗ℱ• ⟶ 𝑅(𝑓′)∗𝐿(𝑔′)∗ℱ•.

The construction of this map really involves dealing with unbounded complexes and having
adjoint functors 𝐿𝑗∗, 𝑅𝑗∗ on unbounded complexes. We will deal with this later (insert
future reference here).

18.15. Cohomology and colimits

Let 𝑋 be a ringed space. Let (ℱ𝑖, 𝜑𝑖𝑖′) be a directed system of sheaves of 𝒪𝑋-modules over
the partially ordered set 𝐼, see Categories, Section 4.19. Since for each 𝑖 there is a canonical
map ℱ𝑖 → 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 we get a canonical map

𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑝(𝑋, ℱ𝑖) ⟶ 𝐻𝑝(𝑋, 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)

for every 𝑝 ≥ 0. Of course there is a similar map for every open 𝑈 ⊂ 𝑋. These maps are
in general not isomorphisms, even for 𝑝 = 0. In this section we generalize the results of
Sheaves, Lemma 6.29.1. See also Modules, Lemma 15.11.6 (in the special case 𝒢 = 𝒪𝑋).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02N7
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Lemma 18.15.1. Let 𝑋 be a ringed space. Assume that the underlying topological space
of 𝑋 has the following properties:

(1) there exists a basis of quasi-compact open subsets, and
(2) the intersection of any two quasi-compact opens is quasi-compact.

Then for any directed system (ℱ𝑖, 𝜑𝑖𝑖′) of sheaves of𝒪𝑋-modules and for any quasi-compact
open 𝑈 ⊂ 𝑋 the canonical map

𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑞(𝑈, ℱ𝑖) ⟶ 𝐻𝑞(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)

is an isomorphism for every 𝑞 ≥ 0.

Proof. It is important in this proof to argue for all quasi-compact opens 𝑈 ⊂ 𝑋 at the same
time. The result is true for 𝑖 = 0 and any quasi-compact open 𝑈 ⊂ 𝑋 by Sheaves, Lemma
6.29.1 (combined with Topology, Lemma 5.18.2). Assume that we have proved the result
for all 𝑞 ≤ 𝑞0 and let us prove the result for 𝑞 = 𝑞0 + 1.

By our conventions on directed systems the index set 𝐼 is directed, and any system of
𝒪𝑋-modules (ℱ𝑖, 𝜑𝑖𝑖′) over 𝐼 is directed. By Injectives, Lemma 17.9.1 the category of
𝒪𝑋-modules has functorial injective embeddings. Thus for any system (ℱ𝑖, 𝜑𝑖𝑖′) there ex-
ists a system (ℐ𝑖, 𝜑𝑖𝑖′) with each ℐ𝑖 an injective 𝒪𝑋-module and a morphism of systems
given by injective 𝒪𝑋-module maps ℱ𝑖 → ℐ𝑖. Denote 𝒬𝑖 the cokernel so that we have short
exact sequences

0 → ℱ𝑖 → ℐ𝑖 → 𝒬𝑖 → 0.
We claim that the sequence

0 → 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 → 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖 → 𝑐𝑜𝑙𝑖𝑚𝑖 𝒬𝑖 → 0.

is also a short exact sequence of 𝒪𝑋-modules. We may check this on stalks. By Sheaves,
Sections 6.28 and 6.29 taking stalks commutes with colimits. Since a directed colimit
of short exact sequences of abelian groups is short exact (see Algebra, Lemma 7.8.9) we
deduce the result. We claim that 𝐻𝑞(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) = 0 for all quasi-compact open 𝑈 ⊂ 𝑋
and all 𝑞 ≥ 1. Accepting this claim for the moment consider the diagram

𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑞0(𝑈, ℐ𝑖)

��

// 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑞0(𝑈, 𝒬𝑖)

��

// 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑞0+1(𝑈, ℱ𝑖)

��

// 0

��
𝐻𝑞0(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) // 𝐻𝑞0(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 𝒬𝑖) // 𝐻𝑞0+1(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖) // 0

The zero at the lower right corner comes from the claim and the zero at the upper right
corner comes from the fact that the sheaves ℐ𝑖 are injective. The top row is exact by an
application of Algebra, Lemma 7.8.9. Hence by the snake lemma we deduce the result for
𝑞 = 𝑞0 + 1.

It remains to show that the claim is true. We will use Lemma 18.11.8. Let ℬ be the
collection of all quasi-compact open subsets of 𝑋. This is a basis for the topology on 𝑋 by
assumption. Let Cov be the collection of finite open coverings 𝒰 ∶ 𝑈 = ⋃𝑗=1,…,𝑚 𝑈𝑗 with
each of 𝑈, 𝑈𝑗 quasi-compact open in 𝑋. By the result for 𝑞 = 0 we see that for 𝒰 ∈ Cov
we have

̌𝒞•(𝒰, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) = 𝑐𝑜𝑙𝑖𝑚𝑖 ̌𝒞•(𝒰, ℐ𝑖)
because all the multiple intersections 𝑈𝑗0…𝑗𝑝

are quasi-compact. By Lemma 18.11.1 each
of the complexes in the colimit of Čech complexes is acyclic in degree ≥ 1. Hence by
Algebra, Lemma 7.8.9 we see that also the Čech complex ̌𝒞•(𝒰, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) is acyclic in

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01FF
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degrees ≥ 1. In other words we see that �̌�𝑝(𝒰, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) = 0 for all 𝑝 ≥ 1. Thus the
assumptions of Lemma 18.11.8 are satisfied and the claim follows. �

18.16. Vanishing on Noetherian topological spaces

The aim is to prove a theorem of Grothendieck namely Lemma 18.16.5. See [Gro57].

Lemma 18.16.1. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of topological spaces. For any
abelian sheaf ℱ on 𝑍 we have 𝐻𝑝(𝑍, ℱ) = 𝐻𝑝(𝑋, 𝑖∗ℱ).

Proof. This is true because 𝑖∗ is exact (seeModules, Lemma 15.6.1), and hence𝑅𝑝𝑖∗ = 0 as
a functor (Derived Categories, Lemma 11.16.8). Thus we may apply Lemma 18.12.6. �

Lemma 18.16.2. Let 𝑋 be an irreducible topological space. Then 𝐻𝑝(𝑋, 𝐴) = 0 for all
𝑝 > 0 and any abelian group 𝐴.

Proof. Recall that 𝐴 is the constant sheaf as defined in Sheaves, Definition 6.7.4. It is clear
that for any nonempty open 𝑈 ⊂ 𝑋 we have 𝐴(𝑈) = 𝐴 as 𝑋 is irreducible (and hence 𝑈 is
connected). We will show that the higher Čech cohomology groups �̌�𝑝(𝒰, 𝐴) are zero for
any open covering 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 of an open 𝑈 ⊂ 𝑋. Then the lemma will follow from
Lemma 18.11.7.

Recall that the value of an abelian sheaf on the empty open set is 0. Hence we may clearly
assume 𝑈𝑖≠∅ for all 𝑖 ∈ 𝐼. In this case we see that 𝑈𝑖 ∩ 𝑈𝑖′≠∅ for all 𝑖, 𝑖′ ∈ 𝐼. Hence we
see that the Čech complex is simply the complex

∏
𝑖0∈𝐼

𝐴 → ∏
(𝑖0,𝑖1)∈𝐼2

𝐴 → ∏
(𝑖0,𝑖1,𝑖2)∈𝐼3

𝐴 → …

We have to see this has trivial higher cohomology groups. We can see this for example
because this is the cech complex for the covering of a 1-point space and Čech cohomology
agrees with cohomology on such a space. (You can also directly verify it by writing an
explicit homotopy.) �

Lemma 18.16.3. Let 𝑋 be a topological space. Let 𝑛 ≥ 0 be an integer. Assume
(1) there exists a basis of quasi-compact open subsets, and
(2) the intersection of any two quasi-compact opens is quasi-compact.
(3) 𝐻𝑝(𝑋, ℱ) = 0 for any abelian sheaf ℱ which is a quotient of 𝑗!𝐙𝑈 for some open

𝑗 ∶ 𝑈 → 𝑋.
Then 𝐻𝑝(𝑋, ℱ) = 0 for all 𝑝 ≥ 𝑛 and any abelian sheaf ℱ on 𝑋.

Proof. Let 𝑆 = ∐𝑈⊂𝑋 ℱ(𝑈). For any finite subset 𝐴 = {𝑠1, … , 𝑠𝑛} ⊂ 𝑆, let ℱ𝐴 be the
subsheaf of ℱ generated by all 𝑠𝑖 (see Modules, Definition 15.4.5). Note that if 𝐴 ⊂ 𝐴′,
then ℱ𝐴 ⊂ ℱ𝐴′. Hence {ℱ𝐴} forms a system over the partially ordered set of finite subsets
of 𝑆. By Modules, Lemma 15.4.6 it is clear that

𝑐𝑜𝑙𝑖𝑚𝐴 ℱ𝐴 = ℱ

by looking at stalks. By Lemma 18.15.1 we have

𝐻𝑝(𝑋, ℱ) = 𝑐𝑜𝑙𝑖𝑚𝐴 𝐻𝑝(𝑋, ℱ𝐴)

Hence it suffices to prove the vanishing for the abelian sheaves ℱ𝐴. In other words, it
suffices to prove the result when ℱ is generated by finitely many local sections.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02UV
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02UW
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02UX


18.16. VANISHING ON NOETHERIAN TOPOLOGICAL SPACES 1101

Suppose that ℱ is gerated by the local sections 𝑠1, … , 𝑠𝑛. Let ℱ′ ⊂ ℱ be the subsheaf
generated by 𝑠1, … , 𝑠𝑛−1. Then we have a short exact sequence

0 → ℱ′ → ℱ → ℱ/ℱ′ → 0

From the long exact sequence of cohomology we see that it suffices to prove the vanishing
for the abelian sheaves ℱ′ and ℱ/ℱ′ which are generated by fewer than 𝑛 local sections.
Hence it suffices to prove the vanishing for sheaves generated by at most one local section.
These sheaves are exactly the quotients of the sheaves 𝑗!𝐙𝑈 mentioned in the lemma. �

Lemma 18.16.4. Let 𝑋 be an irreducible topological space. Let ℋ ⊂ 𝐙 be an abelian
subsheaf of the constant sheaf. Then there exists a nonempty open 𝑈 ⊂ 𝑋 such that ℋ|𝑈 =
𝑑𝐙𝑈 for some 𝑑 ∈ 𝐙.

Proof. Recall that 𝐙(𝑉) = 𝐙 for any nonempty open 𝑉 of 𝑋 (see proof of Lemma 18.16.2).
If ℋ = 0, then the lemma holds with 𝑑 = 0. If ℋ≠0, then there exists a nonempty open
𝑈 ⊂ 𝑋 such that ℋ(𝑈)≠0. Say ℋ(𝑈) = 𝑛𝐙 for some 𝑛 ≥ 1. Hence we see that 𝑛𝐙𝑈 ⊂
ℋ|𝑈 ⊂ 𝐙𝑈. If the first inclusion is strict we can find a nonempty 𝑈′ ⊂ 𝑈 and an integer
1 ≤ 𝑛′ < 𝑛 such that 𝑛′𝐙𝑈′ ⊂ ℋ|𝑈′ ⊂ 𝐙𝑈′. This process has to stop after a finite number
of steps, and hence we get the lemma. �

Lemma18.16.5. Let𝑋 be aNoetherian topological space. If dim(𝑋) ≤ 𝑛, then𝐻𝑝(𝑋, ℱ) =
0 for all 𝑝 > 𝑛 and any abelian sheaf ℱ on 𝑋.

Proof. We prove this lemma by induction on 𝑛. So fix 𝑛 and assume the lemma holds for
all Noetherian topological spaces of dimension < 𝑛.

Let ℱ be an abelian sheaf on 𝑋. Suppose 𝑈 ⊂ 𝑋 is an open. Let 𝑍 ⊂ 𝑋 denote the closed
complement. Denote 𝑗 ∶ 𝑈 → 𝑋 and 𝑖 ∶ 𝑍 → 𝑋 the inclusion maps. Then there is a short
exact sequence

0 → 𝑗!𝑗∗ℱ → ℱ → 𝑖∗𝑖∗ℱ → 0
see Modules, Lemma 15.7.1. Note that 𝑗!𝑗∗ℱ is supported on the topological closure 𝑍′ of
𝑈, i.e., it is of the form 𝑖′

∗ℱ′ for some abelian sheaf ℱ′ on 𝑍′, where 𝑖′ ∶ 𝑍′ → 𝑋 is the
inclusion.

We can use this to reduce to the case where 𝑋 is irreducible. Namely, according to Topol-
ogy, Lemma 5.6.2 𝑋 has finitely many irreducible components. If 𝑋 has more than one ir-
reducible component, then let 𝑍 ⊂ 𝑋 be an irreducible component of 𝑋 and set 𝑈 = 𝑋⧵𝑍.
By the above, and the long exact sequence of cohomology, it suffices to prove the vanish-
ing of 𝐻𝑝(𝑋, 𝑖∗𝑖∗ℱ) and 𝐻𝑝(𝑋, 𝑖′

∗ℱ′) for 𝑝 > 𝑛. By Lemma 18.16.1 it suffices to prove
𝐻𝑝(𝑍, 𝑖∗ℱ) and 𝐻𝑝(𝑍′, ℱ′) for 𝑝 > 𝑛. Since 𝑍′ and 𝑍 have fewer irreducible components
we indeed reduce to the case of an irreducible 𝑋.

If 𝑛 = 0 and 𝑋 = {∗}, then every sheaf is constant and higher cohomology groups vanish
(for example by Lemma 18.16.2).

Suppose 𝑋 is irreducible of dimension 𝑛. By Lemma 18.16.3 we reduce to the case where
ℱ is generated by a single local section, i.e., to the case where there is an exact sequence

0 → ℋ → 𝑗′
!𝐙𝑉 → ℱ → 0

for some open 𝑗′ ∶ 𝑉 → 𝑋. By Lemma 18.16.4 (applied to the restriction of ℋ to 𝑉) there
exists a nonempty open 𝑈 ⊂ 𝑉, and 𝑑 ∈ 𝐙 such that ℋ|𝑈 = 𝑑𝐙𝑈. Hence we see that

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02UY
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02UZ
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ℱ|𝑈 ≅ 𝐙/𝑑𝐙𝑈. Let 𝑍 be the complement of 𝑈 in 𝑋. Denote 𝑗 ∶ 𝑈 → 𝑋 and 𝑖 ∶ 𝑍 → 𝑋
the inclusion maps. As in the first paragraph of the proof we obtain a short exact sequence

0 → 𝑗!𝐙/𝑑𝐙 → ℱ → 𝑖∗𝑖∗ℱ → 0
OK, and now dim(𝑍) < 𝑛 so by induction we have 𝐻𝑝(𝑋, 𝑖∗𝑖∗ℱ) = 𝐻𝑝(𝑍, 𝑖∗ℱ) = 0 for
all 𝑝 ≥ 𝑛. Hence it suffices to prove the vanishing for sheaves of the form 𝑗!(𝐴𝑈) where
𝑗 ∶ 𝑈 → 𝑋 is an open immersion and 𝐴 is an abelian group.
In this case we again look at the short exact sequence

0 → 𝑗!(𝐴𝑈) → 𝐴 → 𝑖∗𝐴𝑍 → 0
By Lemma 18.16.2 we have the vanishing of 𝐻𝑝(𝑋, 𝐴) for all 𝑝 ≥ 1. By induction we have
𝐻𝑝(𝑋, 𝑖∗𝐴𝑍) = 𝐻𝑝(𝑍, 𝐴𝑍) = 0 for 𝑝 ≤ 𝑛. Hence we win by the long exact cohomology
sequence. �

18.17. The alternating Čech complex

This section compares the Čech complex with the alternating Čech complex and some re-
lated complexes.
Let 𝑋 be a topological space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering. For 𝑝 ≥ 0 set

̌𝒞𝑝
𝑎𝑙𝑡(𝒰, ℱ) =

{
𝑠 ∈ ̌𝒞𝑝(𝒰, ℱ) such that 𝑠𝑖0…𝑖𝑝 = 0 if 𝑖𝑛 = 𝑖𝑚 for some 𝑛≠𝑚

and 𝑠𝑖0…𝑖𝑛…𝑖𝑚…𝑖𝑝 = −𝑠𝑖0…𝑖𝑚…𝑖𝑛…𝑖𝑝 in any case. }

We omit the verification that the differential 𝑑 of Equation (18.9.0.1) maps ̌𝒞𝑝
𝑎𝑙𝑡(𝒰, ℱ) into

̌𝒞𝑝+1
𝑎𝑙𝑡 (𝒰, ℱ).

Definition 18.17.1. Let 𝑋 be a topological space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open
covering. Let ℱ be an abelian presheaf on 𝑋. The complex ̌𝒞•

𝑎𝑙𝑡(𝒰, ℱ) is the alternating
Čech complex associated to ℱ and the open covering 𝒰.

Hence there is a canonical morphism of complexes
̌𝒞•

𝑎𝑙𝑡(𝒰, ℱ) ⟶ ̌𝒞•(𝒰, ℱ)

namely the inclusion of the alternating Čech complex into the usual Čech complex.
Suppose our covering 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 comes equipped with a total ordering < on 𝐼. In
this case, set

̌𝒞𝑝
𝑜𝑟𝑑(𝒰, ℱ) = ∏(𝑖0,…,𝑖𝑝)∈𝐼𝑝+1,𝑖0<…<𝑖𝑝

ℱ(𝑈𝑖0…𝑖𝑝).

This is an abelian group. For 𝑠 ∈ ̌𝒞𝑝
𝑜𝑟𝑑(𝒰, ℱ) we denote 𝑠𝑖0…𝑖𝑝 its value in ℱ(𝑈𝑖0…𝑖𝑝). We

define
𝑑 ∶ ̌𝒞𝑝

𝑜𝑟𝑑(𝒰, ℱ) ⟶ ̌𝒞𝑝+1
𝑜𝑟𝑑 (𝒰, ℱ)

by the formula
𝑑(𝑠)𝑖0…𝑖𝑝+1

= ∑
𝑝+1
𝑗=0

(−1)𝑗𝑠𝑖0… ̂𝑖𝑗…𝑖𝑝|𝑈𝑖0…𝑖𝑝+1

for any 𝑖0 < … < 𝑖𝑝+1. Note that this formula is identical to Equation (18.9.0.1). It is
straightforward to see that 𝑑 ∘ 𝑑 = 0. In other words ̌𝒞•

𝑜𝑟𝑑(𝒰, ℱ) is a complex.

Definition 18.17.2. Let 𝑋 be a topological space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open
covering. Assume given a total ordering on 𝐼. Let ℱ be an abelian presheaf on 𝑋. The
complex ̌𝒞•

𝑜𝑟𝑑(𝒰, ℱ) is the ordered Čech complex associated to ℱ, the open covering 𝒰 and
the given total ordering on 𝐼.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01FH
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This complex is sometimes called the alternating Čech complex. The reason is that there is
an obvious comparison map between the ordered Čech complex and the alternating Čech
complex. Namely, consider the map

𝑐 ∶ ̌𝒞•
𝑜𝑟𝑑(𝒰, ℱ) ⟶ ̌𝒞•(𝒰, ℱ)

given by the rule

𝑐(𝑠)𝑖0…𝑖𝑝 = {
0 if 𝑖𝑛 = 𝑖𝑚 for some 𝑛≠𝑚

sgn(𝜎)𝑠𝑖𝜎(0)…𝑖𝜎(𝑝)
if 𝑖𝜎(0) < 𝑖𝜎(1) < … < 𝑖𝜎(𝑝)

Here 𝜎 denotes a permutation of {0, … , 𝑝} and sgn(𝜎) denotes its sign. The alternating and
ordered Cech complexes are often identified in the literature via the map 𝑐. Namely we have
the following easy lemma.

Lemma 18.17.3. Let 𝑋 be a topological space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering.
Assume 𝐼 comes equipped with a total ordering. The map 𝑐 is a morphism of complexes.
In fact it induces an isomorphism

𝑐 ∶ ̌𝒞•
𝑜𝑟𝑑(𝒰, ℱ) → ̌𝒞•

𝑎𝑙𝑡(𝒰, ℱ)
of complexes.

Proof. Omitted. �

There is also a map
𝜋 ∶ ̌𝒞•(𝒰, ℱ) ⟶ ̌𝒞•

𝑜𝑟𝑑(𝒰, ℱ)
which is described by the rule

𝜋(𝑠)𝑖0…𝑖𝑝 = 𝑠𝑖0…𝑖𝑝
whenever 𝑖0 < 𝑖1 < … < 𝑖𝑝.

Lemma 18.17.4. Let 𝑋 be a topological space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering.
Assume 𝐼 comes equipped with a total ordering. The map 𝜋 ∶ ̌𝒞•(𝒰, ℱ) → ̌𝒞•

𝑜𝑟𝑑(𝒰, ℱ) is
a morphism of complexes. It induces an isomorphism

𝜋 ∶ ̌𝒞•
𝑎𝑙𝑡(𝒰, ℱ) → ̌𝒞•

𝑜𝑟𝑑(𝒰, ℱ)
of complexes which is a left inverse to the morphism 𝑐.

Remark 18.17.5. This means that if we have two total orderings <1 and <2 on the index
set 𝐼, then we get an isomorphism of complexes 𝜏 = 𝜋2 ∘𝑐1 ∶ ̌𝒞𝑜𝑟𝑑-1(𝒰, ℱ) → ̌𝒞𝑜𝑟𝑑-2(𝒰, ℱ).
It is clear that

𝜏(𝑠)𝑖0…𝑖𝑝 = sign(𝜎)𝑠𝑖𝜎(0)…𝑖𝜎(𝑝)

where 𝑖0 <1 𝑖1 <1 … <1 𝑖𝑝 and 𝑖𝜎(0) <2 𝑖𝜎(1) <2 … <2 𝑖𝜎(𝑝). This is the sense in which the
ordered Čech complex is independent of the chosen total ordering.

Lemma 18.17.6. Let 𝑋 be a topological space. Let 𝒰 ∶ 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering.
Assume 𝐼 comes equipped with a total ordering. The map 𝑐 ∘ 𝜋 is homotopic to the iden-
tity on ̌𝒞•(𝒰, ℱ). In particular the inclusion map ̌𝒞•

𝑎𝑙𝑡(𝒰, ℱ) → ̌𝒞•(𝒰, ℱ) is a homotopy
equivalence.

Proof. For any multi-index (𝑖0, … , 𝑖𝑝) ∈ 𝐼𝑝+1 there exists a unique permutation 𝜎 ∶
{0, … , 𝑝} → {0, … , 𝑝} such that

𝑖𝜎(0) ≤ 𝑖𝜎(1) ≤ … ≤ 𝑖𝜎(𝑝) and 𝜎(𝑗) < 𝜎(𝑗 + 1) if 𝑖𝜎(𝑗) = 𝑖𝜎(𝑗+1).

We denote this permutation 𝜎 = 𝜎𝑖0…𝑖𝑝.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01FJ
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For any permutation 𝜎 ∶ {0, … , 𝑝} → {0, … , 𝑝} and any 𝑎, 0 ≤ 𝑎 ≤ 𝑝 we denote 𝜎𝑎 the
permutation of {0, … , 𝑝} such that

𝜎𝑎(𝑗) = {
𝜎(𝑗) if 0 ≤ 𝑗 < 𝑎,

min{𝑗′ ∣ 𝑗′ > 𝜎𝑎(𝑗 − 1), 𝑗′≠𝜎(𝑘), ∀𝑘 < 𝑎} if 𝑎 ≤ 𝑗

So if 𝑝 = 3 and 𝜎, 𝜏 are given by

id 0 1 2 3
𝜎 3 2 1 0 and id 0 1 2 3

𝜏 3 0 2 1

then we have
id 0 1 2 3
𝜎0 0 1 2 3
𝜎1 3 0 1 2
𝜎2 3 2 0 1
𝜎3 3 2 1 0

and

id 0 1 2 3
𝜏0 0 1 2 3
𝜏1 3 0 1 2
𝜏2 3 0 1 2
𝜏3 3 0 2 1

It is clear that always 𝜎0 = id and 𝜎𝑝 = 𝜎.

Having introduced this notation we define for 𝑠 ∈ ̌𝒞𝑝+1(𝒰, ℱ) the element ℎ(𝑠) ∈ ̌𝒞𝑝(𝒰, ℱ)
to be the element with components

(18.17.6.1) ℎ(𝑠)𝑖0…𝑖𝑝 = ∑0≤𝑎≤𝑝
(−1)𝑎sign(𝜎𝑎)𝑠𝑖𝜎(0)…𝑖𝜎(𝑎)𝑖𝜎𝑎(𝑎)…𝑖𝜎𝑎(𝑝)

where 𝜎 = 𝜎𝑖0…𝑖𝑝. The index 𝑖𝜎(𝑎) occurs twice in 𝑖𝜎(0) … 𝑖𝜎(𝑎)𝑖𝜎𝑎(𝑎) … 𝑖𝜎𝑎(𝑝) once in the first
group of 𝑎 + 1 indices and once in the second group of 𝑝 − 𝑎 + 1 indices since 𝜎𝑎(𝑗) = 𝜎(𝑎)
for some 𝑗 ≥ 𝑎 by definition of 𝜎𝑎. Hence the sum makes sense since each of the elements
𝑠𝑖𝜎(0)…𝑖𝜎(𝑎)𝑖𝜎𝑎(𝑎)…𝑖𝜎𝑎(𝑝)

is defined over the open 𝑈𝑖0…𝑖𝑝. Note also that for 𝑎 = 0 we get 𝑠𝑖0…𝑖𝑝
and for 𝑎 = 𝑝 we get (−1)𝑝sign(𝜎)𝑠𝑖𝜎(0)…𝑖𝜎(𝑝)

.

We claim that
(𝑑ℎ + ℎ𝑑)(𝑠)𝑖0…𝑖𝑝 = 𝑠𝑖0…𝑖𝑝 − sign(𝜎)𝑠𝑖𝜎(0)…𝑖𝜎(𝑝)

where 𝜎 = 𝜎𝑖0…𝑖𝑝. We omit the verification of this claim. (There is a PARI/gp script
called first-homotopy.gp in the stacks-project subdirectory scripts which can be used to
check finitely many instances of this claim. We wrote this script to make sure the signs are
correct.) Write

𝜅 ∶ ̌𝒞•(𝒰, ℱ) ⟶ ̌𝒞•(𝒰, ℱ)
for the operator given by the rule

𝜅(𝑠)𝑖0…𝑖𝑝 = sign(𝜎𝑖0…𝑖𝑝)𝑠𝑖𝜎(0)…𝑖𝜎(𝑝)
.

The claim above implies that 𝜅 is a morphism of complexes and that 𝜅 is homotopic to the
identity map of the Čech complex. This does not immediately imply the lemma since the
image of the operator 𝜅 is not the alternating subcomplex. Namely, the image of 𝜅 is the
``semi-alternating'' complex ̌𝒞𝑝

𝑠𝑒𝑚𝑖-𝑎𝑙𝑡(𝒰, ℱ) where 𝑠 is a 𝑝-cochain of this complex if and
only if

𝑠𝑖0…𝑖𝑝 = sign(𝜎)𝑠𝑖𝜎(0)…𝑖𝜎(𝑝)

for any (𝑖0, … , 𝑖𝑝) ∈ 𝐼𝑝+1 with 𝜎 = 𝜎𝑖0…𝑖𝑝. We introduce yet another variant Čech complex,
namely the semi-ordered Cech complex defined by

̌𝒞𝑝
𝑠𝑒𝑚𝑖-𝑜𝑟𝑑(𝒰, ℱ) = ∏𝑖0≤𝑖1≤…≤𝑖𝑝

ℱ(𝑈𝑖0…𝑖𝑝)
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It is easy to see that Equation (18.9.0.1) also defines a differential and hence that we get a
complex. It is also clear (analogous to Lemma 18.17.4) that the projection map

̌𝒞•
𝑠𝑒𝑚𝑖-𝑎𝑙𝑡(𝒰, ℱ) ⟶ ̌𝒞•

𝑠𝑒𝑚𝑖-𝑜𝑟𝑑(𝒰, ℱ)
is an isomorphism of complexes.
Hence the Lemma follows if we can show that the obvious inclusion map

̌𝒞𝑝
𝑜𝑟𝑑(𝒰, ℱ) ⟶ ̌𝒞𝑝

𝑠𝑒𝑚𝑖-𝑜𝑟𝑑(𝒰, ℱ)
is a homotopy equivalence. To see this we use the homotopy

(18.17.6.2) ℎ(𝑠)𝑖0…𝑖𝑝 = {
0 if 𝑖0 < 𝑖1 < … < 𝑖𝑝

(−1)𝑎𝑠𝑖0…𝑖𝑎−1𝑖𝑎𝑖𝑎𝑖𝑎+1…𝑖𝑝 if 𝑖0 < 𝑖1 < … < 𝑖𝑎−1 < 𝑖𝑎 = 𝑖𝑎+1

We claim that

(𝑑ℎ + ℎ𝑑)(𝑠)𝑖0…𝑖𝑝 = {
0 if 𝑖0 < 𝑖1 < … < 𝑖𝑝

𝑠𝑖0…𝑖𝑝 else

We omit the verification. (There is a PARI/gp script called second-homotopy.gp in the
stacks-project subdirectory scripts which can be used to check finitely many instances of
this claim. We wrote this script to make sure the signs are correct.) The claim clearly shows
that the composition

̌𝒞•
𝑠𝑒𝑚𝑖-𝑜𝑟𝑑(𝒰, ℱ) ⟶ ̌𝒞•

𝑜𝑟𝑑(𝒰, ℱ) ⟶ ̌𝒞•
𝑠𝑒𝑚𝑖-𝑜𝑟𝑑(𝒰, ℱ)

of the projection with the natural inclusion is homotopic to the identity map as desired. �

18.18. Locally finite coverings and the Čech complex

In this section we discuss an alternative way to esthablish the relationship between the Čech
complex and cohomology in case the covering is locally finite.

Definition 18.18.1. Let 𝑋 be a topological space. An open covering 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 is said
to be locally finite if for every 𝑥 ∈ 𝑋 there exists an open neighbourhood 𝑊 of 𝑥 such that
{𝑖 ∈ 𝐼 ∣ 𝑊 ∩ 𝑈𝑖≠∅} is finite.

Remark 18.18.2. Let 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 be a locally finite open covering. Denote 𝑗𝑖 ∶ 𝑈𝑖 → 𝑋
the inclusion map. Suppose that for each 𝑖 we are given an abelian sheaf ℱ𝑖 on 𝑈𝑖. Consider
the abelian sheaf 𝒢 = ⨁𝑖∈𝐼(𝑗𝑖)∗ℱ𝑖. Then actually

Γ(𝑋, 𝒢) = ∏𝑖∈𝐼
ℱ𝑖(𝑈𝑖).

This seems strange until you realize that the direct sum of a collection of sheaves is the
sheafification of what you think it should be. See discussion in Modules, Section 15.3.

Lemma 18.18.3. Let 𝑋 be a ringed space. Let 𝒰 ∶ 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 be a locally finite open
covering of 𝑋. Let ℱ be an 𝒪𝑋-module. Denote ℱ𝑖0…𝑖𝑝 the restriction of ℱ to 𝑈𝑖0…𝑖𝑝. There
exists a complex ℭ•(𝒰, ℱ) of 𝒪𝑋-modules with

ℭ𝑝(𝒰, ℱ) = ⨁𝑖0…𝑖𝑝
(𝑗𝑖0…𝑖𝑝)∗ℱ𝑖0…𝑖𝑝

and differential 𝑑 ∶ ℭ𝑝(𝒰, ℱ) → ℭ𝑝+1(𝒰, ℱ) as in Equation (18.9.0.1). Moreover, there
exists a canonical map

ℱ → ℭ•(𝒰, ℱ)
which is a quasi-isomorphism, i.e., ℭ•(𝒰, ℱ) is a resolution of ℱ.

Proof. Omitted. �
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With this lemma it is easy to reprove the Čech to cohomology spectral sequence of Lemma
18.11.4 in the special case of locally finite coverings. Namely, let 𝑋, 𝒰, ℱ as in Lemma
18.18.3 and let ℱ → ℐ• be an injective resolution. Then we may consider the double
complex

𝐴•,• = Γ(𝑋, ℭ•(𝒰, ℐ•)).

Note that

𝐴𝑝,𝑞 = ∏𝑖0…𝑖𝑝
ℐ𝑞(𝑈𝑖0…𝑖𝑝)

see Remark 18.18.2. Consider the two spectral sequences of Homology, Section 10.19
associated to this double complex. See especially Homology, Lemma 10.19.3. For the
spectral sequence (′𝐸𝑟, ′𝑑𝑟)𝑟≥0 we get ′𝐸𝑝,𝑞

2 = �̌�𝑝(𝒰, 𝐻𝑞(ℱ)) and for the spectral sequence
(″𝐸𝑟, ″𝑑𝑟)𝑟≥0 we get ″𝐸𝑝,𝑞

2 = 0 if 𝑝 > 0 and ″𝐸0,𝑞
2 = 𝐻𝑞(𝑋, ℱ). Whence the result since

both spectral sequences converge to the cohomology of the simple complex 𝑠𝐴•.

18.19. Čech cohomology of complexes

In general for sheaves of abelian groups ℱ and 𝒢 on 𝑋 there is a cupproduct map

𝐻𝑖(𝑋, ℱ) × 𝐻𝑗(𝑋, 𝒢) ⟶ 𝐻𝑖+𝑗(𝑋, ℱ ⊗𝐙 𝒢).

In this section we define it using Čech cocyles by an explicit formula for the cup product.
If you are worried about the fact that cohomology may not equal Čech cohomology, then
you can use hypercoverings and still use the cocycle notation. This also has the advantage
that it works to define the cup product for hypercohomology on any site.

Let ℱ• be a bounded below complex of sheaves of abelian groups on 𝑋. We can often
compute 𝐻𝑛(𝑋, ℱ•) using Čech cocycles. Namely, let 𝒰 = {𝑈𝑖}𝑖∈𝐼 be an open covering
of 𝑋. Consider the associated total complex to 𝒞•(𝒰, ℱ•) with degree 𝑛 term

Tot𝑛(𝒞•(𝒰, ℱ•)) = ∏𝑝+𝑞=𝑛
ℱ𝑞(𝑈𝑖0…𝑖𝑝)

A typical element in Tot𝑛 will be denoted 𝛼 = {𝛼𝑖0…𝑖𝑝} where 𝛼𝑖0…𝑖𝑝 ∈ ℱ𝑞(𝑈𝑖0…𝑖𝑝). In other
words the ℱ-degree of 𝛼𝑖0…𝑖𝑝 is 𝑞 = 𝑛−𝑝. This notation requires us to be aware of the degree
𝛼 lives in at all times. We indicate this situation by the formula degℱ(𝛼𝑖0…𝑖𝑝) = 𝑞. According
to our conventions in Homology, Definition 10.19.2 the differential of an element 𝛼 of
degree 𝑛 is given by

𝑑(𝛼)𝑖0…𝑖𝑝+1
= ∑

𝑝+1
𝑗=0

(−1)𝑗𝛼𝑖0… ̂𝑖𝑗…𝑖𝑝+1
+ (−1)𝑝+1𝑑ℱ(𝛼𝑖0…𝑖𝑝+1

)

where 𝑑ℱ denotes the differential on the complex ℱ. The expression 𝛼𝑖0… ̂𝑖𝑗…𝑖𝑝+1
means the

restriction of 𝛼𝑖0… ̂𝑖𝑗…𝑖𝑝+1
∈ ℱ(𝑈𝑖0… ̂𝑖𝑗…𝑖𝑝+1

) to 𝑈𝑖0…𝑖𝑝+1
. To check this is a complex, let 𝛼 be
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an element of degree 𝑛 in Tot(𝒞•(𝒰, ℱ•)). We compute:

𝑑2(𝛼)𝑖0…𝑖𝑝+2
= ∑

𝑝+2
𝑗=0

(−1)𝑗𝑑(𝛼)𝑖0… ̂𝑖𝑗…𝑖𝑝+2
+ (−1)𝑝+2𝑑ℱ(𝑑(𝛼)𝑖0…𝑖𝑝+2

)

= ∑
𝑝+2
𝑗=0

(−1)𝑗
∑𝑗′=0…𝑗−1

(−1)𝑗′
𝛼𝑖0… ̂𝑖𝑗′… ̂𝑖𝑗…𝑖𝑝+2

+

∑
𝑝+2
𝑗=0

(−1)𝑗
∑𝑗′=𝑗+1…𝑝+2

(−1)𝑗′−1𝛼𝑖0… ̂𝑖𝑗… ̂𝑖𝑗′…𝑖𝑝+2
+

∑
𝑝+2
𝑗=0

(−1)𝑗+(𝑝+1)𝑑ℱ(𝛼𝑖0… ̂𝑖𝑗…𝑖𝑝+2
)+

(−1)𝑝+2𝑑ℱ( ∑
𝑝+2
𝑗=0

(−1)𝑗 𝛼𝑖0… ̂𝑖𝑗…𝑖𝑝+2)+

(−1)(𝑝+2)(𝑝+1)𝑑ℱ(𝑑ℱ(𝛼𝑖0…𝑖𝑝+2
))

which equals zero by the nullity of 𝑑2
ℱ, a trivial sign change between the third and fourth

terms, and the usual argument for the first two double Čech terms.

The construction of Tot(𝒞•(𝒰, ℱ•)) is functorial in ℱ•. As well there is a functorial trans-
formation

(18.19.0.1) Γ(𝑋, ℱ•) ⟶ Tot(𝒞•(𝒰, ℱ•))

of complexes defined by the following rule: The section 𝑠 ∈ Γ(𝑋, ℱ𝑛) is mapped to the
element 𝛼 = {𝛼𝑖0…𝑖𝑝} with 𝛼𝑖0 = 𝑠|𝑈𝑖0

and 𝛼𝑖0…𝑖𝑝 = 0 for 𝑝 > 0.

Refinements. Let 𝒱 = {𝑉𝑗}𝑗∈𝐽 be a refinement of 𝒰. This means there is a map 𝑡 ∶ 𝐽 → 𝐼
such that 𝑉𝑗 ⊂ 𝑈𝑡(𝑗) for all 𝑗 ∈ 𝐽. This gives rise to a functorial transformation

𝑇𝑡 ∶ Tot(𝒞•(𝒰, ℱ•)) ⟶ Tot(𝒞•(𝒱, ℱ•)).

defined by the rule

𝑇𝑡(𝛼)𝑗0…𝑗𝑝
= 𝛼𝑡(𝑗0)…𝑡(𝑗𝑝)|𝑉𝑗0…𝑗𝑝

.

Given twomaps 𝑡, 𝑡′ ∶ 𝐽 → 𝐼 as above themaps 𝑇𝑡 and 𝑇𝑡′ constructed above are homotopic.
The homotopy is given by

ℎ(𝛼)𝑗0…𝑗𝑝
= ∑

𝑝
𝑎=0

(−1)𝑎𝛼𝑡(𝑗0)…𝑡(𝑗𝑎)𝑡′(𝑗𝑎)…𝑡′(𝑗𝑝)
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for an element 𝛼 of degree 𝑛. This works because of the following computation, again with
𝛼 an elemement of degree 𝑛 (so 𝑑(𝛼) has degree 𝑛 + 1 and ℎ(𝛼) has degree 𝑛 − 1):

(𝑑(ℎ(𝛼)) + ℎ(𝑑(𝛼)))𝑗0…𝑗𝑝
= ∑

𝑝
𝑘=0

(−1)𝑘ℎ(𝛼)𝑗0… ̂𝑗𝑘…𝑗𝑝
+

(−1)𝑝𝑑ℱ(ℎ(𝛼)𝑗0…𝑗𝑝
)+

∑
𝑝
𝑎=0

(−1)𝑎𝑑(𝛼)𝑡(𝑗0)…𝑡(𝑗𝑎)𝑡′(𝑗𝑎)…𝑡′(𝑗𝑝)

= ∑
𝑝
𝑘=0 ∑

𝑘−1
𝑎=0

(−1)𝑘+𝑎𝛼𝑡(𝑗0)…𝑡(𝑗𝑎)𝑡′(𝑗𝑎)… ̂𝑡′(𝑗𝑘)…𝑡′(𝑗𝑝)+

∑
𝑝
𝑘=0 ∑

𝑝
𝑎=𝑘+1

(−1)𝑘+𝑎−1𝛼𝑡(𝑗0)… ̂𝑡(𝑗𝑘)…𝑡(𝑗𝑎)𝑡′(𝑗𝑎)…𝑡′(𝑗𝑝)+

∑
𝑝
𝑎=0

(−1)𝑝+𝑎𝑑ℱ(𝛼𝑡(𝑗0)…𝑡(𝑗𝑎)𝑡′(𝑗𝑎)…𝑡′(𝑗𝑝))+

∑
𝑝
𝑎=0 ∑

𝑎
𝑘=0

(−1)𝑎+𝑘𝛼𝑡(𝑗0)… ̂𝑡(𝑗𝑘)…𝑡(𝑗𝑎)𝑡′(𝑗𝑎)…𝑡′(𝑗𝑝)+

∑
𝑝
𝑎=0 ∑

𝑝
𝑘=𝑎

(−1)𝑎+𝑘+1𝛼𝑡(𝑗0)…𝑡(𝑗𝑎)𝑡′(𝑗𝑎)… ̂𝑡′(𝑗𝑘)…𝑡′(𝑗𝑝)+

∑
𝑝
𝑎=0

(−1)𝑎+𝑝+1𝑑ℱ(𝛼𝑡(𝑗0)…𝑡(𝑗𝑎)𝑡′(𝑗𝑎)…𝑡′(𝑗𝑝))

= 𝛼𝑡′(𝑗0)…𝑡′(𝑗𝑝) + (−1)2𝑝+1𝛼𝑡(𝑗0)…𝑡(𝑗𝑝)

= 𝑇𝑡′(𝛼)𝑗0…𝑗𝑝
− 𝑇𝑡(𝛼)𝑗0…𝑗𝑝

We leave it to the reader to verify the cancellations. (Note that the terms having both 𝑘
and 𝑎 in the 1st, 2nd and 4th, 5th summands cancel, except the ones where 𝑎 = 𝑘 which
only occur in the 4th and 5th and these cancel against each other except for the two desired
terms.) It follows that the induced map

𝐻𝑛(𝑇𝑡) ∶ 𝐻𝑛(Tot(𝒞•(𝒰, ℱ•))) → 𝐻𝑛(Tot(𝒞•(𝒱, ℱ•)))

is independend of the choice of 𝑡. We define Cech hypercohomology as the limit of the
Čech cohomology groups over all refinements via the maps 𝐻•(𝑇𝑡).

Let ℐ• be a bounded below complex of injectives. Consider the map (18.19.0.1) for the
ℐ• which is a map Γ(𝑋, ℐ•) → Tot(𝒞•(𝒰, ℐ•)). This is a quasi-isomorphism of com-
plexes of abelian groups as follows from a spectral sequence argument on the double com-
plex 𝒞•(𝒰, ℐ•) using Lemma 18.11.1. Suppose ℱ• → ℐ• is a quasi-isomorphism of ℱ•

into a bounded below complex of injectives. The cohomology 𝐻𝑛(𝑋, ℱ•) is defined to be
𝐻𝑛(Γ(𝑋, ℐ•)). Thus the map

Tot(𝒞•(𝒰, ℱ•)) ⟶ Tot(𝒞•(𝒰, ℐ•))

induces maps 𝐻𝑛(Tot(𝒞•(𝒰, ℱ•))) → 𝐻𝑛(𝑋, ℱ•). In the limit (over all open coverings
of 𝑋) this induces a map of Čech cohomology into the cohomology, which is often an
isomorphism and is always an isomorphism if we use hypercoverings.

Consider the map 𝜏 ∶ Tot(𝒞•(𝒰, ℱ•)) → Tot(𝒞•(𝒰, ℱ•)) defined by

𝜏(𝛼)𝑖0…𝑖𝑝 = (−1)𝑝(𝑝+1)/2𝛼𝑖𝑝…𝑖0.

Then we have for an element 𝛼 of degree 𝑛 that

𝑑(𝜏(𝛼))𝑖0…𝑖𝑝+1

= ∑
𝑝+1
𝑗=0

(−1)𝑗𝜏(𝛼)𝑖0… ̂𝑖𝑗…𝑖𝑝+1
+ (−1)𝑝+1𝑑ℱ(𝜏(𝛼)𝑖0…𝑖𝑝+1

)

= ∑
𝑝+1
𝑗=0

(−1)𝑗+ 𝑝(𝑝+1)
2 𝛼𝑖𝑝+1… ̂𝑖𝑗…𝑖0 + (−1)𝑝+1+ (𝑝+1)(𝑝+2)

2 𝑑ℱ(𝛼𝑖𝑝+1…𝑖0)
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On the other hand we have

𝜏(𝑑(𝛼))𝑖0…𝑖𝑝+1

= (−1)
(𝑝+1)(𝑝+2)

2 𝑑(𝛼)𝑖𝑝+1…𝑖0

= (−1)
(𝑝+1)(𝑝+2)

2 (∑
𝑝+1
𝑗=0

(−1)𝑗𝛼𝑖𝑝+1… ̂𝑖𝑝+1−𝑗…𝑖0 + (−1)𝑝+1𝑑ℱ(𝛼𝑖𝑝+1…𝑖0))
Thus we conclude that 𝑑(𝜏(𝛼)) = 𝜏(𝑑(𝛼)) because 𝑝(𝑝+1)/2 ≡ (𝑝+1)(𝑝+2)/2+𝑝+1 mod 2.
In other words 𝜏 is an endomorphism of the complex Tot(𝒞•(𝒰, ℱ•)). Note that the diagram

Γ(𝑋, ℱ•) ⟶ Tot(𝒞•(𝒰, ℱ•))
↓ id ↓ 𝜏

Γ(𝑋, ℱ•) ⟶ Tot(𝒞•(𝒰, ℱ•))
commutes. In addition 𝜏 is clearly compatible with refinements. This suggests that 𝜏 acts
as the identity on Čech cohomology (i.e., in the limit -- provided Čech hypercohomology
agrees with hypercohomology, which is always the case if we use hypercoverings). We
claim that 𝜏 actually is homotopic to the identity on the total Čech complex Tot(𝒞•(𝒰, ℱ•)).
To prove this, we use as homotopy

ℎ(𝛼)𝑖0…𝑖𝑝 = ∑
𝑝
𝑎=0

𝜖𝑝(𝑎)𝛼𝑖0…𝑖𝑎𝑖𝑝…𝑖𝑎 with 𝜖𝑝(𝑎) = (−1)
(𝑝−𝑎)(𝑝−𝑎−1)

2 +𝑝

for 𝛼 of degree 𝑛. As usual we omit writing |𝑈𝑖0…𝑖𝑝
. This works because of the following

computation, again with 𝛼 an elemement of degree 𝑛:

(𝑑(ℎ(𝛼)) + ℎ(𝑑(𝛼)))𝑖0…𝑖𝑝 = ∑
𝑝
𝑘=0

(−1)𝑘ℎ(𝛼)𝑖0… ̂𝑖𝑘…𝑖𝑝+

(−1)𝑝𝑑ℱ(ℎ(𝛼)𝑖0…𝑖𝑝)+

∑
𝑝
𝑎=0

𝜖𝑝(𝑎)𝑑(𝛼)𝑖0…𝑖𝑎𝑖𝑝…𝑖𝑎

= ∑
𝑝
𝑘=0 ∑

𝑘−1
𝑎=0

(−1)𝑘𝜖𝑝−1(𝑎)𝛼𝑖0…𝑖𝑎𝑖𝑝… ̂𝑖𝑘…𝑖𝑎+

∑
𝑝
𝑘=0 ∑

𝑝
𝑎=𝑘+1

(−1)𝑘𝜖𝑝−1(𝑎 − 1)𝛼𝑖0… ̂𝑖𝑘…𝑖𝑎𝑖𝑝…𝑖𝑎+

∑
𝑝
𝑎=0

(−1)𝑝𝜖𝑝(𝑎)𝑑ℱ(𝛼𝑖0…𝑖𝑎𝑖𝑝…𝑖𝑎)+

∑
𝑝
𝑎=0 ∑

𝑎
𝑘=0

𝜖𝑝(𝑎)(−1)𝑘𝛼𝑖0… ̂𝑖𝑘…𝑖𝑎𝑖𝑝…𝑖𝑎+

∑
𝑝
𝑎=0 ∑

𝑝
𝑘=𝑎

𝜖𝑝(𝑎)(−1)𝑝+𝑎+1−𝑘𝛼𝑖0…𝑖𝑎𝑖𝑝… ̂𝑖𝑘…𝑖𝑎+

∑
𝑝
𝑎=0

𝜖𝑝(𝑎)(−1)𝑝+1𝑑ℱ(𝛼𝑖0…𝑖𝑎𝑖𝑝…𝑖𝑎)

=𝜖𝑝(0)𝛼𝑖𝑝…𝑖0 + 𝜖𝑝(𝑝)(−1)𝑝+1𝛼𝑖0…𝑖𝑝

=(−1)
𝑝(𝑝+1)

2 𝛼𝑖𝑝…𝑖0 − 𝛼𝑖0…𝑖𝑝

The cancellations follow because

(−1)𝑘𝜖𝑝−1(𝑎) + 𝜖𝑝(𝑎)(−1)𝑝+𝑎+1−𝑘 = 0 and (−1)𝑘𝜖𝑝−1(𝑎 − 1) + 𝜖𝑝(𝑎)(−1)𝑘 = 0

We leave it to the reader to verify the cancellations.

Suppose we have two bounded below complexes complexes of abelian sheaves ℱ• and 𝒢•.
We define the complex Tot(ℱ• ⊗𝑍 𝒢•) to be to complex with terms ⨁𝑝+𝑞=𝑛 ℱ𝑝 ⊗ 𝒢𝑞 and
differential according to the rule

(18.19.0.2) 𝑑(𝛼 ⊗ 𝛽) = 𝑑(𝛼) ⊗ 𝛽 + (−1)deg(𝛼)𝛼 ⊗ 𝑑(𝛽)
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when 𝛼 and 𝛽 are homogenous, see Homology, Definition 10.19.2.

Suppose that 𝑀• and 𝑁• are two bounded below complexes of abelian groups. Then if 𝑚,
resp. 𝑛 is a cocycle for 𝑀•, resp. 𝑁•, it is immediate that 𝑚 ⊗ 𝑛 is a cocycle for Tot(𝑀• ⊗
𝑁•). Hence a cupproduct

𝐻𝑖(𝑀•) × 𝐻𝑗(𝑁•) ⟶ 𝐻𝑖+𝑗(𝑇𝑜𝑡(𝑀• ⊗ 𝑁•)).

This is discussed also in More on Algebra, Section 12.7.

So the construction of the cup product in hypercohomology of complexes rests on a con-
struction of a map of complexes

(18.19.0.3) Tot (Tot(𝒞•(𝒰, ℱ•)) ⊗𝐙 Tot(𝒞•(𝒰, 𝒢•))) ⟶ Tot(𝒞•(𝒰,Tot(ℱ• ⊗ 𝒢•)))

This map is denoted ∪ and is given by the rule

(𝛼 ∪ 𝛽)𝑖0…𝑖𝑝 = ∑
𝑝
𝑟=0

𝜖(𝑛, 𝑚, 𝑝, 𝑟)𝛼𝑖0…𝑖𝑟 ⊗ 𝛽𝑖𝑟…𝑖𝑝.

where 𝛼 has degree 𝑛 and 𝛽 has degree 𝑚 and with

𝜖(𝑛, 𝑚, 𝑝, 𝑟) = (−1)(𝑝+𝑟)𝑛+𝑟𝑝+𝑟.

Note that 𝜖(𝑛, 𝑚, 𝑝, 𝑛) = 1. Hence if ℱ• = ℱ[0] is the complex consisting in a single abelian
sheaf ℱ placed in degree 0, then there no signs in the formula for∪ (as in that case 𝛼𝑖0…𝑖𝑟 = 0
unless 𝑟 = 𝑛). For an explanation of why there has to be a sign and how to compute it see
[MA71, Exposee XVII] by Deligne. To check (18.19.0.3) is a map of complexes we have
to show that

𝑑(𝛼 ∪ 𝛽) = 𝑑(𝛼) ∪ 𝛽 + (−1)deg(𝛼)𝛼 ∪ 𝑑(𝛽)

by the definition of the differential on Tot(Tot(𝒞•(𝒰, ℱ•)) ⊗𝐙 Tot(𝒞•(𝒰, 𝒢•))) as given in
Homology, Definition 10.19.2. We compute first

𝑑(𝛼 ∪ 𝛽)𝑖0…𝑖𝑝+1
= ∑

𝑝+1
𝑗=0

(−1)𝑗(𝛼 ∪ 𝛽)𝑖0… ̂𝑖𝑗…𝑖𝑝+1
+ (−1)𝑝+1𝑑ℱ⊗𝒢((𝛼 ∪ 𝛽)𝑖0…𝑖𝑝+1

)

= ∑
𝑝+1
𝑗=0 ∑

𝑗−1
𝑟=0

(−1)𝑗𝜖(𝑛, 𝑚, 𝑝, 𝑟)𝛼𝑖0…𝑖𝑟 ⊗ 𝛽𝑖𝑟… ̂𝑖𝑗…𝑖𝑝+1
+

∑
𝑝+1
𝑗=0 ∑

𝑝+1
𝑟=𝑗+1

(−1)𝑗𝜖(𝑛, 𝑚, 𝑝, 𝑟 − 1)𝛼𝑖0… ̂𝑖𝑗…𝑖𝑟 ⊗ 𝛽𝑖𝑟…𝑖𝑝+1
+

∑
𝑝+1
𝑟=0

(−1)𝑝+1𝜖(𝑛, 𝑚, 𝑝 + 1, 𝑟)𝑑ℱ⊗𝒢(𝛼𝑖0…𝑖𝑟 ⊗ 𝛽𝑖𝑟…𝑖𝑝+1
)

and note that the summands in the last term equal

(−1)𝑝+1𝜖(𝑛, 𝑚, 𝑝 + 1, 𝑟) (𝑑ℱ(𝛼𝑖0…𝑖𝑟) ⊗ 𝛽𝑖𝑟…𝑖𝑝+1
+ (−1)𝑛−𝑟𝛼𝑖0…𝑖𝑟 ⊗ 𝑑𝒢(𝛽𝑖𝑟…𝑖𝑝+1

)) .

because degℱ(𝛼𝑖0…𝑖𝑟) = 𝑛 − 𝑟. On the other hand

(𝑑(𝛼) ∪ 𝛽)𝑖0…𝑖𝑝+1
= ∑

𝑝+1
𝑟=0

𝜖(𝑛 + 1, 𝑚, 𝑝 + 1, 𝑟)𝑑(𝛼)𝑖0…𝑖𝑟 ⊗ 𝛽𝑖𝑟…𝑖𝑝+1

= ∑
𝑝+1
𝑟=0 ∑

𝑟
𝑗=0

𝜖(𝑛 + 1, 𝑚, 𝑝 + 1, 𝑟)(−1)𝑗𝛼𝑖0… ̂𝑖𝑗…𝑖𝑟 ⊗ 𝛽𝑖𝑟…𝑖𝑝+1
+

∑
𝑝+1
𝑟=0

𝜖(𝑛 + 1, 𝑚, 𝑝 + 1, 𝑟)(−1)𝑟𝑑ℱ(𝛼𝑖0…𝑖𝑟) ⊗ 𝛽𝑖𝑟…𝑖𝑝+1
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and

(𝛼 ∪ 𝑑(𝛽))𝑖0…𝑖𝑝+1
= ∑

𝑝+1
𝑟=0

𝜖(𝑛, 𝑚 + 1, 𝑝 + 1, 𝑟)𝛼𝑖0…𝑖𝑟 ⊗ 𝑑(𝛽)𝑖𝑟…𝑖𝑝+1

= ∑
𝑝+1
𝑟=0 ∑

𝑝+1
𝑗=𝑟

𝜖(𝑛, 𝑚 + 1, 𝑝 + 1, 𝑟)(−1)𝑗−𝑟𝛼𝑖0…𝑖𝑟 ⊗ 𝛽𝑖𝑟… ̂𝑖𝑗…𝑖𝑝+1
+

∑
𝑝+1
𝑟=0

𝜖(𝑛, 𝑚 + 1, 𝑝 + 1, 𝑟)(−1)𝑝+1−𝑟𝛼𝑖0…𝑖𝑟 ⊗ 𝑑𝒢(𝛽𝑖𝑟…𝑖𝑝+1
)

The desired equality holds if we have

(−1)𝑝+1𝜖(𝑛, 𝑚, 𝑝 + 1, 𝑟) = 𝜖(𝑛 + 1, 𝑚, 𝑝 + 1, 𝑟)(−1)𝑟

(−1)𝑝+1𝜖(𝑛, 𝑚, 𝑝 + 1, 𝑟)(−1)𝑛−𝑟 = (−1)𝑛𝜖(𝑛, 𝑚 + 1, 𝑝 + 1, 𝑟)(−1)𝑝+1−𝑟

𝜖(𝑛 + 1, 𝑚, 𝑝 + 1, 𝑟)(−1)𝑟 = (−1)1+𝑛𝜖(𝑛, 𝑚 + 1, 𝑝 + 1, 𝑟 − 1)

(−1)𝑗𝜖(𝑛, 𝑚, 𝑝, 𝑟) = (−1)𝑛𝜖(𝑛, 𝑚 + 1, 𝑝 + 1, 𝑟)(−1)𝑗−𝑟

(−1)𝑗𝜖(𝑛, 𝑚, 𝑝, 𝑟 − 1) = 𝜖(𝑛 + 1, 𝑚, 𝑝 + 1, 𝑟)(−1)𝑗

(The third equality is necessary to get the terms with 𝑟 = 𝑗 from 𝑑(𝛼) ∪ 𝛽 and (−1)𝑛𝛼 ∪ 𝑑(𝛽)
to cancel each other.) We leave the verifications to the reader. (Alternatively, check the
script signs.gp in the scripts subdirectory of the stacks project.)

Associativity of the cupproduct. Suppose that ℱ•, 𝒢• and ℋ• are bounded below com-
plexes of abelian groups on 𝑋. The obvious map (without the intervention of signs) is an
isomorphism of complexes

Tot(Tot(ℱ• ⊗𝑍 𝒢•) ⊗𝑍 ℋ•) ⟶ Tot(ℱ• ⊗𝑍 Tot(𝒢• ⊗𝑍 ℋ•)).

Another way to say this is that the triple complex ℱ• ⊗𝑍 𝒢• ⊗𝑍 ℋ• gives rise to a well
defined total complex with differential satisfying

𝑑(𝛼 ⊗ 𝛽 ⊗ 𝛾) = 𝑑(𝛼) ⊗ 𝛽 ⊗ 𝛾 + (−1)deg(𝛼)𝛼 ⊗ 𝑑(𝛽) ⊗ 𝛾 + (−1)deg(𝛼)+deg(𝛽)𝛼 ⊗ 𝛽 ⊗ 𝑑(𝛾)

for homogeneous elements. Using this map it is easy to verify that

(𝛼 ∪ 𝛽) ∪ 𝛾 = 𝛼 ∪ (𝛽 ∪ 𝛾)

namely, if 𝛼 has degree 𝑎, 𝛽 has degree 𝑏 and 𝛾 has degree 𝑐, then

((𝛼 ∪ 𝛽) ∪ 𝛾)𝑖0…𝑖𝑝 = ∑
𝑝
𝑟=0

𝜖(𝑎 + 𝑏, 𝑐, 𝑝, 𝑟)(𝛼 ∪ 𝛽)𝑖0…𝑖𝑟 ⊗ 𝛾𝑖𝑟…𝑖𝑝

= ∑
𝑝
𝑟=0 ∑

𝑟
𝑠=0

𝜖(𝑎 + 𝑏, 𝑐, 𝑝, 𝑟)𝜖(𝑎, 𝑏, 𝑟, 𝑠)𝛼𝑖0…𝑖𝑠 ⊗ 𝛽𝑖𝑠…𝑖𝑟 ⊗ 𝛾𝑖𝑟…𝑖𝑝

and

(𝛼 ∪ (𝛽 ∪ 𝛾)𝑖0…𝑖𝑝 = ∑
𝑝
𝑠=0

𝜖(𝑎, 𝑏 + 𝑐, 𝑝, 𝑠)𝛼𝑖0…𝑖𝑠 ⊗ (𝛽 ∪ 𝛾)𝑖𝑠…𝑖𝑝

= ∑
𝑝
𝑠=0 ∑

𝑝
𝑟=𝑠

𝜖(𝑎, 𝑏 + 𝑐, 𝑝, 𝑠)𝜖(𝑏, 𝑐, 𝑝 − 𝑠, 𝑟 − 𝑠)𝛼𝑖0…𝑖𝑠 ⊗ 𝛽𝑖𝑠…𝑖𝑟 ⊗ 𝛾𝑖𝑟…𝑖𝑝

and a trivial mod 2 calculation shows the signs match up. (Alternatively, check the script
signs.gp in the scripts subdirectory of the stacks project.)

Finally, we indicate why the cup product preserves a graded commutative structure, at least
on a cohomological level. For this we use the operator 𝜏 introduced above. Let ℱ• be a
bounded below complexes of abelian groups, and assume we are given a graded commuta-
tive multiplication

∧• ∶ Tot(ℱ• ⊗ ℱ•) ⟶ ℱ•.
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This means the following: For 𝑠 a local section of ℱ𝑎, and 𝑡 a local section of ℱ𝑏 we have
𝑠∧𝑡 a local section of ℱ𝑎+𝑏. Graded commutative means we have 𝑠∧𝑡 = (−1)𝑎𝑏𝑡∧𝑠. Since
∧ is a map of complexes we have 𝑑(𝑠 ∧ 𝑡) = 𝑑(𝑠) ∧ 𝑡 + (−1)𝑎𝑠 ∧ 𝑡. The composition

Tot(Tot(𝒞•(𝒰, ℱ•)) ⊗Tot(𝒞•(𝒰, ℱ•))) → Tot(𝒞•(𝒰,Tot(ℱ• ⊗𝑍 ℱ•))) → Tot(𝒞•(𝒰, ℱ•))

induces a cup product on cohomology

𝐻𝑛(Tot(𝒞•(𝒰, ℱ•))) × 𝐻𝑚(Tot(𝒞•(𝒰, ℱ•))) ⟶ 𝐻𝑛+𝑚(Tot(𝒞•(𝒰, ℱ•)))

and so in the limit also a product on Čech cohomology and therefore (using hypercoverings
if needed) a product in cohomology of ℱ•. We claim this product (on cohomology) is
graded commutative as well. To prove this we first consider an element 𝛼 of degree 𝑛 in
Tot(𝒞•(𝒰, ℱ•)) and an element 𝛽 of degree 𝑚 in Tot(𝒞•(𝒰, ℱ•)) and we compute

∧•(𝛼 ∪ 𝛽)𝑖0…𝑖𝑝 = ∑
𝑝
𝑟=0

𝜖(𝑛, 𝑚, 𝑝, 𝑟)𝛼𝑖0…𝑖𝑟 ∧ 𝛽𝑖𝑟…𝑖𝑝

= ∑
𝑝
𝑟=0

𝜖(𝑛, 𝑚, 𝑝, 𝑟)(−1)deg(𝛼𝑖0…𝑖𝑟) deg(𝛽𝑖𝑟…𝑖𝑝)𝛽𝑖𝑟…𝑖𝑝 ∧ 𝛼𝑖0…𝑖𝑟

because ∧ is graded commutative. On the other hand we have

𝜏(∧•(𝜏(𝛽) ∪ 𝜏(𝛼)))𝑖0…𝑖𝑝 =𝜒(𝑝) ∑
𝑝
𝑟=0

𝜖(𝑚, 𝑛, 𝑝, 𝑟)𝜏(𝛽)𝑖𝑝…𝑖𝑝−𝑟
∧ 𝜏(𝛼)𝑖𝑝−𝑟…𝑖0

=𝜒(𝑝) ∑
𝑝
𝑟=0

𝜖(𝑚, 𝑛, 𝑝, 𝑟)𝜒(𝑟)𝜒(𝑝 − 𝑟)𝛽𝑖𝑝−𝑟…𝑖𝑝 ∧ 𝛼𝑖0…𝑖𝑝−𝑟

=𝜒(𝑝) ∑
𝑝
𝑟=0

𝜖(𝑚, 𝑛, 𝑝, 𝑝 − 𝑟)𝜒(𝑟)𝜒(𝑝 − 𝑟)𝛽𝑖𝑟…𝑖𝑝 ∧ 𝛼𝑖0…𝑖𝑟

where 𝜒(𝑡) = (−1)
𝑡(𝑡+1)

2 . Since we proved earlier that 𝜏 acts as the identity on cohomology
we have to verify that

𝜖(𝑛, 𝑚, 𝑝, 𝑟)(−1)(𝑛−𝑟)(𝑚−(𝑝−𝑟)) = (−1)𝑛𝑚𝜒(𝑝)𝜖(𝑚, 𝑛, 𝑝, 𝑝 − 𝑟)𝜒(𝑟)𝜒(𝑝 − 𝑟)

A trivial mod 2 calculation shows these signs match up. (Alternatively, check the script
signs.gp in the scripts subdirectory of the stacks project.)

Finally, we study the compatibility of cup product with boundary maps. Suppose that

0 → ℱ•
1 → ℱ•

2 → ℱ•
3 → 0 and 0 ← 𝒢•

1 ← 𝒢•
2 ← 𝒢•

3 ← 0

are short exact sequences of bounded below complexes of abelian sheaves on 𝑋. Let ℋ•

be another bounded below complex of abelian sheaves, and suppose we have maps of com-
plexes

𝛾𝑖 ∶ Tot(ℱ•
𝑖 ⊗𝑍 𝒢•

𝑖 ) ⟶ ℋ•

which are compatible with the maps between the complexes, namely such that the diagrams

Tot(ℱ•
1 ⊗𝑍 𝒢•

1)

𝛾1

��

Tot(ℱ•
1 ⊗𝑍 𝒢•

2)oo

��
ℋ• Tot(ℱ•

2 ⊗𝑍 𝒢•
2)

𝛾2oo

and
Tot(ℱ•

2 ⊗𝑍 𝒢•
2)

𝛾2

��

Tot(ℱ•
2 ⊗𝑍 𝒢•

3)oo

��
ℋ• Tot(ℱ•

3 ⊗𝑍 𝒢•
3)

𝛾3oo

are commutative.
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Lemma 18.19.1. In the situation above, assume Čech cohomology agrees with cohomology
for the sheaves ℱ𝑝

𝑖 and 𝒢𝑞
𝑗 . Let 𝑎3 ∈ 𝐻𝑛(𝑋, ℱ•

3) and 𝑏1 ∈ 𝐻𝑚(𝑋, 𝒢•
1). Then we have

𝛾1(𝜕𝑎3 ∪ 𝑏1) = (−1)𝑛+1𝛾3(𝑎3 ∪ 𝜕𝑏1)

in 𝐻𝑛+𝑚(𝑋, ℋ•) where 𝜕 indicates the boundary map on cohomology associated to the
short exact sequences of complexes above.

Proof. We will use the following conventions and notation. We think of ℱ𝑝
1 as a subsheaf

of ℱ𝑝
2 and we think of 𝒢𝑞

3 as a subsheaf of 𝒢𝑞
2. Hence if 𝑠 is a local section of ℱ𝑝

1 we use
𝑠 to denote the corresponding section of ℱ𝑝

2 as well. Similarly for local sections of 𝒢𝑞
3.

Furthermore, if 𝑠 is a local section of ℱ𝑝
2 then we denote ̄𝑠 its image in ℱ𝑝

3. Similarly for the
map 𝒢𝑞

2 → 𝒢𝑞
1. In particular if 𝑠 is a local section of ℱ𝑝

2 and ̄𝑠 = 0 then 𝑠 is a local section
of ℱ𝑝

1. The commutativity of the diagrams above implies, for local sections 𝑠 of ℱ𝑝
2 and 𝑡

of 𝒢𝑞
3 that 𝛾2(𝑠 ⊗ 𝑡) = 𝛾3( ̄𝑠 ⊗ 𝑡) as sections of ℋ𝑝+𝑞.

Let𝒰 ∶ 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering of𝑋. Suppose that 𝛼3, resp. 𝛽1 is a degree 𝑛, resp.
𝑚 cocycle of Tot(𝒞•(𝒰, ℱ•

3)), resp. Tot(𝒞•(𝒰, 𝒢•
1)) representing 𝑎3, resp. 𝑏1. After refining

𝒰 if necessary, we can find cochains 𝛼2, resp. 𝛽2 of degree 𝑛, resp. 𝑚 in Tot(𝒞•(𝒰, ℱ•
2)),

resp. Tot(𝒞•(𝒰, 𝒢•
2)) mapping to 𝛼3, resp. 𝛽1. Then we see that

𝑑(𝛼2) = 𝑑(�̄�2) = 0 and 𝑑(𝛽2) = 𝑑( ̄𝛽2) = 0.

This means that 𝛼1 = 𝑑(𝛼2) is a degree 𝑛 + 1 cocycle in Tot(𝒞•(𝒰, ℱ•
1)) repesenting 𝜕𝑎3.

Similarly, 𝛽3 = 𝑑(𝛽2) is a degree 𝑚 + 1 cocycle in Tot(𝒞•(𝒰, 𝒢•
3)) representing 𝜕𝑏1. Thus

we may compute

𝑑(𝛾2(𝛼2 ∪ 𝛽2)) = 𝛾2(𝑑(𝛼2 ∪ 𝛽2))
= 𝛾2(𝑑(𝛼2) ∪ 𝛽2 + (−1)𝑛𝛼2 ∪ 𝑑(𝛽2))
= 𝛾2(𝛼1 ∪ 𝛽2) + (−1)𝑛𝛾2(𝛼2 ∪ 𝛽3)
= 𝛾1(𝛼1 ∪ 𝛽1) + (−1)𝑛𝛾3(𝛼3 ∪ 𝛽3)

So this even tells us that the sign is (−1)𝑛+1 as indicated in the lemma1. �

18.20. Flat resolutions

A reference for the material in this section is [Spa88]. Let (𝑋, 𝒪𝑋) be a ringed space. By
Modules, Lemma 15.16.6 any 𝒪𝑋-module is a quotient of a flat 𝒪𝑋-module. By Derived
Categories, Lemma 11.15.5 any bounded above complex of 𝒪𝑋-modules has a left resolu-
tion by a bounded above complex of flat 𝒪𝑋-modules. However, for unbounded complexes,
it turns out that flat resolutions aren't good enough.

Lemma 18.20.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝒢• be a complex of 𝒪𝑋-modules. The
functor

𝐾(Mod(𝒪𝑋)) ⟶ 𝐾(Mod(𝒪𝑋)), ℱ• ⟼ Tot(ℱ• ⊗𝒪𝑋
𝒢•)

is an exact functor of triangulated categories.

Proof. Omitted. Hint: See More on Algebra, Lemmas 12.3.1 and 12.3.2. �

1The sign depends on the convention for the signs in the long exact sequence in cohomology associated to
a triangle in 𝐷(𝑋). The conventions in the stacks project are (a) distinguished triangles correspond to termwise
split exact sequences and (b) the boundary maps in the long exact sequence are given by the maps in the snake
lemma without the intervention of signs. See Derived Categories, Section 11.9.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MC
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06Y8
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Definition 18.20.2. Let (𝑋, 𝒪𝑋) be a ringed space. A complex 𝒦• of 𝒪𝑋-modules is called
K-flat if for every acyclic complex ℱ• of 𝒪𝑋-modules the complex

Tot(ℱ• ⊗𝒪𝑋
𝒦•)

is acyclic.

Lemma 18.20.3. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝒦• be a K-flat complex. Then the
functor

𝐾(Mod(𝒪𝑋)) ⟶ 𝐾(Mod(𝒪𝑋)), ℱ• ⟼ Tot(ℱ• ⊗𝒪𝑋
𝒦•)

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 18.20.1 and the fact that quasi-isomorphisms are character-
ized by having acyclic cones. �

Lemma 18.20.4. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝒦• be a complex of 𝒪𝑋-modules.
Then 𝒦• is K-flat if and only if for all 𝑥 ∈ 𝑋 the complex 𝒦•

𝑥 of 𝒪𝑋,𝑥 is K-flat (More on
Algebra, Definition 12.3.3).

Proof. If 𝒦•
𝑥 is K-flat for all 𝑥 ∈ 𝑋 then we see that 𝒦• is K-flat because ⊗ and direct sums

commute with taking stalks and because we can check exactness at stalks, see Modules,
Lemma 15.3.1. Conversely, assume 𝒦• is K-flat. Pick 𝑥 ∈ 𝑋 𝑀• be an acyclic complex of
𝒪𝑋,𝑥-modules. Then 𝑖𝑥,∗𝑀• is an acyclic complex of 𝒪𝑋-modules. Thus Tot(𝑖𝑥,∗𝑀• ⊗𝒪𝑋
𝒦•) is acyclic. Taking stalks at 𝑥 shows that Tot(𝑀• ⊗𝒪𝑋,𝑥

𝒦•
𝑥) is acyclic. �

Lemma18.20.5. Let (𝑋, 𝒪𝑋) be a ringed space. If𝒦•,ℒ• areK-flat complexes of𝒪𝑋-modules,
then Tot(𝒦• ⊗𝒪𝑋

ℒ•) is a K-flat complex of 𝒪𝑋-modules.

Proof. Follows from the isomorphism

Tot(ℳ• ⊗𝒪𝑋
Tot(𝒦• ⊗𝒪𝑋

ℒ•)) = Tot(Tot(ℳ• ⊗𝒪𝑋
𝒦•) ⊗𝒪𝑋

ℒ•)

and the definition. �

Lemma 18.20.6. Let (𝑋, 𝒪𝑋) be a ringed space. Let (𝒦•
1, 𝒦•

2, 𝒦•
3) be a distinguished

triangle in 𝐾(Mod(𝒪𝑋)). If two out of three of 𝒦•
𝑖 are K-flat, so is the third.

Proof. Follows fromLemma 18.20.1 and the fact that in a distinguished triangle in𝐾(Mod(𝒪𝑋))
if two out of three are acyclic, so is the third. �

Lemma 18.20.7. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. The pullback
of a K-flat complex of 𝒪𝑌-modules is a K-flat complex of 𝒪𝑋-modules.

Proof. We can check this on stalks, see Lemma 18.20.4. Hence this follows from Sheaves,
Lemma 6.26.4 and More on Algebra, Lemma 12.3.5. �

Lemma18.20.8. Let (𝑋, 𝒪𝑋) be a ringed space. A bounded above complex of flat𝒪𝑋-modules
is K-flat.

Proof. We can check this on stalks, see Lemma 18.20.4. Thus this lemma follows from
Modules, Lemma 15.16.2 and More on Algebra, Lemma 12.3.8. �

In the following lemma by a colimit of a system of complexeswemean the termwise colimit.

Lemma 18.20.9. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝒦•
1 → 𝒦•

2 → … be a system of K-flat
complexes. Then 𝑐𝑜𝑙𝑖𝑚𝑖 𝒦•

𝑖 is K-flat.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06Y9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06YA
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06YB
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Proof. Because we are taking termwise colimits it is clear that

𝑐𝑜𝑙𝑖𝑚𝑖 Tot(ℱ• ⊗𝒪𝑋
𝒦•

𝑖 ) = Tot(ℱ• ⊗𝒪𝑋
𝑐𝑜𝑙𝑖𝑚𝑖 𝒦•

𝑖 )

Hence the lemma follows from the fact that filtered colimits are exact. �

Lemma 18.20.10. Let (𝑋, 𝒪𝑋) be a ringed space. For any complex 𝒢• of 𝒪𝑋-modules
there exists a commutative diagram of complexes of 𝒪𝑋-modules

𝒦•
1

��

// 𝒦•
2

��

// …

𝜏≤1𝒢• // 𝜏≤2𝒢• // …

with the following properties: (1) the vertical arrows are quasi-isomorphisms, (2) each
𝒦•

𝑛 is a bounded above complex whose terms are direct sums of 𝒪𝑋-modules of the form
𝑗𝑈!𝒪𝑈, and (3) the maps 𝒦•

𝑛 → 𝒦•
𝑛+1 are termwise split injections whose cokernels are

direct sums of 𝒪𝑋-modules of the form 𝑗𝑈!𝒪𝑈. Moreover, the map 𝑐𝑜𝑙𝑖𝑚 𝒦•
𝑛 → 𝒢• is a

quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immediately from
Modules, Lemma 15.16.6 and Derived Categories, Lemma 11.27.1. The induced map
𝑐𝑜𝑙𝑖𝑚 𝒦•

𝑛 → 𝒢• is a quasi-isomorphism because filtered colimits are exact. �

Lemma 18.20.11. Let (𝑋, 𝒪𝑋) be a ringed space. For any complex 𝒢• there exists a 𝐾-flat
complex 𝒦• and a quasi-isomorphism 𝒦• → 𝒢•.

Proof. Choose a diagram as in Lemma 18.20.10. Each complex 𝒦•
𝑛 is a bounded above

complex of flat modules, see Modules on Sites, Lemma 16.26.5. Hence 𝒦•
𝑛 is K-flat by

Lemma 18.20.8. The inducedmap 𝑐𝑜𝑙𝑖𝑚 𝒦•
𝑛 → 𝒢• is a quasi-isomorphism by construction.

Since 𝑐𝑜𝑙𝑖𝑚 𝒦•
𝑛 is K-flat by Lemma 18.20.9 we win. �

Lemma18.20.12. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝛼 ∶ 𝒫• → 𝒬• be a quasi-isomorphism
of K-flat complexes of 𝒪𝑋-modules. For every complex ℱ• of 𝒪𝑋-modules the induced map

Tot(idℱ• ⊗ 𝛼) ∶ Tot(ℱ• ⊗𝒪𝑋
𝒫•) ⟶ Tot(ℱ• ⊗𝒪𝑋

𝒬•)

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism 𝒦• → ℱ• with 𝒦• a K-flat complex, see Lemma
18.20.11. Consider the commutative diagram

Tot(𝒦• ⊗𝒪𝑋
𝒫•) //

��

Tot(𝒦• ⊗𝒪𝑋
𝒬•)

��
Tot(ℱ• ⊗𝒪𝑋

𝒫•) // Tot(ℱ• ⊗𝒪𝑋
𝒬•)

The result follows as by Lemma 18.20.3 the vertical arrows and the top horizontal arrow
are quasi-isomorphisms. �

Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ• be an object of 𝐷(𝒪𝑋). Choose a K-flat resolu-
tion 𝒦• → ℱ•, see Lemma 18.20.11. By Lemma 18.20.1 we obtain an exact functor of
triangulated categories

𝐾(𝒪𝑋) ⟶ 𝐾(𝒪𝑋), 𝒢• ⟼ Tot(𝒢• ⊗𝒪𝑋
𝒦•)
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By Lemma 18.20.3 this functor induces a functor 𝐷(𝒪𝑋) → 𝐷(𝒪𝑋) simply because 𝐷(𝒪𝑋)
is the localization of 𝐾(𝒪𝑋) at quasi-isomorphisms. By Lemma 18.20.12 the resulting
functor (up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 18.20.13. Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ• be an object of 𝐷(𝒪𝑋). The
derived tensor product

− ⊗𝐋
𝒪𝑋

ℱ• ∶ 𝐷(𝒪𝑋) ⟶ 𝐷(𝒪𝑋)

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

ℱ• ⊗𝐋
𝒪𝑋

𝒢• ≅ 𝒢• ⊗𝐋
𝒪𝑋

ℱ•

for 𝒢• and ℱ• in 𝐷(𝒪𝑋). Hence when we write ℱ• ⊗𝐋
𝒪𝑋

𝒢• we will usually be agnostic
about which variable we are using to define the derived tensor product with.

18.21. Derived pullback

Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. We can use K-flat resolutions
to define a derived pullback functor

𝐿𝑓∗ ∶ 𝐷(𝒪𝑌) → 𝐷(𝒪𝑋)

Namely, for every complex of 𝒪𝑌-modules 𝒢• we can choose a K-flat resolution 𝒦• → 𝒢•

and set 𝐿𝑓∗𝒢• = 𝑓∗𝒦•. You can use Lemmas 18.20.7, 18.20.11, and 18.20.12 to see
that this is well defined. However, to cross all the t's and dot all the i's it is perhaps more
convenient to use some general theory.

Lemma 18.21.1. The construction above is independent of choices and defines an exact
functor of triangulated categories 𝐿𝑓∗ ∶ 𝐷(𝒪𝑌) → 𝐷(𝒪𝑋).

Proof. To see this we use the general theory developed in Derived Categories, Section
11.14. Set 𝒟 = 𝐾(𝒪𝑌) and 𝒟′ = 𝐷(𝒪𝑋). Let us write 𝐹 ∶ 𝒟 → 𝒟′ the exact functor of
triangulated categories defined by the rule 𝐹(𝒢•) = 𝑓∗𝒢•. We let 𝑆 be the set of quasi-
isomorphisms in 𝒟 = 𝐾(𝒪𝑌). This gives a situation as in Derived Categories, Situation
11.14.1 so that Derived Categories, Definition 11.14.2 applies. We claim that 𝐿𝐹 is every-
where defined. This follows from Derived Categories, Lemma 11.14.15 with 𝒫 ⊂ 𝑂𝑏(𝒟)
the collection of 𝐾-flat complexes: (1) follows from Lemma 18.20.11 and to see (2) we have
to show that for a quasi-isomorphism 𝒦•

1 → 𝒦•
2 between K-flat complexes of 𝒪𝑌-modules

the map 𝑓∗𝒦•
1 → 𝑓∗𝒦•

2 is a quasi-isomorphism. To see this write this as

𝑓−1𝒦•
1 ⊗𝑓−1𝒪𝑌

𝒪𝑋 ⟶ 𝑓−1𝒦•
2 ⊗𝑓−1𝒪𝑌

𝒪𝑋

The functor 𝑓−1 is exact, hence the map 𝑓−1𝒦•
1 → 𝑓−1𝒦•

2 is a quasi-isomorphism. By
Lemma 18.20.7 applied to the morphsm (𝑋, 𝑓−1𝒪𝑌) → (𝑌, 𝒪𝑌) the complexes 𝑓−1𝒦•

1 and
𝑓−1𝒦•

2 are K-flat complexes of 𝑓−1𝒪𝑌-modules. Hence Lemma 18.20.12 guarantees that
the displayed map is a quasi-isomorphism. Thus we obtain a derived functor

𝐿𝐹 ∶ 𝐷(𝒪𝑌) = 𝑆−1𝒟 ⟶ 𝒟′ = 𝐷(𝒪𝑋)

seeDerivedCategories, Equation (11.14.9.1). Finally, DerivedCategories, Lemma 11.14.15
also guarantees that 𝐿𝐹(𝒦•) = 𝐹(𝒦•) = 𝑓∗𝒦• when 𝒦• is K-flat, i.e., 𝐿𝑓∗ = 𝐿𝐹 is indeed
computed in the way described above. �
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Lemma 18.21.2. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. There is a
canonical bifunctorial isomorphism

𝐿𝑓∗(ℱ• ⊗𝐋
𝒪𝑌

𝒢•) = 𝐿𝑓∗ℱ• ⊗𝐋
𝒪𝑋

𝐿𝑓∗𝒢•

for ℱ•, 𝒢• ∈ 𝑂𝑏(𝐷(𝑋)).

Proof. We may assume that ℱ• and 𝒢• are K-flat complexes. In this case ℱ• ⊗𝐋
𝒪𝑌

𝒢• is
just the total complex associated to the double complex ℱ• ⊗𝒪𝑌

𝒢•. By Lemma 18.20.5
Tot(ℱ• ⊗𝒪𝑌

𝒢•) is K-flat also. Hence the isomorphism of the lemma comes from the iso-
morphism

Tot(𝑓∗ℱ• ⊗𝒪𝑋
𝑓∗𝒢•) ⟶ 𝑓∗Tot(ℱ• ⊗𝒪𝑌

𝒢•)

whose constituents are the isomorphisms 𝑓∗ℱ𝑝 ⊗𝒪𝑋
𝑓∗𝒢𝑞 → 𝑓∗(ℱ𝑝 ⊗𝒪𝑌

𝒢𝑞) of Modules,
Lemma 15.15.4. �

18.22. Cohomology of unbounded complexes

Let (𝑋, 𝒪𝑋) be a ringed space. The category Mod(𝒪𝑋) is a Grothendieck abelian category:
it has all colimits, filtered colimits are exact, and it has a generator, namely

⨁𝑈⊂𝑋 open
𝑗𝑈!𝒪𝑈,

see Modules, Section 15.3 and Lemmas 15.16.5 and 15.16.6. By Injectives, Theorem
17.16.6 for every complex ℱ• of 𝒪𝑋-modules there exists an injective quasi-isomorphism
ℱ• → ℐ• to a K-injective complex of 𝒪𝑋-modules. Hence we can define

𝑅Γ(𝑋, ℱ•) = Γ(𝑋, ℐ•)

and similarly for any left exact functor, see Derived Categories, Lemma 11.28.5. For any
morphism of ringed spaces 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) we obtain

𝑅𝑓∗ ∶ 𝐷(𝑋) ⟶ 𝐷(𝑌)

on the unbounded derived categories.

Lemma 18.22.1. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of ringed spaces. The functor
𝑅𝑓∗ defined above and the functor 𝐿𝑓∗ defined in Lemma 18.21.1 are adjoint:

Hom𝐷(𝑋)(𝐿𝑓∗𝒢•, ℱ•) = Hom𝐷(𝑌)(𝒢•, 𝑅𝑓∗ℱ•)

bifunctorially in ℱ• ∈ 𝑂𝑏(𝐷(𝑋)) and 𝒢• ∈ 𝑂𝑏(𝐷(𝑌)).

Proof. This is formal from the results obtained above. Choose a K-flat resolution 𝒦• → 𝒢•

and a K-injective resolution ℱ• → ℐ•. Then

Hom𝐷(𝑋)(𝐿𝑓∗𝒢•, ℱ•) = Hom𝐷(𝑋)(𝑓∗𝒦•, ℐ•) = Hom𝐾(Mod(𝒪𝑋))(𝑓∗𝒦•, ℐ•)

by our definition of 𝐿𝑓∗ and because ℐ• is K-injective, see Derived Categories, Lemma
11.28.2. On the other hand

Hom𝐷(𝑌)(𝒢•, 𝑅𝑓∗ℱ•) = Hom𝐷(𝑌)(𝒦•, 𝑓∗ℐ•)

by our definition of 𝑅𝑓∗. By definition of morphisms in 𝐷(𝑌) this is equal to

𝑐𝑜𝑙𝑖𝑚𝑠∶ℋ•→𝒦• Hom𝐾(Mod(𝒪𝑌))(ℋ•, 𝑓∗ℐ•)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=079U
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where the colimit is over all quasi-isomorphisms 𝑠 ∶ ℋ• → 𝒦• of complexes of𝒪𝑌-modules.
Since every complex has a left K-flat resolution it suffices to look at quasi-isomorphisms
𝑠 ∶ (𝒦′)• → 𝒦• where (𝒦′)• is K-flat as well. In this case we have

Hom𝐾(Mod(𝒪𝑌))((𝒦′)•, 𝑓∗ℐ•) = Hom𝐾(Mod(𝒪𝑌))(𝑓∗(𝒦′)•, ℐ•)
= Hom𝐾(Mod(𝒪𝑌))(𝑓∗𝒦•, ℐ•)

The first equality because 𝑓∗ and 𝑓∗ are adjoint functors and the second because ℐ• is
K-injective and because 𝑓∗(𝒦′)• → 𝑓∗𝒦• is a quasi-isomorphism (by virtue of the fact
that 𝐿𝑓∗ is well defined). �

18.23. Producing K-injective resolutions

Let (𝑋, 𝒪𝑋) be a ringed space. Let ℱ• be a complex of 𝒪𝑋-modules. The categoryMod(𝒪𝑋)
has enough injectives, hence we can use Derived Categories, Lemma 11.27.3 produce a
diagram

… // 𝜏≥−2ℱ• //

��

𝜏≥−1ℱ•

��
… // ℐ•

2
// ℐ•

1

in the category of complexes of 𝒪𝑋-modules such that
(1) the vertical arrows are quasi-isomorphisms,
(2) ℐ•

𝑛 is a bounded above complex of injectives,
(3) the arrows ℐ•

𝑛+1 → ℐ•
𝑛 are termwise split surjections.

The category of 𝒪𝑋-modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit ℐ• = 𝑙𝑖𝑚𝑛 ℐ•

𝑛. By Derived Categories, Lemmas
11.28.3 and 11.28.6 this is a K-injective complex. In general the canonical map
(18.23.0.1) ℱ• → ℐ•

may not be a quasi-isomorphism. In the following lemma we describe some conditions
under which it is.

Lemma 18.23.1. In the situation described above. Denote ℋ𝑖 = 𝐻𝑖(ℱ•) the 𝑖th cohomol-
ogy sheaf. Let ℬ be a set of open subsets of 𝑋. Let 𝑑 ∈ 𝐍. Assume

(1) every open in 𝑋 has a covering whose members are elements of ℬ,
(2) for every 𝑈 ∈ ℬ we have 𝐻𝑝(𝑈, ℋ𝑞) = 0 for 𝑝 > 𝑑2.

Then (18.23.0.1) is a quasi-isomorphism.

Proof. Let 𝑈 ∈ ℬ. Note that 𝐻𝑚(ℐ•(𝑈)) is the cohomology of

𝑙𝑖𝑚𝑛 ℐ𝑚−2
𝑛 (𝑈) → 𝑙𝑖𝑚𝑛 ℐ𝑚−1

𝑛 (𝑈) → 𝑙𝑖𝑚𝑛 ℐ𝑚
𝑛 (𝑈) → 𝑙𝑖𝑚𝑛 ℐ𝑚+1

𝑛 (𝑈)
in the third spot from the left. Note that the transition maps ℐ𝑚

𝑛+1(𝑈) → ℐ𝑚
𝑛 (𝑈) are always

surjective by our construction of the inverse system. By construction there are distingushed
triangles in 𝐷(𝒪𝑋)

ℋ−𝑛[𝑛] → ℐ•
𝑛 → ℐ•

𝑛−1 → ℋ−𝑛[𝑛 + 1]
By assumption (2) we see that if 𝑚 > 𝑑 − 𝑛 then

𝐻𝑚(𝑈, ℋ−𝑛[𝑛]) = 𝐻𝑛+𝑚(𝑈, ℋ−𝑛) = 0

2In fact, analyzing the proof we see that it suffices if there exists a function 𝑑 ∶ 𝐙 → 𝐙 ∪ {+∞} such that
𝐻𝑝(𝑈, ℋ𝑞) = 0 for 𝑝 > 𝑑(𝑞) where 𝑞 + 𝑑(𝑞) → −∞ as 𝑞 → −∞

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=071B
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and similarly 𝐻𝑚(𝑈, ℋ−𝑛[𝑛 + 1]) = 0 which implies that 𝐻𝑚(ℐ•
𝑛(𝑈)) → 𝐻𝑚(ℐ•

𝑛−1(𝑈)) is
an isomorphism. Thus the cohomologies of the complexes ℐ•

𝑛(𝑈) are eventually constant in
every cohomological degree. Thus we may apply Homology, Lemma 10.23.7 to conclude
that

𝐻𝑚(ℐ•(𝑈)) = 𝑙𝑖𝑚 𝐻𝑚(ℐ•
𝑛(𝑈)).

Using the stabilization above once again we see that
𝐻𝑚(ℐ•(𝑈)) = 𝐻𝑚(ℐ•

max{1,−𝑚+𝑑}(𝑈))

for every 𝑈 ∈ ℬ.
Since every object of 𝒞 has a covering whose members are elements of ℬ we see that it
suffices to show that the sheafification of

𝑈 ⟼ 𝐻𝑚(ℐ•
max{1,−𝑚+𝑑}(𝑈))

isℋ𝑚. But since for any complex𝒥• of abelian sheaves the sheafification of𝑈 ↦ 𝐻𝑚(𝒥•(𝑈))
is isomorphic to the 𝑚th cohomology sheaf of 𝒥• this is clear from the fact that 𝜏≤−𝑛ℱ• →
ℐ•

𝑛 is a quasi-isomorphism. �
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CHAPTER 19

Cohomology on Sites

19.1. Introduction

In this document we work out some topics on cohomology of sheaves. We work out what
happens for sheaves on sites, allthough often we will simply duplicate the discussion, the
constructions, and the proofs from the topological case in the case. Basic references are
[MA71], [God73] and [Ive86].

19.2. Topics

Here are some topics that should be discussed in this chapter, and have not yet been written.
(1) Cohomology of a sheaf of modules on a site is the same as the cohomology of

the underlying abelian sheaf.
(2) Hypercohomology on a site.
(3) Ext-groups.
(4) Ext sheaves.
(5) Tor functors.
(6) Higher direct images for a morphism of sites.
(7) Derived pullback for morphisms between ringed sites.
(8) Cup-product.
(9) Group cohomology.

(10) Comparison of group cohomology and cohomology on 𝒯𝐺.
(11) Cech cohomology on sites.
(12) Cech to cohomology spectral sequence on sites.
(13) Leray Spectral sequence for a morphism between ringed sites.
(14) Etc, etc, etc.

19.3. Cohomology of sheaves

Let 𝒞 be a site, see Sites, Definition 9.6.2. Let ℱ be a abelian sheaf on 𝒞. We know that the
category of abelian sheaves on 𝒞 has enough injectives, see Injectives, Theorem 17.11.4.
Hence we can choose an injective resolution ℱ[0] → ℐ•. For any object 𝑈 of the site 𝒞 we
define

(19.3.0.1) 𝐻𝑖(𝑈, ℱ) = 𝐻𝑖(Γ(𝑈, ℐ•))

to be the 𝑖th cohomology group of the abelian sheaf ℱ over the object 𝑈. In other words,
these are the right derived functors of the functor ℱ ↦ ℱ(𝑈). The family of functors
𝐻𝑖(𝑈, −) forms a universal 𝛿-functor Ab(𝒞) → Ab.

It sometimes happens that the site 𝒞 does not have a final object. In this case we define the
global sections of a presheaf of sets ℱ over 𝒞 to be the set

(19.3.0.2) Γ(𝒞, ℱ) = 𝑀𝑜𝑟PSh(𝒞)(𝑒, ℱ)

1121
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where 𝑒 is a final object in the category of presheaves on 𝒞. In this case, given an abelian
sheaf ℱ on 𝒞, we define the 𝑖th cohomology group of ℱ on 𝒞 as follows

(19.3.0.3) 𝐻𝑖(𝒞, ℱ) = 𝐻𝑖(Γ(𝒞, ℐ•))

in other words, it is the 𝑖th right derived functor of the global sections functor. The family
of functors 𝐻𝑖(𝒞, −) forms a universal 𝛿-functor Ab(𝒞) → Ab.

Let 𝑓 ∶ Sh(𝒞) → Sh(𝒟) be a morphism of topoi, see Sites, Definition 9.15.1. With ℱ[0] →
ℐ• as above we define

(19.3.0.4) 𝑅𝑖𝑓∗ℱ = 𝐻𝑖(𝑓∗ℐ•)

to be the 𝑖th higher direct image of ℱ. These are the right derived functors of 𝑓∗. The
family of functors 𝑅𝑖𝑓∗ forms a universal 𝛿-functor from Ab(𝒞) → Ab(𝒟).

Let (𝒞, 𝒪) be a ringed site, see Modules on Sites, Definition 16.6.1. Let ℱ be an 𝒪-module.
We know that the category of 𝒪-modules has enough injectives, see Injectives, Theorem
17.12.4. Hence we can choose an injective resolution ℱ[0] → ℐ•. For any object 𝑈 of the
site 𝒞 we define

(19.3.0.5) 𝐻𝑖(𝑈, ℱ) = 𝐻𝑖(Γ(𝑈, ℐ•))

to be the the 𝑖th cohomology group of ℱ over 𝑈. The family of functors 𝐻𝑖(𝑈, −) forms a
universal 𝛿-functor Mod(𝒪) → Mod(𝒪(𝑈)). Similarly

(19.3.0.6) 𝐻𝑖(𝒞, ℱ) = 𝐻𝑖(Γ(𝒞, ℐ•))

it the 𝑖th cohomology group of ℱ on 𝒞. The family of functors 𝐻𝑖(𝒞, −) forms a universal
𝛿-functor Mod(𝒞) → Mod(Γ(𝒞, 𝒪)).

Let 𝑓 ∶ (Sh(𝒞), 𝒪) → (Sh(𝒟), 𝒪′) be a morphism of ringed topoi, see Modules on Sites,
Definition 16.7.1. With ℱ[0] → ℐ• as above we define

(19.3.0.7) 𝑅𝑖𝑓∗ℱ = 𝐻𝑖(𝑓∗ℐ•)

to be the 𝑖th higher direct image of ℱ. These are the right derived functors of 𝑓∗. The
family of functors 𝑅𝑖𝑓∗ forms a universal 𝛿-functor from Mod(𝒪) → Mod(𝒪′).

19.4. Derived functors

We briefly explain an approach to right derived functors using resolution functors. Namely,
suppose that (𝒞, 𝒪) is a ringed site. In this chapter we will write

𝐾(𝒪) = 𝐾(Mod(𝒪)) and 𝐷(𝒪) = 𝐷(Mod(𝒪))

and similarly for the bounded versions for the triangulated categories introduced in De-
rived Categories, Definition 11.7.1 and Definition 11.10.3. By Derived Categories, Remark
11.23.3 there exists a resolution functor

𝑗 = 𝑗(𝒞,𝒪) ∶ 𝐾+(Mod(𝒪)) ⟶ 𝐾+(ℐ)

where ℐ is the strictly full additive subcategory of Mod(𝒪) which consists of injective
𝒪-modules. For any left exact functor 𝐹 ∶ Mod(𝒪) → ℬ into any abelian category ℬ we
will denote 𝑅𝐹 the right derived functor of Derived Categories, Section 11.19 constructed
using the resolution functor 𝑗 just described:

(19.4.0.8) 𝑅𝐹 = 𝐹 ∘ 𝑗′ ∶ 𝐷+(𝒪) ⟶ 𝐷+(ℬ)
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see Derived Categories, Lemma 11.24.1 for notation. Note that we may think of 𝑅𝐹 as
defined on Mod(𝒪), Comp+(Mod(𝒪)), or 𝐾+(𝒪) depending on the situation. According to
Derived Categories, Definition 11.16.2 we obtain the 𝑖the right derived functor

(19.4.0.9) 𝑅𝑖𝐹 = 𝐻𝑖 ∘ 𝑅𝐹 ∶ Mod(𝒪) ⟶ ℬ

so that 𝑅0𝐹 = 𝐹 and {𝑅𝑖𝐹, 𝛿}𝑖≥0 is universal 𝛿-functor, see Derived Categories, Lemma
11.19.4.

Here are two special cases of this construction. Given a ring 𝑅 we write 𝐾(𝑅) = 𝐾(Mod𝑅)
and 𝐷(𝑅) = 𝐷(Mod𝑅) and similarly for the bounded versions. For any object 𝑈 of 𝒞 have
a left exact functor Γ(𝑈, −) ∶ Mod(𝒪) ⟶ Mod(𝒪(𝑈)) which gives rise to

𝑅Γ(𝑈, −) ∶ 𝐷+(𝒪) ⟶ 𝐷+(𝒪(𝑈))

by the discussion above. Note that 𝐻𝑖(𝑈, −) = 𝑅𝑖Γ(𝑈, −) is compatible with (19.3.0.5)
above. We similarly have

𝑅Γ(𝒞, −) ∶ 𝐷+(𝒪) ⟶ 𝐷+(Γ(𝒞, 𝒪))

compatible with (19.3.0.6). If 𝑓 ∶ (Sh(𝒞), 𝒪) → (Sh(𝒟), 𝒪′) is a morphism of ringed topoi
then we get a left exact functor 𝑓∗ ∶ Mod(𝒪) → Mod(𝒪′) which gives rise to derived
pushforward

𝑅𝑓∗ ∶ 𝐷+(𝒪) → 𝐷+(𝒪′)

The 𝑖th cohomology sheaf of 𝑅𝑓∗ℱ• is denoted 𝑅𝑖𝑓∗ℱ• and called the 𝑖th higher direct
image in accordance with (19.3.0.7). The displayed functors above are exact functor of
derived categories.

19.5. First cohomology and torsors

Definition 19.5.1. Let 𝒞 be a site. Let 𝒢 be a sheaf of (possibly non-commutative) groups
on 𝒞. A pseudo torsor, or more precisely a pseudo 𝒢-torsor, is a sheaf of sets ℱ on 𝒞
endowed with an action 𝒢 × ℱ → ℱ such that

(1) whenever ℱ(𝑈) is nonempty the action 𝒢(𝑈)×ℱ(𝑈) → ℱ(𝑈) is simply transitive.
A morphism of pseudo 𝒢-torsors ℱ → ℱ′ is simply a morphism of sheaves of sets compat-
ible with the 𝒢-actions. A torsor, or more precisely a 𝒢-torsor, is a pseudo 𝐺-torsor such
that in addition

(2) for every 𝑈 ∈ 𝑂𝑏(𝒞) there exists a covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 of 𝑈 such that ℱ(𝑈𝑖)
is nonempty for all 𝑖 ∈ 𝐼.

A morphism of 𝐺-torsors is simply a morphism of pseudo 𝐺-torsors. The trivial 𝒢-torsor
is the sheaf 𝒢 endowed with the obvious left 𝒢-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 19.5.2. Let 𝒞 be a site. Let 𝒢 be a sheaf of (possibly non-commutative) groups on
𝒞. A 𝒢-torsor ℱ is trivial if and only if Γ(𝒞, ℱ)≠∅.

Proof. Omitted. �

Lemma 19.5.3. Let 𝒞 be a site. Let ℋ be an abelian sheaf on 𝒞. There is a canonical
bijection between the set of isomorphism classes of ℋ-torsors and 𝐻1(𝒞, ℋ).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03AH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03AI
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03AJ


1124 19. COHOMOLOGY ON SITES

Proof. Let ℱ be a ℋ-torsor. Consider the free abelian sheaf 𝐙[ℱ] on ℱ. It is the sheafifica-
tion of the rule which associates to 𝑈 ∈ 𝑂𝑏(𝒞) the collection of finite formal sums ∑ 𝑛𝑖[𝑠𝑖]
with 𝑛𝑖 ∈ 𝐙 and 𝑠𝑖 ∈ ℱ(𝑈). There is a natural map

𝜎 ∶ 𝐙[ℱ] ⟶ 𝐙

which to a local section ∑ 𝑛𝑖[𝑠𝑖] associates ∑ 𝑛𝑖. The kernel of 𝜎 is generated by sections
of the form [𝑠]−[𝑠′]. There is a canonical map 𝑎 ∶ Ker(𝜎) → ℋ which maps [𝑠]−[𝑠′] ↦ ℎ
where ℎ is the local section of ℋ such that ℎ ⋅ 𝑠 = 𝑠′. Consider the push out diagram

0 // Ker(𝜎) //

𝑎
��

𝐙[ℱ] //

��

𝐙 //

��

0

0 // ℋ // ℰ // 𝐙 // 0

Here ℰ is the extension obtained by push out. From the long exact cohomology sequence
associated to the lower short exact sequence we obtain an element 𝜉 = 𝜉ℱ ∈ 𝐻1(𝒞, ℋ) by
applying the boundary operator to 1 ∈ 𝐻0(𝒞, 𝐙).

Conversely, given 𝜉 ∈ 𝐻1(𝒞, ℋ) we can associate to 𝜉 a torsor as follows. Choose an
embedding ℋ → ℐ of ℋ into an injective abelian sheaf ℐ. We set 𝒬 = ℐ/ℋ so that we
have a short exact sequence

0 // ℋ // ℐ // 𝒬 // 0

The element 𝜉 is the image of a global section 𝑞 ∈ 𝐻0(𝒞, 𝒬) because 𝐻1(𝒞, ℐ) = 0 (see
Derived Categories, Lemma 11.19.4). Let ℱ ⊂ ℐ be the subsheaf (of sets) of sections that
map to 𝑞 in the sheaf 𝒬. It is easy to verify that ℱ is a ℋ-torsor.

We omit the verification that the two constructions given above are mutually inverse. �

19.6. First cohomology and extensions

Lemma 19.6.1. Let (𝒞, 𝒪) be a ringed site. Let ℱ be a sheaf of 𝒪-modules on 𝒞. There is
a canonical bijection

Ext1Mod(𝒪)(𝒪, ℱ) ⟶ 𝐻1(𝒞, ℱ)
which associates to the extension

0 → ℱ → ℰ → 𝒪 → 0

the image of 1 ∈ Γ(𝒞, 𝒪) in 𝐻1(𝒞, ℱ).

Proof. Let us construct the inverse of the map given in the lemma. Let 𝜉 ∈ 𝐻1(𝒞, ℱ).
Choose an injection ℱ ⊂ ℐ with ℐ injective in Mod(𝒪). Set 𝒬 = ℐ/ℱ. By the long
exact sequence of cohomology, we see that 𝜉 is the image of of a section ̃𝜉 ∈ Γ(𝒞, 𝒬) =
𝐻𝑜𝑚𝒪(𝒪, 𝒬). Now, we just form the pullback

0 // ℱ // ℰ //

��

𝒪 //

̃𝜉
��

0

0 // ℱ // ℐ // 𝒬 // 0

see Homology, Section 10.4. �

The following lemma will be superceded by the more general Lemma 19.12.4.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03F1
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Lemma 19.6.2. Let (𝒞, 𝒪) be a ringed site. Let ℱ be a sheaf of 𝒪-modules on 𝒞. Let ℱ𝑎𝑏
denote the underlying sheaf of abelian groups. Then there is a functorial isomorphism

𝐻1(𝒞, ℱ𝑎𝑏) = 𝐻1(𝒞, ℱ)
where the left hand side is cohomology computed in Ab(𝒞) and the right hand side is co-
homology computed in Mod(𝒪).

Proof. Let 𝐙 denote the constant sheaf 𝐙. As Ab(𝒞) = Mod(𝐙) we may apply Lemma
19.6.1 twice, and it follows that we have to show

Ext1Mod(𝒪)(𝒪, ℱ) = Ext1Mod(𝐙)(𝐙, ℱ𝑎𝑏).

Suppose that 0 → ℱ → ℰ → 𝒪 → 0 is an extension in Mod(𝒪). Then we can use the
obvious map of abelian sheaves 1 ∶ 𝐙 → 𝒪 and pullback to obtain an extension ℰ𝑎𝑏, like
so:

0 // ℱ𝑎𝑏
// ℰ𝑎𝑏

//

��

𝐙 //

1
��

0

0 // ℱ // ℰ // 𝒪 // 0
The converse is a little more fun. Suppose that 0 → ℱ𝑎𝑏 → ℰ𝑎𝑏 → 𝐙 → 0 is an extension
in Mod(𝐙). Since 𝐙 is a flat 𝐙-module we see that the sequence

0 → ℱ𝑎𝑏 ⊗𝐙 𝒪 → ℰ𝑎𝑏 ⊗𝐙 𝒪 → 𝐙 ⊗𝐙 𝒪 → 0

is exact, see Modules on Sites, Lemma 16.26.7. Of course 𝐙 ⊗𝐙 𝒪 = 𝒪. Hence we can
push out this via the (𝒪-linear) multiplication map 𝜇 ∶ ℱ ⊗𝐙 𝒪 → ℱ to get an extension of
𝒪 by ℱ, like this

0 // ℱ𝑎𝑏 ⊗𝐙 𝒪 //

𝜇
��

ℰ𝑎𝑏 ⊗𝐙 𝒪 //

��

𝒪 // 0

0 // ℱ // ℰ // 𝒪 // 0
which is the desired extension. We omit the verification that these constructions are mutu-
ally inverse. �

19.7. First cohomology and invertible sheaves

The Picard group of a ringed site is defined in Modules on Sites, Section 16.28.

Lemma 19.7.1. Let (𝒞, 𝒪) be a ringed site. There is a canonical isomorphism

𝐻1(𝒞, 𝒪∗) = Pic(𝒪).
of abelian groups.

Proof. Let ℒ be an invertible 𝒪-module. Consider the presheaf ℒ∗ defined by the rule

𝑈 ⟼ {𝑠 ∈ ℒ(𝑈) such that 𝒪𝑈
𝑠⋅−

−−−→ ℒ𝑈 is an isomorphism}
This presheaf satisfies the sheaf condition. Moreover, if 𝑓 ∈ 𝒪∗(𝑈) and 𝑠 ∈ ℒ∗(𝑈), then
clearly 𝑓𝑠 ∈ ℒ∗(𝑈). By the same token, if 𝑠, 𝑠′ ∈ ℒ∗(𝑈) then there exists a unique
𝑓 ∈ 𝒪∗(𝑈) such that 𝑓𝑠 = 𝑠′. Moreover, the sheaf ℒ∗ has sections locally by the very
definition of an invertible sheaf. In other words we see that ℒ∗ is a 𝒪∗-torsor. Thus we get
a map

set of invertible sheaves on (𝒞, 𝒪)
up to isomorphism ⟶ set of 𝒪∗-torsors

up to isomorphism

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03F2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=040E
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We omit the verification that this is a homomorphism of abelian groups. By Lemma 19.5.3
the right hand side is canonically bijective to 𝐻1(𝒞, 𝒪∗). Thus we have to show this map is
injective and surjective.

Injective. If the torsor ℒ∗ is trivial, this means by Lemma 19.5.2 that ℒ∗ has a global
section. Hence this means exactly that ℒ ≅ 𝒪 is the neutral element in Pic(𝒪).

Surjective. Let ℱ be an 𝒪∗-torsor. Consider the presheaf of sets

ℒ1 ∶ 𝑈 ⟼ (ℱ(𝑈) × 𝒪(𝑈))/𝒪∗(𝑈)

where the action of 𝑓 ∈ 𝒪∗(𝑈) on (𝑠, 𝑔) is (𝑓𝑠, 𝑓−1𝑔). Then ℒ1 is a presheaf of 𝒪-modules
by setting (𝑠, 𝑔) + (𝑠′, 𝑔′) = (𝑠, 𝑔 + (𝑠′/𝑠)𝑔′) where 𝑠′/𝑠 is the local section 𝑓 of 𝒪∗ such
that 𝑓𝑠 = 𝑠′, and ℎ(𝑠, 𝑔) = (𝑠, ℎ𝑔) for ℎ a local section of 𝒪. We omit the verification
that the sheafification ℒ = ℒ#

1 is an invertible 𝒪-module whose associated 𝒪∗-torsor ℒ∗ is
isomorphic to ℱ. �

19.8. Locality of cohomology

The following lemma says there is no ambguity in defining the cohomology of a sheaf ℱ
over an object of the site.

Lemma 19.8.1. Let (𝒞, 𝒪) be a ringed site. Let 𝑈 be an object of 𝒞.
(1) If ℐ is an injective 𝒪-module then ℐ|𝑈 is an injective 𝒪𝑈-module.
(2) For any sheaf of 𝒪-modules ℱ we have 𝐻𝑝(𝑈, ℱ) = 𝐻𝑝(𝒞/𝑈, ℱ|𝑈).

Proof. Recall that the functor 𝑗−1
𝑈 of restriction to 𝑈 is a right adjoint to the functor 𝑗𝑈! of

extension by 0, see Modules on Sites, Section 16.19. Moreover, 𝑗𝑈! is exact. Hence (1)
follows from Homology, Lemma 10.22.1.

By definition 𝐻𝑝(𝑈, ℱ) = 𝐻𝑝(ℐ•(𝑈)) where ℱ → ℐ• is an injective resolution inMod(𝒪).
By the above we see that ℱ|𝑈 → ℐ•|𝑈 is an injective resolution in Mod(𝒪𝑈). Hence
𝐻𝑝(𝑈, ℱ|𝑈) is equal to 𝐻𝑝(ℐ•|𝑈(𝑈)). Of course ℱ(𝑈) = ℱ|𝑈(𝑈) for any sheaf ℱ on 𝒞.
Hence the equality in (2). �

The following lemma will be use to see what happens if we change a partial universe, or to
compare cohomology of the small and big étale sites.

Lemma 19.8.2. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Assume 𝑢 satisfies the
hypotheses of Sites, Lemma 9.19.8. Let 𝑔 ∶ Sh(𝒞) → Sh(𝒟) be the associated morphism of
topoi. For any abelian sheaf ℱ on 𝒟 we have isomorphisms

𝑅Γ(𝒞, 𝑔−1ℱ) = 𝑅Γ(𝒟, ℱ),

in particular 𝐻𝑝(𝒞, 𝑔−1ℱ) = 𝐻𝑝(𝒟, ℱ) and for any 𝑈 ∈ 𝑂𝑏(𝒞) we have isomorphisms

𝑅Γ(𝑈, 𝑔−1ℱ) = 𝑅Γ(𝑢(𝑈), ℱ),

in particular 𝐻𝑝(𝑈, 𝑔−1ℱ) = 𝐻𝑝(𝑢(𝑈), ℱ). All of these isomorphisms are functorial in ℱ.

Proof. Since it is clear that Γ(𝒞, 𝑔−1ℱ) = Γ(𝒟, ℱ) by hypothesis (e), it suffices to show
that 𝑔−1 transforms injective abelian sheaves into injective abelian sheaves. As usual we
use Homology, Lemma 10.22.1 to see this. The left adjoint to 𝑔−1 is 𝑔! = 𝑓−1 with the
notation of Sites, Lemma 9.19.8 which is an exact functor. Hence the lemma does indeed
apply. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03F3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03YU
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Let (𝒞, 𝒪) be a ringed site. Let ℱ be a sheaf of 𝒪-modules. Let 𝜑 ∶ 𝑈 → 𝑉 be a morphism
of 𝒪. Then there is a canonical restriction mapping

(19.8.2.1) 𝐻𝑛(𝑉, ℱ) ⟶ 𝐻𝑛(𝑈, ℱ), 𝜉 ⟼ 𝜉|𝑈

functorial inℱ. Namely, choose any injective resolutionℱ → ℐ•. The restrictionmappings
of the sheaves ℐ𝑝 give a morphism of complexes

Γ(𝑉, ℐ•) ⟶ Γ(𝑈, ℐ•)

The LHS is a complex representing 𝑅Γ(𝑉, ℱ) and the RHS is a complex representing
𝑅Γ(𝑈, ℱ). We get the map on cohomology groups by applying the functor 𝐻𝑛. As in-
dicated we will use the notation 𝜉 ↦ 𝜉|𝑈 to denote this map. Thus the rule 𝑈 ↦ 𝐻𝑛(𝑈, ℱ)
is a presheaf of 𝒪-modules. This presheaf is customarily denoted 𝐻𝑛(ℱ). We will give
another interpretation of this presheaf in Lemma 19.11.4.

The following lemma says that it is possible to kill higher cohomology classes by going to
a covering.

Lemma 19.8.3. Let (𝒞, 𝒪) be a ringed site. Let ℱ be a sheaf of 𝒪-modules. Let 𝑈 be an
object of 𝒞. Let 𝑛 > 0 and let 𝜉 ∈ 𝐻𝑛(𝑈, ℱ). Then there exists a covering {𝑈𝑖 → 𝑈} of 𝒞
such that 𝜉|𝑈𝑖

= 0 for all 𝑖 ∈ 𝐼.

Proof. Let ℱ → ℐ• be an injective resolution. Then

𝐻𝑛(𝑈, ℱ) = Ker(ℐ𝑛(𝑈) → ℐ𝑛+1(𝑈))
Im(ℐ𝑛−1(𝑈) → ℐ𝑛(𝑈))

.

Pick an element ̃𝜉 ∈ ℐ𝑛(𝑈) representing the cohomology class in the presentation above.
Since ℐ• is an injective resolution of ℱ and 𝑛 > 0 we see that the complex ℐ• is exact in
degree 𝑛. Hence Im(ℐ𝑛−1 → ℐ𝑛) = Ker(ℐ𝑛 → ℐ𝑛+1) as sheaves. Since ̃𝜉 is a section of
the kernel sheaf over 𝑈 we conclude there exists a covering {𝑈𝑖 → 𝑈} of the site such that

̃𝜉|𝑈𝑖
is the image under 𝑑 of a section 𝜉𝑖 ∈ ℐ𝑛−1(𝑈𝑖). By our definition of the restriction

𝜉|𝑈𝑖
as corresponding to the class of ̃𝜉|𝑈𝑖

we conclude. �

Lemma 19.8.4. Let 𝑓 ∶ (𝒞, 𝒪𝒞) → (𝒟, 𝒪𝒟) be a morphism of ringed sites corresponding
to the continuous functor 𝑢 ∶ 𝒟 → 𝒞. For any ℱ ∈ 𝑂𝑏(Mod(𝒪𝒞)) the sheaf 𝑅𝑖𝑓∗ℱ is the
sheaf associated to the presheaf

𝑉 ⟼ 𝐻𝑖(𝑢(𝑉), ℱ)

Proof. Let ℱ → ℐ• be an injective resolution. Then 𝑅𝑖𝑓∗ℱ is by definition the 𝑖th coho-
mology sheaf of the complex

𝑓∗ℐ0 → 𝑓∗ℐ1 → 𝑓∗ℐ2 → …

By definition of the abelian category structure on 𝒪𝒟-modules this cohomology sheaf is
the sheaf associated to the presheaf

𝑉 ⟼
Ker(𝑓∗ℐ𝑖(𝑉) → 𝑓∗ℐ𝑖+1(𝑉))
Im(𝑓∗ℐ𝑖−1(𝑉) → 𝑓∗ℐ𝑖(𝑉))

and this is obviously equal to

Ker(ℐ𝑖(𝑢(𝑉)) → ℐ𝑖+1(𝑢(𝑉)))
Im(ℐ𝑖−1(𝑢(𝑉)) → ℐ𝑖(𝑢(𝑉)))

which is equal to 𝐻𝑖(𝑢(𝑉), ℱ) and we win. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01FW
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19.9. The Cech complex and Cech cohomology

Let 𝒞 be a category. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms with fixed target, see
Sites, Definition 9.6.1. Let ℱ be an abelian presheaf on 𝒞. Set

̌𝒞𝑝(𝒰, ℱ) = ∏(𝑖0,…,𝑖𝑝)∈𝐼𝑝+1 ℱ(𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝).

This is an abelian group. For 𝑠 ∈ ̌𝒞𝑝(𝒰, ℱ) we denote 𝑠𝑖0…𝑖𝑝 its value in the factor ℱ(𝑈𝑖0 ×𝑈
… ×𝑈 𝑈𝑖𝑝). We define

𝑑 ∶ ̌𝒞𝑝(𝒰, ℱ) ⟶ ̌𝒞𝑝+1(𝒰, ℱ)
by the formula

𝑑(𝑠)𝑖0…𝑖𝑝+1
=(19.9.0.1)

∑
𝑝+1
𝑗=0

(−1)𝑗(𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝+1
⟶ 𝑈𝑖0 ×𝑈 … 𝑈𝑖𝑗 … ×𝑈 𝑈𝑖𝑝+1

)∗𝑠𝑖0… ̂𝑖𝑗…𝑖𝑝

It is straightforward to see that 𝑑 ∘ 𝑑 = 0. In other words ̌𝒞•(𝒰, ℱ) is a complex.

Definition 19.9.1. Let 𝒞 be a category. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms
with fixed target. Let ℱ be an abelian presheaf on 𝒞. The complex ̌𝒞•(𝒰, ℱ) is the Cech
complex associated to ℱ and the family 𝒰. Its cohomology groups 𝐻𝑖( ̌𝒞•(𝒰, ℱ)) are called
the Cech cohomology groups associated to ℱ and 𝒰. They are denoted �̌�𝑖(𝒰, ℱ).

Lemma 19.9.2. Let 𝒞 be a site. Let ℱ be an abelian presheaf on 𝒞. The following are
equivalent

(1) ℱ is an abelian sheaf on 𝒞 and
(2) for every covering 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 of the site 𝒞 the natural map

ℱ(𝑈) → �̌�0(𝒰, ℱ)

(see Sites, Section 9.10) is bijective.

Proof. This is true since the sheaf condition is exactly that ℱ(𝑈) → �̌�0(𝒰, ℱ) is bijective
for every open covering. �

Let 𝒞 be a category. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms of 𝒞 with fixed
target. Let 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽 be another. Let 𝑓 ∶ 𝑈 → 𝑉, 𝛼 ∶ 𝐼 → 𝐽 and 𝑓𝑖 ∶ 𝑈𝑖 → 𝑉𝛼(𝑖)
be a morphism of families of morphisms with fixed target, see Sites, Section 9.8. In this
case we get a map of Cech complexes

(19.9.2.1) 𝜑 ∶ ̌𝒞•(𝒱, ℱ) ⟶ ̌𝒞•(𝒰, ℱ)

which in degree 𝑝 is given by

𝜑(𝑠)𝑖0…𝑖𝑝 = (𝑓𝑖0 × … × 𝑓𝑖𝑝)∗𝑠𝛼(𝑖0)…𝛼(𝑖𝑝)

19.10. Cech cohomology as a functor on presheaves

Warning: In this section we work exclusively with abelian presheaves on a category. The
results are completely wrong in the setting of sheaves and categories of sheaves!

Let 𝒞 be a category. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms with fixed target. Let
ℱ be an abelian presheaf on 𝒞. The construction

ℱ ⟼ ̌𝒞•(𝒰, ℱ)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03AM
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is functorial in ℱ. In fact, it is a functor

(19.10.0.2) ̌𝒞•(𝒰, −) ∶ PAb(𝒞) ⟶ Comp+(Ab)

see Derived Categories, Definition 11.7.1 for notation. Recall that the category of bounded
below complexes in an abelian category is an abelian category, see Homology, Lemma
10.10.9.

Lemma 19.10.1. The functor given by Equation (19.10.0.2) is an exact functor (see Ho-
mology, Lemma 10.5.1).

Proof. For any object 𝑊 of 𝒞 the functor ℱ ↦ ℱ(𝑊) is an additive exact functor from
PAb(𝒞) to Ab. The terms ̌𝒞𝑝(𝒰, ℱ) of the complex are products of these exact functors
and hence exact. Moreover a sequence of complexes is exact if and only if the sequence of
terms in a given degree is exact. Hence the lemma follows. �

Lemma 19.10.2. Let 𝒞 be a category. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms
with fixed target. The functors ℱ ↦ �̌�𝑛(𝒰, ℱ) form a 𝛿-functor from the abelian category
PAb(𝒞) to the category of 𝐙-modules (see Homology, Definition 10.9.1).

Proof. By Lemma 19.10.1 a short exact sequence of abelian presheaves 0 → ℱ1 → ℱ2 →
ℱ3 → 0 is turned into a short exact sequence of complexes of 𝐙-modules. Hence we can
use Homology, Lemma 10.10.12 to get the boundary maps 𝛿ℱ1→ℱ2→ℱ3

∶ �̌�𝑛(𝒰, ℱ3) →
�̌�𝑛+1(𝒰, ℱ1) and a corresponding long exact sequence. We omit the verification that these
maps are compatible with maps between short exact sequences of presheaves. �

Lemma 19.10.3. Let 𝒞 be a category. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms
with fixed target. Consider the chain complex 𝐙𝒰,• of abelian presheaves

… → ⨁
𝑖0𝑖1𝑖2

𝐙𝑈𝑖0×𝑈𝑈𝑖1×𝑈𝑈𝑖2
→ ⨁

𝑖0𝑖1

𝐙𝑈𝑖0×𝑈𝑈𝑖1
→ ⨁

𝑖0

𝐙𝑈𝑖0
→ 0 → …

where the last nonzero term is placed in degree 0 and where the map

𝐙𝑈𝑖0×𝑈…×𝑢𝑈𝑖𝑝+1
⟶ 𝐙𝑈𝑖0×𝑈…𝑈𝑖𝑗…×𝑈𝑈𝑖𝑝+1

is given by (−1)𝑗 times the canonical map. Then there is an isomorphism

𝐻𝑜𝑚PAb(𝒞)(𝐙𝑈,•, ℱ) = ̌𝒞•(𝒰, ℱ)

functorial in ℱ ∈ 𝑂𝑏(PAb(𝒞)).

Proof. This is a tautology based on the fact that

𝐻𝑜𝑚PAb(𝒞)( ⨁
𝑖0…𝑖𝑝

𝐙𝑈𝑖0×𝑈…×𝑈𝑈𝑖𝑝
, ℱ) = ∏

𝑖0…𝑖𝑝

𝐻𝑜𝑚PAb(𝒞)(𝐙𝑈𝑖0×𝑈…×𝑈𝑈𝑖𝑝
, ℱ)

= ∏
𝑖0…𝑖𝑝

ℱ(𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝)

see Modules on Sites, Lemma 16.4.2. �

Lemma 19.10.4. Let𝒞 be a category. Let𝒰 = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms
with fixed target. The chain complex 𝐙𝒰,• of presheaves of Lemma 19.10.3 above is exact
in positive degrees, i.e., the homology presheaves 𝐻𝑖(𝐙𝒰,•) are zero for 𝑖 > 0.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03AQ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03AR
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Proof. Let 𝑉 be an object of 𝒞. We have to show that the chain complex of abelian groups
𝐙𝒰,•(𝑉) is exact in degrees > 0. This is the complex

…

��
⨁𝑖0𝑖1𝑖2

𝐙[𝑀𝑜𝑟𝒞(𝑉, 𝑈𝑖0 ×𝑈 𝑈𝑖1 ×𝑈 𝑈𝑖2)]

��
⨁𝑖0𝑖1

𝐙[𝑀𝑜𝑟𝒞(𝑉, 𝑈𝑖0 ×𝑈 𝑈𝑖1)]

��
⨁𝑖0

𝐙[𝑀𝑜𝑟𝒞(𝑉, 𝑈𝑖0)]

��
0

For any morphism 𝜑 ∶ 𝑉 → 𝑈 denote 𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖) = {𝜑𝑖 ∶ 𝑉 → 𝑈𝑖 ∣ 𝑓𝑖 ∘ 𝜑𝑖 = 𝜑}.
We will use a similar notation for 𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝). Note that composing with
the various projection maps between the fibred products 𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝 preserves these
morphism sets. Hence we see that the complex above is the same as the complex

…

��
⨁𝜑 ⨁𝑖0𝑖1𝑖2

𝐙[𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0 ×𝑈 𝑈𝑖1 ×𝑈 𝑈𝑖2)]

��
⨁𝜑 ⨁𝑖0𝑖1

𝐙[𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0 ×𝑈 𝑈𝑖1)]

��
⨁𝜑 ⨁𝑖0

𝐙[𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0)]

��
0

Next, we make the remark that we have

𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝) = 𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0) × … × 𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖𝑝)
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Using this and the fact that 𝐙[𝐴] ⊕ 𝐙[𝐵] = 𝐙[𝐴 ∐ 𝐵] we see that the complex becomes
…

��

⨁𝜑 𝐙 [∐𝑖0𝑖1𝑖2
𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0) × 𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖2)]

��

⨁𝜑 𝐙 [∐𝑖0𝑖1
𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0) × 𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖1)]

��

⨁𝜑 𝐙 [∐𝑖0
𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0)]

��
0

Finally, on setting 𝑆𝜑 = ∐𝑖∈𝐼 𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖) we see that we get

⨁𝜑 (… → 𝐙[𝑆𝜑 × 𝑆𝜑 × 𝑆𝜑] → 𝐙[𝑆𝜑 × 𝑆𝜑] → 𝐙[𝑆𝜑] → 0 → …)

Thus we have simplified our task. Namely, it suffices to show that for any nonempty set 𝑆
the (extended) complex of free abelian groups

… → 𝐙[𝑆 × 𝑆 × 𝑆] → 𝐙[𝑆 × 𝑆] → 𝐙[𝑆]
Σ

−→ 𝐙 → 0 → …
is exact in all degrees. To see this fix an element 𝑠 ∈ 𝑆, and use the homotopy

𝑛(𝑠0,…,𝑠𝑝) ⟼ 𝑛(𝑠,𝑠0,…,𝑠𝑝)

with obvious notations. �

Lemma 19.10.5. Let𝒞 be a category. Let𝒰 = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms
with fixed target. Let 𝒪 be a presheaf of rings on 𝒞. The chain complex

𝐙𝒰,• ⊗𝑝,𝐙 𝒪
is exact in positive degrees. Here 𝐙𝒰,• is the cochain complex of Lemma 19.10.3, and the
tensor product is over the constant presheaf of rings with value 𝐙.

Proof. Let 𝑉 be an object of 𝒞. In the proof of Lemma 19.10.4 we saw that 𝐙𝒰,•(𝑉) is
isomorphic as a complex to a direct sum of complexes which are homotopic to 𝐙 placed in
degree zero. Hence also 𝐙𝒰,•(𝑉) ⊗𝐙 𝒪(𝑉) is isomorphic as a complex to a direct sum of
complexes which are homotopic to 𝒪(𝑉) placed in degree zero. Or you can use Modules
on Sites, Lemma 16.26.9, which applies since the presheaves 𝐙𝒰,𝑖 are flat, and the proof of
Lemma 19.10.4 shows that 𝐻0(𝐙𝒰,•) is a flat presheaf also. �

Lemma 19.10.6. Let𝒞 be a category. Let𝒰 = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms
with fixed target. The Cech cohomology functors �̌�𝑝(𝒰, −) are canonically isomomorphic
as a 𝛿-functor to the right derived functors of the functor

�̌�0(𝒰, −) ∶ PAb(𝒞) ⟶ Ab.
Moreover, there is a functorial quasi-isomorphism

̌𝒞•(𝒰, ℱ) ⟶ 𝑅�̌�0(𝒰, ℱ)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03F5
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where the right hand side indicates the derived functor

𝑅�̌�0(𝒰, −) ∶ 𝐷+(PAb(𝒞)) ⟶ 𝐷+(𝐙)

of the left exact functor �̌�0(𝒰, −).

Proof. Note that the category of abelian presheaves has enough injectives, see Injectives,
Proposition 17.10.1. Note that �̌�0(𝒰, −) is a left exact functor from the category of abelian
presheaves to the category of 𝐙-modules. Hence the derived functor and the right derived
fuctor exist, see Derived Categories, Section 11.19.

Let ℐ be a injective abelian presheaf. In this case the functor 𝐻𝑜𝑚PAb(𝒞)(−, ℐ) is exact on
PAb(𝒞). By Lemma 19.10.3 we have

𝐻𝑜𝑚PAb(𝒞)(𝐙𝒰,•, ℐ) = ̌𝒞•(𝒰, ℐ).

By Lemma 19.10.4 we have that 𝐙𝒰,• is exact in positive degrees. Hence by the exactness
of Hom into ℐ mentioned above we see that �̌�𝑖(𝒰, ℐ) = 0 for all 𝑖 > 0. Thus the 𝛿-functor
(�̌�𝑛, 𝛿) (see Lemma 19.10.2) satisfies the assumptions of Homology, Lemma 10.9.4, and
hence is a universal 𝛿-functor.

By Derived Categories, Lemma 11.19.4 also the sequence 𝑅𝑖�̌�0(𝒰, −) forms a universal
𝛿-functor. By the uniqueness of universal 𝛿-functors, see Homology, Lemma 10.9.5 we
conclude that 𝑅𝑖�̌�0(𝒰, −) = �̌�𝑖(𝒰, −). This is enough for most applications and the reader
is suggested to skip the rest of the proof.

Let ℱ be any abelian presheaf on 𝒞. Choose an injective resolution ℱ → ℐ• in the category
PAb(𝒞). Consider the double complex 𝐴•,• with terms

𝐴𝑝,𝑞 = ̌𝒞𝑝(𝒰, ℐ𝑞).

Consider the simple complex 𝑠𝐴• associated to this double complex. There is a map of
complexes

̌𝒞•(𝒰, ℱ) ⟶ 𝑠𝐴•

coming from the maps ̌𝒞𝑝(𝒰, ℱ) → 𝐴𝑝,0 = ̌𝒞•(𝒰, ℐ0) and there is a map of complexes

�̌�0(𝒰, ℐ•) ⟶ 𝑠𝐴•

coming from the maps �̌�0(𝒰, ℐ𝑞) → 𝐴0,𝑞 = ̌𝒞0(𝒰, ℐ𝑞). Both of these maps are quasi-
isomorphisms by an application of Homology, Lemma 10.19.6. Namely, the columns of
the double complex are exact in positive degrees because the Cech complex as a functor is
exact (Lemma 19.10.1) and the rows of the double complex are exact in positive degrees
since as we just saw the higher Cech cohomology groups of the injective presheaves ℐ𝑞 are
zero. Since quasi-isomorphisms become invertible in 𝐷+(𝐙) this gives the last displayed
morphism of the lemma. We omit the verification that this morphism is functorial. �

19.11. Cech cohomology and cohomology

The relationship between cohomology and Cech cohomology comes from the fact that the
Cech cohomology of an injective abelian sheaf is zero. To see this we note that an injective
abelian sheaf is an injective abelian presheaf and then we apply results in Cech cohomology
in the preceding section.

Lemma 19.11.1. Let 𝒞 be a site. An injective abelian sheaf is also injective as an object
in the category PAb(𝒞).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03F6


19.11. CECH COHOMOLOGY AND COHOMOLOGY 1133

Proof. Apply Homology, Lemma 10.22.1 to the categories 𝒜 = Ab(𝒞), ℬ = PAb(𝒞), the
inclusion functor and sheafification. (See Modules on Sites, Section 16.3 to see that all
assumptions of the lemma are satisfied.) �

Lemma 19.11.2. Let 𝒞 be a site. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of 𝒞. Let ℐ be an
injective abelian sheaf, i.e., an injective object of Ab(𝒞). Then

�̌�𝑝(𝒰, ℐ) = {
ℐ(𝑈) if 𝑝 = 0

0 if 𝑝 > 0

Proof. By Lemma 19.11.1 we see that ℐ is an injective object in PAb(𝒞). Hence we can
apply Lemma 19.10.6 (or its proof) to see the vanishing of higher Cech cohomology group.
For the zeroth see Lemma 19.9.2. �

Lemma 19.11.3. Let 𝒞 be a site. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of 𝒞. There is a
transformation

̌𝒞•(𝒰, −) ⟶ 𝑅Γ(𝑈, −)
of functors Ab(𝒞) → 𝐷+(𝐙). In particular this gives a transformation of functors �̌�𝑝(𝑈, ℱ) →
𝐻𝑝(𝑈, ℱ) for ℱ ranging over Ab(𝒞).

Proof. Let ℱ be an abelian sheaf. Choose an injective resolution ℱ → ℐ•. Consider the
double complex 𝐴•,• with terms 𝐴𝑝,𝑞 = ̌𝒞𝑝(𝒰, ℐ𝑞). Moreover, consider the associated
simple complex 𝑠𝐴•, see Homology, Definition 10.19.2. There is a map of complexes

𝛼 ∶ Γ(𝑈, ℐ•) ⟶ 𝑠𝐴•

coming from the maps ℐ𝑞(𝑈) → �̌�0(𝒰, ℐ𝑞) and a map of complexes

𝛽 ∶ ̌𝒞•(𝒰, ℱ) ⟶ 𝑠𝐴•

coming from the map ℱ → ℐ0. We can apply Homology, Lemma 10.19.6 to see that 𝛼
is a quasi-isomorphism. Namely, Lemma 19.11.2 implies that the 𝑞th row of the double
complex 𝐴•,• is a resolution of Γ(𝑈, ℐ𝑞). Hence 𝛼 becomes invertible in 𝐷+(𝐙) and the
transformation of the lemma is the composition of 𝛽 followed by the inverse of 𝛼. We omit
the verification that this is functorial. �

Lemma 19.11.4. Let 𝒞 be a site. Consider the functor 𝑖 ∶ Ab(𝒞) → PAb(𝒞). It is a left
exact functor with right derived functors given by

𝑅𝑝𝑖(ℱ) = 𝐻𝑝(ℱ) ∶ 𝑈 ⟼ 𝐻𝑝(𝑈, ℱ)

see discussion in Section 19.8.

Proof. It is clear that 𝑖 is left exact. Choose an injective resolution ℱ → ℐ•. By definition
𝑅𝑝𝑖 is the 𝑝th cohomology presheaf of the complex ℐ•. In other words, the sections of
𝑅𝑝𝑖(ℱ) over an open 𝑈 are given by

Ker(ℐ𝑛(𝑈) → ℐ𝑛+1(𝑈))
Im(ℐ𝑛−1(𝑈) → ℐ𝑛(𝑈))

.

which is the definition of 𝐻𝑝(𝑈, ℱ). �

Lemma 19.11.5. Let 𝒞 be a site. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of 𝒞. For any
abelian sheaf ℱ there is a spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥0 with

𝐸𝑝,𝑞
2 = �̌�𝑝(𝒰, 𝐻𝑞(ℱ))

converging to 𝐻𝑝+𝑞(𝑈, ℱ). This spectral sequence is functorial in ℱ.
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Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma 11.21.2)
for the functors

𝑖 ∶ Ab(𝒞) → PAb(𝒞) and �̌�0(𝒰, −) ∶ PAb(𝒞) → Ab.
Namely, we have �̌�0(𝒰, 𝑖(ℱ)) = ℱ(𝑈) by Lemma 19.9.2. We have that 𝑖(ℐ) is Cech acyclic
by Lemma 19.11.2. And we have that �̌�𝑝(𝒰, −) = 𝑅𝑝�̌�0(𝒰, −) as functors on PAb(𝒞) by
Lemma 19.10.6. Putting everything together gives the lemma. �

Lemma 19.11.6. Let𝒞 be a site. Let𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering. Letℱ ∈ 𝑂𝑏(Ab(𝒞)).
Assume that 𝐻𝑖(𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝, ℱ) = 0 for all 𝑖 > 0, all 𝑝 ≥ 0 and all 𝑖0, … , 𝑖𝑝 ∈ 𝐼.
Then �̌�𝑝(𝒰, ℱ) = 𝐻𝑝(𝑈, ℱ).

Proof. We will use the spectral sequence of Lemma 19.11.5. The assumptions mean that
𝐸𝑝,𝑞

2 = 0 for all (𝑝, 𝑞) with 𝑞≠0. Hence the spectral sequence degenerates at 𝐸2 and the
result follows. �

Lemma 19.11.7. Let 𝒞 be a site. Let

0 → ℱ → 𝒢 → ℋ → 0
be a short exact sequence of abelian sheaves on 𝒞. Let 𝑈 be an object of 𝒞. If there exists
a cofinal system of coverings 𝒰 of 𝑈 such that �̌�1(𝒰, ℱ) = 0, then the map 𝒢(𝑈) → ℋ(𝑈)
is surjective.

Proof. Take an element 𝑠 ∈ ℋ(𝑈). Choose a covering 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 such that (a)
�̌�1(𝒰, ℱ) = 0 and (b) 𝑠|𝑈𝑖

is the image of a section 𝑠𝑖 ∈ 𝒢(𝑈𝑖). Since we can certainly
find a covering such that (b) holds it follows from the assumptions of the lemma that we
can find a covering such that (a) and (b) both hold. Consider the sections

𝑠𝑖0𝑖1 = 𝑠𝑖1|𝑈𝑖0×𝑈𝑈𝑖1
− 𝑠𝑖0|𝑈𝑖0×𝑈𝑈𝑖1

.

Since 𝑠𝑖 lifts 𝑠 we see that 𝑠𝑖0𝑖1 ∈ ℱ(𝑈𝑖0 ×𝑈 𝑈𝑖1). By the vanishing of �̌�1(𝒰, ℱ) we can find
sections 𝑡𝑖 ∈ ℱ(𝑈𝑖) such that

𝑠𝑖0𝑖1 = 𝑡𝑖1|𝑈𝑖0×𝑈𝑈𝑖1
− 𝑡𝑖0|𝑈𝑖0×𝑈𝑈𝑖1

.

Then clearly the sections 𝑠𝑖 − 𝑡𝑖 satsify the sheaf condition and glue to a section of 𝒢 over
𝑈 which maps to 𝑠. Hence we win. �

Lemma 19.11.8. (Variant of Cohomology, Lemma 18.11.7.) Let 𝒞 be a site. Let Cov𝒞 be
the set of coverings of 𝒞 (see Sites, Definition 9.6.2). Let ℬ ⊂ 𝑂𝑏(𝒞), and Cov ⊂ Cov𝒞 be
subsets. Let ℱ be an abelian sheaf on 𝒞. Assume that

(1) For every 𝒰 ∈ Cov, 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 we have 𝑈, 𝑈𝑖 ∈ ℬ and every 𝑈𝑖0 ×𝑈
… ×𝑈 𝑈𝑖𝑝 ∈ ℬ.

(2) For every 𝑈 ∈ ℬ the coverings of 𝑈 occuring in Cov is a cofinal system of
coverings of 𝑈.

(3) For every 𝒰 ∈ Cov we have �̌�𝑝(𝒰, ℱ) = 0 for all 𝑝 > 0.
Then 𝐻𝑝(𝑈, ℱ) = 0 for all 𝑝 > 0 and any 𝑈 ∈ ℬ.

Proof. Let ℱ and Cov be as in the lemma. Wewill indicate this by saying ``ℱ has vanishing
higher Cech cohomology for any 𝒰 ∈ Cov''. Choose an embedding ℱ → ℐ into an injective
abelian sheaf. By Lemma 19.11.2 ℐ has vanishing higher Cech cohomology for any 𝒰 ∈
Cov. Let 𝒬 = ℐ/ℱ so that we have a short exact sequence

0 → ℱ → ℐ → 𝒬 → 0.
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By Lemma 19.11.7 and our assumption (2) this sequence gives rise to an exact sequence

0 → ℱ(𝑈) → ℐ(𝑈) → 𝒬(𝑈) → 0.

for every 𝑈 ∈ ℬ. Hence for any 𝒰 ∈ Cov we get a short exact sequence of Cech complexes

0 → ̌𝒞•(𝒰, ℱ) → ̌𝒞•(𝒰, ℐ) → ̌𝒞•(𝒰, 𝒬) → 0

since each term in the Cech complex is made up out of a product of values over elements
of ℬ by assumption (1). In particular we have a long exact sequence of Cech cohomol-
ogy groups for any covering 𝒰 ∈ Cov. This implies that 𝒬 is also an abelian sheaf with
vanishing higher Cech cohomology for all 𝒰 ∈ Cov.

Next, we look at the long exact cohomology sequence

0 // 𝐻0(𝑈, ℱ) // 𝐻0(𝑈, ℐ) // 𝐻0(𝑈, 𝒬)

tt
𝐻1(𝑈, ℱ) // 𝐻1(𝑈, ℐ) // 𝐻1(𝑈, 𝒬)

ss… … …
for any 𝑈 ∈ ℬ. Since ℐ is injective we have 𝐻𝑛(𝑈, ℐ) = 0 for 𝑛 > 0 (see Derived
Categories, Lemma 11.19.4). By the above we see that 𝐻0(𝑈, ℐ) → 𝐻0(𝑈, 𝒬) is surjective
and hence 𝐻1(𝑈, ℱ) = 0. Since ℱ was an arbitrary abelian sheaf with vanishing higher
Cech cohomology for all 𝒰 ∈ Covwe conclude that also 𝐻1(𝑈, 𝒬) = 0 since 𝒬 is another of
these sheaves (see above). By the long exact sequence this in turn implies that 𝐻2(𝑈, ℱ) =
0. And so on and so forth. �

19.12. Cohomology of modules

Everything that was said for cohomology of abelian sheaves goes for cohomology of mod-
ules, since the two agree.

Lemma 19.12.1. Let (𝒞, 𝒪) be a ringed site. An injective sheaf of modules is also injective
as an object in the category PMod(𝒪).

Proof. Apply Homology, Lemma 10.22.1 to the categories 𝒜 = Mod(𝒪), ℬ = PMod(𝒪),
the inclusion functor and sheafification. (See Modules on Sites, Section 16.11 to see that
all assumptions of the lemma are satisfied.) �

Lemma 19.12.2. Let (𝒞, 𝒪) be a ringed site. Consider the functor 𝑖 ∶ Mod(𝒞) → PMod(𝒞).
It is a left exact functor with right derived functors given by

𝑅𝑝𝑖(ℱ) = 𝐻𝑝(ℱ) ∶ 𝑈 ⟼ 𝐻𝑝(𝑈, ℱ)

see discussion in Section 19.8.

Proof. It is clear that 𝑖 is left exact. Choose an injective resolution ℱ → ℐ• in Mod(𝒪).
By definition 𝑅𝑝𝑖 is the 𝑝th cohomology presheaf of the complex ℐ•. In other words, the
sections of 𝑅𝑝𝑖(ℱ) over an open 𝑈 are given by

Ker(ℐ𝑛(𝑈) → ℐ𝑛+1(𝑈))
Im(ℐ𝑛−1(𝑈) → ℐ𝑛(𝑈))

.

which is the definition of 𝐻𝑝(𝑈, ℱ). �
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Lemma 19.12.3. Let (𝒞, 𝒪) be a ringed site. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of 𝒞.
Let ℐ be an injective 𝒪-module, i.e., an injective object of Mod(𝒪). Then

�̌�𝑝(𝒰, ℐ) = {
ℐ(𝑈) if 𝑝 = 0

0 if 𝑝 > 0

Proof. Lemma 19.10.3 gives the first equality in the following sequence of equalities
̌𝒞•(𝒰, ℐ) = 𝑀𝑜𝑟PAb(𝒞)(𝐙𝒰,•, ℐ)

= 𝑀𝑜𝑟PMod(𝐙)(𝐙𝒰,•, ℐ)
= 𝑀𝑜𝑟PMod(𝒪)(𝐙𝒰,• ⊗𝑝,𝐙 𝒪, ℐ)

The third equality by Modules on Sites, Lemma 16.9.2. By Lemma 19.12.1 we see that
ℐ is an injective object in PMod(𝒪). Hence 𝐻𝑜𝑚PMod(𝒪)(−, ℐ) is an exact functor. By
Lemma 19.10.5 we see the vanishing of higher Cech cohomology groups. For the zeroth
see Lemma 19.9.2. �

Lemma 19.12.4. Let 𝒞 be a site. Let 𝒪 be a sheaf of rings on 𝒞. Let ℱ be an 𝒪-module,
and denote ℱ𝑎𝑏 the underlying sheaf of abelian groups. Then we have

𝐻𝑖(𝒞, ℱ𝑎𝑏) = 𝐻𝑖(𝒞, ℱ)

and for any object 𝑈 of 𝒞 we also have

𝐻𝑖(𝑈, ℱ𝑎𝑏) = 𝐻𝑖(𝑈, ℱ).

Here the left hand side is cohomology computed in Ab(𝒞) and the right hand side is coho-
mology computed in Mod(𝒪).

Proof. By Derived Categories, Lemma 11.19.4 the 𝛿-funcor (ℱ ↦ 𝐻𝑝(𝑈, ℱ))𝑝≥0 is uni-
versal. The functor Mod(𝒪) → Ab(𝒞), ℱ ↦ ℱ𝑎𝑏 is exact. Hence (ℱ ↦ 𝐻𝑝(𝑈, ℱ𝑎𝑏))𝑝≥0
is a 𝛿-functor also. Suppose we show that (ℱ ↦ 𝐻𝑝(𝑈, ℱ𝑎𝑏))𝑝≥0 is also universal. This
will imply the second statement of the lemma by uniqueness of universal 𝛿-functors, see
Homology, Lemma 10.9.5. Since Mod(𝒪) has enough injectives, it suffices to show that
𝐻𝑖(𝑈, ℐ𝑎𝑏) = 0 for any injective object ℐ in Mod(𝒪), see Homology, Lemma 10.9.4.

Let ℐ be an injective object of Mod(𝒪). Apply Lemma 19.11.8 with ℱ = ℐ, ℬ = 𝒞 and
Cov = Cov𝒞. Assumption (3) of that lemma holds by Lemma 19.12.3. Hence we see that
𝐻𝑖(𝑈, ℐ𝑎𝑏) = 0 for every object 𝑈 of 𝒞.

If 𝒞 has a final object then this also implies the first equality. If not, then according to Sites,
Lemma 9.25.5 we see that the ringed topos (Sh(𝒞), 𝒪) is equivalent to a ringed topos where
the underlying site does have a final object. Hence the lemma follows. �

Lemma 19.12.5. Cohomology and products. Let ℱ𝑖 be a family of abelian sheaves on a
site 𝒞. Then there are canonical maps

𝐻𝑝(𝑈, ∏𝑖∈𝐼
ℱ𝑖) ⟶ ∏𝑖∈𝐼

𝐻𝑝(𝑈, ℱ𝑖)

for any object 𝑈 of 𝒞. For 𝑝 = 0 this map is an isomorphism and for 𝑝 = 1 this map is
injective.

Proof. Choose injective resolutions ℱ𝑖 → ℐ•
𝑖 . Then ℱ = ∏ ℱ𝑖 maps to the complex

(∏ ℐ𝑖)• which consists of injectives, see Homology, Lemma 10.20.3. Choose an injective
resolution ℱ → ℐ•. There exists a map of complexes 𝛽 ∶ ℐ• → (∏ ℐ𝑖)• which in-
duces the identity on ∏ ℱ𝑖, see Derived Categories, Lemma 11.17.6. Since Γ(𝑈, ∏ ℐ𝑝

𝑖 ) =
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∏ Γ(𝑈, ℐ𝑝
𝑖 ) and since 𝐻𝑝 commutes with products (see Homology, Lemma 10.24.1) we

obtain a canonical map

𝐻𝑝(𝑈, ∏ ℱ𝑖) = 𝐻𝑝(Γ(𝑈, ℐ•)) ⟶ 𝐻𝑝(Γ(𝑈, (∏ ℐ𝑖)•)) = ∏ 𝐻𝑝(𝑈, ℱ𝑖).

To prove the assertion for 𝐻1, pick an element 𝜉 ∈ 𝐻1(𝑈, ℱ) which maps to zero in
∏ 𝐻1(𝑈, ℱ𝑖). By locality of cohomology, see Lemma 19.8.3, there exists a covering 𝒰 =
{𝑈𝑗 → 𝑈} such that 𝜉|𝑈𝑗

= 0 for all 𝑗. Hence 𝜉 comes from an element of ̌𝜉 ∈ �̌�1(𝒰, ℱ)
in the spectral sequence of Lemma 19.11.5. Since the edge maps �̌�1(𝒰, ℱ𝑖) → 𝐻1(𝑈, ℱ𝑖)
are injective for all 𝑖, and since the image of 𝜉 is zero in ∏ 𝐻1(𝑈, ℱ𝑖) we see that the image

̌𝜉𝑖 = 0 in �̌�1(𝒰, ℱ𝑖). However, since ℱ = ∏ ℱ𝑖 we see that ̌𝒞(𝒰, ℱ) is the product of
the complexes ̌𝒞(𝒰, ℱ𝑖), hence by Homology, Lemma 10.24.1 we conclude that ̌𝜉 = 0 as
desired. �

19.13. Limp sheaves

Let (𝒞, 𝒪) be a ringed site. Let𝐾 be a sheaf of sets on𝒞 (we intentionally use a roman capital
here to distinguish from abelian sheaves). Given an abelian sheaf ℱ we denote ℱ(𝐾) =
𝑀𝑜𝑟Sh(𝒞)(𝐾, ℱ). The functor ℱ ↦ ℱ(𝐾) is a left exact functor Mod(𝒪) → Ab hence we
have its right derived functors. We will denote these 𝐻𝑝(𝐾, ℱ) so that 𝐻0(𝐾, ℱ) = ℱ(𝐾).

We mention two special cases. The first is the case where 𝐾 = ℎ#
𝑈 for some object 𝑈 of 𝒞.

In this case 𝐻𝑝(𝐾, ℱ) = 𝐻𝑝(𝑈, ℱ), because 𝑀𝑜𝑟Sh(𝒞)(ℎ#
𝑈, ℱ) = ℱ(𝑈), see Sites, Section

9.12. The second is the case 𝒪 = 𝐙 (the constant sheaf). In this case the cohomology
groups are functors 𝐻𝑝(𝐾, −) ∶ Ab(𝒞) → Ab. Here is the analogue of Lemma 19.12.4.

Lemma 19.13.1. Let (𝒞, 𝒪) be a ringed site. Let 𝐾 be a sheaf of sets on 𝒞. Let ℱ be
an 𝒪-module and denote ℱ𝑎𝑏 the underlying sheaf of abelian groups. Then 𝐻𝑝(𝐾, ℱ) =
𝐻𝑝(𝐾, ℱ𝑎𝑏).

Proof. Note that both 𝐻𝑝(𝐾, ℱ) and 𝐻𝑝(𝐾, ℱ𝑎𝑏) depend only on the topos, not on the
underlying site. Hence by Sites, Lemma 9.25.5wemay replace𝒞 by a ``larger'' site such that
𝐾 = ℎ𝑈 for some object 𝑈 of 𝒞. In this case the result follows from Lemma 19.12.4. �

Lemma 19.13.2. Let 𝒞 be a site. Let 𝐾′ → 𝐾 be a surjective map of sheaves of sets on 𝒞.
Set 𝐾′

𝑝 = 𝐾′ ×𝐾 … ×𝐾 𝐾′ (𝑝 + 1-factors). For every abelian sheaf ℱ there is a spectral
sequence with 𝐸𝑝,𝑞

1 = 𝐻𝑞(𝐾′
𝑝, ℱ) converging to 𝐻𝑝+𝑞(𝐾, ℱ).

Proof. After replacing 𝒞 by a ``larger'' site as in Sites, Lemma 9.25.5 we may assume that
𝐾, 𝐾′ are objects of 𝒞 and that 𝒰 = {𝐾′ → 𝐾} is a covering. Then we have the Čech
to cohomology spectral sequence of Lemma 19.11.5 whose 𝐸1 page is as indicated in the
statement of the lemma. �

Lemma 19.13.3. Let 𝒞 be a site. Let 𝐾 be a sheaf of sets on 𝒞. Consider the morphism
of topoi 𝑗 ∶ Sh(𝒞/𝐾) → Sh(𝒞), see Sites, Lemma 9.26.3. Then 𝑗−1 preserves injectives and
𝐻𝑝(𝐾, ℱ) = 𝐻𝑝(𝒞/𝐾, 𝑗−1ℱ) for any abelian sheaf ℱ on 𝒞.

Proof. By Sites, Lemmas 9.26.1 and 9.26.3 the morphism of topoi 𝑗 is equivalent to a
localization. Hence this follows from Lemma 19.8.1. �

Keeping in mind Lemma 19.13.1 we see that the following definition is the ``correct one''
also for sheaves of modules on ringed sites.
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Definition 19.13.4. Let 𝒞 be a site. We say an abelian sheaf ℱ is limp1 if for every sheaf
of sets 𝐾 we have 𝐻𝑝(𝐾, ℱ) = 0 for all 𝑝 ≥ 1.

It is clear that being limp is an intrinsic property, i.e., preserved under equivalences of topoi.
A limp sheaf has vanishing higher cohomology on all objects of the site, but in general the
condition of being limp is strictly stronger. Here is a characterization of limp sheaves which
is sometimes useful.

Lemma 19.13.5. Let 𝒞 be a site. Let ℱ be an abelian sheaf. If
(1) 𝐻𝑝(𝑈, ℱ) = 0 for 𝑝 > 0, and
(2) for every surjection 𝐾′ → 𝐾 of sheaves of sets the extended Čech complex

0 → 𝐻0(𝐾, ℱ) → 𝐻0(𝐾′, ℱ) → 𝐻0(𝐾′ ×𝐾 𝐾′, ℱ) → …

is exact,
then ℱ is limp (and the converse holds too).

Proof. By assumption (1) we have 𝐻𝑝(ℎ#
𝑈, 𝑔−1ℐ) = 0 for all 𝑝 > 0 and all objects 𝑈 of

𝒞. Note that if 𝐾 = ∐ 𝐾𝑖 is a coproduct of sheaves of sets on 𝒞 then 𝐻𝑝(𝐾, 𝑔−1ℐ) =
∏ 𝐻𝑝(𝐾𝑖, 𝑔−1ℐ). For any sheaf of sets 𝐾 there exists a surjection

𝐾′ = ∐ ℎ#
𝑈𝑖

⟶ 𝐾

see Sites, Lemma 9.12.4. Thus we conclude that: (*) for every sheaf of sets 𝐾 there exists
a surjection 𝐾′ → 𝐾 of sheaves of sets such that 𝐻𝑝(𝐾′, ℱ) = 0 for 𝑝 > 0. We claim that
(*) and condition (2) imply that ℱ is limp. Note that conditions (*) and (2) only depend on
ℱ as an object of the topos Sh(𝒞) and not on the underlying site. (We will not use property
(1) in the rest of the proof.)

We are going to prove by induction on 𝑛 ≥ 0 that (*) and (2) imply the following induction
hypothesis 𝐼𝐻𝑛: 𝐻𝑝(𝐾, ℱ) = 0 for all 0 < 𝑝 ≤ 𝑛 and all sheaves of sets 𝐾. Note that
𝐼𝐻0 holds. Assume 𝐼𝐻𝑛. Pick a sheaf of sets 𝐾. Pick a surjection 𝐾′ → 𝐾 such that
𝐻𝑝(𝐾′, ℱ) = 0 for all 𝑝 > 0. We have a spectral sequence with

𝐸𝑝,𝑞
1 = 𝐻𝑞(𝐾′

𝑝, ℱ)

convering to 𝐻𝑝+𝑞(𝐾, ℱ), see Lemma 19.13.2. By 𝐼𝐻𝑛 we see that 𝐸𝑝,𝑞
1 = 0 for 0 < 𝑞 ≤ 𝑛

and by assumption (2) we see that 𝐸𝑝,0
2 = 0 for 𝑝 > 0. Finally, we have 𝐸0,𝑞

1 = 0 for 𝑞 > 0
because 𝐻𝑞(𝐾′, ℱ) = 0 by choice of 𝐾′. Hence we conclude that 𝐻𝑛+1(𝐾, ℱ) = 0 because
all the terms 𝐸𝑝,𝑞

2 with 𝑝 + 𝑞 = 𝑛 + 1 are zero. �

19.14. The Leray spectral sequence

The key to proving the existence of the Leray spectral sequence is the following lemma.

Lemma 19.14.1. Let 𝑓 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi. Then
for any injective object ℐ in Mod(𝒪𝒞) the pushforward 𝑓∗ℐ is limp.

Proof. Let 𝐾 be a sheaf of sets on 𝒟. By Modules on Sites, Lemma 16.7.2 we may replace
𝒞, 𝒟 by ``larger'' sites such that 𝑓 comes from a morphism of ringed sites induced by a
continuous functor 𝑢 ∶ 𝒟 → 𝒞 such that 𝐾 = ℎ𝑉 for some object 𝑉 of 𝒟.

1This is probably nonstandard notation. Please email stacks.project@gmail.com if you know the correct
terminology.
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Thus we have to show that 𝐻𝑞(𝑉, 𝑓∗ℐ) is zero for 𝑞 > 0 and all objects 𝑉 of 𝒟 when 𝑓 is
given by a morphism of ringed sites. Let 𝒱 = {𝑉𝑗 → 𝑉} be any covering of 𝒟. Since 𝑢 is
continuous we see that 𝒰 = {𝑢(𝑉𝑗) → 𝑢(𝑣)} is a covering of 𝒞. Then we have an equality
of Čech complexes

̌𝒞•(𝒱, 𝑓∗ℐ) = ̌𝒞•(𝒰, ℐ)
by the definition of 𝑓∗. By Lemma 19.12.3 we see that the cohomology of this complex is
zero in positive degrees. We win by Lemma 19.11.8. �

For flat morphisms the functor 𝑓∗ preserves injective modules. In particular the functor
𝑓∗ ∶ Ab(𝒞) → Ab(𝒟) always transforms injective abelian sheaves into injective abelian
sheaves.

Lemma 19.14.2. Let 𝑓 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi. If 𝑓
is flat, then 𝑓∗ℐ is an injective 𝒪𝒟-module for any injective 𝒪𝒞-module ℐ.

Proof. In this case the functor 𝑓∗ is exact, see Modules on Sites, Lemma 16.27.2. Hence
the result follows from Homology, Lemma 10.22.1. �

Lemma 19.14.3. Let (Sh(𝒞), 𝒪𝒞) be a ringed topos. A limp sheaf is right acyclic for the
following functors:

(1) the functor 𝐻0(𝑈, −) for any object 𝑈 of 𝒞,
(2) the functor ℱ ↦ ℱ(𝐾) for any presheaf of sets 𝐾,
(3) the functor Γ(𝒞, −) of global sections,
(4) the functor 𝑓∗ for any morphism 𝑓 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) of ringed topoi.

Proof. Part (2) is the definition of a limp sheaf. Part (1) is a consequence of (2) as pointed
out in the discussion following the definition of limp sheaves. Part (3) is a special case of
(2) where 𝐾 = 𝑒 is the final object of Sh(𝒞).
To prove (4) we may assume, by Modules on Sites, Lemma 16.7.2 that 𝑓 is given by a
morphism of sites. In this case we see that 𝑅𝑖𝑓∗, 𝑖 > 0 of a limp sheaf are zero by the
description of higher direct images in Lemma 19.8.4. �

Lemma 19.14.4. (Leray spectral sequence.) Let 𝑓 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a
morphism of ringed topoi. Let ℱ• be a bounded below complex of 𝒪𝒞-modules. There is a
spectral sequence

𝐸𝑝,𝑞
2 = 𝐻𝑝(𝒟, 𝑅𝑞𝑓∗(ℱ•))

converging to 𝐻𝑝+𝑞(𝒞, ℱ•).

Proof. This is just the Grothendieck spectral sequenceDerived Categories, Lemma 11.21.2
coming from the composition of functors Γ(𝒞, −) = Γ(𝒟, −) ∘ 𝑓∗. To see that the as-
sumptions of Derived Categories, Lemma 11.21.2 are satisfied, see Lemmas 19.14.1 and
19.14.3. �

Lemma 19.14.5. Let 𝑓 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟) be a morphism of ringed topoi. Let
ℱ be an 𝒪𝒞-module.

(1) If 𝑅𝑞𝑓∗ℱ = 0 for 𝑞 > 0, then 𝐻𝑝(𝒞, ℱ) = 𝐻𝑝(𝒟, 𝑓∗ℱ) for all 𝑝.
(2) If 𝐻𝑝(𝒟, 𝑅𝑞𝑓∗ℱ) = 0 for all 𝑞 and 𝑝 > 0, then 𝐻𝑞(𝒞, ℱ) = 𝐻0(𝒟, 𝑅𝑞𝑓∗ℱ) for

all 𝑞.

Proof. These are two simple conditions that force the Leray spectral sequence to converge.
You can also prove these facts directly (without using the spectral sequence) which is a
good exercise in cohomology of sheaves. �
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Lemma 19.14.6. (Relative Leray spectral sequence.) Let 𝑓 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟)
and 𝑔 ∶ (Sh(𝒟), 𝒪𝒟) → (Sh(ℰ), 𝒪ℰ) be morphisms of ringed topoi. Let ℱ be an 𝒪𝒞-module.
There is a spectral sequence with

𝐸𝑝,𝑞
2 = 𝑅𝑝𝑔∗(𝑅𝑞𝑓∗ℱ)

converging to 𝑅𝑝+𝑞(𝑔 ∘ 𝑓)∗ℱ. This spectral sequence is functorial in ℱ, and there is a
version for bounded below complexes of 𝒪𝒞-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors, see Derived
Categories, Lemma 11.21.2 and Lemmas 19.14.1 and 19.14.3. �

19.15. The base change map

In this section we construct the base changemap in some cases; the general case is treated in
Remark 19.19.2. The discussion in this section avoids using derived pullback by restricting
to the case of a base change by a flat morphism of ringed sites. Before we state the result, let
us discuss flat pullback on the derived category. Suppose 𝑔 ∶ (Sh(𝒞), 𝒪𝒞) → (Sh(𝒟), 𝒪𝒟)
is a flat morphism of ringed topoi. By Modules on Sites, Lemma 16.27.2 the functor 𝑔∗ ∶
Mod(𝒪𝒟) → Mod(𝒪𝒞) is exact. Hence it has a derived functor

𝑔∗ ∶ 𝐷(𝒪𝒞) → 𝐷(𝒪𝒟)

which is computed by simply pulling back an representative of a given object in 𝐷(𝒪𝒟),
see Derived Categories, Lemma 11.16.8. It preserved the bounded (above, below) subcat-
egories. Hence as indicated we indicate this functor by 𝑔∗ rather than 𝐿𝑔∗.

Lemma 19.15.1. Let
(Sh(𝒞′), 𝒪𝒞′)

𝑔′
//

𝑓′

��

(Sh(𝒞), 𝒪𝒞)

𝑓
��

(Sh(𝒟′), 𝒪𝒟′)
𝑔 // (Sh(𝒟), 𝒪𝒟)

be a commutative diagram of ringed topoi. Letℱ• be a bounded below complex of𝒪𝒞-modules.
Assume both 𝑔 and 𝑔′ are flat. Then there exists a canonical base change map

𝑔∗𝑅𝑓∗ℱ• ⟶ 𝑅(𝑓′)∗(𝑔′)∗ℱ•

in 𝐷+(𝒪𝒟′).

Proof. Choose injective resolutions ℱ• → ℐ• and (𝑔′)∗ℱ• → 𝒥•. By Lemma 19.14.2 we
see that (𝑔′)∗𝒥• is a complex of injectives representing 𝑅(𝑔′)∗(𝑔′)∗ℱ•. Hence by Derived
Categories, Lemmas 11.17.6 and 11.17.7 the arrow 𝛽 in the diagram

(𝑔′)∗(𝑔′)∗ℱ• // (𝑔′)∗𝒥•

ℱ•

𝑎𝑑𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

OO

// ℐ•

𝛽

OO

exists and is unique up to homotopy. Pushing down to 𝒟 we get

𝑓∗𝛽 ∶ 𝑓∗ℐ• ⟶ 𝑓∗(𝑔′)∗𝒥• = 𝑔∗(𝑓′)∗𝒥•

By adjunction of 𝑔∗ and 𝑔∗ we get a map of complexes 𝑔∗𝑓∗ℐ• → (𝑓′)∗𝒥•. Note that this
map is unique up to homotopy since the only choice in the whole process was the choice of
the map 𝛽 and everything was done on the level of complexes. �
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19.16. Cohomology and colimits

Let (𝒞, 𝒪) be a ringed site. Let ℐ → Mod(𝒪), 𝑖 ↦ ℱ𝑖 be a diagram over the index category
ℐ, see Categories, Section 4.13. For each 𝑖 there is a canonical map ℱ𝑖 → 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 which
induces a map on cohomology. Hence we get a canonical map

𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑝(𝑈, ℱ𝑖) ⟶ 𝐻𝑝(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)

for every 𝑝 ≥ 0 and every object 𝑈 of 𝒞. These maps are in general not isomorphisms, even
for 𝑝 = 0.

To repeat the arguments given in the case of topological spaces we will say that an object 𝑈
of a site 𝒞 is quasi-compact if every covering of 𝑈 in 𝒞 can be refined by a finite covering.

Lemma 19.16.1. Let 𝒞 be a site. Let ℐ → Sh(𝒞), 𝑖 ↦ ℱ𝑖 be a filtered diagram of sheaves
of sets. Let 𝑈 ∈ 𝑂𝑏(𝒞). Consider the canonical map

Ψ ∶ 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈) ⟶ (𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖) (𝑈)

With the terminology introduced above:
(1) If all the transition maps are injective then Ψ is injective for any 𝑈.
(2) If 𝑈 is quasi-compact, then Ψ is injective.
(3) If 𝑈 is quasi-compact and all the transition maps are injective then Ψ is an iso-

morphism.
(4) If 𝑈 has a cofinal system of coverings {𝑈𝑗 → 𝑈}𝑗∈𝐽 with 𝐽 finite and 𝑈𝑗 ×𝑈 𝑈𝑗′

quasi-compact for all 𝑗, 𝑗′ ∈ 𝐽, then Ψ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf ℱ′ ∶ 𝑉 ↦
𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖(𝑉) is separated (see Sites, Definition 9.10.9). By Sites, Lemma 9.10.13 we have
(ℱ′)# = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖. By Sites, Theorem 9.10.10 we see that ℱ′ → (ℱ′)# is injective. This
proves (1).

Assume 𝑈 is quasi-compact. Suppose that 𝑠 ∈ ℱ𝑖(𝑈) and 𝑠′ ∈ ℱ𝑖′(𝑈) give rise to elements
on the left hand side which have the same image under Ψ. Since 𝑈 is quasi-compact this
means there exists a finite covering {𝑈𝑗 → 𝑈}𝑗=1,…,𝑚 and for each 𝑗 an index 𝑖𝑗 ∈ 𝐼, 𝑖𝑗 ≥ 𝑖,
𝑖𝑗 ≥ 𝑖′ such that 𝜑𝑖𝑖𝑗(𝑠) = 𝜑𝑖′𝑖𝑗(𝑠

′). Let 𝑖″ ∈ 𝐼 be ≥ than all of the 𝑖𝑗. We conclude that
𝜑𝑖𝑖″(𝑠) and 𝜑𝑖′𝑖″(𝑠) agree on 𝑈𝑗 for all 𝑗 and hence that 𝜑𝑖𝑖″(𝑠) = 𝜑𝑖′𝑖″(𝑠). This proves (2).

Assume 𝑈 is quasi-compact and all transition maps injective. Let 𝑠 be an element of the
target of Ψ. Since 𝑈 is quasi-compact there exists a finite covering {𝑈𝑗 → 𝑈}𝑗=1,…,𝑚, for
each 𝑗 an index 𝑖𝑗 ∈ 𝐼 and 𝑠𝑗 ∈ ℱ𝑖𝑗(𝑈𝑗) such that 𝑠|𝑈𝑗

comes from 𝑠𝑗 for all 𝑗. Pick 𝑖 ∈ 𝐼
which is ≥ than all of the 𝑖𝑗. By (1) the sections 𝜑𝑖𝑗𝑖(𝑠𝑗) agree over 𝑈𝑗 ×𝑈 𝑈𝑗′. Hence they
glue to a section 𝑠′ ∈ ℱ𝑖(𝑈) which maps to 𝑠 under Ψ. This proves (3).

Assume the hypothesis of (4). Let 𝑠 be an element of the target of Ψ. By assumption there
exists a finite covering {𝑈𝑗 → 𝑈}𝑗=1,…,𝑚𝑈𝑗, with 𝑈𝑗 ×𝑈 𝑈𝑗′ quasi-compact for all 𝑗, 𝑗′ ∈ 𝐽
and for each 𝑗 an index 𝑖𝑗 ∈ 𝐼 and 𝑠𝑗 ∈ ℱ𝑖𝑗(𝑈𝑗) such that 𝑠|𝑈𝑗

is the image of 𝑠𝑗 for all 𝑗.
Since 𝑈𝑗 ×𝑈 𝑈𝑗′ is quasi-compact we can apply (2) and we see that there exists an 𝑖𝑗𝑗′ ∈ 𝐼,
𝑖𝑗𝑗′ ≥ 𝑖𝑗, 𝑖𝑗𝑗′ ≥ 𝑖𝑗′ such that 𝜑𝑖𝑗𝑖𝑗𝑗′(𝑠𝑗) and 𝜑𝑖𝑗′𝑖𝑗𝑗′(𝑠𝑗′) agree over 𝑈𝑗 ×𝑈 𝑈𝑗′. Choose an
index 𝑖 ∈ 𝐼 wich is bigger or equal than all the 𝑖𝑗𝑗′. Then we see that the sections 𝜑𝑖𝑗𝑖(𝑠𝑗) of
ℱ𝑖 glue to a section of ℱ𝑖 over 𝑈. This section is mapped to the element 𝑠 as desired. �

The following lemma is the analogue of the previous lemma for cohomology.
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Lemma 19.16.2. Let 𝒞 be a site. Let Cov𝒞 be the set of coverings of 𝒞 (see Sites, Definition
9.6.2). Let ℬ ⊂ 𝑂𝑏(𝒞), and Cov ⊂ Cov𝒞 be subsets. Assume that

(1) For every 𝒰 ∈ Cov we have 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 with 𝐼 finite, 𝑈, 𝑈𝑖 ∈ ℬ and
every 𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝 ∈ ℬ.

(2) For every 𝑈 ∈ ℬ the coverings of 𝑈 occuring in Cov is a cofinal system of
coverings of 𝑈.

Then the map
𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑝(𝑈, ℱ𝑖) ⟶ 𝐻𝑝(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)

is an isomorphism for every 𝑝 ≥ 0, every 𝑈 ∈ ℬ, and every filtered diagram ℐ → Ab(𝒞).

Proof. To prove the lemma we will argue by induction on 𝑝. Note that we require in (1)
the coverings 𝒰 ∈ Cov to be finite, so that all the elements of ℬ are quasi-compact. Hence
(2) and (1) imply that any 𝑈 ∈ ℬ satsifies the hypothesis of Lemma 19.16.1 (4). Thus we
see that the result holds for 𝑝 = 0. Now we assume the lemma holds for 𝑝 and prove it for
𝑝 + 1.

Choose a filtered diagram ℱ ∶ ℐ → Ab(𝒞), 𝑖 ↦ ℱ𝑖. Since Ab(𝒞) has functorial injective
embeddings, see Injectives, Theorem 17.11.4, we can find a morphism of filtered diagrams
ℱ → ℐ such that each ℱ𝑖 → ℐ𝑖 is an injective map of abelian sheaves into an injective
abelian sheaf. Denote 𝒬𝑖 the cokernel so that we have short exact sequences

0 → ℱ𝑖 → ℐ𝑖 → 𝒬𝑖 → 0.

Since colimits of sheaves are the sheafification of colimits on the level of preshease, since
sheafification is exact, and since filtered colimits of abelian groups are exact (see Algebra,
Lemma 7.8.9), we see the sequence

0 → 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 → 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖 → 𝑐𝑜𝑙𝑖𝑚𝑖 𝒬𝑖 → 0.

is also a short exact sequence. We claim that 𝐻𝑞(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) = 0 for all 𝑈 ∈ ℬ and all
𝑞 ≥ 1. Accepting this claim for the moment consider the diagram

𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑝(𝑈, ℐ𝑖)

��

// 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑝(𝑈, 𝒬𝑖)

��

// 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑝+1(𝑈, ℱ𝑖)

��

// 0

��
𝐻𝑝(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) // 𝐻𝑝(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 𝒬𝑖) // 𝐻𝑝+1(𝑈, 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖) // 0

The zero at the lower right corner comes from the claim and the zero at the upper right
corner comes from the fact that the sheaves ℐ𝑖 are injective. The top row is exact by an
application of Algebra, Lemma 7.8.9. Hence by the snake lemma we deduce the result for
𝑝 + 1.

It remains to show that the claim is true. We will use Lemma 19.11.8. By the result for
𝑝 = 0 we see that for 𝒰 ∈ Cov we have

̌𝒞•(𝒰, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) = 𝑐𝑜𝑙𝑖𝑚𝑖 ̌𝒞•(𝒰, ℐ𝑖)

because all the 𝑈𝑗0
×𝑈 … ×𝑈 𝑈𝑗𝑝

are in ℬ. By Lemma 19.11.2 each of the complexes in the
colimit of Cech complexes is acyclic in degree ≥ 1. Hence by Algebra, Lemma 7.8.9 we
see that also the Cech complex ̌𝒞•(𝒰, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) is acyclic in degrees ≥ 1. In other words
we see that �̌�𝑝(𝒰, 𝑐𝑜𝑙𝑖𝑚𝑖 ℐ𝑖) = 0 for all 𝑝 ≥ 1. Thus the assumptions of Lemma 19.11.8.
are satisfied and the claim follows. �
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19.17. Flat resolutions

In this section we redo the arguments of Cohomology, Section 18.20 in the setting of ringed
sites and ringed topoi.

Lemma 19.17.1. Let (𝒞, 𝒪) be a ringed site. Let 𝒢• be a complex of 𝒪-modules. The
functor

𝐾(Mod(𝒪)) ⟶ 𝐾(Mod(𝒪)), ℱ• ⟼ Tot(ℱ• ⊗𝒪 𝒢•)
is an exact functor of triangulated categories.

Proof. Omitted. Hint: See More on Algebra, Lemmas 12.3.1 and 12.3.2. �

Definition 19.17.2. Let (𝒞, 𝒪) be a ringed site. A complex 𝒦• of 𝒪-modules is calledK-flat
if for every acyclic complex ℱ• of 𝒪-modules the complex

Tot(ℱ• ⊗𝒪 𝒦•)
is acyclic.

Lemma 19.17.3. Let (𝒞, 𝒪) be a ringed site. Let 𝒦• be a K-flat complex. Then the functor
𝐾(Mod(𝒪)) ⟶ 𝐾(Mod(𝒪)), ℱ• ⟼ Tot(ℱ• ⊗𝒪 𝒦•)

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 19.17.1 and the fact that quasi-isomorphisms are character-
ized by having acyclic cones. �

Lemma 19.17.4. Let (𝒞, 𝒪) be a ringed site. If 𝒦•, ℒ• are K-flat complexes of 𝒪-modules,
then Tot(𝒦• ⊗𝒪 ℒ•) is a K-flat complex of 𝒪-modules.

Proof. Follows from the isomorphism
Tot(ℳ• ⊗𝒪 Tot(𝒦• ⊗𝒪 ℒ•)) = Tot(Tot(ℳ• ⊗𝒪 𝒦•) ⊗𝒪 ℒ•)

and the definition. �

Lemma 19.17.5. Let (𝒞, 𝒪) be a ringed site. Let (𝒦•
1, 𝒦•

2, 𝒦•
3) be a distinguished triangle

in 𝐾(Mod(𝒪)). If two out of three of 𝒦•
𝑖 are K-flat, so is the third.

Proof. Follows fromLemma 19.17.1 and the fact that in a distinguished triangle in𝐾(Mod(𝒪))
if two out of three are acyclic, so is the third. �

Lemma 19.17.6. Let (𝒞, 𝒪) be a ringed space. A bounded above complex of flat 𝒪-modules
is K-flat.

Proof. Let 𝒦• be a bounded above complex of flat 𝒪-modules. Let ℒ• be an acyclic
complex of 𝒪-modules. Note that ℒ• = 𝑐𝑜𝑙𝑖𝑚𝑚 𝜏≤𝑚ℒ• where we take termwise colimits.
Hence also

Tot(𝒦• ⊗𝒪 ℒ•) = 𝑐𝑜𝑙𝑖𝑚𝑚 Tot(𝒦• ⊗𝒪 𝜏≤𝑚ℒ•)
termwise. Hence to prove the complex on the left is acyclic it suffices to show each of the
complexes on the right is acyclic. Since 𝜏≤𝑚ℒ• is acyclic this reduces us to the case where
ℒ• is bounded above. In this case the spectral sequence of Homology, Lemma 10.19.5 has

′𝐸𝑝,𝑞
1 = 𝐻𝑝(ℒ• ⊗𝑅 𝒦𝑞)

which is zero as 𝒦𝑞 is flat and ℒ• acyclic. Hence we win. �

Lemma 19.17.7. Let (𝒞, 𝒪) be a ringed site. Let 𝒦•
1 → 𝒦•

2 → … be a system of K-flat
complexes. Then 𝑐𝑜𝑙𝑖𝑚𝑖 𝒦•

𝑖 is K-flat.
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Proof. Because we are taking termwise colimits it is clear that

𝑐𝑜𝑙𝑖𝑚𝑖 Tot(ℱ• ⊗𝒪 𝒦•
𝑖 ) = Tot(ℱ• ⊗𝒪 𝑐𝑜𝑙𝑖𝑚𝑖 𝒦•

𝑖 )

Hence the lemma follows from the fact that filtered colimits are exact. �

Lemma 19.17.8. Let (𝒞, 𝒪) be a ringed site. For any complex 𝒢• of 𝒪-modules there exists
a commutative diagram of complexes of 𝒪-modules

𝒦•
1

��

// 𝒦•
2

��

// …

𝜏≤1𝒢• // 𝜏≤2𝒢• // …

with the following properties: (1) the vertical arrows are quasi-isomorphisms, (2) each
𝒦•

𝑛 is a bounded above complex whose terms are direct sums of 𝒪-modules of the form
𝑗𝑈!𝒪𝑈, and (3) the maps 𝒦•

𝑛 → 𝒦•
𝑛+1 are termwise split injections whose cokernels are

direct sums of 𝒪-modules of the form 𝑗𝑈!𝒪𝑈. Moreover, the map 𝑐𝑜𝑙𝑖𝑚 𝒦•
𝑛 → 𝒢• is a

quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immediately from
Modules on Sites, Lemma 16.26.6 and Derived Categories, Lemma 11.27.1. The induced
map 𝑐𝑜𝑙𝑖𝑚 𝒦•

𝑛 → 𝒢• is a quasi-isomorphism because filtered colimits are exact. �

Lemma 19.17.9. Let (𝒞, 𝒪) be a ringed site. For any complex 𝒢• of 𝒪-modules there exists
a 𝐾-flat complex 𝒦• and a quasi-isomorphism 𝒦• → 𝒢•.

Proof. Choose a diagram as in Lemma 19.17.8. Each complex 𝒦•
𝑛 is a bounded above

complex of flat modules, see Modules on Sites, Lemma 16.26.5. Hence 𝒦•
𝑛 is K-flat by

Lemma 19.17.6. The inducedmap 𝑐𝑜𝑙𝑖𝑚 𝒦•
𝑛 → 𝒢• is a quasi-isomorphism by construction.

Since 𝑐𝑜𝑙𝑖𝑚 𝒦•
𝑛 is K-flat by Lemma 19.17.7 we win. �

Lemma 19.17.10. Let (𝒞, 𝒪) be a ringed site. Let 𝛼 ∶ 𝒫• → 𝒬• be a quasi-isomorphism
of K-flat complexes of 𝒪-modules. For every complex ℱ• of 𝒪-modules the induced map

Tot(idℱ• ⊗ 𝛼) ∶ Tot(ℱ• ⊗𝒪 𝒫•) ⟶ Tot(ℱ• ⊗𝒪 𝒬•)

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism 𝒦• → ℱ• with 𝒦• a K-flat complex, see Lemma
19.17.9. Consider the commutative diagram

Tot(𝒦• ⊗𝒪 𝒫•) //

��

Tot(𝒦• ⊗𝒪 𝒬•)

��
Tot(ℱ• ⊗𝒪 𝒫•) // Tot(ℱ• ⊗𝒪 𝒬•)

The result follows as by Lemma 19.17.3 the vertical arrows and the top horizontal arrow
are quasi-isomorphisms. �

Let (𝒞, 𝒪) be a ringed site. Let ℱ• be an object of 𝐷(𝒪). Choose a K-flat resolution 𝒦• →
ℱ•, see Lemma 19.17.9. By Lemma 19.17.1 we obtain an exact functor of triangulated
categories

𝐾(𝒪) ⟶ 𝐾(𝒪), 𝒢• ⟼ Tot(𝒢• ⊗𝒪 𝒦•)
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By Lemma 19.17.3 this functor induces a functor 𝐷(𝒪) → 𝐷(𝒪) simply because 𝐷(𝒪) is
the localization of 𝐾(𝒪) at quasi-isomorphisms. By Lemma 19.17.10 the resulting functor
(up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 19.17.11. Let (𝒞, 𝒪) be a ringed site. Let ℱ• be an object of 𝐷(𝒪). The derived
tensor product

− ⊗𝐋
𝒪 ℱ• ∶ 𝐷(𝒪) ⟶ 𝐷(𝒪)

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

ℱ• ⊗𝐋
𝒪 𝒢• ≅ 𝒢• ⊗𝐋

𝒪 ℱ•

for 𝒢• and ℱ• in 𝐷(𝒪). Hence when we write ℱ• ⊗𝐋
𝒪 𝒢• we will usually be agnostic about

which variable we are using to define the derived tensor product with.

19.18. Derived pullback

Let 𝑓 ∶ (Sh(𝒞), 𝒪) → (Sh(𝒞′), 𝒪′) be a morphism of ringed topoi. We can use K-flat
resolutions to define a derived pullback functor

𝐿𝑓∗ ∶ 𝐷(𝒪′) → 𝐷(𝒪)

However, we have to be a little careful since we haven't yet proved the pullback of a flat
module is flat in complete generality, see Modules on Sites, Section 16.33. In this section,
we will use the hypothesis that our sites have enough points, but once we improve the
result of the aforementioned section, all of the results in this section will hold without the
assumption on the existence of points.

Lemma 19.18.1. Let 𝑓 ∶ Sh(𝒞) → Sh(𝒞′) be a morphism of topoi. Let 𝒪′ be a sheaf of
rings on 𝒞′. Assume 𝒞 has enough points. For any complex of 𝒪′-modules 𝒢•, there exists
a quasi-isomorphism 𝒦• → 𝒢• such that 𝒦• is a K-flat complex of 𝒪′-modules and 𝑓−1𝒦•

is a K-flat complex of 𝑓−1𝒪′-modules.

Proof. In the proof of Lemma 19.17.9we find a quasi-isomorphism𝒦• = 𝑐𝑜𝑙𝑖𝑚𝑖 𝒦•
𝑖 → 𝒢•

where each 𝒦•
𝑖 is a bounded above complex of flat 𝒪′-modules. By Modules on Sites,

Lemma 16.33.3 applied to the morphism of ringed topoi (Sh(𝒞), 𝑓−1𝒪′) → (Sh(𝒞′), 𝒪′)
we see that 𝑓−1ℱ•

𝑖 is a bounded above complex of flat 𝑓−1𝒪′-modules. Hence 𝑓−1𝒦• =
𝑐𝑜𝑙𝑖𝑚𝑖 𝑓−1𝒦•

𝑖 is K-flat by Lemmas 19.17.6 and 19.17.7. �

Remark 19.18.2. It is straightforward to show that the pullback of a K-flat complex is
K-flat for a morphism of ringed topoi with enough points; this slightly improves the result
of Lemma 19.18.1. However, in applications it seems rather that the explicit form of the
K-flat complexes constructed in Lemma 19.17.9 is what is useful (as in the proof above)
and not the plain fact that they are K-flat. Note for example that the terms of the complex
constructed are each direct sums of modules of the form 𝑗𝑈!𝒪𝑈, see Lemma 19.17.8.

Lemma19.18.3. Let 𝑓 ∶ (Sh(𝒞), 𝒪) → (Sh(𝒞′), 𝒪′) be amorphism of ringed topoi. Assume
𝒞 has enough points. There exists an exact functor

𝐿𝑓∗ ∶ 𝐷(𝒪′) ⟶ 𝐷(𝒪)

of triangulated categories so that 𝐿𝑓∗𝒦• = 𝑓∗𝒦• for any complex as in Lemma 19.18.1
in particular for any bounded above complex of flat 𝒪′-modules.
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Proof. To see this we use the general theory developed in Derived Categories, Section
11.14. Set 𝒟 = 𝐾(𝒪′) and 𝒟′ = 𝐷(𝒪). Let us write 𝐹 ∶ 𝒟 → 𝒟′ the exact functor of
triangulated categories defined by the rule 𝐹(𝒢•) = 𝑓∗𝒢•. We let 𝑆 be the set of quasi-
isomorphisms in 𝒟 = 𝐾(𝒪′). This gives a situation as in Derived Categories, Situation
11.14.1 so that Derived Categories, Definition 11.14.2 applies. We claim that 𝐿𝐹 is every-
where defined. This follows from Derived Categories, Lemma 11.14.15 with 𝒫 ⊂ 𝑂𝑏(𝒟)
the collection of complexes 𝒦• such that 𝑓−1𝒦• is a K-flat complex of 𝑓−1𝒪′-modules: (1)
follows from Lemma 19.18.1 and to see (2) we have to show that for a quasi-isomorphism
𝒦•

1 → 𝒦•
2 between elements of 𝒫 the map 𝑓∗𝒦•

1 → 𝑓∗𝒦•
2 is a quasi-isomorphism. To see

this write this as
𝑓−1𝒦•

1 ⊗𝑓−1𝒪′ 𝒪 ⟶ 𝑓−1𝒦•
2 ⊗𝑓−1𝒪′ 𝒪

The functor 𝑓−1 is exact, hence the map 𝑓−1𝒦•
1 → 𝑓−1𝒦•

2 is a quasi-isomorphism. The
complexes 𝑓−1𝒦•

1 and 𝑓−1𝒦•
2 are K-flat complexes of 𝑓−1𝒪′-modules by our choice of 𝒫.

Hence Lemma 19.17.10 guarantees that the displayed map is a quasi-isomorphism. Thus
we obtain a derived functor

𝐿𝐹 ∶ 𝐷(𝒪′) = 𝑆−1𝒟 ⟶ 𝒟′ = 𝐷(𝒪)
seeDerivedCategories, Equation (11.14.9.1). Finally, DerivedCategories, Lemma 11.14.15
also guarantees that𝐿𝐹(𝒦•) = 𝐹(𝒦•) = 𝑓∗𝒦• when𝒦• is in𝒫. Since the proof of Lemma
19.18.1 shows that bounded above complexes of flat modules are in 𝒫 we win. �

Lemma 19.18.4. Let 𝑓 ∶ (Sh(𝒞), 𝒪) → (Sh(𝒟), 𝒪′) be a morphism of ringed topoi. Assume
𝒞 has enough points. There is a canonical bifunctorial isomorphism

𝐿𝑓∗(ℱ• ⊗𝐋
𝒪′ 𝒢•) = 𝐿𝑓∗ℱ• ⊗𝐋

𝒪 𝐿𝑓∗𝒢•

for ℱ•, 𝒢• ∈ 𝑂𝑏(𝐷(𝒪′)).

Proof. We may assume that ℱ• and 𝒢• are K-flat complexes of 𝒪′-modules. In this case
ℱ•⊗𝐋

𝒪′ 𝒢• is just the total complex associated to the double complex ℱ•⊗𝒪′ 𝒢•. By Lemma
19.17.4 Tot(ℱ• ⊗𝒪′ 𝒢•) is K-flat also. Hence the isomorphism of the lemma comes from
the isomorphism

Tot(𝑓∗ℱ• ⊗𝒪 𝑓∗𝒢•) ⟶ 𝑓∗Tot(ℱ• ⊗𝒪′ 𝒢•)
whose constituents are the isomorphisms 𝑓∗ℱ𝑝 ⊗𝒪 𝑓∗𝒢𝑞 → 𝑓∗(ℱ𝑝 ⊗𝒪′ 𝒢𝑞) of Modules on
Sites, Lemma 16.24.1. �

19.19. Cohomology of unbounded complexes

Let (𝒞, 𝒪) be a ringed site. The categoryMod(𝒪) is a Grothendieck abelian category: it has
all colimits, filtered colimits are exact, and it has a generator, namely

⨁𝑈∈𝑂𝑏(𝒞)
𝑗𝑈!𝒪𝑈,

seeModules on Sites, Section 16.14 and Lemmas 16.26.5 and 16.26.6. By Injectives, Theo-
rem 17.16.6 for every complexℱ• of𝒪-modules there exists an injective quasi-isomorphism
ℱ• → ℐ• to a K-injective complex of 𝒪-modules. Hence we can define

𝑅Γ(𝒞, ℱ•) = Γ(𝒞, ℐ•)
and similarly for any left exact functor, see Derived Categories, Lemma 11.28.5. For any
morphism of ringed topoi 𝑓 ∶ (Sh(𝒞), 𝒪) → (Sh(𝒟), 𝒪′) we obtain

𝑅𝑓∗ ∶ 𝐷(𝒪) ⟶ 𝐷(𝒪′)
on the unbounded derived categories.
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Lemma 19.19.1. Let 𝑓 ∶ (Sh(𝒞), 𝒪) → (Sh(𝒟), 𝒪′) be a morphism of ringed topoi. Assume
𝒞 has enough points. The functor 𝑅𝑓∗ defined above and the functor 𝐿𝑓∗ defined in Lemma
19.18.3 are adjoint:

Hom𝐷(𝒪)(𝐿𝑓∗𝒢•, ℱ•) = Hom𝐷(𝒪′)(𝒢•, 𝑅𝑓∗ℱ•)

bifunctorially in ℱ• ∈ 𝑂𝑏(𝐷(𝒪)) and 𝒢• ∈ 𝑂𝑏(𝐷(𝒪′)).

Proof. This is formal from the results obtained above. Choose a K-flat resolution 𝒦• → 𝒢•

and a K-injective resolution ℱ• → ℐ•. Then

Hom𝐷(𝒪)(𝐿𝑓∗𝒢•, ℱ•) = Hom𝐷(𝒪)(𝑓∗𝒦•, ℐ•) = Hom𝐾(Mod(𝒪))(𝑓∗𝒦•, ℐ•)

by our definition of 𝐿𝑓∗ and because ℐ• is K-injective, see Derived Categories, Lemma
11.28.2. On the other hand

Hom𝐷(𝒪′)(𝒢•, 𝑅𝑓∗ℱ•) = Hom𝐷(𝒪′)(𝒦•, 𝑓∗ℐ•)

by our definition of 𝑅𝑓∗. By definition of morphisms in 𝐷(𝒪′) this is equal to

𝑐𝑜𝑙𝑖𝑚𝑠∶ℋ•→𝒦• Hom𝐾(Mod(𝒪′))(ℋ•, 𝑓∗ℐ•)

where the colimit is over all quasi-isomorphisms 𝑠 ∶ ℋ• → 𝒦• of complexes of𝒪′-modules.
Since every complex has a left K-flat resolution it suffices to look at quasi-isomorphisms
𝑠 ∶ (𝒦′)• → 𝒦• where (𝒦′)• is K-flat as well. In this case we have

Hom𝐾(Mod(𝒪′))((𝒦′)•, 𝑓∗ℐ•) = Hom𝐾(Mod(𝒪′))(𝑓∗(𝒦′)•, ℐ•)
= Hom𝐾(Mod(𝒪′))(𝑓∗𝒦•, ℐ•)

The first equality because 𝑓∗ and 𝑓∗ are adjoint functors and the second because ℐ• is
K-injective and because 𝑓∗(𝒦′)• → 𝑓∗𝒦• is a quasi-isomorphism (by virtue of the fact
that 𝐿𝑓∗ is well defined). �

Remark 19.19.2. The construction of unbounded derived functor 𝐿𝑓∗ and 𝑅𝑓∗ allows one
to construct the base change map in full generality. Namely, suppose that

(Sh(𝒞′), 𝒪𝒞′)
𝑔′
//

𝑓′

��

(Sh(𝒞), 𝒪𝒞)

𝑓
��

(Sh(𝒟′), 𝒪𝒟′)
𝑔 // (Sh(𝒟), 𝒪𝒟)

is a commutative diagram of ringed topoi. Let ℱ• be a complex of 𝒪𝒞-modules. Then there
exists a canonical base change map

𝐿𝑔∗𝑅𝑓∗ℱ• ⟶ 𝑅(𝑓′)∗𝐿(𝑔′)∗ℱ•

in 𝐷(𝒪𝒟′). Namely, this map is adjoint to a map 𝐿(𝑓′)∗𝐿𝑔∗𝑅𝑓∗ℱ• → 𝐿(𝑔′)∗ℱ• Since
𝐿(𝑓′)∗𝐿𝑔∗ = 𝐿(𝑔′)∗𝐿𝑓∗ we see this is the same as a map 𝐿(𝑔′)∗𝐿𝑓∗𝑅𝑓∗ℱ• → 𝐿(𝑔′)∗ℱ•

which we can take to be 𝐿(𝑔′)∗ of the adjunction map 𝐿𝑓∗𝑅𝑓∗ℱ• → ℱ•.
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19.20. Producing K-injective resolutions

Let (𝒞, 𝒪) be a ringed site. Let ℱ• be a complex of 𝒪-modules. The category Mod(𝒪)
has enough injectives, hence we can use Derived Categories, Lemma 11.27.3 produce a
diagram

… // 𝜏≥−2ℱ• //

��

𝜏≥−1ℱ•

��
… // ℐ•

2
// ℐ•

1

in the category of complexes of 𝒪-modules such that
(1) the vertical arrows are quasi-isomorphisms,
(2) ℐ•

𝑛 is a bounded below complex of injectives,
(3) the arrows ℐ•

𝑛+1 → ℐ•
𝑛 are termwise split surjections.

The category of 𝒪-modules has limits (they are computed on the level of presheaves), hence
we can form the termwise limit ℐ• = 𝑙𝑖𝑚𝑛 ℐ•

𝑛. By Derived Categories, Lemmas 11.28.3
and 11.28.6 this is a K-injective complex. In general the canonical map
(19.20.0.1) ℱ• → ℐ•

may not be a quasi-isomorphism. In the following lemma we describe some conditions
under which it is.

Lemma 19.20.1. In the situation described above. Denote ℋ𝑖 = 𝐻𝑖(ℱ•) the 𝑖th cohomol-
ogy sheaf. Let ℬ ⊂ 𝑂𝑏(𝒞) be a subset. Let 𝑑 ∈ 𝐍. Assume

(1) every object of 𝒞 has a covering whose members are elements of ℬ,
(2) for every 𝑈 ∈ ℬ we have 𝐻𝑝(𝑈, ℋ𝑞) = 0 for 𝑝 > 𝑑2.

Then (19.20.0.1) is a quasi-isomorphism.

Proof. Let 𝑈 ∈ ℬ. Note that 𝐻𝑚(ℐ•(𝑈)) is the cohomology of
𝑙𝑖𝑚𝑛 ℐ𝑚−2

𝑛 (𝑈) → 𝑙𝑖𝑚𝑛 ℐ𝑚−1
𝑛 (𝑈) → 𝑙𝑖𝑚𝑛 ℐ𝑚

𝑛 (𝑈) → 𝑙𝑖𝑚𝑛 ℐ𝑚+1
𝑛 (𝑈)

in the third spot from the left. Note that the transition maps ℐ𝑚
𝑛+1(𝑈) → ℐ𝑚

𝑛 (𝑈) are always
surjective because the maps ℐ•

𝑛+1 → ℐ•
𝑛 are termwise split surjections. By construction

there are distingushed triangles
ℋ−𝑛[𝑛] → ℐ•

𝑛 → ℐ•
𝑛−1 → ℋ−𝑛[𝑛 + 1]

in𝐷(𝒪). Asℐ•
𝑛 is a bounded below complex of injectiveswe have𝐻𝑚(𝑈, ℐ•

𝑛) = 𝐻𝑚(ℐ•
𝑛(𝑈)).

By assumption (2) we see that if 𝑚 > 𝑑 − 𝑛 then
𝐻𝑚(𝑈, ℋ−𝑛[𝑛]) = 𝐻𝑛+𝑚(𝑈, ℋ−𝑛) = 0

and similarly 𝐻𝑚(𝑈, ℋ−𝑛[𝑛 + 1]) = 0. This implies that 𝐻𝑚(ℐ•
𝑛(𝑈)) → 𝐻𝑚(ℐ•

𝑛−1(𝑈)) is
an isomorphism for 𝑚 > 𝑑 − 𝑛. In other words, the cohomologies of the complexes ℐ•

𝑛(𝑈)
are eventually constant in every cohomological degree. Thus we may apply Homology,
Lemma 10.23.7 to conclude that

𝐻𝑚(ℐ•(𝑈)) = 𝑙𝑖𝑚 𝐻𝑚(ℐ•
𝑛(𝑈)).

Using the eventual stabilization once again we see that
𝐻𝑚(ℐ•(𝑈)) = 𝐻𝑚(ℐ•

max(1,−𝑚+𝑑)(𝑈))

2In fact, analyzing the proof we see that it suffices if there exists a function 𝑑 ∶ 𝐙 → 𝐙 ∪ {+∞} such that
𝐻𝑝(𝑈, ℋ𝑞) = 0 for 𝑝 > 𝑑(𝑞) where 𝑞 + 𝑑(𝑞) → −∞ as 𝑞 → −∞
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for every 𝑈 ∈ ℬ.
We want to show that the map ℋ𝑚 → 𝐻𝑚(ℐ•) is an isomorphism for all 𝑚. The sheaf
𝐻𝑚(ℐ•) is the sheafification of the presheaf 𝑈 ↦ 𝐻𝑚(ℐ•(𝑈)). We have seen above that
this presheaf equals the presheaf

𝑈 ⟼ 𝐻𝑚(ℐ•
max(1,−𝑚+𝑑)(𝑈))

when 𝑈 runs through the elements of ℬ. Since every object of 𝒞 has a covering whose
members are elements of ℬ we see that it suffices to prove the sheafification of 𝑈 ⟼
𝐻𝑚(ℐ•

max(1,−𝑚+𝑑)(𝑈)) isℋ𝑚. On the other hand, this sheafification is equal to𝐻𝑚(ℐ•
max(1,−𝑚+𝑑)).

Since 𝜏≥− max(1,−𝑚+𝑑)ℱ• → ℐ•
max(1,−𝑚+𝑑) is a quasi-isomorphism we win. �

The construction above can be used in the following setting. Let 𝒞 be a category. Let
Cov(𝒞) ⊃ Cov′(𝒞) be two ways to endow 𝒞 with the structure of a site. Denote 𝜏 the
topology corresponding to Cov(𝒞) and 𝜏′ the topology corresponding to Cov′(𝒞). Then
the identity functor on 𝒞 defines a morphism of sites

𝜖 ∶ 𝒞𝜏 ⟶ 𝒞𝜏′

where 𝜖∗ is the identity functor on underlying presheaves andwhere 𝜖−1 is the 𝜏-sheafification
of a 𝜏′-sheaf (hence clearly exact). Let 𝒪 be a sheaf of rings for the 𝜏-topology. Then 𝒪 is
also a sheaf for the 𝜏′-topology and 𝜖 becomes a morphism of ringed sites

𝜖 ∶ (𝒞𝜏, 𝒪𝜏) ⟶ (𝒞𝜏′, 𝒪𝜏′)
In this situation we can sometimes point out subcategories of 𝐷(𝒪𝜏) and 𝐷(𝒪𝜏′) which are
identified by the functors 𝜖∗ and 𝑅𝜖∗.

Lemma 19.20.2. With 𝜖 ∶ (𝒞𝜏, 𝒪𝜏) ⟶ (𝒞𝜏′, 𝒪𝜏′) as above. Let ℬ ⊂ 𝑂𝑏(𝒞) be a subset.
Let 𝒜 ⊂ PMod(𝒪) be a full subcategory. Assume

(1) every object of 𝒜 is a sheaf for the 𝜏-topology,
(2) 𝒜 is a weak Serre subcategory of Mod(𝒪𝜏),
(3) every object of 𝒞 has a 𝜏′-covering whose members are elements of ℬ, and
(4) for every 𝑈 ∈ ℬ we have 𝐻𝑝

𝜏(𝑈, ℱ) = 0, 𝑝 > 0 for all ℱ ∈ 𝒜.
Then 𝒜 is a weak Serre subcategory of Mod(𝒪𝜏) and there is an equivalence of triangulated
categories 𝐷𝒜(𝒪𝜏) = 𝐷𝒜(𝒪𝜏′) given by 𝜖∗ and 𝑅𝜖∗.

Proof. Note that for 𝐴 ∈ 𝒜 we can think of 𝐴 as a sheaf in either topology and (abusing
notation) that 𝜖∗𝐴 = 𝐴 and 𝜖∗𝐴 = 𝐴. Consider an exact sequence

𝐴0 → 𝐴1 → 𝐴2 → 𝐴3 → 𝐴4

in Mod(𝒪𝜏′) with 𝐴0, 𝐴1, 𝐴3, 𝐴4 in 𝒜. We have to show that 𝐴2 is an element of 𝒜, see
Homology, Definition 10.7.1. Apply the exact functor 𝜖∗ = 𝜖−1 to conclude that 𝜖∗𝐴2 is an
object of 𝒜. Consider the map of sequences

𝐴0
//

��

𝐴1
//

��

𝐴2
//

��

𝐴3
//

��

𝐴4

��
𝐴0

// 𝐴1
// 𝜖∗𝜖∗𝐴2

// 𝐴3
// 𝐴4

to conclude that 𝐴2 = 𝜖∗𝜖∗𝐴2 is an object of 𝒜. At this point it makes sense to talk about
the derived categories 𝐷𝒜(𝒪𝜏) and 𝐷𝒜(𝒪𝜏′), see Derived Categories, Section 11.12.
Since 𝜖∗ is exact and preserves 𝒜, it is clear that we obtain a functor 𝜖∗ ∶ 𝐷𝒜(𝒪𝜏′) →
𝐷𝒜(𝒪𝜏). We claim that 𝑅𝜖∗ is a quasi-inverse. Namely, let ℱ• be an object of 𝐷𝒜(𝒪𝜏).
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Construct a map ℱ• → ℐ• = 𝑙𝑖𝑚 ℐ•
𝑛 as in (19.20.0.1). By Lemma 19.20.1 and assumption

(4) we see that ℱ• → ℐ• is a quasi-isomorphism. Then

𝑅𝜖∗ℱ• = 𝜖∗ℐ• = 𝑙𝑖𝑚𝑛 𝜖∗ℐ•
𝑛

For every 𝑈 ∈ ℬ we have

𝐻𝑚(𝜖∗ℐ•
𝑛(𝑈)) = 𝐻𝑚(ℐ•

𝑛(𝑈)) = {
𝐻𝑚(ℱ•)(𝑈) if 𝑚 ≥ −𝑛

0 if 𝑚 < 𝑛

by the assumed vanishing of (4), the spectral sequence Derived Categories, Lemma 11.20.3,
and the fact that 𝜏≥−𝑛ℱ• → ℐ•

𝑛 is a quasi-isomorphism. The maps 𝜖∗ℐ•
𝑛+1 → 𝜖∗ℐ•

𝑛 are
termwise split surjections as 𝜖∗ is a functor. Hencewe can applyHomology, Lemma 10.23.7
to the sequence of complexes

𝑙𝑖𝑚𝑛 𝜖∗ℐ𝑚−2
𝑛 (𝑈) → 𝑙𝑖𝑚𝑛 𝜖∗ℐ𝑚−1

𝑛 (𝑈) → 𝑙𝑖𝑚𝑛 𝜖∗ℐ𝑚
𝑛 (𝑈) → 𝑙𝑖𝑚𝑛 𝜖∗ℐ𝑚+1

𝑛 (𝑈)

to conclude that 𝐻𝑚(𝜖∗ℐ•(𝑈)) = 𝐻𝑚(ℱ•)(𝑈) for 𝑈 ∈ ℬ. Sheafifying and using property
(3) this proves that 𝐻𝑚(𝜖∗ℐ•) is isomorphic to 𝜖∗𝐻𝑚(ℱ•), i.e., is an object of 𝒜. Thus 𝑅𝜖∗
indeed gives rise to a functor

𝑅𝜖∗ ∶ 𝐷𝒜(𝒪𝜏) ⟶ 𝐷𝒜(𝒪𝜏′)

For ℱ• ∈ 𝐷𝒜(𝒪𝜏) the adjunction map 𝜖∗𝑅𝜖∗ℱ• → ℱ• is a quasi-isomorphism as we've
seen above that the cohomology sheaves of 𝑅𝜖∗ℱ• are 𝜖∗𝐻𝑚(ℱ•). For 𝒢• ∈ 𝐷𝒜(𝒪𝜏′) the
adjunction map 𝒢• → 𝑅𝜖∗𝜖∗𝒢• is a quasi-isomorphism for the same reason, i.e., because
the cohomology sheaves of 𝑅𝜖∗𝜖∗𝒢• are isomorphic to 𝜖∗𝐻𝑚(𝜖∗𝒢) = 𝐻𝑚(𝒢•). �

19.21. Spectral sequences for Ext

In this section we collect various spectral sequences that come up when considering the Ext
functors. For any pair of complexes 𝒢•, ℱ• of complexes of modules on a ringed site (𝒞, 𝒪)
we denote

Ext𝑛𝒪(𝒢•, ℱ•) = Hom𝐷(𝒪)(𝒢•, ℱ•[𝑛])

according to our general conventions in Derived Categories, Section 11.26.

Example 19.21.1. Let (𝒞, 𝒪) be a ringed site. Let 𝒦• be a bounded above complex of
𝒪-modules. Let ℱ be an 𝒪-module. Then there is a spectral sequence with 𝐸2-page

𝐸𝑖,𝑗
2 = Ext𝑖𝒪(𝐻−𝑗(𝒦•), ℱ) ⇒ Ext𝑖+𝑗

𝒪 (𝒦•, ℱ)

and another spectral sequence with 𝐸1-page

𝐸𝑖,𝑗
1 = Ext𝑗𝒪(𝒦−𝑖, ℱ) ⇒ Ext𝑖+𝑗

𝒪 (𝒦•, ℱ).

To construct these spectral sequences choose an injective resolution ℱ → ℐ• and consider
the two spectral sequences coming from the double complex Hom𝒪(𝒦•, ℐ•), see Homol-
ogy, Section 10.19.

19.22. Derived lower shriek

In this section we study some situations where besides 𝐿𝑓∗ and 𝑅𝑓∗ there also a derived
functor 𝐿𝑓!.
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Lemma 19.22.1. Let 𝑢 ∶ 𝒞 → 𝒟 be a continuous and cocontinuous functor of sites which
induces a morphism of topoi 𝑔 ∶ Sh(𝒞) → Sh(𝒟). Let 𝒪𝒟 be a sheaf of rings and set
𝒪𝒞 = 𝑔−1𝒪𝒟. The functor 𝑔! ∶ Mod(𝒪𝒞) → Mod(𝒪𝒟) (see Modules on Sites, Lemma
16.35.1) has a left derived functor

𝐿𝑔! ∶ 𝐷(𝒪𝒞) ⟶ 𝐷(𝒪𝒟)

which is left adjoint to 𝑔∗.

Proof. We are going to use Derived Categories, Proposition 11.27.2 to construct 𝐿𝑔!. To
do this we have to verify assumptions (1), (2), (3), (4), and (5) of that proposition. First,
since 𝑔! is a left adjoint we see that it is right exact and commutes with all colimits, so (5)
holds. Conditions (3) and (4) hold because the category of modules on a ringed site is a
Grothendieck abelian category. Let 𝒫 ⊂ 𝑂𝑏(Mod(𝒪𝒞)) be the collection of 𝒪𝒞-modules
which are direct sums of modules of the form 𝑗𝑈!𝒪𝑈. Here 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑗𝑈! is the exten-
sion by zero associated to the localization morphism 𝑗𝑈 ∶ 𝒞/𝑈 → 𝒞. Every 𝒪𝒞-module is a
quotient of an object of 𝒫, see Modules on Sites, Lemma 16.26.6. Thus (1) holds. Finally,
we have to prove (2). Let 𝒦• be a bounded above acyclic complex of 𝒪𝒞-modules with
𝒦𝑛 ∈ 𝒫 for all 𝑛. We have to show that 𝑔!𝒦• is exact. To do this it suffices to show, for
every injective 𝒪𝒟-module ℐ that

𝐻𝑜𝑚𝐷(𝒪𝒟)(𝑔!𝒦•, ℐ[𝑛]) = 0

for all 𝑛 ∈ 𝐙. Since ℐ is injective we have

𝐻𝑜𝑚𝐷(𝒪𝒟)(𝑔!𝒦•, ℐ[𝑛]) = Hom𝐾(𝒪𝒟)(𝑔!𝒦•, ℐ[𝑛])
= 𝐻𝑛(Hom𝒪𝒟

(𝑔!𝒦•, ℐ))

= 𝐻𝑛(Hom𝒪𝒞
(𝒦•, 𝑔−1ℐ))

the last equality by the adjointness of 𝑔! and 𝑔−1.

The vanishing of this group would be clear if 𝑔−1ℐ were an injective 𝒪𝒞-module. But 𝑔−1ℐ
isn't necessarily an injective 𝒪𝒞-module as 𝑔! isn't exact in general. We do know that

Ext𝑝𝒪𝒞
(𝑗𝑈!𝒪𝑈, 𝑔−1ℐ) = 𝐻𝑝(𝑈, 𝑔−1ℐ) = 0 for 𝑝 ≥ 1

Namely, the first equality follows from 𝐻𝑜𝑚𝒪𝒞
(𝑗𝑈!𝒪𝑈, ℋ) = ℋ(𝑈) and taking derived

functors. The vanishing of 𝐻𝑝(𝑈, 𝑔−1ℐ) for all 𝑈 ∈ 𝑂𝑏(𝒞) comes from the vanishing of all
higher Čech cohomology groups �̌�𝑝(𝒰, 𝑔−1ℐ) via Lemma 19.11.8. Namely, for a covering
𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 in 𝒞 we have �̌�𝑝(𝒰, 𝑔−1ℐ) = �̌�𝑝(𝑢(𝒰), ℐ). Since ℐ is an injective
𝒪-module these Čech cohomology groups vanish, see Lemma 19.12.3. Since each 𝒦−𝑞 is
a direct sum of modules of the form 𝑗𝑈!𝒪𝑈 we see that

Ext𝑝𝒪𝒞
(𝒦−𝑞, 𝑔−1ℐ) = 0 for 𝑝 ≥ 1 and all 𝑞

Let us use the spectral sequence (see Example 19.21.1)

𝐸𝑝,𝑞
1 = Ext𝑝𝒪𝒞

(𝒦−𝑞, 𝑔−1ℐ) ⇒ Ext𝑝+𝑞
𝒪𝒞

(𝒦•, 𝑔−1ℐ) = 0.

Note that the spectral sequence abuts to zero as 𝒦• is acyclic (hence vanishes in the derived
category, hence produces vanishing ext groups). By the vanishing of higher exts proved
above the only nonzero terms on the 𝐸1 page are the terms 𝐸0,𝑞

1 = Hom𝒪𝒞
(𝒦−𝑞, 𝑔−1ℐ).

We conclude that the complex Hom𝒪𝒞
(𝒦•, 𝑔−1ℐ) is acyclic as desired.
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Thus the left derived functor 𝐿𝑔! exists. We still have to show that it is left adjoint to
𝑔−1 = 𝑔∗ = 𝑅𝑔∗ = 𝐿𝑔∗, i.e., that we have
(19.22.1.1) 𝐻𝑜𝑚𝐷(𝒪𝒞)(ℋ•, 𝑔−1ℰ•) = 𝐻𝑜𝑚𝐷(𝒪𝒟)(𝐿𝑔!ℋ•, ℰ•)
This is actually a formal consequence of the discussion above. Choose a quasi-isomorphism
𝒦• → ℋ• such that 𝒦• computes 𝐿𝑔!. Moreover, choose a quasi-isomorphism ℰ• → ℐ•

into a K-injective complex of 𝒪𝒟-modules ℐ•. Then the RHS of (19.22.1.1) is
𝐻𝑜𝑚𝐾(𝒪𝒟)(𝑔!𝒦•, ℐ•)

On the other hand, by the definition of morphisms in the derived category the LHS of
(19.22.1.1) is

𝐻𝑜𝑚𝐷(𝒪𝒞)(𝒦•, 𝑔−1ℐ•) = 𝑐𝑜𝑙𝑖𝑚𝑠∶ℒ•→𝒦• 𝐻𝑜𝑚𝐾(𝒪𝒞)(ℒ•, 𝑔−1ℐ•)
= 𝑐𝑜𝑙𝑖𝑚𝑠∶ℒ•→𝒦• 𝐻𝑜𝑚𝐾(𝒪𝒟)(𝑔!ℒ•, ℐ•)

by the adjointness of 𝑔! and 𝑔∗ on the level of sheaves of modules. The colimit is over
all quasi-isomorphisms with target 𝒦•. Since for every complex ℒ• there exists a quasi-
isomorphism (𝒦′)• → ℒ• such that (𝒦′)• computes 𝐿𝑔! we see that we may as well take
the colimit over quasi-isomorphisms of the form 𝑠 ∶ (𝒦′)• → 𝒦• where (𝒦′)• computes
𝐿𝑔!. In this case

𝐻𝑜𝑚𝐾(𝒪𝒟)(𝑔!𝒦•, ℐ•) ⟶ 𝐻𝑜𝑚𝐾(𝒪𝒟)(𝑔!(𝒦′)•, ℐ•)

is an isomorphism as 𝑔!(𝒦′)• → 𝑔!𝒦• is a quasi-isomorphism and ℐ• is K-injective. This
finishes the proof. �

Remark 19.22.2. Warning! Let 𝑢 ∶ 𝒞 → 𝒟, 𝑔, 𝒪𝒟, and 𝒪𝒞 be as in Lemma 19.22.1. In
general it is not the case that the diagram

𝐷(𝒪𝒞)
𝐿𝑔!
//

𝑓𝑜𝑟𝑔𝑒𝑡
��

𝐷(𝒪𝒟)

𝑓𝑜𝑟𝑔𝑒𝑡
��

𝐷(𝒞)
𝐿𝑔𝐴𝑏

! // 𝐷(𝒟)

commutes where the functor 𝐿𝑔𝐴𝑏
! is the one constructed in Lemma 19.22.1 but using the

constant sheaf 𝐙 as the structure sheaf on both 𝒞 and 𝒟. In general it isn't even the case that
𝑔! = 𝑔𝐴𝑏

! (see Modules on Sites, Remark 16.35.2), but this phenomenon can occur even if
𝑔! = 𝑔𝐴𝑏

! ! In general all we can say is that there exists a natural transformation

𝐿𝑔𝐴𝑏
! ∘ 𝑓𝑜𝑟𝑔𝑒𝑡 ⟶ 𝑓𝑜𝑟𝑔𝑒𝑡 ∘ 𝐿𝑔!
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CHAPTER 20

Hypercoverings

20.1. Introduction

Let 𝒞 be a site, see Sites, Definition 9.6.2. Let 𝑋 be an object of 𝒞. Given an abelian sheaf
ℱ on 𝒞 we would like to compute its cohomology groups

𝐻𝑖(𝑋, ℱ).

According to our general definitions (insert future reference here) this cohomology group
is computed by choosing an injective resolution

0 → ℱ → ℐ0 → ℐ1 → …

and setting
𝐻𝑖(𝑋, ℱ) = 𝐻𝑖(Γ(𝑋, ℐ0) → Γ(𝑋, ℐ1) → Γ(𝑋, ℐ2) → …)

Wewill have to do quite a bit of work to prove that we may also compute these cohomology
groups without choosing an injective resolution. Also, we will only do this in case the site
𝒞 has fibre products.

A hypercovering in a site is a generalization of a covering. See [MA71, Exposé V, Sec.
7]. A hypercovering is a special case of a simplicial augmentation where one has coho-
mological descent, see [MA71, Exposé Vbis]. A nice manuscript on cohomological de-
scent is the text by Brian Conrad, see http://math.stanford.edu/~conrad/papers/
hypercover.pdf. Brian's text follows the exposition in [MA71, Exposé Vbis], and in
particular discusses a more general kind of hypercoverings, such as proper hypercoverings
of schemes used to compute étale cohomology for example. A proper hypercovering can
be seen as a hypercovering in the category of schemes endowed with a different topology
than the étale topology, but still they can be used to compute the étale cohomology.

20.2. Hypercoverings

In order to start wemake the following definition. The letters ``SR'' stand for Semi-Representable.

Definition 20.2.1. Let 𝒞 be a site with fibre products. Let 𝑋 ∈ 𝑂𝑏(𝒞) be an object of 𝒞.
We denote SR(𝒞, 𝑋) the category of semi-representable objects defined as follows

(1) objects are families of morphisms {𝑈𝑖 → 𝑋}𝑖∈𝐼, and
(2) morphisms {𝑈𝑖 → 𝑋}𝑖∈𝐼 → {𝑉𝑗 → 𝑋}𝑗∈𝐽 are given by a map 𝛼 ∶ 𝐼 → 𝐽 and for

each 𝑖 ∈ 𝐼 a morphism 𝑓𝑖 ∶ 𝑈𝑖 → 𝑉𝛼(𝑖) over 𝑋.

This definition is different from the one in [MA71, Exposé V, Sec. 7], but it seems flexible
enough to do all the required arguments. Note that this is a ``big'' category. We will later
``bound'' the size of the index sets 𝐼 that we need and we can then redefine SR(𝒞, 𝑋) to
become a category.
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Definition 20.2.2. Let 𝒞 be a site with fibre products. Let 𝑋 ∈ 𝑂𝑏(𝒞) be an object of
𝒞. We denote 𝐹 the functor which associates a sheaf to a semi-representable object. In a
formula

𝐹 ∶ SR(𝒞, 𝑋) ⟶ PSh(𝒞)
{𝑈𝑖 → 𝑋}𝑖∈𝐼 ⟼ ⨿𝑖∈𝐼ℎ𝑈𝑖

where ℎ𝑈 denotes the representable presheaf associated to the object 𝑈.

Given a morphism 𝑈 → 𝑋 we obtain a morphism ℎ𝑈 → ℎ𝑋 of representable presheaves.
Thus it makes more sense to think of 𝐹 as a functor into the category of presheaves of sets
over ℎ𝑋, namely PSh(𝒞)/ℎ𝑋.

Lemma 20.2.3. Let 𝒞 be a site with fibre products. Let 𝑋 ∈ 𝑂𝑏(𝒞) be an object of 𝒞.
The category SR(𝒞, 𝑋) has coproducts and finite limits. Moreover, the functor 𝐹 commutes
with coproducts and fibre products, and transforms products into fibre products over ℎ𝑋.
In other words, it commutes with finite limits as a functor into PSh(𝒞)/ℎ𝑋.

Proof. It is clear that the coproduct of {𝑈𝑖 → 𝑋}𝑖∈𝐼 and {𝑉𝑗 → 𝑋}𝑗∈𝐽 is {𝑈𝑖 → 𝑋}𝑖∈𝐼 ⨿
{𝑉𝑗 → 𝑋}𝑗∈𝐽 and similarly for coproducts of families of families of morphisms with target
𝑋. The object {𝑋 → 𝑋} is a final object of SR(𝒞, 𝑋). Suppose given a morphism (𝛼, 𝑓𝑖) ∶
{𝑈𝑖 → 𝑋}𝑖∈𝐼 → {𝑉𝑗 → 𝑋}𝑗∈𝐽 and a morphism (𝛽, 𝑔𝑘) ∶ {𝑊𝑘 → 𝑋}𝑘∈𝐾 → {𝑉𝑗 → 𝑋}𝑗∈𝐽.
The fibred product of these morphisms is given by

{𝑈𝑖 ×𝑓𝑖,𝑉𝑗,𝑔𝑘
𝑊𝑘 → 𝑋}(𝑖,𝑗,𝑘)∈𝐼×𝐽×𝐾 such that 𝑘=𝛼(𝑖)=𝛽(𝑗)

The fibre products exist by the assumption that 𝒞 has fibre products. Thus SR(𝒞, 𝑋) has
finite limits, see Categories, Lemma 4.16.4. The statements on the functor 𝐹 are clear from
the constructions above. �

Definition 20.2.4. Let 𝒞 be a site with fibred products. Let 𝑋 be an object of 𝒞. Let
𝑓 = (𝛼, 𝑓𝑖) ∶ {𝑈𝑖 → 𝑋}𝑖∈𝐼 → {𝑉𝑗 → 𝑋}𝑗∈𝐽 be a morphism in the category SR(𝒞, 𝑋). We
say that 𝑓 is a covering if for every 𝑗 ∈ 𝐽 the family of morphisms {𝑈𝑖 → 𝑉𝑗}𝑖∈𝐼,𝛼(𝑖)=𝑗 is a
covering for the site 𝒞.

Lemma 20.2.5. Let 𝒞 be a site with fibred products. Let 𝑋 ∈ 𝑂𝑏(𝒞).
(1) A composition of coverings in SR(𝒞, 𝑋) is a covering.
(2) A base change of coverings is a covering.
(3) If 𝐴 → 𝐵 and 𝐾 → 𝐿 are coverings, then 𝐴 × 𝐾 → 𝐵 × 𝐿 is a covering.

Proof. Immediate from the axioms of a site. (Number (3) is the composition 𝐴 × 𝐾 →
𝐵 × 𝐾 → 𝐵 × 𝐿 and hence a composition of basechanges of coverings.) �

According to the results in the chapter on simplicial methods the coskelet of a truncated
simplicial object of SR(𝒞, 𝑋) exists. Hence the following definition makes sense.

Definition 20.2.6. Let 𝒞 be a site. Let 𝑋 ∈ 𝑂𝑏(𝒞) be an object of 𝒞. A hypercovering of
𝑋 is a simplicial object 𝐾 in the category SR(𝒞, 𝑋) such that

(1) The object 𝐾0 is a covering of 𝑋 for the site 𝒞.
(2) For every 𝑛 ≥ 0 the canonical morphism

𝐾𝑛+1 ⟶ (cosk𝑛sk𝑛𝐾)𝑛+1

is a covering in the sense defined above.
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Condition (1) makes sense since each object of SR(𝒞, 𝑋) is after all a family of morphisms
with target 𝑋. It could also be formulated as saying that the morphism of 𝐾0 to the final
object of SR(𝒞, 𝑋) is a covering.

Example 20.2.7. Let {𝑈𝑖 → 𝑋}𝑖∈𝐼 be a covering of the site 𝒞. Set 𝐾0 = {𝑈𝑖 → 𝑋}𝑖∈𝐼.
Then 𝐾0 is a 0-truncated simplicial object of SR(𝒞, 𝑋). Hence we may form

𝐾 = cosk0𝐾0.

Clearly 𝐾 passes condition (1) of Definition 20.2.6. Since all the morphisms 𝐾𝑛+1 →
(cosk𝑛sk𝑛𝐾)𝑛+1 are isomorphisms it also passes condition (2). Note that the terms 𝐾𝑛 are
the usual

𝐾𝑛 = {𝑈𝑖0 ×𝑋 𝑈𝑖1 ×𝑋 … ×𝑋 𝑈𝑖𝑛 → 𝑋}(𝑖0,𝑖1,…,𝑖𝑛)∈𝐼𝑛+1

Lemma 20.2.8. Let 𝒞 be a site with fibre products. Let 𝑋 ∈ 𝑂𝑏(𝒞) be an object of 𝒞. The
collection of all hypercoverings of 𝑋 forms a set.

Proof. Since 𝒞 is a site, the set of all coverings of 𝑆 forms a set. Thus we see that the
collection of possible 𝐾0 forms a set. Suppose we have shown that the collection of all
possible 𝐾0, … , 𝐾𝑛 form a set. Then it is enough to show that given 𝐾0, … , 𝐾𝑛 the collec-
tion of all possible 𝐾𝑛+1 forms a set. And this is clearly true since we have to choose 𝐾𝑛+1
among all possible coverings of (cosk𝑛sk𝑛𝐾)𝑛+1. �

Remark 20.2.9. The lemma does not just say that there is a cofinal system of choices of
hypercoverings that is a set, but that really the hypercoverings form a set.

The category of presheaves on 𝒞 has finite (co)limits. Hence the functors cosk𝑛 exists for
presheaves of sets.

Lemma 20.2.10. Let 𝒞 be a site with fibre products. Let 𝑋 ∈ 𝑂𝑏(𝒞) be an object of 𝒞. Let
𝐾 be a hypercovering of 𝑋. Consider the simplicial object 𝐹(𝐾) of PSh(𝒞), endowed with
its augmentation to the constant simplicial presheaf ℎ𝑋.

(1) The morphism of presheaves 𝐹(𝐾)0 → ℎ𝑋 becomes a surjection after sheafifica-
tion.

(2) The morphism

(𝑑1
0, 𝑑1

1) ∶ 𝐹(𝐾)1 ⟶ 𝐹(𝐾)0 ×ℎ𝑋
𝐹(𝐾)0

becomes a surjection after sheafification.
(3) For every 𝑛 ≥ 1 the morphism

𝐹(𝐾)𝑛+1 ⟶ (cosk𝑛sk𝑛𝐹(𝐾))𝑛+1

turns into a surjection after sheafification.

Proof. We will use the fact that if {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering of the site 𝒞, then the mor-
phism

⨿𝑖∈𝐼ℎ𝑈𝑖
→ ℎ𝑈

becomes surjective after sheafification, see Sites, Lemma 9.12.5. Thus the first assertion
follows immediately.

For the second assertion, note that according to Simplicial, Example 14.17.2 the simplicial
object cosk0sk0𝐾 has terms 𝐾0 × … × 𝐾0. Thus according to the definition of a hypercov-
ering we see that (𝑑1

0, 𝑑1
1) ∶ 𝐾1 → 𝐾0 × 𝐾0 is a covering. Hence (2) follows from the claim

above and the fact that 𝐹 transforms products into fibred products over ℎ𝑋.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01G6
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For the third, we claim that cosk𝑛sk𝑛𝐹(𝐾) = 𝐹(cosk𝑛sk𝑛𝐾) for 𝑛 ≥ 1. To prove this, de-
note temporarily 𝐹′ the functor SR(𝒞, 𝑋) → PSh(𝒞)/ℎ𝑋. By Lemma 20.2.3 the functor 𝐹′

commutes with finite limits. By our description of the cosk𝑛 functor in Simplicial, Section
14.17 we see that cosk𝑛sk𝑛𝐹′(𝐾) = 𝐹′(cosk𝑛sk𝑛𝐾). Recall that the category used in the
description of (cosk𝑛𝑈)𝑚 in Simplicial, Lemma 14.17.3 is the category (Δ/[𝑚])𝑜𝑝𝑝

≤𝑛 . It is
an amusing exercise to show that (Δ/[𝑚])≤𝑛 is a nonempty connected category (see Cat-
egories, Definition 4.15.1) as soon as 𝑛 ≥ 1. Hence, Categories, Lemma 4.15.2 shows
that cosk𝑛sk𝑛𝐹′(𝐾) = cosk𝑛sk𝑛𝐹(𝐾). Whence the claim. Property (2) follows from this,
because now we see that the morphism in (2) is the result of applying the functor 𝐹 to a
covering as in Definition 20.2.4, and the result follows from the first fact mentioned in this
proof. �

20.3. Acyclicity

Let 𝒞 be a site. For a presheaf of sets ℱ we denote 𝐙ℱ the presheaf of abelian groups
defined by the rule

𝐙ℱ(𝑈) = free abelian group on ℱ(𝑈).
We will sometimes call this the free abelian presheaf on ℱ. Of course the construction
ℱ ↦ 𝐙ℱ is a functor and it is left adjoint to the forgetful functor PAb(𝒞) → PSh(𝒞). Of
course the sheafification 𝐙#

ℱ is a sheaf of abelian groups, and the functor ℱ ↦ 𝐙#
ℱ is a left

adjoint as well. We sometimes call 𝐙#
ℱ the free abelian sheaf on ℱ.

For an object 𝑋 of the site 𝒞 we denote 𝐙𝑋 the free abelian presheaf on ℎ𝑋, and we denote
𝐙#

𝑋 its sheafification.

Definition 20.3.1. Let 𝒞 be a site. Let 𝐾 be a simplicial object of PSh(𝒞). By the above
we get a simplicial object 𝐙#

𝐾 of Ab(𝒞). We can take its associated complex of abelian
presheaves 𝑠(𝐙#

𝐾), see Simplicial, Section 14.21. The homology of 𝐾 is the homology of
the complex of abelian sheaves 𝑠(𝐙#

𝐾).

In other words, the 𝑖th homology 𝐻𝑖(𝐾) of 𝐾 is the sheaf of abelian groups 𝐻𝑖(𝐾) =
𝐻𝑖(𝑠(𝐙#

𝐾)). In this section we worry about the homology in case 𝐾 is a hypercovering
of an object 𝑋 of 𝒞.

Lemma 20.3.2. Let 𝒞 be a site. Let ℱ → 𝒢 be a morphism of presheaves of sets. Denote
𝐾 the simplicial object of PSh(𝒞) whose 𝑛th term is the (𝑛 + 1)st fibre product of ℱ over 𝒢,
see Simplicial, Example 14.3.5. Then, if ℱ → 𝒢 is surjective after sheafification, we have

𝐻𝑖(𝐾) = {
0 if 𝑖 > 0

𝐙#
𝒢 if 𝑖 = 0

The isomorphism in degree 0 is given by the morphsm 𝐻0(𝐾) → 𝐙#
𝒢 coming from the map

(𝐙#
𝐾)0 = 𝐙#

ℱ → 𝐙#
𝒢.

Proof. Let 𝒢′ ⊂ 𝒢 be the image of the morphism ℱ → 𝒢. Let 𝑈 ∈ 𝑂𝑏(𝒞). Set 𝐴 = ℱ(𝑈)
and 𝐵 = 𝒢′(𝑈). Then the simplicial set 𝐾(𝑈) is equal to the simplicial set with 𝑛-simplices
given by

𝐴 ×𝐵 𝐴 ×𝐵 … ×𝐵 𝐴 (𝑛 + 1 factors).
By Simplicial, Lemma 14.28.4 themorphism 𝐾(𝑈) → 𝐵 is a homotopy equivalence. Hence
applying the functor ``free abelian group on'' to this we deduce that

𝐙𝐾(𝑈) ⟶ 𝐙𝐵

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01GB
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is a homotopy equivalence. Note that 𝑠(𝐙𝐵) is the complex

… → ⨁𝑏∈𝐵
𝐙

0
−→ ⨁𝑏∈𝐵

𝐙
1

−→ ⨁𝑏∈𝐵
𝐙

0
−→ ⨁𝑏∈𝐵

𝐙 → 0

see Simplicial, Lemma 14.21.3. Thus we see that 𝐻𝑖(𝑠(𝐙𝐾(𝑈))) = 0 for 𝑖 > 0, and
𝐻0(𝑠(𝐙𝐾(𝑈))) = ⨁𝑏∈𝐵 𝐙 = ⨁𝑠∈𝒢′(𝑈) 𝐙. These identifications are compatible with re-
striction maps.

We conclude that 𝐻𝑖(𝑠(𝐙𝐾)) = 0 for 𝑖 > 0 and 𝐻0(𝑠(𝐙𝐾)) = 𝐙𝒢′, where here we compute
homology groups in PAb(𝒞). Since sheafification is an exact functor we deduce the result
of the lemma. Namely, the exactness implies that 𝐻0(𝑠(𝐙𝐾))# = 𝐻0(𝑠(𝐙#

𝐾)), and similarly
for other indices. �

Lemma 20.3.3. Let 𝒞 be a site. Let 𝑓 ∶ 𝐿 → 𝐾 be a morphism of simplicial objects of
PSh(𝒞). Let 𝑛 ≥ 0 be an integer. Assume that

(1) For 𝑖 < 𝑛 the morphism 𝐿𝑖 → 𝐾𝑖 is an isomorphism.
(2) The morphism 𝐿𝑛 → 𝐾𝑛 is surjective after sheafification.
(3) The canonical map 𝐿 → cosk𝑛sk𝑛𝐿 is an isomorphism.
(4) The canonical map 𝐾 → cosk𝑛sk𝑛𝐾 is an isomorphism.

Then 𝐻𝑖(𝑓) ∶ 𝐻𝑖(𝐿) → 𝐻𝑖(𝐾) is an isomorphism.

Proof. This proof is exactly the same as the proof of Lemma 20.3.2 above. Namely, we
first let 𝐾′

𝑛 ⊂ 𝐾𝑛 be the sub presheaf which is the image of the map 𝐿𝑛 → 𝐾𝑛. Assumption
(2) means that the sheafification of 𝐾′

𝑛 is equal to the sheafification of 𝐾𝑛. Moreover, since
𝐿𝑖 = 𝐾𝑖 for all 𝑖 < 𝑛 we see that get an 𝑛-truncated simplicial presheaf 𝑈 by taking 𝑈0 =
𝐿0 = 𝐾0, … , 𝑈𝑛−1 = 𝐿𝑛−1 = 𝐾𝑛−1, 𝑈𝑛 = 𝐾′

𝑛. Denote 𝐾′ = cosk𝑛𝑈, a simplicial presheaf.
Because we can construct 𝐾′

𝑚 as a finite limit, and since sheafification is exact, we see that
(𝐾′

𝑚)# = 𝐾𝑚. In other words, (𝐾′)# = 𝐾#. We conclude, by exactness of sheafification once
more, that 𝐻𝑖(𝐾) = 𝐻𝑖(𝐾′). Thus it suffices to prove the lemma for the morphism 𝐿 → 𝐾′,
in other words, we may assume that 𝐿𝑛 → 𝐾𝑛 is a surjective morphism of presheaves!

In this case, for any object 𝑈 of 𝒞 we see that the morphism of simplicial sets

𝐿(𝑈) ⟶ 𝐾(𝑈)

satisfies all the assumptions of Simplicial, Lemma 14.28.3. Hence it is a homotopy equiv-
alence, and thus

𝐙𝐿(𝑈) ⟶ 𝐙𝐾(𝑈)
is a homotopy equivalence too. This for all 𝑈. The result follows. �

Lemma 20.3.4. Let 𝒞 be a site. Let 𝐾 be a simplicial presheaf. Let 𝒢 be a presheaf. Let
𝐾 → 𝒢 be an augmentation of 𝐾 towards 𝒢. Assume that

(1) The morphism of presheaves 𝐾0 → 𝒢 becomes a surjection after sheafification.
(2) The morphism

(𝑑1
0, 𝑑1

1) ∶ 𝐾1 ⟶ 𝐾0 ×𝒢 𝐾0

becomes a surjection after sheafification.
(3) For every 𝑛 ≥ 1 the morphism

𝐾𝑛+1 ⟶ (cosk𝑛sk𝑛𝐾)𝑛+1

turns into a surjection after sheafification.
Then 𝐻𝑖(𝐾) = 0 for 𝑖 > 0 and 𝐻0(𝐾) = 𝐙#

𝒢.
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Proof. Denote 𝐾𝑛 = cosk𝑛sk𝑛𝐾 for 𝑛 ≥ 1. Define 𝐾0 as the simplicial object with terms
(𝐾0)𝑛 equal to the (𝑛 + 1)-fold fibred product 𝐾0 ×𝒢 … ×𝒢 𝐾0, see Simplicial, Example
14.3.5. We have morphisms

𝐾 ⟶ … → 𝐾𝑛 → 𝐾𝑛−1 → … → 𝐾1 → 𝐾0.

The morphisms 𝐾 → 𝐾𝑖, 𝐾𝑗 → 𝐾𝑖 for 𝑗 ≥ 𝑖 ≥ 1 come from the universal properties of
the cosk𝑛 functors. The morphism 𝐾1 → 𝐾0 is the canonical morphism from Simplicial,
Remark 14.18.4. We also recall that 𝐾0 → cosk1sk1𝐾0 is an isomorphism, see Simplicial,
Lemma 14.18.3.

By Lemma 20.3.2 we see that 𝐻𝑖(𝐾0) = 0 for 𝑖 > 0 and 𝐻0(𝐾0) = 𝐙#
𝒢.

Pick 𝑛 ≥ 1. Consider the morphism 𝐾𝑛 → 𝐾𝑛−1. It is an isomorphism on terms of degree
< 𝑛. Note that 𝐾𝑛 → cosk𝑛sk𝑛𝐾𝑛 and 𝐾𝑛−1 → cosk𝑛sk𝑛𝐾𝑛−1 are isomorphisms. Note that
(𝐾𝑛)𝑛 = 𝐾𝑛 and that (𝐾𝑛−1)𝑛 = (cosk𝑛−1sk𝑛−1𝐾)𝑛. Hence by assumption, we have that
(𝐾𝑛)𝑛 → (𝐾𝑛−1)𝑛 is a morphism of presheaves which becomes surjective after sheafifica-
tion. By Lemma 20.3.3 we conclude that 𝐻𝑖(𝐾𝑛) = 𝐻𝑖(𝐾𝑛−1). Combined with the above
this proves the lemma. �

Lemma 20.3.5. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of of 𝒞. Let 𝐾 be a
hypercovering of 𝑋. The homology of the simplicial presheaf 𝐹(𝐾) is 0 in degrees > 0 and
equal to 𝐙#

𝑋 in degree 0.

Proof. Combine Lemmas 20.3.4 and 20.2.10. �

20.4. Covering hypercoverings

Here are some ways to construct hypercoverings. We note that since the category SR(𝒞, 𝑋)
has fibre products the category of simplicial objects of SR(𝒞, 𝑋) has fibre products as well,
see Simplicial, Lemma 14.7.2.

Lemma 20.4.1. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐾, 𝐿, 𝑀
be simplicial objects of SR(𝒞, 𝑋). Let 𝑎 ∶ 𝐾 → 𝐿, 𝑏 ∶ 𝑀 → 𝐿 be morphisms. Assume

(1) 𝐾 is a hypercovering of 𝑋,
(2) the morphism 𝑀0 → 𝐿0 is a covering, and
(3) for all 𝑛 ≥ 0 in the diagram

𝑀𝑛+1

��

//

𝛾

))

(cosk𝑛sk𝑛𝑀)𝑛+1

��

𝐿𝑛+1 ×(cosk𝑛sk𝑛𝐿)𝑛+1
(cosk𝑛sk𝑛𝑀)𝑛+1

uu

44

𝐿𝑛+1
// (cosk𝑛sk𝑛𝐿)𝑛+1

the arrow 𝛾 is a covering.
Then the fibre product 𝐾 ×𝐿 𝑀 is a hypercovering of 𝑋.

Proof. The morphism (𝐾 ×𝐿 𝑀)0 = 𝐾0 ×𝐿0
𝑀0 → 𝐾0 is a base change of a covering by

(2), hence a covering, see Lemma 20.2.5. And 𝐾0 → {𝑋 → 𝑋} is a covering by (1). Thus
(𝐾 ×𝐿 𝑀)0 → {𝑋 → 𝑋} is a covering by Lemma 20.2.5. Hence 𝐾 ×𝐿 𝑀 satisfies the first
condition of Definition 20.2.6.
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We still have to check that

𝐾𝑛+1 ×𝐿𝑛+1
𝑀𝑛+1 = (𝐾 ×𝐿 𝑀)𝑛+1 ⟶ (cosk𝑛sk𝑛(𝐾 ×𝐿 𝑀))𝑛+1

is a covering for all 𝑛 ≥ 0. We abbreviate as follows: 𝐴 = (cosk𝑛sk𝑛𝐾)𝑛+1, 𝐵 = (cosk𝑛sk𝑛𝐿)𝑛+1,
and 𝐶 = (cosk𝑛sk𝑛𝑀)𝑛+1. The functor cosk𝑛sk𝑛 commutes with fibre products, see Sim-
plicial, Lemma 14.17.13. Thus the right hand side above is equal to 𝐴 ×𝐵 𝐶. Consider the
following commutative diagram

𝐾𝑛+1 ×𝐿𝑛+1
𝑀𝑛+1

//

��

𝑀𝑛+1

��
𝛾

%% **𝐾𝑛+1
//

''

𝐿𝑛+1

**

𝐿𝑛+1 ×𝐵 𝐶oo // 𝐶

��
𝐴 // 𝐵

This diagram shows that

𝐾𝑛+1 ×𝐿𝑛+1
𝑀𝑛+1 = (𝐾𝑛+1 ×𝐵 𝐶) ×(𝐿𝑛+1×𝐵𝐶),𝛾 𝑀𝑛+1

Now, 𝐾𝑛+1 ×𝐵 𝐶 → 𝐴 ×𝐵 𝐶 is a base change of the covering 𝐾𝑛+1 → 𝐴 via the morphism
𝐴 ×𝐵 𝐶 → 𝐴, hence is a covering. By assumption (3) the morphism 𝛾 is a covering. Hence
the morphism

(𝐾𝑛+1 ×𝐵 𝐶) ×(𝐿𝑛+1×𝐵𝐶),𝛾 𝑀𝑛+1 ⟶ 𝐾𝑛+1 ×𝐵 𝐶
is a covering as a base change of a covering. The lemma follows as a composition of
coverings is a covering. �

Lemma 20.4.2. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. If 𝐾, 𝐿 are
hypercoverings of 𝑋, then 𝐾 × 𝐿 is a hypercovering of 𝑋.

Proof. You can either verify this directly, or use Lemma 20.4.1 above and check that 𝐿 →
{𝑋 → 𝑋} has property (3). �

Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Since the category SR(𝒞, 𝑋)
has coproducts and finite limits, it is permissible to speak about the objects 𝑈 × 𝐾 and
𝐻𝑜𝑚(𝑈, 𝐾) for certain simplicial sets 𝑈 (for example those with finitely many nondegen-
erate simplices) and any simplicial object 𝐾 of SR(𝒞, 𝑋). See Simplicial, Sections 14.12
and 14.15.

Lemma 20.4.3. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐾 be a
hypercovering of 𝑋. Let 𝑘 ≥ 0 be an integer. Let 𝑢 ∶ 𝑍 → 𝐾𝑘 be a covering in in SR(𝒞, 𝑋).
Then there exists a morphism of hypercoverings 𝑓 ∶ 𝐿 → 𝐾 such that 𝐿𝑘 → 𝐾𝑘 factors
through 𝑢.

Proof. Denote 𝑌 = 𝐾𝑘. There is a canonical morphism 𝐾 → 𝐻𝑜𝑚(Δ[𝑘], 𝑌) corresponding
to id𝑌 via Simplicial, Lemma 14.15.5. We will use the description of 𝐻𝑜𝑚(Δ[𝑘], 𝑌) and
𝐻𝑜𝑚(Δ[𝑘], 𝑍) given in that lemma. In particular there is a morphism 𝐻𝑜𝑚(Δ[𝑘], 𝑌) →
𝐻𝑜𝑚(Δ[𝑘], 𝑍) which on degree 𝑛 terms is the morphism

∏𝛼∶[𝑘]→[𝑛]
𝑌 ⟶ ∏𝛼∶[𝑘]→[𝑛]

𝑍.

Set
𝐿 = 𝐾 ×𝐻𝑜𝑚(Δ[𝑛],𝑌) 𝐻𝑜𝑚(Δ[𝑛], 𝑍).
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The morphism 𝐿𝑘 → 𝐾𝑘 sits in to a commutative diagram

𝐿𝑘
//

��

∏𝛼∶[𝑘]→[𝑛] 𝑌
prid[𝑘] //

��

𝑌

��
𝐾𝑘

// ∏𝛼∶[𝑘]→[𝑛] 𝑍
prid[𝑘] // 𝑍

Since the composition of the two bottom arrows is the identity we conclude that we have
the desired factorization.
We still have to show that 𝐿 is a hypercovering of 𝑋. To see this we will use Lemma 20.4.1.
Condition (1) is satisfied by assumption. For (2), the morphism

𝐻𝑜𝑚(Δ[𝑘], 𝑌)0 → 𝐻𝑜𝑚(Δ[𝑘], 𝑍)0

is a covering because it is a product of coverings, see Lemma 20.2.5. For (3) suppose
first that 𝑛 ≥ 1. In this case by Simplicial, Lemma 14.19.12 we have 𝐻𝑜𝑚(Δ[𝑘], 𝑌) =
cosk𝑛sk𝑛 𝐻𝑜𝑚(Δ[𝑘], 𝑌) and similarly for 𝑍. Thus condition (3) for 𝑛 > 0 is clear. For
𝑛 = 0, the diagram of condition (3) of Lemma 20.4.1 is, according to Simplicial, Lemma
14.19.13, the diagram

∏𝛼∶[𝑘]→[1] 𝑍 //

��

𝑍 × 𝑍

��
∏𝛼∶[𝑘]→[1] 𝑌 // 𝑌 × 𝑌

with obvious horizontal arrows. Thus the morphism 𝛾 is the morphism

∏𝛼∶[𝑘]→[1]
𝑍 ⟶ ∏𝛼∶[𝑘]→[1] not onto

𝑍 × ∏𝛼∶[𝑘]→[1] onto
𝑌

which is a product of coverings and hence a covering according to Lemma 20.4.1 once
again. �

Lemma 20.4.4. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐾 be
a hypercovering of 𝑋. Let 𝑛 ≥ 0 be an integer. Let 𝑢 ∶ ℱ → 𝐹(𝐾𝑛) be a morphism of
presheaves which becomes surjective on sheafification. Then there exists a morphism of
hypercoverings 𝑓 ∶ 𝐿 → 𝐾 such that 𝐹(𝑓𝑛) ∶ 𝐹(𝐿𝑛) → 𝐹(𝐾𝑛) factors through 𝑢.

Proof. Write 𝐾𝑛 = {𝑈𝑖 → 𝑋}𝑖∈𝐼. Thus the map 𝑢 is a morphism of presheaves of sets
𝑢 ∶ ℱ → ⨿ℎ𝑢𝑖

. The assumption on 𝑢 means that for every 𝑖 ∈ 𝐼 there exists a covering
{𝑈𝑖𝑗 → 𝑈𝑖}𝑗∈𝐼𝑖

of the site 𝒞 and a morphism of presheaves 𝑡𝑖𝑗 ∶ ℎ𝑈𝑖𝑗
→ ℱ such that 𝑢 ∘ 𝑡𝑖𝑗

is the map ℎ𝑈𝑖𝑗
→ ℎ𝑈𝑖

coming from the morphism 𝑈𝑖𝑗 → 𝑈𝑖. Set 𝐽 = ⨿𝑖∈𝐼𝐼𝑖, and let
𝛼 ∶ 𝐽 → 𝐼 be the obvious map. For 𝑗 ∈ 𝐽 denote 𝑉𝑗 = 𝑈𝛼(𝑗)𝑗. Set 𝑍 = {𝑉𝑗 → 𝑋}𝑗∈𝐽.
Finally, consider the morphism 𝑢′ ∶ 𝑍 → 𝐾𝑛 given by 𝛼 ∶ 𝐽 → 𝐼 and the morphisms
𝑉𝑗 = 𝑈𝛼(𝑗)𝑗 → 𝑈𝛼(𝑗) above. Clearly, this is a covering in the category SR(𝒞, 𝑋), and by
construction 𝐹(𝑢′) ∶ 𝐹(𝑍) → 𝐹(𝐾𝑛) factors through 𝑢. Thus the result follows from Lemma
20.4.3 above. �

20.5. Adding simplices

In this section we prove some technical lemmas which we will need later. Let 𝒞 be a site
with fibre products. Let 𝑋 be an object of 𝒞. As we pointed out in Section 20.4 above, the
objects 𝑈 × 𝐾 and 𝐻𝑜𝑚(𝑈, 𝐾) for certain simplicial sets 𝑈 and any simplicial object 𝐾 of
SR(𝒞, 𝑋) are defined. See Simplicial, Sections 14.12 and 14.15.
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Lemma 20.5.1. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐾 be a
hypercovering of 𝑋. Let 𝑈 ⊂ 𝑉 be simplicial sets, with 𝑈𝑛, 𝑉𝑛 finite nonempty for all 𝑛.
Assume that 𝑈 has finitely many nondegenerate simplices. Suppose 𝑛 ≥ 0 and 𝑥 ∈ 𝑉𝑛,
𝑥∉𝑈𝑛 are such that

(1) 𝑉𝑖 = 𝑈𝑖 for 𝑖 < 𝑛,
(2) 𝑉𝑛 = 𝑈𝑛 ∪ {𝑥},
(3) any 𝑧 ∈ 𝑉𝑗, 𝑧∉𝑈𝑗 for 𝑗 > 𝑛 is degenerate.

Then the morphism
𝐻𝑜𝑚(𝑉, 𝐾)0 ⟶ 𝐻𝑜𝑚(𝑈, 𝐾)0

of SR(𝒞, 𝑋) is a covering.

Proof. If 𝑛 = 0, then it follows easily that 𝑉 = 𝑈 ⨿ Δ[0] (see below). In this case
𝐻𝑜𝑚(𝑉, 𝐾)0 = 𝐻𝑜𝑚(𝑈, 𝐾)0 × 𝐾0. The result, in this case, then follows from Lemma
20.2.5.
Let 𝑎 ∶ Δ[𝑛] → 𝑉 be the morphism associated to 𝑥 as in Simplicial, Lemma 14.11.3. Let
us write 𝜕Δ[𝑛] = 𝑖(𝑛−1)!sk𝑛−1Δ[𝑛] for the (𝑛 − 1)-skeleton of Δ[𝑛]. Let 𝑏 ∶ 𝜕Δ[𝑛] → 𝑈 be
the restriction of 𝑎 to the (𝑛 − 1) skeleton of Δ[𝑛]. By Simplicial, Lemma 14.19.7 we have
𝑉 = 𝑈 ⨿𝜕Δ[𝑛] Δ[𝑛]. By Simplicial, Lemma 14.15.6 we get that

𝐻𝑜𝑚(𝑉, 𝐾)0
//

��

𝐻𝑜𝑚(𝑈, 𝐾)0

��
𝐻𝑜𝑚(Δ[𝑛], 𝐾)0

// 𝐻𝑜𝑚(𝜕Δ[𝑛], 𝐾)0

is a fibre product square. Thus it suffices to show that the bottom horizontal arrow is a
covering. By Simplicial, Lemma 14.19.11 this arrow is identified with

𝐾𝑛 → (cosk𝑛−1sk𝑛−1𝐾)𝑛

and hence is a covering by definition of a hypercovering. �

Lemma 20.5.2. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐾 be a
hypercovering of 𝑋. Let 𝑈 ⊂ 𝑉 be simplicial sets, with 𝑈𝑛, 𝑉𝑛 finite nonempty for all 𝑛.
Assume that 𝑈 and 𝑉 have finitely many nondegenerate simplices. Then the morphism

𝐻𝑜𝑚(𝑉, 𝐾)0 ⟶ 𝐻𝑜𝑚(𝑈, 𝐾)0

of SR(𝒞, 𝑋) is a covering.

Proof. By Lemma 20.5.1 above, it suffices to prove a simple lemma about inclusions of
simplicial sets 𝑈 ⊂ 𝑉 as in the lemma. And this is exactly the result of Simplicial, Lemma
14.19.8. �

20.6. Homotopies

Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐿 be a simplicial object of
SR(𝒞, 𝑋). According to Simplicial, Lemma 14.15.4 there exists an object 𝐻𝑜𝑚(Δ[1], 𝐿)
in the category Simp(SR(𝒞, 𝑋)) which represents the functor

𝑇 ⟼ 𝑀𝑜𝑟Simp(SR(𝒞,𝑋))(Δ[1] × 𝑇, 𝐿)
There is a canonical morphism

𝐻𝑜𝑚(Δ[1], 𝐿) → 𝐿 × 𝐿
coming from 𝑒𝑖 ∶ Δ[0] → Δ[1] and the identification 𝐻𝑜𝑚(Δ[0], 𝐿) = 𝐿.
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Lemma 20.6.1. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐿 be a
simplicial object of SR(𝒞, 𝑋). Let 𝑛 ≥ 0. Consider the commutative diagram

(20.6.1.1) 𝐻𝑜𝑚(Δ[1], 𝐿)𝑛+1
//

��

(cosk𝑛sk𝑛 𝐻𝑜𝑚(Δ[1], 𝐿))𝑛+1

��
(𝐿 × 𝐿)𝑛+1

// (cosk𝑛sk𝑛(𝐿 × 𝐿))𝑛+1

coming from the morphism defined above. We can identify the terms in this diagram as
follows, where 𝜕Δ[𝑛 + 1] = 𝑖𝑛!sk𝑛Δ[𝑛 + 1] is the 𝑛-skeleton of the (𝑛 + 1)-simplex:

𝐻𝑜𝑚(Δ[1], 𝐿)𝑛+1 = 𝐻𝑜𝑚(Δ[1] × Δ[𝑛 + 1], 𝐿)0

(cosk𝑛sk𝑛 𝐻𝑜𝑚(Δ[1], 𝐿))𝑛+1 = 𝐻𝑜𝑚(Δ[1] × 𝜕Δ[𝑛 + 1], 𝐿)0

(𝐿 × 𝐿)𝑛+1 = 𝐻𝑜𝑚((Δ[𝑛 + 1] ⨿ Δ[𝑛 + 1], 𝐿)0

(cosk𝑛sk𝑛(𝐿 × 𝐿))𝑛+1 = 𝐻𝑜𝑚(𝜕Δ[𝑛 + 1] ⨿ 𝜕Δ[𝑛 + 1], 𝐿)0

and the morphism between these objects of SR(𝒞, 𝑋) come from the commutative diagram
of simplicial sets

(20.6.1.2) Δ[1] × Δ[𝑛 + 1] Δ[1] × 𝜕Δ[𝑛 + 1]oo

Δ[𝑛 + 1] ⨿ Δ[𝑛 + 1]

OO

𝜕Δ[𝑛 + 1] ⨿ 𝜕Δ[𝑛 + 1]oo

OO

Moreover the fibre product of the bottom arrow and the right arrow in (20.6.1.1) is equal
to

𝐻𝑜𝑚(𝑈, 𝐿)0
where 𝑈 ⊂ Δ[1]×Δ[𝑛+1] is the smallest simplicial subset such that both Δ[𝑛+1]⨿Δ[𝑛+1]
and Δ[1] × 𝜕Δ[𝑛 + 1] map into it.

Proof. The first and third equalities are Simplicial, Lemma 14.15.4. The second and fourth
follow from the cited lemma combinedwith Simplicial, Lemma 14.19.11. The last assertion
follows from the fact that 𝑈 is the push-out of the bottom and right arrow of the diagram
(20.6.1.2), via Simplicial, Lemma 14.15.6. To see that 𝑈 is equal to this push-out it suffices
to see that the intersection of Δ[𝑛 + 1] ⨿ Δ[𝑛 + 1] and Δ[1] × 𝜕Δ[𝑛 + 1] in Δ[1] × Δ[𝑛 + 1]
is equal to 𝜕Δ[𝑛 + 1] ⨿ 𝜕Δ[𝑛 + 1]. This we leave to the reader. �

Lemma 20.6.2. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐾, 𝐿 be
hypercoverings of 𝑋. Let 𝑎, 𝑏 ∶ 𝐾 → 𝐿 be morphisms of hypercoverings. There exists a
morphism of hypercoverings 𝑐 ∶ 𝐾′ → 𝐾 such that 𝑎 ∘ 𝑐 is homotopic to 𝑏 ∘ 𝑐.

Proof. Consider the following commutative diagram

𝐾′ 𝑑𝑒𝑓

𝑐
((

𝐾 ×(𝐿×𝐿) 𝐻𝑜𝑚(Δ[1], 𝐿) //

��

𝐻𝑜𝑚(Δ[1], 𝐿)

��
𝐾

(𝑎,𝑏) // 𝐿 × 𝐿
By the functorial property of 𝐻𝑜𝑚(Δ[1], 𝐿) the composition of the horizontal morphisms
corresponds to a morphism 𝐾′Δ[1] → 𝐿 which defines a homotopy between 𝑐 ∘ 𝑎 and 𝑐 ∘ 𝑏.
Thus if we can show that 𝐾′ is a hypercovering of 𝑋, then we obtain the lemma. To see this
we will apply Lemma 20.4.1 to the pair of morphisms 𝐾 → 𝐿 × 𝐿 and 𝐻𝑜𝑚(Δ[1], 𝐿) →
𝐿 × 𝐿. Condition (1) of Lemma 20.4.1 is statisfied. Condition (2) of Lemma 20.4.1 is true
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because 𝐻𝑜𝑚(Δ[1], 𝐿)0 = 𝐿1, and the morphism (𝑑1
0, 𝑑1

1) ∶ 𝐿1 → 𝐿0 × 𝐿0 is a covering of
SR(𝒞, 𝑋) by our assumption that 𝐿 is a hypercovering. To prove condition (3) of Lemma
20.4.1 we use Lemma 20.6.1 above. According to this lemma the morphism 𝛾 of condition
(3) of Lemma 20.4.1 is the morphism

𝐻𝑜𝑚(Δ[1] × Δ[𝑛 + 1], 𝐿)0 ⟶ 𝐻𝑜𝑚(𝑈, 𝐿)0

where 𝑈 ⊂ Δ[1] × Δ[𝑛 + 1]. According to Lemma 20.5.2 this is a covering and hence the
claim has been proven. �

Remark 20.6.3. Note that the crux of the proof is to use Lemma 20.5.2. This lemma is
completely general and does not care about the exact shape of the simplicial sets (as long
as they have only finitely many nondegenerate simplices). It seems altogether reasonable
to expect a result of the following kind: Given any morphism 𝑎 ∶ 𝐾 × 𝜕Δ[𝑘] → 𝐿, with
𝐾 and 𝐿 hypercoverings, there exists a morphism of hypercoverings 𝑐 ∶ 𝐾′ → 𝐾 and a
morphism 𝑔 ∶ 𝐾′ × Δ[𝑘] → 𝐿 such that 𝑔|𝐾′×𝜕Δ[𝑘] = 𝑎 ∘ (𝑐 × id𝜕Δ[𝑘]). In other words, the
category of hypercoverings is in a suitable sense contractible.

20.7. Cech cohomology associated to hypercoverings

Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Consider a presheaf of abelian
groups ℱ on the site 𝒞. It defines a functor

ℱ ∶ SR(𝒞, 𝑋)𝑜𝑝𝑝 ⟶ Ab
{𝑈𝑖 → 𝑋}𝑖∈𝐼 ⟼ ∏𝑖∈𝐼

ℱ(𝑈𝑖)

Thus a simplicial object 𝐾 of SR(𝒞, 𝑋) is turned into a cosimplicial object ℱ(𝐾) of Ab. In
this situation we define

�̌�𝑖(𝐾, ℱ) = 𝐻𝑖(𝑠(ℱ(𝐾))).

Recall that 𝑠(ℱ(𝐾)) is the cochain complex associated to the cosimplicial abelian group
ℱ(𝐾), see Simplicial, Section 14.23. In this section we prove analogues of some of the re-
sults for Cech cohomology of open coverings proved in Cohomology, Sections 18.9, 18.10
and 18.11.

Lemma 20.7.1. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐾 be a
hypercovering of 𝑋. Let ℱ be a sheaf of abelian groups on 𝒞. Then �̌�0(𝐾, ℱ) = ℱ(𝑋).

Proof. We have
�̌�0(𝐾, ℱ) = Ker(ℱ(𝐾0) ⟶ ℱ(𝐾1))

Write 𝐾0 = {𝑈𝑖 → 𝑋}. It is a covering in the site 𝒞. As well, we have that 𝐾1 → 𝐾0 × 𝐾0
is a covering in SR(𝒞, 𝑋). Hence we may write 𝐾1 = ⨿𝑖0,𝑖1∈𝐼{𝑉𝑖0𝑖1𝑗 → 𝑋} so that the
morphism 𝐾1 → 𝐾0 × 𝐾0 is given by coverings {𝑉𝑖0𝑖1𝑗 → 𝑈𝑖0 ×𝑋 𝑈𝑖1} of the site 𝒞. Thus
we can further identify

�̌�0(𝐾, ℱ) = Ker(∏𝑖
ℱ(𝑈𝑖) ⟶ ∏𝑖0𝑖1𝑗

ℱ(𝑉𝑖0𝑖1𝑗))

with obvious map. The sheaf property of ℱ implies that �̌�0(𝐾, ℱ) = 𝐻0(𝑋, ℱ). �

In fact this property characterizes the abelian sheaves among all abelian presheaves on 𝒞
of course. The analogue of Cohomology, Lemma 20.7.2 in this case is the following.
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Lemma 20.7.2. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐾 be a
hypercovering of 𝑋. Let ℐ be an injective sheaf of abelian groups on 𝒞. Then

�̌�𝑝(𝐾, ℐ) = {
ℐ(𝑋) if 𝑝 = 0

0 if 𝑝 > 0

Proof. Observe that for any object 𝑍 = {𝑈𝑖 → 𝑋} of SR(𝒞, 𝑋) and any abelian sheaf ℱ
on 𝒞 we have

ℱ(𝑍) = ∏ ℱ(𝑈𝑖)

= ∏ 𝑀𝑜𝑟PSh(𝒞)(ℎ𝑈𝑖
, ℱ)

= 𝑀𝑜𝑟PSh(𝒞)(𝐹(𝑍), ℱ)
= 𝑀𝑜𝑟PAb(𝒞)(𝐙𝐹(𝑍), ℱ)

= 𝑀𝑜𝑟Ab(𝒞)(𝐙#
𝐹(𝑍), ℱ)

Thus we see, for any simplicial object 𝐾 of SR(𝒞, 𝑋) that we have

(20.7.2.1) 𝑠(ℱ(𝐾)) = 𝐻𝑜𝑚Ab(𝒞)(𝑠(𝐙#
𝐾), ℱ)

see Definition 20.3.1 for notation. Now, we know that 𝑠(𝐙#
𝐾) is quasi-isomorphic to 𝐙#

𝑋 if 𝐾
is a hypercovering, see Lemma 20.3.5. We conclude that if ℐ is an injective abelian sheaf,
and 𝐾 a hypercovering, then the complex 𝑠(ℐ(𝐾)) is acyclic except possibly in degree 0.
In other words, we have

�̌�𝑖(𝐾, ℐ) = 0
for 𝑖 > 0. Combined with Lemma 20.7.1 the lemma is proved. �

Next we come to the analogue of Cohomology, Lemma 20.7.3. To state it we need to
introduce a little more notation. Let 𝒞 be a site with fibre products. Let ℱ be a sheaf of
abelian groups on 𝒞. The symbol 𝐻𝑖(ℱ) indicates the presheaf of abelian groups on 𝒞
which is defined by the rule

𝐻𝑖(ℱ) ∶ 𝑈 ⟼ 𝐻𝑖(𝑈, ℱ)
where 𝑈 ranges over the objects of 𝒞.

Lemma 20.7.3. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝐾 be a
hypercovering of 𝑋. Let ℱ be a sheaf of abelian groups on 𝒞. There is a map

𝑠(ℱ(𝐾)) ⟶ 𝑅Γ(𝑋, ℱ)
in 𝐷+(Ab) functorial in ℱ, which induces natural transformations

�̌�𝑖(𝐾, −) ⟶ 𝐻𝑖(𝑋, −)
as functors Ab(𝒞) → Ab. Moreover, there is a spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟≥0 with

𝐸𝑝,𝑞
2 = �̌�𝑝(𝐾, 𝐻𝑞(ℱ))

converging to 𝐻𝑝+𝑞(𝑋, ℱ). This spectral sequence is functorial in ℱ and in the hypercov-
ering 𝐾.

Proof. We could prove this by the same method as employed in the corresponding lemma
in the chapter on cohomology. Instead let us prove this by a double complex argument.
Choose an injective resolution ℱ → ℐ• in the category of abelian sheaves on 𝒞. Consider
the double complex 𝐴•,• with terms

𝐴𝑝,𝑞 = ℐ𝑞(𝐾𝑝)
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where the differential 𝑑𝑝,𝑞
1 ∶ 𝐴𝑝,𝑞 → 𝐴𝑝+1,𝑞 is the one coming from the differential ℐ𝑝 →

ℐ𝑝+1 and the differential 𝑑𝑝,𝑞
2 ∶ 𝐴𝑝,𝑞 → 𝐴𝑝,𝑞+1 is the one coming from the differential on the

complex 𝑠(ℐ𝑝(𝐾)) associated to the cosimplicial abelian group ℐ𝑝(𝐾) as explained above.
As usual we denote 𝑠𝐴• the simple complex associated to the double complex 𝐴•,•. Wewill
use the two spectral sequences (′𝐸𝑟, ′𝑑𝑟) and (″𝐸𝑟, ″𝑑𝑟) associated to this double complex,
see Homology, Section 10.19.

By Lemma 20.7.2 the complexes 𝑠(ℐ𝑝(𝐾)) are acyclic in positive degrees and have 𝐻0

equal to ℐ𝑝(𝑋). Hence by Homology, Lemma 10.19.6 and its proof the spectral sequence
(′𝐸𝑟, ′𝑑𝑟) degenerates, and the natural map

ℐ•(𝑋) ⟶ 𝑠𝐴•

is a quasi-isomorphism of complexes of abelian groups. In particular we conclude that
𝐻𝑛(𝑠𝐴•) = 𝐻𝑛(𝑋, ℱ).

The map 𝑠(ℱ(𝐾)) ⟶ 𝑅Γ(𝑋, ℱ) of the lemma is the composition of the natural map
𝑠(ℱ(𝐾)) → 𝑠𝐴• followed by the inverse of the displayed quasi-isomorphism above. This
works because ℐ•(𝑋) is a representative of 𝑅Γ(𝑋, ℱ).

Consider the spectral sequence (″𝐸𝑟, ″𝑑𝑟)𝑟≥0. By Homology, Lemma 10.19.3 we see that

″𝐸𝑝,𝑞
2 = 𝐻𝑝

𝐼𝐼(𝐻𝑞
𝐼(𝐴•,•))

In other words, we first take cohomology with respect to 𝑑1 which gives the groups ″𝐸𝑝,𝑞
1 =

𝐻𝑝(ℱ)(𝐾𝑞). Hence it is indeed the case (by the description of the differential ″𝑑1) that
″𝐸𝑝,𝑞

2 = �̌�𝑝(𝐾, 𝐻𝑞(ℱ)). And by the other spectral sequence above we see that this one
converges to 𝐻𝑛(𝑋, ℱ) as desired.

We omit the proof of the statements regarding the functoriality of the above constructions
in the abelian sheaf ℱ and the hypercovering 𝐾. �

20.8. Cohomology and hypercoverings

Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let ℱ be a sheaf of abelian
groups on 𝒞. Let 𝐾, 𝐿 be hypercoverings of 𝑋. If 𝑎, 𝑏 ∶ 𝐾 → 𝐿 are homotopic maps,
then ℱ(𝑎), ℱ(𝑏) ∶ ℱ(𝐾) → ℱ(𝐿) are homotopic maps, see Simplicial, Lemma 14.26.3.
Hence have the same effect on cohomology groups of the associated cochain complexes,
see Simplicial, Lemma 14.26.5. We are going to use this to define the colimit over all
hypercoverings.

Let us temporarily denote HC(𝒞, 𝑋) the category of hypercoverings of 𝑋. We have seen
that this is a category and not a ``big'' category, see Lemma 20.2.8. This will be the index
category for our diagram, see Categories, Section 4.13 for notation. Consider the diagram

�̌�𝑖(−, ℱ) ∶ HC(𝒞, 𝑋) ⟶ Ab.

By Lemma 20.4.2 and Lemma 20.6.2, and the remark on homotopies above, this diagram
is directed, see Categories, Definition 4.17.1. Thus the colimit

�̌�𝑖
HC(𝑋, ℱ) = 𝑐𝑜𝑙𝑖𝑚𝐾∈HC(𝒞,𝑋) �̌�𝑖(𝐾, ℱ)

has a particularly simple discription (see location cited).
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Theorem 20.8.1. Let 𝒞 be a site with fibre products. Let 𝑋 be an object of 𝒞. Let 𝑖 ≥ 0.
The functors

Ab(𝒞) ⟶ Ab
ℱ ⟼ 𝐻𝑖(𝑋, ℱ)
ℱ ⟼ �̌�𝑖

HC(𝑋, ℱ)
are canonically isomorphic.

Proof using spectral sequences. Suppose that 𝜉 ∈ 𝐻𝑝(𝑋, ℱ) for some 𝑝 ≥ 0. Let us
show that 𝜉 is in the image of the map �̌�𝑝(𝑋, ℱ) → 𝐻𝑝(𝑋, ℱ) of Lemma 20.7.3 for some
hypercovering 𝐾 of 𝑋.
This is true if 𝑝 = 0 by Lemma 20.7.1. If 𝑝 = 1, choose a Cech hypercovering 𝐾 of
𝑋 as in Example 20.2.7 starting with a covering 𝐾0 = {𝑈𝑖 → 𝑋} in the site 𝒞 such
that 𝜉|𝑈𝑖

= 0, see Cohomology on Sites, Lemma 19.8.3. It follows immediately from the
spectral sequence in Lemma 20.7.3 that 𝜉 comes from an element of �̌�1(𝐾, ℱ) in this case.
In general, choose any hypercovering 𝐾 of 𝑋 such that 𝜉 maps to zero in 𝐻𝑝(ℱ)(𝐾0) (using
Example 20.2.7 and Cohomology on Sites, Lemma 19.8.3 again). By the spectral sequence
of Lemma 20.7.3 the obstruction for 𝜉 to come from an element of �̌�𝑝(𝐾, ℱ) is a sequence
of elements 𝜉1, … , 𝜉𝑝−1 with 𝜉𝑞 ∈ �̌�𝑝−𝑞(𝐾, 𝐻𝑞(ℱ)) (more precisely the images of the 𝜉𝑞 in
certain subquotients of these groups).
We can inductively replace the hypercovering 𝐾 by refinements such that the obstructions
𝜉1, … , 𝜉𝑝−1 restrict to zero (and not just the images in the subquotients -- so no subtlety
here). Indeed, suppose we have already managed to reach the situation where 𝜉𝑞+1, … , 𝜉𝑝−1
are zero. Note that 𝜉𝑞 ∈ �̌�𝑝−𝑞(𝐾, 𝐻𝑞(ℱ)) is the class of some element

̃𝜉𝑞 ∈ 𝐻𝑞(ℱ)(𝐾𝑝−𝑞) = ∏ 𝐻𝑞(𝑈𝑖, ℱ)

if 𝐾𝑝−𝑞 = {𝑈𝑖 → 𝑋}𝑖∈𝐼. Let 𝜉𝑞,𝑖 be the component of ̃𝜉𝑞 in 𝐻𝑞(𝑈𝑖, ℱ). As 𝑞 ≥ 1 we can use
Cohomology on Sites, Lemma 19.8.3 yet again to choose coverings {𝑈𝑖,𝑗 → 𝑈𝑖} of the site
such that each restriction 𝜉𝑞,𝑖|𝑈𝑖,𝑗

= 0. Consider the object 𝑍 = {𝑈𝑖,𝑗 → 𝑋} of the category
SR(𝒞, 𝑋) and its obvious morphism 𝑢 ∶ 𝑍 → 𝐾𝑝−𝑞. It is clear that 𝑢 is a covering, see
Definition 20.2.4. By Lemma 20.4.3 there exists a morphism 𝐿 → 𝐾 of hypercoverings of
𝑋 such that 𝐿𝑝−𝑞 → 𝐾𝑝−𝑞 factors through 𝑢. Then clearly the image of 𝜉𝑞 in 𝐻𝑞(ℱ)(𝐿𝑝−𝑞).
is zero. Since the spectral sequence of Lemma 20.7.3 is functorial this means that after
replacing 𝐾 by 𝐿 we reach the situation where 𝜉𝑞, … , 𝜉𝑝−1 are all zero. Continuing like this
we end up with a hypercovering where they are all zero and hence 𝜉 is in the image of the
map �̌�𝑝(𝑋, ℱ) → 𝐻𝑝(𝑋, ℱ).
Suppose that 𝐾 is a hypercovering of 𝑋, that 𝜉 ∈ �̌�𝑝(𝐾, ℱ) and that the image of 𝜉 under the
map �̌�𝑝(𝑋, ℱ) → 𝐻𝑝(𝑋, ℱ) of Lemma 20.7.3 is zero. To finish the proof of the theorem
we have to show that there exists a morphism of hypercoverings 𝐿 → 𝐾 such that 𝜉 restricts
to zero in �̌�𝑝(𝐿, ℱ). By the spectral sequence of Lemma 20.7.3 the vanishing of the image
of 𝜉 in 𝐻𝑝(𝑋, ℱ) means that there exist elements 𝜉1, … , 𝜉𝑝−2 with 𝜉𝑞 ∈ �̌�𝑝−1−𝑞(𝐾, 𝐻𝑞(ℱ))
(more precisely the images of these in certain subquotients) such that the images 𝑑𝑝−1−𝑞,𝑞

𝑞+1 𝜉𝑞
(in the spectral sequence) add up to 𝜉. Hence by exacly the same mechanism as above we
can find a morphism of hypercoverings 𝐿 → 𝐾 such that the restrictions of the elements
𝜉𝑞, 𝑞 = 1, … , 𝑝 − 2 in �̌�𝑝−1−𝑞(𝐿, 𝐻𝑞(ℱ)) are zero. Then it follows that 𝜉 is zero since
the morphism 𝐿 → 𝐾 induces a morphism of spectral sequences according to Lemma
20.7.3. �
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Proof without using spectral sequences. We have seen the result for 𝑖 = 0, see Lemma
20.7.1. We know that the functors 𝐻𝑖(𝑋, −) form a universal 𝛿-functor, see Derived Cate-
gories, Lemma 11.19.4. In order to prove the theorem it suffices to show that the sequence
of functors �̌�𝑖

𝐻𝐶(𝑋, −) forms a 𝛿-functor. Namely we know that Cech cohomology is zero
on injective sheaves (Lemma 20.7.2) and then we can apply Homology, Lemma 10.9.4.

Let
0 → ℱ → 𝒢 → ℋ → 0

be a short exact sequence of abelian sheaves on 𝒞. Let 𝜉 ∈ �̌�𝑝
𝐻𝐶(𝑋, ℋ). Choose a hy-

percovering 𝐾 of 𝑋 and an element 𝜎 ∈ ℋ(𝐾𝑝) representing 𝜉 in cohomology. There is a
corresponding exact sequence of complexes

0 → 𝑠(ℱ(𝐾)) → 𝑠(𝒢(𝐾)) → 𝑠(ℋ(𝐾))

but we are not assured that there is a zero on the right also and this is the only thing that
prevents us from defining 𝛿(𝜉) by a simple application of the snake lemma. Recall that

ℋ(𝐾𝑝) = ∏ ℋ(𝑈𝑖)

if 𝐾𝑝 = {𝑈𝑖 → 𝑋}. Let 𝜎 = ∏ 𝜎𝑖 with 𝜎𝑖 ∈ ℋ(𝑈𝑖). Since 𝒢 → ℋ is a surjection of
sheaves we see that there exist coverings {𝑈𝑖,𝑗 → 𝑈𝑖} such that 𝜎𝑖|𝑈𝑖,𝑗

is the image of some
element 𝜏𝑖,𝑗 ∈ 𝒢(𝑈𝑖,𝑗). Consider the object 𝑍 = {𝑈𝑖,𝑗 → 𝑋} of the category SR(𝒞, 𝑋) and
its obvious morphism 𝑢 ∶ 𝑍 → 𝐾𝑝. It is clear that 𝑢 is a covering, see Definition 20.2.4. By
Lemma 20.4.3 there exists a morphism 𝐿 → 𝐾 of hypercoverings of 𝑋 such that 𝐿𝑝 → 𝐾𝑝
factors through 𝑢. After replacing 𝐾 by 𝐿 wemay therefore assume that 𝜎 is the image of an
element 𝜏 ∈ 𝒢(𝐾𝑝). Note that 𝑑(𝜎) = 0, but not necessarily 𝑑(𝜏) = 0. Thus 𝑑(𝜏) ∈ ℱ(𝐾𝑝+1)
is a cocycle. In this situation we define 𝛿(𝜉) as the class of the cocycle 𝑑(𝜏) in �̌�𝑝+1

𝐻𝐶 (𝑋, ℱ).

At this point there are several things to verify: (a) 𝛿(𝜉) does not depend on the choice of 𝜏,
(b) 𝛿(𝜉) does not depend on the choice of the hypercovering 𝐿 → 𝐾 such that 𝜎 lifts, and
(c) 𝛿(𝜉) does not depend on the initial hypercovering and 𝜎 chosen to represent 𝜉. We omit
the verification of (a), (b), and (c); the independence of the choices of the hypercoverings
really comes down to Lemmas 20.4.2 and 20.6.2. We also omit the verification that 𝛿 is
functorial with respect to morphisms of short exact sequences of abelian sheaves on 𝒞.

Finally, we have to verify that with this definition of 𝛿 our short exact sequence of abelian
sheaves above leads to a long exact sequence of Cech cohomology groups. First we show
that if 𝛿(𝜉) = 0 (with 𝜉 as above) then 𝜉 is the image of some element 𝜉′ ∈ �̌�𝑝

𝐻𝐶(𝑋, 𝒢).
Namely, if 𝛿(𝜉) = 0, then, with notation as above, we see that the class of 𝑑(𝜏) is zero
in �̌�𝑝+1

𝐻𝐶 (𝑋, ℱ). Hence there exists a morphism of hypercoverings 𝐿 → 𝐾 such that the
restriction of 𝑑(𝜏) to an element of ℱ(𝐿𝑝+1) is equal to 𝑑(𝜐) for some 𝜐 ∈ ℱ(𝐿𝑝). This
implies that 𝜏|𝐿𝑝

+ 𝜐 form a cocycle, and determine a class 𝜉′ ∈ �̌�𝑝(𝐿, 𝒢) which maps to 𝜉
as desired.

We omit the proof that if 𝜉′ ∈ �̌�𝑝+1
𝐻𝐶 (𝑋, ℱ) maps to zero in �̌�𝑝+1

𝐻𝐶 (𝑋, 𝒢), then it is equal to
𝛿(𝜉) for some 𝜉 ∈ �̌�𝑝

𝐻𝐶(𝑋, ℋ). �

20.9. Hypercoverings of spaces

The theory above is mildly interesting even in the case of topological spaces. In this case
we can work out what is a hypercovering and see what the result actually says.
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Let 𝑋 be a topological space. Consider the site 𝒯𝑋 of Sites, Example 9.6.4. Recall that
an object of 𝒯𝑋 is simply an open of 𝑋 and that morphisms of 𝒯𝑋 correspond simply to
inclusions. So what is a hypercovering of 𝑋 for the site 𝒯𝑋?
Let us first unwind Definition 20.2.1. An object of SR(𝒞, 𝑋) is simply given by a set 𝐼
and for each 𝑖 ∈ 𝐼 an open 𝑈𝑖 ⊂ 𝑋. Let us denote this by {𝑈𝑖}𝑖∈𝐼 since there can be no
confusion about the morphism 𝑈𝑖 → 𝑋. A morphism {𝑈𝑖}𝑖∈𝐼 → {𝑉𝑗}𝑗∈𝐽 between two
such objects is given by a map of sets 𝛼 ∶ 𝐼 → 𝐽 such that 𝑈𝑖 ⊂ 𝑉𝛼(𝑖) for all 𝑖 ∈ 𝐼. When
is such a morphism a covering? This is the case if and only if for every 𝑗 ∈ 𝐽 we have
𝑉𝑗 = ⋃𝑖∈𝐼, 𝛼(𝑖)=𝑗 𝑈𝑖 (and is a covering in the site 𝒯𝑋).

Using the above we get the following description of a hypercovering in the site 𝒯𝑋. A
hypercovering of 𝑋 in 𝒯𝑋 is given by the following data

(1) a simplicial set 𝐼 (see Simplicial, Section 14.11), and
(2) for each 𝑛 ≥ 0 and every 𝑖 ∈ 𝐼𝑛 an open set 𝑈𝑖 ⊂ 𝑋.

We will denote such a collection of data by the notation (𝐼, {𝑈𝑖}). In order for this to be a
hypercovering of 𝑋 we require the following properties

• for 𝑖 ∈ 𝐼𝑛 and 0 ≤ 𝑎 ≤ 𝑛 + 1 we have 𝑈𝑖 ⊂ 𝑈𝑑𝑛
𝑎(𝑖),

• for 𝑖 ∈ 𝐼𝑛 and 0 ≤ 𝑎 ≤ 𝑛 we have 𝑈𝑖 = 𝑈𝑠𝑛
𝑎(𝑖),

• we have
(20.9.0.1) 𝑋 = ⋃𝑖∈𝐼0

𝑈𝑖,

• for every 𝑖0, 𝑖1 ∈ 𝐼0, we have

(20.9.0.2) 𝑈𝑖0 ∩ 𝑈𝑖1 = ⋃𝑖∈𝐼1, 𝑑1
0(𝑖)=𝑖0, 𝑑1

1(𝑖)=𝑖1
𝑈𝑖,

• for every 𝑛 ≥ 1 and every (𝑖0, … , 𝑖𝑛+1) ∈ (𝐼𝑛)𝑛+2 such that 𝑑𝑛
𝑏−1(𝑖𝑎) = 𝑑𝑛

𝑎(𝑖𝑏) for
all 0 ≤ 𝑎 < 𝑏 ≤ 𝑛 + 1 we have

(20.9.0.3) 𝑈𝑖0 ∩ … ∩ 𝑈𝑖𝑛+1
= ⋃𝑖∈𝐼𝑛+1, 𝑑𝑛+1

𝑎 (𝑖)=𝑖𝑎, 𝑎=0,…,𝑛+1
𝑈𝑖,

• each of the open coverings (20.9.0.1), (20.9.0.2), and (20.9.0.3) is an element of
Cov(𝒯𝑋) (this is a set theoretic condition, bounding the size of the index sets of
the coverings).

Condititions (20.9.0.1) and (20.9.0.2) should be familiar from the chapter on sheaves on
spaces for example, and condition (20.9.0.3) is the natural generalization.

Remark 20.9.1. One feature of this description is that if one of the multiple intersections
𝑈𝑖0 ∩…∩𝑈𝑖𝑛+1

is empty then the covering on the right hand side may be the empty covering.
Thus it is not automatically the case that the maps 𝐼𝑛+1 → (cosk𝑛sk𝑛𝐼)𝑛+1 are surjective.
This means that the geometric realization of 𝐼 may be an interesting (non-contractible)
space.
In fact, let 𝐼′

𝑛 ⊂ 𝐼𝑛 be the subset consisting of those simplices 𝑖 ∈ 𝐼𝑛 such that 𝑈𝑖≠∅. It is
easy to see that 𝐼′ ⊂ 𝐼 is a subsimplicial set, and that (𝐼′, {𝑈𝑖}) is a hypercovering. Hence
we can always refine a hypercovering to a hypercovering where none of the opens 𝑈𝑖 is
empty.

Remark 20.9.2. Let us repackage this information in yet another way. Namely, suppose that
(𝐼, {𝑈𝑖}) is a hypercovering of the topological space 𝑋. Given this data we can construct a
simplicial toplogical space 𝑈• by setting

𝑈𝑛 = ∐𝑖∈𝐼𝑛
𝑈𝑖,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01H5
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and where for given 𝜑 ∶ [𝑛] → [𝑚] we let morphisms 𝑈(𝜑) ∶ 𝑈𝑛 → 𝑈𝑚 be the morphism
coming from the inclusions 𝑈𝑖 ⊂ 𝑈𝜑(𝑖) for 𝑖 ∈ 𝐼𝑛. This simplicial topological space comes
with an augmentation 𝜖 ∶ 𝑈• → 𝑋. With this morphism the simplicial space 𝑈• becomes
a hypercovering of 𝑋 along which one has cohomological descent in the sense of [MA71,
Exposé Vbis]. In other words, 𝐻𝑛(𝑈•, 𝜖∗ℱ) = 𝐻𝑛(𝑋, ℱ). (Insert future reference here to
cohomology over simplicial spaces and cohomological descent formulated in those terms.)
Suppose that ℱ is an abelian sheaf on 𝑋. In this case the spectral sequence of Lemma 20.7.3
becomes the spectral sequence with 𝐸1-term

𝐸𝑝,𝑞
1 = 𝐻𝑞(𝑈𝑝, 𝜖∗

𝑞ℱ) ⇒ 𝐻𝑝+𝑞(𝑈•, 𝜖∗ℱ) = 𝐻𝑝+𝑞(𝑋, ℱ)

comparing the total cohomology of 𝜖∗ℱ to the cohomology groups of ℱ over the pieces of
𝑈•. (Insert future reference to this spectral sequence here.)

In topology we often want to find hypercoverings of 𝑋 which have the property that all the
𝑈𝑖 come from a given basis for the topology of 𝑋 and that all the coverings (20.9.0.2) and
(20.9.0.3) are from a given cofinal collection of coverings. Here are two example lemmas.

Lemma 20.9.3. Let 𝑋 be a topological space. Let ℬ be a basis for the topology of 𝑋.
There exists a hypercovering (𝐼, {𝑈𝑖}) of 𝑋 such that each 𝑈𝑖 is an element of ℬ.

Proof. Let 𝑛 ≥ 0. Let us say that an 𝑛-truncated hypercovering of 𝑋 is given by an
𝑛-truncated simplicial set 𝐼 and for each 𝑖 ∈ 𝐼𝑎, 0 ≤ 𝑎 ≤ 𝑛 an open 𝑈𝑖 of 𝑋 such that
the conditions defining a hypercovering hold whenever they make sense. In other words
we require the inclusion relations and covering conditions only when all simplices that oc-
cur in them are 𝑎-simplices with 𝑎 ≤ 𝑛. The lemma follows if we can prove that given a
𝑛-truncated hypercovering (𝐼, {𝑈𝑖}) with all 𝑈𝑖 ∈ ℬ we can extend it to an (𝑛+1)-truncated
hypercovering without adding any 𝑎-simplices for 𝑎 ≤ 𝑛. This we do as follows. First we
consider the (𝑛 + 1)-truncated simplicial set 𝐼′ defined by 𝐼′ = sk𝑛+1(cosk𝑛𝐼). Recall that

𝐼′
𝑛+1 = {

(𝑖0, … , 𝑖𝑛+1) ∈ (𝐼𝑛)𝑛+2 such that
𝑑𝑛

𝑏−1(𝑖𝑎) = 𝑑𝑛
𝑎(𝑖𝑏) for all 0 ≤ 𝑎 < 𝑏 ≤ 𝑛 + 1}

If 𝑖′ ∈ 𝐼′
𝑛+1 is degenerate, say 𝑖′ = 𝑠𝑛

𝑎(𝑖) then we set 𝑈𝑖′ = 𝑈𝑖 (this is forced on us anyway
by the second condition). We also set 𝐽𝑖′ = {𝑖′} in this case. If 𝑖′ ∈ 𝐼′

𝑛+1 is nondegerate,
say 𝑖′ = (𝑖0, … , 𝑖𝑛+1), then we choose a set 𝐽𝑖′ and an open covering

(20.9.3.1) 𝑈𝑖0 ∩ … ∩ 𝑈𝑖𝑛+1
= ⋃𝑖∈𝐽𝑖′

𝑈𝑖,

with 𝑈𝑖 ∈ ℬ for 𝑖 ∈ 𝐽𝑖′. Set
𝐼𝑛+1 = ∐𝑖′∈𝐼′

𝑛+1
𝐽𝑖′

There is a canonical map 𝜋 ∶ 𝐼𝑛+1 → 𝐼′
𝑛+1 which is a bijection over the set of degenerate

simplices in 𝐼′
𝑛+1 by construction. For 𝑖 ∈ 𝐼𝑛+1 we define 𝑑𝑛+1

𝑎 (𝑖) = 𝑑𝑛+1
𝑎 (𝜋(𝑖)). For 𝑖 ∈ 𝐼𝑛

we define 𝑠𝑛
𝑎(𝑖) ∈ 𝐼𝑛+1 as the unique simplex lying over the degenerate simplex 𝑠𝑛

𝑎(𝑖) ∈ 𝐼′
𝑛+1.

We omit the verification that this defines an (𝑛 + 1)-truncated hypercovering of 𝑋. �

Lemma 20.9.4. Let 𝑋 be a topological space. Let ℬ be a basis for the topology of 𝑋.
Assume that

(1) 𝑋 is quasi-compact,
(2) each 𝑈 ∈ ℬ is quasi-compact open, and
(3) the intersection of any two quasi-compact opens in 𝑋 is quasi-compact.

Then there exists a hypercovering (𝐼, {𝑈𝑖}) of 𝑋 with the following properties

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01H6
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01H7
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(1) each 𝑈𝑖 is an element of the basis ℬ,
(2) each of the 𝐼𝑛 is a finite set, and in particular
(3) each of the coverings (20.9.0.1), (20.9.0.2), and (20.9.0.3) is finite.

Proof. This follows directly from the construction in the proof of Lemma 20.9.3 if we
choose finite coverings by elements of ℬ in (20.9.3.1). Details omitted. �
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CHAPTER 21

Schemes

21.1. Introduction

In this document we define schemes. A basic reference is [DG67].

21.2. Locally ringed spaces

Recall that we defined ringed spaces in Sheaves, Section 6.25. Briefly, a ringed space is
a pair (𝑋, 𝒪𝑋) consisting of a topological space 𝑋 and a sheaf of rings 𝒪𝑋. A morphism
of ringed spaces 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) is given by a continuous map 𝑓 ∶ 𝑋 → 𝑌 and an
𝑓-map of sheaves of rings 𝑓♯ ∶ 𝒪𝑌 → 𝒪𝑋. You can think of 𝑓♯ as a map 𝒪𝑌 → 𝑓∗𝒪𝑋, see
Sheaves, Definition 6.21.7 and Lemma 6.21.8.

A good geometric example of this to keep in mind is 𝒞∞-manifolds and morphisms of
𝒞∞-manifolds. Namely, if 𝑀 is a 𝒞∞-manifold, then the sheaf 𝒞∞

𝑀 of smooth functions is
a sheaf of rings on 𝑀. And any map 𝑓 ∶ 𝑀 → 𝑁 of manifolds is smooth if and only if for
every local section ℎ of 𝒞∞

𝑁 the composition ℎ ∘ 𝑓 is a local section of 𝒞∞
𝑀. Thus a smooth

map 𝑓 gives rise in a natural way to a morphism of ringed spaces

𝑓 ∶ (𝑀, 𝒞∞
𝑀) ⟶ (𝑁, 𝒞∞

𝑁)

see Sheaves, Example 6.25.2. It is instructive to consider what happens to stalks. Namely,
let 𝑚 ∈ 𝑀 with image 𝑓(𝑚) = 𝑛 ∈ 𝑁. Recall that the stalk 𝒞∞

𝑀,𝑚 is the ring of germs of
smooth functions at 𝑚, see Sheaves, Example 6.11.4. The algebra of germs of functions on
(𝑀, 𝑚) is a local ring with maximal ideal the functions which vanish at 𝑚. Similarly for
𝒞∞

𝑁,𝑛. The map on stalks 𝑓♯ ∶ 𝒞∞
𝑁,𝑛 → 𝒞∞

𝑀,𝑚 maps the maximal ideal into the maximal
ideal, simply because 𝑓(𝑚) = 𝑛.

In algebraic geometry we study schemes. On a scheme the sheaf of rings is not determined
by an intrinsic property of the space. The spectrum of a ring 𝑅 (see Algebra, Section
7.16) endowed with a sheaf of rings constructed out of 𝑅 (see below), will be our basic
building block. It will turn out that the stalks of 𝒪 on 𝑆𝑝𝑒𝑐(𝑅) are the local rings of 𝑅
at its primes. There are two reasons to introduce locally ringed spaces in this setting: (1)
There is in general no mechanism that assigns to a continuous map of spectra a map of the
corresponding rings. This is why we add as an extra datum the map 𝑓♯. (2) If we consider
morphisms of these spectra in the category of ringed spaces, then the maps on stalks may
not be local homomorphisms. Since our geometric intuition says it should we introduce
locally ringed spaces as follows.

Definition 21.2.1. Locally ringed spaces.
(1) A locally ringed space (𝑋, 𝒪𝑋) is a pair consisting of a topological space 𝑋 and

a sheaf of rings 𝒪𝑋 all of whose stalks are local rings.

1173
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(2) Given a locally ringed space (𝑋, 𝒪𝑋) we say that 𝒪𝑋,𝑥 is the local ring of 𝑋 at 𝑥.
We denote 𝔪𝑋,𝑥 or simply 𝔪𝑥 the maximal ideal of 𝒪𝑋,𝑥. Moreover, the residue
field of 𝑋 at 𝑥 is the residue field 𝜅(𝑥) = 𝒪𝑋,𝑥/𝔪𝑥.

(3) A morphism of locally ringed spaces (𝑓, 𝑓♯) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) is a morphism
of ringed spaces such that for all 𝑥 ∈ 𝑋 the induced ring map 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥 is
a local ring map.

We will usually suppress the sheaf of rings 𝒪𝑋 in the notation when discussing locally
ringed spaces. We will simply refer to ``the locally ringed space 𝑋''. We will by abuse of
notation think of 𝑋 also as the underlying topological space. Finally we will denote the
corresponding sheaf of rings 𝒪𝑋 as the structure sheaf of 𝑋. In addition, it is customary
to denote the maximal ideal of the local ring 𝒪𝑋,𝑥 by 𝔪𝑋,𝑥 or simply 𝔪𝑥. We will say
``let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of locally ringed spaces'' thereby surpressing the structure
sheaves even further. In this case, we will by abuse of notation think of 𝑓 ∶ 𝑋 → 𝑌 also as
the underlying continuous map of topological spaces. The 𝑓-map corresponding to 𝑓 will
customarily be denoted 𝑓♯. The condition that 𝑓 is a morphism of locally ringed spaces can
then be expressed by saying that for every 𝑥 ∈ 𝑋 the map on stalks

𝑓♯
𝑥 ∶ 𝒪𝑌,𝑓(𝑥) ⟶ 𝒪𝑋,𝑥

maps the maximal ideal 𝔪𝑌,𝑓(𝑥) into 𝔪𝑋,𝑥.

Let us use these notational conventions to show that the collection of locally ringed spaces
and morphisms of locally ringed spaces forms a category. In order to see this we have to
show that the composition of morphisms of locally ringed spaces is a morphism of locally
ringed spaces. OK, so let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphism of locally ringed
spaces. The composition of 𝑓 and 𝑔 is defined in Sheaves, Definition 6.25.3. Let 𝑥 ∈ 𝑋.
By Sheaves, Lemma 6.21.10 the composition

𝒪𝑍,𝑔(𝑓(𝑥))
𝑔♯

−−→ 𝒪𝑌,𝑓(𝑥)
𝑓♯

−−→ 𝒪𝑋,𝑥

is the associatedmap on stalks for themorphism 𝑔∘𝑓. The result follows since a composition
of local ring homomorphisms is a local ring homomorphism.

A pleasing feature of the definition is the fact that the functor

Locally ringed spaces ⟶ Ringed spaces

reflects isomorphisms (plus more). Here is a less abstract statement.

Lemma 21.2.2. Let 𝑋, 𝑌 be locally ringed spaces. If 𝑓 ∶ 𝑋 → 𝑌 is an isomorphism of
ringed spaces, then 𝑓 is an isomorphism of locally ringed spaces.

Proof. This follows trivially from the corresponding fact in algebra: Suppose 𝐴, 𝐵 are
local rings. Any isomorphism of rings 𝐴 → 𝐵 is a local ring homomorphism. �

21.3. Open immersions of locally ringed spaces

Definition 21.3.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of locally ringed spaces. We say that 𝑓
is an open immersion if 𝑓 is a homeomorphism of 𝑋 onto an open subset of 𝑌, and the map
𝑓−1𝒪𝑌 → 𝒪𝑋 is an isomorphism.

The following construction is parallel to Sheaves, Definition 6.31.2 (3).
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Example 21.3.2. Let 𝑋 be a locally ringed space. Let 𝑈 ⊂ 𝑋 be an open subset. Let
𝒪𝑈 = 𝒪𝑋|𝑈 be the restriction of 𝒪𝑋 to 𝑈. For 𝑢 ∈ 𝑈 the stalk 𝒪𝑈,𝑢 is equal to the stalk
𝒪𝑋,𝑢, and hence is a local ring. Thus (𝑈, 𝒪𝑈) is a locally ringed space and the morphism
𝑗 ∶ (𝑈, 𝒪𝑈) → (𝑋, 𝒪𝑋) is an open immersion.

Definition 21.3.3. Let 𝑋 be a locally ringed space. Let 𝑈 ⊂ 𝑋 be an open subset. The
locally ringed space (𝑈, 𝒪𝑈) of Example 21.3.2 above is the open subspace of 𝑋 associated
to 𝑈.

Lemma 21.3.4. Let 𝑓 ∶ 𝑋 → 𝑌 be an open immersion of locally ringed spaces. Let
𝑗 ∶ 𝑉 = 𝑓(𝑋) → 𝑌 be the open subspace of 𝑌 associated to the image of 𝑓. There is a
unique isomorphism 𝑓′ ∶ 𝑋 ≅ 𝑉 of locally ringed spaces such that 𝑓 = 𝑗 ∘ 𝑓′.

Proof. Omitted. �

From now on we do not distinguish between open subsets and their associated subspaces.

Lemma 21.3.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of locally ringed spaces. Let 𝑈 ⊂ 𝑋, and
𝑉 ⊂ 𝑌 be open subsets. Suppose that 𝑓(𝑈) ⊂ 𝑉. There exists a unique morphism of locally
ringed spaces 𝑓|𝑈 ∶ 𝑈 → 𝑉 such that the following diagram is a commutative square of
locally ringed spaces

𝑈

𝑓|𝑈
��

// 𝑋

𝑓
��

𝑉 // 𝑌

Proof. Omitted. �

In the following we will use without further mention the following fact which follows from
the lemma above. Given any morphism 𝑓 ∶ 𝑌 → 𝑋 of locally ringed spaces, and any open
subset 𝑈 ⊂ 𝑋 such that 𝑓(𝑌) ⊂ 𝑈, then there exists a unique morphism of locally ringed
spaces 𝑌 → 𝑈 such that the composition 𝑌 → 𝑈 → 𝑋 is equal to 𝑓. In fact, we will even
by abuse of notation write 𝑓 ∶ 𝑌 → 𝑈 since this rarely gives rise to confusion.

21.4. Closed immersions of locally ringed spaces

We follow our conventions introduced in Modules, Definition 15.13.1.

Definition 21.4.1. Let 𝑖 ∶ 𝑍 → 𝑋 be a morphism of locally ringed spaces. We say that 𝑖
is an closed immersion if:

(1) The map 𝑖 is a homeomorphism of 𝑍 onto a closed subset of 𝑋.
(2) The map 𝒪𝑋 → 𝑖∗𝒪𝑍 is surjective; let ℐ denote the kernel.
(3) The 𝒪𝑋-module ℐ is locally generated by sections.

Lemma 21.4.2. Let 𝑓 ∶ 𝑍 → 𝑋 be a morphism of locally ringed spaces. In order for 𝑓 to
be a closed immersion it suffices if there exists an open covering 𝑋 = ⋃ 𝑈𝑖 such that each
𝑓 ∶ 𝑓−1𝑈𝑖 → 𝑈𝑖 is a closed immersion.

Proof. Omitted. �

Example 21.4.3. Let 𝑋 be a locally ringed space. Let ℐ ⊂ 𝒪𝑋 be a sheaf of ideals which is
locally generated by sections as a sheaf of 𝒪𝑋-modules. Let 𝑍 be the support of the sheaf of
rings 𝒪𝑋/ℐ. This is a closed subset of 𝑋, by Modules, Lemma 15.5.3. Denote 𝑖 ∶ 𝑍 → 𝑋
the inclusion map. By Modules, Lemma 15.6.1 there is a unique sheaf of rings 𝒪𝑍 on 𝑍
with 𝑖∗𝒪𝑍 = 𝒪𝑋/ℐ. For any 𝑧 ∈ 𝑍 the local ring 𝒪𝑍,𝑧 is equal to the quotient ring 𝒪𝑋,𝑥/ℐ𝑥
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and nonzero, hence a local ring. Thus 𝑖 ∶ (𝑍, 𝒪𝑍) → (𝑋, 𝒪𝑋) is a closed immersion of
locally ringed spaces.

Definition 21.4.4. Let 𝑋 be a locally ringed space. Let ℐ be a sheaf of ideals on 𝑋 which
is locally generated by sections. The locally ringed space (𝑍, 𝒪𝑍) of Example 21.4.3 above
is the closed subspace of 𝑋 associated to the sheaf of ideals ℐ.

Lemma 21.4.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a closed immersion of locally ringed spaces. Let ℐ be
the kernel of the map 𝒪𝑌 → 𝑓∗𝒪𝑋. Let 𝑖 ∶ 𝑍 → 𝑌 be the closed subspace of 𝑌 associated to
ℐ. There is a unique isomorphism 𝑓′ ∶ 𝑋 ≅ 𝑍 of locally ringed spaces such that 𝑓 = 𝑖 ∘ 𝑓′.

Proof. Omitted. �

Lemma 21.4.6. Let 𝑋, 𝑌 be a locally ringed spaces. Let ℐ ⊂ 𝒪𝑋 be a locally generated
sheaf of ideals. Let 𝑖 ∶ 𝑍 → 𝑋 be the associated closed subspace. A morphism 𝑓 ∶ 𝑌 → 𝑋
factors through 𝑍 if and only if the map 𝑓∗ℐ → 𝑓∗𝒪𝑋 = 𝒪𝑌 is zero. If this is the case the
morphism 𝑔 ∶ 𝑌 → 𝑍 such that 𝑓 = 𝑖 ∘ 𝑔 is unique.

Proof. Clearly if 𝑓 factors as 𝑌 → 𝑍 → 𝑋 then the map 𝑓∗ℐ → 𝒪𝑌 is zero. Conversely
suppose that 𝑓∗ℐ → 𝒪𝑌 is zero. Pick any 𝑦 ∈ 𝑌, and consider the ring map 𝑓♯

𝑦 ∶ 𝒪𝑋,𝑓(𝑦) →
𝒪𝑌,𝑦. Since the composition ℐ𝑦 → 𝒪𝑋,𝑓(𝑦) → 𝒪𝑌,𝑦 is zero by assumption and since 𝑓♯

𝑦(1) =
1 we see that 1∉ℐ𝑦, i.e., ℐ𝑦≠𝒪𝑋,𝑓(𝑦). We conclude that 𝑓(𝑌) ⊂ 𝑍 = Supp(𝒪𝑋/ℐ). Hence
𝑓 = 𝑖 ∘ 𝑔 where 𝑔 ∶ 𝑌 → 𝑍 is continuous. Consider the map 𝑓♯ ∶ 𝒪𝑋 → 𝑓∗𝒪𝑌. The
assumption 𝑓∗ℐ → 𝒪𝑌 is zero implies that the composition ℐ → 𝒪𝑋 → 𝑓∗𝒪𝑌 is zero
by adjointness of 𝑓∗ and 𝑓∗. In other words, we obtain a morphism of sheaves of rings
𝑓♯ ∶ 𝒪𝑋/ℐ → 𝑓∗𝒪𝑌. Note that 𝑓∗𝒪𝑌 = 𝑖∗𝑔∗𝒪𝑌 and that 𝒪𝑋/ℐ = 𝑖∗𝒪𝑍. By Sheaves,
Lemma 6.32.4 we obtain a unique morphism of sheaves of rings 𝑔♯ ∶ 𝒪𝑍 → 𝑔∗𝒪𝑌 whose
pushforward under 𝑖 is 𝑓♯. We omit the verification that (𝑔, 𝑔♯) defines amorphism of locally
ringed spaces and that 𝑓 = 𝑖 ∘ 𝑔 as a morphism of locally ringed spaces. The uniqueness of
(𝑔, 𝑔♯) was pointed out above. �

Lemma 21.4.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of locally ringed spaces. Let ℐ ⊂ 𝒪𝑌
be a sheaf of ideals which is locally generated by functions. Let 𝑖 ∶ 𝑍 → 𝑌 be the closed
subspace associated to the sheaf of ideals ℐ. Let 𝒥 be the image of the map 𝑓∗ℐ → 𝑓∗𝒪𝑌 =
𝒪𝑋. Then this ideal is locally generated by sections. Moreover, let 𝑖′ ∶ 𝑍′ → 𝑋 be the
associated closed subspace of 𝑋. There exists a unique morphism of locally ringed spaces
𝑓′ ∶ 𝑍′ → 𝑍 such that the following diagram is a commutative square of locally ringed
spaces

𝑍′

𝑓′

��

𝑖′
// 𝑋

𝑓
��

𝑍 𝑖 // 𝑌

Moreover, this diagram is a fibre square in the category of locally ringed spaces.

Proof. The ideal 𝒥 is locally generated by sections by Modules, Lemma 15.8.2. The rest
of the lemma follows from the characterization, in Lemma 21.4.6 above, of what it means
for a morphism to factor through a closed subscheme. �
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21.5. Affine schemes

Let 𝑅 be a ring. Consider the topological space 𝑆𝑝𝑒𝑐(𝑅) associated to 𝑅, see Algebra,
Section 7.16. We will endow this space with a sheaf of rings 𝒪𝑆𝑝𝑒𝑐(𝑅) and the resulting pair
(𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) will be an affine scheme.

Recall that 𝑆𝑝𝑒𝑐(𝑅) has a basis of open sets 𝐷(𝑓), 𝑓 ∈ 𝑅 which we call standard opens, see
Algebra, Definition 7.16.3. In addition, the intersection of two standard opens is another:
𝐷(𝑓) ∩ 𝐷(𝑔) = 𝐷(𝑓𝑔), 𝑓, 𝑔 ∈ 𝑅.

Lemma 21.5.1. Let 𝑅 be a ring. Let 𝑓 ∈ 𝑅.
(1) If 𝑔 ∈ 𝑅 and 𝐷(𝑔) ⊂ 𝐷(𝑓), then

(a) 𝑓 is invertible in 𝑅𝑔,
(b) 𝑔𝑒 = 𝑎𝑓 for some 𝑒 ≥ 1 and 𝑎 ∈ 𝑅,
(c) there is a canonical ring map 𝑅𝑓 → 𝑅𝑔, and
(d) there is a canonical 𝑅𝑓-module map 𝑀𝑓 → 𝑀𝑔 for any 𝑅-module 𝑀.

(2) Any open covering of 𝐷(𝑓) can be refined to a finite open covering of the form
𝐷(𝑓) = ⋃𝑛

𝑖=1 𝐷(𝑔𝑖).
(3) If 𝑔1, … , 𝑔𝑛 ∈ 𝑅, then 𝐷(𝑓) ⊂ ⋃ 𝐷(𝑔𝑖) if and only if 𝑔1, … , 𝑔𝑛 generate the unit

ideal in 𝑅𝑓.

Proof. Recall that 𝐷(𝑔) = 𝑆𝑝𝑒𝑐(𝑅𝑔) (see Algebra, Lemma 7.16.6). Thus (a) holds because
𝑓 maps to an element of 𝑅𝑔 which is not contained in any prime ideal, and hence invertible,
see Algebra, Lemma 7.16.2. Write the inverse of 𝑓 in 𝑅𝑔 as 𝑎/𝑔𝑑. This means 𝑔𝑑 − 𝑎𝑓 is
annihilated by a power of 𝑔, whence (b). For (c), the map 𝑅𝑓 → 𝑅𝑔 exists by (a) from
the universal property of localization, or we can define it by mapping 𝑏/𝑓𝑛 to 𝑎𝑛𝑏/𝑔𝑛𝑒. The
equality 𝑀𝑓 = 𝑀 ⊗𝑅 𝑅𝑓 can be used to obtain the map on modules, or we can define
𝑀𝑓 → 𝑀𝑔 by mapping 𝑥/𝑓𝑛 to 𝑎𝑛𝑥/𝑔𝑛𝑒.

Recall that 𝐷(𝑓) is quasi-compact, see Algebra, Lemma 7.26.1. Hence the second statement
follows directly from the fact that the standard opens form a basis for the topology.

The third statement follows directly from Algebra, Lemma 7.16.2. �

In Sheaves, Section 6.30 we defined the notion of a sheaf on a basis, and we showed that it
is essentially equivalent to the notion of a sheaf on the space, see Sheaves, Lemmas 6.30.6
and 6.30.9. Moreover, we showed in Sheaves, Lemma 6.30.4 that it is sufficient to check
the sheaf condition on a cofinal system of open coverings for each standard open. By the
lemma above it suffices to check on the finite coverings by standard opens.

Definition 21.5.2. Let 𝑅 be a ring.
(1) A standard open covering of 𝑆𝑝𝑒𝑐(𝑅) is a covering 𝑆𝑝𝑒𝑐(𝑅) = ⋃𝑛

𝑖=1 𝐷(𝑓𝑖),
where 𝑓1, … , 𝑓𝑛 ∈ 𝑅.

(2) Suppose that 𝐷(𝑓) ⊂ 𝑆𝑝𝑒𝑐(𝑅) is a standard open. A standard open covering of
𝐷(𝑓) is a covering 𝐷(𝑓) = ⋃𝑛

𝑖=1 𝐷(𝑔𝑖), where 𝑔1, … , 𝑔𝑛 ∈ 𝑅.

Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module. We will define a presheaf 𝑀 on the basis of
standard opens. Suppose that 𝑈 ⊂ 𝑆𝑝𝑒𝑐(𝑅) is a standard open. If 𝑓, 𝑔 ∈ 𝑅 are such that
𝐷(𝑓) = 𝐷(𝑔), then by Lemma 21.5.1 above there are canonical maps 𝑀𝑓 → 𝑀𝑔 and
𝑀𝑔 → 𝑀𝑓 which are mutually inverse. Hence we may choose any 𝑓 such that 𝑈 = 𝐷(𝑓)
and define

𝑀(𝑈) = 𝑀𝑓.
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Note that if 𝐷(𝑔) ⊂ 𝐷(𝑓), then by Lemma 21.5.1 above we have a canonical map

𝑀(𝐷(𝑓)) = 𝑀𝑓 ⟶ 𝑀𝑔 = 𝑀(𝐷(𝑔)).

Clearly, this defines a presheaf of abelian groups on the basis of standard opens. If 𝑀 = 𝑅,
then 𝑅 is a presheaf of rings on the basis of standard opens.

Let us compute the stalk of 𝑀 at a point 𝑥 ∈ 𝑆𝑝𝑒𝑐(𝑅). Suppose that 𝑥 corresponds to the
prime 𝔭 ⊂ 𝑅. By definition of the stalk we see that

𝑀𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑓∈𝑅,𝑓∉𝔭 𝑀𝑓

Here the set {𝑓 ∈ 𝑅, 𝑓∉𝔭} is partially ordered by the rule 𝑓 ≥ 𝑓′ ⇔ 𝐷(𝑓) ⊂ 𝐷(𝑓′). If
𝑓1, 𝑓2 ∈ 𝑅 ⧵ 𝔭, then we have 𝑓1𝑓2 ≥ 𝑓1 in this ordering. Hence by Algebra, Lemma 7.9.9
we conclude that

𝑀𝑥 = 𝑀𝔭.

Next, we check the sheaf condition for the standard open coverings. If 𝐷(𝑓) = ⋃𝑛
𝑖=1 𝐷(𝑔𝑖),

then the sheaf condition for this covering is equivalent with the exactness of the sequence

0 → 𝑀𝑓 → ⨁ 𝑀𝑔𝑖
→ ⨁ 𝑀𝑔𝑖𝑔𝑗

.

Note that 𝐷(𝑔𝑖) = 𝐷(𝑓𝑔𝑖), and hence we can rewrite this sequence as the sequence

0 → 𝑀𝑓 → ⨁ 𝑀𝑓𝑔𝑖
→ ⨁ 𝑀𝑓𝑔𝑖𝑔𝑗

.

In addition, by Lemma 21.5.1 above we see that 𝑔1, … , 𝑔𝑛 generate the unit ideal in 𝑅𝑓.
Thus we may apply Algebra, Lemma 7.20.2 to the module 𝑀𝑓 over 𝑅𝑓 and the elements
𝑔1, … , 𝑔𝑛. We conclude that the sequence is exact. By the remarks made above, we see
that 𝑀 is a sheaf on the basis of standard opens.

Thus we conclude from thematerial in Sheaves, Section 6.30 that there exists a unique sheaf
of rings 𝒪𝑆𝑝𝑒𝑐(𝑅) which agrees with 𝑅 on the standard opens. Note that by our computation
of stalks above, the stalks of this sheaf of rings are all local rings.

Similarly, for any 𝑅-module 𝑀 there exists a unique sheaf of 𝒪𝑆𝑝𝑒𝑐(𝑅)-modules ℱ which
agrees with 𝑀 on the standard opens, see Sheaves, Lemma 6.30.12.

Definition 21.5.3. Let 𝑅 be a ring.
(1) The structure sheaf 𝒪𝑆𝑝𝑒𝑐(𝑅) of the spectrum of 𝑅 is the unique sheaf of rings

𝒪𝑆𝑝𝑒𝑐(𝑅) which agrees with 𝑅 on the basis of standard opens.
(2) The locally ringed space (𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) is called the spectrum of 𝑅 and de-

noted 𝑆𝑝𝑒𝑐(𝑅).
(3) The sheaf of 𝒪𝑆𝑝𝑒𝑐(𝑅)-modules extending 𝑀 to all opens of 𝑆𝑝𝑒𝑐(𝑅) is called the

sheaf of 𝒪𝑆𝑝𝑒𝑐(𝑅)-modules associated to 𝑀. This sheaf is denoted 𝑀 as well.

We summarize the results obtained so far.

Lemma21.5.4. Let𝑅 be a ring. Let𝑀 be an𝑅-module. Let𝑀 be the sheaf of𝒪𝑆𝑝𝑒𝑐(𝑅)-modules
associated to 𝑀.

(1) We have Γ(𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) = 𝑅.
(2) We have Γ(𝑆𝑝𝑒𝑐(𝑅), 𝑀) = 𝑀 as an 𝑅-module.
(3) For every 𝑓 ∈ 𝑅 we have Γ(𝐷(𝑓), 𝒪𝑆𝑝𝑒𝑐(𝑅)) = 𝑅𝑓.
(4) For every 𝑓 ∈ 𝑅 we have Γ(𝐷(𝑓), 𝑀) = 𝑀𝑓 as an 𝑅𝑓-module.
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(5) Whenever 𝐷(𝑔) ⊂ 𝐷(𝑓) the restriction mappings on 𝒪𝑆𝑝𝑒𝑐(𝑅) and 𝑀 are the maps
𝑅𝑓 → 𝑅𝑔 and 𝑀𝑓 → 𝑀𝑔 from Lemma 21.5.1.

(6) Let 𝔭 be a prime of 𝑅, and let 𝑥 ∈ 𝑆𝑝𝑒𝑐(𝑅) be the corresponding point. We have
𝒪𝑆𝑝𝑒𝑐(𝑅),𝑥 = 𝑅𝔭.

(7) Let 𝔭 be a prime of 𝑅, and let 𝑥 ∈ 𝑆𝑝𝑒𝑐(𝑅) be the corresponding point. We have
ℱ𝑥 = 𝑀𝔭 as an 𝑅𝔭-module.

Moreover, all these identifications are functorial in the 𝑅 module 𝑀. In particular, the
functor 𝑀 ↦ 𝑀 is an exact functor from the category of 𝑅-modules to the category of
𝒪𝑆𝑝𝑒𝑐(𝑅)-modules.

Proof. Assertions (1) - (7) are clear from the discussion above. The exactness of the functor
𝑀 ↦ 𝑀 follows from the fact that the functor 𝑀 ↦ 𝑀𝔭 is exact and the fact that exactness
of short exact sequences may be checked on stalks, see Modules, Lemma 15.3.1. �

Definition 21.5.5. An affine scheme is a locally ringed space isomorphic as a locally ringed
space to 𝑆𝑝𝑒𝑐(𝑅) for some ring 𝑅. A morphism of affine schemes is a morphism in the
category of locally ringed spaces.

It turns out that affine schemes play a special role among all locally ringed spaces, which
is what the next section is about.

21.6. The category of affine schemes

Note that if 𝑌 is an affine scheme, then its points are in canonical 1 − 1 bijection with prime
ideals in Γ(𝑌, 𝒪𝑌).

Lemma 21.6.1. Let 𝑋 be a locally ringed space. Let 𝑌 be an affine scheme. Let 𝑓 ∈
𝑀𝑜𝑟(𝑋, 𝑌) be a morphism of locally ringed spaces. Given a point 𝑥 ∈ 𝑋 consider the ring
maps

Γ(𝑌, 𝒪𝑌)
𝑓♯

−−→ Γ(𝑋, 𝒪𝑋) → 𝒪𝑋,𝑥
Let 𝔭 ⊂ Γ(𝑌, 𝒪𝑌) denote the inverse image of 𝔪𝑥. Let 𝑦 ∈ 𝑌 be the corresponding point.
Then 𝑓(𝑥) = 𝑦.

Proof. Consider the commutative diagram

Γ(𝑋, 𝒪𝑋) // 𝒪𝑋,𝑥

Γ(𝑌, 𝒪𝑌) //

OO

𝒪𝑌,𝑓(𝑥)

OO

(see the discussion of 𝑓-maps below Sheaves, Definition 6.21.7). Since the right vertical
arrow is local we see that 𝔪𝑓(𝑥) is the inverse image of 𝔪𝑥. The result follows. �

Lemma 21.6.2. Let 𝑋 be a locally ringed space. Let 𝑓 ∈ Γ(𝑋, 𝒪𝑋). The set

𝐷(𝑓) = {𝑥 ∈ 𝑋 ∣ image 𝑓∉𝔪𝑥}

is open. Moreover 𝑓|𝐷(𝑓) has an inverse.

Proof. This is a special case of Modules, Lemma 15.21.7, but we also give a direct proof.
Suppose that 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑋 are two open subsets such that 𝑓|𝑈 has an inverse 𝑔 and 𝑓|𝑉
has an inverse ℎ. Then clearly 𝑔|𝑈∩𝑉 = ℎ|𝑈∩𝑉. Thus it suffices to show that 𝑓 is invertible in
an open neighbourhood of any 𝑥 ∈ 𝐷(𝑓). This is clear because 𝑓∉𝔪𝑥 implies that 𝑓 ∈ 𝒪𝑋,𝑥
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has an inverse 𝑔 ∈ 𝒪𝑋,𝑥 which means there is some open neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 so
that 𝑔 ∈ 𝒪𝑋(𝑈) and 𝑔 ⋅ 𝑓|𝑈 = 1. �

Lemma 21.6.3. In Lemma 21.6.2 above, if𝑋 is an affine scheme, then the open𝐷(𝑓) agrees
with the standard open 𝐷(𝑓) defined previously (in Algebra, Definition 7.16.1).

Proof. Omitted. �

Lemma 21.6.4. Let 𝑋 be a locally ringed space. Let 𝑌 be an affine scheme. The map

𝑀𝑜𝑟(𝑋, 𝑌) ⟶ 𝐻𝑜𝑚(Γ(𝑌, 𝒪𝑌), Γ(𝑋, 𝒪𝑋))

which maps 𝑓 to 𝑓♯ (on global sections) is bijective.

Proof. Since 𝑌 is affine we have (𝑌, 𝒪𝑌) ≅ (𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) for some ring 𝑅. During
the proof we will use facts about 𝑌 and its structure sheaf which are direct consequences of
things we know about the spectrum of a ring, see e.g. Lemma 21.5.4.

Motivated by the lemmas above we construct the inverse map. Let 𝜓𝑌 ∶ Γ(𝑌, 𝒪𝑌) →
Γ(𝑋, 𝒪𝑋) be a ring map. First, we define the corresponding map of spaces

Ψ ∶ 𝑋 ⟶ 𝑌

by the rule of Lemma 21.6.1. In other words, given 𝑥 ∈ 𝑋 we define Ψ(𝑥) to be the point
of 𝑌 corresponding to the prime in Γ(𝑌, 𝒪𝑌) which is the inverse image of 𝔪𝑥 under the
composition Γ(𝑌, 𝒪𝑌)

𝜓𝑌−−→ Γ(𝑋, 𝒪𝑋) → 𝒪𝑋,𝑥.

We claim that themap Ψ ∶ 𝑋 → 𝑌 is continuous. The standard opens 𝐷(𝑔), for 𝑔 ∈ Γ(𝑌, 𝒪𝑌)
are a basis for the toppology of 𝑌. Thus it suffices to prove that Ψ−1(𝐷(𝑔)) is open. By
construction of Ψ the inverse image Ψ−1(𝐷(𝑔)) is exactly the set 𝐷(𝜓𝑌(𝑔)) ⊂ 𝑋 which is
open by Lemma 21.6.2. Hence Ψ is continuous.

Next we construct a Ψ-map of sheaves from 𝒪𝑌 to 𝒪𝑋. By Sheaves, Lemma 6.30.14 it
suffices to define ring maps 𝜓𝐷(𝑔) ∶ Γ(𝐷(𝑔), 𝒪𝑌) → Γ(Ψ−1(𝐷(𝑔)), 𝒪𝑋) compatible with
restriction maps. We have a canonical isomorphism Γ(𝐷(𝑔), 𝒪𝑌) = Γ(𝑌, 𝒪𝑌)𝑔, because 𝑌 is
an affine scheme. Because 𝜓𝑌(𝑔) is invertible on 𝐷(𝜓𝑌(𝑔)) we see that there is a canonical
map

Γ(𝑌, 𝒪𝑌)𝑔 ⟶ Γ(Ψ−1(𝐷(𝑔)), 𝒪𝑋) = Γ(𝐷(𝜓𝑌(𝑔)), 𝒪𝑋)
extending the map 𝜓𝑌 by the universal property of localization. Note that there is no choice
but to take the canonical map here! And we take this, combined with the canonical identifi-
cation Γ(𝐷(𝑔), 𝒪𝑌) = Γ(𝑌, 𝒪𝑌)𝑔, to be 𝜓𝐷(𝑔). This is compatible with localization since the
restriction mapping on the affine schemes are defined in terms of the universal properties
of localization also, see Lemmas 21.5.4 and 21.5.1.

Thus we have defined a morphism of ringed spaces (Ψ, 𝜓) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) recovering
𝜓𝑌 on global sections. To see that it is a morphism of locally ringed spaces we have to show
that the induced maps on local rings

𝜓𝑥 ∶ 𝒪𝑌,Ψ(𝑥) ⟶ 𝒪𝑋,𝑥

are local. This follows immediately from the commutative diagram of the proof of Lemma
21.6.1 and the definition of Ψ.

Finally, we have to show that the constructions (Ψ, 𝜓) ↦ 𝜓𝑌 and the construction 𝜓𝑌 ↦
(Ψ, 𝜓) are inverse to each other. Clearly, 𝜓𝑌 ↦ (Ψ, 𝜓) ↦ 𝜓𝑌. Hence the only thing to prove
is that given 𝜓𝑌 there is at most one pair (Ψ, 𝜓) giving rise to it. The uniqueness of Ψ was
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shown in Lemma 21.6.1 and given the uniqueness of Ψ the uniqueness of the map 𝜓 was
pointed out during the course of the proof above. �

Lemma 21.6.5. The category of affine schemes is equivalent to the opposite of the category
of rings. The equivalence is given by the functor that associates to an affine scheme the
global sections of its structure sheaf.

Proof. This is now clear from Definition 21.5.5 and Lemma 21.6.4. �

Lemma 21.6.6. Let 𝑌 be an affine scheme. Let 𝑓 ∈ Γ(𝑌, 𝒪𝑌). The open subspace 𝐷(𝑓) is
an affine scheme.

Proof. We may assume that 𝑌 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑓 ∈ 𝑅. Consider the morphism of affine
schemes 𝜙 ∶ 𝑈 = 𝑆𝑝𝑒𝑐(𝑅𝑓) → 𝑆𝑝𝑒𝑐(𝑅) = 𝑌 induced by the ring map 𝑅 → 𝑅𝑓. By
Algebra, Lemma 7.16.6 we know that it is a homeomorphism onto 𝐷(𝑓). On the other
hand, the map 𝑓−1𝒪𝑌 → 𝒪𝑈 is an isomorphism on stalks, hence an isomorphism. Thus we
see that 𝜙 is an open immersion. We conclude that 𝐷(𝑓) is isomorphic to 𝑈 by Lemma
21.3.4. �

Lemma 21.6.7. The category of affine schemes has finite products, and fibre products. In
other words, it has finite limits. Moreover, the products and fibre products in the category
of affine schemes are the same as in the category of locally ringed spaces. In a formula, we
have (in the category of locally ringed spaces)

𝑆𝑝𝑒𝑐(𝑅) × 𝑆𝑝𝑒𝑐(𝑆) = 𝑆𝑝𝑒𝑐(𝑅 ⊗𝐙 𝑆)

and given ring maps 𝑅 → 𝐴, 𝑅 → 𝐵 we have

𝑆𝑝𝑒𝑐(𝐴) ×𝑆𝑝𝑒𝑐(𝑅) 𝑆𝑝𝑒𝑐(𝐵) = 𝑆𝑝𝑒𝑐(𝐴 ⊗𝑅 𝐵).

Proof. This is just an application of Lemma 21.6.4. First of all, by that lemma, the affine
scheme 𝑆𝑝𝑒𝑐(𝐙) is the final object in the category of locally ringed spaces. Thus the first
displayed formula follows from the second. To prove the second note that for any locally
ringed space 𝑋 we have

𝑀𝑜𝑟(𝑋, 𝑆𝑝𝑒𝑐(𝐴 ⊗𝑅 𝐵)) = 𝐻𝑜𝑚(𝐴 ⊗𝑅 𝐵, 𝒪𝑋(𝑋))
= 𝐻𝑜𝑚(𝐴, 𝒪𝑋(𝑋)) ×𝐻𝑜𝑚(𝑅,𝒪𝑋(𝑋)) 𝐻𝑜𝑚(𝐵, 𝒪𝑋(𝑋))
= 𝑀𝑜𝑟(𝑋, 𝑆𝑝𝑒𝑐(𝐴)) ×𝑀𝑜𝑟(𝑋,𝑆𝑝𝑒𝑐(𝑅)) 𝑀𝑜𝑟(𝑋, 𝑆𝑝𝑒𝑐(𝐵))

which proves the formula. See Categories, Section 4.6 for the relevant definitions. �

Lemma 21.6.8. Let 𝑋 be a locally ringed space. Assume 𝑋 = 𝑈 ⨿ 𝑉 with 𝑈 and 𝑉 open
and such that 𝑈, 𝑉 are affine schemes. Then 𝑋 is an affine scheme.

Proof. Set 𝑅 = Γ(𝑋, 𝒪𝑋). Note that 𝑅 = 𝒪𝑋(𝑈)×𝒪𝑋(𝑉) by the sheaf property. By Lemma
21.6.4 there is a canonical morphism of locally ringed spaces 𝑋 → 𝑆𝑝𝑒𝑐(𝑅). By Algebra,
Lemma 7.18.2 we see that as a topological space 𝑆𝑝𝑒𝑐(𝒪𝑋(𝑈)) ⨿ 𝑆𝑝𝑒𝑐(𝒪𝑋(𝑉)) = 𝑆𝑝𝑒𝑐(𝑅)
with the maps coming from the ring homomorphisms 𝑅 → 𝒪𝑋(𝑈) and 𝑅 → 𝒪𝑋(𝑉). This of
course means that 𝑆𝑝𝑒𝑐(𝑅) is the coproduct in the category of locally ringed spaces as well.
By assumption the morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑅) induces an isomorphism of 𝑆𝑝𝑒𝑐(𝒪𝑋(𝑈)) with
𝑈 and similarly for 𝑉. Hence 𝑋 → 𝑆𝑝𝑒𝑐(𝑅) is an isomorphism. �
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21.7. Quasi-Coherent sheaves on affines

Recall that we have defined the abstract notion of a quasi-coherent sheaf in Modules, Defi-
nition 15.10.1. In this section we show that any quasi-coherent sheaf on an affine scheme
𝑆𝑝𝑒𝑐(𝑅) corresponds the the sheaf 𝑀 associated to an 𝑅-module 𝑀.

Lemma 21.7.1. Let (𝑋, 𝒪𝑋) = (𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) be an affine scheme. Let 𝑀 be an
𝑅-module. There exists a canonical isomorphism between the sheaf 𝑀 associated to the
𝑅-module 𝑀 (Definition 21.5.3) and the sheaf ℱ𝑀 associated to the 𝑅-module 𝑀 (Mod-
ules, Definition 15.10.6). This isomorphism is functorial in𝑀. In particular, the sheaves𝑀
are quasi-coherent. Moreover, they are characterized by the following mapping property

𝐻𝑜𝑚𝒪𝑋
(𝑀, ℱ) = 𝐻𝑜𝑚𝑅(𝑀, Γ(𝑋, ℱ))

for any sheaf of 𝒪𝑋-modules ℱ. Here a map 𝛼 ∶ 𝑀 → ℱ corresponds to its effect on global
sections.

Proof. By Modules, Lemma 15.10.5 we have a morphism ℱ𝑀 → 𝑀 corresponding to the
map 𝑀 → Γ(𝑋, 𝑀) = 𝑀. Let 𝑥 ∈ 𝑋 correspond to the prime 𝔭 ⊂ 𝑅. The induced map on
stalks are the maps 𝒪𝑋,𝑥 ⊗𝑅 𝑀 → 𝑀𝔭 which are isomorphisms because 𝑅𝔭 ⊗𝑅 𝑀 = 𝑀𝔭.
Hence the map ℱ𝑀 → 𝑀 is an isomorphism. The mapping property follows from the
mapping property of the sheaves ℱ𝑀. �

Lemma 21.7.2. Let (𝑋, 𝒪𝑋) = (𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) be an affine scheme. There are canon-
ical isomorphisms

(1) 𝑀 ⊗𝑅 𝑁 ≅ 𝑀 ⊗𝒪𝑋
�̃�, see Modules, Section 15.15.

(2) T̃𝑛(𝑀) ≅ T𝑛(𝑀), ̃Sym𝑛(𝑀) ≅ Sym𝑛(𝑀), and ∧̃𝑛(𝑀) ≅ ∧𝑛(𝑀), see Modules,
Section 15.18.

(3) if 𝑀 is a finitely presented 𝑅-module, then ℋ𝑜𝑚𝒪𝑋
(𝑀, �̃�) ≅ ̃𝐻𝑜𝑚𝑅(𝑀, 𝑁), see

Modules, Section 15.19.

Proof. To give a map 𝑀 ⊗𝑅 𝑁 into 𝑀 ⊗𝒪𝑋
�̃� we have to give a map on global sections

𝑀 ⊗𝑅 𝑁 → Γ(𝑋, 𝑀 ⊗𝒪𝑋
�̃�) which exists by definition of the tensor product of sheaves of

modules. To see that this map is an isomorphism it suffices to check that it is an isomor-
phism on stalks. And this follows from the description of the stalks of 𝑀 (as a functor) and
Modules, Lemma 15.15.1.
The proof of (2) is similar, using Modules, Lemma 15.18.2.

For (3) note that if 𝑀 is finitely presented as an 𝑅-module then 𝑀 has a global finite
presentation as an 𝒪𝑋-module. Hence Modules, Lemma 15.19.3 applies. �

Lemma 21.7.3. Let (𝑋, 𝒪𝑋) = (𝑆𝑝𝑒𝑐(𝑆), 𝒪𝑆𝑝𝑒𝑐(𝑆)), (𝑌, 𝒪𝑌) = (𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) be affine
schemes. Let 𝜓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of affine schemes, corresponding to
the ring map 𝜓♯ ∶ 𝑅 → 𝑆 (see Lemma 21.6.5).

(1) We have 𝜓∗𝑀 = ̃𝑆 ⊗𝑅 𝑀 functorially in the 𝑅-module 𝑀.
(2) We have 𝜓∗�̃� = 𝑁𝑅 functorially in the 𝑆-module 𝑁.

Proof. The first assertion follows from the identification in Lemma 21.7.1 and the result
of Modules, Lemma 15.10.7. The second assertion follows from the fact that 𝜓−1(𝐷(𝑓)) =
𝐷(𝜓♯(𝑓)) and hence

𝜓∗�̃�(𝐷(𝑓)) = �̃�(𝐷(𝜓♯(𝑓))) = 𝑁𝜓♯(𝑓) = (𝑁𝑅)𝑓 = 𝑁𝑅(𝐷(𝑓))
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as desired. �

Lemma 21.7.3 above says in particular that if you restrict the sheaf 𝑀 to a standard affine
open subspace 𝐷(𝑓), then you get 𝑀𝑓. We will use this from now on without further
mention.

Lemma 21.7.4. Let (𝑋, 𝒪𝑋) = (𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) be an affine scheme. Let ℱ be a quasi-
coherent𝒪𝑋-module. Thenℱ is isomorphic to the sheaf associated to the𝑅-moduleΓ(𝑋, ℱ).

Proof. Let ℱ be a quasi-coherent 𝒪𝑋-module. Since every standard open 𝐷(𝑓) is quasi-
compact we see that 𝑋 is a locally quasi-compact, i.e., every point has a fundamental sys-
tem of quasi-compact neighbourhoods, see Topology, Definition 5.18.1. Hence by Mod-
ules, Lemma 15.10.8 for every prime 𝔭 ⊂ 𝑅 corresponding to 𝑥 ∈ 𝑋 there exists an open
neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 such that ℱ|𝑈 is isomorphic to the quasi-coherent sheaf associ-
ated to some 𝒪𝑋(𝑈)-module 𝑀. In other words, we get an open covering by 𝑈's with this
property. By Lemma 21.5.1 for example we can refine this covering to a standard open cov-
ering. Thus we get a covering 𝑆𝑝𝑒𝑐(𝑅) = ⋃ 𝐷(𝑓𝑖) and 𝑅𝑓𝑖

-modules 𝑀𝑖 and isomorphisms
𝜑𝑖 ∶ ℱ|𝐷(𝑓𝑖) → ℱ𝑀𝑖

for some 𝑅𝑓𝑖
-module 𝑀𝑖. On the overlaps we get isomorphisms

ℱ𝑀𝑖
|𝐷(𝑓𝑖𝑓𝑗)

𝜑−1
𝑖 |𝐷(𝑓𝑖𝑓𝑗)

// ℱ|𝐷(𝑓𝑖𝑓𝑗)

𝜑𝑗|𝐷(𝑓𝑖𝑓𝑗)
// ℱ𝑀𝑗

|𝐷(𝑓𝑖𝑓𝑗).

Let us denote these 𝜓𝑖𝑗. It is clear that we have the cocycle condition

𝜓𝑗𝑘|𝐷(𝑓𝑖𝑓𝑗𝑓𝑘) ∘ 𝜓𝑖𝑗|𝐷(𝑓𝑖𝑓𝑗𝑓𝑘) = 𝜓𝑖𝑘|𝐷(𝑓𝑖𝑓𝑗𝑓𝑘)

on triple overlaps.

Recall that each of the open subspaces 𝐷(𝑓𝑖), 𝐷(𝑓𝑖𝑓𝑗), 𝐷(𝑓𝑖𝑓𝑗𝑓𝑘) is an affine scheme.
Hence the sheaves ℱ𝑀𝑖

are isomorphic to the sheaves 𝑀𝑖 by Lemma 21.7.1 above. In
particular we see that ℱ𝑀𝑖

(𝐷(𝑓𝑖𝑓𝑗)) = (𝑀𝑖)𝑓𝑗
, etc. Also by Lemma 21.7.1 above we see

that 𝜓𝑖𝑗 corresponds to a unique 𝑅𝑓𝑖𝑓𝑗
-module isomorphism

𝜓𝑖𝑗 ∶ (𝑀𝑖)𝑓𝑗
⟶ (𝑀𝑗)𝑓𝑖

namely, the effect of 𝜓𝑖𝑗 on sections over 𝐷(𝑓𝑖𝑓𝑗). Moreover these then satisfy the cocycle
condition that

(𝑀𝑖)𝑓𝑗𝑓𝑘

𝜓𝑖𝑗 %%

𝜓𝑖𝑘 // (𝑀𝑘)𝑓𝑖𝑓𝑗

(𝑀𝑗)𝑓𝑖𝑓𝑘

𝜓𝑗𝑘

99

commutes (for any triple 𝑖, 𝑗, 𝑘).

Now Algebra, Lemma 7.21.4 shows that there exist an 𝑅-module 𝑀 such that 𝑀𝑖 = 𝑀𝑓𝑖

compatible with the morphisms 𝜓𝑖𝑗. Consider ℱ𝑀 = 𝑀. At this point it is a formality to
show that 𝑀 is isomorphic to the quasi-coherent sheaf ℱ we started out with. Namely, the
sheaves ℱ and 𝑀 give rise to isomorphic sets of glueing data of sheaves of 𝒪𝑋-modules with
respect to the covering 𝑋 = ⋃ 𝐷(𝑓𝑖), see Sheaves, Section 6.33 and in particular Lemma
6.33.4. Explicitly, in the current situation, this boils down to the following argument: Let
us construct an 𝑅-module map

𝑀 ⟶ Γ(𝑋, ℱ).
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Namely, given 𝑚 ∈ 𝑀 we get 𝑚𝑖 = 𝑚/1 ∈ 𝑀𝑓𝑖
= 𝑀𝑖 by construction of 𝑀. By construc-

tion of 𝑀𝑖 this corresponds to a section 𝑠𝑖 ∈ ℱ(𝑈𝑖). (Namely, 𝜑−1
𝑖 (𝑚𝑖).) We claim that

𝑠𝑖|𝐷(𝑓𝑖𝑓𝑗) = 𝑠𝑗|𝐷(𝑓𝑖𝑓𝑗). This is true because, by construction of 𝑀, we have 𝜓𝑖𝑗(𝑚𝑖) = 𝑚𝑗,
and by the construction of the 𝜓𝑖𝑗. By the sheaf condition of ℱ this collection of sections
gives rise to a unique section 𝑠 of ℱ over 𝑋. We leave it to the reader to show that 𝑚 ↦ 𝑠
is a 𝑅-module map. By Lemma 21.7.1 we obtain an associated 𝒪𝑋-module map

𝑀 ⟶ ℱ.

By construction this map reduces to the isomorphisms 𝜑−1
𝑖 on each 𝐷(𝑓𝑖) and hence is an

isomorphism. �

Lemma 21.7.5. Let (𝑋, 𝒪𝑋) = (𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) be an affine scheme. The functors 𝑀 ↦
𝑀 and ℱ ↦ Γ(𝑋, ℱ) define quasi-inverse equivalences of categories

QCoh(𝒪𝑋)
//
Mod-𝑅oo

between the category of quasi-coherent 𝒪𝑋-modules and the category of 𝑅-modules.

Proof. See Lemmas 21.7.1 and 21.7.4 above. �

From now on we will not distinghuish between quasi-coherent sheaves on affine schemes
and sheaves of the form 𝑀.

Lemma 21.7.6. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) be an affine scheme. Kernels and cokernels of maps of
quasi-coherent 𝒪𝑋-modules are quasi-coherent.

Proof. This follows from the exactness of the functor ̃ since by Lemma 21.7.1 we know
that any map 𝜓 ∶ 𝑀 → �̃� comes from an 𝑅-module map 𝜑 ∶ 𝑀 → 𝑁. (So we have
Ker(𝜓) = K̃er(𝜑) and Coker(𝜓) = ̃Coker(𝜑).) �

Lemma 21.7.7. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) be an affine scheme. The direct sum of an arbitrary
collection of quasi-coherent sheaves on 𝑋 is quasi-coherent. The same holds for colimits.

Proof. Suppose ℱ𝑖, 𝑖 ∈ 𝐼 is a collection of quasi-coherent sheaves on 𝑋. By Lemma 21.7.5
above we can write ℱ𝑖 = 𝑀𝑖 for some 𝑅-module 𝑀𝑖. Set 𝑀 = ⨁ 𝑀𝑖. Consider the sheaf
𝑀. For each standard open 𝐷(𝑓) we have

𝑀(𝐷(𝑓)) = 𝑀𝑓 = (⨁ 𝑀𝑖)𝑓
= ⨁ 𝑀𝑖,𝑓.

Hence we see that the quasi-coherent 𝒪𝑋-module 𝑀 is the direct sum of the sheaves ℱ𝑖. A
similar argument works for general colimits. �

Lemma 21.7.8. Let (𝑋, 𝒪𝑋) = (𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) be an affine scheme. Suppose that

0 → ℱ1 → ℱ2 → ℱ3 → 0

is a short exact sequence of sheaves 𝒪𝑋-modules. If two out of three are quasi-coherent
then so is the third.

Proof. This is clear in case both ℱ1 and ℱ2 are quasi-coherent because the functor 𝑀 ↦ 𝑀
is exact, see Lemma 21.5.4. Similarly in case both ℱ2 and ℱ3 are quasi-coherent. Now,
suppose that ℱ1 = 𝑀1 and ℱ3 = 𝑀3 are quasi-coherent. Set 𝑀2 = Γ(𝑋, ℱ2). We claim it
suffices to show that the sequence

0 → 𝑀1 → 𝑀2 → 𝑀3 → 0
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is exact. Namely, if this is the case, then (by using the mapping property of Lemma 21.7.1)
we get a commutative diagram

0 //𝑀1
//

��

𝑀2
//

��

𝑀3
//

��

0

0 // ℱ1
// ℱ2

// ℱ3
// 0

and we win by the snake lemma.

The ``correct'' argument here would be to show first that 𝐻1(𝑋, ℱ) = 0 for any quasi-
coherent sheaf ℱ. This is actually not all that hard, but it is perhaps better to postpone this
till later. Instead we use a small trick.

Pick 𝑚 ∈ 𝑀3 = Γ(𝑋, ℱ3). Consider the following set

𝐼 = {𝑓 ∈ 𝑅 ∣ the element 𝑓𝑚 comes from 𝑀2}.

Clearly this is an ideal. It suffices to show 1 ∈ 𝐼. Hence it suffices to show that for any
prime 𝔭 there exists an 𝑓 ∈ 𝐼, 𝑓∉𝔭. Let 𝑥 ∈ 𝑋 be the point corresponding to 𝔭. Because
surjectivity can be checked on stalks there exists an open neighbourhood 𝑈 of 𝑥 such that
𝑚|𝑈 comes from a local section 𝑠 ∈ ℱ2(𝑈). In fact we may assume that 𝑈 = 𝐷(𝑓) is a
standard open, i.e., 𝑓 ∈ 𝑅, 𝑓∉𝔭. We will show that for some 𝑁 ≫ 0 we have 𝑓𝑁 ∈ 𝐼,
which will finish the proof.

Take any point 𝑧 ∈ 𝑉(𝑓), say corresponding to the prime 𝔮 ⊂ 𝑅. We can also find a 𝑔 ∈ 𝑅,
𝑔∉𝔮 such that 𝑚|𝐷(𝑔) lifts to some 𝑠′ ∈ ℱ2(𝐷(𝑔)). Consider the difference 𝑠|𝐷(𝑓𝑔) −𝑠′|𝐷(𝑓𝑔).
This is an element 𝑚′ of ℱ1(𝐷(𝑓𝑔)) = (𝑀1)𝑓𝑔. For some integer 𝑛 = 𝑛(𝑧) the element 𝑓𝑛𝑚′

comes from some 𝑚′
1 ∈ (𝑀1)𝑔. We see that 𝑓𝑛𝑠 extends to a section 𝜎 of ℱ2 on 𝐷(𝑓)∪𝐷(𝑔)

because it agrees with the restriction of 𝑓𝑛𝑠′ + 𝑚′
1 on 𝐷(𝑓) ∩ 𝐷(𝑔) = 𝐷(𝑓𝑔). Moreover, 𝜎

maps to the restriction of 𝑓𝑛𝑚 to 𝐷(𝑓) ∪ 𝐷(𝑔).

Since 𝑉(𝑓) is quasi-compact, there exists a finite list of elements 𝑔1, … , 𝑔𝑚 ∈ 𝑅 such that
𝑉(𝑓) ⊂ ⋃ 𝐷(𝑔𝑗), an integer 𝑛 > 0 and sections 𝜎𝑗 ∈ ℱ2(𝐷(𝑓) ∪ 𝐷(𝑔𝑗)) such that 𝜎𝑗|𝐷(𝑓) =
𝑓𝑛𝑠 and 𝜎𝑗 maps to the section 𝑓𝑛𝑚|𝐷(𝑓)∪𝐷(𝑔𝑗) of ℱ3. Consider the differences

𝜎𝑗|𝐷(𝑓)∪𝐷(𝑔𝑗𝑔𝑘) − 𝜎𝑘|𝐷(𝑓)∪𝐷(𝑔𝑗𝑔𝑘).

These correspond to sections of ℱ1 over 𝐷(𝑓) ∪ 𝐷(𝑔𝑗𝑔𝑘) which are zero on 𝐷(𝑓). In partic-
ular their images in ℱ1(𝐷(𝑔𝑗𝑔𝑘)) = (𝑀1)𝑔𝑗𝑔𝑘

are zero in (𝑀1)𝑔𝑗𝑔𝑘𝑓. Thus some high power
of 𝑓 kills each and every one of these. In other words, the elements 𝑓𝑁𝜎𝑗, for some 𝑁 ≫ 0
satisfy the glueing condition of the sheaf property and give rise to a section 𝜎 of ℱ2 over
⋃(𝐷(𝑓) ∪ 𝐷(𝑔𝑗)) = 𝑋 as desired. �

21.8. Closed subspaces of affine schemes

Example 21.8.1. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Consider the morphism of
affine schemes 𝑖 ∶ 𝑍 = 𝑆𝑝𝑒𝑐(𝑅/𝐼) → 𝑆𝑝𝑒𝑐(𝑅) = 𝑋. By Algebra, Lemma 7.16.7 this is
a homeomorphism of 𝑍 onto a closed subset of 𝑋. Moreover, if 𝐼 ⊂ 𝔭 ⊂ 𝑅 is a prime
corresponding to a point 𝑥 = 𝑖(𝑧), 𝑥 ∈ 𝑋, 𝑧 ∈ 𝑍, then on stalks we get the map

𝒪𝑋,𝑥 = 𝑅𝔭 ⟶ 𝑅𝔭/𝐼𝑅𝔭 = 𝒪𝑍,𝑧
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Thus we see that 𝑖 is a closed immersion of locally ringed spaces, see Definition 21.4.1.
Clearly, this is (isomorphic) to the closed subspace associated to the quasi-coherent sheaf
of ideals ̃𝐼, as in Example 21.4.3.

Lemma 21.8.2. Let (𝑋, 𝒪𝑋) = (𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) be an affine scheme. Let 𝑖 ∶ 𝑍 →
𝑋 be any closed immersion of locally ringed spaces. Then there exists an unique ideal
𝐼 ⊂ 𝑅 such that the morphism 𝑖 ∶ 𝑍 → 𝑋 can be identified with the closed immersion
𝑆𝑝𝑒𝑐(𝑅/𝐼) → 𝑆𝑝𝑒𝑐(𝑅) constructed in Example 21.8.1 above.

Proof. This is kind of silly! Namely, by Lemma 21.4.5 we can identify 𝑍 → 𝑋 with the
closed subspace associated to a sheaf of ideals ℐ ⊂ 𝒪𝑋 as in Definition 21.4.4 and Example
21.4.3. By our conventions this sheaf of ideals is locally generated by sections as a sheaf
of 𝒪𝑋-modules. Hence the quotient sheaf 𝒪𝑋/ℐ is locally on 𝑋 the cokernel of a map
⨁𝑗∈𝐽 𝒪𝑈 → 𝒪𝑈. Thus by definition, 𝒪𝑋/ℐ is quasi-coherent. By our results in Section
21.7 it is of the form 𝑆 for some 𝑅-module 𝑆. Moreover, since 𝒪𝑋 = 𝑅 → 𝑆 is surjective
we see by Lemma 21.7.8 that also ℐ is quasi-coherent, say ℐ = ̃𝐼. Of course 𝐼 ⊂ 𝑅 and
𝑆 = 𝑅/𝐼 and everything is clear. �

21.9. Schemes

Definition 21.9.1. A scheme is a locally ringed space with the property that every point has
an open neighbourhood which is an affine scheme. A morphism of schemes is a morphism
of locally ringed spaces. The category of schemes will be denoted Sch.

Let 𝑋 be a scheme. We will use the following (very slight) abuse of language. We will say
𝑈 ⊂ 𝑋 is an affine open, or an open affine if the open subspace 𝑈 is an affine scheme. We
will often write 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) to indicate that 𝑈 is isomorphic to 𝑆𝑝𝑒𝑐(𝑅) and moreover
that we will identify (temporarily) 𝑈 and 𝑆𝑝𝑒𝑐(𝑅).

Lemma 21.9.2. Let 𝑋 be a scheme. Let 𝑗 ∶ 𝑈 → 𝑋 be an open immersion of locally ringed
spaces. Then 𝑈 is a scheme. In particular, any open subspace of 𝑋 is a scheme.

Proof. Let 𝑈 ⊂ 𝑋. Let 𝑢 ∈ 𝑈. Pick an affine open neighbourhood 𝑢 ∈ 𝑉 ⊂ 𝑋. Because
standard opens of 𝑉 form a basis of the topology on 𝑉 we see that there exists a 𝑓 ∈ 𝒪𝑉(𝑉)
such that 𝐷(𝑓) ⊂ 𝑈. And 𝐷(𝑓) is an affine scheme by Lemma 21.6.6. This proves that
every point of 𝑈 has an open neighbourhood which is affine. �

Clearly the lemma (or its proof) shows that any scheme 𝑋 has a basis (see Topology, Section
5.3) for the topology consisting of affine opens.

Example 21.9.3. Let 𝑘 be a field. An example of a scheme which is not affine is given by
the open subspace 𝑈 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]) ⧵ {(𝑥, 𝑦)} of the affine scheme 𝑋 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]). It
is covered by two affines, namely 𝐷(𝑥) = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦, 1/𝑥]) and 𝐷(𝑦) = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦, 1/𝑦])
whose intersection is 𝐷(𝑥𝑦) = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦, 1/𝑥𝑦]). By the sheaf property for 𝒪𝑈 there is
an exact sequence

0 → Γ(𝑈, 𝒪𝑈) → 𝑘[𝑥, 𝑦, 1/𝑥] × 𝑘[𝑥, 𝑦, 1/𝑦] → 𝑘[𝑥, 𝑦, 1/𝑥𝑦]

We conclude that the map 𝑘[𝑥, 𝑦] → Γ(𝑈, 𝒪𝑈) (coming from the morphism 𝑈 → 𝑋) is an
isomorphism. Therefore 𝑈 cannot be affine since if it was then by Lemma 21.6.5 we would
have 𝑈 ≅ 𝑋.
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21.10. Immersions of schemes

In Lemma 21.9.2 we saw that any open subspace of a scheme is a scheme. Below we will
prove that the same holds for a closed subspace of a scheme.

Note that the notion of a quasi-coherent sheaf of 𝒪𝑋-modules is defined for any ringed space
𝑋 in particular when 𝑋 is a scheme. By our efforts in Section 21.7 we know that such a
sheaf is on any affine open 𝑈 ⊂ 𝑋 of the form 𝑀 for some 𝒪𝑋(𝑈)-module 𝑀.

Lemma 21.10.1. Let 𝑋 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of locally
ringed spaces.

(1) The locally ringed space 𝑍 is a scheme,
(2) the kernel ℐ of the map 𝒪𝑋 → 𝑖∗𝒪𝑍 is a quasi-coherent sheaf of ideals,
(3) for any affine open 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) of 𝑋 the morphism 𝑖−1(𝑈) → 𝑈 can be identified

with 𝑆𝑝𝑒𝑐(𝑅/𝐼) → 𝑆𝑝𝑒𝑐(𝑅) for some ideal 𝐼 ⊂ 𝑅, and
(4) we have ℐ|𝑈 = ̃𝐼.

In particular, any sheaf of ideals locally generated by sections is a quasi-coherent sheaf of
ideals (and vice versa), and any closed subspace of 𝑋 is a scheme.

Proof. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion. Let 𝑧 ∈ 𝑍 be a point. Choose any affine
open neighbourhood 𝑖(𝑧) ∈ 𝑈 ⊂ 𝑋. Say 𝑈 = 𝑆𝑝𝑒𝑐(𝑅). By Lemma 21.8.2 we know that
𝑖−1(𝑈) → 𝑈 can be identified with the morphism of affine schemes 𝑆𝑝𝑒𝑐(𝑅/𝐼) → 𝑆𝑝𝑒𝑐(𝑅).
First of all this implies that 𝑧 ∈ 𝑖−1(𝑈) ⊂ 𝑍 is an affine neighbourhood of 𝑧. Thus 𝑍 is a
scheme. Second this implies that ℐ|𝑈 is ̃𝐼. In other words for every point 𝑥 ∈ 𝑖(𝑍) there
exists an open neighbourhood such that ℐ is quasi-coherent in that neighbourhood. Note
that ℐ|𝑋⧵𝑖(𝑍) ≅ 𝒪𝑋⧵𝑖(𝑍). Thus the restriction of the sheaf of ideals is quasi-coherent on
𝑋 ⧵ 𝑖(𝑍) also. We conclude that ℐ is quasi-coherent. �

Definition 21.10.2. Let 𝑋 be a scheme.
(1) A morphism of schemes is called an open immersion if it is an open immersion

of locally ringed spaces (see Definition 21.3.1).
(2) An open subscheme of 𝑋 is an open subspace of 𝑋 which is a scheme by Lemma

21.9.2 above.
(3) A morphism of schemes is called a closed immersion if it is a closed immersion

of locally ringed spaces (see Definition 21.4.1).
(4) A closed subscheme of 𝑋 is a closed subspace of 𝑋 which is a scheme by Lemma

21.10.1 above.
(5) A morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 is called an immersion, or a locally closed

immersion if it can be factored as 𝑗 ∘ 𝑖 where 𝑖 is a closed immersion and 𝑗 is an
open immersion.

It follows from the lemmas in Sections 21.3 and 21.4 that any open (resp. closed) immersion
of schemes is isomorphic to the inclusion of an open (resp. closed) subscheme of the target.
We will define locally closed subschemes below.

Remark 21.10.3. If 𝑓 ∶ 𝑋 → 𝑌 is an immersion of schemes, then it is in general not
possible to factor 𝑓 as an open immersion followed by a closed immersion. SeeMorphisms,
Example 24.2.10.

Lemma 21.10.4. Let 𝑓 ∶ 𝑌 → 𝑋 be an immersion of schemes. Then 𝑓 is a closed immersion
if and only if 𝑓(𝑌) ⊂ 𝑋 is a closed subset.
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Proof. If 𝑓 is a closed immersion then 𝑓(𝑌) is closed by definition. Conversely, suppose
that 𝑓(𝑌) is closed. By definition there exists an open subscheme 𝑈 ⊂ 𝑋 such that 𝑓 is the
composition of a closed immersion 𝑖 ∶ 𝑌 → 𝑈 and the open immersion 𝑗 ∶ 𝑈 → 𝑋. Let
ℐ ⊂ 𝒪𝑈 be the quasi-coherent sheaf of ideals associated to the closed immerion 𝑖. Note
that ℐ|𝑈⧵𝑖(𝑌) = 𝒪𝑈⧵𝑖(𝑌) = 𝒪𝑋⧵𝑖(𝑌)|𝑈⧵𝑖(𝑌). Thus we may glue (see Sheaves, Section 6.33)
ℐ and 𝒪𝑋⧵𝑖(𝑌) to a sheaf of ideals 𝒥 ⊂ 𝒪𝑋. Since every point of 𝑋 has a neighbourhood
where 𝒥 is quasi-coherent, we see that 𝒥 is quasi-coherent (in particular locally generated
by sections). By construction 𝒪𝑋/𝒥 is supported on 𝑈 and equal to 𝒪𝑈/ℐ. Thus we see
that the closed subspaces associated to ℐ and 𝒥 are canonically isomorphic, see Example
21.4.3. In particular the closed subspace of 𝑈 associated to ℐ is isomorphic to a closed
subspace of 𝑋. Since 𝑌 → 𝑈 is identified with the closed subspace associated to ℐ, see
Lemma 21.4.5, we conclude that 𝑌 → 𝑈 → 𝑋 is a closed immersion. �

Let 𝑓 ∶ 𝑌 → 𝑋 be an immersion. Let 𝑍 = 𝑓(𝑌) ⧵ 𝑓(𝑌) which is a closed subset of 𝑋.
Let 𝑈 = 𝑋 ⧵ 𝑍. The lemma implies that 𝑈 is the biggest open subspace of 𝑋 such that
𝑓 ∶ 𝑌 → 𝑋 factors through a closed immersion into 𝑈. If we define a locally closed
subscheme of 𝑋 as a pair (𝑍, 𝑈) consisting of a closed subscheme 𝑍 of an open subscheme
𝑈 of 𝑋 such that in addition 𝑍 ∪ 𝑈 = 𝑋. We usually just say ``let 𝑍 be a locally closed
subscheme of 𝑋'' since we may recover 𝑈 from the morphism 𝑍 → 𝑋. The above then
shows that any immersion 𝑓 ∶ 𝑌 → 𝑋 factors uniquely as 𝑌 → 𝑍 → 𝑋 where 𝑍 is a locally
closed subspace of 𝑋 and 𝑌 → 𝑍 is an isomorphism.
The interest of this is that the collection of locally closed subschemes of 𝑋 forms a set. We
may define a partial ordering on this set, which we call inclusion for obvious reasons. To
be explicit, if 𝑍 → 𝑋 and 𝑍′ → 𝑋 are two locally closed subschemes of 𝑋, then we say
that 𝑍 is contained in 𝑍′ simply if the morphism 𝑍 → 𝑋 factors through 𝑍′. If it does,
then of course 𝑍 is identified with a unique locally closed subscheme of 𝑍′, and so on.

21.11. Zariski topology of schemes

See Topology, Section 5.1 for some basic material in topology adapted to the Zariski topol-
ogy of schemes.

Lemma 21.11.1. Let 𝑋 be a scheme. Any irreducible closed subset of 𝑋 has a unique
generic point. In other words, 𝑋 is a sober topological space, see Topology, Definition
5.5.4.

Proof. Let 𝑍 ⊂ 𝑋 be an irreducible closed subset. For every affine open 𝑈 ⊂ 𝑋, 𝑈 =
𝑆𝑝𝑒𝑐(𝑅) we know that 𝑍 ∩ 𝑈 = 𝑉(𝐼) for a unique radical ideal 𝐼 ⊂ 𝑅. Note that 𝑍 ∩ 𝐼
is either empty or irreducible. In the second case (which occurs for at least one 𝑈) we see
that 𝐼 = 𝔭 is a prime ideal, which is a generic point 𝜉 of 𝑍 ∩ 𝑈. It follows that 𝑍 = {𝜉},
in other words 𝜉 is a generic point of 𝑍. If 𝜉′ was a second generic point, then 𝜉′ ∈ 𝑍 ∩ 𝑈
and it follows immediately that 𝜉′ = 𝜉. �

Lemma 21.11.2. Let 𝑋 be a scheme. The collection of affine opens of 𝑋 forms a basis for
the topology on 𝑋.

Proof. This follows from the discussion on open subschemes in Section 21.9. �

Remark 21.11.3. In general the intersection of two affine opens in 𝑋 is not affine open.
See Example 21.14.3.

Lemma 21.11.4. The underlying topological space of any scheme is locally quasi-compact,
see Topology, Definition 5.18.1.
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Proof. This follows from Lemma 21.11.2 above and the fact that the spectrum of ring is
quasi-compact, see Algebra, Lemma 7.16.10. �

Lemma 21.11.5. Let 𝑋 be a scheme. Let 𝑈, 𝑉 be affine opens of 𝑋, and let 𝑥 ∈ 𝑈 ∩ 𝑉.
There exists an affine open neighbourhood 𝑊 of 𝑥 such that 𝑊 is a standard open of both
𝑈 and 𝑉.

Proof. Write 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑉 = 𝑆𝑝𝑒𝑐(𝐵). Say 𝑥 corresponds to the prime 𝔭 ⊂ 𝐴 and
the prime 𝔮 ⊂ 𝐵. We may choose a 𝑓 ∈ 𝐴, 𝑓∉𝔭 such that 𝐷(𝑓) ⊂ 𝑈 ∩ 𝑉. Note that any
standard open of 𝐷(𝑓) is a standard open of 𝑆𝑝𝑒𝑐(𝐴) = 𝑈. Hence we may assume that
𝑈 ⊂ 𝑉. In other words, now we may think of 𝑈 as an affine open of 𝑉. Next we choose a
𝑔 ∈ 𝐵, 𝑔∉𝔮 such that 𝐷(𝑔) ⊂ 𝑈. In this case we see that 𝐷(𝑔) = 𝐷(𝑔𝐴) where 𝑔𝐴 ∈ 𝐴
denotes the image of 𝑔 ∈ 𝐴. Thus the lemma is proved. �

Lemma 21.11.6. Let 𝑋 be a scheme. Let 𝑋 = ⋃𝑖 𝑈𝑖 be an affine open covering. Let 𝑉 ⊂ 𝑋
be an affine open. There exists a standard open covering 𝑉 = ⋃𝑗=1,…,𝑚 𝑉𝑗 (see Definition
21.5.2) such that each 𝑉𝑗 is a standard open in one of the 𝑈𝑖.

Proof. Pick 𝑣 ∈ 𝑉. Then 𝑣 ∈ 𝑈𝑖 for some 𝑖. By Lemma 21.11.5 above there exists an open
𝑣 ∈ 𝑊𝑣 ⊂ 𝑉∩𝑈𝑖 such that 𝑊𝑣 is a standard open in both 𝑉 and 𝑈𝑖. Since 𝑉 is quasi-compact
the lemma follows. �

Lemma 21.11.7. Let 𝑋 be a scheme whose underlying topological space is a finite discrete
set. Then 𝑋 is affine.

Proof. Say 𝑋 = {𝑥1, … , 𝑥𝑛}. Then 𝑈𝑖 = {𝑥𝑖} is an open neighbourhood of 𝑥𝑖. By Lemma
21.11.2 it is affine. Hence 𝑋 is a finite disjoint union of affine schemes, and hence is affine
by Lemma 21.6.8. �

Example 21.11.8. There exists a scheme without closed points. Namely, let 𝑅 be a local
domain whose spectrum looks like (0) = 𝔭0 ⊂ 𝔭1 ⊂ 𝔭2 ⊂ … ⊂ 𝔪. Then the open
subscheme 𝑆𝑝𝑒𝑐(𝑅) ⧵ {𝔪} does not have a closed point. To see that such a ring 𝑅 exists,
we use that given any totally ordered group (Γ, ≥) there exists a valuation ring 𝐴 with
valuation group (Γ, ≥), see [Kru32]. See Algebra, Section 7.46 for notation. We take
Γ = 𝐙𝑥1 ⊕ 𝐙𝑥2 ⊕ 𝐙𝑥3 ⊕ … and we define ∑𝑖 𝑎𝑖𝑥𝑖 ≥ 0 if and only if the first nonzero 𝑎𝑖
is > 0, or all 𝑎𝑖 = 0. So 𝑥1 ≥ 𝑥2 ≥ 𝑥3 ≥ … ≥ 0. The subsets 𝑥𝑖 + Γ≥0 are prime ideals of
(Γ, ≥), see Algebra, notation above Lemma 7.46.11. These together with ∅ and Γ≥0 are the
only prime ideals. Hence 𝐴 is an example of a ring with the given structure of its spectrum,
by Algebra, Lemma 7.46.11.

21.12. Reduced schemes

Definition 21.12.1. Let 𝑋 be a scheme. We say 𝑋 is reduced if every local ring 𝒪𝑋,𝑥 is
reduced.

Lemma 21.12.2. A scheme 𝑋 is reduced if and only if 𝒪𝑋(𝑈) is a reduced ring for all
𝑈 ⊂ 𝑋 open.

Proof. Assume that 𝑋 is reduced. Let 𝑓 ∈ 𝒪𝑋(𝑈) be a section such that 𝑓𝑛 = 0. Then
the image of 𝑓 in 𝒪𝑈,𝑢 is zero for all 𝑢 ∈ 𝑈. Hence 𝑓 is zero, see Sheaves, Lemma 6.11.1.
Conversely, assume that 𝒪𝑋(𝑈) is reduced for all opens 𝑈. Pick any nonzero element 𝑓 ∈
𝒪𝑋,𝑥. Any representative (𝑈, 𝑓 ∈ 𝒪(𝑈)) of 𝑓 is nonzero and hence not nilpotent. Hence 𝑓
is not nilpotent in 𝒪𝑋,𝑥. �
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Lemma 21.12.3. An affine scheme 𝑆𝑝𝑒𝑐(𝑅) is reduced if and only if 𝑅 is reduced.

Proof. The direct implication follows immediately from Lemma 21.12.2 above. In the
other direction it follows since any localization of a reduced ring is reduced, and in particular
the local rings of a reduced ring are reduced. �

Lemma 21.12.4. Let 𝑋 be a scheme. Let 𝑇 ⊂ 𝑋 be a closed subset. There exists a unique
closed subscheme 𝑍 ⊂ 𝑋 with the following properties: (a) the underlying topological
space of 𝑍 is equal to 𝑇, and (b) 𝑍 is reduced.

Proof. Let ℐ ⊂ 𝒪𝑋 be the sub presheaf defined by the rule

ℐ(𝑈) = {𝑓 ∈ 𝒪𝑋(𝑈) ∣ 𝑓(𝑡) = 0 for all 𝑡 ∈ 𝑇 ∩ 𝑈}

Here we use 𝑓(𝑡) to indicate the image of 𝑓 in the residue field 𝜅(𝑡) of 𝑋 at 𝑡. Because
of the local nature of the condition it is clear that ℐ is a sheaf of ideals. Moreover, let
𝑈 = 𝑆𝑝𝑒𝑐(𝑅) be an affine open. We may write 𝑇 ∩ 𝑈 = 𝑉(𝐼) for a unique radical ideal
𝐼 ⊂ 𝑅. Given a prime 𝔭 ∈ 𝑉(𝐼) corresponding to 𝑡 ∈ 𝑇 ∩ 𝑈 and an element 𝑓 ∈ 𝑅 we have
𝑓(𝑡) = 0 ⇔ 𝑓 ∈ 𝔭. Hence ℐ(𝑈) = ∩𝔭∈𝑉(𝐼)𝔭 = 𝐼 by Algebra, Lemma 7.16.2. Moreover,
for any standard open 𝐷(𝑔) ⊂ 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 we have ℐ(𝐷(𝑔)) = 𝐼𝑔 by the same reasoning.
Thus ̃𝐼 and ℐ|𝑈 agree (as ideals) on a basis of opens and hence are equal. Therefore ℐ is a
quasi-coherent sheaf of ideals.

At this point we may define 𝑍 as the closed subspace associated to the sheaf of ideals ℐ.
For every affine open 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) of 𝑋 we see that 𝑍∩𝑈 = 𝑆𝑝𝑒𝑐(𝑅/𝐼) where 𝐼 is a radical
ideal and hence 𝑍 is reduced (by Lemma 21.12.3 above). By construction the underlying
closed subset of 𝑍 is 𝑇. Hence we have found a closed subscheme with properties (a) and
(b).

Let 𝑍′ ⊂ 𝑋 be a second closed subschemewith properties (a) and (b). For every affine open
𝑈 = 𝑆𝑝𝑒𝑐(𝑅) of 𝑋 we see that 𝑍′ ∩ 𝑈 = 𝑆𝑝𝑒𝑐(𝑅/𝐼′) for some ideal 𝐼′ ⊂ 𝑅. By Lemma
21.12.3 the ring 𝑅/𝐼′ is reduced and hence 𝐼′ is radical. Since 𝑉(𝐼′) = 𝑇 ∩ 𝑈 = 𝑉(𝐼) we
deduced that 𝐼 = 𝐼′ by Algebra, Lemma 7.16.2. Hence 𝑍′ and 𝑍 are defined by the same
sheaf of ideals and hence are equal. �

Definition 21.12.5. Let 𝑋 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be the inclusion of a closed subset.
A scheme structure on 𝑍 is given by a closed subscheme 𝑍′ of 𝑋 whose underlying closed
is equal to 𝑍. We often say ``let (𝑍, 𝒪𝑍) be a scheme structure on 𝑍'' to indicate this. The
reduced induced scheme structure on 𝑍 is the one constructed in Lemma 21.12.4. The
reduction 𝑋𝑟𝑒𝑑 of 𝑋 is the reduced induced scheme structure on 𝑋 itself.

Often when we say ``let 𝑍 ⊂ 𝑋 be an irreducible component of 𝑋'' we think of 𝑍 as a
reduced closed subscheme of 𝑋 using the reduced induced scheme structure.

Lemma 21.12.6. Let 𝑋 be a scheme. Let 𝑍 ⊂ 𝑋 be a closed subscheme. Let 𝑌 be a
reduced scheme. A morphism 𝑓 ∶ 𝑌 → 𝑋 factors through 𝑍 if and only if 𝑓(𝑌) ⊂ 𝑍 (set
theoretically). In particular, any morphism 𝑌 → 𝑋 factors as 𝑌 → 𝑋𝑟𝑒𝑑 → 𝑋.

Proof. Assume 𝑓(𝑌) ⊂ 𝑍 (set theoretically). Let 𝐼 ⊂ 𝒪𝑋 be the ideal sheaf of 𝑍. For any
affine opens 𝑈 ⊂ 𝑋, 𝑆𝑝𝑒𝑐(𝐵) = 𝑉 ⊂ 𝑌 with 𝑓(𝑉) ⊂ 𝑈 and any 𝑔 ∈ ℐ(𝑈) the pullback
𝑏 = 𝑓♯(𝑔) ∈ Γ(𝑉, 𝒪𝑌) = 𝐵 maps to zero in the residue field of any 𝑦 ∈ 𝑉. In other words
𝑔 ∈ ⋂𝔭⊂𝐵 𝔭. This implies 𝑏 = 0 as 𝐵 is reduced (Lemma 21.12.2, and Algebra, Lemma
7.16.2). Hence 𝑓 factors through 𝑍 by Lemma 21.4.6. �
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21.13. Points of schemes

Given a scheme 𝑋 we can define a functor
ℎ𝑋 ∶ Sch𝑜𝑝𝑝 ⟶ Sets, 𝑇 ⟼ 𝑀𝑜𝑟(𝑇, 𝑋).

See Categories, Example 4.3.4. This is called the functor of points of 𝑋. A fun part of
scheme theory is to find descriptions of the internal geometry of 𝑋 in terms of this functor
ℎ𝑋. In this section we find a simple way to describe points of 𝑋.
Let 𝑋 be a scheme. Let 𝑅 be a local ring with maximal ideal 𝔪 ⊂ 𝑅. Suppose that
𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑅) → 𝑋 is a morphism of schemes. Let 𝑥 ∈ 𝑋 be the image of the closed point
𝔪 ∈ 𝑆𝑝𝑒𝑐(𝑅). Then we obtain a local homomorphism of local rings

𝑓♯ ∶ 𝒪𝑋,𝑥 ⟶ 𝒪𝑆𝑝𝑒𝑐(𝑅),𝔪 = 𝑅.

Lemma 21.13.1. Let 𝑋 be a scheme. Let 𝑅 be a local ring. The construction above gives
a bijective correspondence between morphisms 𝑆𝑝𝑒𝑐(𝑅) → 𝑋 and pairs (𝑥, 𝜑) consisting
of a point 𝑥 ∈ 𝑋 and a local homomorphism of local rings 𝜑 ∶ 𝒪𝑋,𝑥 → 𝑅.

Proof. Let 𝐴 be a ring. For any ring homomorphism 𝜓 ∶ 𝐴 → 𝑅 there exists a unique
prime ideal 𝔭 ⊂ 𝐴 and a factorization 𝐴 → 𝐴𝔭 → 𝑅 where the last map is a local homo-
morphism of local rings. Namely, 𝔭 = 𝜓−1(𝔪). Via Lemma 21.6.4 this proves that the
lemma holds if 𝑋 is an affine scheme.
Let 𝑋 be a general scheme. Any 𝑥 ∈ 𝑋 is contained in an open affine 𝑈 ⊂ 𝑋. By the affine
case we conclude that every pair (𝑥, 𝜑) occurs as the end product of the construction above
the lemma.
To finish the proof it suffices to show that any morphism 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑅) → 𝑋 has image
contained in any affine open containing the image 𝑥 of the closed point of 𝑆𝑝𝑒𝑐(𝑅). In fact,
let 𝑥 ∈ 𝑉 ⊂ 𝑋 be any open neighbourhood containing 𝑥. Then 𝑓−1(𝑉) ⊂ 𝑆𝑝𝑒𝑐(𝑅) is an
open containing the unique closed point and hence equal to 𝑆𝑝𝑒𝑐(𝑅). �

As a special case of the lemma above we obtain for every point 𝑥 of a scheme 𝑋 a canonical
morphism
(21.13.1.1) 𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) ⟶ 𝑋
corresponding to the identity map on the local ring of 𝑋 at 𝑥. We may reformulate the
lemma above as saying that for any morphism 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑅) → 𝑋 there exists a unique
point 𝑥 ∈ 𝑋 such that 𝑓 factors as 𝑆𝑝𝑒𝑐(𝑅) → 𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) → 𝑋 where the first map comes
from a local homomorphism 𝒪𝑋,𝑥 → 𝑅.
In case we have a morphism of schemes 𝑓 ∶ 𝑋 → 𝑆, and a point 𝑥 mapping to a point
𝑠 ∈ 𝑆 we obtain a commutative diagram

𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) // 𝑆

where the left vertical map corresponds to the local ring map 𝑓♯
𝑥 ∶ 𝒪𝑋,𝑥 → 𝒪𝑆,𝑠.

Lemma 21.13.2. Let 𝑋 be a scheme. Let 𝑥, 𝑥′ ∈ 𝑋 be points of 𝑋. Then 𝑥′ ∈ 𝑋 is a
generalization of 𝑥 if and only if 𝑥′ is in the image of the canonical morphism𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) →
𝑋.
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Proof. A continuous map preserves the relation of specialization/generalization. Since
every point of 𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) is a generalization of the closed point we see every point in
the image of 𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) → 𝑋 is a generalization of 𝑥. Conversely, suppose that 𝑥′ is
a generalization of 𝑥. Choose an affine open neighbourhood 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) of 𝑥. Then
𝑥′ ∈ 𝑈. Say 𝔭 ⊂ 𝑅 and 𝔭′ ⊂ 𝑅 are the primes corresponding to 𝑥 and 𝑥′. Since 𝑥′ is a
generalization of 𝑥 we see that 𝔭′ ⊂ 𝔭. This means that 𝔭′ is in the image of the morphism
𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) = 𝑆𝑝𝑒𝑐(𝑅𝔭) → 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 as desired. �

Now, let us discuss morphisms from spectra of fields. Let (𝑅, 𝔪, 𝜅) be a local ring with
maximal ideal 𝔪 and residue field 𝜅. Let 𝐾 be a field. A local homomorphism 𝑅 → 𝐾 by
definition factors as 𝑅 → 𝜅 → 𝐾, i.e., is the same thing as a morphism 𝜅 → 𝐾. Thus we
see that morphisms

𝑆𝑝𝑒𝑐(𝐾) ⟶ 𝑋
correspond to pairs (𝑥, 𝜅(𝑥) → 𝐾). We may define a partial ordering on morphisms of
spectra of fields to 𝑋 by saying that 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 dominates 𝑆𝑝𝑒𝑐(𝐿) → 𝑋 if 𝑆𝑝𝑒𝑐(𝐾) →
𝑋 factors through 𝑆𝑝𝑒𝑐(𝐿) → 𝑋. This suggests the following notion: Let us temporarily
say that two morphisms 𝑝 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 and 𝑞 ∶ 𝑆𝑝𝑒𝑐(𝐿) → 𝑋 are equivalent if there
exists a third field Ω and a commutative diagram

𝑆𝑝𝑒𝑐(Ω) //

��

𝑆𝑝𝑒𝑐(𝐿)

𝑞
��

𝑆𝑝𝑒𝑐(𝐾)
𝑝 // 𝑋

Of course this immediately implies that the unique points of all three of the schemes𝑆𝑝𝑒𝑐(𝐾),
𝑆𝑝𝑒𝑐(𝐿), and 𝑆𝑝𝑒𝑐(Ω) map to the same 𝑥 ∈ 𝑋. Thus a diagram (by the remarks above)
corresponds to a point 𝑥 ∈ 𝑋 and a commutative diagram

Ω 𝐿oo

𝐾

OO

𝜅(𝑥)oo

OO

of fields. This defines an equivalence relation, because given any set of extensions 𝜅 ⊂ 𝐾𝑖
there exists some field extension 𝜅 ⊂ Ω such that all the field extensions 𝐾𝑖 are contained
in the extension Ω.
Lemma 21.13.3. Let 𝑋 be a scheme. Points of 𝑋 correspond bijectively to equivalence
classes of morphisms from spectra of fields into 𝑋. Moreover, each equivalence class con-
tains a (unique up to unique isomorphism) smallest element 𝑆𝑝𝑒𝑐(𝜅(𝑥)) → 𝑋.
Proof. Follows from the discussion above. �

Of course themorphisms𝑆𝑝𝑒𝑐(𝜅(𝑥)) → 𝑋 factor through the canonicalmorphisms𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) →
𝑋. And the content of Lemma 21.13.2 is in this setting that the morphism 𝑆𝑝𝑒𝑐(𝜅(𝑥′)) → 𝑋
factors as 𝑆𝑝𝑒𝑐(𝜅(𝑥′)) → 𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) → 𝑋 whenever 𝑥′ is a generalization of 𝑥. In case
we have a morphism of schemes 𝑓 ∶ 𝑋 → 𝑆, and a point 𝑥 mapping to a point 𝑠 ∈ 𝑆 we
obtain a commutative diagram

𝑆𝑝𝑒𝑐(𝜅(𝑥)) //

��

𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝜅(𝑠)) // 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) // 𝑆.
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21.14. Glueing schemes

Let 𝐼 be a set. For each 𝑖 ∈ 𝐼 let (𝑋𝑖, 𝒪𝑖) be a locally ringed space. (Actually the construction
that follows works equally well for ringed spaces.) For each pair 𝑖, 𝑗 ∈ 𝐼 let 𝑈𝑖𝑗 ⊂ 𝑋𝑖 be an
open subspace. For each pair 𝑖, 𝑗 ∈ 𝐼, let

𝜑𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝑈𝑗𝑖

be an isomorphism of locally ringed spaces. For convenience we assume that 𝑈𝑖𝑖 = 𝑋𝑖 and
𝜑𝑖𝑖 = id𝑋𝑖

. For each triple 𝑖, 𝑗, 𝑘 ∈ 𝐼 assume that

(1) we have 𝜑−1
𝑖𝑗 (𝑈𝑗𝑖 ∩ 𝑈𝑗𝑘) = 𝑈𝑖𝑗 ∩ 𝑈𝑖𝑘, and

(2) the diagram

𝑈𝑖𝑗 ∩ 𝑈𝑖𝑘 𝜑𝑖𝑘
//

𝜑𝑖𝑗 %%

𝑈𝑘𝑖 ∩ 𝑈𝑘𝑗

𝑈𝑗𝑖 ∩ 𝑈𝑗𝑘

𝜑𝑗𝑘

88

is commutative.
Let us call a collection (𝐼, (𝑋𝑖)𝑖∈𝐼, (𝑈𝑖𝑗)𝑖,𝑗∈𝐼, (𝜑𝑖𝑗)𝑖,𝑗∈𝐼) satisfying the conditions above a
glueing data.

Lemma 21.14.1. Given any glueing data of locally ringed spaces there exists a locally
ringed space 𝑋 and open subspaces 𝑈𝑖 ⊂ 𝑋 together with isomorphisms 𝜑𝑖 ∶ 𝑋𝑖 → 𝑈𝑖 of
locally ringed spaces such that

(1) 𝜑𝑖(𝑈𝑖𝑗) = 𝑈𝑖 ∩ 𝑈𝑗, and
(2) 𝜑𝑖𝑗 = 𝜑−1

𝑗 |𝑈𝑖∩𝑈𝑗
∘ 𝜑𝑖|𝑈𝑖𝑗

.
The locally ringed space 𝑋 is characterized by the following mapping properties: Given a
locally ringed space 𝑌 we have

𝑀𝑜𝑟(𝑋, 𝑌) = {(𝑓𝑖)𝑖∈𝐼 ∣ 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌, 𝑓𝑗 ∘ 𝜑𝑖𝑗 = 𝑓𝑖|𝑈𝑖𝑗
}

𝑓 ↦ (𝑓|𝑈𝑖
∘ 𝜑𝑖)𝑖∈𝐼

𝑀𝑜𝑟(𝑌, 𝑋) = {
open covering 𝑌 = ⋃𝑖∈𝐼 𝑉𝑖 and (𝑔𝑖 ∶ 𝑉𝑖 → 𝑋𝑖)𝑖∈𝐼 such that

𝑔−1
𝑖 (𝑈𝑖𝑗) = 𝑉𝑖 ∩ 𝑉𝑗 and 𝑔𝑗|𝑉𝑖∩𝑉𝑗

= 𝜑𝑖𝑗 ∘ 𝑔𝑖|𝑉𝑖∩𝑉𝑗 }

𝑔 ↦ 𝑉𝑖 = 𝑔−1(𝑈𝑖), 𝑔𝑖 = 𝑔|𝑉𝑖

Proof. We construct 𝑋 in stages. As a set we take

𝑋 = (∐ 𝑋𝑖)/ ∼ .

Here given 𝑥 ∈ 𝑋𝑖 and 𝑥′ ∈ 𝑋𝑗 we say 𝑥 ∼ 𝑥′ if and only if 𝑥 ∈ 𝑈𝑖𝑗, 𝑥′ ∈ 𝑈𝑗𝑖 and
𝜑𝑖𝑗(𝑥) = 𝑥′. This is an equivalence relation since if 𝑥 ∈ 𝑋𝑖, 𝑥′ ∈ 𝑋𝑗, 𝑥″ ∈ 𝑋𝑘, and
𝑥 ∼ 𝑥′ and 𝑥′ ∼ 𝑥″, then 𝑥′ ∈ 𝑈𝑗𝑖 ∩ 𝑈𝑗𝑘, hence by condition (1) of a glueing data
also 𝑥 ∈ 𝑈𝑖𝑗 ∩ 𝑈𝑖𝑘 and 𝑥″ ∈ 𝑈𝑘𝑖 ∩ 𝑈𝑘𝑗 and by condition (2) we see that 𝜑𝑖𝑘(𝑥) = 𝑥″.
(Reflexivity and symmetry follows from our assumptions that 𝑈𝑖𝑖 = 𝑋𝑖 and 𝜑𝑖𝑖 = id𝑋𝑖

.)
Denote 𝜑𝑖 ∶ 𝑋𝑖 → 𝑋 the natural maps. Denote 𝑈𝑖 = 𝜑𝑖(𝑋𝑖) ⊂ 𝑋. Note that 𝜑𝑖 ∶ 𝑋𝑖 → 𝑈𝑖
is a bijection.

The topology on 𝑋 is defined by the rule that 𝑈 ⊂ 𝑋 is open if and only if 𝜑−1
𝑖 (𝑈) is open

for all 𝑖. We leave it to the reader to verify that this does indeed define a topology. Note that
in particular 𝑈𝑖 is open since 𝜑−1

𝑗 (𝑈𝑖) = 𝑈𝑗𝑖 which is open in 𝑋𝑗 for all 𝑗. Moreover, for
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any open set 𝑊 ⊂ 𝑋𝑖 the image 𝜑𝑖(𝑊) ⊂ 𝑈𝑖 is open because 𝜑−1
𝑗 (𝜑𝑖(𝑊)) = 𝜑−1

𝑗𝑖 (𝑊 ∩ 𝑈𝑖𝑗).
Therefore 𝜑𝑖 ∶ 𝑋𝑖 → 𝑈𝑖 is a homeomorphism.

To obtain a locally ringed space we have to construct the sheaf of rings 𝒪𝑋. We do this by
glueing the sheaves of rings 𝒪𝑈𝑖

∶= 𝜑𝑖,∗𝒪𝑋𝑖
. Namely, in the commutative diagram

𝑈𝑖𝑗 𝜑𝑖𝑗
//

𝜑𝑖|𝑈𝑖𝑗 ##

𝑈𝑗𝑖

𝜑𝑗|𝑈𝑗𝑖||
𝑈𝑖 ∩ 𝑈𝑗

the arrow on top is an isomorphism of ringed spaces, and hencewe get unique isomorphisms
of sheaves of rings

𝒪𝑈𝑖
|𝑈𝑖∩𝑈𝑗

⟶ 𝒪𝑈𝑗
|𝑈𝑖∩𝑈𝑗

.

These satisfy a cocycle condition as in Sheaves, Section 6.33. By the results of that section
we obtain a sheaf of rings 𝒪𝑋 on 𝑋 such that 𝒪𝑋|𝑈𝑖

is isomorphic to 𝒪𝑈𝑖
compatibly with

the glueing maps displayed above. In particular (𝑋, 𝒪𝑋) is a locally ringed space since the
stalks of 𝒪𝑋 are equal to the stalks of 𝒪𝑋𝑖

at corresponding points.

The proof of the mapping properties is omitted. �

Lemma 21.14.2. In Lemma 21.14.1 above, assume that all 𝑋𝑖 are schemes. Then the
resulting locally ringed space 𝑋 is a scheme.

Proof. This is clear since each of the 𝑈𝑖 is a scheme and hence every 𝑥 ∈ 𝑋 has an affine
neighbourhood. �

It is customary to think of 𝑋𝑖 as an open subspace of 𝑋 via the isomorphisms 𝜑𝑖. We will
do this in the next two examples.

Example 21.14.3. (Affine space with zero doubled.) Let 𝑘 be a field. Let 𝑛 ≥ 1. Let
𝑋1 = 𝑆𝑝𝑒𝑐(𝑘[𝑥1, … , 𝑥𝑛]), let 𝑋2 = 𝑆𝑝𝑒𝑐(𝑘[𝑦1, … , 𝑦𝑛]). Let 01 ∈ 𝑋1 be the point cor-
responding to the maximal ideal (𝑥1, … , 𝑥𝑛) ⊂ 𝑘[𝑥1, … , 𝑥𝑛]. Let 02 ∈ 𝑋2 be the point
corresponding to the maximal ideal (𝑦1, … , 𝑦𝑛) ⊂ 𝑘[𝑦1, … , 𝑦𝑛]. Let 𝑈12 = 𝑋1 ⧵ {01}
and let 𝑈21 = 𝑋2 ⧵ {02}. Let 𝜑12 ∶ 𝑈12 → 𝑈21 be the isomorphism coming from
the isomorphism of 𝑘-algebras 𝑘[𝑦1, … , 𝑦𝑛] → 𝑘[𝑥1, … , 𝑥𝑛] mapping 𝑦𝑖 to 𝑥𝑖 (which
induces 𝑋1 ≅ 𝑋2 mapping 01 to 02). Let 𝑋 be the scheme obtained from the glueing
data (𝑋1, 𝑋2, 𝑈12, 𝑈21, 𝜑12, 𝜑21 = 𝜑−1

12 ). Via the slight abuse of notation introduced above
the example we think of 𝑋𝑖 ⊂ 𝑋 as open subschemes. There is a morphism 𝑓 ∶ 𝑋 →
𝑆𝑝𝑒𝑐(𝑘[𝑡1, … , 𝑡𝑛]) which on 𝑋𝑖 corresponds to 𝑘 algebra map 𝑘[𝑡1, … , 𝑡𝑛] → 𝑘[𝑥1, … , 𝑥𝑛]
(resp. 𝑘[𝑡1, … , 𝑡𝑛] → 𝑘[𝑦1, … , 𝑦𝑛]) mapping 𝑡𝑖 to 𝑥𝑖 (resp. 𝑡𝑖 to 𝑦𝑖). It is easy to see that this
morphism identifies 𝑘[𝑡1, … , 𝑡𝑛] with Γ(𝑋, 𝒪𝑋). Since 𝑓(01) = 𝑓(02) we see that 𝑋 is not
affine.

Note that 𝑋1 and 𝑋2 are affine opens of 𝑋. But, if 𝑛 = 2, then 𝑋1 ∩ 𝑋2 is the scheme
described in Example 21.9.3 and hence not affine. Thus in general the intersection of affine
opens of a scheme is not affine. (This fact holds more generally for any 𝑛 > 1.)

Another curious feature of this example is the following. If 𝑛 > 1 there are many irreducible
closed subsets 𝑇 ⊂ 𝑋 (take the closure of any non closed point in 𝑋1 for example). But
unless 𝑇 = {01}, or 𝑇 = {02} we have 01 ∈ 𝑇 ⇔ 02 ∈ 𝑇. Proof omitted.
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Example 21.14.4. (Projective line.) Let 𝑘 be a field. Let 𝑋1 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]), let 𝑋2 =
𝑆𝑝𝑒𝑐(𝑘[𝑦]). Let 0 ∈ 𝑋1 be the point corresponding to the maximal ideal (𝑥) ⊂ 𝑘[𝑥].
Let ∞ ∈ 𝑋2 be the point corresponding to the maximal ideal (𝑦) ⊂ 𝑘[𝑦]. Let 𝑈12 =
𝑋1 ⧵ {0} = 𝐷(𝑥) = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 1/𝑥]) and let 𝑈21 = 𝑋2 ⧵ {∞} = 𝐷(𝑦) = 𝑆𝑝𝑒𝑐(𝑘[𝑦, 1/𝑦]).
Let 𝜑12 ∶ 𝑈12 → 𝑈21 be the isomorphism coming from the isomorphism of 𝑘-algebras
𝑘[𝑦, 1/𝑦] → 𝑘[𝑥, 1/𝑥] mapping 𝑦 to 1/𝑥. Let 𝐏1

𝑘 be the scheme obtained from the glueing
data (𝑋1, 𝑋2, 𝑈12, 𝑈21, 𝜑12, 𝜑21 = 𝜑−1

12 ). Via the slight abuse of notation introduced above
the example we think of 𝑋𝑖 ⊂ 𝐏1

𝑘 as open subschemes. In this case we see that Γ(𝐏1
𝑘, 𝒪) = 𝑘

because the only polynomials 𝑔(𝑥) in 𝑥 such that 𝑔(1/𝑦) is also a polynomial in 𝑦 are constant
polynomials. Since 𝐏1

𝑘 is infinite we see that 𝐏1
𝑘 is not affine.

We claim that there exists an affine open 𝑈 ⊂ 𝐏1
𝑘 which contains both 0 and ∞. Namely,

let 𝑈 = 𝐏1
𝑘 ⧵ {1}, where 1 is the point of 𝑋1 corresponding to the maximal ideal (𝑥 − 1)

and also the point of 𝑋2 corresponding to the maximal ideal (𝑦 − 1). Then it is easy to see
that 𝑠 = 1/(𝑥 − 1) = 𝑦/(1 − 𝑦) ∈ Γ(𝑈, 𝒪𝑈). In fact you can show that Γ(𝑈, 𝒪𝑈) is equal
to the polynomial ring 𝑘[𝑠] and that the corresponding morphism 𝑈 → 𝑆𝑝𝑒𝑐(𝑘[𝑠]) is an
isomorphism of schemes. Details omitted.

21.15. A representability criterion

In this section we reformulate the glueing lemma of Section 21.14 in terms of functors. We
recall some of the material from Categories, Section 4.3. Recall that given a scheme 𝑋 we
can define a functor

ℎ𝑋 ∶ Sch𝑜𝑝𝑝 ⟶ Sets, 𝑇 ⟼ 𝑀𝑜𝑟(𝑇, 𝑋).
This is called the functor of points of 𝑋.
Let 𝐹 be a contravariant functor from the category of schemes to the category of sets. In a
formula

𝐹 ∶ Sch𝑜𝑝𝑝 ⟶ Sets.
We will use the same terminology as in Sites, Section 9.2. Namely, given a scheme 𝑇, an
element 𝜉 ∈ 𝐹(𝑇), and a morphism 𝑓 ∶ 𝑇′ → 𝑇 we will denote 𝑓∗𝜉 the element 𝐹(𝑓)(𝜉),
and sometimes we will even use the notation 𝜉|𝑇′

Definition 21.15.1. (See Categories, Definition 4.3.6.) Let 𝐹 be a contravariant functor
from the category of schemes to the category of sets (as above). We say that 𝐹 is repre-
sentable by a scheme or representable if there exists a scheme 𝑋 such that ℎ𝑋 ≅ 𝐹.

Suppose that 𝐹 is representable by the scheme 𝑋 and that 𝑠 ∶ ℎ𝑋 → 𝐹 is an isomorphism.
By Categories, Yoneda Lemma 4.3.5 the pair (𝑋, 𝑠 ∶ ℎ𝑋 → 𝐹) is unique up to unique
isomorphism if it exists. Moreover, the Yoneda lemma says that given any contravariant
functor 𝐹 as above and any scheme 𝑌, we have a bijection

𝑀𝑜𝑟Fun(Sch𝑜𝑝𝑝,Sets)(ℎ𝑌, 𝐹) ⟶ 𝐹(𝑌), 𝑠 ⟼ 𝑠(id𝑌).
Here is the reverse construction. Given any 𝜉 ∈ 𝐹(𝑌) the transformation of functors 𝑠𝜉 ∶
ℎ𝑌 → 𝐹 associates to any morphism 𝑓 ∶ 𝑇 → 𝑌 the element 𝑓∗𝜉 ∈ 𝐹(𝑇).
In particular, in the case that 𝐹 is representable, there exists a scheme 𝑋 and an element
𝜉 ∈ 𝐹(𝑋) such that the corresponding morphism ℎ𝑋 → 𝐹 is an isomorphism. In this
case we also say the pair (𝑋, 𝜉) represents 𝐹. The element 𝜉 ∈ 𝐹(𝑋) is often called the
``universal family'' for reasons that will become more clear when we talk about algebraic
stacks (insert future reference here). For the moment we simply observe that the fact that if
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the pair (𝑋, 𝜉) represents 𝐹, then every element 𝜉′ ∈ 𝐹(𝑇) for any 𝑇 is of the form 𝜉′ = 𝑓∗𝜉
for a unique morphism 𝑓 ∶ 𝑇 → 𝑋.

Example 21.15.2. Consider the rule which associates to every scheme 𝑇 the set 𝐹(𝑇) =
Γ(𝑇, 𝒪𝑇). We can turn this into a contravariant functor by using for a morphism 𝑓 ∶ 𝑇′ → 𝑇
the pullback map 𝑓♯ ∶ Γ(𝑇, 𝒪𝑇) → Γ(𝑇′, 𝒪𝑇′). Given a ring 𝑅 and an element 𝑡 ∈ 𝑅 there
exists a unique ring homomorphism 𝐙[𝑥] → 𝑅 which maps 𝑥 to 𝑡. Thus, using Lemma
21.6.4, we see that

𝑀𝑜𝑟(𝑇, 𝑆𝑝𝑒𝑐(𝐙[𝑥])) = 𝐻𝑜𝑚(𝐙[𝑥], Γ(𝑇, 𝒪𝑇)) = Γ(𝑇, 𝒪𝑇).

This does indeed give an isomorphism ℎ𝑆𝑝𝑒𝑐(𝐙[𝑥]) → 𝐹. What is the ``universal family''
𝜉? To get it we have to apply the identifications above to id𝑆𝑝𝑒𝑐(𝐙[𝑥]). Clearly under the
identifications above this gives that 𝜉 = 𝑥 ∈ Γ(𝑆𝑝𝑒𝑐(𝐙[𝑥]), 𝒪𝑆𝑝𝑒𝑐(𝐙[𝑥])) = 𝐙[𝑥] as expected.

Definition 21.15.3. Let 𝐹 be a contravariant functor on the category of schemes with values
in sets.

(1) We say that 𝐹 satisfies the sheaf property for the Zariski topology if for every
scheme 𝑇 and every open covering 𝑇 = ⋃𝑖∈𝐼 𝑈𝑖, and for any collection of el-
ements 𝜉𝑖 ∈ 𝐹(𝑈𝑖) such that 𝜉𝑖|𝑈𝑖∩𝑈𝑗

= 𝜉𝑗|𝑈𝑖∩𝑈𝑗
there exists a unique element

𝜉 ∈ 𝐹(𝑇) such that 𝜉𝑖 = 𝜉|𝑈𝑖
in 𝐹(𝑈𝑖).

(2) A subfunctor 𝐻 ⊂ 𝐹 is a rule that associates to every scheme 𝑇 a subset 𝐻(𝑇) ⊂
𝐹(𝑇) such that the maps 𝐹(𝑓) ∶ 𝐹(𝑇) → 𝐹(𝑇′) maps 𝐻(𝑇) into 𝐻(𝑇′) for all
morphisms of schemes 𝑓 ∶ 𝑇′ → 𝑇.

(3) Let 𝐻 ⊂ 𝐹 be a subfunctor. We say that 𝐻 ⊂ 𝐹 is representable by open immer-
sions if for all pairs (𝑇, 𝜉), where 𝑇 is a scheme and 𝜉 ∈ 𝐹(𝑇) there exists an open
subscheme 𝑈𝜉 ⊂ 𝑇 with the following property:
(∗) A morphism 𝑓 ∶ 𝑇′ → 𝑇 factors through 𝑈𝜉 if and only if 𝑓∗𝜉 ∈ 𝐻(𝑇′).

(4) Let 𝐼 be a set. For each 𝑖 ∈ 𝐼 let 𝐻𝑖 ⊂ 𝐹 be a subfunctor. We say that the
collection (𝐻𝑖)𝑖∈𝐼 covers 𝐹 if and only if for every 𝜉 ∈ 𝐹(𝑇) there exists an open
covering 𝑇 = ⋃ 𝑈𝑖 such that 𝜉|𝑈𝑖

∈ 𝐻𝑖(𝑈𝑖).

Lemma 21.15.4. Let 𝐹 be a contravariant functor on the category of schemes with values
in the category of sets. Suppose that

(1) 𝐹 satisfies the sheaf property for the Zariski topology,
(2) there exists a set 𝐼 and a collection of subfunctors 𝐹𝑖 ⊂ 𝐹 such that

(a) each 𝐹𝑖 is representable,
(b) each 𝐹𝑖 ⊂ 𝐹 is representable by open immersions, and
(c) the collection (𝐹𝑖)𝑖∈𝐼 covers 𝐹.

Then 𝐹 is representable.

Proof. Let 𝑋𝑖 be a scheme representing 𝐹𝑖 and let 𝜉𝑖 ∈ 𝐹𝑖(𝑋𝑖) ⊂ 𝐹(𝑋𝑖) be the ``universal
family''. Because 𝐹𝑗 ⊂ 𝐹 is representable by open immersions, there exists an open 𝑈𝑖𝑗 ⊂
𝑋𝑖 such that 𝑇 → 𝑋𝑖 factors through 𝑈𝑖𝑗 if and only if 𝜉𝑖|𝑇 ∈ 𝐹𝑗(𝑇). In particular 𝜉𝑖|𝑈𝑖𝑗

∈
𝐹𝑗(𝑈𝑖𝑗) and therefore we obtain a canonical morphism 𝜑𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝑋𝑗 such that 𝜑∗

𝑖𝑗𝜉𝑗 =
𝜉𝑖|𝑈𝑖𝑗

. By defintion of 𝑈𝑗𝑖 this implies that 𝜑𝑖𝑗 factors through 𝑈𝑗𝑖. Since (𝜑𝑖𝑗 ∘ 𝜑𝑗𝑖)∗𝜉𝑗 =
𝜑∗

𝑗𝑖(𝜑
∗
𝑖𝑗𝜉𝑗) = 𝜑∗

𝑗𝑖𝜉𝑖 = 𝜉𝑗 we conclude that 𝜑𝑖𝑗∘𝜑𝑗𝑖 = id𝑈𝑗𝑖
because the pair (𝑋𝑗, 𝜉𝑗) represents

𝐹𝑗. In particular the maps 𝜑𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝑈𝑗𝑖 are isomorphisms of schemes. Next we have to
show that 𝜑−1

𝑖𝑗 (𝑈𝑗𝑖 ∩ 𝑈𝑗𝑘) = 𝑈𝑖𝑗 ∩ 𝑈𝑖𝑘. This is true because (a) 𝑈𝑗𝑖 ∩ 𝑈𝑗𝑘 is the largest open
of 𝑈𝑗𝑖 such that 𝜉𝑗 restricts to an element of 𝐹𝑘, (b) 𝑈𝑖𝑗 ∩ 𝑈𝑖𝑘 is the largest open of 𝑈𝑖𝑗 such
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that 𝜉𝑖 restricts to an element of 𝐹𝑘, and (c) 𝜑∗
𝑖𝑗𝜉𝑗 = 𝜉𝑖. Moreover, the cocycle condition

in Section 21.14 follows because both 𝜑𝑗𝑘|𝑈𝑗𝑖∩𝑈𝑗𝑘
∘ 𝜑𝑖𝑗|𝑈𝑖𝑗∩𝑈𝑖𝑘

and 𝜑𝑖𝑘|𝑈𝑖𝑗∩𝑈𝑖𝑘
pullback 𝜉𝑘

to the element 𝜉𝑖. Thus we may apply Lemma 21.14.2 to obtain a scheme 𝑋 with an open
covering 𝑋 = ⋃ 𝑈𝑖 and isomorphisms 𝜑𝑖 ∶ 𝑋𝑖 → 𝑈𝑖 with properties as in Lemma 21.14.1.
Let 𝜉′

𝑖 = (𝜑−1
𝑖 )∗𝜉𝑖. The conditions of Lemma 21.14.1 imply that 𝜉′

𝑖 |𝑈𝑖∩𝑈𝑗
= 𝜉′

𝑗|𝑈𝑖∩𝑈𝑗
.

Therefore, by the condition that 𝐹 satisfies the sheaf condition in the Zariski topology we
see that there exists an element 𝜉′ ∈ 𝐹(𝑋) such that 𝜉𝑖 = 𝜑∗

𝑖 𝜉′|𝑈𝑖
for all 𝑖. Since 𝜑𝑖 is an

isomorphism we also get that (𝑈𝑖, 𝜉′|𝑈𝑖
) represents the functor 𝐹𝑖.

We claim that the pair (𝑋, 𝜉′) represents the functor 𝐹. To show this, let 𝑇 be a scheme and
let 𝜉 ∈ 𝐹(𝑇). We will construct a unqiue morphism 𝑔 ∶ 𝑇 → 𝑋 such that 𝑔∗𝜉′ = 𝜉. Namely,
by the condition that the subfunctors 𝐹𝑖 cover 𝑇 there exists an open covering 𝑇 = ⋃ 𝑉𝑖 such
that for each 𝑖 the restriction 𝜉|𝑉𝑖

∈ 𝐹𝑖(𝑉𝑖). Moreover, since each of the inclusions 𝐹𝑖 ⊂ 𝐹
are representable by open immersions we may assume that each 𝑉𝑖 ⊂ 𝑇 is maximal open
with this property. Because, (𝑈𝑖, 𝜉′

𝑈𝑖
) represents the functor 𝐹𝑖 we get a unique morphism

𝑔𝑖 ∶ 𝑉𝑖 → 𝑈𝑖 such that 𝑔∗
𝑖 𝜉′|𝑈𝑖

= 𝜉|𝑉𝑖
. On the overlaps 𝑉𝑖 ∩ 𝑉𝑗 the morphisms 𝑔𝑖 and 𝑔𝑗

agree, for example because they both pull back 𝜉′|𝑈𝑖∩𝑈𝑗
∈ 𝐹𝑖(𝑈𝑖 ∩ 𝑈𝑗) to the same element.

Thus the morphisms 𝑔𝑖 glue to a unique morphism from 𝑇 → 𝑋 as desired. �

Remark 21.15.5. Suppose the functor 𝐹 is defined on all locally ringed spaces, and if
conditions of Lemma 21.15.4 are replaced by the following:

(1) 𝐹 satisfies the sheaf property on the category of locally ringed spaces,
(2) there exists a set 𝐼 and a collection of subfunctors 𝐹𝑖 ⊂ 𝐹 such that

(a) each 𝐹𝑖 is representable by a scheme,
(b) each 𝐹𝑖 ⊂ 𝐹 is representable by open immersions on the category of locally

ringed spaces, and
(c) the collection (𝐹𝑖)𝑖∈𝐼 covers 𝐹 as a functor on the category of locally ringed

spaces.
We leave it to the reader to spell this out further. Then the end result is that the functor 𝐹
is representable in the category of locally ringed spaces and that the representing object is
a scheme.

21.16. Existence of fibre products of schemes

A very basic question is whether or not products and fibre products exist on the category
of schemes. We first prove abstractly that products and fibre products exist, and in the next
section we show how we may think in a reasonable way about fibre products of schemes.

Lemma 21.16.1. The category of schemes has a final object, products and fibre products.
In other words, the category of schemes has finite limits, see Categories, Lemma 4.16.4.

Proof. Please skip this proof. It is more important to learn how to work with the fibre
product which is explained in the next section.

By Lemma 21.6.4 the scheme 𝑆𝑝𝑒𝑐(𝐙) is a final object in the category of locally ringed
spaces. Thus it suffices to prove that fibred products exist.

Let 𝑓 ∶ 𝑋 → 𝑆 and 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes. We have to show that the functor

𝐹 ∶ Sch𝑜𝑝𝑝 ⟶ Sets
𝑇 ⟼ 𝑀𝑜𝑟(𝑇, 𝑋) ×𝑀𝑜𝑟(𝑇,𝑆) 𝑀𝑜𝑟(𝑇, 𝑌)
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is representable. We claim that Lemma 21.15.4 applies to the functor 𝐹. If we prove this
then the lemma is proved.

First we show that 𝐹 satisfies the sheaf property in the Zariski topology. Namely, suppose
that 𝑇 is a scheme, 𝑇 = ⋃𝑖∈𝐼 𝑈𝑖 is an open covering, and 𝜉𝑖 ∈ 𝐹(𝑈𝑖) such that 𝜉𝑖|𝑈𝑖∩𝑈𝑗

=
𝜉𝑗|𝑈𝑖∩𝑈𝑗

for all pairs 𝑖, 𝑗. By definition 𝜉𝑖 corresponds to a pair (𝑎𝑖, 𝑏𝑖) where 𝑎𝑖 ∶ 𝑈𝑖 → 𝑋
and 𝑏𝑖 ∶ 𝑈𝑖 → 𝑌 are morphisms of schemes such that 𝑓 ∘ 𝑎𝑖 = 𝑔 ∘ 𝑏𝑖. The glueing condition
says that 𝑎𝑖|𝑈𝑖∩𝑈𝑗

= 𝑎𝑗|𝑈𝑖∩𝑈𝑗
and 𝑏𝑖|𝑈𝑖∩𝑈𝑗

= 𝑏𝑗|𝑈𝑖∩𝑈𝑗
. Thus by glueing the morphisms 𝑎𝑖 we

obtain a morphism of locally ringed spaces (i.e., a morphism of schemes) 𝑎 ∶ 𝑇 → 𝑋 and
similarly 𝑏 ∶ 𝑇 → 𝑌 (see for example the mapping property of Lemma 21.14.1). Moreover,
on the members of an open covering the compositions 𝑓 ∘ 𝑎 and 𝑔 ∘ 𝑏 agree. Therefore
𝑓 ∘ 𝑎 = 𝑔 ∘ 𝑏 and the pair (𝑎, 𝑏) defines an element of 𝐹(𝑇) which restricts to the pairs (𝑎𝑖, 𝑏𝑖)
on each 𝑈𝑖. The sheaf condition is verified.

Next, we construct the family of subfunctors. Choose an open covering by open affines
𝑆 = ⋃𝑖∈𝐼 𝑈𝑖. For every 𝑖 ∈ 𝐼 choose open coverings by open affines 𝑓−1(𝑈𝑖) = ⋃𝑗∈𝐽𝑖

𝑉𝑗

and 𝑔−1(𝑈𝑖) = ⋃𝑘∈𝐾𝑖
𝑊𝑘. Note that 𝑋 = ⋃𝑖∈𝐼 ⋃𝑗∈𝐽𝑖

𝑉𝑗 is an open covering and similarly
for 𝑌. For any 𝑖 ∈ 𝐼 and each pair (𝑗, 𝑘) ∈ 𝐽𝑖 × 𝐾𝑖 we have a commutative diagram

𝑊𝑘

�� ��
𝑉𝑗

  

// 𝑈𝑖

  

𝑌

��
𝑋 // 𝑆

where all the skew arrows are open immersions. For such a triple we get a functor

𝐹𝑖,𝑗,𝑘 ∶ Sch𝑜𝑝𝑝 ⟶ Sets
𝑇 ⟼ 𝑀𝑜𝑟(𝑇, 𝑉𝑗) ×𝑀𝑜𝑟(𝑇,𝑈𝑖) 𝑀𝑜𝑟(𝑇, 𝑊𝑗).

There is an obvious transformation of functors 𝐹𝑖,𝑗,𝑘 → 𝐹 (coming from the huge com-
mutative diagram above) which is injective, so we may think of 𝐹𝑖,𝑗,𝑘 as a subfunctor of
𝐹.

We check condition (2)(a) of Lemma 21.15.4. This follows directly from Lemma 21.6.7.
(Note that we use here that the fibre products in the category of affine schemes are also fibre
products in the whole category of locally ringed spaces.)

We check condition (2)(b) of Lemma 21.15.4. Let 𝑇 be a scheme and let 𝜉 ∈ 𝐹(𝑇). In other
words, 𝜉 = (𝑎, 𝑏) where 𝑎 ∶ 𝑇 → 𝑋 and 𝑏 ∶ 𝑇 → 𝑌 are morphisms of schemes such that
𝑓 ∘ 𝑎 = 𝑔 ∘ 𝑏. Set 𝑉𝑖,𝑗,𝑘 = 𝑎−1(𝑉𝑗) ∩ 𝑏−1(𝑊𝑘). For any further morphism ℎ ∶ 𝑇′ → 𝑇 we
have ℎ∗𝜉 = (𝑎 ∘ ℎ, 𝑏 ∘ ℎ). Hence we see that ℎ∗𝜉 ∈ 𝐹𝑖,𝑗,𝑘(𝑇′) if and only if 𝑎(ℎ(𝑇′)) ⊂ 𝑉𝑗 and
𝑏(ℎ(𝑇′)) ⊂ 𝑊𝑘. In other words, if and only if ℎ(𝑇′) ⊂ 𝑉𝑖,𝑗,𝑘. This proves condition (2)(b).

We check condition (2)(c) of Lemma 21.15.4. Let 𝑇 be a scheme and let 𝜉 = (𝑎, 𝑏) ∈ 𝐹(𝑇)
as above. Set 𝑉𝑖,𝑗,𝑘 = 𝑎−1(𝑉𝑗) ∩ 𝑏−1(𝑊𝑘) as above. Condition (2)(c) just means that 𝑇 =
⋃ 𝑉𝑖,𝑗,𝑘 which is evident. Thus the lemma is proved and fibre products exist. �

Remark 21.16.2. Using Remark 21.15.5 you can show that the fibre product of morphisms
of schemes exists in the category of locally ringed spaces and is a scheme.
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21.17. Fibre products of schemes

Here is a review of the general definition, even though we have already shown that fibre
products of schemes exist.

Definition 21.17.1. Given morphisms of schemes 𝑓 ∶ 𝑋 → 𝑆 and 𝑔 ∶ 𝑌 → 𝑆 the fibre
product is a scheme 𝑋 ×𝑆 𝑌 together with projection morphisms 𝑝 ∶ 𝑋 ×𝑆 𝑌 → 𝑋 and
𝑞 ∶ 𝑋 ×𝑆 𝑌 → 𝑌 sitting into the following commutative diagram

𝑋 ×𝑆 𝑌 𝑞
//

𝑝
��

𝑌

𝑔
��

𝑋
𝑓 // 𝑆

which is universal among all diagrams of this sort, see Categories, Definition 4.6.1.

In other words, given any solid commutative diagram of morphisms of schemes

𝑇

**''

��

𝑋 ×𝑆 𝑌

��

// 𝑌

��
𝑋 // 𝑆

there exists a unique dotted arrow making the diagram commute. We will prove some
lemmas which will tell us how to think about fibre products.

Lemma 21.17.2. Let 𝑓 ∶ 𝑋 → 𝑆 and 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes with the same
target. If 𝑋, 𝑌, 𝑆 are all affine then 𝑋 ×𝑆 𝑌 is affine.

Proof. Suppose that 𝑋 = 𝑆𝑝𝑒𝑐(𝐴), 𝑌 = 𝑆𝑝𝑒𝑐(𝐵) and 𝑆 = 𝑆𝑝𝑒𝑐(𝑅). By Lemma 21.6.7 the
affine scheme 𝑆𝑝𝑒𝑐(𝐴 ⊗𝑅 𝐵) is the fibre product 𝑋 ×𝑆 𝑌 in the category of locally ringed
spaces. Hence it is a fortiori the fibre product in the category of schemes. �

Lemma 21.17.3. Let 𝑓 ∶ 𝑋 → 𝑆 and 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes with the
same target. Let 𝑋 ×𝑆 𝑌, 𝑝, 𝑞 be the fibre product. Suppose that 𝑈 ⊂ 𝑆, 𝑉 ⊂ 𝑋, 𝑊 ⊂ 𝑌
are open subschemes such that 𝑓(𝑉) ⊂ 𝑈 and 𝑔(𝑊) ⊂ 𝑈. Then the canonical morphism
𝑉 ×𝑈 𝑊 → 𝑋 ×𝑆 𝑌 is an open immersion which identifies 𝑉 ×𝑈 𝑊 with 𝑝−1(𝑉) ∩ 𝑞−1(𝑊).

Proof. Let 𝑇 be a scheme Suppose 𝑎 ∶ 𝑇 → 𝑉 and 𝑏 ∶ 𝑇 → 𝑊 are morphisms such
that 𝑓 ∘ 𝑎 = 𝑔 ∘ 𝑏 as morphisms into 𝑈. Then they agree as morphisms into 𝑆. By the
universal property of the fibre product we get a unique morphism 𝑇 → 𝑋 ×𝑆 𝑌. Of course
this morphism has image contained in the open 𝑝−1(𝑉)∩𝑞−1(𝑊). Thus 𝑝−1(𝑉)∩𝑞−1(𝑊) is a
fibre product of 𝑉 and 𝑊 over 𝑈. The result follows from the uniqueness of fibre products,
see Categories, Section 4.6. �

In particular this shows that 𝑉 ×𝑈 𝑊 = 𝑉 ×𝑆 𝑊 in the situation of the lemma. Moreover,
if 𝑈, 𝑉, 𝑊 are all affine, then we know that 𝑉 ×𝑈 𝑊 is affine. And of course we may cover
𝑋 ×𝑆 𝑌 by such affine opens 𝑉 ×𝑈 𝑊. We formulate this as a lemma.

Lemma 21.17.4. Let 𝑓 ∶ 𝑋 → 𝑆 and 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes with the same
target. Let 𝑆 = ⋃ 𝑈𝑖 be any affine open covering of 𝑆. For each 𝑖 ∈ 𝐼, let 𝑓−1(𝑈𝑖) =
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⋃𝑗∈𝐽𝑖
𝑉𝑗 be an affine open covering of 𝑓−1(𝑈𝑖) and let 𝑔−1(𝑈𝑖) = ⋃𝑘∈𝐾𝑖

𝑊𝑘 be an affine
open covering of 𝑓−1(𝑈𝑖). Then

𝑋 ×𝑆 𝑌 = ⋃𝑖∈𝐼 ⋃𝑗∈𝐽𝑖, 𝑘∈𝐾𝑖
𝑉𝑗 ×𝑈𝑖

𝑊𝑘

is an affine open covering of 𝑋 ×𝑆 𝑌.

Proof. See discussion above the lemma. �

In other words, we might have used the previous lemma as a way of construction the fibre
product directly by glueing the affine schemes. (Which is of course exactly what we did in
the proof of Lemma 21.16.1 anyway.) Here is a way to describe the set of points of a fibre
product of schemes.

Lemma 21.17.5. Let 𝑓 ∶ 𝑋 → 𝑆 and 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes with the same
target. Points 𝑧 of 𝑋 ×𝑆 𝑌 are in bijective correspondence to quadruples

(𝑥, 𝑦, 𝑠, 𝔭)
where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑠 ∈ 𝑆 are points with 𝑓(𝑥) = 𝑠, 𝑔(𝑦) = 𝑠 and 𝔭 is a prime ideal of the
ring 𝜅(𝑥) ⊗𝜅(𝑠) 𝜅(𝑦). The residue field of 𝑧 corresponds to the residue field of the prime 𝔭.

Proof. Let 𝑧 be a point of 𝑋 ×𝑆 𝑌 and let us construct a triple as above. Recall that we
may think of 𝑧 as a morphism 𝑆𝑝𝑒𝑐(𝜅(𝑧)) → 𝑋 ×𝑆 𝑌, see Lemma 21.13.3. This morphism
corresponds to morphisms 𝑎 ∶ 𝑆𝑝𝑒𝑐(𝜅(𝑧)) → 𝑋 and 𝑏 ∶ 𝑆𝑝𝑒𝑐(𝜅(𝑧)) → 𝑌 such that 𝑓 ∘
𝑎 = 𝑔 ∘ 𝑏. By the same lemma again we get points 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 lying over the same
point 𝑠 ∈ 𝑆 as well as field maps 𝜅(𝑥) → 𝜅(𝑧), 𝜅(𝑦) → 𝜅(𝑧) such that the compositions
𝜅(𝑠) → 𝜅(𝑥) → 𝜅(𝑧) and 𝜅(𝑠) → 𝜅(𝑦) → 𝜅(𝑧) are the same. In other words we get a ring
map 𝜅(𝑥) ⊗𝜅(𝑠) 𝜅(𝑦) → 𝜅(𝑧). We let 𝔭 be the kernel of this map.
Conversely, given a quadruple (𝑥, 𝑦, 𝑠, 𝔭) we get a commutative solid diagram

𝑋 ×𝑆 𝑌

  

++𝑆𝑝𝑒𝑐(𝜅(𝑥) ⊗𝜅(𝑠) 𝜅(𝑦)/𝔭) //

��

hh

𝑆𝑝𝑒𝑐(𝜅(𝑦))

��

// 𝑌

��

𝑆𝑝𝑒𝑐(𝜅(𝑥)) //

��

𝑆𝑝𝑒𝑐(𝜅(𝑠))

$$
𝑋 // 𝑆

see the discussion in Section 21.13. Thus we get the dotted arrow. The corrsponding point
𝑧 of 𝑋 ×𝑆 𝑌 is the image of the generic point of 𝑆𝑝𝑒𝑐(𝜅(𝑥) ⊗𝜅(𝑠) 𝜅(𝑦)/𝔭). We omit the
verification that the two constructions are inverse to each other. �

Lemma 21.17.6. Let 𝑓 ∶ 𝑋 → 𝑆 and 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes with the same
target.

(1) If 𝑓 ∶ 𝑋 → 𝑆 is a closed immersion, then 𝑋 ×𝑆 𝑌 → 𝑌 is a closed immersion.
Moreover, if 𝑋 → 𝑆 corresponds to the quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑆,
then 𝑋 ×𝑆 𝑌 → 𝑌 corresponds to the sheaf of ideals Im(𝑔∗ℐ → 𝒪𝑌).

(2) If 𝑓 ∶ 𝑋 → 𝑆 is an open immersion, then 𝑋 ×𝑆 𝑌 → 𝑌 is an open immersion.
(3) If 𝑓 ∶ 𝑋 → 𝑆 is an immersion, then 𝑋 ×𝑆 𝑌 → 𝑌 is an immersion.
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Proof. Assume that 𝑋 → 𝑆 is a closed immersion corresponding to the quasi-coherent
sheaf of ideals ℐ ⊂ 𝒪𝑆. By Lemma 21.4.7 the closed subspace 𝑍 ⊂ 𝑌 defined by the sheaf
of ideals Im(𝑔∗ℐ → 𝒪𝑌) is the fibre product in the category of locally ringed spaces. By
Lemma 21.10.1 𝑍 is a scheme. Hence 𝑍 = 𝑋 ×𝑆 𝑌 and the first statement follows. The
second follows from Lemma 21.17.3 for example. The third is a combination of the first
two. �

Definition 21.17.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑍 ⊂ 𝑌 be a closed sub-
scheme of 𝑌. The inverse image 𝑓−1(𝑍) of the closed subscheme 𝑍 is the closed subscheme
𝑍 ×𝑌 𝑋 of 𝑋. See Lemma 21.17.6 above.

We may occasionally also use this terminology with locally closed and open subschemes.

21.18. Base change in algebraic geometry

Onemotivation for the introduction of the language of schemes is that it gives a very precise
notion of what it means to define a variety over a particular field. For example a variety 𝑋
over 𝐐 is synonymous (insert future reference here) with 𝑋 → 𝑆𝑝𝑒𝑐(𝐐) which is of finite
type, separated, irreducible and reduced1. In any case, the idea is more generally to work
with schemes over a given base scheme, often denoted 𝑆. We use the language: ``let 𝑋
be a scheme over 𝑆'' to mean simply that 𝑋 comes equipped with a morphism 𝑋 → 𝑆.
In diagrams we will try to picture the structure morphism 𝑋 → 𝑆 as a downward arrow
from 𝑋 to 𝑆. We are often more interested in the properties of 𝑋 relative to 𝑆 rather than
the internal geometry of 𝑋. For example, we would like to know things about the fibres of
𝑋 → 𝑆, what happens to 𝑋 after base change, etc, etc.

We introduce some of the language that is customarily used. Of course this language is just
a special case of thinking about the category of objects over a given object in a category,
see Categories, Example 4.2.13.

Definition 21.18.1. Let 𝑆 be a scheme.
(1) We say 𝑋 is a scheme over 𝑆 to mean that 𝑋 comes equipped with a morphism

of schemes 𝑋 → 𝑆. The morphism 𝑋 → 𝑆 is sometimes called the structure
morphism.

(2) If 𝑅 is a ring we say 𝑋 is a scheme over 𝑅 instead of 𝑋 is a scheme over 𝑆𝑝𝑒𝑐(𝑅).
(3) A morphism 𝑓 ∶ 𝑋 → 𝑌 of schemes over 𝑆 is a morphism of schemes such that

the composition 𝑋 → 𝑌 → 𝑆 of 𝑓 with the structure morphism of 𝑌 is equal to
the structure morphism of 𝑋.

(4) We denote 𝑀𝑜𝑟𝑆(𝑋, 𝑌) the set of all morphisms from 𝑋 to 𝑌 over 𝑆.
(5) Let 𝑋 be a scheme over 𝑆. Let 𝑆′ → 𝑆 be a morphism of schemes. The base

change of 𝑋 is the scheme 𝑋𝑆′ = 𝑆′ ×𝑆 𝑋 over 𝑆′.
(6) Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆. Let 𝑆′ → 𝑆 be a morphism

of schemes. The base change of 𝑓 is the induced morphism 𝑓′ ∶ 𝑋𝑆′ → 𝑌𝑆′

(namely the morphsm id𝑆′ ×id𝑆
𝑓).

(7) Let 𝑅 be a ring. Let 𝑋 be a scheme over 𝑅. Let 𝑅 → 𝑅′ be a ring map. The base
change 𝑋𝑅′ is the scheme 𝑆𝑝𝑒𝑐(𝑅′) ×𝑆𝑝𝑒𝑐(𝑅) 𝑋 over 𝑅′.

Here is a typical result.

1Of course algebraic geometers still quibble over whether one should require 𝑋 to be geometrically irre-
ducible over 𝐐.
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Lemma 21.18.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be an immersion (resp. closed
immersion, resp. open immersion) of schemes over 𝑆. Then any base change of 𝑓 is an
immersion (resp. closed immersion, resp. open immersion).

Proof. We can think of the base change of 𝑓 via the morphism 𝑆′ → 𝑆 as the top left
vertical arrow in the following commutative diagram:

𝑋𝑆′ //

��

𝑋

��

��

𝑌𝑆′ //

��

𝑌

��
𝑆′ // 𝑆

The diagram implies 𝑋𝑆′ ≅ 𝑌𝑆′ ×𝑌 𝑋, and the lemma follows from Lemma 21.17.6. �

In fact this type of result is so typical that there is a piece of language to express it. Here it
is.

Definition 21.18.3. Properties and base change.
(1) Let 𝒫 be a property of schemes over a base. We say that 𝒫 is preserved under

arbitrary base change, or simply that preserved under base change if whenever
𝑋/𝑆 has 𝒫, any base change 𝑋𝑆′/𝑆′ has 𝒫.

(2) Let 𝒫 be a property of morphisms of schemes over a base. We say that 𝒫 is pre-
served under arbitrary base change, or simply that preserved under base change
if whenever 𝑓 ∶ 𝑋 → 𝑌 over 𝑆 has 𝒫, any base change 𝑓′ ∶ 𝑋𝑆′ → 𝑌𝑆′ over 𝑆′

has 𝒫.

At this point we can say that ``being a closed immersion'' is preserved under arbitrary base
change.

Definition 21.18.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆 be a point. The
scheme theoretic fibre 𝑋𝑠 of 𝑓 over 𝑠, or simply the fibre of 𝑓 over 𝑠 is the scheme fitting in
the following fibre product diagram

𝑋𝑠 = 𝑆𝑝𝑒𝑐(𝜅(𝑠)) ×𝑆 𝑋 //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝜅(𝑠)) // 𝑆

We think of the fibre 𝑋𝑠 always as a scheme over 𝜅(𝑠).

Lemma 21.18.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Consider the diagrams

𝑋𝑠
//

��

𝑋

��

𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) ×𝑆 𝑋 //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝜅(𝑠)) // 𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) // 𝑆

In both cases the top horizontal arrow is a homeomorphism onto its image.

Proof. Choose an open affine 𝑈 ⊂ 𝑆 that contains 𝑠. The bottom horizontal morphisms
factor through 𝑈, see Lemma 21.13.1 for example. Thus we may assume that 𝑆 is affine. If
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𝑋 is also affine, then the result follows from Algebra, Remark 7.16.8. In the general case
the result follows by covering 𝑋 by open affines. �

21.19. Quasi-compact morphisms

A scheme is quasi-compact if its underlying topological space is quasi-compact. There is
a relative notion which is defined as follows.

Definition 21.19.1. Amorphism of schemes is called quasi-compact if the underlying map
of topological spaces is quasi-compact, see Topology, Definition 5.9.1.

Lemma 21.19.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) 𝑓 ∶ 𝑋 → 𝑆 is quasi-compact,
(2) the inverse image of every affine open is quasi-compact, and
(3) there exists some affine open covering 𝑆 = ⋃𝑖∈𝐼 𝑈𝑖 such that 𝑓−1(𝑈𝑖) is quasi-

compact for all 𝑖.

Proof. Suppose we are given a covering 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 as in (3). First, let 𝑈 ⊂ 𝑆 be any
affine open. For any 𝑢 ∈ 𝑈 we can find an index 𝑖(𝑢) ∈ 𝐼 such that 𝑢 ∈ 𝑈𝑖(𝑢). By Lemma
21.11.5 we can find an affine open 𝑊𝑢 ⊂ 𝑈∩𝑈𝑖(𝑢) which is standard open in both 𝑈 and 𝑈𝑖(𝑢).
By compactness we can find finitely many points 𝑢1, … , 𝑢𝑛 ∈ 𝑈 such that 𝑈 = ⋃𝑛

𝑗=1 𝑊𝑢𝑗
.

For each 𝑗 write 𝑓−1𝑈𝑖(𝑢𝑗) = ⋃𝑘∈𝐾𝑗
𝑉𝑗𝑘 as a finite union of affine opens. Since 𝑊𝑢𝑗

⊂ 𝑈𝑖(𝑢)

is a standard open we see that 𝑓−1(𝑊𝑢𝑗
)∩𝑉𝑗𝑘 is a standard open of 𝑉𝑗𝑘, see Algebra, Lemma

7.16.4. Hence 𝑓−1(𝑊𝑢𝑗
) ∩ 𝑉𝑗𝑘 is affine, and so 𝑓−1(𝑊𝑢𝑗

) is a finite union of affines. This
proves that the inverse image of any affine open is a finite union of affine opens.
Next, assume that the inverse image of every affine open is a finite union of affine opens.
Let 𝐾 ⊂ 𝑋 be any quasi-compact open. Since 𝑋 has a basis of the topology consisting of
affine opens we see that 𝐾 is a finite union of affine opens. Hence the inverse image of 𝐾
is a finite union of affine opens. Hence 𝑓 is quasi-compact.
Finally, assume that 𝑓 is quasi-compact. In this case the argument of the previous paragraph
shows that the inverse image of any affine is a finite union of affine opens. �

Lemma 21.19.3. Being quasi-compact is a property of morphisms of schemes over a base
which is preserved under arbitrary base change.

Proof. Omitted. �

Lemma 21.19.4. The composition of quasi-compact morphisms is quasi-compact.

Proof. Omitted. �

Lemma 21.19.5. A closed immersion is quasi-compact.

Proof. Follows from the definitions and Topology, Lemma 5.9.3. �

Example 21.19.6. An open immersion is in general not quasi-compact. The standard ex-
ample of this is the open subspace 𝑈 ⊂ 𝑋, where 𝑋 = 𝑆𝑝𝑒𝑐(𝑘[𝑥1, 𝑥2, 𝑥3, …]), where 𝑈 is
𝑋 ⧵ {0}, and where 0 is the point of 𝑋 corresponding to the maximal ideal (𝑥1, 𝑥2, 𝑥3, …).

Lemma 21.19.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact morphism of schemes. The following
are equivalent

(1) 𝑓(𝑋) ⊂ 𝑆 is closed, and
(2) 𝑓(𝑋) ⊂ 𝑆 is stable under specialization.
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Proof. We have (1) ⇒ (2) by Topology, Lemma 5.14.2. Assume (2). Let 𝑈 ⊂ 𝑆 be an
affine open. It suffices to prove that 𝑓(𝑋) ∩ 𝑈 is closed. Since 𝑈 ∩ 𝑓(𝑋) is stable under
specializations, we have reduced to the case where 𝑆 is affine. Because 𝑓 is quasi-compact
we deduce that 𝑋 = 𝑓−1(𝑆) is quasi-compact as 𝑆 is affine. Thus we may write 𝑋 =
⋃𝑛

𝑖=1 𝑈𝑖 with 𝑈𝑖 ⊂ 𝑋 open affine. Say 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝐴𝑖) for some 𝑅-algebra
𝐴𝑖. Then 𝑓(𝑋) = Im(𝑆𝑝𝑒𝑐(𝐴1 × … × 𝐴𝑛) → 𝑆𝑝𝑒𝑐(𝑅)). Thus the lemma follows from
Algebra, Lemma 7.36.5. �

Lemma 21.19.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact morphism of schemes. Then 𝑓 is
closed if and only if specializations lift along 𝑓, see Topology, Definition 5.14.3.

Proof. According to Topology, Lemma 5.14.6 if 𝑓 is closed then specializations lift along
𝑓. Conversely, suppose that specializations lift along 𝑓. Let 𝑍 ⊂ 𝑋 be a closed subset.
We may think of 𝑍 as a scheme with the reduced induced scheme structure, see Definition
21.12.5. Since 𝑍 ⊂ 𝑋 is closed the restriction of 𝑓 to 𝑍 is still quasi-compact. Moreover
specializations lift along 𝑍 → 𝑆 as well, see Topology, Lemma 5.14.4. Hence it suffices
to prove 𝑓(𝑋) is closed if specializations lift along 𝑓. In particular 𝑓(𝑋) is stable under
specializations, see Topology, Lemma 5.14.5. Thus 𝑓(𝑋) is closed by Lemma 21.19.7. �

21.20. Valuative criterion for universal closedness

In Topology, Section 5.12 there is a discussion of proper maps as closedmaps of topological
spaces all of whose fibres are quasi-compact, or as maps such that all base changes are
closed maps. Here is the corresponding notion in algebraic geometry.

Definition 21.20.1. A morphism of schemes 𝑓 ∶ 𝑋 → 𝑆 is said to be universally closed if
every base change 𝑓′ ∶ 𝑋𝑆′ → 𝑆′ is closed.

In fact the adjective ``universally'' is often used in this way. In other words, given a property
𝒫 of morphisms the we say that ``𝑋 → 𝑆 is universally 𝒫'' if and only if every base change
𝑋𝑆′ → 𝑆′ has 𝒫.

Please take a look at Morphisms, Section 24.40 for a more detailed discussion of the prop-
erties of universally closed morphisms. In this section we restrict the discussion to the
relationship between universal closed morphisms and morphisms satisfying the existence
part of the valuative criterion.

Lemma 21.20.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) If 𝑓 is universally closed then specializations lift along any base change of 𝑓, see

Topology, Definition 5.14.3.
(2) If 𝑓 is quasi-compact and specializations lift along any base change of 𝑓, then 𝑓

is universally closed.

Proof. Part (1) is a direct consequence of Topology, Lemma 5.14.6. Part (2) follows from
Lemmas 21.19.8 and 21.19.3. �

Definition 21.20.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. We say 𝑓 satisfies the
existence part of the valuative criterion if given any commutative solid diagram

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) //

;;

𝑆
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where 𝐴 is a valuation ring with field of fractions 𝐾, the dotted arrow exists. We say 𝑓
satisfies the uniqueness part of the valuative criterion if there is at most one dotted arrow
given any diagram as above (without requiring existence of course).

A valuation ring is a local domain maximal among the relation of domination in its fraction
field, see Algebra, Definition 7.46.1. Hence the spectrum of a valuation ring has a unique
generic point 𝜂 and a unique closed point 0, and of course we have the specialization 𝜂 0.
The significance of valuation rings is that any specialization of points in any scheme is the
image of 𝜂 0 under some morphism from the spectrum of some valuation ring. Here is
the precise result.

Lemma 21.20.4. Let 𝑆 be a scheme. Let 𝑠′  𝑠 be a specialization of points of 𝑆. Then
(1) there exists a valuation ring 𝐴 and a morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑆 such that the

generic point 𝜂 of 𝑆𝑝𝑒𝑐(𝐴) maps to 𝑠′ and the special point maps to 𝑠, and
(2) given a field extension 𝜅(𝑠′) ⊂ 𝐾 we may arrange it so that the extension 𝜅(𝑠′) ⊂

𝜅(𝜂) induced by 𝑓 is isomorphic to the given extension.

Proof. Let 𝑠′  𝑠 be a specialization in 𝑆, and let 𝜅(𝑠′) ⊂ 𝐾 be an extension of fields.
By Lemma 21.13.2 and the discussion following Lemma 21.13.3 this leads to ring maps
𝒪𝑆,𝑠 → 𝜅(𝑠′) → 𝐾. Let 𝐴 ⊂ 𝐾 be any valuation ring whose field of fractions is 𝐾 andwhich
dominates the image of 𝒪𝑆,𝑠 → 𝐾, see Algebra, Lemma 7.46.2. The ring map 𝒪𝑆,𝑠 → 𝐴
induces the morphism 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑆, see Lemma 21.13.1. This morphism has all the
desired properties by construction. �

Lemma 21.20.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) Specializations lift along any base change of 𝑓
(2) The morphism 𝑓 satisfies the existence part of the valuative criterion.

Proof. Assume (1) holds. Let a solid diagram as in Definition 21.20.3 be given. In order
to find the dotted arrow we may replace 𝑋 → 𝑆 by 𝑋𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝐴) since after all
the assumption is stable under base change. Thus we may assume 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). Let
𝑥′ ∈ 𝑋 be the image of 𝑆𝑝𝑒𝑐(𝐾) → 𝑋, so that we have 𝜅(𝑥′) ⊂ 𝐾, see Lemma 21.13.3.
By assumption there exists a specialization 𝑥′  𝑥 in 𝑋 such that 𝑥 maps to the closed
point of 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). We get a local ring map 𝐴 → 𝒪𝑋,𝑥 and a ring map 𝒪𝑋,𝑥 → 𝜅(𝑥′),
see Lemma 21.13.2 and the discussion following Lemma 21.13.3. The composition 𝐴 →
𝒪𝑋,𝑥 → 𝜅(𝑥′) → 𝐾 is the given injection 𝐴 → 𝐾. Since 𝐴 → 𝒪𝑋,𝑥 is local, the image of
𝒪𝑋,𝑥 → 𝐾 dominates 𝐴 and hence is equal to 𝐴, by Algebra, Definition 7.46.1. Thus we
obtain a ring map 𝒪𝑋,𝑥 → 𝐴 and hence a morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑋 (see Lemma 21.13.1
and discussion following it). This proves (2).

Conversely, assume (2) holds. It is immediate that the existence part of the valuative crite-
rion holds for any base change 𝑋𝑆′ → 𝑆′ of 𝑓 by considering the following commutative
diagram

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋𝑆′ //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) //

:: 55

𝑆′ // 𝑆

Namely, the more horizontal dotted arrow will lead to the other one by definition of the
fibre product. OK, so it clearly suffices to show that specializations lift along 𝑓. Let 𝑠′  𝑠
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be a specialization in 𝑆, and let 𝑥′ ∈ 𝑋 be a point lying over 𝑠′. Apply Lemma 21.20.4 to
𝑠′  𝑠 and the extension of fields 𝜅(𝑠′) ⊂ 𝜅(𝑥′) = 𝐾. We get a commutative diagram

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) //

44

𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) // 𝑆

and by condition (2) we get the dotted arrow. The image 𝑥 of the closed point of 𝑆𝑝𝑒𝑐(𝐴)
in 𝑋 will be a solution to our problem, i.e., 𝑥 is a specialization of 𝑥′ and maps to 𝑠. �

Proposition 21.20.6. (Valuative criterion of universal closedness.) Let𝑓 be a quasi-compact
morphism of schemes. Then 𝑓 is universally closed if and only if 𝑓 satisfies the existence
part of the valuative criterion.

Proof. This is a formal consequence of Lemmas 21.20.2 and 21.20.5 above. �

Example 21.20.7. Let 𝑘 be a field. Consider the structure morphism 𝑝 ∶ 𝐏1
𝑘 → 𝑆𝑝𝑒𝑐(𝑘) of

the projective line over 𝑘, see Example 21.14.4. Let us use the valuative criterion above to
prove that 𝑝 is universally closed. By construction 𝐏1

𝑘 is covered by two affine opens and
hence 𝑝 is quasi-compact. Let a commutative diagram

𝑆𝑝𝑒𝑐(𝐾)
𝜉

//

��

𝐏1
𝑘

��
𝑆𝑝𝑒𝑐(𝐴)

𝜑 // 𝑆𝑝𝑒𝑐(𝑘)

be given, where 𝐴 is a valuation ring and 𝐾 is its field of fractions. Recall that 𝐏1
𝑘 is

gotten by glueing 𝑆𝑝𝑒𝑐(𝑘[𝑥]) to 𝑆𝑝𝑒𝑐(𝑘[𝑦]) by glueing 𝐷(𝑥) to 𝐷(𝑦) via 𝑥 = 𝑦−1 (or more
symmetrically 𝑥𝑦 = 1). To show there is a morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝐏1

𝑘 fitting diagonally into
the diagram above we may assume that 𝜉 maps into the open 𝑆𝑝𝑒𝑐(𝑘[𝑥]) (by symmetry).
This gives the following commutative diagram of rings

𝐾 𝑘[𝑥]
𝜉♯

oo

𝐴

OO

𝑘

OO

𝜑♯
oo

By Algebra, Lemma 7.46.3 we see that either 𝜉♯(𝑥) ∈ 𝐴 or 𝜉♯(𝑥)−1 ∈ 𝐴. In the first case
we get a ring map

𝑘[𝑥] → 𝐴, 𝜆 ↦ 𝜑♯(𝜆), 𝑥 ↦ 𝜉♯(𝑥)

fitting into the diagram of rings above, and we win. In the second case we see that we get
a ring map

𝑘[𝑦] → 𝐴, 𝜆 ↦ 𝜑♯(𝜆), 𝑦 ↦ 𝜉♯(𝑥)−1.

This gives a morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝑘[𝑦]) → 𝐏1
𝑘 which fits diagonally into the initial

commutative diagram of this example (check omitted).
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21.21. Separation axioms

A topological space 𝑋 is Hausdorff if and only if the diagonal Δ ⊂ 𝑋×𝑋 is a closed subset.
The analogue in algebraic geometry is, given a scheme 𝑋 over a base scheme 𝑆, to consider
the diagonal morphism

Δ𝑋/𝑆 ∶ 𝑋 ⟶ 𝑋 ×𝑆 𝑋.

This is the unique morphism of schemes such that pr1 ∘ Δ𝑋/𝑆 = id𝑋 and pr2 ∘ Δ𝑋/𝑆 = id𝑋
(it exists in any category with fibre products).

Lemma 21.21.1. The diagonal morphism of a morphism between affines is closed.

Proof. The diagonal morphism associated to the morphism 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is the
morphism on spectra corresponding to the ring map 𝑆 ⊗𝑅 𝑆 → 𝑆, 𝑎 ⊗ 𝑏 ↦ 𝑎𝑏. This map
is clearly surjective, so 𝑆 ≅ 𝑆 ⊗𝑅 𝑆/𝐽 for some ideal 𝐽 ⊂ 𝑆 ⊗𝑅 𝑆. Hence Δ is a closed
immersion according to Example 21.8.1 �

Lemma 21.21.2. Let𝑋 be a scheme over𝑆. The diagonal morphismΔ𝑋/𝑆 is an immersion.

Proof. Recall that if 𝑉 ⊂ 𝑋 is affine open and maps into 𝑈 ⊂ 𝑆 affine open, then 𝑉 ×𝑈 𝑉
is affine open in 𝑋 ×𝑆 𝑋, see Lemmas 21.17.2 and 21.17.3. Consider the open subscheme
𝑊 of 𝑋 ×𝑆 𝑋 which is the union of these affine opens 𝑉 ×𝑈 𝑉. By Lemma 21.4.2 it is
enough to show that each morphism Δ−1

𝑋/𝑆(𝑉 ×𝑈 𝑉) → 𝑉 ×𝑈 𝑉 is a closed immersion. Since
𝑉 = Δ−1

𝑋/𝑆(𝑉 ×𝑈 𝑉) we are just checking that Δ𝑉/𝑈 is a closed immersion, which is Lemma
21.21.1. �

Definition 21.21.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.

(1) We say 𝑓 is separated if the diagonal morphism Δ𝑋/𝑆 is a closed immersion.
(2) We say 𝑓 is quasi-separated if the diagonal morphism Δ𝑋/𝑆 is a quasi-compact

morphism.
(3) We say a scheme 𝑌 is separated if the morphism 𝑌 → 𝑆𝑝𝑒𝑐(𝐙) is separated.
(4) We say a scheme 𝑌 is quasi-separated if the morphism 𝑌 → 𝑆𝑝𝑒𝑐(𝐙) is quasi-

separated.

By Lemmas 21.21.2 and 21.10.4 we see that Δ𝑋/𝑆 is a closed immersion if an only if
Δ𝑋/𝑆(𝑋) ⊂ 𝑋×𝑆 𝑋 is a closed subset. Moreover, by Lemma 21.19.5 we see that a separated
morphism is quasi-separated. The reason for introducing quasi-separated morphisms is that
nonseparated morphisms come up naturally in studying algebraic varieties (especially when
doing moduli, algebraic stacks, etc). But most often they are still quasi-separated.

Example 21.21.4. Here is an example of a non-quasi-separated morphism. Suppose 𝑋 =
𝑋1 ∪ 𝑋2 → 𝑆 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑋1 = 𝑋2 = 𝑆𝑝𝑒𝑐(𝑘[𝑡1, 𝑡2, 𝑡3, …]) glued along the com-
plement of {0} = {(𝑡1, 𝑡2, 𝑡3, …)} (glued as in Example 21.14.3). In this case the inverse
image of the affine scheme 𝑋1 ×𝑆 𝑋2 under Δ𝑋/𝑆 is the scheme 𝑆𝑝𝑒𝑐(𝑘[𝑡1, 𝑡2, 𝑡3, …]) ⧵ {0}
which is not quasi-compact.

Lemma 21.21.5. Let 𝑋, 𝑌 be schemes over 𝑆. Let 𝑎, 𝑏 ∶ 𝑋 → 𝑌 be morphisms of schemes
over 𝑆. There exists a largest locally closed subscheme 𝑍 ⊂ 𝑋 such that 𝑎|𝑍 = 𝑏|𝑍. In
fact 𝑍 is the equalizer of (𝑎, 𝑏). Moreover, if 𝑌 is separated over 𝑆, then 𝑍 is a closed
subscheme.
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Proof. The equalizer of (𝑎, 𝑏) is for categorical reasons the fibre product 𝑍 in the following
diagram

𝑍 = 𝑌 ×(𝑌×𝑆𝑌) 𝑋 //

��

𝑋

(𝑎,𝑏)
��

𝑌
Δ𝑌/𝑆 // 𝑌 ×𝑆 𝑌

Thus the lemma follows from Lemmas 21.18.2, 21.21.2 and Definition 21.21.3. �

Lemma 21.21.6. An affine scheme is separated. Amorphism of affine schemes is separated.

Proof. See Lemma 21.21.1. �

Lemma 21.21.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) The morphism 𝑓 is quasi-separated.
(2) For every pair of affine opens 𝑈, 𝑉 ⊂ 𝑋 which map into a common affine open of

𝑆 the intersection 𝑈 ∩ 𝑉 is a finite union of affine opens of 𝑋.
(3) There exists an affine open covering 𝑆 = ⋃𝑖∈𝐼 𝑈𝑖 and for each 𝑖 an affine open

covering 𝑓−1𝑈𝑖 = ⋃𝑗∈𝐼𝑖
𝑉𝑗 such that for each 𝑖 and each pair 𝑗, 𝑗′ ∈ 𝐼𝑖 the

intersection 𝑉𝑗 ∩ 𝑉𝑗′ is a finite union of affine opens of 𝑋.

Proof. Let us prove that (3) implies (1). By Lemma 21.17.4 the covering 𝑋 ×𝑆 𝑋 =
⋃𝑖 ⋃𝑗,𝑗′ 𝑉𝑗 ×𝑈𝑖

𝑉𝑗′ is an affine open covering of 𝑋 ×𝑆 𝑋. Moreover, Δ−1
𝑋/𝑆(𝑉𝑗 ×𝑈𝑖

𝑉𝑗′) =
𝑉𝑗 ∩ 𝑉𝑗′. Hence the implication follows from Lemma 21.19.2.

The implication (1) ⇒ (2) follows from the fact that under the hypotheses of (1) the fibre
product 𝑈 ×𝑆 𝑉 is an affine open of 𝑋 ×𝑆 𝑋. The implication (2) ⇒ (3) is trivial. �

Lemma 21.21.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) If 𝑓 is separated then for every pair of affine opens (𝑈, 𝑉) of 𝑋 which map into a

common affine open of 𝑆 we have
(a) the intersection 𝑈 ∩ 𝑉 is affine.
(b) the ring map 𝒪𝑋(𝑈) ⊗𝐙 𝒪𝑋(𝑉) → 𝒪𝑋(𝑈 ∩ 𝑉) is surjective.

(2) If any pair of points 𝑥1, 𝑥2 ∈ 𝑋 lying over a common point 𝑠 ∈ 𝑆 are contained
in affine opens 𝑥1 ∈ 𝑈, 𝑥2 ∈ 𝑉 which map into a common affine open of 𝑆 such
that (a), (b) hold, then 𝑓 is separated.

Proof. Assume 𝑓 separated. Suppose (𝑈, 𝑉) is a pair as in (1). Let 𝑊 = 𝑆𝑝𝑒𝑐(𝑅) be an
affine open of 𝑆 containing both 𝑓(𝑈) and 𝑔(𝑉). Write 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑉 = 𝑆𝑝𝑒𝑐(𝐵) for
𝑅-algebras 𝐴 and 𝐵. By Lemma 21.17.3 we see that 𝑈 ×𝑆 𝑉 = 𝑈 ×𝑊 𝑉 = 𝑆𝑝𝑒𝑐(𝐴 ⊗𝑅 𝐵) is
an affine open of 𝑋×𝑆 𝑋. Hence, by Lemma 21.10.1 we see that Δ−1(𝑈×𝑆 𝑉) → 𝑈×𝑆 𝑉 can
be identified with 𝑆𝑝𝑒𝑐(𝐴 ⊗𝑅 𝐵/𝐽) for some ideal 𝐽 ⊂ 𝐴 ⊗𝑅 𝐵. Thus 𝑈 ∩ 𝑉 = Δ−1(𝑈 ×𝑆 𝑉)
is affine. Assertion (1)(b) holds because 𝐴 ⊗𝐙 𝐵 → (𝐴 ⊗𝑅 𝐵)/𝐽 is surjective.

Assume the hypothesis formulated in (2) holds. Clearly the collection of affine opens 𝑈×𝑆𝑉
for pairs (𝑈, 𝑉) as in (2) form an affine open covering of 𝑋 ×𝑆 𝑋 (see e.g. Lemma 21.17.4).
Hence it suffices to show that each morphism 𝑈 ∩ 𝑉 = Δ−1

𝑋/𝑆(𝑈 ×𝑆 𝑉) → 𝑈 ×𝑆 𝑉 is a closed
immersion, see Lemma 21.4.2. By assumption (a) we have 𝑈 ∩ 𝑉 = 𝑆𝑝𝑒𝑐(𝐶) for some
ring 𝐶. After choosing an affine open 𝑊 = 𝑆𝑝𝑒𝑐(𝑅) of 𝑆 into which both 𝑈 and 𝑉 map
and writing 𝑈 = 𝑆𝑝𝑒𝑐(𝐴), 𝑉 = 𝑆𝑝𝑒𝑐(𝐵) we see that the assumption (b) means that the
composition

𝐴 ⊗𝐙 𝐵 → 𝐴 ⊗𝑅 𝐵 → 𝐶
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is surjective. Hence 𝐴⊗𝑅𝐵 → 𝐶 is surjective and we conclude that 𝑆𝑝𝑒𝑐(𝐶) → 𝑆𝑝𝑒𝑐(𝐴⊗𝑅
𝐵) is a closed immersion. �

Example 21.21.9. Let 𝑘 be a field. Consider the structure morphism 𝑝 ∶ 𝐏1
𝑘 → 𝑆𝑝𝑒𝑐(𝑘)

of the projective line over 𝑘, see Example 21.14.4. Let us use the lemma above to prove
that 𝑝 is separated. By construction 𝐏1

𝑘 is covered by two affine opens 𝑈 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]) and
𝑉 = 𝑆𝑝𝑒𝑐(𝑘[𝑦]) with intersection 𝑈 ∩ 𝑉 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]/(𝑥𝑦 − 1)) (using obvious notation).
Thus it suffices to check that conditions (2)(a) and (2)(b) of Lemma 21.21.8 hold for the
pairs of affine opens (𝑈, 𝑈), (𝑈, 𝑉), (𝑉, 𝑈) and (𝑉, 𝑉). For the pairs (𝑈, 𝑈) and (𝑉, 𝑉) this is
trivial. For the pair (𝑈, 𝑉) this amounts to proving that 𝑈 ∩ 𝑉 is affine, which is true, and
that the ring map

𝑘[𝑥] ⊗𝐙 𝑘[𝑦] ⟶ 𝑘[𝑥, 𝑦]/(𝑥𝑦 − 1)
is surjective. This is clear because any element in the right hand side can be written as a
sum of a polynomial in 𝑥 and a polynomial in 𝑦.

Lemma 21.21.10. Let 𝑓 ∶ 𝑋 → 𝑇 and 𝑔 ∶ 𝑌 → 𝑇 be morphisms of schemes with the
same target. Let ℎ ∶ 𝑇 → 𝑆 be a morphism of schemes. Then the induced morphism
𝑖 ∶ 𝑋 ×𝑇 𝑌 → 𝑋 ×𝑆 𝑌 is an immersion. If 𝑇 → 𝑆 is separated, then 𝑖 is a closed immersion.
If 𝑇 → 𝑆 is quasi-separated, then 𝑖 is a quasi-compact morphism.

Proof. By general category theory the following diagram

𝑋 ×𝑇 𝑌 //

��

𝑋 ×𝑆 𝑌

��
𝑇

Δ𝑇/𝑆 //// 𝑇 ×𝑆 𝑇

is a fibre product diagram. The lemma follows from Lemmas 21.21.2, 21.17.6 and 21.19.3.
�

Lemma 21.21.11. Let 𝑔 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆. The morphism
𝑖 ∶ 𝑋 → 𝑋 ×𝑆 𝑌 is an immersion. If 𝑌 is separated over 𝑆 it is a closed immersion. If 𝑌 is
quasi-separated over 𝑆 it is quasi-compact.

Proof. This is a special case of Lemma 21.21.10 applied to the morphism 𝑋 = 𝑋 ×𝑌 𝑌 →
𝑋 ×𝑆 𝑌. �

Lemma 21.21.12. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∶ 𝑆 → 𝑋 be a section
of 𝑓 (in a formula 𝑓 ∘ 𝑠 = id𝑆). Then 𝑠 is an immersion. If 𝑓 is separated then 𝑠 is a closed
immersion. If 𝑓 is quasi-separated, then 𝑠 is quasi-compact.

Proof. This is a special case of Lemma 21.21.11 applied to 𝑔 = 𝑠 so the morphism 𝑖 = 𝑠 ∶
𝑆 → 𝑆 ×𝑆 𝑋. �

Lemma 21.21.13. Permanence properties.
(1) A composition of separated morphisms is separated.
(2) A composition of quasi-separated morphisms is quasi-separated.
(3) The base change of a separated morphism is separated.
(4) The base change of a quasi-separated morphism is quasi-separated.
(5) A (fibre) product of separated morphisms is separated.
(6) A (fibre) product of quasi-separated morphisms is quasi-separated.
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Proof. Let 𝑋 → 𝑌 → 𝑍 be morphisms. Assume that 𝑋 → 𝑌 and 𝑌 → 𝑍 are separated.
The composition

𝑋 → 𝑋 ×𝑌 𝑋 → 𝑋 ×𝑍 𝑋
is closed because the first one is by assumption and the second one by Lemma 21.21.10.
The same argument works for ``quasi-separated'' (with the same references).

Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over a base 𝑆. Let 𝑆′ → 𝑆 be a morphism of
schemes. Let 𝑓′ ∶ 𝑋𝑆′ → 𝑌𝑆′ be the base change of 𝑓. Then the diagonal morphism of 𝑓′

is a morphism

Δ𝑓′ ∶ 𝑋𝑆′ = 𝑆′ ×𝑆 𝑋 ⟶ 𝑋𝑆′ ×𝑌𝑆′ 𝑋𝑆′ = 𝑆′ ×𝑆 (𝑋 ×𝑌 𝑋)

which is easily seen to be the base change of Δ𝑓. Thus (3) and (4) follow from the fact
that closed immersions and quasi-compact morphisms are preserved under arbitrary base
change (Lemmas 21.17.6 and 21.19.3).

If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑈 → 𝑉 are morphisms of schemes over a base 𝑆, then 𝑓 × 𝑔 is the
composition of 𝑋×𝑆 𝑈 → 𝑋×𝑆 𝑉 (a base change of 𝑔) and 𝑋×𝑆 𝑉 → 𝑌×𝑆 𝑉 (a base change
of 𝑓). Hence (5) and (6) follow from (1) -- (4). �

Lemma 21.21.14. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms of schemes. If 𝑔 ∘ 𝑓 is
separated then so is 𝑓. If 𝑔 ∘ 𝑓 is quasi-separated then so is 𝑓.

Proof. Assume that 𝑔 ∘ 𝑓 is separated. Consider the factorization 𝑋 → 𝑋 ×𝑌 𝑋 → 𝑋 ×𝑍 𝑋
of the diagonal morphism of 𝑔 ∘ 𝑓. By Lemma 21.21.10 the last morphism is an immersion.
By assumption the image of 𝑋 in 𝑋×𝑍 𝑋 is closed. Hence it is also closed in 𝑋×𝑌 𝑋. Thus
we see that 𝑋 → 𝑋 ×𝑌 𝑋 is a closed immersion by Lemma 21.10.4.

Assume that 𝑔 ∘ 𝑓 is quasi-separated. Let 𝑉 ⊂ 𝑌 be an affine open which maps into an affine
open of 𝑍. Let 𝑈1, 𝑈2 ⊂ 𝑋 be affine opens which map into 𝑉. Then 𝑈1 ∩ 𝑈2 is a finite
union of affine opens because 𝑈1, 𝑈2 map into a common affine open of 𝑍. Since we may
cover 𝑌 by affine opens like 𝑉 we deduce the lemma from Lemma 21.21.7. �

Lemma 21.21.15. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms of schemes. If 𝑔 ∘ 𝑓 is
quasi-compact and 𝑔 is quasi-separated then 𝑓 is quasi-compact.

Proof. This is true because 𝑓 equals the composition (1, 𝑓) ∶ 𝑋 → 𝑋 ×𝑍 𝑌 → 𝑌. The first
map is quasi-compact by Lemma 21.21.12 because it is a section of the quasi-separated
morphism 𝑋 ×𝑍 𝑌 → 𝑋 (a base change of 𝑔, see Lemma 21.21.13). The second map is
quasi-compact as it is the base change of 𝑓, see Lemma 21.19.3. And compositions of
quasi-compact morphisms are quasi-compact, see Lemma 21.19.4. �

You may have been wondering whether the condition of only considering pairs of affine
opens whose image is contained in an affine open is really necessary to be able to conclude
that their intersection is affine. Often it isn't!

Lemma 21.21.16. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume 𝑓 is separated and 𝑆 is a
separated scheme. Suppose 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑋 are affine. Then 𝑈 ∩ 𝑉 is affine (and a
closed subscheme of 𝑈 × 𝑉).

Proof. In this case 𝑋 is separated by Lemma 21.21.13. Hence 𝑈 ∩ 𝑉 is affine by applying
Lemma 21.21.8 to the morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝐙). �

On the other hand, the following example shows that we cannot expect the image of an
affine to be contained in an affine.
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Example 21.21.17. Consider the nonaffine scheme𝑈 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦])⧵{(𝑥, 𝑦)} of Example
21.9.3. On the other hand, consider the scheme

𝐆𝐋2,𝑘 = 𝑆𝑝𝑒𝑐(𝑘[𝑎, 𝑏, 𝑐, 𝑑, 1/𝑎𝑑 − 𝑏𝑐]).
There is a morphism 𝐆𝐋2,𝑘 → 𝑈 corresponding to the ring map 𝑥 ↦ 𝑎, 𝑦 ↦ 𝑏. It is easy
to see that this is a surjective morphism, and hence the image is not contained in any affine
open of 𝑈. In fact, the affine scheme 𝐆𝐋2,𝑘 also surjects onto 𝐏1

𝑘, and 𝐏1
𝑘 does not even

have an immersion into any affine scheme.

21.22. Valuative criterion of separatedness

Lemma 21.22.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑓 is separated, then 𝑓
satisfies the uniqueness part of the valuative criterion.

Proof. Let a diagram as in Definition 21.20.3 be given. Suppose there are two morphisms
𝑎, 𝑏 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑋 fitting into the diagram. Let 𝑍 ⊂ 𝑆𝑝𝑒𝑐(𝐴) be the equalizer of 𝑎 and 𝑏.
By Lemma 21.21.5 this is a closed subscheme of 𝑆𝑝𝑒𝑐(𝐴). By assumption it contains the
generic point of 𝑆𝑝𝑒𝑐(𝐴). Since 𝐴 is a domain this implies 𝑍 = 𝑆𝑝𝑒𝑐(𝐴). Hence 𝑎 = 𝑏 as
desired. �

Lemma 21.22.2. (Valuative criterion separatedness.) Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism.
Assume

(1) the morphism 𝑓 is quasi-separated, and
(2) the morphism 𝑓 satisfies the uniqueness part of the valuative criterion.

Then 𝑓 is separated.

Proof. By assumption (1) and Proposition 21.20.6 we see that it suffices to prove the mor-
phism Δ𝑋/𝑆 ∶ 𝑋 → 𝑋 ×𝑆 𝑋 satisfies the existence part of the valuative criterion. Let a
solid commutative diagram

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) //

99

𝑋 ×𝑆 𝑋

be given. The lower right arrow corresponds to a pair of morphisms 𝑎, 𝑏 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑋
over 𝑆. By (2) we see that 𝑎 = 𝑏. Hence using 𝑎 as the dotted arrow works. �

21.23. Monomorphisms

Definition 21.23.1. Amorphism of schemes is called a monomorphism if it is a monomor-
phism in the category of schemes, see Categories, Definition 4.23.1.

Lemma 21.23.2. Let 𝑗 ∶ 𝑋 → 𝑌 be a morphism of schemes. Then 𝑗 is a monomorphism if
and only if the diagonal morphism Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is an isomorphism.

Proof. This is true in any category with fibre products. �

Lemma 21.23.3. A monomorphism of schemes is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma 21.23.2
above. �

Lemma 21.23.4. A composition of monomorphisms is a monomorpism.

Proof. True in any category. �
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Lemma 21.23.5. The base change of a monomorphism is a monomorphism.

Proof. True in any category with fibre products. �

Lemma 21.23.6. Let 𝑗 ∶ 𝑋 → 𝑌 be a morphism of schemes. If
(1) 𝑗 is injective on points, and
(2) for any 𝑥 ∈ 𝑋 the ring map 𝑗♯

𝑥 ∶ 𝒪𝑌,𝑗(𝑥) → 𝒪𝑋,𝑥 is surjective,
then 𝑗 is a monomorphism.

Proof. Let 𝑎, 𝑏 ∶ 𝑍 → 𝑋 be two morphisms of schemes such that 𝑗 ∘ 𝑎 = 𝑗 ∘ 𝑏. Then
(1) implies 𝑎 = 𝑏 as underlying maps of topological spaces. For any 𝑧 ∈ 𝑍 we have
𝑎♯

𝑧 ∘ 𝑗♯
𝑎(𝑧) = 𝑏♯

𝑧 ∘ 𝑗♯
𝑏(𝑧) as maps 𝒪𝑌,𝑗(𝑎(𝑧)) → 𝒪𝑍,𝑧. The surjectivity of the maps 𝑗♯

𝑥 forces

𝑎♯
𝑧 = 𝑏♯

𝑧, ∀𝑧 ∈ 𝑍. This implies that 𝑎♯ = 𝑏♯. Hence we conclude 𝑎 = 𝑏 as morphisms of
schemes as desired. �

Lemma 21.23.7. An immersion of schemes is a monomorphism. In particular, any immer-
sion is separated.

Proof. We can see this by checking that the criterion of Lemma 21.23.6 applies. More
elegantly perhaps, we can use that Lemmas 21.3.5 and 21.4.6 imply that open and closed
immersions aremonomorphisms and hence any immersion (which is a composition of such)
is a monomorphism. �

Lemma 21.23.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a separated morphism. Any locally closed subscheme
𝑍 ⊂ 𝑋 is separated over 𝑆.

Proof. Follows from Lemma 21.23.7 and the fact that a composition of separated mor-
phisms is separated (Lemma 21.21.13). �

Example 21.23.9. The morphism 𝑆𝑝𝑒𝑐(𝐐) → 𝑆𝑝𝑒𝑐(𝐙) is a monomorphism. This is true
because 𝐐⊗𝐙 𝐐 = 𝐐. More generally, for any scheme 𝑆 and any point 𝑠 ∈ 𝑆 the canonical
morphism

𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) ⟶ 𝑆
is a monomorphism.

Lemma 21.23.10. Let 𝑘1, … , 𝑘𝑛 be fields. For any monomorphism of schemes 𝑋 →
𝑆𝑝𝑒𝑐(𝑘1 × … × 𝑘𝑛) there exists a subset 𝐼 ⊂ {1, … , 𝑛} such that 𝑋 ≅ 𝑆𝑝𝑒𝑐(∏𝑖∈𝐼 𝑘𝑖)
as schemes over 𝑆𝑝𝑒𝑐(𝑘1 × … × 𝑘𝑛). More generally, if 𝑋 = ∐𝑖∈𝐼 𝑆𝑝𝑒𝑐(𝑘𝑖) is a disjoint
union of spectra of fields and 𝑌 → 𝑋 is a monomorphism, then there exists a subset 𝐽 ⊂ 𝐼
such that 𝑌 = ∐𝑖∈𝐽 𝑆𝑝𝑒𝑐(𝑘𝑖).

Proof. First reduce to the case 𝑛 = 1 (or #𝐼 = 1) by taking the inverse images of the open
and closed subschemes 𝑆𝑝𝑒𝑐(𝑘𝑖). In this case 𝑋 has only one point hence is affine. The
corresponding algebra problem is this: If 𝑘 → 𝑅 is an algebra map with 𝑅 ⊗𝑘 𝑅 ≅ 𝑅, then
𝑅 ≅ 𝑘. This holds for dimension reasons. See also Algebra, Lemma 7.99.8 �

21.24. Functoriality for quasi-coherent modules

Let 𝑋 be a scheme. We denote QCoh(𝒪𝑋) or QCoh(𝑋) the category of quasi-coherent
𝒪𝑋-modules as defined in Modules, Definition 15.10.1. We have seen in Section 21.7 that
the category QCoh(𝒪𝑋) has a lot of good properties when 𝑋 is affine. Since the property
of being quasi-coherent is local on 𝑋, these properties are inherited by the category of
quasi-coherent sheaves on any scheme 𝑋. We enumerate them here.
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(1) A sheaf of 𝒪𝑋-modules ℱ is quasi-coherent if and only if the restriction of ℱ to
each affine open 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) is of the form 𝑀 for some 𝑅-module 𝑀.

(2) A sheaf of 𝒪𝑋-modules ℱ is quasi-coherent if and only if the restriction of ℱ to
each of the members of an affine open covering is quasi-coherent.

(3) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(4) Any colimit of quasi-coherent sheaves is quasi-coherent.
(5) The kernel and cokernel of amorphism of quasi-coherent sheaves is quasi-coherent.

(6) Given a short exact sequence of 𝒪𝑋-modules 0 → ℱ1 → ℱ2 → ℱ3 → 0 if two
out of three are quasi-coherent so is the third.

(7) Given a morphism of schemes 𝑓 ∶ 𝑌 → 𝑋 the pullback of a quasi-coherent
𝒪𝑋-module is a quasi-coherent 𝒪𝑌-module. See Modules, Lemma 15.10.4.

(8) Given two quasi-coherent 𝒪𝑋-modules the tensor product is quasi-coherent, see
Modules, Lemma 15.15.5.

(9) Given a quasi-coherent 𝒪𝑋-module ℱ the tensor, symmetric and exterior algebras
on ℱ are quasi-coherent, see Modules, Lemma 15.18.6.

(10) Given two quasi-coherent 𝒪𝑋-modules ℱ, 𝒢 such that ℱ is of finite presenta-
tion, then the internal hom ℋ𝑜𝑚𝒪𝑋

(ℱ, 𝒢) is quasi-coherent, see Modules, Lemma
15.19.4 and (5) above.

On the other hand, it is in general not the case that the push forward of a quasi-coherent
module is quasi-coherent. Here is a case where it this does hold.

Lemma 21.24.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑓 is quasi-compact
and quasi-separated then 𝑓∗ transforms quasi-coherent 𝒪𝑋-modules into quasi-coherent
𝒪𝑆-modules.

Proof. The question is local on 𝑆 and hence we may assume that 𝑆 is affine. Because
𝑋 is quasi-compact we may write 𝑋 = ⋃𝑛

𝑖=1 𝑈𝑖 with each 𝑈𝑖 open affine. Because 𝑓 is
quasi-separated we may write 𝑈𝑖 ∩ 𝑈𝑗 = ⋃

𝑛𝑖𝑗
𝑘=1 𝑈𝑖𝑗𝑘 for some affine open 𝑈𝑖𝑗𝑘, see Lemma

21.21.7. Denote 𝑓𝑖 ∶ 𝑈𝑖 → 𝑆 and 𝑓𝑖𝑗𝑘 ∶ 𝑈𝑖𝑗𝑘 → 𝑆 the restrictions of 𝑓. For any open 𝑉 of
𝑆 and any sheaf ℱ on 𝑋 we have

𝑓∗ℱ(𝑉) = ℱ(𝑓−1𝑉)

= Ker(⨁𝑖
ℱ(𝑓−1𝑉 ∩ 𝑈𝑖) → ⨁𝑖,𝑗,𝑘

ℱ(𝑓−1𝑉 ∩ 𝑈𝑖𝑗𝑘))

= Ker(⨁𝑖
𝑓𝑖,∗(ℱ|𝑈𝑖

)(𝑉) → ⨁𝑖,𝑗,𝑘
𝑓𝑖𝑗𝑘,∗(ℱ|𝑈𝑖𝑗𝑘

)) (𝑉)

= Ker(⨁𝑖
𝑓𝑖,∗(ℱ|𝑈𝑖

) → ⨁𝑖,𝑗,𝑘
𝑓𝑖𝑗𝑘,∗(ℱ|𝑈𝑖𝑗𝑘

)) (𝑉)

In other words there is a short exact sequence of sheaves

0 → 𝑓∗ℱ → ⨁ 𝑓𝑖,∗ℱ𝑖 → ⨁ 𝑓𝑖𝑗𝑘,∗ℱ𝑖𝑗𝑘

where ℱ𝑖, ℱ𝑖𝑗𝑘 denotes the restriction of ℱ to the corresponding open. If ℱ is a quasi-
coherent𝒪𝑋-modules thenℱ𝑖, ℱ𝑖𝑗𝑘 is a quasi-coherent𝒪𝑈𝑖

, 𝒪𝑈𝑖𝑗𝑘
-module. Hence byLemma

21.7.3 we see that the second and third term of the exact sequence are quasi-coherent
𝒪𝑆-modules. Thus we conclude that 𝑓∗ℱ is a quasi-coherent 𝒪𝑆-module. �

Using this we can characterize (closed) immersions of schemes as follows.

Lemma 21.24.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Suppose that
(1) 𝑓 induces a homeomorphism of 𝑋 with a closed subset of 𝑌, and
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(2) 𝑓♯ ∶ 𝒪𝑌 → 𝑓∗𝒪𝑋 is surjective.
Then 𝑓 is a closed immersion of schemes.

Proof. Assume (1) and (2). By (1) themorphism 𝑓 is quasi-compact (see Topology, Lemma
5.9.3). Conditions (1) and (2) imply conditions (1) and (2) of Lemma 21.23.6. Hence
𝑓 ∶ 𝑋 → 𝑌 is a monomorphism. In particular, 𝑓 is separated, see Lemma 21.23.3. Hence
Lemma 21.24.1 above applies and we conclude that 𝑓∗𝒪𝑋 is a quasi-coherent 𝒪𝑌-module.
Therefore the kernel of 𝒪𝑌 → 𝑓∗𝒪𝑋 is quasi-coherent by Lemma 21.7.8. Since a quasi-
coherent sheaf is locally generated by sections (see Modules, Definition 15.10.1) this im-
plies that 𝑓 is a closed immersion, see Definition 21.4.1. �

We can use this lemma to prove the following lemma.

Lemma 21.24.3. A composition of immersions of schemes is an immersion, a composi-
tion of closed immersions of schemes is a closed immersion, and a composition of open
immersions of schemes is an open immersion.

Proof. This is clear for the case of open immersions since an open subspace of an open
subspace is also an open subspace.
Suppose 𝑎 ∶ 𝑍 → 𝑌 and 𝑏 ∶ 𝑌 → 𝑋 are closed immersions of schemes. We will verify that
𝑐 = 𝑏 ∘ 𝑎 is also a closed immersion. The assumption implies that 𝑎 and 𝑏 are homeomor-
phisms onto closed subsets, and hence also 𝑐 = 𝑏 ∘ 𝑎 is a homeomorphism onto a closed
subset. Moreover, the map 𝒪𝑋 → 𝑐∗𝒪𝑍 is surjective since it factors as the composition
of the surjective maps 𝒪𝑋 → 𝑏∗𝒪𝑌 and 𝑏∗𝒪𝑌 → 𝑏∗𝑎∗𝒪𝑍 (surjective as 𝑏∗ is exact, see
Modules, Lemma 15.6.1). Hence by Lemma 21.24.2 above 𝑐 is a closed immersion.
Finally, we come to the case of immersions. Suppose 𝑎 ∶ 𝑍 → 𝑌 and 𝑏 ∶ 𝑌 → 𝑋 are
immersions of schemes. This means there exist open subschemes 𝑉 ⊂ 𝑌 and 𝑈 ⊂ 𝑋 such
that 𝑎(𝑍) ⊂ 𝑉, 𝑏(𝑌) ⊂ 𝑈 and 𝑎 ∶ 𝑍 → 𝑉 and 𝑏 ∶ 𝑌 → 𝑈 are closed immersions. Since
the topology on 𝑌 is induced from the topology on 𝑈 we can find an open 𝑈′ ⊂ 𝑈 such
that 𝑉 = 𝑏−1(𝑈′). Then we see that 𝑍 → 𝑉 = 𝑏−1(𝑈′) → 𝑈′ is a composition of closed
immersions and hence a closed immersion. This proves that 𝑍 → 𝑋 is an immersion and
we win. �
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CHAPTER 22

Constructions of Schemes

22.1. Introduction

In this chapter we introduce ways of constructing schemes out of others. A basic reference
is [DG67].

22.2. Relative glueing

The following lemma is relevant in case we are trying to construct a scheme 𝑋 over 𝑆, and
we already know how to construct the restriction of 𝑋 to the affine opens of 𝑆. The actual
result is completely general and works in the setting of (locally) ringed spaces, allthough
our proof is written in the language of schemes.

Lemma 22.2.1. Let 𝑆 be a scheme. Let ℬ be a basis for the topology of 𝑆. Suppose given
the following data:

(1) For every 𝑈 ∈ ℬ a scheme 𝑓𝑈 ∶ 𝑋𝑈 → 𝑈 over 𝑈.
(2) For every pair 𝑈, 𝑉 ∈ ℬ such that 𝑉 ⊂ 𝑈 a morphism 𝜌𝑈

𝑉 ∶ 𝑋𝑉 → 𝑋𝑈.
Assume that

(a) each 𝜌𝑈
𝑉 induces an isomorphism 𝑋𝑉 → 𝑓−1

𝑈 (𝑉) of schemes over 𝑉,
(b) whenever 𝑊, 𝑉, 𝑈 ∈ ℬ, with 𝑊 ⊂ 𝑉 ⊂ 𝑈 we have 𝜌𝑈

𝑊 = 𝜌𝑈
𝑉 ∘ 𝜌𝑉

𝑊.
Then there exists a unique scheme 𝑓 ∶ 𝑋 → 𝑆 over𝑆 and isomorphisms 𝑖𝑈 ∶ 𝑓−1(𝑈) → 𝑋𝑈
over 𝑈 such that for 𝑉 ⊂ 𝑈 ⊂ 𝑆 affine open the composition

𝑋𝑉
𝑖−1
𝑉 // 𝑓−1(𝑉) 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 // 𝑓−1(𝑈)

𝑖𝑈 // 𝑋𝑈

is the morphism 𝜌𝑈
𝑉 .

Proof. To prove this we will use Schemes, Lemma 21.15.4. First we define a contravariant
functor 𝐹 from the category of schemes to the category of sets. Namely, for a scheme 𝑇 we
set

𝐹(𝑇) = {
(𝑔, {ℎ𝑈}𝑈∈ℬ), 𝑔 ∶ 𝑇 → 𝑆, ℎ𝑈 ∶ 𝑔−1(𝑈) → 𝑋𝑈,

𝑓𝑈 ∘ ℎ𝑈 = 𝑔|𝑔−1(𝑈), ℎ𝑈|𝑔−1(𝑉) = 𝜌𝑈
𝑉 ∘ ℎ𝑉 ∀ 𝑉, 𝑈 ∈ ℬ, 𝑉 ⊂ 𝑈} .

The restriction mapping 𝐹(𝑇) → 𝐹(𝑇′) given a morphism 𝑇′ → 𝑇 is just gotten by compo-
sition. For any 𝑊 ∈ ℬ we consider the subfunctor 𝐹𝑊 ⊂ 𝐹 consisting of those systems
(𝑔, {ℎ𝑈}) such that 𝑔(𝑇) ⊂ 𝑊.

First we show 𝐹 satisfies the sheaf property for the Zariski topology. Suppose that 𝑇 is a
scheme, 𝑇 = ⋃ 𝑉𝑖 is an open covering, and 𝜉𝑖 ∈ 𝐹(𝑉𝑖) is an element such that 𝜉𝑖|𝑉𝑖∩𝑉𝑗

=
𝜉𝑗|𝑉𝑖∩𝑉𝑗

. Say 𝜉𝑖 = (𝑔𝑖, {𝑓𝑖,𝑈}). Then we immediately see that the morphisms 𝑔𝑖 glue to a
unique global morphism 𝑔 ∶ 𝑇 → 𝑆. Moreover, it is clear that 𝑔−1(𝑈) = ⋃ 𝑔−1

𝑖 (𝑈). Hence
the morphisms ℎ𝑖,𝑈 ∶ 𝑔−1

𝑖 (𝑈) → 𝑋𝑈 glue to a unique morphism ℎ𝑈 ∶ 𝑈 → 𝑋𝑈. It is easy to
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verify that the system (𝑔, {𝑓𝑈}) is an element of 𝐹(𝑇). Hence 𝐹 satisfies the sheaf property
for the Zariski topology.

Next we verify that each 𝐹𝑊, 𝑊 ∈ ℬ is representable. Namely, we claim that the transfor-
mation of functors

𝐹𝑊 ⟶ 𝑀𝑜𝑟(−, 𝑋𝑊), (𝑔, {ℎ𝑈}) ⟼ ℎ𝑊
is an isomorphism. To see this suppose that 𝑇 is a scheme and 𝛼 ∶ 𝑇 → 𝑋𝑊 is a morphism.
Set 𝑔 = 𝑓𝑊 ∘ 𝛼. For any 𝑈 ∈ ℬ such that 𝑈 ⊂ 𝑊 we can define ℎ𝑈 ∶ 𝑔−1(𝑈) → 𝑋𝑈 be
the composition (𝜌𝑊

𝑈 )−1 ∘ 𝛼|𝑔−1(𝑈). This works because the image 𝛼(𝑔−1(𝑈)) is contained
in 𝑓−1

𝑊 (𝑈) and condition (a) of the lemma. It is clear that 𝑓𝑈 ∘ ℎ𝑈 = 𝑔|𝑔−1(𝑈) for such a
𝑈. Moreover, if also 𝑉 ∈ ℬ and 𝑉 ⊂ 𝑈 ⊂ 𝑊, then 𝜌𝑈

𝑉 ∘ ℎ𝑉 = ℎ𝑈|𝑔−1(𝑉) by property (b)
of the lemma. We still have to define ℎ𝑈 for an arbitrary element 𝑈 ∈ ℬ. Since ℬ is a
basis for the topology on 𝑆 we can find an open covering 𝑈 ∩ 𝑊 = ⋃ 𝑈𝑖 with 𝑈𝑖 ∈ ℬ.
Since 𝑔 maps into 𝑊 we have 𝑔−1(𝑈) = 𝑔−1(𝑈∩𝑊) = ⋃ 𝑔−1(𝑈𝑖). Consider the morphisms
ℎ𝑖 = 𝜌𝑈

𝑈𝑖
∘ ℎ𝑈𝑖

∶ 𝑔−1(𝑈𝑖) → 𝑋𝑈. It is a simple matter to use condition (b) of the lemma
to prove that ℎ𝑖|𝑔−1(𝑈𝑖)∩𝑔−1(𝑈𝑗) = ℎ𝑗|𝑔−1(𝑈𝑖)∩𝑔−1(𝑈𝑗). Hence these morphisms glue to give the
desired morphism ℎ𝑈 ∶ 𝑔−1(𝑈) → 𝑋𝑈. We omit the (easy) verification that the system
(𝑔, {ℎ𝑈}) is an element of 𝐹𝑊(𝑇) which maps to 𝛼 under the displayed arrow above.

Next, we verify each 𝐹𝑊 ⊂ 𝐹 is representable by open immersions. This is clear from the
definitions.

Finally we have to verify the collection (𝐹𝑊)𝑊∈ℬ covers 𝐹. This is clear by construction
and the fact that ℬ is a basis for the topology of 𝑆.

Let 𝑋 be a scheme representing the functor 𝐹. Let (𝑓, {𝑖𝑈}) ∈ 𝐹(𝑋) be a ``universal family''.
Since each 𝐹𝑊 is representable by 𝑋𝑊 (via the morphism of functors displayed above) we
see that 𝑖𝑊 ∶ 𝑓−1(𝑊) → 𝑋𝑊 is an isomorphism as desired. The lemma is proved. �

Lemma 22.2.2. Let 𝑆 be a scheme. Let ℬ be a basis for the topology of 𝑆. Suppose given
the following data:

(1) For every 𝑈 ∈ ℬ a scheme 𝑓𝑈 ∶ 𝑋𝑈 → 𝑈 over 𝑈.
(2) For every 𝑈 ∈ ℬ a quasi-coherent sheaf ℱ𝑈 over 𝑋𝑈.
(3) For every pair 𝑈, 𝑉 ∈ ℬ such that 𝑉 ⊂ 𝑈 a morphism 𝜌𝑈

𝑉 ∶ 𝑋𝑉 → 𝑋𝑈.
(4) For every pair 𝑈, 𝑉 ∈ ℬ such that 𝑉 ⊂ 𝑈 a morphism 𝜃𝑈

𝑉 ∶ (𝜌𝑈
𝑉 )∗ℱ𝑈 → ℱ𝑉.

Assume that
(a) each 𝜌𝑈

𝑉 induces an isomorphism 𝑋𝑉 → 𝑓−1
𝑈 (𝑉) of schemes over 𝑉,

(b) each 𝜃𝑈
𝑉 is an isomorphism,

(c) whenever 𝑊, 𝑉, 𝑈 ∈ ℬ, with 𝑊 ⊂ 𝑉 ⊂ 𝑈 we have 𝜌𝑈
𝑊 = 𝜌𝑈

𝑉 ∘ 𝜌𝑉
𝑊,

(d) whenever 𝑊, 𝑉, 𝑈 ∈ ℬ, with 𝑊 ⊂ 𝑉 ⊂ 𝑈 we have 𝜃𝑈
𝑊 = 𝜃𝑉

𝑊 ∘ (𝜌𝑉
𝑊)∗𝜃𝑈

𝑉 .
Then there exists a unique scheme 𝑓 ∶ 𝑋 → 𝑆 over 𝑆 together with a unique quasi-coherent
sheaf ℱ on 𝑋 and isomorphisms 𝑖𝑈 ∶ 𝑓−1(𝑈) → 𝑋𝑈 and 𝜃𝑈 ∶ 𝑖∗

𝑈ℱ𝑈 → ℱ|𝑓−1(𝑈) over 𝑈
such that for 𝑉 ⊂ 𝑈 ⊂ 𝑆 affine open the composition

𝑋𝑉
𝑖−1
𝑉 // 𝑓−1(𝑉) 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 // 𝑓−1(𝑈)

𝑖𝑈 // 𝑋𝑈

is the morphism 𝜌𝑈
𝑉 , and the composition

(22.2.2.1) (𝜌𝑈
𝑉 )∗ℱ𝑈 = (𝑖−1

𝑉 )∗((𝑖∗
𝑈ℱ𝑈)|𝑓−1(𝑉))

𝜃𝑈|𝑓−1(𝑉)
−−−−−−−→ (𝑖−1

𝑉 )∗(ℱ|𝑓−1(𝑉))
𝜃−1

𝑉−−−→ ℱ𝑉
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is equal to 𝜃𝑈
𝑉 .

Proof. By Lemma 22.2.1 we get the scheme 𝑋 over 𝑆 and the isomorphisms 𝑖𝑈. Set ℱ′
𝑈 =

𝑖∗
𝑈ℱ𝑈 for 𝑈 ∈ ℬ. This is a quasi-coherent 𝒪𝑓−1(𝑈)-module. The maps

ℱ′
𝑈|𝑓−1(𝑉) = 𝑖∗

𝑈ℱ𝑈|𝑓−1(𝑉) = 𝑖∗
𝑉(𝜌𝑈

𝑉 )∗ℱ𝑈
𝑖∗𝑉𝜃𝑈

𝑉−−−→ 𝑖∗
𝑉ℱ𝑉 = ℱ′

𝑉

define isomorphisms (𝜃′)𝑈
𝑉 ∶ ℱ′

𝑈|𝑓−1(𝑉) → ℱ′
𝑉 whenever 𝑉 ⊂ 𝑈 are elements of ℬ. Condi-

tion (d) says exactly that this is compatible in case we have a triple of elements 𝑊 ⊂ 𝑉 ⊂ 𝑈
of ℬ. This allows us to get well defined isomorphisms

𝜑12 ∶ ℱ′
𝑈1

|𝑓−1(𝑈1∩𝑈2) ⟶ ℱ′
𝑈2

|𝑓−1(𝑈1∩𝑈2)

whenever 𝑈1, 𝑈2 ∈ ℬ by covering the intersection 𝑈1 ∩ 𝑈2 = ⋃ 𝑉𝑗 by elements 𝑉𝑗 of ℬ
and taking

𝜑12|𝑉𝑗
= ((𝜃′)𝑈2

𝑉𝑗 )
−1

∘ (𝜃′)𝑈1
𝑉𝑗

.

We omit the verification that these maps do indeed glue to a 𝜑12 and we omit the verification
of the cocycle condition of a glueing datum for sheaves (as in Sheaves, Section 6.33). By
Sheaves, Lemma 6.33.2 we get our ℱ on 𝑋. We omit the verification of (22.2.2.1). �

Remark 22.2.3. There is a functoriality property for the constructions explained in Lem-
mas 22.2.1 and 22.2.2. Namely, suppose given two collections of data (𝑓𝑈 ∶ 𝑋𝑈 → 𝑈, 𝜌𝑈

𝑉 )
and (𝑔𝑈 ∶ 𝑌𝑈 → 𝑈, 𝜎𝑈

𝑉 ) as in Lemma 22.2.1. Suppose for every 𝑈 ∈ ℬ given a morphism
ℎ𝑈 ∶ 𝑋𝑈 → 𝑌𝑈 over 𝑈 compatible with the restrictions 𝜌𝑈

𝑉 and 𝜎𝑈
𝑉 . Functoriality means

that this gives rise to a morphism of schemes ℎ ∶ 𝑋 → 𝑌 over 𝑆 restricting back to the
morphisms ℎ𝑈, where 𝑓 ∶ 𝑋 → 𝑆 is obtained from the datum (𝑓𝑈 ∶ 𝑋𝑈 → 𝑈, 𝜌𝑈

𝑉 ) and
𝑔 ∶ 𝑌 → 𝑆 is obtained from the datum (𝑔𝑈 ∶ 𝑌𝑈 → 𝑈, 𝜎𝑈

𝑉 ).

Similarly, suppose given two collections of data (𝑓𝑈 ∶ 𝑋𝑈 → 𝑈, ℱ𝑈, 𝜌𝑈
𝑉 , 𝜃𝑈

𝑉 ) and (𝑔𝑈 ∶
𝑌𝑈 → 𝑈, 𝒢𝑈, 𝜎𝑈

𝑉 , 𝜂𝑈
𝑉 ) as in Lemma 22.2.2. Suppose for every 𝑈 ∈ ℬ given a morphism

ℎ𝑈 ∶ 𝑋𝑈 → 𝑌𝑈 over 𝑈 compatible with the restrictions 𝜌𝑈
𝑉 and 𝜎𝑈

𝑉 , and a morphism 𝜏𝑈 ∶
ℎ∗

𝑈𝒢𝑈 → ℱ𝑈 compatible with the maps 𝜃𝑈
𝑉 and 𝜂𝑈

𝑉 . Functoriality means that these give rise
to a morphism of schemes ℎ ∶ 𝑋 → 𝑌 over 𝑆 restricting back to the morphisms ℎ𝑈, and
a morphism ℎ∗𝒢 → ℱ restricting back to the maps ℎ𝑈 where (𝑓 ∶ 𝑋 → 𝑆, ℱ) is obtained
from the datum (𝑓𝑈 ∶ 𝑋𝑈 → 𝑈, ℱ𝑈, 𝜌𝑈

𝑉 , 𝜃𝑈
𝑉 ) and where (𝑔 ∶ 𝑌 → 𝑆, 𝒢) is obtained from

the datum (𝑔𝑈 ∶ 𝑌𝑈 → 𝑈, 𝒢𝑈, 𝜎𝑈
𝑉 , 𝜂𝑈

𝑉 ).

We omit the verifications and we omit a suitable formulation of ``equivalence of categories''
between relative glueing data and relative objects.

22.3. Relative spectrum via glueing

Situation 22.3.1. Here 𝑆 is a scheme, and 𝒜 is a quasi-coherent 𝒪𝑆-algebra.

In this section we outline how to construct a morphism of schemes

𝑆𝑝𝑒𝑐
𝑆

(𝒜) ⟶ 𝑆

by glueing the spectra 𝑆𝑝𝑒𝑐(Γ(𝑈, 𝒜)) where 𝑈 ranges over the affine opens of 𝑆. We first
show that the spectra of the values of 𝒜 over affines form a suitable collection of schemes,
as in Lemma 22.2.1.
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Lemma 22.3.2. In Situation 22.3.1. Suppose 𝑈 ⊂ 𝑈′ ⊂ 𝑆 are affine opens. Let 𝐴 = 𝒜(𝑈)
and 𝐴′ = 𝒜(𝑈′). The map of rings 𝐴′ → 𝐴 induces a morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝐴′),
and the diagram

𝑆𝑝𝑒𝑐(𝐴) //

��

𝑆𝑝𝑒𝑐(𝐴′)

��
𝑈 // 𝑈′

is cartesian.

Proof. Let 𝑅 = 𝒪𝑆(𝑈) and 𝑅′ = 𝒪𝑆(𝑈′). Note that the map 𝑅 ⊗𝑅′ 𝐴′ → 𝐴 is an
isomorphism as 𝒜 is quasi-coherent (see Schemes, Lemma 21.7.3 for example). The result
follows from the description of the fibre product of affine schemes in Schemes, Lemma
21.6.7. �

In particular the morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝐴′) of the lemma is an open immersion.

Lemma 22.3.3. In Situation 22.3.1. Suppose 𝑈 ⊂ 𝑈′ ⊂ 𝑈″ ⊂ 𝑆 are affine opens. Let
𝐴 = 𝒜(𝑈), 𝐴′ = 𝒜(𝑈′) and 𝐴″ = 𝒜(𝑈″). The composition of the morphisms 𝑆𝑝𝑒𝑐(𝐴) →
𝑆𝑝𝑒𝑐(𝐴′), and 𝑆𝑝𝑒𝑐(𝐴′) → 𝑆𝑝𝑒𝑐(𝐴″) of Lemma 22.3.2 gives the morphism 𝑆𝑝𝑒𝑐(𝐴) →
𝑆𝑝𝑒𝑐(𝐴″) of Lemma 22.3.2.

Proof. This follows as the map 𝐴″ → 𝐴 is the composition of 𝐴″ → 𝐴′ and 𝐴′ → 𝐴
(because 𝒜 is a sheaf). �

Lemma 22.3.4. In Situation 22.3.1. There exists a morphism of schemes

𝜋 ∶ 𝑆𝑝𝑒𝑐
𝑆

(𝒜) ⟶ 𝑆

with the following properties:
(1) for every affine open𝑈 ⊂ 𝑆 there exists an isomorphism 𝑖𝑈 ∶ 𝜋−1(𝑈) → 𝑆𝑝𝑒𝑐(𝒜(𝑈)),

and
(2) for 𝑈 ⊂ 𝑈′ ⊂ 𝑆 affine open the composition

𝑆𝑝𝑒𝑐(𝒜(𝑈))
𝑖−1
𝑈 // 𝜋−1(𝑈) 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 // 𝜋−1(𝑈′)

𝑖𝑈′ // 𝑆𝑝𝑒𝑐(𝒜(𝑈′))

is the open immersion of Lemma 22.3.2 above.

Proof. Follows immediately from Lemmas 22.2.1, 22.3.2, and 22.3.3. �

22.4. Relative spectrum as a functor

We place ourselves in Situation 22.3.1. So 𝑆 is a scheme and 𝒜 is a quasi-coherent sheaf
of 𝒪𝑆-algebras. (This means that 𝒜 is a sheaf of 𝒪𝑆-algebras which is quasi-coherent as an
𝒪𝑆-module.)

For any 𝑓 ∶ 𝑇 → 𝑆 the pullback 𝑓∗𝒜 is a quasi-coherent sheaf of 𝒪𝑇-algebras. We are
going to consider pairs (𝑓 ∶ 𝑇 → 𝑆, 𝜑) where 𝑓 is a morphism of schemes and 𝜑 ∶ 𝑓∗𝒜 →
𝒪𝑇 is a morphism of 𝒪𝑇-algebras. Note that this is the same as giving a 𝑓−1𝒪𝑆-algebra
homomorphism 𝜑 ∶ 𝑓−1𝒜 → 𝒪𝑇, see Sheaves, Lemma 6.20.2. This is also the same as
giving a 𝒪𝑆-algebra map 𝜑 ∶ 𝒜 → 𝑓∗𝒪𝑇, see Sheaves, Lemma 6.24.7. We will use all three
ways of thinking about 𝜑, without further mention.

Given such a pair (𝑓 ∶ 𝑇 → 𝑆, 𝜑) and a morphism 𝑎 ∶ 𝑇′ → 𝑇 we get a second pair (𝑓′ =
𝑓 ∘ 𝑎, 𝜑′ = 𝑎∗𝜑) which we call the pull back of (𝑓, 𝜑). One way to describe 𝜑′ = 𝑎∗𝜑 is as

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01LN
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01LO
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01LP


22.4. RELATIVE SPECTRUM AS A FUNCTOR 1221

the composition 𝒜 → 𝑓∗𝒪𝑇 → 𝑓′
∗𝒪𝑇′ where the second map is 𝑓∗𝑎♯ with 𝑎♯ ∶ 𝒪𝑇 → 𝑎∗𝒪𝑇′.

In this way we have defined a functor
𝐹 ∶ Sch𝑜𝑝𝑝 ⟶ Sets(22.4.0.1)

𝑇 ⟼ 𝐹(𝑇) = {pairs (𝑓, 𝜑) as above}

Lemma 22.4.1. In Situation 22.3.1. Let 𝐹 be the functor associated to (𝑆, 𝒜) above. Let
𝑔 ∶ 𝑆′ → 𝑆 be a morphism of schemes. Set 𝒜′ = 𝑔∗𝒜. Let 𝐹′ be the functor associated to
(𝑆′, 𝒜′) above. Then there is a canonical isomorphism

𝐹′ ≅ ℎ𝑆′ ×ℎ𝑆
𝐹

of functors.

Proof. A pair (𝑓′ ∶ 𝑇 → 𝑆′, 𝜑′ ∶ (𝑓′)∗𝒜′ → 𝒪𝑇) is the same as a pair (𝑓, 𝜑 ∶ 𝑓∗𝒜 →
𝒪𝑇) together with a factorization of 𝑓 as 𝑓 = 𝑔 ∘ 𝑓′. Namely with this notation we have
(𝑓′)∗𝒜′ = (𝑓′)∗𝑔∗𝒜 = 𝑓∗𝒜. Hence the lemma. �

Lemma 22.4.2. In Situation 22.3.1. Let 𝐹 be the functor associated to (𝑆, 𝒜) above. If 𝑆
is affine, then 𝐹 is representable by the affine scheme 𝑆𝑝𝑒𝑐(Γ(𝑆, 𝒜)).

Proof. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and 𝐴 = Γ(𝑆, 𝒜). Then 𝐴 is an 𝑅-algebra and 𝒜 = 𝐴. The
ring map 𝑅 → 𝐴 gives rise to a canonical map

𝑓𝑢𝑛𝑖𝑣 ∶ 𝑆𝑝𝑒𝑐(𝐴) ⟶ 𝑆 = 𝑆𝑝𝑒𝑐(𝑅).

We have 𝑓∗
𝑢𝑛𝑖𝑣𝒜 = 𝐴 ⊗𝑅 𝐴 by Schemes, Lemma 21.7.3. Hence there is a canonical map

𝜑𝑢𝑛𝑖𝑣 ∶ 𝑓∗
𝑢𝑛𝑖𝑣𝒜 = 𝐴 ⊗𝑅 𝐴 ⟶ 𝐴 = 𝒪𝑆𝑝𝑒𝑐(𝐴)

coming from the 𝐴-module map 𝐴 ⊗𝑅 𝐴 → 𝐴, 𝑎 ⊗ 𝑎′ ↦ 𝑎𝑎′. We claim that the pair
(𝑓𝑢𝑛𝑖𝑣, 𝜑𝑢𝑛𝑖𝑣) represents 𝐹 in this case. In other words we claim that for any scheme 𝑇 the
map

𝑀𝑜𝑟(𝑇, 𝑆𝑝𝑒𝑐(𝐴)) ⟶ {pairs (𝑓, 𝜑)}, 𝑎 ⟼ (𝑎∗𝑓𝑢𝑛𝑖𝑣, 𝑎∗𝜑)
is bijective.
Let us construct the inverse map. For any pair (𝑓 ∶ 𝑇 → 𝑆, 𝜑) we get the induced ring map

𝐴 = Γ(𝑆, 𝒜)
𝑓∗
// Γ(𝑇, 𝑓∗𝒜)

𝜑 // Γ(𝑇, 𝒪𝑇)

This induces a morphism of schemes 𝑇 → 𝑆𝑝𝑒𝑐(𝐴) by Schemes, Lemma 21.6.4.
The verification that this map is inverse to the map displayed above is omitted. �

Lemma 22.4.3. In Situation 22.3.1. The functor 𝐹 is representable by a scheme.

Proof. We are going to use Schemes, Lemma 21.15.4.
First we check that 𝐹 satisfies the sheaf property for the Zariski topology. Namely, suppose
that 𝑇 is a scheme, that 𝑇 = ⋃𝑖∈𝐼 𝑈𝑖 is an open covering, and that (𝑓𝑖, 𝜑𝑖) ∈ 𝐹(𝑈𝑖) such
that (𝑓𝑖, 𝜑𝑖)|𝑈𝑖∩𝑈𝑗

= (𝑓𝑗, 𝜑𝑗)|𝑈𝑖∩𝑈𝑗
. This implies that the morphisms 𝑓𝑖 ∶ 𝑈𝑖 → 𝑆 glue

to a morphism of schemes 𝑓 ∶ 𝑇 → 𝑆 such that 𝑓|𝐼𝑖
= 𝑓𝑖, see Schemes, Section 21.14.

Thus 𝑓∗
𝑖 𝒜 = 𝑓∗𝒜|𝑈𝑖

and by assumption the morphisms 𝜑𝑖 agree on 𝑈𝑖 ∩ 𝑈𝑗. Hence by
Sheaves, Section 6.33 these glue to a morphism of 𝒪𝑇-algebras 𝑓∗𝒜 → 𝒪𝑇. This proves
that 𝐹 satisfies the sheaf condition with respect to the Zariski topology.
Let 𝑆 = ⋃𝑖∈𝐼 𝑈𝑖 be an affine open covering. Let 𝐹𝑖 ⊂ 𝐹 be the subfunctor consisting of
those pairs (𝑓 ∶ 𝑇 → 𝑆, 𝜑) such that 𝑓(𝑇) ⊂ 𝑈𝑖.
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We have to show each 𝐹𝑖 is representable. This is the case because 𝐹𝑖 is identified with
the functor associated to 𝑈𝑖 equipped with the quasi-coherent 𝒪𝑈𝑖

-algebra 𝒜|𝑈𝑖
, by Lemma

22.4.1. Thus the result follows from Lemma 22.4.2.

Next we show that 𝐹𝑖 ⊂ 𝐹 is representable by open immersions. Let (𝑓 ∶ 𝑇 → 𝑆, 𝜑) ∈ 𝐹(𝑇).
Consider 𝑉𝑖 = 𝑓−1(𝑈𝑖). It follows from the definition of 𝐹𝑖 that given 𝑎 ∶ 𝑇′ → 𝑇 we gave
𝑎∗(𝑓, 𝜑) ∈ 𝐹𝑖(𝑇′) if and only if 𝑎(𝑇′) ⊂ 𝑉𝑖. This is what we were required to show.

Finally, we have to show that the collection (𝐹𝑖)𝑖∈𝐼 covers 𝐹. Let (𝑓 ∶ 𝑇 → 𝑆, 𝜑) ∈ 𝐹(𝑇).
Consider 𝑉𝑖 = 𝑓−1(𝑈𝑖). Since 𝑆 = ⋃𝑖∈𝐼 𝑈𝑖 is an open covering of 𝑆 we see that 𝑇 =
⋃𝑖∈𝐼 𝑉𝑖 is an open covering of 𝑇. Moreover (𝑓, 𝜑)|𝑉𝑖

∈ 𝐹𝑖(𝑉𝑖). This finishes the proof of
the lemma. �

Lemma 22.4.4. In Situation 22.3.1. The scheme 𝜋 ∶ 𝑆𝑝𝑒𝑐
𝑆

(𝒜) → 𝑆 constructed in Lemma
22.3.4 and the scheme representing the functor 𝐹 are canonically isomorphic as schemes
over 𝑆.

Proof. Let 𝑋 → 𝑆 be the scheme representing the functor 𝐹. Consider the sheaf of
𝒪𝑆-algebrasℛ = 𝜋∗𝒪𝑆𝑝𝑒𝑐

𝑆
(𝒜). By construction of𝑆𝑝𝑒𝑐

𝑆
(𝒜)we have isomorphisms𝒜(𝑈) →

ℛ(𝑈) for every affine open 𝑈 ⊂ 𝑆; this follows from Lemma 22.3.4 part (1). For 𝑈 ⊂
𝑈′ ⊂ 𝑆 open these isomorphisms are compatible with the restriction mappings; this fol-
lows from Lemma 22.3.4 part (2). Hence by Sheaves, Lemma 6.30.13 these isomorphisms
result from an isomorphism of 𝒪𝑆-algebras 𝜑 ∶ 𝒜 → ℛ. Hence this gives an element
(𝑆𝑝𝑒𝑐

𝑆
(𝒜), 𝜑) ∈ 𝐹(𝑆𝑝𝑒𝑐

𝑆
(𝒜)). Since 𝑋 represents the functor 𝐹 we get a corresponding

morphism of schemes 𝑐𝑎𝑛 ∶ 𝑆𝑝𝑒𝑐
𝑆

(𝒜) → 𝑋 over 𝑆.

Let 𝑈 ⊂ 𝑆 be any affine open. Let 𝐹𝑈 ⊂ 𝐹 be the subfunctor of 𝐹 corresponding to pairs
(𝑓, 𝜑) over schemes 𝑇 with 𝑓(𝑇) ⊂ 𝑈. Clearly the base change 𝑋𝑈 represents 𝐹𝑈. Moreover,
𝐹𝑈 is represented by 𝑆𝑝𝑒𝑐(𝒜(𝑈)) = 𝜋−1(𝑈) according to Lemma 22.4.2. In other words
𝑋𝑈 ≅ 𝜋−1(𝑈). We omit the verification that this identification is brought about by the base
change of the morphism 𝑐𝑎𝑛 to 𝑈. �

Definition 22.4.5. Let 𝑆 be a scheme. Let 𝒜 be a quasi-coherent sheaf of 𝒪𝑆-algebras. The
relative spectrum of 𝒜 over 𝑆, or simply the spectrum of 𝒜 over 𝑆 is the scheme constructed
in Lemma 22.3.4 which represents the functor 𝐹 (22.4.0.1), see Lemma 22.4.4. We denote
it 𝜋 ∶ 𝑆𝑝𝑒𝑐

𝑆
(𝒜) → 𝑆. The ``universal family'' is a morphism of 𝒪𝑆-algebras

𝒜 ⟶ 𝜋∗𝒪𝑆𝑝𝑒𝑐
𝑆

(𝒜)

The following lemma says among other things that forming the relative spectrum commutes
with base change.

Lemma 22.4.6. Let 𝑆 be a scheme. Let 𝒜 be a quasi-coherent sheaf of 𝒪𝑆-algebras. Let
𝜋 ∶ 𝑆𝑝𝑒𝑐

𝑆
(𝒜) → 𝑆 be the relative spectrum of 𝒜 over 𝑆.

(1) For every affine open 𝑈 ⊂ 𝑆 the inverse image 𝑓−1(𝑈) is affine.
(2) For every morphism 𝑔 ∶ 𝑆′ → 𝑆 we have 𝑆′ ×𝑆 𝑆𝑝𝑒𝑐

𝑆
(𝒜) = 𝑆𝑝𝑒𝑐

𝑆′(𝑔∗𝒜).
(3) The universal map

𝒜 ⟶ 𝜋∗𝒪𝑆𝑝𝑒𝑐
𝑆

(𝒜)

is an isomorphism of 𝒪𝑆-algebras.
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Proof. Part (1) comes from the description of the relative spectrum by glueing, see Lemma
22.3.4. Part (2) follows immediately fromLemma 22.4.1. Part (3) follows because it is local
on 𝑆 and it is clear in case 𝑆 is affine by Lemma 22.4.2 for example. �

Lemma 22.4.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact and quasi-separated morphism
of schemes. By Schemes, Lemma 21.24.1 the sheaf 𝑓∗𝒪𝑋 is a quasi-coherent sheaf of
𝒪𝑆-algebras. There is a canonical morphism

𝑐𝑎𝑛 ∶ 𝑋 ⟶ 𝑆𝑝𝑒𝑐
𝑆

(𝑓∗𝒪𝑋)

of schemes over 𝑆. For any affine open 𝑈 ⊂ 𝑆 the restriction 𝑐𝑎𝑛|𝑓−1(𝑈) is identified with
the canonical morphism

𝑓−1(𝑈) ⟶ 𝑆𝑝𝑒𝑐(Γ(𝑓−1(𝑈), 𝒪𝑋))

coming from Schemes, Lemma 21.6.4.

Proof. The morphism comes, via the definition of 𝑆𝑝𝑒𝑐 as the scheme representing the
functor 𝐹, from the canonical map 𝜑 ∶ 𝑓∗𝑓∗𝒪𝑋 → 𝒪𝑋 (which by adjointness of push and
pull corresponds to id ∶ 𝑓∗𝒪𝑋 → 𝑓∗𝒪𝑋). The statement on the restriction to 𝑓−1(𝑈) follows
from the description of the relative spectrum over affines, see Lemma 22.4.2. �

22.5. Affine n-space

As an application of the relative spectrum we define affine 𝑛-space over a base scheme 𝑆
as follows. For any integer 𝑛 ≥ 0 we can consider the quasi-coherent sheaf of 𝒪𝑆-algebras
𝒪𝑆[𝑇1, … , 𝑇𝑛]. It is quasi-coherent because as a sheaf of 𝒪𝑆-modules it is just the direct
sum of copies of 𝒪𝑆 indexed by multi-indices.

Definition 22.5.1. Let 𝑆 be a scheme and 𝑛 ≥ 0. The scheme

𝐀𝑛
𝑆 = 𝑆𝑝𝑒𝑐

𝑆
(𝒪𝑆[𝑇1, … , 𝑇𝑛])

over 𝑆 is called affine 𝑛-space over 𝑆. If 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) is affine then we also call this affine
𝑛-space over 𝑅 and we denote it 𝐀𝑛

𝑅.

Note that 𝐀𝑛
𝑅 = 𝑆𝑝𝑒𝑐(𝑅[𝑇1, … , 𝑇𝑛]). For any morphism 𝑔 ∶ 𝑆′ → 𝑆 of schemes we

have 𝑔∗𝒪𝑆[𝑇1, … , 𝑇𝑛] = 𝒪𝑆′[𝑇1, … , 𝑇𝑛] and hence 𝐀𝑛
𝑆′ = 𝑆′ ×𝑆 𝐀𝑛

𝑆 is the base change.
Therefore an alternative definition of affine 𝑛-space is the formula

𝐀𝑛
𝑆 = 𝑆 ×𝑆𝑝𝑒𝑐(𝐙) 𝐀𝑛

𝐙.

Also, a morphism from an 𝑆-scheme 𝑓 ∶ 𝑋 → 𝑆 to 𝐀𝑛
𝑆 is given by a homomorphism of

𝒪𝑆-algebras 𝒪𝑆[𝑇1, … , 𝑇𝑛] → 𝑓∗𝒪𝑋. This is clearly the same thing as giving the images of
the 𝑇𝑖. In other words, a morphism from 𝑋 to 𝐀𝑛

𝑆 over 𝑆 is the same as giving 𝑛 elements
ℎ1, … , ℎ𝑛 ∈ Γ(𝑋, 𝒪𝑋).

22.6. Vector bundles

Let 𝑆 be a scheme. Let ℰ be a quasi-coherent sheaf of 𝒪𝑆-modules. By Modules, Lemma
15.18.6 the symmetric algebra Sym(ℰ) ofℰ over𝒪𝑆 is a quasi-coherent sheaf of𝒪𝑆-algebras.
Hence it makes sense to apply the construction of the previous section to it.
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Definition 22.6.1. Let 𝑆 be a scheme. Let ℰ be a quasi-coherent 𝒪𝑆-module1. The vector
bundle associated to ℰ is

𝐕(ℰ) = 𝑆𝑝𝑒𝑐
𝑆

(Sym(ℰ)).

The vector bundle associated to ℰ comes with a bit of extra structure. Namely, we have a
grading

𝜋∗𝒪𝐕(ℰ) = ⨁𝑛≥0
Sym𝑛(ℰ).

which turns 𝜋∗𝒪𝐕(ℰ) into a graded 𝒪𝑆-algebra. Conversely, we can recover ℰ from the
degree 1 part of this. Thus we define an abstract vector bundle as follows.

Definition 22.6.2. Let 𝑆 be a scheme. A vector bundle 𝜋 ∶ 𝑉 → 𝑆 over 𝑆 is an affine
morphism of schemes such that 𝜋∗𝒪𝑉 is endowed with the structure of a graded 𝒪𝑆-algebra
𝜋∗𝒪𝑉 = ⨁𝑛≥0 ℰ𝑛 such that ℰ0 = 𝒪𝑆 and such that the maps

Sym𝑛(ℰ1) ⟶ ℰ𝑛

are isomorphisms for all 𝑛 ≥ 0. A morphism of vector bundles over 𝑆 is a morphism
𝑓 ∶ 𝑉 → 𝑉′ such that the induced map

𝑓∗ ∶ 𝜋′
∗𝒪𝑉′ ⟶ 𝜋∗𝒪𝑉

is compatible with the given gradings.

An example of a vector bundle over 𝑆 is affine 𝑛-space 𝐀𝑛
𝑆 over 𝑆, see Definition 22.5.1.

This is true because 𝒪𝑆[𝑇1, … , 𝑇𝑛] = Sym(𝒪⊕𝑛
𝑆 ).

Lemma 22.6.3. The category of vector bundles over a scheme 𝑆 is anti-equivalent to the
category of quasi-coherent 𝒪𝑆-modules.

Proof. Omitted. Hint: In one direction one uses the functor 𝑆𝑝𝑒𝑐
𝑆

(−) and in the other the
functor (𝜋 ∶ 𝑉 → 𝑆) (𝜋∗𝒪𝑉)1 (degree 1 part). �

22.7. Cones

In algebraic geometry cones correspond to graded algebras. By our conventions a graded
ring or algebra 𝐴 comes with a grading 𝐴 = ⨁𝑑≥0 𝐴𝑑 by the nonnegative integers, see
Algebra, Section 7.52.

Definition 22.7.1. Let 𝑆 be a scheme. Let 𝒜 be a quasi-coherent graded 𝒪𝑆-algebra. As-
sume that 𝒪𝑆 → 𝒜0 is an isomorphism2. The cone associated to 𝒜 or the affine cone
associated to 𝒜 is

𝐶(𝒜) = 𝑆𝑝𝑒𝑐
𝑆

(𝒜).

The cone associated to a graded sheaf of 𝒪𝑆-algebras comes with a bit of extra structure.
Namely, we obtain a grading

𝜋∗𝒪𝐶(𝒜) = ⨁𝑛≥0
𝒜𝑛

Thus we can define an abstract cone as follows.

1The reader may expect here the condition that ℰ is finite locally free. We do not do so in order to be
consistent with [DG67, II, Definition 1.7.8].

2Often one imposes the assumption that 𝒜 is generated by 𝒜1 over 𝒪𝑆. We do not assume this in order to
be consisten with [DG67, II, (8.3.1)].
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Definition 22.7.2. Let 𝑆 be a scheme. A cone 𝜋 ∶ 𝐶 → 𝑆 over 𝑆 is an affine morphism
of schemes such that 𝜋∗𝒪𝐶 is endowed with the structure of a graded 𝒪𝑆-algebra 𝜋∗𝒪𝐶 =
⨁𝑛≥0 𝒜𝑛 such that 𝒜0 = 𝒪𝑆. A morphism of cones from 𝜋 ∶ 𝐶 → 𝑆 to 𝜋′ ∶ 𝐶′ → 𝑆 is a
morphism 𝑓 ∶ 𝐶 → 𝐶′ such that the induced map

𝑓∗ ∶ 𝜋′
∗𝒪𝐶′ ⟶ 𝜋∗𝒪𝐶

is compatible with the given gradings.

Any vector bundle is an example of a cone. In fact the category of vector bundles over 𝑆 is
a full subcategory of the category of cones over 𝑆.

22.8. Proj of a graded ring

Let 𝑆 be a graded ring. Consider the topological space Proj(𝑆) associated to 𝑆, see Algebra,
Section 7.53. We will endow this space with a sheaf of rings 𝒪Proj(𝑆) such that the resulting
pair (Proj(𝑅), 𝒪Proj(𝑅)) will be a scheme.

Recall that Proj(𝑆) has a basis of open sets 𝐷+(𝑓), 𝑓 ∈ 𝑆𝑑, 𝑑 ≥ 1 which we call standard
opens, see Algebra, Section 7.53. This terminology will always imply that 𝑓 is homoge-
neous of positive degree even if we forget to mention it. In addition, the intersection of two
standard opens is another: 𝐷+(𝑓)∩𝐷+(𝑔) = 𝐷+(𝑓𝑔), for 𝑓, 𝑔 ∈ 𝑆 homogeneous of positive
degree.

Lemma 22.8.1. Let 𝑆 be a graded ring. Let 𝑓 ∈ 𝑆 homogeneous of positive degree.
(1) If 𝑔 ∈ 𝑆 homogeneous of positive degree and 𝐷+(𝑔) ⊂ 𝐷+(𝑓), then

(a) 𝑓 is invertible in 𝑆𝑔, and 𝑓deg(𝑔)/𝑔deg(𝑓) is invertible in 𝑆(𝑔),
(b) 𝑔𝑒 = 𝑎𝑓 for some 𝑒 ≥ 1 and 𝑎 ∈ 𝑆 homogeneous,
(c) there is a canonical 𝑆-algebra map 𝑆𝑓 → 𝑆𝑔,
(d) there is a canonical 𝑆0-algebra map 𝑆(𝑓) → 𝑆(𝑔) compatible with the map

𝑆𝑓 → 𝑆𝑔,
(e) the map 𝑆(𝑓) → 𝑆(𝑔) induces an isomorphism

(𝑆(𝑓))𝑔deg(𝑓)/𝑓deg(𝑔) ≅ 𝑆(𝑔),

(f) these maps induce a commutative diagram of topological spaces

𝐷+(𝑔)

��

{𝐙-graded primes of 𝑆𝑔}oo //

��

𝑆𝑝𝑒𝑐(𝑆(𝑔))

��
𝐷+(𝑓) {𝐙-graded primes of 𝑆𝑓}oo // 𝑆𝑝𝑒𝑐(𝑆(𝑓))

where the horizontal maps are homeomorphisms and the vertical maps are
open immersions,

(g) there are a compatible canonical 𝑆𝑓 and 𝑆(𝑓)-module maps 𝑀𝑓 → 𝑀𝑔 and
𝑀(𝑓) → 𝑀(𝑔) for any graded 𝑆-module 𝑀, and

(h) the map 𝑀(𝑓) → 𝑀(𝑔) induces an isomorphism

(𝑀(𝑓))𝑔deg(𝑓)/𝑓deg(𝑔) ≅ 𝑀(𝑔).

(2) Any open covering of 𝐷+(𝑓) can be refined to a finite open covering of the form
𝐷+(𝑓) = ⋃𝑛

𝑖=1 𝐷+(𝑔𝑖).
(3) Let 𝑔1, … , 𝑔𝑛 ∈ 𝑆 be homogeneous of positive degree. Then 𝐷+(𝑓) ⊂ ⋃ 𝐷+(𝑔𝑖)

if and only if 𝑔deg(𝑓)
1 /𝑓deg(𝑔1), … , 𝑔deg(𝑓)

𝑛 /𝑓deg(𝑔𝑛) generate the unit ideal in 𝑆(𝑓).
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Proof. Recall that 𝐷+(𝑔) = 𝑆𝑝𝑒𝑐(𝑆(𝑔)) with identification given by the ring maps 𝑆 →
𝑆𝑔 ← 𝑆(𝑔), see Algebra, Lemma 7.53.3. Thus 𝑓deg(𝑔)/𝑔deg(𝑓) is an element of 𝑆(𝑔) which
is not contained in any prime ideal, and hence invertible, see Algebra, Lemma 7.16.2. We
conclude that (a) holds. Write the inverse of 𝑓 in 𝑆𝑔 as 𝑎/𝑔𝑑. We may replace 𝑎 by its
homogeneous part of degree 𝑑 deg(𝑔) − deg(𝑓). This means 𝑔𝑑 − 𝑎𝑓 is annihilated by a
power of 𝑔, whence 𝑔𝑒 = 𝑎𝑓 for some 𝑎 ∈ 𝑆 homogeneous of degree 𝑒 deg(𝑔) − deg(𝑓).
This proves (b). For (c), the map 𝑆𝑓 → 𝑆𝑔 exists by (a) from the universal property of
localization, or we can define it by mapping 𝑏/𝑓𝑛 to 𝑎𝑛𝑏/𝑔𝑛𝑒. This clearly induces a map
of the subrings 𝑆(𝑓) → 𝑆(𝑔) of degree zero elements as well. We can similarly define
𝑀𝑓 → 𝑀𝑔 and 𝑀(𝑓) → 𝑀(𝑔) by mapping 𝑥/𝑓𝑛 to 𝑎𝑛𝑥/𝑔𝑛𝑒. The statements writing 𝑆(𝑔)
resp. 𝑀(𝑔) as principal localizations of 𝑆(𝑓) resp. 𝑀(𝑓) are clear from the formulas above.
The maps in the commutative diagram of topological spaces correspond to the ring maps
given above. The horizontal arrows are homeomorphisms by Algebra, Lemma 7.53.3. The
vertical arrows are open immersions since the left one is the inclusion of an open subset.
The open 𝐷+(𝑓) is quasi-compact because it is homeomorphic to 𝑆𝑝𝑒𝑐(𝑆(𝑓)), see Algebra,
Lemma 7.26.1. Hence the second statement follows directly from the fact that the standard
opens form a basis for the topology.
The third statement follows directly from Algebra, Lemma 7.16.2. �

In Sheaves, Section 6.30 we defined the notion of a sheaf on a basis, and we showed that it
is essentially equivalent to the notion of a sheaf on the space, see Sheaves, Lemmas 6.30.6
and 6.30.9. Moreover, we showed in Sheaves, Lemma 6.30.4 that it is sufficient to check
the sheaf condition on a cofinal system of open coverings for each standard open. By the
lemma above it suffices to check on the finite coverings by standard opens.

Definition 22.8.2. Let 𝑆 be a graded ring. Suppose that 𝐷+(𝑓) ⊂ Proj(𝑆) is a standard
open. A standard open covering of 𝐷+(𝑓) is a covering 𝐷+(𝑓) = ⋃𝑛

𝑖=1 𝐷+(𝑔𝑖), where
𝑔1, … , 𝑔𝑛 ∈ 𝑆 are homogeneous of positive degree.

Let 𝑆 be a graded ring. Let 𝑀 be a graded 𝑆-module. We will define a presheaf 𝑀 on
the basis of standard opens. Suppose that 𝑈 ⊂ Proj(𝑆) is a standard open. If 𝑓, 𝑔 ∈ 𝑆 are
homogeneous of positive degree such that 𝐷+(𝑓) = 𝐷+(𝑔), then by Lemma 22.8.1 above
there are canonical maps 𝑀(𝑓) → 𝑀(𝑔) and 𝑀(𝑔) → 𝑀(𝑓) which are mutually inverse.
Hence we may choose any 𝑓 such that 𝑈 = 𝐷+(𝑓) and define

𝑀(𝑈) = 𝑀(𝑓).
Note that if 𝐷+(𝑔) ⊂ 𝐷+(𝑓), then by Lemma 22.8.1 above we have a canonical map

𝑀(𝐷+(𝑓)) = 𝑀(𝑓) ⟶ 𝑀(𝑔) = 𝑀(𝐷+(𝑔)).
Clearly, this defines a presheaf of abelian groups on the basis of standard opens. If 𝑀 = 𝑆,
then 𝑆 is a presheaf of rings on the basis of standard opens. And for general 𝑀 we see that
𝑀 is a presheaf of 𝑆-modules on the basis of standard opens.

Let us compute the stalk of 𝑀 at a point 𝑥 ∈ Proj(𝑆). Suppose that 𝑥 corresponds to the
homogeneous prime ideal 𝔭 ⊂ 𝑆. By definition of the stalk we see that

𝑀𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑓∈𝑆𝑑,𝑑>0,𝑓∉𝔭 𝑀(𝑓)

Here the set {𝑓 ∈ 𝑆𝑑, 𝑑 > 0, 𝑓∉𝔭} is partially ordered by the rule 𝑓 ≥ 𝑓′ ⇔ 𝐷+(𝑓) ⊂
𝐷+(𝑓′). If 𝑓1, 𝑓2 ∈ 𝑆 ⧵ 𝔭 are homogeneous of positive degree, then we have 𝑓1𝑓2 ≥ 𝑓1
in this ordering. In Algebra, Section 7.53 we defined 𝑀(𝔭) as the ring whose elements are
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fractions 𝑥/𝑓 with 𝑥, 𝑓 homogeneous, deg(𝑥) = deg(𝑓), 𝑓∉𝔭. Since 𝔭 ∈ Proj(𝑆) there exists
at least one 𝑓0 ∈ 𝑆 homogeneous of positive degree with 𝑓0∉𝔭. Hence 𝑥/𝑓 = 𝑓0𝑥/𝑓𝑓0 and
we see that we may always assume the denominator of an element in 𝑀(𝔭) has positive
degree. From these remarks it follows easily that

𝑀𝑥 = 𝑀(𝔭).

Next, we check the sheaf condition for the standard open coverings. If𝐷+(𝑓) = ⋃𝑛
𝑖=1 𝐷+(𝑔𝑖),

then the sheaf condition for this covering is equivalent with the exactness of the sequence

0 → 𝑀(𝑓) → ⨁ 𝑀(𝑔𝑖) → ⨁ 𝑀(𝑔𝑖𝑔𝑗).

Note that 𝐷+(𝑔𝑖) = 𝐷+(𝑓𝑔𝑖), and hence we can rewrite this sequence as the sequence

0 → 𝑀(𝑓) → ⨁ 𝑀(𝑓𝑔𝑖) → ⨁ 𝑀(𝑓𝑔𝑖𝑔𝑗).

By Lemma 22.8.1 we see that 𝑔deg(𝑓)
1 /𝑓deg(𝑔1), … , 𝑔deg(𝑓)

𝑛 /𝑓deg(𝑔𝑛) generate the unit ideal in
𝑆(𝑓), and that the modules 𝑀(𝑓𝑔𝑖), 𝑀(𝑓𝑔𝑖𝑔𝑗) are the principal localizations of the 𝑆(𝑓)-module
𝑀(𝑓) at these elements and their products. Thuswemay applyAlgebra, Lemma 7.20.2 to the
module 𝑀(𝑓) over 𝑆(𝑓) and the elements 𝑔deg(𝑓)

1 /𝑓deg(𝑔1), … , 𝑔deg(𝑓)
𝑛 /𝑓deg(𝑔𝑛). We conclude

that the sequence is exact. By the remarks made above, we see that 𝑀 is a sheaf on the
basis of standard opens.
Thus we conclude from thematerial in Sheaves, Section 6.30 that there exists a unique sheaf
of rings 𝒪Proj(𝑆) which agrees with 𝑆 on the standard opens. Note that by our computation
of stalks above and Algebra, Lemma 7.53.5 the stalks of this sheaf of rings are all local
rings.
Similarly, for any graded 𝑆-module 𝑀 there exists a unique sheaf of 𝒪Proj(𝑆)-modules ℱ
which agrees with 𝑀 on the standard opens, see Sheaves, Lemma 6.30.12.

Definition 22.8.3. Let 𝑆 be a graded ring.
(1) The structure sheaf 𝒪Proj(𝑆) of the homogeneous spectrum of 𝑆 is the unique sheaf

of rings 𝒪Proj(𝑆) which agrees with 𝑆 on the basis of standard opens.
(2) The locally ringed space (Proj(𝑆), 𝒪Proj(𝑆)) is called the homogeneous spectrum

of 𝑆 and denoted Proj(𝑆).
(3) The sheaf of 𝒪Proj(𝑆)-modules extending 𝑀 to all opens of Proj(𝑆) is called the

sheaf of 𝒪Proj(𝑆)-modules associated to 𝑀. This sheaf is denoted 𝑀 as well.

We summarize the results obtained so far.

Lemma 22.8.4. Let 𝑆 be a graded ring. Let 𝑀 be a graded 𝑆-module. Let 𝑀 be the sheaf
of 𝒪Proj(𝑆)-modules associated to 𝑀.

(1) For every 𝑓 ∈ 𝑆 homogeneous of positive degree we have

Γ(𝐷+(𝑓), 𝒪Proj(𝑆)) = 𝑆(𝑓).

(2) For every 𝑓 ∈ 𝑆 homogeneous of positive degree we have Γ(𝐷+(𝑓), 𝑀) = 𝑀(𝑓)
as an 𝑆(𝑓)-module.

(3) Whenever 𝐷+(𝑔) ⊂ 𝐷+(𝑓) the restriction mappings on 𝒪Proj(𝑆) and 𝑀 are the
maps 𝑆(𝑓) → 𝑆(𝑔) and 𝑀(𝑓) → 𝑀(𝑔) from Lemma 22.8.1.

(4) Let 𝔭 be a homogeneous prime of 𝑆 not containing 𝑆+, and let 𝑥 ∈ Proj(𝑆) be
the corresponding point. We have 𝒪Proj(𝑆),𝑥 = 𝑆(𝔭).
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(5) Let 𝔭 be a homogeneous prime of 𝑆 not containing 𝑆+, and let 𝑥 ∈ Proj(𝑆) be
the corresponding point. We have ℱ𝑥 = 𝑀(𝔭) as an 𝑆(𝔭)-module.

(6) There is a canonical ring map 𝑆0 ⟶ Γ(Proj(𝑆), 𝑆) and a canonical 𝑆0-module
map 𝑀0 ⟶ Γ(Proj(𝑆), 𝑀) compatible with the descriptions of sections over
standard opens above and stalks above.

Moreover, all these identifications are functorial in the graded 𝑆-module 𝑀. In particular,
the functor 𝑀 ↦ 𝑀 is an exact functor from the category of graded 𝑆-modules to the
category of 𝒪Proj(𝑆)-modules.

Proof. Assertions (1) - (5) are clear from the discussion above. We see (6) since there are
canonical maps 𝑀0 → 𝑀(𝑓), 𝑥 ↦ 𝑥/1 compatible with the restriction maps described in
(3). The exactness of the functor 𝑀 ↦ 𝑀 follows from the fact that the functor 𝑀 ↦ 𝑀(𝔭)
is exact (see Algebra, Lemma 7.53.5) and the fact that exactness of short exact sequences
may be checked on stalks, see Modules, Lemma 15.3.1. �

Remark 22.8.5. The map from 𝑀0 to the global sections of 𝑀 is generally far from being
an isomorphism. A trivial example is to take 𝑆 = 𝑘[𝑥, 𝑦, 𝑧] with 1 = deg(𝑥) = deg(𝑦) =
deg(𝑧) (or any number of variables) and to take 𝑀 = 𝑆/(𝑥100, 𝑦100, 𝑧100). It is easy to see
that 𝑀 = 0, but 𝑀0 = 𝑘.

Lemma 22.8.6. Let𝑆 be a graded ring. Let 𝑓 ∈ 𝑆 be homogeneous of positive degree. Sup-
pose that 𝐷(𝑔) ⊂ 𝑆𝑝𝑒𝑐(𝑆(𝑓)) is a standard open. Then there exists a ℎ ∈ 𝑆 homogeneous
of positive degree such that 𝐷(𝑔) corresponds to 𝐷+(ℎ) ⊂ 𝐷+(𝑓) via the homeomorphism
of Algebra, Lemma 7.53.3. In fact we can take ℎ such that 𝑔 = ℎ/𝑓𝑛 for some 𝑛.

Proof. Write 𝑔 = ℎ/𝑓𝑛 for some ℎ homogeneous of positive degree and some 𝑛 ≥ 1. If
𝐷+(ℎ) is not contained in 𝐷+(𝑓) then we replace ℎ by ℎ𝑓 and 𝑛 by 𝑛 + 1. Then ℎ has the
required shape and 𝐷+(ℎ) ⊂ 𝐷+(𝑓) corresponds to 𝐷(𝑔) ⊂ 𝑆𝑝𝑒𝑐(𝑆(𝑓)). �

Lemma 22.8.7. Let 𝑆 be a graded ring. The locally ringed space Proj(𝑆) is a scheme.
The standard opens 𝐷+(𝑓) are affine opens. For any graded 𝑆-module 𝑀 the sheaf 𝑀 is a
quasi-coherent sheaf of 𝒪Proj(𝑆)-modules.

Proof. Consider a standard open 𝐷+(𝑓) ⊂ Proj(𝑆). By Lemmas 22.8.1 and 22.8.4 we have
Γ(𝐷+(𝑓), 𝒪Proj(𝑆)) = 𝑆(𝑓), and we have a homeomorphism 𝜑 ∶ 𝐷+(𝑓) → 𝑆𝑝𝑒𝑐(𝑆(𝑓)). For
any standard open 𝐷(𝑔) ⊂ 𝑆𝑝𝑒𝑐(𝑆(𝑓)) we may pick a ℎ ∈ 𝑆+ as in Lemma 22.8.6. Then
𝜑−1(𝐷(𝑔)) = 𝐷+(ℎ), and by Lemmas 22.8.4 and 22.8.1 we see

Γ(𝐷+(ℎ), 𝒪Proj(𝑆)) = 𝑆(ℎ) = (𝑆(𝑓))ℎdeg(𝑓)/𝑓deg(ℎ) = (𝑆(𝑓))𝑔 = Γ(𝐷(𝑔), 𝒪𝑆𝑝𝑒𝑐(𝑆(𝑓))).

Thus the restriction of 𝒪Proj(𝑆) to 𝐷+(𝑓) corresponds via the homeomorphism 𝜑 exactly to
the sheaf 𝒪𝑆𝑝𝑒𝑐(𝑆(𝑓)) as defined in Schemes, Section 21.5. We conclude that 𝐷+(𝑓) is an
affine scheme isomorphic to 𝑆𝑝𝑒𝑐(𝑆(𝑓)) via 𝜑 and hence that Proj(𝑆) is a scheme.

In exactly the same way we show that 𝑀 is a quasi-coherent sheaf of 𝒪Proj(𝑆)-modules.
Namely, the argument above will show that

𝑀|𝐷+(𝑓) ≅ 𝜑∗
(𝑀(𝑓))

which shows that 𝑀 is quasi-coherent. �

Lemma 22.8.8. Let 𝑆 be a graded ring. The scheme Proj(𝑆) is separated.
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Proof. We have to show that the canonical morphism Proj(𝑆) → 𝑆𝑝𝑒𝑐(𝐙) is separated.
We will use Schemes, Lemma 21.21.8. Thus it suffices to show given any pair of standard
opens 𝐷+(𝑓) and 𝐷+(𝑔) that 𝐷+(𝑓) ∩ 𝐷+(𝑔) = 𝐷+(𝑓𝑔) is affine (clear) and that the ring
map

𝑆(𝑓) ⊗𝐙 𝑆(𝑔) ⟶ 𝑆(𝑓𝑔)

is surjective. Any element 𝑠 in 𝑆(𝑓𝑔) is of the form 𝑠 = ℎ/(𝑓𝑛𝑔𝑚) with ℎ ∈ 𝑆 homogeneous
of degree 𝑛 deg(𝑓) + 𝑚 deg(𝑔). We may multiply ℎ by a suitable monomial 𝑓𝑖𝑔𝑗 and assume
that 𝑛 = 𝑛′ deg(𝑔), and 𝑚 = 𝑚′ deg(𝑓). Then we can rewrite 𝑠 as 𝑠 = ℎ/𝑓(𝑛′+𝑚′) deg(𝑔) ⋅
𝑓𝑚′ deg(𝑔)/𝑔𝑚′ deg(𝑓). So 𝑠 is indeed in the image of the displayed arrow. �

Lemma 22.8.9. Let 𝑆 be a graded ring. The scheme Proj(𝑆) is quasi-compact if and
only if there exist finitely many homogeneous elements 𝑓1, … , 𝑓𝑛 ∈ 𝑆+ such that 𝑆+ ⊂
√(𝑓1, … , 𝑓𝑛).

Proof. Given such a collection of elements the standard affine opens 𝐷+(𝑓𝑖) cover Proj(𝑆)
by Algebra, Lemma 7.53.3. Conversely, if Proj(𝑆) is quasi-compact, then we may cover it
by finitely many standard opens 𝐷+(𝑓𝑖), 𝑖 = 1, … , 𝑛 and we see that 𝑆+ ⊂ √(𝑓1, … , 𝑓𝑛)
by the lemma referenced above. �

Lemma 22.8.10. Let 𝑆 be a graded ring. The scheme Proj(𝑆) has a canonical morphism
towards the affine scheme 𝑆𝑝𝑒𝑐(𝑆0), agreeing with the map on topological spaces coming
from Algebra, Definition 7.53.1.

Proof. We saw above that our construction of 𝑆, resp. 𝑀 gives a sheaf of 𝑆0-algebras, resp.
𝑆0-modules. Hence we get a morphism by Schemes, Lemma 21.6.4. This morphism, when
restricted to 𝐷+(𝑓) comes from the canonical ring map 𝑆0 → 𝑆(𝑓). The maps 𝑆 → 𝑆𝑓,
𝑆(𝑓) → 𝑆𝑓 are 𝑆0-algebra maps, see Lemma 22.8.1. Hence if the homogeneous prime
𝔭 ⊂ 𝑆 corresponds to the 𝐙-graded prime 𝔭′ ⊂ 𝑆𝑓 and the (usual) prime 𝔭″ ⊂ 𝑆(𝑓), then
each of these has the same inverse image in 𝑆0. �

Lemma 22.8.11. Let 𝑆 be a graded ring. If 𝑆 is finitely generated as an algebra over 𝑆0,
then the morphism Proj(𝑆) → 𝑆𝑝𝑒𝑐(𝑆0) satisfies the existence and uniqueness parts of the
valuative criterion, see Schemes, Definition 21.20.3.

Proof. The uniqueness part follows from the fact that Proj(𝑆) is separated (Lemma 22.8.8
and Schemes, Lemma 21.22.1). Choose 𝑥𝑖 ∈ 𝑆+ homogeneous, 𝑖 = 1, … , 𝑛which generate
𝑆 over 𝑆0. Let 𝑑𝑖 = deg(𝑥𝑖) and set 𝑑 = lcm{𝑑𝑖}. Suppose we are given a diagram

𝑆𝑝𝑒𝑐(𝐾) //

��

Proj(𝑆)

��
𝑆𝑝𝑒𝑐(𝐴) // 𝑆𝑝𝑒𝑐(𝑆0)

as in Schemes, Definition 21.20.3. Denote 𝑣 ∶ 𝐾∗ → Γ the valuation of 𝐴, see Algebra,
Definition 7.46.8. We may choose an 𝑓 ∈ 𝑆+ homogeneous such that 𝑆𝑝𝑒𝑐(𝐾) maps into
𝐷+(𝑓). Then we get a commutative diagram of ring maps

𝐾 𝑆(𝑓)𝜑
oo

𝐴

OO

𝑆0
oo

OO
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Let 𝑖0 ∈ {1, … , 𝑛} be an index minimizing the valuation (𝑑/𝑑𝑖)𝑣(𝜑(𝑥deg(𝑓)
𝑖 /𝑓𝑑𝑖)) where we

temporarily use the convention that the valuation of zero is bigger than any element of the
value group. For convenience set 𝑥0 = 𝑥𝑖0 and 𝑑0 = 𝑑𝑖0. Since the open sets 𝐷+(𝑥𝑖)
cover Proj(𝑆) we see that 𝜑(𝑥0)≠0. This means that the ring map 𝜑 factors though a map
𝜑′ ∶ 𝑆(𝑓𝑥0) → 𝐾. We see that

deg(𝑓)𝑣(𝜑′(𝑥𝑑0
𝑖 /𝑥𝑑𝑖

0 )) = 𝑑0𝑣(𝜑(𝑥deg(𝑓)
𝑖 /𝑓𝑑𝑖)) − 𝑑𝑖𝑣(𝜑(𝑥deg(𝑓)

0 /𝑓𝑑0)) ≥ 0

by our choice of 𝑖0. This implies that the 𝑆0-algebra 𝑆(𝑥0), which is generated by the el-
ements 𝑥𝑑0

𝑖 /𝑥𝑑𝑖
0 over 𝑆0, maps into 𝐴 via 𝜑′. The corresponding morphism of schemes

𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝑆(𝑥0)) = 𝐷+(𝑥0) ⊂ Proj(𝑆) provides the morphism fitting into the first
commutative diagram of this proof. �

We saw in the proof of Lemma 22.8.11 that, under the hypotheses of that lemma, the mor-
phism Proj(𝑆) → 𝑆𝑝𝑒𝑐(𝑆0) is quasi-compact as well. Hence (by Schemes, Proposition
21.20.6) we see that Proj(𝑆) → 𝑆𝑝𝑒𝑐(𝑆0) is universally closed in the situation of the lemma.
We give two examples showing these results do not hold without some assumption on the
graded ring 𝑆.

Example 22.8.12. Let 𝐂[𝑋1, 𝑋2, 𝑋3, …] be the graded 𝐂-algebra with each 𝑋𝑖 in degree
0. Consider the ring map

𝐂[𝑋1, 𝑋2, 𝑋3, …] ⟶ 𝐂[𝑡𝛼; 𝛼 ∈ 𝐐≥0]

which maps 𝑋𝑖 to 𝑡1/𝑖. The right hand side becomes a valuation ring 𝐴 upon localization at
the ideal𝔪 = (𝑡𝛼; 𝛼 > 0). This gives amorphism from𝑆𝑝𝑒𝑐(𝑓.𝑓.(𝐴)) to Proj(𝐂[𝑋1, 𝑋2, 𝑋3, …])
which does not extend to a morphism defined on all of 𝑆𝑝𝑒𝑐(𝐴). The reason is that the im-
age of 𝑆𝑝𝑒𝑐(𝐴) would be contained in one of the 𝐷+(𝑋𝑖) but then 𝑋𝑖+1/𝑋𝑖 would map to
an element of 𝐴 which it doesn't since it maps to 𝑡1/(𝑖+1)−1/𝑖.

Example 22.8.13. Let 𝑅 = 𝐂[𝑡] and

𝑆 = 𝑅[𝑋1, 𝑋2, 𝑋3, …]/(𝑋2
𝑖 − 𝑡𝑋𝑖+1).

The grading is such that 𝑅 = 𝑆0 and deg(𝑋𝑖) = 2𝑖−1. Note that if 𝔭 ∈ Proj(𝑆) then
𝑡∉𝔭 (otherwise 𝔭 has to contain all of the 𝑋𝑖 which is not allowed for an element of the
homogeneous spectrum). Thus we see that 𝐷+(𝑋𝑖) = 𝐷+(𝑋𝑖+1) for all 𝑖. Hence Proj(𝑆) is
quasi-compact; in fact it is affine since it is equal to 𝐷+(𝑋1). It is easy to see that the image
of Proj(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is𝐷(𝑡). Hence themorphism Proj(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is not closed. Thus
the valuative criterion cannot apply because it would imply that the morphism is closed (see
Schemes, Proposition 21.20.6 ).

Example 22.8.14. Let 𝐴 be a ring. Let 𝑆 = 𝐴[𝑇] as a graded 𝐴 algebra with 𝑇 in degree 1.
Then the canonical morphism Proj(𝑆) → 𝑆𝑝𝑒𝑐(𝐴) (see Lemma 22.8.10) is an isomorphism.

22.9. Quasi-coherent sheaves on Proj

Let 𝑆 be a graded ring. Let 𝑀 be a graded 𝑆-module. We saw in the previous section how
to construct a quasi-coherent sheaf of modules 𝑀 on Proj(𝑆) and a map

𝑀0 ⟶ Γ(Proj(𝑆), 𝑀)

of the degree 0 part of 𝑀 to the global sections of 𝑀. The degree 0 part of the 𝑛th twist
𝑀(𝑛) of the graded module 𝑀 (see Algebra, Section 7.52) is equal to 𝑀𝑛. Hence we can
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get maps
𝑀𝑛 ⟶ Γ(Proj(𝑆), 𝑀(𝑛)).

We would like to be able to perform this operation for any quasi-coherent sheaf ℱ on
Proj(𝑆). We will do this by tensoring with the 𝑛th twist of the structure sheaf, see Definition
22.10.1. In order to relate the two notions we will use the following lemma.

Lemma 22.9.1. Let 𝑆 be a graded ring. Let (𝑋, 𝒪𝑋) = (Proj(𝑆), 𝒪Proj(𝑆)) be the scheme
of Lemma 22.8.7. Let 𝑓 ∈ 𝑆+ be homogeneous. Let 𝑥 ∈ 𝑋 be a point corresponding to the
homogeneous prime 𝔭 ⊂ 𝑆. Let 𝑀, 𝑁 be graded 𝑆-modules. There is a canonical map of
𝒪Proj(𝑆)-modules

𝑀 ⊗𝒪𝑋
�̃� ⟶ 𝑀 ⊗𝑆 𝑁

which induces the canonical map 𝑀(𝑓) ⊗𝑆(𝑓)
𝑁(𝑓) → (𝑀 ⊗𝑆 𝑁)(𝑓) on sections over 𝐷+(𝑓)

and the canonical map 𝑀(𝔭) ⊗𝑆(𝔭)
𝑁(𝔭) → (𝑀 ⊗𝑆 𝑁)(𝔭) on stalks at 𝑥. Moreover, the

following diagram
𝑀0 ⊗𝑆0

𝑁0
//

��

(𝑀 ⊗𝑆 𝑁)0

��
Γ(𝑋, 𝑀 ⊗𝒪𝑋

�̃�) // Γ(𝑋, 𝑀 ⊗𝑅 𝑁)

is commutative.

Proof. To construct a morphism as displayed is the same as constructing a 𝒪𝑋-bilinear map

𝑀 × �̃� ⟶ 𝑀 ⊗𝑅 𝑁

see Modules, Section 15.15. It suffices to define this on sections over the opens 𝐷+(𝑓)
compatible with restriction mappings. On 𝐷+(𝑓) we use the 𝑆(𝑓)-bilinear map 𝑀(𝑓) ×
𝑁(𝑓) → (𝑀 ⊗𝑆 𝑁)(𝑓), (𝑥/𝑓𝑛, 𝑦/𝑓𝑚) ↦ (𝑥 ⊗ 𝑦)/𝑓𝑛+𝑚. Details omitted. �

Remark 22.9.2. In general the map constructed in Lemma 22.9.1 above is not an isomor-
phism. Here is an example. Let 𝑘 be a field. Let 𝑆 = 𝑘[𝑥, 𝑦, 𝑧] with 𝑘 in degree 0 and
deg(𝑥) = 1, deg(𝑦) = 2, deg(𝑧) = 3. Let 𝔭 = (𝑥, 𝑦) ∈ Proj(𝑆). Let 𝑀 = 𝑆(1) and
𝑁 = 𝑆(2), see Algebra, Section 7.52 for notation. Then 𝑀 ⊗𝑆 𝑁 = 𝑆(3). Note that

𝑆𝑧 = 𝑘[𝑥, 𝑦, 𝑧, 1/𝑧]
𝑆(𝑧) = 𝑘[𝑥3/𝑧, 𝑥𝑦/𝑧, 𝑦3/𝑧2] ≅ 𝑘[𝑢, 𝑣, 𝑤]/(𝑢𝑤 − 𝑣3)

𝑀(𝑧) = 𝑆(𝑧) ⋅ 𝑥 + 𝑆(𝑧) ⋅ 𝑦2/𝑧 ⊂ 𝑆𝑧

𝑁(𝑧) = 𝑆(𝑧) ⋅ 𝑦 + 𝑆(𝑧) ⋅ 𝑥2 ⊂ 𝑆𝑧

𝑆(3)(𝑧) = 𝑆(𝑧) ⋅ 𝑧 ⊂ 𝑆𝑧

Consider the maximal ideal 𝔪 = (𝑢, 𝑣, 𝑤) ⊂ 𝑆(𝑧). It is not hard to see that both 𝑀(𝑧)/𝔪𝑀(𝑧)
and 𝑁(𝑧)/𝔪𝑁(𝑧) have dimension 2 over 𝜅(𝔪). But 𝑆(3)(𝑧)/𝔪𝑆(3)(𝑧) has dimension 1. Thus
the map 𝑀(𝑧) ⊗ 𝑁(𝑧) → 𝑆(3)(𝑧) is not an isomorphism.

22.10. Invertible sheaves on Proj

Recall from Algebra, Section 7.52 the construction of the twisted module 𝑀(𝑛) associated
to a graded module over a graded ring.

Definition 22.10.1. Let 𝑆 be a graded ring. Let 𝑋 = Proj(𝑆).
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(1) We define 𝒪𝑋(𝑛) = 𝑆(𝑛). This is called the 𝑛th twist of the structure sheaf of
Proj(𝑆).

(2) For any sheaf of 𝒪𝑋-modules ℱ we set ℱ(𝑛) = ℱ ⊗𝒪𝑋
𝒪𝑋(𝑛).

We are going to use Lemma 22.9.1 to construct some canonical maps. Since𝑆(𝑛)⊗𝑆𝑆(𝑚) =
𝑆(𝑛 + 𝑚) we see that there are canonical maps

(22.10.1.1) 𝒪𝑋(𝑛) ⊗𝒪𝑋
𝒪𝑋(𝑚) ⟶ 𝒪𝑋(𝑛 + 𝑚).

These maps are not isomorphisms in general, see the example in Remark 22.9.2. The same
example shows that 𝒪𝑋(𝑛) is not an invertible sheaf on 𝑋 in general. Tensoring with an
arbitrary 𝒪𝑋-module ℱ we get maps

(22.10.1.2) 𝒪𝑋(𝑛) ⊗𝒪𝑋
ℱ(𝑚) ⟶ ℱ(𝑛 + 𝑚).

The maps (22.10.1.1) on global sections give a map of graded rings

(22.10.1.3) 𝑆 ⟶ ⨁𝑛≥0
Γ(𝑋, 𝒪𝑋(𝑛)).

And for an arbitrary 𝒪𝑋-module ℱ the maps (22.10.1.2) give a graded module structure

(22.10.1.4) ⨁𝑛≥0
Γ(𝑋, 𝒪𝑋(𝑛)) × ⨁𝑚∈𝐙

Γ(𝑋, ℱ(𝑚)) ⟶ ⨁𝑚∈𝐙
Γ(𝑋, ℱ(𝑚))

and via (22.10.1.3) also a 𝑆-module structure. More generally, given any graded 𝑆-module
𝑀 we have 𝑀(𝑛) = 𝑀 ⊗𝑆 𝑆(𝑛). Hence we get maps

(22.10.1.5) 𝑀(𝑛) = 𝑀 ⊗𝒪𝑋
𝒪𝑋(𝑛) ⟶ 𝑀(𝑛).

On global sections we get a map of graded 𝑆-modules

(22.10.1.6) 𝑀 ⟶ ⨁𝑛∈𝐙
Γ(𝑋, 𝑀(𝑛)).

Here is an important fact which follows basically immediately from the definitions.

Lemma 22.10.2. Let 𝑆 be a graded ring. Set 𝑋 = Proj(𝑆). Let 𝑓 ∈ 𝑆 be homogeneous
of degree 𝑑 > 0. The sheaves 𝒪𝑋(𝑛𝑑)|𝐷+(𝑓) are invertible, and in fact trivial for all 𝑛 ∈ 𝐙
(see Modules, Definition 15.21.1). The maps (22.10.1.1) restricted to 𝐷+(𝑓)

𝒪𝑋(𝑛𝑑)|𝐷+(𝑓) ⊗𝒪𝐷+(𝑓)
𝒪𝑋(𝑚)|𝐷+(𝑓) ⟶ 𝒪𝑋(𝑛𝑑 + 𝑚)|𝐷+(𝑓)

and the maps (22.10.1.5) restricted to 𝐷+(𝑓)

𝑀(𝑛𝑑)|𝐷+(𝑓) = 𝑀|𝐷+(𝑓) ⊗𝒪𝐷+(𝑓)
𝒪𝑋(𝑛𝑑)|𝐷+(𝑓) ⟶ 𝑀(𝑛𝑑)|𝐷+(𝑓)

are isomorphisms for all 𝑛, 𝑚 ∈ 𝐙.

Proof. The (not graded) 𝑆-module maps 𝑆 → 𝑆(𝑛), and 𝑀 → 𝑀(𝑛), given by 𝑥 ↦ 𝑓𝑛/𝑑𝑥
become isomorphisms after inverting 𝑓. The first shows that 𝑆(𝑓) ≅ 𝑆(𝑛)(𝑓) which gives an
isomorphism 𝒪𝐷+(𝑓) ≅ 𝒪𝑋(𝑛)|𝐷+(𝑓). The second shows that the map 𝑆(𝑛)(𝑓) ⊗𝑆(𝑓)

𝑀(𝑓) →
𝑀(𝑛)(𝑓) is an isomorphism. �

Lemma 22.10.3. Let 𝑆 be a graded ring generated as an 𝑆0-algebra by the elements of
𝑆1. Set 𝑋 = Proj(𝑆). In this case the sheaves 𝒪𝑋(𝑛) are all invertible, and all the maps
(22.10.1.1) and (22.10.1.5) are isomorphisms. In particular, these maps induce isomor-
phisms

𝒪𝑋(𝑛) ≅ 𝒪𝑋(1)⊗𝑛 and 𝑀(𝑛) = 𝑀 ⊗𝒪𝑋
𝒪𝑋(1)⊗𝑛.

In fact the lemma holds more generally if 𝑋 is covered by the standard opens 𝐷+(𝑓) with
𝑓 ∈ 𝑆1.
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Proof. Under the assumptions of the lemma 𝑋 is covered by the open subsets 𝐷+(𝑓) with
𝑓 ∈ 𝑆1 and the lemma is a consequence of Lemma 22.10.2 above. �

Lemma 22.10.4. Let 𝑆 be a graded ring. Set 𝑋 = Proj(𝑆). Fix 𝑑 ≥ 1 an integer. The
following open subsets of 𝑋 are equal:

(1) The largest open subset 𝑊 = 𝑊𝑑 ⊂ 𝑋 such that each 𝒪𝑋(𝑑𝑛)|𝑊 is invertible and
all the multiplication maps 𝒪𝑋(𝑛𝑑)|𝑊 ⊗𝒪𝑊

𝒪𝑋(𝑚𝑑)|𝑊 → 𝒪𝑋(𝑛𝑑 + 𝑚𝑑)|𝑊 (see
22.10.1.1) are isomorphisms.

(2) The union of the open subsets 𝐷+(𝑓𝑔) with 𝑓, 𝑔 ∈ 𝑆 homogeneous and deg(𝑓) =
deg(𝑔) + 𝑑.

Moreover, all the maps 𝑀(𝑛𝑑)|𝑊 = 𝑀|𝑊 ⊗𝒪𝑊
𝒪𝑋(𝑛𝑑)|𝑊 → 𝑀(𝑛𝑑)|𝑊 (see 22.10.1.5) are

isomorphisms.

Proof. If 𝑥 ∈ 𝐷+(𝑓𝑔) with deg(𝑓) = deg(𝑔) + 𝑑 then on 𝐷+(𝑓𝑔) the sheaves 𝒪𝑋(𝑑𝑛) are
generated by the element (𝑓/𝑔)𝑛 = 𝑓2𝑛/(𝑓𝑔)𝑛. This implies 𝑥 is in the open subset 𝑊 defined
in (1) by arguing as in the proof of Lemma 22.10.2.

Conversely, suppose that 𝒪𝑋(𝑑) is free of rank 1 in an open neighbourhood 𝑉 of 𝑥 ∈ 𝑋 and
all the multiplication maps 𝒪𝑋(𝑛𝑑)|𝑉 ⊗𝒪𝑉

𝒪𝑋(𝑚𝑑)|𝑉 → 𝒪𝑋(𝑛𝑑 + 𝑚𝑑)|𝑉 are isomorphisms.
We may choose ℎ ∈ 𝑆+ homogeneous such that 𝐷+(ℎ) ⊂ 𝑉. By the definition of the twists
of the structure sheaf we conclude there exists an element 𝑠 of (𝑆ℎ)𝑑 such that 𝑠𝑛 is a basis
of (𝑆ℎ)𝑛𝑑 as a module over 𝑆(ℎ) for all 𝑛 ∈ 𝐙. We may write 𝑠 = 𝑓/ℎ𝑚 for some 𝑚 ≥ 1 and
𝑓 ∈ 𝑆𝑑+𝑚 deg(ℎ). Set 𝑔 = ℎ𝑚 so 𝑠 = 𝑓/𝑔. Note that 𝑥 ∈ 𝐷(𝑔) by construction. Note that
𝑔𝑑 ∈ (𝑆ℎ)−𝑑 deg(𝑔). By assumption we can write this as a multiple of 𝑠deg(𝑔) = 𝑓deg(𝑔)/𝑔deg(𝑔),
say 𝑔𝑑 = 𝑎/𝑔𝑒 ⋅ 𝑓deg(𝑔)/𝑔deg(𝑔). Then we conclude that 𝑔𝑑+𝑒+deg(𝑔) = 𝑎𝑓deg(𝑔) and hence also
𝑥 ∈ 𝐷+(𝑓). So 𝑥 is an element of the set defined in (2).

The existence of the generating section 𝑠 = 𝑓/𝑔 over the affine open 𝐷+(𝑓𝑔) whose powers
freely generate the sheaves of modules 𝒪𝑋(𝑛𝑑) easily implies that the multiplication maps
𝑀(𝑛𝑑)|𝑊 = 𝑀|𝑊 ⊗𝒪𝑊

𝒪𝑋(𝑛𝑑)|𝑊 → 𝑀(𝑛𝑑)|𝑊 (see 22.10.1.5) are isomorphisms. Compare
with the proof of Lemma 22.10.2. �

Recall from Modules, Lemma 15.21.7 that given an invertible sheaf ℒ on a locally ringed
space 𝑋, and given a global section 𝑠 of ℒ the set 𝑋𝑠 = {𝑥 ∈ 𝑋 ∣ 𝑠∉𝔪𝑥ℒ𝑥} is open.

Lemma 22.10.5. Let 𝑆 be a graded ring. Set 𝑋 = Proj(𝑆). Fix 𝑑 ≥ 1 an integer. Let
𝑊 = 𝑊𝑑 ⊂ 𝑋 be the open subscheme defined in Lemma 22.10.4. Let 𝑛 ≥ 1 and 𝑓 ∈ 𝑆𝑛𝑑.
Denote 𝑠 ∈ Γ(𝑊, 𝒪𝑊(𝑛𝑑)) the section which is the image of 𝑓 via (22.10.1.3) restricted to
𝑊. Then

𝑊𝑠 = 𝐷+(𝑓) ∩ 𝑊.

Proof. Let𝐷+(𝑎𝑏) ⊂ 𝑊 be a standard affine openwith 𝑎, 𝑏 ∈ 𝑆 homogeneous and deg(𝑎) =
deg(𝑏) + 𝑑. Note that 𝐷+(𝑎𝑏) ∩ 𝐷+(𝑓) = 𝐷+(𝑎𝑏𝑓). On the other hand the restriction of 𝑠
to 𝐷+(𝑎𝑏) corresponds to the element 𝑓/1 = 𝑏𝑛𝑓/𝑎𝑛(𝑎/𝑏)𝑛 ∈ (𝑆𝑎𝑏)𝑛𝑑. We have seen in the
proof of Lemma 22.10.4 that (𝑎/𝑏)𝑛 is a generator for 𝒪𝑊(𝑛𝑑) over 𝐷+(𝑎𝑏). We conclude
that 𝑊𝑠 ∩ 𝐷+(𝑎𝑏) is the principal open associated to 𝑏𝑛𝑓/𝑎𝑛 ∈ 𝒪𝑋(𝐷+(𝑎𝑏)). Thus the result
of the lemma is clear. �

The following lemma states the properties that we will later use to characterize schemes
with an ample invertible sheaf.
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Lemma 22.10.6. Let 𝑆 be a graded ring. Let 𝑋 = Proj(𝑆). Let 𝑌 ⊂ 𝑋 be a quasi-compact
open subscheme. Denote 𝒪𝑌(𝑛) the restriction of 𝒪𝑋(𝑛) to 𝑌. There exists an integer 𝑑 ≥ 1
such that

(1) the subscheme 𝑌 is contained in the open 𝑊𝑑 defined in Lemma 22.10.4,
(2) the sheaf 𝒪𝑌(𝑑𝑛) is invertible for all 𝑛 ∈ 𝐙,
(3) all the maps 𝒪𝑌(𝑛𝑑) ⊗𝒪𝑌

𝒪𝑌(𝑚) ⟶ 𝒪𝑌(𝑛𝑑 + 𝑚) of Equation (22.10.1.1) are
isomorphisms,

(4) all the maps 𝑀(𝑛𝑑)|𝑌 = 𝑀|𝑌 ⊗𝒪𝑌
𝒪𝑋(𝑛𝑑)|𝑌 → 𝑀(𝑛)|𝑌 (see 22.10.1.5) are iso-

morphisms,
(5) given 𝑓 ∈ 𝑆𝑛𝑑 denote 𝑠 ∈ Γ(𝑌, 𝒪𝑌(𝑛𝑑)) the image of 𝑓 via (22.10.1.3) restricted

to 𝑌, then 𝐷+(𝑓) ∩ 𝑌 = 𝑌𝑠,
(6) a basis for the topology on 𝑌 is given by the collection of opens 𝑌𝑠, where 𝑠 ∈

Γ(𝑌, 𝒪𝑌(𝑛𝑑)), 𝑛 ≥ 1, and
(7) a basis for the topology of 𝑌 is given by those opens 𝑌𝑠 ⊂ 𝑌, for 𝑠 ∈ Γ(𝑌, 𝒪𝑌(𝑛𝑑)),

𝑛 ≥ 1 which are affine.

Proof. Since 𝑋 is quasi-compact there exist finitely many homogeneous 𝑓𝑖 ∈ 𝑆+, 𝑖 =
1, … , 𝑛 such that the standard opens 𝐷+(𝑓𝑖) give an open covering of 𝑋. Let 𝑑𝑖 = deg(𝑓𝑖)
and set 𝑑 = 𝑑1 … 𝑑𝑛. Note that 𝐷+(𝑓𝑖) = 𝐷+(𝑓𝑑/𝑑𝑖

𝑖 ) and hence we see immediately that
𝑌 ⊂ 𝑊𝑑, by characterization (2) in Lemma 22.10.4 or by (1) using Lemma 22.10.2. Note
that (1) implies (2), (3) and (4) by Lemma 22.10.4. (Note that (3) is a special case of (4).)
Assertion (5) follows from Lemma 22.10.5. Assertions (6) and (7) follow because the open
subsets 𝐷+(𝑓) form a basis for the topology of 𝑋 and are affine. �

22.11. Functoriality of Proj

A graded ring map 𝜓 ∶ 𝐴 → 𝐵 does not always give rise to a morphism of associated
projective homogeneous spectra. The reason is that the inverse image 𝜓−1(𝔮) of a homo-
geneous prime 𝔮 ⊂ 𝐵 may contain the irrelevant prime 𝐴+ even if 𝔮 does not contain 𝐵+.
The correct result is stated as follows.

Lemma 22.11.1. Let 𝐴, 𝐵 be two graded rings. Set 𝑋 = Proj(𝐴) and 𝑌 = Proj(𝐵). Let
𝜓 ∶ 𝐴 → 𝐵 be a graded ring map. Set

𝑈(𝜓) = ⋃𝑓∈𝐴+ homogeneous
𝐷+(𝜓(𝑓)) ⊂ 𝑌.

Then there is a canonical morphism of schemes

𝑟𝜓 ∶ 𝑈(𝜓) ⟶ 𝑋

and a map of 𝐙-graded 𝒪𝑈(𝜓)-algebras

𝜃 = 𝜃𝜓 ∶ 𝑟∗
𝜓 (⨁𝑑∈𝐙

𝒪𝑋(𝑑)) ⟶ ⨁𝑑∈𝐙
𝒪𝑈(𝜓)(𝑑).

The triple (𝑈(𝜓), 𝑟𝜓, 𝜃) is characterized by the following properties:
(1) For every 𝑑 ≥ 0 the diagram

𝐴𝑑

��

𝜓
// 𝐵𝑑

��
Γ(𝑋, 𝒪𝑋(𝑑)) 𝜃 // Γ(𝑈(𝜓), 𝒪𝑌(𝑑)) Γ(𝑌, 𝒪𝑌(𝑑))oo

is commutative.
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(2) For any 𝑓 ∈ 𝐴+ homogeneous we have 𝑟−1
𝜓 (𝐷+(𝑓)) = 𝐷+(𝜓(𝑓)) and the restric-

tion of 𝑟𝜓 to 𝐷+(𝜓(𝑓)) corresponds to the ring map 𝐴(𝑓) → 𝐵(𝜓(𝑓)) induced by
𝜓.

Proof. Clearly condition (2) uniquely determines the morphism of schemes and the open
subset𝑈(𝜓). Pick𝑓 ∈ 𝐴𝑑 with 𝑑 ≥ 1. Note that𝒪𝑋(𝑛)|𝐷+(𝑓) corresponds to the𝐴(𝑓)-module
(𝐴𝑓)𝑛 and that 𝒪𝑌(𝑛)|𝐷+(𝜓(𝑓)) corresponds to the 𝐵(𝜓(𝑓))-module (𝐵𝜓(𝑓))𝑛. In other words 𝜃
when restricted to 𝐷+(𝜓(𝑓)) corresponds to a map of 𝐙-graded 𝐵(𝜓(𝑓))-algebras

𝐴𝑓 ⊗𝐴(𝑓)
𝐵(𝜓(𝑓)) ⟶ 𝐵𝜓(𝑓)

Condition (1) determines the images of all elements of 𝐴. Since 𝑓 is an invertible element
which is mapped to 𝜓(𝑓) we see that 1/𝑓𝑚 is mapped to 1/𝜓(𝑓)𝑚. It easily follows from this
that 𝜃 is uniquely determined, namely it is given by the rule

𝑎/𝑓𝑚 ⊗ 𝑏/𝜓(𝑓)𝑒 ⟼ 𝜓(𝑎)𝑏/𝜓(𝑓)𝑚+𝑒.

To show existence we remark that the proof of uniqueness above gave a well defined pre-
scription for the morphism 𝑟 and the map 𝜃 when restricted to every standard open of the
form 𝐷+(𝜓(𝑓)) ⊂ 𝑈(𝜓) into 𝐷+(𝑓). Call these 𝑟𝑓 and 𝜃𝑓. Hence we only need to verify that
if 𝐷+(𝑓) ⊂ 𝐷+(𝑔) for some 𝑓, 𝑔 ∈ 𝐴+ homogeneous, then the restriction of 𝑟𝑔 to 𝐷+(𝜓(𝑓))
matches 𝑟𝑓. This is clear from the formulas given for 𝑟 and 𝜃 above. �

Lemma 22.11.2. Let 𝐴, 𝐵, and 𝐶 be graded rings. Set 𝑋 = Proj(𝐴), 𝑌 = Proj(𝐵) and
𝑍 = Proj(𝐶). Let 𝜑 ∶ 𝐴 → 𝐵, 𝜓 ∶ 𝐵 → 𝐶 be graded ring maps. Then we have

𝑈(𝜓 ∘ 𝜑) = 𝑟−1
𝜑 (𝑈(𝜓)) and 𝑟𝜓∘𝜑 = 𝑟𝜑 ∘ 𝑟𝜓|𝑈(𝜓∘𝜑).

In addition we have
𝜃𝜓 ∘ 𝑟∗

𝜓𝜃𝜑 = 𝜃𝜓∘𝜑
with obvious notation.

Proof. Omitted. �

Lemma 22.11.3. With hypotheses and notation as in Lemma 22.11.1 above. Assume 𝐴 →
𝐵 is surjective. Then

(1) 𝑈(𝜓) = 𝑌,
(2) 𝑟𝜓 ∶ 𝑌 → 𝑋 is a closed immersion, and
(3) the maps 𝜃 ∶ 𝑟∗

𝜓𝒪𝑋(𝑛) → 𝒪𝑌(𝑛) are surjective but not isomorphisms in general.

Proof. Write 𝐵 = 𝐴/𝐼 for some graded ideal 𝐼 ⊂ 𝐴. Part (1) is obvious from the definition
of 𝑈(𝜓). For 𝑓 ∈ 𝐴+ homogeneous we see that 𝐴(𝑓) → 𝐵(𝑓) = 𝐴(𝑓)/𝐼(𝑓) is surjective. This
proves (2). Also the map

𝐴𝑓 ⊗𝐴(𝑓)
𝐴(𝑓)/𝐼(𝑓) → (𝐴/𝐼)𝑓

is surjective which proves the surjectivity of 𝜃. For an example where this map is not an
isomorphism consider the graded ring 𝐴 = 𝑘[𝑥, 𝑦] where 𝑘 is a field and deg(𝑥) = 1,
deg(𝑦) = 2. Set 𝐼 = (𝑥), so that 𝐵 = 𝑘[𝑦]. Note that 𝒪𝑌(1) = 0 in this case. But it is easy
to see that 𝑟∗

𝜓𝒪𝑌(1) is not zero. (There are less silly examples.) �

Lemma 22.11.4. With hypotheses and notation as in Lemma 22.11.1 above. Assume 𝐴 →
𝐵 is surjective, and assume that 𝐴 is generated by 𝐴1 over 𝐴0. Then

(1) 𝑈(𝜓) = 𝑌,
(2) 𝑟𝜓 ∶ 𝑌 → 𝑋 is a closed immersion, and
(3) the maps 𝜃 ∶ 𝑟∗

𝜓𝒪𝑋(𝑛) → 𝒪𝑌(𝑛) are isomorphisms.
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Proof. We apply Lemma 22.11.3. By Lemma 22.10.3 we see that both 𝒪𝑋(𝑛) and 𝒪𝑌(𝑛)
are invertible. Hence 𝜃 is an isomorphism. �

Lemma 22.11.5. With hypotheses and notation as in Lemma 22.11.1 above. Assume there
exists a ring map 𝑅 → 𝐴0 and a ring map 𝑅 → 𝑅′ such that 𝐵 = 𝑅′ ⊗𝑅 𝐴. Then

(1) 𝑈(𝜓) = 𝑌,
(2) the diagram

𝑌 = Proj(𝐵) 𝑟𝜓
//

��

Proj(𝐴) = 𝑋

��
𝑆𝑝𝑒𝑐(𝑅′) // 𝑆𝑝𝑒𝑐(𝑅)

is a fibre product square, and
(3) the maps 𝜃 ∶ 𝑟∗

𝜓𝒪𝑋(𝑛) → 𝒪𝑌(𝑛) are isomorphisms.

Proof. This follows immediately by looking at what happens over the standard opens𝐷+(𝑓)
for 𝑓 ∈ 𝐴+. �

Lemma 22.11.6. With hypotheses and notation as in Lemma 22.11.1 above. Assume there
exists a 𝑔 ∈ 𝐴0 such that 𝜓 induces an isomorphism 𝐴𝑔 → 𝐵. Then 𝑈(𝜓) = 𝑌, 𝑟𝜓 ∶ 𝑌 → 𝑋
is an open immersion which induces an isomorphism of 𝑌 with the inverse image of 𝐷(𝑔) ⊂
𝑆𝑝𝑒𝑐(𝐴0). Moreover the map 𝜃 is an isomorphism.

Proof. This is a special case of Lemma 22.11.5 above. �

22.12. Morphisms into Proj

Let 𝑆 be a graded ring. Let 𝑋 = Proj(𝑆) be the homogeneous spectrum of 𝑆. Let 𝑑 ≥ 1 be
an integer. Consider the open subscheme

(22.12.0.1) 𝑈𝑑 = ⋃𝑓∈𝑆𝑑
𝐷+(𝑓) ⊂ 𝑋 = Proj(𝑆)

Note that 𝑑|𝑑′ ⇒ 𝑈𝑑 ⊂ 𝑈𝑑′ and 𝑋 = ⋃𝑑 𝑈𝑑. Neither 𝑋 nor 𝑈𝑑 need be quasi-compact,
see Algebra, Lemma 7.53.3. Let us write 𝒪𝑈𝑑

(𝑛) = 𝒪𝑋(𝑛)|𝑈𝑑
. By Lemma 22.10.2 we

know that 𝒪𝑈𝑑
(𝑛𝑑), 𝑛 ∈ 𝐙 is an invertible 𝒪𝑈𝑑

-module and that all the multiplication maps
𝒪𝑈𝑑

(𝑛𝑑) ⊗𝒪𝑈𝑑
𝒪𝑋(𝑚) → 𝒪𝑈𝑑

(𝑛𝑑 + 𝑚) of (22.10.1.1) are isomorphisms. In particular we
have 𝒪𝑈𝑑

(𝑛𝑑) ≅ 𝒪𝑈𝑑
(𝑑)⊗𝑛. The graded ring map (22.10.1.3) on global sections combined

with restriction to 𝑈𝑑 give a homomorphism of graded rings

(22.12.0.2) 𝜓𝑑 ∶ 𝑆(𝑑) ⟶ Γ∗(𝑈𝑑, 𝒪𝑈𝑑
(𝑑)).

For the notation 𝑆(𝑑), see Algebra, Section 7.52. For the notation Γ∗ see Modules, Defini-
tion 15.21.4. Moreover, since 𝑈𝑑 is covered by the opens 𝐷+(𝑓), 𝑓 ∈ 𝑆𝑑 we see that 𝒪𝑈𝑑

(𝑑)
is globally generated by the sections in the image of 𝜓𝑑

1 ∶ 𝑆(𝑑)
1 = 𝑆𝑑 → Γ(𝑈𝑑, 𝒪𝑈𝑑

(𝑑)), see
Modules, Definition 15.4.1.
Let 𝑌 be a scheme, and let 𝜑 ∶ 𝑌 → 𝑋 be a morphism of schemes. Assume the image
𝜑(𝑌) is contained in the open subscheme 𝑈𝑑 of 𝑋. By the discussion following Modules,
Definition 15.21.4 we obtain a homomorphism of graded rings

Γ∗(𝑈𝑑, 𝒪𝑈𝑑
(𝑑)) ⟶ Γ∗(𝑌, 𝜑∗𝒪𝑋(𝑑)).

The composition of this and 𝜓𝑑 gives a graded ring homomorphism

(22.12.0.3) 𝜓𝑑
𝜑 ∶ 𝑆(𝑑) ⟶ Γ∗(𝑌, 𝜑∗𝒪𝑋(𝑑))
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which has the property that the invertible sheaf 𝜑∗𝒪𝑋(𝑑) is globally generated by the sec-
tions in the image of (𝑆(𝑑))1 = 𝑆𝑑 → Γ(𝑌, 𝜑∗𝒪𝑋(𝑑)).

Lemma 22.12.1. Let 𝑆 be a graded ring, and 𝑋 = Proj(𝑆). Let 𝑑 ≥ 1 and 𝑈𝑑 ⊂ 𝑋 as
above. Let 𝑌 be a scheme. Let ℒ be an invertible sheaf on 𝑌. Let 𝜓 ∶ 𝑆(𝑑) → Γ∗(𝑌, ℒ)
be a graded ring homomorphism such that ℒ is generated by the sections in the image of
𝜓|𝑆𝑑

∶ 𝑆𝑑 → Γ(𝑌, ℒ). Then there exists a morphism 𝜑 ∶ 𝑌 → 𝑋 such that 𝜑(𝑌) ⊂ 𝑈𝑑 and
an isomorphism 𝛼 ∶ 𝜑∗𝒪𝑈𝑑

(𝑑) → ℒ such that 𝜓𝑑
𝜑 agrees with 𝜓 via 𝛼:

Γ∗(𝑌, ℒ) Γ∗(𝑌, 𝜑∗𝒪𝑈𝑑
(𝑑))𝛼

oo Γ∗(𝑈𝑑, 𝒪𝑈𝑑
(𝑑))

𝜑∗
oo

𝑆(𝑑)

𝜓

OO

𝑆(𝑑)

𝜓𝑑

OO

𝜓𝑑
𝜑

hh

idoo

commutes. Moreover, the pair (𝜑, 𝛼) is unique.

Proof. Pick 𝑓 ∈ 𝑆𝑑. Denote 𝑠 = 𝜓(𝑓) ∈ Γ(𝑌, ℒ). On the open set 𝑌𝑠 where 𝑠 does not
vanish multiplication by 𝑠 induces an isomorphism 𝒪𝑌𝑠

→ ℒ|𝑌𝑠
, see Modules, Lemma

15.21.7. We will denote the inverse of this map 𝑥 ↦ 𝑥/𝑠, and similarly for powers of
ℒ. Using this we define a ring map 𝜓(𝑓) ∶ 𝑆(𝑓) → Γ(𝑌𝑠, 𝒪) by mapping the fraction
𝑎/𝑓𝑛 to 𝜓(𝑎)/𝑠𝑛. By Schemes, Lemma 21.6.4 this corresponds to a morphism 𝜑𝑓 ∶ 𝑌𝑠 →
𝑆𝑝𝑒𝑐(𝑆(𝑓)) = 𝐷+(𝑓). We also introduce the isomorphism 𝛼𝑓 ∶ 𝜑∗

𝑓𝒪𝐷+(𝑓)(𝑑) → ℒ|𝑌𝑠
which

maps the pullback of the trivializing section 𝑓 over 𝐷+(𝑓) to the trivializing section 𝑠 over
𝑌𝑠. With this choice the commutativity of the diagram in the lemma holds with 𝑌 replace
by 𝑌𝑠, 𝜑 replaced by 𝜑𝑓, and 𝛼 replaced by 𝛼𝑓; verification omitted.

Suppose that 𝑓′ ∈ 𝑆𝑑 is a second element, and denote 𝑠′ = 𝜓(𝑓′) ∈ Γ(𝑌, ℒ). Then
𝑌𝑠 ∩ 𝑌𝑠′ = 𝑌𝑠𝑠′ and similarly 𝐷+(𝑓) ∩ 𝐷+(𝑓′) = 𝐷+(𝑓𝑓′). In Lemma 22.10.6 we saw that
𝐷+(𝑓′)∩𝐷+(𝑓) is the same as the set of points of 𝐷+(𝑓) where the section of 𝒪𝑋(𝑑) defined
by 𝑓′ does not vanish. Hence 𝜑−1

𝑓 (𝐷+(𝑓′)∩𝐷+(𝑓)) = 𝑌𝑠 ∩𝑌𝑠′ = 𝜑−1
𝑓′ (𝐷+(𝑓′)∩𝐷+(𝑓)). On

𝐷+(𝑓) ∩ 𝐷+(𝑓′) the fraction 𝑓/𝑓′ is an invertible section of the structure sheaf with inverse
𝑓′/𝑓. Note that 𝜓(𝑓′)(𝑓/𝑓′) = 𝜓(𝑓)/𝑠′ = 𝑠/𝑠′ and 𝜓(𝑓)(𝑓′/𝑓) = 𝜓(𝑓′)/𝑠 = 𝑠′/𝑠. We claim
there is a unique ring map 𝑆(𝑓𝑓′) → Γ(𝑌𝑠𝑠′, 𝒪) making the following diagram commute

Γ(𝑌𝑠, 𝒪) // Γ(𝑌𝑠𝑠′, 𝒪) Γ(𝑌𝑠,′𝒪)oo

𝑆(𝑓)
//

𝜓(𝑓)

OO

𝑆(𝑓𝑓′)

OO

𝑆(𝑓′)
oo

𝜓(𝑓′)

OO

It exists because we may use the rule 𝑥/(𝑓𝑓′)𝑛 ↦ 𝜓(𝑥)/(𝑠𝑠′)𝑛, which ``works'' by the for-
mulas above. Uniqueness follows as Proj(𝑆) is separated, see Lemma 22.8.8 and its proof.
This shows that the morphisms 𝜑𝑓 and 𝜑𝑓′ agree over 𝑌𝑠 ∩ 𝑌𝑠′. The restrictions of 𝛼𝑓 and
𝛼𝑓′ agree over 𝑌𝑠 ∩ 𝑌𝑠′ because the regular functions 𝑠/𝑠′ and 𝜓(𝑓′)(𝑓) agree. This proves
that the morphisms 𝜓𝑓 glue to a global morphism from 𝑌 into 𝑈𝑑 ⊂ 𝑋, and that the maps
𝛼𝑓 glue to an isomorphism satsifying the conditions of the lemma.

We still have to show the pair (𝜑, 𝛼) is unique. Suppose (𝜑′, 𝛼′) is a second such pair. Let
𝑓 ∈ 𝑆𝑑. By the commutativity of the diagrams in the lemma we have that the inverse
images of 𝐷+(𝑓) under both 𝜑 and 𝜑′ are equal to 𝑌𝜓(𝑓). Since the opens 𝐷+(𝑓) are a basis
for the topology on 𝑋, and since 𝑋 is a sober topological space (see Schemes, Lemma
21.11.1) this means the maps 𝜑 and 𝜑′ are the same on underlying topological spaces. Let
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us use 𝑠 = 𝜓(𝑓) to trivialize the invertible sheaf ℒ over 𝑌𝜓(𝑓). By the commutativity of
the diagrams we have that 𝛼⊗𝑛(𝜓𝑑

𝜑(𝑥)) = 𝜓(𝑥) = (𝛼′)⊗𝑛(𝜓𝑑
𝜑′(𝑥)) for all 𝑥 ∈ 𝑆𝑛𝑑. By

construction of 𝜓𝑑
𝜑 and 𝜓𝑑

𝜑′ we have 𝜓𝑑
𝜑(𝑥) = 𝜑♯(𝑥/𝑓𝑛)𝜓𝑑

𝜑(𝑓𝑛) over 𝑌𝜓(𝑓), and similarly
for 𝜓𝑑

𝜑′. by the commutativity of the diagrams of the lemma we deduce that 𝜑♯(𝑥/𝑓𝑛) =
(𝜑′)♯(𝑥/𝑓𝑛). This proves that 𝜑 and 𝜑′ induce the same morphism from 𝑌𝜓(𝑓) into the affine
scheme 𝐷+(𝑓) = 𝑆𝑝𝑒𝑐(𝑆(𝑓)). Hence 𝜑 and 𝜑′ are the same as morphisms. Finally, it
remains to show that the commutativity of the diagram of the lemma singles out, given 𝜑,
a unique 𝛼. We omit the verification. �

We continue the discussion from above the lemma. Let 𝑆 be a graded ring. Let 𝑌 be a
scheme. We will consider triples (𝑑, ℒ, 𝜓) where

(1) 𝑑 ≥ 1 is an integer,
(2) ℒ is an invertible 𝒪𝑌-module, and
(3) 𝜓 ∶ 𝑆(𝑑) → Γ∗(𝑌, ℒ) is a graded ring homomorphism such that ℒ is generated

by the global sections 𝜓(𝑓), with 𝑓 ∈ 𝑆𝑑.
Given a morphism ℎ ∶ 𝑌′ → 𝑌 and a triple (𝑑, ℒ, 𝜓) over 𝑌 we can pull it back to the triple
(𝑑, ℎ∗ℒ, ℎ∗ ∘ 𝜓). Given two triples (𝑑, ℒ, 𝜓) and (𝑑, ℒ′, 𝜓′) with the same integer 𝑑 we say
they are strictly equivalent if there exists an isomorphism 𝛽 ∶ ℒ → ℒ′ such that 𝛽 ∘ 𝜓 = 𝜓′

as graded ring maps 𝑆(𝑑) → Γ∗(𝑌, ℒ′).

For each integer 𝑑 ≥ 1 we define

𝐹𝑑 ∶ Sch𝑜𝑝𝑝 ⟶ Sets,
𝑌 ⟼ {strict equivalence classes of triples (𝑑, ℒ, 𝜓) as above}

with pullbacks as defined above.

Lemma 22.12.2. Let 𝑆 be a graded ring. Let 𝑋 = Proj(𝑆). The open subscheme 𝑈𝑑 ⊂ 𝑋
(22.12.0.1) represents the functor 𝐹𝑑 and the triple (𝑑, 𝒪𝑈𝑑

(𝑑), 𝜓𝑑) defined above is the
universal family (see Schemes, Section 21.15).

Proof. This is a reformulation of Lemma 22.12.1 �

Lemma 22.12.3. Let 𝑆 be a graded ring generated as an 𝑆0-algebra by the elements of 𝑆1.
In this case the scheme 𝑋 = Proj(𝑆) represents the functor which associates to a scheme 𝑌
the set of pairs (ℒ, 𝜓), where

(1) ℒ is an invertible 𝒪𝑌-module, and
(2) 𝜓 ∶ 𝑆 → Γ∗(𝑌, ℒ) is a graded ring homomorphism such that ℒ is generated by

the global sections 𝜓(𝑓), with 𝑓 ∈ 𝑆1
up to strict equivalence as above.

Proof. Under the assumptions of the lemma we have 𝑋 = 𝑈1 and the lemma is a reformu-
lation of Lemma 22.12.2 above. �

We end this section with a discussion of a functor corresponding to Proj(𝑆) for a general
graded ring 𝑆. We advise the reader to skip the rest of this section.

Fix an arbitrary graded ring 𝑆. Let 𝑇 be a scheme. We will say two triples (𝑑, ℒ, 𝜓) and
(𝑑′, ℒ′, 𝜓′) over 𝑇 with possibly different integers 𝑑, 𝑑′ are equivalent if there exists an
isomorphism 𝛽 ∶ ℒ⊗𝑑′

→ (ℒ′)⊗𝑑 of invertible sheaves over 𝑇 such that 𝛽 ∘ 𝜓|𝑆(𝑑𝑑′) and
𝜓′|𝑆(𝑑𝑑′) agree as graded ring maps 𝑆(𝑑𝑑′) → Γ∗(𝑌, (ℒ′)⊗𝑑𝑑′

).
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Lemma 22.12.4. Let𝑆 be a graded ring. Set𝑋 = Proj(𝑆). Let 𝑇 be a scheme. Let (𝑑, ℒ, 𝜓)
and (𝑑′, ℒ′, 𝜓′) be two triples over 𝑇. The following are equivalent:

(1) Let 𝑛 = lcm(𝑑, 𝑑′). Write 𝑛 = 𝑎𝑑 = 𝑎′𝑑′. There exists an isomorphism 𝛽 ∶
ℒ⊗𝑎 → (ℒ′)⊗𝑎′

with the property that 𝛽 ∘ 𝜓|𝑆(𝑛) and 𝜓′|𝑆(𝑛) agree as graded ring
maps 𝑆(𝑛) → Γ∗(𝑌, (ℒ′)⊗𝑛).

(2) The triples (𝑑, ℒ, 𝜓) and (𝑑′, ℒ′, 𝜓′) are equivalent.
(3) For some positive integer 𝑛 = 𝑎𝑑 = 𝑎′𝑑′ there exists an isomorphism 𝛽 ∶ ℒ⊗𝑎 →

(ℒ′)⊗𝑎′
with the property that 𝛽 ∘ 𝜓|𝑆(𝑛) and 𝜓′|𝑆(𝑛) agree as graded ring maps

𝑆(𝑛) → Γ∗(𝑌, (ℒ′)⊗𝑛).
(4) The morphisms 𝜑 ∶ 𝑇 → 𝑋 and 𝜑′ ∶ 𝑇 → 𝑋 assocated to (𝑑, ℒ, 𝜓) and

(𝑑′, ℒ′, 𝜓′) are equal.

Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible degrees
and powers of invertible sheaves. Also (3) implies (4) by the uniqueness statement in
Lemma 22.12.1. Thus we have to prove that (4) implies (1). Assume (4), in other words
𝜑 = 𝜑′. Note that this implies that we may write ℒ = 𝜑∗𝒪𝑋(𝑑) and ℒ′ = 𝜑∗𝒪𝑋(𝑑′).
Moreover, via these identifications we have that the graded ring maps 𝜓 and 𝜓′ correspond
to the restriction of the canonical graded ring map

𝑆 ⟶ ⨁𝑛≥0
Γ(𝑋, 𝒪𝑋(𝑛))

to 𝑆(𝑑) and 𝑆(𝑑′) composed with pullback by 𝜑 (by Lemma 22.12.1 again). Hence taking 𝛽
to be the isomorphism

(𝜑∗𝒪𝑋(𝑑))⊗𝑎 = 𝜑∗𝒪𝑋(𝑛) = (𝜑∗𝒪𝑋(𝑑′))⊗𝑎′

works. �

Let 𝑆 be a graded ring. Let 𝑋 = Proj(𝑆). Over the open subscheme scheme 𝑈𝑑 ⊂
𝑋 = Proj(𝑆) (22.12.0.1) we have the triple (𝑑, 𝒪𝑈𝑑

(𝑑), 𝜓𝑑). Clearly, if 𝑑|𝑑′ the triples
(𝑑, 𝒪𝑈𝑑

(𝑑), 𝜓𝑑) and (𝑑′, 𝒪𝑈𝑑′(𝑑′), 𝜓𝑑′
) are equivalent when restricted to the open 𝑈𝑑 (which

is a subset of 𝑈𝑑′). This, combined with Lemma 22.12.1 shows that morphisms 𝑌 → 𝑋
correspond roughly to equivalence classes of triples over 𝑌. This is not quite true since if 𝑌
is not quasi-compact, then there may not be a single triple which works. Thus we have to
be slightly careful in defining the corresponding functor.

Here is one possible way to do this. Suppose 𝑑′ = 𝑎𝑑. Consider the transformation of
functors 𝐹𝑑 → 𝐹𝑑′ which assigns to the triple (𝑑, ℒ, 𝜓) over 𝑇 the triple (𝑑′, ℒ⊗𝑎, 𝜓|𝑆(𝑑′)).
One of the implications of Lemma 22.12.4 is that the transformation 𝐹𝑑 → 𝐹𝑑′ is injective!
For a quasi-compact scheme 𝑇 we define

𝐹(𝑇) = ⋃𝑑∈𝐍
𝐹𝑑(𝑇)

with transition maps as explained above. This clearly defines a contravariant functor on the
category of quasi-compact schemes with values in sets. For a general scheme 𝑇 we define

𝐹(𝑇) = 𝑙𝑖𝑚𝑉⊂𝑇 quasi-compact open 𝐹(𝑉).

In other words, an element 𝜉 of 𝐹(𝑇) corresponds to a compatible system of choices of
elements 𝜉𝑉 ∈ 𝐹(𝑉) where 𝑉 ranges over the quasi-compact opens of 𝑇. We omit the
definition of the pullback map 𝐹(𝑇) → 𝐹(𝑇′) for a morphism 𝑇′ → 𝑇 of schemes. Thus we
have defined our functor

𝐹 ∶ Sch𝑜𝑝𝑝 ⟶ Sets
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Lemma 22.12.5. Let 𝑆 be a graded ring. Let 𝑋 = Proj(𝑆). The functor 𝐹 defined above is
representable by the scheme 𝑋.

Proof. Wehave seen above that the functor 𝐹𝑑 corresponds to the open subscheme 𝑈𝑑 ⊂ 𝑋.
Moreover the transformation of functors 𝐹𝑑 → 𝐹𝑑′ (if 𝑑|𝑑′) defined above corresponds
to the inclusion morphism 𝑈𝑑 → 𝑈𝑑′ (see discussion above). Hence to show that 𝐹 is
represented by 𝑋 it suffices to show that 𝑇 → 𝑋 for a quasi-compact scheme 𝑇 ends up in
some 𝑈𝑑, and that for a general scheme 𝑇 we have

𝑀𝑜𝑟(𝑇, 𝑋) = 𝑙𝑖𝑚𝑉⊂𝑇 quasi-compact open 𝑀𝑜𝑟(𝑉, 𝑋).

These verifications are omitted. �

22.13. Projective space

Projective space is one of the fundamental objects studied in algebraic geometry. In this
section we just give its construction as Proj of a polynomial ring. Later we will discover
many of its beautiful properties.

Lemma 22.13.1. Let 𝑆 = 𝐙[𝑇0, … , 𝑇𝑛] with deg(𝑇𝑖) = 1. The scheme

𝐏𝑛
𝐙 = Proj(𝑆)

represents the functor which associates to a scheme 𝑌 the pairs (ℒ, (𝑠0, … , 𝑠𝑛)) where
(1) ℒ is an invertible 𝒪𝑌-module, and
(2) 𝑠0, … , 𝑠𝑛 are global sections of ℒ which generate ℒ

up to the following equivalence: (ℒ, (𝑠0, … , 𝑠𝑛)) ∼ (𝒩, (𝑡0, … , 𝑡𝑛)) ⇔ there exists an iso-
morphism 𝛽 ∶ ℒ → 𝒩 with 𝛽(𝑠𝑖) = 𝑡𝑖 for 𝑖 = 0, … , 𝑛.

Proof. This is a special case of Lemma 22.12.3 above. Namely, for any graded ring 𝐴 we
have

𝑀𝑜𝑟𝑔𝑟𝑎𝑑𝑒𝑑𝑟𝑖𝑛𝑔𝑠(𝐙[𝑇0, … , 𝑇𝑛], 𝐴) = 𝐴1 × … × 𝐴1

𝜓 ↦ (𝜓(𝑇0), … , 𝜓(𝑇𝑛))

and the degree 1 part of Γ∗(𝑌, ℒ) is just Γ(𝑌, ℒ). �

Definition 22.13.2. The scheme 𝐏𝑛
𝐙 = Proj(𝐙[𝑇0, … , 𝑇𝑛]) is called projective 𝑛-space over

𝐙. Its base change 𝐏𝑛
𝑆 to a scheme 𝑆 is called projective 𝑛-space over 𝑆. If 𝑅 is a ring the

base change to 𝑆𝑝𝑒𝑐(𝑅) is denoted 𝐏𝑛
𝑅 and called projective 𝑛-space over 𝑅.

Given a scheme 𝑌 over 𝑆 and a pair (ℒ, (𝑠0, … , 𝑠𝑛)) as in Lemma 22.13.1 the induced
morphism to 𝐏𝑛

𝑆 is denoted
𝜑(ℒ,(𝑠0,…,𝑠𝑛)) ∶ 𝑌 ⟶ 𝐏𝑛

𝑆
This makes sense since the pair defines a morphism into 𝐏𝑛

𝐙 and we already have the struc-
ture morphism into 𝑆 so combined we get a morphism into 𝐏𝑛

𝑆 = 𝐏𝑛
𝐙 × 𝑆. Note that this is

the 𝑆-morphism characterized by

ℒ = 𝜑∗
(ℒ,(𝑠0,…,𝑠𝑛))𝒪𝐏𝑛

𝑅
(1) and 𝑠𝑖 = 𝜑∗

(ℒ,(𝑠0,…,𝑠𝑛))𝑇𝑖

where we think of 𝑇𝑖 as a global section of 𝒪𝐏𝑛
𝑆
(1) via (22.10.1.3).

Lemma 22.13.3. Projective 𝑛-space over 𝐙 is covered by 𝑛 + 1 standard opens

𝐏𝑛
𝐙 = ⋃𝑖=0,…,𝑛

𝐷+(𝑇𝑖)

where each 𝐷+(𝑇𝑖) is isomorphic to 𝐀𝑛
𝐙 affine 𝑛-space over 𝐙.
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Proof. This is true because 𝐙[𝑇0, … , 𝑇𝑛]+ = (𝑇0, … , 𝑇𝑛) and since

𝑆𝑝𝑒𝑐 (𝐙 [
𝑇0
𝑇𝑖

, … ,
𝑇𝑛
𝑇𝑖 ]) ≅ 𝐀𝑛

𝐙

in an obvious way. �

Lemma 22.13.4. Let 𝑆 be a scheme. The structure morphism 𝐏𝑛
𝑆 → 𝑆 is

(1) separated,
(2) quasi-compact,
(3) satisfies the existence and uniqueness parts of the valuative criterion, and
(4) universally closed.

Proof. All these properties are stable under base change (this is clear for the last two and for
the other two see Schemes, Lemmas 21.21.13 and 21.19.3). Hence it suffices to prove them
for the morphism 𝐏𝑛

𝐙 → 𝑆𝑝𝑒𝑐(𝐙). Separatedness is Lemma 22.8.8. Quasi-compactness
follows from Lemma 22.13.3. Existence and uniqueness of the valuative criterion follow
from Lemma 22.8.11. Universally closed follows from the above and Schemes, Proposition
21.20.6. �

Remark 22.13.5. What's missing in the list of properties above? Well to be sure the prop-
erty of being of finite type. The reason we do not list this here is that we have not yet defined
the notion of finite type at this point. (Another property which is missing is ``smoothness''.
And I'm sure there are many more you can think of.)

We finish this section with two simple lemmas. These lemmas are special cases of more
general results later, but perhaps it makes sense to prove these directly here now.

Lemma 22.13.6. Let 𝑅 be a ring. Let 𝑍 ⊂ 𝐏𝑛
𝑅 be a closed subscheme. Let

𝐼𝑑 = Ker(𝑅[𝑇0, … , 𝑇𝑛]𝑑 ⟶ Γ(𝑍, 𝒪𝐏𝑛
𝑅

(𝑑)|𝑍))
Then 𝐼 = ⨁ 𝐼𝑑 ⊂ 𝑅[𝑇0, … , 𝑇𝑛] is a graded ideal and 𝑍 = Proj(𝑅[𝑇0, … , 𝑇𝑛]/𝐼).

Proof. It is clear that 𝐼 is a graded ideal. Set 𝑍′ = Proj(𝑅[𝑇0, … , 𝑇𝑛]/𝐼). By Lemma
22.11.4 we see that 𝑍′ is a closed subscheme of 𝐏𝑛

𝑅. To see the equality 𝑍 = 𝑍′ it suffices
to check on an standard affine open 𝐷+(𝑇𝑖). By renumbering the homogeneous coordinates
we may assume 𝑖 = 0. Say 𝑍 ∩ 𝐷+(𝑇0), resp. 𝑍′ ∩ 𝐷+(𝑇0) is cut out by the ideal 𝐽, resp.
𝐽′ of 𝑅[𝑇1/𝑇0, … , 𝑇𝑛/𝑇0]. Then 𝐽′ is the ideal generated by the elements 𝐹/𝑇deg(𝐹)

0 where
𝐹 ∈ 𝐼 is homogeneous. Suppose the degree of 𝐹 ∈ 𝐼 is 𝑑. Since 𝐹 vanishes as a section of
𝒪𝐏𝑛

𝑅
(𝑑) restricted to 𝑍 we see that 𝐹/𝑇𝑑

0 is an element of 𝐽. Thus 𝐽′ ⊂ 𝐽.

Conversely, suppose that 𝑓 ∈ 𝐽. If 𝑓 has total degree 𝑑 in 𝑇1/𝑇0, … , 𝑇𝑛/𝑇0, then we can
write 𝑓 = 𝐹/𝑇𝑑

0 for some 𝐹 ∈ 𝑅[𝑇0, … , 𝑇𝑛]𝑑. Pick 𝑖 ∈ {1, … , 𝑛}. Then 𝑍 ∩ 𝐷+(𝑇𝑖) is cut
out by some ideal 𝐽𝑖 ⊂ 𝑅[𝑇0/𝑇𝑖, … , 𝑇𝑛/𝑇𝑖]. Moreover,

𝐽 ⋅ 𝑅 [
𝑇1
𝑇0

, … ,
𝑇𝑛
𝑇0

,
𝑇0
𝑇𝑖

, … ,
𝑇𝑛
𝑇𝑖 ] = 𝐽𝑖 ⋅ 𝑅 [

𝑇1
𝑇0

, … ,
𝑇𝑛
𝑇0

,
𝑇0
𝑇𝑖

, … ,
𝑇𝑛
𝑇𝑖 ]

The left hand side is the localization of 𝐽 with respect to the element 𝑇𝑖/𝑇0 and the right hand
side is the localization of 𝐽𝑖 with respect to the element 𝑇0/𝑇𝑖. It follows that 𝑇𝑑𝑖

0 𝐹/𝑇𝑑+𝑑𝑖
𝑖

is an element of 𝐽𝑖 for some 𝑑𝑖 sufficiently large. This proves that 𝑇max(𝑑𝑖)
0 𝐹 is an element

of 𝐼, because its restriction to each standard affine open 𝐷+(𝑇𝑖) vanishes on the closed
subscheme 𝑍 ∩ 𝐷+(𝑇𝑖). Hence 𝑓 ∈ 𝐽′ and we conclude 𝐽 ⊂ 𝐽′ as desired. �
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The following lemma is a special case of the more general Properties, Lemma 23.25.3.

Lemma 22.13.7. Let 𝑅 be a ring. Let ℱ be a quasi-coherent sheaf on 𝐏𝑛
𝑅. For 𝑑 ≥ 0 set

𝑀𝑑 = Γ(𝐏𝑛
𝑅, ℱ ⊗𝒪𝐏𝑛

𝑅
𝒪𝐏𝑛

𝑅
(𝑑)) = Γ(𝐏𝑛

𝑅, ℱ(𝑑))

Then 𝑀 = ⨁𝑑≥0 𝑀𝑑 is a graded 𝑅[𝑇0, … , 𝑅𝑛]-module and there is a canonical isomor-
phism ℱ = 𝑀.

Proof. The multiplication maps

𝑅[𝑇0, … , 𝑅𝑛]𝑒 × 𝑀𝑑 ⟶ 𝑀𝑑+𝑒

come from the natural isomorphisms

𝒪𝐏𝑛
𝑅

(𝑒) ⊗𝒪𝐏𝑛
𝑅

ℱ(𝑑) ⟶ ℱ(𝑒 + 𝑑)

see Equation (22.10.1.4). Let us construct the map 𝑐 ∶ 𝑀 → ℱ. On each of the standard
affines 𝑈𝑖 = 𝐷+(𝑇𝑖) we see that Γ(𝑈𝑖, 𝑀) = (𝑀[1/𝑇𝑖])0 where the subscript 0 means degree
0 part. An element of this can be written as 𝑚/𝑇𝑑

𝑖 with 𝑚 ∈ 𝑀𝑑. Since 𝑇𝑖 is a generator of
𝒪(1) over 𝑈𝑖 we can always write 𝑚|𝑈𝑖

= 𝑚𝑖 ⊗ 𝑇𝑑
𝑖 where 𝑚𝑖 ∈ Γ(𝑈𝑖, ℱ) is a unique section.

Thus a natural guess is 𝑐(𝑚/𝑇𝑑
𝑖 ) = 𝑚𝑖. A small argument, which is omitted here, shows that

this gives a well defined map 𝑐 ∶ 𝑀 → ℱ if we can show that

(𝑇𝑖/𝑇𝑗)𝑑𝑚𝑖|𝑈𝑖∩𝑈𝑗
= 𝑚𝑗|𝑈𝑖∩𝑈𝑗

in 𝑀[1/𝑇𝑖𝑇𝑗]. But this is clear since on the overlap the generators 𝑇𝑖 and 𝑇𝑗 of 𝒪(1) differ
by the invertible function 𝑇𝑖/𝑇𝑗.

Injectivity of 𝑐. We may check for injectivity over the affine opens 𝑈𝑖. Let 𝑖 ∈ {0, … , 𝑛}
and let 𝑠 be an element 𝑠 = 𝑚/𝑇𝑑

𝑖 ∈ Γ(𝑈𝑖, 𝑀) such that 𝑐(𝑚/𝑇𝑑
𝑖 ) = 0. By the description of

𝑐 above this means that 𝑚𝑖 = 0, hence 𝑚|𝑈𝑖
= 0. Hence 𝑇𝑒

𝑖 𝑚 = 0 in 𝑀 for some 𝑒. Hence
𝑠 = 𝑚/𝑇𝑑

𝑖 = 𝑇𝑒
𝑖 /𝑇𝑒+𝑑

𝑖 = 0 as desired.

Surjectivity of 𝑐. We may check for surjectivity over the affine opens 𝑈𝑖. By renumber-
ing it suffices to check it over 𝑈0. Let 𝑠 ∈ ℱ(𝑈0). Let us write ℱ|𝑈𝑖

= 𝑁𝑖 for some
𝑅[𝑇0/𝑇𝑖, … , 𝑇0/𝑇𝑖]-module 𝑁𝑖, which is possible because ℱ is quasi-coherent. So 𝑠 corre-
sponds to an element 𝑥 ∈ 𝑁0. Then we have that

(𝑁𝑖)𝑇𝑗/𝑇𝑖
≅ (𝑁𝑗)𝑇𝑖/𝑇𝑗

(where the subscripts mean ``principal localization at'') as modules over the ring

𝑅 [
𝑇0
𝑇𝑖

, … ,
𝑇𝑛
𝑇𝑖

,
𝑇0
𝑇𝑗

, … ,
𝑇𝑛
𝑇𝑗 ] .

This means that for some large integer 𝑑 there exist elements 𝑠𝑖 ∈ 𝑁𝑖, 𝑖 = 1, … , 𝑛 such that

𝑠 = (𝑇𝑖/𝑇0)𝑑𝑠𝑖

on 𝑈0 ∩ 𝑈𝑖. Next, we look at the difference

𝑡𝑖𝑗 = 𝑠𝑖 − (𝑇𝑗/𝑇𝑖)𝑑𝑠𝑗

on 𝑈𝑖 ∩ 𝑈𝑗, 0 < 𝑖 < 𝑗. By our choice of 𝑠𝑖 we know that 𝑡𝑖𝑗|𝑈0∩𝑈𝑖∩𝑈𝑗
= 0. Hence there

exists a large integer 𝑒 such that (𝑇0/𝑇𝑖)𝑒𝑡𝑖𝑗 = 0. Set 𝑠′
𝑖 = (𝑇0/𝑇𝑖)𝑒𝑠𝑖, and 𝑠′

0 = 𝑠. Then we
will have

𝑠′
𝑎 = (𝑇𝑏/𝑇𝑎)𝑒+𝑑𝑠′

𝑏
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on 𝑈𝑎 ∩ 𝑈𝑏 for all 𝑎, 𝑏. This is exactly the condition that the elements 𝑠′
𝑎 glue to a global

section 𝑚 ∈ Γ(𝐏𝑛
𝑅, ℱ(𝑒 + 𝑑)). And moreover 𝑐(𝑚/𝑇𝑒+𝑑

0 ) = 𝑠 by construction. Hence 𝑐 is
surjective and we win. �

22.14. Invertible sheaves and morphisms into Proj

Let 𝑇 be a scheme and let ℒ be an invertible sheaf on 𝑇. For a section 𝑠 ∈ Γ(𝑇, ℒ) we denote
𝑇𝑠 the open subset of points where 𝑠 does not vanish. See Modules, Lemma 15.21.7. We
can view the following lemma as a slight generalization of Lemma 22.12.3. It also is a
generalization of Lemma 22.11.1.

Lemma 22.14.1. Let 𝐴 be a graded ring. Set 𝑋 = Proj(𝐴). Let 𝑇 be a scheme. Let ℒ be
an invertible 𝒪𝑇-module. Let 𝜓 ∶ 𝐴 → Γ∗(𝑇, ℒ) be a homomorphism of graded rings. Set

𝑈(𝜓) = ⋃𝑓∈𝐴+ homogeneous
𝑇𝜓(𝑓)

The morphism 𝜓 induces a canonical morphism of schemes

𝑟ℒ,𝜓 ∶ 𝑈(𝜓) ⟶ 𝑋

together with a map of 𝐙-graded 𝒪𝑇-algebras

𝜃 ∶ 𝑟∗
ℒ,𝜓 (⨁𝑑∈𝐙

𝒪𝑋(𝑑)) ⟶ ⨁𝑑∈𝐙
ℒ⊗𝑑|𝑈(𝜓).

The triple (𝑈(𝜓), 𝑟ℒ,𝜓, 𝜃) is characterized by the following properties:

(1) For 𝑓 ∈ 𝐴+ homogeneous we have 𝑟−1
ℒ,𝜓(𝐷+(𝑓)) = 𝑇𝜓(𝑓).

(2) For every 𝑑 ≥ 0 the diagram

𝐴𝑑

(22.10.1.3)
��

𝜓
// Γ(𝑇, ℒ⊗𝑑)

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡
��

Γ(𝑋, 𝒪𝑋(𝑑)) 𝜃 // Γ(𝑈(𝜓), ℒ⊗𝑑)

is commutative.
Moreover, for any 𝑑 ≥ 1 and any open subscheme 𝑉 ⊂ 𝑇 such that the sections in 𝜓(𝐴𝑑)
generate ℒ⊗𝑑|𝑉 the morphism 𝑟ℒ,𝜓|𝑉 agrees with the morphism 𝜑 ∶ 𝑉 → Proj(𝐴) and the
map 𝜃|𝑉 agrees with the map 𝛼 ∶ 𝜑∗𝒪𝑋(𝑑) → ℒ⊗𝑑|𝑉 where (𝜑, 𝛼) is the pair of Lemma
22.12.1 associated to 𝜓|𝐴(𝑑) ∶ 𝐴(𝑑) → Γ∗(𝑉, ℒ⊗𝑑).

Proof. Suppose that we have two triples (𝑈, 𝑟 ∶ 𝑈 → 𝑋, 𝜃) and (𝑈′, 𝑟′ ∶ 𝑈′ → 𝑋, 𝜃′)
satisfying (1) and (2). Property (1) implies that 𝑈 = 𝑈′ = 𝑈(𝜓) and that 𝑟 = 𝑟′ as maps of
underlying topological spaces, since the opens 𝐷+(𝑓) form a basis for the topology on 𝑋,
and since 𝑋 is a sober topological space (see Algebra, Section 7.53 and Schemes, Lemma
21.11.1). Let 𝑓 ∈ 𝐴+ be homogeneous. Note that Γ(𝐷+(𝑓), ⨁𝑛∈𝐙 𝒪𝑋(𝑛)) = 𝐴𝑓 as a
𝐙-graded algebra. Consider the two 𝐙-graded ring maps

𝜃, 𝜃′ ∶ 𝐴𝑓 ⟶ Γ(𝑇𝜓(𝑓), ⨁ ℒ⊗𝑛).

We know that multiplication by 𝑓 (resp. 𝜓(𝑓)) is an isomorphism on the left (resp. right)
hand side. We also know that 𝜃(𝑥/1) = 𝜃′(𝑥/1) = 𝜓(𝑥)|𝑇𝜓(𝑓)

by (2) for all 𝑥 ∈ 𝐴. Hence
we deduce easily that 𝜃 = 𝜃′ as desired. Considering the degree 0 parts we deduce that
𝑟♯ = (𝑟′)♯, i.e., that 𝑟 = 𝑟′ as morphisms of schemes. This proves the uniqueness.
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Now we come to existence. By the uniqueness just proved, it is enought to construct the
pair (𝑟, 𝜃) locally on 𝑇. Hence we may assume that 𝑇 = 𝑆𝑝𝑒𝑐(𝑅) is affine, that ℒ = 𝒪𝑇
and that for some 𝑓 ∈ 𝐴+ homogeneous we have 𝜓(𝑓) generates 𝒪𝑇 = 𝒪⊗ deg(𝑓)

𝑇 . In other
words, 𝜓(𝑓) = 𝑢 ∈ 𝑅∗ is a unit. In this case the map 𝜓 is a graded ring map

𝐴 ⟶ 𝑅[𝑥] = Γ∗(𝑇, 𝒪𝑇)

which maps 𝑓 to 𝑢𝑥deg(𝑓). Clearly this extends (uniquely) to a 𝐙-graded ring map 𝜃 ∶ 𝐴𝑓 →
𝑅[𝑥, 𝑥−1] by mapping 1/𝑓 to 𝑢−1𝑥− deg(𝑓). This map in degree zero gives the ring map
𝐴(𝑓) → 𝑅 which gives the morphism 𝑟 ∶ 𝑇 = 𝑆𝑝𝑒𝑐(𝑅) → 𝑆𝑝𝑒𝑐(𝐴(𝑓)) = 𝐷+(𝑓) ⊂ 𝑋.
Hence we have constructed (𝑟, 𝜃) in this special case.

Let us show the last statement of the lemma. According to Lemma 22.12.1 the morphism
constructed there is the unique one such that the displayed diagram in its statement com-
mutes. The commutativity of the diagram in the lemma implies the commutativity when
restricted to 𝑉 and 𝐴(𝑑). Whence the result. �

Remark 22.14.2. Assumptions as in Lemma 22.14.1 above. The image of the morphism
𝑟ℒ,𝜓 need not be contained in the locus where the sheaf 𝒪𝑋(1) is invertible. Here is an
example. Let 𝑘 be a field. Let 𝑆 = 𝑘[𝐴, 𝐵, 𝐶] graded by deg(𝐴) = 1, deg(𝐵) = 2,
deg(𝐶) = 3. Set 𝑋 = Proj(𝑆). Let 𝑇 = 𝐏2

𝑘 = Proj(𝑘[𝑋0, 𝑋1, 𝑋2]). Recall that ℒ = 𝒪𝑇(1)
is invertible and that 𝒪𝑇(𝑛) = ℒ⊗𝑛. Consider the composition 𝜓 of the maps

𝑆 → 𝑘[𝑋0, 𝑋1, 𝑋2] → Γ∗(𝑇, ℒ).

Here the first map is 𝐴 ↦ 𝑋6
0, 𝐵 ↦ 𝑋3

1, 𝐶 ↦ 𝑋3
2 and the second map is (22.10.1.3). By

the lemma this corresponds to a morphism 𝑟ℒ,𝜓 ∶ 𝑇 → 𝑋 = Proj(𝑆) which is easily seen to
be surjective. On the other hand, in Remark 22.9.2 we showed that the sheaf 𝒪𝑋(1) is not
invertible at all points of 𝑋.

22.15. Relative Proj via glueing

Situation 22.15.1. Here 𝑆 is a scheme, and 𝒜 is a quasi-coherent graded 𝒪𝑆-algebra.

In this section we outline how to construct a morphism of schemes

Proj
𝑆

(𝒜) ⟶ 𝑆

by glueing the homogeneous spectra Proj(Γ(𝑈, 𝒜)) where 𝑈 ranges over the affine opens
of 𝑆. We first show that the homogeneous spectra of the values of 𝒜 over affines form a
suitable collection of schemes, as in Lemma 22.2.1.

Lemma 22.15.2. In Situation 22.15.1. Suppose 𝑈 ⊂ 𝑈′ ⊂ 𝑆 are affine opens. Let
𝐴 = 𝒜(𝑈) and 𝐴′ = 𝒜(𝑈′). The map of graded rings 𝐴′ → 𝐴 induces a morphism
𝑟 ∶ Proj(𝐴) → Proj(𝐴′), and the diagram

Proj(𝐴) //

��

Proj(𝐴′)

��
𝑈 // 𝑈′

is cartesian. Moreover there are canonical isomorphisms 𝜃 ∶ 𝑟∗𝒪Proj(𝐴′)(𝑛) → 𝒪Proj(𝐴)(𝑛)
compatible with multiplication maps.
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Proof. Let 𝑅 = 𝒪𝑆(𝑈) and 𝑅′ = 𝒪𝑆(𝑈′). Note that the map 𝑅 ⊗𝑅′ 𝐴′ → 𝐴 is an
isomorphism as 𝒜 is quasi-coherent (see Schemes, Lemma 21.7.3 for example). Hence the
lemma follows from Lemma 22.11.5. �

In particular the morphism Proj(𝐴) → Proj(𝐴′) of the lemma is an open immersion.

Lemma 22.15.3. In Situation 22.15.1. Suppose 𝑈 ⊂ 𝑈′ ⊂ 𝑈″ ⊂ 𝑆 are affine opens.
Let 𝐴 = 𝒜(𝑈), 𝐴′ = 𝒜(𝑈′) and 𝐴″ = 𝒜(𝑈″). The composition of the morphisms
𝑟 ∶ Proj(𝐴) → Proj(𝐴′), and 𝑟′ ∶ Proj(𝐴′) → Proj(𝐴″) of Lemma 22.15.2 gives the
morphism 𝑟″ ∶ Proj(𝐴) → Proj(𝐴″) of Lemma 22.15.2. A similar statement holds for the
isomorphisms 𝜃.

Proof. This follows from Lemma 22.11.2 since the map 𝐴″ → 𝐴 is the composition of
𝐴″ → 𝐴′ and 𝐴′ → 𝐴. �

Lemma 22.15.4. In Situation 22.15.1. There exists a morphism of schemes

𝜋 ∶ Proj
𝑆

(𝒜) ⟶ 𝑆

with the following properties:
(1) for every affine open 𝑈 ⊂ 𝑆 there exists an isomorphism 𝑖𝑈 ∶ 𝜋−1(𝑈) → Proj(𝐴)

with 𝐴 = 𝒜(𝑈), and
(2) for 𝑈 ⊂ 𝑈′ ⊂ 𝑆 affine open the composition

Proj(𝐴)
𝑖−1
𝑈 // 𝜋−1(𝑈) 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 // 𝜋−1(𝑈′)

𝑖𝑈′ // Proj(𝐴′)

with 𝐴 = 𝒜(𝑈), 𝐴′ = 𝒜(𝑈′) is the open immersion of Lemma 22.15.2 above.

Proof. Follows immediately from Lemmas 22.2.1, 22.15.2, and 22.15.3. �

Lemma 22.15.5. In Situation 22.15.1. Themorphism 𝜋 ∶ Proj
𝑆

(𝒜) → 𝑆 of Lemma 22.15.4
comeswith the following additional structure. There exists a quasi-coherent𝐙-graded sheaf
of 𝒪Proj

𝑆
(𝒜)-algebras ⨁𝑛∈𝐙 𝒪Proj

𝑆
(𝒜)(𝑛), and a morphism of graded 𝒪𝑆-algebras

𝜓 ∶ 𝒜 ⟶ ⨁𝑛≥0
𝜋∗ (𝒪Proj

𝑆
(𝒜)(𝑛))

uniquely determined by the following property: For every affine open𝑈 ⊂ 𝑆with𝐴 = 𝒜(𝑈)
there is an isomorphism

𝜃𝑈 ∶ 𝑖∗
𝑈 (⨁𝑛∈𝐙

𝒪Proj(𝐴)(𝑛)) ⟶ (⨁𝑛∈𝐙
𝒪Proj

𝑆
(𝒜)(𝑛)) |𝜋−1(𝑈)

of 𝐙-graded 𝒪𝜋−1(𝑈)-algebras such that

𝐴𝑛 𝜓
//

(22.10.1.3)
&&

Γ(𝜋−1(𝑈), 𝒪Proj
𝑆

(𝒜)(𝑛))

Γ(Proj(𝐴), 𝒪Proj(𝐴)(𝑛))
𝜃𝑈

55

is commutative.

Proof. Weare going to use Lemma 22.2.2 to glue the sheaves of𝐙-graded algebras⨁𝑛∈𝐙 𝒪Proj(𝐴)(𝑛)
for 𝐴 = 𝒜(𝑈), 𝑈 ⊂ 𝑆 affine open over the scheme Proj

𝑆
(𝒜). We have constructed the data

necessary for this in Lemma 22.15.2 and we have checked condition (d) of Lemma 22.2.2 in
Lemma 22.15.3. Hence we get the sheaf of 𝐙-graded 𝒪Proj

𝑆
(𝒜)-algebras ⨁𝑛∈𝐙 𝒪Proj

𝑆
(𝒜)(𝑛)
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together with the isomorphisms 𝜃𝑈 for all 𝑈 ⊂ 𝑆 affine open and all 𝑛 ∈ 𝐙. For every
affine open 𝑈 ⊂ 𝑆 with 𝐴 = 𝒜(𝑈) we have a map 𝐴 → Γ(Proj(𝐴), ⨁𝑛≥0 𝒪Proj(𝐴)(𝑛)).
Hence the map 𝜓 exists by functoriality of relative glueing, see Remark 22.2.3. The dia-
gram of the lemma commutes by construction. This characterizes the sheaf of 𝐙-graded
𝒪Proj

𝑆
(𝒜)-algebras ⨁ 𝒪Proj

𝑆
(𝒜)(𝑛) because the proof of Lemma 22.11.1 shows that having

these diagrams commute uniquely determines the maps 𝜃𝑈. Some details omitted. �

22.16. Relative Proj as a functor

We place ourselves in Situation 22.15.1. So 𝑆 is a scheme and 𝒜 = ⨁𝑑≥0 𝒜𝑑 is a quasi-
coherent graded 𝒪𝑆-algebra. In this section we relativize the construction of Proj by con-
structing a functor which the relative homogeneous spectrum will represent. As a result we
will construct a morphism of schemes

Proj
𝑆

(𝒜) ⟶ 𝑆

which above affine opens of 𝑆 will look like the homogeneous spectrum of a graded ring.
The discussion will be modeled after our discussion of the relative spectrum in Section
22.4. The easier method using glueing schemes of the form Proj(𝐴), 𝐴 = Γ(𝑈, 𝒜), 𝑈 ⊂ 𝑆
affine open, is explained in Section 22.15, and the result in this section will be shown to be
isomorphic to that one.

Fix for the moment an integer 𝑑 ≥ 1. We denote 𝒜(𝑑) = ⨁𝑛≥0 𝒜𝑛𝑑 similarly to the notation
in Algebra, Section 7.52. Let 𝑇 be a scheme. Let us consider quadruples (𝑑, 𝑓 ∶ 𝑇 →
𝑆, ℒ, 𝜓) over 𝑇 where

(1) 𝑑 is the integer we fixed above,
(2) 𝑓 ∶ 𝑇 → 𝑆 is a morphism of schemes,
(3) ℒ is an invertible 𝒪𝑇-module, and
(4) 𝜓 ∶ 𝑓∗𝒜(𝑑) → ⨁𝑛≥0 ℒ⊗𝑛 is a homomorphism of graded 𝒪𝑇-algebras such that

𝑓∗𝒜𝑑 → ℒ is surjective.
Given a morphism ℎ ∶ 𝑇′ → 𝑇 and a quadruple (𝑑, 𝑓, ℒ, 𝜓) over 𝑇 we can pull it back to the
quadruple (𝑑, 𝑓∘ℎ, ℎ∗ℒ, ℎ∗𝜓) over 𝑇′. Given two quadruples (𝑑, 𝑓, ℒ, 𝜓) and (𝑑, 𝑓′, ℒ′, 𝜓′)
over 𝑇 with the same integer 𝑑 we say they are strictly equivalent if 𝑓 = 𝑓′ and there
exists an isomorphism 𝛽 ∶ ℒ → ℒ′ such that 𝛽 ∘ 𝜓 = 𝜓′ as graded 𝒪𝑇-algebra maps
𝑓∗𝒜(𝑑) → ⨁𝑛≥0(ℒ′)⊗𝑛.

For each integer 𝑑 ≥ 1 we define

𝐹𝑑 ∶ Sch𝑜𝑝𝑝 ⟶ Sets,
𝑇 ⟼ {strict equivalence classes of (𝑑, 𝑓 ∶ 𝑇 → 𝑆, ℒ, 𝜓) as above}

with pullbacks as defined above.

Lemma 22.16.1. In Situation 22.15.1. Let 𝑑 ≥ 1. Let 𝐹𝑑 be the functor associated to (𝑆, 𝒜)
above. Let 𝑔 ∶ 𝑆′ → 𝑆 be a morphism of schemes. Set 𝒜′ = 𝑔∗𝒜. Let 𝐹′

𝑑 be the functor
associated to (𝑆′, 𝒜′) above. Then there is a canonical isomorphism

𝐹′
𝑑 ≅ ℎ𝑆′ ×ℎ𝑆

𝐹𝑑

of functors.

Proof. A quadruple (𝑑, 𝑓′ ∶ 𝑇 → 𝑆′, ℒ′, 𝜓′ ∶ (𝑓′)∗(𝒜′)(𝑑) → ⨁𝑛≥0(ℒ′)⊗𝑛) is the same
as a quadruple (𝑑, 𝑓, ℒ, 𝜓 ∶ 𝑓∗𝒜(𝑑) → ⨁𝑛≥0 ℒ⊗𝑛) together with a factorization of 𝑓 as

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01NT


22.16. RELATIVE PROJ AS A FUNCTOR 1247

𝑓 = 𝑔 ∘ 𝑓′. Namely, the correspondence is 𝑓 = 𝑔 ∘ 𝑓′, ℒ = ℒ′ and 𝜓 = 𝜓′ via the
identifications (𝑓′)∗(𝒜′)(𝑑) = (𝑓′)∗𝑔∗(𝒜(𝑑)) = 𝑓∗𝒜(𝑑). Hence the lemma. �

Lemma 22.16.2. In Situation 22.15.1. Let 𝐹𝑑 be the functor associated to (𝑑, 𝑆, 𝒜) above.
If 𝑆 is affine, then 𝐹𝑑 is representable by the open subscheme 𝑈𝑑 (22.12.0.1) of the scheme
Proj(Γ(𝑆, 𝒜)).

Proof. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and 𝐴 = Γ(𝑆, 𝒜). Then 𝐴 is a graded 𝑅-algebra and 𝒜 = 𝐴.
To prove the lemma we have to identify the functor 𝐹𝑑 with the functor 𝐹𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝑑 of triples
defined in Section 22.12.
Let (𝑑, 𝑓 ∶ 𝑇 → 𝑆, ℒ, 𝜓) be a quadruple. We may think of 𝜓 as a 𝒪𝑆-module map
𝒜(𝑑) → ⨁𝑛≥0 𝑓∗ℒ⊗𝑛. Since 𝒜(𝑑) is quasi-coherent this is the same thing as an 𝑅-linear ho-
momorphism of graded rings 𝐴(𝑑) → Γ(𝑆, ⨁𝑛≥0 𝑓∗ℒ⊗𝑛). Clearly, Γ(𝑆, ⨁𝑛≥0 𝑓∗ℒ⊗𝑛) =
Γ∗(𝑇, ℒ). Thus we may associate to the quadruple the triple (𝑑, ℒ, 𝜓).
Conversely, let (𝑑, ℒ, 𝜓) be a triple. The composition 𝑅 → 𝐴0 → Γ(𝑇, 𝒪𝑇) determines a
morphism 𝑓 ∶ 𝑇 → 𝑆 = 𝑆𝑝𝑒𝑐(𝑅), see Schemes, Lemma 21.6.4. With this choice of 𝑓 the
map 𝐴(𝑑) → Γ(𝑆, ⨁𝑛≥0 𝑓∗ℒ⊗𝑛) is 𝑅-linear, and hence corresponds to a 𝜓 which we can
use for a quadruple (𝑑, 𝑓 ∶ 𝑇 → 𝑆, ℒ, 𝜓). We omit the verification that this establishes an
isomorphism of functors 𝐹𝑑 = 𝐹𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝑑 . �

Lemma 22.16.3. In Situation 22.15.1. The functor 𝐹𝑑 is representable by a scheme.

Proof. We are going to use Schemes, Lemma 21.15.4.
First we check that 𝐹𝑑 satisfies the sheaf property for the Zariski topology. Namely, suppose
that 𝑇 is a scheme, that 𝑇 = ⋃𝑖∈𝐼 𝑈𝑖 is an open covering, and that (𝑑, 𝑓𝑖, ℒ𝑖, 𝜓𝑖) ∈ 𝐹𝑑(𝑈𝑖)
such that (𝑑, 𝑓𝑖, ℒ𝑖, 𝜓𝑖)|𝑈𝑖∩𝑈𝑗

and (𝑑, 𝑓𝑗, ℒ𝑗, 𝜓𝑗)|𝑈𝑖∩𝑈𝑗
are strictly equivalent. This implies

that the morphisms 𝑓𝑖 ∶ 𝑈𝑖 → 𝑆 glue to a morphism of schemes 𝑓 ∶ 𝑇 → 𝑆 such that
𝑓|𝐼𝑖

= 𝑓𝑖, see Schemes, Section 21.14. Thus 𝑓∗
𝑖 𝒜(𝑑) = 𝑓∗𝒜(𝑑)|𝑈𝑖

. It also implies there
exist isomorphisms 𝛽𝑖𝑗 ∶ ℒ𝑖|𝑈𝑖∩𝑈𝑗

→ ℒ𝑗|𝑈𝑖∩𝑈𝑗
such that 𝛽𝑖𝑗 ∘ 𝜓𝑖 = 𝜓𝑗 on 𝑈𝑖 ∩ 𝑈𝑗. Note

that the isomorphisms 𝛽𝑖𝑗 are uniquely determined by this requirement because the maps
𝑓∗

𝑖 𝒜𝑑 → ℒ𝑖 are surjective. In particular we see that 𝛽𝑗𝑘 ∘ 𝛽𝑖𝑗 = 𝛽𝑖𝑘 on 𝑈𝑖 ∩ 𝑈𝑗 ∩ 𝑈𝑘. Hence
by Sheaves, Section 6.33 the invertible sheaves ℒ𝑖 glue to an invertible 𝒪𝑇-module ℒ and
the morphisms 𝜓𝑖 glue to morphism of 𝒪𝑇-algebras 𝜓 ∶ 𝑓∗𝒜(𝑑) → ⨁𝑛≥0 ℒ⊗𝑛. This proves
that 𝐹𝑑 satisfies the sheaf condition with respect to the Zariski topology.
Let 𝑆 = ⋃𝑖∈𝐼 𝑈𝑖 be an affine open covering. Let 𝐹𝑑,𝑖 ⊂ 𝐹𝑑 be the subfunctor consisting of
those pairs (𝑓 ∶ 𝑇 → 𝑆, 𝜑) such that 𝑓(𝑇) ⊂ 𝑈𝑖.
We have to show each 𝐹𝑑,𝑖 is representable. This is the case because 𝐹𝑑,𝑖 is identified with
the functor associated to 𝑈𝑖 equipped with the quasi-coherent graded 𝒪𝑈𝑖

-algebra 𝒜|𝑈𝑖
) by

Lemma 22.16.1. Thus the result follows from Lemma 22.16.2.
Next we show that 𝐹𝑑,𝑖 ⊂ 𝐹𝑑 is representable by open immersions. Let (𝑓 ∶ 𝑇 → 𝑆, 𝜑) ∈
𝐹𝑑(𝑇). Consider 𝑉𝑖 = 𝑓−1(𝑈𝑖). It follows from the definition of 𝐹𝑑,𝑖 that given 𝑎 ∶ 𝑇′ → 𝑇
we gave 𝑎∗(𝑓, 𝜑) ∈ 𝐹𝑑,𝑖(𝑇′) if and only if 𝑎(𝑇′) ⊂ 𝑉𝑖. This is what we were required to
show.
Finally, we have to show that the collection (𝐹𝑑,𝑖)𝑖∈𝐼 covers 𝐹𝑑. Let (𝑓 ∶ 𝑇 → 𝑆, 𝜑) ∈
𝐹𝑑(𝑇). Consider 𝑉𝑖 = 𝑓−1(𝑈𝑖). Since 𝑆 = ⋃𝑖∈𝐼 𝑈𝑖 is an open covering of 𝑆 we see that
𝑇 = ⋃𝑖∈𝐼 𝑉𝑖 is an open covering of 𝑇. Moreover (𝑓, 𝜑)|𝑉𝑖

∈ 𝐹𝑑,𝑖(𝑉𝑖). This finishes the
proof of the lemma. �
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At this point we can redo the material at the end of Section 22.12 in the current relative
setting and define a functor which is representable by Proj

𝑆
(𝒜). To do this we introduce

the notion of equivalence between two quadruples (𝑑, 𝑓 ∶ 𝑇 → 𝑆, ℒ, 𝜓) and (𝑑′, 𝑓′ ∶ 𝑇 →
𝑆, ℒ′, 𝜓′) with possibly different values of the integers 𝑑, 𝑑′. Namely, we say these are
equivalent if 𝑓 = 𝑓′, and there exists an isomorphism 𝛽 ∶ ℒ⊗𝑑′

→ (ℒ′)⊗𝑑 such that
𝛽 ∘ 𝜓|𝑓∗𝒜(𝑑𝑑′) = 𝜓′|𝑓∗𝒜(𝑑𝑑′). The following lemma implies that this defines an equivalence
relation. (This is not a complete triviality.)

Lemma 22.16.4. In Situation 22.15.1. Let 𝑇 be a scheme. Let (𝑑, 𝑓, ℒ, 𝜓), (𝑑′, 𝑓′, ℒ′, 𝜓′)
be two quadruples over 𝑇. The following are equivalent:

(1) Let 𝑚 = lcm(𝑑, 𝑑′). Write 𝑚 = 𝑎𝑑 = 𝑎′𝑑′. We have 𝑓 = 𝑓′ and there exists an
isomorphism 𝛽 ∶ ℒ⊗𝑎 → (ℒ′)⊗𝑎′

with the property that 𝛽∘𝜓|𝑓∗𝒜(𝑚) and𝜓′|𝑓∗𝒜(𝑚)

agree as graded ring maps 𝑓∗𝒜(𝑚) → ⨁𝑛≥0(ℒ′)⊗𝑚𝑛.
(2) The quadruples (𝑑, 𝑓, ℒ, 𝜓) and (𝑑′, 𝑓′, ℒ′, 𝜓′) are equivalent.
(3) We have 𝑓 = 𝑓′ and for some positive integer 𝑚 = 𝑎𝑑 = 𝑎′𝑑′ there exists an

isomorphism 𝛽 ∶ ℒ⊗𝑎 → (ℒ′)⊗𝑎′
with the property that 𝛽∘𝜓|𝑓∗𝒜(𝑚) and𝜓′|𝑓∗𝒜(𝑚)

agree as graded ring maps 𝑓∗𝒜(𝑚) → ⨁𝑛≥0(ℒ′)⊗𝑚𝑛.

Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible degrees
and powers of invertible sheaves. Assume (3) for some integer 𝑚 = 𝑎𝑑 = 𝑎′𝑑′. Let
𝑚0 = lcm(𝑑, 𝑑′) andwrite it as𝑚0 = 𝑎0𝑑 = 𝑎′

0𝑑′. We are given an isomorphism 𝛽 ∶ ℒ⊗𝑎 →
(ℒ′)⊗𝑎′

with the property described in (3). We want to find an isomorphism 𝛽0 ∶ ℒ⊗𝑎0 →
(ℒ′)⊗𝑎′

0 having that property as well. Since by assumption the maps 𝜓 ∶ 𝑓∗𝒜𝑑 → ℒ and
𝜓′ ∶ (𝑓′)∗𝒜𝑑′ → ℒ′ are surjective the same is true for the maps 𝜓 ∶ 𝑓∗𝒜𝑚0

→ ℒ⊗𝑎0 and
𝜓′ ∶ (𝑓′)∗𝒜𝑚0

→ (ℒ′)⊗𝑎0. Hence if 𝛽0 exists it is uniquely determined by the condition
that 𝛽0 ∘ 𝜓 = 𝜓′. This means that we may work locally on 𝑇. Hence we may assume that
𝑓 = 𝑓′ ∶ 𝑇 → 𝑆 maps into an affine open, in other words we may assume that 𝑆 is affine. In
this case the result follows from the corresponding result for triples (see Lemma 22.12.4)
and the fact that triples and quadruples correspond in the affine base case (see proof of
Lemma 22.16.2). �

Suppose 𝑑′ = 𝑎𝑑. Consider the transformation of functors 𝐹𝑑 → 𝐹𝑑′ which assigns to the
quadruple (𝑑, 𝑓, ℒ, 𝜓) over 𝑇 the quadruple (𝑑′, 𝑓, ℒ⊗𝑎, 𝜓|𝑓∗𝒜(𝑑′)). One of the implications
of Lemma 22.16.4 is that the transformation 𝐹𝑑 → 𝐹𝑑′ is injective! For a quasi-compact
scheme 𝑇 we define

𝐹(𝑇) = ⋃𝑑∈𝐍
𝐹𝑑(𝑇)

with transition maps as explained above. This clearly defines a contravariant functor on the
category of quasi-compact schemes with values in sets. For a general scheme 𝑇 we define

𝐹(𝑇) = 𝑙𝑖𝑚𝑉⊂𝑇 quasi-compact open 𝐹(𝑉).

In other words, an element 𝜉 of 𝐹(𝑇) corresponds to a compatible system of choices of
elements 𝜉𝑉 ∈ 𝐹(𝑉) where 𝑉 ranges over the quasi-compact opens of 𝑇. We omit the
definition of the pullback map 𝐹(𝑇) → 𝐹(𝑇′) for a morphism 𝑇′ → 𝑇 of schemes. Thus we
have defined our functor

(22.16.4.1) 𝐹 ∶ Sch𝑜𝑝𝑝 ⟶ Sets

Lemma 22.16.5. In Situation 22.15.1. The functor 𝐹 above is representable by a scheme.
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Proof. Let 𝑈𝑑 → 𝑆 be the scheme representing the functor 𝐹𝑑 defined above. Let ℒ𝑑, 𝜓𝑑 ∶
𝜋∗

𝑑𝒜(𝑑) → ⨁𝑛≥0 ℒ⊗𝑛
𝑑 be the universal object. If 𝑑|𝑑′, then we may consider the quadruple

(𝑑′, 𝜋𝑑, ℒ⊗𝑑′/𝑑
𝑑 , 𝜓𝑑|𝒜(𝑑′)) which determines a canonical morphism 𝑈𝑑 → 𝑈𝑑′ over 𝑆. By

construction this morphism corresponds to the transformation of functors 𝐹𝑑 → 𝐹𝑑′ defined
above.

For every affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 setting 𝐴 = Γ(𝑉, 𝒜) we have a canonical iden-
tification of the base change 𝑈𝑑,𝑉 with the corresponding open subscheme of Proj(𝐴), see
Lemma 22.16.2. Moreover, the morphisms 𝑈𝑑,𝑉 → 𝑈𝑑′,𝑉 constructed above correspond to
the inclusions of opens in Proj(𝐴). Thus we conclude that 𝑈𝑑 → 𝑈𝑑′ is an open immersion.

This allows us to construct 𝑋 by glueing the schemes 𝑈𝑑 along the open immersions 𝑈𝑑 →
𝑈𝑑′. Technically, it is convenient to choose a sequence 𝑑1|𝑑2|𝑑3| … such that every positive
integer divides one of the 𝑑𝑖 and to simply take 𝑋 = ⋃ 𝑈𝑑𝑖

using the open immersions
above. It is then a simple matter to prove that 𝑋 represents the functor 𝐹. �

Lemma 22.16.6. In Situation 22.15.1. The scheme 𝜋 ∶ Proj
𝑆

(𝒜) → 𝑆 constructed in
Lemma 22.15.4 and the scheme representing the functor 𝐹 are canonically isomorphic as
schemes over 𝑆.

Proof. Let 𝑋 be the scheme representing the functor 𝐹. Note that 𝑋 is a scheme over 𝑆
since the functor 𝐹 comes equipped with a natural transformation 𝐹 → ℎ𝑆. Write 𝑌 =
Proj

𝑆
(𝒜). We have to show that 𝑋 ≅ 𝑌 as 𝑆-schemes. We give two arguments.

The first argument uses the construction of 𝑋 as the union of the schemes 𝑈𝑑 representing
𝐹𝑑 in the proof of Lemma 22.16.5. Over each affine open of 𝑆 we can identify 𝑋 with the
homogeneous spectrum of the sections of 𝒜 over that open, since this was true for the opens
𝑈𝑑. Moreover, these identifications are compatible with further restrictions to smaller affine
opens. On the other hand, 𝑌 was constructed by glueing these homogeneous spectra. Hence
we can glue these isomorphisms to an isomorphism between 𝑋 and Proj

𝑆
(𝒜) as desired.

Details omitted.

Here is the second argument. Lemma 22.15.5 shows that there exists a morphism of graded
algebras

𝜓 ∶ 𝜋∗𝒜 ⟶ ⨁𝑛≥0
𝒪𝑌(𝑛)

over 𝑌 which on sections over affine opens of 𝑆 agrees with (22.10.1.3). Hence for every
𝑦 ∈ 𝑌 there exists an open neighbourhood 𝑉 ⊂ 𝑌 of 𝑦 and an integer 𝑑 ≥ 1 such that for
𝑑|𝑛 the sheaf 𝒪𝑌(𝑛)|𝑉 is invertible and the multiplication maps 𝒪𝑌(𝑛)|𝑉 ⊗𝒪𝑉

𝒪𝑌(𝑚)|𝑉 →
𝒪𝑌(𝑛 + 𝑚)|𝑉 are isomorphisms. Thus 𝜓 restricted to the sheaf 𝜋∗𝒜(𝑑)|𝑉 gives an element
of 𝐹𝑑(𝑉). Since the opens 𝑉 cover 𝑌 we see ``𝜓'' gives rise to an element of 𝐹(𝑌). Hence
a canonical morphism 𝑌 → 𝑋 over 𝑆. Because this construction is completely canonical
to see that it is an isomorphism we may work locally on 𝑆. Hence we reduce to the case 𝑆
affine where the result is clear. �

Definition 22.16.7. Let𝑆 be a scheme. Let𝒜 be a quasi-coherent sheaf of graded𝒪𝑆-algebras.
The relative homogeneous spectrum of 𝒜 over 𝑆, or the homogeneous spectrum of 𝒜 over
𝑆, or the relative Proj of 𝒜 over 𝑆 is the scheme constructed in Lemma 22.15.4 which
represents the functor 𝐹 (22.16.4.1), see Lemma 22.16.6. We denote it 𝜋 ∶ Proj

𝑆
(𝒜) → 𝑆.
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The relative Proj comes equippedwith a quasi-coherent sheaf of𝐙-graded algebras⨁𝑛∈𝐙 𝒪Proj
𝑆

(𝒜)(𝑛)
(the twists of the structure sheaf) and a ``universal'' homomorphism of graded algebras

𝜓𝑢𝑛𝑖𝑣 ∶ 𝒜 ⟶ 𝜋∗ (⨁𝑛≥0
𝒪Proj

𝑆
(𝒜)(𝑛))

see Lemma 22.15.5. We may also think of this as a homomorphism

𝜓𝑢𝑛𝑖𝑣 ∶ 𝜋∗𝒜 ⟶ ⨁𝑛≥0
𝒪Proj

𝑆
(𝒜)(𝑛)

if we like. The following lemma is a formulation of the universality of this object.

Lemma 22.16.8. In Situation 22.15.1. Let (𝑓 ∶ 𝑇 → 𝑆, 𝑑, ℒ, 𝜓) be a quadruple. Let
𝑟𝑑,ℒ,𝜓 ∶ 𝑇 → Proj

𝑆
(𝒜) be the associated 𝑆-morphism. There exists an isomorphism of

𝐙-graded 𝒪𝑇-algebras

𝜃 ∶ 𝑟∗
𝑑,ℒ,𝜓 (⨁𝑛∈𝐙

𝒪Proj
𝑆

(𝒜)(𝑛𝑑)) ⟶ ⨁𝑛∈𝐙
ℒ⊗𝑛

such that the following diagram commutes

𝒜(𝑑)
𝜓

//

𝜓𝑢𝑛𝑖𝑣
''

𝑓∗ (⨁𝑛∈𝐙 ℒ⊗𝑛)

𝜋∗ (⨁𝑛≥0 𝒪Proj
𝑆

(𝒜)(𝑛𝑑))

𝜃

55

The commutativity of this diagram uniquely determines 𝜃.

Proof. Note that the quadruple (𝑓 ∶ 𝑇 → 𝑆, 𝑑, ℒ, 𝜓) defines an element of 𝐹𝑑(𝑇). Let
𝑈𝑑 ⊂ Proj

𝑆
(𝒜) be the locus where the sheaf 𝒪Proj

𝑆
(𝒜)(𝑑) is invertible and generated by

the image of 𝜓𝑢𝑛𝑖𝑣 ∶ 𝜋∗𝒜𝑑 → 𝒪Proj
𝑆

(𝒜)(𝑑). Recall that 𝑈𝑑 represents the functor 𝐹𝑑, see
the proof of Lemma 22.16.5. Hence the result will follow if we can show the quadru-
ple (𝑈𝑑 → 𝑆, 𝑑, 𝒪𝑈𝑑

(𝑑), 𝜓𝑢𝑛𝑖𝑣|𝒜(𝑑)) is the universal family, i.e., the representing object in
𝐹𝑑(𝑈𝑑). We may do this after restricting to an affine open of 𝑆 because (a) the forma-
tion of the functors 𝐹𝑑 commutes with base change (see Lemma 22.16.1), and (b) the pair
(⨁𝑛∈𝐙 𝒪Proj

𝑆
(𝒜)(𝑛), 𝜓𝑢𝑛𝑖𝑣) is constructed by glueing over affine opens in 𝑆 (see Lemma

22.15.5). Hence we may assume that 𝑆 is affine. In this case the functor of quadruples
𝐹𝑑 and the functor of triples 𝐹𝑑 agree (see proof of Lemma 22.16.2) and moreover Lemma
22.12.2 shows that (𝑑, 𝒪𝑈𝑑

(𝑑), 𝜓𝑑) is the universal triple over 𝑈𝑑. Going backwards through
the identifications in the proof of Lemma 22.16.2 shows that (𝑈𝑑 → 𝑆, 𝑑, 𝒪𝑈𝑑

(𝑑), 𝜓𝑢𝑛𝑖𝑣|𝒜(𝑑))
is the universal quadruple as desired. �

Lemma22.16.9. Let𝑆 be a scheme and𝒜 be a quasi-coherent sheaf of graded𝒪𝑆-algebras.
The morphism 𝜋 ∶ Proj

𝑆
(𝒜) → 𝑆 is separated.

Proof. To prove a morphism is separated we may work locally on the base, see Schemes,
Section 21.21. By construction Proj

𝑆
(𝒜) is over any affine 𝑈 ⊂ 𝑆 isomorphic to Proj(𝐴)

with 𝐴 = 𝒜(𝑈). By Lemma 22.8.8 we see that Proj(𝐴) is separated. Hence Proj(𝐴) → 𝑈
is separated (see Schemes, Lemma 21.21.14) as desired. �

Lemma22.16.10. Let𝑆 be a scheme and𝒜 be a quasi-coherent sheaf of graded𝒪𝑆-algebras.
Let 𝑔 ∶ 𝑆′ → 𝑆 be any morphism of schemes. Then there is a canonical isomorphism

Proj
𝑆′(𝑔∗𝒜) ⟶ 𝑆′ ×𝑆 Proj

𝑆
(𝒜)
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Proof. This follows from Lemma 22.16.1 and the construction of Proj
𝑆

(𝒜) in Lemma
22.16.5 as the union of the schemes 𝑈𝑑 representing the functors 𝐹𝑑. �

Lemma22.16.11. Let𝑆 be a scheme. Let𝒜 be a quasi-coherent sheaf of graded𝒪𝑆-modules
generated as an 𝒜0-algebra by 𝒜1. In this case the scheme 𝑋 = Proj

𝑆
(𝒜) represents the

functor 𝐹1 which associates to a scheme 𝑓 ∶ 𝑇 → 𝑆 over 𝑆 the set of pairs (ℒ, 𝜓), where
(1) ℒ is an invertible 𝒪𝑇-module, and
(2) 𝜓 ∶ 𝑓∗𝒜 → ⨁𝑛≥0 ℒ⊗𝑛 is a graded𝒪𝑇-algebra homomorphism such that 𝑓∗𝒜1 →

ℒ is surjective
up to strict equivalence as above. Moreover, in this case all the quasi-coherent sheaves
𝒪Proj(𝒜)(𝑛) are invertible𝒪Proj(𝒜)-modules and themultiplicationmaps induce isomorphsms
𝒪Proj(𝒜)(𝑛) ⊗𝒪Proj(𝒜)

𝒪Proj(𝒜)(𝑚) = 𝒪Proj(𝒜)(𝑛 + 𝑚).

Proof. Under the assumptions of the lemma the sheaves 𝒪Proj(𝒜)(𝑛) are invertible and the
multiplicationmaps isomorphisms by Lemma 22.16.5 and Lemma 22.12.3 over affine opens
of 𝑆. Thus 𝑋 actually represents the functor 𝐹1, see proof of Lemma 22.16.5. �

22.17. Quasi-coherent sheaves on relative Proj

We briefly discuss how to deal with graded modules in the relative setting.

We plave ourselves in Situation 22.15.1. So 𝑆 is a scheme, and 𝒜 is a quasi-coherent graded
𝒪𝑆-algebra. Let ℳ = ⨁𝑛∈𝐙 ℳ𝑛 be a graded 𝒜-module, quasi-coherent as an 𝒪𝑆-module.
We are going to describe the associated quasi-coherent sheaf of modules on Proj

𝑆
(𝒜). We

first describe the value of this sheaf schemes 𝑇 mapping into the relative Proj.

Let 𝑇 be a scheme. Let (𝑑, 𝑓 ∶ 𝑇 → 𝑆, ℒ, 𝜓) be a quadruple over 𝑇, as in Section 22.16.
We define a quasi-coherent sheaf ℳ̃𝑇 of 𝒪𝑇-modules as follows

(22.17.0.1) ℳ̃𝑇 = (𝑓∗ℳ(𝑑) ⊗𝑓∗𝒜(𝑑) (⨁𝑛∈𝐙
ℒ⊗𝑛

))0

So ℳ̃𝑇 is the degree 0 part of the tensor product of the graded 𝑓∗𝒜(𝑑)-modules ℳ(𝑑) and
⨁𝑛∈𝐙 ℒ⊗𝑛. Note that the sheaf ℳ̃𝑇 depends on the quadruple even though we suppressed
this in the notation. This construction has the pleasing property that given any morphism
𝑔 ∶ 𝑇′ → 𝑇 we have ℳ̃𝑇′ = 𝑔∗ℳ̃𝑇 where ℳ̃𝑇′ denotes the quasi-coherent sheaf associated
to the pullback quadruple (𝑑, 𝑓 ∘ 𝑔, 𝑔∗ℒ, 𝑔∗𝜓).

Since all sheaves in (22.17.0.1) are quasi-coherent we can spell out the construction over
an affine open 𝑆𝑝𝑒𝑐(𝐶) = 𝑉 ⊂ 𝑇 which maps into an affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑆.
Namely, suppose that 𝒜|𝑈 corresponds to the graded 𝑅-algebra 𝐴, that ℳ|𝑈 corresponds
to the graded 𝐴-module 𝑀, and that ℒ|𝑉 corresponds to the invertible 𝐶-module 𝐿. The
map 𝜓 gives rise to a graded 𝑅-algebra map 𝛾 ∶ 𝐴(𝑑) → ⨁𝑛≥0 𝐿⊗𝑛. (Tensor powers of 𝐿
over 𝐶.) Then (ℳ̃𝑇)|𝑉 is the quasi-coherent sheaf associated to the 𝐶-module

𝑁𝑅,𝐶,𝐴,𝑀,𝛾 = (𝑀(𝑑) ⊗𝐴(𝑑),𝛾 (⨁𝑛∈𝐙
𝐿⊗𝑛

))0

By assumption we may even cover 𝑇 by affine opens 𝑉 such that there exists some 𝑎 ∈ 𝐴𝑑
such that 𝛾(𝑎) ∈ 𝐿 is a 𝐶-basis for the module 𝐿. In that case any element of 𝑁𝑅,𝐶,𝐴,𝑀,𝛾 is
a sum of pure tensors ∑ 𝑚𝑖 ⊗ 𝛾(𝑎)−𝑛𝑖 with 𝑚 ∈ 𝑀𝑛𝑖𝑑. In fact we may multiply each 𝑚𝑖 with
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a suitable positive power of 𝑎 and collect terms to see that each element of 𝑁𝑅,𝐶,𝐴,𝑀,𝛾 can
be written as 𝑚 ⊗ 𝛾(𝑎)−𝑛 with 𝑚 ∈ 𝑀𝑛𝑑 and 𝑛 ≫ 0. In other words we see that in this case

𝑁𝑅,𝐶,𝐴,𝑀,𝛾 = 𝑀(𝑎) ⊗𝐴(𝑎)
𝐶

where the map 𝐴(𝑎) → 𝐶 is the map 𝑥/𝑎𝑛 ↦ 𝛾(𝑥)/𝛾(𝑎)𝑛. In other words, this is the value
of 𝑀 on 𝐷+(𝑎) ⊂ Proj(𝐴) pulled back to 𝑆𝑝𝑒𝑐(𝐶) via the morphism 𝑆𝑝𝑒𝑐(𝐶) → 𝐷+(𝑎)
coming from 𝛾.

Lemma 22.17.1. In Situation 22.15.1. For any quasi-coherent sheaf of graded 𝒜-modules
ℳ on 𝑆, there exists a canonical associated sheaf of 𝒪Proj

𝑆
(𝒜)-modules ℳ̃ with the follow-

ing properties:
(1) Given a scheme 𝑇 and a quadruple (𝑇 → 𝑆, 𝑑, ℒ, 𝜓) over 𝑇 corresponding to

a morphism ℎ ∶ 𝑇 → Proj
𝑆

(𝒜) there is a canonical isomorphism ℳ̃𝑇 = ℎ∗ℳ̃

where ℳ̃𝑇 is defined by (22.17.0.1).
(2) The isomorphisms of (1) are compatible with pullbacks.
(3) There is a canonical map

𝜋∗ℳ0 ⟶ ℳ̃.

(4) The construction ℳ ↦ ℳ̃ is functorial in ℳ.
(5) The construction ℳ ↦ ℳ̃ is exact.
(6) There are canonical maps

ℳ̃ ⊗𝒪Proj𝑆(𝒜)
𝒩 ⟶ ℳ̃ ⊗𝒜 𝒩

as in Lemma 22.9.1.
(7) There exist canonical maps

𝜋∗ℳ ⟶ ⨁𝑛∈𝐙
ℳ̃(𝑛)

generalizing (22.10.1.6).
(8) The formation of ℳ̃ commutes with base change.

Proof. Omitted. We should split this lemma into parts and prove the parts separately. �

22.18. Invertible sheaves and morphisms into relative Proj

It seems that we may need the following lemma somewhere. The situation is the following:
(1) Let 𝑆 be a scheme.
(2) Let 𝒜 be a quasi-coherent graded 𝒪𝑆-algebra.
(3) Denote 𝜋 ∶ Proj

𝑆
(𝒜) → 𝑆 the relative homogeneous spectrum over 𝑆.

(4) Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(5) Let ℒ be an invertible 𝒪𝑋-module.
(6) Let 𝜓 ∶ 𝑓∗𝒜 → ⨁𝑑≥0 ℒ⊗𝑑 be a homomorphism of graded 𝒪𝑋-algebras.

Given this data set
𝑈(𝜓) = ⋃(𝑈,𝑉,𝑎)

𝑈𝜓(𝑎)

where (𝑈, 𝑉, 𝑎) satisfies:
(1) 𝑉 ⊂ 𝑆 affine open,
(2) 𝑈 = 𝑓−1(𝑉), and
(3) 𝑎 ∈ 𝒜(𝑉)+ is homogeneous.
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Namely, then 𝜓(𝑎) ∈ Γ(𝑈, ℒ⊗ deg(𝑎)) and 𝑈𝜓(𝑎) is the corresponding open (see Modules,
Lemma 15.21.7).

Lemma 22.18.1. With assumptions and notation as above. The morphism 𝜓 induces a
canonical morphism of schemes over 𝑆

𝑟ℒ,𝜓 ∶ 𝑈(𝜓) ⟶ Proj
𝑆

(𝒜)

together with a map of graded 𝒪𝑈(𝜓)-algebras

𝜃 ∶ 𝑟∗
ℒ,𝜓 (⨁𝑑≥0

𝒪Proj
𝑆

(𝒜)(𝑑)) ⟶ ⨁𝑑≥0
ℒ⊗𝑑|𝑈(𝜓)

characterized by the following properties:
(1) For every open 𝑉 ⊂ 𝑆 and every 𝑑 ≥ 0 the diagram

𝒜𝑑(𝑉)

𝜓
��

𝜓
// Γ(𝑓−1(𝑉), ℒ⊗𝑑)

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡
��

Γ(𝜋−1(𝑉), 𝒪Proj
𝑆

(𝒜)(𝑑)) 𝜃 // Γ(𝑓−1(𝑉) ∩ 𝑈(𝜓), ℒ⊗𝑑)

is commutative.
(2) For any 𝑑 ≥ 1 and any open subscheme 𝑊 ⊂ 𝑋 such that 𝜓|𝑊 ∶ 𝑓∗𝒜𝑑|𝑊 →

ℒ⊗𝑑|𝑊 is surjective the restriction of the morphism 𝑟ℒ,𝜓 agrees with the mor-
phism 𝑊 → Proj

𝑆
(𝒜) which exists by the construction of the relative homoge-

neous spectrum, see Definition 22.16.7.
(3) For any affine open 𝑉 ⊂ 𝑆, the restriction

(𝑈(𝜓) ∩ 𝑓−1(𝑉), 𝑟ℒ,𝜓|𝑈(𝜓)∩𝑓−1(𝑉), 𝜃|𝑈(𝜓)∩𝑓−1(𝑉))

agrees via 𝑖𝑉 (see Lemma 22.15.4) with the triple (𝑈(𝜓′), 𝑟ℒ,𝜓′, 𝜃′) of Lemma
22.14.1 associated to the map 𝜓′ ∶ 𝐴 = 𝒜(𝑉) → Γ∗(𝑓−1(𝑉), ℒ|𝑓−1(𝑉)) induced
by 𝜓.

Proof. Use characterization (3) to construct the morphism 𝑟ℒ,𝜓 and 𝜃 locally over 𝑆. Use
the uniqueness of Lemma 22.14.1 to show that the construction glues. Details omitted. �

22.19. Twisting by invertible sheaves and relative Proj

Let 𝑆 be a scheme. Let 𝒜 = ⨁𝑑≥0 𝒜𝑑 be a quasi-coherent graded 𝒪𝑆-algebra. Let ℒ be an
invertible sheaf on 𝑆. In this situation we obtain another quasi-coherent graded 𝒪𝑆-algebra,
namely

ℬ = ⨁𝑑≥0
𝒜𝑑 ⊗𝒪𝑆

ℒ⊗𝑑

It turns out that 𝒜 and ℬ have isomorphic relative homogeneous spectra.

Lemma 22.19.1. With notation𝑆,𝒜,ℒ andℬ as above. There is a canonical isomorphism

𝑃 = Proj
𝑆

(𝒜) 𝑔
//

𝜋
$$

Proj
𝑆

(ℬ) = 𝑃′

𝜋′
yy𝑆

with the following properties
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(1) There are isomorphisms 𝜃𝑛 ∶ 𝑔∗𝒪𝑃′(𝑛) → 𝒪𝑃(𝑛) ⊗ 𝜋∗ℒ⊗𝑛 which fit together to
give an isomorphism of 𝐙-graded algebras

𝜃 ∶ 𝑔∗
(⨁𝑛∈𝐙

𝒪𝑃′(𝑛)) ⟶ ⨁𝑛∈𝐙
𝒪𝑃(𝑛) ⊗ 𝜋∗ℒ⊗𝑛

(2) For every open 𝑉 ⊂ 𝑆 the diagrams

𝒜𝑛(𝑉) ⊗ ℒ⊗𝑛(𝑉)
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦

//

𝜓⊗𝜋∗

��

ℬ𝑛(𝑉)

𝜓

��

Γ(𝜋−1𝑉, 𝒪𝑃(𝑛)) ⊗ Γ(𝜋−1𝑉, 𝜋∗ℒ⊗𝑛)

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦
��

Γ(𝜋−1𝑉, 𝒪𝑃(𝑛) ⊗ 𝜋∗ℒ⊗𝑛) Γ(𝜋′−1𝑉, 𝒪𝑃′(𝑛))
𝜃𝑛oo

are commutative.
(3) Add more here as necessary.

Proof. This is the identity map when ℒ ≅ 𝒪𝑆. In general choose an open covering of 𝑆
such that ℒ is trivialized over the pieces and glue the corresponding maps. Details omitted.

�

22.20. Projective bundles

Let 𝑆 be a scheme. Let ℰ be a quasi-coherent sheaf of 𝒪𝑆-modules. By Modules, Lemma
15.18.6 the symmetric algebra Sym(ℰ) ofℰ over𝒪𝑆 is a quasi-coherent sheaf of𝒪𝑆-algebras.
Note that it is generated in degree 1 over 𝒪𝑆. Hence it makes sense to apply the construction
of the previous section to it, specifically Lemmas 22.16.5 and 22.16.11.

Definition 22.20.1. Let 𝑆 be a scheme. Let ℰ be a quasi-coherent 𝒪𝑆-module3. We denote

𝜋 ∶ 𝐏(ℰ) = Proj
𝑆

(Sym(ℰ)) ⟶ 𝑆

and we call it the projective bundle associated to ℰ. The symbol 𝒪𝐏(ℰ)(𝑛) indicates the
invertible 𝒪𝐏(ℰ)-modules introduced in Lemma 22.16.5 and is called the 𝑛th twist of the
structure sheaf.

Note that according to Lemma 22.16.5 there are canonical 𝒪𝑆-module homomorphisms

Sym𝑛(ℰ) ⟶ 𝜋∗(𝒪𝐏(ℰ)(𝑛))

for all 𝑛 ≥ 0. This, combined with the fact that 𝒪𝐏(ℰ)(1) is the canonical relatively ample
invertible sheaf on 𝐏(ℰ), is a good way to remember how we have normalized our construc-
tion of 𝐏(ℰ). Namely, in some references the space 𝐏(ℰ) is only defined for ℰ finite locally
free on 𝑆, and sometimes 𝐏(ℰ) is actually defined as our 𝐏(ℰ∧) where ℰ∧ is the dual of the
sheaf ℰ.

Example 22.20.2. The map Sym𝑛(ℰ) → 𝜋∗(𝒪𝐏(ℰ)(𝑛)) is an isomorphism if ℰ is locally
free, but in general need not be an isomorphism. In fact we will give an example where this
map is not injective for 𝑛 = 1. Set 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) with

𝐴 = 𝑘[𝑢, 𝑣, 𝑠1, 𝑠2, 𝑡1, 𝑡2]/𝐼

3The reader may expect here the condition that ℰ is finite locally free. We do not do so in order to be
consistent with [DG67, II, Definition 4.1.1].

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01OB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01OC


22.20. PROJECTIVE BUNDLES 1255

where 𝑘 is a field and
𝐼 = (−𝑢𝑠1 + 𝑣𝑡1 + 𝑢𝑡2, 𝑣𝑠1 + 𝑢𝑠2 − 𝑣𝑡2, 𝑣𝑠2, 𝑢𝑡1).

Denote 𝑢 the class of 𝑢 in 𝐴 and similarly for the other variables. Let 𝑀 = (𝐴𝑥⊕𝐴𝑦)/𝐴(𝑢𝑥+
𝑣𝑦) so that

Sym(𝑀) = 𝐴[𝑥, 𝑦]/(𝑢𝑥 + 𝑣𝑦) = 𝑘[𝑥, 𝑦, 𝑢, 𝑣, 𝑠1, 𝑠2, 𝑡1, 𝑡2]/𝐽
where

𝐽 = (−𝑢𝑠1 + 𝑣𝑡1 + 𝑢𝑡2, 𝑣𝑠1 + 𝑢𝑠2 − 𝑣𝑡2, 𝑣𝑠2, 𝑢𝑡1, 𝑢𝑥 + 𝑣𝑦).
In this case the projective bundle associated to the quasi-coherent sheaf ℰ = 𝑀 on 𝑆 =
𝑆𝑝𝑒𝑐(𝐴) is the scheme

𝑃 = Proj(Sym(𝑀)).
Note that this scheme as an affine open covering 𝑃 = 𝐷+(𝑥) ∪ 𝐷+(𝑦). Consider the element
𝑚 ∈ 𝑀 which is the image of the element 𝑢𝑠1𝑥 + 𝑣𝑡2𝑦. Note that

𝑥(𝑢𝑠1𝑥 + 𝑣𝑡2𝑦) = (𝑠1𝑥 + 𝑠2𝑦)(𝑢𝑥 + 𝑣𝑦) mod 𝐼
and

𝑦(𝑢𝑠1𝑥 + 𝑣𝑡2𝑦) = (𝑡1𝑥 + 𝑡2𝑦)(𝑢𝑥 + 𝑣𝑦) mod 𝐼.
The first equation implies that 𝑚 maps to zero as a section of 𝒪𝑃(1) on 𝐷+(𝑥) and the
second that it maps to zero as a section of 𝒪𝑃(1) on 𝐷+(𝑦). This shows that 𝑚 maps to
zero in Γ(𝑃, 𝒪𝑃(1)). On the other hand we claim that 𝑚≠0, so that 𝑚 gives an example
of a nonzero global section of ℰ mapping to zero in Γ(𝑃, 𝒪𝑃(1)). Assume 𝑚 = 0 to get a
contradiction. In this case there exists an element 𝑓 ∈ 𝑘[𝑢, 𝑣, 𝑠1, 𝑠2, 𝑡1, 𝑡2] such that

𝑢𝑠1𝑥 + 𝑣𝑡2𝑦 = 𝑓(𝑢𝑥 + 𝑣𝑦) mod 𝐼
Since 𝐼 is generated by homogeneous polynomials of degree 2 we may decompose 𝑓 into
its homogeneous components and take the degree 1 component. In other words we may
assume that

𝑓 = 𝑎𝑢 + 𝑏𝑣 + 𝛼1𝑠1 + 𝛼2𝑠2 + 𝛽1𝑡1 + 𝛽2𝑡2
for some 𝑎, 𝑏, 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ 𝑘. The resulting conditions are that

𝑢𝑠1 − 𝑢(𝑎𝑢 + 𝑏𝑣 + 𝛼1𝑠1 + 𝛼2𝑠2 + 𝛽1𝑡1 + 𝛽2𝑡2) ∈ 𝐼
𝑣𝑡2 − 𝑣(𝑎𝑢 + 𝑏𝑣 + 𝛼1𝑠1 + 𝛼2𝑠2 + 𝛽1𝑡1 + 𝛽2𝑡2) ∈ 𝐼

There are no terms 𝑢2, 𝑢𝑣, 𝑣2 in the generators of 𝐼 and hence we see 𝑎 = 𝑏 = 0. Thus we
get the relations

𝑢𝑠1 − 𝑢(𝛼1𝑠1 + 𝛼2𝑠2 + 𝛽1𝑡1 + 𝛽2𝑡2) ∈ 𝐼
𝑣𝑡2 − 𝑣(𝛼1𝑠1 + 𝛼2𝑠2 + 𝛽1𝑡1 + 𝛽2𝑡2) ∈ 𝐼

We may use the first generator of 𝐼 to replace any occurence of 𝑢𝑠1 by 𝑣𝑡1 + 𝑢𝑡2, the second
generator of 𝐼 to replace any occurence of 𝑣𝑠1 by −𝑢𝑠2 + 𝑣𝑡2, the third generator to remove
occurences of 𝑣𝑠2 and the third to remove occurences of 𝑢𝑡1. Then we get the relations

(1 − 𝛼1)𝑣𝑡1 + (1 − 𝛼1)𝑢𝑡2 − 𝛼2𝑢𝑠2 − 𝛽2𝑢𝑡2 = 0
(1 − 𝛼1)𝑣𝑡2 + 𝛼1𝑢𝑠2 − 𝛽1𝑣𝑡1 − 𝛽2𝑣𝑡2 = 0

This implies that 𝛼1 should be both 0 and 1 which is a contradiction as desired.

Lemma 22.20.3. Let 𝑆 be a scheme. The structure morphism 𝐏(ℰ) → 𝑆 of a projective
bundle over 𝑆 is separated.

Proof. Immediate from Lemma 22.16.9. �

Lemma 22.20.4. Let 𝑆 be a scheme. Let 𝑛 ≥ 0. Then 𝐏𝑛
𝑆 is a projective bundle over 𝑆.
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Proof. Note that

𝐏𝑛
𝐙 = Proj(𝐙[𝑇0, … , 𝑇𝑛]) = Proj

𝑆𝑝𝑒𝑐(𝐙) ( ̃𝐙[𝑇0, … , 𝑇𝑛])
where the grading on the ring 𝐙[𝑇0, … , 𝑇𝑛] is given by deg(𝑇𝑖) = 1 and the elements of 𝐙
are in degree 0. Recall that 𝐏𝑛

𝑆 is defined as 𝐏𝑛
𝐙 ×𝑆𝑝𝑒𝑐(𝐙) 𝑆. Moreover, forming the relative

homogeneous spectrum commutes with base change, see Lemma 22.16.10. For any scheme
𝑔 ∶ 𝑆 → 𝑆𝑝𝑒𝑐(𝐙) we have 𝑔∗𝒪𝑆𝑝𝑒𝑐(𝐙)[𝑇0, … , 𝑇𝑛] = 𝒪𝑆[𝑇0, … , 𝑇𝑛]. Combining the above
we see that

𝐏𝑛
𝑆 = Proj

𝑆
(𝒪𝑆[𝑇0, … , 𝑇𝑛]).

Finally, note that 𝒪𝑆[𝑇0, … , 𝑇𝑛] = Sym(𝒪⊕𝑛+1
𝑆 ). Hence we see that 𝐏𝑛

𝑆 is a projective
bundle over 𝑆. �

22.21. Blowing up

Definition 22.21.1. Let𝑋 be a scheme. Letℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of ideals, and
let 𝑍 ⊂ 𝑋 be the closed subscheme corresponding to ℐ, see Schemes, Definition 21.10.2.
The blowing up of 𝑋 along 𝑍, or the blowing up of 𝑋 in the ideal sheaf ℐ is the morphism

𝑏 ∶ Proj
𝑋 (⨁𝑛≥0

ℐ𝑛
) ⟶ 𝑋

We will see later, that blowing up turns any closed subscheme into an effective Cartier
divisor, see Divisors, Lemma 26.9.18.

Lemma 22.21.2. Let 𝑋 be a scheme. Let ℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of ideals. If
𝑋 is integral, then the blow up 𝑋′ of 𝑋 in ℐ is integral.

Proof. If 𝐴 is a domain, and 𝐼 ⊂ 𝐴 an ideal, then ⨁𝑛≥0 𝐼𝑛 is a domain. Details omitted.
�
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CHAPTER 23

Properties of Schemes

23.1. Introduction

In this chapter we introduce some absolute properties of schemes. A foundational reference
is [DG67].

23.2. Constructible sets

Constructible and locally construcible sets are introduced in Topology, Section 5.10. We
may characterize locally constructible subsets of schemes as follows.

Lemma 23.2.1. Let 𝑋 be a scheme. A subset 𝐸 of 𝑋 is locally constructible in 𝑋 if and
only if 𝐸 ∩ 𝑈 is constructible in 𝑈 for every affine open 𝑈 of 𝑋.

Proof. Assume 𝐸 is locally constructible. Then there exists an open covering 𝑋 = ⋃ 𝑈𝑖
such that 𝐸 ∩ 𝑈𝑖 is constructible in 𝑈𝑖 for each 𝑖. Let 𝑉 ⊂ 𝑋 be any affine open. We can
find a finite open affine covering 𝑉 = 𝑉1 ∪ … ∪ 𝑉𝑚 such that for each 𝑗 we have 𝑉𝑗 ⊂ 𝑈𝑖 for
some 𝑖 = 𝑖(𝑗). By Topology, Lemma 5.10.4 we see that each 𝐸 ∩ 𝑉𝑗 is construcible in 𝑉𝑗.
Since the inclusions 𝑉𝑗 → 𝑉 are quasi-compact (see Schemes, Lemma 21.19.2) we conclude
that 𝐸 ∩ 𝑉 is constructible in 𝑉 by Topology, Lemma 5.10.5. The converse implication is
immediate. �

Lemma 23.2.2. Let 𝑋 be a quasi-separated scheme. The intersection of any two quasi-
compact opens of 𝑋 is a quasi-compact open of 𝑋. Every quasi-compact open of 𝑋 is
retrocompact in 𝑋.

Proof. If 𝑈 and 𝑉 are quasi-compact open then 𝑈∩𝑉 = Δ−1(𝑈×𝑉), where Δ ∶ 𝑋 → 𝑋×𝑋
is the diagonal. As 𝑋 is quasi-separated we see that Δ is quasi-compact. Hence we see that
𝑈 ∩ 𝑉 is quasi-compact as 𝑈 × 𝑉 is quasi-compact (details omitted; use Schemes, Lemma
21.17.4 to see 𝑈 × 𝑉 is a finite union of affines). The second assertion follows from the first
and the definitions. �

Lemma 23.2.3. Let 𝑋 be a quasi-compact and quasi-separated scheme. Any locally con-
structible subset of 𝑋 is constructible.

Proof. As 𝑋 is quasi-compact we can choose a finite affine open covering 𝑋 = 𝑉1∪…∪𝑉𝑚.
As𝑋 is quasi-separated each𝑉𝑖 is retrocompact in𝑋 by Lemma 23.2.2. Hence by Topology,
Lemma 5.10.5 we see that 𝐸 ⊂ 𝑋 is constructible in 𝑋 if and only if 𝐸 ∩ 𝑉𝑗 is constructible
in 𝑉𝑗. Thus we win by Lemma 23.2.1. �

23.3. Integral, irreducible, and reduced schemes

Definition 23.3.1. Let 𝑋 be a scheme. We say 𝑋 is integral if it is nonempty and for every
nonempty affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 the ring 𝑅 is an integral domain.

Lemma 23.3.2. Let 𝑋 be a scheme. The following are equivalent.
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(1) The scheme 𝑋 is reduced, see Schemes, Definition 21.12.1.
(2) There exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each Γ(𝑈𝑖, 𝒪𝑋) is re-

duced.
(3) For every affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is reduced.
(4) For every open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is reduced.

Proof. See Schemes, Lemmas 21.12.2 and 21.12.3. �

Lemma 23.3.3. Let 𝑋 be a scheme. The following are equivalent.
(1) The scheme 𝑋 is irreducible.
(2) There exists an affine open covering 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 such that 𝐼 is not empty, 𝑈𝑖 is

irreducible for all 𝑖 ∈ 𝐼, and 𝑈𝑖 ∩ 𝑈𝑗≠∅ for all 𝑖, 𝑗 ∈ 𝐼.
(3) The scheme 𝑋 is nonempty and every nonempty affine open 𝑈 ⊂ 𝑋 is irreducible.

Proof. Assume (1). By Schemes, Lemma 21.11.1 we see that 𝑋 has a unique generic
point 𝜂. Then 𝑋 = {𝜂}. Hence 𝜂 is an element of every nonempty affine open 𝑈 ⊂ 𝑋. This
implies that 𝑈 = {𝜂} and that any two nonempty affines meet. Thus (1) implies both (2)
and (3).
Assume (2). Suppose 𝑋 = 𝑍1 ∪ 𝑍2 is a union of two closed subsets. For every 𝑖 we see
that either 𝑈𝑖 ⊂ 𝑍1 or 𝑈𝑖 ⊂ 𝑍2. Pick some 𝑖 ∈ 𝐼 and assume 𝑈𝑖 ⊂ 𝑍1 (possibly after
renumbering 𝑍1, 𝑍2). For any 𝑗 ∈ 𝐼 the open subset 𝑈𝑖 ∩ 𝑈𝑗 is dense in 𝑈𝑗 and contained
in the closed subset 𝑍1 ∩ 𝑈𝑗. We conclude that also 𝑈𝑗 ⊂ 𝑍1. Thus 𝑋 = 𝑍1 as desired.

Assume (3). Choose an affine open covering 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖. We may assume that each 𝑈𝑖
is nonempty. Since 𝑋 is nonempty we see that 𝐼 is not empty. By assumption each 𝑈𝑖 is
irreducible. Suppose 𝑈𝑖∩𝑈𝑗 = ∅ for some pair 𝑖, 𝑗 ∈ 𝐼. Then the open 𝑈𝑖 ∐ 𝑈𝑗 = 𝑈𝑖∪𝑈𝑗 is
affine, see Schemes, Lemma 21.6.8. Hence it is irreducible by assumption which is absurd.
We conclude that (3) implies (2). The lemma is proved. �

Lemma 23.3.4. A scheme 𝑋 is integral if and only if it is reduced and irreducible.

Proof. If 𝑋 is irreducible, then every affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 is irreducible. If 𝑋
is reduced, then 𝑅 is reduced, by Lemma 23.3.2 above. Hence 𝑅 is reduced and (0) is a
prime ideal, i.e., 𝑅 is an integral domain.
If 𝑋 is integral, then for every nonempty affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 the ring 𝑅 is
reduced and hence 𝑋 is reduced by Lemma 23.3.2. Moreover, every nonempty affine open
is irreducible. Hence 𝑋 is irreducible, see Lemma 23.3.3. �

Example 23.3.5. We give an example of an affine scheme 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) which is con-
nected, all of whose local rings are domains, but which is not integral. Connectedness for
𝐴 means 𝐴 has no nontrivial idempotents, see Algebra, Lemma 7.18.3. Integrality means
𝐴 is a domain (see above). Local rings being domains means that whenever 𝑓𝑔 = 0 in 𝐴,
every point of 𝑋 has a neighborhood where either 𝑓 or 𝑔 vanishes.
Roughly speaking, the construction is as follows: let 𝑋0 be the cross (the union of coor-
dinate axes) on the affine plane. Then let 𝑋1 be the (reduced) full preimage of 𝑋0 on the
blow-up of the plane (𝑋1 has three rational components forming a chain). Then blow up
the resulting surface at the two singularities of 𝑋1, and let 𝑋2 be the reduced preimage of
𝑋1 (which has five rational components), etc. Take 𝑋 to be the inverse limit. The only
problem with this construction is that blow-ups glue in a projective line, so 𝑋1 is not affine.
Let us correct this by glueing in an affine line instead (so our scheme will be an open subset
in what was described above).
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Here is a completely algebraic construction: For every 𝑘 ≥ 0, let 𝐴𝑘 be the following
ring: its elements are collections of polynomials 𝑝𝑖 ∈ 𝐂[𝑥] where 𝑖 = 0, … , 2𝑘 such that
𝑝𝑖(1) = 𝑝𝑖+1(0). Set 𝑋𝑘 = 𝑆𝑝𝑒𝑐(𝐴𝑘). Observe that 𝑋𝑘 is a union of 2𝑘 + 1 affine lines that
meet transversally in a chain. Define a ring homomorphism 𝐴𝑘 → 𝐴𝑘+1 by

(𝑝0, … , 𝑝2𝑘) ⟼ (𝑝0, 𝑝0(1), 𝑝1, 𝑝1(1), … , 𝑝2𝑘),

in other words, every other polynomial is constant. This identifies 𝐴𝑘 with a subring of
𝐴𝑘+1. Let 𝐴 be the direct limit of 𝐴𝑘 (basically, their union). Set 𝑋 = 𝑆𝑝𝑒𝑐(𝐴). For every
𝑘, we have a natural embedding 𝐴𝑘 → 𝐴, that is, a map 𝑋 → 𝑋𝑘. Each 𝐴𝑘 is connected
but not integral; this implies that 𝐴 is connected but not integral. It remains to show that
the local rings of 𝐴 are domains.

Take 𝑓, 𝑔 ∈ 𝐴 with 𝑓𝑔 = 0 and 𝑥 ∈ 𝑋. Let us construct a neighborhood of 𝑥 on which
one of 𝑓 and 𝑔 vanishes. Choose 𝑘 such that 𝑓, 𝑔 ∈ 𝐴𝑘−1 (note the 𝑘 − 1 index). Let 𝑦 be
the image of 𝑥 in 𝑋𝑘. It suffices to prove that 𝑦 has a neighborhood on which either 𝑓 or
𝑔 viewed as sections of 𝒪𝑋𝑘

vanishes. If 𝑦 is a smooth point of 𝑋𝑘, that is, it lies on only
one of the 2𝑘 + 1 lines, this is obvious. We can therefore assume that 𝑦 is one of the 2𝑘

singular points, so two components of 𝑋𝑘 pass through 𝑦. However, on one of these two
components (the one with odd index), both 𝑓 and 𝑔 are constant, since they are pullbacks
of functions on 𝑋𝑘−1. Since 𝑓𝑔 = 0 everywhere, either 𝑓 or 𝑔 (say, 𝑓) vanishes on the other
component. This implies that 𝑓 vanishes on both components, as required.

23.4. Types of schemes defined by properties of rings

In this section we study what properties of rings allow one to define local properties of
schemes.

Definition 23.4.1. Let 𝑃 be a property of rings. We say that 𝑃 is local if the following hold:
(1) For any ring 𝑅, and any 𝑓 ∈ 𝑅 we have 𝑃(𝑅) ⇒ 𝑃(𝑅𝑓).
(2) For any ring 𝑅, and 𝑓𝑖 ∈ 𝑅 such that (𝑓1, … , 𝑓𝑛) = 𝑅 then ∀𝑖, 𝑃(𝑅𝑓𝑖

) ⇒ 𝑃(𝑅).

Definition 23.4.2. Let 𝑃 be a property of rings. Let 𝑋 be a scheme. We say 𝑋 is locally
𝑃 if for any 𝑥 ∈ 𝑋 there exists an affine open neighbourhood 𝑈 of 𝑥 in 𝑋 such that 𝒪𝑋(𝑈)
has property 𝑃.

This is only a good notion if the property is local. Even if 𝑃 is a local property we will not
automatically use this definition to say that a scheme is ``locally 𝑃'' unless we also explicitly
state the definition elsewhere.

Lemma 23.4.3. Let 𝑋 be a scheme. Let 𝑃 be a local property of rings. The following are
equivalent:

(1) The scheme 𝑋 is locally 𝑃.
(2) For every affine open 𝑈 ⊂ 𝑋 the property 𝑃(𝒪𝑋(𝑈)) holds.
(3) There exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each 𝒪𝑋(𝑈𝑖) satisfies 𝑃.
(4) There exists an open covering 𝑋 = ⋃ 𝑋𝑗 such that each open subscheme 𝑋𝑗 is

locally 𝑃.
Moreover, if 𝑋 is locally 𝑃 then every open subscheme is locally 𝑃.

Proof. Of course (1) ⇔ (3) and (2) ⇒ (1). If (3) ⇒ (2), then the final statement of the
lemma holds and it follows easily that (4) is also equivalent to (1). Thus we show (3) ⇒
(2).
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Let 𝑋 = ⋃ 𝑈𝑖 be an affine open covering, say 𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝑅𝑖). Assume 𝑃(𝑅𝑖). Let
𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 be an arbitrary affine open. By Schemes, Lemma 21.11.6 there ex-
ists a standard covering of 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) by standard opens 𝐷(𝑓𝑗) such that each ring 𝑅𝑓𝑗
is a principal localization of one of the rings 𝑅𝑖. By Definition 23.4.1 (1) we get 𝑃(𝑅𝑓𝑗

).
Whereupon 𝑃(𝑅) by Definition 23.4.1 (2). �

Here is a sample application.

Lemma 23.4.4. Let 𝑋 be a scheme. Then 𝑋 is reduced if and only if 𝑋 is ``locally reduced''
in the sense of Definition 23.4.2.

Proof. This is clear from Lemma 23.3.2. �

Lemma 23.4.5. The following properties of a ring 𝑅 are local.
(1) (Cohen-Macauley.) The ring 𝑅 is Noetherian and CM, see Algebra, Definition

7.96.6.
(2) (Regular.) The ring 𝑅 is Noetherian and regular, see Algebra, Definition 7.102.6.
(3) (Absolutely Noetherian.) The ring 𝑅 is of finite type over 𝑍.
(4) Add more here as needed.1

Proof. Omitted. �

23.5. Noetherian schemes

Recall that a ring 𝑅 is Noetherian if it satsifies the ascending chain condition of ideals.
Equivalently every ideal of 𝑅 is finitely generated.

Definition 23.5.1. Let 𝑋 be a scheme.
(1) We say 𝑋 is locally Noetherian if every 𝑥 ∈ 𝑋 has an affine open neighbourhood

𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 such that the ring 𝑅 is Noetherian.
(2) We say 𝑋 is Noetherian if 𝑋 is Noetherian and quasi-compact.

Here is the standard result characterizing locally Noetherian schemes.

Lemma 23.5.2. Let 𝑋 be a scheme. The following are equivalent:
(1) The scheme 𝑋 is locally Noetherian.
(2) For every affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is Noetherian.
(3) There exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each 𝒪𝑋(𝑈𝑖) is Noe-

therian.
(4) There exists an open covering 𝑋 = ⋃ 𝑋𝑗 such that each open subscheme 𝑋𝑗 is

locally Noetherian.
Moreover, if 𝑋 is locally Noetherian then every open subscheme is locally Noetherian.

Proof. To show this it suffices to show that beingNoetherian is a local property of rings, see
Lemma 23.4.3. Any localization of a Noetherian ring is Noetherian, see Algebra, Lemma
7.28.1. By Algebra, Lemma 7.21.2 we see the second property to Definition 23.4.1. �

Lemma 23.5.3. Any immersion 𝑍 → 𝑋 with 𝑋 locally Noetherian is quasi-compact.

1But we only list those properties here which we have not already dealt with separately somewhere else.
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Proof. A closed immersion is clearly quasi-compact. A composition of quasi-compact
morphisms is quasi-compact, see Topology, Lemma 5.9.2. Hence it suffices to show that
an open immersion into a locally Noetherian scheme is quasi-compact. Using Schemes,
Lemma 21.19.2 we reduce to the case where 𝑋 is affine. Any open subset of the spectrum
of a Noetherian ring is quasi-compact (for example combine Algebra, Lemma 7.28.5 and
Topology, Lemmas 5.6.2 and 5.9.9). �

Lemma 23.5.4. A locally Noetherian scheme is quasi-separated.

Proof. By Schemes, Lemma 21.21.7 we have to show that the intersection 𝑈 ∩ 𝑉 of two
affine opens of 𝑋 is quasi-compact. This follows from Lemma 23.5.3 above on considering
the open immersion 𝑈 ∩ 𝑉 → 𝑈 for example. (But really it is just because any open of the
spectrum of a Noetherian ring is quasi-compact.) �

Lemma 23.5.5. A (locally) Noetherian scheme has a (locally) Noetherian underlying topo-
logical space, see Topology, Definition 5.6.1.

Proof. This is because a Noetherian scheme is a finite union of spectra of Noetherian rings
and Algebra, Lemma 7.28.5 and Topology, Lemma 5.6.4. �

Lemma 23.5.6. Anymorphism of schemes 𝑓 ∶ 𝑋 → 𝑌with𝑋Noetherian is quasi-compact.

Proof. Use Lemma 23.5.5 and use that any subset of a Noetherian topological space is
quasi-compact (see Topology, Lemmas Lemmas 5.6.2 and 5.9.9). �

Lemma 23.5.7. Any locally closed subscheme of a (locally) Noetherian scheme is (locally)
Noetherian.

Proof. Omitted. Hint: Any quotient, and any localization of a Noetherian ring is Noether-
ian. For the Noetherian case use again that any subset of a Noetherian space is a Noetherian
space (with induced topology). �

Here is a fun lemma. It says that every locally Noetherian scheme has plenty of closed
points (at least one in every closed subset).

Lemma 23.5.8. Any locally Noetherian scheme has a closed point. Any closed subset
of a locally Noetherian scheme has a closed point. Equivalently, any point of a locally
Noetherian scheme specializes to a closed point.

Proof. The second assertion follows from the first (using Schemes, Lemma 21.12.4 and
Lemma 23.5.7). Consider any nonempty affine open 𝑈 ⊂ 𝑋. Let 𝑥 ∈ 𝑈 be a closed point.
If 𝑥 is a closed point of 𝑋 then we are done. If not, let 𝑦 ∈ {𝑥} be a specialization of
𝑥. Note that 𝑦 ∈ 𝑋 ⧵ 𝑈. Consider the local ring 𝑅 = 𝒪𝑋,𝑦. This is a Noetherian local
ring. Denote 𝑉 ⊂ 𝑆𝑝𝑒𝑐(𝑅) the inverse image of 𝑈 in 𝑆𝑝𝑒𝑐(𝑅) by the canonical morphism
𝑆𝑝𝑒𝑐(𝑅) → 𝑋 (see Schemes, Section 21.13.) By construction 𝑉 is a singleton with unique
point corresponding to 𝑥 (use Schemes, Lemma 21.13.2). Say 𝑉 = {𝔮}. Consider the
Noetherian local domain 𝑅/𝔮. By Algebra, Lemma 7.58.1 we see that dim(𝑅/𝔮) = 1. In
other words, we see that 𝑦 is an immediate specialization of 𝑥 (see Topology, Definition
5.16.1). In other words, any point 𝑦≠𝑥 such that 𝑥  𝑦 is an immediate specialization of
𝑥. Clearly each of these points is a closed point, and we win. �

Lemma 23.5.9. Let 𝑋 be a locally Noetherian scheme. Let 𝑥′  𝑥 be a specialization of
points of 𝑋. Then
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(1) there exists a discrete valuation ring 𝑅 and a morphism 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑅) → 𝑋 such
that the generic point 𝜂 of 𝑆𝑝𝑒𝑐(𝑅) maps to 𝑥′ and the special point maps to 𝑥,
and

(2) given a finitely generated field extension 𝜅(𝑥′) ⊂ 𝐾 we may arrange it so that the
extension 𝜅(𝑥′) ⊂ 𝜅(𝜂) induced by 𝑓 is isomorphic to the given one.

Proof. Let 𝑥′  𝑥 be a specialization in 𝑋, and let 𝜅(𝑥′) ⊂ 𝐾 be a finitely generated
extension of fields. By Schemes, Lemma 21.13.2 and the discussion following Schemes,
Lemma 21.13.3 this leads to ring maps 𝒪𝑋,𝑥 → 𝜅(𝑥′) → 𝐾. Let 𝑅 ⊂ 𝐾 be any discrete
valuation ring whose field of fractions is 𝐾 and which dominates the image of 𝒪𝑋,𝑥 →
𝐾, see Algebra, Lemma 7.110.11. The ring map 𝒪𝑋,𝑥 → 𝑅 induces the morphism 𝑓 ∶
𝑆𝑝𝑒𝑐(𝑅) → 𝑋, see Schemes, Lemma 21.13.1. This morphism has all the desired properties
by construction. �

23.6. Jacobson schemes

Recall that a space is said to be Jacobson if the closed points are dense in every closed
subset, see Topology, Section 5.13.

Definition 23.6.1. A scheme 𝑆 is said to be Jacobson if its underlying topological space is
Jacobson.

Recall that a ring 𝑅 is Jacobson if every radical ideal of 𝑅 is the intersection of maximal
ideals, see Algebra, Definition 7.31.1.

Lemma 23.6.2. An affine scheme 𝑆𝑝𝑒𝑐(𝑅) is Jacobson if and only if the ring 𝑅 is Jacobson.

Proof. This is Algebra, Lemma 7.31.4. �

Here is the standard result characterizing Jacobson schemes. Intuitively it claims that Ja-
cobson ⇔ locally Jacobson.

Lemma 23.6.3. Let 𝑋 be a scheme. The following are equivalent:
(1) The scheme 𝑋 is Jacobson.
(2) The scheme 𝑋 is ``locally Jacobson'' in the sense of Definition 23.4.2.
(3) For every affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is Jacobson.
(4) There exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each 𝒪𝑋(𝑈𝑖) is Jacob-

son.
(5) There exists an open covering 𝑋 = ⋃ 𝑋𝑗 such that each open subscheme 𝑋𝑗 is

Jacobson.
Moreover, if 𝑋 is Jacobson then every open subscheme is Jacobson.

Proof. The final assertion of the lemma holds by Topology, Lemma 5.13.5. The equiv-
alence of (5) and (1) is Topology, Lemma 5.13.4. Hence, using Lemma 23.6.2, we see
that (1) ⇔ (2). To finish proving the lemma it suffices to show that ``Jacobson'' is a local
property of rings, see Lemma 23.4.3. Any localization of a Jacobson ring at an element is
Jacobson, see Algebra, Lemma 7.31.14. Suppose 𝑅 is a ring, 𝑓1, … , 𝑓𝑛 ∈ 𝑅 generate the
unit ideal and each 𝑅𝑓𝑖

is Jacobson. Then we see that 𝑆𝑝𝑒𝑐(𝑅) = ⋃ 𝐷(𝑓𝑖) is a union of
open subsets which are all Jacobson, and hence 𝑆𝑝𝑒𝑐(𝑅) is Jacobson by Topology, Lemma
5.13.4 again. This proves the second property of Definition 23.4.1. �

Many schemes used commonly in algebraic geometry are Jacobson, seeMorphisms, Lemma
24.15.10. We mention here the following interesting case.
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Lemma 23.6.4. Let 𝑅 be a Noetherian local ring with maximal ideal 𝔪. In this case the
scheme 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) ⧵ {𝔪} is Jacobson.

Proof. Since 𝑆𝑝𝑒𝑐(𝑅) is a Noetherian scheme, hence 𝑆 is a Noetherian scheme (Lemma
23.5.7). Hence 𝑆 is a sober, Noetherian topological space (use Schemes, Lemma 21.11.1).
Assume 𝑆 is not Jacobson to get a contradiction. By Topology, Lemma 5.13.3 there exists
some non-closed point 𝜉 ∈ 𝑆 such that {𝜉} is locally closed. This corresponds to a prime
𝔭 ⊂ 𝑅 such that (1) there exists a prime 𝔮, 𝔭 ⊂ 𝔮 ⊂ 𝔪 with both inclusions strict, and (2)
{𝔭} is open in 𝑆𝑝𝑒𝑐(𝑅/𝔭). This is impossible by Algebra, Lemma 7.58.1. �

23.7. Normal schemes

Recall that a ring 𝑅 is said to be normal if all its local rings are normal domains, see Algebra,
Definition 7.33.10. A normal domain is a domain which is integrally closed in its field of
fractions, see Algebra, Definition 7.33.1. Thus it makes sense to define a normal scheme
as follows.

Definition 23.7.1. A scheme 𝑋 is normal if and only if for all 𝑥 ∈ 𝑋 the local ring 𝒪𝑋,𝑥 is
a normal domain.

This seems to be the definition used in EGA, see [DG67, 0, 4.1.4]. Suppose 𝑋 = 𝑆𝑝𝑒𝑐(𝐴),
and𝐴 is reduced. Then saying that𝑋 is normal is not equivalent to saying that𝐴 is integrally
closed in its total ring of fractions. However, if 𝐴 is Noetherian then this is the case (see
Algebra, Lemma 7.33.14).

Lemma 23.7.2. Let 𝑋 be a scheme. The following are equivalent:
(1) The scheme 𝑋 is normal.
(2) For every affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is normal.
(3) There exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each 𝒪𝑋(𝑈𝑖) is normal.
(4) There exists an open covering 𝑋 = ⋃ 𝑋𝑗 such that each open subscheme 𝑋𝑗 is

normal.
Moreover, if 𝑋 is normal then every open subscheme is normal.

Proof. This is clear from the definitions. �

Lemma 23.7.3. A normal scheme is reduced.

Proof. Immediate from the defintions. �

Lemma 23.7.4. Let 𝑋 be an integral scheme. Then 𝑋 is normal if and only if for every
affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is a normal domain.

Proof. This follows from Algebra, Lemma 7.33.9. �

Lemma 23.7.5. Let 𝑋 be a scheme with a finite number of irreducible components. The
following are equivalent:

(1) 𝑋 is normal, and
(2) 𝑋 is a finite disjoint union of normal integral schemes.

Proof. It is immediate from the definitions that (2) implies (1). Let 𝑋 be a normal scheme
with a finite number of irreducible components. If 𝑋 is affine then 𝑋 satisfies (2) by Alge-
bra, Lemma 7.33.14. For a general 𝑋, let 𝑋 = ⋃ 𝑋𝑖 be an affine open covering. Note that
also each 𝑋𝑖 has but a finite number of irreducible components, and the lemma holds for
each 𝑋𝑖. Let 𝑇 ⊂ 𝑋 be an irreducible component. By the affine case each intersection 𝑇∩𝑋𝑖

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02IM
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=033I
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=033J
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=033K
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=033L
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0357


1266 23. PROPERTIES OF SCHEMES

is open in 𝑋𝑖 and an integral normal scheme. Hence 𝑇 ⊂ 𝑋 is open, and an integral normal
scheme. This proves that 𝑋 is the disjoint union of its irreducible components, which are
integral normal schemes. There are only finitely many by assumption. �

Lemma 23.7.6. Let 𝑋 be a Noetherian scheme. The following are equivalent:
(1) 𝑋 is normal, and
(2) 𝑋 is a finite disjoint union of normal integral schemes.

Proof. This is a special case of Lemma 23.7.5 because a Noetherian scheme has a Noe-
therian underlying topological space (Lemma 23.5.5 and Topology, Lemma 5.6.2. �

Lemma 23.7.7. Let 𝑋 be a locally Noetherian normal scheme. The following are equiva-
lent:

(1) 𝑋 is normal, and
(2) 𝑋 is a disjoint union of integral normal schemes.

Proof. Omitted. Hint: This is purely topological from Lemma 23.7.6. �

Remark 23.7.8. Let 𝑋 be a normal scheme. If 𝑋 is locally Noetherian then we see that 𝑋
is integral if and only if 𝑋 is connected, see Lemma 23.7.7. But there exists a connected
affine scheme 𝑋 such that 𝒪𝑋,𝑥 is a domain for all 𝑥 ∈ 𝑋, but 𝑋 is not irreducible, see
Example 23.3.5. This example is even a normal scheme (proof omitted), so beware!
Lemma 23.7.9. Let 𝑋 be an integral normal scheme. Then Γ(𝑋, 𝒪𝑋) is a normal domain.
Proof. Set 𝑅 = Γ(𝑋, 𝒪𝑋). It is clear that 𝑅 is a domain. Suppose 𝑓 = 𝑎/𝑏 is an element of
its fraction field which is integral over 𝑅. Say we have 𝑓𝑑 + ∑𝑖=1,…,𝑑 𝑎𝑖𝑓𝑖 = 0 with 𝑎𝑖 ∈ 𝑅.
Let 𝑈 ⊂ 𝑋 be affine open. Since 𝑏 ∈ 𝑅 is not zero and since 𝑋 is integral we see that also
𝑏|𝑈 ∈ 𝒪𝑋(𝑈) is not zero. Hence 𝑎/𝑏 is an element of the fraction field of 𝒪𝑋(𝑈) which is
integral over 𝒪𝑋(𝑈) (because we can use the same polynomial 𝑓𝑑 + ∑𝑖=1,…,𝑑 𝑎𝑖|𝑈𝑓𝑖 = 0
on 𝑈). Since 𝒪𝑋(𝑈) is a normal domain (Lemma 23.7.2), we see that 𝑓𝑈 = (𝑎|𝑈)/(𝑏|𝑈) ∈
𝒪𝑋(𝑈). It is easy to see that 𝑓𝑈|𝑉 = 𝑓𝑉 whenever 𝑉 ⊂ 𝑈 ⊂ 𝑋 are affine open. Hence the
local sections 𝑓𝑈 glue to a global section 𝑓 as desired. �

23.8. Cohen-Macaulay schemes

Recall, see Algebra, Definition 7.96.1, that a local Noetherian ring (𝑅, 𝔪) is said to be
Cohen-Macaulay if depth𝔪(𝑅) = dim(𝑅). Recall that a Noetherian ring 𝑅 is said to be
Cohen-Macaulay if every local ring 𝑅𝔭 of 𝑅 is Cohen-Macaulay, see Algebra, Definition
7.96.6.
Definition 23.8.1. Let 𝑋 be a scheme. We say 𝑋 is Cohen-Macaulay if for every 𝑥 ∈ 𝑋
there exists an affine open neighbourhood𝑈 ⊂ 𝑋 of 𝑥 such that the ring𝒪𝑋(𝑈) is Noetherian
and Cohen-Macaulay.
Lemma 23.8.2. Let 𝑋 be a scheme. The following are equivalent:

(1) 𝑋 is Cohen-Macaulay,
(2) 𝑋 is locally Noetherian and all of its local rings are Cohen-Macaulay, and
(3) 𝑋 is locally Noetherian and for any closed point 𝑥 ∈ 𝑋 the local ring 𝒪𝑋,𝑥 is

Cohen-Macaulay.
Proof. Algebra, Lemma 7.96.5 says that the localization of a Cohen-Macaulay local ring
is Cohen-Macaulay. The lemma follows by combining this with Lemma 23.5.2, with the
existence of closed points on locally Noetherian schemes (Lemma 23.5.8), and the defini-
tions. �
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Lemma 23.8.3. Let 𝑋 be a scheme. The following are equivalent:
(1) The scheme 𝑋 is Cohen-Macaulay.
(2) For every affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is Noetherian and Cohen-Macaulay.
(3) There exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each 𝒪𝑋(𝑈𝑖) is Noe-

therian and Cohen-Macaulay.
(4) There exists an open covering 𝑋 = ⋃ 𝑋𝑗 such that each open subscheme 𝑋𝑗 is

Cohen-Macaulay.
Moreover, if 𝑋 is Cohen-Macaulay then every open subscheme is Cohen-Macaulay.

Proof. Combine Lemmas 23.5.2 and 23.8.2. �

More information on Cohen-Macaulay schemes and depth can be found in Coherent, Sec-
tion 25.13.

23.9. Regular schemes

Recall, see Algebra, Definition 7.57.9, that a local Noetherian ring (𝑅, 𝔪) is said to be
regular if 𝔪 can be generated by dim(𝑅) elements. Recall that a Noetherian ring 𝑅 is said
to be regular if every local ring 𝑅𝔭 of 𝑅 is regular, see Algebra, Definition 7.102.6.

Definition 23.9.1. Let 𝑋 be a scheme. We say 𝑋 is regular, or nonsingular if for every
𝑥 ∈ 𝑋 there exists an affine open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such that the ring 𝒪𝑋(𝑈) is
Noetherian and regular.

Lemma 23.9.2. Let 𝑋 be a scheme. The following are equivalent:
(1) 𝑋 is regular,
(2) 𝑋 is locally Noetherian and all of its local rings are regular, and
(3) 𝑋 is locally Noetherian and for any closed point 𝑥 ∈ 𝑋 the local ring 𝒪𝑋,𝑥 is

regular.

Proof. By the discussion in Algebra preceding Algebra, Definition 7.102.6 we know that
the localization of a regular local ring is regular. The lemma follows by combining this with
Lemma 23.5.2, with the existence of closed points on locally Noetherian schemes (Lemma
23.5.8), and the definitions. �

Lemma 23.9.3. Let 𝑋 be a scheme. The following are equivalent:
(1) The scheme 𝑋 is regular.
(2) For every affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is Noetherian and regular.
(3) There exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each 𝒪𝑋(𝑈𝑖) is Noe-

therian and regular.
(4) There exists an open covering 𝑋 = ⋃ 𝑋𝑗 such that each open subscheme 𝑋𝑗 is

regular.
Moreover, if 𝑋 is regular then every open subscheme is regular.

Proof. Combine Lemmas 23.5.2 and 23.9.2. �

Lemma 23.9.4. A regular scheme is normal.

Proof. See Algebra, Lemma 7.140.5. �
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23.10. Dimension

The dimension of a scheme is just the dimension of its underlying topological space.

Definition 23.10.1. Let 𝑋 be a scheme.
(1) The dimension of 𝑋 is just the dimension of 𝑋 as a topological spaces, see Topol-

ogy, Definition 5.7.1.
(2) For 𝑥 ∈ 𝑋 we denote dim𝑥(𝑋) the dimension of the underlying topological space

of 𝑋 at 𝑥 as in Topology, Definition 5.7.1. We say dim𝑥(𝑋) is the dimension of
𝑋 at 𝑥.

As a scheme has a sober underlying topological space (Schemes, Lemma 21.11.1) we may
compute the dimension of 𝑋 as the supremum of the lengths 𝑛 of chains

𝑇0 ⊂ 𝑇1 ⊂ … ⊂ 𝑇𝑛

of irreducible closed subsets of 𝑋, or as the supremum of the lengths 𝑛 of chains of spe-
cializations

𝜉𝑛  𝜉𝑛−1  … 𝜉0
of points of 𝑋.

Lemma 23.10.2. Let 𝑋 be a scheme. The following are equal
(1) The dimension of 𝑋.
(2) The supremum of the dimensions of the local rings of 𝑋.
(3) The supremum of dim𝑥(𝑋) for 𝑥 ∈ 𝑋.

Proof. Note that given a chain of specializations

𝜉𝑛  𝜉𝑛−1  … 𝜉0

of points of 𝑋 all of the points 𝜉𝑖 correspond to prime ideals of the local ring of 𝑋 at 𝜉0
by Schemes, Lemma 21.13.2. Hence we see that the dimension of 𝑋 is the supremum
of the dimensions of its local rings. In particular dim𝑥(𝑋) ≥ dim(𝒪𝑋,𝑥) as dim𝑥(𝑋) is
the minimum of the dimensions of open neighbourhoods of 𝑥. Thus sup𝑥∈𝑋 dim𝑥(𝑋) ≥
dim(𝑋). On the other hand, it is clear that sup𝑥∈𝑋 dim𝑥(𝑋) ≤ dim(𝑋) as dim(𝑈) ≤ dim(𝑋)
for any open subset of 𝑋. �

23.11. Catenary schemes

Recall that a topological space 𝑋 is called catenary if for every pair of irreducible closed
subsets 𝑇 ⊂ 𝑇′ there exist a maximal chain of irreducible closed subsets

𝑇 = 𝑇0 ⊂ 𝑇1 ⊂ … ⊂ 𝑇𝑒 = 𝑇′

and every such chain has the same length. See Topology, Definition 5.8.1.

Definition 23.11.1. Let 𝑆 be a scheme. We say 𝑆 is catenary if the underlying topological
space of 𝑆 is catenary.

Recall that a ring 𝐴 is called catenary if for any pair of prime ideals 𝔭 ⊂ 𝔮 there exists a
maximal chain of primes

𝔭 = 𝔭0 ⊂ … ⊂ 𝔭𝑒 = 𝔮
and all of these have the same length. See Algebra, Definition 7.97.1.

Lemma 23.11.2. Let 𝑆 be a scheme. The following are equivalent
(1) 𝑆 is catenary,
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(2) there exists an open covering of 𝑆 all of whose members are catenary schemes,
(3) for every affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑆 the ring 𝑅 is catenary, and
(4) there exists an affine open covering 𝑆 = ⋃ 𝑈𝑖 such that each 𝑈𝑖 is the spectrum

of a catenary ring.
Moreover, in this case any locally closed subscheme of 𝑆 is catenary as well.

Proof. Combine Topology, Lemma 5.8.2, and Algebra, Lemma 7.97.2. �

Lemma 23.11.3. Let 𝑆 be a locally Noetherian scheme. The following are equivalent:
(1) 𝑆 is catenary, and
(2) locally in the Zariski topology there exists a dimension function on 𝑆 (see Topol-

ogy, Definition 5.16.1).

Proof. This follows from Topology, Lemmas 5.8.2, 5.16.2, and 5.16.4, Schemes, Lemma
21.11.1 and finally Lemma 23.5.5. �

Lemma 23.11.4. Let 𝑋 be a scheme. Let 𝑌 ⊂ 𝑋 be an irreducible closed subset. Let 𝜉 ∈ 𝑌
be the generic point. Then

codim(𝑌, 𝑋) = dim(𝒪𝑋,𝜉)
where the codimension is as defined in Topology, Definition 5.8.3.

Proof. By Topology, Lemma 5.8.4 we may replace 𝑋 by an affine open neighbourhood of
𝜉. In this case the result follows easily from Algebra, Lemma 7.23.2. �

In particular the dimension of a scheme is the supremum of the dimensions of all of its
local rings. It turns out that we can use this lemma to characterize a catenary scheme as a
scheme all of whose local rings are catenary.

Lemma 23.11.5. Let 𝑋 be a scheme. The following are equivalent
(1) 𝑋 is catenary, and
(2) for any 𝑥 ∈ 𝑋 the local ring 𝒪𝑋,𝑥 is catenary.

Proof. Assume 𝑋 is catenary. Let 𝑥 ∈ 𝑋. By Lemma 23.11.2 we may replace 𝑋 by an
affine open neighbourhood of 𝑥, and then Γ(𝑋, 𝒪𝑋) is a catenary ring. By Algebra, Lemma
7.97.3 any localization of a catenary ring is catenary. Whence 𝒪𝑋,𝑥 is catenary.

Conversely assume all local rings of 𝑋 are catenary. Let 𝑌 ⊂ 𝑌′ be an inclusion of irre-
ducible closed subsets of 𝑋. Let 𝜉 ∈ 𝑌 be the generic point. Let 𝔭 ⊂ 𝒪𝑋,𝜉 be the prime cor-
responding to the generic point of 𝑌′, see Schemes, Lemma 21.13.2. By that same lemma
the irreducible closed subsets of 𝑋 in between 𝑌 and 𝑌′ correspond to primes 𝔮 ⊂ 𝒪𝑋,𝜉 with
𝔭 ⊂ 𝔮 ⊂ 𝔪𝜉. Hence we see all maximal chains of these are finite and have the same length
as 𝒪𝑋,𝜉 is a catenary ring. �

23.12. Serre's conditions

Here are two technical notions that are often useful. See also Coherent, Section 25.13.

Definition 23.12.1. Let 𝑋 be a locally Noetherian scheme. Let 𝑘 ≥ 0.
(1) We say 𝑋 is regular in codimension 𝑘, or we say 𝑋 has property (𝑅𝑘) if for every

𝑥 ∈ 𝑋 we have

dim(𝒪𝑋,𝑥) ≤ 𝑘 ⇒ 𝒪𝑋,𝑥 is regular

(2) We say𝑋 has property (𝑆𝑘) if for every 𝑥 ∈ 𝑋we have depth(𝒪𝑋,𝑥) ≥ min(𝑘, dim(𝒪𝑋,𝑥)).
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The phrase ``regular in codimension 𝑘'' makes sense since we have seen in Section 23.11
that if 𝑌 ⊂ 𝑋 is irreducible closed with generic point 𝑥, then dim(𝒪𝑋,𝑥) = codim(𝑌, 𝑋).
For example condition (𝑅0) means that for every generic point 𝜂 ∈ 𝑋 of an irreducible
component of 𝑋 the local ring 𝒪𝑋,𝜂 is a field. But for general Noetherian schemes it can
happen that the regular locus of 𝑋 is badly behaved, so care has to be taken.

Lemma 23.12.2. Let 𝑋 be a locally Noetherian scheme. Then 𝑋 is Cohen-Macaulay if
and only if 𝑋 has (𝑆𝑘) for all 𝑘 ≥ 0.

Proof. By Lemma 23.8.2 we reduce to looking at local rings. Hence the lemma is true
because a Noetherian local ring is Cohen-Macaulay if and only if it has depth equal to its
dimension. �

Lemma 23.12.3. Let 𝑋 be a locally Noetherian scheme. Then 𝑋 is reduced if and only if
𝑋 has properties (𝑆1) and (𝑅0).

Proof. This is Algebra, Lemma 7.140.3. �

Lemma 23.12.4. Let 𝑋 be a locally Noetherian scheme. Then 𝑋 is normal if and only if
𝑋 has properties (𝑆2) and (𝑅1).

Proof. This is Algebra, Lemma 7.140.4. �

23.13. Japanese and Nagata schemes

The notions considered in this section are not prominently defined in EGA. A ``universally
Japanese scheme'' is mentioned and defined in [DG67, IV Corollary 5.11.4]. A ``Japanese
scheme'' is mentioned in [DG67, IV Remark 10.4.14 (ii)] but no definition is given. A
Nagata scheme (as given below) occurs in a few places in the literature (see for example
[Liu02, Definition 8.2.30] and [Gre76, Page 142]).

We briefly recall that a domain 𝑅 is called Japanese if the integral closure of 𝑅 in any finite
extension of its fraction field is finite over 𝑅. A ring 𝑅 is called universally Japanese if for
any finite type ring map 𝑅 → 𝑆 with 𝑆 a domain 𝑆 is Japanese. A ring 𝑅 is called Nagata
if it is Noetherian and 𝑅/𝔭 is Japanese for every prime 𝔭 of 𝑅.

Definition 23.13.1. Let 𝑋 be a scheme.
(1) Assume 𝑋 integral. We say 𝑋 is Japanese if for every 𝑥 ∈ 𝑋 there exists an

affine open neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 such that the ring 𝒪𝑋(𝑈) is Japanese (see
Algebra, Definition 7.144.1).

(2) We say 𝑋 is universally Japanese if for every 𝑥 ∈ 𝑋 there exists an affine open
neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 such that the ring 𝒪𝑋(𝑈) is universally Japanese (see
Algebra, Definition 7.144.15).

(3) We say 𝑋 is Nagata if for every 𝑥 ∈ 𝑋 there exists an affine open neighbourhood
𝑥 ∈ 𝑈 ⊂ 𝑋 such that the ring 𝒪𝑋(𝑈) is Nagata (see Algebra, Definition 7.144.15).

Being Nagata is the same thing as being locally Noetherian and universally Japanese, see
Lemma 23.13.8.

Remark 23.13.2. In [Hoo72] a (locally Noetherian) scheme 𝑋 is called Japanese if for ev-
ery 𝑥 ∈ 𝑋 and every associated prime 𝔭 of 𝒪𝑋,𝑥 the ring 𝒪𝑋,𝑥/𝔭 is Japanese. We do not use
this definition since it is not clear that this gives the same notion as above for Noetherian in-
tegral schemes. In other words, we do not know whether a Noetherian domain all of whose
local rings are Japanese is Japanese. If you do please email stacks.project@gmail.com. On
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the other hand, we could circumvent this problem by calling a scheme 𝑋 Japanese if for
every affine open 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑋 the ring 𝐴/𝔭 is Japanese for every associated prime 𝔭 of 𝐴.

Lemma 23.13.3. A Nagata scheme is locally Noetherian.

Proof. This is true because a Nagata ring is Noetherian by definition. �

Lemma 23.13.4. Let 𝑋 be an integral scheme. The following are equivalent:
(1) The scheme 𝑋 is Japanese.
(2) For every affine open 𝑈 ⊂ 𝑋 the domain 𝒪𝑋(𝑈) is Japanese.
(3) There exists an affine open covering𝑋 = ⋃ 𝑈𝑖 such that each𝒪𝑋(𝑈𝑖) is Japanese.
(4) There exists an open covering 𝑋 = ⋃ 𝑋𝑗 such that each open subscheme 𝑋𝑗 is

Japanese.
Moreover, if 𝑋 is Japanese then every open subscheme is Japanese.

Proof. This follows from Lemma 23.4.3 and Algebra, Lemmas 7.144.3 and 7.144.4. �

Lemma 23.13.5. Let 𝑋 be a scheme. The following are equivalent:
(1) The scheme 𝑋 is universally Japanese.
(2) For every affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is universally Japanese.
(3) There exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each 𝒪𝑋(𝑈𝑖) is univer-

sally Japanese.
(4) There exists an open covering 𝑋 = ⋃ 𝑋𝑗 such that each open subscheme 𝑋𝑗 is

universally Japanese.
Moreover, if 𝑋 is universally Japanese then every open subscheme is universally Japanese.

Proof. This follows from Lemma 23.4.3 and Algebra, Lemmas 7.144.18 and 7.144.21. �

Lemma 23.13.6. Let 𝑋 be a scheme. The following are equivalent:
(1) The scheme 𝑋 is Nagata.
(2) For every affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is Nagata.
(3) There exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each 𝒪𝑋(𝑈𝑖) is Nagata.
(4) There exists an open covering 𝑋 = ⋃ 𝑋𝑗 such that each open subscheme 𝑋𝑗 is

Nagata.
Moreover, if 𝑋 is Nagata then every open subscheme is Nagata.

Proof. This follows from Lemma 23.4.3 and Algebra, Lemmas 7.144.20 and 7.144.21. �

Lemma 23.13.7. Let 𝑋 be a locally Noetherian scheme. Then 𝑋 is Nagata if and only if
every integral closed subscheme 𝑍 ⊂ 𝑋 is Japanese.

Proof. Assume 𝑋 is Nagata. Let 𝑍 ⊂ 𝑋 be an integral closed subscheme. Let 𝑧 ∈ 𝑍.
Let 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 be an affine open containing 𝑧 such that 𝐴 is Nagata. Then 𝑍 ∩
𝑈 ≅ 𝑆𝑝𝑒𝑐(𝐴/𝔭) for some prime 𝔭, see Schemes, Lemma 21.10.1 (and Definition 23.3.1).
By Algebra, Definition 7.144.15 we see that 𝐴/𝔭 is Japanese. Hence 𝑍 is Japanese by
definition.
Assume every integral closed subscheme of 𝑋 is Japanese. Let 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 be any
affine open. As 𝑋 is locally Noetherian we see that 𝐴 is Noetherian (Lemma 23.5.2). Let
𝔭 ⊂ 𝐴 be a prime ideal. We have to show that 𝐴/𝔭 is Japanese. Let 𝑇 ⊂ 𝑈 be the closed
subset 𝑉(𝔭) ⊂ 𝑆𝑝𝑒𝑐(𝐴). Let 𝑇 ⊂ 𝑋 be the closure. Then 𝑇 is irreducible as the closure of an
irreducible subset. Hence the reduced closed subscheme defined by 𝑇 is an integral closed
subscheme (called 𝑇 again), see Schemes, Lemma 21.12.4. In other words, 𝑆𝑝𝑒𝑐(𝐴/𝔭)
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is an affine open of an integral closed subscheme of 𝑋. This subscheme is Japanese by
assumption and by Lemma 23.13.4 we see that 𝐴/𝔭 is Japanese. �

Lemma 23.13.8. Let 𝑋 be a scheme. The following are equivalent:
(1) 𝑋 is Nagata, and
(2) 𝑋 is locally Noetherian and universally Japanese.

Proof. This is Algebra, Proposition 7.144.30. �

This discussion will be continued in Morphisms, Section 24.17.

23.14. The singular locus

Here is the definition.

Definition 23.14.1. Let 𝑋 be a locally Noetherian scheme. The regular locus Reg(𝑋) of
𝑋 is the set of 𝑥 ∈ 𝑋 such that 𝒪𝑋,𝑥 is a regular local ring. The singular locus Sing(𝑋) is
the complement 𝑋 ⧵ Reg(𝑋), i.e., the set of points 𝑥 ∈ 𝑋 such that 𝒪𝑋,𝑥 is not a regular
local ring.

The regular locus of a locally Noetherian scheme is stable under generalizations, see the
discussion preceding Algebra, Definition 7.102.6. However, for general locally Noetherian
schemes the regular locus need not be open. In More on Algebra, Section 12.35 the reader
can find some criteria for when this is the case. We will discuss this further in Morphisms,
Section 24.18.

23.15. Quasi-affine schemes

Definition 23.15.1. A scheme 𝑋 is called quasi-affine if it is quasi-compact and isomorphic
to an open subscheme of an affine scheme.

Lemma 23.15.2. Let 𝑋 be a scheme. Let 𝑓 ∈ Γ(𝑋, 𝒪𝑋). Denote 𝑋𝑓 the maximal open
subscheme of 𝑋 where 𝑓 is invertible, see Schemes, Lemma 21.6.2 or Modules, Lemma
15.21.7. If 𝑋 is quasi-compact and quasi-separated, the canonical map

Γ(𝑋, 𝒪𝑋)𝑓 ⟶ Γ(𝑋𝑓, 𝒪𝑋)

is an isomorphism. Moreover, if ℱ is a quasi-coherent sheaf of 𝒪𝑋-modules the map

Γ(𝑋, ℱ)𝑓 ⟶ Γ(𝑋𝑓, ℱ)

is an isomorphism.

Proof. Write 𝑅 = Γ(𝑋, 𝒪𝑋). Consider the canonical morphism

𝜑 ∶ 𝑋 ⟶ 𝑆𝑝𝑒𝑐(𝑅)

of schemes, see Schemes, Lemma 21.6.4. Then the inverse image of the standard open
𝐷(𝑓) on the right hand side is 𝑋𝑓 on the left hand side. Moreover, since 𝑋 is assumed
quasi-compact and quasi-separated the morphism 𝜑 is quasi-compact and quasi-separated,
see Schemes, Lemma 21.19.2 and 21.21.14. Hence by Schemes, Lemma 21.24.1we see that
𝜑∗ℱ is quasi-coherent. Hence we see that 𝜑∗ℱ = 𝑀 with 𝑀 = Γ(𝑋, ℱ) as an 𝑅-module.
Thus we see that

Γ(𝑋𝑓, ℱ) = Γ(𝐷(𝑓), 𝜑∗ℱ) = Γ(𝐷(𝑓), 𝑀) = 𝑀𝑓

which is exactly the content of the lemma. The case of ℱ = 𝒪𝑋 will given the first displayed
isomorphism of the lemma. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=033Z
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=ZZZZ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01P6
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01P7


23.16. CHARACTERIZING MODULES OF FINITE TYPE AND FINITE PRESENTATION 1273

Lemma 23.15.3. Let 𝑋 be a scheme. Let 𝑓 ∈ Γ(𝑋, 𝒪𝑋). Assume 𝑋 is quasi-compact and
quasi-separated and assume that 𝑋𝑓 is affine. Then the canonical morphism

𝑗 ∶ 𝑋 ⟶ 𝑆𝑝𝑒𝑐(Γ(𝑋, 𝒪𝑋))

from Schemes, Lemma 21.6.4 induces an isomorphism of𝑋𝑓 = 𝑗−1(𝐷(𝑓)) onto the standard
affine open 𝐷(𝑓) ⊂ 𝑆𝑝𝑒𝑐(Γ(𝑋, 𝒪𝑋)).

Proof. This is clear as 𝑗 induces an isomorphism of rings Γ(𝑋, 𝒪𝑋)𝑓 → 𝒪𝑋(𝑋𝑓) by Lemma
23.15.2 above. �

Lemma 23.15.4. Let 𝑋 be a scheme. Then 𝑋 is quasi-affine if and only if the canonical
morphism

𝑋 ⟶ 𝑆𝑝𝑒𝑐(Γ(𝑋, 𝒪𝑋))
from Schemes, Lemma 21.6.4 is a quasi-compact open immersion.

Proof. If the displayed morphism is a quasi-compact open immersion then 𝑋 is ismorphic
to a quasi-compact open subscheme of 𝑆𝑝𝑒𝑐(Γ(𝑋, 𝒪𝑋)) and clearly 𝑋 is quasi-affine.

Assume 𝑋 is quasi-affine, say 𝑋 ⊂ 𝑆𝑝𝑒𝑐(𝑅) is quasi-compact open. This in particular
implies that 𝑋 is separated, see Schemes, Lemma 21.23.8. Let 𝐴 = Γ(𝑋, 𝒪𝑋). Consider
the ring map 𝑅 → 𝐴 coming from 𝑅 = Γ(𝑆𝑝𝑒𝑐(𝑅), 𝒪𝑆𝑝𝑒𝑐(𝑅)) and the restriction mapping
of the sheaf 𝒪𝑆𝑝𝑒𝑐(𝑅). By Schemes, Lemma 21.6.4 we obtain a factorization:

𝑋 ⟶ 𝑆𝑝𝑒𝑐(𝐴) ⟶ 𝑆𝑝𝑒𝑐(𝑅)

of the inclusion morphism. Let 𝑥 ∈ 𝑋. Choose 𝑟 ∈ 𝑅 such that 𝑥 ∈ 𝐷(𝑟) and 𝐷(𝑟) ⊂ 𝑋.
Denote 𝑓 ∈ 𝐴 the image of 𝑟 in 𝐴. The open 𝑋𝑓 of Lemma 23.15.2 above is equal to
𝐷(𝑟) ⊂ 𝑋 and hence 𝐴𝑓 ≅ 𝑅𝑟 by the conclusion of that lemma. Hence 𝐷(𝑟) → 𝑆𝑝𝑒𝑐(𝐴)
is an isomorphism onto the standard affine open 𝐷(𝑓) of 𝑆𝑝𝑒𝑐(𝐴). Since 𝑋 can be covered
by such affine opens 𝐷(𝑓) we win. �

23.16. Characterizing modules of finite type and finite presentation

Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. The following lemma implies
that ℱ is of finite type (see Modules, Definition 15.9.1) if and only if ℱ is on each open
affine 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of the form 𝑀 for some finite type 𝐴-module 𝑀. Similarly, ℱ
is of finite presentation (see Modules, Definition 15.11.1) if and only if ℱ is on each open
affine 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of the form 𝑀 for some finitely presented 𝐴-module 𝑀.

Lemma 23.16.1. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) be an affine scheme. The quasi-coherent sheaf of
𝒪𝑋-modules 𝑀 is a finite type 𝒪𝑋-module if and only if 𝑀 is a finite 𝑅-module.

Proof. Assume 𝑀 is a finite type 𝒪𝑋-module. This means there exists an open covering of
𝑋 such that 𝑀 restricted to the members of this covering is globally generated by finitely
many sections. Thus there also exists a standard open covering 𝑋 = ⋃𝑖=1,…,𝑛 𝐷(𝑓𝑖) such
that 𝑀|𝐷(𝑓𝑖) is generated by finitely many sections. Thus 𝑀𝑓𝑖

is finitely generated for each
𝑖. Hence we conclude by Algebra, Lemma 7.21.2. �

Lemma 23.16.2. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) be an affine scheme. The quasi-coherent sheaf of
𝒪𝑋-modules 𝑀 is an 𝒪𝑋-module of finite presentation if and only if 𝑀 is an 𝑅-module of
finite presentation.
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Proof. Assume 𝑀 is an 𝒪𝑋-module of finite presentation. By Lemma 23.16.1 we see that
𝑀 is a finite 𝑅-module. Choose a surjection 𝑅𝑛 → 𝑀 with kernel 𝐾. By Schemes, Lemma
21.5.4 there is a short exact sequence

0 → 𝐾 → ⨁ 𝒪⊕𝑛
𝑋 → 𝑀 → 0

By Modules, Lemma 15.11.3 we see that 𝐾 is a finite type 𝒪𝑋-module. Hence by Lemma
23.16.1 again we see that 𝐾 is a finite 𝑅-module. Hence 𝑀 is an 𝑅-module of finite pre-
sentation. �

23.17. Flat modules

On any ringed space (𝑋, 𝒪𝑋) we knowwhat it means for an 𝒪𝑋-module to be flat (at a point),
see Modules, Definition 15.16.1 (Definition 15.16.3). On an affine scheme this matches the
notion defined in the algebra chapter.

Lemma 23.17.1. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) be an affine scheme. Let ℱ = 𝑀 for some 𝑅-module
𝑀. The quasi-coherent sheaf ℱ is a flat 𝒪𝑋-module of if and only if 𝑀 is a flat 𝑅-module.

Proof. Flatness of ℱ may be checked on the stalks, see Modules, Lemma 15.16.2. The
same is true in the case of modules over a ring, see Algebra, Lemma 7.35.19. And since
ℱ𝑥 = 𝑀𝔭 if 𝑥 corresponds to 𝔭 the lemma is true. �

23.18. Locally free modules

On any ringed space we know what it means for an 𝒪𝑋-module to be (finite) locally free.
On an affine scheme this matches the notion defined in the algebra chapter.

Lemma 23.18.1. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) be an affine scheme. Let ℱ = 𝑀 for some 𝑅-module
𝑀. The quasi-coherent sheaf ℱ is a (finite) locally free 𝒪𝑋-module of if and only if 𝑀 is a
(finite) locally free 𝑅-module.

Proof. Follows from the definitions, see Modules, Definition 15.14.1 and Algebra, Defini-
tion 7.72.1. �

We can characterize finite locally free modules in many different ways.

Lemma 23.18.2. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. The following
are equivalent:

(1) ℱ is a flat 𝒪𝑋-module of finite presentation,
(2) ℱ is 𝒪𝑋-module of finite presentation and for all 𝑥 ∈ 𝑋 the stalk ℱ𝑥 is a free

𝒪𝑋,𝑥-module,
(3) ℱ is a locally free, finite type 𝒪𝑋-module,
(4) ℱ is a finite locally free 𝒪𝑋-module, and
(5) ℱ is an 𝒪𝑋-module of finite type, for every 𝑥 ∈ 𝑋 the the stalk ℱ𝑥 is a free

𝒪𝑋,𝑥-module, and the function

𝜌ℱ ∶ 𝑋 → 𝐙, 𝑥 ⟼ dim𝜅(𝑥) ℱ𝑥 ⊗𝒪𝑋,𝑥
𝜅(𝑥)

is locally constant in the Zariski topology on 𝑋.

Proof. This lemma immediately reduces to the affine case. In this case the lemma is a
reformulation of Algebra, Lemma 7.72.2. The translation uses Lemmas 23.16.1, 23.16.2,
23.17.1, and 23.18.1. �
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23.19. Locally projective modules

A consequence of the work done in the algebra chapter is that it makes sense to define a
locally projective module as follows.
Definition 23.19.1. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. We say ℱ
is locally projective if for every affine open 𝑈 ⊂ 𝑋 the 𝒪𝑋(𝑈)-module ℱ(𝑈) is projective.
Lemma 23.19.2. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. The following
are equivalent

(1) ℱ is locally projective, and
(2) there exists an affine open covering𝑋 = ⋃ 𝑈𝑖 such that the𝒪𝑋(𝑈𝑖)-moduleℱ(𝑈𝑖)

is projective for every 𝑖.
In particular, if 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and ℱ = 𝑀 then ℱ is locally projective if and only if 𝑀 is a
projective 𝐴-module.
Proof. First, note that if 𝑀 is a projective 𝐴-module and 𝐴 → 𝐵 is a ringmap, then 𝑀⊗𝐴𝐵
is a projective 𝐵-module, see Algebra, Lemma 7.88.1. Hence if 𝑈 is an affine open such
that ℱ(𝑈) is a projective 𝒪𝑋(𝑈)-module, then the standard open 𝐷(𝑓) is an affine open such
that ℱ(𝐷(𝑓)) is a projective 𝒪𝑋(𝐷(𝑓))-module for all 𝑓 ∈ 𝒪𝑋(𝑈). Assume (2) holds. Let
𝑈 ⊂ 𝑋 be an arbitrary affine open. We can find an open covering 𝑈 = ⋃𝑗=1,…,𝑚 𝐷(𝑓𝑗) by
finitely many standard opens 𝐷(𝑓𝑗) such that for each 𝑗 the open 𝐷(𝑓𝑗) is a standard open
of some 𝑈𝑖, see Schemes, Lemma 21.11.5. Hence, if we set 𝐴 = 𝒪𝑋(𝑈) and if 𝑀 is an
𝐴-module such that ℱ|𝑈 corresponds to𝑀, thenwe see that 𝑀𝑓𝑗

is a projective𝐴𝑓𝑗
-module.

It follows that 𝐴 → 𝐵 = ∏ 𝐴𝑓𝑗
is a faithfully flat ring map such that 𝑀 ×𝐴 𝐵 is a projective

𝐵-module. Hence 𝑀 is projective by Algebra, Theorem 7.89.5. �

Lemma 23.19.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝒢 be a quasi-coherent
𝒪𝑌-module. If 𝒢 is locally projective on 𝑌, then 𝑓∗𝒢 is locally projective on 𝑋.
Proof. See Algebra, Lemma 7.88.1. �

23.20. Extending quasi-coherent sheaves

It is sometimes useful to be able to show that a given quasi-coherent sheaf on an open
subscheme extends to the whole scheme.
Lemma 23.20.1. Let 𝑗 ∶ 𝑈 → 𝑋 be a quasi-compact open immersion of schemes.

(1) Any quasi-coherent sheaf on 𝑈 extends to a quasi-coherent sheaf on 𝑋.
(2) Letℱ be a quasi-coherent sheaf on𝑋. Let𝒢 ⊂ ℱ|𝑈 be a quasi-coherent subsheaf.

There exists a quasi-coherent subsheaf ℋ of ℱ such that ℋ|𝑈 = 𝒢 as subsheaves
of ℱ|𝑈.

(3) Let ℱ be a quasi-coherent sheaf on 𝑋. Let 𝒢 be a quasi-coherent sheaf on 𝑈.
Let 𝜑 ∶ 𝒢 → ℱ|𝑈 be a morphism of 𝒪𝑈-modules. There exists a quasi-coherent
sheaf ℋ of 𝒪𝑋-modules and a map 𝜓 ∶ ℋ → ℱ such that ℋ|𝑈 = 𝒢 and that
𝜓|𝑈 = 𝜑.

Proof. An immersion is separated (see Schemes, Lemma 21.23.7) and 𝑗 is quasi-compact
by assumption. Hence for any quasi-coherent sheaf 𝒢 on 𝑈 the sheaf 𝑗∗𝒢 is an extension to
𝑋. See Schemes, Lemma 21.24.1 and Sheaves, Section 6.31.
Assume ℱ, 𝒢 are as in (2). Then 𝑗∗𝒢 is a quasi-coherent sheaf on 𝑋 (see above). It is a
subsheaf of 𝑗∗𝑗∗ℱ. Hence the kernel

ℋ = ker(ℱ ⊕ 𝑗∗𝒢 ⟶ 𝑗∗𝑗∗ℱ)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05JP
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05JQ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=060M
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01PE


1276 23. PROPERTIES OF SCHEMES

is quasi-coherent as well, see Schemes, Section 21.24. It is formal to check that ℋ ⊂ ℱ
and that ℋ|𝑈 = 𝒢 (using the material in Sheaves, Section 6.31 again).

The same proof as above works. Just take ℋ = ker(ℱ ⊕ 𝑗∗𝒢 → 𝑗∗𝑗∗ℱ) with its obvious
map to ℱ and its obvious identification with 𝒢 over 𝑈. �

Lemma 23.20.2. Let 𝑋 be a quasi-compact and quasi-separated scheme. Let 𝑈 ⊂ 𝑋
be a quasi-compact open. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let 𝒢 ⊂ ℱ|𝑈 be a
quasi-coherent 𝒪𝑈-submodule which is of finite type. Then there exists a quasi-coherent
submodule 𝒢′ ⊂ ℱ which is of finite type such that 𝒢′|𝑈 = 𝒢.

Proof. Let 𝑛 be the minimal number of affine opens 𝑈𝑖 ⊂ 𝑋, 𝑖 = 1, … , 𝑛 such that 𝑋 =
𝑈 ∪ ⋃ 𝑈𝑖. (Here we use that 𝑋 is quasi-compact.) Suppose we can prove the lemma for the
case 𝑛 = 1. Then we can successively extend 𝒢 to a 𝒢1 over 𝑈∪𝑈1 to a 𝒢2 over 𝑈∪𝑈1 ∪𝑈2
to a 𝒢3 over 𝑈 ∪ 𝑈1 ∪ 𝑈2 ∪ 𝑈3, and so on. Thus we reduce to the case 𝑛 = 1.

Thus we may assume that 𝑋 = 𝑈 ∪ 𝑉 with 𝑉 affine. Since 𝑋 is quasi-separated and 𝑈, 𝑉
are quasi-compact open, we see that 𝑈 ∩ 𝑉 is a quasi-compact open. It suffices to prove the
lemma for the system (𝑉, 𝑈 ∩ 𝑉, ℱ|𝑉, 𝒢|𝑈∩𝑉) since we can glue the resulting sheaf 𝒢′ over
𝑉 to the given sheaf 𝒢 over 𝑈 along the common value over 𝑈 ∩ 𝑉. Thus we reduce to the
case where 𝑋 is affine.

Assume 𝑋 = 𝑆𝑝𝑒𝑐(𝑅). Write ℱ = 𝑀 for some 𝑅-module 𝑀. By Lemma 23.20.1 above
we may find a quasi-coherent subsheaf ℋ ⊂ ℱ which restricts to 𝒢 over 𝑈. Write ℋ = �̃�
for some 𝑅-module 𝑁. For every 𝑢 ∈ 𝑈 there exists an 𝑓 ∈ 𝑅 such that 𝑢 ∈ 𝐷(𝑓) ⊂ 𝑈 and
such that 𝑁𝑓 is finitely generated, see Lemma 23.16.1. Since 𝑈 is quasi-compact we can
cover it by finitely many 𝐷(𝑓𝑖) such that 𝑁𝑓𝑖

is generated by finitely many elements, say
𝑥𝑖,1/𝑓𝑁

𝑖 , … , 𝑥𝑖,𝑟𝑖
/𝑓𝑁

𝑖 . Let 𝑁′ ⊂ 𝑁 be the submodule generated by the elements 𝑥𝑖,𝑗. Then
the subsheaf 𝒢 ∶= 𝑁′ ⊂ ℋ ⊂ ℱ works. �

Lemma 23.20.3. Let 𝑋 be a quasi-compact and quasi-separated scheme. Any quasi-
coherent sheaf of 𝒪𝑋-modules is the directed colimit of its quasi-coherent 𝒪𝑋-submodules
which are of finite type.

Proof. The colimit is direct because if 𝒢1, 𝒢2 are quasi-coherent subsheaves of finite type,
then 𝒢1 +𝒢2 ⊂ ℱ is a quasi-coherent subsheaf of finite type. Let 𝑈 ⊂ 𝑋 be any affine open,
and let 𝑠 ∈ Γ(𝑈, ℱ) be any section. Let 𝒢 ⊂ ℱ|𝑈 be the subsheaf generated by 𝑠. Then
clearly 𝒢 is quasi-coherent and has finite type as an 𝒪𝑈-module. By Lemma 23.20.2 we see
that 𝒢 is the restriction of a quasi-coherent subsheaf 𝒢′ ⊂ ℱ which has finite type. Since 𝑋
has a basis for the topology consisting of affine opens we conclude that every local section
of ℱ is locally contained in a quasi-coherent submodule of finite type. Thus we win. �

Lemma 23.20.4. Let 𝑋 be a scheme. Assume 𝑋 is quasi-compact and quasi-separated.
For any quasi-compact open 𝑈 ⊂ 𝑋 there exists a quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑋
which is of finite type such that the corresponding closed subscheme𝑍 ⊂ 𝑋 has the property
𝑋 = 𝑈 ∐ 𝑍 (set theoretically).

Proof. Let 𝑇 = 𝑋 ⧵ 𝑈. By Schemes, Lemma 21.12.4 there exists a unique quasi-coherent
sheaf of ideals 𝒥 cutting out the reduced induced closed subscheme structure on 𝑇. Note
that 𝒥|𝑈 = 𝒪𝑈 which is an 𝒪𝑈-modules of finite type. By Lemma 23.20.2 there exists a
quasi-coherent subsheaf ℐ ⊂ 𝒥 which is of finite type and has the property that ℐ|𝑈 = 𝒥|𝑈.
It is easy to see that ℐ has the required properties. �
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Lemma 23.20.5. (Variant of Lemma 23.20.2 dealing with modules of finite presentation.)
Let𝑋 be a quasi-compact and quasi-separated scheme. Letℱ be a quasi-coherent𝒪𝑋-module.
Let 𝑈 ⊂ 𝑋 be a quasi-compact open. Let 𝒢 be an 𝒪𝑈-module which of finite presentation.
Let 𝜑 ∶ 𝒢 → ℱ|𝑈 be a morphism of 𝒪𝑈-modules. Then there exists an 𝒪𝑋-module 𝒢′ of
finite presentation, and a morphism of 𝒪𝑋-modules 𝜑′ ∶ 𝒢′ → ℱ such that 𝒢′|𝑈 = 𝒢 and
such that 𝜑′|𝑈 = 𝜑.

Proof. The beginning of the proof is a repeat of the beginning of the proof of Lemma
23.20.2. We write it out carefully anyway.

Let 𝑛 be the minimal number of affine opens 𝑈𝑖 ⊂ 𝑋, 𝑖 = 1, … , 𝑛 such that 𝑋 = 𝑈 ∪ ⋃ 𝑈𝑖.
(Here we use that 𝑋 is quasi-compact.) Suppose we can prove the lemma for the case
𝑛 = 1. Then we can successively extend the pair (𝒢, 𝜑) to a pair (𝒢1, 𝜑1) over 𝑈 ∪ 𝑈1 to a
pair (𝒢2, 𝜑2) over 𝑈 ∪ 𝑈1 ∪ 𝑈2 to a pair (𝒢3, 𝜑3) over 𝑈 ∪ 𝑈1 ∪ 𝑈2 ∪ 𝑈3, and so on. Thus
we reduce to the case 𝑛 = 1.

Thus we may assume that 𝑋 = 𝑈 ∪ 𝑉 with 𝑉 affine. Since 𝑋 is quasi-separated and 𝑈
quasi-compact, we see that 𝑈 ∩ 𝑉 ⊂ 𝑉 is quasi-compact. Suppose we prove the lemma
for the system (𝑉, 𝑈 ∩ 𝑉, ℱ|𝑉, 𝒢|𝑈∩𝑉, 𝜑|𝑈∩𝑉) thereby producing (𝒢′, 𝜑′) over 𝑉. Then we
can glue 𝒢′ over 𝑉 to the given sheaf 𝒢 over 𝑈 along the common value over 𝑈 ∩ 𝑉, and
similarly we can glue the map 𝜑′ to the map 𝜑 along the common value over 𝑈 ∩ 𝑉. Thus
we reduce to the case where 𝑋 is affine.

Assume 𝑋 = 𝑆𝑝𝑒𝑐(𝑅). By Lemma 23.20.1 above we may find a quasi-coherent sheaf ℋ
with a map 𝜓 ∶ ℋ → ℱ over 𝑋 which restricts to 𝒢 and 𝜑 over 𝑈. By Lemma 23.20.2 we
can find a finite type quasi-coherent 𝒪𝑋-submodule ℋ′ ⊂ ℋ such that ℋ′|𝑈 = 𝒢. Thus
after replacing ℋ by ℋ′ and 𝜓 by the restriction of 𝜓 to ℋ′ wemay assume that ℋ is of finite
type. By Lemma 23.16.2 we conclude that ℋ = �̃� with 𝑁 a finitely generated 𝑅-module.
Hence there exists a surjection as in the following short exact sequence of quasi-coherent
𝒪𝑋-modules

0 → 𝒦 → 𝒪⊕𝑛
𝑋 → ℋ → 0

where 𝒦 is defined as the kernel. Since 𝒢 is of finite presentation and ℋ|𝑈 = 𝒢 by Mod-
ules, Lemma 15.11.3 the restriction 𝒦|𝑈 is an 𝒪𝑈-module of finite type. Hence by Lemma
23.20.2 again we see that there exists a finite type quasi-coherent 𝒪𝑋-submodule 𝒦′ ⊂ 𝒦
such that 𝒦′|𝑈 = 𝒦|𝑈. The solution to the problem posed in the lemma is to set

𝒢′ = 𝒪⊕𝑛
𝑋 /𝒦′

which is clearly of finite presentation and restricts to give 𝒢 on 𝑈 with 𝜑′ equal to the
composition

𝒢′ = 𝒪⊕𝑛
𝑋 /𝒦′ → 𝒪⊕𝑛

𝑋 /𝒦 = ℋ
𝜓

−→ ℱ.
This finishes the proof of the lemma. �

The following lemma says that every quasi-coherent sheaf on a quasi-compact and quasi-
separated scheme is a filtered colimit of 𝒪-modules of finite presentation. Actually, we
reformulate this in (perhaps more familiar) terms of directed colimits over posets in the
next lemma.

Lemma 23.20.6. Let 𝑋 be a scheme. Assume 𝑋 is quasi-compact and quasi-separated.
Let ℱ be a quasi-coherent 𝒪𝑋-module. There exist

(1) a filtered index category ℐ (see Categories, Definition 4.17.1),
(2) a diagram ℐ → Mod(𝒪𝑋) (see Categories, Section 4.13), 𝑖 ↦ ℱ𝑖,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01PI
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(3) morphisms of 𝒪𝑋-modules 𝜑𝑖 ∶ ℱ𝑖 → ℱ
such that each ℱ𝑖 is of finite presentation and such that the morphisms 𝜑𝑖 induce an iso-
morphism

𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 = ℱ.

Proof. Choose a set 𝐼 and for each 𝑖 ∈ 𝐼 an 𝒪𝑋-module of finite presentation and a homo-
morphism of 𝒪𝑋-modules 𝜑𝑖 ∶ ℱ𝑖 → ℱ with the following property: For any 𝜓 ∶ 𝒢 → ℱ
with 𝒢 of finite presentation there is an 𝑖 ∈ 𝐼 such that there exists an isomorphism
𝛼 ∶ ℱ𝑖 → 𝒢 with 𝜑𝑖 = 𝜓 ∘ 𝛼. It is clear from Modules, Lemma 15.9.8 that such a set
exists (see also its proof). We denote ℐ the category with 𝑂𝑏(ℐ) = 𝐼 and given 𝑖, 𝑖′ ∈ 𝐼
we set

𝑀𝑜𝑟ℐ(𝑖, 𝑖′) = {𝛼 ∶ ℱ𝑖 → ℱ𝑖′ ∣ 𝛼 ∘ 𝜑𝑖′ = 𝜑𝑖}.
We claim that ℐ filtered category and that ℱ = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖.

Let 𝑖, 𝑖′ ∈ 𝐼. Then we can consider the morphism

ℱ𝑖 ⊕ ℱ𝑖′ ⟶ ℱ

which is the direct sum of 𝜑𝑖 and 𝜑𝑖′. Since a direct sum of finitely presented 𝒪𝑋-modules
is finitely presented we see that there exists some 𝑖″ ∈ 𝐼 such that 𝜑𝑖″ ∶ ℱ𝑖″ → ℱ is
isomorphic to the displayed arrow towards ℱ above. Since there are commutative diagrams

ℱ𝑖
//

��

ℱ

ℱ𝑖 ⊕ ℱ𝑖′
// ℱ

and ℱ𝑖′
//

��

ℱ

ℱ𝑖 ⊕ ℱ𝑖′
// ℱ

we see that there are morphisms 𝑖 → 𝑖″ and 𝑖′ → 𝑖″ in ℐ. Next, suppose that we have
𝑖, 𝑖′ ∈ 𝐼 andmorphisms 𝛼, 𝛽 ∶ 𝑖 → 𝑖′ (corresponding to 𝒪𝑋-module maps 𝛼, 𝛽 ∶ ℱ𝑖 → ℱ𝑖′).
In this case consider the coequalizer

𝒢 = Coker(ℱ𝑖
𝛼−𝛽

−−−→ ℱ𝑖′)

Note that 𝒢 is an 𝒪𝑋-module of finite presentation. Since by definition of morphisms in
the category ℐ we have 𝜑𝑖′ ∘ 𝛼 = 𝜑𝑖′ ∘ 𝛽 we see that we get an induced map 𝜓 ∶ 𝒢 → ℱ.
Hence again the pair (𝒢, 𝜓) is isomorphic to the pair (ℱ𝑖″, 𝜑𝑖″) for some 𝑖″. Hence we see
that there exists a morphism 𝑖′ → 𝑖″ in ℐ which equalizes 𝛼 and 𝛽. Thus we have shown
that the category ℐ is filtered.

We still have to show that the colimit of the diagram is ℱ. By definition of the colimit, and
by our definition of the category ℐ there is a canonical map

𝜑 ∶ 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 ⟶ ℱ.

Pick 𝑥 ∈ 𝑋. Let us show that 𝜑𝑥 is an isomorphism. Recall that

(𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖,𝑥,

see Sheaves, Section 6.29. First we show that the map 𝜑𝑥 is injective. Suppose that 𝑠 ∈ ℱ𝑖,𝑥
is an element such that 𝑠 maps to zero in ℱ𝑥. Then there exists a quasi-compact open 𝑈 such
that 𝑠 comes from 𝑠 ∈ ℱ𝑖(𝑈) and such that 𝜑𝑖(𝑠) = 0 in ℱ(𝑈). By Lemma 23.20.2 we can
find a finite type quasi-coherent subsheaf 𝒦 ⊂ Ker(𝜑𝑖) which restricts to the quasi-coherent
𝒪𝑈-submodule of ℱ𝑖 generated by 𝑠: 𝒦|𝑈 = 𝒪𝑈 ⋅ 𝑠 ⊂ ℱ𝑖|𝑈. Clearly, ℱ𝑖/𝒦 is of finite
presentation and the map 𝜑𝑖 factors through the quotient map ℱ𝑖 → ℱ𝑖/𝒦. Hence we can
find an 𝑖′ ∈ 𝐼 and a morphism 𝛼 ∶ ℱ𝑖 → ℱ𝑖′ in ℐ which can be identified with the quotient
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map ℱ𝑖 → ℱ𝑖/𝒦. Then it follows that the section 𝑠 maps to zero in ℱ𝑖′(𝑈) and in particular
in (𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)𝑥 = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖,𝑥. The injectivity follows. Finally, we show that the map 𝜑𝑥 is
surjective. Pick 𝑠 ∈ ℱ𝑥. Choose a quasi-compact open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such
that 𝑠 corresponds to a section 𝑠 ∈ ℱ(𝑈). Consider the map 𝑠 ∶ 𝒪𝑈 → ℱ (multiplication by
𝑠). By Lemma 23.20.5 there exists an𝒪𝑋-module𝒢 of finite presentation and an𝒪𝑋-module
map 𝒢 → ℱ such that 𝒢|𝑈 → ℱ|𝑈 is identified with 𝑠 ∶ 𝒪𝑈 → ℱ. Again by definition of ℐ
there exists an 𝑖 ∈ 𝐼 such that 𝒢 → ℱ is isomorphic to 𝜑𝑖 ∶ ℱ𝑖 → ℱ. Clearly there exists
a section 𝑠′ ∈ ℱ𝑖(𝑈) mapping to 𝑠 ∈ ℱ(𝑈). This proves surjectivity and the proof of the
lemma is complete. �

Lemma 23.20.7. Let 𝑋 be a scheme. Assume 𝑋 is quasi-compact and quasi-separated.
Let ℱ be a quasi-coherent 𝒪𝑋-module. There exist

(1) a directed partially ordered set 𝐼 (see Categories, Definition 4.19.2),
(2) a system (ℱ𝑖, 𝜑𝑖𝑖′) over 𝐼 in Mod(𝒪𝑋) (see Categories, Definition 4.19.1)
(3) morphisms of 𝒪𝑋-modules 𝜑𝑖 ∶ ℱ𝑖 → ℱ

such that each ℱ𝑖 is of finite presentation and such that the morphisms 𝜑𝑖 induce an iso-
morphism

𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 = ℱ.

Proof. This is a direct consequence of Lemma 23.20.6 and Categories, Lemma 4.19.3
(combined with the fact that colimits exist in the category of sheaves of 𝒪𝑋-modules, see
Sheaves, Section 6.29). �

Lemma 23.20.8. Let 𝑋 be a scheme. Assume 𝑋 is quasi-compact and quasi-separated.
Let ℱ be a quasi-coherent 𝒪𝑋-module. Then ℱ is the directed colimit of its finite type
quasi-coherent submodules.

Proof. If 𝒢, ℋ ⊂ ℱ are finite type quasi-coherent 𝒪𝑋-submodules then the image of 𝒢 ⊕
ℋ → ℱ is another finite type quasi-coherent 𝒪𝑋-submodule which contains both of them.
In this way we see that the system is directed. To show that ℱ is the colimit of this system,
write ℱ = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 as a directed colimit of finitely presented quasi-coherent sheaves as
in Lemma 23.20.7. Then the images 𝒢𝑖 = Im(ℱ𝑖 → ℱ) are finite type quasi-coherent
subsheaves of ℱ. Since ℱ is the colimit of these the result follows. �

Let𝑋 be a scheme. In the following lemmawe use the notion of a quasi-coherent𝒪𝑋-algebra
𝒜 of finite presentation. This means that for every affine open 𝑆𝑝𝑒𝑐(𝑅) ⊂ 𝑋 we have 𝒜 = 𝐴
where 𝐴 is a (commutative) 𝑅-algebra which is of finite presentation as an 𝑅-algebra.

Lemma 23.20.9. Let 𝑋 be a scheme. Assume 𝑋 is quasi-compact and quasi-separated.
Let 𝒜 be a quasi-coherent 𝒪𝑋-algebra. There exist

(1) a directed partially ordered set 𝐼 (see Categories, Definition 4.19.2),
(2) a system (𝒜𝑖, 𝜑𝑖𝑖′) over 𝐼 in the category of 𝒪𝑋-algebras,
(3) morphisms of 𝒪𝑋-algebras 𝜑𝑖 ∶ 𝒜𝑖 → 𝒜

such that each 𝒜𝑖 is a quasi-coherent 𝒪𝑋-algebra of finite presentation and such that the
morphisms 𝜑𝑖 induce an isomorphism

𝑐𝑜𝑙𝑖𝑚𝑖 𝒜𝑖 = 𝒜.

Proof. First we write 𝒜 = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 as a directed colimit of finitely presented quasi-
coherent sheaves as in Lemma 23.20.7. For each 𝑖 let ℬ𝑖 = Sym(ℱ𝑖) be the symmetric
algebra on ℱ𝑖 over 𝒪𝑋. Write I𝑖 = ker(ℬ𝑖 → 𝒜). Write ℐ𝑖 = 𝑐𝑜𝑙𝑖𝑚𝑗 ℱ𝑖,𝑗 where ℱ𝑖,𝑗 is
a finite type quasi-coherent submodule of ℐ𝑖, see Lemma 23.20.8. Set ℐ𝑖,𝑗 ⊂ ℐ𝑖 equal to

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01PK
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the ℬ𝑖-ideal generated by ℱ𝑖,𝑗. Set 𝒜𝑖,𝑗 = ℬ𝑖/ℐ𝑖,𝑗. Then 𝒜𝑖,𝑗 is a quasi-coherent finitely
presented 𝒪𝑋-algebra. Define (𝑖, 𝑗) ≤ (𝑖′, 𝑗′) if 𝑖 ≤ 𝑖′ and the map ℬ𝑖 → ℬ𝑖′ maps the
ideal ℐ𝑖,𝑗 into the ideal ℐ𝑖′,𝑗′. Then it is clear that 𝒜 = 𝑐𝑜𝑙𝑖𝑚𝑖,𝑗 𝒜𝑖,𝑗. �

Let𝑋 be a scheme. In the following lemmawe use the notion of a quasi-coherent𝒪𝑋-algebra
𝒜 of finite type. This means that for every affine open 𝑆𝑝𝑒𝑐(𝑅) ⊂ 𝑋 we have 𝒜 = 𝐴 where
𝐴 is a (commutative) 𝑅-algebra which is of finite type as an 𝑅-algebra.

Lemma 23.20.10. Let 𝑋 be a scheme. Assume 𝑋 is quasi-compact and quasi-separated.
Let 𝒜 be a quasi-coherent 𝒪𝑋-algebra. Then 𝒜 is the directed colimit of its finite type
quasi-coherent 𝒪𝑋-subalgebras.

Proof. Omitted. Hint: Compare with the proof of Lemma 23.20.8. �

23.21. Gabber's result

In this section we prove a result of Gabber which guarantees that on every scheme there
exists a cardinal 𝜅 such that every quasi-coherentmoduleℱ is the union of its quasi-coherent
𝜅-generated subsheaves. It follows that the category of quasi-coherent sheaves on a scheme
is a Grothendieck abelian category having limits and enough injectives2.

Definition 23.21.1. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝜅 be an infinite cardinal. We say a
sheaf of 𝒪𝑋-modules ℱ is 𝜅-generated if there exists an open covering 𝑋 = ⋃ 𝑈𝑖 such that
ℱ|𝑈𝑖

is generated by a subset 𝑅𝑖 ⊂ ℱ(𝑈𝑖) whose cardinality is at most 𝜅.

Note that a direct sum of at most 𝜅 𝜅-generated modules is again 𝜅-generated because 𝜅 ⊗
𝜅 = 𝜅, see Sets, Section 3.6. In particular this holds for the direct sum of two 𝜅-generated
modules. Moreover, a quotient of a 𝜅-generated sheaf is 𝜅-generated. (But the same needn't
be true for submodules.)

Lemma 23.21.2. Let (𝑋, 𝒪𝑋) be a ringed space. Let 𝜅 be a cardinal. There exists a set 𝑇
and a family (ℱ𝑡)𝑡∈𝑇 of 𝜅-generated 𝒪𝑋-modules such that every 𝜅-generated 𝒪𝑋-module
is isomorphic to one of the ℱ𝑡.

Proof. There is a set of coverings of 𝑋 (provided we disallow repeats). Suppose 𝑋 = ⋃ 𝑈𝑖
is a covering and suppose ℱ𝑖 is an 𝒪𝑈𝑖

-module. Then there is a set of isomorphism classes
of 𝒪𝑋-modules ℱ with the property that ℱ|𝑈𝑖

≅ ℱ𝑖 since there is a set of glueingmaps. This
reduces us to proving there is a set of (isomorphism classes of) quotients ⊕𝑘∈𝜅𝒪𝑋 → ℱ for
any ringed space 𝑋. This is clear. �

Here is the result the title of this section refers to.

Lemma 23.21.3. Let 𝑋 be a scheme. There exists a cardinal 𝜅 such that every quasi-
coherent module ℱ is the directed colimit of its quasi-coherent 𝜅-generated quasi-coherent
subsheaves.

Proof. Choose an affine open covering 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖. For each pair 𝑖, 𝑗 choose an affine
open covering 𝑈𝑖 ∩ 𝑈𝑗 = ⋃𝑘∈𝐼𝑖𝑗

𝑈𝑖𝑗𝑘. Write 𝑈𝑖 = Spec(𝐴𝑖) and 𝑈𝑖𝑗𝑘 = Spec(𝐴𝑖𝑗𝑘). Let 𝜅
be any infinite cardinal ≥ than the cardinality of any of the sets 𝐼, 𝐼𝑖𝑗.

Let ℱ be a quasi-coherent sheaf. Set 𝑀𝑖 = ℱ(𝑈𝑖) and 𝑀𝑖𝑗𝑘 = ℱ(𝑈𝑖𝑗𝑘). Note that

𝑀𝑖 ⊗𝐴𝑖
𝐴𝑖𝑗𝑘 = 𝑀𝑖𝑗𝑘 = 𝑀𝑗 ⊗𝐴𝑗

𝐴𝑖𝑗𝑘.

2Nicely explained in a blog post by Akhil Mathew.
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see Schemes, Lemma 21.7.3. Using the axiom of choice we choose a map
(𝑖, 𝑗, 𝑘, 𝑚) ↦ 𝑆(𝑖, 𝑗, 𝑘, 𝑚)

which associates to every 𝑖, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼𝑖𝑗 and 𝑚 ∈ 𝑀𝑖 a finite subset 𝑆(𝑖, 𝑗, 𝑘, 𝑚) ⊂ 𝑀𝑗
such that we have

𝑚 ⊗ 1 = ∑𝑚′∈𝑆(𝑖,𝑗,𝑘,𝑚)
𝑚′ ⊗ 𝑎𝑚′

in 𝑀𝑖𝑗𝑘 for some 𝑎𝑚′ ∈ 𝐴𝑖𝑗𝑘. Moreover, let's agree that 𝑆(𝑖, 𝑖, 𝑘, 𝑚) = {𝑚} for all 𝑖, 𝑗 =
𝑖, 𝑘, 𝑚 as above. Fix such a map.
Given a family 𝒮 = (𝑆𝑖)𝑖∈𝐼 of subsets 𝑆𝑖 ⊂ 𝑀𝑖 of cardinality at most 𝜅 we set 𝒮′ = (𝑆′

𝑖 )
where

𝑆′
𝑗 = ⋃(𝑖,𝑗,𝑘,𝑚) such that 𝑚∈𝑆𝑖

𝑆(𝑖, 𝑗, 𝑘, 𝑚)

Note that 𝑆𝑖 ⊂ 𝑆′
𝑖 . Note that 𝑆′

𝑖 has cardinality at most 𝜅 because it is a union over a set of
cardinality at most 𝜅 of finite sets. Set 𝒮(0) = 𝒮, 𝒮(1) = 𝒮′ and by induction 𝒮(𝑛+1) = (𝒮(𝑛))′.
Then set 𝒮(∞) = ⋃𝑛≥0 𝒮(𝑛). Writing 𝒮(∞) = (𝑆(∞)

𝑖 ) we see that for any element 𝑚 ∈ 𝑆(∞)
𝑖

the image of 𝑚 in 𝑀𝑖𝑗𝑘 can be written as a finite sum ∑ 𝑚′ ⊗ 𝑎𝑚′ with 𝑚′ ∈ 𝑆(∞)
𝑗 . In this

way we see that setting

𝑁𝑖 = 𝐴𝑖-submodule of 𝑀𝑖 generated by 𝑆(∞)
𝑖

we have
𝑁𝑖 ⊗𝐴𝑖

𝐴𝑖𝑗𝑘 = 𝑁𝑗 ⊗𝐴𝑗
𝐴𝑖𝑗𝑘.

as submodules of 𝑀𝑖𝑗𝑘. Thus there exists a quasi-coherent subsheaf 𝒢 ⊂ ℱ with 𝒢(𝑈𝑖) =
𝑁𝑖. Moreover, by construction the sheaf 𝒢 is 𝜅-generated.
Let {𝒢𝑡}𝑡∈𝑇 be the set of 𝜅-generated quasi-coherent subsheaves. If 𝑡, 𝑡′ ∈ 𝑇 then 𝒢𝑡 + 𝒢𝑡′

is also a 𝜅-generated quasi-coherent subsheaf as it is the image of the map 𝒢𝑡 ⊕ 𝒢𝑡′ → ℱ.
Hence the system (ordered by inclusion) is directed. The arguments above show that every
section of ℱ over 𝑈𝑖 is in one of the 𝒢𝑡 (because we can start with 𝒮 such that the given
section is an element of 𝑆𝑖). Hence 𝑐𝑜𝑙𝑖𝑚𝑡 𝒢𝑡 → ℱ is both injective and surjective as
desired. �

Proposition 23.21.4. Let 𝑋 be a scheme. The inclusion functor QCoh(𝒪𝑋) → Mod(𝒪𝑋)
has a right adjoint

𝑄3 ∶ Mod(𝒪𝑋) ⟶ QCoh(𝒪𝑋)
such that for every quasi-coherent sheaf ℱ the adjunction mapping 𝑄(ℱ) → ℱ is an iso-
morphism. Moreover, the category QCoh(𝒪𝑋) has limits and enough injectives.
Proof. The two assertions about 𝑄(ℱ) → ℱ and limits in QCoh(𝒪𝑋) are formal con-
sequences of the existence of 𝑄, the fact that the inclusion is fully faithful, and the fact
that Mod(𝒪𝑋) has limits (see Modules, Section 15.3). The existence of injectives follows
from the existence of injectives inMod(𝒪𝑋) (see Injectives, Lemma 17.9.1) and Homology,
Lemma 10.22.3. Thus it suffices to construct 𝑄.
Pick a cardinal 𝜅 as in Lemma 23.21.3. Pick a collection (ℱ𝑡)𝑡∈𝑇 of 𝜅-generated quasi-
coherent sheaves as in Lemma 23.21.2. Given an object 𝒢 of QCoh(𝒪𝑋) we set

𝑄(𝒢) = 𝑐𝑜𝑙𝑖𝑚(𝑡,𝛼) ℱ𝑡

The colimit is over the category of pairs (𝑡, 𝛼) where 𝑡 ∈ 𝑇 and 𝛼 ∶ ℱ𝑡 → 𝒢 is a morphism
of 𝒪𝑋-modules. A morphism (𝑡, 𝛼) → (𝑡′, 𝛼′) is given by a morphism 𝛽 ∶ ℱ𝑡 → ℱ𝑡′ such

3This functor is sometimes called the coherator.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=077P
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that 𝛼′ ∘ 𝛽 = 𝛼. By Schemes, Section 21.24 the colimit is quasi-coherent. Note that there is
a canonical map 𝑄(𝒢) → 𝒢 by definition of the colimit. The formula

𝐻𝑜𝑚(ℋ, 𝑄(𝒢)) = 𝐻𝑜𝑚(ℋ, 𝒢)

holds for 𝜅-generated quasi-coherent modules ℋ by choice of the system (ℱ𝑡)𝑡∈𝑇. It follows
formally from Lemma 23.21.3 that this equality continuous to hold for any quasi-coherent
module ℋ on 𝑋. This finishes the proof. �

23.22. Sections of quasi-coherent sheaves

Here is a computation of sections of a quasi-coherent sheaf on a quasi-compact open of an
affine spectrum.

Lemma 23.22.1. Let 𝐴 be a ring. Let 𝐼 ⊂ 𝐴 be a finitely generated ideal. Let 𝑀 be an
𝐴-module. Then there is a canonical map

𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝐴(𝐼𝑛, 𝑀) ⟶ Γ(𝑆𝑝𝑒𝑐(𝐴) ⧵ 𝑉(𝐼), 𝑀).

This map is always injective. If for all 𝑥 ∈ 𝑀 we have 𝐼𝑥 = 0 ⇒ 𝑥 = 0 then this map is an
isomorphism. In general, set 𝑀𝑛 = {𝑥 ∈ 𝑀 ∣ 𝐼𝑛𝑥 = 0}, then there is an isomorphism

𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝐴(𝐼𝑛, 𝑀/𝑀𝑛) ⟶ Γ(𝑆𝑝𝑒𝑐(𝐴) ⧵ 𝑉(𝐼), 𝑀).

Proof. Since 𝐼𝑛 ⊂ 𝐼𝑛+1 and 𝑀𝑛 ⊂ 𝑀𝑛+1 we can use composition via these maps to get
canonical maps of 𝐴-modules

𝐻𝑜𝑚𝐴(𝐼𝑛, 𝑀) ⟶ 𝐻𝑜𝑚𝐴(𝐼𝑛+1, 𝑀)

and
𝐻𝑜𝑚𝐴(𝐼𝑛, 𝑀/𝑀𝑛) ⟶ 𝐻𝑜𝑚𝐴(𝐼𝑛+1, 𝑀/𝑀𝑛+1)

which we will use as the transition maps in the systems. Given an 𝐴-module map 𝜑 ∶
𝐼𝑛 → 𝑀, then we get a map of sheaves �̃� ∶ ̃𝐼 → 𝑀 which we can restrict to the open
𝑆𝑝𝑒𝑐(𝐴) ⧵ 𝑉(𝐼). Since ̃𝐼 restricted to this open gives the structure sheaf we get an element
of Γ(𝑆𝑝𝑒𝑐(𝐴)⧵𝑉(𝐼), 𝑀). We omit the verification that this is compatible with the transition
maps in the system 𝐻𝑜𝑚𝐴(𝐼𝑛, 𝑀). This gives the first arrow. To get the second arrow we
note that 𝑀 and 𝑀/𝑀𝑛 agree over the open 𝑆𝑝𝑒𝑐(𝐴) ⧵ 𝑉(𝐼) since the sheaf 𝑀𝑛 is clearly
supported on 𝑉(𝐼). Hence we can use the same mechanism as before.

Next, we work out how to define this arrow in terms of algebra. Say 𝐼 = (𝑓1, … , 𝑓𝑡). Then
𝑆𝑝𝑒𝑐(𝐴) ⧵ 𝑉(𝐼) = ⋃𝑖=1,…,𝑡 𝐷(𝑓𝑖). Hence

0 → Γ(𝑆𝑝𝑒𝑐(𝐴) ⧵ 𝑉(𝐼), 𝑀) → ⨁𝑖
𝑀𝑓𝑖

→ ⨁𝑖,𝑗
𝑀𝑓𝑖𝑓𝑗

is exact. Suppose that 𝜑 ∶ 𝐼𝑛 → 𝑀 is an 𝐴-module map. Consider the vector of elements
𝜑(𝑓𝑛

𝑖 )/𝑓𝑛
𝑖 ∈ 𝑀𝑓𝑖

. It is easy to see that this vector maps to zero in the second direct sum
of the exact sequence above. Whence an element of Γ(𝑆𝑝𝑒𝑐(𝐴) ⧵ 𝑉(𝐼), 𝑀). We omit the
verification that this description agrees with the one given above.

Let us show that the first arrow is injective using this description. Namely, if 𝜑 maps to
zero, then for each 𝑖 the element 𝜑(𝑓𝑛

𝑖 )/𝑓𝑛
𝑖 is zero in 𝑀𝑓𝑖

. In other words we see that for each
𝑖 we have 𝑓𝑚

𝑖 𝜑(𝑓𝑛
𝑖 ) = 0 for some 𝑚 ≥ 0. We may choose a single 𝑚 which works for all 𝑖.

Then we see that 𝜑(𝑓𝑛+𝑚
𝑖 ) = 0 for all 𝑖. It is easy to see that this means that 𝜑|𝐼𝑡(𝑛+𝑚−1)+1 = 0

in other words that 𝜑 maps to zero in the 𝑡(𝑛 + 𝑚 − 1) + 1st term of the colimit. Hence
injectivity follows.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01PM
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Note that each 𝑀𝑛 = 0 in case we have 𝐼𝑥 = 0 ⇒ 𝑥 = 0 for 𝑥 ∈ 𝑀. Thus to finish the
proof of the lemma it suffices to show that the second arrow is an isomorphism.
Let us attempt to construct an inverse of the second map of the lemma. Let 𝑠 ∈ Γ(𝑆𝑝𝑒𝑐(𝐴)⧵
𝑉(𝐼), 𝑀). This corresponds to a vector 𝑥𝑖/𝑓𝑛

𝑖 with 𝑥𝑖 ∈ 𝑀 of the first direct sum of the exact
sequence above. Hence for each 𝑖, 𝑗 there exists 𝑚 ≥ 0 such that 𝑓𝑚

𝑖 𝑓𝑚
𝑗 (𝑓𝑛

𝑗 𝑥𝑖 − 𝑓𝑛
𝑖 𝑥𝑗) = 0

in 𝑀. We may choose a single 𝑚 which works for all pairs 𝑖, 𝑗. After replacing 𝑥𝑖 by 𝑓𝑚
𝑖 𝑥𝑖

and 𝑛 by 𝑛 + 𝑚 we see that we get 𝑓𝑛
𝑗 𝑥𝑖 = 𝑓𝑛

𝑖 𝑥𝑗 in 𝑀 for all 𝑖, 𝑗. Let us introduce

𝐾𝑛 = {𝑥 ∈ 𝑀 ∣ 𝑓𝑛
1𝑥 = … = 𝑓𝑛

𝑡 𝑥 = 0}
We claim there is an 𝐴-module map

𝜑 ∶ 𝐼𝑡(𝑛−1)+1 ⟶ 𝑀/𝐾𝑛

which maps the monomial 𝑓𝑒1
1 … 𝑓𝑒𝑡

𝑡 with ∑ 𝑒𝑖 = 𝑡(𝑛 − 1) + 1 to the class modulo 𝐾𝑛 of
the expression 𝑓𝑒1

1 … 𝑓𝑒𝑖−𝑛
𝑖 … 𝑓𝑒𝑡

𝑡 𝑥𝑖 where 𝑖 is chosen such that 𝑒𝑖 ≥ 𝑛 (note that there is at
least one such 𝑖). To see that this is indeed the case suppose that

∑𝐸=(𝑒1,…,𝑒𝑡),|𝐸|=𝑡(𝑛−1)+1
𝑎𝐸𝑓𝑒1

1 … 𝑓𝑒𝑡
𝑡 = 0

is a relation between the monomials with coefficients 𝑎𝐸 in 𝐴. Then we would map this to

𝑧 = ∑𝐸=(𝑒1,…,𝑒𝑡),|𝐸|=𝑡(𝑛−1)+1
𝑎𝐸𝑓𝑒1

1 … 𝑓
𝑒𝑖(𝐸)−𝑛
𝑖(𝐸) … 𝑓𝑒𝑡

𝑡 𝑥𝑖

where for each multiindex 𝐸 we have chosen a particular 𝑖(𝐸) such that 𝑒𝑖(𝐸) ≥ 𝑛. Note
that if we multiply this by 𝑓𝑛

𝑗 for any 𝑗, then we get zero, since by the relations 𝑓𝑛
𝑗 𝑥𝑖 = 𝑓𝑛

𝑖 𝑥𝑗
above we get

𝑓𝑛
𝑗 𝑧 = ∑𝐸=(𝑒1,…,𝑒𝑡),|𝐸|=𝑡(𝑛−1)+1

𝑎𝐸𝑓𝑒1
1 … 𝑓

𝑒𝑗+𝑛
𝑗 … 𝑓

𝑒𝑖(𝐸)−𝑛
𝑖(𝐸) … 𝑓𝑒𝑡

𝑡 𝑥𝑖

= ∑𝐸=(𝑒1,…,𝑒𝑡),|𝐸|=𝑡(𝑛−1)+1
𝑎𝐸𝑓𝑒1

1 … 𝑓𝑒𝑡
𝑡 𝑥𝑗 = 0.

Hence 𝑧 ∈ 𝐾𝑛 and we see that every relation gets mapped to zero in 𝑀/𝐾𝑛. This proves
the claim.
Note that 𝐾𝑛 ⊂ 𝑀𝑡(𝑛−1)+1. Hence the map 𝜑 in particular gives rise to a 𝐴-module map
𝐼𝑡(𝑛−1)+1 → 𝑀/𝑀𝑡(𝑛−1)+1. This proves the second arrow of the lemma is surjective. We
omit the proof of injectivity. �

Example 23.22.2. Let 𝑘 be a field. Consider the ring
𝐴 = 𝑘[𝑓, 𝑔, 𝑥, 𝑦, {𝑎𝑛, 𝑏𝑛}𝑛≥1]/(𝑓𝑦 − 𝑔𝑥, {𝑎𝑛𝑓𝑛 + 𝑏𝑛𝑔𝑛}𝑛≥1).

Then 𝑥/𝑓 ∈ 𝐴𝑓 and 𝑦/𝑔 ∈ 𝐴𝑔 map to the same element of 𝐴𝑓𝑔. Hence these define a
section 𝑠 of the structure sheaf of 𝑆𝑝𝑒𝑐(𝐴) over 𝐷(𝑓) ∪ 𝐷(𝑔) = 𝑆𝑝𝑒𝑐(𝐴) ⧵ 𝑉(𝐼). Here
𝐼 = (𝑓, 𝑔) ⊂ 𝐴. However, there is no 𝑛 ≥ 0 such that 𝑠 comes from an 𝐴-module map
𝜑 ∶ 𝐼𝑛 → 𝐴 as in the source of the first displayed arrow of Lemma 23.22.1. Namely,
given such a module map set 𝑥𝑛 = 𝜑(𝑓𝑛) and 𝑦𝑛 = 𝜑(𝑔𝑛). Then 𝑓𝑚𝑥𝑛 = 𝑓𝑛+𝑚−1𝑥 and
𝑔𝑚𝑦𝑛 = 𝑔𝑛+𝑚−1𝑦 for some 𝑚 ≥ 0 (see proof of the lemma). But then we would have
0 = 𝜑(0) = 𝜑(𝑎𝑛+𝑚𝑓𝑛+𝑚 + 𝑏𝑛+𝑚𝑔𝑛+𝑚) = 𝑎𝑛+𝑚𝑓𝑛+𝑚−1𝑥 + 𝑏𝑛+𝑚𝑔𝑛+𝑚−1𝑦 which is not the
case in the ring 𝐴.

Lemma 23.22.3. Let 𝑋 be a scheme. Let ℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of ideals. Let
ℱ be a quasi-coherent 𝒪𝑋-module. Consider the sheaf of 𝒪𝑋-modules ℱ′ which associates
to every open 𝑈 ⊂ 𝑋

ℱ′(𝑈) = {𝑠 ∈ ℱ(𝑈) ∣ ℐ𝑠 = 0}

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01PN
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Assume ℐ is of finite type. Then
(1) ℱ′ is a quasi-coherent sheaf of 𝒪𝑋-modules,
(2) on any affine open 𝑈 ⊂ 𝑋 we have ℱ′(𝑈) = {𝑠 ∈ ℱ(𝑈) ∣ ℐ(𝑈)𝑠 = 0}, and
(3) ℱ′

𝑥 = {𝑠 ∈ ℱ𝑥 ∣ ℐ𝑥𝑠 = 0}.

Proof. It is clear that the rule defining ℱ′ gives a subsheaf of ℱ (the sheaf condition is
easy to verify). Hence we may work locally on 𝑋 to verify the other statements. In other
words we may assume that 𝑋 = 𝑆𝑝𝑒𝑐(𝐴), ℱ = 𝑀 and ℐ = ̃𝐼. It is clear that in this case
ℱ′(𝑈) = {𝑥 ∈ 𝑀 ∣ 𝐼𝑥 = 0} =∶ 𝑀′ because ̃𝐼 is generated by its global sections 𝐼 which
proves (2). To show ℱ′ is quasi-coherent it suffices to show that for every 𝑓 ∈ 𝐴 we have
{𝑥 ∈ 𝑀𝑓 ∣ 𝐼𝑓𝑥 = 0} = (𝑀′)𝑓. Write 𝐼 = (𝑔1, … , 𝑔𝑡), which is possible because ℐ is of
finite type, see Lemma 23.16.1. If 𝑥 = 𝑦/𝑓𝑛 and 𝐼𝑓𝑥 = 0, then that means that for every
𝑖 there exists an 𝑚 ≥ 0 such that 𝑓𝑚𝑔𝑖𝑥 = 0. We may choose one 𝑚 which works for all
𝑖 (and this is where we use that 𝐼 is finitely generated). Then we see that 𝑓𝑚𝑥 ∈ 𝑀′ and
𝑥/𝑓𝑛 = 𝑓𝑚𝑥/𝑓𝑛+𝑚 in (𝑀′)𝑓 as desired. The proof of (3) is similar and omitted. �

Definition 23.22.4. Let 𝑋 be a scheme. Let ℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of ideals
of finite type. Let ℱ be a quasi-coherent 𝒪𝑋-module. The subsheaf ℱ′ ⊂ ℱ defined in
Lemma 23.22.3 above is called the subsheaf of sections annihilated by ℐ.

Lemma 23.22.5. Let 𝑋 be a scheme. Let ℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of ideals. Let
𝑍 ⊂ 𝑋 be the closed subscheme defined by ℐ and set 𝑈 = 𝑋⧵𝑍. Let ℱ be a quasi-coherent
𝒪𝑋-module. Assume that 𝑋 is quasi-compact and quasi-separated and that ℐ is of finite
type. Let ℱ𝑛 ⊂ ℱ be subsheaf of sections annihilated by ℐ𝑛. The canonical map

𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝒪𝑋
(ℐ𝑛, ℱ) ⟶ Γ(𝑈, ℱ)

is injective and the canonical map

𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝒪𝑋
(ℐ𝑛, ℱ/ℱ𝑛) ⟶ Γ(𝑈, ℱ)

is an isomorphism.

Proof. Let 𝑆𝑝𝑒𝑐(𝐴) = 𝑊 ⊂ 𝑋 be an affine open. Write ℱ|𝑊 = 𝑀 for some 𝐴-module 𝑀
and ℐ|𝑊 = ̃𝐼 for some ideal 𝐼 ⊂ 𝐴. We omit the verification that ℱ𝑛 = 𝑀𝑛 where 𝑀𝑛 ⊂ 𝑀
is defined as in Lemma 23.22.1. This proves (1). It also follows from Lemma 23.22.1 that
we have an injection

𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝒪𝑊
(ℐ𝑛|𝑊, ℱ|𝑊) ⟶ Γ(𝑈 ∩ 𝑊, ℱ)

and a bijection

𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝒪𝑊
(ℐ𝑛|𝑊, (ℱ/ℱ𝑛)|𝑊) ⟶ Γ(𝑈 ∩ 𝑊, ℱ)

for any such affine open 𝑊.

To see (2) we choose a finite affine open covering 𝑋 = ⋃𝑗=1,…,𝑚 𝑊𝑗. The injectivity of
the first arrow of (2) follows immediately from the above and the finiteness of the covering.
Moreover for each pair 𝑗, 𝑗′ we choose a finite affine open covering

𝑊𝑗 ∩ 𝑊𝑗′ = ⋃𝑘=1,…,𝑚𝑗𝑗′
𝑊𝑗𝑗′𝑘.

Let 𝑠 ∈ Γ(𝑈, ℱ). As seen above for each 𝑗 there exists an 𝑛𝑗 and a map 𝜑𝑗 ∶ ℐ𝑛𝑗|𝑊𝑗
→

(ℱ/ℱ𝑛𝑗
)|𝑊𝑗

which corresponds to 𝑠|𝑊𝑗
. By the same token for each triple (𝑗, 𝑗′, 𝑘) there

exists an integer 𝑛𝑗𝑗′𝑘 such that the restriction of 𝜑𝑗 and 𝜑𝑗′ as maps ℐ𝑛𝑗𝑗′𝑘 → ℱ/ℱ𝑛𝑗𝑗′𝑘
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agree over 𝑊𝑗𝑗′𝑙. Let 𝑛 = max{𝑛𝑗, 𝑛𝑗𝑗′𝑘} and we see that the 𝜑𝑗 glue as maps ℐ𝑛 → ℱ/ℱ𝑛
over 𝑋. This proves surjectivity of the map. We omit the proof of injectivity. �

23.23. Ample invertible sheaves

Recall from Modules, Lemma 15.21.7 that given an invertible sheaf ℒ on a locally ringed
space 𝑋, and given a global section 𝑠 of ℒ the set 𝑋𝑠 = {𝑥 ∈ 𝑋 ∣ 𝑠∉𝔪𝑥ℒ𝑥} is open. A
general remark is that 𝑋𝑠∩𝑋𝑠′ = 𝑋𝑠𝑠′, where 𝑠𝑠′ denote the section 𝑠⊗𝑠′ ∈ Γ(𝑋, ℒ⊗ℒ′).

Definition 23.23.1. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. We say ℒ is
ample if

(1) 𝑋 is quasi-compact, and
(2) for every 𝑥 ∈ 𝑋 there exists an 𝑛 ≥ 1 and 𝑠 ∈ Γ(𝑋, ℒ⊗𝑛) such that 𝑥 ∈ 𝑋𝑠 and

𝑋𝑠 is affine.

Lemma 23.23.2. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑛 ≥ 1. Then
ℒ is ample if and only if ℒ⊗𝑛 is ample.

Proof. This follows from the fact that 𝑋𝑠𝑛 = 𝑋𝑠. �

Lemma 23.23.3. Let 𝑋 be a scheme. Let ℒ be an ample invertible 𝒪𝑋-module. For any
closed subscheme 𝑍 ⊂ 𝑋 the restriction of ℒ to 𝑍 is ample.

Proof. This is clear since a closed subset of a quasi-compact space is quasi-compact and a
closed subscheme of an affine scheme is affine (see Schemes, Lemma 21.8.2). �

Lemma 23.23.4. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠 ∈ Γ(𝑋, ℒ).
For any affine 𝑈 ⊂ 𝑋 the intersection 𝑈 ∩ 𝑋𝑠 is affine.

Proof. This translates into the following algebra problem. Let 𝑅 be a ring. Let 𝑁 be
an invertible 𝑅-module (i.e., locally free of rank 1). Let 𝑠 ∈ 𝑁 be an element. Then
𝑈 = {𝔭 ∣ 𝑠∉𝔭𝑁} is an affine open subset of 𝑆𝑝𝑒𝑐(𝑅). This you can see as follows. Think
of 𝑠 as an 𝑅-module map 𝑅 → 𝑁. This gives rise to 𝑅-module maps 𝑁⊗𝑘 → 𝑁⊗𝑘+1.
Consider

𝑅′ = 𝑐𝑜𝑙𝑖𝑚𝑛 𝑁⊗𝑛

with transition maps as above. Define an 𝑅-algebra structure on 𝑅′ by the rule 𝑥 ⋅ 𝑦 =
𝑥 ⊗ 𝑦 ∈ 𝑁⊗𝑛+𝑚 if 𝑥 ∈ 𝑁⊗𝑛 and 𝑦 ∈ 𝑁⊗𝑚. We claim that 𝑆𝑝𝑒𝑐(𝑅′) → 𝑆𝑝𝑒𝑐(𝑅) is an open
immersion with image 𝑈.
To prove this is a local question on 𝑆𝑝𝑒𝑐(𝑅). Let 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝑅). Pick 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that
𝑁𝑓 ≅ 𝑅𝑓 as a module. Replacing 𝑅 by 𝑅𝑓, 𝑁 by 𝑁𝑓 and 𝑅′ by 𝑅′

𝑓 = 𝑐𝑜𝑙𝑖𝑚 𝑁⊗𝑛
𝑓 we may

assume that 𝑁 ≅ 𝑅. Say 𝑁 = 𝑅. In this case 𝑠 is an element of 𝑅 and it is easy to see that
𝑅′ ≅ 𝑅𝑠. Thus the lemma follows. �

Recall that given a scheme𝑋 and an invertible sheafℒ on𝑋we get a graded ringΓ∗(𝑋, ℒ) =
⨁𝑛≥0 Γ(𝑋, ℒ⊗𝑛), see Modules, Definition 15.21.4. Also, given a sheaf of 𝒪𝑋-modules we
have the graded Γ∗(𝑋, ℒ)-module Γ∗(𝑋, ℱ) = Γ∗(𝑋, ℒ, ℱ).

Lemma 23.23.5. Let 𝑋 be a scheme. Let ℒ be an invertible sheaf on 𝑋. Let 𝑠 ∈ Γ(𝑋, ℒ).
If 𝑋 is quasi-compact and quasi-separated, the canonical map

Γ∗(𝑋, ℒ)(𝑠) ⟶ Γ(𝑋𝑠, 𝒪)
whichmaps 𝑎/𝑠𝑛 to 𝑎⊗𝑠−𝑛 is an isomorphism. Moreover, ifℱ is a quasi-coherent𝒪𝑋-module
then the map

Γ∗(𝑋, ℒ, ℱ)(𝑠) ⟶ Γ(𝑋𝑠, ℱ)
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is an isomorphism.

Proof. Consider the scheme

𝜋 ∶ 𝐿∗ = 𝑆𝑝𝑒𝑐
𝑋 (⨁𝑛∈𝐙

ℒ⊗𝑛
) ⟶ 𝑋

see Constructions, Section 22.4. Since the inverse image𝜋−1(𝑈) of every affine open𝑈 ⊂ 𝑋
is affine (see Constructions, Lemma 22.4.6), it follows that 𝐿∗ quasi-compact and separated,
since 𝑋 is assumed quasi-compact and separated (use Schemes, Lemma 21.21.7). Note
that 𝑠 gives rise to an element 𝑓 ∈ Γ(𝐿∗, 𝒪), via 𝜋∗𝒪𝐿∗ = ⨁𝑛∈𝐙 ℒ⊗𝑛. Note that (𝐿∗)𝑓 =
𝜋−1(𝑋𝑠). Hence we have

(⨁𝑛∈𝐙
Γ(𝑋, ℒ⊗𝑛))𝑠

= Γ(𝐿∗, 𝒪𝐿∗)𝑓

= Γ((𝐿∗)𝑓, 𝒪𝐿∗)

= ⨁𝑛∈𝐙
Γ(𝑋𝑠, ℒ⊗𝑛)

where themiddle ``='' is Lemma 23.15.2. The first statement of the lemma follows from this
equality by looking at degree zero terms. The second statement also follows from Lemma
23.15.2 applied to the quasi-coherent sheaf of 𝒪𝐿∗-modules 𝜋∗ℱ using that

𝜋∗𝜋∗ℱ = ℱ ⊗𝒪𝑋 (⨁𝑛∈𝐙
ℒ⊗𝑛

) = ⨁𝑛∈𝐙
ℱ ⊗𝒪𝑋

ℒ⊗𝑛

which is proved by computing both sides on affine opens of 𝑋. �

Lemma 23.23.6. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Assume the open
sets 𝑋𝑠, where 𝑠 ∈ Γ(𝑋, ℒ⊗𝑛) and 𝑛 ≥ 1, form a basis for the topology on 𝑋. Then among
those opens, the open sets 𝑋𝑠 which are affine form a basis for the topology on 𝑋.

Proof. Let 𝑥 ∈ 𝑋. Choose an affine open neighbourhood 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 of 𝑥. By
assumption, there exists a 𝑛 ≥ 1 and a 𝑠 ∈ Γ(𝑋, ℒ⊗𝑛) such that 𝑋𝑠 ⊂ 𝑈. By Lemma
23.23.4 above the intersection 𝑋𝑠 = 𝑈 ∩ 𝑋𝑠 is affine. Since 𝑈 can be chosen arbitrarily
small we win. �

Lemma 23.23.7. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Assume for every
point 𝑥 of 𝑋 there exists 𝑛 ≥ 1 and 𝑠 ∈ Γ(𝑋, ℒ⊗𝑛) such that 𝑥 ∈ 𝑋𝑠 and 𝑋𝑠 is affine. Then
𝑋 is quasi-separated.

Proof. By assumption we can find a covering of 𝑋 by affine opens of the form 𝑋𝑠. By
Schemes, Lemma 21.21.7 it suffices to show that 𝑋𝑠 ∩ 𝑋𝑠′ is quasi-compact whenever 𝑋𝑠
is affine. This is true by Lemma 23.23.4. �

Lemma 23.23.8. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Set 𝑆 = Γ∗(𝑋, ℒ)
as a graded ring. If every point of 𝑋 is contained in one of the open subschemes 𝑋𝑠, for
some 𝑠 ∈ 𝑆+ homogeneous, then there is a canonical morphism of schemes

𝑓 ∶ 𝑋 ⟶ 𝑌 = Proj(𝑆),
to the homogeneous spectrum of 𝑆 (see Constructions, Section 22.8). This morphism has
the following properties

(1) 𝑓−1(𝐷+(𝑠)) = 𝑋𝑠 for any 𝑠 ∈ 𝑆+ homogeneous,
(2) there are𝒪𝑌-module maps 𝑓∗𝒪𝑌(𝑛) → ℒ⊗𝑛 compatible with multiplication maps,

see Constructions, Equation (22.10.1.1),
(3) the compositions 𝑆𝑛 → Γ(𝑌, 𝒪𝑌(𝑛)) → Γ(𝑋, ℒ⊗𝑛) are equal to the identity maps,

and
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(4) for every 𝑥 ∈ 𝑋 there is an integer 𝑑 ≥ 1 and an open neighbourhood 𝑈 ⊂ 𝑋 of
𝑥 such that 𝑓∗𝒪𝑌(𝑑𝑛)|𝑈 → ℒ⊗𝑑𝑛|𝑈 is an isomorphism for all 𝑛 ∈ 𝐙.

Proof. Denote 𝜓 ∶ 𝑆 → Γ∗(𝑋, ℒ) the identity map. We are going to use the triple
(𝑈(𝜓), 𝑟ℒ,𝜓, 𝜃) of Constructions, Lemma 22.14.1. By assumption the open subscheme 𝑈(𝜓)
of equals 𝑋. Hence 𝑟ℒ,𝜓 ∶ 𝑈(𝜓) → 𝑌 is defined on all of 𝑋. We set 𝑓 = 𝑟ℒ,𝜓. The maps
in part (2) are the components of 𝜃. Part (3) follows from condition (2) in the lemma cited
above. Part (1) follows from (3) combined with condition (1) in the lemma cited above.
Part (4) follows from the last statement in Constructions, Lemma 22.14.1 since the map 𝛼
mentioned there is an isomorphism. �

Lemma 23.23.9. Let𝑋 be a scheme. Letℒ be an invertible𝒪𝑋-module. Set𝑆 = Γ∗(𝑋, ℒ).
Assume (a) every point of 𝑋 is contained in one of the open subschemes 𝑋𝑠, for some 𝑠 ∈
𝑆+ homogeneous, and (b) 𝑋 is quasi-compact. Then the canonical morphism of schemes
𝑓 ∶ 𝑋 ⟶ Proj(𝑆) of Lemma 23.23.8 above is quasi-compact.

Proof. It suffices to show that 𝑓−1(𝐷+(𝑠)) is quasi-compact for any 𝑠 ∈ 𝑆+ homogeneous.
Write 𝑋 = ⋃𝑖=1,…,𝑛 𝑋𝑖 as a finite union of affine opens. By Lemma 23.23.4 each intersec-
tion 𝑋𝑠 ∩ 𝑋𝑖 is affine. Hence 𝑋𝑠 = ⋃𝑖=1,…,𝑛 𝑋𝑠 ∩ 𝑋𝑖 is quasi-compact. �

Lemma 23.23.10. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Set 𝑆 =
Γ∗(𝑋, ℒ). Assume ℒ is ample. Then the canonical morphism of schemes 𝑓 ∶ 𝑋 ⟶
Proj(𝑆) of Lemma 23.23.8 is an open immersion.

Proof. ByLemma 23.23.7we see that𝑋 is quasi-separated. Choose finitelymany 𝑠1, … , 𝑠𝑛 ∈
𝑆+ homogeneous such that 𝑋𝑠𝑖

are affine, and 𝑋 = ⋃ 𝑋𝑠𝑖
. Say 𝑠𝑖 has degree 𝑑𝑖. The in-

verse image of 𝐷+(𝑠𝑖) under 𝑓 is 𝑋𝑠𝑖
, see Lemma 23.23.8. By Lemma 23.23.5 the ring

map
(𝑆(𝑑𝑖))(𝑠𝑖) = Γ(𝐷+(𝑠𝑖), 𝒪Proj(𝑆)) ⟶ Γ(𝑋𝑠𝑖

, 𝒪𝑋)
is an isomorphism. Hence 𝑓 induces an isomorphism 𝑋𝑠𝑖

→ 𝐷+(𝑠𝑖). Thus 𝑓 is an isomor-
phism of 𝑋 onto the open subscheme ⋃𝑖=1,…,𝑛 𝐷+(𝑠𝑖) of Proj(𝑆). �

Lemma 23.23.11. Let 𝑋 be a scheme. Let 𝑆 be a graded ring. Assume 𝑋 is quasi-compact,
and assume there exists an open immersion

𝑗 ∶ 𝑋 ⟶ 𝑌 = Proj(𝑆).
Then 𝑗∗𝒪𝑌(𝑑) is an invertible ample sheaf for some 𝑑 > 0.

Proof. This is Constructions, Lemma 22.10.6. �

Proposition 23.23.12. Let 𝑋 be a quasi-compact scheme. Let ℒ be an invertible sheaf on
𝑋. Set 𝑆 = Γ∗(𝑋, ℒ). The following are equivalent:

(1) ℒ is ample,
(2) the open sets 𝑋𝑠, with 𝑠 ∈ 𝑆+ homogeneous, cover 𝑋 and the associated mor-

phism 𝑋 → Proj(𝑆) is an open immersion,
(3) the open sets 𝑋𝑠, with 𝑠 ∈ 𝑆+ homogeneous, form a basis for the topology of 𝑋,
(4) the open sets 𝑋𝑠, with 𝑠 ∈ 𝑆+ homogeneous, which are affine form a basis for

the topology of 𝑋,
(5) for every quasi-coherent sheaf ℱ on 𝑋 the sum of the images of the canonical

maps
Γ(𝑋, ℱ ⊗𝒪𝑋

ℒ⊗𝑛) ⊗𝐙 ℒ⊗−𝑛 ⟶ ℱ
with 𝑛 ≥ 1 equals ℱ,
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(6) same property as (5) with ℱ ranging over all quasi-coherent sheaves of ideals,
(7) 𝑋 is quasi-separated and for every quasi-coherent sheaf ℱ of finite type on 𝑋

there exists an integer 𝑛0 such that ℱ ⊗𝒪𝑋
ℒ⊗𝑛 is globally generated for all

𝑛 ≥ 𝑛0,
(8) 𝑋 is quasi-separated and for every quasi-coherent sheaf ℱ of finite type on 𝑋

there exist integers 𝑛 > 0, 𝑘 ≥ 0 such that ℱ is a quotient of a direct sum of 𝑘
copies of ℒ⊗−𝑛, and

(9) same as in (8) with ℱ ranging over all sheaves of ideals of finite type on 𝑋.

Proof. Lemma 23.23.10 is (1) ⇒ (2). Lemmas 23.23.2 and 23.23.11 provide the impli-
cation (1) ⇐ (2). The implications (2) ⇒ (4) ⇒ (3) are clear from Constructions, Section
22.8. Lemma 23.23.6 is (3) ⇒ (1). Thus we see that the first 4 conditions are all equivalent.
Assume the equivalent conditions (1) -- (4). Note that in particular 𝑋 is separated (as
an open subscheme of the separated scheme Proj(𝑆)). Let ℱ be a quasi-coherent sheaf
on 𝑋. Choose 𝑠 ∈ 𝑆+ homogeneous such that 𝑋𝑠 is affine. We claim that any section
𝑚 ∈ Γ(𝑋𝑠, ℱ) is in the image of one of the maps displayed in (5) above. This will imply (5)
since these affines 𝑋𝑠 cover 𝑋. Namely, by Lemma 23.23.5 we may write 𝑚 as the image
of 𝑚′ ⊗ 𝑠−𝑛 for some 𝑛 ≥ 1, some 𝑚′ ∈ Γ(𝑋, ℱ ⊗ ℒ⊗𝑛). This proves the claim.
Clearly (5) ⇒ (6). Let us assume (6) and prove ℒ is ample. Pick 𝑥 ∈ 𝑋. Let 𝑈 ⊂ 𝑋 be
an affine open which contains 𝑥. Set 𝑍 = 𝑋 ⧵ 𝑈. We may think of 𝑍 as a reduced closed
subscheme, see Schemes, Section 21.12. Let ℐ ⊂ 𝒪𝑋 be the quasi-coherent sheaf of ideals
corresponding to the closed subscheme 𝑍. By assumption (6), there exists an 𝑛 ≥ 1 and
a section 𝑠 ∈ Γ(𝑋, ℐ ⊗ ℒ⊗𝑛) such that 𝑠 does not vanish at 𝑥 (more precisely such that
𝑠∉𝔪𝑥ℐ𝑥 ⊗ℒ⊗𝑛

𝑥 ). We may think of 𝑠 as a section of ℒ⊗𝑛. Since it clearly vanishes along 𝑍
we see that 𝑋𝑠 ⊂ 𝑈. Hence 𝑋𝑠 is affine, see Lemma 23.23.4. This proves that ℒ is ample.
At this point we have proved that (1) -- (6) are equivalent.
Assume the equivalent conditions (1) -- (6). In the following we will use the fact that the
tensor product of two sheaves of modules which are globally generated is globally generated
without further mention (see Modules, Lemma 15.4.3). By (1) we can find elements 𝑠𝑖 ∈
𝑆𝑑𝑖

with 𝑑𝑖 ≥ 1 such that 𝑋 = ⋃𝑖=1,…,𝑛 𝑋𝑠𝑖
. Set 𝑑 = 𝑑1 … 𝑑𝑛. It follows that ℒ⊗𝑑 is

globally generated by
𝑠𝑑/𝑑1

1 , … , 𝑠𝑑/𝑑𝑛
𝑛 .

This means that if ℒ⊗𝑗 is globally generated then so is ℒ⊗𝑗+𝑑𝑛 for all 𝑛 ≥ 0. Fix a 𝑗 ∈
{0, … , 𝑑 − 1}. For any point 𝑥 ∈ 𝑋 there exists an 𝑛 ≥ 1 and a global section 𝑠 of ℒ𝑗+𝑑𝑛

which does not vanish at 𝑥, as follows from (5) applied to ℱ = ℒ⊗𝑗 and ample invertible
sheaf ℒ⊗𝑑. Since 𝑋 is quasi-compact there we may find a finite list of integers 𝑛𝑖 and
global sections 𝑠𝑖 of ℒ⊗𝑗+𝑑𝑛𝑖 which do not vanish at any point of 𝑋. Since ℒ⊗𝑑 is globally
generated this means that ℒ⊗𝑗+𝑑𝑛 is globally generated where 𝑛 = max{𝑛𝑖}. Since we
proved this for every congruence class mod 𝑑 we conclude that there exists an 𝑛0 = 𝑛0(ℒ)
such that ℒ⊗𝑛 is globally generated for all 𝑛 ≥ 𝑛0. At this point we see that if ℱ is globally
generated then so is ℱ ⊗ ℒ⊗𝑛 for all 𝑛 ≥ 𝑛0.
We continue to assume the equivalent conditions (1) -- (6). Let ℱ be a quasi-coherent sheaf
of 𝒪𝑋-modules of finite type. Denote ℱ𝑛 ⊂ ℱ the image of the canonical map of (5). By
construction ℱ𝑛 ⊗ℒ⊗𝑛 is globally generated. By (5) we see ℱ is the sum of the subsheaves
ℱ𝑛, 𝑛 ≥ 1. By Modules, Lemma 15.9.7 we see that ℱ = ∑𝑛=1,…,𝑁 ℱ𝑛 for some 𝑁 ≥ 1. It
follows that ℱ ⊗ ℒ⊗𝑛 is globally generated whenever 𝑛 ≥ 𝑁 + 𝑛0(ℒ) with 𝑛0(ℒ) as above.
We conclude that (1) -- (6) implies (7).
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Assume (7). Let ℱ be a quasi-coherent sheaf of 𝒪𝑋-modules of finite type. By (7) there
exists an integer 𝑛 ≥ 1 such that the canonical map

Γ(𝑋, ℱ ⊗𝒪𝑋
ℒ⊗𝑛) ⊗𝐙 ℒ⊗−𝑛 ⟶ ℱ

is surjective. Let 𝐼 be the set of finite subsets of Γ(𝑋, ℱ ⊗𝒪𝑋
ℒ⊗𝑛) partially ordered by

inclusion. Then 𝐼 is a directed partially ordered set. For 𝑖 = {𝑠1, … , 𝑠𝑟(𝑖)} let ℱ𝑖 ⊂ ℱ be
the image of the map

⨁𝑗=1,…,𝑟(𝑖)
ℒ⊗−𝑛 ⟶ ℱ

which is multiplication by 𝑠𝑗 on the 𝑗th factor. The surjectivity above implies that ℱ =
𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 ℱ𝑖. Hence Modules, Lemma 15.9.7 applies and we conclude that ℱ = ℱ𝑖 for
some 𝑖. Hence we have proved (8). In other words, (7) ⇒ (8).

The implication (8) ⇒ (9) is trivial.

Finally, assume (9). Let ℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of ideals. By Lemma 23.20.3
(this is where we use the condition that 𝑋 be quasi-separated) we see that ℐ = 𝑐𝑜𝑙𝑖𝑚𝛼 𝐼𝛼
with each 𝐼𝛼 quasi-coherent of finite type. Since by assumption each of the 𝐼𝛼 is a quotient
of negative tensor powers of ℒ we conclude the same for ℐ (but of course without the
finiteness or boundedness of the powers). Hence we conclude that (9) implies (6). This
ends the proof of the proposition. �

23.24. Affine and quasi-affine schemes

Lemma 23.24.1. Let 𝑋 be a scheme. Then 𝑋 is quasi-affine if and only if 𝒪𝑋 is ample.

Proof. Suppose that 𝑋 is quasi-affine. Consider the open immersion

𝑗 ∶ 𝑋 ⟶ 𝑆𝑝𝑒𝑐(Γ(𝑋, 𝒪𝑋))

fromLemma 23.15.4. Note that𝑆𝑝𝑒𝑐(𝐴) = Proj(𝐴[𝑇]), see Constructions, Example 22.8.14.
Hence we can apply Lemma 23.23.11 to deduce that 𝒪𝑋 is ample.

Suppose that 𝒪𝑋 is ample. Note that Γ∗(𝑋, 𝒪𝑋) ≅ Γ(𝑋, 𝒪𝑋)[𝑇] as graded rings. Hence
the result follows from Lemmas 23.23.10 and 23.15.4 taking into account that 𝑆𝑝𝑒𝑐(𝐴) =
Proj(𝐴[𝑇]) for any ring 𝐴 as seen above. �

Lemma 23.24.2. Let 𝑋 be a scheme. Suppose that there exist finitely many elements
𝑓1, … , 𝑓𝑛 ∈ Γ(𝑋, 𝒪𝑋) such that

(1) each 𝑋𝑓𝑖
is an affine open of 𝑋, and

(2) the ideal generated by 𝑓1, … , 𝑓𝑛 in Γ(𝑋, 𝒪𝑋) is equal to the unit ideal.
Then 𝑋 is affine.

Proof. Assume we have 𝑓1, … , 𝑓𝑛 as in the lemma. We may write 1 = ∑ 𝑔𝑖𝑓𝑖 for some
𝑔𝑗 ∈ Γ(𝑋, 𝒪𝑋) and hence it is clear that 𝑋 = ⋃ 𝑋𝑓𝑖

. (The 𝑓𝑖's cannot all vanish at a point.)
Since each 𝑋𝑓𝑖

is quasi-compact (being affine) it follows that 𝑋 is quasi-compact. Hence
we see that 𝑋 is quasi-affine by Lemma 23.24.1 above. Consider the open immersion

𝑗 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(Γ(𝑋, 𝒪𝑋)),

see Lemma 23.15.4. The inverse image of the standard open 𝐷(𝑓𝑖) on the right hand side is
equal to 𝑋𝑓𝑖

on the left hand side and the morphism 𝑗 induces an isomorphism 𝑋𝑓𝑖
≅ 𝐷(𝑓𝑖),

see Lemma 23.15.3. Since the 𝑓𝑖 generate the unit ideal we see that 𝑆𝑝𝑒𝑐(Γ(𝑋, 𝒪𝑋)) =
⋃𝑖=1,…,𝑛 𝐷(𝑓𝑖). Thus 𝑗 is an isomorphism. �
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23.25. Quasi-coherent sheaves and ample invertible sheaves

Situation 23.25.1. Let 𝑋 be a scheme. Let ℒ be an invertible sheaf on 𝑋. Assume ℒ
is ample. Set 𝑆 = Γ∗(𝑋, ℒ) as a graded ring. Set 𝑌 = Proj(𝑆). Let 𝑓 ∶ 𝑋 → 𝑌 be the
canonical morphism of Lemma 23.23.8. It comes equipped with a 𝐙-graded 𝒪𝑋-algebra
map ⨁ 𝑓∗𝒪𝑌(𝑛) → ⨁ ℒ⊗𝑛.

The following lemma is really a special case of the next lemma but it seems like a good
idea to point out its validity first.

Lemma 23.25.2. In Situation 23.25.1. The canonical morphism 𝑓 ∶ 𝑋 → 𝑌 maps 𝑋 into
the open subscheme 𝑊 = 𝑊1 ⊂ 𝑌 where 𝒪𝑌(1) is invertible and where all multiplication
maps𝒪𝑌(𝑛)⊗𝒪𝑌

𝒪𝑌(𝑚) → 𝒪𝑌(𝑛+𝑚) are isomorphisms (see Constructions, Lemma 22.10.4).
Moreover, the maps 𝑓∗𝒪𝑌(𝑛) → ℒ⊗𝑛 are all isomorphisms.

Proof. By Proposition 23.23.12 there exists an integer 𝑛0 such that ℒ⊗𝑛 is globally gener-
ated for all 𝑛 ≥ 𝑛0. Let 𝑥 ∈ 𝑋 be a point. By the above we can find 𝑎 ∈ 𝑆𝑛0

and 𝑏 ∈ 𝑆𝑛0+1
such that 𝑎 and 𝑏 do not vanish at 𝑥. Hence 𝑓(𝑥) ∈ 𝐷+(𝑎) ∩ 𝐷+(𝑏) = 𝐷+(𝑎𝑏). By Con-
structions, Lemma 22.10.4 we see that 𝑓(𝑥) ∈ 𝑊1 as desired. By Constructions, Lemma
22.14.1 which was used in the construction of the map 𝑓 the maps 𝑓∗𝒪𝑌(𝑛0) → ℒ⊗𝑛0

and 𝑓∗𝒪𝑌(𝑛0 + 1) → ℒ⊗𝑛0+1 are isomorphisms in a neighbourhood of 𝑥. By compatibil-
ity with the algebra structure and the fact that 𝑓 maps into 𝑊 we conclude all the maps
𝑓∗𝒪𝑌(𝑛) → ℒ⊗𝑛 are isomorphisms in a neighbourhood of 𝑥. Hence we win. �

Recall from Modules, Definition 15.21.4 that given a locally ringed space 𝑋, an invertible
sheaf ℒ, and a 𝒪𝑋-module ℱ we have the graded Γ∗(𝑋, ℒ)-module

Γ(𝑋, ℒ, ℱ) = ⨁𝑛∈𝐙
Γ(𝑋, ℱ ⊗𝒪𝑋

ℒ⊗𝑛).

The following lemma says that, in Situation 23.25.1, we can recover a quasi-coherent𝒪𝑋-module
ℱ from this graded module. Take a look also at Constructions, Lemma 22.13.7 where we
prove this lemma in the special case 𝑋 = 𝐏𝑛

𝑅.

Lemma 23.25.3. In Situation 23.25.1. Let ℱ be a quasi-coherent sheaf on 𝑋. Set 𝑀 =
Γ∗(𝑋, ℒ, ℱ) as a graded 𝑆-module. There are isomorphisms

𝑓∗𝑀 ⟶ ℱ

functorial in ℱ such that 𝑀0 → Γ(Proj(𝑆), 𝑀) → Γ(𝑋, ℱ) is the identity map.

Proof. Let 𝑠 ∈ 𝑆+ be homogeneous such that 𝑋𝑠 is affine open in 𝑋. Recall that 𝑀|𝐷+(𝑠)
corresponds to the𝑆(𝑠)-module𝑀(𝑠), see Constructions, Lemma 22.8.4. Recall that 𝑓−1(𝐷+(𝑠)) =
𝑋𝑠. As 𝑋 carries an ample invertible sheaf it is quasi-compact and quasi-separated, see Sec-
tion 23.23. By Lemma 23.23.5 there is a canonical isomorphism 𝑀(𝑠) = Γ∗(𝑋, ℒ, ℱ)(𝑠) →
Γ(𝑋𝑠, ℱ). Since ℱ is quasi-coherent this leads to a canonical isomorphism

𝑓∗𝑀|𝑋𝑠
→ ℱ|𝑋𝑠

Since ℒ is ample on 𝑋 we know that 𝑋 is covered by the affine opens of the form 𝑋𝑠. Hence
it suffices to prove that the displayed maps glue on overlaps. Proof of this is omitted. �

Remark 23.25.4. With assumptions and notation of Lemma 23.25.3. Denote the displayed
map of the lemma by 𝜃ℱ. Note that the isomorphism 𝑓∗𝒪𝑌(𝑛) → ℒ⊗𝑛 of Lemma 23.25.2
is just 𝜃ℒ⊗𝑛. Consider the multiplication maps

𝑀 ⊗𝒪𝑌
𝒪𝑌(𝑛) ⟶ 𝑀(𝑛)
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see Constructions, Equation (22.10.1.5). Pull this back to 𝑋 and consider

𝑓∗𝑀 ⊗𝒪𝑋
𝑓∗𝒪𝑌(𝑛) //

𝜃ℱ⊗𝜃ℒ⊗𝑛
��

𝑓∗𝑀(𝑛)

𝜃ℱ⊗ℒ⊗𝑛

��
ℱ ⊗ ℒ⊗𝑛 id // ℱ ⊗ ℒ⊗𝑛

Here we have used the obvious identification 𝑀(𝑛) = Γ∗(𝑋, ℒ, ℱ ⊗ ℒ⊗𝑛). This diagram
commutes. Proof omitted.

23.26. Finding suitable affine opens

In this section we collect some results on the existence of affine opens in more and less
general situations.

Lemma 23.26.1. Let 𝑋 be a quasi-separated scheme. Let 𝑍1, … , 𝑍𝑛 be pairwise distinct
irreducible components of𝑋, see Topology, Section 5.5. Let 𝜂𝑖 ∈ 𝑍𝑖 be their generic points,
see Schemes, Lemma 21.11.1. There exist affine open neighbourhoods 𝜂𝑖 ∈ 𝑈𝑖 such that
𝑈𝑖 ∩ 𝑈𝑗 = ∅ for all 𝑖≠𝑗. In particular, 𝑈 = 𝑈1 ∪ … ∪ 𝑈𝑛 is an affine open containing all
of the points 𝜂1, … , 𝜂𝑛.

Proof. Let𝑉𝑖 be any affine open containing 𝜂𝑖 and disjoint from the closed set𝑍1∪… �̂�𝑖 …∪
𝑍𝑛. Since 𝑋 is quasi-separated for each 𝑖 the union 𝑊𝑖 = ⋃𝑗,𝑗≠𝑖 𝑉𝑖 ∩ 𝑉𝑗 is a quasi-compact
open of 𝑉𝑖 not containing 𝜂𝑖. We can find open neighbourhoods 𝑈𝑖 ⊂ 𝑉𝑖 containing 𝜂𝑖 and
disjoint from 𝑊𝑖 by Algebra, Lemma 7.23.4. Finally, 𝑈 is affine since it is the spectrum of
the ring 𝑅1 × … × 𝑅𝑛 where 𝑅𝑖 = 𝒪𝑋(𝑈𝑖), see Schemes, Lemma 21.6.8. �

Remark 23.26.2. Lemma 23.26.1 above is false if 𝑋 is not quasi-separated. Here is an
example. Take 𝑅 = 𝐐[𝑥, 𝑦1, 𝑦2, …]/((𝑥 − 𝑖)𝑦𝑖). Consider the minimal prime ideal 𝔭 =
(𝑦1, 𝑦2, …) of 𝑅. Glue two copies of 𝑆𝑝𝑒𝑐(𝑅) along the (not quasi-compact) open 𝑆𝑝𝑒𝑐(𝑅)⧵
𝑉(𝔭) to get a scheme 𝑋 (glueing as in Schemes, Example 21.14.3). Then the two maximal
points of 𝑋 corresponding to 𝔭 are not contained in a common affine open. The reason is
that any open of 𝑆𝑝𝑒𝑐(𝑅) containing 𝔭 contains infinitely many of the ``lines'' 𝑥 = 𝑖, 𝑦𝑗 = 0,
𝑗≠𝑖 with parameter 𝑦𝑖. Details omitted.

Notwithstanding the example above, for ``most'' finite sets of irreducible closed subsets
one can apply Lemma 23.26.1 above, at least if 𝑋 is quasi-compact. This is true because
𝑋 contains a dense open which is separated.

Lemma 23.26.3. Let 𝑋 be a quasi-compact scheme. There exists a dense open 𝑉 ⊂ 𝑋
which is separated.

Proof. Say 𝑋 = ⋃𝑖=1,…,𝑛 𝑈𝑖 is a union of 𝑛 affine open subschemes. We will prove the
lemma by induction on 𝑛. It is trivial for 𝑛 = 1. Let 𝑉′ ⊂ ⋃𝑖=1,…,𝑛−1 𝑈𝑖 be a separated
dense open subscheme, which exists by induction hypothesis. Consider

𝑉 = 𝑉′
∐(𝑈𝑛 ⧵ 𝑉′).

It is clear that 𝑉 is separated and a dense open subscheme of 𝑋. �

Here is a slight refinement of Lemma 23.26.1 above.

Lemma 23.26.4. Let 𝑋 be a quasi-separated scheme. Let 𝑍1, … , 𝑍𝑛 be pairwise distinct
irreducible components of 𝑋. Let 𝜂𝑖 ∈ 𝑍𝑖 be their generic points. Let 𝑥 ∈ 𝑋 be arbitrary.
There exists an affine open 𝑈 ⊂ 𝑋 containing 𝑥 and all the 𝜂𝑖.
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Proof. Suppose that 𝑥 ∈ 𝑍1 ∩…∩𝑍𝑟 and 𝑥∉𝑍𝑟+1, … , 𝑍𝑛. Then we may choose an affine
open 𝑊 ⊂ 𝑋 such that 𝑥 ∈ 𝑊 and 𝑊 ∩ 𝑍𝑖 = ∅ for 𝑖 = 𝑟 + 1, … , 𝑛. Note that clearly
𝜂𝑖 ∈ 𝑊 for 𝑖 = 1, … , 𝑟. By Lemma 23.26.1 we may choose affine opens 𝑈𝑖 ⊂ 𝑋 which are
pairwise disjoint such that 𝜂𝑖 ∈ 𝑈𝑖 for 𝑖 = 𝑟+1, … , 𝑛. Since 𝑋 is quasi-separated the opens
𝑊 ∩ 𝑈𝑖 are quasi-compact and do not contain 𝜂𝑖 for 𝑖 = 𝑟 + 1, … , 𝑛. Hence by Algebra,
Lemma 7.23.4 we may shrink 𝑈𝑖 such that 𝑊 ∩ 𝑈𝑖 = ∅ for 𝑖 = 𝑟 + 1, … , 𝑛. Then the union
𝑈 = 𝑊 ∪ ⋃𝑖=𝑟+1,…,𝑛 𝑈𝑖 is disjoint and hence (by Schemes, Lemma 21.6.8) a suitable affine
open. �

Lemma 23.26.5. Let 𝑋 be a scheme. Assume either
(1) The scheme 𝑋 is quasi-affine.
(2) The scheme 𝑋 is isomorphic to an open subscheme of an affine scheme.
(3) There exists an ample invertible sheaf on 𝑋.
(4) The scheme 𝑋 is isomorphic to an open subscheme of Proj(𝑆) for some graded

ring 𝑆.
Then for any finite subset 𝐸 ⊂ 𝑋 there exists an affine open 𝑈 ⊂ 𝑋 with 𝐸 ⊂ 𝑈.

Proof. By Properties, Definition 23.15.1 a quasi-affine scheme is a quasi-compact open
subscheme of an affine scheme. Any affine scheme 𝑆𝑝𝑒𝑐(𝑅) is isomorphic to Proj(𝑅[𝑋])
where 𝑅[𝑋] is graded by setting deg(𝑋) = 1. By Properties, Proposition 23.23.12 if 𝑋
has an ample invertible sheaf then 𝑋 is isomorphic to an open subscheme of Proj(𝑆) for
some graded ring 𝑆. Hence, it suffices to prove the lemma in case (4). Thus assume 𝑋 ⊂
Proj(𝑆) is an open subscheme where 𝑆 is some graded ring. Since 𝐸 is finite we may
assume 𝐸 ⊂ 𝐷+(𝑓1) ∪ … ∪ 𝐷+(𝑓𝑛) ⊂ 𝑋 for some finite number of homogeneous elements
𝑓𝑖 ∈ 𝑆+. Suppose that 𝐸 = {𝔭1, … , 𝔭𝑚} as a subset of Proj(𝑆). Consider the ideal 𝐼 =
(𝑓1, … , 𝑓𝑛) ⊂ 𝑆. Since 𝐼⊄𝔭𝑗 for all 𝑗 = 1, … , 𝑚 we see from Algebra, Lemma 7.53.6 that
there exists a homogeneous element 𝑓 ∈ 𝐼, 𝑓∉𝔭𝑗 for all 𝑗 = 1, … , 𝑚. Then 𝐸 ⊂ 𝐷+(𝑓) ⊂
𝐷+(𝑓1) ∪ … ∪ 𝐷+(𝑓𝑛) is an affine open as desired. �
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CHAPTER 24

Morphisms of Schemes

24.1. Introduction

In this chapter we introduce some types of morphisms of schemes. A basic reference is
[DG67].

24.2. Closed immersions

In this section we elucidate some of the results obtained previously on closed immersions of
schemes. Recall that amorphism of schemes 𝑖 ∶ 𝑍 → 𝑋 is defined to be a closed immersion
if (a) 𝑖 induces a homeomorphism onto a closed subset of 𝑋, (b) 𝑖♯ ∶ 𝒪𝑋 → 𝑖∗𝒪𝑍 is
surjective, and (c) the kernel of 𝑖♯ is locally generated by sections, see Schemes, Definitions
21.10.2 and 21.4.1. It turns out that, given that 𝑍 and 𝑋 are schemes, there are many
different ways of characterizing a closed immersion.

Lemma 24.2.1. Let 𝑖 ∶ 𝑍 → 𝑋 be a morphism of schemes. The following are equivalent:
(1) The morphism 𝑖 is a closed immersion.
(2) For every affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋, there exists an ideal 𝐼 ⊂ 𝑅 such that

𝑖−1(𝑈) = 𝑆𝑝𝑒𝑐(𝑅/𝐼) as schemes over 𝑈 = 𝑆𝑝𝑒𝑐(𝑅).
(3) There exists an affine open covering 𝑋 = ⋃𝑗∈𝐽 𝑈𝑗, 𝑈𝑗 = 𝑆𝑝𝑒𝑐(𝑅𝑗) and for every

𝑗 ∈ 𝐽 there exists an ideal 𝐼𝑗 ⊂ 𝑅𝑗 such that 𝑖−1(𝑈𝑗) = 𝑆𝑝𝑒𝑐(𝑅𝑗/𝐼𝑗) as schemes
over 𝑈𝑗 = 𝑆𝑝𝑒𝑐(𝑅𝑗).

(4) The morphism 𝑖 induces a homeomorphism of 𝑍 with a closed subset of 𝑋 and
𝑖♯ ∶ 𝒪𝑋 → 𝑖∗𝒪𝑍 is surjective.

(5) The morphism 𝑖 induces a homeomorphism of 𝑍 with a closed subset of 𝑋, the
map 𝑖♯ ∶ 𝒪𝑋 → 𝑖∗𝒪𝑍 is surjective, and the kernel Ker(𝑖♯) ⊂ 𝒪𝑋 is a quasi-
coherent sheaf of ideals.

(6) The morphism 𝑖 induces a homeomorphism of 𝑍 with a closed subset of 𝑋, the
map 𝑖♯ ∶ 𝒪𝑋 → 𝑖∗𝒪𝑍 is surjective, and the kernel Ker(𝑖♯) ⊂ 𝒪𝑋 is a sheaf of
ideals which is locally generated by sections.

Proof. Condition (6) is our definition of a closed immersion, see Schemes, Definitions
21.4.1 and 21.10.2. So (6) ⇔ (1). We have (1) ⇒ (2) by Schemes, Lemma 21.10.1. Trivially
(2) ⇒ (3).

Assume (3). Each of the morphisms 𝑆𝑝𝑒𝑐(𝑅𝑗/𝐼𝑗) → 𝑆𝑝𝑒𝑐(𝑅𝑗) is a closed immersion, see
Schemes, Example 21.8.1. Hence 𝑖−1(𝑈𝑗) → 𝑈𝑗 is a homeomorphism onto its image and
𝑖♯|𝑈𝑗

is surjective. Hence 𝑖 is a homeomorphism onto its image and 𝑖♯ is surjective since
this may be checked locally. We conclude that (3) ⇒ (4).

The implication (4) ⇒ (1) is Schemes, Lemma 21.24.2. The implication (5) ⇒ (6) is trivial.
And the implication (6) ⇒ (5) follows from Schemes, Lemma 21.10.1. �

1295
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Lemma 24.2.2. Let 𝑋 be a scheme. Suppose 𝑖 ∶ 𝑍 → 𝑋 and 𝑖′ ∶ 𝑍′ → 𝑋 are closed
immersions corresponding to the quasi-coherent ideal sheaves ℐ = Ker(𝑖♯) and ℐ′ =
Ker((𝑖′)♯) of 𝒪𝑋.

(1) The morphism 𝑖 ∶ 𝑍 → 𝑋 factors as 𝑍 → 𝑍′ → 𝑋 for some 𝑎 ∶ 𝑍 → 𝑍′ if and
only if ℐ′ ⊂ ℐ. If this happens, then 𝑎 is a closed immersion.

(2) We have 𝑍 ≅ 𝑍′ as schemes over 𝑋 if and only if ℐ = ℐ′.

Proof. This follows from our discussion of closed subspaces in Schemes, Section 21.4
especially Schemes, Lemma 21.4.6. It also follows in a straightforward way from charac-
terization (3) in Lemma 24.2.1 above. �

Lemma 24.2.3. Let 𝑋 be a scheme. Let ℐ ⊂ 𝒪𝑋 be a sheaf of ideals. The following are
equivalent:

(1) The sheaf of ideals ℐ is locally generated by sections as a sheaf of 𝒪𝑋 modules.
(2) The sheaf of ideals ℐ is quasi-coherent as a sheaf of 𝒪𝑋-modules.
(3) There exists a closed immersion 𝑖 ∶ 𝑍 → 𝑋 whose corresponding sheaf of ideals

Ker(𝑖♯) is equal to ℐ.

Proof. In Schemes, Section 21.4 we constructed the closed subspace associated to a sheaf
of ideals locally generated by sections. This closed subspace is a scheme by Schemes,
Lemma 21.10.1. Hence we see that (1) ⇒ (3) by our definition of a closed immersion of
schemes. By Lemma 24.2.1 above we see that (3) ⇒ (2). And of course (2) ⇒ (1). �

Lemma 24.2.4. The base change of a closed immersion is a closed immersion.

Proof. See Schemes, Lemma 21.18.2. �

Lemma 24.2.5. A composition of closed immersions is a closed immersion.

Proof. We have seen this in Schemes, Lemma 21.24.3, but here is another proof. Namely,
it follows from the characterization (3) of closed immersions in Lemma 24.2.1. Since if
𝐼 ⊂ 𝑅 is an ideal, and 𝐽 ⊂ 𝑅/𝐼 is an ideal, then 𝐽 = 𝐽/𝐼 for some ideal 𝐽 ⊂ 𝑅 which
contains 𝐼 and (𝑅/𝐼)/𝐽 = 𝑅/𝐽. �

Lemma 24.2.6. A closed immersion is quasi-compact.

Proof. This lemma is a duplicate of Schemes, Lemma 21.19.5. �

Lemma 24.2.7. A closed immersion is separated.

Proof. This lemma is a special case of Schemes, Lemma 21.23.7. �

Lemma 24.2.8. Let ℎ ∶ 𝑍 → 𝑋 be an immersion. If ℎ is quasi-compact, then we can
factor ℎ = 𝑖 ∘ 𝑗 with 𝑗 ∶ 𝑍 → 𝑍 an open immersion and 𝑖 ∶ 𝑍 → 𝑋 a closed immersion.

Proof. Note that ℎ is quasi-compact and quasi-separated (see Schemes, Lemma 21.23.7).
Hence ℎ∗𝒪𝑍 is a quasi-coherent sheaf of 𝒪𝑋-modules by Schemes, Lemma 21.24.1. This
implies that ℐ = Ker(𝒪𝑋 → ℎ∗𝒪𝑍) is a quasi-coherent sheaf of ideals, see Schemes,
Section 21.24. Let 𝑍 ⊂ 𝑋 be the closed subscheme corresponding to ℐ, see Lemma 24.2.3.
By Schemes, Lemma 21.4.6 the morphism ℎ factors as ℎ = 𝑖 ∘ 𝑗 where 𝑖 ∶ 𝑍 → 𝑋 is the
inclusion morphism. To see that 𝑗 is an open immersion, choose an open subscheme 𝑈 ⊂ 𝑋
such that ℎ induces a closed immersion of 𝑍 into 𝑈. Then it is clear that ℐ|𝑈 is the sheaf of
ideals corresponding to the closed immersion 𝑍 → 𝑈. Hence we see that 𝑍 = 𝑍 ∩ 𝑈. �
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Lemma 24.2.9. Let ℎ ∶ 𝑍 → 𝑋 be an immersion. If 𝑍 is reduced, then we can factor
ℎ = 𝑖 ∘ 𝑗 with 𝑗 ∶ 𝑍 → 𝑍 an open immersion and 𝑖 ∶ 𝑍 → 𝑋 a closed immersion.

Proof. Let 𝑍 ⊂ 𝑋 be the closure of ℎ(𝑍) with the reduced induced closed subscheme
structure, see Schemes, Definition 21.12.5. By Schemes, Lemma 21.12.6 the morphism ℎ
factors as ℎ = 𝑖 ∘ 𝑗 with 𝑖 ∶ 𝑍 → 𝑋 the inclusion morphism and 𝑗 ∶ 𝑍 → 𝑍. From the
definition of an immersion we see there exists an open subscheme 𝑈 ⊂ 𝑋 such that ℎ factors
through a closed immersion into 𝑈. Hence 𝑍 ∩ 𝑈 and ℎ(𝑍) are reduced closed subschemes
of 𝑈 with the same underlying closed set. Hence by the uniqueness in Schemes, Lemma
21.12.4 we see that ℎ(𝑍) ≅ 𝑍 ∩ 𝑈. So 𝑗 induces an isomorphism of 𝑍 with 𝑍 ∩ 𝑈. In other
words 𝑗 is an open immersion. �

Example 24.2.10. Here is an example of an immersion which is not a composition of an
open immersion followed by a closed immersion. Let 𝑘 be a field. Let𝑋 = 𝑆𝑝𝑒𝑐(𝑘[𝑥1, 𝑥2, 𝑥3, …]).
Let 𝑈 = ⋃∞

𝑛=1 𝐷(𝑥𝑛). Then 𝑈 → 𝑋 is an open immersion. Consider the ideals

𝐼𝑛 = (𝑥𝑛
1, 𝑥𝑛

2, … , 𝑥𝑛
𝑛−1, 𝑥𝑛 − 1, 𝑥𝑛+1, 𝑥𝑛+2, …) ⊂ 𝑘[𝑥1, 𝑥2, 𝑥3, …][1/𝑥𝑛].

Note that 𝐼𝑛𝑘[𝑥1, 𝑥2, 𝑥3, …][1/𝑥𝑛𝑥𝑚] = (1) for any 𝑚≠𝑛. Hence the quasi-coherent ideals
̃𝐼𝑛 on 𝐷(𝑥𝑛) agree on 𝐷(𝑥𝑛𝑥𝑚), namely ̃𝐼𝑛|𝐷(𝑥𝑛𝑥𝑚) = 𝒪𝐷(𝑥𝑛𝑥𝑚) if 𝑛≠𝑚. Hence these ideals

glue to a quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑈. Let 𝑍 ⊂ 𝑈 be the closed subscheme
corresponding to ℐ. Thus 𝑍 → 𝑋 is an immersion.

We claim that we cannot factor 𝑍 → 𝑋 as 𝑍 → 𝑍 → 𝑋, where 𝑍 → 𝑋 is closed and
𝑍 → 𝑍 is open. Namely, 𝑍 would have to be defined by an ideal 𝐼 ⊂ 𝑘[𝑥1, 𝑥2, 𝑥3, …] such
that 𝐼𝑛 = 𝐼𝑘[𝑥1, 𝑥2, 𝑥3, …][1/𝑥𝑛]. But the only element 𝑓 ∈ 𝑘[𝑥1, 𝑥2, 𝑥3, …] which ends
up in all 𝐼𝑛 is 0! Hence 𝐼 does not exist.

24.3. Closed immersions and quasi-coherent sheaves

The following lemma finally does for quasi-coherent sheaves on schemes what Modules,
Lemma 15.6.1 does for abelian sheaves. See also the discussion in Modules, Section 15.13.

Lemma 24.3.1. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of schemes. Let ℐ ⊂ 𝒪𝑋 be the
quasi-coherent sheaf of ideals cutting out 𝑍. The functor

𝑖∗ ∶ QCoh(𝒪𝑍) ⟶ QCoh(𝒪𝑋)

is exact, fully faithful, with essential image those quasi-coherent 𝒪𝑋-modules 𝒢 such that
ℐ𝒢 = 0.

Proof. A closed immersion is quasi-compact and separated, see Lemmas 24.2.6 and 24.2.7.
Hence Schemes, Lemma 21.24.1 applies and the pushforward of a quasi-coherent sheaf on
𝑍 is indeed a quasi-coherent sheaf on 𝑋.

By Modules, Lemma 15.6.1 the functor 𝑖∗ is faithful. We claim that for any quasi-coherent
sheaf ℱ on 𝑍 the canonical map

𝑖∗𝑖∗ℱ ⟶ ℱ
is an isomorphism. This claim implies in particular that 𝑖∗ is fully faithful. To prove the
claim let 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) be any affine open of 𝑋, and write 𝑍 ∩ 𝑈 = 𝑆𝑝𝑒𝑐(𝑅/𝐼), see Lemma
24.2.1 above. We may write ℱ|𝑈∩𝑍 = 𝑀 where 𝑀 is an 𝑅/𝐼-module (see Schemes,
Section 21.24). By Schemes, Lemma 21.7.3 we see that 𝑖∗ℱ|𝑈 corresponds to 𝑀𝑅 and
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then 𝑖∗𝑖∗ℱ|𝑍∩𝑈 corresponds to 𝑀𝑅 ⊗𝑅 𝑅/𝐼. In other words, we have to see that for any
𝑅/𝐼-module 𝑀 the canonical map

𝑀𝑅 ⊗𝑅 𝑅/𝐼 ⟶ 𝑀, 𝑚 ⊗ 𝑓 ⟼ 𝑓𝑚
is an isomorphism. Proof of this easy algebra fact is omitted.
Now we turn to the description of the essential image of the functor 𝑖∗. It is clear that
ℐ(𝑖∗ℱ) = 0 for any quasi-coherent 𝒪𝑍-module, for example by our local description above.
Next, suppose that 𝒢 is any quasi-coherent 𝒪𝑋-module such that ℐ𝒢 = 0. It suffices to show
that the canonical map

𝒢 ⟶ 𝑖∗𝑖∗𝒢
is an isomorphism. By exactly the same arguments as above we see that it suffices to prove
the following algebraic statement: Given a ring 𝑅, an ideal 𝐼 and an 𝑅-module 𝑁 such that
𝐼𝑁 = 0 the canonical map

𝑁 ⟶ 𝑁 ⊗𝑅 𝑅/𝐼, 𝑛 ⟼ 𝑛 ⊗ 1
is an isomorphism of 𝑅-modules. Proof of this easy algebra fact is omitted. �

Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion. Because of the lemma above we often, by abuse of
notation, denote ℱ the sheaf 𝑖∗ℱ on 𝑋.

Lemma 24.3.2. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let 𝒢 ⊂ ℱ
be a 𝒪𝑋-submodule. There exists a unique quasi-coherent 𝒪𝑋-submodule 𝒢′ ⊂ 𝒢 with the
following property: For every quasi-coherent 𝒪𝑋-module ℋ the map

𝐻𝑜𝑚𝒪𝑋
(ℋ, 𝒢′) ⟶ 𝐻𝑜𝑚𝒪𝑋

(ℋ, 𝒢)

is bijective. In particular 𝒢′ is the largest quasi-coherent 𝒪𝑋-submodule of ℱ contained in
𝒢.

Proof. Let 𝒢𝑎, 𝑎 ∈ 𝐴 be the set of quasi-coherent 𝒪𝑋-submodules contained in 𝒢. Then
the image 𝒢′ of

⨁𝑎∈𝐴
𝒢𝑎 ⟶ ℱ

is quasi-coherent as the image of a map of quasi-coherent sheaves on 𝑋 is quasi-coherent
and since a direct sum of quasi-coherent sheaves is quasi-coherent, see Schemes, Section
21.24. Themodule𝒢′ is contained in𝒢. Hence this is the largest quasi-coherent𝒪𝑋-module
contained in 𝒢.
To prove the formula, let ℋ be a quasi-coherent 𝒪𝑋-module and let 𝛼 ∶ ℋ → 𝒢 be an
𝒪𝑋-module map. The image of the composition ℋ → 𝒢 → ℱ is quasi-coherent as the
image of a map of quasi-coherent sheaves. Hence it is contained in 𝒢′. Hence 𝛼 factors
through 𝒢′ as desired. �

Lemma 24.3.3. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of schemes. There is a functor1
𝑖! ∶ QCoh(𝒪𝑋) → QCoh(𝒪𝑍) which is a right adjoint to 𝑖∗. (Compare Modules, Lemma
15.6.3.)

Proof. Given quasi-coherent 𝒪𝑋-module 𝒢 we consider the subsheaf ℋ𝑍(𝒢) of 𝒢 of local
sections annihilated by ℐ. By Lemma 24.3.2 there is a canonical largest quasi-coherent
𝒪𝑋-submodule ℋ𝑍(𝒢)′. By construction we have

𝐻𝑜𝑚𝒪𝑋
(𝑖∗ℱ, ℋ𝑍(𝒢)′) = 𝐻𝑜𝑚𝒪𝑋

(𝑖∗ℱ, 𝒢)

1This is likely nonstandard notation.
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for any quasi-coherent 𝒪𝑍-module ℱ. Hence we can set 𝑖!𝒢 = 𝑖∗(ℋ𝑍(𝒢)′). Details omitted.
�

24.4. Scheme theoretic image

Lemma 24.4.1. Let 𝑓 ∶ 𝑋 → 𝑌 be amorphism of schemes. There exists a closed subscheme
𝑍 ⊂ 𝑌 such that 𝑓 factors through 𝑍 and such that for any other closed subscheme 𝑍′ ⊂ 𝑌
such that 𝑓 factors through 𝑍′ we have 𝑍 ⊂ 𝑍′.

Proof. Let ℐ = Ker(𝒪𝑌 → 𝑓∗𝒪𝑋). If ℐ is quasi-coherent then we just take 𝑍 to be the
closed subscheme determined by ℐ, see Lemma 24.2.3. This works by Schemes, Lemma
21.4.6. In general the same lemma requires us to show that there exists a largest quasi-
coherent sheaf of ideals ℐ′ contained in ℐ. This follows from Lemma 24.3.2. �

Definition 24.4.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The scheme theoretic image
of 𝑓 is the smallest closed subscheme 𝑍 ⊂ 𝑌 through which 𝑓 factors, see Lemma 24.4.1
above.

We often just denote 𝑓 ∶ 𝑋 → 𝑍 the factorization of 𝑓. If the morphism 𝑓 is not quasi-
compact, then (in general) the construction of the scheme theoretic image does not commute
with restriction to open subschemes to 𝑌. Namely, if 𝑓 is the immersion 𝑍 → 𝑋 of Example
24.2.10 above then the scheme theoretic image of 𝑍 → 𝑋 is 𝑋. But clearly the scheme
theoretic image of 𝑍 = 𝑍 ∩ 𝑈 → 𝑈 is just 𝑍.

Lemma 24.4.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑍 ⊂ 𝑌 be the scheme
theoretic image of 𝑓. If 𝑓 is quasi-compact then

(1) the sheaf of ideals ℐ = Ker(𝒪𝑌 → 𝑓∗𝒪𝑋) is quasi-coherent,
(2) the scheme theoretic image 𝑍 is the closed subscheme determined by ℐ,
(3) for any open 𝑈 ⊂ 𝑌 the scheme theoretic image of 𝑓|𝑓−1(𝑈) ∶ 𝑓−1(𝑈) → 𝑈 is

equal to 𝑍 ∩ 𝑈, and
(4) the image 𝑓(𝑋) ⊂ 𝑍 is a dense subset of 𝑍, in other words the morphism 𝑋 → 𝑍

is dominant (see Definition 24.6.1).

Proof. Part (4) follows from part (3). To show (3) it suffices to prove (1) since the formation
of ℐ commutes with restriction to open subschemes of 𝑌. And if (1) holds then in the proof
of Lemma 24.4.1we showed (2). Thus it suffices to prove thatℐ is quasi-coherent. Since the
property of being quasi-coherent is local we may assume 𝑌 is affine. As 𝑓 is quasi-compact,
we can find a finite affine open covering 𝑋 = ⋃𝑖=1,…,𝑛 𝑈𝑖. Denote 𝑓′ the composition

𝑋′ = ∐ 𝑈𝑖 ⟶ 𝑋 ⟶ 𝑌.

Then 𝑓∗𝒪𝑋 is a subsheaf of 𝑓′
∗𝒪𝑋′, and hence ℐ = Ker(𝒪𝑌 → 𝒪𝑋′). By Schemes, Lemma

21.24.1 the sheaf 𝑓′
∗𝒪𝑋′ is quasi-coherent on 𝑌. Hence we win. �

Example 24.4.4. If 𝐴 → 𝐵 is a ring map with kernel 𝐼, then the scheme theoretic image
of 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) is the closed subscheme 𝑆𝑝𝑒𝑐(𝐴/𝐼) of 𝑆𝑝𝑒𝑐(𝐴). This follows from
Lemma 24.4.3.

If the morphism is quasi-compact, then the scheme theoretic image only adds points which
are specializations of points in the image.
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Lemma 24.4.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a quasi-compact morphism. Let 𝑍 be the scheme
theoretic image of 𝑓. Let 𝑧 ∈ 𝑍. There exists a valuation ring 𝐴 with fraction field 𝐾 and
a commutative diagram

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋

����
𝑆𝑝𝑒𝑐(𝐴) // 𝑍 // 𝑌

such that the closed point of 𝑆𝑝𝑒𝑐(𝐴) maps to 𝑧. In particular any point of 𝑍 is the spe-
cialization of a point of 𝑓(𝑋).

Proof. Let 𝑧 ∈ 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑌 be an affine open neighbourhood of 𝑧. By Lemma
24.4.3 we have 𝑍 ∩ 𝑉 is the scheme theoretic closure of 𝑓−1(𝑉) → 𝑉, and hence we may
replace 𝑌 by 𝑉 and assume 𝑌 = 𝑆𝑝𝑒𝑐(𝑅) is affine. In this case 𝑋 is quasi-compact as 𝑓 is
quasi-compact. Say 𝑋 = 𝑈1 ∪…∪𝑈𝑛 is a finite affine open covering. Write 𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝐴𝑖).
Let 𝐼 = Ker(𝑅 → 𝐴1 × … × 𝐴𝑛). By Lemma 24.4.3 again we see that 𝑍 corresponds to the
closed subscheme 𝑆𝑝𝑒𝑐(𝑅/𝐼) of 𝑌. If 𝔭 ⊂ 𝑅 is the prime corresponding to 𝑧, then we see
that 𝐼𝔭 ⊂ 𝑅𝔭 is not an equality. Hence (as localization is exact, see Algebra, Proposition
7.9.12) we see that 𝑅𝔭 → (𝐴1)𝔭 ×…×(𝐴1)𝔭 is not zero. Hence one of the rings (𝐴𝑖)𝔭 is not
zero. Hence there exists an 𝑖 and a prime 𝔮𝑖 ⊂ 𝐴𝑖 lying over a prime 𝔭𝑖 ⊂ 𝔭. By Algebra,
Lemma 7.46.2 we can choose a valuation ring 𝐴 ⊂ 𝐾 = 𝑓.𝑓.(𝐴𝑖/𝔮𝑖) dominating the local
ring 𝑅𝔭/𝔭1𝑅𝔭 ⊂ 𝑓.𝑓.(𝐴𝑖/𝔮𝑖). This gives the desired diagram. Some details omitted. �

Lemma 24.4.6. Let 𝑓1 ∶ 𝑋 → 𝑌1 and 𝑌1 → 𝑌2 be morphisms of schemes. Let 𝑓2 ∶ 𝑋 → 𝑌2
be the composition. Let 𝑍𝑖 ⊂ 𝑌𝑖, 𝑖 = 1, 2 be the scheme theoretic image of 𝑓𝑖. Then the
morphism 𝑌1 → 𝑌2 induces a morphism 𝑍1 → 𝑍2 and a commutative diagram

𝑋 //

��

𝑍1

��

// 𝑌1

��
𝑍2

// 𝑌2

Proof. See Schemes, Lemma 21.4.6. �

Lemma 24.4.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. If 𝑋 is reduced, then the
scheme theoretic image of 𝑓 is the reduced induced scheme structure on 𝑓(𝑋).

Proof. This is true because the reduced induced scheme structure on 𝑓(𝑋) is clearly the
smallest closed subscheme of 𝑌 through which 𝑓 factors, see Schemes, Lemma 21.12.6. �

24.5. Scheme theoretic closure and density

Definition 24.5.1. Let 𝑋 be a scheme. Let 𝑈 ⊂ 𝑋 be an open subscheme.
(1) The scheme theoretic image of the morphism 𝑈 → 𝑋 is called the scheme theo-

retic closure of 𝑈 in 𝑋.
(2) We say 𝑈 is scheme theoretically dense in 𝑋 if for every open 𝑉 ⊂ 𝑋 the scheme

theoretic closure of 𝑈 ∩ 𝑉 in 𝑉 is equal to 𝑉.

This is [DG67, IV, Definition 11.10.2]. With this definition it is not the case that 𝑈 is
scheme theoretically dense in 𝑋 if and only if the scheme theoretic closure of 𝑈 is 𝑋, see
Example 24.5.2. This is somewhat inelegant; but see Lemmas 24.5.3 and 24.5.8 below. On
the other hand, with this definition 𝑈 is scheme theoretically dense in 𝑋 if and only if for
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every 𝑉 ⊂ 𝑋 open the ring map 𝒪𝑋(𝑉) → 𝒪𝑋(𝑈 ∩ 𝑉) is injective, see Lemma 24.5.5 below.
In particular we see that scheme theoretically dense implies dense which is pleasing.

Example 24.5.2. Here is an example where scheme theoretic closure being 𝑋 does not im-
ply dense for the underlying topological spaces. Let 𝑘 be a field. Set𝐴 = 𝑘[𝑥, 𝑧1, 𝑧2, …]/(𝑥𝑛𝑧𝑛)
Set 𝐼 = (𝑧1, 𝑧2, …) ⊂ 𝐴. Consider the affine scheme 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and the open subscheme
𝑈 = 𝑋 ⧵ 𝑉(𝐼). Since 𝐴 → ∏𝑛 𝐴𝑧𝑛

is injective we see that the scheme theoretic closure of 𝑈
is 𝑋. Consider the morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘[𝑥]). This morphism is surjective (set all 𝑧𝑛 = 0
to see this). But the restriction of this morphism to 𝑈 is not surjective because it maps to
the point 𝑥 = 0. Hence 𝑈 cannot be topologically dense in 𝑋.

Lemma 24.5.3. Let 𝑋 be a scheme. Let 𝑈 ⊂ 𝑋 be an open subscheme. If the inclusion
morphism 𝑈 → 𝑋 is quasi-compact, then 𝑈 is scheme theoretically dense in 𝑋 if and only
if the scheme theoretic closure of 𝑈 in 𝑋 is 𝑋.

Proof. Follows from Lemma 24.4.3 part (3). �

Example 24.5.4. Let 𝐴 be a ring and 𝑋 = 𝑆𝑝𝑒𝑐(𝐴). Let 𝑓1, … , 𝑓𝑛 ∈ 𝐴 and let 𝑈 =
𝐷(𝑓1) ∪ … ∪ 𝐷(𝑓𝑛). Let 𝐼 = Ker(𝐴 → ∏ 𝐴𝑓𝑖

). Then the scheme theoretic closure of 𝑈 in
𝑋 is the closed subscheme 𝑆𝑝𝑒𝑐(𝐴/𝐼) of 𝑋. Note that 𝑈 → 𝑋 is quasi-compact. Hence by
Lemma 24.5.3 we see 𝑈 is scheme theoretically dense in 𝑋 if and only if 𝐼 = 0.

Lemma 24.5.5. Let 𝑗 ∶ 𝑈 → 𝑋 be an open immersion of schemes. Then 𝑈 is scheme
theoretically dense in 𝑋 if and only if 𝒪𝑋 → 𝑗∗𝒪𝑈 is injective.

Proof. If 𝒪𝑋 → 𝑗∗𝒪𝑈 is injective, then the same is true when restricted to any open 𝑉 of
𝑋. Hence the scheme theoretic closure of 𝑈 ∩ 𝑉 in 𝑉 is equal to 𝑉, see Lemma 24.4.3 for
example. Conversely, suppose that the scheme theoretic closure of 𝑈 ∩ 𝑉 is equal to 𝑉 for
all opens 𝑉. Suppose that 𝒪𝑋 → 𝑗∗𝒪𝑈 is not injective. Then we can find an affine open, say
𝑆𝑝𝑒𝑐(𝐴) = 𝑉 ⊂ 𝑋 and a nonzero element 𝑓 ∈ 𝐴 such that 𝑓 maps to zero in Γ(𝑉 ∩ 𝑈, 𝒪𝑋).
In this case the scheme theoretic closure of 𝑉 ∩ 𝑈 in 𝑉 is clearly contained in 𝑆𝑝𝑒𝑐(𝐴/(𝑓))
a contradiction. �

Lemma 24.5.6. Let𝑋 be a scheme. If𝑈, 𝑉 are scheme theoretically dense open subschemes
of 𝑋, then so is 𝑈 ∩ 𝑉.

Proof. Let 𝑊 ⊂ 𝑋 be any open. Consider the map 𝒪𝑋(𝑊) → 𝒪𝑋(𝑊∩𝑉) → 𝒪𝑋(𝑊∩𝑉∩𝑈).
By Lemma 24.5.5 both maps are injective. Hence the composite is injective. Hence by
Lemma 24.5.5 𝑈 ∩ 𝑉 is scheme theoretically dense in 𝑋. �

Lemma 24.5.7. Let 𝑍 → 𝑋 be an immersion. Assume either 𝑍 → 𝑋 is quasi-compact or
𝑍 is reduced. Let 𝑍 ⊂ 𝑋 be the scheme theoretic image of ℎ. Then the morphism 𝑍 → 𝑍
is an open immersion which identifies 𝑍 with a scheme theoretically dense open subscheme
of 𝑍. Moreover, 𝑍 is topologically dense in 𝑍.

Proof. By Lemma 24.2.8 or Lemma 24.2.9 we can factor 𝑍 → 𝑋 as 𝑍 → 𝑍1 → 𝑋
with 𝑍 → 𝑍1 open and 𝑍1 → 𝑋 closed. On the other hand, let 𝑍 → 𝑍 ⊂ 𝑋 be the
scheme theoretic closure of 𝑍 → 𝑋. We conclude that 𝑍 ⊂ 𝑍1. Since 𝑍 is an open
subscheme of 𝑍1 it follows that 𝑍 is an open subscheme of 𝑍 as well. In the case that 𝑍
is reduced we know that 𝑍 ⊂ 𝑍1 is topologically dense by the construction of 𝑍1 in the
proof of Lemma 24.2.9. Hence 𝑍1 and 𝑍 have the same underlying topological spaces.
Thus 𝑍 ⊂ 𝑍1 is a closed immersion into a reduced scheme which induces a bijection on
underlying topological spaces, and hence it is an isomorphism. In the case that 𝑍 → 𝑋 is
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quasi-compact we argue as follows: The assertion that 𝑍 is scheme theoretically dense in
𝑍 follows from Lemma 24.4.3 part (3). The last assertion follows from Lemma 24.4.3 part
(4). �

Lemma 24.5.8. Let 𝑋 be a reduced scheme and let 𝑈 ⊂ 𝑋 be an open subscheme. Then
the following are equivalent

(1) 𝑈 is topologically dense in 𝑋,
(2) the scheme theoretic closure of 𝑈 in 𝑋 is 𝑋, and
(3) 𝑈 is scheme theoretically dense in 𝑋.

Proof. This follows from Lemma 24.5.7 and the fact that the a closed subscheme 𝑍 of 𝑋
whose underlying topological space equals 𝑋 must be equal to 𝑋 as a scheme. �

Lemma 24.5.9. Let 𝑋 be a scheme and let 𝑈 ⊂ 𝑋 be a reduced open subscheme. Then the
following are equivalent

(1) the scheme theoretic closure of 𝑈 in 𝑋 is 𝑋, and
(2) 𝑈 is scheme theoretically dense in 𝑋.

If this holds then 𝑋 is a reduced scheme.

Proof. This follows from Lemma 24.5.7 and the fact that the scheme theoretic closure of
𝑈 in 𝑋 is reduced by Lemma 24.4.7. �

Lemma 24.5.10. Let 𝑆 be a scheme. Let 𝑋, 𝑌 be schemes over 𝑆. Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be
morphisms of schemes over 𝑆. Let 𝑈 ⊂ 𝑋 be an open subscheme such that 𝑓|𝑈 = 𝑔|𝑈. If
the scheme theoretic closure of 𝑈 in 𝑋 is 𝑋 and 𝑌 → 𝑆 is separated, then 𝑓 = 𝑔.

Proof. Follows from the definitions and Schemes, Lemma 21.21.5. �

24.6. Dominant morphisms

The definition of a morphism of schemes being dominant is a little different from what you
might expect if you are used to the notion of a dominant morphism of varieties.

Definition 24.6.1. A morphism 𝑓 ∶ 𝑋 → 𝑆 of schemes is called dominant if the image of
𝑓 is a dense subset of 𝑆.

So for example, if 𝑘 is an infinite field and 𝜆1, 𝜆2, … is a countable collection of elements
of 𝑘, then the morphism

∐𝑖=1,2,…
𝑆𝑝𝑒𝑐(𝑘) ⟶ 𝑆𝑝𝑒𝑐(𝑘[𝑥])

with 𝑖th factor mapping to the point 𝑥 = 𝜆𝑖 is dominant.

Lemma 24.6.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If every generic point of every
irreducible component of 𝑆 is in the image of 𝑓, then 𝑓 is dominant.

Proof. This is a topological fact which follows directly from the fact that the topological
space underlying a scheme is sober, see Schemes, Lemma 21.11.1, and that every point of
𝑆 is contained in an irreducible component of 𝑆, see Topology, Lemma 5.5.3. �

The expectation that morphisms are dominant only if generic points of the target are in the
image does hold if the morphism is quasi-compact.

Lemma 24.6.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact morphism of schemes. Then 𝑓 is
dominant (if and) only if for every irreducible component 𝑍 ⊂ 𝑆 the generic point of 𝑍 is
in the image of 𝑓.
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Proof. Let 𝑉 ⊂ 𝑆 be an affine open. Because 𝑓 is quasi-compact we may choose finitely
many affine opens 𝑈𝑖 ⊂ 𝑓−1(𝑉), 𝑖 = 1, … , 𝑛 covering 𝑓−1(𝑉). Consider the morphism of
affines

𝑓′ ∶ ∐𝑖=1,…,𝑛
𝑈𝑖 ⟶ 𝑉.

A disjoint union of affines is affine, see Schemes, Lemma 21.6.8. Generic points of irre-
ducible components of 𝑉 are exactly the generic points of the irreducible components of
𝑆 that meet 𝑉. Also, 𝑓 is dominant if and only 𝑓′ is dominant no matter what choices of
𝑉, 𝑛, 𝑈𝑖 we make above. Thus we have reduced the lemma to the case of a morphism of
affine schemes. The affine case is Algebra, Lemma 7.27.6. �

Here is a slightly more useful variant of the lemma above.

Lemma 24.6.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact morphism of schemes. Let 𝜂 ∈ 𝑆
be a generic point of an irreducible component of 𝑆. If 𝜂∉𝑓(𝑋) then there exists an open
neighbourhood 𝑉 ⊂ 𝑆 of 𝜂 such that 𝑓−1(𝑉) = ∅.

Proof. Let 𝑍 ⊂ 𝑆 be the scheme theoretic image of 𝑓. We have to show that 𝜂∉𝑍. This
follows from Lemma 24.4.5 but can also be seen as follows. By Lemma 24.4.3 the mor-
phism 𝑋 → 𝑍 is dominant, which by Lemma 24.6.3 means all the generic points of all
irreducible components of 𝑍 are in the image of 𝑋 → 𝑍. By assumption we see that 𝜂∉𝑍
since 𝜂 would be the generic point of some irreducible component of 𝑍 if it were in 𝑍. �

There is another case where dominant is the same as having all generic points of irreducible
components in the image.

Lemma 24.6.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Suppose that 𝑋 has finitely
many irreducible components. Then 𝑓 is dominant (if and) only if for every irreducible
component 𝑍 ⊂ 𝑆 the generic point of 𝑍 is in the image of 𝑓. If so, then 𝑆 has finitely many
irreducible components as well.

Proof. Assume 𝑓 is dominant. Say 𝑋 = 𝑍1 ∪ 𝑍2 ∪ … ∪ 𝑍𝑛 is the decomposition of 𝑋 into
irreducible components. Let 𝜉𝑖 ∈ 𝑍𝑖 be its generic point, so 𝑍𝑖 = {𝜉𝑖}. Note that 𝑓(𝑍𝑖) is
an irreducible subset of 𝑆. Hence

𝑆 = 𝑓(𝑋) = ⋃ 𝑓(𝑍𝑖) = ⋃ {𝑓(𝜉𝑖)}

is a finite union of irreducible subsets whose generic points are in the image of 𝑓. The
lemma follows. �

24.7. Birational morphisms

You may be used to the notion of a birational map of varieties having the property that
it is an isomorphism over an open subset of the target. However, in general a birational
morphism may not be an isomorphism over any nonempty open, see Example 24.7.3. Here
is the formal definition.

Definition 24.7.1. Let 𝑋, 𝑌 be schemes. Assume 𝑋 and 𝑌 have finitely many irreducible
components. We say a morphism 𝑓 ∶ 𝑋 → 𝑌 is birational if

(1) 𝑓 induces a bijection between the set of generic points of irreducible components
of 𝑋 and the set of generic points of the irreducible components of 𝑌, and

(2) for every generic point 𝜂 ∈ 𝑋 of an irreducible component of 𝑋 the local ring
map 𝒪𝑌,𝑓(𝜂) → 𝒪𝑋,𝜂 is an isomorphism.
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Lemma 24.7.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes having finitely many irreducible
components. If 𝑓 is birational then 𝑓 is dominant.

Proof. Follows immediately from the definitions. �

Example 24.7.3. Here is an example of a birational morphism which is not an isomor-
phism over any open of the target. Let 𝑘 be an infinite field. Let 𝐴 = 𝑘[𝑥]. Let 𝐵 =
𝑘[𝑥, {𝑦𝛼}𝛼∈𝑘]/((𝑥 − 𝛼)𝑦𝛼, 𝑦𝛼𝑦𝛽). There is an inclusion 𝐴 ⊂ 𝐵 and a retraction 𝐵 → 𝐴
setting all 𝑦𝛼 equal to zero. Both the morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝐵) and the morphism
𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) are birational but not an isomorphism over any open.

24.8. Rational maps

Let 𝑋 be a scheme. Note that if 𝑈, 𝑉 are dense open in 𝑋, then so is 𝑈 ∩ 𝑉.

Definition 24.8.1. Let 𝑋, 𝑌 be schemes.
(1) Let 𝑓 ∶ 𝑈 → 𝑌, 𝑔 ∶ 𝑉 → 𝑌 be morphisms of schemes defined on dense open

subsets 𝑈, 𝑉 of 𝑋. We say that 𝑓 is equivalent to 𝑔 if 𝑓|𝑊 = 𝑔|𝑊 for some
𝑊 ⊂ 𝑈 ∩ 𝑉 dense open in 𝑋.

(2) A rational map from 𝑋 to 𝑌 is an equivalence class for the equivalence relation
defined in (1).

(3) If 𝑋, 𝑌 are schemes over a base scheme 𝑆 we say that a rational map from 𝑋 to
𝑌 is an 𝑆-rational map from 𝑋 to 𝑌 if there exists a representative 𝑓 ∶ 𝑈 → 𝑌 of
the equivalence class which is an 𝑆-morphism.

We say that two morphisms 𝑓, 𝑔 as in (1) of the definition define the same rational map
instead of saying that they are equivalent.

Definition 24.8.2. Let 𝑋 be a scheme. A rational function on 𝑋 is a rational morphism
from 𝑋 to 𝐀1

𝐙.

See Constructions, Definition 22.5.1 for the definition of the affine line 𝐀1. Let 𝑋 be a
scheme over 𝑆. For any open 𝑈 ⊂ 𝑋 a morphism 𝑈 → 𝐀1

𝐙 is the same as a morphism
𝑈 → 𝐀1

𝑆 over 𝑆. Hence a rational function is also the same as a 𝑆-rational map from 𝑋
into 𝐀1

𝑆.

Recall that we have the canonical identification 𝑀𝑜𝑟(𝑇, 𝐀1
𝐙) = Γ(𝑇, 𝒪𝑇) for any scheme

𝑇, see Schemes, Example 21.15.2. Hence 𝐀1
𝐙 is a ring-object in the category of schemes.

More precisely, the morphisms
+ ∶ 𝐀1

𝐙 × 𝐀1
𝐙 ⟶ 𝐀1

𝐙
(𝑓, 𝑔) ⟼ 𝑓 + 𝑔

∗ ∶ 𝐀1
𝐙 × 𝐀1

𝐙 ⟶ 𝐀1
𝐙

(𝑓, 𝑔) ⟼ 𝑓𝑔
satisfy all the axioms of the addition and multiplication in a ring (commutative with 1 as
always). Hence also the set of rational maps into 𝐀1

𝐙 has a natural ring structure.

Definition 24.8.3. Let 𝑋 be a scheme. The ring of rational functions on 𝑋 is the ring 𝑅(𝑋)
whose elements are rational functions with addition and multiplication as just described.

Lemma 24.8.4. Let 𝑋 be an irreducible scheme. Let 𝜂 ∈ 𝑋 be the generic point of 𝑋.
There is a canonical identification 𝑅(𝑋) ≅ 𝒪𝑋,𝜂. If 𝑋 is integral then 𝑅(𝑋) = 𝜅(𝜂) = 𝒪𝑋,𝜂
is a field.
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Proof. Omitted. �

Definition 24.8.5. Let 𝑋 be an integral scheme. The function field, or the field of rational
functions of 𝑋 is the field 𝑅(𝑋).

We may occasionally indicate this field 𝑘(𝑋) instead of 𝑅(𝑋).

Remark 24.8.6. There is a variant of Definition 24.8.1 where we consider only those mor-
phism 𝑈 → 𝑌 defined on scheme theoretically dense open subschemes 𝑈 ⊂ 𝑋. We use
Lemma 24.5.6 to see that we obtain an equivalence relation. An equivalence class of these
is called a pseudo-morphism from 𝑋 to 𝑌. If 𝑋 is reduced the two notions coincide.

Here is a fun application of these notions. Note that by Lemma 24.8.4 on an integral scheme
every local ring 𝒪𝑋,𝑥 may be viewed as a local subring of 𝑅(𝑋).

Lemma 24.8.7. Let 𝑋 be an integral separated scheme. Let 𝑍1, 𝑍2 be distinct irreducible
closed subsets of 𝑋. Let 𝜂𝑖 be the generic point of 𝑍𝑖. If 𝑍1⊄𝑍2, then 𝒪𝑋,𝜂1

⊄𝒪𝑋,𝜂2
as

subrings of 𝑅(𝑋). In particular, if 𝑍1 = {𝑥} consists of one closed point 𝑥, there exists a
function regular in a neighborhood of 𝑥 which is not in 𝒪𝑋,𝜂2

.

Proof. First observe that under the assumption of 𝑋 being seperated, there is a unique map
of schemes 𝑆𝑝𝑒𝑐(𝒪𝑋,𝜂2

) → 𝑋 over 𝑋 such that the composition

𝑆𝑝𝑒𝑐(𝑅(𝑋)) ⟶ 𝑆𝑝𝑒𝑐(𝒪𝑋,𝜂2
) ⟶ 𝑋

is the canonicalmap𝑆𝑝𝑒𝑐(𝑅(𝑋)) → 𝑋. Namely, there is the canonicalmap 𝑐𝑎𝑛 ∶ 𝑆𝑝𝑒𝑐(𝒪𝑋,𝜂2
) →

𝑋, see Schemes, Equation (21.13.1.1). Given a second morphism 𝑎 to 𝑋, we have that 𝑎
agrees with 𝑐𝑎𝑛 on the generic point of 𝑆𝑝𝑒𝑐(𝒪𝑋,𝜂2

) by assumption. Now being 𝑋 being
seperated guarantees that the subset in 𝑆𝑝𝑒𝑐(𝒪𝑋,𝜂2

) where these two maps agree is closed,
see Schemes, Lemma 21.21.5. Hence 𝑎 = 𝑐𝑎𝑛 on all of 𝑆𝑝𝑒𝑐(𝒪𝑋,𝜂2

).

Assume 𝑍1⊄𝑍2 and assume on the contrary that 𝒪𝑋,𝜂1
⊂ 𝒪𝑋,𝜂2

as subrings of 𝑅(𝑋). Then
we would obtain a second morphism

𝑆𝑝𝑒𝑐(𝒪𝑋,𝜂2
) ⟶ 𝑆𝑝𝑒𝑐(𝒪𝑋,𝜂1

) ⟶ 𝑋.

By the above this composition would have to be equal to 𝑐𝑎𝑛. This implies that 𝜂2 special-
izes to 𝜂1 (see Schemes, Lemma 21.13.2). But this contradicts our assumption 𝑍1⊄𝑍2. �

24.9. Surjective morphisms

Definition 24.9.1. A morphism of schemes is said to be surjective if it is surjective on
underlying topological spaces.

Lemma 24.9.2. The composition of surjective morphisms is surjective.

Proof. Omitted. �

Lemma 24.9.3. Let 𝑋 and 𝑌 be schemes over a base scheme 𝑆. Given points 𝑥 ∈ 𝑋 and
𝑦 ∈ 𝑌, there is a point of 𝑋 ×𝑆 𝑌 mapping to 𝑥 and 𝑦 under the projections if and only if 𝑥
and 𝑦 lie above the same point of 𝑆.

Proof. The condition is obviously necessary, and the converse follows from the proof of
Schemes, Lemma 21.17.5. �

Lemma 24.9.4. The base change of a surjective morphism is surjective.
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Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over a base scheme 𝑆. If 𝑆′ → 𝑆 is a
morphism of schemes, let 𝑝 ∶ 𝑋𝑆′ → 𝑋 and 𝑞 ∶ 𝑌𝑆′ → 𝑌 be the canonical projections.
The commutative square

𝑋𝑆′

𝑓𝑆′

��

𝑝
// 𝑋

𝑓
��

𝑌𝑆′
𝑞 // 𝑌.

identifies 𝑋𝑆′ as a fibre product of 𝑋 → 𝑌 and 𝑌𝑆′ → 𝑌. Let 𝑍 be a subset of the underlying
topological space of 𝑋. Then 𝑞−1(𝑓(𝑍)) = 𝑓𝑆′(𝑝−1(𝑍)), because 𝑦′ ∈ 𝑞−1(𝑓(𝑍)) if and
only if 𝑞(𝑦′) = 𝑓(𝑥) for some 𝑥 ∈ 𝑍, if and only if, by Lemma 24.9.3, there exists 𝑥′ ∈ 𝑋𝑆′

such that 𝑓𝑆′(𝑥′) = 𝑦′ and 𝑝(𝑥′) = 𝑥. In particular taking 𝑍 = 𝑋 we see that if 𝑓 is
surjective so is the base change 𝑓𝑆′ ∶ 𝑋𝑆′ → 𝑌𝑆′. �

Example 24.9.5. Bijectivity is not stable under base change, and so neither is injectivity.
For example consider the bijection 𝑆𝑝𝑒𝑐(𝐂) → 𝑆𝑝𝑒𝑐(𝐑). The base change 𝑆𝑝𝑒𝑐(𝐂⊗𝐑𝐂) →
𝑆𝑝𝑒𝑐(𝐂) is not injective, since there is an isomorphism 𝐂⊗𝐑 𝐂 ≅ 𝐂×𝐂 (the decomposition
comes from the idempotent 1⊗1+𝑖⊗𝑖

2 ) and hence 𝑆𝑝𝑒𝑐(𝐂 ⊗𝐑 𝐂) has two points.

Lemma 24.9.6. Let
𝑋

𝑓
//

𝑝   

𝑌

𝑞��
𝑍

be a commutative diagram of morphisms of schemes. If 𝑓 is surjective and 𝑝 is quasi-
compact, then 𝑞 is quasi-compact.

Proof. Let 𝑊 ⊂ 𝑍 be a quasi-compact open. By assumption 𝑝−1(𝑊) is quasi-compact.
Hence by Topology, Lemma 5.9.5 the inverse image 𝑞−1(𝑊) = 𝑓(𝑝−1(𝑊)) is quasi-compact
too. This proves the lemma. �

24.10. Radicial and universally injective morphisms

In this section we define what it means for a morphism of schemes to be radicial and what
it means for a morphism of schemes to be universally injective. We then show that these
notions agree. The reason for introducing both is that in the case of algebraic spaces there
are corresponding notions which may not always agree.

Definition 24.10.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism.
(1) We say that 𝑓 is universally injective if and only if for any morphism of schemes

𝑆′ → 𝑆 the base change 𝑓′ ∶ 𝑋𝑆′ → 𝑆′ is injective (on underlying topological
spaces).

(2) We say 𝑓 is radicial if 𝑓 is injective as a map of topological spaces, and for every
𝑥 ∈ 𝑋 the field extension 𝜅(𝑥) ⊃ 𝜅(𝑓(𝑥)) is purely inseparable.

Lemma 24.10.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) For every field 𝐾 the induced map 𝑀𝑜𝑟(𝑆𝑝𝑒𝑐(𝐾), 𝑋) → 𝑀𝑜𝑟(𝑆𝑝𝑒𝑐(𝐾), 𝑆) is

injective.
(2) The morphism 𝑓 is universally injective.
(3) The morphism 𝑓 is radicial.
(4) The diagonal morphism Δ𝑋/𝑆 ∶ 𝑋 ⟶ 𝑋 ×𝑆 𝑋 is surjective.
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Proof. Let 𝐾 be a field, and let 𝑠 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑆 be a morphism. Giving a morphism
𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 such that 𝑓 ∘ 𝑥 = 𝑠 is the same as giving a section of the projection
𝑋𝐾 = 𝑆𝑝𝑒𝑐(𝐾) ×𝑆 𝑋 → 𝑆𝑝𝑒𝑐(𝐾), which in turn is the same as giving a point 𝑥 ∈ 𝑋𝐾
whose residue field is 𝐾. Hence we see that (2) implies (1).
Conversely, suppose that (1) holds. Assume that 𝑥, 𝑥′ ∈ 𝑋𝑆′ map to the same point 𝑠′ ∈ 𝑆′.
Choose a commutative diagram

𝐾 𝜅(𝑥)oo

𝜅(𝑥′)

OO

𝜅(𝑠′)oo

OO

of fields. By Schemes, Lemma 21.13.3 we get two morphisms 𝑎, 𝑎′ ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋𝑆′.
One corresponding to the point 𝑥 and the embedding 𝜅(𝑥) ⊂ 𝐾 and the other corresponding
to the point 𝑥′ and the embedding 𝜅(𝑥′) ⊂ 𝐾. Also we have 𝑓′ ∘ 𝑎 = 𝑓′ ∘ 𝑎′. Condition (1)
now implies that the compositions of 𝑎 and 𝑎′ with 𝑋𝑆′ → 𝑋 are equal. Since 𝑋𝑆′ is the
fibre product of 𝑆′ and 𝑋 over 𝑆 we see that 𝑎 = 𝑎′. Hence 𝑥 = 𝑥′. Thus (1) implies (2).
If there are two different points 𝑥, 𝑥′ ∈ 𝑋 mapping to the same point of 𝑠 then (2) is vio-
lated. If for some 𝑠 = 𝑓(𝑥), 𝑥 ∈ 𝑋 the field extension 𝜅(𝑠) ⊂ 𝜅(𝑥) is not purely inseparable,
then we may find a field extension 𝜅(𝑠) ⊂ 𝐾 such that 𝜅(𝑥) has two 𝜅(𝑠)-homomorphisms
into 𝐾. By Schemes, Lemma 21.13.3 this implies that the map 𝑀𝑜𝑟(𝑆𝑝𝑒𝑐(𝐾), 𝑋) →
𝑀𝑜𝑟(𝑆𝑝𝑒𝑐(𝐾), 𝑆) is not injective, and hence (1) is violated. Thus we see that the equivalent
conditions (1) and (2) imply 𝑓 is radicial, i.e., they imply (3).
Assume (3). By Schemes, Lemma 21.13.3 a morphism 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 is given by a pair
(𝑥, 𝜅(𝑥) → 𝐾). Property (3) says exactly that associating to the pair (𝑥, 𝜅(𝑥) → 𝐾) the pair
(𝑠, 𝜅(𝑠) → 𝜅(𝑥) → 𝐾) is injective. In other words (1) holds. At this point we know that (1),
(2) and (3) are all equivalent.
Finally, we prove the equivalence of (4) with (1), (2) and (3). A point of 𝑋×𝑆 𝑋 is given by
a quadruple (𝑥1, 𝑥2, 𝑠, 𝔭), where 𝑥1, 𝑥2 ∈ 𝑋, 𝑓(𝑥1) = 𝑓(𝑥2) = 𝑠 and 𝔭 ⊂ 𝜅(𝑥1) ⊗𝜅(𝑠) 𝜅(𝑥2)
is a prime ideal, see Schemes, Lemma 21.17.5. If 𝑓 is universally injective, then by taking
𝑆′ = 𝑋 in the definition of universally injective, Δ𝑋/𝑆 must be surjective since it is a section
of the injective morphism 𝑋 ×𝑆 𝑋 ⟶ 𝑋. Conversely, if Δ𝑋/𝑆 is surjective, then always
𝑥1 = 𝑥2 = 𝑥 and there is exactly one such prime ideal 𝔭, which means that 𝜅(𝑠) ⊂ 𝜅(𝑥)
is purely inseparable. Hence 𝑓 is radicial. Alternatively, if Δ𝑋/𝑆 is surjective, then for any
𝑆′ → 𝑆 the base change Δ𝑋𝑆′/𝑆′ is surjective which implies that 𝑓 is universally injective.
This finishes the proof of the lemma. �

Lemma 24.10.3. A universally injective morphism is separated.

Proof. Combine Lemma 24.10.2 with the remark that 𝑋 → 𝑆 is separated if and only if
the image of Δ𝑋/𝑆 is closed in 𝑋 ×𝑆 𝑋, see Schemes, Definition 21.21.3 and the discussion
following it. �

Lemma 24.10.4. A base change of a universally injective morphism is universally injective.

Proof. This is formal. �

Lemma 24.10.5. A composition of radicial morphisms is radicial, and so the same holds
for the equivalent condition of being universally injective.

Proof. Omitted. �
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24.11. Affine morphisms

Definition 24.11.1. A morphism of schemes 𝑓 ∶ 𝑋 → 𝑆 is called affine if the inverse
image of every affine open of 𝑆 is an affine open of 𝑋.
Lemma 24.11.2. An affine morphism is separated and quasi-compact.
Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be affine. Quasi-compactness is immediate from Schemes, Lemma
21.19.2. We will show 𝑓 is separated using Schemes, Lemma 21.21.8. Let 𝑥1, 𝑥2 ∈ 𝑋 be
points of 𝑋 which map to the same point 𝑠 ∈ 𝑆. Choose any affine open 𝑊 ⊂ 𝑆 containing
𝑠. By assumption 𝑓−1(𝑊) is affine. Apply the lemma cited with 𝑈 = 𝑉 = 𝑓−1(𝑊). �

Lemma 24.11.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is affine.
(2) There exists an affine open covering 𝑆 = ⋃ 𝑊𝑗 such that each 𝑓−1(𝑊𝑗) is affine.
(3) There exists a quasi-coherent sheaf of 𝒪𝑆-algebras 𝒜 and an isomorphism 𝑋 ≅

𝑆𝑝𝑒𝑐
𝑆

(𝒜) of schemes over 𝑆. See Constructions, Section 22.4 for notation.
Moreover, in this case 𝑋 = 𝑆𝑝𝑒𝑐

𝑆
(𝑓∗𝒪𝑋).

Proof. It is obvious that (1) implies (2).
Assume 𝑆 = ⋃𝑗∈𝐽 𝑊𝑗 is an affine open covering such that each 𝑓−1(𝑊𝑗) is affine. By
Schemes, Lemma 21.19.2 we see that 𝑓 is quasi-compact. By Schemes, Lemma 21.21.7
we see the morphism 𝑓 is quasi-separated. Hence by Schemes, Lemma 21.24.1 the sheaf
𝒜 = 𝑓∗𝒪𝑋 is a quasi-coherent sheaf of 𝒪𝑋-algebras. Thus we have the scheme 𝑔 ∶ 𝑌 =
𝑆𝑝𝑒𝑐

𝑆
(𝒜) → 𝑆 over 𝑆. The identity map id ∶ 𝒜 = 𝑓∗𝒪𝑋 → 𝑓∗𝒪𝑋 provides, via the defini-

tion of the relative spectrum, a morphism 𝑐𝑎𝑛 ∶ 𝑋 → 𝑌 over 𝑆, see Constructions, Lemma
22.4.7. By assumption and the lemma just cited the restriction 𝑐𝑎𝑛|𝑓−1(𝑊𝑗) ∶ 𝑓−1(𝑊𝑗) →
𝑔−1(𝑊𝑗) is an isomorphism. Thus 𝑐𝑎𝑛 is an isomorphism. We have shown that (2) implies
(3).
Assume (3). By Constructions, Lemma 22.4.6 we see that the inverse image of every affine
open is affine, and hence the morphism is affine by definition. �

Remark 24.11.4. We can also argue directly that (2) implies (1) in Lemma 24.11.3 above
as follows. Assume 𝑆 = ⋃ 𝑊𝑗 is an affine open covering such that each 𝑓−1(𝑊𝑗) is affine.
First argue that 𝒜 = 𝑓∗𝒪𝑋 is quasi-coherent as in the proof above. Let 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆
be affine open. We have to show that 𝑓−1(𝑉) is affine. Set 𝐴 = 𝒜(𝑉) = 𝑓∗𝒪𝑋(𝑉) =
𝒪𝑋(𝑓−1(𝑉)). By Schemes, Lemma 21.6.4 there is a canonical morphism 𝜓 ∶ 𝑓−1(𝑉) →
𝑆𝑝𝑒𝑐(𝐴) over 𝑆𝑝𝑒𝑐(𝑅) = 𝑉. By Schemes, Lemma 21.11.6 there exists an integer 𝑛 ≥ 0,
a standard open covering 𝑉 = ⋃𝑖=1,…,𝑛 𝐷(ℎ𝑖), ℎ𝑖 ∈ 𝑅, and a map 𝑎 ∶ {1, … , 𝑛} → 𝐽
such that each 𝐷(ℎ𝑖) is also a standard open of the affine scheme 𝑊𝑎(𝑖). The inverse im-
age of a standard open under a morphism of affine schemes is standard open, see Algebra,
Lemma 7.16.4. Hence we see that 𝑓−1(𝐷(ℎ𝑖)) is a standard open of 𝑓−1(𝑊𝑎(𝑖)), in partic-
ular that 𝑓−1(𝐷(ℎ𝑖)) is affine. Because 𝒜 is quasi-coherent we have 𝐴ℎ𝑖

= 𝒜(𝐷(ℎ𝑖)) =
𝒪𝑋(𝑓−1(𝐷(ℎ𝑖))), so 𝑓−1(𝐷(ℎ𝑖)) is the spectrum of 𝐴ℎ𝑖

. It follows that the morphism 𝜓 in-
duces an isomorphism of the open 𝑓−1(𝐷(ℎ𝑖)) with the open 𝑆𝑝𝑒𝑐(𝐴ℎ𝑖

) of 𝑆𝑝𝑒𝑐(𝐴). Since
𝑓−1(𝑉) = ⋃ 𝑓−1(𝐷(ℎ𝑖)) and 𝑆𝑝𝑒𝑐(𝐴) = ⋃ 𝑆𝑝𝑒𝑐(𝐴ℎ𝑖

) we win.
Lemma 24.11.5. Let 𝑆 be a scheme. There is an anti-equivalence of categories

Schemes affine
over 𝑆 ⟷ quasi-coherent sheaves

of 𝒪𝑆-algebras
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which associates to 𝑓 ∶ 𝑋 → 𝑆 the sheaf 𝑓∗𝒪𝑋.

Proof. Omitted. �

Lemma 24.11.6. Let 𝑓 ∶ 𝑋 → 𝑆 be an affine morphism of schemes. Let 𝒜 = 𝑓∗𝒪𝑋. The
functor ℱ ↦ 𝑓∗ℱ induces an equivalence of categories

{
category of quasi-coherent

𝒪𝑋-modules } ⟶ {
category of quasi-coherent

𝒜-modules }
Moreover, an𝒜-module is quasi-coherent as an𝒪𝑆-module if and only if it is quasi-coherent
as an 𝒜-module.

Proof. Omitted. �

Lemma 24.11.7. The composition of affine morphisms is affine.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be affine morphisms. Let 𝑈 ⊂ 𝑍 be affine open.
Then 𝑔−1(𝑈) is affine by assumption on 𝑔. Whereupon 𝑓−1(𝑔−1(𝑈)) is affine by assumption
on 𝑓. Hence (𝑔 ∘ 𝑓)−1(𝑈) is affine. �

Lemma 24.11.8. The base change of an affine morphism is affine.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be an affine morphism. Let 𝑆′ → 𝑆 be any morphism. Denote 𝑓′ ∶
𝑋𝑆′ = 𝑆′ ×𝑆 𝑋 → 𝑆′ the base change of 𝑓. For every 𝑠′ ∈ 𝑆′ there exists an open affine
neighbourhood 𝑠′ ∈ 𝑉 ⊂ 𝑆′ which maps into some open affine 𝑈 ⊂ 𝑆. By assumption
𝑓−1(𝑈) is affine. By the material in Schemes, Section 21.17 we see that 𝑓−1(𝑈)𝑉 = 𝑉 ×𝑈
𝑓−1(𝑈) is affine and equal to (𝑓′)−1(𝑉). This proves that 𝑆′ has an open covering by affines
whose inverse image under 𝑓′ is affine. We conclude by Lemma 24.11.3 above. �

Lemma 24.11.9. A closed immersion is affine.

Proof. The first indication of this is Schemes, Lemma 21.8.2. See Schemes, Lemma
21.10.1 for a complete statement. �

Lemma 24.11.10. Let𝑋 be a scheme. Letℒ be an invertible𝒪𝑋-module. Let 𝑠 ∈ Γ(𝑋, ℒ).
The inclusion morphism 𝑗 ∶ 𝑋𝑠 → 𝑋 is affine.

Proof. This follows from Properties, Lemma 23.23.4 and the definition. �

Lemma 24.11.11. Suppose 𝑔 ∶ 𝑋 → 𝑌 is a morphism of schemes over 𝑆. If 𝑋 is affine
over 𝑆 and 𝑌 is separated over 𝑆, then 𝑔 is affine. In particular, any morphism from an
affine scheme to a separated scheme is affine.

Proof. The base change 𝑋 ×𝑆 𝑌 → 𝑌 is affine by Lemma 24.11.8. The morphism 𝑋 →
𝑋 ×𝑆 𝑌 is a closed immersion as 𝑌 → 𝑆 is separated, see Schemes, Lemma 21.21.12. A
closed immersion is affine (see Lemma 24.11.9) and the composition of affine morphisms
is affine (see Lemma 24.11.7). Thus we win. �

Lemma 24.11.12. A morphism between affine schemes is affine.

Proof. Immediate from Lemma 24.11.11 with 𝑆 = 𝑆𝑝𝑒𝑐(𝐙). It also follows directly from
the equivalence of (1) and (2) in Lemma 24.11.3. �

Lemma 24.11.13. Let𝑆 be a scheme. Let𝐴 be an Artinian ring. Anymorphism𝑆𝑝𝑒𝑐(𝐴) →
𝑆 is affine.

Proof. Omitted. �
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24.12. Quasi-affine morphisms

Recall that a scheme 𝑋 is called quasi-affine if it is quasi-compact and isomorphic to an
open subscheme of an affine scheme, see Properties, Definition 23.15.1.

Definition 24.12.1. Amorphism of schemes 𝑓 ∶ 𝑋 → 𝑆 is called quasi-affine if the inverse
image of every affine open of 𝑆 is a quasi-affine scheme.

Lemma 24.12.2. A quasi-affine morphism is separated and quasi-compact.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be quasi-affine. Quasi-compactness is immediate from Schemes,
Lemma 21.19.2. We will show 𝑓 is separated using Schemes, Lemma 21.21.8. Let 𝑥1, 𝑥2 ∈
𝑋 be points of 𝑋 which map to the same point 𝑠 ∈ 𝑆. Choose any affine open 𝑊 ⊂ 𝑆
containing 𝑠. By assumption 𝑓−1(𝑊) is isomorphic to an open subscheme of an affine
scheme, say 𝑓−1(𝑊) → 𝑌 is such an open immersion. Choose affine open neighbourhoods
𝑥1 ∈ 𝑈 ⊂ 𝑓−1(𝑊) and 𝑥2 ∈ 𝑉 ⊂ 𝑓−1(𝑊). We may think of 𝑈 and 𝑉 as open subschemes of
𝑌 and hence we see that 𝑈 ∩ 𝑉 is affine and that 𝒪(𝑈) ⊗𝐙 𝒪(𝑉) → 𝒪(𝑈 ∩ 𝑉) is surjective (by
the lemma cited above applied to 𝑈, 𝑉 in 𝑌). Hence by the lemma cited we conclude that 𝑓
is separated. �

Lemma 24.12.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is quasi-affine.
(2) There exists an affine open covering 𝑆 = ⋃ 𝑊𝑗 such that each 𝑓−1(𝑊𝑗) is quasi-

affine.
(3) There exists a quasi-coherent sheaf of 𝒪𝑆-algebras 𝒜 and a quasi-compact open

immersion
𝑋 //

��

𝑆𝑝𝑒𝑐
𝑆

(𝒜)

{{
𝑆

over 𝑆.
(4) Same as in (3) but with 𝒜 = 𝑓∗𝒪𝑋 and the horizontal arrow the canonical mor-

phism of Constructions, Lemma 22.4.7.

Proof. It is obvious that (1) implies (2) and that (4) implies (3).

Assume 𝑆 = ⋃𝑗∈𝐽 𝑊𝑗 is an affine open covering such that each 𝑓−1(𝑊𝑗) is quasi-affine. By
Schemes, Lemma 21.19.2 we see that 𝑓 is quasi-compact. By Schemes, Lemma 21.21.7
we see the morphism 𝑓 is quasi-separated. Hence by Schemes, Lemma 21.24.1 the sheaf
𝒜 = 𝑓∗𝒪𝑋 is a quasi-coherent sheaf of 𝒪𝑋-algebras. Thus we have the scheme 𝑔 ∶ 𝑌 =
𝑆𝑝𝑒𝑐

𝑆
(𝒜) → 𝑆 over 𝑆. The identity map id ∶ 𝒜 = 𝑓∗𝒪𝑋 → 𝑓∗𝒪𝑋 provides, via the

definition of the relative spectrum, a morphism 𝑐𝑎𝑛 ∶ 𝑋 → 𝑌 over 𝑆, see Constructions,
Lemma 22.4.7. By assumption, the lemma just cited, and Properties, Lemma 23.15.4 the
restriction 𝑐𝑎𝑛|𝑓−1(𝑊𝑗) ∶ 𝑓−1(𝑊𝑗) → 𝑔−1(𝑊𝑗) is a quasi-compact open immersion. Thus
𝑐𝑎𝑛 is a quasi-compact open immersion. We have shown that (2) implies (4).

Assume (3). Choose any affine open 𝑈 ⊂ 𝑆. By Constructions, Lemma 22.4.6 we see that
the inverse image of 𝑈 in the relative spectrum is affine. Hence we conclude that 𝑓−1(𝑈)
is quasi-affine (note that quasi-compactness is encoded in (3) as well). Thus (3) implies
(1). �

Lemma 24.12.4. The composition of quasi-affine morphisms is quasi-affine.
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Proof. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be quasi-affine morphisms. Let 𝑈 ⊂ 𝑍 be
affine open. Then 𝑔−1(𝑈) is quasi-affine by assumption on 𝑔. Let 𝑗 ∶ 𝑔−1(𝑈) → 𝑉 be a
quasi-compact open immersion into an affine scheme 𝑉. By Lemma 24.12.3 above we see
that 𝑓−1(𝑔−1(𝑈)) is a quasi-compact open subscheme of the relative spectrum 𝑆𝑝𝑒𝑐

𝑔−1(𝑈)
(𝒜)

for some quasi-coherent sheaf of 𝒪𝑔−1(𝑈)-algebras 𝒜. By Schemes, Lemma 21.24.1 the
sheaf 𝒜′ = 𝑗∗𝒜 is a quasi-coherent sheaf of 𝒪𝑉-algebras with the property that 𝑗∗𝒜′ = 𝒜.
Hence we get a commutative diagram

𝑓−1(𝑔−1(𝑈)) // 𝑆𝑝𝑒𝑐
𝑔−1(𝑈)

(𝒜) //

��

𝑆𝑝𝑒𝑐
𝑉
(𝒜′)

��
𝑔−1(𝑈)

𝑗 // 𝑉

with the square being a fibre square, see Constructions, Lemma 22.4.6. Note that the upper
right corner is an affine scheme. Hence (𝑔 ∘ 𝑓)−1(𝑈) is quasi-affine. �

Lemma 24.12.5. The base change of a quasi-affine morphism is quasi-affine.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-affine morphism. By Lemma 24.12.3 above we can
find a quasi-coherent sheaf of 𝒪𝑆-algebras 𝒜 and a quasi-compact open immersion 𝑋 →
𝑆𝑝𝑒𝑐

𝑆
(𝒜) over 𝑆. Let 𝑔 ∶ 𝑆′ → 𝑆 be any morphism. Denote 𝑓′ ∶ 𝑋𝑆′ = 𝑆′ ×𝑆 𝑋 →

𝑆′ the base change of 𝑓. Since the base change of a quasi-compact open immersion is
a quasi-compact open immersion we see that 𝑋𝑆′ → 𝑆𝑝𝑒𝑐

𝑆′(𝑔∗𝒜) is a quasi-compact
open immersion (we have used Schemes, Lemmas 21.19.3 and 21.18.2 and Constructions,
Lemma 22.4.6). By Lemma 24.12.3 again we conclude that 𝑋𝑆′ → 𝑆′ is quasi-affine. �

Lemma 24.12.6. A quasi-compact immersion is quasi-affine.

Proof. Let 𝑋 → 𝑆 be a quasi-compact immersion. We have to show the inverse image of
every affine open is quasi-affine. Hence, assuming 𝑆 is an affine scheme, we have to show
𝑋 is quasi-affine. By Lemma 24.5.7 the morphism 𝑋 → 𝑆 factors as 𝑋 → 𝑍 → 𝑆 where 𝑍
is a closed subscheme of 𝑆 and 𝑋 ⊂ 𝑍 is a quasi-compact open. Since 𝑆 is affine Lemma
24.2.1 implies 𝑍 is affine. Hence we win. �

Lemma 24.12.7. Let 𝑆 be a scheme. Let 𝑋 be an affine scheme. A morphism 𝑓 ∶ 𝑋 → 𝑆
is quasi-affine if and only if it is quasi-compact. In particular any morphism from an affine
scheme to a quasi-separated scheme is quasi-affine.

Proof. Let 𝑉 ⊂ 𝑆 be an affine open. Then 𝑓−1(𝑉) is an open subscheme of the affine scheme
𝑋, hence quasi-affine if and only if it is quasi-compact. This proves the first assertion. The
quasi-compactness of any 𝑓 ∶ 𝑋 → 𝑆 where 𝑋 is affine and 𝑆 quasi-separated follows from
Schemes, Lemma 21.21.15 applied to 𝑋 → 𝑆 → 𝑆𝑝𝑒𝑐(𝐙). �

Lemma 24.12.8. Suppose 𝑔 ∶ 𝑋 → 𝑌 is a morphism of schemes over 𝑆. If 𝑋 is quasi-affine
over 𝑆 and 𝑌 is quasi-separated over 𝑆, then 𝑔 is quasi-affine. In particular, any morphism
from a quasi-affine scheme to a quasi-separated scheme is quasi-affine.

Proof. The base change 𝑋 ×𝑆 𝑌 → 𝑌 is quasi-affine by Lemma 24.12.5. The morphism
𝑋 → 𝑋 ×𝑆 𝑌 is a quasi-compact immersion as 𝑌 → 𝑆 is quasi-separated, see Schemes,
Lemma 21.21.12. A quasi-compact immersion is quasi-affine by Lemma 24.12.6 and the
composition of quasi-affine morphisms is quasi-affine (see Lemma 24.12.4). Thus we win.

�
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24.13. Types of morphisms defined by properties of ring maps

In this section we study what properties of ring maps allow one to define local properties
of morphisms of schemes.

Definition 24.13.1. Let 𝑃 be a property of ring maps.
(1) We say that 𝑃 is local if the following hold:

(a) For any ring map 𝑅 → 𝐴, and any 𝑓 ∈ 𝑅 we have 𝑃(𝑅 → 𝐴) ⇒ 𝑃(𝑅𝑓 →
𝐴𝑓).

(b) For any rings 𝑅, 𝐴, any 𝑓 ∈ 𝑅, 𝑎 ∈ 𝐴, and any ring map 𝑅𝑓 → 𝐴 we have
𝑃(𝑅𝑓 → 𝐴) ⇒ 𝑃(𝑅 → 𝐴𝑎).

(c) For any ring map 𝑅 → 𝐴, and 𝑎𝑖 ∈ 𝐴 such that (𝑎1, … , 𝑎𝑛) = 𝐴 then
∀𝑖, 𝑃(𝑅 → 𝐴𝑎𝑖

) ⇒ 𝑃(𝑅 → 𝐴).
(2) We say that 𝑃 is stable under base change if for any ring maps 𝑅 → 𝐴, 𝑅 → 𝑅′

we have 𝑃(𝑅 → 𝐴) ⇒ 𝑃(𝑅′ → 𝑅′ ⊗𝑅 𝐴).
(3) We say that 𝑃 is stable under composition if for any ring maps 𝐴 → 𝐵, 𝐵 → 𝐶

we have 𝑃(𝐴 → 𝐵) ∧ 𝑃(𝐵 → 𝐶) ⇒ 𝑃(𝐴 → 𝐶).

Definition 24.13.2. Let 𝑃 be a property of ring maps. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphisms
of schemes. We say 𝑓 is locally of type 𝑃 if for any 𝑥 ∈ 𝑋 there exists an affine open
neighbourhood 𝑈 of 𝑥 in 𝑋 which maps into an affine open 𝑉 ⊂ 𝑆 such that the induced
ring map 𝒪𝑆(𝑉) → 𝒪𝑋(𝑈) has property 𝑃.

This is not a ``good'' definition unless the property 𝑃 is a local property. Even if 𝑃 is a local
property we will not automatically use this definition to say that a morphism is ``locally of
type 𝑃'' unless we also explicitly state the definition elsewhere.

Lemma 24.13.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑃 be a property of ring
maps. Let 𝑈 be an affine open of 𝑋, and 𝑉 an affine open of 𝑆 such that 𝑓(𝑈) ⊂ 𝑉. If 𝑓 is
locally of type 𝑃 and 𝑃 is local, then 𝑃(𝒪𝑆(𝑉) → 𝒪𝑋(𝑈)) holds.

Proof. As 𝑓 is locally of type 𝑃 for every 𝑢 ∈ 𝑈 there exists an affine open 𝑈𝑢 ⊂ 𝑋
mapping into an affine open 𝑉𝑢 ⊂ 𝑆 such that 𝑃(𝒪𝑆(𝑉𝑢) → 𝒪𝑋(𝑈𝑢)) holds. Choose an
open neighbourhood 𝑈′

𝑢 ⊂ 𝑈 ∩ 𝑈𝑢 of 𝑢 which is standard affine open in both 𝑈 and 𝑈𝑢, see
Schemes, Lemma 21.11.5. By Definition 24.13.1 (1)(b) we see that 𝑃(𝒪𝑆(𝑉𝑢) → 𝒪𝑋(𝑈′

𝑢))
holds. Hence we may assume that 𝑈𝑢 ⊂ 𝑈 is a standard affine open. Choose an open
neighbourhood 𝑉′

𝑢 ⊂ 𝑉 ∩ 𝑉𝑢 of 𝑓(𝑢) which is standard affine open in both 𝑉 and 𝑉𝑢, see
Schemes, Lemma 21.11.5. Then 𝑈′

𝑢 = 𝑓−1(𝑉′
𝑢)∩𝑈𝑢 is a standard affine open of 𝑈𝑢 (hence of

𝑈) and we have 𝑃(𝒪𝑆(𝑉′
𝑢) → 𝒪𝑋(𝑈′

𝑢)) by Definition 24.13.1 (1)(a). Hence we may assume
both 𝑈𝑢 ⊂ 𝑈 and 𝑉𝑢 ⊂ 𝑉 are standard affine open. Applying Definition 24.13.1 (1)(b) one
more time we conclude that 𝑃(𝒪𝑆(𝑉) → 𝒪𝑋(𝑈𝑢)) holds. Because 𝑈 is quasi-compact we
may choose a finite number of points 𝑢1, … , 𝑢𝑛 ∈ 𝑈 such that

𝑈 = 𝑈𝑢1
∪ … ∪ 𝑈𝑢𝑛

.

By Definition 24.13.1 (1)(c) we conclude that 𝑃(𝒪𝑆(𝑉) → 𝒪𝑋(𝑈)) holds. �

Lemma 24.13.4. Let 𝑃 be a local property of ring maps. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism
of schemes. The following are equivalent

(1) The morphism 𝑓 is locally of type 𝑃.
(2) For every affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 we have 𝑃(𝒪𝑆(𝑉) → 𝒪𝑋(𝑈)).
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(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =
⋃𝑖∈𝐼𝑗

𝑈𝑖 such that each of the morphisms 𝑈𝑖 → 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗 is locally
of type 𝑃.

(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings
𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗

𝑈𝑖 such that 𝑃(𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖)) holds, for all 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.

Moreover, if 𝑓 is locally of type 𝑃 then for any open subschemes 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with
𝑓(𝑈) ⊂ 𝑉 the restriction 𝑓|𝑈 ∶ 𝑈 → 𝑉 is locally of type 𝑃.

Proof. This follows from Lemma 24.13.3 above. �

Lemma 24.13.5. Let 𝑃 be a property of ring maps. Assume 𝑃 is local and stable under
composition. The composition of morphisms locally of type 𝑃 is locally of type 𝑃.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms locally of type 𝑃. Let 𝑥 ∈ 𝑋. Choose
an affine open neighbourhood 𝑊 ⊂ 𝑍 of 𝑔(𝑓(𝑥)). Choose an affine open neighbourhood
𝑉 ⊂ 𝑔−1(𝑊) of 𝑓(𝑥). Choose an affine open neighbourhood 𝑈 ⊂ 𝑓−1(𝑉) of 𝑥. By Lemma
24.13.4 the ring maps 𝒪𝑍(𝑊) → 𝒪𝑌(𝑉) and 𝒪𝑌(𝑉) → 𝒪𝑋(𝑈) satisfy 𝑃. Hence 𝒪𝑍(𝑊) →
𝒪𝑋(𝑈) satisfies 𝑃 as 𝑃 is assumed stable under composition. �

Lemma 24.13.6. Let 𝑃 be a property of ring maps. Assume 𝑃 is local and stable under
base change. The base change of a morphism locally of type 𝑃 is locally of type 𝑃.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism locally of type 𝑃. Let 𝑆′ → 𝑆 be any morphism.
Denote 𝑓′ ∶ 𝑋𝑆′ = 𝑆′ ×𝑆 𝑋 → 𝑆′ the base change of 𝑓. For every 𝑠′ ∈ 𝑆′ there
exists an open affine neighbourhood 𝑠′ ∈ 𝑉′ ⊂ 𝑆′ which maps into some open affine
𝑉 ⊂ 𝑆. By Lemma 24.13.4 the open 𝑓−1(𝑉) is a union of affines 𝑈𝑖 such that the ring
maps 𝒪𝑆(𝑉) → 𝒪𝑋(𝑈𝑖) all satisfy 𝑃. By the material in Schemes, Section 21.17 we see that
𝑓−1(𝑈)𝑉′ = 𝑉′ ×𝑉 𝑓−1(𝑉) is the union of the affine opens 𝑉′ ×𝑉 𝑈𝑖. Since 𝒪𝑋𝑆′(𝑉′ ×𝑉 𝑈𝑖) =
𝒪𝑆′(𝑉′) ⊗𝒪𝑆(𝑉) 𝒪𝑋(𝑈𝑖) we see that the ring maps 𝒪𝑆′(𝑉′) → 𝒪𝑋𝑆′(𝑉′ ×𝑉 𝑈𝑖) satisfy 𝑃 as 𝑃
is assumed stable under base change. �

Lemma 24.13.7. The following properties of a ring map 𝑅 → 𝐴 are local.
(1) (Isomorphism on local rings.) For every prime 𝔮 of 𝐴 lying over 𝔭 ⊂ 𝑅 the ring

map 𝑅 → 𝐴 induces an isomorphism 𝑅𝔭 → 𝐴𝔮.
(2) (Open immersion.) For every prime 𝔮 of 𝐴 there exists an 𝑓 ∈ 𝑅, 𝜑(𝑓)∉𝔮 such

that the ring map 𝜑 ∶ 𝑅 → 𝐴 induces an isomorphism 𝑅𝑓 → 𝐴𝑓.
(3) (Reduced fibres.) For every prime 𝔭 of 𝑅 the fibre ring 𝐴 ⊗𝑅 𝜅(𝔭) is reduced.
(4) (Fibres of dimension at most 𝑛.) For every prime 𝔭 of 𝑅 the fibre ring 𝐴 ⊗𝑅 𝜅(𝔭)

has Krull dimension at most 𝑛.
(5) (Locally Noetherian on the target.) The ring map 𝑅 → 𝐴 has the property that

𝐴 is Noetherian.
(6) Add more here as needed2.

Proof. Omitted. �

Lemma 24.13.8. The following properties of ring maps are stable under base change.
(1) (Isomorphism on local rings.) For every prime 𝔮 of 𝐴 lying over 𝔭 ⊂ 𝑅 the ring

map 𝑅 → 𝐴 induces an isomorphism 𝑅𝔭 → 𝐴𝔮.

2But only those properties that are not already dealt with separately elsewhere.
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(2) (Open immersion.) For every prime 𝔮 of 𝐴 there exists an 𝑓 ∈ 𝑅, 𝜑(𝑓)∉𝔮 such
that the ring map 𝜑 ∶ 𝑅 → 𝐴 induces an isomorphism 𝑅𝑓 → 𝐴𝑓.

(3) (Reduced fibres.) For every prime 𝔭 of 𝑅 the fibre ring 𝐴 ⊗𝑅 𝜅(𝔭) is reduced.
(4) (Fibres of dimension at most 𝑛.) For every prime 𝔭 of 𝑅 the fibre ring 𝐴 ⊗𝑅 𝜅(𝔭)

has Krull dimension at most 𝑛.
(5) Add more here as needed3.

Proof. Omitted. �

Lemma 24.13.9. The following properties of ring maps are stable under composition.
(1) (Isomorphism on local rings.) For every prime 𝔮 of 𝐴 lying over 𝔭 ⊂ 𝑅 the ring

map 𝑅 → 𝐴 induces an isomorphism 𝑅𝔭 → 𝐴𝔮.
(2) (Open immersion.) For every prime 𝔮 of 𝐴 there exists an 𝑓 ∈ 𝑅, 𝜑(𝑓)∉𝔮 such

that the ring map 𝜑 ∶ 𝑅 → 𝐴 induces an isomorphism 𝑅𝑓 → 𝐴𝑓.
(3) (Locally Noetherian on the target.) The ring map 𝑅 → 𝐴 has the property that

𝐴 is Noetherian.
(4) Add more here as needed4.

Proof. Omitted. �

24.14. Morphisms of finite type

Recall that a ring map 𝑅 → 𝐴 is said to be of finite type if 𝐴 is isomorphic to a quotient of
𝑅[𝑥1, … , 𝑥𝑛] as an 𝑅-algebra, see Algebra, Definition 7.6.1.

Definition 24.14.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say that 𝑓 is of finite type at 𝑥 ∈ 𝑋 if there exists an affine open neighbourhood

𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of 𝑥 and and an affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉
such that the induced ring map 𝑅 → 𝐴 is of finite type.

(2) We say that 𝑓 is locally of finite type if it is of finite type at every point of 𝑋.
(3) We say that 𝑓 is of finite type if it is locally of finite type and quasi-compact.

Lemma 24.14.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is locally of finite type.
(2) For every affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the ring map 𝒪𝑆(𝑉) →

𝒪𝑋(𝑈) is of finite type.
(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =

⋃𝑖∈𝐼𝑗
𝑈𝑖 such that each of the morphisms 𝑈𝑖 → 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗 is locally

of finite type.
(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings

𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗
𝑈𝑖 such that the ring map 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖) is of finite type, for

all 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.
Moreover, if 𝑓 is locally of finite type then for any open subschemes 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with
𝑓(𝑈) ⊂ 𝑉 the restriction 𝑓|𝑈 ∶ 𝑈 → 𝑉 is locally of finite type.

Proof. This follows from Lemma 24.13.3 if we show that the property ``𝑅 → 𝐴 is of finite
type'' is local. We check conditions (a), (b) and (c) of Definition 24.13.1. By Algebra,
Lemma 7.13.2 being of finite type is stable under base change and hence we conclude (a)

3But only those properties that are not already dealt with separately elsewhere.
4But only those properties that are not already dealt with separately elsewhere.
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holds. By the same lemma being of finite type is stable under composition and trivially for
any ring 𝑅 the ring map 𝑅 → 𝑅𝑓 is of finite type. We conclude (b) holds. Finally, property
(c) is true according to Algebra, Lemma 7.21.3. �

Lemma 24.14.3. The composition of two morphisms which locally of finite type is locally
of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 24.14.2 we saw that being of finite type is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 24.13.5 com-
bined with the fact that being of finite type is a property of ring maps that is stable under
composition, see Algebra, Lemma 7.6.2. By the above and the fact that compositions of
quasi-compact morphisms are quasi-compact, see Schemes, Lemma 21.19.4 we see that the
composition of morphisms of finite type is of finite type. �

Lemma 24.14.4. The base change of a morphism which is locally of finite type is locally
of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 24.14.2 we saw that being of finite type is a local property of
ring maps. Hence the first statement of the lemma follows from Lemma 24.13.5 combined
with the fact that being of finite type is a property of ring maps that is stable under base
change, see Algebra, Lemma 7.13.2. By the above and the fact that a base change of a
quasi-compact morphism is quasi-compact, see Schemes, Lemma 21.19.3 we see that the
base change of a morphism of finite type is a morphism of finite type. �

Lemma 24.14.5. A closed immersion is of finite type. An immersion is locally of finite type.

Proof. This is true because an open immersion is a local isomorphism, and a closed im-
mersion is obviously of finite type. �

Lemma 24.14.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. If 𝑆 is (locally) Noetherian and 𝑓
(locally) of finite type then 𝑋 is (locally) Noetherian.

Proof. This follows immediately from the fact that a ring of finite type over a Noetherian
ring is Noetherian, see Algebra, Lemma 7.28.1. (Also: use the fact that the source of a
quasi-compact morphism with quasi-compact target is quasi-compact.) �

Lemma 24.14.7. Let 𝑓 ∶ 𝑋 → 𝑆 be locally of finite type with 𝑆 locally Noetherian. Then
𝑓 is quasi-separated.

Proof. In fact, it is true that𝑋 is quasi-separated, see Properties, Lemma 23.5.4 and Lemma
24.14.6 above. Then apply Schemes, Lemma 21.21.14 to conclude that 𝑓 is quasi-separated.

�

Lemma 24.14.8. Let 𝑋 → 𝑌 be a morphism of schemes over a base scheme 𝑆. If 𝑋 is
locally of finite type over 𝑆, then 𝑋 → 𝑌 is locally of finite type.

Proof. Via Lemma 24.14.2 this translates into the following algebra fact: Given ring maps
𝐴 → 𝐵 → 𝐶 such that 𝐴 → 𝐶 is of finite type, then 𝐵 → 𝐶 is of finite type. (See Algebra,
Lemma 7.6.2). �
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24.15. Points of finite type and Jacobson schemes

Let 𝑆 be a scheme. A finite type point 𝑠 of 𝑆 is a point such that the morphism 𝑆𝑝𝑒𝑐(𝜅(𝑠)) →
𝑆 is of finite type. The reason for studying this is that finite type points can replace closed
points in a certain sense and in certain situations. There are always enough of them for
example. Moreover, a scheme is Jacobson if and only if all finite type points are closed
points.

Lemma 24.15.1. Let 𝑆 be a scheme. Let 𝑘 be a field. Let 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 be a morphism.
The following are equivalent:

(1) The morphism 𝑓 is of finite type.
(2) The morphism 𝑓 is locally of finite type.
(3) There exists an affine open 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) of 𝑆 such that 𝑓 corresponds to a finite

ring map 𝑅 → 𝑘.
(4) There exists an affine open 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) of 𝑆 such that the image of 𝑓 consists

of a closed point 𝑢 in 𝑈 and the field extension 𝜅(𝑢) ⊂ 𝑘 is finite.

Proof. The equivalence of (1) and (2) is obvious as 𝑆𝑝𝑒𝑐(𝑘) is a singleton and hence any
morphism from it is quasi-compact.

Suppose 𝑓 is locally of finite type. Choose any affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑆 such that the
image of 𝑓 is contained in 𝑈, and the ring map 𝑅 → 𝑘 is of finite type. Let 𝔭 ⊂ 𝑅 be the
kernel. Then 𝑅/𝔭 ⊂ 𝑘 is of finite type. By Algebra, Lemma 7.30.2 there exist a 𝑓 ∈ 𝑅/𝔭
such that (𝑅/𝔭)𝑓 is a field and (𝑅/𝔭)𝑓 → 𝑘 is a finite field extension. If 𝑓 ∈ 𝑅 is a lift of 𝑓,
then we see that 𝑘 is a finite 𝑅𝑓-module. Thus (2) ⇒ (3).

Suppose that 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑆 is an affine open such that 𝑓 corresponds to a finite ring
map 𝑅 → 𝑘. Then 𝑓 is locally of finite type by Lemma 24.14.2. Thus (3) ⇒ (2).

Suppose 𝑅 → 𝑘 is finite. The image of 𝑅 → 𝑘 is a field over which 𝑘 is finite by Algebra,
Lemma 7.32.16. Hence the kernel of 𝑅 → 𝑘 is a maximal ideal. Thus (3) ⇒ (4).

The implication (4) ⇒ (3) is immediate. �

Lemma 24.15.2. Let 𝑆 be a scheme. Let 𝐴 be an Artinian local ring with residue field 𝜅.
Let 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑆 be a morphism of schemes. Then 𝑓 is of finite type if and only if the
composition 𝑆𝑝𝑒𝑐(𝜅) → 𝑆𝑝𝑒𝑐(𝐴) → 𝑆 is of finite type.

Proof. Since the morphism 𝑆𝑝𝑒𝑐(𝜅) → 𝑆𝑝𝑒𝑐(𝐴) is of finite type it is clear that if 𝑓 is of
finite type so is the composition 𝑆𝑝𝑒𝑐(𝜅) → 𝑆 (see Lemma 24.14.3). For the converse, note
that 𝑆𝑝𝑒𝑐(𝐴) → 𝑆 maps into some affine open 𝑈 = 𝑆𝑝𝑒𝑐(𝐵) of 𝑆 as 𝑆𝑝𝑒𝑐(𝐴) has only one
point. To finish apply Algebra, Lemma 7.50.3 to 𝐵 → 𝐴. �

Recall that given a point 𝑠 of a scheme 𝑆 there is a canonical morphism 𝑆𝑝𝑒𝑐(𝜅(𝑠)) → 𝑆,
see Schemes, Section 21.13.

Definition 24.15.3. Let 𝑆 be a scheme. Let us say that a point 𝑠 of 𝑆 is a finite type point if
the canonical morphism 𝑆𝑝𝑒𝑐(𝜅(𝑠)) → 𝑆 is of finite type. We denote 𝑆ft-pts the set of finite
type points of 𝑆.

We can describe the set of finite type points as follows.

Lemma 24.15.4. Let 𝑆 be a scheme. We have

𝑆ft-pts = ⋃𝑈⊂𝑆 open
𝑈0
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where 𝑈0 is the set of closed points of 𝑈. Here we may let 𝑈 range over all opens or over
all affine opens of 𝑆.

Proof. Immediate from Lemma 24.15.1. �

Lemma 24.15.5. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism of schemes. If 𝑓 is locally of finite type,
then 𝑓(𝑇ft-pts) ⊂ 𝑆ft-pts.

Proof. If 𝑇 is the spectrum of a field this is Lemma 24.15.1. In general it follows since the
composition of morphisms locally of finite type is locally of finite type (Lemma 24.14.3).

�

Lemma 24.15.6. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism of schemes. If 𝑓 is locally of finite type
and surjective, then 𝑓(𝑇ft-pts) = 𝑆ft-pts.

Proof. We have 𝑓(𝑇ft-pts) ⊂ 𝑆ft-pts by Lemma 24.15.5. Let 𝑠 ∈ 𝑆 be a finite type point.
As 𝑓 is surjective the scheme 𝑇𝑠 = 𝑆𝑝𝑒𝑐(𝜅(𝑠)) ×𝑆 𝑇 is nonempty, therefore has a finite type
point 𝑡 ∈ 𝑇𝑠 by Lemma 24.15.4. Now 𝑇𝑠 → 𝑇 is a morphism of finite type as a base change
of 𝑠 → 𝑆 (Lemma 24.14.4). Hence the image of 𝑡 in 𝑇 is a finite type point by Lemma
24.15.5 which maps to 𝑠 by construction. �

Lemma 24.15.7. Let 𝑆 be a scheme. For any locally closed subset 𝑇 ⊂ 𝑆 we have

𝑇≠∅ ⇒ 𝑇 ∩ 𝑆ft-pts≠∅.

In particular, for any closed subset 𝑇 ⊂ 𝑆 we see that 𝑇 ∩ 𝑆ft-pts is dense in 𝑇.

Proof. Note that 𝑇 carries a scheme structure (see Schemes, Lemma 21.12.4) such that
𝑇 → 𝑆 is a locally closed immersion. Any locally closed immersion is locally of finite
type, see Lemma 24.14.5. Hence by Lemma 24.15.5 we see 𝑇ft-pts ⊂ 𝑆ft-pts. Finally, any
nonempty affine open of 𝑇 has at least one closed point which is a finite type point of 𝑇 by
Lemma 24.15.4. �

It follows that most of the material from Topology, Section 5.13 goes through with the set
of closed points replaced by the set of points of finite type. In fact, if 𝑆 is Jacobson then we
recover the closed points as the finite type points.

Lemma 24.15.8. Let 𝑆 be a scheme. The following are equivalent:
(1) For every finite type morphism 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 with 𝑘 a field the image consists

of a closed point of 𝑆. In the terminology introduced above: finite type points of
𝑆 are closed points of 𝑆.

(2) For every locally finite type morphism 𝑇 → 𝑆 closed points map to closed points.
(3) For every locally finite type morphism 𝑓 ∶ 𝑇 → 𝑆 any closed point 𝑡 ∈ 𝑇 maps

to a closed point 𝑠 ∈ 𝑆 and 𝜅(𝑠) ⊂ 𝜅(𝑡) is finite.
(4) The scheme 𝑆 is Jacobson.

Proof. We have trivially (3) ⇒ (2) ⇒ (1). The discussion above shows that (1) implies (4).
Hence it suffices to show that (4) implies (3). Suppose that 𝑇 → 𝑆 is locally of finite type.
Choose 𝑡 ∈ 𝑇with 𝑠 = 𝑓(𝑡) as in (3). Choose affine open neighbourhoods𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑆
of 𝑠 and 𝑆𝑝𝑒𝑐(𝐴) = 𝑉 ⊂ 𝑇 of 𝑡 with 𝑓(𝑉) ⊂ 𝑈. The induced ring map 𝑅 → 𝐴 is of finite
type (see Lemma 24.14.2) and 𝑅 is Jacobson by Properties, Lemma 23.6.3. Thus the result
follows from Algebra, Proposition 7.31.18. �

Lemma 24.15.9. Let 𝑆 be a Jacobson scheme. Any scheme locally of finite type over 𝑆 is
Jacobson.
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Proof. This is clear from Algebra, Proposition 7.31.18 (and Properties, Lemma 23.6.3 and
Lemma 24.14.2). �

Lemma 24.15.10. The following types of schemes are Jacobson.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over 𝐙.
(3) Any scheme locally of finite type over a 1-dimensional Noetherian domain with

infinitely many primes.
(4) A scheme of the form 𝑆𝑝𝑒𝑐(𝑅) ⧵ {𝔪} where (𝑅, 𝔪) is a Noetherian local ring.

Also any scheme locally of finite type over it.

Proof. We will use Lemma 24.15.9 without mention. The spectrum of a field is clearly
Jacobson. The spectrum of 𝐙 is Jacobson, see Algebra, Lemma 7.31.6. For (3) see Algebra,
Lemma 7.58.2. For (4) see Properties, Lemma 23.6.4. �

24.16. Universally catenary schemes

Recall that a topological space 𝑋 is called catenary if for every pair of irreducible closed
subsets 𝑇 ⊂ 𝑇′ there exist a maximal chain of irreducible closed subsets

𝑇 = 𝑇0 ⊂ 𝑇1 ⊂ … ⊂ 𝑇𝑒 = 𝑇′

and every such chain has the same length. See Topology, Definition 5.8.1. Recall that a
scheme is catenary if its underlying topological space is catenary. See Properties, Definition
23.11.1.

Definition 24.16.1. Let 𝑆 be a scheme. Assume 𝑆 is locally Noetherian. We say 𝑆 is
universally catenary if for every morphism 𝑋 → 𝑆 locally of finite type the scheme 𝑋 is
catenary.

This is a ``better'' notion than catenary as there exist Noetherian schemes which are catenary
but not universally catenary. See Examples, Section 64.9. Many schemes are universally
catenary, see Lemma 24.16.4 below.

Recall that a ring 𝐴 is called catenary if for any pair of prime ideals 𝔭 ⊂ 𝔮 there exists a
maximal chain of primes

𝔭 = 𝔭0 ⊂ … ⊂ 𝔭𝑒 = 𝔮
and all of these have the same length. See Algebra, Definition 7.97.1. We have seen the
relationship between catenary schemes and catenary rings in Properties, Section 23.11.
Recall that a ring 𝐴 is called universally catenary if 𝐴 is Noetherian and for every finite type
ring map 𝐴 → 𝐵 the ring 𝐵 is catenary. See Algebra, Definition 7.97.5. Many interesting
rings which come up in algebraic geometry satisfy this property.

Lemma 24.16.2. Let 𝑆 be a locally Noetherian scheme. The following are equivalent
(1) 𝑆 is universally catenary,
(2) there exists an open covering of 𝑆 all of whose members are universally catenary

schemes,
(3) for every affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑆 the ring 𝑅 is universally catenary, and
(4) there exists an affine open covering 𝑆 = ⋃ 𝑈𝑖 such that each 𝑈𝑖 is the spectrum

of a universally catenary ring.
Moreover, in this case any scheme locally of finite type over 𝑆 is universally catenary as
well.
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Proof. By Lemma 24.14.5 an open immersion is locally of finite type. A composition of
morphisms locally of finite type is locally of finite type (Lemma 24.14.3). Thus it is clear
that if 𝑆 is universally catenary then any open and any scheme locally of finite type over 𝑆
is universally catenary as well. This proves the final statement of the lemma and that (1)
implies (2).

If 𝑆𝑝𝑒𝑐(𝑅) is a universally catenary scheme, then every scheme 𝑆𝑝𝑒𝑐(𝐴) with 𝐴 a finite type
𝑅-algebra is catenary. Hence all these rings 𝐴 are catenary by Algebra, Lemma 7.97.2.
Thus 𝑅 is universally catenary. Combined with the remarks above we conclude that (1)
implies (3), and (2) implies (4). Of course (3) implies (4) trivially.

To finish the proof we show that (4) implies (1). Assume (4) and let 𝑋 → 𝑆 be a morphism
locally of finite type. We can find an affine open covering 𝑋 = ⋃ 𝑉𝑗 such that each 𝑉𝑗 → 𝑆
maps into one of the 𝑈𝑖. By Lemma 24.14.2 the induced ringmap 𝒪(𝑈𝑖) → 𝒪(𝑉𝑗) is of finite
type. Hence 𝒪(𝑉𝑗) is catenary. Hence 𝑋 is catenary by Properties, Lemma 23.11.2. �

Lemma 24.16.3. Let 𝑆 be a locally Noetherian scheme. The following are equivalent:
(1) 𝑆 is universally catenary, and
(2) all local rings 𝒪𝑆,𝑠 of 𝑆 are universally catenary.

Proof. Assume that all local rings of 𝑆 are universally catenary. Let 𝑓 ∶ 𝑋 → 𝑆 be locally
of finite type. We know that 𝑋 is catenary if and only if 𝒪𝑋,𝑥 is catenary for all 𝑥 ∈ 𝑋. If
𝑓(𝑥) = 𝑠, then 𝒪𝑋,𝑥 is essentially of finite type over 𝒪𝑆,𝑠. Hence 𝒪𝑋,𝑥 is catenary by the
assumption that 𝒪𝑆,𝑠 is universally catenary.

Conversly, assume that 𝑆 is universally catenary. Let 𝑠 ∈ 𝑆. We may replace 𝑆 by an
affine open neighbourhood of 𝑠 by Lemma 24.16.2. Say 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑠 corresponds
to the prime ideal 𝔭. Any finite type 𝑅𝔭-algebra 𝐴′ is of the form 𝐴𝔭 for some finite type
𝑅-algebra 𝐴. By assumption (and Lemma 24.16.2 if you like) the ring 𝐴 is catenary, and
hence 𝐴′ (a localization of 𝐴) is catenary. Thus 𝑅𝔭 is universally catenary. �

Lemma 24.16.4. The following types of schemes are universally catenary.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Cohen-Macaulay scheme.
(3) Any scheme locally of finite type over 𝐙.
(4) Any scheme locally of finite type over a 1-dimensional Noetherian domain.
(5) And so on.

Proof. All of these follow from the fact that a Cohen-Macaulay ring is universally catenary,
see Algebra, Lemma 7.97.6. Also, use the last assertion of Lemma 24.16.2. Some details
omitted. �

24.17. Nagata schemes, reprise

See Properties, Section 23.13 for the definitions and basic properties of Nagata and univer-
sally Japanese schemes.

Lemma 24.17.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. If 𝑆 is Nagata and 𝑓 locally of finite
type then 𝑋 is Nagata. If 𝑆 is universally Japanese and 𝑓 locally of finite type then 𝑋 is
universally Japanese.

Proof. For ``universally Japanese'' this follows from Algebra, Lemma 7.144.18. For ``Na-
gata'' this follows from Algebra, Proposition 7.144.30. �
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Lemma 24.17.2. The following types of schemes are Nagata.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over 𝐙.
(4) Any scheme locally of finite type over a Dedeking ring of characteristic zero.
(5) And so on.

Proof. By Lemma 24.17.1 we only need to show that the rings mentioned above are Nagata
rings. For this see Algebra, Proposition 7.144.31. �

24.18. The singular locus, reprise

We look for a criterion that implies openness of the regular locus for any scheme locally of
finite type over the base. Here is the definition.

Definition 24.18.1. Let 𝑋 be a locally Noetherian scheme. We say 𝑋 is J-2 if for every
morphism 𝑌 → 𝑋 which is locally of finite type the regular locus Reg(𝑌) is open in 𝑌.

This is the analogue of the corresponding notion for Noetherian rings, seeMore on Algebra,
Definition 12.35.1.

Lemma 24.18.2. Let 𝑋 be a locally Noetherian scheme. The following are equivalent
(1) 𝑋 is J-2,
(2) there exists an open covering of 𝑋 all of whose members are J-2 schemes,
(3) for every affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 the ring 𝑅 is J-2, and
(4) there exists an affine open covering 𝑆 = ⋃ 𝑈𝑖 such that each 𝒪(𝑈𝑖) is J-2 for all

𝑖.
Moreover, in this case any scheme locally of finite type over 𝑋 is J-2 as well.

Proof. By Lemma 24.14.5 an open immersion is locally of finite type. A composition of
morphisms locally of finite type is locally of finite type (Lemma 24.14.3). Thus it is clear
that if 𝑋 is J-2 then any open and any scheme locally of finite type over 𝑋 is J-2 as well.
This proves the final statement of the lemma.
If 𝑆𝑝𝑒𝑐(𝑅) is J-2, then for every finite type 𝑅-algebra 𝐴 the regular locus of the scheme
𝑆𝑝𝑒𝑐(𝐴) is open. Hence 𝑅 is J-2, by definition (see More on Algebra, Definition 12.35.1).
Combined with the remarks above we conclude that (1) implies (3), and (2) implies (4). Of
course (1) ⇒ (2) and (3) ⇒ (4) trivially.
To finish the proof we show that (4) implies (1). Assume (4) and let 𝑌 → 𝑋 be a morphism
locally of finite type. We can find an affine open covering 𝑌 = ⋃ 𝑉𝑗 such that each 𝑉𝑗 → 𝑋
maps into one of the 𝑈𝑖. By Lemma 24.14.2 the induced ringmap 𝒪(𝑈𝑖) → 𝒪(𝑉𝑗) is of finite
type. Hence the regular locus of 𝑉𝑗 = 𝑆𝑝𝑒𝑐(𝒪(𝑉𝑗)) is open. Since Reg(𝑌) ∩ 𝑉𝑗 = Reg(𝑉𝑗)
we conclude that Reg(𝑌) is open as desired. �

Lemma 24.18.3. The following types of schemes are J-2.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over 𝐙.
(4) Any scheme locally of finite type over a Dedeking ring of characteristic zero.
(5) And so on.

Proof. By Lemma 24.18.2 we only need to show that the rings mentioned above are J-2.
For this see More on Algebra, Proposition 12.36.6. �
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24.19. Quasi-finite morphisms

A solid treatment of quasi-finite morphisms is the basis of many developments further down
the road. It will lead to various versions of Zariski's Main Theorem, behaviour of dimen-
sions of fibres, descent for étale morphisms, etc, etc. Before reading this section it may be
a good idea to take a look at the algebra results in Algebra, Section 7.113.

Recall that a finite type ring map 𝑅 → 𝐴 is quasi-finite at a prime 𝔮 if 𝔮 defines an isolated
point of its fibre, see Algebra, Definition 7.113.3.

Definition 24.19.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say that 𝑓 is quasi-finite at a point 𝑥 ∈ 𝑋 if there exist an affine neighbourhood

𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of 𝑥 and an affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 such that 𝑓(𝑈) ⊂ 𝑉,
the ring map 𝑅 → 𝐴 is of finite type, and 𝑅 → 𝐴 is quasi-finite at the prime of
𝐴 corresponding to 𝑥 (see above).

(2) We say 𝑓 is locally quasi-finite if 𝑓 is quasi-finite at every point 𝑥 of 𝑋.
(3) We say that 𝑓 is quasi-finite if 𝑓 is of finite type and every point 𝑥 is an isolated

point of its fibre.

Trivially, a locally quasi-finite morphism is locally of finite type. We will see below that a
morphism 𝑓 which is locally of finite type is quasi-finite at 𝑥 if and only if 𝑥 is isolated in
its fibre. Moreover, the set of points at which a morphism is quasi-finite is open; we will
see this in Section 24.47 on Zariski's Main Theorem.

Lemma 24.19.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point. Set
𝑠 = 𝑓(𝑥). If 𝜅(𝑠) ⊃ 𝜅(𝑥) is an algebraic field extension, then

(1) 𝑥 is a closed point of its fibre, and
(2) if in addition 𝑠 is a closed point of 𝑆, then 𝑥 is a closed point of 𝑋.

Proof. The second statement follows from the first by elementary topology. According to
Schemes, Lemma 21.18.5 to prove the first statement we may replace 𝑋 by 𝑋𝑠 and 𝑆 by
𝑆𝑝𝑒𝑐(𝜅(𝑠)). Thus we may assume that 𝑆 = 𝑆𝑝𝑒𝑐(𝑘) is the spectrum of a field. In this case,
let 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 be any affine open containing 𝑥. The point 𝑥 corresponds to a prime
ideal 𝔮 ⊂ 𝐴 such that 𝑘 ⊂ 𝜅(𝔮) is an algebraic field extension. By Algebra, Lemma 7.31.9
we see that 𝔮 is a maximal ideal, i.e., 𝑥 ∈ 𝑈 is a closed point. Since the affine opens form
a basis of the topology of 𝑋 we conclude that {𝑥} is closed. �

The following lemma is a version of the Hilbert Nullstellensatz.

Lemma 24.19.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point. Set
𝑠 = 𝑓(𝑥). Assume 𝑓 is locally of finite type. Then 𝑥 is a closed point of its fibre if and only
if 𝜅(𝑠) ⊂ 𝜅(𝑥) is a finite field extension.

Proof. If the extension is finite, then 𝑥 is a closed point of the fibre by Lemma 24.19.2
above. For the converse, assume that 𝑥 is a closed point of its fibre. Choose affine opens
𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 and 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 such that 𝑓(𝑈) ⊂ 𝑉. By Lemma 24.14.2 the ring
map 𝑅 → 𝐴 is of finite type. Let 𝔮 ⊂ 𝐴, resp. 𝔭 ⊂ 𝑅 be the prime ideal corresponding to 𝑥,
resp. 𝑠. Consider the fibre ring 𝐴 = 𝐴 ⊗𝑅 𝜅(𝔭). Let 𝔮 be the prime of 𝐴 corresponding to
𝔮. The assumption that 𝑥 is a closed point of its fibre implies that 𝔮 is a maximal ideal of 𝐴.
Since 𝐴 is an algebra of finite type over the field 𝜅(𝔭) we see by the Hilbert Nullstellensatz,
see Algebra, Theorem 7.30.1, that 𝜅(𝔮) is a finite extension of 𝜅(𝔭). Since 𝜅(𝑠) = 𝜅(𝔭) and
𝜅(𝑥) = 𝜅(𝔮) = 𝜅(𝔮) we win. �
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Lemma 24.19.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is locally of finite type.
Let 𝑔 ∶ 𝑆′ → 𝑆 be any morphism. Denote 𝑓′ ∶ 𝑋′ → 𝑆′ the base change. If 𝑥′ ∈ 𝑋′ maps
to a point 𝑥 ∈ 𝑋 which is closed in 𝑋𝑓(𝑠) then 𝑥′ is closed in 𝑋′

𝑓′(𝑥′).

Proof. The residue field 𝜅(𝑥′) is a quotient of 𝜅(𝑓′(𝑥′))⊗𝜅(𝑓(𝑥)) 𝜅(𝑥), see Schemes, Lemma
21.17.5. Hence it is a finite extension of 𝜅(𝑓′(𝑥′)) as 𝜅(𝑥) is a finite extension of 𝜅(𝑓(𝑥))
by Lemma 24.19.3. Thus we see that 𝑥′ is closed in its fibre by applying that lemma one
more time. �

Lemma 24.19.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point. Set
𝑠 = 𝑓(𝑥). If 𝑓 is quasi-finite at 𝑥, then the residue field extension 𝜅(𝑠) ⊂ 𝜅(𝑥) is finite.

Proof. This is clear from Algebra, Definition 7.113.3. �

Lemma 24.19.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point. Set
𝑠 = 𝑓(𝑥). Let 𝑋𝑠 be the fibre of 𝑓 at 𝑠. Assume 𝑓 is locally of finite type. The following are
equivalent:

(1) The morphism 𝑓 is quasi-finite at 𝑥.
(2) The point 𝑥 is isolated in 𝑋𝑠.
(3) The point 𝑥 is closed in 𝑋𝑠 and there is no point 𝑥′ ∈ 𝑋𝑠, 𝑥′≠𝑥 which specializes

to 𝑥.
(4) For any pair of affine opens 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋, 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉

and 𝑥 ∈ 𝑈 corresponding to 𝔮 ⊂ 𝐴 the ring map 𝑅 → 𝐴 is quasi-finite at 𝔮.

Proof. Assume 𝑓 is quasi-finite at 𝑥. By assumption there exist opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 such
that 𝑓(𝑈) ⊂ 𝑉, 𝑥 ∈ 𝑈 and 𝑥 an isolated point of 𝑈𝑠. Hence {𝑥} ⊂ 𝑈𝑠 is an open subset.
Since 𝑈𝑠 = 𝑈 ∩ 𝑋𝑠 ⊂ 𝑋𝑠 is also open we conclude that {𝑥} ⊂ 𝑋𝑠 is an open subset also.
Thus we conclude that 𝑥 is an isolated point of 𝑋𝑠.

Note that 𝑋𝑠 is a Jacobson scheme by Lemma 24.15.10 (and Lemma 24.14.4). If 𝑥 is
isolated in 𝑋𝑠, i.e., {𝑥} ⊂ 𝑋𝑠 is open, then {𝑥} contains a closed point (by the Jacobson
property), hence 𝑥 is closed in 𝑋𝑠. It is clear that there is no point 𝑥′ ∈ 𝑋𝑠, distinct from
𝑥, specializing to 𝑥.

Assume that 𝑥 is closed in𝑋𝑠 and that there is no point 𝑥′ ∈ 𝑋𝑠, distinct from 𝑥, specializing
to 𝑥. Consider a pair of affine opens 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋, 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉
and 𝑥 ∈ 𝑈. Let 𝔮 ⊂ 𝐴 correspond to 𝑥 and 𝔭 ⊂ 𝑅 correspond to 𝑠. By Lemma 24.14.2
the ring map 𝑅 → 𝐴 is of finite type. Consider the fibre ring 𝐴 = 𝐴 ⊗𝑅 𝜅(𝔭). Let 𝔮 be
the prime of 𝐴 corresponding to 𝔮. Since 𝑆𝑝𝑒𝑐(𝐴) is an open subscheme of the fibre 𝑋𝑠 we
see that 𝑞 is a maximal ideal of 𝐴 and that there is no point of 𝑆𝑝𝑒𝑐(𝐴) specializing to 𝔮.
This implies that dim(𝐴𝑞) = 0. Hence by Algebra, Definition 7.113.3 we see that 𝑅 → 𝐴
is quasi-finite at 𝔮, i.e., 𝑋 → 𝑆 is quasi-finite at 𝑥 by definition.

At this point we have shown conditions (1) -- (3) are all equivalent. It is clear that (4)
implies (1). And it is also clear that (2) implies (4) since if 𝑥 is an isolated point of 𝑋𝑠 then
it is also an isolated point of 𝑈𝑠 for any open 𝑈 which contains it. �

Lemma 24.19.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆. Assume that
(1) 𝑓 is locally of finite type, and
(2) 𝑓−1({𝑠}) is a finite set.

Then 𝑋𝑠 is a finite discrete topological space, and 𝑓 is quasi-finite at each point of 𝑋 lying
over 𝑠.
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Proof. Suppose 𝑇 is a scheme which (a) is locally of finite type over a field 𝑘, and (b) has
finitely many points. Then Lemma 24.15.10 shows 𝑇 is a Jacobson scheme. A finite sober
Jacobson space is discrete, see Topology, Lemma 5.13.6. Apply this remark to the fibre
𝑋𝑠 which is locally of finite type over 𝑆𝑝𝑒𝑐(𝜅(𝑠)) to see the first statement. Finally, apply
Lemma 24.19.6 to see the second. �

Lemma 24.19.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 is locally of finite
type. Then the following are equivalent

(1) 𝑓 is locally quasi-finite,
(2) for every 𝑠 ∈ 𝑆 the fibre 𝑋𝑠 is a discrete topological space, and
(3) for every morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 where 𝑘 is a field the base change 𝑋𝑘 has an

underlying discrete topological space.

Proof. It is immediate that (3) implies (2). Lemma 24.19.6 shows that (2) is equivalent to
(1). Assume (2) and let 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 be as in (3). Denote 𝑠 ∈ 𝑆 the image of 𝑆𝑝𝑒𝑐(𝑘) → 𝑆.
Then 𝑋𝑘 is the base change of 𝑋𝑠 via 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝜅(𝑠)). Hence every point of 𝑋𝑘 is
closed by Lemma 24.19.4. As 𝑋𝑘 → 𝑆𝑝𝑒𝑐(𝑘) is locally of finite type (by Lemma 24.14.4),
we may apply Lemma 24.19.6 to conclude that every point of 𝑋𝑘 is isolated, i.e., 𝑋𝑘 has a
discrete underlying topological space. �

Lemma 24.19.9. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Then 𝑓 is quasi-finite if and
only if 𝑓 is locally quasi-finite and quasi-compact.

Proof. Assume 𝑓 is quasi-finite. It is quasi-compact by Definition 24.14.1. Let 𝑥 ∈ 𝑋.
We see that 𝑓 is quasi-finite at 𝑥 by Lemma 24.19.6. Hence 𝑓 is quasi-compact and locally
quasi-finite.

Assume 𝑓 is quasi-compact and locally quasi-finite. Then 𝑓 is of finite type. Let 𝑥 ∈ 𝑋
be a point. By Lemma 24.19.6 we see that 𝑥 is an isolated point of its fibre. The lemma is
proved. �

Lemma 24.19.10. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equiva-
lent:

(1) 𝑓 is quasi-finite, and
(2) 𝑓 is locally of finite type, quasi-compact, and has finite fibres.

Proof. Assume 𝑓 is quasi-finite. In particular 𝑓 is locally of finite type and quasi-compact
(since it is of finite type). Let 𝑠 ∈ 𝑆. Since every 𝑥 ∈ 𝑋𝑠 is isolated in 𝑋𝑠 we see that
𝑋𝑠 = ⋃𝑥∈𝑋𝑠

{𝑥} is an open covering. As 𝑓 is quasi-compact, the fibre 𝑋𝑠 is quasi-compact.
Hence we see that 𝑋𝑠 is finite.

Conversely, assume 𝑓 is locally of finite type, quasi-compact and has finite fibres. Then it
is locally quasi-finite by Lemma 24.19.7. Hence it is quasi-finite by Lemma 24.19.9. �

Recall that a ring map 𝑅 → 𝐴 is quasi-finite if it is of finite type and quasi-finite at all
primes of 𝐴, see Algebra, Definition 7.113.3.

Lemma 24.19.11. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is locally quasi-finite.
(2) For every pair of affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the ring map

𝒪𝑆(𝑉) → 𝒪𝑋(𝑈) is quasi-finite.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06RT
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01TJ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02NH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01TK


1324 24. MORPHISMS OF SCHEMES

(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =
⋃𝑖∈𝐼𝑗

𝑈𝑖 such that each of the morphisms 𝑈𝑖 → 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗 is locally
quasi-finite.

(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings
𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗

𝑈𝑖 such that the ring map 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖) is quasi-finite, for
all 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.

Moreover, if 𝑓 is locally quasi-finite then for any open subschemes 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with
𝑓(𝑈) ⊂ 𝑉 the restriction 𝑓|𝑈 ∶ 𝑈 → 𝑉 is locally quasi-finite.

Proof. For a ring map 𝑅 → 𝐴 let us define 𝑃(𝑅 → 𝐴) to mean ``𝑅 → 𝐴 is quasi-finite''
(see remark above lemma). We claim that 𝑃 is a local property of ring maps. We check
conditions (a), (b) and (c) of Definition 24.13.1. In the proof of Lemma 24.14.2 we have
seen that (a), (b) and (c) hold for the property of being ``of finite type''. Note that, for a finite
type ringmap 𝑅 → 𝐴, the property 𝑅 → 𝐴 is quasi-finite at 𝔮 depends only on the local ring
𝐴𝔮 as an algebra over 𝑅𝔭 where 𝔭 = 𝑅 ∩ 𝔮 (usual abuse of notation). Using these remarks
(a), (b) and (c) of Definition 24.13.1 follow immediately. For example, suppose 𝑅 → 𝐴
is a ring map such that all of the ring maps 𝑅 → 𝐴𝑎𝑖

are quasi-finite for 𝑎1, … , 𝑎𝑛 ∈ 𝐴
generating the unit ideal. We conclude that 𝑅 → 𝐴 is of finite type. Also, for any prime
𝔮 ⊂ 𝐴 the local ring 𝐴𝔮 is isomorphic as an 𝑅-algebra to the local ring (𝐴𝑎𝑖

)𝔮𝑖
for some 𝑖

and some 𝔮𝑖 ⊂ 𝐴𝑎𝑖
. Hence we conclude that 𝑅 → 𝐴 is quasi-finite at 𝔮.

We conclude that Lemma 24.13.3 applies with 𝑃 as in the previous paragraph. Hence it
suffices to prove that 𝑓 is locally quasi-finite is equivalent to 𝑓 is locally of type 𝑃. Since
𝑃(𝑅 → 𝐴) is ``𝑅 → 𝐴 is quasi-finite'' which means 𝑅 → 𝐴 is quasi-finite at every prime
of 𝐴, this follows from Lemma 24.19.6. �

Lemma 24.19.12. The composition of two morphisms which are locally quasi-finite is lo-
cally quasi-finite. The same is true for quasi-finite morphisms.

Proof. In the proof of Lemma 24.19.11 we saw that 𝑃 =``quasi-finite'' is a local property of
ringmaps, and that a morphism of schemes is locally quasi-finite if and only if it is locally of
type 𝑃 as in Definition 24.13.2. Hence the first statement of the lemma follows from Lemma
24.13.5 combined with the fact that being quasi-finite is a property of ring maps that is
stable under composition, see Algebra, Lemma 7.113.7. By the above, Lemma 24.19.9 and
the fact that compositions of quasi-compact morphisms are quasi-compact, see Schemes,
Lemma 21.19.4 we see that the composition of quasi-finite morphisms is quasi-finite. �

Lemma 24.19.13. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑔 ∶ 𝑆′ → 𝑆 be a
morphism of schemes. Denote 𝑓′ ∶ 𝑋𝑆′ → 𝑆′ the base change of 𝑓 by 𝑔 and denote
𝑔′ ∶ 𝑋𝑆′ → 𝑋 the projection. Assume 𝑋 is locally of finite type over 𝑆.

(1) Let 𝑈 ⊂ 𝑋 (resp. 𝑈′ ⊂ 𝑋′) be the set of points where 𝑓 (resp. 𝑓′) is quasi-finite.
Then 𝑈′ = 𝑈𝑆′ = (𝑔′)−1(𝑈).

(2) The base change of a locally quasi-finite morphism is locally quasi-finite.
(3) The base change of a quasi-finite morphism is quasi-finite.

Proof. The first and second assertion follow from the corresponding algebra result, see
Algebra, Lemma 7.113.8 (combined with the fact that 𝑓′ is also locally of finite type by
Lemma 24.14.4). By the above, Lemma 24.19.9 and the fact that a base change of a quasi-
compact morphism is quasi-compact, see Schemes, Lemma 21.19.3 we see that the base
change of a quasi-finite morphism is quasi-finite. �
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Lemma 24.19.14. Any immersion is locally quasi-finite.

Proof. This is true because an open immersion is a local isomorphism and a closed im-
mersion is clearly quasi-finite. �

Lemma 24.19.15. Let 𝑋 → 𝑌 be a morphism of schemes over a base scheme 𝑆. Let 𝑥 ∈ 𝑋.
If 𝑋 → 𝑆 is quasi-finite at 𝑥, then 𝑋 → 𝑌 is quasi-finite at 𝑥. If 𝑋 is locally quasi-finite
over 𝑆, then 𝑋 → 𝑌 is locally quasi-finite.

Proof. Via Lemma 24.19.11 this translates into the following algebra fact: Given ringmaps
𝐴 → 𝐵 → 𝐶 such that 𝐴 → 𝐶 is quasi-finite, then 𝐵 → 𝐶 is quasi-finite. This follows from
Algebra, Lemma 7.113.6 with 𝑅 = 𝐴, 𝑆 = 𝑆′ = 𝐶 and 𝑅′ = 𝐵. �

24.20. Morphisms of finite presentation

Recall that a ringmap𝑅 → 𝐴 is of finite presentation if𝐴 is isomorphic to𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚)
as an 𝑅-algebra for some 𝑛, 𝑚 and some polynomials 𝑓𝑗, see Algebra, Definition 7.6.1.

Definition 24.20.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say that 𝑓 is of finite presentation at 𝑥 ∈ 𝑋 if there exists a affine open

neighbourhood 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of 𝑥 and and affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆
with 𝑓(𝑈) ⊂ 𝑉 such that the induced ring map 𝑅 → 𝐴 is of finite presentation.

(2) We say that 𝑓 is locally of finite presentation if it is of finite presentation at every
point of 𝑋.

(3) We say that 𝑓 is of finite presentation if it is locally of finite presentation, quasi-
compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism which
is locally of finite presentation. Later we will characterize morphisms which are locally of
finite presentation as those morphisms such that

𝑐𝑜𝑙𝑖𝑚 𝑀𝑜𝑟𝑆(𝑇𝑖, 𝑋) = 𝑀𝑜𝑟𝑆(𝑙𝑖𝑚 𝑇𝑖, 𝑋)
for any directed system of affine schemes 𝑇𝑖 over 𝑆. See Limits, Proposition 27.4.1. In
Limits, Section 27.6 we show that, if 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 is a limit of affine schemes, any scheme
𝑋 of finite presentation over 𝑆 descends to a scheme 𝑋𝑖 over 𝑆𝑖 for some 𝑖.

Lemma 24.20.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is locally of finite presentation.
(2) For every affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the ring map 𝒪𝑆(𝑉) →

𝒪𝑋(𝑈) is of finite presentation.
(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =

⋃𝑖∈𝐼𝑗
𝑈𝑖 such that each of the morphisms 𝑈𝑖 → 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗 is locally

of finite presentation.
(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings

𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗
𝑈𝑖 such that the ring map 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖) is of finite presen-

tation, for all 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.
Moreover, if 𝑓 is locally of finite presentation then for any open subschemes 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆
with 𝑓(𝑈) ⊂ 𝑉 the restriction 𝑓|𝑈 ∶ 𝑈 → 𝑉 is locally of finite presentation.

Proof. This follows from Lemma 24.13.3 if we show that the property ``𝑅 → 𝐴 is of
finite presentation'' is local. We check conditions (a), (b) and (c) of Definition 24.13.1. By
Algebra, Lemma 7.13.2 being of finite presentation is stable under base change and hence
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we conclude (a) holds. By the same lemma being of finite presentation is stable under
composition and trivially for any ring 𝑅 the ring map 𝑅 → 𝑅𝑓 is of finite presentation. We
conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma 7.21.3. �

Lemma 24.20.3. The composition of two morphisms which locally of finite presentation is
locally of finite presentation. The same is true for morphisms of finite presentation.

Proof. In the proof of Lemma 24.20.2 we saw that being of finite presentation is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma 24.13.5
combined with the fact that being of finite presentation is a property of ring maps that is sta-
ble under composition, see Algebra, Lemma 7.6.2. By the above and the fact that composi-
tions of quasi-compact, quasi-separated morphisms are quasi-compact and quasi-separated,
see Schemes, Lemmas 21.19.4 and 21.21.13 we see that the composition of morphisms of
finite presentation is of finite presentation. �

Lemma 24.20.4. The base change of a morphism which is locally of finite presentation is
locally of finite presentation. The same is true for morphisms of finite presentation.

Proof. In the proof of Lemma 24.20.2 we saw that being of finite presentation is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma 24.13.5
combined with the fact that being of finite presentation is a property of ring maps that is
stable under base change, see Algebra, Lemma 7.13.2. By the above and the fact that a
base change of a quasi-compact, quasi-separated morphism is quasi-compact and quasi-
separated, see Schemes, Lemmas 21.19.3 and 21.21.13 we see that the base change of a
morphism of finite presentation is a morphism of finite presentation. �

Lemma 24.20.5. Any open immersion is locally of finite presentation.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 24.20.6. Any open immersion is of finite presentation if and only if it is quasi-
compact.

Proof. We have seen (Lemma 24.20.5) that an open immersion is locally of finite presen-
tation. We have see (Schemes, Lemma 21.23.7) that an immersion is separated and hence
quasi-separated. From this and Definition 24.20.1 the lemma follows. �

Lemma 24.20.7. Any closed immersion 𝑖 ∶ 𝑍 → 𝑋 is of finite presentation if and only if
the associated quasi-coherent sheaf of ideals ℐ = Ker(𝒪𝑋 → 𝑖∗𝒪𝑍) is of finite type (as an
𝒪𝑋-module).

Proof. On any affine open 𝑆𝑝𝑒𝑐(𝑅) ⊂ 𝑋 we have 𝑖−1(𝑆𝑝𝑒𝑐(𝑅)) = 𝑆𝑝𝑒𝑐(𝑅/𝐼) and ℐ = ̃𝐼.
Moreover, ℐ is of finite type if and only if 𝐼 is a finite 𝑅-module for every such affine open
(see Properties, Lemma 23.16.1). And 𝑅/𝐼 is of finite presentation over 𝑅 if and only if 𝐼
is a finite 𝑅-module. Hence we win. �

Lemma 24.20.8. A morphism which is locally of finite presentation is locally of finite type.
A morphism of finite presentation is of finite type.

Proof. Omitted. �

Lemma 24.20.9. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism.
(1) If 𝑆 is locally Noetherian and 𝑓 locally of finite type then 𝑓 is locally of finite

presentation.
(2) If 𝑆 is locally Noetherian and 𝑓 of finite type then 𝑓 is of finite presentation.
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Proof. The first statement follows from the fact that a ring of finite type over a Noetherian
ring is of finite presentation, see Algebra, Lemma 7.28.4. Suppose that 𝑓 is of finite type
and 𝑆 is locally Noetherian. Then 𝑓 is quasi-compact and locally of finite presentation by
(1). Hence it suffices to prove that 𝑓 is quasi-separated. This follows from Lemma 24.14.7
(and Lemma 24.20.8). �

Lemma 24.20.10. Let 𝑆 be a scheme which is quasi-compact and quasi-separated. If 𝑋 is
of finite presentation over 𝑆, then 𝑋 is quasi-compact and quasi-separated.

Proof. Omitted. �

Lemma 24.20.11. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆. If 𝑋 is locally of
finite presentation over 𝑆, and 𝑌 is locally of finite type over 𝑆, then 𝑓 is locally of finite
presentation.

Proof. Via Lemma 24.20.2 this translates into the following algebra fact: Given ring maps
𝐴 → 𝐵 → 𝐶 such that 𝐴 → 𝐶 is of finite presentation and 𝐴 → 𝐵 is of finite type, then
𝐵 → 𝐶 is of finite type. (See Algebra, Lemma 7.6.2). �

24.21. Constructible sets

Constructible and locally construcible sets of schemes have been discussed in Properties,
Section 23.2. In this section we prove some results concerning images and inverse images
of (locally) constructible sets. The main result is Chevalley's theorem which states that
the image of a locally constructible set under a morphism of finite presentation is locally
constructible.

Lemma 24.21.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝐸 ⊂ 𝑌 be a subset. If 𝐸
is (locally) construcible in 𝑌, then 𝑓−1(𝐸) is (locally) constructible in 𝑋.

Proof. To show that the inverse image of every construcible subset is constructible it
suffices to show that the inverse image of every retrocompact open 𝑉 of 𝑌 is retrocompact in
𝑋, see Topology, Lemma 5.10.3. The significance of 𝑉 being retrocompact in 𝑌 is just that
the open immersion 𝑉 → 𝑌 is quasi-compact. Hence the base change 𝑓−1(𝑉) = 𝑋×𝑌𝑉 → 𝑋
is quasi-compact too, see Schemes, Lemma 21.19.3. Hence we see 𝑓−1(𝑉) is retrocompact
in 𝑋. Suppose 𝐸 is locally constructible in 𝑌. Choose 𝑥 ∈ 𝑋. Choose an affine neighbour-
hood 𝑉 of 𝑓(𝑥) and an affine neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such that 𝑓(𝑈) ⊂ 𝑉. Thus we think
of 𝑓|𝑈 ∶ 𝑈 → 𝑉 as a morphism into 𝑉. By Properties, Lemma 23.2.1 we see that 𝐸 ∩ 𝑉 is
constructible in 𝑉. By the constructible case we see that (𝑓|𝑈)−1(𝐸 ∩ 𝑉) is constructible in
𝑈. Since (𝑓|𝑈)−1(𝐸 ∩ 𝑉) = 𝑓−1(𝐸) ∩ 𝑈 we win. �

Lemma 24.21.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume
(1) 𝑓 is quasi-compact and locally of finite presentation, and
(2) 𝑌 is quasi-compact and quasi-separated.

Then the image of every constructible subset of 𝑋 is constructible in 𝑌.

Proof. By Properties, Lemma 23.2.3 it suffices to prove this lemma in case 𝑌 is affine. In
this case 𝑋 is quasi-compact. Hence we can write 𝑋 = 𝑈1 ∪ … ∪ 𝑈𝑛 with each 𝑈𝑖 affine
open in 𝑋. If 𝐸 ⊂ 𝑋 is constructible, then each 𝐸 ∩ 𝑈𝑖 is constructible too, see Topology,
Lemma 5.10.4. Hence, since 𝑓(𝐸) = ⋃ 𝑓(𝐸 ∩ 𝑈𝑖) and since finite unions of constructible
sets are constructible, this reduces us to the case where 𝑋 is affine. In this case the result is
Algebra, Theorem 7.26.9. �
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Theorem 24.21.3. (Chevalley's Theorem.) Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes.
Assume 𝑓 is quasi-compact and locally of finite presentation. Then the image of every
locally constructible subset is locally constructible.

Proof. Let 𝐸 ⊂ 𝑋 be locally constructible. We have to show that 𝑓(𝐸) is locally con-
structible too. We will show that 𝑓(𝐸) ∩ 𝑉 is constructible for any affine open 𝑉 ⊂ 𝑌. Thus
we reduce to the case where 𝑌 is affine. In this case 𝑋 is quasi-compact. Hence we can write
𝑋 = 𝑈1 ∪…∪𝑈𝑛 with each 𝑈𝑖 affine open in 𝑋. If 𝐸 ⊂ 𝑋 is locally constructible, then each
𝐸 ∩ 𝑈𝑖 is constructible, see Properties, Lemma 23.2.1. Hence, since 𝑓(𝐸) = ⋃ 𝑓(𝐸 ∩ 𝑈𝑖)
and since finite unions of constructible sets are constructible, this reduces us to the case
where 𝑋 is affine. In this case the result is Algebra, Theorem 7.26.9. �

Lemma 24.21.4. Let 𝑋 be a scheme. Let 𝑥 ∈ 𝑋. Let 𝐸 ⊂ 𝑋 be a locally constructible
subset. If {𝑥′ ∣ 𝑥′  𝑥} ⊂ 𝐸, then 𝐸 contains an open neighbourhood of 𝑥.

Proof. Assume {𝑥′ ∣ 𝑥′  𝑥} ⊂ 𝐸. We may assume 𝑋 is affine. In this case 𝐸 is
constructible, see Properties, Lemma 23.2.1. In particular, also the complement 𝐸𝑐 is con-
structible. ByAlgebra, Lemma 7.26.3we can find amorphism of affine schemes 𝑓 ∶ 𝑌 → 𝑋
such that 𝐸𝑐 = 𝑓(𝑌). Let 𝑍 ⊂ 𝑋 be the scheme theoretic image of 𝑓. By Lemma 24.4.5
and the assumption {𝑥′ ∣ 𝑥′  𝑥} ⊂ 𝐸 we see that 𝑥∉𝑍. Hence 𝑋 ⧵ 𝑍 ⊂ 𝐸 is an open
neighbourhood of 𝑥 contained in 𝐸. �

24.22. Open morphisms

Definition 24.22.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism.
(1) We say 𝑓 is open if the map on underlying topological spaces is open.
(2) We say 𝑓 is universally open if for any morphism of schemes 𝑆′ → 𝑆 the base

change 𝑓′ ∶ 𝑋𝑆′ → 𝑆′ is open.

According to Topology, Lemma 5.14.6 generalizations lift along certain types of openmaps
of topological spaces. In fact generalizations lift along any open morphism of schemes (see
Lemma 24.22.5). Also, wewill see that generalizations lift along flatmorphisms of schemes
(Lemma 24.24.8). This sometimes in turn implies that the morphism is open.

Lemma 24.22.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism.
(1) If 𝑓 is locally of finite presentation and generalizations lift along 𝑓, then 𝑓 is open.
(2) If 𝑓 is locally of finite presentation and generalizations lift along every base

change of 𝑓, then 𝑓 is universally open.

Proof. It suffices to prove the first assertion. This reduces to the case where both 𝑋 and
𝑆 are affine. In this case the result follows from Algebra, Lemma 7.36.3 and Proposition
7.36.8. �

See also Lemma 24.24.9 for the case of a morphism flat of finite presentation.

Lemma 24.22.3. A composition of (universally) open morphisms is (universally) open.

Proof. Omitted. �

Lemma 24.22.4. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. The structure morphism
𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is universally open.

Proof. Let 𝑆 → 𝑆𝑝𝑒𝑐(𝑘) be a morphism. We have to show that the base change 𝑋𝑆 → 𝑆
is open. The question is local on 𝑆 and 𝑋, hence we may assume that 𝑆 and 𝑋 are affine.
In this case the result is Algebra, Lemma 7.36.10. �
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Lemma 24.22.5. Let 𝜑 ∶ 𝑋 → 𝑌 be a morphism of schemes. If 𝜑 is open, then 𝜑 is
generizing (i.e., generalizations lift along 𝜑). If 𝜑 is universally open, then 𝜑 is universally
generizing.

Proof. Assume 𝜑 is open. Let 𝑦′  𝑦 be a specialization of points of 𝑌. Let 𝑥 ∈ 𝑋 with
𝜑(𝑥) = 𝑦. Choose affine opens 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑌 such that 𝜑(𝑈) ⊂ 𝑉 and 𝑥 ∈ 𝑈. Then
also 𝑦′ ∈ 𝑉. Hence we may replace 𝑋 by 𝑈 and 𝑌 by 𝑉 and assume 𝑋, 𝑌 affine. The affine
case is Algebra, Lemma 7.36.2 (combined with Algebra, Lemma 7.36.3). �

Lemma 24.22.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑔 ∶ 𝑌′ → 𝑌 be open
and surjective such that the base change 𝑓′ ∶ 𝑋′ → 𝑌′ is quasi-compact. Then 𝑓 is
quasi-compact.

Proof. Let 𝑉 ⊂ 𝑌 be a quasi-compact open. As 𝑔 is open and surjective we can find a quasi-
compact open 𝑊′ ⊂ 𝑊 such that 𝑔(𝑊′) = 𝑉. By assumption (𝑓′)−1(𝑊′) is quasi-compact.
The image of (𝑓′)−1(𝑊′) in 𝑋 is equal to 𝑓−1(𝑉), see Lemma 24.9.3. Hence 𝑓−1(𝑉) is
quasi-compact as the image of a quasi-compact space, see Topology, Lemma 5.9.5. Thus
𝑓 is quasi-compact. �

24.23. Submersive morphisms

Definition 24.23.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes.
(1) We say 𝑓 is submersive5 if the continuous map of underlying topological spaces

is submersive, see Topology, Definition 5.15.1.
(2) We say 𝑓 is universally submersive if for every morphism of schemes 𝑌′ → 𝑌 the

base change 𝑌′ ×𝑌 𝑋 → 𝑌′ is submersive.

We note that a submersive morphism is in particular surjective.

24.24. Flat morphisms

Flatness is one of the most important technical tools in algebraic geometry. In this section
we introduce this notion. We intentionally limit the discussion to straightforward obser-
vations, apart from Lemma 24.24.9. A very important class of results, namely criteria for
flatness will be discussed (insert future reference here).
Recall that a module 𝑀 over a ring 𝑅 is flat if the functor − ⊗𝑅 𝑀 ∶ Mod𝑅 → Mod𝑅
is exact. A ring map 𝑅 → 𝐴 is said to be flat if 𝐴 is flat as an 𝑅-module. See Algebra,
Definition 7.35.1.

Definition 24.24.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf of 𝒪𝑋-modules.

(1) We say 𝑓 is flat at a point 𝑥 ∈ 𝑋 if the local ring 𝒪𝑋,𝑥 is flat over the local ring
𝒪𝑆,𝑓(𝑥).

(2) We say thatℱ is flat over𝑆 at a point 𝑥 ∈ 𝑋 if the stalkℱ𝑥 is a flat𝒪𝑆,𝑓(𝑥)-module.
(3) We say 𝑓 is flat if 𝑓 is flat at every point of 𝑋.
(4) We say that ℱ is flat over 𝑆 if ℱ is flat over 𝑆 at every point 𝑥 of 𝑋.

Thus we see that 𝑓 is flat if and only if the structure sheaf 𝒪𝑋 is flat over 𝑆.

Lemma 24.24.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf of 𝒪𝑋-modules. The following are equivalent

5This is very different from the notion of a submersion of differential manifolds.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=040F
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04ZE
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=040H
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01U3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01U4


1330 24. MORPHISMS OF SCHEMES

(1) The sheaf ℱ is flat over 𝑆.
(2) For every affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the 𝒪𝑆(𝑉)-module ℱ(𝑈) is

flat.
(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =

⋃𝑖∈𝐼𝑗
𝑈𝑖 such that each of the modules ℱ|𝑈𝑖

is flat over 𝑉𝑗, for all 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.
(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings

𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗
𝑈𝑖 such that ℱ(𝑈𝑖) is a flat 𝒪𝑆(𝑉𝑗)-module, for all 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.

Moreover, if ℱ is flat over 𝑆 then for any open subschemes 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉
the restriction ℱ|𝑈 is flat over 𝑉.

Proof. Let 𝑅 → 𝐴 be a ring map. Let 𝑀 be an 𝐴-module. If 𝑀 is 𝑅-flat, then for all
primes 𝔮 the module 𝑀𝔮 is flat over 𝑅𝔭 with 𝔭 the prime of 𝑅 lying under 𝔮. Conversely,
if 𝑀𝔮 is flat over 𝑅𝔭 for all primes 𝔮 of 𝐴, then 𝑀 is flat over 𝑅. See Algebra, Lemma
7.35.19. This equivalence easily implies the statements of the lemma. �

Lemma 24.24.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is flat.
(2) For every affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the ring map 𝒪𝑆(𝑉) →

𝒪𝑋(𝑈) is flat.
(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =

⋃𝑖∈𝐼𝑗
𝑈𝑖 such that each of the morphisms 𝑈𝑖 → 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗 is flat.

(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings
𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗

𝑈𝑖 such that 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖) is flat, for all 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.
Moreover, if 𝑓 is flat then for any open subschemes 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the
restriction 𝑓|𝑈 ∶ 𝑈 → 𝑉 is flat.

Proof. This is a special case of Lemma 24.24.2 above. �

Lemma 24.24.4. Let 𝑋 → 𝑌 → 𝑍 be morphisms of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. If ℱ is flat over 𝑌, and 𝑌 is flat over 𝑍, then ℱ is flat over 𝑍.

Proof. See Algebra, Lemma 7.35.3. �

Lemma 24.24.5. The composition of flat morphisms is flat.

Proof. This is a special case of Lemma 24.24.4. �

Lemma 24.24.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf of 𝒪𝑋-modules. Let 𝑔 ∶ 𝑆′ → 𝑆 be a morphism of schemes. Denote 𝑔′ ∶ 𝑋′ =
𝑋𝑆′ → 𝑋 the projection. Let 𝑥′ ∈ 𝑋′ be a point with image 𝑥 = 𝑔(𝑥′) ∈ 𝑋. If ℱ is flat
over 𝑆 at 𝑥, then (𝑔′)∗ℱ is flat over 𝑆′ at 𝑥′. In particular, if ℱ is flat over 𝑆, then (𝑔′)∗ℱ
is flat over 𝑆′.

Proof. See Algebra, Lemma 7.35.6. �

Lemma 24.24.7. The base change of a flat morphism is flat.

Proof. This is a special case of Lemma 24.24.6. �

Lemma 24.24.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a flat morphism of schemes. Then generalizations lift
along 𝑓, see Topology, Definition 5.14.3.

Proof. See Algebra, Section 7.36. �
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Lemma 24.24.9. A flat morphism locally of finite presentation is universally open.

Proof. This follows from Lemmas 24.24.8 and Lemma 24.22.2 above. We can also argue
directly as follows.

Let 𝑓 ∶ 𝑋 → 𝑆 be flat locally of finite presentation. To show 𝑓 is open it suffices to show
that we may cover 𝑋 by open affines 𝑋 = ⋃ 𝑈𝑖 such that 𝑈𝑖 → 𝑆 is open. By definition we
may cover 𝑋 by affine opens 𝑈𝑖 ⊂ 𝑋 such that each 𝑈𝑖 maps into an affine open 𝑉𝑖 ⊂ 𝑆 and
such that the induced ring map 𝒪𝑆(𝑉𝑖) → 𝒪𝑋(𝑈𝑖) is of finite presentation. Thus 𝑈𝑖 → 𝑉𝑖 is
open by Algebra, Proposition 7.36.8. The lemma follows. �

Lemma 24.24.10. Let 𝑓 ∶ 𝑋 → 𝑌 be a quasi-compact, surjective, flat morphism. A subset
𝑇 ⊂ 𝑌 is open (resp. closed) if and only 𝑓−1(𝑇) is open (resp. closed). In other words, 𝑓 is
a submersive morphism.

Proof. The question is local on 𝑌, hence we may assume that 𝑌 is affine. In this case 𝑋 is
quasi-compact as 𝑓 is quasi-compact. Write 𝑋 = 𝑋1 ∪ … ∪ 𝑋𝑛 as a finite union of affine
opens. Then 𝑓′ ∶ 𝑋′ = 𝑋1 ∐ … ∐ 𝑋𝑛 → 𝑌 is a surjective flat morphism of affine schemes.
Note that for 𝑇 ⊂ 𝑌 we have (𝑓′)−1(𝑇) = 𝑓−1(𝑇) ∩ 𝑋1 ∐ … ∐ 𝑓−1(𝑇) ∩ 𝑋𝑛. Hence, 𝑓−1(𝑇)
is open if and only if (𝑓′)−1(𝑇) is open. Thus we may assume both 𝑋 and 𝑌 are affine.

Let 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) be a surjective morphism of affine schemes corresponding
to a flat ring map 𝐴 → 𝐵. Suppose that 𝑓−1(𝑇) is closed, say 𝑓−1(𝑇) = 𝑉(𝐼) for 𝐼 ⊂ 𝐴
an ideal. Then 𝑇 = 𝑓(𝑓−1(𝑇)) = 𝑓(𝑉(𝐼)) is the image of 𝑆𝑝𝑒𝑐(𝐴/𝐼) → 𝑆𝑝𝑒𝑐(𝐵) (here we
use that 𝑓 is surjective). On the other hand, generalizations lift along 𝑓 (Lemma 24.24.8).
Hence by Topology, Lemma 5.14.5 we see that 𝑌 ⧵ 𝑇 = 𝑓(𝑋 ⧵ 𝑓−1(𝑇)) is stable under
generalization. Hence 𝑇 is stable under specialization (Topology, Lemma 5.14.2). Thus 𝑇
is closed by Algebra, Lemma 7.36.5. �

Lemma 24.24.11. Let ℎ ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆. Let 𝒢 be a quasi-
coherent sheaf on 𝑌. Let 𝑥 ∈ 𝑋 with 𝑦 = ℎ(𝑥) ∈ 𝑌. If ℎ is flat at 𝑥, then

𝒢 flat over 𝑆 at 𝑦 ⇔ ℎ∗𝒢 flat over 𝑆 at 𝑥.

In particular: If ℎ is surjective and flat, then 𝒢 is flat over 𝑆, if and only if ℎ∗𝒢 is flat over
𝑆. If ℎ is surjective and flat, and 𝑋 is flat over 𝑆, then 𝑌 is flat over 𝑆.

Proof. You can prove this by applying Algebra, Lemma 7.35.8. Here is a direct proof. Let
𝑠 ∈ 𝑆 be the image of 𝑦. Consider the local ring maps 𝒪𝑆,𝑠 → 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥. By assumption
the ring map 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥 is faithfully flat, see Algebra, Lemma 7.35.16. Let 𝑁 = 𝒢𝑦. Note
that ℎ∗𝒢𝑥 = 𝑁 ⊗𝒪𝑌,𝑦

𝒪𝑋,𝑥, see Sheaves, Lemma 6.26.4. Let 𝑀′ → 𝑀 be an injection of
𝒪𝑆,𝑠-modules. By the faithful flatness mentioned above we have

Ker(𝑀′ ⊗𝒪𝑆,𝑠
𝑁 → 𝑀 ⊗𝒪𝑆,𝑠

𝑁) ⊗𝒪𝑌,𝑦
𝒪𝑋,𝑥

= Ker(𝑀′ ⊗𝒪𝑆,𝑠
𝑁 ⊗𝒪𝑌,𝑦

𝒪𝑋,𝑥 → 𝑀 ⊗𝒪𝑆,𝑠
𝑁 ⊗𝒪𝑌,𝑦

𝒪𝑋,𝑥)

Hence the equivalence of the lemma follows from the second characterization of flatness in
Algebra, Lemma 7.35.4. �

24.25. Flat closed immersions

Connected components of schemes are not always open. But they do always have a canon-
ical scheme structure. We explain this in this section.
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Lemma 24.25.1. Let 𝑋 be a scheme. The rule which associates to a closed subscheme of
𝑋 its underlying closed subset defines a bijection

{
closed subschemes 𝑍 ⊂ 𝑋
such that 𝑍 → 𝑋 is flat } ↔ {

closed subsets 𝑍 ⊂ 𝑋
closed under generalizations}

Proof. The affine case is Algebra, Lemma 7.100.4. In general the lemma follows by cov-
ering 𝑋 by affines and glueing. Details omitted. �

Note that a connected component 𝑇 of a scheme 𝑋 is a closed subset stable under general-
ization. Hence the following definition makes sense.

Definition 24.25.2. Let 𝑋 be a scheme. Let 𝑇 ⊂ 𝑋 be a connected component. The
canonical scheme structure on 𝑇 is the unique scheme structure on 𝑇 such that the closed
immersion 𝑇 → 𝑋 is flat, see Lemma 24.25.1.

It turns out that we can determine when every finite flat 𝒪𝑋-module is finite locally free
using the previous lemma.

Lemma 24.25.3. Let 𝑋 be a scheme. The following are equivalent
(1) every finite flat quasi-coherent 𝒪𝑋-module is finite locally free, and
(2) every closed subset 𝑍 ⊂ 𝑋 which is closed under generalizations is open.

Proof. In the affine case this is Algebra, Lemma 7.100.6. The scheme case does not follow
directly from the affine case, so we simply repeat the arguments.
Assume (1). Consider a closed immersion 𝑖 ∶ 𝑍 → 𝑋 such that 𝑖 is flat. Then 𝑖∗𝒪𝑍 is
quasi-coherent and flat, hence finite locally free by (1). Thus 𝑍 = Supp(𝑖∗𝒪𝑍) is also open
and we see that (2) holds. Hence the implication (1) ⇒ (2) follows from the characterization
of flat closed immersions in Lemma 24.25.1.
For the converse assume that𝑋 satisfies (2). Letℱ be a finite flat quasi-coherent𝒪𝑋-module.
The support 𝑍 = Supp(ℱ) of ℱ is closed, see Modules, Lemma 15.9.6. On the other hand,
if 𝑥  𝑥′ is a specialization, then by Algebra, Lemma 7.72.4 the module ℱ𝑥′ is free over
𝒪𝑋,𝑥′, and

ℱ𝑥 = ℱ𝑥′ ⊗𝒪𝑋,𝑥′ 𝒪𝑋,𝑥.
Hence 𝑥′ ∈ Supp(ℱ) ⇒ 𝑥 ∈ Supp(ℱ), in other words, the support is closed under gener-
alization. As 𝑋 satisfies (2) we see that the support of ℱ is open and closed. The modules
∧𝑖(ℱ), 𝑖 = 1, 2, 3, … are finite flat quasi-coherent 𝒪𝑋-modules also, see Modules, Section
15.18. Note that Supp(∧𝑖+1(ℱ)) ⊂ Supp(∧𝑖(ℱ)). Thus we see that there exists a decompo-
sition

𝑋 = 𝑈0 ∐ 𝑈1 ∐ 𝑈2 ∐ …

by open and closed subsets such that the support of ∧𝑖(ℱ) is 𝑈𝑖 ∪ 𝑈𝑖+1 ∪ … for all 𝑖. Let
𝑥 be a point of 𝑋, and say 𝑥 ∈ 𝑈𝑟. Note that ∧𝑖(ℱ)𝑥 ⊗ 𝜅(𝑥) = ∧𝑖(ℱ𝑥 ⊗ 𝜅(𝑥)). Hence,
𝑥 ∈ 𝑈𝑟 implies that ℱ𝑥 ⊗ 𝜅(𝑥) is a vector space of dimension 𝑟. By Nakayama's lemma,
see Algebra, Lemma 7.14.5 we can choose an affine open neighbourhood 𝑈 ⊂ 𝑈𝑟 ⊂ 𝑋 of
𝑥 and sections 𝑠1, … , 𝑠𝑟 ∈ ℱ(𝑈) such that the induced map

𝒪⊕𝑟
𝑈 ⟶ ℱ|𝑈, (𝑓1, … , 𝑓𝑟) ⟼ ∑ 𝑓𝑖𝑠𝑖

is surjective. This means that ∧𝑟(ℱ|𝑈) is a finite flat quasi-coherent 𝒪𝑈-module whose
support is all of 𝑈. By the above it is generated by a single element, namely 𝑠1 ∧ … ∧ 𝑠𝑟.
Hence ∧𝑟(ℱ|𝑈) ≅ 𝒪𝑈/ℐ for some quasi-coherent sheaf of ideals ℐ such that 𝒪𝑈/ℐ is flat
over 𝒪𝑈 and such that 𝑉(ℐ) = 𝑈. It follows that ℐ = 0 by applying Lemma 24.25.1. Thus
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𝑠1 ∧ … ∧ 𝑠𝑟 is a basis for ∧𝑟(ℱ|𝑈) and it follows that the displayed map is injective as well
as surjective. This proves that ℱ is finite locally free as desired. �

24.26. Generic flatness

A scheme of finite type over an integral base is flat over a dense open of the base. In
Algebra, Section 24.26 we proved a Noetherian version, a version for morphisms of finite
presentation, and a general version. We only state and prove the general version here.
However, it turns out that this will be superseded by Proposition 24.26.2 which shows the
result holds if we only assume the base is reduced.

Proposition 24.26.1. (Generic flatness) Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ
be a quasi-coherent sheaf of 𝒪𝑋-modules. Assume

(1) 𝑆 is integral,
(2) 𝑓 is of finite type, and
(3) ℱ is a finite type 𝒪𝑋-module.

Then there exists an open dense subscheme 𝑈 ⊂ 𝑆 such that 𝑋𝑈 → 𝑈 is flat and of finite
presentation and such that ℱ|𝑋𝑈

is flat over 𝑈 and of finite presentation over 𝒪𝑋𝑈
.

Proof. As 𝑆 is integral it is irreducible (see Properties, Lemma 23.3.4) and any nonempty
open is dense. Hence wemay replace 𝑆 by an affine open of 𝑆 and assume that 𝑆 = 𝑆𝑝𝑒𝑐(𝐴)
is affine. As𝑆 is integral we see that𝐴 is a domain. As 𝑓 is of finite type, it is quasi-compact,
so 𝑋 is quasi-compact. Hence we can find a finite affine open cover 𝑋 = ⋃𝑖=1,…,𝑛 𝑋𝑖. Write
𝑋𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖). Then 𝐵𝑖 is a finite type 𝐴-algebra, see Lemma 24.14.2. Moreover there
are finite type 𝐵𝑖-modules 𝑀𝑖 such that ℱ|𝑋𝑖

is the quasi-coherent sheaf associated to the
𝐵𝑖-module 𝑀𝑖, see Properties, Lemma 23.16.1. Next, for each pair of indices 𝑖, 𝑗 choose
an ideal 𝐼𝑖𝑗 ⊂ 𝐵𝑖 such that 𝑋𝑖 ⧵ 𝑋𝑖 ∩ 𝑋𝑗 = 𝑉(𝐼𝑖𝑗) inside 𝑋𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖). Set 𝑀𝑖𝑗 = 𝐵𝑖/𝐼𝑖𝑗
and think of it as a 𝐵𝑖-module. Then 𝑉(𝐼𝑖𝑗) = Supp(𝑀𝑖𝑗) and 𝑀𝑖𝑗 is a finite 𝐵𝑖-module.
At this point we apply Algebra, Lemma 7.109.3 the pairs (𝐴 → 𝐵𝑖, 𝑀𝑖𝑗) and to the pairs
(𝐴 → 𝐵𝑖, 𝑀𝑖). Thus we obtain nonzero 𝑓𝑖𝑗, 𝑓𝑖 ∈ 𝐴 such that (a) 𝐴𝑓𝑖𝑗

→ 𝐵𝑖,𝑓𝑖𝑗
is flat and

of finite presentation and 𝑀𝑖𝑗,𝑓𝑖𝑗
is flat over 𝐴𝑓𝑖𝑗

and of finite presentation over 𝐵𝑖,𝑓𝑖𝑗
, and

(b) 𝐵𝑖,𝑓𝑖
is flat and of finite presentation over 𝐴𝑓 and 𝑀𝑖,𝑓𝑖

is flat and of finite presentation
over 𝐵𝑖,𝑓𝑖

. Set 𝑓 = (∏ 𝑓𝑖)(∏ 𝑓𝑖𝑗). We claim that taking 𝑈 = 𝐷(𝑓) works.
To prove our claimwemay replace𝐴 by𝐴𝑓, i.e., perform the base change by𝑈 = 𝑆𝑝𝑒𝑐(𝐴𝑓) →
𝑆. After this base change we see that each of 𝐴 → 𝐵𝑖 is flat and of finite presentation and
that 𝑀𝑖, 𝑀𝑖𝑗 are flat over 𝐴 and of finite presentation over 𝐵𝑖. This already proves that
𝑋 → 𝑆 is quasi-compact, locally of finite presentation, flat, and that ℱ is flat over 𝑆 and of
finite presentation over 𝒪𝑋, see Lemma 24.20.2 and Properties, Lemma 23.16.2. Since 𝑀𝑖𝑗
is of finite presentation over 𝐵𝑖 we see that 𝑋𝑖 ∩ 𝑋𝑗 = 𝑋𝑖 ⧵ Supp(𝑀𝑖𝑗) is a quasi-compact
open of 𝑋𝑖, see Algebra, Lemma 7.59.5. Hence we see that 𝑋 → 𝑆 is quasi-separated by
Schemes, Lemma 21.21.7. This proves the proposition. �

It actually turns out that there is also a version of generic flatness over an arbitrary reduced
base. Here it is.

Proposition 24.26.2. (Generic flatness, reduced case) Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of
schemes. Let ℱ be a quasi-coherent sheaf of 𝒪𝑋-modules. Assume

(1) 𝑆 is reduced,
(2) 𝑓 is of finite type, and
(3) ℱ is a finite type 𝒪𝑋-module.
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Then there exists an open dense subscheme 𝑈 ⊂ 𝑆 such that 𝑋𝑈 → 𝑈 is flat and of finite
presentation and such that ℱ|𝑋𝑈

is flat over 𝑈 and of finite presentation over 𝒪𝑋𝑈
.

Proof. For the impatient reader: This proof is a repeat of the proof of Proposition 24.26.1
using Algebra, Lemma 7.109.7 instead of Algebra, Lemma 7.109.3.

Since being flat and being of finite presentation is local on the base, see Lemmas 24.24.2 and
24.20.2, we may work affine locally on 𝑆. Thus we may assume that 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), where 𝐴
is a reduced ring (see Properties, Lemma 23.3.2). As 𝑓 is of finite type, it is quasi-compact,
so 𝑋 is quasi-compact. Hence we can find a finite affine open cover 𝑋 = ⋃𝑖=1,…,𝑛 𝑋𝑖.
Write 𝑋𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖). Then 𝐵𝑖 is a finite type 𝐴-algebra, see Lemma 24.14.2. Moreover
there are finite type 𝐵𝑖-modules 𝑀𝑖 such that ℱ|𝑋𝑖

is the quasi-coherent sheaf associated to
the 𝐵𝑖-module 𝑀𝑖, see Properties, Lemma 23.16.1. Next, for each pair of indices 𝑖, 𝑗 choose
an ideal 𝐼𝑖𝑗 ⊂ 𝐵𝑖 such that 𝑋𝑖 ⧵ 𝑋𝑖 ∩ 𝑋𝑗 = 𝑉(𝐼𝑖𝑗) inside 𝑋𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖). Set 𝑀𝑖𝑗 = 𝐵𝑖/𝐼𝑖𝑗
and think of it as a 𝐵𝑖-module. Then 𝑉(𝐼𝑖𝑗) = Supp(𝑀𝑖𝑗) and 𝑀𝑖𝑗 is a finite 𝐵𝑖-module.

At this point we apply Algebra, Lemma 7.109.7 the pairs (𝐴 → 𝐵𝑖, 𝑀𝑖𝑗) and to the pairs
(𝐴 → 𝐵𝑖, 𝑀𝑖). Thus we obtain dense opens 𝑈(𝐴 → 𝐵𝑖, 𝑀𝑖𝑗) ⊂ 𝑆 and dense opens 𝑈(𝐴 →
𝐵𝑖, 𝑀𝑖) ⊂ 𝑆 with notation as in Algebra, Equation (7.109.3.2). Since a finite intersection
of dense opens is dense open, we see that

𝑈 = ⋂𝑖,𝑗
𝑈(𝐴 → 𝐵𝑖, 𝑀𝑖𝑗) ∩ ⋂𝑖

𝑈(𝐴 → 𝐵𝑖, 𝑀𝑖)

is open and dense in 𝑆. We claim that 𝑈 is the desired open.

Pick 𝑢 ∈ 𝑈. By definition of the loci 𝑈(𝐴 → 𝐵𝑖, 𝑀𝑖𝑗) and 𝑈(𝐴 → 𝐵, 𝑀𝑖) there exist
𝑓𝑖𝑗, 𝑓𝑖 ∈ 𝐴 such that (a) 𝑢 ∈ 𝐷(𝑓𝑖) and 𝑢 ∈ 𝐷(𝑓𝑖𝑗), (b) 𝐴𝑓𝑖𝑗

→ 𝐵𝑖,𝑓𝑖𝑗
is flat and of finite

presentation and 𝑀𝑖𝑗,𝑓𝑖𝑗
is flat over 𝐴𝑓𝑖𝑗

and of finite presentation over 𝐵𝑖,𝑓𝑖𝑗
, and (c) 𝐵𝑖,𝑓𝑖

is
flat and of finite presentation over 𝐴𝑓 and 𝑀𝑖,𝑓𝑖

is flat and of finite presentation over 𝐵𝑖,𝑓𝑖
.

Set 𝑓 = (∏ 𝑓𝑖)(∏ 𝑓𝑖𝑗). Now it suffices to prove that 𝑋 → 𝑆 is flat and of finite presentation
over 𝐷(𝑓) and that ℱ restricted to 𝑋𝐷(𝑓) is flat over 𝐷(𝑓) and of finite presentation over the
structure sheaf of 𝑋𝐷(𝑓).

Hence we may replace 𝐴 by 𝐴𝑓, i.e., perform the base change by 𝑆𝑝𝑒𝑐(𝐴𝑓) → 𝑆. After
this base change we see that each of 𝐴 → 𝐵𝑖 is flat and of finite presentation and that 𝑀𝑖,
𝑀𝑖𝑗 are flat over 𝐴 and of finite presentation over 𝐵𝑖. This already proves that 𝑋 → 𝑆
is quasi-compact, locally of finite presentation, flat, and that ℱ is flat over 𝑆 and of finite
presentation over 𝒪𝑋, see Lemma 24.20.2 and Properties, Lemma 23.16.2. Since 𝑀𝑖𝑗 is
of finite presentation over 𝐵𝑖 we see that 𝑋𝑖 ∩ 𝑋𝑗 = 𝑋𝑖 ⧵ Supp(𝑀𝑖𝑗) is a quasi-compact
open of 𝑋𝑖, see Algebra, Lemma 7.59.5. Hence we see that 𝑋 → 𝑆 is quasi-separated by
Schemes, Lemma 21.21.7. This proves the proposition. �

Remark 24.26.3. The results above are a first step towards more refined flattening tech-
niques for morphisms of schemes. The article [GR71] by Raynaud and Gruson contains
many wonderful results in this direction.

24.27. Morphisms and dimensions of fibres

Let 𝑋 be a topological space, and 𝑥 ∈ 𝑋. Recall that we have defined dim𝑥(𝑋) as the min-
imum of the dimensions of the open neighbourhoods of 𝑥 in 𝑋. See Topology, Definition
5.7.1.
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Lemma 24.27.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 and set 𝑠 = 𝑓(𝑥).
Assume 𝑓 is locally of finite type. Then

dim𝑥(𝑋𝑠) = dim(𝒪𝑋𝑠,𝑥) + trdeg𝜅(𝑠)(𝜅(𝑥)).

Proof. This immediately reduces to the case 𝑆 = 𝑠, and 𝑋 affine. In this case the result
follows from Algebra, Lemma 7.107.3. �

Lemma 24.27.2. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes. Let 𝑥 ∈ 𝑋 and
set 𝑦 = 𝑓(𝑥), 𝑠 = 𝑔(𝑦). Assume 𝑓 and 𝑔 locally of finite type. Then

dim𝑥(𝑋𝑠) ≤ dim𝑥(𝑋𝑦) + dim𝑦(𝑌𝑠).

Moreover, equality holds if 𝒪𝑋𝑠,𝑥 is flat over 𝒪𝑌𝑠,𝑦, which holds for example if 𝒪𝑋,𝑥 is flat
over 𝒪𝑌,𝑦.

Proof. Note that trdeg𝜅(𝑠)(𝜅(𝑥)) = trdeg𝜅(𝑦)(𝜅(𝑥))+trdeg𝜅(𝑠)(𝜅(𝑦)). Thus by Lemma 24.27.1
the statement is equivalent to

dim(𝒪𝑋𝑠,𝑥) ≤ dim(𝒪𝑋𝑦,𝑥) + dim(𝒪𝑌𝑠,𝑦).

For this see Algebra, Lemma 7.103.6. For the flat case see Algebra, Lemma 7.103.7. �

Lemma 24.27.3. Let
𝑋′

𝑔′
//

𝑓′

��

𝑋

𝑓
��

𝑆′ 𝑔 // 𝑆
be a fibre product diagram of schemes. Assume 𝑓 locally of finite type. Suppose that 𝑥′ ∈
𝑋′, 𝑥 = 𝑔′(𝑥′), 𝑠′ = 𝑓′(𝑥′) and 𝑠 = 𝑔(𝑠′) = 𝑓(𝑥). Then dim𝑥(𝑋𝑠) = dim𝑥′(𝑋′

𝑠′).

Proof. Follows immediately from Algebra, Lemma 7.107.6. �

The following lemma follows from a nontrivial algebraic result. Namely, the algebraic
version of Zariski's main theorem.

Lemma 24.27.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑛 ≥ 0. Assume 𝑓 is
locally of finite type. The set

𝑈𝑛 = {𝑥 ∈ 𝑋 ∣ dim𝑥 𝑋𝑓(𝑥) ≤ 𝑛}

is open in 𝑋.

Proof. This is immediate from Algebra, Lemma 7.116.6 �

Lemma 24.27.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑛 ≥ 0. Assume 𝑓 is
locally of finite presentation. The open

𝑈𝑛 = {𝑥 ∈ 𝑋 ∣ dim𝑥 𝑋𝑓(𝑥) ≤ 𝑛}

of Lemma 24.27.4 is retrocompact in 𝑋. (See Topology, Definition 5.9.1.)

Proof. The topological space 𝑋 has a basis for its topology consisting of affine opens 𝑈 ⊂
𝑋 such that the infuced morphism 𝑓|𝑈 ∶ 𝑈 → 𝑆 factors through an affine open 𝑉 ⊂ 𝑆.
Hence it is enough to show that 𝑈 ∩ 𝑈𝑛 is quasi-compact for such a 𝑈. Note that 𝑈𝑛 ∩ 𝑈 is
the same as the open {𝑥 ∈ 𝑈 ∣ dim𝑥 𝑈𝑓(𝑥) ≤ 𝑛}. This reduces us to the case where 𝑋 and
𝑆 are affine. In this case the lemma follows from Algebra, Lemma 7.116.8 (and Lemma
24.20.2). �
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Lemma 24.27.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥  𝑥′ be a nontrivial
specialization of points in 𝑋 lying over the same point 𝑠 ∈ 𝑆. Assume 𝑓 is locally of finite
type. Then

(1) dim𝑥(𝑋𝑠) ≤ dim𝑥′(𝑋𝑠),
(2) trdeg𝜅(𝑠)(𝜅(𝑥)) > trdeg𝜅(𝑠)(𝜅(𝑥′)), and
(3) dim(𝒪𝑋𝑠,𝑥) < dim(𝒪𝑋𝑠,𝑥′).

Proof. The first inequality follows from Lemma 24.27.4. The third inequality follows since
𝒪𝑋𝑠,𝑥 is a localization of 𝒪𝑋𝑠,𝑥 in a prime ideal, hence any chain of prime ideals in 𝒪𝑋𝑠,𝑥
is part of a strictly longer chain of primes in 𝒪𝑋𝑠,𝑥′. The second inequality follows from
Algebra, Lemma 7.107.2. �

24.28. Morphisms of given relative dimension

In order to be able to speak comfortably about morphisms of a given relative dimension we
introduce the following notion.

Definition 24.28.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 is locally of
finite type.

(1) We say 𝑓 is of relative dimension ≤ 𝑑 at 𝑥 if dim𝑥(𝑋𝑓(𝑥)) ≤ 𝑑.
(2) We say 𝑓 is of relative dimension ≤ 𝑑 if dim𝑥(𝑋𝑓(𝑥)) ≤ 𝑑 for all 𝑥 ∈ 𝑋.
(3) We say 𝑓 is of relative dimension 𝑑 if all nonempty fibres 𝑋𝑠 are equidimensional

of dimension 𝑑.

This is not a particularly well behaved notion, but it works well in a number of situations.

Lemma 24.28.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is locally of finite
type. If 𝑓 has relative dimension 𝑑, then so does any base change of 𝑓. Same for relative
dimension ≤ 𝑑.

Proof. This is immediate from Lemma 24.27.3. �

Lemma 24.28.3. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍 be locally of finite type. If 𝑓 has relative
dimension ≤ 𝑑 and 𝑔 has relative dimension ≤ 𝑒 then 𝑔 ∘ 𝑓 has relative dimension ≤ 𝑑 + 𝑒.
If

(1) 𝑓 has relative dimension 𝑑,
(2) 𝑔 has relative dimension 𝑒, and
(3) 𝑓 is flat,

then 𝑔 ∘ 𝑓 has relative dimension 𝑑 + 𝑒.

Proof. This is immediate from Lemma 24.27.2. �

In general it is not possible to decompose a morphism into its pieces where the relative
dimension is a given one. However, it is possible if the morphism has Cohen-Macaulay
fibres and is flat of finite presentation.

Lemma 24.28.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume that
(1) 𝑓 is flat,
(2) 𝑓 is locally of finite presentation, and
(3) for all 𝑠 ∈ 𝑆 the fibre 𝑋𝑠 is Cohen-Macaulay (Properties, Definition 23.8.1)

Then there exist open and closed subschemes 𝑋𝑑 ⊂ 𝑋 such that 𝑋 = ∐𝑑≥0 𝑋𝑑 and 𝑓|𝑋𝑑
∶

𝑋𝑑 → 𝑆 has relative dimension 𝑑.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06RU
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02NJ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02NK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02NL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02NM


24.29. THE DIMENSION FORMULA 1337

Proof. This is immediate from Algebra, Lemma 7.121.8. �

Lemma 24.28.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 is locally of finite
type. Let 𝑥 ∈ 𝑋 with 𝑠 = 𝑓(𝑥). Then 𝑓 is quasi-finite at 𝑥 if and only if dim𝑥(𝑋𝑠) = 0. In
particular, 𝑓 is locally quasi-finite if and only if 𝑓 has relative dimension 0.

Proof. If 𝑓 is quasi-finite at 𝑥 then 𝜅(𝑥) is a finite extension of 𝜅(𝑠) (by Lemma 24.19.5)
and 𝑥 is isolated in 𝑋𝑠 (by Lemma 24.19.6), hence dim𝑥(𝑋𝑠) = 0 by Lemma 24.27.1.
Conversely, if dim𝑥(𝑋𝑠) = 0 then by Lemma 24.27.1 we see 𝜅(𝑠) ⊂ 𝜅(𝑥) is algebraic and
there are no other points of 𝑋𝑠 specializing to 𝑥. Hence 𝑥 is closed in its fibre by Lemma
24.19.2 and by Lemma 24.19.6 (3) we conclude that 𝑓 is quasi-finite at 𝑥. �

24.29. The dimension formula

For morphisms between Noetherian schemes we can say a little more about dimensions of
local rings. Here is an important (and not so hard to prove) result. Recall that 𝑅(𝑋) denotes
the function field of an integral scheme 𝑋.

Lemma 24.29.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let
𝑥 ∈ 𝑋, and set 𝑠 = 𝑓(𝑥). Assume

(1) 𝑆 is locally Noetherian,
(2) 𝑓 is locally of finite type,
(3) 𝑋 and 𝑆 integral, and
(4) 𝑓 dominant.

We have

(24.29.1.1) dim(𝒪𝑋,𝑥) ≤ dim(𝒪𝑆,𝑠) + trdeg𝑅(𝑆)𝑅(𝑋) − trdeg𝜅(𝑠)𝜅(𝑥).

Moreover, equality holds if 𝑆 is universally catenary.

Proof. The corresponding algebra statement is Algebra, Lemma 7.104.1. �

An application is the construction of a dimension function on any scheme of finite type over
a universally catenary scheme endowed with a dimension function. For the definition of
dimension functions, see Topology, Definition 5.16.1.

Lemma 24.29.2. Let 𝑆 be a universally catenary scheme. Let 𝛿 ∶ 𝑆 → 𝐙 be a dimension
function. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 locally of finite type. Then
the map

𝛿 = 𝛿𝑋/𝑆 ∶ 𝑋 ⟶ 𝐙
𝑥 ⟼ 𝛿(𝑓(𝑥)) + trdeg𝜅(𝑓(𝑥))𝜅(𝑥)

is a dimension function on 𝑋.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be locally of finite type. Let 𝑥  𝑦, 𝑥≠𝑦 be a specialization in 𝑋.
We have to show that 𝛿𝑋/𝑆(𝑥) > 𝛿𝑋/𝑆(𝑦) and that 𝛿𝑋/𝑆(𝑥) = 𝛿𝑋/𝑆(𝑦)+1 if 𝑦 is an immediate
specialization of 𝑥.

Choose an affine open 𝑉 ⊂ 𝑆 containing the image of 𝑦 and choose an affine open 𝑈 ⊂ 𝑋
mapping into 𝑉 and containing 𝑦. We may clearly replace 𝑋 by 𝑈 and 𝑆 by 𝑉. Thus we
may assume that 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and that 𝑓 is given by a ring map 𝑅 → 𝐴.
The ring 𝑅 is universally catenary (Lemma 24.16.2) and the map 𝑅 → 𝐴 is of finite type
(Lemma 24.14.2).
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Let 𝔮 ⊂ 𝐴 be the prime ideal corresponding to the point 𝑥 and let 𝔭 ⊂ 𝑅 be the prime
ideal corresponding to 𝑓(𝑥). The restriction 𝛿′ of 𝛿 to 𝑆′ = 𝑆𝑝𝑒𝑐(𝑅/𝔭) ⊂ 𝑆 is a dimension
function. The ring 𝑅/𝔭 is universally catenary. The restriction of 𝛿𝑋/𝑆 to 𝑋′ = 𝑆𝑝𝑒𝑐(𝐴/𝔮)
is clearly equal to the function 𝛿𝑋′/𝑆′ constructed using the dimension function 𝛿′. Hence
we may assume in addition to the above that 𝑅 ⊂ 𝐴 are domains, in other words that 𝑋 and
𝑆 are integral schemes.
Note that 𝒪𝑋,𝑥 is a localization of 𝒪𝑋,𝑦 at a non-maximal prime (Schemes, Lemma 21.13.2).
Hence dim(𝒪𝑋,𝑥) < dim(𝒪𝑋,𝑦) and dim(𝒪𝑋,𝑥) = dim(𝒪𝑋,𝑦) − 1 if 𝑦 is an immediate spe-
cialization of 𝑥.
Write 𝑠 = 𝑓(𝑥)≠𝑓(𝑦) = 𝑠′. We see, using equality in (24.29.1.1), that

𝛿𝑋/𝑆(𝑥) − 𝛿𝑋/𝑆(𝑦) = 𝛿(𝑠) − 𝛿(𝑠′)
+ dim(𝒪𝑆,𝑠) − dim(𝒪𝑆,𝑠′)
− dim(𝒪𝑋,𝑥) + dim(𝒪𝑋,𝑦).

Since 𝛿 is a dimension function on the scheme 𝑆 the difference 𝛿(𝑠) − 𝛿(𝑠′) is equal to
codim({𝑠′}, {𝑠}) by Topology, Lemma 5.16.2. As 𝑆 is integral, catenary this is equal to
codim({𝑠′}, 𝑆) − codim({𝑠}, 𝑆) (Topology, Lemma 5.8.6). And this in turn is equal to
dim(𝒪𝑆,𝑠′) − dim(𝒪𝑆,𝑠) by Properties, Lemma 23.11.4. Hence we conclude that

𝛿𝑋/𝑆(𝑥) − 𝛿𝑋/𝑆(𝑦) = − dim(𝒪𝑋,𝑥) + dim(𝒪𝑋,𝑦)
and hence the lemma follows from our remarks about the dimensions of these local rings
above. �

Another application of the dimension formula is that the dimension does not change under
``alterations'' (to be defined later).

Lemma 24.29.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that
(1) 𝑌 is locally Noetherian,
(2) 𝑋 and 𝑌 are integral schemes,
(3) 𝑓 is dominant, and
(4) 𝑓 is locally of finite type.

Then we have
dim(𝑋) ≤ dim(𝑌) + trdeg𝑅(𝑌)𝑅(𝑋).

If 𝑓 is closed6 then equality holds.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be as in the lemma. Let 𝜉0  𝜉1  …  𝜉𝑒 be a sequence of
specializations in 𝑋. We may assume that 𝑥 = 𝜉𝑒 is a closed point of 𝑋, see Properties,
Lemma 23.5.8. In particular, setting 𝑦 = 𝑓(𝑥), we see 𝑥 is a closed point of its fibre 𝑋𝑦. By
the Hilbert Nullstellensatz we see that 𝜅(𝑥) is a finite extension of 𝜅(𝑦), see Lemma 24.19.3.
By the dimension formula, Lemma 24.29.1, we see that

dim(𝒪𝑋,𝑥) ≤ dim(𝒪𝑌,𝑦) + trdeg𝑅(𝑌)𝑅(𝑋)
Hence we conclude that 𝑒 ≤ dim(𝑌) + trdeg𝑅(𝑌)𝑅(𝑋) as desired.

Next, assume 𝑓 is also closed. Say 𝜉0  𝜉1  …  𝜉𝑑 is a sequence of specializations
in 𝑌. We want to show that dim(𝑋) ≥ 𝑑 + 𝑟. We may assume that 𝜉0 = 𝜂 is the generic
point of 𝑌. The generic fibre 𝑋𝜂 is a scheme locally of finite type over 𝜅(𝜂) = 𝑅(𝑌). It is

6For example if 𝑓 is proper, see Definition 24.40.1.
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nonempty as 𝑓 is dominant. Hence by Lemma 24.15.10 it is a Jacobson scheme. Thus by
Lemma 24.15.8 we can find a closed point 𝜉0 ∈ 𝑋𝜂 and the extension 𝜅(𝜂) ⊂ 𝜅(𝜉0) is a
finite extension. Note that 𝒪𝑋,𝜉0

= 𝒪𝑋𝜂,𝜉0
because 𝜂 is the generic point of 𝑌. Hence we

see that dim(𝒪𝑋,𝜉0
) = 𝑟 by Lemma 24.29.1 applied to the scheme 𝑋𝜂 over the universally

catenary scheme 𝑆𝑝𝑒𝑐(𝜅(𝜂)) (see Lemma 24.16.4) and the point 𝜉0. This means that we can
find 𝜉−𝑟  … 𝜉−1  𝜉0 in 𝑋. On the other hand, as 𝑓 is closed specializations lift along
𝑓, see Topology, Lemma 5.14.6. Thus, as 𝜉0 lies over 𝜂 = 𝜉0 we can find specializations
𝜉0  𝜉1  … 𝜉𝑑 lying over 𝜉0  𝜉1  … 𝜉𝑑. In other words we have

𝜉−𝑟  … 𝜉−1  𝜉0  𝜉1  … 𝜉𝑑

which means that dim(𝑋) ≥ 𝑑 + 𝑟 as desired. �

24.30. Syntomic morphisms

An algebra𝐴 over a field 𝑘 is called a global complete intersection over 𝑘 if𝐴 ≅ 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)
and dim(𝐴) = 𝑛 − 𝑐. An algebra 𝐴 over a field 𝑘 is called a local complete intersection
if 𝑆𝑝𝑒𝑐(𝐴) can be covered by standard opens each of which are global complete intersec-
tions over 𝑘. See Algebra, Section 7.124. Recall that a ring map 𝑅 → 𝐴 is syntomic if it
is of finite presentation, flat with local complete intersection rings as fibres, see Algebra,
Definition 7.125.1.

Definition 24.30.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say that 𝑓 is syntomic at 𝑥 ∈ 𝑋 if there exists a affine open neighbourhood

𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of 𝑥 and and affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉
such that the induced ring map 𝑅 → 𝐴 is syntomic.

(2) We say that 𝑓 is syntomic if it is syntomic at every point of 𝑋.
(3) If 𝑆 = 𝑆𝑝𝑒𝑐(𝑘) and 𝑓 is syntomic, then we say that 𝑋 is a local complete inter-

section over 𝑘.
(4) A morphism of affine schemes 𝑓 ∶ 𝑋 → 𝑆 is called standard syntomic if there

exists a global relative complete intersection 𝑅 → 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) (see
Algebra, Definition 7.125.5) such that 𝑋 → 𝑆 is isomorphic to

𝑆𝑝𝑒𝑐(𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)) → 𝑆𝑝𝑒𝑐(𝑅).

In the literature a syntomic morphism is sometimes referred to as a flat local complete
intersection morphism. It turns out this is a convenient class of morphisms. For example
one can define a syntomic topology using these, which is finer than the smooth and étale
topologies, but has many of the same formal properties.

A global relative complete intersection (which we used to define standard syntomic ring
maps) is in particular flat. In More on Morphisms, Section 33.38 we will consider mor-
phisms 𝑋 → 𝑆 which locally are of the form

𝑆𝑝𝑒𝑐(𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)) → 𝑆𝑝𝑒𝑐(𝑅).

for some Koszul-regular sequence 𝑓1, … , 𝑓𝑟 in 𝑅[𝑥1, … , 𝑥𝑛]. Such a morphism will be
called a local complete intersection morphism. One we have this definition in place it will
be the case that a morphism is syntomic if and only if it is a flat, local complete intersection
morphism.

Note that there is no separation or quasi-compactness hypotheses in the definition of a
syntomic morphism. Hence the question of being syntomic is local in nature on the source.
Here is the precise result.
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Lemma 24.30.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is syntomic.
(2) For every affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the ring map 𝒪𝑆(𝑉) →

𝒪𝑋(𝑈) is syntomic.
(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =

⋃𝑖∈𝐼𝑗
𝑈𝑖 such that each of the morphisms 𝑈𝑖 → 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗 is syntomic.

(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings
𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗

𝑈𝑖 such that the ring map 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖) is syntomic, for all
𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.

Moreover, if 𝑓 is syntomic then for any open subschemes 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the
restriction 𝑓|𝑈 ∶ 𝑈 → 𝑉 is syntomic.

Proof. This follows from Lemma 24.13.3 if we show that the property ``𝑅 → 𝐴 is syn-
tomic'' is local. We check conditions (a), (b) and (c) of Definition 24.13.1. By Algebra,
Lemma 7.125.3 being syntomic is stable under base change and hence we conclude (a)
holds. By Algebra, Lemma 7.125.18 being syntomic is stable under composition and triv-
ially for any ring 𝑅 the ring map 𝑅 → 𝑅𝑓 is syntomic. We conclude (b) holds. Finally,
property (c) is true according to Algebra, Lemma 7.125.4. �

Lemma 24.30.3. The composition of two morphisms which are syntomic is syntomic.

Proof. In the proof of Lemma 24.30.2 we saw that being syntomic is a local property of
ring maps. Hence the first statement of the lemma follows from Lemma 24.13.5 combined
with the fact that being syntomic is a property of ring maps that is stable under composition,
see Algebra, Lemma 7.125.18. �

Lemma 24.30.4. The base change of a morphism which is syntomic is syntomic.

Proof. In the proof of Lemma 24.30.2 we saw that being syntomic is a local property of
ring maps. Hence the lemma follows from Lemma 24.13.5 combined with the fact that
being syntomic is a property of ring maps that is stable under base change, see Algebra,
Lemma 7.125.3. �

Lemma 24.30.5. Any open immersion is syntomic.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 24.30.6. A syntomic morphism is locally of finite presentation.

Proof. True because a syntomic ring map is of finite presentation by definition. �

Lemma 24.30.7. A syntomic morphism is flat.

Proof. True because a syntomic ring map is flat by definition. �

Lemma 24.30.8. A syntomic morphism is universally open.

Proof. Combine Lemmas 24.30.6, 24.30.7, and 24.24.9. �

Let 𝑘 be a field. Let 𝐴 be a local 𝑘-algebra essentially of finite type over 𝑘. Recall that 𝐴
is called a complete intersection over 𝑘 if we can write 𝐴 ≅ 𝑅/(𝑓1, … , 𝑓𝑐) where 𝑅 is a
regular local ring essentially of finite type over 𝑘, and 𝑓1, … , 𝑓𝑐 is a regular sequence in 𝑅,
see Algebra, Definition 7.124.5.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01UD
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01UH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01UI
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01UJ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01UK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01UL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=056F


24.30. SYNTOMIC MORPHISMS 1341

Lemma 24.30.9. Let 𝑘 be a field. Let 𝑋 be a scheme locally of finite type over 𝑘. The
following are equivalent:

(1) 𝑋 is a local complete intersection over 𝑘,
(2) for every 𝑥 ∈ 𝑋 there exists an affine open 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) ⊂ 𝑋 neighbourhood of

𝑥 such that 𝑅 ≅ 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is a global complete intersection over
𝑘, and

(3) for every 𝑥 ∈ 𝑋 the local ring 𝒪𝑋,𝑥 is a complete intersection over 𝑘.
Proof. The corresponding algebra results can be found in Algebra, Lemmas 7.124.8 and
7.124.9. �

The following lemma says locally any syntomic morphism is standard syntomic. Hence we
can use standard syntomicmorphisms as a local model for a syntomicmorphism. Moreover,
it says that a flat morphism of finite presentation is syntomic if and only if the fibres are
local complete intersection schemes.
Lemma 24.30.10. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 locally of finite
presentation. Let 𝑥 ∈ 𝑋 be a point. Set 𝑠 = 𝑓(𝑥). The following are equivalent

(1) The morphism 𝑓 is syntomic at 𝑥.
(2) There exist affine opens 𝑈 ⊂ 𝑋, and 𝑉 ⊂ 𝑆 such that 𝑥 ∈ 𝑈, 𝑓(𝑈) ⊂ 𝑉 and the

induced morphism 𝑓|𝑈 ∶ 𝑈 → 𝑉 is standard syntomic.
(3) The local ring map 𝒪𝑆,𝑠 → 𝒪𝑋,𝑥 is flat and 𝒪𝑋,𝑥/𝔪𝑠𝒪𝑋,𝑥 is a complete intersec-

tion over 𝜅(𝑠) (see Algebra, Definition 7.124.5).

Proof. Follows from the definitions and Algebra, Lemma 7.125.16. �

Lemma 24.30.11. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑓 is flat, locally of finite
presentation, and all fibres 𝑋𝑠 are local complete intersections, then 𝑓 is syntomic.

Proof. Clear from Lemmas 24.30.9 and 24.30.10 and the isomorphisms of local rings
𝒪𝑋,𝑥/𝔪𝑠𝒪𝑋,𝑥 ≅ 𝒪𝑋𝑠,𝑥. �

Lemma 24.30.12. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 locally of finite
type. Formation of the set

𝑇 = {𝑥 ∈ 𝑋 ∣ 𝒪𝑋𝑓(𝑥),𝑥 is a complete intersection over 𝜅(𝑓(𝑥))}

commutes with arbitrary base change: For any morphism 𝑔 ∶ 𝑆′ → 𝑆, consider the base
change 𝑓′ ∶ 𝑋′ → 𝑆′ of 𝑓 and the projection 𝑔′ ∶ 𝑋′ → 𝑋. Then the corresponding
set 𝑇′ for the morphism 𝑓′ is equal to 𝑇′ = (𝑔′)−1(𝑇). In particular, if 𝑓 is assumed flat,
and locally of finite presentation then the same holds for the open set of points where 𝑓 is
syntomic.

Proof. Let 𝑠′ ∈ 𝑆′ be a point, and let 𝑠 = 𝑔(𝑠′). Then we have
𝑋′

𝑠′ = 𝑆𝑝𝑒𝑐(𝜅(𝑠′)) ×𝑆𝑝𝑒𝑐(𝜅(𝑠)) 𝑋𝑠

In other words the fibres of the base change are the base changes of the fibres. Hence the
first part is equivalent to Algebra, Lemma 7.124.10. The second part follows from the
first because in that case 𝑇 is the set of points where 𝑓 is syntomic according to Lemma
24.30.10. �

Lemma 24.30.13. Let 𝑅 be a ring. Let 𝑅 → 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) be a relative
global complete intersection. Set 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑋 = 𝑆𝑝𝑒𝑐(𝐴). Consider the morphism
𝑓 ∶ 𝑋 → 𝑆 associated to the ring map 𝑅 → 𝐴. The function 𝑥 ↦ dim𝑥(𝑋𝑓(𝑥)) is constant
with value 𝑛 − 𝑐.
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Proof. ByAlgebra, Definition 7.125.5 𝑅 → 𝐴 being a relative global complete intersection
means all nonzero fibre rings have dimension 𝑛 − 𝑐. Thus for a prime 𝔭 of 𝑅 the fibre
ring 𝜅(𝔭)[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is either zero or a global complete intersection ring of
dimension 𝑛 − 𝑐. By the discussion following Algebra, Definition 7.124.1 this implies it is
equidimensional of dimension 𝑛 − 𝑐. Whence the lemma. �

Lemma 24.30.14. Let 𝑓 ∶ 𝑋 → 𝑆 be a syntomic morphism. The function 𝑥 ↦ dim𝑥(𝑋𝑓(𝑥))
is locally constant on 𝑋.

Proof. By Lemma 24.30.10 the morphism 𝑓 locally looks like a standard syntomic mor-
phism of affines. Hence the result follows from Lemma 24.30.13. �

Lemma 24.30.14 says that the following definition makes sense.

Definition 24.30.15. Let 𝑑 ≥ 0 be an integer. We say a morphism of schemes 𝑓 ∶ 𝑋 → 𝑆
is syntomic of relative dimension 𝑑 if 𝑓 is syntomic and the function dim𝑥(𝑋𝑓(𝑥)) = 𝑑 for
all 𝑥 ∈ 𝑋.

In other words, 𝑓 is syntomic and the nonempty fibres are equidimensional of dimension 𝑑.

Lemma 24.30.16. Let
𝑋

𝑓
//

𝑝
��

𝑌

𝑞
��

𝑆
be a commutative diagram of morphisms of schemes. Assume that

(1) 𝑓 is surjective and syntomic,
(2) 𝑝 is syntomic, and
(3) 𝑞 is locally of finite presentation7.

Then 𝑞 is syntomic.

Proof. By Lemma 24.24.11 we see that 𝑞 is flat. Hence it suffices to show that the fibres
of 𝑌 → 𝑆 are local complete intersections, see Lemma 24.30.11. Let 𝑠 ∈ 𝑆. Consider the
morphism 𝑋𝑠 → 𝑌𝑠. This is a base change of the morphism 𝑋 → 𝑌 and hence surjective,
and syntomic (Lemma 24.30.4). For the same reason 𝑋𝑠 is syntomic over 𝜅(𝑠). Moreover,
𝑌𝑠 is locally of finite type over 𝜅(𝑠) (Lemma 24.14.4). In this way we reduce to the case
where 𝑆 is the spectrum of a field.
Assume 𝑆 = 𝑆𝑝𝑒𝑐(𝑘). Let 𝑦 ∈ 𝑌. Choose an affine open 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑌 neighbourhood of
𝑦. Let 𝑆𝑝𝑒𝑐(𝐵) ⊂ 𝑋 be an affine open such that 𝑓(𝑆𝑝𝑒𝑐(𝐵)) ⊂ 𝑆𝑝𝑒𝑐(𝐴), containing a point
𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦. Choose a surjection 𝑘[𝑥1, … , 𝑥𝑛] → 𝐴 with kernel 𝐼. Choose
a surjection 𝐴[𝑦1, … , 𝑦𝑚] → 𝐵, which gives rise in turn to a surjection 𝑘[𝑥𝑖, 𝑦𝑗] → 𝐵 with
kernel 𝐽. Let 𝔮 ⊂ 𝑘[𝑥𝑖, 𝑦𝑗] be the prime corresponding to 𝑦 ∈ 𝑆𝑝𝑒𝑐(𝐵) and let 𝔭 ⊂ 𝑘[𝑥𝑖] the
prime corresponding to 𝑥 ∈ 𝑆𝑝𝑒𝑐(𝐴). Since 𝑥 maps to 𝑦 we have 𝔭 = 𝔮 ∩ 𝑘[𝑥𝑖]. Consider
the following commutative diagram of local rings:

𝒪𝑋,𝑥 𝐵𝔮 𝑘[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]𝔮
oo

𝒪𝑌,𝑦

OO

𝐴𝔭

OO

𝑘[𝑥1, … , 𝑥𝑛]𝔭
oo

OO

7In fact this is implied by (1) and (2), see Descent, Lemma 31.10.3. See also Descent, Remark 31.10.7 for
further discussion.
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We claim that the hypotheses of Algebra, Lemma 7.124.12 are satisfied. Conditions (1)
and (2) are trivial. Condition (4) follows as 𝑋 → 𝑌 is flat. Condition (3) follows as the
rings 𝒪𝑌,𝑦 and 𝒪𝑋𝑦,𝑥 = 𝒪𝑋,𝑥/𝔪𝑦𝒪𝑋,𝑥 are complete intersection rings by our assumptions
that 𝑓 and 𝑝 are syntomic, see Lemma 24.30.10. The output of Algebra, Lemma 7.124.12
is exactly that 𝒪𝑌,𝑦 is a complete intersection ring! Hence by Lemma 24.30.10 again we see
that 𝑌 is syntomic over 𝑘 at 𝑦 as desired. �

24.31. Conormal sheaf of an immersion

Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion. Let ℐ ⊂ 𝒪𝑋 be the corresponding quasi-coherent
sheaf of ideals. Consider the short exact sequence

0 → ℐ2 → ℐ → ℐ/ℐ2 → 0

of quasi-coherent sheaves on 𝑋. Since the sheaf ℐ/ℐ2 is annihilated by ℐ it corresponds
to a sheaf on 𝑍 by Lemma 24.3.1. This quasi-coherent 𝒪𝑍-module is called the conormal
sheaf of 𝑍 in 𝑋 and is often simply denoted ℐ/ℐ2 by the abuse of notation mentioned in
Section 24.3.

In case 𝑖 ∶ 𝑍 → 𝑋 is a (locally closed) immersion we define the conormal sheaf of 𝑖 as the
conormal sheaf of the closed immersion 𝑖 ∶ 𝑍 → 𝑋 ⧵ 𝜕𝑍, where 𝜕𝑍 = 𝑍 ⧵ 𝑍. It is often
denoted ℐ/ℐ2 where ℐ is the ideal sheaf of the closed immersion 𝑖 ∶ 𝑍 → 𝑋 ⧵ 𝜕𝑍.

Definition 24.31.1. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion. The conormal sheaf 𝒞𝑍/𝑋 of 𝑍 in 𝑋
or the conormal sheaf of 𝑖 is the quasi-coherent 𝒪𝑍-module ℐ/ℐ2 described above.

In [DG67, IV Definition 16.1.2] this sheaf is denoted 𝒩𝑍/𝑋. Wewill not follow this conven-
tion since we would like to reserve the notation 𝒩𝑍/𝑋 for the normal sheaf of the immersion.
It is defined as

𝒩𝑍/𝑋 = ℋ𝑜𝑚𝒪𝑍
(𝒞𝑍/𝑋, 𝒪𝑍) = ℋ𝑜𝑚𝒪𝑍

(ℐ/ℐ2, 𝒪𝑍)
provided the conormal sheaf is of finite presentation (otherwise the normal sheaf may not
even be quasi-coherent). We will come back to the normal sheaf later (insert future refer-
ence here).

Lemma 24.31.2. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion. The conormal sheaf of 𝑖 has the
following properties:

(1) Let 𝑈 ⊂ 𝑋 be any open such that 𝑖(𝑍) is a closed subset of 𝑈. Let ℐ ⊂ 𝒪𝑈 be the
sheaf of ideals corresponding to the closed subscheme 𝑖(𝑍) ⊂ 𝑈. Then

𝒞𝑍/𝑋 = 𝑖∗ℐ = 𝑖−1(ℐ/ℐ2)

(2) For any affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 such that 𝑍 ∩ 𝑈 = 𝑆𝑝𝑒𝑐(𝑅/𝐼) there is a
canonical isomorphism Γ(𝑍 ∩ 𝑈, 𝒞𝑍/𝑋) = 𝐼/𝐼2.

Proof. Mostly clear from the definitions. Note that given a ring 𝑅 and an ideal 𝐼 of 𝑅 we
have 𝐼/𝐼2 = 𝐼 ⊗𝑅 𝑅/𝐼. Details omitted. �

Lemma 24.31.3. Let
𝑍

𝑖
//

𝑓
��

𝑋

𝑔
��

𝑍′ 𝑖′ // 𝑋′

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01R2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01R3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01R4
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be a commutative diagram in the category of schemes. Assume 𝑖, 𝑖′ immersions. There is a
canonical map of 𝒪𝑍-modules

𝑓∗𝒞𝑍′/𝑋′ ⟶ 𝒞𝑍/𝑋

characterized by the following property: For every pair of affine opens (𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂
𝑋, 𝑆𝑝𝑒𝑐(𝑅′) = 𝑈′ ⊂ 𝑋′) with 𝑓(𝑈) ⊂ 𝑈′ such that 𝑍 ∩ 𝑈 = 𝑆𝑝𝑒𝑐(𝑅/𝐼) and 𝑍′ ∩ 𝑈′ =
𝑆𝑝𝑒𝑐(𝑅′/𝐼′) the induced map

Γ(𝑍′ ∩ 𝑈′, 𝒞𝑍′/𝑋′) = 𝐼′/𝐼′2 ⟶ 𝐼/𝐼2 = Γ(𝑍 ∩ 𝑈, 𝒞𝑍/𝑋)

is the one induced by the ring map 𝑓♯ ∶ 𝑅′ → 𝑅 which has the property 𝑓♯(𝐼′) ⊂ 𝐼.

Proof. Let 𝜕𝑍′ = 𝑍′ ⧵ 𝑍′ and 𝜕𝑍 = 𝑍 ⧵ 𝑍. These are closed subsets of 𝑋′ and of 𝑋.
Replacing 𝑋′ by 𝑋′ ⧵ 𝜕𝑍′ and 𝑋 by 𝑋 ⧵ (𝑔−1(𝜕𝑍′) ∪ 𝜕𝑍) we see that we may assume that
𝑖 and 𝑖′ are closed immersions.

The fact that 𝑔 ∘ 𝑖 factors through 𝑖′ implies that 𝑔∗ℐ′ maps into ℐ under the canonical
map 𝑔∗ℐ′ → 𝒪𝑋, see Schemes, Lemmas 21.4.6 and 21.4.7. Hence we get an induced map
of quasi-coherent sheaves 𝑔∗(ℐ′/(ℐ′)2) → ℐ/ℐ2. Pulling back by 𝑖 gives 𝑖∗𝑔∗(ℐ′/(ℐ′)2) →
𝑖∗(ℐ/ℐ2). Note that 𝑖∗(ℐ/ℐ2) = 𝒞𝑍/𝑋. On the other hand, 𝑖∗𝑔∗(ℐ′/(ℐ′)2) = 𝑓∗(𝑖′)∗(ℐ′/(ℐ′)2) =
𝑓∗𝒞𝑍′/𝑋′. This gives the desired map.

Checking that the map is locally described as the given map 𝐼′/(𝐼′)2 → 𝐼/𝐼2 is a matter of
unwinding the definitions and is omitted. Another observation is that given any 𝑥 ∈ 𝑖(𝑍)
there do exist affine open neighbourhoods 𝑈, 𝑈′ with 𝑓(𝑈) ⊂ 𝑈′ and 𝑍 ∩ 𝑈 as well as
𝑈′ ∩ 𝑍′ closed such that 𝑥 ∈ 𝑈. Proof omitted. Hence the requirement of the lemma
indeed characterizes the map (and could have been used to define it). �

Lemma 24.31.4. Let
𝑍

𝑖
//

𝑓
��

𝑋

𝑔
��

𝑍′ 𝑖′ // 𝑋′

be a fibre product diagram in the category of schemes with 𝑖, 𝑖′ immersions. Then the
canonical map 𝑓∗𝒞𝑍′/𝑋′ → 𝒞𝑍/𝑋 of Lemma 24.31.3 is surjective. If 𝑔 is flat, then it is an
isomorphism.

Proof. Let 𝑅′ → 𝑅 be a ring map, and 𝐼′ ⊂ 𝑅′ an ideal. Set 𝐼 = 𝐼′𝑅. Then 𝐼′/(𝐼′)2 ⊗𝑅′

𝑅 → 𝐼/𝐼2 is surjective. If 𝑅′ → 𝑅 is flat, then 𝐼 = 𝐼′ ⊗𝑅′ 𝑅 and 𝐼2 = (𝐼′)2 ⊗𝑅′ 𝑅 and we
see the map is an isomorphism. �

Lemma 24.31.5. Let 𝑍 → 𝑌 → 𝑋 be immersions of schemes. Then there is a canonical
exact sequence

𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0
where the maps come from Lemma 24.31.3 and 𝑖 ∶ 𝑍 → 𝑌 is the first morphism.

Proof. Via Lemma 24.31.3 this translates into the following algebra fact. Suppose that
𝐶 → 𝐵 → 𝐴 are surjective ring maps. Let 𝐼 = Ker(𝐵 → 𝐴), 𝐽 = Ker(𝐶 → 𝐴) and
𝐾 = Ker(𝐶 → 𝐵). Then there is an exact sequence

𝐾/𝐾2 ⊗𝐵 𝐴 → 𝐽/𝐽2 → 𝐼/𝐼2 → 0.

This follows immediately from the observation that 𝐼 = 𝐽/𝐾. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0473
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24.32. Sheaf of differentials of a morphism

We suggest the reader take a look at the corresponding section in the chapter on commuta-
tive algebra (Algebra, Section 7.122).

Definition 24.32.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be an 𝒪𝑋-module.
A derivation or more precisely an 𝑆-derivation into ℱ is a map 𝐷 ∶ 𝒪𝑋 → ℱ which is
additive, annihilates the image of 𝑓−1𝒪𝑆 → 𝒪𝑋, and satisfies the Leibniz rule

𝐷(𝑎𝑏) = 𝑎𝐷(𝑏) + 𝐷(𝑎)𝑏

for all 𝑎, 𝑏 local sections of 𝒪𝑋 (wherever they are both defined). We denote

Der𝑆(𝒪𝑋, ℱ)

the set of 𝑆-derivations into ℱ.

This is the sheaf theoretic analogue of Algebra, Definition 24.32.1. Given a derivation
𝐷 ∶ 𝒪𝑋 → ℱ as in the definition the map on global sections

𝐷 ∶ Γ(𝑋, 𝒪𝑋) ⟶ Γ(𝑋, ℱ)

clearly is a Γ(𝑆, 𝒪𝑆)-derivation as in the algebra definition.

Lemma 24.32.2. Let 𝑅 → 𝐴 be a ring map. Let ℱ be a sheaf of 𝒪𝑋-modules on 𝑋 =
𝑆𝑝𝑒𝑐(𝐴). Set 𝑆 = 𝑆𝑝𝑒𝑐(𝑅). The rule which associates to an 𝑆-derivation on ℱ its action
on global sections defines a bijection between the set of 𝑆-derivations of ℱ and the set of
𝑅-derivations on 𝑀 = Γ(𝑋, ℱ).

Proof. Let 𝐷 ∶ 𝐴 → 𝑀 be an 𝑅-derivation. We have to show there exists a unique
𝑆-derivation on ℱ which gives rise to 𝐷 on global sections. Let 𝑈 = 𝐷(𝑓) ⊂ 𝑋 be a
standard affine open. Any element of Γ(𝑈, 𝒪𝑋) is of the form 𝑎/𝑓𝑛 for some 𝑎 ∈ 𝐴 and
𝑛 ≥ 0. By the Leibniz rule we have

𝐷(𝑎)|𝑈 = 𝑎/𝑓𝑛𝐷(𝑓𝑛)|𝑈 + 𝑓𝑛𝐷(𝑎/𝑓𝑛)

in Γ(𝑈, ℱ). Since 𝑓 acts invertibly on Γ(𝑈, ℱ) this completely determines the value of
𝐷(𝑎/𝑓𝑛) ∈ Γ(𝑈, ℱ). This proves uniqueness. Existence follows by simply defining

𝐷(𝑎/𝑓𝑛) ∶= (1/𝑓𝑛)𝐷(𝑎)|𝑈 − 𝑎/𝑓2𝑛𝐷(𝑓𝑛)|𝑈

and proving this has all the desired properties (on the basis of standard opens of 𝑋). Details
omitted. �

Here is a particular situation where derivations come up naturally.

Lemma 24.32.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Consider a short exact
sequence

0 → ℐ → 𝒜 → 𝒪𝑋 → 0
Here𝒜 is a sheaf of 𝑓−1𝒪𝑆-algebras, 𝜋 ∶ 𝒜 → 𝒪𝑋 is a surjection of sheaves of 𝑓−1𝒪𝑆-algebras,
and ℐ = Ker(𝜋) is its kernel. Assume ℐ an ideal sheaf with square zero in 𝒜. So ℐ has a
natural structure of an 𝒪𝑋-module. A section 𝑠 ∶ 𝒪𝑋 → 𝒜 of 𝜋 is a 𝑓−1𝒪𝑆-algebra map
such that 𝜋∘𝑠 = id. Given any section 𝑠 ∶ 𝒪𝑋 → ℐ of 𝜋 and any 𝑆-derivation 𝐷 ∶ 𝒪𝑋 → ℐ
the map

𝑠 + 𝐷 ∶ 𝒪𝑋 → 𝒜
is a section of 𝜋 and every section 𝑠′ is of the form 𝑠 + 𝐷 for a unique 𝑆-derivation 𝐷.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01UN
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1346 24. MORPHISMS OF SCHEMES

Proof. Recall that the 𝒪𝑋-module structure on ℐ is given by ℎ𝜏 = ℎ̃𝜏 (multiplication in
𝒜) where ℎ is a local section of 𝒪𝑋, and ℎ̃ is a local lift of ℎ to a local section of 𝒜, and 𝜏
is a local section of ℐ. In particular, given 𝑠, we may use ℎ̃ = 𝑠(ℎ). To verify that 𝑠 + 𝐷 is
a homomorphism of sheaves of rings we compute

(𝑠 + 𝐷)(𝑎𝑏) = 𝑠(𝑎𝑏) + 𝐷(𝑎𝑏)
= 𝑠(𝑎)𝑠(𝑏) + 𝑎𝐷(𝑏) + 𝐷(𝑎)𝑏
= 𝑠(𝑎)𝑠(𝑏) + 𝑠(𝑎)𝐷(𝑏) + 𝐷(𝑎)𝑠(𝑏)
= (𝑠(𝑎) + 𝐷(𝑎))(𝑠(𝑏) + 𝐷(𝑏))

by the Leibniz rule. In the same manner one shows 𝑠 + 𝐷 is a 𝑓−1𝒪𝑆-algebra map because
𝐷 is an 𝑆-derivation. Conversely, given 𝑠′ we set 𝐷 = 𝑠′ − 𝑠. Details omitted. �

Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. We now esthablish the existence of a cou-
ple of ``global'' sheaves and maps of sheaves, and in the next paragraph we describe the
constructions over some affine opens.

Recall that Δ = Δ𝑋/𝑆 ∶ 𝑋 → 𝑋 ×𝑆 𝑋 is an immersion, see Schemes, Lemma 21.21.2. Let
𝒥 be the ideal sheaf of the immersion. It lives over any open subscheme 𝑈 of 𝑋 ×𝑆 𝑋 such
that Δ(𝑋) ⊂ 𝑈 is closed. For example the one from the proof of the lemma just cited; if 𝑓
is separated then we can take 𝑈 = 𝑋 ×𝑆 𝑋. Note that the sheaf of rings 𝒪𝑈/𝒥2 is supported
on Δ(𝑋). Moreover it sits in a short exact sequence of sheaves

0 → 𝒥/𝒥2 → 𝒪𝑈/𝒥2 → Δ∗𝒪𝑋 → 0.

Using Δ−1 we can think of this as a surjection of sheaves of 𝑓−1𝒪𝑆-algebras with kernel
the conormal sheaf of Δ (see Definition 24.31.1 and Lemma 24.31.2).

0 → 𝒞𝑋/𝑋×𝑆𝑋 → Δ−1(𝒪𝑈/𝒥2) → 𝒪𝑋 → 0

This places us in the sitation of Lemma 24.32.3. The projection morphisms 𝑝𝑖 ∶ 𝑋×𝑆 𝑋 →
𝑋, 𝑖 = 1, 2 induce maps of sheaves of rings 𝑝♯

𝑖 ∶ 𝑝−1
𝑖 𝒪𝑋 → 𝒪𝑋×𝑆𝑋. We may restrict to 𝑈

and divide by 𝒥2 to get 𝑝−1
𝑖 𝒪𝑋 → 𝒪𝑈/𝒥2. Since Δ−1𝑝−1

𝑖 𝒪𝑋 = 𝒪𝑋 we get maps

𝑠𝑖 ∶ 𝒪𝑋 → Δ−1(𝒪𝑈/𝒥2).

Both 𝑠1 and 𝑠2 are sections to the map Δ−1(𝒪𝑈/𝒥2) → 𝒪𝑋, as in Lemma 24.32.3. Thus we
get an 𝑆-derivation d = 𝑠2 − 𝑠1 ∶ 𝒪𝑋 → 𝒞𝑋/𝑋×𝑆𝑋.

Let us work this out on a suitable affine open. We can cover 𝑋 by affine opens 𝑆𝑝𝑒𝑐(𝐴) =
𝑊 ⊂ 𝑋 whose image is contained in an affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆. According to the
proof of Schemes, Lemma 21.21.2 𝑊 ×𝑉 𝑊 ⊂ 𝑋 ×𝑆 𝑋 is an affine open contained in the
open 𝑈 mentioned above. Also 𝑊 ×𝑉 𝑊 = 𝑆𝑝𝑒𝑐(𝐴 ⊗𝑅 𝐴). The sheaf 𝒥 corresponds to
the ideal 𝐽 = Ker(𝐴 ⊗𝑅 𝐴 → 𝐴). The short exact sequence to the short exact sequence of
𝐴 ⊗𝑅 𝐴-modules

0 → 𝐽/𝐽2 → (𝐴 ⊗𝑅 𝐴)/𝐽2 → 𝐴 → 0
The sections 𝑠𝑖 correspond to the ring maps

𝐴 ⟶ (𝐴 ⊗𝑅 𝐴)/𝐽2, 𝑠1 ∶ 𝑎 ↦ 𝑎 ⊗ 1, 𝑠2 ∶ 𝑎 ↦ 1 ⊗ 𝑎.

By Lemma 24.31.2 the conormal sheaf of Δ𝑋/𝑆 restricted to 𝑈 ×𝑉 𝑈 is the quasi-coherent
sheaf associated to the 𝐴-module 𝐽/𝐽2. Comparing with Algebra, Lemma 7.122.13 (or by
a direct computation) we see that the induced map d ∶ 𝐴 → 𝐽/𝐽2 is isomorphic to the
universal 𝑅-derivation on 𝐴. Thus the following definition makes sense.
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Definition 24.32.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) The sheaf of differentialsΩ𝑋/𝑆 of𝑋 over𝑆 is the conormal sheaf of the immersion

Δ𝑋/𝑆 ∶ 𝑋 → 𝑋 ×𝑆 𝑋, see Definition 24.31.1.
(2) The universal 𝑆-derivation is the 𝑆-derivation

d𝑋/𝑆 ∶ 𝒪𝑋 ⟶ Ω𝑋/𝑆

which maps a local section 𝑓 of 𝒪𝑋 to the class of the local section d(𝑓) =
d𝑋/𝑆(𝑓) = 𝑠2(𝑓) − 𝑠1(𝑓) with 𝑠2 and 𝑠1 as described above.

Here is the universal property of the universal derivation. If you have any other construc-
tion of the sheaf of relative differentials which satisfies this universal property then, by the
Yoneda lemma, it will be canonically isomorphic to the one defined above.

Lemma 24.32.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The map

𝐻𝑜𝑚𝒪𝑋
(Ω𝑋/𝑆, ℱ) ⟶ Der𝑆(𝒪𝑋, ℱ), 𝛼 ⟼ 𝛼 ∘ d𝑋/𝑆

is an isomorphism of functors from the category of 𝒪𝑋-modules to the category of sets.

Proof. Let ℱ be an 𝒪𝑋-module. Let 𝐷 ∈ Der𝑆(𝒪𝑋, ℱ). We have to show there exists a
unique 𝒪𝑋-linear map 𝛼 ∶ Ω𝑋/𝑆 → ℱ such that 𝐷 = 𝛼 ∘ d𝑋/𝑆.

We claim that the image of d𝑋/𝑆 ∶ 𝒪𝑋 → Ω𝑋/𝑆 generates Ω𝑋/𝑆 as an 𝒪𝑋-module. To see
this it suffices to prove this is true on suitable affine opens. We can cover 𝑋 by affine opens
𝑆𝑝𝑒𝑐(𝐴) = 𝑊 ⊂ 𝑋 whose image is contained in an affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆. As seen
in the discussion leading up to Definition 24.32.4 we have

Ω𝑋/𝑆|𝑊 = 𝐽/𝐽2

with 𝐽 = Ker(𝐴 ⊗𝑅 𝐴 → 𝐴). Now clearly 𝐽 is generated by the elements 1 ⊗ 𝑓 − 𝑓 ⊗ 1.
Hence the claim follows. This claim implies immediately that 𝛼, if it exists, is unique.

Next, we come to existence of 𝛼. Note that the construction of the pair (Ω𝑋/𝑆, d𝑋/𝑆) com-
mutes with restriction to open subschemes (in both 𝑋 and 𝑆). Proof omitted. By the
uniqueness just shown, it therefore suffices to prove existence in case both 𝑋 and 𝑆 are
affine. Thus we may write 𝑋 = 𝑆𝑝𝑒𝑐(𝐴), 𝑆 = 𝑆𝑝𝑒𝑐(𝑆) and 𝑀 = Γ(𝑋, ℱ). Set as usual
𝐽 = Ker(𝐴 ⊗𝑅 𝐴 → 𝐴) so that Ω𝑋/𝑆 = 𝐽/𝐽2. According to Algebra, Lemmas 7.122.3
and 7.122.13 there exists a unique 𝐴-linear map 𝛼′ ∶ 𝐽/𝐽2 → 𝑀 such that the composition
d ∘ 𝛼′ ∶ 𝐴 → 𝐽/𝐽2 → 𝑀 is equal to the action of 𝐷 on global sections over 𝑋. By Schemes,
Lemma 21.7.1 the 𝐴-linear map 𝛼′ corresponds to a map 𝛼 ∶ Ω𝑋/𝑆 = 𝐽/𝐽2 → ℱ. Then
the derivations 𝛼 ∘ d𝑋/𝑆 and 𝐷 have the same effect on global sections and hence agree by
Lemma 24.32.2. This proves existence and we win. �

Lemma 24.32.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 be open
subschemes such that 𝑓(𝑈) ⊂ 𝑉. Then there is a unique isomorphism Ω𝑋/𝑆|𝑈 = Ω𝑈/𝑉 of
𝒪𝑈-modules such that d𝑋/𝑆|𝑈 = d𝑈/𝑉.

Proof. The existence of the isomorphism is clear from the construction of Ω𝑋/𝑆. Unique-
ness comes from the fact, seen in the proof of Lemma 24.32.5, that the image of d𝑋/𝑆 ∶
𝒪𝑋 → Ω𝑋/𝑆 generates Ω𝑋/𝑆 as an 𝒪𝑋-module. �

From now on we will use these canonical identifications and simply write Ω𝑈/𝑆 or Ω𝑈/𝑉 for
the restriction of Ω𝑋/𝑆 to 𝑈.
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Lemma 24.32.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. For any pair of affine opens
𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋, 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 there is a unique isomorphism

Γ(𝑈, 𝒪𝑋/𝑆) = Ω𝐴/𝑅.

compatible with d𝑋/𝑆 and d ∶ 𝐴 → Ω𝐴/𝑅.

Proof. During the construction of Ω𝑋/𝑆 we have seen that the restriction of Ω𝑋/𝑆 to 𝑈
is isomorphic to the quasi-coherent sheaf associated to the 𝐴-module 𝐽/𝐽2 where 𝐽 =
Ker(𝐴 ⊗𝑅 𝐴 → 𝐴). Hence the result follows from Algebra, Lemma 7.122.13.

An alternative proof is to show that the 𝐴-module 𝑀 = Γ(𝑈, Ω𝑋/𝑆) = Γ(𝑈, Ω𝑈/𝑉) together
with d𝑋/𝑆 = d𝑈/𝑉 ∶ 𝐴 → 𝑀 is a universal 𝑅-derivation of 𝐴. This follows by combining
Lemmas 24.32.2 and 24.32.5 above. The universal property of d ∶ 𝐴 → Ω𝐴/𝑅 (see Algebra,
Lemma 7.122.3) and the Yoneda lemma (Categories, Lemma 4.3.5) imply there is a unique
isomorphism of 𝐴-modules 𝑀 ≅ Ω𝐴/𝑅 compatible with derivations. This gives the second
proof. �

Remark 24.32.8. The lemma above gives a second way of constructing the module of
differentials. Namely, let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Consider the collec-
tion of all affine opens 𝑈 ⊂ 𝑋 which map into an affine open of 𝑆. These form a basis
for the topology on 𝑋. Thus it suffices to define Γ(𝑈, Ω𝑋/𝑆) for such 𝑈. We simply set
Γ(𝑈, Ω𝑋/𝑆) = Ω𝐴/𝑅 if 𝐴, 𝑅 are as in Lemma 24.32.7 above. This works, but it takes some-
what more algebraic preliminaries to construct the restriction mappings and to verify the
sheaf condition with this ansatz.

Lemma 24.32.9. Let
𝑋′

��

𝑓
// 𝑋

��
𝑆′ // 𝑆

be a commutative diagram of schemes. The canonical map𝒪𝑋 → 𝑓∗𝒪𝑋′ composed with the
map 𝑓∗d𝑋′/𝑆′ ∶ 𝑓∗𝒪𝑋′ → 𝑓∗Ω𝑋′/𝑆′ is a 𝑆-derivation. Hence we obtain a canonical map of
𝒪𝑋-modules Ω𝑋/𝑆 → 𝑓∗Ω𝑋′/𝑆′, and by adjointness of 𝑓∗ and 𝑓∗ a canonical 𝒪𝑋′-module
homomorphism

𝑐𝑓 ∶ 𝑓∗Ω𝑋/𝑆 ⟶ Ω𝑋′/𝑆′.
It is uniquely characterized by the property that 𝑓∗d𝑋/𝑆(ℎ)mapsto d𝑋′/𝑆′(𝑓∗ℎ) for any local
section ℎ of 𝒪𝑋.

Proof. Everything but the last assertion of the lemma is proven in the lemma; the uni-
versal property of Ω𝑋/𝑆 is Lemma 24.32.5. The last assertion means that 𝑐𝑓 is the unique
𝒪𝑋′-linear map such that whenever 𝑈 ⊂ 𝑋 is open and ℎ ∈ 𝒪𝑋(𝑈), then the pullback
𝑓∗ℎ ∈ 𝒪𝑋′(𝑓−1𝑈) of ℎ satisfies d𝑋′/𝑆′(𝑓∗ℎ) = 𝑐𝑓(𝑓∗d𝑋/𝑆(ℎ)). We omit the proof. We can
also use the functoriality of the conormal sheaves (see Lemma 24.31.3) to define 𝑐𝑓. Or
we can use the characterization in the last line of the lemma to glue maps defined on affine
patches (see Algebra, Equation (7.122.5.1)). �

Lemma 24.32.10. Let
𝑋″

��

𝑔
// 𝑋′

��

𝑓
// 𝑋

��
𝑆″ // 𝑆′ // 𝑆
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be a commutative diagram of schemes. Then we have

𝑐𝑓∘𝑔 = 𝑐𝑔 ∘ 𝑔∗𝑐𝑓

as maps (𝑓 ∘ 𝑔)∗Ω𝑋/𝑆 → Ω𝑋″/𝑆″.

Proof. Omitted. One way to see this is to restrict to affine opens. �

Lemma 24.32.11. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes. Then there is a
canonical exact sequence

𝑓∗Ω𝑌/𝑆 → Ω𝑋/𝑆 → Ω𝑋/𝑌 → 0

where the maps come from applications of Lemma 24.32.9.

Proof. This is the sheafified version of Algebra, Lemma 7.122.7. �

Lemma 24.32.12. Let 𝑋 → 𝑆 be a morphism of schemes. Let 𝑔 ∶ 𝑆′ → 𝑆 be a morphism
of schemes. Let 𝑋′ = 𝑋𝑆′ be the base change of 𝑋. Denote 𝑔′ ∶ 𝑋′ → 𝑋 the projection.
Then the map

(𝑔′)∗Ω𝑋/𝑆 → Ω𝑋′/𝑆′

of Lemma 24.32.9 is an isomorphism.

Proof. This is the sheafified version of Algebra, Lemma 7.122.12. �

Lemma 24.32.13. Let 𝑓 ∶ 𝑋 → 𝑆 and 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes with the same
target. Let 𝑝 ∶ 𝑋 ×𝑆 𝑌 → 𝑋 and 𝑞 ∶ 𝑋 ×𝑆 𝑌 → 𝑌 be the projection morphisms. The maps
from Lemma 24.32.9

𝑝∗Ω𝑋/𝑆 ⊕ 𝑞∗Ω𝑌/𝑆 ⟶ Ω𝑋×𝑆𝑌/𝑆
give an isomorphism.

Proof. By Lemma 24.32.12 the composition 𝑝∗Ω𝑋/𝑆 → Ω𝑋×𝑆𝑌/𝑆 → Ω𝑋×𝑆𝑌/𝑌 is an isomor-
phism, and similarly for 𝑞. Moreover, the cokernel of 𝑝∗Ω𝑋/𝑆 → Ω𝑋×𝑆𝑌/𝑆 is Ω𝑋×𝑆𝑌/𝑋 by
Lemma 24.32.11. The result follows. �

Lemma 24.32.14. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑓 is locally of finite type,
then Ω𝑋/𝑆 is a finite type 𝒪𝑋-module.

Proof. Immediate from Algebra, Lemma 7.122.16, Lemma 24.32.7, Lemma 24.14.2, and
Properties, Lemma 23.16.1. �

Lemma 24.32.15. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑓 is locally of finite type,
then Ω𝑋/𝑆 is an 𝒪𝑋-module of finite presentation.

Proof. Immediate from Algebra, Lemma 7.122.15, Lemma 24.32.7, Lemma 24.20.2, and
Properties, Lemma 23.16.2. �

Lemma 24.32.16. If 𝑋 → 𝑆 is an immersion, or more generally a monomorphism, then
Ω𝑋/𝑆 is zero.

Proof. This is true because Δ𝑋/𝑆 is an isomorphism in this case and hence has trivial conor-
mal sheaf. The algebraic version is Algebra, Lemma 7.122.5. �

Lemma 24.32.17. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes over𝑆. There is a canonical
exact sequence

𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑆 → Ω𝑍/𝑆 → 0
where the first arrow is induced by d𝑋/𝑆 and the second arrow comes from Lemma 24.32.9.
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Proof. This is the sheafified version of Algebra, Lemma 7.122.9. However we shouldmake
sure we can define the first arrow globally. Hence we explain the meaning of ``induced by
d𝑋/𝑆'' here. Namely, we may assume that 𝑖 is a closed immersion by shrinking 𝑋. Let
ℐ ⊂ 𝒪𝑋 be the sheaf of ideals corresponding to 𝑍 ⊂ 𝑋. Then d𝑋/𝑆 ∶ ℐ → Ω𝑋/𝑆 maps
the subsheaf ℐ2 ⊂ ℐ to ℐΩ𝑋/𝑆. Hence it induces a map ℐ/ℐ2 → Ω𝑋/𝑆/ℐΩ𝑋/𝑆 which is
𝒪𝑋/ℐ-linear. By Lemma 24.3.1 this corresponds to a map 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑆 as desired. �

Lemma 24.32.18. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes over 𝑆, and assume 𝑖
(locally) has a left inverse. Then the canonical sequence

0 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑆 → Ω𝑍/𝑆 → 0

of Lemma 24.32.17 is (locally) split exact. In particular, if 𝑠 ∶ 𝑆 → 𝑋 is a section of
the structure morphism 𝑋 → 𝑆 then the map 𝒞𝑆/𝑋 → 𝑠∗Ω𝑋/𝑆 induced by d𝑋/𝑆 is an
isomorphism.

Proof. Follows from Algebra, Lemma 7.122.10. Clarification: if 𝑔 ∶ 𝑋 → 𝑍 is a left
inverse of 𝑖, then 𝑖∗𝑐𝑔 is a right inverse of the map 𝑖∗Ω𝑋/𝑆 → Ω𝑍/𝑆. Also, if 𝑠 is a section,
then it is an immersion 𝑠 ∶ 𝑍 = 𝑆 → 𝑋 over 𝑆 (see Schemes, Lemma 21.21.12) and in
that case Ω𝑍/𝑆 = 0. �

Remark 24.32.19. Let 𝑋 → 𝑆 be a morphism of schemes. According to Lemma 24.32.13
we have

Ω𝑋×𝑆𝑋/𝑆 = pr∗1Ω𝑋/𝑆 ⊕ pr∗2Ω𝑋/𝑆

On the other hand, the diagonal morphism Δ ∶ 𝑋 → 𝑋×𝑆 𝑋 is an immersion, which locally
has a left inverse. Hence by Lemma 24.32.18 we obtain a canonical short exact sequence

0 → 𝒞𝑋/𝑋×𝑆𝑋 → Ω𝑋/𝑆 ⊕ Ω𝑋/𝑆 → Ω𝑋/𝑆 → 0

Note that the right arrow is (1, 1) which is indeed a split surjection. On the other hand, by
our very definition we have Ω𝑋/𝑆 = 𝒞𝑋/𝑋×𝑆𝑋. Because we chose d𝑋/𝑆(𝑓) = 𝑠2(𝑓) − 𝑠1(𝑓)
in Definition 24.32.4 it turns out that the left arrow is the map (−1, 1)8.

Lemma 24.32.20. Let

𝑍
𝑖
//

𝑗   

𝑋

��
𝑌

be a commutative diagram of schemes where 𝑖 and 𝑗 are immersions. Then there is a canon-
ical exact sequence

𝒞𝑍/𝑌 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑌 → 0

where the first arrow comes from Lemma 24.31.3 and the second from Lemma 24.32.17.

Proof. The algebraic version of this is Algebra, Lemma 7.123.5. �

8Namely, the local section d𝑋/𝑆(𝑓) = 1 ⊗ 𝑓 − 𝑓 ⊗ 1 of the ideal sheaf of Δ maps via d𝑋×𝑆𝑋/𝑋 to the local
section 1 ⊗ 1 ⊗ 1 ⊗ 𝑓 − 1 ⊗ 𝑓 ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ 𝑓 ⊗ 1 + 𝑓 ⊗ 1 ⊗ 1 ⊗ 1 = pr∗2d𝑋/𝑆(𝑓) − pr∗1d𝑋/𝑆(𝑓).
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24.33. Smooth morphisms

Let 𝑓 ∶ 𝑋 → 𝑌 be a map of topological spaces. Consider the following condition:
(*) For every 𝑥 ∈ 𝑋 there exist open neighbourhoods 𝑥 ∈ 𝑈 ⊂ 𝑋 and 𝑓(𝑥) ∈ 𝑉 ⊂ 𝑌,

and an integer 𝑑 such that 𝑓(𝑈) = 𝑉 and such that there is an isomorphism

𝑉 × 𝐵𝑑(0, 1) ≅ //

��

𝑈 //

��

𝑋

��
𝑉 𝑉 // 𝑌

where 𝐵𝑑(0, 1) ⊂ 𝐑𝑑 is a ball of radius 1 around 0.
Smooth morphisms are the analogue of such morphisms in the category of schemes. See
Lemma 24.33.11 and Lemma 24.35.20.

Contrary to expectations (perhaps) the notion of a smooth ring map is not defined solely in
terms of the module of differentials. Namely, recall that 𝑅 → 𝐴 is a smooth ring map if
𝐴 is of finite presentation over 𝑅 and if the naive cotangent complex of 𝐴 over 𝑅 is quasi-
isomorphic to a projective module placed in degree 0, see Algebra, Definition 7.126.1.

Definition 24.33.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say that 𝑓 is smooth at 𝑥 ∈ 𝑋 if there exists a affine open neighbourhood

𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of 𝑥 and and affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉
such that the induced ring map 𝑅 → 𝐴 is smooth.

(2) We say that 𝑓 is smooth if it is smooth at every point of 𝑋.
(3) A morphism of affine schemes 𝑓 ∶ 𝑋 → 𝑆 is called standard smooth there

exists a standard smooth ring map 𝑅 → 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) (see Algebra,
Definition 7.126.6) such that 𝑋 → 𝑆 is isomorphic to

𝑆𝑝𝑒𝑐(𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)) → 𝑆𝑝𝑒𝑐(𝑅).

A pleasing feature of this definition is that the set of points where a morphism is smooth is
automatically open.

Note that there is no separation or quasi-compactness hypotheses in the definition. Hence
the question of being smooth is local in nature on the source. Here is the precise result.

Lemma 24.33.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is smooth.
(2) For every affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the ring map 𝒪𝑆(𝑉) →

𝒪𝑋(𝑈) is smooth.
(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =

⋃𝑖∈𝐼𝑗
𝑈𝑖 such that each of the morphisms 𝑈𝑖 → 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗 is smooth.

(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings
𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗

𝑈𝑖 such that the ring map 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖) is smooth, for all
𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.

Moreover, if 𝑓 is smooth then for any open subschemes 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the
restriction 𝑓|𝑈 ∶ 𝑈 → 𝑉 is smooth.

Proof. This follows from Lemma 24.13.3 if we show that the property ``𝑅 → 𝐴 is smooth''
is local. We check conditions (a), (b) and (c) of Definition 24.13.1. By Algebra, Lemma
7.126.4 being smooth is stable under base change and hence we conclude (a) holds. By
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Algebra, Lemma 7.126.14 being smooth is stable under composition and for any ring 𝑅 the
ring map 𝑅 → 𝑅𝑓 is (standard) smooth. We conclude (b) holds. Finally, property (c) is
true according to Algebra, Lemma 7.126.13. �

The following lemma characterizes a smooth morphism as a flat, finitely presented mor-
phism with smooth fibres. Note that schemes smooth over a field are discussed in more
detail in Varieties, Section 28.15.

Lemma 24.33.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑓 is flat, locally of finite
presentation, and all fibres 𝑋𝑠 are smooth, then 𝑓 is smooth.

Proof. Follows from Algebra, Lemma 7.126.16. �

Lemma 24.33.4. The composition of two morphisms which are smooth is smooth.

Proof. In the proof of Lemma 24.33.2 we saw that being smooth is a local property of ring
maps. Hence the first statement of the lemma follows from Lemma 24.13.5 combined with
the fact that being smooth is a property of ring maps that is stable under composition, see
Algebra, Lemma 7.126.14. �

Lemma 24.33.5. The base change of a morphism which is smooth is smooth.

Proof. In the proof of Lemma 24.33.2 we saw that being smooth is a local property of ring
maps. Hence the lemma follows from Lemma 24.13.5 combined with the fact that being
smooth is a property of ring maps that is stable under base change, see Algebra, Lemma
7.126.4. �

Lemma 24.33.6. Any open immersion is smooth.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 24.33.7. A smooth morphism is syntomic.

Proof. See Algebra, Lemma 7.126.10. �

Lemma 24.33.8. A smooth morphism is locally of finite presentation.

Proof. True because a smooth ring map is of finite presentation by definition. �

Lemma 24.33.9. A smooth morphism is flat.

Proof. Combine Lemmas 24.30.7 and 24.33.7. �

Lemma 24.33.10. A smooth morphism is universally open.

Proof. Combine Lemmas 24.33.9, 24.33.8, and 24.24.9. Or alternatively, combine Lem-
mas 24.33.7, 24.30.8. �

The following lemma says locally any smooth morphism is standard smooth. Hence we can
use standard smooth morphisms as a local model for a smooth morphism.

Lemma 24.33.11. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point. Set
𝑠 = 𝑓(𝑥). The following are equivalent

(1) The morphism 𝑓 is smooth at 𝑥.
(2) There exist affine opens 𝑈 ⊂ 𝑋, and 𝑉 ⊂ 𝑆 such that 𝑥 ∈ 𝑈, 𝑓(𝑈) ⊂ 𝑉 and the

induced morphism 𝑓|𝑈 ∶ 𝑈 → 𝑉 is standard smooth.

Proof. Follows from the definitions and Algebra, Lemmas 7.126.7 and 7.126.10. �
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Lemma 24.33.12. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 is smooth. Then
the module of differentials Ω𝑋/𝑆 of 𝑋 over 𝑆 is finite locally free and

rank𝑥(Ω𝑋/𝑆) = dim𝑥(𝑋𝑓(𝑥))
for every 𝑥 ∈ 𝑋.

Proof. The statement is local on 𝑋 and 𝑆. By Lemma 24.33.11 above we may assume that
𝑓 is a standard smooth morphism of affines. In this case the result follows from Algebra,
Lemma 7.126.7 (and the definition of a relative global complete intersection, see Algebra,
Definition 7.125.5). �

Lemma 24.33.12 says that the following definition makes sense.

Definition 24.33.13. Let 𝑑 ≥ 0 be an integer. We say a morphism of schemes 𝑓 ∶ 𝑋 → 𝑆
is smooth of relative dimension 𝑑 if 𝑓 is smooth and Ω𝑋/𝑆 is finite locally free of constant
rank 𝑑.

In other words, 𝑓 is smooth and the nonempty fibres are equidimensional of dimension
𝑑. By Lemma 24.33.14 below this is also the same as requiring: (a) 𝑓 is locally of finite
presentation, (b) 𝑓 is flat, (c) all nonempty fibres equidimensional of dimension 𝑑, and
(d) Ω𝑋/𝑆 finite locally free of rank 𝑑. It is not enough to simply assume that 𝑓 is flat, of
finite presentation, and Ω𝑋/𝑆 is finite locally free of rank 𝑑. A counter example is given by
𝑆𝑝𝑒𝑐(𝐅𝑝[𝑡]) → 𝑆𝑝𝑒𝑐(𝐅𝑝[𝑡𝑝]).
Here is a differential criterion of smoothness at a point. There are many variants of this
result all of which may be useful at some point. We will just add them here as needed.

Lemma 24.33.14. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋. Set 𝑠 = 𝑓(𝑥).
Assume 𝑓 is locally of finite presentation. The following are equivalent:

(1) The morphism 𝑓 is smooth at 𝑥.
(2) The local ring map 𝒪𝑆,𝑠 → 𝒪𝑋,𝑥 is flat and the 𝒪𝑋,𝑥-module Ω𝑋/𝑆,𝑥 can be gen-

erated by at most dim𝑥(𝑋𝑓(𝑥)) elements.
(3) The local ring map 𝒪𝑆,𝑠 → 𝒪𝑋,𝑥 is flat and the 𝜅(𝑥)-vector space

Ω𝑋𝑠/𝑠,𝑥 ⊗𝒪𝑋𝑠,𝑥
𝜅(𝑥) = Ω𝑋/𝑆,𝑥 ⊗𝒪𝑋,𝑥

𝜅(𝑥)

can be generated by at most dim𝑥(𝑋𝑓(𝑥)) elements.
(4) There exist affine opens 𝑈 ⊂ 𝑋, and 𝑉 ⊂ 𝑆 such that 𝑥 ∈ 𝑈, 𝑓(𝑈) ⊂ 𝑉 and the

induced morphism 𝑓|𝑈 ∶ 𝑈 → 𝑉 is standard smooth.
(5) There exist affine opens 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 and 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑥 ∈ 𝑈

corresponding to 𝔮 ⊂ 𝐴, and 𝑓(𝑈) ⊂ 𝑉 such that there exists a presentation
𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)

with

𝑔 = det
⎛
⎜
⎜
⎜
⎝

𝜕𝑓1/𝜕𝑥1 𝜕𝑓2/𝜕𝑥1 … 𝜕𝑓𝑐/𝜕𝑥1
𝜕𝑓1/𝜕𝑥2 𝜕𝑓2/𝜕𝑥2 … 𝜕𝑓𝑐/𝜕𝑥2

… … … …
𝜕𝑓1/𝜕𝑥𝑐 𝜕𝑓2/𝜕𝑥𝑐 … 𝜕𝑓𝑐/𝜕𝑥𝑐

⎞
⎟
⎟
⎟
⎠

mapping to an element of 𝐴 not in 𝔮.

Proof. Note that if 𝑓 is smooth at 𝑥, then we see from Lemma 24.33.11 that (4) holds,
and (5) is a slightly weakened version of (4). Moreover, this implies that the ring map
𝒪𝑆,𝑠 → 𝒪𝑋,𝑥 is flat (see Lemma 24.33.9) and that Ω𝑋/𝑆 is finite locally free of rank equal
to dim𝑥(𝑋𝑠) (see Lemma 24.33.12). This implies (2) and (3).
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By Lemma 24.32.12 the module of differentials Ω𝑋𝑠/𝑠 of the fibre 𝑋𝑠 over 𝜅(𝑠) is the pull-
back of the module of differentials Ω𝑋/𝑆 of 𝑋 over 𝑆. Hence the displayed equality in part
(3) of the lemma. By Lemma 24.32.14 these modules are of finite type. Hence the mimi-
mal number of generators of the modules Ω𝑋/𝑆,𝑥 and Ω𝑋𝑠/𝑠,𝑥 is the same and equal to the
dimension of this 𝜅(𝑥)-vector space by Nakayama's Lemma (Algebra, Lemma 7.14.5). This
in particular shows that (2) and (3) are equivalent.

Combining Algebra, Lemmas 7.126.16 and 7.129.3 shows that (2) and (3) imply (1). Fi-
nally, (5) implies (4) see for example Algebra, Example 7.126.8. �

Lemma 24.33.15. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 locally of finite
type. Formation of the set

𝑇 = {𝑥 ∈ 𝑋 ∣ 𝑋𝑓(𝑥) is smooth over 𝜅(𝑓(𝑥)) at 𝑥}

commutes with arbitrary base change: For any morphism 𝑔 ∶ 𝑆′ → 𝑆, consider the base
change 𝑓′ ∶ 𝑋′ → 𝑆′ of 𝑓 and the projection 𝑔′ ∶ 𝑋′ → 𝑋. Then the corresponding
set 𝑇′ for the morphism 𝑓′ is equal to 𝑇′ = (𝑔′)−1(𝑇). In particular, if 𝑓 is assumed flat,
and locally of finite presentation then the same holds for the open set of points where 𝑓 is
smooth.

Proof. Let 𝑠′ ∈ 𝑆′ be a point, and let 𝑠 = 𝑔(𝑠′). Then we have

𝑋′
𝑠′ = 𝑆𝑝𝑒𝑐(𝜅(𝑠′)) ×𝑆𝑝𝑒𝑐(𝜅(𝑠)) 𝑋𝑠

In other words the fibres of the base change are the base changes of the fibres. Hence the
first part is equivalent to Algebra, Lemma 7.126.18. The second part follows from the first
because in that case 𝑇 is the (open) set of points where 𝑓 is smooth according to Lemma
24.33.3. �

Here is a lemma that actually uses the vanishing of 𝐻−1 of the naive cotangent complex for
a smooth ring map.

Lemma 24.33.16. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes. Assume 𝑓 is
smooth. Then

0 → 𝑓∗Ω𝑌/𝑆 → Ω𝑋/𝑆 → Ω𝑋/𝑌 → 0
(see Lemma 24.32.11) is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps 𝐴 → 𝐵 → 𝐶
with 𝐵 → 𝐶 smooth, then the sequence

0 → 𝐶 ⊗𝐵 Ω𝐵/𝐴 → Ω𝐶/𝐴 → Ω𝐶/𝐵 → 0

of Algebra, Lemma 7.122.7 is exact. This is Algebra, Lemma 7.128.1. �

Lemma 24.33.17. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes over 𝑆. Assume that 𝑍 is
smooth over 𝑆. Then the canonical exact sequence

0 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑆 → Ω𝑍/𝑆 → 0

of Lemma 24.32.17 is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps 𝐴 → 𝐵 → 𝐶
with 𝐴 → 𝐶 smooth and 𝐵 → 𝐶 surjective with kernel 𝐽, then the sequence

0 → 𝐽/𝐽2 → 𝐶 ⊗𝐵 Ω𝐵/𝐴 → Ω𝐶/𝐴 → 0

of Algebra, Lemma 7.122.9 is exact. This is Algebra, Lemma 7.128.2. �
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Lemma 24.33.18. Let
𝑍

𝑖
//

𝑗   

𝑋

��
𝑌

be a commutative diagram of schemes where 𝑖 and 𝑗 are immersions and 𝑋 → 𝑌 is smooth.
Then the canonical exact sequence

0 → 𝒞𝑍/𝑌 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑌 → 0

of Lemma 24.32.20 is exact.

Proof. The algebraic version of this lemma is the following: Given ring maps 𝐴 → 𝐵 → 𝐶
with 𝐴 → 𝐶 surjective and 𝐴 → 𝐵 smooth, then the sequence

0 → 𝐼/𝐼2 → 𝐽/𝐽2 → 𝐶 ⊗𝐵 Ω𝐵/𝐴 → 0

of Algebra, Lemma 7.123.5 is exact. This is Algebra, Lemma 7.128.3. �

Lemma 24.33.19. Let
𝑋

𝑓
//

𝑝
��

𝑌

𝑞
��

𝑆
be a commutative diagram of morphisms of schemes. Assume that

(1) 𝑓 is surjective, and smooth,
(2) 𝑝 is smooth, and
(3) 𝑞 is locally of finite presentation9.

Then 𝑞 is smooth.

Proof. By Lemma 24.24.11 we see that 𝑞 is flat. Pick a point 𝑦 ∈ 𝑌. Pick a point 𝑥 ∈ 𝑋
mapping to 𝑦. Suppose 𝑓 has relative dimension 𝑎 at 𝑥 and 𝑝 has relative dimension 𝑏 at 𝑥.
By Lemma 24.33.12 this means that Ω𝑋/𝑆,𝑥 is free of rank 𝑏 and Ω𝑋/𝑌,𝑥 is free of rank 𝑎.
By the short exact sequence of Lemma 24.33.16 this means that (𝑓∗Ω𝑌/𝑆)𝑥 is free of rank
𝑏 − 𝑎. By Nakayama's Lemma this implies that Ω𝑌/𝑆,𝑦 can be generated by 𝑏 − 𝑎 elements.
Also, by Lemma 24.27.2 we see that dim𝑦(𝑌𝑠) = 𝑏 − 𝑎. Hence we conclude that 𝑌 → 𝑆 is
smooth at 𝑦 by Lemma 24.33.14 part (2). �

In the situation of the following lemma the image of 𝜎 is locally on 𝑋 cut out by a regular
sequence, see Divisors, Lemma 26.14.7.

Lemma 24.33.20. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝜎 ∶ 𝑆 → 𝑋 be a section
of 𝑓. Let 𝑠 ∈ 𝑆 be a point such that 𝑓 is smooth at 𝑥 = 𝜎(𝑠). Then there exist affine open
neighbourhoods 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑆 of 𝑠 and 𝑆𝑝𝑒𝑐(𝐵) = 𝑉 ⊂ 𝑋 of 𝑥 such that

(1) 𝑓(𝑉) ⊂ 𝑈 and 𝜎(𝑈) ⊂ 𝑉,
(2) with 𝐼 = Ker(𝜎# ∶ 𝐵 → 𝐴) the module 𝐼/𝐼2 is a free 𝐴-module, and
(3) 𝐵∧ ≅ 𝐴[[𝑥1, … , 𝑥𝑑]] as 𝐴-algebras where 𝐵∧ denotes the completion of 𝐵 with

respect to 𝐼.

9In fact this is implied by (1) and (2), see Descent, Lemma 31.10.3. Moreover, it suffices to assume 𝑓 is
surjective, flat and locally of finite presentation, see Descent, Lemma 31.10.5.
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Proof. Pick an affine open 𝑈 ⊂ 𝑆 containing 𝑠 Pick an affine open 𝑉 ⊂ 𝑓−1(𝑈) containing
𝑥. Pick an affine open 𝑈′ ⊂ 𝜎−1(𝑉) containing 𝑠. Note that 𝑉′ = 𝑓−1(𝑈′)∩𝑉 is affine as it is
equal to the fibre product 𝑉′ = 𝑈′ ×𝑈 𝑉. Then 𝑈′ and 𝑉′ satisfy (1). Write 𝑈′ = 𝑆𝑝𝑒𝑐(𝐴′)
and 𝑉′ = 𝑆𝑝𝑒𝑐(𝐵′). By Algebra, Lemma 7.128.4 the module 𝐼′/(𝐼′)2 is finite locally free
as a 𝐴′-module. Hence after replacing 𝑈′ by a smaller affine open 𝑈″ ⊂ 𝑈′ and 𝑉′ by
𝑉″ = 𝑉′ ∩ 𝑓−1(𝑈″) we obtain the situation where 𝐼″/(𝐼″)2 is free, i.e., (2) holds. In this
case (3) holds also by Algebra, Lemma 7.128.4. �

24.34. Unramified morphisms

We briefly discuss unramified morphisms before the (perhaps) more interesting class of
étale morphisms. Recall that a ring map 𝑅 → 𝐴 is unramified if it is of finite type and
Ω𝐴/𝑅 = 0 (this is the definition of [Ray70]). A ring map 𝑅 → 𝐴 is called G-unramified
if it is of finite presentation and Ω𝐴/𝑅 = 0 (this is the definition of [DG67]). See Algebra,
Definition 7.138.1.

Definition 24.34.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say that 𝑓 is unramified at 𝑥 ∈ 𝑋 if there exists a affine open neighbourhood

𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of 𝑥 and and affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉
such that the induced ring map 𝑅 → 𝐴 is unramified.

(2) We say that 𝑓 isG-unramified at 𝑥 ∈ 𝑋 if there exists a affine open neighbourhood
𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of 𝑥 and and affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉
such that the induced ring map 𝑅 → 𝐴 is G-unramified.

(3) We say that 𝑓 is unramified if it is unramified at every point of 𝑋.
(4) We say that 𝑓 is G-unramified if it is G-unramified at every point of 𝑋.

Note that a G-unramified morphism is unramified. Hence any result for unramified mor-
phisms implies the corresponding result for G-unramified morphisms. Moreover, if 𝑆 is
locally Noetherian then there is no difference between G-unramified and unramified mor-
phisms, see Lemma 24.34.6. A pleasing feature of this definition is that the set of points
where a morphism is unramified (resp. G-unramified) is automatically open.

Lemma 24.34.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Then
(1) 𝑓 is unramified if and only if 𝑓 is locally of finite type and Ω𝑋/𝑆 = 0, and
(2) 𝑓 is G-unramified if and only if 𝑓 is locally of finite presentation and Ω𝑋/𝑆 = 0.

Proof. By definition a ring map 𝑅 → 𝐴 is unramified (resp. G-unramified) if and only if it
is of finite type (resp. finite presentation) and Ω𝐴/𝑅 = 0. Hence the lemma follows directly
from the definitions and Lemma 24.32.7. �

Note that there is no separation or quasi-compactness hypotheses in the definition. Hence
the question of being unramified is local in nature on the source. Here is the precise result.

Lemma 24.34.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is unramified (resp. G-unramified).
(2) For every affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the ring map 𝒪𝑆(𝑉) →

𝒪𝑋(𝑈) is unramified (resp. G-unramified).
(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =

⋃𝑖∈𝐼𝑗
𝑈𝑖 such that each of the morphisms 𝑈𝑖 → 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗 is unrami-

fied (resp. G-unramified).
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(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings
𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗

𝑈𝑖 such that the ring map 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖) is unramified (resp.
G-unramified), for all 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.

Moreover, if 𝑓 is unramified (resp. G-unramified) then for any open subschemes 𝑈 ⊂ 𝑋,
𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the restriction 𝑓|𝑈 ∶ 𝑈 → 𝑉 is unramified (resp. G-unramified).

Proof. This follows from Lemma 24.13.3 if we show that the property ``𝑅 → 𝐴 is unram-
ified'' is local. We check conditions (a), (b) and (c) of Definition 24.13.1. These properties
are proved in Algebra, Lemma 7.138.3. �

Lemma 24.34.4. The composition of two morphisms which are unramified is unramified.
The same holds for G-unramified morphisms.

Proof. The proof of Lemma 24.34.3 shows that being unramified (resp. G-unramified) is
a local property of ring maps. Hence the first statement of the lemma follows from Lemma
24.13.5 combined with the fact that being unramified (resp. G-unramified) is a property of
ring maps that is stable under composition, see Algebra, Lemma 7.138.3. �

Lemma 24.34.5. The base change of a morphism which is unramified is unramified. The
same holds for G-unramified morphisms.

Proof. The proof of Lemma 24.34.3 shows that being unramified (resp. G-unramified) is
a local property of ring maps. Hence the lemma follows from Lemma 24.13.5 combined
with the fact that being unramified (resp. G-unramified) is a property of ring maps that is
stable under base change, see Algebra, Lemma 7.138.3. �

Lemma 24.34.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑆 is locally Noether-
ian. Then 𝑓 is unramified if and only if 𝑓 is G-unramified.

Proof. Follows from the definitions and Lemma 24.20.9. �

Lemma 24.34.7. Any open immersion is G-unramified.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 24.34.8. A closed immersion 𝑖 ∶ 𝑍 → 𝑋 is unramified. It is G-unramified if and
only if the associated quasi-coherent sheaf of ideals ℐ = Ker(𝒪𝑋 → 𝑖∗𝒪𝑍) is of finite type
(as an 𝒪𝑋-module).

Proof. Follows from Lemma 24.20.7 and Algebra, Lemma 7.138.3. �

Lemma 24.34.9. An unramified morphism is locally of finite type. A G-unramified mor-
phism is locally of finite presentation.

Proof. An unramified ring map is of finite type by definition. A G-unramified ring map is
of finite presentation by definition. �

Lemma 24.34.10. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑓 is unramified at 𝑥 then
𝑓 is quasi-finite at 𝑥. In particular, an unramified morphism is locally quasi-finite.

Proof. See Algebra, Lemma 7.138.6. �

Lemma 24.34.11. Fibres of unramified morphisms.
(1) Let 𝑋 be a scheme over a field 𝑘. The structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is

unramified if and only if 𝑋 is a disjoint union of spectra of finite separable field
extensions of 𝑘.
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(2) If 𝑓 ∶ 𝑋 → 𝑆 is an unramified morphism then for every 𝑠 ∈ 𝑆 the fibre 𝑋𝑠 is a
disjoint union of spectra of finite separable field extensions of 𝜅(𝑠).

Proof. Part (2) follows from part (1) and Lemma 24.34.5. Let us prove part (1). We first
use Algebra, Lemma 7.138.7. This lemma implies that if 𝑋 is a disjoint union of spectra of
finite separable field extensions of 𝑘 then 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is unramified. Conversely, suppose
that 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is unramified. By Algebra, Lemma 7.138.5 for every 𝑥 ∈ 𝑋 the residue
field extension 𝑘 ⊂ 𝜅(𝑥) is finite separable. Hence all points of 𝑋 are closed points (see
Lemma 24.19.2 for example). Thus 𝑋 is a discrete space, in particular the disjoint union of
the spectra of its local rings. By Algebra, Lemma 7.138.5 again these local rings are fields,
and we win. �

The following lemma characterizes an unramifiedmorphisms as morphisms locally of finite
type with unramified fibres.

Lemma 24.34.12. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) If 𝑓 is unramified then for any 𝑥 ∈ 𝑋 the field extension 𝜅(𝑓(𝑥)) ⊂ 𝜅(𝑥) is finite

separable.
(2) If 𝑓 is locally of finite type, and for every 𝑠 ∈ 𝑆 the fibre 𝑋𝑠 is a disjoint union of

spectra of finite separable field extensions of 𝜅(𝑠) then 𝑓 is unramified.
(3) If 𝑓 is locally of finite presentation, and for every 𝑠 ∈ 𝑆 the fibre 𝑋𝑠 is a disjoint

union of spectra of finite separable field extensions of 𝜅(𝑠) then 𝑓 is G-unramified.

Proof. Follows from Algebra, Lemmas 7.138.5 and 7.138.7. �

Here is a characterization of unramified morphisms in terms of the diagonal morphism.

Lemma 24.34.13. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism.
(1) If 𝑓 is unramified, then the diagonal morphism Δ ∶ 𝑋 → 𝑋 ×𝑆 𝑋 is an open

immersion.
(2) If 𝑓 is locally of finite type and Δ is an open immersion, then 𝑓 is unramified.
(3) If 𝑓 is locally of finite presentation and Δ is an open immersion, then 𝑓 is G-

unramified.

Proof. The first statement follows from Algebra, Lemma 7.138.4. The second statement
from the fact that Ω𝑋/𝑆 (see Definition 24.32.4) is the conormal sheaf of the diagonal mor-
phism and hence clearly zero if Δ is an open immersion. �

Lemma 24.34.14. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋. Set 𝑠 = 𝑓(𝑥).
Assume 𝑓 is locally of finite type (resp. locally of finite presentation). The following are
equivalent:

(1) The morphism 𝑓 is unramified (resp. G-unramified) at 𝑥.
(2) The fibre 𝑋𝑠 is unramified over 𝜅(𝑠) at 𝑥.
(3) The 𝒪𝑋,𝑥-module Ω𝑋/𝑆,𝑥 is zero.
(4) The 𝒪𝑋𝑠,𝑥-module Ω𝑋𝑠/𝑠,𝑥 is zero.
(5) The 𝜅(𝑥)-vector space

Ω𝑋𝑠/𝑠,𝑥 ⊗𝒪𝑋𝑠,𝑥
𝜅(𝑥) = Ω𝑋/𝑆,𝑥 ⊗𝒪𝑋,𝑥

𝜅(𝑥)

is zero.
(6) We have 𝔪𝑠𝒪𝑋,𝑥 = 𝔪𝑥 and the field extension 𝜅(𝑠) ⊂ 𝜅(𝑥) is finite separable.
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Proof. Note that if 𝑓 is unramified at 𝑥, then we see that Ω𝑋/𝑆 = 0 in a neighbourhood of
𝑥 by the definitions and the results on modules of differentials in Section 24.32. Hence (1)
implies (3) and the vanishing of the right hand vector space in (5). It also implies (2) because
by Lemma 24.32.12 themodule of differentialsΩ𝑋𝑠/𝑠 of the fibre𝑋𝑠 over 𝜅(𝑠) is the pullback
of the module of differentials Ω𝑋/𝑆 of 𝑋 over 𝑆. This fact on modules of differentials also
implies the displayed equality of vector spaces in part (4). By Lemma 24.32.14 the modules
Ω𝑋/𝑆,𝑥 and Ω𝑋𝑠/𝑠,𝑥 are of finite type. Hence he modules Ω𝑋/𝑆,𝑥 and Ω𝑋𝑠/𝑠,𝑥 are zero if and
only if the corresponding 𝜅(𝑥)-vector space in (4) is zero by Nakayama's Lemma (Algebra,
Lemma 7.14.5). This in particular shows that (3), (4) and (5) are equivalent. The support
of Ω𝑋/𝑆 is closed in 𝑋, see Modules, Lemma 15.9.6. Assumption (3) implies that 𝑥 is
not in the support. Hence Ω𝑋/𝑆 is zero in a neighbourhood of 𝑥, which implies (1). The
equivalence of (1) and (3) applied to 𝑋𝑠 → 𝑠 implies the equivalence of (2) and (4). At this
point we have seen that (1) -- (5) are equivalent.

Alternatively you can use Algebra, Lemma 7.138.3 to see the equivalence of (1) -- (5) more
directly.

The equivalence of (1) and (6) follows from Lemma 24.34.12. It also follows more directly
from Algebra, Lemmas 7.138.5 and 7.138.7. �

Lemma 24.34.15. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 locally of finite
type. Formation of the open set

𝑇 = {𝑥 ∈ 𝑋 ∣ 𝑋𝑓(𝑥) is unramified over 𝜅(𝑓(𝑥)) at 𝑥}
= {𝑥 ∈ 𝑋 ∣ 𝑋 is unramified over 𝑆 at 𝑥}

commutes with arbitrary base change: For any morphism 𝑔 ∶ 𝑆′ → 𝑆, consider the base
change 𝑓′ ∶ 𝑋′ → 𝑆′ of 𝑓 and the projection 𝑔′ ∶ 𝑋′ → 𝑋. Then the corresponding set 𝑇′

for the morphism 𝑓′ is equal to 𝑇′ = (𝑔′)−1(𝑇). If 𝑓 is assumed locally of finite presentation
then the same holds for the open set of points where 𝑓 is G-unramified.

Proof. Let 𝑠′ ∈ 𝑆′ be a point, and let 𝑠 = 𝑔(𝑠′). Then we have

𝑋′
𝑠′ = 𝑆𝑝𝑒𝑐(𝜅(𝑠′)) ×𝑆𝑝𝑒𝑐(𝜅(𝑠)) 𝑋𝑠

In other words the fibres of the base change are the base changes of the fibres. In particular

Ω𝑋𝑠/𝑠,𝑥 ⊗𝒪𝑋𝑠,𝑥
𝜅(𝑥′) = Ω𝑋′

𝑠′/𝑠′,𝑥′ ⊗𝒪𝑋′
𝑠′,𝑥′ 𝜅(𝑥′)

see Lemma 24.32.12. Whence 𝑥′ ∈ 𝑇′ if and only if 𝑥 ∈ 𝑇 by Lemma 24.34.14. The
second part follows from the first because in that case 𝑇 is the (open) set of points where 𝑓
is G-unramified according to Lemma 24.34.14. �

Lemma 24.34.16. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆.
(1) If 𝑋 is unramified over 𝑆, then 𝑓 is unramified.
(2) If 𝑋 is G-unramified over 𝑆 and 𝑌 of finite type over 𝑆, then 𝑓 is G-unramified.

Proof. Assume that 𝑋 is unramified over 𝑆. By Lemma 24.14.8 we see that 𝑓 is locally
of finite type. By assumption we have Ω𝑋/𝑆 = 0. Hence Ω𝑋/𝑌 = 0 by Lemma 24.32.11.
Thus 𝑓 is unramified. If 𝑋 is G-unramified over 𝑆 and 𝑌 of finite type over 𝑆, then by
Lemma 24.20.11 we see that 𝑓 is locally of finite presentation and we conclude that 𝑓 is
G-unramified. �

Lemma 24.34.17. Let 𝑆 be a scheme. Let 𝑋, 𝑌 be schemes over 𝑆. Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be
morphisms over 𝑆. Let 𝑥 ∈ 𝑋. Assume that
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(1) the structure morphism 𝑌 → 𝑆 is unramified,
(2) 𝑓(𝑥) = 𝑔(𝑥) in 𝑌, say 𝑦 = 𝑓(𝑥) = 𝑔(𝑥), and
(3) the induced maps 𝑓♯, 𝑔♯ ∶ 𝜅(𝑦) → 𝜅(𝑥) are equal.

Then there exists an open neighbourhood of 𝑥 in 𝑋 on which 𝑓 and 𝑔 are equal.

Proof. Consider the morphism (𝑓, 𝑔) ∶ 𝑋 → 𝑌 ×𝑆 𝑌. By assumption (1) and Lemma
24.34.13 the inverse image of Δ𝑌/𝑆(𝑌) is open in 𝑋. And assumptions (2) and (3) imply
that 𝑥 is in this open subset. �

24.35. Étale morphisms

The Zariski topology of a scheme is a very coarse topology. This is particularly clear when
looking at varieties over 𝐂. It turns out that declaring an étale morphism to be the analogue
of a local isomorphism in topology introduces a much finer topology. On varieties over 𝐂
this topology gives rise to the ``correct'' betti numbers when computing cohomology with
finite coefficients. Another observable is that if 𝑓 ∶ 𝑋 → 𝑌 is an étale morphism of varieties
over 𝐂, and if 𝑥 is a closed point of 𝑋, then 𝑓 induces an isomorphism 𝒪∧

𝑌,𝑓(𝑥) → 𝒪∧
𝑋,𝑥 of

complete local rings.
In this section we start our study of these matters. In fact we deliberately restrict our dis-
cussion to a minimum since we will discuss more interesting results elsewhere. Recall that
a ring map 𝑅 → 𝐴 is said to be étale if it is smooth and Ω𝐴/𝑅 = 0, see Algebra, Definition
7.132.1.

Definition 24.35.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say that 𝑓 is étale at 𝑥 ∈ 𝑋 if there exists a affine open neighbourhood

𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 of 𝑥 and and affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉
such that the induced ring map 𝑅 → 𝐴 is étale.

(2) We say that 𝑓 is étale if it is étale at every point of 𝑋.
(3) A morphism of affine schemes 𝑓 ∶ 𝑋 → 𝑆 is called standard étale if 𝑋 → 𝑆 is

isomorphic to
𝑆𝑝𝑒𝑐(𝑅[𝑥]𝑔/(𝑓)) → 𝑆𝑝𝑒𝑐(𝑅)

where 𝑅 → 𝑅[𝑥]𝑔/(𝑓) is a standard étale ring map, see Algebra, Definition
7.132.13, i.e., 𝑓 is monic and 𝑓′ invertible in 𝑅[𝑥]𝑔.

A morphism is étale if and only if it is smooth of relative dimension 0 (see Definition
24.33.13). A pleasing feature of the definition is that the set of points where a morphism is
étale is automatically open.
Note that there is no separation or quasi-compactness hypotheses in the definition. Hence
the question of being étale is local in nature on the source. Here is the precise result.

Lemma 24.35.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) The morphism 𝑓 is étale.
(2) For every affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the ring map 𝒪𝑆(𝑉) →

𝒪𝑋(𝑈) is étale.
(3) There exists an open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings 𝑓−1(𝑉𝑗) =

⋃𝑖∈𝐼𝑗
𝑈𝑖 such that each of the morphisms 𝑈𝑖 → 𝑉𝑗, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗 is étale.

(4) There exists an affine open covering 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings
𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗

𝑈𝑖 such that the ring map 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖) is étale, for all
𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼𝑗.
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Moreover, if 𝑓 is étale then for any open subschemes 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉 the
restriction 𝑓|𝑈 ∶ 𝑈 → 𝑉 is étale.

Proof. This follows from Lemma 24.13.3 if we show that the property ``𝑅 → 𝐴 is étale''
is local. We check conditions (a), (b) and (c) of Definition 24.13.1. These all follow from
Algebra, Lemma 7.132.3. �

Lemma 24.35.3. The composition of two morphisms which are étale is étale.

Proof. In the proof of Lemma 24.35.2 we saw that being étale is a local property of ring
maps. Hence the first statement of the lemma follows from Lemma 24.13.5 combined with
the fact that being étale is a property of ring maps that is stable under composition, see
Algebra, Lemma 7.132.3. �

Lemma 24.35.4. The base change of a morphism which is étale is étale.

Proof. In the proof of Lemma 24.35.2 we saw that being étale is a local property of ring
maps. Hence the lemma follows from Lemma 24.13.5 combined with the fact that being
étale is a property of ring maps that is stable under base change, see Algebra, Lemma
7.132.3. �

Lemma 24.35.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋. Then 𝑓 is étale
at 𝑥 if and only if 𝑓 is smooth and unramified at 𝑥.

Proof. This follows immediately from the definitions. �

Lemma 24.35.6. An étale morphism is locally quasi-finite.

Proof. By Lemma 24.35.5 an étale morphism is unramified. By Lemma 24.34.10 an un-
ramified morphism is locally quasi-finite. �

Lemma 24.35.7. Fibres of étale morphisms.
(1) Let 𝑋 be a scheme over a field 𝑘. The structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is étale

if and only if 𝑋 is a disjoint union of spectra of finite separable field extensions
of 𝑘.

(2) If 𝑓 ∶ 𝑋 → 𝑆 is an étale morphism, then for every 𝑠 ∈ 𝑆 the fibre 𝑋𝑠 is a disjoint
union of spectra of finite separable field extensions of 𝜅(𝑠).

Proof. You can deduce this from Lemma 24.34.11 via Lemma 24.35.5 above. Here is a
direct proof.

We will use Algebra, Lemma 7.132.4. Hence it is clear that if 𝑋 is a disjoint union of
spectra of finite separable field extensions of 𝑘 then 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is étale. Conversely,
suppose that 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is étale. Then for any affine open 𝑈 ⊂ 𝑋 we see that 𝑈 is a
finite disjoint union of spectra of finite separable field extensions of 𝑘. Hence all points of
𝑋 are closed points (see Lemma 24.19.2 for example). Thus 𝑋 is a discrete space and we
win. �

The following lemma characterizes an étale morphism as a flat, finitely presented morphism
with ``étale fibres''.

Lemma 24.35.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑓 is flat, locally of fi-
nite presentation, and for every 𝑠 ∈ 𝑆 the fibre 𝑋𝑠 is a disjoint union of spectra of finite
separable field extensions of 𝜅(𝑠), then 𝑓 is étale.
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Proof. You can deduce this from Algebra, Lemma 7.132.7. Here is another proof.

By Lemma 24.35.7 a fibre 𝑋𝑠 is étale and hence smooth over 𝑠. By Lemma 24.33.3 we see
that 𝑋 → 𝑆 is smooth. By Lemma 24.34.12 we see that 𝑓 is unramified. We conclude by
Lemma 24.35.5. �

Lemma 24.35.9. Any open immersion is étale.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 24.35.10. An étale morphism is syntomic.

Proof. See Algebra, Lemma 7.126.10 and use that an étale morphism is the same as a
smooth morphism of relative dimension 0. �

Lemma 24.35.11. An étale morphism is locally of finite presentation.

Proof. True because an étale ring map is of finite presentation by definition. �

Lemma 24.35.12. An étale morphism is flat.

Proof. Combine Lemmas 24.30.7 and 24.35.10. �

Lemma 24.35.13. An étale morphism is open.

Proof. Combine Lemmas 24.35.12, 24.35.11, and 24.24.9. �

The following lemma says locally any étale morphism is standard étale. This is actually
kind of a tricky result to prove in complete generality. The tricky parts are hidden in the
chapter on commutative algebra. Hence a standard étale morphism is a local model for a
general étale morphism.

Lemma 24.35.14. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point. Set
𝑠 = 𝑓(𝑥). The following are equivalent

(1) The morphism 𝑓 is étale at 𝑥.
(2) There exist affine opens 𝑈 ⊂ 𝑋, and 𝑉 ⊂ 𝑆 such that 𝑥 ∈ 𝑈, 𝑓(𝑈) ⊂ 𝑉 and the

induced morphism 𝑓|𝑈 ∶ 𝑈 → 𝑉 is standard étale (see Definition 24.35.1).

Proof. Follows from the definitions and Algebra, Proposition 7.132.16. �

Here is a differential criterion of étaleness at a point. There are many variants of this result
all of which may be useful at some point. We will just add them here as needed.

Lemma 24.35.15. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋. Set 𝑠 = 𝑓(𝑥).
Assume 𝑓 is locally of finite presentation. The following are equivalent:

(1) The morphism 𝑓 is étale at 𝑥.
(2) The local ring map 𝒪𝑆,𝑠 → 𝒪𝑋,𝑥 is flat and the 𝒪𝑋,𝑥-module Ω𝑋/𝑆,𝑥 is zero.
(3) The local ring map 𝒪𝑆,𝑠 → 𝒪𝑋,𝑥 is flat and the 𝜅(𝑥)-vector space

Ω𝑋𝑠/𝑠,𝑥 ⊗𝒪𝑋𝑠,𝑥
𝜅(𝑥) = Ω𝑋/𝑆,𝑥 ⊗𝒪𝑋,𝑥

𝜅(𝑥)

is zero.
(4) The local ring map 𝒪𝑆,𝑠 → 𝒪𝑋,𝑥 is flat, we have 𝔪𝑠𝒪𝑋,𝑥 = 𝔪𝑥 and the field

extension 𝜅(𝑠) ⊂ 𝜅(𝑥) is finite separable.
(5) There exist affine opens 𝑈 ⊂ 𝑋, and 𝑉 ⊂ 𝑆 such that 𝑥 ∈ 𝑈, 𝑓(𝑈) ⊂ 𝑉 and the

induced morphism 𝑓|𝑈 ∶ 𝑈 → 𝑉 is standard smooth of relative dimension 0.
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(6) There exist affine opens 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 and 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑥 ∈ 𝑈
corresponding to 𝔮 ⊂ 𝐴, and 𝑓(𝑈) ⊂ 𝑉 such that there exists a presentation

𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑛)
with

𝑔 = det
⎛
⎜
⎜
⎜
⎝

𝜕𝑓1/𝜕𝑥1 𝜕𝑓2/𝜕𝑥1 … 𝜕𝑓𝑛/𝜕𝑥1
𝜕𝑓1/𝜕𝑥2 𝜕𝑓2/𝜕𝑥2 … 𝜕𝑓𝑛/𝜕𝑥2

… … … …
𝜕𝑓1/𝜕𝑥𝑛 𝜕𝑓2/𝜕𝑥𝑛 … 𝜕𝑓𝑛/𝜕𝑥𝑛

⎞
⎟
⎟
⎟
⎠

mapping to an element of 𝐴 not in 𝔮.
(7) There exist affine opens 𝑈 ⊂ 𝑋, and 𝑉 ⊂ 𝑆 such that 𝑥 ∈ 𝑈, 𝑓(𝑈) ⊂ 𝑉 and the

induced morphism 𝑓|𝑈 ∶ 𝑈 → 𝑉 is standard étale.
(8) There exist affine opens 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 and 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with 𝑥 ∈ 𝑈

corresponding to 𝔮 ⊂ 𝐴, and 𝑓(𝑈) ⊂ 𝑉 such that there exists a presentation
𝐴 = 𝑅[𝑥]𝑄/(𝑃) = 𝑅[𝑥, 1/𝑄]/(𝑃)

with 𝑃, 𝑄 ∈ 𝑅[𝑥], 𝑃 monic and 𝑃′ = 𝑑𝑃/𝑑𝑥 mapping to an element of 𝐴 not in 𝔮.

Proof. Use Lemma 24.35.14 and the definitions to see that (1) implies all of the other
conditions. For each of the conditions (2) -- (7) combine Lemmas 24.33.14 and 24.34.14
to see that (1) holds by showing 𝑓 is both smooth and unramified at 𝑥 and applying Lemma
24.35.5. Some details omitted. �

Lemma 24.35.16. A morphism is étale at a point if and only if it is flat and G-unramified
at that point. A morphism is étale if and only if it is flat and G-unramified.

Proof. This is clear from Lemmas 24.35.15 and 24.34.14. �

Lemma 24.35.17. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 locally of finite
type. Formation of the set

𝑇 = {𝑥 ∈ 𝑋 ∣ 𝑋𝑓(𝑥) is étale over 𝜅(𝑓(𝑥)) at 𝑥}

commutes with arbitrary base change: For any morphism 𝑔 ∶ 𝑆′ → 𝑆, consider the base
change 𝑓′ ∶ 𝑋′ → 𝑆′ of 𝑓 and the projection 𝑔′ ∶ 𝑋′ → 𝑋. Then the corresponding set
𝑇′ for the morphism 𝑓′ is equal to 𝑇′ = (𝑔′)−1(𝑇). In particular, if 𝑓 is assumed locally of
finite presentation and flat then the same holds for the open set of points where 𝑓 is étale.

Proof. Combine Lemmas 24.35.16 and 24.34.15. �

Our proof of the following lemma is somewhat complicated. It uses the ``Critère de plat-
itude par fibres'' to see that a morphism 𝑋 → 𝑌 over 𝑆 between schemes étale over 𝑆 is
automatically flat. The details are in the chapter on commutative algebra.

Lemma 24.35.18. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆. If 𝑋 and 𝑌 are étale
over 𝑆, then 𝑓 is étale.

Proof. See Algebra, Lemma 7.132.8. �

Lemma 24.35.19. Let
𝑋

𝑓
//

𝑝
��

𝑌

𝑞
��

𝑆
be a commutative diagram of morphisms of schemes. Assume that
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(1) 𝑓 is surjective, and étale,
(2) 𝑝 is étale, and
(3) 𝑞 is locally of finite presentation10.

Then 𝑞 is étale.

Proof. By Lemma 24.33.19 we see that 𝑞 is smooth. Thus we only need to see that 𝑞 has
relative dimension 0. This follows from Lemma 24.27.2 and the fact that 𝑓 and 𝑝 have
relative dimension 0. �

A final characterization of smooth morphisms is that a smooth morphism 𝑓 ∶ 𝑋 → 𝑆 is
locally the composition of an étale morphism by a projection 𝐀𝑑

𝑆 → 𝑆.

Lemma 24.35.20. Let 𝜑 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑥 ∈ 𝑋. If 𝜑 is smooth
at 𝑥, then there exist exist an integer 𝑑 ≥ 0 and affine opens 𝑉 ⊂ 𝑌 and 𝑈 ⊂ 𝑋 with 𝑥 ∈ 𝑈
and 𝜑(𝑈) ⊂ 𝑉 such that there exists a commutative diagram

𝑋

��

𝑈oo

��

𝜋
// 𝐀𝑑

𝑉

��
𝑌 𝑉oo

where 𝜋 is étale.

Proof. By Lemma 24.33.11 we can find affine opens 𝑈 and 𝑉 as in the lemma such that
𝜑|𝑈 ∶ 𝑈 → 𝑉 is standard smooth. Write 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑉 = 𝑆𝑝𝑒𝑐(𝑅) so that we can
write

𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)
with

𝑔 = det
⎛
⎜
⎜
⎜
⎝

𝜕𝑓1/𝜕𝑥1 𝜕𝑓2/𝜕𝑥1 … 𝜕𝑓𝑐/𝜕𝑥1
𝜕𝑓1/𝜕𝑥2 𝜕𝑓2/𝜕𝑥2 … 𝜕𝑓𝑐/𝜕𝑥2

… … … …
𝜕𝑓1/𝜕𝑥𝑐 𝜕𝑓2/𝜕𝑥𝑐 … 𝜕𝑓𝑐/𝜕𝑥𝑐

⎞
⎟
⎟
⎟
⎠

mapping to an invertible element of 𝐴. Then it is clear that 𝑅[𝑥𝑐+1, … , 𝑥𝑛] → 𝐴 is standard
smooth of relative dimension 0. Hence it is smooth of relative dimension 0. In other words
the ring map 𝑅[𝑥𝑐+1, … , 𝑥𝑛] → 𝐴 is étale. As 𝐀𝑛−𝑐

𝑉 = 𝑆𝑝𝑒𝑐(𝑅[𝑥𝑐+1, … , 𝑥𝑛]) the lemma
with 𝑑 = 𝑛 − 𝑐. �

24.36. Relatively ample sheaves

Let 𝑋 be a scheme and ℒ an invertible sheaf on 𝑋. Then ℒ is ample on 𝑋 if 𝑋 is
quasi-compact and every point of 𝑋 is contained in an affine open of the form 𝑋𝑠, where
𝑠 ∈ Γ(𝑋, ℒ⊗𝑛) and 𝑛 ≥ 1, see Properties, Definition 23.23.1. We relativize this as follows.

Definition 24.36.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible
𝒪𝑋-module. We say ℒ is relatively ample, or 𝑓-relatively ample, or ample on 𝑋/𝑆, or
𝑓-ample if 𝑓 ∶ 𝑋 → 𝑆 is quasi-compact, and if for every affine open 𝑉 ⊂ 𝑆 the restriction
of ℒ to the open subscheme 𝑓−1(𝑉) of 𝑋 is ample.

We note that the existence of a relatively ample sheaf on 𝑋 does not force the morphism
𝑋 → 𝑆 to be of finite type.

10In fact this is implied by (1) and (2), see Descent, Lemma 31.10.3. Moreover, it suffices to assume that 𝑓
is surjective, flat and locally of finite presentation, see Descent, Lemma 31.10.5.
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Lemma 24.36.2. Let𝑋 → 𝑆 be amorphism of schemes. Letℒ be an invertible𝒪𝑋-module.
Let 𝑛 ≥ 1. Then ℒ is 𝑓-ample if and only if ℒ⊗𝑛 is 𝑓-ample.

Proof. This follows from Properties, Lemma 23.23.2. �

Lemma 24.36.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If there exists an 𝑓-ample
invertible sheaf, then 𝑓 is separated.

Proof. Being separated is local on the base (see Schemes, Lemma 21.21.8 for example; it
also follows easily from the definition). Hence we may assume 𝑆 is affine and 𝑋 has an
ample invertible sheaf. In this case the result follows from Properties, Lemma 23.23.10 and
Constructions, Lemma 22.8.8. �

There are many ways to charactarize relatively ample invertible sheaves, by relativizing any
of the list of equivalent conditions in Properties, Proposition 23.23.12. We will add these
here as needed.

Lemma 24.36.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact morphism of schemes. Let ℒ be an
invertible sheaf on 𝑋. The following are equivalent:

(1) The invertible sheaf ℒ is 𝑓-ample.
(2) There exists an open covering 𝑆 = ⋃ 𝑉𝑖 such that each ℒ|𝑓−1(𝑉𝑖) is ample relative

to 𝑓−1(𝑉𝑖) → 𝑉𝑖.
(3) There exists an affine open covering 𝑆 = ⋃ 𝑉𝑖 such that each ℒ|𝑓−1(𝑉𝑖) is ample.
(4) There exists a quasi-coherent graded𝒪𝑆-algebra𝒜 and amap of graded𝒪𝑋-algebras

𝜓 ∶ 𝑓∗𝒜 → ⨁𝑑≥0 ℒ⊗𝑑 such that 𝑈(𝜓) = 𝑋 and
𝑟ℒ,𝜓 ∶ 𝑋 ⟶ Proj

𝑆
(𝒜)

is an open immersion (see Constructions, Lemma 22.18.1 for notation).
(5) Themorphism 𝑓 is quasi-separated and part (4) above holds with𝒜 = 𝑓∗(⨁𝑑≥0 ℒ⊗𝑑)

and 𝜓 the adjunction mapping.
(6) Same as (4) but just requiring 𝑟ℒ,𝜓 to be an immersion.

Proof. It is immediate from the definition that (1) implies (2) and (2) implies (3). It is clear
that (5) implies (4).
Assume (3) holds for the affine open covering 𝑆 = ⋃ 𝑉𝑖. We are going to show (5) holds.
Since each 𝑓−1(𝑉𝑖) has an ample invertible sheaf we see that 𝑓−1(𝑉𝑖) is separated (see Prop-
erties, Lemma 23.23.10 and Constructions, Lemma 22.8.8). Hence 𝑓 is separated. By
Schemes, Lemma 21.24.1 we see that 𝒜 = 𝑓∗(⨁𝑑≥0 ℒ⊗𝑑) is a quasi-coherent graded
𝒪𝑆-algebra. Denote 𝜓 ∶ 𝑓∗𝒜 → ⨁𝑑≥0 ℒ⊗𝑑 the adjunction mapping. The description of
the open 𝑈(𝜓) in Constructions, Section 22.18 and the definition of ampleness of ℒ|𝑓−1(𝑉𝑖)
show that 𝑈(𝜓) = 𝑋. Moreover, Constructions, Lemma 22.18.1 part (3) shows that the
restriction of 𝑟ℒ,𝜓 to 𝑓−1(𝑉𝑖) is the same as the morphism from Properties, Lemma 23.23.8
which is an open immersion according to Properties, Lemma 23.23.10. Hence (5) holds.
Let us show that (4) implies (1). Assume (4). Denote 𝜋 ∶ Proj

𝑆
(𝒜) → 𝑆 the structure

morphism. Choose 𝑉 ⊂ 𝑆 affine open. By Constructions, Definition 22.16.7 we see that
𝜋−1(𝑉) ⊂ Proj

𝑆
(𝒜) is equal to Proj(𝐴) where 𝐴 = 𝒜(𝑉) as a graded ring. Hence 𝑟ℒ,𝜓

maps 𝑓−1(𝑉) isomorphically onto a quasi-compact open of Proj(𝐴). Moreover, ℒ⊗𝑑 is
isomorphic to the pullback of 𝒪Proj(𝐴)(𝑑) for some 𝑑 ≥ 1. (See part (3) of Constructions,
Lemma 22.18.1 and the final statement of Constructions, Lemma 22.14.1.) This implies
that ℒ|𝑓−1(𝑉) is ample by Properties, Lemmas 23.23.11 and 23.23.2.
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Assume (6). By the equivalence of (1) - (5) abovewe see that the property of being relatively
ample on 𝑋/𝑆 is local on 𝑆. Hence we may assume that 𝑆 is affine, and we have to show
that ℒ is ample on 𝑋. In this case the morphism 𝑟ℒ,𝜓 is identified with the morphism,
also denoted 𝑟ℒ,𝜓 ∶ 𝑋 → Proj(𝐴) associated to the map 𝜓 ∶ 𝐴 = 𝒜(𝑉) → Γ∗(𝑋, ℒ). (See
references above.) As above we also see that ℒ⊗𝑑 is the pullback of the sheaf 𝒪Proj(𝐴)(𝑑) for
some 𝑑 ≥ 1. Moreover, since 𝑋 is quasi-compact we see that 𝑋 gets identified with a closed
subscheme of a quasi-compact open subscheme 𝑌 ⊂ Proj(𝐴). By Constructions, Lemma
22.10.6 (see also Properties, Lemma 23.23.11) we see that 𝒪𝑌(𝑑′) is an ample invertible
sheaf on 𝑌 for some 𝑑′ ≥ 1. Since the restriction of an ample sheaf to a closed subscheme
is ample, see Properties, Lemma 23.23.3 we conclude that the pullback of 𝒪𝑑′

𝑌 is ample.
Combining these results with Properties, Lemma 23.23.2 we conclude that ℒ is ample as
desired. �

Lemma 24.36.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible
𝒪𝑋-module. Assume 𝑆 affine. Then ℒ is 𝑓-relatively ample if and only if ℒ is ample on 𝑋.

Proof. Immediate from Lemma 24.36.4 and the definitions. �

24.37. Very ample sheaves

Recall that given a quasi-coherent sheaf ℰ on a scheme 𝑆 the projective bundle associated to
ℰ is the morphism 𝐏(ℰ) → 𝑆, where 𝐏(ℰ) = Proj

𝑆
(Sym(ℰ)), see Constructions, Definition

22.20.1.

Definition 24.37.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible
𝒪𝑋-module. We say ℒ is relatively very ample or more precisely 𝑓-relatively very ample,
or very ample on 𝑋/𝑆, or 𝑓-very ample if there exist a quasi-coherent 𝒪𝑆-module ℰ and an
immersion 𝑖 ∶ 𝑋 → 𝐏(ℰ) over 𝑆 such that ℒ ≅ 𝑖∗𝒪𝐏(ℰ)(1).

Since there is no assumption of quasi-compactness in this definition it is not true in general
that a relatively very ample invertible sheaf is a relatively ample invertible sheaf.

Lemma 24.37.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible
𝒪𝑋-module. If 𝑓 is quasi-compact and ℒ is a relatively very ample invertible sheaf, then
ℒ is a relatively ample invertible sheaf.

Proof. By definition there exists quasi-coherent 𝒪𝑆-module ℰ and an immersion 𝑖 ∶ 𝑋 →
𝐏(ℰ) over 𝑆 such that ℒ ≅ 𝑖∗𝒪𝐏(ℰ)(1). Set 𝒜 = Sym(ℰ), so 𝐏(ℰ) = Proj

𝑆
(𝒜) by definition.

The graded 𝒪𝑆-algebra 𝒜 comes equipped with a map

𝜓 ∶ 𝒜 → ⨁𝑛≥0
𝜋∗𝒪𝐏(ℰ)(𝑛) → ⨁𝑛≥0

𝑓∗ℒ⊗𝑛

where the second arrow uses the identification ℒ ≅ 𝑖∗𝒪𝐏(ℰ)(1). By adjointness of 𝑓∗ and
𝑓∗ we get a morphism 𝜓 ∶ 𝑓∗𝒜 → ⨁𝑛≥0 ℒ⊗𝑛. We omit the verification that the morphism
𝑟ℒ,𝜓 associated to this map is exactly the immersion 𝑖. Hence the result follows from part
(6) of Lemma 24.36.4. �

To arrive at the correct converse of this lemma we ask whether given a relatively ample
invertible sheaf ℒ there exists an integer 𝑛 ≥ 1 such that ℒ⊗𝑛 is relatively very ample? In
general this is false. There are several things that prevent this from being true:

(1) Even if 𝑆 is affine, it can happen that no finite integer 𝑛 works because 𝑋 → 𝑆 is
not of finite type, see Example 24.37.3.
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(2) The base not being quasi-compact means the result can be prevented from being
true even with 𝑓 finite type. Namely, given a field 𝑘 there exists a scheme 𝑋𝑑 of
finite type over 𝑘 with an ample invertible sheaf 𝒪𝑋𝑑

(1) so that the smallest tensor
power of 𝒪𝑋𝑑

(1) which is very ample is the 𝑑th power. See Example 24.37.4.
Taking 𝑓 to be the disjoint union of the schemes 𝑋𝑑 mapping to the disjoint union
of copies of 𝑆𝑝𝑒𝑐(𝑘) gives an example.

To see our version of the converse take a look at Lemma 24.38.5 below. We will do some
preliminary work before proving it.

Example 24.37.3. Let 𝑘 be a field. Consider the graded 𝑘-algebra

𝐴 = 𝑘[𝑈, 𝑉, 𝑍1, 𝑍2, 𝑍3, …]/𝐼 with 𝐼 = (𝑈2 − 𝑍2
1, 𝑈4 − 𝑍2

2, 𝑈6 − 𝑍2
3, …)

with grading given by deg(𝑈) = deg(𝑉) = deg(𝑍1) = 1 and deg(𝑍𝑑) = 𝑑. Note that
𝑋 = Proj(𝐴) is covered by 𝐷+(𝑈) and 𝐷+(𝑉). Hence the sheaves 𝒪𝑋(𝑛) are all invertible
and isomorphic to 𝒪𝑋(1)⊗𝑛. In particular 𝒪𝑋(1) is ample and 𝑓-ample for the morphism
𝑓 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝑘). We claim that no power of 𝒪𝑋(1) is 𝑓-relatively very ample. Namely, it
is easy to see that Γ(𝑋, 𝒪𝑋(𝑛)) is the degree 𝑛 summand of the algebra 𝐴. Hence if 𝒪𝑋(𝑛)
were very ample, then 𝑋 would be a closed subscheme of a projective space over 𝑘 and
hence of finite type over 𝑘. On the other hand 𝐷+(𝑉) is the spectrum of 𝑘[𝑡, 𝑡1, 𝑡2, …]/(𝑡2 −
𝑡2
1, 𝑡4 − 𝑡2

2, 𝑡6 − 𝑡2
3, …) which is not of finite type over 𝑘.

Example 24.37.4. Let 𝑘 be an infinite field. Let 𝜆1, 𝜆2, 𝜆3, … be pairwise distinct elements
of 𝑘∗. (This is not strictly necessary, and in fact the example works perfectly well even if
all 𝜆𝑖 are equal to 1.) Consider the graded 𝑘-algebra

𝐴𝑑 = 𝑘[𝑈, 𝑉, 𝑍]/𝐼𝑑 with 𝐼𝑑 = (𝑍2 − ∏
2𝑑
𝑖=1

(𝑈 − 𝜆𝑖𝑉)).

with grading given by deg(𝑈) = deg(𝑉) = 1 and deg(𝑍) = 𝑑. Then 𝑋𝑑 = Proj(𝐴𝑑) has
ample invertible sheaf 𝒪𝑋𝑑

(1). We claim that if 𝒪𝑋𝑑
(𝑛) is very ample, then 𝑛 ≥ 𝑑. The

reason for this is that 𝑍 has degree 𝑑, and hence Γ(𝑋𝑑, 𝒪𝑋𝑑
(𝑛)) = 𝑘[𝑈, 𝑉]𝑛 for 𝑛 < 𝑑.

Details omitted.

Lemma 24.37.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible sheaf
on 𝑋. If ℒ is relatively very ample on 𝑋/𝑆 then 𝑓 is separated.

Proof. Being separated is local on the base (see Schemes, Section 21.21). An immersion
is separated (see Schemes, Lemma 21.23.7). Hence the lemma follows since locally 𝑋
has an immersion into the homogeneous spectrum of a graded ring which is separated, see
Constructions, Lemma 22.8.8. �

Lemma 24.37.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible sheaf
on 𝑋. Assume 𝑓 is quasi-compact. The following are equivalent

(1) ℒ is relatively very ample on 𝑋/𝑆,
(2) there exists an open covering 𝑆 = ⋃ 𝑉𝑗 such that ℒ|𝑓−1(𝑉𝑗) is relatively very

ample on 𝑓−1(𝑉𝑗)/𝑉𝑗 for all 𝑗,
(3) there exists a quasi-coherent sheaf of graded 𝒪𝑆-algebras 𝒜 generated in degree

1 over 𝒪𝑆 and a map of graded 𝒪𝑋-algebras 𝜓 ∶ 𝑓∗𝒜 → ⨁𝑛≥0 ℒ⊗𝑛 such that
𝑓∗𝒜1 → ℒ is surjective and the associated morphism 𝑟ℒ,𝜓 ∶ 𝑋 → Proj

𝑆
(𝒜) is

an immersion, and
(4) 𝑓 is quasi-separated, the canonical map 𝜓 ∶ 𝑓∗𝑓∗ℒ → ℒ is surjective, and the

associated map 𝑟ℒ,𝜓 ∶ 𝑋 → 𝐏(𝑓∗ℒ) is an immersion.
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Proof. It is clear that (1) implies (2). It is also clear that (4) implies (1); the hypothesis of
quasi-spearation in (4) is used to garantee that 𝑓∗ℒ is quasi-coherent via Schemes, Lemma
21.24.1.
Assume (2). We will prove (4). Let 𝑆 = ⋃ 𝑉𝑗 be an open covering as in (2). Set 𝑋𝑗 =
𝑓−1(𝑉𝑗) and 𝑓𝑗 ∶ 𝑋𝑗 → 𝑉𝑗 the restriction of 𝑓. We see that 𝑓 is separated by Lemma
24.37.5 (as being separated is local on the base). Consider the map 𝜓 ∶ 𝑓∗𝑓∗ℒ → ℒ.
On each 𝑉𝑗 there exists a quasi-coherent sheaf ℰ𝑗 and an embedding 𝑖 ∶ 𝑋𝑗 → 𝐏(ℰ𝑗) with
ℒ𝑋𝑗

≅ 𝑖∗𝒪𝐏(ℰ𝑗)(1). In other words there is a map ℰ𝑗 → (𝑓∗ℒ)|𝑋𝑗
such that the composition

𝑓∗
𝑗 ℰ𝑗 → (𝑓∗𝑓∗ℒ)|𝑋𝑗

→ ℒ|𝑋𝑗

is surjective. Hence we conclude that 𝜓 is surjective. Let 𝑟ℒ,𝜓 ∶ 𝑋 → 𝐏(𝑓∗ℒ) be the
associated morphism. Using the maps ℰ𝑗 → (𝑓∗ℒ)|𝑋𝑗

we see that there is a factorization

𝑋𝑗
𝑟ℒ,𝜓 // 𝐏(𝑓∗ℒ)|𝑉𝑗

// 𝐏(ℰ𝑗)

which shows that 𝑟ℒ,𝜓 is an immersion.
At this point we see that (1), (2) and (4) are equivalent. Clearly (4) implies (3). Assume
(3). We will prove (1). Let 𝒜 be a quasi-coherent sheaf of graded 𝒪𝑆-algebras generated
in degree 1 over 𝒪𝑆. Consider the map of graded 𝒪𝑆-algebras Sym(𝒜1) → 𝒜. This is
surjective by hypothesis and hence induces a closed immersion

Proj
𝑆

(𝒜) ⟶ 𝐏(𝒜1)

which pulls back 𝒪(1) to 𝒪(1), see (insert future reference here -- but see Constructions,
Lemma 22.11.3 for the case where 𝑆 is affine). Hence it is clear that (3) implies (1). �

24.38. Ample and very ample sheaves relative to finite type morphisms

In fact most of the material in this section is about the notion of a (quasi-)projective mor-
phism which we have not defined yet.

Lemma 24.38.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible sheaf
on 𝑋. Assume that

(1) the invertible sheaf ℒ is very ample on 𝑋/𝑆,
(2) the morphism 𝑋 → 𝑆 is of finite type, and
(3) 𝑆 is affine.

Then there exists an 𝑛 ≥ 0 and an immersion 𝑖 ∶ 𝑋 → 𝐏𝑛
𝑆 over 𝑆 such that ℒ ≅ 𝑖∗𝒪𝐏𝑛

𝑆
(1).

Proof. Assume (1), (2) and (3). Condition (3) means 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) for some ring 𝑅. Con-
dition (1) means by definition there exists a quasi-coherent 𝒪𝑆-module ℰ and an immersion
𝛼 ∶ 𝑋 → 𝐏(ℰ) such that ℒ = 𝛼∗𝒪𝐏(ℰ)(1). Write ℰ = 𝑀 for some 𝑅-module 𝑀. Thus we
have

𝐏(ℰ) = Proj(Sym𝑅(𝑀)).
Since 𝛼 is an immersion, and since the topology of Proj(Sym𝑅(𝑀)) is generated by the
standard opens𝐷+(𝑓), 𝑓 ∈ Sym𝑑

𝑅(𝑀), 𝑑 ≥ 1, we can find for each 𝑥 ∈ 𝑋 an 𝑓 ∈ Sym𝑑
𝑅(𝑀),

𝑑 ≥ 1, with 𝛼(𝑥) ∈ 𝐷+(𝑓) such that

𝛼|𝛼−1(𝐷+(𝑓)) ∶ 𝛼−1(𝐷+(𝑓)) → 𝐷+(𝑓)

is a closed immersion. Condition (2) implies 𝑋 is quasi-compact. Hence we can find a finite
collection of elements 𝑓𝑗 ∈ Sym

𝑑𝑗
𝑅 (𝑀), 𝑑𝑗 ≥ 1 such that for each 𝑓 = 𝑓𝑗 the displayed map
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above is a closed immersion and such that 𝛼(𝑋) ⊂ ⋃ 𝐷+(𝑓𝑗). Write 𝑈𝑗 = 𝛼−1(𝐷+(𝑓𝑗)).
Note that 𝑈𝑗 is affine as a closed subscheme of the affine scheme 𝐷+(𝑓𝑗). Write 𝑈𝑗 =
𝑆𝑝𝑒𝑐(𝐴𝑗). Condition (2) also implies that 𝐴𝑗 is of finite type over 𝑅, see Lemma 24.14.2.
Choose finitely many 𝑥𝑗,𝑘 ∈ 𝐴𝑗 which generate 𝐴𝑗 as a 𝑅-algebra. Since 𝛼|𝑈𝑗

is a closed
immersion we see that 𝑥𝑗,𝑘 is the image of an element

𝑓𝑗,𝑘/𝑓
𝑒𝑗,𝑘
𝑗 ∈ Sym𝑅(𝑀)(𝑓𝑗) = Γ(𝐷+(𝑓𝑗), 𝒪Proj(Sym𝑅(𝑀))).

Finally, choose 𝑛 ≥ 1 and elements 𝑦0, … , 𝑦𝑛 ∈ 𝑀 such that each of the polynomials
𝑓𝑗, 𝑓𝑗,𝑘 ∈ Sym𝑅(𝑀) is a polynomial in the elements 𝑦𝑡 with coefficients in 𝑅. Consider the
graded ring map

𝜓 ∶ 𝑅[𝑌0, … , 𝑌𝑛] ⟶ Sym𝑅(𝑀), 𝑌𝑖 ⟼ 𝑦𝑖.
Denote 𝐹𝑗, 𝐹𝑗,𝑘 the elements of 𝑅[𝑌0, … , 𝑌𝑛] such that 𝜓(𝐹𝑗) = 𝑓𝑗 and 𝜓(𝐹𝑗,𝑘) = 𝑓𝑗,𝑘. By
Constructions, Lemma 22.11.1 we obtain an open subscheme

𝑈(𝜓) ⊂ Proj(Sym𝑅(𝑀))

and a morphism 𝑟𝜓 ∶ 𝑈(𝜓) → 𝐏𝑛
𝑅. This morphism satisfies 𝑟−1

𝜓 (𝐷+(𝐹𝑗)) = 𝐷+(𝑓𝑗), and
hence we see that 𝛼(𝑋) ⊂ 𝑈(𝜓). Moreover, it is clear that

𝑖 = 𝑟𝜓 ∘ 𝛼 ∶ 𝑋 ⟶ 𝐏𝑛
𝑅

is still an immersion since 𝑖♯(𝐹𝑗,𝑘/𝐹
𝑒𝑗,𝑘
𝑗 ) = 𝑥𝑗,𝑘 ∈ 𝐴𝑗 = Γ(𝑈𝑗, 𝒪𝑋) by construction. More-

over, the morphism 𝑟𝜓 comes equipped with a map 𝜃 ∶ 𝑟∗
𝜓𝒪𝐏𝑛

𝑅
(1) → 𝒪Proj(Sym𝑅(𝑀))(1)|𝑈(𝜓)

which is an isomorphism in this case (for construction 𝜃 see lemma cited above; some
details omitted). Since the original map 𝛼 was assumed to have the property that ℒ =
𝛼∗𝒪Proj(Sym𝑅(𝑀))(1) we win. �

Lemma 24.38.2. Let 𝜋 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume that 𝑋 is quasi-affine
and that 𝜋 is locally of finite type. Then there exist 𝑛 ≥ 0 and an immersion 𝑖 ∶ 𝑋 → 𝐀𝑛

𝑆
over 𝑆.

Proof. Let 𝐴 = Γ(𝑋, 𝒪𝑋). By assumption 𝑋 is quasi-compact and is identified with an
open subscheme of 𝑆𝑝𝑒𝑐(𝐴), see Properties, Lemma 23.15.4. Moreover, the set of opens
𝑋𝑓, for those 𝑓 ∈ 𝐴 such that 𝑋𝑓 is affine, forms a basis for the topology of 𝑋, see the proof
of Properties, Lemma 23.15.4. Hence we can find a finite number of 𝑓𝑗 ∈ 𝐴, 𝑗 = 1, … , 𝑚
such that 𝑋 = ⋃ 𝑋𝑓𝑗

, and such that 𝜋(𝑋𝑓𝑗
) ⊂ 𝑉𝑗 for some affine open 𝑉𝑗 ⊂ 𝑆. By Lemma

24.14.2 the ring maps 𝒪(𝑉𝑗) → 𝒪(𝑋𝑓𝑗
) = 𝐴𝑓𝑗

are of finite type. Thus we may choose
𝑎1, … , 𝑎𝑁 ∈ 𝐴 such that the elements 𝑎1, … , 𝑎𝑁, 𝑓1, … , 𝑓𝑚, 1/𝑓𝑗 generate 𝐴𝑓𝑗

over 𝒪(𝑉𝑗)
for each 𝑗. Take 𝑛 = 𝑁 + 𝑚 and let

𝑖 ∶ 𝑋 ⟶ 𝐀𝑛
𝑆

be the morphism given by the global sections 𝑎1, … , 𝑎𝑛, 𝑓1, … , 𝑓𝑛 of the structure sheaf of
𝑋. Let 𝐷(𝑥𝑗) ⊂ 𝐀𝑛

𝑆 be the open subscheme where the 𝑗th coordinate function is nonzero.
Then it is clear that 𝑖−1(𝐷(𝑥𝑗)) is 𝑋𝑓𝑗

and that the induced morphism 𝑋𝑓𝑗
→ 𝐷(𝑥𝑗) fac-

tors through the affine open 𝑆𝑝𝑒𝑐(𝒪(𝑉𝑗)[𝑥1, … , 𝑥𝑛, 1/𝑥𝑗]) of 𝐷(𝑥𝑗). Since the ring map
𝒪(𝑉𝑗)[𝑥1, … , 𝑥𝑛, 1/𝑥𝑗] → 𝐴𝑓𝑗

is surjective by construction we conclude that the restriction
of 𝑖 to 𝑋𝑓𝑗

is an immersion as desired. �

Lemma 24.38.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible sheaf
on 𝑋. Assume that

(1) the invertible sheaf ℒ is ample on 𝑋, and
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(2) the morphism 𝑋 → 𝑆 is locally of finite type.
Then there exists a 𝑑0 ≥ 1 such that for every 𝑑 ≥ 𝑑0 there exists an 𝑛 ≥ 0 and an immersion
𝑖 ∶ 𝑋 → 𝐏𝑛

𝑆 over 𝑆 such that ℒ⊗𝑑 ≅ 𝑖∗𝒪𝐏𝑛
𝑆
(1).

Proof. Let 𝐴 = Γ∗(𝑋, ℒ) = ⨁𝑑≥0 Γ(𝑋, ℒ⊗𝑑). By Properties, Proposition 23.23.12 the
set of affine opens 𝑋𝑎 with 𝑎 ∈ 𝐴+ homogeneous forms a basis for the topology of 𝑋.
Hence we can find finitely many such elements 𝑎0, … , 𝑎𝑛 ∈ 𝐴+ such that

(1) we have 𝑋 = ⋃𝑖=0,…,𝑛 𝑋𝑎𝑖
,

(2) each 𝑋𝑎𝑖
is affine, and

(3) each 𝑋𝑎𝑖
maps into an affine open 𝑉𝑖 ⊂ 𝑆.

By Lemma 24.14.2 we see that the ring maps 𝒪𝑆(𝑉𝑖) → 𝒪𝑋(𝑋𝑎𝑖
) are of finite type. Hence

we can find finitely many elements 𝑓𝑖𝑗 ∈ 𝒪𝑋(𝑋𝑎𝑖
), 𝑗 = 1, … , 𝑛𝑖 which generate 𝒪𝑋(𝑋𝑎𝑖

)
as an 𝒪𝑆(𝑉𝑖)-algebra. By Properties, Lemma 23.23.5 we may write each 𝑓𝑖𝑗 as 𝑎𝑖𝑗/𝑎

𝑒𝑖𝑗
𝑖 for

some 𝑎𝑖𝑗 ∈ 𝐴+ homogeneous. Let 𝑁 be a positive integer which is a common multiple of
all the degrees of the elements 𝑎𝑖, 𝑎𝑖𝑗. Consider the elements

𝑎𝑁/ deg(𝑎𝑖)
𝑖 , 𝑎𝑖𝑗𝑎

(𝑁/ deg(𝑎𝑖))−𝑒𝑖𝑗
𝑖 ∈ 𝐴𝑁.

By construction these generate the invertible sheaf ℒ⊗𝑁 over 𝑋. Hence they give rise to a
morphism

𝑗 ∶ 𝑋 ⟶ 𝐏𝑚
𝑆 with 𝑚 = 𝑛 + ∑ 𝑛𝑖

over 𝑆, see Constructions, Lemma 22.13.1 and Definition 22.13.2. Moreover, 𝑗∗𝒪𝐏𝑆
(1) =

ℒ⊗𝑁. We name the homogeneous coordinates 𝑇0, … , 𝑇𝑛, 𝑇𝑖𝑗 instead of 𝑇0, … , 𝑇𝑚. For
𝑖 = 0, … , 𝑛 we have 𝑖−1(𝐷+(𝑇𝑖)) = 𝑋𝑎𝑖

. Moreover, pulling back the element 𝑇𝑖𝑗/𝑇𝑖 via 𝑗♯

we get the element 𝑓𝑖𝑗 ∈ 𝒪𝑋(𝑋𝑎𝑖
). Hence the morphism 𝑗 restricted to 𝑋𝑎𝑖

gives a closed
immersion of 𝑋𝑎𝑖

into the affine open 𝐷+(𝑇𝑖) ∩ 𝐏𝑚
𝑉𝑖

of 𝐏𝑁
𝑆 . Hence we conclude that the

morphism 𝑗 is an immersion. This implies the lemma holds for some 𝑑 and 𝑛 which is
enough in virtually all applications.

This proves that for one 𝑑2 ≥ 1 (namely 𝑑2 = 𝑁 above), some 𝑚 ≥ 0 there exists some
immersion 𝑗 ∶ 𝑋 → 𝐏𝑚

𝑆 given by global sections 𝑠′
0, … , 𝑠′

𝑚 ∈ Γ(𝑋, ℒ⊗𝑑2). By Properties,
Proposition 23.23.12 we know there exists an integer 𝑑1 such that ℒ⊗𝑑 is globally generated
for all 𝑑 ≥ 𝑑1. Set 𝑑0 = 𝑑1 + 𝑑2. We claim that the lemma holds with this value of 𝑑0.
Namely, given an integer 𝑑 ≥ 𝑑0 wemay choose 𝑠″

1 , … , 𝑠″
𝑡 ∈ Γ(𝑋, ℒ⊗𝑑−𝑑2) which generate

ℒ⊗𝑑−𝑑2 over 𝑋. Set 𝑛 = (𝑚 + 1)𝑡 and denote 𝑠0, … , 𝑠𝑛 the collection of sections 𝑠′
𝛼𝑠″

𝛽 ,
𝛼 = 0, … , 𝑚, 𝛽 = 1, … , 𝑡. These generate ℒ⊗𝑑 over 𝑋 and therefore define a morphism

𝑖 ∶ 𝑋 ⟶ 𝐏𝑛
𝑆

such that 𝑖∗𝒪𝐏𝑛
𝑆
(1) ≅ ℒ⊗𝑑. We omit the verification that since 𝑗 was an immersion also the

morphism 𝑖 so obtained is an immersion also. (Hint: Segre embedding.) �

Lemma 24.38.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible
𝒪𝑋-module. Assume 𝑆 affine and 𝑓 of finite type. The following are equivalent

(1) ℒ is ample on 𝑋,
(2) ℒ is 𝑓-ample,
(3) ℒ⊗𝑑 is 𝑓-very ample for some 𝑑 ≥ 1,
(4) ℒ⊗𝑑 is 𝑓-very ample for all 𝑑 ≫ 1,
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(5) for some 𝑑 ≥ 1 there exist 𝑛 ≥ 1 and an immersion 𝑖 ∶ 𝑋 → 𝐏𝑛
𝑆 such that

ℒ⊗𝑑 ≅ 𝑖∗𝒪𝐏𝑛
𝑆
(1), and

(6) for all 𝑑 ≫ 1 there exist 𝑛 ≥ 1 and an immersion 𝑖 ∶ 𝑋 → 𝐏𝑛
𝑆 such that

ℒ⊗𝑑 ≅ 𝑖∗𝒪𝐏𝑛
𝑆
(1).

Proof. The equivalence of (1) and (2) is Lemma 24.36.5. The implication (2) ⇒ (6) is
Lemma 24.38.3. Trivially (6) implies (5). As 𝐏𝑛

𝑆 is a projective bundle over 𝑆 (see Con-
structions, Lemma 22.20.4) we see that (5) implies (3) and (6) implies (4) from the definition
of a relatively very ample sheaf. Trivially (4) implies (3). To finish we have to show that
(3) implies (2) which follows from Lemma 24.37.2 and Lemma 24.36.2. �

Lemma 24.38.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible
𝒪𝑋-module. Assume 𝑆 quasi-compact and 𝑓 of finite type. The following are equivalent

(1) ℒ is 𝑓-ample,
(2) ℒ⊗𝑑 is 𝑓-very ample for some 𝑑 ≥ 1,
(3) ℒ⊗𝑑 is 𝑓-very ample for all 𝑑 ≫ 1.

Proof. Trivially (3) implies (2). Lemma 24.37.2 garantees that (2) implies (1) since a
morphism of finite type is quasi-compact by definition. Assume that ℒ is 𝑓-ample. Choose
a finite affine open covering 𝑆 = 𝑉1 ∪ … ∪ 𝑉𝑚. Write 𝑋𝑖 = 𝑓−1(𝑉𝑖). By Lemma 24.38.4
above we see there exists a 𝑑0 such that ℒ⊗𝑑 is relatively very ample on 𝑋𝑖/𝑉𝑖 for all 𝑑 ≥ 𝑑0.
Hence we conclude (1) implies (3) by Lemma 24.37.6. �

The following two lemmas provide the most used and most useful characterizations of rel-
atively very ample and relatively ample invertible sheaves when the morphism is of finite
type.
Lemma 24.38.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible sheaf
on 𝑋. Assume 𝑓 is of finite type. The following are equivalent:

(1) ℒ is 𝑓-relatively very ample, and
(2) there exist an open covering 𝑆 = ⋃ 𝑉𝑗, for each 𝑗 an integer 𝑛𝑗, and immersions

𝑖𝑗 ∶ 𝑋𝑗 = 𝑓−1(𝑉𝑗) = 𝑉𝑗 ×𝑆 𝑋 ⟶ 𝐏
𝑛𝑗
𝑉𝑗

over 𝑉𝑗 such that ℒ|𝑋𝑗
≅ 𝑖∗

𝑗 𝒪𝐏
𝑛𝑗
𝑉𝑗

(1).

Proof. We see that (1) implies (2) by taking an affine open covering of 𝑆 and applying
Lemma 24.38.1 to each of the restrictions of 𝑓 and ℒ. We see that (2) implies (1) by
Lemma 24.37.6. �

Lemma 24.38.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℒ be an invertible sheaf
on 𝑋. Assume 𝑓 is of finite type. The following are equivalent:

(1) ℒ is 𝑓-relatively ample, and
(2) there exist an open covering 𝑆 = ⋃ 𝑉𝑗, for each 𝑗 an integers 𝑑𝑗 ≥ 1, 𝑛𝑗 ≥ 0, and

immersions
𝑖𝑗 ∶ 𝑋𝑗 = 𝑓−1(𝑉𝑗) = 𝑉𝑗 ×𝑆 𝑋 ⟶ 𝐏

𝑛𝑗
𝑉𝑗

over 𝑉𝑗 such that ℒ⊗𝑑𝑗|𝑋𝑗
≅ 𝑖∗

𝑗 𝒪𝐏
𝑛𝑗
𝑉𝑗

(1).

Proof. We see that (1) implies (2) by taking an affine open covering of 𝑆 and applying
Lemma 24.38.4 to each of the restrictions of 𝑓 and ℒ. We see that (2) implies (1) by
Lemma 24.36.4. �
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24.39. Quasi-projective morphisms

The discussion in the previous section suggests the following definitions. We take our
definition of quasi-projective from [DG67]. The version with the letter ``H'' is the definition
in [Har77].

Definition 24.39.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say 𝑓 is quasi-projective if 𝑓 is of finite type and there exists an 𝑓-relatively

ample invertible 𝒪𝑋-module.
(2) We say 𝑓 is H-quasi-projective if 𝑓 if there exists a quasi-compact immersion

𝑋 → 𝐏𝑛
𝑆 over 𝑆 for some 𝑛.11

(3) We say 𝑓 is locally quasi-projective if there exists an open covering 𝑆 = ⋃ 𝑉𝑗
such that each 𝑓−1(𝑉𝑗) → 𝑉𝑗 is quasi-projective.

As this definition suggests the property of being quasi-projective is not local on 𝑆.

Lemma 24.39.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑓 is quasi-projective, or
H-quasi-projective or locally quasi-projective, then 𝑓 is separated of finite type.

Proof. Omitted. �

Lemma 24.39.3. A H-quasi-projective morphism is quasi-projective.

Proof. Omitted. �

Lemma 24.39.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) The morphism 𝑓 is locally quasi-projective.
(2) There exists an open covering 𝑆 = ⋃ 𝑉𝑗 such that each 𝑓−1(𝑉𝑗) → 𝑉𝑗 is H-quasi-

projective.

Proof. By Lemma 24.39.3 we see that (2) implies (1). Assume (1). The question is local
on 𝑆 and hence we may assume 𝑆 is affine, 𝑋 of finite type over 𝑆 and ℒ is a relatively
ample invertible sheaf on 𝑋/𝑆. By Lemma 24.38.4 we may assume ℒ is ample on 𝑋. By
Lemma 24.38.3 we see that there exists an immersion of 𝑋 into a projective space over 𝑆,
i.e., 𝑋 is H-quasi-projective over 𝑆 as desired. �

24.40. Proper morphisms

The notion of a proper morphism plays an important role in algebraic geometry. An impor-
tant example of a proper morphism will be the structure morphism 𝐏𝑛

𝑆 → 𝑆 of projective
𝑛-space, and this is in fact the motivating example leading to the definition.

Definition 24.40.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. We say 𝑓 is proper if 𝑓 is
separated, finite type, and universally closed.

The morphism from the affine line with zero doubled to the affine line is of finite type
and universally closed, so the separation condition is necessary in the definition above. In
the rest of this section we prove some of the basic properties of proper morphisms and of
universally closed morphisms.

Lemma 24.40.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:

11This is not exactly the same as the definition in Hartshorne. Namely, the definition in Hartshorne (8th
corrected printing, 1997) is that 𝑓 should be the composition of an open immersion followed by a H-projective
morphism (see Definition 24.41.1), which does not imply 𝑓 is quasi-compact. See Lemma 24.41.3 for the impli-
cation in the other direction.
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(1) The morphism 𝑓 is universally closed.
(2) There exists an open covering 𝑆 = ⋃ 𝑉𝑗 such that 𝑓−1(𝑉𝑗) → 𝑉𝑗 is universally

closed for all indices 𝑗.

Proof. This is clear from the definition. �

Lemma 24.40.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) The morphism 𝑓 is proper.
(2) There exists an open covering 𝑆 = ⋃ 𝑉𝑗 such that 𝑓−1(𝑉𝑗) → 𝑉𝑗 is proper for all

indices 𝑗.

Proof. Omitted. �

Lemma 24.40.4. The composition of proper morphisms is proper. The same is true for
universally closed morphisms.

Proof. A composition of closed morphisms is closed. If 𝑋 → 𝑌 → 𝑍 are universally
closed morphisms and 𝑍′ → 𝑍 is any morphism, then we see that 𝑍′ ×𝑍 𝑋 = (𝑍′ ×𝑍
𝑌) ×𝑌 𝑋 → 𝑍′ ×𝑍 𝑌 is closed and 𝑍′ ×𝑍 𝑌 → 𝑍′ is closed. Hence the result for universally
closed morphisms. We have seen that ``separated'' and ``finite type'' are preserved under
compositions (Schemes, Lemma 21.21.13 and Lemma 24.14.3). Hence the result for proper
morphisms. �

Lemma 24.40.5. The base change of a proper morphism is proper. The same is true for
universally closed morphisms.

Proof. This is true by definition for universally closed morphisms. It is true for separated
morphisms (Schemes, Lemma 21.21.13). It is true for morphisms of finite type (Lemma
24.14.4). Hence it is true for proper morphisms. �

Lemma 24.40.6. A closed immersion is proper, hence a fortiori universally closed.

Proof. The base change of a closed immersion is a closed immersion (Schemes, Lemma
21.18.2). Hence it is universally closed. A closed immersion is separated (Schemes, Lemma
21.23.7). A closed immersion is of finite type (Lemma 24.14.5). Hence a closed immersion
is proper. �

Lemma 24.40.7. Suppose given a commutative diagram of schemes

𝑋 //

��

𝑌

��
𝑆

with 𝑌 separated over 𝑆.
(1) If 𝑋 → 𝑆 is universally closed, then the morphism 𝑋 → 𝑌 is universally closed.
(2) If 𝑋 proper over 𝑆, then the morphism 𝑋 → 𝑌 is proper.

In particular, in both cases the image of 𝑋 in 𝑌 is closed.

Proof. Assume that 𝑋 → 𝑆 is universally closed (resp. proper). We factor the morphism
as 𝑋 → 𝑋 ×𝑆 𝑌 → 𝑌. The first morphism is a closed immersion, see Schemes, Lemma
21.21.11. Hence the first morphism is proper (Lemma 24.40.6). The projection 𝑋×𝑆 𝑌 → 𝑌
is the base change of a unviversally closed (resp. proper) morphism and hence universally
closed (resp. proper), see Lemma 24.40.5. Thus 𝑋 → 𝑌 is universally closed (resp. proper)
as the composition of universally closed (resp. proper) morphisms (Lemma 24.40.4). �
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The following lemma says that the image of a proper scheme (in a separated scheme of
finite type over the base) is proper.

Lemma 24.40.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆.
If 𝑋 is universally closed over 𝑆 and 𝑓 is surjective then 𝑌 is universally closed over 𝑆. In
particular, if also 𝑌 is separated and of finite type over 𝑆, then 𝑌 is proper over 𝑆.

Proof. Assume 𝑋 is universally closed and 𝑓 surjective. Denote 𝑝 ∶ 𝑋 → 𝑆, 𝑞 ∶ 𝑌 → 𝑆
the structure morphisms. Let 𝑆′ → 𝑆 be a morphism of schemes. The base change 𝑓′ ∶
𝑋𝑆′ → 𝑌𝑆′ is surjective (Lemma 24.9.4), and the base change 𝑝′ ∶ 𝑋𝑆′ → 𝑆′ is closed. If
𝑇 ⊂ 𝑌𝑆′ is closed, then (𝑓′)−1(𝑇) ⊂ 𝑋𝑆′ is closed, hence 𝑝′((𝑓′)−1(𝑇)) = 𝑞′(𝑇) is closed.
So 𝑞′ is closed. �

The proof of the following lemma is due to Bjorn Poonen, see this location.

Lemma 24.40.9. A universally closed morphism of schemes is quasi-compact.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that 𝑓 is not quasi-compact. Our goal is
to show that 𝑓 is not universally closed. By Schemes, Lemma 21.19.2 there exists an affine
open 𝑉 ⊂ 𝑆 such that 𝑓−1(𝑉) is not quasi-compact. To achieve our goal it suffices to show
that 𝑓−1(𝑉) → 𝑉 is not universally closed, hence we may assume that 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) for
some ring 𝐴.
Write 𝑋 = ⋃𝑖∈𝐼 𝑋𝑖 where the 𝑋𝑖 are affine open subschemes of 𝑋. Let 𝑇 = 𝑆𝑝𝑒𝑐(𝐴[𝑦𝑖; 𝑖 ∈
𝐼]). Let 𝑇𝑖 = 𝐷(𝑦𝑖) ⊂ 𝑇. Let 𝑍 be the closed set (𝑋 ×𝑆 𝑇) − ⋃𝑖∈𝐼(𝑋𝑖 ×𝑆 𝑇𝑖). It suffices to
prove that the image 𝑓𝑇(𝑍) of 𝑍 under 𝑓𝑇 ∶ 𝑋 ×𝑆 𝑇 → 𝑇 is not closed.
There exists a point 𝑠 ∈ 𝑆 such that there is no neighborhood 𝑈 of 𝑠 in 𝑆 such that 𝑋𝑈
is quasi-compact. Otherwise we could cover 𝑆 with finitely many such 𝑈 and Schemes,
Lemma 21.19.2 would imply 𝑓 quasi-compact. Fix such an 𝑠 ∈ 𝑆.
First we check that 𝑓𝑇(𝑍𝑠) ≠ 𝑇𝑠. Let 𝑡 ∈ 𝑇 be the point lying over 𝑠 with 𝜅(𝑡) = 𝜅(𝑠)
such that 𝑦𝑖 = 1 in 𝜅(𝑡) for all 𝑖. Then 𝑡 ∈ 𝑇𝑖 for all 𝑖, and the fiber of 𝑍𝑠 → 𝑇𝑠 above 𝑡 is
isomorphic to (𝑋 − ⋃𝑖∈𝐼 𝑋𝑖)𝑠, which is empty. Thus 𝑡 ∈ 𝑇𝑠 − 𝑓𝑇(𝑍𝑠).
Assume 𝑓𝑇(𝑍) is closed in 𝑇. Then there exists an element 𝑔 ∈ 𝐴[𝑦𝑖; 𝑖 ∈ 𝐼] with 𝑓𝑇(𝑍) ⊂
𝑉(𝑔) but 𝑡∉𝑉(𝑔). Hence the image of 𝑔 in 𝜅(𝑡) is nonzero. In particular some coefficient of 𝑔
has nonzero image in 𝜅(𝑠). Hence this coefficient is invertible on some neighborhood 𝑈 of
𝑠. Let 𝐽 be the finite set of 𝑗 ∈ 𝐼 such that 𝑦𝑗 appears in 𝑔. Since 𝑋𝑈 is not quasi-compact,
we may choose a point 𝑥 ∈ 𝑋 − ⋃𝑗∈𝐽 𝑋𝑗 lying above some 𝑢 ∈ 𝑈. Since 𝑔 has a coefficient
that is invertible on 𝑈, we can find a point 𝑡′ ∈ 𝑇 lying above 𝑢 such that 𝑡′∉𝑉(𝑔) and
𝑡′ ∈ 𝑉(𝑦𝑖) for all 𝑖 ∉ 𝐽. This is true because 𝑉(𝑦𝑖; 𝑖 ∈ 𝐼, 𝑖∉𝐽) = 𝑆𝑝𝑒𝑐(𝐴[𝑡𝑗; 𝑗 ∈ 𝐽]) and
the set of points of this scheme lying over 𝑢 is bijective with 𝑆𝑝𝑒𝑐(𝜅(𝑢)[𝑡𝑗; 𝑗 ∈ 𝐽]). In other
words 𝑡′ ∉ 𝑇𝑖 for each 𝑖 ∉ 𝐽. By Schemes, Lemma 21.17.5 we can find a point 𝑧 of 𝑋 ×𝑆 𝑇
mapping to 𝑥 ∈ 𝑋 and to 𝑡′ ∈ 𝑇. Since 𝑥∉𝑋𝑗 for 𝑗 ∈ 𝐽 and 𝑡′∉𝑇𝑖 for 𝑖 ∈ 𝐼 ⧵ 𝐽 we see
that 𝑧 ∈ 𝑍. On the other hand 𝑓𝑇(𝑧) = 𝑡′∉𝑉(𝑔) which contradicts 𝑓𝑇(𝑍) ⊂ 𝑉(𝑔). Thus
the assumption ``𝑓𝑇(𝑍) closed'' is wrong and we conclude indeed that 𝑓𝑇 is not closed, as
desired. �

24.41. Projective morphisms

We will use the definition of a projective morphism from [DG67]. The version of the
definition with the ``H'' is the one from [Har77]. The resulting definitions are different.
Both are useful.
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Definition 24.41.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say 𝑓 is projective if 𝑋 is isomorphic as an 𝑆-scheme to a closed subscheme

of a projective bundle 𝐏(ℰ) for some quasi-coherent, finite type 𝒪𝑆-module ℰ.
(2) We say 𝑓 is H-projective if there exists and integer 𝑛 and a closed immersion

𝑋 → 𝐏𝑛
𝑆 over 𝑆.

(3) We say 𝑓 is locally projective if there exists an open covering 𝑆 = ⋃ 𝑈𝑖 such that
each 𝑓−1(𝑈𝑖) → 𝑈𝑖 is projective.

Lemma 24.41.2. An H-projective morphism is projective.

Proof. This is true as 𝐏𝑛
𝑆 is a projective bundle over 𝑆, see Constructions, Lemma 22.20.4.

�

Lemma 24.41.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a H-quasi-projective morphism. Then 𝑓 factors as
𝑋 → 𝑋′ → 𝑆 where 𝑋 → 𝑋′ is an open immersion and 𝑋′ → 𝑆 is H-projective.

Proof. By definition we can factor 𝑓 as a quasi-compact immersion 𝑖 ∶ 𝑋 → 𝐏𝑛
𝑆 followed

by the projection 𝐏𝑛
𝑆 → 𝑆. By Lemma 24.5.7 there exists a closed subscheme 𝑋′ ⊂ 𝐏𝑛

𝑆
such that 𝑖 factors through an open immersion 𝑋 → 𝑋′. The lemma follows. �

Lemma 24.41.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) The morphism 𝑓 is locally projective.
(2) There exists an open covering 𝑆 = ⋃ 𝑈𝑖 such that each 𝑓−1(𝑈𝑖) → 𝑈𝑖 is H-

projective.

Proof. By Lemma 24.41.2 we see that (2) implies (1). Assume (1). For every point 𝑠 ∈ 𝑆
we can find𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑆 an affine open neighbourhood of 𝑠 such that𝑋𝑈 is isomorphic
to a closed subscheme of 𝐏(ℰ) for some finite type, quasi-coherent sheaf of 𝒪𝑈-modules ℰ.
Write ℰ = 𝑀 for some finite type 𝑅-module 𝑀 (see Properties, Lemma 23.16.1). Choose
generators 𝑥0, … , 𝑥𝑛 ∈ 𝑀 of 𝑀 as an 𝑅-module. Consider the surjective graded 𝑅-algebra
map

𝑅[𝑋0, … , 𝑋𝑛] ⟶ Sym𝑅(𝑀).
According to Constructions, Lemma 22.11.3 the corresponding morphism

𝐏(ℰ) → 𝐏𝑛
𝑅

is a closed immersion. Hence we conclude that 𝑓−1(𝑈) is isomorphic to a closed subscheme
of 𝐏𝑛

𝑈 (as a scheme over 𝑈). In other words: (2) holds. �

Lemma 24.41.5. A locally projective morphism is proper.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be locally projective. In order to show that 𝑓 is proper we may work
locally on the base, see Lemma 24.40.3. Hence, by Lemma 24.41.4 above we may assume
there exists a closed immersion 𝑋 → 𝐏𝑛

𝑆. By Lemmas 24.40.4 and 24.40.6 it suffices to
prove that 𝐏𝑛

𝑆 → 𝑆 is proper. Since 𝐏𝑛
𝑆 → 𝑆 is the base change of 𝐏𝑛

𝐙 → 𝑆𝑝𝑒𝑐(𝐙) it suffices
to show that 𝐏𝑛

𝐙 → 𝑆𝑝𝑒𝑐(𝐙) is proper, see Lemma 24.40.5. By Constructions, Lemma
22.8.8 the scheme 𝐏𝑛

𝐙 is separated. By Constructions, Lemma 22.8.9 the scheme 𝐏𝑛
𝐙 is

quasi-compact. It is clear that 𝐏𝑛
𝐙 → 𝑆𝑝𝑒𝑐(𝐙) is locally of finite type since 𝐏𝑛

𝐙 is covered
by the affine opens 𝐷+(𝑋𝑖) each of which is the spectrum of the finite type 𝐙-algebra

𝐙[𝑋0/𝑋𝑖, … , 𝑋𝑛/𝑋𝑖].
Finally, we have to show that 𝐏𝑛

𝐙 → 𝑆𝑝𝑒𝑐(𝐙) is universally closed. This follows from Con-
structions, Lemma 22.8.11 and the valuative criterion (see Schemes, Proposition 21.20.6).

�
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Lemma 24.41.6. Let 𝑆 be a scheme. There exists a closed immersion

𝐏𝑛
𝑆 ×𝑆 𝐏𝑚

𝑆 ⟶ 𝐏𝑛𝑚+𝑛+𝑚
𝑆

called the Segre embedding.

Proof. It suffices to prove this when 𝑆 = 𝑆𝑝𝑒𝑐(𝐙). Hence we will drop the index 𝑆 and
work in the absolute setting. Write 𝐏𝑛 = Proj(𝐙[𝑋0, … , 𝑋𝑛]), 𝐏𝑚 = Proj(𝐙[𝑌0, … , 𝑌𝑚]),
and 𝐏𝑛𝑚+𝑛+𝑚 = Proj(𝐙[𝑍0, … , 𝑍𝑛𝑚+𝑛+𝑚]). In order to map into 𝐏𝑛𝑚+𝑛+𝑚 we have to write
down an invertible sheaf ℒ on the left hand side and (𝑛 + 1)(𝑚 + 1) sections 𝑠𝑖 which
generate it. See Constructions, Lemma 22.13.1. The invertible sheaf we take is

ℒ = pr∗1𝒪𝐏𝑛(1) ⊗ pr∗2𝒪𝐏𝑚(1)

The sections we take are

𝑠0 = 𝑋0𝑌0, 𝑠1 = 𝑋1𝑌0, … , 𝑠𝑛 = 𝑋𝑛𝑌0, 𝑠𝑛+1 = 𝑋0𝑌1, … , 𝑠𝑛𝑚+𝑛+𝑚 = 𝑋𝑛𝑌𝑚.

These generate ℒ since the sections 𝑋𝑖 generate 𝒪𝐏𝑛(1) and the sections 𝑌𝑗 generate 𝒪𝐏𝑚(1).
The induced morphism 𝜑 has the property that

𝜑−1(𝐷+(𝑍𝑖+(𝑛+1)𝑗)) = 𝐷+(𝑋𝑖) × 𝐷+(𝑌𝑗).

Hence it is an affine morphism. The corresponding ring map in case (𝑖, 𝑗) = (0, 0) is the
map

𝐙[𝑍1/𝑍0, … , 𝑍𝑛𝑚+𝑛+𝑚/𝑍0] ⟶ 𝐙[𝑋1/𝑋0, … , 𝑋𝑛/𝑋0, 𝑌1/𝑌0, … , 𝑌𝑛/𝑌0]

whichmaps 𝑍𝑖/𝑍0 to the element 𝑋𝑖/𝑋0 for 𝑖 ≤ 𝑛 and the element 𝑍(𝑛+1)𝑗/𝑍0 to the element
𝑌𝑗/𝑌0. Hence it is surjective. A similar argument works for the other affine open subsets.
Hence the morphism 𝜑 is a closed immersion. �

Lemma 24.41.7. A composition of H-projective morphisms is H-projective.

Proof. Suppose 𝑋 → 𝑌 and 𝑌 → 𝑍 are H-projective. Then there exist closed immersions
𝑋 → 𝐏𝑛

𝑌 over 𝑌, and 𝑌 → 𝐏𝑚
𝑍 over 𝑍. Consider the following diagram

𝑋 //

��

𝐏𝑛
𝑌

//

��

𝐏𝑛
𝐏𝑚

𝑍

��

𝐏𝑛
𝑍 ×𝑍 𝐏𝑚

𝑍
// 𝐏𝑛𝑚+𝑛+𝑚

𝑍

uu

𝑌 //

��

𝐏𝑚
𝑍

~~
𝑍

Here the rightmost top horizontal arrow is the Segre embedding, see Lemma 24.41.6. The
diagram identifies 𝑋 as a closed subscheme of 𝐏𝑛𝑚+𝑛+𝑚

𝑍 as desired. �

Lemma 24.41.8. A base change of a H-projective morphism is H-projective.

Proof. This is true because the base change of projective space over a scheme is projective
space, and the fact that the base change of a closed immersion is a closed immersion, see
Schemes, Lemma 21.18.2. �

Lemma 24.41.9. A base change of a (locally) projective morphism is (locally) projective.
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Proof. This is true because the base change of a projective bundle over a scheme is a pro-
jective bundle, the pullback of a finite type 𝒪-module is of finite type (Modules, Lemma
15.9.2) and the fact that the base change of a closed immersion is a closed immersion, see
Schemes, Lemma 21.18.2. Some details omitted. �

Lemma 24.41.10. Le 𝑋 be a scheme. Let ℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of ideals. If
ℐ is of finite type, then the blowing up of 𝑋 in the ideal sheaf ℐ is a projective morphism
𝑏 ∶ Proj

𝑋
(⨁𝑛≥0 ℐ𝑛) → 𝑋.

Proof. Omitted. Hint: Use ℐ as the sheaf ℰ of the definition of a projective morphism. �

24.42. Integral and finite morphisms

Recall that a ring map 𝑅 → 𝐴 is said to be integral if every element of 𝐴 satisfies a monic
equation with coefficients in 𝑅. Recall that a ring map 𝑅 → 𝐴 is said to be finite if 𝐴 is
finite as an 𝑅-module. See Algebra, Definition 7.32.1.

Definition 24.42.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) We say that 𝑓 is integral if 𝑓 is affine and if for every affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆

with inverse image 𝑆𝑝𝑒𝑐(𝐴) = 𝑓−1(𝑉) ⊂ 𝑋 the associated ring map 𝑅 → 𝐴 is
integral.

(2) We say that 𝑓 is finite if 𝑓 is affine and if for every affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆
with inverse image 𝑆𝑝𝑒𝑐(𝐴) = 𝑓−1(𝑉) ⊂ 𝑋 the associated ring map 𝑅 → 𝐴 is
finite.

It is clear that integral/finite morphisms are separated and quasi-compact. It is also clear
that a finite morphism is a morphism of finite type. Most of the lemmas in this section are
completely standard. But note the fun Lemma 24.42.7 at the end of the section.

Lemma 24.42.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) The morphism 𝑓 is integral.
(2) There exists an affine open covering 𝑆 = ⋃ 𝑈𝑖 such that each 𝑓−1(𝑈𝑖) is affine

and 𝒪𝑆(𝑈𝑖) → 𝒪𝑋(𝑓−1(𝑈𝑖)) is integral.
(3) There exists an open covering 𝑆 = ⋃ 𝑆𝑗 such that each 𝑓−1(𝑈𝑖) → 𝑈𝑖 is integral.

Moreover, if 𝑓 is integral then for every open subscheme𝑈 ⊂ 𝑆 themorphism 𝑓 ∶ 𝑓−1(𝑈) →
𝑈 is integral.

Proof. See Algebra, Lemma 7.32.12. Some details omitted. �

Lemma 24.42.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) The morphism 𝑓 is finite.
(2) There exists an affine open covering 𝑆 = ⋃ 𝑈𝑖 such that each 𝑓−1(𝑈𝑖) is affine

and 𝒪𝑆(𝑈𝑖) → 𝒪𝑋(𝑓−1(𝑈𝑖)) is finite.
(3) There exists an open covering 𝑆 = ⋃ 𝑆𝑗 such that each 𝑓−1(𝑈𝑖) → 𝑈𝑖 is finite.

Moreover, if 𝑓 is finite then for every open subscheme 𝑈 ⊂ 𝑆 the morphim 𝑓 ∶ 𝑓−1(𝑈) → 𝑈
is finite.

Proof. See Algebra, Lemma 7.32.12. Some details omitted. �

Lemma 24.42.4. A finite morphism is integral. An integral morphism which is locally of
finite type is finite.

Proof. See Algebra, Lemma 7.32.3 and Lemma 7.32.5. �
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Lemma 24.42.5. A composition of finite morphisms is finite. Same is true for integral
morphisms.

Proof. See Algebra, Lemmas 7.7.3 and 7.32.6. �

Lemma 24.42.6. A base change of a finite morphism is finite. Same is true for integral
morphisms.

Proof. See Algebra, Lemma 7.32.11. �

Lemma 24.42.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) 𝑓 is integral, and
(2) 𝑓 is affine and universally closed.

Proof. Assume (1). An integral morphism is affine by definition. A base change of an
integral morphism is integral so in order to prove (2) it suffices to show that an integral
morphism is closed. This follows from Algebra, Lemmas 7.32.20 and 7.36.6.

Assume (2). We may assume 𝑓 is the morphism 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝑅) coming from a
ring map 𝑅 → 𝐴. Let 𝑎 be an element of 𝐴. We have to show that 𝑎 is integral over 𝑅,
i.e. that in the kernel 𝐼 of the map 𝑅[𝑥] → 𝐴 sending 𝑥 to 𝑎 there is a monic polynomial.
Consider the ring 𝐵 = 𝐴[𝑥]/(𝑎𝑥 − 1) and let 𝐽 be the kernel of the composition 𝑅[𝑥] →
𝐴[𝑥] → 𝐵. If 𝑓 ∈ 𝐽 there exists 𝑞 ∈ 𝐴[𝑥] such that 𝑓 = (𝑎𝑥 − 1)𝑞 in 𝐴[𝑥] so if 𝑓 = ∑𝑖 𝑓𝑖𝑥𝑖

and 𝑞 = ∑𝑖 𝑞𝑖𝑥𝑖, for all 𝑖 ≥ 0 we have 𝑓𝑖 = 𝑎𝑞𝑖−1 − 𝑞𝑖. For 𝑛 ≥ deg 𝑞 + 1 the polynomial

∑
𝑖≥0

𝑓𝑖𝑥𝑛−𝑖 = ∑
𝑖≥0

(𝑎𝑞𝑖−1 − 𝑞𝑖)𝑥𝑛−𝑖 = (𝑎 − 𝑥) ∑
𝑖≥0

𝑞𝑖𝑥𝑛−𝑖−1

is clearly in 𝐼; if 𝑓0 = 1 this polynomial is also monic, so we are reduced to prove that 𝐽
contains a polynomial with constant term 1. We do it by proving 𝑆𝑝𝑒𝑐(𝑅[𝑥]/(𝐽 + (𝑥)) is
empty.

Since 𝑓 is universally closed the base change 𝑆𝑝𝑒𝑐(𝐴[𝑥]) → 𝑆𝑝𝑒𝑐(𝑅[𝑥]) is closed. Hence
the image of the closed subset 𝑆𝑝𝑒𝑐(𝐵) ⊂ 𝑆𝑝𝑒𝑐(𝐴[𝑥]) is the closed subset 𝑆𝑝𝑒𝑐(𝑅[𝑥]/𝐽) ⊂
𝑆𝑝𝑒𝑐(𝑅[𝑥]), see Example 24.4.4 and Lemma 24.4.3. In particular𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝑅[𝑥]/𝐽)
is surjective. Consider the following diagram where every square is a pullback:

𝑆𝑝𝑒𝑐(𝐵)
𝑔 // // 𝑆𝑝𝑒𝑐(𝑅[𝑥]/𝐽) // 𝑆𝑝𝑒𝑐(𝑅[𝑥])

∅

OO

// 𝑆𝑝𝑒𝑐(𝑅[𝑥]/(𝐽 + (𝑥)))

OO

// 𝑆𝑝𝑒𝑐(𝑅)

0

OO

The bottom left corner is empty because it is the spectrum of 𝑅 ⊗𝑅[𝑥] 𝐵 where the map
𝑅[𝑥] → 𝐵 sends 𝑥 to an invertible element and 𝑅[𝑥] → 𝑅 sends 𝑥 to 0. Since 𝑔 is surjective
this implies 𝑆𝑝𝑒𝑐(𝑅[𝑥]/(𝐽 + (𝑥))) is empty, as we wanted to show. �

Lemma 24.42.8. Let 𝑓 ∶ 𝑋 → 𝑆 be an integral morphism. Then every point of 𝑋 is closed
in its fibre.

Proof. See Algebra, Lemma 7.32.18. �

Lemma 24.42.9. A finite morphism is quasi-finite.

Proof. This is implied by Algebra, Lemma 7.113.4 and Lemma 24.19.9. Alternatively, all
points in fibres are closed points by Lemma 24.42.8 (and the fact that a finite morphism is
integral) and use Lemma 24.19.6 (3) to see that 𝑓 is quasi-finite at 𝑥 for all 𝑥 ∈ 𝑋. �
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Lemma 24.42.10. A finite morphism is proper.

Proof. A finite morphism is integral and hence universally closed by Lemma 24.42.7. It is
also clearly separated and of finite type. Hence it is proper by definition. �

Lemma 24.42.11. A closed immersion is finite (and a fortiori integral).

Proof. True because a closed immersion is affine (Lemma 24.11.9) and a surjective ring
map is finite and integral. �

Lemma 24.42.12. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms.
(1) If 𝑔 ∘ 𝑓 is finite and 𝑔 separated then 𝑓 is finite.
(2) If 𝑔 ∘ 𝑓 is integral and 𝑔 separated then 𝑓 is integral.

Proof. Assume 𝑔∘𝑓 is finite (resp. integral) and 𝑔 separated. The base change 𝑋×𝑍𝑌 → 𝑌 is
finite (resp. integral) by Lemma 24.42.6. The morphism 𝑋 → 𝑋×𝑍 𝑌 is a closed immersion
as 𝑌 → 𝑍 is separated, see Schemes, Lemma 21.21.12. A closed immersion is finite (resp.
integral), see Lemma 24.42.11. The composition of finite (resp. integral) morphisms is
finite (resp. integral), see Lemma 24.42.5. Thus we win. �

Lemma 24.42.13. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. If 𝑓 is finite and a monomor-
phism, then 𝑓 is a closed immersion.

Proof. This reduces to Algebra, Lemma 7.99.6. �

24.43. Universal homeomorphisms

The following definition is really superfluous since a universal homeomorphism is really
just an integral, universally injective and surjective morphism, see Lemma 24.43.3.

Definition 24.43.1. A morphisms 𝑓 ∶ 𝑋 → 𝑌 of schemes is called a universal homeomor-
phism if the base change 𝑓′ ∶ 𝑌′ ×𝑌 𝑋 → 𝑌′ is a homeomorphism for every morphism
𝑌′ → 𝑌.

Lemma 24.43.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. If 𝑓 is a homeomorphism
then 𝑓 is affine.

Proof. Let 𝑦 ∈ 𝑌 be a point. Let 𝑦 ∈ 𝑉 be an affine open neighbourhood. let 𝑥 ∈ 𝑋
be the unique point of 𝑋 mapping to 𝑦. Let 𝑈 ⊂ 𝑋 be an affine open neighbourhood
of 𝑥 which maps into 𝑉. Since 𝑓(𝑈) ⊂ 𝑉 is open we may choose a ℎ ∈ Γ(𝑉, 𝒪𝑌) such
that 𝑦 ∈ 𝐷(ℎ) ⊂ 𝑓(𝑈). Denote ℎ′ ∈ Γ(𝑈, 𝒪𝑋) the restriction of 𝑓♯(ℎ) to 𝑈. Then we
see that 𝐷(ℎ′) ⊂ 𝑈 is equal to 𝑓−1(𝐷(ℎ)). In other words, every point of 𝑌 has an open
neighbourhood whose inverse image is affine. Thus 𝑓 is affine, see Lemma 24.11.3. �

Lemma 24.43.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The following are equivalent:
(1) 𝑓 is a universal homeomorphism, and
(2) 𝑓 is integral, universally injective and surjective.

Proof. Assume 𝑓 is a universal homeomorphism. By Lemma 24.43.2 we see that 𝑓 is
affine. Since 𝑓 is clearly universally closed we see that 𝑓 is integral by Lemma 24.42.7. It
is also clear that 𝑓 is universally injective and surjective.

Assume 𝑓 is integral, universally injective and surjective. By Lemma 24.42.7 𝑓 is univer-
sally closed. Since it is also universally bijective (see Lemma 24.9.4) we see that it is a
universal homeomorphism. �
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Lemma 24.43.4. Let 𝑋 be a scheme. The canonical closed immersion 𝑋𝑟𝑒𝑑 → 𝑋 (see
Schemes, Definition 21.12.5) is a universal homeomorphism.

Proof. Omitted. �

24.44. Finite locally free morphisms

In many papers the authors use finite flat morphisms when they really mean finite locally
free morphisms. The reason is that if the base is locally Noetherian then this is the same
thing. But in general it is not, see Exercises, Exercise 65.4.3.

Definition 24.44.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. We say 𝑓 is finite locally
free if 𝑓 is affine and 𝑓∗𝒪𝑋 is a finite locally free 𝒪𝑆-module. In this case we say 𝑓 is has
rank or degree 𝑑 if the sheaf 𝑓∗𝒪𝑋 is finite locally free of degree 𝑑.

Note that if 𝑓 ∶ 𝑋 → 𝑆 is finite locally free then 𝑆 is the disjoint union of open and closed
subschemes 𝑆𝑑 such that 𝑓−1(𝑆𝑑) → 𝑆𝑑 is finite locally free of degree 𝑑.

Lemma 24.44.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) 𝑓 is finite locally free,
(2) 𝑓 is finite, flat, and locally of finite presentation.

If 𝑆 is locally Noetherian these are also equivalent to
(3) 𝑓 is finite and flat.

Proof. See Algebra, Lemma 7.72.2. The Noetherian case follows as a finite module over
a Noetherian ring is a finitely presented module, see Algebra, Lemma 7.28.4. �

Lemma 24.44.3. A composition of finite locally free morphisms is finite locally free.

Proof. Omitted. �

Lemma 24.44.4. A base change of a finite locally free morphism is finite locally free.

Proof. Omitted. �

Lemma 24.44.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a finite locally free morphism of schemes. There exists
a disjoint union decomposition 𝑆 = ∐𝑑≥0 𝑆𝑑 by open and closed subschemes such that
setting 𝑋𝑑 = 𝑓−1(𝑆𝑑) the restrictions 𝑓|𝑋𝑑

are finite locally free morphisms 𝑋𝑑 → 𝑆𝑑 of
degree 𝑑.

Proof. This is true because a finite locally free sheaf locally has a well defined rank. Details
omittted. �

Lemma 24.44.6. Let 𝑓 ∶ 𝑌 → 𝑋 be a finite morphism with 𝑋 affine. There exists a diagram

𝑍′

  

𝑌′
𝑖

oo

��

// 𝑌

��
𝑋′ // 𝑋

where
(1) 𝑌′ → 𝑌 and 𝑋′ → 𝑋 are surjective finite locally free,
(2) 𝑌′ = 𝑋′ ×𝑋 𝑌,
(3) 𝑖 ∶ 𝑌′ → 𝑍′ is a closed immersion,
(4) 𝑍′ → 𝑋′ is finite locally free, and
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(5) 𝑍′ = ⋃𝑗=1,…,𝑚 𝑍′
𝑗 is a (set theoretic) finite union of closed subschemes, each of

which maps isomorphically to 𝑋′.

Proof. Write 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑌 = 𝑆𝑝𝑒𝑐(𝐵). See also More on Algebra, Section 12.16.
Let 𝑥1, … , 𝑥𝑛 ∈ 𝐵 be generators of 𝐵 over 𝐴. For each 𝑖 we can choose a monic polynomial
𝑃𝑖(𝑇) ∈ 𝐴[𝑇] such that 𝑃(𝑥𝑖) = 0 in 𝐵. By Algebra, Lemma 7.125.9 (applied 𝑛 times) there
exists a finite locally free ring extension 𝐴 ⊂ 𝐴′ such that each 𝑃𝑖 splits completely:

𝑃𝑖(𝑇) = ∏𝑘=1,…,𝑑𝑖
(𝑇 − 𝛼𝑖𝑘)

for certain 𝛼𝑖𝑘 ∈ 𝐴′. Set

𝐶 = 𝐴′[𝑇1, … , 𝑇𝑛]/(𝑃1(𝑇1), … , 𝑃𝑛(𝑇𝑛))

and 𝐵′ = 𝐴′ ⊗𝐴 𝐵. The map 𝐶 → 𝐵′, 𝑇𝑖 ↦ 1 ⊗ 𝑥𝑖 is an 𝐴′-algebra surjection. Setting
𝑋′ = 𝑆𝑝𝑒𝑐(𝐴′), 𝑌′ = 𝑆𝑝𝑒𝑐(𝐵′) and 𝑍′ = 𝑆𝑝𝑒𝑐(𝐶) we see that (1) -- (4) hold. Part (5)
holds because set theoretically 𝑆𝑝𝑒𝑐(𝐶) is the union of the closed subschemes cut out by
the ideals

(𝑇1 − 𝛼1𝑘1
, 𝑇2 − 𝛼2𝑘2

, … , 𝑇𝑛 − 𝛼𝑛𝑘𝑛
)

for any 1 ≤ 𝑘𝑖 ≤ 𝑑𝑖. �

The following lemma is stated in the correct generality in Lemma 24.47.4 below.

Lemma 24.44.7. Let 𝑓 ∶ 𝑌 → 𝑋 be a finite morphism of schemes. Let 𝑇 ⊂ 𝑌 be a closed
nowhere dense subset of 𝑌. Then 𝑓(𝑇) ⊂ 𝑋 is a closed nowhere dense subset of 𝑋.

Proof. By Lemma 24.42.10 we know that 𝑓(𝑇) ⊂ 𝑋 is closed. Let 𝑋 = ⋃ 𝑋𝑖 be an affine
covering. Since 𝑇 is nowhere dense in 𝑌, we see that also 𝑇 ∩ 𝑓−1(𝑋𝑖) is nowhere dense in
𝑓−1(𝑋𝑖). Hence if we can prove the theorem in the affine case, then we see that 𝑓(𝑇) ∩ 𝑋𝑖
is nowhere dense. This then implies that 𝑇 is nowhere dense in 𝑋 by Topology, Lemma
5.17.4.

Assume 𝑋 is affine. Choose a diagram

𝑍′

  

𝑌′
𝑖

oo

𝑓′

��

𝑎
// 𝑌

𝑓
��

𝑋′ 𝑏 // 𝑋

as in Lemma 24.44.6. The morphisms 𝑎, 𝑏 are open since they are finite locally free (Lem-
mas 24.44.2 and 24.24.9). Hence 𝑇′ = 𝑎−1(𝑇) is nowhere dense, see Topology, Lemma
5.17.6. The morphism 𝑏 is surjective and open. Hence, if we can prove 𝑓′(𝑇′) = 𝑏−1(𝑓(𝑇))
is nowhere dense, then 𝑓(𝑇) is nowhere dense, see Topology, Lemma 5.17.6. As 𝑖 is a closed
immersion, by Topology, Lemma 5.17.5 we see that 𝑖(𝑇′) ⊂ 𝑍′ is closed and nowhere
dense. Thus we have reduced the problem to the case discussed in the following paragraph.

Assume that 𝑌 = ⋃𝑖=1,…,𝑛 𝑌𝑖 is a finite union of closed subsets, each mapping isomorphi-
cally to 𝑋. Consider 𝑇𝑖 = 𝑌𝑖 ∩ 𝑇. If each of the 𝑇𝑖 is nowhere dense in 𝑌𝑖, then each 𝑓(𝑇𝑖)
is nowhere dense in 𝑋 as 𝑌𝑖 → 𝑋 is an isomorphism. Hence 𝑓(𝑇) = 𝑓(𝑇𝑖) is a finite union
of nowhere dense closed subsets of 𝑋 and we win, see Topology, Lemma 5.17.2. Suppose
not, say 𝑇1 contains a nonempty open 𝑉 ⊂ 𝑌1. We are going to show this leads to a con-
tradiction. Consider 𝑌2 ∩ 𝑉 ⊂ 𝑉. This is either a proper closed subset, or equal to 𝑉. In
the first case we replace 𝑉 by 𝑉 ⧵ 𝑉 ∩ 𝑌2, so 𝑉 ⊂ 𝑇1 is open in 𝑌1 and does not meet 𝑌2. In
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the second case we have 𝑉 ⊂ 𝑌1 ∩ 𝑌2 is open in both 𝑌1 and 𝑌2. Repeat sequentially with
𝑖 = 3, … , 𝑛. The result is a disjoint union decomposition

{1, … , 𝑛} = 𝐼1 ∐ 𝐼2, 1 ∈ 𝐼1

and an open 𝑉 of 𝑌1 contained in 𝑇1 such that 𝑉 ⊂ 𝑌𝑖 for 𝑖 ∈ 𝐼1 and 𝑉 ∩ 𝑌𝑖 = ∅ for 𝑖 ∈ 𝐼2.
Set 𝑈 = 𝑓(𝑉). This is an open of 𝑋 since 𝑓|𝑌1

∶ 𝑌1 → 𝑋 is an isomorphism. Then

𝑓−1(𝑈) = 𝑉 ∐ ⋃𝑖∈𝐼2
(𝑌𝑖 ∩ 𝑓−1(𝑈))

As ⋃𝑖∈𝐼2
𝑌𝑖 is closed, this implies that 𝑉 ⊂ 𝑓−1(𝑈) is open, hence 𝑉 ⊂ 𝑌 is open. This

contradicts the assumption that 𝑇 is nowhere dense in 𝑌, as desired. �

24.45. Generically finite morphisms

In this section we characterize maps between schemes which are locally of finite type and
which are ``generically finite'' in some sense.

Lemma 24.45.1. Let 𝑋, 𝑌 be schemes. Let 𝑓 ∶ 𝑋 → 𝑌 be locally of finite type. Let 𝜂 ∈ 𝑌
be a generic point of an irreducible component of 𝑌. The following are equivalent:

(1) the set 𝑓−1({𝜂}) is finite,
(2) there exist affine opens 𝑈𝑖 ⊂ 𝑋, 𝑖 = 1, … , 𝑛 and 𝑉 ⊂ 𝑌 with 𝑓(𝑈𝑖) ⊂ 𝑉, 𝜂 ∈ 𝑉

and 𝑓−1({𝜂}) ⊂ ⋃ 𝑈𝑖 such that each 𝑓|𝑈𝑖
∶ 𝑈𝑖 → 𝑉 is finite.

If 𝑓 is quasi-separated, then these are also equivalent to
(3) there exist affine opens 𝑉 ⊂ 𝑌, and 𝑈 ⊂ 𝑋 with 𝑓(𝑈) ⊂ 𝑉, 𝜂 ∈ 𝑉 and 𝑓−1({𝜂}) ⊂

𝑈 such that 𝑓|𝑈 ∶ 𝑈 → 𝑉 is finite.
If 𝑓 is quasi-compact and quasi-separated, then these are also equivalent to

(4) there exists an affine open 𝑉 ⊂ 𝑌, 𝜂 ∈ 𝑉 such that 𝑓−1(𝑉) → 𝑉 is finite.

Proof. The question is local on the base. Hence we may replace 𝑌 by an affine neigh-
bourhood of 𝜂, and we may and do assume throughout the proof below that 𝑌 is affine, say
𝑌 = 𝑆𝑝𝑒𝑐(𝑅).

It is clear that (2) implies (1). Assume that 𝑓−1({𝜂}) = {𝜉1, … , 𝜉𝑛} is finite. Choose affine
opens 𝑈𝑖 ⊂ 𝑋 with 𝜉𝑖 ∈ 𝑈𝑖. By Algebra, Lemma 7.113.9 we see that after replacing 𝑌 by
a standard open in 𝑌 each of the morphisms 𝑈𝑖 → 𝑌 is finite. In other words (2) holds.

It is clear that (3) implies (1). Assume 𝑓−1({𝜂}) = {𝜉1, … , 𝜉𝑛} and assume that 𝑓 is quasi-
separated. Since 𝑌 is affine this implies that 𝑋 is quasi-separated. Since each 𝜉𝑖 maps to
a generic point of an irreducible component of 𝑌, we see that each 𝜉𝑖 is a generic point of
an irreducible component of 𝑋. By Properties, Lemma 23.26.1 we can find an affine open
𝑈 ⊂ 𝑋 containing each 𝜉𝑖. By Algebra, Lemma 7.113.9 we see that after replacing 𝑌 by a
standard open in 𝑌 the morphisms 𝑈 → 𝑌 is finite. In other words (3) holds.

It is clear that (4) implies all of (1) -- (3) with no further assumptions on 𝑓. Suppose that
𝑓 is quasi-compact and quasi-separated. We have to show that the equivalent conditions
(1) -- (3) imply (4). Let 𝑈, 𝑉 be as in (3). Replace 𝑌 by 𝑉. Since 𝑓 is quasi-compact and
𝑌 is quasi-compact (being affine) we see that 𝑋 is quasi-compact. Hence 𝑍 = 𝑋 ⧵ 𝑈 is
quasi-compact, hence the morphism 𝑓|𝑍 ∶ 𝑍 → 𝑌 is quasi-compact. By construction of
𝑍 we see that 𝜂∉𝑓(𝑍). Hence by Lemma 24.6.4 we see that there exists an affine open
neighbourhood 𝑉′ of 𝜂 in 𝑌 such that 𝑓−1(𝑉′) ∩ 𝑍 = ∅. Then we have 𝑓−1(𝑉′) ⊂ 𝑈 and
this means that 𝑓−1(𝑉′) → 𝑉′ is finite. �
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Example 24.45.2. Let 𝐴 = ∏𝑛∈𝐍 𝐅2. Every element of 𝐴 is an idempotent. Hence every
prime ideal is maximal with residue field 𝐅2. Thus the topology on 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) is to-
tally disconnected and quasi-compact. The projection maps 𝐴 → 𝐅2 define open points of
𝑆𝑝𝑒𝑐(𝐴). It cannot be the case that all the points of 𝑋 are open since 𝑋 is quasi-compact.
Let 𝑥 ∈ 𝑋 be a closed point which is not open. Then we can form a scheme 𝑌 which is
two copies of 𝑋 glued along 𝑋 ⧵ {𝑥}. In other words, this is 𝑋 with 𝑥 doubled, compare
Schemes, Example 21.14.3. The morphism 𝑓 ∶ 𝑌 → 𝑋 is quasi-compact, finite type and
has finite fibres but is not quasi-separated. The point 𝑥 ∈ 𝑋 is a generic point of an ir-
reducible component of 𝑋 (since 𝑋 is totally disconnected). But properties (3) and (4) of
Lemma 24.45.1 do not hold. The reason is that for any open neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋
the inverse image 𝑓−1(𝑈) is not affine because functions on 𝑓−1(𝑈) cannot separated the
two points lying over 𝑥 (proof omitted; this is a nice exercise). Hence the condition that 𝑓
is quasi-separated is necessary in parts (3) and (4) of the lemma.

Remark 24.45.3. An alternative to Lemma 24.45.1 is the statement that a quasi-finite mor-
phism is finite over a dense open of the target. This will be shown in More on Morphisms,
Section 33.29.

Lemma 24.45.4. Let 𝑋, 𝑌 be integral schemes. Let 𝑓 ∶ 𝑋 → 𝑌 be locally of finite type.
Assume 𝑓 is dominant. The following are equivalent:

(1) the extension 𝑅(𝑌) ⊂ 𝑅(𝑋) has transcendence degree 0,
(2) the extension 𝑅(𝑌) ⊂ 𝑅(𝑋) is finite,
(3) there exist nonempty affine opens 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑌 such that 𝑓(𝑈) ⊂ 𝑉 and

𝑓|𝑈 ∶ 𝑈 → 𝑉 is finite, and
(4) the generic point of 𝑋 is the only point of 𝑋 mapping to the generic point of 𝑌.

If 𝑓 is separated, or if 𝑓 is quasi-compact, then these are also equivalent to
(5) there exists a nonempty affine open 𝑉 ⊂ 𝑌 such that 𝑓−1(𝑉) → 𝑉 is finite.

Proof. Choose any affine opens 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 and 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑌 such that
𝑓(𝑈) ⊂ 𝑉. Then 𝑅 and 𝐴 are domains by definition. The ring map 𝑅 → 𝐴 is of finite type
Lemma 24.14.2). Let 𝐾 = 𝑓.𝑓.(𝑅) = 𝑅(𝑌) and 𝐿 = 𝑓.𝑓.(𝐴) = 𝑅(𝑋). Then 𝐾 ⊂ 𝐿 is a
finitely generated field extension. Hence we see that (1) is equivalent to (2).

Suppose (2) holds. Let 𝑥1, … , 𝑥𝑛 ∈ 𝐴 be generators of 𝐴 over 𝑅. By assumption there
exist nonzero polynomials 𝑃𝑖(𝑋) ∈ 𝑅[𝑋] such that 𝑃𝑖(𝑥𝑖) = 0. Let 𝑓𝑖 ∈ 𝑅 be the leading
coefficient of 𝑃𝑖. Then we conclude that 𝑅𝑓1…𝑓𝑛

→ 𝐴𝑓1…𝑓𝑛
is finite, i.e., (3) holds. Note

that (3) implies (2). So now we see that (1), (2) and (3) are all equivalent.

Let 𝜂 be the generic point of 𝑋, and let 𝜂′ ∈ 𝑌 be the generic point of 𝑌. Assume (4). Then
dim𝜂(𝑋𝜂′) = 0 and we see that 𝑅(𝑋) = 𝜅(𝜂) has transcendence degree 0 over 𝑅(𝑌) = 𝜅(𝜂′)
by Lemma 24.27.1. In other words (1) holds. Assume the equivalent conditions (1), (2)
and (3). Suppose that 𝑥 ∈ 𝑋 is a point mapping to 𝜂′. As 𝑥 is a specialization of 𝜂, this
gives inclusions 𝑅(𝑌) ⊂ 𝒪𝑋,𝑥 ⊂ 𝑅(𝑋), which implies 𝒪𝑋,𝑥 is a field, see Algebra, Lemma
7.32.17. Hence 𝑥 = 𝜂. Thus we see that (1) -- (4) are all equivalent.

It is clear that (5) implies (3) with no additional assumptions on 𝑓. What remains is to prove
that if 𝑓 is either separated or quasi-compact, then the equivalent conditions (1) -- (4) imply
(5).

Assume 𝑈, 𝑉 as in (3) and assume 𝑓 is separated. Then 𝑈 → 𝑓−1(𝑉) is a morphism from a
scheme proper over 𝑉 Lemma 24.42.10) into a scheme separated over 𝑉. Hence 𝑈 ⊂ 𝑓−1(𝑉)
is closed Lemma 24.40.7. Since 𝑋 is irreducible we conclude 𝑈 = 𝑓−1(𝑉). This proves (5).
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Assume 𝑓 is quasi-compact. Let 𝑈, 𝑉 be as in (3). Then 𝑓−1(𝑉) is quasi-compact. Consider
the closed subset 𝑍 = 𝑓−1(𝑉) ⧵ 𝑈. Since 𝑍 does not contain the generic point of 𝑋 we see
that the quasi-compact morphism 𝑓 ∶ 𝑍 → 𝑉 is not dominant by Lemma 24.6.3. Hence
after shrinking 𝑉 we may assume that 𝑓−1(𝑉) = 𝑈 which implies that (5) holds. �

Definition 24.45.5. Let 𝑋 and 𝑌 be integral schemes. Let 𝑓 ∶ 𝑋 → 𝑌 be locally of finite
type and dominant. Assume [𝑅(𝑋) ∶ 𝑅(𝑌)] < ∞, or any other of the equivalent conditions
(1) -- (4) of Lemma 24.45.4. Then the positive integer

deg(𝑋/𝑌) = [𝑅(𝑋) ∶ 𝑅(𝑌)]

is called the degree of 𝑋 over 𝑌.

It is possible to extend this notion to a morphism 𝑓 ∶ 𝑋 → 𝑌 if (a) 𝑌 is integral with generic
point 𝜂, (b) 𝑓 is locally of finite type, and (c) 𝑓−1({𝜂}) is finite. Namely, in this case we can
define

deg(𝑋/𝑌) = ∑𝜉∈𝑋, 𝑓(𝜉)=𝜂
dim𝑅(𝑌)(𝒪𝑋,𝜉).

Namely, given that 𝑅(𝑌) = 𝜅(𝜂) = 𝒪𝑌,𝜂 (Lemma 24.8.4) the dimensions above are finite
by Lemma 24.45.1 above. However, for most applications the definition given above is the
right one.

Lemma 24.45.6. Let 𝑋, 𝑌, 𝑍 be integral schemes. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be
dominant morphisms locally of finite type. Assume that [𝑅(𝑋) ∶ 𝑅(𝑌)] < ∞ and [𝑅(𝑌) ∶
𝑅(𝑍)] < ∞. Then

deg(𝑋/𝑍) = deg(𝑋/𝑌) deg(𝑌/𝑍).

Proof. This comes from the multiplicativity of degrees in towers of finite extensions of
fields. �

Remark 24.45.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes which is locally of finite type.
There are (at least) two properties that we could use to define generically finitemorphisms.
These correspond to whether you want the property to be local on the source or local on the
target:

(1) (Local on the target; suggested by Ravi Vakil.) Assume every quasi-compact
open of 𝑌 has finitely many irreducible components (for example if 𝑌 is locally
Noetherian). The requirement is that the inverse image of each generic point is
finite, see Lemma 24.45.1.

(2) (Local on the source.) The requirement is that there exists a dense open 𝑈 ⊂ 𝑋
such that 𝑈 → 𝑌 is locally quasi-finite.

In case (1) the requirement can be formulated without the auxiliary condition on 𝑌, but
probably doesn't give the right notion for general schemes. Property (2) as formulated
doesn't imply that the fibres over generic points are finite; however, if 𝑓 is quasi-compact
and 𝑌 is as in (1) then it does.

24.46. Normalization

In this section we construct the normalization, and the normalization of one scheme in
another.

Lemma 24.46.1. Let 𝑋 be a scheme. Let 𝒜 be a quasi-coherent sheaf of 𝒪𝑋-algebras. The
subsheaf 𝒜′ ⊂ 𝒜 defined by the rule

𝑈 ⟼ {𝑓 ∈ 𝒜(𝑈) ∣ 𝑓𝑥 ∈ 𝒜𝑥 integral over 𝒪𝑋,𝑥 for all 𝑥 ∈ 𝑈}
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is a quasi-coherent 𝒪𝑋-algebra, and for any affine open 𝑈 ⊂ 𝑋 the ring 𝒜′(𝑈) ⊂ 𝒜(𝑈) is
the integral closure of 𝒪𝑋(𝑈) in 𝒜(𝑈).

Proof. This is a subsheaf by the local nature of the conditions. It is an 𝒪𝑋-algebra by
Algebra, Lemma 7.32.7. Let 𝑈 ⊂ 𝑋 be an affine open. Say 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) and say 𝒜 is the
quasi-coherent sheaf associated to the 𝑅-algebra 𝐴. Then according to Algebra, Lemma
7.32.10 the value of 𝒜′ over 𝑈 is given by the integral closure 𝐴′ of 𝑅 in 𝐴. This proves
the last assertion of the lemma. To prove that 𝒜′ is quasi-coherent, it suffices to show that
𝒜′(𝐷(𝑓)) = 𝐴′

𝑓. This follows from the fact that integral closure and localization commute,
see Algebra, Lemma 7.32.9. �

Definition 24.46.2. Let 𝑋 be a scheme. Let 𝒜 be a quasi-coherent sheaf of 𝒪𝑋-algebras.
The integral closure of 𝒪𝑋 in 𝒜 is the quasi-coherent 𝒪𝑋-subalgebra 𝒜′ ⊂ 𝒜 constructed
in Lemma 24.46.1 above.

In the setting of the definition above we can consider the morphism of relative spectra

𝑌 = 𝑆𝑝𝑒𝑐
𝑋

(𝒜) //

%%

𝑋′ = 𝑆𝑝𝑒𝑐
𝑋

(𝒜′)

xx𝑋

see Lemma 24.11.5. The scheme 𝑋′ → 𝑋 will be the normalization of 𝑋 in the scheme
𝑌. Here is a slightly more general setting. Suppose we have a quasi-compact and quasi-
separated morphism 𝑓 ∶ 𝑌 → 𝑋 of schemes. In this case the sheaf of 𝒪𝑋-algebras 𝑓∗𝒪𝑌 is
quasi-coherent, see Schemes, Lemma 21.24.1. Taking the integral closure 𝒪′ ⊂ 𝑓∗𝒪𝑌 we
obtain a quasi-coherent sheaf of 𝒪𝑋-algebras whose relative spectrum is the normalization
of 𝑋 in 𝑌. Here is the formal definition.

Definition 24.46.3. Let 𝑓 ∶ 𝑌 → 𝑋 be a quasi-compact and quasi-separated morphism of
schemes. Let 𝒪′ be the integral closure of 𝒪𝑋 in 𝑓∗𝒪𝑌. The normalization of 𝑋 in 𝑌 is the
scheme12

𝜈 ∶ 𝑋′ = 𝑆𝑝𝑒𝑐
𝑋

(𝒪′) → 𝑋

over 𝑋. It comes equipped with a natural factorization

𝑌
𝑓′

−−→ 𝑋′ 𝜈
−→ 𝑋

of the initial morphism 𝑓.

The factorization is the composition of the canonical morphism 𝑌 → 𝑆𝑝𝑒𝑐(𝑓∗𝒪𝑌) (see Con-
structions, Lemma 22.4.7) and the morphism of relative spectra coming from the inclusion
map 𝒪′ → 𝑓∗𝒪𝑌. We can characterize the normalization as follows.

Lemma 24.46.4. Let 𝑓 ∶ 𝑌 → 𝑋 be a quasi-compact and quasi-separated morphism of
schemes. The factorization 𝑓 = 𝜈 ∘ 𝑓′, where 𝜈 ∶ 𝑋′ → 𝑋 is the normalization of 𝑋 in 𝑌 is
characterized by the following two properties:

(1) the morphism 𝜈 is integral, and

12The scheme 𝑋′ need not be normal, for example if 𝑌 = 𝑋 and 𝑓 = id𝑋, then 𝑋′ = 𝑋.
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(2) for any factorization 𝑓 = 𝜋 ∘ 𝑔, with 𝜋 ∶ 𝑍 → 𝑋 integral, there exists a commu-
tative diagram

𝑌

𝑓′

��

𝑔
// 𝑍

𝜋
��

𝑋′

ℎ
>>

𝜈 // 𝑋
for some unique morphism ℎ ∶ 𝑋′ → 𝑍.

Moreover, in (2) the morphism ℎ ∶ 𝑋′ → 𝑍 is the normalization of 𝑍 in 𝑌.

Proof. Let 𝒪′ ⊂ 𝑓∗𝒪𝑌 be the integral closure of 𝒪𝑋 as in Definition 24.46.3. Themorphism
𝜈 is integral by construction, which proves (1). Assume given a factorization 𝑓 = 𝜋 ∘ 𝑔 with
𝜋 ∶ 𝑍 → 𝑋 integral as in (2). By Definition 24.42.1 Then 𝜋 is affine, and hence 𝑍 is the
relative spectrum of a quasi-coherent sheaf of 𝒪𝑋-algebras ℬ. The morphism 𝑔 ∶ 𝑋 → 𝑍
corresponds to a map of 𝒪𝑋-algebras 𝜒 ∶ ℬ → 𝑓∗𝒪𝑌. Since ℬ(𝑈) is integral over 𝒪𝑋(𝑈)
for every affine open 𝑈 ⊂ 𝑋 (by Definition 24.42.1) we see from Lemma 24.46.1 that
𝜒(ℬ) ⊂ 𝒪′. By the functoriality of the relative spectrum Lemma 24.11.5 this provides us
with a unique morphism ℎ ∶ 𝑋′ → 𝑍. We omit the verification that the diagram commutes.
It is clear that (1) and (2) characterize the factorization 𝑓 = 𝜈 ∘ 𝑓′ since it characterizes it as
an initial object in a category. The morphism ℎ in (2) is integral by Lemma 24.42.12. Given
a factorization 𝑔 = 𝜋′ ∘ 𝑔′ with 𝜋′ ∶ 𝑍′ → 𝑍 integral, we get a factorization 𝑓 = (𝜋 ∘ 𝜋′) ∘ 𝑔′

and we get a morphism ℎ′ ∶ 𝑋′ → 𝑍′. Uniqueness implies that 𝜋′ ∘ ℎ′ = ℎ. Hence
the characterization (1), (2) applies to the morphism ℎ ∶ 𝑋′ → 𝑍 which gives the last
statement of the lemma. �

Lemma 24.46.5. Let
𝑌2

𝑓2
��

// 𝑌1

𝑓1
��

𝑋2
// 𝑋1

be a commutative diagram of morphisms of schemes. Assume 𝑓1, 𝑓2 quasi-compact and
quasi-separated. Let 𝑓𝑖 = 𝜈𝑖 ∘ 𝑓′

𝑖 , 𝑖 = 1, 2 be the canonical factorizations, where 𝜈𝑖 ∶ 𝑋′
𝑖 →

𝑋𝑖 is the normalization of 𝑋𝑖 in 𝑌𝑖. Then there exists a canonical commutative diagram

𝑌2

𝑓′
2
��

// 𝑌1

𝑓′
1
��

𝑋′
2

𝜈2

��

// 𝑋′
1

𝜈1

��
𝑋2

// 𝑋1

Proof. By Lemmas 24.46.4 (1) and 24.42.6 the base change 𝑋2 ×𝑋1
𝑋′

1 → 𝑋2 is integral.
Note that 𝑓2 factors through this morphism. Hence we get a canonical morphism 𝑋′

2 →
𝑋2 ×𝑋1

𝑋′
1 from Lemma 24.46.4 (2). This gives the middle horizontal arrow in the last

diagram. �

Lemma 24.46.6. Let 𝑓 ∶ 𝑌 → 𝑋 be a quasi-compact and quasi-separated morphism of
schemes. Let 𝑈 ⊂ 𝑋 be an open subscheme and set 𝑉 = 𝑓−1(𝑈). Then the normalization
of 𝑈 in 𝑉 is the inverse image of 𝑈 in the normalization of 𝑋 in 𝑌.
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Proof. Clear from the construction. �

Lemma 24.46.7. Let 𝑓 ∶ 𝑌 → 𝑋 be a quasi-compact and quasi-separated morphism of
schemes. Suppose that 𝑌 = 𝑌1 ∐ 𝑌2 is a disjoint union of two schemes. Write 𝑓𝑖 = 𝑓𝑌𝑖

. Let
𝑋′

𝑖 be the normalization of 𝑋 in 𝑌𝑖. Then 𝑌′
1 ∐ 𝑌′

2 is the normalization of 𝑋 in 𝑌.

Proof. In terms of integral closures this corresponds to the following fact: Let 𝐴 → 𝐵 be
a ring map. Suppose that 𝐵 = 𝐵1 × 𝐵2. Let 𝐴′

𝑖 be the integral closure of 𝐴 in 𝐵𝑖. Then
𝐴′

1 × 𝐴′
2 is the integral closure of 𝐴 in 𝐵. The reason this works is that the elements (1, 0)

and (0, 1) of 𝐵 are idempotents and hence integral over 𝐴. Thus the integral closure 𝐴′ of
𝐴 in 𝐵 is a product and it is not hard to see that the factors are the integral closures 𝐴′

𝑖 as
described above (some details omitted). �

Lemma 24.46.8. Let 𝑓 ∶ 𝑌 → 𝑋 be an integral morphism. Then the integral closure of 𝑋
in 𝑌 is equal to 𝑌.

Proof. Omitted. �

The following lemma is a generalization of the preceding one.

Lemma 24.46.9. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact, quasi-separated and universally
closed morphisms of schemes. Then 𝑓∗𝒪𝑋 is integral over 𝒪𝑆. In other words, the normal-
ization of 𝑆 in 𝑋 is equal to the factorization

𝑋 ⟶ 𝑆𝑝𝑒𝑐
𝑆

(𝑓∗𝒪𝑋) ⟶ 𝑆

of Constructions, Lemma 22.4.7.

Proof. The question is local on 𝑆, hence we may assume 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) is affine. Let
ℎ ∈ Γ(𝑋, 𝒪𝑋). We have to show that ℎ satisfies a monic equation over 𝑅. Think of ℎ as a
morphism as in the following commutative diagram

𝑋
ℎ

//

𝑓
��

𝐀1
𝑆

��
𝑆

Let 𝑍 ⊂ 𝐀1
𝑆 be the scheme theoretic image of ℎ, see Definition 24.4.2. The morphism ℎ

is quasi-compact as 𝑓 is quasi-compact and 𝐀1
𝑆 → 𝑆 is separated, see Schemes, Lemma

21.21.15. By Lemma 24.4.3 the morphism 𝑋 → 𝑍 is dominant. By Lemma 24.40.7
the morphism 𝑋 → 𝑍 is closed. Hence ℎ(𝑋) = 𝑍 (set theoretically). Thus we can use
Lemma 24.40.8 to conclude that 𝑍 → 𝑆 is universally closed (and even proper). Since
𝑍 ⊂ 𝐀1

𝑆, we see that 𝑍 → 𝑆 is affine and proper, hence integral by Lemma 24.42.7.
Writing 𝐀1

𝑆 = 𝑆𝑝𝑒𝑐(𝑅[𝑇]) we conclude that the ideal 𝐼 ⊂ 𝑅[𝑇] of 𝑍 contains a monic
polynomial 𝑃(𝑇) ∈ 𝑅[𝑇]. Hence 𝑃(ℎ) = 0 and we win. �

Lemma 24.46.10. Let 𝑓 ∶ 𝑌 → 𝑋 be a quasi-compact and quasi-separated morphism of
schemes. Assume

(1) 𝑌 is a normal scheme,
(2) any quasi-compact open 𝑉 ⊂ 𝑌 has a finite number of irreducible components.

Then the normalization 𝑋′ of 𝑋 in 𝑌 is a normal scheme. Moreover, the morphism 𝑌 → 𝑋′

is dominant and induces a bijection of irreducible components.
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Proof. We first prove that 𝑋′ is normal. Let 𝑈 ⊂ 𝑋 be an affine open. It suffices to
prove that the inverse image of 𝑈 in 𝑋′ is normal (see Properties, Lemma 23.7.2). By
Lemma 24.46.6 we may replace 𝑋 by 𝑈, and hence we may assume 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) affine.
In this case 𝑌 is quasi-compact, and hence has a finite number of irreducible components by
assumption. Hence 𝑌 = ∐𝑖=1,…𝑛 𝑌𝑖 is a finite disjoint union of normal integral schemes by
Properties, Lemma 23.7.5. By Lemma 24.46.7 we see that 𝑋′ = ∐𝑖=1,…,𝑛 𝑋′

𝑖 , where 𝑋′
𝑖

is the normalization of 𝑋 in 𝑌𝑖. By Properties, Lemma 23.7.9 we see that 𝐵𝑖 = Γ(𝑌𝑖, 𝒪𝑌𝑖
)

is a normal domain. Note that 𝑋′
𝑖 = 𝑆𝑝𝑒𝑐(𝐴′

𝑖 ), where 𝐴′
𝑖 ⊂ 𝐵𝑖 is the integral closure of

𝐴 in 𝐵𝑖, see Lemma 24.46.1. By Algebra, Lemma 7.33.2 we see that 𝐴′
𝑖 ⊂ 𝐵𝑖 is a normal

domain. Hence 𝑋′ = ∐ 𝑋′
𝑖 is a finite union of normal schemes and hence is normal.

It is clear from the description of 𝑋′ above that 𝑌 → 𝑋′ is dominant and induces a bijec-
tion on irreducible components if 𝑋 is affine. The result in general follows from this by a
topological argument (omitted). �

Lemma 24.46.11. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that
(1) 𝑆 is a Nagata scheme,
(2) 𝑓 is of finite type13, and
(3) 𝑋 is reduced.

Then the normalization 𝜈 ∶ 𝑆′ → 𝑆 of 𝑆 in 𝑋 is finite.

Proof. There is an immediate reduction to the case 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) where 𝑅 is a Nagata
ring. In this case we have to show that the integral closure 𝐴 of 𝑅 in Γ(𝑋, 𝒪𝑋) is finite
over 𝑅. Since 𝑓 is of finite type we can write 𝑋 = ⋃𝑖=1,…,𝑛 𝑈𝑖 with each 𝑈𝑖 affine. Say
𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖). Each 𝐵𝑖 is a reduced ring of finite type over 𝑅 (Lemma 24.14.2). Moreover,
Γ(𝑋, 𝒪𝑋) ⊂ 𝐵 = 𝐵1 × … × 𝐵𝑛. So 𝐴 is contained in the integral closure 𝐴′ of 𝑅 in 𝐵. Note
that 𝐵 is a reduced finite type 𝑅-algebra. Since 𝑅 is Noetherian it suffices to prove that 𝐴′

is finite over 𝑅. This is Algebra, Lemma 7.144.16. �

Next, we come to the normalization of a scheme 𝑋. We only define/construct it when
𝑋 has locally finitely many irreducible components. Let 𝑋 be a scheme such that every
quasi-compact open has finitely many irreducible components. Let 𝑋(0) ⊂ 𝑋 be the set of
generic points of irreducible components of 𝑋. Let

(24.46.11.1) 𝑓 ∶ 𝑌 = ∐𝜂∈𝑋(0) 𝑆𝑝𝑒𝑐(𝜅(𝜂)) ⟶ 𝑋

be the inclusion of the generic points into 𝑋 using the canonical maps of Schemes, Section
21.13. Note that this morphism is quasi-compact by assumption and quasi-separated as 𝑌
is separated (see Schemes, Section 21.21).

Definition 24.46.12. Let 𝑋 be a scheme such that every quasi-compact open has finitely
many irreducible components. We define the normalization of 𝑋 as the morphism

𝜈 ∶ 𝑋𝜈 ⟶ 𝑋
which is the normalization of 𝑋 in the morphism 𝑓 ∶ 𝑌 → 𝑋 (24.46.11.1) constructed
above.

Any locally Noetherian scheme has a locally finite set of irreducible components and the
definition applies to it. Usually the normalization is defined only for reduced schemes.
With the definition above the normalization of 𝑋 is the same as the normalization of the
reduction 𝑋𝑟𝑒𝑑 of 𝑋.

13The proof shows that the lemma holds if 𝑓 is quasi-compact and ``essentially of finite type''.
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Lemma 24.46.13. Let 𝑋 be a scheme such that every quasi-compact open has finitely many
irreducible components. The normalization morphism 𝜈 factors through the reduction 𝑋𝑟𝑒𝑑
and 𝑋𝜈 → 𝑋𝑟𝑒𝑑 is the normalization of 𝑋𝑟𝑒𝑑.

Proof. Let 𝑓 ∶ 𝑌 → 𝑋 be the morphism (24.46.11.1). We get a factorization 𝑌 → 𝑋𝑟𝑒𝑑 →
𝑋 of 𝑓 from Schemes, Lemma 21.12.6. By Lemma 24.46.4 we obtain a canonical morphism
𝑋𝜈 → 𝑋𝑟𝑒𝑑 and that 𝑋𝜈 is the normalization of 𝑋𝑟𝑒𝑑 in 𝑌. The lemma follows as 𝑌 → 𝑋𝑟𝑒𝑑
is identical to the morphism (24.46.11.1) constructed for 𝑋𝑟𝑒𝑑. �

If 𝑋 is reduced, then the normalization of 𝑋 is the same as the relative spectrum of the
integral closure of 𝒪𝑋 in the sheaf of meromorphic functions 𝒦𝑋 (see Divisors, Section
26.15). Namely, 𝒦𝑋 = 𝑓∗𝒪𝑌 in this case, see Divisors, Lemma 26.15.7 and its proof. We
describe this here explicitly.

Lemma 24.46.14. Let 𝑋 be a reduced scheme such that every quasi-compact open has
finitely many irreducible components. Let 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 be an affine open. Then

(1) 𝐴 has finitely many minimal primes 𝔮1, … , 𝔮𝑡,
(2) the total ring of fractions 𝑄(𝐴) of 𝐴 is 𝑄(𝐴/𝔮1) × … × 𝑄(𝐴/𝔮𝑡),
(3) the integral closure 𝐴′ of 𝐴 in 𝑄(𝐴) is the product of the integral closures of the

domains 𝐴/𝔮𝑖 in the fields 𝑄(𝐴/𝔮𝑖), and
(4) 𝜈−1(𝑈) is identified with the spectrum of 𝐴′.

Proof. Minimal primes correspond to irreducible components (Algebra, Lemma 7.23.1),
hence we have (1) by assumption. Then (0) = 𝔮1 ∩ … ∩ 𝔮𝑡 because 𝐴 is reduced (Algebra,
Lemma 7.16.2). Then we have 𝑄(𝐴) = ∏ 𝐴𝔮𝑖

= ∏ 𝜅(𝔮𝑖) by Algebra, Lemmas 7.22.2 and
7.23.3. This proves (2). Part (3) follows from Algebra, Lemma 7.33.14, or Lemma 24.46.7.
Part (4) holds because it is clear that 𝑓−1(𝑈) → 𝑈 is the morphism

𝑆𝑝𝑒𝑐 (∏ 𝜅(𝔮𝑖)) ⟶ 𝑆𝑝𝑒𝑐(𝐴)

where 𝑓 ∶ 𝑌 → 𝑋 is the morphism (24.46.11.1). �

Lemma 24.46.15. Let 𝑋 be a scheme such that every quasi-compact open has finitely many
irreducible components.

(1) The normalization 𝑋𝜈 is a normal scheme.
(2) The morphism 𝜈 ∶ 𝑋𝜈 → 𝑋 is integral, surjective, and induces a bijection on

irreducible components.
(3) For any integral, birational14 morphism 𝑋′ → 𝑋 there exists a factorization

𝑋𝜈 → 𝑋′ → 𝑋 and 𝑋𝜈 → 𝑋′ is the normalization of 𝑋′.
(4) For any morphism 𝑍 → 𝑋 with 𝑍 a normal scheme such that each irreducible

component of 𝑍 dominates an irreducible component of 𝑋 there exists a unique
factorization 𝑍 → 𝑋𝜈 → 𝑋.

Proof. Let 𝑓 ∶ 𝑌 → 𝑋 be as in (24.46.11.1). Part (1) follows from Lemma 24.46.10 and
the fact that 𝑌 is normal. It also follows from the description of the affine opens in Lemma
24.46.14.

The morphism 𝜈 is integral by Lemma 24.46.4. By Lemma 24.46.10 the morphism 𝑌 → 𝑋𝜈

induces a bijection on irreducible components, and by construction of 𝑌 this implies that
𝑋𝜈 → 𝑋 induces a bijection on irreducible components. By construction 𝑓 ∶ 𝑌 → 𝑋 is

14It suffices if 𝑋′
𝑟𝑒𝑑 → 𝑋𝑟𝑒𝑑 is birational.
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dominant, hence also 𝜈 is dominant. Since an integral morphism is closed (Lemma 24.42.7)
this implies that 𝜈 is surjective. This proves (2).

Suppose that 𝛼 ∶ 𝑋′ → 𝑋 is integral and birational. Any quasi-compact open 𝑈′ of 𝑋′

maps to a quasi-compact open of 𝑋, hence we see that 𝑈′ has only finitely many irreducible
components. Let 𝑓′ ∶ 𝑌′ → 𝑋′ be the morphism (24.46.11.1) constructed starting with
𝑋′. As 𝛼 is birational it is clear that 𝑌′ = 𝑌 and 𝑓 = 𝛼 ∘ 𝑓′. Hence the factorization
𝑋𝜈 → 𝑋′ → 𝑋 exists and 𝑋𝜈 → 𝑋′ is the normalization of 𝑋′ by Lemma 24.46.4. This
proves (3).

Let 𝑔 ∶ 𝑍 → 𝑋 be a morphism whose domain is a normal scheme and such that every
irreducible component dominates an irreducible component of 𝑋. By Lemma 24.46.13 we
have 𝑋𝜈 = 𝑋𝜈

𝑟𝑒𝑑 and by Schemes, Lemma 21.12.6 𝑍 → 𝑋 factors through 𝑋𝑟𝑒𝑑. Hence we
may replace 𝑋 by 𝑋𝑟𝑒𝑑 and assume 𝑋 is reduced. Moreover, as the factorization is unique
it suffices to construct it locally on 𝑍. Let 𝑊 ⊂ 𝑍 and 𝑈 ⊂ 𝑋 be affine opens such that
𝑔(𝑊) ⊂ 𝑈. Write 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑊 = 𝑆𝑝𝑒𝑐(𝐵), with 𝑔|𝑊 given by 𝜑 ∶ 𝐴 → 𝐵. We will
use the results of Lemma 24.46.14 freely. Let 𝔭1, … , 𝔭𝑡 be the minimal primes of 𝐴. As 𝑍
is normal, we see that 𝐵 is a normal ring, in particular reduced. Moreover, by assumption
any minimal prime 𝔮 ⊂ 𝐵 we have that 𝜑−1(𝔮) is a minimal prime of 𝐴. Hence if 𝑥 ∈ 𝐴
is a nonzero divisor, i.e., 𝑥∉ ⋃ 𝔭𝑖, then 𝜑(𝑥) is a nonzero divisor in 𝐵. Thus we obtain a
canonical ring map 𝑄(𝐴) → 𝑄(𝐵). As 𝐵 is normal it is equal to its integral closure in 𝑄(𝐵)
(see Algebra, Lemma 7.33.11). Hence we see that the integral closure 𝐴′ ⊂ 𝑄(𝐴) of 𝐴
maps into 𝐵 via the canonical map 𝑄(𝐴) → 𝑄(𝐵). Since 𝜈−1(𝑈) = 𝑆𝑝𝑒𝑐(𝐴′) this gives
the canonical factorization 𝑊 → 𝜈−1(𝑈) → 𝑈 of 𝜈|𝑊. We omit the verification that it is
unique. �

Lemma 24.46.16. Let 𝑋 be an integral, Japanese scheme. The normalization 𝜈 ∶ 𝑋𝜈 → 𝑋
is a finite morphism.

Proof. Follows from the definitions and Lemma 24.46.14. Namely, in this case the lemma
says that 𝜈−1(𝑆𝑝𝑒𝑐(𝐴)) is the spectrum of the integral closure of 𝐴 in its field of fractions.

�

Lemma 24.46.17. Let 𝑋 be a nagata scheme. The normalization 𝜈 ∶ 𝑋𝜈 → 𝑋 is a finite
morphism.

Proof. Note that a Nagata scheme is locally Noetherian, thus Definition 24.46.12 does
apply. Write 𝑋𝜈 → 𝑋 as the composition 𝑋𝜈 → 𝑋𝑟𝑒𝑑 → 𝑋. As 𝑋𝑟𝑒𝑑 → 𝑋 is a closed
immersion it is finite. Hence it suffices to prove the lemma for a reduced Nagata scheme
(by Lemma 24.42.5). Let 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 be an affine open. By Lemma 24.46.14 we
have 𝜈−1(𝑈) = 𝑆𝑝𝑒𝑐(∏ 𝐴′

𝑖 ) where 𝐴′
𝑖 is the integral closure of 𝐴/𝔮𝑖 in its fraction field. As

𝐴 is a Nagata ring (see Properties, Lemma 23.13.6) each of the ring extensions 𝐴/𝔮𝑖 ⊂ 𝐴′
𝑖

are finite. Hence 𝐴 → ∏ 𝐴′
𝑖 is a finite ring map and we win. �

24.47. Zariski's Main Theorem (algebraic version)

This is the version you can prove using purely algebraic methods. Before we can prove
more powerful versions (for non-affine morphisms) we need to develop more tools. See
Coherent, Section 25.20 and More on Morphisms, Section 33.29.

Theorem 24.47.1. (Algebraic version of Zariski's Main Theorem) Let 𝑓 ∶ 𝑌 → 𝑋 be an
affine morphism of schemes. Assume 𝑓 is of finite type. Let 𝑋′ be the normalization of 𝑋
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in 𝑌. Picture:
𝑌

𝑓 ��

𝑓′
// 𝑋′

𝜈
~~

𝑋
Then there exists an open subscheme 𝑈′ ⊂ 𝑋′ such that

(1) (𝑓′)−1(𝑈′) → 𝑈′ is an isomorphism, and
(2) (𝑓′)−1(𝑈′) ⊂ 𝑌 is the set of points at which 𝑓 is quasi-finite.

Proof. There is an immediate reduction to the case where 𝑋 and hence 𝑌 are affine. Say
𝑋 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑌 = 𝑆𝑝𝑒𝑐(𝐴). Then 𝑋′ = 𝑆𝑝𝑒𝑐(𝐴′), where 𝐴′ is the integral closure
of 𝑅 in 𝐴, see Definitions 24.46.2 and 24.46.3. By Algebra, Theorem 7.114.13 for every
𝑦 ∈ 𝑌 at which 𝑓 is quasi-finite, there exists an open 𝑈′

𝑦 ⊂ 𝑋′ such that (𝑓′)−1(𝑈′
𝑦) → 𝑈′

𝑦 is
an isomorphism. Set 𝑈′ = ⋃ 𝑈′

𝑦 where 𝑦 ∈ 𝑌 ranges over all points where 𝑓 is quasi-finite.
It remains to show that 𝑓 is quasi-finite at all points of (𝑓′)−1(𝑈′). If 𝑦 ∈ (𝑓′)−1(𝑈′) with
image 𝑥 ∈ 𝑋, then we see that 𝑌𝑥 → 𝑋′

𝑥 is an isomorphism in a neighbourhood of 𝑦. Hence
there is no point of 𝑌𝑥 which specializes to 𝑦, since this is true for 𝑓′(𝑦) in 𝑋′

𝑥, see Lemma
24.42.8. By Lemma 24.19.6 part (3) this implies 𝑓 is quasi-finite at 𝑦. �

We can use the algebraic version of Zariski's Main Theorem to show that the set of points
where a morphism is quasi-finite is open.

Lemma 24.47.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The set of points of 𝑋 where
𝑓 is quasi-finite is an open 𝑈 ⊂ 𝑋. The induced morphism 𝑈 → 𝑆 is locally quasi-finite.

Proof. Suppose 𝑓 is quasi-finite at 𝑥. Let 𝑥 ∈ 𝑈 = 𝑆𝑝𝑒𝑐(𝑅) ⊂ 𝑋, 𝑉 = 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑆 be
affine opens as in Definition 24.19.1. By either Theorem 24.47.1 above or Algebra, Lemma
7.114.14, the set of primes 𝔮 at which 𝑅 → 𝐴 is quasi-finite is open in 𝑆𝑝𝑒𝑐(𝐴). Since these
all correspond to points of 𝑋 where 𝑓 is quasi-finite we get the first statement. The second
statement is obvious. �

Wewill improve the following lemma to general quasi-finite separated morphisms later, see
More on Morphisms, Lemma 33.29.4.

Lemma 24.47.3. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism of schemes. Assume
(1) 𝑋 and 𝑌 are affine, and
(2) 𝑓 is quasi-finite.

Then there exists a diagram
𝑌

𝑓 ��

𝑗
// 𝑍

𝜋~~
𝑋

with 𝑍 affine, 𝜋 finite and 𝑗 an open immersion.

Proof. This is Algebra, Lemma 7.114.15 reformulated in the laguage of schemes. �

Lemma 24.47.4. Let 𝑓 ∶ 𝑌 → 𝑋 be a quasi-finite morphism of schemes. Let 𝑇 ⊂ 𝑌 be a
closed nowhere dense subset of 𝑌. Then 𝑓(𝑇) ⊂ 𝑋 is a nowhere dense subset of 𝑋.

Proof. As in the proof of Lemma 24.44.7 this reduces immediately to the case where the
base 𝑋 is affine. In this case 𝑌 = ⋃𝑖=1,…,𝑛 𝑌𝑖 is a finite union of affine opens (as 𝑓 is
quasi-compact). Since each 𝑇 ∩ 𝑌𝑖 is nowhere dense, and since a finite union of nowhere
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dense sets is nowhere dense (see Topology, Lemma 5.17.2), it suffices to prove that the
image 𝑓(𝑇 ∩ 𝑌𝑖) is nowhere dense in 𝑋. This reduces us to the case where both 𝑋 and 𝑌 are
affine. At this point we apply Lemma 24.47.3 above to get a diagram

𝑌

𝑓 ��

𝑗
// 𝑍

𝜋~~
𝑋

with 𝑍 affine, 𝜋 finite and 𝑗 an open immersion. Set 𝑇 = 𝑗(𝑇) ⊂ 𝑍. By Topology, Lemma
5.17.3 we see 𝑇 is nowhere dense in 𝑍. Since 𝑓(𝑇) ⊂ 𝜋(𝑇) the lemma follows from the
corresponding result in the finite case, see Lemma 24.44.7. �

24.48. Universally bounded fibres

Let 𝑋 be a scheme over a field 𝑘. If 𝑋 is finite over 𝑘, then 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) where 𝐴 is a
finite 𝑘-algebra. Another way to say this is that 𝑋 is finite locally free over 𝑆𝑝𝑒𝑐(𝑘), see
Definition 24.44.1. Hence 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) has a degree which is an integer 𝑑 ≥ 0, namely
𝑑 = dim𝑘(𝐴). We sometime call this the degree of the (finite) scheme 𝑋 over 𝑘.

Definition 24.48.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes.
(1) We say the integer 𝑛 bounds the degrees of the fibres of 𝑓 if for all 𝑦 ∈ 𝑌 the fibre

𝑋𝑦 is a finite scheme over 𝜅(𝑦) whose degree over 𝜅(𝑦) is ≤ 𝑛.
(2) We say the fibres of 𝑓 are universally bounded15 if there exists an integer 𝑛 which

bounds the degrees of the fibres of 𝑓.

Note that in particular the number of points in a fibre is bounded by 𝑛 as well. (The converse
does not hold, even if all fibres are finite reduced schemes.)

Lemma 24.48.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑛 ≥ 0. The following are
equivalent:

(1) the integer 𝑛 bounds the degrees of the fibres of 𝑓, and
(2) for every morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑌, where 𝑘 is a field, the fibre product 𝑋𝑘 =

𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 is finite over 𝑘 of degree ≤ 𝑛.
In this case 𝑓 is universally bounded and the schemes 𝑋𝑘 have at most 𝑛 points.

Proof. The implication (2) ⇒ (1) is trivial. The other implication holds because if the
image of 𝑆𝑝𝑒𝑐(𝑘) → 𝑌 is 𝑦, then 𝑋𝑘 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑆𝑝𝑒𝑐(𝜅(𝑦)) 𝑋𝑦. �

Lemma 24.48.3. A composition of morphisms with universally bounded fibres is a mor-
phism with universally bounded fibres. More precisely, assume that 𝑛 bounds the degrees
of the fibres of 𝑓 ∶ 𝑋 → 𝑌 and 𝑚 bounds the degrees of 𝑔 ∶ 𝑌 → 𝑍. Then 𝑛𝑚 bounds the
degrees of the fibres of 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 have universally bounded fibres. Say that
deg(𝑋𝑦/𝜅(𝑦)) ≤ 𝑛 for all 𝑦 ∈ 𝑌, and that deg(𝑌𝑧/𝜅(𝑧)) ≤ 𝑚 for all 𝑧 ∈ 𝑍. Let 𝑧 ∈ 𝑍 be a
point. By assumption the scheme 𝑌𝑧 is finite over 𝑆𝑝𝑒𝑐(𝜅(𝑧)). In particular, the underlying
topological space of 𝑌𝑧 is a finite discrete set. The fibres of the morphism 𝑓𝑧 ∶ 𝑋𝑧 → 𝑌𝑧
are the fibres of 𝑓 at the corresponding points of 𝑌, which are finite discrete sets by the
reasoning above. Hence we conclude that the underlying topological space of 𝑋𝑧 is a finite
discrete set as well. Thus 𝑋𝑧 is an affine scheme (this is a nice exercise; it also follows

15This is probably nonstandard notation.
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for example from Properties, Lemma 23.26.1 applied to the set of all points of 𝑋𝑧). Write
𝑋𝑧 = 𝑆𝑝𝑒𝑐(𝐴), 𝑌𝑧 = 𝑆𝑝𝑒𝑐(𝐵), and 𝑘 = 𝜅(𝑧). Then 𝑘 → 𝐵 → 𝐴 and we know that (a)
dim𝑘(𝐵) ≤ 𝑚, and (b) for every maximal ideal 𝔪 ⊂ 𝐵 we have dim𝜅(𝔪)(𝐴/𝔪𝐴) ≤ 𝑛.
We claim this implies that dim𝑘(𝐴) ≤ 𝑛𝑚. Note that 𝐵 is the product of its localizations
𝐵𝔪, for example because 𝑌𝑧 is a disjoint union of 1-point schemes, or by Algebra, Lem-
mas 7.49.2 and 7.49.8. So we see that dim𝑘(𝐵) = ∑𝔪(𝐵𝔪) and dim𝑘(𝐴) = ∑𝔪(𝐴𝔪)
where in both cases 𝔪 runs over the maximal ideals of 𝐵 (not of 𝐴). By the above, and
Nakayama's Lemma (Algebra, Lemma 7.14.5) we see that each 𝐴𝔪 is a quotient of 𝐵⊕𝑛

𝔪 as
a 𝐵𝔪-module. Hence dim𝑘(𝐴𝔪) ≤ 𝑛 dim𝑘(𝐵𝔪). Putting everything together we see that

dim𝑘(𝐴) = ∑𝔪
(𝐴𝔪) ≤ ∑𝔪

𝑛 dim𝑘(𝐵𝔪) = 𝑛 dim𝑘(𝐵) ≤ 𝑛𝑚

as desired. �

Lemma 24.48.4. A base change of a morphism with universally bounded fibres is a mor-
phism with universally bounded fibres. More precisely, if 𝑛 bounds the degrees of the fibres
of 𝑓 ∶ 𝑋 → 𝑌 and 𝑌′ → 𝑌 is any morphism, then the degrees of the fibres of the base change
𝑓′ ∶ 𝑌′ ×𝑌 𝑋 → 𝑌′ → 𝑌′ is also bounded by 𝑛.

Proof. This is clear from the result of Lemma 24.48.2. �

Lemma 24.48.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑌′ → 𝑌 be a morphism of
schemes, and let 𝑓′ ∶ 𝑋′ = 𝑋𝑌′ → 𝑌′ be the base change of 𝑓. If 𝑌′ → 𝑌 is surjective and
𝑓′ has universally bounded fibres, then 𝑓 has universally bounded fibres. More precisely,
if 𝑛 bounds the degree of the fibres of 𝑓′, then also 𝑛 bounds the degrees of the fibres of 𝑓.

Proof. Let 𝑛 ≥ 0 be an integer bounding the degrees of the fibres of 𝑓′. We claim that 𝑛
works for 𝑓 also. Namely, if 𝑦 ∈ 𝑌 is a point, then choose a point 𝑦′ ∈ 𝑌′ lying over 𝑦 and
observe that

𝑋′
𝑦′ = 𝑆𝑝𝑒𝑐(𝜅(𝑦′)) ×𝑆𝑝𝑒𝑐(𝜅(𝑦)) 𝑋𝑦.

Since 𝑋′
𝑦′ is assumed finite of degree ≤ 𝑛 over 𝜅(𝑦′) it follows that also 𝑋𝑦 is finite of

degree ≤ 𝑛 over 𝜅(𝑦). (Some details omitted.) �

Lemma 24.48.6. An immersion has universally bounded fibres.

Proof. The integer 𝑛 = 1 works in the definition. �

Lemma 24.48.7. Let 𝑓 ∶ 𝑋 → 𝑌 be an étale morphism of schemes. Let 𝑛 ≥ 0. The
following are equivalent

(1) the integer 𝑛 bounds the degrees of the fibres,
(2) for every field 𝑘 and morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑌 the base change 𝑋𝑘 = 𝑆𝑝𝑒𝑐(𝑘)×𝑌 𝑋

has at most 𝑛 points, and
(3) for every 𝑦 ∈ 𝑌 and every separable algebraic closure 𝜅(𝑦) ⊂ 𝜅(𝑦)𝑠𝑒𝑝 the scheme

𝑋𝜅(𝑦)𝑠𝑒𝑝 has at most 𝑛 points.

Proof. This follows from Lemma 24.48.2 and the fact that the fibres 𝑋𝑦 are disjoint unions
of spectra of finite separable field extensions of 𝜅(𝑦), see Lemma 24.35.7. �

Having universally bounded fibres is an absolute notion and not a relative notion. This is
why the condition in the following lemma is that 𝑋 is quasi-compact, and not that 𝑓 is
quasi-compact.

Lemma 24.48.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that
(1) 𝑓 is locally quasi-finite, and
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(2) 𝑋 is quasi-compact.
Then 𝑓 has universally bounded fibres.

Proof. Since 𝑋 is quasi-compact, there exists a finite affine open covering 𝑋 = ⋃𝑖=1,…,𝑛 𝑈𝑖
and affine opens 𝑉𝑖 ⊂ 𝑌, 𝑖 = 1, … , 𝑛 such that 𝑓(𝑈𝑖) ⊂ 𝑉𝑖. Because of the local na-
ture of ``local quasi-finiteness'' (see Lemma 24.19.6 part (4)) we see that the morphisms
𝑓|𝑈𝑖

∶ 𝑈𝑖 → 𝑉𝑖 are locally quasi-finite morphisms of affines, hence quasi-finite, see Lemma
24.19.9. For 𝑦 ∈ 𝑌 it is clear that 𝑋𝑦 = ⋃𝑦∈𝑉𝑖

(𝑈𝑖)𝑦 is an open covering. Hence it suffices
to prove the lemma for a quasi-finite morphism of affines (namely, if 𝑛𝑖 works for the mor-
phism 𝑓|𝑈𝑖

∶ 𝑈𝑖 → 𝑉𝑖, then ∑ 𝑛𝑖 works for 𝑓).

Assume 𝑓 ∶ 𝑋 → 𝑌 is a quasi-finite morphism of affines. By Lemma 24.47.3 we can find
a diagram

𝑋

𝑓 ��

𝑗
// 𝑍

𝜋
��

𝑌
with 𝑍 affine, 𝜋 finite and 𝑗 an open immersion. Since 𝑗 has universally bounded fibres
(Lemma 24.48.6) this reduces us to showing that 𝜋 has universally bounded fibres (Lemma
24.48.3).

This reduces us to a morphism of the form 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) where 𝐴 → 𝐵 is finite.
Say 𝐵 is generated by 𝑥1, … , 𝑥𝑛 over 𝐴 and say 𝑃𝑖(𝑇) ∈ 𝐴[𝑇] is a monic polynomial of
degree 𝑑𝑖 such that 𝑃𝑖(𝑥𝑖) = 0 in 𝐵 (a finite ring extension is integral, see Algebra, Lemma
7.32.3). With these notations it is clear that

⨁
0≤𝑒𝑖<𝑑𝑖,𝑖=1,…𝑛

𝐴 ⟶ 𝐵, (𝑎(𝑒1,…,𝑒𝑛)) ⟼ ∑ 𝑎(𝑒1,…,𝑒𝑛)𝑥
𝑒1
1 … 𝑥𝑒𝑛

𝑛

is a surjective 𝐴-module map. Thus for any prime 𝔭 ⊂ 𝐴 this induces a surjective map
𝜅(𝔭)-vector spaces

𝜅(𝔭)⊕𝑑1…𝑑𝑛 ⟶ 𝐵 ⊗𝐴 𝜅(𝔭)
In other words, the integer 𝑑1 … 𝑑𝑛 works in the definition of a morphism with universally
bounded fibres. �

Lemma 24.48.9. Consider a commutative diagram of morphisms of schemes

𝑋

𝑔   

𝑓
// 𝑌

ℎ��
𝑍

If 𝑔 has universally bounded fibres, and 𝑓 is surjective and flat, then also ℎ has universally
bounded fibres. More precisely, if 𝑛 bounds the degree of the fibres of 𝑔, then also 𝑛 bounds
the degree of the fibres of ℎ.

Proof. Assume 𝑔 has universally bounded fibres, and 𝑓 is surjective and flat. Say the degree
of the fibres of 𝑔 is bounded by 𝑛 ∈ 𝐍. We claim 𝑛 also works for ℎ. Let 𝑧 ∈ 𝑍. Consider
the morphism of schemes 𝑋𝑧 → 𝑌𝑧. It is flat and surjective. By assumption 𝑋𝑧 is a finite
scheme over 𝜅(𝑧), in particular it is the spectrum of an Artinian ring (by Algebra, Lemma
7.49.2). By Lemma 24.11.13 the morphism 𝑋𝑧 → 𝑌𝑧 is affine in particular quasi-compact.
It follows from Lemma 24.24.10 that 𝑌𝑧 is a finite discrete as this holds for 𝑋𝑧. Hence 𝑌𝑧 is
an affine scheme (this is a nice exercise; it also follows for example from Properties, Lemma
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23.26.1 applied to the set of all points of 𝑌𝑧). Write 𝑌𝑧 = 𝑆𝑝𝑒𝑐(𝐵) and 𝑋𝑧 = 𝑆𝑝𝑒𝑐(𝐴). Then
𝐴 is faithfully flat over 𝐵, so 𝐵 ⊂ 𝐴. Hence dim𝑘(𝐵) ≤ dim𝑘(𝐴) ≤ 𝑛 as desired. �
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CHAPTER 25

Coherent Cohomology

25.1. Introduction

The title of this chapter is a bit of a lie because we will first prove a number of results on
the cohomology of quasi-coherent sheaves. A fundamental reference is [DG67]. Having
done this we wil elaborate on cohomology of coherent sheaves in the Noetherian setting.
See also [Ser55b].

25.2. Cech cohomology of quasi-coherent sheaves

Let 𝑋 be a scheme. Let 𝑈 ⊂ 𝑋 be an affine open. Recall that a standard open covering of
𝑈 is a covering of the form 𝒰 ∶ 𝑈 = ⋃𝑛

𝑖=1 𝐷(𝑓𝑖) where 𝑓1, … , 𝑓𝑛 ∈ Γ(𝑈, 𝒪𝑋) generate the
unit ideal, see Schemes, Definition 21.5.2.

Lemma 25.2.1. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let 𝒰 ∶ 𝑈 =
⋃𝑛

𝑖=1 𝐷(𝑓𝑖) be a standard open covering of an affine open of 𝑋. Then �̌�𝑝(𝒰, ℱ) = 0 for all
𝑝 > 0.

Proof. Write 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) for some ring 𝐴. In other words, 𝑓1, … , 𝑓𝑛 are elements of 𝐴
which generate the unit ideal of 𝐴. Write ℱ|𝑈 = 𝑀 for some 𝐴-module 𝑀. Clearly the
Cech complex ̌𝒞•(𝒰, ℱ) is identified with the complex

∏
𝑖0

𝑀𝑓𝑖0
→ ∏

𝑖0𝑖1

𝑀𝑓𝑖0𝑓𝑖1
→ ∏

𝑖0𝑖1𝑖2

𝑀𝑓𝑖0𝑓𝑖1𝑓𝑖2
→ …

We are asked to show that the extended complex

(25.2.1.1) 0 → 𝑀 → ∏
𝑖0

𝑀𝑓𝑖0
→ ∏

𝑖0𝑖1

𝑀𝑓𝑖0𝑓𝑖1
→ ∏

𝑖0𝑖1𝑖2

𝑀𝑓𝑖0𝑓𝑖1𝑓𝑖2
→ …

(whose truncation we have studied in Algebra, Lemma 7.20.2) is exact. It suffices to show
that (25.2.1.1) is exact after localizing at a prime 𝔭, see Algebra, Lemma 7.21.1. In fact we
will show that the extended complex localized at 𝔭 is homotopic to zero.

There exists an index 𝑖 such that 𝑓𝑖∉𝔭. Choose and fix such an element 𝑖fix. Note that
𝑀𝑓𝑖fix,𝔭 = 𝑀𝔭. Similarly for a localization at a product 𝑓𝑖0 … 𝑓𝑖𝑝 and 𝔭 we can drop any 𝑓𝑖𝑗
for which 𝑖𝑗 = 𝑖fix. Let us define a homotopy

ℎ ∶ ∏𝑖0…𝑖𝑝+1
𝑀𝑓𝑖0…𝑓𝑖𝑝+1,𝔭 ⟶ ∏𝑖0…𝑖𝑝

𝑀𝑓𝑖0…𝑓𝑖𝑝,𝔭

by the rule
ℎ(𝑠)𝑖0…𝑖𝑝 = 𝑠𝑖fix𝑖0…𝑖𝑝

(This is ``dual'' to the homotopy in the proof of Cohomology, Lemma 18.10.4.) In other
words, ℎ ∶ ∏𝑖0

𝑀𝑓𝑖0,𝔭 → 𝑀 is projection onto the factor 𝑀𝑓𝑖fix,𝔭 = 𝑀𝔭 and in general the
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map ℎ equal projection onto the factors 𝑀𝑓𝑖fix𝑓𝑖1…𝑓𝑖𝑝+1,𝔭 = 𝑀𝑓𝑖1…𝑓𝑖𝑝+1,𝔭. We compute

(𝑑ℎ + ℎ𝑑)(𝑠)𝑖0…𝑖𝑝 =
𝑝

∑
𝑗=0

(−1)𝑗ℎ(𝑠)𝑖0… ̂𝑖𝑗…𝑖𝑝 + 𝑑(𝑠)𝑖fix𝑖0…𝑖𝑝

=
𝑝

∑
𝑗=0

(−1)𝑗𝑠𝑖fix𝑖0… ̂𝑖𝑗…𝑖𝑝 + 𝑠𝑖0…𝑖𝑝 +
𝑝

∑
𝑗=0

(−1)𝑗+1𝑠𝑖fix𝑖0… ̂𝑖𝑗…𝑖𝑝

=𝑠𝑖0…𝑖𝑝

This proves the identity map is homotopic to zero as desired. �

The following lemma says in particular that for any affine scheme 𝑋 and any quasi-coherent
sheaf ℱ on 𝑋 we have

𝐻𝑝(𝑋, ℱ) = 0

for all 𝑝 > 0.

Lemma 25.2.2. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. For any affine
open 𝑈 ⊂ 𝑋 we have 𝐻𝑝(𝑈, ℱ) = 0 for all 𝑝 > 0.

Proof. We are going to apply Cohomology, Lemma 18.11.8. As our basis ℬ for the topol-
ogy of 𝑋 we are going to use the affine opens of 𝑋. As our set Cov of open coverings
we are going to use the standard open coverings of affine opens of 𝑋. Next we check that
conditions (1), (2) and (3) of Cohomology, Lemma 18.11.8 hold. Note that the intersec-
tion of standard opens in an affine is another standard open. Hence property (1) holds.
The coverings form a cofinal system of open coverings of any element of ℬ, see Schemes,
Lemma 21.5.1. Hence (2) holds. Finally, condition (3) of the lemma follows from Lemma
25.2.1. �

Here is a relative version of the vanishing of cohomology of quasi-coherent sheaves on
affines.

Lemma 25.2.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. If 𝑓 is affine then 𝑅𝑖𝑓∗ℱ = 0 for all 𝑖 > 0.

Proof. According to Cohomology, Lemma 18.6.3 the sheaf 𝑅𝑖𝑓∗ℱ is the sheaf associated
to the presheaf 𝑉 ↦ 𝐻𝑖(𝑓−1(𝑉), ℱ|𝑓−1(𝑉)). By assumption, whenever 𝑉 is affine we have
that 𝑓−1(𝑉) is affine, see Morphisms, Definition 24.11.1. By Lemma 25.2.2 we conclude
that 𝐻𝑖(𝑓−1(𝑉), ℱ|𝑓−1(𝑉)) = 0 whenever 𝑉 is affine. Since 𝑆 has a basis consisting of affine
opens we win. �

Lemma 25.2.4. Let 𝑋 be a scheme. Let 𝒰 ∶ 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 be an open covering such that
𝑈𝑖0…𝑖𝑝 is affine open for all 𝑝 ≥ 0 and all 𝑖0, … , 𝑖𝑝 ∈ 𝐼 In this case for any quasi-coherent
sheaf ℱ we have

�̌�𝑝(𝒰, ℱ) = 𝐻𝑝(𝑋, ℱ)

as Γ(𝑋, 𝒪𝑋)-modules for all 𝑝.

Proof. In view of Lemma 25.2.2 this is a special case of Cohomology, Lemma 18.11.5. �
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25.3. Vanishing of cohomology

We have seen that on an affine scheme the higher cohomology groups of any quasi-coherent
sheaf vanish (Lemma 25.2.2). It turns out that this also characterizes affine schemes. We
give two versions allthough the first covers all conceivable cases.

Lemma 25.3.1. Let 𝑋 be a scheme. Assume that
(1) 𝑋 is quasi-compact,
(2) for every quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑋 we have 𝐻1(𝑋, ℐ) = 0.

Then 𝑋 is affine.

Proof. Let 𝑥 ∈ 𝑋 be a closed point. Let 𝑈 ⊂ 𝑋 be an affine open neighbourhood of 𝑥.
Write 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) and let 𝔪 ⊂ 𝐴 be the maximal ideal corresponding to 𝑥. Set 𝑍 = 𝑋⧵𝑈
and 𝑍′ = 𝑍∪{𝑥}. By Schemes, Lemma 21.12.4 there are quasi-coherent sheaves of ideals
ℐ, resp. ℐ′ cutting out the reduced closed subschemes 𝑍, resp. 𝑍′. Consider the short
exact sequence

0 → ℐ′ → ℐ → ℐ/ℐ′ → 0.
Since 𝑥 is a closed point of 𝑋 and 𝑥∉𝑍 we see that ℐ/ℐ′ is supported at 𝑥. In fact, the re-
striction of ℐ/ℐ′ to 𝑈 corresponds to the 𝐴-module 𝐴/𝔪. Hence we see that Γ(𝑋, ℐ/ℐ′) =
𝐴/𝔪. Since by assumption 𝐻1(𝑋, ℐ′) = 0 we see there exists a global section 𝑓 ∈ Γ(𝑋, ℐ)
which maps to the element 1 ∈ 𝐴/𝔪 as a section of ℐ/ℐ′. Clearly we have 𝑥 ∈ 𝑋𝑓 ⊂ 𝑈.
This implies that 𝑋𝑓 = 𝐷(𝑓𝐴) where 𝑓𝐴 is the image of 𝑓 in 𝐴 = Γ(𝑈, 𝒪𝑋). In particular
𝑋𝑓 is affine.

Consider the union 𝑊 = ⋃ 𝑋𝑓 over all 𝑓 ∈ Γ(𝑋, 𝒪𝑋) such that 𝑋𝑓 is affine. Obviously
𝑊 is open in 𝑋. By the arguments above every closed point of 𝑋 is contained in 𝑊. The
closed subset 𝑋⧵𝑊 of 𝑋 is also quasi-compact (see Topology, Lemma 5.9.3). Hence it has
a closed point if it is nonempty (see Topology, Lemma 5.9.6). This is a would contradict
the fact that all closed points are in 𝑊. Hence we conclude 𝑋 = 𝑊.

Choose finitely many 𝑓1, … , 𝑓𝑛 ∈ Γ(𝑋, 𝒪𝑋) such that 𝑋 = 𝑋𝑓1
∪ … ∪ 𝑋𝑓𝑛

and such that
each 𝑋𝑓𝑖

is affine. This is possible as we've seen above. By Properties, Lemma 23.24.2
to finish the proof it suffices to show that 𝑓1, … , 𝑓𝑛 generate the unit ideal in Γ(𝑋, 𝒪𝑋).
Conisder the short exact sequence

0 // ℱ // 𝒪⊕𝑛
𝑋

𝑓1,…,𝑓𝑛 // 𝒪𝑋
// 0

The arrow defined by 𝑓1, … , 𝑓𝑛 is surjective since the opens 𝑋𝑓𝑖
cover 𝑋. We let ℱ be the

kernel of this surjective map. Observe that ℱ has a filtration

0 = ℱ0 ⊂ ℱ1 ⊂ … ⊂ ℱ𝑛 = ℱ

so that each subquotient ℱ𝑖/ℱ𝑖−1 is isomorphic to a quasi-coherent sheaf of ideals. Namely
we can take ℱ𝑖 to be the intersection of the first 𝑖 direct summands of 𝒪⊕𝑛

𝑋 . The assumption
of the lemma implies that 𝐻1(𝑋, ℱ𝑖/ℱ𝑖−1) = 0 for all 𝑖. This implies that 𝐻1(𝑋, ℱ2) = 0
because it is sandwiched between 𝐻1(𝑋, ℱ1) and 𝐻1(𝑋, ℱ2/ℱ1). Continuing like this we
deduce that 𝐻1(𝑋, ℱ) = 0. Therefore we conclude that the map

⨁𝑖=1,…,𝑛 Γ(𝑋, 𝒪𝑋)
𝑓1,…,𝑓𝑛 // Γ(𝑋, 𝒪𝑋)

is surjective as desired. �
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Note that if 𝑋 is a Noetherian scheme then every quasi-coherent sheaf of ideals is automat-
ically a coherent sheaf of ideals and a finite type quasi-coherent sheaf of ideals. Hence the
preceding lemma and the next lemma both apply in this case.

Lemma 25.3.2. Let 𝑋 be a scheme. Assume that
(1) 𝑋 is quasi-compact,
(2) 𝑋 is quasi-separated, and
(3) 𝐻1(𝑋, ℐ) = 0 for every quasi-coherent sheaf of ideals ℐ of finite type.

Then 𝑋 is affine.

Proof. By Properties, Lemma 23.20.3 every quasi-coherent sheaf of ideals is a directed
colimit of quasi-coherent sheaves of ideals of finite type. By Cohomology, Lemma 18.15.1
taking cohomology on 𝑋 commutes with directed colimits. Hence we see that 𝐻1(𝑋, ℐ) =
0 for every quasi-coherent sheaf of ideals on 𝑋. In other words we see that Lemma 25.3.1
applies. �

25.4. Derived category of quasi-coherent modules

In this section we briefly discuss the relationship between quasi-coherent modules and
all modules on a scheme 𝑆. (This should be elaborated on and generalized.) A refer-
ence is [TT90, Appendix B]. By the discussion in Schemes, Section 21.24 the embedding
QCoh(𝒪𝑆) ⊂ Mod(𝒪𝑆) exhibits QCoh(𝒪𝑆) as a weak Serre subcategory of the category of
𝒪𝑆-modules. Denote 𝐷QCoh(𝒪𝑆) ⊂ 𝐷(𝒪𝑆) the subcategory of complexes whose cohomol-
ogy sheaves are quasi-coherent, see Derived Categories, Section 11.12. Thus we obtain a
canonical functor

(25.4.0.1) 𝐷(QCoh(𝒪𝑆)) ⟶ 𝐷QCoh(𝒪𝑆)

see Derived Categories, Equation (11.12.1.1).

Lemma 25.4.1. If 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) is an affine scheme, then (25.4.0.1) is an equivalence.

Proof. The key to this lemma is to prove that the functor 𝑅Γ(𝑆, −) gives a quasi-inverse.
For complexes bounded below this is straightforward using the vanishing of cohomology of
Lemma 25.2.2. To prove it also for unbounded complexes we have to be a little bit careful:
namely, even if you accept that the unbounded derived functor 𝑅Γ(𝑆, −) exists, then it isn't
obvious how to compute it!

Let ℱ• be an object of 𝐷QCoh(𝒪𝑆)) and denote ℋ𝑖 = 𝐻𝑖(ℱ•) its 𝑖th cohomology sheaf. Let
ℬ be the set of affine open subsets of 𝑆. Then 𝐻𝑝(𝑈, ℋ𝑖) = 0 for all 𝑝 > 0, all 𝑖 ∈ 𝐙,
and all 𝑈 ∈ ℬ, see Lemma 25.2.2. According to Cohomology, Section 18.23 this implies
there exists a quasi-isomorphism ℱ• → ℐ• where ℐ• is a K-injective complex, ℐ• =
𝑙𝑖𝑚 ℐ•

𝑛, each ℐ•
𝑛 is a bounded below complex of injectives, the maps in the system … →

ℐ•
2 → ℐ•

1 are termwise split surjections, and each ℐ•
𝑛 is quasi-isomorphic to 𝜏≥−𝑛ℱ•. In

particular, we conclude that 𝑅Γ(𝑆, −) is defined at each object of 𝐷QCoh(𝒪𝑆)), see Derived
Categories, Lemma 11.28.4, with values 𝑅Γ(𝑆, ℱ•) = Γ(𝑆, ℐ•). This defines an exact
functor of triangulated categories

(25.4.1.1) 𝑅Γ(𝑆, −) ∶ 𝐷QCoh(𝒪𝑆) ⟶ 𝐷(𝐴),

see Derived Categories, Proposition 11.14.8. In the proof of Cohomology, Lemma 18.23.1
we have seen that 𝐻𝑚(Γ(𝑆, ℐ•)) is the limit of the cohomology groups 𝐻𝑚(Γ(𝑆, ℐ•

𝑛)). For
𝑛 > −𝑚 these groups are equal to Γ(𝑆, ℋ𝑚) by the vanishing of higer cohomology and the
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spectral sequence of Derived Categories, Lemma 11.20.3. Combined with the (assumed)
equality

ℋ𝑚 = ̃Γ(𝑆, ℋ𝑚)
we conclude the canonical map of complexes

̃Γ(𝑆, ℐ•) ⟶ ℐ•

(see Schemes, Lemma 21.7.1) is a quasi-isomorphism. We claim the composition

𝐷(𝐴) ≅ 𝐷(QCoh(𝒪𝑆)) ⟶ 𝐷QCoh(𝒪𝑆) ⟶ 𝐷(𝐴)

is isomorphic to the identity functor. Namely, given a complex of 𝐴-modules 𝑀•, let ℱ• =
𝑀•, choose ℱ• → ℐ• as above, and finally take Γ(𝑆, ℐ•). The arguments above show that
𝑀• = Γ(𝑆, ℱ•) → Γ(𝑆, ℐ•) is a quasi-isomorphism. This is functorial in 𝑀•, hence we
conclude that the composition of functors is isomorphic to the identity functor on 𝐷(𝐴).
On the other hand, we have seen above that the composition

𝐷QCoh(𝒪𝑆) ⟶ 𝐷(𝐴) ≅ 𝐷(QCoh(𝒪𝑆)) ⟶ 𝐷QCoh(𝒪𝑆)

is isomorphic to the identity functor, via the quasi-isomorphisms ̃Γ(𝑆, ℐ•) → ℐ• above.
This finishes the proof. �

Actually it is true that the comparison map 𝐷(QCoh(𝒪𝑆)) → 𝐷QCoh(𝒪𝑆) is an equivalence
for any quasi-compact and (semi-)separated scheme (insert future reference here).

25.5. Quasi-coherence of higher direct images

We have seen that the higher cohomology groups of a quasi-coherent module on an affine
is zero. For (quasi-)separated quasi-compact schemes 𝑋 this implies vanishing of coho-
mology groups of quasi-coherent sheaves beyond a certain degree. However, it may not
be the case that 𝑋 has finite cohomological dimension, because that is defined in terms of
vanishing of cohomology of all 𝒪𝑋-modules.

Lemma 25.5.1. Let 𝑋 be a quasi-compact separated scheme. Let 𝑡 = 𝑡(𝑋) be the minimal
number of affine opens needed to cover 𝑋. Then 𝐻𝑛(𝑋, ℱ) = 0 for all 𝑛 ≥ 𝑡 and all
quasi-coherent sheaves ℱ.

Proof. First proof. By induction on 𝑡. If 𝑡 = 1 the result follows from Lemma 25.2.2. If
𝑡 > 1 write 𝑋 = 𝑈 ∪ 𝑉 with 𝑉 affine open and 𝑈 = 𝑈1 ∪ … ∪ 𝑈𝑡−1 a union of 𝑡 − 1 open
affines. Note that in this case 𝑈 ∩ 𝑉 = (𝑈1 ∩ 𝑉) ∪ … (𝑈𝑡−1 ∩ 𝑉) is also a union of 𝑡 − 1 affine
open subschemes, see Schemes, Lemma 21.21.8. We apply the Mayer-Vietoris long exact
sequence

0 → 𝐻0(𝑋, ℱ) → 𝐻0(𝑈, ℱ) ⊕ 𝐻0(𝑉, ℱ) → 𝐻0(𝑈 ∩ 𝑉, ℱ) → 𝐻1(𝑋, ℱ) → …

see Cohomology, Lemma 18.8.2. By induction we see that the groups 𝐻𝑖(𝑈, ℱ), 𝐻𝑖(𝑈, ℱ),
𝐻𝑖(𝑈, ℱ) are zero for 𝑖 ≥ 𝑡 − 1. It follows immediately that 𝐻𝑖(𝑋, ℱ) is zero for 𝑖 ≥ 𝑡.

Second proof. Let 𝒰 ∶ 𝑋 = ⋃𝑡
𝑖=1 𝑈𝑖 be a finite affine open covering. Since 𝑋 is sep-

arated the multiple intersections 𝑈𝑖0…𝑖𝑝 are all affine, see Schemes, Lemma 21.21.8. By
Lemma 25.2.4 the Cech cohomology groups �̌�𝑝(𝒰, ℱ) agree with the cohomology groups.
By Cohomology, Lemma 18.17.6 the Cech cohomology groups may be computed using
the alternating Cech complex ̌𝒞•

𝑎𝑙𝑡(𝒰, ℱ). As the covering consists of 𝑡 elements we see
immediately that ̌𝒞𝑝

𝑎𝑙𝑡(𝒰, ℱ) = 0 for all 𝑝 ≥ 𝑡. Hence the result follows. �
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Lemma 25.5.2. Let 𝑋 be a quasi-compact quasi-separated scheme. Let 𝑋 = 𝑈1 ∪ … ∪ 𝑈𝑡
be an affine open covering. Set

𝑑 = max𝐼⊂{1,…,𝑡} |𝐼| + 𝑡(⋂𝑖∈𝐼
𝑈𝑖)

where 𝑡(𝑈) is theminimal number of affines needed to cover the scheme𝑈. Then𝐻𝑛(𝑋, ℱ) =
0 for all 𝑛 ≥ 𝑑 and all quasi-coherent sheaves ℱ.

Proof. Note that since 𝑋 is quasi-separated the numbers 𝑡(⋂𝑖∈𝐼 𝑈𝑖) are finite. Let 𝒰 ∶
𝑋 = ⋃𝑡

𝑖=1 𝑈𝑖. By Cohomology, Lemma 18.11.4 there is a spectral sequence

𝐸𝑝,𝑞
2 = �̌�𝑝(𝒰, 𝐻𝑞(ℱ))

converging to 𝐻𝑝+𝑞(𝑈, ℱ). By Cohomology, Lemma 18.17.6 we have

𝐸𝑝,𝑞
2 = 𝐻𝑝( ̌𝒞•

𝑎𝑙𝑡(𝒰, 𝐻𝑞(ℱ))

The alternating Čech complex with values in the presheaf 𝐻𝑞(ℱ) vanishes in high degrees
by Lemma 25.5.1, more precisely 𝐸𝑝,𝑞

2 = 0 for 𝑝 + 𝑞 ≥ 𝑑. Hence the result follows. �

Lemma 25.5.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume that 𝑓 is quasi-
separated and quasi-compact.

(1) For any quasi-coherent 𝒪𝑋-module ℱ the higher direct images 𝑅𝑝𝑓∗ℱ are quasi-
coherent on 𝑆.

(2) If 𝑆 is quasi-compact, there exists an integer 𝑛 = 𝑛(𝑋, 𝑆, 𝑓) such that 𝑅𝑝𝑓∗ℱ = 0
for all 𝑝 ≥ 𝑛 and any quasi-coherent sheaf ℱ on 𝑋.

(3) In fact, if 𝑆 is quasi-compact we can find 𝑛 = 𝑛(𝑋, 𝑆, 𝑓) such that for every
morphism of schemes 𝑆′ → 𝑆 we have 𝑅𝑝(𝑓′)∗ℱ′ = 0 for 𝑝 ≥ 𝑛 and any quasi-
coherent sheaf ℱ′ on 𝑋′. Here 𝑓′ ∶ 𝑋′ = 𝑆′ ×𝑆 𝑋 → 𝑆′ is the base change of
𝑓.

Proof. We first prove (1). Note that under the hypotheses of the lemma the sheaf 𝑅0𝑓∗ℱ =
𝑓∗ℱ is quasi-coherent by Schemes, Lemma 21.24.1. Using Cohomology, Lemma 18.6.4
we see that forming higher direct images commutes with restriction to open subschemes.
Since being quasi-coherent is local on 𝑆 we may assume 𝑆 is affine.

Assume 𝑆 is affine and 𝑓 quasi-compact and separated. Let 𝑡 ≥ 1 be the minimal number
of affine opens needed to cover 𝑋. We will prove this case of (1) by induction on 𝑡. If
𝑡 = 1 then the morphism 𝑓 is affine by Morphisms, Lemma 24.11.12 and (1) follows from
Lemma 25.2.3. If 𝑡 > 1 write 𝑋 = 𝑈 ∪ 𝑉 with 𝑉 affine open and 𝑈 = 𝑈1 ∪ … ∪ 𝑈𝑡−1 a
union of 𝑡 − 1 open affines. Note that in this case 𝑈 ∩ 𝑉 = (𝑈1 ∩ 𝑉) ∪ … (𝑈𝑡−1 ∩ 𝑉) is also
a union of 𝑡 − 1 affine open subschemes, see Schemes, Lemma 21.21.8. We will apply the
relative Mayer-Vietoris sequence

0 → 𝑓∗ℱ → 𝑎∗(ℱ|𝑈) ⊕ 𝑏∗(ℱ|𝑉) → 𝑐∗(ℱ|𝑈∩𝑉) → 𝑅1𝑓∗ℱ → …

see Cohomology, Lemma 18.8.3. By induction we see that 𝑅𝑝𝑎∗ℱ, 𝑅𝑝𝑏∗ℱ and 𝑅𝑝𝑐∗ℱ are
all quasi-coherent. This implies that each of the sheaves 𝑅𝑝𝑓∗ℱ is quasi-coherent since it
sits in the middle of a short exact sequence with a cokernel of a map between quasi-coherent
sheaves on the left and a kernel of amap between quasi-coherent sheaves on the right. Using
the results on quasi-coherent sheaves in Schemes, Section 21.24 we see conclude 𝑅𝑝𝑓∗ℱ
is quasi-coherent.

Assume 𝑆 is affine and 𝑓 quasi-compact and quasi-separated. Let 𝑡 ≥ 1 be the minimal
number of affine opens needed to cover 𝑋. We will prove (1) by induction on 𝑡. In case
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𝑡 = 1 the morphism 𝑓 is separated and we are back in the previous case (see previous
paragraph). If 𝑡 > 1 write 𝑋 = 𝑈 ∪ 𝑉 with 𝑉 affine open and 𝑈 a union of 𝑡 − 1 open affines.
Note that in this case 𝑈 ∩ 𝑉 is an open subscheme of an affine scheme and hence separated
(see Schemes, Lemma 21.21.6). We will apply the relative Mayer-Vietoris sequence

0 → 𝑓∗ℱ → 𝑎∗(ℱ|𝑈) ⊕ 𝑏∗(ℱ|𝑉) → 𝑐∗(ℱ|𝑈∩𝑉) → 𝑅1𝑓∗ℱ → …
see Cohomology, Lemma 18.8.3. By induction and the result of the previous paragraph we
see that 𝑅𝑝𝑎∗ℱ, 𝑅𝑝𝑏∗ℱ and 𝑅𝑝𝑐∗ℱ are quasi-coherent. As in the previous paragraph this
implies each of sheaves 𝑅𝑝𝑓∗ℱ is quasi-coherent.
Next, we prove (3) and a fortiori (2). Choose a finite affine open covering 𝑆 = ⋃𝑗=1,…𝑚 𝑆𝑗.
For each 𝑖 choose a finite affine open covering 𝑓−1(𝑆𝑗) = ⋃𝑖=1,…𝑡𝑗

𝑈𝑗𝑖. Let

𝑑𝑗 = max𝐼⊂{1,…,𝑡𝑗} |𝐼| + 𝑡(⋂𝑖∈𝐼
𝑈𝑗𝑖)

be the integer found in Lemma 25.5.2. We claim that 𝑛(𝑋, 𝑆, 𝑓) = max 𝑑𝑗 works.

Namely, let 𝑆′ → 𝑆 be a morphism of schemes and let ℱ′ be a quasi-coherent sheaf on
𝑋′ = 𝑆′ ×𝑆 𝑋. We want to show that 𝑅𝑝𝑓′

∗ℱ′ = 0 for 𝑝 ≥ 𝑛(𝑋, 𝑆, 𝑓). Since this question
is local on 𝑆′ we may assume that 𝑆′ is affine and maps into 𝑆𝑗 for some 𝑗. Then 𝑋′ =
𝑆′ ×𝑆𝑗

𝑓−1(𝑆𝑗) is covered by the open affines 𝑆′ ×𝑆𝑗
𝑈𝑗𝑖, 𝑖 = 1, … 𝑡𝑗 and the intersections

⋂𝑖∈𝐼
𝑆′ ×𝑆𝑗

𝑈𝑗𝑖 = 𝑆′ ×𝑆𝑗 ⋂𝑖∈𝐼
𝑈𝑗𝑖

are covered by the same number of affines as before the base change. Applying Lemma
25.5.2 we get 𝐻𝑝(𝑋′, ℱ′) = 0. By the first part of the proof we already know that each
𝑅𝑞𝑓′

∗ℱ′ is quasi-coherent hence has vanishing higher cohomology groups on our affine
scheme 𝑆′, thus we see that 𝐻0(𝑆′, 𝑅𝑝𝑓′

∗ℱ′) = 𝐻𝑝(𝑋′, ℱ′) = 0 by Cohomology, Lemma
18.12.6. Since 𝑅𝑝𝑓′

∗ℱ′ is quasi-coherent we conclude that 𝑅𝑝𝑓′
∗ℱ′ = 0. �

Lemma 25.5.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume that 𝑓 is quasi-
separated and quasi-compact. Assume 𝑆 is affine. For any quasi-coherent 𝒪𝑋-module ℱ
we have

𝐻𝑞(𝑋, ℱ) = 𝐻0(𝑆, 𝑅𝑞𝑓∗ℱ)
for all 𝑞 ∈ 𝐙.

Proof. Consider the Leray spectral sequence𝐸𝑝,𝑞
2 = 𝐻𝑝(𝑆, 𝑅𝑞𝑓∗ℱ) converging to𝐻𝑝+𝑞(𝑋, ℱ),

see Cohomology, Lemma 18.12.4. By Lemma 25.5.3 we see that the sheaves 𝑅𝑞𝑓∗ℱ are
quasi-coherent. By Lemma 25.2.2 we see that 𝐸𝑝,𝑞

2 = 0 when 𝑝 > 0. Hence the spectral
sequence degenerates at 𝐸2 and we win. See also Cohomology, Lemma 18.12.6 (2) for the
general principle. �

25.6. Cohomology and base change, I

Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent sheaf on 𝑋. Suppose
further that 𝑔 ∶ 𝑆′ → 𝑆 is any morphism of schemes. Denote 𝑋′ = 𝑋𝑆′ = 𝑆′ ×𝑆 𝑋 the
base change of 𝑋 and denote 𝑓′ ∶ 𝑋′ → 𝑆′ the base change of 𝑓. Also write 𝑔′ ∶ 𝑋′ → 𝑋
the projection, and set ℱ′ = (𝑔′)∗ℱ. Here is a diagram representing the situation:

(25.6.0.1)

ℱ′ = (𝑔′)∗ℱ 𝑋′
𝑔′
//

𝑓′

��

𝑋

𝑓
��

ℱ

𝑅𝑓′
∗ℱ′ 𝑆′ 𝑔 // 𝑆 𝑅𝑓∗ℱ
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Here is the simplest case of the base change property we have in mind.

Lemma 25.6.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Assume 𝑓 is affine. In this case 𝑓∗ℱ ≅ 𝑅𝑓∗ℱ is a quasi-coherent sheaf, and
for every base change diagram (25.6.0.1) we have

𝑔∗𝑓∗ℱ = 𝑓′
∗(𝑔′)∗ℱ.

Proof. The vanishing of higher direct images is Lemma 25.2.3. The statement is local
on 𝑆 and 𝑆′. Hence we may assume 𝑋 = 𝑆𝑝𝑒𝑐(𝐴), 𝑆 = 𝑆𝑝𝑒𝑐(𝑅), 𝑆′ = 𝑆𝑝𝑒𝑐(𝑅′) and
ℱ = 𝑀 for some 𝐴-module 𝑀. We use Schemes, Lemma 21.7.3 to describe pullbacks
and pushforwards of ℱ. Namely, 𝑋′ = 𝑆𝑝𝑒𝑐(𝑅′ ⊗𝑅 𝐴) and ℱ′ is the quasi-coherent sheaf
associated to (𝑅′ ⊗𝑅 𝐴) ⊗𝐴 𝑀. Thus we see that the lemma boils down to the equality

(𝑅′ ⊗𝑅 𝐴) ⊗𝐴 𝑀 = 𝑅′ ⊗𝑅 𝑀
as 𝑅′-modules. �

In many situations it is sufficient to know about the following special case of cohomology
and base change. It follows immediately from the stronger results in the next section, but
since it is so important it deserves its own proof.

Lemma 25.6.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑔 ∶ 𝑆′ → 𝑆 be a morphism of schemes. Assume that 𝑔 is flat and that 𝑓 is
quasi-compact and quasi-separated. Then for any 𝑖 ≥ 0 we have

𝑅𝑖𝑓′
∗ℱ′ = 𝑔∗𝑅𝑖𝑓∗ℱ

with notation as in (25.6.0.1). Moreover, the induced isomorphism is the map given by the
base change map of Cohomology, Lemma 18.14.1.

Proof. The statement is local on 𝑆′ and hence we may assume 𝑆 and 𝑆′ are affine. Say
𝑆 = Spec(𝐴) and 𝑆′ = Spec(𝐵). In this case we are really trying to show that the map

𝐻𝑖(𝑋, ℱ) ⊗𝐴 𝐵 ⟶ 𝐻𝑖(𝑋𝐵, ℱ𝐵)
(given by the reference in the statement of the lemma) is an isomorphism where 𝑋𝐵 =
Spec(𝐵) ×Spec(𝐴) 𝑋 and ℱ𝐵 is the pullback of ℱ to 𝑋𝐵.
In case 𝑋 is separated, choose an affine open covering 𝒰 ∶ 𝑋 = 𝑈1 ∪ … ∪ 𝑈𝑡 and recall
that

�̌�𝑝(𝒰, ℱ) = 𝐻𝑝(𝑋, ℱ),
see Lemma 25.2.4. If 𝒰𝐵 ∶ 𝑋𝐵 = (𝑈1)𝐵 ∪ … ∪ (𝑈𝑡)𝐵 we obtain by base change, then it is
still the case that each (𝑈𝑖)𝐵 is affine and that 𝑋𝐵 is separated. Thus we obtain

�̌�𝑝(𝒰𝐵, ℱ𝐵) = 𝐻𝑝(𝑋𝐵, ℱ𝐵).

We have the following relation between the Čech complexes
̌𝒞•(𝒰𝐵, ℱ𝐵) = ̌𝒞•(𝒰, ℱ) ⊗𝐴 𝐵

as follows from Lemma 25.6.1. Since 𝐴 → 𝐵 is flat, the same thing remains true on taking
cohomology.
In case 𝑋 is quasi-separated, choose an affine open covering 𝒰 ∶ 𝑋 = 𝑈1 ∪ … ∪ 𝑈𝑡.
We will use the Čech-to-cohomology spectral sequence Cohomology, Lemma 18.11.4.
The reader who wishes to avoid this spectral sequence can use Majer-Vietoris and induc-
tion on 𝑡 as in the proof of Lemma 25.5.3. The spectral sequence has 𝐸2-page 𝐸𝑝,𝑞

2 =
�̌�𝑝(𝒰, 𝐻𝑞(ℱ)) and converges to 𝐻𝑝+𝑞(𝑋, ℱ). Similarly, we have a spectral sequence with
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𝐸2-page 𝐸𝑝,𝑞
2 = �̌�𝑝(𝒰𝐵, 𝐻𝑞(ℱ𝐵)) and converges to 𝐻𝑝+𝑞(𝑋𝐵, ℱ𝐵). Since the intersections

𝑈𝑖0…𝑖𝑝 are quasi-compact and separated, the result of the second paragraph of the proof
gives �̌�𝑝(𝒰𝐵, 𝐻𝑞(ℱ𝐵)) = �̌�𝑝(𝒰, 𝐻𝑞(ℱ)) ⊗𝐴 𝐵. Using that 𝐴 → 𝐵 is flat we conclude that
𝐻𝑖(𝑋, ℱ) ⊗𝐴 𝐵 → 𝐻𝑖(𝑋𝐵, ℱ𝐵) is an isomorphism for all 𝑖 and we win. �

25.7. Cohomology and base change, II

We would like to prove a little more in situation (25.6.0.1). Namely, if 𝑓 is quasi-compact
and quasi-separated we would like to represent 𝑅𝑓∗ℱ by a complex of quasi-coherent
sheaves on 𝑆. This can be done in some cases, for example if 𝑆 is quasi-compact and (semi-
)separated, by relating it to the question ofwhether𝐷+

𝑄𝐶𝑜ℎ(𝑆) is equivalent to𝐷+(QCoh(𝒪𝑆)),
see Section 25.4.

In this section we will use a different approach which produces a complex having a good
base change property. First of all the result is very easy if 𝑓 and 𝑆 are separated. Since this
is the case which by far the most often used we treat it separately.

Lemma 25.7.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Assume 𝑋 and 𝑆 are separated and quasi-compact. In this case we can com-
pute 𝑅𝑓∗ℱ as follows:

(1) Choose a finite affine open covering 𝒰 ∶ 𝑋 = ⋃𝑖=1,…,𝑛 𝑈𝑖.
(2) For 𝑖0, … , 𝑖𝑝 ∈ {1, … , 𝑛} denote 𝑓𝑖0…𝑖𝑝 ∶ 𝑈𝑖0…𝑖𝑝 → 𝑆 the restriction of 𝑓 to the

intersection 𝑈𝑖0…𝑖𝑝 = 𝑈𝑖0 ∩ … ∩ 𝑈𝑖𝑝.
(3) Set ℱ𝑖0…𝑖𝑝 equal to the restriction of ℱ to 𝑈𝑖0…𝑖𝑝.
(4) Set

̌𝒞𝑝(𝒰, 𝑓, ℱ) = ⨁𝑖0…𝑖𝑝
𝑓𝑖0…𝑖𝑝∗ℱ𝑖0…𝑖𝑝

and define differentials 𝑑 ∶ ̌𝒞𝑝(𝒰, 𝑓, ℱ) → ̌𝒞𝑝+1(𝒰, 𝑓, ℱ) as in Cohomology,
Equation (18.9.0.1).

Then the complex ̌𝒞•(𝒰, 𝑓, ℱ) is a complex of quasi-coherent sheaves on 𝑆 which comes
equipped with an isomorphism

̌𝒞•(𝒰, 𝑓, ℱ) ⟶ 𝑅𝑓∗ℱ

in 𝐷+(𝑆). This isomorphism is functorial in the quasi-coherent sheaf ℱ.

Proof. Omitted. Hint: Use the resolution ℱ → ℭ•(𝒰, ℱ) of Cohomology, Lemma 18.18.3.
Observe that ̌𝒞•(𝒰, 𝑓, ℱ) = 𝑓∗ℭ•(𝒰, ℱ). Also observe that both the inclusion morphisms
𝑗𝑖0…𝑖𝑝 ∶ 𝑈𝑖0…𝑖𝑝 → 𝑋 and the morphisms 𝑓𝑖0…𝑖𝑝 ∶ 𝑈𝑖0…𝑖𝑝 → 𝑆 are affine because 𝑆 and 𝑋
and 𝑓 ∶ 𝑋 → 𝑆 are separated, see Morphisms, Lemma 24.11.11. Hence 𝑅𝑞(𝑗𝑖0…𝑖𝑝)∗ℱ𝑖0…𝑖𝑝
as well as 𝑅𝑞(𝑓𝑖0…𝑖𝑝)∗ℱ𝑖0…𝑖𝑝 are zero for 𝑞 > 0. Finally, put all of this information together
(e.g. use a spectral sequence, for example by choosing a Cartan-Eilenberg resolution of the
complex ℭ•(𝒰, ℱ)). �

Next, we are going to consider what happens if we do a base change.

Lemma 25.7.2. With notation as in diagram (25.6.0.1). Assume 𝑓 ∶ 𝑋 → 𝑆 and ℱ satisfy
the hypotheses of Lemma 25.7.1. Choose a finite affine open covering 𝒰 ∶ 𝑋 = ⋃ 𝑈𝑖 of 𝑋.
There is a canonical isomorphism

𝑔∗ ̌𝒞•(𝒰, 𝑓, ℱ) ⟶ 𝑅𝑓′
∗ℱ′
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in 𝐷+(𝑆′). Moreover, if 𝑆′ → 𝑆 is affine, then in fact

𝑔∗ ̌𝒞•(𝒰, 𝑓, ℱ) = ̌𝒞•(𝒰′, 𝑓′, ℱ′)
with 𝒰′ ∶ 𝑋′ = ⋃ 𝑈′

𝑖 where 𝑈′
𝑖 = (𝑔′)−1(𝑈𝑖) = 𝑈𝑖,𝑆′ is also affine.

Proof. In fact we may define 𝑈′
𝑖 = (𝑔′)−1(𝑈𝑖) = 𝑈𝑖,𝑆′ no matter whether 𝑆′ is affine over

𝑆 or not. Let 𝒰′ ∶ 𝑋′ = ⋃ 𝑈′
𝑖 be the induced covering of 𝑋′. In this case we claim that

𝑔∗ ̌𝒞•(𝒰, 𝑓, ℱ) = ̌𝒞•(𝒰′, 𝑓′, ℱ′)
with ̌𝒞•(𝒰′, 𝑓′, ℱ′) defined in exactly the same manner as in Lemma 25.7.1. This is clear
from the case of affine morphisms (Lemma 25.6.1) by working locally on 𝑆′. Moreover,
exactly as in the proof of Lemma 25.7.1 one sees that there is an isomorphism

̌𝒞•(𝒰′, 𝑓′, ℱ′) ⟶ 𝑅𝑓′
∗ℱ′

in 𝐷+(𝑆′) since the morphisms 𝑈′
𝑖 → 𝑋′ and 𝑈′

𝑖 → 𝑆′ are still affine (being base changes
of affine morphisms). Details omitted. �

The lemma above says that the complex

𝒦• = ̌𝒞•(𝒰, 𝑓, ℱ)
is a bounded below complex of quasi-coherent sheaves on 𝑆 which universally computes
the higher direct images of 𝑓 ∶ 𝑋 → 𝑆. This is something about this particular complex
and it is not preserved by replacing ̌𝒞•(𝒰, 𝑓, ℱ) by a quasi-isomorphic complex in general!
In other words, this is not a statement that makes sense in the derived category. The reason
is that the pullback 𝑔∗𝒦• is not equal to the derived pullback 𝐿𝑔∗𝒦• of 𝒦• in general!
Here is amore general casewherewe can prove this statement. We remark that the condition
of 𝑆 being separated is harmless in most applications, since this is usually used to prove
some local property of the total derived image. The proof is significantly more involved
and uses hypercoverings; it is a nice example of how you can use them sometimes.

Lemma 25.7.3. Let 𝑓 ∶ 𝑋 → 𝑆 be amorphism of schemes. Letℱ be a quasi-coherent sheaf
on 𝑋. Assume that 𝑓 is quasi-compact and quasi-separated and that 𝑆 is quasi-compact
and separated. There exists a bounded below complex 𝒦• of quasi-coherent 𝒪𝑆-modules
with the following property: For every morphism 𝑔 ∶ 𝑆′ → 𝑆 the complex 𝑔∗𝒦• is a
representative for 𝑅𝑓′

∗ℱ′ with notation as in diagram (25.6.0.1).

Proof. (If 𝑓 is separated as well, please see Lemma 25.7.2.) The assumptions imply in
particular that 𝑋 is quasi-compact and quasi-separated as a scheme. Let ℬ be the set of
affine opens of 𝑋. By Hypercoverings, Lemma 20.9.4 we can find a hypercovering 𝐾 =
(𝐼, {𝑈𝑖}) such that each 𝐼𝑛 is finite and each 𝑈𝑖 is an affine open of 𝑋. By Hypercoverings,
Lemma 20.7.3 there is a spectral sequence with 𝐸2-page

𝐸𝑝,𝑞
2 = �̌�𝑝(𝐾, 𝐻𝑞(ℱ))

converging to 𝐻𝑝+𝑞(𝑋, ℱ). Note that �̌�𝑝(𝐾, 𝐻𝑞(ℱ)) is the 𝑝th cohomology group of the
complex

∏𝑖∈𝐼0
𝐻𝑞(𝑈𝑖, ℱ) → ∏𝑖∈𝐼1

𝐻𝑞(𝑈𝑖, ℱ) → ∏𝑖∈𝐼2
𝐻𝑞(𝑈𝑖, ℱ) → …

Since each 𝑈𝑖 is affine we see that this is zero unless 𝑞 = 0 in which case we obtain

∏𝑖∈𝐼0
ℱ(𝑈𝑖) → ∏𝑖∈𝐼1

ℱ(𝑈𝑖) → ∏𝑖∈𝐼2
ℱ(𝑈𝑖) → …

Thus we conclude that 𝑅Γ(𝑋, ℱ) is computed by this complex.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01XN


25.8. AMPLE INVERTIBLE SHEAVES AND COHOMOLOGY 1407

For any 𝑛 and 𝑖 ∈ 𝐼𝑛 denote 𝑓𝑖 ∶ 𝑈𝑖 → 𝑆 the restriction of 𝑓 to 𝑈𝑖. As 𝑆 is separated and
𝑈𝑖 is affine this morphism is affine. Consider the complex of quasi-coherent sheaves

𝒦• = (∏𝑖∈𝐼0
𝑓𝑖,∗ℱ|𝑈𝑖

→ ∏𝑖∈𝐼1
𝑓𝑖,∗ℱ|𝑈𝑖

→ ∏𝑖∈𝐼2
𝑓𝑖,∗ℱ|𝑈𝑖

→ …)

on 𝑆. As in Hypercoverings, Lemma 20.7.3 we obtain a map 𝒦• → 𝑅𝑓∗ℱ in 𝐷(𝒪𝑆) by
choosing an injective resolution of ℱ (details omitted). Consider any affine scheme 𝑉 and
a morphism 𝑔 ∶ 𝑉 → 𝑆. Then the base change 𝑋𝑉 has a hypercovering 𝐾𝑉 = (𝐼, {𝑈𝑖,𝑉})
obtained by base change. Moreover, 𝑔∗𝑓𝑖,∗ℱ = 𝑓𝑖,𝑉,∗(𝑔′)∗ℱ|𝑈𝑖,𝑉

. Thus the arguments above
prove that Γ(𝑉, 𝑔∗𝒦•) computes 𝑅Γ(𝑋𝑉, (𝑔′)∗ℱ). This finishes the proof of the lemma as
it suffices to prove the equality of complexes Zariski locally on 𝑆′. �

25.8. Ample invertible sheaves and cohomology

Given a ringed space𝑋, an invertible𝒪𝑋-moduleℒ, a section 𝑠 ∈ Γ(𝑋, ℒ) and an𝒪𝑋-module
ℱ we get a map ℱ → ℱ ⊗𝒪𝑋

ℒ, 𝑡 ↦ 𝑡 ⊗ 𝑠 which we call multiplication by 𝑠. We usually
denote it 𝑡 ↦ 𝑠𝑡.

Lemma 25.8.1. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠 ∈ Γ(𝑋, ℒ)
be a section. Let ℱ′ ⊂ ℱ be quasi-coherent 𝒪𝑋-modules. Assume that

(1) 𝑋 is quasi-compact,
(2) ℱ is of finite type, and
(3) ℱ′|𝑋𝑠

= ℱ|𝑋𝑠
.

Then there exists an 𝑛 ≥ 0 such that multiplication by 𝑠𝑛 on ℱ factors through ℱ′.

Proof. In other words we claim that 𝑠𝑛ℱ ⊂ ℱ′ ⊗𝒪𝑋
ℒ⊗𝑛 for some 𝑛 ≥ 0. If this is

true for 𝑛0 then it is true for all 𝑛 ≥ 𝑛0. Hence it suffices to show there is a finite open
covering such that the result holds for each of the members of this open covering. Since
𝑋 is quasi-compact we may therefore assume that 𝑋 is affine and that ℒ ≅ 𝒪𝑋. Thus the
lemma translates into the following algebra problem (use Properties, Lemma 23.16.1): Let
𝐴 be a ring. Let 𝑓 ∈ 𝐴. Let 𝑀′ ⊂ 𝑀 be 𝐴-modules. Assume 𝑀 is a finite 𝐴-module, and
assume that (𝑀′)𝑓 = 𝑀𝑓. Then there exists an 𝑛 ≥ 0 such that 𝑓𝑛𝑀 ⊂ 𝑀′. The proof of
this is omitted. �

Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠 ∈ Γ(𝑋, ℒ) be a section.
Assume 𝑋 quasi-compact and quasi-separated. The following lemma says roughly that the
category of finitely presented 𝒪𝑋𝑠

-modules is the category of finitely presented 𝒪𝑋-modules
where the map multiplication by 𝑠 has been inverted.

Lemma 25.8.2. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠 ∈ Γ(𝑋, ℒ)
be a section. Let ℱ, ℱ′ be quasi-coherent 𝒪𝑋-modules. Let 𝜓 ∶ ℱ|𝑋𝑠

→ ℱ′|𝑋𝑠
be a map

of 𝒪𝑋𝑠
-modules. Assume that
(1) 𝑋 is quasi-compact and quasi-separated, and
(2) ℱ is of finitely presented.

Then there exists an 𝑛 ≥ 0 and a morphism 𝛼 ∶ ℱ → ℱ′ ⊗𝒪𝑋
ℒ⊗𝑛 whose restriction to

𝑋𝑠 equals 𝜓 via the identification ℒ⊗𝑛|𝑋𝑠
= 𝒪𝑋𝑠

coming from 𝑠. Moreover, given a pair
of solutions (𝑛, 𝛼) and (𝑛′, 𝛼′) there exists an 𝑚 ≥ max(𝑛, 𝑛′) such that 𝑠𝑚−𝑛𝛼 = 𝑠𝑚−𝑛′

𝛼′.

Proof. If the lemma holds for 𝑛0 with map 𝛼0 then it holds for all 𝑛 ≥ 𝑛0 simply by taking
𝛼 = 𝑠𝑛−𝑛0𝛼0. Choose a finite affine open covering 𝑋 = ⋃ 𝑈𝑖 such that ℒ|𝑈𝑖

is trivial.
Choose finite affine open coverings 𝑈𝑖 ∩ 𝑈𝑖′ = ⋃ 𝑈𝑖𝑖′𝑗. Suppose we can prove the lemma
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when 𝑋 is affine and ℒ is trivial. Then we can find 𝑛𝑖 ≥ 0 𝛼𝑖 ∶ ℱ|𝑈𝑖
→ ℱ′|𝑈𝑖

⊗𝒪𝑈𝑖
ℒ⊗𝑛𝑖|𝑈𝑖

satisfying the relation over 𝑈𝑖. By the uniqueness assertion of the lemma, and the finiteness
of the number of affines 𝑈𝑖𝑖′𝑗 we can find a single large integer 𝑚 such that the maps 𝑠𝑚−𝑛𝑖𝛼𝑖
and 𝑠𝑚−𝑛𝑖′𝛼𝑖′ agree over 𝑈𝑖𝑖′𝑗 and hence over 𝑈𝑖 ∩ 𝑈𝑖′. Thus the morphisms 𝑠𝑚−𝑛𝑖𝛼𝑖 glue
to give our global map 𝛼. Proof of the uniqueness statement is omitted.

Assume 𝑋 affine and that ℒ ≅ 𝒪𝑋. Then the lemma translates into the following algebra
problem (use Properties, Lemma 23.16.2): Let 𝐴 be a ring. Let 𝑓 ∈ 𝐴. Let 𝜓 ∶ 𝑀𝑓 →
(𝑀′)𝑓 be amap of𝐴𝑓-modules. Assume𝑀 is a finitely presented𝐴-module. Then there ex-
ists an 𝑛 ≥ 0 and an 𝐴-modulemap 𝛼 ∶ 𝑀 → 𝑀′ such that 𝛼⊗1𝐴𝑓

= 𝑓𝑛𝜓. Moreover, given

any second solution (𝑛′, 𝛼′) there exists an 𝑚 ≥ max(𝑛, 𝑛′) such that 𝑓𝑚−𝑛𝛼 = 𝑓𝑚−𝑛′
𝛼′. The

proof of this algebraic fact is omitted. �

Cohomology is functorial. In particular, given a ringed space 𝑋, an invertible 𝒪𝑋-module
ℒ, a section 𝑠 ∈ Γ(𝑋, ℒ) we get maps

𝐻𝑝(𝑋, ℱ) ⟶ 𝐻𝑝(𝑋, ℱ ⊗𝒪𝑋
ℒ), 𝜉 ⟼ 𝑠𝜉

induced by the map ℱ → ℱ ⊗𝒪𝑋
ℒ which is multiplication by 𝑠.

Lemma 25.8.3. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠 ∈ Γ(𝑋, ℒ)
be a section. Assume that

(1) 𝑋 is quasi-compact and quasi-separated, and
(2) 𝑋𝑠 is affine.

Then for every quasi-coherent 𝒪𝑋-module ℱ and every 𝑝 > 0 and all 𝜉 ∈ 𝐻𝑝(𝑋, ℱ) there
exists an 𝑛 ≥ 0 such that 𝑠𝑛𝜉 = 0 in 𝐻𝑝(𝑋, ℱ ⊗𝒪𝑋

ℒ⊗𝑛).

Proof. You can prove this lemma using a Mayer-Vietoris type argument and induction on
the number of affines needed to cover 𝑋 similar to the proof of Lemma 25.5.3. This may
be preferable to the proof that follows.

Let ℱ be a quasi-coherent 𝒪𝑋-module. Cohomology on 𝑋 commutes with directed colim-
its of sheaves of 𝒪𝑋-modules, see Cohomology, Lemma 18.15.1. By Properties, Lemma
23.20.7we canwriteℱ as a directed colimit of𝒪𝑋-submodules of finite presentation. Hence
every 𝜉 ∈ 𝐻𝑝(𝑋, ℱ) is the image of 𝜉′ ∈ 𝐻𝑝(𝑋, ℱ′) for some 𝒪𝑋-submodule of finite pre-
sentation. Thus we may replace ℱ by ℱ′ and assume ℱ is of finite presentation.

Let 𝑗 ∶ 𝑋𝑠 → 𝑋 be the inclusion morphism. Morphisms, Lemma 24.11.10 says that 𝑗 is
an affine morphism. Hence 𝑅𝑞𝑗∗(𝑗∗ℱ) = 0 for all 𝑞 > 0, see Lemma 25.2.3. Since also
𝐻𝑝(𝑋𝑠, 𝑗∗ℱ) = 0 by Lemma 25.2.2, we conclude that 𝐻𝑝(𝑋, 𝑗∗𝑗∗ℱ) = 0 for all 𝑝 > 0 for
example by the Leray spectral sequence ( Cohomology, Lemma 18.12.4). Write

𝑗∗𝑗∗ℱ = 𝑐𝑜𝑙𝑖𝑚𝜆∈Λ ℱ𝜆

as a directed colimit of 𝒪𝑋-modules ℱ𝜆 of finite presentation (Properties, Lemma 23.20.7
again). By Modules, Lemma 15.11.6 there exists a 𝜆 ∈ Λ such that ℱ → 𝑗∗𝑗∗ℱ factors
through ℱ𝜆. After shrinking Λ we may assume that we have a compatible collection of
morphisms 𝜒𝜆 ∶ ℱ → ℱ𝜆 for all 𝜆 ∈ Λ which when taking the colimit gives the canonical
map ℱ → 𝑗∗𝑗∗ℱ.

With these preparations the proof goes as follows. Take 𝜉 ∈ 𝐻𝑝(𝑋, ℱ) for some 𝑝 > 0. It
maps to zero in 𝐻𝑝(𝑋, 𝑗∗𝑗∗ℱ) because we saw above this group is zero. By Cohomology,
Lemma 18.15.1 again it follows that 𝜉 maps to zero in 𝐻𝑝(𝑋, ℱ𝜆) via the map 𝜒𝜆 for some 𝜆.
Note that since ℱ → 𝑗∗𝑗∗ℱ is an isomorphism over 𝑋𝑠 we see that there is an 𝒪𝑋𝑠

-module

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01XR
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map 𝜓 ∶ ℱ𝜆|𝑋𝑠
→ ℱ|𝑋𝑠

which is a left inverse to 𝜒𝜆 ∶ ℱ → ℱ𝜆. By Lemma 25.8.2
there exists an 𝑛 and a map 𝛼 ∶ ℱ𝜆 → ℱ ⊗𝒪𝑋

ℒ⊗𝑛 such that 𝛼 restricts to 𝜓 on 𝑋𝑠 (via
ℒ⊗𝑛|𝑋𝑠

≅ 𝒪𝑋𝑠
). By the uniqueness part of Lemma 25.8.2 applied to 𝛼 ∘ 𝜒𝜆 which restricts

to multiplication by 𝑠𝑛 on 𝑋𝑠 we may assume (after increasing 𝑛) that the composition

ℱ 𝜒𝜆
// ℱ𝜆 𝛼

// ℱ ⊗𝒪𝑋
ℒ⊗𝑛

is equal to multiplication by 𝑠𝑛 on ℱ. Hence we see that 𝑠𝑛𝜉 = 0. �

25.9. Cohomology of projective space

In this section we compute the cohomology of the twists of the structure sheaf on 𝐏𝑛
𝑆 over

a scheme 𝑆. Recall that 𝐏𝑛
𝑆 was defined as the fibre product 𝐏𝑛

𝑆 = 𝑆 ×𝑆𝑝𝑒𝑐(𝐙) 𝐏𝑛
𝐙 in Con-

structions, Definition 22.13.2. It was shown to be equal to

𝐏𝑛
𝑆 = Proj

𝑆
(𝒪𝑆[𝑇0, … , 𝑇𝑛])

in Constructions, Lemma 22.20.4. In particular, projective space is a particular case of a
projective bundle. If 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) is affine then we have

𝐏𝑛
𝑆 = 𝐏𝑛

𝑅 = Proj(𝑅[𝑇0, … , 𝑇𝑛]).

All these identifications are compatible and compatible with the constructions of the twisted
structure sheaves 𝒪𝐏𝑛

𝑆
(𝑑).

Before we state the result we need some notation. Let 𝑅 be a ring. Recall that 𝑅[𝑇0, … , 𝑇𝑛]
is a graded 𝑅-algebra where each 𝑇𝑖 is homogenous of degree 1. Denote (𝑅[𝑇0, … , 𝑇𝑛])𝑑
the degree 𝑑 summand. It is a finite free 𝑅-module of rank (

𝑛+𝑑

𝑑
) when 𝑑 ≥ 0 and zero

else. It has a basis consisting of monomials 𝑇𝑒0
0 … 𝑇𝑒𝑛

𝑛 with ∑ 𝑒𝑖 = 𝑑. We will also use
the following notation: 𝑅[ 1

𝑇0
, … , 1

𝑇𝑛
] denotes the 𝐙-graded ring with 1

𝑇𝑖
in degree −1. In

particular the 𝐙-graded 𝑅[ 1
𝑇0

, … , 1
𝑇𝑛

] module

1
𝑇0 … 𝑇𝑛

𝑅[ 1
𝑇0

, … , 1
𝑇𝑛

]

which shows up in the statement below is zero in degrees ≥ −𝑛, is free on the generator
1

𝑇0…𝑇𝑛
in degree −𝑛 − 1 and is free of rank (−1)𝑛(

𝑛+𝑑

𝑑
) for 𝑑 ≤ −𝑛 − 1.

Lemma 25.9.1. Let 𝑅 be a ring. Let 𝑛 ≥ 0 be an integer. We have

𝐻𝑞(𝐏𝑛, 𝒪𝐏𝑛
𝑅

(𝑑)) =
⎧⎪
⎨
⎪⎩

(𝑅[𝑇0, … , 𝑇𝑛])𝑑 if 𝑞 = 0
0 if 𝑞≠0, 𝑛

(
1

𝑇0…𝑇𝑛
𝑅[ 1

𝑇0
, … , 1

𝑇𝑛
])𝑑

if 𝑞 = 𝑛

as 𝑅-modules.

Proof. We will use the standard affine open convering

𝒰 ∶ 𝐏𝑛
𝑅 = ⋃

𝑛
𝑖=0

𝐷+(𝑇𝑖)

to compute the cohomology using the Cech complex. This is permissible by Lemma 25.2.4
since any intersection of finitely many affine 𝐷+(𝑇𝑖) is also a standard affine open (see
Constructions, Section 22.8). In fact, we can use the alternating or ordered Cech complex
according to Cohomology, Lemmas 18.17.3 and 18.17.6.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01XT


1410 25. COHERENT COHOMOLOGY

The ordering we will use on {0, … , 𝑛} is the usual one. Hence the complex we are looking
at has terms

̌𝒞𝑝
𝑜𝑟𝑑(𝒰, 𝒪𝐏𝑅

(𝑑)) = ⨁𝑖0<…<𝑖𝑝
(𝑅[𝑇0, … , 𝑇𝑛, 1

𝑇𝑖0 … 𝑇𝑖𝑝
])𝑑

Moreover, the maps are given by the usual formula

𝑑(𝑠)𝑖0…𝑖𝑝+1
= ∑

𝑝+1
𝑗=0

(−1)𝑗𝑠𝑖0… ̂𝑖𝑗…𝑖𝑝+1

see Cohomology, Section 18.17. Note that each term of this complex has a natural𝐙𝑛+1-grading.
Namely, we get this by declaring a monomial 𝑇𝑒0

0 … 𝑇𝑒𝑛
𝑛 to be homogeneous with weight

(𝑒0, … , 𝑒𝑛) ∈ 𝐙𝑛+1. It is clear that the differential given above respects the grading. In a
formula we have

̌𝒞•
𝑜𝑟𝑑(𝒰, 𝒪𝐏𝑅

(𝑑)) = ⨁ ⃗𝑒∈𝐙𝑛+1
̌𝒞•( ⃗𝑒)

where not all summand on the right hand side occur (see below). Hence in order to compute
the cohomology modules of the complex it suffices to compute the cohomology of the
graded pieces and take the direct sum at the end.

Fix ⃗𝑒 = (𝑒0, … , 𝑒𝑛) ∈ 𝐙𝑛+1. In order for this weight to occur in the complex above we need
to assume 𝑒0 + … + 𝑒𝑛 = 𝑑 (if not then it occurs for a different twist of the structure sheaf
of course). Assuming this set

𝑁𝐸𝐺( ⃗𝑒) = {𝑖 ∈ {0, … , 𝑛} ∣ 𝑒𝑖 < 0}.

With this notation the weight ⃗𝑒 summand ̌𝒞•( ⃗𝑒) of the Cech complex above has the follow-
ing terms

̌𝒞𝑝( ⃗𝑒) = ⨁𝑖0<…<𝑖𝑝, 𝑁𝐸𝐺( ⃗𝑒)⊂{𝑖0,…,𝑖𝑝}
𝑅 ⋅ 𝑇𝑒0

0 … 𝑇𝑒𝑛
𝑛

In other words, the terms corresponding to 𝑖0 < … < 𝑖𝑝 such that 𝑁𝐸𝐺( ⃗𝑒) is not contained
in {𝑖0 … 𝑖𝑝} are zero. The differential of the complex ̌𝒞•( ⃗𝑒) is still given by the exact same
formula as above.

Suppose that 𝑁𝐸𝐺( ⃗𝑒) = {0, … , 𝑛}, i.e., that all exponents 𝑒𝑖 are negative. In this case the
complex ̌𝒞•( ⃗𝑒) has only one term, namely ̌𝒞𝑛( ⃗𝑒) = 𝑅 ⋅ 1

𝑇−𝑒0…𝑇−𝑒𝑛 . Hence in this case

𝐻𝑞( ̌𝒞•( ⃗𝑒)) = {
𝑅 ⋅ 1

𝑇−𝑒0…𝑇−𝑒𝑛 if 𝑞 = 𝑛
0 if else

The direct sum of all of these terms clearly gives the value

(
1

𝑇0 … 𝑇𝑛
𝑅[ 1

𝑇0
, … , 1

𝑇𝑛
])𝑑

in degree 𝑛 as stated in the lemma. Moreover these terms do not contribute to cohomology
in other degrees (also in accordance with the statement of the lemma).

Assume 𝑁𝐸𝐺( ⃗𝑒) = ∅. In this case the complex ̌𝒞•( ⃗𝑒) has a summand 𝑅 corresponding to
all 𝑖0 < … < 𝑖𝑝. Let us compare the complex ̌𝒞•( ⃗𝑒) to another complex. Namely, consider
the affine open open covering

𝒱 ∶ 𝑆𝑝𝑒𝑐(𝑅) = ⋃𝑖∈{0,…,𝑛}
𝑉𝑖

where 𝑉𝑖 = 𝑆𝑝𝑒𝑐(𝑅) for all 𝑖. Consider the alternating Cech complex
̌𝒞•

𝑜𝑟𝑑(𝒱, 𝒪𝑆𝑝𝑒𝑐(𝑅))
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By the same reasoning as above this computes the cohomology of the structure sheaf on
𝑆𝑝𝑒𝑐(𝑅). Hence we see that 𝐻𝑝( ̌𝒞•

𝑜𝑟𝑑(𝒱, 𝒪𝑆𝑝𝑒𝑐(𝑅))) = 𝑅 if 𝑝 = 0 and is 0 whenever 𝑝 > 0.
For these facts, see Lemma 25.2.1 and its proof. Note that also ̌𝒞•

𝑜𝑟𝑑(𝒱, 𝒪𝑆𝑝𝑒𝑐(𝑅)) has a
summand 𝑅 for every 𝑖0 < … < 𝑖𝑝 and has exactly the same differential as ̌𝒞•( ⃗𝑒). In other
words these complexes are isomorphic complexes and hence have the same cohomology.
We conclude that

𝐻𝑞( ̌𝒞•( ⃗𝑒)) = {
𝑅 ⋅ 𝑇𝑒0 … 𝑇𝑒𝑛 if 𝑞 = 0

0 if else
in the case that 𝑁𝐸𝐺( ⃗𝑒) = ∅. The direct sum of all of these terms clearly gives the value

(𝑅[𝑇0, … , 𝑇𝑛])𝑑

in degree 0 as stated in the lemma. Moreover these terms do not contribute to cohomology
in other degrees (also in accordance with the statement of the lemma).

To finish the proof of the lemma we have to show that the complexes ̌𝒞•( ⃗𝑒) are acyclic
when 𝑁𝐸𝐺( ⃗𝑒) is neither empty nor equal to {0, … , 𝑛}. Pick an index 𝑖fix∉𝑁𝐸𝐺( ⃗𝑒) (such
an index exists). Consider the map

ℎ ∶ ̌𝒞𝑝+1( ⃗𝑒) → ̌𝒞𝑝( ⃗𝑒)

given by the rule
ℎ(𝑠)𝑖0…𝑖𝑝 = 𝑠𝑖fix𝑖0…𝑖𝑝

(compare with the proof of Lemma 25.2.1). It is clear that this is well defined since

𝑁𝐸𝐺( ⃗𝑒) ⊂ {𝑖0, … , 𝑖𝑝} ⇔ 𝑁𝐸𝐺( ⃗𝑒) ⊂ {𝑖fix, 𝑖0, … , 𝑖𝑝}

Also ̌𝒞0( ⃗𝑒) = 0 so that this formula does work for all 𝑝 including 𝑝 = −1. The exact same
(combinatorial) computation as in the proof of Lemma 25.2.1 shows that

(ℎ𝑑 + 𝑑ℎ)(𝑠)𝑖0…𝑖𝑝 = 𝑠𝑖0…𝑖𝑝

Hence we see that the identity map of the complex ̌𝒞•( ⃗𝑒) is homotopic to zero which implies
that it is acyclic. �

In the following lemma we are going to use the pairing of free 𝑅-modules

𝑅[𝑇0, … , 𝑇𝑛] × 1
𝑇0 … 𝑇𝑛

𝑅[ 1
𝑇0

, … , 1
𝑇𝑛

] ⟶ 𝑅

which is defined by the rule

(𝑓, 𝑔) ⟼ coefficient of 1
𝑇0 … 𝑇𝑛

in 𝑓𝑔.

In other words, the basis element 𝑇𝑒0
0 … 𝑇𝑒𝑛

𝑛 pairs with the basis element 𝑇𝑑0
0 … 𝑇𝑑𝑛

𝑛 to give
1 if and only if 𝑒𝑖 + 𝑑𝑖 = −1 for all 𝑖, and pairs to zero in all other cases. Using this pairing
we get an identification

(
1

𝑇0 … 𝑇𝑛
𝑅[ 1

𝑇0
, … , 1

𝑇𝑛
])𝑑

= 𝐻𝑜𝑚𝑅((𝑅[𝑇0, … , 𝑇𝑛])−𝑛−1−𝑑, 𝑅)

Thus we can reformulate the result of Lemma 25.9.1 as saying that

(25.9.1.1) 𝐻𝑞(𝐏𝑛, 𝒪𝐏𝑛
𝑅

(𝑑)) =
⎧⎪
⎨
⎪⎩

(𝑅[𝑇0, … , 𝑇𝑛])𝑑 if 𝑞 = 0
0 if 𝑞≠0, 𝑛

𝐻𝑜𝑚𝑅((𝑅[𝑇0, … , 𝑇𝑛])−𝑛−1−𝑑, 𝑅) if 𝑞 = 𝑛
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Lemma 25.9.2. The identifications of Equation (25.9.1.1) are compatible with base change
w.r.t. ring maps 𝑅 → 𝑅′. Moreover, for any 𝑓 ∈ 𝑅[𝑇0, … , 𝑇𝑛] homogeneous of degree 𝑚
the map multiplication by 𝑓

𝒪𝐏𝑛
𝑅

(𝑑) ⟶ 𝒪𝐏𝑛
𝑅

(𝑑 + 𝑚)

induces the map on the cohomology group via the identifications of Equation (25.9.1.1)
which is multiplication by 𝑓 for 𝐻0 and the contragredient of multiplication by 𝑓

(𝑅[𝑇0, … , 𝑇𝑛])−𝑛−1−(𝑑+𝑚) ⟶ (𝑅[𝑇0, … , 𝑇𝑛])−𝑛−1−𝑑

on 𝐻𝑛.

Proof. Suppose that 𝑅 → 𝑅′ is a ring map. Let 𝒰 be the standard affine open convering of
𝐏𝑛

𝑅, and let 𝒰′ be the standard affine open convering of 𝐏𝑛
𝑅′. Note that 𝒰′ is the pullback

of the covering 𝒰 under the canonical morphism 𝐏𝑛
𝑅′ → 𝐏𝑛

𝑅. Hence there is a map of Cech
complexes

𝛾 ∶ ̌𝒞•
𝑜𝑟𝑑(𝒰, 𝒪𝐏𝑅

(𝑑)) ⟶ ̌𝒞•
𝑜𝑟𝑑(𝒰′, 𝒪𝐏𝑅′(𝑑))

which is compatible with the map on cohomology by Cohomology, Lemma 18.13.3. It is
clear from the computations in the proof of Lemma 25.9.1 that this map of Cech complexes
is compatible with the identifications of the cohomology groups in question. (Namely the
basis elements for the Cech complex over 𝑅 simplymap to the corresponding basis elements
for the Cech complex over 𝑅′.) Whence the first statement of the lemma.

Nowfix the ring𝑅 and consider two homogeneous polynomials 𝑓, 𝑔 ∈ 𝑅[𝑇0, … , 𝑇𝑛] both of
the same degree 𝑚. Since cohomology is an additive functor, it is clear that the map induced
by multiplication by 𝑓 + 𝑔 is the same as the sum of the maps induced by multiplication by
𝑓 and the map induced by multiplication by 𝑔. Moreover, since cohomology is a functor
a similar result holds for multiplication by a product 𝑓𝑔 where 𝑓, 𝑔 are both homogeneous
(but not necessarily of the same degree). Hence to verify the second statement of the lemma
it suffices to prove this when 𝑓 = 𝑥 ∈ 𝑅 or when 𝑓 = 𝑇𝑖. In the case of multiplication by
an element 𝑥 ∈ 𝑅 the result follows since every cohomology groups or complex in sight
has the structuce or an 𝑅-module or complex of 𝑅-modules. Finally, we consider the case
of multiplication by 𝑇𝑖 as a 𝒪𝐏𝑛

𝑅
-linear map

𝒪𝐏𝑛
𝑅

(𝑑) ⟶ 𝒪𝐏𝑛
𝑅

(𝑑 + 1)

The statement on 𝐻0 is clear. For the statement on 𝐻𝑛 consider multiplication by 𝑇𝑖 as a
map on Cech complexes

̌𝒞•
𝑜𝑟𝑑(𝒰, 𝒪𝐏𝑅

(𝑑)) ⟶ ̌𝒞•
𝑜𝑟𝑑(𝒰, 𝒪𝐏𝑅

(𝑑 + 1))

We are going to use the notation introduced in the proof of Lemma 25.9.1. We consider the
effect of multiplication by 𝑇𝑖 in terms of the decompositions

̌𝒞•
𝑜𝑟𝑑(𝒰, 𝒪𝐏𝑅

(𝑑)) = ⨁ ⃗𝑒∈𝐙𝑛+1, ∑ 𝑒𝑖=𝑑
̌𝒞•( ⃗𝑒)

and
̌𝒞•

𝑜𝑟𝑑(𝒰, 𝒪𝐏𝑅
(𝑑 + 1)) = ⨁ ⃗𝑒∈𝐙𝑛+1, ∑ 𝑒𝑖=𝑑+1

̌𝒞•( ⃗𝑒)

It is clear that it maps the subcomplex ̌𝒞•( ⃗𝑒) to the subcomplex ̌𝒞•( ⃗𝑒 + ⃗𝑏𝑖) where ⃗𝑏𝑖 =
(0, … , 0, 1, 0, … , 0)) the 𝑖th basis vector. In other words, it maps the summand of 𝐻𝑛

corresponding to ⃗𝑒 with 𝑒𝑖 < 0 and ∑ 𝑒𝑖 = 𝑑 to the summand of 𝐻𝑛 corresponding to ⃗𝑒 + ⃗𝑏𝑖
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(which is zero if 𝑒𝑖 + 𝑏𝑖 ≥ 0). It is easy to see that this corresponds exactly to the action of
the contragredient of multiplication by 𝑇𝑖 as a map

(𝑅[𝑇0, … , 𝑇𝑛])−𝑛−1−(𝑑+1) ⟶ (𝑅[𝑇0, … , 𝑇𝑛])−𝑛−1−𝑑

This proves the lemma. �

Beforewe state the relative versionwe need some notation. Namely, recall that𝒪𝑆[𝑇0, … , 𝑇𝑛]
is a graded 𝒪𝑆-module where each 𝑇𝑖 is homogenous of degree 1. Denote (𝒪𝑆[𝑇0, … , 𝑇𝑛])𝑑
the degree 𝑑 summand. It is a finite locally free sheaf of rank (

𝑛+𝑑

𝑑
) on 𝑆.

Lemma 25.9.3. Let 𝑆 be a scheme. Let 𝑛 ≥ 0 be an integer. Consider the structure
morphism

𝑓 ∶ 𝐏𝑛
𝑆 ⟶ 𝑆.

We have

𝑅𝑞𝑓∗(𝒪𝐏𝑛
𝑆
(𝑑)) =

⎧⎪
⎨
⎪⎩

(𝒪𝑆[𝑇0, … , 𝑇𝑛])𝑑 if 𝑞 = 0
0 if 𝑞≠0, 𝑛

ℋ𝑜𝑚𝒪𝑆
((𝒪𝑆[𝑇0, … , 𝑇𝑛])−𝑛−1−𝑑, 𝒪𝑆) if 𝑞 = 𝑛

Proof. Omitted. Hint: This follows since the identifications in (25.9.1.1) are compatible
with affine base change by Lemma 25.9.2. �

Next we state the version for projective bundles associated to finite locally free sheaves.
Let 𝑆 be a scheme. Let ℰ be a finite locally free 𝒪𝑆-module of constant rank 𝑛 + 1, see
Modules, Section 15.14. In this case we think of Sym(ℰ) as a graded 𝒪𝑆-module where ℰ
is the graded part of degree 1. And Sym𝑑(ℰ) is the degree 𝑑 summand. It is a finite locally
free sheaf of rank (

𝑛+𝑑

𝑑
) on 𝑆. Recall that our normalization is that

𝜋 ∶ 𝐏(ℰ) = Proj
𝑆

(Sym(ℰ)) ⟶ 𝑆

and that there are natural maps Sym𝑑(ℰ) → 𝜋∗𝒪𝐏(ℰ)(𝑑).

Lemma 25.9.4. Let 𝑆 be a scheme. Let 𝑛 ≥ 1. Let ℰ be a finite locally free 𝒪𝑆-module of
constant rank 𝑛 + 1. Consider the structure morphism

𝜋 ∶ 𝐏(ℰ) ⟶ 𝑆.
We have

𝑅𝑞𝜋∗(𝒪𝐏(ℰ)(𝑑)) =
⎧⎪
⎨
⎪⎩

Sym𝑑(ℰ) if 𝑞 = 0
0 if 𝑞≠0, 𝑛

ℋ𝑜𝑚𝒪𝑆
(Sym−𝑛−1−𝑑(ℰ) ⊗𝒪𝑆

∧𝑛+1ℰ, 𝒪𝑆) if 𝑞 = 𝑛

These identifications are compatible with base change and isomorphism between locally
free sheaves.

Proof. Consider the canonical map
𝜋∗ℰ ⟶ 𝒪𝐏(ℰ)(1)

and twist down by 1 to get
𝜋∗(ℰ)(−1) ⟶ 𝒪𝐏(ℰ)

This is a surjective map from a locally free rank 𝑛 + 1 sheaf onto the structure sheaf. Hence
the corresponding Koszul complex is exact (insert future reference here). In other words
there is an exact complex

0 → 𝜋∗(∧𝑛+1ℰ)(−𝑛 − 1) → … → 𝜋∗(∧𝑖ℰ)(−𝑖) → … → ℰ(−1) → 𝒪𝐏(ℰ) → 0
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We will think of the term 𝜋∗(∧𝑖ℰ)(−𝑖) as being in degree −𝑖. We are going to compute the
higher direct images of this acyclic complex using the first spectral sequence of Derived
Categories, Lemma 11.20.3. Namely, we see that there is a spectral sequence with terms

𝐸𝑝,𝑞
2 = 𝐻𝑝(𝐿•,𝑞) with 𝐿−𝑖,𝑞 = 𝑅𝑞𝜋∗ (𝜋∗(∧𝑖ℰ)(−𝑖))

converging to zero! By the projection formula ( Cohomology, Lemma 18.7.2) we have

𝐿−𝑖,𝑞 = ∧𝑖ℰ ⊗𝒪𝑆
𝑅𝑞𝜋∗ (𝒪𝐏(ℰ)(−𝑖)) .

Note that locally on 𝑆 the sheaf ℰ is trivial, i.e., isomorphic to 𝒪⊕𝑛+1
𝑆 , hence locally on 𝑆

the morphism 𝐏(ℰ) → 𝑆 can be identified with 𝐏𝑛
𝑆 → 𝑆. Hence locally on 𝑆 we can use

the result of Lemmas 25.9.1, 25.9.2, or 25.9.3. It follows that 𝐿−𝑖,𝑞 = 0 unless 𝑖 = 𝑞 = 0
or 𝑖 = 𝑛 + 1 and 𝑞 = 𝑛. This in turn implies that 𝐸𝑝,𝑞

2 = 0 unless (𝑝, 𝑞) = (0, 0) or
(𝑝, 𝑞) = (−𝑛 − 1, 𝑛), and

𝐸0,0
2 = 𝜋∗𝒪𝐏(ℰ) = 𝒪𝑆

𝐸−𝑛−1,𝑛
2 = ∧𝑛+1ℰ ⊗𝒪𝑆

𝑅𝑛𝜋∗ (𝒪𝐏(ℰ)(−𝑛 − 1)) .

Hence there can only be one nonzero differential in the spectral sequence namely the map
𝑑𝑛+1 inducing a map

𝑑0,0
𝑛+1 ∶ 𝒪𝑆 ⟶ ∧𝑛+1ℰ ⊗𝒪𝑆

𝑅𝑛𝜋∗ (𝒪𝐏(ℰ)(−𝑛 − 1))
which has to be an isomorphism (because the spectral sequence converges to the 0 sheaf).
Since ∧𝑛+1ℰ is an invertible sheaf, this implies that 𝑅𝑛𝜋∗𝒪𝐏(ℰ)(−𝑛 − 1) is invertible as well
and canonically isomorphic to the inverse of ∧𝑛+1ℰ. In other words we have proved the
case 𝑑 = −𝑛 − 1 of the lemma.

Working locally on 𝑆 we see immediately from the computation of cohomology in Lemmas
25.9.1, 25.9.2, or 25.9.3 the statements on vanishing of the lemma. Moreover the result on
𝑅0𝜋∗ is clear as well, since there are canonical maps Sym𝑑(ℰ) → 𝜋∗𝒪𝐏(ℰ)(𝑑) for all 𝑑. It
remains to show that the description of 𝑅𝑛𝜋∗𝒪𝐏(ℰ)(𝑑) is correct for 𝑑 < −𝑛 − 1. In other to
do this we consider the map

𝜋∗(Sym−𝑑+𝑛+1(ℰ)) ⊗𝒪𝐏(ℰ)
𝒪𝐏(ℰ)(𝑑) ⟶ 𝒪𝐏(ℰ)(−𝑛 − 1)

Applying 𝑅𝑛𝜋∗ and the projection formula (see above) we get a map

Sym−𝑑+𝑛+1(ℰ) ⊗𝒪𝑆
𝑅𝑛𝜋∗(𝒪𝐏(ℰ)(𝑑)) ⟶ 𝑅𝑛𝜋∗𝒪𝐏(ℰ)(−𝑛 − 1) = (∧𝑛+1ℰ)⊗−1

(the last equality we have shown above). Again by the local calculations of Lemmas 25.9.1,
25.9.2, or 25.9.3 it follows that this map induces a perfect pairing between 𝑅𝑛𝜋∗(𝒪𝐏(ℰ)(𝑑))
and Sym−𝑑+𝑛+1(ℰ) ⊗ ∧𝑛+1(ℰ) as desired. �

25.10. Supports of modules

In this section we collect some elementary results on supports of quasi-coherent modules
on schemes. Recall that the support of a sheaf of modules has been defined in Modules,
Section 15.5. On the other hand, the support of a module was defined in Algebra, Section
7.59. These match.

Lemma 25.10.1. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent sheaf on 𝑋. Let 𝑆𝑝𝑒𝑐(𝐴) =
𝑈 ⊂ 𝑋 be an affine open, and set 𝑀 = Γ(𝑈, ℱ). Let 𝑥 ∈ 𝑈, and let 𝔭 ⊂ 𝐴 be the
corresponding prime. The following are equivalent

(1) 𝔭 is in the support of 𝑀, and
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(2) 𝑥 is in the support of ℱ.

Proof. This follows from the equality ℱ𝑥 = 𝑀𝔭, see Schemes, Lemma 21.5.4 and the
definitions. �

Lemma 25.10.2. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent sheaf on 𝑋. The support
of ℱ is closed under specialization.

Proof. If 𝑥′  𝑥 is a specialization and ℱ𝑥 = 0 then ℱ𝑥′ is zero, as ℱ𝑥′ is a localization
of the module ℱ𝑥. Hence the complement of Supp(ℱ) is closed under generalization. �

For finite type quasi-coherent modules the support is closed, can be checked on fibres, and
commutes with base change.

Lemma 25.10.3. Let ℱ be a finite type quasi-coherent module on a scheme 𝑋. Then
(1) The support of ℱ is closed.
(2) For 𝑥 ∈ 𝑋 we have

𝑥 ∈ Supp(ℱ) ⇔ ℱ𝑥≠0 ⇔ ℱ𝑥 ⊗𝒪𝑋,𝑥
𝜅(𝑥)≠0.

(3) For any morphism of schemes 𝑓 ∶ 𝑌 → 𝑋 the pullback 𝑓∗ℱ is of finite type as
well and we have Supp(𝑓∗ℱ) = 𝑓−1(Supp(ℱ)).

Proof. Part (1) is a reformulation of Modules, Lemma 15.9.6. You can also combine
Lemma 25.10.1, Properties, Lemma 23.16.1, and Algebra, Lemma 7.59.4 to see this. The
first equivalence in (2) is the definition of support, and the second equivalence follows
from Nakayama's lemma, see Algebra, Lemma 7.14.5. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism of
schemes. Note that 𝑓∗ℱ is of finite type byModules, Lemma 15.9.2. For the final assertion,
let 𝑦 ∈ 𝑌 with image 𝑥 ∈ 𝑋. Recall that

(𝑓∗ℱ)𝑦 = ℱ𝑥 ⊗𝒪𝑋,𝑥
𝒪𝑌,𝑦,

see Sheaves, Lemma 6.26.4. Hence (𝑓∗ℱ)𝑦 ⊗ 𝜅(𝑦) is nonzero if and only if ℱ𝑥 ⊗ 𝜅(𝑥)
is nonzero. By (2) this implies 𝑥 ∈ Supp(ℱ) if and only if 𝑦 ∈ Supp(𝑓∗ℱ), which is the
content of assertion (3). �

Lemma 25.10.4. Let ℱ be a finite type quasi-coherent module on a scheme 𝑋. There exists
a smallest closed subscheme 𝑖 ∶ 𝑍 → 𝑋 such that there exists a quasi-coherent 𝒪𝑍-module
𝒢 with 𝑖∗𝒢 ≅ ℱ. Moreover:

(1) If 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑋 is any affine open, and ℱ|𝑆𝑝𝑒𝑐(𝐴) = 𝑀 then 𝑍 ∩ 𝑆𝑝𝑒𝑐(𝐴) =
𝑆𝑝𝑒𝑐(𝐴/𝐼) where 𝐼 = Ann𝐴(𝑀).

(2) The quasi-coherent sheaf 𝒢 is unique up to unique isomorphism.
(3) The quasi-coherent sheaf 𝒢 is of finite type.
(4) The support of 𝒢 and of ℱ is 𝑍.

Proof. Suppose that 𝑖′ ∶ 𝑍′ → 𝑋 is a closed subscheme which satisfies the description
on open affines from the lemma. Then by Morphisms, Lemma 24.3.1 we see that ℱ ≅
𝑖′
∗𝒢′ for some unique quasi-coherent sheaf 𝒢′ on 𝑍′. Furthermore, it is clear that 𝑍′ is
the smallest closed subscheme with this property (by the same lemma). Finally, using
Properties, Lemma 23.16.1 and Algebra, Lemma 7.5.6 it follows that 𝒢′ is of finite type.
We have Supp(𝒢′) = 𝑍 by Algebra, Lemma 7.59.4. Hence, in order to prove the lemma
it suffices to show that the characterization in (1) actually does define a closed subscheme.
And, in order to do this it suffices to prove that the given rule produces a quasi-coherent
sheaf of ideals, see Morphisms, Lemma 24.2.3. This comes down to the following algebra
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fact: If 𝐴 is a ring, 𝑓 ∈ 𝐴, and 𝑀 is a finite 𝐴-module, then Ann𝐴(𝑀)𝑓 = Ann𝐴𝑓
(𝑀𝑓).

We omit the proof. �

Definition 25.10.5. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module of finite
type. The scheme theoretic support of ℱ is the closed subscheme 𝑍 ⊂ 𝑋 constructed in
Lemma 25.10.4.

In this situation we often think of ℱ as a quasi-coherent sheaf of finite type on 𝑍 (via the
equivalence of categories of Morphisms, Lemma 24.3.1).

25.11. Coherent sheaves on locally Noetherian schemes

We have defined the notion of a coherent module on any ringed space in Modules, Section
15.12. Allthough it is possible to consider coherent sheaves on non-Noetherian schemes
we will always assume the base scheme is locally Noetherian when we consider coherent
sheaves. Here is a characterization of coherent sheaves on locally Noetherian schemes.

Lemma 25.11.1. Let 𝑋 be a locally Noetherian scheme. Let ℱ be an 𝒪𝑋-module. The
following are equivalent

(1) ℱ is coherent,
(2) ℱ is a quasi-coherent, finite type 𝒪𝑋-module,
(3) ℱ is a finitely presented 𝒪𝑋-module,
(4) for any affine open 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 we have ℱ|𝑈 = 𝑀 with 𝑀 a finite

𝐴-module, and
(5) there exists an affine open covering 𝑋 = ⋃ 𝑈𝑖, 𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝐴𝑖) such that each

ℱ|𝑈𝑖
= 𝑀𝑖 with 𝑀𝑖 a finite 𝐴𝑖-module.

In particular 𝒪𝑋 is coherent, any invertible 𝒪𝑋-module is coherent, and more generally
any finite locally free 𝒪𝑋-module is invertible.

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) hold in general, see Modules, Lemma
15.12.2. If ℱ is finitely presented then ℱ is quasi-coherent, see Modules, Lemma 15.11.2.
Hence also (3) ⇒ (2).
Assume ℱ is a quasi-coherent, finite type 𝒪𝑋-module. By Properties, Lemma 23.16.1 we
see that on any affine open 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 we have ℱ|𝑈 = 𝑀 with 𝑀 a finite 𝐴-module.
Since 𝐴 is Noetherian we see that 𝑀 has a finite resolution

𝐴⊕𝑚 → 𝐴⊕𝑛 → 𝑀 → 0.
Hence ℱ is of finite presentation by Properties, Lemma 23.16.2. In other words (2) ⇒ (3).
By Modules, Lemma 15.12.5 it suffices to show that 𝒪𝑋 is coherent in order to show that
(3) implies (1). Thus we have to show: given any open 𝑈 ⊂ 𝑋 and any finite collection of
sections 𝑓𝑖 ∈ 𝒪𝑋(𝑈), 𝑖 = 1, … , 𝑛 the kernel of the map ⨁𝑖=1,…,𝑛 𝒪𝑈 → 𝒪𝑈 is of finite type.
Since being of finite type is a local property it suffices to check this in a neighbourhood of
any 𝑥 ∈ 𝑈. Thus we may assume 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) is affine. In this case 𝑓1, … , 𝑓𝑛 ∈ 𝐴 are
elements of 𝐴. Since 𝐴 is Noetherian, see Properties, Lemma 23.5.2 the kernel 𝐾 of the
map ⨁𝑖=1,…,𝑛 𝐴 → 𝐴 is a finite 𝐴-module. See for example Algebra, Lemma 7.47.1. As
the functor ̃ is exact, see Schemes, Lemma 21.5.4 we get an exact sequence

𝐾 → ⨁𝑖=1,…,𝑛
𝒪𝑈 → 𝒪𝑈

and by Properties, Lemma 23.16.1 again we see that 𝐾 is of finite type. We conclude that
(1), (2) and (3) are all equivalent.
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It follows from Properties, Lemma 23.16.1 that (2) implies (4). It is trivial that (4) implies
(5). The discussion in Schemes, Section 21.24 show that (5) implies thatℱ is quasi-coherent
and it is clear that (5) implies that ℱ is of finite type. Hence (5) implies (2) and we win. �

Lemma25.11.2. Let𝑋 be a locally Noetherian scheme. The category of coherent𝒪𝑋-modules
is abelian. More precisely, the kernel and cokernel of a map of coherent 𝒪𝑋-modules are
coherent. Any extension of coherent sheaves is coherent.

Proof. This is a restatement of Modules, Lemma 15.12.4 in a particular case. �

The following lemma does not always hold for the category of coherent 𝒪𝑋-modules on a
general ringed space 𝑋.

Lemma 25.11.3. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a coherent 𝒪𝑋-module.
Any quasi-coherent submodule of ℱ is coherent. Any quasi-coherent quotient module of ℱ
is coherent.

Proof. We may assume that 𝑋 is affine, say 𝑋 = 𝑆𝑝𝑒𝑐(𝐴). Properties, Lemma 23.5.2 im-
plies that 𝐴 is Noetherian. Lemma 25.11.1 turns this into algebra. The algebraic counter
part of the lemma is that a quotient, or a submodule of a finite𝐴-module is a finite𝐴-module,
see for example Algebra, Lemma 7.47.1. �

Lemma 25.11.4. Let 𝑋 be a locally Noetherian scheme. Let ℱ, 𝒢 be coherent 𝒪𝑋-modules.
The 𝒪𝑋-modules ℱ ⊗𝒪𝑋

𝒢 and ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢) are coherent.

Proof. It is shown in Modules, Lemma 15.19.4 that ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢) is coherent. The result

for tensor products is Modules, Lemma 15.15.5 �

Lemma 25.11.5. Let 𝑋 be a locally Noetherian scheme. Let ℱ, 𝒢 be coherent 𝒪𝑋-modules.
Let 𝜑 ∶ 𝒢 → ℱ be a homomorphism of 𝒪𝑋-modules. Let 𝑥 ∈ 𝑋.

(1) Ifℱ𝑥 = 0 then there exists an open neighbourhood𝑈 ⊂ 𝑋 of 𝑥 such thatℱ|𝑈 = 0.
(2) If 𝜑𝑥 ∶ 𝒢𝑥 → ℱ𝑥 is injective, then there exists an open neighbourhood 𝑈 ⊂ 𝑋 of

𝑥 such that 𝜑|𝑈 is injective.
(3) If 𝜑𝑥 ∶ 𝒢𝑥 → ℱ𝑥 is surjective, then there exists an open neighbourhood 𝑈 ⊂ 𝑋

of 𝑥 such that 𝜑|𝑈 is surjective.
(4) If 𝜑𝑥 ∶ 𝒢𝑥 → ℱ𝑥 is bijective, then there exists an open neighbourhood 𝑈 ⊂ 𝑋 of

𝑥 such that 𝜑|𝑈 is an isomorphism.

Proof. See Modules, Lemmas 15.9.4, 15.9.5, and 15.12.6. �

Lemma 25.11.6. Let 𝑋 be a locally Noetherian scheme. Let ℱ, 𝒢 be coherent 𝒪𝑋-modules.
Let 𝑥 ∈ 𝑋. Suppose 𝜓 ∶ 𝒢𝑥 → ℱ𝑥 is a map of 𝒪𝑋,𝑥-modules. Then there exists an open
neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 and a map 𝜑 ∶ 𝒢|𝑈 → ℱ|𝑈 such that 𝜑𝑥 = 𝜓.

Proof. In view of Lemma 25.11.1 this is a reformulation of Modules, Lemma 15.19.3. �

Lemma 25.11.7. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a coherent 𝒪𝑋-module.
Then Supp(ℱ) is closed, andℱ comes from a coherent sheaf on the scheme theoretic support
of ℱ, see Definition 25.10.5.

Proof. Let 𝑖 ∶ 𝑍 → 𝑋 be the scheme theoretic support of ℱ and let 𝒢 be the finite type
quasi-coherent sheaf on 𝑍 such that 𝑖∗𝒢 ≅ ℱ. Since 𝑍 = Supp(ℱ) we see that the support is
closed. The scheme 𝑍 is locally Noetherian by Morphisms, Lemmas 24.14.5 and 24.14.6.
Finally, 𝒢 is a coherent 𝒪𝑍-module by Lemma 25.11.1 �
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Lemma 25.11.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Assume 𝑓 is finite and 𝑌 locally Noetherian. Then 𝑅𝑝𝑓∗ℱ = 0 for 𝑝 > 0 and
𝑓∗ℱ is coherent if ℱ is coherent.

Proof. The higher direct images vanish by Lemma 25.2.3 and because a finite morphism is
affine (by definition). Note that the assumptions imply that also 𝑋 is locally Noetherian (see
Morphisms, Lemma 24.14.6) and hence the statement makes sense. Let 𝑆𝑝𝑒𝑐(𝐴) = 𝑉 ⊂ 𝑌
be an affine open subset. By Morphisms, Definition 24.42.1 we see that 𝑓−1(𝑉) = 𝑆𝑝𝑒𝑐(𝐵)
with 𝐴 → 𝐵 finite. Lemma 25.11.1 turns the statement of the lemma into the following
algebra fact: If 𝑀 is a finite 𝐵-module, then 𝑀 is also finite viewed as a 𝐴-module, see
Algebra, Lemma 7.7.2. �

In the situation of the lemma also the higher direct images are coherent since they vanish.
We will show that this is always the case for a proper morphism between locally Noetherian
schemes (insert future reference here).

25.12. Coherent sheaves on Noetherian schemes

In this section we mention some properties of coherent sheaves on Noetherian schemes.

Lemma 25.12.1. Let 𝑋 be a Noetherian scheme. Let ℱ be a coherent 𝒪𝑋-module. The
ascending chain condition holds for quasi-coherent submodules of ℱ. In other words, give
any sequence

ℱ1 ⊂ ℱ2 ⊂ … ⊂ ℱ
of quasi-coherent submodules, then ℱ𝑛 = ℱ𝑛+1 = … for some 𝑛 ≥ 0.

Proof. Choose a finite affine open covering. On each member of the covering we get sta-
bilization by Algebra, Lemma 7.47.1. Hence the lemma follows. �

Lemma 25.12.2. Let 𝑋 be a Noetherian scheme. Let ℱ be a coherent sheaf on 𝑋. Let
ℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of ideals corresponding to a closed subscheme 𝑍 ⊂ 𝑋.
Then there is some 𝑛 ≥ 0 such that ℐ𝑛ℱ = 0 if and only if Supp(ℱ) ⊂ 𝑍 (set theoretically).

Proof. This follows immediately from Algebra, Lemma 7.59.9 because 𝑋 has a finite cov-
ering by spectra of Noetherian rings. �

Lemma 25.12.3. (Artin-Rees.) Let 𝑋 be a Noetherian scheme. Let ℱ be a coherent sheaf
on 𝑋. Let 𝒢 ⊂ ℱ be a quasi-coherent subsheaf. Let ℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of
ideals. Then there exists a 𝑐 ≥ 0 such that for all 𝑛 ≥ 𝑐 we have

ℐ𝑛−𝑐(ℐ𝑐ℱ ∩ 𝒢) = ℐ𝑛ℱ

Proof. This follows immediately from Algebra, Lemma 7.47.4 because 𝑋 has a finite cov-
ering by spectra of Noetherian rings. �

Lemma 25.12.4. Let 𝑋 be a Noetherian scheme. Let ℱ, 𝒢 be coherent 𝒪𝑋-modules. Let
ℐ ⊂ 𝒪𝑋 be a quasi-coherent sheaf of ideals. Denote 𝑍 ⊂ 𝑋 the corresponding closed
subscheme and set 𝑈 = 𝑋 ⧵ 𝑍. There is a canonical isomorphism

𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝒪𝑋
(ℐ𝑛𝒢, ℱ) ⟶ 𝐻𝑜𝑚𝒪𝑈

(𝒢|𝑈, ℱ|𝑈).

In particular we have an isomorphism

𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝒪𝑋
(ℐ𝑛, ℱ) ⟶ Γ(𝑈, ℱ).
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Proof. We first prove the second equality. Let ℱ𝑛 denote the quasi-coherent subsheaf of
ℱ consisting of sections annihilated by ℐ𝑛, see Properties, Lemma 23.22.5. Since ℱ1 ⊂
ℱ2 ⊂ … we see that ℱ𝑛 = ℱ𝑛+1 = … for some 𝑛 ≥ 0 by Lemma 25.12.1. Set ℋ = ℱ𝑛 for
this 𝑛. By Artin-Rees (Lemma 25.12.3) there exists an 𝑐 ≥ 0 such that ℐ𝑚ℱ ∩ 𝒢 ⊂ ℐ𝑚−𝑐𝒢.
Picking 𝑚 = 𝑛 + 𝑐 we get ℐ𝑚ℱ ∩ 𝒢 ⊂ ℐ𝑛𝒢 = 0. Thus if we set ℱ′ = ℐ𝑚ℱ then we see
that ℱ′ ∩ ℱ𝑛 = 0 and ℱ′|𝑈 = ℱ|𝑈. Note in particular that the subsheaf (ℱ′)𝑁 of sections
annihilated by ℐ𝑁 is zero for all 𝑁 ≥ 0. Hence by Properties, Lemma 23.22.5 we deduce
that the top horizontal arrow in the following commutative diagram is a bijection:

𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝒪𝑋
(ℐ𝑛, ℱ′) //

��

Γ(𝑈, ℱ′)

��
𝑐𝑜𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝒪𝑋

(ℐ𝑛, ℱ) // Γ(𝑈, ℱ)

Since also the right vertical arrow is a bijection we conclude that the bottom horizontal
arrow is surjective. The bottom horizontal arrow is injective by Properties, Lemma 23.22.5.
This proves the bottom arrow is a bijection as desired.

Next, we come to the general case. By Lemma 25.11.4 the sheaf ℋ = ℋ𝑜𝑚𝒪𝑋
(𝒢, ℱ) is

coherent. By definition we have

ℋ(𝑈) = 𝐻𝑜𝑚𝒪𝑈
(𝒢|𝑈, ℱ|𝑈)

Pick a 𝜓 in the right hand side of the first arrow of the lemma, i.e., 𝜓 ∈ ℋ(𝑈). The result
just proved applies to ℋ and hence there exists an 𝑛 ≥ 0 and an 𝜑 ∶ ℐ𝑛 → ℋ which
recovers 𝜓 on restricition to 𝑈. By Modules, Lemma 15.19.1 𝜑 corresponds to a map

𝜑 ∶ ℐ⊗𝑛 ⊗𝒪𝑋
𝒢 ⟶ ℱ.

This is almost what we want except that the source of the arrow is the tensor product of ℐ𝑛

and 𝒢 and not the product. We will show that, at the cost of increasing 𝑛, the difference is
irrelevant. Consider the short exact sequence

0 → 𝒦 → ℐ𝑛 ⊗𝒪𝑋
𝒢 → ℐ𝑛𝒢 → 0

where 𝒦 is defined as the kernel. Note that ℐ𝑛𝒦 = 0 (proof omitted). By Artin-Rees again
we see that

𝒦 ∩ ℐ𝑚(ℐ𝑛 ⊗𝒪𝑋
𝒢) = 0

for some 𝑚 large enough. In other words we see that

ℐ𝑚(ℐ𝑛 ⊗𝒪𝑋
𝒢) ⟶ ℐ𝑛+𝑚𝒢

is an isomorphism. Let 𝜑′ be the restriction of 𝜑 to this submodule thought of as a map
ℐ𝑚+𝑛𝒢 → ℱ. Then 𝜑′ gives an element of the left hand side of the first arrow of the lemma
which maps to 𝜓 via the arrow. In other words we have prove surjectivity of the arrow. We
omit the proof of injectivity. �

25.13. Depth

In this section we talk a little bit about depth and property (𝑆𝑘) for coherent modules on
locally Noetherian schemes. Note that we have already discussed this notion for locally
Noetherian schemes in Properties, Section 23.12.

Definition 25.13.1. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a coherent 𝒪𝑋-module.
Let 𝑘 ≥ 0 be an integer.
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(1) We say ℱ has depth 𝑘 at a point 𝑥 of 𝑋 if depth𝒪𝑋,𝑥
(ℱ𝑥) = 𝑘.

(2) We say 𝑋 has depth 𝑘 at a point 𝑥 of 𝑋 if depth(𝒪𝑋,𝑥) = 𝑘.
(3) We say ℱ has property (𝑆𝑘) if

depth𝒪𝑋,𝑥
(ℱ𝑥) ≥ min(𝑘, dim(ℱ𝑥))

for all 𝑥 ∈ 𝑋.
(4) We say 𝑋 has property (𝑆𝑘) if 𝒪𝑋 has property (𝑆𝑘).

Any coherent sheaf satisfies condition (𝑆0). Condition (𝑆1) is equivalent to having no
embedded associated points, see Divisors, Lemma 26.4.3.
We have seen in Properties, Lemma 23.12.2 that a locally Noetherian scheme is Cohen-
Macaulay if and only if (𝑆𝑘) holds for all 𝑘. Thus it makes sense to introduce the following
definition, which is equivalent to the condition that all stalks are Cohen-Macaulay modules.

Definition 25.13.2. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a coherent 𝒪𝑋-module.
We say ℱ is Cohen-Macaulay if and only if (𝑆𝑘) holds for all 𝑘 ≥ 0.

25.14. Devissage of coherent sheaves

Let 𝑋 be a Noetherian scheme. Consider an integral closed subscheme 𝑖 ∶ 𝑍 → 𝑋. It is
often convenient to consider coherent sheaves of the form 𝑖∗𝒢 where 𝒢 is a coherent sheaf
on 𝑍. In particular we are interested in these sheaves when 𝒢 is a torsion free rank 1 sheaf.
For example 𝒢 could be a nonzero sheaf of ideals on 𝑍, or even more specifically 𝒢 = 𝒪𝑍.
Throughout this section we will use that a coherent sheaf is the same thing as a finite type
quasi-coherent sheaf and that a quasi-coherent subquotient of a coherent sheaf is coherent,
see Section 25.11. The support of a coherent sheaf is closed, see Modules, Lemma 15.9.6.

Lemma 25.14.1. Let 𝑋 be a Noetherian scheme. Let ℱ be a coherent sheaf on 𝑋. Suppose
that Supp(ℱ) = 𝑍 ∪ 𝑍′ with 𝑍, 𝑍′ closed. Then there exists a short exact sequence of
coherent sheaves

0 → 𝒢′ → ℱ → 𝒢 → 0
with Supp(𝒢′) ⊂ 𝑍′ and Supp(𝒢) ⊂ 𝑍.

Proof. Throughout the proof we will use that a coherent sheaf is the same thing as a finite
type quasi-coherent sheaf and that a quasi-coherent subquotient of a coherent sheaf is co-
herent, see Section 25.11. The support of a coherent sheaf is closed, see Modules, Lemma
15.9.6. Let ℐ ⊂ 𝒪𝑋 be the sheaf of ideals defining the reduced induced closed subscheme
structure on 𝑍, see Schemes, Lemma 21.12.4. Consider the subsheaves 𝒢′

𝑛 = ℐ𝑛ℱ and the
quotients 𝒢𝑛 = ℱ/ℐ𝑛ℱ. For each 𝑛 we have a short exact sequence

0 → 𝒢′
𝑛 → ℱ → 𝒢𝑛 → 0

For every point 𝑥 of 𝑍′ ⧵ 𝑍 we have ℐ𝑥 = 𝒪𝑋,𝑥 and hence 𝒢𝑛,𝑥 = 0. Thus we see that
Supp(𝒢𝑛) ⊂ 𝑍. Note that 𝑋 ⧵ 𝑍′ is a Noetherian scheme. Hence by Lemma 25.12.2 there
exists an 𝑛 such that 𝒢′

𝑛|𝑋⧵𝑍′ = ℐ𝑛ℱ|𝑋⧵𝑍′ = 0. For such an 𝑛 we see that Supp(𝒢′
𝑛) ⊂ 𝑍′.

Thus setting 𝒢′ = 𝒢′
𝑛 and 𝒢 = 𝒢𝑛 works. �

Lemma 25.14.2. Let 𝑋 be a Noetherian scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be an integral closed
subscheme. Let 𝜉 ∈ 𝑍 be the generic point. Let ℱ be a coherent sheaf on 𝑋. Assume that
ℱ𝜉 is annihilated by 𝔪𝜉. Then there exists an integer 𝑟 ≥ 0 and a sheaf of ideals ℐ ⊂ 𝒪𝑍
and an injective map of coherent sheaves

𝑖∗ (ℐ⊕𝑟) → ℱ
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which is an isomorphism in a neighbourhood of 𝜉.

Proof. Let 𝒥 ⊂ 𝒪𝑋 be the ideal sheaf of 𝑍. Let ℱ′ ⊂ ℱ be the subsheaf of local sections of
ℱ which are annihilated by 𝒥. It is a quasi-coherent sheaf by Properties, Lemma 23.22.3.
Moreover, ℱ′

𝜉 = ℱ𝜉 because 𝒥𝜉 = 𝔪𝜉 and part (3) of Properties, Lemma 23.22.3. By
Lemma 25.11.5 we see that ℱ′ → ℱ induces an isomorphism in a neighbourhood of 𝜉.
Hence we may replace ℱ by ℱ′ and assume that ℱ is annihilated by 𝒥.

Assume 𝒥ℱ = 0. By Morphisms, Lemma 24.3.1 we can write ℱ = 𝑖∗𝒢 for some quasi-
coherent sheaf 𝒢 on 𝑍. By Modules, Lemma 15.13.3 combined with the results of Section
25.11 we also see 𝒢 is coherent on 𝑍. Suppose we can find a morphism ℐ⊕𝑟 → 𝒢 which is
an isomorphism in a neighbourhood of the generic point 𝜉 of 𝑍. Then applying 𝑖∗ (which
is left exact) we get the result of the lemma. Hence we have reduced to the case 𝑋 = 𝑍.

Suppose 𝑍 = 𝑋 is an integral Noetherian scheme with generic point 𝜉. Note that 𝒪𝑋,𝜉 =
𝜅(𝜉) is the function field of 𝑋 in this case. Since ℱ𝜉 is a finite 𝒪𝜉-module we see that
𝑟 = dim𝜅(𝜉) ℱ𝜉 is finite. Hence the sheaves 𝒪⊕𝑟

𝑋 and ℱ have isomorphic stalks at 𝜉. By
Lemma 25.11.6 there exists a nonempty open 𝑈 ⊂ 𝑋 and a morphism 𝜓 ∶ 𝒪⊕𝑟

𝑋 |𝑈 → ℱ|𝑈
which is an isomorphism at 𝜉, and hence an isomorphism in a neighbourhood of 𝜉 by Lemma
25.11.5. By Schemes, Lemma 21.12.4 there exists a quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑋
whose associated closed subscheme 𝑍 ⊂ 𝑋 is the complement of 𝑈. By Lemma 25.12.4
there exists an 𝑛 ≥ 0 and a morphism ℐ𝑛(𝒪𝑋)⊕𝑟) → ℱ which recovers our 𝜓 over 𝑈. Since
ℐ𝑛(𝒪𝑋)⊕𝑟) = (ℐ𝑛)⊕𝑟 we get a map as in the lemma. It is injective because 𝑋 is integral
and it is injective at the generic point of 𝑋 (easy proof omitted). �

Lemma 25.14.3. Let 𝑋 be a Noetherian scheme. Let ℱ be a coherent sheaf on 𝑋. There
exists a filtration

0 = ℱ0 ⊂ ℱ1 ⊂ … ⊂ ℱ𝑚 = ℱ

by coherent subsheaves such that for each 𝑗 = 1, … , 𝑚 there exists an integral closed
subscheme 𝑍𝑗 ⊂ 𝑋 and a sheaf of ideals ℐ𝑗 ⊂ 𝒪𝑍𝑗

such that

ℱ𝑗/ℱ𝑗−1 ≅ (𝑍𝑗 → 𝑋)∗ℐ𝑗

Proof. Consider the collection

𝒯 = {
𝑍 ⊂ 𝑋 closed such that there exists a coherent sheaf ℱ

with Supp(ℱ) = 𝑍 for which the lemma is wrong }

We are trying to show that 𝒯 is empty. If not, then because 𝑋 is Noetherian we can choose
a minimal element 𝑍 ∈ 𝒯. This means that there exists a coherent sheaf ℱ on 𝑋 whose
support is 𝑍 and for which the lemma does not hold. Clearly 𝑍≠∅ since the only sheaf
whose support is empty is the zero sheaf for which the lemma does hold (with 𝑚 = 0).

If 𝑍 is not irreducible, then we can write 𝑍 = 𝑍1 ∪ 𝑍2 with 𝑍1, 𝑍2 closed and strictly
smaller than 𝑍. Then we can apply Lemma 25.14.1 to get a short exact sequence of coherent
sheaves

0 → 𝒢1 → ℱ → 𝒢2 → 0

with Supp(𝒢𝑖) ⊂ 𝑍𝑖. By minimality of 𝑍 each of 𝒢𝑖 has a filtration as in the statement of
the lemma. By considering the induced filtration on ℱ we arrive at a contradiction. Hence
we conclude that 𝑍 is irreducible.
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Suppose 𝑍 is irreducible. Let 𝒥 be the sheaf of ideals cutting out the reduced induced
closed subscheme structure of 𝑍, see Schemes, Lemma 21.12.4. By Lemma 25.12.2 we
see there exists an 𝑛 ≥ 0 such that 𝒥𝑛ℱ = 0. Hence we obtain a filtration

0 = ℐ𝑛ℱ ⊂ ℐ𝑛−1ℱ ⊂ … ⊂ ℐℱ ⊂ ℱ

each of whose succesive subquotients is annihilated by 𝒥. Hence if each of these subquo-
tients has a filtration as in the statement of the lemma then also ℱ does. In other words we
may assume that 𝒥 does annihilate ℱ.

In the case where 𝑍 is irreducible and 𝒥ℱ = 0 we can apply Lemma 25.14.2. This gives a
short exact sequence

0 → 𝑖∗(ℐ⊕𝑟) → ℱ → 𝒬 → 0
where 𝒬 is defined as the quotient. Since 𝒬 is zero in a neighbourhood of 𝜉 by the lemma
just cited we see that the support of 𝒬 is strictly smaller than 𝑍. Hence we see that 𝒬 has a
filtration of the desired type by minimality of 𝑍. But then clearly ℱ does too, which is our
final contradiction. �

Lemma 25.14.4. Let 𝑋 be a Noetherian scheme. Let 𝒫 be a property of coherent sheaves
on 𝑋 such that

(1) For any short exact sequence of coherent sheaves

0 → ℱ1 → ℱ → ℱ2 → 0

if ℱ𝑖, 𝑖 = 1, 2 have property 𝒫 then so does ℱ.
(2) For every integral closed subscheme 𝑍 ⊂ 𝑋 and every quasi-coherent sheaf of

ideals ℐ ⊂ 𝒪𝑍 we have 𝒫 for 𝑖∗ℐ.
Then property 𝒫 holds for every coherent sheaf on 𝑋.

Proof. First note that if ℱ is a coherent sheaf with a filtration

0 = ℱ0 ⊂ ℱ1 ⊂ … ⊂ ℱ𝑚 = ℱ

by coherent subsheaves such that each of ℱ𝑖/ℱ𝑖−1 has property 𝒫, then so does ℱ. This
follows from the property (1) for 𝒫. On the other hand, by Lemma 25.14.3 we can filter
any ℱ with succesive subquotients as in (2). Hence the lemma follows. �

Lemma 25.14.5. Let 𝑋 be a Noetherian scheme. Let 𝑍0 ⊂ 𝑋 be an irreducible closed
subset with generic point 𝜉. Let 𝒫 be a property of coherent sheaves on 𝑋 such that

(1) For any short exact sequence of coherent sheaves if two out of three of them have
property 𝒫 then so does the third.

(2) For every integral closed subscheme 𝑍 ⊂ 𝑍0 ⊂ 𝑋, 𝑍≠𝑍0 and every quasi-
coherent sheaf of ideals ℐ ⊂ 𝒪𝑍 we have 𝒫 for (𝑍 → 𝑋)∗ℐ.

(3) There exists some coherent sheaf 𝒢 on 𝑋 such that
(a) Supp(𝒢) = 𝑍0,
(b) 𝒢𝜉 is annihilated by 𝔪𝜉,
(c) dim𝜅(𝜉) 𝒢𝜉 = 1, and
(d) property 𝒫 holds for 𝒢.

Then property 𝒫 holds for every coherent sheaf ℱ on 𝑋 whose support is contained in 𝑍0.

Proof. First note that if ℱ is a coherent sheaf with a filtration

0 = ℱ0 ⊂ ℱ1 ⊂ … ⊂ ℱ𝑚 = ℱ
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by coherent subsheaves such that each of ℱ𝑖/ℱ𝑖−1 has property 𝒫, then so does ℱ. Or, if
ℱ has property 𝒫 and all but one of the ℱ𝑖/ℱ𝑖−1 has property 𝒫 then so does the last one.
This follows from the two-out-of-three property (1) for 𝒫.

As a first application of these remarks we conclude that any coherent sheaf whose support
is strictly contained in 𝑍0 has property 𝒫. Namely, such a sheaf has a filtration (see Lemma
25.14.3) whose subquotients have property 𝒫 according to (2).

As a second application we apply this remark to the sheaf 𝒢 from assumption (3) and a
filtration

0 = 𝒢0 ⊂ 𝒢1 ⊂ … ⊂ 𝒢𝑚 = 𝒢
by coherent subsheaves as in Lemma 25.14.3. Let 𝑍𝑗 → 𝑋 be the integral closed sub-
schemes, and ℐ𝑖 ⊂ 𝒪𝑍𝑖

the quasi-coherent sheaves of ideals such that 𝒢𝑖/𝒢𝑖−1 ≅ (𝑍𝑖 →
𝑋)∗ℐ𝑖. We may obviously assume all the ℐ𝑖 are nonzero. Since dim𝜅(𝜉) 𝒢𝜉 = 1 we see that
there is exactly one 𝑖 = 𝑖0 such that 𝑍𝑖0 = 𝑍0 and all other 𝑍𝑖 ⊂ 𝑍0 are proper irreducible
closed subsets of 𝑍0. By the remark above and (2) we see that (𝑍𝑖0 → 𝑋)∗ℐ𝑖0 has property
𝒫. We conclude that there exists at least one quasi-coherent sheaf of ideals ℐ (namely ℐ𝑖0)
on 𝑍0 such that (𝑍0 → 𝑋)∗ℐ has property 𝒫.

Next, suppose that ℐ′ is another quasi-coherent sheaf of ideals 𝑍0. Then we can consider
the intersection ℐ″ = ℐ′ ∩ ℐ and we get two short exact sequences

0 → (𝑍0 → 𝑋)∗ℐ″ → (𝑍0 → 𝑋)∗ℐ → 𝒬 → 0

and
0 → (𝑍0 → 𝑋)∗ℐ′ → (𝑍0 → 𝑋)∗ℐ → 𝒬′ → 0.

Note that the support of the coherent sheaves 𝒬 and 𝒬′ are strictly contained in 𝑍0. Hence
𝒬 and 𝒬 have property 𝒫 (see above). Hence we conclude using (1) that (𝑍0 → 𝑋)∗ℐ″

and (𝑍0 → 𝑋)∗ℐ′ both have 𝒫 as well.

The final step of the proof is to note that any coherent sheaf ℱ on 𝑋 whose support is
contained in 𝑍0 has a filtration (see Lemma 25.14.3 again) whose subquotients all have
property 𝒫 by what we just said. �

Lemma 25.14.6. Let 𝑋 be a Noetherian scheme. Let 𝒫 be a property of coherent sheaves
on 𝑋 such that

(1) For any short exact sequence of coherent sheaves if two out of three of them have
property 𝒫 then so does the third.

(2) For every integral closed subscheme 𝑍 ⊂ 𝑋 with generic point 𝜉 there exists
some coherent sheaf 𝒢 such that
(a) Supp(𝒢) = 𝑍,
(b) 𝒢𝜉 is annihilated by 𝔪𝜉,
(c) dim𝜅(𝜉) 𝒢𝜉 = 1, and
(d) property 𝒫 holds for 𝒢.

Then property 𝒫 holds for every coherent sheaf on 𝑋.

Proof. According to Lemma 25.14.4 it suffices to show that given any integral closed sub-
scheme𝑍 ⊂ 𝑋 and every quasi-coherent sheaf of idealsℐ ⊂ 𝒪𝑍 we have𝒫 for (𝑍 → 𝑋)∗ℐ.
If this fails, then since𝑋 is Noetherian there is aminimal integral closed subscheme𝑍0 ⊂ 𝑋
such that 𝒫 fails for (𝑍0 → 𝑋)∗ℐ for some quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑍0

. In
other words, the result does hold for any integral closed subscheme of 𝑍. According to
Lemma 25.14.5 this cannot happen. �
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Lemma 25.14.7. (Variant of Lemma 25.14.5.) Let 𝑋 be a Noetherian scheme. Let 𝑍0 ⊂ 𝑋
be an irreducible closed subset with generic point 𝜉. Let𝒫 be a property of coherent sheaves
on 𝑋 such that

(1) For any short exact sequence of coherent sheaves if two out of three of them have
property 𝒫 then so does the third.

(2) If 𝒫 holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme 𝑍 ⊂ 𝑍0 ⊂ 𝑋, 𝑍≠𝑍0 and every quasi-

coherent sheaf of ideals ℐ ⊂ 𝒪𝑍 we have 𝒫 for (𝑍 → 𝑋)∗ℐ.
(4) There exists some coherent sheaf 𝒢 on 𝑋 such that

(a) Supp(𝒢) = 𝑍0,
(b) 𝒢𝜉 is annihilated by 𝔪𝜉, and
(c) property 𝒫 holds for 𝒢.

Then property 𝒫 holds for every coherent sheaf ℱ on 𝑋 whose support is contained in 𝑍0.

Proof. The proof is a variant on the proof of Lemma 25.14.5. In exactly the same manner
as in that proof we see that any coherent sheaf whose support is strictly contained in 𝑍0 has
property 𝒫.
Consider a coherent sheaf 𝒢 as in (3). By Lemma 25.14.2 there exists a sheaf of ideals ℐ
on 𝑍0 and a short exact sequence

0 → ((𝑍0 → 𝑋)∗ℐ)
⊕𝑟 → 𝒢 → 𝒬 → 0

where the support of 𝒬 is stricly contained in 𝑍0. In particular 𝑟 > 0 and ℐ is nonzero
because the support of 𝒢 is equal to 𝑍. Since 𝒬 has property 𝒫 we conclude that also
((𝑍0 → 𝑋)∗ℐ)

⊕𝑟 has property 𝒫. By (2) we deduce property 𝒫 for (𝑍0 → 𝑋)∗ℐ. Slotting
this into the proof of Lemma 25.14.5 at the appropriate point gives the lemma. Some details
omitted. �

Lemma 25.14.8. (Variant of Lemma 25.14.6.) Let 𝑋 be a Noetherian scheme. Let 𝒫 be a
property of coherent sheaves on 𝑋 such that

(1) For any short exact sequence of coherent sheaves if two out of three of them have
property 𝒫 then so does the third.

(2) If 𝒫 holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme 𝑍 ⊂ 𝑋 with generic point 𝜉 there exists

some coherent sheaf 𝒢 such that
(a) Supp(𝒢) = 𝑍,
(b) 𝒢𝜉 is annihilated by 𝔪𝜉, and
(c) property 𝒫 holds for 𝒢.

Then property 𝒫 holds for every coherent sheaf on 𝑋.

Proof. This follows from Lemma 25.14.7 by exactly the same argument as used in the
proof of Lemma 25.14.6. �

Lemma 25.14.9. (Cohomological variant of Lemma 25.14.7.) Let 𝑋 be a Noetherian
scheme. Let 𝑍0 ⊂ 𝑋 be an irreducible closed subset with generic point 𝜉. Let 𝒫 be a
property of coherent sheaves on 𝑋 such that

(1) For any short exact sequence of coherent sheaves
0 → ℱ1 → ℱ → ℱ2 → 0

if ℱ𝑖, 𝑖 = 1, 2 have property 𝒫 then so does ℱ.
(2) If 𝒫 holds for a direct sum of coherent sheaves then it holds for both.
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(3) For every integral closed subscheme 𝑍 ⊂ 𝑍0 ⊂ 𝑋, 𝑍≠𝑍0 and every quasi-
coherent sheaf of ideals ℐ ⊂ 𝒪𝑍 we have 𝒫 for (𝑍 → 𝑋)∗ℐ.

(4) There exists some coherent sheaf 𝒢 such that
(a) Supp(𝒢) = 𝑍0,
(b) 𝒢𝜉 is annihilated by 𝔪𝜉, and
(c) for every quasi-coherent sheaf of ideals 𝒥 ⊂ 𝒪𝑋 such that 𝒥𝜉 = 𝒪𝑋,𝜉 there

exists a quasi-coherent subsheaf 𝒢′ ⊂ 𝒥𝒢 with 𝒢′
𝜉 = 𝒢𝜉 and such that 𝒫

holds for 𝒢′.
Then property 𝒫 holds for every coherent sheaf ℱ on 𝑋 whose support is contained in 𝑍0.

Proof. The proof is a variant on the proof of Lemma 25.14.5. In exactly the same manner
as in that proof we see that any coherent sheaf whose support is strictly contained in 𝑍0 has
property 𝒫. Note that this does not use the full strength of the two-out-of-three property of
that lemma, only the weaker variant (1) above which is in force in the current situation.
Let us denote 𝑖 ∶ 𝑍0 → 𝑋 the closed immersion. Consider a coherent sheaf 𝒢 as in (4).
By Lemma 25.14.2 there exists a sheaf of ideals ℐ on 𝑍0 and a short exact sequence

0 → 𝑖∗ℐ⊕𝑟 → 𝒢 → 𝒬 → 0
where the support of 𝒬 is stricly contained in 𝑍0. In particular 𝑟 > 0 and ℐ is nonzero
because the support of 𝒢 is equal to 𝑍0. Let ℐ′ ⊂ ℐ be any nonzero quasi-coherent sheaf
of ideals on 𝑍 contained in ℐ. Then we also get a short exact sequence

0 → 𝑖∗(ℐ′)⊕𝑟 → 𝒢 → 𝒬′ → 0
where 𝒬′ has support properly contained in 𝑍0. Let 𝒥 ⊂ 𝒪𝑋 be a quasi-coherent sheaf of
ideals cuttting out the support of 𝒬′ (for example the ideal corresponding to the reduced
induced closed subscheme structure on the the support of 𝒬′). Then 𝒥𝜉 = 𝒪𝑋,𝜉. By Lemma
25.12.2 we see that 𝒥𝑛𝒬′ = 0 for some 𝑛. Hence 𝒥𝑛𝒢 ⊂ 𝑖∗(ℐ′)⊕𝑟. By assumption (4)(c) of
the lemma we see there exists a quasi-coherent subsheaf 𝒢′ ⊂ 𝒥𝑛𝒢 with 𝒢′

𝜉 = 𝒢𝜉 for which
property 𝒫 holds. Hence we get a short exact sequence

0 → 𝒢′ → 𝑖∗(ℐ′)⊕𝑟 → 𝒬″ → 0
where 𝒬″ has support properly contained in 𝑍0. Thus by our initial remarks and property
(1) of the lemma we conclude that 𝑖∗(ℐ′)⊕𝑟 satisfies 𝒫. Hence we see that 𝑖∗ℐ′ satisfies
𝒫 by (2). Finally, for an arbitrary quasi-coherent sheaf of ideals ℐ″ ⊂ 𝒪𝑍0

we can set
ℐ = ℐ″ ∩ ℐ and we get a short exact sequence

0 → 𝑖∗(ℐ′) → 𝑖∗(ℐ″) → 𝒬‴ → 0
where 𝒬‴ has support properly contained in 𝑍0. Hence we conclude that property 𝒫 holds
for 𝑖∗ℐ″ as well. Slotting this into the proof of Lemma 25.14.5 at the appropriate point
gives the lemma. Some details omitted. �

Lemma 25.14.10. (Cohomological variant of Lemma 25.14.8.) Let 𝑋 be a Noetherian
scheme. Let 𝒫 be a property of coherent sheaves on 𝑋 such that

(1) For any short exact sequence of coherent sheaves
0 → ℱ1 → ℱ → ℱ2 → 0

if ℱ𝑖, 𝑖 = 1, 2 have property 𝒫 then so does ℱ.
(2) If 𝒫 holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme 𝑍 ⊂ 𝑋 with generic point 𝜉 there exists

some coherent sheaf 𝒢 such that
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(a) Supp(𝒢) = 𝑍,
(b) 𝒢𝜉 is annihilated by 𝔪𝜉, and
(c) for every quasi-coherent sheaf of ideals 𝒥 ⊂ 𝒪𝑋 such that 𝒥𝜉 = 𝒪𝑋,𝜉 there

exists a quasi-coherent subsheaf 𝒢′ ⊂ 𝒥𝒢 with 𝒢′
𝜉 = 𝒢𝜉 and such that 𝒫

holds for 𝒢′.
Then property 𝒫 holds for every coherent sheaf on 𝑋.

Proof. Identical to the proofs of Lemmas 25.14.8 and 25.14.6. �

25.15. Finite morphisms and affines

In this section we use the results of the preceding sections to show that the image of a
Noetherian affine scheme under a finite morphism is affine. We will see later that this result
holds more generally (see Limits, Lemma 27.7.1).

Lemma 25.15.1. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism of schemes. Assume 𝑓 is finite, surjective
and 𝑋 locally Noetherian. Let 𝑍 ⊂ 𝑋 be an integral closed subscheme with generic point
𝜉. Then there exists a coherent sheaf ℱ on 𝑌 such that the support of 𝑓∗ℱ is equal to 𝑍 and
(𝑓∗ℱ)𝜉 is annihilated by 𝔪𝜉.

Proof. Note that 𝑌 is locally Noetherian by Morphisms, Lemma 24.14.6. Because 𝑓 is
surjective the fibre 𝑌𝜉 is not empty. Pick 𝜉′ ∈ 𝑌 mapping to 𝜉. Let 𝑍′ = {𝜉′}. We may
think of 𝑍′ ⊂ 𝑌 as a reduced closed subscheme, see Schemes, Lemma 21.12.4. Hence
the sheaf ℱ = (𝑍′ → 𝑌)∗𝒪𝑍′ is a coherent sheaf on 𝑌 (see Lemma 25.11.8). Look at the
commutative diagram

𝑍′
𝑖′
//

𝑓′

��

𝑌

𝑓
��

𝑍 𝑖 // 𝑋
We see that 𝑓∗ℱ = 𝑖∗𝑓′

∗𝒪𝑍′. Hence the stalk of 𝑓∗ℱ at 𝜉 is the stalk of 𝑓′
∗𝒪𝑍′ at 𝜉. Note

that since 𝑍′ is integral with generic point 𝜉′ we have that 𝜉′ is the only point of 𝑍′ lying
over 𝜉, see Algebra, Lemmas 7.32.3 and 7.32.18. Hence the stalk of 𝑓′

∗𝒪𝑍′ at 𝜉 equal
𝒪𝑍′,𝜉′ = 𝜅(𝜉′). In particular the stalk of 𝑓∗ℱ at 𝜉 is not zero. This combined with the fact
that 𝑓∗ℱ is of the form 𝑖∗𝑓′

∗(something) implies the lemma. �

Lemma 25.15.2. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑌. Let ℐ be a quasi-coherent sheaf of ideals on 𝑋. If the morphism 𝑓 is affine then
ℐ𝑓∗ℱ = 𝑓∗(𝑓−1ℐℱ).

Proof. The notation means the following. Since 𝑓−1 is an exact functor we see that 𝑓−1ℐ
is a sheaf of ideals of 𝑓−1𝒪𝑋. Via the map 𝑓♯ ∶ 𝑓−1𝒪𝑋 → 𝒪𝑌 this acts on ℱ. Then 𝑓−1ℐℱ
is the subsheaf generated by sums of local sections of the form 𝑎𝑠 where 𝑎 is a local section
of 𝑓−1ℐ and 𝑠 is a local section of ℱ. It is a quasi-coherent 𝒪𝑌-submodule of ℱ because it
is also the image of a natural map 𝑓∗ℐ ⊗𝒪𝑌

ℱ → ℱ.
Having said this the proof is straightforward. Namely, the question is local and hence we
may assume 𝑋 is affine. Since 𝑓 is affine we see that 𝑌 is affine too. Thus we may write
𝑌 = 𝑆𝑝𝑒𝑐(𝐵), 𝑋 = 𝑆𝑝𝑒𝑐(𝐴), ℱ = 𝑀, and ℐ = ̃𝐼. The assertion of the lemma in this case
boils down to the statement that

𝐼(𝑀𝐴) = ((𝐼𝐵)𝑀)𝐴

where 𝑀𝐴 indicates the 𝐴-module associated to the 𝐵-module 𝑀. �
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Lemma 25.15.3. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism of schemes. Assume
(1) 𝑓 finite,
(2) 𝑓 surjective,
(3) 𝑌 affine, and
(4) 𝑋 Noetherian.

Then 𝑋 is affine.

Proof. Wewill prove that under the assumptions of the lemma for any coherent 𝒪𝑋-module
ℱ we have 𝐻1(𝑋, ℱ) = 0. Since this will in particular imply that 𝐻1(𝑋, ℐ) = 0 for every
quasi-coherent sheaf of ideals of 𝒪𝑋. Then it will follows that 𝑋 is affine from either Lemma
25.3.1 or Lemma 25.3.2.

Let 𝒫 be the property of coherent sheaves ℱ on 𝑋 defined by the rule

𝒫(ℱ) ⇔ 𝐻1(𝑋, ℱ) = 0.

We are going to apply Lemma 25.14.10. Thus we have to verify (1), (2) and (3) of that
lemma for 𝒫. Property (1) follows from the long exact cohomology sequence associated
to a short exact sequence of sheaves. Property (2) follows since 𝐻1(𝑋, −) is an additive
functor. To see (3) let 𝑍 ⊂ 𝑋 be an integral closed subscheme with generic point 𝜉. Let ℱ
be a coherent sheaf on 𝑌 such that the support of 𝑓∗ℱ is equal to 𝑍 and (𝑓∗ℱ)𝜉 is annihilated
by 𝔪𝜉, see Lemma 25.15.1. We claim that taking 𝒢 = 𝑓∗ℱ works. We only have to verify
part (3)(c) of Lemma 25.14.10. Hence assume that 𝒥 ⊂ 𝒪𝑋 is a quasi-coherent sheaf of
ideals such that 𝒥𝜉 = 𝒪𝑋,𝜉. A finite morphism is affine hence by Lemma 25.15.2 we see that
𝒥𝒢 = 𝑓∗(𝑓−1𝒥ℱ). Also, as pointed out in the proof of Lemma 25.15.2 the sheaf 𝑓−1𝒥ℱ is
a quasi-coherent 𝒪𝑌-module. Since 𝑌 is affine we see that 𝐻1(𝑌, 𝑓−1𝒥ℱ) = 0, see Lemma
25.2.2. Since 𝑓 is finite, hence affine, we see that 𝑅𝑞𝑓∗(𝑓−1𝒥ℱ) = 0 for all 𝑞 ≥ 1 by Lemma
25.2.3. By Cohomology, Lemma 18.12.6 we see that

𝐻1(𝑋, 𝒥𝒢) = 𝐻1(𝑋, 𝑓∗(𝑓−1𝒥ℱ)) = 𝐻1(𝑌, 𝑓−1𝒥ℱ) = 0.

Hence the quasi-coherent subsheaf 𝒢′ = 𝒥𝒢 satisfies 𝒫. This verifies property (3)(c) of
Lemma 25.14.10 as desired. �

25.16. Coherent sheaves and projective morphisms

It seems illuminating to formulate an all-in-one result for projective space over a Noetherian
ring.

Lemma 25.16.1. Let 𝑅 be a Noetherian ring. Let 𝑛 ≥ 0 be an integer. For every coherent
sheaf ℱ on 𝐏𝑛

𝑅 we have the following:
(1) There exists an 𝑟 ≥ 0 and 𝑑1, … , 𝑑𝑟 ∈ 𝐙 and a surjection

⨁𝑗=1,…,𝑟
𝒪𝐏𝑛

𝑅
(𝑑𝑗) ⟶ ℱ.

(2) We have 𝐻𝑖(𝐏𝑛
𝑅, ℱ) = 0 unless 0 ≤ 𝑖 ≤ 𝑛.

(3) For any 𝑖 the cohomology group 𝐻𝑖(𝐏𝑛
𝑅, ℱ) is a finite 𝑅-module.

(4) If 𝑖 > 0, then 𝐻𝑖(𝐏𝑛
𝑅, ℱ(𝑑)) = 0 for all 𝑑 large enough.

(5) For any 𝑘 ∈ 𝐙 the graded 𝑅[𝑇0, … , 𝑇𝑛]-module

⨁𝑑≥𝑘
𝐻0(𝐏𝑛

𝑅, ℱ(𝑑))

is a finite 𝑅[𝑇0, … , 𝑇𝑛]-module.
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Proof. Wewill use that 𝒪𝐏𝑛
𝑅

(1) is an ample invertible sheaf on the scheme 𝐏𝑛
𝑅. This follows

directly from the definition since 𝐏𝑛
𝑅 covered by the standard affine opens 𝐷+(𝑇𝑖). Hence by

Properties, Proposition 23.23.12 every finite type quasi-coherent 𝒪𝐏𝑛
𝑅
-module is a quotient

of a finite direct sum of tensor powers of 𝒪𝐏𝑛
𝑅

(1). On the other hand a coherent sheaves and
finite type quasi-coherent sheaves are the same thing on projective space over 𝑅 by Lemma
25.11.1. Thus we see (1).

Projective 𝑛-space 𝐏𝑛
𝑅 is covered by 𝑛 + 1 affines, namely the standard opens 𝐷+(𝑇𝑖), 𝑖 =

0, … , 𝑛, see Constructions, Lemma 22.13.3. Hence we see that for any quasi-coherent sheaf
ℱ on 𝐏𝑛

𝑅 we have 𝐻𝑖(𝐏𝑛
𝑅, ℱ) = 0 for 𝑖 ≥ 𝑛 + 1, see Lemma 25.5.1. Hence (2) holds.

Let us prove (3) and (4) simultaneously for all coherent sheaves on 𝐏𝑛
𝑅 by descending in-

duction on 𝑖. Clearly the result holds for 𝑖 ≥ 𝑛 + 1 by (2). Suppose we know the result for
𝑖 + 1 and we want to show the result for 𝑖. (If 𝑖 = 0, then part (4) is vacuous.) Let ℱ be
a coherent sheaf on 𝐏𝑛

𝑅. Choose a surjection as in (1) and denote 𝒢 the kernel so that we
have a short exact sequence

0 → 𝒢 → ⨁𝑗=1,…,𝑟
𝒪𝐏𝑛

𝑅
(𝑑𝑗) → ℱ → 0

By Lemma 25.11.2 we see that 𝒢 is coherent. The long exact cohomology sequence gives
an exact sequence

𝐻𝑖(𝐏𝑛
𝑅, ⨁𝑗=1,…,𝑟

𝒪𝐏𝑛
𝑅

(𝑑𝑗)) → 𝐻𝑖(𝐏𝑛
𝑅, ℱ) → 𝐻𝑖+1(𝐏𝑛

𝑅, 𝒢).

By induction assumption the right𝑅-module is finite and by Lemma 25.9.1 the left𝑅-module
is finite. Since 𝑅 is Noetherian it follows immediately that 𝐻𝑖(𝐏𝑛

𝑅, ℱ) is a finite 𝑅-module.
This proves the induction step for assertion (3). Since 𝒪𝐏𝑛

𝑅
(𝑑) is invertible we see that

twisting on 𝐏𝑛
𝑅 is an exact functor (since you get it by tensoring with an invertible sheaf,

see Constructions, Definition 22.10.1). This means that for all 𝑑 ∈ 𝐙 the sequence

0 → 𝒢(𝑑) → ⨁𝑗=1,…,𝑟
𝒪𝐏𝑛

𝑅
(𝑑𝑗 + 𝑑) → ℱ(𝑑) → 0

is short exact. The resulting cohomology sequence is

𝐻𝑖(𝐏𝑛
𝑅, ⨁𝑗=1,…,𝑟

𝒪𝐏𝑛
𝑅

(𝑑𝑗 + 𝑑)) → 𝐻𝑖(𝐏𝑛
𝑅, ℱ(𝑑)) → 𝐻𝑖+1(𝐏𝑛

𝑅, 𝒢(𝑑)).

By induction assumption we see the module on the right is zero for 𝑑 ≫ 0 and by the
computation in Lemma 25.9.1 the module on the left is zero as soon as 𝑑 ≥ − min{𝑑𝑗} and
𝑖 ≥ 1. Hence the induction step for assertion (4). This concludes the proof of (3) and (4).

In order to prove (5) note that for all sufficiently large 𝑑 the map

𝐻0(𝐏𝑛
𝑅, ⨁𝑗=1,…,𝑟

𝒪𝐏𝑛
𝑅

(𝑑𝑗 + 𝑑)) → 𝐻0(𝐏𝑛
𝑅, ℱ(𝑑))

is surjective by the vanishing of 𝐻1(𝐏𝑛
𝑅, 𝒢(𝑑)) we just proved. In other words, the module

𝑀𝑘 = ⨁𝑑≥𝑘
𝐻0(𝐏𝑛

𝑅, ℱ(𝑑))

is for 𝑘 large enough a quotient of the corresponding module

𝑁𝑘 = ⨁𝑑≥𝑘
𝐻0(𝐏𝑛

𝑅, ⨁𝑗=1,…,𝑟
𝒪𝐏𝑛

𝑅
(𝑑𝑗 + 𝑑))

When 𝑘 is sufficiently small (e.g. 𝑘 < −𝑑𝑗 for all 𝑗) then

𝑁𝑘 = ⨁𝑗=1,…,𝑟
𝑅[𝑇0, … , 𝑇𝑛](𝑑𝑗)
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by our computations in Section 25.9. In particular it is finitely generated. Suppose 𝑘 ∈ 𝐙
is arbitrary. Choose 𝑘− ≪ 𝑘 ≪ 𝑘+. Consider the diagram

𝑁𝑘−
𝑁𝑘+

��

oo

𝑀𝑘 𝑀𝑘+
oo

where the vertical arrow is the surjective map above and the horizontal arrows are the ob-
vious inclusion maps. By what was said above we see that 𝑁𝑘−

is a finitely generated
𝑅[𝑇0, … , 𝑇𝑛]-module. Hence 𝑁𝑘+

is a finitely generated 𝑅[𝑇0, … , 𝑇𝑛]-module because
it is a submodule of a finitely generated module and the ring 𝑅[𝑇0, … , 𝑇𝑛] is Noether-
ian. Since the vertical arrow is surjective we conclude that 𝑀𝑘+

is a finitely generated
𝑅[𝑇0, … , 𝑇𝑛]-module. The quotient 𝑀𝑘/𝑀𝑘+

is finite as an 𝑅-module since it is a finite
direct sum of the finite 𝑅-modules 𝐻0(𝐏𝑛

𝑅, ℱ(𝑑)) for 𝑘 ≤ 𝑑 < 𝑘+. Note that we use part (3)
for 𝑖 = 0 here. Hence 𝑀𝑘/𝑀𝑘+

is a fortiori a finite 𝑅[𝑇0, … , 𝑇𝑛]-module. In other words,
we have sandwiched 𝑀𝑘 between two finite 𝑅[𝑇0, … , 𝑇𝑛]-modules and we win. �

Lemma 25.16.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let ℒ be an invertible sheaf on 𝑋. Assume that

(1) 𝑆 is Noetherian,
(2) 𝑓 is proper,
(3) ℱ is coherent, and
(4) ℒ is relatively ample on 𝑋/𝑆.

Then there exists an 𝑛0 such that for all 𝑛 ≥ 𝑛0 we have

𝑅𝑝𝑓∗ (ℱ ⊗𝒪𝑋
ℒ⊗𝑛

) = 0

for all 𝑝 > 0.

Proof. A proper morphism is of finite type by definition. By Morphisms, Lemma 24.38.7
there exists an open covering 𝑆 = ⋃ 𝑉𝑗 and immersions 𝑖𝑗 ∶ 𝑋𝑗 → 𝐏

𝑛𝑗
𝑉𝑗
, where 𝑋𝑗 =

𝑓−1(𝑉𝑗) such that 𝑖∗
𝑗 𝒪(1) is a power of ℒ. Since 𝑆 is quasi-compact we may assume the

covering is finite. Clearly, if we solve the question for each of the finitely many systems
(𝑋𝑗 → 𝑉𝑗, ℒ|𝑋𝑗

, ℱ|𝑉𝑗
) then the result follows. Hence we may assume there exists an im-

mersion 𝑖 ∶ 𝑋 → 𝐏𝑛
𝑆 such that ℒ⊗𝑑 = 𝑖∗𝒪(1) for some 𝑑 ≥ 1.

Repeating the argument above with a finite affine open covering of 𝑆 we see that we may
also assume that 𝑆 is affine. In this case the vanishing of 𝑅𝑝𝑓∗(ℱ ⊗ ℒ⊗𝑛) is equivalent to
the vanishing of 𝐻𝑝(𝑋, ℱ ⊗ ℒ⊗𝑛), see Lemma 25.5.4.

Since 𝑓 is proper we see that 𝑖 is a closed immersion (Morphisms, Lemma 24.40.7). Hence
we see that 𝑅𝑝𝑖∗(ℱ ⊗𝒪𝑋

ℒ⊗𝑛) = 0 for all 𝑝 ≥ 1 (see Lemma 25.11.8 for example). This
implies that

𝐻𝑝(𝑋, ℱ ⊗ ℒ⊗𝑛) = 𝐻𝑝(𝐏𝑛
𝑆, 𝑖∗(ℱ ⊗ ℒ⊗𝑛))

by the Leray spectral sequence (Cohomology, Lemma 18.12.4). Moreover, by the projec-
tion formula (Cohomology, Lemma 18.7.2) we have

𝑖∗(ℱ ⊗𝒪𝑋
ℒ⊗𝑛) = 𝑖∗(ℱ ⊗𝒪𝑋

ℒ⊗⟨𝑛⟩𝑑) ⊗𝒪𝐏𝑛
𝑆

𝒪(⌊𝑛/𝑑⌋)
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for all 𝑛 ∈ 𝐙 where ⟨𝑛⟩𝑑 ∈ {0, 1, … , 𝑑 − 1} is the unique element congruent to 𝑛 module
𝑑. The sheaves ℱ𝑗 = 𝑖∗(ℱ ⊗ ℒ⊗𝑗), 𝑗 ∈ {0, 1, … , 𝑑 − 1} are coherent by Lemma 25.11.8.
Thus we see that for all 𝑛 large enough the cohomology groups 𝐻𝑝(𝐏𝑛

𝑆, ℱ𝑗(𝑛)) vanish by
Lemma 25.16.1. Putting everything together this implies the lemma. �

25.17. Chow's Lemma

In this section we prove Chow's lemma in the Noetherian case (Lemma 25.17.1). In Limits,
Section 27.8 we prove some variants for the non-Noetherian case.

Lemma 25.17.1. Let 𝑆 be a Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a separated morphism
of finite type. Then there exists an 𝑛 ≥ 0 and a diagram

𝑋

��

𝑋′

��

𝜋
oo // 𝐏𝑛

𝑆

~~
𝑆

where 𝑋′ → 𝐏𝑛
𝑆 is an immersion, and 𝜋 ∶ 𝑋′ → 𝑋 is proper and surjective. Moreover, we

may arrange it such that there exists a dense open subscheme 𝑈 ⊂ 𝑋 such that 𝜋−1(𝑈) → 𝑈
is an isomorphism.

Proof. All of the schemes we will encounter during the rest of the proof are going to be of
finite type over the Noetherian scheme 𝑆 and hence Noetherian (see Morphisms, Lemma
24.14.6). All morphisms between them will automatically be quasi-compact, locally of
finite type and quasi-separated, see Morphisms, Lemma 24.14.8 and Properties, Lemmas
23.5.4 and 23.5.6.

The underlying topological space of 𝑋 is Noetherian (see Properties, Lemma 23.5.5) and
we conclude that 𝑋 has only finitely many irreducible components (see Topology, Lemma
5.6.2). Say 𝑋 = 𝑋1 ∪ … ∪ 𝑋𝑟 is the decomposition of 𝑋 into irreducible components. Let
𝜂𝑖 ∈ 𝑋𝑖 be the generic point. For every point 𝑥 ∈ 𝑋 there exists an affine open 𝑈𝑥 ⊂ 𝑋
which contains 𝑥 and each of the generic points 𝜂𝑖. See Properties, Lemma 23.26.4. Since
𝑋 is quasi-compact, we can find a finite affine open covering 𝑋 = 𝑈1 ∪ … ∪ 𝑈𝑚 such that
each 𝑈𝑖 contains 𝜂1, … , 𝜂𝑟. In particular we conclude that the open 𝑈 = 𝑈1 ∩ … ∩ 𝑈𝑚 ⊂ 𝑋
is a dense open. This and the fact that the 𝑈𝑖 are affine opens covering 𝑋 is all that we will
use below.

Let 𝑋∗ ⊂ 𝑋 be the scheme theoretic closure of 𝑈 → 𝑋, see Morphisms, Definition 24.4.2.
Let 𝑈∗

𝑖 = 𝑋∗ ∩ 𝑈𝑖. Note that 𝑈∗
𝑖 is a closed subscheme of 𝑈𝑖. Hence 𝑈∗

𝑖 is affine. Since
𝑈 is dense in 𝑋 the morphism 𝑋∗ → 𝑋 is a surjective closed immersion. It is an isomor-
phism over 𝑈. Hence we may replace 𝑋 by 𝑋∗ and 𝑈𝑖 by 𝑈∗

𝑖 and assume that 𝑈 is scheme
theoretically dense in 𝑋, see Morphisms, Definition 24.5.1.

By Morphisms, Lemma 24.38.3 we can find an immersion 𝑗𝑖 ∶ 𝑈𝑖 → 𝐏𝑛𝑖
𝑆 for each 𝑖. By

Morphisms, Lemma 24.5.7 we can find closed subschemes 𝑍𝑖 ⊂ 𝐏𝑛𝑖
𝑆 such that 𝑗𝑖 ∶ 𝑈𝑖 →

𝑍𝑖 is a scheme theoretically dense open immersion. Note that 𝑍𝑖 → 𝑆 is proper, see
Morphisms, Lemma 24.41.5. Consider the morphism

𝑗 = (𝑗1|𝑈, … , 𝑗𝑛|𝑈) ∶ 𝑈 ⟶ 𝐏𝑛1
𝑆 ×𝑆 … ×𝑆 𝐏𝑛𝑛

𝑆 .

By the lemma cited above we can find a closed subscheme 𝑍 of 𝐏𝑛1
𝑆 ×𝑆 … ×𝑆 𝐏𝑛𝑛

𝑆 such that
𝑗 ∶ 𝑈 → 𝑍 is an open immersion and such that 𝑈 is scheme theoretically dense in 𝑍. The
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morphism 𝑍 → 𝑆 is proper. Consider the 𝑖th projection

pr𝑖|𝑍 ∶ 𝑍 ⟶ 𝐏𝑛𝑖
𝑆 .

This morphism factors through 𝑍𝑖 (see Morphisms, Lemma 24.4.6). Denote 𝑝𝑖 ∶ 𝑍 → 𝑍𝑖
the induced morphism. This is a proper morphism, see Morphisms, Lemma 24.40.7 for
example. At this point we have that 𝑈 ⊂ 𝑈𝑖 ⊂ 𝑍𝑖 are scheme theoretically dense open
immersions. Moreover, we can think of 𝑍 as the scheme theoretic image of the ``diagonal''
morphism 𝑈 → 𝑍1 ×𝑆 … ×𝑆 𝑍𝑛.

Set 𝑉𝑖 = 𝑝−1
𝑖 (𝑈𝑖). Note that 𝑝𝑖|𝑉𝑖

∶ 𝑉𝑖 → 𝑈𝑖 is proper. Set 𝑋′ = 𝑉1 ∪ … ∪ 𝑉𝑛. By construc-
tion 𝑋′ has an immersion into the scheme 𝐏𝑛1

𝑆 ×𝑆 … ×𝑆 𝐏𝑛𝑛
𝑆 . Thus by the Segre embedding

(see Morphisms, Lemma 24.41.6) we see that 𝑋′ has an immersion into a projective space
over 𝑆.

We claim that the morphisms 𝑝𝑖|𝑉𝑖
∶ 𝑉𝑖 → 𝑈𝑖 glue to a morphism 𝑋′ → 𝑋. Namely, it

is clear that 𝑝𝑖|𝑈 is the identity map from 𝑈 to 𝑈. Since 𝑈 ⊂ 𝑋′ is scheme theoretically
dense by construction, it is also scheme theoretically dense in the open subscheme 𝑉𝑖 ∩ 𝑉𝑗.
Thus we see that 𝑝𝑖|𝑉𝑖∩𝑉𝑗

= 𝑝𝑗|𝑉𝑖∩𝑉𝑗
as morphisms into the separated 𝑆-scheme 𝑋, see

Morphisms, Lemma 24.5.10. We denote the resulting morphism 𝜋 ∶ 𝑋′ → 𝑋.

We claim that 𝜋−1(𝑈𝑖) = 𝑉𝑖. Since 𝜋|𝑉𝑖
= 𝑝𝑖|𝑉𝑖

it follows that 𝑉𝑖 ⊂ 𝜋−1(𝑈𝑖). Consider the
diagram

𝑉𝑖
//

𝑝𝑖|𝑉𝑖 ""

𝜋−1(𝑈𝑖)

��
𝑈𝑖

Since 𝑉𝑖 → 𝑈𝑖 is proper we see that the image of the horizontal arrow is closed, see Mor-
phisms, Lemma 24.40.7. Since 𝑉𝑖 ⊂ 𝜋−1(𝑈𝑖) is scheme theoretically dense (as it contains
𝑈) we conclude that 𝑉𝑖 = 𝜋−1(𝑈𝑖) as claimed.

This shows that 𝜋−1(𝑈𝑖) → 𝑈𝑖 is identified with the proper morphism 𝑝𝑖|𝑉𝑖
∶ 𝑉𝑖 → 𝑈𝑖.

Hence we see that 𝑋 has a finite affine covering 𝑋 = ⋃ 𝑈𝑖 such that the restriction of 𝜋 is
proper on each member of the covering. Thus by Morphisms, Lemma 24.40.3 we see that
𝜋 is proper.

Finally we have to show that 𝜋−1(𝑈) = 𝑈. To see this we argue in the same way as above
using the diagram

𝑈 //

""

𝜋−1(𝑈)

��
𝑈

and using that id𝑈 ∶ 𝑈 → 𝑈 is proper and that 𝑈 is scheme theoretically dense in 𝜋−1(𝑈).
�

Remark 25.17.2. In the situation of Chow's Lemma 25.17.1:
(1) Themorphism 𝜋 is actuallyH-projective (hence projective, seeMorphisms, Lemma

24.41.2) since the morphism 𝑋′ → 𝐏𝑛
𝑆 ×𝑆 𝑋 = 𝐏𝑛

𝑋 is a closed immersion (use
the fact that 𝜋 is proper, see Morphisms, Lemma 24.40.7).
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(2) We may assume that 𝜋−1(𝑈) is scheme theoretically dense in 𝑋′. Namely, we
can simply replace 𝑋′ by the scheme theoretic closure of 𝜋−1(𝑈). In this case
we can think of 𝑈 as a scheme theoretically dense open subscheme of 𝑋′. See
Morphisms, Section 24.4.

(3) If 𝑋 is reduced then we may choose 𝑋′ reduced. This is clear from (2).

25.18. Higher direct images of coherent sheaves

In this section we prove the fundamental fact that the higher direct images of a coherent
sheaf under a proper morphism are coherent.

Lemma 25.18.1. Let 𝑆 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a locally pro-
jective morphism. Let ℱ be a coherent 𝒪𝑋-module. Then 𝑅𝑖𝑓∗ℱ is a coherent 𝒪𝑆-module
for all 𝑖 ≥ 0.

Proof. We first remark that a locally projective morphism is proper (Morphisms, Lemma
24.41.5) and hence of finite type. In particular 𝑋 is locally Noetherian (Morphisms, Lemma
24.14.6) and hence the statement makes sense. Moreover, by Lemma 25.5.3 the sheaves
𝑅𝑝𝑓∗ℱ are quasi-coherent.
Having said this the statement is local on 𝑆 (for example by Cohomology, Lemma 18.6.4).
Hence we may assume 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) is the spectrum of a Noetherian ring, and 𝑋 is a
closed subscheme of 𝐏𝑛

𝑅 for some 𝑛, see Morphisms, Lemma 24.41.4. In this case, the
sheaves 𝑅𝑝𝑓∗ℱ are the quasi-coherent sheaves associated to the 𝑅-modules 𝐻𝑝(𝑋, ℱ), see
Lemma 25.5.4. Hence it suffices to show that 𝑅-modules 𝐻𝑝(𝑋, ℱ) are finite 𝑅-modules
(Lemma 25.11.1). Denote 𝑖 ∶ 𝑋 → 𝐏𝑛

𝑅 the closed immersion. Note that 𝑅𝑝𝑖∗ℱ = 0 by
Lemma 25.11.8. Hence the Leray spectral sequence (Cohomology, Lemma 18.12.4) for
𝑖 ∶ 𝑋 → 𝐏𝑛

𝑅 degenerates, and we see that 𝐻𝑝(𝑋, ℱ) = 𝐻𝑝(𝐏𝑛
𝑅, 𝑖∗ℱ). Since the sheaf 𝑖∗ℱ

is coherent by Lemma 25.11.8 we see that the lemma follows from Lemma 25.16.1. �

Here is the general statement.

Lemma 25.18.2. Let 𝑆 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a proper
morphism. Let ℱ be a coherent 𝒪𝑋-module. Then 𝑅𝑖𝑓∗ℱ is a coherent 𝒪𝑆-module for all
𝑖 ≥ 0.

Proof. Since the problem is local on 𝑆 we may assume that 𝑆 is a Noetherian scheme.
Since a proper morphism is of finite type we see that in this case 𝑋 is a Noetherian scheme
also. Consider the property 𝒫 of coherent sheaves on 𝑋 defined by the rule

𝒫(ℱ) ⇔ 𝑅𝑝𝑓∗ℱ is coherent for all 𝑝 ≥ 0
We are going to use the result of Lemma 25.14.6 to prove that 𝒫 holds for every coherent
sheaf on 𝑋.
Let

0 → ℱ1 → ℱ2 → ℱ3 → 0
be a short exact sequence of coherent sheaves on 𝑋. Consider the long exact sequence of
higher direct images

𝑅𝑝−1𝑓∗ℱ3 → 𝑅𝑝𝑓∗ℱ1 → 𝑅𝑝𝑓∗ℱ2 → 𝑅𝑝𝑓∗ℱ3 → 𝑅𝑝+1𝑓∗ℱ1

Then it is clear that if 2-out-of-3 of the sheaves ℱ𝑖 have property 𝒫, then the higher direct
images of the third are sandwiched in this exact complex between two coherent sheaves.
Hence these higher direct images are also coherent by Lemma 25.11.2 and 25.11.3. Hence
property 𝒫 holds for the third as well.
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Let 𝑍 ⊂ 𝑋 be an integral closed subscheme. We have to find a coherent sheaf ℱ on 𝑋
whose support is contained in 𝑍, whose stalk at the generic point 𝜉 of 𝑍 is a 1-dimensional
vector space over 𝜅(𝜉) such that 𝒫 holds for ℱ. Denote 𝑔 = 𝑓|𝑍 ∶ 𝑍 → 𝑆 the restriction of
𝑓. Suppose we can find a coherent sheaf 𝒢 on 𝑍 such that (a) 𝒢𝜉 is a 1-dimensional vector
space over 𝜅(𝜉), (b) 𝑅𝑝𝑔∗𝒢 = 0 for 𝑝 > 0, and (c) 𝑔∗𝒢 is coherent. Then we can consider
ℱ = (𝑍 → 𝑋)∗𝒢. As 𝑍 → 𝑋 is a closed immersion we see that (𝑍 → 𝑋)∗𝒢 is coherent
on 𝑋 and 𝑅𝑝(𝑍 → 𝑋)∗𝒢 = 0 for 𝑝 > 0 (Lemma 25.11.8). Hence by the relative Leray
spectral sequence (Cohomology, Lemma 18.12.8) we will have 𝑅𝑝𝑓∗ℱ = 𝑅𝑝𝑔∗𝒢 = 0 for
𝑝 > 0 and 𝑓∗ℱ = 𝑔∗𝒢 is coherent. Finally ℱ𝜉 = ((𝑍 → 𝑋)∗𝒢)𝜉 = 𝒢𝜉 which verifies the
condition on the stalk at 𝜉. Hence everything depends on finding a coherent sheaf 𝒢 on 𝑍
which has properties (a), (b), and (c).

We can apply Chow's Lemma 25.17.1 to the morphism 𝑍 → 𝑆. Thus we get a diagram

𝑍

𝑔
��

𝑍′

𝑔′

��

𝜋
oo

𝑖
// 𝐏𝑛

𝑆

~~
𝑆

as in the statement of Chow's lemma. Also, let 𝑈 ⊂ 𝑍 be the dense open subscheme such
that 𝜋−1(𝑈) → 𝑈 is an isomorphism. By the discussion in Remark 25.17.2 we see that
𝑖′ = (𝑖, 𝜋) ∶ 𝐏𝑛

𝑆 ×𝑆 𝑍′ = 𝐏𝑛
𝑍 is a closed immersion. Hence

ℒ = 𝑖∗𝒪𝐏𝑛
𝑋

(1) ≅ (𝑖′)∗𝒪𝐏𝑛
𝑍

(1)

is 𝑔′-relatively ample and 𝜋-relatively ample (for example byMorphisms, Lemma 24.38.7).
Hence by Lemma 25.16.2 there exists an 𝑛 ≥ 0 such that both 𝑅𝑝𝜋∗ℒ⊗𝑛 = 0 for all 𝑝 > 0
and 𝑅𝑝(𝑔′)∗ℒ⊗𝑛 = 0 for all 𝑝 > 0. Set 𝒢 = 𝜋∗ℒ⊗𝑛. Property (a) holds because 𝜋∗ℒ⊗|𝑈 is
an invertible sheaf (as 𝜋−1(𝑈) → 𝑈 is an isomorphism). Properties (b) and (c) hold because
by the relative Leray spectral sequence (Cohomology, Lemma 18.12.8) we have

𝐸𝑝,𝑞
2 = 𝑅𝑝𝑔∗𝑅𝑞𝜋∗ℒ⊗𝑛 ⇒ 𝑅𝑝+𝑞(𝑔′)∗ℒ⊗𝑛

and by choice of 𝑛 the only nonzero terms in 𝐸𝑝,𝑞
2 are those with 𝑞 = 0 and the only nonzero

terms of 𝑅𝑝+𝑞(𝑔′)∗ℒ⊗𝑛 are those with 𝑝 = 𝑞 = 0. This implies that 𝑅𝑝𝑔∗𝒢 = 0 for
𝑝 > 0 and that 𝑔∗𝒢 = (𝑔′)∗ℒ⊗𝑛. Finally, applying the previous Lemma 25.18.1 we see that
𝑔∗𝒢 = (𝑔′)∗ℒ⊗𝑛 is coherent as desired. �

Lemma 25.18.3. Let 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) with 𝐴 a Noetherian ring. Let 𝑓 ∶ 𝑋 → 𝑆 be a proper
morphism. Let ℱ be a coherent 𝒪𝑋-module. Then 𝐻𝑖(𝑋, ℱ) is finite 𝐴-module for all 𝑖 ≥ 0.

Proof. This is just the affine case of Lemma 25.18.2. Namely, by Lemmas 25.5.3 and 25.5.4
we know that 𝑅𝑖𝑓∗ℱ is the quasi-coherent sheaf associated to the 𝐴-module 𝐻𝑖(𝑋, ℱ) and
by Lemma 25.11.1 this is a coherent sheaf if and only if 𝐻𝑖(𝑋, ℱ) is an 𝐴-module of finite
type. �

25.19. The theorem on formal functions

In this section we study the behaviour of cohomology of sequences of sheaves either of the
form {𝐼𝑛ℱ}𝑛≥0 or of the form {ℱ/𝐼𝑛ℱ}𝑛≥0 as 𝑛-varies.

Here and below we use the following notation. Given a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌,
a quasi-coherent sheaf ℱ on 𝑋, and a quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑌 we denote
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ℐ𝑛ℱ the quasi-coherent subsheaf generated by products of local sections of 𝑓−1(ℐ𝑛) and
ℱ. In a formula

ℐ𝑛ℱ = Im(𝑓∗(ℐ𝑛) ⊗𝒪𝑋
ℱ ⟶ ℱ) .

Note that there are natural maps

𝑓−1(ℐ𝑛) ⊗𝑓−1𝒪𝑌
ℐ𝑚ℱ ⟶ 𝑓∗(ℐ𝑛) ⊗𝒪𝑋

ℐ𝑚ℱ ⟶ ℐ𝑛+𝑚ℱ

Hence a section of ℐ𝑛 will give rise to a map 𝑅𝑝𝑓∗(ℐ𝑚ℱ) → 𝑅𝑝𝑓∗(ℐ𝑛+𝑚ℱ) by functoriality
of higher direct images. Localizing and then sheafifying we see that there are 𝒪𝑌-module
maps

ℐ𝑛 ⊗𝒪𝑌
𝑅𝑝𝑓∗(ℐ𝑚ℱ) ⟶ 𝑅𝑝𝑓∗(ℐ𝑛+𝑚ℱ).

In other words we see that ⨁𝑛≥0 𝑅𝑝𝑓∗(ℐ𝑛ℱ) is a graded ⨁𝑛≥0 ℐ𝑛-module.

If 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) and ℐ = ̃𝐼 we denote ℐ𝑛ℱ simply 𝐼𝑛ℱ. The maps introduced above give
𝑀 = ⨁ 𝐻𝑝(𝑋, 𝐼𝑛ℱ) the structure of a graded 𝑆 = ⨁ 𝐼𝑛-module. If 𝑓 is proper, 𝐴 is
Noetherian and ℱ is coherent, then this turns out to be a module of finite type.

Lemma 25.19.1. Let 𝐴 be a Noetherian ring. Let 𝐼 ⊂ 𝐴 be an ideal. Set 𝑆 = ⨁𝑛≥0 𝐼𝑛.
Let 𝑓 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝐴) be a proper morphism. Let ℱ be a coherent sheaf on 𝑋. Then for
every 𝑝 ≥ 0 the graded 𝑆-module ⨁𝑛≥0 𝐻𝑝(𝑋, 𝐼𝑛ℱ) is a finite 𝑆-module.

Proof. To prove this we consider the fibre product diagram

𝑋′ = 𝑆𝑝𝑒𝑐(𝑆) ×𝑆𝑝𝑒𝑐(𝐴) 𝑋 //

𝑓′

��

𝑋

𝑓
��

𝑆𝑝𝑒𝑐(𝑆) // 𝑆𝑝𝑒𝑐(𝐴)

Note that 𝑓′ is a proper morphism, see Morphisms, Lemma 24.40.5. Also, 𝑆 is a finitely
generated 𝐴-algebra, and hence Noetherian (Algebra, Lemma 7.28.1). Thus the result will
follow from Lemma 25.18.3 if we can show there exists a coherent sheaf ℱ′ on 𝑋′ whose
cohomology groups 𝐻𝑝(𝑋′, ℱ′) are identified with ⨁𝑛≥0 𝐻𝑝(𝑋, 𝐼𝑛ℱ).

To do this note that the morphism 𝜋 ∶ 𝑋′ → 𝑋 is affine, see Morphisms, Lemma 24.11.8.
Hence 𝐻𝑝(𝑋′, ℱ′) = 𝐻𝑝(𝑋, 𝜋∗ℱ′). In other words, it suffices to construct a coherent
𝒪𝑋′-module ℱ′ such that 𝜋∗ℱ′ = ⨁𝑛≥0 𝐼𝑛ℱ. Note that 𝜋∗𝒪𝑋′ = ⨁𝑛≥0 𝐼𝑛⊗𝐴𝒪𝑋 hence the
sheaf ⨁𝑛≥0 𝐼𝑛ℱ has a natural structure of 𝜋∗𝒪𝑋′-module. By Morphisms, Lemma 24.11.6
we see that there is a unique quasi-coherent 𝒪𝑋′-module ℱ′ such that 𝜋∗ℱ′ ≅ ⨁𝑛≥0 𝐼𝑛ℱ
as 𝜋∗𝒪𝑋′-modules. Finally, we have to show that ℱ′ is a coherent 𝒪𝑋′-module.
Let 𝑆𝑝𝑒𝑐(𝐵) = 𝑈 ⊂ 𝑋 be any affine open. Say ℱ|𝑈 is the coherent 𝒪𝑈-module associated
to the finite 𝐵-module 𝑀. By definition 𝜋−1(𝑈) = 𝑆𝑝𝑒𝑐(𝑆 ⊗𝐴 𝐵). Since 𝐵′ = 𝑆 ⊗𝐴 𝐵 =
⨁𝑛≥0 𝐼𝑛 ⊗𝐴 𝐵 it is clear that ℱ′ corresponds to the 𝐵′-module ⨁ 𝐼𝑛𝑀 which is clearly
finitely generated. �

Lemma 25.19.2. Given a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌, a quasi-coherent sheaf ℱ on
𝑋, and a quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑌. Assume 𝑌 locally Noetherian, 𝑓 proper,
and ℱ coherent. Then

ℳ = ⨁𝑛≥0
𝑅𝑝𝑓∗(ℐ𝑛ℱ)

is a graded 𝒜 = ⨁𝑛≥0 ℐ𝑛-module which is quasi-coherent and of finite type.

Proof. The statement is local on 𝑌, hence this reduces to the case where 𝑌 is affine. In the
affine case the result follows from Lemma 25.19.1. Details omitted. �
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Lemma 25.19.3. Let 𝐴 be a Noetherian ring. Let 𝐼 ⊂ 𝐴 be an ideal. Let 𝑓 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝐴)
be a proper morphism. Let ℱ be a coherent sheaf on 𝑋. Then for every 𝑝 ≥ 0 there exists
an integer 𝑐 ≥ 0 such that

(1) the multiplication map 𝐼𝑛−𝑐 ⊗ 𝐻𝑝(𝑋, 𝐼𝑐ℱ) → 𝐻𝑝(𝑋, 𝐼𝑛ℱ) is surjective for all
𝑛 ≥ 𝑐, and

(2) the image of𝐻𝑝(𝑋, 𝐼𝑛+𝑚ℱ) → 𝐻𝑝(𝑋, 𝐼𝑛ℱ) is contained in the submodule 𝐼𝑚−𝑐𝐻𝑝(𝑋, 𝐼𝑛ℱ)
for all 𝑛 ≥ 0, 𝑚 ≥ 𝑐.

Proof. By Lemma 25.19.1 we can find 𝑑1, … , 𝑑𝑡 ≥ 0, and 𝑥𝑖 ∈ 𝐻𝑝(𝑋, 𝐼𝑑𝑖ℱ) such that
⨁𝑛≥0 𝐻𝑝(𝑋, 𝐼𝑛ℱ) is generated by 𝑥1, … , 𝑥𝑡 over 𝑆 = ⨁𝑛≥0 𝐼𝑛. Take 𝑐 = max{𝑑𝑖}. It is
clear that (1) holds. For (2) let 𝑏 = max(0, 𝑛 − 𝑐). Consider the commutative diagram of
𝐴-modules

𝐼𝑛+𝑚−𝑐−𝑏 ⊗ 𝐼𝑏 ⊗ 𝐻𝑝(𝑋, 𝐼𝑐ℱ) //

��

𝐼𝑛+𝑚−𝑐 ⊗ 𝐻𝑝(𝑋, 𝐼𝑐ℱ) // 𝐻𝑝(𝑋, 𝐼𝑛+𝑚ℱ)

��
𝐼𝑛+𝑚−𝑐−𝑏 ⊗ 𝐻𝑝(𝑋, 𝐼𝑛ℱ) // 𝐻𝑝(𝑋, 𝐼𝑛ℱ)

By part (1) of the lemma the composition of the horizontal arrows is surjective if 𝑛+𝑚 ≥ 𝑐.
On the other hand, it is clear that 𝑛 + 𝑚 − 𝑐 − 𝑏 ≥ 𝑚 − 𝑐. Hence part (2). �

In the situation of Lemmas 25.19.1 and 25.19.3 consider the inverse system

ℱ/𝐼ℱ ← ℱ/𝐼2ℱ ← ℱ/𝐼3ℱ ← …

We would like to know what happens to the cohomology groups. Here is a first result.

Lemma 25.19.4. Let 𝐴 be a Noetherian ring. Let 𝐼 ⊂ 𝐴 be an ideal. Let 𝑓 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝐴)
be a proper morphism. Let ℱ be a coherent sheaf on 𝑋. Fix 𝑝 ≥ 0.

(1) There exists a 𝑐1 ≥ 0 such that for all 𝑛 ≥ 𝑐1 we have

Ker(𝐻𝑝(𝑋, ℱ) → 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ)) ⊂ 𝐼𝑛−𝑐1𝐻𝑝(𝑋, ℱ).

(2) The inverse system
(𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ))𝑛∈𝐍

satisfies the Mittag-Leffler condition (see Homology, Definition 10.23.2).
(3) In fact for any 𝑝 and 𝑛 there exists a 𝑐2(𝑛) ≥ 𝑛 such that

Im(𝐻𝑝(𝑋, ℱ/𝐼𝑘ℱ) → 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ)) = Im(𝐻𝑝(𝑋, ℱ) → 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ))

for all 𝑘 ≥ 𝑐2(𝑛).

Proof. Let 𝑐1 = max{𝑐𝑝, 𝑐𝑝+1}, where 𝑐𝑝, 𝑐𝑝+1 are the integers found in Lemma 25.19.3 for
𝐻𝑝 and 𝐻𝑝+1. We will use this constant in the proofs of (1), (2) and (3).

Let us prove part (1). Consider the short exact sequence

0 → 𝐼𝑛ℱ → ℱ → ℱ/𝐼𝑛ℱ → 0

From the long exact cohomology sequence we see that

Ker(𝐻𝑝(𝑋, ℱ) → 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ)) = Im(𝐻𝑝(𝑋, 𝐼𝑛ℱ) → 𝐻𝑝(𝑋, ℱ))

Hence by our choice of 𝑐1 we see that this is contained in 𝐼𝑛−𝑐1𝐻𝑝(𝑋, ℱ) for 𝑛 ≥ 𝑐1.

Note that part (3) implies part (2) by definition of the Mittag-Leffler condition.
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Let us prove part (3). Fix an 𝑛 throughout the rest of the proof. Consider the commutative
diagram

0 // 𝐼𝑛ℱ // ℱ // ℱ/𝐼𝑛ℱ // 0

0 // 𝐼𝑛+𝑚ℱ //

OO

ℱ //

OO

ℱ/𝐼𝑛+𝑚ℱ //

OO

0
This gives rise to the following commutative diagram

𝐻𝑝(𝑋, 𝐼𝑛ℱ) // 𝐻𝑝(𝑋, ℱ) // 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ)
𝛿
// 𝐻𝑝+1(𝑋, 𝐼𝑛ℱ)

𝐻𝑝(𝑋, 𝐼𝑛+𝑚ℱ) //

OO

𝐻𝑝(𝑋, ℱ) //

1

OO

𝐻𝑝(𝑋, ℱ/𝐼𝑛+𝑚ℱ) //

OO

𝐻𝑝+1(𝑋, 𝐼𝑛+𝑚ℱ)

𝑎

OO

If 𝑚 ≥ 𝑐1 we see that the image of 𝑎 is contained in 𝐼𝑚−𝑐1𝐻𝑝+1(𝑋, 𝐼𝑛ℱ). By the Artin-Rees
lemma (see Algebra, Lemma 7.47.5) there exists an integer 𝑐3(𝑛) such that

𝐼𝑁𝐻𝑝+1(𝑋, 𝐼𝑛ℱ) ∩ Im(𝛿) ⊂ 𝛿 (𝐼𝑁−𝑐3(𝑛)𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ))
for all 𝑁 ≥ 𝑐3(𝑛). As 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ) is annihilated by 𝐼𝑛, we see that if 𝑚 ≥ 𝑐3(𝑛) + 𝑐1 + 𝑛,
then

Im(𝐻𝑝(𝑋, ℱ/𝐼𝑛+𝑚ℱ) → 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ)) = Im(𝐻𝑝(𝑋, ℱ) → 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ))

In other words, part (3) holds with 𝑐2(𝑛) = 𝑐3(𝑛) + 𝑐1 + 𝑛. �

Theorem 25.19.5. (Theorem on formal functions) Let 𝐴 be a Noetherian ring. Let 𝐼 ⊂ 𝐴
be an ideal. Let 𝑓 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝐴) be a proper morphism. Let ℱ be a coherent sheaf on
𝑋. Fix 𝑝 ≥ 0. The system of maps

𝐻𝑝(𝑋, ℱ)/𝐼𝑛𝐻𝑝(𝑋, ℱ) ⟶ 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ)

define an isomorphism of limits

𝐻𝑝(𝑋, ℱ)∧ ⟶ 𝑙𝑖𝑚𝑛 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ)

where the left hand side is the completion of the 𝐴-module 𝐻𝑝(𝑋, ℱ) with respect to the
ideal 𝐼, see Algebra, Section 7.90. Moreover, this is in fact a homeomorphism for the limit
topologies.

Proof. In fact, this follows immediately from Lemma 25.19.4. We spell out the details.
Set 𝑀 = 𝐻𝑝(𝑋, ℱ) and 𝑀𝑛 = 𝐻𝑝(𝑋, ℱ/𝐼𝑛ℱ). Denote 𝑁𝑛 = Im(𝑀 → 𝑀𝑛). By the
description of the limit in Homology, Section 10.23 we have

𝑙𝑖𝑚𝑛 𝑀𝑛 = {(𝑥𝑛) ∈ ∏ 𝑀𝑛 ∣ 𝜑𝑖(𝑥𝑛) = 𝑥𝑛−1, 𝑛 = 2, 3, …}

Pick an element 𝑥 = (𝑥𝑛) ∈ 𝑙𝑖𝑚𝑛 𝑀𝑛. By Lemma 25.19.4 part (3) we have 𝑥𝑛 ∈ 𝑁𝑛 for all
𝑛 since by definition 𝑥𝑛 is the image of some 𝑥𝑛+𝑚 ∈ 𝑀𝑛+𝑚 for all 𝑚. By Lemma 25.19.4
part (1) we see that there exists a factorization

𝑀 → 𝑁𝑛 → 𝑀/𝐼𝑛−𝑐1𝑀

of the reduction map. Denote 𝑦𝑛 ∈ 𝑀/𝐼𝑛−𝑐1𝑀 the image of 𝑥𝑛 for 𝑛 ≥ 𝑐1. Since for 𝑛′ ≥ 𝑛
the composition 𝑀 → 𝑀𝑛′ → 𝑀𝑛 is the given map 𝑀 → 𝑀𝑛 we see that 𝑦𝑛′ maps to 𝑦𝑛
under the canonical map 𝑀/𝐼𝑛′−𝑐1𝑀 → 𝑀/𝐼𝑛−𝑐1𝑀. Hence 𝑦 = (𝑦𝑛+𝑐1

) defines an element
of 𝑙𝑖𝑚𝑛 𝑀/𝐼𝑛𝑀. We omit the verification that 𝑦 maps to 𝑥 under the map

𝑀∧ = 𝑙𝑖𝑚𝑛 𝑀/𝐼𝑛𝑀 ⟶ 𝑙𝑖𝑚𝑛 𝑀𝑛
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of the lemma. We also omit the verification on topologies. �

Lemma 25.19.6. Given a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌, a quasi-coherent sheaf ℱ on
𝑋, and a quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑌. Assume

(1) 𝑌 locally Noetherian,
(2) 𝑓 proper, and
(3) ℱ coherent.

Let 𝑦 ∈ 𝑌 be a point. Consider the infinitesimal neighbourhoods

𝑋𝑛 = 𝑆𝑝𝑒𝑐(𝒪𝑌,𝑦/𝔪𝑛
𝑦) ×𝑌 𝑋

𝑖𝑛
//

𝑓𝑛
��

𝑋

𝑓
��

𝑆𝑝𝑒𝑐(𝒪𝑌,𝑦/𝔪𝑛
𝑦)

𝑐𝑛 // 𝑌

of the fibre 𝑋1 = 𝑋𝑦 and set ℱ𝑛 = 𝑖∗
𝑛ℱ. Then we have

(𝑅𝑝𝑓∗ℱ)
∧
𝑦 ≅ 𝑙𝑖𝑚𝑛 𝐻𝑝(𝑋𝑛, ℱ𝑛)

as 𝒪∧
𝑌,𝑦-modules.

Proof. This is just a reformulation of a special case of the theorem on formal functions,
Theorem 25.19.5. Let us spell it out. Note that 𝒪𝑌,𝑦 is a Noetherian local ring. Consider the
canonical morphism 𝑐 ∶ 𝑆𝑝𝑒𝑐(𝒪𝑌,𝑦) → 𝑌, see Schemes, Equation (21.13.1.1). This is a flat
morphism as it identifies local rings. Denote momentarily 𝑓′ ∶ 𝑋′ → 𝑆𝑝𝑒𝑐(𝒪𝑌,𝑦) the base
change of 𝑓 to this local ring. We see that 𝑐∗𝑅𝑝𝑓∗ℱ = 𝑅𝑝𝑓′

∗ℱ′ by Lemma 25.6.2. More-
over, the infinitesimal neighbourhoods of the fibre 𝑋𝑦 and 𝑋′

𝑦 are identified (verification
omitted; hint: the morphisms 𝑐𝑛 factor through 𝑐).

Hence we may assume that 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) is the spectrum of a Noetherian local ring 𝐴 with
maximal ideal 𝔪 and that 𝑦 ∈ 𝑌 corresponds to the closed point (i.e., to 𝔪). In particular
it follows that

(𝑅𝑝𝑓∗ℱ)𝑦 = Γ(𝑌, 𝑅𝑝𝑓∗ℱ) = 𝐻𝑝(𝑋, ℱ).

In this case also, the morphisms 𝑐𝑛 are each closed immersions. Hence their base changes
𝑖𝑛 are closed immersions as well. Note that 𝑖𝑛,∗ℱ𝑛 = 𝑖𝑛,∗𝑖∗

𝑛ℱ = ℱ/𝔪𝑛ℱ. By the Leray
spectral sequence for 𝑖𝑛, and Lemma 25.11.8 we see that

𝐻𝑝(𝑋𝑛, ℱ𝑛) = 𝐻𝑝(𝑋, 𝑖𝑛,∗ℱ) = 𝐻𝑝(𝑋, ℱ/𝔪𝑛ℱ)

Hence we may indeed apply the theorem on formal functions to compute the limit in the
statement of the lemma and we win. �

Here is a lemma which we will generalize later to fibres of dimension > 0, namely the next
lemma.

Lemma 25.19.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑦 ∈ 𝑌. Assume
(1) 𝑌 locally Noetherian,
(2) 𝑓 is proper, and
(3) 𝑓−1({𝑦}) is finite.

Then for any coherent sheaf ℱ on 𝑋 we have (𝑅𝑝𝑓∗ℱ)𝑦 = 0 for all 𝑝 > 0.
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Proof. The fibre 𝑋𝑦 is finite, and by Morphisms, Lemma 24.19.7 it is a finite discrete
space. Moreover, the underlying topological space of each infinitesimal neighourhood 𝑋𝑛
is the same. Hence each of the schemes 𝑋𝑛 is affine according to Schemes, Lemma 21.11.7.
Hence it follows that 𝐻𝑝(𝑋𝑛, ℱ𝑛) = 0 for all 𝑝 > 0. Hence we see that (𝑅𝑝𝑓∗ℱ)∧

𝑦 = 0 by
Lemma 25.19.6. Note that 𝑅𝑝𝑓∗ℱ is coherent by Lemma 25.18.2 and hence 𝑅𝑝𝑓∗ℱ𝑦 is a
finite 𝒪𝑌,𝑦-module. By Algebra, Lemma 7.90.2 this implies that (𝑅𝑝𝑓∗ℱ)𝑦 = 0. �

Lemma 25.19.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑦 ∈ 𝑌. Assume
(1) 𝑌 locally Noetherian,
(2) 𝑓 is proper, and
(3) dim(𝑋𝑦) = 𝑑.

Then for any coherent sheaf ℱ on 𝑋 we have (𝑅𝑝𝑓∗ℱ)𝑦 = 0 for all 𝑝 > 𝑑.

Proof. The fibre 𝑋𝑦 is of finite type over 𝑆𝑝𝑒𝑐(𝜅(𝑦)). Hence 𝑋𝑦 is a Noetherian scheme by
Morphisms, Lemma 24.14.6. Hence the underlying topological space of 𝑋𝑦 is Noetherian,
see Properties, Lemma 23.5.5. Moreover, the underlying topological space of each infini-
tesimal neighourhood 𝑋𝑛 is the same as that of 𝑋𝑦. Hence 𝐻𝑝(𝑋𝑛, ℱ𝑛) = 0 for all 𝑝 > 𝑑
by Cohomology, Lemma 18.16.5. Hence we see that (𝑅𝑝𝑓∗ℱ)∧

𝑦 = 0 by Lemma 25.19.6
for 𝑝 > 𝑑. Note that 𝑅𝑝𝑓∗ℱ is coherent by Lemma 25.18.2 and hence 𝑅𝑝𝑓∗ℱ𝑦 is a finite
𝒪𝑌,𝑦-module. By Algebra, Lemma 7.90.2 this implies that (𝑅𝑝𝑓∗ℱ)𝑦 = 0. �

25.20. Applications of the theorem on formal functions

We will add more here as needed. For the moment we need the following characterization
of finite morphisms (in the Noetherian case -- for a more general version see the chapter
More on Morphisms, Section 33.29).

Lemma 25.20.1. (For a more general version see More on Morphisms, Lemma 33.29.5).
Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑆 is locally Noetherian. The following
are equivalent

(1) 𝑓 is finite, and
(2) 𝑓 is proper with finite fibres.

Proof. A finite morphism is proper according to Morphisms, Lemma 24.42.10. A finite
morphism is quasi-finite according to Morphisms, Lemma 24.42.9. A quasi-finite mor-
phism has finite fibres, seeMorphisms, Lemma 24.19.10. Hence a finitemorphism is proper
and has finite fibres.

Assume 𝑓 is proper with finite fibres. We want to show 𝑓 is finite. In fact it suffices to prove
𝑓 is affine. Namely, if 𝑓 is affine, then it follows that 𝑓 is integral by Morphisms, Lemma
24.42.7 whereupon it follows from Morphisms, Lemma 24.42.4 that 𝑓 is finite.

To show that 𝑓 is affine we may assume that 𝑆 is affine, and our goal is to show that 𝑋 is
affine too. Since 𝑓 is proper we see that 𝑋 is separated and quasi-compact. Hence we may
use the criterion of Lemma 25.3.2 to prove that 𝑋 is affine. To see this let ℐ ⊂ 𝒪𝑋 be a
finite type ideal sheaf. In particular ℐ is a coherent sheaf on 𝑋. By Lemma 25.19.7 we
conclude that 𝑅1𝑓∗ℐ𝑠 = 0 for all 𝑠 ∈ 𝑆. In other words, 𝑅1𝑓∗ℐ = 0. Hence we see from
the Leray Spectral Sequence for 𝑓 that 𝐻1(𝑋, ℐ) = 𝐻1(𝑆, 𝑓∗ℐ). Since 𝑆 is affine, and 𝑓∗ℐ
is quasi-coherent (Schemes, Lemma 21.24.1) we conclude 𝐻1(𝑆, 𝑓∗ℐ) = 0 from Lemma
25.2.2 as desired. Hence 𝐻1(𝑋, ℐ) = 0 as desired. �

As a consequence we have the following useful result.
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Lemma 25.20.2. (For a more general version see More on Morphisms, Lemma 33.29.6).
Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆. Assume

(1) 𝑆 is locally Noetherian,
(2) 𝑓 is proper, and
(3) 𝑓−1({𝑠}) is a finite set.

Then there exists an open neighbourhood 𝑉 ⊂ 𝑆 of 𝑠 such that 𝑓|𝑓−1(𝑉) ∶ 𝑓−1(𝑉) → 𝑉 is
finite.

Proof. The morphism 𝑓 is quasi-finite at all the points of 𝑓−1({𝑠}) by Morphisms, Lemma
24.19.7. By Morphisms, Lemma 24.47.2 the set of points at which 𝑓 is quasi-finite is an
open 𝑈 ⊂ 𝑋. Let 𝑍 = 𝑋 ⧵ 𝑈. Then 𝑠∉𝑓(𝑍). Since 𝑓 is proper the set 𝑓(𝑍) ⊂ 𝑆 is closed.
Choose any open neighbourhood 𝑉 ⊂ 𝑆 of 𝑠 with 𝑍 ∩ 𝑉 = ∅. Then 𝑓−1(𝑉) → 𝑉 is locally
quasi-finite and proper. Hence it is quasi-finite (Morphisms, Lemma 24.19.9), hence has
finite fibres (Morphisms, Lemma 24.19.10), hence is finite by Lemma 25.20.1. �
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CHAPTER 26

Divisors

26.1. Introduction

In this chapter we study some very basic questions related to defining divisors, etc. A basic
reference is [DG67].

26.2. Associated points

Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. Recall that a prime 𝔭 ⊂ 𝑅 is associated to
𝑀 if there exists an element of 𝑀 whose annihilator is 𝔭. See Algebra, Definition 7.60.1.
Here is the definition of associated points for quasi-coherent sheaves on schemes as given
in [DG67, IV Definition 3.1.1].

Definition 26.2.1. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent sheaf on 𝑋.
(1) We say 𝑥 ∈ 𝑋 is associated to ℱ if the maximal ideal 𝔪𝑥 is associated to the

𝒪𝑋,𝑥-module ℱ𝑥.
(2) We denote Ass(ℱ) or Ass𝑋(ℱ) the set of associated points of ℱ.
(3) The associated points of 𝑋 are the associated points of 𝒪𝑋.

These definitions are most useful when 𝑋 is locally Noetherian and ℱ of finite type. For
example it may happen that a generic point of an irreducible component of 𝑋 is not asso-
ciated to 𝑋, see Example 26.2.7. In the non-Noetherian case it may be more convenient to
use weakly associated points, see Section 26.5. Let us link the scheme theoretic notion with
the algebraic notion on affine opens; note that this correspondence works perfectly only for
locally Noetherian schemes.

Lemma 26.2.2. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent sheaf on 𝑋. Let 𝑆𝑝𝑒𝑐(𝐴) =
𝑈 ⊂ 𝑋 be an affine open, and set 𝑀 = Γ(𝑈, ℱ). Let 𝑥 ∈ 𝑈, and let 𝔭 ⊂ 𝐴 be the
corresponding prime.

(1) If 𝔭 is associated to 𝑀, then 𝑥 is associated to ℱ.
(2) If 𝔭 is finitely generated, then the coverse holds as well.

In particular, if 𝑋 is locally Noetherian, then the equivalence
𝔭 ∈ Ass(𝑀) ⇔ 𝑥 ∈ Ass(ℱ)

holds for all pairs (𝔭, 𝑥) as above.

Proof. This follows from Algebra, Lemma 7.60.14. But we can also argue directly as
follows. Suppose 𝔭 is associated to 𝑀. Then there exists an 𝑚 ∈ 𝑀 whose annihilator is 𝔭.
Since localization is exact we see that 𝔭𝐴𝔭 is the annihilator of 𝑚/1 ∈ 𝑀𝔭. Since 𝑀𝔭 = ℱ𝑥
(Schemes, Lemma 21.5.4) we conclude that 𝑥 is associated to ℱ.
Conversely, assume that 𝑥 is associated to ℱ, and 𝔭 is finitely generated. As 𝑥 is associated
to ℱ there exists an element 𝑚′ ∈ 𝑀𝔭 whose annihilator is 𝔭𝐴𝔭. Write 𝑚′ = 𝑚/𝑓 for some
𝑓 ∈ 𝐴, 𝑓∉𝔭. The annihilator 𝐼 of 𝑚 is an ideal of 𝐴 such that 𝐼𝐴𝔭 = 𝔭𝐴𝔭. Hence 𝐼 ⊂ 𝔭,
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and (𝔭/𝐼)𝔭 = 0. Since 𝔭 is finitely generated, there exists a 𝑔 ∈ 𝐴, 𝑔∉𝔭 such that 𝑔(𝔭/𝐼) = 0.
Hence the annihilator of 𝑔𝑚 is 𝔭 and we win.

If 𝑋 is locally Noetherian, then 𝐴 is Noetherian (Properties, Lemma 23.5.2) and 𝔭 is always
finitely generated. �

Lemma 26.2.3. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Then Ass(ℱ) ⊂
Supp(ℱ).

Proof. This is immediate from the definitions. �

Lemma 26.2.4. Let 𝑋 be a scheme. Let 0 → ℱ1 → ℱ2 → ℱ3 → 0 be a short ex-
act sequence of quasi-coherent sheaves on 𝑋. Then Ass(ℱ2) ⊂ Ass(ℱ1) ∪ Ass(ℱ3) and
Ass(ℱ1) ⊂ Ass(ℱ2).

Proof. For every point 𝑥 ∈ 𝑋 the sequence of stalks 0 → ℱ1,𝑥 → ℱ2,𝑥 → ℱ3,𝑥 → 0 is
a short exact sequence of 𝒪𝑋,𝑥-modules. Hence the lemma follows from Algebra, Lemma
7.60.3. �

Lemma 26.2.5. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a coherent 𝒪𝑋-module.
Then Ass(ℱ) ∩ 𝑈 is finite for every quasi-compact open 𝑈 ⊂ 𝑋.

Proof. This is true because the set of associated primes of a finite module over a Noetherian
ring is finite, see Algebra, Lemma 7.60.5. To translate from schemes to algebra use that 𝑈
is a finite union of affine opens, each of these opens is the spectrum of a Noetherian ring
(Properties, Lemma 23.5.2), ℱ corresponds to a finite module over this ring (Coherent,
Lemma 25.11.1), and finally use Lemma 26.2.2. �

Lemma26.2.6. Let𝑋 be a locally Noetherian scheme. Letℱ be a quasi-coherent𝒪𝑋-module.
Then

ℱ = 0 ⇔ Ass(ℱ) = ∅.

Proof. If ℱ = 0, then Ass(ℱ) = ∅ by definition. Conversely, if Ass(ℱ) = ∅, then ℱ = 0
by Algebra, Lemma 7.60.7. To translate from schemes to algebra, restrict to any affine and
use Lemma 26.2.2. �

Example 26.2.7. Let 𝑘 be a field. The ring 𝑅 = 𝑅[𝑥1, 𝑥2, 𝑥3, …]/(𝑥2
𝑖 ) is local with locally

nilpotent maximal ideal 𝔪. There exists no element of 𝑅 which has annihilator 𝔪. Hence
Ass(𝑅) = ∅, and 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) is an example of a scheme which has no associated points.

Lemma26.2.8. Let𝑋 be a locally Noetherian scheme. Letℱ be a quasi-coherent𝒪𝑋-module.
Let 𝑥 ∈ Supp(ℱ) be a point in the support of ℱ which is not a specialization of another
point of Supp(ℱ). Then 𝑥 ∈ Ass(ℱ). In particular, any generic point of an irreducible
component of 𝑋 is an associated point of 𝑋.

Proof. Since 𝑥 ∈ Supp(ℱ) the module ℱ𝑥 is not zero. Hence Ass(ℱ𝑥) ⊂ 𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥)
is nonempty by Algebra, Lemma 7.60.7. On the other hand, by assumption Supp(ℱ𝑥) =
{𝔪𝑥}. Since Ass(ℱ𝑥) ⊂ Supp(ℱ𝑥) (Algebra, Lemma 7.60.2) we see that 𝔪𝑥 is associated
to ℱ𝑥 and we win. �
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26.3. Morphisms and associated points

Lemma 26.3.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋 which is flat over 𝑆. Let 𝒢 be a quasi-coherent sheaf on 𝑆. Then we have

Ass𝑋(ℱ ⊗𝒪𝑋
𝑓∗𝒢) ⊃ ⋃𝑠∈Ass𝑆(𝒢)

Ass𝑋𝑠
(ℱ𝑠)

and equality holds if 𝑆 is locally Noetherian.

Proof. Let 𝑥 ∈ 𝑋 and let 𝑠 = 𝑓(𝑥) ∈ 𝑆. Set 𝐵 = 𝒪𝑋,𝑥, 𝐴 = 𝒪𝑆,𝑠, 𝑁 = ℱ𝑥, and
𝑀 = 𝒢𝑠. Note that the stalk of ℱ ⊗𝒪𝑋

𝑓∗𝒢 at 𝑥 is equal to the 𝐵-module 𝑀 ⊗𝐴 𝑁. Hence
𝑥 ∈ Ass𝑋(ℱ ⊗𝒪𝑋

𝑓∗𝒢) if and only if 𝔪𝐵 is in Ass𝐵(𝑀 ⊗𝐴 𝑁). Similarly 𝑠 ∈ Ass𝑆(𝒢) and
𝑥 ∈ Ass𝑋𝑠

(ℱ𝑠) if and only if 𝔪𝐴 ∈ Ass𝐴(𝑀) and 𝔪𝐵/𝔪𝐴𝐵 ∈ Ass𝐵⊗𝜅(𝔪𝐴)(𝑁 ⊗ 𝜅(𝔪𝐴)).
Thus the lemma follows from Algebra, Lemma 7.62.5. �

26.4. Embedded points

Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. Recall that a prime 𝔭 ⊂ 𝑅 is an embedded
associated to 𝑀 if it is an associated prime of 𝑀 which is not minimal among the associated
primes of 𝑀. See Algebra, Definition 7.64.1. Here is the definition of embedded associated
points for quasi-coherent sheaves on schemes as given in [DG67, IV Definition 3.1.1].

Definition 26.4.1. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent sheaf on 𝑋.
(1) An embedded associated point of ℱ is an associated point which is not maximal

among the associated points of ℱ, i.e., it is the specialization of another associated
point of ℱ.

(2) A point 𝑥 of 𝑋 is called an embedded point if 𝑥 is an embedded associated point
of 𝒪𝑋.

(3) An embedded component of 𝑋 is an irreducible closed subset 𝑍 = {𝑥} where 𝑥
is an embedded point of 𝑋.

In the Noetherian case when ℱ is coherent we have the following.

Lemma 26.4.2. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a coherent 𝒪𝑋-module.
Then

(1) the generic points of irreducible components of Supp(ℱ) are associated points of
ℱ, and

(2) an associated point of ℱ is embedded if and only if it is not a generic point of an
irreducible component of Supp(ℱ).

In particular an embedded point of 𝑋 is an associated point of 𝑋 which is not a generic
point of an irreducible component of 𝑋.

Proof. Recall that in this case 𝑍 = Supp(ℱ) is closed, see Coherent, Lemma 25.10.3
and that the generic points of irreducible components of 𝑍 are associated points of ℱ, see
Lemma 26.2.8. Finally, we have Ass(ℱ) ⊂ 𝑍, by Lemma 26.2.3. These results, combined
with the fact that 𝑍 is a sober topological space and hence every point of 𝑍 is a specializa-
tion of a generic point of 𝑍, imply (1) and (2). �

Lemma 26.4.3. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a coherent sheaf on 𝑋.
Then the following are equivalent:

(1) ℱ has no embedded associated points, and
(2) ℱ has property (𝑆1).
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Proof. This is Algebra, Lemma 7.140.2, combined with Lemma 26.2.2 above. �

Lemma 26.4.4. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a coherent sheaf on 𝑋.
The set of coherent subsheaves

{𝒦 ⊂ ℱ ∣ Supp(𝒦) is nowhere dense in Supp(ℱ)}

has a maximal element 𝒦. Setting ℱ′ = ℱ/𝒦 we have the following
(1) Supp(ℱ′) = Supp(ℱ),
(2) ℱ′ has no embedded associated points, and
(3) there exists a dense open 𝑈 ⊂ 𝑋 such that 𝑈 ∩ Supp(ℱ) is dense in Supp(ℱ) and

ℱ′|𝑈 ≅ ℱ|𝑈.

Proof. This follows from Algebra, Lemmas 7.64.2 and 7.64.3. Note that 𝑈 can be taken
as the complement of the closure of the set of embedded associated points of ℱ. �

Lemma 26.4.5. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a coherent 𝒪𝑋-module
without embedded associated points. Set

ℐ = Ker(𝒪𝑋 ⟶ ℋ𝑜𝑚𝒪𝑋
(ℱ, ℱ)).

This is a coherent sheaf of ideals which defines a closed subscheme 𝑍 ⊂ 𝑋 without embed-
ded points. Moreover there exists a coherent sheaf 𝒢 on 𝑍 such that (a) ℱ = (𝑍 → 𝑋)∗𝒢,
(b) 𝒢 has no associated embedded points, and (c) Supp(𝒢) = 𝑍 (as sets).

Proof. Some of the statements we have seen in the proof of Coherent, Lemma 25.11.7.
The others follow from Algebra, Lemma 7.64.4. �

26.5. Weakly associated points

Let 𝑅 be a ring and let 𝑀 be an 𝑅-module. Recall that a prime 𝔭 ⊂ 𝑅 is weakly associated
to 𝑀 if there exists an element 𝑚 of 𝑀 such that 𝔭 is minimal among the primes containing
the annihilator of 𝑚. See Algebra, Definition 7.63.1. If 𝑅 is a local ring with maximal
ideal 𝔪, then 𝔪 is associated to 𝑀 if and only if there exists an element 𝑚 ∈ 𝑀 whose
annihilator has radical 𝔪, see Algebra, Lemma 7.63.2.

Definition 26.5.1. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent sheaf on 𝑋.
(1) We say 𝑥 ∈ 𝑋 is weakly associated to ℱ if the maximal ideal 𝔪𝑥 is weakly

associated to the 𝒪𝑋,𝑥-module ℱ𝑥.
(2) We denote WeakAss(ℱ) the set of weakly associated points of ℱ.
(3) The weakly associated points of 𝑋 are the weakly associated points of 𝒪𝑋.

In this case, on any affine open, this corresponds exactly to the weakly associated primes
as defined above. Here is the precise statement.

Lemma 26.5.2. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent sheaf on 𝑋. Let 𝑆𝑝𝑒𝑐(𝐴) =
𝑈 ⊂ 𝑋 be an affine open, and set 𝑀 = Γ(𝑈, ℱ). Let 𝑥 ∈ 𝑈, and let 𝔭 ⊂ 𝐴 be the
corresponding prime. The following are equivalent

(1) 𝔭 is weakly associated to 𝑀, and
(2) 𝑥 is weakly associated to ℱ.

Proof. This follows from Algebra, Lemma 7.63.2. �

Lemma 26.5.3. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Then

Ass(ℱ) ⊂ WeakAss(ℱ) ⊂ Supp(ℱ).
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Proof. This is immediate from the definitions. �

Lemma 26.5.4. Let 𝑋 be a scheme. Let 0 → ℱ1 → ℱ2 → ℱ3 → 0 be a short ex-
act sequence of quasi-coherent sheaves on 𝑋. Then WeakAss(ℱ2) ⊂ WeakAss(ℱ1) ∪
WeakAss(ℱ3) and WeakAss(ℱ1) ⊂ WeakAss(ℱ2).

Proof. For every point 𝑥 ∈ 𝑋 the sequence of stalks 0 → ℱ1,𝑥 → ℱ2,𝑥 → ℱ3,𝑥 → 0 is
a short exact sequence of 𝒪𝑋,𝑥-modules. Hence the lemma follows from Algebra, Lemma
7.63.3. �

Lemma 26.5.5. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Then

ℱ = (0) ⇔ WeakAss(ℱ) = ∅

Proof. Follows from Lemma 26.5.2 and Algebra, Lemma 7.63.4 �

Lemma 26.5.6. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let 𝑥 ∈
Supp(ℱ) be a point in the support of ℱ which is not a specialization of another point of
Supp(ℱ). Then 𝑥 ∈ WeakAss(ℱ). In particular, any generic point of an irreducible com-
ponent of 𝑋 is weakly associated to 𝒪𝑋.

Proof. Since 𝑥 ∈ Supp(ℱ) the module ℱ𝑥 is not zero. Hence WeakAss(ℱ𝑥) ⊂ 𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥)
is nonempty by Algebra, Lemma 7.63.4. On the other hand, by assumption Supp(ℱ𝑥) =
{𝔪𝑥}. Since WeakAss(ℱ𝑥) ⊂ Supp(ℱ𝑥) (Algebra, Lemma 7.63.5) we see that 𝔪𝑥 is
weakly associated to ℱ𝑥 and we win. �

Lemma 26.5.7. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. If 𝔪𝑥 is a
finitely generated ideal of 𝒪𝑋,𝑥, then

𝑥 ∈ Ass(ℱ) ⇔ 𝑥 ∈ WeakAss(ℱ).

In particular, if 𝑋 is locally Noetherian, then Ass(ℱ) = WeakAss(ℱ).

Proof. See Algebra, Lemma 7.63.8. �

26.6. Morphisms and weakly associated points

Lemma 26.6.1. Let 𝑓 ∶ 𝑋 → 𝑆 be an affine morphism of schemes. Let ℱ be a quasi-
coherent 𝒪𝑋-module. Then we have

WeakAss𝑆(𝑓∗ℱ) ⊂ 𝑓(WeakAss𝑋(ℱ))

Proof. We may assume 𝑋 and 𝑆 affine, so 𝑋 → 𝑆 comes from a ring map 𝐴 → 𝐵. Then
ℱ = 𝑀 for some 𝐵-module 𝑀. By Lemma 26.5.2 the weakly associated points of ℱ
correspond exactly to the weakly associated primes of 𝑀. Similarly, the weakly associated
points of 𝑓∗ℱ correspond exactly to the weakly associated primes of 𝑀 as an 𝐴-module.
Hence the lemma follows from Algebra, Lemma 7.63.10. �

Lemma 26.6.2. Let 𝑓 ∶ 𝑋 → 𝑆 be an affine morphism of schemes. Let ℱ be a quasi-
coherent 𝒪𝑋-module. If 𝑋 is locally Noetherian, then we have

𝑓(Ass𝑋(ℱ)) = Ass𝑆(𝑓∗ℱ) = WeakAss𝑆(𝑓∗ℱ) = 𝑓(WeakAss𝑋(ℱ))

Proof. Wemay assume 𝑋 and 𝑆 affine, so 𝑋 → 𝑆 comes from a ring map 𝐴 → 𝐵. As 𝑋 is
locally Noetherian the ring 𝐵 is Noetherian, see Properties, Lemma 23.5.2. Write ℱ = 𝑀
for some 𝐵-module 𝑀. By Lemma 26.2.2 the associated points of ℱ correspond exactly to
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the associated primes of 𝑀, and any associated prime of 𝑀 as an 𝐴-module is an associated
points of 𝑓∗ℱ. Hence the inclusion

𝑓(Ass𝑋(ℱ)) ⊂ Ass𝑆(𝑓∗ℱ)

follows from Algebra, Lemma 7.60.12. We have the inclusion

Ass𝑆(𝑓∗ℱ) ⊂ WeakAss𝑆(𝑓∗ℱ)

by Lemma 26.5.3. We have the inclusion

WeakAss𝑆(𝑓∗ℱ) ⊂ 𝑓(WeakAss𝑋(ℱ))

by Lemma 26.6.1. The outer sets are equal by Lemma 26.5.7 hence we have equality ev-
erywhere. �

Lemma 26.6.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a finite morphism of schemes. Letℱ be a quasi-coherent
𝒪𝑋-module. Then WeakAss(𝑓∗ℱ) = 𝑓(WeakAss(ℱ)).

Proof. We may assume 𝑋 and 𝑆 affine, so 𝑋 → 𝑆 comes from a finite ring map 𝐴 → 𝐵.
Write ℱ = 𝑀 for some 𝐵-module 𝑀. By Lemma 26.5.2 the weakly associated points of ℱ
correspond exactly to the weakly associated primes of 𝑀. Similarly, the weakly associated
points of 𝑓∗ℱ correspond exactly to the weakly associated primes of 𝑀 as an 𝐴-module.
Hence the lemma follows from Algebra, Lemma 7.63.12. �

Lemma 26.6.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝒢 be a quasi-coherent
𝒪𝑆-module. Let 𝑥 ∈ 𝑋 with 𝑠 = 𝑓(𝑥). If 𝑓 is flat at 𝑥, the point 𝑥 is a generic point of the
fibre 𝑋𝑠, and 𝑠 ∈ WeakAss𝑆(𝒢), then 𝑥 ∈ WeakAss(𝑓∗𝒢).

Proof. Let 𝐴 = 𝒪𝑆,𝑠, 𝐵 = 𝒪𝑋,𝑥, and 𝑀 = 𝒢𝑠. Let 𝑚 ∈ 𝑀 be an element whose annihilator
𝐼 = {𝑎 ∈ 𝐴 ∣ 𝑎𝑚 = 0} has radical 𝔪𝐴. Then 𝑚⊗1 has annihilator 𝐼𝐵 as 𝐴 → 𝐵 is faithfully
flat. Thus it suffices to see that √𝐼𝐵 = 𝔪𝐵. This follows from the fact that the maximal
ideal of 𝐵/𝔪𝐴𝐵 is locally nilpotent (see Algebra, Lemma 7.23.3) and the assumption that
√𝐼 = 𝔪𝐴. Some details omitted. �

26.7. Relative assassin

Definition 26.7.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. The relative assassin of ℱ in 𝑋 over 𝑆 is the set

Ass𝑋/𝑆(ℱ) = ⋃𝑠∈𝑆
Ass𝑋𝑠

(ℱ𝑠)

where ℱ𝑠 = (𝑋𝑠 → 𝑋)∗ℱ is the restriction of ℱ to the fibre of 𝑓 at 𝑠.

Again there is a caveat that this is best used when the fibres of 𝑓 are locally Noetherian and
ℱ is of finite type. In the general case we should probably use the relative weak assassin
(defined in the next section).

Lemma 26.7.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let 𝑔 ∶ 𝑆′ → 𝑆 be a morphism of schemes. Consider the base change diagram

𝑋′

��

𝑔′
// 𝑋

��
𝑆′ 𝑔 // 𝑆
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and set ℱ′ = (𝑔′)∗ℱ. Let 𝑥′ ∈ 𝑋′ be a point with images 𝑥 ∈ 𝑋, 𝑠′ ∈ 𝑆′ and 𝑠 ∈ 𝑆.
Assume 𝑓 locally of finite type. Then 𝑥′ ∈ Ass𝑋′/𝑆′(ℱ′) if and only if 𝑥 ∈ Ass𝑋/𝑆(ℱ) and
𝑥′ corresponds to a generic point of an irreducible component of 𝑆𝑝𝑒𝑐(𝜅(𝑠′) ⊗𝜅(𝑠) 𝜅(𝑥)).

Proof. Consider the morphism 𝑋′
𝑠′ → 𝑋𝑠 of fibres. As 𝑋𝑠′ = 𝑋𝑠 ×𝑆𝑝𝑒𝑐(𝜅(𝑠)) 𝑆𝑝𝑒𝑐(𝜅(𝑠′))

this is a flat morphism. Moreover ℱ′
𝑠′ is the pullback of ℱ𝑠 via this morphism. As 𝑋𝑠

is locally of finite type over the Noetherian scheme 𝑆𝑝𝑒𝑐(𝜅(𝑠)) we have that 𝑋𝑠 is locally
Noetherian, see Morphisms, Lemma 24.14.6. Thus we may apply Lemma 26.3.1 and we
see that

Ass𝑋′
𝑠′

(ℱ′
𝑠′) = ⋃𝑥∈Ass(ℱ𝑠)

Ass((𝑋′
𝑠′)𝑥).

Thus to prove the lemma it suffices to show that the associated points of the fibre (𝑋′
𝑠′)𝑥 of

the morphism 𝑋′
𝑠′ → 𝑋𝑠 over 𝑥 are its generic points. Note that (𝑋′

𝑠′)𝑥 = 𝑆𝑝𝑒𝑐(𝜅(𝑠′) ⊗𝜅(𝑠)
𝜅(𝑥)) as schemes. By Algebra, Lemma 7.149.1 the ring 𝜅(𝑠′) ⊗𝜅(𝑠) 𝜅(𝑥) is a Noetherian
Cohen-Macaulay ring. Hence its associated primes are its minimal primes, see Algebra,
Proposition 7.60.6 (minimal primes are associated) and Algebra, Lemma 7.140.2 (no em-
bedded primes). �

Remark 26.7.3. With notation and assumptions as in Lemma 26.7.2 we see that it is al-
ways the case that (𝑔′)−1(Ass𝑋/𝑆(ℱ)) ⊃ Ass𝑋′/𝑆′(ℱ′). If the morphism 𝑆′ → 𝑆 is locally
quasi-finite, then we actually have

(𝑔′)−1(Ass𝑋/𝑆(ℱ)) = Ass𝑋′/𝑆′(ℱ′)

because in this case the field extensions 𝜅(𝑠) ⊂ 𝜅(𝑠′) are always finite. In fact, this holds
more generally for any morphism 𝑔 ∶ 𝑆′ → 𝑆 such that all the field extensions 𝜅(𝑠) ⊂ 𝜅(𝑠′)
are algebraic, because in this case all prime ideals of 𝜅(𝑠′) ⊗𝜅(𝑠) 𝜅(𝑥) are maximal (and
minimal) primes, see Algebra, Lemma 7.32.17.

26.8. Relative weak assassin

Definition 26.8.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. The relative weak assassin of ℱ in 𝑋 over 𝑆 is the set

WeakAss𝑋/𝑆(ℱ) = ⋃𝑠∈𝑆
WeakAss(ℱ𝑠)

where ℱ𝑠 = (𝑋𝑠 → 𝑋)∗ℱ is the restriction of ℱ to the fibre of 𝑓 at 𝑠.

Lemma 26.8.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is locally of finite type.
Let ℱ be a quasi-coherent 𝒪𝑋-module. Then WeakAss𝑋/𝑆(ℱ) = Ass𝑋/𝑆(ℱ).

Proof. This is true becase the fibres of 𝑓 are locally Noetherian schemes, and associated
and weakly associated points agree on locally Noetherian schemes, see Lemma 26.5.7. �

26.9. Effective Cartier divisors

For some reason it seem convenient to define the notion of an effective Cartier divisor before
anything else.

Definition 26.9.1. Let 𝑆 be a scheme.
(1) A locally principal closed subscheme of 𝑆 is a closed subscheme whose sheaf of

ideals is locally generated by a single element.
(2) An effective Cartier divisor on 𝑆 is a closed subscheme 𝐷 ⊂ 𝑆 such that the ideal

sheaf ℐ𝐷 ⊂ 𝒪𝑋 is an invertible 𝒪𝑋-module.
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Thus an effective Cartier divisor is a locally principal closed subscheme, but the converse
is not always true. Effective Cartier divisors are closed subschemes of pure codimension 1
in the strongest possible sense. Namely they are locally cut out by a single element which
is not a zero divisor. In particular they are nowhere dense.

Lemma 26.9.2. Let 𝑆 be a scheme. Let 𝐷 ⊂ 𝑆 be a closed subscheme. The following are
equivalent:

(1) The subscheme 𝐷 is an effective Cartier divisor on 𝑆.
(2) For every 𝑥 ∈ 𝐷 there exists an affine open neighbourhood 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋

of 𝑥 such that 𝑈 ∩ 𝐷 = 𝑆𝑝𝑒𝑐(𝐴/(𝑓)) with 𝑓 ∈ 𝐴 not a zero divisor.

Proof. Assume (1). For every 𝑥 ∈ 𝐷 there exists an affine open neighbourhood 𝑆𝑝𝑒𝑐(𝐴) =
𝑈 ⊂ 𝑋 of 𝑥 such thatℐ𝐷|𝑈 ≅ 𝒪𝑈. In other words, there exists a section 𝑓 ∈ Γ(𝑈, ℐ𝐷)which
freely generates the restriction ℐ𝐷|𝑈. Hence 𝑓 ∈ 𝐴, and the multiplication map 𝑓 ∶ 𝐴 → 𝐴
is injective. Also, since ℐ𝐷 is quasi-coherent we see that 𝐷 ∩ 𝑈 = 𝑆𝑝𝑒𝑐(𝐴/(𝑓)).
Assume (2). Let 𝑥 ∈ 𝐷. By assumption there exists an affine open neighbourhood𝑆𝑝𝑒𝑐(𝐴) =
𝑈 ⊂ 𝑋 of 𝑥 such that 𝑈∩𝐷 = 𝑆𝑝𝑒𝑐(𝐴/(𝑓)) with 𝑓 ∈ 𝐴 not a zero divisor. Then ℐ𝐷|𝑈 ≅ 𝒪𝑈
since it is equal to (̃𝑓) ≅ 𝐴 ≅ 𝒪𝑈. Of course ℐ𝐷 restricted to the open subscheme 𝑆 ⧵ 𝐷 is
isomorphic to 𝒪𝑋⧵𝐷. Hence ℐ𝐷 is an invertible 𝒪𝑆-module. �

Lemma 26.9.3. Let 𝑆 be a scheme. Let 𝐷 ⊂ 𝑆 be an effective Cartier divisor. Let 𝑠 ∈ 𝐷.
If dim𝑠(𝑆) < ∞, then dim𝑠(𝐷) < dim𝑠(𝑆).

Proof. Assume dim𝑠(𝑆) < ∞. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑆 be an affine open neighbourhood of
𝑋 such that dim(𝑈) = dim𝑠(𝑆) and such that 𝐷 = 𝑉(𝑓) for some nonzero divisor 𝑓 ∈ 𝐴 (see
Lemma 26.9.2). Recall that dim(𝑈) is the Krull dimension of the ring 𝐴 and that dim(𝑈∩𝐷)
is the Krull dimension of the ring 𝐴/(𝑓). Then 𝑓 is not contained in any minimal prime of
𝐴. Hence any maximal chain of primes in 𝐴/(𝑓), viewed as a chain of primes in 𝐴, can be
extended by adding a minimal prime. �

Definition 26.9.4. Let 𝑆 be a scheme. Given effective Cartier divisors 𝐷1, 𝐷2 on 𝑆 we
set 𝐷 = 𝐷1 + 𝐷2 equal to the closed subscheme of 𝑆 corresponding to the quasi-coherent
sheaf of ideals ℐ𝐷1

ℐ𝐷2
⊂ 𝒪𝑆. We call this the sum of the effective Cartier divisors 𝐷1 and

𝐷2.

It is clear that we may define the sum ∑ 𝑛𝑖𝐷𝑖 given finitely many effective Cartier divisors
𝐷𝑖 on 𝑋 and nonnegative integers 𝑛𝑖.

Lemma 26.9.5. The sum of two effective Cartier divisors is an effective Cartier divisor.

Proof. Omitted. Locally 𝑓1, 𝑓2 ∈ 𝐴 are nonzero divisors, then also 𝑓1𝑓2 ∈ 𝐴 is a nonzero
divisor. �

Lemma 26.9.6. Let 𝑋 be a scheme. Let 𝐷, 𝐷′ be two effective Cartier divisors on 𝑋. If
𝐷 ⊂ 𝐷′ (as closed subschemes of 𝑋), then there exists an effective Cartier divisor 𝐷″ such
that 𝐷′ = 𝐷 + 𝐷″.

Proof. Omitted. �

Recall that we have defined the inverse image of a closed subscheme under any morphism
of schemes in Schemes, Definition 21.17.7.

Lemma 26.9.7. Let 𝑓 ∶ 𝑆′ → 𝑆 be a morphism of schemes. Let 𝑍 ⊂ 𝑆 be a locally
principal closed subscheme. Then the inverse image 𝑓−1(𝑍) is a locally principal closed
subscheme of 𝑆′.
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Proof. Omitted. �

Definition 26.9.8. Let 𝑓 ∶ 𝑆′ → 𝑆 be a morphism of schemes. Let 𝐷 ⊂ 𝑆 be an effective
Cartier divisor. We say the pullback of 𝐷 by 𝑓 is defined if the closed subscheme 𝑓−1(𝐷) ⊂
𝑆′ is an effective Cartier divisor. In this case we denote it either 𝑓∗𝐷 or 𝑓−1(𝐷) and we call
it the pullback of the effective Cartier divisor.

The condition that 𝑓−1(𝐷) is an effective Cartier divisor is often satisfied in practice. Here
is an example lemma.

Lemma 26.9.9. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝐷 ⊂ 𝑌 be an effective
Cartier divisor. The pullback of 𝐷 by 𝑓 is defined in each of the following cases:

(1) 𝑋, 𝑌 integral and 𝑓 dominant,
(2) 𝑋 reduced, and for any generic point 𝜉 of any irreducible component of 𝑋 we

have 𝑓(𝜉)∉𝐷,
(3) 𝑋 is locally Noetherian and for any associated point 𝑥 of 𝑋 we have 𝑓(𝑥)∉𝐷,
(4) 𝑋 is locally Noetherian, has no embedded points, and for any generic point 𝜉 of

any irreducible component of 𝑋 we have 𝑓(𝜉)∉𝐷,
(5) 𝑓 is flat, and
(6) add more here as needed.

Proof. The question is local on 𝑋, and hence we reduce to the case where 𝑋 = 𝑆𝑝𝑒𝑐(𝐴),
𝑌 = 𝑆𝑝𝑒𝑐(𝑅), 𝑓 is given by 𝜑 ∶ 𝑅 → 𝐴 and 𝐷 = 𝑆𝑝𝑒𝑐(𝑅/(𝑡)) where 𝑡 ∈ 𝑅 is not a zero
divisor. The goal in each case is to show that 𝜑(𝑡) ∈ 𝐴 is not a zero divisor.
In case (2) this follows as the intersection of all minimal primes of a ring is the nilradical
of the ring, see Algebra, Lemma 7.16.2.
Let us prove (3). By Lemma 26.2.2 the associated points of 𝑋 correspond to the primes
𝔭 ∈ Ass(𝐴). By Algebra, Lemma 7.60.9 we have ⋃𝔭∈Ass(𝐴) 𝔭 is the set of zero divisors of
𝐴. The hypothesis of (3) is that 𝜑(𝑡)∉𝔭 for all 𝔭 ∈ Ass(𝐴). Hence 𝜑(𝑡) is a nonzero divisor
as desired.
Part (4) follows from (3) and the definitions. �

Lemma 26.9.10. Let 𝑓 ∶ 𝑆′ → 𝑆 be a morphism of schemes. Let 𝐷1, 𝐷2 be effective
Cartier divisors on 𝑆. If the pullbacks of 𝐷1 and 𝐷2 are defined then the pullback of
𝐷 = 𝐷1 + 𝐷2 is defined and 𝑓∗𝐷 = 𝑓∗𝐷1 + 𝑓∗𝐷2.

Proof. Omitted. �

Definition 26.9.11. Let 𝑆 be a scheme and let 𝐷 be an effective Cartier divisor. The in-
vertible sheaf 𝒪𝑆(𝐷) associated to 𝐷 is given by

𝒪𝑆(𝐷) ∶= ℋ𝑜𝑚𝒪𝑆
(ℐ𝐷, 𝒪𝑆) = ℐ⊗−1

𝐷 .

The canonical section, usually denoted 1 or 1𝐷, is the global section of𝒪𝑆(𝐷) corresponding
to the inclusion mapping ℐ𝐷 → 𝒪𝑆.

Lemma 26.9.12. Let 𝑆 be a scheme. Let 𝐷1, 𝐷2 be effective Cartier divisors on 𝑆. Let
𝐷 = 𝐷1 + 𝑑2. Then there is a unique isomorphism

𝒪𝑆(𝐷1) ⊗𝒪𝑆
𝒪𝑆(𝐷2) ⟶ 𝒪𝑆(𝐷)

which maps 1𝐷1
⊗ 1𝐷2

to 1𝐷.

Proof. Omitted. �
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Definition 26.9.13. Let (𝑋, 𝒪𝑋) be a locally ringed space. Let ℒ be an invertible sheaf on
𝑋. A global section 𝑠 ∈ Γ(𝑋, ℒ) is called a regular section if the map 𝒪𝑋 → ℒ, 𝑓 ↦ 𝑓𝑠
is injective.

Lemma 26.9.14. Let 𝑋 be a locally ringed space. Let 𝑓 ∈ Γ(𝑋, 𝒪𝑋). The following are
equivalent:

(1) 𝑓 is a regular section, and
(2) for any 𝑥 ∈ 𝑋 the image 𝑓 ∈ 𝒪𝑋,𝑥 is not a zero divisor.

If 𝑋 is a scheme these are also equivalent to
(3) for any affine open 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 the image 𝑓 ∈ 𝐴 is not a zero divisor, and
(4) there exists an affine open covering 𝑋 = ⋃ 𝑆𝑝𝑒𝑐(𝐴𝑖) such that the image of 𝑓 in

𝐴𝑖 is not a zero divisor for all 𝑖.

Proof. Omitted. �

Note that a global section 𝑠 of an invertible 𝒪𝑋-module ℒ may be seen as an 𝒪𝑋-module
map 𝑠 ∶ 𝒪𝑋 → ℒ. Its dual is therefore a map 𝑠 ∶ ℒ⊗−1 → 𝒪𝑋. (See Modules, Definition
15.21.3 for the definition of the dual invertible sheaf.)

Definition 26.9.15. Let 𝑋 be a scheme. Let ℒ be an invertible sheaf. Let 𝑠 ∈ Γ(𝑋, ℒ).
The zero scheme of 𝑠 is the closed subscheme 𝑍(𝑠) ⊂ 𝑋 defined by the quasi-coherent sheaf
of ideals ℐ ⊂ 𝒪𝑋 which is the image of the map 𝑠 ∶ ℒ⊗−1 → 𝒪𝑋.

Lemma 26.9.16. Let 𝑋 be a scheme. Let ℒ be an invertible sheaf. Let 𝑠 ∈ Γ(𝑋, ℒ).
(1) Consider closed immersions 𝑖 ∶ 𝑍 → 𝑋 such that 𝑖∗𝑠 ∈ Γ(𝑍, 𝑖∗ℒ)) is zero

ordered by inclusion. The zero scheme 𝑍(𝑠) is the minimal element of this set.
(2) For any morphism of schemes 𝑓 ∶ 𝑌 → 𝑋 we have 𝑓∗𝑠 = 0 in Γ(𝑌, 𝑓∗ℒ) if and

only if 𝑓 factors through 𝑍(𝑠).
(3) The zero scheme 𝑍(𝑠) is a locally principal closed subscheme.
(4) The zero scheme 𝑍(𝑠) is an effective Cartier divisor if and only if 𝑠 is a regular

section of ℒ.

Proof. Omitted. �

Lemma 26.9.17. Let 𝑆 be a scheme.
(1) If 𝐷 ⊂ 𝑆 is an effective Cartier divisor, then the canonical section 1𝐷 of 𝒪𝑆(𝐷)

is regular.
(2) Conversely, if 𝑠 is a regular section of the invertible sheaf ℒ, then there exists

a unique effective Cartier divisor 𝐷 = 𝑍(𝑠) ⊂ 𝑆 and a unique isomorphism
𝒪𝑆(𝐷) → ℒ which maps 1𝐷 to 𝑠.

The constructions 𝐷 ↦ (𝒪𝑋(𝐷), 1𝐷) and (ℒ, 𝑠) ↦ 𝑍(𝑠) give mutually inverse maps

{effective Cartier divisors on 𝑋} ↔ {
pairs (ℒ, 𝑠) consisting of an invertible

𝒪𝑋-module and a regular global section}

Proof. Omitted. �

Here is a way to produce effective Cartier divisors.

Lemma 26.9.18. Let 𝑋 be a scheme. Let 𝑍 ⊂ 𝑋 be a closed subscheme. The blow up
𝑏 ∶ 𝑋′ → 𝑋 of 𝑍 has the following properties:

(1) 𝑏|𝑏−1(𝑋⧵𝑍) ∶ 𝑏−1(𝑋 ⧵ 𝑍) → 𝑋 ⧵ 𝑍 is an isomorphism, and
(2) 𝐸 = 𝑏−1(𝑍) is an effective Cartier divisor on 𝑋′.
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Proof. Proof omitted. Here are some hints: If 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑍 = 𝑆𝑝𝑒𝑐(𝐴/𝐼), then
𝑋′ = Proj(⨁𝑛≥0 𝐼𝑛). Write 𝑆 = ⨁𝑛≥0 𝐼𝑛 as a graded ring. Pick an element 𝑓 ∈ 𝐼 and
denote 𝐹 ∈ 𝑆1 the corresponding element in degree one of 𝑆. It is clear that the standard
opens 𝐷+(𝐹) cover 𝑋′ in this case. Each 𝐷+(𝐹) is the spectrum of the ring 𝑆(𝐹). Note that
𝑓 is a nonzero divisor on 𝑆(𝐹) since 𝑓𝑎/𝐹𝑑 = 0 (some 𝑎 ∈ 𝑆𝑑) implies also that 𝐹𝑎/𝐹𝑑+1 is
zero. Moreover, 𝐼𝑆(𝐹) is generated by the elements 𝑔 = 𝑓𝐺/𝐹 where 𝐺 ∈ 𝑆1 is the degree
1 element of 𝑆 corresponding to 𝑔. Hence it is indeed the case that 𝐼𝑆(𝐹) is generated by a
single nonzero divisor as desired. �

26.10. Relative effective Cartier divisors

The following lemma shows that an effective Cartier divisor which is flat over the base is
reall a ``family of effective Cartier divisors'' over the base. For example the restriction to
any fibre is an effective Cartier divisor.

Lemma 26.10.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝐷 ⊂ 𝑋 be a closed
subscheme. Assume

(1) 𝐷 is an effective Cartier divisor, and
(2) 𝐷 → 𝑆 is a flat morphism.

Then for every morphism of schemes 𝑔 ∶ 𝑆′ → 𝑆 the pullback (𝑔′)−1𝐷 is an effective
Cartier divisor on 𝑋′ = 𝑆′ ×𝑆 𝑋.

Proof. Using Lemma 26.9.2 we translate this as follows into algebra. Let 𝐴 → 𝐵 be a ring
map and ℎ ∈ 𝐵. Assume ℎ is a nonzero divisor and that 𝐵/ℎ𝐵 is flat over 𝐴. Then

0 → 𝐵
ℎ

−→ 𝐵 → 𝐵/ℎ𝐵 → 0

is a short exact sequence of 𝐴-modules with 𝐵/ℎ𝐵 flat over 𝐴. By Algebra, Lemma 7.35.11
this sequence remains exact on tensoring over 𝐴 with any module, in particular with any
𝐴-algebra 𝐴′. �

This lemma is the motivation for the following definition.

Definition 26.10.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. A relative effective Cartier
divisor on 𝑋/𝑆 is an effective Cartier divisor 𝐷 ⊂ 𝑋 such that 𝐷 → 𝑆 is a flat morphism
of schemes.

We warn the reader that this may be nonstandard notation. In particular, in [DG67, IV,
Section 21.15] the notion of a relative divisor is discussed only when 𝑋 → 𝑆 is flat and
locally of finite presentation. Our definition is a bit more general. However, it turns out
that if 𝑥 ∈ 𝐷 then 𝑋 → 𝑆 is flat at 𝑥 in many cases (but not always).

Lemma 26.10.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝐷 ⊂ 𝑋 be a relative
effective Cartier divisor on 𝑋/𝑆. If 𝑥 ∈ 𝐷 and 𝒪𝑋,𝑥 is Noetherian, then 𝑓 is flat at 𝑥.

Proof. Set 𝐴 = 𝒪𝑆,𝑓(𝑥) and 𝐵 = 𝒪𝑋,𝑥. Let ℎ ∈ 𝐵 be an element which generates the ideal
of 𝐷. Then ℎ is a nonzero divisor in 𝐵 such that 𝐵/ℎ𝐵 is a flat local 𝐴-algebra. Let 𝐼 ⊂ 𝐴
be a finitely generated ideal. Consider the commutative diagram

0 // 𝐵
ℎ

// 𝐵 // 𝐵/ℎ𝐵 // 0

0 // 𝐵 ⊗𝐴 𝐼 ℎ //

OO

𝐵 ⊗𝐴 𝐼 //

OO

𝐵/ℎ𝐵 ⊗𝐴 𝐼 //

OO

0
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The lower sequence is short exact as 𝐵/ℎ𝐵 is flat over 𝐴, see Algebra, Lemma 7.35.11.
The right vertical arrow is injective as 𝐵/ℎ𝐵 is flat over 𝐴, see Algebra, Lemma 7.35.4.
Hence multiplication by ℎ is surjective on the kernel 𝐾 of the middle vertical arrow. By
Nakayama's lemma, see Algebra, Lemma 7.14.5 we conclude that 𝐾 = 0. Hence 𝐵 is flat
over 𝐴, see Algebra, Lemma 7.35.4. �

The following lemma relies on the algebraic version of openness of the flat locus. The
scheme theoretic version can be found in More on Morphisms, Section 33.11.

Lemma 26.10.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝐷 ⊂ 𝑋 be a relative
effective Cartier divisor. If 𝑓 is locally of finite presentation, then there exists an open
subscheme 𝑈 ⊂ 𝑋 such that 𝐷 ⊂ 𝑈 and such that 𝑓|𝑈 ∶ 𝑈 → 𝑆 is flat.

Proof. Pick 𝑥 ∈ 𝐷. It suffices to find an open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such that
𝑓|𝑈 is flat. Hence the lemma reduces to the case that 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) and 𝑆 = 𝑆𝑝𝑒𝑐(𝐴)
are affine and that 𝐷 is given by a nonzero divisor ℎ ∈ 𝐵. By assumption 𝐵 is a finitely
presented 𝐴-algebra and 𝐵/ℎ𝐵 is a flat 𝐴-algebra. We are going to use absolute Noetherian
approximation.

Write 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑚). Assume ℎ is the image of ℎ′ ∈ 𝐴[𝑥1, … , 𝑥𝑛].
Choose a finite type 𝐙-subalgebra 𝐴0 ⊂ 𝐴 such that all the coefficients of the polyno-
mials ℎ′, 𝑔1, … , 𝑔𝑚 are in 𝐴0. Then we can set 𝐵0 = 𝐴0[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑚) and ℎ0 the
image of ℎ′ in 𝐵0. Then 𝐵 = 𝐵0 ⊗𝐴0

𝐴. Set

𝐽0 = {𝑏 ∈ 𝐵0 ∣ ∃𝑛 > 0, ℎ𝑛
0𝑏 = 0}

and 𝐶0 = 𝐵0/𝐽0. The image ℎ0 of ℎ0 is a nonzero divisor in 𝐶0 (see More on Algebra,
Lemma 12.8.6). As ℎ is a nonzero divisor in 𝐵 we see that 𝐵0 → 𝐵 annihilates 𝐽0. Hence
the isomorphism 𝐵0 ⊗𝐴0

𝐴 → 𝐵 factors through the surjective map 𝐵0 ⊗𝐴0
𝐴 → 𝐶0 ⊗𝐴0

𝐴
whence also 𝐶0 ⊗𝐴0

𝐴 ≅ 𝐵. Thus the ring map 𝐴 → 𝐵 is approximated by the ring maps
𝐴0 → 𝐶0. By Algebra, Lemma 7.120.5 we may, after enlarging 𝐴0, assume that 𝐶0/ℎ0𝐶0
is flat over 𝐴0.

Set 𝑓0 ∶ 𝑋0 → 𝑆0 equal to 𝑆𝑝𝑒𝑐 of the ring map 𝐴0 → 𝐶0. Set 𝐷0 = 𝑆𝑝𝑒𝑐(𝐶0/ℎ0𝐶0).
Since 𝐵 = 𝐶0 ⊗𝐴0

𝐴, i.e., 𝑋 = 𝑋0 ×𝑆0
𝑆, it now suffices to prove the lemma for 𝑋0 → 𝑆0

and the relative effective Cartier divisor 𝐷0, see Morphisms, Lemma 24.24.6. Hence we
have reduced to the case where 𝐴 is a Noetherian ring. In this case we know that the ring
map 𝐴 → 𝐵 is flat at every prime 𝔮 of 𝑉(ℎ) by Lemma 26.10.3. Combined with the fact
that the flat locus is open in this case, see Algebra, Theorem 7.120.4 we win. �

There is also the following lemma (whose idea is apparantly due to Michael Artin, see
[Nob77]) which needs no finiteness assumptions at all.

Lemma 26.10.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝐷 ⊂ 𝑋 be a relative
effective Cartier divisor on 𝑋/𝑆. If 𝑓 is flat at all points of 𝑋 ⧵ 𝐷, then 𝑓 is flat.

Proof. This translates into the following algebra fact: Let 𝐴 → 𝐵 be a ring map and ℎ ∈ 𝐵.
Assume ℎ is a nonzero divisor, that 𝐵/ℎ𝐵 is flat over 𝐴, and that the localization 𝐵ℎ is flat
over 𝐴. Then 𝐵 is flat over 𝐴. The reason is that we have a short exact sequence

0 → 𝐵 → 𝐵ℎ → 𝑐𝑜𝑙𝑖𝑚𝑛(1/ℎ𝑛)𝐵/𝐵 → 0

and that the second and third terms are flat over 𝐴, which implies that 𝐵 is flat over 𝐴 (see
Algebra, Lemma 7.35.12). Note that a filtered colimit of flat modules is flat (see Algebra,
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Lemma 7.35.2) and that by induction on 𝑛 each (1/ℎ𝑛)𝐵/𝐵 ≅ 𝐵/ℎ𝑛𝐵 is flat over 𝐴 since it
fits into the short exact sequence

0 → 𝐵/ℎ𝑛−1𝐵
ℎ

−→ 𝐵/ℎ𝑛𝐵 → 𝐵/ℎ𝐵 → 0
Some details omitted. �

Example 26.10.6. Here is an example of a relative effective Cartier divisor 𝐷 where the
ambient scheme is not flat in a neighbourhood of 𝐷. Namely, let 𝐴 = 𝑘[𝑡] and

𝐵 = 𝑘[𝑡, 𝑥, 𝑦, 𝑥−1𝑦, 𝑥−2𝑦, …]/(𝑡𝑦, 𝑡𝑥−1𝑦, 𝑡𝑥−2𝑦, …)
Then 𝐵 is not flat over 𝐴 but 𝐵/𝑥𝐵 ≅ 𝐴 is flat over 𝐴. Moreover 𝑥 is a nonzero divisor and
hence defines a relative effective Cartier divisor in 𝑆𝑝𝑒𝑐(𝐵) over 𝑆𝑝𝑒𝑐(𝐴).

If the ambient scheme is flat and locally of finite presentation over the base, then we can
characterize a relative effective Cartier divisor in terms of its fibres. See also More on
Morphisms, Lemma 33.16.1 for a slightly different take on this lemma.

Lemma 26.10.7. Let 𝜑 ∶ 𝑋 → 𝑆 be a flat morphism which is locally of finite presentation.
Let 𝑍 ⊂ 𝑋 be a closed subscheme. Let 𝑥 ∈ 𝑍 with image 𝑠 ∈ 𝑆.

(1) If 𝑍𝑠 ⊂ 𝑋𝑠 is a Cartier divisor in a neighbourhood of 𝑥, then there exists an open
𝑈 ⊂ 𝑋 and a relative effective Cartier divisor 𝐷 ⊂ 𝑈 such that 𝑍 ∩ 𝑈 ⊂ 𝐷.

(2) If 𝑍𝑠 ⊂ 𝑋𝑠 is a Cartier divisor in a neighbourhood of 𝑥, the morphism 𝑍 → 𝑋 is
of finite presentation, and 𝑍 → 𝑆 is flat at 𝑥, then we can choose 𝑈 and 𝐷 such
that 𝑍 ∩ 𝑈 = 𝐷.

(3) If 𝑍𝑠 ⊂ 𝑋𝑠 is a Cartier divisor in a neighbourhood of 𝑥 and 𝑍 is a locally
principal closed subscheme of 𝑋 in a neighbourhood of 𝑥, then we can choose 𝑈
and 𝐷 such that 𝑍 ∩ 𝑈 = 𝐷.

In particular, if 𝑍 → 𝑆 is locally of finite presentation and flat and all fibres 𝑍𝑠 ⊂ 𝑋𝑠 are
effective Cartier divisors, then 𝑍 is a relative effective Cartier divisor. Similarly, if 𝑍 is a
locally principal closed subscheme of 𝑋 such that all fibres 𝑍𝑠 ⊂ 𝑋𝑠 are effective Cartier
divisors, then 𝑍 is a relative effective Cartier divisor.

Proof. Choose affine open neighbourhoods𝑆𝑝𝑒𝑐(𝐴) of 𝑠 and𝑆𝑝𝑒𝑐(𝐵) of 𝑥 such that𝜑(𝑆𝑝𝑒𝑐(𝐵)) ⊂
𝑆𝑝𝑒𝑐(𝐴). Let 𝔭 ⊂ 𝐴 be the prime ideal corresponding to 𝑠. Let 𝔮 ⊂ 𝐵 be the prime ideal
corresponding to 𝑥. Let 𝐼 ⊂ 𝐵 be the ideal corresponding to 𝑍. By the initial assumption
of the lemma we know that 𝐴 → 𝐵 is flat and of finite presentation. The assumption in (1)
means that, after shrinking 𝑆𝑝𝑒𝑐(𝐵), we may assume 𝐼(𝐵 ⊗𝐴 𝜅(𝔭)) is generated by a single
element which is a nonzero divisor in𝐵⊗𝐴𝜅(𝔭). Say 𝑓 ∈ 𝐼maps to this generator. We claim
that after inverting an element 𝑔 ∈ 𝐵, 𝑔∉𝔮 the closed subscheme 𝐷 = 𝑉(𝑓) ⊂ 𝑆𝑝𝑒𝑐(𝐵𝑔) is
a relative effective Cartier divisor.
By Algebra, Lemma 7.120.5 we can find a flat finite type ring map 𝐴0 → 𝐵0 of Noetherian
rings, an element 𝑓0 ∈ 𝐵0, a ring map 𝐴0 → 𝐴 and an isomorphism 𝐴 ⊗𝐴0

𝐵0 ≅ 𝐵. If
𝔭0 = 𝐴0 ∩ 𝔭 then we see that

𝐵 ⊗𝐴 𝜅(𝔭) = (𝐵0 ⊗𝐴0
𝜅(𝔭0)) ⊗𝜅(𝔭0)) 𝜅(𝔭)

hence 𝑓0 is a nonzero divisor in 𝐵0 ⊗𝐴0
𝜅(𝔭0). By Algebra, Lemma 7.91.2 we see that 𝑓0 is

a nonzero divisor in (𝐵0)𝔮0
where 𝔮0 = 𝐵0 ∩ 𝔮 and that (𝐵0/𝑓0𝐵0)𝔮0

is flat over 𝐴0. Hence
by Algebra, Lemma 7.65.8 and Algebra, Theorem 7.120.4 there exists a 𝑔0 ∈ 𝐵0, 𝑔0∉𝔮0
such that 𝑓0 is a nonzero divisor in (𝐵0)𝑔0

and such that (𝐵0/𝑓0𝐵0)𝑔0
is flat over 𝐴0. Hence

we see that 𝐷0 = 𝑉(𝑓0) ⊂ 𝑆𝑝𝑒𝑐((𝐵0)𝑔0
) is a relative effective Cartier divisor. Since we
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know that this property is preserved under base change, see Lemma 26.10.1, we obtain the
claim mentioned above with 𝑔 equal to the image of 𝑔0 in 𝐵.
At this point we have proved (1). To see (2) consider the closed immersion 𝑍 → 𝐷.
The surjective ring map 𝑢 ∶ 𝒪𝐷,𝑥 → 𝒪𝑍,𝑥 is a map of flat local 𝒪𝑆,𝑠-algebras which are
essentially of finite presentation, and which becomes an isomorphisms after dividing by
𝔪𝑠. Hence it is an isomorphism, see Algebra, Lemma 7.119.4. It follows that 𝑍 → 𝐷 is
an isomorphism in a neighbourhood of 𝑥, see Algebra, Lemma 7.117.6. To see (3), after
possibly shrinking 𝑈 we may assume that the ideal of 𝐷 is generated by a single nonzero
divisor 𝑓 and the ideal of 𝑍 is generated by an element 𝑔. Then 𝑓 = 𝑔ℎ. But 𝑔|𝑈𝑠

and 𝑓|𝑈𝑠
cut out the same effective Cartier divisor in a neighbourhood of 𝑥. Hence ℎ|𝑋𝑠

is a unit
in 𝒪𝑋𝑠,𝑥, hence ℎ is a unit in 𝒪𝑋,𝑥 hence ℎ is a unit in an open neighbourhood of 𝑥. I.e.,
𝑍 ∩ 𝑈 = 𝐷 after shrinking 𝑈.
The final statements of the lemma follow immediately from parts (2) and (3), combined
with the fact that 𝑍 → 𝑆 is locally of finite presentation if and only if 𝑍 → 𝑋 is of finite
presentation, see Morphisms, Lemmas 24.20.3 and 24.20.11. �

26.11. The normal cone of an immersion

Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion. Let ℐ ⊂ 𝒪𝑋 be the corresponding quasi-coherent
sheaf of ideals. Consider the quasi-coherent sheaf of graded 𝒪𝑋-algebras ⨁𝑛≥0 ℐ𝑛/ℐ𝑛+1.
Since the sheaves ℐ𝑛/ℐ𝑛+1 are each annihilated by ℐ this graded algebra corresponds to
a quasi-coherent sheaf of graded 𝒪𝑍-algebras by Morphisms, Lemma 24.3.1. This quasi-
coherent graded 𝒪𝑍-algebra is called the conormal algebra of 𝑍 in 𝑋 and is often simply
denoted ⨁𝑛≥0 ℐ𝑛/ℐ𝑛+1 by the abuse of notation mentioned in Morphisms, Section 24.3.
Let 𝑓 ∶ 𝑍 → 𝑋 be an immersion. We define the conormal algebra of 𝑓 as the conormal
sheaf of the closed immersion 𝑖 ∶ 𝑍 → 𝑋 ⧵ 𝜕𝑍, where 𝜕𝑍 = 𝑍 ⧵ 𝑍. It is often denoted
⨁𝑛≥0 ℐ𝑛/ℐ𝑛+1 where ℐ is the ideal sheaf of the closed immersion 𝑖 ∶ 𝑍 → 𝑋 ⧵ 𝜕𝑍.

Definition 26.11.1. Let 𝑓 ∶ 𝑍 → 𝑋 be an immersion. The conormal algebra 𝒞𝑍/𝑋,∗ of
𝑍 in 𝑋 or the conormal algebra of 𝑓 is the quasi-coherent sheaf of graded 𝒪𝑍-algebras
⨁𝑛≥0 ℐ𝑛/ℐ𝑛+1 described above.

Thus 𝒞𝑍/𝑋,1 = 𝒞𝑍/𝑋 is the conormal sheaf of the immersion. Also 𝒞𝑍/𝑋,0 = 𝒪𝑍 and 𝒞𝑍/𝑋,𝑛
is a quasi-coherent 𝒪𝑍-module characterized by the property

(26.11.1.1) 𝑖∗𝒞𝑍/𝑋,𝑛 = ℐ𝑛/ℐ𝑛+1

where 𝑖 ∶ 𝑍 → 𝑋 ⧵ 𝜕𝑍 and ℐ is the ideal sheaf of 𝑖 as above. Finally, note that there is a
canonical surjective map
(26.11.1.2) Sym∗(𝒞𝑍/𝑋) ⟶ 𝒞𝑍/𝑋,∗

of quasi-coherent graded 𝒪𝑍-algebras which is an isomorphism in degrees 0 and 1.

Lemma 26.11.2. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion. The conormal algebra of 𝑖 has the
following properties:

(1) Let 𝑈 ⊂ 𝑋 be any open such that 𝑖(𝑍) is a closed subset of 𝑈. Let ℐ ⊂ 𝒪𝑈 be the
sheaf of ideals corresponding to the closed subscheme 𝑖(𝑍) ⊂ 𝑈. Then

𝒞𝑍/𝑋,∗ = 𝑖∗
(⨁𝑛≥0

ℐ𝑛
) = 𝑖−1

(⨁𝑛≥0
ℐ𝑛/ℐ𝑛+1

)
(2) For any affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 such that 𝑍 ∩ 𝑈 = 𝑆𝑝𝑒𝑐(𝑅/𝐼) there is a

canonical isomorphism Γ(𝑍 ∩ 𝑈, 𝒞𝑍/𝑋,∗) = ⨁𝑛≥0 𝐼𝑛/𝐼𝑛+1.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0630
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0633


26.11. THE NORMAL CONE OF AN IMMERSION 1455

Proof. Mostly clear from the definitions. Note that given a ring 𝑅 and an ideal 𝐼 of 𝑅 we
have 𝐼𝑛/𝐼𝑛+1 = 𝐼𝑛 ⊗𝑅 𝑅/𝐼. Details omitted. �

Lemma 26.11.3. Let
𝑍

𝑖
//

𝑓
��

𝑋

𝑔
��

𝑍′ 𝑖′ // 𝑋′

be a commutative diagram in the category of schemes. Assume 𝑖, 𝑖′ immersions. There is a
canonical map of graded 𝒪𝑍-algebras

𝑓∗𝒞𝑍′/𝑋′,∗ ⟶ 𝒞𝑍/𝑋,∗

characterized by the following property: For every pair of affine opens (𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂
𝑋, 𝑆𝑝𝑒𝑐(𝑅′) = 𝑈′ ⊂ 𝑋′) with 𝑓(𝑈) ⊂ 𝑈′ such that 𝑍 ∩ 𝑈 = 𝑆𝑝𝑒𝑐(𝑅/𝐼) and 𝑍′ ∩ 𝑈′ =
𝑆𝑝𝑒𝑐(𝑅′/𝐼′) the induced map

Γ(𝑍′ ∩ 𝑈′, 𝒞𝑍′/𝑋′,∗) = ⨁(𝐼′)𝑛/(𝐼′)𝑛+1 ⟶ ⨁𝑛≥0
𝐼𝑛/𝐼𝑛+1 = Γ(𝑍 ∩ 𝑈, 𝒞𝑍/𝑋,∗)

is the one induced by the ring map 𝑓♯ ∶ 𝑅′ → 𝑅 which has the property 𝑓♯(𝐼′) ⊂ 𝐼.

Proof. Let 𝜕𝑍′ = 𝑍′ ⧵ 𝑍′ and 𝜕𝑍 = 𝑍 ⧵ 𝑍. These are closed subsets of 𝑋′ and of 𝑋.
Replacing 𝑋′ by 𝑋′ ⧵ 𝜕𝑍′ and 𝑋 by 𝑋 ⧵ (𝑔−1(𝜕𝑍′) ∪ 𝜕𝑍) we see that we may assume that
𝑖 and 𝑖′ are closed immersions.

The fact that 𝑔 ∘ 𝑖 factors through 𝑖′ implies that 𝑔∗ℐ′ maps into ℐ under the canonical
map 𝑔∗ℐ′ → 𝒪𝑋, see Schemes, Lemmas 21.4.6 and 21.4.7. Hence we get an induced
map of quasi-coherent sheaves 𝑔∗((ℐ′)𝑛/(ℐ′)𝑛+1) → ℐ𝑛/ℐ𝑛+1. Pulling back by 𝑖 gives
𝑖∗𝑔∗((ℐ′)𝑛/(ℐ′)𝑛+1) → 𝑖∗(ℐ𝑛/ℐ𝑛+1). Note that 𝑖∗(ℐ𝑛/ℐ𝑛+1) = 𝒞𝑍/𝑋,𝑛. On the other hand,
𝑖∗𝑔∗((ℐ′)𝑛/(ℐ′)𝑛+1) = 𝑓∗(𝑖′)∗((ℐ′)𝑛/(ℐ′)𝑛+1) = 𝑓∗𝒞𝑍′/𝑋′,𝑛. This gives the desired map.

Checking that the map is locally described as the given map (𝐼′)𝑛/(𝐼′)𝑛+1 → 𝐼𝑛/𝐼𝑛+1 is a
matter of unwinding the definitions and is omitted. Another observation is that given any
𝑥 ∈ 𝑖(𝑍) there do exist affine open neighbourhoods 𝑈, 𝑈′ with 𝑓(𝑈) ⊂ 𝑈′ and 𝑍 ∩ 𝑈 as
well as 𝑈′ ∩𝑍′ closed such that 𝑥 ∈ 𝑈. Proof omitted. Hence the requirement of the lemma
indeed characterizes the map (and could have been used to define it). �

Lemma 26.11.4. Let
𝑍

𝑖
//

𝑓
��

𝑋

𝑔
��

𝑍′ 𝑖′ // 𝑋′

be a fibre product diagram in the category of schemes with 𝑖, 𝑖′ immersions. Then the
canonical map 𝑓∗𝒞𝑍′/𝑋′,∗ → 𝒞𝑍/𝑋,∗ of Lemma 26.11.3 is surjective. If 𝑔 is flat, then it is
an isomorphism.

Proof. Let𝑅′ → 𝑅 be a ringmap, and 𝐼′ ⊂ 𝑅′ an ideal. Set 𝐼 = 𝐼′𝑅. Then (𝐼′)𝑛/(𝐼′)𝑛+1⊗𝑅′

𝑅 → 𝐼𝑛/𝐼𝑛+1 is surjective. If 𝑅′ → 𝑅 is flat, then 𝐼𝑛 = (𝐼′)𝑛 ⊗𝑅′ 𝑅 and we see the map is
an isomorphism. �

Definition 26.11.5. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. The normal cone 𝐶𝑍𝑋
of 𝑍 in 𝑋 is

𝐶𝑍𝑋 = 𝑆𝑝𝑒𝑐
𝑍

(𝒞𝑍/𝑋,∗)
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see Constructions, Definitions 22.7.1 and 22.7.2. The normal bundle of 𝑍 in 𝑋 is the vector
bundle

𝑁𝑍𝑋 = 𝑆𝑝𝑒𝑐
𝑍

(Sym(𝒞𝑍/𝑋))

see Constructions, Definitions 22.6.1 and 22.6.2.

Thus 𝐶𝑍𝑋 → 𝑍 is a cone over 𝑍 and 𝑁𝑍𝑋 → 𝑍 is a vector bundle over 𝑍 (recall that in
our terminology this does not imply that the conormal sheaf is a finite locally free sheaf).
Moreover, the canonical surjection (26.11.1.2) of graded algebras defines a canonical closed
immersion

(26.11.5.1) 𝐶𝑍𝑋 ⟶ 𝑁𝑍𝑋

of cones over 𝑍.

26.12. Regular ideal sheaves

In this sectionwe generalize the notion of an effective Cartier divisor to higher codimension.
Recall that a sequence of elements 𝑓1, … , 𝑓𝑟 of a ring 𝑅 is a regular sequence if for each
𝑖 = 1, … , 𝑟 the element 𝑓𝑖 is a nonzero divisor on 𝑅/(𝑓1, … , 𝑓𝑖−1) and 𝑅/(𝑓1, … , 𝑓𝑟)≠0,
see Algebra, Definition 7.65.1. There are three closely related weaker conditions that we
can impose. The first is to assume that 𝑓1, … , 𝑓𝑟 is a Koszul-regular sequence, i.e., that
𝐻𝑖(𝐾•(𝑓1, … , 𝑓𝑟)) = 0 for 𝑖 > 0, see More on Algebra, Definition 12.22.1. The sequence
is called an 𝐻1-regular sequence if 𝐻1(𝐾•(𝑓1, … , 𝑓𝑟)) = 0. Another condition we can
impose is that with 𝐽 = (𝑓1, … , 𝑓𝑟), the map

𝑅/𝐽[𝑇1, … , 𝑇𝑟] ⟶ ⨁𝑛≥0
𝐽𝑛/𝐽𝑛+1

which maps 𝑇𝑖 to 𝑓𝑖 mod 𝐽2 is an isomorphism. In this case we say that 𝑓1, … , 𝑓𝑟 is a
quasi-regular sequence, see Algebra, Definition 7.66.1. Given an 𝑅-module 𝑀 there is
also a notion of 𝑀-regular and 𝑀-quasi-regular sequence.

We can generalize this to the case of ringed spaces as follows. Let 𝑋 be a ringed space
and let 𝑓1, … , 𝑓𝑟 ∈ Γ(𝑋, 𝒪𝑋). We say that 𝑓1, … , 𝑓𝑟 is a regular sequence if for each
𝑖 = 1, … , 𝑟 the map

(26.12.0.2) 𝑓𝑖 ∶ 𝒪𝑋/(𝑓1, … , 𝑓𝑖−1) ⟶ 𝒪𝑋/(𝑓1, … , 𝑓𝑖−1)

is an injective map of sheaves. We say that 𝑓1, … , 𝑓𝑟 is a Koszul-regular sequence if the
Koszul complex

(26.12.0.3) 𝐾•(𝒪𝑋, 𝑓•),

see Modules, Definition 15.20.2, is acyclic in degrees > 0. We say that 𝑓1, … , 𝑓𝑟 is a
𝐻1-regular sequence if the Koszul complex 𝐾•(𝒪𝑋, 𝑓•) is exact in degree 1. Finally, we
say that 𝑓1, … , 𝑓𝑟 is a quasi-regular sequence if the map

(26.12.0.4) 𝒪𝑋/𝒥[𝑇1, … , 𝑇𝑟] ⟶ ⨁𝑑≥0
𝒥𝑑/𝒥𝑑+1

is an isomorphism of sheaves where 𝒥 ⊂ 𝒪𝑋 is the sheaf of ideals generated by 𝑓1, … , 𝑓𝑟.
(There is also a notion of ℱ-regular and ℱ-quasi-regular sequence for a given 𝒪𝑋-module
ℱ which we will introduce here if we ever need it.)

Lemma 26.12.1. Let 𝑋 be a ringed space. Let 𝑓1, … , 𝑓𝑟 ∈ Γ(𝑋, 𝒪𝑋). We have the follow-
ing implications 𝑓1, … , 𝑓𝑟 is a regular sequence ⇒ 𝑓1, … , 𝑓𝑟 is a Koszul-regular sequence
⇒ 𝑓1, … , 𝑓𝑟 is an 𝐻1-regular sequence ⇒ 𝑓1, … , 𝑓𝑟 is a quasi-regular sequence.
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Proof. Since we may check exactness at stalks, a sequence 𝑓1, … , 𝑓𝑟 is a regular sequence
if and only if the maps

𝑓𝑖 ∶ 𝒪𝑋,𝑥/(𝑓1, … , 𝑓𝑖−1) ⟶ 𝒪𝑋,𝑥/(𝑓1, … , 𝑓𝑖−1)

are injective for all 𝑥 ∈ 𝑋. In other words, the image of the sequence 𝑓1, … , 𝑓𝑟 in the
ring 𝒪𝑋,𝑥 is a regular sequence for all 𝑥 ∈ 𝑋. The other types of regularity can be checked
stalkwise as well (details omitted). Hence the implications follow from More on Algebra,
Lemmas 12.22.2 and 12.22.5. �

Definition 26.12.2. Let 𝑋 be a ringed space. Let 𝒥 ⊂ 𝒪𝑋 be a sheaf of ideals.
(1) We say 𝒥 is regular if for every 𝑥 ∈ Supp(𝒪𝑋/𝒥) there exists an open neighbour-

hood 𝑥 ∈ 𝑈 ⊂ 𝑋 and a regular sequence 𝑓1, … , 𝑓𝑟 ∈ 𝒪𝑋(𝑈) such that 𝒥|𝑈 is
generated by 𝑓1, … , 𝑓𝑟.

(2) We say 𝒥 is Koszul-regular if for every 𝑥 ∈ Supp(𝒪𝑋/𝒥) there exists an open
neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 and a Koszul-regular sequence 𝑓1, … , 𝑓𝑟 ∈ 𝒪𝑋(𝑈)
such that 𝒥|𝑈 is generated by 𝑓1, … , 𝑓𝑟.

(3) We say 𝒥 is 𝐻1-regular if for every 𝑥 ∈ Supp(𝒪𝑋/𝒥) there exists an open neigh-
bourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 and a 𝐻1-regular sequence 𝑓1, … , 𝑓𝑟 ∈ 𝒪𝑋(𝑈) such that
𝒥|𝑈 is generated by 𝑓1, … , 𝑓𝑟.

(4) We say 𝒥 is quasi-regular if for every 𝑥 ∈ Supp(𝒪𝑋/𝒥) there exists an open
neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋 and a quasi-regular sequence 𝑓1, … , 𝑓𝑟 ∈ 𝒪𝑋(𝑈)
such that 𝒥|𝑈 is generated by 𝑓1, … , 𝑓𝑟.

Many properties of this notion immediately follow from the corresponding notions for reg-
ular and quasi-regular sequences in rings.

Lemma 26.12.3. Let 𝑋 be a ringed space. Let 𝒥 be a sheaf of ideals. We have the following
implications: 𝒥 is regular ⇒ 𝒥 is Koszul-regular ⇒ 𝒥 is 𝐻1-regular ⇒ 𝒥 is quasi-regular.

Proof. The lemma immediately reduces to Lemma 26.12.1. �

Lemma 26.12.4. Let 𝑋 be a locally ringed space. Let 𝒥 ⊂ 𝒪𝑋 be a sheaf of ideals. Then
𝒥 is quasi-regular if and only if the following conditions are satisfied:

(1) 𝒥 is an 𝒪𝑋-module of finite type,
(2) 𝒥/𝒥2 is a finite locally free 𝒪𝑋/𝒥-module, and
(3) the canonical maps

Sym𝑛
𝒪𝑋/𝒥(𝒥/𝒥2) ⟶ 𝒥𝑛/𝒥𝑛+1

are isomorphisms for all 𝑛 ≥ 0.

Proof. It is clear that if 𝑈 ⊂ 𝑋 is an open such that 𝒥|𝑈 is generated by a quasi-regular se-
quence 𝑓1, … , 𝑓𝑟 ∈ 𝒪𝑋(𝑈) then 𝒥|𝑈 is of finite type, 𝒥|𝑈/𝒥2|𝑈 is free with basis 𝑓1, … , 𝑓𝑟,
and the maps in (3) are isomorphisms because they are coordinate free formulation of the
degree 𝑛 part of (26.12.0.4). Hence it is clear that being quasi-regular implies conditions
(1), (2), and (3).

Conversely, suppose that (1), (2), and (3) hold. Pick a point 𝑥 ∈ Supp(𝒪𝑋/𝒥). Then there
exists a neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such that 𝒥|𝑈/𝒥2|𝑈 is free of rank 𝑟 over 𝒪𝑈/𝒥|𝑈.
After possibly shrinking 𝑈 we may assume there exist 𝑓1, … , 𝑓𝑟 ∈ 𝒥(𝑈) which map to a
basis of 𝒥|𝑈/𝒥2|𝑈 as an 𝒪𝑈/𝒥|𝑈-module. In particular we see that the images of 𝑓1, … , 𝑓𝑟
in 𝒥𝑥/𝒥2

𝑥 generate. Hence by Nakayama's lemma (Algebra, Lemma 7.14.5) we see that
𝑓1, … , 𝑓𝑟 generate the stalk 𝒥𝑥. Hence, since 𝒥 is of finite type, by Modules, Lemma
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15.9.4 after shrinking 𝑈 wemay assume that 𝑓1, … , 𝑓𝑟 generate 𝒥. Finally, from (3) and the
isomorphism 𝒥|𝑈/𝒥2|𝑈 = ⨁ 𝒪𝑈/𝒥|𝑈𝑓𝑖 it is clear that 𝑓1, … , 𝑓𝑟 ∈ 𝒪𝑋(𝑈) is a quasi-regular
sequence. �

Lemma 26.12.5. Let (𝑋, 𝒪𝑋) be a locally ringed space. Let 𝒥 ⊂ 𝒪𝑋 be a sheaf of ideals.
Let 𝑥 ∈ 𝑋 and 𝑓1, … , 𝑓𝑟 ∈ 𝒥𝑥 whose images give a basis for the 𝜅(𝑥)-vector space
𝒥𝑥/𝔪𝑥𝒥𝑥.

(1) If𝒥 is quasi-regular, then there exists an open neighbourhood such that𝑓1, … , 𝑓𝑟 ∈
𝒪𝑋(𝑈) form a quasi-regular sequence generating 𝒥|𝑈.

(2) If𝒥 is𝐻1-regular, then there exists an open neighbourhood such that 𝑓1, … , 𝑓𝑟 ∈
𝒪𝑋(𝑈) form an 𝐻1-regular sequence generating 𝒥|𝑈.

(3) If𝒥 is Koszul-regular, then there exists an open neighbourhood such that𝑓1, … , 𝑓𝑟 ∈
𝒪𝑋(𝑈) form an Koszul-regular sequence generating 𝒥|𝑈.

Proof. First assume that 𝒥 is quasi-regular. Wemay choose an open neighbourhood 𝑈 ⊂ 𝑋
of 𝑥 and a quasi-regular sequence 𝑔1, … , 𝑔𝑠 ∈ 𝒪𝑋(𝑈) which generates 𝒥|𝑈. Note that this
implies that 𝒥/𝒥2 is free of rank 𝑠 over 𝒪𝑈/𝒥|𝑈 (see Lemma 26.12.4 and its proof) and
hence 𝑟 = 𝑠. We may shrink 𝑈 and assume 𝑓1, … , 𝑓𝑟 ∈ 𝒥(𝑈). Thus we may write

𝑓𝑖 = ∑ 𝑎𝑖𝑗𝑔𝑗

for some 𝑎𝑖𝑗 ∈ 𝒪𝑋(𝑈). By assumption the matrix 𝐴 = (𝑎𝑖𝑗) maps to an invertible matrix
over 𝜅(𝑥). Hence, after shrinking 𝑈 once more, we may assume that (𝑎𝑖𝑗) is invertible. Thus
we see that 𝑓1, … , 𝑓𝑟 give a basis for (𝒥/𝒥2)|𝑈 which proves that 𝑓1, … , 𝑓𝑟 is a quasi-regular
sequence over 𝑈.

Note that in order to prove (2) and (3) we may, because the assumptions of (2) and (3) are
stronger than the assumption in (1), already assume that 𝑓1, … , 𝑓𝑟 ∈ 𝒥(𝑈) and 𝑓𝑖 = ∑ 𝑎𝑖𝑗𝑔𝑗
with (𝑎𝑖𝑗) invertible as above, where now 𝑔1, … , 𝑔𝑟 is a 𝐻1-regular or Koszul-regular se-
quence. Since the Koszul complex on 𝑓1, … , 𝑓𝑟 is isomorphic to the Koszul complex on
𝑔1, … , 𝑔𝑟 via the matrix (𝑎𝑖𝑗) (see More on Algebra, Lemma 12.21.4) we conclude that
𝑓1, … , 𝑓𝑟 is 𝐻1-regular or Koszul-regular as desired. �

Lemma 26.12.6. Any regular, Koszul-regular, 𝐻1-regular, or quasi-regular sheaf of ideals
on a scheme is a finite type quasi-coherent sheaf of ideals.

Proof. This follows as such a sheaf of ideals is locally generated by finitely many sections.
And any sheaf of ideals locally generated by sections on a scheme is quasi-coherent, see
Schemes, Lemma 21.10.1. �

Lemma 26.12.7. Let 𝑋 be a scheme. Let 𝒥 be a sheaf of ideals. Then 𝒥 is regular (resp.
Koszul-regular, 𝐻1-regular, quasi-regular) if and only if for every 𝑥 ∈ Supp(𝒪𝑋/𝒥) there
exists an affine open neighbourhood 𝑥 ∈ 𝑈 ⊂ 𝑋, 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) such that 𝒥|𝑈 = ̃𝐼 and such
that 𝐼 is generated by a regular (resp. Koszul-regular, 𝐻1-regular, quasi-regular) sequence
𝑓1, … , 𝑓𝑟 ∈ 𝐴.

Proof. By assumption we can find an open neighbourhood 𝑈 of 𝑥 over which 𝒥 is gener-
ated by a regular (resp. Koszul-regular, 𝐻1-regular, quasi-regular) sequence 𝑓1, … , 𝑓𝑟 ∈
𝒪𝑋(𝑈). After shrinking 𝑈 we may assume that 𝑈 is affine, say 𝑈 = 𝑆𝑝𝑒𝑐(𝐴). Since 𝒥 is
quasi-coherent by Lemma 26.12.6 we see that 𝒥|𝑈 = ̃𝐼 for some ideal 𝐼 ⊂ 𝐴. Now we can
use the fact that

̃ ∶ Mod𝐴 ⟶ QCoh(𝑈)
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is an equivalence of categories which preserves exactness. For example the fact that the
functions 𝑓𝑖 generate 𝒥 means that the 𝑓𝑖, seen as elements of 𝐴 generate 𝐼. The fact
that (26.12.0.2) is injective (resp. (26.12.0.3) is exact, (26.12.0.3) is exact in degree 1,
(26.12.0.4) is an isomorphism) implies the correponding property of themap𝐴/(𝑓1, … , 𝑓𝑖−1) →
𝐴/(𝑓1, … , 𝑓𝑖−1) (resp. the complex𝐾•(𝐴, 𝑓1, … , 𝑓𝑟), themap𝐴/𝐼[𝑇1, … , 𝑇𝑟] → ⨁ 𝐼𝑛/𝐼𝑛+1).
Thus 𝑓1, … , 𝑓𝑟 ∈ 𝐴 is a regular (resp. Koszul-regular, 𝐻1-regular, quasi-regular) sequence
of the ring 𝐴. �

Lemma 26.12.8. Let 𝑋 be a locally Noetherian scheme. Let 𝒥 ⊂ 𝒪𝑋 be a quasi-coherent
sheaf of ideals. Let 𝑥 be a point of the support of 𝒪𝑋/𝒥. The following are equivalent

(1) 𝒥𝑥 is generated by a regular sequence in 𝒪𝑋,𝑥,
(2) 𝒥𝑥 is generated by a Koszul-regular sequence in 𝒪𝑋,𝑥,
(3) 𝒥𝑥 is generated by an 𝐻1-regular sequence in 𝒪𝑋,𝑥,
(4) 𝒥𝑥 is generated by a quasi-regular sequence in 𝒪𝑋,𝑥,
(5) there exists an affine neighbourhood 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) of 𝑥 such that 𝒥|𝑈 = ̃𝐼 and 𝐼

is generated by a regular sequence in 𝐴, and
(6) there exists an affine neighbourhood 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) of 𝑥 such that 𝒥|𝑈 = ̃𝐼 and 𝐼

is generated by a Koszul-regular sequence in 𝐴, and
(7) there exists an affine neighbourhood 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) of 𝑥 such that 𝒥|𝑈 = ̃𝐼 and 𝐼

is generated by an 𝐻1-regular sequence in 𝐴, and
(8) there exists an affine neighbourhood 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) of 𝑥 such that 𝒥|𝑈 = ̃𝐼 and 𝐼

is generated by a quasi-regular sequence in 𝐴,
(9) there exists a neighbourhood 𝑈 of 𝑥 such that 𝒥|𝑈 is regular, and

(10) there exists a neighbourhood 𝑈 of 𝑥 such that 𝒥|𝑈 is Koszul-regular, and
(11) there exists a neighbourhood 𝑈 of 𝑥 such that 𝒥|𝑈 is 𝐻1-regular, and
(12) there exists a neighbourhood 𝑈 of 𝑥 such that 𝒥|𝑈 is quasi-regular.

In particular, on a locally Noetherian scheme the notions of regular, Koszul-regular,𝐻1-regular,
or quasi-regular ideal sheaf all agree.

Proof. It follows from Lemma 26.12.7 that (5) ⇔ (9), (6) ⇔ (10), (7) ⇔ (11), and (8) ⇔
(12). It is clear that (5) ⇒ (1), (6) ⇒ (2), (7) ⇒ (3), and (8) ⇒ (4). We have (1) ⇒ (5) by
Algebra, Lemma 7.65.8. We have (9) ⇒ (10) ⇒ (11) ⇒ (12) by Lemma 26.12.3. Finally,
(4) ⇒ (1) by Algebra, Lemma 7.66.6. Now all 12 statements are equivalent. �

26.13. Regular immersions

Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. By definition this means there exists an open
subscheme 𝑈 ⊂ 𝑋 such that 𝑍 is identified with a closed subscheme of 𝑈. Let ℐ ⊂ 𝒪𝑈 be
the corresponding quasi-coherent sheaf of ideals. Suppose 𝑈′ ⊂ 𝑋 is a second such open
subscheme, and denote ℐ′ ⊂ 𝒪𝑈′ the corresponding quasi-coherent sheaf of ideals. Then
ℐ|𝑈∩𝑈′ = ℐ′|𝑈∩𝑈′. Moreover, the support of 𝒪𝑈/ℐ is 𝑍 which is contained in 𝑈 ∩ 𝑈′ and
is also the support of 𝒪𝑈′/ℐ′. Hence it follows from Definition 26.12.2 that ℐ is a regular
ideal if and only if ℐ′ is a regular ideal. Similarly for being Koszul-regular, 𝐻1-regular, or
quasi-regular.

Definition 26.13.1. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. Choose an open sub-
scheme 𝑈 ⊂ 𝑋 such that 𝑖 identifies 𝑍 with a closed subscheme of 𝑈 and denote ℐ ⊂ 𝒪𝑈
the corresponding quasi-coherent sheaf of ideals.

(1) We say 𝑖 is a regular immersion if ℐ is regular.
(2) We say 𝑖 is a Koszul-regular immersion if ℐ is Koszul-regular.
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(3) We say 𝑖 is a 𝐻1-regular immersion if ℐ is 𝐻1-regular.
(4) We say 𝑖 is a quasi-regular immersion if ℐ is quasi-regular.

The discussion above shows that this is independent of the choice of 𝑈. The conditions
are listed in decreasing order of strength, see Lemma 26.13.2. A Koszul-regular closed
immersion is smooth locally a regular immersion, see Lemma 26.13.11. In the locally
Noetherian case all four notions agree, see Lemma 26.12.8.

Lemma 26.13.2. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. We have the following
implications: 𝑖 is regular ⇒ 𝑖 is Koszul-regular ⇒ 𝑖 is 𝐻1-regular ⇒ 𝑖 is quasi-regular.

Proof. The lemma immediately reduces to Lemma 26.12.3. �

Lemma 26.13.3. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. Assume 𝑋 is locally
Noetherian. Then 𝑖 is regular ⇔ 𝑖 is Koszul-regular ⇔ 𝑖 is 𝐻1-regular ⇔ 𝑖 is quasi-regular.

Proof. Follows immediately from Lemma 26.13.2 and Lemma 26.12.8. �

Lemma 26.13.4. Let 𝑖 ∶ 𝑍 → 𝑋 be a regular (resp. Koszul-regular, 𝐻1-regular, quasi-
regular) immersion. Let𝑋′ → 𝑋 be a flat morphism. Then the base change 𝑖′ ∶ 𝑍×𝑋𝑋′ →
𝑋′ is a regular (resp. Koszul-regular, 𝐻1-regular, quasi-regular) immersion.

Proof. Via Lemma 26.12.7 this translates into the algebraic statements in Algebra, Lem-
mas 7.65.7 and 7.66.3 and More on Algebra, Lemma 12.22.4. �

Lemma 26.13.5. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. Then 𝑖 is a quasi-regular
immersion if and only if the following conditions are satisfied

(1) 𝑖 is locally of finite presentation,
(2) the conormal sheaf 𝒞𝑍/𝑋 is finite locally free, and
(3) the map (26.11.1.2) is an isomorphism.

Proof. An open immersion is locally of finite presentation. Hence we may replace 𝑋 by
an open subscheme 𝑈 ⊂ 𝑋 such that 𝑖 identifies 𝑍 with a closed subscheme of 𝑈, i.e., we
may assume that 𝑖 is a closed immersion. Let ℐ ⊂ 𝒪𝑋 be the corresponding quasi-coherent
sheaf of ideals. Recall, see Morphisms, Lemma 24.20.7 that ℐ is of finite type if and only
if 𝑖 is locally of finite presentation. Hence the equivalence follows from Lemma 26.12.4
and unwinding the definitions. �

Lemma 26.13.6. Let 𝑍 → 𝑌 → 𝑋 be immersions of schemes. Assume that 𝑍 → 𝑌 is
𝐻1-regular. Then the canonical sequence of Morphisms, Lemma 24.31.5

0 → 𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0

is exact and locally split.

Proof. Since 𝒞𝑍/𝑌 is finite locally free (see Lemma 26.13.5 and Lemma 26.12.3) it suffices
to prove that the sequence is exact. By what was proven in Morphisms, Lemma 24.31.5 it
suffices to show that the first map is injective. Working affine locally this reduces to the
following question: Suppose that we have a ring 𝐴 and ideals 𝐼 ⊂ 𝐽 ⊂ 𝐴. Assume that
𝐽/𝐼 ⊂ 𝐴/𝐼 is generated by an𝐻1-regular sequence. Does this imply that 𝐼/𝐼2⊗𝐴𝐴/𝐽 → 𝐽/𝐽2

is injective? Note that 𝐼/𝐼2 ⊗𝐴 𝐴/𝐽 = 𝐼/𝐼𝐽. Hence we are trying to prove that 𝐼 ∩ 𝐽2 = 𝐼𝐽.
This is the result of More on Algebra, Lemma 12.22.7. �

A composition of quasi-regular immersions may not be quasi-regular, see Algebra, Remark
7.66.8. The other types of regular immersions are preserved under composition.
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Lemma 26.13.7. Let 𝑖 ∶ 𝑍 → 𝑌 and 𝑗 ∶ 𝑌 → 𝑋 be immersions of schemes.
(1) If 𝑖 and 𝑗 are regular immersions, so is 𝑗 ∘ 𝑖.
(2) If 𝑖 and 𝑗 are Koszul-regular immersions, so is 𝑗 ∘ 𝑖.
(3) If 𝑖 and 𝑗 are 𝐻1-regular immersions, so is 𝑗 ∘ 𝑖.
(4) If 𝑖 is an 𝐻1-regular immersion and 𝑗 is a quasi-regular immersion, then 𝑗 ∘ 𝑖 is

a quasi-regular immersion.

Proof. The algebraic version of (1) is Algebra, Lemma 7.65.9. The algebraic version of
(2) is More on Algebra, Lemma 12.22.11. The algebraic version of (3) is More on Algebra,
Lemma 12.22.9. The algebraic version of (4) is More on Algebra, Lemma 12.22.8. �

Lemma 26.13.8. Let 𝑖 ∶ 𝑍 → 𝑌 and 𝑗 ∶ 𝑌 → 𝑋 be immersions of schemes. Assume that
the sequence

0 → 𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0
of Morphisms, Lemma 24.31.5 is exact and locally split.

(1) If 𝑗 ∘ 𝑖 is a quasi-regular immersion, so is 𝑖.
(2) If 𝑗 ∘ 𝑖 is a 𝐻1-regular immersion, so is 𝑖.
(3) If both 𝑗 and 𝑗 ∘ 𝑖 are Koszul-regular immersions, so is 𝑖.

Proof. After shrinking 𝑌 and 𝑋 we may assume that 𝑖 and 𝑗 are closed immersions. De-
note ℐ ⊂ 𝒪𝑋 the ideal sheaf of 𝑌 and 𝒥 ⊂ 𝒪𝑋 the ideal sheaf of 𝑍. The conormal se-
quence is 0 → ℐ/ℐ𝒥 → 𝒥/𝒥2 → 𝒥/(ℐ + 𝒥2) → 0. Let 𝑧 ∈ 𝑍 and set 𝑦 = 𝑖(𝑧),
𝑥 = 𝑗(𝑦) = 𝑗(𝑖(𝑧)). Choose 𝑓1, … , 𝑓𝑛 ∈ ℐ𝑥 which map to a basis of ℐ𝑥/𝔪𝑧ℐ𝑥. Extend
this to 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 ∈ 𝒥𝑥 which map to a basis of 𝒥𝑥/𝔪𝑧𝒥𝑥. This is possible as
we have assumed that the sequence of conormal sheaves is split in a neighbourhood of 𝑧,
hence ℐ𝑥/𝔪𝑥ℐ𝑥 → 𝒥𝑥/𝔪𝑥𝒥𝑥 is injective.

Proof of (1). By Lemma 26.12.5 we can find an affine open neighbourhood 𝑈 of 𝑥 such
that 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 forms a quasi-regular sequence generating 𝒥. Hence by Algebra,
Lemma 7.66.5 we see that 𝑔1, … , 𝑔𝑚 induces a quasi-regular sequence on 𝑌 ∩ 𝑈 cutting out
𝑍.

Proof of (2). Exactly the same as the proof of (1) except using More on Algebra, Lemma
12.22.10.

Proof of (3). By Lemma 26.12.5 (applied twice) we can find an affine open neighbourhood
𝑈 of 𝑥 such that 𝑓1, … , 𝑓𝑛 forms aKoszul-regular sequence generatingℐ and 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚
forms aKoszul-regular sequence generating𝒥. Hence byMore onAlgebra, Lemma 12.22.12
we see that 𝑔1, … , 𝑔𝑚 induces a Koszul-regular sequence on 𝑌 ∩ 𝑈 cutting out 𝑍. �

Lemma 26.13.9. Let 𝑖 ∶ 𝑍 → 𝑌 and 𝑗 ∶ 𝑌 → 𝑋 be immersions of schemes. Pick 𝑧 ∈ 𝑍
and denote 𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 the corresponding points. Assume 𝑋 is locally Noetherian. The
following are equivalent

(1) 𝑖 is a regular immersion in a neighbourhood of 𝑧 and 𝑗 is a regular immersion in
a neighbourhood of 𝑦,

(2) 𝑖 and 𝑗 ∘ 𝑖 are regular immersions in a neighbourhood of 𝑧,
(3) 𝑗 ∘ 𝑖 is a regular immersion in a neighbourhood of 𝑧 and the conormal sequence

0 → 𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0

is split exact in a neighbourhood of 𝑧.
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Proof. Since 𝑋 (and hence 𝑌) is locally Noetherian all 4 types of regular immersions agree,
andmoreover wemay checkwhether amorphism is a regular immersion on the level of local
rings, see Lemma 26.12.8. The implication (1) ⇒ (2) is Lemma 26.13.7. The implication
(2) ⇒ (3) is Lemma 26.13.6. Thus it suffices to prove that (3) implies (1).

Assume (3). Set 𝐴 = 𝒪𝑋,𝑥. Denote 𝐼 ⊂ 𝐴 the kernel of the surjective map 𝒪𝑋,𝑥 →
𝒪𝑌,𝑦 and denote 𝐽 ⊂ 𝐴 the kernel of the surjective map 𝒪𝑋,𝑥 → 𝒪𝑍,𝑧. Note that any
mimimal sequence of elements generating 𝐽 in 𝐴 is a quasi-regular hence regular sequence,
see Lemma 26.12.5. By assumption the conormal sequence

0 → 𝐼/𝐼𝐽 → 𝐽/𝐽2 → 𝐽/(𝐼 + 𝐽2 → 0

is split exact as a sequence of 𝐴/𝐽-modules. Hence we can pick a minimal system of gener-
ators 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 of 𝐽 with 𝑓1, … , 𝑓𝑛 ∈ 𝐼 a minimal system of generators of 𝐼. As
pointed out above 𝑓1, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑚 is a regular sequence in 𝐴. It follows directly from
the definition of a regular sequence that 𝑓1, … , 𝑓𝑛 is a regular sequence in 𝐴 and 𝑔1, … , 𝑔𝑚
is a regular sequence in 𝐴/𝐼. Thus 𝑗 is a regular immersion at 𝑦 and 𝑖 is a regular immersion
at 𝑧. �

Remark 26.13.10. In the situation of Lemma 26.13.9 parts (1), (2), (3) are not equivalent
to ``𝑗 ∘ 𝑖 and 𝑗 are regular immersions at 𝑧 and 𝑦''. An example is 𝑋 = 𝐀1

𝑘 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]),
𝑌 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]/(𝑥2)) and 𝑍 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]/(𝑥)).

Lemma 26.13.11. Let 𝑖 ∶ 𝑍 → 𝑋 be a Koszul regular closed immersion. Then there exists
a surjective smooth morphism 𝑋′ → 𝑋 such that the base change 𝑖′ ∶ 𝑍 ×𝑋 𝑋′ → 𝑋′ of 𝑖
is a regular immersion.

Proof. We may assume that 𝑋 is affine and the ideal of 𝑍 generated by a Koszul-regular
sequence by replacing 𝑋 by the members of a suitable affine open covering (affine opens
as in Lemma 26.12.7). The affine case is More on Algebra, Lemma 12.22.16. �

26.14. Relative regular immersions

In this section we consider the base change property for regular immersions. The follow-
ing lemma does not hold for regular immersions or for Koszul immersions, see Examples,
Lemma 64.6.2.

Lemma 26.14.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑖 ∶ 𝑍 ⊂ 𝑋 be an
immersion. Assume

(1) 𝑖 is an 𝐻1-regular (resp. quasi-regular) immersion, and
(2) 𝑍 → 𝑆 is a flat morphism.

Then for every morphism of schemes 𝑔 ∶ 𝑆′ → 𝑆 the base change 𝑍′ = 𝑆′ ×𝑆 𝑍 → 𝑋′ =
𝑆′ ×𝑆 𝑋 is an 𝐻1-regular (resp. quasi-regular) immersion.

Proof. Unwinding the definitions and using Lemma 26.12.7 we translate this into algebra
as follows. Let 𝐴 → 𝐵 be a ring map and 𝑓1, … , 𝑓𝑟 ∈ 𝐵. Assume 𝐵/(𝑓1, … , 𝑓𝑟)𝐵 is flat
over 𝐴. Consider a ring map 𝐴 → 𝐴′. Set 𝐵′ = 𝐵 ⊗𝐴 𝐴′ and 𝐽′ = 𝐽𝐵′.

Case I: 𝑓1, … , 𝑓𝑟 is quasi-regular. Set 𝐽 = (𝑓1, … , 𝑓𝑟). By assumption 𝐽𝑛/𝐽𝑛+1 is isomor-
phic to a direct sum of copies of 𝐵/𝐽 hence flat over 𝐴. By induction and Algebra, Lemma
7.35.12 we conclude that 𝐵/𝐽𝑛 is flat over 𝐴. The ideal (𝐽′)𝑛 is equal to 𝐽𝑛 ⊗𝐴 𝐴′, see
Algebra, Lemma 7.35.11. Hence (𝐽′)𝑛/(𝐽′)𝑛+1 = 𝐽𝑛/𝐽𝑛+1 ⊗𝐴 𝐴′ which clearly implies that
𝑓1, … , 𝑓𝑟 is a quasi-regular sequence in 𝐵′.
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Case II: 𝑓1, … , 𝑓𝑟 is 𝐻1-regular. By More on Algebra, Lemma 12.22.14 the vanishing of
theKoszul homology group𝐻1(𝐾•(𝐵, 𝑓1, … , 𝑓𝑟)) implies the vanshing of𝐻1(𝐾•(𝐵′, 𝑓′

1, … , 𝑓′
𝑟))

and we win. �

This lemma is the motivation for the following definition.

Definition 26.14.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑖 ∶ 𝑍 → 𝑋 be an
immersion.

(1) We say 𝑖 is a relative quasi-regular immersion if 𝑍 → 𝑆 is flat and 𝑖 is a quasi-
regular immersion.

(2) We say 𝑖 is a relative𝐻1-regular immersion if 𝑍 → 𝑆 is flat and 𝑖 is an 𝐻1-regular
immersion.

We warn the reader that this may be nonstandard notation. Lemma 26.14.1 guarantees that
relative quasi-regular (resp. 𝐻1-regular) immersions are preserved under any base change.
A relative 𝐻1-regular immersion is a relative quasi-regular immersion, see Lemma 26.13.2.
Please take a look at Lemma 26.14.5 (or Lemma 26.14.4) which shows that if 𝑍 → 𝑋 is
a relative 𝐻1-regular (or quasi-regular) immersion and the ambient scheme is (flat and)
locally of finite presentation over 𝑆, then 𝑍 → 𝑋 is actually a regular immersion and the
same remains true after any base change.

Lemma 26.14.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑍 → 𝑋 be a relative
quasi-regular immersion. If 𝑥 ∈ 𝑍 and 𝒪𝑋,𝑥 is Noetherian, then 𝑓 is flat at 𝑥.

Proof. Let 𝑓1, … , 𝑓𝑟 ∈ 𝒪𝑋,𝑥 be a quasi-regular sequence cutting out the ideal of 𝑍 at 𝑥.
By Algebra, Lemma 7.66.6 we know that 𝑓1, … , 𝑓𝑟 is a regular sequence. Hence 𝑓𝑟 is a
nonzero divisor on 𝒪𝑋,𝑥/(𝑓1, … , 𝑓𝑟−1) such that the quotient is a flat 𝒪𝑆,𝑓(𝑥)-module. By
Lemma 26.10.3 we conclude that 𝒪𝑋,𝑥/(𝑓1, … , 𝑓𝑟−1) is a flat 𝒪𝑆,𝑓(𝑥)-module. Continuing
by induction we find that 𝒪𝑋,𝑥 is a flat 𝒪𝑆,𝑠-module. �

Lemma 26.14.4. Let 𝑋 → 𝑆 be a morphism of schemes. Let 𝑍 → 𝑋 be an immersion.
Assume

(1) 𝑋 → 𝑆 is flat and locally of finite presentation,
(2) 𝑍 → 𝑋 is a relative quasi-regular immersion.

Then 𝑍 → 𝑋 is a regular immersion and the same remains true after any base change.

Proof. Pick 𝑥 ∈ 𝑍 with image 𝑠 ∈ 𝑆. To prove this it suffices to find an affine neigh-
bourhood of 𝑥 contained in 𝑈 such that the result holds on that affine open. Hence we may
assume that 𝑋 is affine and there exist a quasi-regular sequence 𝑓1, … , 𝑓𝑟 ∈ Γ(𝑋, 𝒪𝑋) such
that 𝑍 = 𝑉(𝑓1, … , 𝑓𝑟). By Lemma 26.14.1 and its proof the sequence 𝑓1|𝑋𝑠

, … , 𝑓𝑟|𝑋𝑠
is a

quasi-regular sequence in Γ(𝑋𝑠, 𝒪𝑋𝑠
). Since 𝑋𝑠 is Noetherian, this implies, possibly after

shrinking 𝑋 a bit, that 𝑓1|𝑋𝑠
, … , 𝑓𝑟|𝑋𝑠

is a regular sequence, see Algebra, Lemmas 7.66.6
and 7.65.8. By Lemma 26.10.7 it follows that 𝑍1 = 𝑉(𝑓1) ⊂ 𝑋 is a relative effective Cartier
divisor, again after possibly shrinking 𝑋 a bit. Applying the same lemma again, but now
to 𝑍2 = 𝑉(𝑓1, 𝑓2) ⊂ 𝑍1 we see that 𝑍2 ⊂ 𝑍1 is a relative effective Cartier divisor. And
so on until on reaches 𝑍 = 𝑍𝑛 = 𝑉(𝑓1, … , 𝑓𝑛). Since being a relative effective Cartier
divisor is preserved under arbitrary base change, see Lemma 26.10.1, we also see that the
final statement of the lemma holds. �

Lemma 26.14.5. Let 𝑋 → 𝑆 be a morphism of schemes. Let 𝑍 → 𝑋 be a relative
𝐻1-regular immersion. Assume 𝑋 → 𝑆 is locally of finite presentation. Then
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(1) there exists an open subscheme 𝑈 ⊂ 𝑋 such that 𝑍 ⊂ 𝑈 and such that 𝑈 → 𝑆 is
flat, and

(2) 𝑍 → 𝑋 is a regular immersion and the same remains true after any base change.

Proof. Pick 𝑥 ∈ 𝑍. To prove (1) suffices to find an open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥
such that 𝑈 → 𝑆 is flat. Hence the lemma reduces to the case that 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) and
𝑆 = 𝑆𝑝𝑒𝑐(𝐴) are affine and that 𝑍 is given by an 𝐻1-regular sequence 𝑓1, … , 𝑓𝑟 ∈ 𝐵. By
assumption 𝐵 is a finitely presented 𝐴-algebra and 𝐵/(𝑓1, … , 𝑓𝑟)𝐵 is a flat 𝐴-algebra. We
are going to use absolute Noetherian approximation.
Write 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑚). Assume 𝑓𝑖 is the image of 𝑓′

𝑖 ∈ 𝐴[𝑥1, … , 𝑥𝑛].
Choose a finite type 𝐙-subalgebra 𝐴0 ⊂ 𝐴 such that all the coefficients of the polynomials
𝑓′

1, … , 𝑓′
𝑟, 𝑔1, … , 𝑔𝑚 are in 𝐴0. We set 𝐵0 = 𝐴0[𝑥1, … , 𝑥𝑛]/(𝑔1, … , 𝑔𝑚) and we denote 𝑓𝑖,0

the image of 𝑓′
𝑖 in 𝐵0. Then 𝐵 = 𝐵0 ⊗𝐴0

𝐴 and
𝐵/(𝑓1, … , 𝑓𝑟) = 𝐵0/(𝑓0,1, … , 𝑓0,𝑟) ⊗𝐴0

𝐴.
By Algebra, Lemma 7.120.5 we may, after enlarging 𝐴0, assume that 𝐵0/(𝑓0,1, … , 𝑓0,𝑟)
is flat over 𝐴0. It may not be the case at this point that the Koszul cohomology group
𝐻1(𝐾•(𝐵0, 𝑓0,1, … , 𝑓0,𝑟)) is zero. On the other hand, as 𝐵0 is Noetherian, it is a finitely
generated 𝐵0-module. Let 𝜉1, … , 𝜉𝑛 ∈ 𝐻1(𝐾•(𝐵0, 𝑓0,1, … , 𝑓0,𝑟)) be generators. Let 𝐴0 ⊂
𝐴1 ⊂ 𝐴 be a larger finite type 𝐙-subalgebra of 𝐴. Denote 𝑓1,𝑖 the image of 𝑓0,𝑖 in 𝐵1 =
𝐵0 ⊗𝐴0

𝐴1. By More on Algebra, Lemma 12.22.14 the map
𝐻1(𝐾•(𝐵0, 𝑓0,1, … , 𝑓0,𝑟)) ⊗𝐴0

𝐴1 ⟶ 𝐻1(𝐾•(𝐵1, 𝑓1,1, … , 𝑓1,𝑟))
is surjective. Furthermore, it is clear that the colimit (over all choices of 𝐴1 as above) of
the complexes 𝐾•(𝐵1, 𝑓1,1, … , 𝑓1,𝑟) is the complex 𝐾•(𝐵, 𝑓1, … , 𝑓𝑟) which is acyclic in
degree 1. Hence

𝑐𝑜𝑙𝑖𝑚𝐴0⊂𝐴1⊂𝐴 𝐻1(𝐾•(𝐵1, 𝑓1,1, … , 𝑓1,𝑟)) = 0
by Algebra, Lemma 7.8.9. Thus we can find a choice of 𝐴1 such that 𝜉1, … , 𝜉𝑛 all map to
zero in𝐻1(𝐾•(𝐵1, 𝑓1,1, … , 𝑓1,𝑟)). In otherwords, theKoszul cohomology group𝐻1(𝐾•(𝐵1, 𝑓1,1, … , 𝑓1,𝑟))
is zero.
Consider the morphism of affine schemes 𝑋1 → 𝑆1 equal to 𝑆𝑝𝑒𝑐 of the ring map 𝐴1 → 𝐵1
and 𝑍1 = 𝑆𝑝𝑒𝑐(𝐵1/(𝑓1,1, … , 𝑓1,𝑟)). Since 𝐵 = 𝐵1 ⊗𝐴1

𝐴, i.e., 𝑋 = 𝑋1 ×𝑆1
𝑆, and similarly

𝑍 = 𝑍1 ×𝑆 𝑆1, it now suffices to prove (1) for 𝑋1 → 𝑆1 and the relative 𝐻1-regular
immersion 𝑍1 → 𝑋1, see Morphisms, Lemma 24.24.6. Hence we have reduced to the case
where 𝑋 → 𝑆 is a finite type morphism of Noetherian schemes. In this case we know that
𝑋 → 𝑆 is flat at every point of 𝑍 by Lemma 26.14.3. Combined with the fact that the flat
locus is open in this case, see Algebra, Theorem 7.120.4 we see that (1) holds. Part (2) then
follows from an application of Lemma 26.14.4. �

If the ambient scheme is flat and locally of finite presentation over the base, then we can
characterize a relative quasi-regular immersion in terms of its fibres.
Lemma 26.14.6. Let 𝜑 ∶ 𝑋 → 𝑆 be a flat morphism which is locally of finite presentation.
Let 𝑇 ⊂ 𝑋 be a closed subscheme. Let 𝑥 ∈ 𝑇 with image 𝑠 ∈ 𝑆.

(1) If 𝑇𝑠 ⊂ 𝑋𝑠 is a quasi-regular immersion in a neighbourhood of 𝑥, then there
exists an open 𝑈 ⊂ 𝑋 and a relative quasi-regular immersion 𝑍 ⊂ 𝑈 such that
𝑍𝑠 = 𝑇𝑠 ∩ 𝑈𝑠 and 𝑇 ∩ 𝑈 ⊂ 𝑍.

(2) If 𝑇𝑠 ⊂ 𝑋𝑠 is a quasi-regular immersion in a neighbourhood of 𝑥, the morphism
𝑇 → 𝑋 is of finite presentation, and 𝑇 → 𝑆 is flat at 𝑥, then we can choose 𝑈 and
𝑍 as in (1) such that 𝑇 ∩ 𝑈 = 𝑍.
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(3) If 𝑇𝑠 ⊂ 𝑋𝑠 is a quasi-regular immersion in a neighbourhood of 𝑥, and 𝑇 is cut out
by 𝑐 equations in a neighbourhood of 𝑥, where 𝑐 = dim𝑥(𝑋𝑠) − dim𝑥(𝑇𝑠), then
we can choose 𝑈 and 𝑍 as in (1) such that 𝑇 ∩ 𝑈 = 𝑍.

In each case 𝑍 → 𝑈 is a regular immersion by Lemma 26.14.4. In particular, if 𝑇 → 𝑆 is
locally of finite presentation and flat and all fibres 𝑇𝑠 ⊂ 𝑋𝑠 are quasi-regular immersions,
then 𝑇 → 𝑋 is a relative quasi-regular immersion.

Proof. Choose affine open neighbourhoods𝑆𝑝𝑒𝑐(𝐴) of 𝑠 and𝑆𝑝𝑒𝑐(𝐵) of 𝑥 such that𝜑(𝑆𝑝𝑒𝑐(𝐵)) ⊂
𝑆𝑝𝑒𝑐(𝐴). Let 𝔭 ⊂ 𝐴 be the prime ideal corresponding to 𝑠. Let 𝔮 ⊂ 𝐵 be the prime ideal cor-
responding to 𝑥. Let 𝐼 ⊂ 𝐵 be the ideal corresponding to 𝑇. By the initial assumption of the
lemma we know that 𝐴 → 𝐵 is flat and of finite presentation. The assumption in (1) means
that, after shrinking 𝑆𝑝𝑒𝑐(𝐵), we may assume 𝐼(𝐵 ⊗𝐴 𝜅(𝔭)) is generated by a quasi-regular
sequence of elements. After possibly localizing 𝐵 at some 𝑔 ∈ 𝐵, 𝑔∉𝔮 we may assume
there exist 𝑓1, … , 𝑓𝑟 ∈ 𝐼 which map to a quasi-regular sequence in 𝐵 ⊗𝐴 𝜅(𝔭) which gen-
erates 𝐼(𝐵 ⊗𝐴 𝜅(𝔭)). By Algebra, Lemmas 7.66.6 and 7.65.8 we may assume after another
localization that 𝑓1, … , 𝑓𝑟 ∈ 𝐼 form a regular sequence in 𝐵 ⊗𝐴 𝜅(𝔭). By Lemma 26.10.7
it follows that 𝑍1 = 𝑉(𝑓1) ⊂ 𝑆𝑝𝑒𝑐(𝐵) is a relative effective Cartier divisor, again after
possibly localizing 𝐵. Applying the same lemma again, but now to 𝑍2 = 𝑉(𝑓1, 𝑓2) ⊂ 𝑍1
we see that 𝑍2 ⊂ 𝑍1 is a relative effective Cartier divisor. And so on until one reaches
𝑍 = 𝑍𝑛 = 𝑉(𝑓1, … , 𝑓𝑛). Then 𝑍 → 𝑆𝑝𝑒𝑐(𝐵) is a regular immersion and 𝑍 is flat over 𝑆,
in particular 𝑍 → 𝑆𝑝𝑒𝑐(𝐵) is a relative quasi-regular immersion over 𝑆𝑝𝑒𝑐(𝐴). This proves
(1).

To see (2) consider the closed immersion𝑍 → 𝐷. The surjective ringmap 𝑢 ∶ 𝒪𝐷,𝑥 → 𝒪𝑍,𝑥
is a map of flat local 𝒪𝑆,𝑠-algebras which are essentially of finite presentation, and which
becomes an isomorphisms after dividing by 𝔪𝑠. Hence it is an isomorphism, see Algebra,
Lemma 7.119.4. It follows that 𝑍 → 𝐷 is an isomorphism in a neighbourhood of 𝑥, see
Algebra, Lemma 7.117.6.

To see (3), after possibly shrinking 𝑈 we may assume that the ideal of 𝑍 is generated by a
regular sequence 𝑓1, … , 𝑓𝑟 (see our construction of 𝑍 above) and the ideal of 𝑇 is generated
by 𝑔1, … , 𝑔𝑐. We claim that 𝑐 = 𝑟. Namely,

dim𝑥(𝑋𝑠) = dim(𝒪𝑋𝑠,𝑥) + trdeg𝜅(𝑠)(𝜅(𝑥)),
dim𝑥(𝑇𝑠) = dim(𝒪𝑇𝑠,𝑥) + trdeg𝜅(𝑠)(𝜅(𝑥)),

dim(𝒪𝑋𝑠,𝑥) = dim(𝒪𝑇𝑠,𝑥) + 𝑟

the first two equalities by Algebra, Lemma 7.107.3 and the second by 𝑟 times applying
Algebra, Lemma 7.57.11. As 𝑇 ⊂ 𝑍 we see that 𝑓𝑖 = ∑ 𝑏𝑖𝑗𝑔𝑗. But the ideals of 𝑍 and
𝑇 cut out the same quasi-regular closed subscheme of 𝑋𝑠 in a neighbourhood of 𝑥. Hence
the matrix (𝑏𝑖𝑗) mod 𝔪𝑥 is invertible (some details omitted). Hence (𝑏𝑖𝑗) is invertible in an
open neighbourhood of 𝑥. In other words, 𝑇 ∩ 𝑈 = 𝑍 after shrinking 𝑈.

The final statements of the lemma follow immediately from part (2), combined with the fact
that 𝑍 → 𝑆 is locally of finite presentation if and only if 𝑍 → 𝑋 is of finite presentation,
see Morphisms, Lemmas 24.20.3 and 24.20.11. �

The following lemma is an enhancement of Morphisms, Lemma 24.33.20.

Lemma 26.14.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a smooth morphism of schemes. Let 𝜎 ∶ 𝑆 → 𝑋 be a
section of 𝑓. Then 𝜎 is a regular immersion.
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Proof. By Schemes, Lemma 21.21.11 the morphism 𝜎 is an immersion. After replacing
𝑋 by an open neighbourhood of 𝜎(𝑆) we may assume that 𝜎 is a closed immersion. Let
𝑇 = 𝜎(𝑆) be the corresponding closed subscheme of 𝑋. Since 𝑇 → 𝑆 is an isomorphism
it is flat and of finite presentation. Also a smooth morphism is flat and locally of finite
presentation, see Morphisms, Lemmas 24.33.9 and 24.33.8. Thus, according to Lemma
26.14.6, it suffices to show that 𝑇𝑠 ⊂ 𝑋𝑠 is a quasi-regular closed subscheme. This follows
immediately from Morphisms, Lemma 24.33.20 but we can also see it directly as follows.
Let 𝑘 be a field and let 𝐴 be a smooth 𝑘-algebra. Let 𝔪 ⊂ 𝐴 be a maximal ideal whose
residue field is 𝑘. Then 𝔪 is generated by a quasi-regular sequence, possibly after replacing
𝐴 by 𝐴𝑔 for some 𝑔 ∈ 𝐴, 𝑔∉𝔪. In Algebra, Lemma 7.129.3 we proved that 𝐴𝔪 is a regular
local ring, hence 𝔪𝐴𝔪 is generated by a regular sequence. This does indeed imply that 𝔪
is generated by a regular sequence (after replacing 𝐴 by 𝐴𝑔 for some 𝑔 ∈ 𝐴, 𝑔∉𝔪), see
Algebra, Lemma 7.65.8. �

The following lemma has a kind of converse, see Lemma 26.14.11.

Lemma 26.14.8. Let
𝑌

𝑗 ��

𝑖
// 𝑋

��
𝑆

be a commutative diagram of morphisms of schemes. Assume 𝑋 → 𝑆 smooth, and 𝑖, 𝑗
immersions. If 𝑗 is a regular (resp. Koszul-regular, 𝐻1-regular, quasi-regular) immersion,
then so is 𝑖.

Proof. We can write 𝑖 as the composition

𝑌 → 𝑌 ×𝑆 𝑋 → 𝑋

By Lemma 26.14.7 the first arrow is a regular immersion. The second arrow is a flat base
change of 𝑌 → 𝑆, hence is a regular (resp. Koszul-regular, 𝐻1-regular, quasi-regular) im-
mersion, see Lemma 26.13.4. We conclude by an application of Lemma 26.13.7. �

Lemma 26.14.9. Let
𝑌

��

𝑖
// 𝑋

��
𝑆

be a commutative diagram of morphisms of schemes. Assume that 𝑌 → 𝑆 is syntomic,
𝑋 → 𝑆 smooth, and 𝑖 an immersion. Then 𝑖 is a regular immersion.

Proof. After replacing 𝑋 by an open neighbourhood of 𝑖(𝑌) we may assume that 𝑖 is a
closed immersion. Let 𝑇 = 𝑖(𝑌) be the corresponding closed subscheme of 𝑋. Since 𝑇 ≅ 𝑌
the morphism 𝑇 → 𝑆 is flat and of finite presentation (Morphisms, Lemmas 24.30.6 and
24.30.7). Also a smooth morphism is flat and locally of finite presentation (Morphisms,
Lemmas 24.33.9 and 24.33.8). Thus, according to Lemma 26.14.6, it suffices to show
that 𝑇𝑠 ⊂ 𝑋𝑠 is a quasi-regular closed subscheme. As 𝑋𝑠 is locally of finite type over a
field, it is Noetherian (Morphisms, Lemma 24.14.6). Thus we can check that 𝑇𝑠 ⊂ 𝑋𝑠 is
a quasi-regular immersion at points, see Lemma 26.12.8. Take 𝑡 ∈ 𝑇𝑠. By Morphisms,
Lemma 24.30.9 the local ring 𝒪𝑇𝑠,𝑡 is a local complete intersection over 𝜅(𝑠). The local
ring 𝒪𝑋𝑠,𝑡 is regular, see Algebra, Lemma 7.129.3. By Algebra, Lemma 7.124.7 we see
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that the kernel of the surjection 𝒪𝑋𝑠,𝑡 → 𝒪𝑇𝑠,𝑡 is generated by a regular sequence, which is
what we had to show. �

Lemma 26.14.10. Let
𝑌

��

𝑖
// 𝑋

��
𝑆

be a commutative diagram of morphisms of schemes. Assume that 𝑌 → 𝑆 is smooth, 𝑋 → 𝑆
smooth, and 𝑖 an immersion. Then 𝑖 is a regular immersion.

Proof. This is a special case of Lemma 26.14.9 because a smooth morphism is syntomic,
see Morphisms, Lemma 24.33.7. �

Lemma 26.14.11. Let
𝑌

𝑗 ��

𝑖
// 𝑋

��
𝑆

be a commutative diagram of morphisms of schemes. Assume 𝑋 → 𝑆 smooth, and 𝑖, 𝑗
immersions. If 𝑖 is a Koszul-regular (resp. 𝐻1-regular, quasi-regular) immersion, then so
is 𝑗.

Proof. Let 𝑦 ∈ 𝑌 be any point. Set 𝑥 = 𝑖(𝑦) and set 𝑠 = 𝑗(𝑦). It suffices to prove the result
after replacing 𝑋, 𝑆 by open neighbourhoods 𝑈, 𝑉 of 𝑥, 𝑠 and 𝑌 by an open neighbourhood
of 𝑦 in 𝑖−1(𝑈) ∩ 𝑗−1(𝑉). Hence we may assume that 𝑌, 𝑋 and 𝑆 are affine. In this case
we can choose a closed immersion ℎ ∶ 𝑋 → 𝐀𝑛

𝑆 over 𝑆 for some 𝑛. Note that ℎ is a
regular immersion by Lemma 26.14.10. Hence ℎ ∘ 𝑖 is a Koszul-regular (resp. 𝐻1-regular,
quasi-regular) immersion, see Lemmas 26.13.7 and 26.13.2. In this way we reduce to the
case 𝑋 = 𝐀𝑛

𝑆 and 𝑆 affine.

After replacing 𝑆 by an affine open 𝑉 and replacing 𝑌 by 𝑗−1(𝑉) we may assume that 𝑖
is a closed immersion and 𝑆 affine. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). Then 𝑗 ∶ 𝑌 → 𝑆 defines an
isomorphism of 𝑌 to the closed subscheme 𝑆𝑝𝑒𝑐(𝐴/𝐼) for some ideal 𝐼 ⊂ 𝐴. The map 𝑖 ∶
𝑌 = 𝑆𝑝𝑒𝑐(𝐴/𝐼) → 𝐀𝑛

𝑆 = 𝑆𝑝𝑒𝑐(𝐴[𝑥1, … , 𝑥𝑛]) corresponds to an 𝐴-algebra homomorphism
𝑖♯ ∶ 𝐴[𝑥1, … , 𝑥𝑛] → 𝐴/𝐼. Choose 𝑎𝑖 ∈ 𝐴 which map to 𝑖♯(𝑥𝑖) in 𝐴/𝐼. Observe that the
ideal of the closed immersion 𝑖 is

𝐽 = (𝑥1 − 𝑎1, … , 𝑥𝑛 − 𝑎𝑛) + 𝐼𝐴[𝑥1, … , 𝑥𝑛].

Set 𝐾 = (𝑥1 − 𝑎1, … , 𝑥𝑛 − 𝑎𝑛). We claim the sequence

0 → 𝐾/𝐾𝐽 → 𝐽/𝐽2 → 𝐽/(𝐾 + 𝐽2) → 0

is split exact. To see this note that𝐾/𝐾2 is freewith basis 𝑥𝑖−𝑎𝑖 over the ring𝐴[𝑥1, … , 𝑥𝑛]/𝐾 ≅
𝐴. Hence 𝐾/𝐾𝐽 is free with the same basis over the ring 𝐴[𝑥1, … , 𝑥𝑛]/𝐽 ≅ 𝐴/𝐼. On the
other hand, taking derivatives gives a map

d𝐴[𝑥1,…,𝑥𝑛]/𝐴 ∶ 𝐽/𝐽2 ⟶ Ω𝐴[𝑥1,…,𝑥𝑛]/𝐴 ⊗𝐴[𝑥1,…,𝑥𝑛] 𝐴[𝑥1, … , 𝑥𝑛]/𝐽

which maps the generators 𝑥𝑖 − 𝑎𝑖 to the basis elements d𝑥𝑖 of the free module on the
right. The claim follows. Moreover, note that 𝑥1 − 𝑎1, … , 𝑥𝑛 − 𝑎𝑛 is a regular sequence in
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𝐴[𝑥1, … , 𝑥𝑛] with quotient ring 𝐴[𝑥1, … , 𝑥𝑛]/(𝑥1 − 𝑎1, … , 𝑥𝑛 − 𝑎𝑛) ≅ 𝐴. Thus we have a
factorization

𝑌 → 𝑉(𝑥1 − 𝑎1, … , 𝑥𝑛 − 𝑎𝑛) → 𝐀𝑛
𝑆

of our closed immersion 𝑖where the composition is Koszul-regular (resp.𝐻1-regular, quasi-
regular), the second arrow is a regular immersion, and the associated conormal sequence is
split. Now the result follows from Lemma 26.13.8. �

26.15. Meromorphic functions and sections

See [Kle79] for some possible pitfalls1.

Let (𝑋, 𝒪𝑋) be a locally ringed space. For any open 𝑈 ⊂ 𝑋 we have defined the set 𝒮(𝑈) ⊂
𝒪𝑋(𝑈) of regular sections of 𝒪𝑋 over 𝑈, see Definition 26.9.13. The restriction of a regular
section to a smaller open is regular. Hence 𝒮 ∶ 𝑈 ↦ 𝒮(𝑈) is a subsheaf (of sets) of 𝒪𝑋. We
sometimes denote 𝒮 = 𝒮𝑋 if we want to indicate the dependence on 𝑋. Moreover, 𝒮(𝑈) is
a multiplicative subset of the ring 𝒪𝑋(𝑈) for each 𝑈. Hence we may consider the presheaf
of rings

𝑈 ⟼ 𝒮(𝑈)−1𝒪𝑋(𝑈),
see Modules, Lemma 15.22.1.

Definition 26.15.1. Let (𝑋, 𝒪𝑋) be a locally ringed space. The sheaf of meromorphic func-
tions on 𝑋 is the sheaf 𝒦𝑋 associated to the presheaf displayed above. A meromorphic
function on 𝑋 is a global section of 𝒦𝑋.

Since each element of each 𝒮(𝑈) is a nonzero divisor on 𝒪𝑋(𝑈) we see that the natural map
of sheaves of rings 𝒪𝑋 → 𝒦𝑋 is injective.

Example 26.15.2. Let 𝐴 = 𝐂[𝑥, {𝑦𝛼}𝛼∈𝐂]/((𝑥 − 𝛼)𝑦𝛼, 𝑦𝛼𝑦𝛽). Any element of 𝐴 can be
written uniquely as 𝑓(𝑥) + ∑ 𝜆𝛼𝑦𝛼 with 𝑓(𝑥) ∈ 𝐂[𝑥] and 𝜆𝛼 ∈ 𝐂. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝐴). In
this case 𝒪𝑋 = 𝒦𝑋, since on any affine open 𝐷(𝑓) the ring 𝐴𝑓 any nonzero divisor is a unit
(proof omitted).

Definition 26.15.3. Let 𝑓 ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of locally ringed spaces.
We say that pulbacks of meromorphic functions are defined for 𝑓 if for every pair of open
𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑌 such that 𝑓(𝑈) ⊂ 𝑉, and any section 𝑠 ∈ Γ(𝑉, 𝒮𝑌) the pullback 𝑓♯(𝑠) ∈
Γ(𝑈, 𝒪𝑋) is an element of Γ(𝑈, 𝒮𝑋).

In this case there is an induced map 𝑓♯ ∶ 𝑓−1𝒦𝑌 → 𝒦𝑋, in other words we obtain a
commutative diagram of morphisms of ringed spaces

(𝑋, 𝒦𝑋) //

𝑓
��

(𝑋, 𝒪𝑋)

𝑓
��

(𝑌, 𝒦𝑌) // (𝑌, 𝒪𝑋)

We sometimes denote 𝑓∗(𝑠) = 𝑓♯(𝑠) for a section 𝑠 ∈ Γ(𝑌, 𝒦𝑌).

Lemma 26.15.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. In each of the following cases
pullbacks of meromorphic sections are defined.

(1) 𝑋, 𝑌 are integral and 𝑓 is dominant,

1Danger, Will Robinson!
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(2) 𝑋 is integral and the generic point of 𝑋 maps to a generic point of an irreducible
component of 𝑌,

(3) 𝑋 is reduced and every generic point of every irreducible component of 𝑋 maps
to the generic point of an irreducible component of 𝑌,

(4) 𝑋 is locally Noetherian, and any associated point of 𝑋 maps to a generic point
of an irreducible component of 𝑌, and

(5) 𝑋 is locally Noetherian, has no embedded points and any generic point of an ir-
reducible component of 𝑋 maps to the generic point of an irreducible component
of 𝑌.

Proof. Omitted. Hint: Similar to the proof of Lemma 26.9.9, using the following fact (on
𝑌): if an element 𝑥 ∈ 𝑅 maps to a nonzero divisor in 𝑅𝔭 for a minimal prime 𝔭 of 𝑅, then
𝑥∉𝔭. See Algebra, Lemma 7.23.3. �

Let (𝑋, 𝒪𝑋) be a locally ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules. Consider the
presheaf 𝑈 ↦ 𝒮(𝑈)−1ℱ(𝑈). Its sheafification is the sheaf ℱ⊗𝒪𝑋

𝒦𝑋, seeModules, Lemma
15.22.2.

Definition 26.15.5. Let 𝑋 be a locally ringed space. Let ℱ be a sheaf of 𝒪𝑋-modules.
(1) We denote 𝒦𝑋(ℱ) the sheaf of 𝒦𝑋-modules which is the sheafification of the

presheaf 𝑈 ↦ 𝒮(𝑈)−1ℱ(𝑈). Equivalently 𝒦𝑋(ℱ) = ℱ ⊗𝒪𝑋
𝒦𝑋 (see above).

(2) A meromorphic section of ℱ is a global section of 𝒦𝑋(ℱ).

In particular we have
𝒦𝑋(ℱ)𝑥 = ℱ𝑥 ⊗𝒪𝑋,𝑥

𝒦𝑋,𝑥 = 𝒮−1
𝑥 ℱ𝑥

for any point 𝑥 ∈ 𝑋. However, one has to be careful since it may not be the case that 𝒮𝑥 is
the set of nonzero divisors in the local ring 𝒪𝑋,𝑥. Namely, there is always an injective map

𝒦𝑋,𝑥 ⟶ 𝑄(𝒪𝑋,𝑥)
to the total quotient ring. It is also surjective if and only if 𝒮𝑥 is the set of nonzero divisors
in 𝒪𝑋,𝑥.

Lemma 26.15.6. Let 𝑋 be a locally Noetherian scheme.
(1) For any 𝑥 ∈ 𝑋 we have 𝒮𝑥 ⊂ 𝒪𝑋,𝑥 is the set of nonzero divisors, and 𝒦𝑋,𝑥 is the

total quotient ring of 𝒪𝑋,𝑥.
(2) For any affine open 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 we have that 𝒦𝑋(𝑈) equals the total

quotient ring of 𝐴.

Proof. Let 𝐴 be a Noetherian ring. Let 𝔭 ⊂ 𝐴 be a prime ideal. Let 𝑓, 𝑔 ∈ 𝐴, 𝑔∉𝔭. Let
𝐼 = {𝑥 ∈ 𝐴 ∣ 𝑓𝑥 = 0}. Suppose 𝑓/𝑔 is a nonzero divisor in 𝐴𝔭. Then we see that 𝐼𝔭 = 0
by exactness of localization. Since 𝐴 is Noetherian we see that 𝐼 is finitely generated and
hence that 𝑔′𝐼 = 0 for some 𝑔′ ∈ 𝐴, 𝑔′∉𝔭. Hence 𝑓 is a nonzero divisor in 𝐴𝑔′, i.e., in a
Zariski open neighbourhood of 𝔭. This proves (1).
Let 𝑓 ∈ Γ(𝑋, 𝒦𝑋,𝑥) be a meromorphic function on 𝑋 = 𝑆𝑝𝑒𝑐(𝐴). Set 𝐼 = {𝑥 ∈ 𝐴 ∣ 𝑥𝑓 ∈
𝐴}. For every prime 𝔭 ⊂ 𝐴 we can write the image of 𝑓 in the stalk at 𝔭 as 𝑎/𝑏, 𝑎, 𝑏 ∈ 𝐴𝔭
with 𝑏 ∈ 𝐴𝔭 not a zero divisor. Hence, clearing denominators, we find there exists an
element 𝑥 ∈ 𝐼 such that 𝑥 maps to a nonzero divisor on 𝐴𝔭. Let Ass(𝐴) = {𝔮1, … , 𝔮𝑡}
be the associated primes of 𝐴. By looking at 𝐼𝐴𝔮𝑖

and using Algebra, Lemma 7.60.14
the above says that 𝐼⊄𝔮𝑖 for each 𝑖. By Algebra, Lemma 7.14.3 there exists an element
𝑥 ∈ 𝐼, 𝑥∉ ⋃ 𝔮𝑖. By Algebra, Lemma 7.60.9 we see that 𝑥 is not a zero divisor on 𝐴. Hence
𝑓 = (𝑥𝑓)/𝑥 is an element of the total ring of fractions of 𝐴. This proves (2). �
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Lemma 26.15.7. Let 𝑋 be a scheme. Assume 𝑋 is reduced and any quasi-compact open
𝑈 ⊂ 𝑋 has a finite number of irreducible components.

(1) The sheaf 𝒦𝑋 is a quasi-coherent sheaf of 𝒪𝑋-algebras.
(2) For any 𝑥 ∈ 𝑋 we have 𝒮𝑥 ⊂ 𝒪𝑋,𝑥 is the set of nonzero divisors. In particular

𝒦𝑋,𝑥 is the total quotient ring of 𝒪𝑋,𝑥.
(3) For any affine open 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 we have that 𝒦𝑋(𝑈) equals the total

quotient ring of 𝐴.

Proof. Let 𝑋 be as in the lemma. Let 𝑋(0) ⊂ 𝑋 be the set of generic points of irreducible
components of 𝑋. Let

𝑓 ∶ 𝑌 = ∐𝜂∈𝑋(0) 𝑆𝑝𝑒𝑐(𝜅(𝜂)) ⟶ 𝑋

be the inclusion of the generic points into 𝑋 using the canonical maps of Schemes, Section
21.13. (This morphism was used in Morphisms, Definition 24.46.12 to define the normal-
ization of 𝑋.) We claim that 𝒦𝑋 = 𝑓∗𝒪𝑌. First note that 𝒦𝑌 = 𝒪𝑌 as 𝑌 is a disjoint union
of spectra of field. Next, note that pullbacks of meromorphic functions are defined for 𝑓,
by Lemma 26.15.4. This gives a map

𝒦𝑋 ⟶ 𝑓∗𝒪𝑌.

Let 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 be an affine open. Then 𝐴 is a reduced ring with finitely many
minimal primes 𝔮1, … , 𝔮𝑡. Then we have 𝑄(𝐴) = ∏ 𝐴𝔮𝑖

= ∏ 𝜅(𝔮𝑖) by Algebra, Lemmas
7.22.2 and 7.23.3. In other words, already the value of the presheaf 𝑈 ↦ 𝒮(𝑈)−1𝒪𝑋(𝑈)
agrees with 𝑓∗𝒪𝑌(𝑈) on our affine open 𝑈. Hence the displayed map is an isomorphism.

Now we are ready to prove (1), (2) and (3). The morphism 𝑓 is quasi-compact by our
assumption that the set of irreducible components of 𝑋 is locally finite. Hence 𝑓 is quasi-
compact and quasi-separated (as 𝑌 is separated). By Schemes, Lemma 21.24.1 𝑓∗𝒪𝑌 is
quasi-coherent. This proves (1). Let 𝑥 ∈ 𝑋. Then

(𝑓∗𝒪𝑌)𝑥 = ∏𝜂∈𝑋(0), 𝑥∈{𝜂}
𝜅(𝜂)

On the other hand, 𝒪𝑋,𝑥 is reduced and has finitely minimal primes 𝔮𝑖 corresponding exactly
to those 𝜂 ∈ 𝑋(0) such that 𝑥 ∈ {𝜂}𝜅(𝜂). Hence by Algebra, Lemmas 7.22.2 and 7.23.3
again we see that 𝑄(𝒪𝑋,𝑥) = ∏ 𝜅(𝔮𝑖) is the same as (𝑓∗𝒪𝑌)𝑥. This proves (2). Part (3) we
saw during the course of the proof that 𝒦𝑋 = 𝑓∗𝒪𝑌. �

Lemma 26.15.8. Let 𝑋 be a scheme. Assume 𝑋 is reduced and any quasi-compact open
𝑈 ⊂ 𝑋 has a finite number of irreducible components. Then the normalization morphism
𝜈 ∶ 𝑋𝜈 → 𝑋 is the morphism

𝑆𝑝𝑒𝑐
𝑋

(𝒪′) ⟶ 𝑋

where 𝒪′ ⊂ 𝒦𝑋 is the integral closure of 𝒪𝑋 in the sheaf of meromorphic functions.

Proof. Compare the definition of the normalization morphism 𝜈 ∶ 𝑋𝜈 → 𝑋 (see Mor-
phisms, Definition 24.46.12) with the result 𝒦𝑋 = 𝑓∗𝒪𝑌 obtained in the proof of Lemma
26.15.7 above. �

Lemma 26.15.9. Let 𝑋 be an integral scheme with generic point 𝜂. We have
(1) the sheaf of meromorphic functions is isomorphic to the constant sheaf with value

the function field (see Morphisms, Definition 24.8.5) of 𝑋.
(2) for any quasi-coherent sheaf ℱ on 𝑋 the sheaf 𝒦𝑋(ℱ) is isomorphic to the con-

stant sheaf with value ℱ𝜂.
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Proof. Omitted. �

Definition 26.15.10. Let 𝑋 be a locally ringed space. Let ℒ be an invertible 𝒪𝑋-module.
A meromorphic section 𝑠 of ℒ is said to be regular if the induced map 𝒦𝑋 → 𝒦𝑋(ℒ) is
injective. (In other words, this means that 𝑠 is a regular section of the invertible 𝒦𝑋-module
𝒦𝑋(ℒ). See Definition 26.9.13.)

First we spell out when (regular) meromorphic sections can be pulled back. After that we
discuss the existence of regular meromorphic sections and consequences.

Lemma 26.15.11. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of locally ringed spaces. Assume that
pullbacks of meromorphic functions are defined for 𝑓 (see Definition 26.15.3).

(1) Letℱ be a sheaf of𝒪𝑌-modules. There is a canonical pullbackmap 𝑓∗ ∶ Γ(𝑌, 𝒦𝑌(ℱ)) →
Γ(𝑋, 𝒦𝑋(𝑓∗ℱ)) for meromorphic sections of ℱ.

(2) Let ℒ be an invertible 𝒪𝑋-module. A regular meromorphic section 𝑠 of ℒ pulls
back to a regular meromorphic section 𝑓∗𝑠 of 𝑓∗ℒ.

Proof. Omitted. �

In some cases we can show regular meromorphic sections exist.

Lemma 26.15.12. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. In each of the
following cases ℒ has a regular meromorphic section:

(1) 𝑋 is integral,
(2) 𝑋 is reduced and any quasi-compact open has a finite number of irreducible

components, and
(3) 𝑋 is locally Noetherian and has no embedded points.

Proof. In case (1) we have seen in Lemma 26.15.9 that 𝒦𝑋(ℒ) is a constant sheaf with
value ℒ𝜂, and hence the result is clear.

Suppose 𝑋 is a scheme. Let 𝐺 ⊂ 𝑋 be the set of generic points of irreducible components
of 𝑋. For each 𝜂 ∈ 𝐺 denote 𝑗𝜂 ∶ 𝜂 → 𝑋 the canonical morphism of 𝜂 = 𝑆𝑝𝑒𝑐(𝜅(𝜂)) into
𝑋 (see Schemes, Lemma 21.13.3). Consider the sheaf

𝒢𝑋(ℒ) = ∏𝜂∈𝐺
𝑗𝜂,∗(ℒ𝜂).

There is a canonical map
𝜑 ∶ 𝒦𝑋(ℒ) ⟶ 𝒢𝑋(ℒ)

coming from the maps 𝒦𝑋(ℒ)𝜂 → ℒ𝜂 and adjunction (see Sheaves, Lemma 6.27.3).

We claim that in cases (2) and (3) the map 𝜑 is an isomorphism for any invertible sheaf
ℒ. Before proving this let us show that cases (2) and (3) follow from this. Namely, we can
choose 𝑠𝜂 ∈ ℒ𝜂 which generate ℒ𝜂, i.e., such that ℒ𝜂 = 𝒪𝑋,𝜂𝑠𝜂. Since the claim applied
to 𝒪𝑋 gives 𝒦𝑋 = 𝒢𝑋(𝒪𝑋) it is clear that the global section 𝑠 = ∏𝜂∈𝐺 𝑠𝜂 is regular as
desired.

To prove that 𝜑 is an isomorphism we may work locally on 𝑋. For example it suffices to
show that sections of 𝒦𝑋(ℒ) and 𝒢𝑋(ℒ) agree over small affine opens 𝑈. Say 𝑈 = 𝑆𝑝𝑒𝑐(𝐴)
and ℒ|𝑈 ≅ 𝒪𝑈. By Lemmas 26.15.6 and 26.15.7 we see that Γ(𝑈, 𝒦𝑋) = 𝑄(𝐴) is the total
ring of fractions of 𝐴. On the other hand, Γ(𝑈, 𝒢𝑋(𝒪𝑋)) = ∏𝔮⊂𝐴 minimal 𝐴𝔮. In both cases
we see that the set of minimal primes of 𝐴 is finite, say 𝔮1, … , 𝔮𝑡, and that the set of zero
divisors of 𝐴 is equal to 𝔮1 ∪… ∪ 𝔮𝑡 (see Algebra, Lemma 7.60.9). Hence the result follows
from Algebra, Lemma 7.22.2. �
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Lemma 26.15.13. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠 be a
regular meromorphic section of ℒ. Let us denote ℐ ⊂ 𝒪𝑋 the sheaf of ideals defined by
the rule

ℐ(𝑉) = {𝑓 ∈ 𝒪𝑍(𝑉) ∣ 𝑓𝑠 ∈ ℒ(𝑉)}.
The formula makes sense since ℒ(𝑉) ⊂ 𝒦𝑋(ℒ)(𝑉). Then ℐ is a quasi-coherent sheaf of
ideals and we have injective maps

1 ∶ ℐ ⟶ 𝒪𝑋, 𝑠 ∶ ℐ ⟶ ℒ
whose cokernels are supported on closed nowhere dense subsets of 𝑋.

Proof. The question is local on 𝑋. Hence we may assume that 𝑋 = 𝑆𝑝𝑒𝑐(𝐴), and ℒ = 𝒪𝑋.
After shrinking furhter we may assume that 𝑠 = 𝑥/𝑦 with 𝑎, 𝑏 ∈ 𝐴 both nonzero divisors in
𝐴. Set 𝐼 = {𝑥 ∈ 𝐴 ∣ 𝑥(𝑎/𝑏) ∈ 𝐴}.
To show that ℐ is quasi-coherent we have to show that 𝐼𝑓 = {𝑥 ∈ 𝐴𝑓 ∣ 𝑥(𝑎/𝑏) ∈ 𝐴𝑓} for
every 𝑓 ∈ 𝐴. If 𝑐/𝑓𝑛 ∈ 𝐴𝑓, (𝑐/𝑓𝑛)(𝑎/𝑏) ∈ 𝐴𝑓, then we see that 𝑓𝑚𝑐(𝑎/𝑏) ∈ 𝐴 for some 𝑚,
hence 𝑐/𝑓𝑛 ∈ 𝐼𝑓. Conversely it is easy to see that 𝐼𝑓 is contained in {𝑥 ∈ 𝐴𝑓 ∣ 𝑥(𝑎/𝑏) ∈ 𝐴𝑓}.
This proves quasi-coherence.
Let us prove the final statement. It is clear that (𝑏) ⊂ 𝐼. Hence 𝑉(𝐼) ⊂ 𝑉(𝑏) is a nowhere
dense subset as 𝑏 is a nonzero divisor. Thus the cokernel of 1 is supported in a nowhere
dense closed set. The same argument works for the cokerenel of 𝑠 since 𝑠(𝑏) = (𝑎) ⊂ 𝑠𝐼 ⊂
𝐴. �

Definition 26.15.14. Let 𝑋 be a scheme. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠 be a
regular meromorphic section of ℒ. The sheaf of ideals ℐ constructed in Lemma 26.15.13
is called the ideal sheaf of denominators of 𝑠.

Here is a lemma which will be used later.

Lemma 26.15.15. Suppose given
(1) 𝑋 a locally Noetherian scheme,
(2) ℒ an invertible 𝒪𝑋-module,
(3) 𝑠 a regular meromorphic section of ℒ, and
(4) ℱ coherent on 𝑋 without embedded associated points and Supp(ℱ) = 𝑋.

Let ℐ ⊂ 𝒪𝑋 be the ideal of denominators of 𝑠. Let 𝑇 ⊂ 𝑋 be the union of the supports
of 𝒪𝑋/ℐ and ℒ/𝑠(ℐ) which is a nowhere dense closed subset 𝑇 ⊂ 𝑋 according to Lemma
26.15.13. Then there are canonical injective maps

1 ∶ ℐℱ → ℱ, 𝑠 ∶ ℐℱ → ℱ ⊗𝒪𝑋
ℒ

whose cokernels are supported on 𝑇.

Proof. Reduce to the affine case with ℒ ≅ 𝒪𝑋, and 𝑠 = 𝑎/𝑏 with 𝑎, 𝑏 ∈ 𝐴 both nonzero
divisors. Proof of reduction step omitted. Write ℱ = 𝑀. Let 𝐼 = {𝑥 ∈ 𝐴 ∣ 𝑥(𝑎/𝑏) ∈ 𝐴}
so that ℐ = ̃𝐼 (see proof of Lemma 26.15.13). Note that 𝑇 = 𝑉(𝐼) ∪ 𝑉((𝑎/𝑏)𝐼). For any
𝐴-module 𝑀 consider the map 1 ∶ 𝐼𝑀 → 𝑀; this is the map that gives rise to the map 1 of
the lemma. Consider on the other hand the map 𝜎 ∶ 𝐼𝑀 → 𝑀𝑏, 𝑥 ↦ 𝑎𝑥/𝑏. Since 𝑏 is not a
zero divisor in 𝐴, and since 𝑀 has support 𝑆𝑝𝑒𝑐(𝐴) and no embedded primes we see that
𝑏 is a nonzero divisor on 𝑀 also. Hence 𝑀 ⊂ 𝑀𝑏. By definition of 𝐼 we have 𝜎(𝐼𝑀) ⊂ 𝑀
as submodules of 𝑀𝑏. Hence we get an 𝐴-module map 𝑠 ∶ 𝐼𝑀 → 𝑀 (namely the unique
map such that 𝑠(𝑧)/1 = 𝜎(𝑧) in 𝑀𝑏 for all 𝑧 ∈ 𝐼𝑀). It is injective because 𝑎 is a nonzero
divisor also (on both 𝐴 and 𝑀). It is clear that 𝑀/𝐼𝑀 is annihilated by 𝐼 and that 𝑀/𝑠(𝐼𝑀)
is annihilated by (𝑎/𝑏)𝐼. Thus the lemma follows. �
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CHAPTER 27

Limits of Schemes

27.1. Introduction

In this chapter we start proving some basic theorems of algebraic geometry. A basic refer-
ence is [DG67].

27.2. Directed limits of schemes with affine transition maps

In this section we construct the limit.

Lemma 27.2.1. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. If all the schemes 𝑆𝑖 are affine, then the limit 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 exists in the
category of schemes. In fact 𝑆 is affine and 𝑆 = 𝑆𝑝𝑒𝑐(𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖) with 𝑅𝑖 = Γ(𝑆𝑖, 𝒪).

Proof. Just define 𝑆 = 𝑆𝑝𝑒𝑐(𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖). It follows from Schemes, Lemma 21.6.4 that 𝑆 is
the limit even in the category of locally ringed spaces. �

Lemma 27.2.2. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. If all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine, then the limit 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖
exists in the category of schemes. Moreover,

(1) each of the morphisms 𝑓𝑖 ∶ 𝑆 → 𝑆𝑖 is affine,
(2) for any 𝑖 ∈ 𝐼 and any open subscheme 𝑈𝑖 ⊂ 𝑆𝑖 we have

𝑓−1
𝑖 (𝑈𝑖) = 𝑙𝑖𝑚𝑖′≥𝑖 𝑓−1

𝑖′𝑖 (𝑈𝑖).

Proof. Choose 𝑖0 ∈ 𝐼. Note that 𝐼 is nonempty as the limit is directed. For conve-
nience write 𝑆0 = 𝑆𝑖0 and 𝑖0 = 0. For every 𝑖 ≥ 0 consider the quasi-coherent sheaf of
𝒪𝑆0

-algebras 𝒜𝑖 = 𝑓𝑖0,∗𝒪𝑆𝑖
. Recall that 𝑆𝑖 = 𝑆𝑝𝑒𝑐

𝑆0
(𝒜), see Morphisms, Lemma 24.11.3.

Set 𝒜 = 𝑐𝑜𝑙𝑖𝑚𝑖≥0 𝒜𝑖. This is a quasi-coherent sheaf of 𝒪𝑆0
-algebras, see Schemes, Section

21.24. Set 𝑆 = 𝑆𝑝𝑒𝑐
𝑆0

(𝒜). By Morphisms, Lemma 24.11.5 we get for 𝑖 ≥ 0 morphisms
𝑓𝑖 ∶ 𝑆 → 𝑆𝑖 compatible with the transition morphisms. Note that the morphisms 𝑓𝑖 are
affine by Morphisms, Lemma 24.11.11 for example. By Lemma 27.2.1 above we see that
for any affine open 𝑈0 ⊂ 𝑆0 the inverse image 𝑈 = 𝑓−1

0 (𝑈0) ⊂ 𝑆 is the limit of the system
of opens 𝑈𝑖 = 𝑓−1

𝑖 (𝑈0), 𝑖 ≥ 0 in the category of schemes.

Let 𝑇 be a scheme. Let 𝑔𝑖 ∶ 𝑇 → 𝑆𝑖 be a compatible system of morphisms. To show that
𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 we have to prove there is a unique morphism 𝑔 ∶ 𝑇 → 𝑆 with 𝑔𝑖 = 𝑓𝑖 ∘ 𝑔
for all 𝑖 ∈ 𝐼. For every 𝑡 ∈ 𝑇 there exists an affine open 𝑈0 ⊂ 𝑆0 containing 𝑔0(𝑡). Let
𝑉 ⊂ 𝑔−1

0 (𝑈0) be an affine open neighbourhood containing 𝑡. By the remarks abovewe obtain
a unique morphism 𝑔𝑉 ∶ 𝑉 → 𝑈 = 𝑓−1

0 (𝑈0) such that 𝑓𝑖 ∘ 𝑔𝑉 = 𝑔𝑖|𝑈𝑖
for all 𝑖. The open

sets 𝑉 ⊂ 𝑇 so constructed form a basis for the topology of 𝑇. The morphisms 𝑔𝑉 glue to a
morphism 𝑔 ∶ 𝑇 → 𝑆 because of the uniqueness property. This gives the desired morphism
𝑔 ∶ 𝑇 → 𝑆. �
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Lemma 27.2.3. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine, Let 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖.

(1) We have 𝑆𝑠𝑒𝑡 = 𝑙𝑖𝑚𝑖 𝑆𝑖,𝑠𝑒𝑡 where 𝑆𝑠𝑒𝑡 indicates the underlying set of the scheme
𝑆.

(2) If 𝑠, 𝑠′ ∈ 𝑆 and 𝑠′ is not a specialization of 𝑠 then for some 𝑖 ∈ 𝐼 the image
𝑠′

𝑖 ∈ 𝑆𝑖 of 𝑠′ is not a specialization of the image 𝑠𝑖 ∈ 𝑆𝑖 of 𝑠.
(3) Add more easy facts on topology of 𝑆 here. (Requirement: whatever is added

should be easy in the affine case.)

Proof. Proof of (1). Pick 𝑖 ∈ 𝐼. Take 𝑈𝑖 ⊂ 𝑆𝑖 an affine open. Denote 𝑈𝑖′ = 𝑓−1
𝑖′𝑖 (𝑈𝑖) and

𝑈 = 𝑓−1
𝑖 (𝑈𝑖). Suppose we can show that 𝑈𝑠𝑒𝑡 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑈𝑖′,𝑠𝑒𝑡. Then assertion (1) follows

by a simple argument using an affine covering of 𝑆𝑖. Hence we may assume all 𝑆𝑖 and 𝑆
affine. This reduces us to the following algebra question: Suppose given a system of rings
(𝐴𝑖, 𝜑𝑖𝑖′) over 𝐼. Set 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 with canonical maps 𝜑𝑖 ∶ 𝐴𝑖 → 𝐴. Then

𝑆𝑝𝑒𝑐(𝐴) = 𝑙𝑖𝑚𝑖 𝑆𝑝𝑒𝑐(𝐴𝑖)

Namely, suppose that we are given primes 𝔭𝑖 ⊂ 𝐴𝑖 such that 𝔭𝑖 = 𝜑−1
𝑖𝑖′ (𝔭𝑖′) for all 𝑖′ ≥ 𝑖.

Then we simply set

𝔭 = {𝑥 ∈ 𝐴 ∣ ∃𝑖, 𝑥𝑖 ∈ 𝔭𝑖 with 𝜑(𝑥𝑖) = 𝑥}

It is clear that this is an ideal and has the property that 𝜑−1
𝑖 (𝔭) = 𝔭𝑖. Then it follows easily

that it is a prime ideal as well. This proves (1).

Proof of (2). Pick 𝑖 ∈ 𝐼. Pick an affine open 𝑈𝑖 ⊂ 𝑆𝑖 containing 𝑓𝑖(𝑠′). If 𝑓𝑖(𝑠)∉𝑆𝑖 then
we are done. Hence reduce to the affine case by considering the inverse images of 𝑈𝑖 as
above. This reduces us to the following algebra question: Suppose given a system of rings
(𝐴𝑖, 𝜑𝑖𝑖′) over 𝐼. Set 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 with canonical maps 𝜑𝑖 ∶ 𝐴𝑖 → 𝐴. Suppose given
primes 𝔭, 𝔭′ of 𝐴. Suppose that 𝔭⊄𝔭′. Then for some 𝑖 we have 𝜑−1

𝑖 (𝔭)⊄𝜑−1
𝑖 (𝔭′). This is

clear. �

Lemma 27.2.4. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine, Let 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖.
Let 𝑖 ∈ 𝐼. Suppose that 𝑋𝑖 is a scheme over 𝑆𝑖. Set 𝑋𝑗 = 𝑆𝑗 ×𝑆𝑖

𝑋𝑖 for 𝑗 ≥ 𝑖 and set
𝑋 = 𝑆 ×𝑆𝑖

𝑋𝑖. Then
𝑋 = 𝑐𝑜𝑙𝑖𝑚𝑗≥𝑖 𝑋𝑗

Proof. The transition morphisms of the system {𝑋𝑗}𝑗≥𝑖 are affine as they are base changes
of the affine morphisms between the 𝑆𝑗, see Morphisms, Lemma 24.11.8. Hence we know
the limit of the system {𝑋𝑗}𝑗≥𝑖 exists. There is a canonical morphism 𝑋 → 𝑙𝑖𝑚 𝑋𝑗. To
see that it is an isomorphism we may work locally. Hence we may assume that 𝑋𝑖 =
𝑆𝑝𝑒𝑐(𝐵𝑖) is an affine such that the morphism 𝑋𝑖 → 𝑆𝑖 has image contained in an affine
open subscheme 𝑈 of 𝑆𝑖. In this case we may also replace each 𝑆𝑗 by the inverse image
of 𝑈 in 𝑆𝑗, in other words we may assume all the 𝑆𝑗 = 𝑆𝑝𝑒𝑐(𝐴𝑗) are affine. Then we have
𝑋𝑗 = 𝑆𝑝𝑒𝑐(𝐴𝑗 ⊗𝐴𝑖

𝐵𝑖). In this case the statement becomes the equality

𝑐𝑜𝑙𝑖𝑚𝑗≥𝑖(𝐴𝑗 ⊗𝐴𝑖
𝐵𝑖) = (𝑐𝑜𝑙𝑖𝑚𝑗≥𝑖 𝐴𝑗) ⊗𝐴𝑖

𝐵𝑖

which follows from Algebra, Lemma 7.11.8. �

Lemma 27.2.5. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume

(1) all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine,
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(2) all the schemes 𝑆𝑖 are quasi-compact and quasi-separated.
Let 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖. Let 𝑖 ∈ 𝐼. Suppose that ℱ𝑖 is a quasi-coherent sheaf on 𝑆𝑖. Set ℱ𝑗 = 𝑓∗

𝑗𝑖ℱ𝑖
for 𝑗 ≥ 𝑖 and set ℱ = 𝑓∗

𝑖 ℱ𝑖. Then

Γ(𝑆, ℱ) = 𝑐𝑜𝑙𝑖𝑚𝑗≥𝑖 Γ(𝑆𝑗, ℱ𝑗)

Proof. Write 𝒜𝑗 = 𝑓𝑗𝑖,∗𝒪𝑆𝑗
. This is a quasi-coherent sheaf of 𝒪𝑆𝑖

-algebras (see Mor-
phisms, Lemma 24.11.5) and 𝑆𝑗 is the relative spectrum of 𝒜𝑗 over 𝑆𝑖. In the proof of
Lemma 27.2.2 we constructed 𝑆 as the relative spectrum of 𝒜 = 𝑐𝑜𝑙𝑖𝑚𝑗≥𝑖 𝒜𝑗 over 𝑆𝑖. Set

ℳ𝑗 = ℱ𝑖 ⊗𝒪𝑆𝑖
𝒜𝑗

and
ℳ = ℱ𝑖 ⊗𝒪𝑆𝑖

𝒜.

Then we have 𝑓𝑗𝑖,∗ℱ𝑗 = ℳ𝑗 and 𝑓𝑖,∗ℱ = ℳ. Since 𝒜 is the colimit of the sheaves 𝒜𝑗 and
since tensor product commutes with directed colimits, we conclude that ℳ = 𝑐𝑜𝑙𝑖𝑚𝑗≥𝑖 ℳ𝑗.
Since 𝑆𝑖 is quasi-compact and quasi-separated we see that

Γ(𝑆, ℱ) = Γ(𝑆𝑖, ℳ)
= Γ(𝑆𝑖, 𝑐𝑜𝑙𝑖𝑚𝑗≥𝑖 ℳ𝑗)
= 𝑐𝑜𝑙𝑖𝑚𝑗≥𝑖 Γ(𝑆𝑖, ℳ𝑗)
= 𝑐𝑜𝑙𝑖𝑚𝑗≥𝑖 Γ(𝑆𝑗, ℱ𝑗)

see Sheaves, Lemma 6.29.1 and Topology, Lemma 5.18.2 for the middle equality. �

27.3. Absolute Noetherian Approximation

A nice reference for this section is Appendix C of the article by Thomason and Trobaugh
[TT90]. See Categories, Section 4.19 for our conventions regarding directed systems. We
will use the existence result and properties of the limit from Section 27.2 without further
mention.

Lemma 27.3.1. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume

(1) all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine,
(2) all the schemes 𝑆𝑖 are quasi-compact, and
(3) all the schemes 𝑆𝑖 are nonempty.

Then the limit 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 is nonempty.

Proof. Choose 𝑖0 ∈ 𝐼. Note that 𝐼 is nonempty as the limit is directed. For convenience
write 𝑆0 = 𝑆𝑖0 and 𝑖0 = 0. Choose an affine open covering 𝑆0 = ⋃𝑗=1,…,𝑚 𝑈𝑗. Since
𝐼 is directed there exists a 𝑗 ∈ {1, … , 𝑚} such that 𝑓−1

𝑖0 (𝑈𝑗)≠∅ for all 𝑖 ≥ 0. Hence
𝑙𝑖𝑚𝑖≥0 𝑓−1

𝑖0 (𝑈𝑗) is not empty since a directed colimit of nonzero rings is nonzero (because
1≠0). As 𝑙𝑖𝑚𝑖≥0 𝑓−1

𝑖0 (𝑈𝑗) is an open subscheme of the limit we win. �

Lemma 27.3.2. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume

(1) all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine, and
(2) all the schemes 𝑆𝑖 are quasi-compact.

Let 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖. Suppose for each 𝑖 we are given a nonempty closed subset 𝑍𝑖 ⊂ 𝑆𝑖 with
𝑓𝑖𝑖′(𝑍𝑖) ⊂ 𝑍𝑖′. Then there exists a point 𝑠 ∈ 𝑆 with 𝑓𝑖(𝑠) ∈ 𝑍𝑖 for all 𝑖.
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Proof. Let𝑍𝑖 ⊂ 𝑆𝑖 also denote the reduced closed subscheme associated to𝑍𝑖, see Schemes,
Definition 21.12.5. A closed immersion is affine, and a composition of affine morphisms
is affine (see Morphisms, Lemmas 24.11.9 and 24.11.7), and hence 𝑍𝑖 → 𝑆𝑖′ is affine
when 𝑖 ≥ 𝑖′. We conclude that the morphism 𝑓𝑖𝑖′ ∶ 𝑍𝑖 → 𝑍𝑖′ is affine by Morphisms,
Lemma 24.11.11. Each of the schemes 𝑍𝑖 is quasi-compact as a closed subscheme of a
quasi-compact scheme. Hence we may apply Lemma 27.3.1 to see that 𝑍 = 𝑙𝑖𝑚𝑖 𝑍𝑖 is
nonempty. Since there is a canonical morphism 𝑍 → 𝑆 we win. �

Lemma 27.3.3. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine. Let 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖.
Suppose we are given an 𝑖 and a morphism 𝑇 → 𝑆𝑖 such that

(1) 𝑇 ×𝑆𝑖
𝑆 = ∅, and

(2) 𝑇 is quasi-compact.
Then 𝑇 ×𝑆𝑖

𝑆𝑖′ = ∅ for all sufficiently large 𝑖′.

Proof. By Lemma 27.2.4 we see that 𝑇 ×𝑆𝑖
𝑆 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑇 ×𝑆𝑖

𝑆𝑖′. Hence the result follows
from Lemma 27.3.1. �

Lemma 27.3.4. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine, and all the schemes
𝑆𝑖 are quasi-compact. Let 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 with projection morphisms 𝑓𝑖 ∶ 𝑆 → 𝑆𝑖. Suppose
we are given an 𝑖 and a locally constructible subset 𝐸 ⊂ 𝑆𝑖 such that 𝑓𝑖(𝑆) ⊂ 𝐸. Then
𝑓𝑖𝑖′(𝑆𝑖′) ⊂ 𝐸 for all sufficiently large 𝑖′.

Proof. Writing 𝑆𝑖 as a finite union of open affine subschemes reduces the question to the
case that 𝑆𝑖 is affine and 𝐸 is constructible, see Lemma 27.2.2 and Properties, Lemma
23.2.1. In this case the complement 𝑆𝑖 ⧵ 𝐸 is contstructible too. Hence there exists an
affine scheme 𝑇 and a morphism 𝑇 → 𝑆𝑖 whose image is 𝑆𝑖 ⧵ 𝐸, see Algebra, Lemma
7.26.3. By Lemma 27.3.3 we see that 𝑇 ×𝑆𝑖

𝑆𝑖′ is empty for all sufficiently large 𝑖′, and
hence 𝑓𝑖𝑖′(𝑆𝑖′) ⊂ 𝐸 for all sufficiently large 𝑖′. �

Lemma 27.3.5. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume

(1) all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine,
(2) all the schemes 𝑆𝑖 are quasi-compact and quasi-separated.

Then we have the following:
(1) Given any quasi-compact open 𝑉 ⊂ 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 there exists an 𝑖 ∈ 𝐼 and a

quasi-compact open 𝑉𝑖 ⊂ 𝑆𝑖 such that 𝑓−1
𝑖 (𝑉𝑖) = 𝑉.

(2) Given 𝑉𝑖 ⊂ 𝑆𝑖 and 𝑉𝑖′ ⊂ 𝑆𝑖′ quasi-compact opens such that 𝑓−1
𝑖 (𝑉𝑖) = 𝑓−1

𝑖′ (𝑉𝑖′)
there exists an index 𝑖″ ≥ 𝑖, 𝑖′ such that 𝑓−1

𝑖″𝑖(𝑉𝑖) = 𝑓−1
𝑖″𝑖′(𝑉𝑖′).

(3) If 𝑉1,𝑖, … , 𝑉𝑛,𝑖 ⊂ 𝑆𝑖 are quasi-compact opens and 𝑆 = 𝑓−1
𝑖 (𝑉1,𝑖) ∪ … ∪ 𝑓−1

𝑖 (𝑉𝑛,𝑖)
then 𝑆𝑖′ = 𝑓−1

𝑖′𝑖 (𝑉1,𝑖) ∪ … ∪ 𝑓−1
𝑖′𝑖 (𝑉𝑛,𝑖) for some 𝑖′ ≥ 𝑖.

Proof. Choose 𝑖0 ∈ 𝐼. Note that 𝐼 is nonempty as the limit is directed. For convenience
we write 𝑆0 = 𝑆𝑖0 and 𝑖0 = 0. Choose an affine open covering 𝑆0 = 𝑈1,0 ∪ … ∪ 𝑈𝑚,0.
Denote 𝑈𝑗,𝑖 ⊂ 𝑆𝑖 the inverse image of 𝑈𝑗,0 under the transition morphism for 𝑖 ≥ 0. Denote
𝑈𝑗 the inverse image of 𝑈𝑗,0 in 𝑆. Note that 𝑈𝑗 = 𝑙𝑖𝑚𝑖 𝑈𝑗,𝑖 is a limit of affine schemes.

We first prove the uniqueness statement: Let 𝑉𝑖 ⊂ 𝑆𝑖 and 𝑉𝑖′ ⊂ 𝑆𝑖′ quasi-compact opens
such that 𝑓−1

𝑖 (𝑉𝑖) = 𝑓−1
𝑖′ (𝑉𝑖′). It suffices to show that 𝑓−1

𝑖″𝑖(𝑉𝑖 ∩ 𝑈𝑗,𝑖″) and 𝑓−1
𝑖″𝑖′(𝑉𝑖′ ∩ 𝑈𝑗,𝑖″)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05F3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05F4
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01Z4


27.3. ABSOLUTE NOETHERIAN APPROXIMATION 1479

become equal for 𝑖″ large enough. Hence we reduce to the case of a limit of affine schemes.
In this case write 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑆𝑖 = 𝑆𝑝𝑒𝑐(𝑅𝑖) for all 𝑖 ∈ 𝐼. We may write 𝑉𝑖 =
𝑆𝑖⧵𝑉(ℎ1, … , ℎ𝑚) and 𝑉𝑖′ = 𝑆𝑖′⧵𝑉(𝑔1, … , 𝑔𝑛). The assumptionmeans that the ideals ∑ 𝑔𝑗𝑅
and ∑ ℎ𝑗𝑅 have the same radical in 𝑅. This means that 𝑔𝑁

𝑗 = ∑ 𝑎𝑗𝑗′ℎ𝑗′ and ℎ𝑁
𝑗 = ∑ 𝑏𝑗𝑗′𝑔𝑗′

for some 𝑁 ≫ 0 and 𝑎𝑗𝑗′ and 𝑏𝑗𝑗′ in 𝑅. Since 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖 we can chose an index 𝑖″ ≥ 𝑖
such that the equations 𝑔𝑁

𝑗 = ∑ 𝑎𝑗𝑗′ℎ𝑗′ and ℎ𝑁
𝑗 = ∑ 𝑏𝑗𝑗′𝑔𝑗′ hold in 𝑅𝑖″ for some 𝑎𝑗𝑗′ and

𝑏𝑗𝑗′ in 𝑅𝑖″. This implies that the ideals ∑ 𝑔𝑗𝑅𝑖″ and ∑ ℎ𝑗𝑅𝑖″ have the same radical in 𝑅𝑖″
as desired.

We prove existence. We may apply the uniqueness statement to the limit of schemes 𝑈𝑗1
∩

𝑈𝑗2
= 𝑙𝑖𝑚𝑖 𝑈𝑗1,𝑖 ∩ 𝑈𝑗2,𝑖 since these are still quasi-compact due to the fact that the 𝑆𝑖 were

assumed quasi-separated. Hence it is enough to prove existence in the affine case. In this
case write 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑆𝑖 = 𝑆𝑝𝑒𝑐(𝑅𝑖) for all 𝑖 ∈ 𝐼. Then 𝑉 = 𝑆 ⧵ 𝑉(𝑔1, … , 𝑔𝑛)
for some 𝑔1, … , 𝑔𝑛 ∈ 𝑅. Choose any 𝑖 large enough so that each of the 𝑔𝑗 comes from an
element 𝑔𝑗,𝑖 ∈ 𝑅𝑖 and take 𝑉𝑖 = 𝑆𝑖 ⧵ 𝑉(𝑔1,𝑖, … , 𝑔𝑛,𝑖).

The statement on coverings follows from the uniqueness statement for the opens 𝑉1,𝑖 ∪ … ∪
𝑉𝑛,𝑖 and 𝑆𝑖 of 𝑆𝑖. �

Lemma 27.3.6. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume

(1) all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine,
(2) all the schemes 𝑆𝑖 are quasi-compact and quasi-separated, and
(3) the limit 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 is quasi-affine.

Then for some 𝑖0 ∈ 𝐼 the schemes 𝑆𝑖 for 𝑖 ≥ 𝑖0 are quasi-affine.

Proof. Choose 𝑖0 ∈ 𝐼. Note that 𝐼 is nonempty as the limit is directed. For convenience
we write 𝑆0 = 𝑆𝑖0 and 𝑖0 = 0. Let 𝑠 ∈ 𝑆. We may choose an affine open 𝑈0 ⊂ 𝑆0
containing 𝑓0(𝑠). Since 𝑆 is quasi-affine we may choose an element 𝑎 ∈ Γ(𝑆, 𝒪𝑆) such
that 𝑠 ∈ 𝐷(𝑎) ⊂ 𝑓−1

0 (𝑈0), and such that 𝐷(𝑎) is affine. By Lemma 27.2.5 there exists an
𝑖 ≥ 0 such that 𝑎 comes from an element 𝑎𝑖 ∈ Γ(𝑆𝑖, 𝒪𝑆𝑖

). For any index 𝑗 ≥ 𝑖 we denote
𝑎𝑗 the image of 𝑎𝑖 in the global sections of the structure sheaf of 𝑆𝑗. Consider the opens
𝐷(𝑎𝑗) ⊂ 𝑆𝑗 and 𝑈𝑗 = 𝑓−1

𝑗0 (𝑈0). Note that 𝑈𝑗 is affine and 𝐷(𝑎𝑗) is a quasi-compact open
of 𝑆𝑗, see Properties, Lemma 23.23.4 for example. Hence we may apply Lemma 27.3.5 to
the opens 𝑈𝑗 and 𝑈𝑗 ∪ 𝐷(𝑎𝑗) to conclude that 𝐷(𝑎𝑗) ⊂ 𝑈𝑗 for some 𝑗 ≥ 𝑖. For such an index
𝑗 we see that 𝐷(𝑎𝑗) ⊂ 𝑆𝑗 is an affine open (because 𝐷(𝑎𝑗) is a standard affine open of the
affine open 𝑈𝑗) containing the image 𝑓𝑗(𝑠).

We conclude that for every 𝑠 ∈ 𝑆 there exist an index 𝑖 ∈ 𝐼, and a global section 𝑎 ∈
Γ(𝑆𝑖, 𝒪𝑆𝑖

) such that 𝐷(𝑎) ⊂ 𝑆𝑖 is an affine open containing 𝑓𝑖(𝑠). Because 𝑆 is quasi-
compact we may choose a single index 𝑖 ∈ 𝐼 and global sections 𝑎1, … , 𝑎𝑚 ∈ Γ(𝑆𝑖, 𝒪𝑆𝑖

)
such that each 𝐷(𝑎𝑗) ⊂ 𝑆𝑖 is affine open and such that 𝑓𝑖 ∶ 𝑆 → 𝑆𝑖 has image contained
in the union 𝑊𝑖 = ⋃𝑗=1,…,𝑚 𝐷(𝑎𝑗). For 𝑖′ ≥ 𝑖 set 𝑊𝑖′ = 𝑓−1

𝑖′𝑖 (𝑊𝑖). Since 𝑓−1
𝑖 (𝑊𝑖) is all of

𝑆 we see (by Lemma 27.3.5 again) that for a suitable 𝑖′ ≥ 𝑖 we have 𝑆𝑖′ = 𝑊𝑖′. Thus we
may replace 𝑖 by 𝑖′ and assume that 𝑆𝑖 = ⋃𝑗=1,…,𝑚 𝐷(𝑎𝑗). This implies that 𝒪𝑆𝑖

is an ample
invertible sheaf on 𝑆𝑖 (see Properties, Definition 23.23.1) and hence that 𝑆𝑖 is quasi-affine,
see Properties, Lemma 23.24.1. Hence we win. �

Lemma 27.3.7. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume
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(1) all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine,
(2) all the schemes 𝑆𝑖 are quasi-compact and quasi-separated, and
(3) the limit 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 is affine.

Then for some 𝑖0 ∈ 𝐼 the schemes 𝑆𝑖 for 𝑖 ≥ 𝑖0 are affine.

Proof. ByLemma 27.3.6wemay assume that𝑆𝑖 is quasi-affine for all 𝑖. Set𝑅𝑖 = Γ(𝑆𝑖, 𝒪𝑆𝑖
).

Then 𝑆𝑖 is a quasi-compact open of 𝑆𝑖 ∶= 𝑆𝑝𝑒𝑐(𝑅𝑖). Write 𝑆 = 𝑆𝑝𝑒𝑐(𝑅). We have
𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖 by Lemma 27.2.5. Hence also 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖. Let 𝑍𝑖 ⊂ 𝑆𝑖 be the closed
subset such that 𝑆𝑖 = 𝑍𝑖 ∐ 𝑆𝑖. We have to show that 𝑍𝑖 is empty for some 𝑖. Assume 𝑍𝑖 is
nonempty for all 𝑖 to get a contradiction. By Lemma 27.3.2 there exists a point 𝑠 of 𝑆 which
maps to a point of 𝑍𝑖 for every 𝑖. But 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖, and hence we get a contradiction. �

Lemma 27.3.8. Let 𝑊 be a quasi-affine scheme of finite type over 𝐙. Suppose 𝑊 →
𝑆𝑝𝑒𝑐(𝑅) is an open immersion into an affine scheme. There exists a finite type 𝐙-algebra
𝐴 ⊂ 𝑅 which induces an open immersion 𝑊 → 𝑆𝑝𝑒𝑐(𝐴). Moreover, 𝑅 is the directed
colimit of such subalgebras.

Proof. Choose an affine open covering 𝑊 = ⋃𝑖=1,…,𝑛 𝑊𝑖 such that each 𝑊𝑖 is a standard
affine open in 𝑆𝑝𝑒𝑐(𝑅). In other words, if we write 𝑊𝑖 = 𝑆𝑝𝑒𝑐(𝑅𝑖) then 𝑅𝑖 = 𝑅𝑓𝑖

for some
𝑓𝑖 ∈ 𝑅. Choose finitely many 𝑥𝑖𝑗 ∈ 𝑅𝑖 which generate 𝑅𝑖 over 𝐙. Pick an 𝑁 ≫ 0 such
that each 𝑓𝑁

𝑖 𝑥𝑖𝑗 comes from an element of 𝑅, say 𝑦𝑖𝑗 ∈ 𝑅. Set 𝐴 equal to the 𝐙-algebra
generated by the 𝑓𝑖 and the 𝑦𝑖𝑗 and (optionally) finitely many additional elements of 𝑅.
Then 𝐴 works. Details omitted. �

Lemma 27.3.9. Suppose given a cartesian diagram of rings

𝐵 𝑠
// 𝑅

𝐵′

OO

// 𝑅′

𝑡

OO

Suppose ℎ ∈ 𝐵′ corresponds to 𝑔 ∈ 𝐵 and 𝑓 ∈ 𝑅′ such that 𝑠(𝑔) = 𝑡(𝑓). Then the diagram

𝐵𝑔 𝑠
// 𝑅𝑠(𝑔) = 𝑅𝑡(𝑓)

(𝐵′)ℎ

OO

// (𝑅′)𝑓

𝑡

OO

is cartesian too.

Proof. Note that 𝐵′ = {(𝑏, 𝑟′) ∈ 𝐵 × 𝑅′ ∣ 𝑠(𝑏) = 𝑡(𝑟′)}. So ℎ = (𝑔, 𝑓) ∈ 𝐵′. First we
show that (𝐵′)ℎ maps injectively into 𝐵𝑔 × (𝑅′)𝑓. Namely, suppose that (𝑥, 𝑦)/ℎ𝑛 maps to
zero. This means that (𝑔𝑁𝑥, 𝑓𝑁𝑦) is zero for some 𝑁. Which clearly implies that 𝑥/𝑔𝑛 and
𝑦/𝑓𝑛 are both zero. Next, suppose that 𝑥/𝑔𝑛 and 𝑦/𝑓𝑚 are elements which map to the same
element of 𝑅𝑠(𝑔). This means that 𝑠(𝑔)𝑁(𝑡(𝑓)𝑚𝑠(𝑥) − 𝑠(𝑔)𝑛𝑡(𝑦)) = 0 in 𝑅′ for some 𝑁 ≫ 0.
We can rewrite this as 𝑠(𝑔𝑚+𝑁𝑥) = 𝑡(𝑓𝑛+𝑁𝑦). Hence we see that the pair (𝑥/𝑔𝑛, 𝑦/𝑓𝑚) is the
image of the element (𝑔𝑚+𝑁𝑥, 𝑡(𝑓𝑛+𝑁𝑦)/(𝑔, 𝑓)𝑛+𝑚+𝑁 of (𝐵′)ℎ. �
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Lemma 27.3.10. Suppose given a cartesian diagram of rings

𝐵 𝑠
// 𝑅

𝐵′

OO

// 𝑅′

𝑡

OO

Let 𝑊′ ⊂ 𝑆𝑝𝑒𝑐(𝑅′) be an open of the form 𝑊′ = 𝐷(𝑓1)∪…∪𝐷(𝑓𝑛) such that 𝑡(𝑓𝑖) = 𝑠(𝑔𝑖)
for some 𝑔𝑖 ∈ 𝐵 and 𝐵𝑔𝑖

≅ 𝑅𝑠(𝑔𝑖). Then 𝐵′ → 𝑅′ induces an open immersion of 𝑊′ into
𝑆𝑝𝑒𝑐(𝐵′).

Proof. Set ℎ𝑖 = (𝑔𝑖, 𝑓𝑖) ∈ 𝐵′. Lemma 27.3.9 above shows that (𝐵′)ℎ𝑖
≅ (𝑅′)𝑓𝑖

as desired.
�

Proposition 27.3.11. Let 𝑆 be a quasi-compact and quasi-separated scheme. There exist a
directed partially ordered set 𝐼 and an inverse system of schemes (𝑆𝑖, 𝑓𝑖𝑖′) over 𝐼 such that

(1) the transition morphisms 𝑓𝑖𝑖′ are affine
(2) each 𝑆𝑖 is of finite type over 𝐙, and
(3) 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖.

Proof. Choose an affine open covering 𝑆 = ⋃𝑗=1,…,𝑚 𝑈𝑗 with 𝑚 minimal. We will prove
the lemma by induction on 𝑚. The lemma is obvious when 𝑚 = 1 since any ring is the
directed colimit of its finitely generated 𝐙-subalgebras.

Thus we may assume
(1) 𝑆 = 𝑈 ∪ 𝑉,
(2) 𝑈 affine open in 𝑆,
(3) 𝑉 quasi-compact open in 𝑆, and
(4) 𝑉 = 𝑙𝑖𝑚𝑖 𝑉𝑖 with (𝑉𝑖, 𝑓𝑖𝑖′) an inverse system over a directed set 𝐼, each 𝑓𝑖𝑖′ affine

and each 𝑉𝑖 of finite type over 𝐙.
Set 𝑊 = 𝑈 ∩ 𝑉. This is a quasi-compact open of 𝑉. By Lemma 27.3.5 (and after shrinking
𝐼) we may assume that there exist opens 𝑊𝑖 ⊂ 𝑉𝑖 such that 𝑓−1

𝑖𝑗 (𝑊𝑗) = 𝑊𝑖 and such that
𝑓−1

𝑖 (𝑊𝑖) = 𝑊. Since 𝑊 is a quasi-compact open of 𝑈 it is quasi-affine. Hence we may
assume (after shrinking 𝐼 again) that 𝑊𝑖 is quasi-affine for all 𝑖, see Lemma 27.3.6.

Write 𝑈 = 𝑆𝑝𝑒𝑐(𝐵). Set 𝑅 = Γ(𝑊, 𝒪𝑊), and 𝑅𝑖 = Γ(𝑊𝑖, 𝒪𝑊𝑖
). By Lemma 27.2.5 we have

𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖. Now we have the maps of rings

𝐵 𝑠
// 𝑅

𝑅𝑖

𝑡𝑖

OO

We set 𝐵𝑖 = {(𝑏, 𝑟) ∈ 𝐵 × 𝑅𝑖 ∣ 𝑠(𝑏) = 𝑡𝑖(𝑡)} so that we have a cartesian diagram

𝐵 𝑠
// 𝑅

𝐵𝑖

OO

// 𝑅𝑖

𝑡𝑖

OO

for each 𝑖. The transition maps 𝑅𝑖 → 𝑅𝑖′ induce maps 𝐵𝑖 → 𝐵𝑖′. It is clear that 𝐵 =
𝑐𝑜𝑙𝑖𝑚𝑖 𝐵𝑖.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01Z9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01ZA
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As 𝑊 is a quasi-compact open of 𝑈 = 𝑆𝑝𝑒𝑐(𝐵) we can find a finitely many elements 𝑔𝑗 ∈ 𝐵,
𝑗 = 1, … , 𝑚 such that 𝐷(𝑔𝑗) ⊂ 𝑊 and such that 𝑊 = ⋃𝑗=1,…,𝑚 𝐷(𝑔𝑗). Note that this implies
𝐷(𝑔𝑗) = 𝑊𝑠(𝑔𝑗) as open subsets of 𝑈, where 𝑊𝑠(𝑔𝑗) denotes the largest open subset of 𝑊 on
which 𝑠(𝑔𝑗) is invertible. Hence

𝐵𝑔𝑗
= Γ(𝐷(𝑔𝑗), 𝒪𝑈) = Γ(𝑊𝑠(𝑔𝑗), 𝒪𝑊) = 𝑅𝑠(𝑔𝑗),

where the last equality is Properties, Lemma 23.15.2. Since 𝑊𝑠(𝑔𝑗) is affine this also implies
that 𝐷(𝑠(𝑔𝑗)) = 𝑊𝑠(𝑔𝑗) as open subsets of 𝑆𝑝𝑒𝑐(𝑅). Since 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖 we can (after
shrinking 𝐼) assume there exist 𝑔𝑗,𝑖 ∈ 𝑅𝑖 for all 𝑖 ∈ 𝐼 such that 𝑠(𝑔𝑗) = 𝑡𝑖(𝑔𝑗,𝑖). Of course
we choose the 𝑔𝑗,𝑖 such that 𝑔𝑗,𝑖 maps to 𝑔𝑗,𝑖′ under the transition maps 𝑅𝑖 → 𝑅𝑖′. Then, by
Lemma 27.3.5 we can (after shrinking 𝐼 again) assume the corresponding opens 𝐷(𝑔𝑗,𝑖) ⊂
𝑆𝑝𝑒𝑐(𝑅𝑖) are contained in 𝑊𝑖, 𝑗 = 1, … , 𝑚 and cover 𝑊𝑖. At this point we may apply
Lemma 27.3.10 to conclude that the morphism 𝑊𝑖 → 𝑆𝑝𝑒𝑐(𝑅𝑖) → 𝑆𝑝𝑒𝑐(𝐵𝑖) is an open
immersion.

By Lemma 27.3.8 we can write each 𝐵𝑖 as a directed colimit of subalgebras 𝐴𝑖,𝑙 ⊂ 𝐵𝑖,
𝑙 ∈ 𝐿𝑖 each of finite type over 𝐙 and such that 𝑊𝑖 is identified with an open subscheme
of 𝑆𝑝𝑒𝑐(𝐴𝑖,𝑙). Let 𝑆𝑖,𝑙 be the scheme obtained by glueing 𝑉𝑖 and 𝑆𝑝𝑒𝑐(𝐴𝑖,𝑙) along the open
𝑊𝑖, see Schemes, Section 21.14. Here is the resulting commutative diagram of schemes:

𝑉

tt ��

𝑊oo

vv ��
𝑉𝑖

��

𝑊𝑖
oo

��

𝑆

uu

𝑈

vv

oo

𝑆𝑖,𝑙 𝑆𝑝𝑒𝑐(𝐴𝑖,𝑙)oo

Themorphism 𝑆 → 𝑆𝑖,𝑙 arises because the upper right square is a push out in the category of
schemes. Note that 𝑆𝑖,𝑙 is of finite type over 𝐙 since it has a finite affine open coveringwhose
members are spectra of finite type 𝐙-algebras. We define a partial ordering on 𝐽 = ∐𝑖∈𝐼 𝐿𝑖
by the rule (𝑖′, 𝑙′) ≥ (𝑖, 𝑙) if and only if 𝑖′ ≥ 𝑖 and the map 𝐵𝑖 → 𝐵𝑖′ maps 𝐴𝑖,𝑙 into 𝐴𝑖′,𝑙′.
This is exactly the condition needed to define a morphism 𝑆𝑖′,𝑙′ → 𝑆𝑖,𝑙: namely make a
commutative diagram as above using the transition morphisms 𝑉𝑖′ → 𝑉𝑖 and 𝑊𝑖′ → 𝑊𝑖
and the morphism 𝑆𝑝𝑒𝑐(𝐴𝑖′,𝑙′) → 𝑆𝑝𝑒𝑐(𝐴𝑖,𝑙) induced by the ring map 𝐴𝑖,𝑙 → 𝐴𝑖′,𝑙′. The
relevant commutativities have been built into the constructions. We claim that 𝑆 is the
directed limit of the schemes 𝑆𝑖,𝑙. Since by construction the schemes 𝑉𝑖 have limit 𝑉 this
boils down to the fact that 𝐵 is the limit of the rings 𝐴𝑖,𝑙 which is true by construction. �

27.4. Limits and morphisms of finite presentation

The following is a generalization of Algebra, Lemma 7.118.2.

Proposition 27.4.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equiva-
lent:

(1) The morphism 𝑓 is locally of finite presentation.
(2) For any directed partially ordered set 𝐼, and any inverse system (𝑇𝑖, 𝑓𝑖𝑖′) of𝑆-schemes

over 𝐼 with each 𝑇𝑖 affine, we have

𝑀𝑜𝑟𝑆(𝑙𝑖𝑚𝑖 𝑇𝑖, 𝑋) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝑆(𝑇𝑖, 𝑋)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=01ZC
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(3) For any directed partially ordered set 𝐼, and any inverse system (𝑇𝑖, 𝑓𝑖𝑖′) of𝑆-schemes
over 𝐼 with each 𝑓𝑖𝑖′ affine and every 𝑇𝑖 quasi-compact and quasi-separated as
a scheme, we have

𝑀𝑜𝑟𝑆(𝑙𝑖𝑚𝑖 𝑇𝑖, 𝑋) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝑆(𝑇𝑖, 𝑋)

Proof. It is clear that (3) implies (2).

Let us prove that (2) implies (1). Assume (2). Choose any affine opens 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑆
such that 𝑓(𝑈) ⊂ 𝑉. We have to show that 𝒪𝑆(𝑉) → 𝒪𝑋(𝑈) is of finite presentation. Let
(𝐴𝑖, 𝜑𝑖𝑖′) be a directed system of 𝒪𝑆(𝑉)-algebras. Set 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖. According to Algebra,
Lemma 7.118.2 we have to show that

𝐻𝑜𝑚𝒪𝑆(𝑉)(𝒪𝑋(𝑈), 𝐴) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑜𝑚𝒪𝑆(𝑉)(𝒪𝑋(𝑈), 𝐴𝑖)

Consider the schemes 𝑇𝑖 = 𝑆𝑝𝑒𝑐(𝐴𝑖). They form an inverse system of 𝑉-schemes over 𝐼
with transition morphisms 𝑓𝑖𝑖′ ∶ 𝑇𝑖 → 𝑇𝑖′ induced by the 𝒪𝑆(𝑉)-algebra maps 𝜑𝑖′𝑖. Set
𝑇 ∶= 𝑆𝑝𝑒𝑐(𝐴) = 𝑙𝑖𝑚𝑖 𝑇𝑖. The formula above becomes in terms ofmorphism sets of schemes

𝑀𝑜𝑟𝑉(𝑙𝑖𝑚𝑖 𝑇𝑖, 𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝑉(𝑇𝑖, 𝑈).

We first observe that 𝑀𝑜𝑟𝑉(𝑇𝑖, 𝑈) = 𝑀𝑜𝑟𝑆(𝑇𝑖, 𝑈) and 𝑀𝑜𝑟𝑉(𝑇, 𝑈) = 𝑀𝑜𝑟𝑆(𝑇, 𝑈). Hence
we have to show that

𝑀𝑜𝑟𝑆(𝑙𝑖𝑚𝑖 𝑇𝑖, 𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝑆(𝑇𝑖, 𝑈)

and we are given that

𝑀𝑜𝑟𝑆(𝑙𝑖𝑚𝑖 𝑇𝑖, 𝑋) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑜𝑟𝑆(𝑇𝑖, 𝑋).

Hence it suffices to prove that given a morphism 𝑔𝑖 ∶ 𝑇𝑖 → 𝑋 over 𝑆 such that the com-
position 𝑇 → 𝑇𝑖 → 𝑋 ends up in 𝑈 there exists some 𝑖′ ≥ 𝑖 such that the composition
𝑔𝑖′ ∶ 𝑇𝑖′ → 𝑇𝑖 → 𝑋 ends up in 𝑈. Denote 𝑍𝑖′ = 𝑔−1

𝑖′ (𝑋 ⧵ 𝑈). Assume each 𝑍𝑖′ is
nonempty to get a contradiction. By Lemma 27.3.2 there exists a point 𝑡 of 𝑇 which is
mapped into 𝑍𝑖′ for all 𝑖′ ≥ 𝑖. Such a point is not mapped into 𝑈. A contradiction.

Finally, let us prove that (1) implies (3). Assume (1). Let an inverse directed system (𝑇𝑖, 𝑓𝑖𝑖′)
of 𝑆-schemes be given. Assume the morphisms 𝑓𝑖𝑖′ are affine and each 𝑇𝑖 is quasi-compact
and quasi-separated as a scheme. Let 𝑇 = 𝑙𝑖𝑚𝑖 𝑇𝑖. Denote 𝑓𝑖 ∶ 𝑇 → 𝑇𝑖 the projection
morphisms. We have to show:

(a) Given morphisms 𝑔𝑖, 𝑔′
𝑖 ∶ 𝑇𝑖 → 𝑋 over 𝑆 such that 𝑔𝑖 ∘ 𝑓𝑖 = 𝑔′

𝑖 ∘ 𝑓𝑖, then there
exists an 𝑖′ ≥ 𝑖 such that 𝑔𝑖 ∘ 𝑓𝑖′𝑖 = 𝑔′

𝑖 ∘ 𝑓𝑖′𝑖.
(b) Given any morphism 𝑔 ∶ 𝑇 → 𝑋 over 𝑆 there exists an 𝑖 ∈ 𝐼 and a morphism

𝑔𝑖 ∶ 𝑇𝑖 → 𝑋 such that 𝑔 = 𝑓𝑖 ∘ 𝑔𝑖.
First let us prove the uniqueness part (a). Let 𝑔𝑖, 𝑔′

𝑖 ∶ 𝑇𝑖 → 𝑋 be morphisms such that
𝑔𝑖 ∘ 𝑓𝑖 = 𝑔′

𝑖 ∘ 𝑓𝑖. For any 𝑖′ ≥ 𝑖 we set 𝑔𝑖′ = 𝑔𝑖 ∘ 𝑓𝑖′𝑖 and 𝑔′
𝑖′ = 𝑔′

𝑖 ∘ 𝑓𝑖′𝑖. We also set
𝑔 = 𝑔𝑖 ∘ 𝑓𝑖 = 𝑔′

𝑖 ∘ 𝑓𝑖. Consider the morphism (𝑔𝑖, 𝑔′
𝑖 ) ∶ 𝑇𝑖 → 𝑋 ×𝑆 𝑋. Set

𝑊 = ⋃𝑈⊂𝑋 affine open,𝑉⊂𝑆 affine open,𝑓(𝑈)⊂𝑉
𝑈 ×𝑉 𝑈.

This is an open in𝑋×𝑆𝑋, with the property that themorphism Δ𝑋/𝑆 factors through a closed
immersion into 𝑊, see the proof of Schemes, Lemma 21.21.2. Note that the composition
(𝑔𝑖, 𝑔′

𝑖 ) ∘ 𝑓𝑖 ∶ 𝑇 → 𝑋 ×𝑆 𝑋 is a morphism into 𝑊 because it factors through the diagonal by
assumption. Set 𝑍𝑖′ = (𝑔𝑖′, 𝑔′

𝑖′)−1(𝑋 ×𝑆 𝑋 ⧵ 𝑊). If each 𝑍𝑖′ is nonempty, then by Lemma
27.3.2 there exists a point 𝑡 ∈ 𝑇 which maps to 𝑍𝑖′ for all 𝑖′ ≥ 𝑖. This is a contradiction with
the fact that 𝑇maps into𝑊. Hencewemay increase 𝑖 and assume that (𝑔𝑖, 𝑔′

𝑖 ) ∶ 𝑇𝑖 → 𝑋×𝑆𝑋
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is a morphism into 𝑊. By construction of 𝑊, and since 𝑇𝑖 is quasi-compact we can find
a finite affine open covering 𝑇𝑖 = 𝑇1,𝑖 ∪ … ∪ 𝑇𝑛,𝑖 such that (𝑔𝑖, 𝑔′

𝑖 )|𝑇𝑗,𝑖
is a morphism into

𝑈 ×𝑉 𝑈 for some pair (𝑈, 𝑉) as in the definition of 𝑊 above. Since it suffices to prove that
𝑔𝑖′ and 𝑔′

𝑖′ agree on each of the 𝑓−1
𝑖′𝑖 (𝑇𝑗,𝑖) this reduces us to the affine case. The affine case

follows from Algebra, Lemma 7.118.2 and the fact that the ring map 𝒪𝑆(𝑉) → 𝒪𝑋(𝑈) is of
finite presentation (see Morphisms, Lemma 24.20.2).

Finally, we prove the existence part (b). Let 𝑔 ∶ 𝑇 → 𝑋 be a morphism of schemes over 𝑆.
We can find a finite affine open covering 𝑇 = 𝑊1 ∪…∪𝑊𝑛 such that for each 𝑗 ∈ {1, … , 𝑛}
there exist affine opens 𝑈𝑗 ⊂ 𝑋 and 𝑉𝑗 ⊂ 𝑆 with 𝑓(𝑈𝑗) ⊂ 𝑉𝑗 and 𝑔(𝑊𝑗) ⊂ 𝑈𝑗. By Lemmas
27.3.5 and 27.3.7 (after possibly shrinking 𝐼) we may assume that there exist affine open
coverings 𝑇𝑖 = 𝑊1,𝑖 ∪ … ∪ 𝑊𝑛,𝑖 compatible with transition maps such that 𝑊𝑗 = 𝑙𝑖𝑚𝑖 𝑊𝑗,𝑖.
We apply Algebra, Lemma 7.118.2 to the rings corresponding to the affine schemes 𝑈𝑗, 𝑉𝑗,
𝑊𝑗,𝑖 and 𝑊𝑗 using that 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑗) is of finite presentation (see Morphisms, Lemma
24.20.2). Thus we can find for each 𝑗 an index 𝑖𝑗 ∈ 𝐼 and a morphism 𝑔𝑗,𝑖𝑗 ∶ 𝑊𝑗,𝑖𝑗 → 𝑋
such that 𝑔𝑗,𝑖𝑗 ∘ 𝑓𝑖|𝑊𝑗

∶ 𝑊𝑗 → 𝑊𝑗,𝑖 → 𝑋 equals 𝑔|𝑊𝑗
. By part (a) proved above, using the

quasi-compactness of 𝑊𝑗1,𝑖 ∩ 𝑊𝑗2,𝑖 which follows as 𝑇𝑖 is quasi-separated, we can find an
index 𝑖′ ∈ 𝐼 larger than all 𝑖𝑗 such that

𝑔𝑗1,𝑖𝑗1
∘ 𝑓𝑖′𝑖𝑗1

|𝑊𝑗1,𝑖′∩𝑊𝑗2,𝑖′
= 𝑔𝑗2,𝑖𝑗2

∘ 𝑓𝑖′𝑖𝑗2
|𝑊𝑗1,𝑖′∩𝑊𝑗2,𝑖′

for all 𝑗1, 𝑗2 ∈ {1, … , 𝑛}. Hence the morphisms 𝑔𝑗,𝑖𝑗 ∘ 𝑓𝑖′𝑖𝑗|𝑊𝑗,𝑖′
glue to given the desired

morphism 𝑇𝑖′ → 𝑋. �

Remark 27.4.2. Let 𝑆 be a scheme. Let us say that a functor 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝 → Sets is limit
preserving if for every directed inverse system {𝑇𝑖}𝑖∈𝐼 of affine schemes with limit 𝑇 we
have 𝐹(𝑇) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐹(𝑇𝑖). Let 𝑋 be a scheme over 𝑆, and let ℎ𝑋 ∶ (Sch/𝑆)𝑜𝑝𝑝 → Sets be its
functor of points, see Schemes, Section 21.15. In this terminology Proposition 27.4.1 says
that a scheme 𝑋 is locally of finite presentation over 𝑆 if and only if ℎ𝑋 is limit preserving.

27.5. Finite type closed in finite presentation

A reference is [Con07].

Lemma 27.5.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume:
(1) The morphism 𝑓 is locally of finite type.
(2) The scheme 𝑋 is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation 𝑓′ ∶ 𝑋′ → 𝑆 and an immersion𝑋 → 𝑋′

of schemes over 𝑆.

Proof. By Proposition 27.3.11 we can write 𝑋 = 𝑙𝑖𝑚𝑖 𝑋𝑖 with each 𝑋𝑖 of finite type over 𝐙
and with transition morphisms 𝑓𝑖𝑖′ ∶ 𝑋𝑖 → 𝑋𝑖′ affine. Consider the commutative diagram

𝑋 //

  

𝑋𝑖,𝑆
//

��

𝑋𝑖

��
𝑆 // 𝑆𝑝𝑒𝑐(𝐙)

Note that 𝑋𝑖 is of finite presentation over 𝑆𝑝𝑒𝑐(𝐙), see Morphisms, Lemma 24.20.9. Hence
the base change 𝑋𝑖,𝑆 → 𝑆 is of finite presentation by Morphisms, Lemma 24.20.4. Thus it
suffices to show that the arrow 𝑋 → 𝑋𝑖,𝑆 is an immersion for some 𝑖 sufficiently large.
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To do this we choose a finite affine open covering 𝑋 = 𝑉1 ∪ … ∪ 𝑉𝑛 such that 𝑓 maps each
𝑉𝑗 into an affine open 𝑈𝑗 ⊂ 𝑆. Let ℎ𝑗,𝑎 ∈ 𝒪𝑋(𝑉𝑗) be a finite set of elements which generate
𝒪𝑋(𝑉𝑗) as an 𝒪𝑆(𝑈𝑗)-algebra, see Morphisms, Lemma 24.14.2. By Lemmas 27.3.5 and
27.3.7 (after possibly shrinking 𝐼) we may assume that there exist affine open coverings
𝑋𝑖 = 𝑉1,𝑖 ∪ … ∪ 𝑉𝑛,𝑖 compatible with transition maps such that 𝑉𝑗 = 𝑙𝑖𝑚𝑖 𝑉𝑗,𝑖. By Lemma
27.2.5 we can choose 𝑖 so large that each ℎ𝑗,𝑎 comes from an element ℎ𝑗,𝑎,𝑖 ∈ 𝒪𝑋𝑖

(𝑉𝑗,𝑖). At
this point it is clear that

𝑉𝑗 ⟶ 𝑈𝑗 ×𝑆𝑝𝑒𝑐(𝐙) 𝑉𝑗,𝑖 = (𝑉𝑗,𝑖)𝑈𝑗
⊂ (𝑉𝑗,𝑖)𝑆 ⊂ 𝑋𝑖,𝑆

is a closed immersion. Since the union of the schemes which appear as the targets of these
morphisms form an open of 𝑋𝑖,𝑆 we win. �

Remark 27.5.2. We cannot do better than this if we do not assume more on 𝑆 and the
morphism 𝑓 ∶ 𝑋 → 𝑆. For example, in general it will not be possible to find a closed
immersion 𝑋 → 𝑋′ as in the lemma. The reason is that this would imply that 𝑓 is quasi-
compact which may not be the case. An example is to take 𝑆 to be infinite dimensional
affine space with 0 doubled and 𝑋 to be one of the two infinite dimensional affine spaces.

Lemma 27.5.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume:
(1) The morphism 𝑓 is of locally of finite type.
(2) The scheme 𝑋 is quasi-compact and quasi-separated, and
(3) The scheme 𝑆 is quasi-separated.

Then there exists a morphism of finite presentation 𝑓′ ∶ 𝑋′ → 𝑆 and a closed immersion
𝑋 → 𝑋′ of schemes over 𝑆.

Proof. By Lemma 27.5.1 above there exists a morphism 𝑌 → 𝑆 of finite presentation and
an immersion 𝑖 ∶ 𝑋 → 𝑌 of schemes over 𝑆. For every point 𝑥 ∈ 𝑋, there exists an affine
open 𝑉𝑥 ⊂ 𝑌 such that 𝑖−1(𝑉𝑥) → 𝑉𝑥 is a closed immersion. Since 𝑋 is quasi-compact
we can find finitely may affine opens 𝑉1, … , 𝑉𝑛 ⊂ 𝑌 such that 𝑖(𝑋) ⊂ 𝑉1 ∪ … ∪ 𝑉𝑛 and
𝑖−1(𝑉𝑗) → 𝑉𝑗 is a closed immersion. In other words such that 𝑖 ∶ 𝑋 → 𝑋′ = 𝑉1 ∪ … ∪ 𝑉𝑛 is
a closed immersion of schemes over 𝑆. Since 𝑆 is quasi-separated and 𝑌 is quasi-separated
over 𝑆 we deduce that 𝑌 is quasi-separated, see Schemes, Lemma 21.21.13. Hence the
open immersion 𝑋′ = 𝑉1 ∪ … ∪ 𝑉𝑛 → 𝑌 is quasi-compact. This implies that 𝑋′ → 𝑌 is of
finite presentation, see Morphisms, Lemma 24.20.6. We conclude since then 𝑋′ → 𝑌 → 𝑆
is a composition of morphisms of finite presentation, and hence of finite presentation (see
Morphisms, Lemma 24.20.3). �

Lemma 27.5.4. Let 𝑆 be a scheme. Let 𝐼 be a directed partially ordered set. Let (𝑋𝑖, 𝑓𝑖𝑖′)
be an inverse system of schemes over 𝑆 indexed by 𝐼. Assume

(1) the scheme 𝑆 is quasi-separated,
(2) each 𝑋𝑖 is locally of finite type over 𝑆,
(3) all the morphisms 𝑓𝑖𝑖′ ∶ 𝑋𝑖 → 𝑋𝑖′ are affine,
(4) all the schemes 𝑋𝑖 are quasi-compact and quasi-separated,
(5) the morphism 𝑋 = 𝑙𝑖𝑚𝑖 𝑋𝑖 → 𝑆 is separated.

Then 𝑋𝑖 → 𝑆 is separated for all 𝑖 large enough.

Proof. Let 𝑖0 ∈ 𝐼. Note that 𝐼 is nonempty as the limit is directed. For convenience write
𝑋0 = 𝑋𝑖0 and 𝑖0 = 0. As 𝑋0 is quasi-compact we can find finitely many affine opens
𝑈1, … , 𝑈𝑛 ⊂ 𝑆 such that 𝑋0 → 𝑆 maps into 𝑈1 ∪ … ∪ 𝑈𝑛. Denote ℎ𝑖 ∶ 𝑋𝑖 → 𝑆 the
structure morphism. It suffices to check that for some 𝑖 ≥ 0 the morphisms ℎ−1

𝑖 (𝑈𝑗) → 𝑈𝑗
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are separated for all 𝑗 = 1, … , 𝑛. Since 𝑆 is quasi-separated the morphisms 𝑈𝑗 → 𝑆
are quasi-compact. Hence ℎ−1

𝑖 (𝑈𝑗) is quasi-compact and quasi-separated. In this way we
reduce to the case 𝑆 affine.

Assume 𝑆 affine. Choose a finite affine open covering 𝑋0 = 𝑉1,0 ∪ … ∪ 𝑉𝑚,0. As usual we
denote 𝑉𝑗,𝑖 the inverse image of 𝑉𝑗,0 in 𝑋𝑖 for 𝑖 ≥ 0. We also denote 𝑉𝑗 the inverse image
of 𝑉𝑗,0 in 𝑋. By assumption the intersections 𝑉𝑗1,𝑖 ∩ 𝑉𝑗2,𝑖 are quasi-compact opens. Since
𝑋 is separated we see that 𝑉𝑗1

∩ 𝑉𝑗2
is affine. Hence we see that 𝑉𝑗1,𝑖 ∩ 𝑉𝑗2,𝑖 are all affine for

𝑖 big enough by Lemma 27.3.7. After increasing 𝑖0 = 0 we may assume this holds for all
𝑖 ≥ 0. By Schemes, Lemma 21.21.8 we have to show that for some 𝑖 big enough the ring
map

𝒪𝑋𝑖
(𝑉𝑗1,𝑖) ⊗𝒪𝑆(𝑆) 𝒪𝑋𝑖

(𝑉𝑗2,𝑖) ⟶ 𝒪𝑋𝑖
(𝑉𝑗1,𝑖 ∩ 𝑉𝑗2,𝑖)

is surjective. Since 𝑉𝑗,𝑖 is the inverse image of 𝑉𝑗,0 under the affine transition maps 𝑓𝑖0 we
see that

𝑉𝑗1,𝑖 ∩ 𝑉𝑗2,𝑖 = 𝑉𝑗1,𝑖 ×𝑉𝑗1,0
(𝑉𝑗1,0 ∩ 𝑉𝑗2,0)

Choose generators 𝑥𝑗1,𝑗2,𝛼 ∈ 𝒪𝑋0
(𝑉𝑗1,0 ∩𝑉𝑗2,0) as an algebra over 𝒪𝑋0

(𝑉𝑗1,0). We can choose
finitely many of these since 𝒪𝑋0

(𝑉𝑗1,0 ∩𝑉𝑗2,0) is a finite type 𝒪𝑆(𝑆)-algebra, see Morphisms,
Lemma 24.14.2. By the displayed equality of fibre products, the images of 𝑥𝑗1,𝑗2,𝛼 generate
𝒪𝑋𝑖

(𝑉𝑗1,𝑖 ∩ 𝑉𝑗2,𝑖) as an algebra over 𝒪𝑋𝑖
(𝑉𝑗1,𝑖) also. Since 𝑋 is separated the ring maps

𝒪𝑋(𝑉𝑗1
) ⊗𝒪𝑆(𝑆) 𝒪𝑋(𝑉𝑗2,𝑖) ⟶ 𝒪𝑋(𝑉𝑗1

∩ 𝑉𝑗2
)

are surjective. Hence we can find finite sums

∑ 𝑦𝑗1,𝑗2,𝛼,𝛽 ⊗ 𝑧𝑗1,𝑗2,𝛼,𝛽

in the left hand side which map to the elements 𝑥𝑗1,𝑗2,𝛼 of the right hand side. Using Lemma
27.2.5 we may choose 𝑖 large enough so that each of the (finitely many) elements 𝑦𝑗1,𝑗2,𝛼,𝛽
(resp. 𝑧𝑗1,𝑗2,𝛼,𝛽) comes from a corresponding element 𝑦𝑗1,𝑗2,𝛼,𝛽,𝑖 (resp. 𝑧𝑗1,𝑗2,𝛼,𝛽,𝑖) of 𝒪𝑋𝑖

(𝑉𝑗1,𝑖)
(resp. 𝒪𝑋𝑖

(𝑉𝑗2,𝑖) and moreover such that the image of

∑ 𝑦𝑗1,𝑗2,𝛼,𝛽,𝑖 ⊗ 𝑧𝑗1,𝑗2,𝛼,𝛽,𝑖

is the image of the element 𝑥𝑗1,𝑗2,𝛼 in 𝒪𝑋𝑖
(𝑉𝑗1,𝑖 ∩ 𝑉𝑗2,𝑖). This clearly implies the desired

surjectivity and we win. �

Remark 27.5.5. Is there an easy example to show that the finite type condition for the
morphisms 𝑋𝑖 → 𝑆 is necessary? Email if you have one.

A less technical version of the results above is the following.

Proposition 27.5.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume:
(1) The morphism 𝑓 is of finite type and separated.
(2) The scheme 𝑆 is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation 𝑓′ ∶ 𝑋′ → 𝑆 and a closed
immersion 𝑋 → 𝑋′ of schemes over 𝑆.

Proof. We have seen that there is a closed immersion 𝑋 → 𝑌 with 𝑌/𝑆 of finite presenta-
tion. Let ℐ ⊂ 𝒪𝑌 be the quasi-coherent sheaf of ideals defining 𝑋 as a closed subscheme
of 𝑌. By Properties, Lemma 23.20.3 we can write ℐ as a directed colimit ℐ = 𝑐𝑜𝑙𝑖𝑚𝑎∈𝐴 ℐ𝑎
of its quasi-coherent sheaves of ideals of finite type. Let 𝑋𝑎 ⊂ 𝑌 be the closed subscheme
defined by ℐ𝑎. These form an inverse system of schemes indexed by 𝐴. The transition
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morphisms 𝑋𝑎 → 𝑋𝑎′ are affine because they are closed immersions. Each 𝑋𝑎 is quasi-
compact and quasi-separated since it is a closed subscheme of 𝑌 and 𝑌 is quasi-compact
and quasi-separated by our assumptions. We have 𝑋 = 𝑙𝑖𝑚𝑎 𝑋𝑎 as follows directly from
the fact that ℐ = 𝑐𝑜𝑙𝑖𝑚𝑎∈𝐴 ℐ𝑎. Each of the morphisms 𝑋𝑎 → 𝑌 is of finite presentation,
see Morphisms, Lemma 24.20.7. Hence the morphisms 𝑋𝑎 → 𝑆 are of finite presentation.
Thus it suffices to show that 𝑋𝑎 → 𝑆 is separated for some 𝑎 ∈ 𝐴. This follows from
Lemma 27.5.4 as we have assumed that 𝑋 → 𝑆 is separated. �

We end this section with a variant concerning finite morphisms.

Lemma 27.5.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume:
(1) The morphism 𝑓 is finite.
(2) The scheme 𝑆 is quasi-compact and quasi-separated.

Then there exists a morphism which is finite and of finite presentation 𝑓′ ∶ 𝑋′ → 𝑆 and a
closed immersion 𝑋 → 𝑋′ of schemes over 𝑆.

Proof. By Proposition 27.5.6 there is a closed immersion 𝑋 → 𝑌 with 𝑔 ∶ 𝑌 → 𝑆 separated
and of finite presentation. Let ℐ ⊂ 𝒪𝑌 be the quasi-coherent sheaf of ideals defining 𝑋 as a
closed subscheme of 𝑌. By Properties, Lemma 23.20.3 we can write ℐ as a directed colimit
ℐ = 𝑐𝑜𝑙𝑖𝑚𝑎∈𝐴 ℐ𝑎 of its quasi-coherent sheaves of ideals of finite type. Let 𝑋𝑎 ⊂ 𝑌 be the
closed subscheme defined by ℐ𝑎 and denote 𝑓𝑎 ∶ 𝑋𝑎 → 𝑆 the structure morphism. These
form an inverse system of schemes indexed by 𝐴. The transition morphisms 𝑋𝑎 → 𝑋𝑎′

are affine because they are closed immersions. Each 𝑋𝑎 is quasi-compact and separated
over 𝑆 since it is a closed subscheme of 𝑌 and 𝑌 is quasi-compact and separated over 𝑆.
We have 𝑋 = 𝑙𝑖𝑚𝑎 𝑋𝑎 as follows directly from the fact that ℐ = 𝑐𝑜𝑙𝑖𝑚𝑎∈𝐴 ℐ𝑎. Each of the
morphisms 𝑋𝑎 → 𝑌 is of finite presentation, see Morphisms, Lemma 24.20.7. Hence the
morphisms 𝑋𝑎 → 𝑆 are of finite presentation. Thus it suffices to show that 𝑓𝑎 ∶ 𝑋𝑎 → 𝑆
is finite for some 𝑎 ∈ 𝐴.

Choose a finite affine open covering 𝑆 = ⋃𝑗=1,…,𝑛 𝑉𝑗. For each 𝑗 the scheme 𝑓−1(𝑉𝑗) =
𝑙𝑖𝑚𝑎 𝑓−1

𝑎 (𝑉𝑗) is affine (as a finite morphism is affine by definition). Hence by Lemma 27.3.7
there exists an 𝑎 ∈ 𝐴 such that each 𝑓−1

𝑎 (𝑉𝑗) is affine. In other words, 𝑓𝑎 ∶ 𝑋𝑎 → 𝑆 is
affine, see Morphisms, Lemma 24.11.3. By replacing 𝑌 with 𝑋𝑎 wemay assume 𝑔 ∶ 𝑌 → 𝑆
is affine.

For each 𝑗 = 1, … , 𝑚 the ring 𝒪𝑌(𝑔−1(𝑉𝑗)) is a finitely presented 𝒪𝑆(𝑉𝑗)-algebra. Say
it is generated by 𝑥𝑗𝑖, 𝑖 = 1, … , 𝑛𝑗. Note that the images of 𝑥𝑗𝑖 in 𝒪𝑋(𝑓−1

𝑎 (𝑉𝑗)), resp.
𝒪𝑋(𝑓−1(𝑉𝑗)) generate over 𝒪𝑆(𝑉𝑗) as well. Since 𝑓 ∶ 𝑋 → 𝑆 is finite, the image of 𝑥𝑗𝑖
in 𝒪𝑋(𝑓−1(𝑉𝑗)) satisfies a monic polynomial 𝑃𝑖𝑗 whose coefficients are elements of 𝒪𝑆(𝑉𝑗).
Since 𝒪𝑋(𝑓−1(𝑉𝑗)) = 𝑐𝑜𝑙𝑖𝑚𝑎∈𝐴 𝒪𝑋𝑎

(𝑓−1
𝑎 (𝑉𝑗)) we see there exists an 𝑎 ∈ 𝐴 such that 𝑃𝑗𝑖(𝑥𝑖𝑗)

maps to zero in 𝒪𝑋𝑎
(𝑓−1

𝑎 (𝑉𝑗)) for all 𝑗, 𝑖. It follows from Morphisms, Lemma 24.42.3 that
the morphism 𝑓𝑎 ∶ 𝑋𝑎 → 𝑆 is finite for this 𝑎. �

27.6. Descending relative objects

The following lemma is typical of the type of results in this section. We write out the
``standard'' proof completely. It may be faster to convince yourself that the result is true
than to read this proof.

Lemma 27.6.1. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume
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(1) all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine,
(2) all the schemes 𝑆𝑖 are quasi-compact and quasi-separated.

Let 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖. Then we have the following:
(1) For any morphism of finite presentation 𝑋 → 𝑆 there exists an index 𝑖 ∈ 𝐼 and a

morphism of finite presentation 𝑋𝑖 → 𝑆𝑖 such that 𝑋 ≅ 𝑋𝑖,𝑆 as schemes over 𝑆.
(2) Suppose given an index 𝑖 ∈ 𝐼, schemes 𝑋𝑖, 𝑌𝑖 of finite presentation over 𝑆𝑖 and

a morphism 𝜑 ∶ 𝑋𝑖,𝑆 → 𝑌𝑖,𝑆 over 𝑆. Then there exists an index 𝑖′ ≥ 𝑖 and a
morphism 𝜑𝑖′ ∶ 𝑋𝑖,𝑆𝑖′

→ 𝑌𝑖,𝑆𝑖′
whose base change to 𝑆 is 𝜑.

(3) Suppose given an index 𝑖 ∈ 𝐼, schemes 𝑋𝑖, 𝑌𝑖 of finite presentation over 𝑆𝑖 and
a pair of morphisms 𝜑𝑖, 𝜓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖. Assume that the base changes are equal:
𝜑𝑖,𝑆 = 𝜓𝑖,𝑆. Then there exists an index 𝑖′ ≥ 𝑖 such that 𝜑𝑖,𝑆𝑖′

= 𝜓𝑖,𝑆𝑖′
.

In other words, the category of schemes of finite presentation over 𝑆 is the colimit over 𝐼
of the categories of schemes of finite presentation over 𝑆𝑖.

Proof. In case each of the schemes 𝑆𝑖 is affine, and we consider only affine schemes of
finite presentation over 𝑆𝑖, resp. 𝑆 this lemma is equivalent to Algebra, Lemma 7.118.6.
We claim that the affine case implies the lemma in general.

Let us prove (3). Suppose given an index 𝑖 ∈ 𝐼, schemes 𝑋𝑖, 𝑌𝑖 of finite presentation over
𝑆𝑖 and a pair of morphisms 𝜑𝑖, 𝜓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖. Assume that the base changes are equal:
𝜑𝑖,𝑆 = 𝜓𝑖,𝑆. We will use the notation 𝑋𝑖′ = 𝑋𝑖,𝑆𝑖′

and 𝑌𝑖′ = 𝑌𝑖,𝑆𝑖′
for 𝑖′ ≥ 𝑖. We also set

𝑋 = 𝑋𝑖,𝑆 and 𝑌 = 𝑌𝑖,𝑆. Note that according to Lemma 27.2.4 we have 𝑋 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑋𝑖′
and similarly for 𝑌. Additionally we denote 𝜑𝑖′ and 𝜓𝑖′ (resp. 𝜑 and 𝜓) the base change of
𝜑𝑖 and 𝜓𝑖 to 𝑆𝑖′ (resp. 𝑆). So our assumption means that 𝜑 = 𝜓. Since 𝑌𝑖 and 𝑋𝑖 are of
finite presentation over 𝑆𝑖, and since 𝑆𝑖 is quasi-compact and quasi-separated, also 𝑋𝑖 and
𝑌𝑖 are quasi-compact and quasi-separated (see Morphisms, Lemma 24.20.10). Hence we
may choose a finite affine open covering 𝑌𝑖 = ⋃ 𝑉𝑗,𝑖 such that each 𝑉𝑗,𝑖 maps into an affine
open of 𝑆. As above, denote 𝑉𝑗,𝑖′ the inverse image of 𝑉𝑗,𝑖 in 𝑌𝑖′ and 𝑉𝑗 the inverse image in
𝑌. The immersions 𝑉𝑗,𝑖′ → 𝑌𝑖′ are quasi-compact, and the inverse images 𝑈𝑗,𝑖′ = 𝜑−1

𝑖 (𝑉𝑗,𝑖′)
and 𝑈′

𝑗,𝑖′ = 𝜓−1
𝑖 (𝑉𝑗,𝑖′) are quasi-compact opens of 𝑋𝑖′. By assumption the inverse images of

𝑉𝑗 under 𝜑 and 𝜓 in 𝑋 are equal. Hence by Lemma 27.3.5 there exists an index 𝑖′ ≥ 𝑖 such
that of 𝑈𝑗,𝑖′ = 𝑈′

𝑗,𝑖′ in 𝑋𝑖′. Choose an finite affine open covering 𝑈𝑗,𝑖′ = 𝑈′
𝑗,𝑖′ = ⋃ 𝑊𝑗,𝑘,𝑖′

which induce coverings 𝑈𝑗,𝑖″ = 𝑈′
𝑗,𝑖″ = ⋃ 𝑊𝑗,𝑘,𝑖″ for all 𝑖″ ≥ 𝑖′. By the affine case there

exists an index 𝑖″ such that 𝜑𝑖″|𝑊𝑗,𝑘,𝑖″
= 𝜓𝑖″|𝑊𝑗,𝑘,𝑖″

for all 𝑗, 𝑘. Then 𝑖″ is an index such
that 𝜑𝑖″ = 𝜓𝑖″ and (3) is proved.

Let us prove (2). Suppose given an index 𝑖 ∈ 𝐼, schemes 𝑋𝑖, 𝑌𝑖 of finite presentation
over 𝑆𝑖 and a morphism 𝜑 ∶ 𝑋𝑖,𝑆 → 𝑌𝑖,𝑆. We will use the notation 𝑋𝑖′ = 𝑋𝑖,𝑆𝑖′

and
𝑌𝑖′ = 𝑌𝑖,𝑆𝑖′

for 𝑖′ ≥ 𝑖. We also set 𝑋 = 𝑋𝑖,𝑆 and 𝑌 = 𝑌𝑖,𝑆. Note that according to
Lemma 27.2.4 we have 𝑋 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑋𝑖′ and similarly for 𝑌. Since 𝑌𝑖 and 𝑋𝑖 are of finite
presentation over 𝑆𝑖, and since 𝑆𝑖 is quasi-compact and quasi-separated, also 𝑋𝑖 and 𝑌𝑖
are quasi-compact and quasi-separated (see Morphisms, Lemma 24.20.10). Hence we may
choose a finite affine open covering 𝑌𝑖 = ⋃ 𝑉𝑗,𝑖 such that each 𝑉𝑗,𝑖 maps into an affine
open of 𝑆. As above, denote 𝑉𝑗,𝑖′ the inverse image of 𝑉𝑗,𝑖 in 𝑌𝑖′ and 𝑉𝑗 the inverse image
in 𝑌. The immersions 𝑉𝑗 → 𝑌 are quasi-compact, and the inverse images 𝑈𝑗 = 𝜑−1(𝑉𝑗)
are quasi-compact opens of 𝑋. Hence by Lemma 27.3.5 there exists an index 𝑖′ ≥ 𝑖 and
quasi-compact opens 𝑈𝑗,𝑖′ of 𝑋𝑖′ whose inverse image in 𝑋 is 𝑈𝑗. Choose an finite affine
open covering 𝑈𝑗,𝑖′ = ⋃ 𝑊𝑗,𝑘,𝑖′ which induce affine open coverings 𝑈𝑗,𝑖″ = ⋃ 𝑊𝑗,𝑘,𝑖″ for
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all 𝑖″ ≥ 𝑖′ and an affine open covering 𝑈𝑗 = ⋃ 𝑊𝑗,𝑘. By the affine case there exists an
index 𝑖″ and morphisms 𝜑𝑗,𝑘,𝑖″ ∶ 𝑊𝑗,𝑘,𝑖″ → 𝑉𝑗,𝑖″ such that 𝜑|𝑊𝑗,𝑘

= 𝜑𝑗,𝑘,𝑖″,𝑆 for all 𝑗, 𝑘.
By part (3) proved above, there is a further index 𝑖‴ ≥ 𝑖″ such that

𝜑𝑗1,𝑘1,𝑖″,𝑆𝑖‴
|𝑊𝑗1,𝑘1,𝑖‴∩𝑊𝑗2,𝑘2,𝑖‴

= 𝜑𝑗2,𝑘2,𝑖″,𝑆𝑖‴
|𝑊𝑗1,𝑘1,𝑖‴∩𝑊𝑗2,𝑘2,𝑖‴

for all 𝑗1, 𝑗2, 𝑘1, 𝑘2. Then 𝑖‴ is an index such that there exists amorphism 𝜑𝑖‴ ∶ 𝑋𝑖‴ → 𝑌𝑖‴
whose base change to 𝑆 gives 𝜑. Hence (2) holds.

Let us prove (1). Suppose given a scheme 𝑋 of finite presentation over 𝑆. Since 𝑋 is
of finite presentation over 𝑆, and since 𝑆 is quasi-compact and quasi-separated, also 𝑋 is
quasi-compact and quasi-separated (see Morphisms, Lemma 24.20.10). Choose a finite
affine open covering 𝑋 = ⋃ 𝑈𝑗 such that each 𝑈𝑗 maps into an affine open 𝑉𝑗 ⊂ 𝑆. Denote
𝑈𝑗1𝑗2

= 𝑈𝑗1
∩ 𝑈𝑗2

and 𝑈𝑗1𝑗2𝑗3
= 𝑈𝑗1

∩ 𝑈𝑗2
∩ 𝑈𝑗3

. By Lemmas 27.3.5 and 27.3.7 we can find
an index 𝑖1 and affine opens 𝑉𝑗,𝑖1 ⊂ 𝑆𝑖1 such that each 𝑉𝑗 is the inverse of this in 𝑆. Let
𝑉𝑗,𝑖 be the inverse image of 𝑉𝑗,𝑖1 in 𝑆𝑖 for 𝑖 ≥ 𝑖1. By the affine case we may find an index
𝑖2 ≥ 𝑖1 and affine schemes 𝑈𝑗,𝑖2 → 𝑉𝑗,𝑖2 such that 𝑈𝑗 = 𝑆 ×𝑆𝑖2

𝑈𝑗,𝑖2 is the base change.
Denote 𝑈𝑗,𝑖 = 𝑆𝑖 ×𝑆𝑖2

𝑈𝑗,𝑖2 for 𝑖 ≥ 𝑖2. By Lemma 27.3.5 there exists an index 𝑖3 ≥ 𝑖2
and open subschemes 𝑊𝑗1,𝑗2,𝑖3 ⊂ 𝑈𝑗1,𝑖3 whose base change to 𝑆 is equal to 𝑈𝑗1𝑗2

. Denote
𝑊𝑗1,𝑗2,𝑖 = 𝑆𝑖 ×𝑆𝑖3

𝑊𝑗1,𝑗2,𝑖3 for 𝑖 ≥ 𝑖3. By part (2) shown above there exists an index 𝑖4 ≥ 𝑖3
and morphisms 𝜑𝑗1,𝑗2,𝑖4 ∶ 𝑊𝑗1,𝑗2,𝑖4 → 𝑊𝑗2,𝑗1,𝑖4 whose base change to 𝑆 gives the identity
morphism 𝑈𝑗1𝑗2

= 𝑈𝑗2𝑗1
for all 𝑗1, 𝑗2. For all 𝑖 ≥ 𝑖4 denote 𝜑𝑗1,𝑗2,𝑖 = id𝑆 × 𝜑𝑗1,𝑗2,𝑖4 the base

change. We claim that for some 𝑖5 ≥ 𝑖4 the system ((𝑈𝑗,𝑖5)𝑗, (𝑊𝑗1,𝑗2,𝑖5)𝑗1,𝑗2
, (𝜑𝑗1,𝑗2,𝑖5)𝑗1,𝑗2

)
forms a glueing datum as in Schemes, Section 21.14. In order to see this we have to verify
that for 𝑖 large enough we have

𝜑−1
𝑗1,𝑗2,𝑖(𝑊𝑗1,𝑗2,𝑖 ∩ 𝑊𝑗1,𝑗3,𝑖) = 𝑊𝑗1,𝑗2,𝑖 ∩ 𝑊𝑗1,𝑗3,𝑖

and that for large enough 𝑖 the cocycle condition holds. The first condition follows from
Lemma 27.3.5 and the fact that 𝑈𝑗2𝑗1𝑗3

= 𝑈𝑗1𝑗2𝑗3
. The second from part (1) of the lemma

proved above and the fact that the cocycle condition holds for the maps id ∶ 𝑈𝑗1𝑗2
→ 𝑈𝑗2𝑗1

.
Ok, so nowwe can use Schemes, Lemma 21.14.2 to glue the system ((𝑈𝑗,𝑖5)𝑗, (𝑊𝑗1,𝑗2,𝑖5)𝑗1,𝑗2

, (𝜑𝑗1,𝑗2,𝑖5)𝑗1,𝑗2
)

to get a scheme 𝑋𝑖5 → 𝑆𝑖5. By construction the base change of 𝑋𝑖5 to 𝑆 is formed by glue-
ing the open affines 𝑈𝑗 along the opens 𝑈𝑗1

← 𝑈𝑗1𝑗2
→ 𝑈𝑗2

. Hence 𝑆 ×𝑆𝑖5
𝑋𝑖5 ≅ 𝑋 as

desired. �

Lemma 27.6.2. With notation and assumptions as in Lemma 27.6.1. Let 𝑖 ∈ 𝐼. Suppose
that𝜑𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 is amorphism of schemes of finite presentation over𝑆𝑖. If the base change
of 𝜑𝑖 to 𝑆 is affine, then there exists an index 𝑖′ ≥ 𝑖 such that id𝑆𝑖′

× 𝜑𝑖 ∶ 𝑋𝑖,𝑆𝑖′
→ 𝑌𝑖,𝑆𝑖′

is
affine.

Proof. For 𝑖′ ≥ 𝑖 denote 𝑋𝑖′ = 𝑆𝑖′ ×𝑆𝑖
𝑋𝑖 and similarly for 𝑌𝑖′. Denote 𝜑𝑖′ the base change

of 𝜑𝑖 to 𝑆𝑖′. Also set 𝑋 = 𝑆 ×𝑆𝑖
𝑋𝑖, 𝑌 = 𝑆 ×𝑆𝑖

𝑋𝑖, and 𝜑 the base change of 𝜑𝑖 to 𝑆. Let
𝑌𝑖 = ⋃ 𝑉𝑗,𝑖 be a finite affine open covering. Set 𝑈𝑗,𝑖 = 𝜑−1

𝑖 (𝑉𝑗,𝑖). For 𝑖′ ≥ 𝑖 we denote 𝑉𝑗,𝑖′

the inverse image of 𝑉𝑗,𝑖 in 𝑌𝑖′ and 𝑈𝑗,𝑖′ = 𝜑−1
𝑖′ (𝑉𝑗,𝑖′). Similarly we have 𝑈𝑗 = 𝜑−1(𝑉𝑗).

Then 𝑈𝑗 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑈𝑗,𝑖′ (see Lemma 27.2.2). Since 𝑈𝑗 is affine by assumption we see that
each 𝑈𝑗,𝑖′ is affine for 𝑖′ large enough, see Lemma 27.3.7. Thus 𝜑𝑖′ is affine for 𝑖′ large
enough, see Morphisms, Lemma 24.11.3. �

Lemma 27.6.3. With notation and assumptions as in Lemma 27.6.1. Let 𝑖 ∈ 𝐼. Suppose
that𝜑𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 is amorphism of schemes of finite presentation over𝑆𝑖. If the base change
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of 𝜑𝑖 to 𝑆 is flat, then there exists an index 𝑖′ ≥ 𝑖 such that id𝑆𝑖′
× 𝜑𝑖 ∶ 𝑋𝑖,𝑆𝑖′

→ 𝑌𝑖,𝑆𝑖′
is

flat.

Proof. For 𝑖′ ≥ 𝑖 denote 𝑋𝑖′ = 𝑆𝑖′ ×𝑆𝑖
𝑋𝑖 and similarly for 𝑌𝑖′. Denote 𝜑𝑖′ the base change

of 𝜑𝑖 to 𝑆𝑖′. Also set 𝑋 = 𝑆 ×𝑆𝑖
𝑋𝑖, 𝑌 = 𝑆 ×𝑆𝑖

𝑋𝑖, and 𝜑 the base change of 𝜑𝑖 to 𝑆. Let
𝑌𝑖 = ⋃𝑗=1,…,𝑚 𝑉𝑗,𝑖 be a finite affine open covering such that each 𝑉𝑗,𝑖 maps into some affine
open of 𝑆𝑖. For each 𝑗 = 1, … 𝑚 let 𝜑−1

𝑖 (𝑉𝑗,𝑖) = ⋃𝑘=1,…,𝑚(𝑗) 𝑈𝑘,𝑗,𝑖 be a finite affine open
covering. For 𝑖′ ≥ 𝑖 we denote 𝑉𝑗,𝑖′ the inverse image of 𝑉𝑗,𝑖 in 𝑌𝑖′ and 𝑈𝑘,𝑗,𝑖′ the inverse
image of 𝑈𝑘,𝑗,𝑖 in 𝑋𝑖′. Similarly we have 𝑈𝑘,𝑗 ⊂ 𝑋 and 𝑉𝑗 ⊂ 𝑌. Then 𝑈𝑘,𝑗 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑈𝑘,𝑗,𝑖′
and 𝑉𝑗 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑉𝑗 (see Lemma 27.2.2). Hence we see that the lemma reduces to the case
that 𝑋𝑖 and 𝑌𝑖 are affine and map into an affine open of 𝑆𝑖, i.e., we may also assume that 𝑆
is affine.
In the affine case we reduce to the following algebra result. Suppose that 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑅𝑖.
For some 𝑖 ∈ 𝐼 suppose given a map 𝐴𝑖 → 𝐵𝑖 of finitely presented 𝑅𝑖-algebras. Then, if
𝑅 ⊗𝑅𝑖

𝐴𝑖 → 𝑅 ⊗𝑅𝑖
𝐵𝑖 is flat, then for some 𝑖′ ≥ 𝑖 the map 𝑅𝑖′ ⊗𝑅𝑖

𝐴𝑖 → 𝑅𝑖′ ⊗𝑅𝑖
𝐵𝑖 is flat.

This follows from Algebra, Lemma 7.120.5 part (3). �

Lemma 27.6.4. With notation and assumptions as in Lemma 27.6.1. Let 𝑖 ∈ 𝐼. Suppose
that 𝜑𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 is a morphism of schemes of finite presentation over 𝑆𝑖. If the base
change of 𝜑𝑖 to 𝑆 is a finite morphism, then there exists an index 𝑖′ ≥ 𝑖 such that id𝑆𝑖′

×𝜑𝑖 ∶
𝑋𝑖,𝑆𝑖′

→ 𝑌𝑖,𝑆𝑖′
is a finite morphism.

Proof. A finite morphism is affine, see Morphisms, Definition 24.42.1. Hence by Lemma
27.6.2 above we may assume that 𝜑𝑖 is affine. By writing 𝑌𝑖 as a finite union of affines we
reduce to proving the result when 𝑋𝑖 and 𝑌𝑖 are affine and map into a common affine 𝑊𝑖 ⊂
𝑆𝑖. The corresponding algebraic statement is the following: Suppose that 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 is a
directed colimit of rings, 𝑖 an index, 𝐴𝑖 → 𝐵𝑖 and 𝐴𝑖 → 𝐶𝑖 ring maps of finite presentation,
and 𝜑𝑖 ∶ 𝐵𝑖 → 𝐶𝑖 a map of 𝐴𝑖-algebras such that

𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖(𝐴𝑖′ ⊗𝐴𝑖
𝐵𝑖) ⟶ 𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖(𝐴𝑖′ ⊗𝐴𝑖

𝐶𝑖)

is finite. Then for some 𝑖′ the map
𝐴𝑖′ ⊗𝐴𝑖

𝐵𝑖 ⟶ 𝐴𝑖′ ⊗𝐴𝑖
𝐶𝑖

is finite. The proof of this statement is omitted. (Hint: It suffices for 𝐶𝑖 to be of finite type
over 𝐴𝑖). �

Lemma 27.6.5. With notation and assumptions as in Lemma 27.6.1. Let 𝑖 ∈ 𝐼. Suppose
that𝜑𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 is amorphism of schemes of finite presentation over𝑆𝑖. If the base change
of 𝜑𝑖 to 𝑆 is a closed immersion, then there exists an index 𝑖′ ≥ 𝑖 such that id𝑆𝑖′

× 𝜑𝑖 ∶
𝑋𝑖,𝑆𝑖′

→ 𝑌𝑖,𝑆𝑖′
is a closed immersion.

Proof. A closed immersion is affine, see Morphisms, Lemma 24.11.9. Hence by Lemma
27.6.2 above we may assume that 𝜑𝑖 is affine. By writing 𝑌𝑖 as a finite union of affines we
reduce to proving the result when 𝑋𝑖 and 𝑌𝑖 are affine and map into a common affine 𝑊𝑖 ⊂
𝑆𝑖. The corresponding algebraic statement is the following: Suppose that 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 is a
directed colimit of rings, 𝑖 an index, 𝐴𝑖 → 𝐵𝑖 and 𝐴𝑖 → 𝐶𝑖 ring maps of finite presentation,
and 𝜑𝑖 ∶ 𝐵𝑖 → 𝐶𝑖 a map of 𝐴𝑖-algebras such that

𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖(𝐴𝑖′ ⊗𝐴𝑖
𝐵𝑖) ⟶ 𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖(𝐴𝑖′ ⊗𝐴𝑖

𝐶𝑖)

is surjective. Then for some 𝑖′ the map
𝐴𝑖′ ⊗𝐴𝑖

𝐵𝑖 ⟶ 𝐴𝑖′ ⊗𝐴𝑖
𝐶𝑖
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is surjective. The proof of this statement is omitted. (Hint: It suffices for 𝐶𝑖 to be of finite
type over 𝐴𝑖). �

Lemma 27.6.6. With notation and assumptions as in Lemma 27.6.1. Let 𝑖 ∈ 𝐼. Suppose
that 𝑋𝑖 is a scheme of finite presentation over 𝑆𝑖. If the base change of 𝑋𝑖 to 𝑆 is separated
over 𝑆 then there exists an index 𝑖′ ≥ 𝑖 such that 𝑋𝑖,𝑆𝑖′

is separated over 𝑆𝑖′.

Proof. Apply Lemma 27.6.5 above to the diagonalmorphismΔ𝑋𝑖/𝑆𝑖
∶ 𝑋𝑖 → 𝑋𝑖×𝑆𝑖

𝑋𝑖. �

Lemma 27.6.7. With notation and assumptions as in Lemma 27.6.1. Let 𝑖 ∈ 𝐼. Suppose
that 𝜑𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 is a morphism of schemes of finite presentation over 𝑆. If the base
change of 𝜑𝑖 to 𝑆 is finite locally free (of degree 𝑑) then there exists an index 𝑖′ ≥ 𝑖 such
that the base change of 𝜑𝑖 to 𝑆𝑖′ is finite locally free (of degree 𝑑).

Proof. By Lemmas 27.6.3 and 27.6.4 we see that we may reduce to the case that 𝜑𝑖 is flat
and finite. On the other hand, 𝜑𝑖 is locally of finite presentation by Morphisms, Lemma
24.20.11. Hence 𝜑𝑖 is finite locally free byMorphisms, Lemma 24.44.2. If moreover 𝜑𝑖 ×𝑆
is finite locally free of degree 𝑑, then the image of 𝑌𝑖 ×𝑆𝑖

𝑆 → 𝑌𝑖 is contained in the open
and closed locus 𝑊𝑑 ⊂ 𝑌𝑖 over which 𝜑𝑖 has degree 𝑑. By Lemma 27.3.4 we see that for
some 𝑖′ ≫ 𝑖 the image of 𝑌𝑖′ → 𝑌𝑖 is contained in 𝑊𝑑. Then the base change of 𝜑𝑖 to 𝑆𝑖′
will be finite locally free of degree 𝑑. �

Lemma 27.6.8. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑓𝑖𝑖′) be an inverse system
of schemes over 𝐼. Assume

(1) all the morphisms 𝑓𝑖𝑖′ ∶ 𝑆𝑖 → 𝑆𝑖′ are affine,
(2) all the schemes 𝑆𝑖 are quasi-compact and quasi-separated.

Let 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖. Then we have the following:
(1) For any sheaf of 𝒪𝑆-modules ℱ of finite presentation there exists an index 𝑖 ∈ 𝐼

and a sheaf of 𝒪𝑆𝑖
-modules of finite presentation ℱ𝑖 such that ℱ ≅ 𝑓∗

𝑖 ℐ𝑖.
(2) Suppose given an index 𝑖 ∈ 𝐼, sheaves of𝒪𝑆𝑖

-modulesℱ𝑖, 𝒢𝑖 of finite presentation
and a morphism 𝜑 ∶ 𝑓∗

𝑖 ℱ𝑖 → 𝑓∗
𝑖 𝒢𝑖 over 𝑆. Then there exists an index 𝑖′ ≥ 𝑖 and

a morphism 𝜑𝑖′ ∶ 𝑓∗
𝑖′𝑖ℱ𝑖 → 𝑓∗

𝑖′𝑖𝒢𝑖 whose base change to 𝑆 is 𝜑.
(3) Suppose given an index 𝑖 ∈ 𝐼, sheaves of𝒪𝑆𝑖

-modulesℱ𝑖, 𝒢𝑖 of finite presentation
and a pair of morphisms 𝜑𝑖, 𝜓𝑖 ∶ ℱ𝑖 → 𝒢𝑖. Assume that the base changes are
equal: 𝑓∗

𝑖 𝜑𝑖 = 𝑓∗
𝑖 𝜓𝑖. Then there exists an index 𝑖′ ≥ 𝑖 such that 𝑓∗

𝑖′𝑖𝜑𝑖 = 𝑓∗
𝑖′𝑖𝜓𝑖.

In other words, the category of modules of finite presentation over 𝑆 is the colimit over 𝐼
of the categories modules of finite presentation over 𝑆𝑖.

Proof. Omitted. Since we have written out completely the proof of Lemma 27.6.1 above
it seems wise to use this here and not completely write this proof out also. For example we
can use:

(1) there is an equivalence of categories between quasi-coherent 𝒪𝑆-modules and
vector bundles over 𝑆, see Constructions, Section 22.6.

(2) a vector bundle 𝐕(ℱ) → 𝑆 is of finite presentation over 𝑆 if and only if ℱ is an
𝒪𝑆-module of finite presentation.

Then you can descend morphisms in terms of morphisms of the associated vectorbundles.
Similarly for objects. �

Lemma 27.6.9. With notation and assumptions as in Lemma 27.6.1. Let 𝑖 ∈ 𝐼. Suppose
that 𝜑𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 is a morphism of schemes of finite presentation over 𝑆𝑖 and that ℱ𝑖 is a
quasi-coherent 𝒪𝑋𝑖

-module of finite presentation. If the pullback of ℱ𝑖 to 𝑋𝑖 ×𝑆𝑖
𝑆 is flat
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over 𝑌𝑖 ×𝑆𝑖
𝑆, then there exists an index 𝑖′ ≥ 𝑖 such that the pullback of ℱ𝑖 to 𝑋𝑖 ×𝑆𝑖

𝑆𝑖′ is
flat over 𝑌𝑖 ×𝑆𝑖

𝑆𝑖′.

Proof. (This lemma is the analogue of Lemma 27.6.3 for modules.) For 𝑖′ ≥ 𝑖 denote
𝑋𝑖′ = 𝑆𝑖′ ×𝑆𝑖

𝑋𝑖, ℱ𝑖′ = (𝑋𝑖′ → 𝑋𝑖)∗ℱ𝑖 and similarly for 𝑌𝑖′. Denote 𝜑𝑖′ the base change
of 𝜑𝑖 to 𝑆𝑖′. Also set 𝑋 = 𝑆 ×𝑆𝑖

𝑋𝑖, 𝑌 = 𝑆 ×𝑆𝑖
𝑋𝑖, ℱ = (𝑋 → 𝑋𝑖)∗ℱ𝑖 and 𝜑 the base

change of 𝜑𝑖 to 𝑆. Let 𝑌𝑖 = ⋃𝑗=1,…,𝑚 𝑉𝑗,𝑖 be a finite affine open covering such that each 𝑉𝑗,𝑖
maps into some affine open of 𝑆𝑖. For each 𝑗 = 1, … 𝑚 let 𝜑−1

𝑖 (𝑉𝑗,𝑖) = ⋃𝑘=1,…,𝑚(𝑗) 𝑈𝑘,𝑗,𝑖
be a finite affine open covering. For 𝑖′ ≥ 𝑖 we denote 𝑉𝑗,𝑖′ the inverse image of 𝑉𝑗,𝑖 in 𝑌𝑖′
and 𝑈𝑘,𝑗,𝑖′ the inverse image of 𝑈𝑘,𝑗,𝑖 in 𝑋𝑖′. Similarly we have 𝑈𝑘,𝑗 ⊂ 𝑋 and 𝑉𝑗 ⊂ 𝑌. Then
𝑈𝑘,𝑗 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑈𝑘,𝑗,𝑖′ and 𝑉𝑗 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑉𝑗 (see Lemma 27.2.2). Since 𝑋𝑖′ = ⋃𝑘,𝑗 𝑈𝑘,𝑗,𝑖′ is a
finite open covering it suffices to prove the lemma for each of the morphisms 𝑈𝑘,𝑗,𝑖 → 𝑉𝑗,𝑖
and the sheaf ℱ𝑖|𝑈𝑘,𝑗,𝑖

. Hence we see that the lemma reduces to the case that 𝑋𝑖 and 𝑌𝑖 are
affine and map into an affine open of 𝑆𝑖, i.e., we may also assume that 𝑆 is affine.

In the affine case we reduce to the following algebra result. Suppose that 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑅𝑖.
For some 𝑖 ∈ 𝐼 suppose given a map 𝐴𝑖 → 𝐵𝑖 of finitely presented 𝑅𝑖-algebras. Let 𝑁𝑖
be a finitely presented 𝐵𝑖-module. Then, if 𝑅 ⊗𝑅𝑖

𝑁𝑖 is flat over 𝑅 ⊗𝑅𝑖
𝐴𝑖, then for some

𝑖′ ≥ 𝑖 the module 𝑅𝑖′ ⊗𝑅𝑖
𝑁𝑖 is flat over 𝑅𝑖′ ⊗𝑅𝑖

𝐴. This is exactly the result proved in
Algebra, Lemma 7.120.5 part (3). �

27.7. Characterizing affine schemes

If 𝑓 ∶ 𝑋 → 𝑆 is a surjective integral morphism of schemes such that 𝑋 is an affine scheme
then 𝑆 is affine too. See [Con07, A.2]. Our proof relies on the Noetherian case which we
stated and proved in Coherent, Lemma 25.15.3. See also [DG67, II 6.7.1].

Lemma 27.7.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume that 𝑓 is surjective
and finite, and assume that 𝑋 is affine. Then 𝑆 is affine.

Proof. Since 𝑓 is surjective and 𝑋 is quasi-compact we see that 𝑆 is quasi-compact. Con-
sider the commutative diagram

𝑋

��

Δ
// 𝑋 × 𝑋

��
𝑆 Δ // 𝑆 × 𝑆

(products over 𝑆𝑝𝑒𝑐(𝐙)). Since 𝑋 is separated the image of the top horizontal arrow is
closed. The right vertical arrow is the composition of 𝑋 × 𝑋 → 𝑋 × 𝑆 → 𝑆 × 𝑆 and hence
is finite (seeMorphisms, Lemmas 24.42.5 and 24.42.6). Hence it is proper (seeMorphisms,
Lemma 24.42.10). Thus the image of Δ(𝑋) in 𝑆 × 𝑆 is closed. But as 𝑋 → 𝑆 is surjective
we conclude that Δ(𝑆) is closed as well. Hence 𝑆 is separated.

By Lemma 27.5.7 there exists a factorization 𝑋 → 𝑌 → 𝑆, with 𝑋 → 𝑌 a closed immersion
and 𝑌 → 𝑆 finite and of finite presentation. Let ℐ ⊂ 𝒪𝑌 be the quasi-coherent sheaf of ideals
cutting out the closed subscheme 𝑋 in 𝑌. By Properties, Lemma 23.20.3 we can write ℐ as a
directed colimit ℐ = 𝑐𝑜𝑙𝑖𝑚𝑎∈𝐴 ℐ𝑎 of its quasi-coherent sheaves of ideals of finite type. Let
𝑋𝑎 ⊂ 𝑌 be the closed subscheme defined by ℐ𝑎. These form an inverse system of schemes
indexed by 𝐴. The transition morphisms 𝑋𝑎 → 𝑋𝑎′ are affine because they are closed
immersions. Each 𝑋𝑎 is quasi-compact and quasi-separated since it is a closed subscheme
of 𝑌 and 𝑌 is quasi-compact and quasi-separated. Each of the morphisms 𝑋𝑎 → 𝑌 is of
finite presentation, see Morphisms, Lemma 24.20.7. Hence the morphisms 𝑋𝑎 → 𝑆 are
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of finite presentation, and also finite as the composition of a closed immersion and a finite
morphism. We have 𝑋 = 𝑙𝑖𝑚𝑎 𝑋𝑎 as follows directly from the fact that ℐ = 𝑐𝑜𝑙𝑖𝑚𝑎∈𝐴 ℐ𝑎.
Hence by Lemma 27.3.7 we see that 𝑋𝑎 is affine for some 𝑎 ∈ 𝐴. Replacing 𝑋 by 𝑋𝑎 we
may assume that 𝑋 → 𝑆 is surjective, finite, of finite presentation and that 𝑋 is affine.
By Proposition 27.3.11 we may write 𝑆 = 𝑙𝑖𝑚𝑖∈𝐼 𝑆𝑖 as a directed limits as schemes of
finite type over 𝐙. By Lemma 27.6.1 we can after shrinking 𝐼 assume there exist schemes
𝑋𝑖 → 𝑆𝑖 of finite presentation such that𝑋𝑖′ = 𝑋𝑖×𝑆𝑆𝑖′ for 𝑖′ ≥ 𝑖 and such that𝑋 = 𝑙𝑖𝑚𝑖 𝑋𝑖.
By Lemma 27.6.4 we may assume that 𝑋𝑖 → 𝑆𝑖 is finite for all 𝑖 ∈ 𝐼 as well. By Lemma
27.3.7 once again we may assume that 𝑋𝑖 is affine for all 𝑖 ∈ 𝐼. Hence the result follows
from the Noetherian case, see Coherent, Lemma 25.15.3. �

Proposition 27.7.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume that 𝑓 is surjective
and integral, and assume that 𝑋 is affine. Then 𝑆 is affine.

Proof. Since 𝑓 is surjective and 𝑋 is quasi-compact we see that 𝑆 is quasi-compact. Con-
sider the commutative diagram

𝑋

��

Δ
// 𝑋 × 𝑋

��
𝑆 Δ // 𝑆 × 𝑆

(products over 𝑆𝑝𝑒𝑐(𝐙)). Since 𝑋 is separated the image of the top horizontal arrow is
closed. The right vertical arrow is the composition of 𝑋 × 𝑋 → 𝑋 × 𝑆 → 𝑆 × 𝑆 and hence
is integral (see Morphisms, Lemmas 24.42.5 and 24.42.6). Hence it is universally closed
(see Morphisms, Lemma 24.42.7). Thus the image of Δ(𝑋) in 𝑆 × 𝑆 is closed. But as
𝑋 → 𝑆 is surjective we conclude that Δ(𝑆) is closed as well. Hence 𝑆 is separated. This
in particular implies that 𝑓 is an affine morphism, see Morphisms, Lemma 24.11.11.
Consider the sheaf 𝒜 = 𝑓∗𝒪𝑋. This is a quasi-coherent sheaf of 𝒪𝑆-algebras, see Schemes,
Lemma 21.24.1. By Properties, Lemma 23.20.3 we can write 𝒜 = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 as a filtered
colimit of finite type 𝒪𝑋-modules. Let 𝒜𝑖 ⊂ 𝒜 be the 𝒪𝑋-subalgebra generated by ℱ𝑖.
Since the map of algebras 𝒪𝑋 → 𝒜 is integral, we see that each 𝒜𝑖 is a finite quasi-coherent
𝒪𝑆-algebra. Hence

𝑋𝑖 = 𝑆𝑝𝑒𝑐
𝑆

(𝒜𝑖) ⟶ 𝑆
is a finite morphism of schemes. It is clear that 𝑋 = 𝑙𝑖𝑚𝑖 𝑋𝑖. Hence by Lemma 27.3.7
we see that for 𝑖 sufficiently large the scheme 𝑋𝑖 is affine. Moreover, since 𝑋 → 𝑆 factors
through each 𝑋𝑖 we see that 𝑋𝑖 → 𝑆 is surjective. Hence we conclude that 𝑆 is affine by
Lemma 27.7.1. �

27.8. Variants of Chow's Lemma

In this sectionwe prove a number of variants of Chow's lemma. Themost interesting version
is probably just the Noetherian case, whichwe stated and proved in Coherent, Section 25.17.

Lemma 27.8.1. Let 𝑆 be a quasi-compact and quasi-separated scheme. Let 𝑓 ∶ 𝑋 → 𝑆
be a separated morphism of finite type. Then there exists an 𝑛 ≥ 0 and a diagram

𝑋

��

𝑋′

��

𝜋
oo // 𝐏𝑛

𝑆

~~
𝑆

where 𝑋′ → 𝐏𝑛
𝑆 is an immersion, and 𝜋 ∶ 𝑋′ → 𝑋 is proper and surjective.
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Proof. By Proposition 27.5.6 we can find a closed immersion 𝑋 → 𝑌 where 𝑌 is separated
and of finite presentation over 𝑆. Clearly, if we prove the assertion for 𝑌, then the result
follows for 𝑋. Hence we may assume that 𝑋 is of finite presentation over 𝑆.
Write 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 as a directed limit of Noetherian schemes, see Proposition 27.3.11. By
Lemma 27.6.1 we can find an index 𝑖 ∈ 𝐼 and a scheme 𝑋𝑖 → 𝑆𝑖 of finite presentation so
that 𝑋 = 𝑆 ×𝑆𝑖

𝑋𝑖. By Lemma 27.6.6 we may assume that 𝑋𝑖 → 𝑆𝑖 is separated. Clearly,
if we prove the assertion for 𝑋𝑖 over 𝑆𝑖, then the assertion holds for 𝑋. The case 𝑋𝑖 → 𝑆𝑖
is treated by Coherent, Lemma 25.17.1. �

Here is a variant of Chow's lemma where we assume the scheme on top has finitely many
irreducible components.

Lemma 27.8.2. Let 𝑆 be a quasi-compact and quasi-separated scheme. Let 𝑓 ∶ 𝑋 →
𝑆 be a separated morphism of finite type. Assume that 𝑋 has finitely many irreducible
components. Then there exists an 𝑛 ≥ 0 and a diagram

𝑋

��

𝑋′

��

𝜋
oo // 𝐏𝑛

𝑆

~~
𝑆

where 𝑋′ → 𝐏𝑛
𝑆 is an immersion, and 𝜋 ∶ 𝑋′ → 𝑋 is proper and surjective. Moreover,

there exists an open dense subscheme 𝑈 ⊂ 𝑋 such that 𝜋−1(𝑈) → 𝑈 is an isomorphism of
schemes.

Proof. Let 𝑋 = 𝑍1 ∪ … ∪ 𝑍𝑛 be the decomposition of 𝑋 into irreducible components. Let
𝜂𝑗 ∈ 𝑍𝑗 be the generic point.
There are (at least) two ways to proceed with the proof. The first is to redo the proof of
Coherent, Lemma 25.17.1 using the general Properties, Lemma 23.26.4 to find suitable
affine opens in 𝑋. (This is the ``standard'' proof.) The second is to use absolute Noetherian
approximation as in the proof of Lemma 27.8.1 above. This is what we will do here.
By Proposition 27.5.6 we can find a closed immersion 𝑋 → 𝑌 where 𝑌 is separated and of
finite presentation over 𝑆. Write 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 as a directed limit of Noetherian schemes, see
Proposition 27.3.11. By Lemma 27.6.1 we can find an index 𝑖 ∈ 𝐼 and a scheme 𝑌𝑖 → 𝑆𝑖
of finite presentation so that 𝑌 = 𝑆 ×𝑆𝑖

𝑌𝑖. By Lemma 27.6.6 we may assume that 𝑌𝑖 → 𝑆𝑖
is separated. We have the following diagram

𝜂𝑗 ∈ 𝑍𝑗
// 𝑋 //

��

𝑌 //

��

𝑌𝑖

��
𝑆 // 𝑆𝑖

Denote ℎ ∶ 𝑋 → 𝑌𝑖 the composition.
For 𝑖′ ≥ 𝑖 write 𝑌𝑖′ = 𝑆𝑖′ ×𝑆𝑖

𝑌𝑖. Then 𝑌 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑌𝑖′, see Lemma 27.2.4. Choose
𝑗, 𝑗′ ∈ {1, … , 𝑛}, 𝑗≠𝑗′. Note that 𝜂𝑗 is not a specialization of 𝜂𝑗′. By Lemma 27.2.3 we
can replace 𝑖 by a bigger index and assume that ℎ(𝜂𝑗) is not a specialization of ℎ(𝜂𝑗′) for
all pairs (𝑗, 𝑗′) as above. For such an index, let 𝑌′ ⊂ 𝑌𝑖 be the scheme theoretic image of
ℎ ∶ 𝑋 → 𝑌𝑖, see Morphisms, Definition 24.4.2. The morphism ℎ is quasi-compact as the
composition of the quasi-compact morphisms 𝑋 → 𝑌 and 𝑌 → 𝑌𝑖 (which is affine). Hence
by Morphisms, Lemma 24.4.3 the morphism 𝑋 → 𝑌′ is dominant. Thus the generic points
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of 𝑌′ are all contained in the set {ℎ(𝜂1), … , ℎ(𝜂𝑛)}, see Morphisms, Lemma 24.6.3. Since
none of the ℎ(𝜂𝑗) is the specialization of another we see that the points ℎ(𝜂1), … , ℎ(𝜂𝑛) are
pairwise distinct and are each a generic point of 𝑌′.

We apply Coherent, Lemma 25.17.1 above to the morphism 𝑌′ → 𝑆𝑖. This gives a diagram

𝑌′

��

𝑌∗

��

𝜋
oo // 𝐏𝑛

𝑆𝑖

��
𝑆𝑖

such that 𝜋 is proper and surjective and an isomorphism over a dense open subscheme 𝑉 ⊂
𝑌′. By our choice of 𝑖 above we know that ℎ(𝜂1), … , ℎ(𝜂𝑛) ∈ 𝑉. Consider the commutative
diagram

𝑋′ 𝑋 ×𝑌′ 𝑌∗ //

��

𝑌∗ //

��

𝐏𝑛
𝑆𝑖

��

𝑋 //

��

𝑌′

��
𝑆 // 𝑆𝑖

Note that 𝑋′ → 𝑋 is an isomorphism over the open subscheme 𝑈 = ℎ−1(𝑉) which contains
each of the 𝜂𝑗 and hence is dense in 𝑋. We conclude 𝑋 ← 𝑋′ → 𝐏𝑛

𝑆 is a solution to the
problem posed in the lemma. �

27.9. Applications of Chow's lemma

We can use Chow's lemma to investigate the notions of proper and separated morphisms.
As a first application we have the following.

Lemma 27.9.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a separated morphism of finite type.
The following are equivalent:

(1) The morphism 𝑓 is proper.
(2) For any morphism 𝑆′ → 𝑆 which is locally of finite type the base change 𝑋𝑆′ →

𝑆′ is closed.
(3) For every 𝑛 ≥ 0 the morphism 𝐀𝑛 × 𝑋 → 𝐀𝑛 × 𝑆 is closed.

Proof. Clearly (1) implies (2), and (2) implies (3), so we just need to show (3) implies (1).
First we reduce to the case when 𝑆 is affine. Assume that (3) implies (1) when the base is
affine. Now let 𝑓 ∶ 𝑋 → 𝑆 be a separated morphism of finite type. Being proper is local
on the base (see Morphisms, Lemma 24.40.3), so if 𝑆 = ⋃𝛼 𝑆𝛼 is an open affine cover, and
if we denote 𝑋𝛼 ∶= 𝑓−1(𝑆𝛼), then it is enough to show that 𝑓|𝑋𝛼

∶ 𝑋𝛼 → 𝑆𝛼 is proper for
all 𝛼. Since 𝑆𝛼 is affine, if the map 𝑓|𝑋𝛼

satisfies (3), then it will satisfy (1) by assumption,
and will be proper. To finish the reduction to the case 𝑆 is affine, we must show that if
𝑓 ∶ 𝑋 → 𝑆 is separated of finite type satisfying (3), then 𝑓|𝑋𝛼

∶ 𝑋𝛼 → 𝑆𝛼 is separated
of finite type satisfying (3). Separatedness and finite type are clear. To see (3), notice that
𝐀𝑛 ×𝑋𝛼 is the open preimage of 𝐀𝑛 ×𝑆𝛼 under the map 1×𝑓. Fix a closed set 𝑍 ⊂ 𝐀𝑛 ×𝑋𝛼.
Let �̄� denote the closure of 𝑍 in 𝐀𝑛 × 𝑋. Then for topological reasons,

1 × 𝑓(�̄�) ∩ 𝐀𝑛 × 𝑆𝛼 = 1 × 𝑓(𝑍).
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Hence 1 × 𝑓(𝑍) is closed, and we have reduced the proof of (3) ⇒ (1) to the affine case.

Assume 𝑆 affine, and 𝑓 ∶ 𝑋 → 𝑆 separated of finite type. We can apply Chow's Lemma
27.8.1 to get 𝜋 ∶ 𝑋′ → 𝑋 proper surjective and 𝑋′ → 𝐏𝑛

𝑆 an immersion. If 𝑋 is proper
over 𝑆, then 𝑋′ → 𝑆 is proper (Morphisms, Lemma 24.40.4). Since 𝐏𝑛

𝑆 → 𝑆 is separated,
we conclude that 𝑋′ → 𝐏𝑛

𝑆 is proper (Morphisms, Lemma 24.40.7) and hence a closed im-
mersion (Schemes, Lemma 21.10.4). Conversely, assume 𝑋′ → 𝐏𝑛

𝑆 is a closed immersion.
Consider the diagram:

(27.9.1.1) 𝑋′ //

𝜋
����

𝐏𝑛
𝑆

��
𝑋

𝑓 // 𝑆

All maps are a priori proper except for 𝑋 → 𝑆. Hence we conclude that 𝑋 → 𝑆 is proper
by Morphisms, Lemma 24.40.8. Therefore, we have shown that 𝑋 → 𝑆 is proper if and
only if 𝑋′ → 𝐏𝑛

𝑆 is a closed immersion.

Assume 𝑆 is affine and (3) holds, and let 𝑛, 𝑋′, 𝜋 be as above. Since being a closed mor-
phism is local on the base, themap 𝑋×𝐏𝑛 → 𝑆×𝐏𝑛 is closed since by (3) 𝑋×𝐀𝑛 → 𝑆×𝐀𝑛 is
closed and since projective space is covered by copies of affine 𝑛-space, see Constructions,
Lemma 22.13.3. By Morphisms, Lemma 24.40.5 the morphism

𝑋′ ×𝑆 𝐏𝑛
𝑆 → 𝑋 ×𝑆 𝐏𝑛

𝑆 = 𝑋 × 𝐏𝑛

is proper. Since 𝐏𝑛 is separated, the projection

𝑋′ ×𝑆 𝐏𝑛
𝑆 = 𝐏𝑛

𝑋′ → 𝑋′

will be separated as it is just a base change of a separated morphism. Therefore, the map
𝑋′ → 𝑋′ ×𝑆 𝐏𝑛

𝑆 is proper, since it is a section to a separated map (see Schemes, Lemma
21.21.12). Composing all these proper morphisms

𝑋′ → 𝑋′ ×𝑆 𝐏𝑛
𝑆 → 𝑋 ×𝑆 𝐏𝑛

𝑆 = 𝑋 × 𝐏𝑛 → 𝑆 × 𝐏𝑛 = 𝐏𝑛
𝑆

we see that the map 𝑋′ → 𝐏𝑛
𝑆 is proper, and hence a closed immersion. �

If the base is Noetherian we can show that the valuative criterion holds using only discrete
valuation rings. First we state the result concerning separation. We will often use solid
commutative diagrams of morphisms of schemes having the following shape

(27.9.1.2) 𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) //

;;

𝑆

with 𝐴 a valuation ring and 𝐾 its field of fractions.

Lemma 27.9.2. Let 𝑆 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of
schemes. Assume 𝑓 is locally of finite type. The following are equivalent:

(1) The morphism 𝑓 is separated.
(2) For any diagram (27.9.1.2) there is at most one dotted arrow.
(3) For all diagrams (27.9.1.2) with 𝐴 a discrete valuation ring there is at most one

dotted arrow.
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(4) For any irreducible component 𝑋0 of 𝑋 with generic point 𝜂 ∈ 𝑋0, for any
discrete valuation ring 𝐴 ⊂ 𝐾 = 𝜅(𝜂) with fraction field 𝐾 and any diagram
(27.9.1.2) such that themorphism𝑆𝑝𝑒𝑐(𝐾) → 𝑋 is the canonical one (see Schemes,
Section 21.13) there is at most one dotted arrow.

Proof. Clearly (1) implies (2), (2) implies (3), and (3) implies (4). It remains to show (4)
implies (1). Assume (4). We begin by reducing to 𝑆 affine. Being separated is a local on
the base (see Schemes, Lemma 21.21.8). Hence, as in the proof of Lemma 27.9.1, if we
can show that whenever 𝑋 → 𝑆 has (4) that the restriction 𝑋𝛼 → 𝑆𝛼 has (4) where 𝑆𝛼 ⊂ 𝑆
is an (affine) open subset and 𝑋𝛼 ∶= 𝑓−1(𝑆𝛼), then we will be done. The generic points of
the irreducible components of 𝑋𝛼 will be the generic points of irreducible components of
𝑋, since 𝑋𝛼 is open in 𝑋. Therefore, any two distinct dotted arrows in the diagram

(27.9.2.1) 𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋𝛼

��
𝑆𝑝𝑒𝑐(𝐴) //

;;

𝑆𝛼

would then give two distinct arrows in diagram (27.9.1.2) via the maps 𝑋𝛼 → 𝑋 and 𝑆𝛼 →
𝑆, which is a contradiction. Thus we have reduced to the case 𝑆 is affine. We remark that
in the course of this reduction, we prove that if 𝑋 → 𝑆 has (4) then the restriction 𝑈 → 𝑉
has (4) for opens 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑆 with 𝑓(𝑈) ⊂ 𝑉.

We next wish to reduce to the case 𝑋 → 𝑆 is finite type. Assume that we know (4) implies
(1) when 𝑋 is finite type. Since 𝑆 is Noetherian and 𝑋 is locally of finite type over 𝑆 we
see 𝑋 is locally Noetherian as well (see Morphisms, Lemma 24.14.6). Thus, 𝑋 → 𝑆 is
quasi-separated (see Properties, Lemma 23.5.4), and therefore we may apply the valuative
criterion to check whether 𝑋 is separated (see Schemes, Lemma 21.22.2). Let 𝑋 = ⋃𝛼 𝑋𝛼
be an affine open cover of 𝑋. Given any two dotted arrows, in a diagram (27.9.1.2), the
image of the closed points of Spec 𝐴 will fall in two sets 𝑋𝛼 and 𝑋𝛽. Since 𝑋𝛼 ∪ 𝑋𝛽
is open, for topological reasons it must contain the image of 𝑆𝑝𝑒𝑐(𝐴) under both maps.
Therefore, the two dotted arrows factor through 𝑋𝛼 ∪ 𝑋𝛽 → 𝑋, which is a scheme of finite
type over 𝑆. Since 𝑋𝛼 ∪ 𝑋𝛽 is an open subset of 𝑋, by our previous remark, 𝑋𝛼 ∪ 𝑋𝛽
satisfies (4), so by assumption, is separated. This implies the two given dotted arrows are
the same. Therefore, we have reduced to 𝑋 → 𝑆 is finite type.

Assume 𝑋 → 𝑆 of finite type and assume (4). Since 𝑋 → 𝑆 is finite type, and 𝑆 is an affine
Noetherian scheme, 𝑋 is also Noetherian (see Morphisms, Lemma 24.14.6). Therefore,
𝑋 → 𝑋 ×𝑆 𝑋 will be a quasi-compact immersion of Noetherian schemes. We proceed by
contradiction. Assume that 𝑋 → 𝑋 ×𝑆 𝑋 is not closed. Then, there is some 𝑦 ∈ 𝑋 ×𝑆 𝑋
in the closure of the image that is not in the image. As 𝑋 is Noetherian it has finitely
many irreducible components. Therefore, 𝑦 is in the closure of the image of one of the
irreducible components 𝑋0 ⊂ 𝑋. Give 𝑋0 the reduced induced structure. The composition
𝑋0 → 𝑋 → 𝑋×𝑆 𝑋 factors through the closed subscheme 𝑋0 ×𝑆 𝑋0 ⊂ 𝑋×𝑆 𝑋. Denote the
closure of Δ(𝑋0) in 𝑋0 ×𝑆 𝑋0 by �̄�0 (again as a reduced closed subscheme). Thus 𝑦 ∈ �̄�0.
Since 𝑋0 → 𝑋0 ×𝑆 𝑋0 is an immersion, the image of 𝑋0 will be open in �̄�0. Hence 𝑋0 and
�̄�0 are birational. Since �̄�0 is a closed subscheme of a Noetherian scheme, it is Noetherian.
Thus, the local ring 𝒪�̄�0,𝑦 is a local Noetherian domain with fraction field 𝐾 equal to the
function field of 𝑋0. By the Krull-Akizuki theorem (see Algebra, Lemma 7.110.11), there
exists a discrete valuation ring 𝐴 dominating 𝒪�̄�0,𝑦 with fraction field 𝐾. This allows to to
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construct a diagram:

(27.9.2.2) Spec 𝐾 //

��

𝑋0

Δ
��

𝐴 //

99

𝑋0 ×𝑆 𝑋0

which sends Spec K to the generic point of Δ(𝑋0) and the closed point of 𝐴 to 𝑦 ∈ 𝑋0×𝑆𝑋0
(use the material in Schemes, Section 21.13 to construct the arrows). There cannot even
exist a set theoretic dotted arrow, since 𝑦 is not in the image of Δ by our choice of 𝑦. By
categorical means, the existence of the dotted arrow in the above diagram is equivalent to
the uniqueness of the dotted arrow in the following diagram:

(27.9.2.3) Spec 𝐾 //

��

𝑋0

��
𝐴 //

;;

𝑆

Therefore, we have non-uniqueness in this latter diagram by the nonexistence in the first.
Therefore, 𝑋0 does not satisfy uniqueness for discrete valuation rings, and since 𝑋0 is an
irreducible component of 𝑋, we have that 𝑋 → 𝑆 does not satisfy (4). Therefore, we have
shown (4) implies (1). �

Lemma 27.9.3. Let 𝑆 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of
finite type. The following are equivalent:

(1) The morphism 𝑓 is proper.
(2) For any diagram (27.9.1.2) there exists exactly one dotted arrow.
(3) For all diagrams (27.9.1.2) with 𝐴 a discrete valuation ring there exists exactly

one dotted arrow.
(4) For any irreducible component 𝑋0 of 𝑋 with generic point 𝜂 ∈ 𝑋0, for any

discrete valuation ring 𝐴 ⊂ 𝐾 = 𝜅(𝜂) with fraction field 𝐾 and any diagram
(27.9.1.2) such that themorphism𝑆𝑝𝑒𝑐(𝐾) → 𝑋 is the canonical one (see Schemes,
Section 21.13) there exists exactly one dotted arrow.

Proof. (1) implies (2) implies (3) implies (4). We will now show (4) implies (1). As in
the proof of Lemma 27.9.2, we can reduce to the case 𝑆 is affine, since properness is local
on the base, and if 𝑋 → 𝑆 satisfies (4), then 𝑋𝛼 → 𝑆𝛼 does as well for open 𝑆𝛼 ⊂ 𝑆 and
𝑋𝛼 = 𝑓−1(𝑆𝛼).

Now 𝑆 is a Noetherian scheme, and so 𝑋 is as well, since 𝑋 → 𝑆 is of finite type. Now we
may use Chow's lemma (Coherent, Lemma 25.17.1) to get a surjective, proper, birational
𝑋′ → 𝑋 and an immersion 𝑋′ → 𝐏𝑛

𝑆. We wish to show 𝑋 → 𝑆 is universally closed. As
in the proof of Lemma 27.9.1, it is enough to check that 𝑋′ → 𝐏𝑛

𝑆 is a closed immersion.
For the sake of contradiction, assume that 𝑋′ → 𝐏𝑛

𝑆 is not a closed immersion. Then there
is some 𝑦 ∈ 𝐏𝑛

𝑆 that is in the closure of the image of 𝑋′, but is not in the image. So 𝑦 is in
the closure of the image of an irreducible component 𝑋′

0 of 𝑋′, but not in the image. Let
�̄�′

0 ⊂ 𝐏𝑛
𝑆 be the closure of the image of 𝑋′

0. As 𝑋′ → 𝐏𝑛
𝑆 is an immersion of Noetherian

schemes, the morphism 𝑋′
0 → �̄�′

0 is open and dense. By Algebra, Lemma 7.110.11 or
Properties, Lemma 23.5.9 we can find a discrete valuation ring 𝐴 dominating 𝒪�̄�′

0,𝑦 and
with identical field of fractions 𝐾. It is clear that 𝐾 is the residue field at the generic point
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of 𝑋′
0. Thus the solid commutative diagram

(27.9.3.1) Spec 𝐾 //

��

𝑋′ //

��

𝐏𝑛
𝑆

��
Spec 𝐴 //

<< 66

𝑋 // 𝑆

Note that the closed point of 𝐴 maps to 𝑦 ∈ 𝐏𝑛
𝑆. By construction, there does not exist a

set theoretic lift to 𝑋′. As 𝑋′ → 𝑋 is birational, the image of 𝑋′
0 in 𝑋 is an irreducible

component 𝑋0 of 𝑋 and 𝐾 is also identified with the function field of 𝑋0. Hence, as 𝑋 →
𝑆 is assumed to satisfy (4), the dotted arrow 𝑆𝑝𝑒𝑐(𝐴) → 𝑋 exists. Since 𝑋′ → 𝑋 is
proper, the dotted arrow lifts to the dotted arrow 𝑆𝑝𝑒𝑐(𝐴) → 𝑋′ (use Schemes, Proposition
21.20.6). We can compose this with the immersion 𝑋′ → 𝐏𝑛

𝑆 to obtain another morphism
(not depicted in the diagram) from 𝑆𝑝𝑒𝑐(𝐴) → 𝐏𝑛

𝑆. Since 𝐏𝑛
𝑆 is proper over 𝑆, it satisfies

(2), and so these two morphisms agree. This is a contradiction, for we have constructed the
forbidden lift of our original map 𝑆𝑝𝑒𝑐(𝐴) → 𝐏𝑛

𝑆 to 𝑋′. �

27.10. Universally closed morphisms

In this section we discuss when a quasi-compact but not necessarily separated morphism is
universally closed. We first prove a lemma which will allow us to check universal closed-
ness after a base change which is locally of finite presentation.

Lemma 27.10.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact morphism of schemes. Let 𝑔 ∶ 𝑇 → 𝑆
be a morphism of schemes. Let 𝑡 ∈ 𝑇 be a point and 𝑍 ⊂ 𝑋𝑇 be a closed subscheme such
that 𝑍 ∩ 𝑋𝑡 = ∅. Then there exists an open neighbourhood 𝑉 ⊂ 𝑇 of 𝑡, a commutative
diagram

𝑉

��

𝑎
// 𝑇′

𝑏
��

𝑇
𝑔 // 𝑆,

and a closed subscheme 𝑍′ ⊂ 𝑋𝑇′ such that
(1) the morphism 𝑏 ∶ 𝑇′ → 𝑆 is locally of finite presentation,
(2) with 𝑡′ = 𝑎(𝑡) we have 𝑍′ ∩ 𝑋𝑡′ = ∅, and
(3) 𝑍 ∩ 𝑋𝑉 maps into 𝑍′ via the morphism 𝑋𝑉 → 𝑋𝑇′.

Proof. Let 𝑠 = 𝑔(𝑡). During the proof we may always replace 𝑇 by an open neighbourhood
of 𝑡. Hence we may also replace 𝑆 by an open neighbourhood of 𝑠. Thus we may and do
assume that 𝑇 and 𝑆 are affine. Say 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), 𝑇 = 𝑆𝑝𝑒𝑐(𝐵), 𝑔 is given by the ring map
𝐴 → 𝐵, and 𝑡 correspond to the prime ideal 𝔮 ⊂ 𝐵.
As 𝑋 → 𝑆 is quasi-compact and 𝑆 is affine we may write 𝑋 = ⋃𝑖=1,…,𝑛 𝑈𝑖 as a finite
union of affine opens. Write 𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝐶𝑖). In particular we have 𝑋𝑇 = ⋃𝑖=1,…,𝑛 𝑈𝑖,𝑇 =
⋃𝑖=1,…𝑛 𝑆𝑝𝑒𝑐(𝐶𝑖 ⊗𝐴 𝐵). Let 𝐼𝑖 ⊂ 𝐶𝑖 ⊗𝐴 𝐵 be the ideal corresponding to the closed sub-
scheme 𝑍 ∩ 𝑈𝑖,𝑇. The condition that 𝑍 ∩ 𝑋𝑡 = ∅ signifies that 𝐼𝑖 generates the unit ideal
in the ring

𝐶𝑖 ⊗𝐴 𝜅(𝔮) = (𝐵 ⧵ 𝔮)−1 (𝐶𝑖 ⊗𝐴 𝐵/𝔮𝐶𝑖 ⊗𝐴 𝐵)
Since 𝐼𝑖(𝐵 ⧵ 𝔮)−1(𝐶𝑖 ⊗𝐴 𝐵) = (𝐵 ⧵ 𝔮)−1𝐼𝑖 this means that 1 = 𝑥𝑖/𝑔𝑖 for some 𝑥𝑖 ∈ 𝐼𝑖 and
𝑔𝑖 ∈ 𝐵, 𝑔𝑖∉𝔮. Thus, clearing denominators we can find a relation of the form

𝑥𝑖 + ∑𝑗
𝑓𝑖,𝑗𝑐𝑖,𝑗 = 𝑔𝑖
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with 𝑥𝑖 ∈ 𝐼𝑖, 𝑓𝑖,𝑗 ∈ 𝔮, 𝑐𝑖,𝑗 ∈ 𝐶𝑖 ⊗𝐴 𝐵, and 𝑔𝑖 ∈ 𝐵, 𝑔𝑖∉𝔮. After replacing 𝐵 by 𝐵𝑔1…𝑔𝑛
, i.e.,

after replacing 𝑇 by a smaller affine neighbourhood of 𝑡, we may assume the equations read

𝑥𝑖 + ∑𝑗
𝑓𝑖,𝑗𝑐𝑖,𝑗 = 1

with 𝑥𝑖 ∈ 𝐼𝑖, 𝑓𝑖,𝑗 ∈ 𝔮, 𝑐𝑖,𝑗 ∈ 𝐶𝑖 ⊗𝐴 𝐵.

To finish the argument write 𝐵 as a colimit of finitely presented 𝐴-algebras 𝐵𝜆 over a di-
rected partially ordered set Λ. For each 𝜆 set 𝔮𝜆 = (𝐵𝜆 → 𝐵)−1(𝔮). For sufficiently large
𝜆 ∈ Λ we can find

(1) an element 𝑥𝑖,𝜆 ∈ 𝐶𝑖 ⊗𝐴 𝐵𝜆 which maps to 𝑥𝑖,
(2) elements 𝑓𝑖,𝑗,𝜆 ∈ 𝔮𝑖,𝜆 mapping to 𝑓𝑖,𝑗, and
(3) elements 𝑐𝑖,𝑗,𝜆 ∈ 𝐶𝑖 ⊗𝐴 𝐵𝜆 mapping to 𝑐𝑖,𝑗.

After increasing 𝜆 a bit more the equation

𝑥𝑖,𝜆 + ∑𝑗
𝑓𝑖,𝑗,𝜆𝑐𝑖,𝑗,𝜆 = 1

will hold. Fix such a 𝜆 and set 𝑇′ = 𝑆𝑝𝑒𝑐(𝐵𝜆). Then 𝑡′ ∈ 𝑇′ is the point corresponding to
the prime 𝔮𝜆. Finally, let 𝑍′ ⊂ 𝑋𝑇′ be the scheme theoretic closure of 𝑍 → 𝑋𝑇 → 𝑋𝑇′.
As 𝑋𝑇 → 𝑋𝑇′ is affine, we can compute 𝑍′ on the affine open pieces 𝑈𝑖,𝑇′ as the closed
subscheme associated to Ker(𝐶𝑖 ⊗𝐴 𝐵𝜆 → 𝐶𝑖 ⊗𝐴 𝐵/𝐼𝑖), see Morphisms, Example 24.4.4.
Hence 𝑥𝑖,𝜆 is in the ideal defining 𝑍′. Thus the last displayed equation shows that 𝑍′ ∩ 𝑋𝑡′

is empty. �

Lemma 27.10.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact morphism of schemes. The following
are equivalent

(1) 𝑓 is universally closed,
(2) for every morphism𝑆′ → 𝑆which is locally of finite presentation the base change

𝑋𝑆′ → 𝑆′ is closed, and
(3) for every 𝑛 the morphism 𝐀𝑛 × 𝑋 → 𝐀𝑛 × 𝑆 is closed.

Proof. It is clear that (1) implies (2). Let us prove that (2) implies (1). Suppose that the
base change 𝑋𝑇 → 𝑇 is not closed for some scheme 𝑇 over 𝑆. By Schemes, Lemma 21.19.8
this means that there exists some specialization 𝑡1  𝑡 in 𝑇 and a point 𝜉 ∈ 𝑋𝑇 mapping
to 𝑡1 such that 𝜉 does not specialize to a point in the fibre over 𝑡. Set 𝑍 = {𝜉} ⊂ 𝑋𝑇.
Then 𝑍 ∩ 𝑋𝑡 = ∅. Apply Lemma 27.10.1. We find an open neighbourhood 𝑉 ⊂ 𝑇 of 𝑡, a
commutative diagram

𝑉

��

𝑎
// 𝑇′

𝑏
��

𝑇
𝑔 // 𝑆,

and a closed subscheme 𝑍′ ⊂ 𝑋𝑇′ such that
(1) the morphism 𝑏 ∶ 𝑇′ → 𝑆 is locally of finite presentation,
(2) with 𝑡′ = 𝑎(𝑡) we have 𝑍′ ∩ 𝑋𝑡′ = ∅, and
(3) 𝑍 ∩ 𝑋𝑉 maps into 𝑍′ via the morphism 𝑋𝑉 → 𝑋𝑇′.

Clearly this means that 𝑋𝑇′ → 𝑇′ maps the closed subset 𝑍′ to a subset of 𝑇′ which contains
𝑎(𝑡1) but not 𝑡′ = 𝑎(𝑡). Since 𝑎(𝑡1)  𝑎(𝑡) = 𝑡′ we conclude that 𝑋𝑇′ → 𝑇′ is not closed.
Hence we have shown that 𝑋 → 𝑆 not universally closed implies that 𝑋𝑇′ → 𝑇′ is not
closed for some 𝑇′ → 𝑆 which is locally of finite presentation. In order words (2) implies
(1).
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Assume that 𝐀𝑛 × 𝑋 → 𝐀𝑛 × 𝑆 is closed for every integer 𝑛. We want to prove that 𝑋𝑇 → 𝑇
is closed for every scheme 𝑇 which is locally of finite presentation over 𝑆. We may of
course assume that 𝑇 is affine and maps into an affine open 𝑉 of 𝑆 (since 𝑋𝑇 → 𝑇 being a
closed is local on 𝑇). In this case there exists a closed immersion 𝑇 → 𝐀𝑛 ×𝑉 because 𝒪𝑇(𝑇)
is a finitely presented 𝒪𝑆(𝑉)-algebra, see Morphisms, Lemma 24.20.2. Then 𝑇 → 𝐀𝑛 × 𝑆
is a locally closed immersion. Hence we get a cartesian diagram

𝑋𝑇

𝑓𝑇
��

// 𝐀𝑛 × 𝑋

𝑓𝑛
��

𝑇 // 𝐀𝑛 × 𝑆
of schemes where the horizontal arrows are locally closed immersions. Hence any closed
subset 𝑍 ⊂ 𝑋𝑇 can be written as 𝑋𝑇 ∩ 𝑍′ for some closed subset 𝑍′ ⊂ 𝐀𝑛 × 𝑋. Then
𝑓𝑇(𝑍) = 𝑇 ∩ 𝑓𝑛(𝑍′) and we see that if 𝑓𝑛 is closed, then also 𝑓𝑇 is closed. �

Lemma 27.10.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a finite type morphism of schemes. Assume 𝑆 is locally
Noetherian. Then the following are equivalent

(1) 𝑓 is universally closed,
(2) for every 𝑛 the morphism 𝐀𝑛 × 𝑋 → 𝐀𝑛 × 𝑆 is closed,
(3) for any diagram (27.9.1.2) there exists some dotted arrow,
(4) for all diagrams (27.9.1.2) with 𝐴 a discrete valuation ring there exists some

dotted arrow.

Proof. The equivalence of (1) and (2) is a special case of Lemma 27.10.2. The equivalence
of (1) and (3) is a special case of Schemes, Proposition 21.20.6. Trivially (3) implies (4).
Thus all we have to do is prove that (4) implies (2). We will prove that 𝐀𝑛 × 𝑋 → 𝐀𝑛 × 𝑆
is closed by the criterion of Schemes, Lemma 21.19.8. Pick 𝑛 and a specialization 𝑧 𝑧′

of points in 𝐀𝑛 × 𝑆 and a point 𝑦 ∈ 𝐀𝑛 × 𝑋 lying over 𝑧. Note that 𝜅(𝑦) is a finitely
generated field extension of 𝜅(𝑧) as 𝐀𝑛 ×𝑋 → 𝐀𝑛 ×𝑆 is of finite type. Hence by Properties,
Lemma 23.5.9 or Algebra, Lemma 7.110.11 implies that there exists a discrete valuation
ring 𝐴 ⊂ 𝜅(𝑦) with fraction field 𝜅(𝑧) dominating the image of 𝒪𝐀𝑛×𝑆,𝑧′ in 𝜅(𝑧). This gives
a commutative diagram

𝑆𝑝𝑒𝑐(𝜅(𝑦)) //

��

𝐀𝑛 × 𝑋

��

// 𝑋

��
𝑆𝑝𝑒𝑐(𝐴) // 𝐀𝑛 × 𝑆 // 𝑆

Now property (4) implies that there exists a morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑋 which fits into this
diagram. Sincewe already have themorphism 𝑆𝑝𝑒𝑐(𝐴) → 𝐀𝑛 from the left lower horizontal
arrow we also get a morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝐀𝑛 × 𝑋 fitting into the left square. Thus the
image 𝑦′ ∈ 𝐀𝑛 × 𝑋 of the closed point is a specialization of 𝑦 lying over 𝑧′. This proves
that specializations lift along 𝐀𝑛 × 𝑋 → 𝐀𝑛 × 𝑆 and we win. �

27.11. Limits and dimensions of fibres

The following lemma ismost often used in the situation of Lemma 27.6.1 to assure that if the
fibres of the limit have dimension ≤ 𝑑, then the fibres at some finite stage have dimension
≤ 𝑑.

Lemma 27.11.1. Let 𝐼 be a directed partially ordered set. Let (𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑖) be an inverse
system of morphisms of schemes over 𝐼. Assume
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(1) all the morphisms 𝑆𝑖′ → 𝑆𝑖 are affine,
(2) all the schemes 𝑆𝑖 are quasi-compact and quasi-separated,
(3) the morphisms 𝑓𝑖 are of finite type, and
(4) the morphisms 𝑋𝑖′ → 𝑋𝑖 ×𝑆𝑖

𝑆𝑖′ are closed immersions.
Let 𝑓 ∶ 𝑋 = 𝑙𝑖𝑚𝑖 𝑋𝑖 → 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 be the limit. Let 𝑑 ≥ 0. If every fibre of 𝑓 has dimension
≤ 𝑑, then for some 𝑖 every fibre of 𝑓𝑖 has dimension ≤ 𝑑.

Proof. For each 𝑖 let 𝑈𝑖 = {𝑥 ∈ 𝑋𝑖 ∣ dim𝑥((𝑋𝑖)𝑓𝑖(𝑥)) ≤ 𝑑}. This is an open subset of 𝑋𝑖,
seeMorphisms, Lemma 24.27.4. Set 𝑍𝑖 = 𝑋𝑖⧵𝑈𝑖 (with reduced induced scheme structure).
We have to show that 𝑍𝑖 = ∅ for some 𝑖. If not, then 𝑍 = 𝑙𝑖𝑚 𝑍𝑖≠∅, see Lemma 27.3.1.
Say 𝑧 ∈ 𝑍 is a point. Note that 𝑍 ⊂ 𝑋 is a closed subscheme. Set 𝑠 = 𝑓(𝑧). For each 𝑖 let
𝑠𝑖 ∈ 𝑆𝑖 be the image of 𝑠. We remark that 𝑍𝑠 is the limit of the schemes (𝑍𝑖)𝑠𝑖

and 𝑍𝑠 is
also the limit of the schemes (𝑍𝑖)𝑠𝑖

base changed to 𝜅(𝑠). Moreover, all the morphisms
𝑍𝑠 ⟶ (𝑍𝑖′)𝑠𝑖′

×𝑆𝑝𝑒𝑐(𝜅(𝑠𝑖′)) 𝑆𝑝𝑒𝑐(𝜅(𝑠)) ⟶ (𝑍𝑖)𝑠𝑖
×𝑆𝑝𝑒𝑐(𝜅(𝑠𝑖)) 𝑆𝑝𝑒𝑐(𝜅(𝑠)) ⟶ 𝑋𝑠

are closed immersions by assumption (4). Hence 𝑍𝑠 is the scheme theoretic intersection of
the closed subschemes (𝑍𝑖)𝑠𝑖

×𝑆𝑝𝑒𝑐(𝜅(𝑠𝑖)) 𝑆𝑝𝑒𝑐(𝜅(𝑠)) in 𝑋𝑠. Since all the irreducible com-
ponents of the schemes (𝑍𝑖)𝑠𝑖

×𝑆𝑝𝑒𝑐(𝜅(𝑠𝑖)) 𝑆𝑝𝑒𝑐(𝜅(𝑠)) have dimension > 𝑑 and contain 𝑧 we
conclude that 𝑍𝑠 contains an irreducible component of dimension > 𝑑 passing through 𝑧
which contradicts the fact that 𝑍𝑠 ⊂ 𝑋𝑠 and dim(𝑋𝑠) ≤ 𝑑. �

Lemma 27.11.2. Let 𝑆 be a quasi-compact and quasi-separated scheme. Let 𝑓 ∶ 𝑋 → 𝑆
be a morphism of finite presentation. Let 𝑑 ≥ 0 be an integer. If 𝑍 ⊂ 𝑋 be a closed
subscheme such that dim(𝑍𝑠) ≤ 𝑑 for all 𝑠 ∈ 𝑆, then there exists a closed subscheme
𝑍′ ⊂ 𝑋 such that

(1) 𝑍 ⊂ 𝑍′,
(2) 𝑍′ → 𝑋 is of finite presentation, and
(3) dim(𝑍′

𝑠) ≤ 𝑑 for all 𝑠 ∈ 𝑆.

Proof. By Proposition 27.3.11 we can write 𝑆 = 𝑙𝑖𝑚 𝑆𝑖 as the limit of a directed inverse
system of Noetherian schemes with affine transition maps. By Lemma 27.6.1 we may as-
sume that there exist a system of morphisms 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑖 of finite presentation such that
𝑋𝑖′ = 𝑋𝑖 ×𝑆𝑖

𝑆𝑖′ for all 𝑖′ ≥ 𝑖 and such that 𝑋 = 𝑋𝑖 ×𝑆𝑖
𝑆. Let 𝑍𝑖 ⊂ 𝑋𝑖 be the scheme

theoretic image of 𝑍 → 𝑋 → 𝑋𝑖. Then for 𝑖′ ≥ 𝑖 the morphism 𝑋𝑖′ → 𝑋𝑖 maps 𝑍𝑖′ into
𝑍𝑖 and the induced morphism 𝑍𝑖′ → 𝑍𝑖 ×𝑆𝑖

𝑆𝑖′ is a closed immersion. By Lemma 27.11.1
we see that the dimension of the fibres of 𝑍𝑖 → 𝑆𝑖 all have dimension ≤ 𝑑 for a suitable
𝑖 ∈ 𝐼. Fix such an 𝑖 and set 𝑍′ = 𝑍𝑖 ×𝑆𝑖

𝑆 ⊂ 𝑋. Since 𝑆𝑖 is Noetherian, we see that 𝑋𝑖
is Noetherian, and hence the morphism 𝑍𝑖 → 𝑋𝑖 is of finite presentation. Therefore also
the base change 𝑍′ → 𝑋 is of finite presentation. Moreover, the fibres of 𝑍′ → 𝑆 are base
changes of the fibres of 𝑍𝑖 → 𝑆𝑖 and hence have dimension ≤ 𝑑. �
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CHAPTER 28

Varieties

28.1. Introduction

In this chapter we start studying varieties and more generally schemes over a field. A fun-
damental reference is [DG67].

28.2. Notation

Throughout this chapter we use the letter 𝑘 to denote the ground field.

28.3. Varieties

In the stacks project we will use the following as our definition of a variety.
Definition 28.3.1. Let 𝑘 be a field. A variety is a scheme 𝑋 over 𝑘 such that 𝑋 is integral
and the structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is separated and of finite type.
This definition has the following drawback. Suppose that 𝑘 ⊂ 𝑘′ is an extension of fields.
Suppose that 𝑋 is a variety over 𝑘. Then the base change 𝑋𝑘′ = 𝑋 ×𝑆𝑝𝑒𝑐(𝑘) 𝑆𝑝𝑒𝑐(𝑘′) is not
necessarily a variety over 𝑘′. This phenomenon (in greater generality) will be discussed in
detail in the following sections. The product of two varieties need not be a variety (this is
really the same phenomenon). Here is an example.
Example 28.3.2. Let 𝑘 = 𝐐. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝐐(𝑖)) and 𝑌 = 𝑆𝑝𝑒𝑐(𝐐(𝑖)). Then the product
𝑋 ×𝑆𝑝𝑒𝑐(𝑘) 𝑌 of the varieties 𝑋 and 𝑌 is not a variety, since it is reducible. (It is isomorphic
to the disjoint union of two copies of 𝑋.)
If the ground field is algebraically closed however, then the product of varieties is a variety.
This follows from the results in the algebra chapter, but there we treat much more general
situations. There is also a simple direct proof of it which we present here.
Lemma 28.3.3. Let 𝑘 be an algebraically closed field. Let 𝑋, 𝑌 be varieties over 𝑘. Then
𝑋 ×𝑆𝑝𝑒𝑐(𝑘) 𝑌 is a variety over 𝑘.
Proof. The morphism 𝑋 ×𝑆𝑝𝑒𝑐(𝑘) 𝑌 → 𝑆𝑝𝑒𝑐(𝑘) is of finite type and separated because it is
the composition of the morphisms 𝑋 ×𝑆𝑝𝑒𝑐(𝑘) 𝑌 → 𝑌 → 𝑆𝑝𝑒𝑐(𝑘) which are separated and of
finite type, see Morphisms, Lemmas 24.14.4 and 24.14.3 and Schemes, Lemma 21.21.13.
To finish the proof it suffices to show that 𝑋 ×𝑆𝑝𝑒𝑐(𝑘) 𝑌 is integral. Let 𝑋 = ⋃𝑖=1,…,𝑛 𝑈𝑖,
𝑌 = ⋃𝑗=1,…,𝑚 𝑉𝑗 be finite affine open coverings. If we can show that each 𝑈𝑖 ×𝑆𝑝𝑒𝑐(𝑘) 𝑉𝑗 is
integral, then we are done by Properties, Lemmas 23.3.2, 23.3.3, and 23.3.4. This reduces
us to the affine case.
The affine case translates into the following algebra statement: Suppose that 𝐴, 𝐵 are inte-
gral domains and finitely generated 𝑘-algebras. Then 𝐴 ⊗𝑘 𝐵 is an integral domain. To get
a contradiction suppose that

(∑𝑖=1,…,𝑛
𝑎𝑖 ⊗ 𝑏𝑖)(∑𝑗=1,…,𝑚

𝑐𝑗 ⊗ 𝑑𝑗) = 0
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in 𝐴⊗𝑘𝐵 with both factors nonzero in 𝐴⊗𝑘𝐵. Wemay assume that 𝑏1, … , 𝑏𝑛 are 𝑘-linearly
independent in 𝐵, and that 𝑑1, … , 𝑑𝑚 are 𝑘-linearly independent in 𝐵. Of course we may
also assume that 𝑎1 and 𝑐1 are nonzero in 𝐴. Hence 𝐷(𝑎1𝑐1) ⊂ 𝑆𝑝𝑒𝑐(𝐴) is nonempty. By
the Hilbert Nullstellensatz (Algebra, Theorem 7.30.1) we can find a maximal ideal 𝔪 ⊂ 𝐴
contained in 𝐷(𝑎1𝑐1) and 𝐴/𝔪 = 𝑘 as 𝑘 is algebraically closed. Denote 𝑎𝑖, 𝑐𝑗 the residue
classes of 𝑎𝑖, 𝑐𝑗 in 𝐴/𝔪 = 𝑘. Then equation above becomes

(∑𝑖=1,…,𝑛
𝑎𝑖𝑏𝑖)(∑𝑗=1,…,𝑚

𝑐𝑗𝑑𝑗) = 0

which is a contradiction with 𝔪 ∈ 𝐷(𝑎1𝑐1), the linear independence of 𝑏1, … , 𝑏𝑛 and
𝑑1, … , 𝑑𝑚, and the fact that 𝐵 is a domain. �

28.4. Geometrically reduced schemes

If 𝑋 is a reduced scheme over a field, then it can happen that 𝑋 becomes nonreduced after
extending the ground field. This does not happen for geometrically reduced schemes.

Definition 28.4.1. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝑥 ∈ 𝑋 be a point.
(1) Let 𝑥 ∈ 𝑋 be a point. We say 𝑋 is geometrically reduced at 𝑥 if for any field

extension 𝑘 ⊂ 𝑘′ and any point 𝑥′ ∈ 𝑋𝑘′ lying over 𝑥 the local ring 𝒪𝑋𝑘′,𝑥′ is
reduced.

(2) We say 𝑋 is geometrically reduced over 𝑘 if 𝑋 is geometrically reduced at every
point of 𝑋.

This may seem a little mysterious at first, but it is really the same thing as the notion dis-
cussed in the algebra chapter. Here are some basic results explaining the connection.

Lemma 28.4.2. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝑥 ∈ 𝑋. The following are
equivalent

(1) 𝑋 is geometrically reduced at 𝑥, and
(2) the ring 𝒪𝑋,𝑥 is geometrically reduced over 𝑘 (see Algebra, Definition 7.40.1).

Proof. Assume (1). This in particular implies that 𝒪𝑋,𝑥 is reduced. Let 𝑘 ⊂ 𝑘′ be a finite
purely inseparable field extension. Consider the ring 𝒪𝑋,𝑥 ⊗𝑘 𝑘′. By Algebra, Lemma
7.43.2 its spectrum is the same as the spectrum of 𝒪𝑋,𝑥. Hence it is a local ring also
(Algebra, Lemma 7.17.2). Therefore there is a unique point 𝑥′ ∈ 𝑋𝑘′ lying over 𝑥 and
𝒪𝑋𝑘′,𝑥′ ≅ 𝒪𝑋,𝑥 ⊗𝑘 𝑘′. By assumption this is a reduced ring. Hence we deduce (2) by
Algebra, Lemma 7.41.3.

Assume (2). Let 𝑘 ⊂ 𝑘′ be a field extension. Since 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘) is surjective, also
𝑋𝑘′ → 𝑋 is surjective (Morphisms, Lemma 24.9.4). Let 𝑥′ ∈ 𝑋𝑘′ be any point lying over
𝑥. The local ring 𝒪𝑋𝑘′,𝑥′ is a localization of the ring 𝒪𝑋,𝑥 ⊗𝑘 𝑘′. Hence it is reduced by
assumption and (1) is proved. �

The notion isn't interesting in characteristic zero.

Lemma 28.4.3. Let 𝑋 be a scheme over a perfect field 𝑘 (e.g. 𝑘 has characteristic zero).
Let 𝑥 ∈ 𝑋. If 𝒪𝑋,𝑥 is reduced, then 𝑋 is geometrically reduced at 𝑥. If 𝑋 is reduced, then
𝑋 is geometrically reduced over 𝑘.

Proof. The first statement follows from Lemma 28.4.2 and Algebra, Lemma 7.40.6 and
the definition of a perfect field (Algebra, Definition 7.42.1). The second statement follows
from the first. �
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Lemma 28.4.4. Let 𝑘 be a field of characteristic 𝑝 > 0. Let 𝑋 be a scheme over 𝑘. The
following are equivalent

(1) 𝑋 is geometrically reduced,
(2) 𝑋𝑘′ is reduced for every field extension 𝑘 ⊂ 𝑘′,
(3) 𝑋𝑘′ is reduced for every finite purely inseparable field extension 𝑘 ⊂ 𝑘′,
(4) 𝑋𝑘1/𝑝 is reduced,
(5) 𝑋𝑘𝑝𝑒𝑟𝑓 is reduced,
(6) 𝑋�̄� is reduced,
(7) for every affine open 𝑈 ⊂ 𝑋 the ring 𝒪𝑋(𝑈) is geometrically reduced (see Alge-

bra, Definition 7.40.1).

Proof. Assume (1). Then for every field extension 𝑘 ⊂ 𝑘′ and every point 𝑥′ ∈ 𝑋𝑘′ the
local ring of 𝑋𝑘′ at 𝑥′ is reduced. In other words 𝑋𝑘′ is reduced. Hence (2).

Assume (2). Let 𝑈 ⊂ 𝑋 be an affine open. Then for every field extension 𝑘 ⊂ 𝑘′ the scheme
𝑋𝑘′ is reduced, hence 𝑈𝑘′ = 𝑆𝑝𝑒𝑐(𝒪(𝑈) ⊗𝑘 𝑘′) is reduced, hence 𝒪(𝑈) ⊗𝑘 𝑘′ is reduced
(see Properties, Section 23.3). In other words 𝒪(𝑈) is geometrically reduced, so (7) holds.

Assume (7). For any field extension 𝑘 ⊂ 𝑘′ the base change 𝑋𝑘′ is gotten by gluing the
spectra of the rings 𝒪𝑋(𝑈) ⊗𝑘 𝑘′ where 𝑈 is affine open in 𝑋 (see Schemes, Section 21.17).
Hence 𝑋𝑘′ is reduced. So (1) holds.

This proves that (1), (2), and (7) are equivalent. These are equivalent to (3), (4), (5), and
(6) because we can apply Algebra, Lemma 7.41.3 to 𝒪𝑋(𝑈) for 𝑈 ⊂ 𝑋 affine open. �

Lemma 28.4.5. Let 𝑘 be a field of characteristic 𝑝 > 0. Let 𝑋 be a scheme over 𝑘. Let
𝑥 ∈ 𝑋. The following are equivalent

(1) 𝑋 is geometrically reduced at 𝑥,
(2) 𝒪𝑋𝑘′,𝑥′ is reduced for every finite purely inseparable field extension 𝑘′ of 𝑘 and

𝑥′ ∈ 𝑋𝑘′ the unique point lying over 𝑥,
(3) 𝒪𝑋𝑘1/𝑝,𝑥′ is reduced for 𝑥′ ∈ 𝑋𝑘′ the unique point lying over 𝑥, and
(4) 𝒪𝑋𝑘𝑝𝑒𝑟𝑓,𝑥′ is reduced for 𝑥′ ∈ 𝑋𝑘𝑝𝑒𝑟𝑓 the unique point lying over 𝑥.

Proof. Note that if 𝑘 ⊂ 𝑘′ is purely inseparable, then 𝑋𝑘′ → 𝑋 induces a homeomorphism
on underlying topological spaces, see Algebra, Lemma 7.43.2. Whence the uniqueness of
𝑥′ lying over 𝑥 mentioned in the statement. Moreover, in this case 𝒪𝑋𝑘′,𝑥′ = 𝒪𝑋,𝑥 ⊗𝑘 𝑘′.
Hence the lemma follows from Lemma 28.4.2 above and Algebra, Lemma 7.41.3. �

Lemma 28.4.6. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝑘′/𝑘 be a field extension.
Let 𝑥 ∈ 𝑋 be a point, and let 𝑥′ ∈ 𝑋𝑘′ be a point lying over 𝑥. The following are equivalent

(1) 𝑋 is geometrically reduced at 𝑥,
(2) 𝑋𝑘′ is geometrically reduced at 𝑥′.

In particular, 𝑋 is geometrically reduced over 𝑘 if and only if 𝑋𝑘′ is geometrically reduced
over 𝑘′.

Proof. It is clear that (1) implies (2). Assume (2). Let 𝑘 ⊂ 𝑘″ be a finite purely inseparable
field extension and let 𝑥″ ∈ 𝑋𝑘″ be a point lying over 𝑥 (actually it is unique). We can
find a common field extension 𝑘 ⊂ 𝑘‴ (i.e. with both 𝑘′ ⊂ 𝑘‴ and 𝑘″ ⊂ 𝑘‴) and a point
𝑥‴ ∈ 𝑋𝑘‴ lying over both 𝑥′ and 𝑥″. Consider the map of local rings

𝒪𝑋𝑘″,𝑥″ ⟶ 𝒪𝑋𝑘‴,𝑥⁗.
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This is a flat local ring homomorphism and hence faithfully flat. By (2) we see that the local
ring on the right is reduced. Thus by Algebra, Lemma 7.146.2 we conlude that 𝒪𝑋𝑘″,𝑥″ is
reduced. Thus by Lemma 28.4.5 we conclude that 𝑋 is geometrically reduced at 𝑥. �

Lemma 28.4.7. Let 𝑘 be a field. Let 𝑋, 𝑌 be schemes over 𝑘.
(1) If 𝑋 is geometrically reduced at 𝑥, and 𝑌 reduced, then 𝑋×𝑘 𝑌 is reduced at every

point lying over 𝑥.
(2) If 𝑋 geometrically reduced over 𝑘 and 𝑌 reduced. Then 𝑋 ×𝑘 𝑌 is reduced.

Proof. Combine, Lemmas 28.4.2 and 28.4.4 and Algebra, Lemma 7.40.5. �

Lemma 28.4.8. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘.
(1) If 𝑥′  𝑥 is a specialization and 𝑋 is geometrically reduced at 𝑥, then 𝑋 is

geometrically reduced at 𝑥′.
(2) If 𝑥 ∈ 𝑋 such that (a) 𝒪𝑋,𝑥 is reduced, and (b) for each specialization 𝑥′  𝑥

where 𝑥′ is a generic point of an irreducible component of 𝑋 the scheme 𝑋 is
geometrically reduced at 𝑥′, then 𝑋 is geometrically reduced at 𝑥.

(3) If 𝑋 is reduced and geometrically reduced at all generic points of irreducible
components of 𝑋, then 𝑋 is geometrically reduced.

Proof. Part (1) follows from Lemma 28.4.2 and the fact that if 𝐴 is a geometrically reduced
𝑘-algebra, then 𝑆−1𝐴 is a geometrically reduced 𝑘-algebra for any multiplicative subset 𝑆
of 𝐴, see Algebra, Lemma 7.40.3.

Let 𝐴 = 𝒪𝑋,𝑥. The assumptions (a) and (b) of (2) imply that 𝐴 is reduced, and that 𝐴𝔮 is
geometrically reduced over 𝑘 for every minimal prime 𝔮 of 𝐴. Hence 𝐴 is geometrically
reduced over 𝑘, see Algebra, Lemma 7.40.7. Thus 𝑋 is geometrically reduced at 𝑥, see
Lemma 28.4.2.

Part (3) follows trivially from part (2). �

Lemma 28.4.9. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝑥 ∈ 𝑋. Assume 𝑋 locally
Noetherian and geometrically reduced at 𝑥. Then there exists an open neighbourhood 𝑈 ⊂
𝑋 of 𝑥 which is geometrically reduced over 𝑘.

Proof. Let 𝑅 be a Noetherian 𝑘-algebra. Let 𝔭 ⊂ 𝑅 be a prime. Let 𝐼 = Ker(𝑅 → 𝑅𝔭.
Since 𝐼𝑅𝔭 = 𝑅𝔭 and 𝐼 is finitely generated there exists an 𝑓 ∈ 𝑅, 𝑓∉𝔭 such that 𝑓𝐼 = 0.
Hence 𝑅𝑓 ⊂ 𝑅𝔭.

Assume 𝑋 locally Noetherian and geometrically reduced at 𝑥. If we apply the above to
𝑅 = 𝒪𝑋(𝑈) for some affine open neighbourhood of 𝑥, and 𝔭 ⊂ 𝑅 the prime corresponding
to 𝑥, then we see that after shrinking 𝑈 we may assume 𝑅 ⊂ 𝑅𝔭. By Lemma 28.4.2 the
assumption means that 𝑅𝔭 is geometrically reduced over 𝑘. By Algebra, Lemma 7.40.2 this
implies that 𝑅 is geometrically reduced over 𝑘, which in turn implies that 𝑈 is geometrically
reduced. �

Example 28.4.10. Let 𝑘 = 𝐅𝑝(𝑠, 𝑡), i.e., a purely transcendental extension of the prime
field. Consider the variety 𝑋 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]/(1 + 𝑠𝑥𝑝 + 𝑡𝑦𝑝)). Let 𝑘 ⊂ 𝑘′ be any extension
such that both 𝑠 and 𝑡 have a 𝑝th root in 𝑘′. Then the base change 𝑋𝑘′ is not reduced.
Namely, the ring 𝑘′[𝑥, 𝑦]/(1 + 𝑠𝑥𝑝 + 𝑡𝑦𝑝) contains the element 1 + 𝑠1/𝑝𝑥 + 𝑡1/𝑝𝑦 whose 𝑝th
power is zero but which is not zero (since the ideal (1+𝑠𝑥𝑝 +𝑡𝑦𝑝) certainly does not contain
any nonzero element of degree < 𝑝).
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Lemma 28.4.11. Let 𝑘 be a field. Let 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) be locally of finite type. Assume
𝑋 has finitely many irreducible components. Then there exists a finite purely inseparable
extension 𝑘 ⊂ 𝑘′ such that (𝑋𝑘′)𝑟𝑒𝑑 is geometrically reduced over 𝑘′.

Proof. To prove this lemma we may replace 𝑋 by its reduction 𝑋𝑟𝑒𝑑. Hence we may as-
sume that 𝑋 is reduced and locally of finite type over 𝑘. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑋 be the generic
points of the irreducible components of 𝑋. Note that for every purely inseparable alge-
braic extension 𝑘 ⊂ 𝑘′ the morphism (𝑋𝑘′)𝑟𝑒𝑑 → 𝑋 is a homeomorphism, see Algebra,
Lemma 7.43.2. Hence the points 𝑥′

1, … , 𝑥′
𝑛 lying over 𝑥1, … , 𝑥𝑛 are the generic points of

the irreducible components of (𝑋𝑘′)𝑟𝑒𝑑. As 𝑋 is reduced the local rings 𝐾𝑖 = 𝒪𝑋,𝑥𝑖
are

fields, see Algebra, Lemma 7.23.3. As 𝑋 is locally of finite type over 𝑘 the field extensions
𝑘 ⊂ 𝐾𝑖 are finitely generated field extensions. Finally, the local rings 𝒪𝑋𝑘′,𝑥′

𝑖
are the fields

(𝐾𝑖 ⊗𝑘 𝑘′)𝑟𝑒𝑑. By Algebra, Lemma 7.42.3 we can find a finite purely inseparable exten-
sion 𝑘 ⊂ 𝑘′ such that (𝐾𝑖 ⊗𝑘 𝑘′)𝑟𝑒𝑑 are separable field extensions of 𝑘′. In particular each
(𝐾𝑖 ⊗𝑘 𝑘′)𝑟𝑒𝑑 is geometrically reduced over 𝑘′ by Algebra, Lemma 7.41.1. At this point
Lemma 28.4.8 part (3) implies that (𝑋𝑘′)𝑟𝑒𝑑 is geometrically reduced. �

28.5. Geometrically connected schemes

If 𝑋 is a connected scheme over a field, then it can happen that 𝑋 becomes disconnected af-
ter extending the ground field. This does not happen for geometrically connected schemes.
Definition 28.5.1. Let 𝑋 be a scheme over the field 𝑘. We say 𝑋 is geometrically connected
over 𝑘 if the scheme 𝑋𝑘′ is connected1 for every field extension 𝑘′ of 𝑘.
Here is an example of a variety which is not geometrically connected.
Example 28.5.2. Let 𝑘 = 𝐐. The scheme 𝑋 = 𝑆𝑝𝑒𝑐(𝐐(𝑖)) is a variety over 𝑆𝑝𝑒𝑐(𝐐). But
the base change 𝑋𝐂 is the spectrum of 𝐂 ⊗𝐐 𝐐(𝑖) ≅ 𝐂 × 𝐂 which is the disjoint union
of two copies of 𝑆𝑝𝑒𝑐(𝐂). So in fact, this is an example of a non-geometrically connected
variety.
Lemma 28.5.3. Let 𝑋 be a scheme over the field 𝑘. Let 𝑘 ⊂ 𝑘′ be a field extension. Then
𝑋 is geometrically connected over 𝑘 if and only if 𝑋𝑘′ is geometrically connected over 𝑘′.

Proof. If 𝑋 is geometrically connected over 𝑘, then it is clear that 𝑋𝑘′ is geometrically
connected over 𝑘′. For the converse, note that for any field extension 𝑘 ⊂ 𝑘″ there exists
a common field extension 𝑘′ ⊂ 𝑘‴ and 𝑘″ ⊂ 𝑘‴. As the morphism 𝑋𝑘‴ → 𝑋𝑘″ is
surjective (as a base change of a surjective morphism between spectra of fields) we see that
the connectedness of 𝑋𝑘‴ implies the connectedness of 𝑋𝑘″. Thus if 𝑋𝑘′ is geometrically
connected over 𝑘′ then 𝑋 is geometrically connected over 𝑘. �

Lemma 28.5.4. Let 𝑘 be a field. Let 𝑋, 𝑌 be schemes over 𝑘. Assume 𝑋 is geometrically
connected over 𝑘. Then the projection morphism

𝑝 ∶ 𝑋 ×𝑘 𝑌 ⟶ 𝑌
induces a bijection between connected components.

Proof. The scheme theoretic fibres of 𝑝 are connected and nonempty, since they are base
changes of the geometrically connected scheme𝑋 by field extensions. Moreover the scheme
theoretic fibres are homeomorphic to the set theoretic fibres, see Schemes, Lemma 21.18.5.
By Morphisms, Lemma 24.22.4 the map 𝑝 is open. Thus we may apply Topology, Lemma
5.4.5 to conclude. �

1An empty topological space is connected.
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Lemma 28.5.5. Let 𝑘 be a field. Let 𝐴 be a 𝑘-algebra. Then 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) is geometrically
connected over 𝑘 if and only if 𝐴 is geometrically connected over 𝑘 (see Algebra, Definition
7.44.3).

Proof. Immediate from the definitions. �

Lemma 28.5.6. Let 𝑘 ⊂ 𝑘′ be an extension of fields. Let 𝑋 be a scheme over 𝑘. Assume
𝑘 separably algebraically closed. Then the morphism 𝑋𝑘′ → 𝑋 induces a bijection of
connected components. In particular, 𝑋 is geometrically connected over 𝑘 if and only if 𝑋
is connected.

Proof. Since 𝑘 is separably algebraically closed we see that 𝑘′ is geometrically connected
over 𝑘, see Algebra, Lemma 7.44.4. Hence 𝑍 = 𝑆𝑝𝑒𝑐(𝑘′) is geometrically connected over
𝑘 by Lemma 28.5.5 above. Since 𝑋𝑘′ = 𝑍 ×𝑘 𝑋 the result is a special case of Lemma
28.5.4. �

Lemma 28.5.7. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝑘 be a separable alge-
braic closure of 𝑘. Then 𝑋 is geometrically connected if and only if the base change 𝑋𝑘 is
connected.

Proof. Assume 𝑋𝑘 is connected. Let 𝑘 ⊂ 𝑘′ be a field extension. There exists a field
extension 𝑘 ⊂ 𝑘′ such that 𝑘′ embeds into 𝑘′ as an extension of 𝑘. By Lemma 28.5.6 we
see that 𝑋𝑘′ is connected. Since 𝑋𝑘′ → 𝑋𝑘′ is surjective we conclude that 𝑋𝑘′ is connected
as desired. �

Lemma 28.5.8. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝐴 be a 𝑘-algebra. Let
𝑉 ⊂ 𝑋𝐴 be a quasi-compact open. Then there exists a finitely generated 𝑘-subalgebra
𝐴′ ⊂ 𝐴 and a quasi-compact open 𝑉′ ⊂ 𝑋𝐴′ such that 𝑉 = 𝑉′

𝐴.

Proof. We remark that if 𝑋 is also quasi-separated this follows fromLimits, Lemma 27.3.5.
Let 𝑈1, … , 𝑈𝑛 be finitely many affine opens of 𝑋 such that 𝑉 ⊂ ⋃ 𝑈𝑖,𝐴. Say 𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝑅𝑖).
Since 𝑉 is quasi-compact we can find finitely many 𝑓𝑖𝑗 ∈ 𝑅𝑖 ⊗𝑘 𝐴, 𝑗 = 1, … , 𝑛𝑖 such that
𝑉 = ⋃𝑖 ⋃𝑗=1,…,𝑛𝑖

𝐷(𝑓𝑖𝑗) where 𝐷(𝑓𝑖𝑗) ⊂ 𝑈𝑖,𝐴 is the corresponding standard open. (We do
not claim that 𝑉 ∩ 𝑈𝑖,𝐴 is the union of the 𝐷(𝑓𝑖𝑗), 𝑗 = 1, … , 𝑛𝑖.) It is clear that we can find a
finitely generated 𝑘-subalgebra 𝐴′ ⊂ 𝐴 such that 𝑓𝑖𝑗 is the image of some 𝑓′

𝑖𝑗 ∈ 𝑅𝑖 ⊗𝑘 𝐴′.
Set 𝑉′ = ⋃ 𝐷(𝑓′

𝑖𝑗) which is a quasi-compact open of 𝑋𝐴′. Denote 𝜋 ∶ 𝑋𝐴 → 𝑋𝐴′ the
canonical morphism. We have 𝜋(𝑉) ⊂ 𝑉′ as 𝜋(𝐷(𝑓𝑖𝑗)) ⊂ 𝐷(𝑓′

𝑖𝑗). If 𝑥 ∈ 𝑋𝐴 with 𝜋(𝑥) ∈ 𝑉′,
then 𝜋(𝑥) ∈ 𝐷(𝑓′

𝑖𝑗) for some 𝑖, 𝑗 and we see that 𝑥 ∈ 𝐷(𝑓𝑖𝑗) as 𝑓′
𝑖𝑗 maps to 𝑓𝑖𝑗. Thus we see

that 𝑉 = 𝜋−1(𝑉′) as desired. �

Let 𝑘 be a field. Let 𝑘 ⊂ 𝑘 be a (possibly infinite) Galois extension. For example 𝑘 could
be the separable algebraic closure of 𝑘. For any 𝜎 ∈ Gal(𝑘/𝑘) we get a corresponding
automorphism 𝑆𝑝𝑒𝑐(𝜎) ∶ 𝑆𝑝𝑒𝑐(𝑘) ⟶ 𝑆𝑝𝑒𝑐(𝑘). Note that 𝑆𝑝𝑒𝑐(𝜎) ∘ 𝑆𝑝𝑒𝑐(𝜏) = 𝑆𝑝𝑒𝑐(𝜏 ∘ 𝜎).
Hence we get an action

Gal(𝑘/𝑘)𝑜𝑝𝑝 × 𝑆𝑝𝑒𝑐(𝑘) ⟶ 𝑆𝑝𝑒𝑐(𝑘)

of the opposite group on the scheme 𝑆𝑝𝑒𝑐(𝑘). Let 𝑋 be a scheme over 𝑘. Since 𝑋𝑘 =
𝑆𝑝𝑒𝑐(𝑘) ×𝑆𝑝𝑒𝑐(𝑘) 𝑋 by definition we see that the action above induces a canonical action

(28.5.8.1) Gal(𝑘/𝑘)𝑜𝑝𝑝 × 𝑋𝑘 ⟶ 𝑋𝑘.
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Lemma 28.5.9. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝑘 be a (possibly infinite)
Galois extension of 𝑘. Let 𝑉 ⊂ 𝑋𝑘 be a quasi-compact open. Then

(1) there exists a finite subextension 𝑘 ⊂ 𝑘′ ⊂ 𝑘 and a quasi-compact open 𝑉′ ⊂ 𝑋𝑘′

such that 𝑉 = (𝑉′)𝑘,
(2) there exists an open subgroup 𝐻 ⊂ Gal(𝑘/𝑘) such that 𝜎(𝑉) = 𝑉 for all 𝜎 ∈ 𝐻.

Proof. By Lemma 28.5.8 there exists a finite subextension 𝑘 ⊂ 𝑘′ ⊂ 𝑘 and an open 𝑉′ ⊂
𝑋𝑘′ which pulls back to 𝑉. This proves (1). Since Gal(𝑘/𝑘′) is open in Gal(𝑘/𝑘) part (2) is
clear as well. �

Lemma 28.5.10. Let 𝑘 be a field. Let 𝑘 ⊂ 𝑘 be a (possibly infinite) Galois extension. Let
𝑋 be a scheme over 𝑘. Let 𝑇 ⊂ 𝑋𝑘 have the following properties

(1) 𝑇 is a closed subset of 𝑋𝑘,
(2) for every 𝜎 ∈ Gal(𝑘/𝑘) we have 𝜎(𝑇) = 𝑇.

Then there exists a closed subset 𝑇 ⊂ 𝑋 whose inverse image in 𝑋𝑘′ is 𝑇.

Proof. This lemma immediately reduces to the case where 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) is affine. In this
case, let 𝐼 ⊂ 𝐴 ⊗𝑘 𝑘 be the radical ideal corresponding to 𝑇. Assumption (2) implies that
𝜎(𝐼) = 𝐼 for all 𝜎 ∈ Gal(𝑘/𝑘). Pick 𝑥 ∈ 𝐼. There exists a finite Galois extension 𝑘 ⊂ 𝑘′

contained in 𝑘 such that 𝑥 ∈ 𝐴 ⊗𝑘 𝑘′. Set 𝐺 = Gal(𝑘′/𝑘). Set

𝑃(𝑇) = ∏𝜎∈𝐺
(𝑇 − 𝜎(𝑥)) ∈ (𝐴 ⊗𝑘 𝑘′)[𝑇]

It is clear that 𝑃(𝑇) is monic and is actually an element of (𝐴 ⊗𝑘 𝑘′)𝐺[𝑇] = 𝐴[𝑇] (by basic
Galois theory). Moreover, if we write 𝑃(𝑇) = 𝑇𝑑 + 𝑎1𝑇𝑑−1 + … + 𝑎0 the we see that
𝑎𝑖 ∈ 𝐼 ∶= 𝐴 ∩ 𝐼. By Algebra, Lemma 7.34.5 we see that 𝑥 is contained in the radical of
𝐼(𝐴 ⊗𝑘 𝑘). Hence 𝐼 is the radical of 𝐼(𝐴 ⊗𝑘 𝑘) and setting 𝑇 = 𝑉(𝐼) is a solution. �

Lemma 28.5.11. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. The following are equivalent
(1) 𝑋 is geometrically connected,
(2) for every finite separable field extension 𝑘 ⊂ 𝑘′ the scheme 𝑋𝑘′ is connected.

Proof. It follows immediately from the definition that (1) implies (2). Assume that 𝑋 is
not geometrically connected. Let 𝑘 ⊂ 𝑘 be a separable algebraic closure of 𝑘. By Lemma
28.5.7 it follows that 𝑋𝑘 is disconnected. Say 𝑋𝑘 = 𝑈 ⨿ 𝑉 with 𝑈 and 𝑉 open, closed, and
nonempty.

Suppose that 𝑊 ⊂ 𝑋 is any quasi-compact open. Then 𝑊𝑘 ∩ 𝑈 and 𝑊𝑘 ∩ 𝑉 are open and
closed in 𝑊𝑘. In particular 𝑊𝑘 ∩ 𝑈 and 𝑊𝑘 ∩ 𝑉 are quasi-compact, and by Lemma 28.5.9
both 𝑊𝑘 ∩ 𝑈 and 𝑊𝑘 ∩ 𝑉 are defined over a finite subextension and invariant under an open
subgroup of Gal(𝑘/𝑘). We will use this without further mention in the following.

Pick 𝑊0 ⊂ 𝑋 quasi-compact open such that both 𝑊0,𝑘 ∩ 𝑈 and 𝑊0,𝑘 ∩ 𝑉 are nonempty.
Choose a finite subextension 𝑘 ⊂ 𝑘′ ⊂ 𝑘 and a decompostion 𝑊0,𝑘′ = 𝑈′

0 ⨿ 𝑉′
0 into open

and closed subsets such that 𝑊0,𝑘 ∩ 𝑈 = (𝑈′
0)𝑘 and 𝑊0,𝑘 ∩ 𝑉 = (𝑉′

0)𝑘. Let 𝐻 = Gal(𝑘/𝑘′) ⊂
Gal(𝑘/𝑘). In particular 𝜎(𝑊0,𝑘 ∩ 𝑈) = 𝑊0,𝑘 ∩ 𝑈 and similarly for 𝑉.

Having chosen 𝑊0, 𝑘′ as above, for every quasi-compact open 𝑊 ⊂ 𝑋 we set

𝑈𝑊 = ⋂𝜎∈𝐻
𝜎(𝑊𝑘 ∩ 𝑈), 𝑉𝑊 = ⋃𝜎∈𝐻

𝜎(𝑊𝑘 ∩ 𝑉).
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Now, since 𝑊𝑘 ∩ 𝑈 and 𝑊𝑘 ∩ 𝑉 are fixed by an open subgroup of Gal(𝑘/𝑘) we see that the
union and intersection above are finite. Hence 𝑈𝑊 and 𝑉𝑊 are both open and closed. Also,
by construction 𝑊�̄� = 𝑈𝑊 ⨿ 𝑉𝑊.

We claim that if 𝑊 ⊂ 𝑊′ ⊂ 𝑋 are quasi-compact open, then 𝑊𝑘 ∩ 𝑈𝑊′ = 𝑈𝑊 and
𝑊𝑘 ∩ 𝑉𝑊′ = 𝑉𝑊. Verification omitted. Hence we see that upon defining 𝑈 = ⋃𝑊⊂𝑋 𝑈𝑊
and 𝑉 = ⋃𝑊⊂𝑋 𝑉𝑊 we obtain 𝑋𝑘 = 𝑈 ⨿ 𝑉 is a disjoint union of open and closed subsets. It
is clear that 𝑉 is nonempty as it is constructed by taking unions (locally). On the other hand,
𝑈 is nonempty since it contains 𝑊0 ∩ 𝑈 by construction. Finally, 𝑈, 𝑉 ⊂ 𝑋�̄� are closed and
𝐻-invariant by construction. Hence by Lemma 28.5.10 we have 𝑈 = (𝑈′)�̄�, and 𝑉 = (𝑉′)�̄�
for some closed 𝑈′, 𝑉′ ⊂ 𝑋𝑘′. Clearly 𝑋𝑘′ = 𝑈′ ⨿ 𝑉′ and we see that 𝑋𝑘′ is disconnected
as desired. �

Lemma 28.5.12. Let 𝑘 be a field. Let 𝑘 ⊂ 𝑘 be a (possibly infinite) Galois extension. Let
𝑓 ∶ 𝑇 → 𝑋 be a morphism of schemes over 𝑘. Assume 𝑇𝑘 nonempty connected and 𝑋𝑘
disconnected. Then 𝑋 is disconnected.

Proof. Write 𝑋𝑘 = 𝑈 ∐ 𝑉 with 𝑈 and 𝑉 open and closed. Denote 𝑓 ∶ 𝑇𝑘 → 𝑋𝑘 the base
change of 𝑓. Since 𝑇𝑘 is connected we see that 𝑇𝑘 is contained in either 𝑓−1(𝑈) or 𝑓−1(𝑉).
Say 𝑇𝑘 ⊂ 𝑓−1(𝑈).

Fix a quasi-compact open 𝑊 ⊂ 𝑋. There exists a finite Galois subextension 𝑘 ⊂ 𝑘′ ⊂ 𝑘
such that 𝑈 ∩ 𝑊𝑘 and 𝑉 ∩ 𝑊𝑘 come from quasi-compact opens 𝑈′, 𝑉′ ⊂ 𝑊𝑘′. Then also
𝑊𝑘′ = 𝑈′ ∐ 𝑉′. Consider

𝑈″ = ⋂𝜎∈Gal(𝑘′/𝑘)
𝜎(𝑈′), 𝑉″ = ⋃𝜎∈Gal(𝑘′/𝑘)

𝜎(𝑉′).

These are Galois invariant, open and closed, and 𝑊𝑘′ = 𝑈″ ∐ 𝑉″. By Lemma 28.5.10
we get open and closed subsets 𝑈𝑊, 𝑉𝑊 ⊂ 𝑊 such that 𝑈″ = (𝑈𝑊)𝑘′, 𝑉″ = (𝑉𝑊)𝑘′ and
𝑊 = 𝑈𝑊 ∐ 𝑉𝑊.

We claim that if 𝑊 ⊂ 𝑊′ ⊂ 𝑋 are quasi-compact open, then 𝑊 ∩ 𝑈𝑊′ = 𝑈𝑊 and 𝑊 ∩
𝑉𝑊′ = 𝑉𝑊. Verification omitted. Hence we see that upon defining 𝑈 = ⋃𝑊⊂𝑋 𝑈𝑊 and
𝑉 = ⋃𝑊⊂𝑋 𝑉𝑊 we obtain 𝑋 = 𝑈 ∐ 𝑉. It is clear that 𝑉 is nonempty as it is constructed
by taking unions (locally). On the other hand, 𝑈 is nonempty since it contains 𝑓(𝑇) by
construction. �

Lemma 28.5.13. Let 𝑘 be a field. Let 𝑇 → 𝑋 be a morphism of schemes over 𝑘. Assume
𝑇 is nonempty and geometrically connected and 𝑋 connected. Then 𝑋 is geometrically
connected.

Proof. This is a reformulation of Lemma 28.5.12. �

Lemma 28.5.14. Let 𝑘 be a field. Let𝑋 be a scheme over 𝑘. Assume𝑋 is connected and has
a point 𝑥 such that 𝑘 is algebraically closed in 𝜅(𝑥). Then 𝑋 is geometrically connected.
In particular, if 𝑋 has a 𝑘-rational point and 𝑋 is connected, then 𝑋 is geometrically
connected.

Proof. Set 𝑇 = 𝑆𝑝𝑒𝑐(𝜅(𝑥)). Let 𝑘 ⊂ 𝑘 be a separable algebraic closure of 𝑘. The as-
sumption on 𝑘 ⊂ 𝜅(𝑥) implies that 𝑇𝑘 is irreducible, see Algebra, Lemma 7.43.10. Hence
by Lemma 28.5.13 we see that 𝑋𝑘 is connected. By Lemma 28.5.7 we conclude that 𝑋 is
geometrically connected. �
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Lemma 28.5.15. Let 𝑘 ⊂ 𝐾 be an extension of fields. Let 𝑋 be a scheme over 𝑘. For
every connected component 𝑇 of 𝑋 the inverse image 𝑇𝐾 ⊂ 𝑋𝐾 is a union of connected
components of 𝑋𝐾.

Proof. This is a purely topological statement. Denote 𝑝 ∶ 𝑋𝐾 → 𝑋 the projection mor-
phism. Let 𝑇 ⊂ 𝑋 be a connected component of 𝑋. Let 𝑡 ∈ 𝑇𝐾 = 𝑝−1(𝑇). Let 𝐶 ⊂ 𝑋𝐾 be
a connected component containing 𝑡. Then 𝑝(𝐶) is a connected subset of 𝑋 which meets 𝑇,
hence 𝑝(𝐶) ⊂ 𝑇. Hence 𝐶 ⊂ 𝑇𝐾. �

Remark 28.5.16. Let 𝑘 ⊂ 𝐾 be an extension of fields. Let 𝑋 be a scheme over 𝑘. Denote
𝑝 ∶ 𝑋𝐾 → 𝑋 the projection morphism. Let 𝑇 ⊂ 𝑋𝐾 be a connected component. Is it true
that 𝑝(𝑇) is a connected component of 𝑋? We do not know the answer, even when 𝑘 ⊂ 𝐾
is finite! If you do, or if you have a reference, please email stacks.project@gmail.com.

Let 𝑋 be a scheme. We denote 𝜋0(𝑋) the set of connected components of 𝑋.

Lemma 28.5.17. Let 𝑘 be a field, with separable algebraic closure 𝑘. Let 𝑋 be a scheme
over 𝑘. There is an action

Gal(𝑘/𝑘)𝑜𝑝𝑝 × 𝜋0(𝑋𝑘) ⟶ 𝜋0(𝑋𝑘)

with the following properties:
(1) An element 𝑇 ∈ 𝜋0(𝑋𝑘) is fixed by the action if and only if there exists a connected

component 𝑇 ⊂ 𝑋, which is geometrically connected over 𝑘, such that 𝑇𝑘 = 𝑇.
(2) For any field extension 𝑘 ⊂ 𝑘′ with separable algebraic closure 𝑘′ the diagram

Gal(𝑘′/𝑘′) × 𝜋0(𝑋𝑘′) //

��

𝜋0(𝑋𝑘′)

��
Gal(𝑘/𝑘) × 𝜋0(𝑋𝑘) // 𝜋0(𝑋𝑘)

is commutative (where the right vertical arrow is a bijection according to Lemma
28.5.6).

Proof. The action (28.5.8.1) of Gal(𝑘/𝑘) on 𝑋𝑘 induces an action on its connected compo-
nents. Connected components are always closed (Topology, Lemma 5.4.3). Hence if 𝑇 is
as in (1), then by Lemma 28.5.10 there exists a closed subset 𝑇 ⊂ 𝑋 such that 𝑇 = 𝑇𝑘. Note
that 𝑇 is geometrically connected over 𝑘, see Lemma 28.5.7. To see that 𝑇 is a connected
component of 𝑋, suppose that 𝑇 ⊂ 𝑇′, 𝑇≠𝑇′ where 𝑇′ is a connected component of 𝑋. In
this case 𝑇′

𝑘′ strictly contains 𝑇 and hence is disconnnected. By Lemma 28.5.12 this means
that 𝑇′ is disconnected! Contradiction.

We omit the proof of the functoriality in (2). �

Lemma 28.5.18. Let 𝑘 be a field, with separable algebraic closure 𝑘. Let 𝑋 be a scheme
over 𝑘. Assume

(1) 𝑋 is quasi-compact, and
(2) the connected components of 𝑋𝑘 are open.

Then
(a) 𝜋0(𝑋𝑘) is finite, and
(b) the action of Gal(𝑘/𝑘) on 𝜋0(𝑋𝑘) is continuous.
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Moreover, assumptions (1) and (2) are satisfied when 𝑋 is of finite type over 𝑘.

Proof. Since the connected components are open, cover 𝑋𝑘 (Topology, Lemma 5.4.3) and
𝑋𝑘 is quasi-compact, we conclude that there are only finitely many of them. Thus (a) holds.
By Lemma 28.5.8 these connected components are each defined over a finite subextension
of 𝑘 ⊂ 𝑘 and we get (b). If 𝑋 is of finite type over 𝑘, then 𝑋𝑘 is of finite type over 𝑘
(Morphisms, Lemma 24.14.4). Hence 𝑋𝑘 is a Noetherian scheme (Morphisms, Lemma
24.14.6) and has an underlying Noetherian topological space (Properties, Lemma 23.5.5).
Thus 𝑋𝑘 has finitely many irreducible components (Topology, Lemma 5.6.2) and a fortiori
finitely many connected components (which are therefore open). �

28.6. Geometrically irreducible schemes

If 𝑋 is an irreducible scheme over a field, then it can happen that 𝑋 becomes reducible after
extending the ground field. This does not happen for geometrically irreducible schemes.

Definition 28.6.1. Let𝑋 be a scheme over the field 𝑘. We say𝑋 is geometrically irreducible
over 𝑘 if the scheme 𝑋𝑘′ is irreducible2 for any field extension 𝑘′ of 𝑘.

Lemma 28.6.2. Let 𝑋 be a scheme over the field 𝑘. Let 𝑘 ⊂ 𝑘′ be a field extension. Then
𝑋 is geometrically irreducible over 𝑘 if and only if 𝑋𝑘′ is geometrically irreducible over
𝑘′.

Proof. If 𝑋 is geometrically irreducible over 𝑘, then it is clear that 𝑋𝑘′ is geometrically
irreducible over 𝑘′. For the converse, note that for any field extension 𝑘 ⊂ 𝑘″ there exists
a common field extension 𝑘′ ⊂ 𝑘‴ and 𝑘″ ⊂ 𝑘‴. As the morphism 𝑋𝑘‴ → 𝑋𝑘″ is
surjective (as a base change of a surjective morphism between spectra of fields) we see that
the irreducibility of 𝑋𝑘‴ implies the irreducibility of 𝑋𝑘″. Thus if 𝑋𝑘′ is geometrically
irreducible over 𝑘′ then 𝑋 is geometrically irreducible over 𝑘. �

Lemma 28.6.3. Let 𝑋 be a scheme over a separably closed field 𝑘. If 𝑋 is irreducible, then
𝑋𝐾 is irreducible for any field extension 𝑘 ⊂ 𝐾. I.e., 𝑋 is geometrically irreducible over 𝑘.

Proof. Use Properties, Lemma 23.3.3 and Algebra, Lemma 7.43.4. �

Lemma 28.6.4. Let 𝑘 be a field. Let 𝑋, 𝑌 be schemes over 𝑘. Assume 𝑋 is geometrically
irreducible over 𝑘. Then the projection morphism

𝑝 ∶ 𝑋 ×𝑘 𝑌 ⟶ 𝑌
induces a bijection between irreducible components.

Proof. First, note that the scheme theoretic fibres of 𝑝 are irreducible, since they are base
changes of the geometrically irreducible scheme 𝑋 by field extensions. Moreover the
scheme theoretic fibres are homeomorphic to the set theoretic fibres, see Schemes, Lemma
21.18.5. By Morphisms, Lemma 24.22.4 the map 𝑝 is open. Thus we may apply Topology,
Lemma 5.5.8 to conclude. �

Lemma 28.6.5. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. The following are equivalent
(1) 𝑋 is geometrically irreducible over 𝑘,
(2) for every affine open 𝑈 the 𝑘-algebra 𝒪𝑋(𝑈) is geometrically irreducible over 𝑘

(see Algebra, Definition 7.43.6),
(3) 𝑋 is irreducible and there exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that

each 𝑘-algebra 𝒪𝑋(𝑈𝑖) is geometrically irreducible, and

2An irreducible space is nonempty.
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(4) there exists an open covering 𝑋 = ⋃𝑖∈𝐼 𝑋𝑖 such that 𝑋𝑖 is geometrically irre-
ducible for each 𝑖 and such that 𝑋𝑖 ∩ 𝑋𝑗≠∅ for all 𝑖, 𝑗 ∈ 𝐼.

Moreover, if 𝑋 is geometrically irreducible so is every open subscheme of 𝑋.

Proof. An affine scheme 𝑆𝑝𝑒𝑐(𝐴) over 𝑘 is geometrically irreducible if and only if 𝐴 is geo-
metrically irreducible over 𝑘; this is immediate from the definitions. Recall that if a scheme
is irreducible so is every nonempty open subscheme of 𝑋, any two nonempty open subsets
have a nonempty intersection. Also, if every affine open is irreducible then the scheme is
irreducible, see Properties, Lemma 23.3.3. Hence the final statement of the lemma is clear,
as well as the implications (1) ⇒ (2), (2) ⇒ (3), and (3) ⇒ (4). If (4) holds, then for any
field extension 𝑘′/𝑘 the scheme 𝑋𝑘′ has a covering by irreducible opens which pairwise
intersect. Hence 𝑋𝑘′ is irreducible. Hence (4) implies (1). �

Lemma 28.6.6. Let 𝑋 be a geometrically irreducible scheme over the field 𝑘. Let 𝜉 ∈ 𝑋
be its generic point. Then 𝜅(𝜉) is a geometrically irreducible over 𝑘.

Proof. Combining Lemma 28.6.5 and Algebra, Lemma 7.43.8 we see that 𝒪𝑋,𝜉 is geomet-
rically irreducible over 𝑘. Since 𝒪𝑋,𝜉 → 𝜅(𝜉) is a surjection with locally nilpotent kernel
(see Algebra, Lemma 7.23.3) it follows that 𝜅(𝜉) is geometrically irreducible, see Algebra,
Lemma 7.43.2. �

Lemma 28.6.7. Let 𝑘 ⊂ 𝑘′ be an extension of fields. Let 𝑋 be a scheme over 𝑘. Set
𝑋′ = 𝑋𝑘′. Assume 𝑘 separably algebraically closed. Then the morphism 𝑋′ → 𝑋 induces
a bijection of irreducible components.

Proof. Since 𝑘 is separably algebraically closed we see that 𝑘′ is geometrically irreducible
over 𝑘, see Algebra, Lemma 7.43.7. Hence 𝑍 = 𝑆𝑝𝑒𝑐(𝑘′) is geometrically irreducible over
𝑘. by Lemma 28.6.5 above. Since 𝑋′ = 𝑍 ×𝑘 𝑋 the result is a special case of Lemma
28.6.4. �

Lemma 28.6.8. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Assume 𝑋 is quasi-compact.
The following are equivalent:

(1) 𝑋 is geometrically irreducible over 𝑘,
(2) for every finite separable field extension 𝑘 ⊂ 𝑘′ the scheme 𝑋𝑘′ is irreducible,

and
(3) 𝑋𝑘 is irreducible, where 𝑘 ⊂ 𝑘 is a separable algebraic closure of 𝑘.

Proof. Assume 𝑋𝑘 is irreducible, i.e., assume (3). Let 𝑘 ⊂ 𝑘′ be a field extension. There
exists a field extension 𝑘 ⊂ 𝑘′ such that 𝑘′ embeds into 𝑘′ as an extension of 𝑘. By Lemma
28.6.7 we see that 𝑋𝑘′ is irreducible. Since 𝑋𝑘′ → 𝑋𝑘′ is surjective we conclude that 𝑋𝑘′

is irreducible. Hence (1) holds.

Let 𝑘 ⊂ 𝑘 be a separable algebraic closure of 𝑘. Assume not (3), i.e., assume 𝑋𝑘 is
reducible. Our goal is to show that also 𝑋𝑘′ is reducible for some finite subextension
𝑘 ⊂ 𝑘′ ⊂ 𝑘. Let 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 be an affine open covering with 𝑈𝑖 not empty. If for
some 𝑖 the scheme 𝑈𝑖 is reducible, or if for some pair 𝑖≠𝑗 the intersection 𝑈𝑖 ∩ 𝑈𝑗 is empty,
then 𝑋 is reducible (Properties, Lemma 23.3.3) and we are done. In particular we may
assume that 𝑈𝑖,𝑘 ∩ 𝑈𝑗,𝑘 for all 𝑖, 𝑗 ∈ 𝐼 is nonempty and we conclude that 𝑈𝑖,𝑘 has to be re-
ducible for some 𝑖. According to Algebra, Lemma 7.43.5 this means that 𝑈𝑖,𝑘′ is reducible
for some finite separable field extension 𝑘 ⊂ 𝑘′. Hence also 𝑋𝑘′ is reducible. Thus we see
that (2) implies (3).
The implication (1) ⇒ (2) is immediate. This proves the lemma. �
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Lemma 28.6.9. Let 𝑘 ⊂ 𝐾 be an extension of fields. Let 𝑋 be a scheme over 𝑘. For
every irreducible component 𝑇 of 𝑋 the inverse image 𝑇𝐾 ⊂ 𝑋𝐾 is a union of irreducible
components of 𝑋𝐾.

Proof. Let 𝑇 ⊂ 𝑋 be an irreducible component of 𝑋. The morphism 𝑇𝐾 → 𝑇 is flat, so
generalizations lift along 𝑇𝐾 → 𝑇. Hence every 𝜉 ∈ 𝑇𝐾 which is a generic point of an
irreducible component of 𝑇𝐾 maps to the generic point 𝜂 of 𝑇. If 𝜉′  𝜉 is a specialization
in 𝑋𝐾 then 𝜉′ maps to 𝜂 since there are no points specializing to 𝜂 in 𝑋. Hence 𝜉′ ∈ 𝑇𝐾 and
we conclude that 𝜉 = 𝜉′. In other words 𝜉 is the generic point of an irreducible component
of 𝑋𝐾. This means that the irreducible components of 𝑇𝐾 are all irreducible components
of 𝑋𝐾. �

For a scheme 𝑋 we denote IrredComp(𝑋) the set of irreducible components of 𝑋.

Lemma 28.6.10. Let 𝑘 ⊂ 𝐾 be an extension of fields. Let 𝑋 be a scheme over 𝑘. For every
irreducible component 𝑇 ⊂ 𝑋𝐾 the image of 𝑇 in 𝑋 is an irreducible component in 𝑋. This
defines a canonical map

IrredComp(𝑋𝐾) ⟶ IrredComp(𝑋)

which is surjective.

Proof. Consider the diagram
𝑋𝐾

��

𝑋𝐾

��

oo

𝑋 𝑋𝑘
oo

where 𝐾 is the separable algebraic closure of 𝐾, and where 𝑘 is the separable algebraic
closure of 𝑘. By Lemma 28.6.7 the morphism 𝑋𝐾 → 𝑋𝑘 induces a bijection between
irreducible components. Hence it suffices to show the lemma for the morphisms 𝑋𝑘 → 𝑋
and 𝑋𝐾 → 𝑋𝐾. In other words we may assume that 𝐾 = 𝑘.

The morphism 𝑝 ∶ 𝑋𝑘 → 𝑋 is integral, flat and surjective. Flatness implies that general-
izations lift along 𝑝, see Morphisms, Lemma 24.24.8. Hence generic points of irreducible
components of 𝑋𝑘 map to generic points of irreducible components of 𝑋. Integrality im-
plies that 𝑝 is universally closed, see Morphisms, Lemma 24.42.7. Hence we conclude that
the image 𝑝(𝑇) of an irreducible component is a closed irreducible subset which contains a
generic point of an irreducible component of 𝑋, hence 𝑝(𝑇) is an irreducible component of
𝑋. This proves the first assertion. If 𝑇 ⊂ 𝑋 is an irreducible component, then 𝑝−1(𝑇) = 𝑇𝐾
is a nonempty union of irreducible components, see Lemma 28.6.9. Each of these neces-
sarily maps onto 𝑇 by the first part. Hence the map is surjective. �

Lemma 28.6.11. Let 𝑘 be a field, with separable algebraic closure 𝑘. Let 𝑋 be a scheme
over 𝑘. There is an action

Gal(𝑘/𝑘)𝑜𝑝𝑝 × IrredComp(𝑋𝑘) ⟶ IrredComp(𝑋𝑘)

with the following properties:
(1) An element 𝑇 ∈ IrredComp(𝑋𝑘) is fixed by the action if and only if there exists

an irreducible component 𝑇 ⊂ 𝑋, which is geometrically irreducible over 𝑘, such
that 𝑇𝑘 = 𝑇.
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(2) For any field extension 𝑘 ⊂ 𝑘′ with separable algebraic closure 𝑘′ the diagram

Gal(𝑘′/𝑘′) × IrredComp(𝑋𝑘′) //

��

IrredComp(𝑋𝑘′)

��
Gal(𝑘/𝑘) × IrredComp(𝑋𝑘) // IrredComp(𝑋𝑘)

is commutative (where the right vertical arrow is a bijection according to Lemma
28.6.7).

Proof. The action (28.5.8.1) of Gal(𝑘/𝑘) on 𝑋𝑘 induces an action on its irreducible compo-
nents. Irreducible components are always closed (Topology, Lemma 5.4.3). Hence if 𝑇 is
as in (1), then by Lemma 28.5.10 there exists a closed subset 𝑇 ⊂ 𝑋 such that 𝑇 = 𝑇𝑘. Note
that 𝑇 is geometrically irreducible over 𝑘, see Lemma 28.6.8. To see that 𝑇 is an irreducible
component of 𝑋, suppose that 𝑇 ⊂ 𝑇′, 𝑇≠𝑇′ where 𝑇′ is an irreducible component of 𝑋.
Let 𝜂 be the generic point of 𝑇. It maps to the generic point 𝜂 of 𝑇. Then the generic point
𝜉 ∈ 𝑇′ specializes to 𝜂. As 𝑋𝑘 → 𝑋 is flat there exists a point 𝜉 ∈ 𝑋𝑘 which maps to 𝜉
and specializes to 𝜂. It follows that the closure of the singleton {𝜉} is an irreducible closed
subset of 𝑋𝜉 which strictly contains 𝑇. This is the desired contradiction.

We omit the proof of the functoriality in (2). �

Lemma 28.6.12. Let 𝑘 be a field, with separable algebraic closure 𝑘. Let 𝑋 be a scheme
over 𝑘. The fibres of the map

IrredComp(𝑋𝑘) ⟶ IrredComp(𝑋)

of Lemma 28.6.10 are exactly the orbits of Gal(𝑘/𝑘) under the action of Lemma 28.6.11.

Proof. Let 𝑇 ⊂ 𝑋 be an irreducible component of 𝑋. Let 𝜂 ∈ 𝑇 be its generic point. By
Lemmas 28.6.9 and 28.6.10 the generic points of irreducible components of 𝑇 which map
into 𝑇 map to 𝜂. By Algebra, Lemma 7.43.12 the Galois group acts transitively on all of
the points of 𝑋𝑘 mapping to 𝜂. Hence the lemma follows. �

Lemma 28.6.13. Let 𝑘 be a field. Assume 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) locally of finite type. In this case
(1) the action

Gal(𝑘/𝑘)𝑜𝑝𝑝 × IrredComp(𝑋𝑘) ⟶ IrredComp(𝑋𝑘)

is continuous if we give IrredComp(𝑋𝑘) the discrete topology,
(2) every irreducible component of 𝑋𝑘 can be defined over a finite extension of 𝑘,

and
(3) given any irreducible component 𝑇 ⊂ 𝑋 the scheme 𝑇𝑘 is a finite union of irre-

ducible components of 𝑋𝑘 which are all in the same Gal(𝑘/𝑘)-orbit.

Proof. Let 𝑇 be an irreducible component of 𝑋𝑘. We may choose an affine open 𝑈 ⊂
𝑋 such that 𝑇 ∩ 𝑈𝑘 is not empty. Write 𝑈 = 𝑆𝑝𝑒𝑐(𝐴), so 𝐴 is a finite type 𝑘-algebra,
see Morphisms, Lemma 24.14.2. Hence 𝐴𝑘 is a finite type 𝑘-algebra, and in particular
Noetherian. Let 𝔭 = (𝑓1, … , 𝑓𝑛) be the prime ideal corresponding to 𝑇 ∩ 𝑈𝑘. Since 𝐴𝑘 =
𝐴 ⊗𝑘 𝑘 we see that there exists a finite subextension 𝑘 ⊂ 𝑘′ ⊂ 𝑘 such that each 𝑓𝑖 ∈ 𝐴𝑘′.
It is clear that Gal(𝑘/𝑘′) fixes 𝑇, which proves (1).
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Part (2) follows by applying Lemma 28.6.11 (1) to the situation over 𝑘′ which implies the
irreducible component 𝑇 is of the form 𝑇′

𝑘
for some irreducible 𝑇′ ⊂ 𝑋𝑘′.

To prove (3), let 𝑇 ⊂ 𝑋 be an irreducible component. Choose an irreducible component
𝑇 ⊂ 𝑋𝑘 which maps to 𝑇, see Lemma 28.6.10. By the above the orbit of 𝑇 is finite, say it is
𝑇1, … , 𝑇𝑛. Then 𝑇1 ∪ … ∪ 𝑇𝑛 is a Gal(𝑘/𝑘)-invariant closed subset of 𝑋𝑘 hence of the form
𝑊𝑘 for some 𝑊 ⊂ 𝑋 closed by Lemma 28.5.10. Clearly 𝑊 = 𝑇 and we win. �

Lemma 28.6.14. Let 𝑘 be a field. Let 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) be locally of finite type. Assume 𝑋 has
finitely many irreducible components. Then there exists a finite separable extension 𝑘 ⊂ 𝑘′

such that every irreducible component of 𝑋𝑘′ is geometrically irreducible over 𝑘′.

Proof. Let 𝑘 be a separable algebraic closure of 𝑘. The assumption that 𝑋 has finitely many
irreducible components combined with Lemma 28.6.13 (3) shows that 𝑋𝑘 has finitely many
irreducible components 𝑇1, … , 𝑇𝑛. By Lemma 28.6.13 (2) there exists a finite extension
𝑘 ⊂ 𝑘′ ⊂ 𝑘 and irreducible components 𝑇𝑖 ⊂ 𝑋𝑘′ such that 𝑇𝑖 = 𝑇𝑖,𝑘 and we win. �

Lemma28.6.15. Let𝑋 be a scheme over the field 𝑘. Assume𝑋 has finitely many irreducible
components which are all geometrically irreducible. Then 𝑋 has finitely many connected
components each of which is geometrically connected.

Proof. This is clear because a connected component is a union of irreducible components.
Details omitted. �

28.7. Geometrically integral schemes

If 𝑋 is an irreducible scheme over a field, then it can happen that 𝑋 becomes reducible after
extending the ground field. This does not happen for geometrically irreducible schemes.

Definition 28.7.1. Let 𝑋 be a scheme over the field 𝑘.
(1) Let 𝑥 ∈ 𝑋. We say 𝑋 is geometrically pointwise integral at 𝑥 if for every field

extension 𝑘 ⊂ 𝑘′ and every 𝑥′ ∈ 𝑋𝑘′ lying over 𝑥 the local ring 𝒪𝑋𝑘′,𝑥′ is
integral.

(2) We say 𝑋 is geometrically pointwise integral if 𝑋 is geometrically pointwise
integral at every point.

(3) We say 𝑋 is geometrically integral over 𝑘 if the scheme 𝑋𝑘′ is integral for every
field extension 𝑘′ of 𝑘.

The distinction between notions (2) and (3) is necessary. For example if 𝑘 = 𝐑 and
𝑋 = 𝑆𝑝𝑒𝑐(𝐂[𝑥]), then 𝑋 is geometrically pointwise integral over 𝐑 but of course not
geometrically integral.

Lemma 28.7.2. Let 𝑘 be a field. Let𝑋 be a scheme over 𝑘. Then𝑋 is geometrically integral
over 𝑘 if and only if 𝑋 is both geometrically reduced and geometrically irreducible over 𝑘.

Proof. See Properties, Lemma 23.3.4. �

28.8. Geometrically normal schemes

In Properties, Definition 23.7.1 we have defined the notion of a normal scheme. This notion
is defined even for non-Noetherian schemes. Hence, contrary to our discussion of ``geo-
metrically regular'' schemes we consider all field extensions of the ground field.

Definition 28.8.1. Let 𝑋 be a scheme over the field 𝑘.
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(1) Let 𝑥 ∈ 𝑋. We say 𝑋 is geometrically normal at 𝑥 if for every field extension
𝑘 ⊂ 𝑘′ and every 𝑥′ ∈ 𝑋𝑘′ lying over 𝑥 the local ring 𝒪𝑋𝑘′,𝑥′ is normal.

(2) We say 𝑋 is geometrically normal over 𝑘 if 𝑋 is geometrically normal at every
𝑥 ∈ 𝑋.

Lemma 28.8.2. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝑥 ∈ 𝑋. The following are
equivalent

(1) 𝑋 is geometrically normal at 𝑥,
(2) for every finite purely inseparable field extension 𝑘′ of 𝑘 and 𝑥′ ∈ 𝑋𝑘′ lying over

over 𝑥 the local ring 𝒪𝑋𝑘′,𝑥′ is normal, and
(3) the ring 𝒪𝑋,𝑥 is geometrically normal over 𝑘 (see Algebra, Definition 7.147.2).

Proof. It is clear that (1) implies (2). Assume (2). Let 𝑘 ⊂ 𝑘′ be a finite purely insep-
arable field extension (for example 𝑘 = 𝑘′). Consider the ring 𝒪𝑋,𝑥 ⊗𝑘 𝑘′. By Algebra,
Lemma 7.43.2 its spectrum is the same as the spectrum of 𝒪𝑋,𝑥. Hence it is a local ring
also (Algebra, Lemma 7.17.2). Therefore there is a unique point 𝑥′ ∈ 𝑋𝑘′ lying over 𝑥
and 𝒪𝑋𝑘′,𝑥′ ≅ 𝒪𝑋,𝑥 ⊗𝑘 𝑘′. By assumption this is a normal ring. Hence we deduce (3) by
Algebra, Lemma 7.147.1.
Assume (3). Let 𝑘 ⊂ 𝑘′ be a field extension. Since 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘) is surjective, also
𝑋𝑘′ → 𝑋 is surjective (Morphisms, Lemma 24.9.4). Let 𝑥′ ∈ 𝑋𝑘′ be any point lying over
𝑥. The local ring 𝒪𝑋𝑘′,𝑥′ is a localization of the ring 𝒪𝑋,𝑥 ⊗𝑘 𝑘′. Hence it is normal by
assumption and (1) is proved. �

Lemma 28.8.3. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. The following are equivalent
(1) 𝑋 is geometrically normal,
(2) 𝑋𝑘′ is a normal scheme for every field extension 𝑘 ⊂ 𝑘′,
(3) 𝑋𝑘′ is a normal scheme for every finitely generated field extension 𝑘 ⊂ 𝑘′,
(4) 𝑋𝑘′ is a normal scheme for every finite purely inseparable field extension 𝑘 ⊂ 𝑘′,

and
(5) for every affine open𝑈 ⊂ 𝑋 the ring𝒪𝑋(𝑈) is geometrically normal (see Algebra,

Definition 7.147.2).

Proof. Assume (1). Then for every field extension 𝑘 ⊂ 𝑘′ and every point 𝑥′ ∈ 𝑋𝑘′ the
local ring of 𝑋𝑘′ at 𝑥′ is normal. By definition this means that 𝑋𝑘′ is normal. Hence (2).
It is clear that (2) implies (3) implies (4).
Assume (4) and let 𝑈 ⊂ 𝑋 be an affine open subscheme. Then 𝑈𝑘′ is a normal scheme
for any finite purely inseparable extension 𝑘 ⊂ 𝑘′ (including 𝑘 = 𝑘′). This means that
𝑘′ ⊗𝑘 𝒪(𝑈) is a normal ring for all finite purely inseparable extensions 𝑘 ⊂ 𝑘′. Hence 𝒪(𝑈)
is a geometrically normal 𝑘-algebra by definition.
Assume (5). For any field extension 𝑘 ⊂ 𝑘′ the base change 𝑋𝑘′ is gotten by gluing the
spectra of the rings 𝒪𝑋(𝑈) ⊗𝑘 𝑘′ where 𝑈 is affine open in 𝑋 (see Schemes, Section 21.17).
Hence 𝑋𝑘′ is normal. So (1) holds. �

Lemma 28.8.4. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝑘′/𝑘 be a field extension.
Let 𝑥 ∈ 𝑋 be a point, and let 𝑥′ ∈ 𝑋𝑘′ be a point lying over 𝑥. The following are equivalent

(1) 𝑋 is geometrically normal at 𝑥,
(2) 𝑋𝑘′ is geometrically normal at 𝑥′.

In particular, 𝑋 is geometrically normal over 𝑘 if and only if 𝑋𝑘′ is geometrically normal
over 𝑘′.
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Proof. It is clear that (1) implies (2). Assume (2). Let 𝑘 ⊂ 𝑘″ be a finite purely inseparable
field extension and let 𝑥″ ∈ 𝑋𝑘″ be a point lying over 𝑥 (actually it is unique). We can
find a common field extension 𝑘 ⊂ 𝑘‴ (i.e. with both 𝑘′ ⊂ 𝑘‴ and 𝑘″ ⊂ 𝑘‴) and a point
𝑥‴ ∈ 𝑋𝑘‴ lying over both 𝑥′ and 𝑥″. Consider the map of local rings

𝒪𝑋𝑘″,𝑥″ ⟶ 𝒪𝑋𝑘‴,𝑥⁗.

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see that the local
ring on the right is normal. Thus by Algebra, Lemma 7.146.3 we conlude that 𝒪𝑋𝑘″,𝑥″ is
normal. By Lemma 28.8.2 we see that 𝑋 is geometrically normal at 𝑥. �

Lemma 28.8.5. Let 𝑘 be a field. Let 𝑋 be a geometrically normal scheme over 𝑘 and let 𝑌
be a normal scheme over 𝑘. Then 𝑋 ×𝑘 𝑌 is a normal scheme.

Proof. This reduces to Algebra, Lemma 7.147.4 by Lemma 28.8.3. �

28.9. Change of fields and locally Noetherian schemes

Let 𝑋 a locally Noetherian scheme over a field 𝑘. It is not always that case that 𝑋𝑘′ is
locally Noetherian too. For example if 𝑋 = 𝑆𝑝𝑒𝑐(𝐐) and 𝑘 = 𝐐, then 𝑋𝐐 is the spectrum
of 𝐐 ⊗𝐐 𝐐 which is not Noetherian. (Hint: It has too many idempotents). But if we
only base change using finitely generated field extensions then the Noetherian property is
preserved. (Or if 𝑋 is locally of finite type over 𝑘, since this proprety is preserved under
base change.)

Lemma 28.9.1. Let 𝑘 be a field. Let𝑋 be a scheme over 𝑘. Let 𝑘 ⊂ 𝑘′ be a finitely generated
field extension. Then 𝑋 is locally Noetherian if and only if 𝑋𝑘′ is locally Noetherian.

Proof. Using Properties, Lemma 23.5.2 we reduce to the case where 𝑋 is affine, say 𝑋 =
𝑆𝑝𝑒𝑐(𝐴). In this case we have to prove that 𝐴 is Noetherian if and only if 𝐴𝑘′ is Noetherian.
Since 𝐴 → 𝐴𝑘′ = 𝑘′ ⊗𝑘 𝐴 is faithfully flat, we see that if 𝐴𝑘′ is Noetherian, then so is
𝐴, by Algebra, Lemma 7.146.1. Conversely, if 𝐴 is Noetherian then 𝐴𝑘′ is Noetherian by
Algebra, Lemma 7.28.7. �

28.10. Geometrically regular schemes

A geometrically regular scheme over a field 𝑘 is a locally Noetherian scheme over 𝑘 which
remains regular upon suitable changes of base field. A finite type scheme over 𝑘 is geo-
metrically regular if and only if it is smooth over 𝑘 (see Lemma 28.10.6). The notion of
geometric regularity is most interesting in situations where smoothness cannot be used such
as formal fibres (insert future reference here).
In the following definition we restrict ourselves to locally Noetherian schemes, since the
property of being a regular local ring is only defined for Noetherian local rings. By Lemma
28.8.3 above, if we restrict ourselves to finitely generated field extensions then this prop-
erty is preserved under change of base field. This comment will be used without further
reference in this section. In particular the following definition makes sense.

Definition 28.10.1. Let 𝑘 be a field. Let 𝑋 be a locally Noetherian scheme over 𝑘.
(1) Let 𝑥 ∈ 𝑋. We say 𝑋 is geometrically regular at 𝑥 over 𝑘 if for every finitely

generated field extension 𝑘 ⊂ 𝑘′ and any 𝑥′ ∈ 𝑋𝑘′ lying over 𝑥 the local ring
𝒪𝑋𝑘′,𝑥′ is regular.

(2) We say 𝑋 is geometrically regular over 𝑘 if 𝑋 is geometrically regular at all of
its points.
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Asimilar definitionworks to define geometrically Cohen-Macaulay, (𝑅𝑘), and (𝑆𝑘) schemes
over a field. We will add a section for these separately as needed.

Lemma 28.10.2. Let 𝑘 be a field. Let 𝑋 be a locally Noetherian scheme over 𝑘. Let 𝑥 ∈ 𝑋.
The following are equivalent

(1) 𝑋 is geometrically regular at 𝑥,
(2) for every finite purely inseparable field extension 𝑘′ of 𝑘 and 𝑥′ ∈ 𝑋𝑘′ lying over

over 𝑥 the local ring 𝒪𝑋𝑘′,𝑥′ is regular, and
(3) the ring 𝒪𝑋,𝑥 is geometrically regular over 𝑘 (see Algebra, Definition 7.148.2).

Proof. It is clear that (1) implies (2). Assume (2). This in particular implies that 𝒪𝑋,𝑥 is a
regular local ring. Let 𝑘 ⊂ 𝑘′ be a finite purely inseparable field extension. Consider the
ring 𝒪𝑋,𝑥 ⊗𝑘 𝑘′. By Algebra, Lemma 7.43.2 its spectrum is the same as the spectrum of
𝒪𝑋,𝑥. Hence it is a local ring also (Algebra, Lemma 7.17.2). Therefore there is a unique
point 𝑥′ ∈ 𝑋𝑘′ lying over 𝑥 and 𝒪𝑋𝑘′,𝑥′ ≅ 𝒪𝑋,𝑥 ⊗𝑘 𝑘′. By assumption this is a regular
ring. Hence we deduce (3) from the definition of a geometrically regular ring.

Assume (3). Let 𝑘 ⊂ 𝑘′ be a field extension. Since 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘) is surjective, also
𝑋𝑘′ → 𝑋 is surjective (Morphisms, Lemma 24.9.4). Let 𝑥′ ∈ 𝑋𝑘′ be any point lying over
𝑥. The local ring 𝒪𝑋𝑘′,𝑥′ is a localization of the ring 𝒪𝑋,𝑥 ⊗𝑘 𝑘′. Hence it is regular by
assumption and (1) is proved. �

Lemma 28.10.3. Let 𝑘 be a field. Let 𝑋 be a locally Noetherian scheme over 𝑘. The
following are equivalent

(1) 𝑋 is geometrically regular,
(2) 𝑋𝑘′ is a regular scheme for every finitely generated field extension 𝑘 ⊂ 𝑘′,
(3) 𝑋𝑘′ is a regular scheme for every finite purely inseparable field extension 𝑘 ⊂ 𝑘′,
(4) for every affine open𝑈 ⊂ 𝑋 the ring𝒪𝑋(𝑈) is geometrically regular (see Algebra,

Definition 7.148.2), and
(5) there exists an affine open covering 𝑋 = ⋃ 𝑈𝑖 such that each 𝒪𝑋(𝑈𝑖) is geomet-

rically regular over 𝑘.

Proof. Assume (1). Then for every finitely generated field extension 𝑘 ⊂ 𝑘′ and every
point 𝑥′ ∈ 𝑋𝑘′ the local ring of 𝑋𝑘′ at 𝑥′ is regular. By Properties, Lemma 23.9.2 this
means that 𝑋𝑘′ is regular. Hence (2).

It is clear that (2) implies (3).

Assume (3) and let 𝑈 ⊂ 𝑋 be an affine open subscheme. Then 𝑈𝑘′ is a regular scheme
for any finite purely inseparable extension 𝑘 ⊂ 𝑘′ (including 𝑘 = 𝑘′). This means that
𝑘′ ⊗𝑘 𝒪(𝑈) is a regular ring for all finite purely inseparable extensions 𝑘 ⊂ 𝑘′. Hence 𝒪(𝑈)
is a geometrically regular 𝑘-algebra and we see that (4) holds.

It is clear that (4) implies (5). Let 𝑋 = ⋃ 𝑈𝑖 be an affine open covering as in (5). For
any field extension 𝑘 ⊂ 𝑘′ the base change 𝑋𝑘′ is gotten by gluing the spectra of the rings
𝒪𝑋(𝑈𝑖) ⊗𝑘 𝑘′ (see Schemes, Section 21.17). Hence 𝑋𝑘′ is regular. So (1) holds. �

Lemma 28.10.4. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Let 𝑘′/𝑘 be a finitely generated
field extension. Let 𝑥 ∈ 𝑋 be a point, and let 𝑥′ ∈ 𝑋𝑘′ be a point lying over 𝑥. The following
are equivalent

(1) 𝑋 is geometrically regular at 𝑥,
(2) 𝑋𝑘′ is geometrically regular at 𝑥′.
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In particular, 𝑋 is geometrically regular over 𝑘 if and only if 𝑋𝑘′ is geometrically regular
over 𝑘′.

Proof. It is clear that (1) implies (2). Assume (2). Let 𝑘 ⊂ 𝑘″ be a finite purely inseparable
field extension and let 𝑥″ ∈ 𝑋𝑘″ be a point lying over 𝑥 (actually it is unique). We can find
a common, finitely generated, field extension 𝑘 ⊂ 𝑘‴ (i.e. with both 𝑘′ ⊂ 𝑘‴ and 𝑘″ ⊂ 𝑘‴)
and a point 𝑥‴ ∈ 𝑋𝑘‴ lying over both 𝑥′ and 𝑥″. Consider the map of local rings

𝒪𝑋𝑘″,𝑥″ ⟶ 𝒪𝑋𝑘‴,𝑥⁗.

This is a flat local ring homomorphism of Noetherian local rings and hence faithfully flat.
By (2) we see that the local ring on the right is regular. Thus by Algebra, Lemma 7.102.8 we
conlude that 𝒪𝑋𝑘″,𝑥″ is regular. By Lemma 28.10.2 we see that 𝑋 is geometrically regular
at 𝑥. �

The following lemma is a geometric variant of Algebra, Lemma 7.148.3.

Lemma 28.10.5. Let 𝑘 be a field. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of locally Noetherian
schemes over 𝑘. Let 𝑥 ∈ 𝑋 be a point and set 𝑦 = 𝑓(𝑥). If 𝑋 is geometrically regular at 𝑥
and 𝑓 is flat at 𝑥 then 𝑌 is geometrically regular at 𝑦. In particular, if 𝑋 is geometrically
regular over 𝑘 and 𝑓 is flat and surjective, then 𝑌 is geometrically regular over 𝑘.

Proof. Let 𝑘′ be finite purely inseparable extension of 𝑘. Let 𝑓′ ∶ 𝑋𝑘′ → 𝑌𝑘′ be the
base change of 𝑓. Let 𝑥′ ∈ 𝑋𝑘′ be the unique point lying over 𝑥. If we show that 𝑌𝑘′ is
regular at 𝑦′ = 𝑓′(𝑥′), then 𝑌 is geometrically regular over 𝑘 at 𝑦′, see Lemma 28.10.3. By
Morphisms, Lemma 24.24.6 the morphism 𝑋𝑘′ → 𝑌𝑘′ is flat at 𝑥′. Hence the ring map

𝒪𝑌𝑘′,𝑦′ ⟶ 𝒪𝑋𝑘′,𝑥′

is a flat local homommorphism of local Noetherian rings with right hand side regular by
assumption. Hence the left hand side is a regular local ring by Algebra, Lemma 7.102.8.

�

Lemma 28.10.6. Let 𝑘 be a field. Let 𝑋 be a scheme of finite type over 𝑘. Let 𝑥 ∈ 𝑋. Then
𝑋 is geometrically regular at 𝑥 if and only if 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is smooth at 𝑥 (Morphisms,
Definition 24.33.1).

Proof. The question is local around 𝑥, hence we may assume that 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) for some
finite type 𝑘-algebra. Let 𝑥 correspond to the prime 𝔭.
If 𝐴 is smooth over 𝑘 at 𝔭, then we may localize 𝐴 and assume that 𝐴 is smooth over 𝑘. In
this case 𝑘′⊗𝑘𝐴 is smooth over 𝑘′ for all extension fields 𝑘′/𝑘, and each of these Noetherian
rings is regular by Algebra, Lemma 7.129.3.
Assume 𝑋 is geometrically regular at 𝑥. Consider the residue field 𝐾 ∶= 𝜅(𝑥) = 𝜅(𝔭) of
𝑥. It is a finitely generated extension of 𝑘. By Algebra, Lemma 7.42.3 there exists a finite
purely inseparable extension 𝑘 ⊂ 𝑘′ such that the compositum 𝑘′𝐾 is a separable field
extension of 𝑘′. Let 𝔭′ ⊂ 𝐴′ = 𝑘′ ⊗𝑘 𝐴 be a prime ideal lying over 𝔭. It is the unique
prime lying over 𝔭, see Algebra, Lemma 7.43.2. Hence the residue field 𝐾′ ∶= 𝜅(𝔭′) is
the compositum 𝑘′𝐾. By assumption the local ring (𝐴′)𝔭′ is regular. Hence by Algebra,
Lemma 7.129.5 we see that 𝑘′ → 𝐴′ is smooth at 𝔭′. This in turn implies that 𝑘 → 𝐴 is
smooth at 𝔭 by Algebra, Lemma 7.126.18. The lemma is proved. �

Example 28.10.7. Let 𝑘 = 𝐅𝑝(𝑡). It is quite easy to give an example of a regular variety 𝑉
over 𝑘 which is not geometrically reduced. For example we can take 𝑆𝑝𝑒𝑐(𝑘[𝑥]/(𝑥𝑝 − 𝑡)).
In fact, there exists an example of a regular variety 𝑉 which is geometrically reduced, but
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not even geometrically normal. Namely, take for 𝑝 > 2 the scheme 𝑉 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]/(𝑦2 −
𝑥𝑝 + 𝑡)). This is a variety as the polynomial 𝑦2 − 𝑥𝑝 + 𝑡 ∈ 𝑘[𝑥, 𝑦] is irreducible. The
morphism 𝑉 → 𝑆𝑝𝑒𝑐(𝑘) is smooth at all points except at the point 𝑣0 ∈ 𝑉 corresponding
to the maximal ideal (𝑦, 𝑥𝑝 − 𝑡) (because 2𝑦 is invertible). In particular we see that 𝑉 is
(geometrically) regular at all points, except possibly 𝑣0. The local ring

𝒪𝑉,𝑣0
= (𝑘[𝑥, 𝑦]/(𝑦2 − 𝑥𝑝 + 𝑡))(𝑦,𝑥𝑝−𝑡)

is a domain of dimension 1. Its maximal ideal is generated by 1 element, namely 𝑥𝑝 − 𝑡.
Hence it is a discrete valuation ring and regular. Let 𝑘′ = 𝑘[𝑡1/𝑝]. Denote 𝑡′ = 𝑡1/𝑝 ∈ 𝑘′,
𝑉′ = 𝑉𝑘′, 𝑣′

0 ∈ 𝑉′ the unique point lying over 𝑣0. Over 𝑘′ we can write 𝑥𝑝 − 𝑡 = (𝑥 − 𝑡′)𝑝,
but the polynomial 𝑦2 − (𝑥 − 𝑡′)𝑝 is still irreducible and 𝑉′ is still a variety. But the element

𝑦
𝑥 − 𝑡′ ∈ 𝑓.𝑓.(𝒪𝑉′,𝑣′

0
)

is integral over 𝒪𝑉′,𝑣′
0
(just compute its square) and not contained in it, so 𝑉′ is not normal

at 𝑣′
0. This concludes the example.

28.11. Change of fields and the Cohen-Macaulay property

The following lemma says that it does not make sense to define geometrically Cohen-
Macaulay schemes, since these would be the same as Cohen-Macaulay schemes.

Lemma 28.11.1. Let 𝑋 be a locally Noetherian scheme over the field 𝑘. Let 𝑘 ⊂ 𝑘′ be a
finitely generated field extension. Let 𝑥 ∈ 𝑋 be a point, and let 𝑥′ ∈ 𝑋𝑘′ be a point lying
over 𝑥. Then we have

𝒪𝑋,𝑥 is Cohen-Macaulay ⇔ 𝒪𝑋𝑘′,𝑥′ is Cohen-Macaulay

If 𝑋 is locally of finite type over 𝑘, the same holds for any field extension 𝑘 ⊂ 𝑘′.

Proof. The first case of the lemma follows from Algebra, Lemma 7.149.2. The second
case of the lemma is equivalent to Algebra, Lemma 7.121.6. �

28.12. Change of fields and the Jacobson property

A scheme locally of finite type over a field has plenty of closed points, namely it is Jacobson.
Moreover, the residue fields are finite extensions of the ground field.

Lemma 28.12.1. Let 𝑋 be a scheme which is locally of finite type over 𝑘. Then
(1) for any closed point 𝑥 ∈ 𝑋 the extension 𝑘 ⊂ 𝜅(𝑥) is algebraic, and
(2) 𝑋 is a Jacobson scheme (Properties, Definition 23.6.1).

Proof. A scheme is Jacobson if and only if it has an affine open covering by Jacobson
schemes, see Properties, Lemma 23.6.3. The property on residue fields at closed points
is also local on 𝑋. Hence we may assume that 𝑋 is affine. In this case the result is a
consequence of the Hilbert Nullstellenstaz, see Algebra, Theorem 7.30.1. It also follows
from a combination of Morphisms, Lemmas 24.15.8, 24.15.9, and 24.15.10. �

It turns out that if 𝑋 is not locally of finite type, then we can achieve the same result after
making a suitably large base field extension.

Lemma 28.12.2. Let 𝑋 be a scheme over a field 𝑘. For any field extension 𝑘 ⊂ 𝐾 whose
cardinality is large enough we have

(1) for any closed point 𝑥 ∈ 𝑋𝐾 the extension 𝐾 ⊂ 𝜅(𝑥) is algebraic, and
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(2) 𝑋𝐾 is a Jacobson scheme (Properties, Definition 23.6.1).

Proof. Choose an affine open covering 𝑋 = ⋃ 𝑈𝑖. By Algebra, Lemma 7.31.12 and Prop-
erties, Lemma 23.6.2 there exist cardinals 𝜅𝑖 such that 𝑈𝑖,𝐾 has the desired properties over
𝐾 if #(𝐾) ≥ 𝜅𝑖. Set 𝜅 = max{𝜅𝑖}. Then if the cardinality of 𝐾 is larger than 𝜅 we see
that each 𝑈𝑖,𝐾 satisfies the conclusions of the lemma. Hence 𝑋𝐾 is Jacobson by Properties,
Lemma 23.6.3. The statement on residue fields at closed points of 𝑋𝐾 follows from the
corresponding statements for residue fields of closed points of the 𝑈𝑖,𝐾. �

28.13. Algebraic schemes

The following definition is taken from [DG67, I Definition 6.4.1].

Definition 28.13.1. Let 𝑘 be a field. An algebraic 𝑘-scheme is a scheme 𝑋 over 𝑘 such that
the structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is of finite type. A locally algebraic 𝑘-scheme is a
scheme 𝑋 over 𝑘 such that the structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is locally of finite type.

Note that every (locally) algebraic 𝑘-scheme is (locally) Noetherian, seeMorphisms, Lemma
24.14.6. The category of algebraic 𝑘-schemes has all products and fibre products (unlike
the category of varieties over 𝑘). Similarly for the category of locally algebraic 𝑘-schemes.

Lemma 28.13.2. Let 𝑘 be a field. Let 𝑋 be a locally algebraic 𝑘-scheme of dimension 0.
Then 𝑋 is a disjoint union of spectra of local Artinian 𝑘-algebras 𝐴 with dim𝑘(𝐴) < ∞. If
𝑋 is an algebraic 𝑘-scheme of dimension 0, then in addition 𝑋 is affine and the morphism
𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is finite.

Proof. Let 𝑋 be a locally algebraic 𝑘-scheme of dimension 0. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑋
be an affine open subscheme. Since dim(𝑋) = 0 we see that dim(𝐴) = 0. By Noether
normalization, seeAlgebra, Lemma 7.106.4we see that there exists a finite injection 𝑘 → 𝐴,
i.e., dim𝑘(𝐴) < ∞. Hence 𝐴 is Artinian, see Algebra, Lemma 7.49.2. This implies that
𝐴 = 𝐴1 × … × 𝐴𝑟 is a product of finitely many Artinian local rings, see Algebra, Lemma
7.49.8. Of course dim𝑘(𝐴𝑖) < ∞ for each 𝑖 as the sum of these dimensions equals dim𝑘(𝐴).

The arguments above show that 𝑋 has an open covering whose members are finite discrete
topological spaces. Hence 𝑋 is a discrete topological space. It follows that 𝑋 is isomorphic
to the disjoint union of its connected components each of which is a singleton. Since a
singleton scheme is affine we conclude (by the results of the paragraph above) that each of
these singletons is the spectrum of a local Artinian 𝑘-algebra 𝐴 with dim𝑘(𝐴) < ∞.

Finally, if 𝑋 is an algebraic 𝑘-scheme of dimension 0, then 𝑋 is quasi-compact hence is a
finite disjoint union 𝑋 = 𝑆𝑝𝑒𝑐(𝐴1) ⨿ … ⨿ 𝑆𝑝𝑒𝑐(𝐴𝑟) hence affine (see Schemes, Lemma
21.6.8) and we have seen the finiteness of 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) in the first paragraph of the proof.

�

28.14. Closures of products

Some results on the relation between closure and products.

Lemma 28.14.1. Let 𝑘 be a field. Let 𝑋, 𝑌 be schemes over 𝑘, and let 𝐴 ⊂ 𝑋, 𝐵 ⊂ 𝑌 be
subsets. Set

𝐴𝐵 = {𝑧 ∈ 𝑋 ×𝑘 𝑌 ∣ pr𝑋(𝛾) ∈ 𝐴, pr𝑌(𝛾) ∈ 𝐵} ⊂ 𝑋 ×𝑘 𝑌

Then set theoretically we have
𝐴 ×𝑘 𝐵 = 𝐴𝐵
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Proof. The inclusion 𝐴𝐵 ⊂ 𝐴 ×𝑘 𝐵 is immediate. We may replace 𝑋 and 𝑌 by the reduced
closed subschemes 𝐴 and 𝐵. Let 𝑊 ⊂ 𝑋 ×𝑘 𝑌 be a nonempty open subset. By Morphisms,
Lemma 24.22.4 the subset 𝑈 = pr𝑋(𝑊) is nonempty open in 𝑋. Hence 𝐴 ∩ 𝑈 is nonempty.
Pick 𝑎 ∈ 𝐴 ∩ 𝑈. Denote 𝑌𝜅(𝑎) = {𝑎} ×𝑘 𝑌 the fibre of pr𝑋 ∶ 𝑋 ×𝑘 𝑌 → 𝑋 over 𝑎. By
Morphisms, Lemma 24.22.4 again the morphism 𝑌𝑎 → 𝑌 is open as 𝑆𝑝𝑒𝑐(𝜅(𝑎)) → 𝑆𝑝𝑒𝑐(𝑘)
is universally open. Hence the nonempty open subset𝑊𝑎 = 𝑊×𝑋×𝑘𝑌𝑌𝑎 maps to a nonempty
open subset of 𝑌. We conclude there exists a 𝑏 ∈ 𝐵 in the image. Hence 𝐴𝐵 ∩ 𝑊≠∅ as
desired. �

Lemma 28.14.2. Let 𝑘 be a field. Let 𝑓 ∶ 𝐴 → 𝑋, 𝑔 ∶ 𝐵 → 𝑌 be morphisms of schemes
over 𝑘. Then set theoretically we have

𝑓(𝐴) ×𝑘 𝑔(𝐵) = (𝑓 × 𝑔)(𝐴 ×𝑘 𝐵)

Proof. This follows from Lemma 28.14.1 as the image of 𝑓 × 𝑔 is 𝑓(𝐴)𝑔(𝐵) in the notation
of that lemma. �

Lemma 28.14.3. Let 𝑘 be a field. Let 𝑓 ∶ 𝐴 → 𝑋, 𝑔 ∶ 𝐵 → 𝑌 be quasi-compact morphisms
of schemes over 𝑘. Let𝑍 ⊂ 𝑋 be the scheme theoretic image of 𝑓, seeMorphisms, Definition
24.4.2. Similarly, let 𝑍′ ⊂ 𝑌 be the scheme theoretic image of 𝑔. Then 𝑍×𝑘𝑍′ is the scheme
theoretic image of 𝑓 × 𝑔.

Proof. Recall that 𝑍 is the smallest closed subscheme of 𝑋 through which 𝑓 factors. Sim-
ilarly for 𝑍′. Let 𝑊 ⊂ 𝑋 ×𝑘 𝑌 be the scheme theoretic image of 𝑓 × 𝑔. As 𝑓 × 𝑔 factors
through 𝑍 ×𝑘 𝑍′ we see that 𝑊 ⊂ 𝑍 ×𝑘 𝑍′.

To prove the other inclusion let 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑌 be affine opens. By Morphisms, Lemma
24.4.3 the scheme 𝑍 ∩ 𝑈 is the scheme theoretic image of 𝑓|𝑓−1(𝑈) ∶ 𝑓−1(𝑈) → 𝑈, and
similarly for 𝑍′ ∩ 𝑉 and 𝑊 ∩ 𝑈 ×𝑘 𝑉. Hence we may assume 𝑋 and 𝑌 affine. As 𝑓 and 𝑔
are quasi-compact this implies that 𝐴 = ⋃ 𝑈𝑖 is a finite union of affines and 𝐵 = ⋃ 𝑉𝑗 is a
finite union of affines. Then wemay replace 𝐴 by ∐ 𝑈𝑖 and 𝐵 by ∐ 𝑉𝑗, i.e., we may assume
that 𝐴 and 𝐵 are affine as well. In this case 𝑍 is cut out by Ker(Γ(𝑋, 𝒪𝑋) → Γ(𝐴, 𝒪𝐴)) and
similarly for 𝑍′ and 𝑊. Hence the result follows from the equality

Γ(𝐴 ×𝑘 𝐵, 𝒪𝐴×𝑘𝐵) = Γ(𝐴, 𝒪𝐴) ⊗𝑘 Γ(𝐵, 𝒪𝐵)

which holds as 𝐴 and 𝐵 are affine. Details omitted. �

28.15. Schemes smooth over fields

Here are two lemmas characterizing smooth schemes over fields.

Lemma 28.15.1. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Assume
(1) 𝑋 is locally of finite type over 𝑘,
(2) Ω𝑋/𝑘 is locally free, and
(3) 𝑘 has characteristic zero.

Then the structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is smooth.

Proof. This follows from Algebra, Lemma 7.129.7. �

In positive characteristic there exist nonreduced schemes of finite type whose sheaf of
differentials is free, for example 𝑆𝑝𝑒𝑐(𝐅𝑝[𝑡]/(𝑡𝑝)) over 𝑆𝑝𝑒𝑐(𝐅𝑝). If the ground field 𝑘 is
nonperfect of characteristic 𝑝, there exist reduced schemes 𝑋/𝑘 with free Ω𝑋/𝑘 which are
nonsmooth, for example 𝑆𝑝𝑒𝑐(𝑘[𝑡]/(𝑡𝑝 − 𝑎) where 𝑎 ∈ 𝑘 is not a 𝑝th power.
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Lemma 28.15.2. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Assume
(1) 𝑋 is locally of finite type over 𝑘,
(2) Ω𝑋/𝑘 is locally free,
(3) 𝑋 is reduced, and
(4) 𝑘 is perfect.

Then the structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is smooth.

Proof. Let 𝑥 ∈ 𝑋 be a point. As 𝑋 is locally Noetherian (see Morphisms, Lemma 24.14.6)
there are finitely many irreducible components 𝑋1, … , 𝑋𝑛 passing through 𝑥 (see Proper-
ties, Lemma 23.5.5 and Topology, Lemma 5.6.2). Let 𝜂𝑖 ∈ 𝑋𝑖 be the generic point. As 𝑋
is reduced we have 𝒪𝑋,𝜂𝑖

= 𝜅(𝜂𝑖), see Algebra, Lemma 7.23.3. Moreover, 𝜅(𝜂𝑖) is a finitely
generated field extension of the perfect field 𝑘 hence separably generated over 𝑘 (see Alge-
bra, Section 7.39). It follows that Ω𝑋/𝑘,𝜂𝑖

= Ω𝜅(𝜂𝑖)/𝑘 is free of rank the transcendence degree
of 𝜅(𝜂𝑖) over 𝑘. ByMorphisms, Lemma 24.27.1we conclude that dim𝜂𝑖

(𝑋𝑖) = rank𝜂𝑖
(Ω𝑋/𝑘).

Since 𝑥 ∈ 𝑋1 ∩ … ∩ 𝑋𝑛 we see that

rank𝑥(Ω𝑋/𝑘) = rank𝜂𝑖
(Ω𝑋/𝑘) = dim(𝑋𝑖).

Therefore dim𝑥(𝑋) = rank𝑥(Ω𝑋/𝑘), see Algebra, Lemma 7.105.5. It follows that 𝑋 →
𝑆𝑝𝑒𝑐(𝑘) is smooth at 𝑥 for example by Algebra, Lemma 7.129.3. �

Lemma 28.15.3. Let 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) be a smooth morphism where 𝑘 is a field. Then 𝑋 is a
regular scheme.

Proof. (See also Lemma 28.10.6.) By Algebra, Lemma 7.129.3 every local ring 𝒪𝑋,𝑥 is
regular. And because 𝑋 is locally of finite type over 𝑘 it is locally Noetherian. Hence 𝑋 is
regular by Properties, Lemma 23.9.2. �

Lemma 28.15.4. Let 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) be a smooth morphism where 𝑘 is a field. Then 𝑋 is
geometrically regular, geometrically normal, and geometrically reduced over 𝑘.

Proof. (See also Lemma 28.10.6.) Let 𝑘′ be a finite purely inseparable extension of 𝑘.
It suffices to prove that 𝑋𝑘′ is regular, normal, reduced, see Lemmas 28.10.3, 28.8.3, and
28.4.5. By Morphisms, Lemma 24.33.5 the morphism 𝑋𝑘′ → 𝑆𝑝𝑒𝑐(𝑘′) is smooth too.
Hence it suffices to show that a scheme 𝑋 smooth over a field is regular, normal, and re-
duced. We see that 𝑋 is regular by Lemma 28.15.3. Hence Properties, Lemma 23.9.4
guarantees that 𝑋 is normal. �

Lemma 28.15.5. Let 𝑘 be a field. Let 𝑑 ≥ 0. Let 𝑊 ⊂ 𝐀𝑑
𝑘 be nonempty open. Then there

exists a closed point 𝑤 ∈ 𝑊 such that 𝑘 ⊂ 𝜅(𝑤) is finite separable.

Proof. After possible shrinking 𝑊 we may assume that 𝑊 = 𝐀𝑑
𝑘 ⧵ 𝑉(𝑓) for some 𝑓 ∈

𝑘[𝑥1, … , 𝑥𝑛]. If the lemma is wrong then 𝑓(𝑎1, … , 𝑎𝑛) = 0 for all (𝑎1, … , 𝑎𝑛) ∈ (𝑘𝑠𝑒𝑝)𝑛.
This is absurd as 𝑘𝑠𝑒𝑝 is an infinite field. �

Lemma 28.15.6. Let 𝑘 be a field. If 𝑋 is smooth over 𝑆𝑝𝑒𝑐(𝑘) then the set

{𝑥 ∈ 𝑋 closed such that 𝑘 ⊂ 𝜅(𝑥) is finite separable}

is dense in 𝑋.

Proof. It suffices to show that given a nonempty smooth 𝑋 over 𝑘 there exists at least one
closed point whose residue field is finite separable over 𝑘. To see this, choose a diagram

𝑋 𝑈oo 𝜋 // 𝐀𝑑
𝑘
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with 𝜋 étale, see Morphisms, Lemma 24.35.20. The morphism 𝜋 ∶ 𝑈 → 𝐀𝑑
𝑘 is open, see

Morphisms, Lemma 24.35.13. By Lemma 28.15.5 we may choose a closed point 𝑤 ∈
𝜋(𝑉) whose residue field is finite separable over 𝑘. Pick any 𝑥 ∈ 𝑉 with 𝜋(𝑥) = 𝑤. By
Morphisms, Lemma 24.35.7 the field extension 𝜅(𝑤) ⊂ 𝜅(𝑥) is finite separable. Hence
𝑘 ⊂ 𝜅(𝑥) is finite separable. The point 𝑥 is a closed point of 𝑋 by Morphisms, Lemma
24.19.2. �

Lemma 28.15.7. Let 𝑋 be a scheme over a field 𝑘. If 𝑋 is locally of finite type and geo-
metrically reduced over 𝑘 then 𝑋 contains a dense open which is smooth over 𝑘.

Proof. The problem is local on 𝑋, hence we may assume 𝑋 is quasi-compact. Let 𝑋 =
𝑋1 ∪ … ∪ 𝑋𝑛 be the irreducible components of 𝑋. Then 𝑍 = ⋃𝑖≠𝑗 𝑋𝑖 ∩ 𝑋𝑗 is nowhere
dense in 𝑋. Hence we may replace 𝑋 by 𝑋 ⧵ 𝑍. As 𝑋 ⧵ 𝑍 is a disjoint union of irreducible
schemes, this reduces us to the case where 𝑋 is irreducible. As 𝑋 is irreducible and reduced,
it is integral, see Properties, Lemma 23.3.4. Let 𝜂 ∈ 𝑋 be its generic point. Then the
function field 𝐾 = 𝑘(𝑋) = 𝜅(𝜂) is geometrically reduced over 𝑘, hence separable over 𝑘,
see Algebra, Lemma 7.41.1. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑋 be any nonempty affine open so that
𝐾 = 𝑓.𝑓.(𝐴) = 𝐴(0). Apply Algebra, Lemma 7.129.5 to conclude that 𝐴 is smooth at (0)
over 𝑘. By definition this means that some principal localization of 𝐴 is smooth over 𝑘 and
we win. �

Lemma 28.15.8. Let 𝑘 be a field. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes locally of
finite type over 𝑘. Let 𝑥 ∈ 𝑋 be a point and set 𝑦 = 𝑓(𝑥). If 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is smooth at 𝑥
and 𝑓 is flat at 𝑥 then 𝑌 → 𝑆𝑝𝑒𝑐(𝑘) is smooth at 𝑦. In particular, if 𝑋 is smooth over 𝑘 and
𝑓 is flat and surjective, then 𝑌 is smooth over 𝑘.

Proof. It suffices to show that 𝑌 is geometrically regular at 𝑦, see Lemma 28.10.6. This
follows from Lemma 28.10.5 (and Lemma 28.10.6 applied to (𝑋, 𝑥)). �

28.16. Types of varieties

Short section discussion some elementary global properties of varieties.

Definition 28.16.1. Let 𝑘 be a field. Let 𝑋 be a variety over 𝑘.
(1) We say 𝑋 is an affine variety if 𝑋 is an affine scheme. This is equivalent to

requiring 𝑋 it be isomorphic to a closed subscheme of 𝐀𝑛
𝑘 for some 𝑛.

(2) We say 𝑋 is a projective variety if the structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is pro-
jective. ByMorphisms, Lemma 24.41.4 this is true if and only if 𝑋 is isomorphic
to a closed subscheme of 𝐏𝑛

𝑘 for some 𝑛.
(3) We say 𝑋 is a quasi-projective variety if the structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is

quasi-projective. By Morphisms, Lemma 24.39.4 this is true if and only if 𝑋 is
isomorphic to a locally closed subscheme of 𝐏𝑛

𝑘 for some 𝑛.
(4) A proper variety is a variety such that the morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is proper.

Note that a projective variety is a proper variety, see Morphisms, Lemma 24.41.5. Also,
an affine variety is quasi-projective as 𝐀𝑛

𝑘 is isomorphic to an open subscheme of 𝐏𝑛
𝑘, see

Constructions, Lemma 22.13.3.

Lemma 28.16.2. Let 𝑋 be a proper variety over 𝑘. Then Γ(𝑋, 𝒪𝑋) is a field which is a
finite extension of the field 𝑘.

Proof. By Coherent, Lemma 25.18.2 we see that Γ(𝑋, 𝒪𝑋) is a finite dimensional 𝑘-vector
space. It is also a 𝑘-algebra without zero-divisors. Hence it is a field, see Algebra, Lemma
7.32.17. �
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28.17. Groups of invertible functions

It is often (but not always) the case that 𝒪∗(𝑋)/𝑘∗ is a finitely generated abelian group if 𝑋
is a variety over 𝑘. We show this by a series of lemmas. Everything rests on the following
special case.

Lemma 28.17.1. Let 𝑘 be an algebraically closed field. Let 𝑋 be a proper variety over
𝑘. Let 𝑋 ⊂ 𝑋 be an open subscheme. Assume 𝑋 is normal. Then 𝒪∗(𝑋)/𝑘∗ is a finitely
generated abelian group.

Proof. We will use without further mention that for any affine open 𝑈 of 𝑋 the ring 𝒪(𝑈)
is a finitely generated 𝑘-algebra, which is Noetherian, a domain and normal, see Algebra,
Lemma 7.28.1, Properties, Definition 23.3.1, Properties, Lemmas 23.5.2 and 23.7.2, Mor-
phisms, Lemma 24.14.2.

Let 𝜉1, … , 𝜉𝑟 be the generic points of the complement of 𝑋 in 𝑋. There are finitely many
since 𝑋 has a Noetherian underlying topological space (see Morphisms, Lemma 24.14.6,
Properties, Lemma 23.5.5, and Topology, Lemma 5.6.2). For each 𝑖 the local ring 𝒪𝑖 =
𝒪𝑋,𝜉𝑖

is a normal Noetherian local domain (as a localization of a Noetherian normal do-
main). Let 𝐽 ⊂ {1, … , 𝑟} be the set of indices 𝑖 such that dim(𝒪𝑖) = 1. For 𝑗 ∈ 𝐽 the
local ring 𝒪𝑗 is a discrete valuation ring, see Algebra, Lemma 7.110.6. Hence we obtain a
valuation

𝑣𝑗 ∶ 𝑘(𝑋)∗ ⟶ 𝐙
with the property that 𝑣𝑗(𝑓) ≥ 0 ⇔ 𝑓 ∈ 𝒪𝑗.

Think of 𝒪(𝑋) as a sub 𝑘-algebra of 𝑘(𝑋) = 𝑘(𝑋). We claim that the kernel of the map

𝒪(𝑋)∗ ⟶ ∏𝑗∈𝐽
𝐙, 𝑓 ⟼ ∏ 𝑣𝑗(𝑓)

is 𝑘∗. It is clear that this claim proves the lemma. Namely, suppose that 𝑓 ∈ 𝒪(𝑋) is an
element of the kernel. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐵) ⊂ 𝑋 be any affine open. Then 𝐵 is a Noetherian
normal domain. For every height one prime 𝔮 ⊂ 𝐵 with corresponding point 𝜉 ∈ 𝑋 we see
that either 𝜉 = 𝜉𝑗 for some 𝑗 ∈ 𝐽 or that 𝜉 ∈ 𝑋. The reason is that codim({𝜉}, 𝑋) = 1 by
Properties, Lemma 23.11.4 and hence if 𝜉 ∈ 𝑋 ⧵ 𝑋 it must be a generic point of 𝑋 ⧵ 𝑋,
hence equal to some 𝜉𝑗, 𝑗 ∈ 𝐽. We conclude that 𝑓 ∈ 𝒪𝑋,𝜉 = 𝐵𝔮 in either case as 𝑓 is in
the kernel of the map. Thus 𝑓 ∈ ⋂ht(𝔮)=1 𝐵𝔮 = 𝐵, see Algebra, Lemma 7.140.6. In other
words, we see that 𝑓 ∈ Γ(𝑋, 𝒪𝑋). But since 𝑘 is algebraically closed we conclude that
𝑓 ∈ 𝑘 by Lemma 28.16.2. �

Next, we generalize the case above by some elementary arguments, still keeping the field
algebraically closed.

Lemma 28.17.2. Let 𝑘 be an algebraically closed field. Let 𝑋 be an integral scheme locally
of finite type over 𝑘. Then 𝒪∗(𝑋)/𝑘∗ is a finitely generated abelian group.

Proof. As 𝑋 is integral the restriction mapping 𝒪(𝑋) → 𝒪(𝑈) is injective for any nonempty
open subscheme𝑈 ⊂ 𝑋. Hencewemay assume that𝑋 is affine. Choose a closed immersion
𝑋 → 𝐀𝑛

𝑘 and denote 𝑋 the closure of 𝑋 in 𝐏𝑛
𝑘 via the usual immersion 𝐀𝑛

𝑘 → 𝐏𝑛
𝑘. Thus we

may assume that 𝑋 is an affine open of a projective variety 𝑋.

Let 𝜈 ∶ 𝑋𝜈 → 𝑋 be the normalization morphism, see Morphisms, Definition 24.46.12. We
know that 𝜈 is finite, dominant, and that 𝑋𝜈 is a normal irreducible scheme, see Morphisms,
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Lemmas 24.46.15, 24.46.16, and 24.17.2. It follows that 𝑋𝜈 is a proper variety, because
𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is proper as a composition of a finite and a proper morphism (see results
in Morphisms, Sections 24.40 and 24.42). It also follows that 𝜈 is a surjective morphism,
because the image of 𝜈 is closed and contains the generic point of 𝑋. Hence setting 𝑋𝜈 =
𝜈−1(𝑋) we see that it suffices to prove the result for 𝑋𝜈. In other words, we may assume
that 𝑋 is a nonempty open of a normal proper variety 𝑋. This case is handled by Lemma
28.17.1. �

The preceding lemma implies the following slight generalization.

Lemma 28.17.3. Let 𝑘 be an algebraically closed field. Let 𝑋 be a connected reduced
scheme which is locally of finite type over 𝑘 with finitely many irreducible components.
Then 𝒪∗(𝑋)/𝑘∗ is a finitely generated abelian group.

Proof. Let 𝑋 = ⋃ 𝑋𝑖 be the irreducible components. By Lemma 28.17.2 we see that
𝒪(𝑋𝑖)∗/𝑘∗ is a finitely generated abelian group. Let 𝑓 ∈ 𝒪(𝑋)∗ be in the kernel of the map

𝒪(𝑋)∗ ⟶ ∏ 𝒪(𝑋𝑖)∗/𝑘∗.

Then for each 𝑖 there exists an element 𝜆𝑖 ∈ 𝑘 such that 𝑓|𝑋𝑖
= 𝜆𝑖. By restricting to 𝑋𝑖 ∩𝑋𝑗

we conclude that 𝜆𝑖 = 𝜆𝑗 if 𝑋𝑖 ∩ 𝑋𝑗≠∅. Since 𝑋 is connected we conclude that all 𝜆𝑖 agree
and hence that 𝑓 ∈ 𝑘∗. This proves that

𝒪(𝑋)∗/𝑘∗ ⊂ ∏ 𝒪(𝑋𝑖)∗/𝑘∗

and the lemma follows as on the right we have a product of finitely many finitely generated
abelian groups. �

Lemma 28.17.4. Let 𝑘 be a field. Let𝑋 be a scheme over 𝑘which is connected and reduced.
Then the integral closure of 𝑘 in Γ(𝑋, 𝒪𝑋) is a field.

Proof. Let 𝑘′ ⊂ Γ(𝑋, 𝒪𝑋) be the integral closure of 𝑘. Then 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) factors through
𝑆𝑝𝑒𝑐(𝑘′), see Schemes, Lemma 21.6.4. As 𝑋 is reduced we see that 𝑘′ has no nonzero
nilpotent elements. As 𝑘 → 𝑘′ is integral we see that every prime ideal of 𝑘′ is both a
maximal ideal and a minimal prime, and 𝑆𝑝𝑒𝑐(𝑘′) is totally disconnected, see Algebra,
Lemmas 7.32.18 and 7.23.5. As 𝑋 is connected the morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘′) is constant,
say with image the point corresponding to 𝔭 ⊂ 𝑘′. Then any 𝑓 ∈ 𝑘′, 𝑓∉𝔭 maps to an
invertible element of 𝒪𝑋. By definition of 𝑘′ this then forces 𝑓 to be a unit of 𝑘′. Hence we
see that 𝑘′ is local with maximal ideal 𝔭, see Algebra, Lemma 7.17.2. Since we've already
seen that 𝑘′ is reduced this implies that 𝑘′ is a field, see Algebra, Lemma 7.23.3. �

Proposition 28.17.5. Let 𝑘 be a field. Let 𝑋 be a scheme over 𝑘. Assume that 𝑋 is locally
of finite type over 𝑘, connected, reduced, and has finitely many irreducible components.
Then 𝒪(𝑋)∗/𝑘∗ is a finitely generated abelian group if in addition to the conditions above
at least one of the following conditions is satisfied:

(1) the integral closure of 𝑘 in Γ(𝑋, 𝒪𝑋) is 𝑘,
(2) 𝑋 has a 𝑘-rational point, or
(3) 𝑋 is geometrically integral.

Proof. Let 𝑘 be an algebraic closure of 𝑘. Let 𝑌 be a connected component of (𝑋𝑘)𝑟𝑒𝑑.
Note that the canonical morphism 𝑝 ∶ 𝑌 → 𝑋 is open (by Morphisms, Lemma 24.22.4) and
closed (byMorphisms, Lemma 24.42.7). Hence 𝑝(𝑌) = 𝑋 as 𝑋 was assumed connected. In
particular, as 𝑋 is reduced this implies 𝒪(𝑋) ⊂ 𝒪(𝑌). By Lemma 28.6.13 we see that 𝑌 has
finitely many irreducible components. Thus Lemma 28.17.3 applies to 𝑌. This implies that
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if 𝒪(𝑋)∗/𝑘∗ is not a finitely generated abelian group, then there exist elements 𝑓 ∈ 𝒪(𝑋),
𝑓∉𝑘 which map to an element of 𝑘 via the map 𝒪(𝑋) → 𝒪(𝑌). In this case 𝑓 is algebraic
over 𝑘, hence integral over 𝑘. Thus, if condition (1) holds, then this cannot happen. To
finish the proof we show that conditions (2) and (3) imply (1).

Let 𝑘 ⊂ 𝑘′ ⊂ Γ(𝑋, 𝒪𝑋) be the integral closure of 𝑘 in Γ(𝑋, 𝒪𝑋). By Lemma 28.17.4 we
see that 𝑘′ is a field. If 𝑒 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is a 𝑘-rational point, then 𝑒♯ ∶ Γ(𝑋, 𝒪𝑋) → 𝑘 is
a section to the inclusion map 𝑘 → Γ(𝑋, 𝒪𝑋). In particular the restriction of 𝑒♯ to 𝑘′ is a
field map 𝑘′ → 𝑘 over 𝑘, which clearly shows that (2) implies (1).

If the integral closure 𝑘′ of 𝑘 in Γ(𝑋, 𝒪𝑋) is not trivial, then we see that 𝑋 is either not
geometrically connected (if 𝑘 ⊂ 𝑘′ is not purely inseparable) or that 𝑋 is not geometrically
reduced (if 𝑘 ⊂ 𝑘′ is nontrivial purely inseparable). Details omitted. Hence (3) implies
(1). �

Lemma 28.17.6. Let 𝑘 be a field. Let 𝑋 be a variety over 𝑘. The group 𝒪(𝑋)∗/𝑘∗ is a
finitely generated abelian group provided at least one of the following conditions holds:

(1) 𝑘 is integrally closed in Γ(𝑋, 𝒪𝑋),
(2) 𝑘 is algebraically closed in 𝑘(𝑋),
(3) 𝑋 is geometrically integral over 𝑘, or
(4) 𝑘 is the ``intersection'' of the field extensions 𝑘 ⊂ 𝜅(𝑥) where 𝑥 runs over the

closed points of 𝑥.

Proof. We see that (1) is enough by Proposition 28.17.5. We omit the verification that each
of (2), (3), (4) implies (1). �

28.18. Uniqueness of base field

The phrase ``let 𝑋 be a scheme over 𝑘'' means that 𝑋 is a scheme which comes equipped
with a morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘). Nowwe can ask whether the field 𝑘 is uniquely determined
by the scheme 𝑋. Of course this is not the case, since for example 𝐀1

𝐂 which we ordinarily
consider as a scheme over the field 𝐂 of complex numbers, could also be considered as a
scheme over 𝐐. But what if we ask that the morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) does not factor as
𝑋 → 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘) for any nontrivial field extension 𝑘 ⊂ 𝑘′? In other words we ask
that 𝑘 is somehow maximal such that 𝑋 lives over 𝑘.

An example to show that this still does not garantee uniqueness of 𝑘 is the scheme

𝑋 = 𝑆𝑝𝑒𝑐 (𝐐(𝑥)[𝑦] [
1

𝑃(𝑦)
, 𝑃 ∈ 𝐐[𝑦], 𝑃≠0])

At first sight this seems to be a scheme over𝐐(𝑥), but on a second look it is clear that it is also
a scheme over 𝐐(𝑦). Moreover, the fields 𝐐(𝑥) and 𝐐(𝑦) are subfields of 𝑅 = Γ(𝑋, 𝒪𝑋)
which are maximal among the subfields of 𝑅 (details omitted). In particular, both 𝐐(𝑥)
and 𝐐(𝑦) are maximal in the sense above. Note that both morphisms 𝑋 → 𝑆𝑝𝑒𝑐(𝐐(𝑥))
and 𝑋 → 𝑆𝑝𝑒𝑐(𝐐(𝑦)) are ``essentially of finite type'' (i.e., the corresponding ring map is
essentially of finite type). Hence 𝑋 is a Noetherian scheme of finite dimension, i.e., it is
not completely pathological.

Another issue that can prevent uniqueness is that the scheme 𝑋 may be nonreduced. In
that case there can be many different morphisms from 𝑋 to the spectrum of a given field.
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As an explicit example consider the dual numbers 𝐷 = 𝐂[𝑦]/(𝑦2) = 𝐂 ⊕ 𝜖𝐂. Given any
derivation 𝜃 ∶ 𝐂 → 𝐂 over 𝐐 we get a ring map

𝐂 ⟶ 𝐷, 𝑐 ⟼ 𝑐 + 𝜖𝜃(𝑐).
The subfield of 𝐂 on which all of these maps are the same is the algebraic closure of 𝐐.
This means that taking the intersection of all the fields that 𝑋 can live over may end up
being a very small field if 𝑋 is nonreduced.
One observation in this regard is the following: given a field 𝑘 and two subfields 𝑘1, 𝑘2 of
𝑘 such that 𝑘 is finite over 𝑘1 and over 𝑘2, then in general it is not the case that 𝑘 is finite
over 𝑘1 ∩ 𝑘2. An example is the field 𝑘 = 𝐐(𝑡) and its subfields 𝑘1 = 𝐐(𝑡2) and 𝐐((𝑡 + 1)2).
Namely we have 𝑘1 ∩ 𝑘2 = 𝐐 in this case. So in the following we have to be careful when
taking intersections of fields.
Having said all of this we now show that if 𝑋 is locally of finite type over a field, then some
uniqueness holds. Here is the precise result.

Proposition 28.18.1. Let 𝑋 be a scheme. Let 𝑎 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝑘1) and 𝑏 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝑘2)
be morphisms from 𝑋 to spectra of fields. Assume 𝑎, 𝑏 are locally of finite type, and 𝑋
is reduced, and connected. Then we have 𝑘′

1 = 𝑘′
2, where 𝑘′

𝑖 ⊂ Γ(𝑋, 𝒪𝑋) is the integral
closure of 𝑘𝑖 in Γ(𝑋, 𝒪𝑋).

Proof. First, assume the lemma holds in case 𝑋 is quasi-compact (we will do the quasi-
compact case below). As 𝑋 is locally of finite type over a field, it is locally Noetherian,
see Morphisms, Lemma 24.14.6. In particular this means that it is locally connected, con-
nected components of open subsets are open, and intersections of quasi-compact opens are
quasi-compact, see Properties, Lemma 23.5.5, Topology, Lemma 5.4.8, Topology, Section
5.6, and Topology, Lemma 5.11.1. Pick an open covering 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 such that each 𝑈𝑖
is quasi-compact and connected. For each 𝑖 let 𝐾𝑖 ⊂ 𝒪𝑋(𝑈𝑖) be the integral closure of 𝑘1
and of 𝑘2. For each pair 𝑖, 𝑗 ∈ 𝐼 we decompose

𝑈𝑖 ∩ 𝑈𝑗 = ∐ 𝑈𝑖,𝑗,𝑙

into its finitely many connected components. Write 𝐾𝑖,𝑗,𝑙 ⊂ 𝒪(𝑈𝑖,𝑗,𝑙) for the integral closure
of 𝑘1 and of 𝑘2. By Lemma 28.17.4 the rings 𝐾𝑖 and 𝐾𝑖,𝑗,𝑙 are fields. Now we claim that
𝑘′

1 and 𝑘′
2 both equal the kernel of the map

∏ 𝐾𝑖 ⟶ ∏ 𝐾𝑖,𝑗,𝑙, (𝑥𝑖)𝑖 ⟼ 𝑥𝑖|𝑈𝑖,𝑗,𝑙
− 𝑥𝑗|𝑈𝑖,𝑗,𝑙

which proves what we want. Namely, it is clear that 𝑘′
1 is contained in this kernel. On the

other hand, suppose that (𝑥𝑖)𝑖 is in the kernel. By the sheaf condition (𝑥𝑖)𝑖 corresponds to
𝑓 ∈ 𝒪(𝑋). Pick some 𝑖0 ∈ 𝐼 and let 𝑃(𝑇) ∈ 𝑘1[𝑇] be a monic polynomial with 𝑃(𝑥𝑖0) = 0.
Then we claim that 𝑃(𝑓) = 0 which proves that 𝑓 ∈ 𝑘1. To prove this we have to show that
𝑃(𝑥𝑖) = 0 for all 𝑖. Pick 𝑖 ∈ 𝐼. As 𝑋 is connected there exists a sequence 𝑖0, 𝑖1, … , 𝑖𝑛 = 𝑖 ∈
𝐼 such that 𝑈𝑖𝑡 ∩ 𝑈𝑖𝑡+1

≠∅. Now this means that for each 𝑡 there exists an 𝑙𝑡 such that 𝑥𝑖𝑡 and
𝑥𝑖𝑡+1

map to the same element of the field 𝐾𝑖,𝑗,𝑙. Hence if 𝑃(𝑥𝑖𝑡) = 0, then 𝑃(𝑥𝑖𝑡+1
) = 0. By

induction, starting with 𝑃(𝑥𝑖0) = 0 we deduce that 𝑃(𝑥𝑖) = 0 as desired.
To finish the proof of the lemma we prove the lemma under the additional hypothesis that
𝑋 is quasi-compact. By Lemma 28.17.4 after replacing 𝑘𝑖 by 𝑘′

𝑖 we may assume that 𝑘𝑖
is integrally closed in Γ(𝑋, 𝒪𝑋). This implies that 𝒪(𝑋)∗/𝑘∗

𝑖 is a finitely generated abelian
group, see Proposition 28.17.5. Let 𝑘12 = 𝑘1 ∩ 𝑘2 as a subring of 𝒪(𝑋). Note that 𝑘12 is a
field. Since

𝑘∗
1/𝑘∗

12 ⟶ 𝒪(𝑋)∗/𝑘∗
2
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we see that 𝑘∗
1/𝑘∗

12 is a finitely generated abelian group aswell. Hence there exist 𝛼1, … , 𝛼𝑛 ∈
𝑘∗

1 such that every element 𝜆 ∈ 𝑘1 has the form

𝜆 = 𝑐𝛼𝑒1
1 … 𝛼𝑒𝑛

𝑛

for some 𝑒𝑖 ∈ 𝐙 and 𝑐 ∈ 𝑘12. In particular, the ring map

𝑘12[𝑥1, … , 𝑥𝑛, 1
𝑥1 … 𝑥𝑛

] ⟶ 𝑘1, 𝑥𝑖 ⟼ 𝛼𝑖

is surjective. By the Hilbert Nullstellensatz, Algebra, Theorem 7.30.1 we conclude that 𝑘1
is a finite extension of 𝑘12. In the same way we conclude that 𝑘2 is a finite extension of 𝑘12.
In particular both 𝑘1 and 𝑘2 are contained in the integral closure 𝑘′

12 of 𝑘12 in Γ(𝑋, 𝒪𝑋).
But since 𝑘′

12 is a field by Lemma 28.17.4 and since we chose 𝑘𝑖 to be integrally closed in
Γ(𝑋, 𝒪𝑋) we conclude that 𝑘1 = 𝑘12 = 𝑘2 as desired. �
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CHAPTER 29

Chow Homology and Chern Classes

29.1. Introduction

In this chapter we discuss Chow homology groups and the construction of chern classes
of vector bundles as elements of operational Chow cohomology groups (everything with
𝐙-coefficients). We follow the first few chapters of [Ful98], except that we have been less
precise about the supports of the cycles involved. More classical discussions of Chow
groups can be found in [Sam56], [Che58a], and [Che58b]. Of course there are many
others.

To make the material a little bit more challenging we decided to treat a somewhat more
general case than is usually done. Namely we assume our schemes 𝑋 are locally of finite
type over a fixed locally Noetherian base scheme which is universally catenary and has a
given dimension function. This seems to be all that is needed to be able to define the Chow
homology groups 𝐴∗(𝑋) and the action of capping with chern classes on them. This is an
indication that we should be able to define these also for algebraic stacks locally of finite
type over such a base.

In another chapter we will define the intersection products on 𝐴∗(𝑋) using Serre's Tor-
formula in case 𝑋 is nonsingular (see [Ser00], or [Ser65]) and we have a good moving
lemma. See (insert future reference here).

29.2. Determinants of finite length modules

Thematerial in this section is related to thematerial in the paper [KM76] and to thematerial
in the thesis [Ros09]. If you have a good reference then please email stacks.project@gmail.com.

Given any field 𝜅 and any finite dimensional 𝜅-vector space 𝑉 we set det𝜅(𝑉) equal to
det𝜅(𝑉) = ∧𝑛(𝑉) where 𝑛 = dim𝜅(𝑉). We want to generalize this slightly.

Definition 29.2.1. Let 𝑅 be a local ring with maximal ideal 𝔪 and residue field 𝜅. Let 𝑀
be a finite length 𝑅-module. Say 𝑙 = length𝑅(𝑀).

(1) Given elements 𝑥1, … , 𝑥𝑟 ∈ 𝑀 we denote ⟨𝑥1, … , 𝑥𝑟⟩ = 𝑅𝑥1 + … + 𝑅𝑥𝑟 the
𝑅-submodule of 𝑅 generated by 𝑥1, … , 𝑥𝑟.

(2) We will say an 𝑙-tuples of elements (𝑒1, … , 𝑒𝑙) of 𝑀 is admissible if 𝔪𝑒𝑖 ∈
⟨𝑒1, … , 𝑒𝑖−1⟩ for 𝑖 = 1, … , 𝑙.

(3) A symbol [𝑒1, … , 𝑒𝑙] will mean (𝑒1, … , 𝑒𝑙) is an admissible 𝑙-tuple.
(4) An admissible relation between symbols is one of the following:

(a) if (𝑒1, … , 𝑒𝑙) is an admissible sequence and for some 1 ≤ 𝑎 ≤ 𝑙 we have
𝑒𝑎 ∈ ⟨𝑒1, … , 𝑒𝑎−1⟩, then [𝑒1, … , 𝑒𝑙] = 0,

(b) if (𝑒1, … , 𝑒𝑙) is an admissible sequence and for some 1 ≤ 𝑎 ≤ 𝑙 we have
𝑒𝑎 = 𝜆𝑒′

𝑎 + 𝑥 with 𝜆 ∈ 𝑅∗, and 𝑥 ∈ ⟨𝑒1, … , 𝑒𝑎−1⟩, then

[𝑒1, … , 𝑒𝑙] = 𝜆[𝑒1, … , 𝑒𝑎−1, 𝑒′
𝑎, 𝑒𝑎+1, … , 𝑒𝑙]

1535
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where 𝜆 ∈ 𝜅∗ is the image of 𝜆 in the residue field, and
(c) if (𝑒1, … , 𝑒𝑙) is an admissible sequence and 𝔪𝑒𝑎 ⊂ ⟨𝑒1, … , 𝑒𝑎−2⟩ then

[𝑒1, … , 𝑒𝑙] = −[𝑒1, … , 𝑒𝑎−2, 𝑒𝑎, 𝑒𝑎−1, 𝑒𝑎+1, … , 𝑒𝑙].

(5) We define the determinant of the finite length 𝑅-module to be

det𝜅(𝑀) = {
𝜅-vector space generated by symbols

𝜅-linear combinations of admissible relations}

We stress that always 𝑙 = length𝑅(𝑀). We also stress that it does not follow that the symbol
[𝑒1, … , 𝑒𝑙] is additive in the entries (this will typically not be the case). Before we can show
that the determinant det𝜅(𝑀) actually has dimension 1 we have to show that it has dimension
at most 1.

Lemma 29.2.2. With notations as above we have dim𝜅(det𝜅(𝑀)) ≤ 1.

Proof. Fix an admissible sequence (𝑓1, … , 𝑓𝑙) of 𝑀 such that

length𝑅(⟨𝑓1, … , 𝑓𝑖⟩) = 𝑖

for 𝑖 = 1, … , 𝑙. Such an admissible sequence exists exactly because 𝑀 has length 𝑙. We
will show that any element of det𝜅(𝑀) is a 𝜅-multiple of the symbol [𝑓1, … , 𝑓𝑙]. This will
prove the lemma.

Let (𝑒1, … , 𝑒𝑙) be an admissible sequence of 𝑀. It suffices to show that [𝑒1, … , 𝑒𝑙 is a
multiple of [𝑓1, … , 𝑓𝑙]. First assume that ⟨𝑒1, … , 𝑒𝑙⟩≠𝑀. Then there exists an 𝑖 ∈ [1, … , 𝑙]
such that 𝑒𝑖 ∈ ⟨𝑒1, … , 𝑒𝑖−1⟩. It immediately follows from the first admissible relation that
[𝑒1, … , 𝑒𝑛] = 0 in det𝜅(𝑀). Hence we may assume that ⟨𝑒1, … , 𝑒𝑙⟩ = 𝑀. In particular
there exists a smallest index 𝑖 ∈ {1, … , 𝑙} such that 𝑓1 ∈ ⟨𝑒1, … , 𝑒𝑖⟩. This means that
𝑒𝑖 = 𝜆𝑓1 + 𝑥 with 𝑥 ∈ ⟨𝑒1, … , 𝑒𝑖−1⟩ and 𝜆 ∈ 𝑅∗. By the second admissible relation this
means that [𝑒1, … , 𝑒𝑙] = 𝜆[𝑒1, … , 𝑒𝑖−1, 𝑓1, 𝑒𝑖+1, … , 𝑒𝑙]. Note that 𝔪𝑓1 = 0. Hence by
applying the third admissible relation 𝑖 − 1 times we see that

[𝑒1, … , 𝑒𝑙] = (−1)𝑖−1𝜆[𝑓1, 𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙].

Note that it is also the case that ⟨𝑓1, 𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙⟩ = 𝑀. By induction suppose
we have proven that our original symbol is equal to a scalar times

[𝑓1, … , 𝑓𝑗, 𝑒𝑗+1, … , 𝑒𝑙]

for some admissible sequence (𝑓1, … , 𝑓𝑗, 𝑒𝑗+1, … , 𝑒𝑙) whose elements generate 𝑀, i.e.,
with ⟨𝑓1, … , 𝑓𝑗, 𝑒𝑗+1, … , 𝑒𝑙⟩ = 𝑀. Thenwe find the smallest 𝑖 such that 𝑓𝑗+1 ∈ ⟨𝑓1, … , 𝑓𝑗, 𝑒𝑗+1, … , 𝑒𝑖⟩
and we go through the same process as above to see that

[𝑓1, … , 𝑓𝑗, 𝑒𝑗+1, … , 𝑒𝑙] = (scalar)[𝑓1, … , 𝑓𝑗, 𝑓𝑗+1, 𝑒𝑗+1, … , ̂𝑒𝑖, … , 𝑒𝑙]

Continuing in this vein we obtain the desired result. �

Before we show that det𝜅(𝑀) always has dimension 1, let us show that it agree with the
usual top exterior power in the case the module is a vector space over 𝜅.

Lemma 29.2.3. Let 𝑅 be a local ring with maximal ideal 𝔪 and residue field 𝜅. Let 𝑀 be
a finite length 𝑅-module which is annihilated by 𝔪. Let 𝑙 = 𝑛 = dim𝜅(𝑀). Then the map

det𝜅(𝑀) ⟶ ∧𝑙
𝜅(𝑀), [𝑒1, … , 𝑒𝑙] ⟼ 𝑒1 ∧ … ∧ 𝑒𝑙

is an isomorphism.
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Proof. It is clear that the rule described in the lemma gives a 𝜅-linear map since all of
the admissible relations are satisfied by the usual symbols 𝑒1 ∧ … ∧ 𝑒𝑙. It is also clearly a
surjective map. Since by Lemma 29.2.2 the left hand side has dimension at most one we
see that the map is an isomorphism. �

Lemma 29.2.4. Let 𝑅 be a local ring with maximal ideal 𝔪 and residue field 𝜅. Let 𝑀
be a finite length 𝑅-module. The determinant det𝜅(𝑀) defined above is a 𝜅-vector space of
dimension 1. It is generated by the symbol [𝑓1, … , 𝑓𝑙] for any admissible sequence such
that ⟨𝑓1, … 𝑓𝑙⟩ = 𝑀.

Proof. We know det𝜅(𝑀) has dimension at most 1, and in fact that it is generated by
[𝑓1, … , 𝑓𝑙], by Lemma 29.2.2 and its proof. We will show by induction on 𝑙 = length(𝑀)
that it is nonzero. For 𝑙 = 1 it follows from Lemma 29.2.3. Choose a nonzero element
𝑓 ∈ 𝑀 with 𝔪𝑓 = 0. Set 𝑀 = 𝑀/⟨𝑓⟩, and denote the quotient map 𝑥 ↦ 𝑥. We will define
a surjective map

𝜓 ∶ det𝑘(𝑀) → det𝜅(𝑀)
which will prove the lemma since by induction the determinant of 𝑀 is nonzero.

We define𝜓 on symbols as follows. Let (𝑒1, … , 𝑒𝑙) be an admissible sequence. If 𝑓∉⟨𝑒1, … , 𝑒𝑙⟩
then we simply set 𝜓([𝑒1, … , 𝑒𝑙]) = 0. If 𝑓 ∈ ⟨𝑒1, … , 𝑒𝑙⟩ then we choose an 𝑖 minimal such
that 𝑓 ∈ ⟨𝑒1, … , 𝑒𝑖⟩ and write 𝑒𝑖 = 𝜆𝑓 + 𝑥 for some 𝜆 ∈ 𝑅 and 𝑥 ∈ ⟨𝑒1, … , 𝑒𝑖−1⟩. In this
case we set

𝜓([𝑒1, … , 𝑒𝑙]) = 𝜆[𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙].

Note that it is indeed the case that (𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙) is an admissible sequence in 𝑀,
so this makes sense. Let us show that extending this rule 𝜅-linearly to linear combinations
of symbolds does indeed lead to a map on determinants. To do this we have to show that
the admissible relations are mapped to zero.

Type (a) relations. Suppose we have (𝑒1, … , 𝑒𝑙) an admissible sequence and for some 1 ≤
𝑎 ≤ 𝑙 we have 𝑒𝑎 ∈ ⟨𝑒1, … , 𝑒𝑎−1⟩. Suppose that 𝑓 ∈ ⟨𝑒1, … , 𝑒𝑖⟩ with 𝑖 minimal. Then it is
immediate that 𝑖≠𝑎. Since it is also the case that 𝑒𝑎 ∈ ⟨𝑒1, … , ̂𝑒𝑖, … , 𝑒𝑎−1⟩ we see immedi-
ately that the same admissible relation for det𝜅(𝑀) forces the symbol [𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙]
to be zero as desired.

Type (b) relations. Suppose we have (𝑒1, … , 𝑒𝑙) an admissible sequence and for some 1 ≤
𝑎 ≤ 𝑙 we have 𝑒𝑎 = 𝜆𝑒′

𝑎 + 𝑥 with 𝜆 ∈ 𝑅∗, and 𝑥 ∈ ⟨𝑒1, … , 𝑒𝑎−1⟩. Suppose that 𝑓 ∈
⟨𝑒1, … , 𝑒𝑖⟩ with 𝑖 minimal. Say 𝑒𝑖 = 𝜇𝑓 + 𝑦 with 𝑦 ∈ ⟨𝑒1, … , 𝑒𝑖−1⟩. If 𝑖 < 𝑎 then the
desired equality is

𝜆[𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙] = 𝜆[𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑎−1, 𝑒′
𝑎, 𝑒𝑎+1, … , 𝑒𝑙]

which follows from 𝑒𝑎 = 𝜆𝑒′
𝑎 + 𝑥 and the corresponding admissible relation for det𝜅(𝑀).

If 𝑖 > 𝑎 then the desired equality is

𝜆[𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙] = 𝜆[𝑒1, … , 𝑒𝑎−1, 𝑒′
𝑎, 𝑒𝑎+1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙]

which follows from 𝑒𝑎 = 𝜆𝑒′
𝑎 + 𝑥 and the corresponding admissible relation for det𝜅(𝑀).

The interesting case is when 𝑖 = 𝑎. In this case we have 𝑒𝑎 = 𝜆𝑒′
𝑎 + 𝑥 = 𝜇𝑓 + 𝑦. Hence

also 𝑒′
𝑎 = 𝜆−1(𝜇𝑓 + 𝑦 − 𝑥). Thus we see that

𝜓([𝑒1, … , 𝑒𝑙]) = 𝜇[𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙] = 𝜓(𝜆[𝑒1, … , 𝑒𝑎−1, 𝑒′
𝑎, 𝑒𝑎+1, … , 𝑒𝑙])

as desired.
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Type (c) relations. Suppose that (𝑒1, … , 𝑒𝑙) is an admissible sequence and𝔪𝑒𝑎 ⊂ ⟨𝑒1, … , 𝑒𝑎−2⟩.
Suppose that 𝑓 ∈ ⟨𝑒1, … , 𝑒𝑖⟩ with 𝑖 minimal. Say 𝑒𝑖 = 𝜆𝑓 + 𝑥 with 𝑥 ∈ ⟨𝑒1, … , 𝑒𝑖−1⟩. If
𝑖 < 𝑎 − 1, then the desired equality is

𝜆[𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙] = 𝜆[𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑎−2, 𝑒𝑎, 𝑒𝑎−1, 𝑒𝑎+1, … , 𝑒𝑙]

which follows from the type (c) admissible relation for det𝜅(𝑀). Similarly, if 𝑖 > 𝑎, then
the desired equality is

𝜆[𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙] = 𝜆[𝑒1, … , 𝑒𝑎−2, 𝑒𝑎, 𝑒𝑎−1, 𝑒𝑎+1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑙]

which follows from the type (c) admissible relation for det𝜅(𝑀). If 𝑖 = 𝑎, then the desired
equality is

𝜆[𝑒1, … , 𝑒𝑎−1, 𝑒𝑎+1, … , 𝑒𝑙] = 𝜆[𝑒1, … , 𝑒𝑎−2, 𝑒𝑎−1, 𝑒𝑎+1, … , 𝑒𝑙]

which is tautological. Finally, the interesting case is 𝑖 = 𝑎 − 1. This case itself splits into
two cases as to whether 𝑓 ∈ ⟨𝑒1, … , 𝑒𝑎−2, 𝑒𝑎⟩ or not. If not, then we see that the desired
equality is

𝜆[𝑒1, … , 𝑒𝑎−2, 𝑒𝑎, … , 𝑒𝑙] = 𝜆[𝑒1, … , 𝑒𝑎−2, 𝑒𝑎, 𝑒𝑎+1, … , 𝑒𝑙]
which is tautological since after switching 𝑒𝑎−1 and 𝑒𝑎 the smallest index such that 𝑓 is
in the becomes equal to 𝑖′ = 𝑎 and it is again 𝑒𝑎 which is removed. On the other hand,
suppose that 𝑓 ∈ ⟨𝑒1, … , 𝑒𝑎−2, 𝑒𝑎⟩. In this case we see that we can, besides the equality
𝑒𝑎−1 = 𝜆𝑓 + 𝑥 of above, also write 𝑒𝑎 = 𝜇𝑓 + 𝑦 with 𝑦 ∈ ⟨𝑒1, … , 𝑒𝑎−2⟩. Clearly this means
that both 𝑒𝑎 ∈ ⟨𝑒1, … , 𝑒𝑎−1⟩ and 𝑒𝑎−1 ∈ ⟨𝑒1, … , 𝑒𝑎−2, 𝑒𝑎⟩. Thus we can use relations of
type (a) and the compatibility of 𝜓 with these shown above to see that both

𝜓([𝑒1, … , 𝑒𝑙]) and 𝜓([𝑒1, … , 𝑒𝑎−2, 𝑒𝑎, 𝑒𝑎−1, 𝑒𝑎+1, … , 𝑒𝑙])

are zero, as desired.

At this point we have shown that 𝜓 is well defined, and all that remains is to show that
it is surjective. To see this let (𝑓2, … , 𝑓𝑙) be an admissible sequence in 𝑀. We can
choose lifts 𝑓2, … , 𝑓𝑙 ∈ 𝑀, and then (𝑓, 𝑓2, … , 𝑓𝑙) is an admissible sequence in 𝑀. Since
𝜓([𝑓, 𝑓2, … , 𝑓𝑙]) = [𝑓2, … , 𝑓𝑙] we win. �

Let 𝑅 be a local ring with maximal ideal 𝔪 and residue field 𝜅. Note that if 𝜑 ∶ 𝑀 → 𝑁
is an isomorphism of finite length 𝑅-modules, then we get an isomorphism

det𝜅(𝜑) ∶ det𝜅(𝑀) → det𝜅(𝑁)

simply by the rule
det𝜅(𝜑)([𝑒1, … , 𝑒𝑙]) = [𝜑(𝑒1), … , 𝜑(𝑒𝑙)]

for any symbol [𝑒1, … , 𝑒𝑙] for 𝑀. Hence we see that det𝜅 is a functor

(29.2.4.1) {
fi

with isomorphisms} ⟶ {
1-dimensional 𝜅-vector spaces

with isomorphisms }

This is typical for a ``determinant functor'' (see [Knu02]), as is the following additivity
property.

Lemma 29.2.5. Let (𝑅, 𝔪, 𝜅) be a local ring. For every short exact sequence

0 → 𝐾 → 𝐿 → 𝑀 → 0

of finite length 𝑅-modules there exists a canonical isomorphism

𝛾𝐾→𝐿→𝑀 ∶ det𝜅(𝐾) ⊗𝜅 det𝜅(𝑀) ⟶ det𝜅(𝐿)
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defined by the rule on nonzero symbols

[𝑒1, … , 𝑒𝑘] ⊗ [𝑓1, … , 𝑓𝑚] ⟶ [𝑒1, … , 𝑒𝑘, 𝑓1, … , 𝑓𝑚]

with the following properties:
(1) For every isomorphism of short exact sequences, i.e., for every commutative di-

agram
0 // 𝐾 //

𝑢
��

𝐿 //

𝑣
��

𝑀 //

𝑤
��

0

0 // 𝐾′ // 𝐿′ //𝑀′ // 0
with short exact rows and isomorphisms 𝑢, 𝑣, 𝑤 we have

𝛾𝐾′→𝐿′→𝑀′ ∘ (det𝜅(𝑢) ⊗ det𝜅(𝑤)) = det𝜅(𝑣) ∘ 𝛾𝐾→𝐿→𝑀,

(2) for every commutative square of finite length 𝑅-modules with exact rows and
columns

0

��

0

��

0

��
0 // 𝐴 //

��

𝐵 //

��

𝐶 //

��

0

0 // 𝐷 //

��

𝐸 //

��

𝐹 //

��

0

0 // 𝐺 //

��

𝐻 //

��

𝐼 //

��

0

0 0 0
the following diagram is commutative

det𝜅(𝐴) ⊗ det𝜅(𝐶) ⊗ det𝜅(𝐺) ⊗ det𝜅(𝐼)

𝜖

��

𝛾𝐴→𝐵→𝐶⊗𝛾𝐺→𝐻→𝐼
// det𝜅(𝐵) ⊗ det𝜅(𝐻)

𝛾𝐵→𝐸→𝐻
��

det𝜅(𝐸)

det𝜅(𝐴) ⊗ det𝜅(𝐺) ⊗ det𝜅(𝐶) ⊗ det𝜅(𝐼)
𝛾𝐴→𝐷→𝐺⊗𝛾𝐶→𝐹→𝐼 // det𝜅(𝐷) ⊗ det𝜅(𝐹)

𝛾𝐷→𝐸→𝐹

OO

where 𝜖 is the switch of the factors in the tensor product times (−1)𝑐𝑔 with 𝑐 =
length𝑅(𝐶) and 𝑔 = length𝑅(𝐺), and

(3) the map 𝛾𝐾→𝐿→𝑀 agrees with the usual isomorphism if 0 → 𝐾 → 𝐿 → 𝑀 → 0
is actually a short exact sequence of 𝜅-vector spaces.

Proof. The significance of taking nonzero symbols in the explicit description of the map
𝛾𝐾→𝐿→𝑀 is simply that if (𝑒1, … , 𝑒𝑙) is an admissible sequence in 𝐾, and (𝑓1, … , 𝑓𝑚) is
an admissible sequence in 𝑀, then it is not garanteed that (𝑒1, … , 𝑒𝑙, 𝑓1, … , 𝑓𝑚) is an ad-
missible sequence in 𝐿 (where of course 𝑓𝑖 ∈ 𝐿 signifies a lift of 𝑓𝑖). However, if the
symbol [𝑒1, … , 𝑒𝑙] is nonzero in det𝜅(𝐾), then necessarily 𝐾 = ⟨𝑒1, … , 𝑒𝑘⟩ (see proof of



1540 29. CHOW HOMOLOGY AND CHERN CLASSES

Lemma 29.2.2), and in this case it is true that (𝑒1, … , 𝑒𝑘, 𝑓1, … , 𝑓𝑚) is an admissible se-
quence. Moreover, by the admissible relations of type (b) for det𝜅(𝐿) we see that the value
of [𝑒1, … , 𝑒𝑘, 𝑓1, … , 𝑓𝑚] in det𝜅(𝐿) is independent of the choice of the lifts 𝑓𝑖 in this case
also. Given this remark, it is clear that an admissible relation for 𝑒1, … , 𝑒𝑘 in 𝐾 translates
into an admissible relation among 𝑒1, … , 𝑒𝑘, 𝑓1, … , 𝑓𝑚 in 𝐿, and similarly for an admissi-
ble relation among the 𝑓1, … , 𝑓𝑚. Thus 𝛾 defines a linear map of vector spaces as claimed
in the lemma.

By Lemma 29.2.4 we know det𝜅(𝐿) is generated by any single symbol [𝑥1, … , 𝑥𝑘+𝑚] such
that (𝑥1, … , 𝑥𝑘+𝑚) is an admissible sequence with 𝐿 = ⟨𝑥1, … , 𝑥𝑘+𝑚⟩. Hence it is clear
that the map 𝛾𝐾→𝐿→𝑀 is surjective and hence an isomorphism.

Property (1) holds because

det𝜅(𝑣)([𝑒1, … , 𝑒𝑘, 𝑓1, … , 𝑓𝑚])
= [𝑣(𝑒1), … , 𝑣(𝑒𝑘), 𝑣(𝑓1), … , 𝑣(𝑓𝑚)]
= 𝛾𝐾′→𝐿′→𝑀′([𝑢(𝑒1), … , 𝑢(𝑒𝑘)] ⊗ [𝑤(𝑓1), … , 𝑤(𝑓𝑚)]).

Property (2)means that given a symbol [𝛼1, … , 𝛼𝑎] generating det𝜅(𝐴), a symbol [𝛾1, … , 𝛾𝑐]
generating det𝜅(𝐶), a symbol [𝜁1, … , 𝜁𝑔] generating det𝜅(𝐺), and a symbol [𝜄1, … , 𝜄𝑖] gen-
erating det𝜅(𝐼) we have

[𝛼1, … , 𝛼𝑎, ̃𝛾1, … , ̃𝛾𝑐, ̃𝜁1, … , ̃𝜁𝑔, ̃𝜄1, … , ̃𝜄𝑖]
= (−1)𝑐𝑔[𝛼1, … , 𝛼𝑎, ̃𝜁1, … , ̃𝜁𝑔, ̃𝛾1, … , ̃𝛾𝑐, ̃𝜄1, … , ̃𝜄𝑖]

(for suitable lifts �̃� in 𝐸) in det𝜅(𝐸). This holds because wemay use the admissible relations
of type (c) 𝑐𝑔 times in the following order: move the ̃𝜁1 past the elements ̃𝛾𝑐, … , ̃𝛾1 (allowed
since 𝔪 ̃𝜁1 ⊂ 𝐴), then move ̃𝜁2 past the elements ̃𝛾𝑐, … , ̃𝛾1 (allowed since 𝔪 ̃𝜁2 ⊂ 𝐴 + 𝑅 ̃𝜁1),
and so on.

Part (3) of the lemma is obvious. This finishes the proof. �

We can use the maps 𝛾 of the lemma to define more general maps 𝛾 as follows. Suppose
that (𝑅, 𝔪, 𝜅) is a local ring. Let 𝑀 be a finite length 𝑅-module and suppose we are given
a finite filtration (see Homology, Definition 10.13.1)

𝑀 = 𝐹𝑛 ⊃ 𝐹𝑛+1 ⊃ … ⊃ 𝐹𝑚−1 ⊃ 𝐹𝑚 = 0.

Then there is a canonical isomorphism

𝛾(𝑀,𝐹) ∶ ⨂𝑖
det𝜅(𝐹𝑖/𝐹𝑖+1) ⟶ det𝜅(𝑀)

well defined up to sign(!). One can make the sign explicit either by giving a well defined
order of the terms in the tensor product (starting with higher indices unfortunately), and by
thinking of the target category for the functor det𝜅 as the category of 1-dimensional super
vector spaces. See [KM76, Section 1].

Here is another typical result for determinant functors. It is not hard to show. The tricky
part is usually to show the existence of a determinant functor.

Lemma 29.2.6. Let (𝑅, 𝔪, 𝜅) be any local ring. The functor

det𝜅 ∶ {
fi𝑅-modules

with isomorphisms} ⟶ {
1-dimensional 𝜅-vector spaces

with isomorphisms }

endowed with the maps 𝛾𝐾→𝐿→𝑀 is characterized by the following properties
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(1) its restriction to the subcategory of modules annihilated by 𝔪 is isomorphic to
the usual determinant functor (see Lemma 29.2.3), and

(2) (1), (2) and (3) of Lemma 29.2.5 hold.

Proof. Omitted. �

Lemma 29.2.7. Let (𝑅, 𝔪, 𝜅) be a local ring. Let 𝐼 ⊂ 𝔪 be an ideal, and set 𝑅′ = 𝑅/𝐼. Let
det𝑅,𝜅 denote the determinant functor on the category Mod𝑓

𝑅 finite length 𝑅-modules and
denote det𝑅′,𝜅 the determinant on the category Mod𝑓

𝑅′ of finite length 𝑅′-modules. Then
Mod𝑓

𝑅′ ⊂ Mod𝑓
𝑅 is a full subcategory and there exists an isomorphism of functors

det𝑅,𝜅 |Mod𝑓
𝑅′

= det𝑅′,𝜅

compatible with the isomorphisms 𝛾𝐾→𝐿→𝑀 for either of these functors.

Proof. This can be shown by using the characterization of the pair (det𝑅′,𝜅, 𝛾) in Lemma
29.2.6. But really the isomorphism is obtained bymapping a symbol [𝑥1, … , 𝑥𝑙] ∈ det𝑅,𝜅(𝑀)
to the corresponding symbol [𝑥1, … , 𝑥𝑙] ∈ det𝑅′,𝜅(𝑀) which ``obviously'' works. �

Here is a case where we can compute the determinant of a linear map. In fact there is
nothing mysterious about this in any case, see Example 29.2.9 for a random example.

Lemma 29.2.8. Let 𝑅 be a local ring with residue field 𝜅. Let 𝑢 ∈ 𝑅∗ be a unit. Let 𝑀 be
a module of finite length over 𝑅. Denote 𝑢𝑀 ∶ 𝑀 → 𝑀 the map multiplication by 𝑢. Then

det𝜅(𝑢𝑀) ∶ det𝜅(𝑀) ⟶ det𝜅(𝑀)

is multiplication by 𝑢𝑙 where 𝑙 = length𝑅(𝑀) and 𝑢 ∈ 𝜅∗ is the image of 𝑢.

Proof. Denote 𝑓𝑀 ∈ 𝜅∗ the element such that det𝜅(𝑢𝑀) = 𝑓𝑀iddet𝜅(𝑀). Suppose that
0 → 𝐾 → 𝐿 → 𝑀 → 0 is a short exact sequence of finite 𝑅-modules. Then we see that
𝑢𝑘, 𝑢𝐿, 𝑢𝑀 give an isomorphism of short exact sequences. Hence by Lemma 29.2.5 (1) we
conclude that 𝑓𝐾𝑓𝑀 = 𝑓𝐿. This means that by induction on length it suffices to prove the
lemma in the case of length 1 where it is trivial. �

Example 29.2.9. Consider the local ring 𝑅 = 𝐙𝑝. Set 𝑀 = 𝐙𝑝/(𝑝2) ⊕ 𝐙𝑝/(𝑝3). Let
𝑢 ∶ 𝑀 → 𝑀 be the map given by the matrix

𝑢 = (
𝑎 𝑏
𝑝𝑐 𝑑)

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐙𝑝, and 𝑎, 𝑑 ∈ 𝐙∗
𝑝. In this case det𝜅(𝑢) equals multiplication by 𝑎2𝑑3 mod

𝑝 ∈ 𝐅∗
𝑝. This can easily be seen by consider the effect of 𝑢 on the symbol [𝑝2𝑒, 𝑝𝑒, 𝑝𝑓, 𝑒, 𝑓]

where 𝑒 = (0, 1) ∈ 𝑀 and 𝑓 = (1, 0) ∈ 𝑀.

29.3. Periodic complexes

Of course there is a very general notion of periodic complexes. We can require periodicity
of themaps, or periodicity of the objects. Wewill add these here as needed. For themoment
we only need the following cases.

Definition 29.3.1. Let 𝑅 be a ring.
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(1) A 2-periodic complex over 𝑅 is given by a quadruple (𝑀, 𝑁, 𝜑, 𝜓) consisting of
𝑅-modules 𝑀, 𝑁 and 𝑅-module maps 𝜑 ∶ 𝑀 → 𝑁, 𝜓 ∶ 𝑁 → 𝑀 such that

… //𝑀
𝜑 // 𝑁

𝜓 //𝑀
𝜑 // 𝑁 //…

is a complex. In this setting we define the cohomology modules of the complex
to be the 𝑅-modules

𝐻0(𝑀, 𝑁, 𝜑, 𝜓) = Ker(𝜑)/Im(𝜓), and 𝐻1(𝑀, 𝑁, 𝜑, 𝜓) = Ker(𝜓)/Im(𝜑).

We say the 2-periodic complex is exact if the cohomology groups are zero.
(2) A (2, 1)-periodic complex over 𝑅 is given by a triple (𝑀, 𝜑, 𝜓) consisting of an

𝑅-module 𝑀 and 𝑅-module maps 𝜑 ∶ 𝑀 → 𝑀, 𝜓 ∶ 𝑀 → 𝑀 such that

… //𝑀
𝜑 //𝑀

𝜓 //𝑀
𝜑 //𝑀 // …

is a complex. Since this is a special case of a 2-periodic complex we have its
cohomology modules 𝐻0(𝑀, 𝜑, 𝜓), 𝐻1(𝑀, 𝜑, 𝜓) and a notion of exactness.

In the following we will use any result proved for 2-periodic complexes without further
mention for (2, 1)-periodic complexes. It is clear that the collection of 2-periodic complexes
(resp. (2, 1)-periodic complexes) forms a category with morphisms (𝑓, 𝑔) ∶ (𝑀, 𝑁, 𝜑, 𝜓) →
(𝑀′, 𝑁′, 𝜑′, 𝜓′) pairs of morphisms 𝑓 ∶ 𝑀 → 𝑀′ and 𝑔 ∶ 𝑁 → 𝑁′ such that 𝜑′ ∘𝑓 = 𝑓∘𝜑
and𝜓′∘𝑔 = 𝑔∘𝜓. In fact it is an abelian category, with kernels and cokernels as inHomology,
Lemma 10.10.3. Also, note that a special case are the (2, 1)-periodic complexes of the form
(𝑀, 0, 𝜓). In this special case we have

𝐻0(𝑀, 0, 𝜓) = Coker(𝜓), and 𝐻1(𝑀, 0, 𝜓) = Ker(𝜓).

Definition 29.3.2. Let 𝑅 be a local ring. Let (𝑀, 𝑁, 𝜑, 𝜓) be a 2-periodic complex over 𝑅
whose cohomology groups have finite length over 𝑅. In this case we define the multiplicity
of (𝑀, 𝑁, 𝜑, 𝜓) to be the integer

𝑒𝑅(𝑀, 𝑁, 𝜑, 𝜓) = length𝑅(𝐻0(𝑀, 𝑁, 𝜑, 𝜓)) − length𝑅(𝐻1(𝑀, 𝑁, 𝜑, 𝜓))

Wewill sometimes (especially in the case of a (2, 1)-periodic complex with 𝜑 = 0) call this
the Herbrand quotient1.

Lemma 29.3.3. Let 𝑅 be a local ring.
(1) If (𝑀, 𝑁, 𝜑, 𝜓) is a 2-periodic complex such that 𝑀, 𝑁 have finite length. Then

𝑒𝑅(𝑀, 𝑁, 𝜑, 𝜓) = length𝑅(𝑀) − length𝑅(𝑁).
(2) If (𝑀, 𝜑, 𝜓) is a (2, 1)-periodic complex such that 𝑀 has finite length. Then

𝑒𝑅(𝑀, 𝜑, 𝜓) = 0.
(3) Suppose that we have a short exact sequence of (2, 1)-periodic complexes

0 → (𝑀1, 𝑁1, 𝜑1, 𝜓1) → (𝑀2, 𝑁2, 𝜑2, 𝜓2) → (𝑀3, 𝑁3, 𝜑3, 𝜓3) → 0

If two out of three have cohomology modules of finite length so does the third and
we have

𝑒𝑅(𝑀2, 𝑁2, 𝜑2, 𝜓2) = 𝑒𝑅(𝑀1, 𝑁1, 𝜑1, 𝜓1) + 𝑒𝑅(𝑀3, 𝑁3, 𝜑3, 𝜓3).

1If the residue field of 𝑅 is finite with 𝑞 elements it is customary to call the Herbrand quotient
ℎ(𝑀, 𝑁, 𝜑, 𝜓) = 𝑞𝑒𝑅(𝑀,𝑁,𝜑,𝜓) which is equal to the number of elements of 𝐻0 divided by the number of ele-
ments of 𝐻1.
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Proof. Proof of (3). Abbreviate 𝐴 = (𝑀1, 𝑁1, 𝜑1, 𝜓1), 𝐵 = (𝑀2, 𝑁2, 𝜑2, 𝜓2) and 𝐶 =
(𝑀3, 𝑁3, 𝜑3, 𝜓3). We have a long exact cohomology sequence

… → 𝐻1(𝐶) → 𝐻0(𝐴) → 𝐻0(𝐵) → 𝐻0(𝐶) → 𝐻1(𝐴) → 𝐻1(𝐵) → 𝐻1(𝐶) → …
This gives a finite exact sequence

0 → 𝐼 → 𝐻0(𝐴) → 𝐻0(𝐵) → 𝐻0(𝐶) → 𝐻1(𝐴) → 𝐻1(𝐵) → 𝐾 → 0
with 0 → 𝐾 → 𝐻1(𝐶) → 𝐼 → 0 a filtration. By additivity of the length function (Algebra,
Lemma 7.48.3) we see the result. The proofs of (1) and (2) are omitted. �

Let 𝑅 be a local ring with residue field 𝜅. Let (𝑀, 𝜑, 𝜓) be a (2, 1)-periodic complex over
𝑅. Assume that 𝑀 has finite length and that (𝑀, 𝜑, 𝜓) is exact. We are going to use the
determinant construction to define an invariant of this situation. See Section 29.2. Let us
abbreviate 𝐾𝜑 = Ker(𝜑), 𝐼𝜑 = Im(𝜑), 𝐾𝜓 = Ker(𝜓), and 𝐼𝜓 = Im(𝜓). The short exact
sequences

0 → 𝐾𝜑 → 𝑀 → 𝐼𝜑 → 0, 0 → 𝐾𝜓 → 𝑀 → 𝐼𝜓 → 0
give isomorphisms

𝛾𝜑 ∶ det𝜅(𝐾𝜑) ⊗ det𝜅(𝐼𝜑) ⟶ det𝜅(𝑀), 𝛾𝜓 ∶ det𝜅(𝐾𝜓) ⊗ det𝜅(𝐼𝜓) ⟶ det𝜅(𝑀),
see Lemma 29.2.5. On the other hand the exactness of the complex gives equalities 𝐾𝜑 =
𝐼𝜓, and 𝐾𝜓 = 𝐼𝜑 and hence an isomorphism

𝜎 ∶ det𝜅(𝐾𝜑) ⊗ det𝜅(𝐼𝜑) ⟶ det𝜅(𝐾𝜓) ⊗ det𝜅(𝐼𝜓)
by switching the factors. Using this notation we can define our invariant.

Definition 29.3.4. Let𝑅 be a local ringwith residue field 𝜅. Let (𝑀, 𝜑, 𝜓) be a (2, 1)-periodic
complex over 𝑅. Assume that 𝑀 has finite length and that (𝑀, 𝜑, 𝜓) is exact. The deter-
minant of (𝑀, 𝜑, 𝜓) is the element

det𝜅(𝑀, 𝜑, 𝜓) ∈ 𝜅∗

such that the composition

det𝜅(𝑀)
𝛾𝜓∘𝜎∘𝛾−1

𝜑
−−−−−−→ det𝜅(𝑀)

is multiplication by (−1)length𝑅(𝐼𝜑)length𝑅(𝐼𝜓) det𝜅(𝑀, 𝜑, 𝜓).

Remark 29.3.5. Here is a more down to earth description of the determinant introduced
above. Let 𝑅 be a local ring with residue field 𝜅. Let (𝑀, 𝜑, 𝜓) be a (2, 1)-periodic complex
over 𝑅. Assume that 𝑀 has finite length and that (𝑀, 𝜑, 𝜓) is exact. Let us abbreviate
𝐼𝜑 = Im(𝜑), 𝐼𝜓 = Im(𝜓) as above. Assume that length𝑅(𝐼𝜑) = 𝑎 and length𝑅(𝐼𝜓) = 𝑏,
so that 𝑎 + 𝑏 = length𝑅(𝑀) by exactness. Choose admissible sequences 𝑥1, … , 𝑥𝑎 ∈ 𝐼𝜑
and 𝑦1, … , 𝑦𝑏 ∈ 𝐼𝜓 such that the symbol [𝑥1, … , 𝑥𝑎] generates det𝜅(𝐼𝜑) and the symbol
[𝑥1, … , 𝑥𝑏] generates det𝜅(𝐼𝜓). Choose �̃�𝑖 ∈ 𝑀 such that 𝜑(�̃�𝑖) = 𝑥𝑖. Choose ̃𝑦𝑗 ∈ 𝑀 such
that 𝜓( ̃𝑦𝑗) = 𝑦𝑗. Then det𝜅(𝑀, 𝜑, 𝜓) is characterized by the equality

[𝑥1, … , 𝑥𝑎, ̃𝑦1, … , ̃𝑦𝑏] = (−1)𝑎𝑏 det𝜅(𝑀, 𝜑, 𝜓)[𝑦1, … , 𝑦𝑏, �̃�1, … , �̃�𝑎]
in det𝜅(𝑀). This also explains the sign.

Lemma 29.3.6. Let 𝑅 be a local ring with residue field 𝜅. Let (𝑀, 𝜑, 𝜓) be a (2, 1)-periodic
complex over 𝑅. Assume that 𝑀 has finite length and that (𝑀, 𝜑, 𝜓) is exact. Then

det𝜅(𝑀, 𝜑, 𝜓) det𝜅(𝑀, 𝜓, 𝜑) = 1.

Proof. Omitted. �
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Lemma 29.3.7. Let 𝑅 be a local ring with residue field 𝜅. Let (𝑀, 𝜑, 𝜑) be a (2, 1)-periodic
complex over𝑅. Assume that𝑀 has finite length and that (𝑀, 𝜑, 𝜓) is exact. Then length𝑅(𝑀) =
2length𝑅(Im(𝜑)) and

det𝜅(𝑀, 𝜑, 𝜓) = (−1)length𝑅(Im(𝜑)) = (−1)
1
2 length𝑅(𝑀)

Proof. Follows directly from the sign rule in the definitions. �

Lemma 29.3.8. Let 𝑅 be a local ring with residue field 𝜅. Let 𝑀 be a finite length
𝑅-module.

(1) if 𝜑 ∶ 𝑀 → 𝑀 is an isomorphism then det𝜅(𝑀, 𝜑, 0) = det𝜅(𝜑).
(2) if 𝜓 ∶ 𝑀 → 𝑀 is an isomorphism then det𝜅(𝑀, 0, 𝜓) = det𝜅(𝜓)−1.

Proof. Let us prove (1). Set 𝜓 = 0. Then wemay, with notation as above Definition 29.3.4,
identify 𝐾𝜑 = 𝐼𝜓 = 0, 𝐼𝜑 = 𝐾𝜓 = 𝑀. With these identifications, the map

𝛾𝜑 ∶ 𝜅 ⊗ det𝜅(𝑀) = det𝜅(𝐾𝜑) ⊗ det𝜅(𝐼𝜑) ⟶ det𝜅(𝑀)

is identified with det𝜅(𝜑−1). On the other hand the map 𝛾𝜓 is identified with the identity
map. Hence 𝛾𝜓 ∘ 𝜎 ∘ 𝛾−1

𝜑 is equal to det𝜅(𝜑) in this case. Whence the result. We omit the
proof of (2). �

Lemma 29.3.9. Let 𝑅 be a local ring with residue field 𝜅. Suppose that we have a short
exact sequence of (2, 1)-periodic complexes

0 → (𝑀1, 𝜑1, 𝜓1) → (𝑀2, 𝜑2, 𝜓2) → (𝑀3, 𝜑3, 𝜓3) → 0

with all 𝑀𝑖 of finite length, and each (𝑀1, 𝜑1, 𝜓1) exact. Then

det𝜅(𝑀2, 𝜑2, 𝜓2) = det𝜅(𝑀1, 𝜑1, 𝜓1) det𝜅(𝑀3, 𝜑3, 𝜓3).

in 𝜅∗.

Proof. Let us abbreviate 𝐼𝜑,𝑖 = Im(𝜑𝑖), 𝐾𝜑,𝑖 = Ker(𝜑𝑖), 𝐼𝜓,𝑖 = Im(𝜓𝑖), and 𝐾𝜓,𝑖 =
Ker(𝜓𝑖). Observe that we have a commutative square

0

��

0

��

0

��
0 // 𝐾𝜑,1

//

��

𝐾𝜑,2
//

��

𝐾𝜑,3
//

��

0

0 //𝑀1
//

��

𝑀2
//

��

𝑀3
//

��

0

0 // 𝐼𝜑,1
//

��

𝐼𝜑,2
//

��

𝐼𝜑,3
//

��

0

0 0 0

of finite length 𝑅-modules with exact rows and columns. The top row is exact since it can
be identified with the sequence 𝐼𝜓,1 → 𝐼𝜓,2 → 𝐼𝜓,3 → 0 of images, and similarly for the
bottom row. There is a similar diagram involving the modules 𝐼𝜓,𝑖 and 𝐾𝜓,𝑖. By definition
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det𝜅(𝑀2, 𝜑2, 𝜓2) corresponds, up to a sign, to the composition of the left vertical maps in
the following diagram

det𝜅(𝑀1) ⊗ det𝜅(𝑀3)
𝛾 //

𝛾−1⊗𝛾−1

��

det𝜅(𝑀2)

𝛾−1

��
det𝜅(𝐾𝜑,1) ⊗ det𝜅(𝐼𝜑,1) ⊗ det𝜅(𝐾𝜑,3) ⊗ det𝜅(𝐼𝜑,3)

𝜎⊗𝜎
��

𝛾⊗𝛾 // det𝜅(𝐾𝜑,2) ⊗ det𝜅(𝐼𝜑,2)

𝜎
��

det𝜅(𝐾𝜓,1) ⊗ det𝜅(𝐼𝜓,1) ⊗ det𝜅(𝐾𝜓,3) ⊗ det𝜅(𝐼𝜓,3)

𝛾⊗𝛾
��

𝛾⊗𝛾 // det𝜅(𝐾𝜓,2) ⊗ det𝜅(𝐼𝜓,2)

𝛾
��

det𝜅(𝑀1) ⊗ det𝜅(𝑀3)
𝛾 // det𝜅(𝑀2)

The top and bottom squares are commutative up to sign by applying Lemma 29.2.5 (2).
The middle square is trivially commutative (we are just switching factors). Hence we see
that det𝜅(𝑀2, 𝜑2, 𝜓2) = 𝜖 det𝜅(𝑀1, 𝜑1, 𝜓1) det𝜅(𝑀3, 𝜑3, 𝜓3) for some sign 𝜖. And the sign
can be worked out, namely the outer rectangle in the diagram above commutes up to

𝜖 = (−1)length(𝐼𝜑,1)length(𝐾𝜑,3)+length(𝐼𝜓,1)length(𝐾𝜓,3)

= (−1)length(𝐼𝜑,1)length(𝐼𝜓,3)+length(𝐼𝜓,1)length(𝐼𝜑,3)

(proof omitted). It follows easily from this that the signs work out as well. �

Example 29.3.10. Let 𝑘 be a field. Consider the ring 𝑅 = 𝑘[𝑇]/(𝑇2) of dual numbers over
𝑘. Denote 𝑡 the class of 𝑇 in 𝑅. Let 𝑀 = 𝑅 and 𝜑 = 𝑢𝑡, 𝜓 = 𝑣𝑡 with 𝑢, 𝑣 ∈ 𝑘∗. In this
case det𝑘(𝑀) has generator 𝑒 = [𝑡, 1]. We identify 𝐼𝜑 = 𝐾𝜑 = 𝐼𝜓 = 𝐾𝜓 = (𝑡). Then
𝛾𝜑(𝑡 ⊗ 𝑡) = 𝑢−1[𝑡, 1] (since 𝑢−1 ∈ 𝑀 is a lift of 𝑡 ∈ 𝐼𝜑) and 𝛾𝜓(𝑡 ⊗ 𝑡) = 𝑣−1[𝑡, 1] (same
reason). Hence we see that det𝑘(𝑀, 𝜑, 𝜓) = −𝑢/𝑣 ∈ 𝑘∗.

Example 29.3.11. Let 𝑅 = 𝐙𝑝 and let 𝑀 = 𝐙𝑝/(𝑝𝑙). Let 𝜑 = 𝑝𝑏𝑢 and 𝜑 = 𝑝𝑎𝑣 with
𝑎, 𝑏 ≥ 0, 𝑎 + 𝑏 = 𝑙 and 𝑢, 𝑣 ∈ 𝐙∗

𝑝. Then a computation as in Example 29.3.10 shows that

det𝐅𝑝
(𝐙𝑝/(𝑝𝑙), 𝑝𝑏𝑢, 𝑝𝑎𝑣) = (−1)𝑎𝑏𝑢𝑎/𝑣𝑏 mod 𝑝

= (−1)ord𝑝(𝛼)ord𝑝(𝛽) 𝛼ord𝑝(𝛽)

𝛽ord𝑝(𝛼) mod 𝑝

with 𝛼 = 𝑝𝑏𝑢, 𝛽 = 𝑝𝑎𝑣 ∈ 𝐙𝑝. See Lemma 29.4.10 for a more general case (and a proof).

Example 29.3.12. Let 𝑅 = 𝑘 be a field. Let 𝑀 = 𝑘⊕𝑎 ⊕ 𝑘⊕𝑏 be 𝑙 = 𝑎 + 𝑏 dimensional.
Let 𝜑 and 𝜓 be the following diagonal matrices

𝜑 = diag(𝑢1, … , 𝑢𝑎, 0, … , 0), 𝜓 = diag(0, … , 0, 𝑣1, … , 𝑣𝑏)

with 𝑢𝑖, 𝑣𝑗 ∈ 𝑘∗. In this case we have

det𝑘(𝑀, 𝜑, 𝜓) =
𝑢1 … 𝑢𝑎
𝑣1 … 𝑣𝑏

.

This can be seen by a direct computation or by computing in case 𝑙 = 1 and using the
additivity of Lemma 29.3.9.
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Example 29.3.13. Let 𝑅 = 𝑘 be a field. Let 𝑀 = 𝑘⊕𝑎 ⊕ 𝑘⊕𝑎 be 𝑙 = 2𝑎 dimensional. Let
𝜑 and 𝜓 be the following block matrices

𝜑 = (
0 𝑈
0 0) , 𝜓 = (

0 𝑉
0 0) ,

with 𝑈, 𝑉 ∈ Mat(𝑎 × 𝑎, 𝑘) invertible. In this case we have

det𝑘(𝑀, 𝜑, 𝜓) = (−1)𝑎 det(𝑈)
det(𝑉)

.

This can be seen by a direct computation. The case 𝑎 = 1 is similar to the computation in
Example 29.3.10.

Example 29.3.14. Let 𝑅 = 𝑘 be a field. Let 𝑀 = 𝑘⊕4. Let

𝜑 =
⎛
⎜
⎜
⎜
⎝

0 0 0 0
𝑢1 0 0 0
0 0 0 0
0 0 𝑢2 0

⎞
⎟
⎟
⎟
⎠

𝜑 =
⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 0 𝑣2 0
0 0 0 0
𝑣1 0 0 0

⎞
⎟
⎟
⎟
⎠

with 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑘∗. Then we have

det𝑘(𝑀, 𝜑, 𝜓) = −
𝑢1𝑢2
𝑣1𝑣2

.

Next we come to the analogue of the fact that the determinant of a composition of linear
endomorphisms is the product of the determinants. To avoid very long formulae we write
𝐼𝜑 = Im(𝜑), and 𝐾𝜑 = Ker(𝜑) for any 𝑅-module map 𝜑 ∶ 𝑀 → 𝑀. We also denote
𝜑𝜓 = 𝜑 ∘ 𝜓 for a pair of morphisms 𝜑, 𝜓 ∶ 𝑀 → 𝑀.

Lemma 29.3.15. Let 𝑅 be a local ring with residue field 𝜅. Let 𝑀 be a finite length
𝑅-module. Let 𝛼, 𝛽, 𝛾 be endomorphisms of 𝑀. Assume that

(1) 𝐼𝛼 = 𝐾𝛽𝛾, and similarly for any permutation of 𝛼, 𝛽, 𝛾,
(2) 𝐾𝛼 = 𝐼𝛽𝛾, and similarly for any permutation of 𝛼, 𝛽, 𝛾.

Then
(1) The triple (𝑀, 𝛼, 𝛽𝛾) is an exact (2, 1)-periodic complex.
(2) The triple (𝐼𝛾, 𝛼, 𝛽) is an exact (2, 1)-periodic complex.
(3) The triple (𝑀/𝐾𝛽, 𝛼, 𝛾) is an exact (2, 1)-periodic complex.
(4) We have

det𝜅(𝑀, 𝛼, 𝛽𝛾) = det𝜅(𝐼𝛾, 𝛼, 𝛽) det𝜅(𝑀/𝐾𝛽, 𝛼, 𝛾).

Proof. It is clear that the assumptions imply part (1) of the lemma.

To see part (1) note that the assumptions imply that 𝐼𝛾𝛼 = 𝐼𝛼𝛾, and similarly for kernels and
any other pair of morphisms. Moreover, we see that 𝐼𝛾𝛽 = 𝐼𝛽𝛾 = 𝐾𝛼 ⊂ 𝐼𝛾 and similarly for
any other pair. In particular we get a short exact sequence

0 → 𝐼𝛽𝛾 → 𝐼𝛾
𝛼

−→ 𝐼𝛼𝛾 → 0

and similarly we get a short exact sequence

0 → 𝐼𝛼𝛾 → 𝐼𝛾
𝛽

−→ 𝐼𝛽𝛾 → 0.

This proves (𝐼𝛾, 𝛼, 𝛽) is an exact (2, 1)-periodic complex. Hence part (2) of the lemma holds.

To see that 𝛼, 𝛾 give well defined endomorphisms of 𝑀/𝐾𝛽 we have to check that 𝛼(𝐾𝛽) ⊂
𝐾𝛽 and 𝛾(𝐾𝛽) ⊂ 𝐾𝛽. This is true because 𝛼(𝐾𝛽) = 𝛼(𝐼𝛾𝛼) = 𝐼𝛼𝛾𝛼 ⊂ 𝐼𝛼𝛾 = 𝐾𝛽, and similarly
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http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02PT
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02PU
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in the other case. The kernel of the map 𝛼 ∶ 𝑀/𝐾𝛽 → 𝑀/𝐾𝛽 is 𝐾𝛽𝛼/𝐾𝛽 = 𝐼𝛾/𝐾𝛽. Similarly,
the kernel of 𝛾 ∶ 𝑀/𝐾𝛽 → 𝑀/𝐾𝛽 is equal to 𝐼𝛼/𝐾𝛽. Hence we conclude that (3) holds.
We introduce 𝑟 = length𝑅(𝐾𝛼), 𝑠 = length𝑅(𝐾𝛽) and 𝑡 = length𝑅(𝐾𝛾). By the exact
sequences above and our hypotheses we have length𝑅(𝐼𝛼) = 𝑠 + 𝑡, length𝑅(𝐼𝛽) = 𝑟 + 𝑡,
length𝑅(𝐼𝛾) = 𝑟 + 𝑠, and length(𝑀) = 𝑟 + 𝑠 + 𝑡. Choose

(1) an admissible sequence 𝑥1, … , 𝑥𝑟 ∈ 𝐾𝛼 generating 𝐾𝛼
(2) an admissible sequence 𝑦1, … , 𝑦𝑠 ∈ 𝐾𝛽 generating 𝐾𝛽,
(3) an admissible sequence 𝑧1, … , 𝑧𝑡 ∈ 𝐾𝛾 generating 𝐾𝛾,
(4) elements �̃�𝑖 ∈ 𝑀 such that 𝛽𝛾�̃�𝑖 = 𝑥𝑖,
(5) elements ̃𝑦𝑖 ∈ 𝑀 such that 𝛼𝛾 ̃𝑦𝑖 = 𝑦𝑖,
(6) elements ̃𝑧𝑖 ∈ 𝑀 such that 𝛽𝛼 ̃𝑧𝑖 = 𝑧𝑖.

With these choices the sequence 𝑦1, … , 𝑦𝑠, 𝛼 ̃𝑧1, … , 𝛼 ̃𝑧𝑡 is an admissible sequence in 𝐼𝛼
generating it. Hence, by Remark 29.3.5 the determinant 𝐷 = det𝜅(𝑀, 𝛼, 𝛽𝛾) is the unique
element of 𝜅∗ such that

[𝑦1, … , 𝑦𝑠, 𝛼 ̃𝑧1, … , 𝛼 ̃𝑧𝑠, �̃�1, … , �̃�𝑟]

= (−1)𝑟(𝑠+𝑡)𝐷[𝑥1, … , 𝑥𝑟, 𝛾 ̃𝑦1, … , 𝛾 ̃𝑦𝑠, ̃𝑧1, … , ̃𝑧𝑡]
By the same remark, we see that 𝐷1 = det𝜅(𝑀/𝐾𝛽, 𝛼, 𝛾) is characterized by

[𝑦1, … , 𝑦𝑠, 𝛼 ̃𝑧1, … , 𝛼 ̃𝑧𝑡, �̃�1, … , �̃�𝑟] = (−1)𝑟𝑡𝐷1[𝑦1, … , 𝑦𝑠, 𝛾�̃�1, … , 𝛾�̃�𝑟, ̃𝑧1, … , ̃𝑧𝑡]
By the same remark, we see that 𝐷2 = det𝜅(𝐼𝛾, 𝛼, 𝛽) is characterized by

[𝑦1, … , 𝑦𝑠, 𝛾�̃�1, … , 𝛾�̃�𝑟, ̃𝑧1, … , ̃𝑧𝑡] = (−1)𝑟𝑠𝐷2[𝑥1, … , 𝑥𝑟, 𝛾 ̃𝑦1, … , 𝛾 ̃𝑦𝑠, ̃𝑧1, … , ̃𝑧𝑡]
Combining the formulas above we see that 𝐷 = 𝐷1𝐷2 as desired. �

Lemma29.3.16. Let𝑅 be a local ringwith residue field 𝜅. Let 𝛼 ∶ (𝑀, 𝜑, 𝜓) → (𝑀′, 𝜑′, 𝜓′)
be a morphism of (2, 1)-periodic complexes over 𝑅. Assume

(1) 𝑀, 𝑀′ have finite length,
(2) (𝑀, 𝜑, 𝜓), (𝑀′, 𝜑′, 𝜓′) are exact,
(3) the maps 𝜑, 𝜓 induce the zero map on 𝐾 = Ker(𝛼), and
(4) the maps 𝜑, 𝜓 induce the zero map on 𝑄 = Coker(𝛼).

Denote𝑁 = 𝛼(𝑀) ⊂ 𝑀′. We obtain two short exact sequences of (2, 1)-periodic complexes
0 → (𝑁, 𝜑′, 𝜓′) → (𝑀′, 𝜑′, 𝜓′) → (𝑄, 0, 0) → 0

0 → (𝐾, 0, 0) → (𝑀, 𝜑, 𝜓) → (𝑁, 𝜑′, 𝜓′) → 0
which induce two isomorphisms 𝛼𝑖 ∶ 𝑄 → 𝐾, 𝑖 = 0, 1. Then

det𝜅(𝑀, 𝜑, 𝜓) = det𝜅(𝛼−1
0 ∘ 𝛼1) det𝜅(𝑀′, 𝜑′, 𝜓′)

In particular, if 𝛼0 = 𝛼1, then det𝜅(𝑀, 𝜑, 𝜓) = det𝜅(𝑀′, 𝜑′, 𝜓′).

Proof. There are (at least) two ways to prove this lemma. One is to produce an enormous
commutative diagram using the properties of the determinants. The other is to use the
characterization of the determinants in terms of admissible sequences of elements. It is the
second approach that we will use.
First let us explain precisely what the maps 𝛼𝑖 are. Namely, 𝛼0 is the composition

𝛼0 ∶ 𝑄 = 𝐻0(𝑄, 0, 0) → 𝐻1(𝑁, 𝜑′, 𝜓′) → 𝐻2(𝐾, 0, 0) = 𝐾
and 𝛼1 is the composition

𝛼1 ∶ 𝑄 = 𝐻1(𝑄, 0, 0) → 𝐻2(𝑁, 𝜑′, 𝜓′) → 𝐻3(𝐾, 0, 0) = 𝐾

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02PV
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coming from the boundary maps of the short exact sequences of complexes displayed in the
lemma. The fact that the complexes (𝑀, 𝜑, 𝜓), (𝑀′, 𝜑′, 𝜓′) are exact implies these maps
are isomorphisms.

We will use the notation 𝐼𝜑 = Im(𝜑), 𝐾𝜑 = Ker(𝜑) and similarly for the other maps.
Exactness for 𝑀 and 𝑀′ means that 𝐾𝜑 = 𝐼𝜓 and three similar equalities. We introduce
𝑘 = length𝑅(𝐾), 𝑎 = length𝑅(𝐼𝜑), 𝑏 = length𝑅(𝐼𝜓). Then we see that length𝑅(𝑀) = 𝑎 + 𝑏,
and length𝑅(𝑁) = 𝑎+𝑏−𝑘, length𝑅(𝑄) = 𝑘 and length𝑅(𝑀′) = 𝑎+𝑏. The exact sequences
below will show that also length𝑅(𝐼𝜑′) = 𝑎 and length𝑅(𝐼𝜓′) = 𝑏.

The assumption that 𝐾 ⊂ 𝐾𝜑 = 𝐼𝜓 means that 𝜑 factors through 𝑁 to give an exact
sequence

0 → 𝛼(𝐼𝜓) → 𝑁
𝜑𝛼−1

−−−−→ 𝐼𝜓 → 0.

Here 𝜑𝛼−1(𝑥′) = 𝑦 means 𝑥′ = 𝛼(𝑥) and 𝑦 = 𝜑(𝑥). Similarly, we have

0 → 𝛼(𝐼𝜑) → 𝑁
𝜓𝛼−1

−−−−→ 𝐼𝜑 → 0.

The assumption that 𝜓′ induces the zero map on 𝑄 means that 𝐼𝜓′ = 𝐾𝜑′ ⊂ 𝑁. This
means the quotient 𝜑′(𝑁) ⊂ 𝐼𝜑′ is identified with 𝑄. Note that 𝜑′(𝑁) = 𝛼(𝐼𝜑). Hence we
conclude there is an isomorphism

𝜑′ ∶ 𝑄 → 𝐼𝜑′/𝛼(𝐼𝜑)

simply described by 𝜑′(𝑥′ mod 𝑁) = 𝜑′(𝑥′) mod 𝛼(𝐼𝜑). In exactly the same way we get

𝜓′ ∶ 𝑄 → 𝐼𝜓′/𝛼(𝐼𝜓)

Finally, note that 𝛼0 is the composition

𝑄
𝜑′
// 𝐼𝜑′/𝛼(𝐼𝜑)

𝜓𝛼−1|𝐼𝜑′/𝛼(𝐼𝜑)
// 𝐾

and similarly 𝛼1 = 𝜑𝛼−1|𝐼𝜓′/𝛼(𝐼𝜓) ∘ 𝜓′.

To shorten the formulas below we are going to write 𝛼𝑥 instead of 𝛼(𝑥) in the following.
No confusion should result since all maps are indicated by greek letters and elements by
roman letters. We are going to choose

(1) an admissible sequence 𝑧1, … , 𝑧𝑘 ∈ 𝐾 generating 𝐾,
(2) elements 𝑧′

𝑖 ∈ 𝑀 such that 𝜑𝑧′
𝑖 = 𝑧𝑖,

(3) elements 𝑧″
𝑖 ∈ 𝑀 such that 𝜓𝑧″

𝑖 = 𝑧𝑖,
(4) elements 𝑥𝑘+1, … , 𝑥𝑎 ∈ 𝐼𝜑 such that 𝑧1, … , 𝑧𝑘, 𝑥𝑘+1, … , 𝑥𝑎 is an admissible

sequence generating 𝐼𝜑,
(5) elements �̃�𝑖 ∈ 𝑀 such that 𝜑�̃�𝑖 = 𝑥𝑖,
(6) elements 𝑦𝑘+1, … , 𝑦𝑏 ∈ 𝐼𝜓 such that 𝑧1, … , 𝑧𝑘, 𝑦𝑘+1, … , 𝑦𝑏 is an admissible se-

quence generating 𝐼𝜓,
(7) elements ̃𝑦𝑖 ∈ 𝑀 such that 𝜓 ̃𝑦𝑖 = 𝑦𝑖, and
(8) elements 𝑤1, … , 𝑤𝑘 ∈ 𝑀′ such that 𝑤1 mod 𝑁, … , 𝑤𝑘 mod 𝑁 are an admissi-

ble sequence in 𝑄 generating 𝑄.
By Remark 29.3.5 the element 𝐷 = det𝜅(𝑀, 𝜑, 𝜓) ∈ 𝜅∗ is characterized by

[𝑧1, … , 𝑧𝑘, 𝑥𝑘+1, … , 𝑥𝑎, 𝑧″
1 , … , 𝑧″

𝑘 , ̃𝑦𝑘+1, … , ̃𝑦𝑏]

= (−1)𝑎𝑏𝐷[𝑧1, … , 𝑧𝑘, 𝑦𝑘+1, … , 𝑦𝑏, 𝑧′
1, … , 𝑧′

𝑘, �̃�𝑘+1, … , �̃�𝑎]
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Note that by the discussion above 𝛼𝑥𝑘+1, … , 𝛼𝑥𝑎, 𝜑𝑤1, … , 𝜑𝑤𝑘 is an admissible sequence
generating 𝐼𝜑′ and 𝛼𝑦𝑘+1, … , 𝛼𝑦𝑏, 𝜓𝑤1, … , 𝜓𝑤𝑘 is an admissible sequence generating 𝐼𝜓′.
Hence by Remark 29.3.5 the element 𝐷′ = det𝜅(𝑀′, 𝜑′, 𝜓′) ∈ 𝜅∗ is characterized by

[𝛼𝑥𝑘+1, … , 𝛼𝑥𝑎, 𝜑′𝑤1, … , 𝜑′𝑤𝑘, 𝛼 ̃𝑦𝑘+1, … , 𝛼 ̃𝑦𝑏, 𝑤1, … , 𝑤𝑘]
= (−1)𝑎𝑏𝐷′[𝛼𝑦𝑘+1, … , 𝛼𝑦𝑏, 𝜓′𝑤1, … , 𝜓′𝑤𝑘, 𝛼�̃�𝑘+1, … , 𝛼�̃�𝑎, 𝑤1, … , 𝑤𝑘]

Note how in the first, resp. second displayed formula the the first, resp. last 𝑘 entries of
the symbols on both sides are the same. Hence these formulas are really equivalent to the
equalities

[𝛼𝑥𝑘+1, … , 𝛼𝑥𝑎, 𝛼𝑧″
1 , … , 𝛼𝑧″

𝑘 , 𝛼 ̃𝑦𝑘+1, … , 𝛼 ̃𝑦𝑏]

= (−1)𝑎𝑏𝐷[𝛼𝑦𝑘+1, … , 𝛼𝑦𝑏, 𝛼𝑧′
1, … , 𝛼𝑧′

𝑘, 𝛼�̃�𝑘+1, … , 𝛼�̃�𝑎]

and

[𝛼𝑥𝑘+1, … , 𝛼𝑥𝑎, 𝜑′𝑤1, … , 𝜑′𝑤𝑘, 𝛼 ̃𝑦𝑘+1, … , 𝛼 ̃𝑦𝑏]
= (−1)𝑎𝑏𝐷′[𝛼𝑦𝑘+1, … , 𝛼𝑦𝑏, 𝜓′𝑤1, … , 𝜓′𝑤𝑘, 𝛼�̃�𝑘+1, … , 𝛼�̃�𝑎]

in det𝜅(𝑁). Note that 𝜑′𝑤1, … , 𝜑′𝑤𝑘 and 𝛼𝑧″
1 , … , 𝑧″

𝑘 are admissible sequences generating
the module 𝐼𝜑′/𝛼(𝐼𝜑). Write

[𝜑′𝑤1, … , 𝜑′𝑤𝑘] = 𝜆0[𝛼𝑧″
1 , … , 𝛼𝑧″

𝑘 ]

in det𝜅(𝐼𝜑′/𝛼(𝐼𝜑)) for some 𝜆0 ∈ 𝜅∗. Similarly, write

[𝜓′𝑤1, … , 𝜓′𝑤𝑘] = 𝜆1[𝛼𝑧′
1, … , 𝛼𝑧′

𝑘]

in det𝜅(𝐼𝜓′/𝛼(𝐼𝜓)) for some 𝜆1 ∈ 𝜅∗. On the one hand it is clear that

𝛼𝑖([𝑤1, … , 𝑤𝑘]) = 𝜆𝑖[𝑧1, … , 𝑧𝑘]

for 𝑖 = 0, 1 by our description of 𝛼𝑖 above, which means that

det𝜅(𝛼−1
0 ∘ 𝛼1) = 𝜆1/𝜆0

and on the other hand it is clear that

𝜆0[𝛼𝑥𝑘+1, … , 𝛼𝑥𝑎, 𝛼𝑧″
1 , … , 𝛼𝑧″

𝑘 , 𝛼 ̃𝑦𝑘+1, … , 𝛼 ̃𝑦𝑏]
= [𝛼𝑥𝑘+1, … , 𝛼𝑥𝑎, 𝜑′𝑤1, … , 𝜑′𝑤𝑘, 𝛼 ̃𝑦𝑘+1, … , 𝛼 ̃𝑦𝑏]

and

𝜆1[𝛼𝑦𝑘+1, … , 𝛼𝑦𝑏, 𝛼𝑧′
1, … , 𝛼𝑧′

𝑘, 𝛼�̃�𝑘+1, … , 𝛼�̃�𝑎]
= [𝛼𝑦𝑘+1, … , 𝛼𝑦𝑏, 𝜓′𝑤1, … , 𝜓′𝑤𝑘, 𝛼�̃�𝑘+1, … , 𝛼�̃�𝑎]

which imply 𝜆0𝐷 = 𝜆1𝐷′. The lemma follows. �

29.4. Symbols

The correct generality for this construction is perhaps the situation of the following lemma.

Lemma 29.4.1. Let 𝐴 be a Noetherian local ring. Let 𝑀 be a finite 𝐴-module of di-
mension 1. Assume 𝜑, 𝜓 ∶ 𝑀 → 𝑀 are two injective 𝐴-module maps, and assume
𝜑(𝜓(𝑀)) = 𝜓(𝜑(𝑀)), for example if 𝜑 and 𝜓 commute. Then length𝑅(𝑀/𝜑𝜓𝑀) < ∞
and (𝑀/𝜑𝜓𝑀, 𝜑, 𝜓) is an exact (2, 1)-periodic complex.
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Proof. Let 𝔮 be aminimal prime of the support of𝑀. Then𝑀𝔮 is a finite length𝐴𝔮-module,
see Algebra, Lemma 7.59.8. Hence both 𝜑 and 𝜓 induce isomorphisms 𝑀𝔮 → 𝑀𝔮. Thus
the support of 𝑀/𝜑𝜓𝑀 is {𝔪𝐴} and hence it has finite length (see lemma cited above).
Finally, the kernel of 𝜑 on 𝑀/𝜑𝜓𝑀 is clearly 𝜓𝑀/𝜑𝜓𝑀, and hence the kernel of 𝜑 is the
image of 𝜓 on 𝑀/𝜑𝜓𝑀. Similarly the other way since 𝑀/𝜑𝜓𝑀 = 𝑀/𝜓𝜑𝑀 by assump-
tion. �

Lemma 29.4.2. Let 𝐴 be a Noetherian local ring. Let 𝑎, 𝑏 ∈ 𝐴.
(1) if 𝑀 is a finite 𝐴-module of dimension 1 such that 𝑎, 𝑏 are nonzero divisors on

𝑀, then length𝐴(𝑀/𝑎𝑏𝑀) < ∞ and (𝑀/𝑎𝑏𝑀, 𝑎, 𝑏) is a (2, 1)-periodic exact com-
plex.

(2) if 𝑎, 𝑏 are nonzero divisors and dim(𝐴) = 1 then length𝐴(𝐴/(𝑎𝑏)) < ∞ and
(𝐴/(𝑎𝑏), 𝑎, 𝑏) is a (2, 1)-periodic exact complex.

In particular, in these case det𝜅(𝑀/𝑎𝑏𝑀, 𝑎, 𝑏) ∈ 𝜅∗, resp. det𝜅(𝐴/(𝑎𝑏), 𝑎, 𝑏) ∈ 𝜅∗ are de-
fined.

Proof. Follows from Lemma 29.4.1. �

Definition 29.4.3. Let 𝐴 be a Noetherian local ring with residue field 𝜅. Let 𝑎, 𝑏 ∈ 𝐴. Let
𝑀 be a finite 𝐴-module of dimension 1 such that 𝑎, 𝑏 are nonzero-divisors on 𝑀. We define
the symbol associated to 𝑀, 𝑎, 𝑏 to be the element

𝑑𝑀(𝑎, 𝑏) = det𝜅(𝑀/𝑎𝑏𝑀, 𝑎, 𝑏) ∈ 𝜅∗

Lemma 29.4.4. Let 𝐴 be a Noetherian local ring. Let 𝑎, 𝑏, 𝑐 ∈ 𝐴. Let 𝑀 be a finite
𝐴-module with dim(𝑀) = 1. Assume 𝑎, 𝑏, 𝑐 are nonzero divisors on 𝑀. Then

𝑑𝑀(𝑎, 𝑏𝑐) = 𝑑𝑀(𝑎, 𝑏)𝑑𝑀(𝑎, 𝑐)

and 𝑑𝑀(𝑎, 𝑏)𝑑𝑀(𝑏, 𝑎) = 1.

Proof. The first statement is immediate from Lemma 29.3.15 above. The second comes
from Lemma 29.3.6. �

Definition 29.4.5. Let 𝐴 be a Noetherian local domain of dimension 1 with residue field
𝜅. Let 𝐾 be the fraction field of 𝐴. We define the tame symbol of 𝐴 to be the map

𝐾∗ × 𝐾∗ ⟶ 𝜅∗, (𝑥, 𝑦) ⟼ 𝑑𝐴(𝑥, 𝑦)

where 𝑑𝐴(𝑥, 𝑦) is extended to 𝐾∗ × 𝐾∗ by the multiplicativity of Lemma 29.4.4.

It is clear that we may extend more generally 𝑑𝑀(−, −) to certain rings of fractions of 𝐴
(even if 𝐴 is not a domain).

Lemma 29.4.6. Let 𝐴 be a Noetherian local ring. Let 𝑀 be a finite 𝐴-module of dimension
1. Let 𝑏 ∈ 𝐴 be a nonzero divisor on 𝑀, and let 𝑢 ∈ 𝐴∗. Then

𝑑𝑀(𝑢, 𝑏) = 𝑢length𝑀(𝑀/𝑏𝑀) mod 𝔪𝐴.

In particular, if 𝑀 = 𝐴, then 𝑑𝐴(𝑢, 𝑏) = 𝑢ord𝐴(𝑏) mod 𝔪𝐴.

Proof. Note that in this case 𝑀/𝑢𝑏𝑀 = 𝑀/𝑏𝑀 on which multiplication by 𝑏 is zero. Hence
𝑑𝑀(𝑢, 𝑏) = det𝜅(𝑢|𝑀/𝑏𝑀) by Lemma 29.3.8. The lemma then follows from Lemma 29.2.8.

�
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Lemma 29.4.7. Let 𝐴 be a Noetherian local ring. Let 𝑎, 𝑏 ∈ 𝐴. Let

0 → 𝑀 → 𝑀′ → 𝑀″ → 0

be a short exact sequence of 𝐴-modules of dimension 1 such that 𝑎, 𝑏 are nonzero divisors
on all three 𝐴-modules. Then

𝑑𝑀′(𝑎, 𝑏) = 𝑑𝑀(𝑎, 𝑏)𝑑𝑀″(𝑎, 𝑏)

in 𝜅∗.

Proof. It is easy to see that this leads to a short exact sequence of exact (2, 1)-periodic
complexes

0 → (𝑀/𝑎𝑏𝑀, 𝑎, 𝑏) → (𝑀′/𝑎𝑏𝑀′, 𝑎, 𝑏) → (𝑀″/𝑎𝑏𝑀″, 𝑎, 𝑏) → 0

Hence the lemma follows from Lemma 29.3.9. �

Lemma 29.4.8. Let 𝐴 be a Noetherian local ring. Let 𝛼 ∶ 𝑀 → 𝑀′ be a homomorphism
of finite 𝐴-modules of dimension 1. Let 𝑎, 𝑏 ∈ 𝐴. Assume

(1) 𝑎, 𝑏 are nonzero divisors on both 𝑀 and 𝑀′, and
(2) dim(Ker(𝛼)), dim(Coker(𝛼)) ≤ 0.

Then 𝑑𝑀(𝑎, 𝑏) = 𝑑𝑀′(𝑎, 𝑏).

Proof. If 𝑎 ∈ 𝐴∗, then the equality follows from the equality length(𝑀/𝑏𝑀) = length(𝑀′/𝑏𝑀′)
and Lemma 29.4.6. Similarly if 𝑏 is a unit the lemma holds as well (by the symmetry of
Lemma 29.4.4). Hence we may assume that 𝑎, 𝑏 ∈ 𝔪𝐴. This in particular implies that 𝔪
is not an associated prime of 𝑀, and hence 𝛼 ∶ 𝑀 → 𝑀′ is injective. This permits us to
think of 𝑀 as a submodule of 𝑀′. By assumption 𝑀′/𝑀 is a finite 𝐴-module with support
{𝔪𝐴} and hence has finite length. Note that for any third module 𝑀″ with 𝑀 ⊂ 𝑀″ ⊂ 𝑀′

the maps 𝑀 → 𝑀″ and 𝑀″ → 𝑀′ satisfy the assumptions of the lemma as well. This
reduces us, by induction on the length of 𝑀′/𝑀, to the case where length𝐴(𝑀′/𝑀) = 1.
Finally, in this case consider the map

𝛼 ∶ 𝑀/𝑎𝑏𝑀 ⟶ 𝑀′/𝑎𝑏𝑀′.

By construction the cokernel 𝑄 of 𝛼 has length 1. Since 𝑎, 𝑏 ∈ 𝔪𝐴, they act trvially on
𝑄. It also follows that the kernel 𝐾 of 𝛼 has length 1 and hence also 𝑎, 𝑏 act trivially on 𝐾.
Hence we may apply Lemma 29.3.16. Thus it suffices to see that the two maps 𝛼𝑖 ∶ 𝑄 → 𝐾
are the same. In fact, both maps are equal to the map 𝑞 = 𝑥′ mod Im(𝛼) ↦ 𝑎𝑏𝑥′ ∈ 𝐾. We
omit the verification. �

Lemma 29.4.9. Let 𝐴 be a Noetherian local ring. Let 𝑀 be a finite 𝐴-module with
dim(𝑀) = 1. Let 𝑎, 𝑏 ∈ 𝐴 nonzero divisors on 𝑀. Let 𝔮1, … , 𝔮𝑡 be the minimal primes in
the support of 𝑀. Then

𝑑𝑀(𝑎, 𝑏) = ∏𝑖=1,…,𝑡
𝑑𝐴/𝔮𝑖

(𝑎, 𝑏)length𝐴𝔮𝑖
(𝑀𝔮𝑖)

as elements of 𝜅∗.

Proof. Choose a filtration by 𝐴-submodules

0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀

such that each quotient 𝑀𝑗/𝑀𝑗−1 is isomorphic to 𝐴/𝔭𝑗 for some prime ideal 𝔭𝑗 of 𝐴. See
Algebra, Lemma 7.59.1. For each 𝑗 we have either 𝔭𝑗 = 𝔮𝑖 for some 𝑖, or 𝔭𝑗 = 𝔪𝐴.
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Moreover, for a fixed 𝑖, the number of 𝑗 such that 𝔭𝑗 = 𝔮𝑖 is equal to length𝐴𝔮𝑖
(𝑀𝔮𝑖

) by
Algebra, Lemma 7.59.10. Hence 𝑑𝑀𝑗

(𝑎, 𝑏) is defined for each 𝑗 and

𝑑𝑀𝑗
(𝑎, 𝑏) =

{
𝑑𝑀𝑗−1

(𝑎, 𝑏)𝑑𝐴/𝔮𝑖
(𝑎, 𝑏) if 𝔭𝑗 = 𝔮𝑖

𝑑𝑀𝑗−1
(𝑎, 𝑏) if 𝔭𝑗 = 𝔪𝐴

by Lemma 29.4.7 in the first instance and Lemma 29.4.8 in the second. Hence the lemma.
�

Lemma 29.4.10. Let 𝐴 be a discrete valuation ring with fraction field 𝐾. For nonzero
𝑥, 𝑦 ∈ 𝐾 we have

𝑑𝐴(𝑥, 𝑦) = (−1)ord𝐴(𝑥)ord𝐴(𝑦) 𝑥ord𝐴(𝑦)

𝑦ord𝐴(𝑥) mod 𝔪𝐴,

in other words the symbol is equal to the usual tame symbol.

Proof. By multiplicativity it suffices to prove this when 𝑥, 𝑦 ∈ 𝐴. Let 𝑡 ∈ 𝐴 be a uni-
formizer. Write 𝑥 = 𝑡𝑏𝑢 and 𝑦 = 𝑡𝑏𝑣 for some 𝑎, 𝑏 ≥ 0 and 𝑢, 𝑣 ∈ 𝐴∗. Set 𝑙 = 𝑎 + 𝑏. Then
𝑡𝑙−1, … , 𝑡𝑏 is an admissible sequence in (𝑥)/(𝑥𝑦) and 𝑡𝑙−1, … , 𝑡𝑎 is an admissible sequence
in (𝑦)/(𝑥𝑦). Hence by Remark 29.3.5 we see that 𝑑𝐴(𝑥, 𝑦) is characterized by the equation

[𝑡𝑙−1, … , 𝑡𝑏, 𝑣−1𝑡𝑏−1, … , 𝑣−1] = (−1)𝑎𝑏𝑑𝐴(𝑥, 𝑦)[𝑡𝑙−1, … , 𝑡𝑎, 𝑢−1𝑡𝑎−1, … , 𝑢−1].

Hence by the admissible relations for the symbols [𝑥1, … , 𝑥𝑙] we see that

𝑑𝐴(𝑥, 𝑦) = (−1)𝑎𝑏𝑢𝑎/𝑣𝑏 mod 𝔪𝐴

as desired. �

We add the following lemma here. It is very similar to Algebra, Lemma 7.110.2.

Lemma 29.4.11. Let 𝑅 be a local Noetherian domain of dimension 1 with maximal ideal
𝔪. Let 𝑎, 𝑏 ∈ 𝔪 be nonzero. There exists a finite ring extension 𝑅 ⊂ 𝑅′ with same field of
fractions, and 𝑡, 𝑎′, 𝑏′ ∈ 𝑅′ such that 𝑎 = 𝑡𝑎′ and 𝑏 = 𝑡𝑏′ and 𝑅′ = 𝑎′𝑅′ + 𝑏′𝑅′.

Proof. Set 𝐼 = (𝑎, 𝑏). The idea is to blow up 𝑅 in 𝐼 as in the proof of Algebra, Lemma
7.110.2. Instead of doing the algebraic argumentwework geometrically. Let𝑋 = Proj(⨁ 𝐼𝑑/𝐼𝑑+1).
By Constructions, Lemma 22.21.2 this is an integral scheme. The morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝑅)
is projective by Morphisms, Lemma 24.41.10. By Algebra, Lemma 7.104.2 and the fact
that 𝑋 is quasi-compact we see that the fibre of 𝑋 → 𝑆𝑝𝑒𝑐(𝑅) over 𝔪 is finite. By Proper-
ties, Lemma 23.26.5 there exists an affine open 𝑈 ⊂ 𝑋 containing this fibre. Hence 𝑋 = 𝑈
because 𝑋 → 𝑆𝑝𝑒𝑐(𝑅) is closed. In other words 𝑋 is affine, say 𝑋 = 𝑆𝑝𝑒𝑐(𝑅′). By Mor-
phisms, Lemma 24.14.2 we see that 𝑅 → 𝑅′ is of finite type. Since 𝑋 → 𝑆𝑝𝑒𝑐(𝑅) is proper
and affine it is integral (see Morphisms, Lemma 24.42.7). Hence 𝑅 → 𝑅′ is of finite type
and integral, hence finite (Algebra, Lemma 7.32.5). By Divisors, Lemma 26.9.18 we see
that 𝐼𝑅′ is a locally principal ideal. Since 𝑅′ is semi-local we see that 𝐼𝑅′ is principal, see
Algebra, Lemma 7.72.6, say 𝐼𝑅′ = (𝑡). Then we have 𝑎 = 𝑎′𝑡 and 𝑏 = 𝑏′𝑡 and everything
is clear. �

Lemma 29.4.12. Let 𝐴 be a Noetherian local ring. Let 𝑎, 𝑏 ∈ 𝐴. Let 𝑀 be a finite
𝐴-module of dimension 1 on which each of 𝑎, 𝑏, 𝑏 − 𝑎 are nonzero divisors. Then

𝑑𝑀(𝑎, 𝑏 − 𝑎)𝑑𝑀(𝑏, 𝑏) = 𝑑𝑀(𝑏, 𝑏 − 𝑎)𝑑𝑀(𝑎, 𝑏)

in 𝜅∗.
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Proof. By Lemma 29.4.9 it suffices to show the relation when 𝑀 = 𝐴/𝔮 for some prime
𝔮 ⊂ 𝐴 with dim(𝐴/𝔮) = 1.

In case 𝑀 = 𝐴/𝔮 we may replace 𝐴 by 𝐴/𝔮 and 𝑎, 𝑏 by their images in 𝐴/𝔮. Hence we may
assume 𝐴 = 𝑀 and 𝐴 a local Noetherian domain of dimension 1. The reason is that the
residue field 𝜅 of 𝐴 and 𝐴/𝔮 are the same and that for any 𝐴/𝔮-module 𝑀 the determinant
taken over 𝐴 or over 𝐴/𝔮 are canonically identified. See Lemma 29.2.7.

It suffices to show the relation when both 𝑎, 𝑏 are in the maximal ideal. Namely, the case
where one or both are units follows from Lemma 29.4.6.

Choose an extension 𝐴 ⊂ 𝐴′ and factorizations 𝑎 = 𝑡𝑎′, 𝑏 = 𝑡𝑏′ as in Lemma 29.4.11. Note
that also 𝑏 − 𝑎 = 𝑡(𝑏′ − 𝑎′) and that 𝐴′ = (𝑎′, 𝑏′) = (𝑎′, 𝑏′ − 𝑎′) = (𝑏′ − 𝑎′, 𝑏′). Here and in
the following we think of 𝐴′ as an 𝐴-module and 𝑎, 𝑏, 𝑎′, 𝑏′, 𝑡 as 𝐴-module endomorphisms
of 𝐴′. We will use the notation 𝑑𝐴

𝐴′(𝑎′, 𝑏′) and so on to indicate

𝑑𝐴
𝐴′(𝑎′, 𝑏′) = det𝜅(𝐴′/𝑎′𝑏′𝐴′, 𝑎′, 𝑏′)

which is defined by Lemma 29.4.1. The upper index 𝐴 is used to distinguish this from the
already defined symbol 𝑑𝐴′(𝑎′, 𝑏′) which is different (for example because it has values
in the residue field of 𝐴′ which may be different from 𝜅). By Lemma 29.4.8 we see that
𝑑𝐴(𝑎, 𝑏) = 𝑑𝐴

𝐴′(𝑎, 𝑏), and similarly for the other combinations. Using this and multiplica-
tivity we see that it suffices to prove

𝑑𝐴
𝐴′(𝑎′, 𝑏′ − 𝑎′)𝑑𝐴

𝐴′(𝑏′, 𝑏′) = 𝑑𝐴
𝐴′(𝑏′, 𝑏′ − 𝑎′)𝑑𝐴

𝐴′(𝑎′, 𝑏′)

Now, since (𝑎′, 𝑏′) = 𝐴′ and so on we have

𝐴′/(𝑎′(𝑏′ − 𝑎′)) ≅ 𝐴′/(𝑎′) ⊕ 𝐴′/(𝑏′ − 𝑎′)
𝐴′/(𝑏′(𝑏′ − 𝑎′)) ≅ 𝐴′/(𝑏′) ⊕ 𝐴′/(𝑏′ − 𝑎′)

𝐴′/(𝑎′𝑏′) ≅ 𝐴′/(𝑎′) ⊕ 𝐴′/(𝑏′)

Moreover, note that multiplication by 𝑏′ − 𝑎′ on 𝐴/(𝑎′) is equal to multiplication by 𝑏′, and
that multiplication by 𝑏′ − 𝑎′ on 𝐴/(𝑏′) is equal to multiplication by −𝑎′. Using Lemmas
29.3.8 and 29.3.9 we conclude

𝑑𝐴
𝐴′(𝑎′, 𝑏′ − 𝑎′) = det𝜅(𝑏′|𝐴′/(𝑎′))−1 det𝜅(𝑎′|𝐴′/(𝑏′−𝑎′))

𝑑𝐴
𝐴′(𝑏′, 𝑏′ − 𝑎′) = det𝜅(−𝑎′|𝐴′/(𝑏′))−1 det𝜅(𝑏′|𝐴′/(𝑏′−𝑎′))
𝑑𝐴

𝐴′(𝑎′, 𝑏′) = det𝜅(𝑏′|𝐴′/(𝑎′))−1 det𝜅(𝑎′|𝐴′/(𝑏′))

Hence we conclude that

(−1)length𝐴(𝐴′/(𝑏′))𝑑𝐴
𝐴′(𝑎′, 𝑏′ − 𝑎′) = 𝑑𝐴

𝐴′(𝑏′, 𝑏′ − 𝑎′)𝑑𝐴
𝐴′(𝑎′, 𝑏′)

the sign coming from the −𝑎′ in the second equality above. On the other hand, by Lemma
29.3.7 we have 𝑑𝐴

𝐴′(𝑏′, 𝑏′) = (−1)length𝐴(𝐴′/(𝑏′)), and the lemma is proved. �

The tame symbol is a Steinberg symbol.

Lemma 29.4.13. Let 𝐴 be a Noetherian local domain of dimension 1. Let 𝐾 = 𝑓.𝑓.(𝐴).
For 𝑥 ∈ 𝐾 ⧵ {0, 1} we have

𝑑𝐴(𝑥, 1 − 𝑥) = 1

Proof. Write 𝑥 = 𝑎/𝑏 with 𝑎, 𝑏 ∈ 𝐴. The hypothesis implies, since 1 − 𝑥 = (𝑏 − 𝑎)/𝑏, that
also 𝑏 − 𝑎≠0. Hence we compute

𝑑𝐴(𝑥, 1 − 𝑥) = 𝑑𝐴(𝑎, 𝑏 − 𝑎)𝑑𝐴(𝑎, 𝑏)−1𝑑𝐴(𝑏, 𝑏 − 𝑎)−1𝑑𝐴(𝑏, 𝑏)
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Thus we have to show that 𝑑𝐴(𝑎, 𝑏 − 𝑎)𝑑𝐴(𝑏, 𝑏) = 𝑑𝐴(𝑏, 𝑏 − 𝑎)𝑑𝐴(𝑎, 𝑏). This is Lemma
29.4.12. �

29.5. Lengths and determinants

In this section we use the determinant to compare lattices. The key lemma is the following.
Lemma 29.5.1. Let 𝑅 be a noetherian local ring. Let 𝔮 ⊂ 𝑅 be a prime with dim(𝑅/𝔮) = 1.
Let 𝜑 ∶ 𝑀 → 𝑁 be a homomorphism of finite 𝑅-modules. Assume there exist 𝑥1, … , 𝑥𝑙 ∈
𝑀 and 𝑦1, … , 𝑦𝑙 ∈ 𝑀 with the following properties

(1) 𝑀 = ⟨𝑥1, … , 𝑥𝑙⟩,
(2) ⟨𝑥1, … , 𝑥𝑖⟩/⟨𝑥1, … , 𝑥𝑖−1⟩ ≅ 𝑅/𝔮 for 𝑖 = 1, … , 𝑙,
(3) 𝑁 = ⟨𝑦1, … , 𝑦𝑙⟩, and
(4) ⟨𝑦1, … , 𝑦𝑖⟩/⟨𝑦1, … , 𝑦𝑖−1⟩ ≅ 𝑅/𝔮 for 𝑖 = 1, … , 𝑙.

Then 𝜑 is injective if and only if 𝜑𝔮 is an isomorphism, and in this case we have
length𝑅(Coker(𝜑)) = ord𝑅/𝔮(𝑓)

where 𝑓 ∈ 𝜅(𝔮) is the element such that
[𝜑(𝑥1), … , 𝜑(𝑥𝑙)] = 𝑓[𝑦1, … , 𝑦𝑙]

in det𝜅(𝔮)(𝑁𝔮).
Proof. First, note that the lemma holds in case 𝑙 = 1. Namely, in this case 𝑥1 is a basis of
𝑀 over 𝑅/𝔮 and 𝑦1 is a basis of 𝑁 over 𝑅/𝔮 and we have 𝜑(𝑥1) = 𝑓𝑦1 for some 𝑓 ∈ 𝑅.
Thus 𝜑 is injective if and only if 𝑓∉𝔮. Moreover, Coker(𝜑) = 𝑅/(𝑓, 𝔮) and hence the lemma
holds by definition of ord𝑅/𝑞(𝑓) (see Algebra, Definition 7.112.2).

In fact, suppose more generally that 𝜑(𝑥𝑖) = 𝑓𝑖𝑦𝑖 for some 𝑓𝑖 ∈ 𝑅, 𝑓𝑖∉𝔮. Then the induced
maps

⟨𝑥1, … , 𝑥𝑖⟩/⟨𝑥1, … , 𝑥𝑖−1⟩ ⟶ ⟨𝑦1, … , 𝑦𝑖⟩/⟨𝑦1, … , 𝑦𝑖−1⟩
are all injective and have cokernels isomorphic to 𝑅/(𝑓𝑖, 𝔮). Hence we see that

length𝑅(Coker(𝜑)) = ∑ ord𝑅/𝔮(𝑓𝑖).

On the other hand it is clear that
[𝜑(𝑥1), … , 𝜑(𝑥𝑙)] = 𝑓1 … 𝑓𝑙[𝑦1, … , 𝑦𝑙]

in this case from the admissible relation (b) for symbols. Hence we see the result holds in
this case also.
We prove the general case by induction on 𝑙. Assume 𝑙 > 1. Let 𝑖 ∈ {1, … , 𝑙} be minimal
such that 𝜑(𝑥1) ∈ ⟨𝑦1, … , 𝑦𝑖⟩. We will argue by induction on 𝑖. If 𝑖 = 1, then we get a
commutative diagram

0 // ⟨𝑥1⟩ //

��

⟨𝑥1, … , 𝑥𝑙⟩ //

��

⟨𝑥1, … , 𝑥𝑙⟩/⟨𝑥1⟩ //

��

0

0 // ⟨𝑦1⟩ // ⟨𝑦1, … , 𝑦𝑙⟩ // ⟨𝑦1, … , 𝑦𝑙⟩/⟨𝑦1⟩ // 0

and the lemma follows from the snake lemma and induction on 𝑙. Assume now that 𝑖 > 1.
Write 𝜑(𝑥1) = 𝑎1𝑦1 + … + 𝑎𝑖−1𝑦𝑖−1 + 𝑎𝑦𝑖 with 𝑎𝑗, 𝑎 ∈ 𝑅 and 𝑎∉𝔮 (since otherwise 𝑖 was
not minimal). Set

𝑥′
𝑗 = {

𝑥𝑗 if 𝑗 = 1
𝑎𝑥𝑗 if 𝑗 ≥ 2 and 𝑦′

𝑗 = {
𝑦𝑗 if 𝑗 < 𝑖

𝑎𝑦𝑗 if 𝑗 ≥ 𝑖
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Let 𝑀′ = ⟨𝑥′
1, … , 𝑥′

𝑙 ⟩ and 𝑁′ = ⟨𝑦′
1, … , 𝑦′

𝑙 ⟩. Since 𝜑(𝑥′
1) = 𝑎1𝑦′

1 + … + 𝑎𝑖−1𝑦′
𝑖−1 + 𝑦′

𝑖
by construction and since for 𝑗 > 1 we have 𝜑(𝑥′

𝑗) = 𝑎𝜑(𝑥𝑖) ∈ ⟨𝑦′
1, … , 𝑦′

𝑙 ⟩ we get a
commutative diagram of 𝑅-modules and maps

𝑀′

��

𝜑′
// 𝑁′

��
𝑀

𝜑 // 𝑁

By the result of the second paragraph of the proof we know that length𝑅(𝑀/𝑀′) = (𝑙 −
1)ord𝑅/𝔮(𝑎) and similarly length𝑅(𝑀/𝑀′) = (𝑙 − 𝑖 + 1)ord𝑅/𝔮(𝑎). By a diagram chase this
implies that

length𝑅(Coker(𝜑′)) = length𝑅(Coker(𝜑)) + 𝑖 ord𝑅/𝔮(𝑎).
On the other hand, it is clear that writing

[𝜑(𝑥1), … , 𝜑(𝑥𝑙)] = 𝑓[𝑦1, … , 𝑦𝑙], [𝜑′(𝑥′
1), … , 𝜑(𝑥′

𝑙 )] = 𝑓′[𝑦′
1, … , 𝑦′

𝑙 ]

we have 𝑓′ = 𝑎𝑖𝑓. Hence it suffices to prove the lemma for the case that 𝜑(𝑥1) = 𝑎1𝑦1 +
… 𝑎𝑖−1𝑦𝑖−1 + 𝑦𝑖, i.e., in the case that 𝑎 = 1. Next, recall that

[𝑦1, … , 𝑦𝑙] = [𝑦1, … , 𝑦𝑖−1, 𝑎1𝑦1 + … 𝑎𝑖−1𝑦𝑖−1 + 𝑦𝑖, 𝑦𝑖+1, … , 𝑦𝑙]

by the admissible relations for symbols. The sequence 𝑦1, … , 𝑦𝑖−1, 𝑎1𝑦1 + … + 𝑎𝑖−1𝑦𝑖−1 +
𝑦𝑖, 𝑦𝑖+1, … , 𝑦𝑙 satisfies the conditions (3), (4) of the lemma also. Hence, we may actually
assume that 𝜑(𝑥1) = 𝑦𝑖. In this case, note that we have 𝔮𝑥1 = 0 which implies also 𝔮𝑦𝑖 = 0.
We have

[𝑦1, … , 𝑦𝑙] = −[𝑦1, … , 𝑦𝑖−2, 𝑦𝑖, 𝑦𝑖−1, 𝑦𝑖+1, … , 𝑦𝑙]
by the third of the admissible relations defining det𝜅(𝔮)(𝑁𝔮). Hencewemay replace 𝑦1, … , 𝑦𝑙
by the sequence 𝑦′

1, … , 𝑦′
𝑙 = 𝑦1, … , 𝑦𝑖−2, 𝑦𝑖, 𝑦𝑖−1, 𝑦𝑖+1, … , 𝑦𝑙 (which also satisfies condi-

tions (3) and (4) of the lemma). Clearly this decreases the invariant 𝑖 by 1 and we win by
induction on 𝑖. �

To use the previous lemma we show that often sequences of elements with the required
properties exist.

Lemma 29.5.2. Let 𝑅 be a local Noetherian ring. Let 𝔮 ⊂ 𝑅 be a prime ideal. Let 𝑀 be
a finite 𝑅-module such that 𝔮 is one of the minimal primes of the support of 𝑀. Then there
exist 𝑥1, … , 𝑥𝑙 ∈ 𝑀 such that

(1) the support of 𝑀/⟨𝑥1, … , 𝑥𝑙⟩ does not contain 𝔮, and
(2) ⟨𝑥1, … , 𝑥𝑖⟩/⟨𝑥1, … , 𝑥𝑖−1⟩ ≅ 𝑅/𝔮 for 𝑖 = 1, … , 𝑙.

Moreover, in this case 𝑙 = length𝑅𝔮
(𝑀𝔮).

Proof. The condition that 𝔮 is a minimal prime in the support of 𝑀 implies that 𝑙 =
length𝑅𝔮

(𝑀𝔮) is finite (see Algebra, Lemma 7.59.8). Hence we can find 𝑦1, … , 𝑦𝑙 ∈ 𝑀𝔮

such that ⟨𝑦1, … , 𝑦𝑖⟩/⟨𝑦1, … , 𝑦𝑖−1⟩ ≅ 𝜅(𝔮) for 𝑖 = 1, … , 𝑙. We can find 𝑓𝑖 ∈ 𝑅, 𝑓𝑖∉𝔮
such that 𝑓𝑖𝑦𝑖 is the image of some element 𝑧𝑖 ∈ 𝑀. Moreover, as 𝑅 is Noetherian we can
write 𝔮 = (𝑔1, … , 𝑔𝑡) for some 𝑔𝑗 ∈ 𝑅. By assumption 𝑔𝑗𝑦𝑖 ∈ ⟨𝑦1, … , 𝑦𝑖−1⟩ inside the
module 𝑀𝔮. By our choice of 𝑧𝑖 we can find some further elements 𝑓𝑗𝑖 ∈ 𝑅, 𝑓𝑖𝑗∉𝔮 such
that 𝑓𝑖𝑗𝑔𝑗𝑧𝑖 ∈ ⟨𝑧1, … , 𝑧𝑖−1⟩ (equality in the module 𝑀). The lemma follows by taking

𝑥1 = 𝑓11𝑓12 … 𝑓1𝑡𝑧1, 𝑥2 = 𝑓11𝑓12 … 𝑓1𝑡𝑓21𝑓22 … 𝑓2𝑡𝑧2,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02QC


1556 29. CHOW HOMOLOGY AND CHERN CLASSES

and so on. Namely, since all the elements 𝑓𝑖, 𝑓𝑖𝑗 are invertible in 𝑅𝔮 we still have that
𝑅𝔮𝑥1 + … + 𝑅𝔮𝑥𝑖/𝑅𝔮𝑥1 + … + 𝑅𝔮𝑥𝑖−1 ≅ 𝜅(𝔮) for 𝑖 = 1, … , 𝑙. By construction, 𝔮𝑥𝑖 ∈
⟨𝑥1, … , 𝑥𝑖−1⟩. Thus ⟨𝑥1, … , 𝑥𝑖⟩/⟨𝑥1, … , 𝑥𝑖−1⟩ is an 𝑅-module generated by one element,
annihilated 𝔮 such that localizing at 𝔮 gives a 𝑞-dimensional vector space over 𝜅(𝔮). Hence
it is isomorphic to 𝑅/𝔮. �

Here is the main result of this section. Wewill see below the various different consequences
of this proposition. The reader is encouraged to first prove the easier Lemma 29.5.4 his/her-
self.

Proposition 29.5.3. Let 𝑅 be a local Noetherian ring with residue field 𝜅. Suppose that
(𝑀, 𝜑, 𝜓) is a (2, 1)-periodic complex over 𝑅. Assume

(1) 𝑀 is a finite 𝑅-module,
(2) the cohomology modules of (𝑀, 𝜑, 𝜓) are of finite length, and
(3) dim(Supp(𝑀)) = 1.

Let 𝔮𝑖, 𝑖 = 1, … , 𝑡 be the minimal primes of the support of 𝑀. Then we have2

−𝑒𝑅(𝑀, 𝜑, 𝜓) = ∑𝑖=1,…,𝑡
ord𝑅/𝔮𝑖 (det𝜅(𝔮𝑖)(𝑀𝔮𝑖

, 𝜑𝔮𝑖
, 𝜓𝔮𝑖

))

Proof. We first reduce to the case 𝑡 = 1 in the following way. Note that Supp(𝑀) =
{𝔪, 𝔮1, … , 𝔮𝑡}, where 𝔪 ⊂ 𝑅 is the maximal ideal. Let 𝑀𝑖 denote the image of 𝑀 → 𝑀𝔮𝑖

,
so Supp(𝑀𝑖) = {𝔪, 𝔮𝑖}. The map 𝜑 (resp. 𝜓) induces an 𝑅-module map 𝜑𝑖 ∶ 𝑀𝑖 → 𝑀𝑖
(resp. 𝜓𝑖 ∶ 𝑀𝑖 → 𝑀𝑖). Thus we get a morphism of (2, 1)-periodic complexes

(𝑀, 𝜑, 𝜓) ⟶ ⨁𝑖=1,…,𝑡
(𝑀𝑖, 𝜑𝑖, 𝜓𝑖).

The kernel and cokernel of this map have support equal to {𝔪} (or are zero). Hence by
Lemma 29.3.3 these (2, 1)-periodic complexes have multiplicity 0. In other words we have

𝑒𝑅(𝑀, 𝜑, 𝜓) = ∑𝑖=1,…,𝑡
𝑒𝑅(𝑀𝑖, 𝜑𝑖, 𝜓𝑖)

On the other hand we clearly have 𝑀𝔮𝑖
= 𝑀𝑖,𝔮𝑖

, and hence the terms of the right hand side
of the formula of the lemma are equal to the expressions

ord𝑅/𝔮𝑖 (det𝜅(𝔮𝑖)(𝑀𝑖,𝔮𝑖
, 𝜑𝑖,𝔮𝑖

, 𝜓𝑖,𝔮𝑖
))

In other words, if we can prove the lemma for each of the modules 𝑀𝑖, then the lemma
holds. This reduces us to the case 𝑡 = 1.
Assume we have a (2, 1)-periodic complex (𝑀, 𝜑, 𝜓) over a Noetherian local ring with 𝑀
a finite 𝑅-module, Supp(𝑀) = {𝔪, 𝔮}, and finite length cohomology modules. The proof
in this case follows from Lemma 29.5.1 and careful bookkeeping. Denote 𝐾𝜑 = Ker(𝜑),
𝐼𝜑 = Im(𝜑), 𝐾𝜓 = Ker(𝜓), and 𝐼𝜓 = Im(𝜓). Since 𝑅 is Noetherian these are all finite
𝑅-modules. Set

𝑎 = length𝑅𝔮
(𝐼𝜑,𝔮) = length𝑅𝔮

(𝐾𝜓,𝔮), 𝑏 = length𝑅𝔮
(𝐼𝜓,𝔮) = length𝑅𝔮

(𝐾𝜑,𝔮).

Equalities because the complex becomes exact after localizing at 𝔮. Note that 𝑙 = length𝑅𝔮
(𝑀𝔮)

is equal to 𝑙 = 𝑎 + 𝑏.
We are going to use Lemma 29.5.2 to choose sequences of elements in finite 𝑅-modules 𝑁
with support contained in {𝔪, 𝔮}. In this case 𝑁𝔮 has finite length, say 𝑛 ∈ 𝐍. Let us call a

2Obviously we could get rid of the minus sign by redefining det𝜅(𝑀, 𝜑, 𝜓) as the inverse of its current value,
see Definition 29.3.4.
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sequence 𝑤1, … , 𝑤𝑛 ∈ 𝑁 with properties (1) and (2) of Lemma 29.5.2 a ``good sequence''.
Note that the quotient 𝑁/⟨𝑤1, … , 𝑤𝑛⟩ of 𝑁 by the submodule generated by a good sequence
has support (contained in) {𝔪} and hence has finite length (Algebra, Lemma 7.59.8). More-
over, the symbol [𝑤1, … , 𝑤𝑛] ∈ det𝜅(𝔮)(𝑁𝔮) is a generator, see Lemma 29.2.4.

Having said this we choose good sequences

𝑥1, … , 𝑥𝑏 in 𝐾𝜑, 𝑡1, … , 𝑡𝑎 in 𝐾𝜓,
𝑦1, … , 𝑦𝑎 in 𝐼𝜑 ∩ ⟨𝑡1, … 𝑡𝑎⟩, 𝑠1, … , 𝑠𝑏 in 𝐼𝜓 ∩ ⟨𝑥1, … , 𝑥𝑏⟩.

Wewill adjust our choices a little bit as follows. Choose lifts ̃𝑦𝑖 ∈ 𝑀 of 𝑦𝑖 ∈ 𝐼𝜑 and ̃𝑠𝑖 ∈ 𝑀
of 𝑠𝑖 ∈ 𝐼𝜓. It may not be the case that 𝔮 ̃𝑦1 ⊂ ⟨𝑥1, … , 𝑥𝑏⟩ and it may not be the case that
𝔮 ̃𝑠1 ⊂ ⟨𝑡1, … , 𝑡𝑎⟩. However, using that 𝔮 is finitely generated (as in the proof of Lemma
29.5.2) we can find a 𝑑 ∈ 𝑅, 𝑑∉𝔮 such that 𝔮𝑑 ̃𝑦1 ⊂ ⟨𝑥1, … , 𝑥𝑏⟩ and 𝔮𝑑 ̃𝑠1 ⊂ ⟨𝑡1, … , 𝑡𝑎⟩.
Thus after replacing 𝑦𝑖 by 𝑑𝑦𝑖, ̃𝑦𝑖 by 𝑑 ̃𝑦𝑖, 𝑠𝑖 by 𝑑𝑠𝑖 and ̃𝑠𝑖 by 𝑑 ̃𝑠𝑖 we see that we may assume
also that 𝑥1, … , 𝑥𝑏, ̃𝑦1, … , ̃𝑦𝑏 and 𝑡1, … , 𝑡𝑎, ̃𝑠1, … , ̃𝑠𝑏 are good sequences in 𝑀.

Finally, we choose a good sequence 𝑧1, … , 𝑧𝑙 in the finite 𝑅-module

⟨𝑥1, … , 𝑥𝑏, ̃𝑦1, … , ̃𝑦𝑎⟩ ∩ ⟨𝑡1, … , 𝑡𝑎, ̃𝑠1, … , ̃𝑠𝑏⟩.

Note that this is also a good sequence in 𝑀.

Since 𝐼𝜑,𝔮 = 𝐾𝜓,𝔮 there is a unique element ℎ ∈ 𝜅(𝔮) such that [𝑦1, … , 𝑦𝑎] = ℎ[𝑡1, … , 𝑡𝑎]
inside det𝜅(𝔮)(𝐾𝜓,𝔮). Similarly, as 𝐼𝜓,𝔮 = 𝐾𝜑,𝔮 there is a unique element ℎ ∈ 𝜅(𝔮) such that
[𝑠1, … , 𝑠𝑏] = 𝑔[𝑥1, … , 𝑥𝑏] inside det𝜅(𝔮)(𝐾𝜑,𝔮). We can also do this with the three good
sequences we have in 𝑀. All in all we get the following identities

[𝑦1, … , 𝑦𝑎] = ℎ[𝑡1, … , 𝑡𝑎]
[𝑠1, … , 𝑠𝑏] = 𝑔[𝑥1, … , 𝑥𝑏]
[𝑧1, … , 𝑧𝑙] = 𝑓𝜑[𝑥1, … , 𝑥𝑏, ̃𝑦1, … , ̃𝑦𝑎]
[𝑧1, … , 𝑧𝑙] = 𝑓𝜓[𝑡1, … , 𝑡𝑎, ̃𝑠1, … , ̃𝑠𝑏]

for some 𝑔, ℎ, 𝑓𝜑, 𝑓𝜓 ∈ 𝜅(𝔮).

Having set up all this notation let us compute det𝜅(𝔮)(𝑀, 𝜑, 𝜓). Namely, consider the ele-
ment [𝑧1, … , 𝑧𝑙]. Under the map 𝛾𝜓 ∘ 𝜎 ∘ 𝛾−1

𝜑 of Definition 29.3.4 we have

[𝑧1, … , 𝑧𝑙] = 𝑓𝜑[𝑥1, … , 𝑥𝑏, ̃𝑦1, … , ̃𝑦𝑎]
↦ 𝑓𝜑[𝑥1, … , 𝑥𝑏] ⊗ [𝑦1, … , 𝑦𝑎]
↦ 𝑓𝜑ℎ/𝑔[𝑡1, … , 𝑡𝑎] ⊗ [𝑠1, … , 𝑠𝑏]
↦ 𝑓𝜑ℎ/𝑔[𝑡1, … , 𝑡𝑎, ̃𝑠1, … , ̃𝑠𝑏]
= 𝑓𝜑ℎ/𝑓𝜓𝑔[𝑧1, … , 𝑧𝑙]

This means that det𝜅(𝔮)(𝑀𝔮, 𝜑𝔮, 𝜓𝔮) is equal to 𝑓𝜑ℎ/𝑓𝜓𝑔 up to a sign.
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We abbreviate the following quantities

𝑘𝜑 = length𝑅(𝐾𝜑/⟨𝑥1, … , 𝑥𝑏⟩)
𝑘𝜓 = length𝑅(𝐾𝜓/⟨𝑡1, … , 𝑡𝑎⟩)
𝑖𝜑 = length𝑅(𝐼𝜑/⟨𝑦1, … , 𝑦𝑎⟩)
𝑖𝜓 = length𝑅(𝐼𝜓/⟨𝑠1, … , 𝑠𝑎⟩)

𝑚𝜑 = length𝑅(𝑀/⟨𝑥1, … , 𝑥𝑏, ̃𝑦1, … , ̃𝑦𝑎⟩)
𝑚𝜓 = length𝑅(𝑀/⟨𝑡1, … , 𝑡𝑎, ̃𝑠1, … , ̃𝑠𝑏⟩)
𝛿𝜑 = length𝑅(⟨𝑥1, … , 𝑥𝑏, ̃𝑦1, … , ̃𝑦𝑎⟩⟨𝑧1, … , 𝑧𝑙⟩)
𝛿𝜓 = length𝑅(⟨𝑡1, … , 𝑡𝑎, ̃𝑠1, … , ̃𝑠𝑏⟩⟨𝑧1, … , 𝑧𝑙⟩)

Using the exact sequences 0 → 𝐾𝜑 → 𝑀 → 𝐼𝜑 → 0 we get 𝑚𝜑 = 𝑘𝜑 + 𝑖𝜑. Similarly we
have 𝑚𝜓 = 𝑘𝜓 + 𝑖𝜓. We have 𝛿𝜑 + 𝑚𝜑 = 𝛿𝜓 + 𝑚𝜓 since this is equal to the colength of
⟨𝑧1, … , 𝑧𝑙⟩ in 𝑀. Finally, we have

𝛿𝜑 = ord𝑅/𝔮(𝑓𝜑), 𝛿𝜓 = ord𝑅/𝔮(𝑓𝜓)

by our first application of the key Lemma 29.5.1.

Next, let us compute the multiplicity of the periodic complex

𝑒𝑅(𝑀, 𝜑, 𝜓) = length𝑅(𝐾𝜑/𝐼𝜓) − length𝑅(𝐾𝜓/𝐼𝜑)
= length𝑅(⟨𝑥1, … , 𝑥𝑏⟩/⟨𝑠1, … , 𝑠𝑏⟩) + 𝑘𝜑 − 𝑖𝜓

−length𝑅(⟨𝑡1, … , 𝑡𝑎⟩/⟨𝑦1, … , 𝑦𝑎⟩) − 𝑘𝜓 + 𝑖𝜑

= ord𝑅/𝔮(𝑔/ℎ) + 𝑘𝜑 − 𝑖𝜓 − 𝑘𝜓 + 𝑖𝜑

= ord𝑅/𝔮(𝑔/ℎ) + 𝑚𝜑 − 𝑚𝜓

= ord𝑅/𝔮(𝑔/ℎ) + 𝛿𝜓 − 𝛿𝜑

= ord𝑅/𝔮(𝑓𝜓𝑔/𝑓𝜑ℎ)

where we used the key Lemma 29.5.1 twice in the third equality. By our computation of
det𝜅(𝔮)(𝑀𝔮, 𝜑𝔮, 𝜓𝔮) this proves the proposition. �

In most applications the following lemma suffices.

Lemma 29.5.4. Let 𝑅 be a Noetherian local ring with maximal ideal 𝔪. Let 𝑀 be a finite
𝑅-module, and let 𝜓 ∶ 𝑀 → 𝑀 be an 𝑅-module map. Assume that

(1) Ker(𝜓) and Coker(𝜓) have finite length, and
(2) dim(Supp(𝑀)) ≤ 1.

Write Supp(𝑀) = {𝔪, 𝔮1, … , 𝔮𝑡} and denote𝑓𝑖 ∈ 𝜅(𝔮𝑖)∗ the element such that det𝜅(𝔮𝑖)(𝜓𝔮𝑖
) ∶

det𝜅(𝔮𝑖)(𝑀𝔮𝑖
) → det𝜅(𝔮𝑖)(𝑀𝔮𝑖

) is multiplication by 𝑓𝑖. Then we have

length𝑅(Coker(𝜓)) − length𝑅(Ker(𝜓)) = ∑𝑖=1,…,𝑡
ord𝑅/𝔮𝑖

(𝑓𝑖).

Proof. Recall that 𝐻0(𝑀, 0, 𝜓) = Coker(𝜓) and 𝐻1(𝑀, 0, 𝜓) = Ker(𝜓), see remarks above
Definition 29.3.2. The lemma follows by combining Proposition 29.5.3 with Lemma 29.3.8.

Alternative proof. Reduce to the case Supp(𝑀) = {𝔪, 𝔮} as in the proof of Proposition
29.5.3. Then directly combine Lemmas 29.5.1 and 29.5.2 to prove this specific case of
Proposition 29.5.3. There is much less bookkeeping in this case, and the reader is encour-
aged to work this out. Details omitted. �
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Lemma 29.5.5. Let 𝑅 be a Noetherian local ring with maximal ideal 𝔪. Let 𝑀 be a finite
𝑅-module. Let 𝑥 ∈ 𝑅. Assume that

(1) dim(Supp(𝑀)) ≤ 1, and
(2) dim(𝑀/𝑥𝑀) ≤ 0.

Write Supp(𝑀) = {𝔪, 𝔮1, … , 𝔮𝑡}. Then

length𝑅(𝑀𝑥) − length𝑅(𝑥𝑀) = ∑𝑖=1,…,𝑡
ord𝑅/𝔮𝑖

(𝑥)length𝑅𝔮𝑖
(𝑀𝔮𝑖

).

where 𝑀𝑥 = 𝑀/𝑥𝑀 and 𝑥𝑀 = Ker(𝑥 ∶ 𝑀 → 𝑀).

Proof. This is a special case of Lemma 29.5.4. To see that 𝑓𝑖 = 𝑥length𝑅𝔮𝑖
(𝑀𝔮𝑖) see Lemma

29.2.8. �

Lemma 29.5.6. Let 𝑅 be a Noetherian local ring with maximal ideal 𝔪. Let 𝐼 ⊂ 𝑅 be an
ideal and let 𝑥 ∈ 𝑅. Assume 𝑥 is a nonzero divisor on 𝑅/𝐼 and that dim(𝑅/𝐼) = 1. Then

length𝑅(𝑅/(𝑥, 𝐼)) = ∑𝑖
length𝑅(𝑅/(𝑥, 𝔮𝑖))length𝑅𝔮𝑖

((𝑅/𝐼)𝔮𝑖
)

where 𝔮1, … , 𝔮𝑛 are the minimal primes over 𝐼. More generally if 𝑀 is any finite Cohen-
Macaulay module of dimension 1 over 𝑅 and dim(𝑀/𝑥𝑀) = 0, then

length𝑅(𝑀/𝑥𝑀) = ∑𝑖
length𝑅(𝑅/(𝑥, 𝔮𝑖))length𝑅𝔮𝑖

(𝑀𝔮𝑖
).

where 𝔮1, … , 𝔮𝑡 are the minimal primes of the support of 𝑀.

Proof. These are special cases of Lemma 29.5.5. �

Lemma 29.5.7. Let𝐴 be a Noetherian local ring. Let𝑀 be a finite𝐴-module. Let 𝑎, 𝑏 ∈ 𝐴.
Assume

(1) dim(𝐴) = 1,
(2) both 𝑎 and 𝑏 are nonzero divisors in 𝐴,
(3) 𝐴 has no embedded primes,
(4) 𝑀 has no embedded associated primes,
(5) Supp(𝑀) = 𝑆𝑝𝑒𝑐(𝐴).

Let 𝐼 = {𝑥 ∈ 𝐴 ∣ 𝑥(𝑎/𝑏) ∈ 𝐴}. Let 𝔮1, … , 𝔮𝑡 be the minimal primes of 𝐴. Then (𝑎/𝑏)𝐼𝑀 ⊂
𝑀 and

length𝐴(𝑀/(𝑎/𝑏)𝐼𝑀) − length𝐴(𝑀/𝐼𝑀) = ∑𝑖
length𝐴𝔮𝑖

(𝑀𝔮𝑖
)ord𝐴/𝔮𝑖

(𝑎/𝑏)

Proof. Since 𝑀 has no embedded associated primes, and since the support of 𝑀 is 𝑆𝑝𝑒𝑐(𝐴)
we see that Ass(𝑀) = {𝔮1, … , 𝔮𝑡}. Hence 𝑎, 𝑏 are nonzero divisors on 𝑀. Note that

length𝐴(𝑀/(𝑎/𝑏)𝐼𝑀)
= length𝐴(𝑏𝑀/𝑎𝐼𝑀)
= length𝐴(𝑀/𝑎𝐼𝑀) − length𝐴(𝑀/𝑏𝑀)
= length𝐴(𝑀/𝑎𝑀) + length𝐴(𝑎𝑀/𝑎𝐼𝑀) − length𝐴(𝑀/𝑏𝑀)
= length𝐴(𝑀/𝑎𝑀) + length𝐴(𝑀/𝐼𝑀) − length𝐴(𝑀/𝑏𝑀)

as the injective map 𝑏 ∶ 𝑀 → 𝑏𝑀 maps (𝑎/𝑏)𝐼𝑀 to 𝑎𝐼𝑀 and the injective map 𝑎 ∶ 𝑀 →
𝑎𝑀 maps 𝐼𝑀 to 𝑎𝐼𝑀. Hence the left hand side of the equation of the lemma is equal to

length𝐴(𝑀/𝑎𝑀) − length𝐴(𝑀/𝑏𝑀).

Applying the second formula of Lemma 29.5.6 with 𝑥 = 𝑎, 𝑏 respectively and using Alge-
bra, Definition 7.112.2 of the ord-functions we get the result. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02QF
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02QG
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02QH


1560 29. CHOW HOMOLOGY AND CHERN CLASSES

29.6. Application to tame symbol

In this section we apply the results above to show the following lemma.

Lemma 29.6.1. Let 𝐴 be a 2-dimensional Noetherian local domain. Let 𝐾 = 𝑓.𝑓.(𝐴). Let
𝑓, 𝑔 ∈ 𝐾∗. Let 𝔮1, … , 𝔮𝑡 be the height 1 primes 𝔮 of 𝐴 such that either 𝑓 or 𝑔 is not an
element of 𝐴∗

𝔮. Then we have

∑𝑖=1,…,𝑡
ord𝐴/𝔮𝑖

(𝑑𝐴𝔮𝑖
(𝑓, 𝑔)) = 0

We can also write this as

∑height(𝔮)=1
ord𝐴/𝔮(𝑑𝐴𝔮

(𝑓, 𝑔)) = 0

since at any height one prime 𝔮 of 𝐴 where 𝑓, 𝑔 ∈ 𝐴∗
𝔮 we have 𝑑𝐴𝔮

(𝑓, 𝑔) = 1 by Lemma
29.4.6.

Proof. Since the tame symbols 𝑑𝐴𝔮
(𝑓, 𝑔) are additive (Lemma 29.4.4) and the order func-

tions ord𝐴/𝔮 are additive (Algebra, Lemma 7.112.1) it suffices to prove the formula when
𝑓 = 𝑎 ∈ 𝐴 and 𝑔 = 𝑏 ∈ 𝐴. In this case we see that we have to show

∑height(𝔮)=1
ord𝐴/𝔮(det𝜅(𝐴𝔮/(𝑎𝑏), 𝑎, 𝑏)) = 0

By Proposition 29.5.3 this is equivalent to showing that

𝑒𝐴(𝐴/(𝑎𝑏), 𝑎, 𝑏) = 0.

Since the complex 𝐴/(𝑎𝑏)
𝑎

−→ 𝐴/(𝑎𝑏)
𝑏

−→ 𝐴/(𝑎𝑏)
𝑎

−→ 𝐴/(𝑎𝑏) is exact we win. �

29.7. Setup

We will throughout work over a locally Noetherian universally catenary base 𝑆 endowed
with a dimension function 𝛿. Allthough it is likely possible to generalize (parts of) the
discussion in the chapter, it seems that this is a good first approximation. We usually do
not assume our schemes are separated or quasi-compact. Many interesting algebraic stacks
are non-separated and/or non-quasi-compact and this is a good case study to see how to
develop a reasonable theory for those as well. In order to reference these hypotheses we
give it a number.

Situation 29.7.1. Here 𝑆 is a locally Noetherian, and universally catenary scheme. More-
over, we assume 𝑆 is endowed with a dimension function 𝛿 ∶ 𝑆 ⟶ 𝐙.

See Morphisms, Definition 24.16.1 for the notion of a universally catenary scheme, and
see Topology, Definition 5.16.1 for the notion of a dimension function. Recall that any lo-
cally Noetherian catenary scheme locally has a dimension function, see Properties, Lemma
23.11.3. Moreover, there are lots of schemes which are universally catenary, see Mor-
phisms, Lemma 24.16.4.

Let (𝑆, 𝛿) be as in Situation 29.7.1. Any scheme 𝑋 locally of finite type over 𝑆 is locally
Noetherian and catenary. In fact, 𝑋 has a canonical dimension function

𝛿 = 𝛿𝑋/𝑆 ∶ 𝑋 ⟶ 𝐙

associated to (𝑓 ∶ 𝑋 → 𝑆, 𝛿) given by the rule 𝛿𝑋/𝑆(𝑥) = 𝛿(𝑓(𝑥)) + trdeg𝜅(𝑓(𝑥))𝜅(𝑥). See
Morphisms, Lemma 24.29.2. Moreover, if ℎ ∶ 𝑋 → 𝑌 is a morphism of schemes locally of
finite type over 𝑆, and 𝑥 ∈ 𝑋, 𝑦 = ℎ(𝑥), then obviously 𝛿𝑋/𝑆(𝑥) = 𝛿𝑌/𝑆(𝑦) + trdeg𝜅(𝑦)𝜅(𝑥).
We will freely use this function and its properties in the following.
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Here are the basic examples of setups as above. In fact, the main interest lies in the case
where the base is the spectrum of a field, or the case where the base is the spectrum of a
Dedekind ring (e.g. 𝐙, or a discrete valuation ring).
Example 29.7.2. Here 𝑆 = 𝑆𝑝𝑒𝑐(𝑘) and 𝑘 is a field. We set 𝛿(𝑝𝑡) = 0 where 𝑝𝑡 indicates
the unique point of 𝑆. The pair (𝑆, 𝛿) is an example of a situation as in Situation 29.7.1 by
Morphisms, Lemma 24.16.4.
Example 29.7.3. Here 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), where 𝐴 is a Noetherian domain of dimension 1. For
example we could consider 𝐴 = 𝐙. We set 𝛿(𝔭) = 0 if 𝔭 is a maximal ideal and 𝛿(𝔭) = 1
if 𝔭 = (0) corresponds to the generic point. This is an example of Situation 29.7.1 by
Morphisms, Lemma 24.16.4.
In good cases 𝛿 corresponds to the dimension function.
Lemma 29.7.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Assume in addition 𝑆 is a Jacobson
scheme, and 𝛿(𝑠) = 0 for every closed point 𝑠 of 𝑆. Let 𝑋 be locally of finite type over
𝑆. Let 𝑍 ⊂ 𝑋 be an integral closed subscheme and let 𝜉 ∈ 𝑍 be its generic point. The
following integers are the same:

(1) 𝛿𝑋/𝑆(𝜉),
(2) dim(𝑍), and
(3) dim(𝒪𝑍,𝑧) where 𝑧 is a closed point of 𝑍.

Proof. Let 𝑋 → 𝑆, 𝜉 ∈ 𝑍 ⊂ 𝑋 be as in the lemma. Since 𝑋 is locally of finite type over 𝑆
we see that 𝑋 is Jacobson, see Morphisms, Lemma 24.15.9. Hence closed points of 𝑋 are
dense in every closed subset of 𝑍 and map to closed points of 𝑆. Hence given any chain
of irreducible closed subsets of 𝑍 we can end it with a closed point of 𝑍. It follows that
dim(𝑍) = sup𝑧(dim(𝒪𝑍,𝑧) (see Properties, Lemma 23.11.4) where 𝑧 ∈ 𝑍 runs over the
closed points of 𝑍. Note that dim(𝒪𝑍,𝑧) = 𝛿(𝜉) − 𝛿(𝑧)) by the properties of a dimension
function. For each closed 𝑧 ∈ 𝑍 the field extension 𝜅(𝑧) ⊃ 𝜅(𝑓(𝑧)) is finite, seeMorphisms,
Lemma 24.15.8. Hence 𝛿𝑋/𝑆(𝑧) = 𝛿(𝑓(𝑧)) = 0 for 𝑧 ∈ 𝑍 closed. It follows that all three
integers are equal. �

In the situation of the lemma above the value of 𝛿 at the generic point of a closed irreducible
subset is the dimension of the irreducible closed subset. However, in general we cannot
expect the equality to hold. For example if 𝑆 = 𝑆𝑝𝑒𝑐(𝐂[[𝑡]]) and 𝑋 = 𝑆𝑝𝑒𝑐(𝐂((𝑡))) then
we would get 𝛿(𝑥) = 1 for the unique point of 𝑋, but dim(𝑋) = 0. Still we want to think of
𝛿𝑋/𝑆 as giving the dimension of the irreducible closed subschemes. Thus we introduce the
following terminology.
Definition 29.7.5. Let (𝑆, 𝛿) as in Situation 29.7.1. For any scheme 𝑋 locally of finite type
over 𝑆 and any irreducible closed subset 𝑍 ⊂ 𝑋 we define

dim𝛿(𝑍) = 𝛿(𝜉)
where 𝜉 ∈ 𝑍 is the generic point of 𝑍. We will call this the 𝛿-dimension of 𝑍. If 𝑍 is a
closed subscheme of 𝑋, then we define dim𝛿(𝑍) as the supremum of the 𝛿-dimensions of
its irreducible components.

29.8. Cycles

Since we are not assuming our schemes are quasi-compact we have to be a little careful
when defining cycles. We have to allow infinite sums because a rational function may have
infinitely many poles for example. In any case, if 𝑋 is quasi-compact then a cycle is a finite
sum as usual.
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Definition 29.8.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let 𝑘 ∈ 𝐙.

(1) A collection of closed subschemes {𝑍𝑖}𝑖∈𝐼 of 𝑋 is said to be locally finite if for
every quasi-compact open 𝑈 ⊂ 𝑋 the set

#{𝑖 ∈ 𝐼 ∣ 𝑍𝑖 ∩ 𝑈≠∅}

is finite.
(2) A cycle on 𝑋 is a formal sum

𝛼 = ∑ 𝑛𝑍[𝑍]

where the sum is over integral closed subschemes 𝑍 ⊂ 𝑋, each 𝑛𝑍 ∈ 𝐙, and the
collection {𝑍; 𝑛𝑍≠0} is locally finite.

(3) A 𝑘-cycle, on 𝑋 is a cycle

𝛼 = ∑ 𝑛𝑍[𝑍]

where 𝑛𝑍≠0 ⇒ dim𝛿(𝑍) = 𝑘.
(4) The abelian group of all 𝑘-cycles on 𝑋 is denoted 𝑍𝑘(𝑋).

In other words, a 𝑘-cycle on 𝑋 is a locally finite formal 𝐙-linear combination of integral
closed subschemes of 𝛿-dimension 𝑘. Addition of 𝑘-cycles 𝛼 = ∑ 𝑛𝑍[𝑍] and 𝛽 = ∑ 𝑚𝑍[𝑍]
is given by

𝛼 + 𝛽 = ∑(𝑛𝑍 + 𝑚𝑍)[𝑍],
i.e., by adding the coefficients.

29.9. Cycle associated to a closed subscheme

Lemma 29.9.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let 𝑍 ⊂ 𝑋 be a closed subscheme.

(1) The collection of irreducible components of 𝑍 is locally finite.
(2) Let 𝑍′ ⊂ 𝑍 be an irreducible component and let 𝜉 ∈ 𝑍′ be its generic point.

Then
length𝒪𝑋,𝜉

𝒪𝑍,𝜉 < ∞
(3) If dim𝛿(𝑍) ≤ 𝑘 and 𝜉 ∈ 𝑍with 𝛿(𝜉) = 𝑘, then 𝜉 is a generic point of an irreducible

component of 𝑍.

Proof. Let 𝑈 ⊂ 𝑋 be a quasi-compact open subscheme. Then 𝑈 is a Noetherian scheme,
and hence has aNoetherian underlying topological space (Properties, Lemma 23.5.5). Hence
every subspace is Noetherian and has finitely many irreducible components (see Topology,
Lemma 5.6.2). This proves (1).

Let 𝑍′ ⊂ 𝑍, 𝜉 ∈ 𝑍′ be as in (2). Then dim(𝒪𝑍,𝜉) = 0 (for example by Properties, Lemma
23.11.4). Hence 𝒪𝑍,𝜉 is Noetherian local ring of dimension zero, and hence has finite length
over itself (see Algebra, Proposition 7.57.6). Hence, it also has finite length over 𝒪𝑋,𝜉, see
Algebra, Lemma 7.48.12.

Assume 𝜉 ∈ 𝑍 and 𝛿(𝜉) = 𝑘. Consider the closure 𝑍′ = {𝜉}. It is an irreducible closed
subscheme with dim𝛿(𝑍′) = 𝑘 by definition. Since dim𝛿(𝑍) = 𝑘 it must be an irreducible
component of 𝑍. Hence we see (3) holds. �

Definition 29.9.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let 𝑍 ⊂ 𝑋 be a closed subscheme.
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(1) For any irreducible component 𝑍′ ⊂ 𝑍 with generic point 𝜉 the integer 𝑚𝑍′,𝑍 =
length𝒪𝑋,𝜉

𝒪𝑍,𝜉 (Lemma 29.9.1) is called the multiplicity of 𝑍′ in 𝑍.
(2) Assume dim𝛿(𝑍) ≤ 𝑘. The 𝑘-cycle associated to 𝑍 is

[𝑍]𝑘 = ∑ 𝑚𝑍′,𝑍[𝑍′]

where the sum is over the irreducible components of 𝑍 of 𝛿-dimension 𝑘. (This
is a 𝑘-cycle by Lemma 29.9.1.)

It is important to note that we only define [𝑍]𝑘 if the 𝛿-dimension of 𝑍 does not exceed 𝑘.
In other words, by convention, if we write [𝑍]𝑘 then this implies that dim𝛿(𝑍) ≤ 𝑘.

29.10. Cycle associated to a coherent sheaf

Lemma 29.10.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℱ be a coherent 𝒪𝑋-module.

(1) The collection of irreducible components of the support of ℱ is locally finite.
(2) Let 𝑍′ ⊂ Supp(ℱ) be an irreducible component and let 𝜉 ∈ 𝑍′ be its generic

point. Then
length𝒪𝑋,𝜉

ℱ𝜉 < ∞

(3) If dim𝛿(Supp(ℱ)) ≤ 𝑘 and 𝜉 ∈ 𝑍 with 𝛿(𝜉) = 𝑘, then 𝜉 is a generic point of an
irreducible component of Supp(ℱ).

Proof. By Coherent, Lemma 25.11.7 the support 𝑍 of ℱ is a closed subset of 𝑋. We may
think of 𝑍 as a reduced closed subscheme of 𝑋 (Schemes, Lemma 21.12.4). Hence (1) and
(3) follow immediately by applying Lemma 29.9.1 to 𝑍 ⊂ 𝑋.

Let 𝜉 ∈ 𝑍′ be as in (2). In this case for any specialization 𝜉′  𝜉 in 𝑋 we have ℱ𝜉′ = 0.
Recall that the non-maximal primes of 𝒪𝑋,𝜉 correspond to the points of 𝑋 specializing to
𝜉 (Schemes, Lemma 21.13.2). Hence ℱ𝜉 is a finite 𝒪𝑋,𝜉-module whose support is {𝔪𝜉}.
Hence it has finite length by Algebra, Lemma 7.59.8. �

Definition 29.10.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let ℱ be a coherent 𝒪𝑋-module.

(1) For any irreducible component 𝑍′ ⊂ Supp(ℱ) with generic point 𝜉 the integer
𝑚𝑍′,ℱ = length𝒪𝑋,𝜉

ℱ𝜉 (Lemma 29.10.1) is called the multiplicity of 𝑍′ in ℱ.
(2) Assume dim𝛿(Supp(ℱ)) ≤ 𝑘. The 𝑘-cycle associated to ℱ is

[ℱ]𝑘 = ∑ 𝑚𝑍′,ℱ[𝑍′]

where the sum is over the irreducible components of Supp(ℱ) of 𝛿-dimension 𝑘.
(This is a 𝑘-cycle by Lemma 29.10.1.)

It is important to note that we only define [ℱ]𝑘 if ℱ is coherent and the 𝛿-dimension of
Supp(ℱ) does not exceed 𝑘. In other words, by convention, if we write [ℱ]𝑘 then this
implies that ℱ is coherent on 𝑋 and dim𝛿(Supp(ℱ)) ≤ 𝑘.

Lemma 29.10.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let 𝑍 ⊂ 𝑋 be a closed subscheme. If dim𝛿(𝑍) ≤ 𝑘, then [𝑍]𝑘 = [𝒪𝑍]𝑘.

Proof. This is because in this case the multiplicities 𝑚𝑍′,𝑍 and 𝑚𝑍′,𝒪𝑍
agree by definition.

�
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Lemma 29.10.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let 0 → ℱ → 𝒢 → ℋ → 0 be a short exact sequence of coherent sheaves on 𝑋. Assume
that the 𝛿-dimension of the supports of ℱ, 𝒢, and ℋ is ≤ 𝑘. Then [𝒢]𝑘 = [ℱ]𝑘 + [ℋ]𝑘.

Proof. Follows immediately from additivity of lengths, see Algebra, Lemma 7.48.3. �

29.11. Preparation for proper pushforward

Lemma 29.11.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type
over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism. Assume 𝑋, 𝑌 integral and dim𝛿(𝑋) = dim𝛿(𝑌).
Then either 𝑓(𝑋) is contained in a proper closed subscheme of 𝑌, or 𝑓 is dominant and the
extension of function fields 𝑅(𝑌) ⊂ 𝑅(𝑋) is finite.

Proof. The closure 𝑓(𝑋) ⊂ 𝑌 is irreducible as 𝑋 is irreducible. If 𝑓(𝑋)≠𝑌, then we are
done. If 𝑓(𝑋) = 𝑌, then 𝑓 is dominant and by Morphisms, Lemma 24.6.5 we see that the
generic point 𝜂𝑌 of 𝑌 is in the image of 𝑓. Of course this implies that 𝑓(𝜂𝑋) = 𝜂𝑌, where 𝜂𝑋 ∈
𝑋 is the generic point of 𝑋. Since 𝛿(𝜂𝑋) = 𝛿(𝜂𝑌) we see that 𝑅(𝑌) = 𝜅(𝜂𝑌) ⊂ 𝜅(𝜂𝑋) = 𝑅(𝑋)
is an extension of transcendence degree 0. Hence Morphisms, Lemma 24.45.4 applies. �

Lemma 29.11.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism. Assume 𝑓 is quasi-compact, and {𝑍𝑖}𝑖∈𝐼 is a locally
finite collection of closed subsets of 𝑋. Then {𝑓(𝑍𝑖)}𝑖∈𝐼 is a locally finite collection of
closed subsets of 𝑌.

Proof. Let 𝑉 ⊂ 𝑌 be a quasi-compact open subset. Since 𝑓 is quasi-compact the open
𝑓−1(𝑉) is quasi-compact. Hence the set {𝑖 ∈ 𝐼 ∣ 𝑍𝑖 ∩ 𝑓−1(𝑉)≠∅} is finite by assumption.
Since this is the same as the set {𝑖 ∈ 𝐼 ∣ 𝑓(𝑍𝑖) ∩ 𝑉≠∅} we win. �

29.12. Proper pushforward

Definition 29.12.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type
over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism. Assume 𝑓 is proper.

(1) Let 𝑍 ⊂ 𝑋 be an integral closed subscheme with dim𝛿(𝑍) = 𝑘. We define

𝑓∗[𝑍] = {
0 if dim𝛿(𝑓(𝑍)) < 𝑘,

deg(𝑍/𝑓(𝑍))[𝑓(𝑍)] if dim𝛿(𝑓(𝑍)) = 𝑘.
Here we think of 𝑓(𝑍) ⊂ 𝑌 as an integral closed subscheme. The degree of 𝑍
over 𝑓(𝑍) is finite if dim𝛿(𝑓(𝑍)) = dim𝛿(𝑍) by Lemma 29.11.1.

(2) Let 𝛼 = ∑ 𝑛𝑍[𝑍] be a 𝑘-cycle on 𝑋. The pushforward of 𝛼 as the sum

𝑓∗𝛼 = ∑ 𝑛𝑍𝑓∗[𝑍]

where each 𝑓∗[𝑍] is defined as above. The sum is locally finite by Lemma 29.11.2
above.

By definition the proper pushforward of cycles
𝑓∗ ∶ 𝑍𝑘(𝑋) ⟶ 𝑍𝑘(𝑌)

is a homomorphism of abelian groups. It turns 𝑋 ↦ 𝑍𝑘(𝑋) into a covariant functor on
the category of schemes locally of finite type over 𝑆 with morphisms equal to proper mor-
phisms.

Lemma 29.12.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌, and 𝑍 be locally of finite
type over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be proper morphisms. Then 𝑔∗ ∘ 𝑓∗ = (𝑔 ∘ 𝑓)∗
as maps 𝑍𝑘(𝑋) → 𝑍𝑘(𝑍).
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Proof. Let 𝑊 ⊂ 𝑋 be an integral closed subscheme of dimension 𝑘. Consider 𝑊′ =
𝑓(𝑍) ⊂ 𝑌 and 𝑊″ = 𝑔(𝑓(𝑍)) ⊂ 𝑍. Since 𝑓, 𝑔 are proper we see that 𝑊′ (resp. 𝑊″) is an
integral closed subscheme of 𝑌 (resp. 𝑍). We have to show that 𝑔∗(𝑓∗[𝑊]) = (𝑓 ∘ 𝑔)∗[𝑊].
If dim𝛿(𝑊″) < 𝑘, then both sides are zero. If dim𝛿(𝑊″) = 𝑘, then we see the induced
morphisms

𝑊 ⟶ 𝑊′ ⟶ 𝑊″

both satisfy the hypotheses of Lemma 29.11.1. Hence

𝑔∗(𝑓∗[𝑊]) = deg(𝑊/𝑊′) deg(𝑊′/𝑊″)[𝑊″], (𝑓 ∘ 𝑔)∗[𝑊] = deg(𝑊/𝑊″)[𝑊″].

Then we can apply Morphisms, Lemma 24.45.6 to conclude. �

Lemma 29.12.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism. Assume 𝑓 is proper.

(1) Let 𝑍 ⊂ 𝑋 be a closed subscheme with dim𝛿(𝑍) ≤ 𝑘. Then

𝑓∗[𝑍]𝑘 = [𝑓∗𝒪𝑍]𝑘.

(2) Let ℱ be a coherent sheaf on 𝑋 such that dim𝛿(Supp(ℱ)) ≤ 𝑘. Then

𝑓∗[ℱ]𝑘 = [𝑓∗ℱ]𝑘.

Note that the statement makes sense since 𝑓∗ℱ and 𝑓∗𝒪𝑍 are coherent 𝒪𝑌-modules by
Coherent, Lemma 25.18.2.

Proof. Part (1) follows from (2) and Lemma 29.10.3. Let ℱ be a coherent sheaf on 𝑋.
Assume that dim𝛿(Supp(ℱ)) ≤ 𝑘. By Coherent, Lemma 25.11.7 there exists a closed sub-
scheme 𝑖 ∶ 𝑍 → 𝑋 and a coherent 𝒪𝑍-module 𝒢 such that 𝑖∗𝒢 ≅ ℱ and such that the
support of ℱ is 𝑍. Let 𝑍′ ⊂ 𝑌 be the scheme theoretic image of 𝑓|𝑍 ∶ 𝑍 → 𝑌.Consider
the commutative diagram of schemes

𝑍
𝑖
//

𝑓|𝑍
��

𝑋

𝑓
��

𝑍′ 𝑖′ // 𝑌
We have 𝑓∗ℱ = 𝑓∗𝑖∗𝒢 = 𝑖′

∗(𝑓|𝑍)∗𝒢 by going around the diagram in two ways. Suppose
we know the result holds for closed immersions and for 𝑓|𝑍. Then we see that

𝑓∗[ℱ]𝑘 = 𝑓∗𝑖∗[𝒢]𝑘 = (𝑖′)∗(𝑓|𝑍)∗[𝒢]𝑘 = (𝑖′)∗[(𝑓|𝑍)∗𝒢]𝑘 = [(𝑖′)∗(𝑓|𝑍)∗𝒢]𝑘 = [𝑓∗ℱ]𝑘

as desired. The case of a closed immersion is straightforward (omitted). Note that 𝑓|𝑍 ∶
𝑍 → 𝑍′ is a dominant morphism (see Morphisms, Lemma 24.4.3). Thus we have reduced
to the case where dim𝛿(𝑋) ≤ 𝑘 and 𝑓 ∶ 𝑋 → 𝑌 is proper and dominant.

Assume dim𝛿(𝑋) ≤ 𝑘 and 𝑓 ∶ 𝑋 → 𝑌 is proper and dominant. Since 𝑓 is dominant, for
every irreducible component 𝑍 ⊂ 𝑌 with generic point 𝜂 there exists a point 𝜉 ∈ 𝑋 such
that 𝑓(𝜉) = 𝜂. Hence 𝛿(𝜂) ≤ 𝛿(𝜉) ≤ 𝑘. Thus we see that in the expressions

𝑓∗[ℱ]𝑘 = ∑ 𝑛𝑍[𝑍], and [𝑓∗ℱ]𝑘 = ∑ 𝑚𝑍[𝑍].

whenever 𝑛𝑍≠0, or 𝑚𝑍≠0 the integral closed subscheme 𝑍 is actually an irreducible com-
ponent of 𝑌 of 𝛿-dimension 𝑘. Pick such an integral closed subscheme 𝑍 ⊂ 𝑌 and denote
𝜂 its generic point. Note that for any 𝜉 ∈ 𝑋 with 𝑓(𝜉) = 𝜂 we have 𝛿(𝜉) ≥ 𝑘 and hence 𝜉
is a generic point of an irreducible component of 𝑋 of 𝛿-dimension 𝑘 as well (see Lemma
29.9.1). Since 𝑓 is quasi-compact and 𝑋 is locally Noetherian, there can be only finitely
many of these and hence 𝑓−1({𝜂}) is finite. By Morphisms, Lemma 24.45.1 there exists an
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open neighbourhood 𝜂 ∈ 𝑉 ⊂ 𝑌 such that 𝑓−1(𝑉) → 𝑉 is finite. Replacing 𝑌 by 𝑉 and 𝑋 by
𝑓−1(𝑉) we reduce to the case where 𝑌 is affine, and 𝑓 is finite.

Write 𝑌 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) (possible as a finite morphism is affine). Then 𝑅 and
𝐴 are Noetherian rings and 𝐴 is finite over 𝑅. Moreover ℱ = 𝑀 for some finite 𝐴-module
𝑀. Note that 𝑓∗ℱ corresponds to 𝑀 viewed as an 𝑅-module. Let 𝔭 ⊂ 𝑅 be the minimal
prime corresponding to 𝜂 ∈ 𝑌. The coefficient of 𝑍 in [𝑓∗ℱ]𝑘 is clearly length𝑅𝔭

(𝑀𝔭). Let
𝔮𝑖, 𝑖 = 1, … , 𝑡 be the primes of 𝐴 lying over 𝔭. Then 𝐴𝔭 = ∏ 𝐴𝔮𝑖

since 𝐴𝔭 is an Artinian
ring being finite over the dimension zero local Noetherian ring 𝑅𝔭. Clearly the coefficient
of 𝑍 in 𝑓∗[ℱ]𝑘 is

∑𝑖=1,…,𝑡
[𝜅(𝔮𝑖) ∶ 𝜅(𝔭)]length𝐴𝔮𝑖

(𝑀𝔮𝑖
)

Hence the desired equality follows from Algebra, Lemma 7.48.12. �

29.13. Preparation for flat pullback

Recall that a morphism 𝑓 ∶ 𝑋 → 𝑌 which is locally of finite type is said to have relative
dimension 𝑟 if every nonempty fibre is equidimensional of dimension 𝑟. See Morphisms,
Definition 24.28.1.

Lemma 29.13.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism. Assume 𝑓 is flat of relative dimension 𝑟. For any closed
subset 𝑍 ⊂ 𝑌 we have

dim𝛿(𝑓−1(𝑍)) = dim𝛿(𝑍) + 𝑟.
If 𝑍 is irreducible and 𝑍′ ⊂ 𝑓−1(𝑍) is an irreducible component, then 𝑍′ dominates 𝑍
and dim𝛿(𝑍′) = dim𝛿(𝑍) + 𝑟.

Proof. It suffices to prove the final statement. We may replace 𝑌 by the integral closed
subscheme 𝑍 and 𝑋 by the scheme theoretic inverse image 𝑓−1(𝑍) = 𝑍 ×𝑌 𝑋. Hence we
may assume 𝑍 = 𝑌 is integral and 𝑓 is a flat morphism of relative dimension 𝑟. Since 𝑌
is locally Noetherian the morphism 𝑓 which is locally of finite type, is actually locally of
finite presentation. Hence Morphisms, Lemma 24.24.9 applies and we see that 𝑓 is open.
Let 𝜉 ∈ 𝑋 be a generic point of an irreducible component of 𝑋. By the openness of 𝑓 we
see that 𝑓(𝜉) is the generic point 𝜂 of 𝑍 = 𝑌. Note that dim𝜉(𝑋𝜂) = 𝑟 by assumption that
𝑓 has relative dimension 𝑟. On the other hand, since 𝜉 is a generic point of 𝑋 we see that
𝒪𝑋,𝜉 = 𝒪𝑋𝜂,𝜉 has only one prime ideal and hence has dimension 0. Thus by Morphisms,
Lemma 24.27.1 we conclude that the transcendence degree of 𝜅(𝜉) over 𝜅(𝜂) is 𝑟. In other
words, 𝛿(𝜉) = 𝛿(𝜂) + 𝑟 as desired. �

Here is the lemma that we will use to prove that the flat pullback of a locally finite collection
of closed subschemes is locally finite.

Lemma 29.13.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism. Assume {𝑍𝑖}𝑖∈𝐼 is a locally finite collection of closed
subsets of 𝑌. Then {𝑓−1(𝑍𝑖)}𝑖∈𝐼 is a locally finite collection of closed subsets of 𝑌.

Proof. Let 𝑈 ⊂ 𝑋 be a quasi-compact open subset. Since the image 𝑓(𝑈) ⊂ 𝑌 is a quasi-
compact subset there exists a quasi-compact open 𝑉 ⊂ 𝑌 such that 𝑓(𝑈) ⊂ 𝑉. Note that

{𝑖 ∈ 𝐼 ∣ 𝑓−1(𝑍𝑖) ∩ 𝑈≠∅} ⊂ {𝑖 ∈ 𝐼 ∣ 𝑍𝑖 ∩ 𝑉≠∅}.

Since the right hand side is finite by assumption we win. �
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29.14. Flat pullback

In the following we use 𝑓−1(𝑍) to denote the scheme theoretic inverse image of a closed
subscheme 𝑍 ⊂ 𝑌 for a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌. We recall that the scheme
theoretic inverse image is the fibre product

𝑓−1(𝑍) //

��

𝑋

��
𝑍 // 𝑌

and it is also the closed subscheme of 𝑋 cut out by the quasi-coherent sheaf of ideals
𝑓−1(ℐ)𝒪𝑋, if ℐ ⊂ 𝒪𝑌 is the quasi-coherent sheaf of ideals corresponding to 𝑍 in 𝑌. (This
is discussed in Schemes, Section 21.4 and Lemma 21.17.6 and Definition 21.17.7.)

Definition 29.14.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type
over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism. Assume 𝑓 is flat of relative dimension 𝑟.

(1) Let 𝑍 ⊂ 𝑌 be an integral closed subscheme of 𝛿-dimension 𝑘. We define 𝑓∗[𝑍]
to be the (𝑘 + 𝑟)-cycle on 𝑋 to the scheme theoretic inverse image

𝑓∗[𝑍] = [𝑓−1(𝑍)]𝑘+𝑟.

This makes sense since dim𝛿(𝑓−1(𝑍)) = 𝑘 + 𝑟 by Lemma 29.13.1.
(2) Let 𝛼 = ∑ 𝑛𝑖[𝑍𝑖] be a 𝑘-cycle on 𝑌. The flat pullback of 𝛼 by 𝑓 is the sum

𝑓∗𝛼 = ∑ 𝑛𝑖𝑓∗[𝑍𝑖]

where each 𝑓∗[𝑍𝑖] is defined as above. The sum is locally finite by Lemma
29.13.2.

(3) We denote 𝑓∗ ∶ 𝑍𝑘(𝑌) → 𝑍𝑘+𝑟(𝑌) the map of abelian groups so obtained.

An open immersion is flat. This is an important though trivial special case of a flat mor-
phism. If 𝑈 ⊂ 𝑋 is open then sometimes the pullback by 𝑗 ∶ 𝑈 → 𝑋 of a cycle is called
the restriction of the cycle to 𝑈. Note that in this case the maps

𝑗∗ ∶ 𝑍𝑘(𝑋) ⟶ 𝑍𝑘(𝑈)

are all surjective. The reason is that given any integral closed subscheme 𝑍′ ⊂ 𝑈, we can
take the closure of 𝑍 of 𝑍′ in 𝑋 and think of it as a reduced closed subscheme of 𝑋 (see
Schemes, Lemma 21.12.4). And clearly 𝑍 ∩ 𝑈 = 𝑍′, in other words 𝑗∗[𝑍] = [𝑍′] whence
the surjectivity. In fact a little bit more is true.

Lemma 29.14.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let 𝑈 ⊂ 𝑋 be an open subscheme, and denote 𝑖 ∶ 𝑌 = 𝑋 ⧵ 𝑈 → 𝑋 as a reduced closed
subscheme of 𝑋. For every 𝑘 ∈ 𝐙 the sequence

𝑍𝑘(𝑌)
𝑖∗ // 𝑍𝑘(𝑋)

𝑗∗ // 𝑍𝑘(𝑈) // 0

is an exact complex of abelian groups.

Proof. By the description above the basis elements [𝑍] of the free abelian group 𝑍𝑘(𝑋)
map either to (distinct) basis elements [𝑍 ∩ 𝑈] or to zero if 𝑍 ⊂ 𝑌. Hence the lemma is
clear. �
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Lemma 29.14.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌, 𝑍 be locally of finite type
over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be flat morphisms of relative dimensions 𝑟 and 𝑠.
Then 𝑔 ∘ 𝑓 is flat of relative dimension 𝑟 + 𝑠 and

𝑓∗ ∘ 𝑔∗ = (𝑔 ∘ 𝑓)∗

as maps 𝑍𝑘(𝑍) → 𝑍𝑘+𝑟+𝑠(𝑋).

Proof. The composition is flat of relative dimension 𝑟 + 𝑠 by Morphisms, Lemma 24.28.3.
Suppose that

(1) 𝑊 ⊂ 𝑍 is a closed integral subscheme of 𝛿-dimension 𝑘,
(2) 𝑊′ ⊂ 𝑌 is a closed integral subscheme of 𝛿-dimension 𝑘 + 𝑠 with 𝑊′ ⊂ 𝑔−1(𝑊),

and
(3) 𝑊″ ⊂ 𝑌 is a closed integral subscheme of 𝛿-dimension 𝑘 + 𝑠 + 𝑟 with 𝑊″ ⊂

𝑓−1(𝑊′).
We have to show that the coefficient 𝑛 of [𝑊″] in (𝑔 ∘ 𝑓)∗[𝑊] agrees with the coefficient
𝑚 of [𝑊″] in 𝑓∗(𝑔∗[𝑊]). That it suffices to check the lemma in these cases follows from
Lemma 29.13.1. Let 𝜉″ ∈ 𝑊″, 𝜉′ ∈ 𝑊′ and 𝜉 ∈ 𝑊 be the generic points. Consider the
local rings 𝐴 = 𝒪𝑍,𝜉, 𝐵 = 𝒪𝑌,𝜉′ and 𝐶 = 𝒪𝑋,𝜉″. Then we have local flat ring maps 𝐴 → 𝐵,
𝐵 → 𝐶 and moreover

𝑛 = length𝐶(𝐶/𝔪𝐴𝐶), and 𝑚 = length𝐶(𝐶/𝔪𝐵𝐶)length𝐵(𝐵/𝔪𝐴𝐵)

Hence the equality follows from Algebra, Lemma 7.48.14. �

Lemma 29.14.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat morphism of relative dimension 𝑟.

(1) Let𝑍 ⊂ 𝑌 be a closed subschemewith dim𝛿(𝑍) ≤ 𝑘. Thenwe have dim𝛿(𝑓−1(𝑍)) ≤
𝑘 + 𝑟 and [𝑓−1(𝑍)]𝑘+𝑟 = 𝑓∗[𝑍]𝑘 in 𝑍𝑘+𝑟(𝑋).

(2) Letℱ be a coherent sheaf on 𝑌with dim𝛿(Supp(ℱ)) ≤ 𝑘. Thenwe have dim𝛿(Supp(𝑓∗ℱ)) ≤
𝑘 + 𝑟 and

𝑓∗[ℱ]𝑘 = [𝑓∗ℱ]𝑘+𝑟

in 𝑍𝑘+𝑟(𝑋).

Proof. Part (1) follows from part (2) by Lemma 29.10.3 and the fact that 𝑓∗𝒪𝑍 = 𝒪𝑓−1(𝑍).

Proof of (2). As 𝑋, 𝑌 are locally Noetherian we may apply Coherent, Lemma 25.11.1 to
see that ℱ is of finite type, hence 𝑓∗ℱ is of finite type (Modules, Lemma 15.9.2), hence
𝑓∗ℱ is coherent (Coherent, Lemma 25.11.1 again). Thus the lemma makes sense. Let
𝑊 ⊂ 𝑌 be an integral closed subscheme of 𝛿-dimension 𝑘, and let 𝑊′ ⊂ 𝑋 be an integral
closed subscheme of dimension 𝑘 + 𝑟 mapping into 𝑊 under 𝑓. We have to show that the
coefficient 𝑛 of [𝑊] in 𝑓∗[ℱ]𝑘 agrees with the coefficient 𝑚 of [𝑊] in [𝑓∗ℱ]𝑘+𝑟. Let 𝜉 ∈ 𝑊
and 𝜉′ ∈ 𝑊′ be the generic points. Let 𝐴 = 𝒪𝑌,𝜉, 𝐵 = 𝒪𝑋,𝜉′ and set 𝑀 = ℱ𝜉 as an
𝐴-module. (Note that 𝑀 has finite length by our dimension assumptions, but we actually
do not need to verify this. See Lemma 29.10.1.) We have 𝑓∗ℱ𝜉′ = 𝐵 ⊗𝐴 𝑀. Thus we see
that

𝑛 = length𝐵(𝐵 ⊗𝐴 𝑀) and 𝑚 = length𝐴(𝑀)length𝐵(𝐵/𝔪𝐴𝐵)

Thus the equality follows from Algebra, Lemma 7.48.13. �
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29.15. Push and pull

In this section we verify that proper pushforward and flat pullback are compatible when
this makes sense. By the work we did above this is a consequence of cohomology and base
change.

Lemma 29.15.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let

𝑋′
𝑔′
//

𝑓′

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑌

be a fibre product diagram of schemes locally of finite type over 𝑆. Assume 𝑓 ∶ 𝑋 → 𝑌
proper and 𝑔 ∶ 𝑌′ → 𝑌 flat of relative dimension 𝑟. Then also 𝑓′ is proper and 𝑔′ is flat of
relative dimension 𝑟. For any 𝑘-cycle 𝛼 on 𝑋 we have

𝑔∗𝑓∗𝛼 = 𝑓′
∗(𝑔′)∗𝛼

in 𝑍𝑘+𝑟(𝑌′).

Proof. The assertion that 𝑓′ is proper follows from Morphisms, Lemma 24.40.5. The as-
sertion that 𝑔′ is flat of relative dimension 𝑟 follows fromMorphisms, Lemmas 24.28.2 and
24.24.7. It suffices to prove the equality of cycles when 𝛼 = [𝑊] for some integral closed
subscheme 𝑊 ⊂ 𝑋 of 𝛿-dimension 𝑘. Note that in this case we have 𝛼 = [𝒪𝑊]𝑘, see Lemma
29.10.3. By Lemmas 29.12.3 and 29.14.4 it therefore suffices to show that 𝑓′

∗(𝑔′)∗𝒪𝑊 is
isomorphic to 𝑔∗𝑓∗𝒪𝑊. This follows from cohomology and base change, see Coherent,
Lemma 25.6.2. �

Lemma 29.15.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite locally free morphism of degree 𝑑 (see Morphisms, Definition
24.44.1). Then 𝑓 is both proper and flat of relative dimension 0, and

𝑓∗𝑓∗𝛼 = 𝑑𝛼

for every 𝛼 ∈ 𝑍𝑘(𝑌).

Proof. A finite locally free morphism is flat and finite by Morphisms, Lemma 24.44.2,
and a finite morphism is proper by Morphisms, Lemma 24.42.10. We omit showing that a
finite morphism has relative dimension 0. Thus the formula makes sense. To prove it, let
𝑍 ⊂ 𝑌 be an integral closed subscheme of 𝛿-dimension 𝑘. It suffices to prove the formula
for 𝛼 = [𝑍]. Since the base change of a finite locally free morphism is finite locally free
(Morphisms, Lemma 24.44.4) we see that 𝑓∗𝑓∗𝒪𝑍 is a finite locally free sheaf of rank 𝑑 on
𝑍. Hence

𝑓∗𝑓∗[𝑍] = 𝑓∗𝑓∗[𝒪𝑍]𝑘 = [𝑓∗𝑓∗𝒪𝑍]𝑘 = 𝑑[𝑍]

where we have used Lemmas 29.14.4 and 29.12.3. �

29.16. Preparation for principal divisors

Recall that if 𝑍 is an irreducible closed subset of a scheme 𝑋, then the codimension of 𝑍
in 𝑋 is equal to the dimension of the local ring 𝒪𝑋,𝜉, where 𝜉 ∈ 𝑍 is the generic point. See
Properties, Lemma 23.11.4.
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Definition 29.16.1. Let 𝑋 be a locally Noetherian scheme. Assume 𝑋 is integral. Let
𝑓 ∈ 𝑅(𝑋)∗. For every integral closed subscheme 𝑍 ⊂ 𝑋 of codimension 1 we define the
order of vanishing of 𝑓 along 𝑍 as the integer

ord𝑍(𝑓) = ord𝒪𝑋,𝜉
(𝑓)

where the right hand side is the notion of Algebra, Definition 7.112.2 and 𝜉 is the generic
point of 𝑍.

Of course it can happen that ord𝑍(𝑓) < 0. In this case we say that 𝑓 has a pole along 𝑍 and
that −ord𝑍(𝑓) > 0 is the order of pole of 𝑓 along 𝑍. Note that for 𝑓, 𝑔 ∈ 𝑅(𝑋)∗ we have

ord𝑍(𝑓𝑔) = ord𝑍(𝑓) + ord𝑍(𝑔).

Lemma 29.16.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 is integral. If 𝑍 ⊂ 𝑋 is an integral closed subscheme of codimension 1, then
dim𝛿(𝑍) = dim𝛿(𝑋) − 1.

Proof. This is more or less the defining property of a dimension function. �

Lemma 29.16.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Assume 𝑋 is integral. Let 𝑓 ∈ 𝑅(𝑋)∗. Then the set

{𝑍 ⊂ 𝑋 ∣ 𝑍 is integral, closed of codimension 1 and ord𝑍(𝑓)≠0}
is locally finite in 𝑋.

Proof. This is true simply because there exists a nonempty open subscheme 𝑈 ⊂ 𝑋 such
that 𝑓 corresponds to a section of Γ(𝑈, 𝒪∗

𝑋), and hence the codimension 1 irreducibles which
can occur in the set of the lemma are all irreducible components of 𝑋 ⧵ 𝑈. Hence Lemma
29.9.1 gives the desired result. �

Lemma 29.16.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝜉 ∈ 𝑌 be a point. Assume
that

(1) 𝑋, 𝑌 are integral,
(2) 𝑋 is locally Noetherian
(3) 𝑓 is proper, dominant and 𝑅(𝑋) ⊂ 𝑅(𝑌) is finite, and
(4) dim(𝒪𝑌,𝜉) = 1.

Then there exists an open neighbourhood 𝑉 ⊂ 𝑌 of 𝜉 such that 𝑓|𝑓−1(𝑉) ∶ 𝑓−1(𝑉) → 𝑉 is
finite.

Proof. By Coherent, Lemma 25.20.2 it suffices to prove that 𝑓−1({𝜉}) is finite. We replace
𝑌 by an affine open, say 𝑌 = 𝑆𝑝𝑒𝑐(𝑅). Note that 𝑅 is Noetherian, as 𝑋 is assumed locally
Noetherian. Since 𝑓 is proper it is quasi-compact. Hence we can find a finite affine open
covering 𝑋 = 𝑈1 ∪ … ∪ 𝑈𝑛 with each 𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝐴𝑖). Note that 𝑅 → 𝐴𝑖 is a finite
type injective homomorphism of domains with 𝑓.𝑓.(𝑅) ⊂ 𝑓.𝑓.(𝐴𝑖) finite. Thus the lemma
follows from Algebra, Lemma 7.104.2. �

29.17. Principal divisors

The following definition is the key to everything that follows.

Definition 29.17.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type
over 𝑆. Assume 𝑋 is integral with dim𝛿(𝑋) = 𝑛. Let 𝑓 ∈ 𝑅(𝑋)∗. The principal divisor
associated to 𝑓 is the (𝑛 − 1)-cycle

div(𝑓) = div𝑋(𝑓) = ∑ ord𝑍(𝑓)[𝑍]
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where the sum is over integral closed subschemes of codimension 1 and ord𝑍(𝑓) is as in
Definition 29.16.1. This makes sense by Lemmas 29.16.2 and 29.16.3.

Lemma 29.17.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Assume 𝑋 is integral with dim𝛿(𝑋) = 𝑛. Let 𝑓, 𝑔 ∈ 𝑅(𝑋)∗. Then

div(𝑓𝑔) = div(𝑓) + div(𝑔)

in 𝑍𝑛−1(𝑋).

Proof. This is clear from the additivity of the ord functions. �

An important role in the discussion of principal divisors is played by the ``universal'' prin-
cipal divisor [0] − [∞] on 𝐏1

𝑆. To make this more precise, let us denote

𝐷0, 𝐷∞ ⊂ 𝐏1
𝑆 = Proj

𝑆
(𝒪𝑆[𝑋0, 𝑋1])

the closed subscheme cut out by the section 𝑋1, resp. 𝑋0 of 𝒪(1). These are effective Cartier
divisors, see Divisors, Definition 26.9.1 and Lemma 26.9.17. The following lemma says
that loosely speaking we have ``div(𝑋1/𝑋0) = [𝐷0] − [𝐷1]'' and that this is the universal
principal divisor.

Lemma 29.17.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Assume 𝑋 is integral and 𝑛 = dim𝛿(𝑋). Let 𝑓 ∈ 𝑅(𝑋)∗. Let 𝑈 ⊂ 𝑋 be a nonempty open
such that 𝑓 corresponds to a section 𝑓 ∈ Γ(𝑈, 𝒪∗

𝑋). Let 𝑌 ⊂ 𝑋 ×𝑆 𝐏1
𝑆 be the closure of the

graph of 𝑓 ∶ 𝑈 → 𝐏1
𝑆. Then

(1) the projection morphism 𝑝 ∶ 𝑌 → 𝑋 is proper,
(2) 𝑝|𝑝−1(𝑈) ∶ 𝑝−1(𝑈) → 𝑈 is an isomorphism,
(3) the pullbacks 𝑞−1𝐷0 and 𝑞−1𝐷∞ via the morphism 𝑞 ∶ 𝑌 → 𝐏1

𝑆 are effective
Cartier divisors on 𝑌,

(4) we have
div𝑌(𝑓) = [𝑞−1𝐷0]𝑛−1 − [𝑞−1𝐷∞]𝑛−1

(5) we have
div𝑋(𝑓) = 𝑝∗div𝑌(𝑓)

(6) if we view 𝑌0 = 𝑞−1𝐷0, and 𝑌∞ = 𝑞−1𝐷∞ as closed subschemes of 𝑋 via the
morphism 𝑝 then we have

div𝑋(𝑓) = [𝑌0]𝑛−1 − [𝑌∞]𝑛−1

Proof. Since 𝑋 is integral, we see that 𝑈 is integral. Hence 𝑌 is integral, and (1, 𝑓)(𝑈) ⊂ 𝑌
is an open dense subscheme. Also, note that the closed subscheme 𝑌 ⊂ 𝑋 ×𝑆 𝐏1

𝑆 does
not depend on the choice of the open 𝑈, since after all it is the closure of the one point
set {𝜂′} = {(1, 𝑓)(𝜂)} where 𝜂 ∈ 𝑋 is the generic point. Having said this let us prove the
assertions of the lemma.

For (1) note that 𝑝 is the composition of the closed immersion 𝑌 → 𝑋 ×𝑆 𝐏1
𝑆 = 𝐏1

𝑋 with the
proper morphism 𝐏1

𝑋 → 𝑋. As a composition of proper morphisms is proper (Morphisms,
Lemma 24.40.4) we conclude.

It is clear that 𝑌 ∩ 𝑈 ×𝑆 𝐏1
𝑆 = (1, 𝑓)(𝑈). Thus (2) follows. It also follows that dim𝛿(𝑌) = 𝑛.

Note that 𝑞(𝜂′) = 𝑓(𝜂) is not contained in 𝐷0 or 𝐷∞ since 𝑓 ∈ 𝑅(𝑋)∗. Hence 𝑞−1𝐷0 and
𝑞−1𝐷∞ are effective Cartier divisors on 𝑌 by Divisors, Lemma 26.9.9. Thus we see (3). It
also follows that dim𝛿(𝑞−1𝐷0) = 𝑛 − 1 and dim𝛿(𝑞−1𝐷∞) = 𝑛 − 1.
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Consider the effective Cartier divisor 𝑞−1𝐷0. At every point 𝜉 ∈ 𝑞−1𝐷0 we have 𝑓 ∈ 𝒪𝑌,𝜉
and the local equation for 𝑞−1𝐷0 is given by 𝑓. In particular, if 𝛿(𝜉) = 𝑛 − 1 so 𝜉 is the
generic point of a integral closed subscheme 𝑍 of 𝛿-dimension 𝑛 − 1, then we see that the
coefficient of [𝑍] in div𝑌(𝑓) is

ord𝑍(𝑓) = length𝒪𝑌,𝜉
(𝒪𝑌,𝜉/𝑓𝒪𝑌,𝜉) = length𝒪𝑌,𝜉

(𝒪𝑞−1𝐷0,𝜉)

which is the coefficient of [𝑍] in [𝑞−1𝐷0]𝑛−1. A similar argument using the rational function
1/𝑓 shows that −[𝑞−1𝐷∞] agrees with the terms with negative coefficients in the expression
for div𝑌(𝑓). Hence (4) follows.

Note that 𝐷0 → 𝑆 is an isomorphism. Hence we see that 𝑋 ×𝑆 𝐷0 → 𝑋 is an isomorphism
as well. Clearly we have 𝑞−1𝐷0 = 𝑌 ∩ 𝑋 ×𝑆 𝐷0 (scheme theoretic intersection) inside
𝑋 ×𝑆 𝐏1

𝑆. Hence it is really the case that 𝑌0 → 𝑋 is a closed immersion. By the same token
we see that

𝑝∗𝒪𝑞−1𝐷0
= 𝒪𝑌0

and hence by Lemma 29.12.3 we have 𝑝∗[𝑞−1𝐷0]𝑛−1 = [𝑌0]𝑛−1. Of course the same is true
for 𝐷∞ and 𝑌∞. Hence to finish the proof of the lemma it suffices to prove the last assertion.

Let 𝑍 ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension 𝑛−1. We want to show that the
coefficient of [𝑍] in div(𝑓) is the same as the coefficient of [𝑍] in [𝑌0]𝑛−1 − [𝑌∞]𝑛−1. We
may apply Lemma 29.16.4 to the morphism 𝑝 ∶ 𝑌 → 𝑋 and the generic point 𝜉 ∈ 𝑍. Hence
wemay replace 𝑋 by an affine open neighbourhood of 𝜉 and assume that 𝑝 ∶ 𝑌 → 𝑋 is finite.
Write 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) with 𝑝 induced by a finite homomorphism 𝑅 → 𝐴 of
Noetherian domains which induces an isomorphism 𝑓.𝑓.(𝑅) ≅ 𝑓.𝑓.(𝐴) of fraction fields.
Now we have 𝑓 ∈ 𝑓.𝑓.(𝑅) and a prime 𝔭 ⊂ 𝑅 with dim(𝑅𝔭) = 1. The coefficient of [𝑍] in
div𝑋(𝑓) is ord𝑅𝔭

(𝑓). The coefficient of [𝑍] in 𝑝∗div𝑌(𝑓) is

∑𝔮 lying over 𝔭
[𝜅(𝔮) ∶ 𝜅(𝔭)]ord𝐴𝔮

(𝑓)

The desired equality therefore follows from Algebra, Lemma 7.112.8. �

This lemma will be superseded by the more general Lemma 29.20.1.

Lemma 29.17.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Assume 𝑋, 𝑌 are integral and 𝑛 = dim𝛿(𝑌). Let 𝑓 ∶ 𝑋 → 𝑌 be a flat morphism of relative
dimension 𝑟. Let 𝑔 ∈ 𝑅(𝑌)∗. Then

𝑓∗(div𝑌(𝑔)) = div𝑋(𝑔)

in 𝑍𝑛+𝑟−1(𝑋).

Proof. Note that since 𝑓 is flat it is dominant so that 𝑓 induces an embedding 𝑅(𝑌) ⊂ 𝑅(𝑋),
and hence we may think of 𝑔 as an element of 𝑅(𝑋)∗. Let 𝑍 ⊂ 𝑋 be an integral closed
subscheme of 𝛿-dimension 𝑛 + 𝑟 − 1. Let 𝜉 ∈ 𝑍 be its generic point. If dim𝛿(𝑓(𝑍)) > 𝑛 − 1,
then we see that the coefficient of [𝑍] in the left and right hand side of the equation is zero.
Hence we may assume that 𝑍′ = 𝑓(𝑍) is an intral closed subscheme of 𝑌 of 𝛿-dimension
𝑛 − 1. Let 𝜉′ = 𝑓(𝜉). It is the generic point of 𝑍′. Set 𝐴 = 𝒪𝑌,𝜉′, 𝐵 = 𝒪𝑋,𝜉. The ring
map 𝐴 → 𝐵 is a flat local homomorphism of Noetherian local domains of dimension 1. We
have 𝑔 ∈ 𝑓.𝑓.(𝐴). What we have to show is that

ord𝐴(𝑔)length𝐵(𝐵/𝔪𝐴𝐵) = ord𝐵(𝑔).

This follows from Algebra, Lemma 7.48.13 (details omitted). �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02RR


29.18. TWO FUN RESULTS ON PRINCIPAL DIVISORS 1573

29.18. Two fun results on principal divisors

The first lemma implies that the pushforward of a principal divisor along a generically finite
morphism is a principal divisor.

Lemma 29.18.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Assume 𝑋, 𝑌 are integral and 𝑛 = dim𝛿(𝑋) = dim𝛿(𝑌). Let 𝑝 ∶ 𝑋 → 𝑌 be a dominant
proper morphism. Let 𝑓 ∈ 𝑅(𝑋)∗. Set

𝑔 = Nm𝑅(𝑋)/𝑅(𝑌)(𝑓).

Then we have 𝑝∗div(𝑓) = div(𝑔).

Proof. Let 𝑍 ⊂ 𝑌 be an integral closed subscheme of 𝛿-dimension 𝑛 − 1. We want to show
that the coefficient of [𝑍] in 𝑝∗div(𝑓) and div(𝑔) are equal. We may apply Lemma 29.16.4
to the morphism 𝑝 ∶ 𝑋 → 𝑋 and the generic point 𝜉 ∈ 𝑍. Hence we may replace 𝑋 by an
affine open neighbourhood of 𝜉 and assume that 𝑝 ∶ 𝑌 → 𝑋 is finite. Write 𝑋 = 𝑆𝑝𝑒𝑐(𝑅)
and 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) with 𝑝 induced by a finite homomorphism 𝑅 → 𝐴 of Noetherian domains
which induces an finite field extension 𝑓.𝑓.(𝑅) ⊂ 𝑓.𝑓.(𝐴) of fraction fields. Now we have
𝑓 ∈ 𝑓.𝑓.(𝐴), 𝑔 = Nm(𝑓) ∈ 𝑓.𝑓.(𝑅), and a prime 𝔭 ⊂ 𝑅 with dim(𝑅𝔭) = 1. The coefficient
of [𝑍] in div𝑌(𝑔) is ord𝑅𝔭

(𝑔). The coefficient of [𝑍] in 𝑝∗div𝑋(𝑓) is

∑𝔮 lying over 𝔭
[𝜅(𝔮) ∶ 𝜅(𝔭)]ord𝐴𝔮

(𝑓)

The desired equality therefore follows from Algebra, Lemma 7.112.8. �

The following lemma says that the degree of a principal divisor on a proper curve is zero.

Lemma 29.18.2. Let 𝐾 be any field. Let 𝑋 be a 1-dimensional integral scheme endowed
with a proper morphism 𝑐 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝐾). Let 𝑓 ∈ 𝐾(𝑋)∗ be an invertible rational
function. Then

∑𝑥∈𝑋 closed
[𝜅(𝑥) ∶ 𝐾]ord𝒪𝑋,𝑥

(𝑓) = 0
where ord is as in Algebra, Definition 7.112.2. In other words, 𝑐∗div(𝑓) = 0.

Proof. Consider the diagram
𝑌 𝑝

//

𝑞
��

𝑋

𝑐
��

𝐏1
𝐾

𝑐′
// 𝑆𝑝𝑒𝑐(𝐾)

that we constructed in Lemma 29.17.3 starting with 𝑋 and the rational function 𝑓 over
𝑆 = 𝑆𝑝𝑒𝑐(𝐾). We will use all the results of this lemmawithout further mention. We have to
show that 𝑐∗div𝑋(𝑓) = 𝑝∗𝑐∗div𝑌(𝑓) = 0. This is the same as proving that 𝑐′

∗𝑞∗div𝑌(𝑓) = 0.
If 𝑞(𝑌) is a closed point of 𝐏1

𝐾 then we see that div𝑋(𝑓) = 0 and the lemma holds. Thus we
may assume that 𝑞 is dominant. Since div𝑌(𝑓) = [𝑞−1𝐷0]0−[𝑞−1𝐷∞]0 we see (by definition
of flat pullback) that div𝑌(𝑓) = 𝑞∗([𝐷0]0 − [𝐷∞]0). Suppose we can show that 𝑞 ∶ 𝑌 → 𝐏1

𝐾
is finite locally free of degree 𝑑 (see Morphisms, Definition 24.44.1). Then byy Lemma
29.15.2 we get 𝑞∗div𝑌(𝑓) = 𝑑([𝐷0]0 − [𝐷∞]0). Since clearly 𝑐′

∗[𝐷0]0 = 𝑐′
∗[𝐷∞]0 we win.

It remains to show that 𝑞 is finite locally free. (It will automatically have some given degree
as 𝐏1

𝐾 is connected.) Since dim(𝐏1
𝐾) = 1 we see that 𝑞 is finite for example by Lemma

29.16.4. All local rings of 𝐏1
𝐾 at closed points are regular local rings of dimension 1 (in

other words discrete valuation rings), since they are localizations of 𝐾[𝑇] (see Algebra,
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Lemma 7.105.1). Hence for 𝑦 ∈ 𝑌 closed the local ring 𝒪𝑌,𝑦 will be flat over 𝒪𝐏1
𝐾,𝑞(𝑦) as

soon as it is torsion free. This is obviously the case as 𝒪𝑌,𝑦 is a domain and 𝑞 is dominant.
Thus 𝑞 is flat. Hence 𝑞 is finite locally free by Morphisms, Lemma 24.44.2. �

29.19. Rational equivalence

In this section we define rational equivalence on 𝑘-cycles. We will allow locally finite
sums of images of principal divisors (under closed immersions). This leads to some pretty
strange phenomena, see Example 29.19.3. However, if we do not allow these then we do not
know how to prove that capping with chern classes of line bundles factors through rational
equivalence.

Definition 29.19.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. Let 𝑘 ∈ 𝐙.

(1) Given any locally finite collection {𝑊𝑗 ⊂ 𝑋} of integral closed subschemes with
dim𝛿(𝑊𝑗) = 𝑘 + 1, and any 𝑓𝑗 ∈ 𝑅(𝑊𝑗)∗ we may consider

∑(𝑖𝑗)∗div(𝑓𝑗) ∈ 𝑍𝑘(𝑋)

where 𝑖𝑗 ∶ 𝑊𝑗 → 𝑋 is the inclusion morphism. This makes sense as the mor-
phism ∐ 𝑖𝑗 ∶ ∐ 𝑊𝑗 → 𝑋 is proper.

(2) We say that 𝛼 ∈ 𝑍𝑘(𝑋) is rationally equivalent to zero if 𝛼 is a cycle of the form
displayed above.

(3) We say 𝛼, 𝛽 ∈ 𝑍𝑘(𝑋) are rationally equivalent and we write 𝛼 ∼𝑟𝑎𝑡 𝛽 if 𝛼 − 𝛽 is
rationally equivalent to zero.

(4) We define
𝐴𝑘(𝑋) = 𝑍𝑘(𝑋)/ ∼𝑟𝑎𝑡

to be the Chow group of 𝑘-cycles on 𝑋. This is sometimes called the Chow group
of 𝑘-cycles module rational equivalence on 𝑋.

There are many other interesting (adequate) equivalence relations. Rational equivalence is
the coarsest one of them all. A very simple but important lemma is the following.

Lemma 29.19.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. Let 𝑈 ⊂ 𝑋 be an open subscheme, and denote 𝑖 ∶ 𝑌 = 𝑋 ⧵ 𝑈 → 𝑋 as a
reduced closed subscheme of 𝑋. Let 𝑘 ∈ 𝐙. Suppose 𝛼, 𝛽 ∈ 𝑍𝑘(𝑋). If 𝛼|𝑈 ∼𝑟𝑎𝑡 𝛽|𝑈 then
there exist a cycle 𝛾 ∈ 𝑍𝑘(𝑌) such that

𝛼 ∼𝑟𝑎𝑡 𝛽 + 𝑖∗𝛾.
In other words, the sequence

𝐴𝑘(𝑌)
𝑖∗ // 𝐴𝑘(𝑋)

𝑗∗ // 𝐴𝑘(𝑈) // 0

is an exact complex of abelian groups.

Proof. Let {𝑊𝑗}𝑗∈𝐽 be a locally finite collection of integral closed subschemes of 𝛿-dimension
𝑘 + 1, and let 𝑓𝑗 ∈ 𝑅(𝑊𝑗)∗ be elements such that (𝛼 − 𝛽)|𝑈 = ∑(𝑖𝑗)∗div(𝑓𝑗) as in the defi-
nition. Set 𝑊′

𝑗 ⊂ 𝑋 equal to the closure of 𝑊𝑗. Suppose that 𝑉 ⊂ 𝑋 is a quasi-compact
open. Then also 𝑉 ∩ 𝑈 is quasi-compact open in 𝑈 as 𝑉 is Noetherian. Hence the set
{𝑗 ∈ 𝐽 ∣ 𝑊𝑗 ∩ 𝑉≠∅} = {𝑗 ∈ 𝐽 ∣ 𝑊′

𝑗 ∩ 𝑉≠∅} is finite since {𝑊𝑗} is locally finite. In other
words we see that {𝑊′

𝑗} is also locally finite. Since 𝑅(𝑊𝑗) = 𝑅(𝑊′
𝑗) we see that

𝛼 − 𝛽 − ∑(𝑖′
𝑗)∗div(𝑓𝑗)
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is a cycle supported on 𝑌 and the lemma follows (see Lemma 29.14.2). �

Example 29.19.3. Here is a ``strange'' example. Suppose that 𝑆 is the spectrum of a field
𝑘 with 𝛿 as in Example 29.7.2. Suppose that 𝑋 = 𝐶1 ∪𝐶2 ∪… is an infinite union of curves
𝐶𝑗 ≅ 𝐏1

𝑘 glued together in the following way: The point ∞ ∈ 𝐶𝑗 is glued transversally
to the point 0 ∈ 𝐶𝑗+1 for 𝑗 = 1, 2, 3, …. Take the point 0 ∈ 𝐶1. This gives a zero cycle
[0] ∈ 𝑍0(𝑋). The ``strangeness'' in this situation is that actually [0] ∼𝑟𝑎𝑡 0! Namely we
can choose the rational function 𝑓𝑗 ∈ 𝑅(𝐶𝑗) to be the function which has a simple zero at 0
and a simple pole at ∞ and no other zeros or poles. Then we see that the sum ∑(𝑖𝑗)∗div(𝑓𝑗)
is exactly the 0-cycle [0]. In fact it turns out that 𝐴0(𝑋) = 0 in this example. If you find
this too bizarre, then you can just make sure your spaces are always quasi-compact (so 𝑋
does not even exist for you).

Remark 29.19.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. Suppose we have infinite collections 𝛼𝑖, 𝛽𝑖 ∈ 𝑍𝑘(𝑋), 𝑖 ∈ 𝐼 of 𝑘-cycles on
𝑋. Suppose that the supports of 𝛼𝑖 and 𝛽𝑖 form locally finite collections of closed subsets
of 𝑋 so that ∑ 𝛼𝑖 and ∑ 𝛽𝑖 are defined as cycles. Moreover, assume that 𝛼𝑖 ∼𝑟𝑎𝑡 𝛽𝑖 for
each 𝑖. Then it is not clear that ∑ 𝛼𝑖 ∼𝑟𝑎𝑡 ∑ 𝛽𝑖. Namely, the problem is that the rational
equivalences may be given by locally finite families {𝑊𝑖,𝑗, 𝑓𝑖,𝑗 ∈ 𝑅(𝑊𝑖,𝑗)∗}𝑗∈𝐽𝑖

but the
union {𝑊𝑖,𝑗}𝑖∈𝐼,𝑗∈𝐽𝑖

may not be locally finite.
In many cases in practice, one has a locally finite family of closed subsets {𝑇𝑖}𝑖∈𝐼 such
that 𝛼𝑖, 𝛽𝑖 are supported on 𝑇𝑖 and such that 𝛼𝑖 = 𝛽𝑖 in 𝐴𝑘(𝑇𝑖), in other words, the families
{𝑊𝑖,𝑗, 𝑓𝑖,𝑗 ∈ 𝑅(𝑊𝑖,𝑗)∗}𝑗∈𝐽𝑖

consist of subschemes 𝑊𝑖,𝑗 ⊂ 𝑇𝑖. In this case it is true that
∑ 𝛼𝑖 ∼𝑟𝑎𝑡 ∑ 𝛽𝑖 on 𝑋, simply because the family {𝑊𝑖,𝑗}𝑖∈𝐼,𝑗∈𝐽𝑖

is automatically locally
finite in this case.

29.20. Properties of rational equivalence

Lemma 29.20.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be schemes locally of finite
type over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat morphism of relative dimension 𝑟. Let 𝛼 ∼𝑟𝑎𝑡 𝛽 be
rationally equivalent 𝑘-cycles on 𝑌. Then 𝑓∗𝛼 ∼𝑟𝑎𝑡 𝑓∗𝛽 as (𝑘 + 𝑟)-cycles on 𝑋.

Proof. What do we have to show? Well, suppose we are given a collection
𝑖𝑗 ∶ 𝑊𝑗 ⟶ 𝑌

of closed immersions, with each 𝑊𝑗 integral of 𝛿-dimension 𝑘 + 1 and rational functions
𝑓𝑗 ∈ 𝑅(𝑊𝑗)∗. Moreover, assume that the collection {𝑖𝑗(𝑊𝑗)}𝑗∈𝐽 is locally finite on 𝑌. Then
we have to show that

𝑓∗(∑ 𝑖𝑗,∗div(𝑓𝑗))
is rationally equivalent to zero on 𝑋.
Consider the fibre products

𝑖′
𝑗 ∶ 𝑊′

𝑗 = 𝑊𝑗 ×𝑌 𝑋 ⟶ 𝑋.

For each 𝑗, consider the collection {𝑊′
𝑗,𝑙}𝑙∈𝐿𝑗

of irreducible components 𝑊′
𝑗,𝑙 ⊂ 𝑊′

𝑗 having
𝛿-dimension 𝑘 + 1. We may write

[𝑊′
𝑗]𝑘+1 = ∑𝑙∈𝐿𝑗

𝑛𝑗,𝑙[𝑊′
𝑗,𝑙]𝑘+1

for some 𝑛𝑗,𝑙 > 0. By Lemma 29.13.1 we see that 𝑊′
𝑗,𝑙 → 𝑊𝑗 is dominant and hence we

can let 𝑓𝑗,𝑙 ∈ 𝑅(𝑊′
𝑗,𝑙)

∗ denote the image of 𝑓𝑗 under the map of fields 𝑅(𝑊𝑗) → 𝑅(𝑊′
𝑗,𝑙).

We claim that
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(1) the collection {𝑊′
𝑗,𝑙}𝑗∈𝐽,𝑙∈𝐿𝑗

is locally finite on 𝑋, and

(2) with obvious notation 𝑓∗(∑ 𝑖𝑗,∗div(𝑓𝑗)) = ∑ 𝑖′
𝑗,𝑙,∗div(𝑓

𝑛𝑗,𝑙
𝑗,𝑙 ).

Clearly this claim implies the lemma.

To show (1), note that {𝑊′
𝑗} is a locally finite collection of closed subschemes of 𝑋 by

Lemma 29.13.2. Hence if 𝑈 ⊂ 𝑋 is quasi-compact, then 𝑈 meets only finitely many 𝑊′
𝑗.

By Lemma 29.9.1 the collection of irreducible components of each 𝑊𝑗 is locally finite as
well. Hence we see only finitely many 𝑊′

𝑗,𝑙 meet 𝑈 as desired.

Let 𝑍 ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension 𝑘 + 𝑟. We have to show
that the coefficient 𝑛 of [𝑍] in 𝑓∗(∑ 𝑖𝑗,∗div(𝑓𝑗)) is equal to the coefficient 𝑚 of [𝑍] in
∑ 𝑖′

𝑗,𝑙,∗div(𝑓
𝑛𝑗,𝑙
𝑗,𝑙 ). Let 𝑍′ be the closure of 𝑓(𝑍) which is an integral closed subscheme

of 𝑌. By Lemma 29.13.1 we have dim𝛿(𝑍′) ≥ 𝑘. If dim𝛿(𝑍′) > 𝑘, then the coefficients 𝑛
and 𝑚 are both zero, since the generic point of 𝑍 will not be contained in any 𝑊′

𝑗 or 𝑊′
𝑗,𝑙.

Hence we may assume that dim𝛿(𝑍′) = 𝑘.

We are going to translate the equality of 𝑛 and 𝑚 into algebra. Namely, let 𝜉′ ∈ 𝑍′ and
𝜉 ∈ 𝑍 be the generic points. Set 𝐴 = 𝒪𝑌,𝜉′ and 𝐵 = 𝒪𝑋,𝜉. Note that 𝐴, 𝐵 are Noetherian,
𝐴 → 𝐵 is flat, local, and that 𝔪𝐴𝐵 is an ideal of definition of the local ring 𝐵. There are
finitely many 𝑗 such that 𝑊𝑗 passes through 𝜉′, and these correspond to prime ideals

𝔭1, … , 𝔭𝑇 ⊂ 𝐴

with the property that dim(𝐴/𝔭𝑡) = 1 for each 𝑡 = 1, … , 𝑇. The rational functions 𝑓𝑗
correspond to elements 𝑓𝑡 ∈ 𝜅(𝔭𝑡)∗. Say 𝔭𝑡 corresponds to 𝑊𝑗. By construction, the closed
subschemes 𝑊′

𝑗,𝑙 which meet 𝜉 correspond 1 − 1 with minimal primes

𝔭𝑡𝐵 ⊂ 𝔮𝑡,1, … , 𝔮𝑡,𝑆𝑡
⊂ 𝐵

over 𝔭𝑡𝐵. The integers 𝑛𝑗,𝑙 correspond to the integers

𝑛𝑡,𝑠 = length𝐵𝔮𝑡,𝑠
((𝐵/𝔭𝑡𝐵)𝐵𝔮𝑡,𝑠

)

The rational functions 𝑓𝑗,𝑙 correspond to the images 𝑓𝑡,𝑠 ∈ 𝜅(𝔮𝑡,𝑠)∗ of the elements 𝑓𝑡 ∈
𝜅(𝔭𝑡)∗. Putting everything together we see that

𝑛 = ∑ ord𝐴/𝔭𝑡
(𝑓𝑡)length𝐵(𝐵/𝔪𝐴𝐵)

and that
𝑚 = ∑ ord𝐵/𝔮𝑡,𝑠

(𝑓𝑡,𝑠)length𝐵𝔮𝑡,𝑠
((𝐵/𝔭𝑡𝐵)𝐵𝔮𝑡,𝑠

)

Note that it suffices to prove the equality for each 𝑡 ∈ {1, … , 𝑇} separately. Writing 𝑓𝑡 = 𝑥/𝑦
for some nonzero 𝑥, 𝑦 ∈ 𝐴/𝔭𝑡 coming from 𝑥, 𝑦 ∈ 𝐴 we see that it suffices to prove

length𝐴/𝔭𝑡
(𝐴/(𝔭𝑡, 𝑥))length𝐵(𝐵/𝔪𝐴𝐵) = length𝐵(𝐵/(𝑥, 𝔭𝑡)𝐵)

(equality uses Algebra, Lemma 7.48.13) equals

∑𝑠=1,…,𝑆𝑡
ord𝐵/𝔮𝑡,𝑠

(𝐵/(𝑥, 𝔮𝑡,𝑠))length𝐵𝔮𝑡,𝑠
((𝐵/𝔭𝑡𝐵)𝐵𝔮𝑡,𝑠

)

and similarly for 𝑦. Note that as 𝑥∉𝔭𝑡 we see that 𝑥 is a nonzero divisor on 𝐴/𝔭𝑡. As 𝐴 → 𝐵
is flat it follows that 𝑥 is a nonzero divisor on the module 𝑀 = 𝐵/𝔭𝑡𝐵. Hence the equality
above follows from Lemma 29.5.6. �
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Lemma 29.20.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be schemes locally of finite
type over 𝑆. Let 𝑝 ∶ 𝑋 → 𝑌 be a proper morphism. Suppose 𝛼, 𝛽 ∈ 𝑍𝑘(𝑋) are rationally
equivalent. Then 𝑝∗𝛼 is rationally equivalent to 𝑝∗𝛽.

Proof. What do we have to show? Well, suppose we are given a collection
𝑖𝑗 ∶ 𝑊𝑗 ⟶ 𝑋

of closed immersions, with each 𝑊𝑗 integral of 𝛿-dimension 𝑘 + 1 and rational functions
𝑓𝑗 ∈ 𝑅(𝑊𝑗)∗. Moreover, assume that the collection {𝑖𝑗(𝑊𝑗)}𝑗∈𝐽 is locally finite on 𝑋. Then
we have to show that

𝑝∗ (∑ 𝑖𝑗,∗div(𝑓𝑗))
is rationally equivalent to zero on 𝑋.
Note that the sum is equal to

∑ 𝑝∗𝑖𝑗,∗div(𝑓𝑗).
Let 𝑊′

𝑗 ⊂ 𝑌 be the integral closed subscheme which is the image of 𝑝 ∘ 𝑖𝑗. The collection
{𝑊′

𝑗} is locally finite in 𝑌 by Lemma 29.11.2. Hence it suffices to show, for a given 𝑗, that
either 𝑝∗𝑖𝑗,∗div(𝑓𝑗) = 0 or that it is equal to 𝑖′

𝑗,∗div(𝑔𝑗) for some 𝑔𝑗 ∈ 𝑅(𝑊′
𝑗)

∗.

The arguments above therefore reduce us to the case of a since integral closed subscheme
𝑊 ⊂ 𝑋 of 𝛿-dimension 𝑘 + 1. Let 𝑓 ∈ 𝑅(𝑊)∗. Let 𝑊′ = 𝑝(𝑊) as above. We get a
commutative diagram of morphisms

𝑊
𝑖
//

𝑝′

��

𝑋

𝑝
��

𝑊′ 𝑖′ // 𝑌
Note that 𝑝∗𝑖∗div(𝑓) = 𝑖′

∗(𝑝′)∗div(𝑓) by Lemma 29.12.2. As explained above we have to
show that (𝑝′)∗div(𝑓) is the divisor of a rational function on 𝑊′ or zero. There are three
cases to distinguish.
The case dim𝛿(𝑊′) < 𝑘. In this case automatically (𝑝′)∗div(𝑓) = 0 and there is nothing to
prove.
The case dim𝛿(𝑊′) = 𝑘. Let us show that (𝑝′)∗div(𝑓) = 0 in this case. Let 𝜂 ∈ 𝑊′ be the
generic point. Note that 𝑐 ∶ 𝑊𝜂 → 𝑆𝑝𝑒𝑐(𝐾) is a proper integral curve over 𝐾 = 𝜅(𝜂) whose
function field 𝐾(𝑊𝜂) is identified with 𝑅(𝑊). Here is a diagram

𝑊𝜂
//

𝑐
��

𝑊

𝑝
��

𝑆𝑝𝑒𝑐(𝐾) // 𝑊′

Let us denote 𝑓𝜂 ∈ 𝐾(𝑊𝜂)∗ the rational function corresponding to 𝑓 ∈ 𝑅(𝑊)∗. Moreover,
the closed points 𝜉 of 𝑊𝜂 correspond 1 − 1 to the closed integral subschemes 𝑍 = 𝑍𝜉 ⊂ 𝑊
of 𝛿-dimension 𝑘 with 𝑓(𝑍) = 𝑊′. Note that the multiplicity of 𝑍𝜉 in div(𝑓) is equal to
ord𝒪𝑊𝜂,𝜉

(𝑓𝜂) simply because the local rings 𝒪𝑊𝜂,𝜉 and 𝒪𝑊,𝜉 are identified (as subrings of
their fraction fields). Hence we see that the multiplicity of [𝑊′] in (𝑝′)∗div(𝑓) is equal to
the multiplicity of [𝑆𝑝𝑒𝑐(𝐾)] in 𝑐∗div(𝑓𝜂). By Lemma 29.18.2 this is zero.

The case dim𝛿(𝑊′) = 𝑘 + 1. In this case Lemma 29.18.1 applies, and we see that indeed
𝑝′

∗div(𝑓) = div(𝑔) for some 𝑔 ∈ 𝑅(𝑊′)∗ as desired. �
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29.21. Different characterizations of rational equivalence

Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite type over 𝑆. Given
any closed subscheme 𝑍 ⊂ 𝑋 ×𝑆 𝐏1

𝑆 = 𝑋 × 𝐏1 we let 𝑍0, resp. 𝑍∞ be the scheme theoretic
closed subscheme 𝑍0 = pr−1

2 (𝐷0), resp. 𝑍∞ = pr−1
2 (𝐷∞). Here 𝐷0, 𝐷∞ are as defined just

above Lemma 29.17.3.

Lemma 29.21.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. Let 𝑊 ⊂ 𝑋 ×𝑆 𝐏1

𝑆 be an integral closed subscheme of 𝛿-dimension 𝑘 + 1.
Assume 𝑊≠𝑊0, and 𝑊≠𝑊∞. Then

(1) 𝑊0, 𝑊∞ are effective Cartier divisors of 𝑊,
(2) 𝑊0, 𝑊∞ can be viewed as closed subschemes of 𝑋 and

[𝑊0]𝑘 ∼𝑟𝑎𝑡 [𝑊∞]𝑘,

(3) for any locally finite family of integral closed subschemes 𝑊𝑖 ⊂ 𝑋 ×𝑆 𝐏1
𝑆 of

𝛿-dimension 𝑘+1with𝑊𝑖≠(𝑊𝑖)0 and𝑊𝑖≠(𝑊𝑖)∞ we have∑([(𝑊𝑖)0]𝑘−[(𝑊𝑖)∞]𝑘) ∼𝑟𝑎𝑡
0 on 𝑋, and

(4) for any 𝛼 ∈ 𝑍𝑘(𝑋) with 𝛼 ∼𝑟𝑎𝑡 0 there exists a locally finite family of integral
closed subschemes𝑊𝑖 ⊂ 𝑋×𝑆𝐏1

𝑆 as above such that 𝛼 = ∑([(𝑊𝑖)0]𝑘−[(𝑊𝑖)∞]𝑘).

Proof. Part (1) follows from Divisors, Lemma 26.9.9 since the generic point of 𝑊 is not
mapped into 𝐷0 or 𝐷∞ under the projection 𝑋 ×𝑆 𝐏1

𝑆 → 𝐏1
𝑆 by assumtion.

Since 𝑋×𝑆 𝐷0 → 𝑋 is an isomorphism we see that 𝑊0 is isomorphic to a closed subscheme
of 𝑋. Similarly for 𝑊∞. Consider the morphism 𝑝 ∶ 𝑊 → 𝑋. It is proper and on 𝑊 we
have [𝑊0]𝑘 ∼𝑟𝑎𝑡 [𝑊∞]𝑘. Hence part (2) follows from Lemma 29.20.2 as clearly 𝑝∗[𝑊0]𝑘 =
[𝑊0]𝑘 and similarly for 𝑊∞.

The only content of statement (3) is, given parts (1) and (2), that the collection {(𝑊𝑖)0, (𝑊𝑖)∞}
is a locally finite collection of closed subschemes of 𝑋. This is clear.

Suppose that 𝛼 ∼𝑟𝑎𝑡 0. By definition this means there exist integral closed subschemes
𝑉𝑖 ⊂ 𝑋 of 𝛿-dimension 𝑘 + 1 and rational functions 𝑓𝑖 ∈ 𝑅(𝑉𝑖)∗ such that the family
{𝑉𝑖}𝑖∈𝐼 is locally finite in 𝑋 and such that 𝛼 = ∑(𝑉𝑖 → 𝑋)∗div(𝑓𝑖). Let

𝑊𝑖 ⊂ 𝑉𝑖 ×𝑆 𝐏1
𝑆 ⊂ 𝑋 ×𝑆 𝐏1

𝑆

be the closure of the graph of the rational map 𝑓𝑖 as in Lemma 29.17.3. Then we have that
(𝑉𝑖 → 𝑋)∗div(𝑓𝑖) is equal to [(𝑊𝑖)0]𝑘 − [(𝑊𝑖)∞]𝑘 by that same lemma. Hence the result is
clear. �

Lemma 29.21.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let𝑋 be a scheme locally of finite type
over 𝑆. Let 𝑍 be a closed subscheme of 𝑋 × 𝐏1. Assume dim𝛿(𝑍) ≤ 𝑘 + 1, dim𝛿(𝑍0) ≤ 𝑘,
dim𝛿(𝑍∞) ≤ 𝑘 and assume any embedded point 𝜉 (Divisors, Definition 26.4.1) of 𝑍 has
𝛿(𝜉) < 𝑘. Then

[𝑍0]𝑘 ∼𝑟𝑎𝑡 [𝑍∞]𝑘

as 𝑘-cycles on 𝑋.

Proof. Let {𝑊𝑖}𝑖∈𝐼 be the collection of irreducible components of𝑍which have 𝛿-dimension
𝑘 + 1. Write

[𝑍]𝑘+1 = ∑ 𝑛𝑖[𝑊𝑖]
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with 𝑛𝑖 > 0 as per definition. Note that {𝑊𝑖} is a locally finite collection of closed subsets
of 𝑋 ×𝑆 𝐏1

𝑆 by Lemma 29.9.1. We claim that

[𝑍0]𝑘 = ∑ 𝑛𝑖[(𝑊𝑖)0]𝑘

and similarly for [𝑍∞]𝑘. If we prove this then the lemma follows from Lemma 29.21.1.

Let 𝑍′ ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension 𝑘. To prove the equality above
it suffices to show that the coefficient 𝑛 of [𝑍′] in [𝑍0]𝑘 is the same as the coefficient 𝑚
of [𝑍′] in ∑ 𝑛𝑖[(𝑊𝑖)0]𝑘. Let 𝜉′ ∈ 𝑍′ be the generic point. Set 𝜉 = (𝜉′, 0) ∈ 𝑋 ×𝑆 𝐏1

𝑆.
Consider the local ring 𝐴 = 𝒪𝑋×𝑆𝐏1

𝑆,𝜉. Let 𝐼 ⊂ 𝐴 be the ideal cutting out 𝑍, in other words
so that 𝐴/𝐼 = 𝒪𝑍,𝜉. Let 𝑡 ∈ 𝐴 be the element cutting out 𝑋 ×𝑆 𝐷0 (i.e., the coordinate of 𝐏1

at zero pulled back). By our choice of 𝜉′ ∈ 𝑍′ we have 𝛿(𝜉) = 𝑘 and hence dim(𝐴/𝐼) = 1.
Since 𝜉 is not an embedded point by definition we see that 𝐴/𝐼 is Cohen-Macaulay. Since
dim𝛿(𝑍0) = 𝑘 we see that dim(𝐴/(𝑡, 𝐼)) = 0 which implies that 𝑡 is a nonzero divisor on 𝐴/𝐼.
Finally, the irreducible closed subschemes 𝑊𝑖 passing through 𝜉 correspond to the minimal
primes 𝐼 ⊂ 𝔮𝑖 over 𝐼. The multiplicities 𝑛𝑖 correspond to the lengths length𝐴𝔮𝑖

(𝐴/𝐼)𝔮𝑖
.

Hence we see that
𝑛 = length𝐴(𝐴/(𝑡, 𝐼))

and
𝑚 = ∑ length𝐴(𝐴/(𝑡, 𝔮𝑖))length𝐴𝔮𝑖

(𝐴/𝐼)𝔮𝑖

Thus the result follows from Lemma 29.5.6. �

Lemma 29.21.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. Let ℱ be a coherent sheaf on 𝑋 × 𝐏1. Let 𝑖0, 𝑖∞ ∶ 𝑋 → 𝑋 × 𝐏1 be the closed
immersion such that 𝑖𝑡(𝑥) = (𝑥, 𝑡). Denote ℱ0 = 𝑖∗

0ℱ and ℱ∞ = 𝑖∗
∞ℱ. Assume

(1) dim𝛿(Supp(ℱ)) ≤ 𝑘 + 1,
(2) dim𝛿(Supp(ℱ0)) ≤ 𝑘, dim𝛿(Supp(ℱ∞)) ≤ 𝑘, and
(3) any nonmaximal associated point (insert future reference here) 𝜉 ∈ Supp(ℱ) of

ℱ has 𝛿(𝜉) < 𝑘.
Then

[ℱ0]𝑘 ∼𝑟𝑎𝑡 [ℱ∞]𝑘
as 𝑘-cycles on 𝑋.

Proof. Let {𝑊𝑖}𝑖∈𝐼 be the collection of irreducible components of Supp(ℱ) which have
𝛿-dimension 𝑘 + 1. Write

[ℱ]𝑘+1 = ∑ 𝑛𝑖[𝑊𝑖]
with 𝑛𝑖 > 0 as per definition. Note that {𝑊𝑖} is a locally finite collection of closed subsets
of 𝑋 ×𝑆 𝐏1

𝑆 by Lemma 29.10.1. We claim that

[ℱ0]𝑘 = ∑ 𝑛𝑖[(𝑊𝑖)0]𝑘

and similarly for [ℱ∞]𝑘. If we prove this then the lemma follows from Lemma 29.21.1.

Let 𝑍′ ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension 𝑘. To prove the equality above
it suffices to show that the coefficient 𝑛 of [𝑍′] in [ℱ0]𝑘 is the same as the coefficient 𝑚
of [𝑍′] in ∑ 𝑛𝑖[(𝑊𝑖)0]𝑘. Let 𝜉′ ∈ 𝑍′ be the generic point. Set 𝜉 = (𝜉′, 0) ∈ 𝑋 ×𝑆 𝐏1

𝑆.
Consider the local ring 𝐴 = 𝒪𝑋×𝑆𝐏1

𝑆,𝜉. Let 𝑀 = ℱ𝜉 as an 𝐴-module. Let 𝑡 ∈ 𝐴 be the
element cutting out 𝑋 ×𝑆 𝐷0 (i.e., the coordinate of 𝐏1 at zero pulled back). By our choice
of 𝜉′ ∈ 𝑍′ we have 𝛿(𝜉) = 𝑘 and hence dim(𝑀) = 1. Since 𝜉 is not an associated point
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of ℱ by definition we see that 𝑀 is Cohen-Macaulay module. Since dim𝛿(Supp(ℱ0)) = 𝑘
we see that dim(𝑀/𝑡𝑀) = 0 which implies that 𝑡 is a nonzero divisor on 𝑀. Finally, the
irreducible closed subschemes 𝑊𝑖 passing through 𝜉 correspond to the minimal primes 𝔮𝑖
of Ass(𝑀). The multiplicities 𝑛𝑖 correspond to the lengths length𝐴𝔮𝑖

𝑀𝔮𝑖
. Hence we see

that
𝑛 = length𝐴(𝑀/𝑡𝑀)

and
𝑚 = ∑ length𝐴(𝐴/(𝑡, 𝔮𝑖)𝐴)length𝐴𝔮𝑖

𝑀𝔮𝑖

Thus the result follows from Lemma 29.5.6. �

29.22. Rational equivalence and K-groups

In this section we compare the cycle groups 𝑍𝑘(𝑋) and the Chow groups 𝐴𝑘(𝑋) with certain
𝐾0-groups of abelian categories of coherent sheaves on 𝑋. We avoid having to talk about
𝐾1(𝒜) for an abelian category 𝒜 by dint of Homology, Lemma 10.8.3. In particular, the
motivation for the precise form of Lemma 29.22.4 is that lemma.

Let us introduce the following notation. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be
a scheme locally of finite type over 𝑆. We denote Coh(𝑋) = Coh(𝒪𝑋) the category of
coherent sheaves on 𝑋. It is an abelian category, see Coherent, Lemma 25.11.2. For any
𝑘 ∈ 𝐙 we let Coh≤𝑘(𝑋) be the full subcategory of Coh(𝑋) consisting of those coherent
sheaves ℱ having dim𝛿(Supp(ℱ)) ≤ 𝑘.

Lemma 29.22.1. Let us introduce the following notation. Let (𝑆, 𝛿) be as in Situation
29.7.1. Let 𝑋 be a scheme locally of finite type over 𝑆. The categories Coh≤𝑘(𝑋) are Serre
subcategories of the abelian category Coh(𝑋).

Proof. Omitted. The definition of a Serre subcateory is Homology, Definition 10.7.1. �

Lemma 29.22.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. There are maps

𝑍𝑘(𝑋) ⟶ 𝐾0(Coh≤𝑘(𝑋)/Coh≤𝑘−1(𝑋)) ⟶ 𝑍𝑘(𝑋)

whose composition is the identity. The first is the map

∑ 𝑛𝑍[𝑍] ↦ [⨁𝑛𝑍>0
𝒪⊕𝑛𝑍

𝑍 ] − [⨁𝑛𝑍<0
𝒪⊕−𝑛𝑍

𝑍 ]

and the second comes from the map ℱ ↦ [ℱ]𝑘. If 𝑋 is quasi-compact, then both maps are
isomorphisms.

Proof. Note that the direct sum ⨁𝑛𝑍>0 𝒪⊕𝑛𝑍
𝑍 is indeed a coherent sheaf on 𝑋 since the

family {𝑍 ∣ 𝑛𝑍 > 0} is locally finite on 𝑋. The map ℱ → [ℱ]𝑘 is additive on Coh≤𝑘(𝑋),
see Lemma 29.10.4. And [ℱ]𝑘 = 0 if ℱ ∈ Coh≤𝑘−1(𝑋). This implies we have the left map
as shown in the lemma. It is clear that their composition is the identity.

In case 𝑋 is quasi-compact we will show that the right arrow is injective. Suppose that
𝑞 ∈ 𝐾0(Coh≤𝑘(𝑋)/Coh≤𝑘+1(𝑋)) maps to zero in 𝑍𝑘(𝑋). By Homology, Lemma 10.8.3
we can find a ̃𝑞 ∈ 𝐾0(Coh≤𝑘(𝑋)) mapping to 𝑞. Write ̃𝑞 = [ℱ] − [𝒢] for some ℱ, 𝒢 ∈
𝐾0(Coh≤𝑘(𝑋)). Since 𝑋 is quasi-compact we may apply Coherent, Lemma 25.14.3. This
shows that there exist integral closed subschemes 𝑍𝑗, 𝑇𝑖 ⊂ 𝑋 and (nonzero) ideal sheaves
ℐ𝑗 ⊂ 𝒪𝑍𝑗

, ℐ𝑖 ⊂ 𝒪𝑇𝑖
such that ℱ, resp. 𝒢 have filtrations whose succesive quotients are the
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sheaves ℐ𝑗, resp. ℐ𝑖. In particular we see that dim𝛿(𝑍𝑗), dim𝛿(𝑇𝑖) ≤ 𝑘. In other words we
have

[ℱ] = ∑𝑗
[ℐ𝑗], [𝒢] = ∑𝑖

[ℐ𝑖],

in 𝐾0(Coh≤𝑘(𝑋)). Our assumption is that ∑𝑗[ℐ𝑗]𝑘 − ∑𝑖[ℐ𝑖]𝑘 = 0. It is clear that we
may throw out the indices 𝑗, resp. 𝑖 such that dim𝛿(𝑍𝑗) < 𝑘, resp. dim𝛿(𝑇𝑖) < 𝑘, since the
corresponding sheaves are in Coh𝑘−1(𝑋) and also do not contribute to the cycle. Moreover,
the exact sequences 0 → ℐ𝑗 → 𝒪𝑍𝑗

→ 𝒪𝑍𝑗
/ℐ𝑗 → 0 and 0 → ℐ𝑖 → 𝒪𝑇𝑖

→ 𝒪𝑍𝑖
/ℐ𝑖 → 0

show similarly that we may replace ℐ𝑗, resp. ℐ𝑖 by 𝒪𝑍𝑗
, resp. 𝒪𝑇𝑖

. OK, and finally, at this
point it is clear that our assumption

∑𝑗
[𝒪𝑍𝑗

]𝑘 − ∑𝑖
[𝒪𝑇𝑖

]𝑘 = 0

implies that in 𝐾0(Coh𝑘(𝑋)) we have also ∑𝑗[𝒪𝑍𝑗
] − ∑𝑖[𝒪𝑇𝑖

] = 0 as desired. �

Remark 29.22.3. It seems likely that the arrows of Lemma 29.22.2 are not isomorphisms if
𝑋 is not quasi-compact. For example, suppose 𝑋 is an infinite disjoint union 𝑋 = ∐𝑛∈𝐍 𝐏1

𝑘
over a field 𝑘. Let ℱ, resp. 𝒢 be the coherent sheaf on 𝑋 whose restriction to the 𝑛th
summand is equal to the skyscraper sheaf at 0 associated to 𝒪𝐏1

𝑘,0/𝔪𝑛
0, resp. 𝜅(0)⊕𝑛. The

cycle associated to ℱ is equal to the cycle associated to 𝒢, namely both are equal to ∑ 𝑛[0𝑛]
where 0𝑛 ∈ 𝑋 denotes 0 on the 𝑛th component of 𝑋. But there seems to be no way to
show that [ℱ] = [𝒢] in 𝐾0(Coh(𝑋)) since any proof we can envision uses infinitely many
relations.

Lemma 29.22.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. Let ℱ be a coherent sheaf on 𝑋. Let

… // ℱ
𝜑 // ℱ

𝜓 // ℱ
𝜑 // ℱ //…

be a complex as in Homology, Equation (10.8.2.1). Assume that
(1) dim𝛿(Supp(ℱ)) ≤ 𝑘 + 1.
(2) dim𝛿(Supp(𝐻𝑖(ℱ, 𝜑, 𝜓))) ≤ 𝑘 for 𝑖 = 0, 1.

Then we have
[𝐻0(ℱ, 𝜑, 𝜓)]𝑘 ∼𝑟𝑎𝑡 [𝐻1(ℱ, 𝜑, 𝜓)]𝑘

as 𝑘-cycles on 𝑋.

Proof. Let {𝑊𝑗}𝑗∈𝐽 be the collection of irreducible components of Supp(ℱ) which have
𝛿-dimension 𝑘 + 1. Note that {𝑊𝑗} is a locally finite collection of closed subsets of 𝑋 by
Lemma 29.10.1. For every 𝑗, let 𝜉𝑗 ∈ 𝑊𝑗 be the generic point. Set

𝑓𝑗 = det𝜅(𝜉𝑗)(ℱ𝜉𝑗
, 𝜑𝜉𝑗

, 𝜓𝜉𝑗
) ∈ 𝑅(𝑊𝑗)∗.

See Definition 29.3.4 for notation. We claim that

−[𝐻0(ℱ, 𝜑, 𝜓)]𝑘 + [𝐻1(ℱ, 𝜑, 𝜓)]𝑘 = ∑(𝑊𝑗 → 𝑋)∗div(𝑓𝑗)

If we prove this then the lemma follows.

Let 𝑍 ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension 𝑘. To prove the equality above
it suffices to show that the coefficient 𝑛 of [𝑍] in [𝐻0(ℱ, 𝜑, 𝜓)]𝑘 − [𝐻1(ℱ, 𝜑, 𝜓)]𝑘 is the
same as the coefficient 𝑚 of [𝑍] in ∑(𝑊𝑗 → 𝑋)∗div(𝑓𝑗). Let 𝜉 ∈ 𝑍 be the generic point.
Consider the local ring 𝐴 = 𝒪𝑋,𝜉. Let 𝑀 = ℱ𝜉 as an 𝐴-module. Denote 𝜑, 𝜓 ∶ 𝑀 → 𝑀
the action of 𝜑, 𝜓 on the stalk. By our choice of 𝜉 ∈ 𝑍 we have 𝛿(𝜉) = 𝑘 and hence
dim(𝑀) = 1. Finally, the integral closed subschemes 𝑊𝑗 passing through 𝜉 correspond to
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the minimal primes 𝔮𝑖 of Supp(𝑀). In each case the element 𝑓𝑗 ∈ 𝑅(𝑊𝑗)∗ corresponds to
the element det𝜅(𝔮𝑖)(𝑀𝔮𝑖

, 𝜑, 𝜓) in 𝜅(𝔮𝑖)∗. Hence we see that

𝑛 = −𝑒𝐴(𝑀, 𝜑, 𝜓)

and
𝑚 = ∑ ord𝐴/𝔮𝑖

(det𝜅(𝔮𝑖)(𝑀𝔮𝑖
, 𝜑, 𝜓))

Thus the result follows from Proposition 29.5.3. �

Lemma 29.22.5. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. Denote 𝐵𝑘(𝑋) the image of the map

𝐾0(Coh≤𝑘(𝑋)/Coh≤𝑘−1(𝑋)) ⟶ 𝐾0(Coh≤𝑘+1(𝑋)/Coh≤𝑘−1(𝑋)).

There is a commutative diagram

𝐾0 (
Coh≤𝑘(𝑋)
Coh≤𝑘−1(𝑋) ) //

��

𝐵𝑘(𝑋)

��

� � // 𝐾0 (
Coh≤𝑘+1(𝑋)
Coh≤𝑘−1(𝑋) )

𝑍𝑘(𝑋) // 𝐴𝑘(𝑋)

where the left vertical arrow is the one from Lemma 29.22.2. If 𝑋 is quasi-compact then
both vertical arrows are isomorphisms.

Proof. Suppose we have an element [𝐴] − [𝐵] of 𝐾0(Coh≤𝑘(𝑋)/Coh≤𝑘−1(𝑋)) which maps
to zero in 𝐵𝑘(𝑋), i.e., in 𝐾0(Coh≤𝑘+1(𝑋)/Coh≤𝑘−1(𝑋)). Suppose [𝐴] = [𝒜] and [𝐵] = [ℬ]
for some coherent sheaves 𝒜, ℬ on 𝑋 supported in 𝛿-dimension ≤ 𝑘. The assumption that
[𝐴] − [𝐵] maps to zero in the group 𝐾0(Coh≤𝑘+1(𝑋)/Coh≤𝑘−1(𝑋)) means that there exists
coherent sheaves 𝒜′, ℬ′ on 𝑋 supported in 𝛿-dimension ≤ 𝑘−1 such that [𝒜⊕𝒜′]−[ℬ⊕
ℬ′] is zero in 𝐾0(Coh𝑘+1(𝑋)) (use part (1) of Homology, Lemma 10.8.3). By part (2) of
Homology, Lemma 10.8.3 this means there exists a (2, 1)-periodic complex (ℱ, 𝜑, 𝜓) in the
category Coh≤𝑘+1(𝑋) such that 𝒜 ⊕ 𝒜′ = 𝐻0(ℱ, 𝜑, 𝜓) and ℬ ⊕ ℬ′ = 𝐻1(ℱ, 𝜑, 𝜓). By
Lemma 29.22.4 this implies that

[𝒜 ⊕ 𝒜′]𝑘 ∼𝑟𝑎𝑡 [ℬ ⊕ ℬ′]𝑘

This proves that [𝐴] − [𝐵] maps to zero via the composition

𝐾0(Coh≤𝑘(𝑋)/Coh≤𝑘−1(𝑋)) ⟶ 𝑍𝑘(𝑋) ⟶ 𝐴𝑘(𝑋).

In other words this proves the commutative diagram exists.

Next, assume that 𝑋 is quasi-compact. By Lemma 29.22.2 the left vertical arrow is bi-
jective. Hence it suffices to show any 𝛼 ∈ 𝑍𝑘(𝑋) which is rationally equivalent to zero
maps to zero in 𝐵𝑘(𝑋) via the inverse of the left vertical arrow composed with the horizon-
tal arrow. By Lemma 29.21.1 we see that 𝛼 = ∑([(𝑊𝑖)0]𝑘 − [(𝑊𝑖)∞]𝑘) for some closed
integral subschemes 𝑊𝑖 ⊂ 𝑋 ×𝑆 𝐏1

𝑆 of 𝛿-dimension 𝑘 + 1. Moreover the family {𝑊𝑖} is
finite because 𝑋 is quasi-compact. Note that the ideal sheaves ℐ𝑖, 𝒥𝑖 ⊂ 𝒪𝑊𝑖

of the effective
Cartier divisors (𝑊𝑖)0, (𝑊𝑖)∞ are isomorphic (as 𝒪𝑊𝑖

-modules). This is true because the
ideal sheaves of 𝐷0 and 𝐷∞ on 𝐏1 are isomorphic and ℐ𝑖, 𝒥𝑖 are the pullbacks of these.
(Some details omitted.) Hence we have short exact sequences

0 → ℐ𝑖 → 𝒪𝑊𝑖
→ 𝒪(𝑊𝑖)0

→ 0, 0 → 𝒥𝑖 → 𝒪𝑊𝑖
→ 𝒪(𝑊𝑖)∞

→ 0
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of coherent 𝒪𝑊𝑖
-modules. Also, since [(𝑊𝑖)0]𝑘 = [𝑝∗𝒪(𝑊𝑖)0

]𝑘 in 𝑍𝑘(𝑋) we see that the in-
verse of the left vertical arrowmaps [(𝑊𝑖)0]𝑘 to the element [𝑝∗𝒪(𝑊𝑖)0

] in𝐾0(Coh≤𝑘(𝑋)/Coh≤𝑘−1(𝑋)).
Thus we have

𝛼 = ∑ ([(𝑊𝑖)0]𝑘 − [(𝑊𝑖)∞]𝑘)

↦ ∑ ([𝑝∗𝒪(𝑊𝑖)0
] − [𝑝∗𝒪(𝑊𝑖)∞

])

= ∑ ([𝑝∗𝒪𝑊𝑖
] − [𝑝∗ℐ𝑖] − [𝑝∗𝒪𝑊𝑖

] + [𝑝∗𝒥𝑖])

in 𝐾0(Coh≤𝑘+1(𝑋)/Coh≤𝑘−1(𝑋)). By what was said above this is zero, and we win. �

Remark 29.22.6. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. Assume 𝑋 is quasi-compact. The result of Lemma 29.22.5 in particular gives
a map

𝐴𝑘(𝑋) ⟶ 𝐾0(Coh(𝑋)/Coh≤𝑘−1(𝑋)).

We have not been able to find a statement or conjecture in the literature as to whether this
map is should be injective or not. If 𝑋 is connected nonsingular, then, using the isomor-
phism 𝐾0(𝑋) = 𝐾0(𝑋) (see insert future reference here) and chern classes (see below), one
can show that the map is an isomorphism up to (𝑝 − 1)!-torsion where 𝑝 = dim𝛿(𝑋) − 𝑘.

29.23. Preparation for the divisor associated to an invertible sheaf

For the following remarks, see Divisors, Section 26.15. Let 𝑋 be a scheme. Let ℒ be an
invertible 𝒪𝑋-module. Let 𝜉 ∈ 𝑋 be a point. If 𝑠𝜉, 𝑠′

𝜉 ∈ ℒ𝜉 generate ℒ𝜉 as 𝒪𝑋,𝜉-module,
then there exists a unit 𝑢 ∈ 𝒪∗

𝑋,𝜉 such that 𝑠𝜉 = 𝑢𝑠′
𝜉. The stalk of the sheaf of meromorphic

sections 𝒦𝑋(ℒ) of ℒ at 𝑥 is equal to 𝒦𝑋,𝑥 ⊗𝒪𝑋,𝑥
ℒ𝑥. Thus the image of any meromorphic

section 𝑠 of ℒ in the stalk at 𝑥 can be written as 𝑠 = 𝑓𝑠𝜉 with 𝑓 ∈ 𝒦𝑋,𝑥. Below we
will abbreviate this by saying 𝑓 = 𝑠/𝑠𝜉. Also, if 𝑋 is integral we have 𝒦𝑋,𝑥 = 𝑅(𝑋) is
equal to the function field of 𝑋, so 𝑠/𝑠𝜉 ∈ 𝑅(𝑋). If 𝑠 is a regular meromorphic section
(see Divisors, Definition 26.15.10), then actually 𝑓 ∈ 𝑅(𝑋)∗. (On an integral scheme a
regular meromorphic section is the same thing as a nonzero meromorphic section.) Hence
the following definition makes sense.

Definition 29.23.1. Let 𝑋 be a locally Noetherian scheme. Assume 𝑋 is integral. Let ℒ
be an invertible 𝒪𝑋-module. Let 𝑠 ∈ Γ(𝑋, 𝒦𝑋(ℒ)) be a regular meromorphic section of
ℒ. For every integral closed subscheme 𝑍 ⊂ 𝑋 of codimension 1 we define the order of
vanishing of 𝑠 along 𝑍 as the integer

ord𝑍,ℒ(𝑠) = ord𝒪𝑋,𝜉
(𝑠/𝑠𝜉)

where the right hand side is the notion of Algebra, Definition 7.112.2, 𝜉 ∈ 𝑍 is the generic
point, and 𝑠𝜉 ∈ ℒ𝜉 is a generator.

Lemma 29.23.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 is integral. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠 ∈ 𝒦𝑋(ℒ) be a regular
(i.e., nonzero) meromorphic section of ℒ. Then the set

{𝑍 ⊂ 𝑋 ∣ 𝑍 is irreducible, closed of codimension 1 and ord𝑍,ℒ(𝑠)≠0}

is locally finite in 𝑋.
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Proof. This is true simply because there exists a nonempty open subscheme 𝑈 ⊂ 𝑋 such
that 𝑠 corresponds to a section of Γ(𝑈, ℒ) which generates ℒ over 𝑈. Hence the codimen-
sion 1 irreducibles which can occur in the set of the lemma are all irreducible components
of 𝑋 ⧵ 𝑈. Hence Lemma 29.9.1 gives the desired result. �

Lemma 29.23.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 is integral and 𝑛 = dim𝛿(𝑋). Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠, 𝑠′ ∈
𝒦𝑋(ℒ) be nonzero meromorphic sections of ℒ. Then 𝑓 = 𝑠/𝑠′ is an element of 𝑅(𝑋)∗ and
we have

∑ ord𝑍,ℒ(𝑠)[𝑍] = ∑ ord𝑍,ℒ(𝑠′)[𝑍] + div(𝑓)
(where the sums are over integral closed subschemes 𝑍 ⊂ 𝑋 of 𝛿-dimension 𝑛 − 1) as
elements of 𝑍𝑛−1(𝑋).

Proof. This is clear from the definitions. Note that Lemma 29.23.2 garantees that the sums
are indeed elements of 𝑍𝑛−1(𝑋). �

29.24. The divisor associated to an invertible sheaf

The material above allows us to define the divisor associated to an invertible sheaf.

Definition 29.24.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 is integral and 𝑛 = dim𝛿(𝑋). Let ℒ be an invertible 𝒪𝑋-module.

(1) For any nonzero meromorphic section 𝑠 of ℒ we define the Weil divisor associ-
ated to 𝑠 as

divℒ(𝑠) ∶= ∑ ord𝑍,ℒ(𝑠)[𝑍] ∈ 𝑍𝑛−1(𝑋)

where the sum is over integral closed subschemes 𝑍 ⊂ 𝑋 of 𝛿-dimension 𝑛 − 1.
(2) We define Weil divisor associated to ℒ

𝑐1(ℒ) ∩ [𝑋] = class of divℒ(𝑠) ∈ 𝐴𝑛−1(𝑋)
where 𝑠 is any nonzero meromorphic section of ℒ over 𝑋. This is well defined
by Lemma 29.23.3.

There are some cases where it is easy to compute theWeil divisor associated to an invertible
sheaf.

Lemma 29.24.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Assume𝑋 is integral and 𝑛 = dim𝛿(𝑋). Letℒ be an invertible𝒪𝑋-module. Let 𝑠 ∈ Γ(𝑋, ℒ)
be a nonzero global section. Then

divℒ(𝑠) = [𝑍(𝑠)]𝑛−1

in 𝑍𝑛−1(𝑋) and
𝑐1(ℒ) ∩ [𝑋] = [𝑍(𝑠)]𝑛−1

in 𝐴𝑛−1(𝑋).

Proof. Let 𝑍 ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension 𝑛 − 1. Let 𝜉 ∈ 𝑍
be its generic point. Choose a generator 𝑠𝜉 ∈ ℒ𝜉. Write 𝑠 = 𝑓𝑠𝜉 for some 𝑓 ∈ 𝒪𝑋,𝜉.
By definition of 𝑍(𝑠), see Divisors, Definition 26.9.15 we see that 𝑍(𝑠) is cut out by a
quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑋 such that ℐ𝜉 = (𝑓). Hence length𝒪𝑋,𝑥

(𝒪𝑍(𝑠),𝜉) =
length𝒪𝑋,𝑥

(𝒪𝑋,𝜉/(𝑓)) = ord𝒪𝑋,𝑥
(𝑓) as desired. �

Lemma 29.24.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Assume 𝑋 is integral and 𝑛 = dim𝛿(𝑋). Let ℒ, 𝒩 be invertible 𝒪𝑋-modules. Then
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(1) Let 𝑠, resp. 𝑡 be a nonzero meromorphic section of ℒ, resp. 𝒩. Then 𝑠𝑡 is a
nonzero meromorphic section of ℒ ⊗ 𝒩, and

divℒ⊗𝒩(𝑠𝑡) = divℒ(𝑠) + div𝒩(𝑡)
in 𝑍𝑛−1(𝑋).

(2) We have
𝑐1(ℒ) ∩ [𝑋] + 𝑐1(𝒩) ∩ [𝑋] = 𝑐1(ℒ ⊗𝒪𝑋

𝒩) ∩ [𝑋]
in 𝐴𝑛−1(𝑋).

Proof. Let 𝑠, resp. 𝑡 be a nonzero meromorphic section of ℒ, resp. 𝒩. Then 𝑠𝑡 is a nonzero
meromorphic section of ℒ⊗𝒩. Let 𝑍 ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension
𝑛 − 1. Let 𝜉 ∈ 𝑍 be its generic point. Choose generators 𝑠𝜉 ∈ ℒ𝜉, and 𝑡𝜉 ∈ 𝒩𝜉. Then 𝑠𝜉𝑡𝜉
is a generator for (ℒ ⊗ 𝒩)𝜉. So 𝑠𝑡/(𝑠𝜉𝑡𝜉) = (𝑠/𝑠𝜉)(𝑡/𝑡𝜉). Hence we see that

divℒ⊗𝒩,𝑍(𝑠𝑡) = divℒ,𝑍(𝑠) + div𝒩,𝑍(𝑡)
by the additivity of the ord𝑍 function. �

The following lemma will be superseded by the more general Lemma 29.25.4.

Lemma 29.24.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Assume 𝑋, 𝑌 are integral and 𝑛 = dim𝛿(𝑌). Let ℒ be an invertible 𝒪𝑌-module. Let
𝑓 ∶ 𝑋 → 𝑌 be a flat morphism of relative dimension 𝑟. Let ℒ be an invertible sheaf on 𝑌.
Then

𝑓∗(𝑐1(ℒ) ∩ [𝑌]) = 𝑐1(𝑓∗ℒ) ∩ [𝑋]
in 𝐴𝑛+𝑟−1(𝑋).

Proof. Let 𝑠 be a nonzeromeromorphic section ofℒ. Wewill show that actually𝑓∗divℒ(𝑠) =
div𝑓∗ℒ(𝑓∗𝑠) and hence the lemma holds. To see this let 𝜉 ∈ 𝑌 be a point and let 𝑠𝜉 ∈ ℒ𝜉 be
a generator. Write 𝑠 = 𝑔𝑠𝜉 with 𝑔 ∈ 𝑅(𝑋)∗. Then there is an open neighbourhood 𝑉 ⊂ 𝑌
of 𝜉 such that 𝑠𝜉 ∈ ℒ(𝑉) and such that 𝑠𝜉 generates ℒ|𝑉. Hence we see that

divℒ(𝑠)|𝑉 = div(𝑔)|𝑉.

In exactly the same way, since 𝑓∗𝑠𝜉 generates ℒ over 𝑓−1(𝑉) and since 𝑓∗𝑠 = 𝑔𝑓∗𝑠𝜉 we
also have

divℒ(𝑓∗𝑠)|𝑓−1(𝑉) = div(𝑔)|𝑓−1(𝑉).
Thus the desired equality of cycles over 𝑓−1(𝑉) follows from the corresponding result for
pull backs of principal divisors, see Lemma 29.17.4. �

29.25. Intersecting with Cartier divisors

Definition 29.25.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let ℒ be an invertible 𝒪𝑋-module. We define, for every integer 𝑘, an operation

𝑐1(ℒ) ∩ − ∶ 𝑍𝑘+1(𝑋) → 𝐴𝑘(𝑋)
called intersection with the first chern class of ℒ.

(1) Given an integral closed subscheme 𝑖 ∶ 𝑊 → 𝑋 with dim𝛿(𝑊) = 𝑘 + 1 we define
𝑐1(ℒ) ∩ [𝑊] = 𝑖∗(𝑐1(𝑖∗ℒ) ∩ [𝑊])

where the right hand side is defined in Definition 29.24.1.
(2) For a general (𝑘 + 1)-cycle 𝛼 = ∑ 𝑛𝑖[𝑊𝑖] we set

𝑐1(ℒ) ∩ 𝛼 = ∑ 𝑛𝑖𝑐1(ℒ) ∩ [𝑊𝑖]
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Write each 𝑐1(ℒ) ∩ 𝑊𝑖 = ∑𝑗 𝑛𝑖,𝑗[𝑍𝑖,𝑗] with {𝑍𝑖,𝑗}𝑗 a locally finite sum of integral closed
subschemes of 𝑊𝑖. Since {𝑊𝑖} is a locally finite collection of integral closed subschemes
on 𝑋, it follows easily that {𝑍𝑖,𝑗}𝑖,𝑗 is a locally finite collection of closed subschemes of 𝑋.
Hence 𝑐1(ℒ) ∩ 𝛼 = ∑ 𝑛𝑖𝑛𝑖,𝑗[𝑍𝑖,𝑗] is a cycle. Another, more convenient, way to think about
this is to observe that the morphism ∐ 𝑊𝑖 → 𝑋 is proper. Hence 𝑐1(ℒ) ∩ 𝛼 can be viewed
as the pushforward of a class in 𝐴𝑘(∐ 𝑊𝑖) = ∏ 𝐴𝑘(𝑊𝑖). This also explains why the result
is well defined up to rational equivalence on 𝑋.

The main goal for the next few sections is to show that intersecting with 𝑐1(ℒ) factors
through rational equivalence, and is commutative. This is not a trviality.

Lemma 29.25.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℒ, 𝒩 be an invertible sheaves on 𝑋. Then

𝑐1(ℒ) ∩ 𝛼 + 𝑐1(𝒩) ∩ 𝛼 = 𝑐1(ℒ ⊗𝒪𝑋
𝒩) ∩ 𝛼

in 𝐴𝑘(𝑋) for every 𝛼 ∈ 𝑍𝑘−1(𝑋). Moreover, 𝑐1(𝒪𝑋) ∩ 𝛼 = 0 for all 𝛼.

Proof. The additivity follows directly from Lemma 29.24.3 and the definitions. To see that
𝑐1(𝒪𝑋) ∩ 𝛼 = 0 consider the section 1 ∈ Γ(𝑋, 𝒪𝑋). This restricts to an everywhere nonzero
section on any integral closed subscheme 𝑊 ⊂ 𝑋. Hence 𝑐1(𝒪𝑋) ∩ [𝑊] = 0 as desired. �

The following lemma is a useful result in order to compute the intersection product of the 𝑐1
of an invertible sheaf and the cycle associated to a closed subscheme. Recall that 𝑍(𝑠) ⊂ 𝑋
denotes the zero scheme of a global section 𝑠 of an invertible sheaf on a scheme 𝑋, see
Divisors, Definition 26.9.15.

Lemma 29.25.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℒ be an invertible 𝒪𝑋-module. Let 𝑍 ⊂ 𝑋 be a closed subscheme. Assume dim𝛿(𝑍) ≤
𝑘 + 1. Let 𝑠 ∈ Γ(𝑍, ℒ|𝑍). Assume

(1) dim𝛿(𝑍(𝑠)) ≤ 𝑘, and
(2) for every generic point 𝜉 of an irreducible component of 𝑍(𝑠) of dimension 𝑘 the

multiplication by 𝑠 induces an injection 𝒪𝑍,𝜉 → (ℒ|𝑍)𝜉.
This holds for example if 𝑠 is a regular section of ℒ|𝑍. Then

[𝑍(𝑠)]𝑘 = 𝑐1(ℒ) ∩ [𝑍]𝑘+1

in 𝐴𝑘(𝑋).

Proof. Write
[𝑍]𝑘+1 = ∑ 𝑛𝑖[𝑊𝑖]

where 𝑊𝑖 ⊂ 𝑍 are the irreducible components of 𝑍 of 𝛿-dimension 𝑘 + 1 and 𝑛𝑖 > 0.
By assumption the restriction 𝑠𝑖 = 𝑠|𝑊𝑖

∈ Γ(𝑊𝑖, ℒ|𝑊𝑖
) is not zero, and hence is a regular

section. By Lemma 29.24.2 we see that [𝑍(𝑠𝑖)]𝑘 represents 𝑐1(ℒ|𝑊𝑖
). Hence by definition

𝑐1(ℒ) ∩ [𝑍]𝑘+1 = ∑ 𝑛𝑖[𝑍(𝑠𝑖)]𝑘

In fact, the proof below will show that we have

(29.25.3.1) [𝑍(𝑠)]𝑘 = ∑ 𝑛𝑖[𝑍(𝑠𝑖)]𝑘

as 𝑘-cycles on 𝑋.

Let 𝑍′ ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension 𝑘. Let 𝜉′ ∈ 𝑍′ be its generic
point. We want to compare the coefficient 𝑛 of [𝑍′] in the expression ∑ 𝑛𝑖[𝑍(𝑠𝑖)]𝑘 with the
coefficient 𝑚 of [𝑍′] in the expression [𝑍(𝑠)]𝑘. Choose a generator 𝑠𝜉′ ∈ ℒ𝜉. Let ℐ ⊂ 𝒪𝑋
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be the ideal sheaf of 𝑍. Write 𝐴 = 𝒪𝑋,𝜉′, 𝐿 = ℒ𝜉′ and 𝐼 = ℐ𝜉′. Then 𝐿 = 𝐴𝑠𝜉′ and
𝐿/𝐼𝐿 = (𝐴/𝐼)𝑠𝜉′ = (ℒ|𝑍)𝜉′. Write 𝑠 = 𝑓𝑠𝜉′ for some (unique) 𝑓 ∈ 𝐴/𝐼. Hypothesis (2)
means that 𝑓 ∶ 𝐴/𝐼 → 𝐴/𝐼 is injective. Since dim𝛿(𝑍) ≤ 𝑘 + 1 and dim𝛿(𝑍′) = 𝑘 we have
dim(𝐴/𝐼) = 0 or 1. We have

𝑚 = length𝐴(𝐴/(𝑓, 𝐼))
which is finite in either case.
If dim(𝐴/𝐼) = 0, then 𝑓 ∶ 𝐴/𝐼 → 𝐴/𝐼 being injective implies that 𝑓 ∈ (𝐴/𝐼)∗. Hence in
this case 𝑚 is zero. Moreover, the condition dim(𝐴/𝐼) = 0 means that 𝜉′ does not lie on any
irreducible component of 𝛿-dimension 𝑘 + 1, i.e., 𝑛 = 0 as well.
Now, let dim(𝐴/𝐼) = 1. Since 𝐴 is a Noetherian local ring there are finitely many minimal
primes 𝔮1, … , 𝔮𝑡 ⊃ 𝐼 over 𝐼. These correspond 1-1 with 𝑊𝑖 passing through 𝜉′. Moreover
𝑛𝑖 = length𝐴𝔮𝑖

((𝐴/𝐼)𝔮𝑖
). Also, the multiplicity of [𝑍′] in [𝑍(𝑠𝑖)]𝑘 is length𝐴(𝐴/(𝑓, 𝔮𝑖)).

Hence the equation to prove in this case is

length𝐴(𝐴/(𝑓, 𝐼)) = ∑ length𝐴𝔮𝑖
((𝐴/𝐼)𝔮𝑖

)length𝐴(𝐴/(𝑓, 𝔮𝑖))

which follows from Lemma 29.5.6. �

Lemma 29.25.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat morphism of relative dimension 𝑟. Let ℒ be an invertible sheaf
on 𝑌. Let 𝛼 be a 𝑘-cycle on 𝑌. Then

𝑓∗(𝑐1(ℒ) ∩ 𝛼) = 𝑐1(𝑓∗ℒ) ∩ 𝑓∗𝛼
in 𝐴𝑘+𝑟−1(𝑋).

Proof. Write 𝛼 = ∑ 𝑛𝑖[𝑊𝑖]. We claim it suffices to show that 𝑓∗(𝑐1(ℒ)∩[𝑊𝑖]) = 𝑐1(𝑓∗ℒ)∩
𝑓∗[𝑊𝑖] for each 𝑖. Proof of this claim is omitted. (Remarks: it is clear in the quasi-compact
case. Something similar happened in the proof of Lemma 29.20.1, and one can copy the
method used there here. Another possibility is to check the cycles and rational equivalences
used for all 𝑊𝑖 combined at each step form a locally finite collection).
Let 𝑊 ⊂ 𝑌 be an integral closed subscheme of 𝛿-dimension 𝑘. We have to show that
𝑓∗(𝑐1(ℒ) ∩ [𝑊]) = 𝑐1(𝑓∗ℒ) ∩ 𝑓∗[𝑊]. Consider the following fibre product diagram

𝑊′ = 𝑊 ×𝑌 𝑋 //

��

𝑋

��
𝑊 // 𝑌

and let 𝑊′
𝑖 ⊂ 𝑊′ be the irreducible components of 𝛿-dimension 𝑘 + 𝑟. Write [𝑊′]𝑘+𝑟 =

∑ 𝑛𝑖[𝑊′
𝑖 ] with 𝑛𝑖 > 0 as per definition. So 𝑓∗[𝑊] = ∑ 𝑛𝑖[𝑊′

𝑖 ]. Choose a nonzero mero-
morphic section 𝑠 of ℒ|𝑊. Since each 𝑊′

𝑖 → 𝑊 is dominant we see that 𝑠𝑖 = 𝑠|𝑊′
𝑖
is a

nonzero meromorphic section for each 𝑖. We claim that we have the following equality of
cycles

∑ 𝑛𝑖divℒ|𝑊𝑖
(𝑠𝑖) = 𝑓∗divℒ|𝑊

(𝑠)
in 𝑍𝑘+𝑟−1(𝑋).
Having formulated the problem as an equality of cycles we may work locally on 𝑌. Hence
we may assume 𝑌 and also 𝑊 affine, and 𝑠 = 𝑝/𝑞 for some nonzero sections 𝑝 ∈ Γ(𝑊, ℒ)
and 𝑞 ∈ Γ(𝑊, 𝒪). If we can show both

∑ 𝑛𝑖divℒ|𝑊𝑖
(𝑝𝑖) = 𝑓∗divℒ|𝑊

(𝑝), and ∑ 𝑛𝑖div𝒪|𝑊𝑖
(𝑞𝑖) = 𝑓∗div𝒪|𝑊

(𝑞)
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(with obvious notations) then we win by the additivity, see Lemma 29.24.3. Thus we may
assume that 𝑠 ∈ Γ(𝑊, ℒ|𝑊). In this case we may apply the equality (29.25.3.1) obtained
in the proof of Lemma 29.25.3 to see that

∑ 𝑛𝑖divℒ|𝑊𝑖
(𝑠𝑖) = [𝑍(𝑠′)]𝑘+𝑟−1

where 𝑠′ ∈ 𝑓∗ℒ|𝑊′ denotes the pull back of 𝑠 to 𝑊′. On the other hand we have

𝑓∗divℒ|𝑊
(𝑠) = 𝑓∗[𝑍(𝑠)]𝑘−1 = [𝑓−1(𝑍(𝑠))]𝑘+𝑟−1,

by Lemmas 29.24.2 and 29.14.4. Since 𝑍(𝑠′) = 𝑓−1(𝑍(𝑠)) we win. �

Lemma 29.25.5. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type
over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a proper morphism. Let ℒ be an invertible sheaf on 𝑌. Let 𝑠
be a nonzero meromorphic section 𝑠 of ℒ on 𝑌. Assume 𝑋, 𝑌 integral, 𝑓 dominant, and
dim𝛿(𝑋) = dim𝛿(𝑌). Then

𝑓∗ (div𝑓∗ℒ(𝑓∗𝑠)) = [𝑅(𝑋) ∶ 𝑅(𝑌)]divℒ(𝑠).
In particular

𝑓∗(𝑐1(𝑓∗ℒ) ∩ [𝑋]) = 𝑐1(ℒ) ∩ 𝑓∗[𝑌].

Proof. The last equation follows from the first since 𝑓∗[𝑋] = [𝑅(𝑋) ∶ 𝑅(𝑌)][𝑌] by defi-
nition. It turns out that we can re-use Lemma 29.18.1 to prove this. Namely, since we are
trying to prove an equality of cycles, we may work locally on 𝑌. Hence we may assume
that ℒ = 𝒪𝑌. In this case 𝑠 corresponds to a rational function 𝑔 ∈ 𝑅(𝑌), and we are simply
trying to prove

𝑓∗ (div𝑋(𝑔)) = [𝑅(𝑋) ∶ 𝑅(𝑌)]div𝑌(𝑔).
Comparing with the result of the aforementioned Lemma 29.18.1 we see this true since
Nm𝑅(𝑋)/𝑅(𝑌)(𝑔) = 𝑔[𝑅(𝑋)∶𝑅(𝑌)] as 𝑔 ∈ 𝑅(𝑌)∗. �

Lemma 29.25.6. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑝 ∶ 𝑋 → 𝑌 be a proper morphism. Let 𝛼 ∈ 𝑍𝑘+1(𝑋). Let ℒ be an invertible sheaf
on 𝑌. Then

𝑝∗(𝑐1(𝑝∗ℒ) ∩ 𝛼) = 𝑐1(ℒ) ∩ 𝑝∗𝛼
in 𝐴𝑘(𝑌).

Proof. Suppose that 𝑝 has the property that for every integral closed subscheme 𝑊 ⊂ 𝑋
the map 𝑝|𝑊 ∶ 𝑊 → 𝑌 is a closed immersion. Then, by definition of capping wiht 𝑐1(ℒ)
the lemma holds.
We will use this remark to reduce to a special case. Namely, write 𝛼 = ∑ 𝑛𝑖[𝑊𝑖] with 𝑛𝑖≠0
and 𝑊𝑖 pairwise distinct. Let 𝑊′

𝑖 ⊂ 𝑌 be the image of 𝑊𝑖 (as an integral closed subscheme).
Consider the diagram

𝑋′ = ∐ 𝑊𝑖 𝑞
//

𝑝′

��

𝑋

𝑝
��

𝑌′ = ∐ 𝑊′
𝑖

𝑞′
// 𝑌.

Since {𝑊𝑖} is locally finite on 𝑋, and 𝑝 is proper we see that {𝑊′
𝑖 } is locally finite on 𝑌

and that 𝑞, 𝑞′, 𝑝′ are also proper morphisms. We may think of ∑ 𝑛𝑖[𝑊𝑖] also as a 𝑘-cycle
𝛼′ ∈ 𝑍𝑘(𝑋′). Clearly 𝑞∗𝛼′ = 𝛼. We have 𝑞∗(𝑐1(𝑞∗𝑝∗ℒ) ∩ 𝛼′) = 𝑐1(𝑝∗ℒ) ∩ 𝑞∗𝛼′ and
(𝑞′)∗(𝑐1((𝑞′)∗ℒ) ∩ 𝑝′

∗𝛼′) = 𝑐1(ℒ) ∩ 𝑞′
∗𝑝′

∗𝛼′ by the initial remark of the proof. Hence it
suffices to prove the lemma for the morphism 𝑝′ and the cycle ∑ 𝑛𝑖[𝑊𝑖]. Clearly, this

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02ST
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02SU


29.26. CARTIER DIVISORS AND K-GROUPS 1589

means we may assume 𝑋, 𝑌 integral, 𝑓 ∶ 𝑋 → 𝑌 dominant and 𝛼 = [𝑋]. In this case the
result follows from Lemma 29.25.5. �

29.26. Cartier divisors and K-groups

In this section we describe how the intersection with the first chern class of an invertible
sheaf ℒ corresponds to tensoring with ℒ − 𝒪 in 𝐾-groups.

Lemma 29.26.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℒ be an invertible 𝒪𝑋-module. Let ℱ be a coherent 𝒪𝑋-module. Let 𝑠 ∈ Γ(𝑋, 𝒦𝑋(ℒ))
be a meromorphic section of ℒ. Assume

(1) dim𝛿(𝑋) ≤ 𝑘 + 1,
(2) 𝑋 has no embedded points,
(3) ℱ has no embedded associated points,
(4) the support of ℱ is 𝑋, and
(5) the section 𝑠 is regular meromorphic.

In this situation let ℐ ⊂ 𝒪𝑋 be the ideal of denominators of 𝑠, see Divisors, Definition
26.15.14. Then we have the following:

(1) there are short exact sequences

0 → ℐℱ
1

−→ ℱ → 𝒬1 → 0
0 → ℐℱ

𝑠
−→ ℱ ⊗𝒪𝑋

ℒ → 𝒬2 → 0

(2) the coherent sheaves 𝒬1, 𝒬2 are supported in 𝛿-dimension ≤ 𝑘,
(3) the section 𝑠 restricts to a regular meromorphic section 𝑠𝑖 on every irreducible

component 𝑋𝑖 of 𝑋 of 𝛿-dimension 𝑘 + 1, and
(4) writing [ℱ]𝑘+1 = ∑ 𝑚𝑖[𝑋𝑖] we have

[𝒬2]𝑘 − [𝒬1]𝑘 = ∑ 𝑚𝑖(𝑋𝑖 → 𝑋)∗divℒ|𝑋𝑖
(𝑠𝑖)

in 𝑍𝑘(𝑋), in particular

[𝒬2]𝑘 − [𝒬1]𝑘 = 𝑐1(ℒ) ∩ [ℱ]𝑘+1

in 𝐴𝑘(𝑋).

Proof. Recall from Divisors, Lemma 26.15.15 the existence of injective maps 1 ∶ ℐℱ →
ℱ and 𝑠 ∶ ℐℱ → ℱ ⊗𝒪𝑋

ℒ whose cokernels are supported on a closed nowhere dense
subsets 𝑇. Denote 𝒬𝑖 there cokernels as in the lemma. We conclude that dim𝛿(Supp(𝒬𝑖)) ≤
𝑘. By Divisors, Lemmas 26.15.4 and 26.15.11 the pullbacks 𝑠𝑖 are defined and are regular
meromorphic sections for ℒ|𝑋𝑖

. The equality of cycles in (4) implies the equality of cycle
classes in (4). Hence the only remaining thing to show is that

[𝒬2]𝑘 − [𝒬1]𝑘 = ∑ 𝑚𝑖(𝑋𝑖 → 𝑋)∗divℒ|𝑋𝑖
(𝑠𝑖)

holds in 𝑍𝑘(𝑋). To see this, let 𝑍 ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension 𝑘.
Let 𝜉 ∈ 𝑍 be the generic point. Let 𝐴 = 𝒪𝑋,𝜉 and 𝑀 = ℱ𝜉. Moreover, choose a generator
𝑠𝜉 ∈ ℒ𝜉. Then we can write 𝑠 = (𝑎/𝑏)𝑠𝜉 where 𝑎, 𝑏 ∈ 𝐴 are nonzero divisors. In this case
𝐼 = ℐ𝜉 = {𝑥 ∈ 𝐴 ∣ 𝑥(𝑎/𝑏) ∈ 𝐴}. In this case the coefficient of [𝑍] in the left hand side is

length𝐴(𝑀/(𝑎/𝑏)𝐼𝑀) − length𝐴(𝑀/𝐼𝑀)

and the coefficient of [𝑍] in the right hand side is

∑ length𝐴𝔮𝑖
(𝑀𝔮𝑖

)ord𝐴/𝔮𝑖
(𝑎/𝑏)
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where 𝔮1, … , 𝔮𝑡 are the minimal primes of the 1-dimensional local ring 𝐴. Hence the result
follows from Lemma 29.5.7. �

Lemma 29.26.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Letℒ be an invertible𝒪𝑋-module. Letℱ be a coherent𝒪𝑋-module. Assume dim𝛿(Support(ℱ)) ≤
𝑘 + 1. Then the element

[ℱ ⊗𝒪𝑋
ℒ] − [ℱ] ∈ 𝐾0(Coh≤𝑘+1(𝑋)/Coh≤𝑘−1(𝑋))

lies in the subgroup 𝐵𝑘(𝑋) of Lemma 29.22.5 and maps to the element 𝑐1(ℒ) ∩ [ℱ]𝑘+1 via
the map 𝐵𝑘(𝑋) → 𝐴𝑘(𝑋).

Proof. Let
0 → 𝒦 → ℱ → ℱ′ → 0

be the short exact sequence constructed in Divisors, Lemma 26.4.4. This in particular
means that ℱ′ has no embedded associated points. Since the support of 𝒦 is nowhere
dense in the support of ℱ we see that dim𝛿(Supp(𝒦)) ≤ 𝑘. We may re-apply Divisors,
Lemma 26.4.4 starting with 𝒦 to get a short exact sequence

0 → 𝒦″ → 𝒦 → 𝒦′ → 0

where now dim𝛿(Supp(𝒦″)) < 𝑘 and 𝒦′ has no embedded associated points. Suppose we
can prove the lemma for the coherent sheaves ℱ′ and 𝒦′. Then we see from the equations

[ℱ]𝑘+1 = [ℱ′]𝑘+1 + [𝒦′]𝑘+1 + [𝒦″]𝑘+1

(use Lemma 29.10.4),

[ℱ ⊗𝒪𝑋
ℒ] − [ℱ] = [ℱ′ ⊗𝒪𝑋

ℒ] − [ℱ′] + [𝒦′ ⊗𝒪𝑋
ℒ] − [𝒦′] + [𝒦″ ⊗𝒪𝑋

ℒ] − [𝒦″]

(use the ⊗ℒ is exact) and the trivial vanishing of [𝒦″]𝑘+1 and [𝒦″ ⊗𝒪𝑋
ℒ] − [𝒦″] in

𝐾0(Coh≤𝑘+1(𝑋)/Coh≤𝑘−1(𝑋)) that the result holds for ℱ. What this means is that we may
assume that the sheaf ℱ has no embedded associated points.

Assume 𝑋, ℱ as in the lemma, and assume in addition that ℱ has no embedded associated
points. Consider the sheaf of ideals ℐ ⊂ 𝒪𝑋, the corresponding closed subscheme 𝑖 ∶
𝑍 → 𝑋 and the coherent 𝒪𝑍-module 𝒢 constructed in Divisors, Lemma 26.4.5. Recall that
𝑍 is a locally Noetherian scheme without embedded points, 𝒢 is a coherent sheaf without
embedded associated points, with Supp(𝒢) = 𝑍 and such that 𝑖∗𝒢 = ℱ. Moreover, set
𝒩 = ℒ|𝑍.

By Divisors, Lemma 26.15.12 the invertible sheaf 𝒩 has a regular meromorphic section 𝑠
over 𝑍. Let us denote 𝒥 ⊂ 𝒪𝑍 the sheaf of denominators of 𝑠. By Lemma 29.26.1 there
exist short exact sequences

0 → 𝒥𝒢
1

−→ 𝒢 → 𝒬1 → 0
0 → 𝒥𝒢

𝑠
−→ 𝒢 ⊗𝒪𝑍

𝒩 → 𝒬2 → 0

such that dim𝛿(Supp(𝒬𝑖)) ≤ 𝑘 and such that the cycle [𝒬2]𝑘 − [𝒬1]𝑘 is a representative of
𝑐1(𝒩) ∩ [𝒢]𝑘+1. We see (using the fact that 𝑖∗(𝒢 ⊗ 𝒩) = ℱ ⊗ ℒ by the projection formula,
see Cohomology, Lemma 18.7.2) that

[ℱ ⊗𝒪𝑋
ℒ] − [ℱ] = [𝑖∗𝒬2] − [𝑖∗𝒬1]
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in 𝐾0(Coh≤𝑘+1(𝑋)/Coh≤𝑘−1(𝑋)). This already shows that [ℱ ⊗𝒪𝑋
ℒ] − [ℱ] is an element

of 𝐵𝑘(𝑋). Moreover we have

[𝑖∗𝒬2]𝑘 − [𝑖∗𝒬1]𝑘 = 𝑖∗ ([𝒬2]𝑘 − [𝒬1]𝑘)
= 𝑖∗ (𝑐1(𝒩) ∩ [𝒢]𝑘+1)
= 𝑐1(ℒ) ∩ 𝑖∗[𝒢]𝑘+1

= 𝑐1(ℒ) ∩ [ℱ]𝑘+1

by the above and Lemmas 29.25.6 and 29.12.3. And this agreewith the image of the element
under 𝐵𝑘(𝑋) → 𝐴𝑘(𝑋) by definition. Hence the lemma is proved. �

29.27. Blowing up lemmas

In this section we prove some lemmas on representing Cartier divisors by suitable effective
Cartier divisors on blow-ups. These lemmas can be found in [Ful98, Section 2.4]. We have
adapted the formulation so they also work in the non-finite type setting. It may happen that
the morphism 𝑏 of Lemma 29.27.7 is a composition of infinitely many blow ups, but over
any given quasi-compact open 𝑊 ⊂ 𝑋 one needs only finitely many blow-ups (and this is
the result of loc. cit.).

Lemma 29.27.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a proper morphism. Let 𝐷 ⊂ 𝑌 be an effective Cartier divisor.
Assume 𝑋, 𝑌 integral, 𝑛 = dim𝛿(𝑋) = dim𝛿(𝑌) and 𝑓 dominant. Then

𝑓∗[𝑓−1(𝐷)]𝑛−1 = [𝑅(𝑋) ∶ 𝑅(𝑌)][𝐷]𝑛−1.

In particular if 𝑓 is birational then 𝑓∗[𝑓−1(𝐷)]𝑛−1 = [𝐷]𝑛−1.

Proof. Immediate from Lemma 29.25.5 and the fact that 𝐷 is the zero scheme of the canon-
ical section 1𝐷 of 𝒪𝑋(𝐷). �

Lemma 29.27.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 integral with dim𝛿(𝑋) = 𝑛. Let ℒ be an invertible 𝒪𝑋-module. Let 𝑠 be a
nonzero meromorphic section of ℒ. Let 𝑈 ⊂ 𝑋 be the maximal open subscheme such that
𝑠 corresponds to a section of ℒ over 𝑈. There exists a projective morphism

𝜋 ∶ 𝑋′ ⟶ 𝑋
such that

(1) 𝑋′ is integral,
(2) 𝜋|𝜋−1(𝑈) ∶ 𝜋−1(𝑈) → 𝑈 is an isomorphism,
(3) there exist effective Cartier divisors 𝐷, 𝐸 ⊂ 𝑋′ such that

𝜋∗ℒ = 𝒪𝑋′(𝐷 − 𝐸),
(4) the meromorphic section 𝑠 corresponds, via the isomorphism above, to the mero-

morphic section 1𝐷 ⊗ (1𝐸)−1 (see Divisors, Definition 26.9.11),
(5) we have

𝜋∗([𝐷]𝑛−1 − [𝐸]𝑛−1) = divℒ(𝑠)
in 𝑍𝑛−1(𝑋).

Proof. Let ℐ ⊂ 𝒪𝑋 be the quasi-coherent ideal sheaf of denominators of 𝑠. Namely, we
declare a local section 𝑓 of 𝒪𝑋 to be a local section of ℐ if and only if 𝑓𝑠 is a local section
of ℒ. On any affine open 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) of 𝑋 write ℒ|𝑈 = �̃� for some invertible 𝐴-module
𝐿. Then 𝐴 is a Noetherian domain with fraction field 𝐾 = 𝑅(𝑋) and we may think of 𝑠|𝑈
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as an element of 𝐿 ⊗𝐴 𝐾 (see Divisors, Lemma 26.15.6). Let 𝐼 = {𝑥 ∈ 𝐴 ∣ 𝑥𝑠 ∈ 𝐿}. Then
we see that ℐ|𝑈 = ̃𝐼 (details omitted) and hence ℐ is quasi-coherent.

Consider the closed subscheme 𝑍 ⊂ 𝑋 defined by ℐ. It is clear that 𝑈 = 𝑋 ⧵ 𝑍. This
suggests we should blow up 𝑍. Let

𝜋 ∶ 𝑋′ = Proj
𝑋 (⨁𝑛≥0

ℐ𝑛
) ⟶ 𝑋

be the blowing up of 𝑋 along 𝑍. The quasi-coherent sheaf of 𝒪𝑋-algebras ⨁𝑛≥0 ℐ𝑛 is
generated in degree 1 over 𝒪𝑋. Moreover, the degree 1 part is a coherent 𝒪𝑋-module, in
particular of finite type. Hence we see that 𝜋 is projective and 𝒪𝑋′(1) is relatively very
ample.

By Constructions, Lemma 22.21.2 we have 𝑋′ is integral. By Divisors, Lemma 26.9.18
there exists an effective Cartier divisor 𝐸 ⊂ 𝑋′ such that 𝜋−1ℐ ⋅ 𝒪𝑋′ = ℐ𝐸. Also, by the
same lemma we see that 𝜋−1(𝑈) ≅ 𝑈.

Denote 𝑠′ the pullback of themeromorphic section 𝑠 to ameromorphic section ofℒ′ = 𝜋∗ℒ
over 𝑋′. It follows from the fact that ℐ𝑠 ⊂ ℒ that ℐ𝐸𝑠′ ⊂ ℒ′. In other words, 𝑠′ gives
rise to an 𝒪𝑋′-linear map ℐ𝐸 → ℒ′, or in other words a section 𝑡 ∈ ℒ′ ⊗ 𝒪𝑋′(𝐸). By
Divisors, Lemma 26.9.17 we obtain a unique effective Cartier divisor 𝐷 ⊂ 𝑋′ such that
ℒ′ ⊗𝒪𝑋′(𝐸) ≅ 𝒪𝑋′(𝐷) with 𝑡 corresponding to 1𝐷. Reversing this procedure we conclude
that ℒ′ = 𝒪𝑋′(−𝐸) ≅ 𝒪𝑋′(𝐷) with 𝑠′ corresponding to 1𝐷 ⊗ 1−1

𝐸 as in (4).

We still have to prove (5). By Lemma 29.25.5 we have

𝜋∗(divℒ′(𝑠′)) = divℒ(𝑠).

Hence it suffices to show that divℒ′(𝑠′) = [𝐷]𝑛−1 − [𝐸]𝑛−1. This follows from the equality
𝑠′ = 1𝐷 ⊗ 1−1

𝐸 and additivity, see Lemma 29.24.3. �

Definition 29.27.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 integral and dim𝛿(𝑋) = 𝑛. Let 𝐷1, 𝐷2 be two effective Cartier divisors in 𝑋.
Let 𝑍 ⊂ 𝑋 be an integral closed subscheme with dim𝛿(𝑍) = 𝑛 − 1. The 𝜖-invariant of this
situation is

𝜖𝑍(𝐷1, 𝐷2) = 𝑛𝑍 ⋅ 𝑚𝑍

where 𝑛𝑍, resp. 𝑚𝑍 is the coefficient of 𝑍 in the (𝑛 − 1)-cycle [𝐷1]𝑛−1, resp. [𝐷2]𝑛−1.

Lemma 29.27.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Assume 𝑋 integral and dim𝛿(𝑋) = 𝑛. Let 𝐷1, 𝐷2 be two effective Cartier divisors in 𝑋. Let
𝑍 be an open and closed subscheme of the scheme 𝐷1 ∩ 𝐷2. Assume dim𝛿(𝐷1 ∩ 𝐷2 ⧵ 𝑍) ≤
𝑛 − 2. Then there exists a morphism 𝑏 ∶ 𝑋′ → 𝑋, and Cartier divisors 𝐷′

1, 𝐷′
2, 𝐸 on 𝑋′

with the following properties
(1) 𝑋′ is integral,
(2) 𝑏 is projective,
(3) 𝑏 is the blow up of 𝑋 in the closed subscheme 𝑍,
(4) 𝐸 = 𝑏−1(𝑍),
(5) 𝑏−1(𝐷1) = 𝐷′

1 + 𝐸, and 𝑏−1𝐷2 = 𝐷′
2 + 𝐸,

(6) dim𝛿(𝐷′
1 ∩ 𝐷′

2) ≤ 𝑛 − 2, and if 𝑍 = 𝐷1 ∩ 𝐷2 then 𝐷′
1 ∩ 𝐷′

2 = ∅,
(7) for every integral closed subscheme 𝑊′ with dim𝛿(𝑊′) = 𝑛 − 1 we have

(a) if 𝜖𝑊′(𝐷′
1, 𝐸) > 0, then setting 𝑊 = 𝑏(𝑊′) we have dim𝛿(𝑊) = 𝑛 − 1 and

𝜖𝑊′(𝐷′
1, 𝐸) < 𝜖𝑊(𝐷1, 𝐷2),

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02T1
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02T2


29.27. BLOWING UP LEMMAS 1593

(b) if 𝜖𝑊′(𝐷′
2, 𝐸) > 0, then setting 𝑊 = 𝑏(𝑊′) we have dim𝛿(𝑊) = 𝑛 − 1 and

𝜖𝑊′(𝐷′
2, 𝐸) < 𝜖𝑊(𝐷1, 𝐷2),

Proof. Note that the quasi-coherent ideal sheaf ℐ = ℐ𝐷1
+ ℐ𝐷2

defines the scheme theo-
retic intersection 𝐷1 ∩ 𝐷2 ⊂ 𝑋. Since 𝑍 is a union of connected components of 𝐷1 ∩ 𝐷2
we see that for every 𝑧 ∈ 𝑍 the kernel of 𝒪𝑋,𝑧 → 𝒪𝑍,𝑧 is equal to ℐ𝑧. Let 𝑏 ∶ 𝑋′ → 𝑋
be the blow up of 𝑋 in 𝑍. (So Zariski locally around 𝑍 it is the blow up of 𝑋 in ℐ.) De-
note 𝐸 = 𝑏−1(𝑍) the corresponding effective Cartier divisor, see Divisors, Lemma 26.9.18.
Since 𝑍 ⊂ 𝐷1 we have 𝐸 ⊂ 𝑓−1(𝐷1) and hence 𝐷1 = 𝐷′

1 + 𝐸 for some effective Cartier
divisor 𝐷′

1 ⊂ 𝑋′, see Divisors, Lemma 26.9.6. Similarly 𝐷2 = 𝐷′
2 + 𝐸. This takes care of

assertions (1) -- (5).
Note that if 𝑊′ is as in (7) (a) or (7) (b), then the image 𝑊 of 𝑊′ is contained in 𝐷1 ∩𝐷2. If
𝑊 is not contained in 𝑍, then 𝑏 is an isomorphism at the generic point of 𝑊 and we see that
dim𝛿(𝑊) = dim𝛿(𝑊′) = 𝑛 − 1 which contradicts the assumption that dim𝛿(𝐷1 ∩ 𝐷2 ⧵ 𝑍) ≤
𝑛 − 2. Hence 𝑊 ⊂ 𝑍. This means that to prove (6) and (7) we may work locally around 𝑍
on 𝑋.
Thus we may assume that 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) with 𝐴 a Noetherian domain, and 𝐷1 = 𝑆𝑝𝑒𝑐(𝐴/𝑎),
𝐷2 = 𝑆𝑝𝑒𝑐(𝐴/𝑏) and 𝑍 = 𝐷1 ∩ 𝐷2. Set 𝐼 = (𝑎, 𝑏). Since 𝐴 is a domain and 𝑎, 𝑏≠0 we can
cover the blow up by two patches, namely 𝑈 = 𝑆𝑝𝑒𝑐(𝐴[𝑠]/(𝑎𝑠−𝑏)) and 𝑉 = 𝑆𝑝𝑒𝑐(𝐴[𝑡]/(𝑏𝑡−
𝑎)). These patches are glued using the isomorphism 𝐴[𝑠, 𝑠−1]/(𝑎𝑠 − 𝑏) ≅ 𝐴[𝑡, 𝑡−1]/(𝑏𝑡 − 𝑎)
whichmaps 𝑠 to 𝑡−1. The effective Cartier divisor 𝐸 is described by 𝑆𝑝𝑒𝑐(𝐴[𝑠]/(𝑎𝑠−𝑏, 𝑎)) ⊂
𝑈 and 𝑆𝑝𝑒𝑐(𝐴[𝑡]/(𝑏𝑡−𝑎, 𝑏)) ⊂ 𝑉. The closed subscheme 𝐷′

1 corresponds to 𝑆𝑝𝑒𝑐(𝐴[𝑡]/(𝑏𝑡−
𝑎, 𝑡)) ⊂ 𝑈. The closed subscheme 𝐷′

2 corresponds to 𝑆𝑝𝑒𝑐(𝐴[𝑠]/(𝑎𝑠 − 𝑏, 𝑠)) ⊂ 𝑉. Since
``𝑡𝑠 = 1'' we see that 𝐷′

1 ∩ 𝐷′
2 = ∅.

Suppose we have a prime 𝔮 ⊂ 𝐴[𝑠]/(𝑎𝑠 − 𝑏) of height one with 𝑠, 𝑎 ∈ 𝔮. Let 𝔭 ⊂ 𝐴 be the
corresponding prime of 𝐴. Observe that 𝑎, 𝑏 ∈ 𝔭. By the dimension formula we see that
dim(𝐴𝔭) = 1 as well. The final assertion to be shown is that

ord𝐴𝔭
(𝑎) ord𝐴𝔭

(𝑏) > ord𝐵𝔮
(𝑎) ord𝐵𝔮

(𝑠)

where 𝐵 = 𝐴[𝑠]/(𝑎𝑠 − 𝑏). By Algebra, Lemma 7.115.1 we have ord𝐴𝔭
(𝑥) ≥ ord𝐵𝔮

(𝑥) for
𝑥 = 𝑎, 𝑏. Since ord𝐵𝔮

(𝑠) > 0 we win by additivity of the ord function and the fact that
𝑎𝑠 = 𝑏. �

Definition 29.27.5. Let𝑋 be a scheme. Let {𝐷𝑖}𝑖∈𝐼 be a locally finite collection of effective
Cartier divisors on 𝑋. Suppose given a function 𝐼 → 𝐙≥0, 𝑖 ↦ 𝑛𝑖. The sum of the effective
Cartier divisors 𝐷 = ∑ 𝑛𝑖𝐷𝑖, is the unique effective Cartier divisor 𝐷 ⊂ 𝑋 such that on
any quasi-compact open 𝑈 ⊂ 𝑋 we have 𝐷|𝑈 = ∑𝐷𝑖∩𝑈≠∅ 𝑛𝑖𝐷𝑖|𝑈 is the sum as in Divisors,
Definition 26.9.4.

Lemma 29.27.6. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Assume 𝑋 integral and dim𝛿(𝑋) = 𝑛. Let {𝐷𝑖}𝑖∈𝐼 be a locally finite collection of effective
Cartier divisors on 𝑋. Suppose given 𝑛𝑖 ≥ 0 for 𝑖 ∈ 𝐼. Then

[𝐷]𝑛−1 = ∑𝑖
𝑛𝑖[𝐷𝑖]𝑛−1

in 𝑍𝑛−1(𝑋).

Proof. Since we are proving an equality of cycles we may work locally on 𝑋. Hence
this reduces to a finite sum, and by induction to a sum of two effective Cartier divisors
𝐷 = 𝐷1 + 𝐷2. By Lemma 29.24.2 we see that 𝐷1 = div𝒪𝑋(𝐷1)(1𝐷1

) where 1𝐷1
denotes the
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canonical section of 𝒪𝑋(𝐷1). Of course we have the same statement for 𝐷2 and 𝐷. Since
1𝐷 = 1𝐷1

⊗ 1𝐷2
via the identification 𝒪𝑋(𝐷) = 𝒪𝑋(𝐷1) ⊗ 𝒪𝑋(𝐷2) we win by Lemma

29.24.3. �

Lemma 29.27.7. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 integral and dim𝛿(𝑋) = 𝑑. Let {𝐷𝑖}𝑖∈𝐼 be a locally finite collection of
effective Cartier divisors on 𝑋. Assume that for all {𝑖, 𝑗, 𝑘} ⊂ 𝐼, #{𝑖, 𝑗, 𝑘} = 3 we have
𝐷𝑖 ∩ 𝐷𝑗 ∩ 𝐷𝑘 = ∅. Then there exist

(1) an open subscheme 𝑈 ⊂ 𝑋 with dim𝛿(𝑋 ⧵ 𝑈) ≤ 𝑑 − 3,
(2) a morphism 𝑏 ∶ 𝑈′ → 𝑈, and
(3) effective Cartier divisors {𝐷′

𝑗}𝑗∈𝐽 on 𝑈′

with the following properties:
(1) 𝑏 is proper morphism 𝑏 ∶ 𝑈′ → 𝑈,
(2) 𝑈′ is integral,
(3) 𝑏 is an isomorphism over the complement of the union of the pairwise intersec-

tions of the 𝐷𝑖|𝑈,
(4) {𝐷′

𝑗}𝑗∈𝐽 is a locally finite collection of effective Cartier divisors on 𝑈′,
(5) dim𝛿(𝐷′

𝑗 ∩ 𝐷′
𝑗′) ≤ 𝑑 − 2 if 𝑗≠𝑗′, and

(6) 𝑏−1(𝐷𝑖|𝑈) = ∑ 𝑛𝑖𝑗𝐷′
𝑗 for certain 𝑛𝑖𝑗 ≥ 0.

Moreover, if 𝑋 is quasi-compact, then we may assume 𝑈 = 𝑋 in the above.

Proof. Let us first prove this in the quasi-compact case, since it is perhaps the most inter-
esting case. In this case we produce inductively a sequence of blowups

𝑋 = 𝑋0
𝑏0←−− 𝑋1

𝑏1←−− 𝑋2 ← …

and finite sets of effective Cartier divisors {𝐷𝑛,𝑖}𝑖∈𝐼𝑛
. At each stage these will have the

property that any triple intersection 𝐷𝑛,𝑖 ∩ 𝐷𝑛,𝑗 ∩ 𝐷𝑛,𝑘 is empty. Moreover, for each 𝑛 ≥ 0
we will have 𝐼𝑛+1 = 𝐼𝑛 ∐ 𝑃(𝐼𝑛) where 𝑃(𝐼𝑛) denotes the set of pairs of elements of 𝐼𝑛.
Finally, we will have

𝑏−1
𝑛 (𝐷𝑛,𝑖) = 𝐷𝑛+1,𝑖 + ∑𝑖′∈𝐼𝑛,𝑖′≠𝑖

𝐷𝑛+1,{𝑖,𝑖′}

We conclude that for each 𝑛 ≥ 0 we have (𝑏0 ∘ … ∘ 𝑏𝑛)−1(𝐷𝑖) is a nonnegative integer
combination of the divisors 𝐷𝑛+1,𝑗, 𝑗 ∈ 𝐼𝑛+1.

To start the induction we set 𝑋0 = 𝑋 and 𝐼0 = 𝐼 and 𝐷0,𝑖 = 𝐷𝑖.

Given (𝑋𝑛, {𝐷𝑛,𝑖}𝑖∈𝐼𝑛
) let 𝑋𝑛+1 be the blow up of 𝑋𝑛 in the closed subscheme 𝑍𝑛 =

⋃{𝑖,𝑖′}∈𝑃(𝐼𝑛) 𝐷𝑛,𝑖 ∩ 𝐷𝑛,𝑖′. Note that the closed subschemes 𝐷𝑛,𝑖 ∩ 𝐷𝑛,𝑖′ are pairwise disjoint
by our assumption on triple intersections. In other wordswemaywrite𝑍𝑛 = ∐{𝑖,𝑖′}∈𝑃(𝐼𝑛) 𝐷𝑛,𝑖∩
𝐷𝑛,𝑖′. Moreover, in a Zariski neighbourhood of 𝐷𝑛,𝑖 ∩ 𝐷𝑛,𝑖′ the morphism 𝑏𝑛 is equal to the
blow up of the scheme 𝑋𝑛 in the closed subscheme 𝐷𝑛,𝑖 ∩ 𝐷𝑛,𝑖′, and the results of Lemma
29.27.4 apply. Hence setting 𝐷𝑛+1,{𝑖,𝑖′} = 𝑏−1

𝑛 (𝐷𝑖 ∩ 𝐷𝑖′) we get an effective Cartier divisor.
TheCartier divisors𝐷𝑛+1,{𝑖,𝑖′} are pairwise disjoint. Clearlywe have 𝑏−1

𝑛 (𝐷𝑛,𝑖) ⊃ 𝐷𝑛+1,{𝑖,𝑖′}
for every 𝑖′ ∈ 𝐼𝑛, 𝑖′≠𝑖. Hence, applying Divisors, Lemma 26.9.6 we see that indeed
𝑏−1(𝐷𝑛,𝑖) = 𝐷𝑛+1,𝑖 + ∑𝑖′∈𝐼𝑛,𝑖′≠𝑖 𝐷𝑛+1,{𝑖,𝑖′} for some effective Cartier divisor 𝐷𝑛+1,𝑖 on
𝑋𝑛+1. In a neighbourhood of 𝐷𝑛+1,{𝑖,𝑖′} these divisors 𝐷𝑛+1,𝑖 play the role of the primed
divisors of Lemma 29.27.4. In particular we conclude that 𝐷𝑛+1,𝑖 ∩ 𝐷𝑛+1,𝑖′ = ∅ if 𝑖≠𝑖′,
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𝑖, 𝑖′ ∈ 𝐼𝑛 by part (6) of Lemma 29.27.4. This already implies that triple intersections of the
divisors 𝐷𝑛+1,𝑖 are zero.

OK, and at this point we can use the quasi-compactness of 𝑋 to conclude that the invariant

(29.27.7.1) 𝜖(𝑋, {𝐷𝑖}𝑖∈𝐼) = max{𝜖𝑍(𝐷𝑖, 𝐷𝑖′) ∣ 𝑍 ⊂ 𝑋, dim𝛿(𝑍) = 𝑑 − 1, {𝑖, 𝑖′} ∈ 𝑃(𝐼)}

is finite, since after all each 𝐷𝑖 has at most finitely many irreducible components. We
claim that for some 𝑛 the invariant 𝜖(𝑋𝑛, {𝐷𝑛,𝑖}𝑖∈𝐼𝑛

) is zero. Namely, if not then by Lemma
29.27.4 we have a strictly decreasing sequence

𝜖(𝑋, {𝐷𝑖}𝑖∈𝐼) = 𝜖(𝑋0, {𝐷0,𝑖}𝑖∈𝐼0
) > 𝜖(𝑋1, {𝐷1,𝑖}𝑖∈𝐼1

) > …

of positive integers which is a contradiction. Take 𝑛 with invariant 𝜖(𝑋𝑛, {𝐷𝑛,𝑖}𝑖∈𝐼𝑛
) equal

to zero. This means that there is no integral closed subscheme 𝑍 ⊂ 𝑋𝑛 and no pair of
indices 𝑖, 𝑖′ ∈ 𝐼𝑛 such that 𝜖𝑍(𝐷𝑛,𝑖, 𝐷𝑛,𝑖′) > 0. In other words, dim𝛿(𝐷𝑛,𝑖, 𝐷𝑛,𝑖′) ≤ 𝑑 − 2
for all pairs {𝑖, 𝑖′} ∈ 𝑃(𝐼𝑛) as desired.

Next, we come to the general case where we no longer assume that the scheme 𝑋 is quasi-
compact. The problem with the idea from the first part of the proof is that we may get and
infinite sequence of blow ups with centers dominating a fixed point of 𝑋. In order to avoid
this we cut out suitable closed subsets of codimension ≥ 3 at each stage. Namely, we will
construct by induction a sequence of morphisms having the following shape

𝑋 = 𝑋0

𝑈0

𝑗0

OO

𝑋1
𝑏0oo

𝑈1

𝑗1

OO

𝑋2
𝑏1oo

𝑈2

𝑗2

OO

𝑋3
𝑏2oo

Each of the morphisms 𝑗𝑛 ∶ 𝑈𝑛 → 𝑋𝑛 will be an open immersion. Each of the morphisms
𝑏𝑛 ∶ 𝑋𝑛+1 → 𝑈𝑛 will be a proper birational morphism of integral schemes. As in the
quasi-compact case we will have effective Cartier divisors {𝐷𝑛,𝑖}𝑖∈𝐼𝑛

on 𝑋𝑛. At each stage
these will have the property that any triple intersection 𝐷𝑛,𝑖∩𝐷𝑛,𝑗∩𝐷𝑛,𝑘 is empty. Moreover,
for each 𝑛 ≥ 0 we will have 𝐼𝑛+1 = 𝐼𝑛 ∐ 𝑃(𝐼𝑛) where 𝑃(𝐼𝑛) denotes the set of pairs of
elements of 𝐼𝑛. Finally, we will arrange it so that

𝑏−1
𝑛 (𝐷𝑛,𝑖|𝑈𝑛

) = 𝐷𝑛+1,𝑖 + ∑𝑖′∈𝐼𝑛,𝑖′≠𝑖
𝐷𝑛+1,{𝑖,𝑖′}

We start the induction by setting 𝑋0 = 𝑋, 𝐼0 = 𝐼 and 𝐷0,𝑖 = 𝐷𝑖.

Given (𝑋𝑛, {𝐷𝑛,𝑖}) we construct the open subscheme 𝑈𝑛 as follows. For each pair {𝑖, 𝑖′} ∈
𝑃(𝐼𝑛) consider the closed subscheme 𝐷𝑛,𝑖 ∩ 𝐷𝑛,𝑖′. This has ``good'' irreducible components
which have 𝛿-dimension 𝑑 − 2 and ``bad'' irreducible components which have 𝛿-dimension
𝑑 − 1. Let us set

Bad(𝑖, 𝑖′) = ⋃𝑊⊂𝐷𝑛,𝑖∩𝐷𝑛,𝑖′ irred. comp. with dim𝛿(𝑊)=𝑑−1
𝑊
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and similarly

Good(𝑖, 𝑖′) = ⋃𝑊⊂𝐷𝑛,𝑖∩𝐷𝑛,𝑖′ irred. comp. with dim𝛿(𝑊)=𝑑−2
𝑊.

Then𝐷𝑛,𝑖∩𝐷𝑛,𝑖′ = Bad(𝑖, 𝑖′)∪Good(𝑖, 𝑖′) andmoreoverwe have dim𝛿(Bad(𝑖, 𝑖′)∩Good(𝑖, 𝑖′)) ≤
𝑑 − 3. Here is our choice of 𝑈𝑛:

𝑈𝑛 = 𝑋𝑛 ⧵ ⋃{𝑖,𝑖′}∈𝑃(𝐼𝑛)
Bad(𝑖, 𝑖′) ∩ Good(𝑖, 𝑖′).

By our condition on triple intersections of the divisors 𝐷𝑛,𝑖 we see that the union is actually
a disjoint union. Moreover, we see that (as a scheme)

𝐷𝑛,𝑖|𝑈𝑛
∩ 𝐷𝑛,𝑖′|𝑈𝑛

= 𝑍𝑛,𝑖,𝑖′ ∐ 𝐺𝑛,𝑖,𝑖′

where 𝑍𝑛,𝑖,𝑖′ is 𝛿-equidimension of dimension 𝑑 − 1 and 𝐺𝑛,𝑖,𝑖′ is 𝛿-equidimensional of
dimension 𝑑 − 2. (So toplogically 𝑍𝑛,𝑖,𝑖′ is the union of the bad components but throw out
intersections with good components.) Finally we set

𝑍𝑛 = ⋃{𝑖,𝑖′}∈𝑃(𝐼𝑛)
𝑍𝑛,𝑖,𝑖′ = ∐{𝑖,𝑖′}∈𝑃(𝐼𝑛)

𝑍𝑛,𝑖,𝑖′,

and we let 𝑏𝑛 ∶ 𝑋𝑛+1 → 𝑋𝑛 be the blow up in 𝑍𝑛. Note that Lemma 29.27.4 applies to
the morphism 𝑏𝑛 ∶ 𝑋𝑛+1 → 𝑋𝑛 locally around each of the loci 𝐷𝑛,𝑖|𝑈𝑛

∩ 𝐷𝑛,𝑖′|𝑈𝑛
. Hence,

exactly as in the first part of the proof we obtain effective Cartier divisors 𝐷𝑛+1,{𝑖,𝑖′} for
{𝑖, 𝑖′} ∈ 𝑃(𝐼𝑛) and effective Cartier divisors 𝐷𝑛+1,𝑖 for 𝑖 ∈ 𝐼𝑛 such that 𝑏−1

𝑛 (𝐷𝑛,𝑖|𝑈𝑛
) =

𝐷𝑛+1,𝑖 + ∑𝑖′∈𝐼𝑛,𝑖′≠𝑖 𝐷𝑛+1,{𝑖,𝑖′}. For each 𝑛 denote 𝜋𝑛 ∶ 𝑋𝑛 → 𝑋 the morphism obtained as
the composition 𝑗0 ∘ … ∘ 𝑗𝑛−1 ∘ 𝑏𝑛−1.

Claim: given any quasi-compact open 𝑉 ⊂ 𝑋 for all sufficiently large 𝑛 the maps

𝜋−1
𝑛 (𝑉) ← 𝜋−1

𝑛+1(𝑉) ← …

are all isomorphisms. Namely, if the map 𝜋−1
𝑛 (𝑉) ← 𝜋−1

𝑛+1(𝑉) is not an isomorphism, then
𝑍𝑛,𝑖,𝑖′ ∩ 𝜋−1

𝑛 (𝑉)≠∅ for some {𝑖, 𝑖′} ∈ 𝑃(𝐼𝑛). Hence there exists an irreducible component
𝑊 ⊂ 𝐷𝑛,𝑖 ∩ 𝐷𝑛,𝑖′ with dim𝛿(𝑊) = 𝑑 − 1. In particular we see that 𝜖𝑊(𝐷𝑛,𝑖, 𝐷𝑛,𝑖′) > 0.
Applying Lemma 29.27.4 repeatedly we see that

𝜖𝑊(𝐷𝑛,𝑖, 𝐷𝑛,𝑖′) < 𝜖(𝑉, {𝐷𝑖|𝑉}) − 𝑛

with 𝜖(𝑉, {𝐷𝑖|𝑉}) as in (29.27.7.1). Since 𝑉 is quasi-compact, we have 𝜖(𝑉, {𝐷𝑖|𝑉}) < ∞
and taking 𝑛 > 𝜖(𝑉, {𝐷𝑖|𝑉}) we see the result.

Note that by construction the difference 𝑋𝑛 ⧵ 𝑈𝑛 has dim𝛿(𝑋𝑛 ⧵ 𝑈𝑛) ≤ 𝑑 − 3. Let 𝑇𝑛 =
𝜋𝑛(𝑋𝑛 ⧵ 𝑈𝑛) be its image in 𝑋. Traversing in the diagram of maps above using each 𝑏𝑛 is
closed it follows that 𝑇0 ∪ … ∪ 𝑇𝑛 is a closed subset of 𝑋 for each 𝑛. Any 𝑡 ∈ 𝑇𝑛 satisfies
𝛿(𝑡) ≤ 𝑑 − 3 by construction. Hence 𝑇𝑛 ⊂ 𝑋 is a closed subset with dim𝛿(𝑇𝑛) ≤ 𝑑 − 3. By
the claim above we see that for any quasi-compact open 𝑉 ⊂ 𝑋 we have 𝑇𝑛 ∩ 𝑉≠∅ for at
most finitely many 𝑛. Hence {𝑇𝑛}𝑛≥0 is a locally finite collection of closed subsets, and we
may set 𝑈 = 𝑋 ⧵ ⋃ 𝑇𝑛. This will be 𝑈 as in the lemma.

Note that 𝑈𝑛 ∩ 𝜋−1
𝑛 (𝑈) = 𝜋−1

𝑛 (𝑈) by construction of 𝑈. Hence all the morphisms

𝑏𝑛 ∶ 𝜋−1
𝑛+1(𝑈) ⟶ 𝜋−1

𝑛 (𝑈)

are proper. Moreover, by the claim they eventually become isomorphisms over each quasi-
compact open of 𝑋. Hence we can define

𝑈′ = 𝑙𝑖𝑚𝑛 𝜋−1
𝑛 (𝑈).
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The inducedmorphism 𝑏 ∶ 𝑈′ → 𝑈 is proper since this is local on 𝑈, and over each compact
open the limit stabilizes. Similarly we set 𝐽 = ⋃𝑛≥0 𝐼𝑛 using the inclusions 𝐼𝑛 → 𝐼𝑛+1
from the construction. For 𝑗 ∈ 𝐽 choose an 𝑛0 such that 𝑗 corresponds to 𝑖 ∈ 𝐼𝑛0

and define
𝐷′

𝑗 = 𝑙𝑖𝑚𝑛≥𝑛0
𝐷𝑛,𝑖. Again this makes sense as locally over 𝑋 the morphisms stabilize. The

other claims of the lemma are verified as in the case of a quasi-compact 𝑋. �

29.28. Intersecting with effective Cartier divisors

To be able to prove the commutativity of intersection products we need a little more preci-
sion in terms of supports of the cycles. Here is the relevant notion.
Definition 29.28.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let 𝐷 be an effective Cartier divisor on 𝑋, and denote 𝑖 ∶ 𝐷 → 𝑋 the closed immersion.
We define, for every integer 𝑘, a Gysin homomorphism

𝑖∗ ∶ 𝑍𝑘+1(𝑋) → 𝐴𝑘(𝐷).
(1) Given a integral closed subscheme 𝑊 ⊂ 𝑋 with dim𝛿(𝑊) = 𝑘 + 1 we define

(a) if 𝑊⊄𝐷, then 𝑖∗[𝑊] = [𝐷 ∩ 𝑊]𝑘 as a 𝑘-cycle on 𝐷, and
(b) if 𝑊 ⊂ 𝐷, then 𝑖∗[𝑊] = 𝑖′

∗(𝑐1(𝒪𝑋(𝐷)|𝑊) ∩ [𝑊]), where 𝑖′ ∶ 𝑊 → 𝐷 is the
induced closed immersion.

(2) For a general (𝑘 + 1)-cycle 𝛼 = ∑ 𝑛𝑗[𝑊𝑗] we set

𝑖∗𝛼 = ∑ 𝑛𝑗𝑖∗[𝑊𝑗]

(3) We denote 𝐷 ⋅ 𝛼 = 𝑖∗𝑖∗𝛼 the pushforward of the class to a class on 𝑋.
In fact, as we will see later, this Gysin homomorphism 𝑖∗ can be viewed as an example of
a non-flat pull back. Thus we will sometimes informally call the class 𝑖∗𝛼 the pullback of
the class 𝛼.
Lemma 29.28.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let 𝐷 be an effective Cartier divisor on 𝑋. Let 𝛼 be a (𝑘 + 1)-cycle on 𝑋. Then
𝐷 ⋅ 𝛼 = 𝑐1(𝒪𝑋(𝐷)) ∩ 𝛼 in 𝐴𝑘(𝑋).
Proof. Write 𝛼 = ∑ 𝑛𝑗[𝑊𝑗] where 𝑖𝑗 ∶ 𝑊𝑗 → 𝑋 are integral closed subschemes with
dim𝛿(𝑊𝑗) = 𝑘. Since 𝐷 is the zero scheme of the canonical section 1𝐷 of 𝒪𝑋(𝐷) we see
that 𝐷 ∩ 𝑊𝑗 is the zero scheme of the restriction 1𝐷|𝑊𝑗

. Hence for each 𝑗 such that 𝑊𝑗⊄𝐷
we have 𝑐1(𝒪𝑋(𝐷)) ∩ [𝑊𝑗] = [𝐷 ∩ 𝑊𝑗]𝑘 by Lemma 29.25.3. So we have

𝑐1(𝒪𝑋(𝐷)) ∩ 𝛼 = ∑𝑊𝑗⊄𝐷
𝑛𝑗[𝐷 ∩ 𝑊𝑗]𝑘 + ∑𝑊𝑗⊂𝐷

𝑛𝑗𝑖𝑗,∗(𝑐1(𝒪𝑋(𝐷)|𝑊𝑗
) ∩ [𝑊𝑗])

in 𝐴𝑘(𝑋) by Definition 29.25.1. The right hand side matches (termwise) the push forward
of the class 𝑖∗𝛼 on 𝐷 from Definition 29.28.1. Hence we win. �

The following lemma will be superseded later.
Lemma 29.28.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let 𝐷 be an effective Cartier divisor on 𝑋. Let 𝑊 ⊂ 𝑋 be a closed subscheme such that
𝐷′ = 𝑊 ∩ 𝐷 is an effective Cartier divisor on 𝑊.

𝐷′
𝑖′
//

𝑖″
��

𝑊

��
𝐷 𝑖 // 𝑋

For any (𝑘 + 1)-cycle on 𝑊 we have 𝑖∗𝛼 = (𝑖″)∗(𝑖′)∗𝛼 in 𝐴𝑘(𝐷).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02T8
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02T9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02TA
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Proof. Suppose 𝛼 = [𝑍] for some integral closed subscheme 𝑍 ⊂ 𝑊. In case 𝑍⊄𝐷 we
have 𝑍 ∩ 𝐷′ = 𝑍 ∩ 𝐷 scheme theoretically. Hence the equality holds as cycles. In case
𝑍 ⊂ 𝐷 we also have 𝑍 ⊂ 𝐷′ and the equality holds since 𝒪𝑋(𝐷)|𝑍 ≅ 𝒪𝑊(𝐷′)|𝑍 and the
definition of 𝑖∗ and (𝑖′)∗ in these cases. �

Lemma 29.28.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let 𝑖 ∶ 𝐷 → 𝑋 be an effective Cartier divisor on 𝑋.

(1) Let 𝑍 ⊂ 𝑋 be a closed subscheme such that dim𝛿(𝑍) ≤ 𝑘+1 and such that 𝐷∩𝑍
is an effective Cartier divisor on 𝑍. Then 𝑖∗[𝑍]𝑘+1 = [𝐷 ∩ 𝑍]𝑘.

(2) Let ℱ be a coherent sheaf on 𝑋 such that dim𝛿(Support(ℱ)) ≤ 𝑘 + 1 and 1𝐷 ∶
ℱ → ℱ ⊗𝒪𝑋

𝒪𝑋(𝐷) is injective. Then

𝑖∗[ℱ]𝑘+1 = [𝑖∗ℱ]𝑘

in 𝐴𝑘(𝐷).

Proof. Assume 𝑍 ⊂ 𝑋 as in (1). Then set ℱ = 𝒪𝑍. The assumption that 𝐷 ∩ 𝑍 is an
effective Cartier divisor is equivalent to the assumption that 1𝐷 ∶ ℱ → ℱ ⊗𝒪𝑋

𝒪𝑋(𝐷) is
injective. Moreover [𝑍]𝑘+1 = [ℱ]𝑘+1] and [𝐷 ∩ 𝑍]𝑘 = [𝒪𝐷∩𝑍]𝑘 = [𝑖∗ℱ]𝑘. See Lemma
29.10.3. Hence part (1) follows from part (2).

Write [ℱ]𝑘+1 = ∑ 𝑚𝑗[𝑊𝑗] with 𝑚𝑗 > 0 and pairwise distinct integral closed subschemes
𝑊𝑗 ⊂ 𝑋 of 𝛿-dimension 𝑘 + 1. The assumption that 1𝐷 ∶ ℱ → ℱ ⊗𝒪𝑋

𝒪𝑋(𝐷) is injective
implies that 𝑊𝑗⊄𝐷 for all 𝑗. By definition we see that

𝑖∗[ℱ]𝑘+1 = ∑[𝐷 ∩ 𝑊𝑗]𝑘.

We claim that

∑[𝐷 ∩ 𝑊𝑗]𝑘 = [𝑖∗ℱ]𝑘

as cycles. Let 𝑍 ⊂ 𝐷 be an integral closed subscheme of 𝛿-dimension 𝑘. Let 𝜉 ∈ 𝑍 be its
generic point. Let 𝐴 = 𝒪𝑋,𝜉. Let 𝑀 = ℱ𝜉. Let 𝑓 ∈ 𝐴 be an element generating the ideal
of 𝐷, i.e., such that 𝒪𝐷,𝜉 = 𝐴/𝑓𝐴. By assumption dim(𝑀) = 1, 𝑓 ∶ 𝑀 → 𝑀 is injective,
and length𝐴(𝑀/𝑓𝑀) < ∞. Moreover, length𝐴(𝑀/𝑓𝑀) is the coefficient of [𝑍] in [𝑖∗ℱ]𝑘.
On the other hand, let 𝔮1, … , 𝔮𝑡 be the minimal primes in the support of 𝑀. Then

∑ length𝐴𝔮𝑖
(𝑀𝔮𝑖

)ord𝐴/𝔮𝑖
(𝑓)

is the coefficient of [𝑍] in ∑[𝐷 ∩ 𝑊𝑗]𝑘. Hence we see the equality by Lemma 29.5.6. �

Lemma 29.28.5. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let {𝑖𝑗 ∶ 𝐷𝑗 → 𝑋}𝑗∈𝐽 be a locally finite collection of effective Cartier divisors on 𝑋. Let
𝑛𝑗 > 0, 𝑗 ∈ 𝐽. Set 𝐷 = ∑𝑗∈𝐽 𝑛𝑗𝐷𝑗, and denote 𝑖 ∶ 𝐷 → 𝑋 the inclusion morphism. Let
𝛼 ∈ 𝑍𝑘+1(𝑋). Then

𝑝 ∶ ∐𝑗∈𝐽
𝐷𝑗 ⟶ 𝐷

is proper and
𝑖∗𝛼 = 𝑝∗ (∑ 𝑛𝑗𝑖∗

𝑗 𝛼)
in 𝐴𝑘(𝐷).

Proof. The proof of this lemma is made a bit longer than expected by a subtlety concerning
infinite sums of rational equivalences. In the quasi-compact case the family 𝐷𝑗 is finite and
the result is altogether easy and a straightforward consequence of Lemmas 29.24.2 and
29.24.3 and the definitions.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02TB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02TC
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Themorphism 𝑝 is proper since the family {𝐷𝑗}𝑗∈𝐽 is locally finite. Write 𝛼 = ∑𝑎∈𝐴 𝑚𝑎[𝑊𝑎]
with 𝑊𝑎 ⊂ 𝑋 an integral closed subscheme of 𝛿-dimension 𝑘 + 1. Denote 𝑖𝑎 ∶ 𝑊𝑎 → 𝑋
the closed immersion. We assume that 𝑚𝑎≠0 for all 𝑎 ∈ 𝐴 such that {𝑊𝑎}𝑎∈𝐴 is locally
finite on 𝑋.

Observe that by Definition 29.28.1 the class 𝑖∗𝛼 is the class of a cycle ∑ 𝑚𝑎𝛽𝑎 for certain
𝛽𝑎 ∈ 𝑍𝑘(𝑊𝑎 ∩ 𝐷). Namely, if 𝑊𝑎⊄𝐷 then 𝛽𝑎 = [𝐷 ∩ 𝑊𝑎]𝑘 and if 𝑊𝑎 ⊂ 𝐷, then 𝛽𝑎 is a
cycle representing 𝑐1(𝒪𝑋(𝐷)) ∩ [𝑊𝑎].

For each 𝑎 ∈ 𝐴 write 𝐽 = 𝐽𝑎,1 ∐ 𝐽𝑎,2 ∐ 𝐽𝑎,3 where
(1) 𝑗 ∈ 𝐽𝑎,1 if and only if 𝑊𝑎 ∩ 𝐷𝑗 = ∅,
(2) 𝑗 ∈ 𝐽𝑎,2 if and only if 𝑊𝑎≠𝑊𝑎 ∩ 𝐷1≠∅, and
(3) 𝑗 ∈ 𝐽𝑎,3 if and only if 𝑊𝑎 ⊂ 𝐷𝑗.

Since the family {𝐷𝑗} is locally finite we see that 𝐽𝑎,3 is a finite set. For every 𝑎 ∈ 𝐴 and
𝑗 ∈ 𝐽 we choose a cycle 𝛽𝑎,𝑗 ∈ 𝑍𝑘(𝑊𝑎 ∩ 𝐷𝑗) as follows

(1) if 𝑗 ∈ 𝐽𝑎,1 we set 𝛽𝑎,𝑗 = 0,
(2) if 𝑗 ∈ 𝐽𝑎,2 we set 𝛽𝑎,𝑗 = [𝐷𝑗 ∩ 𝑊𝑎]𝑘, and
(3) if 𝑗 ∈ 𝐽𝑎,3 we choose 𝛽𝑎,𝑗 ∈ 𝑍𝑘(𝑊𝑎) representing 𝑐1(𝑖∗

𝑎𝒪𝑋(𝐷𝑗)) ∩ [𝑊𝑗].
We claim that

𝛽𝑎 ∼𝑟𝑎𝑡 ∑𝑗∈𝐽
𝑛𝑗𝛽𝑎,𝑗

in 𝐴𝑘(𝑊𝑎 ∩ 𝐷).

Case I: 𝑊𝑎⊄𝐷. In this case 𝐽𝑎,3 = ∅. Thus it suffices to show that [𝐷 ∩ 𝑊𝑎]𝑘 = ∑ 𝑛𝑗[𝐷𝑗 ∩
𝑊𝑎]𝑘 as cycles. This is Lemma 29.27.6.

Case II: 𝑊𝑎 ⊂ 𝐷. In this case 𝛽𝑎 is a cycle representing 𝑐1(𝑖∗
𝑎𝒪𝑋(𝐷)) ∩ [𝑊𝑎]. Write

𝐷 = 𝐷𝑎,1 + 𝐷𝑎,2 + 𝐷𝑎,3 with 𝐷𝑎,𝑠 = ∑𝑗∈𝐽𝑎,𝑠
𝑛𝑗𝐷𝑗. By Lemma 29.24.3 we have

𝑐1(𝑖∗
𝑎𝒪𝑋(𝐷)) ∩ [𝑊𝑎] = 𝑐1(𝑖∗

𝑎𝒪𝑋(𝐷𝑎,1)) ∩ [𝑊𝑎] + 𝑐1(𝑖∗
𝑎𝒪𝑋(𝐷𝑎,2)) ∩ [𝑊𝑎]

+𝑐1(𝑖∗
𝑎𝒪𝑋(𝐷𝑎,3)) ∩ [𝑊𝑎].

It is clear that the first term of the sum is zero. Since 𝐽𝑎,3 is finite we see that the last
term agrees with ∑𝑗∈𝐽𝑎,3

𝑛𝑗𝑐1(𝑖∗
𝑎ℒ𝑗) ∩ [𝑊𝑎], see Lemma 29.24.3. This is represented by

∑𝑗∈𝐽𝑎,3
𝑛𝑗𝛽𝑎,𝑗. Finally, by Case I we see that the middle term is represented by the cycle

∑𝑗∈𝐽𝑎,2
𝑛𝑗[𝐷𝑗 ∩ 𝑊𝑎]𝑘 = ∑𝑗∈𝐽𝑎,2

𝑛𝑗𝛽𝑎,𝑗. Whence the claim in this case.

At this point we are ready to finish the proof of the lemma. Namely, we have 𝑖∗𝐷 ∼𝑟𝑎𝑡
∑ 𝑚𝑎𝛽𝑎 by our choice of 𝛽𝑎. For each 𝑎 we have 𝛽𝑎 ∼𝑟𝑎𝑡 ∑𝑗 𝛽𝑎,𝑗 with the rational equiva-
lence taking place on 𝐷 ∩ 𝑊𝑎. Since the collection of closed subschemes 𝐷 ∩ 𝑊𝑎 is locally
finite on 𝐷, we see that also ∑ 𝑚𝑎𝛽𝑎 ∼𝑟𝑎𝑡 ∑𝑎,𝑗 𝑚𝑎𝛽𝑎,𝑗 on 𝐷! (See Remark 29.19.4.) Ok, and
now it is clear that ∑𝑎 𝑚𝑎𝛽𝑎,𝑗 (viewed as a cycle on 𝐷𝑗) represents 𝑖∗

𝑗 𝛼 and hence ∑𝑎,𝑗 𝑚𝑎𝛽𝑎,𝑗
represents 𝑝∗ ∑𝑗 𝑖∗

𝑗 𝛼 and we win. �

Lemma 29.28.6. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Assume 𝑋 integral and dim𝛿(𝑋) = 𝑛. Let 𝐷, 𝐷′ be effective Cartier divisors on 𝑋. Assume
dim𝛿(𝐷 ∩ 𝐷′) = 𝑛 − 2. Let 𝑖 ∶ 𝐷 → 𝑋, resp. 𝑖′ ∶ 𝐷′ → 𝑋 be the corresponding closed
immersions. Then

(1) there exists a cycle 𝛼 ∈ 𝑍𝑛−2(𝐷 ∩ 𝐷′) whose pushforward to 𝐷 represents
𝑖∗[𝐷′]𝑛−1 ∈ 𝐴𝑛−2(𝐷) and whose pushforward to 𝐷′ represents (𝑖′)∗[𝐷]𝑛−1 ∈
𝐴𝑛−2(𝐷′), and
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(2) we have
𝐷 ⋅ [𝐷′]𝑛−1 = 𝐷′ ⋅ [𝐷]𝑛−1

in 𝐴𝑛−2(𝑋).

Proof. Part (3) is a trivial consequence of parts (1) and (2). Because of symmetry we only
need to prove (1). Let us write [𝐷]𝑛−1 = ∑ 𝑛𝑎[𝑍𝑎] and [𝐷′]𝑛−1 = ∑ 𝑚𝑏[𝑍𝑏] with 𝑍𝑎 the ir-
reducible components of 𝐷 and [𝑍𝑏] the irreducible components of 𝐷′. According to Defi-
nition 29.28.1, we have 𝑖∗𝐷′ = ∑ 𝑚𝑏𝑖∗[𝑍𝑏] and (𝑖′)∗𝐷 = ∑ 𝑛𝑎(𝑖′)∗[𝑍𝑎]. By assumption,
none of the irreducible components 𝑍𝑏 is contained in 𝐷, and hence 𝑖∗[𝑍𝑏] = [𝑍𝑏 ∩ 𝐷]𝑛−2
by definition. Similarly (𝑖′)∗[𝑍𝑎] = [𝑍𝑎∩𝐷′]𝑛−2. Hence we are trying to prove the equality
of cycles

∑ 𝑛𝑎[𝑍𝑎 ∩ 𝐷′]𝑛−2 = ∑ 𝑚𝑏[𝑍𝑏 ∩ 𝐷]𝑛−2

which are indeed supported on 𝐷 ∩ 𝐷′. Let 𝑊 ⊂ 𝑋 be an integral closed subscheme with
dim𝛿(𝑊) = 𝑛 − 2. Let 𝜉 ∈ 𝑊 be its generic point. Set 𝑅 = 𝒪𝑋,𝜉. It is a Noetherian local
domain. Note that dim(𝑅) = 2. Let 𝑓 ∈ 𝑅, resp. 𝑓′ ∈ 𝑅 be an element defining the ideal of
𝐷, resp. 𝐷′. By assumption dim(𝑅/(𝑓, 𝑓′)) = 0. Let 𝔮′

1, … , 𝔮′
𝑡 ⊂ 𝑅 be the minimal primes

over (𝑓′), let 𝔮1, … , 𝔮𝑠 ⊂ 𝑅 be the minimal primes over (𝑓). The equality above comes
down to the equality

∑
𝑖=1,…,𝑠

length𝑅𝔮𝑖
(𝑅𝔮𝑖

/(𝑓))ord𝑅/𝔮𝑖
(𝑓′) = ∑

𝑗=1,…,𝑡
length𝑅𝔮𝑗

(𝑅𝔮′
𝑗
/(𝑓′))ord𝑅/𝔮𝑗

(𝑓).

By Lemma 29.5.5 applied with 𝑀 = 𝑅/(𝑓) the left hand side of this equation is equal to

length𝑅(𝑅/(𝑓, 𝑓′)) − length𝑅(Ker(𝑓′ ∶ 𝑅/(𝑓) → 𝑅/(𝑓)))

OK, and now we note that Ker(𝑓′ ∶ 𝑅/(𝑓) → 𝑅/(𝑓)) is canonically isomorphic to ((𝑓) ∩
(𝑓′))/(𝑓𝑓′) via the map 𝑥 mod (𝑓) ↦ 𝑓′𝑥 mod (𝑓𝑓′). Hence the left hand side is

length𝑅(𝑅/(𝑓, 𝑓′)) − length𝑅((𝑓) ∩ (𝑓′)/(𝑓𝑓′))

Since this is symmetric in 𝑓 and 𝑓′ we win. �

Lemma 29.28.7. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 integral and dim𝛿(𝑋) = 𝑛. Let {𝐷𝑗}𝑗∈𝐽 be a locally finite collection of
effective Cartier divisors on 𝑋. Let 𝑛𝑗, 𝑚𝑗 ≥ 0 be collections of nonnegative integers. Set
𝐷 = ∑ 𝑛𝑗𝐷𝑗 and 𝐷′ = ∑ 𝑚𝑗𝐷𝑗. Assume that dim𝛿(𝐷𝑗 ∩ 𝐷𝑗′) = 𝑛 − 2 for every 𝑗≠𝑗′. Then
𝐷 ⋅ [𝐷′]𝑛−1 = 𝐷′ ⋅ [𝐷]𝑛−1 in 𝐴𝑛−2(𝑋).

Proof. This lemma is a trivial consequence of Lemmas 29.27.6 and 29.28.6 in case the
sums are finite, e.g., if 𝑋 is quasi-compact. Hence we suggest the reader skip the proof.

Here is the proof in the general case. Let 𝑖𝑗 ∶ 𝐷𝑗 → 𝑋 be the closed immersions Let
𝑝 ∶ ∐ 𝐷𝑗 → 𝑋 denote coproduct of the morphisms 𝑖𝑗. Let {𝑍𝑎}𝑎∈𝐴 be the collection of
irreducible components of ⋃ 𝐷𝑗. For each 𝑗 we write

[𝐷𝑗]𝑛−1 = ∑ 𝑑𝑗,𝑎[𝑍𝑎].

By Lemma 29.27.6 we have

[𝐷]𝑛−1 = ∑ 𝑛𝑗𝑑𝑗,𝑎[𝑍𝑎], [𝐷′]𝑛−1 = ∑ 𝑚𝑗𝑑𝑗,𝑎[𝑍𝑎].

By Lemma 29.28.5 we have

𝐷 ⋅ [𝐷′]𝑛−1 = 𝑝∗ (∑ 𝑛𝑗𝑖∗
𝑗 [𝐷′]𝑛−1) , 𝐷′ ⋅ [𝐷]𝑛−1 = 𝑝∗ (∑ 𝑚𝑗′𝑖∗

𝑗′[𝐷]𝑛−1) .
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As in the definition of the Gysin homomorphisms (see Definition 29.28.1) we choose cycles
𝛽𝑎,𝑗 on 𝐷𝑗 ∩ 𝑍𝑎 representing 𝑖∗

𝑗 [𝑍𝑎]. (Note that in fact 𝛽𝑎,𝑗 = [𝐷𝑗 ∩ 𝑍𝑎]𝑛−2 if 𝑍𝑎 is not
contained in 𝐷𝑗, i.e., there is no choice in that case.) Now since 𝑝 is a closed immersion
when restricted to each of the 𝐷𝑗 we can (and we will) view 𝛽𝑎,𝑗 as a cycle on 𝑋. Plugging
in the formulas for [𝐷]𝑛−1 and [𝐷′]𝑛−1 obtained above we see that

𝐷 ⋅ [𝐷′]𝑛−1 = ∑𝑗,𝑗′,𝑎
𝑛𝑗𝑚𝑗′𝑑𝑗′,𝑎𝛽𝑎,𝑗, 𝐷′ ⋅ [𝐷]𝑛−1 = ∑𝑗,𝑗′,𝑎

𝑚𝑗′𝑛𝑗𝑑𝑗,𝑎𝛽𝑎,𝑗′.

Moreover, with the same conventions we also have

𝐷𝑗 ⋅ [𝐷𝑗′]𝑛−1 = ∑ 𝑑𝑗′,𝑎𝛽𝑎,𝑗.

In these terms Lemma 29.28.6 (see also its proof) says that for 𝑗≠𝑗′ the cycles ∑ 𝑑𝑗′,𝑎𝛽𝑎,𝑗
and ∑ 𝑑𝑗,𝑎𝛽𝑎,𝑗′ are equal as cycles! Hence we see that

𝐷 ⋅ [𝐷′]𝑛−1 = ∑𝑗,𝑗′,𝑎
𝑛𝑗𝑚𝑗′𝑑𝑗′,𝑎𝛽𝑎,𝑗

= ∑𝑗≠𝑗′ 𝑛𝑗𝑚𝑗′ (∑𝑎
𝑑𝑗′,𝑎𝛽𝑎,𝑗) + ∑𝑗,𝑎

𝑛𝑗𝑚𝑗𝑑𝑗,𝑎𝛽𝑎,𝑗

= ∑𝑗≠𝑗′ 𝑛𝑗𝑚𝑗′ (∑𝑎
𝑑𝑗,𝑎𝛽𝑎,𝑗′) + ∑𝑗,𝑎

𝑛𝑗𝑚𝑗𝑑𝑗,𝑎𝛽𝑎,𝑗

= ∑𝑗,𝑗′,𝑎
𝑚𝑗′𝑛𝑗𝑑𝑗,𝑎𝛽𝑎,𝑗′

= 𝐷′ ⋅ [𝐷]𝑛−1

and we win. �

Here is the key lemma of this chapter. A stronger version of this lemma asserts that 𝐷 ⋅
[𝐷′]𝑛−1 = 𝐷′ ⋅[𝐷]𝑛−1 holds in 𝐴𝑛−2(𝐷∩𝐷′) for suitable representatives of the dot products
involved. The first proof of the lemma together with Lemmas 29.28.5, 29.28.6, and 29.28.7
can be modified to show this (see [Ful98]). It is not so clear how to modify the second
proof to prove the refined version. An application of the refined version is a proof that the
Gysin homomorphism factors through rational equivalence. We will show this by another
method later.

Lemma 29.28.8. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Assume 𝑋 integral and dim𝛿(𝑋) = 𝑛. Let 𝐷, 𝐷′ be effective Cartier divisors on 𝑋. Then

𝐷 ⋅ [𝐷′]𝑛−1 = 𝐷′ ⋅ [𝐷]𝑛−1

in 𝐴𝑛−2(𝑋).

First proof of Lemma 29.28.8. First, let us prove this in case 𝑋 is quasi-compact. In this
case, apply Lemma 29.27.7 to 𝑋 and the two element set {𝐷, 𝐷′} of effective Cartier divi-
sors. Thus we get a proper morphism 𝑏 ∶ 𝑋′ → 𝑋, a finite collection of effective Cartier
divisors 𝐷′

𝑗 ⊂ 𝑋′ intersecting pairwise in codimension ≥ 2, with 𝑏−1(𝐷) = ∑ 𝑛𝑗𝐷′
𝑗, and

𝑏−1(𝐷′) = ∑ 𝑚𝑗𝐷′
𝑗. Note that 𝑏∗[𝑏−1(𝐷)]𝑛−1 = [𝐷]𝑛−1 in 𝑍𝑛−1(𝑋) and similarly for 𝐷′,

see Lemma 29.27.1. Hence, by Lemma 29.25.6 we have

𝐷 ⋅ [𝐷′]𝑛−1 = 𝑏∗ (𝑏−1(𝐷) ⋅ [𝑏−1(𝐷′)]𝑛−1)
in 𝐴𝑛−2(𝑋) and similarly for the other term. Hence the lemma follows from the equality
𝑏−1(𝐷) ⋅ [𝑏−1(𝐷′)]𝑛−1 = 𝑏−1(𝐷′) ⋅ [𝑏−1(𝐷)]𝑛−1 in 𝐴𝑛−2(𝑋′) of Lemma 29.28.7.
Note that in the proof above, each referenced lemma works also in the general case (when
𝑋 is not assumed quasi-compact). The only minor change in the general case is that the
morphism 𝑏 ∶ 𝑈′ → 𝑈we get from applying Lemma 29.27.7 has as its target an open𝑈 ⊂ 𝑋
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whose complement has codimension ≥ 3. Hence by Lemma 29.19.2 we see that 𝐴𝑛−2(𝑈) =
𝐴𝑛−2(𝑋) and after replacing 𝑋 by 𝑈 the rest of the proof goes through unchanged. �

Second proof of Lemma 29.28.8. Let ℐ = 𝒪𝑋(−𝐷) and ℐ′ = 𝒪𝑋(−𝐷′) be the invertible
ideal sheaves of 𝐷 and 𝐷′. We denote ℐ𝐷′ = ℐ ⊗𝒪𝑋

𝒪𝐷′ and ℐ′
𝐷 = ℐ′ ⊗𝒪𝑋

𝒪𝐷. We can
restrict the inclusion map ℐ → 𝒪𝑋 to 𝐷′ to get a map

𝜑 ∶ ℐ𝐷′ ⟶ 𝒪𝐷′

and similarly
𝜓 ∶ ℐ′

𝐷 ⟶ 𝒪𝐷
It is clear that

Coker(𝜑) ≅ 𝒪𝐷∩𝐷′ ≅ Coker(𝜓)
and

Ker(𝜑) ≅ ℐ ∩ ℐ′

ℐℐ′ ≅ Ker(𝜓).

Hence we see that
𝛾 = [ℐ𝐷′] − [𝒪𝐷′] = [ℐ′

𝐷] − [𝒪𝐷]
in 𝐾0(Coh≤𝑛−1(𝑋)). On the other hand it is clear that

[ℐ′
𝐷]𝑛−1 = [𝐷]𝑛−1, [ℐ𝐷′]𝑛−1 = [𝐷′]𝑛−1.

and that
𝒪𝑋(𝐷′) ⊗ ℐ′

𝐷 = 𝒪𝐷, 𝒪𝑋(𝐷) ⊗ ℐ𝐷′ = 𝒪𝐷′.
By Lemma 29.26.2 (applied two times) this means that the element 𝛾 is an element of
𝐵𝑛−2(𝑋), and maps to both 𝑐1(𝒪𝑋(𝐷′)) ∩ [𝐷]𝑛−1 and to 𝑐1(𝒪𝑋(𝐷)) ∩ [𝐷′]𝑛−1 and we win
(since the map 𝐵𝑛−2(𝑋) → 𝐴𝑛−2(𝑋) is well defined -- which is the key to this proof). �

29.29. Commutativity

At this point we can start using the material above and start provingmore interesting results.

Lemma 29.29.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 integral and dim𝛿(𝑋) = 𝑛. Let ℒ, 𝒩 be invertible on 𝑋. Choose a nonzero
meromorphic section 𝑠 of ℒ and a nonzero meromorphic section 𝑡 of 𝒩. Set 𝛼 = divℒ(𝑠)
and 𝛽 = div𝒩(𝑡). Then

𝑐1(𝒩) ∩ 𝛼 = 𝑐1(ℒ) ∩ 𝛽
in 𝐴𝑛−2(𝑋).

Proof. By Lemma 29.27.2 (applied twice) there exists a proper morphism 𝜋 ∶ 𝑋′ → 𝑋
and effective Cartier divisors 𝐷1, 𝐸1, 𝐷2, 𝐸2 on 𝑋′ such that

𝑏∗ℒ = 𝒪𝑋′(𝐷1 − 𝐸1), 𝑏∗𝒩 = 𝒪𝑋′(𝐷2 − 𝐸2),

and such that

𝛼 = 𝜋∗([𝐷1]𝑛−1 − [𝐸1]𝑛−1), 𝛽 = 𝜋∗([𝐷2]𝑛−1 − [𝐸2]𝑛−1).

By the projection formula of Lemma 29.25.6 and the additivity of Lemma 29.25.2 it is
enough to show the equality

𝑐1(𝒪𝑋′(𝐷1)) ∩ [𝐷2]𝑛−1 = 𝑐1(𝒪𝑋′(𝐷2)) ∩ [𝐷1]𝑛−1

and three other similar equalities involving 𝐷𝑖 and 𝐸𝑗. By Lemma 29.28.2 this is the same
as showing that 𝐷1 ⋅[𝐷2]𝑛−1 = 𝐷2 ⋅[𝐷1]𝑛−1 and so on. Thus the result follows from Lemma
29.28.8. �
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Lemma 29.29.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Letℒ be invertible on𝑋. The operation 𝛼 ↦ 𝑐1(ℒ)∩𝛼 factors through rational equivalence
to give an operation

𝑐1(ℒ) ∩ − ∶ 𝐴𝑘+1(𝑋) → 𝐴𝑘(𝑋)

Proof. Let 𝛼 ∈ 𝑍𝑘+1(𝑋), and 𝛼 ∼𝑟𝑎𝑡 0. We have to show that 𝑐1(ℒ) ∩ 𝛼 as defined in
Definition 29.25.1 is zero. By Definition 29.19.1 there exists a locally finite family {𝑊𝑗}
of integral closed subschemes with dim𝛿(𝑊𝑗) = 𝑘 + 2 and rational functions 𝑓𝑗 ∈ 𝑅(𝑊𝑗)∗

such that
𝛼 = ∑(𝑖𝑗)∗div𝑊𝑗

(𝑓𝑗)

Note that 𝑝 ∶ ∐ 𝑊𝑗 → 𝑋 is a proper morphism, and hence 𝛼 = 𝑝∗𝛼′ where 𝛼′ ∈
𝑍𝑘+1(∐ 𝑊𝑗) is the sum of the principal divisors div𝑊𝑗

(𝑓𝑗). By the projection formula
(Lemma 29.25.6) we have 𝑐1(ℒ) ∩ 𝛼 = 𝑝∗(𝑐1(𝑝∗ℒ) ∩ 𝛼′). Hence it suffices to show that
each 𝑐1(ℒ|𝑊𝑗

) ∩ div𝑊𝑗
(𝑓𝑗) is zero. In other words we may assume that 𝑋 is integral and

𝛼 = div𝑋(𝑓) for some 𝑓 ∈ 𝑅(𝑋)∗.

Assume 𝑋 is integral and 𝛼 = div𝑋(𝑓) for some 𝑓 ∈ 𝑅(𝑋)∗. We can think of 𝑓 as a regular
meromorphic section of the invertible sheaf 𝒩 = 𝒪𝑋. Choose a meromorphic section 𝑠 of
ℒ and denote 𝛽 = divℒ(𝑠). By Lemma 29.29.1 we conclude that

𝑐1(ℒ) ∩ 𝛼 = 𝑐1(𝒪𝑋) ∩ 𝛽.

However, by Lemma 29.25.2 we see that the right hand side is zero in 𝐴𝑘(𝑋) as desired. �

For any integer 𝑠 ≥ 0 we will denote

𝑐1(ℒ)𝑠 ∩ − ∶ 𝐴𝑘+𝑠(𝑋) → 𝐴𝑘(𝑋)

the 𝑠-fold iterate of the operation 𝑐1(ℒ) ∩ −. This makes sense by the lemma above.

Lemma 29.29.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℒ, 𝒩 be invertible on 𝑋. For any 𝛼 ∈ 𝐴𝑘+2(𝑋) we have

𝑐1(ℒ) ∩ 𝑐1(𝒩) ∩ 𝛼 = 𝑐1(𝒩) ∩ 𝑐1(ℒ) ∩ 𝛼

as elements of 𝐴𝑘(𝑋).

Proof. Write 𝛼 = ∑ 𝑚𝑗[𝑍𝑗] for some lolcally finite collection of integral closed sub-
schemes 𝑍𝑗 ⊂ 𝑋 with dim𝛿(𝑍𝑗) = 𝑘 + 2. Consider the proper morphism 𝑝 ∶ ∐ 𝑍𝑗 → 𝑋.
Set 𝛼′ = ∑ 𝑚𝑗[𝑍𝑗] as a (𝑘 + 2)-cycle on ∐ 𝑍𝑗. By several applications of Lemma 29.25.6
we see that 𝑐1(ℒ) ∩ 𝑐1(𝒩) ∩ 𝛼 = 𝑝∗(𝑐1(𝑝∗ℒ) ∩ 𝑐1(𝑝∗𝒩) ∩ 𝛼′) and 𝑐1(𝒩) ∩ 𝑐1(ℒ) ∩ 𝛼 =
𝑝∗(𝑐1(𝑝∗𝒩) ∩ 𝑐1(𝑝∗ℒ) ∩ 𝛼′). Hence it suffices to prove the formula in case 𝑋 is integral and
𝛼 = [𝑋]. In this case the result follows from Lemma 29.29.1 and the definitions. �

29.30. Gysin homomorphisms

We want to show the Gysin homomorphisms factor through rational equivalence. One
method (see [Ful98]) is to prove a more precise version of the key Lemma 29.28.8 keeping
track of supports. Having obtained this one can find anlogues of the lemmas of Section
29.29 for the Gysin homomorphism and get the result. We will use another method.

Lemma 29.30.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let 𝑋 be integral and 𝑛 = dim𝛿(𝑋). Let 𝑎 ∈ Γ(𝑋, 𝒪𝑋) be a nonzero function. Let
𝑖 ∶ 𝐷 = 𝑍(𝑎) → 𝑋 be the closed immersion of the zero scheme of 𝑎. Let 𝑓 ∈ 𝑅(𝑋)∗. In
this case 𝑖∗div𝑋(𝑓) = 0 in 𝐴𝑛−2(𝐷).
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Proof. Write div𝑋(𝑓) = ∑ 𝑛𝑗[𝑍𝑗] for some integral closed subschemes𝑍𝑗 ⊂ 𝑋 of 𝛿-dimension
𝑛−1. We may assume that the family {𝑍𝑗}𝑗∈𝐽 is locally finite and that 𝑓 ∈ Γ(𝑈, 𝒪∗

𝑈) where
𝑈 = 𝑋 ⧵ ⋃ 𝑍𝑗 (see Lemma 29.16.3 and its proof).

Write 𝐽 = 𝐽1 ∐ 𝐽2 where 𝐽1 = {𝑗 ∈ 𝐽 ∣ 𝑍𝑗 ⊂ 𝐷}. Note that 𝒪𝑋(𝐷) ≅ 𝒪𝑋 because 𝑎−1

is a trivializing global section. Hence by Definition 29.28.1 of 𝑖∗ we see that 𝑖∗div𝑋(𝑓) is
represented by

∑𝑗∈𝐽2
𝑛𝑗[𝐷 ∩ 𝑍𝑗]𝑛−2.

Namely, the terms involving 𝑐1(𝒪𝑋(𝐷)|𝑍𝑗
) ∩ 𝑍𝑗 may be dropped since 𝑐1(𝒪) ∩ − is the zero

operation anyway (see Lemma 29.25.2).

For each 𝑗 let 𝜉𝑗 ∈ 𝑍𝑗 be its generic point. Let 𝐵𝑗 = 𝒪𝑋,𝜉𝑗
, which has residue field 𝜅𝑗 =

𝜅(𝜉𝑗) = 𝑅(𝑍𝑗). For 𝑗 ∈ 𝐽1, let
𝑓𝑗 = 𝑑𝐵𝑗

(𝑓, 𝑎)
be the tame symbol, see Definition 29.4.5. We claim that we have the following equality of
cycles

∑𝑗∈𝐽2
𝑛𝑗[𝐷 ∩ 𝑍𝑗]𝑛−2 = ∑𝑗∈𝐽1

(𝑍𝑗 → 𝐷)∗div𝑍𝑗
(𝑓𝑗)

on 𝐷. Indeed, note that [𝐷 ∩ 𝑍𝑗]𝑛−2 = div𝑍𝑗
(𝑎). Hence 𝑛𝑗[𝐷 ∩ 𝑍𝑗]𝑛−2 = div𝑍𝑗

(𝑎𝑛𝑗). Since
𝑛𝑗 = ord𝐵𝑗

(𝑓) we see that in fact also 𝑛𝑗[𝐷 ∩ 𝑍𝑗]𝑛−2 = div𝑍𝑗
(𝑑𝐵𝑗

(𝑎, 𝑓)), as 𝑎 is a unit in 𝐵𝑗

see Lemma 29.4.6. Note that 𝑑𝐵𝑗
(𝑓, 𝑎) = 𝑑𝐵𝑗

(𝑎, 𝑓)−1, see Lemma 29.4.4. Hence altogether
we are trying to show that

∑𝑗∈𝐽
(𝑍𝑗 → 𝐷)∗div𝑍𝑗

(𝑑𝐵𝑗
(𝑎, 𝑓)) = 0

as an (𝑛 − 2)-cycle. Consider any codimension 2 integral closed subscheme 𝑊 ⊂ 𝑋 with
generic point 𝜁 ∈ 𝑋. Set 𝐴 = 𝒪𝑋,𝜁. Applying Lemma 29.6.1 to (𝐴, 𝑎, 𝑓) we see that the
coefficient of [𝑊] in the expression above is zero as desired. �

Lemma 29.30.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let 𝑋 be integral and 𝑛 = dim𝛿(𝑋). Let 𝑖 ∶ 𝐷 → 𝑋 be an effective Cartier divisor. Let
𝑓 ∈ 𝑅(𝑋)∗. In this case 𝑖∗div𝑋(𝑓) = 0 in 𝐴𝑛−2(𝐷).

Proof. This proof is a repeat of the proof of Lemma 29.30.1. So make sure you've read
that one first.

Write div𝑋(𝑓) = ∑ 𝑛𝑗[𝑍𝑗] for some integral closed subschemes 𝑍𝑗 ⊂ 𝑋 of 𝛿-dimension
𝑛−1. We may assume that the family {𝑍𝑗}𝑗∈𝐽 is locally finite and that 𝑓 ∈ Γ(𝑈, 𝒪∗

𝑈) where
𝑈 = 𝑋 ⧵ ⋃ 𝑍𝑗 (see Lemma 29.16.3 and its proof).

Write 𝐽 = 𝐽1 ∐ 𝐽2 where 𝐽1 = {𝑗 ∈ 𝐽 ∣ 𝑍𝑗 ⊂ 𝐷}. For each 𝑗 let 𝜉𝑗 ∈ 𝑍𝑗 be its generic
point. Let us write ℒ = 𝒪𝑋(𝐷). Choose ̃𝑠𝑗 ∈ ℒ𝜉𝑗

a generator. Denote 𝑠𝑗 ∈ ℒ𝜉𝑗
⊗ 𝜅(𝜉𝑗)

the corresponding nonzero meromorphic section of ℒ|𝑍𝑗
. Then by Definition 29.28.1 of 𝑖∗

we see that 𝑖∗div𝑋(𝑓) is represented by the cycle

∑𝑗∈𝐽2
𝑛𝑗[𝐷 ∩ 𝑍𝑗]𝑛−2 + ∑𝑗∈𝐽2

𝑛𝑗divℒ|𝑍𝑗
(𝑠𝑗)

on 𝐷. Our goal is to show that this is rationally equivalent to zero on 𝐷.

Let 𝐵𝑗 = 𝒪𝑋,𝜉𝑗
, which has residue field 𝜅𝑗 = 𝜅(𝜉𝑗) = 𝑅(𝑍𝑗). Write 𝑠 = 𝑎𝑗 ̃𝑠𝑗 for some

𝑎𝑗 ∈ 𝐵𝑗. For 𝑗 ∈ 𝐽1 let
𝑓𝑗 = 𝑑𝐵𝑗

(𝑓, 𝑎𝑗) ∈ 𝜅∗
𝑗 = 𝑅(𝑍𝑗)∗
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be the tame symbol, see Definition 29.4.5. We claim that we have the following equality of
cycles

∑𝑗∈𝐽2
𝑛𝑗[𝐷 ∩ 𝑍𝑗]𝑛−2 + ∑𝑗∈𝐽2

𝑛𝑗divℒ|𝑍𝑗
(𝑠𝑗) = ∑𝑗∈𝐽1

(𝑍𝑗 → 𝐷)∗div𝑍𝑗
(𝑓𝑗)

on 𝐷. This will clearly prove the lemma.

Note that for 𝑗 ∈ 𝐽2 we have [𝐷 ∩ 𝑍𝑗]𝑛−2 = divℒ|𝑍𝑗
(𝑠|𝑍𝑗

). Since 𝑠|𝑍𝑗
= 𝑎𝑗|𝑍𝑗

𝑠𝑗 we see
that [𝐷 ∩ 𝑍𝑗]𝑛−2 = divℒ|𝑍𝑗

(𝑠𝑗) + div𝑍𝑗
(𝑎𝑗|𝑍𝑗

). Hence, still for 𝑗 ∈ 𝐽2, we have

𝑛𝑗[𝐷 ∩ 𝑍𝑗]𝑛−2 = 𝑛𝑗divℒ|𝑍𝑗
(𝑠𝑗) + div𝑍𝑗

((𝑎𝑗|𝑍𝑗
)𝑛𝑗)

Since 𝑛𝑗 = ord𝐵𝑗
(𝑓) we see that div𝑍𝑗

((𝑎𝑗|𝑍𝑗
)𝑛𝑗) = div𝑍𝑗

(𝑑𝐵𝑗
(𝑎𝑗, 𝑓)), as 𝑎𝑗 is a unit in 𝐵𝑗

(since 𝑗 ∈ 𝐽2), see Lemma 29.4.6. Note that 𝑑𝐵𝑗
(𝑓, 𝑎𝑗) = 𝑑𝐵𝑗

(𝑎𝑗, 𝑓)−1, see Lemma 29.4.4.
Hence altogether we are trying to show that

(29.30.2.1) ∑𝑗∈𝐽
𝑛𝑗divℒ|𝑍𝑗

(𝑠𝑗) = ∑𝑗∈𝐽
(𝑍𝑗 → 𝐷)∗div𝑍𝑗

(𝑑𝐵𝑗
(𝑎𝑗, 𝑓))

as an (𝑛 − 2)-cycle.

Consider any codimension 2 integral closed subscheme 𝑊 ⊂ 𝑋 with generic point 𝜁 ∈ 𝑋.
Set 𝐴 = 𝒪𝑋,𝜁. Choose a generator 𝑠𝜁 ∈ ℒ𝜁. For those 𝑗 such that 𝜁 ∈ 𝑍𝑗 we may write
̃𝑠𝑗 = 𝑏𝑗𝑠𝜁 with 𝑏𝑗 ∈ 𝐵∗

𝑗 . We may also write 𝑠 = 𝑎𝜁𝑠𝜁 for some 𝑎𝜁 ∈ 𝐴. Then we see that
𝑎𝑗 = 𝑏𝑗𝑎𝜁. The coefficient of [𝑊] on the right hand side of Equation (29.30.2.1) is

∑𝜁∈𝑍𝑗
𝑛𝑗ord𝐴/𝔮𝑗

(𝑏𝑗).

where 𝔮𝑗 ⊂ 𝐴 is the height one prime corresponding to 𝑍𝑗. Note that 𝐵𝑗 = 𝐴𝔮𝑗
in this case.

The coefficient of [𝑊] on the left hand side of Equation (29.30.2.1) is

∑𝜁∈𝑍𝑗
ord𝐴/𝔮𝑗

(𝑑𝐴𝔮𝑗
(𝑏𝑗𝑎𝜁, 𝑓)).

Since 𝑏𝑗 is a unit, and 𝑛𝑗 = ord𝐴𝔮𝑗
(𝑓) we see that 𝑑𝐴𝔮𝑗

(𝑏𝑗𝑎𝜁, 𝑓) = 𝑏𝑗
𝑛𝑗𝑑𝐴𝔮𝑗

(𝑎𝜁, 𝑓) by Lemmas
29.4.4 and 29.4.6. By additivity of ord we see that it suffices to prove

0 = ∑𝜁∈𝑍𝑗
ord𝐴/𝔮𝑗

(𝑑𝐴𝔮𝑗
(𝑎𝜁, 𝑓))

which is Lemma 29.6.1. �

Lemma 29.30.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let 𝑖 ∶ 𝐷 → 𝑋 be an effective Cartier divisor on 𝑋. The Gysin homomorphism factors
through rational equivalence to give a map 𝑖∗ ∶ 𝐴𝑘+1(𝑋) → 𝐴𝑘(𝐷).

Proof. Let 𝛼 ∈ 𝑍𝑘+1(𝑋) and assume that 𝛼 ∼𝑟𝑎𝑡 0. This means there exists a locally
finite collection of integral closed subschemes 𝑊𝑗 ⊂ 𝑋 of 𝛿-dimension 𝑘 + 2 and 𝑓𝑗 ∈
𝑅(𝑊𝑗)∗ such that 𝛼 = ∑ 𝑖𝑗,∗div𝑊𝑗

(𝑓𝑗). By construction of the map 𝑖∗ we see that 𝑖∗𝛼 =
∑ 𝑖∗𝑖𝑗,∗div𝑊𝑗

(𝑓𝑗) where each cycle 𝑖∗𝑖𝑗,∗div𝑊𝑗
(𝑓𝑗) is supported on 𝐷 ∩ 𝑊𝑗. If we can show

that each 𝑖∗𝑖𝑗,∗div𝑊𝑗
(𝑓𝑗) is rationally equivalent on 𝑊𝑗 ∩𝐷, then we see that 𝑖∗𝛼 ∼𝑟𝑎𝑡 0 (this

is clear if the sum is finite, in general see Remark 29.19.4).

Pick an index 𝑗. If 𝑊𝑗 ⊂ 𝐷, then we see that 𝑖∗𝑖𝑗,∗div𝑊𝑗
(𝑓𝑗) is simply equal to

𝑖′
𝑗,∗𝑐1(𝒪𝑋(𝐷)|𝑊𝑗

) ∩ div𝑊𝑗
(𝑓𝑗)
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where 𝑖′
𝑗 ∶ 𝑊𝑗 → 𝐷 is the inclusion map. This is rationally equivalent to zero by Lemma

29.29.2. If 𝑊𝑗⊄𝐷, then we see that 𝑖∗𝑖𝑗,∗div𝑊𝑗
(𝑓𝑗) is simply equal to

(𝑖′)∗div𝑊𝑗
(𝑓𝑗)

where 𝑖′ ∶ 𝐷 ∩ 𝑊𝑗 → 𝑊𝑗 is the corresponding closed immersion (see Lemma 29.28.3).
Hence in this case Lemma 29.30.2 applies, and we win. �

29.31. Relative effective Cartier divisors

Lemma 29.31.1. Let 𝐴 → 𝐵 be a ring map. Let 𝑓 ∈ 𝐵. Assume that
(1) 𝐴 → 𝐵 is flat,
(2) 𝑓 is a nonzero divisor, and
(3) 𝐴 → 𝐵/𝑓𝐵 is flat.

Then for every ideal 𝐼 ⊂ 𝐴 the map 𝑓 ∶ 𝐵/𝐼𝐵 → 𝐵/𝐼𝐵 is injective.

Proof. Note that 𝐼𝐵 = 𝐼 ⊗𝐴 𝐵 and 𝐼(𝐵/𝑓𝐵) = 𝐼 ⊗𝐴 𝐵/𝑓𝐵 by the flatness of 𝐵 and 𝐵/𝑓𝐵
over 𝐴. In particular 𝐼𝐵/𝑓𝐼𝐵 ≅ 𝐼 ⊗𝐴 𝐵/𝑓𝐵 maps injectively into 𝐵/𝑓𝐵. Hence the result
follows from the snake lemma applied to the diagram

0 // 𝐼 ⊗𝐴 𝐵 //

𝑓
��

𝐵 //

𝑓
��

𝐵/𝐼𝐵 //

𝑓
��

0

0 // 𝐼 ⊗𝐴 𝐵 // 𝐵 // 𝐵/𝐼𝐵 // 0

with exact rows. �

Lemma 29.31.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑝 ∶ 𝑋 → 𝑌 be a flat morphism of relative dimension 𝑟. Let 𝑖 ∶ 𝐷 → 𝑋 be an effective
Cartier divisor with the property that 𝑝|𝐷 ∶ 𝐷 → 𝑌 is flat of relative dimension 𝑟 − 1. Let
ℒ = 𝒪𝑋(𝐷). For any 𝛼 ∈ 𝐴𝑘+1(𝑌) we have

𝑖∗𝑝∗𝛼 = (𝑝|𝐷)∗𝛼

in 𝐴𝑘+𝑟(𝐷) and
𝑐1(ℒ) ∩ 𝑝∗𝛼 = 𝑖∗((𝑝|𝐷)∗𝛼)

in 𝐴𝑘+𝑟(𝑋).

Proof. Let 𝑊 ⊂ 𝑌 be an integral closed subvariety of 𝛿-dimension 𝑘 + 1. By Lemma
29.31.1 we see that 𝐷 ∩ 𝑝−1𝑊 is an effective Cartier divisor on 𝑝−1𝑊. By Lemma 29.28.4
we see that 𝑖∗[𝑝−1𝑊]𝑘+𝑟+1 = [𝐷 ∩ 𝑊]𝑘+𝑟 = [(𝑝|𝐷)−1(𝑊)]𝑘+𝑟. Since by definition 𝑝∗[𝑊] =
[𝑝−1𝑊]𝑘+𝑟+1 and (𝑝|𝐷)∗[𝑊] = [(𝑝|𝐷)−1(𝑊)]𝑘+𝑟 we see we have equality of cycles. Hence
if 𝛼 = ∑ 𝑚𝑗[𝑊𝑗], then we get 𝑖∗𝛼 = ∑ 𝑚𝑗𝑖∗[𝑊𝑗] = ∑ 𝑚𝑗(𝑝|𝐷)∗[𝑊𝑗] as cycles. This proves
then first equality. To deduce the second from the first apply Lemma 29.28.2. �

29.32. Affine bundles

Lemma 29.32.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat morphism of relative dimension 𝑟. Assume that for every 𝑦 ∈ 𝑌,
there exists an open neighbourhood 𝑈 ⊂ 𝑌 such that 𝑓|𝑓−1(𝑈) ∶ 𝑓−1(𝑈) → 𝑈 is identified
with the morphism 𝑈 × 𝐀𝑟 → 𝑈. Then 𝑓∗ ∶ 𝐴𝑘(𝑌) → 𝐴𝑘+𝑟(𝑋) is surjective for all 𝑘 ∈ 𝐙.
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Proof. Let 𝛼 ∈ 𝐴𝑘+𝑟(𝑋). Write 𝛼 = ∑ 𝑚𝑗[𝑊𝑗] with 𝑚𝑗≠0 and 𝑊𝑗 pairwise distinct integral
closed subschemes of 𝛿-dimension 𝑘 + 𝑟. Then the family {𝑊𝑗} is locally finite in 𝑋. For
any quasi-compact open 𝑉 ⊂ 𝑌 we see that 𝑓−1(𝑉) ∩ 𝑊𝑗 is nonempty only for finitely many
𝑗. Hence the collection 𝑍𝑗 = 𝑓(𝑊𝑗) of closures of images is a locally finite collection of
integral closed subschemes of 𝑌.

Consider the fibre product diagrams

𝑓−1(𝑍𝑗) //

𝑓𝑗

��

𝑋

𝑓
��

𝑍𝑗
// 𝑌

Suppose that [𝑊𝑗] ∈ 𝑍𝑘+𝑟(𝑓−1(𝑍𝑗)) is rationally equivalent to 𝑓∗
𝑗 𝛽𝑗 for some 𝑘-cycle 𝛽𝑗 ∈

𝐴𝑘(𝑍𝑗). Then 𝛽 = ∑ 𝑚𝑗𝛽𝑗 will be a 𝑘-cycle on 𝑌 and 𝑓∗𝛽 = ∑ 𝑚𝑗𝑓∗
𝑗 𝛽𝑗 will be rationally

equivalent to 𝛼 (see Remark 29.19.4). This reduces us to the case 𝑌 integral, and 𝛼 = [𝑊]
for some integral closed subscheme of 𝑋 dominating 𝑌. In particular we may assume that
𝑑 = dim𝛿(𝑌) < ∞.

Hence we can use induction on 𝑑 = dim𝛿(𝑌). If 𝑑 < 𝑘, then 𝐴𝑘+𝑟(𝑋) = 0 and the lemma
holds. By assumption there exists a dense open 𝑉 ⊂ 𝑌 such that 𝑓−1(𝑉) ≅ 𝑉 × 𝐀𝑟 as
schemes over 𝑉. Suppose that we can show that 𝛼|𝑓−1(𝑉) = 𝑓∗𝛽 for some 𝛽 ∈ 𝑍𝑘(𝑉).
By Lemma 29.14.2 we see that 𝛽 = 𝛽′|𝑉 for some 𝛽′ ∈ 𝑍𝑘(𝑌). By the exact sequence
𝐴𝑘(𝑓−1(𝑌 ⧵ 𝑉)) → 𝐴𝑘(𝑋) → 𝐴𝑘(𝑓−1(𝑉)) of Lemma 29.19.2 we see that 𝛼 − 𝑓∗𝛽′ comes
from a cycle 𝛼′ ∈ 𝐴𝑘+𝑟(𝑓−1(𝑌 ⧵ 𝑉)). Since dim𝛿(𝑌 ⧵ 𝑉) < 𝑑 we win by induction on 𝑑.

Thus we may assume that 𝑋 = 𝑌 × 𝐀𝑟. In this case we can factor 𝑓 as

𝑋 = 𝑌 × 𝐀𝑟 → 𝑌 × 𝐀𝑟−1 → … → 𝑌 × 𝐀1 → 𝑌.

Hence it suffices to do the case 𝑟 = 1. By the argument in the second paragraph of the proof
we are reduced to the case 𝛼 = [𝑊], 𝑌 integral, and 𝑊 → 𝑌 dominant. Again we can do
induction on 𝑑 = dim𝛿(𝑌). If 𝑊 = 𝑌×𝐀1, then [𝑊] = 𝑓∗[𝑌]. Lastly, 𝑊 ⊂ 𝑌×𝐀1 is a proper
inclusion, then 𝑊 → 𝑌 induces a finite field extension 𝑅(𝑌) ⊂ 𝑅(𝑊). Let 𝑃(𝑇) ∈ 𝑅(𝑌)[𝑇]
be the monic irreducible polynomial such that the generic fibre of 𝑊 → 𝑌 is cut out by 𝑃 in
𝐀1

𝑅(𝑌). Let 𝑉 ⊂ 𝑌 be a nonempty open such that 𝑃 ∈ Γ(𝑉, 𝒪𝑌)[𝑇], and such that 𝑊 ∩ 𝑓−1(𝑉)
is still cut out by 𝑃. Then we see that 𝛼|𝑓−1(𝑉) ∼𝑟𝑎𝑡 0 and hence 𝛼 ∼𝑟𝑎𝑡 𝛼′ for some cycle 𝛼′

on (𝑌 ⧵ 𝑉) × 𝐀1. By induction on the dimension we win. �

Remark 29.32.2. We will see later (Lemma 29.33.3) that if 𝑋 is a vectorbundle over 𝑌
then the pullback map 𝐴𝑘(𝑌) → 𝐴𝑘+𝑟(𝑋) is an isomorphism. Is this true in general?

29.33. Projective space bundle formula

Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆. Consider a finite
locally free 𝒪𝑋-module ℰ of rank 𝑟. Our convention is that the projective bundle associated
to ℰ is the morphism

𝐏(ℰ) = Proj
𝑋

(Sym∗(ℰ)) 𝜋 // 𝑋

over 𝑋 with 𝒪𝐏(ℰ)(1) normalized so that 𝜋∗(𝒪𝐏(ℰ)(1)) = ℰ. In particular there is a surjection
𝜋∗ℰ → 𝒪𝐏(ℰ)(1). We will say informally ``let (𝜋 ∶ 𝑃 → 𝑋, 𝒪𝑃(1)) be the projective bundle
associated to ℰ'' to denote the situation where 𝑃 = 𝐏(ℰ) and 𝒪𝑃(1) = 𝒪𝐏(ℰ)(1).
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Lemma 29.33.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let ℰ be a finite locally free 𝒪𝑋-module ℰ of rank 𝑟. Let (𝜋 ∶ 𝑃 → 𝑋, 𝒪𝑃(1)) be the
projective bundle associated to ℰ. For any 𝛼 ∈ 𝐴𝑘(𝑋) we the element

𝜋∗ (𝑐1(𝒪𝑃(1))𝑠 ∩ 𝜋∗𝛼) ∈ 𝐴𝑘+𝑟−1−𝑠(𝑋)
is 0 if 𝑠 < 𝑟 − 1 and is equal to 𝛼 when 𝑠 = 𝑟 − 1.

Proof. Let 𝑍 ⊂ 𝑋 be an integral closed subscheme of 𝛿-dimension 𝑘. Note that 𝜋∗[𝑍] =
[𝜋−1(𝑍)] as 𝜋−1(𝑍) is integral of 𝛿-dimension 𝑟 − 1. If 𝑠 < 𝑟 − 1, then by construction
𝑐1(𝒪𝑃(1))𝑠 ∩ 𝜋∗[𝑍] is represented by a (𝑘 + 𝑟 − 1 − 𝑠)-cycle supported on 𝜋−1(𝑍). Hence
the pushforward of this cycle is zero for dimension reasons.
Let 𝑠 = 𝑟 − 1. By the argument given above we see that 𝜋∗(𝑐1(𝒪𝑃(1))𝑠 ∩ 𝜋∗𝛼) = 𝑛[𝑍]
for some 𝑛 ∈ 𝐙. We want to show that 𝑛 = 1. For the same dimension reasons as above
it suffices to prove this result after replacing 𝑋 by 𝑋 ⧵ 𝑇 where 𝑇 ⊂ 𝑍 is a proper closed
subset. Let 𝜉 be the generic point of 𝑍. We can choose elements 𝑒1, … , 𝑒𝑟−1 ∈ ℰ𝜉 which
form part of a basis of ℰ𝜉. These give rational sections 𝑠1, … , 𝑠𝑟−1 of 𝒪𝑃(1)|𝜋−1(𝑍) whose
common zero set is the closure of the image a rational section of 𝐏(ℰ|𝑍) → 𝑍 union a closed
subset whose support maps to a proper closed subset 𝑇 of 𝑍. After removing 𝑇 from 𝑋 (and
correspondingly 𝜋−1(𝑇) from 𝑃), we see that 𝑠1, … , 𝑠𝑛 form a sequence of global sections
𝑠𝑖 ∈ Γ(𝜋−1(𝑍), 𝒪𝜋−1(𝑍)(1)) whose common zero set is the image of a section 𝑍 → 𝜋−1(𝑍).
Hence we see succesively that

𝜋∗[𝑍] = [𝜋−1(𝑍)]
𝑐1(𝒪𝑃(1)) ∩ 𝜋∗[𝑍] = [𝑍(𝑠1)]

𝑐1(𝒪𝑃(1))2 ∩ 𝜋∗[𝑍] = [𝑍(𝑠1) ∩ 𝑍(𝑠2)]
… = …

𝑐1(𝒪𝑃(1))𝑟−1 ∩ 𝜋∗[𝑍] = [𝑍(𝑠1) ∩ … ∩ 𝑍(𝑠𝑟−1)]
by repeated applications of Lemma 29.25.3. Since the pushforward by 𝜋 of the image of a
section of 𝜋 over 𝑍 is clearly [𝑍] we see the result when 𝛼 = [𝑍]. We omit the verification
that these arguments imply the result for a general cycle 𝛼 = ∑ 𝑛𝑗[𝑍𝑗]. �

Lemma 29.33.2. (Projective space bundle formula.) Let (𝑆, 𝛿) be as in Situation 29.7.1.
Let 𝑋 be locally of finite type over 𝑆. Let ℰ be a finite locally free 𝒪𝑋-module ℰ of rank 𝑟.
Let (𝜋 ∶ 𝑃 → 𝑋, 𝒪𝑃(1)) be the projective bundle associated to ℰ. The map

⨁
𝑟−1
𝑖=0

𝐴𝑘+𝑖(𝑋) ⟶ 𝐴𝑘+𝑟−1(𝑃),

(𝛼0, … , 𝛼𝑟−1) ⟼ 𝜋∗𝛼0 + 𝑐1(𝒪𝑃(1)) ∩ 𝜋∗𝛼1 + … + 𝑐1(𝒪𝑃(1))𝑟−1 ∩ 𝜋∗𝛼𝑟−1
is an isomorphism.

Proof. Fix 𝑘 ∈ 𝐙. We first show the map is injective. Suppose that (𝛼0, … , 𝛼𝑟−1) is an
element of the left hand side that maps to zero. By Lemma 29.33.1 we see that

0 = 𝜋∗(𝜋∗𝛼0 + 𝑐1(𝒪𝑃(1)) ∩ 𝜋∗𝛼1 + … + 𝑐1(𝒪𝑃(1))𝑟−1 ∩ 𝜋∗𝛼𝑟−1) = 𝛼𝑟−1

Next, we see that
0 = 𝜋∗(𝑐1(𝒪𝑃(1)) ∩ (𝜋∗𝛼0 + 𝑐1(𝒪𝑃(1)) ∩ 𝜋∗𝛼1 + … + 𝑐1(𝒪𝑃(1))𝑟−2 ∩ 𝜋∗𝛼𝑟−2)) = 𝛼𝑟−2

and so on. Hence the map is injective.
It remains to show the map is surjective. Let 𝑋𝑖, 𝑖 ∈ 𝐼 be the irreducible components of
𝑋. Then 𝑃𝑖 = 𝐏(ℰ|𝑋𝑖

), 𝑖 ∈ 𝐼 are the irreducible components of 𝑃. If the map is surjective

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02TW
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02TX


29.33. PROJECTIVE SPACE BUNDLE FORMULA 1609

for each of the morphisms 𝑃𝑖 → 𝑋𝑖, then the map is surjective for 𝜋 ∶ 𝑃 → 𝑋. Details
omitted. Hence we may assume 𝑋 is irreducible. Thus dim𝛿(𝑋) < ∞ and in particular we
may use induction on dim𝛿(𝑋).

The result is clear if dim𝛿(𝑋) < 𝑘. Let 𝛼 ∈ 𝐴𝑘+𝑟−1(𝑃). For any locally closed subscheme
𝑇 ⊂ 𝑋 denote 𝛾𝑇 ∶ ⨁ 𝐴𝑘+𝑖(𝑇) → 𝐴𝑘+𝑟−1(𝜋−1(𝑇)) the map

𝛾𝑇(𝛼0, … , 𝛼𝑟−1) = 𝜋∗𝛼0 + … + 𝑐1(𝒪𝜋−1(𝑇)(1))𝑟−1 ∩ 𝜋∗𝛼𝑟−1.

Suppose for some nonempty open 𝑈 ⊂ 𝑋 we have 𝛼|𝜋−1(𝑈) = 𝛾𝑈(𝛼0, … , 𝛼𝑟−1). Then we
may choose lifts 𝛼′

𝑖 ∈ 𝐴𝑘+𝑖(𝑋) and we see that 𝛼 − 𝛾𝑋(𝛼′
0, … , 𝛼′

𝑟−1) is by Lemma 29.19.2
rationally equivalent to a 𝑘-cycle on 𝑃𝑌 = 𝐏(ℰ|𝑌) where 𝑌 = 𝑋 ⧵ 𝑈 as a reduced closed
subscheme. Note that dim𝛿(𝑌) < dim𝛿(𝑋). By induction the result holds for 𝑃𝑌 → 𝑌 and
hence the result holds for 𝛼. Hence we may replace 𝑋 by any nonempty open of 𝑋.

In particular we may assume that ℰ ≅ 𝒪⊕𝑟
𝑋 . In this case 𝐏(ℰ) = 𝑋 × 𝐏𝑟−1. Let us use the

stratification
𝐏𝑟−1 = 𝐀𝑟−1

∐ 𝐀𝑟−2
∐ … ∐ 𝐀0

The closure of each stratum is a 𝐏𝑟−1−𝑖 which is a representative of 𝑐1(𝒪(1))𝑖∩[𝐏𝑟−1]. Hence
𝑃 has a similar stratification

𝑃 = 𝑈𝑟−1
∐ 𝑈𝑟−2

∐ … ∐ 𝑈0

Let 𝑃𝑖 be the closure of 𝑈𝑖. Let 𝜋𝑖 ∶ 𝑃𝑖 → 𝑋 be the restriction of 𝜋 to 𝑃𝑖. Let 𝛼 ∈ 𝐴𝑘+𝑟−1(𝑃).
By Lemma 29.32.1 we can write 𝛼|𝑈𝑟−1 = 𝜋∗𝛼0|𝑈𝑟−1 for some 𝛼0 ∈ 𝐴𝑘(𝑋). Hence the
difference 𝛼 − 𝜋∗𝛼0 is the image of some 𝛼′ ∈ 𝐴𝑘+𝑟−1(𝑃𝑟−2). By Lemma 29.32.1 again we
can write 𝛼′|𝑈𝑟−2 = (𝜋𝑟−2)∗𝛼1|𝑈𝑟−2 for some 𝛼1 ∈ 𝐴𝑘+1(𝑋). By Lemma 29.31.2 we see that
the image of (𝜋𝑟−2)∗𝛼1 represents 𝑐1(𝒪𝑃(1))∩𝜋∗𝛼1. We also see that 𝛼−𝜋∗𝛼0 −𝑐1(𝒪𝑃(1))∩
𝜋∗𝛼1 is the image of some 𝛼″ ∈ 𝐴𝑘+𝑟−1(𝑃𝑟−3). And so on. �

Lemma 29.33.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℰ be a finite locally free sheaf of rank 𝑟 on 𝑋. Let

𝑝 ∶ 𝐸 = 𝑆𝑝𝑒𝑐(Sym∗(ℰ)) ⟶ 𝑋

be the associated vector bundle over 𝑋. Then 𝑝∗ ∶ 𝐴𝑘(𝑋) → 𝐴𝑘+𝑟(𝐸) is an isomorphism
for all 𝑘.

Proof. For surjectivity see Lemma 29.32.1. Let (𝜋 ∶ 𝑃 → 𝑋, 𝒪𝑃(1)) be the projective space
bundle associated to the finite locally free sheaf ℰ ⊕ 𝒪𝑋. Let 𝑠 ∈ Γ(𝑃, 𝒪𝑃(1)) correspond
to the global section (0, 1) ∈ Γ(𝑋, ℰ ⊕ 𝒪𝑋). Let 𝐷 = 𝑍(𝑠) ⊂ 𝑃. Note that (𝜋|𝐷 ∶ 𝐷 →
𝑋, 𝒪𝑃(1)|𝐷) is the projective space bundle associated to ℰ. We denote 𝜋𝐷 = 𝜋|𝐷 and
𝒪𝐷(1) = 𝒪𝑃(1)|𝐷. Moreover, 𝐷 is an effective Cartier divisor on 𝑃. Hence 𝒪𝑃(𝐷) = 𝒪𝑃(1)
(seeDivisors, Lemma 26.9.17). Also there is an isomorphism𝐸 ≅ 𝑃⧵𝐷. Denote 𝑗 ∶ 𝐸 → 𝑃
the corresponding open immersion. For injectivity we use that the kernel of

𝑗∗ ∶ 𝐴𝑘+𝑟(𝑃) ⟶ 𝐴𝑘+𝑟(𝐸)

are the cycles supported in the effective Cartier divisor 𝐷, see Lemma 29.19.2. So if 𝑝∗𝛼 =
0, then 𝜋∗𝛼 = 𝑖∗𝛽 for some 𝛽 ∈ 𝐴𝑘+𝑟(𝐷). By Lemma 29.33.2 we may write

𝛽 = 𝜋∗
𝐷𝛽0 + … + 𝑐1(𝒪𝐷(1))𝑟−1 ∩ 𝜋∗

𝐷𝛽𝑟−1.

for some 𝛽𝑖 ∈ 𝐴𝑘+𝑖(𝑋). By Lemmas 29.31.2 and 29.25.6 this implies

𝜋∗𝛼 = 𝑖∗𝛽 = 𝑐1(𝒪𝑃(1)) ∩ 𝜋∗𝛽0 + … + 𝑐1(𝒪𝐷(1))𝑟 ∩ 𝜋∗𝛽𝑟−1.
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Since the rank of ℰ ⊕ 𝒪𝑋 is 𝑟 + 1 this contradicts Lemma 29.25.6 unless all 𝛼 and all 𝛽𝑖 are
zero. �

29.34. The Chern classes of a vector bundle

We can use the projective space bundle formula to define the chern classes of a rank 𝑟 vector
bundle in terms of the expansion of 𝑐1(𝒪(1))𝑟 in terms of the lower powers, see formula
(29.34.1.1). The reason for the signs will be explained later.

Definition 29.34.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 is integral and 𝑛 = dim𝛿(𝑋). Let ℰ be a finite locally free sheaf of rank 𝑟 on
𝑋. Let (𝜋 ∶ 𝑃 → 𝑋, 𝒪𝑃(1)) be the projective space bundle associated to ℰ.

(1) By Lemma 29.33.2 there are elements 𝑐𝑖 ∈ 𝐴𝑛−𝑖(𝑋), 𝑖 = 0, … , 𝑟 such that 𝑐0 =
[𝑋], and

(29.34.1.1) ∑
𝑟
𝑖=0

(−1)𝑖𝑐1(𝒪𝑃(1))𝑖 ∩ 𝜋∗𝑐𝑟−𝑖 = 0.

(2) With notation as above we set 𝑐𝑖(ℰ) ∩ [𝑋] = 𝑐𝑖 as an element of 𝐴𝑛−𝑖(𝑋). We
call these the chern classes of ℰ on 𝑋.

(3) The total chern class of ℰ on 𝑋 is the combination
𝑐(ℰ) ∩ [𝑋] = 𝑐0(ℰ) ∩ [𝑋] + 𝑐1(ℰ) ∩ [𝑋] + … + 𝑐𝑟(ℰ) ∩ [𝑋]

which is an element of 𝐴∗(𝑋) = ⨁𝑘∈𝐙 𝐴𝑘(𝑋).

Let us check that this does not give a new notion in case the vector bundle has rank 1.

Lemma 29.34.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Assume 𝑋 is integral and 𝑛 = dim𝛿(𝑋). Let ℒ be an invertible 𝒪𝑋-module. The first
chern class of ℒ on 𝑋 of Definition 29.34.1 is equal to the Weil divisor associated to ℒ by
Definition 29.24.1.

Proof. In this proof we use 𝑐1(ℒ) ∩ [𝑋] to denote the construction of Definition 29.24.1.
Since ℒ has rank 1 we have 𝐏(ℒ) = 𝑋 and 𝒪𝐏(ℒ)(1) = ℒ by our normalizations. Hence
(29.34.1.1) reads

(−1)1𝑐1(ℒ) ∩ 𝑐0 + (−1)0𝑐1 = 0
Since 𝑐0 = [𝑋], we conclude 𝑐1 = 𝑐1(ℒ) ∩ [𝑋] as desired. �

Remark 29.34.3. We could also rewrite equation 29.34.1.1 as

(29.34.3.1) ∑
𝑟
𝑖=0

𝑐1(𝒪𝑃(−1))𝑖 ∩ 𝜋∗𝑐𝑟−𝑖 = 0.

but we find it easier to work with the tautological quotient sheaf 𝒪𝑃(1) instead of its dual.

29.35. Intersecting with chern classes

Definition 29.35.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let ℰ be a finite locally free sheaf of rank 𝑟 on 𝑋. We define, for every integer 𝑘 and
any 0 ≤ 𝑗 ≤ 𝑟, an operation

𝑐𝑗(ℰ) ∩ − ∶ 𝑍𝑘(𝑋) → 𝐴𝑘−𝑗(𝑋)
called intersection with the 𝑗th chern class of ℰ.

(1) Given an integral closed subscheme 𝑖 ∶ 𝑊 → 𝑋 of 𝛿-dimension 𝑘 we define
𝑐𝑗(ℰ) ∩ [𝑊] = 𝑖∗(𝑐𝑗(𝑖∗ℰ) ∩ [𝑊]) ∈ 𝐴𝑘−𝑗(𝑋)

where 𝑐𝑗(𝑖∗ℰ) ∩ [𝑊] is as defined in Definition 29.34.1.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02U0
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(2) For a general 𝑘-cycle 𝛼 = ∑ 𝑛𝑖[𝑊𝑖] we set

𝑐𝑗(ℰ) ∩ 𝛼 = ∑ 𝑛𝑖𝑐𝑗(ℰ) ∩ [𝑊𝑖]

Again, if ℰ has rank 1 then this agrees with our previous definition.
Lemma 29.35.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℰ be a finite locally free sheaf of rank 𝑟 on 𝑋. Let (𝜋 ∶ 𝑃 → 𝑋, 𝒪𝑃(1)) be the projective
bundle associated to ℰ. For 𝛼 ∈ 𝑍𝑘(𝑋) the elements 𝑐𝑗(ℰ) ∩ 𝛼 are the unique elements 𝛼𝑗
of 𝐴𝑘−𝑗(𝑋) such that 𝛼0 = 𝛼 and

∑
𝑟
𝑖=0

(−1)𝑖𝑐1(𝒪𝑃(1))𝑖 ∩ 𝜋∗(𝛼𝑟−𝑖) = 0

holds in the Chow group of 𝑃.
Proof. The uniqueness of 𝛼0, … , 𝛼𝑟 such that 𝛼0 = 𝛼 and such that the displayed equation
holds follows from the projective space bundle formula Lemma 29.33.2. The identity holds
by definition for 𝛼 = [𝑋]. For a general 𝑘-cycle 𝛼 on 𝑋 write 𝛼 = ∑ 𝑛𝑎[𝑊𝑎] with 𝑛𝑎≠0,
and 𝑖𝑎 ∶ 𝑊𝑎 → 𝑋 pairwise distinct integral closed subschemes. Then the family {𝑊𝑎} is
locally finite on 𝑋. Set 𝑃𝑎 = 𝜋−1(𝑊𝑎) = 𝐏(ℰ|𝑊𝑎

). Denote 𝑖′
𝑎 ∶ 𝑃𝑎 → 𝑃 the corresponding

closed immersions. Consider the fibre product diagram

𝑃′

𝜋′

��

∐ 𝑃𝑎

𝜋𝑎
��

𝑖′𝑎
// 𝑃

𝜋
��

𝑋′ ∐ 𝑊𝑎
𝑖𝑎 // 𝑋

The morphism 𝑝 ∶ 𝑋′ → 𝑋 is proper. Moreover 𝜋′ ∶ 𝑃′ → 𝑋′ together with the invert-
ible sheaf 𝒪𝑃′(1) = ∐ 𝒪𝑃𝑎

(1) which is also the pullback of 𝒪𝑃(1) is the projective bundle
associated to ℰ′ = 𝑝∗ℰ. By definition

𝑐𝑗(ℰ) ∩ [𝛼] = ∑ 𝑖𝑎,∗(𝑐𝑗(ℰ|𝑊𝑎
) ∩ [𝑊𝑎]).

Write 𝛽𝑎,𝑗 = 𝑐𝑗(ℰ|𝑊𝑎
) ∩ [𝑊𝑎] which is an element of 𝐴𝑘−𝑗(𝑊𝑎). We have

∑
𝑟
𝑖=0

(−1)𝑖𝑐1(𝒪𝑃𝑎
(1))𝑖 ∩ 𝜋∗

𝑎(𝛽𝑎,𝑟−𝑖) = 0

for each 𝑎 by definition. Thus clearly we have

∑
𝑟
𝑖=0

(−1)𝑖𝑐1(𝒪𝑃′(1))𝑖 ∩ (𝜋′)∗(𝛽𝑟−𝑖) = 0

with 𝛽𝑗 = ∑ 𝑛𝑎𝛽𝑎,𝑗 ∈ 𝐴𝑘−𝑗(𝑋′). Denote 𝑝′ ∶ 𝑃′ → 𝑃 the morphism ∐ 𝑖′
𝑎. We have

𝜋∗𝑝∗𝛽𝑗 = 𝑝′
∗(𝜋′)∗𝛽𝑗 by Lemma 29.15.1. By the projection formula of Lemma 29.25.6 we

conclude that

∑
𝑟
𝑖=0

(−1)𝑖𝑐1(𝒪𝑃(1))𝑖 ∩ 𝜋∗(𝑝∗𝛽𝑗) = 0
Since 𝑝∗𝛽𝑗 is a representative of 𝑐𝑗(ℰ) ∩ 𝛼 we win. �

This characterization of chern classes allows us to prove many more properties.
Lemma 29.35.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let ℰ be a finite locally free sheaf of rank 𝑟 on 𝑋. If 𝛼 ∼𝑟𝑎𝑡 𝛽 are rationally equivalent
𝑘-cycles on 𝑋 then 𝑐𝑗(ℰ) ∩ 𝛼 = 𝑐𝑗(ℰ) ∩ 𝛽 in 𝐴𝑘−𝑗(𝑋).
Proof. By Lemma 29.35.2 the elements 𝛼𝑗 = 𝑐𝑗(ℰ) ∩ 𝛼, 𝑗 ≥ 1 and 𝛽𝑗 = 𝑐𝑗(ℰ) ∩ 𝛽, 𝑗 ≥ 1
are uniquely determined by the same equation in the chow group of the projective bundle
associated to ℰ. (This of course relies on the fact that flat pullback is compatible with
rational equivalence, see Lemma 29.20.1.) Hence they are equal. �
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In other words capping with chern classes of finite locally free sheaves factors through
rational equivalence to give maps

𝑐𝑗(ℰ) ∩ − ∶ 𝐴𝑘(𝑋) → 𝐴𝑘−𝑗(𝑋).

Lemma 29.35.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let ℰ be a finite locally free sheaf of rank 𝑟 on 𝑌. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat morphism of
relative dimension 𝑟. Let 𝛼 be a 𝑘-cycle on 𝑌. Then

𝑓∗(𝑐𝑗(ℰ) ∩ 𝛼) = 𝑐𝑗(𝑓∗ℰ) ∩ 𝑓∗𝛼

Proof. Write 𝛼𝑗 = 𝑐𝑗(ℰ) ∩ 𝛼, so 𝛼0 = 𝛼. By Lemma 29.35.2 we have

∑
𝑟
𝑖=0

(−1)𝑖𝑐1(𝒪𝑃(1))𝑖 ∩ 𝜋∗(𝛼𝑟−𝑖) = 0

in the chow group of the projective bundle (𝜋 ∶ 𝑃 → 𝑌, 𝒪𝑃(1)) associated to ℰ. Consider
the fibre product diagram

𝑃𝑋 = 𝐏(𝑓∗ℰ)
𝑓𝑃
//

𝜋𝑋
��

𝑃

𝜋
��

𝑋
𝑓 // 𝑌

Note that 𝒪𝑃𝑋
(1) = 𝑓∗

𝑃𝒪𝑃(1). By Lemmas 29.25.4 and 29.14.3 we see that

∑
𝑟
𝑖=0

(−1)𝑖𝑐1(𝒪𝑃𝑋
(1))𝑖 ∩ 𝜋∗

𝑋(𝑓∗𝛼𝑟−𝑖) = 0

holds in the chow group of 𝑃𝑋. Since 𝑓∗𝛼0 = 𝑓∗𝛼 the lemma follows from the uniqueness
in Lemma 29.35.2. �

Lemma 29.35.5. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over
𝑆. Let ℰ be a finite locally free sheaf of rank 𝑟 on 𝑋. Let 𝑝 ∶ 𝑋 → 𝑌 be a proper morphism.
Let 𝛼 be a 𝑘-cycle on 𝑋. Let ℰ be a finite locally free sheaf on 𝑌. Then

𝑝∗(𝑐𝑗(𝑝∗ℰ) ∩ 𝛼) = 𝑐𝑗(ℰ) ∩ 𝑝∗𝛼

Proof. Write 𝛼𝑗 = 𝑐𝑗(𝑝∗ℰ) ∩ 𝛼, so 𝛼0 = 𝛼. By Lemma 29.35.2 we have

∑
𝑟
𝑖=0

(−1)𝑖𝑐1(𝒪𝑃(1))𝑖 ∩ 𝜋∗
𝑋(𝛼𝑟−𝑖) = 0

in the chow group of the projective bundle (𝜋𝑋 ∶ 𝑃𝑋 → 𝑋, 𝒪𝑃𝑋
(1)) associated to 𝑝∗ℰ. Let

(𝜋 ∶ 𝑃 → 𝑌, 𝒪𝑃(1)) be the projective bundle associated to ℰ. Consider the fibre product
diagram

𝑃𝑋 = 𝐏(𝑝∗ℰ) 𝑝𝑃
//

𝜋𝑋
��

𝑃

𝜋
��

𝑋
𝑝 // 𝑌

Note that 𝒪𝑃𝑋
(1) = 𝑝∗

𝑃𝒪𝑃(1). Pushing the displayed equality above to 𝑃 and using Lemmas
29.15.1, 29.25.6 and 29.14.3 we see that

∑
𝑟
𝑖=0

(−1)𝑖𝑐1(𝒪𝑃(1))𝑖 ∩ 𝜋∗(𝑝∗𝛼𝑟−𝑖) = 0

holds in the chow group of 𝑃. Since 𝑝∗𝛼0 = 𝑝∗𝛼 the lemma follows from the uniqueness in
Lemma 29.35.2. �
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Lemma 29.35.6. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℰ, ℱ be finite locally free sheaves on 𝑋 of ranks 𝑟 and 𝑠. For any 𝛼 ∈ 𝐴𝑘(𝑋) we have

𝑐𝑖(ℰ) ∩ 𝑐𝑗(ℱ) ∩ 𝛼 = 𝑐𝑗(ℱ) ∩ 𝑐𝑖(ℰ) ∩ 𝛼

as elements of 𝐴𝑘−𝑖−𝑗(𝑋).

Proof. Consider
𝜋 ∶ 𝐏(ℰ) ×𝑋 𝐏(ℱ) ⟶ 𝑋

with invertible sheaves ℒ = pr∗1𝒪𝐏(ℰ)(1) and 𝒩 = pr∗2𝒪𝐏(ℱ)(1). Write 𝛼𝑖,𝑗 for the left hand
side and 𝛽𝑖,𝑗 for the right hand side. Also write 𝛼𝑗 = 𝑐𝑗(ℱ) ∩ 𝛼 and 𝛽𝑖 = 𝑐𝑖(ℰ) ∩ 𝛼. In
particular this means that 𝛼0 = 𝛼 = 𝛽0, and 𝛼0,𝑗 = 𝛼𝑗 = 𝛽0,𝑗, 𝛼𝑖,0 = 𝛽𝑖 = 𝛽𝑖,0. From Lemma
29.35.2 (pulled back to the space above using Lemma 29.25.4 for the first two) we see that

0 = ∑𝑗=0,…,𝑠
(−1)𝑗𝑐1(𝒩)𝑗 ∩ 𝜋∗𝛼𝑠−𝑗

0 = ∑𝑖=0,…,𝑟
(−1)𝑖𝑐1(ℒ)𝑖 ∩ 𝜋∗𝛽𝑟−𝑖

0 = ∑𝑖=0,…,𝑟
(−1)𝑖𝑐1(ℒ)𝑖 ∩ 𝜋∗𝛼𝑟−𝑖,𝑠−𝑗

0 = ∑𝑗=0,…,𝑠
(−1)𝑗𝑐1(𝒩)𝑗 ∩ 𝜋∗𝛽𝑟−𝑖,𝑠−𝑗

We can combine the first and the third of these to get

(−1)𝑟+𝑠𝑐1(ℒ)𝑟 ∩ 𝑐1(𝒩)𝑠 ∩ 𝜋∗𝛼

= ∑𝑗=1,…,𝑠
(−1)𝑟+𝑗−1𝑐1(ℒ)𝑟 ∩ 𝑐1(𝒩)𝑗 ∩ 𝜋∗𝛼𝑠−𝑗

= ∑𝑗=1,…,𝑠
(−1)𝑗−1+𝑟𝑐1(𝒩)𝑗 ∩ 𝑐1(ℒ)𝑟 ∩ 𝜋∗𝛼0,𝑠−𝑗

= ∑
𝑠
𝑗=1 ∑

𝑟
𝑖=1

(−1)𝑖+𝑗𝑐1(𝒩)𝑗 ∩ 𝑐1(ℒ)𝑖 ∩ 𝜋∗𝛼𝑟−𝑖,𝑠−𝑗

using that capping with 𝑐1(ℒ) commutes with capping with 𝑐1(𝒩). In exactly the same way
one shows that

(−1)𝑟+𝑠𝑐1(ℒ)𝑟 ∩ 𝑐1(𝒩)𝑠 ∩ 𝜋∗𝛼 = ∑
𝑠
𝑗=1 ∑

𝑟
𝑖=1

(−1)𝑖+𝑗𝑐1(𝒩)𝑗 ∩ 𝑐1(ℒ)𝑖 ∩ 𝜋∗𝛽𝑟−𝑖,𝑠−𝑗

By the projective space bundle formula Lemma 29.33.2 applied twice these representations
are unique. Whence the result. �

29.36. Polynomial relations among chern classes

Definition 29.36.1. Let 𝑃(𝑥𝑖,𝑗) ∈ 𝐙[𝑥𝑖,𝑗] be a polynomial. We write 𝑃 as a finite sum

∑𝑠 ∑𝐼=((𝑖1,𝑗1),(𝑖2,𝑗2),…,(𝑖𝑠,𝑗𝑠))
𝑎𝐼𝑥𝑖1,𝑗1

… 𝑥𝑖𝑠,𝑗𝑠
.

Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆. Let ℰ𝑖 be a finite
collection of finite locally free sheaves on 𝑋. We say that 𝑃 is a polynomial relation among
the chern classes and we write 𝑃(𝑐𝑗(ℰ𝑖)) = 0 if for any morphism 𝑓 ∶ 𝑌 → 𝑋 of an integral
scheme locally of finite type over 𝑆 the cycle

∑𝑠 ∑𝐼=((𝑖1,𝑗1),(𝑖2,𝑗2),…,(𝑖𝑠,𝑗𝑠))
𝑎𝐼 𝑐𝑗1

(𝑓∗ℰ𝑖1) ∩ … ∩ 𝑐𝑗𝑠
(𝑓∗ℰ𝑖𝑠) ∩ [𝑌]

is zero in 𝐴∗(𝑌).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02UA
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02UC


1614 29. CHOW HOMOLOGY AND CHERN CLASSES

This is not an elegant definition but it will do for now. It makes sense because we showed
in Lemma 29.35.6 that capping with chern classes of vector bundles is commutative. By
our definitions and results above this is equivalent with requiring all the operations

∑𝑠 ∑𝐼
𝑎𝐼 𝑐𝑗1

(𝑓∗ℰ𝑖1) ∩ … ∩ 𝑐𝑗𝑠
(𝑓∗ℰ𝑖𝑠) ∩ − ∶ 𝐴∗(𝑌) → 𝐴∗(𝑌)

to be zero for all morphisms 𝑓 ∶ 𝑌 → 𝑋 which are locally of finite type.

An example of such a relation is the relation

𝑐1(ℒ ⊗𝒪𝑋
𝒩) = 𝑐1(ℒ) + 𝑐1(𝒩)

proved in Lemma 29.25.2. More generally, here is what happens when we tensor an arbi-
trary locally free sheaf by an invertible sheaf.

Lemma 29.36.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℰ be a finite locally free sheaf of rank 𝑟 on 𝑋. Let ℒ be an invertible sheaf on 𝑋. Then

(29.36.2.1) 𝑐𝑖(ℰ ⊗ ℒ) = ∑
𝑖
𝑗=0 (

𝑟 − 𝑖 + 𝑗
𝑗 )𝑐𝑖−𝑗(ℰ)𝑐1(ℒ)𝑗

is a valid polynomial relation in the sense described above.

Proof. This should hold for any triple (𝑋, ℰ, ℒ). In particular it should hold when 𝑋 is
integral, and in fact by definition of a polynomial relation it is enough to prove it holds when
capping with [𝑋] for such 𝑋. Thus assume that 𝑋 is integral. Let (𝜋 ∶ 𝑃 → 𝑋, 𝒪𝑃(1)),
resp. (𝜋′ ∶ 𝑃′ → 𝑋, 𝒪𝑃′(1)) be the projective space bundle associated to ℰ, resp. ℰ ⊗ ℒ.
Consider the canonical morphsm

𝑃

𝜋 ��

𝑔
// 𝑃′

𝜋′
~~

𝑋

see Constructions, Lemma 22.19.1. It has the property that 𝑔∗𝒪𝑃′(1) = 𝒪𝑃(1) ⊗ 𝜋∗ℒ. This
means that we have

∑
𝑟
𝑖=0

(−1)𝑖(𝜉 + 𝑥)𝑖 ∩ 𝜋∗(𝑐𝑟−𝑖(ℰ ⊗ ℒ) ∩ [𝑋]) = 0

in 𝐴∗(𝑃), where 𝜉 represents 𝑐1(𝒪𝑃(1)) and 𝑥 represents 𝑐1(𝜋∗ℒ). By simple algebra this is
equivalent to

∑
𝑟
𝑖=0

(−1)𝑖𝜉𝑖
(∑

𝑟
𝑗=𝑖

(−1)𝑗−𝑖
(

𝑗
𝑖)

𝑥𝑗−𝑖 ∩ 𝜋∗(𝑐𝑟−𝑗(ℰ ⊗ ℒ) ∩ [𝑋])) = 0

Comparing with Equation (29.34.1.1) it follows from this that

𝑐𝑟−𝑖(ℰ) ∩ [𝑋] = ∑
𝑟
𝑗=𝑖 (

𝑗
𝑖)

(−𝑐1(ℒ))𝑗−𝑖 ∩ 𝑐𝑟−𝑗(ℰ ⊗ ℒ) ∩ [𝑋]

Reworking this (getting rid of minus signs, and renumbering) we get the desired relation.
�
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Some example cases of (29.36.2.1) are

𝑐1(ℰ ⊗ ℒ) = 𝑐1(ℰ) + 𝑟𝑐1(ℒ)

𝑐2(ℰ ⊗ ℒ) = 𝑐2(ℰ) + (𝑟 − 1)𝑐1(ℰ)𝑐1(ℒ) + (
𝑟
2)𝑐1(ℒ)2

𝑐3(ℰ ⊗ ℒ) = 𝑐3(ℰ) + (𝑟 − 2)𝑐2(ℰ)𝑐1(ℒ) + (
𝑟 − 1

2 )𝑐1(ℰ)𝑐1(ℒ)2 + (
𝑟
3)𝑐1(ℒ)3

29.37. Additivity of chern classes

All of the preliminary lemmas follow trivially from the final result.

Lemma 29.37.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let ℰ, ℱ be finite locally free sheaves on 𝑋 of ranks 𝑟, 𝑟 − 1 which fit into a short exact
sequence

0 → 𝒪𝑋 → ℰ → ℱ → 0
Then

𝑐𝑟(ℰ) = 0, 𝑐𝑗(ℰ) = 𝑐𝑗(ℱ), 𝑗 = 0, … , 𝑟 − 1
are valid polynomial relations among chern classes.

Proof. By Definition 29.36.1 it suffices to show that if 𝑋 is integral then 𝑐𝑗(ℰ) ∩ [𝑋] =
𝑐𝑗(ℱ) ∩ [𝑋]. Let (𝜋 ∶ 𝑃 → 𝑋, 𝒪𝑃(1)), resp. (𝜋′ ∶ 𝑃′ → 𝑋, 𝒪𝑃′(1)) denote the projec-
tive space bundle associated to ℰ, resp. ℱ. The surjection ℰ → ℱ gives rise to a closed
immersion

𝑖 ∶ 𝑃′ ⟶ 𝑃
over 𝑋. Moreover, the element 1 ∈ Γ(𝑋, 𝒪𝑋) ⊂ Γ(𝑋, ℰ) gives rise to a global section
𝑠 ∈ Γ(𝑃, 𝒪𝑃(1)) whose zero set is exactly 𝑃′. Hence 𝑃′ is an effective Cartier divisor on 𝑃
such that 𝒪𝑃(𝑃′) ≅ 𝒪𝑃(1). Hence we see that

𝑐1(𝒪𝑃(1)) ∩ 𝜋∗𝛼 = 𝑖∗((𝜋′)∗𝛼)

for any cycle class 𝛼 on 𝑋 by Lemma 29.31.2. By Lemma 29.35.2 we see that 𝛼𝑗 = 𝑐𝑗(ℱ) ∩
[𝑋], 𝑗 = 0, … , 𝑟 − 1 satisfy

∑
𝑟−1
𝑗=0

(−1)𝑗𝑐1(𝒪𝑃′(1))𝑗 ∩ (𝜋′)∗𝛼𝑗 = 0

Pushing this to 𝑃 and using the remark above as well as Lemma 29.25.6 we get

∑
𝑟−1
𝑗=0

(−1)𝑗𝑐1(𝒪𝑃(1))𝑗+1 ∩ 𝜋∗𝛼𝑗 = 0

By the uniqueness of Lemma 29.35.2 we conclude that 𝑐𝑟(ℰ) ∩ [𝑋] = 0 and 𝑐𝑗(ℰ) ∩ [𝑋] =
𝛼𝑗 = 𝑐𝑗(ℱ) ∩ [𝑋] for 𝑗 = 0, … , 𝑟 − 1. Hence the lemma holds. �

Lemma 29.37.2. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let ℰ, ℱ be finite locally free sheaves on 𝑋 of ranks 𝑟, 𝑟 − 1 which fit into a short exact
sequence

0 → ℒ → ℰ → ℱ → 0
where ℒ is an invertible sheaf Then

𝑐(ℰ) = 𝑐(ℒ)𝑐(ℱ)

is a valid polynomial relation among chern classes.
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Proof. This relation really just says that 𝑐𝑖(ℰ) = 𝑐𝑖(ℱ)+𝑐1(ℒ)𝑐𝑖−1(ℱ). By Lemma 29.37.1
we have 𝑐𝑗(ℰ ⊗ ℒ⊗−1) = 𝑐𝑗(ℰ ⊗ ℒ⊗−1) for 𝑗 = 0, … , 𝑟 (were we set 𝑐𝑟(ℱ) = 0 by
convention). Applying Lemma 29.36.2 we deduce

𝑖

∑
𝑗=0

(
𝑟 − 𝑖 + 𝑗

𝑗 )(−1)𝑗𝑐𝑖−𝑗(ℰ)𝑐1(ℒ)𝑗 =
𝑖

∑
𝑗=0

(
𝑟 − 1 − 𝑖 + 𝑗

𝑗 )(−1)𝑗𝑐𝑖−𝑗(ℱ)𝑐1(ℒ)𝑗

Setting 𝑐𝑖(ℰ) = 𝑐𝑖(ℱ) + 𝑐1(ℒ)𝑐𝑖−1(ℱ) gives a ``solution'' of this equation. The lemma
follows if we show that this is the only possible solution. We omit the verification. �

Lemma 29.37.3. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be a scheme locally of finite
type over 𝑆. Suppose that ℰ sits in an exact sequence

0 → ℰ1 → ℰ → ℰ2 → 0

of finite locally free sheaves ℰ𝑖 of rank 𝑟𝑖. Then

𝑐(ℰ) = 𝑐(ℰ1)𝑐(ℰ2)

is a polynomial relation among chern classes.

Proof. We may assume that 𝑋 is integral and we have to show the identity when capping
against [𝑋]. By induction on 𝑟1. The case 𝑟1 = 1 is Lemma 29.37.2. Assuem 𝑟1 > 1. Let
(𝜋 ∶ 𝑃 → 𝑋, 𝒪𝑃(1)) denote the projective space bundle associated to ℰ1. Note that

(1) 𝜋∗ ∶ 𝐴∗(𝑋) → 𝐴∗(𝑃) is injective, and
(2) 𝜋∗ℰ1 sits in a short exact sequence 0 → ℱ → 𝜋∗ℰ1 → ℒ → 0 where ℒ is

invertible.

The first assertion follows from the projective space bundle formula and the second follows
from the definition of a projective space bundle. (In fact ℒ = 𝒪𝑃(1).) Let 𝑄 = 𝜋∗ℰ/ℱ,
which sits in an exact sequence 0 → ℒ → 𝑄 → 𝜋∗ℰ2 → 0. By induction we have

𝑐(𝜋∗ℰ) ∩ [𝑃] = 𝑐(ℱ) ∩ 𝑐(𝜋∗ℰ/ℱ) ∩ [𝑃]
= 𝑐(ℱ) ∩ 𝑐(ℒ) ∩ 𝑐(𝜋∗ℰ2) ∩ [𝑃]
= 𝑐(𝜋∗ℰ1) ∩ 𝑐(𝜋∗ℰ2) ∩ [𝑃]

Since [𝑃] = 𝜋∗[𝑋] we win by Lemma 29.35.4. �

Lemma 29.37.4. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over
𝑆. Let ℒ𝑖, 𝑖 = 1, … , 𝑟 be invertible 𝒪𝑋-modules on 𝑋. Let ℰ be a finite locally free rank 𝑟
𝒪𝑋-module endowed with a filtration

0 = ℰ0 ⊂ ℰ1 ⊂ ℰ2 ⊂ … ⊂ ℰ𝑟 = ℰ

such that ℰ𝑖/ℰ𝑖−1 ≅ ℒ𝑖. Set 𝑐1(ℒ𝑖) = 𝑥𝑖. Then

𝑐(ℰ) = ∏
𝑟
𝑖=1

(1 + 𝑥𝑖)

is a valid polynomial relation among chern classes in the sense of Definition 29.36.1.

Proof. Apply Lemma 29.37.2 and induction. �
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29.38. The splitting principle

In our setting it is not so easy to say what the splitting principle exactly says/is. Here is a
possible formulation.

Lemma 29.38.1. Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋 be locally of finite type over 𝑆.
Let ℰ be a finite locally free sheaf ℰ on 𝑋 of rank 𝑟. There exists a projective flat morphism
of relative dimension 𝑑 𝜋 ∶ 𝑃 → 𝑋 such that

(1) for any morphism 𝑓 ∶ 𝑌 → 𝑋 the map 𝜋∗
𝑌 ∶ 𝐴∗(𝑌) → 𝐴∗+𝑟(𝑌 ×𝑋 𝑃) is injective,

and
(2) 𝜋∗ℰ has a filtrationwith succesive quotientsℒ1, … , ℒ𝑟 for some invertible𝒪𝑃-modules

ℒ𝑖.

Proof. Omitted. Hint: Use a composition of projective space bundles, i.e., a flag variety
over 𝑋. �

The splitting principle refers to the practice of symbolically writing

𝑐(ℰ) = ∏(1 + 𝑥𝑖)

with 𝑥𝑖 = 𝑐1(ℒ𝑖). The expressions 𝑥𝑖 are then called the Chern roots of ℰ. In order to
prove polynomial relations amoing chern classes of vector bundles it is permissible to do
calculations using the chern roots.

For example, let us calculate the chern classes of the dual vector bundle ℰ∧. Note that
if ℰ has a filtration with subquotients invertible sheaves ℒ𝑖 then ℰ∧ has a filtration with
subquotients the invertible sheaves ℒ−1

𝑖 . Hence if 𝑥𝑖 are the chern roots of ℰ, then the −𝑥𝑖
are the chern roots of ℰ∧. It follows that

𝑐𝑗(ℰ∧) = (−1)𝑗𝑐𝑗(ℰ)

is a valid polynomial relation among chern classes.

In the same vain, let us compute the chern classes of a tensor product of vector bundles.
Namely, suppose that ℰ, ℱ are finite locally free of ranks 𝑟, 𝑠. Write

𝑐(ℰ) = ∏
𝑟
𝑖=1

(1 + 𝑥𝑖), 𝑐(ℰ) = ∏
𝑠
𝑗=1

(1 + 𝑦𝑗)

where 𝑥𝑖, 𝑦𝑗 are the chern roots of ℰ, ℱ. Then we see that

𝑐(ℰ ⊗𝒪𝑋
ℱ) = ∏𝑖,𝑗

(1 + 𝑥𝑖 + 𝑦𝑗)

Here are some examples of what this means in terms of chern classes

𝑐1(ℰ ⊗ ℱ) = 𝑟𝑐1(ℱ) + 𝑠𝑐1(ℰ)

𝑐2(ℰ ⊗ ℱ) = 𝑟2𝑐2(ℱ) + 𝑟𝑠𝑐1(ℱ)𝑐1(ℰ) + 𝑠2𝑐2(ℰ)

29.39. Chern classes and tensor product

We define the Chern character of a finite locally free sheaf of rank 𝑟 to be the formal
expression

𝑐ℎ(ℰ) ∶= ∑
𝑟
𝑖=1

𝑒𝑥𝑖

if the 𝑥𝑖 are the chern roots of ℰ. Writing this in terms of chern classes 𝑐𝑖 = 𝑐𝑖(ℰ) we see
that

𝑐ℎ(ℰ) = 𝑟+𝑐1 + 1
2

(𝑐2
1 −2𝑐2)+ 1

6
(𝑐3

1 −3𝑐1𝑐2 +3𝑐3)+ 1
24

(𝑐4
1 −4𝑐2

1𝑐2 +4𝑐1𝑐3 +2𝑐2
2 −4𝑐4)+…
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What does it mean that the coefficients are rational numbers? Well this simply means that
we think of these as operations

𝑐ℎ𝑗(ℰ) ∩ − ∶ 𝐴𝑘(𝑋) ⟶ 𝐴𝑘−𝑗(𝑋) ⊗𝐙 𝐐
and we think of polynomial relations among them as relations between these operations
with values in the groups 𝐴𝑘−𝑗(𝑌) ⊗𝐙 𝐐 for varying 𝑌. By the above we have in case of an
exact sequence

0 → ℰ1 → ℰ → ℰ2 → 0
that

𝑐ℎ(ℰ) = 𝑐ℎ(ℰ1) + 𝑐ℎ(ℰ2)
Using the Chern character we can express the compatibility of the chern classes and tensor
product as follows:

𝑐ℎ(ℰ1 ⊗𝒪𝑋
ℰ2) = 𝑐ℎ(ℰ1)𝑐ℎ(ℰ2)

This follows directly from the discussion of the chern roots of the tensor product in the
previous section.

29.40. Todd classes

A final class associated to a vector bundle ℰ of rank 𝑟 is its Todd class 𝑇𝑜𝑑𝑑(ℰ). In terms
of the chern roots 𝑥1, … , 𝑥𝑟 it is defined as

𝑇𝑜𝑑𝑑(ℰ) = ∏
𝑟
𝑖=1

𝑥𝑖
1 − 𝑒−𝑥𝑖

In terms of the chern classes 𝑐𝑖 = 𝑐𝑖(ℰ) we have

𝑇𝑜𝑑𝑑(ℰ) = 1 + 1
2

𝑐1 + 1
12

(𝑐2
1 + 𝑐2) + 1

24
𝑐1𝑐2 + 1

720
(−𝑐4

1 + 4𝑐2
1𝑐2 + 3𝑐2

2 + 𝑐1𝑐3 − 𝑐4) + …

We have made the appropriate remaks about denominators in the previous section. It is the
case that given an exact sequence

0 → ℰ1 → ℰ → ℰ2 → 0
we have

𝑇𝑜𝑑𝑑(ℰ) = 𝑇𝑜𝑑𝑑(ℰ1)𝑇𝑜𝑑𝑑(ℰ2).

29.41. Grothendieck-Riemann-Roch

Let (𝑆, 𝛿) be as in Situation 29.7.1. Let 𝑋, 𝑌 be locally of finite type over 𝑆. Let ℰ be a
finite locally free sheaf ℰ on 𝑋 of rank 𝑟. Let 𝑓 ∶ 𝑋 → 𝑌 be a proper smooth morphism.
Assume that 𝑅𝑖𝑓∗ℰ are locally free sheaves on 𝑌 of finite rank (for example if 𝑌 is a point).
The Grothendieck-Riemann-Roch theorem implies that in this case we have

𝑓∗(𝑇𝑜𝑑𝑑(𝑇𝑋/𝑌)𝑐ℎ(ℰ)) = ∑(−1)𝑖𝑐ℎ(𝑅𝑖𝑓∗ℰ)

Here
𝑇𝑋/𝑌 = ℋ𝑜𝑚𝒪𝑋

(Ω𝑋/𝑌, 𝒪𝑋)
is the relative tangent bundle of 𝑋 over 𝑌. The theorem is more general and becomes easier
to prove when formulated in correct generality. We will return to this elsewhere (insert
future reference here).

29.42. Other chapters

(1) Introduction
(2) Conventions

(3) Set Theory
(4) Categories
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CHAPTER 30

Topologies on Schemes

30.1. Introduction

In this document we explain what the different topologies on the category of schemes are.
Some references are [Gro71] and [BLR90]. Before doing so we would like to point out
that there are many different choices of sites (as defined in Sites, Definition 9.6.2) which
give rise to the same notion of sheaf on the underlying category. Hence our choices may be
slightly different from those in the references but ultimately lead to the same cohomology
groups, etc.

30.2. The general procedure

In this section we explain a general procedure for producing the sites we will be working
with. Suppose we want to study sheaves over schemes with respect to some topology 𝜏.
In order to get a site, as in Sites, Definition 9.6.2, of schemes with that topology we have
to do some work. Namely, we cannot simply say ``consider all schemes with the Zariski
topology'' since that would give a ``big'' category. Instead, in each section of this chapter
we will proceed as follows:

(1) We define a class Cov𝜏 of coverings of schemes satisfying the axioms of Sites,
Definition 9.6.2. It will always be the case that a Zariski open covering of a
scheme is a covering for 𝜏.

(2) We single out a notion of standard 𝜏-coveringwithin the category of affine schemes.
(3) We define what is an ``absolute'' big 𝜏-site Sch𝜏. These are the sites one gets by

appropriately choosing a set of schemes and a set of coverings.
(4) For any object 𝑆 of Sch𝜏 we define the big 𝜏-site (Sch/𝑆)𝜏 and for suitable 𝜏 the

small1 𝜏-site 𝑆𝜏.
(5) In addition there is a site (Aff/𝑆)𝜏 using the notion of standard 𝜏-covering of affines

whose category of sheaves is equivalent to the category of sheaves on (Sch/𝑆)𝜏.
The above is a little clumsy in that we do not end up with a canonical choice for the big
𝜏-site of a scheme, or even the small 𝜏-site of a scheme. If you are willing to ignore set
theoretic difficulties, then you can work with classes and end up with canonical big and
small sites...

30.3. The Zariski topology

Definition 30.3.1. Let 𝑇 be a scheme. A Zariski covering of 𝑇 is a family of morphisms
{𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 of schemes such that each 𝑓𝑖 is an open immersion and such that 𝑇 =
⋃ 𝑓𝑖(𝑇𝑖).
This defines a (proper) class of coverings. Next, we show that this notion satisfies the
conditions of Sites, Definition 9.6.2.

1The words big and small here do not relate to bigness/smallness of the corresponding categories.
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Lemma 30.3.2. Let 𝑇 be a scheme.
(1) If 𝑇′ → 𝑇 is an isomorphism then {𝑇′ → 𝑇} is a Zariski covering of 𝑇.
(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a Zariski covering and for each 𝑖 we have a Zariski covering

{𝑇𝑖𝑗 → 𝑇𝑖}𝑗∈𝐽𝑖
, then {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖

is a Zariski covering.
(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a Zariski covering and 𝑇′ → 𝑇 is a morphism of schemes then

{𝑇′ ×𝑇 𝑇𝑖 → 𝑇′}𝑖∈𝐼 is a Zariski covering.

Proof. Omitted. �

Lemma 30.3.3. Let 𝑇 be an affine scheme. Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be a Zariski covering of 𝑇.
Then there exists a Zariski covering {𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 which is a refinement of {𝑇𝑖 → 𝑇}𝑖∈𝐼
such that each 𝑈𝑗 is a standard open of 𝑇, see Schemes, Definition 21.5.2. Moreover, we
may choose each 𝑈𝑗 to be an open of one of the 𝑇𝑖.

Proof. Follows as 𝑇 is quasi-compact and standard opens form a basis for its topology.
This is also proved in Schemes, Lemma 21.5.1. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 30.3.4. Compare Schemes, Definition 21.5.2. Let 𝑇 be an affine scheme. A
standard Zariski covering of 𝑇 is a a Zariski covering {𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 with each 𝑈𝑗 → 𝑇
inducing an isomorphism with a standard affine open of 𝑇.

Definition 30.3.5. A big Zariski site is any site Sch𝑍𝑎𝑟 as in Sites, Definition 9.6.2 con-
structed as follows:

(1) Choose any set of schemes 𝑆0, and any set of Zariski coverings Cov0 among these
schemes.

(2) As underlying category of Sch𝑍𝑎𝑟 take any category Sch𝛼 constructed as in Sets,
Lemma 3.9.2 starting with the set 𝑆0.

(3) As coverings of Sch𝑍𝑎𝑟 choose any set of coverings as in Sets, Lemma 3.11.1
starting with the category Sch𝛼 and the class of Zariski coverings, and the set
Cov0 chosen above.

It is shown in Sites, Lemma 9.8.6 that, after having chosen the category Sch𝛼, the category
of sheaves on Sch𝛼 does not depend on the choice of coverings chosen in (3) above. In other
words, the topos Sh(Sch𝑍𝑎𝑟) only depends on the choice of the category Sch𝛼. It is shown in
Sets, Lemma 3.9.9 that these categories are closed under many constructions of algebraic
geometry, e.g., fibre products and taking open and closed subschemes. We can also show
that the exact choice of Sch𝛼 does not matter too much, see Section 30.10.

Another approach would be to assume the existence of a strongly inaccessible cardinal and
to define Sch𝑍𝑎𝑟 to be the category of schemes contained in a chosen universe with set of
coverings the Zariski coverings contained in that same universe.

Before we continue with the introduction of the big Zariski site of a scheme 𝑆, let us point
out that the topology on a big Zariski site Sch𝑍𝑎𝑟 is in some sense induced from the Zariski
topology on the category of all schemes.

Lemma30.3.6. Let Sch𝑍𝑎𝑟 be a big Zariski site as inDefinition 30.3.5. Let 𝑇 ∈ 𝑂𝑏(Sch𝑍𝑎𝑟).
Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an arbitrary Zariski covering of 𝑇. There exists a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽
of 𝑇 in the site Sch𝑍𝑎𝑟 which is tautologically equivalent (see Sites, Definition 9.8.2) to
{𝑇𝑖 → 𝑇}𝑖∈𝐼
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Proof. Since each 𝑇𝑖 → 𝑇 is an open immersion, we see by Sets, Lemma 3.9.9 that each
𝑇𝑖 is isomorphic to an object 𝑉𝑖 of Sch𝑍𝑎𝑟. The covering {𝑉𝑖 → 𝑇}𝑖∈𝐼 is tautologically
equivalent to {𝑇𝑖 → 𝑇}𝑖∈𝐼 (using the identity map on 𝐼 both ways). Moreover, {𝑉𝑖 → 𝑇}𝑖∈𝐼
is combinatorially equivalent to a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of 𝑇 in the site Sch𝑍𝑎𝑟 by Sets,
Lemma 3.11.1. �

Definition 30.3.7. Let 𝑆 be a scheme. Let Sch𝑍𝑎𝑟 be a big Zariski site containing 𝑆.
(1) The big Zariski site of 𝑆, denoted (Sch/𝑆)𝑍𝑎𝑟, is the site Sch𝑍𝑎𝑟/𝑆 introduced in

Sites, Section 9.21.
(2) The small Zariski site of 𝑆, which we denote 𝑆𝑍𝑎𝑟, is the full subcategory of

(Sch/𝑆)𝑍𝑎𝑟 whose objects are those 𝑈/𝑆 such that 𝑈 → 𝑆 is an open immersion.
A covering of 𝑆𝑍𝑎𝑟 is any covering {𝑈𝑖 → 𝑈} of (Sch/𝑆)𝑍𝑎𝑟 with 𝑈 ∈ 𝑂𝑏(𝑆𝑍𝑎𝑟).

(3) The big affine Zariski site of 𝑆, denoted (Aff/𝑆)𝑍𝑎𝑟, is the full subcategory of
(Sch/𝑆)𝑍𝑎𝑟 whose objects are affine 𝑈/𝑆. A covering of (Aff/𝑆)𝑍𝑎𝑟 is any covering
{𝑈𝑖 → 𝑈} of (Sch/𝑆)𝑍𝑎𝑟 which is a standard Zariski covering.

It is not completely clear that the small Zariski site and the big affine Zariski site are sites.
We check this now.

Lemma 30.3.8. Let 𝑆 be a scheme. Let Sch𝑍𝑎𝑟 be a big Zariski site containing 𝑆. Both
𝑆𝑍𝑎𝑟 and (Aff/𝑆)𝑍𝑎𝑟 are sites.

Proof. Let us show that 𝑆𝑍𝑎𝑟 is a site. It is a category with a given set of families of
morphisms with fixed target. Thus we have to show properties (1), (2) and (3) of Sites,
Definition 9.6.2. Since (Sch/𝑆)𝑍𝑎𝑟 is a site, it suffices to prove that given any covering
{𝑈𝑖 → 𝑈} of (Sch/𝑆)𝑍𝑎𝑟 with 𝑈 ∈ 𝑂𝑏(𝑆𝑍𝑎𝑟) we also have 𝑈𝑖 ∈ 𝑂𝑏(𝑆𝑍𝑎𝑟). This follows
from the definitions as the composition of open immersions is an open immersion.

Let us show that (Aff/𝑆)𝑍𝑎𝑟 is a site. Reasoning as above, it suffices to show that the col-
lection of standard Zariski coverings of affines satisfies properties (1), (2) and (3) of Sites,
Definition 9.6.2. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑛 ∈ 𝑅 generate the unit ideal. For each
𝑖 ∈ {1, … , 𝑛} let 𝑔𝑖1, … , 𝑔𝑖𝑛𝑖

∈ 𝑅𝑓𝑖
be elements generating the unit ideal of 𝑅𝑓𝑖

. Write
𝑔𝑖𝑗 = 𝑓𝑖𝑗/𝑓

𝑒𝑖𝑗
𝑖 which is possible. After replacing 𝑓𝑖𝑗 by 𝑓𝑖𝑓𝑖𝑗 if necessary, we have that

𝐷(𝑓𝑖𝑗) ⊂ 𝐷(𝑓𝑖) ≅ 𝑆𝑝𝑒𝑐(𝑅𝑓𝑖
) is equal to 𝐷(𝑔𝑖𝑗) ⊂ 𝑆𝑝𝑒𝑐(𝑅𝑓𝑖

). Hence we see that the family
of morphisms {𝐷(𝑔𝑖𝑗) → 𝑆𝑝𝑒𝑐(𝑅)} is a standard Zariski covering. From these consider-
ations it follows that (2) holds for standard Zariski coverings. We omit the verification of
(1) and (3). �

Lemma 30.3.9. Let 𝑆 be a scheme. Let Sch𝑍𝑎𝑟 be a big Zariski site containing 𝑆. The
underlying categories of the sites Sch𝑍𝑎𝑟, (Sch/𝑆)𝑍𝑎𝑟, 𝑆𝑍𝑎𝑟, and (Aff/𝑆)𝑍𝑎𝑟 have fibre prod-
ucts. In each case the obvious functor into the category Sch of all schemes commutes with
taking fibre products. The categories (Sch/𝑆)𝑍𝑎𝑟, and 𝑆𝑍𝑎𝑟 both have a final object, namely
𝑆/𝑆.

Proof. For Sch𝑍𝑎𝑟 it is true by construction, see Sets, Lemma 3.9.9. Suppose we have
𝑈 → 𝑆, 𝑉 → 𝑈, 𝑊 → 𝑈 morphisms of schemes with 𝑈, 𝑉, 𝑊 ∈ 𝑂𝑏(Sch𝑍𝑎𝑟). The fibre
product 𝑉 ×𝑈 𝑊 in Sch𝑍𝑎𝑟 is a fibre product in Sch and is the fibre product of 𝑉/𝑆 with 𝑊/𝑆
over 𝑈/𝑆 in the category of all schemes over 𝑆, and hence also a fibre product in (Sch/𝑆)𝑍𝑎𝑟.
This proves the result for (Sch/𝑆)𝑍𝑎𝑟. If 𝑈 → 𝑆, 𝑉 → 𝑈 and 𝑊 → 𝑈 are open immersions
then so is 𝑉 ×𝑈 𝑊 → 𝑆 and hence we get the result for 𝑆𝑍𝑎𝑟. If 𝑈, 𝑉, 𝑊 are affine, so is
𝑉 ×𝑈 𝑊 and hence the result for (Aff/𝑆)𝑍𝑎𝑟. �
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Next, we check that the big affine site defines the same topos as the big site.

Lemma 30.3.10. Let 𝑆 be a scheme. Let Sch𝑍𝑎𝑟 be a big Zariski site containing 𝑆. The
functor (Aff/𝑆)𝑍𝑎𝑟 → (Sch/𝑆)𝑍𝑎𝑟 is a special cocontinuous functor. Hence it induces an
equivalence of topoi from Sh((Aff/𝑆)𝑍𝑎𝑟) to Sh((Sch/𝑆)𝑍𝑎𝑟).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
9.25.2. Thus we have to verify assumptions (1) -- (5) of Sites, Lemma 9.25.1. Denote
the inclusion functor 𝑢 ∶ (Aff/𝑆)𝑍𝑎𝑟 → (Sch/𝑆)𝑍𝑎𝑟. Being cocontinuous just means that
any Zariski covering of 𝑇/𝑆, 𝑇 affine, can be refined by a standard Zariski covering of 𝑇.
This is the content of Lemma 30.3.3. Hence (1) holds. We see 𝑢 is continuous simply be-
cause a standard Zariski covering is a Zariski covering. Hence (2) holds. Parts (3) and (4)
follow immediately from the fact that 𝑢 is fully faithful. And finally condition (5) follows
from the fact that every scheme has an affine open covering. �

Let us check that the notion of a sheaf on the small Zariski site corresponds to notion of a
sheaf on 𝑆.

Lemma 30.3.11. The category of sheaves on 𝑆𝑍𝑎𝑟 is equivalent to the category of sheaves
on the underlying topological space of 𝑆.

Proof. We will use repeatedly that for any object 𝑈/𝑆 of 𝑆𝑍𝑎𝑟 the morphism 𝑈 → 𝑆 is
an isomorphism onto an open subscheme. Let ℱ be a sheaf on 𝑆. Then we define a sheaf
on 𝑆𝑍𝑎𝑟 by the rule ℱ′(𝑈/𝑆) = ℱ(Im(𝑈 → 𝑆)). For the converse, we choose for every
open subscheme 𝑈 ⊂ 𝑆 an object 𝑈′/𝑆 ∈ 𝑂𝑏(𝑆𝑍𝑎𝑟) with Im(𝑈′ → 𝑆) = 𝑈 (here you
have to use Sets, Lemma 3.9.9). Given a sheaf 𝒢 on 𝑆𝑍𝑎𝑟 we define a sheaf on 𝑆 by setting
𝒢(𝑈) = 𝒢(𝑈′/𝑆). To see that 𝒢′ is a sheaf we use that for any open covering 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖
the covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 is combinatorially equivalent to a covering {𝑈′

𝑗 → 𝑈′}𝑗∈𝐽 in
𝑆𝑍𝑎𝑟 by Sets, Lemma 3.11.1, and we use Sites, Lemma 9.8.4. Details omitted. �

From now on we will not make any distinction between a sheaf on 𝑆𝑍𝑎𝑟 or a sheaf on 𝑆.
We will always use the procedures of the proof of the lemma to go between the two notions.
Next, we esthablish some relationships between the topoi associated to these sites.

Lemma 30.3.12. Let Sch𝑍𝑎𝑟 be a big Zariski site. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism in Sch𝑍𝑎𝑟.
The functor 𝑇𝑍𝑎𝑟 → (Sch/𝑆)𝑍𝑎𝑟 is cocontinuous and induces a morphism of topoi

𝑖𝑓 ∶ Sh(𝑇𝑍𝑎𝑟) ⟶ Sh((Sch/𝑆)𝑍𝑎𝑟)

For a sheaf 𝒢 on (Sch/𝑆)𝑍𝑎𝑟 we have the formula (𝑖−1
𝑓 𝒢)(𝑈/𝑇) = 𝒢(𝑈/𝑆). The functor 𝑖−1

𝑓
also has a left adjoint 𝑖𝑓,! which commutes with fibre products and equalizers.

Proof. Denote the functor 𝑢 ∶ 𝑇𝑍𝑎𝑟 → (Sch/𝑆)𝑍𝑎𝑟. In other words, given and open immer-
sion 𝑗 ∶ 𝑈 → 𝑇 corresponding to an object of 𝑇𝑍𝑎𝑟 we set 𝑢(𝑈 → 𝑇) = (𝑓∘𝑗 ∶ 𝑈 → 𝑆). This
functor commutes with fibre products, see Lemma 30.3.9. Moreover, 𝑇𝑍𝑎𝑟 has equalizers
(as any two morphisms with the same source and target are the same) and 𝑢 commutes with
them. It is clearly cocontinuous. It is also continuous as 𝑢 transforms coverings to cov-
erings and commutes with fibre products. Hence the lemma follows from Sites, Lemmas
9.19.5 and 9.19.6. �

Lemma 30.3.13. Let 𝑆 be a scheme. Let Sch𝑍𝑎𝑟 be a big Zariski site containing 𝑆. The
inclusion functor 𝑆𝑍𝑎𝑟 → (Sch/𝑆)𝑍𝑎𝑟 satisfies the hypotheses of Sites, Lemma 9.19.8 and
hence induces a morphism of sites

𝜋𝑆 ∶ (Sch/𝑆)𝑍𝑎𝑟 ⟶ 𝑆𝑍𝑎𝑟
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and a morphism of topoi

𝑖𝑆 ∶ Sh(𝑆𝑍𝑎𝑟) ⟶ Sh((Sch/𝑆)𝑍𝑎𝑟)

such that 𝜋𝑆 ∘ 𝑖𝑆 = id. Moreover, 𝑖𝑆 = 𝑖id𝑆
with 𝑖id𝑆

as in Lemma 30.3.12. In particular the
functor 𝑖−1

𝑆 = 𝜋𝑆,∗ is described by the rule 𝑖−1
𝑆 (𝒢)(𝑈/𝑆) = 𝒢(𝑈/𝑆).

Proof. In this case the functor 𝑢 ∶ 𝑆𝑍𝑎𝑟 → (Sch/𝑆)𝑍𝑎𝑟, in addition to the properties seen
in the proof of Lemma 30.3.12 above, also is fully faithful and transforms the final object
into the final object. The lemma follows. �

Definition 30.3.14. In the situation of Lemma 30.3.13 the functor 𝑖−1
𝑆 = 𝜋𝑆,∗ is often called

the restriction to the small Zariski site, and for a sheaf ℱ on the big Zariski site we denote
ℱ|𝑆𝑍𝑎𝑟

this restriction.

With this notation in place we have for a sheaf ℱ on the big site and a sheaf 𝒢 on the big
site that

𝑀𝑜𝑟Sh(𝑆𝑍𝑎𝑟)(ℱ|𝑆𝑍𝑎𝑟
, 𝒢) = 𝑀𝑜𝑟Sh((Sch/𝑆)𝑍𝑎𝑟)(ℱ, 𝑖𝑆,∗𝒢)

𝑀𝑜𝑟Sh(𝑆𝑍𝑎𝑟)(𝒢, ℱ|𝑆𝑍𝑎𝑟
) = 𝑀𝑜𝑟Sh((Sch/𝑆)𝑍𝑎𝑟)(𝜋−1

𝑆 𝒢, ℱ)

Moreover, we have (𝑖𝑆,∗𝒢)|𝑆𝑍𝑎𝑟
= 𝒢 and we have (𝜋−1

𝑆 𝒢)|𝑆𝑍𝑎𝑟
= 𝒢.

Lemma 30.3.15. Let Sch𝑍𝑎𝑟 be a big Zariski site. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism in Sch𝑍𝑎𝑟.
The functor

𝑢 ∶ (Sch/𝑇)𝑍𝑎𝑟 ⟶ (Sch/𝑆)𝑍𝑎𝑟, 𝑉/𝑇 ⟼ 𝑉/𝑆

is cocontinuous, and has a continuous right adjoint

𝑣 ∶ (Sch/𝑆)𝑍𝑎𝑟 ⟶ (Sch/𝑇)𝑍𝑎𝑟, (𝑈 → 𝑆) ⟼ (𝑈 ×𝑆 𝑇 → 𝑇).

They induce the same morphism of topoi

𝑓𝑏𝑖𝑔 ∶ Sh((Sch/𝑇)𝑍𝑎𝑟) ⟶ Sh((Sch/𝑆)𝑍𝑎𝑟)

We have 𝑓−1
𝑏𝑖𝑔(𝒢)(𝑈/𝑇) = 𝒢(𝑈/𝑆). We have 𝑓𝑏𝑖𝑔,∗(ℱ)(𝑈/𝑆) = ℱ(𝑈 ×𝑆 𝑇/𝑇). Also, 𝑓−1

𝑏𝑖𝑔 has a
left adjoint 𝑓𝑏𝑖𝑔! which commutes with fibre products and equalizers.

Proof. The functor 𝑢 is cocontinuous, continuous, and commutes with fibre products and
equalizers (details omitted; compare with proof of Lemma 30.3.12). Hence Sites, Lemmas
9.19.5 and 9.19.6 apply and we deduce the formula for 𝑓−1

𝑏𝑖𝑔 and the existence of 𝑓𝑏𝑖𝑔!. More-
over, the functor 𝑣 is a right adjoint because given 𝑈/𝑇 and 𝑉/𝑆 we have 𝑀𝑜𝑟𝑆(𝑢(𝑈), 𝑉) =
𝑀𝑜𝑟𝑇(𝑈, 𝑉 ×𝑆 𝑇) as desired. Thus we may apply Sites, Lemmas 9.20.1 and 9.20.2 to get
the formula for 𝑓𝑏𝑖𝑔,∗. �

Lemma 30.3.16. Let Sch𝑍𝑎𝑟 be a big Zariski site. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism in Sch𝑍𝑎𝑟.
(1) We have 𝑖𝑓 = 𝑓𝑏𝑖𝑔 ∘ 𝑖𝑇 with 𝑖𝑓 as in Lemma 30.3.12 and 𝑖𝑇 as in Lemma 30.3.13.
(2) The functor 𝑆𝑍𝑎𝑟 → 𝑇𝑍𝑎𝑟, (𝑈 → 𝑆) ↦ (𝑈 ×𝑆 𝑇 → 𝑇) is continuous and induces

a morphism of topoi

𝑓𝑠𝑚𝑎𝑙𝑙 ∶ Sh(𝑇𝑍𝑎𝑟) ⟶ Sh(𝑆𝑍𝑎𝑟).

The functors 𝑓−1
𝑠𝑚𝑎𝑙𝑙 and 𝑓𝑠𝑚𝑎𝑙𝑙,∗ agree with the usual notions 𝑓−1 and 𝑓∗ is we iden-

tify sheaves on 𝑇𝑍𝑎𝑟, resp. 𝑆𝑍𝑎𝑟 with sheaves on 𝑇, resp. 𝑆 via Lemma 30.3.11.
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(3) We have a commutative diagram of morphisms of sites

𝑇𝑍𝑎𝑟

𝑓𝑠𝑚𝑎𝑙𝑙
��

(Sch/𝑇)𝑍𝑎𝑟

𝑓𝑏𝑖𝑔
��

𝜋𝑇
oo

𝑆𝑍𝑎𝑟 (Sch/𝑆)𝑍𝑎𝑟
𝜋𝑆oo

so that 𝑓𝑠𝑚𝑎𝑙𝑙 ∘ 𝜋𝑇 = 𝜋𝑆 ∘ 𝑓𝑏𝑖𝑔 as morphisms of topoi.
(4) We have 𝑓𝑠𝑚𝑎𝑙𝑙 = 𝜋𝑆 ∘ 𝑓𝑏𝑖𝑔 ∘ 𝑖𝑇 = 𝜋𝑆 ∘ 𝑖𝑓.

Proof. The equality 𝑖𝑓 = 𝑓𝑏𝑖𝑔 ∘ 𝑖𝑇 follows from the equality 𝑖−1
𝑓 = 𝑖−1

𝑇 ∘ 𝑓−1
𝑏𝑖𝑔 which is clear

from the descriptions of these functors above. Thus we see (1).
Statement (2): See Sites, Example 9.14.2.
Part (3) follows because 𝜋𝑆 and 𝜋𝑇 are given by the inclusion functors and 𝑓𝑠𝑚𝑎𝑙𝑙 and 𝑓𝑏𝑖𝑔
by the base change functor 𝑈 ↦ 𝑈 ×𝑆 𝑇.
Statement (4) follows from (3) by precomposing with 𝑖𝑇. �

In the situation of the lemma, using the terminology of Definition 30.3.14 we have: for ℱ
a sheaf on the big Zariski site of 𝑇

(𝑓𝑏𝑖𝑔,∗ℱ)|𝑆𝑍𝑎𝑟
= 𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑇𝑍𝑎𝑟

),

This equality is clear from the commutativity of the diagram of sites of the lemma, since
restriction to the small Zariski site of 𝑇, resp. 𝑆 is given by 𝜋𝑇,∗, resp. 𝜋𝑆,∗. A similar
formula involving pullbacks and restrictions is false.

Lemma 30.3.17. Given schemes 𝑋, 𝑌, 𝑌 in (Sch/𝑆)𝑍𝑎𝑟 and morphisms 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶
𝑌 → 𝑍 we have 𝑔𝑏𝑖𝑔 ∘ 𝑓𝑏𝑖𝑔 = (𝑔 ∘ 𝑓)𝑏𝑖𝑔 and 𝑔𝑠𝑚𝑎𝑙𝑙 ∘ 𝑓𝑠𝑚𝑎𝑙𝑙 = (𝑔 ∘ 𝑓)𝑠𝑚𝑎𝑙𝑙.

Proof. This follows from the simple description of push forward and pull back for the
functors on the big sites from Lemma 30.3.15. For the functors on the small sites this is
Sheaves, Lemma 6.21.2 via the identification of Lemma 30.3.11. �

We can think about a sheaf on the big Zariski site of 𝑆 as a collection of ``usual'' sheaves
on all schemes over 𝑆.

Lemma 30.3.18. Let 𝑆 be a scheme contained in a big Zariski site Sch𝑍𝑎𝑟. A sheaf ℱ on
the big Zariski site (Sch/𝑆)𝑍𝑎𝑟 is given by the following data:

(1) for every 𝑇/𝑆 ∈ 𝑂𝑏((Sch/𝑆)𝑍𝑎𝑟) a sheaf ℱ𝑇 on 𝑇,
(2) for every 𝑓 ∶ 𝑇′ → 𝑇 in (Sch/𝑆)𝑍𝑎𝑟 a map 𝑐𝑓 ∶ 𝑓−1ℱ𝑇 → ℱ𝑇′.

These data are subject to the following conditions:
(i) given any 𝑓 ∶ 𝑇′ → 𝑇 and 𝑔 ∶ 𝑇″ → 𝑇′ in (Sch/𝑆)𝑍𝑎𝑟 the composition 𝑔−1𝑐𝑓 ∘ 𝑐𝑔

is equal to 𝑐𝑓∘𝑔, and
(ii) if 𝑓 ∶ 𝑇′ → 𝑇 in (Sch/𝑆)𝑍𝑎𝑟 is an open immersion then 𝑐𝑓 is an isomorphism.

Proof. Given a sheaf ℱ on Sh((Sch/𝑆)𝑍𝑎𝑟) we set ℱ𝑇 = 𝑖−1
𝑝 ℱ where 𝑝 ∶ 𝑇 → 𝑆 is the

structure morphism. Note that ℱ𝑇(𝑈) = ℱ(𝑈′/𝑆) for any open 𝑈 ⊂ 𝑇, and 𝑈′ → 𝑇 an
open immersion in (Sch/𝑇)𝑍𝑎𝑟 with image 𝑈, see Lemmas 30.3.11 and 30.3.12. Hence
given 𝑓 ∶ 𝑇′ → 𝑇 over 𝑆 and 𝑈, 𝑈′ → 𝑇 we get a canonical map ℱ𝑇(𝑈) = ℱ(𝑈′/𝑆) →
ℱ(𝑈′ ×𝑇 𝑇′/𝑆) = ℱ𝑇′(𝑓−1(𝑈)) where the middle is the restriction map of ℱ with respect
to the morphism 𝑈′ ×𝑇 𝑇′ → 𝑈′ over 𝑆. The collection of these maps are compatible with
restrictions, and hence define an 𝑓-map 𝑐𝑓 from ℱ𝑇 to ℱ𝑇′, see Sheaves, Definition 6.21.7
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and the discussion surrounding it. It is clear that 𝑐𝑓∘𝑔 is the composition of 𝑐𝑓 and 𝑐𝑔, since
composition of restriction maps of ℱ gives restriction maps.
Conversely, given a system (ℱ𝑇, 𝑐𝑓) as in the lemmawemay define a presheafℱ on Sh((Sch/𝑆)𝑍𝑎𝑟)
by simply setting ℱ(𝑇/𝑆) = ℱ𝑇(𝑇). As restriction mapping, given 𝑓 ∶ 𝑇′ → 𝑇 we set for
𝑠 ∈ ℱ(𝑇) the pull back 𝑓∗(𝑠) equal to 𝑐𝑓(𝑠) (where we think of 𝑐𝑓 as an 𝑓-map again). The
condition on the 𝑐𝑓 garantees that pullbacks satisfy the required functoriality property. We
omit the verification that this is a sheaf. It is clear that the constructions so defined are
mutually inverse. �

30.4. The étale topology

Let 𝑆 be a scheme. We would like to define the étale-topology on the category of schemes
over 𝑆. According to our general principle we first introduce the notion of an étale covering.

Definition 30.4.1. Let 𝑇 be a scheme. An étale covering of 𝑇 is a family of morphisms
{𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 of schemes such that each 𝑓𝑖 is étale and such that 𝑇 = ⋃ 𝑓𝑖(𝑇𝑖).

Lemma 30.4.2. Any Zariski covering is an étale covering.

Proof. This is clear from the definitions and the fact that an open immersion is an étale
morphism, see Morphisms, Lemma 24.35.9. �

Next, we show that this notion satisfies the conditions of Sites, Definition 9.6.2.

Lemma 30.4.3. Let 𝑇 be a scheme.
(1) If 𝑇′ → 𝑇 is an isomorphism then {𝑇′ → 𝑇} is an étale covering of 𝑇.
(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is an étale covering and for each 𝑖 we have an étale covering

{𝑇𝑖𝑗 → 𝑇𝑖}𝑗∈𝐽𝑖
, then {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖

is an étale covering.
(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is an étale covering and 𝑇′ → 𝑇 is a morphism of schemes then

{𝑇′ ×𝑇 𝑇𝑖 → 𝑇′}𝑖∈𝐼 is an étale covering.

Proof. Omitted. �

Lemma 30.4.4. Let 𝑇 be an affine scheme. Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an étale covering of 𝑇.
Then there exists an étale covering {𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 which is a refinement of {𝑇𝑖 → 𝑇}𝑖∈𝐼
such that each 𝑈𝑗 is an affine scheme. Moreover, we may choose each 𝑈𝑗 to be open affine
in one of the 𝑇𝑖.

Proof. Omitted. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 30.4.5. Let 𝑇 be an affine scheme. A standard étale covering of 𝑇 is a family
{𝑓𝑗 ∶ 𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 with each 𝑈𝑗 is affine and étale over 𝑇 and 𝑇 = ⋃ 𝑓𝑗(𝑈𝑗).

In the definition above we do not assume the morphisms 𝑓𝑗 are standard étale. The reason is
that if we did then the standard étale coverings would not define a site on Aff/𝑆, for example
because of Algebra, Lemma 7.132.14 part (4). On the other hand, an étale morphism of
affines is automatically standard smooth, see Algebra, Lemma 7.132.2. Hence a standard
étale covering is a standard smooth covering and a standard syntomic covering.

Definition 30.4.6. A big étale site is any site Sch ́𝑒𝑡𝑎𝑙𝑒 as in Sites, Definition 9.6.2 constructed
as follows:

(1) Choose any set of schemes 𝑆0, and any set of étale coverings Cov0 among these
schemes.
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(2) As underlying category take any category Sch𝛼 constructed as in Sets, Lemma
3.9.2 starting with the set 𝑆0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the category
Sch𝛼 and the class of étale coverings, and the set Cov0 chosen above.

See the remarks following Definition 30.3.5 for motivation and explanation regarding the
definition of big sites.

Before we continue with the introduction of the big étale site of a scheme 𝑆, let us point
out that the topology on a big étale site Sch ́𝑒𝑡𝑎𝑙𝑒 is in some sense induced from the étale
topology on the category of all schemes.

Lemma 30.4.7. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big étale site as in Definition 30.4.6. Let 𝑇 ∈ 𝑂𝑏(Sch ́𝑒𝑡𝑎𝑙𝑒).
Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an arbitrary étale covering of 𝑇.

(1) There exists a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of 𝑇 in the site Sch ́𝑒𝑡𝑎𝑙𝑒 which refines {𝑇𝑖 →
𝑇}𝑖∈𝐼.

(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a standard étale covering, then it is tautologically equivalent to
a covering in Sch ́𝑒𝑡𝑎𝑙𝑒.

(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a Zariski covering, then it is tautologically equivalent to a
covering in Sch ́𝑒𝑡𝑎𝑙𝑒.

Proof. For each 𝑖 choose an affine open covering 𝑇𝑖 = ⋃𝑗∈𝐽𝑖
𝑇𝑖𝑗 such that each 𝑇𝑖𝑗 maps

into an affine open subscheme of 𝑇. By Lemma 30.4.3 the refinement {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖
is an

étale covering of 𝑇 as well. Hence we may assume each 𝑇𝑖 is affine, and maps into an affine
open 𝑊𝑖 of 𝑇. Applying Sets, Lemma 3.9.9 we see that 𝑊𝑖 is isomorphic to an object of
Sch𝑍𝑎𝑟. But then 𝑇𝑖 as a finite type scheme over𝑊𝑖 is isomorphic to an object𝑉𝑖 of Sch𝑍𝑎𝑟 by
a second application of Sets, Lemma 3.9.9. The covering {𝑉𝑖 → 𝑇}𝑖∈𝐼 refines {𝑇𝑖 → 𝑇}𝑖∈𝐼
(because they are isomorphic). Moreover, {𝑉𝑖 → 𝑇}𝑖∈𝐼 is combinatorially equivalent to
a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of 𝑇 in the site Sch𝑍𝑎𝑟 by Sets, Lemma 3.9.9. The covering
{𝑈𝑗 → 𝑇}𝑗∈𝐽 is a refinement as in (1). In the situation of (2), (3) each of the schemes 𝑇𝑖 is
isomorphic to an object of Sch ́𝑒𝑡𝑎𝑙𝑒 by Sets, Lemma 3.9.9, and another application of Sets,
Lemma 3.11.1 gives what we want. �

Definition 30.4.8. Let 𝑆 be a scheme. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big étale site containing 𝑆.
(1) The big étale site of 𝑆, denoted (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒, is the site Sch ́𝑒𝑡𝑎𝑙𝑒/𝑆 introduced in

Sites, Section 9.21.
(2) The small étale site of 𝑆, which we denote 𝑆 ́𝑒𝑡𝑎𝑙𝑒, is the full subcategory of

(Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 whose objects are those 𝑈/𝑆 such that 𝑈 → 𝑆 is étale. A covering of
𝑆 ́𝑒𝑡𝑎𝑙𝑒 is any covering {𝑈𝑖 → 𝑈} of (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 with 𝑈 ∈ 𝑂𝑏(𝑆 ́𝑒𝑡𝑎𝑙𝑒).

(3) The big affine étale site of 𝑆, denoted (Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒, is the full subcategory of
(Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 whose objects are affine 𝑈/𝑆. A covering of (Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒 is any cover-
ing {𝑈𝑖 → 𝑈} of (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 which is a standard étale covering.

It is not completely clear that the big affine étale site or the small étale site are sites. We
check this now.

Lemma 30.4.9. Let 𝑆 be a scheme. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big étale site containing 𝑆. Both 𝑆 ́𝑒𝑡𝑎𝑙𝑒
and (Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒 are sites.

Proof. Let us show that 𝑆 ́𝑒𝑡𝑎𝑙𝑒 is a site. It is a category with a given set of families of
morphisms with fixed target. Thus we have to show properties (1), (2) and (3) of Sites,
Definition 9.6.2. Since (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 is a site, it suffices to prove that given any covering
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{𝑈𝑖 → 𝑈} of (Sch/𝑆)𝑍𝑎𝑟 with 𝑈 ∈ 𝑂𝑏(𝑆 ́𝑒𝑡𝑎𝑙𝑒) we also have 𝑈𝑖 ∈ 𝑂𝑏(𝑆 ́𝑒𝑡𝑎𝑙𝑒). This follows
from the definitions as the composition of étale morphisms is an étale morphism.

Let us show that (Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒 is a site. Reasoning as above, it suffices to show that the
collection of standard étale coverings of affines satisfies properties (1), (2) and (3) of Sites,
Definition 9.6.2. This is clear since for example, given a standard étale covering {𝑇𝑖 →
𝑇}𝑖∈𝐼 and for each 𝑖we have a standard étale covering {𝑇𝑖𝑗 → 𝑇𝑖}𝑗∈𝐽𝑖

, then {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖
is a standard étale covering because ⋃𝑖∈𝐼 𝐽𝑖 is finite and each 𝑇𝑖𝑗 is affine. �

Lemma 30.4.10. Let 𝑆 be a scheme. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big étale site containing 𝑆. The
underlying categories of the sites Sch ́𝑒𝑡𝑎𝑙𝑒, (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒, 𝑆 ́𝑒𝑡𝑎𝑙𝑒, and (Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒 have fibre
products. In each case the obvious functor into the category Sch of all schemes commutes
with taking fibre products. The categories (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒, and 𝑆 ́𝑒𝑡𝑎𝑙𝑒 both have a final object,
namely 𝑆/𝑆.

Proof. For Sch ́𝑒𝑡𝑎𝑙𝑒 it is true by construction, see Sets, Lemma 3.9.9. Suppose we have
𝑈 → 𝑆, 𝑉 → 𝑈, 𝑊 → 𝑈 morphisms of schemes with 𝑈, 𝑉, 𝑊 ∈ 𝑂𝑏(Sch ́𝑒𝑡𝑎𝑙𝑒). The fibre
product 𝑉 ×𝑈 𝑊 in Sch ́𝑒𝑡𝑎𝑙𝑒 is a fibre product in Sch and is the fibre product of 𝑉/𝑆 with
𝑊/𝑆 over 𝑈/𝑆 in the category of all schemes over 𝑆, and hence also a fibre product in
(Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒. This proves the result for (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒. If 𝑈 → 𝑆, 𝑉 → 𝑈 and 𝑊 → 𝑈 are étale
then so is 𝑉 ×𝑈 𝑊 → 𝑆 and hence we get the result for 𝑆 ́𝑒𝑡𝑎𝑙𝑒. If 𝑈, 𝑉, 𝑊 are affine, so is
𝑉 ×𝑈 𝑊 and hence the result for (Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒. �

Next, we check that the big affine site defines the same topos as the big site.

Lemma 30.4.11. Let 𝑆 be a scheme. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big étale site containing 𝑆. The
functor (Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒 → (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 is special cocontinuous and induces an equivalence of
topoi from Sh((Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒) to Sh((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
9.25.2. Thus we have to verify assumptions (1) -- (5) of Sites, Lemma 9.25.1. Denote
the inclusion functor 𝑢 ∶ (Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒 → (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒. Being cocontinuous just means that
any étale covering of 𝑇/𝑆, 𝑇 affine, can be refined by a standard étale covering of 𝑇. This
is the content of Lemma 30.4.4. Hence (1) holds. We see 𝑢 is continuous simply because
a standard étale covering is a étale covering. Hence (2) holds. Parts (3) and (4) follow
immediately from the fact that 𝑢 is fully faithful. And finally condition (5) follows from the
fact that every scheme has an affine open covering. �

Next, we esthablish some relationships between the topoi associated to these sites.

Lemma 30.4.12. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big étale site. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism in Sch ́𝑒𝑡𝑎𝑙𝑒.
The functor 𝑇 ́𝑒𝑡𝑎𝑙𝑒 → (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 is cocontinuous and induces a morphism of topoi

𝑖𝑓 ∶ Sh(𝑇 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒)

For a sheaf 𝒢 on (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 we have the formula (𝑖−1
𝑓 𝒢)(𝑈/𝑇) = 𝒢(𝑈/𝑆). The functor 𝑖−1

𝑓
also has a left adjoint 𝑖𝑓,! which commutes with fibre products and equalizers.

Proof. Denote the functor 𝑢 ∶ 𝑇 ́𝑒𝑡𝑎𝑙𝑒 → (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒. In other words, given an étale mor-
phism 𝑗 ∶ 𝑈 → 𝑇 corresponding to an object of 𝑇 ́𝑒𝑡𝑎𝑙𝑒 we set 𝑢(𝑈 → 𝑇) = (𝑓 ∘ 𝑗 ∶ 𝑈 → 𝑆).
This functor commutes with fibre products, see Lemma 30.4.10. Let 𝑎, 𝑏 ∶ 𝑈 → 𝑉 be two
morphisms in 𝑇 ́𝑒𝑡𝑎𝑙𝑒. In this case the equalizer of 𝑎 and 𝑏 (in the category of schemes) is

𝑉 ×Δ𝑉/𝑇,𝑉×𝑇𝑉,(𝑎,𝑏) 𝑈 ×𝑇 𝑈
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which is a fibre product of schemes étale over 𝑇, hence étale over 𝑇. Thus 𝑇 ́𝑒𝑡𝑎𝑙𝑒 has equal-
izers and 𝑢 commutes with them. It is clearly cocontinuous. It is also continuous as 𝑢
transforms coverings to coverings and commutes with fibre products. Hence the Lemma
follows from Sites, Lemmas 9.19.5 and 9.19.6. �

Lemma 30.4.13. Let 𝑆 be a scheme. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big étale site containing 𝑆. The
inclusion functor 𝑆 ́𝑒𝑡𝑎𝑙𝑒 → (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 satisfies the hypotheses of Sites, Lemma 9.19.8 and
hence induces a morphism of sites

𝜋𝑆 ∶ (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑆 ́𝑒𝑡𝑎𝑙𝑒

and a morphism of topoi

𝑖𝑆 ∶ Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒)
such that 𝜋𝑆 ∘ 𝑖𝑆 = id. Moreover, 𝑖𝑆 = 𝑖id𝑆

with 𝑖id𝑆
as in Lemma 30.4.12. In particular the

functor 𝑖−1
𝑆 = 𝜋𝑆,∗ is described by the rule 𝑖−1

𝑆 (𝒢)(𝑈/𝑆) = 𝒢(𝑈/𝑆).

Proof. In this case the functor 𝑢 ∶ 𝑆 ́𝑒𝑡𝑎𝑙𝑒 → (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒, in addition to the properties seen
in the proof of Lemma 30.4.12 above, also is fully faithful and transforms the final object
into the final object. The lemma follows from Sites, Lemma 9.19.8. �

Definition 30.4.14. In the situation of Lemma 30.4.13 the functor 𝑖−1
𝑆 = 𝜋𝑆,∗ is often called

the restriction to the small étale site, and for a sheaf ℱ on the big étale site we denote ℱ|𝑆 ́𝑒𝑡𝑎𝑙𝑒
this restriction.

With this notation in place we have for a sheaf ℱ on the big site and a sheaf 𝒢 on the big
site that

𝑀𝑜𝑟Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒)(ℱ|𝑆 ́𝑒𝑡𝑎𝑙𝑒
, 𝒢) = 𝑀𝑜𝑟Sh((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒)(ℱ, 𝑖𝑆,∗𝒢)

𝑀𝑜𝑟Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒)(𝒢, ℱ|𝑆 ́𝑒𝑡𝑎𝑙𝑒
) = 𝑀𝑜𝑟Sh((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒)(𝜋−1

𝑆 𝒢, ℱ)

Moreover, we have (𝑖𝑆,∗𝒢)|𝑆 ́𝑒𝑡𝑎𝑙𝑒
= 𝒢 and we have (𝜋−1

𝑆 𝒢)|𝑆 ́𝑒𝑡𝑎𝑙𝑒
= 𝒢.

Lemma 30.4.15. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big étale site. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism in Sch ́𝑒𝑡𝑎𝑙𝑒.
The functor

𝑢 ∶ (Sch/𝑇) ́𝑒𝑡𝑎𝑙𝑒 ⟶ (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒, 𝑉/𝑇 ⟼ 𝑉/𝑆
is cocontinuous, and has a continuous right adjoint

𝑣 ∶ (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 ⟶ (Sch/𝑇) ́𝑒𝑡𝑎𝑙𝑒, (𝑈 → 𝑆) ⟼ (𝑈 ×𝑆 𝑇 → 𝑇).
They induce the same morphism of topoi

𝑓𝑏𝑖𝑔 ∶ Sh((Sch/𝑇) ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒)

We have 𝑓−1
𝑏𝑖𝑔(𝒢)(𝑈/𝑇) = 𝒢(𝑈/𝑆). We have 𝑓𝑏𝑖𝑔,∗(ℱ)(𝑈/𝑆) = ℱ(𝑈 ×𝑆 𝑇/𝑇). Also, 𝑓−1

𝑏𝑖𝑔 has a
left adjoint 𝑓𝑏𝑖𝑔! which commutes with fibre products and equalizers.

Proof. The functor 𝑢 is cocontinuous, continuous and commutes with fibre products and
equalizers (details omitted; compare with the proof of Lemma 30.4.12). Hence Sites,
Lemmas 9.19.5 and 9.19.6 apply and we deduce the formula for 𝑓−1

𝑏𝑖𝑔 and the existence
of 𝑓𝑏𝑖𝑔!. Moreover, the functor 𝑣 is a right adjoint because given 𝑈/𝑇 and 𝑉/𝑆 we have
𝑀𝑜𝑟𝑆(𝑢(𝑈), 𝑉) = 𝑀𝑜𝑟𝑇(𝑈, 𝑉 ×𝑆 𝑇) as desired. Thus we may apply Sites, Lemmas 9.20.1
and 9.20.2 to get the formula for 𝑓𝑏𝑖𝑔,∗. �

Lemma 30.4.16. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big étale site. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism in Sch ́𝑒𝑡𝑎𝑙𝑒.
(1) We have 𝑖𝑓 = 𝑓𝑏𝑖𝑔 ∘ 𝑖𝑇 with 𝑖𝑓 as in Lemma 30.4.12 and 𝑖𝑇 as in Lemma 30.4.13.
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(2) The functor 𝑆 ́𝑒𝑡𝑎𝑙𝑒 → 𝑇 ́𝑒𝑡𝑎𝑙𝑒, (𝑈 → 𝑆) ↦ (𝑈 ×𝑆 𝑇 → 𝑇) is continuous and induces
a morphism of topoi

𝑓𝑠𝑚𝑎𝑙𝑙 ∶ Sh(𝑇 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒).

We have 𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ)(𝑈/𝑆) = ℱ(𝑈 ×𝑆 𝑇/𝑇).
(3) We have a commutative diagram of morphisms of sites

𝑇 ́𝑒𝑡𝑎𝑙𝑒

𝑓𝑠𝑚𝑎𝑙𝑙
��

(Sch/𝑇) ́𝑒𝑡𝑎𝑙𝑒

𝑓𝑏𝑖𝑔
��

𝜋𝑇
oo

𝑆 ́𝑒𝑡𝑎𝑙𝑒 (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒
𝜋𝑆oo

so that 𝑓𝑠𝑚𝑎𝑙𝑙 ∘ 𝜋𝑇 = 𝜋𝑆 ∘ 𝑓𝑏𝑖𝑔 as morphisms of topoi.
(4) We have 𝑓𝑠𝑚𝑎𝑙𝑙 = 𝜋𝑆 ∘ 𝑓𝑏𝑖𝑔 ∘ 𝑖𝑇 = 𝜋𝑆 ∘ 𝑖𝑓.

Proof. The equality 𝑖𝑓 = 𝑓𝑏𝑖𝑔 ∘ 𝑖𝑇 follows from the equality 𝑖−1
𝑓 = 𝑖−1

𝑇 ∘ 𝑓−1
𝑏𝑖𝑔 which is clear

from the descriptions of these functors above. Thus we see (1).

The functor 𝑢 ∶ 𝑆 ́𝑒𝑡𝑎𝑙𝑒 → 𝑇 ́𝑒𝑡𝑎𝑙𝑒, 𝑢(𝑈 → 𝑆) = (𝑈 ×𝑆 𝑇 → 𝑇) transforms coverings into
coverings and commutes with fibre products, see Lemma 30.4.3 (3) and 30.4.10. Moreover,
both 𝑆 ́𝑒𝑡𝑎𝑙𝑒, 𝑇 ́𝑒𝑡𝑎𝑙𝑒 have final objects, namely 𝑆/𝑆 and 𝑇/𝑇 and 𝑢(𝑆/𝑆) = 𝑇/𝑇. Hence by Sites,
Proposition 9.14.6 the functor 𝑢 corresponds to a morphism of sites 𝑇 ́𝑒𝑡𝑎𝑙𝑒 → 𝑆 ́𝑒𝑡𝑎𝑙𝑒. This in
turn gives rise to the morphism of topoi, see Sites, Lemma 9.15.3. The description of the
pushforward is clear from these references.

Part (3) follows because 𝜋𝑆 and 𝜋𝑇 are given by the inclusion functors and 𝑓𝑠𝑚𝑎𝑙𝑙 and 𝑓𝑏𝑖𝑔
by the base change functors 𝑈 ↦ 𝑈 ×𝑆 𝑇.

Statement (4) follows from (3) by precomposing with 𝑖𝑇. �

In the situation of the lemma, using the terminology of Definition 30.4.14 we have: for ℱ
a sheaf on the big étale site of 𝑇

(𝑓𝑏𝑖𝑔,∗ℱ)|𝑆 ́𝑒𝑡𝑎𝑙𝑒
= 𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑇 ́𝑒𝑡𝑎𝑙𝑒

),

This equality is clear from the commutativity of the diagram of sites of the lemma, since
restriction to the small étale site of 𝑇, resp. 𝑆 is given by 𝜋𝑇,∗, resp. 𝜋𝑆,∗. A similar formula
involving pullbacks and restrictions is false.

Lemma 30.4.17. Given schemes 𝑋, 𝑌, 𝑌 in Sch ́𝑒𝑡𝑎𝑙𝑒 and morphisms 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍
we have 𝑔𝑏𝑖𝑔 ∘ 𝑓𝑏𝑖𝑔 = (𝑔 ∘ 𝑓)𝑏𝑖𝑔 and 𝑔𝑠𝑚𝑎𝑙𝑙 ∘ 𝑓𝑠𝑚𝑎𝑙𝑙 = (𝑔 ∘ 𝑓)𝑠𝑚𝑎𝑙𝑙.

Proof. This follows from the simple description of push forward and pull back for the
functors on the big sites from Lemma 30.4.15. For the functors on the small sites this
follows from the description of the pushforward functors in Lemma 30.4.16. �

We can think about a sheaf on the big étale site of 𝑆 as a collection of ``usual'' sheaves on
all schemes over 𝑆.

Lemma 30.4.18. Let 𝑆 be a scheme contained in a big étale site Sch ́𝑒𝑡𝑎𝑙𝑒. A sheaf ℱ on the
big étale site (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 is given by the following data:

(1) for every 𝑇/𝑆 ∈ 𝑂𝑏((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒) a sheaf ℱ𝑇 on 𝑇 ́𝑒𝑡𝑎𝑙𝑒,
(2) for every 𝑓 ∶ 𝑇′ → 𝑇 in (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 a map 𝑐𝑓 ∶ 𝑓−1

𝑠𝑚𝑎𝑙𝑙ℱ𝑇 → ℱ𝑇′.
These data are subject to the following conditions:
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(i) given any 𝑓 ∶ 𝑇′ → 𝑇 and 𝑔 ∶ 𝑇″ → 𝑇′ in (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 the composition 𝑔−1
𝑠𝑚𝑎𝑙𝑙𝑐𝑓∘𝑐𝑔

is equal to 𝑐𝑓∘𝑔, and
(ii) if 𝑓 ∶ 𝑇′ → 𝑇 in (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 is étale then 𝑐𝑓 is an isomorphism.

Proof. Given a sheaf ℱ on Sh((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒) we set ℱ𝑇 = 𝑖−1
𝑝 ℱ where 𝑝 ∶ 𝑇 → 𝑆 is the

structure morphism. Note that ℱ𝑇(𝑈) = ℱ(𝑈/𝑆) for any 𝑈 → 𝑇 in 𝑇 ́𝑒𝑡𝑎𝑙𝑒 see Lemma
30.4.12. Hence given 𝑓 ∶ 𝑇′ → 𝑇 over 𝑆 and 𝑈 → 𝑇 we get a canonical map ℱ𝑇(𝑈) =
ℱ(𝑈/𝑆) → ℱ(𝑈 ×𝑇 𝑇′/𝑆) = ℱ𝑇′(𝑈 ×𝑇 𝑇′) where the middle is the restriction map of ℱ with
respect to the morphism 𝑈 ×𝑇 𝑇′ → 𝑈 over 𝑆. The collection of these maps are compatible
with restrictions, and hence define a map 𝑐′

𝑓 ∶ ℱ𝑇 → 𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ𝑇′ where 𝑢 ∶ 𝑇 ́𝑒𝑡𝑎𝑙𝑒 → 𝑇′
́𝑒𝑡𝑎𝑙𝑒

is the base change functor associated to 𝑓. By adjunction of 𝑓𝑠𝑚𝑎𝑙𝑙,∗ (see Sites, Section
9.13) with 𝑓−1

𝑠𝑚𝑎𝑙𝑙 this is the same as a map 𝑐𝑓 ∶ 𝑓−1
𝑠𝑚𝑎𝑙𝑙ℱ𝑇 → ℱ𝑇′. It is clear that 𝑐′

𝑓∘𝑔
is the composition of 𝑐′

𝑓 and 𝑓𝑠𝑚𝑎𝑙𝑙,∗𝑐′
𝑔, since composition of restriction maps of ℱ gives

restriction maps, and this gives the desired relationship among 𝑐𝑓, 𝑐𝑔 and 𝑐𝑓∘𝑔.

Conversely, given a system (ℱ𝑇, 𝑐𝑓) as in the lemmawemay define a presheafℱ on Sh((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒)
by simply setting ℱ(𝑇/𝑆) = ℱ𝑇(𝑇). As restriction mapping, given 𝑓 ∶ 𝑇′ → 𝑇 we set for
𝑠 ∈ ℱ(𝑇) the pull back 𝑓∗(𝑠) equal to 𝑐𝑓(𝑠) where we think of 𝑐𝑓 as a map ℱ𝑇 → 𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ𝑇′

again. The condition on the 𝑐𝑓 garantees that pullbacks satisfy the required functoriality
property. We omit the verification that this is a sheaf. It is clear that the constructions so
defined are mutually inverse. �

30.5. The smooth topology

In this section we define the smooth topology. This is a bit pointless as it will turn out later
(see More on Morphisms, Section 33.26) that this topology defines the same topos as the
étale topology. But still it makes sense and it is used occasionally.

Definition 30.5.1. Let 𝑇 be a scheme. An smooth covering of 𝑇 is a family of morphisms
{𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 of schemes such that each 𝑓𝑖 is smooth and such that 𝑇 = ⋃ 𝑓𝑖(𝑇𝑖).

Lemma 30.5.2. Any étale covering is a smooth covering, and a fortiori, any Zariski cov-
ering is a smooth covering.

Proof. This is clear from the definitions, the fact that an étale morphism is smooth see
Morphisms, Definition 24.35.1 and Lemma 30.4.2. �

Next, we show that this notion satisfies the conditions of Sites, Definition 9.6.2.

Lemma 30.5.3. Let 𝑇 be a scheme.
(1) If 𝑇′ → 𝑇 is an isomorphism then {𝑇′ → 𝑇} is an smooth covering of 𝑇.
(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a smooth covering and for each 𝑖 we have a smooth covering

{𝑇𝑖𝑗 → 𝑇𝑖}𝑗∈𝐽𝑖
, then {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖

is a smooth covering.
(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a smooth covering and 𝑇′ → 𝑇 is a morphism of schemes then

{𝑇′ ×𝑇 𝑇𝑖 → 𝑇′}𝑖∈𝐼 is a smooth covering.

Proof. Omitted. �

Lemma 30.5.4. Let 𝑇 be an affine scheme. Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be a smooth covering of 𝑇.
Then there exists a smooth covering {𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 which is a refinement of {𝑇𝑖 → 𝑇}𝑖∈𝐼
such that each 𝑈𝑗 is an affine scheme, and such that each morphism 𝑈𝑗 → 𝑇 is standard
smooth, see Morphisms, Definition 24.33.1. Moreover, we may choose each 𝑈𝑗 to be open
affine in one of the 𝑇𝑖.
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Proof. Omitted, but see Algebra, Lemma 7.126.10. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 30.5.5. Let 𝑇 be an affine scheme. A standard smooth covering of 𝑇 is a family
{𝑓𝑗 ∶ 𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 with each 𝑈𝑗 is affine, 𝑈𝑗 → 𝑇 standard smooth and 𝑇 = ⋃ 𝑓𝑗(𝑈𝑗).

Definition 30.5.6. A big smooth site is any site Sch𝑠𝑚𝑜𝑜𝑡ℎ as in Sites, Definition 9.6.2 con-
structed as follows:

(1) Choose any set of schemes 𝑆0, and any set of smooth coverings Cov0 among
these schemes.

(2) As underlying category take any category Sch𝛼 constructed as in Sets, Lemma
3.9.2 starting with the set 𝑆0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the category
Sch𝛼 and the class of smooth coverings, and the set Cov0 chosen above.

See the remarks following Definition 30.3.5 for motivation and explanation regarding the
definition of big sites.

Before we continue with the introduction of the big smooth site of a scheme 𝑆, let us point
out that the topology on a big smooth site Sch𝑠𝑚𝑜𝑜𝑡ℎ is in some sense induced from the
smooth topology on the category of all schemes.

Lemma30.5.7. Let Sch𝑠𝑚𝑜𝑜𝑡ℎ be a big smooth site as inDefinition 30.5.6. Let 𝑇 ∈ 𝑂𝑏(Sch𝑠𝑚𝑜𝑜𝑡ℎ).
Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an arbitrary smooth covering of 𝑇.

(1) There exists a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of 𝑇 in the site Sch𝑠𝑚𝑜𝑜𝑡ℎ which refines
{𝑇𝑖 → 𝑇}𝑖∈𝐼.

(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a standard smooth covering, then it is tautologically equivalent
to a covering of Sch𝑠𝑚𝑜𝑜𝑡ℎ.

(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a Zariski covering, then it is tautologically equivalent to a
covering of Sch𝑠𝑚𝑜𝑜𝑡ℎ.

Proof. For each 𝑖 choose an affine open covering 𝑇𝑖 = ⋃𝑗∈𝐽𝑖
𝑇𝑖𝑗 such that each 𝑇𝑖𝑗 maps

into an affine open subscheme of 𝑇. By Lemma 30.5.3 the refinement {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖
is

an smooth covering of 𝑇 as well. Hence we may assume each 𝑇𝑖 is affine, and maps into an
affine open 𝑊𝑖 of 𝑇. Applying Sets, Lemma 3.9.9 we see that 𝑊𝑖 is isomorphic to an object
of Sch𝑍𝑎𝑟. But then 𝑇𝑖 as a finite type scheme over 𝑊𝑖 is isomorphic to an object 𝑉𝑖 of Sch𝑍𝑎𝑟
by a second application of Sets, Lemma 3.9.9. The covering {𝑉𝑖 → 𝑇}𝑖∈𝐼 refines {𝑇𝑖 →
𝑇}𝑖∈𝐼 (because they are isomorphic). Moreover, {𝑉𝑖 → 𝑇}𝑖∈𝐼 is combinatorially equivalent
to a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of 𝑇 in the site Sch𝑍𝑎𝑟 by Sets, Lemma 3.9.9. The covering
{𝑈𝑗 → 𝑇}𝑗∈𝐽 is a refinement as in (1). In the situation of (2), (3) each of the schemes 𝑇𝑖 is
isomorphic to an object of Sch𝑠𝑚𝑜𝑜𝑡ℎ by Sets, Lemma 3.9.9, and another application of Sets,
Lemma 3.11.1 gives what we want. �

Definition 30.5.8. Let 𝑆 be a scheme. Let Sch𝑠𝑚𝑜𝑜𝑡ℎ be a big smooth site containing 𝑆.
(1) The big smooth site of 𝑆, denoted (Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ, is the site Sch𝑠𝑚𝑜𝑜𝑡ℎ/𝑆 introduced

in Sites, Section 9.21.
(2) The big affine smooth site of 𝑆, denoted (Aff/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ, is the full subcategory of

(Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ whose objects are affine 𝑈/𝑆. A covering of (Aff/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ is any
covering {𝑈𝑖 → 𝑈} of (Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ which is a standard smooth covering.

Next, we check that the big affine site defines the same topos as the big site.
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Lemma 30.5.9. Let 𝑆 be a scheme. Let Sch ́𝑒𝑡𝑎𝑙𝑒 be a big smooth site containing 𝑆. The
functor (Aff/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ → (Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ is special cocontinuous and induces an equivalence
of topoi from Sh((Aff/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ) to Sh((Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
9.25.2. Thus we have to verify assumptions (1) -- (5) of Sites, Lemma 9.25.1. Denote
the inclusion functor 𝑢 ∶ (Aff/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ → (Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ. Being cocontinuous just means
that any smooth covering of 𝑇/𝑆, 𝑇 affine, can be refined by a standard smooth covering
of 𝑇. This is the content of Lemma 30.5.4. Hence (1) holds. We see 𝑢 is continuous sim-
ply because a standard smooth covering is a smooth covering. Hence (2) holds. Parts (3)
and (4) follow immediately from the fact that 𝑢 is fully faithful. And finally condition (5)
follows from the fact that every scheme has an affine open covering. �

To be continued...

Lemma 30.5.10. Let Sch𝑠𝑚𝑜𝑜𝑡ℎ be a big smooth site. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism in
Sch𝑠𝑚𝑜𝑜𝑡ℎ. The functor

𝑢 ∶ (Sch/𝑇)𝑠𝑚𝑜𝑜𝑡ℎ ⟶ (Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ, 𝑉/𝑇 ⟼ 𝑉/𝑆

is cocontinuous, and has a continuous right adjoint

𝑣 ∶ (Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ ⟶ (Sch/𝑇)𝑠𝑚𝑜𝑜𝑡ℎ, (𝑈 → 𝑆) ⟼ (𝑈 ×𝑆 𝑇 → 𝑇).

They induce the same morphism of topoi

𝑓𝑏𝑖𝑔 ∶ Sh((Sch/𝑇)𝑠𝑚𝑜𝑜𝑡ℎ) ⟶ Sh((Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ)

We have 𝑓−1
𝑏𝑖𝑔(𝒢)(𝑈/𝑇) = 𝒢(𝑈/𝑆). We have 𝑓𝑏𝑖𝑔,∗(ℱ)(𝑈/𝑆) = ℱ(𝑈 ×𝑆 𝑇/𝑇). Also, 𝑓−1

𝑏𝑖𝑔 has a
left adjoint 𝑓𝑏𝑖𝑔! which commutes with fibre products and equalizers.

Proof. The functor 𝑢 is cocontinuous, continuous, and commutes with fibre products and
equalizers. Hence Sites, Lemmas 9.19.5 and 9.19.6 apply and we deduce the formula for
𝑓−1

𝑏𝑖𝑔 and the existence of 𝑓𝑏𝑖𝑔!. Moreover, the functor 𝑣 is a right adjoint because given 𝑈/𝑇
and 𝑉/𝑆 we have 𝑀𝑜𝑟𝑆(𝑢(𝑈), 𝑉) = 𝑀𝑜𝑟𝑇(𝑈, 𝑉 ×𝑆 𝑇) as desired. Thus we may apply Sites,
Lemmas 9.20.1 and 9.20.2 to get the formula for 𝑓𝑏𝑖𝑔,∗. �

30.6. The syntomic topology

In this section we define the syntomic topology. This topology is quite interesting in that
it often has the same cohomology groups as the fppf topology but is technically easier to
deal with.

Definition 30.6.1. Let 𝑇 be a scheme. An syntomic covering of 𝑇 is a family of morphisms
{𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 of schemes such that each 𝑓𝑖 is syntomic and such that 𝑇 = ⋃ 𝑓𝑖(𝑇𝑖).

Lemma 30.6.2. Any smooth covering is a syntomic covering, and a fortiori, any étale or
Zariski covering is a syntomic covering.

Proof. This is clear from the definitions and the fact that a smooth morphism is syntomic,
see Morphisms, Lemma 24.33.7 and Lemma 30.5.2. �

Next, we show that this notion satisfies the conditions of Sites, Definition 9.6.2.

Lemma 30.6.3. Let 𝑇 be a scheme.
(1) If 𝑇′ → 𝑇 is an isomorphism then {𝑇′ → 𝑇} is an syntomic covering of 𝑇.
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(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a syntomic covering and for each 𝑖 we have a syntomic covering
{𝑇𝑖𝑗 → 𝑇𝑖}𝑗∈𝐽𝑖

, then {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖
is a syntomic covering.

(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a syntomic covering and 𝑇′ → 𝑇 is a morphism of schemes then
{𝑇′ ×𝑇 𝑇𝑖 → 𝑇′}𝑖∈𝐼 is a syntomic covering.

Proof. Omitted. �

Lemma 30.6.4. Let 𝑇 be an affine scheme. Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be a syntomic covering of 𝑇.
Then there exists a syntomic covering {𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 which is a refinement of {𝑇𝑖 →
𝑇}𝑖∈𝐼 such that each 𝑈𝑗 is an affine scheme, and such that each morphism 𝑈𝑗 → 𝑇 is
standard syntomic, see Morphisms, Definition 24.30.1. Moreover, we may choose each 𝑈𝑗
to be open affine in one of the 𝑇𝑖.

Proof. Omitted, but see Algebra, Lemma 7.125.16. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 30.6.5. Let 𝑇 be an affine scheme. A standard syntomic covering of 𝑇 is a family
{𝑓𝑗 ∶ 𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 with each 𝑈𝑗 is affine, 𝑈𝑗 → 𝑇 standard syntomic and 𝑇 = ⋃ 𝑓𝑗(𝑈𝑗).

Definition 30.6.6. A big syntomic site is any site Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 as in Sites, Definition 9.6.2
constructed as follows:

(1) Choose any set of schemes 𝑆0, and any set of syntomic coverings Cov0 among
these schemes.

(2) As underlying category take any category Sch𝛼 constructed as in Sets, Lemma
3.9.2 starting with the set 𝑆0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the category
Sch𝛼 and the class of syntomic coverings, and the set Cov0 chosen above.

See the remarks following Definition 30.3.5 for motivation and explanation regarding the
definition of big sites.

Before we continue with the introduction of the big syntomic site of a scheme 𝑆, let us point
out that the topology on a big syntomic site Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 is in some sense induced from the
syntomic topology on the category of all schemes.

Lemma 30.6.7. Let Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 be a big syntomic site as in Definition 30.6.6. Let 𝑇 ∈
𝑂𝑏(Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐). Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an arbitrary syntomic covering of 𝑇.

(1) There exists a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of 𝑇 in the site Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 which refines
{𝑇𝑖 → 𝑇}𝑖∈𝐼.

(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a standard syntomic covering, then it is tautologically equiva-
lent to a covering in Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐.

(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a Zariski covering, then it is tautologically equivalent to a
covering in Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐.

Proof. For each 𝑖 choose an affine open covering 𝑇𝑖 = ⋃𝑗∈𝐽𝑖
𝑇𝑖𝑗 such that each 𝑇𝑖𝑗 maps

into an affine open subscheme of 𝑇. By Lemma 30.6.3 the refinement {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖
is

an syntomic covering of 𝑇 as well. Hence we may assume each 𝑇𝑖 is affine, and maps into
an affine open 𝑊𝑖 of 𝑇. Applying Sets, Lemma 3.9.9 we see that 𝑊𝑖 is isomorphic to an
object of Sch𝑍𝑎𝑟. But then 𝑇𝑖 as a finite type scheme over 𝑊𝑖 is isomorphic to an object 𝑉𝑖
of Sch𝑍𝑎𝑟 by a second application of Sets, Lemma 3.9.9. The covering {𝑉𝑖 → 𝑇}𝑖∈𝐼 refines
{𝑇𝑖 → 𝑇}𝑖∈𝐼 (because they are isomorphic). Moreover, {𝑉𝑖 → 𝑇}𝑖∈𝐼 is combinatorially
equivalent to a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of 𝑇 in the site Sch𝑍𝑎𝑟 by Sets, Lemma 3.9.9. The
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covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 is a covering as in (1). In the situation of (2), (3) each of the schemes
𝑇𝑖 is isomorphic to an object of Sch𝑍𝑎𝑟 by Sets, Lemma 3.9.9, and another application of
Sets, Lemma 3.11.1 gives what we want. �

Definition 30.6.8. Let 𝑆 be a scheme. Let Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 be a big syntomic site containing 𝑆.
(1) The big syntomic site of 𝑆, denoted (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, is the site Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐/𝑆 intro-

duced in Sites, Section 9.21.
(2) The big affine syntomic site of 𝑆, denoted (Aff/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, is the full subcategory

of (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 whose objects are affine 𝑈/𝑆. A covering of (Aff/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 is
any covering {𝑈𝑖 → 𝑈} of (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 which is a standard syntomic covering.

Next, we check that the big affine site defines the same topos as the big site.

Lemma 30.6.9. Let 𝑆 be a scheme. Let Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 be a big syntomic site containing 𝑆.
The functor (Aff/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 → (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 is special cocontinuous and induces an equiv-
alence of topoi from Sh((Aff/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐) to Sh((Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
9.25.2. Thus we have to verify assumptions (1) -- (5) of Sites, Lemma 9.25.1. Denote
the inclusion functor 𝑢 ∶ (Aff/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 → (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐. Being cocontinuous just means
that any syntomic covering of 𝑇/𝑆, 𝑇 affine, can be refined by a standard syntomic covering
of 𝑇. This is the content of Lemma 30.6.4. Hence (1) holds. We see 𝑢 is continuous simply
because a standard syntomic covering is a syntomic covering. Hence (2) holds. Parts (3)
and (4) follow immediately from the fact that 𝑢 is fully faithful. And finally condition (5)
follows from the fact that every scheme has an affine open covering. �

To be continued...

Lemma 30.6.10. Let Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 be a big syntomic site. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism in
Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐. The functor

𝑢 ∶ (Sch/𝑇)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 ⟶ (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑉/𝑇 ⟼ 𝑉/𝑆

is cocontinuous, and has a continuous right adjoint

𝑣 ∶ (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 ⟶ (Sch/𝑇)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, (𝑈 → 𝑆) ⟼ (𝑈 ×𝑆 𝑇 → 𝑇).

They induce the same morphism of topoi

𝑓𝑏𝑖𝑔 ∶ Sh((Sch/𝑇)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐) ⟶ Sh((Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐)

We have 𝑓−1
𝑏𝑖𝑔(𝒢)(𝑈/𝑇) = 𝒢(𝑈/𝑆). We have 𝑓𝑏𝑖𝑔,∗(ℱ)(𝑈/𝑆) = ℱ(𝑈 ×𝑆 𝑇/𝑇). Also, 𝑓−1

𝑏𝑖𝑔 has a
left adjoint 𝑓𝑏𝑖𝑔! which commutes with fibre products and equalizers.

Proof. The functor 𝑢 is cocontinuous, continuous, and commutes with fibre products and
equalizers. Hence Sites, Lemmas 9.19.5 and 9.19.6 apply and we deduce the formula for
𝑓−1

𝑏𝑖𝑔 and the existence of 𝑓𝑏𝑖𝑔!. Moreover, the functor 𝑣 is a right adjoint because given 𝑈/𝑇
and 𝑉/𝑆 we have 𝑀𝑜𝑟𝑆(𝑢(𝑈), 𝑉) = 𝑀𝑜𝑟𝑇(𝑈, 𝑉 ×𝑆 𝑇) as desired. Thus we may apply Sites,
Lemmas 9.20.1 and 9.20.2 to get the formula for 𝑓𝑏𝑖𝑔,∗. �

30.7. The fppf topology

Let 𝑆 be a scheme. We would like to define the fppf-topology2 on the category of schemes
over 𝑆. According to our general principle we first introduce the notion of an fppf-covering.

2 The letters fppf stand for ``fidèlement plat de présentation finie''.
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Definition 30.7.1. Let 𝑇 be a scheme. An fppf covering of 𝑇 is a family of morphisms
{𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 of schemes such that each 𝑓𝑖 is flat, locally of finite presentation and such
that 𝑇 = ⋃ 𝑓𝑖(𝑇𝑖).

Lemma 30.7.2. Any syntomic covering is an fppf covering, and a fortiori, any smooth,
étale, or Zariski covering is an fppf covering.

Proof. This is clear from the definitions, the fact that a synomtic morphism is flat and
locally of finite presentation, see Morphisms, Lemmas 24.30.6 and 24.30.7, and Lemma
30.6.2. �

Next, we show that this notion satisfies the conditions of Sites, Definition 9.6.2.

Lemma 30.7.3. Let 𝑇 be a scheme.
(1) If 𝑇′ → 𝑇 is an isomorphism then {𝑇′ → 𝑇} is an fppf covering of 𝑇.
(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is an fppf covering and for each 𝑖 we have an fppf covering {𝑇𝑖𝑗 →

𝑇𝑖}𝑗∈𝐽𝑖
, then {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖

is an fppf covering.
(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is an fppf covering and 𝑇′ → 𝑇 is a morphism of schemes then

{𝑇′ ×𝑇 𝑇𝑖 → 𝑇′}𝑖∈𝐼 is an fppf covering.

Proof. The first assertion is clear. The second follows as the composition of flat mor-
phisms is flat (see Morphisms, Lemma 24.24.5) and the composition of morphisms of finite
presentation is of finite presentation (see Morphisms, Lemma 24.20.3). The third follows
as the base change of a flat morphism is flat (see Morphisms, Lemma 24.24.7) and the
base change of a morphism of finite presentation is of finite presentation (see Morphisms,
Lemma 24.20.4). Moreover, the base change of a surjective family of morphisms is surjec-
tive (proof omitted). �

Lemma 30.7.4. Let 𝑇 be an affine scheme. Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an fppf covering of 𝑇. Then
there exists an fppf covering {𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 which is a refinement of {𝑇𝑖 → 𝑇}𝑖∈𝐼 such
that each 𝑈𝑗 is an affine scheme. Moreover, we may choose each 𝑈𝑗 to be open affine in one
of the 𝑇𝑖.

Proof. This follows directly from the definitions using that a morphism which is flat and
locally of finite presentation is open, see Morphisms, Lemma 24.24.9. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 30.7.5. Let 𝑇 be an affine scheme. A standard fppf covering of 𝑇 is a family
{𝑓𝑗 ∶ 𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 with each 𝑈𝑗 is affine, flat and of finite presentation over 𝑇 and
𝑇 = ⋃ 𝑓𝑗(𝑈𝑗).

Definition 30.7.6. A big fppf site is any site Sch𝑓𝑝𝑝𝑓 as in Sites, Definition 9.6.2 constructed
as follows:

(1) Choose any set of schemes 𝑆0, and any set of fppf coverings Cov0 among these
schemes.

(2) As underlying category take any category Sch𝛼 constructed as in Sets, Lemma
3.9.2 starting with the set 𝑆0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the category
Sch𝛼 and the class of fppf coverings, and the set Cov0 chosen above.

See the remarks following Definition 30.3.5 for motivation and explanation regarding the
definition of big sites.
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Before we continue with the introduction of the big fppf site of a scheme 𝑆, let us point out
that the topology on a big fppf site Sch𝑓𝑝𝑝𝑓 is in some sense induced from the fppf topology
on the category of all schemes.

Lemma 30.7.7. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site as in Definition 30.7.6. Let 𝑇 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓).
Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an arbitrary fppf covering of 𝑇.

(1) There exists a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of 𝑇 in the site Sch𝑓𝑝𝑝𝑓 which refines {𝑇𝑖 →
𝑇}𝑖∈𝐼.

(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a standard fppf covering, then it is tautologically equivalent to
a covering of Sch𝑓𝑝𝑝𝑓.

(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a Zariski covering, then it is tautologically equivalent to a
covering of Sch𝑓𝑝𝑝𝑓.

Proof. For each 𝑖 choose an affine open covering 𝑇𝑖 = ⋃𝑗∈𝐽𝑖
𝑇𝑖𝑗 such that each 𝑇𝑖𝑗 maps

into an affine open subscheme of 𝑇. By Lemma 30.7.3 the refinement {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖
is an

fppf covering of 𝑇 as well. Hence we may assume each 𝑇𝑖 is affine, and maps into an affine
open 𝑊𝑖 of 𝑇. Applying Sets, Lemma 3.9.9 we see that 𝑊𝑖 is isomorphic to an object of
Sch𝑍𝑎𝑟. But then 𝑇𝑖 as a finite type scheme over𝑊𝑖 is isomorphic to an object𝑉𝑖 of Sch𝑍𝑎𝑟 by
a second application of Sets, Lemma 3.9.9. The covering {𝑉𝑖 → 𝑇}𝑖∈𝐼 refines {𝑇𝑖 → 𝑇}𝑖∈𝐼
(because they are isomorphic). Moreover, {𝑉𝑖 → 𝑇}𝑖∈𝐼 is combinatorially equivalent to
a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of 𝑇 in the site Sch𝑍𝑎𝑟 by Sets, Lemma 3.9.9. The covering
{𝑈𝑗 → 𝑇}𝑗∈𝐽 is a refinement as in (1). In the situation of (2), (3) each of the schemes 𝑇𝑖 is
isomorphic to an object of Sch𝑓𝑝𝑝𝑓 by Sets, Lemma 3.9.9, and another application of Sets,
Lemma 3.11.1 gives what we want. �

Definition 30.7.8. Let 𝑆 be a scheme. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site containing 𝑆.
(1) The big fppf site of 𝑆, denoted (Sch/𝑆)𝑓𝑝𝑝𝑓, is the site Sch𝑓𝑝𝑝𝑓/𝑆 introduced in

Sites, Section 9.21.
(2) The big affine fppf site of𝑆, denoted (Aff/𝑆)𝑓𝑝𝑝𝑓, is the full subcategory of (Sch/𝑆)𝑓𝑝𝑝𝑓

whose objects are affine 𝑈/𝑆. A covering of (Aff/𝑆)𝑓𝑝𝑝𝑓 is any covering {𝑈𝑖 → 𝑈}
of (Sch/𝑆)𝑓𝑝𝑝𝑓 which is a standard fppf covering.

It is not completely clear that the big affine fppf site is a site. We check this now.

Lemma 30.7.9. Let 𝑆 be a scheme. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site containing 𝑆. Then
(Aff/𝑆)𝑓𝑝𝑝𝑓 is a site.

Proof. Let us show that (Aff/𝑆)𝑓𝑝𝑝𝑓 is a site. Reasoning as in the proof of Lemma 30.4.9 it
suffices to show that the collection of standard fppf coverings of affines satisfies properties
(1), (2) and (3) of Sites, Definition 9.6.2. This is clear since for example, given a standard
fppf covering {𝑇𝑖 → 𝑇}𝑖∈𝐼 and for each 𝑖 we have a standard fppf covering {𝑇𝑖𝑗 → 𝑇𝑖}𝑗∈𝐽𝑖

,
then {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖

is a standard fppf covering because ⋃𝑖∈𝐼 𝐽𝑖 is finite and each 𝑇𝑖𝑗 is
affine. �

Lemma 30.7.10. Let 𝑆 be a scheme. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site containing 𝑆. The
underlying categories of the sites Sch𝑓𝑝𝑝𝑓, (Sch/𝑆)𝑓𝑝𝑝𝑓, and (Aff/𝑆)𝑓𝑝𝑝𝑓 have fibre products.
In each case the obvious functor into the category Sch of all schemes commutes with taking
fibre products. The category (Sch/𝑆)𝑓𝑝𝑝𝑓 has a final object, namely 𝑆/𝑆.

Proof. For Sch𝑓𝑝𝑝𝑓 it is true by construction, see Sets, Lemma 3.9.9. Suppose we have
𝑈 → 𝑆, 𝑉 → 𝑈, 𝑊 → 𝑈 morphisms of schemes with 𝑈, 𝑉, 𝑊 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓). The fibre
product 𝑉 ×𝑈 𝑊 in Sch𝑓𝑝𝑝𝑓 is a fibre product in Sch and is the fibre product of 𝑉/𝑆 with
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𝑊/𝑆 over 𝑈/𝑆 in the category of all schemes over 𝑆, and hence also a fibre product in
(Sch/𝑆)𝑓𝑝𝑝𝑓. This proves the result for (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑈, 𝑉, 𝑊 are affine, so is 𝑉 ×𝑈 𝑊 and
hence the result for (Aff/𝑆)𝑓𝑝𝑝𝑓. �

Next, we check that the big affine site defines the same topos as the big site.

Lemma 30.7.11. Let 𝑆 be a scheme. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site containing 𝑆. The
functor (Aff/𝑆)𝑓𝑝𝑝𝑓 → (Sch/𝑆)𝑓𝑝𝑝𝑓 is cocontinuous and induces an equivalence of topoi
from Sh((Aff/𝑆)𝑓𝑝𝑝𝑓) to Sh((Sch/𝑆)𝑓𝑝𝑝𝑓).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
9.25.2. Thus we have to verify assumptions (1) -- (5) of Sites, Lemma 9.25.1. Denote
the inclusion functor 𝑢 ∶ (Aff/𝑆)𝑓𝑝𝑝𝑓 → (Sch/𝑆)𝑓𝑝𝑝𝑓. Being cocontinuous just means that
any fppf covering of 𝑇/𝑆, 𝑇 affine, can be refined by a standard fppf covering of 𝑇. This is
the content of Lemma 30.7.4. Hence (1) holds. We see 𝑢 is continuous simply because a
standard fppf covering is a fppf covering. Hence (2) holds. Parts (3) and (4) follow imme-
diately from the fact that 𝑢 is fully faithful. And finally condition (5) follows from the fact
that every scheme has an affine open covering. �

Next, we esthablish some relationships between the topoi associated to these sites.

Lemma 30.7.12. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism in Sch𝑓𝑝𝑝𝑓.
The functor

𝑢 ∶ (Sch/𝑇)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓, 𝑉/𝑇 ⟼ 𝑉/𝑆
is cocontinuous, and has a continuous right adjoint

𝑣 ∶ (Sch/𝑆)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑇)𝑓𝑝𝑝𝑓, (𝑈 → 𝑆) ⟼ (𝑈 ×𝑆 𝑇 → 𝑇).
They induce the same morphism of topoi

𝑓𝑏𝑖𝑔 ∶ Sh((Sch/𝑇)𝑓𝑝𝑝𝑓) ⟶ Sh((Sch/𝑆)𝑓𝑝𝑝𝑓)

We have 𝑓−1
𝑏𝑖𝑔(𝒢)(𝑈/𝑇) = 𝒢(𝑈/𝑆). We have 𝑓𝑏𝑖𝑔,∗(ℱ)(𝑈/𝑆) = ℱ(𝑈 ×𝑆 𝑇/𝑇). Also, 𝑓−1

𝑏𝑖𝑔 has a
left adjoint 𝑓𝑏𝑖𝑔! which commutes with fibre products and equalizers.

Proof. The functor 𝑢 is cocontinuous, continuous, and commutes with fibre products and
equalizers. Hence Sites, Lemmas 9.19.5 and 9.19.6 apply and we deduce the formula for
𝑓−1

𝑏𝑖𝑔 and the existence of 𝑓𝑏𝑖𝑔!. Moreover, the functor 𝑣 is a right adjoint because given 𝑈/𝑇
and 𝑉/𝑆 we have 𝑀𝑜𝑟𝑆(𝑢(𝑈), 𝑉) = 𝑀𝑜𝑟𝑇(𝑈, 𝑉 ×𝑆 𝑇) as desired. Thus we may apply Sites,
Lemmas 9.20.1 and 9.20.2 to get the formula for 𝑓𝑏𝑖𝑔,∗. �

Lemma 30.7.13. Given schemes 𝑋, 𝑌, 𝑌 in (Sch/𝑆)𝑓𝑝𝑝𝑓 and morphisms 𝑓 ∶ 𝑋 → 𝑌,
𝑔 ∶ 𝑌 → 𝑍 we have 𝑔𝑏𝑖𝑔 ∘ 𝑓𝑏𝑖𝑔 = (𝑔 ∘ 𝑓)𝑏𝑖𝑔.

Proof. This follows from the simple description of push forward and pull back for the
functors on the big sites from Lemma 30.7.12. �

30.8. The fpqc topology

Definition 30.8.1. Let 𝑇 be a scheme. An fpqc covering of 𝑇 is a family of morphisms
{𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 of schemes such that each 𝑓𝑖 is flat and such that for every affine open
𝑈 ⊂ 𝑇 there exists 𝑛 ≥ 0, a map 𝑎 ∶ {1, … , 𝑛} → 𝐼 and affine opens 𝑉𝑗 ⊂ 𝑇𝑎(𝑗), 𝑗 = 1, … , 𝑛
with ⋃𝑛

𝑗=1 𝑓𝑎(𝑗)(𝑉𝑗) = 𝑈.

To be sure this condition implies that 𝑇 = ⋃ 𝑓𝑖(𝑇𝑖). It is slightly harder to recognize an
fpqc covering, hence we provide some lemmas to do so.
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Lemma 30.8.2. Let 𝑇 be a scheme. Let {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 be a family of morphisms of
schemes with target 𝑇. The following are equivalent

(1) {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 is an fpqc covering,
(2) each 𝑓𝑖 is flat and for every affine open 𝑈 ⊂ 𝑇 there exist 𝑖1, … , 𝑖𝑛 ∈ 𝐼 and

quasi-compact opens 𝑈𝑗 ⊂ 𝑇𝑖𝑗 such that 𝑈 = ⋃𝑗=1,…,𝑛 𝑓𝑖𝑗(𝑈𝑗),
(3) each 𝑓𝑖 is flat and there exists an affine open covering 𝑇 = ⋃𝛼∈𝐴 𝑈𝛼 and for each

𝛼 ∈ 𝐴 there exist 𝑖𝛼,1, … , 𝑖𝛼,𝑛(𝛼) ∈ 𝐼 and quasi-compact opens 𝑈𝛼,𝑗 ⊂ 𝑇𝑖𝛼,𝑗
such

that 𝑈 = ⋃𝑗=1,…,𝑛(𝛼) 𝑓𝑖𝛼,𝑗
(𝑈𝛼,𝑗), and

(4) each 𝑓𝑖 is flat, and for every 𝑡 ∈ 𝑇 there exist 𝑖1, … , 𝑖𝑛 ∈ 𝐼 and quasi-compact
opens 𝑈𝑗 ⊂ 𝑇𝑖𝑗 such that ⋃𝑗=1,…,𝑛 𝑓𝑖𝑗(𝑈𝑗) is a (not necessarily open) neighbour-
hood of 𝑡 in 𝑇.

Proof. Omitted. �

Lemma 30.8.3. Let 𝑇 be a scheme. Let {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 be a family of morphisms of
schemes with target 𝑇. The following are equivalent

(1) {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 is an fpqc covering, and
(2) setting 𝑇′ = ∐𝑖∈𝐼 𝑇𝑖, and 𝑓 = ∐𝑖∈𝐼 𝑓𝑖 the family {𝑓 ∶ 𝑇′ → 𝑇} is an fpqc

covering.

Proof. Omitted. �

Lemma 30.8.4. Let 𝑇 be a scheme. Let {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 be a family of morphisms of
schemes with target 𝑇. Assume that

(1) each 𝑓𝑖 is flat, and
(2) the family {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 can be refined by a fpqc covering of 𝑇.

Then {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 is a fpqc covering of 𝑇.

Proof. Omitted. �

Lemma 30.8.5. Let 𝑇 be a scheme. Let {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 be a family of morphisms of
schemes with target 𝑇. Assume that

(1) each 𝑓𝑖 is flat, and
(2) there exists an fpqc covering {𝑔𝑗 ∶ 𝑆𝑗 → 𝑇}𝑗∈𝐽 such that each {𝑆𝑗×𝑇𝑇𝑖 → 𝑆𝑗}𝑖∈𝐼

is an fpqc covering.
Then {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 is a fpqc covering of 𝑇.

Proof. Omitted. Hint: Follows from Lemma 30.8.4. �

Lemma 30.8.6. Any fppf covering is an fpqc covering, and a fortiori, any syntomic, smooth,
étale or Zariski covering is an fpqc covering.

Proof. We will show that an fppf covering is an fpqc covering, and then the rest follows
from Lemma 30.7.2. Let {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be an fppf covering. By definition this means
that the 𝑓𝑖 are flat which checks the first condition of Definition 30.8.1. To check the second,
let𝑉 ⊂ 𝑈 be an affine open subset. Write 𝑓−1

𝑖 (𝑉) = ⋃𝑗∈𝐽𝑖
𝑉𝑖𝑗 for some affine opens𝑉𝑖𝑗 ⊂ 𝑈𝑖.

Since each 𝑓𝑖 is open (Morphisms, Lemma 24.24.9), we see that 𝑉 = ⋃𝑖∈𝐼 ⋃𝑗∈𝐽𝑖
𝑓𝑖(𝑉𝑖𝑗)

is an open covering of 𝑉. Since 𝑉 is quasi-compact, this covering has a finite refinement.
This finishes the proof. �
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The fpqc3 topology cannot be treated in the same way as the fppf topology4. Namely,
suppose that 𝑅 is a nonzero ring. For any faithfully flat ring map 𝑅 → 𝑅′ the morphism
𝑆𝑝𝑒𝑐(𝑅′) → 𝑆𝑝𝑒𝑐(𝑅) is an fpqc-covering. We claim that there does not exist a set 𝐴 of
fpqc-coverings of 𝑆𝑝𝑒𝑐(𝑅) such that every fpqc-covering can be refined by an element of 𝐴.
For example, if 𝑅 = 𝑘 is a field, then for any set 𝐼 we can consider the purely transcendental
field extension 𝑘 ⊂ 𝑘({𝑡𝑖}𝑖∈𝐼). We leave it to the reader to show that there does not exist a set
of morphisms of schemes {𝑆𝑗 → 𝑆𝑝𝑒𝑐(𝑘)}𝑗∈𝐽 such that every morphism 𝑆𝑝𝑒𝑐(𝑘({𝑡𝑖}𝑖∈𝐼))
is dominated by one of the schemes 𝑆𝑗.

A mildly interesting option is to consider only those faithfully flat ring extensions 𝑅 → 𝑅′

where the cardinality of 𝑅′ is suitably bounded. (And if you consider all schemes in a
fixed universe as in SGA4 then you are bounding the cardinality by a strongly inaccessible
cardinal.) However, it is not so clear what happens if you change the cardinal to a bigger
one.
For these reasons we do not introduce fpqc sites and we will not consider cohomology with
respect to the fpqc-topology.
On the other hand, given a contravariant functor 𝐹 ∶ Sch𝑜𝑝𝑝 → Sets it does make sense to
ask whether 𝐹 satisfies the sheaf property for the fpqc topology, see below. Moreover, we
can wonder about descent of object in the fpqc topology, etc. Simply put, for certain results
the correct generality is to work with fpqc coverings.

Lemma 30.8.7. Let 𝑇 be a scheme.
(1) If 𝑇′ → 𝑇 is an isomorphism then {𝑇′ → 𝑇} is an fpqc covering of 𝑇.
(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is an fpqc covering and for each 𝑖 we have an fpqc covering

{𝑇𝑖𝑗 → 𝑇𝑖}𝑗∈𝐽𝑖
, then {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖

is an fpqc covering.
(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is an fpqc covering and 𝑇′ → 𝑇 is a morphism of schemes then

{𝑇′ ×𝑇 𝑇𝑖 → 𝑇′}𝑖∈𝐼 is an fpqc covering.

Proof. Omitted. �

Lemma 30.8.8. Let 𝑇 be an affine scheme. Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an fpqc covering of 𝑇. Then
there exists an fpqc covering {𝑈𝑗 → 𝑇}𝑗=1,…,𝑛 which is a refinement of {𝑇𝑖 → 𝑇}𝑖∈𝐼 such
that each 𝑈𝑗 is an affine scheme. Moreover, we may choose each 𝑈𝑗 to be open affine in one
of the 𝑇𝑖.

Proof. This follows directly from the definition. �

Definition 30.8.9. Let 𝑇 be an affine scheme. A standard fpqc covering of 𝑇 is a family
{𝑓𝑗 ∶ 𝑈𝑗 → 𝑇}𝑗=1,…,𝑛 with each 𝑈𝑗 is affine, flat over 𝑇 and 𝑇 = ⋃ 𝑓𝑗(𝑈𝑗).

Since we do not introduce the affine site we have to show directly that the collection of all
standard fpqc coverings satisfies the axioms.

Lemma 30.8.10. Let 𝑇 be an affine scheme.
(1) If 𝑇′ → 𝑇 is an isomorphism then {𝑇′ → 𝑇} is a standard fpqc covering of 𝑇.
(2) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a standard fpqc covering and for each 𝑖 we have a standard

fpqc covering {𝑇𝑖𝑗 → 𝑇𝑖}𝑗∈𝐽𝑖
, then {𝑇𝑖𝑗 → 𝑇}𝑖∈𝐼,𝑗∈𝐽𝑖

is a standard fpqc covering.
(3) If {𝑇𝑖 → 𝑇}𝑖∈𝐼 is a standard fpqc covering and 𝑇′ → 𝑇 is a morphism of affine

schemes then {𝑇′ ×𝑇 𝑇𝑖 → 𝑇′}𝑖∈𝐼 is a standard fpqc covering.
3The letters fpqc stand for ``fidèlement plat quasi-compacte''.
4Amore precise statement would be that the analogue of Lemma 30.7.7 for the fpqc topology does not hold.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=022D
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=022E
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=022F
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03LA


1642 30. TOPOLOGIES ON SCHEMES

Proof. Omitted. �

Lemma 30.8.11. Let 𝑇 be a scheme. Let {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 be a family of morphisms of
schemes with target 𝑇. Assume that

(1) each 𝑓𝑖 is flat, and
(2) every affine scheme 𝑍 and morphism ℎ ∶ 𝑍 → 𝑇 there exists a standard fpqc

covering {𝑍𝑗 → 𝑍}𝑗=1,…,𝑛 which refines the family {𝑇𝑖 ×𝑇 𝑍 → 𝑍}𝑖∈𝐼.
Then {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 is a fpqc covering of 𝑇.

Proof. Omitted. Hint: Follows from Lemmas 30.8.4 and 30.8.5. �

Definition 30.8.12. Let 𝐹 be a contravariant functor on the category of schemes with values
in sets.

(1) Let {𝑈𝑖 → 𝑇}𝑖∈𝐼 be a family of morphisms of schemes with fixed target. We
say that 𝐹 satisfies the sheaf property for the given family if for any collection of
elements 𝜉𝑖 ∈ 𝐹(𝑈𝑖) such that 𝜉𝑖|𝑈𝑖×𝑇𝑈𝑗

= 𝜉𝑗|𝑈𝑖×𝑇𝑈𝑗
there exists a unique element

𝜉 ∈ 𝐹(𝑇) such that 𝜉𝑖 = 𝜉|𝑈𝑖
in 𝐹(𝑈𝑖).

(2) We say that 𝐹 satisfies the sheaf property for the fpqc topology if it satisfies the
sheaf property for any fpqc covering.

We try to avoid using the terminology ``𝐹 is a sheaf'' in this situation since we are not
defining a category of fpqc sheaves as we explained above.

Lemma 30.8.13. Let 𝐹 be a contravariant functor on the category of schemes with values
in sets. Then 𝐹 satisfies the sheaf property for the fpqc topology if and only if it satisfies

(1) the sheaf property for every Zariski covering, and
(2) the sheaf property for any standard fpqc covering.

Moreover, in the presence of (1) property (2) is equivalent to property
(2') the sheaf property for {𝑉 → 𝑈} with 𝑉, 𝑈 affine and 𝑉 → 𝑈 faithfully flat.

Proof. Omitted. �

30.9. Change of topologies

Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over a base change 𝑆. In this case we have the
following morphisms of sites (with suitable choices of sites as in Remark 30.9.1 below):

(1) (Sch/𝑋)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑌)𝑓𝑝𝑝𝑓,
(2) (Sch/𝑋)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑌)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐,
(3) (Sch/𝑋)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑌)𝑠𝑚𝑜𝑜𝑡ℎ,
(4) (Sch/𝑋)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑌) ́𝑒𝑡𝑎𝑙𝑒,
(5) (Sch/𝑋)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑌)𝑍𝑎𝑟,
(6) (Sch/𝑋)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 ⟶ (Sch/𝑌)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐,
(7) (Sch/𝑋)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 ⟶ (Sch/𝑌)𝑠𝑚𝑜𝑜𝑡ℎ,
(8) (Sch/𝑋)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 ⟶ (Sch/𝑌) ́𝑒𝑡𝑎𝑙𝑒,
(9) (Sch/𝑋)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 ⟶ (Sch/𝑌)𝑍𝑎𝑟,

(10) (Sch/𝑋)𝑠𝑚𝑜𝑜𝑡ℎ ⟶ (Sch/𝑌)𝑠𝑚𝑜𝑜𝑡ℎ,
(11) (Sch/𝑋)𝑠𝑚𝑜𝑜𝑡ℎ ⟶ (Sch/𝑌) ́𝑒𝑡𝑎𝑙𝑒,
(12) (Sch/𝑋)𝑠𝑚𝑜𝑜𝑡ℎ ⟶ (Sch/𝑌)𝑍𝑎𝑟,
(13) (Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒 ⟶ (Sch/𝑌) ́𝑒𝑡𝑎𝑙𝑒,
(14) (Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒 ⟶ (Sch/𝑌)𝑍𝑎𝑟,
(15) (Sch/𝑋)𝑍𝑎𝑟 ⟶ (Sch/𝑌)𝑍𝑎𝑟,
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(16) (Sch/𝑋)𝑓𝑝𝑝𝑓 ⟶ 𝑌 ́𝑒𝑡𝑎𝑙𝑒,
(17) (Sch/𝑋)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 ⟶ 𝑌 ́𝑒𝑡𝑎𝑙𝑒,
(18) (Sch/𝑋)𝑠𝑚𝑜𝑜𝑡ℎ ⟶ 𝑌 ́𝑒𝑡𝑎𝑙𝑒,
(19) (Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑌 ́𝑒𝑡𝑎𝑙𝑒,
(20) (Sch/𝑋)𝑓𝑝𝑝𝑓 ⟶ 𝑌𝑍𝑎𝑟,
(21) (Sch/𝑋)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 ⟶ 𝑌𝑍𝑎𝑟,
(22) (Sch/𝑋)𝑠𝑚𝑜𝑜𝑡ℎ ⟶ 𝑌𝑍𝑎𝑟,
(23) (Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑌𝑍𝑎𝑟,
(24) (Sch/𝑋)𝑍𝑎𝑟𝑖𝑠𝑘𝑖 ⟶ 𝑌𝑍𝑎𝑟,
(25) 𝑋 ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑌 ́𝑒𝑡𝑎𝑙𝑒,
(26) 𝑋 ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑌𝑍𝑎𝑟,
(27) 𝑋𝑍𝑎𝑟 ⟶ 𝑌𝑍𝑎𝑟,

In each case the underlying continuous functor Sch/𝑌 → Sch/𝑋, or 𝑌𝜏 → Sch/𝑋 is the
functor 𝑌′/𝑌 ↦ 𝑋 ×𝑌 𝑌′/𝑌. Namely, in the sections above we have seen the morphisms
𝑓𝑏𝑖𝑔 ∶ (Sch/𝑋)𝜏 → (Sch/𝑌)𝜏 and 𝑓𝑠𝑚𝑎𝑙𝑙 ∶ 𝑋𝜏 → 𝑌𝜏 for 𝜏 as above. We also have seen the
morphisms of sites 𝜋𝑌 ∶ (Sch/𝑌)𝜏 → 𝑌𝜏 for 𝜏 ∈ { ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. On the other hand, it is
clear that the identity functor (Sch/𝑋)𝜏 → (Sch/𝑋)𝜏′ defines a morphism of sites when 𝜏 is
a stronger topology than 𝜏′. Hence composing these gives the list of possible morphisms
above.
Because of the simple description of the underlying functor it is clear that given morphisms
of schemes 𝑋 → 𝑌 → 𝑍 the composition of two of the morphisms of sites above, e.g.,

(Sch/𝑋)𝜏0
⟶ (Sch/𝑌)𝜏1

⟶ (Sch/𝑍)𝜏2

is the corresponding morphism of sites associated to the morphism of schemes 𝑋 → 𝑍.

Remark 30.9.1. Take any category Sch𝛼 constructed as in Sets, Lemma 3.9.2 starting with
the set of schemes {𝑋, 𝑌, 𝑆}. Choose any set of coverings Cov𝑓𝑝𝑝𝑓 on Sch𝛼 as in Sets,
Lemma 3.11.1 starting with the category Sch𝛼 and the class of fppf coverings. Let Sch𝑓𝑝𝑝𝑓
denote the big fppf site so obtained. Next, for 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐} let
Sch𝜏 have the same underlying category as Sch𝑓𝑝𝑝𝑓 with coverings Cov𝜏 ⊂ Cov𝑓𝑝𝑝𝑓 simply
the subset of 𝜏-coverings. It is straightforward to check that this gives rise to a big site Sch𝜏.

30.10. Change of big sites

In this section we explain what happens on changing the big Zariski/fppf/étale sites.
Let 𝜏, 𝜏′ ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Given two big sites Sch𝜏 and Sch′

𝜏′

we say that Sch𝜏 is contained in Sch′
𝜏′ if𝑂𝑏(Sch𝜏) ⊂ 𝑂𝑏(Sch′

𝜏′) andCov(Sch𝜏) ⊂ Cov(Sch′
𝜏′).

In this case 𝜏 is stronger than 𝜏′, for example, no fppf site can be contained in an étale site.

Lemma 30.10.1. Any set of big Zariski sites is contained in a common big Zariski site. The
same is true, mutatis mutandis, for big fppf and big étale sites.

Proof. This is true because the union of a set of sets is a set, and the constructions in the
chapter on sets. �

Lemma 30.10.2. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Suppose given big
sites Sch𝜏 and Sch′

𝜏. Assume that Sch𝜏 is contained in Sch′
𝜏. The inclusion functor Sch𝜏 →

Sch′
𝜏 satisfies the assumptions of Sites, Lemma 9.19.8. There are morphisms of topoi

𝑔 ∶ Sh(Sch𝜏) ⟶ Sh(Sch′
𝜏)

𝑓 ∶ Sh(Sch′
𝜏) ⟶ Sh(Sch𝜏)
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such that 𝑓 ∘ 𝑔 ≅ id. For any object 𝑆 of Sch𝜏 the inclusion functor (Sch/𝑆)𝜏 → (Sch′/𝑆)𝜏
satisfies the assumptions of Sites, Lemma 9.19.8 also. Hence similarly we obtain morphisms

𝑔 ∶ Sh((Sch/𝑆)𝜏) ⟶ Sh((Sch′/𝑆)𝜏)
𝑓 ∶ Sh((Sch′/𝑆)𝜏) ⟶ Sh((Sch/𝑆)𝜏)

with 𝑓 ∘ 𝑔 ≅ id.

Proof. Assumptions (b), (c), and (e) of Sites, Lemma 9.19.8 are immediate for the functors
Sch𝜏 → Sch′

𝜏 and (Sch/𝑆)𝜏 → (Sch′/𝑆)𝜏. Property (a) holds by Lemma 30.3.6, 30.4.7,
30.5.7, 30.6.7, or 30.7.7. Property (d) holds because fibre products in the categories Sch𝜏,
Sch′

𝜏 exist and are compatible with fibre products in the category of schemes. �

Discussion: The functor 𝑔−1 = 𝑓∗ is simply the restriction functor which associates to a
sheaf 𝒢 on Sch′

𝜏 the restriction 𝒢|Sch𝜏
. Hence this lemma simply says that given any sheaf

of sets ℱ on Sch𝜏 there exists a canonical sheaf ℱ′ on Sch′
𝜏 such that ℱ|Sch′

𝜏
= ℱ′. In fact

the sheaf ℱ′ has the following description: it is the sheafification of the presheaf
Sch′

𝜏 ⟶ Sets, 𝑉 ⟼ 𝑐𝑜𝑙𝑖𝑚𝑉→𝑈 ℱ(𝑈)

where 𝑈 is an object of Sch𝜏. This is true because ℱ′ = 𝑓−1ℱ = (𝑢𝑝ℱ)# according to Sites,
Lemmas 9.19.5 and 9.19.8.
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CHAPTER 31

Descent

31.1. Introduction

In the chapter on topologies on schemes (see Topologies, Section 30.1) we introduced
Zariski, étale, fppf, smooth, syntomic and fpqc coverings of schemes. In this chapter we
discuss what kind of structures over schemes can be descended through such coverings.
See for example [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and [Gro95d]. This
is also meant to introduce the notions of descent, descent data, effective descent data, in
the less formal setting of descent questions for quasi-coherent sheaves, schemes, etc. The
formal notion, that of a stack over a site, is discussed in the chapter on stacks (see Stacks,
Section 50.1).

31.2. Descent data for quasi-coherent sheaves

In this chapter we will use the convention where the projection maps pr𝑖 ∶ 𝑋×…×𝑋 → 𝑋
are labeled starting with 𝑖 = 0. Hence we have pr0, pr1 ∶ 𝑋 × 𝑋 → 𝑋, pr0, pr1, pr2 ∶
𝑋 × 𝑋 × 𝑋 → 𝑋, etc.

Definition 31.2.1. Let 𝑆 be a scheme. Let {𝑓𝑖 ∶ 𝑆𝑖 → 𝑆}𝑖∈𝐼 be a family of morphisms
with target 𝑆.

(1) A descent datum (ℱ𝑖, 𝜑𝑖𝑗) for quasi-coherent sheaves with respect to the given
family is given by a quasi-coherent sheaf ℱ𝑖 on 𝑆𝑖 for each 𝑖 ∈ 𝐼, an isomorphism
of quasi-coherent 𝒪𝑆𝑖×𝑆𝑆𝑗

-modules 𝜑𝑖𝑗 ∶ pr∗0ℱ𝑖 → pr∗1ℱ𝑗 for each pair (𝑖, 𝑗) ∈ 𝐼2

such that for every triple of indices (𝑖, 𝑗, 𝑘) ∈ 𝐼3 the diagram

pr∗0ℱ𝑖

pr∗01𝜑𝑖𝑗 ##

pr∗02𝜑𝑖𝑘

// pr∗2ℱ𝑘

pr∗1ℱ𝑗

pr∗12𝜑𝑗𝑘

;;

of 𝒪𝑆𝑖×𝑆𝑆𝑗×𝑆𝑆𝑘
-modules commutes. This is called the cocycle condition.

(2) A morphism 𝜓 ∶ (ℱ𝑖, 𝜑𝑖𝑗) → (ℱ′
𝑖 , 𝜑′

𝑖𝑗) of descent data is given by a family 𝜓 =
(𝜓𝑖)𝑖∈𝐼 of morphisms of 𝒪𝑆𝑖

-modules 𝜓𝑖 ∶ ℱ𝑖 → ℱ′
𝑖 such that all the diagrams

pr∗0ℱ𝑖 𝜑𝑖𝑗
//

pr∗0𝜓𝑖
��

pr∗1ℱ𝑗

pr∗1𝜓𝑗
��

pr∗0ℱ′
𝑖

𝜑′
𝑖𝑗 // pr∗1ℱ′

𝑗

commute.

1647
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A good example to keep in mind is the following. Suppose that 𝑆 = ⋃ 𝑆𝑖 is an open
covering. In that case we have seen descent data for sheaves of sets in Sheaves, Section 6.33
where we called them ``glueing data for sheaves of sets with respect to the given covering''.
Moreover, we proved that the category of glueing data is equivalent to the category of
sheaves on 𝑆. We will show the analogue in the setting above when {𝑆𝑖 → 𝑆}𝑖∈𝐼 is an fpqc
covering.
In the extreme case where the covering {𝑆 → 𝑆} is given by id𝑆 a descent datum is nec-
essarily of the form (ℱ, idℱ). The cocycle condition garantees that the identity on ℱ is
the only permitted map in this case. The following lemma shows in particular that to every
quasi-coherent sheaf of 𝒪𝑆-modules there is associated a unique descent datumwith respect
to any given family.

Lemma 31.2.2. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 and 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽 be families of morphisms
of schemes with fixed target. Let (𝑔, 𝛼 ∶ 𝐼 → 𝐽, (𝑔𝑖)) ∶ 𝒰 → 𝒱 be a morphism of families
of maps with fixed target, see Sites, Definition 9.8.1. Let (ℱ𝑗, 𝜑𝑗𝑗′) be a descent datum for
quasi-coherent sheaves with respect to the family {𝑉𝑗 → 𝑉}𝑗∈𝐽. Then

(1) The system
(𝑔∗

𝑖 ℱ𝛼(𝑖), (𝑔𝑖 × 𝑔𝑖′)∗𝜑𝛼(𝑖)𝛼(𝑖′))
is a descent datum with respect to the family {𝑈𝑖 → 𝑈}𝑖∈𝐼.

(2) This construction is functorial in the descent datum (ℱ𝑗, 𝜑𝑗𝑗′).
(3) Given a second morphism (𝑔′, 𝛼′ ∶ 𝐼 → 𝐽, (𝑔′

𝑖 )) of families of maps with fixed
target with 𝑔 = 𝑔′ there exists a functorial isomorphism of descent data

(𝑔∗
𝑖 ℱ𝛼(𝑖), (𝑔𝑖 × 𝑔𝑖′)∗𝜑𝛼(𝑖)𝛼(𝑖′)) ≅ ((𝑔′

𝑖 )
∗ℱ𝛼′(𝑖), (𝑔′

𝑖 × 𝑔′
𝑖′)∗𝜑𝛼′(𝑖)𝛼′(𝑖′)).

Proof. Omitted. Hint: The maps 𝑔∗
𝑖 ℱ𝛼(𝑖) → (𝑔′

𝑖 )
∗ℱ𝛼′(𝑖) which give the ismorphism of

descent data in part (3) are the pullbacks of the maps 𝜑𝛼(𝑖)𝛼′(𝑖) by the morphisms (𝑔𝑖, 𝑔′
𝑖 ) ∶

𝑈𝑖 → 𝑉𝛼(𝑖) ×𝑉 𝑉𝛼′(𝑖). �

Any family 𝒰 = {𝑆𝑖 → 𝑆}𝑖∈𝐼 is a refinement of the trivial covering {𝑆 → 𝑆} in a unique
way. For a quasi-coherent sheaf ℱ on 𝑆 we denote simply (ℱ|𝑆𝑖

, 𝑐𝑎𝑛) the descent datum
with respect to 𝒰 obtained by the procedure above.

Definition 31.2.3. Let 𝑆 be a scheme. Let {𝑆𝑖 → 𝑆}𝑖∈𝐼 be a family of morphisms with
target 𝑆.

(1) Let ℱ be a quasi-coherent 𝒪𝑆-module. We call the unique descent on ℱ datum
with respect to the covering {𝑆 → 𝑆} the trivial descent datum.

(2) The pullback of the trival descent datum to {𝑆𝑖 → 𝑆} is called the canonical
descent datum. Notation: (ℱ|𝑆𝑖

, 𝑐𝑎𝑛).
(3) A descent datum (ℱ𝑖, 𝜑𝑖𝑗) for quasi-coherent sheaves with respect to the given

covering is said to be effective if there exists a quasi-coherent sheaf ℱ on 𝑆 such
that (ℱ𝑖, 𝜑𝑖𝑗) is isomorphic to (ℱ|𝑆𝑖

, 𝑐𝑎𝑛).

Lemma 31.2.4. Let 𝑆 be a scheme. Let 𝑆 = ⋃ 𝑈𝑖 be an open covering. Any descent
datum on quasi-coherent sheaves for the family 𝒰 = {𝑈𝑖 → 𝑆} is effective. Moreover, the
functor from the category of quasi-coherent 𝒪𝑆-modules to the category of descent data
with respect to 𝒰 is fully faithful.

Proof. This follows immediately from Sheaves, Section 6.33 and the fact that being quasi-
coherent is a local property, see Modules, Definition 15.10.1. �

To prove more we first need to study the case of modules over rings.
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31.3. Descent for modules

Let 𝑅 → 𝐴 be a ring map. By Simplicial, Example 14.5.5 this gives rise to a cosimplicial
𝑅-algebra

𝐴
//
// 𝐴 ⊗𝑅 𝐴oo

//
//
//
𝐴 ⊗𝑅 𝐴 ⊗𝑅 𝐴oo

oo

Let us denote this (𝐴/𝑅)• so that (𝐴/𝑅)𝑛 is the (𝑛 + 1)-fold tensor product of 𝐴 over 𝑅.
Given a map 𝜑 ∶ [𝑛] → [𝑚] the 𝑅-algebra map (𝐴/𝑅)•(𝜑) is the map

𝑎0 ⊗ … ⊗ 𝑎𝑛 ⟼ ∏𝜑(𝑖)=0
𝑎𝑖 ⊗ ∏𝜑(𝑖)=1

𝑎𝑖 ⊗ … ⊗ ∏𝜑(𝑖)=𝑚
𝑎𝑖

where we use the convention that the empty product is 1. Thus the first few maps, notation
as in Simplicial, Section 14.5, are

𝛿1
0 ∶ 𝑎0 ↦ 1 ⊗ 𝑎0

𝛿1
1 ∶ 𝑎0 ↦ 𝑎0 ⊗ 1

𝜎0
0 ∶ 𝑎0 ⊗ 𝑎1 ↦ 𝑎0𝑎1

𝛿2
0 ∶ 𝑎0 ⊗ 𝑎1 ↦ 1 ⊗ 𝑎0 ⊗ 𝑎1

𝛿2
1 ∶ 𝑎0 ⊗ 𝑎1 ↦ 𝑎0 ⊗ 1 ⊗ 𝑎1

𝛿2
2 ∶ 𝑎0 ⊗ 𝑎1 ↦ 𝑎0 ⊗ 𝑎1 ⊗ 1

𝜎1
0 ∶ 𝑎0 ⊗ 𝑎1 ⊗ 𝑎2 ↦ 𝑎0𝑎1 ⊗ 𝑎2

𝜎1
1 ∶ 𝑎0 ⊗ 𝑎1 ⊗ 𝑎2 ↦ 𝑎0 ⊗ 𝑎1𝑎2

and so on.

An 𝑅-module 𝑀 gives rise to a cosimplicial (𝐴/𝑅)•-module (𝐴/𝑅)• ⊗𝑅 𝑀. In other words
𝑀𝑛 = (𝐴/𝑅)𝑛 ⊗𝑅 𝑀 and using the 𝑅-algebra maps (𝐴/𝑅)𝑛 → (𝐴/𝑅)𝑚 to define the corre-
sponding maps on 𝑀 ⊗𝑅 (𝐴/𝑅)•.

The analogue to a descent datum for quasi-coherent sheaves in the setting of modules is the
following.

Definition 31.3.1. Let 𝑅 → 𝐴 be a ring map.
(1) A descent datum (𝑁, 𝜑) for modules with respect to 𝑅 → 𝐴 is given by an

𝐴-module 𝑁 and a isomorphism of 𝐴 ⊗𝑅 𝐴-modules

𝜑 ∶ 𝑁 ⊗𝑅 𝐴 → 𝐴 ⊗𝑅 𝑁

such that the cocycle condition holds: the diagram of 𝐴⊗𝑅 𝐴⊗𝑅 𝐴-module maps

𝑁 ⊗𝑅 𝐴 ⊗𝑅 𝐴 𝜑02
//

𝜑01 ((

𝐴 ⊗𝑅 𝐴 ⊗𝑅 𝑁

𝐴 ⊗𝑅 𝑁 ⊗𝑅 𝐴
𝜑12

66

commutes (see below for notation).
(2) A morphism (𝑁, 𝜑) → (𝑁′, 𝜑′) of descent data is a morphism of 𝐴-modules

𝜓 ∶ 𝑁 → 𝑁′ such that the diagram

𝑁 ⊗𝑅 𝐴 𝜑
//

𝜓⊗id𝐴
��

𝐴 ⊗𝑅 𝑁

id𝐴⊗𝜓
��

𝑁′ ⊗𝑅 𝐴
𝜑′
// 𝐴 ⊗𝑅 𝑁′

is commutative.
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In the definition we use the notation that 𝜑01 = 𝜑⊗id𝐴, 𝜑12 = id𝐴⊗𝜑, and 𝜑02(𝑛⊗1⊗1) =
∑ 𝑎𝑖 ⊗ 1 ⊗ 𝑛𝑖 if 𝜑(𝑛) = ∑ 𝑎𝑖 ⊗ 𝑛𝑖. All three are 𝐴 ⊗𝑅 𝐴 ⊗𝑅 𝐴-module homomorphisms.
Equivalently we have

𝜑𝑖𝑗 = 𝜑 ⊗(𝐴/𝑅)1, (𝐴/𝑅)•(𝜏2
𝑖𝑗)

(𝐴/𝑅)2

where 𝜏2
𝑖𝑗 ∶ [1] → [2] is the map 0 ↦ 𝑖, 1 ↦ 𝑗. Namely, (𝐴/𝑅)•(𝜏2

02)(𝑎0⊗𝑎1) = 𝑎0⊗1⊗𝑎1,
and similarly for the others1.

We need some more notation to be able to state the next lemma. Let (𝑁, 𝜑) be a descent
datum with respect to a ring map 𝑅 → 𝐴. For 𝑛 ≥ 0 and 𝑖 ∈ [𝑛] we set

𝑁𝑛,𝑖 = 𝐴 ⊗𝑅 … ⊗𝑅 𝐴 ⊗𝑅 𝑁 ⊗𝑅 𝐴 ⊗𝑅 … ⊗𝑅 𝐴

with the factor 𝑁 in the 𝑖th spot. It is an (𝐴/𝑅)𝑛-module. If we introduce the maps 𝜏𝑛
𝑖 ∶

[0] → [𝑛], 0 ↦ 𝑖 then we see that

𝑁𝑛,𝑖 = 𝑁 ⊗(𝐴/𝑅)0, (𝐴/𝑅)•(𝜏𝑛
𝑖 ) (𝐴/𝑅)𝑛

For 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 we let 𝜏𝑛
𝑖𝑗 ∶ [1] → [𝑛] be the map such that 0 maps to 𝑖 and 1 to 𝑗.

Similarly to the above the homomorphism 𝜑 induces isomorphisms

𝜑𝑛
𝑖𝑗 = 𝜑 ⊗(𝐴/𝑅)1, (𝐴/𝑅)•(𝜏𝑛

𝑖𝑗)
(𝐴/𝑅)𝑛 ∶ 𝑁𝑛,𝑖 ⟶ 𝑁𝑛,𝑗

of (𝐴/𝑅)𝑛-modules when 𝑖 < 𝑗. If 𝑖 = 𝑗 we set 𝜑𝑛
𝑖𝑗 = id. Since these are all isomorphisms

they allow us to move the factor 𝑁 to any spot we like. And the cocycle condition exactly
means that it does not matter how we do this (e.g., as a composition of two of these or at
once). Finally, for any 𝛽 ∶ [𝑛] → [𝑚] we define the morphism

𝑁𝛽,𝑖 ∶ 𝑁𝑛,𝑖 → 𝑁𝑚,𝛽(𝑖)

as the unique (𝐴/𝑅)•(𝛽)-semi linear map such that

𝑁𝛽,𝑖(1 ⊗ … ⊗ 𝑛 ⊗ … ⊗ 1) = 1 ⊗ … ⊗ 𝑛 ⊗ … ⊗ 1

for all 𝑛 ∈ 𝑁. This hints at the following lemma.

Lemma 31.3.2. Let 𝑅 → 𝐴 be a ring map. Given a descent datum (𝑁, 𝜑) we can associate
to it a cosimplicial (𝐴/𝑅)•-module 𝑁•

2 by the rules 𝑁𝑛 = 𝑁𝑛,𝑛 and given 𝛽 ∶ [𝑛] → [𝑚]
setting we define

𝑁•(𝛽) = (𝜑𝑚
𝛽(𝑛)𝑚) ∘ 𝑁𝛽,𝑛 ∶ 𝑁𝑛,𝑛 ⟶ 𝑁𝑚,𝑚.

This procedure is functorial in the descent datum.

Proof. Here are the first few maps where 𝜑(𝑛 ⊗ 1) = ∑ 𝛼𝑖 ⊗ 𝑥𝑖

𝛿1
0 ∶ 𝑁 → 𝐴 ⊗ 𝑁 𝑛 ↦ 1 ⊗ 𝑛

𝛿1
1 ∶ 𝑁 → 𝐴 ⊗ 𝑁 𝑛 ↦ ∑ 𝛼𝑖 ⊗ 𝑥𝑖

𝜎0
0 ∶ 𝐴 ⊗ 𝑁 → 𝑁 𝑎0 ⊗ 𝑛 ↦ 𝑎0𝑛

𝛿2
0 ∶ 𝐴 ⊗ 𝑁 → 𝐴 ⊗ 𝐴 ⊗ 𝑁 𝑎0 ⊗ 𝑛 ↦ 1 ⊗ 𝑎0 ⊗ 𝑛

𝛿2
1 ∶ 𝐴 ⊗ 𝑁 → 𝐴 ⊗ 𝐴 ⊗ 𝑁 𝑎0 ⊗ 𝑛 ↦ 𝑎0 ⊗ 1 ⊗ 𝑛

𝛿2
2 ∶ 𝐴 ⊗ 𝑁 → 𝐴 ⊗ 𝐴 ⊗ 𝑁 𝑎0 ⊗ 𝑛 ↦ ∑ 𝑎0 ⊗ 𝛼𝑖 ⊗ 𝑥𝑖

𝜎1
0 ∶ 𝐴 ⊗ 𝐴 ⊗ 𝑁 → 𝐴 ⊗ 𝑁 𝑎0 ⊗ 𝑎1 ⊗ 𝑛 ↦ 𝑎0𝑎1 ⊗ 𝑛

𝜎1
1 ∶ 𝐴 ⊗ 𝐴 ⊗ 𝑁 → 𝐴 ⊗ 𝑁 𝑎0 ⊗ 𝑎1 ⊗ 𝑛 ↦ 𝑎0 ⊗ 𝑎1𝑛

1Note that 𝜏2
𝑖𝑗 = 𝛿2

𝑘, if {𝑖, 𝑗, 𝑘} = [2] = {0, 1, 2}, see Simplicial, Definition 14.2.1.
2We should really write (𝑁, 𝜑)•.
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with notation as in Simplicial, Section 14.5. We first verify the two properties 𝜎0
0 ∘ 𝛿1

0 = id
and 𝜎0

0 ∘ 𝛿1
1 = id. The first one, 𝜎0

0 ∘ 𝛿1
0 = id, is clear from the explicit description of

the morphisms above. To prove the second relation we have to use the cocycle condition
(because it does not holds for an arbitrary isomorphism 𝜑 ∶ 𝑁 ⊗𝑅 𝐴 → 𝐴 ⊗𝑅 𝑁). Write
𝑝 = 𝜎0

0 ∘ 𝛿1
1 ∶ 𝑁 → 𝑁. By the description of the maps above we deduce that 𝑝 is also equal

to
𝑝 = 𝜑 ⊗ id ∶ 𝑁 = (𝑁 ⊗𝑅 𝐴) ⊗(𝐴⊗𝑅𝐴) 𝐴 ⟶ (𝐴 ⊗𝑅 𝑁) ⊗(𝐴⊗𝑅𝐴) 𝐴 = 𝑁

Since 𝜑 is an isomorphism we see that 𝑝 is an isomorphism. Write 𝜑(𝑛 ⊗ 1) = ∑ 𝛼𝑖 ⊗ 𝑥𝑖
for certain 𝛼𝑖 ∈ 𝐴 and 𝑥𝑖 ∈ 𝑁. Then 𝑝(𝑛) = ∑ 𝛼𝑖𝑥𝑖. Next, write 𝜑(𝑥𝑖 ⊗ 1) = ∑ 𝛼𝑖𝑗 ⊗ 𝑦𝑗
for certain 𝛼𝑖𝑗 ∈ 𝐴 and 𝑦𝑗 ∈ 𝑁. Then the cocycle condition says that

∑ 𝛼𝑖 ⊗ 𝛼𝑖𝑗 ⊗ 𝑦𝑗 = ∑ 𝛼𝑖 ⊗ 1 ⊗ 𝑥𝑖.

This means that 𝑝(𝑛) = ∑ 𝛼𝑖𝑥𝑖 = ∑ 𝛼𝑖𝛼𝑖𝑗𝑦𝑗 = ∑ 𝛼𝑖𝑝(𝑥𝑖) = 𝑝(𝑝(𝑛)). Thus 𝑝 is a projector,
and since it is an isomorphism it is the identity.

To prove fully that 𝑁• is a cosimplicial module we have to check all 5 types of relations of
Simplicial, Remark 14.5.3. The relations on composing 𝜎's are obvious. The relations on
composing 𝛿's come down to the cocycle condition for 𝜑. In exactly the same way as above
one checks the relations 𝜎𝑗 ∘𝛿𝑗 = 𝜎𝑗 ∘𝛿𝑗+1 = id. Finally, the other relations on compositions
of 𝛿's and 𝜎's hold for any 𝜑 whatsoever. �

Note that to an 𝑅-module 𝑀 we can associate a canonical descent datum, namely (𝑀 ⊗𝑅
𝐴, 𝑐𝑎𝑛) where 𝑐𝑎𝑛 ∶ (𝑀⊗𝑅𝐴)⊗𝑅𝐴 → 𝐴⊗𝑅(𝑀⊗𝑅𝐴) is the obvious map: (𝑚⊗𝑎)⊗𝑎′ ↦
𝑎 ⊗ (𝑚 ⊗ 𝑎′).

Lemma 31.3.3. Let 𝑅 → 𝐴 be a ring map. Let 𝑀 be an 𝑅-module. The cosimplicial
(𝐴/𝑅)•-module associated to the canonical descent datum is isomorphic to the cosimplicial
module (𝐴/𝑅)• ⊗𝑅 𝑀.

Proof. Omitted. �

Definition 31.3.4. Let 𝑅 → 𝐴 be a ring map. We say a descent datum (𝑁, 𝜑) is effective
if there exists an 𝑅-module 𝑀 and an isomorphism of descent data from (𝑀 ⊗𝑅 𝐴, 𝑐𝑎𝑛) to
(𝑁, 𝜑).

Let 𝑅 → 𝐴 be a ring map. Let (𝑁, 𝜑) be a descent datum. We may take the cochain
complex 𝑠(𝑁•) associated with 𝑁• (see Simplicial, Section 14.23). It has the following
shape:

𝑁 → 𝐴 ⊗𝑅 𝑁 → 𝐴 ⊗𝑅 𝐴 ⊗𝑅 𝑁 → …
We can describe the maps. The first map is the map

𝑛 ⟼ 1 ⊗ 𝑛 − 𝜑(𝑛 ⊗ 1).

The second map on pure tensors has the values

𝑎 ⊗ 𝑛 ⟼ 1 ⊗ 𝑎 ⊗ 𝑛 − 𝑎 ⊗ 1 ⊗ 𝑛 + 𝑎 ⊗ 𝜑(𝑛 ⊗ 1).

It is clear how the pattern continues.

In the special case where 𝑁 = 𝐴 ⊗𝑅 𝑀 we see that for any 𝑚 ∈ 𝑀 the element 1 ⊗ 𝑚 is
in the kernel of the first map of the cochain complex associated to the cosimplicial module
(𝐴/𝑅)• ⊗𝑅 𝑀. Hence we get an extended cochain complex

(31.3.4.1) 0 → 𝑀 → 𝐴 ⊗𝑅 𝑀 → 𝐴 ⊗𝑅 𝐴 ⊗𝑅 𝑀 → …

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=023I
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=023J


1652 31. DESCENT

Here we think of the 0 as being in degree −2, the module 𝑀 in degree −1, the module
𝐴 ⊗𝑅 𝑀 in degree 0, etc. Note that this complex has the shape

0 → 𝑅 → 𝐴 → 𝐴 ⊗𝑅 𝐴 → 𝐴 ⊗𝑅 𝐴 ⊗𝑅 𝐴 → …

when 𝑀 = 𝑅.

Lemma 31.3.5. Suppose that𝑅 → 𝐴 has a section. Then for any𝑅-module𝑀 the extended
cochain complex (31.3.4.1) is exact.

Proof. By Simplicial, Lemma 14.26.4 the map 𝑅 → (𝐴/𝑅)• is a homotopy equivalence
of cosimplicial 𝑅-algebras (here 𝑅 denotes the constant cosimplicial 𝑅-algebra). Hence
𝑀 → (𝐴/𝑅)• ⊗𝑅 𝑀 is a homotopy equivalence in the category of cosimplicial 𝑅-modules,
because ⊗𝑅𝑀 is a functor from the category of 𝑅-algebras to the category of 𝑅-modules,
see Simplicial, Lemma 14.26.3. This implies that the induced map of associated complexes
is a homotopy equivalence, see Simplicial, Lemma 14.26.5. Since the complex associated
to the constant cosimplicial 𝑅-module 𝑀 is the complex

𝑀 0 //𝑀 1 //𝑀 0 //𝑀 1 //𝑀 …

we win (since the extended version simply puts an extra 𝑀 at the beginning). �

Lemma 31.3.6. Suppose that 𝑅 → 𝐴 is faithfully flat, see Algebra, Definition 7.35.1. Then
for any 𝑅-module 𝑀 the extended cochain complex (31.3.4.1) is exact.

Proof. Suppose we can show there exists a faithfully flat ring map 𝑅 → 𝑅′ such that the
result holds for the ring map 𝑅′ → 𝐴′ = 𝑅′ ⊗𝑅 𝐴. Then the result follows for 𝑅 → 𝐴.
Namely, for any 𝑅-module 𝑀 the cosimplicial module (𝑀 ⊗𝑅 𝑅′) ⊗𝑅′ (𝐴′/𝑅′)• is just the
cosimplicial module 𝑅′ ⊗𝑅 (𝑀 ⊗𝑅 (𝐴/𝑅)•). Hence the vanishing of cohomology of the
complex associated to (𝑀 ⊗𝑅 𝑅′) ⊗𝑅′ (𝐴′/𝑅′)• implies the vanishing of the cohomology
of the complex associated to 𝑀 ⊗𝑅 (𝐴/𝑅)• by faithful flatness of 𝑅 → 𝑅′. Similarly for
the vanishing of cohomology groups in degrees −1 and 0 of the extended complex (proof
omitted).

But we have such a faithfull flat extension. Namely 𝑅′ = 𝐴 works because the ring map
𝑅′ = 𝐴 → 𝐴′ = 𝐴 ⊗𝐴 𝐴 has a section 𝑎 ⊗ 𝑎′ ↦ 𝑎𝑎′ and Lemma 31.3.5 applies. �

Here is how the complex relates to the question of effectivity.

Lemma 31.3.7. Let 𝑅 → 𝐴 be a faithfully flat ring map. Let (𝑁, 𝜑) be a descent datum.
Then (𝑁, 𝜑) is effective if and only if the canonical map

𝐴 ⊗𝑅 𝐻0(𝑠(𝑁•)) ⟶ 𝑁

is an isomorphism.

Proof. If (𝑁, 𝜑) is effective, then we may write 𝑁 = 𝐴⊗𝑅 𝑀 with 𝜑 = 𝑐𝑎𝑛. It follows that
𝐻0(𝑠(𝑁•)) = 𝑀 by Lemmas 31.3.3 and 31.3.6. Conversely, suppose the map of the lemma
is an isomorphism. In this case set 𝑀 = 𝐻0(𝑠(𝑁•)). This is an 𝑅-submodule of 𝑁, namely
𝑀 = {𝑛 ∈ 𝑁 ∣ 1 ⊗ 𝑛 = 𝜑(𝑛 ⊗ 1)}. The only thing to check is that via the isomorphism
𝐴 ⊗𝑅 𝑀 → 𝑁 the canonical descent data agrees with 𝜑. We omit the verification. �

Lemma 31.3.8. Let 𝑅 → 𝐴 be a ring map, and let 𝑅 → 𝑅′ be faithfully flat. Set 𝐴′ =
𝑅′ ⊗𝑅 𝐴. If all descent data for 𝑅′ → 𝐴′ are effective, then so are all descent data for
𝑅 → 𝐴.
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Proof. Let (𝑁, 𝜑) be a descent datum for 𝑅 → 𝐴. Set 𝑁′ = 𝑅′ ⊗𝑅 𝑁 = 𝐴′ ⊗𝐴 𝑁,
and denote 𝜑′ = id𝑅′ ⊗ 𝜑 the base change of the descend datum 𝜑. Then (𝑁′, 𝜑′) is a
descent datum for 𝑅′ → 𝐴′ and 𝐻0(𝑠(𝑁′

•)) = 𝑅′ ⊗𝑅 𝐻0(𝑠(𝑁•)). Moreover, the map
𝐴′ ⊗𝑅′ 𝐻0(𝑠(𝑁′

•)) → 𝑁′ is identified with the base change of the 𝐴-module map 𝐴 ⊗𝑅
𝐻0(𝑠(𝑁)) → 𝑁 via the faithfully flat map 𝐴 → 𝐴′. Hence we conclude by Lemma 31.3.7.

�

Here is the main result of this section. Its proof may seem a little clumsy; for a more
highbrow approach see Remark 31.3.11 below.

Proposition 31.3.9. Let 𝑅 → 𝐴 be a faithfully flat ring map. Then
(1) any descent datum on modules with respect to 𝑅 → 𝐴 is effective,
(2) the functor 𝑀 ↦ (𝐴 ⊗𝑅 𝑀, 𝑐𝑎𝑛) from 𝑅-modules to the category of descent data

is an equivalence, and
(3) the inverse functor is given by (𝑁, 𝜑) ↦ 𝐻0(𝑠(𝑁•)).

Proof. We only prove (1) and omit the proofs of (2) and (3). As 𝑅 → 𝐴 is faithfully flat,
there exists a faithfully flat base change 𝑅 → 𝑅′ such that 𝑅′ → 𝐴′ = 𝑅′ ⊗𝑅 𝐴 has
a section (namely take 𝑅′ = 𝐴 as in the proof of Lemma 31.3.6). Hence, using Lemma
31.3.8 we may assume that 𝑅 → 𝐴 as a section, say 𝜎 ∶ 𝐴 → 𝑅. Let (𝑁, 𝜑) be a descent
datum relative to 𝑅 → 𝐴. Set

𝑀 = 𝐻0(𝑠(𝑁•)) = {𝑛 ∈ 𝑁 ∣ 1 ⊗ 𝑛 = 𝜑(𝑛 ⊗ 1)} ⊂ 𝑁
By Lemma 31.3.7 it suffices to show that 𝐴 ⊗𝑅 𝑀 → 𝑁 is an isomorphism.
Take an element 𝑛 ∈ 𝑁. Write 𝜑(𝑛 ⊗ 1) = ∑ 𝑎𝑖 ⊗ 𝑥𝑖 for certain 𝑎𝑖 ∈ 𝐴 and 𝑥𝑖 ∈ 𝑁. By
Lemma 31.3.2 we have 𝑛 = ∑ 𝑎𝑖𝑥𝑖 in 𝑁 (because 𝜎0

0 ∘ 𝛿1
0 = id in any cosimplicial object).

Next, write 𝜑(𝑥𝑖 ⊗ 1) = ∑ 𝑎𝑖𝑗 ⊗ 𝑦𝑗 for certain 𝑎𝑖𝑗 ∈ 𝐴 and 𝑦𝑗 ∈ 𝑁. The cocycle condition
means that

∑ 𝑎𝑖 ⊗ 𝑎𝑖𝑗 ⊗ 𝑦𝑗 = ∑ 𝑎𝑖 ⊗ 1 ⊗ 𝑥𝑖

in 𝐴 ⊗𝑅 𝐴 ⊗𝑅 𝑁. We conclude two things from this. First, by applying 𝜎 to the first 𝐴 we
conclude that ∑ 𝜎(𝑎𝑖)𝜑(𝑥𝑖 ⊗ 1) = ∑ 𝜎(𝑎𝑖) ⊗ 𝑥𝑖 which means that ∑ 𝜎(𝑎𝑖)𝑥𝑖 ∈ 𝑀. Next,
by applying 𝜎 to the middle 𝐴 and multiplying out we conclude that ∑𝑖 𝑎𝑖(∑𝑗 𝜎(𝑎𝑖𝑗)𝑦𝑗) =
∑ 𝑎𝑖𝑥𝑖 = 𝑛. Hence by the first conclusion we see that 𝐴 ⊗𝑅 𝑀 → 𝑁 is surjective. Finally,
suppose that 𝑚𝑖 ∈ 𝑀 and ∑ 𝑎𝑖𝑚𝑖 = 0. Then we see by applying 𝜑 to ∑ 𝑎𝑖𝑚𝑖 ⊗ 1 that
∑ 𝑎𝑖 ⊗ 𝑚𝑖 = 0. In other words 𝐴 ⊗𝑅 𝑀 → 𝑁 is injective and we win. �

Remark 31.3.10. Let 𝑅 be a ring. Let 𝑓1, … , 𝑓𝑛 ∈ 𝑅 generate the unit ideal. The ring
𝐴 = ∏𝑖 𝑅𝑓𝑖

is a faithfully flat 𝑅-algebra. We remark that the cosimplicial ring (𝐴/𝑅)• has
the following ring in degree 𝑛:

∏𝑖0,…,𝑖𝑛
𝑅𝑓𝑖0…𝑓𝑖𝑛

Hence the results above recover Algebra, Lemmas 7.20.1, 7.20.2 and 7.21.4. But the results
above actually say more because of exactness in higher degrees. Namely, it implies that
Cech cohomology of quasi-coherent sheaves on affines is trivial, see (insert future reference
here).

Remark 31.3.11. Let 𝑅 be a ring. Let 𝐴• be a cosimplicial 𝑅-algebra. In this setting a
descent datum corresponds to an cosimplicial 𝐴•-module 𝑀• with the property that for
every 𝑛, 𝑚 ≥ 0 and every 𝜑 ∶ [𝑛] → [𝑚] the map 𝑀(𝜑) ∶ 𝑀𝑛 → 𝑀𝑚 induces an
isomorphism

𝑀𝑛 ⊗𝐴𝑛,𝐴(𝜑) 𝐴𝑚 ⟶ 𝑀𝑚.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=023N
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=023O
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=039Y


1654 31. DESCENT

Let us call such a cosimplicial module a cartesian module. In this setting, the proof of
Proposition 31.3.9 can be split in the following steps

(1) If 𝑅 → 𝑅′ is faithfully flat, 𝑅 → 𝐴 any ring map, then descent data for 𝐴/𝑅 are
effective if descent data for (𝑅′ ⊗𝑅 𝐴)/𝑅′ are effective.

(2) Let𝐴 be an𝑅-algebra. Descent data for𝐴/𝑅 correspond to cartesian (𝐴/𝑅)•-modules.
(3) If 𝑅 → 𝐴 has a section then (𝐴/𝑅)• is homotopy equivalent to 𝑅, the constant

cosimplicial 𝑅-algebra with value 𝑅.
(4) If 𝐴• → 𝐵• is a homotopy equivalence of cosimplicial 𝑅-algebras then the func-

tor 𝑀• ↦ 𝑀• ⊗𝐴•
𝐵• induces an equivalence of categories between cartesian

𝐴•-modules and cartesian 𝐵•-modules.
For (1) see Lemma 31.3.8. Part (2) uses Lemma 31.3.2. Part (3) we have seen in the proof
of Lemma 31.3.5 (it relies on Simplicial, Lemma 14.26.4). Moreover, part (4) is a triviality
if you think about it right!

31.4. Fpqc descent of quasi-coherent sheaves

The main application of flat descent for modules is the corresponding descent statement for
quasi-coherent sheaves with respect to fpqc-coverings.

Lemma 31.4.1. Let 𝑆 be an affine scheme. Let 𝒰 = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑆}𝑖=1,…,𝑛 be a standard
fpqc covering of 𝑆, see Topologies, Definition 30.8.1. Any descent datum on quasi-coherent
sheaves for 𝒰 = {𝑈𝑖 → 𝑆} is effective. Moreover, the functor from the category of quasi-
coherent 𝒪𝑆-modules to the category of descent data with respect to 𝒰 is fully faithful.

Proof. This is a restatement of Proposition 31.3.9 in terms of schemes. First, note that a
descent datum 𝜉 for quasi-coherent sheaveswith respect to𝒰 is exactly the same as a descent
datum 𝜉′ for quasi-coherent sheaves with respect to the covering 𝒰′ = {∐𝑖=1,…,𝑛 𝑈𝑖 → 𝑆}.
Moreover, effectivity for 𝜉 is the same as effectivity for 𝜉′. Hence we may assume 𝑛 = 1,
i.e., 𝒰 = {𝑈 → 𝑆} where 𝑈 and 𝑆 are affine. In this case descent data correspond to
descent data on modules with respect to the ring map

Γ(𝑆, 𝒪) ⟶ Γ(𝑈, 𝒪).
Since 𝑈 → 𝑆 is surjective and flat, we see that this ring map is faithfully flat. In other
words, Proposition 31.3.9 applies and we win. �

Proposition 31.4.2. Let 𝑆 be a scheme. Let 𝒰 = {𝜑𝑖 ∶ 𝑈𝑖 → 𝑆} be an fpqc cover-
ing, see Topologies, Definition 30.8.1. Any descent datum on quasi-coherent sheaves for
𝒰 = {𝑈𝑖 → 𝑆} is effective. Moreover, the functor from the category of quasi-coherent
𝒪𝑆-modules to the category of descent data with respect to 𝒰 is fully faithful.

Proof. Let 𝑆 = ⋃𝑗∈𝐽 𝑉𝑗 be an affine open covering. For 𝑗, 𝑗′ ∈ 𝐽 we denote 𝑉𝑗𝑗′ =
𝑉𝑗 ∩ 𝑉𝑗′ the intersection (which need not be affine). For 𝑉 ⊂ 𝑆 open we denote 𝒰𝑉 =
{𝑉 ×𝑆 𝑈𝑖 → 𝑉}𝑖∈𝐼 which is a fpqc-covering (Topologies, Lemma 30.8.7). By definition of
an fpqc covering, we can find for each 𝑗 ∈ 𝐽 a finite set 𝐾𝑗, a map 𝑖 ∶ 𝐾𝑗 → 𝐼, affine opens
𝑈𝑖(𝑘),𝑘 ⊂ 𝑈𝑖(𝑘), 𝑘 ∈ 𝐾𝑗 such that 𝒱𝑗 = {𝑈𝑖(𝑘),𝑘 → 𝑉𝑗}𝑘∈𝐾𝑗

is a standard fpqc covering of
𝑉𝑗. And of course, 𝒱𝑗 is a refinement of 𝒰𝑉𝑗

. Picture

𝒱𝑗
//

��

𝒰𝑉𝑗
//

��

𝒰

��
𝑉𝑗 𝑉𝑗

// 𝑆
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where the top horizontal arrows are morphisms of families of morphisms with fixed target
(see Sites, Definition 9.8.1).

To prove the proposition you show successively the faithfulness, fullyness, and essential
surjectivity of the functor from quasi-coherent sheaves to descent data.

Faithfulness. Let ℱ, 𝒢 be quasi-coherent sheaves on 𝑆 and let 𝑎, 𝑏 ∶ ℱ → 𝒢 be homomor-
phisms of 𝒪𝑆-modules. Suppose 𝜑∗

𝑖 (𝑎) = 𝜑∗(𝑏) for all 𝑖. Pick 𝑠 ∈ 𝑆. Then 𝑠 = 𝜑𝑖(𝑢) for
some 𝑖 ∈ 𝐼 and 𝑢 ∈ 𝑈𝑖. Since 𝒪𝑆,𝑠 → 𝒪𝑈𝑖,𝑢 is flat, hence faithfully flat (Algebra, Lemma
7.35.16) we see that 𝑎𝑠 = 𝑏𝑠 ∶ ℱ𝑠 → 𝒢𝑠. Hence 𝑎 = 𝑏.

Fully faithfulness. Let ℱ, 𝒢 be quasi-coherent sheaves on 𝑆 and let 𝑎𝑖 ∶ 𝜑∗
𝑖 ℱ → 𝜑∗

𝑖 𝒢 be
homomorphisms of 𝒪𝑈𝑖

-modules such that pr∗0𝑎𝑖 = pr∗1𝑎𝑗 on 𝑈𝑖 ×𝑈 𝑈𝑗. We can pull back
these morphisms to get morphisms

𝑎𝑘 ∶ ℱ|𝑈𝑖(𝑘),𝑘
⟶ 𝒢|𝑈𝑖(𝑘),𝑘

𝑘 ∈ 𝐾𝑗 with notation as above. Moreover, Lemma 31.2.2 assures us that these define
a morphism between (canonical) descent data on 𝒱𝑗. Hence, by Lemma 31.4.1, we get
correspondingly unique morphisms 𝑎𝑗 ∶ ℱ|𝑉𝑗

→ 𝒢|𝑉𝑗
. To see that 𝑎𝑗|𝑉𝑗𝑗′ = 𝑎𝑗′|𝑉𝑗𝑗′ we use

that both 𝑎𝑗 and 𝑎𝑗′ agree with the pullback of the morphism (𝑎𝑖)𝑖∈𝐼 of (canonical) descent
data to any covering refining both 𝒱𝑗,𝑉𝑗𝑗′ and 𝒱𝑗′,𝑉𝑗𝑗′ , and using the faithfullness already
shown. For example the covering 𝒱𝑗𝑗′ = {𝑉𝑘 ×𝑆 𝑉𝑘′ → 𝑉𝑗𝑗′}𝑘∈𝐾𝑗,𝑘′∈𝐾𝑗′ will do.

Essential surjectivity. Let 𝜉 = (ℱ𝑖, 𝜑𝑖𝑖′) be a descent datum for quasi-coherent sheaves
relative to the covering 𝒰. Pull back this descent datum to get descent data 𝜉𝑗 for quasi-
coherent sheaves relative to the coverings 𝒱𝑗 of 𝑉𝑗. By Lemma 31.4.1 once again there exist
quasi-coherent sheaves ℱ𝑗 on 𝑉𝑗 whose associated canonical descent datum is isomorphic
to 𝜉𝑗. By fully faithfulness (proved above) we see there are isomorphisms

𝜙𝑗𝑗′ ∶ ℱ𝑗|𝑉𝑗𝑗′ ⟶ ℱ𝑗′|𝑉𝑗𝑗′

corresponding to the isomorphism of descent data between the pull back of 𝜉𝑗 and 𝜉𝑗′ to
𝒱𝑗𝑗′. To see that these maps 𝜙𝑗𝑗′ satisfy the cocycle condition we use faithfullness (proved
above) over the triple intersections 𝑉𝑗𝑗′𝑗″. Hence, by Lemma 31.2.4 we see that the sheaves
ℱ𝑗 glue to a quasi-coherent sheaf ℱ as desired. We still have to verify that the canonical
descent datum relative to 𝒰 associated to ℱ is isomorphic to the descent datum we started
out with. This verification is omitted. �

31.5. Descent of finiteness properties of modules

In this section we prove that one can check quasi-coherent module has a certain finiteness
conditions by checking on the members of a covering.

Lemma 31.5.1. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let {𝑓𝑖 ∶
𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is a finite type 𝒪𝑋𝑖
-module. Then ℱ

is a finite type 𝒪𝑋-module.

Proof. Omitted. For the affine case, see Algebra, Lemma 7.77.2. �

Lemma 31.5.2. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let {𝑓𝑖 ∶ 𝑋𝑖 →
𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is an 𝒪𝑋𝑖
-module of finite presentation. Then

ℱ is an 𝒪𝑋-module of finite presentation.

Proof. Omitted. For the affine case, see Algebra, Lemma 7.77.2. �
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Lemma 31.5.3. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let {𝑓𝑖 ∶
𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is a flat 𝒪𝑋𝑖
-module. Then ℱ is a flat

𝒪𝑋-module.

Proof. Omitted. For the affine case, see Algebra, Lemma 7.77.2. �

Lemma 31.5.4. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let {𝑓𝑖 ∶ 𝑋𝑖 →
𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is a finite locally free 𝒪𝑋𝑖
-module. Then ℱ

is a finite locally free 𝒪𝑋-module.

Proof. This follows from the fact that a quasi-coherent sheaf is finite locally free if and
only if it is of finite presentation and flat, see Algebra, Lemma 7.72.2. Namely, if each 𝑓∗

𝑖 ℱ
is flat and of finite presentation, then so is ℱ by Lemmas 31.5.3 and 31.5.2. �

The definition of a locally projective quasi-coherent sheaf can be found in Properties, Sec-
tion 23.19.

Lemma 31.5.5. Let 𝑋 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let {𝑓𝑖 ∶ 𝑋𝑖 →
𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is a locally projective 𝒪𝑋𝑖
-module. Then ℱ

is a locally projective 𝒪𝑋-module.

Proof. Omitted. For Zariski coverings this is Properties, Lemma 23.19.2. For the affine
case this is Algebra, Theorem 7.89.5. �

Remark 31.5.6. Being locally free is a property of quasi-coherent modules which does not
descend in the fpqc topology. Namely, suppose that 𝑅 is a ring and that 𝑀 is a projective
𝑅-module which is a countable direct sum 𝑀 = ⨁ 𝐿𝑛 of rank 1 locally free modules,
but not locally free, see Examples, Lemma 64.15.5. Then 𝑀 becomes free on making the
faithfully flat base change

𝑅 ⟶ ⨁𝑚≥1 ⨁(𝑖1,…,𝑖𝑚)∈𝐙⊕𝑚 𝐿⊗𝑖1
1 ⊗𝑅 … ⊗𝑅 𝐿⊗𝑖𝑚

𝑚

But we don't know what happens for fppf coverings. In other words, we don't know the
answer to the following question: Suppose 𝐴 → 𝐵 is a faithfully flat ring map of finite pre-
sentation. Let 𝑀 be an 𝐴-module such that 𝑀 ⊗𝐴 𝐵 is free. Is 𝑀 a locally free 𝐴-module?
It turns out that if 𝐴 is Noetherian, then the answer is yes. This follows from the results
of [Bas63]. But in general we don't know the answer. If you know the answer, or have a
reference, please email stacks.project@gmail.com.

We also add here two results which are related to the results above, but are of a slightly
different nature.

Lemma 31.5.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Assume 𝑓 is a finite morphism. Then ℱ is an 𝒪𝑋-module of finite type if and
only if 𝑓∗ℱ is an 𝒪𝑌-module of finite type.

Proof. As 𝑓 is finite it is affine. This reduces us to the case where 𝑓 is the morphism
𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) given by a finite ring map 𝐴 → 𝐵. Moreover, then ℱ = 𝑀 is the
sheaf of modules associated to the 𝐵-module 𝑀. Note that 𝑀 is finite as a 𝐵-module if and
only if 𝑀 is finite as an 𝐴-module, see Algebra, Lemma 7.7.2. Combined with Properties,
Lemma 23.16.1 this proves the lemma. �

Lemma 31.5.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Assume 𝑓 is finite and of finite presentation. Then ℱ is an 𝒪𝑋-module of finite
presentation if and only if 𝑓∗ℱ is an 𝒪𝑌-module of finite presentation.
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Proof. As 𝑓 is finite it is affine. This reduces us to the case where 𝑓 is the morphism
𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) given by a finite and finitely presented ring map 𝐴 → 𝐵. Moreover,
then ℱ = 𝑀 is the sheaf of modules associated to the 𝐵-module 𝑀. Note that 𝑀 is finitely
presented as a 𝐵-module if and only if 𝑀 is finitely presented as an 𝐴-module, see Algebra,
Lemma 7.7.4. Combined with Properties, Lemma 23.16.2 this proves the lemma. �

31.6. Quasi-coherent sheaves and topologies

Let 𝑆 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑆-module. Consider the functor

(31.6.0.1) (Sch/𝑆)𝑜𝑝𝑝 ⟶ Ab, (𝑓 ∶ 𝑇 → 𝑆) ⟼ Γ(𝑇, 𝑓∗ℱ).

Lemma 31.6.1. Let 𝑆 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑆-module. Let 𝜏 ∈
{𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. The functor defined in (31.6.0.1) satisfies
the sheaf condition with respect to any 𝜏-covering {𝑇𝑖 → 𝑇}𝑖∈𝐼 of any scheme 𝑇 over 𝑆.

Proof. For 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐} a 𝜏-covering is also a fpqc-covering,
see the results in Topologies, Lemmas 30.4.2, 30.5.2, 30.6.2, 30.7.2, and 30.8.6. Hence it
suffices to prove the theorem for a fpqc covering. Assume that {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 is an
fpqc covering where 𝑓 ∶ 𝑇 → 𝑆 is given. Suppose that we have a family of sections
𝑠𝑖 ∈ Γ(𝑇𝑖, 𝑓∗

𝑖 𝑓∗ℱ) such that 𝑠𝑖|𝑇𝑖×𝑇𝑇𝑗
= 𝑠𝑗|𝑇𝑖×𝑇𝑇𝑗

. We have to find the correspond section
𝑠 ∈ Γ(𝑇, 𝑓∗ℱ). We can reinterpret the 𝑠𝑖 as a family of maps 𝜑𝑖 ∶ 𝑓∗

𝑖 𝒪𝑇 = 𝒪𝑇𝑖
→ 𝑓∗

𝑖 𝑓∗ℱ
compatible with the canonical descent data associated to the quasi-coherent sheaves 𝒪𝑇 and
𝑓∗ℱ on 𝑇. Hence by Proposition 31.4.2 we see that we may (uniquely) descend these to a
map 𝒪𝑇 → 𝑓∗ℱ which gives us our section 𝑠. �

We may in particular make the following definition.

Definition 31.6.2. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Let 𝑆 be a scheme.
Let Sch𝜏 be a big site containing 𝑆. Let ℱ be a quasi-coherent 𝒪𝑆-module.

(1) The structure sheaf of the big site (Sch/𝑆)𝜏 is the sheaf of rings 𝑇/𝑆 ↦ Γ(𝑇, 𝒪𝑇)
which is denoted 𝒪 or 𝒪𝑆.

(2) If 𝜏 = ́𝑒𝑡𝑎𝑙𝑒 the structure sheaf of the small site 𝑆 ́𝑒𝑡𝑎𝑙𝑒 is the sheaf of rings 𝑇/𝑆 ↦
Γ(𝑇, 𝒪𝑇) which is denoted 𝒪 or 𝒪𝑆.

(3) The sheaf of 𝒪-modules associated to ℱ on the big site (Sch/𝑆)𝜏 is the sheaf of
𝒪-modules (𝑓 ∶ 𝑇 → 𝑆) ↦ Γ(𝑇, 𝑓∗ℱ) which is denoted ℱ𝑎 (and often simply ℱ).

(4) Let 𝜏 = ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝜏 = 𝑍𝑎𝑟𝑖𝑠𝑘𝑖). The sheaf of 𝒪-modules associated to ℱ on the
small site 𝑆 ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝑆𝑍𝑎𝑟) is the sheaf of 𝒪-modules (𝑓 ∶ 𝑇 → 𝑆) ↦ Γ(𝑇, 𝑓∗ℱ)
which is denoted ℱ𝑎 (and often simply ℱ).

Note how we use the same notation ℱ𝑎 in each case. No confusion can really arise from
this as by definition the rule that defines the sheaf ℱ𝑎 is independent of the site we choose
to look at.

Remark 31.6.3. In Topologies, Lemma 30.3.11 we have seen that the small Zariski site
of a scheme 𝑆 is equivalent to 𝑆 as a topological space in the sense that the category of
sheaves are naturally equivalent. Now that 𝑆𝑍𝑎𝑟 is also endowed with a structure sheaf 𝒪
we see that sheaves of modules on the ringed site (𝑆𝑍𝑎𝑟, 𝒪) agree with sheaves of modules
on the ringed space (𝑆, 𝒪𝑆).

Remark 31.6.4. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism of schemes. Each of the morphisms of
sites 𝑓𝑠𝑖𝑡𝑒𝑠 listed in Topologies, Section 30.9 becomes a morphism of ringed sites. Namely,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DT
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DU
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03FG
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=070R
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each of these morphisms of sites 𝑓𝑠𝑖𝑡𝑒𝑠 ∶ (Sch/𝑇)𝜏 → (Sch/𝑆)𝜏′, or 𝑓𝑠𝑖𝑡𝑒𝑠 ∶ (Sch/𝑆)𝜏 → 𝑆𝜏′

is given by the continuous functor 𝑆′/𝑆 ↦ 𝑇 ×𝑆 𝑆′/𝑆. Hence, given 𝑆′/𝑆 we let

𝑓♯
𝑠𝑖𝑡𝑒𝑠 ∶ 𝒪(𝑆′/𝑆) ⟶ 𝑓𝑠𝑖𝑡𝑒𝑠,∗𝒪(𝑆′/𝑆) = 𝒪(𝑆 ×𝑆 𝑆′/𝑇)

be the usual map pr♯𝑆′ ∶ 𝒪(𝑆′) → 𝒪(𝑇 ×𝑆 𝑆′). Similarly, the morphism 𝑖𝑓 ∶ Sh(𝑇𝜏) →
Sh((Sch/𝑆)𝜏) for 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒}, see Topologies, Lemmas 30.3.12 and 30.4.12, becomes
a morphism of ringed topoi because 𝑖−1

𝑓 𝒪 = 𝒪. Here are some special cases:
(1) The morphism of big sites 𝑓𝑏𝑖𝑔 ∶ (Sch/𝑋)𝑓𝑝𝑝𝑓 → (Sch/𝑌)𝑓𝑝𝑝𝑓, becomes a mor-

phism of ringed sites

(𝑓𝑏𝑖𝑔, 𝑓♯
𝑏𝑖𝑔) ∶ ((Sch/𝑋)𝑓𝑝𝑝𝑓, 𝒪𝑋) ⟶ ((Sch/𝑌)𝑓𝑝𝑝𝑓, 𝒪𝑌)

as inModules on Sites, Definition 16.6.1. Similarly for the big syntomic, smooth,
étale and Zariski sites.

(2) The morphism of small sites 𝑓𝑠𝑚𝑎𝑙𝑙 ∶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒 → 𝑌 ́𝑒𝑡𝑎𝑙𝑒, becomes a morphism of
ringed sites

(𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯
𝑠𝑚𝑎𝑙𝑙) ∶ (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) ⟶ (𝑌 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑌)

as in Modules on Sites, Definition 16.6.1. Similarly for the small Zariski site.

Let 𝑆 be a scheme. It is clear that given an 𝒪-module on (say) (Sch/𝑆)𝑍𝑎𝑟 the pullback to
(say) (Sch/𝑆)𝑓𝑝𝑝𝑓 is just the fppf-sheafification. To see what happens when comparing big
and small sites we have the following.

Lemma 31.6.5. Let 𝑆 be a scheme. Denote
id𝜏,𝑍𝑎𝑟 ∶ (Sch/𝑆)𝜏 → 𝑆𝑍𝑎𝑟, 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}
id𝜏, ́𝑒𝑡𝑎𝑙𝑒 ∶ (Sch/𝑆)𝜏 → 𝑆 ́𝑒𝑡𝑎𝑙𝑒, 𝜏 ∈ { ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}

id𝑠𝑚𝑎𝑙𝑙, ́𝑒𝑡𝑎𝑙𝑒,𝑍𝑎𝑟 ∶ 𝑆 ́𝑒𝑡𝑎𝑙𝑒, → 𝑆𝑍𝑎𝑟,
the morphisms of ringed sites of Remark 31.6.4.

(1) Let ℱ be a sheaf of 𝒪𝑆-modules which we view a sheaf of 𝒪-modules on 𝑆𝑍𝑎𝑟.
Then (id𝜏,𝑍𝑎𝑟)∗ℱ is the 𝜏-sheafification of the Zariski sheaf

(𝑓 ∶ 𝑇 → 𝑆) ⟼ Γ(𝑇, 𝑓∗ℱ)

on (Sch/𝑆)𝜏.
(2) Let ℱ be a sheaf of 𝒪𝑆-modules which we view a sheaf of 𝒪-modules on 𝑆𝑍𝑎𝑟.

Then (id𝑠𝑚𝑎𝑙𝑙, ́𝑒𝑡𝑎𝑙𝑒,𝑍𝑎𝑟)∗ℱ is the étale sheafification of the Zariski sheaf

(𝑓 ∶ 𝑇 → 𝑆) ⟼ Γ(𝑇, 𝑓∗ℱ)

on 𝑆 ́𝑒𝑡𝑎𝑙𝑒.
(3) Let ℱ be a sheaf of 𝒪-modules on 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Then (id𝜏, ́𝑒𝑡𝑎𝑙𝑒)∗ℱ is the 𝜏-sheafification

of the étale sheaf

(𝑓 ∶ 𝑇 → 𝑆) ⟼ Γ(𝑇, 𝑓∗
𝑠𝑚𝑎𝑙𝑙ℱ)

where 𝑓𝑠𝑚𝑎𝑙𝑙 ∶ 𝑇 ́𝑒𝑡𝑎𝑙𝑒 → 𝑆 ́𝑒𝑡𝑎𝑙𝑒 is the morphism of ringed small étale sites of
Remark 31.6.4.

Proof. Proof of (1). We first note that the result is true when 𝜏 = 𝑍𝑎𝑟 because in that case
we have the morphism of topoi 𝑖𝑓 ∶ Sh(𝑇𝑍𝑎𝑟) → Sh(Sch/𝑆)𝑍𝑎𝑟) such that id𝜏,𝑍𝑎𝑟 ∘ 𝑖𝑓 =
𝑓𝑠𝑚𝑎𝑙𝑙 as morphisms 𝑇𝑍𝑎𝑟 → 𝑆𝑍𝑎𝑟, see Topologies, Lemmas 30.3.12 and 30.3.16. Since
pullback is transitive (see Modules on Sites, Lemma 16.13.3) we see that 𝑖∗

𝑓(id𝜏,𝑍𝑎𝑟)∗ℱ =

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=070S
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𝑓∗
𝑠𝑚𝑎𝑙𝑙ℱ as desired. Hence, by the remark preceding this lemma we see that (id𝜏,𝑍𝑎𝑟)∗ℱ is

the 𝜏-sheafification of the presheaf 𝑇 ↦ Γ(𝑇, 𝑓∗ℱ).

The proof of (3) is exactly the same as the proof of (1), except that it uses Topologies,
Lemmas 30.4.12 and 30.4.16. We omit the proof of (2). �

Remark 31.6.6. Remark 31.6.4 and Lemma 31.6.5 have the following applications:
(1) Let 𝑆 be a scheme. The construction ℱ ↦ ℱ𝑎 is the pullback under the morphism

of ringed sites id𝜏,𝑍𝑎𝑟 ∶ ((Sch/𝑆)𝜏, 𝒪) → (𝑆𝑍𝑎𝑟, 𝒪) or the morphism (𝑆 ́𝑒𝑡𝑎𝑙𝑒, 𝒪) →
(𝑆𝑍𝑎𝑟, 𝒪).

(2) Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. For any of the morphisms 𝑓𝑠𝑖𝑡𝑒𝑠 of
ringed sites of Remark 31.6.4 we have

(𝑓∗ℱ)𝑎 = 𝑓∗
𝑠𝑖𝑡𝑒𝑠ℱ𝑎.

This follows from (1) and the fact that pullbacks are compatible with composi-
tions of morphisms of ringed sites, see Modules on Sites, Lemma 16.13.3.

Lemma 31.6.7. Let 𝑆 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑆-module. Let 𝜏 ∈
{𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}.

(1) The sheaf ℱ𝑎 is a quasi-coherent 𝒪-module on (Sch/𝑆)𝜏, as defined in Modules
on Sites, Definition 16.23.1.

(2) If 𝜏 = ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝜏 = 𝑍𝑎𝑟𝑖𝑠𝑘𝑖), then the sheaf ℱ𝑎 is a quasi-coherent 𝒪-module
on 𝑆 ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝑆𝑍𝑎𝑟) as defined in Modules on Sites, Definition 16.23.1.

Proof. Let {𝑆𝑖 → 𝑆} be a Zariski covering such that we have exact sequences

⨁𝑘∈𝐾𝑖
𝒪𝑆𝑖

⟶ ⨁𝑗∈𝐽𝑖
𝒪𝑆𝑖

⟶ ℱ ⟶ 0

for some index sets 𝐾𝑖 and 𝐽𝑖. This is possible by the definition of a quasi-coherent sheaf
on a ringed space (See Modules, Definition 15.10.1).

Proof of (1). Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. It is clear that ℱ𝑎|(Sch/𝑆𝑖)𝜏
also sits in an exact sequence

⨁𝑘∈𝐾𝑖
𝒪|(Sch/𝑆𝑖)𝜏

⟶ ⨁𝑗∈𝐽𝑖
𝒪|(Sch/𝑆𝑖)𝜏

⟶ ℱ𝑎|(Sch/𝑆𝑖)𝜏
⟶ 0

Hence ℱ𝑎 is quasi-coherent by Modules on Sites, Lemma 16.23.3.

Proof of (2). Let 𝜏 = ́𝑒𝑡𝑎𝑙𝑒. It is clear that ℱ𝑎|(𝑆𝑖) ́𝑒𝑡𝑎𝑙𝑒
also sits in an exact sequence

⨁𝑘∈𝐾𝑖
𝒪|(𝑆𝑖) ́𝑒𝑡𝑎𝑙𝑒

⟶ ⨁𝑗∈𝐽𝑖
𝒪|(𝑆𝑖) ́𝑒𝑡𝑎𝑙𝑒

⟶ ℱ𝑎|(𝑆𝑖) ́𝑒𝑡𝑎𝑙𝑒
⟶ 0

Hence ℱ𝑎 is quasi-coherent by Modules on Sites, Lemma 16.23.3. The case 𝜏 = 𝑍𝑎𝑟𝑖𝑠𝑘𝑖
is similar (actually, it is really tautological since the corresponding ringed topoi agree). �

Lemma 31.6.8. Let 𝑆 be a scheme. Let
(a) 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐} and 𝒞 = (Sch/𝑆)𝜏, or
(b) let 𝜏 = ́𝑒𝑡𝑎𝑙𝑒 and 𝒞 = 𝑆 ́𝑒𝑡𝑎𝑙𝑒, or
(c) let 𝜏 = 𝑍𝑎𝑟𝑖𝑠𝑘𝑖 and 𝒞 = 𝑆𝑍𝑎𝑟.

Let ℱ be an abelian sheaf on 𝒞. Let 𝑈 ∈ 𝑂𝑏(𝒞) be affine. Let {𝑈𝑖 → 𝑈}𝑖=1,…,𝑛 be a
standard affine 𝜏-covering in 𝒞. Then

(1) 𝒱 = {∐𝑖=1,…,𝑛 𝑈𝑖 → 𝑈} is a 𝜏-covering of 𝑈,
(2) 𝒰 is a refinement of 𝒱, and

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03FH
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(3) the induced map on Cech complexes (Cohomology on Sites, Equation (19.9.2.1))
̌𝒞•(𝒱, ℱ) ⟶ ̌𝒞•(𝒰, ℱ)

is an isomorphism of complexes.

Proof. This follows because
(∐𝑖0=1,…,𝑛 𝑈𝑖0) ×𝑈 … ×𝑈 (∐𝑖𝑝=1,…,𝑛 𝑈𝑖𝑝) = ∐𝑖0,…,𝑖𝑝∈{1,…,𝑛} 𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝

and the fact that ℱ(∐𝑎 𝑉𝑎) = ∏𝑎 ℱ(𝑉𝑎) since disjoint unions are 𝜏-coverings. �

Lemma 31.6.9. Let 𝑆 be a scheme. Let ℱ be a quasi-coherent sheaf on 𝑆. Let 𝜏, 𝒞, 𝑈, 𝒰
be as in Lemma 31.6.8. Then there is an isomorphism of complexes

̌𝒞•(𝒰, ℱ𝑎) ≅ 𝑠((𝐴/𝑅)• ⊗𝑅 𝑀)
(see Section 31.3) where 𝑅 = Γ(𝑈, 𝒪𝑈), 𝑀 = Γ(𝑈, ℱ𝑎) and 𝑅 → 𝐴 is a faithfully flat ring
map. In particular

�̌�𝑝(𝒰, ℱ𝑎) = 0
for all 𝑝 ≥ 1.

Proof. By Lemma 31.6.8 we see that ̌𝒞•(𝒰, ℱ𝑎) is isomorphic to ̌𝒞•(𝒱, ℱ𝑎) where 𝒱 =
{𝑉 → 𝑈} with 𝑉 = ∐𝑖=1,…𝑛 𝑈𝑖 affine also. Set 𝐴 = Γ(𝑉, 𝒪𝑉). Since {𝑉 → 𝑈} is a
𝜏-covering we see that 𝑅 → 𝐴 is faithfully flat. On the other hand, by definition of ℱ𝑎 we
have that the degree 𝑝 term ̌𝒞𝑝(𝒱, ℱ𝑎) is

Γ(𝑉 ×𝑈 … ×𝑈 𝑉, ℱ𝑎) = Γ(𝑆𝑝𝑒𝑐(𝐴 ⊗𝑅 … ⊗𝑅 𝐴), ℱ𝑎) = 𝐴 ⊗𝑅 … ⊗𝑅 𝐴 ⊗𝑅 𝑀
We omit the verification that the maps of the chech complex agree with the maps in the
complex 𝑠((𝐴/𝑅)• ⊗𝑅 𝑀). The vanishing of cohomology is Lemma 31.3.6. �

Proposition 31.6.10. Let 𝑆 be a scheme. Let ℱ be a quasi-coherent sheaf on 𝑆. Let 𝜏 ∈
{𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}.

(1) There is a canonical isomorphism
𝐻𝑞(𝑆, ℱ) = 𝐻𝑞((Sch/𝑆)𝜏, ℱ𝑎).

(2) There are canonical isomorphisms
𝐻𝑞(𝑆, ℱ) = 𝐻𝑞(𝑆𝑍𝑎𝑟, ℱ𝑎) = 𝐻𝑞(𝑆 ́𝑒𝑡𝑎𝑙𝑒, ℱ𝑎).

Proof. The result for 𝑞 = 0 is clear from the definition of ℱ𝑎. Let 𝒞 = (Sch/𝑆)𝜏, or
𝒞 = 𝑆 ́𝑒𝑡𝑎𝑙𝑒, or 𝒞 = 𝑆𝑍𝑎𝑟.
We are going to apply Cohomology on Sites, Lemma 19.11.8 with ℱ = ℱ𝑎, ℬ ⊂ 𝑂𝑏(𝒞) the
set of affine schemes in 𝒞, and Cov ⊂ Cov𝒞 the set of standard affine 𝜏-coverings. Assump-
tion (3) of the lemma is satisfied by Lemma 31.6.9. Hence we conclude that 𝐻𝑝(𝑈, ℱ𝑎) = 0
for every affine object 𝑈 of 𝒞.
Next, let 𝑈 ∈ 𝑂𝑏(𝒞) be any separated object. Denote 𝑓 ∶ 𝑈 → 𝑆 the structure morphism.
Let 𝑈 = ⋃ 𝑈𝑖 be an affine open covering. We may also think of this as a 𝜏-covering
𝒰 = {𝑈𝑖 → 𝑈} of 𝑈 in 𝒞. Note that 𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝 = 𝑈𝑖0 ∩ … ∩ 𝑈𝑖𝑝 is affine as we
assumed 𝑈 separated. By Cohomology on Sites, Lemma 19.11.6 and the result above we
see that

𝐻𝑝(𝑈, ℱ𝑎) = �̌�𝑝(𝒰, ℱ𝑎) = 𝐻𝑝(𝑈, 𝑓∗ℱ)
the last equality by Coherent, Lemma 25.2.4. In particular, if 𝑆 is separated we can take
𝑈 = 𝑆 and 𝑓 = id𝑆 and the proposition is proved. We suggest the reader skip the rest of
the proof (or rewrite it to give a clearer exposition).
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Choose an injective resolution ℱ → ℐ• on 𝑆. Choose an injective resolution ℱ𝑎 → 𝒥• on
𝒞. Denote 𝒥𝑛|𝑆 the restriction of 𝒥𝑛 to opens of 𝑆; this is a sheaf on the topological space
𝑆 as open coverings are 𝜏-coverings. We get a complex

0 → ℱ → 𝒥0|𝑆 → 𝒥1|𝑆 → …

which is exact since its sections over any affine open 𝑈 ⊂ 𝑆 is exact (by the vanshing of
𝐻𝑝(𝑈, ℱ𝑎), 𝑝 > 0 seen above). Hence by Derived Categories, Lemma 11.17.6 there exists
map of complexes 𝒥•|𝑆 → ℐ• which in particular induces a map

𝑅Γ(𝒞, ℱ𝑎) = Γ(𝑆, 𝒥•) ⟶ Γ(𝑆, ℐ•) = 𝑅Γ(𝑆, ℱ).

Taking cohomology gives the map 𝐻𝑛(𝒞, ℱ𝑎) → 𝐻𝑛(𝑆, ℱ) which we have to prove is an
isomorphism. Let 𝒰 ∶ 𝑆 = ⋃ 𝑈𝑖 be an affine open covering which we may think of as a
𝜏-covering also. By the above we get a map of double complexes

̌𝒞•(𝒰, 𝒥) = ̌𝒞•(𝒰, 𝒥|𝑆) ⟶ ̌𝒞•(𝒰, ℐ).

This map induces a map of spectral sequences
𝜏𝐸𝑝,𝑞

2 = �̌�𝑝(𝒰, 𝐻𝑞(ℱ𝑎)) ⟶ 𝐸𝑝,𝑞
2 = �̌�𝑝(𝒰, 𝐻𝑞(ℱ))

The first spectral sequence converges to 𝐻𝑝+𝑞(𝒞, ℱ) and the second to 𝐻𝑝+𝑞(𝑆, ℱ). On
the other hand, we have seen that the induced maps 𝜏𝐸𝑝,𝑞

2 → 𝐸𝑝,𝑞
2 are bijections (as all the

intersections are separated being opens in affines). Whence also the maps 𝐻𝑛(𝒞, ℱ𝑎) →
𝐻𝑛(𝑆, ℱ) are isomorphisms, and we win. �

Proposition 31.6.11. Let𝑆 be a scheme. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}.
(1) The functor ℱ ↦ ℱ𝑎 defines an equivalence of categories

QCoh(𝒪𝑆) ⟶ QCoh((Sch/𝑆)𝜏, 𝒪)

between the category of quasi-coherent sheaves on 𝑆 and the category of quasi-
coherent 𝒪-modules on the big 𝜏 site of 𝑆.

(2) Let 𝜏 = ́𝑒𝑡𝑎𝑙𝑒, or 𝜏 = 𝑍𝑎𝑟𝑖𝑠𝑘𝑖. The functor ℱ ↦ ℱ𝑎 defines an equivalence of
categories

QCoh(𝒪𝑆) ⟶ QCoh(𝑆𝜏, 𝒪)
between the category of quasi-coherent sheaves on 𝑆 and the category of quasi-
coherent 𝒪-modules on the small 𝜏 site of 𝑆.

Proof. We have seen in Lemma 31.6.7 that the functor is well defined. It is straightforward
to show that the functor is fully faithful (we omit the verification). To finish the proof we
will show that a quasi-cohernet 𝒪-module on (Sch/𝑆)𝜏 gives rise to a descent datum for
quasi-coherent sheaves relative to a 𝜏-covering of 𝑆. Having produced this descent datum
we will appeal to Proposition 31.4.2 to get the corresponding quasi-coherent sheaf on 𝑆.

Let 𝒢 be a quasi-coherent 𝒪-modules on the big 𝜏 site of 𝑆. By Modules on Sites, Defini-
tion 16.23.1 there exists a 𝜏-covering {𝑆𝑖 → 𝑆}𝑖∈𝐼 of 𝑆 such that each of the restrictions
𝒢|(Sch/𝑆𝑖)𝜏

has a global presentation

⨁𝑘∈𝐾𝑖
𝒪|(Sch/𝑆𝑖)𝜏

⟶ ⨁𝑗∈𝐽𝑖
𝒪|(Sch/𝑆𝑖)𝜏

⟶ 𝒢|(Sch/𝑆𝑖)𝜏
⟶ 0

for some index sets 𝐽𝑖 and 𝐾𝑖. We claim that this implies that 𝒢|(Sch/𝑆𝑖)𝜏
is ℱ𝑎

𝑖 for some
quasi-coherent sheaf ℱ𝑖 on 𝑆𝑖. Namely, this is clear for the direct sums ⨁𝑘∈𝐾𝑖

𝒪|(Sch/𝑆𝑖)𝜏
and ⨁𝑗∈𝐽𝑖

𝒪|(Sch/𝑆𝑖)𝜏
. Hence we see that 𝒢|(Sch/𝑆𝑖)𝜏

is a cokernel of a map 𝜑 ∶ 𝒦𝑎
𝑖 → ℒ𝑎

𝑖
for some quasi-coherent sheaves 𝒦𝑖, ℒ𝑖 on 𝑆𝑖. By the fully faithfulness of ( )𝑎 we see that

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03DX
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𝜑 = 𝜙𝑎 for some map of quasi-coherent sheaves 𝜙 ∶ 𝒦𝑖 → ℒ𝑖 on 𝑆𝑖. Then it is clear that
𝒢|(Sch/𝑆𝑖)𝜏

≅ Coker(𝜙)𝑎 as claimed.

Since 𝒢 lives on all of the category (Sch/𝑆𝑖)𝜏 we see that

(pr∗0ℱ𝑖)𝑎 ≅ 𝒢|(Sch/(𝑆𝑖×𝑆𝑆𝑗))𝜏
≅ (pr∗1ℱ)𝑎

as 𝒪-modules on (Sch/(𝑆𝑖 ×𝑆 𝑆𝑗))𝜏. Hence, using fully faithfulness again we get canonical
isomorphisms

𝜙𝑖𝑗 ∶ pr∗0ℱ𝑖 ⟶ pr∗1ℱ𝑗
of quasi-coherent modules over 𝑆𝑖 ×𝑆 𝑆𝑗. We omit the verification that these satisfy the
cocycle condition. Since they do we see by effectivity of descent for quasi-coherent sheaves
and the covering {𝑆𝑖 → 𝑆} (Proposition 31.4.2) that there exists a quasi-coherent sheaf ℱ
on 𝑆 with ℱ|𝑆𝑖

≅ ℱ𝑖 compatible with the given descent data. In other words we are given
𝒪-module isomorphisms

𝜙𝑖 ∶ ℱ𝑎|(Sch/𝑆𝑖)𝜏
⟶ 𝒢|(Sch/𝑆𝑖)𝜏

which agree over 𝑆𝑖 ×𝑆 𝑆𝑗. Hence, since ℋ𝑜𝑚𝒪(ℱ𝑎, 𝒢) is a sheaf (Modules on Sites, Lemma
16.25.1), we conclude that there is a morphism of 𝒪-modules ℱ𝑎 → 𝒢 recovering the
isomorphisms 𝜙𝑖 above. Hence this is an isomorphism and we win.

The case of the sites 𝑆 ́𝑒𝑡𝑎𝑙𝑒 and 𝑆𝑍𝑎𝑟 is proved in the exact same manner. �

Lemma 31.6.12. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}.
Let 𝒫 be one of the properties of modules3 defined in Modules on Sites, Definitions 16.17.1,
16.23.1, and 16.26.1. The equivalences of categories

QCoh(𝒪𝑆) ⟶ QCoh((Sch/𝑆)𝜏, 𝒪) and QCoh(𝒪𝑆) ⟶ QCoh(𝑆𝜏, 𝒪)

defined by the rule ℱ ↦ ℱ𝑎 seen in Proposition 31.6.11 have the property

ℱ has 𝒫 ⇔ ℱ𝑎 has 𝒫 as an 𝒪-module

except (possibly) when 𝒫 is ``locally free'' or ``coherent''. If 𝒫 =``coherent'' the equiva-
lence holds for QCoh(𝒪𝑆) → QCoh(𝑆𝜏, 𝒪) when 𝑆 is locally Noetherian and 𝜏 is Zariski
or étale.

Proof. This is immediate for the global properties, i.e., those defined in Modules on Sites,
Definition 16.17.1. For the local properties we can use Modules on Sites, Lemma 16.23.3
to translate ``ℱ𝑎 has 𝒫'' into a property on the members of a covering of 𝑋. Hence the
result follows from Lemmas 31.5.1, 31.5.2, 31.5.3, and 31.5.4. Being coherent for a quasi-
coherent module is the same as being of finite type over a locally Noetherian scheme (see
Coherent, Lemma 25.11.1) hence this reduces to the case of finite type modules (details
omitted). �

Lemma 31.6.13. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}.
The functors

QCoh(𝒪𝑆) ⟶ Mod((Sch/𝑆)𝜏, 𝒪) and QCoh(𝒪𝑆) ⟶ Mod(𝑆𝜏, 𝒪)

defined by the rule ℱ ↦ ℱ𝑎 seen in Proposition 31.6.11 are
(1) fully faithful,
(2) compatible with direct sums,

3The list is: free, finite free, generated by global sections, generated by finitely many global sections, having
a global presentation, having a global finite presentation, locally free, finite locally free, locally generated by
sections, finite type, of finite presentation, coherent, or flat.
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(3) compatible with colimits,
(4) right exact,
(5) exact as a functor QCoh(𝒪𝑆) → Mod(𝑆𝜏, 𝒪),
(6) not exact as a functor QCoh(𝒪𝑆) → Mod((Sch/𝑆)𝜏, 𝒪) in general,
(7) given two quasi-coherent 𝒪𝑆-modules ℱ, 𝒢 we have (ℱ ⊗𝒪𝑆

𝒢)𝑎 = ℱ𝑎 ⊗𝒪 𝒢𝑎,
(8) given two quasi-coherent 𝒪𝑆-modules ℱ, 𝒢 such that ℱ is of finite presentation

we have (ℋ𝑜𝑚𝒪𝑆
(ℱ, 𝒢))𝑎 = ℋ𝑜𝑚𝒪(ℱ𝑎, 𝒢𝑎), and

(9) given a short exact sequence 0 → ℱ𝑎
1 → ℰ → ℱ𝑎

2 → 0 of 𝒪-modules then ℰ is
quasi-coherent4, i.e., ℰ is in the essential image of the functor.

Proof. Part (1) we saw in Proposition 31.6.11.

We have seen in Schemes, Section 21.24 that a colimit of quasi-coherent sheaves on a
scheme is a quasi-coherent sheaf. Moreover, in Remark 31.6.6 we saw that ℱ ↦ ℱ𝑎 is
the pullback functor for a morphism of ringed sites, hence commutes with all colimits, see
Modules on Sites, Lemma 16.14.3. Thus (3) and its special case (3) hold.

This also shows that the functor is right exact (i.e., commutes with finite colimits), hence
(4).

The functor QCoh(𝒪𝑆) → QCoh(𝑆 ́𝑒𝑡𝑎𝑙𝑒, 𝒪), ℱ ↦ ℱ𝑎 is left exact because an étale mor-
phism is flat, see Morphisms, Lemma 24.35.12. This proves (5).

To see (6), suppose that 𝑆 = 𝑆𝑝𝑒𝑐(𝐙). Then 2 ∶ 𝒪𝑆 → 𝒪𝑆 is injective but the associated
map of 𝒪-modules on (Sch/𝑆)𝜏 isn't injective because 2 ∶ 𝐅2 → 𝐅2 isn't injective and
𝑆𝑝𝑒𝑐(𝐅2) is an object of (Sch/𝑆)𝜏.

We omit the proofs of (7) and (8).

Let 0 → ℱ𝑎
1 → ℰ → ℱ𝑎

2 → 0 be a short exact sequence of 𝒪-modules with ℱ1 and ℱ2
quasi-coherent on 𝑆. Consider the restriction

0 → ℱ1 → ℰ|𝑆𝑍𝑎𝑟
→ ℱ2

to 𝑆𝑍𝑎𝑟. By Proposition 31.6.10 we see that on any affine 𝑈 ⊂ 𝑆 we have 𝐻1(𝑈, ℱ𝑎
1) =

𝐻1(𝑈, ℱ1) = 0. Hence the sequence above is also exact on the right. By Schemes, Section
21.24 we conclude that ℱ = ℰ|𝑆𝑍𝑎𝑟

is quasi-coherent. Thus we obtain a commutative
diagram

ℱ𝑎
1

//

��

ℱ𝑎 //

��

ℱ𝑎
2

//

��

0

0 // ℱ𝑎
1

// ℰ // ℱ𝑎
2

// 0

To finish the proof it suffices to show that the top row is also right exact. To do this,
denote once more 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑆 an affine open of 𝑆. We have seen above that 0 →
ℱ1(𝑈) → ℰ(𝑈) → ℱ2(𝑈) → 0 is exact. For any affine scheme 𝑉/𝑈, 𝑉 = 𝑆𝑝𝑒𝑐(𝐵) the map
ℱ𝑎

1(𝑉) → ℰ(𝑉) is injective. We have ℱ𝑎
1(𝑉) = ℱ1(𝑈) ⊗𝐴 𝐵 by definition. The injection

ℱ𝑎
1(𝑉) → ℰ(𝑉) factors as

ℱ1(𝑈) ⊗𝐴 𝐵 → ℰ(𝑈) ⊗𝐴 𝐵 → ℰ(𝑈)

4Warning: This is misleading. See part (6).
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Considering 𝐴-algebras 𝐵 of the form 𝐵 = 𝐴⊕𝑀 we see that ℱ1(𝑈) → ℰ(𝑈) is universally
injective (see Algebra, Definition 7.76.1). Since ℰ(𝑈) = ℱ(𝑈) we conclude that ℱ1 → ℱ
remains injective after any base change, or equivalently that ℱ𝑎

1 → ℱ𝑎 is injective. �

Proposition 31.6.14. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism of schemes.
(1) The equivalences of categories of Proposition 31.6.11 are compatible with pull-

back. More precisely, we have 𝑓∗(𝒢𝑎) = (𝑓∗𝒢)𝑎 for any quasi-coherent sheaf 𝒢
on 𝑆.

(2) The equivalences of categories of Proposition 31.6.11 part (1) are not compatible
with pushforward in general.

(3) If 𝑓 is quasi-compact and quasi-separated, and 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒} then 𝑓∗ and
𝑓𝑠𝑚𝑎𝑙𝑙,∗ preserve quasi-coherent sheaves and the diagram

QCoh(𝒪𝑇)
𝑓∗

//

ℱ↦ℱ𝑎

��

QCoh(𝒪𝑆)

𝒢↦𝒢𝑎

��
QCoh(𝑇𝜏, 𝒪)

𝑓𝑠𝑚𝑎𝑙𝑙,∗ // QCoh(𝑆𝜏, 𝒪)

is commutative, i.e., 𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ𝑎) = (𝑓∗ℱ)𝑎.

Proof. Part (1) follows from the discussion in Remark 31.6.6. Part (2) is just a warning,
and can be explained in the following way: First the statement cannot be made precise since
𝑓∗ does not transform quasi-coherent sheaves into quasi-coherent sheaves in general. Even
if this is the case for 𝑓 (and any base change of 𝑓), then the compatibility over the big sites
would mean that formation of 𝑓∗ℱ commutes with any base change, which does not hold
in general. An explicit example is the quasi-compact open immersion 𝑗 ∶ 𝑋 = 𝐀2

𝑘 ⧵ {0} →
𝐀2

𝑘 = 𝑌 where 𝑘 is a field. We have 𝑗∗𝒪𝑋 = 𝒪𝑌 but after base change to 𝑆𝑝𝑒𝑐(𝑘) by the 0
map we see that the pushfoward is zero.

Let us prove (3) in case 𝜏 = ́𝑒𝑡𝑎𝑙𝑒. Note that 𝑓, and any base change of 𝑓, transforms
quasi-coherent sheaves into quasi-coherent sheaves, see Schemes, Lemma 21.24.1. The
equality 𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ𝑎) = (𝑓∗ℱ)𝑎 means that for any étale morphism 𝑔 ∶ 𝑈 → 𝑆 we have
Γ(𝑈, 𝑔∗𝑓∗ℱ) = Γ(𝑈 ×𝑆 𝑇, (𝑔′)∗ℱ) where 𝑔′ ∶ 𝑈 ×𝑆 𝑇 → 𝑇 is the projection. This is true by
Coherent, Lemma 25.6.2. �

Lemma 31.6.15. Let 𝑓 ∶ 𝑇 → 𝑆 be a quasi-compact and quasi-separated morphism of
schemes. Let ℱ be a quasi-coherent sheaf on 𝑇. For either the étale or Zariski topology,
there are canonical isomorphisms 𝑅𝑖𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ𝑎) = (𝑅𝑖𝑓∗ℱ)𝑎.

Proof. We prove this for the étale topology; we omit the proof in the case of the Zariski
topology. By Coherent, Lemma 25.5.3 the sheaves 𝑅𝑖𝑓∗ℱ are quasi-coherent so that the
assertion makes sense. The sheaf 𝑅𝑖𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ𝑎 is the sheaf associated to the presheaf

𝑈 ⟼ 𝐻𝑖(𝑈 ×𝑆 𝑇, ℱ𝑎)

where 𝑔 ∶ 𝑈 → 𝑆 is an object of 𝑆 ́𝑒𝑡𝑎𝑙𝑒, see Cohomology on Sites, Lemma 19.8.4. By
our conventions the right hand side is the étale cohomology of the restriction of ℱ𝑎 to the
localization 𝑇 ́𝑒𝑡𝑎𝑙𝑒/𝑈×𝑆 𝑇 which equals (𝑈×𝑆 𝑇) ́𝑒𝑡𝑎𝑙𝑒. By Proposition 31.6.10 this is presheaf
the same as the presheaf

𝑈 ⟼ 𝐻𝑖(𝑈 ×𝑆 𝑇, (𝑔′)∗ℱ),
where 𝑔′ ∶ 𝑈×𝑆𝑇 → 𝑇 is the projection. If𝑈 is affine then this is the same as𝐻0(𝑈, 𝑅𝑖𝑓′

∗(𝑔′)∗ℱ),
see Coherent, Lemma 25.5.4. By Coherent, Lemma 25.6.2 this is equal to 𝐻0(𝑈, 𝑔∗𝑅𝑖𝑓∗ℱ)
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which is the value of (𝑅𝑖𝑓∗ℱ)𝑎 on𝑈. Thus the values of the sheaves ofmodules𝑅𝑖𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ𝑎)
and (𝑅𝑖𝑓∗ℱ)𝑎 on every affine object of 𝑆 ́𝑒𝑡𝑎𝑙𝑒 are canonically isomorphic which implies they
are canonically isomorphic. �

The results in this section say there is virtually no difference between quasi-coherent sheaves
on 𝑆 and quasi-coherent sheaves on any of the sites associated to 𝑆 in the chapter on topolo-
gies. Hence one often sees statements on quasi-coherent sheaves formulated in either lan-
guage, without restatements in the other.

31.7. Parasitic modules

Parasitic modules are those which are zero when restricted to schemes flat over the base
scheme. Here is the formal definition.

Definition 31.7.1. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let
ℱ be a presheaf of 𝒪-modules on (Sch/𝑆)𝜏.

(1) ℱ is called parasitic5 if for every flat morphism 𝑈 → 𝑆 we have ℱ(𝑈) = 0.
(2) ℱ is called parasitic for the 𝜏-topology if for every 𝜏-covering {𝑈𝑖 → 𝑆}𝑖∈𝐼 we

have ℱ(𝑈𝑖) = 0 for all 𝑖.

If 𝜏 = 𝑓𝑝𝑝𝑓 this means that ℱ|𝑈𝑍𝑎𝑟
= 0 whenever 𝑈 → 𝑆 is flat and locally of finite

presentation; similar for the other cases.

Lemma 31.7.2. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let 𝒢
be a presheaf of 𝒪-modules on (Sch/𝑆)𝜏.

(1) If𝒢 is parasitic for the 𝜏-topology, then𝐻𝑝
𝜏(𝑈, 𝒢) = 0 for every𝑈 open in𝑆, resp.

étale over 𝑆, resp. smooth over 𝑆, resp. syntomic over 𝑆, resp. flat and locally of
finite presentation over 𝑆.

(2) If 𝒢 is parasitic then 𝐻𝑝
𝜏(𝑈, 𝒢) = 0 for every 𝑈 flat over 𝑆.

Proof. Proof in case 𝜏 = 𝑓𝑝𝑝𝑓; the other cases are proved in the exact same way. The
assumption means that 𝒢(𝑈) = 0 for any 𝑈 → 𝑆 flat and locally of finite presentation.
Apply Cohomology on Sites, Lemma 19.11.8 to the subset ℬ ⊂ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) consisting
of 𝑈 → 𝑆 flat and locally of finite presentation and the collection Cov of all fppf coverings
of elements of ℬ. �

Lemma 31.7.3. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism of schemes. For any parasitic 𝒪-module on
(Sch/𝑇)𝜏 the pushforward 𝑓∗ℱ and the higher direct images 𝑅𝑖𝑓∗ℱ are parasitic 𝒪-modules
on (Sch/𝑆)𝜏.

Proof. Recall that 𝑅𝑖𝑓∗ℱ is the sheaf associated to the presheaf
𝑈 ↦ 𝐻𝑖((Sch/𝑈 ×𝑆 𝑇)𝜏, ℱ)

see Cohomology on Sites, Lemma 19.8.4. If 𝑈 → 𝑆 is flat, then 𝑈 ×𝑆 𝑇 → 𝑇 is flat as
a base change. Hence the displayed group is zero by Lemma 31.7.2. If {𝑈𝑖 → 𝑈} is a
𝜏-covering then 𝑈𝑖 ×𝑆 𝑇 → 𝑇 is also flat. Hence it is clear that the sheafification of the
displayed presheaf is zero on schemes 𝑈 flat over 𝑆. �

Lemma 31.7.4. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒}. Let 𝒢 be a sheaf of 𝒪-modules
on (Sch/𝑆)𝑓𝑝𝑝𝑓 such that

(1) 𝒢|𝑆𝜏
is quasi-coherent, and

5This may be nonstandard notation.
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(2) for every flat, locally finitely presented morphism 𝑔 ∶ 𝑈 → 𝑆 the canonical map
𝑔∗

𝜏,𝑠𝑚𝑎𝑙𝑙(𝒢|𝑆𝜏
) → 𝒢|𝑈𝜏

is an isomorphism.
Then 𝐻𝑝(𝑈, 𝒢) = 𝐻𝑝(𝑈, 𝒢|𝑈𝜏

) for every 𝑈 flat and locally of finite presentation over 𝑆.

Proof. Let ℱ be the pullback of 𝒢|𝑆𝜏
to the big fppf site (Sch/𝑆)𝑓𝑝𝑝𝑓. Note that ℱ is quasi-

coherent. There is a canonical comparison map 𝜑 ∶ ℱ → 𝒢 which by assumptions (1)
and (2) induces an isomorphism ℱ|𝑈𝜏

→ 𝒢|𝑈𝜏
for all 𝑔 ∶ 𝑈 → 𝑆 flat and locally of finite

presentation. Hence in the short exact sequences

0 → Ker(𝜑) → ℱ → Im(𝜑) → 0

and
0 → Im(𝜑) → 𝒢 → Coker(𝜑) → 0

the sheaves Ker(𝜑) and Coker(𝜑) are parasitic for the fppf topology. By Lemma 31.7.2 we
conclude that 𝐻𝑝(𝑈, ℱ) → 𝐻𝑝(𝑈, 𝒢) is an isomorphism for 𝑔 ∶ 𝑈 → 𝑆 flat and locally of
finite presentation. Since the result holds for ℱ by Proposition 31.6.10 we win. �

31.8. Derived category of quasi-coherent modules

Let 𝑆 be a scheme. Often the phrase ``the derived category of quasi-coherent modules on
𝑆'' refers to the category 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆) and not the derived category 𝐷(QCoh(𝒪𝑆)). It turns
out that 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆) is often easier to work with.

In this section we show that 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆) can be defined in terms of the small étale site of 𝑆.
Namely, denote 𝒪𝑠𝑚𝑎𝑙𝑙 the structure sheaf on 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Recall that QCoh(𝒪𝑆) is also a Serre
subcategory of Mod(𝒪 ́𝑒𝑡𝑎𝑙𝑒), see Lemma 31.6.13. Hence we can let 𝐷𝑄𝐶𝑜ℎ(𝒪 ́𝑒𝑡𝑎𝑙𝑒) be the
trangulated subcategory of 𝐷(𝒪 ́𝑒𝑡𝑎𝑙𝑒) whose objects are the complexes with quasi-coherent
cohomology sheaves, see Derived Categories, Section 11.12.

Lemma 31.8.1. Let 𝑆 be a scheme. There is a canonical equivalence 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆) =
𝐷𝑄𝐶𝑜ℎ(𝒪 ́𝑒𝑡𝑎𝑙𝑒).

Proof. Consider the morphism of ringed sites 𝜖 ∶ 𝑆 ́𝑒𝑡𝑎𝑙𝑒 → 𝑆𝑍𝑎𝑟, see Remark 31.6.4. This
is the morphism id𝑠𝑚𝑎𝑙𝑙, ́𝑒𝑡𝑎𝑙𝑒,𝑍𝑎𝑟 of Lemma 31.6.5. Since every etale morphism 𝑇 → 𝑆
is flat (Morphisms, Lemma 24.35.12) the description of 𝜖∗ = id∗

𝑠𝑚𝑎𝑙𝑙, ́𝑒𝑡𝑎𝑙𝑒,𝑍𝑎𝑟 in Lemma
31.6.5 shows that 𝜖∗ is an exact functor. Hence it induces 𝜖∗ ∶ 𝐷(𝒪𝑆) → 𝐷(𝒪𝑠𝑚𝑎𝑙𝑙). By
the material in Section 31.6 given a quasi-coherent sheaf ℱ on 𝑆 the sheaf ℱ𝑎 = 𝜖∗ℱ is the
corresonding quasi-coherent module on 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Thus 𝜖∗ induces

𝜖∗ ∶ 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆) → 𝐷𝑄𝐶𝑜ℎ(𝒪𝑠𝑚𝑎𝑙𝑙)

We are going to construct a quasi-inverse functor.

Let ℱ• be an object of 𝐷QCoh(𝒪𝑠𝑚𝑎𝑙𝑙) and denote ℋ𝑖 = 𝐻𝑖(ℱ•) its 𝑖th cohomology sheaf.
Let ℬ be the set of affine objects of 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Then 𝐻𝑝(𝑈, ℋ𝑖) = 0 for all 𝑝 > 0, all 𝑖 ∈
𝐙, and all 𝑈 ∈ ℬ, see Proposition 31.6.10 and Coherent, Lemma 25.2.2. According to
Cohomology on Sites, Section 19.20 this implies there exists a quasi-isomorphism ℱ• →
ℐ• where ℐ• is a K-injective complex, ℐ• = 𝑙𝑖𝑚 ℐ•

𝑛, each ℐ•
𝑛 is a bounded below complex

of injectives, themaps in the system… → ℐ•
2 → ℐ•

1 are termwise split surjections, and each
ℐ•

𝑛 is quasi-isomorphic to 𝜏≥−𝑛ℱ•. In particular, we conclude that 𝑅𝜖∗ is defined at each
object of 𝐷QCoh(𝒪𝑠𝑚𝑎𝑙𝑙), see Derived Categories, Lemma 11.28.4, with values 𝑅𝜖∗ℱ• =
𝜖∗ℐ•. This defines an exact functor of triangulated categories

𝑅𝜖∗ ∶ 𝐷QCoh(𝒪𝑠𝑚𝑎𝑙𝑙) ⟶ 𝐷(𝒪𝑆)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=071Q


31.9. FPQC COVERINGS ARE UNIVERSAL EFFECTIVE EPIMORPHISMS 1667

see Derived Categories, Proposition 11.14.8. Let 𝑉 be an affine object of 𝑆 ́𝑒𝑡𝑎𝑙𝑒. In the
proof of Cohomology on Sites, Lemma 19.20.1 we have seen that 𝐻𝑚(ℐ•(𝑉)) is the limit
of the cohomology groups 𝐻𝑚(ℐ•

𝑛(𝑉)). For 𝑛 > −𝑚 these groups are equal to ℋ𝑚(𝑉) by the
vanishing of higer cohomology and the spectral sequence of Derived Categories, Lemma
11.20.3. If we apply this to all 𝑉 = 𝑈 ⊂ 𝑆 affine open, then we conclude that the 𝑚th
cohomology sheaf of 𝜖∗ℐ• is 𝜖∗ℋ𝑚. This implies that 𝑅𝜖∗ℱ• = 𝜖∗ℐ• is an object of
𝐷𝑄𝐶𝑜ℎ(𝒪𝑆) and we get our functor

𝑅𝜖∗ ∶ 𝐷𝑄𝐶𝑜ℎ(𝒪𝑠𝑚𝑎𝑙𝑙) ⟶ 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆)

in the other direction! Since also for arbitrary 𝑉 we have ℋ𝑚(𝑉) = (𝜖∗𝜖∗ℋ𝑚)(𝑉) as ℋ𝑚 is
quasi-coherent, we conclude the canonical map of complexes

𝜖∗𝜖∗ℐ• ⟶ ℐ•

is a quasi-isomorphism. This implies that the composition

𝐷𝑄𝐶𝑜ℎ(𝒪𝑠𝑚𝑎𝑙𝑙) ⟶ 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆) ⟶ 𝐷𝑄𝐶𝑜ℎ(𝒪𝑠𝑚𝑎𝑙𝑙)

is isomorphic to the identity functor. Finally, we claim that

𝐷𝑄𝐶𝑜ℎ(𝒪𝑆) ⟶ 𝐷𝑄𝐶𝑜ℎ(𝒪𝑠𝑚𝑎𝑙𝑙) ⟶ 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆)

is isomorphic to the identity as well. Namely, for 𝒢• an object of 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆) we choose a
map 𝜖∗𝒢• → ℐ• into a K-injective complex as above and consider the map

𝒢• → 𝜖∗𝜖∗𝒢• → 𝜖∗ℐ•

This is a quasi-isomorphism as we've just seen above that the cohomology sheaves of
𝜖∗𝜖∗ℐ• are exactly the quasi-coherent cohomology sheaves of the complex 𝒢• we started
out with. �

31.9. Fpqc coverings are universal effective epimorphisms

We apply the material above to prove an interesting result, namely Lemma 31.9.3. By
Sites, Section 9.12 this lemma implies that the representable presheaves on any of the sites
(Sch/𝑆)𝜏 are sheaves for 𝜏 ∈ {𝑍𝑎𝑟𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. First we prove a
helper lemma.

Lemma 31.9.1. For a scheme 𝑋 denote |𝑋| the underlying set. Let 𝑓 ∶ 𝑋 → 𝑆 be a
morphism of schemes. Then

|𝑋 ×𝑆 𝑋| → |𝑋| ×|𝑆| |𝑋|

is surjective.

Proof. Follows immediately from the description of points on the fibre product in Schemes,
Lemma 21.17.5. �

Lemma 31.9.2. Let {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 be a fpqc covering. Suppose that for each 𝑖 we have
an open subset 𝑊𝑖 ⊂ 𝑇𝑖 such that for all 𝑖, 𝑗 ∈ 𝐼 we have pr−1

0 (𝑊𝑖) = pr−1
1 (𝑊𝑗) as open

subsets of 𝑇𝑖 ×𝑇 𝑇𝑗. Then there exists a unique open subset 𝑊 ⊂ 𝑇 such that 𝑊𝑖 = 𝑓−1
𝑖 (𝑊)

for each 𝑖.

Proof. Apply Lemma 31.9.1 to the map ∐𝑖∈𝐼 𝑇𝑖 → 𝑇. It implies there exists a subset
𝑊 ⊂ 𝑇 such that 𝑊𝑖 = 𝑓−1

𝑖 (𝑊) for each 𝑖, namely 𝑊 = ⋃ 𝑓𝑖(𝑊𝑖). To see that 𝑊 is
open we may work Zariski locally on 𝑇. Hence we may assume that 𝑇 is affine. Using the
definition of a fpqc covering, this reduces us to the case where {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇} is a standard
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fpqc covering. In this case we may apply Morphisms, Lemma 24.24.10 to the morphism
∐ 𝑇𝑖 → 𝑇 to conclude that 𝑊 is open. �

Lemma 31.9.3. Let {𝑇𝑖 → 𝑇} be an fpqc covering, see Topologies, Definition 30.8.1.
Then {𝑇𝑖 → 𝑇} is a universal effective epimorphism in the category of schemes, see Sites,
Definition 9.12.1. In other words, every representable functor on the category of schemes
satisfies the sheaf condition for the fpqc topology, see Topologies, Definition 30.8.12.

Proof. Let 𝑆 be a scheme. We have to show the following: Given morphisms 𝜑𝑖 ∶ 𝑇𝑖 → 𝑆
such that 𝜑𝑖|𝑇𝑖×𝑇𝑇𝑗

= 𝜑𝑗|𝑇𝑖×𝑇𝑇𝑗
there exists a unique morphism 𝑇 → 𝑆 which restricts to 𝜑𝑖

on each 𝑇𝑖. In other words, we have to show that the functor ℎ𝑆 = 𝑀𝑜𝑟Sch(−, 𝑆) satisfies
the sheaf property for the fpqc topology.

Thus Topologies, Lemma 30.8.13 reduces us to the case of a Zariski covering and a covering
{𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝑅)} with 𝑅 → 𝐴 faithfully flat. The case of a Zariski covering follows
from Schemes, Lemma 21.14.1.

Suppose that 𝑅 → 𝐴 is a faithfully flat ring map. Denote 𝜋 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝑅) the
corresponding morphism of schemes. It is surjective and flat. Let 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑆 be a
morphism such that 𝑓 ∘ pr1 = 𝑓 ∘ pr2 as maps 𝑆𝑝𝑒𝑐(𝐴 ⊗𝑅 𝐴) → 𝑆. By Lemma 31.9.1 we
see that as a map on the underlying sets 𝑓 is of the form 𝑓 = 𝑔 ∘ 𝜋 for some (set theoretic)
map 𝑔 ∶ 𝑆𝑝𝑒𝑐(𝑅) → 𝑆. By Morphisms, Lemma 24.24.10 and the fact that 𝑓 is continuous
we see that 𝑔 is continuous.

Pick 𝑥 ∈ 𝑆𝑝𝑒𝑐(𝑅). Choose 𝑈 ⊂ 𝑆 affine open containing 𝑔(𝑥). Say 𝑈 = 𝑆𝑝𝑒𝑐(𝐵). By
the above we may choose an 𝑟 ∈ 𝑅 such that 𝑥 ∈ 𝐷(𝑟) ⊂ 𝑔−1(𝑈). The restriction of
𝑓 to 𝜋−1(𝐷(𝑟)) into 𝑈 corresponds to a ring map 𝐵 → 𝐴𝑟. The two induced ring maps
𝐵 → 𝐴𝑟 ⊗𝑅𝑟

𝐴𝑟 = (𝐴 ⊗𝑅 𝐴)𝑟 are equal by assumption on 𝑓. Note that 𝑅𝑟 → 𝐴𝑟 is
faithfully flat. By Lemma 31.3.6 the equalizer of the two arrows 𝐴𝑟 → 𝐴𝑟 ⊗𝑅𝑟

𝐴𝑟 is 𝑅𝑟.
We conclude that 𝐵 → 𝐴𝑟 factors uniquely through a map 𝐵 → 𝑅𝑟. This map in turn gives
a morphism of schemes 𝐷(𝑟) → 𝑈 → 𝑆, see Schemes, Lemma 21.6.4.

What have we proved sofar? We have shown that for any prime 𝔭 ⊂ 𝑅, there exists a
standard affine open 𝐷(𝑟) ⊂ 𝑆𝑝𝑒𝑐(𝑅) such that the morphism 𝑓|𝜋−1(𝐷(𝑟)) ∶ 𝜋−1(𝐷(𝑟)) → 𝑆
factors uniquely though some morphism of schemes 𝐷(𝑟) → 𝑆. We omit the verification
that these morphisms glue to the desired morphism 𝑆𝑝𝑒𝑐(𝑅) → 𝑆. �

31.10. Descent of finiteness properties of morphisms

Another application of flat descent for modules is the following amusing and useful result.
There is an algebraic version and a scheme theoretic version. (The ``Noetherian'' reader
should consult Lemma 31.10.2 instead of the next lemma.)

Lemma 31.10.1. Let 𝑅 → 𝐴 → 𝐵 be ring maps. Assume 𝑅 → 𝐵 is of finite presentation
and 𝐴 → 𝐵 faithfully flat and of finite presentation. Then 𝑅 → 𝐴 is of finite presentation.

Proof. Consider the algebra 𝐶 = 𝐵 ⊗𝐴 𝐵 together with the pair of maps 𝑝, 𝑞 ∶ 𝐵 → 𝐶
given by 𝑝(𝑏) = 𝑏 ⊗ 1 and 𝑞(𝑏) = 1 ⊗ 𝑏. Of course the two compositions 𝐴 → 𝐵 → 𝐶 are
the same. Note that as 𝑝 ∶ 𝐵 → 𝐶 is flat and of finite presentation (base change of 𝐴 → 𝐵),
the ring map 𝑅 → 𝐶 is of finite presentation (as the composite of 𝑅 → 𝐵 → 𝐶).

We are going to use the criterion Algebra, Lemma 7.118.2 to show that 𝑅 → 𝐴 is of finite
presentation. Let 𝑆 be any 𝑅-algebra, and suppose that 𝑆 = 𝑐𝑜𝑙𝑖𝑚𝜆∈Λ 𝑆𝜆 is written as a
directed colimit of 𝑅-algebras. Let 𝐴 → 𝑆 be an 𝑅-algebra homomorphism. We have to
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show that 𝐴 → 𝑆 factors through one of the 𝑆𝜆. Consider the rings 𝐵′ = 𝑆 ⊗𝐴 𝐵 and
𝐶′ = 𝑆 ⊗𝐴 𝐶 = 𝐵′ ⊗𝑆 𝐵′. As 𝐵 is faithfully flat of finite presentation over 𝐴, also 𝐵′

is faithfully flat of finite presentation over 𝑆. By Algebra, Lemma 7.120.5 part (2) applied
to the pair (𝑆 → 𝐵′, 𝐵′) and the system (𝑆𝜆) there exists a 𝜆0 ∈ Λ and a flat, finitely
presented 𝑆𝜆0

-algebra 𝐵𝜆0
such that 𝐵′ = 𝑆 ⊗𝑆𝜆0

𝐵𝜆0
. For 𝜆 ≥ 𝜆0 set 𝐵𝜆 = 𝑆𝜆 ⊗𝑆𝜆0

𝐵𝜆0
and 𝐶𝜆 = 𝐵𝜆 ⊗𝑆𝜆

𝐵𝜆.

We interupt the flow of the argument to show that 𝑆𝜆 → 𝐵𝜆 is faithfully flat for 𝜆 large
enough. (This should really be a separate lemma somewhere else, maybe in the chapter
on limits.) Since 𝑆𝑝𝑒𝑐(𝐵𝜆0

) → 𝑆𝑝𝑒𝑐(𝑆𝜆0
) is flat and of finite presentation it is open (see

Morphisms, Lemma 24.24.9). Let 𝐼 ⊂ 𝑆𝜆0
be an ideal such that 𝑉(𝐼) ⊂ 𝑆𝑝𝑒𝑐(𝑆𝜆0

) is the
complement of the image. Note that formation of the image commutes with base change.
Hence, since 𝑆𝑝𝑒𝑐(𝐵′) → 𝑆𝑝𝑒𝑐(𝑆) is surjective, and 𝐵′ = 𝐵𝜆0

⊗𝑆𝜆0
𝑆 we see that 𝐼𝑆 =

𝑆. Thus for some 𝜆 ≥ 𝜆0 we have 𝐼𝑆𝜆 = 𝑆𝜆. For this and all greater 𝜆 the morphism
𝑆𝑝𝑒𝑐(𝐵𝜆) → 𝑆𝑝𝑒𝑐(𝑆𝜆) is surjective.

By analogy with the notation in the first paragraph of the proof denote 𝑝𝜆, 𝑞𝜆 ∶ 𝐵𝜆 → 𝐶𝜆
the two canonical maps. Then 𝐵′ = 𝑐𝑜𝑙𝑖𝑚𝜆≥𝜆0

𝐵𝜆 and 𝐶′ = 𝑐𝑜𝑙𝑖𝑚𝜆≥𝜆0
𝐶𝜆. Since 𝐵 and 𝐶

are finitely presented over 𝑅 there exist (by Algebra, Lemma 7.118.2 applied several times)
a 𝜆 ≥ 𝜆0 and an 𝑅-algebra maps 𝐵 → 𝐵𝜆, 𝐶 → 𝐶𝜆 such that the diagram

𝐶 // 𝐶𝜆

𝐵 //

𝑝

OO

𝑞

OO

𝐵𝜆

𝑝𝜆

OO
𝑞𝜆

OO

is commutative. OK, and this means that 𝐴 → 𝐵 → 𝐵𝜆 maps into the equalizer of 𝑝𝜆 and
𝑞𝜆. By By Lemma 31.3.6 we see that 𝑆𝜆 is the equalizer of 𝑝𝜆 and 𝑞𝜆. Thus we get the
desired ring map 𝐴 → 𝑆𝜆 and we win. �

Here is an easier version of this dealing with the property of being of finite type.

Lemma 31.10.2. Let 𝑅 → 𝐴 → 𝐵 be ring maps. Assume 𝑅 → 𝐵 is of finite type and
𝐴 → 𝐵 faithfully flat and of finite presentation. Then 𝑅 → 𝐴 is of finite type.

Proof. By Algebra, Lemma 7.120.6 there exists a commtutative diagram

𝑅 // 𝐴0

��

// 𝐵0

��
𝑅 // 𝐴 // 𝐵

with 𝑅 → 𝐴0 of finite presentation, 𝐴0 → 𝐵0 faithfully flat of finite presentation and
𝐵 = 𝐴⊗𝐴0

𝐵0. Since 𝑅 → 𝐵 is of finite type by assumption, we may add some elements to
𝐴0 and assume that the map 𝐵0 → 𝐵 is surjective! In this case, since 𝐴0 → 𝐵0 is faithfully
flat, we see that as

(𝐴0 → 𝐴) ⊗𝐴0
𝐵0 ≅ (𝐵0 → 𝐵)

is surjective, also 𝐴0 → 𝐴 is surjective. Hence we win. �
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Lemma 31.10.3. Let
𝑋

𝑓
//

𝑝
��

𝑌

𝑞
��

𝑆
be a commutative diagram of morphisms of schemes. Assume that 𝑓 is surjective, flat and
locally of finite presentation and assume that 𝑝 is locally of finite presentation (resp. locally
of finite type). Then 𝑞 is locally of finite presentation (resp. locally of finite type).

Proof. The problem is local on 𝑆 and 𝑌. Hence we may assume that 𝑆 and 𝑌 are affine.
Since 𝑓 is flat and locally of finite presentation, we see that 𝑓 is open (Morphisms, Lemma
24.24.9). Hence, since 𝑌 is quasi-compact, there exist finitely many affine opens 𝑋𝑖 ⊂ 𝑋
such that 𝑌 = ⋃ 𝑓(𝑋𝑖). Clearly we may replace 𝑋 by ∐ 𝑋𝑖, and hence we may assume
𝑋 is affine as well. In this case the lemma is equivalent to Lemma 31.10.1 (resp. Lemma
31.10.2) above. �

We use this to improve some of the results on morphisms obtained earlier.

Lemma 31.10.4. Let
𝑋

𝑓
//

𝑝
��

𝑌

𝑞
��

𝑆
be a commutative diagram of morphisms of schemes. Assume that

(1) 𝑓 is surjective, and syntomic (resp. smooth, resp. étale),
(2) 𝑝 is syntomic (resp. smooth, resp. étale).

Then 𝑞 is syntomic (resp. smooth, resp. étale).

Proof. CombineMorphisms, Lemmas 24.30.16, 24.33.19, and 24.35.19with Lemma 31.10.3
above. �

Actually we can strengthen this result as follows.

Lemma 31.10.5. Let
𝑋

𝑓
//

𝑝
��

𝑌

𝑞
��

𝑆
be a commutative diagram of morphisms of schemes. Assume that

(1) 𝑓 is surjective, flat, and locally of finite presentation,
(2) 𝑝 is smooth (resp. étale).

Then 𝑞 is smooth (resp. étale).

Proof. Assume (1) and that 𝑝 is smooth. By Lemma 31.10.3 we see that 𝑞 is locally of
finite presentation. By Morphisms, Lemma 24.24.11 we see that 𝑞 is flat. Hence now it
suffices to show that the fibres of 𝑞 are smooth, see Morphisms, Lemma 24.33.3. Apply
Varieties, Lemma 28.15.8 to the flat surjective morphisms 𝑋𝑠 → 𝑌𝑠 for 𝑠 ∈ 𝑆 to conclude.
We omit the proof of the étale case. �
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Remark 31.10.6. With the assumptions (1) and 𝑝 smooth in Lemma 31.10.5 it is not au-
tomatically the case that 𝑋 → 𝑌 is smooth. A counter example is 𝑆 = 𝑆𝑝𝑒𝑐(𝑘), 𝑋 =
𝑆𝑝𝑒𝑐(𝑘[𝑠]), 𝑌 = 𝑆𝑝𝑒𝑐(𝑘[𝑡]) and 𝑓 given by 𝑡 ↦ 𝑠2. But see also Remark 31.10.7 for some
information on the structure of 𝑓.

Remark 31.10.7. Let
𝑋

𝑓
//

𝑝
��

𝑌

𝑞
��

𝑆
be a commutative diagram of morphisms of schemes. Assume that

(1) 𝑓 is surjective, flat, and locally of finite presentation,
(2) 𝑝 is syntomic.

Then both 𝑞 and 𝑓 are syntomic. This follows from the following result of Avramov: If
𝜑 ∶ 𝐴 → 𝐵 is a local homomorphism of local Noetherian rings, and 𝜑 is flat and 𝐵 is a
complete intersection, then both 𝐴 and 𝐵/𝔪𝐴𝐵 are complete intersections. See [Avr75].
If we need this result we will add its proof to the stacks project.

The following type of lemma is occasionally useful.

Lemma 31.10.8. Let 𝑋 → 𝑌 → 𝑍 be morphism of schemes. Let 𝑃 be one of the following
properties of morphisms of schemes: flat, locally finite type, locally finite presentation.
Assume that 𝑋 → 𝑍 has 𝑃 and that {𝑋 → 𝑌} can be refined by an fppf covering of 𝑌. Then
𝑌 → 𝑍 is 𝑃.

Proof. Let 𝑆𝑝𝑒𝑐(𝐶) ⊂ 𝑍 be an affine open and let 𝑆𝑝𝑒𝑐(𝐵) ⊂ 𝑌 be an affine open which
maps into 𝑆𝑝𝑒𝑐(𝐶). The assumption on 𝑋 → 𝑌 implies we can find a standard affine
fppf covering {𝑆𝑝𝑒𝑐(𝐵𝑗) → 𝑆𝑝𝑒𝑐(𝐵)} and lifts 𝑥𝑗 ∶ 𝑆𝑝𝑒𝑐(𝐵𝑗) → 𝑋. Since 𝑆𝑝𝑒𝑐(𝐵𝑗) is
quasi-compact we can find finitely many affine opens 𝑆𝑝𝑒𝑐(𝐴𝑖) ⊂ 𝑋 lying over 𝑆𝑝𝑒𝑐(𝐵)
such that the image of each 𝑥𝑗 is contained in the union ⋃ 𝑆𝑝𝑒𝑐(𝐴𝑖). Hence after replacing
each 𝑆𝑝𝑒𝑐(𝐵𝑗) by a standard affine Zariski coverings of itself we may assume we have a
standard affine fppf covering {𝑆𝑝𝑒𝑐(𝐵𝑖) → 𝑆𝑝𝑒𝑐(𝐵)} such that each 𝑆𝑝𝑒𝑐(𝐵𝑖) → 𝑌 factors
through an affine open 𝑆𝑝𝑒𝑐(𝐴𝑖) ⊂ 𝑋 lying over 𝑆𝑝𝑒𝑐(𝐵). In other words, we have ring
maps 𝐶 → 𝐵 → 𝐴𝑖 → 𝐵𝑖 for each 𝑖. Note that we can also consider

𝐶 → 𝐵 → 𝐴 = ∏ 𝐴𝑖 → 𝐵′ = ∏ 𝐵𝑖

and that the ring map 𝐵 → ∏ 𝐵𝑖 is faithfully flat and of finite presentation.

The case 𝑃 = 𝑓𝑙𝑎𝑡. In this case we know that 𝐶 → 𝐴 is flat and we have to prove that
𝐶 → 𝐵 is flat. Suppose that 𝑁 → 𝑁′ → 𝑁″ is an exact sequence of 𝐶-modules. We want
to show that 𝑁 ⊗𝐶 𝐵 → 𝑁′ ⊗𝐶 𝐵 → 𝑁″ ⊗𝐶 𝐵 is exact. Let 𝐻 be its cohomology and
let 𝐻′ be the cohomology of 𝑁 ⊗𝐶 𝐵′ → 𝑁′ ⊗𝐶 𝐵′ → 𝑁″ ⊗𝐶 𝐵′. As 𝐵 → 𝐵′ is flat we
know that 𝐻′ = 𝐻 ⊗𝐵 𝐵′. On the other hand 𝑁 ⊗𝐶 𝐴 → 𝑁′ ⊗𝐶 𝐴 → 𝑁″ ⊗𝐶 𝐴 is exact
hence has zero cohomology. Hence the map 𝐻 → 𝐻′ is zero (as it factors through the zero
module). Thus 𝐻′ = 0. As 𝐵 → 𝐵′ is faithfully flat we conclude that 𝐻 = 0 as desired.

The case 𝑃 = 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑓𝑖𝑛𝑖𝑡𝑒 𝑡𝑦𝑝𝑒. In this case we know that 𝐶 → 𝐴 is of finite type and we
have to prove that 𝐶 → 𝐵 is of finite type. Because 𝐵 → 𝐵′ is of finite presentation (hence
of finite type) we see that 𝐴 → 𝐵′ is of finite type, see Algebra, Lemma 7.6.2. Therefore
𝐶 → 𝐵′ is of finite type and we conclude by Lemma 31.10.2.
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The case 𝑃 = 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛. In this case we know that 𝐶 → 𝐴 is of finite
presentation and we have to prove that 𝐶 → 𝐵 is of finite presentation. Because 𝐵 → 𝐵′ is
of finite presentation and 𝐵 → 𝐴 of finite type we see that 𝐴 → 𝐵′ is of finite presentation,
see Algebra, Lemma 7.6.2. Therefore 𝐶 → 𝐵′ is of finite presentation and we conclude by
Lemma 31.10.1. �

31.11. Local properties of schemes

It often happens one can prove the members of a covering of a scheme have a certain prop-
erty. In many cases this implies the scheme has the property too. For example, if 𝑆 is a
scheme, and 𝑓 ∶ 𝑆′ → 𝑆 is a surjective flat morphism such that 𝑆′ is a reduced scheme,
then 𝑆 is reduced. You can prove this by looking at local rings and using Algebra, Lemma
7.146.2. We say that the property of being reduced descends through flat surjective mor-
phisms. Some results of this type are collected in Algebra, Section 7.146.

On the other hand, there are examples of surjective flat morphisms 𝑓 ∶ 𝑆′ → 𝑆 with 𝑆
reduced and 𝑆′ not, for example the morphism 𝑆𝑝𝑒𝑐(𝑘[𝑥]/(𝑥2)) → 𝑆𝑝𝑒𝑐(𝑘). Hence the
property of being reduced does not ascend along flat morphisms. Having infinite residue
fields is a property which does ascend along flat morphisms (but does not descend along
surjective flat morphisms of course). Some results of this type are collected in Algebra,
Section 7.145.

Finally, we say that a property is local for the flat topology if it ascends along flat morphisms
and descends along flat surjective morphisms. A somewhat silly example is the property
of having residue fields of a given characteristic. To be more precise, and to tie this in with
the various topologies on schemes, we make the following formal definition.

Definition 31.11.1. Let 𝒫 be a property of schemes. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐,
𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. We say 𝒫 is local in the 𝜏-topology if for any 𝜏-covering {𝑆𝑖 →
𝑆}𝑖∈𝐼 (see Topologies, Section 30.2) we have

𝑆 has 𝒫 ⇔ each 𝑆𝑖 has 𝒫.

To be sure, since isomorphisms are always coverings we see (or require) that property 𝒫
holds for 𝑆 if and only if it holds for any scheme 𝑆′ isomorphic to 𝑆. In fact, if 𝜏 = 𝑓𝑝𝑞𝑐,
𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, or 𝑍𝑎𝑟𝑖𝑠𝑘𝑖, then if 𝑆 has 𝒫 and 𝑆′ → 𝑆 is flat, flat and
locally of finite presentation, syntomic, smooth, étale, or an open immersion, then 𝑆′ has
𝒫. This is true because we can always extend {𝑆′ → 𝑆} to a 𝜏-covering.

We have the following implications: 𝒫 is local in the fpqc topology ⇒ 𝒫 is local in the
fppf topology ⇒ 𝒫 is local in the syntomic topology ⇒ 𝒫 is local in the smooth topology
⇒ 𝒫 is local in the étale topology ⇒ 𝒫 is local in the Zariski topology. This follows from
Topologies, Lemmas 30.4.2, 30.5.2, 30.6.2, 30.7.2, and 30.8.6.

Lemma 31.11.2. Let 𝒫 be a property of schemes. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ,
𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Assume that

(1) the property is local in the Zariski topology,
(2) for anymorphism of affine schemes𝑆′ → 𝑆which is flat, flat of finite presentation,

étale, smooth or syntomic depending on whether 𝜏 is fpqc, fppf, étale, smooth, or
syntomic, property 𝒫 holds for 𝑆′ if property 𝒫 holds for 𝑆, and

(3) for any surjective morphism of affine schemes 𝑆′ → 𝑆 which is flat, flat of finite
presentation, étale, smooth or syntomic depending on whether 𝜏 is fpqc, fppf,
étale, smooth, or syntomic, property 𝒫 holds for 𝑆 if property 𝒫 holds for 𝑆′.
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Then 𝒫 is 𝜏 local on the base.

Proof. This follows almost immediately from the definition of a 𝜏-covering, see Topolo-
gies, Definition 30.8.1 30.7.1 30.4.1 30.5.1, or 30.6.1 and Topologies, Lemma 30.8.8,
30.7.4, 30.4.4, 30.5.4, or 30.6.4. Details omitted. �

Remark 31.11.3. In Lemma 31.11.2 above if 𝜏 = 𝑠𝑚𝑜𝑜𝑡ℎ then in condition (3) we may
assume that the morphism is a (surjective) standard smooth morphism. Similarly, when
𝜏 = 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 or 𝜏 = ́𝑒𝑡𝑎𝑙𝑒.

31.12. Properties of schemes local in the fppf topology

In this section we find some properties of schemes which are local on the base in the fppf
topology.

Lemma 31.12.1. The property 𝒫(𝑆) =``𝑆 is locally Noetherian'' is local in the fppf topol-
ogy.

Proof. We will use Lemma 31.11.2. First we note that ``being locally Noetherian'' is local
in the Zariski topology. This is clear from the definition, see Properties, Definition 23.5.1.
Next, we show that if 𝑆′ → 𝑆 is a flat, finitely presentedmorphism of affines and 𝑆 is locally
Noetherian, then 𝑆′ is locally Noetherian. This is Morphisms, Lemma 24.14.6. Finally, we
have to show that if 𝑆′ → 𝑆 is a surjective flat, finitely presented morphism of affines and
𝑆′ is locally Noetherian, then 𝑆 is locally Noetherian. This follows from Algebra, Lemma
7.146.1. Thus (1), (2) and (3) of Lemma 31.11.2 hold and we win. �

Lemma 31.12.2. The property 𝒫(𝑆) =``𝑆 is Jacobson'' is local in the fppf topology.

Proof. We will use Lemma 31.11.2. First we note that ``being Jacobson'' is local in the
Zariski topology. This is Properties, Lemma 23.6.3. Next, we show that if 𝑆′ → 𝑆 is a
flat, finitely presented morphism of affines and 𝑆 is Jacobson, then 𝑆′ is Jacobson. This is
Morphisms, Lemma 24.15.9. Finally, we have to show that if 𝑓 ∶ 𝑆′ → 𝑆 is a surjective
flat, finitely presented morphism of affines and 𝑆′ is Jacobson, then 𝑆 is Jacobson. Say
𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆′ = 𝑆𝑝𝑒𝑐(𝐵) and 𝑆′ → 𝑆 given by 𝐴 → 𝐵. Then 𝐴 → 𝐵 is finitely
presented and faithfully flat. Moreover, the ring 𝐵 is Jacobson, see Properties, Lemma
23.6.3.

By Algebra, Lemma 7.121.9 there exists a diagram

𝐵 // 𝐵′

𝐴

>>__

with 𝐴 → 𝐵′ finitely presented, faithfully flat and quasi-finite. In particular, 𝐵 → 𝐵′ is
finite type, and we see from Algebra, Proposition 7.31.18 that 𝐵′ is Jacobson. Hence we
may assume that 𝐴 → 𝐵 is quasi-finite as well as faithfully flat and of finite presentation.

Assume𝐴 is not Jacobson to get a contradiction. According toAlgebra, Lemma 7.31.5 there
exists a nonmaximal prime 𝔭 ⊂ 𝐴 and an element 𝑓 ∈ 𝐴, 𝑓∉𝔭 such that 𝑉(𝔭)∩𝐷(𝑓) = {𝔭}.

This leads to a contradiction as follows. First let 𝔭 ⊂ 𝔪 be a maximal ideal of 𝐴. Pick a
prime 𝔪′ ⊂ 𝐵 lying over 𝔪 (exists because 𝐴 → 𝐵 is faithfully flat, see Algebra, Lemma
7.35.15). As 𝐴 → 𝐵 is flat, by going down see Algebra, Lemma 7.35.17, we can find a
prime 𝔮 ⊂ 𝔪′ lying over 𝔭. In particular we see that 𝔮 is not maximal. Hence according to
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Algebra, Lemma 7.31.5 again the set 𝑉(𝔮) ∩ 𝐷(𝑓) is infinite (here we finally use that 𝐵 is
Jacobson). All points of 𝑉(𝔮) ∩ 𝐷(𝑓) map to 𝑉(𝔭) ∩ 𝐷(𝑓) = {𝔭}. Hence the fibre over 𝔭 is
infinite. This contradicts the fact that 𝐴 → 𝐵 is quasi-finite (see Algebra, Lemma 7.113.4
or more explicitly Morphisms, Lemma 24.19.10). Thus the lemma is proved. �

31.13. Properties of schemes local in the syntomic topology

In this section we find some properties of schemes which are local on the base in the syn-
tomic topology.

Lemma 31.13.1. The property 𝒫(𝑆) =``𝑆 is locally Noetherian and (𝑆𝑘)'' is local in the
syntomic topology.

Proof. We will check (1), (2) and (3) of Lemma 31.11.2. As a syntomic morphism is flat
of finite presentation (Morphisms, Lemmas 24.30.7 and 24.30.6) we have already checked
this for ``being locally Noetherian'' in the proof of Lemma 31.12.1. We will use this without
further mention in the proof. First we note that 𝒫 is local in the Zariski topology. This is
clear from the definition, see Coherent, Definition 25.13.1. Next, we show that if 𝑆′ → 𝑆 is
a syntomicmorphism of affines and𝑆 has𝒫, then𝑆′ has𝒫. This is Algebra, Lemma 7.145.4
(use Morphisms, Lemma 24.30.2 and Algebra, Definition 7.125.1 and Lemma 7.124.3).
Finally, we show that if 𝑆′ → 𝑆 is a surjective syntomic morphism of affines and 𝑆′ has 𝒫,
then 𝑆 has 𝒫. This is Algebra, Lemma 7.146.5. Thus (1), (2) and (3) of Lemma 31.11.2
hold and we win. �

Lemma 31.13.2. The property 𝒫(𝑆) =``𝑆 is Cohen-Macaulay'' is local in the syntomic
topology.

Proof. This is clear from Lemma 31.13.1 above since a scheme is Cohen-Macaulay if and
only if it is locally Noetherian and (𝑆𝑘) for all 𝑘 ≥ 0, see Properties, Lemma 23.12.2. �

31.14. Properties of schemes local in the smooth topology

In this section we find some properties of schemes which are local on the base in the smooth
topology.

Lemma 31.14.1. The property 𝒫(𝑆) =``𝑆 is reduced'' is local in the smooth topology.

Proof. We will use Lemma 31.11.2. First we note that ``being reduced'' is local in the
Zariski topology. This is clear from the definition, see Schemes, Definition 21.12.1. Next,
we show that if 𝑆′ → 𝑆 is a smooth morphism of affines and 𝑆 is reduced, then 𝑆′ is
reduced. This is Algebra, Lemma 7.145.6. Finally, we show that if 𝑆′ → 𝑆 is a surjective
smooth morphism of affines and 𝑆′ is reduced, then 𝑆 is reduced. This is Algebra, Lemma
7.146.2. Thus (1), (2) and (3) of Lemma 31.11.2 hold and we win. �

Lemma 31.14.2. The property 𝒫(𝑆) =``𝑆 is normal'' is local in the smooth topology.

Proof. We will use Lemma 31.11.2. First we show ``being normal'' is local in the Zariski
topology. This is clear from the definition, see Properties, Definition 23.7.1. Next, we show
that if 𝑆′ → 𝑆 is a smooth morphism of affines and 𝑆 is normal, then 𝑆′ is normal. This is
Algebra, Lemma 7.145.7. Finally, we show that if 𝑆′ → 𝑆 is a surjective smooth morphism
of affines and 𝑆′ is normal, then 𝑆 is normal. This is Algebra, Lemma 7.146.3. Thus (1),
(2) and (3) of Lemma 31.11.2 hold and we win. �

Lemma 31.14.3. The property 𝒫(𝑆) =``𝑆 is locally Noetherian and (𝑅𝑘)'' is local in the
smooth topology.
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Proof. We will check (1), (2) and (3) of Lemma 31.11.2. As a smooth morphism is flat
of finite presentation (Morphisms, Lemmas 24.33.9 and 24.33.8) we have already checked
this for ``being locally Noetherian'' in the proof of Lemma 31.12.1. We will use this without
further mention in the proof. First we note that 𝒫 is local in the Zariski topology. This is
clear from the definition, see Properties, Definition 23.12.1. Next, we show that if 𝑆′ → 𝑆
is a smooth morphism of affines and 𝑆 has 𝒫, then 𝑆′ has 𝒫. This is Algebra, Lemmas
7.145.5 (use Morphisms, Lemma 24.33.2, Algebra, Lemmas 7.126.4 and 7.129.3). Finally,
we show that if 𝑆′ → 𝑆 is a surjective smooth morphism of affines and 𝑆′ has 𝒫, then 𝑆
has 𝒫. This is Algebra, Lemma 7.146.5. Thus (1), (2) and (3) of Lemma 31.11.2 hold and
we win. �

Lemma 31.14.4. The property 𝒫(𝑆) =``𝑆 is regular'' is local in the smooth topology.

Proof. This is clear from Lemma 31.14.3 above since a locally Noetherian scheme is reg-
ular if and only if it is locally Noetherian and (𝑅𝑘) for all 𝑘 ≥ 0. �

Lemma 31.14.5. The property 𝒫(𝑆) =``𝑆 is Nagata'' is local in the smooth topology.

Proof. We will check (1), (2) and (3) of Lemma 31.11.2. First we note that being Nagata
is local in the Zariski topology. This is Properties, Lemma 23.13.6. Next, we show that
if 𝑆′ → 𝑆 is a smooth morphism of affines and 𝑆 is Nagata, then 𝑆′ is Nagata. This
is Morphisms, Lemma 24.17.1. Finally, we show that if 𝑆′ → 𝑆 is a surjective smooth
morphism of affines and 𝑆′ is Nagata, then 𝑆 is Nagata. This is Algebra, Lemma 7.146.7.
Thus (1), (2) and (3) of Lemma 31.11.2 hold and we win. �

31.15. Variants on descending properties

Sometimes one can descend properties, which are not local. We put results of this kind in
this section.

Lemma 31.15.1. If 𝑓 ∶ 𝑋 → 𝑌 is a flat and surjective morphism of schemes and 𝑋 is
reduced, then 𝑌 is reduced.

Proof. The result follows by looking at local rings (Schemes, Definition 21.12.1) and Al-
gebra, Lemma 7.146.2. �

Lemma 31.15.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces. If 𝑓 is locally of finite
presentation, flat, and surjective and 𝑋 is regular, then 𝑌 is regular.

Proof. This lemma reduces to the following algebra statement: If 𝐴 → 𝐵 is a faithfully
flat, finitely presentated ring homomorphism with 𝐵 Noetherian and regular, then 𝐴 is Noe-
therian and regular. We see that 𝐴 is Noetherian by Algebra, Lemma 7.146.1 and regular
by Algebra, Lemma 7.102.8. �

31.16. Germs of schemes

Definition 31.16.1. Germs of schemes.
(1) A pair (𝑋, 𝑥) consisting of a scheme 𝑋 and a point 𝑥 ∈ 𝑋 is called the germ of

𝑋 at 𝑥.
(2) A morphism of germs 𝑓 ∶ (𝑋, 𝑥) → (𝑆, 𝑠) is an equivalence class of morphisms

of schemes 𝑓 ∶ 𝑈 → 𝑆 with 𝑓(𝑥) = 𝑠 where 𝑈 ⊂ 𝑋 is an open neighbourhood of
𝑥. Two such 𝑓, 𝑓′ are said to be equivalent if and only if 𝑓 and 𝑓′ agree in some
open neighbourhood of 𝑥.
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(3) We define the composition of morphisms of germs by composing representatives
(this is well defined).

Before we continue we need one more definition.

Definition 31.16.2. Let 𝑓 ∶ (𝑋, 𝑥) → (𝑆, 𝑠) be a morphism of germs. We say 𝑓 is étale
(resp. smooth) if there exists a representative 𝑓 ∶ 𝑈 → 𝑆 of 𝑓 which is an étale morphism
(resp. a smooth morphism) of schemes.

31.17. Local properties of germs

Definition 31.17.1. Let 𝒫 be a property of germs of schemes. We say that 𝒫 is étale local
(resp. smooth local) if for any étale (resp. smooth) morphism of germs (𝑈′, 𝑢′) → (𝑈, 𝑢)
we have 𝒫(𝑈, 𝑢) ⇔ 𝒫(𝑈′, 𝑢′).

Let (𝑋, 𝑥) be a germ of a scheme. The dimension of 𝑋 at 𝑥 is the minimum of the dimen-
sions of open neighbourhoods of 𝑥 in 𝑋, and any small enough open neighbourhood has
this dimension. Hence this is an invariant of the isomorphism class of the germ. We denote
this simply dim𝑥(𝑋). The following lemma tells us that the assertion dim𝑥(𝑋) = 𝑑 is an
étale local property of germs.

Lemma 31.17.2. Let 𝑓 ∶ 𝑈 → 𝑉 be an étale morphism of schemes. Let 𝑢 ∈ 𝑈 and 𝑣 = 𝑓(𝑢).
Then dim𝑢(𝑈) = dim𝑣(𝑉).

Proof. In the statement dim𝑢(𝑈) is the dimension of 𝑈 at 𝑢 as defined in Topology, Defi-
nition 5.7.1 as the minimum of the Krull dimensions of open neighbourhoods of 𝑢 in 𝑈.
Similarly for dim𝑣(𝑉).

Let us show that dim𝑣(𝑉) ≥ dim𝑢(𝑈). Let 𝑉′ be an open neighbourhood of 𝑣 in 𝑉. Then
there exists an open neighbourhood 𝑈′ of 𝑢 in 𝑈 contained in 𝑓−1(𝑉′) such that dim𝑢(𝑈) =
dim(𝑈′). Suppose that 𝑍0 ⊂ 𝑍1 ⊂ … ⊂ 𝑍𝑛 is a chain of irreducible closed subschemes
of 𝑈′. If 𝜉𝑖 ∈ 𝑍𝑖 is the generic point then we have specializations 𝜉𝑛  𝜉𝑛−1  … 𝜉0.
This gives specializations 𝑓(𝜉𝑛)  𝑓(𝜉𝑛−1)  …  𝑓(𝜉0) in 𝑉′. Note that 𝑓(𝜉𝑗)≠𝑓(𝜉𝑖)
if 𝑖≠𝑗 as the fibres of 𝑓 are discrete (see Morphisms, Lemma 24.35.7). Hence we see that
dim(𝑉′) ≥ 𝑛. The inequality dim𝑣(𝑉) ≥ dim𝑢(𝑈) follows formally.

Let us show that dim𝑢(𝑈) ≥ dim𝑣(𝑉). Let 𝑈′ be an open neighbourhood of 𝑢 in 𝑈. Note
that 𝑉′ = 𝑓(𝑈′) is an open neighbourhood of 𝑣 by Morphisms, Lemma 24.24.9. Hence
dim(𝑉′) ≥ dim𝑣(𝑉). Pick a chain 𝑍0 ⊂ 𝑍1 ⊂ … ⊂ 𝑍𝑛 of irreducible closed subschemes
of 𝑉′. Let 𝜉𝑖 ∈ 𝑍𝑖 be the generic point, so we have specializations 𝜉𝑛  𝜉𝑛−1  … 𝜉0.
Since 𝜉0 ∈ 𝑓(𝑈′) we can find a point 𝜂0 ∈ 𝑈′ with 𝑓(𝜂0) = 𝜉0. Consider the map of local
rings

𝒪𝑉′,𝜉0
⟶ 𝒪𝑈′,𝜂0

which is a flat local ring map by Morphisms, Lemma 24.35.12. Note that the points 𝜉𝑖
correspond to primes of the ring on the left by Schemes, Lemma 21.13.2. Hence by going
down (see Algebra, Section 7.36) for the displayed ring map we can find a sequence of
specializations 𝜂𝑛  𝜂𝑛−1  … 𝜂0 in 𝑈′ mapping to the sequence 𝜉𝑛  𝜉𝑛−1  … 
𝜉0 under 𝑓. This implies that dim𝑢(𝑈) ≥ dim𝑣(𝑉). �

Let (𝑋, 𝑥) be a germ of a scheme. The isomorphism class of the local ring 𝒪𝑋,𝑥 is an
invariant of the germ. The following lemma says that the property dim(𝒪𝑋,𝑥) = 𝑑 is an
étale local property of germs.
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Lemma 31.17.3. Let 𝑓 ∶ 𝑈 → 𝑉 be an étale morphism of schemes. Let 𝑢 ∈ 𝑈 and 𝑣 = 𝑓(𝑢).
Then dim(𝒪𝑈,𝑢) = dim(𝒪𝑉,𝑣).

Proof. The algebraic statement we are asked to prove is the following: If 𝐴 → 𝐵 is an étale
ring map and 𝔮 is a prime of 𝐵 lying over 𝔭 ⊂ 𝐴, then dim(𝐴𝔭) = dim(𝐵𝔮).
Namely, because 𝐴𝔭 → 𝐵𝔮 is flat we have going down, and hence the inequality dim(𝐴𝔭) ≤
dim(𝐵𝔮). On the other hand, suppose that 𝔮0 ⊂ 𝔮1 ⊂ … ⊂ 𝔮𝑛 is a chain of primes in 𝐵𝔮.
Then the corresponding sequence of primes 𝔭0 ⊂ 𝔭1 ⊂ … ⊂ 𝔭𝑛 (with 𝔭𝑖 = 𝔮𝑖 ∩ 𝐴𝔭) is
chain also (i.e., no equalities in the sequence) as there are no specializations among the
points in a fibre of and étale morphism, see Morphisms, Lemma 24.35.7. This means that
dim(𝐴𝔭) ≥ dim(𝐵𝔮) as desired. �

31.18. Properties of morphisms local on the target

Suppose that 𝑓 ∶ 𝑋 → 𝑌 is a morphism of schemes. Let 𝑔 ∶ 𝑌′ → 𝑌 be a morphism of
schemes. Let 𝑓′ ∶ 𝑋′ → 𝑌′ be the base change of 𝑓 by 𝑔:

𝑋′

𝑓′

��

𝑔′
// 𝑋

𝑓
��

𝑌′ 𝑔 // 𝑌
Let 𝒫 be a property of morphisms of schemes. Then we can wonder if (a) 𝒫(𝑓) ⇒ 𝒫(𝑓′),
and also whether the converse (b) 𝒫(𝑓′) ⇒ 𝒫(𝑓) is true. If (a) holds whenever 𝑔 is flat,
then we say 𝒫 is preserved under flat base change. If (b) holds whenever 𝑔 is surjective and
flat, then we say 𝒫 descends through flat surjective base changes. If 𝒫 is preserved under
flat base changes and descends through flat surjective base changes, then we say 𝒫 is flat
local on the target. Compare with the discussion in Section 31.11. This turns out to be a
very important notion which we formalize in the following definition.

Definition 31.18.1. Let 𝒫 be a property of morphisms of schemes over a base. Let 𝜏 ∈
{𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. We say 𝒫 is 𝜏 local on the base, or 𝜏 local
on the target, or local on the base for the 𝜏-topology if for any 𝜏-covering {𝑌𝑖 → 𝑌}𝑖∈𝐼 (see
Topologies, Section 30.2) and any morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 over 𝑆 we have

𝑓 has 𝒫 ⇔ each 𝑌𝑖 ×𝑌 𝑋 → 𝑌𝑖 has 𝒫.

To be sure, since isomorphisms are always coverings we see (or require) that property 𝒫
holds for 𝑋 → 𝑌 if and only if it holds for any arrow 𝑋′ → 𝑌′ isomorphic to 𝑋 → 𝑌. If a
property is 𝜏-local on the target then it is preserved by base changes by morphisms which
occur in 𝜏-coverings. Here is a formal statement.

Lemma 31.18.2. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. Let 𝒫 be a
property of morphisms which is 𝜏 local on the target. Let 𝑓 ∶ 𝑋 → 𝑌 have property 𝒫.
For any morphism 𝑌′ → 𝑌 which is flat, resp. flat and locally of finite presentation, resp.
syntomic, resp. étale, resp. an open immersion, the base change 𝑓′ ∶ 𝑌′ ×𝑌 𝑋 → 𝑌′ of 𝑓
has property 𝒫.

Proof. This is true because we can fit 𝑌′ → 𝑌 into a family of morphisms which forms a
𝜏-covering. �

A simple often used consequence of the above is that if 𝑓 ∶ 𝑋 → 𝑌 has property 𝒫 which is
𝜏-local on the target and 𝑓(𝑋) ⊂ 𝑉 for some open subscheme 𝑉 ⊂ 𝑌, then also the induced
morphism 𝑋 → 𝑉 has 𝒫. Proof: The base change 𝑓 by 𝑉 → 𝑌 gives 𝑋 → 𝑉.
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Lemma 31.18.3. Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒}. Let 𝒫 be a property of mor-
phisms which is 𝜏 local on the target. For any morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 there exists
a largest open 𝑊(𝑓) ⊂ 𝑌 such that the restriction 𝑋𝑊(𝑓) → 𝑊(𝑓) has 𝒫. Moreover,

(1) if 𝑔 ∶ 𝑌′ → 𝑌 is flat and locally of finite presentation, syntomic, smooth, or étale
and the base change 𝑓′ ∶ 𝑋𝑌′ → 𝑌′ has 𝒫, then 𝑔(𝑌′) ⊂ 𝑊(𝑓),

(2) if 𝑔 ∶ 𝑌′ → 𝑌 is flat and locally of finite presentation, syntomic, smooth, or étale,
then 𝑊(𝑓′) = 𝑔−1(𝑊(𝑓)), and

(3) if {𝑔𝑖 ∶ 𝑌𝑖 → 𝑌} is a 𝜏-covering, then 𝑔−1
𝑖 (𝑊(𝑓)) = 𝑊(𝑓𝑖), where 𝑓𝑖 is the base

change of 𝑓 by 𝑌𝑖 → 𝑌.

Proof. Consider the union 𝑊 of the images 𝑔(𝑌′) ⊂ 𝑌 of morphisms 𝑔 ∶ 𝑌′ → 𝑌 with the
properties:

(1) 𝑔 is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the base change 𝑌′ ×𝑔,𝑌 𝑋 → 𝑌′ has property 𝒫.

Since such a morphism 𝑔 is open (see Morphisms, Lemma 24.24.9) we see that 𝑊 ⊂ 𝑌
is an open subset of 𝑌. Since 𝒫 is local in the 𝜏 topology the restriction 𝑋𝑊 → 𝑊 has
property 𝒫 because we are given a covering {𝑌′ → 𝑊} of 𝑊 such that the pullbacks have
𝒫. This proves the existence and proves that 𝑊(𝑓) has property (1). To see property (2)
note that 𝑊(𝑓′) ⊃ 𝑔−1(𝑊(𝑓)) because 𝒫 is stable under base change by flat and locally
of finite presentation, syntomic, smooth, or étale morphisms, see Lemma 31.18.2. On the
other hand, if 𝑌″ ⊂ 𝑌′ is an open such that 𝑋𝑌″ → 𝑌″ has property 𝒫, then 𝑌″ → 𝑌 factors
through 𝑊 by construction, i.e., 𝑌″ ⊂ 𝑔−1(𝑊(𝑓)). This proves (2). Assertion (3) follows
from (2) because each morphism 𝑌𝑖 → 𝑌 is flat and locally of finite presentation, syntomic,
smooth, or étale by our definition of a 𝜏-covering. �

Lemma 31.18.4. Let 𝒫 be a property of morphisms of schemes over a base. Let 𝜏 ∈
{𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Assume that

(1) the property is preserved under flat, flat of finite presentation, étale, smooth or
syntomic base change depending on whether 𝜏 is fpqc, fppf, étale, smooth, or
syntomic (compare with Schemes, Definition 21.18.3),

(2) the property is Zariski local on the base.
(3) for any surjective morphism of affine schemes 𝑆′ → 𝑆 which is flat, flat of finite

presentation, étale, smooth or syntomic depending on whether 𝜏 is fpqc, fppf,
étale, smooth, or syntomic, and any morphism of schemes 𝑓 ∶ 𝑋 → 𝑆 property
𝒫 holds for 𝑓 if property 𝒫 holds for the base change 𝑓′ ∶ 𝑋′ = 𝑆′ ×𝑆 𝑋 → 𝑆′.

Then 𝒫 is 𝜏 local on the base.

Proof. This follows almost immediately from the definition of a 𝜏-covering, see Topolo-
gies, Definition 30.8.1 30.7.1 30.4.1 30.5.1, or 30.6.1 and Topologies, Lemma 30.8.8,
30.7.4, 30.4.4, 30.5.4, or 30.6.4. Details omitted. �

Remark 31.18.5. (This is a repeat of Remark 31.11.3 above.) In Lemma 31.18.4 above
if 𝜏 = 𝑠𝑚𝑜𝑜𝑡ℎ then in condition (3) we may assume that the morphism is a (surjective)
standard smooth morphism. Similarly, when 𝜏 = 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 or 𝜏 = ́𝑒𝑡𝑎𝑙𝑒.

31.19. Properties of morphisms local in the fpqc topology on the target

In this section we find a large number of properties of morphisms of schemes which are
local on the base in the fpqc topology.

Lemma 31.19.1. The property 𝒫(𝑓) =``𝑓 is quasi-compact'' is fpqc local on the base.
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Proof. Abase change of a quasi-compactmorphism is quasi-compact, see Schemes, Lemma
21.19.3. Being quasi-compact is Zariski local on the base, see Schemes, Lemma 21.19.2.
Finally, let 𝑆′ → 𝑆 be a flat surjective morphism of affine schemes, and let 𝑓 ∶ 𝑋 → 𝑆
be a morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′ is quasi-compact. Then 𝑋′ is
quasi-compact, and 𝑋′ → 𝑋 is surjective. Hence 𝑋 is quasi-compact. This implies that 𝑓
is quasi-compact. Therefore Lemma 31.18.4 applies and we win. �

Lemma 31.19.2. The property 𝒫(𝑓) =``𝑓 is quasi-separated'' is fpqc local on the base.

Proof. Any base change of a quasi-separated morphism is quasi-separated, see Schemes,
Lemma 21.21.13. Being quasi-separated is Zariski local on the base (from the definition or
by Schemes, Lemma 21.21.7). Finally, let 𝑆′ → 𝑆 be a flat surjective morphism of affine
schemes, and let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′

is quasi-separated. This means that Δ′ ∶ 𝑋′ → 𝑋′ ×𝑆′ 𝑋′ is quasi-compact. Note that Δ′

is the base change of Δ ∶ 𝑋 → 𝑋 ×𝑆 𝑋 via 𝑆′ → 𝑆. By Lemma 31.19.1 this implies Δ is
quasi-compact, and hence 𝑓 is quasi-separated. Therefore Lemma 31.18.4 applies and we
win. �

Lemma 31.19.3. The property 𝒫(𝑓) =``𝑓 is universally closed'' is fpqc local on the base.

Proof. A base change of a universally closed morphism is universally closed by definition.
Being universally closed is Zariski local on the base (from the definition or by Morphisms,
Lemma 24.40.2). Finally, let 𝑆′ → 𝑆 be a flat surjective morphism of affine schemes, and
let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′ is universally
closed. Let 𝑇 → 𝑆 be any morphism. Consider the diagram

𝑋′

��

𝑆′ ×𝑆 𝑇 ×𝑆 𝑋

��

//oo 𝑇 ×𝑆 𝑋

��
𝑆′ 𝑆′ ×𝑆 𝑇 //oo 𝑇

in which both squares are cartesian. Thus the assumption implies that the middle vertical
arrow is closed. The right horizontal arrows are flat, quasi-compact and surjective (as base
changes of 𝑆′ → 𝑆). Hence a subset of 𝑇 is closed if and only if its inverse image in
𝑆′ ×𝑆 𝑇 is closed, see Morphisms, Lemma 24.24.10. An easy diagram chase shows that the
right vertical arrow is closed too, and we conclude 𝑋 → 𝑆 is universally closed. Therefore
Lemma 31.18.4 applies and we win. �

Lemma 31.19.4. The property 𝒫(𝑓) =``𝑓 is universally open'' is fpqc local on the base.

Proof. The proof is the same as the proof of Lemma 31.19.3. �

Lemma 31.19.5. The property 𝒫(𝑓) =``𝑓 is separated'' is fpqc local on the base.

Proof. Abase change of a separatedmorphism is separated, see Schemes, Lemma 21.21.13.
Being separated is Zariski local on the base (from the definition or by Schemes, Lemma
21.21.8). Finally, let 𝑆′ → 𝑆 be a flat surjective morphism of affine schemes, and let
𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′ is separated. This
means that Δ′ ∶ 𝑋′ → 𝑋′ ×𝑆′ 𝑋′ is a closed immersion, hence universally closed. Note
that Δ′ is the base change of Δ ∶ 𝑋 → 𝑋×𝑆 𝑋 via 𝑆′ → 𝑆. By Lemma 31.19.3 this implies
Δ is universally closed. Since it is an immersion (Schemes, Lemma 21.21.2) we conclude
Δ is a closed immersion. Hence 𝑓 is separated. Therefore Lemma 31.18.4 applies and we
win. �
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Lemma 31.19.6. The property 𝒫(𝑓) =``𝑓 is surjective'' is fpqc local on the base.

Proof. This is clear. �

Lemma 31.19.7. The property 𝒫(𝑓) =``𝑓 is universally injective'' is fpqc local on the base.

Proof. A base change of a universally injective morphism is universally injective (this is
formal). Being universally injective is Zariski local on the base; this is clear from the
definition. Finally, let 𝑆′ → 𝑆 be a flat surjective morphism of affine schemes, and let
𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′ is universally
injective. Let 𝐾 be a field, and let 𝑎, 𝑏 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 be two morphisms such that
𝑓∘𝑎 = 𝑓∘𝑏. As 𝑆′ → 𝑆 is surjective and by the discussion in Schemes, Section 21.13 there
exists a field extension 𝐾 ⊂ 𝐾′ and a morphism 𝑆𝑝𝑒𝑐(𝐾′) → 𝑆′ such that the following
solid diagram commutes

𝑆𝑝𝑒𝑐(𝐾′)

))
𝑎′,𝑏′

$$

��

𝑋′ //

��

𝑆′

��
𝑆𝑝𝑒𝑐(𝐾) 𝑎,𝑏 // 𝑋 // 𝑆

As the square is cartesian we get the two dotted arrows 𝑎′, 𝑏′ making the diagram commute.
Since 𝑋′ → 𝑆′ is universally injective we get 𝑎′ = 𝑏′, by Morphisms, Lemma 24.10.2.
Clearly this forces 𝑎 = 𝑏 (by the discussion in Schemes, Section 21.13). Therefore Lemma
31.18.4 applies and we win.

An alternative proof would be to use the characterization of a universally injective mor-
phism as one whose diagonal is surjective, see Morphisms, Lemma 24.10.2. The lemma
then follows from the fact that the property of being surjective is fpqc local on the base, see
Lemma 31.19.6. (Hint: use that the base change of the diagonal is the diagonal of the base
change.) �

Lemma 31.19.8. The property 𝒫(𝑓) =``𝑓 is locally of finite type'' is fpqc local on the base.

Proof. Being locally of finite type is preserved under base change, seeMorphisms, Lemma
24.14.4. Being locally of finite type is Zariski local on the base, see Morphisms, Lemma
24.14.2. Finally, let 𝑆′ → 𝑆 be a flat surjective morphism of affine schemes, and let 𝑓 ∶
𝑋 → 𝑆 be a morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′ is locally of finite
type. Let 𝑈 ⊂ 𝑋 be an affine open. Then 𝑈′ = 𝑆′ ×𝑆 𝑈 is affine and of finite type over
𝑆′. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝑅), 𝑆′ = 𝑆𝑝𝑒𝑐(𝑅′), 𝑈 = 𝑆𝑝𝑒𝑐(𝐴), and 𝑈′ = 𝑆𝑝𝑒𝑐(𝐴′). We know that
𝑅 → 𝑅′ is faithfully flat, 𝐴′ = 𝑅′ ⊗𝑅 𝐴 and 𝑅′ → 𝐴′ is of finite type. We have to show
that 𝑅 → 𝐴 is of finite type. This is the result of Algebra, Lemma 7.117.1. It follows that
𝑓 is locally of finite type. Therefore Lemma 31.18.4 applies and we win. �

Lemma 31.19.9. The property 𝒫(𝑓) =``𝑓 is locally of finite presentation'' is fpqc local on
the base.

Proof. Being locally of finite presentation is preserved under base change, see Morphisms,
Lemma 24.20.4. Being locally of finite type is Zariski local on the base, see Morphisms,
Lemma 24.20.2. Finally, let 𝑆′ → 𝑆 be a flat surjective morphism of affine schemes, and
let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′ is locally of
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finite presentation. Let 𝑈 ⊂ 𝑋 be an affine open. Then 𝑈′ = 𝑆′ ×𝑆 𝑈 is affine and of finite
type over 𝑆′. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝑅), 𝑆′ = 𝑆𝑝𝑒𝑐(𝑅′), 𝑈 = 𝑆𝑝𝑒𝑐(𝐴), and 𝑈′ = 𝑆𝑝𝑒𝑐(𝐴′). We
know that 𝑅 → 𝑅′ is faithfully flat, 𝐴′ = 𝑅′ ⊗𝑅 𝐴 and 𝑅′ → 𝐴′ is of finite presentation.
We have to show that 𝑅 → 𝐴 is of finite presentation. This is the result of Algebra, Lemma
7.117.2. It follows that 𝑓 is locally of finite presentation. Therefore Lemma 31.18.4 applies
and we win. �

Lemma 31.19.10. The property 𝒫(𝑓) =``𝑓 is of finite type'' is fpqc local on the base.

Proof. Combine Lemmas 31.19.1 and 31.19.8. �

Lemma 31.19.11. The property 𝒫(𝑓) =``𝑓 is of finite presentation'' is fpqc local on the
base.

Proof. Combine Lemmas 31.19.1, 31.19.2 and 31.19.9. �

Lemma 31.19.12. The property 𝒫(𝑓) =``𝑓 is proper'' is fpqc local on the base.

Proof. The lemma follows by combining Lemmas 31.19.3, 31.19.5 and 31.19.10. �

Lemma 31.19.13. The property 𝒫(𝑓) =``𝑓 is flat'' is fpqc local on the base.

Proof. Being flat is preserved under arbitrary base change, seeMorphisms, Lemma 24.24.7.
Being flat is Zariski local on the base by definition. Finally, let 𝑆′ → 𝑆 be a flat surjec-
tive morphism of affine schemes, and let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that the
base change 𝑓′ ∶ 𝑋′ → 𝑆′ is flat. Let 𝑈 ⊂ 𝑋 be an affine open. Then 𝑈′ = 𝑆′ ×𝑆 𝑈 is
affine and of finite type over 𝑆′. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝑅), 𝑆′ = 𝑆𝑝𝑒𝑐(𝑅′), 𝑈 = 𝑆𝑝𝑒𝑐(𝐴), and
𝑈′ = 𝑆𝑝𝑒𝑐(𝐴′). We know that 𝑅 → 𝑅′ is faithfully flat, 𝐴′ = 𝑅′ ⊗𝑅 𝐴 and 𝑅′ → 𝐴′

is flat. Goal: Show that 𝑅 → 𝐴 is flat. This follows immediately from Algebra, Lemma
7.35.7. Hence 𝑓 is flat. Therefore Lemma 31.18.4 applies and we win. �

Lemma 31.19.14. The property 𝒫(𝑓) =``𝑓 is an open immersion'' is fpqc local on the base.

Proof. The property of being an open immersion is stable under base change, see Schemes,
Lemma 21.18.2. The property of being an open immersion is Zariski local on the base (this
is obvious). Finally, let 𝑆′ → 𝑆 be a flat surjective morphism of affine schemes, and let
𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′ is an open
immersion. Then 𝑓′ is universally open, and universally injective. Hence we conclude that
𝑓 is universally open by Lemma 31.19.4, and universally injective by Lemma 31.19.7. In
particular 𝑓(𝑋) ⊂ 𝑆 is open, and we may replace 𝑆 by 𝑓(𝑆) and assume that 𝑓 is surjective.
This implies that 𝑓′ is an isomorphism and we have to show that 𝑓 is an isomorphism also.
Since 𝑓 is universally injective we see that 𝑓 is bijective. Hence 𝑓 is a homeomorphism.
Let 𝑥 ∈ 𝑋 and choose 𝑈 ⊂ 𝑋 an affine open neighbourhood of 𝑥. Since 𝑓(𝑈) ⊂ 𝑆 is
open, and 𝑆 is affine we may choose a standard open 𝐷(𝑔) ⊂ 𝑓(𝑈) containing 𝑓(𝑥) where
𝑔 ∈ Γ(𝑆, 𝒪𝑆). It is clear that 𝑈 ∩ 𝑓−1(𝐷(𝑔)) is still affine and still an open neighbourhood
of 𝑥. Replace 𝑈 by 𝑈 ∩ 𝑓−1(𝐷(𝑔)) and write 𝑉 = 𝐷(𝑔) ⊂ 𝑆 and 𝑉′ the inverse image of 𝑉 in
𝑆′. Note that 𝑉′ is a standard open of 𝑆′ as well and in particular that 𝑉′ is affine. Since 𝑓′

is an isomorphism we have 𝑉′ ×𝑉 𝑈 → 𝑉′ is an isomorphism. In terms of rings this means
that

𝒪(𝑉′) ⟶ 𝒪(𝑉′) ⊗𝒪(𝑉) 𝒪(𝑈)
is an isomorphism. Since 𝒪(𝑉) → 𝒪(𝑉′) is faithfully flat this implies that 𝒪(𝑉) → 𝒪(𝑈) is
an isomorphism. Hence 𝑈 ≅ 𝑉 and we see that 𝑓 is an isomorphism. Therefore Lemma
31.18.4 applies and we win. �
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Lemma 31.19.15. The property 𝒫(𝑓) =``𝑓 is an isomorphism'' is fpqc local on the base.

Proof. Combine Lemmas 31.19.6 and 31.19.14. �

Lemma 31.19.16. The property 𝒫(𝑓) =``𝑓 is affine'' is fpqc local on the base.

Proof. A base change of an affine morphism is affine, see Morphisms, Lemma 24.11.8.
Being affine is Zariski local on the base, see Morphisms, Lemma 24.11.3. Finally, let
𝑔 ∶ 𝑆′ → 𝑆 be a flat surjective morphism of affine schemes, and let 𝑓 ∶ 𝑋 → 𝑆 be a
morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′ is affine. In other words, 𝑋′ is
affine, say 𝑋′ = 𝑆𝑝𝑒𝑐(𝐴′). Also write 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑆′ = 𝑆𝑝𝑒𝑐(𝑅′). We have to show
that 𝑋 is affine.
By Lemmas 31.19.1 and 31.19.5 we see that 𝑋 → 𝑆 is separated and quasi-compact.
Thus 𝑓∗𝒪𝑋 is a quasi-coherent sheaf of 𝒪𝑆-algebras, see Schemes, Lemma 21.24.1. Hence
𝑓∗𝒪𝑋 = 𝐴 for some 𝑅-algebra 𝐴. In fact 𝐴 = Γ(𝑋, 𝒪𝑋) of course. Also, by flat base change
(see for example Coherent, Lemma 25.6.2) we have 𝑔∗𝑓∗𝒪𝑋 = 𝑓′

∗𝒪𝑋′. In other words, we
have 𝐴′ = 𝑅′ ⊗𝑅 𝐴. Consider the canonical morphism

𝑋 ⟶ 𝑆𝑝𝑒𝑐(𝐴)
over 𝑆 from Schemes, Lemma 21.6.4. By the above the base change of this morphism to
𝑆′ is an isomorphism. Hence it is an isomorphism by Lemma 31.19.15. Therefore Lemma
31.18.4 applies and we win. �

Lemma 31.19.17. The property𝒫(𝑓) =``𝑓 is a closed immersion'' is fpqc local on the base.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let {𝑌𝑖 → 𝑌} be an fpqc covering.
Assume that each 𝑓𝑖 ∶ 𝑌𝑖 ×𝑌 𝑋 → 𝑌𝑖 is a closed immersion. This implies that each 𝑓𝑖 is
affine, see Morphisms, Lemma 24.11.9. By Lemma 31.19.16 we conclude that 𝑓 is affine.
It remains to show that 𝒪𝑌 → 𝑓∗𝒪𝑋 is surjective. For every 𝑦 ∈ 𝑌 there exists an 𝑖 and
a point 𝑦𝑖 ∈ 𝑌𝑖 mapping to 𝑦. By Coherent, Lemma 25.6.2 the sheaf 𝑓𝑖,∗(𝒪𝑌𝑖×𝑌𝑋) is the
pullback of 𝑓∗𝒪𝑋. By assumption it is a quotient of 𝒪𝑌𝑖

. Hence we see that

(𝒪𝑌,𝑦 ⟶ (𝑓∗𝒪𝑋)𝑦) ⊗𝒪𝑌,𝑦
𝒪𝑌𝑖,𝑦𝑖

is surjective. Since 𝒪𝑌𝑖,𝑦𝑖
is faithfully flat over 𝒪𝑌,𝑦 this implies the surjectivity of 𝒪𝑌,𝑦 ⟶

(𝑓∗𝒪𝑋)𝑦 as desired. �

Lemma 31.19.18. The property 𝒫(𝑓) =``𝑓 is quasi-affine'' is fpqc local on the base.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let {𝑔𝑖 ∶ 𝑌𝑖 → 𝑌} be an fpqc
covering. Assume that each 𝑓𝑖 ∶ 𝑌𝑖 ×𝑌 𝑋 → 𝑌𝑖 is quasi-affine. This implies that each
𝑓𝑖 is quasi-compact and separated. By Lemmas 31.19.1 and 31.19.5 this implies that 𝑓 is
quasi-compact and separated. Consider the sheaf of 𝒪𝑌-algebras 𝒜 = 𝑓∗𝒪𝑋. By Schemes,
Lemma 21.24.1 it is a quasi-coherent 𝒪𝑌-algebra. Consider the canonical morphism

𝑗 ∶ 𝑋 ⟶ 𝑆𝑝𝑒𝑐
𝑌
(𝒜)

see Constructions, Lemma 22.4.7. By flat base change (see for example Coherent, Lemma
25.6.2) we have 𝑔∗

𝑖 𝑓∗𝒪𝑋 = 𝑓𝑖,∗𝒪𝑋′ where 𝑔𝑖 ∶ 𝑌𝑖 → 𝑌 are the given flat maps. Hence the
base change 𝑗𝑖 of 𝑗 by 𝑔𝑖 is the canonical morphism of Constructions, Lemma 22.4.7 for
the morphism 𝑓𝑖. By assumption and Morphisms, Lemma 24.12.3 all of these morphisms
𝑗𝑖 are quasi-compact open immersions. Hence, by Lemmas 31.19.1 and 31.19.14 we see
that 𝑗 is a quasi-compact open immersion. Hence by Morphisms, Lemma 24.12.3 again we
conclude that 𝑓 is quasi-affine. �
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Lemma 31.19.19. The property 𝒫(𝑓) =``𝑓 is a quasi-compact immersion'' is fpqc local on
the base.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be amorphism of schemes. Let {𝑌𝑖 → 𝑌} be an fpqc covering. Write
𝑋𝑖 = 𝑌𝑖 ×𝑌 𝑋 and 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 the base change of 𝑓. Also denote 𝑞𝑖 ∶ 𝑌𝑖 → 𝑌 the given flat
morphisms. Assume each 𝑓𝑖 is a quasi-compact immersion. By Schemes, Lemma 21.23.7
each 𝑓𝑖 is separated. By Lemmas 31.19.1 and 31.19.5 this implies that 𝑓 is quasi-compact
and separated. Let𝑋 → 𝑍 → 𝑌 be the factorization of 𝑓 through its scheme theoretic image.
ByMorphisms, Lemma 24.4.3 the closed subscheme 𝑍 ⊂ 𝑌 is cut out by the quasi-coherent
sheaf of ideals ℐ = Ker(𝒪𝑌 → 𝑓∗𝒪𝑋) as 𝑓 is quasi-compact. By flat base change (see
for example Coherent, Lemma 25.6.2; here we use 𝑓 is separated) we see 𝑓𝑖,∗𝒪𝑋𝑖

is the
pullback 𝑞∗

𝑖 𝑓∗𝒪𝑋. Hence 𝑌𝑖 ×𝑌 𝑍 is cut out by the quasi-coherent sheaf of ideals 𝑞∗
𝑖 ℐ =

Ker(𝒪𝑌𝑖
→ 𝑓𝑖,∗𝒪𝑋𝑖

). By Morphisms, Lemma 24.5.7 the morphisms 𝑋𝑖 → 𝑌𝑖 ×𝑌 𝑍 are open
immersions. Hence by Lemma 31.19.14 we see that 𝑋 → 𝑍 is an open immersion and
hence 𝑓 is a immersion as desired (we already saw it was quasi-compact). �

Lemma 31.19.20. The property 𝒫(𝑓) =``𝑓 is integral'' is fpqc local on the base.

Proof. An integral morphism is the same thing as an affine, universally closed morphism.
SeeMorphisms, Lemma 24.42.7. Hence the lemma follows on combining Lemmas 31.19.3
and 31.19.16. �

Lemma 31.19.21. The property 𝒫(𝑓) =``𝑓 is finite'' is fpqc local on the base.

Proof. An finite morphism is the same thing as an integral, morphism which is locally
of finite type. See Morphisms, Lemma 24.42.4. Hence the lemma follows on combining
Lemmas 31.19.8 and 31.19.20. �

Lemma 31.19.22. The properties𝒫(𝑓) =``𝑓 is locally quasi-finite'' and𝒫(𝑓) =``𝑓 is quasi-
finite'' are fpqc local on the base.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes, and let {𝑆𝑖 → 𝑆} be an fpqc covering
such that each base change 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑖 is locally quasi-finite. We have already seen
(Lemma 31.19.8) that ``locally of finite type'' is fpqc local on the base, and hence we see that
𝑓 is locally of finite type. Then it follows fromMorphisms, Lemma 24.19.13 that 𝑓 is locally
quasi-finite. The quasi-finite case follows as we have already seen that ``quasi-compact'' is
fpqc local on the base (Lemma 31.19.1). �

Lemma 31.19.23. The property 𝒫(𝑓) =``𝑓 is locally of finite type of relative dimension 𝑑''
is fpqc local on the base.

Proof. This follows immediately from the fact that being locally of finite type is fpqc local
on the base and Morphisms, Lemma 24.27.3. �

Lemma 31.19.24. The property 𝒫(𝑓) =``𝑓 is syntomic'' is fpqc local on the base.

Proof. A morphism is syntomic if and only if it is locally of finite presentation, flat, and
has locally complete intersections as fibres. We have seen already that being flat and locally
of finite presentation are fpqc local on the base (Lemmas 31.19.13, and 31.19.9). Hence
the result follows for syntomic from Morphisms, Lemma 24.30.12. �

Lemma 31.19.25. The property 𝒫(𝑓) =``𝑓 is smooth'' is fpqc local on the base.
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Proof. A morphism is smooth if and only if it is locally of finite presentation, flat, and
has smooth fibres. We have seen already that being flat and locally of finite presentation
are fpqc local on the base (Lemmas 31.19.13, and 31.19.9). Hence the result follows for
smooth from Morphisms, Lemma 24.33.15. �

Lemma 31.19.26. The property 𝒫(𝑓) =``𝑓 is unramified'' is fpqc local on the base. The
property 𝒫(𝑓) =``𝑓 is G-unramified'' is fpqc local on the base.

Proof. A morphism is unramified (resp. G-unramified) if and only if it is locally of finite
type (resp. finite presentation) and its diagonal morphism is an open immersion (see Mor-
phisms, Lemma 24.34.13). We have seen already that being locally of finite type (resp.
locally of finite presentation) and an open immersion is fpqc local on the base (Lemmas
31.19.9, 31.19.8, and 31.19.14). Hence the result follows formally. �

Lemma 31.19.27. The property 𝒫(𝑓) =``𝑓 is étale'' is fpqc local on the base.

Proof. Amorphism is étale if and only if it flat and G-unramified. SeeMorphisms, Lemma
24.35.16. We have seen already that being flat and G-unramified are fpqc local on the base
(Lemmas 31.19.13, and 31.19.26). Hence the result follows. �

Lemma 31.19.28. The property 𝒫(𝑓) =``𝑓 is finite locally free'' is fpqc local on the base.
Let 𝑑 ≥ 0. The property 𝒫(𝑓) =``𝑓 is finite locally free of degree 𝑑'' is fpqc local on the
base.

Proof. Being finite locally free is equivalent to being finite, flat and locally of finite presen-
tation (Morphisms, Lemma 24.44.2). Hence this follows from Lemmas 31.19.21, 31.19.13,
and 31.19.9. If 𝑓 ∶ 𝑍 → 𝑈 is finite locally free, and {𝑈𝑖 → 𝑈} is a surjective family of
morphisms such that each pullback 𝑍 ×𝑈 𝑈𝑖 → 𝑈𝑖 has degree 𝑑, then 𝑍 → 𝑈 has de-
gree 𝑑, for example because we can read off the degree in a point 𝑢 ∈ 𝑈 from the fibre
(𝑓∗𝒪𝑍)𝑢 ⊗𝒪𝑈,𝑢

𝜅(𝑢). �

Lemma 31.19.29. The property 𝒫(𝑓) =``𝑓 is a monomorphism'' is fpqc local on the base.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let {𝑆𝑖 → 𝑆} be an fpqc covering, and
assume each of the base changes 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑖 of 𝑓 is a monomorphism. Let 𝑎, 𝑏 ∶ 𝑇 → 𝑋
be two morphisms such that 𝑓 ∘ 𝑎 = 𝑓 ∘ 𝑏. We have to show that 𝑎 = 𝑏. Since 𝑓𝑖 is a
monomorphism we see that 𝑎𝑖 = 𝑏𝑖, where 𝑎𝑖, 𝑏𝑖 ∶ 𝑆𝑖 ×𝑆 𝑇 → 𝑋𝑖 are the base changes.
In particular the compositions 𝑆𝑖 ×𝑆 𝑇 → 𝑇 → 𝑋 are equal. Since ∐ 𝑆𝑖 ×𝑆 𝑇 → 𝑇 is an
epimorphism (see e.g. Lemma 31.9.3) we conclude 𝑎 = 𝑏. �

Lemma 31.19.30. The properties
𝒫(𝑓) =``𝑓 is a Koszul-regular immersion'',
𝒫(𝑓) =``𝑓 is an 𝐻1-regular immersion'', and
𝒫(𝑓) =``𝑓 is a quasi-regular immersion''

are fpqc local on the base.

Proof. We will use the criterion of Lemma 31.18.4 to prove this. By Divisors, Definition
26.13.1 being a Koszul-regular (resp. 𝐻1-regular, quasi-regular) immersion is Zariski local
on the base. By Divisors, Lemma 26.13.4 being a Koszul-regular (resp. 𝐻1-regular, quasi-
regular) immersion is preserved under flat base change. The final hypothesis (3) of Lemma
31.18.4 translates into the following algebra statement: Let 𝐴 → 𝐵 be a faithfully flat ring
map. Let 𝐼 ⊂ 𝐴 be an ideal. If 𝐼𝐵 is locally on 𝑆𝑝𝑒𝑐(𝐵) generated by a Koszul-regular
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(resp. 𝐻1-regular, quasi-regular) sequence in 𝐵, then 𝐼 ⊂ 𝐴 is locally on 𝑆𝑝𝑒𝑐(𝐴) gener-
ated by a Koszul-regular (resp. 𝐻1-regular, quasi-regular) sequence in 𝐴. This is More on
Algebra, Lemma 12.23.3. �

31.20. Properties of morphisms local in the fppf topology on the target

In this section we find some properties of morphisms of schemes for which we could not
(yet) show they are local on the base in the fpqc topology which, however, are local on the
base in the fppf topology.

Lemma 31.20.1. The property 𝒫(𝑓) =``𝑓 is an immersion'' is fppf local on the base.

Proof. The property of being an immersion is stable under base change, see Schemes,
Lemma 21.18.2. The property of being an immersion is Zariski local on the base. Finally,
let 𝜋 ∶ 𝑆′ → 𝑆 be a surjective morphism of affine schemes, which is flat and locally
of finite presentation. Note that 𝜋 ∶ 𝑆′ → 𝑆 is open by Morphisms, Lemma 24.24.9.
Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑆′ is an
immersion. In particular we see that 𝑓′(𝑋′) = 𝜋−1(𝑓(𝑋)) is locally closed. Hence by
Topology, Lemma 5.15.2 we see that 𝑓(𝑋) ⊂ 𝑆 is locally closed. Let 𝑍 ⊂ 𝑆 be the closed
subset 𝑍 = 𝑓(𝑋) ⧵ 𝑓(𝑋). By Topology, Lemma 5.15.2 again we see that 𝑓′(𝑋′) is closed
in 𝑆′ ⧵ 𝑍′. Hence we may apply Lemma 31.19.17 to the fpqc covering {𝑆′ ⧵ 𝑍′ → 𝑆 ⧵ 𝑍}
and conclude that 𝑓 ∶ 𝑋 → 𝑆⧵𝑍 is a closed immersion. In other words, 𝑓 is an immersion.
Therefore Lemma 31.18.4 applies and we win. �

31.21. Application of fpqc descent of properties of morphisms

The following lemma may seem a bit frivolous but turns out is a useful tool in studying
étale and unramified morphisms.

Lemma 31.21.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat, quasi-compact, surjective monomorphism. Then
f is an isomorphism.

Proof. As 𝑓 is a flat, quasi-compact, surjective morphism we see {𝑋 → 𝑌} is an fpqc
covering of 𝑌. The diagonal Δ ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is an isomorphism. This implies that the
base change of 𝑓 by 𝑓 is an isomorphism. Hence we see 𝑓 is an isomorphism by Lemma
31.19.15. �

We can use this lemma to show the following important result. We will discuss this and
related results in more detail in Étale Morphisms, Section 37.14.

Lemma 31.21.2. A universally injective étale morphism is an open immersion.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be an étale morphism which is universally injective. Then 𝑓 is
open (Morphisms, Lemma 24.35.13) hence we can replace 𝑌 by 𝑓(𝑋) and we may assume
that 𝑓 is surjective. Then 𝑓 is bijective and open hence a homeomorphism. Hence 𝑓 is
quasi-compact. Thus by Lemma 31.21.1 it suffices to show that 𝑓 is a monomorphism. As
𝑋 → 𝑌 is étale the morphism Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is an open immersion by Morphisms,
Lemma 24.34.13 (and Morphisms, Lemma 24.35.16). As 𝑓 is universally injective Δ𝑋/𝑌
is also surjective, see Morphisms, Lemma 24.10.2. Hence Δ𝑋/𝑌 is an isomorphism, i.e.,
𝑋 → 𝑌 is a monomorphism. �
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31.22. Properties of morphisms local on the source

It often happens one can prove a morphism has a certain property after precomposing with
some other morphism. In many cases this implies the morphism has the property too. We
formalize this in the following definition.

Definition 31.22.1. Let 𝒫 be a property of morphisms of schemes. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑞𝑐,
𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. We say 𝒫 is 𝜏 local on the source, or local on the source
for the 𝜏-topology if for any morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 over 𝑆, and any 𝜏-covering
{𝑋𝑖 → 𝑋}𝑖∈𝐼 we have

𝑓 has 𝒫 ⇔ each 𝑋𝑖 → 𝑌 has 𝒫.

To be sure, since isomorphisms are always coverings we see (or require) that property 𝒫
holds for 𝑋 → 𝑌 if and only if it holds for any arrow 𝑋′ → 𝑌′ isomorphic to 𝑋 → 𝑌. If
a property is 𝜏-local on the source then it is preserved by precomposing with morphisms
which occur in 𝜏-coverings. Here is a formal statement.

Lemma 31.22.2. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. Let 𝒫 be a
property of morphisms which is 𝜏 local on the source. Let 𝑓 ∶ 𝑋 → 𝑌 have property
𝒫. For any morphism 𝑎 ∶ 𝑋′ → 𝑋 which is flat, resp. flat and locally of finite presentation,
resp. syntomic, resp. étale, resp. an open immersion, the composition 𝑓 ∘ 𝑎 ∶ 𝑋′ → 𝑌 has
property 𝒫.

Proof. This is true because we can fit 𝑋′ → 𝑋 into a family of morphisms which forms a
𝜏-covering. �

Lemma 31.22.3. Let 𝒫 be a property of morphisms of schemes. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓,
́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Assume that

(1) the property is preserved under precomposing with flat, flat locally of finite pre-
sentation, étale, smooth or syntomic morphisms depending on whether 𝜏 is fpqc,
fppf, étale, smooth, or syntomic,

(2) the property is Zariski local on the source,
(3) the property is Zariski local on the target,
(4) for any morphism of affine schemes 𝑋 → 𝑌, and any surjective morphism of

affine schemes 𝑋′ → 𝑋 which is flat, flat of finite presentation, étale, smooth
or syntomic depending on whether 𝜏 is fpqc, fppf, étale, smooth, or syntomic,
property 𝒫 holds for 𝑓 if property 𝒫 holds for the composition 𝑓′ ∶ 𝑋′ → 𝑌.

Then 𝒫 is 𝜏 local on the source.

Proof. This follows almost immediately from the definition of a 𝜏-covering, see Topolo-
gies, Definition 30.8.1 30.7.1 30.4.1 30.5.1, or 30.6.1 and Topologies, Lemma 30.8.8,
30.7.4, 30.4.4, 30.5.4, or 30.6.4. Details omitted. (Hint: Use locality on the source and
target to reduce the verification of property 𝒫 to the case of a morphism between affines.
Then apply (1) and (4).) �

Remark 31.22.4. (This is a repeat of Remarks 31.11.3 and 31.18.5 above.) In Lemma
31.22.3 above if 𝜏 = 𝑠𝑚𝑜𝑜𝑡ℎ then in condition (4) we may assume that the morphism is a
(surjective) standard smooth morphism. Similarly, when 𝜏 = 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 or 𝜏 = ́𝑒𝑡𝑎𝑙𝑒.

31.23. Properties of morphisms local in the fpqc topology on the source

Here are some properties of morphisms that are fpqc local on the source.

Lemma 31.23.1. The property 𝒫(𝑓) =``𝑓 is flat'' is fpqc local on the source.
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Proof. Since flatness is defined in terms of the maps of local rings (Morphisms, Definition
24.24.1) what has to be shown is the following algebraic fact: Suppose 𝐴 → 𝐵 → 𝐶 are
local homomorphisms of local rings, and assume 𝐵 → 𝐶 are flat. Then 𝐴 → 𝐵 is flat if
and only if 𝐴 → 𝐶 is flat. If 𝐴 → 𝐵 is flat, then 𝐴 → 𝐶 is flat by Algebra, Lemma 7.35.3.
Conversely, assume 𝐴 → 𝐶 is flat. Note that 𝐵 → 𝐶 is faithfully flat, see Algebra, Lemma
7.35.16. Hence 𝐴 → 𝐵 is flat by Algebra, Lemma 7.35.9. (Also see Morphisms, Lemma
24.24.11 for a direct proof.) �

Lemma 31.23.2. Then property 𝒫(𝑓 ∶ 𝑋 → 𝑌) =``for every 𝑥 ∈ 𝑋 the map of local rings
𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥 is injective'' is fpqc local on the source.

Proof. Omitted. This is just a (probably misguided) attempt to be playful. �

31.24. Properties of morphisms local in the fppf topology on the source

Here are some properties of morphisms that are fppf local on the source.

Lemma 31.24.1. The property 𝒫(𝑓) =``𝑓 is locally of finite presentation'' is fppf local on
the source.

Proof. Being locally of finite presentation is Zariski local on the source and the target, see
Morphisms, Lemma 24.20.2. It is a property which is preserved under composition, see
Morphisms, Lemma 24.20.3. This proves (1), (2) and (3) of Lemma 31.22.3. The final
condition (4) is Lemma 31.10.1. Hence we win. �

Lemma 31.24.2. The property𝒫(𝑓) =``𝑓 is locally of finite type'' is fppf local on the source.

Proof. Being locally of finite type is Zariski local on the source and the target, see Mor-
phisms, Lemma 24.14.2. It is a property which is preserved under composition, see Mor-
phisms, Lemma 24.14.3, and a flat morphism locally of finite presentation is locally of finite
type, see Morphisms, Lemma 24.20.8. This proves (1), (2) and (3) of Lemma 31.22.3. The
final condition (4) is Lemma 31.10.2. Hence we win. �

Lemma 31.24.3. The property 𝒫(𝑓) =``𝑓 is open'' is fppf local on the source.

Proof. Being an open morphism is clearly Zariski local on the source and the target. It is a
property which is preserved under composition, see Morphisms, Lemma 24.22.3, and a flat
morphism of finite presentation is open, see Morphisms, Lemma 24.24.9 This proves (1),
(2) and (3) of Lemma 31.22.3. The final condition (4) follows from Morphisms, Lemma
24.24.10. Hence we win. �

Lemma 31.24.4. The property 𝒫(𝑓) =``𝑓 is universally open'' is fppf local on the source.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let {𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fppf covering.
Denote 𝑓𝑖 ∶ 𝑋𝑖 → 𝑋 the compositions. We have to show that 𝑓 is universally open if and
only if each 𝑓𝑖 is universally open. If 𝑓 is universally open, then also each 𝑓𝑖 is universally
open since the maps 𝑋𝑖 → 𝑋 are universally open and compositions of universally open
morphisms are universally open (Morphisms, Lemmas 24.24.9 and 24.22.3). Conversely,
assume each 𝑓𝑖 is universally open. Let 𝑌′ → 𝑌 be a morphism of schemes. Denote 𝑋′ =
𝑌′ ×𝑌 𝑋 and 𝑋′

𝑖 = 𝑌′ ×𝑌 𝑋𝑖. Note that {𝑋′
𝑖 → 𝑋′}𝑖∈𝐼 is an fppf covering also. The

morphisms 𝑓′
𝑖 ∶ 𝑋′

𝑖 → 𝑌′ are open by assumption. Hence by the Lemma 31.24.3 above we
conclude that 𝑓′ ∶ 𝑋′ → 𝑌′ is open as desired. �
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31.25. Properties of morphisms local in the syntomic toplogy on the source

Here are some properties of morphisms that are syntomic local on the source.

Lemma 31.25.1. The property 𝒫(𝑓) =``𝑓 is syntomic'' is syntomic local on the source.

Proof. Combine Lemma 31.22.3 with Morphisms, Lemma 24.30.2 (local for Zariski on
source and target), Morphisms, Lemma 24.30.3 (pre-composing), and Lemma 31.10.4 (part
(4)). �

31.26. Properties of morphisms local in the smooth topology on the source

Here are some properties of morphisms that are smooth local on the source.

Lemma 31.26.1. The property 𝒫(𝑓) =``𝑓 is smooth'' is smooth local on the source.

Proof. Combine Lemma 31.22.3 with Morphisms, Lemma 24.33.2 (local for Zariski on
source and target), Morphisms, Lemma 24.33.4 (pre-composing), and Lemma 31.10.4 (part
(4)). �

31.27. Properties of morphisms local in the étale topology on the source

Here are some properties of morphisms that are étale local on the source.

Lemma 31.27.1. The property 𝒫(𝑓) =``𝑓 is étale'' is étale local on the source.

Proof. Combine Lemma 31.22.3 with Morphisms, Lemma 24.35.2 (local for Zariski on
source and target), Morphisms, Lemma 24.35.3 (pre-composing), and Lemma 31.10.4 (part
(4)). �

Lemma31.27.2. The property𝒫(𝑓) =``𝑓 is locally quasi-finite'' is étale local on the source.

Proof. We are going to use Lemma 31.22.3. ByMorphisms, Lemma 24.19.11 the property
of being locally quasi-finite is local for Zariski on source and target. By Morphisms, Lem-
mas 24.19.12 and 24.35.6 we see the precomposition of a locally quasi-finite morphism by
an étale morphism is locally quasi-finite. Finally, suppose that 𝑋 → 𝑌 is a morphism of
affine schemes and that 𝑋′ → 𝑋 is a surjective étale morphism of affine schemes such that
𝑋′ → 𝑌 is locally quasi-finite. Then 𝑋′ → 𝑌 is of finite type, and by Lemma 31.10.2 we
see that 𝑋 → 𝑌 is of finite type also. Moreover, by assumption 𝑋′ → 𝑌 has finite fibres,
and hence 𝑋 → 𝑌 has finite fibres also. We conclude that 𝑋 → 𝑌 is quasi-finite by Mor-
phisms, Lemma 24.19.10. This proves the last assumption of Lemma 31.22.3 and finishes
the proof. �

Lemma 31.27.3. The property 𝒫(𝑓) =``𝑓 is unramified'' is étale local on the source. The
property 𝒫(𝑓) =``𝑓 is G-unramified'' is étale local on the source.

Proof. We are going to use Lemma 31.22.3. By Morphisms, Lemma 24.34.3 the prop-
erty of being unramified (resp. G-unramified) is local for Zariski on source and target. By
Morphisms, Lemmas 24.34.4 and 24.35.5we see the precomposition of an unramified (resp.
G-unramified) morphism by an étale morphism is unramified (resp. G-unramified). Finally,
suppose that 𝑋 → 𝑌 is a morphism of affine schemes and that 𝑓 ∶ 𝑋′ → 𝑋 is a surjective
étale morphism of affine schemes such that 𝑋′ → 𝑌 is unramified (resp. G-unramified).
Then 𝑋′ → 𝑌 is of finite type (resp. finite presentation), and by Lemma 31.10.2 (resp.
Lemma 31.10.1) we see that 𝑋 → 𝑌 is of finite type (resp. finite presentation) also. By
Morphisms, Lemma 24.33.16 we have a short exact sequence

0 → 𝑓∗Ω𝑋/𝑌 → Ω𝑋′/𝑌 → Ω𝑋′/𝑋 → 0.
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As 𝑋′ → 𝑌 is unramified we see that the middle term is zero. Hence, as 𝑓 is faithfully flat
we see that Ω𝑋/𝑌 = 0. Hence 𝑋 → 𝑌 is unramified (resp. G-unramified), see Morphisms,
Lemma 24.34.2. This proves the last assumption of Lemma 31.22.3 and finishes the proof.

�

31.28. Properties of morphisms étale local on source-and-target

Let 𝒫 be a property of morphisms of schemes. There is an intuitive meaning to the phrase
``𝒫 is étale local on the source and target''. However, it turns out that this notion is not the
same as asking 𝒫 to be both étale local on the source and étale local on the target. Before
we discuss this further we give two silly examples.

Example 31.28.1. Consider the property 𝒫 of morphisms of schemes defined by the rule
𝒫(𝑋 → 𝑌) =``𝑌 is locally Noetherian''. The reader can verify that this is étale local on the
source and étale local on the target (omitted, see Lemma 31.12.1). But it is not true that if
𝑓 ∶ 𝑋 → 𝑌 has 𝒫 and 𝑔 ∶ 𝑌 → 𝑍 is étale, then 𝑔 ∘ 𝑓 has 𝒫. Namely, 𝑓 could be the identity
on 𝑌 and 𝑔 could be an open immersion of a locally Noetherian scheme 𝑌 into a non locally
Noetherian scheme 𝑍.

The following example is in some sense worse.

Example 31.28.2. Consider the property 𝒫 of morphisms of schemes defined by the rule
𝒫(𝑓 ∶ 𝑋 → 𝑌) =``for every 𝑦 ∈ 𝑌 which is a specialization of some 𝑓(𝑥), 𝑥 ∈ 𝑋 the local
ring 𝒪𝑌,𝑦 is Noetherian''. Let us verify that this is étale local on the source and étale local
on the target. We will freely use Schemes, Lemma 21.13.2.
Local on the target: Let {𝑔𝑖 ∶ 𝑌𝑖 → 𝑌} be an étale covering. Let 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 be the
base change of 𝑓, and denote ℎ𝑖 ∶ 𝑋𝑖 → 𝑋 the projection. Assume 𝒫(𝑓). Let 𝑓(𝑥𝑖)  𝑦𝑖
be a specialization. Then 𝑓(ℎ𝑖(𝑥𝑖))  𝑔𝑖(𝑦𝑖) so 𝒫(𝑓) implies 𝒪𝑌,𝑔𝑖(𝑦𝑖) is Noetherian. Also
𝒪𝑌,𝑔𝑖(𝑦𝑖) → 𝒪𝑌𝑖,𝑦𝑖

is a localization of an étale ring map. Hence 𝒪𝑌𝑖,𝑦𝑖
is Noetherian by Alge-

bra, Lemma 7.28.1. Conversely, assume 𝒫(𝑓𝑖) for all 𝑖. Let 𝑓(𝑥)  𝑦 be a specialization.
Choose an 𝑖 and 𝑦𝑖 ∈ 𝑌𝑖 mapping to 𝑦. Since 𝑥 can be viewed as a point of 𝑆𝑝𝑒𝑐(𝒪𝑌,𝑦) ×𝑌 𝑋
and 𝒪𝑌,𝑦 → 𝒪𝑌𝑖,𝑦𝑖

is faithfully flat, there exists a point 𝑥𝑖 ∈ 𝑆𝑝𝑒𝑐(𝒪𝑌𝑖,𝑦𝑖
) ×𝑌 𝑋 mapping to 𝑥.

Then 𝑥𝑖 ∈ 𝑋𝑖, and 𝑓𝑖(𝑥𝑖) specializes to 𝑦𝑖. Thus we see that 𝒪𝑌𝑖,𝑦𝑖
is Noetherian by 𝒫(𝑓𝑖)

which implies that 𝒪𝑌,𝑦 is Noetherian by Algebra, Lemma 7.146.1.
Local on the source: Let {ℎ𝑖 ∶ 𝑋𝑖 → 𝑋} be an étale covering. Let 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌 be the
composition 𝑓 ∘ ℎ𝑖. Assume 𝒫(𝑓). Let 𝑓(𝑥𝑖) 𝑦 be a specialization. Then 𝑓(ℎ𝑖(𝑥𝑖)) 𝑦
so 𝒫(𝑓) implies 𝒪𝑌,𝑦 is Noetherian. Thus 𝒫(𝑓𝑖) holds. Conversely, assume 𝒫(𝑓𝑖) for all 𝑖.
Let 𝑓(𝑥)  𝑦 be a specialization. Choose an 𝑖 and 𝑥𝑖 ∈ 𝑋𝑖 mapping to 𝑥. Then 𝑦 is a
specialization of 𝑓𝑖(𝑥𝑖) = 𝑓(𝑥). Hence 𝒫(𝑓𝑖) implies 𝒪𝑌,𝑦 is Noetherian as desired.
We claim that there exists a commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

with surjective étale vertical arrows, such that ℎ has 𝒫 and 𝑓 does not have 𝒫. Namely, let

𝑌 = 𝑆𝑝𝑒𝑐 (𝐂[𝑥𝑛; 𝑛 ∈ 𝐙]/(𝑥𝑛𝑥𝑚; 𝑛≠𝑚))
and let 𝑋 ⊂ 𝑌 be the open subscheme which is the complement of the point all of whose
coordinates 𝑥𝑛 = 0. Let 𝑈 = 𝑋, let 𝑉 = 𝑋 ∐ 𝑌, let 𝑎, 𝑏 the obvious map, and let ℎ ∶ 𝑈 → 𝑉
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be the inclusion of 𝑈 = 𝑋 into the first summand of 𝑉. The claim above holds because 𝑈
is locally Noetherian, but 𝑌 is not.

What should be the correct notion of a property which is étale local on the source-and-
target? We think that, by analogy with Morphisms, Definition 24.13.1 it should be the
following.

Definition 31.28.3. Let 𝒫 be a property of morphisms of schemes. We say 𝒫 is étale local
on source-and-target if

(1) (stable under precomposingwith étalemaps) if 𝑓 ∶ 𝑋 → 𝑌 is étale and 𝑔 ∶ 𝑌 → 𝑍
has 𝒫, then 𝑔 ∘ 𝑓 has 𝒫,

(2) (stable under étale base change) if 𝑓 ∶ 𝑋 → 𝑌 has 𝒫 and 𝑌′ → 𝑌 is étale, then
the base change 𝑓′ ∶ 𝑌′ ×𝑌 𝑋 → 𝑌′ has 𝒫, and

(3) (locality) given a morphism 𝑓 ∶ 𝑋 → 𝑌 the following are equivalent
(a) 𝑓 has 𝒫,
(b) for every 𝑥 ∈ 𝑋 there exists a commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

with étale vertical arrows and 𝑢 ∈ 𝑈 with 𝑎(𝑢) = 𝑥 such that ℎ has 𝒫.

It turns out this definition excludes the behavior seen in Examples 31.28.1 and 31.28.2.
We will compare this to the definition in the paper [DM69a] by Deligne and Mumford in
Remark 31.28.8. Moreover, a property which is étale local on the source-and-target is étale
local on the source and étale local on the target. Finally, the converse is almost true as we
will see in Lemma 31.28.5.

Lemma 31.28.4. Let 𝒫 be a property of morphisms of schemes which is étale local on
source-and-target. Then

(1) 𝒫 is étale local on the source,
(2) 𝒫 is étale local on the target,
(3) 𝒫 is stable under postcomposing with étale morphisms: if 𝑓 ∶ 𝑋 → 𝑌 has 𝒫 and

𝑔 ∶ 𝑌 → 𝑍 is étale, then 𝑔 ∘ 𝑓 has 𝒫, and
(4) 𝒫 has a permanence property: given 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 étale such that

𝑔 ∘ 𝑓 has 𝒫, then 𝑓 has 𝒫.

Proof. We write everything out completely.
Proof of (1). Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let {𝑋𝑖 → 𝑋}𝑖∈𝐼 be an étale
covering of 𝑋. If each composition ℎ𝑖 ∶ 𝑋𝑖 → 𝑌 has 𝒫, then for each 𝑥 ∈ 𝑋 we can find
an 𝑖 ∈ 𝐼 and a point 𝑥𝑖 ∈ 𝑋𝑖 mapping to 𝑥. Then (𝑋𝑖, 𝑥𝑖) → (𝑋, 𝑥) is an étale morphism of
germs, and id𝑌 ∶ 𝑌 → 𝑌 is an étale morphism, and ℎ𝑖 is as in part (3) of Definition 31.28.3.
Thus we see that 𝑓 has 𝒫. Conversely, if 𝑓 has 𝒫 then each 𝑋𝑖 → 𝑌 has 𝒫 by Definition
31.28.3 part (1).
Proof of (2). Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let {𝑌𝑖 → 𝑌}𝑖∈𝐼 be an étale
covering of 𝑌. Write 𝑋𝑖 = 𝑌𝑖 ×𝑌 𝑋 and ℎ𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 for the base change of 𝑓. If each
ℎ𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 has 𝒫, then for each 𝑥 ∈ 𝑋 we pick an 𝑖 ∈ 𝐼 and a point 𝑥𝑖 ∈ 𝑋𝑖 mapping
to 𝑥. Then (𝑋𝑖, 𝑥𝑖) → (𝑋, 𝑥) is an étale morphism of germs, 𝑌𝑖 → 𝑌 is étale, and ℎ𝑖 is as in
part (3) of Definition 31.28.3. Thus we see that 𝑓 has 𝒫. Conversely, if 𝑓 has 𝒫, then each
𝑋𝑖 → 𝑌𝑖 has 𝒫 by Definition 31.28.3 part (2).
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Proof of (3). Assume 𝑓 ∶ 𝑋 → 𝑌 has 𝒫 and 𝑔 ∶ 𝑌 → 𝑍 is étale. For every 𝑥 ∈ 𝑋 we can
think of (𝑋, 𝑥) → (𝑋, 𝑥) as an étale morphism of germs, 𝑌 → 𝑍 is an étale morphism, and
ℎ = 𝑓 is as in part (3) of Definition 31.28.3. Thus we see that 𝑔 ∘ 𝑓 has 𝒫.

Proof of (4). Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism and 𝑔 ∶ 𝑌 → 𝑍 étale such that 𝑔 ∘ 𝑓 has 𝒫.
Then by Definition 31.28.3 part (2) we see that pr𝑌 ∶ 𝑌×𝑍 𝑋 → 𝑌 has 𝒫. But the morphism
(𝑓, 1) ∶ 𝑋 → 𝑌 ×𝑍 𝑋 is étale as a section to the étale projection pr𝑋 ∶ 𝑌 ×𝑍 𝑋 → 𝑋,
see Morphisms, Lemma 24.35.18. Hence 𝑓 = pr𝑌 ∘ (𝑓, 1) has 𝒫 by Definition 31.28.3 part
(1). �

The following lemma is the analogue of Morphisms, Lemma 24.13.4.

Lemma 31.28.5. Let 𝒫 be a property of morphisms of schemes which is étale local on
source-and-target. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The following are equiva-
lent:

(a) 𝑓 has property 𝒫,
(b) for every 𝑥 ∈ 𝑋 there exists an étale morphism of germs 𝑎 ∶ (𝑈, 𝑢) → (𝑋, 𝑥), an

étale morphism 𝑏 ∶ 𝑉 → 𝑌, and a morphism ℎ ∶ 𝑈 → 𝑉 such that 𝑓 ∘ 𝑎 = 𝑏 ∘ ℎ
and ℎ has 𝒫,

(c) for any commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

with 𝑎, 𝑏 étale the morphism ℎ has 𝒫,
(d) for some diagram as in (c) with 𝑎 ∶ 𝑈 → 𝑋 surjective ℎ has 𝒫,
(e) there exists an étale covering {𝑌𝑖 → 𝑌}𝑖∈𝐼 such that each base change 𝑌𝑖 ×𝑌 𝑋 →

𝑌𝑖 has 𝒫,
(f) there exists an étale covering {𝑋𝑖 → 𝑋}𝑖∈𝐼 such that each composition 𝑋𝑖 → 𝑌

has 𝒫,
(g) there exists an étale covering {𝑌𝑖 → 𝑌}𝑖∈𝐼 and for each 𝑖 ∈ 𝐼 an étale covering

{𝑋𝑖𝑗 → 𝑌𝑖 ×𝑌 𝑋}𝑗∈𝐽𝑖
such that each morphism 𝑋𝑖𝑗 → 𝑌𝑖 has 𝒫.

Proof. The equivalence of (a) and (b) is part of Definition 31.28.3. The equivalence of (a)
and (e) is Lemma 31.28.4 part (2). The equivalence of (a) and (f) is Lemma 31.28.4 part
(1). As (a) is now equivalent to (e) and (f) it follows that (a) equivalent to (g).

It is clear that (c) implies (a). If (a) holds, then for any diagram as in (c) the morphism 𝑓 ∘ 𝑎
has 𝒫 by Definition 31.28.3 part (1), whereupon ℎ has 𝒫 by Lemma 31.28.4 part (4). Thus
(a) and (c) are equivalent. It is clear that (c) implies (d). To see that (d) implies (a) assume
we have a diagram as in (c) with 𝑎 ∶ 𝑈 → 𝑋 surjective and ℎ having 𝒫. Then 𝑏 ∘ ℎ has 𝒫
by Lemma 31.28.4 part (3). Since {𝑎 ∶ 𝑈 → 𝑋} is an étale covering we conclude that 𝑓
has 𝒫 by Lemma 31.28.4 part (1). �

It seems that the result of the following lemma is not a formality, i.e., it actually uses some-
thing about the geometry of étale morphisms.

Lemma 31.28.6. Let 𝒫 be a property of morphisms of schemes. Assume
(1) 𝒫 is étale local on the source,
(2) 𝒫 is étale local on the target, and
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(3) 𝒫 is stable under postcomposing with open immersions: if 𝑓 ∶ 𝑋 → 𝑌 has 𝒫 and
𝑌 ⊂ 𝑍 is an open subscheme then 𝑋 → 𝑍 has 𝒫.

Then 𝒫 is étale local on the source-and-target.

Proof. Let 𝒫 be a property of morphisms of schemes which satisfies conditions (1), (2) and
(3) of the lemma. By Lemma 31.22.2 we see that 𝒫 is stable under precomposing with étale
morphisms. By Lemma 31.18.2 we see that 𝒫 is stable under étale base change. Hence it
suffices to prove part (3) of Definition 31.28.3 holds.

More precisely, suppose that 𝑓 ∶ 𝑋 → 𝑌 is a morphism of schemes which satisfies Defi-
nition 31.28.3 part (3)(b). In other words, for every 𝑥 ∈ 𝑋 there exists an étale morphism
𝑎𝑥 ∶ 𝑈𝑥 → 𝑋, a point 𝑢𝑥 ∈ 𝑈𝑥 mapping to 𝑥, an étale morphism 𝑏𝑥 ∶ 𝑉𝑥 → 𝑌, and a
morphism ℎ𝑥 ∶ 𝑈𝑥 → 𝑉𝑥 such that 𝑓 ∘ 𝑎𝑥 = 𝑏𝑥 ∘ ℎ𝑥 and ℎ𝑥 has 𝒫. The proof of the lemma
is complete once we show that 𝑓 has 𝒫. Set 𝑈 = ∐ 𝑈𝑥, 𝑎 = ∐ 𝑎𝑥, 𝑉 = ∐ 𝑉𝑥, 𝑏 = ∐ 𝑏𝑥,
and ℎ = ∐ ℎ𝑥. We obtain a commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

with 𝑎, 𝑏 étale, 𝑎 surjective. Note that ℎ has 𝒫 as each ℎ𝑥 does and 𝒫 is étale local on the
target. Because 𝑎 is surjective and 𝒫 is étale local on the source, it suffices to prove that
𝑏 ∘ ℎ has 𝒫. This reduces the lemma to proving that 𝒫 is stable under postcomposing with
an étale morphism.

During the rest of the proof we let 𝑓 ∶ 𝑋 → 𝑌 be a morphism with property 𝒫 and 𝑔 ∶ 𝑌 →
𝑍 is an étale morphism. Consider the following statements:

(∅) With no additional assumptions 𝑔 ∘ 𝑓 has property 𝒫.
(A) Whenever 𝑍 is affine 𝑔 ∘ 𝑓 has property 𝒫.

(AA) Whenever 𝑋 and 𝑍 are affine 𝑔 ∘ 𝑓 has property 𝒫.
(AAA) Whenever 𝑋, 𝑌, and 𝑍 are affine 𝑔 ∘ 𝑓 has property 𝒫.

Once we have proved (∅) the proof of the lemma will be complete.

Claim 1: (AAA) ⇒ (AA). Namely, let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍 be as above with 𝑋, 𝑍
affine. As 𝑋 is affine hence quasi-compact we can find finitely many affine open 𝑌𝑖 ⊂ 𝑌,
𝑖 = 1, … , 𝑛 such that 𝑋 = ⋃𝑖=1,…,𝑛 𝑓−1(𝑌𝑖). Set 𝑋𝑖 = 𝑓−1(𝑌𝑖). By Lemma 31.18.2 each of
the morphisms 𝑋𝑖 → 𝑌𝑖 has 𝒫. Hence ∐𝑖=1,…,𝑛 𝑋𝑖 → ∐𝑖=1,…,𝑛 𝑌𝑖 has 𝒫 as 𝒫 is étale local
on the target. By (AAA) applied to ∐𝑖=1,…,𝑛 𝑋𝑖 → ∐𝑖=1,…,𝑛 𝑌𝑖 and the étale morphism
∐𝑖=1,…,𝑛 𝑌𝑖 → 𝑍 we see that ∐𝑖=1,…,𝑛 𝑋𝑖 → 𝑍 has 𝒫. Now {∐𝑖=1,…,𝑛 𝑋𝑖 → 𝑋} is an
étale covering, hence as 𝒫 is étale local on the source we conclude that 𝑋 → 𝑍 has 𝒫 as
desired.

Claim 2: (AAA) ⇒ (A). Namely, let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍 be as above with 𝑍 affine.
Choose an affine open covering 𝑋 = ⋃ 𝑋𝑖. As 𝒫 is étale local on the source we see that
each 𝑓|𝑋𝑖

∶ 𝑋𝑖 → 𝑌 has 𝒫. By (AA), which follows from (AAA) according to Claim 1, we
see that 𝑋𝑖 → 𝑍 has 𝒫 for each 𝑖. Since {𝑋𝑖 → 𝑋} is an étale covering and 𝒫 is étale local
on the source we conclude that 𝑋 → 𝑍 has 𝒫.

Claim 3: (AAA) ⇒ (∅). Namely, let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍 be as above. Choose an affine
open covering 𝑍 = ⋃ 𝑍𝑖. Set 𝑌𝑖 = 𝑔−1(𝑍𝑖) and 𝑋𝑖 = 𝑓−1(𝑌𝑖). By Lemma 31.18.2 each of
the morphisms 𝑋𝑖 → 𝑌𝑖 has 𝒫. By (A), which follows from (AAA) according to Claim 2,
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we see that 𝑋𝑖 → 𝑍𝑖 has 𝒫 for each 𝑖. Since 𝒫 is local on the target and 𝑋𝑖 = (𝑔 ∘ 𝑓)−1(𝑍𝑖)
we conclude that 𝑋 → 𝑍 has 𝒫.
Thus to prove the lemma it suffices to prove (AAA). Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be as
above 𝑋, 𝑌, 𝑍 affine. Note that an étale morphism of affines has universally bounded fibres,
see Morphisms, Lemma 24.35.6 and Lemma 24.48.8. Hence we can do induction on the
integer 𝑛 bounding the degree of the fibres of 𝑌 → 𝑍. See Morphisms, Lemma 24.48.7
for a description of this integer in the case of an étale morphism. If 𝑛 = 1, then 𝑌 → 𝑍 is
an open immersion, see Lemma 31.21.2, and the result follows from assumption (3) of the
lemma. Assume 𝑛 > 1.
Consider the following commutative diagram

𝑋 ×𝑍 𝑌

��

𝑓𝑌
// 𝑌 ×𝑍 𝑌

��

pr
// 𝑌

��
𝑋

𝑓 // 𝑌
𝑔 // 𝑍

Note that we have a decomposition into open and closed subschemes 𝑌×𝑍 𝑌 = Δ𝑌/𝑍(𝑌)⨿𝑌′,
see Morphisms, Lemma 24.34.13. As a base change the degrees of the fibres of the second
projection pr ∶ 𝑌 ×𝑍 𝑌 → 𝑌 are bounded by 𝑛, see Morphisms, Lemma 24.48.4. On the
other hand, pr|Δ(𝑌) ∶ Δ(𝑌) → 𝑌 is an isomorphism and every fibre has exactly one point.
Thus, on applying Morphisms, Lemma 24.48.7 we conclude the degrees of the fibres of the
restriction pr|𝑌′ ∶ 𝑌′ → 𝑌 are bounded by 𝑛 − 1. Set 𝑋′ = 𝑓−1

𝑌 (𝑌′). Picture

𝑋 ⨿ 𝑋′
𝑓⨿𝑓′

// Δ(𝑌) ⨿ 𝑌′ // 𝑌

𝑋 ×𝑍 𝑌
𝑓𝑌 // 𝑌 ×𝑍 𝑌

pr // 𝑌

As 𝒫 is étale local on the target and hence stable under étale base change (see Lemma
31.18.2) we see that 𝑓𝑌 has 𝒫. Hence, as 𝒫 is étale local on the source, 𝑓′ = 𝑓𝑌|𝑋′ has
𝒫. By induction hypothesis we see that 𝑋′ → 𝑌 has 𝒫. As 𝒫 is local on the source, and
{𝑋 → 𝑋 ×𝑍 𝑌, 𝑋′ → 𝑋 ×𝑌 𝑍} is an étale covering, we conclude that pr ∘ 𝑓𝑌 has 𝒫. Note
that 𝑔 ∘ 𝑓 can be viewed as a morphism 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑔(𝑌). As pr ∘ 𝑓𝑌 is the pullback of
𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑔(𝑌) via the étale covering {𝑌 → 𝑔(𝑌)}, and as 𝒫 is étale local on the target,
we conclude that 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑔(𝑌) has property 𝒫. Finally, applying assumption (3) of the
lemma once more we conclude that 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 has property 𝒫. �

Remark 31.28.7. Using Lemma 31.28.6 and the work done in the earlier sections of this
chapter it is easy to make a list of types of morphisms which are étale local on the source-
and-target. In each case we list the lemma which implies the property is étale local on the
source and the lemma which implies the property is étale local on the target. In each case
the third assumption of Lemma 31.28.6 is trivial to check, and we omit it. Here is the list:

(1) flat, see Lemmas 31.23.1 and 31.19.13,
(2) locally of finite presentation, see Lemmas 31.24.1 and 31.19.9,
(3) locally finite type, see Lemmas 31.24.2 and 31.19.8,
(4) universally open, see Lemmas 31.24.4 and 31.19.4,
(5) syntomic, see Lemmas 31.25.1 and 31.19.24,
(6) smooth, see Lemmas 31.26.1 and 31.19.25,
(7) étale, see Lemmas 31.27.1 and 31.19.27,
(8) locally quasi-finite, see Lemmas 31.27.2 and 31.19.22,
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(9) unramified, see Lemmas 31.27.3 and 31.19.26,
(10) G-unramified, see Lemmas 31.27.3 and 31.19.26, and
(11) add more here as needed.

Remark 31.28.8. At this point we have three possible definitions of what it means for a
property 𝒫 of morphisms to be ``étale local on the source and target'':

(ST) 𝒫 is étale local on the source and 𝒫 is étale local on the target,
(DM) (the definition in the paper [DM69a, Page 100] by Deligne and Mumford) for

every diagram
𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

with surjective étale vertical arrows we have 𝒫(ℎ) ⇔ 𝒫(𝑓), and
(SP) 𝒫 is étale local on the source-and-target.

In this section we have seen that (SP) ⇒ (DM) ⇒ (ST). The Examples 31.28.1 and 31.28.2
show that neither implication can be reversed. Finally, Lemma 31.28.6 shows that the differ-
ence disappears when looking at properties of morphisms which are stable under postcom-
posing with open immersions, which in practive will always be the case.

31.29. Properties of morphisms of germs local on source-and-target

In this section we discuss the analogue of the material in Section 31.28 for morphisms of
germs of schemes.

Definition 31.29.1. Let 𝒬 be a property of morphisms of germs of schemes. We say 𝒬 is
étale local on the source-and-target if for any commutative diagram

(𝑈′, 𝑢′)

𝑎
��

ℎ′
// (𝑉′, 𝑣′)

𝑏
��

(𝑈, 𝑢) ℎ // (𝑉, 𝑣)

with étale vertical arrows we have 𝒬(ℎ) ⇔ 𝒬(ℎ′).

Lemma 31.29.2. Let 𝒫 be a property of morphisms of schemes which is étale local on the
source-and-target. Consider the property 𝒬 of morphisms of germs defined by the rule

𝒬((𝑋, 𝑥) → (𝑆, 𝑠)) ⇔ there exists a representative 𝑈 → 𝑆 which has 𝒫

Then 𝒬 is étale local on the source-and-target as in Definition 31.29.1.

Proof. Wefirst remark that as𝒫 is étale local on the source, see Lemma 31.28.4, if (𝑋, 𝑥) →
(𝑆, 𝑠) has 𝒫, then there are arbitrarily small neighbourhoods 𝑈 of 𝑥 in 𝑋 such that a rep-
resentative 𝑈 → 𝑆 of (𝑋, 𝑥) → (𝑆, 𝑠) has 𝒫. We will use this without further mention.
Let

(𝑈′, 𝑢′)
ℎ′
//

𝑎
��

(𝑉′, 𝑣′)

𝑏
��

(𝑈, 𝑢) ℎ // (𝑉, 𝑣)
be as in Definition 31.29.1. We will use a rather pedantic notation in order to distinguish
between morphisms of germs and their representatives in this proof.
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If 𝒫(ℎ) holds, then 𝒫 holds for a representative ℎ1 ∶ 𝑈1 → 𝑉 of ℎ. Let 𝑎1 ∶ 𝑈′
1 → 𝑈 be

a representative of 𝑎 which is étale with 𝑎1(𝑈′
1) ⊂ 𝑈1. As 𝒫 is stable under precomposing

with étale morphisms we see that ℎ1 ∘ 𝑎1 ∶ 𝑈′
1 → 𝑉 has 𝒫. Moreover, ℎ1 ∘ 𝑎1 ∶ 𝑈′

1 → 𝑉
is a representative of 𝑏 ∘ ℎ′ by the commutativity of the diagram. Choose a representative
𝑏1 ∶ 𝑉′

1 → 𝑉 of 𝑏. Choose a representative ℎ′
1 ∶ 𝑈′

2 → 𝑉′ with ℎ′
1(𝑈′

1) ⊂ 𝑉′
1, 𝑈′

2 ⊂ 𝑈′
1, and

(ℎ1 ∘ 𝑎1)|𝑈′
2

= 𝑏1 ∘ ℎ′
1. Then we see that 𝑏1 ∘ ℎ′

1 has 𝒫. Hence ℎ′ has 𝒫 by Lemma 31.28.4
part (4).

Conversely, suppose 𝒫(ℎ′) holds. Choose a representative 𝑏1 ∶ 𝑉′
1 → 𝑉 of 𝑏. Choose

a representative ℎ′
1 ∶ 𝑈′

1 → 𝑉′ with 𝒫 and with ℎ′
1(𝑈′

1) ⊂ 𝑉′
1. Then 𝑏1 ∘ ℎ′

1 has 𝒫 by
Lemma 31.28.4 part (3). Moreover, 𝑏1 ∘ ℎ′

1 ∶ 𝑈′
1 → 𝑉 is a representative of ℎ ∘ 𝑎 by the

commutativity of the diagram. Choose a representative ℎ1 ∶ 𝑈1 → 𝑉 of ℎ. Choose a
representative 𝑎1 ∶ 𝑈′

2 → 𝑈 with 𝑎1(𝑈′
2) ⊂ 𝑈1, 𝑈′

2 ⊂ 𝑈′
1, and ℎ1 ∘ 𝑎1 = (𝑏1 ∘ ℎ′

1)|𝑈′
2
. The

we see that ℎ1 ∘ 𝑎1 has 𝒫. As 𝒫 is étale local on the source we conclude that ℎ1|𝑎1(𝑈′
2) has

𝒫 and we win. �

Lemma 31.29.3. Let 𝒫 be a property of morphisms of schemes which is étale local on
source-and-target. Let 𝑄 be the associated property of morphisms of germs, see Lemma
31.29.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The following are equivalent:

(1) 𝑓 has property 𝒫, and
(2) for every 𝑥 ∈ 𝑋 the morphism of germs (𝑋, 𝑥) → (𝑌, 𝑓(𝑥)) has property 𝒬.

Proof. The implication (1) ⇒ (2) is direct from the definitions. The implication (2) ⇒ (1)
also follows from part (3) of Definition 31.28.3. �

A morphism of germs (𝑋, 𝑥) → (𝑆, 𝑠) determines a well defined map of local rings. Hence
the following lemma makes sense.

Lemma 31.29.4. The property of morphisms of germs

𝒫((𝑋, 𝑥) → (𝑆, 𝑠)) = 𝒪𝑆,𝑠 → 𝒪𝑋,𝑥 is flat

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 31.29.1 we obtain the following diagram of local
homomorphisms of local rings

𝒪𝑈′,𝑢′ 𝒪𝑉′,𝑣′oo

𝒪𝑈,𝑢

OO

𝒪𝑉,𝑣
oo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they are
essentially of finite presentation, flat, and unramified (see Algebra, Section 7.132). In par-
ticular the vertical maps are faithfully flat, see Algebra, Lemma 7.35.16. Now, if the upper
horizontal arrow is flat, then the lower horizontal arrow is flat by an application of Algebra,
Lemma 7.35.9 with 𝑅 = 𝒪𝑉,𝑣, 𝑆 = 𝒪𝑈,𝑢 and 𝑀 = 𝒪𝑈′,𝑢′. If the lower horizontal arrow is
flat, then the ring map

𝒪𝑉′,𝑣′ ⊗𝒪𝑉,𝑣
𝒪𝑈,𝑢 ⟵ 𝒪𝑉′,𝑣′

is flat by Algebra, Lemma 7.35.6. And the ring map

𝒪𝑈′,𝑢′ ⟵ 𝒪𝑉′,𝑣′ ⊗𝒪𝑉,𝑣
𝒪𝑈,𝑢
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is a localization of a map between étale ring extensions of 𝒪𝑈,𝑢, hence flat by Algebra,
Lemma 7.132.8. �

Lemma 31.29.5. Consider a commutative diagram of morphisms of schemes

𝑈′ //

��

𝑉′

��
𝑈 // 𝑉

with étale vertical arrows and a point 𝑣′ ∈ 𝑈′ mapping to 𝑣 ∈ 𝑈. Then the morphism of
fibres 𝑈′

𝑣′ → 𝑈𝑣 is étale.

Proof. Note that 𝑈′
𝑣 → 𝑈𝑣 is étale as a base change of the étale morphism 𝑈′ → 𝑈.

The scheme 𝑈′
𝑣 is a scheme over 𝑉′

𝑣. By Morphisms, Lemma 24.35.7 the scheme 𝑉′
𝑣 is

a disjoint union of spectra of finite separable field extensions of 𝜅(𝑣). One of these is
𝑣′ = 𝑆𝑝𝑒𝑐(𝜅(𝑣′)). Hence 𝑈′

𝑣′ is an open and closed subscheme of 𝑈′
𝑣 and it follows that

𝑈′
𝑣′ → 𝑈′

𝑣 → 𝑈𝑣 is étale (as a composition of an open immersion and an étale morphism,
see Morphisms, Section 24.35). �

Given a morphism of germs of schemes (𝑋, 𝑥) → (𝑆, 𝑠) we can define the fibre as the
isomorphism class of germs (𝑈𝑠, 𝑥) where 𝑈 → 𝑆 is any representative. We will often
abuse notation and just write (𝑋𝑠, 𝑥).

Lemma 31.29.6. Let 𝑑 ∈ {0, 1, 2, … , ∞}. The property of morphisms of germs
𝒫𝑑((𝑋, 𝑥) → (𝑆, 𝑠)) = the local ring 𝒪𝑋𝑠,𝑥 of the fibre has dimension 𝑑

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 31.29.1 we obtain an étale morphism of fibres
𝑈′

𝑣′ → 𝑈𝑣 mapping 𝑢′ to 𝑢, see Lemma 31.29.5. Hence the result follows from Lemma
31.17.3. �

Lemma 31.29.7. Let 𝑟 ∈ {0, 1, 2, … , ∞}. The property of morphisms of germs
𝒫𝑟((𝑋, 𝑥) → (𝑆, 𝑠)) ⇔ trdeg𝜅(𝑠)𝜅(𝑥) = 𝑟

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 31.29.1 we obtain the following diagram of local
homomorphisms of local rings

𝒪𝑈′,𝑢′ 𝒪𝑉′,𝑣′oo

𝒪𝑈,𝑢

OO

𝒪𝑉,𝑣
oo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they are
unramified (see Algebra, Section 7.132). Hence 𝜅(𝑢) ⊂ 𝜅(𝑢′) and 𝜅(𝑣) ⊂ 𝜅(𝑣′) are finite
separable field extensions. Thus we have trdeg𝜅(𝑣)𝜅(𝑢) = trdeg𝜅(𝑣′)𝜅(𝑢) which proves the
lemma. �

Let (𝑋, 𝑥) be a germ of a scheme. The dimension of 𝑋 at 𝑥 is the minimum of the dimen-
sions of open neighbourhoods of 𝑥 in 𝑋, and any small enough open neighbourhood has
this dimension. Hence this is an invariant of the isomorphism class of the germ. We denote
this simply dim𝑥(𝑋).
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Lemma 31.29.8. Let 𝑑 ∈ {0, 1, 2, … , ∞}. The property of morphisms of germs

𝒫𝑑((𝑋, 𝑥) → (𝑆, 𝑠)) ⇔ dim𝑥(𝑋𝑠) = 𝑑

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 31.29.1 we obtain an étale morphism of fibres
𝑈′

𝑣′ → 𝑈𝑣 mapping 𝑢′ to 𝑢, see Lemma 31.29.5. Hence now the equality dim𝑢(𝑈𝑣) =
dim𝑢′(𝑈′

𝑣′) follows from Lemma 31.17.2. �

31.30. Descent data for schemes over schemes

Most of the arguments in this section are formal relying only on the definition of a descent
datum. In Section 31.36 we will examine the relationship with simplicial schemes which
will somewhat clarify the situation. Hopefully the reader will be convinced by the end of
Section 31.36 that the language of descent is awkward and the setting of simplicial schemes
is natural for the questions being considered here.

Definition 31.30.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) Let 𝑉 → 𝑋 be a scheme over 𝑋. A descent datum for 𝑉/𝑋/𝑆 is an isomorphism

𝜑 ∶ 𝑉 ×𝑆 𝑋 → 𝑋 ×𝑆 𝑉 of schemes over 𝑋 ×𝑆 𝑋 satisfying the cocycle condition
that the diagram

𝑉 ×𝑆 𝑋 ×𝑆 𝑋
𝜑01

((

𝜑02
// 𝑋 ×𝑆 𝑋 ×𝑆 𝑉

𝑋 ×𝑆 𝑉 ×𝑆 𝑋

𝜑12
66

commutes (with obvious notation).
(2) We also say that the pair (𝑉/𝑋, 𝜑) is a descent datum relative to 𝑋 → 𝑆.
(3) A morphism 𝑓 ∶ (𝑉/𝑋, 𝜑) → (𝑉′/𝑋, 𝜑′) of descent data relative to 𝑋 → 𝑆 is a

morphism 𝑓 ∶ 𝑉 → 𝑉′ of schemes over 𝑋 such that the diagram

𝑉 ×𝑆 𝑋 𝜑
//

𝑓×id𝑋
��

𝑋 ×𝑆 𝑉

id𝑋×𝑓
��

𝑉′ ×𝑆 𝑋
𝜑′
// 𝑋 ×𝑆 𝑉′

commutes.

There are all kinds of ``miraculous'' identities which arise out of the definition above. For
example the pullback of 𝜑 via the diagonal morphism Δ ∶ 𝑋 → 𝑋 ×𝑆 𝑋 can be seen as a
morphism Δ∗𝜑 ∶ 𝑉 → 𝑉. This because 𝑋×Δ,𝑋×𝑆𝑋 (𝑉×𝑆 𝑋) = 𝑉 and also 𝑋×Δ,𝑋×𝑆𝑋 (𝑋×𝑆
𝑉) = 𝑉. In fact, Δ∗𝜑 is equal to the identity. This is a good exercise if you are unfamiliar
with this material.

Remark 31.30.2. Let 𝑋 → 𝑆 be a morphism of schemes. Let (𝑉/𝑋, 𝜑) be a descent datum
relative to 𝑋 → 𝑆. We may think of the isomorphism 𝜑 as an isomorphism

(𝑋 ×𝑆 𝑋) ×pr0,𝑋 𝑉 ⟶ (𝑋 ×𝑆 𝑋) ×pr1,𝑋 𝑉
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of schemes over 𝑋 ×𝑆 𝑋. So loosely speaking one may think of 𝜑 as a map 𝜑 ∶ pr∗0𝑉 →
pr∗1𝑉6. The cocycle condition then says that pr∗02𝜑 = pr∗12𝜑 ∘ pr∗01𝜑. In this way it is very
similar to the case of a descent datum on quasi-coherent sheaves.

Here is the definition in case you have a family of morphisms with fixed target.

Definition 31.30.3. Let 𝑆 be a scheme. Let {𝑋𝑖 → 𝑆}𝑖∈𝐼 be a family of morphisms with
target 𝑆.

(1) A descent datum (𝑉𝑖, 𝜑𝑖𝑗) relative to the family {𝑋𝑖 → 𝑆} is given by a scheme 𝑉𝑖
over 𝑋𝑖 for each 𝑖 ∈ 𝐼, an isomorphism 𝜑𝑖𝑗 ∶ 𝑉𝑖×𝑆𝑋𝑗 → 𝑋𝑖×𝑆𝑉𝑗 of schemes over
𝑋𝑖 ×𝑆 𝑋𝑗 for each pair (𝑖, 𝑗) ∈ 𝐼2 such that for every triple of indices (𝑖, 𝑗, 𝑘) ∈ 𝐼3

the diagram

𝑉𝑖 ×𝑆 𝑋𝑗 ×𝑆 𝑋𝑘
pr∗01𝜑𝑖𝑗

((

pr∗02𝜑𝑖𝑘

// 𝑋𝑖 ×𝑆 𝑋𝑗 ×𝑆 𝑉𝑘

𝑋𝑖 ×𝑆 𝑉𝑗 ×𝑆 𝑋𝑘

pr∗12𝜑𝑗𝑘
66

of schemes over 𝑋𝑖 ×𝑆 𝑋𝑗 ×𝑆 𝑋𝑘 commutes (with obvious notation).
(2) A morphism 𝜓 ∶ (𝑉𝑖, 𝜑𝑖𝑗) → (𝑉′

𝑖 , 𝜑′
𝑖𝑗) of descent data is given by a family 𝜓 =

(𝜓𝑖)𝑖∈𝐼 of morphisms of 𝑋𝑖-schemes 𝜓𝑖 ∶ 𝑉𝑖 → 𝑉′
𝑖 such that all the diagrams

𝑉𝑖 ×𝑆 𝑋𝑗 𝜑𝑖𝑗
//

𝜓𝑖×id
��

𝑋𝑖 ×𝑆 𝑉𝑗

id×𝜓𝑗
��

𝑉′
𝑖 ×𝑆 𝑋𝑗

𝜑′
𝑖𝑗 // 𝑋𝑖 ×𝑆 𝑉′

𝑗

commute.

This is the notion that comes up naturally for example when the question arises whether the
fibred category of relative curves is a stack in the fpqc topology (it isn't -- at least not if you
stick to schemes).

Remark 31.30.4. Let 𝑆 be a scheme. Let {𝑋𝑖 → 𝑆}𝑖∈𝐼 be a family of morphisms with
target 𝑆. Let (𝑉𝑖, 𝜑𝑖𝑗) be a descent datum relative to {𝑋𝑖 → 𝑆}. We may think of the
isomorphisms 𝜑𝑖𝑗 as isomorphisms

(𝑋𝑖 ×𝑆 𝑋𝑗) ×pr0,𝑋𝑖
𝑉𝑖 ⟶ (𝑋𝑖 ×𝑆 𝑋𝑗) ×pr1,𝑋𝑗

𝑉𝑗

of schemes over 𝑋𝑖 ×𝑆 𝑋𝑗. So loosely speaking one may think of 𝜑𝑖𝑗 as an isomorphism
pr∗0𝑉𝑖 → pr∗1𝑉𝑗 over 𝑋𝑖 ×𝑆 𝑋𝑗. The cocycle condition then says that pr∗02𝜑𝑖𝑘 = pr∗12𝜑𝑗𝑘 ∘
pr∗01𝜑𝑖𝑗. In this way it is very similar to the case of a descent datum on quasi-coherent
sheaves.

The reasonwewill usuallyworkwith the version of a family consisting of a singlemorphism
is the following lemma.

6Unfortunately, we have chosen the ``wrong'' direction for our arrow here. In Definitions 31.30.1 and 31.30.3
we should have the opposite direction to what was done in Definition 31.2.1 by the general principle that ``func-
tions'' and ``spaces'' are dual.
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Lemma 31.30.5. Let 𝑆 be a scheme. Let {𝑋𝑖 → 𝑆}𝑖∈𝐼 be a family of morphisms with target
𝑆. Set 𝑋 = ∐𝑖∈𝐼 𝑋𝑖, and consider it as an 𝑆-scheme. There is a canonical equivalence of
categories

category of descent data
relative to the family {𝑋𝑖 → 𝑆}𝑖∈𝐼

⟶ category of descent data
relative to 𝑋/𝑆

which maps (𝑉𝑖, 𝜑𝑖𝑗) to (𝑉, 𝜑) with 𝑉 = ∐𝑖∈𝐼 𝑉𝑖 and 𝜑 = ∐ 𝜑𝑖𝑗.

Proof. Observe that 𝑋×𝑆𝑋 = ∐𝑖𝑗 𝑋𝑖×𝑆𝑋𝑗 and similarly for higher fibre products. Giving
a morphism 𝑉 → 𝑋 is exactly the same as giving a family 𝑉𝑖 → 𝑋𝑖. And giving a descent
datum 𝜑 is exactly the same as giving a family 𝜑𝑖𝑗. �

Lemma 31.30.6. (Pullback of descent data for schemes over schemes.)
(1) Let

𝑋′
𝑓
//

𝑎′

��

𝑋

𝑎
��

𝑆′ ℎ // 𝑆
be a commutative diagram of morphisms of schemes. The construction

(𝑉 → 𝑋, 𝜑) ⟼ 𝑓∗(𝑉 → 𝑋, 𝜑) = (𝑉′ → 𝑋′, 𝜑′)

where 𝑉′ = 𝑋′ ×𝑋 𝑉 and where 𝜑′ is defined as the composition

𝑉′ ×𝑆′ 𝑋′ (𝑋′ ×𝑋 𝑉) ×𝑆′ 𝑋′ (𝑋′ ×𝑆′ 𝑋′) ×𝑋×𝑆𝑋 (𝑉 ×𝑆 𝑋)

id×𝜑
��

𝑋′ ×𝑆′ 𝑉′ 𝑋′ ×𝑆′ (𝑋′ ×𝑋 𝑉) (𝑋′ ×𝑆 𝑋′) ×𝑋×𝑆𝑋 (𝑋 ×𝑆 𝑉)

defines a functor from the category of descent data relative to 𝑋 → 𝑆 to the
category of descent data relative to 𝑋′ → 𝑆.

(2) Given two morphisms 𝑓𝑖 ∶ 𝑋′ → 𝑋, 𝑖 = 0, 1 making the diagram commute the
functors 𝑓∗

0 and 𝑓∗
1 are canonically isomorphic.

Proof. We omit the proof of (1), but we remark that the morphism 𝜑′ is the morphism (𝑓′ ×
𝑓′)∗𝜑 in the notation introduced in Remark 31.30.2. For (2) we indicate which morphism
𝑓∗

0𝑉 → 𝑓∗
1𝑉 gives the functorial isomorphism. Namely, since 𝑓0 and 𝑓1 both fit into the

commutative diagramwe see there is a unique morphism 𝑟 ∶ 𝑋′ → 𝑋×𝑆𝑋 with 𝑓𝑖 = pr𝑖 ∘𝑟.
Then we take

𝑓∗
0𝑉 = 𝑋′ ×𝑓0,𝑋 𝑉

= 𝑋′ ×pr0∘𝑟,𝑋 𝑉
= 𝑋′ ×𝑟,𝑋×𝑆𝑋 (𝑋 ×𝑆 𝑋) ×pr0𝑋 𝑉
𝜑

−→ 𝑋′ ×𝑟,𝑋×𝑆𝑋 (𝑋 ×𝑆 𝑋) ×pr1𝑋 𝑉
= 𝑋′ ×pr1∘𝑟,𝑋 𝑉
= 𝑋′ ×𝑓1,𝑋 𝑉
= 𝑓∗

1𝑉

We omit the verification that this works. �
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Definition 31.30.7. With 𝑆, 𝑆′, 𝑋, 𝑋′, 𝑓, 𝑎, 𝑎′, ℎ as in Lemma 31.30.6 the functor

(𝑉, 𝜑) ⟼ 𝑓∗(𝑉, 𝜑)

constructed in that lemma is called the pullback functor on descent data.

Lemma 31.30.8. (Pullback of descent data for schemes over families.) Let 𝒰 = {𝑈𝑖 →
𝑆′}𝑖∈𝐼 and 𝒱 = {𝑉𝑗 → 𝑆}𝑗∈𝐽 be families of morphisms with fixed target. Let 𝛼 ∶ 𝐼 → 𝐽,
ℎ ∶ 𝑆′ → 𝑆 and 𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝛼(𝑖) be a morphism of families of maps with fixed target, see
Sites, Definition 9.8.1.

(1) Let (𝑌𝑗, 𝜑𝑗𝑗′) be a descent datum relative to the family {𝑉𝑗 → 𝑆′}. The system

(𝑔∗
𝑖 𝑌𝛼(𝑖), (𝑔𝑖 × 𝑔𝑖′)∗𝜑𝛼(𝑖)𝛼(𝑖′))

(with notation as in Remark 31.30.4) is a descent datum relative to 𝒱.
(2) This construction defines a functor between descent data relative to𝒰 and descent

data relative to 𝒱.
(3) Given a second 𝛼′ ∶ 𝐼 → 𝐽, ℎ′ ∶ 𝑆′ → 𝑆 and 𝑔′

𝑖 ∶ 𝑈𝑖 → 𝑉𝛼′(𝑖) morphism
of families of maps with fixed target, then if ℎ = ℎ′ the two resulting functors
between descent data are canonically isomorphic.

(4) These functors agree, via Lemma 31.30.5, with the pullback functors constructed
in Lemma 31.30.6.

Proof. This follows from Lemma 31.30.6 via the correspondence of Lemma 31.30.5. �

Definition 31.30.9. With 𝒰 = {𝑈𝑖 → 𝑆′}𝑖∈𝐼, 𝒱 = {𝑉𝑗 → 𝑆}𝑗∈𝐽, 𝛼 ∶ 𝐼 → 𝐽, ℎ ∶ 𝑆′ → 𝑆,
and 𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝛼(𝑖) as in Lemma 31.30.8 the functor

(𝑌𝑗, 𝜑𝑗𝑗′) ⟼ (𝑔∗
𝑖 𝑌𝛼(𝑖), (𝑔𝑖 × 𝑔𝑖′)∗𝜑𝛼(𝑖)𝛼(𝑖′))

constructed in that lemma is called the pullback functor on descent data.

If 𝒰 and 𝒱 have the same target 𝑆, and if 𝒰 refines 𝒱 (see Sites, Definition 9.8.1) but
no explicit pair (𝛼, 𝑔𝑖) is given, then we can still talk about the pullback functor since we
have seen in Lemma 31.30.8 that the choice of the pair does not matter (up to a canonical
isomorphism).

Definition 31.30.10. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) Given a scheme 𝑈 over 𝑆 we have the trivial descent datum of 𝑈 relative to id ∶

𝑆 → 𝑆, namely the identity morphism on 𝑈.
(2) By Lemma 31.30.6we get a canonical descent datum on𝑋×𝑆𝑈 relative to𝑋 → 𝑆

by pulling back the trivial descent datum via 𝑓. We often denote (𝑋 ×𝑆 𝑈, 𝑐𝑎𝑛)
this descent datum.

(3) Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. A descent datum (𝑉, 𝜑) relative to
𝑋/𝑆 is is called effective if (𝑉, 𝜑) is isomorphic to the canonical descent datum
(𝑋 ×𝑆 𝑈, 𝑐𝑎𝑛) for some scheme 𝑈 over 𝑆.

Thus being effective means there exists a scheme 𝑈 over 𝑆 and an isomorphism 𝜓 ∶ 𝑉 →
𝑋 ×𝑆 𝑈 of 𝑋-schemes such that 𝜑 is equal to the composition

𝑉 ×𝑆 𝑋
𝜓×id𝑋−−−−−→ 𝑋 ×𝑆 𝑈 ×𝑆 𝑋 = 𝑋 ×𝑆 𝑋 ×𝑆 𝑈

id𝑋×𝜓−1

−−−−−−→ 𝑋 ×𝑆 𝑉

Definition 31.30.11. Let 𝑆 be a scheme. Let {𝑋𝑖 → 𝑆} be a family of morphisms with
target 𝑆.
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(1) Given a scheme 𝑈 over 𝑆 we have a canonical descent datum on the family of
schemes 𝑋𝑖 ×𝑆 𝑈 by pulling back the trivial descent datum for 𝑈 relative to {id ∶
𝑆 → 𝑆}. We denote this descent datum (𝑋𝑖 ×𝑆 𝑈, 𝑐𝑎𝑛).

(2) A descent datum (𝑉𝑖, 𝜑𝑖𝑗) relative to {𝑋𝑖 → 𝑆} is called effective if there exists a
scheme 𝑈 over 𝑆 such that (𝑉𝑖, 𝜑𝑖𝑗) is isomorphic to (𝑋𝑖 ×𝑆 𝑈, 𝑐𝑎𝑛).

31.31. Fully faithfulness of the pullback functors

It turns out that the pullback functor between descent data for fpqc-coverings is fully faith-
ful. In other words, morphisms of schemes satisfy fpqc descent. The goal of this section is
to prove this. The reader is encouraged instead to prove this him/herself. The key is to use
Lemma 31.9.3.

Lemma 31.31.1. A surjective and flat morphism is an epimorphism in the category of
schemes.

Proof. Suppose we have ℎ ∶ 𝑋′ → 𝑋 surjective and flat and 𝑎, 𝑏 ∶ 𝑋 → 𝑌 morphisms
such that 𝑎∘ℎ = 𝑏∘ℎ. As ℎ is surjective we see that 𝑎 and 𝑏 agree on underlying topological
spaces. Pick 𝑥′ ∈ 𝑋′ and set 𝑥 = ℎ(𝑥′) and 𝑦 = 𝑎(𝑥) = 𝑏(𝑥). Consider the local ring maps

𝑎♯
𝑥, 𝑏♯

𝑥 ∶ 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥

These become equal when composed with the flat local homomorphism ℎ♯
𝑥′ ∶ 𝒪𝑋,𝑥 →

𝒪𝑋′,𝑥′. Since a flat local homomorphism is faithfully flat (Algebra, Lemma 7.35.16) we
conclude that ℎ♯

𝑥′ is injective. Hence 𝑎♯
𝑥 = 𝑏♯

𝑥 which implies 𝑎 = 𝑏 as desired. �

Lemma 31.31.2. Let ℎ ∶ 𝑆′ → 𝑆 be a surjective, flat morphism of schemes. The base
change functor

Sch/𝑆 ⟶ Sch/𝑆′, 𝑋 ⟼ 𝑆′ ×𝑆 𝑋
is faithful.

Proof. Let 𝑋1, 𝑋2 be schemes over 𝑆. Let 𝛼, 𝛽 ∶ 𝑋2 → 𝑋1 be morphisms over 𝑆. If 𝛼, 𝛽
base change to the same morphism then we get a commutative diagram as follows

𝑋2

𝛼
��

𝑆′ ×𝑆 𝑋2
oo

��

// 𝑋2

𝛽
��

𝑋1 𝑆′ ×𝑆 𝑋1
oo // 𝑋1

Hence it suffices to show that 𝑆′ ×𝑆 𝑋2 → 𝑋2 is an epimorphism. As the base change of
a surjective and flat morphism it is surjective and flat (see Morphisms, Lemmas 24.9.4 and
24.24.7). Hence the lemma follows from Lemma 31.31.1. �

Lemma 31.31.3. In the situation of Lemma 31.30.6 assume that 𝑓 ∶ 𝑋′ → 𝑋 is surjective
and flat. Then the pullback functor is faithful.

Proof. Let (𝑉𝑖, 𝜑𝑖), 𝑖 = 1, 2 be descend data for 𝑋 → 𝑆. Let 𝛼, 𝛽 ∶ 𝑉1 → 𝑉2 be morphisms
of descent data. Suppose that 𝑓∗𝛼 = 𝑓∗𝛽. Our task is to show that 𝛼 = 𝛽. Note that 𝛼, 𝛽
are morphisms of schemes over 𝑋, and that 𝑓∗𝛼, 𝑓∗𝛽 are simply the base changes of 𝛼, 𝛽 to
morphisms over 𝑋′. Hence the lemma follows from Lemma 31.31.2. �

Here is the key lemma of this section.

Lemma 31.31.4. In the situation of Lemma 31.30.6 assume
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(1) {𝑓 ∶ 𝑋′ → 𝑋} is an fpqc covering (for example if 𝑓 is surjective, flat, and
quasi-compact), and

(2) 𝑓 × 𝑓 ∶ 𝑋′ ×𝑆′ 𝑋′ → 𝑋 ×𝑆 𝑋 is surjective and flat7.
Then the pullback functor is fully faithful.

Proof. Assumption (1) implies that 𝑓 is surjective and flat. Hence the pullback functor is
faithful by Lemma 31.31.3. Let (𝑉, 𝜑) and (𝑊, 𝜓) be two descent data relative to 𝑋 → 𝑆.
Set (𝑉′, 𝜑′) = 𝑓∗(𝑉, 𝜑) and (𝑊′, 𝜓′) = 𝑓∗(𝑊, 𝜓). Let 𝛼′ ∶ 𝑉′ → 𝑊′ be a morphism of
descent data for 𝑋′ over 𝑆′. We have to show there exists a morphism 𝛼 ∶ 𝑉 → 𝑊 of
descent data for 𝑋 over 𝑆 whose pullback is 𝛼′.

Recall that 𝑉′ is the base change of 𝑉 by 𝑓 and that 𝜑′ is the base change of 𝜑 by 𝑓 × 𝑓 (see
Remark 31.30.2). By assumption the diagram

𝑉′ ×𝑆′ 𝑋′
𝜑′
//

𝛼′×id
��

𝑋′ ×𝑆′ 𝑉′

id×𝛼′

��
𝑊′ ×𝑆′ 𝑋′ 𝜓′

// 𝑋′ ×𝑆′ 𝑊′

commutes. We claim the two compositions

𝑉′ ×𝑉 𝑉′ pr𝑖 // 𝑉′ 𝛼′
// 𝑊′ // 𝑊 , 𝑖 = 0, 1

are the same. The reader is advised to prove this themselves rather than read the rest of
this paragraph. (Please email if you find a nice clean argument.) Let 𝑣0, 𝑣1 be points of
𝑉′ which map to the same point 𝑣 ∈ 𝑉. Let 𝑥𝑖 ∈ 𝑋′ be the image of 𝑣𝑖, and let 𝑥 be the
point of 𝑋 which is the image of 𝑣 in 𝑋. In other words, 𝑣𝑖 = (𝑥𝑖, 𝑣) in 𝑉′ = 𝑋′ ×𝑋 𝑉.
Write 𝜑(𝑣, 𝑥) = (𝑥, 𝑣′) for some point 𝑣′ of 𝑉. This is possible because 𝜑 is a morphism
over 𝑋 ×𝑆 𝑋. Denote 𝑣′

𝑖 = (𝑥𝑖, 𝑣′) which is a point of 𝑉′. Then a calculation (using the
definition of 𝜑′) shows that 𝜑′(𝑣𝑖, 𝑥𝑗) = (𝑥𝑖, 𝑣′

𝑗). Denote 𝑤𝑖 = 𝛼′(𝑣𝑖) and 𝑤′
𝑖 = 𝛼′(𝑣′

𝑖 ). Now
we may write 𝑤𝑖 = (𝑥𝑖, 𝑢𝑖) for some point 𝑢𝑖 of 𝑊, and 𝑤′

𝑖 = (𝑥𝑖, 𝑢′
𝑖 ) for some point 𝑢′

𝑖 of 𝑊.
The claim is equivalent to the assertion: 𝑢0 = 𝑢1. A formal calculation using the definition
of 𝜓′ (see Lemma 31.30.6) shows that the commutativity of the diagram displayed above
says that

((𝑥𝑖, 𝑥𝑗), 𝜓(𝑢𝑖, 𝑥)) = ((𝑥𝑖, 𝑥𝑗), (𝑥, 𝑢′
𝑗))

as points of (𝑋′ ×𝑆′ 𝑋′) ×𝑋×𝑆𝑋 (𝑋 ×𝑆 𝑊) for all 𝑖, 𝑗 ∈ {0, 1}. This shows that 𝜓(𝑢0, 𝑥) =
𝜓(𝑢1, 𝑥) and hence 𝑢0 = 𝑢1 by taking 𝜓−1. This proves the claim because the argument
above was formal and we can take scheme points (in other words, we may take (𝑣0, 𝑣1) =
id𝑉′×𝑉𝑉′).

At this point we can use Lemma 31.9.3. Namely, {𝑉′ → 𝑉} is a fpqc covering as the
base change of the morphism 𝑓 ∶ 𝑋′ → 𝑋. Hence, by Lemma 31.9.3 the morphism
𝛼′ ∶ 𝑉′ → 𝑊′ → 𝑊 factors through a unique morphism 𝛼 ∶ 𝑉 → 𝑊 whose base change is
necessarily 𝛼′. Finally, we see the diagram

𝑉 ×𝑆 𝑋 𝜑
//

𝛼×id
��

𝑋 ×𝑆 𝑉

id×𝛼
��

𝑊 ×𝑆 𝑋
𝜓 // 𝑋 ×𝑆 𝑊

7This follows from (1) if 𝑆 = 𝑆′.
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commutes because its base change to 𝑋′ ×𝑆′ 𝑋′ commutes and the morphism 𝑋′ ×𝑆′ 𝑋′ →
𝑋 ×𝑆 𝑋 is surjective and flat (use Lemma 31.31.2). Hence 𝛼 is a morphism of descent data
(𝑉, 𝜑) → (𝑊, 𝜓) as desired. �

The following two lemmas have been obsoleted by the improved exposition of the previous
material. But they are stilll true!

Lemma 31.31.5. Let 𝑋 → 𝑆 be a morphism of schemes. Let 𝑓 ∶ 𝑋 → 𝑋 be a selfmap of
𝑋 over 𝑆. In this case pullback by 𝑓 is isomorphic to the identity functor on the category
of descent data relative to 𝑋 → 𝑆.

Proof. This is clear from Lemma 31.30.6 since it tells us that 𝑓∗ ≅ id∗. �

Lemma 31.31.6. Let 𝑓 ∶ 𝑋′ → 𝑋 be a morphism of schemes over a base scheme 𝑆.
Assume there exists a morphism 𝑔 ∶ 𝑋 → 𝑋′ over 𝑆, for example if 𝑓 has a section. Then
the pullback functor of Lemma 31.30.6 defines an equivalence of categories between the
category of descent data relative to 𝑋/𝑆 and 𝑋′/𝑆.

Proof. Let 𝑔 ∶ 𝑋 → 𝑋′ be a morphism over 𝑆. Lemma 31.31.5 above shows that the
functors 𝑓∗ ∘ 𝑔∗ = (𝑔 ∘ 𝑓)∗ and 𝑔∗ ∘ 𝑓∗ = (𝑓 ∘ 𝑔)∗ are isomorphic to the respective identity
functors as desired. �

Lemma 31.31.7. Let 𝑓 ∶ 𝑋 → 𝑋′ be a morphism of schemes over a base scheme 𝑆.
Assume 𝑋 → 𝑆 is surjective and flat. Then the pullback functor of of Lemma 31.30.6 is a
faithful functor from the category of descent data relative to 𝑋′/𝑆 to the category of descent
data relative to 𝑋/𝑆.

Proof. We may factor 𝑋 → 𝑋′ as 𝑋 → 𝑋 ×𝑆 𝑋′ → 𝑋′. The first morphism has a section,
hence induces an equivalence of categories of descent data by Lemma 31.31.6. The second
morphism is surjective and flat, hence induces a faithful functor by Lemma 31.31.3. �

Lemma 31.31.8. Let 𝑓 ∶ 𝑋 → 𝑋′ be a morphism of schemes over a base scheme 𝑆. As-
sume {𝑋 → 𝑆} is an fpqc covering (for example if 𝑓 is surjective, flat and quasi-compact).
Then the pullback functor of of Lemma 31.30.6 is a fully faithful functor from the category
of descent data relative to 𝑋′/𝑆 to the category of descent data relative to 𝑋/𝑆.

Proof. We may factor 𝑋 → 𝑋′ as 𝑋 → 𝑋 ×𝑆 𝑋′ → 𝑋′. The first morphism has a section,
hence induces an equivalence of categories of descent data by Lemma 31.31.6. The second
morphism is an fpqc covering hence induces a fully faithful functor by Lemma 31.31.4. �

Lemma 31.31.9. Let 𝑆 be a scheme. Let 𝒰 = {𝑈𝑖 → 𝑆}𝑖∈𝐼, and 𝒱 = {𝑉𝑗 → 𝑆}𝑗∈𝐽, be
families of morphisms with target 𝑆. Let 𝛼 ∶ 𝐼 → 𝐽, id ∶ 𝑆 → 𝑆 and 𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝛼(𝑖) be
a morphism of families of maps with fixed target, see Sites, Definition 9.8.1. Assume that
for each 𝑗 ∈ 𝐽 the family {𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝑗}𝛼(𝑖)=𝑗 is an fpqc covering of 𝑉𝑗. Then the pullback
functor

descent data relative to 𝒱 ⟶ descent data relative to 𝒰
of Lemma 31.30.8 is fully faithful.

Proof. Consider the morphism of schemes

𝑔 ∶ 𝑋 = ∐𝑖∈𝐼
𝑈𝑖 ⟶ 𝑌 = ∐𝑗∈𝐽

𝑉𝑗

over 𝑆 which on the 𝑖th component maps into the 𝛼(𝑖)th component via the morphism 𝑔𝛼(𝑖).
We claim that {𝑔 ∶ 𝑋 → 𝑌} is an fpqc covering of schemes. Namely, by Topologies,
Lemma 30.8.3 for each 𝑗 the morphism {∐𝛼(𝑖)=𝑗 𝑈𝑖 → 𝑉𝑗} is an fpqc covering. Thus for
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every affine open 𝑉 ⊂ 𝑉𝑗 (which we may think of as an affine open of 𝑌) we can find finitely
many affine opens 𝑊1, … , 𝑊𝑛 ⊂ ∐𝛼(𝑖)=𝑗 𝑈𝑖 (which we may think of as affine opens of 𝑋)
such that 𝑉 = ⋃𝑖=1,…,𝑛 𝑔(𝑊𝑖). This provides enough affine opens of 𝑌 which can be covered
by finitely many affine opens of 𝑋 so that Topologies, Lemma 30.8.2 part (3) applies, and
the claim follows. Let us write 𝐷𝐷(𝑋/𝑆), resp. 𝐷𝐷(𝒰) for the category of descent data
with respect to 𝑋/𝑆, resp. 𝒰, and similarly for 𝑌/𝑆 and 𝒱. Consider the diagram

𝐷𝐷(𝑌/𝑆) // 𝐷𝐷(𝑋/𝑆)

𝐷𝐷(𝒱)

Lemma 31.30.5

OO

// 𝐷𝐷(𝒰)

Lemma 31.30.5

OO

This diagram is commutative, see the proof of Lemma 31.30.8. The vertical arrows are
equivalences. Hence the lemma follows from Lemma 31.31.4 which shows the top hori-
zontal arrow of the diagram is fully faithful. �

The next lemma shows that, in order to check effectiveness, we may always Zariski refine
the given family of morphisms with target 𝑆.

Lemma 31.31.10. Let 𝑆 be a scheme. Let 𝒰 = {𝑈𝑖 → 𝑆}𝑖∈𝐼, and 𝒱 = {𝑉𝑗 → 𝑆}𝑗∈𝐽, be
families of morphisms with target 𝑆. Let 𝛼 ∶ 𝐼 → 𝐽, id ∶ 𝑆 → 𝑆 and 𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝛼(𝑖) be a
morphism of families of maps with fixed target, see Sites, Definition 9.8.1. Assume that for
each 𝑗 ∈ 𝐽 the family {𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝑗}𝛼(𝑖)=𝑗 is a Zariski covering (see Topologies, Definition
30.3.1) of 𝑉𝑗. Then the pullback functor

descent data relative to 𝒱 ⟶ descent data relative to 𝒰

of Lemma 31.30.8 is an equivalence of categories. In particular, the category of schemes
over 𝑆 is equivalent to the category of descent data relative to any Zariski covering of 𝑆.

Proof. The functor is faithful and fully faithful by Lemma 31.31.9. Let us indicate how to
prove that it is essentially surjective. Let (𝑋𝑖, 𝜑𝑖𝑖′) be a descend datum relative to 𝒰. Fix
𝑗 ∈ 𝐽 and set 𝐼𝑗 = {𝑖 ∈ 𝐼 ∣ 𝛼(𝑖) = 𝑗}. For 𝑖, 𝑖′ ∈ 𝐼𝑗 note that there is a canonical morphism

𝑐𝑖𝑖′ ∶ 𝑈𝑖 ×𝑔𝑖,𝑉𝑗,𝑔𝑖′
𝑈𝑖′ → 𝑈𝑖 ×𝑆 𝑈𝑖′.

Hencewe can pullback𝜑𝑖𝑖′ by this morphism and set𝜓𝑖𝑖′ = 𝑐∗
𝑖𝑖′𝜑𝑖𝑖′ for 𝑖, 𝑖′ ∈ 𝐼𝑗. In this way

we obtain a descent datum (𝑋𝑖, 𝜓𝑖𝑖′) relative to the Zariski covering {𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝑖}𝑖∈𝐼𝑗
.

Note that 𝜓𝑖𝑖′ is an isomorphism from the open 𝑋𝑖,𝑈𝑖×𝑉𝑗𝑈𝑖′
of 𝑋𝑖 to the corresponding open

of 𝑋𝑖′. It follows from Schemes, Section 21.14 that we may glue (𝑋𝑖, 𝜓𝑖𝑖′) into a scheme
𝑌𝑗 over 𝑉𝑗. Moreover, the morphisms 𝜑𝑖𝑖′ for 𝑖 ∈ 𝐼𝑗 and 𝑖′ ∈ 𝐼𝑗′ glue to a morphism
𝜑𝑗𝑗′ ∶ 𝑌𝑗 ×𝑆 𝑉𝑗′ → 𝑉𝑗 ×𝑆 𝑌𝑗′ satisfying the cocycle condition (details omitted). Hence we
obtain the desired descent datum (𝑌𝑗, 𝜑𝑗𝑗′) relative to 𝒱. �

Lemma 31.31.11. Let 𝑆 be a scheme. Let 𝒰 = {𝑈𝑖 → 𝑆}𝑖∈𝐼, and 𝒱 = {𝑉𝑗 → 𝑆}𝑗∈𝐽, be
fpqc-coverings of 𝑆. If 𝒰 is a refinement of 𝒱, then the pullback functor

descent data relative to 𝒱 ⟶ descent data relative to 𝒰

is fully faithfull. In particular, the category of schemes over 𝑆 is identified with a full
subcategory of the category of descent data relative to any fpqc-covering of 𝑆.
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Proof. Consider the fpqc-covering 𝒲 = {𝑈𝑖 ×𝑆 𝑉𝑗 → 𝑆}(𝑖,𝑗)∈𝐼×𝐽 of 𝑆. It is a refinement
of both 𝒰 and 𝒱. Hence we have a 2-commutative diagram of functors and categories

𝐷𝐷(𝒱)

%%

// 𝐷𝐷(𝒰)

yy
𝐷𝐷(𝒲)

Notation as in the proof of Lemma 31.31.9 and commutativity by Lemma 31.30.8 part (3).
Hence clearly it suffices to prove the functors 𝐷𝐷(𝒱) → 𝐷𝐷(𝒲) and 𝐷𝐷(𝒰) → 𝐷𝐷(𝒲)
are fully faithful. This follows from Lemma 31.31.9 as desired. �

Remark 31.31.12. Lemma 31.31.11 says that morphisms of schemes satisfy fpqc descent.
In other words, given a scheme 𝑆 and schemes 𝑋, 𝑌 over 𝑆 the functor

(Sch/𝑆)𝑜𝑝𝑝 ⟶ Sets, 𝑇 ⟼ 𝑀𝑜𝑟𝑇(𝑋𝑇, 𝑌𝑇)

satisfies the sheaf condition for the fpqc topology. The simplest case of this is the following.
Suppose that 𝑇 → 𝑆 is a surjective flat morphism of affines. Let 𝜓0 ∶ 𝑋𝑇 → 𝑌𝑇 be a
morphism of schemes over 𝑇 which is compatible with the canonical descent data. Then
there exists a unique morphism 𝜓 ∶ 𝑋 → 𝑌 whose base change to 𝑇 is 𝜓0. In fact this
special case follows in a straightforward manner from Lemma 31.31.4. And, in turn, that
lemma is a formal consequence of the following two facts: (a) the base change functor by a
faihfully flat morphism is faithful, see Lemma 31.31.2 and (b) a scheme satisfies the sheaf
condition for the fpqc topology, see Lemma 31.9.3.

31.32. Descending types of morphisms

In the following we study the question as to whether descent data for schemes relative to a
fpqc-covering are effective. The first remark to make is that this is not always the case. We
will see this (insert future reference here).

On the other hand, if the schemes we are trying to descend are particularly simple, then it
is sometime the case that for whole classes of schemes descent data are effective. We will
introduce terminology here that describes this phenomenon abstractly, even though it may
lead to confusion if not used correctly later on.

Definition 31.32.1. Let 𝒫 be a property of morphisms of schemes over a base. Let 𝜏 ∈
{𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. We say morphisms of type 𝒫 satisfy de-
scent for 𝜏-coverings if for any 𝜏-covering 𝒰 ∶ {𝑈𝑖 → 𝑆}𝑖∈𝐼 (see Topologies, Section
30.2), any descent datum (𝑋𝑖, 𝜑𝑖𝑗) relative to 𝒰 such that each morphism 𝑋𝑖 → 𝑈𝑖 has
property 𝒫 is effective.

Note that in each of the cases we have already seen that the functor from schemes over
𝑆 to descent data over 𝒰 is fully faithful (Lemma 31.31.11 combined with the results in
Topologies that any 𝜏-covering is also a fpqc-covering). We have also seen that descent
data are always effective with respect to Zariski coverings (Lemma 31.31.10). It may be
prudent to only study the notion just introduced when 𝒫 is either stable under any base
change or at least local on the base in the 𝜏-topology (see Definition 31.18.1) in order to
avoid erroneous arguments (relying on 𝒫 when descending halfway).

Here is the obligatory lemma reducing this question to the case of a covering given by a
single morphism of affines.
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Lemma 31.32.2. Let 𝒫 be a property of morphisms of schemes over a base. Let 𝜏 ∈
{𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Suppose that

(1) 𝒫 is stable under any base change (see Schemes, Definition 21.18.3), and
(2) for any surjective morphism of affines 𝑋 → 𝑆 which is flat, flat of finite pre-

sentation, étale, smooth or syntomic depending on whether 𝜏 is fpqc, fppf, étale,
smooth, or syntomic, any descent datum (𝑉, 𝜑) relative to 𝑋 over 𝑆 such that 𝒫
holds for 𝑉 → 𝑋 is effective.

Then morphisms of type 𝒫 satisfy descent for 𝜏-coverings.

Proof. Let 𝑆 be a scheme. Let 𝒰 = {𝜑𝑖 ∶ 𝑈𝑖 → 𝑆}𝑖∈𝐼 be a 𝜏-covering of 𝑆. Let (𝑋𝑖, 𝜑𝑖𝑖′)
be a descent datum relative to 𝒰 and assume that each morphism 𝑋𝑖 → 𝑈𝑖 has property 𝒫.
We have to show there exists a scheme 𝑋 → 𝑆 such that (𝑋𝑖, 𝜑𝑖𝑖′) ≅ (𝑈𝑖 ×𝑆 𝑋, 𝑐𝑎𝑛).

Before we start the proof proper we remark that for any family of morphisms 𝒱 ∶ {𝑉𝑗 → 𝑆}
and any morphism of families 𝒱 → 𝒰, if we pullback the descent datum (𝑋𝑖, 𝜑𝑖𝑖′) to a
descent datum (𝑌𝑗, 𝜑𝑗𝑗′) over 𝒱, then each of the morphisms 𝑌𝑗 → 𝑉𝑗 has property 𝒫 also.
This is true because we assumed that 𝒫 is stable under any base change and the definition
of pullback (see Definition 31.30.9). We will use this without further mention.

First, let us prove the lemma when 𝑆 is affine. By Topologies, Lemma 30.8.8, 30.7.4,
30.4.4, 30.5.4, or 30.6.4 there exists a standard 𝜏-covering 𝒱 ∶ {𝑉𝑗 → 𝑆}𝑗=1,…,𝑚 which
refines 𝒰. The pullback functor 𝐷𝐷(𝒰) → 𝐷𝐷(𝒱) between categories of descent data is
fully faithful by Lemma 31.31.11. Hence it suffices to prove that the descend datum over
the standard 𝜏-covering 𝒱 is effective. By Lemma 31.30.5 this reduces to the covering
{∐𝑗=1,…,𝑚 𝑉𝑗 → 𝑆} for which we have assumed the result in property (2) of the lemma.
Hence the lemma holds when 𝑆 is affine.

Assume 𝑆 is general. Let 𝑉 ⊂ 𝑆 be an affine open. By the properties of site the family
𝒰𝑉 = {𝑉×𝑆𝑈𝑖 → 𝑉}𝑖∈𝐼 is a 𝜏-covering of 𝑉. Denote (𝑋𝑖, 𝜑𝑖𝑖′)𝑉 the restriction (or pullback)
of the given descent datum to 𝒰𝑉. Hence by what we just saw we obtain a scheme 𝑋𝑉 over
𝑉 whose canonical descent datum with respect to 𝒰𝑉 is isomorphic to (𝑋𝑖, 𝜑𝑖𝑖′)𝑉. Suppose
that 𝑉′ ⊂ 𝑉 is an affine open of 𝑉. Then both 𝑋𝑉′ and 𝑉′ ×𝑉 𝑋𝑉 have canonical descent
data isomorphic to (𝑋𝑖, 𝜑𝑖𝑖′)𝑉′. Hence, by Lemma 31.31.11 again we obtain a canonical
morphism 𝜌𝑉

𝑉′ ∶ 𝑋𝑉′ → 𝑋𝑉 over 𝑆 which identifies 𝑋𝑉′ with the inverse image of 𝑉′ in 𝑋𝑉.
We omit the verification that given affine opens 𝑉″ ⊂ 𝑉′ ⊂ 𝑉 of 𝑆 we have 𝜌𝑉

𝑉″ = 𝜌𝑉
𝑉′ ∘ 𝜌𝑉′

𝑉″.

By Constructions, Lemma 22.2.1 the data (𝑋𝑉, 𝜌𝑉
𝑉′) glue to a scheme 𝑋 → 𝑆. Moreover,

we are given isomorphisms 𝑉 ×𝑆 𝑋 → 𝑋𝑉 which recover the maps 𝜌𝑉
𝑉′. Unwinding the

construction of the schemes 𝑋𝑉 we obtain isomorphisms

𝑉 ×𝑆 𝑈𝑖 ×𝑆 𝑋 ⟶ 𝑉 ×𝑆 𝑋𝑖

compatible with the maps 𝜑𝑖𝑖′ and compatible with restricting to smaller affine opens in
𝑋. This implies that the canonical descent datum on 𝑈𝑖 ×𝑆 𝑋 is isomorphic to the given
descent datum and we win. �

31.33. Descending affine morphisms

In this section we show that ``affine morphisms satisfy descent for fpqc-coverings''. Here
is the formal statement.
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Lemma 31.33.1. Let 𝑆 be a scheme. Let {𝑋𝑖 → 𝑆}𝑖∈𝐼 be an fpqc covering, see Topolo-
gies, Definition 30.8.1. Let (𝑉𝑖/𝑋𝑖, 𝜑𝑖𝑗) be a descent datum relative to {𝑋𝑖 → 𝑆}. If each
morphism 𝑉𝑖 → 𝑋𝑖 is affine, then the descent datum is effective.

Proof. Being affine is a property of morphisms of schemes which is preserved under any
base change, seeMorphisms, Lemma 24.11.8. Hence Lemma 31.32.2 applies and it suffices
to prove the statement of the lemma in case the fpqc-covering is given by a single {𝑋 → 𝑆}
flat surjective morphism of affines. Say 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) so that 𝑅 → 𝐴 is a
faithfully flat ring map. Let (𝑉, 𝜑) be a descent datum relative to 𝑋 over 𝑆 and assume that
𝑉 → 𝑋 is affine. Then 𝑉 → 𝑋 being affine implies that 𝑉 = 𝑆𝑝𝑒𝑐(𝐵) for some 𝐴-algebra 𝐵
(see Morphisms, Definition 24.11.1). The isomorphism 𝜑 corresponds to an isomorphism
of rings

𝜑♯ ∶ 𝐵 ⊗𝑅 𝐴 ⟵ 𝐴 ⊗𝑅 𝐵
as 𝐴 ⊗𝑅 𝐴-algebras. The cocycle condition on 𝜑 says that

𝐵 ⊗𝑅 𝐴 ⊗𝑅 𝐴 𝐴 ⊗𝑅 𝐴 ⊗𝑅 𝐵oo

vv
𝐴 ⊗𝑅 𝐵 ⊗𝑅 𝐴

hh

is commutative. Inverting these arrows we see that we have a descent datum for modules
with respect to 𝑅 → 𝐴 as in Definition 31.3.1. Hence we may apply Proposition 31.3.9 to
obtain an 𝑅-module 𝐶 = Ker(𝐵 → 𝐴 ⊗𝑅 𝐵) and an isomorphism 𝐴 ⊗𝑅 𝐶 ≅ 𝐵 respecting
descent data. Given any pair 𝑐, 𝑐′ ∈ 𝐶 the produc 𝑐𝑐′ in 𝐵 lies in 𝐶 since the map 𝜑 is an
algebra homomorphism. Hence 𝐶 is an 𝑅-algebra whose base change to 𝐴 is isomorphic
to 𝐵 compatibly with descent data. Applying 𝑆𝑝𝑒𝑐 we obtain a scheme 𝑈 over 𝑆 such that
(𝑉, 𝜑) ≅ (𝑋 ×𝑆 𝑈, 𝑐𝑎𝑛) as desired. �

Lemma 31.33.2. Let 𝑆 be a scheme. Let {𝑋𝑖 → 𝑆}𝑖∈𝐼 be an fpqc covering, see Topolo-
gies, Definition 30.8.1. Let (𝑉𝑖/𝑋𝑖, 𝜑𝑖𝑗) be a descent datum relative to {𝑋𝑖 → 𝑆}. If each
morphism 𝑉𝑖 → 𝑋𝑖 is a closed immersion, then the descent datum is effective.

Proof. This is true because a closed immersion is an affine morphism (Morphisms, Lemma
24.11.9), and hence Lemma 31.33.1 applies. �

31.34. Descending quasi-affine morphisms

In this section we show that ``quasi-affine morphisms satisfy descent for fpqc-coverings''.
Here is the formal statement.

Lemma 31.34.1. Let 𝑆 be a scheme. Let {𝑋𝑖 → 𝑆}𝑖∈𝐼 be an fpqc covering, see Topolo-
gies, Definition 30.8.1. Let (𝑉𝑖/𝑋𝑖, 𝜑𝑖𝑗) be a descent datum relative to {𝑋𝑖 → 𝑆}. If each
morphism 𝑉𝑖 → 𝑋𝑖 is quasi-affine, then the descent datum is effective.

Proof. Being quasi-affine is a property of morphisms of schemes which is preserved under
any base change, see Morphisms, Lemma 24.12.5. Hence Lemma 31.32.2 applies and it
suffices to prove the statement of the lemma in case the fpqc-covering is given by a single
{𝑋 → 𝑆} flat surjective morphism of affines. Say 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) so that
𝑅 → 𝐴 is a faithfully flat ring map. Let (𝑉, 𝜑) be a descent datum relative to 𝑋 over 𝑆 and
assume that 𝜋 ∶ 𝑉 → 𝑋 is quasi-affine.
According to Morphisms, Lemma 24.12.3 this means that

𝑉 ⟶ 𝑆𝑝𝑒𝑐
𝑋

(𝜋∗𝒪𝑉) = 𝑊
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is a quasi-compact open immersion of schemes over 𝑋. The projections pr𝑖 ∶ 𝑋×𝑆 𝑋 → 𝑋
are flat and hence we have

pr∗0𝜋∗𝒪𝑉 = (𝜋 × id𝑋)∗𝒪𝑉×𝑆𝑋, pr∗1𝜋∗𝒪𝑉 = (id𝑋 × 𝜋)∗𝒪𝑋×𝑆𝑉

by flat base change (Coherent, Lemma 25.6.2). Thus the isomorphism 𝜑 ∶ 𝑉×𝑆𝑋 → 𝑋×𝑆𝑉
(which is an isomorphism over 𝑋 ×𝑆 𝑋) induces an isomorphism of quasi-coherent sheaves
of algebras

𝜑♯ ∶ pr∗0𝜋∗𝒪𝑉 ⟶ pr∗1𝜋∗𝒪𝑉

on 𝑋 ×𝑆 𝑋. The cocycle condition for 𝜑 implies the cocyle condition for 𝜑♯. Another way
to say this is that it produces a descent datum 𝜑′ on the affine scheme 𝑊 relative to 𝑋 over
𝑆, which moreover has the property that the morphism 𝑉 → 𝑊 is a morphism of descent
data. Hence by Lemma 31.33.1 (or by effectivity of descent for quasi-coherent algebras)
we obtain a scheme 𝑈′ → 𝑆 with an isomorphism (𝑊, 𝜑′) ≅ (𝑋 ×𝑆 𝑈′, 𝑐𝑎𝑛) of descent
data. We note in passing that 𝑈′ is affine by Lemma 31.19.16.

And now we can think of 𝑉 as a (quasi-compact) open 𝑉 ⊂ 𝑋 ×𝑆 𝑈′ with the property that
it is stable under the descent datum

𝑐𝑎𝑛 ∶ 𝑋 ×𝑆 𝑈′ ×𝑆 𝑋 → 𝑋 ×𝑆 𝑋 ×𝑆 𝑈′, (𝑥0, 𝑢′, 𝑥1) ↦ (𝑥0, 𝑥1, 𝑢′).

In other words (𝑥0, 𝑢′) ∈ 𝑉 ⇒ (𝑥1, 𝑢′) ∈ 𝑉 for any 𝑥0, 𝑥1, 𝑢′ mapping to the same point of
𝑆. Because 𝑋 → 𝑆 is surjective we immediately find that 𝑉 is the inverse image of a subset
𝑈 ⊂ 𝑈′ under the morphism 𝑋 ×𝑆 𝑈′ → 𝑈′. Because 𝑋 → 𝑆 is quasi-compact, flat and
surjective also 𝑋 ×𝑆 𝑈′ → 𝑈′ is quasi-compact flat and surjective. Hence by Morphisms,
Lemma 24.24.10 this subset 𝑈 ⊂ 𝑈′ is open and we win. �

31.35. Descent data in terms of sheaves

Here is another way to think about descent data in case of a covering on a site.

Lemma 31.35.1. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐8}. Let Sch𝜏 be a big
𝜏-site. Let 𝑆 ∈ 𝑂𝑏(Sch𝜏). Let {𝑆𝑖 → 𝑆}𝑖∈𝐼 be a covering in the site (Sch/𝑆)𝜏. There is an
equivalence of categories

{
descent data (𝑋𝑖, 𝜑𝑖𝑖′) such that

each 𝑋𝑖 ∈ 𝑂𝑏((Sch/𝑆)𝜏) } ↔ {
sheaves 𝐹 on (Sch/𝑆)𝜏 such that
each ℎ𝑆𝑖

× 𝐹 is representable } .

Moreover,
(1) the objects representing ℎ𝑆𝑖

×𝐹 on the right hand side correspond to the schemes
𝑋𝑖 on the left hand side, and

(2) the sheaf𝐹 is representable if and only if the corresponding descent datum (𝑋𝑖, 𝜑𝑖𝑖′)
is effective.

Proof. We have seen in Section 31.9 that representable presheaves are sheaves on the site
(Sch/𝑆)𝜏. Moreover, the Yonea lemma (Categories, Lemma 4.3.5) garantees that maps
between representable sheaves correspond one to one with maps between the representing
objects. We will use these remarks without further mention during the proof.

Let us construct the functor from right to left. Let 𝐹 be a sheaf on (Sch/𝑆)𝜏 such that each
ℎ𝑆𝑖

× 𝐹 is representable. In this case let 𝑋𝑖 be a representing object in (Sch/𝑆)𝜏. It comes

8 The fact that fpqc is missing is not a typo. See discussion in Topologies, Section 30.8.
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equipped with a morphism 𝑋𝑖 → 𝑆𝑖. Then both 𝑋𝑖 ×𝑆 𝑆𝑖′ and 𝑆𝑖 ×𝑆 𝑋𝑖′ represent the sheaf
ℎ𝑆𝑖

× 𝐹 × ℎ𝑆𝑖′
and hence we obtain an isomorphism

𝜑𝑖𝑖′ ∶ 𝑋𝑖 ×𝑆 𝑆𝑖′ → 𝑆𝑖 ×𝑆 𝑋𝑖′

It is straightforward to see that the maps 𝜑𝑖𝑖′ are morphisms over 𝑆𝑖 ×𝑆 𝑆𝑖′ and satsify
the cocycle condition. The functor from right to left is given by this construction 𝐹 ↦
(𝑋𝑖, 𝜑𝑖𝑖′).
Let us construct a functor from left to right. For each 𝑖 denote 𝐹𝑖 the sheaf ℎ𝑋𝑖

. The
isomorphisms 𝜑𝑖𝑖′ give isomorphisms

𝜑𝑖𝑖′ ∶ 𝐹𝑖 × ℎ𝑆𝑖′
⟶ ℎ𝑆𝑖

× 𝐹𝑖′

over ℎ𝑆𝑖
× ℎ𝑆𝑖′

. Set 𝐹 equal to the coequalizer in the following diagram

∐𝑖,𝑖′ 𝐹𝑖 × ℎ𝑆𝑖′

pr0 //

pr1∘𝜑𝑖𝑖′
//∐𝑖 𝐹𝑖

// 𝐹

The cocylce condition garantees that ℎ𝑆𝑖
× 𝐹 is isomorphic to 𝐹𝑖 and hence representable.

The functor from left to right is given by this construction (𝑋𝑖, 𝜑𝑖𝑖′) ↦ 𝐹.
We omit the verification that these constructions are mutually quasi-inverse functors. The
final statements (1) and (2) follow from the constructions. �

Remark 31.35.2. In the statement of Lemma 31.35.1 the condition that ℎ𝑆𝑖
× 𝐹 is repre-

sentable is equivalent to the condition that the restriction of 𝐹 to (Sch/𝑆𝑖)𝜏 is representable.

31.36. Descent in terms of simplicial schemes

A simplicial scheme is a simplicial object in the category of schemes, see Simplicial, Defi-
nition 14.3.1. In this chapter we will use a subscript • to denote simplicial objects. Recall
that a simplicial scheme looks like

𝑋2

//
//
//
𝑋1

//
//oo

oo
𝑋0

oo

Here there are two morphisms 𝑑1
0, 𝑑1

1 ∶ 𝑋1 → 𝑋0 and a single morphism 𝑠0
0 ∶ 𝑋0 → 𝑋1,

etc. It is important to remember that 𝑑𝑛
𝑖 ∶ 𝑋𝑛 → 𝑋𝑛−1 should be thought of as a ``projection

forgetting the 𝑖th coordinate''.

Definition 31.36.1. Let 𝑎 ∶ 𝑉• → 𝑋• be a morphism of simplicial schemes. We say 𝑎 is
cartesian, or that 𝑉• is cartesian over 𝑋•, if for every morphism 𝜑 ∶ [𝑛] → [𝑚] of Δ the
corresponding diagram

𝑉𝑚 𝑎
//

𝑉•(𝜑)
��

𝑋𝑚

𝑋•(𝜑)
��

𝑉𝑛
𝑎 // 𝑋𝑛

is a fibre square in the category of schemes.

Definition 31.36.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The simplicial scheme
associated to 𝑓, denoted (𝑋/𝑆)•, is the functor Δ𝑜𝑝𝑝 → Sch, [𝑛] ↦ 𝑋 ×𝑆 … ×𝑆 𝑋 described
in Simplicial, Example 14.3.5.

Thus (𝑋/𝑆)𝑛 is the (𝑛+1)-fold fibre product of 𝑋 over 𝑆. The morphism 𝑑1
0 ∶ 𝑋×𝑆 𝑋 → 𝑋

is the map (𝑥0, 𝑥1) ↦ 𝑥1 and the morphism 𝑑1
1 is the other projection. The morphism 𝑠0

0 is
the diagonal morphism 𝑋 → 𝑋 ×𝑆 𝑋.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02W6
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Lemma 31.36.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝜋 ∶ 𝑉• → (𝑋/𝑆)•
be a cartesian morphism. Set 𝑉 = 𝑉0 considered as a scheme over 𝑋. The morphisms
𝑑1

0, 𝑑1
1 ∶ 𝑉1 → 𝑉0 and the morphism 𝜋1 ∶ 𝑉1 → 𝑋 ×𝑆 𝑋 induce isomorphisms

𝑉 ×𝑆 𝑋 𝑉1
(𝑑1

1,pr1∘𝜋1)
oo

(pr0∘𝜋1,𝑑1
0)
// 𝑋 ×𝑆 𝑉.

Denote 𝜑 ∶ 𝑉 ×𝑆 𝑋 → 𝑋 ×𝑆 𝑉 the resulting isomorphism. Then the pair (𝑉, 𝜑) is a descent
datum relative to 𝑋 → 𝑆.

Proof. The statement that the displayed morphisms are isomorphisms is exactly the carte-
sian property for the maps 𝛿1

0, 𝛿1
1 ∶ [0] → [1]. The fact that the diagram of Definition

31.30.1 (1) commutes follows from the fact that each of the induced morphisms 𝑉2 →
𝑉 ×𝑋,pr𝑖 (𝑋 ×𝑆 𝑋 ×𝑆 𝑋) associated to [0] → [2], 0 ↦ 𝑖 is an isomorphism. Details omit-
ted. �

Lemma 31.36.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The construction

category of cartesian
schemes over (𝑋/𝑆)•

⟶ category of descent data
relative to 𝑋/𝑆

of Lemma 31.36.3 is an equivalence of categories.

Proof. Here you have to show that given a descent datum (𝑉, 𝜑) you can canonically con-
struct a cartesian morphism of simplicial schemes 𝑉• → (𝑋/𝑆)• so that if you apply the
construction of Lemma 31.36.3 then you get back (𝑉, 𝜑). This we did carefully in Section
31.3 for the case of descent data for modules over rings and their associated cosimplicial
rings, see especially Lemma 31.3.2. We can easily translate this to the current context.
Namely, set

𝑉𝑛 = 𝑋 ×𝑆 … ×𝑆 𝑋 ×𝑆 𝑉.
Given a point (𝑥0, … , 𝑥𝑛−1, 𝑣) of 𝑉𝑛 we use the convention that 𝑥𝑛 = 𝜋(𝑣). Using this
convention, given a morphism 𝛽 ∶ [𝑚] → [𝑛] the associated morphism

𝑉•(𝛽) ∶ 𝑉𝑛 ⟶ 𝑉𝑚

maps (𝑥0, … , 𝑥𝑛−1, 𝑣) to (𝑥𝛽(0), … , 𝑥𝛽(𝑚−1), 𝑣′) where 𝜑−1(𝑥𝛽(𝑚), 𝑣) = (𝑣′, 𝑥𝑛). (It is a fact
that 𝑣′ = 𝑣 if 𝑛 = 𝛽(𝑚); see discussion following Definition 31.30.1.) We omit the verifi-
cation that this defines a simplicial scheme which is cartesian over (𝑋/𝑆)•. �

We may reinterpret the pullback of Lemma 31.30.6 as follows. Suppose given a commuta-
tive diagram of morphisms of schemes

𝑋′
𝑓
//

��

𝑋

��
𝑆′ // 𝑆.

This gives rise to a morphism of simplicial schemes

𝑓• ∶ (𝑋′/𝑆′)• ⟶ (𝑋/𝑆)•.

It is a pleasant exercise to check that given any morphism of simplical schemes 𝑓• ∶ 𝑌• →
𝑋• and a cartesian simplicial scheme 𝑉• → 𝑋• the fibre product

𝑓∗
•𝑉• = 𝑌• ×𝑋•

𝑉•

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=024B
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is a cartesian simplicial scheme over 𝑌•. We omit the verification that this applied to the
morphism (𝑋′/𝑆′)• → (𝑋/𝑆)• corresponds via Lemma 31.36.4 with the pullback defined
in terms of descent data.
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CHAPTER 32

Adequate Modules

32.1. Introduction

For any scheme 𝑋 the categoryQCoh(𝒪𝑋) of quasi-coherent modules is abelian and a weak
Serre subcategory of the abelian category of all 𝒪𝑋-modules. The same thing works for the
category of quasi-coherent modules on an algebraic space 𝑋 viewed as a subcategory of
the category of all 𝒪𝑋-modules on the small étale site of 𝑋. Moreover, for a quasi-compact
and quasi-separated morphism 𝑓 ∶ 𝑋 → 𝑌 the pushforward 𝑓∗ and higher direct images
preserve quasi-coherency.

Next, let 𝑋 be a scheme and let 𝒪 be the structure sheaf on one of the big sites of 𝑋, say,
the big fppf site. The category of quasi-coherent 𝒪-modules is abelian (in fact it is equiv-
alent to the category of usual quasi-coherent 𝒪𝑋-modules on the scheme 𝑋 we mentioned
above) but its imbedding intoMod(𝒪) is not exact. An example is the map of quasi-coherent
modules

𝒪𝐀1
𝑘

⟶ 𝒪𝐀1
𝑘

on 𝐀1
𝑘 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]) given by multiplication by 𝑥. In the abelian category of quasi-coherent

sheaves this map is injective, whereas in the abelian category of all 𝒪-modules on the
big site of 𝐀1

𝑘 this map has a nontrivial kernel as we see by evaluating on sections over
𝑆𝑝𝑒𝑐(𝑘[𝑥]/(𝑥)) = 𝑆𝑝𝑒𝑐(𝑘). Moreover, for a quasi-compact and quasi-separated morphism
𝑓 ∶ 𝑋 → 𝑌 the functor 𝑓𝑏𝑖𝑔,∗ does not preserve quasi-coherency.

In this chapter we introduce a larger category of modules, closely related to quasi-coherent
modules, which ``fixes'' the two problems mentioned above.

32.2. Conventions

In this chapter we fix 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓} and we fix a big 𝜏-site Sch𝜏
as in Topologies, Section 30.2. All schemes will be objects of Sch𝜏. In particular, given
a scheme 𝑆 we obtain sites (Aff/𝑆)𝜏 ⊂ (Sch/𝑆)𝜏. The structure sheaf 𝒪 on these sites is
defined by the rule 𝒪(𝑇) = Γ(𝑇, 𝒪𝑇).

All rings 𝐴 will be such that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic to) an object of Sch𝜏. Given a ring 𝐴
we denote Alg𝐴 the category of 𝐴-algebras whose objects are the 𝐴-algebras 𝐵 of the form
𝐵 = Γ(𝑈, 𝒪𝑈) where 𝑆 is an affine object of Sch𝜏. Thus given an affine scheme 𝑆 = 𝑆𝑝𝑒𝑐(𝐴)
the functor

(Aff/𝑆)𝜏 ⟶ Alg𝐴, 𝑈 ⟼ 𝒪(𝑈)
is an equivalence.

32.3. Adequate functors

In this section we discuss a topic closely related to direct images of quasi-coherent sheaves.
Most of this material was taken from the paper [Jaf97].
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Definition 32.3.1. Let 𝐴 be a ring. A module-valued functor is a functor 𝐹 ∶ Alg𝐴 → Ab
such that

(1) for every object 𝐵 of Alg𝐴 the group 𝐹(𝐵) is endowed with the structure of a
𝐵-module, and

(2) for any morphism 𝐵 → 𝐵′ of Alg𝐴 the map 𝐹(𝐵) → 𝐹(𝐵′) is 𝐵-linear.
A morphism of module-valued functors is a transformation of functors 𝜑 ∶ 𝐹 → 𝐺 such
that 𝐹(𝐵) → 𝐺(𝐵) is 𝐵-linear for all 𝐵 ∈ 𝑂𝑏(Alg𝐴).

Let 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme. The category of module-valued functors on Alg𝐴 is
equivalent to the category PMod((Aff/𝑆)𝜏, 𝒪) of presheaves of 𝒪-modules. The equivalence
is given by the rule which assigns to the module-valued functor 𝐹 the presheaf ℱ defined by
the rule ℱ(𝑈) = 𝐹(𝒪(𝑈)). This is clear from the equivalence (Aff/𝑆)𝜏 → Alg𝐴, 𝑈 ↦ 𝒪(𝑈)
given in Section 32.2. The quasi-inverse sets 𝐹(𝐵) = ℱ(𝑆𝑝𝑒𝑐(𝐵)).

An important special case of a module-valued functor comes about as follows. Let 𝑀 be
an 𝐴-module. Then we will denote 𝑀 the module-valued functor 𝐵 ↦ 𝑀 ⊗𝐴 𝐵 (with
obvious 𝐵-module structure). Note that if 𝑀 → 𝑁 is a map of 𝐴-modules then there is an
associated morphism 𝑀 → 𝑁 of module-valued functors. Conversely, any morphism of
module-valued functors 𝑀 → 𝑁 comes from an 𝐴-module map 𝑀 → 𝑁 as the reader can
see by evaluating on 𝐵 = 𝐴. In other words Mod𝐴 is a full subcategory of the category of
module-valued functors on Alg𝐴.

Given and 𝐴-module map 𝜑 ∶ 𝑀 → 𝑁 then Coker(𝑀 → 𝑁) = 𝑄 where 𝑄 = Coker(𝑀 →
𝑁) because ⊗ is right exact. But this isn't the case for the kernel in general: for example
an injective map of 𝐴-modules need not be injective after base change. Thus the following
definition makes sense.

Definition 32.3.2. Let 𝐴 be a ring. A module-valued functor 𝐹 on Alg𝐴 is called
(1) adequate if there exists a map of 𝐴-modules 𝑀 → 𝑁 such that 𝐹 is isomorphic

to Ker(𝑀 → 𝑁).
(2) linearly adequate if 𝐹 is isomorphic to the kernel of a map 𝐴⊕𝑛 → 𝐴⊕𝑚.

Note that 𝐹 is adequate if and only if there exists an exact sequence 0 → 𝐹 → 𝑀 → 𝑁 and
𝐹 is linearly adequate if and only if there exists an exact sequence 0 → 𝐹 → 𝐴⊕𝑛 → 𝐴⊕𝑚.

Let 𝐴 be a ring. In this section we will show the category of adequate functors on Alg𝐴 is
abelian (Lemmas 32.3.10 and 32.3.11) and has a set of generators (Lemma 32.3.6). We will
also see that it is a weak Serre subcategory of the category of all module-valued functors
on Alg𝐴 (Lemma 32.3.16) and that it has arbitrary colimits (Lemma 32.3.12).

Lemma 32.3.3. Let 𝐴 be a ring. Let 𝐹 be an adequate functor on Alg𝐴. If 𝐵 = 𝑐𝑜𝑙𝑖𝑚 𝐵𝑖 is
a filtered colimit of 𝐴-algebras, then 𝐹(𝐵) = 𝑐𝑜𝑙𝑖𝑚 𝐹(𝐵𝑖).

Proof. This holds because for any 𝐴-module 𝑀 we have 𝑀 ⊗𝐴 𝐵 = 𝑐𝑜𝑙𝑖𝑚 𝑀 ⊗𝐴 𝐵𝑖 (see
Algebra, Lemma 7.11.8) and because filtered colimits commute with exact sequences, see
Algebra, Lemma 7.8.9. �

Remark 32.3.4. Consider the category Alg𝑓𝑝,𝐴 whose objects are 𝐴-algebras 𝐵 of the
form 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚) and whose morphisms are 𝐴-algebra maps. Every
𝐴-algebra 𝐵 is a filtered colimit of finitely presented 𝐴-algebra, i.e., a filtered colimit of
objects of Alg𝑓𝑝,𝐴. By Lemma 32.3.3 we conclude every adequate functor 𝐹 is determined
by its restriction to Alg𝑓𝑝,𝐴. For some questions we can therefore restrict to functors on
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Alg𝑓𝑝,𝐴. For example, the category of adequate functors does not depend on the choice of
the big 𝜏-site chosen in Section 32.2.

Lemma 32.3.5. Let 𝐴 be a ring. Let 𝐹 be an adequate functor on Alg𝐴. If 𝐵 → 𝐵′ is flat,
then 𝐹(𝐵) ⊗𝐵 𝐵′ → 𝐹(𝐵′) is an isomorphism.

Proof. Choose an exact sequence 0 → 𝐹 → 𝑀 → 𝑁. This gives the diagram

0 // 𝐹(𝐵) ⊗𝐵 𝐵′ //

��

(𝑀 ⊗𝐴 𝐵) ⊗𝐵 𝐵′ //

��

(𝑁 ⊗𝐴 𝐵) ⊗𝐵 𝐵′

��
0 // 𝐹(𝐵′) //𝑀 ⊗𝐴 𝐵′ // 𝑁 ⊗𝐴 𝐵′

where the rows are exact (the top one because 𝐵 → 𝐵′ is flat). Since the right two vertical
arrows are isomorphisms, so is the left one. �

Lemma 32.3.6. Let 𝐴 be a ring. Let 𝐹 be an adequate functor on Alg𝐴. Then there exists
a surjection 𝐿 → 𝐹 with 𝐿 a direct sum of linearly adequate functors.

Proof. Choose an exact sequence 0 → 𝐹 → 𝑀 → 𝑁 where 𝑀 → 𝑁 is given by 𝜑 ∶
𝑀 → 𝑁. By Lemma 32.3.3 it suffices to construct 𝐿 → 𝐹 such that 𝐿(𝐵) → 𝐹(𝐵) is
surjective for every finitely presented 𝐴-algebra 𝐵. Hence it suffices to construct, given a
finitely presented 𝐴-algebra 𝐵 and an element 𝜉 ∈ 𝐹(𝐵) a map 𝐿 → 𝐹 with 𝐿 linearly
adequate such that 𝜉 is in the image of 𝐿(𝐵) → 𝐹(𝐵). (Because there is a set worth of such
pairs (𝐵, 𝜉) up to isomorphism.)
To do this write ∑𝑖=1,…,𝑛 𝑚𝑖 ⊗ 𝑏𝑖 the image of 𝜉 in 𝑀(𝐵) = 𝑀 ⊗𝐴 𝐵. We know that
∑ 𝜑(𝑚𝑖) ⊗ 𝑏𝑖 = 0 in 𝑁 ⊗𝐴 𝐵. As 𝑁 is a filtered colimit of finitely presented 𝐴-modules,
we can find a finitely presented 𝐴-module 𝑁′, a commutative diagram of 𝐴-modules

𝐴⊕𝑛 //

𝑚1,…,𝑚𝑛
��

𝑁′

��
𝑀 // 𝑁

such that (𝑏1, … , 𝑏𝑛) maps to zero in 𝑁′ ⊗𝐴 𝐵. Choose a presentation 𝐴⊕𝑙 → 𝐴⊕𝑘 →
𝑁′ → 0. Choose a lift 𝐴⊕𝑛 → 𝐴⊕𝑘 of the map 𝐴⊕𝑛 → 𝑁′ of the diagram. Then we see
that there exist (𝑐1, … , 𝑐𝑙) ∈ 𝐵⊕𝑙 such that (𝑏1, … , 𝑏𝑛, 𝑐1, … , 𝑐𝑙) maps to zero in 𝐵⊕𝑘 under
the map 𝐵⊕𝑛 ⊕ 𝐵⊕𝑙 → 𝐵⊕𝑘. Consider the commutative diagram

𝐴⊕𝑛 ⊕ 𝐴⊕𝑙 //

��

𝐴⊕𝑘

��
𝑀 // 𝑁

where the left vertical arrow is zero on the summand 𝐴⊕𝑙. Then we see that 𝐿 equal to the
kernel of 𝐴⊕𝑛+𝑙 → 𝐴⊕𝑘 works because the element (𝑏1, … , 𝑏𝑛, 𝑐1, … , 𝑐𝑙) ∈ 𝐿(𝐵) maps to
𝜉. �

Consider a graded 𝐴-algebra 𝐵 = ⨁𝑑≥0 𝐵𝑑. Then there are two 𝐴-algebra maps 𝑝, 𝑎 ∶
𝐵 → 𝐵[𝑡, 𝑡−1], namely 𝑝 ∶ 𝑏 ↦ 𝑏 and 𝑎 ∶ 𝑏 ↦ 𝑡deg(𝑏)𝑏 where 𝑏 is homogeneous. If 𝐹 is a
module-valued functor on Alg𝐴, then we define

(32.3.6.1) 𝐹(𝐵)(𝑘) = {𝜉 ∈ 𝐹(𝐵) ∣ 𝑡𝑘𝐹(𝑝)(𝜉) = 𝐹(𝑎)(𝜉)}.
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For functors which behavewell with respect to flat ring extensions this gives a direct sum de-
compostion. This amounts to the fact that representations of 𝐆𝑚 are completely reducible.

Lemma 32.3.7. Let 𝐴 be a ring. Let 𝐹 be a module-valued functor on Alg𝐴. Assume that
for 𝐵 → 𝐵′ flat the map 𝐹(𝐵) ⊗𝐵 𝐵′ → 𝐹(𝐵′) is an isomorphism. Let 𝐵 be a graded
𝐴-algebra. Then

(1) 𝐹(𝐵) = ⨁𝑘∈𝐙 𝐹(𝐵)(𝑘), and
(2) the map 𝐵 → 𝐵0 → 𝐵 induces map 𝐹(𝐵) → 𝐹(𝐵) whose image is contained in

𝐹(𝐵)(0).

Proof. Let 𝑥 ∈ 𝐹(𝐵). The map 𝑝 ∶ 𝐵 → 𝐵[𝑡, 𝑡−1] is free hence we know that

𝐹(𝐵[𝑡, 𝑡−1]) = ⨁𝑘∈𝐙
𝐹(𝑝)(𝐹(𝐵)) ⋅ 𝑡𝑘 = ⨁𝑘∈𝐙

𝐹(𝐵) ⋅ 𝑡𝑘

as indicated we drop the 𝐹(𝑝) in the rest of the proof. Write 𝐹(𝑎)(𝑥) = ∑ 𝑡𝑘𝑥𝑘 for some
𝑥𝑘 ∈ 𝐹(𝐵). Denote 𝜖 ∶ 𝐵[𝑡, 𝑡−1] → 𝐵 the 𝐵-algebra map 𝑡 ↦ 1. Note that the compositions
𝜖 ∘ 𝑝, 𝜖 ∘ 𝑎 ∶ 𝐵 → 𝐵[𝑡, 𝑡−1] → 𝐵 are the identity. Hence we see that

𝑥 = 𝐹(𝜖)(𝐹(𝑎)(𝑥)) = 𝐹(𝜖)(∑ 𝑡𝑘𝑥𝑘) = ∑ 𝑥𝑘.

On the other hand, we claim that 𝑥𝑘 ∈ 𝐹(𝐵)(𝑘). Namely, consider the commutative diagram

𝐵 𝑎
//

𝑎′

��

𝐵[𝑡, 𝑡−1]

𝑓
��

𝐵[𝑠, 𝑠−1]
𝑔 // 𝐵[𝑡, 𝑠, 𝑡−1, 𝑠−1]

where 𝑎′(𝑏) = 𝑠deg(𝑏)𝑏, 𝑓(𝑏) = 𝑏, 𝑓(𝑡) = 𝑠𝑡 and 𝑔(𝑏) = 𝑡deg(𝑏)𝑏 and 𝑔(𝑠) = 𝑠. Then

𝐹(𝑔)(𝐹(𝑎′))(𝑥) = 𝐹(𝑔)(∑ 𝑠𝑘𝑥𝑘) = ∑ 𝑠𝑘𝐹(𝑎)(𝑥𝑘)

and going the other way we see

𝐹(𝑓)(𝐹(𝑎))(𝑥) = 𝐹(𝑓)(∑ 𝑡𝑘𝑥𝑘) = ∑(𝑠𝑡)𝑘𝑥𝑘.

Since 𝐵 → 𝐵[𝑠, 𝑡, 𝑠−1, 𝑡−1] is free we see that 𝐹(𝐵[𝑡, 𝑠, 𝑡−1, 𝑠−1]) = ⨁𝑘,𝑙∈𝐙 𝐹(𝐵) ⋅ 𝑡𝑘𝑠𝑙 and
comparing coefficients in the expressions above we find 𝐹(𝑎)(𝑥𝑘) = 𝑡𝑘𝑥𝑘 as desired.

Finally, the image of 𝐹(𝐵0) → 𝐹(𝐵) is contained in 𝐹(𝐵)(0) because 𝐵0 → 𝐵
𝑎

−→ 𝐵[𝑡, 𝑡−1]
is equal to 𝐵0 → 𝐵

𝑝
−→ 𝐵[𝑡, 𝑡−1]. �

As a particular case of Lemma 32.3.7 note that

𝑀(𝐵)(𝑘) = 𝑀 ⊗𝐴 𝐵𝑘

where 𝐵𝑘 is the degree 𝑘 part of the graded 𝐴-algebra 𝐵.

Lemma 32.3.8. Let 𝐴 be a ring. Given a solid diagram

0 // 𝐿

𝜑

��

// 𝐴⊕𝑛 //

~~

𝐴⊕𝑚

𝑀

of module-valued functors on Alg𝐴 with exact row there exists a dotted arrow making the
diagram commute.
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Proof. Suppose that the map 𝐴⊕𝑛 → 𝐴⊕𝑚 is given by the 𝑚 × 𝑛-matrix (𝑎𝑖𝑗). Consider
the ring 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/(∑ 𝑎𝑖𝑗𝑥𝑗). The element (𝑥1, … , 𝑥𝑛) ∈ 𝐴⊕𝑛(𝐵) maps to zero in
𝐴⊕𝑚(𝐵) hence is the image of a unique element 𝜉 ∈ 𝐿(𝐵). Note that 𝜉 has the following
universal property: for any 𝐴-algebra 𝐶 and any 𝜉′ ∈ 𝐿(𝐶) there exists an 𝐴-algebra map
𝐵 → 𝐶 such that 𝜉 maps to 𝜉′ via the map 𝐿(𝐵) → 𝐿(𝐶).

Note that 𝐵 is a graded 𝐴-algebra, hence we can use Lemmas 32.3.7 and 32.3.5 to decom-
pose the values of our functors on𝐵 into graded pieces. Note that 𝜉 ∈ 𝐿(𝐵)(1) as (𝑥1, … , 𝑥𝑛)
is an element of degree one in 𝐴⊕𝑛(𝐵). Hence we see that 𝜑(𝜉) ∈ 𝑀(𝐵)(1) = 𝑀 ⊗𝐴 𝐵1.
Since 𝐵1 is generated by 𝑥1, … , 𝑥𝑛 as an 𝐴-module we can write 𝜑(𝜉) = ∑ 𝑚𝑖 ⊗ 𝑥𝑖. Con-
sider the map 𝐴⊕𝑛 → 𝑀 which maps the 𝑖th basis vector to 𝑚𝑖. By construction the asso-
ciated map 𝐴⊕𝑛 → 𝑀 maps the element 𝜉 to 𝜑(𝜉). It follows from the universal property
mentioned above that the diagram commutes. �

Lemma 32.3.9. Let 𝐴 be a ring. Let 𝜑 ∶ 𝐹 → 𝑀 be a map of module-valued functors on
Alg𝐴 with 𝐹 adequate. Then Coker(𝜑) is adequate.

Proof. By Lemma 32.3.6 we may assume that 𝐹 = ⨁ 𝐿𝑖 is a direct sum of linearly ade-
quate functors. Choose exact sequences 0 → 𝐿𝑖 → 𝐴⊕𝑛𝑖 → 𝐴⊕𝑚𝑖. For each 𝑖 choose a
map 𝐴⊕𝑛𝑖 → 𝑀 as in Lemma 32.3.8. Consider the diagram

0 //⨁ 𝐿𝑖
//

��

⨁ 𝐴⊕𝑛𝑖 //

zz

⨁ 𝐴⊕𝑚𝑖

𝑀

Consider the 𝐴-modules

𝑄 = Coker(⨁ 𝐴⊕𝑛𝑖 → 𝑀 ⊕ ⨁ 𝐴⊕𝑚𝑖) and 𝑃 = Coker(⨁ 𝐴⊕𝑛𝑖 → ⨁ 𝐴⊕𝑚𝑖).

Then we see that Coker(𝜑) is isomorphic to the kernel of 𝑄 → 𝑃. �

Lemma 32.3.10. Let 𝐴 be a ring. Let 𝜑 ∶ 𝐹 → 𝐺 be a map of adequate functors on Alg𝐴.
Then Coker(𝜑) is adequate.

Proof. Choose an injection 𝐺 → 𝑀. Then we have an injection 𝐺/𝐹 → 𝑀/𝐹. By Lemma
32.3.9 we see that 𝑀/𝐹 is adequate, hence we can find an injection 𝑀/𝐹 → 𝑁. Composing
we obtain an injection 𝐺/𝐹 → 𝑁. By Lemma 32.3.9 the cokernel of the induced map
𝐺 → 𝑁 is adequate hence we can find an injection 𝑁/𝐺 → 𝐾. Then 0 → 𝐺/𝐹 → 𝑁 → 𝐾
is exact and we win. �

Lemma 32.3.11. Let 𝐴 be a ring. Let 𝜑 ∶ 𝐹 → 𝐺 be a map of adequate functors on Alg𝐴.
Then Ker(𝜑) is adequate.

Proof. Choose an injection 𝐹 → 𝑀 and an injection 𝐺 → 𝑁. Denote 𝐹 → 𝑀 ⊕ 𝑁 the
diagonal map so that

𝐹

��

// 𝐺

��
𝑀 ⊕ 𝑁 // 𝑁

commutes. By Lemma 32.3.10 we can find a module map 𝑀 ⊕ 𝑁 → 𝐾 such that 𝐹 is the
kernel of 𝑀 ⊕ 𝑁 → 𝐾. Then Ker(𝜑) is the kernel of 𝑀 ⊕ 𝑁 → 𝐾 ⊕ 𝑁. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06V1
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06V2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06V3


1718 32. ADEQUATE MODULES

Lemma 32.3.12. Let 𝐴 be a ring. An arbitrary direct sum of adequate functors on Alg𝐴 is
adequate. A colimit of adequate functors is adequate.

Proof. The statement on direct sums is immediate. A general colimit can be written as a
kernel of a map between direct sums, see Categories, Lemma 4.13.11. Hence this follows
from Lemma 32.3.11. �

Lemma 32.3.13. Let 𝐴 be a ring. Let 𝐹, 𝐺 be module-valued functors on Alg𝐴. Let 𝜑 ∶
𝐹 → 𝐺 be a transformation of functors. Assume

(1) 𝜑 is additive,
(2) for every 𝐴-algebra 𝐵 and 𝜉 ∈ 𝐹(𝐵) and unit 𝑢 ∈ 𝐵∗ we have 𝜑(𝑢𝜉) = 𝑢𝜑(𝜉) in

𝐺(𝐵), and
(3) for any flat ring map 𝐵 → 𝐵′ we have 𝐺(𝐵) ⊗𝐵 𝐵′ = 𝐺(𝐵′).

Then 𝜑 is a morphism of module-valued functors.

Proof. Let 𝐵 be an 𝐴-algebra, 𝜉 ∈ 𝐹(𝐵), and 𝑏 ∈ 𝐵. We have to show that 𝜑(𝑏𝜉) = 𝑏𝜑(𝜉).
Consider the ring map

𝐵 → 𝐵′ = 𝐵[𝑥, 𝑦, 𝑥−1, 𝑦−1]/(𝑥 + 𝑦 − 𝑏).

This ring map is faithfully flat, hence 𝐺(𝐵) ⊂ 𝐺(𝐵′). On the other hand

𝜑(𝑏𝜉) = 𝜑((𝑥 + 𝑦)𝜉) = 𝜑(𝑥𝜉) + 𝜑(𝑦𝜉) = 𝑥𝜑(𝜉) + 𝑦𝜑(𝜉) = (𝑥 + 𝑦)𝜑(𝜉) = 𝑏𝜑(𝜉)

because 𝑥, 𝑦 are units in 𝐵′. Hence we win. �

Lemma 32.3.14. Let 𝐴 be a ring. Let 0 → 𝑀 → 𝐺 → 𝐿 → 0 be a short exact sequence
of module-valued functors on Alg𝐴 with 𝐿 linearly adequate. Then 𝐺 is adequate.

Proof. We first point out that for any flat 𝐴-algebra map 𝐵 → 𝐵′ the map 𝐺(𝐵) ⊗𝐵 𝐵′ →
𝐺(𝐵′) is an isomorphism. Namely, this holds for 𝑀 and 𝐿, see Lemma 32.3.5 and hence
follows for 𝐺 by the five lemma. In particular, by Lemma 32.3.7 we see that 𝐺(𝐵) =
⨁𝑘∈𝐙 𝐺(𝐵)(𝑘) for any graded 𝐴-algebra 𝐵.

Choose an exact sequence 0 → 𝐿 → 𝐴⊕𝑛 → 𝐴⊕𝑚. Suppose that the map 𝐴⊕𝑛 → 𝐴⊕𝑚 is
given by the 𝑚×𝑛-matrix (𝑎𝑖𝑗). Consider the graded 𝐴-algebra 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/(∑ 𝑎𝑖𝑗𝑥𝑗).
The element (𝑥1, … , 𝑥𝑛) ∈ 𝐴⊕𝑛(𝐵) maps to zero in 𝐴⊕𝑚(𝐵) hence is the image of a unique
element 𝜉 ∈ 𝐿(𝐵). Observe that 𝜉 ∈ 𝐿(𝐵)(1). The map

𝐻𝑜𝑚𝐴(𝐵, 𝐶) ⟶ 𝐿(𝐶), 𝑓 ⟼ 𝐿(𝑓)(𝜉)

defines an isomorphism of functors. The reason is that 𝑓 is determined by the images
𝑐𝑖 = 𝑓(𝑥𝑖) ∈ 𝐶 which have to satisfy the relations ∑ 𝑎𝑖𝑗𝑐𝑗 = 0. And 𝐿(𝐶) is the set of
𝑛-tuples (𝑐1, … , 𝑐𝑛) satisfying the relations ∑ 𝑎𝑖𝑗𝑐𝑗 = 0.

Since the value of each of the functors 𝑀, 𝐺, 𝐿 on 𝐵 is a direct sum of its weight spaces (by
the lemma mentioned above) exactness of 0 → 𝑀 → 𝐺 → 𝐿 → 0 implies the sequence
0 → 𝑀(𝐵)(1) → 𝐺(𝐵)(1) → 𝐿(𝐵)(1) → 0 is exact. Thus we may choose an element
𝜃 ∈ 𝐺(𝐵)(1) mapping to 𝜉.

Consider the graded 𝐴-algebra

𝐶 = 𝐴[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛]/(∑ 𝑎𝑖𝑗𝑥𝑗, ∑ 𝑎𝑖𝑗𝑦𝑗)

There are three graded 𝐴-algebra homomorphisms 𝑝1, 𝑝2, 𝑚 ∶ 𝐵 → 𝐶 defined by the rules

𝑝1(𝑥𝑖) = 𝑥𝑖, 𝑝1(𝑥𝑖) = 𝑦𝑖, 𝑚(𝑥𝑖) = 𝑥𝑖 + 𝑦𝑖.
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We will show that the element

𝜏 = 𝐺(𝑚)(𝜃) − 𝐺(𝑝1)(𝜃) − 𝐺(𝑝2)(𝜃) ∈ 𝐺(𝐶)

is zero. First, 𝜏 maps to zero in 𝐿(𝐶) by a direct calculation. Hence 𝜏 is an element of
𝑀(𝐶). Moreover, since 𝑚, 𝑝1, 𝑝2 are graded algebra maps we see that 𝜏 ∈ 𝐺(𝐶)(1) and
since 𝑀 ⊂ 𝐺 we conclude

𝜏 ∈ 𝑀(𝐶)(1) = 𝑀 ⊗𝐴 𝐶1.

We may write uniquely 𝜏 = 𝑀(𝑝1)(𝜏1) + 𝑀(𝑝2)(𝜏2) with 𝜏𝑖 ∈ 𝑀 ⊗𝐴 𝐵1 = 𝑀(𝐵)(1)

because 𝐶1 = 𝑝1(𝐵1) ⊕ 𝑝2(𝐵1). Consider the ring map 𝑞1 ∶ 𝐶 → 𝐵 defined by 𝑥𝑖 ↦ 𝑥𝑖
and 𝑦𝑖 ↦ 0. Then 𝑀(𝑞1)(𝜏) = 𝑀(𝑞1)(𝑀(𝑝1)(𝜏1) + 𝑀(𝑝2)(𝜏2)) = 𝜏1. On the other hand,
because 𝑞1 ∘ 𝑚 = 𝑞1 ∘ 𝑝1 we see that 𝐺(𝑞1)(𝜏) = −𝐺(𝑞1 ∘ 𝑝2)(𝜏). Since 𝑞1 ∘ 𝑝2 factors as
𝐵 → 𝐴 → 𝐵 we see that 𝐺(𝑞1 ∘ 𝑝2)(𝜏) is in 𝐺(𝐵)(0), see Lemma 32.3.7. Hence 𝜏1 = 0
because it is in 𝐺(𝐵)(0) ∩ 𝑀(𝐵)(1) ⊂ 𝐺(𝐵)(0) ∩ 𝐺(𝐵)(1) = 0. Similarly 𝜏2 = 0, whence
𝜏 = 0.

Since 𝜃 ∈ 𝐺(𝐵) we obtain a transformation of functors

𝜓 ∶ 𝐿(−) = 𝐻𝑜𝑚𝐴(𝐵, −) ⟶ 𝐺(−)

by mapping 𝑓 ∶ 𝐵 → 𝐶 to 𝐺(𝑓)(𝜃). Since 𝜃 is a lift of 𝜉 the map 𝜓 is a right inverse of 𝐺 →
𝐿. In terms of 𝜓 the statements proved above have the following meaning: 𝜏 = 0 means that
𝜓 is additive and 𝜃 ∈ 𝐺(𝐵)(1) implies that for any 𝐴-algebra 𝐷 we have 𝜓(𝑢𝑙) = 𝑢𝜓(𝑙) in
𝐺(𝐷) for 𝑙 ∈ 𝐿(𝐷) and 𝑢 ∈ 𝐷∗ a unit. This implies that 𝜓 is a morphism of module-valued
functors, see Lemma 32.3.13. Clearly this implies that 𝐺 ≅ 𝑀 ⊕ 𝐿 and we win. �

Remark 32.3.15. Let 𝐴 be a ring. The proof of Lemma 32.3.14 shows that any extension
0 → 𝑀 → 𝐸 → 𝐿 → 0 of module-valued functors on Alg𝐴 with 𝐿 linearly adequate splits.
It uses only the following properties of the module-valued functor 𝐹 = 𝑀:

(1) 𝐹(𝐵) ⊗𝐵 𝐵′ → 𝐹(𝐵′) is an isomorphism for a flat ring map 𝐵 → 𝐵′, and
(2) 𝐹(𝐶)(1) = 𝐹(𝑝1)(𝐹(𝐵)(1)) ⊕ 𝐹(𝑝2)(𝐹(𝐵)(1)) where 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/(∑ 𝑎𝑖𝑗𝑥𝑗)

and 𝐶 = 𝐴[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛]/(∑ 𝑎𝑖𝑗𝑥𝑗, ∑ 𝑎𝑖𝑗𝑦𝑗).
These two properties hold for any adequate functor 𝐹; details omitted. Hence we see that
𝐿 is a projective object of the abelian category of adequate functors.

Lemma 32.3.16. Let 𝐴 be a ring. Let 0 → 𝐹 → 𝐺 → 𝐻 → 0 be a short exact sequence of
module-valued functors on Alg𝐴. If 𝐹 and 𝐻 are adequate, so is 𝐺.

Proof. Choose an exact sequence 0 → 𝐹 → 𝑀 → 𝑁. If we can show that (𝑀 ⊕ 𝐺)/𝐹
is adequate, then 𝐺 is the kernel of the map of adequate functors (𝑀 ⊕ 𝐺)/𝐹 → 𝑁, hence
adequate by Lemma 32.3.11. Thus we may assume 𝐹 = 𝑀.

We can choose a surjection 𝐿 → 𝐻 where 𝐿 is a direct sum of linearly adequate functors,
see Lemma 32.3.6. If we can show that the pullback 𝐺 ×𝐻 𝐿 is adequate, then 𝐺 is the
cokernel of the map Ker(𝐿 → 𝐻) → 𝐺 ×𝐻 𝐿 hence adequate by Lemma 32.3.10. Thus
we may assume that 𝐻 = ⨁ 𝐿𝑖 is a direct sum of linearly adequate functors. By Lemma
32.3.14 each of the pullbacks 𝐺×𝐻 𝐿𝑖 is adequate. By Lemma 32.3.12 we see that ⨁ 𝐺×𝐻
𝐿𝑖 is adequate. Then 𝐺 is the cokernel of

⨁𝑖≠𝑖′
𝐹 ⟶ ⨁ 𝐺 ×𝐻 𝐿𝑖

where 𝜉 in the summand (𝑖, 𝑖′) maps to (0, … , 0, 𝜉, 0, … , 0, −𝜉, 0, … , 0) with nonzero en-
tries in the summands 𝑖 and 𝑖′. Thus 𝐺 is adequate by Lemma 32.3.10. �
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Lemma 32.3.17. Let 𝐴 → 𝐴′ be a ring map. If 𝐹 is an adequate functor on Alg𝐴, then its
restriction 𝐹′ to Alg𝐴′ is adequate too.

Proof. Choose an exact sequence 0 → 𝐹 → 𝑀 → 𝑁. Then 𝐹′(𝐵′) = 𝐹(𝐵′) = Ker(𝑀 ⊗𝐴
𝐵′ → 𝑁 ⊗𝐴 𝐵′). Since 𝑀 ⊗𝐴 𝐵′ = 𝑀 ⊗𝐴 𝐴′ ⊗𝐴′ 𝐵′ and similarly for 𝑁 we see that 𝐹′

is the kernel of 𝑀 ⊗𝐴 𝐴′ → 𝑁 ⊗𝐴 𝐴′. �

Lemma 32.3.18. Let 𝐴 → 𝐴′ be a ring map. If 𝐹′ is an adequate functor on Alg𝐴′, then
the module-valued functor 𝐹 ∶ 𝐵 ↦ 𝐹′(𝐴′ ⊗𝐴 𝐵) on Alg𝐴 is adequate too.

Proof. Choose an exact sequence 0 → 𝐹′ → 𝑀′ → 𝑁′. Then
𝐹(𝐵) = 𝐹′(𝐴′ ⊗𝐴 𝐵)

= Ker(𝑀′ ⊗𝐴′ (𝐴′ ⊗𝐴 𝐵) → 𝑁′ ⊗𝐴′ (𝐴′ ⊗𝐴 𝐵))
= Ker(𝑀′ ⊗𝐴 𝐵 → 𝑁′ ⊗𝐴 𝐵)

Thus 𝐹 is the kernel of 𝑀 → 𝑁 where 𝑀 = 𝑀′ and 𝑁 = 𝑁′ viewed as 𝐴-modules. �

Lemma 32.3.19. Let 𝐴 = 𝐴1 × … × 𝐴𝑛 be a product of rings. An adequate functor over
𝐴 is the same thing as a sequence 𝐹1, … , 𝐹𝑛 of adequate functors 𝐹𝑖 over 𝐴𝑖.

Proof. This is true because an 𝐴-algebra 𝐵 is canonically a product 𝐵1 × … × 𝐵𝑛 and
the same thing holds for 𝐴-modules. Setting 𝐹(𝐵) = ∐ 𝐹𝑖(𝐵𝑖) gives the correspondence.
Details omitted. �

Lemma 32.3.20. Let 𝐴 → 𝐴′ be a ring map and let 𝐹 be a module-valued functor on Alg𝐴
such that

(1) the restriction 𝐹′ of 𝐹 to the category of 𝐴′-algebras is adequate, and
(2) for any 𝐴-algebra 𝐵 the sequence

0 → 𝐹(𝐵) → 𝐹(𝐵 ⊗𝐴 𝐴′) → 𝐹(𝐵 ⊗𝐴 𝐴′ ⊗𝐴 𝐴′)
is exact.

Then 𝐹 is adequate.

Proof. The functors 𝐵 → 𝐹(𝐵 ⊗𝐴 𝐴′) and 𝐵 ↦ 𝐹(𝐵 ⊗𝐴 𝐴′ ⊗𝐴 𝐴′) are adequate, see
Lemmas 32.3.18 and 32.3.17. Hence𝐹 as a kernel of amap of adequate functors is adequate,
see Lemma 32.3.11. �

32.4. Higher exts of adequate functors

Let 𝐴 be a ring. In Lemma 32.3.16 we have seen that any extension of adequate functors in
the category of module-valued functors on Alg𝐴 is adequate. In this section we show that
the same remains true for higher ext groups.

Lemma 32.4.1. Let 𝐴 be a ring. For every module-valued functor 𝐹 on Alg𝐴 there exists
a morphism 𝑄(𝐹) → 𝐹 of module-valued functors on Alg𝐴 such that (1) 𝑄(𝐹) is adequate
and (2) for every adequate functor 𝐺 the map 𝐻𝑜𝑚(𝐺, 𝑄(𝐹)) → 𝐻𝑜𝑚(𝐺, 𝐹) is a bijection.

Proof. Choose a set {𝐿𝑖}𝑖∈𝐼 of linearly adequate functors such that every linearly adequate
functor is isomorphic to one of the 𝐿𝑖. This is possible. Suppose that we can find 𝑄(𝐹) → 𝐹
with (1) and (2)' or every 𝑖 ∈ 𝐼 the map 𝐻𝑜𝑚(𝐿𝑖, 𝑄(𝐹)) → 𝐻𝑜𝑚(𝐿𝑖, 𝐹) is a bijection. Then
(2) holds. Namely, combining Lemmas 32.3.6 and 32.3.11 we see that every adequate
functor 𝐺 sits in an exact sequence

𝐾 → 𝐿 → 𝐺 → 0
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with𝐾 and𝐿 direct sums of linearly adequate functors. Hence (2)' implies that𝐻𝑜𝑚(𝐿, 𝑄(𝐹)) →
𝐻𝑜𝑚(𝐿, 𝐹) and 𝐻𝑜𝑚(𝐾, 𝑄(𝐹)) → 𝐻𝑜𝑚(𝐾, 𝐹) are bijections, whence the same thing for 𝐺.

Consider the category ℐ whose objects are pairs (𝑖, 𝜑) where 𝑖 ∈ 𝐼 and 𝜑 ∶ 𝐿𝑖 → 𝐹 is a
morphism. A morphism (𝑖, 𝜑) → (𝑖′, 𝜑′) is a map 𝜓 ∶ 𝐿𝑖 → 𝐿𝑖′ such that 𝜑′ ∘ 𝜓 = 𝜑. Set

𝑄(𝐹) = 𝑐𝑜𝑙𝑖𝑚(𝑖,𝜑)∈𝑂𝑏(ℐ) 𝐿𝑖

There is a natural map 𝑄(𝐹) → 𝐹, by Lemma 32.3.12 it is adequate, and by construction it
has property (2)'. �

Lemma 32.4.2. Let 𝐴 be a ring. Denote 𝒫 the category of module-valued functors on Alg𝐴
and 𝒜 the category of adequate functors on Alg𝐴. Denote 𝑖 ∶ 𝒜 → 𝒫 the inclusion functor.
Denote 𝑄 ∶ 𝒫 → 𝒜 the construction of Lemma 32.4.1. Then

(1) 𝑖 is fully faithful, exact, and its image is a weak Serre subcategory,
(2) 𝒫 has enough injectives,
(3) the functor 𝑄 is a right adjoint to 𝑖 hence left exact,
(4) 𝑄 transforms injectives into injectives,
(5) 𝒜 has enough injectives.

Proof. This lemma just collects some facts we have already seen sofar. Part (1) is clear from
the definitions, the characterization of weak Serre subcategories (see Homology, Lemma
10.7.3), and Lemmas 32.3.10, 32.3.11, and 32.3.16. Recall that 𝒫 is equivalent to the
category PMod((Aff/ 𝑆𝑝𝑒𝑐(𝐴))𝜏, 𝒪). Hence (2) by Injectives, Proposition 17.12.5. Part (3)
follows from Lemma 32.4.1 and Categories, Lemma 4.22.2. Parts (4) and (5) follow from
Homology, Lemmas 10.22.1 and 10.22.3. �

Let 𝐴 be a ring. As in Formal Deformation Theory, Section 51.10 given an 𝐴-algebra 𝐵
and an 𝐵-module 𝑁 we set 𝐵[𝑁] equal to the 𝑅-algebra with underlying 𝐵-module 𝐵 ⊕ 𝑁
with multiplication given by (𝑏, 𝑚)(𝑏′, 𝑚′) = (𝑏𝑏′, 𝑏𝑚′ +𝑏′𝑚). Note that this construction is
functorial in the pair (𝐵, 𝑁) where morphism (𝐵, 𝑁) → (𝐵′, 𝑁′) is given by an 𝐴-algebra
map 𝐵 → 𝐵′ and an 𝐵-module map 𝑁 → 𝑁′. In some sense the functor 𝑇𝐹 of pairs defined
in the following lemma is the tangent space of 𝐹. Below we will only consider pairs (𝐵, 𝑁)
such that 𝐵[𝑁] is an object of Alg𝐴.

Lemma 32.4.3. Let𝐴 be a ring. Let𝐹 be amodule valued functor. For every𝐵 ∈ 𝑂𝑏(Alg𝐴)
and 𝐵-module 𝑁 there is a canonical decomposition

𝐹(𝐵[𝑁]) = 𝐹(𝐵) ⊕ 𝑇𝐹(𝐵, 𝑁)

characterized by the following properties
(1) 𝑇𝐹(𝐵, 𝑁) = Ker(𝐹(𝐵[𝑁]) → 𝐹(𝐵)),
(2) there is a 𝐵-module structure 𝑇𝐹(𝐵, 𝑁) compatible with 𝐵[𝑁]-module structure

on 𝐹(𝐵[𝑁]),
(3) 𝑇𝐹 is a functor from the category of pairs (𝐵, 𝑁),
(4) there are canonical maps 𝑁 ⊗𝐵 𝐹(𝐵) → 𝑇𝐹(𝐵, 𝑁) inducing a transformation

between functors defined on the category of pairs (𝐵, 𝑁),
(5) 𝑇𝐹(𝐵, 0) = 0 and the map 𝑇𝐹(𝐵, 𝑁) → 𝑇𝐹(𝐵, 𝑁′) is zero when 𝑁 → 𝑁′ is the

zero map.

Proof. Since 𝐵 → 𝐵[𝑁] → 𝐵 is the identity we see that 𝐹(𝐵) → 𝐹(𝐵[𝑁]) is a direct
summand whose complement is 𝑇𝐹(𝑁, 𝐵) as defined in (1). This construction is functorial
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in the pair (𝐵, 𝑁) simply because given a morphism of pairs (𝐵, 𝑁) → (𝐵′, 𝑁′) we obtain
a commutative diagram

𝐵′ // 𝐵′[𝑁′] // 𝐵′

𝐵 //

OO

𝐵[𝑁] //

OO

𝐵

OO

in Alg𝐴. The 𝐵-module structure comes from the 𝐵[𝑁]-module structure and the ring map
𝐵 → 𝐵[𝑁]. The map in (4) is the composition

𝑁 ⊗𝐵 𝐹(𝐵) ⟶ 𝐵[𝑁] ⊗𝐵[𝑁] 𝐹(𝐵[𝑁]) ⟶ 𝐹(𝐵[𝑁])

whose image is contained in 𝑇𝐹(𝐵, 𝑁). (The first arrow uses the inclusions 𝑁 → 𝐵[𝑁]
and 𝐹(𝐵) → 𝐹(𝐵[𝑁]) and the second arrow is the multiplication map.) If 𝑁 = 0, then
𝐵 = 𝐵[𝑁] hence 𝑇𝐹(𝐵, 0) = 0. If 𝑁 → 𝑁′ is zero then it factors as 𝑁 → 0 → 𝑁′ hence
the induced map is zero since 𝑇𝐹(𝐵, 0) = 0. �

Let 𝐴 be a ring. Let 𝑀 be an 𝐴-module. Then the module-valued functor 𝑀 has tangent
space 𝑇𝑀 given by the rule 𝑇𝑀(𝐵, 𝑁) = 𝑁 ⊗𝐴 𝑀. In particular, for 𝐵 given, the func-
tor 𝑁 ↦ 𝑇𝑀(𝐵, 𝑁) is additive and right exact. It turns out this also holds for injective
module-valued functors.

Lemma 32.4.4. Let 𝐴 be a ring. Let 𝐼 be an injective object of the category of module-
valued functors. Then for any 𝐵 ∈ 𝑂𝑏(Alg𝐴) and short exact sequence 0 → 𝑁1 → 𝑁 →
𝑁2 → 0 of 𝐵-modules the sequence

𝑇𝐼(𝐵, 𝑁1) → 𝑇𝐼(𝐵, 𝑁) → 𝑇𝐼(𝐵, 𝑁2) → 0

is exact.

Proof. We will use the results of Lemma 32.4.3 without further mention. Denote ℎ ∶
Alg𝐴 → Sets the functor given by ℎ(𝐶) = 𝑀𝑜𝑟𝐴(𝐵[𝑁], 𝐶). Similarly for ℎ1 and ℎ2. The
map 𝐵[𝑁] → 𝐵[𝑁2] corresponding to the surjection 𝑁 → 𝑁2 is surjective. It corresponds
to a map ℎ2 → ℎ such that ℎ2(𝐶) → ℎ(𝐶) is injective for all 𝐴-algebras 𝐶. On the other
hand, there are two maps 𝑝, 𝑞 ∶ ℎ → ℎ1, corresponding to the zero map 𝑁1 → 𝑁 and the
injection 𝑁1 → 𝑁. Note that

ℎ2
// ℎ

//
// ℎ1

is an equalizer diagram. Denote 𝒪ℎ the module-valued functor 𝐶 ↦ ⨁ℎ(𝐶) 𝐶. Similarly
for 𝒪ℎ1

and 𝒪ℎ2
. Note that

𝐻𝑜𝑚𝒫(𝒪ℎ, 𝐹) = 𝐹(𝐵[𝑁])
where 𝒫 is the category of of module-valued functors on Alg𝐴. We claim there is an equal-
izer diagram

𝒪ℎ2
// 𝒪ℎ

//
// 𝒪ℎ1

in 𝒫. Namely, suppose that 𝐶 ∈ 𝑂𝑏(Alg𝐴) and 𝜉 = ∑𝑖=1,…,𝑛 𝑐𝑖 ⋅ 𝑓𝑖 where 𝑐𝑖 ∈ 𝐶 and
𝑓𝑖 ∶ 𝐵[𝑁] → 𝐶 is an element of 𝒪ℎ(𝐶). If 𝑝(𝜉) = 𝑞(𝜉), then we see that

∑ 𝑐𝑖 ⋅ 𝑓𝑖 ∘ 𝑧 = ∑ 𝑐𝑖 ⋅ 𝑓𝑖 ∘ 𝑦

where 𝑧, 𝑦 ∶ 𝐵[𝑁1] → 𝐵[𝑁] are the maps 𝑧 ∶ (𝑏, 𝑚1) ↦ (𝑏, 0) and 𝑦 ∶ (𝑏, 𝑚1) ↦ (𝑏, 𝑚1).
This means that for every 𝑖 there exists a 𝑗 such that 𝑓𝑗 ∘ 𝑧 = 𝑓𝑖 ∘ 𝑦. Clearly, this implies that
𝑓𝑖(𝑁1) = 0, i.e., 𝑓𝑖 factors through a unique map 𝑓𝑖 ∶ 𝐵[𝑁2] → 𝐶. Hence 𝜉 is the image
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of 𝜉 = ∑ 𝑐𝑖 ⋅ 𝑓𝑖. Since 𝐼 is injective, it transforms this equalizer diagram into a coequalizer
diagram

𝐼(𝐵[𝑁1])
//
// 𝐼(𝐵[𝑁]) // 𝐼(𝐵[𝑁2])

This diagram is compatible with the direct sum decompositions 𝐼(𝐵[𝑁]) = 𝐼(𝐵)⊕𝑇𝐼(𝐵, 𝑁)
and 𝐼(𝐵[𝑁𝑖]) = 𝐼(𝐵)⊕𝑇𝐼(𝐵, 𝑁𝑖). The zeromap𝑁 → 𝑁1 induces the zeromap 𝑇𝐼(𝐵, 𝑁) →
𝑇𝐼(𝐵, 𝑁1). Thus we see that the coequalizer property above means we have an exact se-
quence 𝑇𝐼(𝐵, 𝑁1) → 𝑇𝐼(𝐵, 𝑁) → 𝑇𝐼(𝐵, 𝑁2) → 0 as desired. �

Lemma 32.4.5. Let 𝐴 be a ring. Let 𝐹 be a module-valued functor such that for any
𝐵 ∈ 𝑂𝑏(Alg𝐴) the functor 𝑇𝐹(𝐵, −) on 𝐵-modules transforms a short exact sequence of
𝐵-modules into a right exact sequence. Then

(1) 𝑇𝐹(𝐵, 𝑁1 ⊕ 𝑁2) = 𝑇𝐹(𝐵, 𝑁1) ⊕ 𝑇𝐹(𝐵, 𝑁2),
(2) there is a second functorial 𝐵-module structure on 𝑇𝐹(𝐵, 𝑁) defined by setting

𝑥 ⋅ 𝑏 = 𝑇𝐹(𝐵, 𝑏 ⋅ 1𝑁)(𝑥) for 𝑥 ∈ 𝑇𝐹(𝐵, 𝑁) and 𝑏 ∈ 𝐵,
(3) the canonical map 𝑁 ⊗𝐵 𝐹(𝐵) → 𝑇𝐹(𝐵, 𝑁) of Lemma 32.4.3 is 𝐵-linear also

with respect to the second 𝐵-module structure,
(4) given a finitely presented𝐵-module𝑁 there is a canonical isomorphism 𝑇𝐹(𝐵, 𝐵)⊗𝐵

𝑁 → 𝑇𝐹(𝐵, 𝑁) where the tensor product uses the second 𝐵-module structure on
𝑇𝐹(𝐵, 𝐵).

Proof. We will use the results of Lemma 32.4.3 without further mention. The maps 𝑁1 →
𝑁1 ⊕ 𝑁2 and 𝑁2 → 𝑁1 ⊕ 𝑁2 give a map 𝑇𝐹(𝐵, 𝑁1) ⊕ 𝑇𝐹(𝐵, 𝑁2) → 𝑇𝐹(𝐵, 𝑁1 ⊕ 𝑁2)
which is injective since the maps 𝑁1 ⊕ 𝑁2 → 𝑁1 and 𝑁1 ⊕ 𝑁2 → 𝑁2 induce an inverse.
Since 𝑇𝐹 is right exact we see that 𝑇𝐹(𝐵, 𝑁1) → 𝑇𝐹(𝐵, 𝑁1 ⊕ 𝑁2) → 𝑇𝐹(𝐵, 𝑁2) → 0 is
exact. Hence 𝑇𝐹(𝐵, 𝑁1) ⊕ 𝑇𝐹(𝐵, 𝑁2) → 𝑇𝐹(𝐵, 𝑁1 ⊕ 𝑁2) is an isomorphism. This proves
(1).
To see (2) the only thing we need to show is that 𝑥 ⋅ (𝑏1 + 𝑏2) = 𝑥 ⋅ 𝑏1 + 𝑥 ⋅ 𝑏2. (Associativity
and additivity are clear.) To see this consider

𝑁
(𝑏1,𝑏2)

−−−−−→ 𝑁 ⊕ 𝑁
+

−→ 𝑁
and apply 𝑇𝐹(𝐵, −).
Part (3) follows immediately from the fact that 𝑁 ⊗𝐵 𝐹(𝐵) → 𝑇𝐹(𝐵, 𝑁) is functorial in the
pair (𝐵, 𝑁).
Suppose 𝑁 is a finitely presented 𝐵-module. Choose a presentation 𝐵⊕𝑚 → 𝐵⊕𝑛 → 𝑁 →
0. This gives an exact sequence

𝑇𝐹(𝐵, 𝐵⊕𝑚) → 𝑇𝐹(𝐵, 𝐵⊕𝑛) → 𝑇𝐹(𝐵, 𝑁) → 0
by right exactness of 𝑇𝐹(𝐵, −). By part (1) we can write 𝑇𝐹(𝐵, 𝐵⊕𝑚) = 𝑇𝐹(𝐵, 𝐵)⊕𝑚 and
𝑇𝐹(𝐵, 𝐵⊕𝑛) = 𝑇𝐹(𝐵, 𝐵)⊕𝑛. Next, suppose that 𝐵⊕𝑚 → 𝐵⊕𝑛 is given by the matrix 𝑇 =
(𝑏𝑖𝑗). Then the induced map 𝑇𝐹(𝐵, 𝐵)⊕𝑚 → 𝑇𝐹(𝐵, 𝐵)⊕𝑛 is given by the matrix with entries
𝑇𝐹(𝐵, 𝑏𝑖𝑗 ⋅ 1𝐵). This combined with right exactness of ⊗ proves (4). �

Example 32.4.6. Let 𝐹 be a module-valued functor as in Lemma 32.4.5. It is not always
the case that the two module structures on 𝑇𝐹(𝐵, 𝑁) agree. Here is an example. Suppose
𝐴 = 𝐅𝑝 where 𝑝 is a prime. Set 𝐹(𝐵) = 𝐵 but with 𝐵-module structure given by 𝑏⋅𝑥 = 𝑏𝑝𝑥.
Then 𝑇𝐹(𝐵, 𝑁) = 𝑁 with 𝐵-module structure given by 𝑏 ⋅ 𝑥 = 𝑏𝑝𝑥 for 𝑥 ∈ 𝑁. However,
the second 𝐵-module structure is given by 𝑥 ⋅ 𝑏 = 𝑏𝑥. Note that in this case the canonical
map 𝑁 ⊗𝐵 𝐹(𝐵) → 𝑇𝐹(𝐵, 𝑁) is zero as raising an element 𝑛 ∈ 𝐵[𝑁] to the 𝑝th power is
zero.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06ZB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06ZE
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In the following lemma we will frequently use the observation that if 0 → 𝐹 → 𝐺 → 𝐻 →
0 is an exact sequence of module-valued functors on Alg𝐴, then for any pair (𝐵, 𝑁) the
sequence 0 → 𝑇𝐹(𝐵, 𝑁) → 𝑇𝐺(𝐵, 𝑁) → 𝑇𝐻(𝐵, 𝑁) → 0 is exact. This follows from the
fact that 0 → 𝐹(𝐵[𝑁]) → 𝐺(𝐵[𝑁]) → 𝐻(𝐵[𝑁]) → 0 is exact.

Lemma 32.4.7. Let 𝐴 be a ring. For 𝐹 a module-valued functor on Alg𝐴 say (∗) holds if
for all 𝐵 ∈ 𝑂𝑏(Alg𝐴) the functor 𝑇𝐹(𝐵, −) on 𝐵-modules tranforms a short exact sequence
of 𝐵-modules into a right exact sequence. Let 0 → 𝐹 → 𝐺 → 𝐻 → 0 be a short exact
sequence of module-valued functors on Alg𝐴.

(1) If (∗) holds for 𝐹, 𝐺 then (∗) holds for 𝐻.
(2) If (∗) holds for 𝐹, 𝐻 then (∗) holds for 𝐺.
(3) If 𝐻′ → 𝐻 is morphism of module-valued functors on Alg𝐴 and (∗) holds for 𝐹,

𝐺, 𝐻, and 𝐻′, then (∗) holds for 𝐺 ×𝐻 𝐻′.

Proof. Let 𝐵 be given. Let 0 → 𝑁1 → 𝑁2 → 𝑁3 → 0 be a short exact sequence of
𝐵-modules. Part (1) follows from a diagram chase in the diagram

0 // 𝑇𝐹(𝐵, 𝑁1) //

��

𝑇𝐺(𝐵, 𝑁1) //

��

𝑇𝐻(𝐵, 𝑁1) //

��

0

0 // 𝑇𝐹(𝐵, 𝑁2) //

��

𝑇𝐺(𝐵, 𝑁2) //

��

𝑇𝐻(𝐵, 𝑁2) //

��

0

0 // 𝑇𝐹(𝐵, 𝑁3) //

��

𝑇𝐺(𝐵, 𝑁3) //

��

𝑇𝐻(𝐵, 𝑁3) // 0

0 0

with exact horizontal rows and exact columns involving 𝑇𝐹 and 𝑇𝐺. To prove part (2) we
do a diagram chase in the diagram

0 // 𝑇𝐹(𝐵, 𝑁1) //

��

𝑇𝐺(𝐵, 𝑁1) //

��

𝑇𝐻(𝐵, 𝑁1) //

��

0

0 // 𝑇𝐹(𝐵, 𝑁2) //

��

𝑇𝐺(𝐵, 𝑁2) //

��

𝑇𝐻(𝐵, 𝑁2) //

��

0

0 // 𝑇𝐹(𝐵, 𝑁3) //

��

𝑇𝐺(𝐵, 𝑁3) // 𝑇𝐻(𝐵, 𝑁3) //

��

0

0 0

with exact horizontal rows and exact columns involving 𝑇𝐹 and 𝑇𝐻. Part (3) follows from
part (2) as 𝐺 ×𝐻 𝐻′ sits in the exact sequence 0 → 𝐹 → 𝐺 ×𝐻 𝐻′ → 𝐻′ → 0. �

Most of the work in this section was done in order to prove the following key vanishing
result.

Lemma 32.4.8. Let 𝐴 be a ring. Let 𝑀, 𝑃 be 𝐴-modules with 𝑃 of finite presentation. Then
Ext𝑖𝒫(𝑃, 𝑀) = 0 for 𝑖 > 0 where 𝒫 is the category of module-valued functors on Alg𝐴.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06ZF
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06ZG
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Proof. Choose an injective resolution 𝑀 → 𝐼• in 𝒫, see Lemma 32.4.2. By Derived
Categories, Lemma 11.26.2 any element of Ext𝑖𝒫(𝑃, 𝑀) comes from amorphsm 𝜑 ∶ 𝑃 → 𝐼𝑖

with 𝑑𝑖 ∘ 𝜑 = 0. We will prove that the Yoneda extension

𝐸 ∶ 0 → 𝑀 → 𝐼0 → … → 𝐼𝑖−1 ×Ker(𝑑𝑖) 𝑃 → 𝑃 → 0
of 𝑃 by 𝑀 associated to 𝜑 is trivial, which will prove the lemma by Derived Categories,
Lemma 11.26.5.
For 𝐹 a module-valued functor on Alg𝐴 say (∗) holds if for all 𝐵 ∈ 𝑂𝑏(Alg𝐴) the functor
𝑇𝐹(𝐵, −) on 𝐵-modules tranforms a short exact sequence of 𝐵-modules into a right exact
sequence. Recall that the module-valued functors 𝑀, 𝐼𝑛, 𝑃 each have property (∗), see
Lemma 32.4.4 and the remarks preceding it. By splitting 0 → 𝑀 → 𝐼• into short exact
sequences we find that each of the functors Im(𝑑𝑛−1) = Ker(𝑑𝑛) ⊂ 𝐼𝑛 has property (∗) by
Lemma 32.4.7 and also that 𝐼𝑖−1 ×Ker(𝑑𝑖) 𝑃 has property (∗).
Thus we may assume the Yoneda extension is given as

𝐸 ∶ 0 → 𝑀 → 𝐹𝑖−1 → … → 𝐹0 → 𝑃 → 0
where each of the module-valued functors 𝐹𝑗 has property (∗). Set 𝐺𝑗(𝐵) = 𝑇𝐹𝑗(𝐵, 𝐵)
viewed as a 𝐵-module via the second 𝐵-module structure defined in Lemma 32.4.5. Since
𝑇𝐹𝑗 is a functor on pairs we see that 𝐺𝑗 is a module-valued functor onAlg𝐴. Moreover, since
𝐸 is an exact sequence the sequence 𝐺𝑗+1 → 𝐺𝑗 → 𝐺𝑗−1 is exact (see remark preceding
Lemma 32.4.7). Observe that 𝑇𝑀(𝐵, 𝐵) = 𝑀 ⊗𝐴 𝐵 = 𝑀(𝐵) and that the two 𝐵-module
structures agree on this. Thus we obtain a Yoneda extension

𝐸′ ∶ 0 → 𝑀 → 𝐺𝑖−1 → … → 𝐺0 → 𝑃 → 0
Moreover, the canonical maps

𝐹𝑗(𝐵) = 𝐵 ⊗𝐵 𝐹𝑗(𝐵) ⟶ 𝑇𝐹𝑗(𝐵, 𝐵) = 𝐺𝑗(𝐵)
of Lemma 32.4.3 (4) are 𝐵-linear by Lemma 32.4.5 (3) and functorial in 𝐵. Hence a map

0 //𝑀 //

1
��

𝐹𝑖−1
//

��

… // 𝐹0
//

��

𝑃 //

1
��

0

0 //𝑀 // 𝐺𝑖−1
// … // 𝐺0

// 𝑃 // 0

of Yoneda extensions. In particular we see that 𝐸 and 𝐸′ have the same class in Ext𝑖𝒫(𝑃, 𝑀)
by the lemma on Yoneda Exts mentioned above. Finally, let 𝑁 be a 𝐴-module of finite
presentation. Then we see that

0 → 𝑇𝑀(𝐴, 𝑁) → 𝑇𝐹𝑖−1(𝐴, 𝑁) → … → 𝑇𝐹0(𝐴, 𝑁) → 𝑇𝑃(𝐴, 𝑁) → 0
is exact. By Lemma 32.4.5 (4) with 𝐵 = 𝐴 this translates into the exactness of the sequence
of 𝐴-modules

0 → 𝑀 ⊗𝐴 𝑁 → 𝐺𝑖−1(𝐴) ⊗𝐴 𝑁 → … → 𝐺0(𝐴) ⊗𝐴 𝑁 → 𝑃 ⊗𝐴 𝑁 → 0
Hence the sequence of 𝐴-modules 0 → 𝑀 → 𝐺𝑖−1(𝐴) → … → 𝐺0(𝐴) → 𝑃 → 0 is
universally exact, in the sense that it remains exact on tensoring with any finitely presented
𝐴-module 𝑁. Let 𝐾 = Ker(𝐺0(𝐴) → 𝑃) so that we have exact sequences

0 → 𝐾 → 𝐺0(𝐴) → 𝑃 → 0 and 𝐺2(𝐴) → 𝐺1(𝐴) → 𝐾 → 0
Tensoring the second sequence with 𝑁 we obtain that 𝐾 ⊗𝐴 𝑁 = Coker(𝐺2(𝐴) ⊗𝐴 𝑁 →
𝐺1(𝐴) ⊗𝐴 𝑁). Exactness of 𝐺2(𝐴) ⊗𝐴 𝑁 → 𝐺1(𝐴) ⊗𝐴 𝑁 → 𝐺0(𝐴) ⊗𝐴 𝑁 then implies
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that 𝐾 ⊗𝐴 𝑁 → 𝐺0(𝐴) ⊗𝐴 𝑁 is injective. By Algebra, Theorem 7.76.3 this means that
the 𝐴-module extension 0 → 𝐾 → 𝐺0(𝐴) → 𝑃 → 0 is exact, and because 𝑃 is assumed
of finite presentation this means the sequence is split, see Algebra, Lemma 7.76.4. Any
splitting 𝑃 → 𝐺0(𝐴) defines a map 𝑃 → 𝐺0 which splits the surjection 𝐺0 → 𝑃. Thus the
Yoneda extension 𝐸′ is equivalent to the trivial Yoneda extension and we win. �

Lemma 32.4.9. Let 𝐴 be a ring. Let 𝑀 be an 𝐴-module. Let 𝐿 be a linearly adequate
functor on Alg𝐴. Then Ext

𝑖
𝒫(𝐿, 𝑀) = 0 for 𝑖 > 0 where 𝒫 is the category of module-valued

functors on Alg𝐴.

Proof. Since 𝐿 is linearly adequate there exists an exact sequence

0 → 𝐿 → 𝐴⊕𝑚 → 𝐴⊕𝑛 → 𝑃 → 0

Here 𝑃 = Coker(𝐴⊕𝑚 → 𝐴⊕𝑛) is the cokernel of the map of finite free 𝐴-modules which
is given by the definition of linearly adequate functors. By Lemma 32.4.8 we have the
vanishing of Ext𝑖𝒫(𝑃, 𝑀) and Ext𝑖𝒫(𝐴, 𝑀) for 𝑖 > 0. Let 𝐾 = Ker(𝐴⊕𝑛 → 𝑃). By the long
exact sequence of Ext groups associated to the exact sequence 0 → 𝐾 → 𝐴⊕𝑛 → 𝑃 → 0 we
conclude that Ext𝑖𝒫(𝐾, 𝑀) = 0 for 𝑖 > 0. Repeating with the sequence 0 → 𝐿 → 𝐴⊕𝑚 →
𝐾 → 0 we win. �

Lemma 32.4.10. With notation as in Lemma 32.4.2 we have 𝑅𝑝𝑄(𝐹) = 0 for all 𝑝 > 0 and
any adequate functor 𝐹.

Proof. Choose an exact sequence 0 → 𝐹 → 𝑀0 → 𝑀1. Set 𝑀2 = Coker(𝑀0 → 𝑀1)
so that 0 → 𝐹 → 𝑀0 → 𝑀1 → 𝑀2 → 0 is a resolution. By Derived Categories, Lemma
11.20.3 we obtain a spectral sequence

𝑅𝑝𝑄(𝑀𝑞) ⇒ 𝑅𝑝+𝑞𝑄(𝐹)

Since 𝑄(𝑀𝑞) = 𝑀𝑞 it suffices to prove 𝑅𝑝𝑄(𝑀) = 0, 𝑝 > 0 for any 𝐴-module 𝑀.

Choose an injective resolution𝑀 → 𝐼• in the category𝒫. Suppose that𝑅𝑖𝑄(𝑀) is nonzero.
Then Ker(𝑄(𝐼𝑖) → 𝑄(𝐼𝑖+1)) is strictly bigger than the image of 𝑄(𝐼𝑖−1) → 𝑄(𝐼𝑖). Hence
by Lemma 32.3.6 there exists a linearly adequate functor 𝐿 and a map 𝜑 ∶ 𝐿 → 𝑄(𝐼𝑖)
mapping into the kernel of 𝑄(𝐼𝑖) → 𝑄(𝐼𝑖+1) which does not factor through the image of
𝑄(𝐼𝑖−1) → 𝑄(𝐼𝑖). Because 𝑄 is a left adjoint to the inclusion functor themap 𝜑 corresponds
to a map 𝜑′ ∶ 𝐿 → 𝐼𝑖 with the same properties. Thus 𝜑′ gives a nonzero element of
Ext𝑖𝒫(𝐿, 𝑀) contradicting Lemma 32.4.9. �

32.5. Adequate modules

In Descent, Section 31.6 we have seen that quasi-coherent modules on a scheme 𝑆 are the
same as quasi-coherent modules on any of the big sites (Sch/𝑆)𝜏 associated to 𝑆. We have
seen that there are two issues with this identification:

(1) QCoh(𝒪𝑆) → Mod((Sch/𝑆)𝜏, 𝒪), ℱ ↦ ℱ𝑎 is not exact in general, and
(2) given a quasi-compact and quasi-separated morphism 𝑓 ∶ 𝑋 → 𝑆 the functor 𝑓∗

does not preserve quasi-coherent sheaves on the big sites in general.
Part (1) means that we cannot define a triangulated subcategory of 𝐷(𝒪) consisting of com-
plexes whose cohomology sheaves are quasi-coherent. Part (2) means that 𝑅𝑓∗ℱ isn't a
complex with quasi-coherent cohomology sheaves even when ℱ is quasi-coherent and 𝑓 is
quasi-compact and quasi-separated. Moreover, the examples given in the proofs of Descent,
Lemma 31.6.13 and Descent, Proposition 31.6.14 are not of a pathological nature.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06ZH
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In this section we discuss a slightly larger category of 𝒪-modules on (Sch/𝑆)𝜏 with con-
tains the quasi-coherent modules, is abelian, and is preserved under 𝑓∗ when 𝑓 is quasi-
compact and quasi-separated. To do this, suppose that 𝑆 is a scheme. Let ℱ be a presheaf
of 𝒪-modules on (Sch/𝑆)𝜏. For any affine object 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) of (Sch/𝑆)𝜏 we can restrict ℱ
to (Aff/𝑈)𝜏 to get a presheaf of 𝒪-modules on this site. The corresponding module-valued
functor, see Section 32.3, will be denoted

𝐹 = 𝐹ℱ,𝐴 ∶ Alg𝐴 ⟶ Ab, 𝐵 ⟼ ℱ(𝑆𝑝𝑒𝑐(𝐵))
The assignment ℱ ↦ 𝐹ℱ,𝐴 is an exact functor of abelian categories.

Definition 32.5.1. Asheaf of𝒪-modulesℱ on (Sch/𝑆)𝜏 is adequate if there exists a 𝜏-covering
{𝑆𝑝𝑒𝑐(𝐴𝑖) → 𝑆}𝑖∈𝐼 such that 𝐹ℱ,𝐴𝑖

is adequate for all 𝑖 ∈ 𝐼.

We will see below that the category of adequate 𝒪-modules is independent of the chosen
topology 𝜏.

Lemma 32.5.2. Let 𝑆 be a scheme. Let ℱ be an adequate 𝒪-module on (Sch/𝑆)𝜏. For any
affine scheme 𝑆𝑝𝑒𝑐(𝐴) over 𝑆 the functor 𝐹ℱ,𝐴 is adequate.

Proof. Let {𝑆𝑝𝑒𝑐(𝐴𝑖) → 𝑆}𝑖∈𝐼 be a 𝜏-covering such that 𝐹ℱ,𝐴𝑖
is adequate for all 𝑖 ∈ 𝐼. We

can find a standard affine 𝜏-covering {𝑆𝑝𝑒𝑐(𝐴′
𝑗) → 𝑆𝑝𝑒𝑐(𝐴)}𝑗=1,…,𝑚 such that 𝑆𝑝𝑒𝑐(𝐴′

𝑗) →
𝑆𝑝𝑒𝑐(𝐴) → 𝑆 factors through 𝑆𝑝𝑒𝑐(𝐴𝑖(𝑗)) for some 𝑖(𝑗) ∈ 𝐼. Then we see that 𝐹ℱ,𝐴′

𝑗
is the

restriction of 𝐹ℱ,𝐴𝑖(𝑗)
to the category of 𝐴′

𝑗-algebras. Hence 𝐹ℱ,𝐴′
𝑗
is adequate by Lemma

32.3.17. By Lemma 32.3.19 the sequence 𝐹ℱ,𝐴′
𝑗
corresponds to an adequate ``product''

functor 𝐹′ over 𝐴′ = 𝐴′
1 × … × 𝐴′

𝑚. As ℱ is a sheaf (for the Zariski topology) this product
functor 𝐹′ is equal to 𝐹ℱ,𝐴′, i.e., is the restriction of 𝐹 to 𝐴′-algebras. Finally, {𝑆𝑝𝑒𝑐(𝐴′) →
𝑆𝑝𝑒𝑐(𝐴)} is a 𝜏-covering. It follows from Lemma 32.3.20 that 𝐹ℱ,𝐴 is adequate. �

Lemma32.5.3. Let𝑆 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme. The category of adequate𝒪-modules
on (Sch/𝑆)𝜏 is equivalent to the category of adequate module-valued functors on Alg𝐴.

Proof. Given an adequate module ℱ the functor 𝐹ℱ,𝐴 is adequate by Lemma 32.5.2. Given
an adequate functor 𝐹 we choose an exact sequence 0 → 𝐹 → 𝑀 → 𝑁 and we consider
the 𝒪-module ℱ = Ker(𝑀𝑎 → 𝑁𝑎) where 𝑀𝑎 denotes the quasi-coherent 𝒪-module on
(Sch/𝑆)𝜏 associated to the quasi-coherent sheaf 𝑀 on 𝑆. Note that 𝐹 = 𝐹ℱ,𝐴, in particular
the module ℱ is adequate by definition. We omit the proof that the constructions define
mutually inverse equivalences of categories. �

Lemma 32.5.4. Let 𝑓 ∶ 𝑇 → 𝑆 be a morphism of schemes. The pullback 𝑓∗ℱ of an
adequate 𝒪-module ℱ on (Sch/𝑆)𝜏 is an adequate 𝒪-module on (Sch/𝑇)𝜏.

Proof. The pullback map 𝑓∗ ∶ Mod((Sch/𝑆)𝜏, 𝒪) → Mod((Sch/𝑇)𝜏, 𝒪) is given by restric-
tion, i.e., 𝑓∗ℱ(𝑉) = ℱ(𝑉) for any scheme 𝑉 over 𝑇. Hence this lemma follows immediately
from Lemma 32.5.2 and the definition. �

Here is a characterization of the category of adequate 𝒪-modules. To understand the sig-
nificance, consider a map 𝒢 → ℋ of quasi-coherent 𝒪𝑆-modules on a scheme 𝑆. The
cokernel of the associated map 𝒢𝑎 → ℋ𝑎 of 𝒪-modules is quasi-coherent because it is
equal to (ℋ/𝒢)𝑎. But the kernel of 𝒢𝑎 → ℋ𝑎 in general isn't quasi-coherent. However, it is
adequate.

Lemma 32.5.5. Let 𝑆 be a scheme. Let ℱ be an 𝒪-module on (Sch/𝑆)𝜏. The following are
equivalent
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(1) ℱ is adequate,
(2) there exists an affine open covering𝑆 = ⋃ 𝑆𝑖 andmaps of quasi-coherent𝒪𝑆𝑖

-modules
𝒢𝑖 → ℋ𝑖 such that ℱ|(Sch/𝑆𝑖)𝜏

is the kernel of 𝒢𝑎
𝑖 → ℋ𝑎

𝑖
(3) there exists a 𝜏-covering {𝑆𝑖 → 𝑆}𝑖∈𝐼 and maps of 𝒪𝑆𝑖

-quasi-coherent modules
𝒢𝑖 → ℋ𝑖 such that ℱ|(Sch/𝑆𝑖)𝜏

is the kernel of 𝒢𝑎
𝑖 → ℋ𝑎

𝑖 ,
(4) there exists a 𝜏-covering {𝑓𝑖 ∶ 𝑆𝑖 → 𝑆}𝑖∈𝐼 such that each 𝑓∗

𝑖 ℱ is adequate,
(5) for any affine scheme 𝑈 over 𝑆 the restriction ℱ|(Sch/𝑈)𝜏

is the kernel of a map
𝒢𝑎 → ℋ𝑎 of quasi-coherent 𝒪𝑈-modules.

Proof. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme over 𝑆. Set 𝐹 = 𝐹ℱ,𝐴. By definition, the
functor 𝐹 is adequate if and only if there exists a map of 𝐴-modules 𝑀 → 𝑁 such that
𝐹 = Ker(𝑀 → 𝑁). Combining with Lemmas 32.5.2 and 32.5.3 we see that (1) and (5) are
equivalent.
It is clear that (5) implies (2) and (2) implies (3). If (3) holds then we can refine the covering
{𝑆𝑖 → 𝑆} such that each 𝑆𝑖 = 𝑆𝑝𝑒𝑐(𝐴𝑖) is affine. Then we see, by the prelimiary remarks
of the proof, that 𝐹ℱ,𝐴𝑖

is adequate. Thus ℱ is adequate by definition. Hence (3) implies
(1).
Finally, (4) is equivalent to (1) using Lemma 32.5.4 for one direction and that a composition
of 𝜏-coverings is a 𝜏-covering for the other. �

Just like is true for quasi-coherent sheaves the category of adequate modules is independent
of the topology.

Lemma 32.5.6. Let ℱ be an adequate 𝒪-module on (Sch/𝑆)𝜏. For any surjective flat mor-
phism 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) of affines over 𝑆 the extended Čech complex

0 → ℱ(𝑆𝑝𝑒𝑐(𝐴)) → ℱ(𝑆𝑝𝑒𝑐(𝐵)) → ℱ(𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝐵)) → …
is exact. In particular ℱ satisfies the sheaf condition for fpqc coverings, and is a sheaf of
𝒪-modules on (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. With 𝐴 → 𝐵 as in the lemma let 𝐹 = 𝐹ℱ,𝐴. This functor is adequate by Lemma
32.5.2. By Lemma 32.3.5 since 𝐴 → 𝐵, 𝐴 → 𝐵 ⊗𝐴 𝐵, etc are flat we see that 𝐹(𝐵) =
𝐹(𝐴) ⊗𝐴 𝐵, 𝐹(𝐵 ⊗𝐴 𝐵) = 𝐹(𝐴) ⊗𝐴 𝐵 ⊗𝐴 𝐵, etc. Exactness follows from Descent, Lemma
31.3.6.
Thus ℱ satisfies the sheaf condition for 𝜏-coverings (in particular Zariski coverings) and any
faithfully flat covering of an affine by an affine. Arguing as in the proofs of Descent, Lemma
31.4.1 and Descent, Proposition 31.4.2 we conclude that ℱ satisfies the sheaf condition for
all fpqc coverings (made out of objects of (Sch/𝑆)𝜏). Details omitted. �

Lemma 32.5.6 shows in particular that for any pair of topologies 𝜏, 𝜏′ the collection of
adequate modules for the 𝜏-topology and the 𝜏′-topology are identical (as presheaves of
modules on the underlying category Sch/𝑆).

Definition 32.5.7. Let 𝑆 be a scheme. The category of adequate 𝒪-modules on (Sch/𝑆)𝜏 is
denoted Adeq(𝒪) or Adeq((Sch/𝑆)𝜏, 𝒪). If we want to think just about the abelian category
of adequate modules without choosing a topology we simply write Adeq(𝑆).

Lemma 32.5.8. Let 𝑆 be a scheme. Let ℱ be an adequate 𝒪-module on (Sch/𝑆)𝜏.
(1) The restriction ℱ|𝑆𝑍𝑎𝑟

is a quasi-coherent 𝒪𝑆-module on the scheme 𝑆.
(2) The restriction ℱ|𝑆 ́𝑒𝑡𝑎𝑙𝑒

is the quasi-coherent module associated to ℱ|𝑆𝑍𝑎𝑟
.

(3) For any affine scheme 𝑈 over 𝑆 we have 𝐻𝑞(𝑈, ℱ) = 0 for all 𝑞 > 0.
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(4) There is a canonical isomorphism

𝐻𝑞(𝑆, ℱ|𝑆𝑍𝑎𝑟
) = 𝐻𝑞((Sch/𝑆)𝜏, ℱ).

Proof. By Lemma 32.3.5 and Lemma 32.5.2 we see that for any flat morphism of affines
𝑈 → 𝑉 over 𝑆 we have ℱ(𝑈) = ℱ(𝑉) ⊗𝒪(𝑉) 𝒪(𝑈). This works in particular if 𝑈 ⊂ 𝑉 ⊂ 𝑆
are affine opens of 𝑆, hence ℱ|𝑆𝑍𝑎𝑟

is quasi-coherent. Thus (1) holds.

Let 𝑆′ → 𝑆 be an étale morphism of schemes. Then for 𝑈 ⊂ 𝑆′ affine open mapping into
an affine open 𝑉 ⊂ 𝑆 we see that ℱ(𝑈) = ℱ(𝑉) ⊗𝒪(𝑉) 𝒪(𝑈) because 𝑈 → 𝑉 is étale, hence
flat. Therefore ℱ|𝑆′

𝑍𝑎𝑟
is the pullback of ℱ|𝑆𝑍𝑎𝑟

. This proves (2).

We are going to apply Cohomology on Sites, Lemma 19.11.8 to the site (Sch/𝑆)𝜏 with ℬ
the set of affine schemes over 𝑆 and Cov the set of standard affine 𝜏-coverings. Assumption
(3) of the lemma is satisfied by Descent, Lemma 31.6.8 and Lemma 32.5.6 for the case of a
covering by a single affine. Hence we conclude that 𝐻𝑝(𝑈, ℱ) = 0 for every affine scheme
𝑈 over 𝑆. This proves (3). In exactly the same way as in the proof of Descent, Proposition
31.6.10 this implies the equality of cohomologies (4). �

Remark 32.5.9. Let 𝑆 be a scheme. We have functors 𝑢 ∶ QCoh(𝒪𝑆) → Adeq(𝒪) and
𝑣 ∶ Adeq(𝒪) → QCoh(𝒪𝑆). Namely, the functor 𝑢 ∶ ℱ ↦ ℱ𝑎 comes from taking the
associated 𝒪-module which is adequate by Lemma 32.5.5. Conversely, the functor 𝑣 comes
from restriction 𝑣 ∶ 𝒢 ↦ 𝒢|𝑆𝑍𝑎𝑟

, see Lemma 32.5.8. Since ℱ𝑎 can be described as the
pullback of ℱ under a morphism of ringed topoi ((Sch/𝑆)𝜏, 𝒪) → (𝑆𝑍𝑎𝑟, 𝒪𝑆), see Descent,
Remark 31.6.6 and since restriction is the pushforward we see that 𝑢 and 𝑣 are adjoint as
follows

ℋ𝑜𝑚𝒪𝑆
(ℱ, 𝑣𝒢) = ℋ𝑜𝑚𝒪(𝑢ℱ, 𝒢)

where 𝒪 denotes the structure sheaf on the big site. It is immediate from the description
that the adjunction mapping ℱ → 𝑣𝑢ℱ is an isomorphism for all quasi-coherent sheaves.

Lemma 32.5.10. Let 𝑆 be a scheme. Let ℱ be a presheaf of 𝒪-modules on (Sch/𝑆)𝜏. If for
every affine scheme 𝑆𝑝𝑒𝑐(𝐴) over 𝑆 the functor 𝐹ℱ,𝐴 is adequate, then the sheafification of
ℱ is an adequate 𝒪-module.

Proof. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme over 𝑆. Set 𝐹 = 𝐹ℱ,𝐴. The sheafification
ℱ# = (ℱ+)+, see Sites, Section 9.10. By construction

(ℱ)+(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝒰 �̌�0(𝒰, ℱ)

where the colimit is over coverings in the site (Sch/𝑆)𝜏. Since 𝑈 is affine it suffices to take
the limit over standard affine 𝜏-coverings 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 = {𝑆𝑝𝑒𝑐(𝐴𝑖) → 𝑆𝑝𝑒𝑐(𝐴)}𝑖∈𝐼
of 𝑈. Since each 𝐴 → 𝐴𝑖 and 𝐴 → 𝐴𝑖 ⊗𝐴 𝐴𝑗 is flat we see that

�̌�0(𝒰, ℱ) = Ker(∏ 𝐹(𝐴) ⊗𝐴 𝐴𝑖 → ∏ 𝐹(𝐴) ⊗𝐴 𝐴𝑖 ⊗𝐴 𝐴𝑗)

by Lemma 32.3.5. Since 𝐴 → ∏ 𝐴𝑖 is faithfully flat we see that this always is canonically
isomorphic to 𝐹(𝐴) by Descent, Lemma 31.3.6. Thus the presheaf (ℱ)+ has the same value
as ℱ on all affine schemes over 𝑆. Repeating the argument once more we deduce the same
thing for ℱ# = ((ℱ)+)+. Thus 𝐹ℱ,𝐴 = 𝐹ℱ#,𝐴 and we conclude that ℱ# is adequate. �

Lemma 32.5.11. Let 𝑆 be a scheme.
(1) The category Adeq(𝒪) is abelian.
(2) The functor Adeq(𝒪) → Mod((Sch/𝑆)𝜏, 𝒪) is exact.
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(3) If 0 → ℱ1 → ℱ2 → ℱ3 → 0 is a short exact sequence of 𝒪-modules and ℱ1 and
ℱ3 are adequate, then ℱ2 is adequate.

(4) The category Adeq(𝒪) has colimits and Adeq(𝒪) → Mod((Sch/𝑆)𝜏, 𝒪) commutes
with them.

Proof. Let 𝜑 ∶ ℱ → 𝒢 be a map of adequate 𝒪-modules. To prove (1) and (2) it suffices
to show that 𝒦 = Ker(𝜑) and 𝒬 = Coker(𝜑) computed in Mod((Sch/𝑆)𝜏, 𝒪) are adequate.
Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme over 𝑆. Let 𝐹 = 𝐹ℱ,𝐴 and 𝐺 = 𝐹𝒢,𝐴. By Lemmas
32.3.11 and 32.3.10 the kernel 𝐾 and cokernel 𝑄 of the induced map 𝐹 → 𝐺 are adequate
functors. Because the kernel is computed on the level of presheaves, we see that 𝐾 = 𝐹𝒦,𝐴
and we conclude 𝒦 is adequate. To prove the result for the cokernel, denote 𝒬′ the presheaf
cokernel of 𝜑. Then 𝑄 = 𝐹𝒬′,𝐴 and 𝒬 = (𝒬′)#. Hence 𝒬 is adequate by Lemma 32.5.10.

Let 0 → ℱ1 → ℱ2 → ℱ3 → 0 is a short exact sequence of 𝒪-modules and ℱ1 and ℱ3 are
adequate. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme over 𝑆. Let 𝐹𝑖 = 𝐹ℱ𝑖,𝐴. The sequence of
functors

0 → 𝐹1 → 𝐹2 → 𝐹3 → 0

is exact, because for 𝑉 = 𝑆𝑝𝑒𝑐(𝐵) affine over 𝑈 we have 𝐻1(𝑉, ℱ1) = 0 by Lemma 32.5.8.
Since 𝐹1 and 𝐹3 are adequate functors by Lemma 32.5.2 we see that 𝐹2 is adequate by
Lemma 32.3.16. Thus ℱ2 is adequate.

Let ℐ → Adeq(𝒪), 𝑖 ↦ ℱ𝑖 be a diagram. Denote ℱ = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 the colimit computed in
Mod((Sch/𝑆)𝜏, 𝒪). To prove (4) it suffices to show that ℱ is adequate. Let ℱ′ = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 be
the colimit computed in presheaves of 𝒪-modules. Then ℱ = (ℱ′)#. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be
an affine scheme over 𝑆. Let 𝐹𝑖 = 𝐹ℱ𝑖,𝐴. By Lemma 32.3.12 the functor 𝑐𝑜𝑙𝑖𝑚𝑖 𝐹𝑖 = 𝐹ℱ′,𝐴
is adequate. Lemma 32.5.10 shows that ℱ is adequate. �

The following lemma tells us that the total direct image 𝑅𝑓∗ℱ of an adequate module under
a quasi-compact and quasi-separated morphism is a complex whose cohomology sheaves
are adequate.

Lemma 32.5.12. Let 𝑓 ∶ 𝑇 → 𝑆 be a quasi-compact and quasi-separated morphism of
schemes. For any adequate 𝒪𝑇-module on (Sch/𝑇)𝜏 the pushforward 𝑓∗ℱ and the higher
direct images 𝑅𝑖𝑓∗ℱ are adequate 𝒪𝑆-modules on (Sch/𝑆)𝜏.

Proof. First we explain how to compute the higher direct images. Choose an injective
resolution ℱ → ℐ•. Then 𝑅𝑖𝑓∗ℱ is the 𝑖th cohomology sheaf of the complex 𝑓∗ℐ•. Hence
𝑅𝑖𝑓∗ℱ is the sheaf associated to the presheaf which associates to an object 𝑈/𝑆 of (Sch/𝑆)𝜏
the module

Ker(𝑓∗ℐ𝑖(𝑈) → 𝑓∗ℐ𝑖+1(𝑈))
Im(𝑓∗ℐ𝑖−1(𝑈) → 𝑓∗ℐ𝑖(𝑈))

=
Ker(ℐ𝑖(𝑈 ×𝑆 𝑇) → ℐ𝑖+1(𝑈 ×𝑆 𝑇))
Im(ℐ𝑖−1(𝑈 ×𝑆 𝑇) → ℐ𝑖(𝑈 ×𝑆 𝑇))

= 𝐻𝑖(𝑈 ×𝑆 𝑇, ℱ)

= 𝐻𝑖((Sch/𝑈 ×𝑆 𝑇)𝜏, ℱ|(Sch/𝑈×𝑆𝑇)𝜏
)

= 𝐻𝑖(𝑈 ×𝑆 𝑇, ℱ|(𝑈×𝑆𝑇)𝑍𝑎𝑟
)

The first equality by Topologies, Lemma 30.7.12 (and its analogues for other topologies),
the second equality by definition of cohomology of ℱ over an object of (Sch/𝑇)𝜏, the third
equality by Cohomology on Sites, Lemma 19.8.1, and the last equality by Lemma 32.5.8.
Thus by Lemma 32.5.10 it suffices to prove the claim stated in the following paragraph.
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Let 𝐴 be a ring. Let 𝑇 be a scheme quasi-compact and quasi-separated over 𝐴. Let ℱ be
an adequate 𝒪𝑇-module on (Sch/𝑇)𝜏. For an 𝐴-algebra 𝐵 set 𝑇𝐵 = 𝑇 ×𝑆𝑝𝑒𝑐(𝐴) 𝑆𝑝𝑒𝑐(𝐵) and
denote ℱ𝐵 = ℱ|(𝑇𝐵)𝑍𝑎𝑟

the restriction of ℱ to the small Zariski site of 𝑇𝐵. (Recall that this is
a ``usual'' quasi-coherent sheaf on the scheme 𝑇𝐵, see Lemma 32.5.8.) Claim: The functor

𝐵 ⟼ 𝐻𝑞(𝑇𝐵, ℱ𝐵)

is adequate. We will prove the lemma by the usual procedure of cutting 𝑇 into pieces.

Case I: 𝑇 is affine. In this case the schemes 𝑇𝐵 are all affine and 𝐻𝑞(𝑇𝐵, ℱ𝐵) = 0 for all
𝑞 ≥ 1. The functor 𝐵 ↦ 𝐻0(𝑇𝐵, ℱ𝐵) is adequate by Lemma 32.3.18.

Case II: 𝑇 is separated. Let 𝑛 be the minimal number of affines needed to cover 𝑇. We argue
by induction on 𝑛. The base case is Case I. Choose an affine open covering 𝑇 = 𝑉1 ∪…∪𝑉𝑛.
Set 𝑉 = 𝑉1 ∪ … ∪ 𝑉𝑛−1 and 𝑈 = 𝑉𝑛. Observe that

𝑈 ∩ 𝑉 = (𝑉1 ∩ 𝑉𝑛) ∪ … ∪ (𝑉𝑛−1 ∩ 𝑉𝑛)

is also a union of 𝑛 − 1 affine opens as 𝑇 is separated, see Schemes, Lemma 21.21.8. Note
that for each 𝐵 the base changes 𝑈𝐵, 𝑉𝐵 and (𝑈 ∩ 𝑉)𝐵 = 𝑈𝐵 ∩ 𝑉𝐵 behave in the same way.
Hence we see that for each 𝐵 we have a long exact sequence

0 → 𝐻0(𝑇𝐵, ℱ𝐵) → 𝐻0(𝑈𝐵, ℱ𝐵)⊕𝐻0(𝑉𝐵, ℱ𝐵) → 𝐻0((𝑈∩𝑉)𝐵, ℱ𝐵) → 𝐻1(𝑇𝐵, ℱ𝐵) → …

functorial in 𝐵, see Cohomology, Lemma 18.8.2. By induction hypothesis the functors
𝐵 ↦ 𝐻𝑞(𝑈𝐵, ℱ𝐵), 𝐵 ↦ 𝐻𝑞(𝑉𝐵, ℱ𝐵), and 𝐵 ↦ 𝐻𝑞((𝑈 ∩ 𝑉)𝐵, ℱ𝐵) are adequate. Using
Lemmas 32.3.11 and 32.3.10 we see that our functor 𝐵 ↦ 𝐻𝑞(𝑇𝐵, ℱ𝐵) sits in the middle
of a short exact sequence whose outer terms are adequate. Thus the claim follows from
Lemma 32.3.16.

Case III: General quasi-compact and quasi-separated case. The proof is again by induction
on the number 𝑛 of affines needed to cover 𝑇. The base case 𝑛 = 1 is Case I. Choose an
affine open covering 𝑇 = 𝑉1 ∪ … ∪ 𝑉𝑛. Set 𝑉 = 𝑉1 ∪ … ∪ 𝑉𝑛−1 and 𝑈 = 𝑉𝑛. Note that
since 𝑇 is quasi-separated 𝑈 ∩ 𝑉 is a quasi-compact open of an affine scheme, hence Case
II applies to it. The rest of the argument proceeds in exactly the same manner as in the
paragraph above and is omitted. �

32.6. Parasitic adequate modules

In this section we start comparing adequate modules and quasi-coherent modules on a
scheme 𝑆. Recall that there are functors 𝑢 ∶ QCoh(𝒪𝑆) → Adeq(𝒪) and 𝑣 ∶ Adeq(𝒪) →
QCoh(𝒪𝑆) satisfying the adjunction

ℋ𝑜𝑚QCoh(𝒪𝑆)(ℱ, 𝑣𝒢) = ℋ𝑜𝑚Adeq(𝒪)(𝑢ℱ, 𝒢)

and such that ℱ → 𝑣𝑢ℱ is an isomorphism for every quasi-coherent sheaf ℱ, see Remark
32.5.9. Hence 𝑢 is a fully faithfull embedding and we can identify QCoh(𝒪𝑆) with a full
subcategory of Adeq(𝒪). The functor 𝑣 is exact but 𝑢 is not left exact in general. The kernel
of 𝑣 is the subcategory of parasitic adequate modules.

In Descent, Definition 31.7.1 we give the definition of a parasitic module. For adequate
modules the notion does not depend on the chosen topology.

Lemma 32.6.1. Let 𝑆 be a scheme. Let ℱ be an adequate 𝒪-module on (Sch/𝑆)𝜏. The
following are equivalent:

(1) 𝑣ℱ = 0,
(2) ℱ is parasitic,
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(3) ℱ is parasitic for the 𝜏-topology,
(4) ℱ(𝑈) = 0 for all 𝑈 ⊂ 𝑆 open, and
(5) there exists an affine open covering 𝑆 = ⋃ 𝑈𝑖 such that ℱ(𝑈𝑖) = 0 for all 𝑖.

Proof. The implications (2) ⇒ (3) ⇒ (4) ⇒ (5) are immediate from the definitions. Assume
(5). Suppose that 𝑆 = ⋃ 𝑈𝑖 is an affine open covering such that ℱ(𝑈𝑖) = 0 for all 𝑖. Let
𝑉 → 𝑆 be a flat morphism. There exists an affine open covering 𝑉 = ⋃ 𝑉𝑗 such that each
𝑉𝑗 maps into some 𝑈𝑖. As the morphism 𝑉𝑗 → 𝑆 is flat, also 𝑉𝑗 → 𝑈𝑖 is flat. Hence the
corresponding ring map 𝐴𝑖 = 𝒪(𝑈𝑖) → 𝒪(𝑉𝑗) = 𝐵𝑗 is flat. Thus by Lemma 32.5.2 and
Lemma 32.3.5 we see that ℱ(𝑈𝑖) ⊗𝐴𝑖

𝐵𝑗 → ℱ(𝑉𝑗) is an isomorphism. Hence ℱ(𝑉𝑗) = 0.
Since ℱ is a sheaf for the Zariski topology we conclude that ℱ(𝑉) = 0. In this way we see
that (5) implies (2).

This proves the equivalence of (2), (3), (4), and (5). As (1) is equivalent to (3) (see Remark
32.5.9) we conclude that all five conditions are equivalent. �

Let 𝑆 be a scheme. The subcategory of parasitic adequate modules is a Serre subcategory
of Adeq(𝒪). The quotient is the category of quasi-coherent modules.

Lemma 32.6.2. Let 𝑆 be a scheme. The subcategory 𝒞 ⊂ Adeq(𝒪) of parasitic adequate
modules is a Serre subcategory. Moreover, the functor 𝑣 induces an equivalence of cate-
gories

Adeq(𝒪)/𝒞 = QCoh(𝒪𝑆).

Proof. The category 𝒞 is the kernel of the exact functor 𝑣 ∶ Adeq(𝒪) → QCoh(𝒪𝑆), see
Lemma 32.6.1. Hence it is a Serre subcategory by Homology, Lemma 10.7.4. By Ho-
mology, Lemma 10.7.6 we obtain an induced exact functor 𝑣 ∶ Adeq(𝒪)/𝒞 → QCoh(𝒪𝑆).
Because 𝑢 is a right inverse to 𝑣 we see right away that 𝑣 is essentially surjective. We see
that 𝑣 is faithful by Homology, Lemma 10.7.7. Because 𝑢 is a right inverse to 𝑣 we finally
conclude that 𝑣 is fully faithful. �

Lemma 32.6.3. Let 𝑓 ∶ 𝑇 → 𝑆 be a quasi-compact and quasi-separated morphism of
schemes. For any parasitic adequate 𝒪𝑇-module on (Sch/𝑇)𝜏 the pushforward 𝑓∗ℱ and the
higher direct images 𝑅𝑖𝑓∗ℱ are parasitic adequate 𝒪𝑆-modules on (Sch/𝑆)𝜏.

Proof. We have already seen in Lemma 32.5.12 that these higher direct images are ade-
quate. Hence it suffices to show that (𝑅𝑖𝑓∗ℱ)(𝑈𝑖) = 0 for any 𝜏-covering {𝑈𝑖 → 𝑆} open.
And 𝑅𝑖𝑓∗ℱ is parasitic by Descent, Lemma 31.7.3. �

32.7. Derived categories of adequate modules, I

Let 𝑆 be a scheme. We continue the discussion started in Section 32.6. The exact functor
𝑣 induces a functor

𝐷(Adeq(𝒪)) ⟶ 𝐷(QCoh(𝒪𝑆))
and similarly for bounded versions.

Lemma 32.7.1. Let𝑆 be a scheme. Let𝒞 ⊂ Adeq(𝒪) denote the full subcategory consisting
of parasitic adequate modules. Then

𝐷(Adeq(𝒪))/𝐷𝒞(Adeq(𝒪)) = 𝐷(QCoh(𝒪𝑆))

and similarly for the bounded versions.

Proof. Follows immediately from Derived Categories, Lemma 11.12.3. �
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Next, we look for a description the other way around by looking at the functors
𝐾+(QCoh(𝒪𝑆)) ⟶ 𝐾+(Adeq(𝒪)) ⟶ 𝐷+(Adeq(𝒪)) ⟶ 𝐷+(QCoh(𝒪𝑆)).

In some cases the derived category of adequate modules is a localization of the homotopy
category of complexes of quasi-coherent modules at universal quasi-isomorphisms. Let 𝑆
be a scheme. A map of complexes 𝜑 ∶ ℱ• → 𝒢• of quasi-coherent 𝒪𝑆-modules is said
to be a universal quasi-isomorphism if for every morphism of schemes 𝑓 ∶ 𝑇 → 𝑆 the
pullback 𝑓∗𝜑 is a quasi-isomorphism.

Lemma 32.7.2. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme. The bounded below derived cat-
egory 𝐷+(Adeq(𝒪)) is the localization of 𝐾+(QCoh(𝒪𝑈)) at the multiplicative subset of
universal quasi-isomorphisms.

Proof. If 𝜑 ∶ ℱ• → 𝒢• is a morphism of complexes of quasi-coherent 𝒪𝑈-modules, then
𝑢𝜑 ∶ 𝑢ℱ• → 𝑢𝒢• is a quasi-isomorphism if and only if 𝜑 is a universal quasi-isomorphism.
Hence the collection 𝑆 of universal quasi-isomorphisms is a saturated multiplicative system
compatible with the triangulated structure by Derived Categories, Lemma 11.5.3. Hence
𝑆−1𝐾+(QCoh(𝒪𝑈)) exists and is a triangulated category, see Derived Categories, Proposi-
tion 11.5.5. We obtain a canonical functor 𝑐𝑎𝑛 ∶ 𝑆−1𝐾+(QCoh(𝒪𝑈)) → 𝐷+(Adeq(𝒪)) by
Derived Categories, Lemma 11.5.6.
Note that, almost by definition, every adequate module on 𝑈 has an embedding into a
quasi-coherent sheaf, see Lemma 32.5.5. Hence by Derived Categories, Lemma 11.15.4
given ℱ• ∈ 𝑂𝑏(𝐾+(Adeq(𝒪))) there exists a quasi-isomorphism ℱ• → 𝑢𝒢• where 𝒢• ∈
𝑂𝑏(𝐾+(QCoh(𝒪𝑈))). This proves that 𝑐𝑎𝑛 is essentially surjective.
Similarly, suppose thatℱ• and𝒢• are bounded below complexes of quasi-coherent𝒪𝑈-modules.
A morphism in 𝐷+(Adeq(𝒪)) between these consists of a pair 𝑓 ∶ 𝑢ℱ• → ℋ• and 𝑠 ∶
𝑢𝒢• → ℋ• where 𝑠 is a quasi-isomorphism. Pick a quasi-isomorphism 𝑠′ ∶ ℋ• → 𝑢ℰ•.
Then we see that 𝑠′ ∘ 𝑓 ∶ ℱ → ℰ• and the universal quasi-isomorphism 𝑠′ ∘ 𝑠 ∶ 𝒢• → ℰ•

give a morphism in 𝑆−1𝐾+(QCoh(𝒪𝑈)) mapping to the given morphism. This proves the
"fully" part of full faithfulness. Faithfulness is proved similarly. �

Lemma 32.7.3. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme. The inclusion functor
Adeq(𝒪) → Mod((Sch/𝑈)𝜏, 𝒪)

has a right adjoint 𝐴1. Moreover, the adjunction mapping 𝐴(ℱ) → ℱ is an isomorphism
for every adequate module ℱ.

Proof. By Topologies, Lemma 30.7.11 (and similarly for the other topologies) we may
work with 𝒪-modules on (Aff/𝑈)𝜏. Denote 𝒫 the category of module-valued functors on
Alg𝐴 and 𝒜 the category of adequate functors on Alg𝐴. Denote 𝑖 ∶ 𝒜 → 𝒫 the inclusion
functor. Denote 𝑄 ∶ 𝒫 → 𝒜 the construction of Lemma 32.4.1. We have the commutative
diagram

(32.7.3.1)

Adeq(𝒪)
𝑘
// Mod((Aff/𝑈)𝜏, 𝒪)

𝑗
// PMod((Aff/𝑈)𝜏, 𝒪)

𝒜 𝑖 // 𝒫
The left vertical equality is Lemma 32.5.3 and the right vertical equality was explained in
Section 32.3. Define 𝐴(ℱ) = 𝑄(𝑗(ℱ)). Since 𝑗 is fully faithful it follows immediately that

1This is the ``adequator''.
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𝐴 is a right adjoint of the inclusion functor 𝑘. Also, since 𝑘 is fully faithful too, the final
assertion follows formally. �

The functor 𝐴 is a right adjoint hence left exact. Since the inclusion functor is exact, see
Lemma 32.5.11 we conclude that 𝐴 transforms injectives into injectives, and that the cate-
gory Adeq(𝒪) has enough injectives, see Homology, Lemma 10.22.3 and Injectives, Theo-
rem 17.12.4. This also follows from the equivalence in (32.7.3.1) and Lemma 32.4.2.

Lemma 32.7.4. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme. For any object ℱ of Adeq(𝒪) we
have 𝑅𝑝𝐴(ℱ) = 0 for all 𝑝 > 0 where 𝐴 is as in Lemma 32.7.3.

Proof. With notation as in the proof of Lemma 32.7.3 choose an injective resolution 𝑘(ℱ) →
ℐ• in the category of 𝒪-modules on (Aff/𝑈)𝜏. By Cohomology on Sites, Lemmas 19.12.2
and Lemma 32.5.8 the complex 𝑗(ℐ•) is exact. On the other hand, each 𝑗(ℐ𝑛) is an in-
jective object of the category of presheaves of modules by Cohomology on Sites, Lemma
19.12.1. It follows that 𝑅𝑝𝐴(ℱ) = 𝑅𝑝𝑄(𝑗(𝑘(ℱ))). Hence the result now follows from
Lemma 32.4.10. �

Let𝑆 be a scheme. By the discussion in Section 32.5 the embeddingAdeq(𝒪) ⊂ Mod((Sch/𝑆)𝜏, 𝒪)
exhibits Adeq(𝒪) as a weak Serre subcategory of the category of all 𝒪-modules. Denote

𝐷Adeq(𝒪) ⊂ 𝐷(𝒪) = 𝐷(Mod((Sch/𝑆)𝜏, 𝒪))
the triangulated subcategory of complexes whose cohomology sheaves are adequate, see
Derived Categories, Section 11.12. We obtain a canonical functor

𝐷(Adeq(𝒪)) ⟶ 𝐷Adeq(𝒪)
see Derived Categories, Equation (11.12.1.1).

Lemma 32.7.5. If 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) is an affine scheme, then the bounded below version
(32.7.5.1) 𝐷+(Adeq(𝒪)) ⟶ 𝐷+

Adeq(𝒪)

of the functor above is an equivalence.

Proof. Let 𝐴 ∶ Mod(𝒪) → Adeq(𝒪) be the right adjoint to the inclusion functor constructed
in Lemma 32.7.3. Since 𝐴 is left exact and since Mod(𝒪) has enough injectives, 𝐴 has a
right derived functor 𝑅𝐴 ∶ 𝐷+

Adeq(𝒪) → 𝐷+(Adeq(𝒪)). We claim that 𝑅𝐴 is a quasi-inverse
to (32.7.5.1). To see this the key fact is that if ℱ is an adequate module, then the adjunction
map ℱ → 𝑅𝐴(ℱ) is a quasi-isomorphism by Lemma 32.7.4.
Namely, to prove the lemma in full it suffices to show:

(1) Givenℱ• ∈ 𝐾+(Adeq(𝒪)) the canonicalmapℱ• → 𝑅𝐴(ℱ•) is a quasi-isomorphism,
and

(2) given𝒢• ∈ 𝐾+(Mod(𝒪)) the canonicalmap𝑅𝐴(𝒢•) → 𝒢• is a quasi-isomorphism.
Both (1) and (2) follow from the key fact via a spectral sequence argument using one of the
spectral sequences of Derived Categories, Lemma 11.20.3. Some details omitted. �

Lemma32.7.6. Let𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme. Letℱ and𝒢 be adequate𝒪-modules.
For any 𝑖 ≥ 0 the natural map

Ext𝑖Adeq(𝒪)(ℱ, 𝒢) ⟶ Ext𝑖Mod(𝒪)(ℱ, 𝒢)

is an isomorphism.

Proof. By definition these ext groups are computed as hom sets in the derived category.
Hence this follows immediately from Lemma 32.7.5. �
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32.8. Pure extensions

We want to characterize extensions of quasi-coherent sheaves on the big site of an affine
schemes in terms of algebra. To do this we introduce the following notion.

Definition 32.8.1. Let 𝐴 be a ring.
(1) An 𝐴-module 𝑃 is said to be pure projective if for every universally exact se-

quence 0 → 𝐾 → 𝑀 → 𝑁 → 0 of 𝐴-module the sequence 0 → 𝐻𝑜𝑚𝐴(𝑃, 𝐾) →
𝐻𝑜𝑚𝐴(𝑃, 𝑀) → 𝐻𝑜𝑚𝐴(𝑃, 𝑁) → 0 is exact.

(2) An 𝐴-module 𝐼 is said to be pure injective if for every universally exact sequence
0 → 𝐾 → 𝑀 → 𝑁 → 0 of 𝐴-module the sequence 0 → 𝐻𝑜𝑚𝐴(𝑁, 𝐼) →
𝐻𝑜𝑚𝐴(𝑀, 𝐼) → 𝐻𝑜𝑚𝐴(𝐾, 𝐼) → 0 is exact.

Let's characterize pure projectives.

Lemma 32.8.2. Let 𝐴 be a ring.
(1) A module is pure projective if and only if it is a direct summand of a direct sum

of finitely presented 𝐴-modules.
(2) For any module 𝑀 there exists a universally exact sequence 0 → 𝑁 → 𝑃 →

𝑀 → 0 with 𝑃 pure projective.

Proof. First note that a finitely presented 𝐴-module is pure projective by Algebra, Theorem
7.76.3. Hence a direct summand of a direct sum of finitely presented 𝐴-modules is indeed
pure projective. Let 𝑀 be any 𝐴-module. Write 𝑀 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑃𝑖 as a filtered colimit of
finitely presented 𝐴-modules. Consider the sequence

0 → 𝑁 → ⨁ 𝑃𝑖 → 𝑀 → 0.

For any finitely presented 𝐴-module 𝑃 the map 𝐻𝑜𝑚𝐴(𝑃, ⨁ 𝑃𝑖) → 𝐻𝑜𝑚𝐴(𝑃, 𝑀) is sur-
jective, as any map 𝑃 → 𝑀 factors through some 𝑃𝑖. Hence by Algebra, Theorem 7.76.3
this sequence is universally exact. This proves (2). If now 𝑀 is pure projective, then the
sequence is split and we see that 𝑀 is a direct summand of ⨁ 𝑃𝑖. �

Let's characterize pure injectives.

Lemma 32.8.3. Let 𝐴 be a ring. For any 𝐴-module 𝑀 set 𝑀∧ = 𝐻𝑜𝑚𝐙(𝑀, 𝐐/𝐙).
(1) For any 𝐴-module 𝑀 the 𝐴-module 𝑀∧ is pure injective.
(2) An 𝐴-module 𝐼 is pure injective if and only if the map 𝐼 → (𝐼∧)∧ splits.
(3) For any module 𝑀 there exists a universally exact sequence 0 → 𝑀 → 𝐼 →

𝑁 → 0 with 𝐼 pure injective.

Proof. Wewill use the properties of the functor 𝑀 ↦ 𝑀∧ found in Injectives, Section 17.3
without further mention. Part (1) holds because 𝐻𝑜𝑚𝐴(𝑁, 𝑀∧) = 𝐻𝑜𝑚𝐙(𝑁 ⊗𝐴 𝑀, 𝐐/𝐙)
and because 𝐐/𝐙 is injective in the category of abelian groups. Hence if 𝐼 → (𝐼∧)∧ is
split, then 𝐼 is pure injective. We claim that for any 𝐴-module 𝑀 the evaluation map
𝑒𝑣 ∶ 𝑀 → (𝑀∧)∧ is universally injective. To see this note that 𝑒𝑣∧ ∶ ((𝑀∧)∧)∧ → 𝑀∧ has
a right inverse, namely 𝑒𝑣′ ∶ 𝑀∧ → ((𝑀∧)∧)∧. Then for any 𝐴-module 𝑁 applying the
exact faithful functor ∧ to the map 𝑁 ⊗𝐴 𝑀 → 𝑁 ⊗𝐴 (𝑀∧)∧ gives

𝐻𝑜𝑚𝐴(𝑁, ((𝑀∧)∧)∧) = (𝑁 ⊗𝐴 (𝑀∧)∧
)

∧
→ (𝑁 ⊗𝐴 𝑀)

∧
= 𝐻𝑜𝑚𝐴(𝑁, 𝑀∧)

which is surjective by the existence of the right inverse. The claim follows. The claim
implies (3) and the necessity of the condition in (2). �
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Before we continue we make the following observation which we will use frequently in the
rest of this section.

Lemma 32.8.4. Let 𝐴 be a ring.
(1) Let 𝐿 → 𝑀 → 𝑁 be a universally exact sequence of 𝐴-modules. Let 𝐾 =

Im(𝑀 → 𝑁). Then 𝐾 → 𝑁 is universally injective.
(2) Any universally exact complex can be split into universally exact short exact se-

quences.

Proof. Proof of (1). For any 𝐴-module 𝑇 the sequence 𝐿 ⊗𝐴 𝑇 → 𝑀 ⊗𝐴 𝑇 → 𝐾 ⊗𝐴 𝑇 → 0
is exact by right exactness of ⊗. By assumption the sequence 𝐿⊗𝐴𝑇 → 𝑀⊗𝐴𝑇 → 𝑁⊗𝐴𝑇
is exact. Combined this shows that 𝐾 ⊗𝐴 𝑇 → 𝑁 ⊗𝐴 𝑇 is injective.

Part (2)means the following: Suppose that𝑀• is a universally exact complex of𝐴-modules.
Set 𝐾𝑖 = Ker(𝑑𝑖) ⊂ 𝑀𝑖. Then the short exact sequences 0 → 𝐾𝑖 → 𝑀𝑖 → 𝐾𝑖+1 → 0 are
universally exact. This follows immediately from part (1). �

Definition 32.8.5. Let 𝐴 be a ring. Let 𝑀 be an 𝐴-module.
(1) A pure projective resolution 𝑃• → 𝑀 is a universally exact sequence

… → 𝑃1 → 𝑃0 → 𝑀 → 0

with each 𝑃𝑖 pure projective.
(2) A pure injective resolution 𝑀 → 𝐼• is a universally exact sequence

0 → 𝑀 → 𝐼0 → 𝐼1 → …

with each 𝐼𝑖 pure injective.

These resolutions satisfy the usual uniqueness properties among the class of all universally
exact left or right resolutions.

Lemma 32.8.6. Let 𝐴 be a ring.
(1) Any 𝐴-module has a pure projective resolution.

Let 𝑀 → 𝑁 be a map of 𝐴-modules. Let 𝑃• → 𝑀 be a pure projective resolution and let
𝑁• → 𝑁 be a universally exact resolution.

(2) There exists a map of complexes 𝑃• → 𝑁• inducing the given map

𝑀 = Coker(𝑃1 → 𝑃0) → Coker(𝑁1 → 𝑁0) = 𝑁

(3) two maps 𝛼, 𝛽 ∶ 𝑃• → 𝑁• inducing the same map 𝑀 → 𝑁 are homotopic.

Proof. Part (1) follows immediately from Lemma 32.8.2. Before we prove (2) and (3)
note that by Lemma 32.8.4 we can split the universally exact complex 𝑁• → 𝑁 → 0 into
universally exact short exact sequences 0 → 𝐾0 → 𝑁0 → 𝑁 → 0 and 0 → 𝐾𝑖 → 𝑁𝑖 →
𝐾𝑖−1 → 0.

Proof of (2). Because 𝑃0 is pure projective we can find a map 𝑃0 → 𝑁0 lifting the map
𝑃0 → 𝑀 → 𝑁. We obtain an induced map 𝑃1 → 𝐹0 → 𝑁0 wich ends up in 𝐾0. Since
𝑃1 is pure projective we may lift this to a map 𝑃1 → 𝑁1. This in turn induces a map
𝑃2 → 𝑃1 → 𝑁1 which maps to zero into 𝑁0, i.e., into 𝐾1. Hence we may lift to get a map
𝑃2 → 𝑁2. Repeat.

Proof of (3). To show that 𝛼, 𝛽 are homotopic it suffices to show the difference 𝛾 = 𝛼 − 𝛽
is homotopic to zero. Note that the image of 𝛾0 ∶ 𝑃0 → 𝑁0 is contained in 𝐾0. Hence we
may lift 𝛾0 to a map ℎ0 ∶ 𝑃0 → 𝑁1. Consider the map 𝛾′

1 = 𝛾1 − ℎ0 ∘ 𝑑𝑃,1 ∶ 𝑃1 → 𝑁1. By
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our choice of ℎ0 we see that the image of 𝛾′
1 is contained in 𝐾1. Since 𝑃1 is pure projective

may lift 𝛾′
1 to a map ℎ1 ∶ 𝑃1 → 𝑁2. At this point we have 𝛾1 = ℎ0 ∘ 𝑑𝐹,1 + 𝑑𝑁,2 ∘ ℎ1.

Repeat. �

Lemma 32.8.7. Let 𝐴 be a ring.
(1) Any 𝐴-module has a pure injective resolution.

Let 𝑀 → 𝑁 be a map of 𝐴-modules. Let 𝑀 → 𝑀• be a universally exact resolution and
let 𝑁 → 𝐼• be a pure injective resolution.

(2) There exists a map of complexes 𝑀• → 𝐼• inducing the given map

𝑀 = Ker(𝑀0 → 𝑀1) → Ker(𝐼0 → 𝐼1) = 𝑁
(3) two maps 𝛼, 𝛽 ∶ 𝑀• → 𝐼• inducing the same map 𝑀 → 𝑁 are homotopic.

Proof. This lemma is dual to Lemma 32.8.6. The proof is identical, except one has to
reverse all the arrows. �

Using the material above we can define pure extension groups as follows. Let 𝐴 be a ring
and let 𝑀, 𝑁 be 𝐴-modules. Choose a pure injective resolution 𝑁 → 𝐼•. By Lemma 32.8.7
the complex

𝐻𝑜𝑚𝐴(𝑀, 𝐼•)
is well defined up to homotopy. Hence its 𝑖th cohomologymodule is a well defined invariant
of 𝑀 and 𝑁.

Definition 32.8.8. Let 𝐴 be a ring and let 𝑀, 𝑁 be 𝐴-modules. The 𝑖th pure extension
module Pext𝑖𝐴(𝑀, 𝑁) is the 𝑖th cohomology module of the complex 𝐻𝑜𝑚𝐴(𝑀, 𝐼•) where
𝐼• is a pure injective resolution of 𝑁.

Warning: It is not true that an exact sequence of 𝐴-modules gives rise to a long exact
sequence of pure extensions groups. (You need a universally exact sequence for this.) We
collect some facts which are obvious from the material above.

Lemma 32.8.9. Let 𝐴 be a ring.
(1) Pext𝑖𝐴(𝑀, 𝑁) = 0 for 𝑖 > 0 whenever 𝑁 is pure injective,
(2) Pext𝑖𝐴(𝑀, 𝑁) = 0 for 𝑖 > 0 whenever 𝑀 is pure projective, in particular if 𝑀 is

an 𝐴-module of finite presentation,
(3) Pext𝑖𝐴(𝑀, 𝑁) is also the 𝑖th cohomology module of the complex 𝐻𝑜𝑚𝐴(𝑃•, 𝑁)

where 𝑃• is a pure projective resolution of 𝑀.

Proof. To see (3) consider the double complex
𝐴•,• = 𝐻𝑜𝑚𝐴(𝑃•, 𝐼•)

Each of its rows is exact except in degree 0 where its cohomology is 𝐻𝑜𝑚𝐴(𝑀, 𝐼𝑞). Each of
its columns is exact except in degree 0 where its cohomology is 𝐻𝑜𝑚𝐴(𝑃𝑝, 𝑁). Hence the
two spectral sequences associated to this complex in Homology, Section 10.19 degenerate,
giving the equality. �

32.9. Higher exts of quasi-coherent sheaves on the big site

It turns out that the module-valued functor 𝐼 associated to a pure injective module 𝐼 gives
rise to an injective object in the category of adequate functors on Alg𝐴. Warning: It is
not true that a pure projective module gives rise to a projective object in the category of
adequate functors. We do have plenty of projective objects, namely, the linearly adequate
functors.
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Lemma 32.9.1. Let 𝐴 be a ring. Let 𝒜 be the category of adequate functors on Alg𝐴. The
injective objects of 𝒜 are exactly the functors 𝐼 where 𝐼 is a pure injective 𝐴-module.

Proof. Let 𝐼 be an injective object of 𝒜. Choose an embedding 𝐼 → 𝑀 for some 𝐴-module
𝑀. As 𝐼 is injective we see that 𝑀 = 𝐼 ⊕ 𝐹 for some module-valued functor 𝐹. Then
𝑀 = 𝐼(𝐴) ⊕ 𝐹(𝐴) and it follows that 𝐼 = 𝐼(𝐴). Thus we see that any injective object is of
the form 𝐼 for some 𝐴-module 𝐼. It is clear that the module 𝐼 has to be pure injective since
any universally exact sequence 0 → 𝑀 → 𝑁 → 𝐿 → 0 gives rise to an exact sequence
0 → 𝑀 → 𝑁 → 𝐿 → 0 of 𝒜.
Finally, suppose that 𝐼 is a pure injective 𝐴-module. Choose an embedding 𝐼 → 𝐽 into
an injective object of 𝒜 (see Lemma 32.4.2). We have seen above that 𝐽 = 𝐼′ for some
𝐴-module 𝐼′ which is pure injective. As 𝐼 → 𝐼′ is injective the map 𝐼 → 𝐼′ is universally
injective. By assumption on 𝐼 it splits. Hence 𝐼 is a summand of 𝐽 = 𝐼′ whence an injective
object of the category 𝒜. �

Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme. Let 𝑀 be an 𝐴-module. We will use the notation
𝑀𝑎 to denote the quasi-coherent sheaf of 𝒪-modules on (Sch/𝑈)𝜏 associated to the quasi-
coherent sheaf 𝑀 on 𝑈. Now we have all the notation in place to formulate the following
lemma.

Lemma 32.9.2. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme. Let 𝑀, 𝑁 be 𝐴-modules. For all 𝑖
we have a canonical isomorphism

Ext𝑖Mod(𝒪)(𝑀
𝑎, 𝑁𝑎) = Pext𝑖𝐴(𝑀, 𝑁)

functorial in 𝑀 and 𝑁.

Proof. Let us construct a canonical arrow from right to left. Namely, if 𝑁 → 𝐼• is a pure
injective resolution, then 𝑀𝑎 → (𝐼•)𝑎 is an exact complex of (adequate) 𝒪-modules. Hence
any element of Pext𝑖𝐴(𝑀, 𝑁) gives rise to a map 𝑁𝑎 → 𝑀𝑎[𝑖] in 𝐷(𝒪), i.e., an element of
the group on the left.
To prove this map is an isomorphism, note that we may replace Ext𝑖Mod(𝒪)(𝑀

𝑎, 𝑁𝑎) by
Ext𝑖Adeq(𝒪)(𝑀

𝑎, 𝑁𝑎), see Lemma 32.7.6. Let 𝒜 be the category of adequate functors on
Alg𝐴. We have seen that 𝒜 is equivalent to Adeq(𝒪), see Lemma 32.5.3; see also the proof
of Lemma 32.7.3. Hence now it suffices to prove that

Ext𝑖𝒜(𝑀, 𝑁) = Pext𝑖𝐴(𝑀, 𝑁)
However, this is clear from Lemma 32.9.1 as a pure injective resolution 𝑁 → 𝐼• exactly
corresponds to an injective resolution of 𝑁 in 𝒜. �

32.10. Derived categories of adequate modules, II

Let 𝑆 be a scheme. Denote 𝒪𝑆 the structure sheaf of 𝑆 and 𝒪 the structure sheaf of the big
site (Sch/𝑆)𝜏. In Descent, Remark 31.6.4 we constructed a morphism of ringed sites
(32.10.0.1) 𝑓 ∶ ((Sch/𝑆)𝜏, 𝒪) ⟶ (𝑆𝑍𝑎𝑟, 𝒪𝑆).
In the previous sections have seen that the functor 𝑓∗ ∶ Mod(𝒪) → Mod(𝒪𝑆) transforms
adequate sheaves into quasi-coherent sheaves, and induces an exact functor 𝑣 ∶ Adeq(𝒪) →
QCoh(𝒪𝑆), and in fact that 𝑓∗ = 𝑣 induces an equivalence Adeq(𝒪)/𝒞 → QCoh(𝒪𝑆) where
𝒞 is the subcategory of parasitic adequate modules. Moreover, the functor 𝑓∗ transforms
quasi-coherent modules into adequate modules, and induces a functor 𝑢 ∶ QCoh(𝒪𝑆) →
Adeq(𝒪) which is a left adjoint to 𝑣.
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There is a very similar relationship between 𝐷Adeq(𝒪) and 𝐷QCoh(𝑆). First we explain why
the category 𝐷Adeq(𝒪) is independent of the chosen topology.

Remark 32.10.1. Let 𝑆 be a scheme. Let 𝜏, 𝜏′ ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}.
Denote 𝒪𝜏, resp. 𝒪𝜏′ the structure sheaf 𝒪 viewed as a sheaf on (Sch/𝑆)𝜏, resp. (Sch/𝑆)𝜏′.
Then 𝐷Adeq(𝒪𝜏) and 𝐷Adeq(𝒪𝜏′) are canonically isomorphic. This follows from Cohomol-
ogy on Sites, Lemma 19.20.2. Namely, assume 𝜏 is stronger than the topology 𝜏′, let
𝒞 = (Sch/𝑆)𝑓𝑝𝑝𝑓, and let ℬ the collection of affine schemes over 𝑆. Assumptions (1)
and (2) we've seen above. Assumption (3) is clear and assumption (4) follows from Lemma
32.5.8.

Remark 32.10.2. Let 𝑆 be a scheme. The morphism 𝑓 see (32.10.0.1) induces adjoint
functors 𝑅𝑓∗ ∶ 𝐷Adeq(𝒪) → 𝐷QCoh(𝑆) and 𝐿𝑓∗ ∶ 𝐷QCoh(𝑆) → 𝐷Adeq(𝒪). Moreover
𝑅𝑓∗𝐿𝑓∗ ≅ id𝐷QCoh(𝑆).

We sketch the proof. By Remark 32.10.1 we may assume the topology 𝜏 is the Zariski
topology. We will use the existence of the unbounded total derived functors 𝐿𝑓∗ and 𝑅𝑓∗
on 𝒪-modules and their adjointness, see Cohomology on Sites, Lemma 19.19.1. In this
case 𝑓∗ is just the restriction to the subcategory 𝑆𝑍𝑎𝑟 of (Sch/𝑆)𝑍𝑎𝑟. Hence it is clear
that 𝑅𝑓∗ = 𝑓∗ induces 𝑅𝑓∗ ∶ 𝐷Adeq(𝒪) → 𝐷QCoh(𝑆). Suppose that 𝒢• is an object of
𝐷QCoh(𝑆). We may choose a system 𝒦•

1 → 𝒦•
2 → … of bounded above complexes of flat

𝒪𝑆-modules whose transition maps are termwise split injectives and a diagram

𝒦•
1

��

// 𝒦•
2

��

// …

𝜏≤1𝒢• // 𝜏≤2𝒢• // …

with the properties (1), (2), (3) listed in Derived Categories, Lemma 11.27.1 where 𝒫 is the
collection of flat 𝒪𝑆-modules. Then 𝐿𝑓∗𝒢• is computed by 𝑐𝑜𝑙𝑖𝑚 𝑓∗𝒦•

𝑛, see Cohomology
on Sites, Lemmas 19.18.1 and 19.18.3 (note that our sites have enough points by Étale
Cohomology, Lemma 38.30.1). We have to see that 𝐻𝑖(𝐿𝑓∗𝒢•) = 𝑐𝑜𝑙𝑖𝑚 𝐻𝑖(𝑓∗𝒦•

𝑛) is
adequate for each 𝑖. By Lemma 32.5.11 we conclude that it suffices to show that each
𝐻𝑖(𝑓∗𝒦•

𝑛) is adequate.

The adequacy of 𝐻𝑖(𝑓∗𝒦•
𝑛) is local on 𝑆, hence we may assume that 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) is affine.

Because 𝑆 is affine 𝐷QCoh(𝑆) = 𝐷(QCoh(𝒪𝑆)), see the discussion in Coherent, Section
25.4. Hence there exists a quasi-isomorphism ℱ• → 𝒦•

𝑛 where ℱ• is a bounded above
complex of flat quasi-coherent modules. Then 𝑓∗ℱ• → 𝑓∗𝒦•

𝑛 is a quasi-isomorphism, and
the cohomology sheaves of 𝑓∗ℱ• are adequate.

The final assertion 𝑅𝑓∗𝐿𝑓∗ ≅ id𝐷QCoh(𝑆) follows from the explicit description of the func-
tors above. (In plain english: if ℱ is quasi-coherent and 𝑝 > 0, then 𝐿𝑝𝑓∗ℱ is a parasitic
adequate module.)

Remark 32.10.3. Remark 32.10.2 above implies we have an equivalence of derived cate-
gories

𝐷Adeq(𝒪)/𝐷𝒞(𝒪) ⟶ 𝐷QCoh(𝑆)

where 𝒞 is the category of parasitic adequate modules. Namely, it is clear that 𝐷𝒞(𝒪) is
the kernel of 𝑅𝑓∗, hence a functor as indicated. For any object 𝑋 of 𝐷Adeq(𝒪) the map
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𝐿𝑓∗𝑅𝑓∗𝑋 → 𝑋 maps to a quasi-isomorphism in 𝐷QCoh(𝑆), hence 𝐿𝑓∗𝑅𝑓∗𝑋 → 𝑋 is an
isomorphism in 𝐷Adeq(𝒪)/𝐷𝒞(𝒪). Finally, for 𝑋, 𝑌 objects of 𝐷Adeq(𝒪) the map

𝑅𝑓∗ ∶ 𝐻𝑜𝑚𝐷Adeq(𝒪)/𝐷𝒞(𝒪)(𝑋, 𝑌) → 𝐻𝑜𝑚𝐷QCoh(𝑆)(𝑅𝑓∗𝑋, 𝑅𝑓∗𝑌)

is bijective as 𝐿𝑓∗ gives an inverse (by the remarks above).
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CHAPTER 33

More on Morphisms

33.1. Introduction

In this chapter we continue our study of properties of morphisms of schemes. A fundamen-
tal reference is [DG67].

33.2. Thickenings

The following terminology may not be completely standard, but it is convenient.

Definition 33.2.1. Thickenings.
(1) We say a scheme 𝑋′ is a thickening of a scheme 𝑋 if 𝑋 is a closed subscheme of

𝑋′ and the underlying topological spaces are equal.
(2) We say a scheme 𝑋′ is a first order thickening of a scheme 𝑋 if 𝑋 is a closed

subscheme of 𝑋′ and the quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑋′ defining 𝑋 has
square zero.

(3) Given two thickenings 𝑋 ⊂ 𝑋′ and 𝑌 ⊂ 𝑌′ a morphism of thickenings is a mor-
phism 𝑓′ ∶ 𝑋′ → 𝑌′ such that 𝑓(𝑋) ⊂ 𝑌, i.e., such that 𝑓′|𝑋 factors through the
closed subscheme 𝑌. In this situation we set 𝑓 = 𝑓′|𝑋 ∶ 𝑋 → 𝑌 and we say that
(𝑓, 𝑓′) ∶ (𝑋 ⊂ 𝑋′) → (𝑌 ⊂ 𝑌′) is a morphism of thickenings.

(4) Let 𝑆 be a scheme. We similarly define thickenings over 𝑆, and morphisms of
thickenings over 𝑆. This means that the schemes 𝑋, 𝑋′, 𝑌, 𝑌′ above are schemes
over 𝑆, and that the morphisms 𝑋 → 𝑋′, 𝑌 → 𝑌′ and 𝑓′ ∶ 𝑋′ → 𝑌′ are mor-
phisms over 𝑆.

Finite order thickenings. Let 𝑖𝑋 ∶ 𝑋 → 𝑋′ be a thickening. Any local section of the kernel
ℐ = Ker(𝑖♯

𝑋) is locally nilpotent. Let us say that 𝑋 ⊂ 𝑋′ is a finite order thickening if
the ideal sheaf ℐ is ``globally'' nilpotent, i.e., if there exists an 𝑛 ≥ 0 such that ℐ𝑛+1 = 0.
Technically the class of finite order thickenings 𝑋 ⊂ 𝑋′ is much easier to handle than the
general case. Namely, in this case we have a filtration

0 ⊂ ℐ𝑛 ⊂ ℐ𝑛−1 ⊂ … ⊂ ℐ ⊂ 𝒪𝑋′

and we see that 𝑋′ is filtered by closed subspaces

𝑋 = 𝑋0 ⊂ 𝑋1 ⊂ … ⊂ 𝑋𝑛−1 ⊂ 𝑋𝑛+1 = 𝑋′

such that each pair 𝑋𝑖 ⊂ 𝑋𝑖+1 is a first order thickening over 𝐵. Using simple induction
arguments many results proved for first order thickenings can be rephrased as results on
finite order thickenings.
First order thickening are described as follows (see Morphisms, Lemma 24.32.3).

Lemma 33.2.2. Let 𝑋 be a scheme over a base 𝑆. Consider a short exact sequence

0 → ℐ → 𝒜 → 𝒪𝑋 → 0

1741
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of sheaves on 𝑋 where 𝒜 is a sheaf of 𝑓−1𝒪𝑆-algebras, 𝒜 → 𝒪𝑋 is a surjection of sheaves
of 𝑓−1𝒪𝑆-algebras, and ℐ is its kernel. If

(1) ℐ is an ideal of square zero in 𝒜, and
(2) ℐ is quasi-coherent as an 𝒪𝑋-module

then 𝑋′ = (𝑋, 𝒜) is a scheme and 𝑋 → 𝑋′ is a first order thickening over 𝑆. Moreover,
any first order thickening over 𝑆 is of this form.

Proof. It is clear that 𝑋′ is a locally ringed space. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐵) be an affine open of
𝑋. Set 𝐴 = Γ(𝑈, 𝒜). Note that since 𝐻1(𝑈, ℐ) = 0 (see Coherent, Lemma 25.2.2) the map
𝐴 → 𝐵 is surjective. By assumption the kernel 𝐼 = ℐ(𝑈) is an ideal of square zero in the
ring 𝐴. By Schemes, Lemma 21.6.4 there is a canonical morphism of locally ringed spaces

(𝑈, 𝒜|𝑈) ⟶ 𝑆𝑝𝑒𝑐(𝐴)

coming from themap 𝐵 → Γ(𝑈, 𝒜). Since this morphism fits into the commutative diagram

(𝑈, 𝒪𝑋|𝑈)

��

// 𝑆𝑝𝑒𝑐(𝐵)

��
(𝑈, 𝒜|𝑈) // 𝑆𝑝𝑒𝑐(𝐴)

we see that it is a homeomorphism on underlying topological spaces. Thus to see that it
is an isomorphism, it suffices to check it induces an isomorphism on the local rings. For
𝑢 ∈ 𝑈 corresponding to the prime 𝔭 ⊂ 𝐴 we obtain a commutative diagram of short exact
sequences

0 // 𝐼𝔭
//

��

𝐴𝔭
//

��

𝐵𝔭
//

��

0

0 // ℐ𝑢
// 𝒜𝑢

// 𝒪𝑋,𝑢
// 0.

The left and right vertical arrows are isomorphisms because ℐ and 𝒪𝑋 are quasi-coherent
sheaves. Hence also the middle map is an isomorphism. Hence every point of 𝑋′ = (𝑋, 𝒜)
has an affine neighbourhood and 𝑋′ is a scheme as desired. �

Lemma 33.2.3. Any thickening of an affine scheme is affine.

Proof. This is a special case of Limits, Proposition 27.7.2. �

33.3. First order infinitesimal neighbourhood

A natural construction of first order thickenings is the following. Suppose that 𝑖 ∶ 𝑍 → 𝑋
be an immersion of schemes. Choose an open subscheme 𝑈 ⊂ 𝑋 such that 𝑖 identifies 𝑍
with a closed subscheme 𝑍 ⊂ 𝑈. Let ℐ ⊂ 𝒪𝑈 be the quasi-coherent sheaf of ideals defining
𝑍 in 𝑈. Then we can consider the closed subscheme 𝑍′ ⊂ 𝑈 defined by the quasi-coherent
sheaf of ideals ℐ2.

Definition 33.3.1. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. The first order infinitesimal
neighbourhood of 𝑍 in 𝑋 is the first order thickening 𝑍 ⊂ 𝑍′ over 𝑋 described above.

This thickening has the following universal property (which will assuage any fears that the
construction above depends on the choice of the open 𝑈).
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Lemma 33.3.2. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. The first order infinitesimal
neighbourhood 𝑍′ of 𝑍 in 𝑋 has the following universal property: Given any commutative
diagram

𝑍

𝑖
��

𝑇𝑎
oo

��
𝑋 𝑇′𝑏oo

where 𝑇 ⊂ 𝑇′ is a first order thickening over 𝑋, there exists a unique morphism (𝑎′, 𝑎) ∶
(𝑇 ⊂ 𝑇′) → (𝑍 ⊂ 𝑍′) of thickenings over 𝑋.

Proof. Let 𝑈 ⊂ 𝑋 be the open used in the construction of 𝑍′, i.e., an open such that 𝑍
is identified with a closed subscheme of 𝑈 cut out by the quasi-coherent sheaf of ideals
ℐ. Since |𝑇| = |𝑇′| we see that 𝑏(𝑇′) ⊂ 𝑈. Hence we can think of 𝑏 as a morphism
into 𝑈. Let 𝒥 ⊂ 𝒪𝑇′ be the ideal cutting out 𝑇. Since 𝑏(𝑇) ⊂ 𝑍 by the diagram above
we see that 𝑏♯(𝑏−1ℐ) ⊂ 𝒥. As 𝑇′ is a first order thickening of 𝑇 we see that 𝒥2 = 0
hence 𝑏♯(𝑏−1(ℐ2)) = 0. By Schemes, Lemma 21.4.6 this implies that 𝑏 factors through 𝑍′.
Denote 𝑎′ ∶ 𝑇′ → 𝑍′ this factorization and everything is clear. �

Lemma 33.3.3. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. Let 𝑍 ⊂ 𝑍′ be the first order
infinitesimal neighbourhood of 𝑍 in 𝑋. Then the diagram

𝑍 //

��

𝑍′

��
𝑍 // 𝑋

induces a map of conormal sheaves 𝒞𝑍/𝑋 → 𝒞𝑍/𝑍′ by Morphisms, Lemma 24.31.3. This
map is an isomorphism.

Proof. This is clear from the construction of 𝑍′ above. �

33.4. Formally unramified morphisms

Recall that a ring map 𝑅 → 𝐴 is called formally unramified (see Algebra, Definition
7.135.1) if for every commutative solid diagram

𝐴 //

!!

𝐵/𝐼

𝑅 //

OO

𝐵

OO

where 𝐼 ⊂ 𝐵 is an ideal of square zero, at most one dotted arrow exists which makes the
diagram commute. This motivates the following analogue for morphisms of schemes.

Definition 33.4.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. We say 𝑓 is formally
unramified if given any solid commutative diagram

𝑋

𝑓
��

𝑇

𝑖
��

oo

𝑆 𝑇′oo

``

where 𝑇 ⊂ 𝑇′ is a first order thickening of affine schemes over 𝑆 there exists at most one
dotted arrow making the diagram commute.
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We first prove some formal lemmas, i.e., lemmas which can be proved by drawing the
corresponding diagrams.

Lemma 33.4.2. If 𝑓 ∶ 𝑋 → 𝑆 is a formally unramified morphism, then given any solid
commutative diagram

𝑋

𝑓
��

𝑇

𝑖
��

oo

𝑆 𝑇′oo

``

where 𝑇 ⊂ 𝑇′ is a first order thickening of schemes over 𝑆 there exists at most one dotted
arrow making the diagram commute. In other words, in Definition 33.4.1 the condition that
𝑇 be affine may be dropped.

Proof. This is true because amorphism is determined by its restrictions to affine opens. �

Lemma 33.4.3. A composition of formally unramified morphisms is formally unramified.

Proof. This is formal. �

Lemma 33.4.4. A base change of a formally unramified morphism is formally unramified.

Proof. This is formal. �

Lemma 33.4.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑆 be open
such that 𝑓(𝑈) ⊂ 𝑉. If 𝑓 is formally unramified, so is 𝑓|𝑈 ∶ 𝑈 → 𝑉.

Proof. Consider a solid diagram

𝑈

𝑓|𝑈
��

𝑇

𝑖
��

𝑎
oo

𝑉 𝑇′oo

__

as in Definition 33.4.1. If 𝑓 is formally ramified, then there exists at most one 𝑆-morphism
𝑎′ ∶ 𝑇′ → 𝑋 such that 𝑎′|𝑇 = 𝑎. Hence clearly there exists at most one such morphism into
𝑈. �

Lemma 33.4.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑋 and 𝑆 are affine.
Then 𝑓 is formally unramified if and only if 𝒪𝑆(𝑆) → 𝒪𝑋(𝑋) is a formally unramified ring
map.

Proof. This is immediate from the definitions (Definition 33.4.1 and Algebra, Definition
7.135.1) by the equivalence of categories of rings and affine schemes, see Schemes, Lemma
21.6.5. �

Here is a characterization in terms of the sheaf of differentials.

Lemma 33.4.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Then 𝑓 is formally unramified
if and only if Ω𝑋/𝑆 = 0.

Proof. We give two proofs.

First proof. It suffices to show that Ω𝑋/𝑆 is zero on the members of an affine open covering
of 𝑋. Choose an affine open 𝑈 ⊂ 𝑋 with 𝑓(𝑈) ⊂ 𝑉 where 𝑉 ⊂ 𝑆 is an affine open of 𝑆. By
Lemma 33.4.5 the restriction 𝑓𝑈 ∶ 𝑈 → 𝑉 is formally unramified. By Morphisms, Lemma
24.32.7 we see that Ω𝑋/𝑆|𝑈 is the quasi-coherent sheaf associated to the 𝒪𝑋(𝑈)-module
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Ω𝒪𝑋(𝑈)/𝒪𝑆(𝑉). By Lemma 33.4.6 we see that 𝒪𝑆(𝑉) → 𝒪𝑋(𝑈) is a formally unramified ring
map. Hence by Algebra, Lemma 7.135.2 we conclude that Ω𝑋/𝑆|𝑈 = 0 as desired.
Second proof. We recall some of the arguments of Morphisms, Section 24.32. Let 𝑈 ⊂
𝑋 ×𝑆 𝑋 be an open such that Δ ∶ 𝑋 → 𝑋 ×𝑆 𝑋 induces a closed immersion into 𝑈. Let
𝒥 ⊂ 𝒪𝑈 be the ideal sheaf of this closed immersion. Let 𝑋′ ⊂ 𝑈 be the closed subscheme
defined by the quasi-coherent sheaf of ideals 𝒥2. Consider the two morphisms 𝑝1, 𝑝2 ∶
𝑋′ → 𝑋 induced by the two projections 𝑋 ×𝑆 𝑋 → 𝑋. Note that 𝑝1 and 𝑝2 agree when
composed with Δ ∶ 𝑋 → 𝑋′ and that 𝑋 → 𝑋′ is a closed immersion defined by a an ideal
whose square is zero. Moreover there is a short exact sequence

0 → 𝒥/𝒥2 → 𝒪𝑋′ → 𝒪𝑋 → 0

and Ω𝑋/𝑆 = 𝒥/𝒥2. Moreover, 𝒥/𝒥2 is generated by the local sections 𝑝♯
1(𝑓) − 𝑝♯

2(𝑓) for 𝑓 a
local section of 𝒪𝑋.
Suppose that 𝑓 ∶ 𝑋 → 𝑆 is formally unramified. By assumption this means that 𝑝1 = 𝑝2
when restricted to any affine open 𝑇′ ⊂ 𝑋′. Hence 𝑝1 = 𝑝2. By what was said above we
conclude that Ω𝑋/𝑆 = 𝒥/𝒥2 = 0.
Conversely, suppose that Ω𝑋/𝑆 = 0. Then 𝑋′ = 𝑋. Take any pair of morphisms 𝑓′

1, 𝑓′
2 ∶

𝑇′ → 𝑋 fitting as dotted arrows in the diagram of Definition 33.4.1. This gives a morphism
(𝑓′

1, 𝑓′
2) ∶ 𝑇′ → 𝑋 ×𝑆 𝑋. Since 𝑓′

1|𝑇 = 𝑓′
2|𝑇 and |𝑇| = |𝑇′| we see that the image of

𝑇′ under (𝑓′
1, 𝑓′

2) is contained in the open 𝑈 chosen above. Since (𝑓′
1, 𝑓′

2)(𝑇) ⊂ Δ(𝑋) and
since 𝑇 is defined by an ideal of square zero in 𝑇′ we see that (𝑓′

1, 𝑓′
2) factors through 𝑋′.

As 𝑋′ = 𝑋 we conclude 𝑓′
1 = 𝑓′

2 as desired. �

Lemma 33.4.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) The morphism 𝑓 is unramified (resp. G-unramified), and
(2) the morphism 𝑓 is locally of finite type (resp. locally of finite presentation) and

formally unramified.

Proof. Use Lemma 33.4.7 and Morphisms, Lemma 24.34.2. �

33.5. Universal first order thickenings

Let ℎ ∶ 𝑍 → 𝑋 be a morphism of schemes. A universal first order thickening of 𝑍 over 𝑋
is a first order thickening 𝑍 ⊂ 𝑍′ over 𝑋 such that given any first order thickening 𝑇 ⊂ 𝑇′

over 𝑋 and a solid commutative diagram

𝑍

~~

𝑇

��

𝑎
oo

𝑍′

''

𝑇′𝑎′
oo

𝑏
ww𝑋

there exists a unique dotted arrow making the diagram commute. Note that in this situation
(𝑎, 𝑎′) ∶ (𝑇 ⊂ 𝑇′) → (𝑍 ⊂ 𝑍′) is a morphism of thickenings over 𝑋. Thus if a universal first
order thickening exists, then it is unique up to unique isomorphism. In general a universal
first order thickening does not exist, but if ℎ is formally unramified then it does.

Lemma 33.5.1. Let ℎ ∶ 𝑍 → 𝑋 be a formally unramified morphism of schemes. There
exists a universal first order thickening 𝑍 ⊂ 𝑍′ of 𝑍 over 𝑋.
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Proof. During this proof we will say 𝑍 ⊂ 𝑍′ is a universal first order thickening of 𝑍
over 𝑋 if it satisfies the condition of the lemma. We will construct the universal first order
thickening 𝑍 ⊂ 𝑍′ over 𝑋 by glueing, starting with the affine case which is Algebra,
Lemma 7.136.1. We begin with some general remarks.

If a universal first order thickening of 𝑍 over 𝑋 exists, then it is unique up to unique iso-
morphism. Moreover, suppose that 𝑉 ⊂ 𝑍 and 𝑈 ⊂ 𝑋 are open subschemes such that
ℎ(𝑉) ⊂ 𝑈. Let 𝑍 ⊂ 𝑍′ be a universal first order thickening of 𝑍 over 𝑋. Let 𝑉′ ⊂ 𝑍′ be
the open subscheme such that 𝑉 = 𝑍 ∩ 𝑉′. Then we claim that 𝑉 ⊂ 𝑉′ is the universal first
order thickening of 𝑉 over 𝑈. Namely, suppose given any diagram

𝑉

ℎ
��

𝑇𝑎
oo

��
𝑈 𝑇′𝑏oo

where 𝑇 ⊂ 𝑇′ is a first order thickening over 𝑈. By the universal property of 𝑍′ we obtain
(𝑎, 𝑎′) ∶ (𝑇 ⊂ 𝑇′) → (𝑍 ⊂ 𝑍′). But since we have equality |𝑇| = |𝑇′| of underlying
topological spaces we see that 𝑎′(𝑇′) ⊂ 𝑉′. Hence we may think of (𝑎, 𝑎′) as a morphism
of thickenings (𝑎, 𝑎′) ∶ (𝑇 ⊂ 𝑇′) → (𝑉 ⊂ 𝑉′) over 𝑈. Uniqueness is clear also. In a
completely similar manner one proves that if ℎ(𝑍) ⊂ 𝑈 and 𝑍 ⊂ 𝑍′ is a universal first
order thickening over 𝑈, then 𝑍 ⊂ 𝑍′ is a universal first order thickening over 𝑋.

Before we glue affine pieces let us show that the lemma holds if 𝑍 and 𝑋 are affine. Say
𝑋 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑍 = 𝑆𝑝𝑒𝑐(𝑆). By Algebra, Lemma 7.136.1 there exists a first order
thickening 𝑍 ⊂ 𝑍′ over 𝑋 which has the universal property of the lemma for diagrams

𝑍

ℎ
��

𝑇𝑎
oo

��
𝑋 𝑇′𝑏oo

where 𝑇, 𝑇′ are affine. Given a general diagram we can choose an affine open covering
𝑇′ = ⋃ 𝑇′

𝑖 and we obtain morphisms 𝑎′
𝑖 ∶ 𝑇′

𝑖 → 𝑍′ over 𝑋 such that 𝑎′
𝑖 |𝑇𝑖

= 𝑎|𝑇𝑖
. By

uniqueness we see that 𝑎′
𝑖 and 𝑎′

𝑗 agree on any affine open of 𝑇′
𝑖 ∩ 𝑇′

𝑗. Hence the morphisms
𝑎′

𝑖 glue to a global morphism 𝑎′ ∶ 𝑇′ → 𝑍′ over 𝑋 as desired. Thus the lemma holds if 𝑋
and 𝑍 are affine.

Choose an affine open covering 𝑍 = ⋃ 𝑍𝑖 such that each 𝑍𝑖 maps into an affine open 𝑈𝑖 of
𝑋. By Lemma 33.4.5 the morphisms 𝑍𝑖 → 𝑈𝑖 are formally unramified. Hence by the affine
case we obtain universal first order thickenings 𝑍𝑖 ⊂ 𝑍′

𝑖 over 𝑈𝑖. By the general remarks
above 𝑍𝑖 ⊂ 𝑍′

𝑖 is also a universal first order thickening of 𝑍𝑖 over 𝑋. Let 𝑍′
𝑖,𝑗 ⊂ 𝑍′

𝑖 be the
open subscheme such that 𝑍𝑖 ∩ 𝑍𝑗 = 𝑍′

𝑖,𝑗 ∩ 𝑍𝑖. By the general remarks we see that both
𝑍′

𝑖,𝑗 and 𝑍′
𝑗,𝑖 are universal first order thickenings of 𝑍𝑖 ∩𝑍𝑗 over 𝑋. Thus, by the first of our

general remarks, we see that there is a canonical isomorphism 𝜑𝑖𝑗 ∶ 𝑍′
𝑖,𝑗 → 𝑍′

𝑗,𝑖 inducing
the identity on 𝑍𝑖 ∩ 𝑍𝑗. We claim that these morphisms satisfy the cocycle condition of
Schemes, Section 21.14. (Verification omitted. Hint: Use that 𝑍′

𝑖,𝑗 ∩ 𝑍′
𝑖,𝑘 is the universal

first order thickening of 𝑍𝑖 ∩ 𝑍𝑗 ∩ 𝑍𝑘 which determines it up to unique isomorphism by
what was said above.) Hence we can use the results of Schemes, Section 21.14 to get a first
order thickengin 𝑍 ⊂ 𝑍′ over 𝑋 which the property that the open subscheme 𝑍′

𝑖 ⊂ 𝑍′

with 𝑍𝑖 = 𝑍′
𝑖 ∩ 𝑍 is a universal first order thickening of 𝑍𝑖 over 𝑋.
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It turns out that this implies formally that 𝑍′ is a universal first order thickening of 𝑍 over
𝑋. Namely, we have the universal property for any diagram

𝑍

ℎ
��

𝑇𝑎
oo

��
𝑋 𝑇′𝑏oo

where 𝑎(𝑇) is contained in some 𝑍𝑖. Given a general diagram we can choose an open
covering 𝑇′ = ⋃ 𝑇′

𝑖 such that 𝑎(𝑇𝑖) ⊂ 𝑍𝑖. We obtain morphisms 𝑎′
𝑖 ∶ 𝑇′

𝑖 → 𝑍′ over
𝑋 such that 𝑎′

𝑖 |𝑇𝑖
= 𝑎|𝑇𝑖

. We see that 𝑎′
𝑖 and 𝑎′

𝑗 necassarily agree on 𝑇′
𝑖 ∩ 𝑇′

𝑗 since both
𝑎′

𝑖 |𝑇′
𝑖 ∩𝑇′

𝑗
and 𝑎′

𝑗|𝑇′
𝑖 ∩𝑇′

𝑗
are solutions of the problem of mapping into the universal first oder

thickening 𝑍′
𝑖 ∩ 𝑍′

𝑗 of 𝑍𝑖 ∩ 𝑍𝑗 over 𝑋. Hence the morphisms 𝑎′
𝑖 glue to a global morphism

𝑎′ ∶ 𝑇′ → 𝑍′ over 𝑋 as desired. This finishes the proof. �

Definition 33.5.2. Let ℎ ∶ 𝑍 → 𝑋 be a formally unramified morphism of schemes.
(1) The universal first order thickening of 𝑍 over 𝑋 is the thickening 𝑍 ⊂ 𝑍′ con-

structed in Lemma 33.5.1.
(2) The conormal sheaf of 𝑍 over 𝑋 is the conormal sheaf of 𝑍 in its universal first

order thickening 𝑍′ over 𝑋.
We often denote the conormal sheaf 𝒞𝑍/𝑋 in this situation.

Thus we see that there is a short exact sequence of sheaves

0 → 𝒞𝑍/𝑋 → 𝒪𝑍′ → 𝒪𝑍 → 0

on 𝑍. The following lemma proves that there is no conflict between this definition and the
definition in case 𝑍 → 𝑋 is an immersion.

Lemma 33.5.3. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of schemes. Then
(1) 𝑖 is formally unramified,
(2) the universal first order thickening of 𝑍 over 𝑋 is the first order infinitesimal

neighbourhood of 𝑍 in 𝑋 of Definition 33.3.1, and
(3) the conormal sheaf of 𝑖 in the sense of Morphisms, Definition 24.31.1 agrees with

the conormal sheaf of 𝑖 in the sense of Definition 33.5.2.

Proof. By Morphisms, Lemmas 24.34.7 and 24.34.8 an immersion is unramified, hence
formally unramified by Lemma 33.4.8. The other assertions follow by combining Lemmas
33.3.2 and 33.3.3 and the definitions. �

Lemma 33.5.4. Let 𝑍 → 𝑋 be a formally unramified morphism of schemes. Then the
universal first order thickening 𝑍′ is formally unramified over 𝑋.

Proof. There are two proofs. The first is to show that Ω𝑍′/𝑋 = 0 by working affine locally
and applying Algebra, Lemma 7.136.5. Then Lemma 33.4.7 implies what we want. The
second is a direct argument as follows.

Let 𝑇 ⊂ 𝑇′ be a first order thickening. Let

𝑍′

��

𝑇𝑐
oo

��
𝑋 𝑇′oo

𝑎,𝑏

``
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be a commutative diagram. Consider two morphisms 𝑎, 𝑏 ∶ 𝑇′ → 𝑍′ fitting into the
diagram. Set 𝑇0 = 𝑐−1(𝑍) ⊂ 𝑇 and 𝑇′

𝑎 = 𝑎−1(𝑍) (scheme theoretically). Since 𝑍′ is a
first order thickening of 𝑍, we see that 𝑇′ is a first order thickening of 𝑇′

𝑎. Moreover, since
𝑐 = 𝑎|𝑇 we see that 𝑇0 = 𝑇 ∩ 𝑇′

𝑎 (scheme theoretically). As 𝑇′ is a first order thickening
of 𝑇 it follows that 𝑇′

𝑎 is a first order thickening of 𝑇0. Now 𝑎|𝑇′
𝑎
and 𝑏|𝑇′

𝑎
are morphisms

of 𝑇′
𝑎 into 𝑍′ over 𝑋 which agree on 𝑇0 as morphisms into 𝑍. Hence by the universal

property of 𝑍′ we conclude that 𝑎|𝑇′
𝑎

= 𝑏|𝑇′
𝑎
. Thus 𝑎 and 𝑏 are morphism from the first

order thickening 𝑇′ of 𝑇′
𝑎 whose restrictions to 𝑇′

𝑎 agree as morphisms into 𝑍. Thus using
the universal property of 𝑍′ once more we conclude that 𝑎 = 𝑏. In other words, the defining
property of a formally unramified morphism holds for 𝑍′ → 𝑋 as desired. �

Lemma 33.5.5. Consider a commutative diagram of schemes

𝑍
ℎ
//

𝑓
��

𝑋

𝑔
��

𝑊 ℎ′
// 𝑌

with ℎ and ℎ′ formally unramified. Let 𝑍 ⊂ 𝑍′ be the universal first order thickening of
𝑍 over 𝑋. Let 𝑊 ⊂ 𝑊′ be the universal first order thickening of 𝑊 over 𝑌. There exists a
canonical morphism (𝑓, 𝑓′) ∶ (𝑍, 𝑍′) → (𝑊, 𝑊′) of thickenings over 𝑌 which fits into the
following commutative diagram

𝑍′

~~
𝑓′

��
𝑍 //

𝑓
��

55

𝑋

��

𝑊′

~~
𝑊

44

// 𝑌

In particular the morphism (𝑓, 𝑓′) of thickenings induces a morphism of conormal sheaves
𝑓∗𝒞𝑊/𝑌 → 𝒞𝑍/𝑋.

Proof. The first assertion is clear from the universal property of 𝑊′. The induced map on
conormal sheaves is the map of Morphisms, Lemma 24.31.3 applied to (𝑍 ⊂ 𝑍′) → (𝑊 ⊂
𝑊′). �

Lemma 33.5.6. Let
𝑍

ℎ
//

𝑓
��

𝑋

𝑔
��

𝑊 ℎ′
// 𝑌

be a fibre product diagram in the category of schemes with ℎ′ formally unramified. Then
ℎ is formally unramified and if 𝑊 ⊂ 𝑊′ is the universal first order thickening of 𝑊 over
𝑌, then 𝑍 = 𝑋 ×𝑌 𝑊 ⊂ 𝑋 ×𝑌 𝑊′ is the universal first order thickening of 𝑍 over 𝑋. In
particular the canonical map 𝑓∗𝒞𝑊/𝑌 → 𝒞𝑍/𝑋 of Lemma 33.5.5 is surjective.

Proof. The morphism ℎ is formally unramified by Lemma 33.4.4. It is clear that 𝑋 ×𝑌 𝑊′

is a first order thickening. It is straightforward to check that it has the universal prop-
erty because 𝑊′ has the universal property (by mapping properties of fibre products). See
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Morphisms, Lemma 24.31.4 for why this implies that the map of conormal sheaves is sur-
jective. �

Lemma 33.5.7. Let
𝑍

ℎ
//

𝑓
��

𝑋

𝑔
��

𝑊 ℎ′
// 𝑌

be a fibre product diagram in the category of schemes with ℎ′ formally unramified and 𝑔
flat. In this case the corresponding map 𝑍′ → 𝑊′ of universal first order thickenings is
flat, and 𝑓∗𝒞𝑊/𝑌 → 𝒞𝑍/𝑋 is an isomorphism.

Proof. Flatness is preserved under base change, see Morphisms, Lemma 24.24.7. Hence
the first statement follows from the description of 𝑊′ in Lemma 33.5.6. It is clear that
𝑋 ×𝑌 𝑊′ is a first order thickening. It is straightforward to check that it has the universal
property because 𝑊′ has the universal property (by mapping properties of fibre products).
See Morphisms, Lemma 24.31.4 for why this implies that the map of conormal sheaves is
an isomorphism. �

Lemma 33.5.8. Taking the universal first order thickenings commutes with taking opens.
More precisely, let ℎ ∶ 𝑍 → 𝑋 be a formally unramified morphism of schemes. Let 𝑉 ⊂ 𝑍,
𝑈 ⊂ 𝑋 be opens such that ℎ(𝑉) ⊂ 𝑈. Let 𝑍′ be the universal first order thickening of 𝑍 over
𝑋. Then ℎ|𝑉 ∶ 𝑉 → 𝑈 is formally unramified and the universal first order thickening of 𝑉
over 𝑈 is the open subscheme 𝑉′ ⊂ 𝑍′ such that 𝑉 = 𝑍 ∩ 𝑉′. In particular, 𝒞𝑍/𝑋|𝑉 = 𝒞𝑉/𝑈.

Proof. The first statement is Lemma 33.4.5. The compatibility of universal thickenings can
be deduced from the proof of Lemma 33.5.1, or from Algebra, Lemma 7.136.4 or deduced
from Lemma 33.5.7. �

Lemma 33.5.9. Let ℎ ∶ 𝑍 → 𝑋 be a formally unramified morphism of schemes over 𝑆.
Let 𝑍 ⊂ 𝑍′ be the universal first order thickening of 𝑍 over 𝑋 with structure morphism
ℎ′ ∶ 𝑍′ → 𝑋. The canonical map

𝑐ℎ′ ∶ (ℎ′)∗Ω𝑋/𝑆 ⟶ Ω𝑍′/𝑆

induces an isomorphism ℎ∗Ω𝑋/𝑆 → Ω𝑍′/𝑆 ⊗ 𝒪𝑍.

Proof. The map 𝑐ℎ′ is the map defined in Morphisms, Lemma 24.32.9. If 𝑖 ∶ 𝑍 → 𝑍′

is the given closed immersion, then 𝑖∗𝑐ℎ′ is a map ℎ∗Ω𝑋/𝑆 → Ω𝑍′/𝑆 ⊗ 𝒪𝑍. Checking
that it is an isomorphism reduces to the affine case by localization, see Lemma 33.5.8 and
Morphisms, Lemma 24.32.6. In this case the result is Algebra, Lemma 7.136.5. �

Lemma 33.5.10. Let ℎ ∶ 𝑍 → 𝑋 be a formally unramified morphism of schemes over 𝑆.
There is a canonical exact sequence

𝒞𝑍/𝑋 → ℎ∗Ω𝑋/𝑆 → Ω𝑍/𝑆 → 0.

The first arrow is induced by d𝑍′/𝑆 where 𝑍′ is the universal first order neighbourhood of
𝑍 over 𝑋.

Proof. We know that there is a canonical exact sequence

𝒞𝑍/𝑍′ → Ω𝑍′/𝑆 ⊗ 𝒪𝑍 → Ω𝑍/𝑆 → 0.

seeMorphisms, Lemma 24.32.17. Hence the result follows on applying Lemma 33.5.9. �
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Lemma 33.5.11. Let

𝑍
𝑖
//

𝑗   

𝑋

��
𝑌

be a commutative diagram of schemes where 𝑖 and 𝑗 are formally unramified. Then there is
a canonical exact sequence

𝒞𝑍/𝑌 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑌 → 0

where the first arrow comes from Lemma 33.5.5 and the second from Lemma 33.5.10.

Proof. Denote 𝑍 → 𝑍′ the universal first order thickening of 𝑍 over 𝑋. Denote 𝑍 → 𝑍″

the universal first order thickening of 𝑍 over 𝑌. By Lemma 33.5.10 here is a canonical
morpism 𝑍′ → 𝑍″ so that we have a commutative diagram

𝑍
𝑖′
//

𝑗′   

𝑍′ //

��

𝑋

��
𝑍″ // 𝑌

Apply Morphisms, Lemma 24.32.20 to the left triangle to get an exact sequence

𝒞𝑍/𝑍″ → 𝒞𝑍/𝑍′ → (𝑖′)∗Ω𝑍′/𝑍″ → 0

As 𝑍″ is formally unramified over 𝑌 (see Lemma 33.5.4) we have Ω𝑍′/𝑍″ = Ω𝑍/𝑌 (by
combining Lemma 33.4.7 and Morphisms, Lemma 24.32.11). Then we have (𝑖′)∗Ω𝑍′/𝑌 =
𝑖∗Ω𝑋/𝑌 by Lemma 33.5.9. �

Lemma 33.5.12. Let 𝑍 → 𝑌 → 𝑋 be formally unramified morphisms of schemes.

(1) If 𝑍 ⊂ 𝑍′ is the universal first order thickening of 𝑍 over 𝑋 and 𝑌 ⊂ 𝑌′ is the
universal first order thickening of 𝑌 over 𝑋, then there is a morphism 𝑍′ → 𝑌′

and 𝑌 ×𝑌′ 𝑍′ is the universal first order thickening of 𝑍 over 𝑌.
(2) There is a canonical exact sequence

𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0

where the maps come from Lemma 33.5.5 and 𝑖 ∶ 𝑍 → 𝑌 is the first morphism.

Proof. Themap ℎ ∶ 𝑍′ → 𝑌′ in (1) comes from Lemma 33.5.5. The assertion that 𝑌×𝑌′ 𝑍′

is the universal first order thickening of 𝑍 over 𝑌 is clear from the universal properties of
𝑍′ and 𝑌′. By Morphisms, Lemma 24.31.5 we have an exact sequence

(𝑖′)∗𝒞𝑌×𝑌′𝑍′/𝑍′ → 𝒞𝑍/𝑍′ → 𝒞𝑍/𝑌×𝑌′𝑍′ → 0

where 𝑖′ ∶ 𝑍 → 𝑌 ×𝑌′ 𝑍′ is the given morphism. By Morphisms, Lemma 24.31.4 there
exists a surjection ℎ∗𝒞𝑌/𝑌′ → 𝒞𝑌×𝑌′𝑍′/𝑍′. Combined with the equalities 𝒞𝑌/𝑌′ = 𝒞𝑌/𝑋,
𝒞𝑍/𝑍′ = 𝒞𝑍/𝑋, and 𝒞𝑍/𝑌×𝑌′𝑍′ = 𝒞𝑍/𝑌 this proves the lemma. �
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33.6. Formally étale morphisms

Recall that a ring map 𝑅 → 𝐴 is called formally étale (see Algebra, Definition 7.137.1) if
for every commutative solid diagram

𝐴 //

!!

𝐵/𝐼

𝑅 //

OO

𝐵

OO

where 𝐼 ⊂ 𝐵 is an ideal of square zero, there exists exactly one dotted arrow which makes
the diagram commute. This motivates the following analogue for morphisms of schemes.

Definition 33.6.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. We say 𝑓 is formally étale
if given any solid commutative diagram

𝑋

𝑓
��

𝑇

𝑖
��

oo

𝑆 𝑇′oo

``

where 𝑇 ⊂ 𝑇′ is a first order thickening of affine schemes over 𝑆 there exists exactly one
dotted arrow making the diagram commute.

It is clear that a formally étale morphism is formally unramified. Hence if 𝑓 ∶ 𝑋 → 𝑆 is
formally étale, then Ω𝑋/𝑆 is zero, see Lemma 33.4.7.

Lemma 33.6.2. If 𝑓 ∶ 𝑋 → 𝑆 is a formally étale morphism, then given any solid commu-
tative diagram

𝑋

𝑓
��

𝑇

𝑖
��

oo

𝑆 𝑇′oo

``

where 𝑇 ⊂ 𝑇′ is a first order thickening of schemes over 𝑆 there exists exactly one dotted
arrow making the diagram commute. In other words, in Definition 33.6.1 the condition that
𝑇 be affine may be dropped.

Proof. Let 𝑇′ = ⋃ 𝑇′
𝑖 be an affine open covering, and let 𝑇𝑖 = 𝑇 ∩ 𝑇′

𝑖 . Then we get
morphisms 𝑎′

𝑖 ∶ 𝑇′
𝑖 → 𝑋 fitting into the diagram. By uniqueness we see that 𝑎′

𝑖 and 𝑎′
𝑗

agree on any affine open subscheme of 𝑇′
𝑖 ∩ 𝑇′

𝑗. Hence 𝑎′
𝑖 and 𝑎′

𝑗 agree on 𝑇′
𝑖 ∩ 𝑇′

𝑗. Thus we
see that the morphisms 𝑎′

𝑖 glue to a global morphism 𝑎′ ∶ 𝑇′ → 𝑋. The uniqueness of 𝑎′

we have seen in Lemma 33.4.2. �

Lemma 33.6.3. A composition of formally étale morphisms is formally étale.

Proof. This is formal. �

Lemma 33.6.4. A base change of a formally étale morphism is formally étale.

Proof. This is formal. �

Lemma 33.6.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑆 be open
subschemes such that 𝑓(𝑈) ⊂ 𝑉. If 𝑓 is formally étale, so is 𝑓|𝑈 ∶ 𝑈 → 𝑉.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02HG
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04FD
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02HI
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02HJ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02HK


1752 33. MORE ON MORPHISMS

Proof. Consider a solid diagram

𝑈

𝑓|𝑈
��

𝑇

𝑖
��

𝑎
oo

𝑉 𝑇′oo

__

as in Definition 33.6.1. If 𝑓 is formally ramified, then there exists exactly one 𝑆-morphism
𝑎′ ∶ 𝑇′ → 𝑋 such that 𝑎′|𝑇 = 𝑎. Since |𝑇′| = |𝑇| we conclude that 𝑎′(𝑇′) ⊂ 𝑈 which gives
our unique morphism from 𝑇′ into 𝑈. �

Lemma 33.6.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) 𝑓 is formally étale,
(2) 𝑓 is formally unramified and the universal first order thickening of 𝑋 over 𝑆 is

equal to 𝑋,
(3) 𝑓 is formally unramified and 𝒞𝑋/𝑆 = 0, and
(4) Ω𝑋/𝑆 = 0 and 𝒞𝑋/𝑆 = 0.

Proof. Actually, the last assertion only make sense because Ω𝑋/𝑆 = 0 implies that 𝒞𝑋/𝑆 is
defined via Lemma 33.4.7 and Definition 33.5.2. This also makes it clear that (3) and (4)
are equivalent.

Either of the assumptions (1), (2), and (3) imply that 𝑓 is formally unramified. Hence we
may assume 𝑓 is formally unramified. The equivalence of (1), (2), and (3) follow from the
universal property of the universal first order thickening 𝑋′ of 𝑋 over 𝑆 and the fact that
𝑋 = 𝑋′ ⇔ 𝒞𝑋/𝑆 = 0 since after all by definition 𝒞𝑋/𝑆 = 𝒞𝑋/𝑋′ is the ideal sheaf of 𝑋 in
𝑋′. �

Lemma 33.6.7. An unramified flat morphism is formally étale.

Proof. Say 𝑋 → 𝑆 is unramified and flat. Then Δ ∶ 𝑋 → 𝑋 ×𝑆 𝑋 is an open immersion,
see Morphisms, Lemma 24.34.13. We have to show that 𝒞𝑋/𝑆 is zero. Consider the two
projections 𝑝, 𝑞 ∶ 𝑋 ×𝑆 𝑋 → 𝑋. As 𝑓 is formally unramified (see Lemma 33.4.8), 𝑞 is
formally unramified (see Lemma 33.4.4). As 𝑓 is flat, 𝑝 is flat, see Morphisms, Lemma
24.24.7. Hence 𝑝∗𝒞𝑋/𝑆 = 𝒞𝑞 by Lemma 33.5.7 where 𝒞𝑞 denotes the conormal sheaf of
the formally unramified morphism 𝑞 ∶ 𝑋 ×𝑆 𝑋 → 𝑋. But Δ(𝑋) ⊂ 𝑋 ×𝑆 𝑋 is an open
subscheme which maps isomorphically to 𝑋 via 𝑞. Hence by Lemma 33.5.8 we see that
𝒞𝑞|Δ(𝑋) = 𝒞𝑋/𝑋 = 0. In other words, the pullback of 𝒞𝑋/𝑆 to 𝑋 via the identity morphism
is zero, i.e., 𝒞𝑋/𝑆 = 0. �

Lemma 33.6.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑋 and 𝑆 are affine.
Then 𝑓 is formally étale if and only if 𝒪𝑆(𝑆) → 𝒪𝑋(𝑋) is a formally étale ring map.

Proof. This is immediate from the definitions (Definition 33.6.1 and Algebra, Definition
7.137.1) by the equivalence of categories of rings and affine schemes, see Schemes, Lemma
21.6.5. �

Lemma 33.6.9. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) The morphism 𝑓 is étale, and
(2) the morphism 𝑓 is locally of finite presentation and formally étale.

Proof. Assume 𝑓 is étale. An étale morphism is locally of finite presentation, flat and
unramified, see Morphisms, Section 24.35. Hence 𝑓 is locally of finite presentation and
formally étale, see Lemma 33.6.7.
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Conversely, suppose that 𝑓 is locally of finite presentation and formally étale. Being étale
is local in the Zariski topology on 𝑋 and 𝑆, see Morphisms, Lemma 24.35.2. By Lemma
33.6.5 we can cover 𝑋 by affine opens 𝑈 which map into affine opens 𝑉 such that 𝑈 → 𝑉
is formally étale (and of finite presentation, see Morphisms, Lemma 24.20.2). By Lemma
33.6.8 we see that the ringmaps 𝒪(𝑉) → 𝒪(𝑈) are formally étale (and of finite presentation).
We win by Algebra, Lemma 7.137.2. (We will give another proof of this implication when
we discuss formally smooth morphisms.) �

33.7. Infinitesimal deformations of maps

In this section we explain how a derivation can be used to infinitesimally move a map.
Throughout this section we use that a sheaf on a thickening 𝑋′ of 𝑋 can be seen as a sheaf
on 𝑋.

Lemma 33.7.1. Let 𝑆 be a scheme. Let 𝑋 ⊂ 𝑋′ and 𝑌 ⊂ 𝑌′ be two first order thickenings
over 𝑆. Let (𝑎, 𝑎′), (𝑏, 𝑏′) ∶ (𝑋 ⊂ 𝑋′) → (𝑌 ⊂ 𝑌′) be two morphisms of thickenings over 𝑆.
Assume that

(1) 𝑎 = 𝑏, and
(2) the two maps 𝑎∗𝒞𝑌/𝑌′ → 𝒞𝑋/𝑋′ (Morphisms, Lemma 24.31.3) are equal.

Then the map (𝑎′)♯ − (𝑏′)♯ factors as

𝒪𝑌′ → 𝒪𝑌
𝐷

−−→ 𝑎∗𝒞𝑋/𝑋′ → 𝑎∗𝒪𝑋′

where 𝐷 is an 𝒪𝑆-derivation.

Proof. Instead of working on 𝑌 we work on 𝑋. The advantage is that the pullback functor
𝑎−1 is exact. Using (1) and (2) we obtain a commutive diagram with exact rows

0 // 𝒞𝑋/𝑋′ // 𝒪𝑋′ // 𝒪𝑋
// 0

0 // 𝑎−1𝒞𝑌/𝑌′ //

OO

𝑎−1𝒪𝑌′ //

(𝑎′)♯

OO

(𝑏′)♯

OO

𝑎−1𝒪𝑌
//

OO

0

Now it is a general fact that in such a situation the difference of the 𝒪𝑆-algebra maps (𝑎′)♯

and (𝑏′)♯ is an 𝒪𝑆-derivation from 𝑎−1𝒪𝑌 to 𝒞𝑋/𝑋′. By adjointness of the functors 𝑎−1

and 𝑎∗ this is the same thing as an 𝒪𝑆-derivation from 𝒪𝑌 into 𝑎∗𝒞𝑋/𝑋′. Some details
omitted. �

Note that in the situation of the lemma above we may write 𝐷 as

(33.7.1.1) 𝐷 = d𝑌/𝑆 ∘ 𝜃

where 𝜃 is an 𝒪𝑌-linear map 𝜃 ∶ Ω𝑌/𝑆 → 𝑎∗𝒞𝑋/𝑋′. Of course, then by adjunction again we
may view 𝜃 as an 𝒪𝑋-linear map 𝜃 ∶ 𝑎∗Ω𝑌/𝑆 → 𝒞𝑋/𝑋′.

Lemma 33.7.2. Let 𝑆 be a scheme. Let (𝑎, 𝑎′) ∶ (𝑋 ⊂ 𝑋′) → (𝑌 ⊂ 𝑌′) be a morphism of
first order thickenings over 𝑆. Let

𝜃 ∶ 𝑎∗Ω𝑌/𝑆 → 𝒞𝑋/𝑋′

be an 𝒪𝑋-linear map. Then there exists a unique morphism of pairs (𝑏, 𝑏′) ∶ (𝑋 ⊂ 𝑋′) →
(𝑌 ⊂ 𝑌′) such that (1) and (2) of Lemma 33.7.1 hold and the derivation 𝐷 and 𝜃 are related
by Equation (33.7.1.1).
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Proof. We simply set 𝑏 = 𝑎 and we define (𝑏′)♯ to be the map

(𝑎′)♯ + 𝐷 ∶ 𝑎−1𝒪𝑌′ → 𝒪𝑋′

where 𝐷 is as in Equation (33.7.1.1). We omit the verification that (𝑏′)♯ is a map of sheaves
of 𝒪𝑆-algebras and that (1) and (2) of Lemma 33.7.1 hold. Equation (33.7.1.1) holds by
construction. �

Lemma 33.7.3. Let 𝑆 be a scheme. Let 𝑋 ⊂ 𝑋′ and 𝑌 ⊂ 𝑌′ be first order thickenings over
𝑆. Assume given a morphism 𝑎 ∶ 𝑋 → 𝑌 and a map 𝐴 ∶ 𝑎∗𝒞𝑌/𝑌′ → 𝒞𝑋/𝑋′ of 𝒪𝑋-modules.
For an open subscheme 𝑈′ ⊂ 𝑋′ consider morphisms 𝑎′ ∶ 𝑈′ → 𝑌′ such that

(1) 𝑎′ is a morphism over 𝑆,
(2) 𝑎′|𝑈 = 𝑎|𝑈, and
(3) the induced map 𝑎∗𝒞𝑌/𝑌′|𝑈 → 𝒞𝑋/𝑋′|𝑈 is the restriction of 𝐴 to 𝑈.

Here 𝑈 = 𝑋 ∩ 𝑈′. Then the rule

(33.7.3.1) 𝑈′ ↦ {𝑎′ ∶ 𝑈′ → 𝑌′ such that (1), (2), (3) hold.}
defines a sheaf of sets on 𝑋′.

Proof. Denote ℱ the rule of the lemma. The restriction mapping ℱ(𝑈′) → ℱ(𝑉′) for
𝑉′ ⊂ 𝑈′ ⊂ 𝑋′ of ℱ is really the restriction map 𝑎′ ↦ 𝑎′|𝑉′. With this definition in place it
is clear that ℱ is a sheaf since morphisms are defined locally. �

In the following lemma we identify sheaves on 𝑋 and any thickening of 𝑋.

Lemma 33.7.4. Same notation and assumptions as in Lemma 33.7.3. There is an action
of the sheaf

ℋ𝑜𝑚𝒪𝑋
(𝑎∗Ω𝑌/𝑆, 𝒞𝑋/𝑋′)

on the sheaf (33.7.3.1). Moreover, the action is simply transitive for any open 𝑈′ ⊂ 𝑋′ over
which the sheaf (33.7.3.1) has a section.

Proof. This is a combination of Lemmas 33.7.1, 33.7.2, and 33.7.3. �

Remark 33.7.5. A special case of Lemmas 33.7.1, 33.7.2, 33.7.3, and 33.7.4 is where
𝑌 = 𝑌′. In this case the map 𝐴 is always zero. The sheaf of Lemma 33.7.3 is just given by
the rule

𝑈′ ↦ {𝑎′ ∶ 𝑈′ → 𝑌 over 𝑆 with 𝑎′|𝑈 = 𝑎|𝑈}
and we act on this by the sheaf ℋ𝑜𝑚𝒪𝑋

(𝑎∗Ω𝑌/𝑆, 𝒞𝑋/𝑋′). The action of a local section 𝜃 on
𝑎′ is sometimes indicated by 𝜃 ⋅ 𝑎′. Note that this means nothing else than the fact that (𝑎′)♯

and (𝜃 ⋅ 𝑎′)♯ differ by a derivation 𝐷 which is related to 𝜃 by Equation (33.7.1.1).

Lemma 33.7.6. Let 𝑆 be a scheme. Let 𝑋 ⊂ 𝑋′ be a first order thickening over 𝑆. Let 𝑌
be a scheme over 𝑆. Let 𝑎′, 𝑏′ ∶ 𝑋′ → 𝑌 be two morphisms over 𝑆 with 𝑎 = 𝑎′|𝑋 = 𝑏′|𝑋.
This gives rise to a commutative diagram

𝑋 //

𝑎
��

𝑋′

(𝑏′,𝑎′)
��

𝑌
Δ𝑌/𝑆 // 𝑌 ×𝑆 𝑌

Since the horizontal arrows are immersions with conormal sheaves 𝒞𝑋/𝑋′ and Ω𝑌/𝑆, by
Morphisms, Lemma 24.31.3, we obtain a map 𝜃 ∶ 𝑎∗Ω𝑌/𝑆 → 𝒞𝑋/𝑋′. Then this 𝜃 and the
derivation 𝐷 of Lemma 33.7.1 are related by Equation (33.7.1.1).
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Proof. Omitted. Hint: The equality may be checked on affine opens where it comes from
the following computation. If 𝑓 is a local section of 𝒪𝑌, then 1 ⊗ 𝑓 − 𝑓 ⊗ 1 is a local section
of 𝒞𝑌/(𝑌×𝑆𝑌) corresponding to d𝑌/𝑆(𝑓). It is mapped to the local section (𝑎′)♯(𝑓) − (𝑏′)♯(𝑓) =
𝐷(𝑓) of 𝒞𝑋/𝑋′. In other words, 𝜃(d𝑌/𝑆(𝑓)) = 𝐷(𝑓). �

For later purposes we need a result that roughly states that the construction of Lemma 33.7.2
is compatible with étale localization.

Lemma 33.7.7. Let
𝑋1

��

𝑋2𝑓
oo

��
𝑆1 𝑆2
oo

be a commutative diagram of schemes with 𝑋2 → 𝑋1 and 𝑆2 → 𝑆1 étale. Then the map
𝑐𝑓 ∶ 𝑓∗Ω𝑋1/𝑆1

→ Ω𝑋2/𝑆2
of Morphisms, Lemma 24.32.9 is an isomorphism.

Proof. We recall that an étale morphism 𝑈 → 𝑉 is a smooth morphism with Ω𝑈/𝑉 = 0.
Using this we see that Morphisms, Lemma 24.32.11 implies Ω𝑋2/𝑆2

= Ω𝑋2/𝑆1
and Mor-

phisms, Lemma 24.33.16 implies that the map 𝑓∗Ω𝑋1/𝑆1
→ Ω𝑋2/𝑆1

(for the morphism 𝑓
seen as a morphism over 𝑆1) is an isomorphism. Hence the lemma follows. �

Lemma 33.7.8. Consider a commutative diagram of schemes

𝑇2
//

ℎ
��

𝑇′
2 𝑎′

2

//

ℎ′

��

𝑋2

��

𝑓
��

𝑇1
// 𝑇′

1 𝑎′
1

// 𝑋1

��
𝑆1 𝑆2
oo

and assume that
(1) 𝑖1 ∶ 𝑇1 → 𝑇′

1 is a first order thickening,
(2) 𝑖2 ∶ 𝑇2 → 𝑇′

2 is a first order thickening, and
(3) 𝑋2 → 𝑋1 and 𝑆2 → 𝑆1 are étale.

Write 𝑎𝑖 = 𝑎′
𝑖 ∘ 𝑖𝑘 for 𝑘 = 1, 2. For any 𝒪𝑇1

-linear map 𝜃1 ∶ 𝑎∗
1Ω𝑋1/𝑆1

→ 𝒞𝑇1/𝑇′
1
let 𝜃2 be

the composition

𝑎∗
2Ω𝑋2/𝑆2

ℎ∗𝑎∗
1Ω𝑋1/𝑆1

ℎ∗𝜃1 // ℎ∗𝒞𝑇1/𝑇′
1

// 𝒞𝑇2/𝑇′
2

(equality sign is explained in the proof). Then the diagram

𝑇′
2 𝜃2⋅𝑎′

2

//

��

𝑋2

��
𝑇′

1
𝜃1⋅𝑎′

1 // 𝑋1

commutes where the actions 𝜃2 ⋅ 𝑎′
2 and 𝜃1 ⋅ 𝑎′

1 are as in Remark 33.7.5.
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Proof. The equality sign comes from the identification 𝑓∗Ω𝑋1/𝑆1
= Ω𝑋2/𝑆2

of Lemma
33.7.7. Namely, using this we have 𝑎∗

2Ω𝑋2/𝑆2
= 𝑎∗

2𝑓∗Ω𝑋1/𝑆1
= ℎ∗𝑎∗

1Ω𝑋1/𝑆1
because 𝑓∘𝑎2 =

𝑎1 ∘ ℎ. Having said this, the commutativity of the diagram may be checked on affine opens.
Hence we may assume the schemes in the initial big diagram are affine. Thus we obtain a
commutative diagram of rings

𝐵2/𝐼2 𝐵2
oo 𝐴2𝑎′

2

oo

𝐵1/𝐼1

OO

𝐵1

ℎ′

OO

oo 𝐴1𝑎′
1

oo
𝑓

>>

𝑅1
//

OO

𝑅2

OO

with 𝐼2
1 = 0 and 𝐼2

2 = 0 and moreover with the property that 𝐴2 ⊗𝐴1
Ω𝐴1/𝑅1

→ Ω𝐴2/𝑅2
is an

isomorphism. Then 𝜃1 ∶ 𝐵1/𝐼1 ⊗𝐴1
Ω𝐴1/𝑅1

→ 𝐼1 is 𝐵1-linear. This gives an 𝑅1-derivation
𝐷1 = 𝜃1 ∘ d𝐴1/𝑅1

∶ 𝐴1 → 𝐼1. In a similar way we see that 𝜃2 ∶ 𝐵2/𝐼2 ⊗𝐴2
Ω𝐴2/𝑅2

→ 𝐼2
gives rise to a 𝑅2-derivation 𝐷2 = 𝜃2 ∘ d𝐴2/𝑅2

∶ 𝐴2 → 𝐼2. The construction of 𝜃2 implies
the following compatibility between 𝜃1 and 𝜃2: for every 𝑥 ∈ 𝐴1 we have

ℎ′(𝐷1(𝑥)) = 𝐷2(𝑓(𝑥))

as elements of 𝐼2. Now by the construction of the action in Lemma 33.7.2 and Remark
33.7.5 we know that 𝜃1 ⋅ 𝑎′

1 corresponds to the ring map 𝑎′
1 + 𝐷1 ∶ 𝐴1 → 𝐵1 and 𝜃2 ⋅ 𝑎′

2
corresponds to the ring map 𝑎′

2 + 𝐷2 ∶ 𝐴2 → 𝐵2. By the displayed equality above we
obtain that ℎ′ ∘ (𝑎′

1 + 𝐷1) = (𝑎′
2 + 𝐷2) ∘ 𝑓 as desired. �

Remark 33.7.9. Lemma 33.7.8 can be improved in the following way. Suppose that we
have a commutative diagram of schemes as in Lemma 33.7.8 but we do not assume that
𝑋2 → 𝑋1 and 𝑆2 → 𝑆1 are étale. Next, suppose we have 𝜃1 ∶ 𝑎∗

1Ω𝑋1/𝑆1
→ ℐ1 and

𝜃2 ∶ 𝑎∗
2Ω𝑋2/𝑆2

→ ℐ2 such that for a local section 𝑡 of 𝒪𝑋1
we have (ℎ′)∗𝜃1(𝑎∗

1(d𝑋1/𝑆1
(𝑡))) =

𝜃2(𝑎∗
2(d𝑋2/𝑆2

(𝑓∗𝑡))), i.e., such that

𝑓∗𝒪𝑋2 𝑓∗𝐷2
// 𝑓∗𝑎2,∗𝒞𝑇2/𝑇′

2

𝒪𝑋1

𝐷1 //

𝑓♯

OO

𝑎1,∗𝒞𝑇1/𝑇′
1

induced by (ℎ′)♯

OO

is commutative where 𝐷𝑖 corresponds to 𝜃𝑖 as in Equation (33.7.1.1). Then we have the
conclusion of Lemma 33.7.8. The importance of the condition that both 𝑋2 → 𝑋1 and
𝑆2 → 𝑆1 are étale is that it allows us to construct a 𝜃2 from 𝜃1.

33.8. Infinitesimal deformations of schemes

The following simple lemma is often a convenient tool to check whether an infinitesimal
deformation of a map is flat.

Lemma 33.8.1. Let (𝑓, 𝑓′) ∶ (𝑋 ⊂ 𝑋′) → (𝑆 ⊂ 𝑆′) be a morphism of first order thicken-
ings. Assume that 𝑓 is flat. Then the following are equivalent

(1) 𝑓′ is flat and 𝑋 = 𝑆 ×𝑆′ 𝑋′, and
(2) the canonical map 𝑓∗𝒞𝑆/𝑆′ → 𝒞𝑋/𝑋′ is an isomorphism.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04BZ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=063Y


33.8. INFINITESIMAL DEFORMATIONS OF SCHEMES 1757

Proof. As the problem is local on 𝑋′ we may assume that 𝑋, 𝑋′, 𝑆, 𝑆′ are affine schemes.
Say 𝑆′ = 𝑆𝑝𝑒𝑐(𝐴′), 𝑋′ = 𝑆𝑝𝑒𝑐(𝐵′), 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) with 𝐴 = 𝐴′/𝐼 and
𝐵 = 𝐵′/𝐽 for some square zero ideals. Then we obtain the following commutative diagram

0 // 𝐽 // 𝐵′ // 𝐵 // 0

0 // 𝐼 //

OO

𝐴′ //

OO

𝐴 //

OO

0
with exact rows. The canonical map of the lemma is the map

𝐼 ⊗𝐴 𝐵 = 𝐼 ⊗𝐴′ 𝐵′ ⟶ 𝐽.

The assumption that 𝑓 is flat signifies that 𝐴 → 𝐵 is flat.

Assume (1). Then 𝐴′ → 𝐵′ is flat and 𝐽 = 𝐼𝐵′. Flatness implies Tor𝐴
′

1 (𝐵′, 𝐴) = 0 (see
Algebra, Lemma 7.69.7). This means 𝐼 ⊗𝐴′ 𝐵′ → 𝐵′ is injective (see Algebra, Remark
7.69.8). Hence we see that 𝐼 ⊗𝐴 𝐵 → 𝐽 is an isomorphism.

Assume (2). Then it follows that 𝐽 = 𝐼𝐵′, so that 𝑋 = 𝑆 ×𝑆′ 𝑋′. Moreover, we get
Tor𝐴

′

1 (𝐵′, 𝐴′/𝐼) = 0 by reversing the implications in the previous paragraph. Hence 𝐵′ is
flat over 𝐴′ by Algebra, Lemma 7.91.8. �

The following lemma is the ``nilpotent'' version of the ``critère de platitude par fibres'', see
Section 33.12.

Lemma 33.8.2. Consider a commutative diagram

(𝑋 ⊂ 𝑋′)
(𝑓,𝑓′)

//

&&

(𝑌 ⊂ 𝑌′)

yy
(𝑆 ⊂ 𝑆′)

of thickenings. Assume
(1) 𝑋′ is flat over 𝑆′,
(2) 𝑓 is flat,
(3) 𝑆 ⊂ 𝑆′ is a finite order thickening, and
(4) 𝑋 = 𝑆 ×𝑆′ 𝑋′ and 𝑌 = 𝑆 ×𝑆′ 𝑌′.

Then 𝑓′ is flat and 𝑌′ is flat over 𝑆′ at all points in the image of 𝑓′.

Proof. Immediate consequence of Algebra, Lemma 7.93.8. �

Many properties of morphisms of schemes are preserved under flat deformations.

Lemma 33.8.3. Consider a commutative diagram

(𝑋 ⊂ 𝑋′)
(𝑓,𝑓′)

//

&&

(𝑌 ⊂ 𝑌′)

yy
(𝑆 ⊂ 𝑆′)

of thickenings. Assume 𝑆 ⊂ 𝑆′ is a finite order thickening, 𝑋′ and 𝑌′ flat over 𝑆′ and
𝑋 = 𝑆 ×𝑆′ 𝑋′ and 𝑌 = 𝑆 ×𝑆′ 𝑌′. Then

(1) 𝑓 is flat if and only if 𝑓′ is flat,
(2) 𝑓 is an isomorphism if and only if 𝑓′ is an isomorphism,
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(3) 𝑓 is an open immersion if and only if 𝑓′ is an open immersion,
(4) 𝑓 is quasi-compact if and only if 𝑓′ is quasi-compact,
(5) 𝑓 is universally closed if and only if 𝑓′ is universally closed,
(6) 𝑓 is (quasi-)separated if and only if 𝑓′ is (quasi-)separated,
(7) 𝑓 is a monomorphism if and only if 𝑓′ is a monomorphism,
(8) 𝑓 is surjective if and only if 𝑓′ is surjective,
(9) 𝑓 is universally injective if and only if 𝑓′ is universally injective,

(10) 𝑓 is affine if and only if 𝑓′ is affine,
(11) 𝑓 is locally of finite type if and only if 𝑓′ is locally of finite type,
(12) 𝑓 is quasi-finite if and only if 𝑓′ is quasi-finite,
(13) 𝑓 is locally of finite presentation if and only if 𝑓′ is locally of finite presentation,
(14) 𝑓 is locally of finite type of relative dimension 𝑑 if and only if 𝑓′ is locally of finite

type of relative dimension 𝑑,
(15) 𝑓 is universally open if and only if 𝑓′ is universally open,
(16) 𝑓 is syntomic if and only if 𝑓′ is syntomic,
(17) 𝑓 is smooth if and only if 𝑓′ is smooth,
(18) 𝑓 is unramified if and only if 𝑓′ is unramified,
(19) 𝑓 is étale if and only if 𝑓′ is étale,
(20) 𝑓 is proper if and only if 𝑓′ is proper,
(21) 𝑓 is integral if and only if 𝑓′ is integral,
(22) 𝑓 is finite if and only if 𝑓′ is finite,
(23) 𝑓 is finite locally free (of rank 𝑑) if and only if 𝑓′ is finite locally free (of rank 𝑑),

and
(24) add more here.

Proof. The assumptions on 𝑋 and 𝑌 mean that 𝑓 is the base change of 𝑓′ by 𝑋 → 𝑋′.
The properties 𝒫 listed in (1) -- (23) above are all stable under base change, hence if 𝑓′ has
property 𝒫, then so does 𝑓. See Schemes, Lemmas 21.18.2, 21.19.3, 21.21.13, and 21.23.5
and Morphisms, Lemmas 24.9.4, 24.10.4, 24.11.8, 24.14.4, 24.19.13, 24.20.4, 24.28.2,
24.30.4, 24.33.5, 24.34.5, 24.35.4, 24.40.5, 24.42.6, and 24.44.4.

The interesting direction in each case is therefore to assume that 𝑓 has the property and
deduce that 𝑓′ has it too. By induction on the order of the thickening we may assume that
𝑆 ⊂ 𝑆′ is a first order thickening, see discussion immediately following Definition 33.2.1.
We make a couple of general remarks which we will use without further mention in the
arguments below. (I) Let 𝑊′ ⊂ 𝑆′ be an affine open and let 𝑈′ ⊂ 𝑋′ and 𝑉′ ⊂ 𝑆′ be affine
opens lying over 𝑊′ with 𝑓′(𝑈′) ⊂ 𝑉′. Let 𝑊′ = 𝑆𝑝𝑒𝑐(𝑅′) and denote 𝐼 ⊂ 𝑅′ be the ideal
defining the closed subscheme 𝑊′ ∩ 𝑆. Say 𝑈′ = 𝑆𝑝𝑒𝑐(𝐵′) and 𝑉′ = 𝑆𝑝𝑒𝑐(𝐴′). Then we
get a commutative diagram

0 // 𝐼𝐵′ // 𝐵′ // 𝐵 // 0

0 // 𝐼𝐴′ //

OO

𝐴′ //

OO

𝐴 //

OO

0

with exact rows. Moreover, 𝐼𝐴′ ≅ 𝐼 ⊗𝑅 𝐴 and 𝐼𝐵′ ≅ 𝐼 ⊗𝑅 𝐵, see proof of Lemma
33.8.1. (II) The morphisms 𝑋 → 𝑋′ and 𝑌 → 𝑌′ are universal homeomorphisms. Hence
the topology of the maps 𝑓 and 𝑓′ (after any base change) is identical. (III) If 𝑓 is flat, then
𝑓′ is flat, see Lemma 33.8.2.

Ad (1). This is general remark (III).
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Ad (2). Assume 𝑓 is an isomorphism. Choose an affine open 𝑉′ ⊂ 𝑌′ and set 𝑈′ =
(𝑓′)−1(𝑉′). Then 𝑉 = 𝑌 ∩ 𝑉′ is affine which implies that 𝑉 ≅ 𝑓−1(𝑉) = 𝑈 = 𝑌 ×𝑌′ 𝑈′

is affine. By Lemma 33.2.3 we see that 𝑈′ is affine. Hence 𝐼𝐵′ ≅ 𝐼 ⊗𝑅 𝐵 ≅ 𝐼 ⊗𝑅 𝐴 ≅ 𝐼𝐴′

and 𝐴 ≅ 𝐵. By the exactness of the rows in the diagram above we see that 𝐴′ ≅ 𝐵′, i.e.,
𝑈′ ≅ 𝑉′. Thus 𝑓′ is an isomorphism.

Ad (3). Assume 𝑓 is an open immersion. Then 𝑓 is an isomorphism of 𝑋 with an open
subscheme 𝑉 ⊂ 𝑌. Let 𝑉′ ⊂ 𝑌′ be the open subscheme whose underlying topological space
is 𝑉. Then 𝑓′ is a map from 𝑋′ to 𝑉′ which is an isomorphism by (2). Hence 𝑓′ is an open
immersion.

Ad (4). Immediate from remark (II).

Ad (5). Immediate from remark (II).

Ad (6). Note that 𝑋 ×𝑌 𝑋 = 𝑌 ×𝑌′ (𝑋′ ×𝑌′ 𝑋′) so that 𝑋′ ×𝑌′ 𝑋′ is a thickening of 𝑋 ×𝑌 𝑋.
Hence the topology of the maps Δ𝑋/𝑌 and Δ𝑋′/𝑌′ matches and we win.

Ad (7). Assume 𝑓 is a monomorphism. Consider the diagonal morphism Δ𝑋′/𝑌′ ∶ 𝑋′ →
𝑋′ ×𝑌′ 𝑋′. Because 𝑓 is a monomorphism and because 𝑋′ ×𝑌′ 𝑋′ is a thickening of 𝑋×𝑌 𝑋
we see that Δ𝑋′/𝑌′ is surjective. Hence Lemma 33.8.2 implies that 𝑋′ ×𝑌′ 𝑋′ is flat over
𝑆′. Then (2) shows that Δ𝑋′/𝑌′ is an isomorphism.

Ad (8). This is clear.

Ad (9). Immediate from remark (II).

Ad (10). Assume 𝑓 is affine. Choose an affine open 𝑉′ ⊂ 𝑌′ and set 𝑈′ = (𝑓′)−1(𝑉′). Then
𝑉 = 𝑌 ∩ 𝑉′ is affine which implies that 𝑈 = 𝑌 ×𝑌′ 𝑈′ is affine. By Lemma 33.2.3 we see
that 𝑈′ is affine. Hence 𝑓′ is affine.

Ad (11). Via remark (I) comes down to proving 𝐴′ → 𝐵′ is of finite type if 𝐴 → 𝐵 is of
finite type. Suppose that 𝑥1, … , 𝑥𝑛 ∈ 𝐵′ are elements whose images in 𝐵 generate 𝐵 as an
𝐴-algebra. Then 𝐴′[𝑥1, … , 𝑥𝑛] → 𝐵 is surjective as both 𝐴′[𝑥1, … , 𝑥𝑛] → 𝐵 is surjective
and 𝐼 ⊗𝑅 𝐴[𝑥1, … , 𝑥𝑛] → 𝐼 ⊗𝑅 𝐵 is surjective.

Ad (12). Follows from (11) and that quasi-finiteness of a morphism of finite type can be
checked on fibres, see Morphisms, Lemma 24.19.6.

Ad (13). Via remark (I) comes down to proving 𝐴′ → 𝐵′ is of finite presentation if 𝐴 → 𝐵
is of finite presentation. We may assume that 𝐵′ = 𝐴′[𝑥1, … , 𝑥𝑛]/𝐾′ for some ideal 𝐾′ by
(11). We get a short exact sequence

0 → 𝐾′ → 𝐴′[𝑥1, … , 𝑥𝑛] → 𝐵′ → 0

As 𝐵′ is flat over 𝑅′ we see that 𝐾′ ⊗𝑅′ 𝑅 is the kernel of the surjection 𝐴[𝑥1, … , 𝑥𝑛] → 𝐵.
By assumption on 𝐴 → 𝐵 there exist finitely many 𝑓′

1, … , 𝑓′
𝑚 ∈ 𝐾′ whose images in

𝐴[𝑥1, … , 𝑥𝑛] generate this kernel. Since 𝐼 is nilpotent we see that 𝑓′
1, … , 𝑓′

𝑚 generate 𝐾′

by Nakayama's lemma, see Algebra, Lemma 7.14.5.

Ad (14). Follows from (11) and general remark (II).

Ad (15). Immediate from general remark (II).

Ad (16). Assume 𝑓 is syntomic. By (13) 𝑓′ is locally of finite presentation, by general
remark (III) 𝑓′ is flat and the fibres of 𝑓′ are the fibres of 𝑓. Hence 𝑓′ is syntomic by
Morphisms, Lemma 24.30.11.
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Ad (17). Assume 𝑓 is smooth. By (13) 𝑓′ is locally of finite presentation, by general remark
(III) 𝑓′ is flat, and the fibres of 𝑓′ are the fibres of 𝑓. Hence 𝑓′ is smooth by Morphisms,
Lemma 24.33.3.

Ad (18). Assume 𝑓 unramified. By (11) 𝑓′ is locally of finite type and the fibres of 𝑓′ are
the fibres of 𝑓. Hence 𝑓′ is unramified by Morphisms, Lemma 24.34.12.

Ad (19). Assume 𝑓 étale. By (13) 𝑓′ is locally of finite presentation, by general remark (III)
𝑓′ is flat, and the fibres of 𝑓′ are the fibres of 𝑓. Hence 𝑓′ is étale by Morphisms, Lemma
24.35.8.

Ad 20). This follows from a combination of (6), (11), (4), and (5).

Ad (21). Combine (5) and (10) with Morphisms, Lemma 24.42.7.

Ad (22). Combine (21), and (11) with Morphisms, Lemma 24.42.4.

Ad (23). Assume 𝑓 finite locally free. By (22) we see that 𝑓′ is finite, by general remark
(III) 𝑓′ is flat, and by (13) 𝑓′ is locally of finite presentation. Hence 𝑓′ is finite locally free
by Morphisms, Lemma 24.44.2. �

33.9. Formally smooth morphisms

Michael Artin's position on differential criteria of smoothness (e.g., Morphisms, Lemma
24.33.14) is that they are basically useless (in practice). In this section we introduce the
notion of a formally smooth morphism 𝑋 → 𝑆. Such a morphism is characterized by
the property that 𝑇-valued points of 𝑋 lift to inifinitesimal thickenings of 𝑇 provided 𝑇 is
affine. The main result is that a morphism which is formally smooth and locally of finite
presentation is smooth, see Lemma 33.9.7. It turns out that this criterion is often easier to
use than the differential criteria mentioned above.

Recall that a ring map 𝑅 → 𝐴 is called formally smooth (see Algebra, Definition 7.127.1)
if for every commutative solid diagram

𝐴 //

!!

𝐵/𝐼

𝑅 //

OO

𝐵

OO

where 𝐼 ⊂ 𝐵 is an ideal of square zero, a dotted arrow exists which makes the diagram
commute. This motivates the following analogue for morphisms of schemes.

Definition 33.9.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. We say 𝑓 is formally smooth
if given any solid commutative diagram

𝑋

𝑓
��

𝑇

𝑖
��

oo

𝑆 𝑇′oo

``

where 𝑇 ⊂ 𝑇′ is a first order thickening of affine schemes over 𝑆 there exists a dotted arrow
making the diagram commute.

In the cases of formally unramified and formally étale morphisms the condition that 𝑇′ be
affine could be dropped, see Lemmas 33.4.2 and 33.6.2. This is no longer true in the case
of formally smooth morphisms. In fact, a slightly more natural condition would be that we
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should be able to fill in the dotted arrow Zariski locally on 𝑇′. In fact, analyzing the proof
of Lemma 33.9.7 shows that this would be equivalent to the definition as it currently stands.

Lemma 33.9.2. A composition of formally smooth morphisms is formally smooth.

Proof. Omitted. �

Lemma 33.9.3. A base change of a formally smooth morphism is formally smooth.

Proof. Omitted, but see Algebra, Lemma 7.127.2 for the algebraic version. �

Lemma 33.9.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Then 𝑓 is formally étale if and
only if 𝑓 is formally smooth and formally unramified.

Proof. Omitted. �

Lemma 33.9.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑆 be open
subschemes such that 𝑓(𝑈) ⊂ 𝑉. If 𝑓 is formally smooth, so is 𝑓|𝑈 ∶ 𝑈 → 𝑉.

Proof. Consider a solid diagram

𝑈

𝑓|𝑈
��

𝑇

𝑖
��

𝑎
oo

𝑉 𝑇′oo

__

as in Definition 33.9.1. If 𝑓 is formally smooth, then there exists an 𝑆-morphism 𝑎′ ∶ 𝑇′ →
𝑋 such that 𝑎′|𝑇 = 𝑎. Since the underlying sets of 𝑇 and 𝑇′ are the same we see that 𝑎′ is
a morphism into 𝑈 (see Schemes, Section 21.3). And it clearly is a 𝑉-morphism as well.
Hence the dotted arrow above as desired. �

Lemma 33.9.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑋 and 𝑆 are affine.
Then 𝑓 is formally smooth if and only if 𝒪𝑆(𝑆) → 𝒪𝑋(𝑋) is a formally smooth ring map.

Proof. This is immediate from the definitions (Definition 33.9.1 and Algebra, Definition
7.127.1) by the equivalence of categories of rings and affine schemes, see Schemes, Lemma
21.6.5. �

The following lemma is the main result of this section. It is a victory of the functorial point
of view in that it implies (combined with Limits, Proposition 27.4.1) that we can recognize
whether a morphism 𝑓 ∶ 𝑋 → 𝑆 is smooth in terms of ``simple'' properties of the functor
ℎ𝑋 ∶ Sch/𝑆 → Sets.

Lemma 33.9.7. (Infinitesimal lifting criterion) Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
The following are equivalent:

(1) The morphism 𝑓 is smooth, and
(2) the morphism 𝑓 is locally of finite presentation and formally smooth.

Proof. Assume 𝑓 ∶ 𝑋 → 𝑆 is locally of finite presentation and formally smooth. Consider
a pair of affine opens 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 and 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 such that 𝑓(𝑈) ⊂ 𝑉.
By Lemma 33.9.5 we see that 𝑈 → 𝑉 is formally smooth. By Lemma 33.9.6 we see that
𝑅 → 𝐴 is formally smooth. By Morphisms, Lemma 24.20.2 we see that 𝑅 → 𝐴 is of finite
presentation. By Algebra, Proposition 7.127.13 we see that 𝑅 → 𝐴 is smooth. Hence by
the definition of a smooth morphism we see that 𝑋 → 𝑆 is smooth.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02H1
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Conversely, assume that 𝑓 ∶ 𝑋 → 𝑆 is smooth. Consider a solid commutative diagram

𝑋

𝑓
��

𝑇

𝑖
��

𝑎
oo

𝑆 𝑇′oo

``

as in Definition 33.9.1. We will show the dotted arrow exists thereby proving that 𝑓 is
formally smooth.
Let ℱ be the sheaf of sets on 𝑇′ of Lemma 33.7.3, see also Remark 33.7.5. Let

ℋ = ℋ𝑜𝑚𝒪𝑇
(𝑎∗Ω𝑋/𝑆, 𝒞𝑇/𝑇′)

be the sheaf of 𝒪𝑇-modules on 𝑇 introduced in Lemma 33.7.4. Our goal is simply to show
that ℱ(𝑇)≠∅. In other words we are trying to show that ℱ is a trivial ℋ-torsor on 𝑇 (see
Cohomology, Section 18.5). There are two steps: (I) To show that ℱ is a torsor we have
to show that ℱ𝑡≠∅ for all 𝑡 ∈ 𝑇 (see Cohomology, Definition 18.5.1). (II) To show that
ℱ is the trivial torsor it suffices to show that 𝐻1(𝑇, ℋ) = 0 (see Cohomology, Lemma
18.5.3 -- we may use either cohomology of ℋ as an abelian sheaf or as an 𝒪𝑇-module, see
Cohomology, Lemma 18.12.3).
First we prove (I). To see this, for every 𝑡 ∈ 𝑇 we can choose an affine open 𝑈 ⊂ 𝑇
neighbourhood of 𝑡 such that 𝑎(𝑈) is contained in an affine open 𝑆𝑝𝑒𝑐(𝐴) = 𝑊 ⊂ 𝑋 which
maps to an affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆. By Morphisms, Lemma 24.33.2 the ring map
𝑅 → 𝐴 is smooth. Hence by Algebra, Proposition 7.127.13 the ringmap 𝑅 → 𝐴 is formally
smooth. Lemma 33.9.6 in turn implies that 𝑊 → 𝑉 is formally smooth. Hence we can lift
𝑎|𝑈 ∶ 𝑈 → 𝑊 to a 𝑉-morphism 𝑎′ ∶ 𝑈′ → 𝑊 ⊂ 𝑋 showing that ℱ(𝑈)≠∅.
Finally we prove (II). By Morphisms, Lemma 24.32.15 we see that Ω𝑋/𝑆 is of finite presen-
tation (it is even finite locally free byMorphisms, Lemma 24.33.12). Hence 𝑎∗Ω𝑋/𝑆 is of fi-
nite presentation (seeModules, Lemma 15.11.4). Hence the sheafℋ = ℋ𝑜𝑚𝒪𝑇

(𝑎∗Ω𝑋/𝑆, 𝒞𝑇/𝑇′)
is quasi-coherent by the discussion in Schemes, Section 21.24. Thus by Coherent, Lemma
25.2.2 we have 𝐻1(𝑇, ℋ) = 0 as desired. �

Locally projective quasi-coherent modules are defined in Properties, Section 23.19.

Lemma 33.9.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a formally smooth morphism of schemes. Then Ω𝑋/𝑌 is
locally projective on 𝑋.

Proof. Choose 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑌 affine open such that 𝑓(𝑈) ⊂ 𝑉. By Lemma 33.9.5 𝑓|𝑈 ∶
𝑈 → 𝑉 is formally smooth. Hence Γ(𝑉, 𝒪𝑉) → Γ(𝑈, 𝒪𝑈) is a formally smooth ring map, see
Lemma 33.9.6. Hence by Algebra, Lemma 7.127.7 the Γ(𝑈, 𝒪𝑈)-module ΩΓ(𝑈,𝒪𝑈)/Γ(𝑉,𝒪𝑉) is
projective. Hence Ω𝑈/𝑉 is locally projective, see Properties, Section 23.19. �

Lemma 33.9.9. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes. Assume 𝑓 is
formally smooth. Then

0 → 𝑓∗Ω𝑌/𝑆 → Ω𝑋/𝑆 → Ω𝑋/𝑌 → 0
(see Morphisms, Lemma 24.32.11) is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps 𝐴 → 𝐵 → 𝐶
with 𝐵 → 𝐶 formally smooth, then the sequence

0 → 𝐶 ⊗𝐵 Ω𝐵/𝐴 → Ω𝐶/𝐴 → Ω𝐶/𝐵 → 0
of Algebra, Lemma 7.122.7 is exact. This is Algebra, Lemma 7.127.9. �
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Lemma 33.9.10. Let ℎ ∶ 𝑍 → 𝑋 be a formally unramified morphism of schemes over 𝑆.
Assume that 𝑍 is formally smooth over 𝑆. Then the canonical exact sequence

0 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑆 → Ω𝑍/𝑆 → 0

of Lemma 33.5.10 is short exact.

Proof. Let 𝑍 → 𝑍′ be the universal first order thickening of 𝑍 over 𝑋. From the proof of
Lemma 33.5.10 we see that our sequence is identified with the sequence

𝒞𝑍/𝑍′ → Ω𝑍′/𝑆 ⊗ 𝒪𝑍 → Ω𝑍/𝑆 → 0.

Since 𝑍 → 𝑆 is formally smooth we can locally on 𝑍′ find a left inverse 𝑍′ → 𝑍 over 𝑆
to the inclusion map 𝑍 → 𝑍′. Thus the sequence is locally split, see Morphisms, Lemma
24.32.18. �

Lemma 33.9.11. Let
𝑍

𝑖
//

𝑗   

𝑋

𝑓
��

𝑌
be a commutative diagram of schemes where 𝑖 and 𝑗 are formally unramified and 𝑓 is for-
mally smooth. Then the canonical exact sequence

0 → 𝒞𝑍/𝑌 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑌 → 0

of Lemma 33.5.11 is exact and locally split.

Proof. Denote 𝑍 → 𝑍′ the universal first order thickening of 𝑍 over 𝑋. Denote 𝑍 → 𝑍″

the universal first order thickening of 𝑍 over 𝑌. By Lemma 33.5.10 here is a canonical
morpism 𝑍′ → 𝑍″ so that we have a commutative diagram

𝑍
𝑖′
//

𝑗′   

𝑍′
𝑎
//

𝑘
��

𝑋

𝑓
��

𝑍″ 𝑏 // 𝑌

In the proof of Lemma 33.5.11 we identified the sequence above with the sequence

𝒞𝑍/𝑍″ → 𝒞𝑍/𝑍′ → (𝑖′)∗Ω𝑍′/𝑍″ → 0

Let 𝑈″ ⊂ 𝑍″ be an affine open. Denote 𝑈 ⊂ 𝑍 and 𝑈′ ⊂ 𝑍′ the corresponding affine open
subschemes. As 𝑓 is formally smooth there exists a morphism ℎ ∶ 𝑈″ → 𝑋 which agrees
with 𝑖 on 𝑈 and such that 𝑓 ∘ ℎ equals 𝑏|𝑈″. Since 𝑍′ is the universal first order thickening
we obtain a unique morphism 𝑔 ∶ 𝑈″ → 𝑍′ such that 𝑔 = 𝑎 ∘ ℎ. The universal property of
𝑍″ implies that 𝑘 ∘ 𝑔 is the inclusion map 𝑈″ → 𝑍″. Hence 𝑔 is a left inverse to 𝑘. Picture

𝑈

��

// 𝑍′

𝑘
��

𝑈″ //

𝑔
==

𝑍″

Thus 𝑔 induces a map 𝒞𝑍/𝑍′|𝑈 → 𝒞𝑍/𝑍″|𝑈 which is a left inverse to the map 𝒞𝑍/𝑍″ →
𝒞𝑍/𝑍′ over 𝑈. �
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33.10. Smoothness over a Noetherian base

It turns out that if the base is Noetherian then we can get away with less in the formulation of
formal smoothness. In some sense the following lemmas are the beggining of deformation
theory.

Lemma 33.10.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋. Assume that 𝑆 is
locally Noetherian and 𝑓 locally of finite type. The following are equivalent:

(1) 𝑓 is smooth at 𝑥,
(2) for every solid commutative diagram

𝑋

𝑓
��

𝑆𝑝𝑒𝑐(𝐵)

𝑖
��

𝛼
oo

𝑆 𝑆𝑝𝑒𝑐(𝐵′)
𝛽oo

cc

where𝐵′ → 𝐵 is a surjection of local rings with Ker(𝐵′ → 𝐵) of square zero, and
𝛼 mapping the closed point of 𝑆𝑝𝑒𝑐(𝐵) to 𝑥 there exists a dotted arrow making
the diagram commute,

(3) same as in (2) but with 𝐵′ → 𝐵 ranging over small extensions (see Algebra,
Definition 7.130.1), and

(4) same as in (2) but with 𝐵′ → 𝐵 ranging over small extensions such that 𝛼 induces
an isomorphism 𝜅(𝑥) → 𝜅(𝔪) where 𝔪 ⊂ 𝐵 is the maximal ideal.

Proof. Choose an affine neighbourhood 𝑉 ⊂ 𝑆 of 𝑓(𝑥) and choose an affine neighbourhood
𝑈 ⊂ 𝑋 of 𝑥 such that 𝑓(𝑈) ⊂ 𝑉. For any ``test'' diagram as in (2) the morphism 𝛼 will map
𝑆𝑝𝑒𝑐(𝐵) into 𝑈 and the morphism 𝛽 will map 𝑆𝑝𝑒𝑐(𝐵′) into 𝑉 (see Schemes, Section 21.13).
Hence the lemma reduces to themorphism 𝑓|𝑈 ∶ 𝑈 → 𝑉 of affines. (Indeed, 𝑉 is Noetherian
and 𝑓|𝑈 is of finite type, see Properties, Lemma 23.5.2 and Morphisms, Lemma 24.14.2.)
In this affine case the lemma is identical to Algebra, Lemma 7.130.2. �

Sometimes it is useful to know that one only needs to check the lifting criterion for small
extensions ``centered'' at points of finite type (see Morphisms, Section 24.15).

Lemma 33.10.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋. Assume that 𝑆 is
locally Noetherian and 𝑓 locally of finite type. The following are equivalent:

(1) 𝑓 is smooth,
(2) for every solid commutative diagram

𝑋

𝑓
��

𝑆𝑝𝑒𝑐(𝐵)

𝑖
��

𝛼
oo

𝑆 𝑆𝑝𝑒𝑐(𝐵′)
𝛽oo

cc

where 𝐵′ → 𝐵 is a small extension of Artinian local rings and 𝛽 of finite type (!)
there exists a dotted arrow making the diagram commute.

Proof. If 𝑓 is smooth, then the infinitesimal lifting criterion (Lemma 33.9.7) says 𝑓 is
formally smooth and (2) holds.
Assume (2). The set of points 𝑥 ∈ 𝑋 where 𝑓 is not smooth forms a closed subset 𝑇 of 𝑋.
By the discussion in Morphisms, Section 24.15, if 𝑇≠∅ there exists a point 𝑥 ∈ 𝑇 ⊂ 𝑋
such that the morphism

𝑆𝑝𝑒𝑐(𝜅(𝑥)) → 𝑋 → 𝑆
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is of finite type (namely, pick any point 𝑥 of 𝑇 which is closed in an affine open of 𝑋). By
Morphisms, Lemma 24.15.2 given any local Artinian ring 𝐵′ with residue field 𝜅(𝑥) then
any morphism 𝛽 ∶ 𝑆𝑝𝑒𝑐(𝐵′) → 𝑆 is of finite type. Thus we see that all the diagrams used
in Lemma 33.10.1 (4) correspond to diagrams as in the current lemma (2). Whence 𝑋 → 𝑆
is smooth a 𝑥 a contradiction. �

33.11. Openness of the flat locus

This result takes some work to prove, and (perhaps) deserves its own section. Here it is.

Theorem 33.11.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism which is locally of
finite presentation. Let ℱ be a quasi-coherent 𝒪𝑋-module which is locally of finite presen-
tation. Then

𝑈 = {𝑥 ∈ 𝑋 ∣ ℱ is flat over 𝑆 at 𝑥}
is open in 𝑋.

Proof. We may test for openness locally on 𝑋 hence we may assume that 𝑓 is a morphism
of affine schemes. In this case the theorem is exactly Algebra, Theorem 7.120.4. �

Lemma 33.11.2. Let 𝑆 be a scheme. Let

𝑋′
𝑔′
//

𝑓′

��

𝑋

𝑓
��

𝑆′ 𝑔 // 𝑆
be a cartesian diagram of schemes. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let 𝑥′ ∈ 𝑋′

with images 𝑥 = 𝑔′(𝑥′) and 𝑠′ = 𝑔′(𝑥′).
(1) If ℱ is flat over 𝑆 at 𝑥, then (𝑔′)∗ℱ is flat over 𝑆′ at 𝑥′.
(2) If 𝑔 is flat at 𝑠′ and (𝑔′)∗ℱ is flat over 𝑆′ at 𝑥′, then ℱ is flat over 𝑆 at 𝑥.

In particular, if 𝑔 is flat, 𝑓 is locally of finite presentation, and ℱ is locally of finite presen-
tation, then formation of the open subset of Theorem 33.11.1 commutes with base change.

Proof. Consider the commutative diagram of local rings

𝒪𝑋′,𝑥′ 𝒪𝑋,𝑥
oo

𝒪𝑆′,𝑠′

OO

𝒪𝑆,𝑠
oo

OO

Note that𝒪𝑋′,𝑥′ is a localization of𝒪𝑋,𝑥⊗𝒪𝑆,𝑠
𝒪𝑆′,𝑠′, and that ((𝑔′)∗ℱ)𝑥′ is equal toℱ𝑥⊗𝒪𝑋,𝑥

𝒪𝑋′,𝑥′. Hence the lemma follows from Algebra, Lemma 7.92.1. �

33.12. Critère de platitude par fibres

Consider a commutative diagram of schemes (left hand diagram)

𝑋
𝑓

//

��

𝑌

��
𝑆

𝑋𝑠 𝑓𝑠
//

$$

𝑌𝑠

zz
𝑆𝑝𝑒𝑐(𝜅(𝑠))

and a quasi-coherent 𝒪𝑋-module ℱ. Given a point 𝑥 ∈ 𝑋 lying over 𝑠 ∈ 𝑆 with image
𝑦 = 𝑓(𝑥) we consider the question: Is ℱ flat over 𝑌 at 𝑥? If ℱ is flat over 𝑆 at 𝑥, then the
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theorem states this question is intimately related to the question of whether the restriction
of ℱ to the fibre

ℱ𝑠 = (𝑋𝑠 → 𝑋)∗ℱ
is flat over 𝑌𝑠 at 𝑥. Below you will find a ``Noetherian'' version, a ``finitely presented''
version, and earlier we treated a ``nilpotent'' version, see Lemma 33.8.2.

Theorem 33.12.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆.
Let ℱ be a quasi-coherent 𝒪𝑋-module. Let 𝑥 ∈ 𝑋. Set 𝑦 = 𝑓(𝑥) and 𝑠 ∈ 𝑆 the image of 𝑥
in 𝑆. Assume 𝑆, 𝑋, 𝑌 locally Noetherian, ℱ coherent, and ℱ𝑥≠0. Then the following are
equivalent:

(1) ℱ is flat over 𝑆 at 𝑥, and ℱ𝑠 is flat over 𝑌𝑠 at 𝑥, and
(2) 𝑌 is flat over 𝑆 at 𝑦 and ℱ is flat over 𝑌 at 𝑥.

Proof. Consider the ring maps

𝒪𝑆,𝑠 ⟶ 𝒪𝑌,𝑦 ⟶ 𝒪𝑋,𝑥

and the module ℱ𝑥. The stalk of ℱ𝑠 at 𝑥 is the module ℱ𝑥/𝔪𝑠ℱ𝑥 and the local ring of 𝑌𝑠 at
𝑦 is 𝒪𝑌,𝑦/𝔪𝑠𝒪𝑌,𝑦. Thus the implication (1) ⇒ (2) is Algebra, Lemma 7.91.14. If (2) holds,
then the first ring map is faithfully flat and ℱ𝑥 is flat over 𝒪𝑌,𝑦 so by Algebra, Lemma 7.35.3
we see that ℱ𝑥 is flat over 𝒪𝑆,𝑠. Moreover, ℱ𝑥/𝔪𝑠ℱ𝑥 is the base change of the flat module
ℱ𝑥 by 𝒪𝑌,𝑦 → 𝒪𝑌,𝑦/𝔪𝑠𝒪𝑌,𝑦, hence flat by Algebra, Lemma 7.35.6. �

Here is the non-Noetherian version.

Theorem 33.12.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆.
Let ℱ be a quasi-coherent 𝒪𝑋-module. Assume

(1) 𝑋 is locally of finite presentation over 𝑆,
(2) ℱ an 𝒪𝑋-module of finite presentation, and
(3) 𝑌 is locally of finite type over 𝑆.

Let 𝑥 ∈ 𝑋. Set 𝑦 = 𝑓(𝑥) and let 𝑠 ∈ 𝑆 be the image of 𝑥 in 𝑆. If ℱ𝑥≠0, then the following
are equivalent:

(1) ℱ is flat over 𝑆 at 𝑥, and ℱ𝑠 is flat over 𝑌𝑠 at 𝑥, and
(2) 𝑌 is flat over 𝑆 at 𝑦 and ℱ is flat over 𝑌 at 𝑥.

Moreover, the set of points 𝑥 where (1) and (2) hold is open in Supp(ℱ).

Proof. Consider the ring maps

𝒪𝑆,𝑠 ⟶ 𝒪𝑌,𝑦 ⟶ 𝒪𝑋,𝑥

and the module ℱ𝑥. The stalk of ℱ𝑠 at 𝑥 is the module ℱ𝑥/𝔪𝑠ℱ𝑥 and the local ring of 𝑌𝑠 at
𝑦 is 𝒪𝑌,𝑦/𝔪𝑠𝒪𝑌,𝑦. Thus the implication (1) ⇒ (2) is Algebra, Lemma 7.119.9. If (2) holds,
then the first ring map is faithfully flat and ℱ𝑥 is flat over 𝒪𝑌,𝑦 so by Algebra, Lemma 7.35.3
we see that ℱ𝑥 is flat over 𝒪𝑆,𝑠. Moreover, ℱ𝑥/𝔪𝑠ℱ𝑥 is the base change of the flat module
ℱ𝑥 by 𝒪𝑌,𝑦 → 𝒪𝑌,𝑦/𝔪𝑠𝒪𝑌,𝑦, hence flat by Algebra, Lemma 7.35.6.

ByMorphisms, Lemma 24.20.11 the morphism 𝑓 is locally of finite presentation. Consider
the set

(33.12.2.1) 𝑈 = {𝑥 ∈ 𝑋 ∣ ℱ flat at 𝑥 over both 𝑌 and 𝑆}.

This set is open in 𝑋 by Theorem 33.11.1. Note that if 𝑥 ∈ 𝑈, then ℱ𝑠 is flat at 𝑥 over 𝑌𝑠
as a base change of a flat module under the morphism 𝑌𝑠 → 𝑌, see Morphisms, Lemma
24.24.6. Hence at every point of 𝑈 ∩Supp(ℱ) condition (1) is satisfied. On the other hand,
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it is clear that if 𝑥 ∈ Supp(ℱ) satisfies (1) and (2), then 𝑥 ∈ 𝑈. Thus the open set we are
looking for is 𝑈 ∩ Supp(ℱ). �

These theorems are often used in the following simplified forms. We give only the global
statements -- of course there are also pointwise versions.

Lemma 33.12.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆.
Assume

(1) 𝑆, 𝑋, 𝑌 are locally Noetherian,
(2) 𝑋 is flat over 𝑆,
(3) for every 𝑠 ∈ 𝑆 the morphism 𝑓𝑠 ∶ 𝑋𝑠 → 𝑌𝑠 is flat.

Then 𝑓 is flat. If 𝑓 is also surjective, then 𝑌 is flat over 𝑆.

Proof. This is a special case of Theorem 33.12.1. �

Lemma 33.12.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆.
Assume

(1) 𝑋 is locally of finite presentation over 𝑆,
(2) 𝑋 is flat over 𝑆,
(3) for every 𝑠 ∈ 𝑆 the morphism 𝑓𝑠 ∶ 𝑋𝑠 → 𝑌𝑠 is flat, and
(4) 𝑌 is locally of finite type over 𝑆.

Then 𝑓 is flat. If 𝑓 is also surjective, then 𝑌 is flat over 𝑆.

Proof. This is a special case of Theorem 33.12.2. �

Lemma 33.12.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆.
Let ℱ be a quasi-coherent 𝒪𝑋-module. Assume

(1) 𝑋 is locally of finite presentation over 𝑆,
(2) ℱ an 𝒪𝑋-module of finite presentation,
(3) ℱ is flat over 𝑆, and
(4) 𝑌 is locally of finite type over 𝑆.

Then the set
𝑈 = {𝑥 ∈ 𝑋 ∣ ℱ flat at 𝑥 over 𝑌}.

is open in 𝑋 and its formation commutes with arbitrary base change: If 𝑆′ → 𝑆 is a
morphism of schemes, and 𝑈′ is the set of points of 𝑋′ = 𝑋 ×𝑆 𝑆′ where ℱ′ = ℱ ×𝑆 𝑆′ is
flat over 𝑌′ = 𝑌 ×𝑆 𝑆′, then 𝑈′ = 𝑈 ×𝑆 𝑆′.

Proof. By Morphisms, Lemma 24.20.11 the morphism 𝑓 is locally of finite presentation.
Hence 𝑈 is open by Theorem 33.11.1. Because we have assumed that ℱ is flat over 𝑆 we
see that Theorem 33.12.2 implies

𝑈 = {𝑥 ∈ 𝑋 ∣ ℱ𝑠 flat at 𝑥 over 𝑌𝑠}.

where 𝑠 always denotes the image of 𝑥 in 𝑆. (This description also works trivially when
ℱ𝑥 = 0.) Moreover, the assumptions of the lemma remain in force for the morphism
𝑓′ ∶ 𝑋′ → 𝑌′ and the sheaf ℱ′. Hence 𝑈′ has a similar description. In other words, it
suffices to prove that given 𝑠′ ∈ 𝑆′ mapping to 𝑠 ∈ 𝑆 we have

{𝑥′ ∈ 𝑋′
𝑠′ ∣ ℱ′

𝑠′ flat at 𝑥′ over 𝑌′
𝑠′}
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is the inverse image of the corresponding locus in 𝑋𝑠. This is true by Lemma 33.11.2
because in the cartesian diagram

𝑋′
𝑠′

��

// 𝑋𝑠

��
𝑌′

𝑠′
// 𝑌𝑠

the horizontalmorphisms are flat as they are base changes by the flatmorphism𝑆𝑝𝑒𝑐(𝜅(𝑠′)) →
𝑆𝑝𝑒𝑐(𝜅(𝑠)). �

Lemma 33.12.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆.
Assume

(1) 𝑋 is locally of finite presentation over 𝑆,
(2) 𝑋 is flat over 𝑆, and
(3) 𝑌 is locally of finite type over 𝑆.

Then the set
𝑈 = {𝑥 ∈ 𝑋 ∣ 𝑋 flat at 𝑥 over 𝑌}.

is open in 𝑋 and its formation commutes with arbitrary base change.

Proof. This is a special case of Lemma 33.12.5. �

33.13. Normal morphisms

In the article [DM69a] of Deligne and Mumford the notion of a normal morphism is men-
tioned. This is just one in a series of types1 of morphisms that can all be defined similarly.
Over time we will add these in their own sections as needed.

Definition 33.13.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that all the fibres
𝑋𝑦 are locally Noetherian schemes.

(1) Let 𝑥 ∈ 𝑋, and 𝑦 = 𝑓(𝑥). We say that 𝑓 is normal at 𝑥 if 𝑓 is flat at 𝑥, and
the scheme 𝑋𝑦 is geometrically normal at 𝑥 over 𝜅(𝑦) (see Varieties, Definition
28.8.1).

(2) We say 𝑓 is a normal morphism if 𝑓 is normal at every point of 𝑋.

So the condition that the morphism 𝑋 → 𝑌 is normal is stronger than just requiring all the
fibres to be normal locally Noetherian schemes.

Lemma 33.13.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume all fibres of 𝑓 are
locally Noetherian. The following are equivalent

(1) 𝑓 is normal, and
(2) 𝑓 is flat and its fibres are geometrically normal schemes.

Proof. This follows directly from the definitions. �

Lemma 33.13.3. A smooth morphism is normal.

1 The other types are coprof ≤ 𝑘, Cohen-Macaulay, (𝑆𝑘), regular, (𝑅𝑘), and reduced. See [DG67, IV
Definition 6.8.1.].
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Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a smooth morphism. As 𝑓 is locally of finite presentation, see
Morphisms, Lemma 24.33.8 the fibres 𝑋𝑦 are locally of finite type over a field, hence locally
Noetherian. Moreover, 𝑓 is flat, see Morphisms, Lemma 24.33.9. Finally, the fibres 𝑋𝑦 are
smooth over a field (by Morphisms, Lemma 24.33.5) and hence geometrically normal by
Varieties, Lemma 28.15.4. Thus 𝑓 is normal by Lemma 33.13.2. �

We want to show that this notion is local on the source and target for the smooth topology.
First we deal with the property of having locally Noetherian fibres.

Lemma 33.13.4. The property 𝒫(𝑓) =``the fibres of 𝑓 are locally Noetherian'' is local in
the fppf topology on the source and the target.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let {𝜑𝑖 ∶ 𝑌𝑖 → 𝑌}𝑖∈𝐼 be an fppf
covering of 𝑌. Denote 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 the base change of 𝑓 by 𝜑𝑖. Let 𝑖 ∈ 𝐼 and let 𝑦𝑖 ∈ 𝑌𝑖
be a point. Set 𝑦 = 𝜑𝑖(𝑦𝑖). Note that

𝑋𝑖,𝑦𝑖
= 𝑆𝑝𝑒𝑐(𝜅(𝑦𝑖)) ×𝑆𝑝𝑒𝑐(𝜅(𝑦)) 𝑋𝑦.

Moreover, as 𝜑𝑖 is of finite presentation the field extension 𝜅(𝑦) ⊂ 𝜅(𝑦𝑖) is finitely generated.
Hence in this situation we have that 𝑋𝑦 is locally Noetherian if and only if 𝑋𝑖,𝑦𝑖

is locally
Noetherian, see Varieties, Lemma 28.9.1. This fact implies locality on the target.

Let {𝑋𝑖 → 𝑋} be an fppf covering of 𝑋. Let 𝑦 ∈ 𝑌. In this case {𝑋𝑖,𝑦 → 𝑋𝑦} is an
fppf covering of the fibre. Hence the locality on the source follows from Descent, Lemma
31.12.1. �

Lemma 33.13.5. The property 𝒫(𝑓) =``the fibres of 𝑓 are locally Noetherian and 𝑓 is
normal'' is local in the fppf topology on the target and local in the smooth topology on the
source.

Proof. We have 𝒫(𝑓) = 𝒫1(𝑓) ∧ 𝒫2(𝑓) ∧ 𝒫3(𝑓) where 𝒫1(𝑓) =``the fibres of 𝑓 are locally
Noetherian'', 𝒫2(𝑓) =``𝑓 is flat'', and 𝒫3(𝑓) =``the fibres of 𝑓 are geometrically normal''.
We have already seen that 𝒫1 and 𝒫2 are local in the fppf topology on the source and the
target, see Lemma 33.13.4, and Descent, Lemmas 31.19.13 and 31.23.1. Thus we have to
deal with 𝒫3.

Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let {𝜑𝑖 ∶ 𝑌𝑖 → 𝑌}𝑖∈𝐼 be an fpqc covering of 𝑌.
Denote 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 the base change of 𝑓 by 𝜑𝑖. Let 𝑖 ∈ 𝐼 and let 𝑦𝑖 ∈ 𝑌𝑖 be a point. Set
𝑦 = 𝜑𝑖(𝑦𝑖). Note that

𝑋𝑖,𝑦𝑖
= 𝑆𝑝𝑒𝑐(𝜅(𝑦𝑖)) ×𝑆𝑝𝑒𝑐(𝜅(𝑦)) 𝑋𝑦.

Hence in this situation we have that 𝑋𝑦 is geometrically normal if and only if 𝑋𝑖,𝑦𝑖
is geo-

metrically normal, see Varieties, Lemma 28.8.4. This fact implies 𝒫3 is fpqc local on the
target.

Let {𝑋𝑖 → 𝑋} be a smooth covering of 𝑋. Let 𝑦 ∈ 𝑌. In this case {𝑋𝑖,𝑦 → 𝑋𝑦} is a smooth
covering of the fibre. Hence the locality of 𝒫3 for the smooth topology on the source follows
from Descent, Lemma 31.14.2. Combining the above the lemma follows. �

33.14. Regular morphisms

Compare with Section 33.13. The algebraic version of this notion is discussed in More on
Algebra, Section 12.31.

Definition 33.14.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that all the fibres
𝑋𝑦 are locally Noetherian schemes.
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(1) Let 𝑥 ∈ 𝑋, and 𝑦 = 𝑓(𝑥). We say that 𝑓 is regular at 𝑥 if 𝑓 is flat at 𝑥, and
the scheme 𝑋𝑦 is geometrically regular at 𝑥 over 𝜅(𝑦) (see Varieties, Definition
28.10.1).

(2) We say 𝑓 is a regular morphism if 𝑓 is regular at every point of 𝑋.

The condition that the morphism 𝑋 → 𝑌 is regular is stronger than just requiring all the
fibres to be regular locally Noetherian schemes.

Lemma 33.14.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume all fibres of 𝑓 are
locally Noetherian. The following are equivalent

(1) 𝑓 is regular,
(2) 𝑓 is flat and its fibres are geometrically regular schemes,
(3) for every pair of affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑌 with 𝑓(𝑈) ⊂ 𝑉 the ring map 𝒪(𝑉) →

𝒪(𝑈) is regular,
(4) there exists an open covering 𝑌 = ⋃𝑗∈𝐽 𝑉𝑗 and open coverings𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗

𝑈𝑖
such that each of the morphisms 𝑈𝑖 → 𝑉𝑗 is regular, and

(5) there exists an affine open covering 𝑌 = ⋃𝑗∈𝐽 𝑉𝑗 and affine open coverings
𝑓−1(𝑉𝑗) = ⋃𝑖∈𝐼𝑗

𝑈𝑖 such that the ring maps 𝒪(𝑉𝑗) → 𝒪(𝑈𝑖) are regular.

Proof. The equivalence of (1) and (2) is immediate from the definitions. Let 𝑥 ∈ 𝑋 with
𝑦 = 𝑓(𝑥). By definition 𝑓 is flat at 𝑥 if and only if 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥 is a flat ring map, and 𝑋𝑦 is
geometrically regular at 𝑥 over 𝜅(𝑦) if and only if 𝒪𝑋𝑦,𝑥 = 𝒪𝑋,𝑥/𝔪𝑦𝒪𝑋,𝑥 is a geometrically
regular algebra over 𝜅(𝑦). Hence Whether or not 𝑓 is regular at 𝑥 depends only on the local
homomorphism of local rings 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥. Thus the equivalence of (1) and (4) is clear.
Recall (More on Algebra, Definition 12.31.1) that a ring map 𝐴 → 𝐵 is regular if and only
if it is flat and the fibre rings 𝐵 ⊗𝐴 𝜅(𝔭) are Noetherian and geometrically regular for all
primes 𝔭 ⊂ 𝐴. By Varieties, Lemma 28.10.3 this is equivalent to 𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝜅(𝔭)) being
a geometrically regular scheme over 𝜅(𝔭). Thus we see that (2) implies (3). It is clear that
(3) implies (5). Finally, assume (5). This implies that 𝑓 is flat (see Morphisms, Lemma
24.24.3). Moreover, if 𝑦 ∈ 𝑌, then 𝑦 ∈ 𝑉𝑗 for some 𝑗 and we see that 𝑋𝑦 = ⋃𝑖∈𝐼𝑗

𝑈𝑖,𝑦 with
each 𝑈𝑖,𝑦 geometrically regular over 𝜅(𝑦) byVarieties, Lemma 28.10.3. Another application
of Varieties, Lemma 28.10.3 shows that 𝑋𝑦 is geometrically regular. Hence (2) holds and
the proof of the lemma is finished. �

Lemma 33.14.3. A smooth morphism is regular.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a smooth morphism. As 𝑓 is locally of finite presentation, see
Morphisms, Lemma 24.33.8 the fibres 𝑋𝑦 are locally of finite type over a field, hence locally
Noetherian. Moreover, 𝑓 is flat, see Morphisms, Lemma 24.33.9. Finally, the fibres 𝑋𝑦 are
smooth over a field (by Morphisms, Lemma 24.33.5) and hence geometrically regular by
Varieties, Lemma 28.15.4. Thus 𝑓 is regular by Lemma 33.14.2. �

Lemma 33.14.4. The property 𝒫(𝑓) =``the fibres of 𝑓 are locally Noetherian and 𝑓 is
regular'' is local in the fppf topology on the target and local in the smooth topology on the
source.

Proof. We have 𝒫(𝑓) = 𝒫1(𝑓) ∧ 𝒫2(𝑓) ∧ 𝒫3(𝑓) where 𝒫1(𝑓) =``the fibres of 𝑓 are locally
Noetherian'', 𝒫2(𝑓) =``𝑓 is flat'', and 𝒫3(𝑓) =``the fibres of 𝑓 are geometrically regular''.
We have already seen that 𝒫1 and 𝒫2 are local in the fppf topology on the source and the
target, see Lemma 33.13.4, and Descent, Lemmas 31.19.13 and 31.23.1. Thus we have to
deal with 𝒫3.
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Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let {𝜑𝑖 ∶ 𝑌𝑖 → 𝑌}𝑖∈𝐼 be an fpqc covering of 𝑌.
Denote 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 the base change of 𝑓 by 𝜑𝑖. Let 𝑖 ∈ 𝐼 and let 𝑦𝑖 ∈ 𝑌𝑖 be a point. Set
𝑦 = 𝜑𝑖(𝑦𝑖). Note that

𝑋𝑖,𝑦𝑖
= 𝑆𝑝𝑒𝑐(𝜅(𝑦𝑖)) ×𝑆𝑝𝑒𝑐(𝜅(𝑦)) 𝑋𝑦.

Hence in this situation we have that 𝑋𝑦 is geometrically regular if and only if 𝑋𝑖,𝑦𝑖
is geo-

metrically regular, see Varieties, Lemma 28.10.4. This fact implies 𝒫3 is fpqc local on the
target.

Let {𝑋𝑖 → 𝑋} be a smooth covering of 𝑋. Let 𝑦 ∈ 𝑌. In this case {𝑋𝑖,𝑦 → 𝑋𝑦} is a smooth
covering of the fibre. Hence the locality of 𝒫3 for the smooth topology on the source follows
from Descent, Lemma 31.14.4. Combining the above the lemma follows. �

33.15. Cohen-Macaulay morphisms

Compare with Section 33.13. Note that, as pointed out in Algebra, Section 7.149 and
Varieties, Section 28.11 ``geometrically Cohen-Macaulay'' is the same as plain Cohen-
Macaulay.

Definition 33.15.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that all the fibres
𝑋𝑦 are locally Noetherian schemes.

(1) Let 𝑥 ∈ 𝑋, and 𝑦 = 𝑓(𝑥). We say that 𝑓 is Cohen-Macaulay at 𝑥 if 𝑓 is flat at 𝑥,
and the local ring of the scheme 𝑋𝑦 at 𝑥 is Cohen-Macaulay.

(2) We say 𝑓 is a Cohen-Macaulay morphism if 𝑓 is Cohen-Macaulay at every point
of 𝑋.

Here is a translation.

Lemma 33.15.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume all fibres of 𝑓 are
locally Noetherian. The following are equivalent

(1) 𝑓 is Cohen-Macaulay, and
(2) 𝑓 is flat and its fibres are Cohen-Macaulay schemes.

Proof. This follows directly from the definitions. �

Lemma 33.15.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that all the fibres 𝑋𝑦
are locally Noetherian schemes. Let 𝑌′ → 𝑌 be locally of finite type. Let 𝑓′ ∶ 𝑋′ = 𝑋𝑌′ →
𝑌 be the base change of 𝑓. Let 𝑥′ ∈ 𝑋′ be a point with image 𝑥 ∈ 𝑋.

(1) If 𝑓 is Cohen-Macaulay at 𝑥, then the base change 𝑓′ ∶ 𝑋′ → 𝑌′ is Cohen-
Macaulay at 𝑥′.

(2) If 𝑌′ → 𝑌 is flat at 𝑓′(𝑥′) and 𝑓′ is Cohen-Macaulay at 𝑥′, then 𝑓 is Cohen-
Macaulay at 𝑥.

Proof. Note that the assumption on 𝑌′ → 𝑌 means that for 𝑦′ ∈ 𝑌′ mapping to 𝑦 ∈ 𝑌 the
field extension 𝜅(𝑦) ⊂ 𝜅(𝑦′) is finitely generated. Hence also all the fibres 𝑋′

𝑦′ = (𝑋𝑦)𝜅(𝑦′)
are locally Noetherian, see Varieties, Lemma 28.9.1. Thus the lemma makes sense. Set
𝑦′ = 𝑓′(𝑥′) and 𝑦 = 𝑓(𝑥). Hence we get the following commutative diagram of local rings

𝒪𝑋′,𝑥′ 𝒪𝑋,𝑥
oo

𝒪𝑌′,𝑦′

OO

𝒪𝑌,𝑦
oo

OO
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where the upper left corner is a localization of the tensor product of the upper right and
lower left corners over the lower right corner.

Assume 𝑓 is Cohen-Macaulay at 𝑥. The flatness of 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥 implies the flatness
of 𝒪𝑌′,𝑦′ → 𝒪𝑋′,𝑥′, see Algebra, Lemma 7.92.1. The fact that 𝒪𝑋,𝑥/𝔪𝑦𝒪𝑋,𝑥 is Cohen-
Macaulay implies that 𝒪𝑋′,𝑥′/𝔪𝑦′𝒪𝑋′,𝑥′, see Varieties, Lemma 28.11.1. Hence we see that
𝑓′ is Cohen-Macaulay at 𝑥′.

Assume 𝑌′ → 𝑌 is flat at 𝑦′ and 𝑓′ is Cohen-Macaulay at 𝑥′. The flatness of 𝒪𝑌′,𝑦′ → 𝒪𝑋′,𝑥′

and 𝒪𝑌,𝑦 → 𝒪𝑌′,𝑦′ implies the flatness of 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥, see Algebra, Lemma 7.92.1. The fact
that 𝒪𝑋′,𝑥′/𝔪𝑦′𝒪𝑋′,𝑥′ is Cohen-Macaulay implies that 𝒪𝑋,𝑥/𝔪𝑦𝒪𝑋,𝑥, see Varieties, Lemma
28.11.1. Hence we see that 𝑓 is Cohen-Macaulay at 𝑥. �

Lemma 33.15.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a flat morphism of finite presentation. Let

𝑊 = {𝑥 ∈ 𝑋 ∣ 𝑓 is Cohen-Macaulay at 𝑥}

Then
(1) we have

𝑊 = {𝑥 ∈ 𝑋 ∣ 𝒪𝑋𝑓(𝑥),𝑥 is Cohen-Macaulay},

(2) 𝑊 is open in 𝑋,
(3) 𝑊 dense in every fibre of 𝑋 → 𝑆,
(4) the formation of W commutes with arbitrary base change of 𝑓: For any morphism

𝑔 ∶ 𝑆′ → 𝑆, consider the base change 𝑓′ ∶ 𝑋′ → 𝑆′ of 𝑓 and the projection
𝑔′ ∶ 𝑋′ → 𝑋. Then the corresponding set 𝑊′ for the morphism 𝑓′ is equal to
𝑊′ = (𝑔′)−1(𝑊).

Proof. As 𝑓 is flat with locally Noetherian fibres the equality in (1) holds by definition.
Parts (2) and (3) follow fromAlgebra, Lemma 7.121.5. Part (4) follows either fromAlgebra,
Lemma 7.121.7 or Varieties, Lemma 28.11.1. �

Lemma 33.15.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a flat morphism of finite presentation. For 𝑑 ≥ 0 there
exist opens 𝑈𝑑 ⊂ 𝑋 with the following properties

(1) 𝑊 = ⋃𝑑≥0 𝑈𝑑 is dense in every fibre of 𝑓, and
(2) 𝑈𝑑 → 𝑆 is of relative dimension 𝑑 (see Morphisms, Definition 24.28.1).

Proof. This follows by combining Lemma 33.15.4 with Morphisms, Lemma 24.28.4. �

Lemma 33.15.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a flat morphism of finite presentation. Suppose
𝑥′  𝑥 is a specialization of points of 𝑋 with image 𝑠′  𝑠 in 𝑆. If 𝑥 is a generic point of
an irreducible component of 𝑋𝑠 then dim𝑥′(𝑋𝑠′) = dim𝑥(𝑋𝑠).

Proof. The point 𝑥 is contained in 𝑈𝑑 for some 𝑑, where 𝑈𝑑 as in Lemma 33.15.5. �

Lemma 33.15.7. The property 𝒫(𝑓) =``the fibres of 𝑓 are locally Noetherian and 𝑓 is
Cohen-Macaulay'' is local in the fppf topology on the target and local in the syntomic topol-
ogy on the source.

Proof. We have 𝒫(𝑓) = 𝒫1(𝑓) ∧ 𝒫2(𝑓) where 𝒫1(𝑓) =``𝑓 is flat'', and 𝒫2(𝑓) =``the fibres
of 𝑓 are locally Noetherian and Cohen-Macaulay''. We know that 𝒫1 is local in the fppf
topology on the source and the target, see Descent, Lemmas 31.19.13 and 31.23.1. Thus
we have to deal with 𝒫2.
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Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let {𝜑𝑖 ∶ 𝑌𝑖 → 𝑌}𝑖∈𝐼 be an fppf covering of 𝑌.
Denote 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 the base change of 𝑓 by 𝜑𝑖. Let 𝑖 ∈ 𝐼 and let 𝑦𝑖 ∈ 𝑌𝑖 be a point. Set
𝑦 = 𝜑𝑖(𝑦𝑖). Note that

𝑋𝑖,𝑦𝑖
= 𝑆𝑝𝑒𝑐(𝜅(𝑦𝑖)) ×𝑆𝑝𝑒𝑐(𝜅(𝑦)) 𝑋𝑦.

and that 𝜅(𝑦) ⊂ 𝜅(𝑦𝑖) is a finitely generated field extension. Hence if 𝑋𝑦 is locally Noether-
ian, then 𝑋𝑖,𝑦𝑖

is locally Noetherian, see Varieties, Lemma 28.9.1. And if in addition 𝑋𝑦 is
Cohen-Macaulay, then 𝑋𝑖,𝑦𝑖

is Cohen-Macaulay, see Varieties, Lemma 28.11.1. Thus 𝒫2
is fppf local on the target.

Let {𝑋𝑖 → 𝑋} be a syntomic covering of 𝑋. Let 𝑦 ∈ 𝑌. In this case {𝑋𝑖,𝑦 → 𝑋𝑦}
is a syntomic covering of the fibre. Hence the locality of 𝒫2 for the syntomic topology
on the source follows from Descent, Lemma 31.13.2. Combining the above the lemma
follows. �

33.16. Slicing Cohen-Macaulay morphisms

The results in this section eventually lead to the assertion that the fppf topology is the same
as the ``finitely presented, flat, quasi-finite'' topology. The following lemma is very closely
related to Divisors, Lemma 26.10.7.

Lemma 33.16.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point with
image 𝑠 ∈ 𝑆. Let ℎ ∈ 𝔪𝑥 ⊂ 𝒪𝑋,𝑥. Assume

(1) 𝑓 is locally of finite presentation,
(2) 𝑓 is flat at 𝑥, and
(3) the image ℎ of ℎ in 𝒪𝑋𝑠,𝑥 = 𝒪𝑋,𝑥/𝔪𝑠𝒪𝑋,𝑥 is a nonzero divisor.

Then there exists an affine open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such that ℎ comes from ℎ ∈
Γ(𝑈, 𝒪𝑈) and such that𝐷 = 𝑉(ℎ) is an effective Cartier divisor in 𝑈 with 𝑥 ∈ 𝐷 and𝐷 → 𝑆
flat and locally of finite presentation.

Proof. We are going to prove this by reducing to the Noetherian case. By openness of flat-
ness (see Theorem 33.11.1) we may assume, after replacing 𝑋 by an open neighbourhood
of 𝑥, that 𝑋 → 𝑆 is flat. We may also assume that 𝑋 and 𝑆 are affine. After possible
shrinking 𝑋 a bit we may assume that there exists an ℎ ∈ Γ(𝑋, 𝒪𝑋) which maps to our
given ℎ.

We may write 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and we may write 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 as a directed colimit of finite
type 𝐙 algebras. Then by Algebra, Lemma 7.120.5 or Limits, Lemmas 27.6.1, 27.6.2, and
27.6.1 we can find a cartesian diagram

𝑋 //

𝑓
��

𝑋0

𝑓0
��

𝑆 // 𝑆0

with 𝑓0 flat and of finite presentation, 𝑋0 affine, and 𝑆0 affine and Noetherian. Let 𝑥0 ∈ 𝑋0,
resp. 𝑠0 ∈ 𝑆0 be the image of 𝑥, resp. 𝑠. We may also assume there exists an element
ℎ0 ∈ Γ(𝑋0, 𝒪𝑋0

) which restricts to ℎ on 𝑋. (If you used the algebra reference above
then this is clear; if you used the references to the chapter on limits then this follows from
Limits, Lemma 27.6.1 by thinking of ℎ as a morphism 𝑋 → 𝐀1

𝑆.) Note that 𝒪𝑋𝑠,𝑥 is a
localization of 𝒪(𝑋0)𝑠0,𝑥0

⊗𝜅(𝑠0) 𝜅(𝑠), so that 𝒪(𝑋0)𝑠0,𝑥0
→ 𝒪𝑋𝑠,𝑥 is a flat local ring map, in

particular faithfully flat. Hence the image ℎ0 ∈ 𝒪(𝑋0)𝑠0,𝑥0
is contained in 𝔪(𝑋0)𝑠0,𝑥0

and is
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a nonzero divisor. We claim that after replacing 𝑋0 by a principal open neighbourhood of
𝑥0 the element ℎ0 is a nonzero divisor in 𝐵0 = Γ(𝑋0, 𝒪𝑋0

) such that 𝐵0/ℎ0𝐵0 is flat over
𝐴0 = Γ(𝑆0, 𝒪𝑆0

). If so then

0 → 𝐵0
ℎ0−−→ 𝐵0 → 𝐵0/ℎ0𝐵0 → 0

is a short exact sequence of flat 𝐴0-modules. Hence this remains exact on tensoring with
𝐴 (by Algebra, Lemma 7.35.11) and the lemma follows.

It remains to prove the claim above. The corresponding algebra statement is the following
(we drop the subscript 0 here): Let 𝐴 → 𝐵 be a flat, finite type ring map of Noetherian
rings. Let 𝔮 ⊂ 𝐵 be a prime lying over 𝔭 ⊂ 𝐴. Assume ℎ ∈ 𝔮 maps to a nonzero divisor
in 𝐵𝔮/𝔭𝐵𝔮. Goal: show that after possible replacing 𝐵 by 𝐵𝑔 for some 𝑔 ∈ 𝐵, 𝑔∉𝔮 the
element ℎ becomes a nonzero divisor and 𝐵/ℎ𝐵 becomes flat over 𝐴. By Algebra, Lemma
7.91.2 we see that ℎ is a nonzero divisor in 𝐵𝔮 and that 𝐵𝔮/ℎ𝐵𝔮 is flat over 𝐴. By openess
of flatness, see Algebra, Theorem 7.120.4 or Theorem 33.11.1 we see that 𝐵/ℎ𝐵 is flat over
𝐴 after replacing 𝐵 by 𝐵𝑔 for some 𝑔 ∈ 𝐵, 𝑔∉𝔮. Finally, let 𝐼 = {𝑏 ∈ 𝐵 ∣ ℎ𝑏 = 0} be the
annihilator of ℎ. Then 𝐼𝐵𝔮 = 0 as ℎ is a nonzero divisor in 𝐵𝔮. Also 𝐼 is finitely generated
as 𝐵 is Noetherian. Hence there exists a 𝑔 ∈ 𝐵, 𝑔∉𝔮 such that 𝐼𝐵𝑔 = 0. After replacing 𝐵
by 𝐵𝑔 we see that ℎ is a nonzero divisor. �

Lemma 33.16.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point with
image 𝑠 ∈ 𝑆. Let ℎ1, … , ℎ𝑟 ∈ 𝒪𝑋,𝑥. Assume

(1) 𝑓 is locally of finite presentation,
(2) 𝑓 is flat at 𝑥, and
(3) the images of ℎ1, … , ℎ𝑟 in 𝒪𝑋𝑠,𝑥 = 𝒪𝑋,𝑥/𝔪𝑠𝒪𝑋,𝑥 form a regular sequence.

Then there exists an affine open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such that ℎ1, … , ℎ𝑟 come
from ℎ1, … , ℎ𝑟 ∈ Γ(𝑈, 𝒪𝑈) and such that 𝑍 = 𝑉(ℎ1, … , ℎ𝑟) → 𝑈 is a regular immersion
with 𝑥 ∈ 𝑍 and 𝑍 → 𝑆 flat and locally of finite presentation. Moreover, the base change
𝑍𝑆′ → 𝑈𝑆′ is a regular immersion for any scheme 𝑆′ over 𝑆.

Proof. (Our conventions on regular sequences imply that ℎ𝑖 ∈ 𝔪𝑥 for each 𝑖.) The case
𝑟 = 1 follows from Lemma 33.16.1 combined with Divisors, Lemma 26.10.1 to see that
𝑉(ℎ1) remains an effective Cartier divisor after base change. The case 𝑟 > 1 follows from
a straightforward induction on 𝑟 (applying the result for 𝑟 = 1 exactly 𝑟 times; details
omitted).

Anotherway to prove the lemma is using thematerial fromDivisors, Section 26.14. Namely,
first by openness of flatness (see Theorem 33.11.1) we may assume, after replacing 𝑋 by
an open neighbourhood of 𝑥, that 𝑋 → 𝑆 is flat. We may also assume that 𝑋 and 𝑆 are
affine. After possible shrinking 𝑋 a bit we may assume that we have ℎ1, … , ℎ𝑟 ∈ Γ(𝑋, 𝒪𝑋).
Set 𝑍 = 𝑉(ℎ1, … , ℎ𝑟). Note that 𝑋𝑠 is a Noetherian scheme (because it is an algebraic
𝜅(𝑠)-scheme, see Varieties, Section 28.13) and that the topology on 𝑋𝑠 is induced from the
topology on 𝑋 (see Schemes, Lemma 21.18.5). Hence after shrinking 𝑋 a bit more we may
assume that 𝑍𝑠 ⊂ 𝑋𝑠 is a regular immersion cut out by the 𝑟 elements ℎ𝑖|𝑋𝑠

, see Divisors,
Lemma 26.12.8 and its proof. It is also clear that 𝑟 = dim𝑥(𝑋𝑠) − dim𝑥(𝑍𝑠) because

dim𝑥(𝑋𝑠) = dim(𝒪𝑋𝑠,𝑥) + trdeg𝜅(𝑠)(𝜅(𝑥)),
dim𝑥(𝑍𝑠) = dim(𝒪𝑍𝑠,𝑥) + trdeg𝜅(𝑠)(𝜅(𝑥)),

dim(𝒪𝑋𝑠,𝑥) = dim(𝒪𝑍𝑠,𝑥) + 𝑟
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the first two equalities by Algebra, Lemma 7.107.3 and the second by 𝑟 times applying
Algebra, Lemma 7.57.11. Hence Divisors, Lemma 26.14.6 part (3) applies to show that
(after Zariski shrinking 𝑋) the morphism 𝑍 → 𝑋 is a regular immersion to which Divisors,
Lemma 26.14.4 applies (which gives the flatness and the statement on base change). �

Lemma 33.16.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point with
image 𝑠 ∈ 𝑆. Assume

(1) 𝑓 is locally of finite presentation,
(2) 𝑓 is flat at 𝑥, and
(3) 𝒪𝑋𝑠,𝑥 has depth ≥ 1.

Then there exists an affine open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 and an effective Cartier divisor
𝐷 ⊂ 𝑈 containing 𝑥 such that 𝐷 → 𝑆 is flat and of finite presentation.

Proof. Pick any ℎ ∈ 𝔪𝑥 ⊂ 𝒪𝑋,𝑥 which maps to a nonzero divisor in 𝒪𝑋𝑠,𝑥 and apply
Lemma 33.16.1. �

Lemma 33.16.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point with
image 𝑠 ∈ 𝑆. Assume

(1) 𝑓 is locally of finite presentation,
(2) 𝑓 is Cohen-Macaulay at 𝑥, and
(3) 𝑥 is a closed point of 𝑋𝑠.

Then there exists a regular immersion 𝑍 → 𝑋 containing 𝑥 such that
(a) 𝑍 → 𝑆 is flat and locally of finite presentation,
(b) 𝑍 → 𝑆 is locally quasi-finite, and
(c) 𝑍𝑠 = {𝑥} set theoretically.

Proof. We may and do replace 𝑆 by an affine open neighbourhoof of 𝑠. We will prove the
lemma for affine 𝑆 by induction on 𝑑 = dim𝑥(𝑋𝑠).
The case 𝑑 = 0. In this case we show that we may take 𝑍 to be an open neighbourhood of
𝑥. (Note that an open immersion is a regular immersion.) Namely, if 𝑑 = 0, then 𝑋 → 𝑆
is quasi-finite at 𝑥, see Morphisms, Lemma 24.28.5. Hence there exists an affine open
neighbourhood 𝑈 ⊂ 𝑋 such that 𝑈 → 𝑆 is quasi-finite, see Morphisms, Lemma 24.47.2.
Thus after replacing 𝑋 by 𝑈 we see that the fibre 𝑋𝑠 is a finite discrete set. Hence after
replacing 𝑋 by a further affine open neigbourhood of 𝑋 we see that that 𝑓−1({𝑠}) = {𝑥}
(because the topology on 𝑋𝑠 is induced from the topology on 𝑋, see Schemes, Lemma
21.18.5). This proves the lemma in this case.
Next, assume 𝑑 > 0. Note that because 𝑥 is a closed point of its fibre the extension 𝜅(𝑠) ⊂
𝜅(𝑥) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma 24.19.3). Thus we see

depth(𝒪𝑋𝑠,𝑥) = dim(𝒪𝑋𝑠,𝑥) = 𝑑 > 0

the first equality as𝒪𝑋𝑠,𝑥 is Cohen-Macaulay and the second byMorphisms, Lemma 24.27.1.
Thus we may apply Lemma 33.16.3 to find a diagram

𝐷 //

''

𝑈 //

��

𝑋

��
𝑆

with 𝑥 ∈ 𝐷. Note that 𝒪𝐷𝑠,𝑥 = 𝒪𝑋𝑠,𝑥/(ℎ) for some nonzero divisor ℎ, see Divisors, Lemma
26.10.1. Hence 𝒪𝐷𝑠,𝑥 is Cohen-Macaulay of dimension one less than the dimension of
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𝒪𝑋𝑠,𝑥, see Algebra, Lemma 7.96.2 for example. Thus the morphism 𝐷 → 𝑆 is flat, locally
of finite presentation, and Cohen-Macaulay at 𝑥 with dim𝑥(𝐷𝑠) = dim𝑥(𝑋𝑠) − 1 = 𝑑 − 1.
By induction hypothesis we can find a regular immersion 𝑍 → 𝐷 having properties (a),
(b), (c). As 𝑍 → 𝐷 → 𝑈 are both regular immersions, we see that also 𝑍 → 𝑈 is a regular
immersion by Divisors, Lemma 26.13.7. This finishes the proof. �

Lemma 33.16.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a flat morphism of schemes which is locally of finite
presentation Let 𝑠 ∈ 𝑆 be a point in the image of 𝑓. Then there exists a commutative
diagram

𝑆′ //

𝑔
��

𝑋

𝑓��
𝑆

where 𝑔 ∶ 𝑆′ → 𝑆 is flat, locally of finite presentation, locally quasi-finite, and 𝑠 ∈ 𝑔(𝑆′).

Proof. The fibre 𝑋𝑠 is not empty by assumption. Hence there exists a closed point 𝑥 ∈ 𝑋𝑠
where 𝑓 is Cohen-Macaulay, see Lemma 33.15.4. Apply Lemma 33.16.4 and set 𝑆′ =
𝑆. �

The following lemma shows that sheaves for the fppf topology are the same thing as sheaves
for the ``quasi-finite, flat, finite presentation'' toplogy.

Lemma 33.16.6. Let 𝑆 be a scheme. Let 𝒰 = {𝑆𝑖 → 𝑆}𝑖∈𝐼 be an fppf covering of 𝑆, see
Topologies, Definition 30.5.1. Then there exists an fppf covering 𝒱 = {𝑇𝑗 → 𝑆}𝑗∈𝐽 which
refines (see Sites, Definition 9.8.1) 𝒰 such that each 𝑇𝑗 → 𝑆 is locally quasi-finite.

Proof. For every 𝑠 ∈ 𝑆 there exists an 𝑖 ∈ 𝐼 such that 𝑠 is in the image of 𝑆𝑖 → 𝑆.
By Lemma 33.16.5 we can find a morphism 𝑔𝑠 ∶ 𝑇𝑠 → 𝑆 such that 𝑠 ∈ 𝑔𝑠(𝑇)𝑠 which is
flat, locally of finite presentation and locally quasi finite and such that 𝑔𝑠 factors through
𝑆𝑖 → 𝑆. Hence {𝑇𝑠 → 𝑆} is the desired covering of 𝑆 that refines 𝒰. �

33.17. Generic fibres

Some results on the relationship between generic fibres and nearby fibres.

Lemma 33.17.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite type morphism of schemes. Assume 𝑌 irre-
ducible with generic point 𝜂. If 𝑋𝜂 = ∅ then there exists a nonempty open 𝑉 ⊂ 𝑌 such that
𝑋𝑉 = 𝑉 ×𝑌 𝑋 = ∅.

Proof. Follows immediately from the more general Morphisms, Lemma 24.6.4. �

Lemma 33.17.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite type morphism of schemes. Assume 𝑌 irre-
ducible with generic point 𝜂. If 𝑋𝜂≠∅ then there exists a nonempty open 𝑉 ⊂ 𝑌 such that
𝑋𝑉 = 𝑉 ×𝑌 𝑋 → 𝑉 is surjective.

Proof. This follows, upon taking affine opens, from Algebra, Lemma 7.27.2. (Of course it
also follows from generic flatness.) �

Lemma 33.17.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite type morphism of schemes. Assume 𝑌 irre-
ducible with generic point 𝜂. If 𝑍 ⊂ 𝑋 is a closed subset with 𝑍𝜂 nowhere dense in 𝑋𝜂,
then there exists a nonempty open 𝑉 ⊂ 𝑌 such that 𝑍𝑦 is nowhere dense in 𝑋𝑦 for all 𝑦 ∈ 𝑉.
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Proof. Let 𝑌′ ⊂ 𝑌 be the reduction of 𝑌. Set 𝑋′ = 𝑌′ ×𝑌 𝑋 and 𝑍′ = 𝑌′ ×𝑌 𝑍. As 𝑌′ → 𝑌
is a universal homeomorphism by Morphisms, Lemma 24.43.4 we see that it suffices to
prove the lemma for 𝑍′ ⊂ 𝑋′ → 𝑌′. Thus we may assume that 𝑌 is integral, see Properties,
Lemma 23.3.4. By Morphisms, Proposition 24.26.1 there exists a nonempty affine open
𝑉 ⊂ 𝑌 such that 𝑋𝑉 → 𝑉 and 𝑍𝑉 → 𝑍 are flat and of finite presentation. We claim that 𝑉
works. Pick 𝑦 ∈ 𝑉. If 𝑍𝑦 has a nonempty interior, then 𝑍𝑦 contains a generic point 𝜉 of an
irreducible component of 𝑋𝑦. Note that 𝜂  𝑓(𝜉). Since 𝑍𝑉 → 𝑉 is flat we can choose a
specialization 𝜉′  𝜉, 𝜉′ ∈ 𝑍 with 𝑓(𝜉′) = 𝜂, see Morphisms, Lemma 24.24.8. By Lemma
33.15.6 we see that

dim𝜉′(𝑍𝜂) = dim𝜉(𝑍𝑦) = dim𝜉(𝑋𝑦) = dim𝜉′(𝑋𝜂).

Hence some irreducible component of 𝑍𝜂 passing through 𝜉′ has dimension dim𝜉′(𝑋𝜂)
which contradicts the assumption that 𝑍𝜂 is nowhere dense in 𝑋𝜂 and we win. �

Lemma 33.17.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite type morphism of schemes. Assume 𝑌 irre-
ducible with generic point 𝜂. Let 𝑈 ⊂ 𝑋 be an open subscheme such that 𝑈𝜂 is scheme
theoretically dense in 𝑋𝜂. Then there exists a nonempty open 𝑉 ⊂ 𝑌 such that 𝑈𝑦 is scheme
theoretically dense in 𝑋𝑦 for all 𝑦 ∈ 𝑉.

Proof. Let 𝑌′ ⊂ 𝑌 be the reduction of 𝑌. Let 𝑋′ = 𝑌′ ×𝑌 𝑋 and 𝑈′ = 𝑌′ ×𝑌 𝑈. As
𝑌′ → 𝑌 induces a bijection on points, and as 𝑈′ → 𝑈 and 𝑋′ → 𝑋 induce isomorphisms
of scheme theoretic fibres, we may replace 𝑌 by 𝑌′ and 𝑋 by 𝑋′. Thus we may assume that
𝑌 is integral, see Properties, Lemma 23.3.4. We may also replace 𝑌 by a nonempty affine
open. In other words we may assume that 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) where 𝐴 is a domain with fraction
field 𝐾.
As 𝑓 is of finite type we see that 𝑋 is quasi-compact. Write 𝑋 = 𝑋1 ∪ … ∪ 𝑋𝑛 for some
affine opens 𝑋𝑖. By Morphisms, Definition 24.5.1 we see that 𝑈𝑖 = 𝑋𝑖 ∩ 𝑈 is an open
subscheme of 𝑋𝑖 such that 𝑈𝑖,𝜂 is scheme theoretically dense in 𝑋𝑖,𝜂. Thus it suffices to
prove the result for the pairs (𝑋𝑖, 𝑈𝑖), in other words we may assume that 𝑋 is affine.
Write 𝑋 = 𝑆𝑝𝑒𝑐(𝐵). Note that 𝐵𝐾 is Noetherian as it is a finite type 𝐾-algebra. Hence
𝑈𝜂 is quasi-compact. Thus we can find finitely many 𝑔1, … , 𝑔𝑚 ∈ 𝐵 such that 𝐷(𝑔𝑗) ⊂
𝑈 and such that 𝑈𝜂 = 𝐷(𝑔1)𝜂 ∪ … ∪ 𝐷(𝑔𝑚)𝜂. The fact that 𝑈𝜂 is scheme theoretically
dense in 𝑋𝜂 means that 𝐵𝐾 → ⨁𝑗(𝐵𝐾)𝑔𝑗

is injective, see Morphisms, Example 24.5.4.
By Algebra, Lemma 7.20.4 this is equivalent to the injectivity of 𝐵𝐾 → ⨁𝑗=1,…,𝑚 𝐵𝐾,
𝑏 ↦ (𝑔1𝑏, … , 𝑔𝑚𝑏). Let 𝑀 be the cokernel of this map over 𝐴, i.e., such that we have an
exact sequence

0 → 𝐼 → 𝐵
(𝑔1,…,𝑔𝑚)

−−−−−−−→ ⨁𝑗=1,…,𝑚
𝐵 → 𝑀 → 0

After replacing 𝐴 by 𝐴ℎ for some nonzero ℎ we may assume that 𝐵 is a flat, finitely pre-
sented 𝐴-algebra, and that 𝑀 is flat over 𝐴, see Algebra, Lemma 7.109.3. The flatness
of 𝐵 over 𝐴 implies that 𝐵 is torsion free as an 𝐴-module, see More on Algebra, Lemma
12.17.3. Hence 𝐵 ⊂ 𝐵𝐾. By assumption 𝐼𝐾 = 0 which implies that 𝐼 = 0 (as 𝐼 ⊂ 𝐵 ⊂ 𝐵𝐾
is a subset of 𝐼𝐾). Hence now we have a short exact sequence

0 → 𝐵
(𝑔1,…,𝑔𝑚)

−−−−−−−→ ⨁𝑗=1,…,𝑚
𝐵 → 𝑀 → 0

with 𝑀 flat over 𝐴. Hence for every homomorphism 𝐴 → 𝜅 where 𝜅 is a field, we obtain
a short exact sequence

0 → 𝐵 ⊗𝐴 𝜅
(𝑔1⊗1,…,𝑔𝑚⊗1)

−−−−−−−−−−−−→ ⨁𝑗=1,…,𝑚
𝐵 ⊗𝐴 𝜅 → 𝑀 ⊗𝐴 𝜅 → 0
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see Algebra, Lemma 7.35.11. Reversing the arguments above this means that ⋃ 𝐷(𝑔𝑗 ⊗ 1)
is scheme theoretically dense in 𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝜅). As ⋃ 𝐷(𝑔𝑗 ⊗ 1) = ⋃ 𝐷(𝑔𝑗)𝜅 ⊂ 𝑈𝜅 we
obtain that 𝑈𝜅 is scheme theoretically dense in 𝑋𝜅 which is what we wanted to prove. �

Suppose given a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 and a point 𝑦 ∈ 𝑌. Recally that the
fibre 𝑋𝑦 is homeomorphic to the subset 𝑓−1({𝑦}) of 𝑋 with induced topology, see Schemes,
Lemma 21.18.5. Suppose given a closed subset 𝑇(𝑦) ⊂ 𝑋𝑦. Let 𝑇 be the closure of 𝑇(𝑦)
in 𝑋. Endow 𝑇 with the induced reduced scheme structure. Then 𝑇 is a closed subscheme
of 𝑋 with the property that 𝑇𝑦 = 𝑇(𝑦) set-theoretically. In fact 𝑇 is the smallest closed
subscheme of 𝑋 with this property. Thus it is ``harmless'' to denote a closed subset of 𝑋𝑦
by 𝑇𝑦 if we so desire. In the following lemma we apply this to the generic fibre of 𝑓.

Lemma 33.17.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite type morphism of schemes. Assume 𝑌 irre-
ducible with generic point 𝜂. Let 𝑋𝜂 = 𝑍1,𝜂 ∪ … ∪ 𝑍𝑛,𝜂 be a covering of the generic fibre
by closed subsets of 𝑋𝜂. Let 𝑍𝑖 be the closure of 𝑍𝑖,𝜂 in 𝑋 (see discussion above). Then
there exists a nonempty open 𝑉 ⊂ 𝑌 such that 𝑋𝑦 = 𝑍1,𝑦 ∪ … ∪ 𝑍𝑛,𝑦 for all 𝑦 ∈ 𝑉.

Proof. If 𝑌 is Noetherian then 𝑈 = 𝑋 ⧵ (𝑍1 ∪ … ∪ 𝑍𝑛) is of finite type over 𝑌 and we can
directly apply Lemma 33.17.1 to get that 𝑈𝑉 = ∅ for a nonempty open 𝑉 ⊂ 𝑌. In general we
argue as follows. As the question is topological we may replace 𝑌 by its reduction. Thus 𝑌
is integral, see Properties, Lemma 23.3.4. After shrinking 𝑌 we may assume that 𝑋 → 𝑌 is
flat, see Morphisms, Proposition 24.26.1. In this case every point 𝑥 in 𝑋𝑦 is a specialization
of a point 𝑥′ ∈ 𝑋𝜂 by Morphisms, Lemma 24.24.8. As the 𝑍𝑖 are closed in 𝑋 and cover
the generic fibre this implies that 𝑋𝑦 = ⋃ 𝑍𝑖,𝑦 for 𝑦 ∈ 𝑌 as desired. �

The following lemma says that generic fibres of morphisms whose source is reduced are
reduced.

Lemma 33.17.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝜂 ∈ 𝑌 be a generic point
of an irreducible component of 𝑌. Then (𝑋𝜂)𝑟𝑒𝑑 = (𝑋𝑟𝑒𝑑)𝜂.

Proof. Choose an affine neighbourhood𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑌 of 𝜂. Choose an affine open𝑆𝑝𝑒𝑐(𝐵) ⊂
𝑋 mapping into 𝑆𝑝𝑒𝑐(𝐴) via the morphism 𝑓. Let 𝔭 ⊂ 𝐴 be the minimal prime correspond-
ing to 𝜂. Let 𝐵𝑟𝑒𝑑 be the quotient of 𝐵 by √(0). The algebraic content of the lemma is that
𝐵𝑟𝑒𝑑 ⊗𝐴 𝜅(𝔭) is reduced. To prove this, suppose that 𝑥 ∈ 𝐵𝑟𝑒𝑑 ⊗𝐴 𝜅(𝔭) is nilpotent. Say
𝑥𝑛 = 0 for some 𝑛 > 0. Pick an 𝑓 ∈ 𝐴, 𝑓∉𝔭 such that 𝑓𝑥 is the image of 𝑦 ∈ 𝐵𝑟𝑒𝑑. Then
𝑔𝑦𝑛 ∈ 𝔭𝐵𝑟𝑒𝑑 for some 𝑔 ∈ 𝐴, 𝑔∉𝔭. By Algebra, Lemma 7.23.3 we see that 𝔭𝐴𝔭 is locally
nilpotent. By Algebra, Lemma 7.14.1 we see that 𝔭(𝐵𝑟𝑒𝑑)𝔭 is locally nilpotent. Hence we
conclude that 𝑔𝑦𝑛 is nilpotent in (𝐵𝑟𝑒𝑑)𝔭. Thus there exists a ℎ ∈ 𝐴, ℎ∉𝔭 and an 𝑚 > 0
such that ℎ(𝑔𝑦𝑛)𝑚 = 0 in 𝐵𝑟𝑒𝑑. This implies that ℎ𝑔𝑦 is nilpotent in 𝐵𝑟𝑒𝑑, i.e., that ℎ𝑔𝑦 = 0.
Of course this means that 𝑥 = 0 as desired. �

Lemma 33.17.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that 𝑌 is irreducible
and 𝑓 is of finite type. There exists a diagram

𝑋′

𝑓′

��

𝑔′
// 𝑋𝑉

//

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑉 // 𝑌
where

(1) 𝑉 is a nonempty open of 𝑌,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=054Y
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=054Z
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0550


33.17. GENERIC FIBRES 1779

(2) 𝑋𝑉 = 𝑉 ×𝑌 𝑋,
(3) 𝑔 ∶ 𝑌′ → 𝑉 is a finite universal homeomorphism,
(4) 𝑋′ = (𝑌′ ×𝑌 𝑋)𝑟𝑒𝑑 = (𝑌′ ×𝑉 𝑋𝑉)𝑟𝑒𝑑,
(5) 𝑔′ is a finite universal homeomorphism,
(6) 𝑌′ is an integral affine scheme,
(7) 𝑓′ is flat and of finite presentation, and
(8) the generic fibre of 𝑓′ is geometrically reduced.

Proof. Let 𝑉 = 𝑆𝑝𝑒𝑐(𝐴) be a nonempty affine open of 𝑌. By assumption the radical of 𝐴
is a prime ideal 𝔭. Let 𝐾 = 𝑓.𝑓(𝐴/𝔭) be the fraction field. Let 𝑝 be the characteristic of 𝐾 if
positive and 1 if the characteristic is zero. By Varieties, Lemma 28.4.11 there exists a finite
purely inseparable field extension 𝐾 ⊂ 𝐾′ such that 𝑋𝐾′ is geometrically reduced over 𝐾′.
Choose elements 𝑥1, … , 𝑥𝑛 ∈ 𝐾′ which generate 𝐾′ over 𝐾 and such that some 𝑝-power
of 𝑥𝑖 is in 𝐴/𝔭. Let 𝐴′ ⊂ 𝐾′ be the finite 𝐴-subalgebra of 𝐾′ generated by 𝑥1, … , 𝑥𝑛.
Note that 𝐴′ is a domain with fraction field 𝐾′. By Algebra, Lemma 7.43.2 we see that
𝐴 → 𝐴′ is a universal homeomorphism. Set 𝑌′ = 𝑆𝑝𝑒𝑐(𝐴′). Set 𝑋′ = (𝑌′ ×𝑌 𝑋)𝑟𝑒𝑑. The
generic fibre of 𝑋′ → 𝑌′ is (𝑋𝐾)𝑟𝑒𝑑 by Lemma 33.17.6 which is geometrically reduced by
construction. Note that 𝑋′ → 𝑋𝑉 is a finite universal homeomorphism as the composition
of the reduction morphism 𝑋′ → 𝑌′ ×𝑌 𝑋 (see Morphisms, Lemma 24.43.4) and the base
change of 𝑔. At this point all of the properties of the lemma hold except for possibly (7).
This can be achieved by shrinking 𝑌′ and hence 𝑉, seeMorphisms, Proposition 24.26.1. �

Lemma 33.17.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that 𝑌 is irreducible
and 𝑓 is of finite type. There exists a diagram

𝑋′

𝑓′

��

𝑔′
// 𝑋𝑉

//

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑉 // 𝑌
where

(1) 𝑉 is a nonempty open of 𝑌,
(2) 𝑋𝑉 = 𝑉 ×𝑌 𝑋,
(3) 𝑔 ∶ 𝑌′ → 𝑉 is surjective finite étale,
(4) 𝑋′ = 𝑌′ ×𝑌 𝑋 = 𝑌′ ×𝑉 𝑋𝑉,
(5) 𝑔′ is surjective finite étale,
(6) 𝑌′ is an irreducible affine scheme, and
(7) all irreducible components of the generic fibre of 𝑓′ are geometrically irreducible.

Proof. Let 𝑉 = 𝑆𝑝𝑒𝑐(𝐴) be a nonempty affine open of 𝑌. By assumption the radical of 𝐴
is a prime ideal 𝔭. Let 𝐾 = 𝑓.𝑓(𝐴/𝔭) be the fraction field. By Varieties, Lemma 28.6.14
there exists a finite separable field extension 𝐾 ⊂ 𝐾′ such that all irreducible components
of 𝑋𝐾′ are geometrically irreducible over 𝐾′. Choose an element 𝛼 ∈ 𝐾′ which generates
𝐾′ over 𝐾, see Algebra, Lemma 7.38.5. Let 𝑃(𝑇) ∈ 𝐾[𝑇] be the minimal polynomial for 𝛼
over 𝐾. After replacing 𝛼 by 𝑓𝛼 for some 𝑓 ∈ 𝐴, 𝑓∉𝔭 we may assume that there exists a
monic polynomial 𝑇𝑑 +𝑎1𝑇𝑑−1 +…+𝑎𝑑 ∈ 𝐴[𝑇] which maps to 𝑃(𝑇) ∈ 𝐾[𝑇] under the map
𝐴[𝑇] → 𝐾[𝑇]. Set 𝐴′ = 𝐴[𝑇]/(𝑃). Then 𝐴 → 𝐴′ is a finite free ring map such that there
exists a unique prime 𝔮 lying over 𝔭, such that 𝐾 = 𝜅(𝔭) ⊂ 𝜅(𝔮) = 𝐾′ is finite separable,
and such that 𝔭𝐴′

𝔮 is the maximal ideal of 𝐴′
𝔮. Hence 𝑔 ∶ 𝑌′ = 𝑆𝑝𝑒𝑐(𝐴′) → 𝑉 = 𝑆𝑝𝑒𝑐(𝐴) is

étale at 𝔮, see Algebra, Lemma 7.132.7. This means that there exists an open 𝑊 ⊂ 𝑆𝑝𝑒𝑐(𝐴′)
such that 𝑔|𝑊 ∶ 𝑊 → 𝑆𝑝𝑒𝑐(𝐴) is étale. Since 𝑔 is finite and since 𝔮 is the only point lying
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over 𝔭 we see that 𝑍 = 𝑔(𝑌′ ⧵ 𝑊) is a closed subset of 𝑉 not containing 𝔭. Hence after
replacing 𝑉 by a principal affine open of 𝑉 which does not meet 𝑍 we obtain that 𝑔 is finite
étale. �

Lemma 33.17.9. Let 𝑆 be an integral scheme with generic point 𝜂. Let 𝑓 ∶ 𝑋 → 𝑆 and
𝑔 ∶ 𝑌 → 𝑆 be morphisms of schemes such that

(1) 𝑓, 𝑔 are locally of finite type,
(2) 𝑋𝜂, 𝑌𝜂 are integral with generic points 𝑥, 𝑦, and
(3) 𝜅(𝑥) ≅ 𝜅(𝑦) as 𝜅(𝜂)-extensions.

Then there exist open subschemes 𝑥 ∈ 𝑈 ⊂ 𝑋, 𝑦 ∈ 𝑉 ⊂ 𝑌 and an 𝑆-isomorphism 𝑈 → 𝑉
which induces the given isomorphism of residue fields.

Proof. The question is local around the points 𝜂, 𝑥, 𝑦. Hence we may replace 𝑆, 𝑋, 𝑌 by
affine neighbourhoods of 𝜂, 𝑥, 𝑦 and hence reduce to the case that 𝑆, 𝑋, 𝑌 are affine. Say
𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑋 = 𝑆𝑝𝑒𝑐(𝐴), 𝑌 = 𝑆𝑝𝑒𝑐(𝐵). By Algebra, Lemma 7.109.3 we may also
assume that 𝐴 and 𝐵 are flat and of finite presentation over 𝑅. Denote 𝐾 = 𝑓.𝑓.(𝑅). The
rings 𝐴, 𝐵 are torsion free as 𝑅-modules because 𝐴, 𝐵 are flat over 𝑅, seeMore on Algebra,
Lemma 12.17.3. Since 𝐴 ⊗𝑅 𝐾 and 𝐵 ⊗𝑅 𝐾 are domains by assumption it follows that 𝐴
and 𝐵 are domains. Set 𝐿 = 𝑓.𝑓.(𝐴) and 𝑀 = 𝑓.𝑓.(𝐵). Let 𝜑 ∶ 𝐿 → 𝑀 be the given
isomorphism of 𝐾-extensions.

Choose elements 𝑥1, … , 𝑥𝑛 ∈ 𝐴 which generate 𝐴 as an 𝑅-algebra, and choose elements
𝑦1, … , 𝑦𝑚 ∈ 𝐵 which generate 𝐵 as an 𝑅-algebra. Write 𝜑(𝑥𝑖) = 𝑏𝑖/𝑏 for some 𝑏, 𝑏𝑖 ∈ 𝐵. In
other words, 𝑏 is a common denominatior for the elements 𝜑(𝑥𝑖) ∈ 𝑀 = 𝑓.𝑓.(𝐵). Similarly,
write 𝜑−1(𝑦𝑗) = 𝑎𝑗/𝑎 for some 𝑎, 𝑎𝑗 ∈ 𝐴. Note that 𝜑(𝑎) ∈ 𝐵𝑏 because 𝑎 can be written as
a polynomial in the 𝑥𝑖. Similarly we have 𝜑−1(𝑏) ∈ 𝐴𝑎. Thus 𝜑 gives an isomorphism

𝐴𝑎 ⟶ 𝐵𝑏

of 𝑅-algebras and the lemma is proven. �

33.18. Relative assassins

Lemma 33.18.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let 𝜉 ∈ Ass𝑋/𝑆(ℱ) and set 𝑍 = {𝜉} ⊂ 𝑋. If 𝑓 is locally of finite type and ℱ
is a finite type 𝒪𝑋-module, then there exists a nonempty open 𝑉 ⊂ 𝑍 such that for every
𝑠 ∈ 𝑓(𝑉) the generic points of 𝑉𝑠 are elements of Ass𝑋/𝑆(ℱ).

Proof. Wemay replace 𝑆 by an affine open neighbourhood of 𝑓(𝜉) and 𝑋 by an affine open
neighbourhood of 𝜉. Hence we may assume 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) and that 𝑓 is
given by the finite type ring map 𝐴 → 𝐵, see Morphisms, Lemma 24.14.2. Moreover,
we may write ℱ = 𝑀 for some finite 𝐵-module 𝑀, see Properties, Lemma 23.16.1. Let
𝔮 ⊂ 𝐵 be the prime corresponding to 𝜉 and let 𝔭 ⊂ 𝐴 be the corresponding prime of 𝐴.
By assumption 𝔮 ∈ Ass𝐵(𝑀 ⊗𝐴 𝜅(𝔭)), see Algebra, Remark 7.62.6 and Divisors, Lemma
26.2.2. With this notation 𝑍 = 𝑉(𝔮) ⊂ 𝑆𝑝𝑒𝑐(𝐵). In particular 𝑓(𝑍) ⊂ 𝑉(𝔭). Hence clearly
it suffices to prove the lemma after replacing 𝐴, 𝐵, and 𝑀 by 𝐴/𝔭𝐴, 𝐵/𝔭𝐵, and 𝑀/𝔭𝑀.
In other words we may assume that 𝐴 is a domain with fraction field 𝐾 and 𝔮 ⊂ 𝐵 is an
associated prime of 𝑀 ⊗𝐴 𝐾.

At this point we can use generic flatness. Namely, by Algebra, Lemma 7.109.3 there exists
a nonzero 𝑔 ∈ 𝐴 such that 𝑀𝑔 is flat as an 𝐴𝑔-module. After replacing 𝐴 by 𝐴𝑔 we may
assume that 𝑀 is flat as an 𝐴-module.
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In this case, by Algebra, Lemma 7.62.4 we see that 𝔮 is also an associated prime of 𝑀.
Hence we obtain an injective 𝐵-module map 𝐵/𝔮 → 𝑀. Let 𝑄 be the cokernel so that we
obtain a short exact sequence

0 → 𝐵/𝔮 → 𝑀 → 𝑄 → 0

of finite 𝐵-modules. After applying generic flatness Algebra, Lemma 7.109.3 once more,
this time to the 𝐵-module 𝑄, we may assume that 𝑄 is a flat 𝐴-module. In particular we
may assume the short exact sequence above is universally injective, see Algebra, Lemma
7.35.11. In this situation (𝐵/𝔮) ⊗𝐴 𝜅(𝔭′) ⊂ 𝑀 ⊗𝐴 𝜅(𝔭′) for any prime 𝔭′ of 𝐴. The lemma
follows as a minimal prime 𝔮′ of the support of (𝐵/𝔮) ⊗𝐴 𝜅(𝔭′) is an associated prime of
(𝐵/𝔮) ⊗𝐴 𝜅(𝔭′) by Divisors, Lemma 26.2.8. �

Lemma 33.18.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let 𝑈 ⊂ 𝑋 be an open subscheme. Assume

(1) 𝑓 is of finite type,
(2) ℱ is of finite type,
(3) 𝑌 is irreducible with generic point 𝜂, and
(4) Ass𝑋𝜂

(ℱ𝜂) is not contained in 𝑈𝜂.
Then there exists a nonempty open subscheme 𝑉 ⊂ 𝑌 such that for all 𝑦 ∈ 𝑉 the set
Ass𝑋𝑦

(ℱ𝑦) is not contained in 𝑈𝑦.

Proof. Let 𝜉 ∈ Ass𝑋𝜂
(ℱ𝜂) be a point which is not contained in 𝑈𝜂. Set 𝑍 = {𝜉}. By

assumption 𝑈 ∩ 𝑍 is not dense in the irreducible scheme 𝑍𝜂. Hence by Lemma 33.17.3
after replacing 𝑌 by a nonempty open we may assume that 𝑈𝑦 ∩ 𝑍𝑦 is nowhere dense in 𝑍𝑦.
On the other hand, by Lemma 33.18.1 there exists a nonempty open 𝑉 ⊂ 𝑍 such that every
generic point of 𝑉𝑦 is an associated point of ℱ𝑦. By Lemma 33.17.2 the set 𝑓(𝑉) contains
a nonempty open subset of 𝑌 and we win. �

Lemma 33.18.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let 𝑈 ⊂ 𝑋 be an open subscheme. Assume

(1) 𝑓 is of finite type,
(2) ℱ is of finite type,
(3) 𝑌 is irreducible with generic point 𝜂, and
(4) Ass𝑋𝜂

(ℱ𝜂) ⊂ 𝑈𝜂.
Then there exists a nonempty open subscheme 𝑉 ⊂ 𝑌 such that for all 𝑦 ∈ 𝑉 we have
Ass𝑋𝑦

(ℱ𝑦) ⊂ 𝑈𝑦.

Proof. (This proof is the same as the proof of Lemma 33.17.4. We urge the reader to read
that proof first.) Since the statement is about fibres it is clear that we may replace 𝑌 by its
reduction. Hence we may assume that 𝑌 is integral, see Properties, Lemma 23.3.4. We may
also assume that 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) is affine. Then 𝐴 is a domain with fraction field 𝐾.

As 𝑓 is of finite type we see that 𝑋 is quasi-compact. Write 𝑋 = 𝑋1 ∪ … ∪ 𝑋𝑛 for some
affine opens 𝑋𝑖 and set ℱ𝑖 = ℱ|𝑋𝑖

. By assumption the generic fibre of 𝑈𝑖 = 𝑋𝑖 ∩𝑈 contains
Ass𝑋𝑖,𝜂

(ℱ𝑖,𝜂). Thus it suffices to prove the result for the triples (𝑋𝑖, ℱ𝑖, 𝑈𝑖), in other words
we may assume that 𝑋 is affine.

Write 𝑋 = 𝑆𝑝𝑒𝑐(𝐵). Let 𝑁 be a finite 𝐵-module such that ℱ = �̃�. Note that 𝐵𝐾 is
Noetherian as it is a finite type 𝐾-algebra. Hence 𝑈𝜂 is quasi-compact. Thus we can find
finitely many 𝑔1, … , 𝑔𝑚 ∈ 𝐵 such that 𝐷(𝑔𝑗) ⊂ 𝑈 and such that 𝑈𝜂 = 𝐷(𝑔1)𝜂 ∪…∪𝐷(𝑔𝑚)𝜂.
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Since Ass𝑋𝜂
(ℱ𝜂) ⊂ 𝑈𝜂 we see that 𝑁𝐾 → ⨁𝑗(𝑁𝐾)𝑔𝑗

is injective. By Algebra, Lemma
7.20.4 this is equivalent to the injectivity of 𝑁𝐾 → ⨁𝑗=1,…,𝑚 𝑁𝐾, 𝑛 ↦ (𝑔1𝑛, … , 𝑔𝑚𝑛). Let
𝐼 and 𝑀 be the kernel and cokernel of this map over 𝐴, i.e., such that we have an exact
sequence

0 → 𝐼 → 𝑁
(𝑔1,…,𝑔𝑚)

−−−−−−−→ ⨁𝑗=1,…,𝑚
𝑁 → 𝑀 → 0

After replacing 𝐴 by 𝐴ℎ for some nonzero ℎ we may assume that 𝐵 is a flat, finitely pre-
sented 𝐴-algebra and that both 𝑀 and 𝑁 are flat over 𝐴, see Algebra, Lemma 7.109.3. The
flatness of 𝑁 over 𝐴 implies that 𝑁 is torsion free as an 𝐴-module, see More on Algebra,
Lemma 12.17.3. Hence 𝑁 ⊂ 𝑁𝐾. By construction 𝐼𝐾 = 0 which implies that 𝐼 = 0 (as
𝐼 ⊂ 𝑁 ⊂ 𝑁𝐾 is a subset of 𝐼𝐾). Hence now we have a short exact sequence

0 → 𝑁
(𝑔1,…,𝑔𝑚)

−−−−−−−→ ⨁𝑗=1,…,𝑚
𝑁 → 𝑀 → 0

with 𝑀 flat over 𝐴. Hence for every homomorphism 𝐴 → 𝜅 where 𝜅 is a field, we obtain
a short exact sequence

0 → 𝑁 ⊗𝐴 𝜅
(𝑔1⊗1,…,𝑔𝑚⊗1)

−−−−−−−−−−−−→ ⨁𝑗=1,…,𝑚
𝑁 ⊗𝐴 𝜅 → 𝑀 ⊗𝐴 𝜅 → 0

see Algebra, Lemma 7.35.11. Reversing the arguments above this means that ⋃ 𝐷(𝑔𝑗 ⊗ 1)
contains Ass𝐵⊗𝐴𝜅(𝑁 ⊗𝐴 𝜅). As ⋃ 𝐷(𝑔𝑗 ⊗ 1) = ⋃ 𝐷(𝑔𝑗)𝜅 ⊂ 𝑈𝜅 we obtain that 𝑈𝜅 contains
Ass𝑋⊗𝜅(ℱ ⊗ 𝜅) which is what we wanted to prove. �

Lemma 33.18.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism which is locally of finite type. Let ℱ
be a quasi-coherent 𝒪𝑋-module of finite type. Let 𝑈 ⊂ 𝑋 be an open subscheme. Let
𝑔 ∶ 𝑆′ → 𝑆 be a morphism of schemes, let 𝑓′ ∶ 𝑋′ = 𝑋𝑆′ → 𝑆′ be the base change of 𝑓,
let 𝑔′ ∶ 𝑋′ → 𝑋 be the projection, set ℱ′ = (𝑔′)∗ℱ, and set 𝑈′ = (𝑔′)−1(𝑈). Finally, let
𝑠′ ∈ 𝑆′ with image 𝑠 = 𝑔(𝑠′). In this case

Ass𝑋𝑠
(ℱ𝑠) ⊂ 𝑈𝑠 ⇔ Ass𝑋′

𝑠′
(ℱ′

𝑠′) ⊂ 𝑈′
𝑠′.

Proof. This follows immediately fromDivisors, Lemma 26.7.2. See also Divisors, Remark
26.7.3. �

Lemma 33.18.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of finite presentation. Let ℱ be a quasi-
coherent 𝒪𝑋-module of finite presentation. Let 𝑈 ⊂ 𝑋 be an open subscheme such that
𝑈 → 𝑌 is quasi-compact. Then the set

𝐸 = {𝑦 ∈ 𝑌 ∣ Ass𝑋𝑦
(ℱ𝑦) ⊂ 𝑈𝑦}

is locally constructible in 𝑌.

Proof. Let 𝑦 ∈ 𝑌. We have to show that there exists an open neighbourhood 𝑉 of 𝑦 in 𝑌 such
that 𝐸 ∩ 𝑉 is constructible in 𝑉. Thus we may assume that 𝑌 is affine. Write 𝑌 = 𝑆𝑝𝑒𝑐(𝐴)
and 𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 as a directed limit of finite type 𝐙-algebras. By Limits, Lemma 27.6.1 we
can find an 𝑖 and a morphism 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑝𝑒𝑐(𝐴𝑖) of finite presentation whose base change
to 𝑌 recovers 𝑓. After possibly increasing 𝑖 we may assume there exists a quasi-coherent
𝒪𝑋𝑖

-module ℱ𝑖 of finite presentation whose pullback to 𝑋 is isomorphic to ℱ, see Limits,
Lemma 27.6.8. After possibly increasing 𝑖 one more time we may assume there exists an
open subscheme 𝑈𝑖 ⊂ 𝑋𝑖 whose inverse image in 𝑋 is 𝑈, see Limits, Lemma 27.3.5. By
Lemma 33.18.4 it suffices to prove the lemma for 𝑓𝑖. Thus we reduce to the case where 𝑌
is the spectrum of a Noetherian ring.
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We will use the criterion of Topology, Lemma 5.11.3 to prove that 𝐸 is constructible in
case 𝑌 is a Noetherian scheme. To see this let 𝑍 ⊂ 𝑌 be an irreducible closed subscheme.
We have to show that 𝐸 ∩ 𝑍 either contains a nonempty open subset or is not dense in 𝑍.
This follows from Lemmas 33.18.2 and 33.18.3 applied to the base change (𝑋, ℱ, 𝑈) ×𝑌 𝑍
over 𝑍. �

33.19. Reduced fibres

Lemma 33.19.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume 𝑌 irreducible with
generic point 𝜂 and 𝑓 of finite type. If 𝑋𝜂 is nonreduced, then there exists a nonempty open
𝑉 ⊂ 𝑌 such that for all 𝑦 ∈ 𝑉 the fibre 𝑋𝑦 is nonreduced.

Proof. Let 𝑌′ ⊂ 𝑌 be the reduction of 𝑌. Let 𝑋′ → 𝑌′ be the base change of 𝑓. Note
that 𝑌′ → 𝑌 induces a bijection on points and that 𝑋′ → 𝑋 identifies fibres. Hence we
may assume that 𝑌′ is reduced, i.e., integral, see Properties, Lemma 23.3.4. We may also
replace 𝑌 by an affine open. Hence we may assume that 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) with 𝐴 a domain.
Denote 𝐾 = 𝑓.𝑓.(𝐴) the fraction field of 𝐴. Pick an affine open 𝑆𝑝𝑒𝑐(𝐵) = 𝑈 ⊂ 𝑋 and a
section ℎ𝜂 ∈ Γ(𝑈𝜂, 𝒪𝑈𝜂

) = 𝐵𝐾 which is nonzero and nilpotent. After shrinking 𝑌 we may
assume that ℎ comes from ℎ ∈ Γ(𝑈, 𝒪𝑈) = 𝐵. After shrinking 𝑌 a bit more we may assume
that ℎ is nilpotent. Let 𝐼 = {𝑏 ∈ 𝐵 ∣ ℎ𝑏 = 0} be the annihilator of ℎ. Then 𝐶 = 𝐵/𝐼 is a
finite type 𝐴-algebra whose generic fiber (𝐵/𝐼)𝐾 is nonzero (as ℎ𝜂≠0). We apply generic
flatness to 𝐴 → 𝐶 and 𝐴 → 𝐵/ℎ𝐵, see Algebra, Lemma 7.109.3, and we obtain a 𝑔 ∈ 𝐴,
𝑔≠0 such that 𝐶𝑔 is free as an 𝐴𝑔-module and (𝐵/ℎ𝐵)𝑔 is flat as an 𝐴𝑔-module. Replace 𝑌
by 𝐷(𝑔) ⊂ 𝑌. Now we have the short exact sequence

0 → 𝐶 → 𝐵 → 𝐵/ℎ𝐵 → 0.

with 𝐵/ℎ𝐵 flat over 𝐴 and with 𝐶 nonzero free as an 𝐴-module. It follows that for any
homomorphism 𝐴 → 𝜅 to a field the ring 𝐶 ⊗𝐴 𝜅 is nonzero and the sequence

0 → 𝐶 ⊗𝐴 𝜅 → 𝐵 ⊗𝐴 𝜅 → 𝐵/ℎ𝐵 ⊗𝐴 𝜅 → 0

is exact, see Algebra, Lemma 7.35.11. Note that 𝐵/ℎ𝐵 ⊗𝐴 𝜅 = (𝐵 ⊗𝐴 𝜅)/ℎ(𝐵 ⊗𝐴 𝜅) by
right exactness of tensor product. Thus we conclude that multiplication by ℎ is not zero on
𝐵 ⊗𝐴 𝜅. This clearly means that for any point 𝑦 ∈ 𝑌 the element ℎ restricts to a nonzero
element of 𝑈𝑦, whence 𝑋𝑦 is nonreduced. �

Lemma 33.19.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑔 ∶ 𝑌′ → 𝑌 be any
morphism, and denote 𝑓′ ∶ 𝑋′ → 𝑌′ the base change of 𝑓. Then

{𝑦′ ∈ 𝑌′ ∣ 𝑋′
𝑦′ is geometrically reduced}

= 𝑔−1({𝑦 ∈ 𝑌 ∣ 𝑋𝑦 is geometrically reduced}).

Proof. This comes down to the statement that for 𝑦′ ∈ 𝑌′ with image 𝑦 ∈ 𝑌 the fibre
𝑋′

𝑦′ = 𝑋𝑦 ×𝑦 𝑦′ is geometrically reduced over 𝜅(𝑦′) if and only if 𝑋𝑦 is geometrically
reduced over 𝜅(𝑦). This follows from Varieties, Lemma 28.4.6. �

Lemma 33.19.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume 𝑌 irreducible with
generic point 𝜂 and 𝑓 of finite type. If 𝑋𝜂 is not geometrically reduced, then there exists a
nonempty open 𝑉 ⊂ 𝑌 such that for all 𝑦 ∈ 𝑉 the fibre 𝑋𝑦 is not geometrically reduced.
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Proof. Apply Lemma 33.17.7 to get

𝑋′

𝑓′

��

𝑔′
// 𝑋𝑉

//

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑉 // 𝑌

with all the properties mentioned in that lemma. Let 𝜂′ be the generic point of 𝑌′. Consider
the morphism 𝑋′ → 𝑋𝑌′ (which is the reduction morphism) and the resulting morphism of
generic fibres 𝑋′

𝜂′ → 𝑋𝜂′. Since 𝑋′
𝜂′ is geometrically reduced, and 𝑋𝜂 is not this cannot

be an isomorphism, see Varieties, Lemma 28.4.6. Hence 𝑋𝜂′ is nonreduced. Hence by
Lemma 33.19.1 the fibres of 𝑋𝑌′ → 𝑌′ are nonreduced at all points 𝑦′ ∈ 𝑉′ of a nonempty
open 𝑉′ ⊂ 𝑌′. Since 𝑔 ∶ 𝑌′ → 𝑉 is a homeomorphism Lemma 33.19.2 proves that 𝑔(𝑉′) is
the open we are looking for. �

Lemma 33.19.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume
(1) 𝑌 is irreducible with generic point 𝜂,
(2) 𝑋𝜂 is geometrically reduced, and
(3) 𝑓 is of finite type.

Then there exists a nonempty open subscheme 𝑉 ⊂ 𝑌 such that 𝑋𝑉 → 𝑉 has geometrically
reduced fibres.

Proof. Let 𝑌′ ⊂ 𝑌 be the reduction of 𝑌. Let 𝑋′ → 𝑌′ be the base change of 𝑓. Note
that 𝑌′ → 𝑌 induces a bijection on points and that 𝑋′ → 𝑋 identifies fibres. Hence we
may assume that 𝑌′ is reduced, i.e., integral, see Properties, Lemma 23.3.4. We may also
replace 𝑌 by an affine open. Hence we may assume that 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) with 𝐴 a domain.
Denote 𝐾 = 𝑓.𝑓.(𝐴) the fraction field of 𝐴. After shrinking 𝑌 a bit we may also assume
that 𝑋 → 𝑌 is flat and of finite presentation, see Morphisms, Proposition 24.26.1.

As 𝑋𝜂 is geometrically reduced there exists an open dense subset 𝑉 ⊂ 𝑋𝜂 such that 𝑉 →
𝑆𝑝𝑒𝑐(𝐾) is smooth, see Varieties, Lemma 28.15.7. Let 𝑈 ⊂ 𝑋 be the set of points where
𝑓 is smooth. By Morphisms, Lemma 24.33.15 we see that 𝑉 ⊂ 𝑈𝜂. Thus the generic
fibre of 𝑈 is dense in the generic fibre of 𝑋. Since 𝑋𝜂 is reduced, it follows that 𝑈𝜂 is
scheme theoretically dense in 𝑋𝜂, see Morphisms, Lemma 24.5.8. We note that as 𝑈 → 𝑌
is smooth all the fibres of 𝑈 → 𝑌 are geometrically reduced. Thus it suffices to show that,
after shrinking 𝑌, for all 𝑦 ∈ 𝑌 the scheme 𝑈𝑦 is scheme theoretically dense in 𝑋𝑦, see
Morphisms, Lemma 24.5.9. This follows from Lemma 33.17.4. �

Lemma 33.19.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of finite presentation. Then the set

𝐸 = {𝑦 ∈ 𝑌 ∣ 𝑋𝑦 is geometrically reduced}

is locally constructible in 𝑌.

Proof. Let 𝑦 ∈ 𝑌. We have to show that there exists an open neighbourhood 𝑉 of 𝑦 in 𝑌 such
that 𝐸 ∩ 𝑉 is constructible in 𝑉. Thus we may assume that 𝑌 is affine. Write 𝑌 = 𝑆𝑝𝑒𝑐(𝐴)
and 𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 as a directed limit of finite type 𝐙-algebras. By Limits, Lemma 27.6.1
we can find an 𝑖 and a morphism 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑝𝑒𝑐(𝐴𝑖) of finite presentation whose base
change to 𝑌 recovers 𝑓. By Lemma 33.19.2 it suffices to prove the lemma for 𝑓𝑖. Thus we
reduce to the case where 𝑌 is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 5.11.3 to prove that 𝐸 is constructible in
case 𝑌 is a Noetherian scheme. To see this let 𝑍 ⊂ 𝑌 be an irreducible closed subscheme.
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We have to show that 𝐸 ∩ 𝑍 either contains a nonempty open subset or is not dense in 𝑍.
If 𝑋𝜉 is geometrically reduced, then Lemma 33.19.4 (applied to the morphism 𝑋𝑍 → 𝑍)
implies that all fibres 𝑋𝑦 are geometrically reduced for a nonempty open 𝑉 ⊂ 𝑍. If 𝑋𝜉
is not geometrically reduced, then Lemma 33.19.3 (applied to the morphism 𝑋𝑍 → 𝑍)
implies that all fibres 𝑋𝑦 are geometrically reduced for a nonempty open 𝑉 ⊂ 𝑍. Thus we
win. �

33.20. Irreducible components of fibres

Lemma 33.20.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume 𝑌 irreducible with
generic point 𝜂 and 𝑓 of finite type. If 𝑋𝜂 has 𝑛 irreducible components, then there exists
a nonempty open 𝑉 ⊂ 𝑌 such that for all 𝑦 ∈ 𝑉 the fibre 𝑋𝑦 has at least 𝑛 irreducible
components.

Proof. As the question is purely topological we may replace 𝑋 and 𝑌 by their reductions.
In particular this implies that 𝑌 is integral, see Properties, Lemma 23.3.4. Let 𝑋𝜂 = 𝑋1,𝜂 ∪
… ∪ 𝑋𝑛,𝜂 be the decomposition of 𝑋𝜂 into irreducible components. Let 𝑋𝑖 ⊂ 𝑋 be the
reduced closed subscheme whose generic fibre is 𝑋𝑖,𝜂. Note that 𝑍𝑖,𝑗 = 𝑋𝑖 ∩ 𝑋𝑗 is a closed
subset of 𝑋𝑖 whose generic fibre 𝑍𝑖,𝑗,𝜂 is nowhere dense in 𝑋𝑖,𝜂. Hence after shrinking 𝑌
we may assume that 𝑍𝑖,𝑗,𝑦 is nowhere dense in 𝑋𝑖,𝑦 for every 𝑦 ∈ 𝑌, see Lemma 33.17.3.
After shrinking 𝑌 some more we may assume that 𝑋𝑦 = ⋃ 𝑋𝑖,𝑦 for 𝑦 ∈ 𝑌, see Lemma
33.17.5. Moreover, after shrinking 𝑌 we may assume that each 𝑋𝑖 → 𝑌 is flat and of
finite presentation, see Morphisms, Proposition 24.26.1. The morphisms 𝑋𝑖 → 𝑌 are open,
see Morphisms, Lemma 24.24.9. Thus there exists an open neighbourhood 𝑉 of 𝜂 which is
contained in 𝑓(𝑋𝑖) for each 𝑖. For each 𝑦 ∈ 𝑉 the schemes 𝑋𝑖,𝑦 are nonempty closed subsets
of 𝑋𝑦, we have 𝑋𝑦 = ⋃ 𝑋𝑖,𝑦 and the intersections 𝑍𝑖,𝑗,𝑦 = 𝑋𝑖,𝑦 ∩ 𝑋𝑗,𝑦 are not dense in 𝑋𝑖,𝑦.
Clearly this implies that 𝑋𝑦 has at least 𝑛 irreducible components. �

Lemma 33.20.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑔 ∶ 𝑌′ → 𝑌 be any
morphism, and denote 𝑓′ ∶ 𝑋′ → 𝑌′ the base change of 𝑓. Then

{𝑦′ ∈ 𝑌′ ∣ 𝑋′
𝑦′ is geometrically irreducible}

= 𝑔−1({𝑦 ∈ 𝑌 ∣ 𝑋𝑦 is geometrically irreducible}).

Proof. This comes down to the statement that for 𝑦′ ∈ 𝑌′ with image 𝑦 ∈ 𝑌 the fibre
𝑋′

𝑦′ = 𝑋𝑦 ×𝑦 𝑦′ is geometrically irreducible over 𝜅(𝑦′) if and only if 𝑋𝑦 is geometrically
irreducible over 𝜅(𝑦). This follows from Varieties, Lemma 28.6.2. �

Lemma 33.20.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let

𝑛𝑋/𝑌 ∶ 𝑌 → {0, 1, 2, 3, … , ∞}

be the function which associates to 𝑦 ∈ 𝑌 the number of irreducible components of (𝑋𝑦)𝐾
where 𝐾 is a separably closed extension of 𝜅(𝑦). This is well defined and if 𝑔 ∶ 𝑌′ → 𝑌 is a
morphism then

𝑛𝑋′/𝑌′ = 𝑛𝑋/𝑌 ∘ 𝑔

where 𝑋′ → 𝑌′ is the base change of 𝑓.
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Proof. Suppose that 𝑦′ ∈ 𝑌′ has image 𝑦 ∈ 𝑌. Suppose 𝐾 ⊃ 𝜅(𝑦) and 𝐾′ ⊃ 𝜅(𝑦′) are
separably closed extensions. Then we may choose a commutative diagram

𝐾 // 𝐾″ 𝐾′oo

𝜅(𝑦)

OO

// 𝜅(𝑦′)

OO

of fields. The result follows as the morphisms of schemes

(𝑋′
𝑦′)𝐾′ (𝑋′

𝑦′)𝐾″ = (𝑋𝑦)𝐾″oo // (𝑋𝑦)𝐾

induce bijections between irreducible components, see Varieties, Lemma 28.6.7. �

Lemma 33.20.4. Let 𝐴 be a domain with fraction field 𝐾. Let 𝑃 ∈ 𝐴[𝑥1, … , 𝑥𝑛]. Denote
𝐾 the algebraic closure of 𝐾. Assume 𝑃 is irreducible in 𝐾[𝑥1, … , 𝑥𝑛]. Then there exists
a 𝑓 ∈ 𝐴 such that 𝑃𝜑 ∈ 𝜅[𝑥1, … , 𝑥𝑛] is irreducible for all homomorphisms 𝜑 ∶ 𝐴𝑓 → 𝜅
into fields.

Proof. There exists an automorphism Ψ of 𝐴[𝑥1, … , 𝑥𝑛] over 𝐴 such that Ψ(𝑃) = 𝑎𝑥𝑑
𝑛+

lower order terms in 𝑥𝑛 with 𝑎≠0, see Algebra, Lemma 7.106.2. We may replace 𝑃 by Ψ(𝑃)
and we may replace 𝐴 by 𝐴𝑎. Thus we may assume that 𝑃 is monic in 𝑥𝑛 of degree 𝑑 > 0.
For 𝑖 = 1, … , 𝑛 − 1 let 𝑑𝑖 be the degree of 𝑃 in 𝑥𝑖. Note that this implies that 𝑃𝜑 is monic
of degree 𝑑 in 𝑥𝑛 and has degree ≤ 𝑑𝑖 in 𝑥𝑖 for every homomorphism 𝜑 ∶ 𝐴 → 𝜅 where 𝜅
is a field. Thus if 𝑃𝜑 is reducible, then we can write

𝑃𝜑 = 𝑄1𝑄2

with 𝑄1, 𝑄2 monic of degree 𝑒1, 𝑒2 ≥ 0 in 𝑥𝑛 with 𝑒1 + 𝑒2 = 𝑑 and having degree ≤ 𝑑𝑖 in
𝑥𝑖 for 𝑖 = 1, … , 𝑛 − 1. In other words we can write

(33.20.4.1) 𝑄𝑗 = 𝑥
𝑒𝑗
𝑛 + ∑0≤𝑙<𝑒𝑗 (∑𝐿∈ℒ

𝑎𝑗,𝑙,𝐿𝑥𝐿
) 𝑥𝑙

𝑛

where the sum is over the set ℒ of multi-indices 𝐿 of the form 𝐿 = (𝑙1, … , 𝑙𝑛−1) with
0 ≤ 𝑙𝑖 ≤ 𝑑𝑖. For any 𝑒1, 𝑒2 ≥ 0 with 𝑒1 + 𝑒2 = 𝑑 we consider the 𝐴-algebra

𝐵𝑒1,𝑒2
= 𝐴[{𝑎1,𝑙,𝐿}0≤𝑙<𝑒1,𝐿∈ℒ, {𝑎2,𝑙,𝐿}0≤𝑙<𝑒2,𝐿∈ℒ]/(relations)

where the (relations) is the ideal generated by the coefficients of the polynomial

𝑃 − 𝑄1𝑄2 ∈ 𝐴[{𝑎1,𝑙,𝐿}0≤𝑙<𝑒1,𝐿∈ℒ, {𝑎2,𝑙,𝐿}0≤𝑙<𝑒2,𝐿∈ℒ][𝑥1, … , 𝑥𝑛]

with 𝑄1 and 𝑄2 defined as in (33.20.4.1). OK, and the assumption that 𝑃 is irreducible
over 𝐾 implies that there does not exist any 𝐴-algebra homomorphism 𝐵𝑒1,𝑒2

→ 𝐾. By the
Hilbert Nullstellensatz, see Algebra, Theorem 7.30.1 this means that 𝐵𝑒1,𝑒2

⊗𝐴 𝐾 = 0. As
𝐵𝑒1,𝑒2

is a finitely generated 𝐴-algebra this signifies that we can find an 𝑓𝑒1,𝑒2
∈ 𝐴 such that

(𝐵𝑒1,𝑒2
)𝑓𝑒1,𝑒2

= 0. By construction this means that if 𝜑 ∶ 𝐴𝑓𝑒1,𝑒2
→ 𝜅 is a homomorphism

to a field, then 𝑃𝜑 does not have a factorization 𝑃𝜑 = 𝑄1𝑄2 with 𝑄1 of degree 𝑒1 in 𝑥𝑛 and
𝑄2 of degree 𝑒2 in 𝑥𝑛. Thus taking 𝑓 = ∏𝑒1,𝑒2≥0,𝑒1+𝑒2=𝑑 𝑓𝑒1,𝑒2

we win. �

Lemma 33.20.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume
(1) 𝑌 is irreducible with generic point 𝜂,
(2) 𝑋𝜂 is geometrically irreducible, and
(3) 𝑓 is of finite type.
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Then there exists a nonempty open subscheme 𝑉 ⊂ 𝑌 such that 𝑋𝑉 → 𝑉 has geometrically
irreducible fibres.

First proof of Lemma 33.20.5. We give two proofs of the lemma. These are essentially
equivalent; the second is more self contained but a bit longer. Choose a diagram

𝑋′

𝑓′

��

𝑔′
// 𝑋𝑉

//

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑉 // 𝑌

as in Lemma 33.17.7. Note that the generic fibre of 𝑓′ is the reduction of the geometric fibre
of 𝑓 (see Lemma 33.17.6) and hence is geometrically irreducible. Suppose that the lemma
holds for the morphism 𝑓′. Then after shrinking 𝑉 all the fibres of 𝑓′ are geometrically
irreducible. As 𝑋′ = (𝑌′ ×𝑉 𝑋𝑉)𝑟𝑒𝑑 this implies that all the fibres of 𝑌′ ×𝑉 𝑋𝑉 are geomet-
rically irreducible. Hence by Lemma 33.20.2 all the fibres of 𝑋𝑉 → 𝑉 are geometrically
irreducible and we win. In this way we see that we may assume that the generic fibre is ge-
ometrically reduced as well as geometrically irreducible and we may assume 𝑌 = 𝑆𝑝𝑒𝑐(𝐴)
with 𝐴 a domain.

Let 𝑥 ∈ 𝑋𝜂 be the generic point. As 𝑋𝜂 is geometrically irreducible and reduced we see that
𝐿 = 𝜅(𝑥) is a finitely generated extension of 𝐾 = 𝜅(𝜂) = 𝑓.𝑓.(𝐴) which is geometrically
reduced and geometrically irreducible, see Varieties, Lemmas 28.4.2 and 28.6.6. In par-
ticular the field extension 𝐾 ⊂ 𝐿 is separable, see Algebra, Lemma 7.41.1. Hence we can
find 𝑥1, … , 𝑥𝑟+1 ∈ 𝐿 which generate 𝐿 over 𝐾 and such that 𝑥1, … , 𝑥𝑟 is a transcendence
basis for 𝐿 over 𝐾, see Algebra, Lemma 7.39.3. Let 𝑃 ∈ 𝐾(𝑥1, … , 𝑥𝑟)[𝑇] be the mini-
mal polynomial for 𝑥𝑟+1. Clearing denominators we may assume that 𝑃 has coefficients in
𝐴[𝑥1, … , 𝑥𝑟]. Note that as 𝐿 is geometrically reduced and geometrically irreducible over
𝐾, the polynomial 𝑃 is irreducible in 𝐾[𝑥1, … , 𝑥𝑟, 𝑇] where 𝐾 is the algebraic closure of
𝐾. Denote

𝐵′ = 𝐴[𝑥1, … , 𝑥𝑟+1]/(𝑃(𝑥𝑟+1))
and set𝑋′ = 𝑆𝑝𝑒𝑐(𝐵′). By construction the fraction field of𝐵′ is isomorphic to𝐿 = 𝜅(𝑥) as
𝐾-extensions. Hence there exists an open 𝑈 ⊂ 𝑋, and open 𝑈′ ⊂ 𝑋′ and a 𝑌-isomorphism
𝑈 → 𝑈′, see Lemma 33.17.9. Here is a diagram:

𝑋

��

𝑈oo

��

𝑈′ //

��

𝑋′

~~

𝑆𝑝𝑒𝑐(𝐵′)

𝑌 𝑌

Note that 𝑈𝜂 ⊂ 𝑋𝜂 and 𝑈′
𝜂 ⊂ 𝑋′

𝜂 are dense opens. Thus after shrinking 𝑌 by applying
Lemma 33.17.3 we obtain that 𝑈𝑦 is dense in 𝑋𝑦 and 𝑈′

𝑦 is dense in 𝑋′
𝑦 for all 𝑦 ∈ 𝑌. Thus

it suffices to prove the lemma for 𝑋′ → 𝑌 which is the content of Lemma 33.20.4. �

Second proof of Lemma 33.20.5. Let 𝑌′ ⊂ 𝑌 be the reduction of 𝑌. Let 𝑋′ → 𝑋 be the
reduction of 𝑋. Note that 𝑋′ → 𝑋 → 𝑌 factors through 𝑌′, see Schemes, Lemma 21.12.6.
As 𝑌′ → 𝑌 and 𝑋′ → 𝑋 are universal homeomorphisms by Morphisms, Lemma 24.43.4
we see that it suffices to prove the lemma for 𝑋′ → 𝑌′. Thus we may assume that 𝑋 and 𝑌
are reduced. In particular 𝑌 is integral, see Properties, Lemma 23.3.4. Thus by Morphisms,
Proposition 24.26.1 there exists a nonempty affine open 𝑉 ⊂ 𝑌 such that 𝑋𝑉 → 𝑉 is flat and
of finite presentation. After replacing 𝑌 by 𝑉 we may assume, in addition to (1), (2), (3)
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that 𝑌 is integral affine, 𝑋 is reduced, and 𝑓 is flat and of finite presentation. In particular 𝑓
is universally open, see Morphisms, Lemma 24.24.9.

Pick a nonempty affine open 𝑈 ⊂ 𝑋. Then 𝑈 → 𝑌 is flat and of finite presentation with
geometrically irreducible generic fibre. The complement 𝑋𝜂 ⧵ 𝑈𝜂 is nowhere dense. Thus
after shrinking 𝑌 we may assume 𝑈𝑦 ⊂ 𝑋𝑦 is open dense for all 𝑦 ∈ 𝑌, see Lemma 33.17.3.
Thus we may replace 𝑋 by 𝑈 and we reduce to the case where 𝑌 is integral affine and 𝑋 is
reduced affine, flat and of finite presentation over 𝑌 with geometrically irreducible generic
fibre 𝑋𝜂.

Write 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) and 𝑌 = 𝑆𝑝𝑒𝑐(𝐴). Then 𝐴 is a domain, 𝐵 is reduced, 𝐴 → 𝐵 is flat
of finite presentation, and 𝐵𝐾 is geometrically irreducible over 𝐾 = 𝑓.𝑓.(𝐴). In particular
we see that 𝐵𝐾 is a domain. Let 𝐿 = 𝑓.𝑓.(𝐵𝐾) be its fraction field. Note that 𝐿 is a finitely
generated field extension of 𝐾 as 𝐵 is an 𝐴-algebra of finite presentation. Let 𝐾 ⊂ 𝐾′ be
a finite purely inseparable extension such that (𝐿 ⊗𝐾 𝐾′)𝑟𝑒𝑑 is a separably generated field
extension, see Algebra, Lemma 7.42.3. Choose 𝑥1, … , 𝑥𝑛 ∈ 𝐾′ which generate the field
extension 𝐾′ over 𝐾, and such that 𝑥𝑞𝑖

𝑖 ∈ 𝐴 for some prime power 𝑞𝑖 (proof existence 𝑥𝑖
omitted). Let 𝐴′ be the 𝐴-subalgebra of 𝐾′ generated by 𝑥1, … , 𝑥𝑛. Then 𝐴′ is a finite
𝐴-subalgebra 𝐴′ ⊂ 𝐾′ whose fraction field is 𝐾′. Note that 𝑆𝑝𝑒𝑐(𝐴′) → 𝑆𝑝𝑒𝑐(𝐴) is a
universal homeomorphism, seeAlgebra, Lemma 7.43.2. Hence it suffices to prove the result
after base changing to 𝑆𝑝𝑒𝑐(𝐴′). We are going to replace 𝐴 by 𝐴′ and 𝐵 by (𝐵 ⊗𝐴 𝐴′)𝑟𝑒𝑑
to arrive at the situation where 𝐿 is a separably generated field extension of 𝐾. Of course
it may happen that (𝐵 ⊗𝐴 𝐴′)𝑟𝑒𝑑 is no longer flat, or of finite presentation over 𝐴′, but this
can be remedied by replacing 𝐴′ by 𝐴′

𝑓 for a suitable 𝑓 ∈ 𝐴′, see Algebra, Lemma 7.109.3.

At this point we know that 𝐴 is a domain, 𝐵 is reduced, 𝐴 → 𝐵 is flat and of finite presen-
tation, 𝐵𝐾 is a domain, and 𝐿 = 𝑓.𝑓.(𝐵𝐾) is a separably generated field extension of 𝐾 =
𝑓.𝑓.(𝐴). By Algebra, Lemma 7.39.3 we may write 𝐿 = 𝐾(𝑥1, … , 𝑥𝑟+1) where 𝑥1, … , 𝑥𝑟
are algebraically independent over 𝐾, and 𝑥𝑟+1 is separable over 𝐾(𝑥1, … , 𝑥𝑟). After clear-
ing denominators we may assume that the minimal polynomial 𝑃 ∈ 𝐾(𝑥1, … , 𝑥𝑟)[𝑇] of
𝑥𝑟+1 over 𝐾(𝑥1, … , 𝑥𝑟) has coefficients in 𝐴[𝑥1, … , 𝑥𝑟]. Note that since 𝐿/𝐾 is separable
and since 𝐿 is geometrically irreducible over 𝐾, the polynomial 𝑃 is irreducible over the
algebraic closure 𝐾 of 𝐾. Denote

𝐵′ = 𝐴[𝑥1, … , 𝑥𝑟+1]/(𝑃(𝑥𝑟+1)).

By construction the fraction fields of 𝐵 and 𝐵′ are isomorphic as 𝐾-extensions. Hence
there exists an isomorphism of 𝐴-algebras 𝐵ℎ ≅ 𝐵′

ℎ′ for suitable ℎ ∈ 𝐵 and ℎ′ ∈ 𝐵′, see
Lemma 33.17.9. In other words 𝑋 and 𝑋′ = 𝑆𝑝𝑒𝑐(𝐵′) have a common affine open 𝑈. Here
is a diagram:

𝑋 = 𝑆𝑝𝑒𝑐(𝐵)

''

𝑈oo //

��

𝑆𝑝𝑒𝑐(𝐵′) = 𝑋′

vv
𝑌 = 𝑆𝑝𝑒𝑐(𝐴)

After shrinking 𝑌 once more (by applying Lemma 33.17.3 to 𝑍 = 𝑋 ⧵ 𝑈 in 𝑋 and 𝑍′ =
𝑋′ ⧵ 𝑈 in 𝑋′) we see that 𝑈𝑦 is dense in 𝑋𝑦 and 𝑈𝑦 is dense in 𝑋′

𝑦 for all 𝑦 ∈ 𝑌. Thus it
suffices to prove the lemma for 𝑋′ → 𝑌 which is the content of Lemma 33.20.4. �

Lemma 33.20.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑛𝑋/𝑌 be the function on 𝑌
counting the numbers of geometrically irreducible components of fibres of 𝑓 introduced in
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Lemma 33.20.3. Assume 𝑓 of finite type. Let 𝑦 ∈ 𝑌 be a point. Then there exists a nonempty
open 𝑉 ⊂ {𝑦} such that 𝑛𝑋/𝑌|𝑉 is constant.

Proof. Let 𝑍 be the reduced induced scheme structure on {𝑦}. Let 𝑓𝑍 ∶ 𝑋𝑍 → 𝑍 be the
base change of 𝑓. Clearly it suffices to prove the lemma for 𝑓𝑍 and the generic point of
𝑍. Hence we may assume that 𝑌 is an integral scheme, see Properties, Lemma 23.3.4. Our
goal in this case is to produce a nonempty open 𝑉 ⊂ 𝑌 such that 𝑛𝑋/𝑌|𝑉 is constant.

We apply Lemma 33.17.8 to 𝑓 ∶ 𝑋 → 𝑌 and we get 𝑔 ∶ 𝑌′ → 𝑉 ⊂ 𝑌. As 𝑔 ∶ 𝑌′ → 𝑉 is
surjective finite étale, in particular open (see Morphisms, Lemma 24.35.13), it suffices to
prove that there exists an open 𝑉′ ⊂ 𝑌′ such that 𝑛𝑋′/𝑌′|𝑉′ is constant, see Lemma 33.20.3.
Thus we see that we may assume that all irreducible components of the generic fibre 𝑋𝜂
are geometrically irreducible over 𝜅(𝜂).

At this point suppose that 𝑋𝜂 = 𝑋1,𝜂 ⋃ … ⋃ 𝑋𝑛,𝜂 is the decomposition of the generic
fibre into (geometrically) irreducible components. In particular 𝑛𝑋/𝑌(𝜂) = 𝑛. Let 𝑋𝑖 be
the closure of 𝑋𝑖,𝜂 in 𝑋. After shrinking 𝑌 we may assume that 𝑋 = ⋃ 𝑋𝑖, see Lemma
33.17.5. After shrinking 𝑌 some more we see that each fibre of 𝑓 has at least 𝑛 irreducible
components, see Lemma 33.20.1. Hence 𝑛𝑋/𝑌(𝑦) ≥ 𝑛 for all 𝑦 ∈ 𝑌. After shrinking 𝑌 some
more we obtain that 𝑋𝑖,𝑦 is geometrically irreducible for each 𝑖 and all 𝑦 ∈ 𝑌, see Lemma
33.20.5. Since 𝑋𝑦 = ⋃ 𝑋𝑖,𝑦 this shows that 𝑛𝑋/𝑌(𝑦) ≤ 𝑛 and finishes the proof. �

Lemma 33.20.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑛𝑋/𝑌 be the function on 𝑌
counting the numbers of geometrically irreducible components of fibres of 𝑓 introduced in
Lemma 33.20.3. Assume 𝑓 of finite presentation. Then the level sets

𝐸𝑛 = {𝑦 ∈ 𝑌 ∣ 𝑛𝑋/𝑌(𝑦) = 𝑛}

of 𝑛𝑋/𝑌 are locally constructible in 𝑌.

Proof. Fix 𝑛. Let 𝑦 ∈ 𝑌. We have to show that there exists an open neighbourhood 𝑉 of
𝑦 in 𝑌 such that 𝐸𝑛 ∩ 𝑉 is constructible in 𝑉. Thus we may assume that 𝑌 is affine. Write
𝑌 = 𝑆𝑝𝑒𝑐(𝐴) and 𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 as a directed limit of finite type 𝐙-algebras. By Limits,
Lemma 27.6.1 we can find an 𝑖 and a morphism 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑝𝑒𝑐(𝐴𝑖) of finite presentation
whose base change to 𝑌 recovers 𝑓. By Lemma 33.20.3 it suffices to prove the lemma for
𝑓𝑖. Thus we reduce to the case where 𝑌 is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 5.11.3 to prove that 𝐸𝑛 is constructible in
case 𝑌 is a Noetherian scheme. To see this let 𝑍 ⊂ 𝑌 be an irreducible closed subscheme.
We have to show that 𝐸𝑛 ∩ 𝑍 either contains a nonempty open subset or is not dense in
𝑍. Let 𝜉 ∈ 𝑍 be the generic point. Then Lemma 33.20.6 shows that 𝑛𝑋/𝑌 is constant in a
neighbourhood of 𝜉 in 𝑍. This clearly implies what we want. �

33.21. Connected components of fibres

Lemma 33.21.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume 𝑌 irreducible with
generic point 𝜂 and 𝑓 of finite type. If 𝑋𝜂 has 𝑛 connected components, then there exists
a nonempty open 𝑉 ⊂ 𝑌 such that for all 𝑦 ∈ 𝑉 the fibre 𝑋𝑦 has at least 𝑛 connected
components.

Proof. As the question is purely topological wemay replace 𝑋 and 𝑌 by their reductions. In
particular this implies that 𝑌 is integral, see Properties, Lemma 23.3.4. Let 𝑋𝜂 = 𝑋1,𝜂∪…∪
𝑋𝑛,𝜂 be the decomposition of 𝑋𝜂 into connected components. Let 𝑋𝑖 ⊂ 𝑋 be the reduced
closed subscheme whose generic fibre is 𝑋𝑖,𝜂. Note that 𝑍𝑖,𝑗 = 𝑋𝑖 ∩𝑋𝑗 is a closed subset of

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=055B
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=055D


1790 33. MORE ON MORPHISMS

𝑋whose generic fibre𝑍𝑖,𝑗,𝜂 is empty. Hence after shrinking 𝑌wemay assume that𝑍𝑖,𝑗 = ∅,
see Lemma 33.17.1. After shrinking 𝑌 some more we may assume that 𝑋𝑦 = ⋃ 𝑋𝑖,𝑦 for
𝑦 ∈ 𝑌, see Lemma 33.17.5. Moreover, after shrinking 𝑌 wemay assume that each 𝑋𝑖 → 𝑌 is
flat and of finite presentation, seeMorphisms, Proposition 24.26.1. The morphisms 𝑋𝑖 → 𝑌
are open, see Morphisms, Lemma 24.24.9. Thus there exists an open neighbourhood 𝑉 of
𝜂 which is contained in 𝑓(𝑋𝑖) for each 𝑖. For each 𝑦 ∈ 𝑉 the schemes 𝑋𝑖,𝑦 are nonempty
closed subsets of 𝑋𝑦, we have 𝑋𝑦 = ⋃ 𝑋𝑖,𝑦 and the intersections 𝑍𝑖,𝑗,𝑦 = 𝑋𝑖,𝑦 ∩ 𝑋𝑗,𝑦 are
empty! Clearly this implies that 𝑋𝑦 has at least 𝑛 connected components. �

Lemma 33.21.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑔 ∶ 𝑌′ → 𝑌 be any
morphism, and denote 𝑓′ ∶ 𝑋′ → 𝑌′ the base change of 𝑓. Then

{𝑦′ ∈ 𝑌′ ∣ 𝑋′
𝑦′ is geometrically connected}

= 𝑔−1({𝑦 ∈ 𝑌 ∣ 𝑋𝑦 is geometrically connected}).

Proof. This comes down to the statement that for 𝑦′ ∈ 𝑌′ with image 𝑦 ∈ 𝑌 the fibre
𝑋′

𝑦′ = 𝑋𝑦 ×𝑦 𝑦′ is geometrically connected over 𝜅(𝑦′) if and only if 𝑋𝑦 is geometrically
connected over 𝜅(𝑦). This follows from Varieties, Lemma 28.5.3. �

Lemma 33.21.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let

𝑛𝑋/𝑌 ∶ 𝑌 → {0, 1, 2, 3, … , ∞}

be the function which associates to 𝑦 ∈ 𝑌 the number of connected components of (𝑋𝑦)𝐾
where 𝐾 is a separably closed extension of 𝜅(𝑦). This is well defined and if 𝑔 ∶ 𝑌′ → 𝑌 is a
morphism then

𝑛𝑋′/𝑌′ = 𝑛𝑋/𝑌 ∘ 𝑔

where 𝑋′ → 𝑌′ is the base change of 𝑓.

Proof. Suppose that 𝑦′ ∈ 𝑌′ has image 𝑦 ∈ 𝑌. Suppose 𝐾 ⊃ 𝜅(𝑦) and 𝐾′ ⊃ 𝜅(𝑦′) are
separably closed extensions. Then we may choose a commutative diagram

𝐾 // 𝐾″ 𝐾′oo

𝜅(𝑦)

OO

// 𝜅(𝑦′)

OO

of fields. The result follows as the morphisms of schemes

(𝑋′
𝑦′)𝐾′ (𝑋′

𝑦′)𝐾″ = (𝑋𝑦)𝐾″oo // (𝑋𝑦)𝐾

induce bijections between connected components, see Varieties, Lemma 28.5.6. �

Lemma 33.21.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume
(1) 𝑌 is irreducible with generic point 𝜂,
(2) 𝑋𝜂 is nonempty and geometrically connected, and
(3) 𝑓 is of finite type.

Then there exists a nonempty open subscheme 𝑉 ⊂ 𝑌 such that 𝑋𝑉 → 𝑉 has nonempty
geometrically connected fibres.
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Proof. Choose a diagram
𝑋′

𝑓′

��

𝑔′
// 𝑋𝑉

//

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑉 // 𝑌
as in Lemma 33.17.8. Note that the generic fibre of 𝑓′ is nonempty and geometrically con-
nected (for example by Lemma 33.21.3). Suppose that the lemma holds for the morphism
𝑓′. This means that there exists a nonempty open 𝑊 ⊂ 𝑌′ such that every fibre of 𝑋′ → 𝑌′

over 𝑊 is nonempty and geometrically connected. Then, as 𝑔 is an open morphism by
Morphisms, Lemma 24.35.13 all the fibres of 𝑓 at point of the nonempty open 𝑉 = 𝑔(𝑊)
are nonempty and geometrically connected, see Lemma 33.21.3. In this way we see that
we may assume that the irreducible components of the generic fibre 𝑋𝜂 are geometrically
irreducible.

Let 𝑌′ be the reduction of 𝑌, and set 𝑋′ = 𝑌′ ×𝑌 𝑋. Then it suffices to prove the lemma
for the morphism 𝑋′ → 𝑌′ (for example by Lemma 33.21.3 once again). Since the generic
fibre of 𝑋′ → 𝑌′ is the same as the generic fibre of 𝑋 → 𝑌 we see that we may assume
that 𝑌 is irreducible and reduced (i.e., integral, see Properties, Lemma 23.3.4) and that the
irreducible components of the generic fibre 𝑋𝜂 are geometrically irreducible.

At this point suppose that 𝑋𝜂 = 𝑋1,𝜂 ⋃ … ⋃ 𝑋𝑛,𝜂 is the decomposition of the generic fibre
into (geometrically) irreducible components. Let 𝑋𝑖 be the closure of 𝑋𝑖,𝜂 in 𝑋. After
shrinking 𝑌 we may assume that 𝑋 = ⋃ 𝑋𝑖, see Lemma 33.17.5. Let 𝑍𝑖,𝑗 = 𝑋𝑖 ∩ 𝑋𝑗. Let

{1, … , 𝑛} × {1, … , 𝑛} = 𝐼 ∐ 𝐽

where (𝑖, 𝑗) ∈ 𝐼 if 𝑍𝑖,𝑗,𝜂 = ∅ and (𝑖, 𝑗) ∈ 𝐽 if 𝑍𝑖,𝑗,𝜂≠∅. After shrinking 𝑌 we may assume
that 𝑍𝑖,𝑗 = ∅ for all (𝑖, 𝑗) ∈ 𝐼, see Lemma 33.17.1. After shrinking 𝑌 we obtain that 𝑋𝑖,𝑦 is
geometrically irreducible for each 𝑖 and all 𝑦 ∈ 𝑌, see Lemma 33.20.5. After shrinking 𝑌
some more we achieve the situation where each 𝑍𝑖,𝑗 → 𝑌 is flat and of finite presentation
for all (𝑖, 𝑗) ∈ 𝐽, see Morphisms, Proposition 24.26.1. This means that 𝑓(𝑍𝑖,𝑗) ⊂ 𝑌 is open,
see Morphisms, Lemma 24.24.9. We claim that

𝑉 = ⋂(𝑖,𝑗)∈𝐽
𝑓(𝑍𝑖,𝑗)

works, i.e., that 𝑋𝑦 is geometrically connected for each 𝑦 ∈ 𝑉. Namely, the fact that 𝑋𝜂
is connected implies that the equivalence relation generated by the pairs in 𝐽 has only one
equivalence class. Now if 𝑦 ∈ 𝑉 and 𝐾 ⊃ 𝜅(𝑦) is a separably closed extension, then the
irreducible components of (𝑋𝑦)𝐾 are the fibres (𝑋𝑖,𝑦)𝐾. Moreover, we see by construction
and 𝑦 ∈ 𝑉 that (𝑋𝑖,𝑦)𝐾 meets (𝑋𝑗,𝑦)𝐾 if and only (𝑖, 𝑗) ∈ 𝐽. Hence the remark on equivalence
classes shows that (𝑋𝑦)𝐾 is connected and we win. �

Lemma 33.21.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑛𝑋/𝑌 be the function on 𝑌
counting the numbers of geometrically connected components of fibres of 𝑓 introduced in
Lemma 33.21.3. Assume 𝑓 of finite type. Let 𝑦 ∈ 𝑌 be a point. Then there exists a nonempty
open 𝑉 ⊂ {𝑦} such that 𝑛𝑋/𝑌|𝑉 is constant.

Proof. Let 𝑍 be the reduced induced scheme structure on {𝑦}. Let 𝑓𝑍 ∶ 𝑋𝑍 → 𝑍 be the
base change of 𝑓. Clearly it suffices to prove the lemma for 𝑓𝑍 and the generic point of
𝑍. Hence we may assume that 𝑌 is an integral scheme, see Properties, Lemma 23.3.4. Our
goal in this case is to produce a nonempty open 𝑉 ⊂ 𝑌 such that 𝑛𝑋/𝑌|𝑉 is constant.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=055H


1792 33. MORE ON MORPHISMS

We apply Lemma 33.17.8 to 𝑓 ∶ 𝑋 → 𝑌 and we get 𝑔 ∶ 𝑌′ → 𝑉 ⊂ 𝑌. As 𝑔 ∶ 𝑌′ → 𝑉 is
surjective finite étale, in particular open (see Morphisms, Lemma 24.35.13), it suffices to
prove that there exists an open 𝑉′ ⊂ 𝑌′ such that 𝑛𝑋′/𝑌′|𝑉′ is constant, see Lemma 33.20.3.
Thus we see that we may assume that all irreducible components of the generic fibre 𝑋𝜂
are geometrically irreducible over 𝜅(𝜂). By Varieties, Lemma 28.6.15 this implies that also
the connected components of 𝑋𝜂 are geometrically connected.

At this point suppose that 𝑋𝜂 = 𝑋1,𝜂 ⋃ … ⋃ 𝑋𝑛,𝜂 is the decomposition of the generic fibre
into (geometrically) connected components. In particular 𝑛𝑋/𝑌(𝜂) = 𝑛. Let 𝑋𝑖 be the closure
of 𝑋𝑖,𝜂 in 𝑋. After shrinking 𝑌 we may assume that 𝑋 = ⋃ 𝑋𝑖, see Lemma 33.17.5. After
shrinking 𝑌 some more we see that each fibre of 𝑓 has at least 𝑛 connected components, see
Lemma 33.21.1. Hence 𝑛𝑋/𝑌(𝑦) ≥ 𝑛 for all 𝑦 ∈ 𝑌. After shrinking 𝑌 some more we obtain
that 𝑋𝑖,𝑦 is geometrically connected for each 𝑖 and all 𝑦 ∈ 𝑌, see Lemma 33.21.4. Since
𝑋𝑦 = ⋃ 𝑋𝑖,𝑦 this shows that 𝑛𝑋/𝑌(𝑦) ≤ 𝑛 and finishes the proof. �

Lemma 33.21.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑛𝑋/𝑌 be the function on 𝑌
counting the numbers of geometrically connected components of fibres of 𝑓 introduced in
Lemma 33.21.3. Assume 𝑓 of finite presentation. Then the level sets

𝐸𝑛 = {𝑦 ∈ 𝑌 ∣ 𝑛𝑋/𝑌(𝑦) = 𝑛}

of 𝑛𝑋/𝑌 are locally constructible in 𝑌.

Proof. Fix 𝑛. Let 𝑦 ∈ 𝑌. We have to show that there exists an open neighbourhood 𝑉 of
𝑦 in 𝑌 such that 𝐸𝑛 ∩ 𝑉 is constructible in 𝑉. Thus we may assume that 𝑌 is affine. Write
𝑌 = 𝑆𝑝𝑒𝑐(𝐴) and 𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 as a directed limit of finite type 𝐙-algebras. By Limits,
Lemma 27.6.1 we can find an 𝑖 and a morphism 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑝𝑒𝑐(𝐴𝑖) of finite presentation
whose base change to 𝑌 recovers 𝑓. By Lemma 33.21.3 it suffices to prove the lemma for
𝑓𝑖. Thus we reduce to the case where 𝑌 is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 5.11.3 to prove that 𝐸𝑛 is constructible in
case 𝑌 is a Noetherian scheme. To see this let 𝑍 ⊂ 𝑌 be an irreducible closed subscheme.
We have to show that 𝐸𝑛 ∩ 𝑍 either contains a nonempty open subset or is not dense in
𝑍. Let 𝜉 ∈ 𝑍 be the generic point. Then Lemma 33.21.5 shows that 𝑛𝑋/𝑌 is constant in a
neighbourhood of 𝜉 in 𝑍. This clearly implies what we want. �

Lemma 33.21.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume that
(1) 𝑆 is the spectrum of a discrete valuation ring,
(2) 𝑓 is flat,
(3) 𝑋 is connected,
(4) the closed fibre 𝑋𝑠 is reduced.

Then the generic fibre 𝑋𝜂 is connected.

Proof. Write 𝑌 = 𝑆𝑝𝑒𝑐(𝑅) and let 𝜋 ∈ 𝑅 be a uniformizer. To get a contradiction assume
that 𝑋𝜂 is disconnected. This means there exists a nontrivial idempotent 𝑒 ∈ Γ(𝑋𝜂, 𝒪𝑋𝜂

).
Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) be any affine open in 𝑋. Note that 𝜋 is a nonzero divisor on 𝐴 as 𝐴 is flat
over 𝑅, see More on Algebra, Lemma 12.17.3 for example. Then 𝑒|𝑈𝜂

corresponds to an
element 𝑒 ∈ 𝐴[1/𝜋]. Let 𝑧 ∈ 𝐴 be an element such that 𝑒 = 𝑧/𝜋𝑛 with 𝑛 ≥ 0 minimal. Note
that 𝑧2 = 𝜋𝑛𝑧. This means that 𝑧 mod 𝜋𝐴 is nilpotent if 𝑛 > 0. By assumption 𝐴/𝜋𝐴 is
reduced, and hence minimality of 𝑛 implies 𝑛 = 0. Thus we conclude that 𝑒 ∈ 𝐴! In other
words 𝑒 ∈ Γ(𝑋, 𝒪𝑋). As 𝑋 is connected it follows that 𝑒 is a trivial idempotent which is a
contradiction. �
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33.22. Connected components meeting a section

The results in this section are in particular applicable to a group scheme 𝐺 → 𝑆 and its
neutral section 𝑒 ∶ 𝑆 → 𝐺.

Situation 33.22.1. Here 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes, and 𝑠 ∶ 𝑌 → 𝑋 is a
section of 𝑓. For every 𝑦 ∈ 𝑌 we denote 𝑋0

𝑦 the connected component of 𝑋𝑦 containing
𝑠(𝑦). Finally, we set 𝑋0 = ⋃𝑦∈𝑌 𝑋0

𝑦.

Lemma 33.22.2. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑠 ∶ 𝑌 → 𝑋 be as in Situation 33.22.1. If 𝑔 ∶ 𝑌′ → 𝑌 is
any morphism, consider the base change diagram

𝑋′
𝑔′
//

𝑓′

��

𝑋

𝑓
��

𝑌′

𝑠′

@@

𝑔 // 𝑌

𝑠

^^

so that we obtain (𝑋′)0 ⊂ 𝑋′. Then (𝑋′)0 = (𝑔′)−1(𝑋0).

Proof. Let 𝑦′ ∈ 𝑌′ with image 𝑦 ∈ 𝑌. We may think of 𝑋0
𝑦 as a closed subscheme of 𝑋𝑦,

see for example Morphisms, Definition 24.25.2. As 𝑠(𝑦) ∈ 𝑋0
𝑦 we conclude from Varieties,

Lemma 28.5.14 that 𝑋0
𝑦 is a geometrically connected scheme over 𝜅(𝑦). Hence 𝑋0

𝑦 ×𝑦 𝑦′ →
𝑋′

𝑦′ is a connected closed subscheme which contains 𝑠′(𝑦′). Thus 𝑋0
𝑦 ×𝑦 𝑦′ ⊂ (𝑋′

𝑦′)0. The
other inclusion 𝑋0

𝑦 ×𝑦 𝑦′ ⊃ (𝑋′
𝑦′)0 is clear as the image of (𝑋′

𝑦′)0 in 𝑋𝑦 is a connected subset
of 𝑋𝑦 which contains 𝑠(𝑦). �

Lemma 33.22.3. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑠 ∶ 𝑌 → 𝑋 be as in Situation 33.22.1. Assume 𝑓 of
finite type. Let 𝑦 ∈ 𝑌 be a point. Then there exists a nonempty open 𝑉 ⊂ {𝑦} such that the
inverse image of 𝑋0 in the base change 𝑋𝑉 is open and closed in 𝑋𝑉.

Proof. Let 𝑍 ⊂ 𝑌 be the induced reduced closed subscheme structure on {𝑦}. Let 𝑓𝑍 ∶
𝑋𝑍 → 𝑍 and 𝑠𝑍 ∶ 𝑍 → 𝑋𝑍 be the base changes of 𝑓 and 𝑠. By Lemma 33.22.2 we have
(𝑋𝑍)0 = (𝑋0)𝑍. Hence it suffices to prove the lemma for the morphism 𝑋𝑍 → 𝑍 and
the point 𝑥 ∈ 𝑋𝑍 which maps to the generic point of 𝑍. In other words we have reduced
the problem to the case where 𝑌 is an integral scheme (see Properties, Lemma 23.3.4) with
generic point 𝜂. Our goal is to show that after shrinking 𝑌 the subset 𝑋0 becomes an open
and closed subset of 𝑋.

Note that the scheme 𝑋𝜂 is of finite type over a field, hence Noetherian. Thus its connected
components are open as well as closed. Hence we may write 𝑋𝜂 = 𝑋0

𝜂 ∐ 𝑇𝜂 for some open
and closed subset 𝑇𝜂 of 𝑋𝜂. Next, let 𝑇 ⊂ 𝑋 be the closure of 𝑇𝜂 and let 𝑋00 ⊂ 𝑋 be the
closure of 𝑋0

𝜂. Note that 𝑇𝜂, resp. 𝑋0
𝜂 is the generic fibre of 𝑇, resp. 𝑋00, see discussion

preceding Lemma 33.17.5. Moreover, that lemma implies that after shrinking 𝑌 we may
assume that 𝑋 = 𝑋00 ∪ 𝑇 (set theoretically). Note that (𝑇 ∩ 𝑋00)𝜂 = 𝑇𝜂 ∩ 𝑋0

𝜂 = ∅. Hence
after shrinking 𝑌 we may assume that 𝑇 ∩ 𝑋00 = ∅, see Lemma 33.17.1. In particular 𝑋00

is open in 𝑋. Note that 𝑋0
𝜂 is connected and has a rational point, namely 𝑠(𝜂), hence it is

geometrically connected, see Varieties, Lemma 28.5.14. Thus after shrinking 𝑌 we may
assume that all fibres of 𝑋00 → 𝑌 are geometrically connected, see Lemma 33.21.4. At this
point it follows that the fibres 𝑋00

𝑦 are open, closed, and connected subsets of 𝑋𝑦 containing
𝜎(𝑦). It follows that 𝑋0 = 𝑋00 and we win. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=055L
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=055M
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=055N


1794 33. MORE ON MORPHISMS

Lemma 33.22.4. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑠 ∶ 𝑌 → 𝑋 be as in Situation 33.22.1. If 𝑓 is of finite
presentation then 𝑋0 is locally constructible in 𝑋.

Proof. Let 𝑥 ∈ 𝑋. We have to show that there exists an open neighbourhood 𝑈 of 𝑥 such
that 𝑋0 ∩ 𝑈 is constructible in 𝑈. This reduces us to the case where 𝑌 is affine. Write
𝑌 = 𝑆𝑝𝑒𝑐(𝐴) and 𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 as a directed limit of finite type 𝐙-algebras. By Limits,
Lemma 27.6.1 we can find an 𝑖 and a morphism 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑝𝑒𝑐(𝐴𝑖) of finite presentation,
endowed with a section 𝑠𝑖 ∶ 𝑆𝑝𝑒𝑐(𝐴𝑖) → 𝑋𝑖 whose base change to 𝑌 recovers 𝑓 and the
section 𝑠. By Lemma 33.22.2 it suffices to prove the lemma for 𝑓𝑖, 𝑠𝑖. Thus we reduce to
the case where 𝑌 is the spectrum of a Noetherian ring.

Assume 𝑌 is a Noetherian affine scheme. Since 𝑓 is of finite presentation, i.e., of finite
type, we see that 𝑋 is a Noetherian scheme too, see Morphisms, Lemma 24.14.6. In order
to prove the lemma in this case it suffices to show that for every irreducible closed subset
𝑍 ⊂ 𝑋 the intersection 𝑍 ∩ 𝑋0 either contains a nonempty open of 𝑍 or is not dense in 𝑍,
see Topology, Lemma 5.11.3. Let 𝑥 ∈ 𝑍 be the generic point, and let 𝑦 = 𝑓(𝑥). By Lemma
33.22.3 there exists a nonempty open subset 𝑉 ⊂ {𝑦} such that 𝑋0 ∩ 𝑋𝑉 is open and closed
in 𝑋𝑉. Since 𝑓(𝑍) ⊂ {𝑦} and 𝑓(𝑥) = 𝑦 ∈ 𝑉 we see that 𝑊 = 𝑓−1(𝑉) ∩ 𝑍 is a nonempty
open subset of 𝑍. It follows that 𝑋0 ∩ 𝑊 is open and closed in 𝑊. Since 𝑊 is irreducible
we see that 𝑋0 ∩ 𝑊 is either empty or equal to 𝑊. This proves the lemma. �

Lemma 33.22.5. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑠 ∶ 𝑌 → 𝑋 be as in Situation 33.22.1. Let 𝑦 ∈ 𝑌 be a
point. Assume

(1) 𝑓 is of finite presentation and flat, and
(2) the fibre 𝑋𝑦 is geometrically reduced.

Then 𝑋0 is a neighbourhood of 𝑋0
𝑦 in 𝑋.

Proof. We may replace 𝑌 with an affine open neighbourhood of 𝑦. Write 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) and
𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 as a directed limit of finite type 𝐙-algebras. By Limits, Lemma 27.6.1 we
can find an 𝑖 and a morphism 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑝𝑒𝑐(𝐴𝑖) of finite presentation, endowed with a
section 𝑠𝑖 ∶ 𝑆𝑝𝑒𝑐(𝐴𝑖) → 𝑋𝑖 whose base change to 𝑌 recovers 𝑓 and the section 𝑠. After
possibly increasing 𝑖 we may also assume that 𝑓𝑖 is flat, see Limits, Lemma 27.6.3. Let 𝑦𝑖
be the image of 𝑦 in 𝑌𝑖. Note that 𝑋𝑦 = (𝑋𝑖,𝑦𝑖

) ×𝑦𝑖
𝑦. Hence 𝑋𝑖,𝑦𝑖

is geometrically reduced,
see Varieties, Lemma 28.4.6. By Lemma 33.22.2 it suffices to prove the lemma for the
system 𝑓𝑖, 𝑠𝑖, 𝑦𝑖 ∈ 𝑌𝑖. Thus we reduce to the case where 𝑌 is the spectrum of a Noetherian
ring.

Assume 𝑌 is the spectrum of a Noetherian ring. Since 𝑓 is of finite presentation, i.e., of
finite type, we see that 𝑋 is a Noetherian scheme too, see Morphisms, Lemma 24.14.6. Let
𝑥 ∈ 𝑋0 be a point lying over 𝑦. By Topology, Lemma 5.11.4 it suffices to prove that for
any irreducible closed 𝑍 ⊂ 𝑋 passing through 𝑥 the intersection 𝑋0 ∩ 𝑍 is dense in 𝑍. In
particular it suffices to prove that the generic point 𝑥′ ∈ 𝑍 is in 𝑋0. By Properties, Lemma
23.5.9 we can find a discrete valuation ring 𝑅 and a morphism 𝑆𝑝𝑒𝑐(𝑅) → 𝑋 which maps
the special point to 𝑥 and the generic point to 𝑥′. We are going to think of 𝑆𝑝𝑒𝑐(𝑅) as a
scheme over 𝑌 via the composition 𝑆𝑝𝑒𝑐(𝑅) → 𝑋 → 𝑌. By Lemma 33.22.2 we have that
(𝑋𝑅)0 is the inverse image of 𝑋0. By construction we have a second section 𝑡 ∶ 𝑆𝑝𝑒𝑐(𝑅) →
𝑋𝑅 (besides the base change 𝑠𝑅 of 𝑠) of the structure morphism 𝑋𝑅 → 𝑆𝑝𝑒𝑐(𝑅) such that
𝑡(𝜂𝑅) is a point of 𝑋𝑅 which maps to 𝑥′ and 𝑡(0𝑅) is a point of 𝑋𝑅 which maps to 𝑥. Note
that 𝑡(0𝑅) is in (𝑋𝑅)0 and that 𝑡(𝜂𝑅) 𝑡(0𝑅). Thus it suffices to prove that this implies that
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𝑡(𝜂𝑅) ∈ (𝑋𝑅)0. Hence it suffices to prove the lemma in the case where 𝑌 is the spectrum of
a discrete valuation ring and 𝑦 its closed point.

Assume 𝑌 is the spectrum of a discrete valuation ring and 𝑦 is its closed point. Our goal is
to prove that 𝑋0 is a neighbourhood of 𝑋0

𝑦. Note that 𝑋0
𝑦 is open and closed in 𝑋𝑦 as 𝑋𝑦 has

finitely many irreducible components. Hence the complement 𝐶 = 𝑋𝑦 ⧵ 𝑋0
𝑦 is closed in 𝑋.

Thus 𝑈 = 𝑋 ⧵ 𝐶 is an open neighbourhood of 𝑋0
𝑦 and 𝑈0 = 𝑋0. Hence it suffices to prove

the result for the morphism 𝑈 → 𝑌. In other words, we may assume that 𝑋𝑦 is connected.
Suppose that 𝑋 is disconnected, say 𝑋 = 𝑋1 ⨿ … ⨿ 𝑋𝑛 is a decomposition into connected
components. Then 𝑠(𝑌) is completely contained in one of the 𝑋𝑖. Say 𝑠(𝑌) ⊂ 𝑋1. Then
𝑋0 ⊂ 𝑋1. Hence we may replace 𝑋 by 𝑋1 and assume that 𝑋 is connected. At this point
Lemma 33.21.7 implies that 𝑋𝜂 is connected, i.e., 𝑋0 = 𝑋 and we win. �

Lemma 33.22.6. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑠 ∶ 𝑌 → 𝑋 be as in Situation 33.22.1. Assume
(1) 𝑓 is of finite presentation and flat, and
(2) all fibres of 𝑓 are geometrically reduced.

Then 𝑋0 is open in 𝑋.

Proof. This is an immediate consequence of Lemma 33.22.5. �

33.23. Dimension of fibres

Lemma 33.23.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume 𝑌 irreducible with
generic point 𝜂 and 𝑓 of finite type. If 𝑋𝜂 has dimension 𝑛, then there exists a nonempty
open 𝑉 ⊂ 𝑌 such that for all 𝑦 ∈ 𝑉 the fibre 𝑋𝑦 has dimension 𝑛.

Proof. Let 𝑍 = {𝑥 ∈ 𝑋 ∣ dim𝑥(𝑋𝑓(𝑥)) > 𝑛}. By Morphisms, Lemma 24.27.4 this is a
closed subset of 𝑋. By assumption 𝑍𝜂 = ∅. Hence by Lemma 33.17.1 we may shrink
𝑌 and assume that 𝑍 = ∅. Let 𝑍′ = {𝑥 ∈ 𝑋 ∣ dim𝑥(𝑋𝑓(𝑥)) > 𝑛 − 1} = {𝑥 ∈ 𝑋 ∣
dim𝑥(𝑋𝑓(𝑥)) = 𝑛}. As before this is a closed subset of 𝑋. By assumption we have 𝑍′

𝜂≠∅.
Hence after shrinking 𝑌 we may assume that 𝑍′ → 𝑌 is surjective, see Lemma 33.17.2.
Hence we win. �

Lemma 33.23.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of finite type. Let

𝑛𝑋/𝑌 ∶ 𝑌 → {0, 1, 2, 3, … , ∞}

be the function which associates to 𝑦 ∈ 𝑌 the dimension of 𝑋𝑦. If 𝑔 ∶ 𝑌′ → 𝑌 is a morphism
then

𝑛𝑋′/𝑌′ = 𝑛𝑋/𝑌 ∘ 𝑔

where 𝑋′ → 𝑌′ is the base change of 𝑓.

Proof. This follows from Morphisms, Lemma 24.27.3. �

Lemma 33.23.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑛𝑋/𝑌 be the function
on 𝑌 giving the dimension of fibres of 𝑓 introduced in Lemma 33.23.2. Assume 𝑓 of finite
presentation. Then the level sets

𝐸𝑛 = {𝑦 ∈ 𝑌 ∣ 𝑛𝑋/𝑌(𝑦) = 𝑛}

of 𝑛𝑋/𝑌 are locally constructible in 𝑌.
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Proof. Fix 𝑛. Let 𝑦 ∈ 𝑌. We have to show that there exists an open neighbourhood 𝑉 of
𝑦 in 𝑌 such that 𝐸𝑛 ∩ 𝑉 is constructible in 𝑉. Thus we may assume that 𝑌 is affine. Write
𝑌 = 𝑆𝑝𝑒𝑐(𝐴) and 𝐴 = 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖 as a directed limit of finite type 𝐙-algebras. By Limits,
Lemma 27.6.1 we can find an 𝑖 and a morphism 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑝𝑒𝑐(𝐴𝑖) of finite presentation
whose base change to 𝑌 recovers 𝑓. By Lemma 33.23.2 it suffices to prove the lemma for
𝑓𝑖. Thus we reduce to the case where 𝑌 is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 5.11.3 to prove that 𝐸𝑛 is constructible in
case 𝑌 is a Noetherian scheme. To see this let 𝑍 ⊂ 𝑌 be an irreducible closed subscheme.
We have to show that 𝐸𝑛 ∩ 𝑍 either contains a nonempty open subset or is not dense in
𝑍. Let 𝜉 ∈ 𝑍 be the generic point. Then Lemma 33.23.1 shows that 𝑛𝑋/𝑌 is constant in a
neighbourhood of 𝜉 in 𝑍. This implies what we want. �

33.24. Limit arguments

Some lemmas involving limits of schemes, and Noetherian approximation. We stick mostly
to the affine case. Some of these lemmas are special cases of lemmas in the chapter on limits.

Lemma 33.24.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine schemes, which is of finite
presentation. Then there exists a cartesian diagram

𝑋0

𝑓0
��

𝑋𝑔
oo

𝑓
��

𝑆0 𝑆oo

such that
(1) 𝑋0, 𝑆0 are affine schemes,
(2) 𝑆0 of finite type over 𝐙,
(3) 𝑓0 is finite of finite type.

Proof. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑋 = 𝑆𝑝𝑒𝑐(𝐵). As 𝑓 is of finite presentation we see that 𝐵
is of finite presentation as an 𝐴-algebra, see Morphisms, Lemma 24.20.2. Thus the lemma
follows from Algebra, Lemma 7.118.15. �

Lemma 33.24.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine schemes, which is of finite
presentation. Let ℱ be a quasi-coherent 𝒪𝑋-module of finite presentation. Then there
exists a diagram as in Lemma 33.24.1 such that there exists a coherent 𝒪𝑋0

-module ℱ0
with 𝑔∗ℱ0 = ℱ.

Proof. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐵), and ℱ = 𝑀. As 𝑓 is of finite presentation we
see that 𝐵 is of finite presentation as an 𝐴-algebra, see Morphisms, Lemma 24.20.2. As ℱ
is of finite presentation over 𝒪𝑋 we see that 𝑀 is of finite presentation as a 𝐵-module, see
Properties, Lemma 23.16.2. Thus the lemma follows from Algebra, Lemma 7.118.15. �

Lemma 33.24.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine schemes, which is of finite
presentation. Let ℱ be a quasi-coherent 𝒪𝑋-module of finite presentation and flat over 𝑆.
Then we may choose a diagram as in Lemma 33.24.2 and sheaf ℱ0 such that in addition
ℱ0 is flat over 𝑆0.

Proof. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐵), and ℱ = 𝑀. As 𝑓 is of finite presentation we
see that 𝐵 is of finite presentation as an 𝐴-algebra, see Morphisms, Lemma 24.20.2. As ℱ
is of finite presentation over 𝒪𝑋 we see that 𝑀 is of finite presentation as a 𝐵-module, see
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Properties, Lemma 23.16.2. As ℱ is flat over 𝑆 we see that 𝑀 is flat over 𝐴, seeMorphisms,
Lemma 24.24.2. Thus the lemma follows from Algebra, Lemma 7.120.5. �

Lemma 33.24.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine schemes, which is of finite
presentation and flat. Then there exists a diagram as in Lemma 33.24.1 such that in addition
𝑓0 is flat.

Proof. This is a special case of Lemma 33.24.3. �

Lemma 33.24.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine schemes, which is smooth. Then
there exists a diagram as in Lemma 33.24.1 such that in addition 𝑓0 is smooth.

Proof. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐵), and as 𝑓 is smooth we see that 𝐵 is smooth as
an 𝐴-algebra, see Morphisms, Lemma 24.33.2. Hence the lemma follows from Algebra,
Lemma 7.127.14. �

Lemma 33.24.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine schemes, which is of finite
presentation with geometrically reduced fibres. Then there exists a diagram as in Lemma
33.24.1 such that in addition 𝑓0 has geometrically reduced fibres.

Proof. Apply Lemma 33.24.1 to get a cartesian diagram

𝑋0

𝑓0
��

𝑋𝑔
oo

𝑓
��

𝑆0 𝑆ℎoo

of affine schemes with 𝑋0 → 𝑆0 a finite type morphism of schemes of finite type over 𝐙.
By Lemma 33.19.5 the set 𝐸 ⊂ 𝑆0 of points where the fibre of 𝑓0 is geometrically reduced
is a constructible subset. By Lemma 33.19.2 we have ℎ(𝑆) ⊂ 𝐸. Write 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴0)
and 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). Write 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 as a direct colimit of finite type 𝐴0-algebras. By
Limits, Lemma 27.3.4 we see that 𝑆𝑝𝑒𝑐(𝐴𝑖) → 𝑆0 has image contained in 𝐸 for some 𝑖.
After replacing 𝑆0 by 𝑆𝑝𝑒𝑐(𝐴𝑖) and 𝑋0 by 𝑋0 ×𝑆0

𝑆𝑝𝑒𝑐(𝐴𝑖) we see that all fibres of 𝑓0 are
geometrically reduced. �

Lemma 33.24.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine schemes, which is of finite
presentation with geometrically irreducible fibres. Then there exists a diagram as in Lemma
33.24.1 such that in addition 𝑓0 has geometrically irreducible fibres.

Proof. Apply Lemma 33.24.1 to get a cartesian diagram

𝑋0

𝑓0
��

𝑋𝑔
oo

𝑓
��

𝑆0 𝑆ℎoo

of affine schemes with 𝑋0 → 𝑆0 a finite type morphism of schemes of finite type over 𝐙. By
Lemma 33.20.7 the set 𝐸 ⊂ 𝑆0 of points where the fibre of 𝑓0 is geometrically irreducible
is a constructible subset. By Lemma 33.20.2 we have ℎ(𝑆) ⊂ 𝐸. Write 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴0)
and 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). Write 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 as a direct colimit of finite type 𝐴0-algebras. By
Limits, Lemma 27.3.4 we see that 𝑆𝑝𝑒𝑐(𝐴𝑖) → 𝑆0 has image contained in 𝐸 for some 𝑖.
After replacing 𝑆0 by 𝑆𝑝𝑒𝑐(𝐴𝑖) and 𝑋0 by 𝑋0 ×𝑆0

𝑆𝑝𝑒𝑐(𝐴𝑖) we see that all fibres of 𝑓0 are
geometrically irreducible. �
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Lemma 33.24.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine schemes, which is of finite
presentation with geometrically connected fibres. Then there exists a diagram as in Lemma
33.24.1 such that in addition 𝑓0 has geometrically connected fibres.

Proof. Apply Lemma 33.24.1 to get a cartesian diagram

𝑋0

𝑓0
��

𝑋𝑔
oo

𝑓
��

𝑆0 𝑆ℎoo

of affine schemes with 𝑋0 → 𝑆0 a finite type morphism of schemes of finite type over 𝐙. By
Lemma 33.21.6 the set 𝐸 ⊂ 𝑆0 of points where the fibre of 𝑓0 is geometrically connected
is a constructible subset. By Lemma 33.21.2 we have ℎ(𝑆) ⊂ 𝐸. Write 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴0)
and 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). Write 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 as a direct colimit of finite type 𝐴0-algebras. By
Limits, Lemma 27.3.4 we see that 𝑆𝑝𝑒𝑐(𝐴𝑖) → 𝑆0 has image contained in 𝐸 for some 𝑖.
After replacing 𝑆0 by 𝑆𝑝𝑒𝑐(𝐴𝑖) and 𝑋0 by 𝑋0 ×𝑆0

𝑆𝑝𝑒𝑐(𝐴𝑖) we see that all fibres of 𝑓0 are
geometrically connected. �

Lemma 33.24.9. Let 𝑑 ≥ 0 be an integer. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine
schemes, which is of finite presentation all of whose fibres have dimension 𝑑. Then there
exists a diagram as in Lemma 33.24.1 such that in addition all fibres of 𝑓0 have dimension
𝑑.

Proof. Apply Lemma 33.24.1 to get a cartesian diagram

𝑋0

𝑓0
��

𝑋𝑔
oo

𝑓
��

𝑆0 𝑆ℎoo

of affine schemes with 𝑋0 → 𝑆0 a finite type morphism of schemes of finite type over
𝐙. By Lemma 33.23.3 the set 𝐸 ⊂ 𝑆0 of points where the fibre of 𝑓0 has dimension 𝑑
is a constructible subset. By Lemma 33.23.2 we have ℎ(𝑆) ⊂ 𝐸. Write 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴0)
and 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). Write 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 as a direct colimit of finite type 𝐴0-algebras. By
Limits, Lemma 27.3.4 we see that 𝑆𝑝𝑒𝑐(𝐴𝑖) → 𝑆0 has image contained in 𝐸 for some 𝑖.
After replacing 𝑆0 by 𝑆𝑝𝑒𝑐(𝐴𝑖) and 𝑋0 by 𝑋0 ×𝑆0

𝑆𝑝𝑒𝑐(𝐴𝑖) we see that all fibres of 𝑓0 have
dimension 𝑑. �

Lemma 33.24.10. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of affine schemes, which is standard
syntomic (see Morphisms, Definition 24.30.1). Then there exists a diagram as in Lemma
33.24.1 such that in addition 𝑓0 is standard syntomic.

Proof. This lemma is an improvement of the awkward Algebra, Lemma 7.125.12. Write
𝑋 = 𝑆𝑝𝑒𝑐(𝐵) and𝑆 = 𝑆𝑝𝑒𝑐(𝐴). By assumptionwemaywrite𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)
such that every nonzero fibre ring of 𝐴 → 𝐵 has dimension 𝑛 − 𝑐. Let 𝐴0 ⊂ 𝐴 be a finite
type 𝐙-subalgebra such that the coefficients of the polynomials 𝑓𝑗 are contained in 𝐴0. Set
𝐵0 = 𝐴0[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐). Let

𝐸 = {𝔭0 ⊂ 𝐴0 ∣ dim(𝐵0 ⊗𝐴0
𝜅(𝔭0) = 𝑛 − 𝑐}

By Lemma 33.23.3 the set 𝐸 is constructible. By assumption and Lemma 33.23.2 the
morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝐴0) has image contained in 𝐸. Write 𝐴 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖 as a
direct colimit of finite type 𝐴0-algebras. By Limits, Lemma 27.3.4 we see that 𝑆𝑝𝑒𝑐(𝐴𝑖) →
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𝑆𝑝𝑒𝑐(𝐴0) has image contained in 𝐸 for some 𝑖. After replacing 𝐴0 by 𝐴𝑖 and 𝐵0 by 𝐵0 ⊗𝐴0
𝐴𝑖 we see that all nonempty fibre rings of 𝐴0 → 𝐵0 have dimension 𝑛 − 𝑐. Hence 𝐴0 → 𝐵0
is a relative global complete intersection. �

Lemma 33.24.11. (Noetherian approximation and combining properties.) Let 𝑃, 𝑄 be
properties of morphisms of schemes which are stable under base change. Let 𝑓 ∶ 𝑋 → 𝑆 be
a morphism of finite presentation of affine schemes. Assume we can find cartesian diagrams

𝑋1

𝑓1
��

𝑋oo

𝑓
��

𝑆1 𝑆oo

and

𝑋2

𝑓2
��

𝑋oo

𝑓
��

𝑆2 𝑆oo

of affine schemes, with 𝑆1, 𝑆2 of finite type over 𝐙 and 𝑓1, 𝑓2 of finite type such that 𝑓1 has
property 𝑃 and 𝑓2 has property 𝑄. Then we can find a cartesian diagram

𝑋0

𝑓0
��

𝑋oo

𝑓
��

𝑆0 𝑆oo

of affine schemes with 𝑆0 of finite type over 𝐙 and 𝑓0 of finite type such that 𝑓0 has both
property 𝑃 and property 𝑄.

Proof. The given pair of diagrams correspond to cocartesian diagrams of rings

𝐵1
// 𝐵

𝐴1

OO

// 𝐴

OO

and

𝐵2
// 𝐵

𝐴2

OO

// 𝐴

OO

Let 𝐴0 ⊂ 𝐴 be a finite type 𝐙-subalgebra of 𝐴 containing the image of both 𝐴1 → 𝐴 and
𝐴2 → 𝐴. Such a subalgebra exists because by assumption both 𝐴1 and 𝐴2 are of finite
type over 𝐙. Note that the rings 𝐵0,1 = 𝐵1 ⊗𝐴1

𝐴0 and 𝐵0,2 = 𝐵2 ⊗𝐴2
𝐴0 are finite type

𝐴0-algebras with the property that 𝐵0,1 ⊗𝐴0
𝐴 ≅ 𝐵 ≅ 𝐵0,2 ⊗𝐴0

𝐴 as 𝐴-algebras. As 𝐴
is the directed colimit of its finite type 𝐴0-subalgebras, by Limits, Lemma 27.6.1 we may
assume after enlarging 𝐴0 that there exists an isomorphism 𝐵0,1 ≅ 𝐵0,2 as 𝐴0-algebras.
Since properties 𝑃 and 𝑄 are assumed stable under base change we conclude that setting
𝑆0 = 𝑆𝑝𝑒𝑐(𝐴0) and

𝑋0 = 𝑋1 ×𝑆1
𝑆0 = 𝑆𝑝𝑒𝑐(𝐵0,1) ≅ 𝑆𝑝𝑒𝑐(𝐵0,2) = 𝑋2 ×𝑆2

𝑆0

works. �

33.25. Étale neighbourhoods

It turns out that some properties of morphisms are easier to study after doing an étale base
change. It is convenient to introduce the following terminology.

Definition 33.25.1. Let 𝑆 be a scheme. Let 𝑠 ∈ 𝑆 be a point.
(1) An étale neighbourhood of (𝑆, 𝑠) is a pair (𝑈, 𝑢) together with an étale morphism

of schemes 𝜑 ∶ 𝑈 → 𝑆 such that 𝜑(𝑢) = 𝑠.
(2) A morphism of étale neighbourhoods 𝑓 ∶ (𝑉, 𝑣) → (𝑈, 𝑢) of (𝑆, 𝑠) is simply a

morphism of 𝑆-schemes 𝑓 ∶ 𝑉 → 𝑈 such that 𝑓(𝑣) = 𝑢.
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(3) An elementary étale neighbourhood is an étale neighbourhood 𝜑 ∶ (𝑈, 𝑢) →
(𝑆, 𝑠) such that 𝜅(𝑠) = 𝜅(𝑢).

If 𝑓 ∶ (𝑉, 𝑣) → (𝑈, 𝑢) is a morphism of étale neighbourhoods, then 𝑓 is automatically étale,
see Morphisms, Lemma 24.35.18. Hence it turns (𝑉, 𝑣) into an étale neighbourhood of
(𝑈, 𝑢). Of course, since the composition of étale morphisms is étale (Morphisms, Lemma
24.35.3) we see that conversely any étale neighbourhood (𝑉, 𝑣) of (𝑈, 𝑢) is an étale neigh-
bourhood of (𝑆, 𝑠) as well. We also remark that if 𝑈 ⊂ 𝑆 is an open neighbourood of 𝑠,
then (𝑈, 𝑠) → (𝑆, 𝑠) is an étale neighbourhood. This follows from the fact that an open im-
mersion is étale (Morphisms, Lemma 24.35.9). We will use these remarks without further
mention throughout this section.

Note that 𝜅(𝑠) ⊂ 𝜅(𝑢) is a finite separable extension if (𝑈, 𝑢) → (𝑆, 𝑠) is an étale neighbour-
hood, see Morphisms, Lemma 24.35.15.

Lemma 33.25.2. Let 𝑆 be a scheme. Let 𝑠 ∈ 𝑆. Let 𝜅(𝑠) ⊂ 𝑘 be a finite separable field
extension. Then there exists an étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) such that the field
extension 𝜅(𝑠) ⊂ 𝜅(𝑢) is isomorphic to 𝜅(𝑠) ⊂ 𝑘.

Proof. We may assume 𝑆 is affine. In this case the lemma follows from Algebra, Lemma
7.132.15. �

Lemma 33.25.3. Let 𝑆 be a scheme, and let 𝑠 be a geometric point of 𝑆. The category of
étale neighborhoods has the following properties:

(1) Let (𝑈𝑖, 𝑢𝑖)𝑖=1,2 be two étale neighborhoods of 𝑠 in 𝑆. Then there exists a third
étale neighborhood (𝑈, 𝑢) and morphisms (𝑈, 𝑢) → (𝑈𝑖, 𝑢𝑖), 𝑖 = 1, 2.

(2) Let ℎ1, ℎ2 ∶ (𝑈, 𝑢) → (𝑈′, 𝑢′) be two morphisms between étale neighborhoods of
𝑠. Assume ℎ1, ℎ2 induce the same map 𝜅(𝑢′) → 𝜅(𝑢) of residue fields. Then there
exist an étale neighborhood (𝑈″, 𝑢″) and a morphism ℎ ∶ (𝑈″, 𝑢″) → (𝑈, 𝑢)
which equalizes ℎ1 and ℎ2, i.e., such that ℎ1 ∘ ℎ = ℎ2 ∘ ℎ.

Proof. For part (1), consider the fibre product 𝑈 = 𝑈1 ×𝑆 𝑈2. It is étale over both 𝑈1
and 𝑈2 because étale morphisms are preserved under base change, see Morphisms, Lemma
24.35.4. There is a point of 𝑈 mapping to both 𝑢1 and 𝑢2 for example by the description of
points of a fibre product in Schemes, Lemma 21.17.5. For part (2), define 𝑈″ as the fibre
product

𝑈″ //

��

𝑈

(ℎ1,ℎ2)
��

𝑈′ Δ // 𝑈′ ×𝑆 𝑈′.

Since ℎ1 and ℎ2 induce the same map of residue fields 𝜅(𝑢′) → 𝜅(𝑢) there exists a point
𝑢″ ∈ 𝑈″ lying over 𝑢′ with 𝜅(𝑢″) = 𝜅(𝑢′). In particular 𝑈″≠∅. Moreover, since 𝑈′ is étale
over 𝑆, so is the fibre product 𝑈′ ×𝑆 𝑈′ (see Morphisms, Lemmas 24.35.4 and 24.35.3).
Hence the vertical arrow (ℎ1, ℎ2) is étale by Morphisms, Lemma 24.35.18. Therefore 𝑈″

is étale over 𝑈′ by base change, and hence also étale over 𝑆 (because compositions of étale
morphisms are étale). Thus (𝑈″, 𝑢″) is a solution to the problem. �

Lemma 33.25.4. Let 𝑆 be a scheme, and let 𝑠 be a geometric point of 𝑆. The category of
elementary étale neighborhoods of (𝑆, 𝑠) is cofiltered (see Categories, Definition 4.18.1).

Proof. This is immediate from the definitions and Lemma 33.25.3. �
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Lemma 33.25.5. Let 𝑆 be a scheme. Let 𝑠 ∈ 𝑆. Then we have

𝒪ℎ
𝑆,𝑠 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) 𝒪(𝑈)

where the colimit is over the filtered category which is opposite to the category of elemen-
tary étale neighbourhoods (𝑈, 𝑢) of (𝑆, 𝑠).

Proof. Let 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑆 be an affine neighbourhood of 𝑠. Let 𝔭 ⊂ 𝐴 be the prime ideal
corresponding to 𝑠. With these choices we have canonical isomorphisms 𝒪𝑆,𝑠 = 𝐴𝔭 and
𝜅(𝑠) = 𝜅(𝔭). A cofinal system of elementary étale neighbourhoods is given by those el-
ementary étale neighbourhoods (𝑈, 𝑢) such that 𝑈 is affine and 𝑈 → 𝑆 factors through
𝑆𝑝𝑒𝑐(𝐴). In other words, we see that the right hand side is equal to 𝑐𝑜𝑙𝑖𝑚(𝐵,𝔮) 𝐵 where the
colimit is over étale 𝐴-algebras 𝐵 endowed with a prime 𝔮 lying over 𝔭 with 𝜅(𝔭) = 𝜅(𝔮).
Thus the lemma follows from Algebra, Lemma 7.139.23. �

33.26. Slicing smooth morphisms

In this section we explain a result that roughly states that smooth coverings of a scheme 𝑆
can be refined by étale coverings. The technique to prove this relies on a slicing argument.

Lemma 33.26.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point with
image 𝑠 ∈ 𝑆. Let ℎ ∈ 𝔪𝑥 ⊂ 𝒪𝑋,𝑥. Assume

(1) 𝑓 is smooth at 𝑥, and
(2) the image dℎ of dℎ in

Ω𝑋𝑠/𝑠,𝑥 ⊗𝒪𝑋𝑠,𝑥
𝜅(𝑥) = Ω𝑋/𝑆,𝑥 ⊗𝒪𝑋,𝑥

𝜅(𝑥)

is nonzero.
Then there exists an affine open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such that ℎ comes from ℎ ∈
Γ(𝑈, 𝒪𝑈) and such that𝐷 = 𝑉(ℎ) is an effective Cartier divisor in 𝑈 with 𝑥 ∈ 𝐷 and𝐷 → 𝑆
smooth.

Proof. AS 𝑓 is smooth at 𝑥 we may assume, after replacing 𝑋 by an open neighbourhood
of 𝑥 that 𝑓 is smooth. In particular we see that 𝑓 is flat and locally of finite presentation.
By Lemma 33.16.1 we already know there exists an open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 such
that ℎ comes from ℎ ∈ Γ(𝑈, 𝒪𝑈) and such that 𝐷 = 𝑉(ℎ) is an effective Cartier divisor in
𝑈 with 𝑥 ∈ 𝐷 and 𝐷 → 𝑆 flat and of finite presentation. By Morphisms, Lemma 24.32.17
we have a short exact sequence

𝒞𝐷/𝑈 → 𝑖∗Ω𝑈/𝑆 → Ω𝐷/𝑆 → 0

where 𝑖 ∶ 𝐷 → 𝑈 is the closed immersion and 𝒞𝐷/𝑈 is the conormal sheaf of 𝐷 in 𝑈. As
𝐷 is an effective Cartier divisor cut out by ℎ ∈ Γ(𝑈, 𝒪𝑈) we see that 𝒞𝐷/𝑈 = ℎ ⋅ 𝒪𝑆. Since
𝑈 → 𝑆 is smooth the sheaf Ω𝑈/𝑆 is finite locally free, hence its pullback 𝑖∗Ω𝑈/𝑆 is finite
locally free also. The first arrow of the sequence maps the free generator ℎ to the section
dℎ|𝐷 of 𝑖∗Ω𝑈/𝑆 which has nonzero value in the fibre Ω𝑈/𝑆,𝑥 ⊗ 𝜅(𝑥) by assumption. By right
exactness of ⊗𝜅(𝑥) we conclude that

dim𝜅(𝑥) (Ω𝐷/𝑆,𝑥 ⊗ 𝜅(𝑥)) = dim𝜅(𝑥) (Ω𝑈/𝑆,𝑥 ⊗ 𝜅(𝑥)) − 1.

By Morphisms, Lemma 24.33.14 we see that Ω𝑈/𝑆,𝑥 ⊗ 𝜅(𝑥) can be generated by at most
dim𝑥(𝑈𝑠) elements. By the displayed formula we see that Ω𝐷/𝑆,𝑥 ⊗ 𝜅(𝑥) can be generated
by at most dim𝑥(𝑈𝑠)−1 elements. Note that dim𝑥(𝐷𝑠) = dim𝑥(𝑈𝑠)−1 for example because
dim(𝒪𝐷𝑠,𝑥) = dim(𝒪𝑈𝑠,𝑥)−1 by Algebra, Lemma 7.57.11 (also 𝐷𝑠 ⊂ 𝑈𝑠 is effective Cartier,
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see Divisors, Lemma 26.10.1) and then using Morphisms, Lemma 24.27.1. Thus we con-
clude that Ω𝐷/𝑆,𝑥 ⊗ 𝜅(𝑥) can be generated by at most dim𝑥(𝐷𝑠) elements and we conclude
that 𝐷 → 𝑆 is smooth at 𝑥 by Morphisms, Lemma 24.33.14 again. After shrinking 𝑈 we
get that 𝐷 → 𝑆 is smooth and we win. �

Lemma 33.26.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point with
image 𝑠 ∈ 𝑆. Assume

(1) 𝑓 is smooth at 𝑥, and
(2) the map

Ω𝑋𝑠/𝑠,𝑥 ⊗𝒪𝑋𝑠,𝑥
𝜅(𝑥) ⟶ Ω𝜅(𝑥)/𝜅(𝑠)

has a nonzero kernel.
Then there exists an affine open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 and an effective Cartier divisor
𝐷 ⊂ 𝑈 containing 𝑥 such that 𝐷 → 𝑆 is smooth.

Proof. Write 𝑘 = 𝜅(𝑠) and 𝑅 = 𝒪𝑋𝑠,𝑥. Denote 𝔪 the maximal ideal of 𝑅 and 𝜅 = 𝑅/𝔪
so that 𝜅 = 𝜅(𝑥). As formation of modules of differentials commutes with localization (see
Algebra, Lemma 7.122.8) we have Ω𝑋𝑠/𝑠,𝑥 = Ω𝑅/𝑘. By Algebra, Lemma 7.122.9 there is
an exact sequence

𝔪/𝔪2 d
−→ Ω𝑅/𝑘 ⊗𝑅 𝜅 → Ω𝜅/𝑘 → 0.

Hence if (2) holds, there exists an element ℎ ∈ 𝔪 such that dℎ is nonzero. Choose a lift
ℎ ∈ 𝒪𝑋,𝑥 of ℎ and apply Lemma 33.26.1. �

Remark 33.26.3. The second condition in Lemma 33.26.2 is necessary even if 𝑥 is a closed
point of a positive dimensional fibre. An example is the following: Let 𝑘 be a field of
characteristic 𝑝 > 0 which is imperfect. Let 𝑎 ∈ 𝑘 be an element which is not a 𝑝th power.
Let 𝔪 = (𝑥, 𝑦𝑝 −𝑎) ⊂ 𝑘[𝑥, 𝑦]. This corresponds to a closed point 𝑤 of 𝑋 = 𝐀2

𝑘. Set 𝑆 = 𝐀1
𝑘

and let 𝑓 ∶ 𝑋 → 𝑆 be the morphism corresponding to 𝑘[𝑥] → 𝑘[𝑥, 𝑦]. Then there does not
exist any commutative diagram

𝑆′
ℎ

//

𝑔
��

𝑋

𝑓��
𝑆

with 𝑔 étale and 𝑤 in the image of ℎ. This is clear as the residue field extension 𝜅(𝑓(𝑤)) ⊂
𝜅(𝑤) is purely inseparable, but for any 𝑠′ ∈ 𝑆′ with 𝑔(𝑠′) = 𝑓(𝑤) the extension 𝜅(𝑓(𝑤)) ⊂
𝜅(𝑠′) would be separable.

If you assume the residue field extension is separble then the phenomenon of Remark
33.26.3 does not happen. Here is the precise result.

Lemma 33.26.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point with
image 𝑠 ∈ 𝑆. Assume

(1) 𝑓 is smooth at 𝑥,
(2) the residue field extension 𝜅(𝑠) ⊂ 𝜅(𝑥) is separable, and
(3) 𝑥 is not a generic point of 𝑋𝑠.

Then there exists an affine open neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 and an effective Cartier divisor
𝐷 ⊂ 𝑈 containing 𝑥 such that 𝐷 → 𝑆 is smooth.
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Proof. Write 𝑘 = 𝜅(𝑠) and 𝑅 = 𝒪𝑋𝑠,𝑥. Denote 𝔪 the maximal ideal of 𝑅 and 𝜅 = 𝑅/𝔪
so that 𝜅 = 𝜅(𝑥). As formation of modules of differentials commutes with localization
(see Algebra, Lemma 7.122.8) we have Ω𝑋𝑠/𝑠,𝑥 = Ω𝑅/𝑘. By assumption (2) and Algebra,
Lemma 7.129.4 the map

d ∶ 𝔪/𝔪2 ⟶ Ω𝑅/𝑘 ⊗𝑅 𝜅(𝔪)
is injective. Assumption (3) implies that 𝔪/𝔪2≠0. Thus there exists an element ℎ ∈ 𝔪
such that dℎ is nonzero. Choose a lift ℎ ∈ 𝒪𝑋,𝑥 of ℎ and apply Lemma 33.26.1. �

The subscheme 𝑍 constructed in the following lemma is really a complete intersection in an
affine open neighbourhood of 𝑥. If we ever need this we will explicitly formulate a separate
lemma stating this fact.

Lemma 33.26.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point with
image 𝑠 ∈ 𝑆. Assume

(1) 𝑓 is smooth at 𝑥, and
(2) 𝑥 is a closed point of 𝑋𝑠 and 𝜅(𝑠) ⊂ 𝜅(𝑥) is separable.

Then there exists an immersion 𝑍 → 𝑋 containing 𝑥 such that
(1) 𝑍 → 𝑆 is étale, and
(2) 𝑍𝑠 = {𝑥} set theoretically.

Proof. We may and do replace 𝑆 by an affine open neighbourhoof of 𝑠. We may and do
replace 𝑋 by an affine open neighbourhood of 𝑥 such that 𝑋 → 𝑆 is smooth. We will prove
the lemma for smooth morphisms of affines by induction on 𝑑 = dim𝑥(𝑋𝑠).
The case 𝑑 = 0. In this case we show that we may take 𝑍 to be an open neighbourhood
of 𝑥. Namely, if 𝑑 = 0, then 𝑋 → 𝑆 is quasi-finite at 𝑥, see Morphisms, Lemma 24.28.5.
Hence there exists an affine open neighbourhood 𝑈 ⊂ 𝑋 such that 𝑈 → 𝑆 is quasi-finite,
see Morphisms, Lemma 24.47.2. Thus after replacing 𝑋 by 𝑈 we see that 𝑋 is quasi-finite
and smooth over 𝑆, hence smooth of relative dimension 0 over 𝑆, hence étale over 𝑆. More-
over, the fibre 𝑋𝑠 is a finite discrete set. Hence after replacing 𝑋 by a further affine open
neigbourhood of 𝑋 we see that that 𝑓−1({𝑠}) = {𝑥} (because the topology on 𝑋𝑠 is induced
from the topology on 𝑋, see Schemes, Lemma 21.18.5). This proves the lemma in this case.
Next, assume 𝑑 > 0. Note that because 𝑥 is a closed point of its fibre the extension 𝜅(𝑠) ⊂
𝜅(𝑥) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma 24.19.3). Thus we
see Ω𝜅(𝑥)/𝜅(𝑠) = 0 as this holds for algebraic separable field extensions. Thus we may apply
Lemma 33.26.2 to find a diagram

𝐷 //

''

𝑈 //

��

𝑋

��
𝑆

with 𝑥 ∈ 𝐷. Note that dim𝑥(𝐷𝑠) = dim𝑥(𝑋𝑠) − 1 for example because dim(𝒪𝐷𝑠,𝑥) =
dim(𝒪𝑋𝑠,𝑥)−1 by Algebra, Lemma 7.57.11 (also 𝐷𝑠 ⊂ 𝑋𝑠 is effective Cartier, see Divisors,
Lemma 26.10.1) and then using Morphisms, Lemma 24.27.1. Thus the morphism 𝐷 → 𝑆
is smooth with dim𝑥(𝐷𝑠) = dim𝑥(𝑋𝑠) − 1 = 𝑑 − 1. By induction hypothesis we can find an
immersion 𝑍 → 𝐷 as desired, which finishes the proof. �

Lemma 33.26.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a smooth morphism of schemes. Let 𝑠 ∈ 𝑆 be a
point in the image of 𝑓. Then there exists an étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and a
𝑆-morphism 𝑆′ → 𝑋.
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First proof of Lemma 33.26.6. By assumption𝑋𝑠≠∅. ByVarieties, Lemma 28.15.6 there
exists a closed point 𝑥 ∈ 𝑋𝑠 such that 𝜅(𝑥) is a finite separable field extension of 𝜅(𝑠). Hence
by Lemma 33.26.5 there exists an immersion 𝑍 → 𝑋 such that 𝑍 → 𝑆 is étale and such
that 𝑥 ∈ 𝑍. Take (𝑆′, 𝑠′) = (𝑍, 𝑥). �

Second proof of Lemma 33.26.6. Pick an point 𝑥 ∈ 𝑋 with 𝑓(𝑥) = 𝑠. Choose a diagram

𝑋

��

𝑈oo

��

𝜋
// 𝐀𝑑

𝑉

��
𝑌 𝑉oo

with 𝜋 étale, 𝑥 ∈ 𝑈 and 𝑉 = 𝑆𝑝𝑒𝑐(𝑅) affine, seeMorphisms, Lemma 24.35.20. In particular
𝑠 ∈ 𝑉. The morphism 𝜋 ∶ 𝑈 → 𝐀𝑑

𝑉 is open, see Morphisms, Lemma 24.35.13. Thus
𝑊 = 𝜋(𝑉) ∩ 𝐀𝑑

𝑠 is a nonempty open subset of 𝐀𝑑
𝑠 . Let 𝑤 ∈ 𝑊 be a point with 𝜅(𝑠) ⊂ 𝜅(𝑤)

finite separable, see Varieties, Lemma 28.15.5. By Algebra, Lemma 7.105.1 there exist 𝑑
elements 𝑓1, … , 𝑓𝑑 ∈ 𝜅(𝑠)[𝑥1, … , 𝑥𝑑] which generate the maximal ideal corresponding to
𝑤 in 𝜅(𝑠)[𝑥1, … , 𝑥𝑛]. After replacing 𝑅 by a principal localization we may assume there
are 𝑓1, … , 𝑓𝑑 ∈ 𝑅[𝑥1, … , 𝑥𝑑] which map to 𝑓1, … , 𝑓𝑑 ∈ 𝜅(𝑠)[𝑥1, … , 𝑥𝑑]. Consider the
𝑅-algebra

𝑅′ = 𝑅[𝑥1, … , 𝑥𝑑]/(𝑓1, … , 𝑓𝑑)

and set 𝑆′ = 𝑆𝑝𝑒𝑐(𝑅′). By construction we have a closed immersion 𝑗 ∶ 𝑆′ → 𝐀𝑑
𝑉

over 𝑉. By construction the fibre of 𝑆′ → 𝑉 over 𝑠 is a single point 𝑠′ whose residue
field is finite separable over 𝜅(𝑠). Let 𝔮′ ⊂ 𝑅′ be the corresponding prime. By Algebra,
Lemma 7.125.11 we see that (𝑅′)𝑔 is a relative global complete intersection over 𝑅 for
some 𝑔 ∈ 𝑅′, 𝑔∉𝔮. Thus 𝑆′ → 𝑉 is flat and of finite presentation in a neighbourhood of 𝑠′,
see Algebra, Lemma 7.125.14. By construction the scheme theoretic fibre of 𝑆′ → 𝑉 over
𝑠 is 𝑆𝑝𝑒𝑐(𝜅(𝑠′)). Hence it follows from Morphisms, Lemma 24.35.15 that 𝑆′ → 𝑆 is étale
at 𝑠′. Set

𝑆″ = 𝑈 ×𝜋,𝐀𝑑
𝑉,𝑗 𝑆′.

By construction there exists a point 𝑠″ ∈ 𝑆″ which maps to 𝑠′ via the projection 𝑝 ∶
𝑆″ → 𝑆′. Note that 𝑝 is étale as the base change of the étale morphism 𝜋, see Morphisms,
Lemma 24.35.4. Choose a small affine neighbourhood 𝑆‴ ⊂ 𝑆″ of 𝑠″ which maps into the
nonempty open neighbourhood of 𝑠′ ∈ 𝑆′ where the morphism 𝑆′ → 𝑆 is étale. Then the
étale neighbourhood (𝑆‴, 𝑠″) → (𝑆, 𝑠) is a solution to the problem posed by the lemma. �

The following lemma shows that sheaves for the smooth topology are the same thing as
sheaves for the étale topology.

Lemma 33.26.7. Let 𝑆 be a scheme. Let 𝒰 = {𝑆𝑖 → 𝑆}𝑖∈𝐼 be a smooth covering of 𝑆, see
Topologies, Definition 30.5.1. Then there exists an étale covering 𝒱 = {𝑇𝑗 → 𝑆}𝑗∈𝐽 (see
Topologies, Definition 30.4.1) which refines (see Sites, Definition 9.8.1) 𝒰.

Proof. For every 𝑠 ∈ 𝑆 there exists an 𝑖 ∈ 𝐼 such that 𝑠 is in the image of 𝑆𝑖 → 𝑆. By
Lemma 33.26.6 we can find an étale morphism 𝑔𝑠 ∶ 𝑇𝑠 → 𝑆 such that 𝑠 ∈ 𝑔𝑠(𝑇)𝑠 and such
that 𝑔𝑠 factors through 𝑆𝑖 → 𝑆. Hence {𝑇𝑠 → 𝑆} is an étale covering of 𝑆 that refines
𝒰. �
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33.27. Finite free locally dominates étale

In this section we explain a result that roughly states that étale coverings of a scheme 𝑆 can
be refined by Zariski coverings of finite locally free covers of 𝑆.

Lemma 33.27.1. Let 𝑆 be a scheme. Let 𝑠 ∈ 𝑆. Let 𝑓 ∶ (𝑈, 𝑢) → (𝑆, 𝑠) be an étale
neighbourhood. There exists an affine open neighbourhood 𝑠 ∈ 𝑉 ⊂ 𝑆 and a surjective,
finite locally free morphism 𝜋 ∶ 𝑇 → 𝑉 such that for every 𝑡 ∈ 𝜋−1(𝑠) there exists an open
neighbourhood 𝑡 ∈ 𝑊𝑡 ⊂ 𝑇 and a commutative diagram

𝑇

𝜋
��

𝑊𝑡
oo

ℎ𝑡

//

  

𝑈

��
𝑉 // 𝑆

with ℎ𝑡(𝑡) = 𝑢.

Proof. The problem is local on 𝑆 hence we may replace 𝑆 by any open neighbourhood of
𝑠. We may also replace 𝑈 by an open neighbourhood of 𝑢. Hence, by Morphisms, Lemma
24.35.14 we may assume that 𝑈 → 𝑆 is a standard étale morphism of affine schemes. In
this case the lemma (with 𝑉 = 𝑆) follows from Algebra, Lemma 7.132.17. �

Lemma 33.27.2. Let 𝑓 ∶ 𝑈 → 𝑆 be a surjective étale morphism of affine schemes. There
exists a surjective, finite locally free morphism 𝜋 ∶ 𝑇 → 𝑆 and a finite open covering
𝑇 = 𝑇1 ∪ … ∪ 𝑇𝑛 such that each 𝑇𝑖 → 𝑆 factors through 𝑈 → 𝑆. Diagram:

∐ 𝑇𝑖

!!}}
𝑇

𝜋

!!

𝑈
𝑓

}}
𝑆

where the south-west arrow is a Zariski-covering.

Proof. This is a restatement of Algebra, Lemma 7.132.18. �

Remark 33.27.3. In terms of topologies the lemmas above mean the following. Let 𝑆 be
any scheme. Let {𝑓𝑖 ∶ 𝑈𝑖 → 𝑆} be an étale covering of 𝑆. There exists a Zariski open
covering 𝑆 = ⋃ 𝑉𝑗, for each 𝑗 a finite locally free, surjective morphism 𝑊𝑗 → 𝑉𝑗, and for
each 𝑗 a Zariski open covering {𝑊𝑗,𝑘 → 𝑊𝑗} such that the family {𝑊𝑗,𝑘 → 𝑆} refines the
given étale covering {𝑓𝑖 ∶ 𝑈𝑖 → 𝑆}. What does this mean in practice? Well, for example,
suppose we have a descend problem which we know how to solve for Zariski coverings and
for fppf coverings of the form {𝜋 ∶ 𝑇 → 𝑆} with 𝜋 finite locally free and surjective. Then
this descend problem has an affirmative answer for étale coverings as well. This trick was
used by Gabber in his proof that Br(𝑋) = Br′(𝑋) for an affine scheme 𝑋, see [Hoo82].

33.28. Étale localization of quasi-finite morphisms

Now we come to a series of lemmas around the theme ``quasi-finite morphisms become
finite after étale localization''. The general idea is the following. Suppose given a mor-
phism of schemes 𝑓 ∶ 𝑋 → 𝑆 and a point 𝑠 ∈ 𝑆. Let 𝜑 ∶ (𝑈, 𝑢) → (𝑆, 𝑠) be an étale
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neighbourhood of 𝑠 in 𝑆. Consider the fibre product 𝑋𝑈 = 𝑈 ×𝑆 𝑋 and the basic diagram

(33.28.0.1)

𝑉 //

  

𝑋𝑈

��

// 𝑋

𝑓
��

𝑈
𝜑 // 𝑆

where 𝑉 ⊂ 𝑋𝑈 is open. Is there some standard model for the morphism 𝑓𝑈 ∶ 𝑋𝑈 → 𝑈, or
for the morphism 𝑉 → 𝑈 for suitable opens 𝑉? Of course the answer is no in general. But
for quasi-finite morphisms we can say something.

Lemma 33.28.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋. Set 𝑠 = 𝑓(𝑥).
Assume that

(1) 𝑓 is locally of finite type, and
(2) 𝑥 ∈ 𝑋𝑠 is isolated2.

Then there exist
(a) an elementary étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠),
(b) an open subscheme 𝑉 ⊂ 𝑋𝑈 (see 33.28.0.1)

such that
(i) 𝑉 → 𝑈 is a finite morphism,
(ii) there is a unique point 𝑣 of 𝑉 mapping to 𝑢 in 𝑈, and
(iii) the point 𝑣 maps to 𝑥 under the morphism 𝑋𝑈 → 𝑋, inducing 𝜅(𝑥) = 𝜅(𝑣).

Moreover, for any elementary étale neighbourhood (𝑈′, 𝑢′) → (𝑈, 𝑢) setting 𝑉′ = 𝑈′×𝑈𝑉 ⊂
𝑋𝑈′ the triple (𝑈′, 𝑢′, 𝑉′) satisfies the properties (i), (ii), and (iii) as well.

Proof. Let 𝑌 ⊂ 𝑋, 𝑊 ⊂ 𝑆 be affine opens such that 𝑓(𝑌) ⊂ 𝑊 and such that 𝑥 ∈ 𝑌. Note
that 𝑥 is also an isolated point of the fibre of the morphism 𝑓|𝑌 ∶ 𝑌 → 𝑊. If we can prove
the theorem for 𝑓|𝑌 ∶ 𝑌 → 𝑊, then the theorem follows for 𝑓. Hence we reduce to the case
where 𝑓 is a morphism of affine schemes. This case is Algebra, Lemma 7.132.21. �

In the preceding and following lemma we do not assume that the morphism 𝑓 is separated.
This means that the opens 𝑉, 𝑉𝑖 created in them are not necessarily closed in 𝑋𝑈. Moreover,
if we choose the neighbourhood 𝑈 to be affine, then each 𝑉𝑖 is affine, but the intersections
𝑉𝑖 ∩ 𝑉𝑗 need not be affine (in the nonseparated case).

Lemma 33.28.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑋 be points
having the same image 𝑠 in 𝑆. Assume that

(1) 𝑓 is locally of finite type, and
(2) 𝑥𝑖 ∈ 𝑋𝑠 is isolated for 𝑖 = 1, … , 𝑛.

Then there exist
(a) an elementary étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠),
(b) for each 𝑖 an open subscheme 𝑉𝑖 ⊂ 𝑋𝑈,

such that for each 𝑖 we have
(i) 𝑉𝑖 → 𝑈 is a finite morphism,
(ii) there is a unique point 𝑣𝑖 of 𝑉𝑖 mapping to 𝑢 in 𝑈, and
(iii) the point 𝑣𝑖 maps to 𝑥𝑖 in 𝑋 and 𝜅(𝑥𝑖) = 𝜅(𝑣𝑖).

2In the presence of (1) this means that 𝑓 is quasi-finite at 𝑥, see Morphisms, Lemma 24.19.6.
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Proof. We will use induction on 𝑛. Namely, suppose (𝑈, 𝑢) → (𝑆, 𝑠) and 𝑉𝑖 ⊂ 𝑋𝑈, 𝑖 =
1, … , 𝑛 − 1 work for 𝑥1, … , 𝑥𝑛−1. Since 𝜅(𝑠) = 𝜅(𝑢) the fibre (𝑋𝑈)𝑢 = 𝑋𝑠. Hence there
exists a unique point 𝑥′

𝑛 ∈ 𝑋𝑢 ⊂ 𝑋𝑈 corresponding to 𝑥𝑛 ∈ 𝑋𝑠. Also 𝑥′
𝑛 is isolated in 𝑋𝑢.

Hence by Lemma 33.28.1 there exists an elementary étale neighbourhood (𝑈′, 𝑢′) → (𝑈, 𝑢)
and an open 𝑉𝑛 ⊂ 𝑋𝑈′ whichworks for 𝑥′

𝑛 and hence for 𝑥𝑛. By the final assertion of Lemma
33.28.1 the open subschemes 𝑉′

𝑖 = 𝑈′ ×𝑈 𝑉𝑖 for 𝑖 = 1, … , 𝑛 − 1 still work with respect to
𝑥1, … , 𝑥𝑛−1. Hence we win. �

If we allow a nontrivial field extension 𝜅(𝑠) ⊂ 𝜅(𝑢), i.e., general étale neighbourhoods, then
we can split the points as follows.

Lemma 33.28.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑋 be points
having the same image 𝑠 in 𝑆. Assume that

(1) 𝑓 is locally of finite type, and
(2) 𝑥𝑖 ∈ 𝑋𝑠 is isolated for 𝑖 = 1, … , 𝑛.

Then there exist
(a) an étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠),
(b) for each 𝑖 an integer 𝑚𝑖 and open subschemes 𝑉𝑖,𝑗 ⊂ 𝑋𝑈, 𝑗 = 1, … , 𝑚𝑖

such that we have
(i) each 𝑉𝑖,𝑗 → 𝑈 is a finite morphism,
(ii) there is a unique point 𝑣𝑖,𝑗 of 𝑉𝑖,𝑗 mapping to 𝑢 in 𝑈 with 𝜅(𝑢) ⊂ 𝜅(𝑣𝑖,𝑗) finite

purely inseparable,
(iv) if 𝑣𝑖,𝑗 = 𝑣𝑖′,𝑗′, then 𝑖 = 𝑖′ and 𝑗 = 𝑗′, and
(iii) the points 𝑣𝑖,𝑗 map to 𝑥𝑖 in 𝑋 and no other points of (𝑋𝑈)𝑢 map to 𝑥𝑖.

Proof. This proof is a variant of the proof of Algebra, Lemma 7.132.23 in the language
of schemes. By Morphisms, Lemma 24.19.6 the morphism 𝑓 is quasi-finite at each of
the points 𝑥𝑖. Hence 𝜅(𝑠) ⊂ 𝜅(𝑥𝑖) is finite for each 𝑖 (Morphisms, Lemma 24.19.5). For
each 𝑖, let 𝜅(𝑠) ⊂ 𝐿𝑖 ⊂ 𝜅(𝑥𝑖) be the subfield such that 𝐿𝑖/𝜅(𝑠) is separable, and 𝜅(𝑥𝑖)/𝐿𝑖
is purely inseparable. Choose a finite Galois extension 𝜅(𝑠) ⊂ 𝐿 such that there exist
𝜅(𝑠)-embeddings 𝐿𝑖 → 𝐿 for 𝑖 = 1, … , 𝑛. Choose an étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠)
such that 𝐿 ≅ 𝜅(𝑢) as 𝜅(𝑠)-extensions (Lemma 33.25.2).
Let 𝑦𝑖,𝑗, 𝑗 = 1, … , 𝑚𝑖 be the points of 𝑋𝑈 lying over 𝑥𝑖 ∈ 𝑋 and 𝑢 ∈ 𝑈. By Schemes,
Lemma 21.17.5 these points 𝑦𝑖,𝑗 correspond exactly to the primes in the rings 𝜅(𝑢) ⊗𝜅(𝑠)
𝜅(𝑥𝑖). This also explains why there are finitely many; in fact 𝑚𝑖 = [𝐿𝑖 ∶ 𝜅(𝑠)] but we do
not need this. By our choice of 𝐿 (and elementary field theory) we see that 𝜅(𝑢) ⊂ 𝜅(𝑦𝑖,𝑗)
is finite purely inseparable for each pair 𝑖, 𝑗. Also, by Morphisms, Lemma 24.19.13 for
example, the morphism 𝑋𝑈 → 𝑈 is quasi-finite at the points 𝑦𝑖,𝑗 for all 𝑖, 𝑗.
Apply Lemma 33.28.2 to the morphism 𝑋𝑈 → 𝑈, the point 𝑢 ∈ 𝑈 and the points 𝑦𝑖,𝑗 ∈
(𝑋𝑈)𝑢. This gives an étale neighbourhood (𝑈′, 𝑢′) → (𝑈, 𝑢) with 𝜅(𝑢) = 𝜅(𝑢′) and opens
𝑉𝑖,𝑗 ⊂ 𝑋𝑈′ with the properties (i), (ii), and (iii) of that lemma. We claim that the étale
neighbourhood (𝑈′, 𝑢′) → (𝑆, 𝑠) and the opens 𝑉𝑖,𝑗 ⊂ 𝑋𝑈′ are a solution to the problem
posed by the lemma. We omit the verifications. �

Lemma 33.28.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆. Let 𝑥1, … , 𝑥𝑛 ∈
𝑋𝑠. Assume that

(1) 𝑓 is locally of finite type,
(2) 𝑓 is separated, and
(3) 𝑥1, … , 𝑥𝑛 are pairwise distinct isolated points of 𝑋𝑠.
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Then there exists an elementary étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and a decomposition

𝑈 ×𝑆 𝑋 = 𝑊 ∐ 𝑉1 ∐ … ∐ 𝑉𝑛

into open and closed subschemes such that the morphisms 𝑉𝑖 → 𝑈 are finite, the fibres of
𝑉𝑖 → 𝑈 over 𝑢 are singletons {𝑣𝑖}, each 𝑣𝑖 maps to 𝑥𝑖 with 𝜅(𝑥𝑖) = 𝜅(𝑣𝑖), and the fibre of
𝑊 → 𝑈 over 𝑢 contains no points mapping to any of the 𝑥𝑖.

Proof. Choose (𝑈, 𝑢) → (𝑆, 𝑠) and 𝑉𝑖 ⊂ 𝑋𝑈 as in Lemma 33.28.2. Since 𝑋𝑈 → 𝑈 is
separated (Schemes, Lemma 21.21.13) and 𝑉𝑖 → 𝑈 is finite hence proper (Morphisms,
Lemma 24.42.10) we see that 𝑉𝑖 ⊂ 𝑋𝑈 is closed by Morphisms, Lemma 24.40.7. Hence
𝑉𝑖 ∩ 𝑉𝑗 is a closed subset of 𝑉𝑖 which does not contain 𝑣𝑖. Hence the image of 𝑉𝑖 ∩ 𝑉𝑗 in 𝑈 is
a closed set (because 𝑉𝑖 → 𝑈 proper) not containing 𝑢. After shrinking 𝑈 we may therefore
assume that 𝑉𝑖 ∩ 𝑉𝑗 = ∅ for all 𝑖, 𝑗. This gives the decomposition as in the lemma. �

Here is the variant where we reduce to purely inseparable field extensions.

Lemma 33.28.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆. Let 𝑥1, … , 𝑥𝑛 ∈
𝑋𝑠. Assume that

(1) 𝑓 is locally of finite type,
(2) 𝑓 is separated, and
(3) 𝑥1, … , 𝑥𝑛 are pairwise distinct isolated points of 𝑋𝑠.

Then there exists an étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and a decomposition

𝑈 ×𝑆 𝑋 = 𝑊 ∐ ∐𝑖=1,…,𝑛 ∐𝑗=1,…,𝑚𝑖
𝑉𝑖,𝑗

into open and closed subschemes such that the morphisms 𝑉𝑖,𝑗 → 𝑈 are finite, the fibres
of 𝑉𝑖,𝑗 → 𝑈 over 𝑢 are singletons {𝑣𝑖,𝑗}, each 𝑣𝑖,𝑗 maps to 𝑥𝑖, 𝜅(𝑢) ⊂ 𝜅(𝑣𝑖,𝑗) is purely
inseparable, and the fibre of 𝑊 → 𝑈 over 𝑢 contains no points mapping to any of the 𝑥𝑖.

Proof. This is proved in exactly the same way as the proof of Lemma 33.28.4 except that
it uses Lemma 33.28.3 instead of Lemma 33.28.2. �

The following version may be a little easier to parse.

Lemma 33.28.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is locally of finite type,
(2) 𝑓 is separated, and
(3) 𝑋𝑠 has at most finitely many isolated points.

Then there exists an elementary étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and a decomposition

𝑈 ×𝑆 𝑋 = 𝑊 ∐ 𝑉

into open and closed subschemes such that the morphisms 𝑉 → 𝑈 is finite, and the fibre 𝑊𝑢
of the morphism 𝑊 → 𝑈 contains no isolated points. In particular, if 𝑓−1(𝑠) is a finite set,
then 𝑊𝑢 = ∅.

Proof. This is clear from Lemma 33.28.4 by choosing 𝑥1, … , 𝑥𝑛 the complete set of iso-
lated points of 𝑋𝑠 and setting 𝑉 = ⋃ 𝑉𝑖. �
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33.29. Application to the structure of quasi-finite morphisms

We can use the existence of good étale neighbourhoods to prove some fundamental facts
about quasi-finite morphisms.

Lemma 33.29.1. (Normalization commutes with smooth base change.) Let

𝑌𝑈
//

��

𝑌

𝑓
��

𝑈
𝜑 // 𝑋

be a fibre square in the category of schemes. Assume 𝑓 is quasi-compact and quasi-
separated, and 𝜑 ∶ 𝑈 → 𝑋 is a smooth morphism. Let 𝑌 → 𝑋′ → 𝑋 be the normalization
of 𝑋 in 𝑌. Let 𝑌𝑈 → (𝑋𝑈)′ → 𝑈 be the normalization of 𝑈 in 𝑌𝑈. Then (𝑋𝑈)′ ≅ 𝑈 ×𝑋 𝑋′.

Proof. Denote 𝑓𝑈 ∶ 𝑌𝑈 → 𝑈 the base change of 𝑓. By definition we have 𝑋′ = 𝑆𝑝𝑒𝑐
𝑋

(𝒜)
and (𝑋𝑈)′ = 𝑆𝑝𝑒𝑐

𝑈
(𝒜′), where 𝒜 ⊂ 𝑓∗𝒪𝑌 is the integral closure of 𝒪𝑋 and 𝒜′ ⊂ (𝑓𝑈)∗𝒪𝑌𝑈

is the integral closure of 𝒪𝑈. By Coherent, Lemma 25.6.2 we know that (𝑓𝑈)∗𝒪𝑌𝑈
is the

same as 𝜑∗(𝑓∗𝒪𝑌). Let 𝑆𝑝𝑒𝑐(𝐶) ⊂ 𝑈, 𝑆𝑝𝑒𝑐(𝑅) ⊂ 𝑋 be affine opens with 𝜑(𝑆𝑝𝑒𝑐(𝐶)) ⊂
𝑆𝑝𝑒𝑐(𝑅). Hence 𝑅 → 𝐶 is a smooth ring map, see Morphisms, Lemma 24.33.2. Write

𝑓∗𝒪𝑌|𝑆𝑝𝑒𝑐(𝑅) = 𝐵 and (𝑓𝑈)∗𝒪𝑌𝑈
|𝑆𝑝𝑒𝑐(𝐶) = 𝐵′.

By the above we have 𝐵′ = 𝐶 ⊗𝑅 𝐵. Let 𝐴 ⊂ 𝐵 be the integral closure of 𝑅 in 𝐵 and let
𝐴′ ⊂ 𝐵′ be the integral closure of 𝐶 in 𝐵′. Then we have

𝒜|𝑆𝑝𝑒𝑐(𝑅) = 𝐴 and 𝒜′|𝑆𝑝𝑒𝑐(𝐶) = 𝐴′,

seeMorphisms, Lemma 24.46.1. Hence the lemma is reduced to proving that 𝐶⊗𝑅𝐴 ≅ 𝐴′.
This is the content of Algebra, Lemma 7.134.4. �

Lemma 33.29.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 is of finite type
and separated. Let 𝑆′ be the normalization of 𝑆 in 𝑋, see Morphisms, Definition 24.46.3.
Picture:

𝑋

𝑓 ��

𝑓′
// 𝑆′

𝜈
��

𝑆
Then there exists an open subscheme 𝑈′ ⊂ 𝑆′ such that

(1) (𝑓′)−1(𝑈′) → 𝑈′ is an isomorphism, and
(2) (𝑓′)−1(𝑈′) ⊂ 𝑋 is the set of points at which 𝑓 is quasi-finite.

Proof. By Morphisms, Lemma 24.47.2 the subset 𝑈 ⊂ 𝑋 of points where 𝑓 is quasi-finite
is open, and 𝑈 → 𝑆 is locally quasi-finite. Let 𝑥 ∈ 𝑈. We want to show that

(a) there exists an open neighbourhood 𝑉″ ⊂ 𝑆′ of 𝑓′(𝑥) such that the morphism
𝑓′|(𝑓′)−1(𝑉″) ∶ (𝑓′)−1(𝑉″) → 𝑉″ is an isomorphism.

This will prove the lemma since it will imply that 𝑈′ = 𝑓(𝑈) is open, 𝑓−1(𝑈′) = 𝑈 and that
𝑓′|𝑈 ∶ 𝑈 → 𝑈′ is an isomorphism.

Let 𝑠 = 𝑓(𝑥). Choose an elementary étale neighbourhood (𝑇, 𝑡) → (𝑆, 𝑠) and a decomposi-
tion

𝑋𝑇 = 𝑉 ∐ 𝑊
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into open and closed subschemes where 𝑉 → 𝑇 is finite, and such that 𝑉 has a unique point
𝑣 ∈ 𝑉 in the fibre over 𝑡 which maps to 𝑥, and the fibre of 𝑊 → 𝑇 over 𝑡 contains no point
mapping to 𝑥. We can do this according to Lemma 33.28.4. Denote 𝑓𝑇 ∶ 𝑋𝑇 → 𝑇 (resp.
𝑓′

𝑇) the base change of 𝑓 (resp. 𝑓′). According to Lemma 33.29.1 the factorization

𝑋𝑇
𝑓′

𝑇−−→ 𝑇 ×𝑆 𝑆′ ⟶ 𝑇

is the normalization of 𝑇 in 𝑋𝑇. On the other hand, since 𝑋𝑇 is a disjoint union of two
schemes over 𝑇, we see that the normalization of 𝑇 in 𝑋𝑇 is the morphism

𝑋𝑇 = 𝑉 ∐ 𝑊 ⟶ 𝑉′
∐ 𝑊′ ⟶ 𝑇

where 𝑉′ is the normalization of 𝑇 in 𝑉 and 𝑊′ is the normalization of 𝑇 in 𝑊 (Morphisms,
Lemma 24.46.7). However, since 𝑉 → 𝑇 is finite we see that 𝑉 → 𝑉′ is an isomorphism
(Morphisms, Lemmas 24.42.4 and 24.46.8). Also, (𝑓′

𝑇)−1(𝑉′) = 𝑉. In other words, we have
shown the following

(𝛼) there exists an open neighbourhood 𝑉′ ⊂ 𝑋′
𝑇 of 𝑓′

𝑇(𝑣) such that the restriction
(𝑓′

𝑇)−1(𝑉′) → 𝑉′ is an isomorphism.
We will show that property (𝛼) implies property (a) above. Since 𝑇 → 𝑆 is étale we see that
𝑋′

𝑇 → 𝑋′ is étale (Morphisms, Lemma 24.35.4). Hence also 𝑉′ → 𝑋′ is étale, in particular
open (Morphisms, Lemmas 24.24.9, 24.35.11 and 24.35.12). Denote 𝑉″ ⊂ 𝑋′ the image.
Note that

(𝑓′
𝑇)−1(𝑉′) = 𝑉′ ×𝑋′ 𝑋 = 𝑉′ ×𝑉″ (𝑓′)−1(𝑉″)

Hence the restriction 𝑓′|(𝑓′)−1(𝑉″) ∶ (𝑓′)−1(𝑉″) → 𝑉″ is a morphism whose base change
to 𝑉′ is an isomorphism. Since {𝑉′ → 𝑉″} is an étale covering, we see that 𝑓′|(𝑓′)−1(𝑉″) ∶
(𝑓′)−1(𝑉″) → 𝑉″ is an isomorphism also, by Descent, Lemma 31.19.15. This proves (a)
and we are done. �

Lemma 33.29.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 is quasi-finite
and separated. Let 𝑆′ be the normalization of 𝑆 in 𝑋, see Morphisms, Definition 24.46.3.
Picture:

𝑋

𝑓 ��

𝑓′
// 𝑆′

𝜈
��

𝑆
Then 𝑓′ is a quasi-compact open immersion and 𝜈 is integral. In particular 𝑓 is quasi-affine.

Proof. This follows from Lemma 33.29.2. Namely, by that lemma there exists an open
suscheme 𝑈′ ⊂ 𝑆′ such that (𝑓′)−1(𝑈′) = 𝑋 (!) and 𝑋 → 𝑈′ is an isomorphism! In other
words, 𝑓′ is an open immersion. Note that 𝑓′ is quasi-compact as 𝑓 is quasi-compact and
𝜈 ∶ 𝑆′ → 𝑆 is separated (Schemes, Lemma 21.21.15). It follows that 𝑓 is quasi-affine by
Morphisms, Lemma 24.12.3. �

Lemma 33.29.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑓 is quasi-finite and
separated and assume that 𝑆 is quasi-compact and quasi-separated. Then there exists a
factorization

𝑋

𝑓 ��

𝑗
// 𝑇

𝜋
��

𝑆
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where 𝑗 is a quasi-compact open immersion and 𝜋 is finite.

Proof. Let 𝑋 → 𝑆′ → 𝑆 be as in the conclusion of Lemma 33.29.3. By Properties, Lemma
23.20.10 we can write 𝜈∗𝒪𝑆′ = 𝑐𝑜𝑙𝑖𝑚𝜆 𝒜𝜆 as a directed colimit of quasi-coherent 𝒪𝑋-sub
algebras 𝒜𝜆 of finite type. Set 𝑇𝜆 = 𝑆𝑝𝑒𝑐

𝑆
(𝒜𝜆). Since 𝒜𝜆 is a quasi-coherent 𝒪𝑋-algebra

of finite type contained in the integral 𝒪𝑋-algebra 𝜈∗𝒪𝑆′, we see that in fact 𝒜𝜆 is finite as
an 𝒪𝑋-module, see Algebra, Lemma 7.32.5. Hence 𝜋𝜆 ∶ 𝑇𝜆 → 𝑆 is a finite morphism for
each 𝜆. Note that the transition morphisms 𝑇𝜆 → 𝑇𝜆 are affine and that 𝑆′ = 𝑙𝑖𝑚𝜆 𝑇𝜆.

As 𝑆 is quasi-compact we may choose a finite affine open covering 𝑆 = ⋃𝑖=1,…,𝑛 𝑉𝑖. As 𝑓′

is quasi-compact, we can for each 𝑖 choose a finite number of elements ℎ𝑖𝑗 ∈ Γ(𝜈−1(𝑉𝑖), 𝒪𝑆′)
such that

𝑓′(𝑋) ∩ 𝜈−1(𝑉𝑖) = ⋃ 𝐷(ℎ𝑖𝑗).
Let 𝑋𝑖𝑗 ⊂ 𝑋 denote the affine open subscheme mapping isomorphically to 𝐷(ℎ𝑖𝑗). Since
𝑋 → 𝑆 is of finite type we see that

Γ(𝑉𝑖, 𝒪𝑆) → Γ(𝑋𝑖𝑗, 𝒪𝑋) = Γ(𝐷(ℎ𝑖𝑗), 𝒪𝑆′) = Γ(𝜈−1(𝑉𝑖), 𝒪𝑆′)ℎ𝑖𝑗

is a finite type ring map, see Morphisms, Lemma 24.14.2. Choose finitely many 𝑎𝑖𝑗𝑘 ∈
Γ(𝜈−1(𝑉𝑖), 𝒪𝑆′) which together with ℎ−1

𝑖𝑗 generate Γ(𝑋𝑖𝑗, 𝒪𝑋) as an Γ(𝑉𝑖, 𝒪𝑆)-algebra. Now,
pick 𝜆 so large that there exist

𝐴𝑖𝑗𝑘, 𝐻𝑖𝑗 ∈ Γ(𝜋−1
𝜆 (𝑉𝑖), 𝒪𝑇𝜆

)

mapping to the elements 𝑎𝑖𝑗𝑘, ℎ𝑖𝑗 chosen above. Let 𝑈𝜆 ⊂ 𝑇𝜆 be the union of the standard
affine opens 𝐷(𝐻𝑖𝑗) determined by the 𝐻𝑖𝑗 inside 𝜋−1

𝜆 (𝑉𝑖). By construction the morphism
𝑋 → 𝑇𝜆 factors through 𝑈𝜆. By construction the morphism 𝑋 → 𝑇𝜆 is a closed immersion,
because the ring maps on the affine opens 𝑋𝑖𝑗 → 𝐷(𝐻𝑖𝑗) are surjective by construction.
Hence 𝑋 → 𝑇𝜆 is a locally closed immersion. (In fact this morphism will be an open
immersion for sufficiently large 𝜆 but we don't need this.) By Morphisms, Lemma 24.2.8
we can factor this as 𝑋 → 𝑇 → 𝑇𝜆 where the first arrow is an open immersion and the
second a closed immersion. Thus we win. �

Lemma 33.29.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) 𝑓 is finite,
(2) 𝑓 is proper with finite fibres.
(3) 𝑓 is universally closed, separated, locally of finite type and has finite fibres.

Proof. We have (1) implies (2) by Morphisms, Lemmas 24.42.10, 24.19.10, and 24.42.9.
By definition (2) implies (3).

Assume (3). Pick 𝑠 ∈ 𝑆. By Morphisms, Lemma 24.19.7 we see that all the finitely many
points of 𝑋𝑠 are isolated in 𝑋𝑠. Choose an elementary étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠)
and decomposition 𝑋𝑈 = 𝑉 ∐ 𝑊 as in Lemma 33.28.6. Note that 𝑊𝑢 = ∅ because all
points of 𝑋𝑠 are isolated. Since 𝑓 is universally closed we see that the image of 𝑊 in 𝑈 is a
closed set not containing 𝑢. After shrinking 𝑈 we may assume that 𝑊 = ∅. In other words
we see that 𝑋𝑈 = 𝑉 is finite over 𝑈. Since 𝑠 ∈ 𝑆 was arbitrary this means there exists
a family {𝑈𝑖 → 𝑆} of étale morphisms whose images cover 𝑆 such that the base changes
𝑋𝑈𝑖

→ 𝑈𝑖 are finite. Note that {𝑈𝑖 → 𝑆} is an étale covering, see Topologies, Definition
30.4.1. Hence it is an fpqc covering, see Topologies, Lemma 30.8.6. Hence we conclude
𝑓 is finite by Descent, Lemma 31.19.21. �

As a consequence we have the following two useful results.
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Lemma 33.29.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆. Assume that 𝑓
is proper and 𝑓−1({𝑠}) is a finite set. Then there exists an open neighbourhood 𝑉 ⊂ 𝑆 of 𝑠
such that 𝑓|𝑓−1(𝑉) ∶ 𝑓−1(𝑉) → 𝑉 is finite.

Proof. The morphism 𝑓 is quasi-finite at all the points of 𝑓−1({𝑠}) by Morphisms, Lemma
24.19.7. By Morphisms, Lemma 24.47.2 the set of points at which 𝑓 is quasi-finite is an
open 𝑈 ⊂ 𝑋. Let 𝑍 = 𝑋 ⧵ 𝑈. Then 𝑠∉𝑓(𝑍). Since 𝑓 is proper the set 𝑓(𝑍) ⊂ 𝑆 is closed.
Choose any open neighbourhood 𝑉 ⊂ 𝑆 of 𝑠 with 𝑍 ∩ 𝑉 = ∅. Then 𝑓−1(𝑉) → 𝑉 is locally
quasi-finite and proper. Hence it is quasi-finite (Morphisms, Lemma 24.19.9), hence has
finite fibres (Morphisms, Lemma 24.19.10), hence is finite by Lemma 33.29.5. �

Lemma 33.29.7. Let 𝑓 ∶ 𝑌 → 𝑋 be a quasi-finite morphism. There exists a dense open
𝑈 ⊂ 𝑋 such that 𝑓|𝑓−1(𝑈) ∶ 𝑓−1(𝑈) → 𝑈 is finite.

Proof. If 𝑈′, 𝑈″ ⊂ 𝑋 are opens such that the restrictions 𝑓|𝑓−1(𝑈′) ∶ 𝑓−1(𝑈′) → 𝑈′ and
𝑓|𝑓−1(𝑈″) ∶ 𝑓−1(𝑈″) → 𝑈″ are finite, then for 𝑈 = 𝑈′ ∪ 𝑈″ the restriction 𝑓|𝑓−1(𝑈) ∶
𝑓−1(𝑈) → 𝑈 is finite, see Morphisms, Lemma 24.42.3. Thus the problem is local on 𝑋 and
we may assume that 𝑋 is affine.

Assume 𝑋 is affine. Write 𝑌 = ⋃𝑗=1,…,𝑚 𝑉𝑗 with 𝑉𝑗 affine. This is possible since 𝑓 is quasi-
finite and hence in particular quasi-compact. Each 𝑉𝑗 → 𝑋 is quasi-finite and separated.
Let 𝜂 ∈ 𝑋 be a generic point of an irreducible component of 𝑋. We see from Morphisms,
Lemmas 24.19.10 and 24.45.1 that there exists an open neighbourhood 𝜂 ∈ 𝑈𝜂 such that
𝑓−1(𝑈𝜂) ∩ 𝑉𝑗 → 𝑈𝜂 is finite. We may choose 𝑈𝜂 such that it works for each 𝑗 = 1, … , 𝑚.
Note that the collection of generic points of 𝑋 is dense in 𝑋. Thus we see there exists a
dense open 𝑊 = ⋃𝜂 𝑈𝜂 such that each 𝑓−1(𝑊) ∩ 𝑉𝑗 → 𝑊 is finite. It suffices to show that
there exists a dense open 𝑈 ⊂ 𝑊 such that 𝑓|𝑓−1(𝑈) ∶ 𝑓−1(𝑈) → 𝑈 is finite. Thus we may
replace 𝑋 by an affine open subscheme of 𝑊 and assume that each 𝑉𝑗 → 𝑋 is finite.

Assume 𝑋 is affine, 𝑌 = ⋃𝑗=1,…,𝑚 𝑉𝑗 with 𝑉𝑗 affine, and the restrictions 𝑓|𝑉𝑗
∶ 𝑉𝑗 → 𝑋 are

finite. Set

Δ𝑖𝑗 = (𝑉𝑖 ∩ 𝑉𝑗 ⧵ 𝑉𝑖 ∩ 𝑉𝑗) ∩ 𝑉𝑗.

This is a nowhere dense closed subset of 𝑉𝑗 because it is the boundary of the open subset
𝑉𝑖 ∩ 𝑉𝑗 in 𝑉𝑗. By Morphisms, Lemma 24.44.7 the image 𝑓(Δ𝑖𝑗) is a nowhere dense closed
subset of 𝑋. By Topology, Lemma 5.17.2 the union 𝑇 = ⋃ 𝑓(Δ𝑖𝑗) is a nowhere dense
closed subset of 𝑋. Thus 𝑈 = 𝑋 ⧵ 𝑇 is a dense open subset of 𝑋. We claim that 𝑓|𝑓−1(𝑈) ∶
𝑓−1(𝑈) → 𝑈 is finite. To see this let 𝑈′ ⊂ 𝑈 be an affine open. Set 𝑌′ = 𝑓−1(𝑈′) = 𝑈′ ×𝑋 𝑌,
𝑉′

𝑗 = 𝑌′ ∩ 𝑉𝑗 = 𝑈′ ×𝑋 𝑉𝑗. Consider the restriction

𝑓′ = 𝑓|𝑌′ ∶ 𝑌′ ⟶ 𝑈′

of 𝑓. This morphism now has the property that 𝑌′ = ⋃𝑗=1,…,𝑚 𝑉′
𝑗 is an affine open covering,

each 𝑉′
𝑗 → 𝑈′ is finite, and 𝑉′

𝑖 ∩ 𝑉′
𝑗 is (open and) closed both in 𝑉′

𝑖 and 𝑉′
𝑗. Hence 𝑉′

𝑖 ∩ 𝑉′
𝑗

is affine, and the map

𝒪(𝑉′
𝑖 ) ⊗𝐙 𝒪(𝑉′

𝑗) ⟶ 𝒪(𝑉′
𝑖 ∩ 𝑉′

𝑗)
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is surjective. This implies that 𝑌′ is separated, see Schemes, Lemma 21.21.8. Finally,
consider the commutative diagram

∐𝑗=1,…,𝑚 𝑉′
𝑗

$$

// 𝑌′

��
𝑈′

The south-east arrow is finite, hence proper, the horizontal arrow is surjective, and the
south-west arrow is separated. Hence by Morphisms, Lemma 24.40.8 we conclude that
𝑌′ → 𝑈′ is proper. Since it is also quasi-finite, we see that it is finite by Lemma 33.29.5,
and we win. �

33.30. Application to morphisms with connected fibres

In this section we prove some lemmas that produce morphisms all of whose fibres are geo-
metrically connected or geometrically integral. This will be useful in our study of the local
structure of morphisms of finite type later.

Lemma 33.30.1. Consider a diagram of morphisms of schemes

𝑍 𝜎
//

  

𝑋

��
𝑌

an a point 𝑦 ∈ 𝑌. Assume
(1) 𝑋 → 𝑌 is of finite presentation and flat,
(2) 𝑍 → 𝑌 is finite locally free,
(3) 𝑍𝑦≠∅,
(4) all fibres of 𝑋 → 𝑌 are geometrically reduced, and
(5) 𝑋𝑦 is geometrically connected over 𝜅(𝑦).

Then there exists an open 𝑋0 ⊂ 𝑋 such that 𝑋0
𝑦 = 𝑋𝑦 and such that all fibres of 𝑋0 → 𝑌

are geometrically connected.

Proof. In this proof we will use that flat, finite presentation, finite locally free are properties
that are preserved under base change and composition. We will also use that a finite locally
free morphism is both open and closed. You can find these facts as Morphisms, Lemmas
24.24.7, 24.20.4, 24.44.4, 24.24.5, 24.20.3, 24.44.3, 24.24.9, and 24.42.10.

Note that 𝑋𝑍 → 𝑍 is flat morphism of finite presentation which has a section 𝑠 coming
from 𝜎. Let 𝑋0

𝑍 denote the subset of 𝑋𝑍 defined in Situation 33.22.1. By Lemma 33.22.6
it is an open subset of 𝑋𝑍.

The pullback 𝑋𝑍×𝑌𝑍 of 𝑋 to 𝑍 ×𝑌 𝑍 comes equipped with two sections 𝑠0, 𝑠1, namely the
base changes of 𝑠 by pr0, pr1 ∶ 𝑍 ×𝑌 𝑍 → 𝑍. The construction of Situation 33.22.1 gives
two subsets (𝑋𝑍×𝑌𝑍)0

𝑠0
and (𝑋𝑍×𝑌𝑍)0

𝑠1
. By Lemma 33.22.2 these are the inverse images of

𝑋0
𝑍 under the morphisms 1𝑋 × pr0, 1𝑋 × pr1 ∶ 𝑋𝑍×𝑌𝑍 → 𝑋𝑍. In particular these subsets

are open.

Let (𝑍 ×𝑌 𝑍)𝑦 = {𝑧1, … , 𝑧𝑛}. As 𝑋𝑦 is geometrically connected, we see that the fibres of
(𝑋𝑍×𝑌𝑍)0

𝑠0
and (𝑋𝑍×𝑌𝑍)0

𝑠1
over each 𝑧𝑖 agree (being equal to the whole fibre). Another way
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to say this is that

𝑠0(𝑧𝑖) ∈ (𝑋𝑍×𝑌𝑍)0
𝑠1

and 𝑠1(𝑧𝑖) ∈ (𝑋𝑍×𝑌𝑍)0
𝑠0

.

Since the sets (𝑋𝑍×𝑌𝑍)0
𝑠0

and (𝑋𝑍×𝑌𝑍)0
𝑠1

are open in 𝑋𝑍×𝑌𝑍 there exists an open neighbour-
hood 𝑊 ⊂ 𝑍 ×𝑌 𝑍 of (𝑍 ×𝑌 𝑍)𝑦 such that

𝑠0(𝑊) ⊂ (𝑋𝑍×𝑌𝑍)0
𝑠1

and 𝑠1(𝑊) ⊂ (𝑋𝑍×𝑌𝑍)0
𝑠0

.

Then it follows directly from the construction in Situation 33.22.1 that

𝑝−1(𝑊) ∩ (𝑋𝑍×𝑌𝑍)0
𝑠0

= 𝑝−1(𝑊) ∩ (𝑋𝑍×𝑌𝑍)0
𝑠1

where 𝑝 ∶ 𝑋𝑍×𝑌𝑍 → 𝑍 ×𝑊 𝑍 is the projection. Because 𝑍 ×𝑌 𝑍 → 𝑌 is finite locally
free, hence open and closed, there exists an open neighbourhood 𝑉 ⊂ 𝑌 of 𝑦 such that
𝑞−1(𝑉) ⊂ 𝑊, where 𝑞 ∶ 𝑍 ×𝑌 𝑍 → 𝑌 is the structure morphism. To prove the lemma we
may replace 𝑌 by 𝑉 (because an empty topological space is connected). After we do this
we see that 𝑋0

𝑍 ⊂ 𝑌𝑍 is an open such that

(1𝑋 × pr0)−1(𝑋0
𝑍) = (1𝑋 × pr1)−1(𝑋0

𝑍).

This means that the image 𝑋0 ⊂ 𝑋 of 𝑋0
𝑍 is an open such that (𝑋𝑍 → 𝑋)−1(𝑋0) = 𝑋0

𝑍, see
Descent, Lemma 31.9.2. At this point it is clear that 𝑋0 is the desired open subscheme. �

Lemma 33.30.2. Let ℎ ∶ 𝑌 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆 be a point. Let
𝑇 ⊂ 𝑌𝑠 be an open subscheme. Assume

(1) ℎ is flat and of finite presentation,
(2) all fibres of ℎ are geometrically reduced, and
(3) 𝑇 is geometrically connected over 𝜅(𝑠).

Then we can find an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and an open 𝑉 ⊂ 𝑌𝑆′

such that
(a) all fibres of 𝑉 → 𝑆′ are geometrically connected,
(b) 𝑉𝑠′ = 𝑇 ×𝑠 𝑠′.

Proof. The problem is clearly local on 𝑆, hence we may replace 𝑆 by an affine open neigh-
bourhood of 𝑠. The topology on 𝑌𝑠 is induced from the topology on𝑋, see Schemes, Lemma
21.18.5. Hence we can find a quasi-compact open 𝑉 ⊂ 𝑌 such that 𝑉𝑠 = 𝑇. The restriction
of ℎ to 𝑉 is quasi-compact (as 𝑆 affine and 𝑉 quasi-compact), quasi-separated, locally of
finite presentation, and flat hence flat of finite presentation. Thus after replacing 𝑌 by 𝑉 we
may assume, in addition to (1) and (2) that 𝑌𝑠 = 𝑇 and 𝑆 affine.

Pick a point 𝑦 ∈ 𝑌𝑠 such that ℎ is Cohen-Macaulay at 𝑦, see Lemma 33.15.4. By Lemma
33.16.4 there exists a diagram

𝑍 //

��

𝑌

��
𝑆

such that 𝑍 → 𝑆 is flat, locally of finite presentation, locally quasi-finite with 𝑍𝑠 = {𝑧}.
Apply Lemma 33.28.1 to find an elementary neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and an open
𝑍′ ⊂ 𝑍𝑆′ = 𝑆′ ×𝑆 𝑍 with 𝑍′ → 𝑆′ finite with a unique point 𝑧′ ∈ 𝑍′ lying over 𝑠. Note
that 𝑍′ → 𝑆′ is also locally of finite presentation and flat (as an open of the base change
of 𝑍 → 𝑆), hence 𝑍′ → 𝑆′ is finite locally free, see Morphisms, Lemma 24.44.2. Note
that 𝑌𝑆′ → 𝑆′ is flat and of finite presentation with geometrically reduced fibres as a base
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change of ℎ. Also 𝑌𝑠′ = 𝑌𝑠 is geometrically connected. To finish the proof apply Lemma
33.30.1 to 𝑍′ → 𝑌𝑆′ over 𝑆′. �

Lemma 33.30.3. Let ℎ ∶ 𝑌 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆 be a point. Let
𝑇 ⊂ 𝑌𝑠 be an open subscheme. Assume

(1) ℎ is of finite presentation,
(2) ℎ is normal, and
(3) 𝑇 is geometrically irreducible over 𝜅(𝑠).

Then we can find an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and an open 𝑉 ⊂ 𝑌𝑆′

such that
(a) all fibres of 𝑉 → 𝑆′ are geometrically integral,
(b) 𝑉𝑠′ = 𝑇 ×𝑠 𝑠′.

Proof. Apply Lemma 33.30.2 to find an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠)
and an open 𝑉 ⊂ 𝑌𝑆′ such that all fibres of 𝑉 → 𝑆′ are geometrically integral and 𝑉𝑠′ =
𝑇 ×𝑠 𝑠′. Note that 𝑉 → 𝑆′ is open, see Morphisms, Lemma 24.24.9 Hence after replacing
𝑆′ by the image of 𝑉 → 𝑆′ we see that all fibres of 𝑉 → 𝑆′ are nonempty. As 𝑉 is an
open of the base change of ℎ all fibres of 𝑉 → 𝑆′ are geometrically normal, see Lemma
33.13.2. In particular, they are geometrically reduced. To finish the proof we have to show
they are geometrically irreducible. But, if 𝑡 ∈ 𝑆′ then 𝑉𝑡 is of finite type over 𝜅(𝑡) and hence
𝑉𝑡 ×𝜅(𝑡) 𝜅(𝑡) is of finite type over 𝜅(𝑡) hence Noetherian. By choice of 𝑆′ → 𝑆 the scheme
𝑉𝑡 ×𝜅(𝑡) 𝜅(𝑡) is connected. Hence 𝑉𝑡 ×𝜅(𝑡) 𝜅(𝑡) is irreducible by Properties, Lemma 23.7.6
and we win. �

33.31. Application to the structure of finite type morphisms

The result in this section can be found in [GR71]. Loosely stated it says that a finite type
morphism is étale locally on the source and target the composition of a finite morphism by
a smooth morphism with geometrically connected fibres of relative dimension equal to the
fibre dimension of the original morphism.

Lemma 33.31.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Let 𝑥 ∈ 𝑋 and set 𝑠 = 𝑓(𝑥). Assume that
𝑓 is locally of finite type and that 𝑛 = dim𝑥(𝑋𝑠). Then there exists a commutative diagram

𝑋

��

𝑋′
𝑔

oo

𝜋
��

𝑥_

��

𝑥′�oo
_

��
𝑌

ℎ
��

𝑦_

��
𝑆 𝑆 𝑠 𝑠

and a point 𝑥′ ∈ 𝑋′ with 𝑔(𝑥′) = 𝑥 such that with 𝑦 = 𝜋(𝑥′) we have
(1) ℎ ∶ 𝑌 → 𝑆 is smooth of relative dimension 𝑛,
(2) 𝑔 ∶ (𝑋′, 𝑥′) → (𝑋, 𝑥) is an elementary étale neighbourhood,
(3) 𝜋 is finite, and 𝜋−1({𝑦}) = {𝑥′}, and
(4) 𝜅(𝑦) is a purely transcendental extension of 𝜅(𝑠).

Moreover, if 𝑓 is locally of finite presentation then 𝜋 is of finite presentation.
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Proof. The problem is local on 𝑋 and 𝑆, hence we may assume that 𝑋 and 𝑆 are affine.
By Algebra, Lemma 7.116.3 after replacing 𝑋 by a standard open neighbourhood of 𝑥 in
𝑋 we may assume there is a factorization

𝑋 𝜋 // 𝐀𝑛
𝑆

// 𝑆

such that 𝜋 is quasi-finite and such that 𝜅(𝜋(𝑥)) is purely transcendental over 𝜅(𝑠). By
Lemma 33.28.1 there exists an elementary étale neighbourhood

(𝑌, 𝑦) → (𝐀𝑛
𝑆, 𝜋(𝑥))

and an open 𝑋′ ⊂ 𝑋 ×𝐀𝑛
𝑆

𝑌 which contains a unique point 𝑥′ lying over 𝑦 such that 𝑋′ →
𝑌 is finite. This proves (1) -- (4) hold. For the final assertion, use Morphisms, Lemma
24.20.11. �

Lemma 33.31.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. Let 𝑥 ∈ 𝑋 and set 𝑠 = 𝑓(𝑥). Assume that
𝑓 is locally of finite type and that 𝑛 = dim𝑥(𝑋𝑠). Then there exists a commutative diagram

𝑋

��

𝑋′
𝑔

oo

𝜋
��

𝑥_

��

𝑥′�oo
_

��
𝑌′

ℎ
��

𝑦′
_

��
𝑆 𝑆′𝑒oo 𝑠 𝑠′�oo

and a point 𝑥′ ∈ 𝑋′ with 𝑔(𝑥′) = 𝑥 such that with 𝑦′ = 𝜋(𝑥′), 𝑠′ = ℎ(𝑦′) we have
(1) ℎ ∶ 𝑌′ → 𝑆′ is smooth of relative dimension 𝑛,
(2) all fibres of 𝑌′ → 𝑆′ are geometrically integral,
(3) 𝑔 ∶ (𝑋′, 𝑥′) → (𝑋, 𝑥) is an elementary étale neighbourhood,
(4) 𝜋 is finite, and 𝜋−1({𝑦′}) = {𝑥′},
(5) 𝜅(𝑦′) is a purely transcendental extension of 𝜅(𝑠′), and
(6) 𝑒 ∶ (𝑆′, 𝑠′) → (𝑆, 𝑠) is an elementary étale neighbourhood.

Moreover, if 𝑓 is locally of finite presentation, then 𝜋 is of finite presentation.

Proof. The question is local on𝑆, hencewemay replace𝑆 by an affine open neighbourhood
of 𝑠. Next, we apply Lemma 33.31.1 to get a commutative diagram

𝑋

��

𝑋′
𝑔

oo

𝜋
��

𝑥_

��

𝑥′�oo
_

��
𝑌

ℎ
��

𝑦_

��
𝑆 𝑆 𝑠 𝑠

where ℎ is smooth of relative dimension 𝑛 and 𝜅(𝑦) is a purely transcendental extension of
𝜅(𝑠). Since the question is local on 𝑋 also, we may replace 𝑌 by an affine neighbourhood of
𝑦 (and 𝑋′ by the inverse image of this under 𝜋). As 𝑆 is affine this guarantees that 𝑌 → 𝑆
is quasi-compact, separated and smooth, in particular of finite presentation. Let 𝑇 be the
connected component of 𝑌𝑠 containing 𝑦. As 𝑌𝑠 is Noetherian we see that 𝑇 is open. We also
see that 𝑇 is geometrically connected over 𝜅(𝑠) by Varieties, Lemma 28.5.14. Since 𝑇 is also
smooth over 𝜅(𝑠) it is geometrically normal, see Varieties, Lemma 28.15.4. We conclude
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that 𝑇 is geometrically irreducible over 𝜅(𝑠) (as a connected Noetherian normal scheme is
irreducible, see Properties, Lemma 23.7.6). Finally, note that the smooth morphism ℎ is
normal by Lemma 33.13.3. At this point we have verified all assumption of Lemma 33.30.3
hold for the morphism ℎ ∶ 𝑌 → 𝑆 and open 𝑇 ⊂ 𝑌𝑠. As a result of applying Lemma 33.30.3
we obtain 𝑒 ∶ 𝑆′ → 𝑆, 𝑠′ ∈ 𝑆′, 𝑌′ as in the commutative diagram

𝑋

��

𝑋′
𝑔

oo

𝜋
��

𝑋′ ×𝑌 𝑌′oo

��

𝑥_

��

𝑥′�oo
_

��

(𝑥′, 𝑠′)�oo
_

��
𝑌

ℎ
��

𝑌′

��

oo 𝑦_

��

(𝑦, 𝑠′)�oo
_

��
𝑆 𝑆 𝑆′𝑒oo 𝑠 𝑠 𝑠′�oo

where 𝑒 ∶ (𝑆′, 𝑠′) → (𝑆, 𝑠) is an elementary étale neighbourhood, and where 𝑌′ ⊂ 𝑌𝑆′ is
an open neighbourhood all of whose fibres over 𝑆′ are geometrically irreducible, such that
𝑌′

𝑠′ = 𝑇 via the identification 𝑌𝑠 = 𝑌𝑆′,𝑠′. Let (𝑦, 𝑠′) ∈ 𝑌′ be the point corresponding to
𝑦 ∈ 𝑇; this is also the unique point of 𝑌 ×𝑆 𝑆′ lying over 𝑦 with residue field equal to 𝜅(𝑦)
which maps to 𝑠′ in 𝑆′. Similarly, let (𝑥′, 𝑠′) ∈ 𝑋′ ×𝑌 𝑌′ ⊂ 𝑋′ ×𝑆 𝑆′ be the unique point
over 𝑥′ with residue field equal to 𝜅(𝑥′) lying over 𝑠′. Then the outer part of this diagram
is a solution to the problem posed in the lemma. Some minor details omitted. �

Lemma 33.31.3. Assumption and notation as in Lemma 33.31.2. In addition to properties
(1) -- (6) we may also arrange it so that

(7) 𝑆′, 𝑌′, 𝑋′ are affine.

Proof. Note that if 𝑌′ is affine, then 𝑋′ is affine as 𝜋 is finite. Choose an affine open neigh-
bourhood 𝑈′ ⊂ 𝑆′ of 𝑠′. Choose an affine open neighbourhood 𝑉′ ⊂ ℎ−1(𝑈′) of 𝑦′. Let
𝑊′ = ℎ(𝑉′). This is an open neighbourhood of 𝑠′ in 𝑆′, see Morphisms, Lemma 24.33.10,
contained in 𝑈′. Choose an affine open neighbourhood 𝑈″ ⊂ 𝑊′ of 𝑠′. Then ℎ−1(𝑈″) ∩ 𝑉′

is affine because it is equal to 𝑈″ ×𝑈′ 𝑉′. By construction ℎ−1(𝑈″)∩𝑉′ → 𝑈″ is a surjective
smooth morphism whose fibres are (nonempty) open subschemes of geometrically integral
fibres of 𝑌′ → 𝑆′, and hence geometrically integral. Thus we may replace 𝑆′ by 𝑈″ and 𝑌′

by ℎ−1(𝑈″) ∩ 𝑉′. �

The significance of the property 𝜋−1({𝑦′}) = {𝑥′} is partially explained by the following
lemma.

Lemma 33.31.4. Let 𝜋 ∶ 𝑋 → 𝑌 be a finite morphism. Let 𝑥 ∈ 𝑋 with 𝑦 = 𝜋(𝑥) such that
𝜋−1({𝑦}) = {𝑥}. Then

(1) For every neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 in 𝑋, there exists a neighbourhood 𝑉 ⊂ 𝑌
of 𝑦 such that 𝜋−1(𝑉) ⊂ 𝑈.

(2) The ring map 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥 is finite.
(3) If 𝜋 is of finite presentation, then 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥 is of finite presentation.
(4) For any quasi-coherent 𝒪𝑋-module ℱ we have ℱ𝑥 = 𝜋∗ℱ𝑦 as 𝒪𝑌,𝑦-modules.

Proof. The first assertion is purely topological; use that 𝜋 is a continuous and closed map
such that 𝜋−1({𝑦}) = {𝑥}. To prove the second and third parts we may assume 𝑋 =
𝑆𝑝𝑒𝑐(𝐵) and 𝑌 = 𝑆𝑝𝑒𝑐(𝐴). Then 𝐴 → 𝐵 is a finite ring map and 𝑦 corresponds to a prime
𝔭 of 𝐴 such that there exists a unique prime 𝔮 of 𝐵 lying over 𝔭. Then 𝐵𝔮 = 𝐵𝔭, see Algebra,
Lemma 7.36.11. In other words, the map 𝐴𝔭 → 𝐵𝔮 is equal to the map 𝐴𝔭 → 𝐵𝔭 you get
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from localizing 𝐴 → 𝐵 at 𝔭. Thus (2) and (3) follow from simple properties of localization
(some details omitted). For the final statement, suppose that ℱ = 𝑀 for some 𝐵-module
𝑀. Then ℱ = 𝑀𝔮 and 𝜋∗ℱ𝑦 = 𝑀𝔭. By the above these localizations agree. Alternatively
you can use part (1) and the definition of stalks to see that ℱ𝑥 = 𝜋∗ℱ𝑦 directly. �

33.32. Application to the fppf topology

We can use the above étale localization techniques to prove the following result describing
the fppf topology as being equal to the topology ``generated by'' Zariski coverings and by
coverings of the form {𝑓 ∶ 𝑇 → 𝑆} where 𝑓 is surjective finite locally free.

Lemma 33.32.1. Let 𝑆 be a scheme. Let {𝑆𝑖 → 𝑆}𝑖∈𝐼 be an fppf covering. Then there
exist

(1) a Zariski open covering 𝑆 = ⋃ 𝑈𝑗,
(2) surjective finite locally free morphisms 𝑊𝑗 → 𝑈𝑗,
(3) Zariski open coverings 𝑊𝑗 = ⋃𝑘 𝑊𝑗,𝑘,
(4) surjective finite locally free morphisms 𝑇𝑗,𝑘 → 𝑊𝑗,𝑘

such that the fppf covering {𝑇𝑗,𝑘 → 𝑆} refines the given covering {𝑆𝑖 → 𝑆}.

Proof. We may assume that each 𝑆𝑖 → 𝑆 is locally quasi-finite, see Lemma 33.16.6.

Fix a point 𝑠 ∈ 𝑆. Pick an 𝑖 ∈ 𝐼 and a point 𝑠𝑖 ∈ 𝑆𝑖 mapping to 𝑠. Choose an elementary
étale neighbourhood (𝑆′, 𝑠) → (𝑆, 𝑠) such that there exists an open

𝑆𝑖 ×𝑆 𝑆′ ⊃ 𝑉

which contains a unique point 𝑣 ∈ 𝑉 mapping to 𝑠 ∈ 𝑆′ and such that 𝑉 → 𝑆′ is finite,
see Lemma 33.28.1. Then 𝑉 → 𝑆′ is finite locally free, because it is finite and because
𝑆𝑖 ×𝑆 𝑆′ → 𝑆′ is flat and locally of finite presentation as a base change of the morphism
𝑆𝑖 → 𝑆, see Morphisms, Lemmas 24.20.4, 24.24.7, and 24.44.2. Hence 𝑉 → 𝑆′ is open,
and after shrinking 𝑆′ we may assume that 𝑉 → 𝑆′ is surjective finite locally free. Since
we can do this for every point of 𝑆 we conclude that {𝑆𝑖 → 𝑆} can be refined by a covering
of the form {𝑉𝑎 → 𝑆}𝑎∈𝐴 where each 𝑉𝑎 → 𝑆 factors as 𝑉𝑎 → 𝑆′

𝑎 → 𝑆 with 𝑆′
𝑎 → 𝑆 étale

and 𝑉𝑎 → 𝑆′
𝑎 surjective finite locally free.

By Remark 33.27.3 there exists a Zariski open covering 𝑆 = ⋃ 𝑈𝑗, for each 𝑗 a finite locally
free, surjective morphism 𝑊𝑗 → 𝑈𝑗, and for each 𝑗 a Zariski open covering {𝑊𝑗,𝑘 → 𝑊𝑗}
such that the family {𝑊𝑗,𝑘 → 𝑆} refines the étale covering {𝑆′

𝑎 → 𝑆}, i.e., for each pair
𝑗, 𝑘 there exists an 𝑎(𝑗, 𝑘) and a factorization 𝑊𝑗,𝐾 → 𝑆′

𝑎 → 𝑆 of the morphism 𝑊𝑗,𝐾 → 𝑆.
Set 𝑇𝑗,𝑘 = 𝑊𝑗,𝑘 ×𝑆′

𝑎
𝑉𝑎 and everything is clear. �

33.33. Closed points in fibres

Some of the material in this section is taken from the preprint [OP10].

Lemma 33.33.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑍 ⊂ 𝑋 be a closed
subscheme. Let 𝑠 ∈ 𝑆. Assume

(1) 𝑆 is irreducible with generic point 𝜂,
(2) 𝑋 is irreducible,
(3) 𝑓 is dominant,
(4) 𝑓 is locally of finite type,
(5) dim(𝑋𝑠) ≤ dim(𝑋𝜂),
(6) 𝑍 is locally principal in 𝑋, and
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(7) 𝑍𝜂 = ∅.
Then the fibre 𝑍𝑠 is (set theoretically) a union of irreducible components of 𝑋𝑠.

Proof. Let 𝑋𝑟𝑒𝑑 denote the reduction of 𝑋. Then 𝑍 ∩ 𝑋𝑟𝑒𝑑 is a locally principal closed
subscheme of 𝑋𝑟𝑒𝑑, see Divisors, Lemma 26.9.7. Hence we may assume that 𝑋 is reduced.
In other words 𝑋 is integral, see Properties, Lemma 23.3.4. In this case the morphism
𝑋 → 𝑆 factors through 𝑆𝑟𝑒𝑑, see Schemes, Lemma 21.12.6. Thus we may replace 𝑆 by
𝑆𝑟𝑒𝑑 and assume that 𝑆 is integral too.

The assertion that 𝑓 is dominant signifies that the generic point of 𝑋 is mapped to 𝜂, see
Morphisms, Lemma 24.6.5. Moreover, the scheme 𝑋𝜂 is an integral schemewhich is locally
of finite type over the field 𝜅(𝜂). Hence 𝑑 = dim(𝑋𝜂) ≥ 0 is equal to dim𝜉(𝑋𝜂) for every
point 𝜉 of 𝑋𝜂, see Algebra, Lemmas 7.105.4 and 7.105.5. In view of Morphisms, Lemma
24.27.4 and condition (5) we conclude that dim𝑥(𝑋𝑠) = 𝑑 for every 𝑥 ∈ 𝑋𝑠.

In the Noetherian case the assertion can be proved as follows. If the lemma does not holds
there exists 𝑥 ∈ 𝑍𝑠 which is a generic point of an irreducible component of 𝑍𝑠 but not a
generic point of any irreducible component of 𝑋𝑠. Then we see that dim𝑥(𝑍𝑠) ≤ 𝑑 − 1,
because dim𝑥(𝑋𝑠) = 𝑑 and in a neighbourhood of 𝑥 in 𝑋𝑠 the closed subscheme 𝑍𝑠 does
not contain any of the irreducible components of 𝑋𝑠. Hence after replacing 𝑋 by an open
neighbourhood of 𝑥 wemay assume that dim𝑧(𝑍𝑓(𝑧)) ≤ 𝑑−1 for all 𝑧 ∈ 𝑍, see Morphisms,
Lemma 24.27.4. Let 𝜉′ ∈ 𝑍 be a generic point of an irreducible component of 𝑍 and set
𝑠′ = 𝑓(𝜉). As 𝑍≠𝑋 is locally principal we see that dim(𝒪𝑋,𝜉) = 1, see Algebra, Lemma
7.57.10 (this is where we use 𝑋 is Noetherian). Let 𝜉 ∈ 𝑋 be the generic point of 𝑋 and
let 𝜉1 be a generic point of any irreducible component of 𝑋𝑠′ which contains 𝜉′. Then we
see that we have the specializations

𝜉 𝜉1  𝜉′.

As dim(𝒪𝑋,𝜉) = 1 one of the two specializations has to be an equality. By assumption
𝑠′≠𝜂, hence the first specialization is not an equality. Hence 𝜉′ = 𝜉1 is a generic point of an
irreducible component of 𝑋𝑠′. Applying Morphisms, Lemma 24.27.4 one more time this
implies dim𝜉′(𝑍𝑠′) = dim𝜉′(𝑋𝑠′) ≥ dim(𝑋𝜂) = 𝑑 which gives the desired contradiction.

In the general case we reduce to the Noetherian case as follows. If the lemma is false then
there exists a point 𝑥 ∈ 𝑋 lying over 𝑠 such that 𝑥 is a generic point of an irreducible
component of 𝑍𝑠, but not a generic point of any of the irreducible components of 𝑋𝑠. Let
𝑈 ⊂ 𝑆 be an affine neighbourhood of 𝑠 and let 𝑉 ⊂ 𝑋 be an affine neighbourhood of 𝑥 with
𝑓(𝑉) ⊂ 𝑈. Write 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑉 = 𝑆𝑝𝑒𝑐(𝐵) so that 𝑓|𝑉 is given by a ring map 𝐴 → 𝐵.
Let 𝔮 ⊂ 𝐵, resp. 𝔭 ⊂ 𝐴 be the prime corresponding to 𝑥, resp. 𝑠. After possibly shrinking
𝑉 we may assume 𝑍 ∩ 𝑉 is cut out by some element 𝑔 ∈ 𝐵. Denote 𝐾 = 𝑓.𝑓.(𝐴). What we
know at this point is the following:

(1) 𝐴 ⊂ 𝐵 is a finitely generated extension of domains,
(2) the element 𝑔 ⊗ 1 is invertible in 𝐵 ⊗𝐴 𝐾,
(3) 𝑑 = dim(𝐵 ⊗𝐴 𝐾) = dim(𝐵 ⊗𝐴 𝜅(𝔭)),
(4) 𝑔 ⊗ 1 is not a unit of 𝐵 ⊗𝐴 𝜅(𝔭), and
(5) 𝑔 ⊗ 1 is not in any of the minimal primes of 𝐵 ⊗𝐴 𝜅(𝔭).

We are seeking a contradiction.

Pick elements 𝑥1, … , 𝑥𝑛 ∈ 𝐵 which generate 𝐵 over 𝐴. For a finitely generated 𝐙-algebra
𝐴0 ⊂ 𝐴 let 𝐵0 ⊂ 𝐵 be the 𝐴0-subalgebra generated by 𝑥1, … , 𝑥𝑛, denote 𝐾0 = 𝑓.𝑓.(𝐴0),
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and set 𝔭0 = 𝐴0 ∩ 𝔭. We claim that when 𝐴0 is large enough then (1) -- (5) also hold for
the system (𝐴0 ⊂ 𝐵0, 𝑔, 𝔭0).

We prove each of the conditions in turn. Part (1) holds by construction. For part (2) write
(𝑔 ⊗ 1)ℎ = 1 for some ℎ ⊗ 1/𝑎 ∈ 𝐵 ⊗𝐴 𝐾. Write 𝑔 = ∑ 𝑎𝐼𝑥𝐼, ℎ = ∑ 𝑎′

𝐼𝑥𝐼 (multi-index
notation) for some coefficients 𝑎𝐼, 𝑎′

𝐼 ∈ 𝐴. As soon as 𝐴0 contains 𝑎 and the 𝑎𝐼, 𝑎′
𝐼 then (2)

holds because 𝐵0 ⊗𝐴0
𝐾0 ⊂ 𝐵 ⊗𝐴 𝐾 (as localizations of the injective map 𝐵0 → 𝐵). To

achieve (3) consider the exact sequence

0 → 𝐼 → 𝐴[𝑋1, … , 𝑋𝑛] → 𝐵 → 0

which defines 𝐼 where the second map sends 𝑋𝑖 to 𝑥𝑖. Since ⊗ is right exact we see that
𝐼 ⊗𝐴 𝐾, respectively 𝐼 ⊗𝐴 𝜅(𝔭) is the kernel of the surjection 𝐾[𝑋1, … , 𝑋𝑛] → 𝐵 ⊗𝐴 𝐾,
respectively 𝜅(𝔭)[𝑋1, … , 𝑋𝑛] → 𝐵⊗𝐴𝜅(𝔭). As a polynomial ring over a field is Noetherian
there exist finitelymany elements ℎ𝑗 ∈ 𝐼, 𝑗 = 1, … , 𝑚 which generate 𝐼⊗𝐴𝐾 and 𝐼⊗𝐴𝜅(𝔭).
Write ℎ𝑗 = ∑ 𝑎𝑗,𝐼𝑋𝐼. As soon as 𝐴0 contains all 𝑎𝑗,𝐼 we get to the situation where

𝐵0 ⊗𝐴0
𝐾0 ⊗𝐾0

𝐾 = 𝐵 ⊗𝐴 𝐾 and 𝐵0 ⊗𝐴0
𝜅(𝔭0) ⊗𝜅(𝔭0) 𝜅(𝔭) = 𝐵 ⊗𝐴 𝜅(𝔭).

By either Morphisms, Lemma 24.27.3 or Algebra, Lemma 7.107.5 we see that the dimen-
sion equalities of (3) are satisfied. Part (4) is immediate. As 𝐵0 ⊗𝐴0

𝜅(𝔭0) ⊂ 𝐵 ⊗𝐴 𝜅(𝔭)
each minimal prime of 𝐵0 ⊗𝐴0

𝜅(𝔭0) lies under a minimal prime of 𝐵 ⊗𝐴 𝜅(𝔭) by Alge-
bra, Lemma 7.27.6. This implies that (5) holds. In this way we reduce the problem to the
Noetherian case which we have dealt with above. �

Here is an algebraic application of the lemma above. The fourth assumption of the lemma
holds if 𝐴 → 𝐵 is flat, see Lemma 33.33.3.

Lemma 33.33.2. Let 𝐴 → 𝐵 be a local homomorphism of local rings, and 𝑔 ∈ 𝔪𝐵.
Assume

(1) 𝐴 and 𝐵 are domains and 𝐴 ⊂ 𝐵,
(2) 𝐵 is essentially of finite type over 𝐴,
(3) 𝑔 is not contained in any minimal prime over 𝔪𝐴𝐵, and
(4) dim(𝐵/𝔪𝐴𝐵) + trdeg𝜅(𝔪𝐴)(𝜅(𝔪𝐵)) = trdeg𝐴(𝐵).

Then𝐴 ⊂ 𝐵/𝑔𝐵, i.e., the generic point of𝑆𝑝𝑒𝑐(𝐴) is in the image of themorphism𝑆𝑝𝑒𝑐(𝐵/𝑔𝐵) →
𝑆𝑝𝑒𝑐(𝐴).

Proof. Note that the two assertions are equivalent by Algebra, Lemma 7.27.6. To start the
proof let 𝐶 be an 𝐴-algebra of finite type and 𝔮 a prime of 𝐶 such that 𝐵 = 𝐶𝔮. Of course
we may assume that 𝐶 is a domain and that 𝑔 ∈ 𝐶. After replacing 𝐶 by a localization
we see that dim(𝐶/𝔪𝐴𝐶) = dim(𝐵/𝔪𝐴𝐵) + trdeg𝜅(𝔪𝐴)(𝜅(𝔪𝐵)), see Morphisms, Lemma
24.27.1. Setting 𝐾 = 𝑓.𝑓.(𝐴) we see by the same reference that dim(𝐶⊗𝐴 𝐾) = trdeg𝐴(𝐵).
Hence assumption (4) means that the generic and closed fibres of the morphism 𝑆𝑝𝑒𝑐(𝐶) →
𝑆𝑝𝑒𝑐(𝐴) have the same dimension.

Suppose that the lemma is false. Then (𝐵/𝑔𝐵)⊗𝐴 𝐾 = 0. This means that 𝑔⊗1 is invertible
in 𝐵 ⊗𝐴 𝐾 = 𝐶𝔮 ⊗𝐴 𝐾. As 𝐶𝔮 is a limit of principal localizations we conclude that 𝑔 ⊗ 1
is invertible in 𝐶ℎ ⊗𝐴 𝐾 for some ℎ ∈ 𝐶, ℎ∉𝔮. Thus after replacing 𝐶 by 𝐶ℎ we may
assume that (𝐶/𝑔𝐶) ⊗𝐴 𝐾 = 0. We do one more replacement of 𝐶 to make sure that the
minimal primes of 𝐶/𝔪𝐴𝐶 correspond one-to-one with the minimal primes of 𝐵/𝔪𝐴𝐵. At
this point we apply Lemma 33.33.1 to 𝑋 = 𝑆𝑝𝑒𝑐(𝐶) → 𝑆𝑝𝑒𝑐(𝐴) = 𝑆 and the locally closed
subscheme 𝑍 = 𝑆𝑝𝑒𝑐(𝐶/𝑔𝐶). Since 𝑍𝐾 = ∅ we see that 𝑍 ⊗ 𝜅(𝔪𝐴) has to contain an
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irreducible component of 𝑋⊗𝜅(𝔪𝐴) = 𝑆𝑝𝑒𝑐(𝐶/𝔪𝐴𝐶). But this contradicts the assumption
that 𝑔 is not contained in any prime minimal over 𝔪𝐴𝐵. The lemma follows. �

Lemma 33.33.3. Let 𝐴 → 𝐵 be a local homomorphism of local rings. Assume
(1) 𝐴 and 𝐵 are domains and 𝐴 ⊂ 𝐵,
(2) 𝐵 is essentially of finite type over 𝐴, and
(3) 𝐵 is flat over 𝐴.

Then we have
dim(𝐵/𝔪𝐴𝐵) + trdeg𝜅(𝔪𝐴)(𝜅(𝔪𝐵)) = trdeg𝐴(𝐵).

Proof. Let 𝐶 be an 𝐴-algebra of finite type and 𝔮 a prime of 𝐶 such that 𝐵 = 𝐶𝔮. We
may assume 𝐶 is a domain. We have dim𝔮(𝐶/𝔪𝐴𝐶) = dim(𝐵/𝔪𝐴𝐵) + trdeg𝜅(𝔪𝐴)(𝜅(𝔪𝐵)),
see Morphisms, Lemma 24.27.1. Setting 𝐾 = 𝑓.𝑓.(𝐴) we see by the same reference that
dim(𝐶 ⊗𝐴 𝐾) = trdeg𝐴(𝐵). Thus we are really trying to prove that dim𝔮(𝐶/𝔪𝐴𝐶) =
dim(𝐶 ⊗𝐴 𝐾). Choose a valuation ring 𝐴′ in 𝐾 dominating 𝐴, see Algebra, Lemma 7.46.2.
Set 𝐶′ = 𝐶 ⊗𝐴 𝐴′. Choose a prime 𝔮′ of 𝐶′ lying over 𝔮; such a prime exists because

𝐶′/𝔪𝐴′𝐶′ = 𝐶/𝔪𝐴𝐶 ⊗𝜅(𝔪𝐴) 𝜅(𝔪𝐴′)

which proves that𝐶/𝔪𝐴𝐶 → 𝐶′/𝔪𝐴′𝐶′ is faithfully flat. This also proves that dim𝔮(𝐶/𝔪𝐴𝐶) =
dim𝔮′(𝐶′/𝔪𝐴′𝐶′), see Algebra, Lemma 7.107.6. Note that 𝐵′ = 𝐶′

𝔮′ is a localization of
𝐵 ⊗𝐴 𝐴′. Hence 𝐵′ is flat over 𝐴′. The generic fibre 𝐵′ ⊗𝐴′ 𝐾 is a localization of 𝐵 ⊗𝐴 𝐾.
Hence 𝐵′ is a domain. If we prove the lemma for 𝐴′ ⊂ 𝐵′, then we get the equality
dim𝔮′(𝐶′/𝔪𝐴′𝐶′) = dim(𝐶′ ⊗𝐴′ 𝐾) which implies the desired equality dim𝔮(𝐶/𝔪𝐴𝐶) =
dim(𝐶 ⊗𝐴 𝐾) by what was said above. This reduces the lemma to the case where 𝐴 is a
valuation ring.

Let 𝐴 ⊂ 𝐵 be as in the lemma with 𝐴 a valuation ring. As before write 𝐵 = 𝐶𝔮 for some
domain 𝐶 of finite type over 𝐴. By Algebra, Lemma 7.116.9 we obtain dim(𝐶/𝔪𝐴𝐶) =
dim(𝐶 ⊗𝐴 𝐾) and we win. �

Lemma 33.33.4. Let 𝑓 ∶ 𝑋 → 𝑆 be amorphism of schemes. Let 𝑥 𝑥′ be a specialization
of points in 𝑋. Set 𝑠 = 𝑓(𝑥) and 𝑠′ = 𝑓(𝑥′). Assume

(1) 𝑥′ is a closed point of 𝑋𝑠′, and
(2) 𝑓 is locally of finite type.

Then the set

{𝑥1 ∈ 𝑋 such that 𝑓(𝑥1) = 𝑠 and 𝑥1 is closed in 𝑋𝑠 and 𝑥 𝑥1  𝑥′}

is dense in the closure of 𝑥 in 𝑋𝑠.

Proof. We apply Schemes, Lemma 21.20.4 to the specialization 𝑥 𝑥′. This produces a
morphism 𝜑 ∶ 𝑆𝑝𝑒𝑐(𝐵) → 𝑋 where 𝐵 is a valuation ring such that 𝜑 maps the generic point
to 𝑥 and the closed point to 𝑥′. We may also assume that 𝜅(𝑥) = 𝑓.𝑓.(𝐵). Let 𝐴 = 𝐵 ∩ 𝜅(𝑠).
Note that this is a valuation ring (see Algebra, Lemma 7.46.5) which dominates the image
of 𝒪𝑆,𝑠′ → 𝜅(𝑠). Consider the commutative diagram

𝑆𝑝𝑒𝑐(𝐵)

%%

// 𝑋𝐴

��

// 𝑋

��
𝑆𝑝𝑒𝑐(𝐴) // 𝑆
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The generic (resp. closed) point of 𝐵 maps to a point 𝑥𝐴 (resp. 𝑥′
𝐴) of 𝑋𝐴 lying over the

generic (resp. closed) point of 𝑆𝑝𝑒𝑐(𝐴). Note that 𝑥′
𝐴 is a closed point of the special fibre

of 𝑋𝐴 by Morphisms, Lemma 24.19.4. Note that the generic fibre of 𝑋𝐴 → 𝑆𝑝𝑒𝑐(𝐴) is
isomorphic to 𝑋𝑠. Thus we have reduced the lemma to the case where 𝑆 is the spectrum of
a valuation ring, 𝑠 = 𝜂 ∈ 𝑆 is the generic point, and 𝑠′ ∈ 𝑆 is the closed point.

We will prove the lemma by induction on dim𝑥(𝑋𝜂). If dim𝑥(𝑋𝜂) = 0, then there are no
other points of 𝑋𝜂 specializing to 𝑥 and 𝑥 is closed in its fibre, see Morphisms, Lemma
24.19.6, and the result holds. Assume dim𝑥(𝑋𝜂) > 0.

Let 𝑋′ ⊂ 𝑋 be the reduced induced scheme structure on the irreducible closed subscheme
{𝑥} of 𝑋, see Schemes, Definition 21.12.5. To prove the lemma we may replace 𝑋 by 𝑋′

as this only decreases dim𝑥(𝑋𝜂). Hence we may also assume that 𝑋 is an integral scheme
and that 𝑥 is its generic point. In addition, we may replace 𝑋 by an affine neighbourhood
of 𝑥′. Thus we have 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) where 𝐴 ⊂ 𝐵 is a finite type extension of domains. Note
that in this case dim𝑥(𝑋𝜂) = dim(𝑋𝜂) = dim(𝑋𝑠′), and that in fact 𝑋𝑠′ is equidimensional,
see Algebra, Lemma 7.116.9.

Let 𝑊 ⊂ 𝑋𝜂 be a proper closed subset (this is the subset we want to ``avoid''). As 𝑋𝑠 is
of finite type over a field we see that 𝑊 has finitely many irreducible components 𝑊 =
𝑊1 ∪ … ∪ 𝑊𝑛. Let 𝔮𝑗 ⊂ 𝐵, 𝑗 = 1, … , 𝑟 be the corresponding prime ideals. Let 𝔮 ⊂ 𝐵 be
the maximal ideal corresponding to the point 𝑥′. Let 𝔭1, … , 𝔭𝑠 ⊂ 𝐵 be the minimal primes
lying over 𝔪𝐴𝐵. There are finitely many as these correspond to the irreducible compo-
nents of the Noetherian scheme 𝑋𝑠′. Moreover, each of these irreducible components has
dimension > 0 (see above) hence we see that 𝔭𝑖≠𝔮 for all 𝑖. Now, pick an element 𝑔 ∈ 𝔮
such that 𝑔∉𝔮𝑗 for all 𝑗 and 𝑔∉𝔭𝑖 for all 𝑖, see Algebra, Lemma 7.14.3. Denote 𝑍 ⊂ 𝑋
the locally principal closed subscheme defined by ℎ. Let 𝑍𝜂 = 𝑍1,𝜂 ∪ … ∪ 𝑍𝑛,𝜂, 𝑛 ≥ 0
be the decomposition of the generic fibre of 𝑍 into irreducible components (finitely many
as the generic fibre is Noetherian). Denote 𝑍𝑖 ⊂ 𝑋 the closure of 𝑍𝑖,𝜂. After replacing 𝑋
by a smaller affine neighbourhood we may assume that 𝑥 ∈ 𝑍𝑖 for each 𝑖 = 1, … , 𝑛. By
construction 𝑍∩𝑋𝑠′ does not contain any irreducible component of 𝑋𝑠′. Hence by Lemma
33.33.1 we conclude that 𝑍𝜂≠∅! In other words 𝑛 ≥ 1. Letting 𝑥1 ∈ 𝑍1 be the generic
point we see that 𝑥1  𝑥′ and 𝑓(𝑥1) = 𝜂. Also, by construction 𝑍1,𝜂 ∩𝑊𝑗 ⊂ 𝑊𝑗 is a proper
closed subset. Hence every irreducible component of 𝑍1,𝜂 ∩ 𝑊𝑗 has codimension ≥ 2 in
𝑋𝜂 whereas codim(𝑍1,𝜂, 𝑋𝜂) = 1 by Algebra, Lemma 7.57.10. Thus 𝑊 ∩ 𝑍1,𝜂 is a proper
closed subset. At this point we see that the induction hypothesis applies to 𝑍1 → 𝑆 and the
specialization 𝑥1  𝑥′. This produces a closed point 𝑥2 of 𝑍1,𝜂 not contained in 𝑊 which
specializes to 𝑥′. Thus we obtain 𝑥 𝑥2  𝑥′, the point 𝑥2 is closed in 𝑋𝜂, and 𝑥2∉𝑊 as
desired. �

Remark 33.33.5. The proof of Lemma 33.33.4 actually shows that there exists a sequence
of specializations

𝑥 𝑥1  𝑥2  … 𝑥𝑑  𝑥′

where all 𝑥𝑖 are in the fibre 𝑋𝑠, each specialization is immediate, and 𝑥𝑑 is a closed point
of 𝑋𝑠. The integer 𝑑 = trdeg𝜅(𝑠)(𝜅(𝑥)) = dim({𝑥}) where the closure is taken in 𝑋𝑠.
Moreover, the points 𝑥𝑖 can be chosen to avoid any closed subset of 𝑋𝑠 which does not
contain the point 𝑥.

Examples, Section 64.20 shows that the following lemma is false if 𝐴 is not assumed Noe-
therian.
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Lemma 33.33.6. Let 𝜑 ∶ 𝐴 → 𝐵 be a local ring map of local rings. Let 𝑉 ⊂ 𝑆𝑝𝑒𝑐(𝐵)
be an open subscheme which contains at least one prime not lying over 𝔪𝐴. Assume 𝐴 is
Noetherian, 𝜑 essentially of finite type, and 𝐴/𝔪𝐴 ⊂ 𝐵/𝔪𝐵 is finite. Then there exists a
𝔮 ∈ 𝑉, 𝔪𝐴≠𝔮 ∩ 𝐴 such that 𝐴 → 𝐵/𝔮 is the localization of a quasi-finite ring map.

Proof. Since 𝐴 is Noetherian and 𝐴 → 𝐵 is essentially of finite type, we know that 𝐵 is
Noetherian too. By Properties, Lemma 23.6.4 the topological space 𝑆𝑝𝑒𝑐(𝐵) ⧵ {𝔪𝐵} is
Jacobson. Hence we can choose a closed point 𝔮 which is contained in the nonempty open

𝑉 ⧵ {𝔮 ⊂ 𝐵 ∣ 𝔪𝐴 = 𝔮 ∩ 𝐴}.

(Nonempty by assumption, open because {𝔪𝐴} is a closed subset of 𝑆𝑝𝑒𝑐(𝐴).) Then
𝑆𝑝𝑒𝑐(𝐵/𝔮) has two points, namely 𝔪𝐵 and 𝔮 and 𝔮 does not lie over 𝔪𝐴. Write 𝐵/𝔮 = 𝐶𝔪
for some finite type 𝐴-algebra 𝐶 and prime ideal 𝔪. Then 𝐴 → 𝐶 is quasi-finite at 𝔪 by Al-
gebra, Lemma 7.113.2 (2). Hence by Algebra, Lemma 7.114.14 we see that after replacing
𝐶 by a principal localization the ring map 𝐴 → 𝐶 is quasi-finite. �

Lemma 33.33.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 with image 𝑠 ∈ 𝑆.
Let 𝑈 ⊂ 𝑋 be an open subscheme. Assume 𝑓 locally of finite type, 𝑆 locally Noetherian,
𝑥 a closed point of 𝑋𝑠, and assume there exists a point 𝑥′ ∈ 𝑈 with 𝑥′  𝑥 and 𝑓(𝑥′)≠𝑠.
Then there exists a closed subscheme 𝑍 ⊂ 𝑋 such that (a) 𝑥 ∈ 𝑍, (b) 𝑓|𝑍 ∶ 𝑍 → 𝑆 is
quasi-finite at 𝑥, and (c) there exists a 𝑧 ∈ 𝑍, 𝑧 ∈ 𝑈, 𝑧 𝑥 and 𝑓(𝑧)≠𝑠.

Proof. This is a reformulation of Lemma 33.33.6. Namely, set 𝐴 = 𝒪𝑆,𝑠 and 𝐵 = 𝒪𝑋,𝑥.
Denote 𝑉 ⊂ 𝑆𝑝𝑒𝑐(𝐵) the inverse image of 𝑈. The ring map 𝑓♯ ∶ 𝐴 → 𝐵 is essentially of
finite type. By assumption there exists at least one point of 𝑉 which does not map to the
closed point of 𝑆𝑝𝑒𝑐(𝐴). Hence all the assumptions of Lemma 33.33.6 hold and we obtain
a prime 𝔮 ⊂ 𝐵 which does not lie over 𝔪𝐴 and such that 𝐴 → 𝐵/𝔮 is the localization of a
quasi-finite ring map. Let 𝑧 ∈ 𝑋 be the image of the point 𝔮 under the canonical morphism
𝑆𝑝𝑒𝑐(𝐵) → 𝑋. Set 𝑍 = {𝑧} with the induced reduced scheme structure. As 𝑧 𝑥 we see
that 𝑥 ∈ 𝑍 and 𝒪𝑍,𝑥 = 𝐵/𝔮. By construction 𝑍 → 𝑆 is quasi-finite at 𝑥. �

Remark 33.33.8. We can use Lemma 33.33.6 or its variant Lemma 33.33.7 to give an
alternative proof of Lemma 33.33.4 in case 𝑆 is locally Noetherian. Here is a rough sketch.
Namely, first replace 𝑆 by the spectrum of the local ring at 𝑠′. Then we may use induction
on dim(𝑆). The case dim(𝑆) = 0 is trivial because then 𝑠′ = 𝑠. Replace 𝑋 by the reduced
induced scheme structure on {𝑥}. Apply Lemma 33.33.7 to 𝑋 → 𝑆 and 𝑥′ ↦ 𝑠′ and any
nonempty open 𝑈 ⊂ 𝑋 containing 𝑥. This gives us a closed subscheme 𝑥′ ∈ 𝑍 ⊂ 𝑋 a
point 𝑧 ∈ 𝑍 such that 𝑍 → 𝑆 is quasi-finite at 𝑥′ and such that 𝑓(𝑧)≠𝑠′. Then 𝑧 is a closed
point of 𝑋𝑓(𝑧), and 𝑧  𝑥′. As 𝑓(𝑧)≠𝑠′ we see dim(𝒪𝑆,𝑓(𝑧)) < dim(𝑆). Since 𝑥 is the
generic point of 𝑋 we see 𝑥 𝑧, hence 𝑠 = 𝑓(𝑥) 𝑓(𝑧). Apply the induction hypothesis
to 𝑠 𝑓(𝑧) and 𝑧 ↦ 𝑓(𝑧) to win.

Lemma 33.33.9. Suppose that 𝑓 ∶ 𝑋 → 𝑆 is locally of finite type, 𝑆 locally Noetherian,
𝑥 ∈ 𝑋 a closed point of its fibre 𝑋𝑠, and 𝑈 ⊂ 𝑋 an open subscheme such that 𝑈 ∩ 𝑋𝑠 = ∅
and 𝑥 ∈ 𝑈, then the conclusions of Lemma 33.33.7 hold.

Proof. Namely, we can reduce this to the cited lemma as follows: First we replace 𝑋 and 𝑆
by affine neighbourhoods of 𝑥 and 𝑠. Then 𝑋 is Noetherian, in particular 𝑈 is quasi-compact
(see Morphisms, Lemma 24.14.6 and Topology, Lemmas 5.6.2 and 5.9.9). Hence there
exists a specialization 𝑥′  𝑥 with 𝑥′ ∈ 𝑈 (see Morphisms, Lemma 24.4.5). Note that
𝑓(𝑥′)≠𝑠. Thus we see all hypotheses of the lemma are satisfied and we win. �
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33.34. Stein factorization

Stein factorization is the statement that a proper morphism 𝑓 ∶ 𝑋 → 𝑆 with 𝑓∗𝒪𝑋 = 𝒪𝑆
has connected fibres.

Lemma33.34.1. Let𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a universally closed, quasi-compact
and quasi-separated morphism. There exists a factorization

𝑋
𝑓′

//

𝑓 ��

𝑆′

𝜋
��

𝑆

with the following properties:

(1) the morphism 𝑓′ is universally closed, quasi-compact, quasi-separated and sur-
jective,

(2) the morphism 𝜋 ∶ 𝑆′ → 𝑆 is integral,
(3) we have 𝑓′

∗𝒪𝑋 = 𝒪𝑆′,
(4) we have 𝑆′ = 𝑆𝑝𝑒𝑐

𝑆
(𝑓∗𝒪𝑋), and

(5) 𝑆′ is the normalization of 𝑆 in 𝑋, see Morphisms, Definition 24.46.3.

Proof. We just define 𝑆′ as the normalization of 𝑆 in 𝑋, so (5) and (2) hold automatically.
By Morphisms, Lemma 24.46.9 we see that (4) holds. The morphism 𝑓′ is universally
closed by Morphisms, Lemma 24.40.7. It is quasi-compact by Schemes, Lemma 21.21.15
and quasi-separated by Schemes, Lemma 21.21.14.

To show the remaining statements we may assume the base scheme 𝑆 is affine, say 𝑆 =
𝑆𝑝𝑒𝑐(𝑅). Then 𝑆′ = 𝑆𝑝𝑒𝑐(𝐴) with 𝐴 = Γ(𝑋, 𝒪𝑋) an integral 𝑅-algebra. Thus it is clear
that 𝑓′

∗𝒪𝑋 is 𝒪𝑆′ (because 𝑓′
∗𝒪𝑋 is quasi-coherent, by Schemes, Lemma 21.24.1, and hence

equal to 𝐴). This proves (3).

Let us show that 𝑓′ is surjective. As 𝑓′ is universally closed (see above) the image of 𝑓′

is a closed subset 𝑉(𝐼) ⊂ 𝑆′ = 𝑆𝑝𝑒𝑐(𝐴). Pick ℎ ∈ 𝐼. Then ℎ|𝑋 = 𝑓♯(ℎ) is a global
section of the structure sheaf of 𝑋 which vanishes at every point. As 𝑋 is quasi-compact
this means that ℎ|𝑋 is a nilpotent section, i.e., ℎ𝑛|𝑋 = 0 for some 𝑛 > 0. But 𝐴 = Γ(𝑋, 𝒪𝑋),
hence ℎ𝑛 = 0. In other words 𝐼 is contained in the radical ideal of 𝐴 and we conclude that
𝑉(𝐼) = 𝑆′ as desired. �

Lemma 33.34.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆. Then 𝑋𝑠 is
geometrically connected, if and only if for every étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) the
base change 𝑋𝑈 → 𝑈 as connected fibre 𝑋𝑢.

Proof. If 𝑋𝑠 is geometrically connected, then any base change of it is connected. On the
other hand, suppose that 𝑋𝑠 is not geometrically connected. Then by Varieties, Lemma
28.5.11 we see that 𝑋𝑠 ×𝑆𝑝𝑒𝑐(𝜅(𝑠) 𝑆𝑝𝑒𝑐(𝑘) is disconnected for some finite separable field
extension 𝜅(𝑠) ⊂ 𝑘. By Lemma 33.25.2 there exists an affine étale neighbourhood (𝑈, 𝑢) →
(𝑆, 𝑠) such that 𝜅(𝑠) ⊂ 𝜅(𝑢) is identified with 𝜅(𝑠) ⊂ 𝑘. In this case 𝑋𝑢 is disconnected. �
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Theorem 33.34.3. (Stein factorization -- Noetherian case) Let 𝑆 be a locally Noetherian
scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be a proper morphism. There exists a factorization

𝑋
𝑓′

//

𝑓 ��

𝑆′

𝜋
��

𝑆
with the following properties:

(1) the morphism 𝑓′ is proper, surjective with geometrically connected fibres,
(2) the morphism 𝜋 ∶ 𝑆′ → 𝑆 is finite,
(3) we have 𝑓′

∗𝒪𝑋 = 𝒪𝑆′,
(4) we have 𝑆′ = 𝑆𝑝𝑒𝑐

𝑆
(𝑓∗𝒪𝑋), and

(5) 𝑆′ is the normalization of 𝑆 in 𝑋, see Morphisms, Definition 24.46.3.

Proof. Let 𝑓 = 𝜋 ∘ 𝑓′ be the factorization of Lemma 33.34.1. Note that besides the con-
clusions of Lemma 33.34.1 we also have that 𝑓′ is separated (Schemes, Lemma 21.21.14)
and finite type (Morphisms, Lemma 24.14.8). Hence 𝑓′ is proper. By Coherent, Lemma
25.18.2 we see that 𝑓∗𝒪𝑋 is a coherent 𝒪𝑆-module. Hence we see that 𝜋 is finite, i.e., (2)
holds.

This proves all but the most interesting assertion, namely that all the fibres of 𝑓′ are geo-
metrically connected. It is clear from the discussion above that we may replace 𝑆 by 𝑆′,
and we may therefore assume that 𝑆 is Noetherian, affine, 𝑓 ∶ 𝑋 → 𝑆 is proper, and
𝑓∗𝒪𝑋 = 𝒪𝑆. Let 𝑠 ∈ 𝑆 be a point of 𝑆. We have to show that 𝑋𝑠 is geometrically con-
nected. By Lemma 33.34.2 we see that it suffices to show 𝑋𝑢 is connected for every étale
neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠). We may assume 𝑈 is affine. Thus 𝑈 is Noetherian (Mor-
phisms, Lemma 24.14.6), the base change 𝑓𝑈 ∶ 𝑋𝑈 → 𝑈 is proper (Morphisms, Lemma
24.40.5), and that also (𝑓𝑈)∗𝒪𝑋𝑈

= 𝒪𝑈 (Coherent, Lemma 25.6.2). Hence after replacing
(𝑓 ∶ 𝑋 → 𝑆, 𝑠) by the base change (𝑓𝑈 ∶ 𝑋𝑈 → 𝑈, 𝑢) it suffices to prove that the fibre 𝑋𝑠
is connected.

At this point we apply the theorem on formal functions, more precisely Coherent, Lemma
25.19.6. It tells us that

𝒪∧
𝑆,𝑠 = 𝑙𝑖𝑚𝑛 𝐻0(𝑋𝑛, 𝒪𝑋𝑛

)
where 𝑋𝑛 is the 𝑛th infinitesimal neighbourhood of 𝑋𝑠. Since the underlying topological
space of 𝑋𝑛 is equal to that of 𝑋𝑠 we see that if 𝑋𝑠 = 𝑇1 ∐ 𝑇2 is a disjoint union of
nonempty open and closed subschemes, then similarly 𝑋𝑛 = 𝑇1,𝑛 ∐ 𝑇2,𝑛 for all 𝑛. And
this in turn means 𝐻0(𝑋𝑛, 𝒪𝑋𝑛

) contains a nontrivial idempotent 𝑒1,𝑛, namely the function
which is identically 1 on 𝑇1,𝑛 and identically 0 on 𝑇2,𝑛. It is clear that 𝑒1,𝑛+1 restricts to 𝑒1,𝑛
on 𝑋𝑛. Hence 𝑒1 = 𝑙𝑖𝑚 𝑒1,𝑛 is a nontrivial idempotent of the limit. This contradicts the
fact that 𝒪∧

𝑆,𝑠 is a local ring. Thus the assumption was wrong, i.e., 𝑋𝑠 is connected, and we
win. �

Lemma 33.34.4. Let (𝑅, 𝔪, 𝜅) be a local ring. Let𝑋 ⊂ 𝐏𝑛
𝑅 be a closed subscheme. Assume

that 𝑅 = Γ(𝑋, 𝒪𝑋). Then the special fibre 𝑋𝑘 is geometrically connected.

Proof. Let 𝑅 → 𝑅′ be a flat local ring map so that the residue field of 𝑅′ is algebraically
closed, see Algebra, Lemma 7.142.1. By Coherent, Lemma 25.6.2 we have Γ(𝑋𝑅′, 𝒪𝑋𝑅′) =
𝑅′. Hence we may assume that the residue field of 𝑅 is algebraically closed. This reduces
us to just proving that 𝑋𝑘 is connected. (We could also have used Lemma 33.34.2 for this.)
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Suppose, to get a contradiction, that 𝑋𝑘 = 𝑇1 ∐ 𝑇2 for some closed and open subschemes
𝑇𝑖 ⊂ 𝑋𝑘. By Constructions, Lemma 22.13.6 we can write

𝑋 = Proj(𝑅[𝑇0, … , 𝑇𝑛]/𝐼)
for some graded ideal 𝐼 ⊂ 𝑅[𝑇0, … , 𝑇𝑛]. Wemay write 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝛼 𝑅𝛼 as a directed colimit
of Noetherian local rings 𝑅𝛼, see Algebra, Lemma 7.118.7. Let 𝑘𝛼 be the residue field of
𝑅𝛼. Let 𝐼𝛼 = 𝑅𝛼[𝑇0, … , 𝑇𝑛]∩𝐼 (or more precisely the inverse image). Then 𝐼 = 𝑐𝑜𝑙𝑖𝑚𝛼 𝐼𝛼.
Let 𝑋𝛼 = Proj(𝑅𝛼[𝑇0, … , 𝑇𝑛]/𝐼𝛼). Warning: because 𝐼 may not be finitely generated it may
be that the natural morphism

𝑋 ⟶ 𝑋𝛼 ×𝑆𝑝𝑒𝑐(𝑅𝛼) 𝑆𝑝𝑒𝑐(𝑅)

is never an isomorphism! The image 𝐼 ⊂ 𝑘[𝑇0, … , 𝑇𝑛] of 𝐼 is finitely generated as 𝑘[𝑇0, … , 𝑇𝑛]
is a Noetherian ring. Hence for all large enough 𝛼 the image 𝐼𝛼 ⊂ 𝑘𝛼[𝑇0, … , 𝑇𝑛] of 𝐼𝛼 is
such that 𝐼𝛼𝑘[𝑇0, … , 𝑇𝑛] = 𝐼. Let 𝐽1, 𝐽2 ⊂ 𝑘[𝑇0, … , 𝑇𝑛] be graded ideals such that 𝑇𝑖 =
Proj(𝑘[𝑇0, … , 𝑇𝑛]/𝐽𝑖), see Constructions, Lemma 22.13.6 again. Since 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝛼 𝑅𝛼,
also 𝑘 = 𝑐𝑜𝑙𝑖𝑚𝛼 𝑘𝛼. Thus for all large enough 𝛼 there exist ideals 𝐽𝛼,1, 𝐽𝛼,2 ⊂ 𝑘𝛼[𝑇0, … , 𝑇𝑛]
such that 𝐽𝛼,𝑖𝑘[𝑇0, … , 𝑇𝑛] = 𝐽𝑖. Combining these observations, we see that there exists an
𝛼 such that

(1) the morphism 𝑋𝛼 → 𝑆𝑝𝑒𝑐(𝑅𝛼) has the property that
𝑋𝛼 ×𝑆𝑝𝑒𝑐(𝑅𝛼) 𝑆𝑝𝑒𝑐(𝑘) = (𝑋𝛼)𝑘𝛼

×𝑆𝑝𝑒𝑐(𝑘𝛼) 𝑆𝑝𝑒𝑐(𝑘) = 𝑋𝑘,
and

(2) there exists a decomposition (𝑋𝛼)𝑘𝛼
= 𝑇𝛼,1 ∐ 𝑇𝛼,2 such that (𝑇𝛼,𝑖)𝑘 = 𝑇𝑖.

By the Noetherian case (Theorem 33.34.3) this means there exists a factorization
𝑋𝛼 ⟶ 𝑆𝑝𝑒𝑐(𝑅′) ⟶ 𝑆𝑝𝑒𝑐(𝑅𝛼)

with𝑅𝛼 → 𝑅′ finite and𝑋𝛼 → 𝑆𝑝𝑒𝑐(𝑅′) having geometrically connected fibres. Let 𝑡𝑖 ∈ 𝑇𝑖
be a point, let 𝑡𝛼,𝑖 ∈ 𝑇𝛼,𝑖 be the image points, and let 𝔪𝑖 ⊂ 𝑅′ be the corresponding maximal
ideals. Then 𝔪1≠𝔪2 by the connectedness of the fibres. This implies that 𝑋 → 𝑆𝑝𝑒𝑐(𝑅)
factors as

𝑋 ⟶ 𝑆𝑝𝑒𝑐(𝑅 ⊗𝑅𝛼
𝑅′) ⟶ 𝑆𝑝𝑒𝑐(𝑅)

Because 𝑡1 and 𝑡2 map to distinct points in 𝑆𝑝𝑒𝑐(𝑅′) we see that 𝑡1 and 𝑡2 must also map to
distinct points in 𝑆𝑝𝑒𝑐(𝑅 ⊗𝑅𝛼

𝑅′). Hence there exists an element 𝑓 ∈ 𝑅 ⊗𝑅𝛼
𝑅′ such that

𝑓|𝑋 is zero in 𝑡1 and not in 𝑡2 (or vice versa). This clearly contradicts the assumption that
𝑅 = Γ(𝑋, 𝒪𝑋) and we win. �

Theorem 33.34.5. (Stein factorization -- general case) Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑆
be a proper morphism. There exists a factorization

𝑋
𝑓′

//

𝑓 ��

𝑆′

𝜋
��

𝑆
with the following properties:

(1) the morphism 𝑓′ is proper, surjective with geometrically connected fibres,
(2) the morphism 𝜋 ∶ 𝑆′ → 𝑆 is integral,
(3) we have 𝑓′

∗𝒪𝑋 = 𝒪𝑆′,
(4) we have 𝑆′ = 𝑆𝑝𝑒𝑐

𝑆
(𝑓∗𝒪𝑋), and

(5) 𝑆′ is the normalization of 𝑆 in 𝑋, see Morphisms, Definition 24.46.3.
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Proof. Wemay apply Lemma 33.34.1 to get the morphism 𝑓′ ∶ 𝑋 → 𝑆′. Note that besides
the conclusions of Lemma 33.34.1 we also have that 𝑓′ is separated (Schemes, Lemma
21.21.14) and finite type (Morphisms, Lemma 24.14.8). Hence 𝑓′ is proper. At this point
we have proved all of the statements except for the statement that 𝑓′ has geometrically
connected fibres.
To prove this we may assume that 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) is affine. Use Limits, Lemma 27.8.1 to
choose a diagram

𝑋

𝑓 $$

𝑋′

��

𝜋
oo // 𝐏𝑛

𝑅

yy
𝑆 = 𝑆𝑝𝑒𝑐(𝑅)

where 𝑋′ → 𝐏𝑛
𝑆 is an immersion, and 𝜋 ∶ 𝑋′ → 𝑋 is proper and surjective. Thus 𝑋′ → 𝑆

is proper, hence 𝑋′ → 𝐏𝑛
𝑅 is a closed immersion. (See Morphisms, Lemmas 24.40.4 and

24.40.7 and Schemes, Lemma 21.10.4). Set 𝐴 = Γ(𝑋, 𝒪𝑋), and 𝐴′ = Γ(𝑋′, 𝒪𝑋′). Then
𝑆′ = 𝑆𝑝𝑒𝑐(𝐴). Consider the diagram

(33.34.5.1) 𝑋

𝑓′

��

𝑋′
𝜋

oo

𝑔
��

// 𝐏𝑛
𝐴′

{{
𝑆𝑝𝑒𝑐(𝐴) 𝑆𝑝𝑒𝑐(𝐴′)oo

Here 𝜋 is surjective and proper, the vertical arrows are proper and surjective, the right
horizontal arrow is a closed immersion, and𝑆𝑝𝑒𝑐(𝐴′) → 𝑆𝑝𝑒𝑐(𝐴) is integral (see arguments
above). Let 𝔭 ⊂ 𝐴 be a prime, corresponding to a point 𝑝 ∈ 𝑆𝑝𝑒𝑐(𝐴). Let 𝑋𝑝 be the fibre.
We have to show that 𝑋𝑝 is geometrically connected. By Lemma 33.34.2 it suffices to show
that for every étale ring map 𝐴 → 𝐵 and a prime 𝔮 of 𝐵 lying over 𝔭 the fibre of 𝑋𝐵 over
𝔮 is connected. As an étale ring map is flat, we see from Coherent, Lemma 25.6.2 that we
have

Γ(𝑋𝐵, 𝒪𝑋𝐵
) = 𝐵,

and similarly
Γ(𝑋′ ×𝑆𝑝𝑒𝑐(𝐴) 𝑆𝑝𝑒𝑐(𝐵), 𝒪) = Γ(𝑋′ ×𝑆𝑝𝑒𝑐(𝐴′) 𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝐴′), 𝒪) = 𝐵 ⊗𝐴 𝐴′.

This means that everything we said above about the diagram (33.34.5.1) also holds for that
diagram base changed to 𝐵 (some verifications omitted). Hence we may replace 𝐴 by 𝐵
and we reduce to proving that 𝑋𝑝 is connected.

Consider the scheme 𝑋′
𝑝 = 𝜋−1(𝑓′)−1(𝑝). It is proper over 𝜅(𝑝), hence Noetherian, and

hence has finitely many connected components. The morphism 𝑔 is surjective, hence any
point 𝑝′ of 𝑆𝑝𝑒𝑐(𝐴′) lying over 𝑝 is the image of a point of 𝑋′

𝑝. On the other hand, there
are no specializations among the points of 𝑆𝑝𝑒𝑐(𝐴′) lying over 𝑝, see Morphisms, Lemma
24.42.8. Hence the map

𝑋′
𝑝 ⟶ {𝑝′ ∈ 𝑆𝑝𝑒𝑐(𝐴′) ∣ 𝑝′ lies over 𝑝}

is surjective and constant on connected components. Thus we see there are finitely many
points 𝑝′

1, … , 𝑝′
𝑛 ∈ 𝑆𝑝𝑒𝑐(𝐴′) of 𝑆𝑝𝑒𝑐(𝐴′) lying over 𝑝. Let 𝔭′

1, … , 𝔭′
𝑛 be the corresponding

primes of 𝐴′, i.e., those lying over 𝔭. Let 𝐴″ ⊂ 𝐴′ be a finitely generated 𝐴-subalgebra
such that the primes 𝐴″ ∩ 𝔭′

𝑖 are pairwise distinct. Such an 𝐴″ ⊂ 𝐴′ exists; argument
omitted. As 𝐴 ⊂ 𝐴′ is integral, this implies that 𝐴″ is finite over 𝐴, see Algebra, Lemma
7.32.5. Note that that 𝔭′

1 ∩ 𝐴″, … , 𝔭′
𝑛 ∩ 𝐴″ are the only primes of 𝐴″ lying over 𝔭 as
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𝑆𝑝𝑒𝑐(𝐴′) → 𝑆𝑝𝑒𝑐(𝐴″) is surjective, see Algebra, Lemma 7.32.15. By Algebra, Lemma
7.132.22 there exists an étale ring map 𝐴 → 𝐵 and a prime 𝔮 lying over 𝔭 such that 𝜅(𝔭) =
𝜅(𝔮) and 𝐵 ⊗𝐴 𝐴″ = 𝐵″

1 × … × 𝐵″
𝑛 decomposes into algebras 𝐵″

𝑖 finite over 𝐵 each
with a single prime lying over 𝔮. Hence also 𝐵 ⊗𝐴 𝐴′ = 𝐵′

1 × … × 𝐵′
𝑛 decomposes

into algebras 𝐵′
𝑖 integral over 𝐵 each with a single prime lying over 𝔮 (namely by taking

𝐵′
𝑖 = 𝐵″

𝑖 ⊗𝐴″ 𝐴′). After base changing the sitatuation to 𝐵 as above, we see that we may
assume 𝑆𝑝𝑒𝑐(𝐴′) = 𝑉1 ∐ … ∐ 𝑉𝑛 each with a single point 𝑝′

𝑖 ∈ 𝑉𝑖 lying over 𝑝.

Let 𝑋′
𝑖 ⊂ 𝑋′ be the inverse image of 𝑉𝑖. Note that

𝑋′
𝑝 = ∐ 𝑋′

𝑖,𝑝 = ∐ 𝑋′
𝑝′

𝑖
.

Since Γ(𝑋′, 𝒪𝑋′) = 𝐴′, and since 𝑋′ is a closed subscheme of 𝐏𝑛
𝐴′ we may apply Lemma

33.34.4 to we see that 𝑔 ∶ 𝑋′ → 𝑆𝑝𝑒𝑐(𝐴′) has geometrically connected fibres. Hence each
𝑋′

𝑖,𝑝 = 𝑋′
𝑝′

𝑖
is connected! Hence, if 𝑇 ⊂ 𝑋𝑝 is open and closed, then 𝜋−1(𝑇) ⊂ 𝑋′

𝑝 is a

disjoint union 𝜋−1(𝑇) = ∐𝑖∈𝐼 𝑋′
𝑖,𝑝 for some subset 𝐼 ⊂ {1, … , 𝑛}. Let 𝐽 = 𝐼𝑐 ⊂ {1, … , 𝑛}

be the complement. Set

𝑋𝐼 = ⋃𝑖∈𝐼
𝜋(𝑋′

𝑖 ), and 𝑋𝐽 = ⋃𝑗∈𝐽
𝜋(𝑋′

𝑗).

These are closed subsets whose union is 𝑋 and which do not meet in the special fibre 𝑋𝑝.
Since 𝑓′ ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝐴) is proper hence closed we see that 𝑓′(𝑋𝐼 ∩ 𝑋𝐽) is a closed subset
of 𝑆𝑝𝑒𝑐(𝐴) which does not meet 𝑝. Hence after replacing 𝐴 by 𝐴𝑔 for some 𝑔 ∈ 𝐴, 𝑔∉𝔭
(i.e., doing a base change with 𝐵 = 𝐴𝑔 as above) we see that 𝑋𝐼 ∩ 𝑋𝐽 = ∅. Thus we
conclude that 𝑋𝐼 and 𝑋𝐽 are open and closed in 𝑋, and

Γ(𝑋, 𝒪𝑋) = Γ(𝑋𝐼, 𝒪𝑋𝐼
) × Γ(𝑋𝐽, 𝒪𝑋𝐽

).

If 𝐼 and 𝐽 are both nonempty then we see that Γ(𝑋, 𝒪𝑋) contains an idempotent which
cannot be the image of an idempotent in 𝐴! This contradicts the assumption that 𝐴 =
Γ(𝑋, 𝒪𝑋), hence either 𝐼 = ∅ or 𝐽 = ∅. In other words, either 𝑇 = 𝑋𝑝 or 𝑇 = ∅ , i.e., 𝑋𝑝
is connected as desired. �

33.35. Descending separated locally quasi-finite morphisms

In this section we show that ``separated locally quasi-finite morphisms satisfy descent for
fppf-coverings''. See Descent, Definition 31.32.1 for terminology. This is in the marvellous
(for many reasons) paper by Raynaud and Gruson hidden in the proof of [GR71, Lemma
5.7.1]. It can also be found in [Mur95], and [ABD+66, Exposé X, Lemma 5.4] under the
additional hypothesis that the morphism is locally of finite presentation. Here is the formal
statement.

Lemma 33.35.1. Let 𝑆 be a scheme. Let {𝑋𝑖 → 𝑆}𝑖∈𝐼 be an fppf covering, see Topolo-
gies, Definition 30.7.1. Let (𝑉𝑖/𝑋𝑖, 𝜑𝑖𝑗) be a descent datum relative to {𝑋𝑖 → 𝑆}. If each
morphism 𝑉𝑖 → 𝑋𝑖 is separated and locally quasi-finite, then the descent datum is effective.

Proof. Being separated and being locally quasi-finite are properties ofmorphisms of schemes
which are preserved under any base change, see Schemes, Lemma 21.21.13 andMorphisms,
Lemma 24.19.13. Hence Descent, Lemma 31.32.2 applies and it suffices to prove the state-
ment of the lemma in case the fppf-covering is given by a single {𝑋 → 𝑆} flat surjective
morphism of finite presentation of affines. Say 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) so that
𝑅 → 𝐴 is a faithfully flat ring map. Let (𝑉, 𝜑) be a descent datum relative to 𝑋 over 𝑆 and
assume that 𝜋 ∶ 𝑉 → 𝑋 is separated and locally quasi-finite.
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Let 𝑊1 ⊂ 𝑉 be any affine open. Consider 𝑊 = pr1(𝜑(𝑊1 ×𝑆 𝑋)) ⊂ 𝑉. Here is a picture

𝑊1 ×𝑆 𝑋 //

��

%%

𝜑(𝑊1 ×𝑆 𝑋)

��

xx
𝑉 ×𝑆 𝑋

𝜑 //

%%

��

𝑋 ×𝑆 𝑉

yy

��

𝑋 ×𝑆 𝑋 1 //

pr0
��

𝑋 ×𝑆 𝑋

pr1
��

𝑊1 // 𝑉 // 𝑋 𝑋 𝑉oo 𝑊oo

Ok, and now since𝑋 → 𝑆 is flat and of finite presentation it is universally open (Morphisms,
Lemma 24.24.9). Hence we conclude that 𝑊 is open. Moreover, it is also clearly the case
that 𝑊 is quasi-compact, and 𝑊1 ⊂ 𝑊. Moreover, we note that 𝜑(𝑊 ×𝑆 𝑋) = 𝑋 ×𝑆 𝑊 by
the cocycle condition for 𝜑. Hence we obtain a new descent datum (𝑊, 𝜑′) by restricting
𝜑 to 𝑊 ×𝑆 𝑋. Note that the morphism 𝑊 → 𝑋 is quasi-compact, separated and locally
quasi-finite. This implies that it is separated and quasi-finite by definition. Hence it is
quasi-affine by Lemma 33.29.3. Thus by Descent, Lemma 31.34.1 we see that the descent
datum (𝑊, 𝜑′) is effective.
In other words, we find that there exists an open covering𝑉 = ⋃ 𝑊𝑖 by quasi-compact opens
𝑊𝑖 which are stable for the descent morphism 𝜑. Moreover, for each such quasi-compact
open 𝑊 ⊂ 𝑉 the corresponding descent data (𝑊, 𝜑′) is effective. It is an exercise to show
this means the original descent datum is effective by glueing the schemes obtained from
descending the opens 𝑊𝑖 (details omitted). �

33.36. Pseudo-coherent morphisms

Avoid reading this section at all cost. If you need some of this material, first take a look at
the corresponding algebra sections, see More on Algebra, Sections 12.40, 12.45, and 12.46.
For now the only thing you need to know is that a ring map 𝐴 → 𝐵 is pseudo-coherent if
and only if 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 and 𝐵 as an 𝐴[𝑥1, … , 𝑥𝑛]-module has a resolution by finite
free 𝐴[𝑥1, … , 𝑥𝑛]-modules.
Lemma 33.36.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is locally of finite type.
The following are equivalent

(1) there exist an affine open covering 𝑆 = ⋃ 𝑉𝑗 and for each 𝑗 an affine open cov-
ering 𝑓−1(𝑉𝑗) = ⋃ 𝑈𝑗𝑖 such that 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖𝑗) is a pseudo-coherent ring
map, and

(2) for every pair of affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 such that 𝑓(𝑈) ⊂ 𝑉 the ring map
𝒪𝑆(𝑉) → 𝒪𝑋(𝑈) is pseudo-coherent.

Proof. To see this it suffices to check conditions (1)(a), (b), (c) of Morphisms, Defini-
tion 24.13.1 for the property of being a pseudo-coherent ring map. These properties fol-
low (using localization is flat) from More on Algebra, Lemmas 12.45.12, 12.45.11, and
12.45.16. �

Definition 33.36.2. A morphism of schemes 𝑓 ∶ 𝑋 → 𝑆 is called pseudo-coherent if the
equivalent conditions of Lemma 33.36.1 are satisfied. In this case we also say that 𝑋 is
pseudo-coherent over 𝑆.
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Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent in gen-
eral.

Lemma 33.36.3. A flat base change of a pseudo-coherent morphism is pseudo-coherent.

Proof. This translates into the following algebra result: Let 𝐴 → 𝐵 be a pseudo-coherent
ring map. Let 𝐴 → 𝐴′ be flat. Then 𝐴′ → 𝐵 ⊗𝐴 𝐴′ is pseudo-coherent. This follows from
the more general More on Algebra, Lemma 12.45.12. �

Lemma 33.36.4. A composition of pseudo-coherent morphisms of schemes is pseudo-
coherent.

Proof. This translates into the following algebra result: If 𝐴 → 𝐵 → 𝐶 are composable
pseudo-coherent ring maps then 𝐴 → 𝐶 is pseudo-coherent. This follows from either More
on Algebra, Lemma 12.45.13 or More on Algebra, Lemma 12.45.15. �

Lemma 33.36.5. A pseudo-coherent morphism is locally of finite presentation.

Proof. Immediate from the definitions. �

Lemma 33.36.6. A flat morphism which is locally of finite presentation is pseudo-coherent.

Proof. This follows from the fact that a flat ring map of finite presentation is pseudo-
coherent (and even perfect), see More on Algebra, Lemma 12.46.4. �

Lemma 33.36.7. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes pseudo-coherent over a base
scheme 𝑆. Then 𝑓 is pseudo-coherent.

Proof. This translates into the following algebra result: If 𝑅 → 𝐴 → 𝐵 are composable
ring maps and 𝑅 → 𝐴, 𝑅 → 𝐵 pseudo-coherent, then 𝑅 → 𝐵 is pseudo-coherent. This
follows from More on Algebra, Lemma 12.45.15. �

Lemma 33.36.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. If 𝑆 is locally Noetherian,
then 𝑓 is pseudo-coherent if and only if 𝑓 is locally of finite type.

Proof. This translates into the following algebra result: If 𝑅 → 𝐴 is a finite type ring map
with 𝑅 Noetherian, then 𝑅 → 𝐴 is pseudo-coherent if and only if 𝑅 → 𝐴 is of finite type.
To see this, note that a pseudo-coherent ring map is of finite type by definition. Conversely,
if 𝑅 → 𝐴 is of finite type, then we can write 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 and it follows from More
on Algebra, Lemma 12.40.16 that 𝐴 is pseudo-coherent as an 𝑅[𝑥1, … , 𝑥𝑛]-module, i.e.,
𝑅 → 𝐴 is a pseudo-coherent ring map. �

Lemma 33.36.9. The property 𝒫(𝑓) =``𝑓 is pseudo-coherent'' is fpqc local on the base.

Proof. We will use the criterion of Descent, Lemma 31.18.4 to prove this. By Defini-
tion 33.36.2 being pseudo-coherent is Zariski local on the base. By Lemma 33.36.3 being
pseudo-coherent is preserved under flat base change. The final hypothesis (3) of Descent,
Lemma 31.18.4 translates into the following algebra statement: Let 𝐴 → 𝐵 be a faithfully
flat ring map. Let 𝐶 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 be an 𝐴-algebra. If 𝐶⊗𝐴 𝐵 is pseudo-coherent as an
𝐵[𝑥1, … , 𝑥𝑛]-module, then 𝐶 is pseudo-coherent as a 𝐴[𝑥1, … , 𝑥𝑛]-module. This is More
on Algebra, Lemma 12.40.15. �

Lemma 33.36.10. Let 𝐴 → 𝐵 be a flat ring map of finite presentation. Let 𝐼 ⊂ 𝐵 be an
ideal. Then 𝐴 → 𝐵/𝐼 is pseudo-coherent if and only if 𝐼 is pseudo-coherent as a 𝐵-module.
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Proof. Choose a presentation 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐽. Note that 𝐵 is pseudo-coherent as an
𝐴[𝑥1, … , 𝑥𝑛]-module because 𝐴 → 𝐵 is a pseudo-coherent ring map by Lemma 33.36.6.
Note that𝐴 → 𝐵/𝐼 is pseudo-coherent if and only if𝐵/𝐼 is pseudo-coherent as an𝐴[𝑥1, … , 𝑥𝑛]-module.
By More on Algebra, Lemma 12.40.11 we see this is equivalent to the condition that 𝐵/𝐼
is pseudo-coherent as an 𝐵-module. This proves the lemma as the short exact sequence
0 → 𝐼 → 𝐵 → 𝐵/𝐼 → 0 shows that 𝐼 is pseudo-coherent if and only if 𝐵/𝐼 is (see More on
Algebra, Lemma 12.40.6). �

The following lemma will be obsoleted by the stronger Lemma 33.36.12.

Lemma 33.36.11. The property 𝒫(𝑓) =``𝑓 is pseudo-coherent'' is syntomic local on the
source.

Proof. We will use the criterion of Descent, Lemma 31.22.3 to prove this. It follows from
Lemmas 33.36.6 and 33.36.4 that being pseudo-coherent is preserved under precomposing
with flat morphisms locally of finite presentation, in particular under precomposing with
syntomic morphisms (see Morphisms, Lemmas 24.30.7 and 24.30.6). It is clear from Defi-
nition 33.36.2 that being pseudo-coherent is Zariski local on the source and target. Hence,
according to the aforementioned Descent, Lemma 31.22.3 it suffices to prove the follow-
ing: Suppose 𝑋′ → 𝑋 → 𝑌 are morphisms of affine schemes with 𝑋′ → 𝑋 syntomic
and 𝑋′ → 𝑌 pseudo-coherent. Then 𝑋 → 𝑌 is pseudo-coherent. To see this, note that in
any case 𝑋 → 𝑌 is of finite presentation by Descent, Lemma 31.10.1. Choose a closed
immersion 𝑋 → 𝐀𝑛

𝑌. By Algebra, Lemma 7.125.19 we can find an affine open covering
𝑋′ = ⋃𝑖=1,…,𝑛 𝑋′

𝑖 and syntomic morphisms 𝑊𝑖 → 𝐀𝑛
𝑌 lifting the morphisms 𝑋′

𝑖 → 𝑋, i.e.,
such that there are fibre product diagrams

𝑋′
𝑖

��

// 𝑊𝑖

��
𝑋 // 𝐀𝑛

𝑌

After replacing 𝑋′ by ∐ 𝑋′
𝑖 and setting 𝑊 = ∐ 𝑊𝑖 we obtain a fibre product diagram

𝑋′

��

// 𝑊

ℎ
��

𝑋 // 𝐀𝑛
𝑌

with 𝑊 → 𝐀𝑛
𝑌 flat and of finite presentation and 𝑋′ → 𝑌 still pseudo-coherent. Since

𝑊 → 𝐀𝑛
𝑌 is open (see Morphisms, Lemma 24.24.9) and 𝑋′ → 𝑋 is surjective we can

find 𝑓 ∈ Γ(𝐀𝑛
𝑌, 𝒪) such that 𝑋 ⊂ 𝐷(𝑓) ⊂ Im(ℎ). Write 𝑌 = 𝑆𝑝𝑒𝑐(𝑅), 𝑋 = 𝑆𝑝𝑒𝑐(𝐴),

𝑋′ = 𝑆𝑝𝑒𝑐(𝐴′) and 𝑊 = 𝑆𝑝𝑒𝑐(𝐵), 𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼 and 𝐴′ = 𝐵/𝐼𝐵. Then 𝑅 → 𝐴′ is
pseudo-coherent. Picture

𝐴′ = 𝐵/𝐼𝐵 𝐵oo

𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/𝐼

OO

𝑅[𝑥1, … , 𝑥𝑛]oo

OO

By Lemma 33.36.10 we see that 𝐼𝐵 is pseudo-coherent as a 𝐵-module. The ring map
𝑅[𝑥1, … , 𝑥𝑛]𝑓 → 𝐵𝑓 is faithfully flat by our choice of 𝑓 above. This implies that 𝐼𝑓 ⊂
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𝑅[𝑥1, … , 𝑥𝑛]𝑓 is pseudo-coherent, seeMore onAlgebra, Lemma 12.40.15. Applying Lemma
33.36.10 one more time we see that 𝑅 → 𝐴 is pseudo-coherent. �

Lemma 33.36.12. The property 𝒫(𝑓) =``𝑓 is pseudo-coherent'' is fppf local on the source.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let {𝑔𝑖 ∶ 𝑋𝑖 → 𝑋} be an fppf covering
such that each composition 𝑓 ∘ 𝑔𝑖 is pseudo-coherent. According to Lemma 33.32.1 there
exist

(1) a Zariski open covering 𝑋 = ⋃ 𝑈𝑗,
(2) surjective finite locally free morphisms 𝑊𝑗 → 𝑈𝑗,
(3) Zariski open coverings 𝑊𝑗 = ⋃𝑘 𝑊𝑗,𝑘,
(4) surjective finite locally free morphisms 𝑇𝑗,𝑘 → 𝑊𝑗,𝑘

such that the fppf covering {ℎ𝑗,𝑘 ∶ 𝑇𝑗,𝑘 → 𝑋} refines the given covering {𝑋𝑖 → 𝑋}.
Denote 𝜓𝑗,𝑘 ∶ 𝑇𝑗,𝑘 → 𝑋𝛼(𝑗,𝑘) the morphisms that witness the fact that {𝑇𝑗,𝑘 → 𝑋} refines
the given covering {𝑋𝑖 → 𝑋}. Note that 𝑇𝑗,𝑘 → 𝑋 is a flat, locally finitely presented
morphism, so both 𝑋𝑖 and 𝑇𝑗,𝑘 are pseudo-coherent over 𝑋 by Lemma 33.36.6. Hence
𝜓𝑗,𝑘 ∶ 𝑇𝑗,𝑘 → 𝑋𝑖 is pseudo-coherent, see Lemma 33.36.7. Hence 𝑇𝑗,𝑘 → 𝑆 is pseudo
coherent as the composition of 𝜓𝑗,𝑘 and 𝑓 ∘ 𝑔𝛼(𝑗,𝑘), see Lemma 33.36.4. Thus we see we
have reduced the lemma to the case of a Zariski open covering (which is OK) and the case
of a covering given by a single surjective finite locally free morphism which we deal with
in the following paragraph.

Assume that 𝑋′ → 𝑋 → 𝑆 is a sequence of morphisms of schemes with 𝑋′ → 𝑋 surjective
finite locally free and 𝑋′ → 𝑌 pseudo-coherent. Our goal is to show that 𝑋 → 𝑆 is
pseudo-coherent. Note that by Descent, Lemma 31.10.3 the morphism 𝑋 → 𝑆 is locally
of finite presentation. It is clear that the problem reduces to the case that 𝑋′, 𝑋 and 𝑆 are
affine and 𝑋′ → 𝑋 is free of some rank 𝑟 > 0. The corresponding algebra problem is the
following: Suppose 𝑅 → 𝐴 → 𝐴′ are ring maps such that 𝑅 → 𝐴′ is pseudo-coherent,
𝑅 → 𝐴 is of finite presentation, and 𝐴′ ≅ 𝐴⊕𝑟 as an 𝐴-module. Goal: Show 𝑅 → 𝐴 is
pseudo-coherent. The assumption that 𝑅 → 𝐴′ is pseudo-coherent means that 𝐴′ as an
𝐴′-module is pseudo-coherent relative to 𝑅. By More on Algebra, Lemma 12.45.5 this
implies that 𝐴′ as an 𝐴-module is pseudo-coherent relative to 𝑅. Since 𝐴′ ≅ 𝐴⊕𝑟 as an
𝐴-module we see that 𝐴 as an 𝐴-module is pseudo-coherent relative to 𝑅, see More on
Algebra, Lemma 12.45.8. This by definition means that 𝑅 → 𝐴 is pseudo-coherent and we
win. �

33.37. Perfect morphisms

In order to understand the material in this section you have to understand the material of
the section on pseudo-coherent morphisms just a little bit. For now the only thing you need
to know is that a ring map 𝐴 → 𝐵 is perfect if and only if it is pseudo-coherent and 𝐵 has
finite tor dimension as an 𝐴-module.

Lemma 33.37.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is locally of finite type.
The following are equivalent

(1) there exist an affine open covering 𝑆 = ⋃ 𝑉𝑗 and for each 𝑗 an affine open cov-
ering 𝑓−1(𝑉𝑗) = ⋃ 𝑈𝑗𝑖 such that 𝒪𝑆(𝑉𝑗) → 𝒪𝑋(𝑈𝑖𝑗) is a perfect ring map, and

(2) for every pair of affine opens 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑆 such that 𝑓(𝑈) ⊂ 𝑉 the ring map
𝒪𝑆(𝑉) → 𝒪𝑋(𝑈) is perfect.
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Proof. Assume (1) and let 𝑈, 𝑉 be as in (2). It follows from Lemma 33.36.1 that 𝒪𝑆(𝑉) →
𝒪𝑋(𝑈) is pseudo-coherent. Hence it suffices to prove that the property of a ring map be-
ing "of finite tor dimension" satisfies conditions (1)(a), (b), (c) of Morphisms, Definition
24.13.1. These properties follow from More on Algebra, Lemmas 12.41.9, 12.41.12, and
12.41.13. Some details omitted. �

Definition 33.37.2. A morphism of schemes 𝑓 ∶ 𝑋 → 𝑆 is called perfect if the equivalent
conditions of Lemma 33.36.1 are satisfied. In this case we also say that 𝑋 is perfect over
𝑆.

Note that a perfect morphism is in particular pseudo-coherent, hence locally of finite pre-
sentation. Beware that a base change of a perfect morphism is not perfect in general.

Lemma 33.37.3. A flat base change of a perfect morphism is perfect.

Proof. This translates into the following algebra result: Let 𝐴 → 𝐵 be a perfect ring map.
Let 𝐴 → 𝐴′ be flat. Then 𝐴′ → 𝐵 ⊗𝐴 𝐴′ is perfect. This result for pseudo-coherent
ring maps we have seen in Lemma 33.36.3. The corresponding fact for finite tor dimension
follows from More on Algebra, Lemma 12.41.12. �

Lemma 33.37.4. A composition of perfect morphisms of schemes is perfect.

Proof. This translates into the following algebra result: If 𝐴 → 𝐵 → 𝐶 are composable
perfect ring maps then 𝐴 → 𝐶 is perfect. We have seen this is the case for pseudo-coherent
in Lemma 33.36.4 and its proof. By assumption there exist integers 𝑛, 𝑚 such that 𝐵 has
tor dimension ≤ 𝑛 over 𝐴 and 𝐶 has tor dimension ≤ 𝑚 over 𝐵. Then for any 𝐴-module 𝑀
we have

𝑀 ⊗𝐋
𝐴 𝐶 = (𝑀 ⊗𝐋

𝐴 𝐵) ⊗𝐋
𝐵 𝐶

and the spectral sequence of More on Algebra, Example 12.6.4 shows that Tor𝐴𝑝 (𝑀, 𝐶) = 0
for 𝑝 > 𝑛 + 𝑚 as desired. �

Lemma 33.37.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent
(1) 𝑓 is flat and perfect, and
(2) 𝑓 is flat and locally of finite presentation.

Proof. The implication (2) ⇒ (1) is More on Algebra, Lemma 12.46.4. The converse
follows from the fact that a pseudo-coherent morphism is locally of finite presentation, see
Lemma 33.36.5. �

Lemma 33.37.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑆 is regular and 𝑓 is
locally of finite type. Then 𝑓 is perfect.

Proof. See More on Algebra, Lemma 12.46.5. �

Lemma 33.37.7. A regular immersion of schemes is perfect. A Koszul-regular immersion
of schemes is perfect.

Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors, Lemma
26.13.2, it suffices to prove the second statement. This translates into the following alge-
braic statement: Suppose that 𝐼 ⊂ 𝐴 is an ideal generated by a Koszul-regular sequence
𝑓1, … , 𝑓𝑟 of 𝐴. Then 𝐴 → 𝐴/𝐼 is a perfect ring map. Since 𝐴 → 𝐴/𝐼 is surjective this is
a presentation of 𝐴/𝐼 by a polynomial algebra over 𝐴. Hence it suffices to see that 𝐴/𝐼 is
pseudo-coherent as an 𝐴-module and has finite tor dimension. By definition of a Koszul
sequence the Koszul complex 𝐾(𝐴, 𝑓1, … , 𝑓𝑟) is a finite free resolution of 𝐴/𝐼. Hence 𝐴/𝐼
is a perfect complex of 𝐴-modules and we win. �
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Lemma 33.37.8. Let
𝑋

𝑓
//

��

𝑌

��
𝑆

be a commutative diagram of morphisms of schemes. Assume 𝑌 → 𝑆 smooth and 𝑋 → 𝑆
perfect. Then 𝑓 ∶ 𝑋 → 𝑌 is perfect.

Proof. We can factor 𝑓 as the composition

𝑋 ⟶ 𝑋 ×𝑆 𝑌 ⟶ 𝑌

where the first morphism is the map 𝑖 = (1, 𝑓) and the second morphism is the projection.
Since 𝑌 → 𝑆 is flat, see Morphisms, Lemma 24.33.9, we see that 𝑋 ×𝑆 𝑌 → 𝑌 is perfect
by Lemma 33.37.3. As 𝑌 → 𝑆 is smooth, also 𝑋 ×𝑆 𝑌 → 𝑋 is smooth, see Morphisms,
Lemma 24.33.5. Hence 𝑖 is a section of a smooth morphism, therefore 𝑖 is a regular im-
mersion, see Divisors, Lemma 26.14.7. This implies that 𝑖 is perfect, see Lemma 33.37.7.
We conclude that 𝑓 is perfect because the composition of perfect morphisms is perfect, see
Lemma 33.37.4. �

Remark 33.37.9. It is not true that a morphism between schemes 𝑋, 𝑌 perfect over a base
𝑆 is perfect. An example is 𝑆 = 𝑆𝑝𝑒𝑐(𝑘), 𝑋 = 𝑆𝑝𝑒𝑐(𝑘), 𝑌 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]/(𝑥2) and 𝑋 → 𝑌
the unique 𝑆-morphism.

Lemma 33.37.10. The property 𝒫(𝑓) =``𝑓 is perfect'' is fpqc local on the base.

Proof. We will use the criterion of Descent, Lemma 31.18.4 to prove this. By Definition
33.37.2 being perfect is Zariski local on the base. By Lemma 33.37.3 being perfect is
preserved under flat base change. The final hypothesis (3) of Descent, Lemma 31.18.4
translates into the following algebra statement: Let 𝐴 → 𝐵 be a faithfully flat ring map.
Let 𝐶 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 be an 𝐴-algebra. If 𝐶 ⊗𝐴 𝐵 is perfect as an 𝐵[𝑥1, … , 𝑥𝑛]-module,
then𝐶 is perfect as a𝐴[𝑥1, … , 𝑥𝑛]-module. This isMore onAlgebra, Lemma 12.42.12. �

Lemma 33.37.11. Let 𝑓 ∶ 𝑋 → 𝑆 be a pseudo-coherent morphism of schemes. Then
𝑓 is perfect if and only if for every 𝑥 ∈ 𝑋 the ring 𝒪𝑋,𝑥 has finite tor dimension as an
𝒪𝑆,𝑓(𝑥)-module.

Proof. This translates into the following algebra problem. Suppose that 𝐴 → 𝐵 is a
pseudo-coherent ring map. Write 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼. Then the following are equiva-
lent

(1) 𝐵𝔮 has finite tor dimension over 𝐴𝔭 for all 𝔮 (with 𝔭 = 𝐴 ∩ 𝔮), and
(2) 𝐵 is perfect as an 𝐴[𝑥1, … , 𝑥𝑛]-module.

The implication (2) ⇒ (1) is clear. For the converse, consider a prime 𝔮 of 𝐵 lying over 𝔭
as in (1). Let 𝔮′ be the prime of 𝐴[𝑥1, … , 𝑥𝑛] corresponding to 𝔮. By More on Algebra,
Lemma 12.42.17 applied to𝐴𝔭 → 𝐴[𝑥1, … , 𝑥𝑛]𝔮′ we see that𝐵𝔮 is a perfect𝐴[𝑥1, … , 𝑥𝑛]𝔮′-module.
Hence 𝐵 is a perfect 𝐴[𝑥1, … , 𝑥𝑛]-module by More on Algebra, Lemma 12.42.16. Some
details omitted. �

Lemma 33.37.12. The property 𝒫(𝑓) =``𝑓 is perfect'' is fppf local on the source.

Proof. Let {𝑔𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fppf covering of schemes and let 𝑓 ∶ 𝑋 → 𝑆 be a
morphism such that each 𝑓∘𝑔𝑖 is perfect. By Lemma 33.36.12 we conclude that 𝑓 is pseudo-
coherent. Hence by Lemma 33.37.11 it suffices to check that 𝒪𝑋,𝑥 is an 𝒪𝑆,𝑓(𝑥)-module of
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33.38. LOCAL COMPLETE INTERSECTION MORPHISMS 1835

finite tor dimension for all 𝑥 ∈ 𝑋. Pick 𝑖 ∈ 𝐼 and and 𝑥𝑖 ∈ 𝑋𝑖 mapping to 𝑥. Then we
see that 𝒪𝑋𝑖,𝑥𝑖

has finite tor dimension over 𝒪𝑆,𝑓(𝑥) and that 𝒪𝑋,𝑥 → 𝒪𝑋𝑖,𝑥𝑖
is faithfully flat.

The desired conclusion follows from More on Algebra, Lemma 12.41.14. �

33.38. Local complete intersection morphisms

In Divisors, Section 26.13 we have defined 4 different types of regular immersions: regular,
Koszul-regular, 𝐻1-regular, and quasi-regular. In this section we consider morphisms 𝑓 ∶
𝑋 → 𝑆 which locally on 𝑋 factors as

𝑋
𝑖

//

��

𝐀𝑛
𝑆

��
𝑆

where 𝑖 is a ∗-regular immersion for ∗ ∈ {∅, 𝐾𝑜𝑠𝑧𝑢𝑙, 𝐻1, 𝑞𝑢𝑎𝑠𝑖}. However, we don't know
how to prove that this condition is independent of the factorization if ∗ = ∅, i.e., when we
require 𝑖 to be a regular immersion. On the other hand, we want a local complete inter-
section morphism to be perfect, which is only going to be true if ∗ = 𝐾𝑜𝑠𝑧𝑢𝑙 or ∗ = ∅.
Hence we will define a local complete intersection morphism or Koszul morphism to be a
morphism of schemes 𝑓 ∶ 𝑋 → 𝑆 that locally on 𝑋 has a factorization as above with 𝑖 a
Koszul-regular immersion. To see that this works we first prove this is independent of the
chosen factorizations.

Lemma 33.38.1. Let 𝑆 be a scheme. Let 𝑈, 𝑃, 𝑃′ be schemes over 𝑆. Let 𝑢 ∈ 𝑈. Let
𝑖 ∶ 𝑈 → 𝑃, 𝑖′ ∶ 𝑈 → 𝑃′ be immersions over 𝑆. Assume 𝑃 and 𝑃′ smooth over 𝑆. Then the
following are equivalent

(1) 𝑖 is a Koszul-regular immersion in a neighbourhood of 𝑥, and
(2) 𝑖′ is a Koszul-regular immersion in a neighbourhood of 𝑥.

Proof. Assume 𝑖 is a Koszul-regular immersion in a neighbourhood of 𝑥. Consider the
morphism 𝑗 = (𝑖, 𝑖′) ∶ 𝑈 → 𝑃 ×𝑆 𝑃′ = 𝑃″. Since 𝑃″ = 𝑃 ×𝑆 𝑃′ → 𝑃 is smooth, it follows
from Divisors, Lemma 26.14.8 that 𝑗 is a Koszul-regular immersion, whereupon it follows
from Divisors, Lemma 26.14.11 that 𝑖′ is a Koszul-regular immersion. �

Before we state the definition, let us make the following simple remark. Let 𝑓 ∶ 𝑋 → 𝑆
be a morphism of schemes which is locally of finite type. Let 𝑥 ∈ 𝑋. Then there exist an
open neighbourhood 𝑈 ⊂ 𝑋 and a factorization of 𝑓|𝑈 as the composition of an immersion
𝑖 ∶ 𝑈 → 𝐀𝑛

𝑆 followed by the projection 𝐀𝑛
𝑆 → 𝑆 which is smooth. Picture

𝑋

��

𝑈oo

��

𝑖
// 𝐀𝑛

𝑆 = 𝑃

𝜋
||

𝑆
In fact you can do this with any affine open neighbourhood 𝑈 of 𝑥 in 𝑋, see Morphisms,
Lemma 24.38.2.

Definition 33.38.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes.
(1) Let 𝑥 ∈ 𝑋. We say that 𝑓 is Koszul at 𝑥 if 𝑓 is of finite type at 𝑥 and there exists

an open neighbourhood and a factorization of 𝑓|𝑈 as 𝜋 ∘ 𝑖 where 𝑖 ∶ 𝑈 → 𝑃 is a
Koszul-regular immersion and 𝜋 ∶ 𝑃 → 𝑆 is smooth.
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(2) We say 𝑓 is a Koszul morphism, or that 𝑓 is a local complete intersection mor-
phism if 𝑓 is Koszul at every point.

We have seen above that the choice of the factorization 𝑓|𝑈 = 𝜋 ∘ 𝑖 is irrelevant, i.e., given
a factorization of 𝑓|𝑈 as an immersion 𝑖 followed by a smooth morphism 𝜋, whether or not
𝑖 is Koszul regular in a neighbourhood of 𝑥 is an intrinsic property of 𝑓 at 𝑥. Let us record
this here explicitly as a lemma so that we can refer to it

Lemma 33.38.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a local complete intersection morphism. Let 𝑃 be a
scheme smooth over 𝑆. Let 𝑈 ⊂ 𝑋 be an open subscheme and 𝑖 ∶ 𝑈 → 𝑃 an immersion of
schemes over 𝑆. Then 𝑖 is a Koszul-regular immersion.

Proof. This is the defining property of a local complete intersection morphism. See dis-
cussion above. �

It seems like a good idea to collect here some properties in common with all Koszul mor-
phisms.

Lemma 33.38.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a local complete intersection morphism. Then
(1) 𝑓 is locally of finite presentation,
(2) 𝑓 is pseudo-coherent, and
(3) 𝑓 is perfect.

Proof. Since a perfect morphism is pseudo-coherent (because a perfect ring map is pseudo-
coherent) and a pseudo-coherentmorphism is locally of finite presentation (because a pseudo-
coherent ring map is of finite presentation) it suffices to prove the last statement. Being per-
fect is a local property, hence wemay assume that 𝑓 factors as 𝜋∘𝑖 where 𝜋 is smooth and 𝑖 is
a Koszul-regular immersion. A Koszul-regular immersion is perfect, see Lemma 33.37.7.
A smooth morphism is perfect as it is flat and locally of finite presentation, see Lemma
33.37.5. Finally a composition of perfect morphisms is perfect, see Lemma 33.37.4. �

Lemma 33.38.5. Let 𝑓 ∶ 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) → 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) be a morphism of affine schemes.
Then 𝑓 is a local complete intersection morphism if and only if 𝐴 → 𝐵 is a local complete
intersection homomorphism, see More on Algebra, Definition 12.24.2.

Proof. Follows immediately from the definitions. �

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 33.38.6. A flat base change of a local complete intersection morphism is a local
complete intersection morphism.

Proof. Omitted. Hint: This is true because a base change of a smooth morphism is smooth
and a flat base change of a Koszul-regular immersion is a Koszul-regular immersion, see
Divisors, Lemma 26.13.3. �

Lemma 33.38.7. A composition of local complete intersection morphisms is a local com-
plete intersection morphism.

Proof. Let 𝑔 ∶ 𝑌 → 𝑆 and 𝑓 ∶ 𝑋 → 𝑌 be local complete intersection morphisms. Let
𝑥 ∈ 𝑋 and set 𝑦 = 𝑓(𝑥). Choose an open neighbourhood 𝑉 ⊂ 𝑌 of 𝑦 and a factorization
𝑔|𝑉 = 𝜋∘𝑖 for someKoszul-regular immersion 𝑖 ∶ 𝑉 → 𝑃 and smoothmorphism 𝜋 ∶ 𝑃 → 𝑆.
Next choose an open neighbourhood 𝑈 of 𝑥 ∈ 𝑋 and a factorization 𝑓|𝑈 = 𝜋′ ∘ 𝑖′ for some
Koszul-regular immersion 𝑖′ ∶ 𝑈 → 𝑃′ and smooth morphism 𝜋′ ∶ 𝑃′ → 𝑌. In fact,
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we may assume that 𝑃′ = 𝐀𝑛
𝑉, see discussion preceding and following Definition 33.38.2.

Picture:

𝑋

��

𝑈oo
𝑖′
// 𝑃′ = 𝐀𝑛

𝑉

��
𝑌

��

𝑉oo
𝑖

// 𝑃

��
𝑆 𝑆oo

Set 𝑃″ = 𝐀𝑛
𝑃. Then 𝑈 → 𝑃′ → 𝑃″ is a Koszul-regular immersion as a composition

of Koszul-regular immersions, namely 𝑖′ and the flat base change of 𝑖 via 𝑃″ → 𝑃, see
Divisors, Lemma 26.13.3 and Divisors, Lemma 26.13.7. Also 𝑃″ → 𝑃 → 𝑆 is smooth as a
composition of smooth morphisms, see Morphisms, Lemma 24.33.4. Hence we conclude
that 𝑋 → 𝑆 is Koszul at 𝑥 as desired. �

Lemma 33.38.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent

(1) 𝑓 is flat and a local complete intersection morphism, and
(2) 𝑓 is syntomic.

Proof. Assume (2). By Morphisms, Lemma 24.30.10 for every point 𝑥 of 𝑋 there ex-
ist affine open neighbourhoods 𝑈 of 𝑥 and 𝑉 of 𝑓(𝑥) such that 𝑓|𝑈 ∶ 𝑈 → 𝑉 is stan-
dard syntomic. This means that 𝑈 = 𝑆𝑝𝑒𝑐(𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐)) → 𝑉 = 𝑆𝑝𝑒𝑐(𝑅)
where 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑐) is a relative global complete intersection over 𝑅. By Al-
gebra, Lemma 7.125.13 the sequence 𝑓1, … , 𝑓𝑐 is a regular sequence in each local ring
𝑅[𝑥1, … , 𝑥𝑛]𝔮 for every prime 𝔮 ⊃ (𝑓1, … , 𝑓𝑐). Consider the Koszul complex 𝐾• =
𝐾•(𝑅[𝑥1, … , 𝑥𝑛], 𝑓1, … , 𝑓𝑐) with homology groups 𝐻𝑖 = 𝐻𝑖(𝐾•). By More on Alge-
bra, Lemma 12.22.2 we see that (𝐻𝑖)𝔮 = 0, 𝑖 > 0 for every 𝔮 as above. On the other hand,
by More on Algebra, Lemma 12.21.6 we see that 𝐻𝑖 is annihilated by (𝑓1, … , 𝑓𝑐). Hence
we see that 𝐻𝑖 = 0, 𝑖 > 0 and 𝑓1, … , 𝑓𝑐 is a Koszul-regular sequence. This proves that
𝑈 → 𝑉 factors as a Koszul-regular immersion 𝑈 → 𝐀𝑛

𝑉 followed by a smooth morphism as
desired.

Assume (1). Then 𝑓 is a flat and locally of finite presentation (Lemma 33.38.4). Hence,
according to Morphisms, Lemma 24.30.10 it suffices to show that the local rings 𝒪𝑋𝑠,𝑥
are local complete intersection rings. Choose, locally on 𝑋, a factorization 𝑓 = 𝜋 ∘ 𝑖 for
some Koszul-regular immersion 𝑖 ∶ 𝑋 → 𝑃 and smooth morphism 𝜋 ∶ 𝑃 → 𝑆. Note
that 𝑋 → 𝑃 is a relative quasi-regular immersion over 𝑆, see Divisors, Definition 26.14.2.
Hence according to Divisors, Lemma 26.14.4 we see that 𝑋 → 𝑃 is a regular immersion
and the same remains true after any base change. Thus each fibre is a regular immersion,
whence all the local rings of all the fibres of 𝑋 are local complete intersections. �

Lemma 33.38.9. A regular immersion of schemes is a local complete intersection mor-
phism. A Koszul-regular immersion of schemes is a local complete intersection morphism.

Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors, Lemma
26.13.2, it suffices to prove the second statement. The second statement follows immedi-
ately from the definition. �
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Lemma 33.38.10. Let
𝑋

𝑓
//

��

𝑌

��
𝑆

be a commutative diagram of morphisms of schemes. Assume 𝑌 → 𝑆 smooth and 𝑋 → 𝑆 is
a local complete intersection morphism. Then 𝑓 ∶ 𝑋 → 𝑌 is a local complete intersection
morphism.

Proof. Immediate from the definitions. �

Lemma 33.38.11. The property 𝒫(𝑓) =``𝑓 is a local complete intersection morphism'' is
fpqc local on the base.

Proof. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let {𝑆𝑖 → 𝑆} be an fpqc covering
of 𝑆. Assume that each base change 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑖 of 𝑓 is a local complete intersection
morphism. Note that this implies in particular that 𝑓 is locally of finite type, see Lemma
33.38.4 and Descent, Lemma 31.19.8. Let 𝑥 ∈ 𝑋. Choose an open neighbourhood 𝑈 of 𝑥
and an immersion 𝑗 ∶ 𝑈 → 𝐀𝑛

𝑆 over 𝑆 (see discussion preceding Definition 33.38.2). We
have to show that 𝑗 is a Koszul-regular immersion. Since 𝑓𝑖 is a local complete intersection
morphism, we see that the base change 𝑗𝑖 ∶ 𝑈 ×𝑆 𝑆𝑖 → 𝐀𝑛

𝑆𝑖
is a Koszul-regular immersion,

see Lemma 33.38.3. Because {𝐀𝑛
𝑆𝑖

→ 𝐀𝑛
𝑆} is a fpqc covering we see fromDescent, Lemma

31.19.30 that 𝑗 is a Koszul-regular immersion as desired. �

Lemma 33.38.12. The property 𝒫(𝑓) =``𝑓 is a local complete intersection morphism'' is
syntomic local on the source.

Proof. We will use the criterion of Descent, Lemma 31.22.3 to prove this. It follows from
Lemmas 33.38.8 and 33.38.7 that being a local complete intersectionmorphism is preserved
under precomposing with syntomic morphisms. It is clear from Definition 33.38.2 that
being a local complete intersection morphism is Zariski local on the source and target.
Hence, according to the aforementioned Descent, Lemma 31.22.3 it suffices to prove the
following: Suppose 𝑋′ → 𝑋 → 𝑌 are morphisms of affine schemes with 𝑋′ → 𝑋 syntomic
and 𝑋′ → 𝑌 a local complete intersection morphism. Then 𝑋 → 𝑌 is a local complete
intersection morphism. To see this, note that in any case 𝑋 → 𝑌 is of finite presentation
by Descent, Lemma 31.10.1. Choose a closed immersion 𝑋 → 𝐀𝑛

𝑌. By Algebra, Lemma
7.125.19 we can find an affine open covering 𝑋′ = ⋃𝑖=1,…,𝑛 𝑋′

𝑖 and syntomic morphisms
𝑊𝑖 → 𝐀𝑛

𝑌 lifting the morphisms 𝑋′
𝑖 → 𝑋, i.e., such that there are fibre product diagrams

𝑋′
𝑖

��

// 𝑊𝑖

��
𝑋 // 𝐀𝑛

𝑌

After replacing 𝑋′ by ∐ 𝑋′
𝑖 and setting 𝑊 = ∐ 𝑊𝑖 we obtain a fibre product diagram of

affine schemes
𝑋′

��

// 𝑊

ℎ
��

𝑋 // 𝐀𝑛
𝑌
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with ℎ ∶ 𝑊 → 𝐀𝑛
𝑌 syntomic and 𝑋′ → 𝑌 still a local complete intersection morphism.

Since 𝑊 → 𝐀𝑛
𝑌 is open (see Morphisms, Lemma 24.24.9) and 𝑋′ → 𝑋 is surjective we see

that 𝑋 is contained in the image of 𝑊 → 𝐀𝑛
𝑌. Choose a closed immersion 𝑊 → 𝐀𝑛+𝑚

𝑌 over
𝐀𝑛

𝑌. Now the diagram looks like

𝑋′

��

// 𝑊

ℎ
��

// 𝐀𝑛+𝑚
𝑌

}}
𝑋 // 𝐀𝑛

𝑌

Because ℎ is syntomic and hence a local complete intersection morphism (see above) the
morphism 𝑊 → 𝐀𝑛+𝑚

𝑌 is a Koszul-regular immersion. Because 𝑋′ → 𝑌 is a local complete
intersection morphism the morphism 𝑋′ → 𝐀𝑛+𝑚

𝑌 is a Koszul-regular immersion. We
conclude from Divisors, Lemma 26.13.8 that 𝑋′ → 𝑊 is a Koszul-regular immersion.
Hence, since being a Koszul-regular immersion is fpqc local on the target (see Descent,
Lemma 31.19.30) we conclude that 𝑋 → 𝐀𝑛

𝑌 is a Koszul-regular immersion which is what
we had to show. �

Lemma 33.38.13. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆.
Assume both 𝑋 and 𝑌 are flat and locally of finite presentation over 𝑆. Then the set

{𝑥 ∈ 𝑋 ∣ 𝑓 Koszul at 𝑥}.

is open in 𝑋 and its formation commutes with arbitrary base change 𝑆′ → 𝑆.

Proof. The set is open by definition (see Definition 33.38.2). Let 𝑆′ → 𝑆 be a morphism
of schemes. Set 𝑋′ = 𝑆′ ×𝑆 𝑋, 𝑌′ = 𝑆′ ×𝑆 𝑌, and denote 𝑓′ ∶ 𝑋′ → 𝑌′ the base change
of 𝑓. Let 𝑥′ ∈ 𝑋′ be a point such that 𝑓′ is Koszul at 𝑥′. Denote 𝑠′ ∈ 𝑆′, 𝑥 ∈ 𝑋,
𝑦′ ∈ 𝑌′ , 𝑦 ∈ 𝑌, 𝑠 ∈ 𝑆 the image of 𝑥′. Note that 𝑓 is locally of finite presentation, see
Morphisms, Lemma 24.20.11. Hence we may choose an affine neighbourhood 𝑈 ⊂ 𝑋 of 𝑥
and an immersion 𝑖 ∶ 𝑈 → 𝐀𝑛

𝑌. Denote 𝑈′ = 𝑆′ ×𝑆 𝑈 and 𝑖′ ∶ 𝑈′ → 𝐀𝑛
𝑌′ the base change

of 𝑖. The assumption that 𝑓′ is Koszul at 𝑥′ implies that 𝑖′ is a Koszul-regular immersion
in a neighbourhood of 𝑥′, see Lemma 33.38.3. The scheme 𝑋′ is flat and locally of finite
presentation over 𝑆′ as a base change of 𝑋 (see Morphisms, Lemmas 24.24.7 and 24.20.4).
Hence 𝑖′ is a relative 𝐻1-regular immersion over 𝑆′ in a neighbourhood of 𝑥′ (see Divisors,
Definition 26.14.2). Thus the base change 𝑖′

𝑠′ ∶ 𝑈′
𝑠′ → 𝐀𝑛

𝑌′
𝑠′

is a 𝐻1-regular immersion in

an open neighbourhood of 𝑥′, see Divisors, Lemma 26.14.1 and the discussion following
Divisors, Definition 26.14.2. Since 𝑠′ = 𝑆𝑝𝑒𝑐(𝜅(𝑠′)) → 𝑆𝑝𝑒𝑐(𝜅(𝑠)) = 𝑠 is a surjective flat
universally open morphism (see Morphisms, Lemma 24.22.4) we conclude that the base
change 𝑖𝑠 ∶ 𝑈𝑠 → 𝐀𝑛

𝑌𝑠
is an 𝐻1-regular immersion in a neighbourhood of 𝑥, see Descent,

Lemma 31.19.30. Finally, note that 𝐀𝑛
𝑌 is flat and locally of finite presentation over 𝑆, hence

Divisors, Lemma 26.14.6 implies that 𝑖 is a (Koszul-)regular immersion in a neighbourhood
of 𝑥 as desired. �

Lemma 33.38.14. Let 𝑓 ∶ 𝑋 → 𝑌 be a local complete intersection morphism of schemes.
Then 𝑓 is unramified if and only if 𝑓 is formally unramified and in this case the conormal
sheaf 𝒞𝑋/𝑌 is finite locally free on 𝑋.

Proof. The first assertion follows immediately from Lemma 33.4.8 and the fact that a local
complete intersection morphism is locally of finite type. To compute the conormal sheaf
of 𝑓 we choose, locally on 𝑋, a factorization of 𝑓 as 𝑓 = 𝑝 ∘ 𝑖 where 𝑖 ∶ 𝑋 → 𝑉 is a
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Koszul-regular immersion and 𝑉 → 𝑌 is smooth. By Lemma 33.9.11 we see that 𝒞𝑋/𝑌 is a
locally direct summand of 𝒞𝑋/𝑉 which is finite locally free as 𝑖 is a Koszul-regular (hence
quasi-regular) immersion, see Divisors, Lemma 26.13.5. �

Lemma 33.38.15. Let 𝑍 → 𝑌 → 𝑋 be formally unramified morphisms of schemes. Assume
that 𝑍 → 𝑌 is a local complete intersection morphism. The exact sequence

0 → 𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0

of Lemma 33.5.12 is short exact.

Proof. The question is local on 𝑍 hence we may assume there exists a factorization 𝑍 →
𝐀𝑛

𝑌 → 𝑌 of the morphism 𝑍 → 𝑌. Then we get a commutative diagram

𝑍
𝑖′
// 𝐀𝑛

𝑌
//

��

𝐀𝑛
𝑋

��
𝑍 𝑖 // 𝑌 // 𝑋

As 𝑍 → 𝑌 is a local complete intersection morphism, we see that 𝑍 → 𝐀𝑛
𝑌 is a Koszul-

regular immersion. Hence by Divisors, Lemma 26.13.6 the sequence

0 → (𝑖′)∗𝒞𝐀𝑛
𝑌/𝐀𝑛

𝑋
→ 𝒞𝑍/𝐀𝑛

𝑋
→ 𝒞𝑍/𝐀𝑛

𝑌
→ 0

is exact and locally split. Note that 𝑖∗𝒞𝑌/𝑋 = (𝑖′)∗𝒞𝐀𝑛
𝑌/𝐀𝑛

𝑋
by Lemma 33.5.7 and note that

the diagram
(𝑖′)∗𝒞𝐀𝑛

𝑌/𝐀𝑛
𝑋

// 𝒞𝑍/𝐀𝑛
𝑋

𝑖∗𝒞𝑌/𝑋

≅
OO

// 𝒞𝑍/𝑋

OO

is commutative. Hence the lower horizontal arrow is a locally split injection. This proves
the lemma. �

33.39. Exact sequences of differentials and conormal sheaves

In this section we collect some results on exact sequences of conormal sheaves and sheaves
of differentials. In some sense these are all realizations of the triangle of cotangent com-
plexes associated to a pair of composable morphisms of schemes.

In the sequences below each of the maps are as constructed in either Morphisms, Lemma
24.32.9 or Lemma 33.5.5. Let 𝑔 ∶ 𝑍 → 𝑌 and 𝑓 ∶ 𝑌 → 𝑋 be morphisms of schemes.

(1) There is a canonical exact sequence

𝑔∗Ω𝑌/𝑋 → Ω𝑍/𝑋 → Ω𝑍/𝑌 → 0,

see Morphisms, Lemma 24.32.11. If 𝑔 ∶ 𝑍 → 𝑌 is formally smooth, then this
sequence is a short exact sequence, see Lemma 33.9.9.

(2) If 𝑔 is formally unramified, then there is a canonical exact sequence

𝒞𝑍/𝑌 → 𝑔∗Ω𝑌/𝑋 → Ω𝑍/𝑋 → 0,

see Lemma 33.5.10. If 𝑓 ∘ 𝑔 ∶ 𝑍 → 𝑋 is formally smooth, then this sequence is
a short exact sequence, see Lemma 33.9.10.
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(3) If 𝑔 and 𝑓 ∘ 𝑔 are formally unramified, then there is a canonical exact sequence
𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 𝑔∗Ω𝑌/𝑋 → 0,

see Lemma 33.5.11. If 𝑓 ∶ 𝑌 → 𝑋 is formally smooth, then this sequence is a
short exact sequence, see Lemma 33.9.11.

(4) If 𝑔 and 𝑓 are formally unramified, then there is a canonical exact sequence
𝑔∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0.

see Lemma 33.5.12. If 𝑔 ∶ 𝑍 → 𝑌 is a local complete intersection morphism,
then this sequence is a short exact sequence, see Lemma 33.38.15.

33.40. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups
(9) Sites and Sheaves

(10) Homological Algebra
(11) Derived Categories
(12) More on Algebra
(13) Smoothing Ring Maps
(14) Simplicial Methods
(15) Sheaves of Modules
(16) Modules on Sites
(17) Injectives
(18) Cohomology of Sheaves
(19) Cohomology on Sites
(20) Hypercoverings
(21) Schemes
(22) Constructions of Schemes
(23) Properties of Schemes
(24) Morphisms of Schemes
(25) Coherent Cohomology
(26) Divisors
(27) Limits of Schemes
(28) Varieties
(29) Chow Homology
(30) Topologies on Schemes
(31) Descent
(32) Adequate Modules
(33) More on Morphisms
(34) More on Flatness
(35) Groupoid Schemes
(36) More on Groupoid Schemes

(37) Étale Morphisms of Schemes
(38) Étale Cohomology
(39) Crystalline Cohomology
(40) Algebraic Spaces
(41) Properties of Algebraic Spaces
(42) Morphisms of Algebraic Spaces
(43) Decent Algebraic Spaces
(44) Topologies on Algebraic Spaces
(45) Descent and Algebraic Spaces
(46) More on Morphisms of Spaces
(47) Quot and Hilbert Spaces
(48) Spaces over Fields
(49) Cohomology of Algebraic Spaces
(50) Stacks
(51) Formal Deformation Theory
(52) Groupoids in Algebraic Spaces
(53) More on Groupoids in Spaces
(54) Bootstrap
(55) Examples of Stacks
(56) Quotients of Groupoids
(57) Algebraic Stacks
(58) Sheaves on Algebraic Stacks
(59) Criteria for Representability
(60) Properties of Algebraic Stacks
(61) Morphisms of Algebraic Stacks
(62) Cohomology of Algebraic Stacks
(63) Introducing Algebraic Stacks
(64) Examples
(65) Exercises
(66) Guide to Literature
(67) Desirables
(68) Coding Style
(69) Obsolete
(70) GNU Free Documentation Li-

cense
(71) Auto Generated Index





CHAPTER 34

More on flatness

34.1. Introduction

In this chapter, we discuss some advanced results on flat modules and flat morphisms of
schemes. Most of these results can be found in the paper [GR71] by Raynaud and Gruson.

Before reading this chapter we advise the reader to take a look at the following results (this
list also serves as a pointer to previous results):

(1) General discussion on flat modules in Algebra, Section 7.35.
(2) The relationship between Tor-groups and flatness, see Algebra, Section 7.69.
(3) The sections on flatness criteria, namely, Algebra, Section 7.91 (Noetherian case),

Algebra, Section 7.93 (Artinian case), Algebra, Section 7.119 (non-Noetherian
case), and finally More on Morphisms, Section 33.12.

(4) Generic flatness, see Algebra, Section 7.109 and Morphisms, Section 24.26.
(5) Openness of the flat locus, see Algebra, Section 7.120 and More on Morphisms,

Section 33.11.
(6) Flattening stratification, see More on Algebra, Section 12.11.
(7) Additional algebraic results in More on Algebra, Sections 12.16, 12.17, 12.18,

and 12.19.

34.2. A remark on finite type versus finite presentation

Let 𝑅 → 𝐴 be a finite type ring map. Let 𝑀 be an 𝐴-module. In More on Algebra,
Section 12.44 we defined what it means for 𝑀 to be finitely presented relative to 𝑅. We
also proved this notion has good localization properties and glues. Hence we can define the
corresponding global notion as follows.

Definition 34.2.1. Let 𝑓 ∶ 𝑋 → 𝑆 be locally of finite type. Let ℱ be a finite type quasi-
coherent 𝒪𝑋-module. Then we say ℱ is locally finitely presented relative to 𝑆 if there
exists an affine open covering 𝑆 = ⋃ 𝑉𝑖 and 𝑓−1(𝑉𝑖) = ⋃𝑗 𝑈𝑖𝑗 such that ℱ(𝑈𝑖𝑗) is a
𝒪𝑋(𝑈𝑖𝑗)-module of finite presentation relative to 𝒪𝑆(𝑉𝑖).

In this way we can make sense of when a sheaf of modules on 𝑋 is locally of finite presen-
tation over 𝑆 even if 𝑋 is not locally of finite presentation over 𝑆. And of course, 𝑋 → 𝑆
is locally of finite presentation if and only if 𝒪𝑋 is locally of finite presentation relative to
𝑆.

34.3. Lemmas on étale localization

In this section we list some lemmas on étale localization which will be useful later in this
chapter. Please skip this section on a first reading.

1843
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Lemma 34.3.1. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of affine schemes. Let 𝑍′ → 𝑍 be
an étale morphism with 𝑍′ affine. Then there exists an étale morphism 𝑋′ → 𝑋 with 𝑋′

affine such that 𝑍′ ≅ 𝑍 ×𝑋 𝑋′ as schemes over 𝑍.

Proof. See Algebra, Lemma 7.132.10. �

Lemma 34.3.2. Let
𝑋

��

𝑋′oo

��
𝑆 𝑆′oo

be a commutative diagram of schemes with 𝑋′ → 𝑋 and 𝑆′ → 𝑆 étale. Let 𝑠′ ∈ 𝑆′ be a
point. Then

𝑋′ ×𝑆′ 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) ⟶ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)
is étale.

Proof. This is true because 𝑋′ → 𝑋𝑆′ is étale as a morphism of schemes étale over 𝑋,
see Morphisms, Lemma 24.35.18 and the base change of an étale morphism is étale, see
Morphisms, Lemma 24.35.4. �

Lemma 34.3.3. Let 𝑋 → 𝑇 → 𝑆 be morphisms of schemes with 𝑇 → 𝑆 étale. Let ℱ be a
quasi-coherent 𝒪𝑋-module. Let 𝑥 ∈ 𝑋 be a point. Then

ℱ flat over 𝑆 at 𝑥 ⇔ ℱ flat over 𝑇 at 𝑥
In particular ℱ is flat over 𝑆 if and only if ℱ is flat over 𝑇.

Proof. As an étale morphism is a flat morphism (see Morphisms, Lemma 24.35.12) the
implication ``⇐'' follows from Algebra, Lemma 7.35.3. For the converse assume that ℱ is
flat at 𝑥 over 𝑆. Denote �̃� ∈ 𝑋×𝑆𝑇 the point lying over 𝑥 in 𝑋 and over the image of 𝑥 in 𝑇 in
𝑇. Then (𝑋 ×𝑆 𝑇 → 𝑋)∗ℱ is flat at �̃� over 𝑇 via pr2 ∶ 𝑋 ×𝑆 𝑇 → 𝑇, see Morphisms, Lemma
24.24.6. The diagonal Δ𝑇/𝑆 ∶ 𝑇 → 𝑇 ×𝑆 𝑇 is an open immersion; combine Morphisms,
Lemmas 24.34.13 and 24.35.5. So 𝑋 is identified with open subscheme of 𝑋 ×𝑆 𝑇, the
restriction of pr2 to this open is the given morphism 𝑋 → 𝑇, the point �̃� corresponds to the
point 𝑥 in this open, and (𝑋 ×𝑆 𝑇 → 𝑋)∗ℱ restricted to this open is ℱ. Whence we see that
ℱ is flat at 𝑥 over 𝑇. �

Lemma 34.3.4. Let 𝑇 → 𝑆 be an étale morphism. Let 𝑡 ∈ 𝑇 with image 𝑠 ∈ 𝑆. Let 𝑀 be
a 𝒪𝑇,𝑡-module. Then

𝑀 flat over 𝒪𝑆,𝑠 ⇔ 𝑀 flat over 𝒪𝑇,𝑡.

Proof. We may replace 𝑆 by an affine neighbourhood of 𝑠 and after that 𝑇 by an affine
neighbourhood of 𝑡. Set ℱ = (𝑆𝑝𝑒𝑐(𝒪𝑇,𝑡) → 𝑇)∗𝑀. This is a quasi-coherent sheaf (see
Schemes, Lemma 21.24.1 or argue directly) on 𝑇 whose stalk at 𝑡 is 𝑀 (details omitted).
Apply Lemma 34.3.3. �

Lemma 34.3.5. Let 𝑆 be a scheme and 𝑠 ∈ 𝑆 a point. Denote 𝒪ℎ
𝑆,𝑠 (resp. 𝒪𝑠ℎ

𝑆,𝑠) the
henselization (resp. strict henselization), see Algebra, Definition 7.139.14. Let 𝑀𝑠ℎ be
a 𝒪𝑠ℎ

𝑆,𝑠-module. The following are equivalent

(1) 𝑀𝑠ℎ is flat over 𝒪𝑆,𝑠,
(2) 𝑀𝑠ℎ is flat over 𝒪ℎ

𝑆,𝑠, and
(3) 𝑀𝑠ℎ is flat over 𝒪𝑠ℎ

𝑆,𝑠.
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If 𝑀𝑠ℎ = 𝑀ℎ ⊗𝒪ℎ
𝑆,𝑠

𝒪𝑠ℎ
𝑆,𝑠 this is also equivalent to

(4) 𝑀ℎ is flat over 𝒪𝑆,𝑠, and
(5) 𝑀ℎ is flat over 𝒪ℎ

𝑆,𝑠.

If 𝑀ℎ = 𝑀 ⊗𝒪𝑆,𝑠
𝒪ℎ

𝑆,𝑠 this is also equivalent to
(6) 𝑀 is flat over 𝒪𝑆,𝑠.

Proof. We may assume that 𝑆 is an affine scheme. It is shown in Algebra, Lemmas
7.139.23 and 7.139.24 that 𝒪ℎ

𝑆,𝑠 and 𝒪𝑠ℎ
𝑆,𝑠 are filtered colimits of the rings 𝒪𝑇,𝑡 where 𝑇 → 𝑆

is étale and affine. Hence the local ring maps 𝒪𝑆,𝑠 → 𝒪ℎ
𝑆,𝑠 → 𝒪𝑠ℎ

𝑆,𝑠 are flat as directed col-
imits of étale ring maps, see Algebra, Lemma 7.35.2. Hence (3) ⇒ (2) ⇒ (1) and (5) ⇒ (4)
follow from Algebra, Lemma 7.35.3. Of course these maps are faithfully flat, see Algebra,
Lemma 7.35.16. Hence the equivalences (6) ⇔ (5) and (5) ⇔ (3) follow from Algebra,
Lemma 7.35.7. Thus it suffices to show that (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5).
Assume (1). By Lemma 34.3.4 we see that 𝑀𝑠ℎ is flat over 𝒪𝑇,𝑡 for any étale neighbourhood
(𝑇, 𝑡) → (𝑆, 𝑠). Since 𝒪ℎ

𝑆,𝑠 and 𝒪𝑠ℎ
𝑆,𝑠 are directed colimits of local rings of the form 𝒪𝑇,𝑡 (see

above) we conclude that 𝑀𝑠ℎ is flat over 𝒪ℎ
𝑆,𝑠 and 𝒪𝑠ℎ

𝑆,𝑠 by Algebra, Lemma 7.35.5. Thus
(1) implies (2) and (3). Of course this implies also (2) ⇒ (3) by replacing 𝒪𝑆,𝑠 by 𝒪ℎ

𝑆,𝑠. The
same argument applies to prove (4) ⇒ (5). �

Lemma 34.3.6. Let 𝑔 ∶ 𝑇 → 𝑆 be a finite flat morphism of schemes. Let 𝒢 be a quasi-
coherent 𝒪𝑆-module. Let 𝑡 ∈ 𝑇 be a point with image 𝑠 ∈ 𝑆. Then

𝑡 ∈ WeakAss(𝑔∗𝒢) ⇔ 𝑠 ∈ WeakAss(𝒢)

Proof. The implication ``⇐'' follows immediately from Divisors, Lemma 26.6.4. Assume
𝑡 ∈ WeakAss(𝑔∗𝒢). Let 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑆 be an affine open neighbourhood of 𝑠. Let 𝒢 be
the quasi-coherent sheaf associated to the 𝐴-module 𝑀. Let 𝔭 ⊂ 𝐴 be the prime ideal
corresponding to 𝑠. As 𝑔 is finite flat we have 𝑔−1(𝑆𝑝𝑒𝑐(𝐴)) = 𝑆𝑝𝑒𝑐(𝐵) for some finite
flat 𝐴-algebra 𝐵. Note that 𝑔∗𝒢 is the quasi-coherent 𝒪𝑆𝑝𝑒𝑐(𝐵)-module associated to the
𝐵-module 𝑀 ⊗𝐴 𝐵 and 𝑔∗𝑔∗𝒢 is the quasi-coherent 𝒪𝑆𝑝𝑒𝑐(𝐴)-module associated to the
𝐴-module 𝑀 ⊗𝐴 𝐵. By Algebra, Lemma 7.72.4 we have 𝐵𝔭 ≅ 𝐴⊕𝑛

𝔭 for some integer
𝑛 ≥ 0. Note that 𝑛 ≥ 1 as we assumed there exists at least one point of 𝑇 lying over 𝑠.
Hence we see by looking at stalks that

𝑠 ∈ WeakAss(𝒢) ⇔ 𝑠 ∈ WeakAss(𝑔∗𝑔∗𝒢)
Now the assumption that 𝑡 ∈ WeakAss(𝑔∗𝒢) implies that 𝑠 ∈ WeakAss(𝑔∗𝑔∗𝒢) by Divi-
sors, Lemma 26.6.3 and hence by the above 𝑠 ∈ WeakAss(𝒢). �

Lemma 34.3.7. Let ℎ ∶ 𝑈 → 𝑆 be an étale morphism of schemes. Let 𝒢 be a quasi-
coherent 𝒪𝑆-module. Let 𝑢 ∈ 𝑈 be a point with image 𝑠 ∈ 𝑆. Then

𝑢 ∈ WeakAss(ℎ∗𝒢) ⇔ 𝑠 ∈ WeakAss(𝒢)

Proof. After replacing 𝑆 and 𝑈 by affine neighbourhoods of 𝑠 and 𝑢 we may assume that
𝑔 is a standard étale morphism of affines, see Morphisms, Lemma 24.35.14. Thus we may
assume 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑋 = 𝑆𝑝𝑒𝑐(𝐴[𝑥, 1/𝑔]/(𝑓)), where 𝑓 is monic and 𝑓′ is invertible
in 𝐴[𝑥, 1/𝑔]. Note that 𝐴[𝑥, 1/𝑔]/(𝑓) = (𝐴[𝑥]/(𝑓))𝑔 is also the localization of the finite
free 𝐴-algebra 𝐴[𝑥]/(𝑓). Hence we may think of 𝑈 as an open subscheme of the scheme
𝑇 = 𝑆𝑝𝑒𝑐(𝐴[𝑥]/(𝑓)) which is finite locally free over 𝑆. This reduces us to Lemma 34.3.6
above. �
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34.4. The local structure of a finite type module

The key technical lemma that makes a lot of the arguments in this chapter work is the
geometric Lemma 34.4.2.

Lemma 34.4.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a finite type morphism of affine schemes. Let ℱ be a
finite type quasi-coherent 𝒪𝑋-module. Let 𝑥 ∈ 𝑋 with image 𝑠 = 𝑓(𝑥) in 𝑆. Set ℱ𝑠 = ℱ|𝑋𝑠

.
Then there exist a closed immersion 𝑖 ∶ 𝑍 → 𝑋 of finite presentation, and a quasi-coherent
finite type 𝒪𝑍-module 𝒢 such that 𝑖∗𝒢 = ℱ and 𝑍𝑠 = Supp(ℱ𝑠).

Proof. Say the morphism 𝑓 ∶ 𝑋 → 𝑆 is given by the ring map 𝐴 → 𝐵 and that ℱ is the
quasi-coherent sheaf associated to the 𝐵-module 𝑀. By Morphisms, Lemma 24.14.2 we
know that 𝐴 → 𝐵 is a finite type ring map, and by Properties, Lemma 23.16.1 we know that
𝑀 is a finite 𝐵-module. In particular the support of ℱ is the closed subscheme of 𝑆𝑝𝑒𝑐(𝐵)
cut out by the annihilator 𝐼 = {𝑥 ∈ 𝐵 ∣ 𝑥𝑚 = 0 ∀𝑚 ∈ 𝑀} of 𝑀, see Algebra, Lemma
7.59.4. Let 𝔮 ⊂ 𝐵 be the prime ideal corresponding to 𝑥 and let 𝔭 ⊂ 𝐴 be the prime ideal
corresponding to 𝑠. Note that 𝑋𝑠 = 𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝜅(𝔭)) and that ℱ𝑠 is the quasi-coherent
sheaf associated to the 𝐵 ⊗𝐴 𝜅(𝔭) module 𝑀 ⊗𝐴 𝜅(𝔭). By Coherent, Lemma 25.10.3 the
support of ℱ𝑠 is equal to 𝑉(𝐼(𝐵 ⊗𝐴 𝜅(𝔭))). Since 𝐵 ⊗𝐴 𝜅(𝔭) is of finite type over 𝜅(𝔭) there
exist finitely many elements 𝑓1, … , 𝑓𝑚 ∈ 𝐼 such that

𝐼(𝐵 ⊗𝐴 𝜅(𝔭)) = (𝑓1, … , 𝑓𝑛)(𝐵 ⊗𝐴 𝜅(𝔭)).

Denote 𝑖 ∶ 𝑍 → 𝑋 the closed subscheme cut out by (𝑓1, … , 𝑓𝑚), in a formula 𝑍 =
𝑆𝑝𝑒𝑐(𝐵/(𝑓1, … , 𝑓𝑚)). Since𝑀 is annihilated by 𝐼we can think of𝑀 as an𝐵/(𝑓1, … , 𝑓𝑚)-module.
In other words, ℱ is the pushforward of a finite type module on 𝑍. As 𝑍𝑠 = Supp(ℱ𝑠) by
construction, this proves the lemma. �

Lemma 34.4.2. Let 𝑓 ∶ 𝑋 → 𝑆 be morphism of schemes which is locally of finite type.
Let ℱ be a finite type quasi-coherent 𝒪𝑋-module. Let 𝑥 ∈ 𝑋 with image 𝑠 = 𝑓(𝑥) in 𝑆. Set
ℱ𝑠 = ℱ|𝑋𝑠

and 𝑛 = dim𝑥(Supp(ℱ𝑠)). Then we can construct
(1) elementary étale neighbourhoods 𝑔 ∶ (𝑋′, 𝑥′) → (𝑋, 𝑥), 𝑒 ∶ (𝑆′, 𝑠′) → (𝑆, 𝑠),
(2) a commutative diagram

𝑋

𝑓

��

𝑋′

��

𝑔
oo 𝑍′

𝑖
oo

𝜋
��

𝑌′

ℎ
��

𝑆 𝑆′𝑒oo 𝑆′

(3) a point 𝑧′ ∈ 𝑍′ with 𝑖(𝑧′) = 𝑥′, 𝑦′ = 𝜋(𝑧′), ℎ(𝑦′) = 𝑠′,
(4) a finite type quasi-coherent 𝒪𝑍′-module 𝒢,

such that the following properties hold
(1) 𝑋′, 𝑍′, 𝑌′, 𝑆′ are affine schemes,
(2) 𝑖 is a closed immersion of finite presentation,
(3) 𝑖∗(𝒢) ≅ 𝑔∗ℱ,
(4) 𝜋 is finite and 𝜋−1({𝑦′}) = {𝑧′},
(5) the extension 𝜅(𝑠′) ⊂ 𝜅(𝑦′) is purely transcendental,
(6) ℎ is smooth of relative dimension 𝑛 with geometrically integral fibres.
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Proof. Let 𝑉 ⊂ 𝑆 be an affine neighbourhood of 𝑠. Let 𝑈 ⊂ 𝑓−1(𝑉) be an affine neighbour-
hood of 𝑥. Then it suffices to prove the lemma for 𝑓|𝑈 ∶ 𝑈 → 𝑉 and ℱ|𝑈. Hence in the rest
of the proof we assume that 𝑋 and 𝑆 are affine.
First, suppose that 𝑋𝑠 = Supp(ℱ𝑠), in particular 𝑛 = dim𝑥(𝑋𝑠). Apply More on Mor-
phisms, Lemmas 33.31.2 and 33.31.3. This gives us a commutative diagram

𝑋

��

𝑋′
𝑔

oo

𝜋
��

𝑌′

ℎ
��

𝑆 𝑆′𝑒oo

and point 𝑥′ ∈ 𝑋′. We set 𝑍′ = 𝑋′, 𝑖 = id, and 𝒢 = 𝑔∗ℱ to obtain a solution in this case.
In general choose a closed immersion 𝑍 → 𝑋 and a sheaf 𝒢 on 𝑍 as in Lemma 34.4.1.
Applying the result of the previous paragraph to 𝑍 → 𝑆 and 𝒢 we obtain a diagram

𝑋

𝑓

��

𝑍oo

𝑓|𝑍

��

𝑍′
𝑔

oo

𝜋
��

𝑌′

ℎ
��

𝑆 𝑆 𝑆′𝑒oo

and point 𝑧′ ∈ 𝑍′ satisfying all the required properties. We will use Lemma 34.3.1 to
embed 𝑍′ into a scheme étale over 𝑋. We cannot apply the lemma directly as we want 𝑋′

to be a scheme over 𝑆′. Instead we consider the morphisms

𝑍′ // 𝑍 ×𝑆 𝑆′ // 𝑋 ×𝑆 𝑆′

The first morphism is étale by Morphisms, Lemma 24.35.18. The second is a closed im-
mersion as a base change of a closed immersion. Finally, as 𝑋, 𝑆, 𝑆′, 𝑍, 𝑍′ are all affine
we may apply Lemma 34.3.1 to get an étale morphism of affine schemes 𝑋′ → 𝑋 ×𝑆 𝑆′

such that
𝑍′ = (𝑍 ×𝑆 𝑆′) ×(𝑋×𝑆𝑆′) 𝑋′ = 𝑍 ×𝑋 𝑋′.

As 𝑍 → 𝑋 is a closed immersion of finite presentation, so is 𝑍′ → 𝑋′. Let 𝑥′ ∈ 𝑋′ be the
point corresponding to 𝑧′ ∈ 𝑍′. Then the completed diagram

𝑋

��

𝑋′

��

oo 𝑍′
𝑖

oo

𝜋
��

𝑌′

ℎ
��

𝑆 𝑆′𝑒oo 𝑆′

is a solution of the original problem. �

Lemma 34.4.3. Assumptions and notation as in Lemma 34.4.2. If 𝑓 is locally of finite
presentation then 𝜋 is of finite presentation. In this case the following are equivalent
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(1) ℱ is an 𝒪𝑋-module of finite presentation in a neighbourhood of 𝑥,
(2) 𝒢 is an 𝒪𝑍′-module of finite presentation in a neighbourhood of 𝑧′, and
(3) 𝜋∗𝒢 is an 𝒪𝑌′-module of finite presentation in a neighbourhood of 𝑦′.

Still assuming 𝑓 locally of finite presentation the following are equivalent to each other
(a) ℱ𝑥 is an 𝒪𝑋,𝑥-module of finite presentation,
(b) 𝒢𝑧′ is an 𝒪𝑍′,𝑧′-module of finite presentation, and
(c) (𝜋∗𝒢)𝑦′ is an 𝒪𝑌′,𝑦′-module of finite presentation.

Proof. Assume 𝑓 locally of finite presentation. Then 𝑍′ → 𝑆 is locally of finite presen-
tation as a composition of such, see Morphisms, Lemma 24.20.3. Note that 𝑌′ → 𝑆 is
also locally of finite presentation as a composition of a smooth and an étale morphism.
Hence Morphisms, Lemma 24.20.11 implies 𝜋 is locally of finite presentation. Since 𝜋 is
finite we conclude that it is also separated and quasi-compact, hence 𝜋 is actually of finite
presentation.

To prove the equivalence of (1), (2), and (3) we also consider: (4) 𝑔∗ℱ is a 𝒪𝑋′-module of
finite presentation in a neighbourhood of 𝑥′. The pull back of a module of finite presen-
tation is of finite presentation, see Modules, Lemma 15.11.4. Hence (1) ⇒ (4). The étale
morphism 𝑔 is open, see Morphisms, Lemma 24.35.13. Hence for any open neighbourhood
𝑈′ ⊂ 𝑋′ of 𝑥′, the image 𝑔(𝑈′) is an open neighbourhood of 𝑥 and the map {𝑈′ → 𝑔(𝑈′)}
is an étale covering. Thus (4) ⇒ (1) by Descent, Lemma 31.5.2. Using Descent, Lemma
31.5.8 and some easy topological arguments (see More on Morphisms, Lemma 33.31.4)
we see that (4) ⇔ (2) ⇔ (3).

To prove the equivalence of (a), (b), (c) consider the ring maps

𝒪𝑋,𝑥 → 𝒪𝑋′,𝑥′ → 𝒪𝑍′,𝑧′ ← 𝒪𝑌′,𝑦′

The first ring map is faithfully flat. Hence ℱ𝑥 is of finite presentation over 𝒪𝑋,𝑥 if and
only if 𝑔∗ℱ𝑥′ is of finite presentation over 𝒪𝑋′,𝑥′, see Algebra, Lemma 7.77.2. The second
ring map is surjective (hence finite) and finitely presented by assumption, hence 𝑔∗ℱ𝑥′ is
of finite presentation over 𝒪𝑋′,𝑥′ if and only if 𝒢𝑧′ is of finite presentation over 𝒪𝑍′,𝑧′, see
Algebra, Lemma 7.7.4. Because 𝜋 is finite, of finite presentation, and 𝜋−1({𝑦′}) = {𝑥′}
the ring homomorphism 𝒪𝑌′,𝑦′ ← 𝒪𝑍′,𝑧′ is finite and of finite presentation, see More on
Morphisms, Lemma 33.31.4. Hence 𝒢𝑧′ is of finite presentation over 𝒪𝑍′,𝑧′ if and only if
𝜋∗𝒢𝑦′ is of finite presentation over 𝒪𝑌′,𝑦′, see Algebra, Lemma 7.7.4. �

Lemma 34.4.4. Assumptions and notation as in Lemma 34.4.2. The following are equiva-
lent

(1) ℱ is flat over 𝑆 in a neighbourhood of 𝑥,
(2) 𝒢 is flat over 𝑆′ in a neighbourhood of 𝑧′, and
(3) 𝜋∗𝒢 is flat over 𝑆′ in a neighbourhood of 𝑦′.

The following are equivalent also
(a) ℱ𝑥 is flat over 𝒪𝑆,𝑠,
(b) 𝒢𝑧′ is flat over 𝒪𝑆′,𝑠′, and
(c) (𝜋∗𝒢)𝑦′ is flat over 𝒪𝑆′,𝑠′.

Proof. To prove the equivalence of (1), (2), and (3) we also consider: (4) 𝑔∗ℱ is flat over
𝑆 in a neighbourhood of 𝑥′. We will use Lemma 34.3.3 to equate flatness over 𝑆 and 𝑆′

without further mention. The étale morphism 𝑔 is flat and open, see Morphisms, Lemma
24.35.13. Hence for any open neighbourhood 𝑈′ ⊂ 𝑋′ of 𝑥′, the image 𝑔(𝑈′) is an open
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neighbourhood of 𝑥 and the map 𝑈′ → 𝑔(𝑈′) is surjective and flat. Thus (4) ⇔ (1) by
Morphisms, Lemma 24.24.11. Note that

Γ(𝑋′, 𝑔∗ℱ) = Γ(𝑍′, 𝒢) = Γ(𝑌′, 𝜋∗𝒢)

Hence the flatness of 𝑔∗ℱ, 𝒢 and 𝜋∗𝒢 over 𝑆′ are all equivalent (this uses that 𝑋′, 𝑍′, 𝑌′,
and 𝑆′ are all affine). Some omitted topological arguments (compare More on Morphisms,
Lemma 33.31.4) regarding affine neighbourhoods now show that (4) ⇔ (2) ⇔ (3).

To prove the equivalence of (a), (b), (c) consider the commutative diagram of local ring
maps

𝒪𝑋′,𝑥′ 𝜄
// 𝒪𝑍′,𝑧′ 𝒪𝑌′,𝑦′𝛼

oo 𝒪𝑆′,𝑠′
𝛽

oo

𝒪𝑋,𝑥

𝛾
OO

𝒪𝑆,𝑠
𝜑oo

𝜖

OO

We will use Lemma 34.3.4 to equate flatness over 𝒪𝑆,𝑠 and 𝒪𝑆′,𝑠′ without further mention.
The map 𝛾 is faithfully flat. Hence ℱ𝑥 is flat over 𝒪𝑆,𝑠 if and only if 𝑔∗ℱ𝑥′ is flat over 𝒪𝑆′,𝑠′,
see Algebra, Lemma 7.35.8. As 𝒪𝑆′,𝑠′-modules the modules 𝑔∗ℱ𝑥′, 𝒢𝑧′, and 𝜋∗𝒢𝑦′ are all
isomorphic, see More on Morphisms, Lemma 33.31.4. This finishes the proof. �

34.5. One step dévissage

In this section we explain what is a one step dévissage of a module. A one step dévissage
exist étale locally on base and target. We discuss base change, Zariski shrinking and étale
localization of a one step dévissage.

Definition 34.5.1. Let 𝑆 be a scheme. Let 𝑋 be locally of finite type over 𝑆. Let ℱ be a
quasi-coherent 𝒪𝑋-module of finite type. Let 𝑠 ∈ 𝑆 be a point. A one step dévissage of
ℱ/𝑋/𝑆 over 𝑠 is given by morphisms of schemes over 𝑆

𝑋 𝑍𝑖oo 𝜋 // 𝑌

and a quasi-coherent 𝒪𝑍-module 𝒢 of finite type such that
(1) 𝑋, 𝑆, 𝑍 and 𝑌 are affine,
(2) 𝑖 is a closed immersion of finite presentation,
(3) ℱ ≅ 𝑖∗𝒢,
(4) 𝜋 is finite, and
(5) the structure morphism 𝑌 → 𝑆 is smooth with geometrically irreducible fibres of

dimension dim(Supp(ℱ𝑠)).
In this case we say (𝑍, 𝑌, 𝑖, 𝜋, 𝒢) is a one step dévissage of ℱ/𝑋/𝑆 over 𝑠.

Note that such a one step dévissage can only exist if 𝑋 and 𝑆 are affine. In the definition
above we only require 𝑋 to be (locally) of finite type over 𝑆 and we continue working in
this setting below. In [GR71] the authors use consistently the setup where 𝑋 → 𝑆 is locally
of finite presentation and ℱ quasi-coherent 𝒪𝑋-module of finite type. The advantage of this
choice is that it ``makes sense'' to ask for ℱ to be of finite presentation as an 𝒪𝑋-module,
whereas in our setting it ``does not make sense''. Please see Section 34.2 for a discussion;
the observations made there show that in our setup we may consider the condition of ℱ
being ``locally of finite presentation relative to 𝑆'', and we could work consistently with this
notion. Instead however, we will rely on the results of Lemma 34.4.3 and the observations
in Remark 34.7.3 to deal with this issue in an ad hoc fashion whenever it comes up.
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Definition 34.5.2. Let 𝑆 be a scheme. Let 𝑋 be locally of finite type over 𝑆. Let ℱ be a
quasi-coherent 𝒪𝑋-module of finite type. Let 𝑥 ∈ 𝑋 be a point with image 𝑠 in 𝑆. A one
step dévissage of ℱ/𝑋/𝑆 at 𝑥 is a system (𝑍, 𝑌, 𝑖, 𝜋, 𝒢, 𝑧, 𝑦), where (𝑍, 𝑌, 𝑖, 𝜋, 𝒢) is a one
step dévissage of ℱ/𝑋/𝑆 over 𝑠 and

(1) dim𝑥(Supp(ℱ𝑠)) = dim(Supp(ℱ𝑠)),
(2) 𝑧 ∈ 𝑍 is a point with 𝑖(𝑧) = 𝑥 and 𝜋(𝑧) = 𝑦,
(3) we have 𝜋−1({𝑦}) = {𝑧},
(4) the extension 𝜅(𝑠) ⊂ 𝜅(𝑦) is purely transcendental.

A one step dévissage of ℱ/𝑋/𝑆 at 𝑥 can only exist if 𝑋 and 𝑆 are affine. Condition (1)
assures us that 𝑌 → 𝑆 has relative dimension equal to dim𝑥(Supp(ℱ𝑠)) via condition (5) of
Definition 34.5.1.

Lemma 34.5.3 (Reformulation of Lemma 34.4.2). Let 𝑓 ∶ 𝑋 → 𝑆 be morphism of schemes
which is locally of finite type. Let ℱ be a finite type quasi-coherent 𝒪𝑋-module. Let 𝑥 ∈ 𝑋
with image 𝑠 = 𝑓(𝑥) in 𝑆. Then there exists a commutative diagram of pointed schemes

(𝑋, 𝑥)

𝑓
��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)oo

such that (𝑆′, 𝑠′) → (𝑆, 𝑠) and (𝑋′, 𝑥′) → (𝑋, 𝑥) are elementary étale neighbourhoods,
and such that 𝑔∗ℱ/𝑋′/𝑆′ has a one step dévissage at 𝑥′.

Proof. This is immediate from Definition 34.5.2 and Lemma 34.4.2. �

Lemma 34.5.4. Let 𝑆, 𝑋, ℱ, 𝑠 be as in Definition 34.5.1. Let (𝑍, 𝑌, 𝑖, 𝜋, 𝒢) be a one step
dévissage of ℱ/𝑋/𝑆 over 𝑠. Let (𝑆′, 𝑠′) → (𝑆, 𝑠) be any morphism of pointed schemes.
Given this data let 𝑋′, 𝑍′, 𝑌′, 𝑖′, 𝜋′ be the base changes of 𝑋, 𝑍, 𝑌, 𝑖, 𝜋 via 𝑆′ → 𝑆. Let
ℱ′ be the pullback of ℱ to 𝑋′ and let 𝒢′ be the pullback of 𝒢 to 𝑍′. If 𝑆′ is affine, then
(𝑍′, 𝑌′, 𝑖′, 𝜋′, 𝒢′) is a one step dévissage of ℱ′/𝑋′/𝑆′ over 𝑠′.

Proof. Fibre products of affines are affine, see Schemes, Lemma 21.17.2. Base change
preserves closed immersions, morphisms of finite presentation, finite morphisms, smooth
morphisms, morphisms with geometrically irreducible fibres, and morphisms of relative di-
mension 𝑛, see Morphisms, Lemmas 24.2.4, 24.20.4, 24.42.6, 24.33.5, 24.28.2, and More
on Morphisms, Lemma 33.20.2. We have 𝑖′

∗𝒢′ ≅ ℱ′ because pushforward along the
finite morphism 𝑖 commutes with base change, see Coherent, Lemma 25.6.1. We have
dim(Supp(ℱ𝑠)) = dim(Supp(ℱ′

𝑠′)) by Morphisms, Lemma 24.27.3 because

Supp(ℱ𝑠) ×𝑠 𝑠′ = Supp(ℱ′
𝑠′).

This proves the lemma. �

Lemma 34.5.5. Let 𝑆, 𝑋, ℱ, 𝑥, 𝑠 be as in Definition 34.5.2. Let (𝑍, 𝑌, 𝑖, 𝜋, 𝒢, 𝑧, 𝑦) be a
one step dévissage of ℱ/𝑋/𝑆 at 𝑥. Let (𝑆′, 𝑠′) → (𝑆, 𝑠) be a morphism of pointed schemes
which induces an isomorphism 𝜅(𝑠) = 𝜅(𝑠′). Let (𝑍′, 𝑌′, 𝑖′, 𝜋′, 𝒢′) be as constructed in
Lemma 34.5.4 and let 𝑥′ ∈ 𝑋′ (resp. 𝑧′ ∈ 𝑍′, 𝑦′ ∈ 𝑌′) be the unique point mapping to
both 𝑥 ∈ 𝑋 (resp. 𝑧 ∈ 𝑍, 𝑦 ∈ 𝑌) and 𝑠′ ∈ 𝑆′. If 𝑆′ is affine, then (𝑍′, 𝑌′, 𝑖′, 𝜋′, 𝒢′, 𝑧′, 𝑦′)
is a one step dévissage of ℱ′/𝑋′/𝑆′ at 𝑥′.
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Proof. By Lemma 34.5.4 (𝑍′, 𝑌′, 𝑖′, 𝜋′, 𝒢′) is a one step dévissage of ℱ′/𝑋′/𝑆′ over 𝑠′.
Properties (1) -- (4) of Definition 34.5.2 hold for (𝑍′, 𝑌′, 𝑖′, 𝜋′, 𝒢′, 𝑧′, 𝑦′) as the assumption
that 𝜅(𝑠) = 𝜅(𝑠′) insures that the fibres 𝑋′

𝑠′, 𝑍′
𝑠′, and 𝑌′

𝑠′ are isomorphic to 𝑋𝑠, 𝑍𝑠, and
𝑌𝑠. �

Definition 34.5.6. Let 𝑆, 𝑋, ℱ, 𝑥, 𝑠 be as in Definition 34.5.2. Let (𝑍, 𝑌, 𝑖, 𝜋, 𝒢, 𝑧, 𝑦) be a
one step dévissage of ℱ/𝑋/𝑆 at 𝑥. Let us define a standard shrinking of this situation to be
given by standard opens 𝑆′ ⊂ 𝑆, 𝑋′ ⊂ 𝑋, 𝑍′ ⊂ 𝑍, and 𝑌′ ⊂ 𝑌 such that 𝑠 ∈ 𝑆′, 𝑥 ∈ 𝑋′,
𝑧 ∈ 𝑍′, and 𝑦 ∈ 𝑌′ and such that

(𝑍′, 𝑌′, 𝑖|𝑍′, 𝜋|𝑍′, 𝒢|𝑍′, 𝑧, 𝑦)

is a one step dévissage of ℱ|𝑋′/𝑋′/𝑆′ at 𝑥.

Lemma 34.5.7. With assumption and notation as in Definition 34.5.6 we have:

(1) If 𝑆′ ⊂ 𝑆 is a standard open neighbourhood of 𝑠, then setting 𝑋′ = 𝑋𝑆′, 𝑍′ =
𝑍𝑆′ and 𝑌′ = 𝑌𝑆′ we obtain a standard shrinking.

(2) Let 𝑊 ⊂ 𝑌 be a standard open neighbourhood of 𝑦. Then there exists a standard
shrinking with 𝑌′ = 𝑊 ×𝑆 𝑆′.

(3) Let𝑈 ⊂ 𝑋 be an open neighbourhood of 𝑥. Then there exists a standard shrinking
with 𝑋′ ⊂ 𝑈.

Proof. Part (1) is immediate from Lemma 34.5.5 and the fact that the inverse image of a
standard open under a morphism of affine schemes is a standard open, see Algebra, Lemma
7.16.4.

Let 𝑊 ⊂ 𝑌 as in (2). Because 𝑌 → 𝑆 is smooth it is open, seeMorphisms, Lemma 24.33.10.
Hence we can find a standard open neighbourhood 𝑆′ of 𝑠 contained in the image of 𝑊.
Then the fibres of 𝑊𝑆′ → 𝑆′ are nonempty open subschemes of the fibres of 𝑌 → 𝑆 over 𝑆′

and hence geometrically irreducible too. Setting 𝑌′ = 𝑊𝑆′ and 𝑍′ = 𝜋−1(𝑌′) we see that
𝑍′ ⊂ 𝑍 is a standard open neighbourhood of 𝑧. Let ℎ ∈ Γ(𝑍, 𝒪𝑍) be a function such that
𝑍′ = 𝐷(ℎ). As 𝑖 ∶ 𝑍 → 𝑋 is a closed immersion, we can find a function ℎ ∈ Γ(𝑋, 𝒪𝑋)
such that 𝑖♯(ℎ) = ℎ. Take 𝑋′ = 𝐷(ℎ) ⊂ 𝑋. In this way we obtain a standard shrinking as
in (2).

Let 𝑈 ⊂ 𝑋 be as in (3). We may after shrinking 𝑈 assume that 𝑈 is a standard open. By
More on Morphisms, Lemma 33.31.4 there exists a standard open 𝑊 ⊂ 𝑌 neighbourhood
of 𝑦 such that 𝜋−1(𝑊) ⊂ 𝑖−1(𝑈). Apply (2) to get a standard shrinking 𝑋′, 𝑆′, 𝑍′, 𝑌′ with
𝑌′ = 𝑊𝑆′. Since 𝑍′ ⊂ 𝜋−1(𝑊) ⊂ 𝑖−1(𝑈) we may replace 𝑋′ by 𝑋′ ∩ 𝑈 (still a standard
open as 𝑈 is also standard open) without violating any of the conditions defining a standard
shrinking. Hence we win. �

Lemma 34.5.8. Let 𝑆, 𝑋, ℱ, 𝑥, 𝑠 be as in Definition 34.5.2. Let (𝑍, 𝑌, 𝑖, 𝜋, 𝒢, 𝑧, 𝑦) be a one
step dévissage of ℱ/𝑋/𝑆 at 𝑥. Let

(𝑌, 𝑦)

��

(𝑌′, 𝑦′)oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)oo
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be a commutative diagram of pointed schemes such that the horizontal arrows are elemen-
tary étale neighbourhoods. Then there exists a commutative diagram

(𝑋″, 𝑥″)

uu ��

(𝑍″, 𝑧″)oo

tt ��
(𝑋, 𝑥)

��

(𝑍, 𝑧)oo

��

(𝑆″, 𝑠″)

uu

(𝑌″, 𝑦″)

tt

oo

(𝑆, 𝑠) (𝑌, 𝑦)oo

of pointed schemes with the following properties:
(1) (𝑆″, 𝑠″) → (𝑆′, 𝑠′) is an elementary étale neighbourhood and the morphism

𝑆″ → 𝑆 is the composition 𝑆″ → 𝑆′ → 𝑆,
(2) 𝑌″ is an open subscheme of 𝑌′ ×𝑆′ 𝑆″,
(3) 𝑍″ = 𝑍 ×𝑌 𝑌″,
(4) (𝑋″, 𝑥″) → (𝑋, 𝑥) is an elementary étale neighbourhood, and
(5) (𝑍″, 𝑌″, 𝑖″, 𝜋″, 𝒢″, 𝑧″, 𝑦″) is a one step dévissage at 𝑥″ of the sheaf ℱ″.

Here ℱ″ (resp. 𝒢″) is the pullback of ℱ (resp. 𝒢) via the morphism 𝑋″ → 𝑋 (resp. 𝑍″ →
𝑍) and 𝑖″ ∶ 𝑍″ → 𝑋″ and 𝜋″ ∶ 𝑍″ → 𝑌″ are as in the diagram.

Proof. Let (𝑆″, 𝑠″) → (𝑆′, 𝑠′) be any elementary étale neighbourhood with 𝑆″ affine. Let
𝑌″ ⊂ 𝑌′ ×𝑆′ 𝑆″ be any affine open neighbourhood containing the point 𝑦″ = (𝑦′, 𝑠″). Then
we obtain an affine (𝑍″, 𝑧″) by (3). Moreover 𝑍𝑆″ → 𝑋𝑆″ is a closed immersion and
𝑍″ → 𝑍𝑆″ is an étale morphism. Hence Lemma 34.3.1 applies and we can find an étale
morphism 𝑋″ → 𝑋𝑆′ of affines such that 𝑍″ ≅ 𝑋″ ×𝑋𝑆′ 𝑍𝑆′. Denote 𝑖″ ∶ 𝑍″ → 𝑋″ the
corresponding closed immersion. Setting 𝑥″ = 𝑖″(𝑧″) we obtain a commutative diagram
as in the lemma. Properties (1), (2), (3), and (4) hold by construction. Thus it suffices to
show that (5) holds for a suitable choice of (𝑆″, 𝑠″) → (𝑆′, 𝑠′) and 𝑌″.

We first list those properties which hold for any choice of (𝑆″, 𝑠″) → (𝑆′, 𝑠′) and 𝑌″ as
in the first paragraph. As we have 𝑍″ = 𝑋″ ×𝑋 𝑍 by construction we see that 𝑖″

∗ 𝒢″ =
ℱ″ (with notation as in the statement of the lemma), see Coherent, Lemma 25.6.1. Set
𝑛 = dim(Supp(ℱ𝑠)) = dim𝑥(Supp(ℱ𝑠)). The morphism 𝑌″ → 𝑆″ is smooth of relative
dimension 𝑛 (because 𝑌′ → 𝑆′ is smooth of relative dimension 𝑛 as the composition 𝑌′ →
𝑌𝑆′ → 𝑆′ of an étale and smooth morphism of relative dimension 𝑛 and because base
change preserves smooth morphisms of relative dimension 𝑛). We have 𝜅(𝑦″) = 𝜅(𝑦) and
𝜅(𝑠) = 𝜅(𝑠″) hence 𝜅(𝑦″) is a purely transcendental extension of 𝜅(𝑠″). The morphism of
fibres 𝑋″

𝑠″ → 𝑋𝑠 is an étale morphism of affine schemes over 𝜅(𝑠) = 𝜅(𝑠″) mapping the
point 𝑥″ to the point 𝑥 and pulling back ℱ𝑠 to ℱ″

𝑠″. Hence

dim(Supp(ℱ″
𝑠″)) = dim(Supp(ℱ𝑠)) = 𝑛 = dim𝑥(Supp(ℱ𝑠)) = dim𝑥″(Supp(ℱ″

𝑠″))

because dimension is invariant under étale localization, see Descent, Lemma 31.17.2. As
𝜋″ ∶ 𝑍″ → 𝑌″ is the base change of 𝜋 we see that 𝜋″ is finite and as 𝜅(𝑦) = 𝜅(𝑦″) we see
that 𝜋−1({𝑦″}) = {𝑧″}.

At this point we have verified all the conditions of Definition 34.5.1 except we have not
verfied that 𝑌″ → 𝑆″ has geometrically irreducible fibres. Of course in general this is not
going to be true, and it is at this point that we will use that 𝜅(𝑠) ⊂ 𝜅(𝑦) is purely transcenden-
tal. Namely, let 𝑇 ⊂ 𝑌′

𝑠′ be the irreducible component of 𝑌′
𝑠′ containing 𝑦′ = (𝑦, 𝑠′). Note
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that 𝑇 is an open subscheme of 𝑌′
𝑠′ as this is a smooth scheme over 𝜅(𝑠′). By Varieties,

Lemma 28.5.14 we see that 𝑇 is geometrically connected because 𝜅(𝑠′) = 𝜅(𝑠) is alge-
braically closed in 𝜅(𝑦′) = 𝜅(𝑦). As 𝑇 is smooth we see that 𝑇 is geometrically irreducible.
Hence More on Morphisms, Lemma 33.30.3 applies and we can find an elementary étale
morphism (𝑆″, 𝑠″) → (𝑆′, 𝑠′) and an affine open 𝑌″ ⊂ 𝑌′

𝑆″ such that all fibres of 𝑌″ → 𝑆″

are geometrically irreducible and such that 𝑇 = 𝑌″
𝑠″. After shrinking (first 𝑌″ and then 𝑆″)

we may assume that both 𝑌″ and 𝑆″ are affine. This finishes the proof of the lemma. �

Lemma 34.5.9. Let 𝑆, 𝑋, ℱ, 𝑠 be as in Definition 34.5.1. Let (𝑍, 𝑌, 𝑖, 𝜋, 𝒢) be a one step
dévissage of ℱ/𝑋/𝑆 over 𝑠. Let 𝜉 ∈ 𝑌𝑠 be the (unique) generic point. Then there exists an
integer 𝑟 > 0 and an 𝒪𝑌-module map

𝛼 ∶ 𝒪⊕𝑟
𝑌 ⟶ 𝜋∗𝒢

such that

𝛼 ∶ 𝜅(𝜉)⊕𝑟 ⟶ (𝜋∗𝒢)𝜉 ⊗𝒪𝑌,𝜉
𝜅(𝜉)

is an isomorphism. Moreover, in this case we have

dim(Supp(Coker(𝛼)𝑠)) < dim(Supp(ℱ𝑠)).

Proof. By assumption the schemes 𝑆 and 𝑌 are affine. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑌 =
𝑆𝑝𝑒𝑐(𝐵). As 𝜋 is finite the 𝒪𝑌-module 𝜋∗𝒢 is a finite type quasi-coherent𝒪𝑌-module. Hence
𝜋∗𝒢 = �̃� for some finite 𝐵-module 𝑁. Let 𝔭 ⊂ 𝐵 be the prime ideal corresponding to 𝜉. To
obtain 𝛼 set 𝑟 = dim𝜅(𝔭) 𝑁⊗𝐵𝜅(𝔭) and pick 𝑥1, … , 𝑥𝑟 ∈ 𝑁which form a basis of𝑁⊗𝐵𝜅(𝔭).
Take 𝛼 ∶ 𝐵⊕𝑟 → 𝑁 to be the map given by the formula 𝛼(𝑏1, … , 𝑏𝑟) = ∑ 𝑏𝑖𝑥𝑖. It is clear
that 𝛼 ∶ 𝜅(𝔭)⊕𝑟 → 𝑁 ⊗𝐵 𝜅(𝔭) is an isomorphism as desired. Finally, suppose 𝛼 is any map
with this property. Then 𝑁′ = Coker(𝛼) is a finite 𝐵-module such that 𝑁′ ⊗ 𝜅(𝔭) = 0.
By Nakayama's lemma (Algebra, Lemma 7.14.5) we see that 𝑁′

𝔭 = 0. Since the fibre 𝑌𝑠 is
geometrically irreducible of dimension 𝑛 with generic point 𝜉 and since we have just seen
that 𝜉 is not in the support of Coker(𝛼) the last assertion of the lemma holds. �

34.6. Complete dévissage

In this section we explain what is a complete dévissage of a module and prove that such
exist. The material in this section is mainly bookkeeping.

Definition 34.6.1. Let 𝑆 be a scheme. Let 𝑋 be locally of finite type over 𝑆. Let ℱ be a
quasi-coherent 𝒪𝑋-module of finite type. Let 𝑠 ∈ 𝑆 be a point. A complete dévissage of
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ℱ/𝑋/𝑆 over 𝑠 is given by a diagram

𝑋 𝑍1𝑖1
oo

𝜋1

��
𝑌1 𝑍2𝑖2
oo

𝜋2

��
𝑌2 𝑍3
oo

��... ...oo

��
𝑌𝑛

of schemes over 𝑆, finite type quasi-coherent 𝒪𝑍𝑘
-modules 𝒢𝑘, and 𝒪𝑌𝑘

-module maps

𝛼𝑘 ∶ 𝒪⊕𝑟𝑘
𝑌𝑘

⟶ 𝜋𝑘,∗𝒢𝑘, 𝑘 = 1, … , 𝑛

satisfying the following properties:
(1) (𝑍1, 𝑌1, 𝑖1, 𝜋1, 𝒢1) is a one step dévissage of ℱ/𝑋/𝑆 over 𝑠,
(2) the map 𝛼𝑘 induces an isomorphism

𝜅(𝜉𝑘)⊕𝑟𝑘 ⟶ (𝜋𝑘,∗𝒢𝑘)𝜉𝑘
⊗𝒪𝑌𝑘,𝜉𝑘

𝜅(𝜉𝑘)

where 𝜉𝑘 ∈ (𝑌𝑘)𝑠 is the unique generic point,
(3) for 𝑘 = 2, … , 𝑛 the system (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘) is a one step dévissage of Coker(𝛼𝑘−1)/𝑌𝑘−1/𝑆

over 𝑠,
(4) Coker(𝛼𝑛) = 0.

In this case we say that (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘)𝑘=1,…,𝑛 is a complete dévissage of ℱ/𝑋/𝑆 over
𝑠.

Definition 34.6.2. Let 𝑆 be a scheme. Let 𝑋 be locally of finite type over 𝑆. Let ℱ be
a quasi-coherent 𝒪𝑋-module of finite type. Let 𝑥 ∈ 𝑋 be a point with image 𝑠 ∈ 𝑆. A
complete dévissage of ℱ/𝑋/𝑆 at 𝑥 is given by a system

(𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘, 𝑧𝑘, 𝑦𝑘)𝑘=1,…,𝑛

such that (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘) is a complete dévissage of ℱ/𝑋/𝑆 over 𝑠, and such that
(1) (𝑍1, 𝑌1, 𝑖1, 𝜋1, 𝒢1, 𝑧1, 𝑦1) is a one step dévissage of ℱ/𝑋/𝑆 at 𝑥,
(2) for 𝑘 = 2, … , 𝑛 the system (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝑧𝑘, 𝑦𝑘) is a one step dévissage of

Coker(𝛼𝑘−1)/𝑌𝑘−1/𝑆 at 𝑦𝑘−1.

Again we remark that a complete dévissage can only exist if 𝑋 and 𝑆 are affine.

Lemma 34.6.3. Let 𝑆, 𝑋, ℱ, 𝑠 be as in Definition 34.6.1. Let (𝑆′, 𝑠′) → (𝑆, 𝑠) be any
morphism of pointed schemes. Let (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘)𝑘=1,…,𝑛 be a complete dévissage of
ℱ/𝑋/𝑆 over 𝑠. Given this data let 𝑋′, 𝑍′

𝑘, 𝑌′
𝑘, 𝑖′

𝑘, 𝜋′
𝑘 be the base changes of 𝑋, 𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘

via 𝑆′ → 𝑆. Let ℱ′ be the pullback of ℱ to 𝑋′ and let 𝒢′
𝑘 be the pullback of 𝒢𝑘 to 𝑍′

𝑘.
Let 𝛼′

𝑘 be the pullback of 𝛼𝑘 to 𝑌′
𝑘. If 𝑆′ is affine, then (𝑍′

𝑘, 𝑌′
𝑘, 𝑖′

𝑘, 𝜋′
𝑘, 𝒢′

𝑘, 𝛼′
𝑘)𝑘=1,…,𝑛 is a

complete dévissage of ℱ′/𝑋′/𝑆′ over 𝑠′.
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Proof. By Lemma 34.5.4 we know that the base change of a one step dévissage is a one
step dévissage. Hence it suffices to prove that formation of Coker(𝛼𝑘) commutes with base
change and that condition (2) of Definition 34.6.1 is preserved by base change. The first
is true as 𝜋′

𝑘,∗𝒢′
𝑘 is the pullback of 𝜋𝑘,∗𝒢𝑘 (by Coherent, Lemma 25.6.1) and because ⊗ is

right exact. The second because by the same token we have

(𝜋𝑘,∗𝒢𝑘)𝜉𝑘
⊗𝒪𝑌𝑘,𝜉𝑘

𝜅(𝜉𝑘) ⊗𝜅(𝜉𝑘) 𝜅(𝜉′
𝑘) ≅ (𝜋′

𝑘,∗𝒢′
𝑘)𝜉′

𝑘
⊗𝒪𝑌′

𝑘,𝜉′
𝑘

𝜅(𝜉′
𝑘)

with obvious notation. �

Lemma 34.6.4. Let 𝑆, 𝑋, ℱ, 𝑥, 𝑠 be as in Definition 34.6.2. Let (𝑆′, 𝑠′) → (𝑆, 𝑠) be a mor-
phism of pointed schemeswhich induces an isomorphism 𝜅(𝑠) = 𝜅(𝑠′). Let (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘, 𝑧𝑘, 𝑦𝑘)𝑘=1,…,𝑛
be a complete dévissage of ℱ/𝑋/𝑆 at 𝑥. Let (𝑍′

𝑘, 𝑌′
𝑘, 𝑖′

𝑘, 𝜋′
𝑘, 𝒢′

𝑘, 𝛼′
𝑘)𝑘=1,…,𝑛 be as constructed

in Lemma 34.6.3 and let 𝑥′ ∈ 𝑋′ (resp. 𝑧′
𝑘 ∈ 𝑍′, 𝑦′

𝑘 ∈ 𝑌′) be the unique point map-
ping to both 𝑥 ∈ 𝑋 (resp. 𝑧𝑘 ∈ 𝑍𝑘, 𝑦𝑘 ∈ 𝑌𝑘) and 𝑠′ ∈ 𝑆′. If 𝑆′ is affine, then
(𝑍′

𝑘, 𝑌′
𝑘, 𝑖′

𝑘, 𝜋′
𝑘, 𝒢′

𝑘, 𝛼′
𝑘, 𝑧′

𝑘, 𝑦′
𝑘)𝑘=1,…,𝑛 is a complete dévissage of ℱ′/𝑋′/𝑆′ at 𝑥′.

Proof. Combine Lemma 34.6.3 and Lemma 34.5.5. �

Definition 34.6.5. Let 𝑆, 𝑋, ℱ, 𝑥, 𝑠 be as in Definition 34.6.2. Consider a complete dévis-
sage (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘, 𝑧𝑘, 𝑦𝑘)𝑘=1,…,𝑛 of ℱ/𝑋/𝑆 at 𝑥. Let us define a standard shrinking
of this situation to be given by standard opens 𝑆′ ⊂ 𝑆, 𝑋′ ⊂ 𝑋, 𝑍′

𝑘 ⊂ 𝑍𝑘, and 𝑌′
𝑘 ⊂ 𝑌𝑘

such that 𝑠𝑘 ∈ 𝑆′, 𝑥𝑘 ∈ 𝑋′, 𝑧𝑘 ∈ 𝑍′, and 𝑦𝑘 ∈ 𝑌′ and such that

(𝑍′
𝑘, 𝑌′

𝑘, 𝑖′
𝑘, 𝜋′

𝑘, 𝒢′
𝑘, 𝛼′

𝑘, 𝑧𝑘, 𝑦𝑘)𝑘=1,…,𝑛

is a one step dévissage of ℱ′/𝑋′/𝑆′ at 𝑥 where 𝒢′
𝑘 = 𝒢𝑘|𝑍′

𝑘
and ℱ′ = ℱ|𝑋′.

Lemma 34.6.6. With assumption and notation as in Definition 34.6.5 we have:
(1) If 𝑆′ ⊂ 𝑆 is a standard open neighbourhood of 𝑠, then setting 𝑋′ = 𝑋𝑆′, 𝑍′

𝑘 =
𝑍𝑆′ and 𝑌′

𝑘 = 𝑌𝑆′ we obtain a standard shrinking.
(2) Let 𝑊 ⊂ 𝑌𝑛 be a standard open neighbourhood of 𝑦. Then there exists a standard

shrinking with 𝑌′
𝑛 = 𝑊 ×𝑆 𝑆′.

(3) Let𝑈 ⊂ 𝑋 be an open neighbourhood of 𝑥. Then there exists a standard shrinking
with 𝑋′ ⊂ 𝑈.

Proof. Part (1) is immediate from Lemmas 34.6.4 and 34.5.7.

Proof of (2). For convenience denote 𝑋 = 𝑌0. We apply Lemma 34.5.7 (2) to find
a standard shrinking 𝑆′, 𝑌′

𝑛−1, 𝑍′
𝑛, 𝑌′

𝑛 of the one step dévissage of Coker(𝛼𝑛−1)/𝑌𝑛−1/𝑆 at
𝑦𝑛−1 with 𝑌′

𝑛 = 𝑊 ×𝑆 𝑆′. We may repeat this procedure and find a standard shrink-
ing 𝑆″, 𝑌″

𝑛−2, 𝑍″
𝑛−1, 𝑌″

𝑛−1 of the one step dévissage of Coker(𝛼𝑛−2)/𝑌𝑛−2/𝑆 at 𝑦𝑛−2 with
𝑌″

𝑛−1 = 𝑌′
𝑛−1 ×𝑆 𝑆″. We may continue in this manner until we obtain 𝑆(𝑛), 𝑌(𝑛)

0 , 𝑍(𝑛)
1 , 𝑌(𝑛)

1 .
At this point it is clear that we obtain our desired standard shrinking by taking 𝑆(𝑛), 𝑋(𝑛),
𝑍(𝑛−𝑘)

𝑘 ×𝑆 𝑆(𝑛), and 𝑌(𝑛−𝑘)
𝑘 ×𝑆 𝑆(𝑛) with the desired property.

Proof of (3). We use induction on the length of the complete dévissage. First we ap-
ply Lemma 34.5.7 (3) to find a standard shrinking 𝑆′, 𝑋′, 𝑍′

1, 𝑌′
1 of the one step dévis-

sage of ℱ/𝑋/𝑆 at 𝑥 with 𝑋′ ⊂ 𝑈. If 𝑛 = 1, then we are done. If 𝑛 > 1, then by
induction we can find a standard shrinking 𝑆″, 𝑌″

1 , 𝑍″
𝑘 , and 𝑌″

𝑘 of the complete dévis-
sage (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘, 𝑧𝑘, 𝑦𝑘)𝑘=2,…,𝑛 of Coker(𝛼1)/𝑌1/𝑆 at 𝑥 such that 𝑌″

1 ⊂ 𝑌′
1. Using
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Lemma 34.5.7 (2) we can find 𝑆‴ ⊂ 𝑆′, 𝑋‴ ⊂ 𝑋′, 𝑍‴
1 and 𝑌‴

1 = 𝑌″
1 ×𝑆 𝑆‴ which is a

standard shrinking. The solution to our problem is to take

𝑆‴, 𝑋‴, 𝑍‴
1 , 𝑌‴

1 , 𝑍″
2 ×𝑆 𝑆‴, 𝑌″

2 ×𝑆 𝑆‴, … , 𝑍″
𝑛 ×𝑆 𝑆‴, 𝑌″

𝑛 ×𝑆 𝑆‴

This ends the proof of the lemma. �

Proposition 34.6.7. Let 𝑆 be a scheme. Let 𝑋 be locally of finite type over 𝑆. Let 𝑥 ∈ 𝑋
be a point with image 𝑠 ∈ 𝑆. There exists a commutative diagram

(𝑋, 𝑥)

��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods
and such that 𝑔∗ℱ/𝑋′/𝑆′ has a complete dévissage at 𝑥.

Proof. We prove this by induction on the integer 𝑑 = dim𝑥(Supp(ℱ𝑠)). By Lemma 34.5.3
there exists a diagram

(𝑋, 𝑥)

��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods
and such that 𝑔∗ℱ/𝑋′/𝑆′ has a one step dévissage at 𝑥′. The local nature of the problem
implies that we may replace (𝑋, 𝑥) → (𝑆, 𝑠) by (𝑋′, 𝑥′) → (𝑆′, 𝑠′). Thus after doing so we
may assume that there exists a one step dévissage (𝑍1, 𝑌1, 𝑖1, 𝜋1, 𝒢1) of ℱ/𝑋/𝑆 at 𝑥.

We apply Lemma 34.5.9 to find a map

𝛼1 ∶ 𝒪⊕𝑟1
𝑌1

⟶ 𝜋1,∗𝒢1

which induces an isomorphism of vector spaces over 𝜅(𝜉1) where 𝜉1 ∈ 𝑌1 is the unique
generic point of the fibre of 𝑌1 over 𝑠. Moreover dim𝑦1

(Supp(Coker(𝛼1)𝑠)) < 𝑑. It may
happen that the stalk of Coker(𝛼1)𝑠 at 𝑦1 is zero. In this case we may shrink 𝑌1 by Lemma
34.5.7 (2) and assume that Coker(𝛼1) = 0 so we obtain a complete dévissage of length zero.

Assume now that the stalk of Coker(𝛼1)𝑠 at 𝑦1 is not zero. In this case, by induction, there
exists a commutative diagram

(34.6.7.1)

(𝑌1, 𝑦1)

��

(𝑌′
1, 𝑦′

1)
ℎ
oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods
and such that ℎ∗Coker(𝛼1)/𝑌′

1/𝑆′ has a complete dévissage

(𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘, 𝑧𝑘, 𝑦𝑘)𝑘=2,…,𝑛

at 𝑦′
1. (In particular 𝑖2 ∶ 𝑍2 → 𝑌′

1 is a closed immersion into 𝑌′
2.) At this point we apply

Lemma 34.5.8 to 𝑆, 𝑋, ℱ, 𝑥, 𝑠, the system (𝑍1, 𝑌1, 𝑖1, 𝜋1, 𝒢1) and diagram (34.6.7.1). We
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obtain a diagram

(𝑋″, 𝑥″)

tt ��

(𝑍″
1 , 𝑧″

1 )oo

tt ��
(𝑋, 𝑥)

��

(𝑍1, 𝑧1)oo

��

(𝑆″, 𝑠″)

tt

(𝑌″
1 , 𝑦″

1 )

tt

oo

(𝑆, 𝑠) (𝑌1, 𝑦1)oo

with all the properties as listed in the referenced lemma. In particular 𝑌″
1 ⊂ 𝑌′

1 ×𝑆′ 𝑆″. Set
𝑋1 = 𝑌′

1 ×𝑆′ 𝑆″ and let ℱ1 denote the pullback of Coker(𝛼1). By Lemma 34.6.4 the system

(34.6.7.2) (𝑍𝑘 ×𝑆′ 𝑆″, 𝑌𝑘 ×𝑆′ 𝑆″, 𝑖″
𝑘 , 𝜋″

𝑘 , 𝒢″
𝑘 , 𝛼″

𝑘 , 𝑧″
𝑘 , 𝑦″

𝑘 )𝑘=2,…,𝑛

is a complete dévissage of ℱ1 to 𝑋1. Again, the nature of the problem allows us to replace
(𝑋, 𝑥) → (𝑆, 𝑠) by (𝑋″, 𝑥″) → (𝑆″, 𝑠″). In this we see that we may assume:

(a) There exists a one step dévissage (𝑍1, 𝑌1, 𝑖1, 𝜋1, 𝒢1) of ℱ/𝑋/𝑆 at 𝑥,
(b) there exists an 𝛼1 ∶ 𝒪⊕𝑟1

𝑌1
→ 𝜋1,∗𝒢1 such that 𝛼 ⊗ 𝜅(𝜉1) is an isomorphism,

(c) 𝑌1 ⊂ 𝑋1 is open, 𝑦1 = 𝑥1, and ℱ1|𝑌1
≅ Coker(𝛼1), and

(d) there exists a complete dévissage (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘, 𝑧𝑘, 𝑦𝑘)𝑘=2,…,𝑛 ofℱ1/𝑋1/𝑆
at 𝑥1.

To finish the proof all we have to do is shrink the one step dévissage and the complete
dévissage such that they fit together to a complete dévissage. (We suggest the reader do this
on their own using Lemmas 34.5.7 and 34.6.6 instead of reading the proof that follows.)
Since 𝑌1 ⊂ 𝑋1 is an open neighbourhood of 𝑥1 we may apply Lemma 34.6.6 (3) to find a
standard shrinking 𝑆′, 𝑋′

1, 𝑍′
2, 𝑌′

2, … , 𝑌′
𝑛 of the datum (d) so that 𝑋′

1 ⊂ 𝑌1. Note that 𝑋′
1 is

also a standard open of the affine scheme 𝑌1. Next, we shrink the datum (a) as follows: first
we shrink the base 𝑆 to 𝑆′, see Lemma 34.5.7 (1) and then we shrink the result to 𝑆″, 𝑋″,
𝑍″

1 , 𝑌″
1 using Lemma 34.5.7 (2) such that eventually 𝑌″

1 = 𝑋′
1 ×𝑆 𝑆″ and 𝑆″ ⊂ 𝑆′. Then

we see that
𝑍″

1 , 𝑌″
1 , 𝑍′

2 ×𝑆′ 𝑆″, 𝑌′
2 ×𝑆′ 𝑆″, … , 𝑌′

𝑛 ×𝑆′ 𝑆″

gives the complete dévissage we were looking for. �

Some more bookkeeping gives the following consequence.

Lemma 34.6.8. Let 𝑋 → 𝑆 be a finite type morphism of schemes. Let ℱ be a finite type
quasi-coherent 𝒪𝑋-module. Let 𝑠 ∈ 𝑆 be a point. There exists an elementary étale neigh-
bourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and étale morphisms ℎ𝑖 ∶ 𝑌𝑖 → 𝑋𝑆′, 𝑖 = 1, … , 𝑛 such that for
each 𝑖 there exists a complete dévissage of ℱ𝑖/𝑌𝑖/𝑆′ over 𝑠′, where ℱ𝑖 is the pullback of ℱ
to 𝑌𝑖 and such that 𝑋𝑠 = (𝑋𝑆′)𝑠′ ⊂ ⋃ ℎ𝑖(𝑌𝑖).

Proof. For every point 𝑥 ∈ 𝑋𝑠 we can find a diagram

(𝑋, 𝑥)

��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods
and such that 𝑔∗ℱ/𝑋′/𝑆′ has a complete dévissage at 𝑥′. As 𝑋 → 𝑆 is of finite type the
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fibre 𝑋𝑠 is quasi-compact, and since each 𝑔 ∶ 𝑋′ → 𝑋 as above is open we can cover 𝑋𝑠
by a finite union of 𝑔(𝑋′

𝑠′). Thus we can find a finite family of such diagrams

(𝑋, 𝑥)

��

(𝑋′
𝑖 , 𝑥′

𝑖 )𝑔𝑖
oo

��
(𝑆, 𝑠) (𝑆′

𝑖 , 𝑠′
𝑖 )oo

𝑖 = 1, … , 𝑛

such that 𝑋𝑠 = ⋃ 𝑔𝑖(𝑋′
𝑖 ). Set 𝑆′ = 𝑆′

1 ×𝑆 … ×𝑆 𝑆′
𝑛 and let 𝑌𝑖 = 𝑋𝑖 ×𝑆′

𝑖
𝑆′ be the base

change of 𝑋′
𝑖 to 𝑆′. By Lemma 34.6.3 we see that the pullback of ℱ to 𝑌𝑖 has a complete

dévissage over 𝑠 and we win. �

34.7. Translation into algebra

It may be useful to spell out algebraically what it means to have a complete dévissage. We
introduce the following notion (which is not that useful so we give it an impossibly long
name).

Definition 34.7.1. Let 𝑅 → 𝑆 be a ring map. Let 𝔮 be a prime of 𝑆 lying over the prime 𝔭
of 𝑅. A elementary étale localization of the ring map𝑅 → 𝑆 at 𝔮 is given by a commutative
diagram of rings and accompanying primes

𝑆 // 𝑆′

𝑅

OO

// 𝑅′

OO 𝔮 𝔮′

𝔭 𝔭′

such that 𝑅 → 𝑅′ and 𝑆 → 𝑆′ are étale ring maps and 𝜅(𝔭) = 𝜅(𝔭′) and 𝜅(𝔮) = 𝜅(𝔮′).

Definition 34.7.2. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝔯 be a prime of 𝑅. Let 𝑁 be a
finite 𝑆-module. A complete dévissage of 𝑁/𝑆/𝑅 over 𝔯 is given by 𝑅-algebra maps

𝐴1 𝐴2 ... 𝐴𝑛

𝑆

??

𝐵1

`` >>

...

__ @@

...

^^ ??

𝐵𝑛

``

finite 𝐴𝑖-modules 𝑀𝑖 and 𝐵𝑖-module maps 𝛼𝑖 ∶ 𝐵⊕𝑟𝑖
𝑖 → 𝑀𝑖 such that

(1) 𝑆 → 𝐴1 is surjective and of finite presentation,
(2) 𝐵𝑖 → 𝐴𝑖+1 is surjective and of finite presentation,
(3) 𝐵𝑖 → 𝐴𝑖 is finite,
(4) 𝑅 → 𝐵𝑖 is smooth with geometrically irreducible fibres,
(5) 𝑁 ≅ 𝑀1 as 𝑆-modules,
(6) Coker(𝛼𝑖) ≅ 𝑀𝑖+1 as 𝐵𝑖-modules,
(7) 𝛼𝑖 ∶ 𝜅(𝔭𝑖)⊕𝑟𝑖 → 𝑀𝑖 ⊗𝐵𝑖

𝜅(𝔭𝑖) is an isomorphism where 𝔭𝑖 = 𝔯𝐵𝑖, and
(8) Coker(𝛼𝑛) = 0.

In this situation we say that (𝐴𝑖, 𝐵𝑖, 𝑀𝑖, 𝛼𝑖)𝑖=1,…,𝑛 is a complete dévissage of 𝑁/𝑆/𝑅 over
𝔯.

Remark 34.7.3. Note that the 𝑅-algebras 𝐵𝑖 for all 𝑖 and 𝐴𝑖 for 𝑖 ≥ 2 are of finite presen-
tation over 𝑅. If 𝑆 is of finite presentation over 𝑅, then it is also the case that 𝐴1 is of finite
presentation over 𝑅. In this case all the ring maps in the complete dévissage are of finite
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presentation. See Algebra, Lemma 7.6.2. Still assuming 𝑆 of finite presentation over 𝑅 the
following are equivalent

(1) 𝑀 is of finite presentation over 𝑆,
(2) 𝑀1 is of finite presentation over 𝐴1,
(3) 𝑀1 is of finite presentation over 𝐵1,
(4) each 𝑀𝑖 is of finite presentation both as an 𝐴𝑖-module and as a 𝐵𝑖-module.

The equivalences (1) ⇔ (2) and (2) ⇔ (3) follow from Algebra, Lemma 7.7.4. If 𝑀1 is
finitely presented, so is Coker(𝛼1) (see Algebra, Lemma 7.5.4) and hence 𝑀2, etc.

Definition 34.7.4. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝔮 be a prime of 𝑆 lying over
the prime 𝔯 of 𝑅. Let 𝑁 be a finite 𝑆-module. A complete dévissage of 𝑁/𝑆/𝑅 at 𝔮 is given
by a complete dévissage (𝐴𝑖, 𝐵𝑖, 𝑀𝑖, 𝛼𝑖)𝑖=1,…,𝑛 of 𝑁/𝑆/𝑅 over 𝔯 and prime ideals 𝔮𝑖 ⊂ 𝐵𝑖
lying over 𝔯 such that

(1) 𝜅(𝔯) ⊂ 𝜅(𝔮𝑖) is purely transcendental,
(2) there is a unique prime 𝔮′

𝑖 ⊂ 𝐴𝑖 lying over 𝔮𝑖 ⊂ 𝐵𝑖,
(3) 𝔮 = 𝔮′

1 ∩ 𝑆 and 𝔮𝑖 = 𝔮′
𝑖+1 ∩ 𝐴𝑖,

(4) 𝑅 → 𝐵𝑖 has relative dimension dim𝔮𝑖
(Supp(𝑀𝑖 ⊗𝑅 𝜅(𝔯))).

Remark 34.7.5. Let 𝐴 → 𝐵 be a finite type ring map and let 𝑁 be a finite 𝐵-module. Let
𝔮 be a prime of 𝐵 lying over the prime 𝔯 of 𝐴. Set 𝑋 = 𝑆𝑝𝑒𝑐(𝐵), 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and ℱ = �̃�
on 𝑋. Let 𝑥 be the point corresponding to 𝔮 and let 𝑠 ∈ 𝑆 be the point corresponding to 𝔭.
Then

(1) if there exists a complete dévissage of ℱ/𝑋/𝑆 over 𝑠 then there exists a complete
dévissage of 𝑁/𝐵/𝐴 over 𝔭, and

(2) there exists a complete dévissage of ℱ/𝑋/𝑆 at 𝑥 if and only if there exists a com-
plete dévissage of 𝑁/𝐵/𝐴 at 𝔮.

There is just a small twist in that we omitted the condition on the relative dimension in the
formulation of ``a complete dévissage of 𝑁/𝐵/𝐴 over 𝔭'' which is why the implication in (1)
only goes in one direction. The notion of a complete dévissage at 𝔮 does have this condition
built in. In any case we will only use that existence for ℱ/𝑋/𝑆 implies the existence for
𝑁/𝐵/𝐴.

Lemma 34.7.6. Let 𝑅 → 𝑆 be a finite type ring map. Let 𝑀 be a finite 𝑆-module. Let 𝔮
be a prime ideal of 𝑆. There exists an elementary étale localization 𝑅′ → 𝑆′, 𝔮′, 𝔭′ of the
ring map 𝑅 → 𝑆 at 𝔮 such that there exists a complete dévissage of (𝑀 ⊗𝑆 𝑆′)/𝑆′/𝑅′ at 𝔮′.

Proof. This is a reformulation of Proposition 34.6.7 via Remark 34.7.5 �

34.8. Localization and universally injective maps

Lemma 34.8.1. Let 𝑅 → 𝑆 be a ring map. Let 𝑁 be a 𝑆-module. Assume
(1) 𝑅 is a local ring with maximal ideal 𝔪,
(2) 𝑆 = 𝑆/𝔪𝑆 is Noetherian, and
(3) 𝑁 = 𝑁/𝔪𝑅𝑁 is a finite 𝑆-module.

Let Σ ⊂ 𝑆 be the multiplicative subset of elements which are not a zero divisor on 𝑁. Then
Σ−1𝑆 is a semi-local ring whose spectrum consists of primes 𝔮 ⊂ 𝑆 contained in an element
of Ass𝑆(𝑁). Moreover, any maximal ideal of Σ−1𝑆 corresponds to an associated prime of
𝑁 over 𝑆.
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Proof. Note that Ass𝑆(𝑁) = Ass𝑆(𝑁), see Algebra, Lemma 7.60.13. This is a finite set by
Algebra, Lemma 7.60.5. Say {𝔮1, … , 𝔮𝑟} = Ass𝑆(𝑁). We have Σ = 𝑆⧵(⋃ 𝔮𝑖) by Algebra,
Lemma 7.60.9. By the description of 𝑆𝑝𝑒𝑐(Σ−1𝑆) in Algebra, Lemma 7.16.5 we see that
the primes of Σ−1𝑆 correspond to the primes of 𝑆 contained in one of the 𝔮𝑖. Hence the
maximal ideals of Σ−1𝑆 correspond one-to-one with themaximal (w.r.t. inclusion) elements
of the set {𝔮1, … , 𝔮𝑟}. This proves the lemma. �

Lemma 34.8.2. Assumption and notation as in Lemma 34.8.1. Assume moreover that
(1) 𝑆 is local and 𝑅 → 𝑆 is a local homomorphism,
(2) 𝑆 is essentially of finite presentation over 𝑅,
(3) 𝑁 is finitely presented over 𝑆, and
(4) 𝑁 is flat over 𝑅.

Then each 𝑠 ∈ Σ defines a universally injective 𝑅-module map 𝑠 ∶ 𝑁 → 𝑁, and the map
𝑁 → Σ−1𝑁 is 𝑅-universally injective.

Proof. By Algebra, Lemma 7.119.4 the sequence 0 → 𝑁 → 𝑁 → 𝑁/𝑠𝑁 → 0 is exact and
𝑁/𝑠𝑁 is flat over 𝑅. This implies that 𝑠 ∶ 𝑁 → 𝑁 is universally injective, see Algebra,
Lemma 7.35.11. The map 𝑁 → Σ−1𝑁 is universally injective as the directed colimit of the
maps 𝑠 ∶ 𝑁 → 𝑁. �

Lemma 34.8.3. Let 𝑅 → 𝑆 be a ring map. Let 𝑁 be an 𝑆-module. Let 𝑆 → 𝑆′ be a ring
map. Assume

(1) 𝑅 → 𝑆 is a local homomorphism of local rings
(2) 𝑆 is essentially of finite presentation over 𝑅,
(3) 𝑁 is of finite presentation over 𝑆,
(4) 𝑁 is flat over 𝑅,
(5) 𝑆 → 𝑆′ is flat, and
(6) the image of 𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑆) contains all primes 𝔮 of 𝑆 lying over 𝔪𝑅 such

that 𝔮 is an associated prime of 𝑁/𝔪𝑅𝑁.
Then 𝑁 → 𝑁 ⊗𝑅 𝑆′ is 𝑅-universally injective.

Proof. Set 𝑁′ = 𝑁 ⊗𝑅 𝑆′. Consider the commutative diagram

𝑁

��

// 𝑁′

��
Σ−1𝑁 // Σ−1𝑁′

where Σ ⊂ 𝑆 is the set of elements which are not a zero divisor on 𝑁/𝔪𝑅𝑁. If we can
show that the map 𝑁 → Σ−1𝑁′ is universally injective, then 𝑁 → 𝑁′ is too (see Algebra,
Lemma 7.76.10).

By Lemma 34.8.1 the ring Σ−1𝑆 is a semi-local ring whose maximal ideals correspond to
associated primes of 𝑁/𝔪𝑅𝑁. Hence the image of 𝑆𝑝𝑒𝑐(Σ−1𝑆′) → 𝑆𝑝𝑒𝑐(Σ−1𝑆) contains
all these maximal ideals by assumption. By Algebra, Lemma 7.35.15 the ring map Σ−1𝑆 →
Σ−1𝑆′ is faithfully flat. Hence Σ−1𝑁 → Σ−1𝑁′, which is the map

𝑁 ⊗𝑆 Σ−1𝑆 ⟶ 𝑁 ⊗𝑆 Σ−1𝑆′

is universally injective, see Algebra, Lemmas 7.76.11 and 7.76.8. Finally, we apply Lemma
34.8.2 to see that 𝑁 → Σ−1𝑁 is universally injective. As the composition of universally
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34.9. COMPLETION AND MITTAG-LEFFLER MODULES 1861

injective module maps is universally injective (see Algebra, Lemma 7.76.9) we conclude
that 𝑁 → Σ−1𝑁′ is universally injective and we win. �

Lemma 34.8.4. Let 𝑅 → 𝑆 be a ring map. Let 𝑁 be an 𝑆-module. Let 𝑆 → 𝑆′ be a ring
map. Assume

(1) 𝑅 → 𝑆 is of finite presentation and 𝑁 is of finite presentation over 𝑆,
(2) 𝑁 is flat over 𝑅,
(3) 𝑆 → 𝑆′ is flat, and
(4) the image of 𝑆𝑝𝑒𝑐(𝑆′) → 𝑆𝑝𝑒𝑐(𝑆) contains all primes 𝔮 such that 𝔮 is an associ-

ated prime of 𝑁 ⊗𝑅 𝜅(𝔭) where 𝔭 is the inverse image of 𝔮 in 𝑅.
Then 𝑁 → 𝑁 ⊗𝑅 𝑆′ is 𝑅-universally injective.

Proof. ByAlgebra, Lemma 7.76.12 it suffices to show that𝑁𝔮 → (𝑁⊗𝑅𝑆′)𝔮 is a𝑅𝔭-universally
injective for any prime 𝔮 of 𝑆 lying over 𝔭 in 𝑅. Thus we may apply Lemma 34.8.3 to the
ring maps 𝑅𝔭 → 𝑆𝔮 → 𝑆′

𝔮 and the module 𝑁𝔮. �

The reader may want to compare the following lemma to Algebra, Lemma 7.91.1 and
Lemma 7.119.4. In each case the conclusion is that the map 𝑢 ∶ 𝑀 → 𝑁 is universally
injective with flat cokernel.

Lemma 34.8.5. Let (𝑅, 𝔪) be a local ring. Let 𝑢 ∶ 𝑀 → 𝑁 be an 𝑅-module map. If 𝑀 is
a projective 𝑅-module, 𝑁 is a flat 𝑅-module, and 𝑢 ∶ 𝑀/𝔪𝑀 → 𝑁/𝔪𝑁 is injective then
𝑢 is universally injective.

Proof. By Algebra, Theorem 7.79.4 the module 𝑀 is free. If we show the result holds
for every finitely generated direct summand of 𝑀, then the lemma follows. Hence we
may assume that 𝑀 is finite free. Write 𝑁 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑁𝑖 as a directed colimit of finite free
modules, see Algebra, Theorem 7.75.4. Note that 𝑢 ∶ 𝑀 → 𝑁 factors through 𝑁𝑖 for
some 𝑖 (as 𝑀 is finite free). Denote 𝑢𝑖 ∶ 𝑀 → 𝑁𝑖 the corresponding 𝑅-module map. As
𝑢 is injective we see that 𝑢𝑖 ∶ 𝑀/𝔪𝑀 → 𝑁𝑖/𝔪𝑁𝑖 is injective and remains injective on
composing with the maps 𝑁𝑖/𝔪𝑁𝑖 → 𝑁𝑖′/𝔪𝑁𝑖′ for all 𝑖′ ≥ 𝑖. As 𝑀 and 𝑁𝑖′ are finite
free over the local ring 𝑅 this implies that 𝑀 → 𝑁𝑖′ is a split injection for all 𝑖′ ≥ 𝑖. Hence
for any 𝑅-module 𝑄 we see that 𝑀⊗𝑅 𝑄 → 𝑁𝑖′ ⊗𝑅 𝑄 is injective for all 𝑖′ ≥ 𝑖. As −⊗𝑅 𝑄
commutes with colimits we conclude that 𝑀⊗𝑅 𝑄 → 𝑁𝑖′ ⊗𝑅 𝑄 is injective as desired. �

Lemma 34.8.6. Assumption and notation as in Lemma 34.8.1. Assume moreover that 𝑁 is
projective as an 𝑅-module. Then each 𝑠 ∈ Σ defines a universally injective 𝑅-module map
𝑠 ∶ 𝑁 → 𝑁, and the map 𝑁 → Σ−1𝑁 is 𝑅-universally injective.

Proof. Pick 𝑠 ∈ Σ. By Lemma 34.8.5 the map 𝑠 ∶ 𝑁 → 𝑁 is universally injective. The
map𝑁 → Σ−1𝑁 is universally injective as the directed colimit of themaps 𝑠 ∶ 𝑁 → 𝑁. �

34.9. Completion and Mittag-Leffler modules

Lemma 34.9.1. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝐴 be a set. Assume 𝑅 is
Noetherian and complete with respect to 𝐼. The completion (⨁𝛼∈𝐴 𝑅)∧ is flat and Mittag-
Leffler.

Proof. By More on Algebra, Lemma 12.20.1 the map (⨁𝛼∈𝐴 𝑅)∧ → ∏𝛼∈𝐴 𝑅 is uni-
versally injective. Thus, by Algebra, Lemmas 7.76.7 and 7.83.6 it suffices to show that
∏𝛼∈𝐴 𝑅 is flat and Mittag-Leffler. By Algebra, Proposition 7.84.5 (and Algebra, Lemma
7.84.4) we see that ∏𝛼∈𝐴 𝑅 is flat. Thus we conclude because a product of copies of 𝑅 is
Mittag-Leffler, see Algebra, Lemma 7.85.3. �
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Lemma 34.9.2. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑀 be an 𝑅-module. Assume

(1) 𝑅 is Noetherian and 𝐼-adically complete,
(2) 𝑀 is flat over 𝑅, and
(3) 𝑀/𝐼𝑀 is a projective 𝑅/𝐼-module.

Then the 𝐼-adic completion 𝑀∧ is a flat Mittag-Leffler 𝑅-module.

Proof. Choose a surjection 𝐹 → 𝑀 where 𝐹 is a free 𝑅-module. By Algebra, Lemma
7.90.18 the module 𝑀∧ is a direct summand of the module 𝐹∧. Hence it suffices to prove
the lemma for 𝐹. In this case the lemma follows from Lemma 34.9.1. �

In Lemmas 34.9.3 and 34.9.4 the assumption that 𝑆 be Noetherian holds if 𝑅 → 𝑆 is of
finite type, see Algebra, Lemma 7.28.1.

Lemma 34.9.3. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑅 → 𝑆 be a ring map, and 𝑁
an 𝑆-module. Assume

(1) 𝑅 is a Noetherian ring,
(2) 𝑆 is a Noetherian ring,
(3) 𝑁 is a finite 𝑆-module, and
(4) for any finite 𝑅-module 𝑄, any 𝔮 ∈ Ass𝑆(𝑄 ⊗𝑅 𝑁) satisfies 𝐼𝑆 + 𝔮≠𝑆.

Then the map 𝑁 → 𝑁∧ of 𝑁 into the 𝐼-adic completion of 𝑁 is universally injective as a
map of 𝑅-modules.

Proof. We have to show that for any finite 𝑅-module 𝑄 the map 𝑄 ⊗𝑅 𝑁 → 𝑄 ⊗𝑅 𝑁∧ is
injective, see Algebra, Theorem 7.76.3. As there is a canonical map 𝑄⊗𝑅𝑁∧ → (𝑄⊗𝑅𝑁)∧

it suffices to prove that the canonical map 𝑄 ⊗𝑅 𝑁 → (𝑄 ⊗𝑅 𝑁)∧ is injective. Hence we
may replace 𝑁 by 𝑄 ⊗𝑅 𝑁 and it suffices to prove the injectivity for the map 𝑁 → 𝑁∧.

Let 𝐾 = Ker(𝑁 → 𝑁∧). It suffices to show that 𝐾𝔮 = 0 for 𝔮 ∈ Ass(𝑁) as 𝑁 is a submodule
of ∏𝔮∈Ass(𝑁) 𝑁𝔮, see Algebra, Lemma 7.60.18. Pick 𝔮 ∈ Ass(𝑁). By the last assumption
we see that there exists a prime 𝔮′ ⊃ 𝐼𝑆 + 𝔮. Since 𝐾𝔮 is a localization of 𝐾𝔮′ it suffices to
prove the vanishing of 𝐾𝔮′. Note that 𝐾 = ⋂ 𝐼𝑛𝑁, hence 𝐾𝔮′ ⊂ ⋂ 𝐼𝑛𝑁𝔮′. Hence 𝐾𝔮′ = 0
by Algebra, Lemma 7.47.6. �

Lemma 34.9.4. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑅 → 𝑆 be a ring map, and 𝑁
an 𝑆-module. Assume

(1) 𝑅 is a Noetherian ring,
(2) 𝑆 is a Noetherian ring,
(3) 𝑁 is a finite 𝑆-module,
(4) 𝑁 is flat over 𝑅, and
(5) for any prime 𝔮 ⊂ 𝑆 which is an associated prime of 𝑁 ⊗𝑅 𝜅(𝔭) where 𝔭 = 𝑅 ∩ 𝔮

we have 𝐼𝑆 + 𝔮≠𝑆.

Then the map 𝑁 → 𝑁∧ of 𝑁 into the 𝐼-adic completion of 𝑁 is universally injective as a
map of 𝑅-modules.

Proof. This follows from Lemma 34.9.3 because Algebra, Lemma 7.62.5 and Remark
7.62.6 guarantee that the set of associated primes of tensor products 𝑁 ⊗𝑅 𝑄 are contained
in the set of associated primes of the modules 𝑁 ⊗𝑅 𝜅(𝔭). �
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34.10. Projective modules

The following lemma can be used to prove projectivity by Noetherian induction on the base,
see Lemma 34.10.2.

Lemma 34.10.1. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑅 → 𝑆 be a ring map, and
𝑁 an 𝑆-module. Assume

(1) 𝑅 is Noetherian and 𝐼-adically complete,
(2) 𝑅 → 𝑆 is of finite type,
(3) 𝑁 is a finite 𝑆-module,
(4) 𝑁 is flat over 𝑅,
(5) 𝑁/𝐼𝑁 is projective as a 𝑅/𝐼-module, and
(6) for any prime 𝔮 ⊂ 𝑆 which is an associated prime of 𝑁 ⊗𝑅 𝜅(𝔭) where 𝔭 = 𝑅 ∩ 𝔮

we have 𝐼𝑆 + 𝔮≠𝑆.
Then 𝑁 is projective as an 𝑅-module.

Proof. By Lemma 34.9.4 the map 𝑁 → 𝑁∧ is universally injective. By Lemma 34.9.2 the
module 𝑁∧ is Mittag-Leffler. By Algebra, Lemma 7.83.6 we conclude that 𝑁 is Mittag-
Leffler. Hence 𝑁 is countably generated, flat and Mittag-Leffler as an 𝑅-module, whence
projective by Algebra, Lemma 7.87.1. �

Lemma 34.10.2. Let 𝑅 be a ring. Let 𝑅 → 𝑆 be a ring map. Assume
(1) 𝑅 is Noetherian,
(2) 𝑅 → 𝑆 is of finite type and flat, and
(3) every fibre ring 𝑆 ⊗𝑅 𝜅(𝔭) is geometrically integral over 𝜅(𝔭).

Then 𝑆 is projective as an 𝑅-module.

Proof. Consider the set
{𝐼 ⊂ 𝑅 ∣ 𝑆/𝐼𝑆 not projective as 𝑅/𝐼-module}

We have to show this set is empty. To get a contradiction assume it is nonempty. Then it
contains a maximal element 𝐼. Let 𝐽 = √𝐼 be its radical. If 𝐼≠𝐽, then 𝑆/𝐽𝑆 is projective as
a 𝑅/𝐽-module, and 𝑆/𝐼𝑆 is flat over 𝑅/𝐼 and 𝐽/𝐼 is a nilpotent ideal in 𝑅/𝐼. Applying Alge-
bra, Lemma 7.71.5 we see that 𝑆/𝐼𝑆 is a projective 𝑅/𝐼-module, which is a contradiction.
Hence we may assume that 𝐼 is a radical ideal. In other words we are reduced to proving the
lemma in case 𝑅 is a reduced ring and 𝑆/𝐼𝑆 is a projective 𝑅/𝐼-module for every nonzero
ideal 𝐼 of 𝑅.
Assume 𝑅 is a reduced ring and 𝑆/𝐼𝑆 is a projective 𝑅/𝐼-module for every nonzero ideal 𝐼
of 𝑅. By generic flatness, Algebra, Lemma 7.109.1 (applied to a localization 𝑅𝑔 which is
a domain) or the more general Algebra, Lemma 7.109.7 there exists a nonzero 𝑓 ∈ 𝑅 such
that 𝑆𝑓 is free as an 𝑅𝑓-module. Denote 𝑅∧ = 𝑙𝑖𝑚 𝑅/(𝑓𝑛) the (𝑓)-adic completion of 𝑅.
Note that the ring map

𝑅 ⟶ 𝑅𝑓 × 𝑅∧

is a faithfully flat ring map, see Algebra, Lemma 7.90.3. Hence by faithfully flat descent of
projectivity, see Algebra, Theorem 7.89.5 it suffices to prove that 𝑆 ⊗𝑅 𝑅∧ is a projective
𝑅∧-module. To see this we will use the criterion of Lemma 34.10.1. First of all, note that
𝑆/𝑓𝑆 = (𝑆⊗𝑅 𝑅∧)/𝑓(𝑆⊗𝑅 𝑅∧) is a projective 𝑅/(𝑓)-module and that 𝑆⊗𝑅 𝑅∧ is flat and of
finite type over 𝑅∧ as a base change of such. Next, suppose that 𝔭∧ is a prime ideal of 𝑅∧.
Let 𝔭 ⊂ 𝑅 be the corresponding prime of 𝑅. As 𝑅 → 𝑆 has geometrically integral fibre
rings, the same is true for the fibre rings of any base change. Hence 𝔮∧ = 𝔭∧(𝑆 ⊗𝑅 𝑅∧),
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is a prime ideals lying over 𝔭∧ and it is the unique associated prime of 𝑆 ⊗𝑅 𝜅(𝔭∧). Thus
we win if 𝑓(𝑆 ⊗𝑅 𝑅∧) + 𝔮∧≠𝑆 ⊗𝑅 𝑅∧. This is true because 𝔭∧ + 𝑓𝑅∧≠𝑅∧ as 𝑓 lies in the
radical of the 𝑓-adically complete ring 𝑅∧ and because 𝑅∧ → 𝑆 ⊗𝑅 𝑅∧ is surjective on
spectra as its fibres are nonempty (irreducible spaces are nonempty). �

Lemma 34.10.3. Let 𝑅 be a ring. Let 𝑅 → 𝑆 be a ring map. Assume
(1) 𝑅 → 𝑆 is of finite presentation and flat, and
(2) every fibre ring 𝑆 ⊗𝑅 𝜅(𝔭) is geometrically integral over 𝜅(𝔭).

Then 𝑆 is projective as an 𝑅-module.

Proof. We can find a cocartesian diagram of rings

𝑆0
// 𝑆

𝑅0

OO

// 𝑅

OO

such that 𝑅0 is of finite type over 𝐙, the map 𝑅0 → 𝑆0 is of finite type and flat with
geometrically integral fibres, see More on Morphisms, Lemmas 33.24.4, 33.24.6, 33.24.7,
and 33.24.11. By Lemma 34.10.2 we see that 𝑆0 is a projective 𝑅0-module. Hence 𝑆 =
𝑆0 ⊗𝑅0

𝑅 is a projective 𝑅-module, see Algebra, Lemma 7.88.1. �

Remark 34.10.4. Lemma 34.10.3 is a key step in the development of results in this chapter.
The analogue of this lemma in [GR71] is [GR71, I Proposition 3.3.1]: If 𝑅 → 𝑆 is smooth
with geometrically integral fibres, then 𝑆 is projective as an 𝑅-module. This is a special
case of Lemma 34.10.3, but as we will later improve on this lemma anyway, we do not gain
much from having a stronger result at this point. We briefly sketch the proof of this as it is
given in [GR71].

(1) First reduce to the case where 𝑅 is Noetherian as above.
(2) Since projectivity descends through faithfully flat ring maps, see Algebra, Theo-

rem 7.89.5 we may work locally in the fppf topology on 𝑅, hence we may assume
that 𝑅 → 𝑆 has a section 𝜎 ∶ 𝑆 → 𝑅. (Just by the usual trick of base changing
to 𝑆.) Set 𝐼 = Ker(𝑆 → 𝑅).

(3) Localizing a bit more on 𝑅 we may assume that 𝐼/𝐼2 is a free 𝑅-module and
that the completion 𝑆∧ of 𝑆 with respect to 𝐼 is isomorphic to 𝑅[[𝑡1, … , 𝑡𝑛]], see
Morphisms, Lemma 24.33.20. Here we are using that 𝑅 → 𝑆 is smooth.

(4) To prove that 𝑆 is projective as an 𝑅-module, it suffices to prove that 𝑆 is flat,
countably generated and Mittag-Leffler as an 𝑅-module, see Algebra, Lemma
7.87.1. The first two properties are evident. Thus it suffices to prove that 𝑆 is
Mittag-Leffler as an𝑅-module. ByAlgebra, Lemma 7.85.4 themodule𝑅[[𝑡1, … , 𝑡𝑛]]
is Mittag-Leffler over 𝑅. Hence Algebra, Lemma 7.83.6 shows that it suffices to
show that the 𝑆 → 𝑆∧ is universally injective as a map of 𝑅-modules.

(5) Apply Lemma 34.8.4 to see that 𝑆 → 𝑆∧ is 𝑅-universally injective. Namely, as
𝑅 → 𝑆 has geometrically integral fibres, any associated point of any fibre ring
is just the generic point of the fibre ring which is in the image of 𝑆𝑝𝑒𝑐(𝑆∧) →
𝑆𝑝𝑒𝑐(𝑆).

There is an analogy between the proof as sketched just now, and the development of the
arguments leading to the proof of Lemma 34.10.3. In both a completion plays an essential
role, and both times the assumption of having geometrically integral fibres assures one that
the map from 𝑆 to the completion of 𝑆 is 𝑅-universally injective.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05FT
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05FU


34.11. FLAT FINITE TYPE MODULES, PART I 1865

34.11. Flat finite type modules, Part I

In some cases given a ring map 𝑅 → 𝑆 of finite presentation and a finite 𝑆-module 𝑁 the
flatness of 𝑁 over 𝑅 implies that 𝑁 is of finite presentation. In this section we prove this is
true ``pointwise''. We remark that the first proof of Proposition 34.11.3 uses the geometric
results of Section 34.4 but not the existence of a complete dévissage.

Lemma 34.11.1. Let (𝑅, 𝔪) be a local ring. Let 𝑅 → 𝑆 be a finitely presented flat ring
map with geometrically integral fibres. Write 𝔭 = 𝔪𝑆. Let 𝔮 ⊂ 𝑆 be a prime ideal lying
over 𝔪. Let 𝑁 be a finite 𝑆-module. There exists 𝑟 ≥ 0 and an 𝑆-module map

𝛼 ∶ 𝑆⊕𝑟 ⟶ 𝑁
such that 𝛼 ∶ 𝜅(𝔭)⊕𝑟 → 𝑁 ⊗𝑆 𝜅(𝔭) is an isomorphism. For any such 𝛼 the following are
equivalent:

(1) 𝑁𝔮 is 𝑅-flat,
(2) 𝛼 is 𝑅-universally injective and Coker(𝛼)𝔮 is 𝑅-flat,
(3) 𝛼 is injective and Coker(𝛼)𝔮 is 𝑅-flat,
(4) 𝛼𝔭 is an isomorphism and Coker(𝛼)𝔮 is 𝑅-flat, and
(5) 𝛼𝔮 is injective and Coker(𝛼)𝔮 is 𝑅-flat.

Proof. To obtain 𝛼 set 𝑟 = dim𝜅(𝔭) 𝑁 ⊗𝑆 𝜅(𝔭) and pick 𝑥1, … , 𝑥𝑟 ∈ 𝑁 which form a basis
of 𝑁 ⊗𝑆 𝜅(𝔭). Define 𝛼(𝑠1, … , 𝑠𝑟) = ∑ 𝑠𝑖𝑥𝑖. This proves the existence.
Fix an 𝛼. The most interesting implication is (1) ⇒ (2) which we prove first. Assume (1).
Because 𝑆/𝔪𝑆 is a domain with fraction field 𝜅(𝔭) we see that (𝑆/𝔪𝑆)⊕𝑟 → 𝑁𝔭/𝔪𝑁𝔭 =
𝑁 ⊗𝑆 𝜅(𝔭) is injective. Hence by Lemmas 34.8.5 and 34.10.3. the map 𝑆⊕𝑟 → 𝑁𝔭 is
𝑅-universally injective. It follows that 𝑆⊕𝑟 → 𝑁 is 𝑅-universally injective, see Alge-
bra, Lemma 7.76.10. Then also the localization 𝛼𝔮 is 𝑅-universally injective, see Algebra,
Lemma 7.76.13. We conclude that Coker(𝛼)𝔮 is 𝑅-flat by Algebra, Lemma 7.76.7.
The implication (2) ⇒ (3) is immediate. If (3) holds, then 𝛼𝔭 is injective as a localization of
an injective module map. By Nakayama's lemma (Algebra, Lemma 7.14.5) 𝛼𝔭 is surjective
too. Hence (3) ⇒ (4). If (4) holds, then 𝛼𝔭 is an isomorphism, so 𝛼 is injective as 𝑆𝔮 → 𝑆𝔭
is injective. Namely, elements of 𝑆 ⧵ 𝔭 are nonzero divisors on 𝑆 by a combination of
Lemmas 34.8.6 and 34.10.3. Hence (4) ⇒ (5). Finally, if (5) holds, then 𝑁𝔮 is 𝑅-flat as an
extension of flat modules, see Algebra, Lemma 7.35.12. Hence (5) ⇒ (1) and the proof is
finished. �

Lemma 34.11.2. Let (𝑅, 𝔪) be a local ring. Let𝑅 → 𝑆 be a ringmap of finite presentation.
Let 𝑁 be a finite 𝑆-module. Let 𝔮 be a prime of 𝑆 lying over 𝔪. Assume that 𝑁𝔮 is flat
over 𝑅, and assume there exists a complete dévissage of 𝑁/𝑆/𝑅 at 𝔮. Then 𝑁 is a finitely
presented 𝑆-module, free as an 𝑅-module, and there exists an isomorphism

𝑁 ≅ 𝐵⊕𝑟1
1 ⊕ … ⊕ 𝐵⊕𝑟𝑛

𝑛

as 𝑅-modules where each 𝐵𝑖 is a smooth 𝑅-algebra with geometrically irreducible fibres.

Proof. Let (𝐴𝑖, 𝐵𝑖, 𝑀𝑖, 𝛼𝑖, 𝔮𝑖)𝑖=1,…,𝑛 be the given complete dévissage. We prove the lemma
by induction on 𝑛. Note that 𝑁 is finitely presented as an 𝑆-module if and only if 𝑀1
is finitely presented as an 𝐵1-module, see Remark 34.7.3. Note that 𝑁𝔮 ≅ (𝑀1)𝔮1

as
𝑅-modules because (a) 𝑁𝔮 ≅ (𝑀1)𝔮′

1
where 𝔮′

1 is the unique prime in 𝐴1 lying over 𝔮1
and (b) (𝐴1)𝔮′

1
= (𝐴1)𝔮1

by Algebra, Lemma 7.36.11, so (c) (𝑀1)𝔮′
1

≅ (𝑀1)𝔮1
. Hence

(𝑀1)𝔮1
is a flat 𝑅-module. Thus we may replace (𝑆, 𝑁) by (𝐵1, 𝑀1) in order to prove
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the lemma. By Lemma 34.11.1 the map 𝛼1 ∶ 𝐵⊕𝑟1
1 → 𝑀1 is 𝑅-universally injective

and Coker(𝛼1)𝔮 is 𝑅-flat. Note that (𝐴𝑖, 𝐵𝑖, 𝑀𝑖, 𝛼𝑖, 𝔮𝑖)𝑖=2,…,𝑛 is a complete dévissage of
Coker(𝛼1)/𝐵1/𝑅 at 𝔮1. Hence the induction hypothesis implies that Coker(𝛼1) is finitely
presented as a 𝐵1-module, free as an 𝑅-module, and has a decomposition as in the lemma.
This implies that 𝑀1 is finitely presented as a 𝐵1-module, see Algebra, Lemma 7.5.4. It
further implies that 𝑀1 ≅ 𝐵⊕𝑟1

1 ⊕ Coker(𝛼1) as 𝑅-modules, hence a decomposition as in
the lemma. Finally, 𝐵1 is projective as an 𝑅-module by Lemma 34.10.3 hence free as an
𝑅-module by Algebra, Theorem 7.79.4. This finishes the proof. �

Proposition 34.11.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Letℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑥 ∈ 𝑋 with image 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is locally of finite presentation,
(2) ℱ is of finite type, and
(3) ℱ is flat at 𝑥 over 𝑆.

Then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and an open sub-
scheme

𝑉 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)

which contains the unique point of 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) mapping to 𝑥 such that the pullback
of ℱ to 𝑉 is an 𝒪𝑉-module of finite presentation and flat over 𝒪𝑆′,𝑠′.

First proof. This proof is longer but does not use the existence of a complete dévissage.
The problem is local around 𝑥 and 𝑠, hence we may assume that 𝑋 and 𝑆 are affine. During
the proof we will finitely many times replace 𝑆 by an elementary étale neighbourhood of
(𝑆, 𝑠). The goal is then to find (after such a replacement) an open 𝑉 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠)
containing 𝑥 such that ℱ|𝑉 is flat over 𝑆 and finitely presented. Of course we may also
replace 𝑆 by 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) at any point of the proof, i.e., we may assume 𝑆 is a local scheme.
We will prove the lemma by induction on the integer 𝑛 = dim𝑥(Supp(ℱ𝑠)).

We can choose

(1) elementary étale neighbourhoods 𝑔 ∶ (𝑋′, 𝑥′) → (𝑋, 𝑥), 𝑒 ∶ (𝑆′, 𝑠′) → (𝑆, 𝑠),
(2) a commutative diagram

𝑋

𝑓

��

𝑋′

��

𝑔
oo 𝑍′

𝑖
oo

𝜋
��

𝑌′

ℎ
��

𝑆 𝑆′𝑒oo 𝑆′

(3) a point 𝑧′ ∈ 𝑍′ with 𝑖(𝑧′) = 𝑥′, 𝑦′ = 𝜋(𝑧′), ℎ(𝑦′) = 𝑠′,
(4) a finite type quasi-coherent 𝒪𝑍′-module 𝒢,
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as in Lemma 34.4.2. We are going to replace 𝑆 by 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′), see remarks in first para-
graph of the proof. Consider the diagram

𝑋𝒪𝑆′,𝑠′

𝑓

��

𝑋′
𝒪𝑆′,𝑠′

��

𝑔
oo 𝑍′

𝒪𝑆′,𝑠′𝑖
oo

𝜋

��
𝑌′

𝒪𝑆′,𝑠′

ℎ
yy

𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)

Here we have base changed the schemes 𝑋′, 𝑍′, 𝑌′ over 𝑆′ via 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) → 𝑆′ and the
scheme 𝑋 over 𝑆 via 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) → 𝑆. It is still the case that 𝑔 is étale, see Lemma 34.3.2.
After replacing 𝑋 by 𝑋𝒪𝑆′,𝑠′ , 𝑋′ by 𝑋′

𝒪𝑆′,𝑠′
, 𝑍′ by 𝑍′

𝒪𝑆′,𝑠′
, and 𝑌′ by 𝑌′

𝒪𝑆′,𝑠′
wemay assume

we have a diagram as Lemma 34.4.2 where in addition 𝑆 = 𝑆′ is a local scheme with closed
point 𝑠. By Lemmas 34.4.3 and 34.4.4 the result for 𝑌′ → 𝑆, the sheaf 𝜋∗𝒢, and the point
𝑦′ implies the result for 𝑋 → 𝑆, ℱ and 𝑥. Hence we may assume that 𝑆 is local and 𝑋 → 𝑆
is a smooth morphism of affines with geometrically irreducible fibres of dimension 𝑛.

The base case of the induction: 𝑛 = 0. As 𝑋 → 𝑆 is smooth with geometrically irredible
fibres of dimension 0 we see that 𝑋 → 𝑆 is an open immersion, see Descent, Lemma
31.21.2. As 𝑆 is local and the closed point is in the image of 𝑋 → 𝑆 we conclude that
𝑋 = 𝑆. Thus we see that ℱ corresponds to a finite flat 𝒪𝑆,𝑠 module. In this case the result
follows from Algebra, Lemma 7.72.4 which tells us that ℱ is in fact finite free.

The induction step. Assume the result holds whenever the dimension of the support in the
closed fibre is < 𝑛. Write 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) and ℱ = �̃� for some 𝐵-module
𝑁. Note that 𝐴 is a local ring; denote its maximal ideal 𝔪. Then 𝔭 = 𝔪𝐵 is the unique
minimal prime lying over 𝔪 as 𝑋 → 𝑆 has geometrically irreducible fibres. Finally, let
𝔮 ⊂ 𝐵 be the prime corresponding to 𝑥. By Lemma 34.11.1 we can choose a map

𝛼 ∶ 𝐵⊕𝑟 → 𝑁

such that 𝜅(𝔭)⊕𝑟 → 𝑁⊗𝐵𝜅(𝔭) is an isomorphism. Moreover, as 𝑁𝔮 is 𝐴-flat the lemma also
shows that 𝛼 is injective and that Coker(𝛼)𝔮 is 𝐴-flat. Set 𝑄 = Coker(𝛼). Note that the sup-
port of 𝑄/𝔪𝑄 does not contain 𝔭. Hence it is certainly the case that dim𝔮(Supp(𝑄/𝔪𝑄)) <
𝑛. Combining everything we know about 𝑄 we see that the induction hypothesis applies to
𝑄. It follows that there exists an elementary étale morphism (𝑆′, 𝑠) → (𝑆, 𝑠) such that the
conclusion holds for 𝑄 ⊗𝐴 𝐴′ over 𝐵 ⊗𝐴 𝐴′ where 𝐴′ = 𝒪𝑆′,𝑠′. After replacing 𝐴 by 𝐴′

we have an exact sequence
0 → 𝐵⊕𝑟 → 𝑁 → 𝑄 → 0

(here we use that 𝛼 is injective as mentioned above) of finite 𝐵-modules and we also get
an element 𝑔 ∈ 𝐵, 𝑔∉𝔮 such that 𝑄𝑔 is finitely presented over 𝐵𝑔 and flat over 𝐴. Since
localization is exact we see that

0 → 𝐵⊕𝑟
𝑔 → 𝑁𝑔 → 𝑄𝑔 → 0

is still exact. As 𝐵𝑔 and 𝑄𝑔 are flat over 𝐴 we conlude that 𝑁𝑔 is flat over 𝐴, see Algebra,
Lemma 7.35.12, and as 𝐵𝑔 and 𝑄𝑔 are finitely presented over 𝐵𝑔 the same holds for 𝑁𝑔,
see Algebra, Lemma 7.5.4. �
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Second proof. We apply Proposition 34.6.7 to find a commutative diagram

(𝑋, 𝑥)

��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods and
such that 𝑔∗ℱ/𝑋′/𝑆′ has a complete dévissage at 𝑥. (In particular 𝑆′ and 𝑋′ are affine.) By
Morphisms, Lemma 24.24.11 we see that 𝑔∗ℱ is flat at 𝑥′ over 𝑆 and by Lemma 34.3.3 we
see that it is flat at 𝑥′ over 𝑆′. Via Remark 34.7.5 we deduce that

Γ(𝑋′, 𝑔∗ℱ)/Γ(𝑋′, 𝒪𝑋′)/Γ(𝑆′, 𝒪𝑆′)

has a complete dévisage at the prime of Γ(𝑋′, 𝒪𝑋′) corresponding to 𝑥′. We may base
change this complete dévissage to the local ring 𝒪𝑆′,𝑠′ of Γ(𝑆′, 𝒪𝑆′) at the prime corre-
sponding to 𝑠′. Thus Lemma 34.11.2 implies that

Γ(𝑋′, ℱ′) ⊗Γ(𝑆′,𝒪𝑆′) 𝒪𝑆′,𝑠′

is flat over 𝒪𝑆′,𝑠′ and of finite presentation over Γ(𝑋′, 𝒪𝑋′)⊗Γ(𝑆′,𝒪𝑆′)𝒪𝑆′,𝑠′. In other words,
the restriction of ℱ to 𝑋′×𝑆′ 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is of finite presentation and flat over 𝒪𝑆′,𝑠′. Since
the morphism 𝑋′ ×𝑆′ 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) → 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is étale (Lemma 34.3.2) its image
𝑉 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is an open subscheme, and by étale descent the restriction of ℱ to 𝑉
is of finite presentation and flat over 𝒪𝑆′,𝑠′. (Results used: Morphisms, Lemma 24.35.13,
Descent, Lemma 31.5.2, and Morphisms, Lemma 24.24.11.) �

Lemma 34.11.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is locally of finite type.
Let ℱ be a quasi-coherent 𝒪𝑋-module of finite type. Let 𝑠 ∈ 𝑆. Then the set

{𝑥 ∈ 𝑋𝑠 ∣ ℱ flat over 𝑆 at 𝑥}

is open in the fibre 𝑋𝑠.

Proof. Suppose 𝑥 ∈ 𝑈. Choose an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and
open 𝑉 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) as in Proposition 34.11.3. Note that 𝑋𝑠′ = 𝑋𝑠 as 𝜅(𝑠) = 𝜅(𝑠′).
If 𝑥′ ∈ 𝑉 ∩ 𝑋𝑠′, then the pullback of ℱ to 𝑋 ×𝑆 𝑆′ is flat over 𝑆′ at 𝑥′. Hence ℱ is flat
at 𝑥′ over 𝑆, see Morphisms, Lemma 24.24.11. In other words 𝑋𝑠 ∩ 𝑉 ⊂ 𝑈 is an open
neighbourhood of 𝑥 in 𝑈. �

Lemma 34.11.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑥 ∈ 𝑋 with image 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is locally of finite type,
(2) ℱ is of finite type, and
(3) ℱ is flat at 𝑥 over 𝑆.

Then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and an open sub-
scheme

𝑉 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)
which contains the unique point of 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) mapping to 𝑥 such that the pullback
of ℱ to 𝑉 is flat over 𝒪𝑆′,𝑠′.

Proof. (The only difference between this and Proposition 34.11.3 is that we do not assume
𝑓 is of finite presentation.) The question is local on 𝑋 and 𝑆, hence we may assume 𝑋 and
𝑆 are affine. Write 𝑋 = 𝑆𝑝𝑒𝑐(𝐵), 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and write 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼. In other
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words we obtain a closed immersion 𝑖 ∶ 𝑋 → 𝐀𝑛
𝑆. Denote 𝑡 = 𝑖(𝑥) ∈ 𝐀𝑛

𝑆. We may apply
Proposition 34.11.3 to 𝐀𝑛

𝑆 → 𝑆, the sheaf 𝑖∗ℱ and the point 𝑡. We obtain an elementary
étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and an open subscheme

𝑊 ⊂ 𝐀𝑛
𝒪𝑆′,𝑠′

such that the pull back of 𝑖∗ℱ to 𝑊 is flat over 𝒪𝑆′,𝑠′. This means that 𝑉 ∶= 𝑊 ∩ (𝑋 ×𝑆
𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)) is the desired open subscheme. �

Lemma 34.11.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is of finite presentation,
(2) ℱ is of finite type, and
(3) ℱ is flat over 𝑆 at every point of the fibre 𝑋𝑠.

Then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and an open sub-
scheme

𝑉 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)
which contains the fibre 𝑋𝑠 = 𝑋 ×𝑆 𝑠′ such that the pullback of ℱ to 𝑉 is an 𝒪𝑉-module of
finite presentation and flat over 𝒪𝑆′,𝑠′.

Proof. For every point 𝑥 ∈ 𝑋𝑠 we can use Proposition 34.11.3 to find an elementary
étale neighbourhood (𝑆𝑥, 𝑠𝑥) → (𝑆, 𝑠) and an open 𝑉𝑥 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆𝑥,𝑠𝑥

) such that
𝑥 ∈ 𝑋𝑠 = 𝑋×𝑆 𝑠𝑥 is contained in 𝑉𝑥 and such that the pullback of ℱ to 𝑉𝑥 is an 𝒪𝑉𝑥

-module
of finite presentation and flat over 𝒪𝑆𝑥,𝑠𝑥

. In particular we may view the fibre (𝑉𝑥)𝑠𝑥
as an

open neighbourhood of 𝑥 in 𝑋𝑠. Because 𝑋𝑠 is quasi-compact we can find a finite number of
points 𝑥1, … , 𝑥𝑛 ∈ 𝑋𝑠 such that 𝑋𝑠 is the union of the (𝑉𝑥𝑖

)𝑠𝑥𝑖
. Choose an elementary étale

neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) which dominates each of the neighbourhoods (𝑆𝑥𝑖
, 𝑠𝑥𝑖

),
see More on Morphisms, Lemma 33.25.4. Set 𝑉 = ⋃ 𝑉𝑖 where 𝑉𝑖 is the inverse images of
the open 𝑉𝑥𝑖

via the morphism

𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) ⟶ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆𝑥𝑖,𝑠𝑥𝑖
)

By construction 𝑉 contains 𝑋𝑠 and by construction the pullback of ℱ to 𝑉 is an 𝒪𝑉-module
of finite presentation and flat over 𝒪𝑆′,𝑠′. �

Lemma 34.11.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is of finite type,
(2) ℱ is of finite type, and
(3) ℱ is flat over 𝑆 at every point of the fibre 𝑋𝑠.

Then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and an open sub-
scheme

𝑉 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)
which contains the fibre 𝑋𝑠 = 𝑋 ×𝑆 𝑠′ such that the pullback of ℱ to 𝑉 is flat over 𝒪𝑆′,𝑠′.

Proof. (The only difference between this and Lemma 34.11.6 is that we do not assume 𝑓
is of finite presentation.) For every point 𝑥 ∈ 𝑋𝑠 we can use Lemma 34.11.5 to find an
elementary étale neighbourhood (𝑆𝑥, 𝑠𝑥) → (𝑆, 𝑠) and an open 𝑉𝑥 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆𝑥,𝑠𝑥

)
such that 𝑥 ∈ 𝑋𝑠 = 𝑋 ×𝑆 𝑠𝑥 is contained in 𝑉𝑥 and such that the pullback of ℱ to 𝑉𝑥 is flat
over 𝒪𝑆𝑥,𝑠𝑥

. In particular wemay view the fibre (𝑉𝑥)𝑠𝑥
as an open neighbourhood of 𝑥 in 𝑋𝑠.

Because 𝑋𝑠 is quasi-compact we can find a finite number of points 𝑥1, … , 𝑥𝑛 ∈ 𝑋𝑠 such that
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𝑋𝑠 is the union of the (𝑉𝑥𝑖
)𝑠𝑥𝑖

. Choose an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠)
which dominates each of the neighbourhoods (𝑆𝑥𝑖

, 𝑠𝑥𝑖
), see More on Morphisms, Lemma

33.25.4. Set 𝑉 = ⋃ 𝑉𝑖 where 𝑉𝑖 is the inverse images of the open 𝑉𝑥𝑖
via the morphism

𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) ⟶ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆𝑥𝑖,𝑠𝑥𝑖
)

By construction 𝑉 contains 𝑋𝑠 and by construction the pullback of ℱ to 𝑉 is flat over 𝒪𝑆′,𝑠′.
�

Lemma 34.11.8. Let 𝑆 be a scheme. Let 𝑋 be locally of finite type over 𝑆. Let 𝑥 ∈ 𝑋 with
image 𝑠 ∈ 𝑆. If 𝑋 is flat at 𝑥 over 𝑆, then there exists an elementary étale neighbourhood
(𝑆′, 𝑠′) → (𝑆, 𝑠) and an open subscheme

𝑉 ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)

which contains the unique point of𝑋×𝑆𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)mapping to 𝑥 such that𝑉 → 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)
is flat and of finite presentation.

Proof. The question is local on 𝑋 and 𝑆, hence we may assume 𝑋 and 𝑆 are affine. Write
𝑋 = 𝑆𝑝𝑒𝑐(𝐵), 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and write 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼. In other words we obtain
a closed immersion 𝑖 ∶ 𝑋 → 𝐀𝑛

𝑆. Denote 𝑡 = 𝑖(𝑥) ∈ 𝐀𝑛
𝑆. We may apply Proposition

34.11.3 to 𝐀𝑛
𝑆 → 𝑆, the sheaf ℱ = 𝑖∗𝒪𝑋 and the point 𝑡. We obtain an elementary étale

neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and an open subscheme

𝑊 ⊂ 𝐀𝑛
𝒪𝑆′,𝑠′

such that the pull back of 𝑖∗𝒪𝑋 is flat and of finite presentation. This means that 𝑉 ∶=
𝑊 ∩ (𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)) is the desired open subscheme. �

Lemma 34.11.9. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism which is locally of finite presentation. Let
ℱ be a quasi-coherent 𝒪𝑋-module of finite type. If 𝑥 ∈ 𝑋 and ℱ is flat at 𝑥 over 𝑆, then
ℱ𝑥 is an 𝒪𝑋,𝑥-module of finite presentation.

Proof. Let 𝑠 = 𝑓(𝑥). By Proposition 34.11.3 there exists an elementary étale neighbour-
hood (𝑆′, 𝑠′) → (𝑆, 𝑠) such that the pullback of ℱ to 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is of finite pre-
sentation in a neighbourhood of the point 𝑥′ ∈ 𝑋𝑠′ = 𝑋𝑠 corresponding to 𝑥. The ring
map

𝒪𝑋,𝑥 ⟶ 𝒪𝑋×𝑆𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′),𝑥′ = 𝒪𝑋×𝑆𝑆′,𝑥′

is flat and local as a localization of an étale ring map. Hence ℱ𝑥 is of finite presentation
over 𝒪𝑋,𝑥 by descent, see Algebra, Lemma 7.77.2 (and also that a flat local ring map is
faithfully flat, see Algebra, Lemma 7.35.16). �

Lemma 34.11.10. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism which is locally of finite type. Let 𝑥 ∈ 𝑋
with image 𝑠 ∈ 𝑆. If 𝑓 is flat at 𝑥 over 𝑆, then 𝒪𝑋,𝑥 is essentially of finite presentation over
𝒪𝑆,𝑠.

Proof. We may assume 𝑋 and 𝑆 affine. Write 𝑋 = 𝑆𝑝𝑒𝑐(𝐵), 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and write
𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼. In other words we obtain a closed immersion 𝑖 ∶ 𝑋 → 𝐀𝑛

𝑆. Denote
𝑡 = 𝑖(𝑥) ∈ 𝐀𝑛

𝑆. We may apply Lemma 34.11.9 to 𝐀𝑛
𝑆 → 𝑆, the sheaf ℱ = 𝑖∗𝒪𝑋 and the

point 𝑡. We conclude that 𝒪𝑋,𝑥 is of finite presentation over 𝒪𝐀𝑛
𝑆,𝑡 which implies what we

want. �
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34.12. Flat finitely presented modules

In some cases given a ring map 𝑅 → 𝑆 of finite presentation and a finitely presented
𝑆-module 𝑁 the flatness of 𝑁 over 𝑅 implies that 𝑁 is projective as an 𝑅-module, at least
after replacing 𝑆 by an étale extension. In this section we collect a some results of this
nature.

Lemma 34.12.1. Let 𝑅 be a ring. Let 𝑅 → 𝑆 be a finitely presented flat ring map with
geometrically integral fibres. Let 𝔮 ⊂ 𝑆 be a prime ideal lying over the prime 𝔯 ⊂ 𝑅. Set
𝔭 = 𝔯𝑆. Let 𝑁 be a finitely presented 𝑆-module. There exists 𝑟 ≥ 0 and an 𝑆-module map

𝛼 ∶ 𝑆⊕𝑟 ⟶ 𝑁
such that 𝛼 ∶ 𝜅(𝔭)⊕𝑟 → 𝑁 ⊗𝑆 𝜅(𝔭) is an isomorphism. For any such 𝛼 the following are
equivalent:

(1) 𝑁𝔮 is 𝑅-flat,
(2) there exists an 𝑓 ∈ 𝑅, 𝑓∉𝔯 such that 𝛼𝑓 ∶ 𝑆⊕𝑟

𝑓 → 𝑁𝑓 is 𝑅𝑓-universally injective
and a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that Coker(𝛼)𝑔 is 𝑅-flat,

(3) 𝛼𝔯 is 𝑅𝔯-universally injective and Coker(𝛼)𝔮 is 𝑅-flat
(4) 𝛼𝔯 is injective and Coker(𝛼)𝔮 is 𝑅-flat,
(5) 𝛼𝔭 is an isomorphism and Coker(𝛼)𝔮 is 𝑅-flat, and
(6) 𝛼𝔮 is injective and Coker(𝛼)𝔮 is 𝑅-flat.

Proof. To obtain 𝛼 set 𝑟 = dim𝜅(𝔭) 𝑁 ⊗𝑆 𝜅(𝔭) and pick 𝑥1, … , 𝑥𝑟 ∈ 𝑁 which form a basis
of 𝑁 ⊗𝑆 𝜅(𝔭). Define 𝛼(𝑠1, … , 𝑠𝑟) = ∑ 𝑠𝑖𝑥𝑖. This proves the existence.

Fix a choice of 𝛼. We may apply Lemma 34.11.1 to the map 𝛼𝔯 ∶ 𝑆⊕𝑟
𝔯 → 𝑁𝔯. Hence we

see that (1), (3), (4), (5), and (6) are all equivalent. Since it is also clear that (2) implies (3)
we see that all we have to do is show that (1) implies (2).
Assume (1). By openness of flatness, see Algebra, Theorem 7.120.4, the set

𝑈1 = {𝔮′ ⊂ 𝑆 ∣ 𝑁𝔮′ is flat over 𝑅}

is open in 𝑆𝑝𝑒𝑐(𝑆). It contains 𝔮 by assumption and hence 𝔭. Because 𝑆⊕𝑟 and 𝑁 are
finitely presented 𝑆-modules the set

𝑈2 = {𝔮′ ⊂ 𝑆 ∣ 𝛼𝔮′ is an isomorphism}
is open in 𝑆𝑝𝑒𝑐(𝑆), see Algebra, Lemma 7.73.2. It contains 𝔭 by (5). As 𝑅 → 𝑆 is finitely
presented and flat the map Φ ∶ 𝑆𝑝𝑒𝑐(𝑆) → 𝑆𝑝𝑒𝑐(𝑅) is open, see Algebra, Proposition
7.36.8. For any prime 𝔯′ ∈ Φ(𝑈1 ∩ 𝑈2) we see that there exists a prime 𝔮′ lying over 𝔯′

such that 𝑁𝔮′ is flat and such that 𝛼𝔮′ is an isomorphism, which implies that 𝛼 ⊗ 𝜅(𝔭′) is
an isomorphism where 𝔭′ = 𝔯′𝑆. Thus 𝛼𝔯′ is 𝑅𝔯′-universally injective by the implication
(1) ⇒ (3). Hence if we pick 𝑓 ∈ 𝑅, 𝑓∉𝔯 such that 𝐷(𝑓) ⊂ Φ(𝑈1 ∩ 𝑈2) then we conclude
that 𝛼𝑓 is 𝑅𝑓-universally injective, see Algebra, Lemma 7.76.12. The same reasoning also
shows that for any 𝔮′ ∈ 𝑈1 ∩ Φ−1(Φ(𝑈1 ∩ 𝑈2)) the module Coker(𝛼)𝔮′ is 𝑅-flat. Note
that 𝔮 ∈ 𝑈1 ∩ Φ−1(Φ(𝑈1 ∩ 𝑈2)). Hence we can find a 𝑔 ∈ 𝑆, 𝑔∉𝔮 such that 𝐷(𝑔) ⊂
𝑈1 ∩ Φ−1(Φ(𝑈1 ∩ 𝑈2)) and we win. �

Lemma 34.12.2. Let 𝑅 → 𝑆 be a ring map of finite presentation. Let 𝑁 be a finitely
presented 𝑆-module flat over 𝑅. Let 𝔯 ⊂ 𝑅 be a prime ideal. Assume there exists a complete
dévissage of 𝑁/𝑆/𝑅 over 𝔯. Then there exists an 𝑓 ∈ 𝑅, 𝑓∉𝔯 such that

𝑁𝑓 ≅ 𝐵⊕𝑟1
1 ⊕ … ⊕ 𝐵⊕𝑟𝑛

𝑛
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as 𝑅-modules where each 𝐵𝑖 is a smooth 𝑅𝑓-algebra with geometrically irreducible fibres.
Moreover, 𝑁𝑓 is projective as an 𝑅𝑓-module.

Proof. Let (𝐴𝑖, 𝐵𝑖, 𝑀𝑖, 𝛼𝑖)𝑖=1,…,𝑛 be the given complete dévissage. We prove the lemma by
induction on 𝑛. Note that the assertions of the lemma are entirely about the structure of 𝑁 as
an 𝑅-module. Hence we may replace 𝑁 by 𝑀1, and we may think of 𝑀1 as a 𝐵1-module.
See Remark 34.7.3 in order to see why 𝑀1 is of finite presentation as a 𝐵1-module. By
Lemma 34.12.1 we may, after replacing 𝑅 by 𝑅𝑓 for some 𝑓 ∈ 𝑅, 𝑓∉𝔯, assume the map
𝛼1 ∶ 𝐵⊕𝑟1

1 → 𝑀1 is 𝑅-universally injective. Since 𝑀1 and 𝐵⊕𝑟1
1 are 𝑅-flat and finitely

presented as 𝐵1-modules we see that Coker(𝛼1) is 𝑅-flat (Algebra, Lemma 7.76.7) and
finitely presented as a 𝐵1-module. Note that (𝐴𝑖, 𝐵𝑖, 𝑀𝑖, 𝛼𝑖)𝑖=2,…,𝑛 is a complete dévissage
of Coker(𝛼1). Hence the induction hypothesis implies that, after replacing 𝑅 by 𝑅𝑓 for some
𝑓 ∈ 𝑅, 𝑓∉𝔯, we may assume that Coker(𝛼1) has a decomposition as in the lemma and is
projective. In particular 𝑀1 = 𝐵⊕𝑟1

1 ⊕ Coker(𝛼1). This proves the statement regarding the
decomposition. The statement on projectivity follows as 𝐵1 is projective as an 𝑅-module
by Lemma 34.10.3. �

Remark 34.12.3. There is a variant of Lemma 34.12.2 where we weaken the flatness con-
dition by assuming only that 𝑁 is flat at some given prime 𝔮 lying over 𝔯 but where we
strengthen the dévissage condition by assuming the existence of a complete dévissage at 𝔮.
Compare with Lemma 34.11.2.

The following is the main result of this section.

Proposition 34.12.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Letℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑥 ∈ 𝑋 with image 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is locally of finite presentation,
(2) ℱ is of finite presentation, and
(3) ℱ is flat at 𝑥 over 𝑆.

Then there exists a commutative diagram of pointed schemes

(𝑋, 𝑥)

��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)oo

whose horizontal arrows are elementary étale neighbourhoods such that 𝑋′, 𝑆′ are affine
and such that Γ(𝑋′, 𝑔∗ℱ) is a projective Γ(𝑆′, 𝒪𝑆′)-module.

Proof. By openness of flatness, seeMore onMorphisms, Theorem 33.11.1 we may replace
𝑋 by an open neighbourhood of 𝑥 and assume that ℱ is flat over 𝑆. Next, we apply Proposi-
tion 34.6.7 to find a diagram as in the statement of the proposition such that 𝑔∗ℱ/𝑋′/𝑆′ has
a complete dévissage over 𝑠′. (In particular 𝑆′ and 𝑋′ are affine.) By Morphisms, Lemma
24.24.11 we see that 𝑔∗ℱ is flat over 𝑆 and by Lemma 34.3.3 we see that it is flat over 𝑆′.
Via Remark 34.7.5 we deduce that

Γ(𝑋′, 𝑔∗ℱ)/Γ(𝑋′, 𝒪𝑋′)/Γ(𝑆′, 𝒪𝑆′)

has a complete dévisage over the prime of Γ(𝑆′, 𝒪𝑆′) corresponding to 𝑠′. Thus Lemma
34.12.2 implies that the result of the proposition holds after replacing 𝑆′ by a standard open
neighbourhood of 𝑠′. �
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In the rest of this section we prove a number of variants on this result. The first is a ``global''
version.

Lemma 34.12.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is of finite presentation,
(2) ℱ is of finite presentation, and
(3) ℱ is flat over 𝑆 at every point of the fibre 𝑋𝑠.

Then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and a commutative
diagram of schemes

𝑋

��

𝑋′
𝑔

oo

��
𝑆 𝑆′oo

such that 𝑔 is étale, 𝑋𝑠 ⊂ 𝑔(𝑋′), the schemes 𝑋′, 𝑆′ are affine, and such that Γ(𝑋′, 𝑔∗ℱ)
is a projective Γ(𝑆′, 𝒪𝑆′)-module.

Proof. For every point 𝑥 ∈ 𝑋𝑠 we can use Proposition 34.12.4 to find a commutative
diagram

(𝑋, 𝑥)

��

(𝑌𝑥, 𝑦𝑥)𝑔𝑥
oo

��
(𝑆, 𝑠) (𝑆𝑥, 𝑠𝑥)oo

whose horizontal arrows are elementary étale neighbourhoods such that 𝑌𝑥, 𝑆𝑥 are affine
and such that Γ(𝑌𝑥, 𝑔∗

𝑥ℱ) is a projective Γ(𝑆𝑥, 𝒪𝑆𝑥
)-module. In particular 𝑔𝑥(𝑌𝑥) ∩ 𝑋𝑠 is an

open neighbourhood of 𝑥 in 𝑋𝑠. Because 𝑋𝑠 is quasi-compact we can find a finite num-
ber of points 𝑥1, … , 𝑥𝑛 ∈ 𝑋𝑠 such that 𝑋𝑠 is the union of the 𝑔𝑥𝑖

(𝑌𝑥𝑖
) ∩ 𝑋𝑠. Choose an

elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) which dominates each of the neighbour-
hoods (𝑆𝑥𝑖

, 𝑠𝑥𝑖
), see More on Morphisms, Lemma 33.25.4. We may also assume that 𝑆′ is

affine. Set 𝑋′ = ∐ 𝑌𝑥𝑖
×𝑆𝑥𝑖

𝑆′ and endow it with the obvious morphism 𝑔 ∶ 𝑋′ → 𝑋. By
construction 𝑔(𝑋′) contains 𝑋𝑠 and

Γ(𝑋′, 𝑔∗ℱ) = ⨁ Γ(𝑌𝑥𝑖
, 𝑔∗

𝑥𝑖
ℱ) ⊗Γ(𝑆𝑥𝑖,𝒪𝑆𝑥𝑖

) Γ(𝑆′, 𝒪𝑆′).

This is a projective Γ(𝑆′, 𝒪𝑆′)-module, see Algebra, Lemma 7.88.1. �

The following two lemmas are reformulations of the results above in case ℱ = 𝒪𝑋.

Lemma 34.12.6. Let 𝑓 ∶ 𝑋 → 𝑆 be locally of finite presentation. Let 𝑥 ∈ 𝑋 with image
𝑠 ∈ 𝑆. If 𝑓 is flat at 𝑥 over 𝑆, then there exists a commutative diagram of pointed schemes

(𝑋, 𝑥)

��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)oo

whose horizontal arrows are elementary étale neighbourhoods such that 𝑋′, 𝑆′ are affine
and such that Γ(𝑋′, 𝒪𝑋′) is a projective Γ(𝑆′, 𝒪𝑆′)-module.

Proof. This is a special case of Proposition 34.12.4. �
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Lemma 34.12.7. Let 𝑓 ∶ 𝑋 → 𝑆 be of finite presentation. Let 𝑠 ∈ 𝑆. If 𝑋 is flat over 𝑆 at
all points of 𝑋𝑠, then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and
a commutative diagram of schemes

𝑋

��

𝑋′
𝑔

oo

��
𝑆 𝑆′oo

with 𝑔 étale,𝑋𝑠 ⊂ 𝑔(𝑋′), such that𝑋′,𝑆′ are affine, and such thatΓ(𝑋′, 𝒪𝑋′) is a projective
Γ(𝑆′, 𝒪𝑆′)-module.

Proof. This is a special case of Lemma 34.12.5. �

The following lemmas explain consequences of Proposition 34.12.4 in case we only assume
the morphism and the sheaf are of finite type (and not necessarily of finite presentation).

Lemma 34.12.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑥 ∈ 𝑋 with image 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is locally of finite presentation,
(2) ℱ is of finite type, and
(3) ℱ is flat at 𝑥 over 𝑆.

Then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and a commutative
diagram of pointed schemes

(𝑋, 𝑥)

��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′), 𝑠′)oo

such that 𝑋′ → 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is étale, 𝜅(𝑥) = 𝜅(𝑥′), the scheme 𝑋′ is affine of finite
presentation over 𝒪𝑆′,𝑠′, the sheaf 𝑔∗ℱ is of finite presentation over 𝒪𝑋′, and such that
Γ(𝑋′, 𝑔∗ℱ) is a free 𝒪𝑆′,𝑠′-module.

Proof. To prove the lemma we may replace (𝑆, 𝑠) by any elementary étale neighbourhood,
and we may also replace 𝑆 by 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠). Hence by Proposition 34.11.3 we may assume
that ℱ is finitely presented and flat over 𝑆 in a neighbourhood of 𝑥. In this case the result
follows from Proposition 34.12.4 because Algebra, Theorem 7.79.4 assures us that projec-
tive = free over a local ring. �

Lemma 34.12.9. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑥 ∈ 𝑋 with image 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is locally of finite type,
(2) ℱ is of finite type, and
(3) ℱ is flat at 𝑥 over 𝑆.

Then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and a commutative
diagram of pointed schemes

(𝑋, 𝑥)

��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′), 𝑠′)oo
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such that 𝑋′ → 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is étale, 𝜅(𝑥) = 𝜅(𝑥′), the scheme 𝑋′ is affine, and such
that Γ(𝑋′, 𝑔∗ℱ) is a free 𝒪𝑆′,𝑠′-module.

Proof. (The only difference with Lemma 34.12.8 is that we do not assume 𝑓 is of finite
presentation.) The problem is local on 𝑋 and 𝑆. Hence we may assume 𝑋 and 𝑆 are
affine, say 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) and 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). Since 𝐵 is a finite type 𝐴-algebra we can
find a surjection 𝐴[𝑥1, … , 𝑥𝑛] → 𝐵. In other words, we can choose a closed immersion
𝑖 ∶ 𝑋 → 𝐀𝑛

𝑆. Set 𝑡 = 𝑖(𝑥) and 𝒢 = 𝑖∗ℱ. Note that 𝒢𝑡 ≅ ℱ𝑥 are 𝒪𝑆,𝑠-modules. Hence
𝒢 is flat over 𝑆 at 𝑡. We apply Lemma 34.12.8 to the morphism 𝐀𝑛

𝑆 → 𝑆, the point 𝑡, and
the sheaf 𝒢. Thus we can find an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and a
commutative diagram of pointed schemes

(𝐀𝑛
𝑆, 𝑡)

��

(𝑌, 𝑦)
ℎ

oo

��
(𝑆, 𝑠) (𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′), 𝑠′)oo

such that 𝑌 → 𝐀𝑛
𝒪𝑆′,𝑠′

is étale, 𝜅(𝑡) = 𝜅(𝑦), the scheme 𝑌 is affine, and such that Γ(𝑌, ℎ∗𝒢)
is a projective 𝒪𝑆′,𝑠′-module. Then a solution to the orginal problem is given by the closed
subscheme 𝑋′ = 𝑌 ×𝐀𝑛

𝑆
𝑋 of 𝑌. �

Lemma 34.12.10. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is of finite presentation,
(2) ℱ is of finite type, and
(3) ℱ is flat over 𝑆 at all points of 𝑋𝑠.

Then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and a commutative
diagram of schemes

𝑋

��

𝑋′
𝑔

oo

��
𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)oo

such that 𝑋′ → 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is étale, 𝑋𝑠 = 𝑔((𝑋′)𝑠′), the scheme 𝑋′ is affine of
finite presentation over 𝒪𝑆′,𝑠′, the sheaf 𝑔∗ℱ is of finite presentation over 𝒪𝑋′, and such
that Γ(𝑋′, 𝑔∗ℱ) is a free 𝒪𝑆′,𝑠′-module.

Proof. For every point 𝑥 ∈ 𝑋𝑠 we can use Lemma 34.12.8 to find an elementary étale
neighbourhood (𝑆𝑥, 𝑠𝑥) → (𝑆, 𝑠) and a commutative diagram

(𝑋, 𝑥)

��

(𝑌𝑥, 𝑦𝑥)𝑔𝑥
oo

��
(𝑆, 𝑠) (𝑆𝑝𝑒𝑐(𝒪𝑆𝑥,𝑠𝑥

), 𝑠𝑥)oo

such that 𝑌𝑥 → 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆𝑥,𝑠𝑥
) is étale, 𝜅(𝑥) = 𝜅(𝑦𝑥), the scheme 𝑌𝑥 is affine of fi-

nite presentation over 𝒪𝑆𝑥,𝑠𝑥
, the sheaf 𝑔∗

𝑥ℱ is of finite presentation over 𝒪𝑌𝑥
, and such that

Γ(𝑌𝑥, 𝑔∗
𝑥ℱ) is a free 𝒪𝑆𝑥,𝑠𝑥

-module. In particular 𝑔𝑥((𝑌𝑥)𝑠𝑥
) is an open neighbourhood of 𝑥

in 𝑋𝑠. Because 𝑋𝑠 is quasi-compact we can find a finite number of points 𝑥1, … , 𝑥𝑛 ∈ 𝑋𝑠
such that 𝑋𝑠 is the union of the 𝑔𝑥𝑖

((𝑌𝑥𝑖
)𝑠𝑥𝑖

). Choose an elementary étale neighbourhood
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(𝑆′, 𝑠′) → (𝑆, 𝑠) which dominates each of the neighbourhoods (𝑆𝑥𝑖
, 𝑠𝑥𝑖

), see More on Mor-
phisms, Lemma 33.25.4. Set

𝑋′ = ∐ 𝑌𝑥𝑖
×𝑆𝑝𝑒𝑐(𝒪𝑆𝑥𝑖,𝑠𝑥𝑖

) 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)

and endow it with the obvious morphism 𝑔 ∶ 𝑋′ → 𝑋. By construction 𝑋𝑠 = 𝑔(𝑋′
𝑠′) and

Γ(𝑋′, 𝑔∗ℱ) = ⨁ Γ(𝑌𝑥𝑖
, 𝑔∗

𝑥𝑖
ℱ) ⊗𝒪𝑆𝑥𝑖,𝑠𝑥𝑖

𝒪𝑆′,𝑠′.

This is a free 𝒪𝑆′,𝑠′-module as a direct sum of base changes of free modules. Some minor
details omitted. �

Lemma 34.12.11. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
sheaf on 𝑋. Let 𝑠 ∈ 𝑆. Assume that

(1) 𝑓 is of finite type,
(2) ℱ is of finite type, and
(3) ℱ is flat over 𝑆 at all points of 𝑋𝑠.

Then there exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and a commutative
diagram of schemes

𝑋

��

𝑋′
𝑔

oo

��
𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)oo

such that 𝑋′ → 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is étale, 𝑋𝑠 = 𝑔((𝑋′)𝑠′), the scheme 𝑋′ is affine, and
such that Γ(𝑋′, 𝑔∗ℱ) is a free 𝒪𝑆′,𝑠′-module.

Proof. (The only difference with Lemma 34.12.10 is that we do not assume 𝑓 is of finite
presentation.) For every point 𝑥 ∈ 𝑋𝑠 we can use Lemma 34.12.9 to find an elementary
étale neighbourhood (𝑆𝑥, 𝑠𝑥) → (𝑆, 𝑠) and a commutative diagram

(𝑋, 𝑥)

��

(𝑌𝑥, 𝑦𝑥)𝑔𝑥
oo

��
(𝑆, 𝑠) (𝑆𝑝𝑒𝑐(𝒪𝑆𝑥,𝑠𝑥

), 𝑠𝑥)oo

such that 𝑌𝑥 → 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆𝑥,𝑠𝑥
) is étale, 𝜅(𝑥) = 𝜅(𝑦𝑥), the scheme 𝑌𝑥 is affine, and

such that Γ(𝑌𝑥, 𝑔∗
𝑥ℱ) is a free 𝒪𝑆𝑥,𝑠𝑥

-module. In particular 𝑔𝑥((𝑌𝑥)𝑠𝑥
) is an open neigh-

bourhood of 𝑥 in 𝑋𝑠. Because 𝑋𝑠 is quasi-compact we can find a finite number of points
𝑥1, … , 𝑥𝑛 ∈ 𝑋𝑠 such that 𝑋𝑠 is the union of the 𝑔𝑥𝑖

((𝑌𝑥𝑖
)𝑠𝑥𝑖

). Choose an elementary étale
neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) which dominates each of the neighbourhoods (𝑆𝑥𝑖

, 𝑠𝑥𝑖
),

see More on Morphisms, Lemma 33.25.4. Set

𝑋′ = ∐ 𝑌𝑥𝑖
×𝑆𝑝𝑒𝑐(𝒪𝑆𝑥𝑖,𝑠𝑥𝑖

) 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)

and endow it with the obvious morphism 𝑔 ∶ 𝑋′ → 𝑋. By construction 𝑋𝑠 = 𝑔(𝑋′
𝑠′) and

Γ(𝑋′, 𝑔∗ℱ) = ⨁ Γ(𝑌𝑥𝑖
, 𝑔∗

𝑥𝑖
ℱ) ⊗𝒪𝑆𝑥𝑖,𝑠𝑥𝑖

𝒪𝑆′,𝑠′.

This is a free 𝒪𝑆′,𝑠′-module as a direct sum of base changes of free modules. �
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34.13. Flat finite type modules, Part II

The following lemma will be superseded by the stronger Lemma 34.13.3 below.

Lemma 34.13.1. Let (𝑅, 𝔪) be a local ring. Let 𝑅 → 𝑆 be of finite presentation. Let 𝑁 be
a finitely presented 𝑆-module which is free as an 𝑅-module. Let 𝑀 be an 𝑅-module. Let 𝔮
be a prime of 𝑆 lying over 𝔪. Then

(1) if 𝔮 ∈ WeakAss𝑆(𝑀 ⊗𝑅 𝑁) then 𝔪 ∈ WeakAss𝑅(𝑀) and 𝔮 ∈ Ass𝑆(𝑁),
(2) if𝔪 ∈ WeakAss𝑅(𝑀) and 𝔮 ∈ Ass𝑆(𝑁) is amaximal element then 𝔮 ∈ WeakAss𝑆(𝑀⊗𝑅

𝑁).
Here 𝑆 = 𝑆/𝔪𝑆, 𝔮 = 𝔮𝑆, and 𝑁 = 𝑁/𝔪𝑁.

Proof. Suppose that 𝔮∉Ass𝑆(𝑁). By Algebra, Lemmas 7.60.9, 7.60.5, and 7.14.3 there
exists an element 𝑔 ∈ 𝔮 which is not a zero divisor on 𝑁. Let 𝑔 ∈ 𝔮 be an element
which maps to 𝑔 in 𝔮. By Lemma 34.8.6 the map 𝑔 ∶ 𝑁 → 𝑁 is 𝑅-universally injective.
In particular we see that 𝑔 ∶ 𝑀 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑁 is injective. Clearly this implies that
𝔮∉WeakAss𝑆(𝑀⊗𝑅𝑁). We conclude that 𝔮 ∈ WeakAss𝑆(𝑀⊗𝑅𝑁) implies 𝔮 ∈ Ass𝑆(𝑁).

Assume 𝔮 ∈ WeakAss𝑆(𝑀 ⊗𝑅 𝑁). Let 𝑧 ∈ 𝑀 ⊗𝑅 𝑁 be an element whose annihilator in
𝑆 has radical 𝔮. As 𝑁 is a free 𝑅-module, we can find a finite free direct summand 𝐹 ⊂ 𝑁
such that 𝑧 ∈ 𝑀 ⊗𝑅 𝐹. The radical of the annihilator of 𝑧 ∈ 𝑀 ⊗𝑅 𝐹 in 𝑅 is 𝔪 (by our
assumption on 𝑧 and because 𝔮 lies over 𝔪). Hence we see that 𝔪 ∈ WeakAss(𝑀 ⊗𝑅 𝐹)
which implies that 𝔪 ∈ WeakAss(𝑀) by Algebra, Lemma 7.63.3. This finishes the proof
of (1).

Assume that 𝔪 ∈ WeakAss𝑅(𝑀) and 𝔮 ∈ Ass𝑆(𝑁) is a maximal element. Let 𝑦 ∈ 𝑀 be
an element whose annihilator 𝐼 = Ann𝑅(𝑦) has radical 𝔪. Then 𝑅/𝐼 ⊂ 𝑀 and by flatness
of 𝑁 over 𝑅 we get 𝑁/𝐼𝑁 = 𝑅/𝐼 ⊗𝑅 𝑁 ⊂ 𝑀 ⊗𝑅 𝑁. Hence it is enough to show that
𝔮 ∈ WeakAss(𝑁/𝐼𝑁). Write 𝔮 = (𝑔1, … , 𝑔𝑛) for some 𝑔𝑖 ∈ 𝑆. Choose lifts 𝑔𝑖 ∈ 𝔮.
Consider the map

Ψ ∶ 𝑁/𝐼𝑁 ⟶ 𝑁/𝐼𝑁⊕𝑛, 𝑧 ⟼ (𝑔1𝑧, … , 𝑔𝑛𝑧).

We may think of this as a map of free 𝑅/𝐼-modules. As the ring 𝑅/𝐼 is auto-associated
(since 𝔪/𝐼 is locally nilpotent) and since Ψ ⊗ 𝑅/𝔪 isn't injective (since 𝔮 ∈ Ass(𝑁)) we
see by More on Algebra, Lemma 12.10.4 that Ψ isn't injective. Pick 𝑧 ∈ 𝑁/𝐼𝑁 nonzero in
the kernel of Ψ. The annihilator of 𝑧 contains 𝐼 and 𝑔𝑖, whence its radical 𝐽 = √Ann𝑆(𝑧)
contains 𝔮. Let 𝔮′ ⊃ 𝐽 be a minimal prime over 𝐽. Then 𝔮′ ∈ WeakAss(𝑀 ⊗𝑅 𝑁) (by
definition) and by (1) we see that 𝔮′ ∈ Ass(𝑁). Then since 𝔮 ⊂ 𝔮′ by construction the
maximality of 𝔮 implies 𝔮 = 𝔮′ whence 𝔮 ∈ WeakAss(𝑀 ⊗𝑅 𝑁). This proves part (2) of
the lemma. �

Lemma 34.13.2. Let𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑆 be locally of finite type. Let 𝑥 ∈ 𝑋with
image 𝑠 ∈ 𝑆. Let ℱ be a finite type quasi-coherent sheaf on 𝑋. Let 𝒢 be a quasi-coherent
sheaf on 𝑌. If ℱ is flat at 𝑥 over 𝑆, then

𝑥 ∈ WeakAss𝑋(ℱ ⊗𝒪𝑋
𝑓∗𝒢) ⇔ 𝑠 ∈ WeakAss𝑆(𝒢) and 𝑥 ∈ Ass𝑋𝑠

(ℱ𝑠).

Proof. The question is local on 𝑋 and 𝑆, hence we may assume 𝑋 and 𝑆 are affine. Write
𝑋 = 𝑆𝑝𝑒𝑐(𝐵), 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and write 𝐵 = 𝐴[𝑥1, … , 𝑥𝑛]/𝐼. In other words we obtain a
closed immersion 𝑖 ∶ 𝑋 → 𝐀𝑛

𝑆 over 𝑆. Denote 𝑡 = 𝑖(𝑥) ∈ 𝐀𝑛
𝑆. Note that 𝑖∗ℱ is a finite type
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quasi-coherent sheaf on 𝐀𝑛
𝑆 which is flat at 𝑡 over 𝑆 and note that

𝑖∗(ℱ ⊗𝒪𝑋
𝑓∗𝒢) = 𝑖∗ℱ ⊗𝒪𝐀𝑛

𝑆
𝑝∗𝒢

where 𝑝 ∶ 𝐀𝑛
𝑆 → 𝑆 is the projection. Note that 𝑡 is a weakly associated point of 𝑖∗(ℱ ⊗𝒪𝑋

𝑓∗𝒢) if and only if 𝑥 is a weakly associated popint of ℱ ⊗𝒪𝑋
𝑓∗𝒢, see Divisors, Lemma

26.6.3. Similarly 𝑥 ∈ Ass𝑋𝑠
(ℱ𝑠) if and only if 𝑡 ∈ Ass𝐀𝑛

𝑠
((𝑖∗ℱ)𝑠) (see Algebra, Lemma

7.60.13). Hence it suffices to prove the the lemma in case 𝑋 = 𝐀𝑛
𝑆. In particular we may

assume that 𝑋 → 𝑆 is of finite presentation.

Recall that Ass𝑋𝑠
(ℱ𝑠) is a locally finite subset of the locally Noetherian scheme 𝑋𝑠, see

Divisors, Lemma 26.2.5. After replacing 𝑋 by a suitable affine neighbourhood of 𝑥 we
may assume that

(∗) if 𝑥′ ∈ Ass𝑋𝑠
(ℱ𝑠) and 𝑥 𝑥′ then 𝑥 = 𝑥′.

(Proof omitted. Hint: using Algebra, Lemma 7.14.3 invert a function which does not vanish
at 𝑥 but does vanish in all the finitely many points of Ass𝑋𝑠

(ℱ𝑠) which are specializations
of 𝑥 but not equal to 𝑥.) In words, no point of Ass𝑋𝑠

(ℱ𝑠) is a proper specialization of 𝑥.

Suppose given a commutative diagram

(𝑋, 𝑥)

��

(𝑋′, 𝑥′)𝑔
oo

��
(𝑆, 𝑠) (𝑆′, 𝑠′)𝑒oo

of pointed schemes whose horizontal arrows are elementary étale neighbourhoods. Then it
suffices to prove the statement for 𝑥′, 𝑠′, 𝑔∗ℱ and 𝑒∗𝒢, see Lemma 34.3.7. Note that prop-
erty (∗) is preserved by such an étale localization by the same lemma (if there is a proper
specialization 𝑥′  𝑥″ on 𝑋′

𝑠′ then this maps to a proper specialization on 𝑋𝑠 because
the fibres of an étale morphism are discrete). We may also replace 𝑆 by the spectrum of
its local ring as the condition of being an associated point of a quasi-coherent sheaf de-
pends only on the stalk of the sheaf. Again property (∗) is preserved by this as well. Thus
we may first apply Proposition 34.11.3 to reduce to the case where ℱ is of finite presen-
tation and flat over 𝑆, whereupon we may use Proposition 34.12.4 to reduce to the case
that 𝑋 → 𝑆 is a morphism of affines and Γ(𝑋, ℱ) is a finitely presented Γ(𝑋, 𝒪𝑋)-module
which is projective as a Γ(𝑆, 𝒪𝑆)-module. Localizing 𝑆 once more we may assume that
Γ(𝑆, 𝒪𝑆) is a local ring such that 𝑠 corresponds to the maximal ideal. In this case Algebra,
Theorem 7.79.4 guarantees that Γ(𝑋, ℱ) is free as an Γ(𝑆, 𝒪𝑆)-module. The implication
𝑥 ∈ WeakAss𝑋(ℱ ⊗𝒪𝑋

𝑓∗𝒢) ⇒ 𝑠 ∈ WeakAss𝑆(𝒢) and 𝑥 ∈ Ass𝑋𝑠
(ℱ𝑠) follows from part

(1) of Lemma 34.13.1. The converse implication follows from part (2) of Lemma 34.13.1
as property (∗) insures that the prime corresponding to 𝑥 gives rise to a maximal element
of Ass𝑆(𝑁) exactly as in the statement of part (2) of Lemma 34.13.1. �

Lemma 34.13.3. Let 𝑅 → 𝑆 be a ring map which is essentially of finite type. Let 𝑁 be a
localization of a finite 𝑆-module flat over 𝑅. Let 𝑀 be an 𝑅-module. Then

WeakAss𝑆(𝑀 ⊗𝑅 𝑁) = ⋃𝔭∈WeakAss𝑅(𝑀)
Ass𝑆⊗𝑅𝜅(𝔭)(𝑁 ⊗𝑅 𝜅(𝔭))

Proof. This lemma is a translation of Lemma 34.13.2 into algebra. Details of translation
omitted. �
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Lemma 34.13.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism which is locally of finite type. Let ℱ be a
finite type quasi-coherent sheaf on 𝑋 which is flat over 𝑆. Let 𝒢 be a quasi-coherent sheaf
on 𝑆. Then we have

WeakAss𝑋(ℱ ⊗𝒪𝑋
𝑓∗𝒢) = ⋃𝑠∈WeakAss𝑆(𝒢)

Ass𝑋𝑠
(ℱ𝑠)

Proof. Immediate consequence of Lemma 34.13.2. �

Theorem 34.13.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Assume

(1) 𝑋 → 𝑆 is locally of finite presentation,
(2) ℱ is an 𝒪𝑋-module of finite type, and
(3) the set of weakly associated points of 𝑆 is locally finite in 𝑆.

Then 𝑈 = {𝑥 ∈ 𝑋 ∣ ℱ flat at 𝑥 over 𝑆} is open in 𝑋 and ℱ|𝑈 is an 𝒪𝑈-module of finite
presentation and flat over 𝑆.

Proof. Let 𝑥 ∈ 𝑋 be such that ℱ is flat at 𝑥 over 𝑆. We have to find an open neighbourhood
of 𝑥 such that ℱ restricts to a 𝑆-flat finitely presented module on this neighbourhood. The
problem is local on 𝑋 and 𝑆, hence we may assume that 𝑋 and 𝑆 are affine. As ℱ𝑥 is
a finitely presented 𝒪𝑋,𝑥-module by Lemma 34.11.9 we conclude from Algebra, Lemma
7.117.5 there exists a finitely presented 𝒪𝑋-module ℱ′ and a map 𝜑 ∶ ℱ′ → ℱ which
induces an isomorphism 𝜑𝑥 ∶ ℱ′

𝑥 → ℱ𝑥. In particular we see that ℱ′ is flat over 𝑆 at
𝑥, hence by openness of flatness More on Morphisms, Theorem 33.11.1 we see that after
shrinking 𝑋 we may assume that ℱ′ is flat over 𝑆. As ℱ is of finite type after shrinking
𝑋 we may assume that 𝜑 is surjective, see Modules, Lemma 15.9.4 or alternatively use
Nakayama's lemma (Algebra, Lemma 7.14.5). By Lemma 34.13.4 we have

WeakAss𝑋(ℱ′) ⊂ ⋃𝑠∈WeakAss(𝑆)
Ass𝑋𝑠

(ℱ′
𝑠)

As WeakAss(𝑆) is finite by assumption and since Ass𝑋𝑠
(ℱ′

𝑠) is finite by Divisors, Lemma
26.2.5 we conclude that WeakAss𝑋(ℱ′) is finite. Using Algebra, Lemma 7.14.3 we may,
after shrinking 𝑋 once more, assume that WeakAss𝑋(ℱ′) is contained in the generalization
of 𝑥. Now consider 𝒦 = Ker(𝜑). We have WeakAss𝑋(𝒦) ⊂ WeakAss𝑋(ℱ′) (by Divisors,
Lemma 26.5.4) but on the other hand, 𝜑𝑥 is an isomorphism, also 𝜑𝑥′ is an isomorphism
for all 𝑥′  𝑥. We conclude that WeakAss𝑋(𝒦) = ∅ whence 𝒦 = 0 by Divisors, Lemma
26.5.5. �

Lemma 34.13.6 (Algebra version of Theorem 34.13.5). Let 𝑅 → 𝑆 be a ring map of finite
presentation. Let 𝑀 be a finite 𝑆-module. Assume WeakAss𝑆(𝑆) is finite. Then

𝑈 = {𝔮 ⊂ 𝑆 ∣ 𝑀𝔮 flat over 𝑅}

is open in 𝑆𝑝𝑒𝑐(𝑆) and for every 𝑔 ∈ 𝑆 such that 𝐷(𝑔) ⊂ 𝑈 the localization 𝑀𝑔 is a finitely
presented 𝑆𝑔-module flat over 𝑅.

Proof. Follows immediately from Theorem 34.13.5. �

Lemma 34.13.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is locally of finite type.
Assume the set of weakly associated points of 𝑆 is locally finite in 𝑆. Then the set of points
𝑥 ∈ 𝑋 where 𝑓 is flat is an open subscheme 𝑈 ⊂ 𝑋 and 𝑈 → 𝑆 is flat and locally of finite
presentation.
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Proof. The problem is local on 𝑋 and 𝑆, hence we may assume that 𝑋 and 𝑆 are affine.
Then𝑋 → 𝑆 corresponds to a finite type ringmap𝐴 → 𝐵. Choose a surjection𝐴[𝑥1, … , 𝑥𝑛] →
𝐵 and consider 𝐵 as an 𝐴[𝑥1, … , 𝑥𝑛]-module. An application of Lemma 34.13.6 finishes
the proof. �

Lemma 34.13.8. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is locally of finite type
and flat. If 𝑆 is integral, then 𝑓 is locally of finite presentation.

Proof. Special case of Lemma 34.13.7. �

Lemma 34.13.9. Let 𝐴 → 𝐵 be a finite type, flat ring map with 𝐴 an integral domain.
Then 𝐵 is a finitely presented 𝐴-algebra.

Proof. Special case of Lemma 34.13.8. It is also a consequence of More on Algebra,
Proposition 12.18.8. �

Remark 34.13.10 (Finite type version of Theorem 34.13.5). Let 𝑓 ∶ 𝑋 → 𝑆 be amorphism
of schemes. Let ℱ be a quasi-coherent 𝒪𝑋-module. Assume

(1) 𝑋 → 𝑆 is locally of finite type,
(2) ℱ is an 𝒪𝑋-module of finite type, and
(3) the set of weakly associated points of 𝑆 is locally finite in 𝑆.

Then 𝑈 = {𝑥 ∈ 𝑋 ∣ ℱ flat at 𝑥 over 𝑆} is open in 𝑋 and ℱ|𝑈 is flat over 𝑆 and locally
finitely presented relative to 𝑆 (see Definition 34.2.1). If we ever need this result in the
stacks project we will convert this remark into a lemma with a proof.

Remark 34.13.11 (Algebra version of Remark 34.13.10). Let 𝑅 → 𝑆 be a ring map of
finite type. Let 𝑀 be a finite 𝑆-module. Assume WeakAss𝑆(𝑆) is finite. Then

𝑈 = {𝔮 ⊂ 𝑆 ∣ 𝑀𝔮 flat over 𝑅}
is open in 𝑆𝑝𝑒𝑐(𝑆) and for every 𝑔 ∈ 𝑆 such that 𝐷(𝑔) ⊂ 𝑈 the localization 𝑀𝑔 is flat
over 𝑅 and an 𝑆𝑔-module finitely presented relative to 𝑅 (see More on Algebra, Definition
12.44.2). If we ever need this result in the stacks project we will convert this remark into a
lemma with a proof.

34.14. Examples of relatively pure modules

In the short section we discuss some examples of results that will serve as motivation for the
notion of a relatively pure module and the concept of an impurity which we will introduce
later. Each of the examples is stated as a lemma. Note the similarity with the condition
on associated primes to the conditions appearing in Lemmas 34.8.4, 34.9.3, 34.9.4, and
34.10.1. See also Algebra, Lemma 7.62.1 for a discussion.

Lemma 34.14.1. Let 𝑅 be a local ring with maximal ideal 𝔪. Let 𝑅 → 𝑆 be a ring map.
Let 𝑁 be an 𝑆-module. Assume

(1) 𝑁 is projective as an 𝑅-module, and
(2) 𝑆/𝔪𝑆 is Noetherian and 𝑁/𝔪𝑁 is a finite 𝑆/𝔪𝑆-module.

Then for any prime 𝔮 ⊂ 𝑆 which is an associated prime of 𝑁 ⊗𝑅 𝜅(𝔭) where 𝔭 = 𝑅 ∩ 𝔮 we
have 𝔮 + 𝔪𝑆≠𝑆.

Proof. Note that the hypotheses of Lemmas 34.8.1 and 34.8.6 are satisfied. We will use the
conclusions of these lemmas without further mention. Let Σ ⊂ 𝑆 be the multiplicative set
of elements which are not zero divisors on 𝑁/𝔪𝑁. The map 𝑁 → Σ−1𝑁 is 𝑅-universally
injective. Hence we see that any 𝔮 ⊂ 𝑆 which is an associated prime of 𝑁 ⊗𝑅 𝜅(𝔭) is also
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an associated prime of Σ−1𝑁⊗𝑅 𝜅(𝔭). Clearly this implies that 𝔮 corresponds to a prime of
Σ−1𝑆. Thus 𝔮 ⊂ 𝔮′ where 𝔮′ corresponds to an associated prime of 𝑁/𝔪𝑁 and we win. �

The following lemma gives another (slightly silly) example of this phenomenon.

Lemma 34.14.2. Let 𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑅 → 𝑆 be a ring map. Let 𝑁
be an 𝑆-module. If 𝑁 is 𝐼-adically complete, then for any 𝑅-module 𝑀 and for any prime
𝔮 ⊂ 𝑆 which is an associated prime of 𝑁 ⊗𝑅 𝑀 we have 𝔮 + 𝐼𝑆≠𝑆.

Proof. Let 𝑆∧ denote the 𝐼-adic completion of 𝑆. Note that 𝑁 is an 𝑆∧-module, hence
also 𝑁 ⊗𝑅 𝑀 is an 𝑆∧-module. Let 𝑧 ∈ 𝑁 ⊗𝑅 𝑀 be an element such that 𝔮 = Ann𝑆(𝑧).
Since 𝑧≠0 we see that Ann𝑆∧(𝑧)≠𝑆∧. Hence 𝔮𝑆∧≠𝑆∧. Hence there exists a maximal ideal
𝔪 ⊂ 𝑆∧ with 𝔮𝑆∧ ⊂ 𝔪. Since 𝐼𝑆∧ ⊂ 𝔪 by Algebra, Lemma 7.90.11 we win. �

Note that the following lemma gives an alternative proof of Lemma 34.14.1 as a projective
module over a local ring is free, see Algebra, Theorem 7.79.4.

Lemma 34.14.3. Let 𝑅 be a local ring with maximal ideal 𝔪. Let 𝑅 → 𝑆 be a ring map.
Let 𝑁 be an 𝑆-module. Assume 𝑁 is isomorphic as an 𝑅-module to a direct sum of finite
𝑅-modules. Then for any 𝑅-module 𝑀 and for any prime 𝔮 ⊂ 𝑆 which is an associated
prime of 𝑁 ⊗𝑅 𝑀 we have 𝔮 + 𝔪𝑆≠𝑆.

Proof. Write 𝑁 = ⨁𝑖∈𝐼 𝑀𝑖 with each 𝑀𝑖 a finite 𝑅-module. Let 𝑀 be an 𝑅-module and
let 𝔮 ⊂ 𝑆 be an associated prime of 𝑁 ⊗𝑅 𝑀 such that 𝔮 + 𝔪𝑆 = 𝑆. Let 𝑧 ∈ 𝑁 ⊗𝑅 𝑀
be an element with 𝔮 = Ann𝑆(𝑧). After modifying the direct sum decomposition a little bit
we may assume that 𝑧 ∈ 𝑀1 ⊗𝑅 𝑀 for some element 1 ∈ 𝐼. Write 1 = 𝑓 + ∑ 𝑥𝑗𝑔𝑗 for
some 𝑓 ∈ 𝔮, 𝑥𝑗 ∈ 𝔪, and 𝑔𝑗 ∈ 𝑆. For any 𝑔 ∈ 𝑆 denote 𝑔′ the 𝑅-linear map

𝑀1 → 𝑁
𝑔

−→ 𝑁 → 𝑀1

where the first arrow is the inclusion map, the second arrow is multiplication by 𝑔 and the
third arrow is the projection map. Because each 𝑥𝑗 ∈ 𝑅 we obtain the equality

𝑓′ + ∑ 𝑥𝑗𝑔′
𝑗 = id𝑀1

∈ End𝑅(𝑀1)

By Nakayama's lemma (Algebra, Lemma 7.14.5) we see that 𝑓′ is surjective, hence by
Algebra, Lemma 7.15.4 we see that 𝑓′ is an isomorphism. In particular the map

𝑀1 ⊗𝑅 𝑀 → 𝑁 ⊗𝑅 𝑀
𝑓

−→ 𝑁 ⊗𝑅 𝑀 → 𝑀1 ⊗𝑅 𝑀
is an isomorphism. This contradicts the assumption that 𝑓𝑧 = 0. �

Lemma 34.14.4. Let 𝑅 be a henselian local ring with maximal ideal 𝔪. Let 𝑅 → 𝑆 be a
ring map. Let 𝑁 be an 𝑆-module. Assume 𝑁 is countably generated and Mittag-Leffler as
an 𝑅-module. Then for any 𝑅-module 𝑀 and for any prime 𝔮 ⊂ 𝑆 which is an associated
prime of 𝑁 ⊗𝑅 𝑀 we have 𝔮 + 𝔪𝑆≠𝑆.

Proof. This lemma reduces to Lemma 34.14.3 by Algebra, Lemma 7.139.26. �

Suppose 𝑓 ∶ 𝑋 → 𝑆 is a morphism of schemes and ℱ is a quasi-coherent module on 𝑋.
Let 𝜉 ∈ Ass𝑋/𝑆(ℱ) and let 𝑍 = {𝜉}. Picture

𝜉_

��

𝑍 //

��

𝑋

𝑓
��

𝑓(𝜉) 𝑆
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Note that 𝑓(𝑍) ⊂ {𝑓(𝜉)} and that 𝑓(𝑍) is closed if and only if equality holds, i.e., 𝑓(𝑍) =
{𝑓(𝜉)}. It follows from Lemma 34.14.1 that if 𝑆, 𝑋 are affine, the fibres 𝑋𝑠 are Noetherian,
ℱ is of finite type, and Γ(𝑋, ℱ) is a projective Γ(𝑆, 𝒪𝑆)-module, then 𝑓(𝑍) = {𝑓(𝜉)} is
a closed subset. Slightly different analogous statements holds for the cases described in
Lemmas 34.14.2, 34.14.3, and 34.14.4.

34.15. Impurities

We want to formalize the phenomenon of which we gave examples in Section 34.14 in
terms of specializations of points of Ass𝑋/𝑆(ℱ). We also want to work locally around a
point 𝑠 ∈ 𝑆. In order to do so we make the following definitions.

Situation 34.15.1. Here 𝑆, 𝑋 are schemes and 𝑓 ∶ 𝑋 → 𝑆 is a finite type morphism. Also,
ℱ is a finite type quasi-coherent 𝒪𝑋-module. Finally 𝑠 is a point of 𝑆.

In this situation consider a morphism 𝑔 ∶ 𝑇 → 𝑆, a point 𝑡 ∈ 𝑇 with 𝑔(𝑡) = 𝑠, a specializa-
tion 𝑡′  𝑡, and a point 𝜉 ∈ 𝑋𝑇 in the base change of 𝑋 lying over 𝑡′. Picture

(34.15.1.1)

𝜉_

��
𝑡′ // 𝑡_

��
𝑠

𝑋𝑇

��

// 𝑋

��
𝑇

𝑔
��

𝑔 // 𝑆

𝑆

Moreover, denote ℱ𝑇 the pullback of ℱ to 𝑋𝑇.

Definition 34.15.2. In Situation 34.15.1 we say a diagram (34.15.1.1) defines an impurity
of ℱ above 𝑠 if 𝜉 ∈ Ass𝑋𝑇/𝑇(ℱ𝑇) and {𝜉} ∩ 𝑋𝑡 = ∅. We will indicate this by saying ``let
(𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) be an impurity of ℱ above 𝑠''.

Lemma 34.15.3. In Situation 34.15.1. If there exists an impurity of ℱ above 𝑠, then there
exists an impurity (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) of ℱ above 𝑠 such that 𝑔 is locally of finite
presentation and 𝑡 a closed point of the fibre of 𝑔 above 𝑠.

Proof. Let (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) be any impurity of ℱ above 𝑠. We apply Limits, Lemma
27.10.1 to 𝑡 ∈ 𝑇 and 𝑍 = {𝜉} to obtain an open neighbourhood 𝑉 ⊂ 𝑇 of 𝑡, a commutative
diagram

𝑉

��

𝑎
// 𝑇′

𝑏
��

𝑇
𝑔 // 𝑆,

and a closed subscheme 𝑍′ ⊂ 𝑋𝑇′ such that

(1) the morphism 𝑏 ∶ 𝑇′ → 𝑆 is locally of finite presentation,
(2) we have 𝑍′ ∩ 𝑋𝑎(𝑡) = ∅, and
(3) 𝑍 ∩ 𝑋𝑉 maps into 𝑍′ via the morphism 𝑋𝑉 → 𝑋𝑇′.
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As 𝑡′ specializes to 𝑡 we may replace 𝑇 by the open neighbourhood 𝑉 of 𝑡. Thus we have a
commutative diagram

𝑋𝑇

��

// 𝑋𝑇′

��

// 𝑋

��
𝑇 𝑎 // 𝑇′ 𝑏 // 𝑆

where 𝑏 ∘ 𝑎 = 𝑔. Let 𝜉′ ∈ 𝑋𝑇′ denote the image of 𝜉. By Divisors, Lemma 26.7.2 we see
that 𝜉′ ∈ Ass𝑋𝑇′/𝑇′(ℱ𝑇′). Moreover, by construction the closure of {𝜉′} is contained in the
closed subset 𝑍′ which avoids the fibre 𝑋𝑎(𝑡). In this way we see that (𝑇′ → 𝑆, 𝑎(𝑡′)  
𝑎(𝑡), 𝜉′) is an impurity of ℱ above 𝑠.

Thus we may assume that 𝑔 ∶ 𝑇 → 𝑆 is locally of finite presentation. Let 𝑍 = {𝜉}. By
assumption 𝑍𝑡 = ∅. By More on Morphisms, Lemma 33.17.1 this means that 𝑍𝑡″ = ∅
for 𝑡″ in an open subset of {𝑡}. Since the fibre of 𝑇 → 𝑆 over 𝑠 is a Jacobson scheme,
see Morphisms, Lemma 24.15.10 we find that there exist a closed point 𝑡″ ∈ {𝑡} such that
𝑍𝑡″ = ∅. Then (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡″, 𝜉) is the desired impurity. �

Lemma 34.15.4. In Situation 34.15.1. Let (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) be an impurity of ℱ
above 𝑠. Assume 𝑆 is affine and that 𝑇 is written 𝑇 = 𝑙𝑖𝑚𝑖∈𝐼 𝑇𝑖 as a directed colimit of affine
schemes over 𝑆. Then for some 𝑖 the triple (𝑇𝑖 → 𝑆, 𝑡′

𝑖  𝑡𝑖, 𝜉𝑖) is an impurity of ℱ above
𝑠.

Proof. The notation in the statement means this: Let 𝑓𝑖 ∶ 𝑇 → 𝑇𝑖 be the projection mor-
phisms, let 𝑡𝑖 = 𝑓𝑖(𝑡) and 𝑡′

𝑖 = 𝑓𝑖(𝑡′). Finally 𝜉𝑖 ∈ 𝑋𝑇𝑖
is the image of 𝜉. By Divisors,

Lemma 26.7.2 it is true that 𝜉𝑖 is a point of the relative assassin of ℱ𝑇𝑖
over 𝑇𝑖. Thus the

only point is to show that {𝜉𝑖} ∩ 𝑋𝑡𝑖
= ∅ for some 𝑖. Set 𝑍 = {𝜉}. Apply Limits, Lemma

27.10.1 to this situation to obtain an open neighbourhood 𝑉 ⊂ 𝑇 of 𝑡, a commutative dia-
gram

𝑉

��

𝑎
// 𝑇′

𝑏
��

𝑇
𝑔 // 𝑆,

and a closed subscheme 𝑍′ ⊂ 𝑋𝑇′ such that
(1) the morphism 𝑏 ∶ 𝑇′ → 𝑆 is locally of finite presentation,
(2) we have 𝑍′ ∩ 𝑋𝑎(𝑡) = ∅, and
(3) 𝑍 ∩ 𝑋𝑉 maps into 𝑍′ via the morphism 𝑋𝑉 → 𝑋𝑇′.

We may assume 𝑉 is an affine open of 𝑇, hence by Limits, Lemmas 27.3.5 and 27.3.7 we
can find an 𝑖 and an affine open 𝑉𝑖 ⊂ 𝑇𝑖 with 𝑉 = 𝑓−1

𝑖 (𝑉𝑖). By Limits, Proposition 27.4.1
after possibly increasing 𝑖 a bit we can find a morphism 𝑎𝑖 ∶ 𝑉𝑖 → 𝑇′ such that 𝑎 = 𝑎𝑖 ∘𝑓𝑖|𝑉.
The induced morphism 𝑋𝑇𝑖

→ 𝑋𝑇′ maps 𝜉𝑖 into 𝑍′. As 𝑍′ ∩ 𝑋𝑎(𝑡) = ∅ we conclude that
(𝑇𝑖 → 𝑆, 𝑡′

𝑖  𝑡𝑖, 𝜉𝑖) is an impurity of ℱ above 𝑠. �

Lemma 34.15.5. In Situation 34.15.1. If there exists an impurity (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) of
ℱ above 𝑠 with 𝑔 quasi-finite at 𝑡, then there exists an impurity (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) such
that (𝑇, 𝑡) → (𝑆, 𝑠) is an elementary étale neighbourhood.

Proof. Let (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) be an impurity of ℱ above 𝑠 such that 𝑔 is quasi-finite
at 𝑡. After shrinking 𝑇 we may assume that 𝑔 is locally of finite type. Apply More on
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Morphisms, Lemma 33.28.1 to 𝑇 → 𝑆 and 𝑡 ↦ 𝑠. This gives us a diagram

𝑇

��

𝑇 ×𝑆 𝑈oo

��

𝑉oo

||
𝑆 𝑈oo

where (𝑈, 𝑢) → (𝑆, 𝑠) is an elementary étale neighbourhood and 𝑉 ⊂ 𝑇 ×𝑆 𝑈 is an open
neighbouhood of 𝑣 = (𝑡, 𝑢) such that 𝑉 → 𝑈 is finite and such that 𝑣 is the unique point
of 𝑉 lying over 𝑢. Since the morphism 𝑉 → 𝑇 is étale hence flat we see that there exists
a specialization 𝑣′  𝑣 such that 𝑣′ ↦ 𝑡′. Note that 𝜅(𝑡′) ⊂ 𝜅(𝑣′) is finite separable.
Pick any point 𝜁 ∈ 𝑋𝑣′ mapping to 𝜉 ∈ 𝑋𝑡′. By Divisors, Lemma 26.7.2 we see that
𝜁 ∈ Ass𝑋𝑉/𝑉(ℱ𝑉). Moreover, the closure {𝜁} does not meet the fibre 𝑋𝑣 as by assumption
the closure {𝜉} does not meet 𝑋𝑡. In other words (𝑉 → 𝑆, 𝑣′  𝑣, 𝜁) is an impurity of ℱ
above 𝑆.
Next, let 𝑢′ ∈ 𝑈′ be the image of 𝑣′ and let 𝜃 ∈ 𝑋𝑈 be the image of 𝜁. Then 𝜃 ↦ 𝑢′

and 𝑢′  𝑢. By Divisors, Lemma 26.7.2 we see that 𝜃 ∈ Ass𝑋𝑈/𝑈(ℱ). Moreover, as
𝜋 ∶ 𝑋𝑉 → 𝑋𝑈 is finite we see that 𝜋({𝜁}) = {𝜋(𝜁)}. Since 𝑣 is the unique point of 𝑉 lying
over 𝑢 we see that 𝑋𝑢 ∩ {𝜋(𝜁)} = ∅ because 𝑋𝑣 ∩ {𝜁} = ∅. In this way we conclude that
(𝑈 → 𝑆, 𝑢′  𝑢, 𝜃) is an impurity of ℱ above 𝑠 and we win. �

Lemma 34.15.6. In Situation 34.15.1. Assume that 𝑆 is locally Noetherian. If there exists
an impurity of ℱ above 𝑠, then there exists an impurity (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) of ℱ above 𝑠
such that 𝑔 is quasi-finite at 𝑡.
Proof. We may replace 𝑆 by an affine neighbourhood of 𝑠. By Lemma 34.15.3 we may
assume that we have an impurity (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) of such that 𝑔 is locally of finite
type and 𝑡 a closed point of the fibre of 𝑔 above 𝑠. We may replace 𝑇 by the reduced induced
scheme structure on {𝑡′}. Let 𝑍 = {𝜉} ⊂ 𝑋𝑇. By assumption 𝑍𝑡 = ∅ and the image of
𝑍 → 𝑇 contains 𝑡′. By More on Morphisms, Lemma 33.18.1 there exists a nonempty open
𝑉 ⊂ 𝑍 such that for any 𝑤 ∈ 𝑓(𝑉) any generic point 𝜉′ of 𝑉𝑤 is in Ass𝑋𝑇/𝑇(ℱ𝑇). ByMore on
Morphisms, Lemma 33.17.2 there exists a nonempty open 𝑊 ⊂ 𝑇 with 𝑊 ⊂ 𝑓(𝑉). ByMore
on Morphisms, Lemma 33.33.7 there exists a closed subscheme 𝑇′ ⊂ 𝑇 such that 𝑡 ∈ 𝑇′,
𝑇′ → 𝑆 is quasi-finite at 𝑡, and there exists a point 𝑧 ∈ 𝑇′ ∩ 𝑊, 𝑧 𝑡 which does not map
to 𝑠. Choose any generic point 𝜉′ of the nonempty scheme 𝑉𝑧. Then (𝑇′ → 𝑆, 𝑧 𝑡, 𝜉′) is
the desired impurity. �

In the following we will use the henselization 𝑆ℎ = 𝑆𝑝𝑒𝑐(𝒪ℎ
𝑆,𝑠) of 𝑆 at 𝑠, see Étale Coho-

mology, Definition 38.33.2. Since 𝑆ℎ → 𝑆 maps to closed point of 𝑆ℎ to 𝑠 and induces
an isomorphism of residue fields, we will indicate 𝑠 ∈ 𝑆ℎ this closed point also. Thus
(𝑆ℎ, 𝑠) → (𝑆, 𝑠) is a morphism of pointed schemes.

Lemma 34.15.7. In Situation 34.15.1. If there exists an impurity (𝑆ℎ → 𝑆, 𝑠′  𝑠, 𝜉) of ℱ
above 𝑠 then there exists an impurity (𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) of ℱ above 𝑠 where (𝑇, 𝑡) → (𝑆, 𝑠)
is an elementary étale neighbourhood.

Proof. We may replace 𝑆 by an affine neighbourhood of 𝑠. Say 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑠 cor-
responds to the prime 𝔭 ⊂ 𝐴. Then 𝒪ℎ

𝑆,𝑠 = 𝑐𝑜𝑙𝑖𝑚(𝑇,𝑡) Γ(𝑇, 𝒪𝑇) where the limit is over the
opposite of the cofiltered category of affine elementary étale neighbourhoods (𝑇, 𝑡) of (𝑆, 𝑠),
see More on Morphisms, Lemma 33.25.5 and its proof. Hence 𝑆ℎ = 𝑙𝑖𝑚𝑖 𝑇𝑖 and we win by
Lemma 34.15.4. �
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Lemma 34.15.8. In Situation 34.15.1 the following are equivalent
(1) there exists an impurity (𝑆ℎ → 𝑆, 𝑠′  𝑠, 𝜉) of ℱ above 𝑠 where 𝑆ℎ is the

henselization of 𝑆 at 𝑠,
(2) there exists an impurity (𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) of ℱ above 𝑠 such that (𝑇, 𝑡) → (𝑆, 𝑠)

is an elementary étale neighbourhood, and
(3) there exists an impurity (𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) of ℱ above 𝑠 such that 𝑇 → 𝑆 is

quasi-finite at 𝑡.

Proof. As an étale morphism is locally quasi-finite it is clear that (2) implies (3). We have
seen that (3) implies (2) in Lemma 34.15.5. We have seen that (1) implies (2) in Lemma
34.15.7. Finally, if (𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) is an impurity of ℱ above 𝑠 such that (𝑇, 𝑡) → (𝑆, 𝑠)
is an elementary étale neighbourhood, then we can choose a factorization 𝑆ℎ → 𝑇 → 𝑆 of
the structure morphism 𝑆ℎ → 𝑆. Choose any point 𝑠′ ∈ 𝑆ℎ mapping to 𝑡′ and choose any
𝜉′ ∈ 𝑋𝑠′ mapping to 𝜉 ∈ 𝑋𝑡′. Then (𝑆ℎ → 𝑆, 𝑠′  𝑠, 𝜉′) is an impurity of ℱ above 𝑠. We
omit the details. �

34.16. Relatively pure modules

The notion of a module pure relative to a base was introduced in [GR71].

Definition 34.16.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is of finite type. Let
ℱ be a finite type quasi-coherent 𝒪𝑋-module.

(1) Let 𝑠 ∈ 𝑆. We say ℱ is pure along 𝑋𝑠 if there is no impurity (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  
𝑡, 𝜉) of ℱ above 𝑠 with (𝑇, 𝑡) → (𝑆, 𝑠) an elementary étale neighbourhood.

(2) We say ℱ is universally pure along 𝑋𝑠 if there does not exist any impurity of ℱ
above 𝑠.

(3) We say that 𝑋 is pure along 𝑋𝑠 if 𝒪𝑋 is pure along 𝑋𝑠.
(4) We sayℱ is universally𝑆-pure, or universally pure relative to𝑆 ifℱ is universally

pure along 𝑋𝑠 for every 𝑠 ∈ 𝑆.
(5) We say ℱ is 𝑆-pure, or pure relative to 𝑆 if ℱ is pure along 𝑋𝑠 for every 𝑠 ∈ 𝑆.
(6) We say that 𝑋 is 𝑆-pure or pure relative to 𝑆 if 𝒪𝑋 is pure relative to 𝑆.

We intentionally restrict ourselves here to morphisms which are of finite type and not just
morphisms which are locally of finite type, see Remark 34.16.2 for a discussion. In the
situation of the definition Lemma 34.15.8 tells us that the following are equivalent

(1) ℱ is pure along 𝑋𝑠,
(2) there is no impurity (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) with 𝑔 quasi-finite at 𝑡,
(3) there does not exist any impurity of the form (𝑆ℎ → 𝑆, 𝑠′  𝑠, 𝜉), where 𝑆ℎ is

the henselization of 𝑆 at 𝑠.
If we denote 𝑋ℎ = 𝑋 ×𝑆 𝑆ℎ and ℱℎ the pullback of ℱ to 𝑋ℎ, then we can formulate the
last condition in the following more positive way:

(4) All points of Ass𝑋ℎ/𝑆ℎ(ℱℎ) specialize to points of 𝑋𝑠.
In particular, it is clear that ℱ is pure along 𝑋𝑠 if and only if the pullback of ℱ to 𝑋 ×𝑆
𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) is pure along 𝑋𝑠.

Remark 34.16.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism which is locally of finite type and ℱ
a quasi-coherent finite type 𝒪𝑋-module. In this case it is still true that (1) and (2) above
are equivalent because the proof of Lemma 34.15.5 does not use that 𝑓 is quasi-compact.
It is also clear that (3) and (4) are equivalent. However, we don't know if (1) and (3)
are equivalent. In this case it may sometimes be more convenient to define purity using
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the equivalent conditions (3) and (4) as is done in [GR71]. On the other hand, for many
applications it seems that the correct notion is really that of being universally pure.

A natural question to ask is if the propery of being pure relative to the base is preserved
by base change, i.e., if being pure is the same thing as being universally pure. It turns out
that this is true over Noetherian base schemes (see Lemma 34.16.5), or if the sheaf is flat
(see Lemmas 34.18.3 and 34.18.4). It is not true in general, even if the morphism and the
sheaf are of finite presentation, see Examples, Section 64.21 for a counter example. First
we match our usage of ``universally'' to the usual notion.

Lemma 34.16.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is of finite type. Let ℱ
be a finite type quasi-coherent 𝒪𝑋-module. Let 𝑠 ∈ 𝑆. The following are equivalent

(1) ℱ is universally pure along 𝑋𝑠, and
(2) for every morphism of pointed schemes (𝑆′, 𝑠′) → (𝑆, 𝑠) the pullback ℱ𝑆′ is pure

along 𝑋𝑠′.
In particular, ℱ is universally pure relative to 𝑆 if and only if every base change ℱ𝑆′ of ℱ
is pure relative to 𝑆′.

Proof. This is formal. �

Lemma 34.16.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is of finite type. Let ℱ
be a finite type quasi-coherent 𝒪𝑋-module. Let 𝑠 ∈ 𝑆. Let (𝑆′, 𝑠′) → (𝑆, 𝑠) be a morphism
of pointed schemes. If 𝑆′ → 𝑆 is quasi-finite at 𝑠′ and ℱ is pure along 𝑋𝑠, then ℱ𝑆′ is pure
along 𝑋𝑠′.

Proof. It (𝑇 → 𝑆′, 𝑡′  𝑡, 𝜉) is an impurity of ℱ𝑆′ above 𝑠′ with 𝑇 → 𝑆′ quasi-finite at 𝑡,
then (𝑇 → 𝑆, 𝑡′ → 𝑡, 𝜉) is an impurity of ℱ above 𝑠 with 𝑇 → 𝑆 quasi-finite at 𝑡, see Mor-
phisms, Lemma 24.19.12. Hence the lemma follows immediately from the characterization
(2) of purity given following Definition 34.16.1. �

Lemma 34.16.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is of finite type. Let ℱ
be a finite type quasi-coherent 𝒪𝑋-module. Let 𝑠 ∈ 𝑆. If 𝒪𝑆,𝑠 is Noetherian then ℱ is pure
along 𝑋𝑠 if and only if ℱ is universally pure along 𝑋𝑠.

Proof. First we may replace 𝑆 by 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠), i.e., we may assume that 𝑆 is Noetherian.
Next, use Lemma 34.15.6 and characterization (2) of purity given in discussion following
Definition 34.16.1 to conclude. �

Purity satisfies flat descent.

Lemma 34.16.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is of finite type. Let ℱ
be a finite type quasi-coherent 𝒪𝑋-module. Let 𝑠 ∈ 𝑆. Let (𝑆′, 𝑠′) → (𝑆, 𝑠) be a morphism
of pointed schemes. Assume 𝑆′ → 𝑆 is flat at 𝑠′.

(1) If ℱ𝑆′ is pure along 𝑋𝑠′, then ℱ is pure along 𝑋𝑠.
(2) If ℱ𝑆′ is universally pure along 𝑋𝑠′, then ℱ is universally pure along 𝑋𝑠.

Proof. Let (𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) be an impurity of ℱ above 𝑠. Set 𝑇1 = 𝑇 ×𝑆 𝑆′, and let
𝑡1 be the unique point of 𝑇1 mapping to 𝑡 and 𝑠′. Since 𝑇1 → 𝑇 is flat at 𝑡1, see Mor-
phisms, Lemma 24.24.7, there exists a specialization 𝑡′

1  𝑡1 lying over 𝑡′  𝑡, see
Algebra, Section 7.36. Choose a point 𝜉1 ∈ 𝑋𝑡′

1
which corresponds to a generic point

of 𝑆𝑝𝑒𝑐(𝜅(𝑡′
1) ⊗𝜅(𝑡′) 𝜅(𝜉)), see Schemes, Lemma 21.17.5. By Divisors, Lemma 26.7.2

we see that 𝜉1 ∈ Ass𝑋𝑇1/𝑇1
(ℱ𝑇1

). As the Zariski closure of {𝜉1} in 𝑋𝑇1
maps into the

Zariski closure of {𝜉} in 𝑋𝑇 we conclude that this closure is disjoint from 𝑋𝑡1
. Hence
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(𝑇1 → 𝑆′, 𝑡′
1  𝑡1, 𝜉1) is an impurity of ℱ𝑆′ above 𝑠′. In other words we have proved the

contrapositive to part (2) of the lemma. Finally, if (𝑇, 𝑡) → (𝑆, 𝑠) is an elementary étale
neighbourhood, then (𝑇1, 𝑡1) → (𝑆′, 𝑠′) is an elementary étale neighbourhood too, and in
this way we see that (1) holds. �

Lemma 34.16.7. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of schemes of finite type over
a scheme 𝑆. Let 𝑠 ∈ 𝑆. Let ℱ be a finite type, quasi-coherent sheaf on 𝑍. Then ℱ is
(universally) pure along 𝑍𝑠 if and only if 𝑖∗ℱ is (universally) pure along 𝑋𝑠.

Proof. Omitted. �

34.17. Examples of relatively pure sheaves

Here are some example cases where it is possible to see what purity means.

Lemma 34.17.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a proper morphism of schemes. Then every finite
type, quasi-coherent 𝒪𝑋-module ℱ is universally pure relative to 𝑆. In particular 𝑋 is
universally pure relative to 𝑆.

Proof. Let (𝑔 ∶ 𝑇 → 𝑆, 𝑡′  𝑡, 𝜉) be an impurity of ℱ above 𝑠 ∈ 𝑆. Since 𝑓 is proper,
it is universally closed. Hence 𝑓𝑇 ∶ 𝑋𝑇 → 𝑇 is closed. Since 𝑓𝑇(𝜉) = 𝑡′ this implies that
𝑡 ∈ 𝑓({𝜉}) which is a contradiction. �

Lemma 34.17.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a separated, finite type morphism of schemes. Let ℱ
be a finite type, quasi-coherent 𝒪𝑋-module. Assume that Supp(ℱ𝑠) is finite for every 𝑠 ∈ 𝑆.
Then the following are equivalent

(1) ℱ is pure relative to 𝑆,
(2) the scheme theoretic support of ℱ is finite over 𝑆, and
(3) ℱ is universally pure relative to 𝑆.

In particular, given a quasi-finite separated morphism 𝑋 → 𝑆 we see that 𝑋 is pure relative
to 𝑆 if and only if 𝑋 → 𝑆 is finite.

Proof. Let 𝑍 ⊂ 𝑋 be the scheme theoretic support of ℱ, see Coherent, Definition 25.10.5.
Then 𝑍 → 𝑆 is a separated, finite type morphism of schemes with finite fibres. Hence it is
separated and quasi-finite, see Morphisms, Lemma 24.19.10. By Lemma 34.16.7 it suffices
to prove the lemma for 𝑍 → 𝑆 and the sheaf ℱ viewed as a finite type quasi-coherent
module on 𝑍. Hence we may assume that 𝑋 → 𝑆 is separated and quasi-finite and that
Supp(ℱ) = 𝑋.

It follows from Lemma 34.17.1 andMorphisms, Lemma 24.42.10 that (2) implies (3). Triv-
ially (3) implies (1). Assume (1) holds. We will prove that (2) holds. It is clear that we may
assume 𝑆 is affine. By More on Morphisms, Lemma 33.29.4 we can find a diagram

𝑋

𝑓 ��

𝑗
// 𝑇

𝜋
��

𝑆

with 𝜋 finite and 𝑗 a quasi-compact open immersion. If we show that 𝑗 is closed, then 𝑗 is
a closed immersion and we conclude that 𝑓 = 𝜋 ∘ 𝑗 is finite. To show that 𝑗 is closed it
suffices to show that specializations lift along 𝑗, see Schemes, Lemma 21.19.8. Let 𝑥 ∈ 𝑋,
set 𝑡′ = 𝑗(𝑥) and let 𝑡′  𝑡 be a specialization. We have to show 𝑡 ∈ 𝑗(𝑋). Set 𝑠′ = 𝑓(𝑥) and
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𝑠 = 𝜋(𝑡) so 𝑠′  𝑠. By More on Morphisms, Lemma 33.28.4 we can find an elementary
étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and a decomposition

𝑇𝑈 = 𝑇 ×𝑆 𝑈 = 𝑉 ⨿ 𝑊

into open and closed subschemes, such that 𝑉 → 𝑈 is finite and there exists a unique
point 𝑣 of 𝑉 mapping to 𝑢, and such that 𝑣 maps to 𝑡 in 𝑇. As 𝑉 → 𝑇 is étale, we can
lift generalizations, see Morphisms, Lemmas 24.24.8 and 24.35.12. Hence there exists a
specialization 𝑣′  𝑣 such that 𝑣′ maps to 𝑡′ ∈ 𝑇. In particular we see that 𝑣′ ∈ 𝑋𝑈 ⊂ 𝑇𝑈.
Denote 𝑢′ ∈ 𝑈 the image of 𝑡′. Note that 𝑣′ ∈ Ass𝑋𝑈/𝑈(ℱ) because 𝑋𝑢′ is a finite discrete
set and 𝑋𝑢′ = Supp(ℱ𝑢′). As ℱ is pure relative to 𝑆 we see that 𝑣′ must specialize to a
point in 𝑋𝑢. Since 𝑣 is the only point of 𝑉 lying over 𝑢 (and since no point of 𝑊 can be a
specialization of 𝑣′) we see that 𝑣 ∈ 𝑋𝑢. Hence 𝑡 ∈ 𝑋. �

Lemma 34.17.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a finite type, flat morphism of schemes with geometri-
cally integral fibres. Then 𝑋 is universally pure over 𝑆.

Proof. Let 𝜉 ∈ 𝑋 with 𝑠′ = 𝑓(𝜉) and 𝑠′  𝑠 a specialization of 𝑆. If 𝜉 is an associated
point of 𝑋𝑠′, then 𝜉 is the unique generic point because 𝑋𝑠′ is an integral scheme. Let 𝜉0
be the unique generic point of 𝑋𝑠. As 𝑋 → 𝑆 is flat we can lift 𝑠′  𝑠 to a specialization
𝜉′  𝜉0 in 𝑋, see Morphisms, Lemma 24.24.8. The 𝜉 𝜉′ because 𝜉 is the generic point
of 𝑋𝑠′ hence 𝜉  𝜉0. This means that (id𝑆, 𝑠′ → 𝑠, 𝜉) is not an impurity of 𝒪𝑋 above 𝑠.
Since the assumption that 𝑓 is finite type, flat with geometrically integral fibres is preserved
under base change, we see that there doesn't exist an impurity after any base change. In this
way we see that 𝑋 is universally 𝑆-pure. �

Lemma 34.17.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a finite type, affine morphism of schemes. Let ℱ
be a finite type quasi-coherent 𝒪𝑋-module such that 𝑓∗ℱ is locally projective on 𝑆, see
Properties, Definition 23.19.1. Then ℱ is universally pure over 𝑆.

Proof. After reducing to the case where 𝑆 is the spectrum of a henselian local ring this
follows from Lemma 34.14.1. �

34.18. A criterion for purity

We first prove that given a flat family of finite type quasi-coherent sheaves the points in
the relative assassin specialize to points in the relative assassins of nearby fibres (if they
specialize at all).

Lemma 34.18.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes of finite type. Let ℱ be a
quasi-coherent 𝒪𝑋-module of finite type. Let 𝑠 ∈ 𝑆. Assume that ℱ is flat over 𝑆 at all
points of 𝑋𝑠. Let 𝑥′ ∈ Ass𝑋/𝑆(ℱ) with 𝑓(𝑥′) = 𝑠′ such that 𝑠′  𝑠 is a specialization in 𝑆.
If 𝑥′ specializes to a point of 𝑋𝑠, then 𝑥′  𝑥 with 𝑥 ∈ Ass𝑋𝑠

(ℱ𝑠).

Proof. Let 𝑥′  𝑡 be a specialization with 𝑡 ∈ 𝑋𝑠. We may replace 𝑋 by an affine
neighbourhood of 𝑡 and 𝑆 by an affine neighbourhood of 𝑠. Choose a closed immersion
𝑖 ∶ 𝑋 → 𝐀𝑛

𝑆. Then it suffices to prove the lemma for the module 𝑖∗ℱ on 𝐀𝑛
𝑆 and the point

𝑖(𝑥′). Hence we may assume 𝑋 → 𝑆 is of finite presentation.

Let 𝑥′  𝑡 be a specialization with 𝑡 ∈ 𝑋𝑠. Set 𝐴 = 𝒪𝑆,𝑠, 𝐵 = 𝒪𝑋,𝑡, and 𝑁 = ℱ𝑡.
Note that 𝐵 is essentially of finite presentation over 𝐴 and that 𝑁 is a finite 𝐵-module flat
over 𝐴. Also 𝑁 is a finitely presented 𝐵-module by Lemma 34.11.9. Let 𝔮′ ⊂ 𝐵 be the
prime ideal corresponding to 𝑥′ and let 𝔭′ ⊂ 𝐴 be the prime ideal corresponding to 𝑠′.
The assumption 𝑥′ ∈ Ass𝑋/𝑆(ℱ) means that 𝔮′ is an associated prime of 𝑁 ⊗𝐴 𝜅(𝔭′). Let

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05K5
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05K6
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05L3


34.18. A CRITERION FOR PURITY 1889

Σ ⊂ 𝐵 be the multiplicative subset of elements which are not zero divisors on 𝑁/𝔪𝐴𝑁.
By Lemma 34.8.2 the map 𝑁 → Σ−1𝑁 is universally injective. In particular, we see that
𝑁 ⊗𝐴 𝜅(𝔭′) → Σ−1𝑁 ⊗𝐴 𝜅(𝔭′) is injective which implies that 𝔮′ is an associated prime
of Σ−1𝑁 ⊗𝐴 𝜅(𝔭′) and hence 𝔮′ is in the image of 𝑆𝑝𝑒𝑐(Σ−1𝐵) → 𝑆𝑝𝑒𝑐(𝐵). Thus Lemma
34.8.1 implies that 𝔮′ ⊂ 𝔮 for some prime 𝔮 ∈ Ass𝐵(𝑁/𝔪𝐴𝑁) (which in particular implies
that 𝔪𝐴 = 𝐴 ∩ 𝔮). If 𝑥 ∈ 𝑋𝑠 denotes the point corresponding to 𝔮, then 𝑥 ∈ Ass𝑋𝑠

(ℱ𝑠)
and 𝑥′  𝑥 as desired. �

Lemma 34.18.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes of finite type. Let ℱ be a
quasi-coherent 𝒪𝑋-module of finite type. Let 𝑠 ∈ 𝑆. Let (𝑆′, 𝑠′) → (𝑆, 𝑠) be an elementary
étale neighbourhood and let

𝑋

��

𝑋′
𝑔

oo

��
𝑆 𝑆′oo

be a commutative diagram of morphisms of schemes. Assume
(1) ℱ is flat over 𝑆 at all points of 𝑋𝑠,
(2) 𝑋′ → 𝑆′ is of finite type,
(3) 𝑔∗ℱ is pure along 𝑋′

𝑠′,
(4) 𝑔 ∶ 𝑋′ → 𝑋 is étale, and
(5) 𝑔(𝑋′) contains Ass𝑋𝑠

(ℱ𝑠).
In this situation ℱ is pure along 𝑋𝑠 if and only if the image of 𝑋′ → 𝑋 ×𝑆 𝑆′ contains the
points Ass𝑋×𝑆𝑆′/𝑆′(ℱ ×𝑆 𝑆′) lying over points in 𝑆′ which specialize to 𝑠′.

Proof. Since the morphism 𝑆′ → 𝑆 is étale, we see that if ℱ is pure along 𝑋𝑠, then ℱ ×𝑆
𝑆′ is pure along 𝑋𝑠, see Lemma 34.16.4. Since purity satisfies flat descent, see Lemma
34.16.6, we see that if ℱ ×𝑆 𝑆′ is pure along 𝑋𝑠′, then ℱ is pure along 𝑋𝑠. Hence we may
replace 𝑆 by 𝑆′ and assume that 𝑆 = 𝑆′ so that 𝑔 ∶ 𝑋′ → 𝑋 is an étale morphism between
schemes of finite type over 𝑆. Moreover, we may replace 𝑆 by 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) and assume that
𝑆 is local.

First, assume that ℱ is pure along 𝑋𝑠. In this case every point of Ass𝑋/𝑆(ℱ) specializes to
a point of 𝑋𝑠 by purity. Hence by Lemma 34.18.1 we see that every point of Ass𝑋/𝑆(ℱ)
specializes to a point of Ass𝑋𝑠

(ℱ𝑠). Thus every point of Ass𝑋/𝑆(ℱ) is in the image of 𝑔 (as
the image is open and contains Ass𝑋𝑠

(ℱ𝑠)).

Conversely, assume that 𝑔(𝑋′) contains Ass𝑋/𝑆(ℱ). Let 𝑆ℎ = 𝑆𝑝𝑒𝑐(𝒪ℎ
𝑆,𝑠) be the henseliza-

tion of 𝑆 at 𝑠. Denote 𝑔ℎ ∶ (𝑋′)ℎ → 𝑋ℎ the base change of 𝑔 by 𝑆ℎ → 𝑆, and denote
ℱℎ the pullback of ℱ to 𝑋ℎ. By Divisors, Lemma 26.7.2 and Remark 26.7.3 the rela-
tive assassin Ass𝑋ℎ/𝑆ℎ(ℱℎ) is the inverse image of Ass𝑋/𝑆(ℱ) via the projection 𝑋ℎ → 𝑋.
As we have assumed that 𝑔(𝑋′) contains Ass𝑋/𝑆(ℱ) we conclude that the base change
𝑔ℎ((𝑋′)ℎ) = 𝑔(𝑋′) ×𝑆 𝑆ℎ contains Ass𝑋ℎ/𝑆ℎ(ℱℎ). In this way we reduce to the case where
𝑆 is the spectrum of a henselian local ring. Let 𝑥 ∈ Ass𝑋/𝑆(ℱ). To finish the proof of the
lemma we have to show that 𝑥 specializes to a point of 𝑋𝑠, see criterion (4) for purity in
discussion following Definition 34.16.1. By assumption there exists a 𝑥′ ∈ 𝑋′ such that
𝑔(𝑥′) = 𝑥. As 𝑔 ∶ 𝑋′ → 𝑋 is étale, we see that 𝑥′ ∈ Ass𝑋′/𝑆(𝑔∗ℱ), see Lemma 34.3.7
(applied to the morphism of fibres 𝑋′

𝑤 → 𝑋𝑤 where 𝑤 ∈ 𝑆 is the image of 𝑥′). Since
𝑔∗ℱ is pure along 𝑋′

𝑠 we see that 𝑥′  𝑦 for some 𝑦 ∈ 𝑋′
𝑠. Hence 𝑥 = 𝑔(𝑥′)  𝑔(𝑦) and

𝑔(𝑦) ∈ 𝑋𝑠 as desired. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05L4


1890 34. MORE ON FLATNESS

Lemma 34.18.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let 𝑠 ∈ 𝑆. Assume

(1) 𝑓 is of finite type,
(2) ℱ is of finite type,
(3) ℱ is flat over 𝑆 at all points of 𝑋𝑠, and
(4) ℱ is pure along 𝑋𝑠.

Then ℱ is universally pure along 𝑋𝑠.

Proof. Wefirst make a preliminary remark. Suppose that (𝑆′, 𝑠′) → (𝑆, 𝑠) is an elementary
étale neighbourhood. Denote ℱ′ the pullback of ℱ to 𝑋′ = 𝑋 ×𝑆 𝑆′. By the discussion
following Definition 34.16.1 we see that ℱ′ is pure along 𝑋′

𝑠′. Moreover, ℱ′ is flat over
𝑆′ along 𝑋′

𝑠′. Then it suffices to prove that ℱ′ is universally pure along 𝑋′
𝑠′. Namely,

given any morphism (𝑇, 𝑡) → (𝑆, 𝑠) of pointed schemes the fibre product (𝑇′, 𝑡′) = (𝑇 ×𝑆
𝑆′, (𝑡, 𝑠′)) is flat over (𝑇, 𝑡) and hence if ℱ𝑇′ is pure along 𝑋𝑡′ then ℱ𝑇 is pure along 𝑋𝑡
by Lemma 34.16.6. Thus during the proof we may always replace (𝑠, 𝑆) by an elementary
étale neighbourhood. We may also replace 𝑆 by 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) due to the local nature of the
problem.
Choose an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and a commutative diagram

𝑋

��

𝑋′
𝑔

oo

��
𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)oo

such that 𝑋′ → 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is étale, 𝑋𝑠 = 𝑔((𝑋′)𝑠′), the scheme 𝑋′ is affine,
and such that Γ(𝑋′, 𝑔∗ℱ) is a free 𝒪𝑆′,𝑠′-module, see Lemma 34.12.11. Note that 𝑋′ →
𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) is of finite type (as a quasi-compact morphism which is the composition of
an étale morphism and the base change of a finite type morphism). By our preliminary
remarks in the first paragraph of the proof we may replace 𝑆 by 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′). Hence we
may assume there exists a commutative diagram

𝑋

��

𝑋′
𝑔

oo

~~
𝑆

of schemes of finite type over 𝑆, where 𝑔 is étale, 𝑋𝑠 ⊂ 𝑔(𝑋′), with 𝑆 local with closed
point 𝑠, with 𝑋′ affine, and with Γ(𝑋′, 𝑔∗ℱ) a free Γ(𝑆, 𝒪𝑆)-module. Note that in this case
𝑔∗ℱ is universally pure over 𝑆, see Lemma 34.17.4.
In this situation we apply Lemma 34.18.2 to deduce that Ass𝑋/𝑆(ℱ) ⊂ 𝑔(𝑋′) from our
assumption that ℱ is pure along 𝑋𝑠 and flat over 𝑆 along 𝑋𝑠. By Divisors, Lemma 26.7.2
and Remark 26.7.3 we see that for any morphism of pointed schemes (𝑇, 𝑡) → (𝑆, 𝑠) we
have

Ass𝑋𝑇/𝑇(ℱ𝑇) ⊂ (𝑋𝑇 → 𝑋)−1(Ass𝑋/𝑆(ℱ)) ⊂ 𝑔(𝑋′) ×𝑆 𝑇 = 𝑔𝑇(𝑋′
𝑇).

Hence by Lemma 34.18.2 applied to the base change of our displayed diagram to (𝑇, 𝑡) we
conclude that ℱ𝑇 is pure along 𝑋𝑡 as desired. �

Lemma 34.18.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a finite type morphism of schemes. Let ℱ be a finite
type quasi-coherent 𝒪𝑋-module. Assume ℱ is flat over 𝑆. In this case ℱ is pure relative to
𝑆 if and only if ℱ is universally pure relative to 𝑆.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05L5
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05L6


34.18. A CRITERION FOR PURITY 1891

Proof. Immediate consequence of Lemma 34.18.3 and the definitions. �

Lemma 34.18.5. Let 𝐼 be a directed partially ordered set. Let (𝑆𝑖, 𝑔𝑖𝑖′) be an inverse system
of affine schemes over 𝐼. Set 𝑆 = 𝑙𝑖𝑚𝑖 𝑆𝑖 and 𝑠 ∈ 𝑆. Denote 𝑔𝑖 ∶ 𝑆 → 𝑆𝑖 the projections
and set 𝑠𝑖 = 𝑔𝑖(𝑠). Suppose that 𝑓 ∶ 𝑋 → 𝑆 is a morphism of finite presentation, ℱ a
quasi-coherent 𝒪𝑋-module of finite presentation which is pure along 𝑋𝑠 and flat over 𝑆 at
all points of 𝑋𝑠. Then there exists an 𝑖 ∈ 𝐼, a morphism of finite presentation 𝑋𝑖 → 𝑆𝑖,
a quasi-coherent 𝒪𝑋𝑖

-module ℱ𝑖 of finite presentation which is pure along (𝑋𝑖)𝑠𝑖
and flat

over 𝑆𝑖 at all points of (𝑋𝑖)𝑠𝑖
such that 𝑋 ≅ 𝑋𝑖 ×𝑆𝑖

𝑆 and such that the pullback of ℱ𝑖 to 𝑋
is isomorphic to ℱ.

Proof. Let 𝑈 ⊂ 𝑋 be the set of points where ℱ is flat over 𝑆. By More on Morphisms,
Theorem 33.11.1 this is an open subscheme of 𝑋. By assumption 𝑋𝑠 ⊂ 𝑈. As 𝑋𝑠 is
quasi-compact, we can find a quasi-compact open 𝑈′ ⊂ 𝑈 with 𝑋𝑠 ⊂ 𝑈′. By Limits,
Lemma 27.6.1 we can find an 𝑖 ∈ 𝐼 and a morphism of finite presentation 𝑓𝑖 ∶ 𝑋𝑖 → 𝑆𝑖
whose base change to 𝑆 is isomorphic to 𝑓𝑖. Fix such a choice and set 𝑋𝑖′ = 𝑋𝑖 ×𝑆𝑖

𝑆𝑖′.
Then 𝑋 = 𝑙𝑖𝑚𝑖′ 𝑋𝑖′ with affine transition morphisms. By Limits, Lemma 27.6.8 we can,
after possible increasing 𝑖 assume there exists a quasi-coherent 𝒪𝑋𝑖

-module ℱ𝑖 of finite
presentation whose base change to 𝑆 is isomorphic to ℱ. By Limits, Lemma 27.3.5 after
possibly increasing 𝑖 we may assume there exists an open 𝑈′

𝑖 ⊂ 𝑋𝑖 whose inverse image in
𝑋 is 𝑈′. Note that in particular (𝑋𝑖)𝑠𝑖

⊂ 𝑈′
𝑖 . By Limits, Lemma 27.6.9 (after increasing 𝑖

once more) we may assume that ℱ𝑖 is flat on 𝑈′
𝑖 . In particular we see that ℱ𝑖 is flat along

(𝑋𝑖)𝑠𝑖
.

Next, we use Lemma 34.12.5 to choose an elementary étale neighbourhood (𝑆′
𝑖 , 𝑠′

𝑖 ) →
(𝑆𝑖, 𝑠𝑖) and a commutative diagram of schemes

𝑋𝑖

��

𝑋′
𝑖𝑔𝑖

oo

��
𝑆𝑖 𝑆′

𝑖
oo

such that 𝑔𝑖 is étale, (𝑋𝑖)𝑠𝑖
⊂ 𝑔𝑖(𝑋′

𝑖 ), the schemes𝑋′
𝑖 , 𝑆′

𝑖 are affine, and such thatΓ(𝑋′
𝑖 , 𝑔∗

𝑖 ℱ𝑖)
is a projective Γ(𝑆′

𝑖 , 𝒪𝑆′
𝑖
)-module. Note that 𝑔∗

𝑖 ℱ𝑖 is universally pure over 𝑆′
𝑖 , see Lemma

34.17.4. We may base change the diagram above to a diagram with morphisms (𝑆′
𝑖′, 𝑠′

𝑖′) →
(𝑆𝑖′, 𝑠𝑖′) and 𝑔𝑖′ ∶ 𝑋′

𝑖′ → 𝑋𝑖′ over 𝑆𝑖′ for any 𝑖′ ≥ 𝑖 and we may base change the diagram
to a diagram with morphisms (𝑆′, 𝑠′) → (𝑆, 𝑠) and 𝑔 ∶ 𝑋′ → 𝑋 over 𝑆.

At this point we can use our criterion for purity. Set 𝑊′
𝑖 ⊂ 𝑋𝑖 ×𝑆𝑖

𝑆′
𝑖 equal to the image

of the étale morphism 𝑋′
𝑖 → 𝑋𝑖 ×𝑆𝑖

𝑆′
𝑖 . For every 𝑖′ ≥ 𝑖 we have similarly the image

𝑊′
𝑖′ ⊂ 𝑋𝑖′ ×𝑆𝑖′

𝑆′
𝑖′ and we have the image 𝑊′ ⊂ 𝑋 ×𝑆 𝑆′. Taking images commutes with

base change, hence 𝑊′
𝑖′ = 𝑊′

𝑖 ×𝑆′
𝑖

𝑆′
𝑖′ and 𝑊′ = 𝑊𝑖 ×𝑆′

𝑖
𝑆′. Because ℱ is pure along 𝑋𝑠

the Lemma 34.18.2 implies that

(34.18.5.1) 𝑓−1(𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′)) ∩ Ass𝑋×𝑆𝑆′/𝑆′(ℱ ×𝑆 𝑆′) ⊂ 𝑊′

By More on Morphisms, Lemma 33.18.5 we see that

𝐸 = {𝑡 ∈ 𝑆′ ∣ Ass𝑋𝑡
(ℱ𝑡) ⊂ 𝑊′} and 𝐸𝑖′ = {𝑡 ∈ 𝑆′

𝑖′ ∣ Ass𝑋𝑡
(ℱ𝑖′,𝑡) ⊂ 𝑊′

𝑖′}

are locally constructible subsets of 𝑆′ and 𝑆′
𝑖′. By More on Morphisms, Lemma 33.18.4

we see that 𝐸𝑖′ is the inverse image of 𝐸𝑖 under the morphism 𝑆′
𝑖′ → 𝑆′

𝑖 and that 𝐸 is the
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inverse image of 𝐸𝑖 under the morphism 𝑆′ → 𝑆′
𝑖 . Thus Equation (34.18.5.1) is equivalent

to the assertion that 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) maps into 𝐸𝑖. As 𝒪𝑆′,𝑠′ = 𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖 𝒪𝑆′
𝑖′

,𝑠′
𝑖′
we see that

𝑆𝑝𝑒𝑐(𝒪𝑆′
𝑖′

,𝑠′
𝑖′

) maps into 𝐸𝑖 for some 𝑖′ ≥ 𝑖, see Limits, Lemma 27.3.4. Then, applying
Lemma 34.18.2 to the situation over 𝑆𝑖′, we conclude that ℱ𝑖′ is pure along (𝑋𝑖′)𝑠𝑖′

. �

Lemma 34.18.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of finite presentation. Let ℱ be a quasi-
coherent 𝒪𝑋-module of finite presentation flat over 𝑆. Then the set

𝑈 = {𝑠 ∈ 𝑆 ∣ ℱ is pure along 𝑋𝑠}
is open in 𝑆.

Proof. Let 𝑠 ∈ 𝑈. Using Lemma 34.12.5 we can find an elementary étale neighbourhood
(𝑆′, 𝑠′) → (𝑆, 𝑠) and a commutative diagram

𝑋

��

𝑋′
𝑔

oo

��
𝑆 𝑆′oo

such that 𝑔 is étale, 𝑋𝑠 ⊂ 𝑔(𝑋′), the schemes 𝑋′, 𝑆′ are affine, and such that Γ(𝑋′, 𝑔∗ℱ)
is a projective Γ(𝑆′, 𝒪𝑆′)-module. Note that 𝑔∗ℱ is universally pure over 𝑆′, see Lemma
34.17.4. Set 𝑊′ ⊂ 𝑋 ×𝑆 𝑆′ equal to the image of the étale morphism 𝑋′ → 𝑋 ×𝑆 𝑆′. Note
that 𝑊 is open and quasi-compact over 𝑆′. Set

𝐸 = {𝑡 ∈ 𝑆′ ∣ Ass𝑋𝑡
(ℱ𝑡) ⊂ 𝑊′}.

By More on Morphisms, Lemma 33.18.5 𝐸 is a constructible subset of 𝑆′. By Lemma
34.18.2 we see that 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) ⊂ 𝐸. By Morphisms, Lemma 24.21.4 we see that 𝐸
contains an open neighbourhood 𝑉′ of 𝑠′. Applying Lemma 34.18.2 once more we see that
for any point 𝑠1 in the image of 𝑉′ in 𝑆 the sheaf ℱ is pure along 𝑋𝑠1

. Since 𝑆′ → 𝑆 is
étale the image of 𝑉′ in 𝑆 is open and we win. �

34.19. How purity is used

Here are some examples of how purity can be used. The first lemma actually uses a slightly
weaker form of purity.

Lemma 34.19.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of finite type. Let ℱ be a quasi-coherent
sheaf of finite type on 𝑋. Assume 𝑆 is local with closed point 𝑠. Assume ℱ is pure along
𝑋𝑠 and that ℱ is flat over 𝑆. Let 𝜑 ∶ ℱ → 𝒢 of quasi-coherent 𝒪𝑋-modules. Then the
following are equivalent

(1) the map on stalks 𝜑𝑥 is injective for all 𝑥 ∈ Ass𝑋𝑠
(ℱ𝑠), and

(2) 𝜑 is injective.

Proof. Let 𝒦 = Ker(𝜑). Our goal is to prove that 𝒦 = 0. In order to do this it suffices to
prove that WeakAss𝑋(𝒦) = ∅, see Divisors, Lemma 26.5.5. We have WeakAss𝑋(𝒦) ⊂
WeakAss𝑋(ℱ), see Divisors, Lemma 26.5.4. As ℱ is flat we see from Lemma 34.13.4 that
WeakAss𝑋(ℱ) ⊂ Ass𝑋/𝑆(ℱ). By purity any point 𝑥′ of Ass𝑋/𝑆(ℱ) is a generalization of a
point of 𝑋𝑠, and hence is the specialization of a point 𝑥 ∈ Ass𝑋𝑠

(ℱ𝑠), by Lemma 34.18.1.
Hence the injectivity of 𝜑𝑥 implies the injectivity of 𝜑𝑥′, whence 𝒦𝑥′ = 0. �

Proposition 34.19.2. Let 𝑓 ∶ 𝑋 → 𝑆 be an affine, finitely presented morphism of schemes.
Let ℱ be a quasi-coherent 𝒪𝑋-module of finite presentation, flat over 𝑆. Then the following
are equivalent
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(1) 𝑓∗ℱ is locally projective on 𝑆, and
(2) ℱ is pure relative to 𝑆.

In particular, given a ring map 𝐴 → 𝐵 of finite presentation and a finitely presented
𝐵-module 𝑁 flat over 𝐴 we have: 𝑁 is projective as an 𝐴-module if and only if �̃� on
𝑆𝑝𝑒𝑐(𝐵) is pure relative to 𝑆𝑝𝑒𝑐(𝐴).

Proof. The implication (1) ⇒ (2) is Lemma 34.17.4. Assume ℱ is pure relative to 𝑆. Note
that by Lemma 34.18.3 this implies ℱ remains pure after any base change. By Descent,
Lemma 31.5.5 it suffices to prove 𝑓∗ℱ is fpqc locally projective on 𝑆. Pick 𝑠 ∈ 𝑆. We
will prove that the restriction of 𝑓∗ℱ to an étale neighbourhood of 𝑠 is locally projective.
Namely, by Lemma 34.12.5, after replacing 𝑆 by an affine elementary étale neighbourhood
of 𝑠, we may assume there exists a diagram

𝑋

��

𝑋′
𝑔

oo

~~
𝑆

of schemes affine and of finite presentation over 𝑆, where 𝑔 is étale, 𝑋𝑠 ⊂ 𝑔(𝑋′), and with
Γ(𝑋′, 𝑔∗ℱ) a projective Γ(𝑆, 𝒪𝑆)-module. Note that in this case 𝑔∗ℱ is universally pure
over 𝑆, see Lemma 34.17.4. Hence by Lemma 34.18.2 we see that the open 𝑔(𝑋′) contains
the points of Ass𝑋/𝑆(ℱ) lying over 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠). Set

𝐸 = {𝑡 ∈ 𝑆 ∣ Ass𝑋𝑡
(ℱ𝑡) ⊂ 𝑔(𝑋′)}.

By More on Morphisms, Lemma 33.18.5 𝐸 is a constructible subset of 𝑆. We have seen
that 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) ⊂ 𝐸. By Morphisms, Lemma 24.21.4 we see that 𝐸 contains an open
neighbourhood of 𝑠. Hence after replacing 𝑆 by an affine neighbourhood of 𝑠 we may
assume that Ass𝑋/𝑆(ℱ) ⊂ 𝑔(𝑋′). By Lemma 34.8.4 this means that

Γ(𝑋, ℱ) ⟶ Γ(𝑋′, 𝑔∗ℱ)

is Γ(𝑆, 𝒪𝑆)-universally injective. By Algebra, Lemma 7.83.6 we conclude that Γ(𝑋, ℱ) is
Mittag-Leffler as an Γ(𝑆, 𝒪𝑆)-module. Since Γ(𝑋, ℱ) is countably generated and flat as a
Γ(𝑆, 𝒪𝑆)-module, we conclude it is projective by Algebra, Lemma 7.87.1. �

We can use the proposition to improve some of our earlier results. The following lemma is
an improvement of Proposition 34.12.4.

Lemma 34.19.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism which is locally of finite presentation.
Let ℱ be a quasi-coherent 𝒪𝑋-module which is of finite presentation. Let 𝑥 ∈ 𝑋 with
𝑠 = 𝑓(𝑥) ∈ 𝑆. If ℱ is flat at 𝑥 over 𝑆 there exists an affine elementary étale neighbourhood
(𝑆′, 𝑠′) → (𝑆, 𝑠) and an affine open 𝑈′ ⊂ 𝑋 ×𝑆 𝑆′ which contains 𝑥′ = (𝑥, 𝑠′) such that
Γ(𝑈′, ℱ|𝑈′) is a projective Γ(𝑆′, 𝒪𝑆′)-module.

Proof. During the proof we may replace 𝑋 by an open neighbourhood of 𝑥 and we may
replace 𝑆 by an elementary étale neighbourhood of 𝑠. Hence, by openness of flatness (see
More on Morphisms, Theorem 33.11.1) we may assume that ℱ is flat over 𝑆. We may
assume 𝑆 and 𝑋 are affine. After shrinking 𝑋 some more we may assume that any point
of Ass𝑋𝑠

(ℱ𝑠) is a generalization of 𝑥. This property is preserved on replacing (𝑆, 𝑠) by
an elementary étale neighbourhood. Hence we may apply Lemma 34.12.5 to arrive at the
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situation where there exists a diagram

𝑋

��

𝑋′
𝑔

oo

~~
𝑆

of schemes affine and of finite presentation over 𝑆, where 𝑔 is étale, 𝑋𝑠 ⊂ 𝑔(𝑋′), and with
Γ(𝑋′, 𝑔∗ℱ) a projective Γ(𝑆, 𝒪𝑆)-module. Note that in this case 𝑔∗ℱ is universally pure
over 𝑆, see Lemma 34.17.4.

Let 𝑈 ⊂ 𝑔(𝑋′) be an affine open neighbourhood of 𝑥. We claim that ℱ|𝑈 is pure along 𝑈𝑠. If
we prove this, then the lemma follows because ℱ|𝑈 will be pure relative to 𝑆 after shrinking
𝑆, see Lemma 34.18.6, whereupon the projectivity follows from Proposition 34.19.2. To
prove the claim we have to show, after replacing (𝑆, 𝑠) by an arbitrary elementary étale
neighbourhood, that any point 𝜉 of Ass𝑈/𝑆(ℱ|𝑈) lying over some 𝑠′ ∈ 𝑆, 𝑠′  𝑠 specializes
to a point of 𝑈𝑠. Since 𝑈 ⊂ 𝑔(𝑋′) we can find a 𝜉′ ∈ 𝑋′ with 𝑔(𝜉′) = 𝜉. Because 𝑔∗ℱ
is pure over 𝑆, using Lemma 34.18.1, we see there exists a specialization 𝜉′  𝑥′ with
𝑥′ ∈ Ass𝑋′

𝑠
(𝑔∗ℱ𝑠). Then 𝑔(𝑥′) ∈ Ass𝑋𝑠

(ℱ𝑠) (see for example Lemma 34.3.7 applied to
the étale morphism 𝑋′

𝑠 → 𝑋𝑠 of Noetherian schemes) and hence 𝑔(𝑥′) 𝑥 by our choice
of 𝑋 above! Since 𝑥 ∈ 𝑈 we conclude that 𝑔(𝑥′) ∈ 𝑈. Thus 𝜉 = 𝑔(𝜉′)  𝑔(𝑥′) ∈ 𝑈𝑠 as
desired. �

The following lemma is an improvement of Lemma 34.12.9.

Lemma 34.19.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism which is locally of finite type. Let ℱ be
a quasi-coherent 𝒪𝑋-module which is of finite type. Let 𝑥 ∈ 𝑋 with 𝑠 = 𝑓(𝑥) ∈ 𝑆. If ℱ is
flat at 𝑥 over 𝑆 there exists an affine elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and
an affine open 𝑈′ ⊂ 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) which contains 𝑥′ = (𝑥, 𝑠′) such that Γ(𝑈′, ℱ|𝑈′)
is a free 𝒪𝑆′,𝑠′-module.

Proof. The question is Zariski local on 𝑋 and 𝑆. Hence we may assume that 𝑋 and 𝑆 are
affine. Then we can find a closed immersion 𝑖 ∶ 𝑋 → 𝐀𝑛

𝑆 over 𝑆. It is clear that it suffices
to prove the lemma for the sheaf 𝑖∗ℱ on 𝐀𝑛

𝑆 and the point 𝑖(𝑥). In this way we reduce to the
case where 𝑋 → 𝑆 is of finite presentation. After replacing 𝑆 by 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) and 𝑋 by an
open of 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪𝑆′,𝑠′) we may assume that ℱ is of finite presentation, see Proposition
34.11.3. In this case we may appeal to Lemma 34.19.3 and Algebra, Theorem 7.79.4 to
conclude. �

Lemma 34.19.5. Let 𝐴 → 𝐵 be a local ring map of local rings which is essentially of finite
type. Let 𝑁 be a finite 𝐵-module which is flat as an 𝐴-module. If 𝐴 is henselian, then 𝑁 is
a filtered colimit

𝑁 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐹𝑖

of free 𝐴-modules 𝐹𝑖 such that all transition maps 𝑢𝑖 ∶ 𝐹𝑖 → 𝐹𝑖′ of the system induce
injective maps 𝑢𝑖 ∶ 𝐹𝑖/𝔪𝐴𝐹𝑖 → 𝐹𝑖′/𝔪𝐴𝐹𝑖′.

Proof. We can find a morphism of finite type 𝑋 → 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and a point 𝑥 ∈ 𝑋
lying over the closed point 𝑠 of 𝑆 and a finite type quasi-coherent 𝒪𝑋-module ℱ such that
ℱ𝑥 ≅ 𝑁 as an 𝐴-module. After shrinking 𝑋 we may assume that each point of Ass𝑋𝑠

(ℱ𝑠)
specializes to 𝑥. By Lemma 34.19.4 we see that there exists a fundamental system of affine
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open neighbourds 𝑈𝑖 ⊂ 𝑋 of 𝑥 such that Γ(𝑈𝑖, ℱ) is a free 𝐴-module 𝐹𝑖. Note that if
𝑈𝑖′ ⊂ 𝑈𝑖, then

𝐹𝑖/𝔪𝐴𝐹𝑖 = Γ(𝑈𝑖,𝑠, ℱ𝑠) ⟶ Γ(𝑈𝑖′,𝑠, ℱ𝑠) = 𝐹𝑖′/𝔪𝐴𝐹𝑖′

is injective because a section of the kernel would be supported at a closed subset of 𝑋𝑠 not
meeting 𝑥 which is a contradiction to our choice of 𝑋 above. �

34.20. Flattening functors

Let 𝑆 be a scheme. Recall that a functor 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝 → Sets is called limit preserving
if for every directed inverse system {𝑇𝑖}𝑖∈𝐼 of affine schemes with limit 𝑇 we have 𝐹(𝑇) =
𝑐𝑜𝑙𝑖𝑚𝑖 𝐹(𝑇𝑖).

Situation 34.20.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑢 ∶ ℱ → 𝒢 be a
homomorphismm of quasi-coherent 𝒪𝑋-modules. For any scheme 𝑇 over 𝑆 we will denote
𝑢𝑇 ∶ ℱ𝑇 → 𝒢𝑇 the base change of 𝑢 to 𝑇, in other words, 𝑢𝑇 is the pullback of 𝑢 via the
projection morphism 𝑋𝑇 = 𝑋 ×𝑆 𝑇 → 𝑋. In this situation we can consider the functor

(34.20.1.1) 𝐹𝑖𝑠𝑜 ∶ (Sch/𝑆)𝑜𝑝𝑝 ⟶ Sets, 𝑇 ⟶ {
{∗} if 𝑢𝑇 is an isomorphism,
∅ else.

There are variants 𝐹𝑖𝑛𝑗, 𝐹𝑠𝑢𝑟𝑗 where we ask that 𝑢𝑇 is injective, resp. surjective.

Lemma 34.20.2. In Situation 34.20.1.
(1) Each of the functors 𝐹𝑖𝑠𝑜, 𝐹𝑖𝑛𝑗, 𝐹𝑠𝑢𝑟𝑗 satisfies the sheaf property for the fpqc topol-

ogy.
(2) If 𝑓 is quasi-compact and 𝒢 is of finite type, then 𝐹𝑠𝑢𝑟𝑗 is limit preserving.
(3) If 𝑓 is quasi-compact, ℱ is of finite type, and 𝒢 is of finite presentation, then 𝐹𝑖𝑠𝑜

is limit preserving.

Proof. Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an fpqc covering of schemes over 𝑆. Set 𝑋𝑖 = 𝑋𝑇𝑖
= 𝑋 ×𝑆 𝑇𝑖

and 𝑢𝑖 = 𝑢𝑇𝑖
. Note that {𝑋𝑖 → 𝑋𝑇}𝑖∈𝐼 is an fpqc covering of 𝑋𝑇, see Topologies, Lemma

30.8.7. In particular, for every 𝑥 ∈ 𝑋𝑇 there exists an 𝑖 ∈ 𝐼 and an 𝑥𝑖 ∈ 𝑋𝑖 mapping
to 𝑥. Since 𝒪𝑋𝑇,𝑥 → 𝒪𝑋𝑖,𝑥𝑖

is flat, hence faithfully flat (see Algebra, Lemma 7.35.16)
we conclude that (𝑢𝑖)𝑥𝑖

is injective, surjective, or bijective if and only if (𝑢𝑇)𝑥 is injective,
surjective, or bijective. Whence part (1) of the lemma.

Assume 𝑓 quasi-compact and 𝒢 of finite type. Let 𝑇 = 𝑙𝑖𝑚𝑖∈𝐼 𝑇𝑖 be a directed limit of affine
𝑆-schemes and assume that 𝑢𝑇 is surjective. Set 𝑋𝑖 = 𝑋𝑇𝑖

= 𝑋 ×𝑆 𝑇𝑖 and 𝑢𝑖 = 𝑢𝑇𝑖
∶ ℱ𝑖 =

ℱ𝑇𝑖
→ 𝒢𝑖 = 𝒢𝑇𝑖

. To prove part (2) we have to show that 𝑢𝑖 is surjective for some 𝑖. Pick
𝑖0 ∈ 𝐼 and replace 𝐼 by {𝑖 ∣ 𝑖 ≥ 𝑖0}. Since 𝑓 is quasi-compact each the scheme 𝑋𝑖0 is
quasi-compact. Hence we may choose affine opens 𝑊1, … , 𝑊𝑚 ⊂ 𝑋 and an affine open
covering 𝑋𝑖0 = 𝑈1,𝑖0 ∪…∪𝑈𝑚,𝑖0 such that 𝑈𝑗,𝑖0 maps into 𝑊𝑗 under the projectionmorphism
𝑋𝑖0 → 𝑋. For any 𝑖 ∈ 𝐼 let 𝑈𝑗,𝑖 be the inverse image of 𝑈𝑗,𝑖0. Setting 𝑈𝑗 = 𝑙𝑖𝑚𝑖 𝑈𝑗,𝑖 we
see that 𝑋𝑇 = 𝑈1 ∪ … ∪ 𝑈𝑚 is an affine open covering of 𝑋𝑇. Now it suffices to show, for
a given 𝑗 ∈ {1, … , 𝑚} that 𝑢𝑖|𝑈𝑗,𝑖

is surjective for some 𝑖 = 𝑖(𝑗) ∈ 𝐼. Using Properties,
Lemma 23.16.1 this translates into the following algebra problem: Let 𝐴 be a ring and let
𝑢 ∶ 𝑀 → 𝑁 be an 𝐴-module map. Suppose that 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑅𝑖 is a directed colimit of
𝐴-algebras. If 𝑁 is a finite 𝐴-module and if 𝑢 ⊗ 1 ∶ 𝑀 ⊗𝐴 𝑅 → 𝑁 ⊗𝐴 𝑅 is surjective, then
for some 𝑖 the map 𝑢 ⊗ 1 ∶ 𝑀 ⊗𝐴 𝑅𝑖 → 𝑁 ⊗𝐴 𝑅𝑖 is surjective. This is Algebra, Lemma
7.118.3 part (2).
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Assume 𝑓 quasi-compact and ℱ, 𝒢 of finite presentation. Arguing in exactly the same
manner as in the previous paragraph (using in addition also Properties, Lemma 23.16.2) part
(3) translates into the following algebra statement: Let 𝐴 be a ring and let 𝑢 ∶ 𝑀 → 𝑁 be an
𝐴-module map. Suppose that 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑅𝑖 is a directed colimit of 𝐴-algebras. Assume
𝑀 is a finite 𝐴-module, 𝑁 is a finitely presented 𝐴-module, and 𝑢⊗1 ∶ 𝑀⊗𝐴𝑅 → 𝑁⊗𝐴𝑅
is an isomorphism. Then for some 𝑖 themap 𝑢⊗1 ∶ 𝑀⊗𝐴𝑅𝑖 → 𝑁⊗𝐴𝑅𝑖 is an isomorphism.
This is Algebra, Lemma 7.118.3 part (3). �

Situation 34.20.3. Let (𝐴, 𝔪𝐴) be a local ring. Denote 𝒞 the category whose objects are
𝐴-algebras 𝐴′ which are local rings such that the algebra structure 𝐴 → 𝐴′ is a local
homomorphism of local rings. A morphism between objects 𝐴′, 𝐴″ of 𝒞 is a local homo-
morphism 𝐴′ → 𝐴″ of 𝐴-algebras. Let 𝐴 → 𝐵 be a local ring map of local rings and let
𝑀 be a 𝐵-module. If 𝐴′ is an object of 𝒞 we set 𝐵′ = 𝐵 ⊗𝐴 𝐴′ and we set 𝑀′ = 𝑀 ⊗𝐴 𝐴′

as a 𝐵′-module. Given 𝐴′ ∈ 𝑂𝑏(𝒞), consider the condition
(34.20.3.1) ∀𝔮 ∈ 𝑉(𝔪𝐴′𝐵′ + 𝔪𝐵𝐵′) ⊂ 𝑆𝑝𝑒𝑐(𝐵′) ∶ 𝑀′

𝔮 is flat over 𝐴′.

Note the similarity with More on Algebra, Equation (12.14.1.1). In particular, if 𝐴′ → 𝐴″

is a morphism of 𝒞 and (34.20.3.1) holds for 𝐴′, then it holds for 𝐴″, see More on Algebra,
Lemma 12.14.2. Hence we obtain a functor

(34.20.3.2) 𝐹𝑙𝑓 ∶ 𝒞 ⟶ Sets, 𝐴′ ⟶ {
{∗} if (34.20.3.1) holds,
∅ else.

Lemma 34.20.4. In Situation 34.20.3.
(1) If 𝐴′ → 𝐴″ is a flat morphism in 𝒞 then 𝐹𝑓𝑙(𝐴′) = 𝐹𝑙𝑓(𝐴″).
(2) If 𝐴 → 𝐵 is essentially of finite presentation and 𝑀 is a 𝐵-module of finite pre-

sentation, then 𝐹𝑓𝑙 is limit preserving: If {𝐴𝑖}𝑖∈𝐼 is a directed system of objects
of 𝒞, then 𝐹𝑓𝑙(𝑐𝑜𝑙𝑖𝑚𝑖 𝐴𝑖) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐹𝑓𝑙(𝐴𝑖).

Proof. Part (1) is a special case of More on Algebra, Lemma 12.14.3. Part (2) is a special
case of More on Algebra, Lemma 12.14.4. �

Lemma34.20.5. In Situation 34.20.3 suppose that𝐵 → 𝐶 is a local map of local𝐴-algebras
and that 𝑀 ≅ 𝑁 as 𝐵-modules. Denote 𝐹′

𝑙𝑓 ∶ 𝒞 → Sets the functor associated to the pair
(𝐶, 𝑁). If 𝐵 → 𝐶 is finite, then 𝐹𝑙𝑓 = 𝐹′

𝑙𝑓.

Proof. Let 𝐴′ be an object of 𝒞. Set 𝐶′ = 𝐶 ⊗𝐴 𝐴′ and 𝑁′ = 𝑁 ⊗𝐴 𝐴′ similarly to
the definitions of 𝐵′, 𝑀′ in Situation 34.20.3. Note that 𝑀′ ≅ 𝑁′ as 𝐵′-modules. The
assumption that 𝐵 → 𝐶 is finite has two consequences: (a) 𝔪𝐶 = √𝔪𝐵𝐶 and (b) 𝐵′ → 𝐶′

is finite. Consequence (a) implies that

𝑉(𝔪𝐴′𝐶′ + 𝔪𝐶𝐶′) = (𝑆𝑝𝑒𝑐(𝐶′) → 𝑆𝑝𝑒𝑐(𝐵′))
−1 𝑉(𝔪𝐴′𝐵′ + 𝔪𝐵𝐵′).

Suppose 𝔮 ⊂ 𝑉(𝔪𝐴′𝐵′+𝔪𝐵𝐵′). Then 𝑀′
𝔮 is flat over 𝐴′ if and only if the 𝐶′

𝔮-module 𝑁′
𝔮 is

flat over 𝐴′ (because these are isomorphic as 𝐴′-modules) if and only if for every maximal
ideal 𝔯 of 𝐶′

𝔮 the module 𝑁′
𝔯 is flat over 𝐴′ (see Algebra, Lemma 7.35.19). As 𝐵′

𝔮 → 𝐶′
𝔮 is

finite by (b), the maximal ideals of 𝐶′
𝔮 correspond exactly to the primes of 𝐶′ lying over 𝔮

(see Algebra, Lemma 7.32.20) and these primes are all contained in 𝑉(𝔪𝐴′𝐶′ + 𝔪𝐶𝐶′) by
the displayed equation above. Thus the result of the lemma holds. �

Lemma 34.20.6. In Situation 34.20.3 suppose that 𝐵 → 𝐶 is a flat local homomorphism
of local rings. Set 𝑁 = 𝑀 ⊗𝐵 𝐶. Denote 𝐹′

𝑙𝑓 ∶ 𝒞 → Sets the functor associated to the pair
(𝐶, 𝑁). Then 𝐹𝑙𝑓 = 𝐹′

𝑙𝑓.
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Proof. Let 𝐴′ be an object of 𝒞. Set 𝐶′ = 𝐶 ⊗𝐴 𝐴′ and 𝑁′ = 𝑁 ⊗𝐴 𝐴′ = 𝑀′ ⊗𝐵′ 𝐶′

similarly to the defintions of 𝐵′, 𝑀′ in Situation 34.20.3. Note that
𝑉(𝔪𝐴′𝐵′ + 𝔪𝐵𝐵′) = 𝑆𝑝𝑒𝑐(𝜅(𝔪𝐵) ⊗𝐴 𝜅(𝔪𝐴′))

and similarly for 𝑉(𝔪𝐴′𝐶′ + 𝔪𝐶𝐶′). The ring map
𝜅(𝔪𝐵) ⊗𝐴 𝜅(𝔪𝐴′) ⟶ 𝜅(𝔪𝐶) ⊗𝐴 𝜅(𝔪𝐴′)

is faithfully flat, hence 𝑉(𝔪𝐴′𝐶′ + 𝔪𝐶𝐶′) → 𝑉(𝔪𝐴′𝐵′ + 𝔪𝐵𝐵′) is surjective. Finally, if
𝔯 ∈ 𝑉(𝔪𝐴′𝐶′ + 𝔪𝐶𝐶′) maps to 𝔮 ∈ 𝑉(𝔪𝐴′𝐵′ + 𝔪𝐵𝐵′), then 𝑀′

𝔮 is flat over 𝐴′ if and
only if 𝑁′

𝔯 is flat over 𝐴′ because 𝐵′ → 𝐶′ is flat, see Algebra, Lemma 7.35.8. The lemma
follows formally from these remarks. �

Situation 34.20.7. Let 𝑓 ∶ 𝑋 → 𝑆 be a smooth morphism with geometrically irreducible
fibres. Let ℱ be a quasi-coherent 𝒪𝑋-module of finite type. For any scheme 𝑇 over 𝑆
we will denote ℱ𝑇 the base change of ℱ to 𝑇, in other words, ℱ𝑇 is the pullback of ℱ
via the projection morphism 𝑋𝑇 = 𝑋 ×𝑆 𝑇 → 𝑋. Note that 𝑋𝑇 → 𝑇 is smooth with
geometrically irreducible fibres, see Morphisms, Lemma 24.33.5 and More on Morphisms,
Lemma 33.20.2. Let 𝑝 ≥ 0 be an integer. Given a point 𝑡 ∈ 𝑇 consider the condition
(34.20.7.1) ℱ𝑇 is free of rank 𝑝 in a neighbourhood of 𝜉𝑡

where 𝜉𝑡 is the generic point of the fibre 𝑋𝑡. This condition for all 𝑡 ∈ 𝑇 is stable under
base change, and hence we obtain a functor
(34.20.7.2)

𝐻𝑝 ∶ (Sch/𝑆)𝑜𝑝𝑝 ⟶ Sets, 𝑇 ⟶ {
{∗} if ℱ𝑇 satisfies (34.20.7.1) ∀𝑡 ∈ 𝑇,
∅ else.

Lemma 34.20.8. In Situation 34.20.7.
(1) The functor 𝐻𝑝 satisfies the sheaf property for the fpqc topology.
(2) If ℱ is of finite presentation, then functor 𝐻𝑝 is limit preserving.

Proof. Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an fpqc1 covering of schemes over 𝑆. Set 𝑋𝑖 = 𝑋𝑇𝑖
= 𝑋 ×𝑆 𝑇𝑖

and denote ℱ𝑖 the pullback of ℱ to 𝑋𝑖. Assume that ℱ𝑖 satisfies (34.20.7.1) for all 𝑖. Pick
𝑡 ∈ 𝑇 and let 𝜉𝑡 ∈ 𝑋𝑇 denote the generic point of 𝑋𝑡. We have to show that ℱ is free in
a neighbourhood of 𝜉𝑡. For some 𝑖 ∈ 𝐼 we can find a 𝑡𝑖 ∈ 𝑇𝑖 mapping to 𝑡. Let 𝜉𝑖 ∈ 𝑋𝑖
denote the generic point of 𝑋𝑡𝑖

, so that 𝜉𝑖 maps to 𝜉𝑡. The fact that ℱ𝑖 is free of rank 𝑝
in a neighbourhood of 𝜉𝑖 implies that (ℱ𝑖)𝑥𝑖

≅ 𝒪⊕𝑝
𝑋𝑖,𝑥𝑖

which implies that ℱ𝑇,𝜉𝑡
≅ 𝒪⊕𝑝

𝑋𝑇,𝜉𝑡
as 𝒪𝑋𝑇,𝜉𝑡

→ 𝒪𝑋𝑖,𝑥𝑖
is flat, see for example Algebra, Lemma 7.72.5. Thus there exists an

affine neighbourhood 𝑈 of 𝜉𝑡 in 𝑋𝑇 and a surjection 𝒪⊕𝑝
𝑈 → ℱ𝑈 = ℱ𝑇|𝑈, see Modules,

Lemma 15.9.4. After shrinking 𝑇 we may assume that 𝑈 → 𝑇 is surjective. Hence 𝑈 → 𝑇
is a smooth morphism of affines with geometrically irreducible fibres. Moreover, for every
𝑡′ ∈ 𝑇 we see that the induced map

𝛼 ∶ 𝒪⊕𝑝
𝑈,𝜉𝑡′

⟶ ℱ𝑈,𝜉𝑡′

is an isomorphism (since by the same argument as before the module on the right is free of
rank 𝑝). It follows from Lemma 34.11.1 that

Γ(𝑈, 𝒪⊕𝑝
𝑈 ) ⊗Γ(𝑇,𝒪𝑇) 𝒪𝑇,𝑡′ ⟶ Γ(𝑈, ℱ𝑈) ⊗Γ(𝑇,𝒪𝑇) 𝒪𝑇,𝑡′

1It is quite easy to show that𝐻𝑝 is a sheaf for the fppf topology using that flatmorphisms of finite presentation
are open. This is all we really need later on. But it is kind of fun to prove directly that it also satisfies the sheaf
condition for the fpqc topology.
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is injective for every 𝑡′ ∈ 𝑇. Hence we see the surjection 𝛼 is an isomorphism. This finishes
the proof of (1).

Assume that ℱ is of finite presentation. Let 𝑇 = 𝑙𝑖𝑚𝑖∈𝐼 𝑇𝑖 be a directed limit of affine
𝑆-schemes and assume that ℱ𝑇 satisfies (34.20.7.1). Set 𝑋𝑖 = 𝑋𝑇𝑖

= 𝑋×𝑆 𝑇𝑖 and denote ℱ𝑖
the pullback of ℱ to 𝑋𝑖. Let 𝑈 ⊂ 𝑋𝑇 denote the open subscheme of points where ℱ𝑇 is flat
over 𝑇, see More on Morphisms, Theorem 33.11.1. By assumption every generic point of
every fibre is a point of 𝑈, i.e., 𝑈 → 𝑇 is a smooth surjective morphism with geometrically
irreducible fibres. We may shrink 𝑈 a bit and assume that 𝑈 is quasi-compact. Using
Limits, Lemma 27.3.5 we can find an 𝑖 ∈ 𝐼 and a quasi-compact open 𝑈𝑖 ⊂ 𝑋𝑖 whose
inverse image in 𝑋𝑇 is 𝑈. After increasing 𝑖 we may assume that ℱ𝑖|𝑈𝑖

is flat over 𝑇𝑖,
see Limits, Lemma 27.6.9. In particular, ℱ𝑖|𝑈𝑖

is finite locally free hence defines a locally
constant rank function 𝜌 ∶ 𝑈𝑖 → {0, 1, 2, …}. Let (𝑈𝑖)𝑝 ⊂ 𝑈𝑖 denote the open and closed
subset where 𝜌 has value 𝑝. Let 𝑉𝑖 ⊂ 𝑇𝑖 be the image of (𝑈𝑖)𝑝; note that 𝑉𝑖 is open and
quasi-compact. By assumption the image of 𝑇 → 𝑇𝑖 is contained in 𝑉𝑖. Hence there exists
an 𝑖′ ≥ 𝑖 such that 𝑇𝑖′ → 𝑇𝑖 factors through 𝑉𝑖 by Limits, Lemma 27.3.5. Then ℱ𝑖′ satisfies
(34.20.7.1) as desired. Some details omitted. �

Situation 34.20.9. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is of finite type. Let
ℱ be a quasi-coherent 𝒪𝑋-module of finite type. For any scheme 𝑇 over 𝑆 we will denote
ℱ𝑇 the base change of ℱ to 𝑇, in other words, ℱ𝑇 is the pullback of ℱ via the projection
morphism 𝑋𝑇 = 𝑋 ×𝑆 𝑇 → 𝑋. Note that 𝑋𝑇 → 𝑇 is of finite type and that ℱ𝑇 is an
𝒪𝑋𝑇

-module of finite type, see Morphisms, Lemma 24.14.4 and Modules, Lemma 15.9.2.
Let 𝑛 ≥ 0. We say that ℱ𝑇 is flat over 𝑇 in dimensions≥ 𝑛 if for every 𝑡 ∈ 𝑇 the closed subset
𝑍 ⊂ 𝑋𝑡 of points where ℱ𝑇 is not flat over 𝑇 (see Lemma 34.11.4) satisfies dim(𝑍) < 𝑛 for
all 𝑡 ∈ 𝑇. Note that if this is the case, and if 𝑇′ → 𝑇 is a morphism, then ℱ𝑇′ is also flat in
dimensions ≥ 𝑛 over 𝑇′, see Morphisms, Lemmas 24.24.6 and 24.27.3. Hence we obtain a
functor

(34.20.9.1) 𝐹𝑛 ∶ (Sch/𝑆)𝑜𝑝𝑝 ⟶ Sets, 𝑇 ⟶ {
{∗} if ℱ𝑇 is flat over 𝑇 in dim ≥ 𝑛,
∅ else.

Lemma 34.20.10. In Situation 34.20.9.
(1) The functor 𝐹𝑛 satisfies the sheaf property for the fpqc topology.
(2) If 𝑓 is quasi-compact and locally of finite presentation and ℱ is of finite presen-

tation, then the functor 𝐹𝑛 is limit preserving.

Proof. Let {𝑇𝑖 → 𝑇}𝑖∈𝐼 be an fpqc covering of schemes over 𝑆. Set 𝑋𝑖 = 𝑋𝑇𝑖
= 𝑋 ×𝑆 𝑇𝑖

and denote ℱ𝑖 the pullback of ℱ to 𝑋𝑖. Assume that ℱ𝑖 is flat over 𝑇𝑖 in dimensions ≥ 𝑛 for
all 𝑖. Let 𝑡 ∈ 𝑇. Choose an index 𝑖 and a point 𝑡𝑖 ∈ 𝑇𝑖 mapping to 𝑡. Consider the cartesian
diagram

𝑋𝑆𝑝𝑒𝑐(𝒪𝑇,𝑡)

��

𝑋𝑆𝑝𝑒𝑐(𝒪𝑇𝑖,𝑡𝑖)

��

oo

𝑆𝑝𝑒𝑐(𝒪𝑇,𝑡) 𝑆𝑝𝑒𝑐(𝒪𝑇𝑖,𝑡𝑖
)oo

As the lower horizontal morphism is flat we see fromMore on Morphisms, Lemma 33.11.2
that the set 𝑍𝑖 ⊂ 𝑋𝑡𝑖

where ℱ𝑖 is not flat over 𝑇𝑖 and the set 𝑍 ⊂ 𝑋𝑡 where ℱ𝑇 is not flat
over 𝑇 are related by the rule 𝑍𝑖 = 𝑍𝜅(𝑡𝑖). Hence we see that ℱ𝑇 is flat over 𝑇 in dimensions
≥ 𝑛 by Morphisms, Lemma 24.27.3.
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Assume that 𝑓 is quasi-compact and locally of finite presentation and that ℱ is of finite
presentation. In this paragraph we first reduce the proof of (2) to the case where 𝑓 is of
finite presentation. Let 𝑇 = 𝑙𝑖𝑚𝑖∈𝐼 𝑇𝑖 be a directed limit of affine 𝑆-schemes and assume
that ℱ𝑇 is flat in dimensions ≥ 𝑛. Set 𝑋𝑖 = 𝑋𝑇𝑖

= 𝑋 ×𝑆 𝑇𝑖 and denote ℱ𝑖 the pullback of
ℱ to 𝑋𝑖. We have to show that ℱ𝑖 is flat in dimensions ≥ 𝑛 for some 𝑖. Pick 𝑖0 ∈ 𝐼 and
replace 𝐼 by {𝑖 ∣ 𝑖 ≥ 𝑖0}. Since 𝑇𝑖0 is affine (hence quasi-compact) there exist finitely many
affine opens 𝑊𝑗 ⊂ 𝑆, 𝑗 = 1, … , 𝑚 and an affine open overing 𝑇𝑖0 = ⋃𝑗=1,…,𝑚 𝑉𝑗,𝑖0 such
that 𝑇𝑖0 → 𝑆 maps 𝑉𝑗,𝑖0 into 𝑊𝑗. For 𝑖 ≥ 𝑖0 denote 𝑉𝑗,𝑖 the inverse image of 𝑉𝑗,𝑖0 in 𝑇𝑖. If
we can show, for each 𝑗, that there exists an 𝑖 such that ℱ𝑉𝑗,𝑖0

is flat in dimensions ≥ 𝑛, then
we win. In this way we reduce to the case that 𝑆 is affine. In this case 𝑋 is quasi-compact
and we can choose a finite affine open covering 𝑋 = 𝑊1 ∪ … ∪ 𝑊𝑚. In this case the result
for (𝑋 → 𝑆, ℱ) is equivalent to the result for (∐ 𝑊𝑗, ∐ ℱ|𝑊𝑗

). Hence we may assume that
𝑓 is of finite presentation.
Assume 𝑓 is of finite presentation and ℱ is of finite presentation. Let 𝑈 ⊂ 𝑋𝑇 denote
the open subscheme of points where ℱ𝑇 is flat over 𝑇, see More on Morphisms, Theorem
33.11.1. By assumption the dimension of every fibre of 𝑍 = 𝑋𝑇 ⧵ 𝑈 over 𝑇 has dimension
≤ 𝑛. By Limits, Lemma 27.11.2 we can find a closed subscheme 𝑍 ⊂ 𝑍′ ⊂ 𝑋𝑇 such that
dim(𝑍′

𝑡 ) < 𝑛 for all 𝑡 ∈ 𝑇 and such that 𝑍′ → 𝑋𝑇 is of finite presentation. By Limits,
Lemmas 27.6.1 and 27.6.5 there exists an 𝑖 ∈ 𝐼 and a closed subscheme 𝑍′

𝑖 ⊂ 𝑋𝑖 of finite
presentation whose base change to 𝑇 is 𝑍′. By Limits, Lemma 27.11.1 we may assume
all fibres of 𝑍′

𝑖 → 𝑇𝑖 have dimension < 𝑛. By Limits, Lemma 27.6.9 we may assume that
ℱ𝑖|𝑋𝑖⧵𝑇′

𝑖
is flat over 𝑇𝑖. This implies that ℱ𝑖 is flat in dimensions ≥ 𝑛; here we use that

𝑍′ → 𝑋𝑇 is of finite presentation, and hence the complement 𝑋𝑇 ⧵ 𝑍′ is quasi-compact!
Thus part (2) is proved and the proof of the lemma is complete. �

Situation 34.20.11. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. For any scheme 𝑇 over 𝑆 we will denote ℱ𝑇 the base change of ℱ to 𝑇, in other
words, ℱ𝑇 is the pullback of ℱ via the projection morphism 𝑋𝑇 = 𝑋 ×𝑆 𝑇 → 𝑋. Since the
base change of a flat module is flat we obtain a functor

(34.20.11.1) 𝐹𝑓𝑙𝑎𝑡 ∶ (Sch/𝑆)𝑜𝑝𝑝 ⟶ Sets, 𝑇 ⟶ {
{∗} if ℱ𝑇 is flat over 𝑇,
∅ else.

Lemma 34.20.12. In Situation 34.20.11.
(1) The functor 𝐹𝑓𝑙𝑎𝑡 satisfies the sheaf property for the fpqc topology.
(2) If 𝑓 is quasi-compact and locally of finite presentation and ℱ is of finite presen-

tation, then the functor 𝐹𝑓𝑙𝑎𝑡 is limit preserving.

Proof. Part (1) follows from the following statement: If 𝑇′ → 𝑇 is a surjective flat mor-
phism of schemes over 𝑆, then ℱ𝑇′ is flat over 𝑇′ if and only if ℱ𝑇 is flat over 𝑇, see More
onMorphisms, Lemma 33.11.2. Part (2) follows from Limits, Lemma 27.6.9 after reducing
to the case where 𝑋 and 𝑆 are affine (compare with the proof of Lemma 34.20.10). �

34.21. Flattening stratifications

Just the definitions and an important baby case.

Definition 34.21.1. Let 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. We say that the universal flattening of ℱ exists if the functor 𝐹𝑓𝑙𝑎𝑡 defined
in Situation 34.20.11 is representable by a scheme 𝑆′ over 𝑆. We say that the universal
flattening of 𝑋 exists if the universal flattening of 𝒪𝑋 exists.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05MW
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05MY
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05P6
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Note that if the universal flattening 𝑆′2 of ℱ exists, then the morphism 𝑆′ → 𝑆 is a
monomorphism of schemes such that ℱ𝑆′ is flat over 𝑆′ and such that a morphism 𝑇 → 𝑆
factors through 𝑆′ if and only if ℱ𝑇 is flat over 𝑇.

A stratification {𝑆𝑖}𝑖∈𝐼 of 𝑆 by locally closed subschemes is given by locally closed sub-
schemes 𝑆𝑖 ⊂ 𝑆 such that every point of 𝑆 is contained in a unique 𝑆𝑖. In this case we
obtain a monomorphism

𝑆′ = ∐𝑖∈𝐼
𝑆𝑖 ⟶ 𝑆.

We will call this the monomorphism associated to the stratification. With this terminology
we can define what it means to have a flattening stratification.

Definition 34.21.2. Let 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module. We say that ℱ has a flattening stratification if the functor 𝐹𝑓𝑙𝑎𝑡 defined in Sit-
uation 34.20.11 is representable by a monomorphism 𝑆′ → 𝑆 associated to a stratification
of 𝑆 by locally closed subschemes. We say that 𝑋 has a flattening stratification if 𝒪𝑋 has a
flattening stratification.

Of course in this situation it is important to understand the index set for the strata in the
stratification. This often has to do with ranks of modules, as in the baby case below.

Lemma 34.21.3. Let 𝑆 be a scheme. Let ℱ be a finite type, quasi-coherent 𝒪𝑆-module. Let
𝑟 ≥ 0. The functor

𝐹𝑟 ∶ (Sch/𝑆)𝑜𝑝𝑝 → Sets, 𝑇 ↦ {
{∗} if ℱ𝑇 locally free rank 𝑟
∅ else.

is representable by a monomorphism 𝑆𝑟 → 𝑆 of schemes. If ℱ is of finite presentation, then
𝑆𝑟 → 𝑆 is of finite presentation.

Proof. We refer to the chapter on exercises for more information on fitting ideals. Let

ℐ0 ⊂ ℐ1 ⊂ ℐ2 ⊂ … ⊂ 𝒪𝑆

be the fitting ideals of ℱ as an 𝒪𝑆-module. If 𝑈 ⊂ 𝑋 is open, and

⨁𝑖∈𝐼
𝒪𝑈 → 𝒪⊕𝑛

𝑈 → ℱ|𝑈 → 0

is a presentation of ℱ over 𝑈, then ℐ𝑘|𝑈 is generated by the (𝑛 − 𝑘) × (𝑛 − 𝑘)-minors of the
matrix defining the first arrow of the presentation. In particular, ℐ𝑘 is locally generated by
sections, whence quasi-coherent. For any morphism 𝑔 ∶ 𝑇 → 𝑆 we see that ℱ𝑇 is locally
free of rank 𝑟 if and only if ℐ𝑟 ⋅ 𝒪𝑇 = 𝒪𝑇 and ℐ𝑟−1 ⋅ 𝒪𝑇 = 0. Hence, letting 𝑍𝑘 ⊂ 𝑆 denote
the closed subscheme defined by ℐ𝑘 we see that 𝑆𝑟 = 𝑍𝑟 ⧵ 𝑍𝑟−1 works. If ℱ is of finite
presentation, then each of the morphisms 𝑍𝑘 → 𝑋 is of finite presentation as ℐ𝑘 is locally
generated by finitely many minors. This implies that 𝑍𝑘 ⧵ 𝑍𝑟−1 is a retrocompact open in
𝑍𝑘 and hence the morphism 𝑆𝑟 → 𝑍𝑟 is of finite presentation as well. �

Lemma 34.21.4. Let 𝑆 be a scheme. Let ℱ be a quasi-coherent 𝒪𝑆-module of finite presen-
tation. There exists a flattening stratification 𝑆′ = ∐𝑟≥0 𝑆𝑟 for ℱ (relative to id𝑆 ∶ 𝑆 → 𝑆)
such that ℱ|𝑆𝑟

is locally free of rank 𝑟. Moreover, each 𝑆𝑟 → 𝑆 is of finite presentation.

2The scheme 𝑆′ is sometimes called the universal flatificator. In [GR71] it is called the platificateur uni-
versel. Existence of the universal flattening should not be confused with the type of results discussed in More on
Algebra, Section 12.19.
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Proof. Suppose that 𝑔 ∶ 𝑇 → 𝑆 is a morphism of schemes such that the pullback ℱ𝑇 = 𝑔∗ℱ
is flat. Then ℱ𝑇 is a flat 𝒪𝑇-module of finite presentation. Hence ℱ𝑇 is finite locally free,
see Properties, Lemma 23.18.2. Thus 𝑇 = ∐𝑟≥0 𝑇𝑟, where ℱ𝑇|𝑇𝑟

is locally free of rank 𝑟.
This implies that

𝐹𝑓𝑙𝑎𝑡 = ∐𝑟≥0
𝐹𝑟

in the category of Zariski sheaves on Sch/𝑆. Hence it follows that 𝐹𝑓𝑙𝑎𝑡 is represented by
∐𝑟≥0 𝑆𝑟 where 𝑆𝑟 is as in Lemma 34.21.3. �

34.22. Flattening stratification over an Artinian ring

A flatting stratification exists when the base scheme is the spectrum of an Artinian ring.

Lemma 34.22.1. Let 𝑆 be the spectrum of an Artinian ring. For any scheme 𝑋 over 𝑆,
and any quasi-coherent 𝒪𝑋-module there exists a universal flattening. In fact the universal
flattening is given by a closed immersion 𝑆′ → 𝑆, and hence is a flattening stratification
for ℱ as well.

Proof. Choose an affine open covering 𝑋 = ⋃ 𝑈𝑖. Then 𝐹𝑓𝑙𝑎𝑡 is the product of the functors
associated to each of the pairs (𝑈𝑖, ℱ|𝑈𝑖

). Hence it suffices to prove the result for each
(𝑈𝑖, ℱ|𝑈𝑖

). In the affine case the lemma follows immediately fromMore onAlgebra, Lemma
12.12.2. �

34.23. Flattening a map

Theorem 34.23.3 is the key to further flattening statements.

Lemma 34.23.1. Let 𝑆 be a scheme. Let 𝑔 ∶ 𝑋′ → 𝑋 be a flat morphism of schemes over
𝑆 with 𝑋 locally of finite type over 𝑆. Let ℱ be a finite type 𝒪𝑋-module which is flat over
𝑆. If Ass𝑋/𝑆(ℱ) ⊂ 𝑔(𝑋′) then the canonical map

ℱ ⟶ 𝑔∗𝑔∗ℱ

is injective, and remains injective after any base change.

Proof. The final assertion means that ℱ𝑇 → (𝑔𝑇)∗𝑔∗
𝑇ℱ𝑇 is injective for any morphism 𝑇 →

𝑆. The assumption Ass𝑋/𝑆(ℱ) ⊂ 𝑔(𝑋′) is preserved by base change, see Divisors, Lemma
26.7.2 and Remark 26.7.3. The same holds for the assumption of flatness and finite type.
Hence it suffices to prove the injectivity of the displayed arrow. Let 𝒦 = Ker(ℱ → 𝑔∗𝑔∗ℱ).
Our goal is to prove that 𝒦 = 0. In order to do this it suffices to prove thatWeakAss𝑋(𝒦) =
∅, see Divisors, Lemma 26.5.5. We have WeakAss𝑋(𝒦) ⊂ WeakAss𝑋(ℱ), see Divisors,
Lemma 26.5.4. As ℱ is flat we see from Lemma 34.13.4 that WeakAss𝑋(ℱ) ⊂ Ass𝑋/𝑆(ℱ).
By assumption any point 𝑥 of Ass𝑋/𝑆(ℱ) is the image of some 𝑥′ ∈ 𝑋′. Since 𝑔 is flat the
local ring map 𝒪𝑋,𝑥 → 𝒪𝑋′,𝑥′ is faithfully flat, hence the map

ℱ𝑥 ⟶ 𝑔∗ℱ𝑥′ = ℱ𝑥 ⊗𝒪𝑋,𝑥
𝒪𝑋′,𝑥′

is injective (see Algebra, Lemma 7.76.11). This implies that 𝒦𝑥 = 0 as desired. �

Lemma 34.23.2. Let 𝐴 be a ring. Let 𝑢 ∶ 𝑀 → 𝑁 be a surjective map of 𝐴-modules. If 𝑀
is projective as an 𝐴-module, then there exists an ideal 𝐼 ⊂ 𝐴 such that for any ring map
𝜑 ∶ 𝐴 → 𝐵 the following are equivalent

(1) 𝑢 ⊗ 1 ∶ 𝑀 ⊗𝐴 𝐵 → 𝑁 ⊗𝐴 𝐵 is an isomorphism, and
(2) 𝜑(𝐼) = 0.
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Proof. As 𝑀 is projective we can find a projective 𝐴-module 𝐶 such that 𝐹 = 𝑀 ⊕ 𝐶 is
a free 𝑅-module. By replacing 𝑢 by 𝑢 ⊕ 1 ∶ 𝐹 = 𝑀 ⊕ 𝐶 → 𝑁 ⊕ 𝐶 we see that we may
assume 𝑀 is free. In this case let 𝐼 be the ideal of 𝐴 generated by coefficients of all the
elements of Ker(𝑢) with respect to some (fixed) basis of 𝑀. The reason this works is that,
since 𝑢 is surjective and ⊗𝐴𝐵 is right exact, Ker(𝑢 ⊗ 1) is the image of Ker(𝑢) ⊗𝐴 𝐵 in
𝑀 ⊗𝐴 𝐵. �

Theorem 34.23.3. In Situation 34.20.1 assume
(1) 𝑓 is of finite presentation,
(2) ℱ is of finite presentation, flat over 𝑆, and pure relative to 𝑆, and
(3) 𝑢 is surjective.

Then 𝐹𝑖𝑠𝑜 is representable by a closed immersion 𝑍 → 𝑆. Moreover 𝑍 → 𝑆 is of finite
presentation if 𝒢 is of finite presentation.

Proof. We will use without further mention that ℱ is universally pure over 𝑆, see Lemma
34.18.3. By Lemma 34.20.2 and Descent, Lemma 31.33.2 and 31.35.1 the question is local
for the étale topology on 𝑆. Hence it suffices to prove, given 𝑠 ∈ 𝑆, that there exists an
étale neighbourhood of (𝑆, 𝑠) so that the theorem holds.
Using Lemma 34.12.5 and after replacing 𝑆 by an elementary étale neighbourhood of 𝑠 we
may asume there exists a commutative diagram

𝑋

��

𝑋′
𝑔

oo

~~
𝑆

of schemes of finite presentation over 𝑆, where 𝑔 is étale, 𝑋𝑠 ⊂ 𝑔(𝑋′), the schemes 𝑋′ and
𝑆 are affine, Γ(𝑋′, 𝑔∗ℱ) a projective Γ(𝑆, 𝒪𝑆)-module. Note that 𝑔∗ℱ is universally pure
over 𝑆, see Lemma 34.17.4. Hence by Lemma 34.18.2 we see that the open 𝑔(𝑋′) contains
the points of Ass𝑋/𝑆(ℱ) lying over 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠). Set

𝐸 = {𝑡 ∈ 𝑆 ∣ Ass𝑋𝑡
(ℱ𝑡) ⊂ 𝑔(𝑋′)}.

By More on Morphisms, Lemma 33.18.5 𝐸 is a constructible subset of 𝑆. We have seen
that 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) ⊂ 𝐸. By Morphisms, Lemma 24.21.4 we see that 𝐸 contains an open
neighbourhood of 𝑠. Hence after replacing 𝑆 by a smaller affine neighbourhood of 𝑠 we
may assume that Ass𝑋/𝑆(ℱ) ⊂ 𝑔(𝑋′).
Since we have assumed that 𝑢 is surjective we have 𝐹𝑖𝑠𝑜 = 𝐹𝑖𝑛𝑗. From Lemma 34.23.1 it
follows that 𝑢 ∶ ℱ → 𝒢 is injective if and only if 𝑔∗𝑢 ∶ 𝑔∗ℱ → 𝑔∗𝒢 is injective, and
the same remains true after any base change. Hence we have reduced to the case where,
in addition to the assumptions in the theorem, 𝑋 → 𝑆 is a morphism of affine schemes
and Γ(𝑋, ℱ) is a projective Γ(𝑆, 𝒪𝑆)-module. This case follows immediately from Lemma
34.23.2.
To see that 𝑍 is of finite presentation if 𝒢 is of finite presentation, combine Lemma 34.20.2
part (3) with Limits, Remark 27.4.2. �

Lemma 34.23.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes which is of finite presentation,
flat, and pure. Let 𝑌 be a closed subscheme of 𝑋. Let 𝐹 = 𝑓∗𝑌 be the Weil restriction
functor of 𝑌 along 𝑓, defined by

𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝 → Sets, 𝑇 ↦ {
{∗} if 𝑌𝑇 → 𝑋𝑇 is an isomorphism,
∅ else.
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Then 𝐹 is representable by a closed immersion 𝑍 → 𝑆. Moreover 𝑍 → 𝑆 is of finite
presentation if 𝑌 → 𝑆 is.

Proof. Let ℐ be the ideal sheaf defining 𝑌 in 𝑋 and let 𝑢 ∶ 𝒪𝑋 → 𝒪𝑋/ℐ be the surjection.
Then for an 𝑆-scheme 𝑇, the closed immersion 𝑌𝑇 → 𝑋𝑇 is an isomorphism if and only if
𝑢𝑇 is an isomorphism. Hence the result follows from Theorem 34.23.3. �

34.24. Flattening in the local case

In this section we start applying the earlier material to obtain a shadow of the flattening
stratification.

Theorem 34.24.1. In Situation 34.20.3 assume that𝐵 is essentially of finite type over𝐴 and
that 𝑀 is a finite 𝐵-module. Then there exists an ideal 𝐼 ⊂ 𝐴 such that 𝐴/𝐼 corepresents
the functor 𝐹𝑙𝑓 on the category 𝒞. In other words given a local homomorphism of local
rings 𝜑 ∶ 𝐴 → 𝐴′ with 𝐵′ = 𝐵 ⊗𝐴 𝐴′ and 𝑀′ = 𝑀 ⊗𝐴 𝐴′ the following are equivalent:

(1) ∀𝔮 ∈ 𝑉(𝔪𝐴′𝐵′ + 𝔪𝐵𝐵′) ⊂ 𝑆𝑝𝑒𝑐(𝐵′) ∶ 𝑀′
𝔮 is flat over 𝐴′, and

(2) 𝜑(𝐼) = 0.
If 𝐵 is essentially of finite presentation over 𝐴 and 𝑀 of finite presentation over 𝐵, then 𝐼
is a finitely generated ideal.

Proof. Choose a finite type ring map 𝐴 → 𝐶 and a finite 𝐶-module 𝑁 and a prime 𝔮 of
𝐶 such that 𝐵 = 𝐶𝔮 and 𝑀 = 𝑁𝔮. In the following, when we say ``the theorem holds for
(𝑁/𝐶/𝐴, 𝔮) we mean that it holds for (𝐴 → 𝐵, 𝑀) where 𝐵 = 𝐶𝔮 and 𝑀 = 𝑁𝔮. By Lemma
34.20.6 the functor 𝐹𝑙𝑓 is unchanged if we replace 𝐵 by a local ring flat over 𝐵. Hence,
since 𝐴 is henselian, we may apply Lemma 34.7.6 and assume that there exists a complete
dévissage of 𝑁/𝐶/𝐴 at 𝔮.
Let (𝐴𝑖, 𝐵𝑖, 𝑀𝑖, 𝛼𝑖, 𝔮𝑖)𝑖=1,…,𝑛 be such a complete dévissage of 𝑁/𝐶/𝐴 at 𝔮. Let 𝔮′

𝑖 ⊂ 𝐴𝑖 be
the unique prime lying over 𝔮𝑖 ⊂ 𝐵𝑖 as in Definition 34.7.4. Since 𝐶 → 𝐴1 is surjective and
𝑁 ≅ 𝑀1 as 𝐶-modules, we see by Lemma 34.20.5 it suffices to prove the theorem holds for
(𝑀1/𝐴1/𝐴, 𝔮′

1). Since 𝐵1 → 𝐴1 is finite and 𝔮1 is the only prime of 𝐵1 over 𝔮′
1 we see that

(𝐴1)𝔮′
1

→ (𝐵1)𝔮1
is finite (see Algebra, Lemma 7.36.11 or More on Morphisms, Lemma

33.31.4). Hence by Lemma 34.20.5 it suffices to prove the theorem holds for (𝑀1/𝐵1/𝐴, 𝔮1).
At this point we may assume, by induction on the length 𝑛 of the dévissage, that the theorem
holds for (𝑀2/𝐵2/𝐴, 𝔮2). (If 𝑛 = 1, then 𝑀2 = 0 which is flat over 𝐴.) Reversing the last
couple of steps of the previous paragraph, using that 𝑀2 ≅ Coker(𝛼2) as 𝐵1-modules, we
see that the theorem holds for (Coker(𝛼1)/𝐵1/𝐴, 𝔮1).
Let 𝐴′ be an object of 𝒞. At this point we use Lemma 34.11.1 to see that if (𝑀1 ⊗𝐴 𝐴′)𝔮′

is flat over 𝐴′ for a prime 𝔮′ of 𝐵1 ⊗𝐴 𝐴′ lying over 𝔪𝐴′, then (Coker(𝛼1) ⊗𝐴 𝐴′)𝔮′ is flat
over 𝐴′. Hence we conclude that 𝐹𝑙𝑓 is a subfunctor of the functor 𝐹′

𝑙𝑓 associated to the
module Coker(𝛼1)𝔮1

over (𝐵1)𝔮1
. By the previous paragraph we know 𝐹′

𝑙𝑓 is corepresented
by 𝐴/𝐽 for some ideal 𝐽 ⊂ 𝐴. Hence we may replace 𝐴 by 𝐴/𝐽 and assume that Coker(𝛼1)𝔮1
is flat over 𝐴.
Since Coker(𝛼1) is a 𝐵1-module for which there exist a complete dévissage of 𝑁1/𝐵1/𝐴 at
𝔮1 and since Coker(𝛼1)𝔮1

is flat over 𝐴 by Lemma 34.11.2 we see that Coker(𝛼1) is free as
an 𝐴-module, in particular flat as an 𝐴-module. Hence Lemma 34.11.1 implies 𝐹𝑙𝑓(𝐴′) is
nonempty if and only if 𝛼 ⊗ 1𝐴′ is injective. Let 𝑁1 = Im(𝛼1) ⊂ 𝑀1 so that we have exact
sequences

0 → 𝑁1 → 𝑀1 → Coker(𝛼1) → 0 and 𝐵⊕𝑟1
1 → 𝑁1 → 0
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The flatness of Coker(𝛼1) implies the first sequence is universally exact (seeAlgebra, Lemma
7.76.5). Hence 𝛼 ⊗ 1𝐴′ is injective if and only if 𝐵⊕𝑟1

1 ⊗𝐴 𝐴′ → 𝑁1 ⊗𝐴 𝐴′ is an isomor-
phism. Finally, Theorem 34.23.3 applies to show this functor is corepresentable by 𝐴/𝐼 for
some ideal 𝐼 and we conclude 𝐹𝑙𝑓 is corepresentable by 𝐴/𝐼 also.

To prove the final statement, suppose that 𝐴 → 𝐵 is essentially of finite presentation and 𝑀
of finite presentation over 𝐵. Let 𝐼 ⊂ 𝐴 be the ideal such that 𝐹𝑙𝑓 is corepresented by 𝐴/𝐼.
Write 𝐼 = ⋃ 𝐼𝜆 where 𝐼𝜆 ranges over the finitely generated ideals contained in 𝐼. Then,
since 𝐹𝑙𝑓(𝐴/𝐼) = {∗} we see that 𝐹𝑙𝑓(𝐴/𝐼𝜆) = {∗} for some 𝜆, see Lemma 34.20.4 part (2).
Clearly this implies that 𝐼 = 𝐼𝜆. �

Remark 34.24.2. Here is a scheme theoretic reformulation of Theorem 34.24.1. Let (𝑋, 𝑥) →
(𝑆, 𝑠) be a morphism of pointed schemes which is locally of finite type. Let ℱ be a finite
type quasi-coherent 𝒪𝑋-module. Assume 𝑆 henselian local with closed point 𝑠. There ex-
ists a closed subscheme 𝑍 ⊂ 𝑆 with the following property: for any morphism of pointed
schemes (𝑇, 𝑡) → (𝑆, 𝑠) the following are equivalent

(1) ℱ𝑇 is flat over 𝑇 at all points of the fibre 𝑋𝑡 which map to 𝑥 ∈ 𝑋𝑠, and
(2) 𝑆𝑝𝑒𝑐(𝒪𝑇,𝑡) → 𝑆 factors through 𝑍.

Moreover, if 𝑋 → 𝑆 is of finite presentation at 𝑥 and ℱ𝑥 of finite presentation over 𝒪𝑋,𝑥,
then 𝑍 → 𝑆 is of finite presentation.

At this point we can obtain some very general results completely for free from the result
above. Note that perhaps the most interesting case is when 𝑇 = 𝑋𝑠!

Lemma 34.24.3. Let 𝑆 be the spectrum of a henselian local ring with closed point 𝑠. Let
𝑋 → 𝑆 be a morphism of schemes which is locally of finite type. Let ℱ be a finite type
quasi-coherent 𝒪𝑋-module. Let 𝑇 ⊂ 𝑋𝑠 be a subset. There exists a closed subscheme
𝑍 ⊂ 𝑆 with the following property: for any morphism of pointed schemes (𝑇, 𝑡) → (𝑆, 𝑠)
the following are equivalent

(1) ℱ𝑇 is flat over 𝑇 at all points of the fibre 𝑋𝑡 which map to a point of 𝑇 ⊂ 𝑋𝑠, and
(2) 𝑆𝑝𝑒𝑐(𝒪𝑇,𝑡) → 𝑆 factors through 𝑍.

Moreover, if 𝑋 → 𝑆 is locally of finite presentation, ℱ is of finite presentation, and 𝑇 ⊂ 𝑋𝑠
is closed and quasi-compact, then 𝑍 → 𝑆 is of finite presentation.

Proof. For 𝑥 ∈ 𝑋𝑠 denote 𝑍𝑥 ⊂ 𝑆 the closed subscheme we found in Remark 34.24.2.
Then it is clear that 𝑍 = ⋂𝑥∈𝑇 𝑍𝑥 works!

To prove the final statement assume 𝑋 locally of finite presentation, ℱ of finite presentation
and 𝑍 closed and quasi-compact. First, choose finitely many affine opens 𝑊𝑗 ⊂ 𝑋 such
that 𝑇 ⊂ ⋃ 𝑊𝑗. It clearly suffices to prove the result for each morphism 𝑊𝑗 → 𝑆 with sheaf
ℱ|𝑋𝑗

and closed subset 𝑇 ∩ 𝑊𝑗. Hence we may assume 𝑋 is affine. In this case, More on
Algebra, Lemma 12.14.4 shows that the functor defined by (1) is ``limit preserving''. Hence
we can show that 𝑍 → 𝑆 is of finite presentation exactly as in the last part of the proof of
Theorem 34.24.1. �

Remark 34.24.4. Tracing the proof of Lemma 34.24.3 to its origins we find a long and
winding road. But if we assume that

(1) 𝑓 is of finite type,
(2) ℱ is a finite type 𝒪𝑋-module,
(3) 𝑇 = 𝑋𝑠, and
(4) 𝑆 is the spectrum of a Noetherian complete local ring.
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then there is a proof relying completely on more elementary algebra as follows: first we
reduce to the case where 𝑋 is affine by taking a finite affine open cover. In this case 𝑍
exists by More on Algebra, Lemma 12.15.3. The key step in this proof is constructing the
closed subscheme 𝑍 step by step inside the truncations 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠/𝔪𝑛

𝑠). This relies on the
fact that flattening stratifications always exist when the base is Artinian, and the fact that
𝒪𝑆,𝑠 = 𝑙𝑖𝑚 𝒪𝑆,𝑠/𝔪𝑛

𝑠 .

34.25. Flat finite type modules, Part III

The following lemma improves Algebra, Lemma 7.119.4.

Lemma 34.25.1. Let 𝜑 ∶ 𝐴 → 𝐵 be a local ring homomorphism of local rings which is
essentially of finite type. Let 𝑀 be a flat 𝐴-module, 𝑁 a finite 𝐵-module and 𝑢 ∶ 𝑁 → 𝑀
an 𝐴-module map such that 𝑢 ∶ 𝑁/𝔪𝐴𝑁 → 𝑀/𝔪𝐴𝑀 is injective. Then 𝑢 is 𝐴-universally
injective, 𝑁 is of finite presentation over 𝐵, and 𝑁 is flat over 𝐴.

Proof. Let 𝐴 → 𝐴ℎ be the henselization of 𝐴. Let 𝐵′ be the localization of 𝐵 ⊗𝐴 𝐴ℎ at
the maximal ideal 𝔪𝐵 ⊗ 𝐴ℎ + 𝐵 ⊗ 𝔪𝐴ℎ. Since 𝐵 → 𝐵′ is flat (hence faithfully flat, see
Algebra, Lemma 7.35.16), we may replace 𝐴 → 𝐵 with 𝐴ℎ → 𝐵′, 𝑀 by 𝑀 ⊗𝐴 𝐴ℎ, and 𝑁
by 𝑁 ⊗𝐵 𝐵′, see Algebra, Lemmas 7.77.2 and 7.35.8. Thus we may and do assume that 𝐴
is a henselian local ring.

Write 𝐵 = 𝐶/𝐼 where 𝐶 is the localization of a polynomial algebra over 𝐴 at a prime.
If we can show that 𝑁 is finitely presented as a 𝐶-module, then a fortiori this shows that
𝑁 is finitely presented as a 𝐵-module (see discussion in Section 34.2; more precisely, see
Algebra, Lemma 7.6.4). Hence we may assume that 𝐵 is essentially of finite presentation
over 𝐴 (even the localization of a polynomial algebra). Next, write 𝑁 = 𝐵⊕𝑛/𝐾 for some
submodule 𝐾 ⊂ 𝐵⊕𝑛. Since 𝐵/𝔪𝐴𝐵 is Noetherian (as it is essentially of finite type over
a field), there exist finitely many elements 𝑘1, … , 𝑘𝑠 ∈ 𝐾 such that for 𝐾′ = ∑ 𝐵𝑘𝑖 and
𝑁′ = 𝐵⊕𝑛/𝐾′ the canonical surjection 𝑁′ → 𝑁 induces an isomorphism 𝑁′/𝔪𝐴𝑁′ ≅
𝑁/𝔪𝐴𝑁. Thus, if we can prove the lemma for the composition 𝑢′ ∶ 𝑁′ → 𝑀, then 𝑢′ is
injective, hence 𝑁′ = 𝑁 and 𝑁 is of finite presentation. In this way we reduce to the case
where 𝑁 is of finite presentation over 𝐵!

Assume 𝐴 is a henselian local ring, 𝐵 is essentially of finite presentation over 𝐴, 𝑁 of
finite presentation over 𝐵 and let us temporarily make the additional assumption that 𝑁 is
flat over 𝐴. Then 𝑁 is a filtered colimit 𝑁 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐹𝑖 of free 𝐴-modules 𝐹𝑖 such that
the transition maps 𝑢𝑖𝑖′ ∶ 𝐹𝑖 → 𝐹𝑖′ are injective modulo 𝔪𝐴, see Lemma 34.19.5. Each
of the compositions 𝑢𝑖 ∶ 𝐹𝑖 → 𝑀 is 𝐴-universally injective by Lemma 34.8.5 wherefore
𝑢 = 𝑐𝑜𝑙𝑖𝑚 𝑢𝑖 is 𝐴-universally injective as desired.

Assume 𝐴 is a henselian local ring, 𝐵 is essentially of finite presentation over 𝐴, 𝑁 of finite
presentation over 𝐵. By Theorem 34.24.1 there exists a finitely generated ideal 𝐼 ⊂ 𝐴 such
that 𝑁/𝐼𝑁 is flat over 𝐴/𝐼 and such that 𝑁/𝐼2𝑁 is not flat over 𝐴/𝐼2 unless 𝐼 = 0. The result
of the previous paragraph shows that the lemma holds for 𝑢 mod 𝐼 ∶ 𝑁/𝐼𝑁 → 𝑀/𝐼𝑀 over
𝐴/𝐼. Consider the commutative diagram

0 //𝑀 ⊗𝐴 𝐼/𝐼2 //𝑀/𝐼2𝑀 //𝑀/𝐼𝑀 // 0

𝑁 ⊗𝐴 𝐼/𝐼2 //

𝑢

OO

𝑁/𝐼2𝑁 //

𝑢

OO

𝑁/𝐼𝑁 //

𝑢

OO

0
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whose rows are exact by right exactness of ⊗ and the fact that 𝑀 is flat over 𝐴. Note that
the left vertical arrow is the map 𝑁/𝐼𝑁 ⊗𝐴/𝐼 𝐼/𝐼2 → 𝑀/𝐼𝑀 ⊗𝐴/𝐼 𝐼/𝐼2, hence is injective.
A diagram chase shows that the lower left arrow is injective, i.e., Tor1𝐴/𝐼2(𝐼/𝐼2, 𝑀/𝐼2) = 0
see Algebra, Remark 7.69.8. Hence 𝑁/𝐼2𝑁 is flat over 𝐴/𝐼2 by Algebra, Lemma 7.91.8 a
contradiction unless 𝐼 = 0. �

Theorem 34.25.2. Let 𝑓 ∶ 𝑋 → 𝑆 be locally of finite type. Let ℱ be an 𝒪𝑋-module of
finite type. Let 𝑥 ∈ 𝑋 with image 𝑠 ∈ 𝑆. The following are equivalent

(1) ℱ is flat at 𝑥 over 𝑆, and
(2) for every 𝑥′ ∈ Ass𝑋𝑠

(ℱ𝑠) which specializes to 𝑥 we have that ℱ is flat at 𝑥′ over
𝑆.

Proof. It is clear that (1) implies (2) as ℱ𝑥′ is a localization of ℱ𝑥 for every point which
specializes to 𝑥. Set 𝐴 = 𝒪𝑆,𝑠, 𝐵 = 𝒪𝑋,𝑥 and 𝑁 = ℱ𝑥. Let Σ ⊂ 𝐵 be the multiplicative
subset of 𝐵 of elements which act as nonzero divisors on 𝑁/𝔪𝐴𝑁. Assumption (2) implies
that Σ−1𝑁 is 𝐴-flat by the description of 𝑆𝑝𝑒𝑐(Σ−1𝑁) in Lemma 34.8.1. On the other hand,
the map 𝑁 → Σ−1𝑁 is injective modulo 𝔪𝐴 by construction. Hence applying Lemma
34.25.1 we win. �

Now we apply this directly to obtain the following useful results.

Lemma 34.25.3. Let 𝑆 be a local scheme with closed point 𝑠. Let 𝑓 ∶ 𝑋 → 𝑆 be locally
of finite type. Let ℱ be a finite type 𝒪𝑋-module. Assume that

(1) every point of Ass𝑋/𝑆(ℱ) specializes to a point of the closed fibre 𝑋𝑠
3,

(2) ℱ is flat over 𝑆 at every point of 𝑋𝑠.
Then ℱ is flat over 𝑆.

Proof. This is immediate from the fact that it suffices to check for flatness at points of the
relative assassin of ℱ over 𝑆 by Theorem 34.25.2. �

34.26. Universal flattening

If 𝑓 ∶ 𝑋 → 𝑆 is a proper, finitely presented morphism of schemes then one can find a
universal flattening of 𝑓. In this section we discuss this and some of its variants.

Lemma 34.26.1. In Situation 34.20.7. For each 𝑝 ≥ 0 the functor 𝐻𝑝 (34.20.7.2) is repre-
sentable by a locally closed immersion 𝑆𝑝 → 𝑆. If ℱ is of finite presentation, then 𝑆𝑝 → 𝑆
is of finite presentation.

Proof. For each 𝑆 we will prove the statement for all 𝑝 ≥ 0 concurrently. The functor 𝐻𝑝
is a sheaf for the fppf topology by Lemma 34.20.8. Hence combining Descent, Lemma
31.35.1, More on Morphisms, Lemma 33.35.1 , and Descent, Lemma 31.20.1 we see that
the question is local for the étale topology on 𝑆. In particular, the question is Zariski local
on 𝑆.
For 𝑠 ∈ 𝑆 denote 𝜉𝑠 the unique generic point of the fibre 𝑋𝑠. Note that for every 𝑠 ∈ 𝑆 the
restriction ℱ𝑠 of ℱ is locally free of some rank 𝑝(𝑠) ≥ 0 in some neighbourhood of 𝜉𝑠. (As
𝑋𝑠 is irreducible and smooth this follows from generic flatness for ℱ𝑠 over 𝑋𝑠, see Algebra,
Lemma 7.109.1 allthough this is overkill.) For future reference we note that

𝑝(𝑠) = dim𝜅(𝜉𝑠)(ℱ𝜉𝑠
⊗𝒪𝑋,𝜉𝑠

𝜅(𝜉𝑠)).

3For example this holds if 𝑓 is finite type and ℱ is pure along 𝑋𝑠, or if 𝑓 is proper.
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In particular 𝐻𝑝(𝑠)(𝑠) is nonempty and 𝐻𝑞(𝑠) is empty if 𝑞≠𝑝(𝑠).

Let 𝑈 ⊂ 𝑋 be an open subscheme. As 𝑓 ∶ 𝑋 → 𝑆 is smooth, it is open. It is immediate
from (34.20.7.2) that the functor 𝐻𝑝 for the pair (𝑓|𝑈 ∶ 𝑈 → 𝑓(𝑈), ℱ|𝑈) and the functor
𝐻𝑝 for the pair (𝑓|𝑓−1(𝑓(𝑈)), ℱ|𝑓−1(𝑓(𝑈))) are the same. Hence to prove the existence of 𝑆𝑝
over 𝑓(𝑈) we may always replace 𝑋 by 𝑈.

Pick 𝑠 ∈ 𝑆. There exists an affine open neighbourhood 𝑈 of 𝜉𝑠 such that ℱ|𝑈 can be
generated by at most 𝑝(𝑠) elements. By the arguments above we see that in order to prove
the statement for 𝐻𝑝(𝑠) in an neighbourhood of 𝑠 we may assume that ℱ is generated by
𝑝(𝑠) elements, i.e., that there exists a surjection

𝑢 ∶ 𝒪⊕𝑝(𝑠)
𝑋 ⟶ ℱ

In this case it is clear that 𝐻𝑝(𝑠) is equal to 𝐹𝑖𝑠𝑜 (34.20.1.1) for the map 𝑢 (this follows
immediately from Lemma 34.19.1 but also from Lemma 34.12.1 after shrinking a bit more
so that both 𝑆 and 𝑋 are affine.) Thus we may apply Theorem 34.23.3 to see that 𝐻𝑝(𝑠) is
representable by a closed immersion in a neighbourhood of 𝑠.

The result follows formally from the above. Namely, the arguments above show that locally
on 𝑆 the function 𝑠 ↦ 𝑝(𝑠) is bounded. Hence we may use induction on 𝑝 = max𝑠∈𝑆 𝑝(𝑠).
The functor 𝐻𝑝 is representable by a closed immersion 𝑆𝑝 → 𝑆 by the above. Replace 𝑆
by 𝑆 ⧵ 𝑆𝑝 which drops the maximum by at least one and we win by induction hypothesis.

To see that 𝑆𝑝 → 𝑆 is of finite presentation if ℱ is of finite presentation combine Lemma
34.20.8 part (2) with Limits, Remark 27.4.2. �

Lemma 34.26.2. In Situation 34.20.9. Let ℎ ∶ 𝑋′ → 𝑋 be an étale morphism. Set
ℱ′ = ℎ∗ℱ and 𝑓′ = 𝑓 ∘ ℎ. Let 𝐹′

𝑛 be (34.20.9.1) associated to (𝑓′ ∶ 𝑋′ → 𝑆, ℱ′). Then 𝐹𝑛
is a subfunctor of 𝐹′

𝑛 and if ℎ(𝑋′) ⊃ Ass𝑋/𝑆(ℱ), then 𝐹𝑛 = 𝐹′
𝑛.

Proof. Let 𝑇 → 𝑆 be any morphism. Then ℎ𝑇 ∶ 𝑋′
𝑇 → 𝑋𝑇 is étale as a base change of the

étale morphism 𝑔. For 𝑡 ∈ 𝑇 denote 𝑍 ⊂ 𝑋𝑡 the set of points where ℱ𝑇 is not flat over 𝑇,
and similarly denote 𝑍′ ⊂ 𝑋′

𝑡 the set of points where ℱ′
𝑇 is not flat over 𝑇. As ℱ′

𝑇 = ℎ∗
𝑇ℱ𝑇

we see that 𝑍′ = ℎ−1
𝑡 (𝑍), see Morphisms, Lemma 24.24.11. Hence 𝑍′ → 𝑍 is an étale

morphism, so dim(𝑍′) ≤ dim(𝑍) (for example by Descent, Lemma 31.17.2 or just because
an étale morphism is smooth of relative dimension 0). This implies that 𝐹𝑛 ⊂ 𝐹′

𝑛.

Finally, suppose that ℎ(𝑋′) ⊃ Ass𝑋/𝑆(ℱ) and that 𝑇 → 𝑆 is a morphism such that 𝐹′
𝑛(𝑇)

is nonempty, i.e., such that ℱ′
𝑇 is flat in dimensions ≥ 𝑛 over 𝑇. Pick a point 𝑡 ∈ 𝑇 and let

𝑍 ⊂ 𝑋𝑡 and 𝑍′ ⊂ 𝑋′
𝑡 be as above. To get a contradiction assume that dim(𝑍) ≥ 𝑛. Pick a

generic point 𝜉 ∈ 𝑍 corresponding to a component of dimension ≥ 𝑛. Let 𝑥 ∈ Ass𝑋𝑡
(ℱ𝑡)

be a generalization of 𝜉. Then 𝑥 maps to a point of Ass𝑋/𝑆(ℱ) by Divisors, Lemma 26.7.2
and Remark 26.7.3. Thus we see that 𝑥 is in the image of ℎ𝑇, say 𝑥 = ℎ𝑇(𝑥′) for some
𝑥′ ∈ 𝑋′

𝑇. But 𝑥′∉𝑍′ as 𝑥  𝜉 and dim(𝑍′) < 𝑛. Hence ℱ′
𝑇 is flat over 𝑇 at 𝑥′ which

implies that ℱ𝑇 is flat at 𝑥 over 𝑇 (by Morphisms, Lemma 24.24.11). Since this holds for
every such 𝑥 we conclude that ℱ𝑇 is flat over 𝑇 at 𝜉 by Theorem 34.25.2 which is the desired
contradiction. �

Lemma 34.26.3. Assume that 𝑋 → 𝑆 is a smooth morphism of affine schemes with geo-
metrically irreducible fibres of dimension 𝑑 and that ℱ is a quasi-coherent 𝒪𝑋-module of
finite presentation. Then 𝐹𝑑 = ∐𝑝=0,…,𝑐 𝐻𝑝 for some 𝑐 ≥ 0 with 𝐹𝑑 as in (34.20.9.1) and
𝐻𝑝 as in (34.20.7.2).
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Proof. As 𝑋 is affine and ℱ is quasi-coherent of finite presentation we know that ℱ can be
generated by 𝑐 ≥ 0 elements. Then dim𝜅(𝑥)(ℱ𝑥 ⊗ 𝜅(𝑥)) in any point 𝑥 ∈ 𝑋 never exceeds
𝑐. In particular 𝐻𝑝 = ∅ for 𝑝 > 𝑐. Moreover, note that there certainly is an inclusion
∐ 𝐻𝑝 → 𝐹𝑑. Having said this the content of the lemma is that, if a base change ℱ𝑇 is
flat in dimensions ≥ 𝑑 over 𝑇 and if 𝑡 ∈ 𝑇, then ℱ𝑇 is free of some rank 𝑟 in an open
neighbourhood 𝑈 ⊂ 𝑋𝑇 of the unique generic point of 𝑋𝑡. (Namely, it then follows that 𝐻𝑟
contains an open neighbourhood of 𝑡.) To prove this we may replace 𝑇 by 𝑆. Let 𝑠 ∈ 𝑆 and
let 𝜉 ∈ 𝑋 be the unique generic point of 𝑋𝑠. The assumption that ℱ is flat in dimensions ≥ 𝑑
over 𝑆 means that ℱ𝜉 is flat over 𝒪𝑆,𝑠. Pick 𝛼 ∶ 𝒪⊕𝑟

𝑋 → ℱ which induces an isomorphism
of fibres 𝜅(𝜉)⊕𝑟 → ℱ𝜉 ⊗ 𝜅(𝜉) at 𝜉, see Lemma 34.12.1. The same lemma implies, since ℱ𝜉
is flat over 𝒪𝑆,𝑠, that 𝛼 is an isomorphism in an open neighbourhood of 𝜉 and we win. �

Lemma 34.26.4. In Situation 34.20.9. Let 𝑠 ∈ 𝑆 let 𝑑 ≥ 0. Assume
(1) there exists a complete dévisage of ℱ/𝑋/𝑆 over some point 𝑠 ∈ 𝑆,
(2) 𝑋 is of finite presentation over 𝑆,
(3) ℱ is an 𝒪𝑋-module of finite presentation, and
(4) ℱ is flat in dimensions ≥ 𝑑 + 1 over 𝑆.

Then after possibly replacing 𝑆 by an open neighbourhood of 𝑠 the functor 𝐹𝑑 (34.20.9.1)
is representable by a monomorphism 𝑍𝑑 → 𝑆 of finite presentation.

Proof. A preliminary remark is that 𝑋, 𝑆 are affine schemes and that it suffices to prove 𝐹𝑑
is representable by a closed subscheme on the category of affine schemes over 𝑆. Hence
throughout the proof of the lemma we work in the category of affine schemes over 𝑆.

Let (𝑍𝑘, 𝑌𝑘, 𝑖𝑘, 𝜋𝑘, 𝒢𝑘, 𝛼𝑘)𝑘=1,…,𝑛 be a complete dévissage of ℱ/𝑋/𝑆 over 𝑠, see Definition
34.6.1. We will use induction on the length 𝑛 of the dévissage. Recall that 𝑌𝑘 → 𝑆 is
smooth with geometrically irreducible fibres, see Definition 34.5.1. Let 𝑑𝑘 be the relative
dimension of 𝑌𝑘 over 𝑆. Recall that 𝑖𝑘,∗𝒢𝑘 = Coker(𝛼𝑘) and that 𝑖𝑘 is a closed immersion.
By the definitions referenced above we have 𝑑1 = dim(Supp(ℱ𝑠)) and

𝑑𝑘 = dim(Supp(Coker(𝛼𝑘−1)𝑠)) = dim(Supp(𝒢𝑘,𝑠))

for 𝑘 = 2, … , 𝑛. It follows that 𝑑1 > 𝑑2 > … > 𝑑𝑛 ≥ 0 because 𝛼𝑘 is an isomorphism in
the generic point of (𝑌𝑘)𝑠.

Note that 𝑖1 is a closed immersion and ℱ = 𝑖1,∗𝒢1. Hence for any morphism of schemes
𝑇 → 𝑆 with 𝑇 affine, we have ℱ𝑇 = 𝑖1,𝑇,∗𝒢1,𝑇 and 𝑖1,𝑇 is still a closed immersion of schemes
over 𝑇. Thus ℱ𝑇 is flat in dimensions ≥ 𝑑 over 𝑇 if and only if 𝒢1,𝑇 is flat in dimensions
≥ 𝑑 over 𝑇. Because 𝜋1 ∶ 𝑍1 → 𝑌1 is finite we see in the same manner that 𝒢1,𝑇 is flat in
dimensions ≥ 𝑑 over 𝑇 if and only if 𝜋1,𝑇,∗𝒢1,𝑇 is flat in dimensions ≥ 𝑑 over 𝑇. The same
arguments work for ``flat in dimensions ≥ 𝑑 + 1'' and we conclude in particular that 𝜋1,∗𝒢1
is flat over 𝑆 in dimensions ≥ 𝑑 + 1 by our assumption on ℱ.

Suppose that 𝑑1 > 𝑑. It follows from the discussion above that in particular 𝜋1,∗𝒢1 is flat
over 𝑆 at the generic point of (𝑌1)𝑠. By Lemma 34.12.1 wemay replace 𝑆 by an affine neigh-
bourhood of 𝑠 and assume that 𝛼1 is 𝑆-universally injective. Because 𝛼1 is 𝑆-universally
injective, for any morphism 𝑇 → 𝑆 with 𝑇 affine, we have a short exact sequence

0 → 𝒪⊕𝑟1
𝑌1,𝑇

→ 𝜋1,𝑇,∗𝒢1,𝑇 → Coker(𝛼1)𝑇 → 0

and still the first arrow is 𝑇-unversally injective. Hence the set of points of (𝑌1)𝑇 where
𝜋1,𝑇,∗𝒢1,𝑇 is flat over 𝑇 is the same as the set of points of (𝑌1)𝑇 where Coker(𝛼1)𝑇 is flat over
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𝑆. In this way the question reduces to the sheaf Coker(𝛼1) which has a complete dévissage
of length 𝑛 − 1 and we win by induction.

If 𝑑1 < 𝑑 then 𝐹𝑑 is represented by 𝑆 and we win.

The last case is the case 𝑑1 = 𝑑. This case follows from a combination of Lemma 34.26.3
and Lemma 34.26.1. �

Theorem 34.26.5. In Situation 34.20.9. Assume moreover that 𝑓 is of finite presentation,
that ℱ is an 𝒪𝑋-module of finite presentation, and that ℱ is pure relative to 𝑆. Then 𝐹𝑛 is
representable by a monomorphism 𝑍𝑛 → 𝑆 of finite presentation.

Proof. The functor 𝐹𝑛 is a sheaf for the fppf topology by Lemma 34.20.10. Hence combin-
ing Descent, Lemma 31.35.1, More onMorphisms, Lemma 33.35.1 , and Descent, Lemmas
31.19.29 and 31.19.11 we see that the question is local for the étale topology on 𝑆.

In particular the situation is local for the Zariski toplogy on 𝑆 and we may assume that 𝑆 is
affine. In this case the dimension of the fibres of 𝑓 is bounded above, hence we see that 𝐹𝑛
is representable for 𝑛 large enough. Thus we may use descending induction on 𝑛. Suppose
that we know 𝐹𝑛+1 is representable by a monomorphism 𝑍𝑛+1 → 𝑆 of finite presentation.
Consider the base change 𝑋𝑛+1 = 𝑍𝑛+1 ×𝑆 𝑋 and the pullback ℱ𝑛+1 of ℱ to 𝑋𝑛+1. The
morphism 𝑍𝑛+1 → 𝑆 is quasi-finite as it is a monomorphism of finite presentation, hence
Lemma 34.16.4 implies that ℱ𝑛+1 is pure relative to 𝑍𝑛+1. Since 𝐹𝑛 is a subfunctor of 𝐹𝑛+1
we conclude that in order to prove the result for 𝐹𝑛 it suffices to prove the result for the
corresponding functor for the situation ℱ𝑛+1/𝑋𝑛+1/𝑍𝑛+1. In this way we reduce to proving
the result for 𝐹𝑛 in case 𝑆𝑛+1 = 𝑆, i.e., we may assume that ℱ is flat in dimensions ≥ 𝑛 + 1
over 𝑆.

Fix 𝑛 and assume ℱ is flat in dimensions ≥ 𝑛 + 1 over 𝑆. To finish the proof we have to
show that 𝐹𝑛 is representable by a monomorphism 𝑍𝑛 → 𝑆 of finite presentation. Since
the question is local in the étale topology on 𝑆 it suffices to show that for every 𝑠 ∈ 𝑆 there
exists an elementary étale neighbourhood (𝑆′, 𝑠′) → (𝑆, 𝑠) such that the result holds after
base change to 𝑆′. Thus by Lemma 34.6.8 we may assume there exist étale morphisms
ℎ𝑗 ∶ 𝑌𝑗 → 𝑋, 𝑗 = 1, … , 𝑚 such that for each 𝑖 there exists a complete dévissage of
ℱ𝑗/𝑌𝑗/𝑆 over 𝑠, where ℱ𝑗 is the pullback of ℱ to 𝑌𝑗 and such that 𝑋𝑠 ⊂ ⋃ ℎ𝑗(𝑌𝑗). Note
that by Lemma 34.26.2 the sheaves ℱ𝑗 are still flat over in dimensions ≥ 𝑛 + 1 over 𝑆. Set
𝑊 = ⋃ ℎ𝑗(𝑌𝑗), which is a quasi-compact open of 𝑋. As ℱ is pure along 𝑋𝑠 we see that

𝐸 = {𝑡 ∈ 𝑆 ∣ Ass𝑋𝑡
(ℱ𝑡) ⊂ 𝑊}.

contains all generalizations of 𝑠. By More on Morphisms, Lemma 33.18.5 𝐸 is a con-
structible subset of 𝑆. We have seen that 𝑆𝑝𝑒𝑐(𝒪𝑆,𝑠) ⊂ 𝐸. By Morphisms, Lemma 24.21.4
we see that 𝐸 contains an open neighbourhood of 𝑠. Hence after shrinking 𝑆 we may as-
sume that 𝐸 = 𝑆. It follows from Lemma 34.26.2 that it suffices to prove the lemma for
the functor 𝐹𝑛 associated to 𝑋 = ∐ 𝑌𝑗 and ℱ = ∐ ℱ𝑗. If 𝐹𝑗,𝑛 denotes the functor for
𝑌𝑗 → 𝑆 and the sheaf ℱ𝑖 we see that 𝐹𝑛 = ∏ 𝐹𝑗,𝑛. Hence it suffices to prove each 𝐹𝑗,𝑛 is
representable by some monomorphism 𝑍𝑗,𝑛 → 𝑆 of finite presentation, since then

𝑍𝑛 = 𝑍1,𝑛 ×𝑆 … ×𝑆 𝑍𝑚,𝑛

Thus we have reduced the theorem to the special case handled in Lemma 34.26.4. �

Wemake explicit what the theorem means in terms of universal flattenings in the following
lemma.
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Lemma 34.26.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let ℱ be a quasi-coherent
𝒪𝑋-module.

(1) If 𝑓 is of finite presentation, ℱ is an 𝒪𝑋-module of finite presentation, and ℱ is
pure relative to 𝑆, then there exists a universal flattening 𝑆′ → 𝑆 of ℱ. Moreover
𝑆′ → 𝑆 is a monomorphism of finite presentation.

(2) If 𝑓 is of finite presentation and 𝑋 is pure relative to 𝑆, then there exists a uni-
versal flattening 𝑆′ → 𝑆 of 𝑋. Moreover 𝑆′ → 𝑆 is a monomorphism of finite
presentation.

(3) If 𝑓 is proper and of finite presentation and ℱ is an 𝒪𝑋-module of finite presen-
tation, then there exists a universal flattening 𝑆′ → 𝑆 of ℱ. Moreover 𝑆′ → 𝑆 is
a monomorphism of finite presentation.

(4) If 𝑓 is proper and of finite presentation then there exists a universal flattening
𝑆′ → 𝑆 of 𝑋.

Proof. These statements follow immediately from Theorem 34.26.5 applied to 𝐹0 = 𝐹𝑓𝑙𝑎𝑡
and the fact that if 𝑓 is proper then ℱ is automatically pure over the base, see Lemma
34.17.1. �
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CHAPTER 35

Groupoid Schemes

35.1. Introduction

This chapter is devoted to generalities concering groupoid schemes. See for example the
beautiful paper [KM97a] by Keel and Mori.

35.2. Notation

Let 𝑆 be a scheme. If 𝑈, 𝑇 are schemes over 𝑆 we denote 𝑈(𝑇) for the set of 𝑇-valued points
of 𝑈 over 𝑆. In a formula: 𝑈(𝑇) = 𝑀𝑜𝑟𝑆(𝑇, 𝑈). We try to reserve the letter 𝑇 to denote a
``test scheme'' over 𝑆, as in the discussion that follows. Suppose we are given schemes 𝑋,
𝑌 over 𝑆 and a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 over 𝑆. For any scheme 𝑇 over 𝑆 we get
an induced map of sets

𝑓 ∶ 𝑋(𝑇) ⟶ 𝑌(𝑇)
which as indicated we denote by 𝑓 also. In fact this construction is functorial in the scheme
𝑇/𝑆. Yoneda's Lemma, see Categories, Lemma 4.3.5, says that 𝑓 determines and is deter-
mined by this transformation of functors 𝑓 ∶ ℎ𝑋 → ℎ𝑌. More generally, we use the same
notation for maps between fibre products. For example, if 𝑋, 𝑌, 𝑍 are schemes over 𝑆,
and if 𝑚 ∶ 𝑋 ×𝑆 𝑌 → 𝑍 ×𝑆 𝑍 is a morphism of schemes over 𝑆, then we think of 𝑚 as
corresponding to a collection of maps between 𝑇-valued points

𝑋(𝑇) × 𝑌(𝑇) ⟶ 𝑍(𝑇) × 𝑍(𝑇).

And so on and so forth.

We continue our convention to label projection maps starting with index 0, so we have
pr0 ∶ 𝑋 ×𝑆 𝑌 → 𝑋 and pr1 ∶ 𝑋 ×𝑆 𝑌 → 𝑌.

35.3. Equivalence relations

Recall that a relation 𝑅 on a set 𝐴 is just a subset of 𝑅 ⊂ 𝐴 × 𝐴.We usually write 𝑎𝑅𝑏
to indicate (𝑎, 𝑏) ∈ 𝑅. We say the relation is transitive if 𝑎𝑅𝑏, 𝑏𝑅𝑐 ⇒ 𝑎𝑅𝑐. We say the
relation is reflexive if 𝑎𝑅𝑎 for all 𝑎 ∈ 𝐴. We say the relation is symmetric if 𝑎𝑅𝑏 ⇒ 𝑏𝑅𝑎.
A relation is called an equivalence relation if it is transitive, reflexive and symmetric.

In the setting of schemes we are going to relax the notion of a relation a little bit and just
require 𝑅 → 𝐴 × 𝐴 to be a map. Here is the definition.

Definition 35.3.1. Let 𝑆 be a scheme. Let 𝑈 be a scheme over 𝑆.
(1) A pre-relation on 𝑈 over 𝑆 is any morphism 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈. In this case we

set 𝑡 = pr0 ∘ 𝑗 and 𝑠 = pr1 ∘ 𝑗, so that 𝑗 = (𝑡, 𝑠).
(2) A relation on 𝑈 over 𝑆 is a monomorphism 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈.
(3) A pre-equivalence relation is a pre-relation 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 such that the image

of 𝑗 ∶ 𝑅(𝑇) → 𝑈(𝑇) × 𝑈(𝑇) is an equivalence relation for all 𝑇/𝑆.
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(4) We say a morphism 𝑅 → 𝑈 ×𝑆 𝑈 is an equivalence relation on 𝑈 over 𝑆 if and
only if for every 𝑇/𝑆 the 𝑇-valued points of 𝑅 define an equivalence relation on
the set of 𝑇-valued points of 𝑈.

In other words, an equivalence relation is a pre-equivalence relation such that 𝑗 is a relation.

Lemma 35.3.2. Let 𝑆 be a scheme. Let 𝑈 be a scheme over 𝑆. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 be a
pre-relation. Let 𝑔 ∶ 𝑈′ → 𝑈 be a morphism of schemes. Finally, set

𝑅′ = (𝑈′ ×𝑆 𝑈′) ×𝑈×𝑆𝑈 𝑅
𝑗′

−−→ 𝑈′ ×𝑆 𝑈′

Then 𝑗′ is a pre-relation on 𝑈′ over 𝑆. If 𝑗 is a relation, then 𝑗′ is a relation. If 𝑗 is
a pre-equivalence relation, then 𝑗′ is a pre-equivalence relation. If 𝑗 is an equivalence
relation, then 𝑗′ is an equivalence relation.

Proof. Omitted. �

Definition 35.3.3. Let 𝑆 be a scheme. Let 𝑈 be a scheme over 𝑆. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈
be a pre-relation. Let 𝑔 ∶ 𝑈′ → 𝑈 be a morphism of schemes. The pre-relation 𝑗′ ∶ 𝑅′ →
𝑈′ ×𝑆 𝑈′ is called the restriction, or pullback of the pre-relation 𝑗 to 𝑈′. In this situation
we sometimes write 𝑅′ = 𝑅|𝑈′.

Lemma 35.3.4. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 be a pre-relation. Consider the relation on points of
the scheme 𝑈 defined by the rule

𝑥 ∼ 𝑦 ⇔ ∃ 𝑟 ∈ 𝑅 ∶ 𝑡(𝑟) = 𝑥, 𝑠(𝑟) = 𝑦.
If 𝑗 is a pre-equivalence relation then this is an equivalence relation.

Proof. Suppose that 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧. Pick 𝑟 ∈ 𝑅 with 𝑡(𝑟) = 𝑥, 𝑠(𝑟) = 𝑦 and pick 𝑟′ ∈ 𝑅
with 𝑡(𝑟′) = 𝑦, 𝑠(𝑟′) = 𝑧. Pick a field 𝐾 fitting into the following commutative diagram

𝜅(𝑟) // 𝐾

𝜅(𝑦)

OO

// 𝜅(𝑟′)

OO

Denote 𝑥𝐾, 𝑦𝐾, 𝑧𝐾 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑈 the morphisms
𝑆𝑝𝑒𝑐(𝐾) → 𝑆𝑝𝑒𝑐(𝜅(𝑟)) → 𝑆𝑝𝑒𝑐(𝜅(𝑥)) → 𝑈
𝑆𝑝𝑒𝑐(𝐾) → 𝑆𝑝𝑒𝑐(𝜅(𝑟)) → 𝑆𝑝𝑒𝑐(𝜅(𝑦)) → 𝑈
𝑆𝑝𝑒𝑐(𝐾) → 𝑆𝑝𝑒𝑐(𝜅(𝑟′)) → 𝑆𝑝𝑒𝑐(𝜅(𝑧)) → 𝑈

By construction (𝑥𝐾, 𝑦𝐾) ∈ 𝑗(𝑅(𝐾)) and (𝑦𝐾, 𝑧𝐾) ∈ 𝑗(𝑅(𝐾)). Since 𝑗 is a pre-equivalence
relation we see that also (𝑥𝐾, 𝑧𝐾) ∈ 𝑗(𝑅(𝐾)). This clearly implies that 𝑥 ∼ 𝑧.
The proof that ∼ is reflexive and symmetric is omitted. �

35.4. Group schemes

Let us recall that a group is a pair (𝐺, 𝑚) where 𝐺 is a set, and 𝑚 ∶ 𝐺 × 𝐺 → 𝐺 is a map of
sets with the following properties:

(1) (associativity) 𝑚(𝑔, 𝑚(𝑔′, 𝑔″)) = 𝑚(𝑚(𝑔, 𝑔′), 𝑔″) for all 𝑔, 𝑔′, 𝑔″ ∈ 𝐺,
(2) (identity) there exists a unique element 𝑒 ∈ 𝐺 (called the identity, unit, or 1 of 𝐺)

such that 𝑚(𝑔, 𝑒) = 𝑚(𝑒, 𝑔) = 𝑔 for all 𝑔 ∈ 𝐺, and
(3) (inverse) for all 𝑔 ∈ 𝐺 there exists a 𝑖(𝑔) ∈ 𝐺 such that 𝑚(𝑔, 𝑖(𝑔)) = 𝑚(𝑖(𝑔), 𝑔) = 𝑒,

where 𝑒 is the identity.
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Thus we obtain a map 𝑒 ∶ {∗} → 𝐺 and a map 𝑖 ∶ 𝐺 → 𝐺 so that the quadruple (𝐺, 𝑚, 𝑒, 𝑖)
satisfies the axioms listed above.

A homomorphism of groups 𝜓 ∶ (𝐺, 𝑚) → (𝐺′, 𝑚′) is a map of sets 𝜓 ∶ 𝐺 → 𝐺′ such that
𝑚′(𝜓(𝑔), 𝜓(𝑔′)) = 𝜓(𝑚(𝑔, 𝑔′)). This automatically insures that 𝜓(𝑒) = 𝑒′ and 𝑖′(𝜓(𝑔)) =
𝜓(𝑖(𝑔)). (Obvious notation.) We will use this below.

Definition 35.4.1. Let 𝑆 be a scheme.
(1) A group scheme over 𝑆 is a pair (𝐺, 𝑚), where 𝐺 is a scheme over 𝑆 and 𝑚 ∶

𝐺 ×𝑆 𝐺 → 𝐺 is a morphism of schemes over 𝑆 with the following property: For
every scheme 𝑇 over 𝑆 the pair (𝐺(𝑇), 𝑚) is a group.

(2) A morphism 𝜓 ∶ (𝐺, 𝑚) → (𝐺′, 𝑚′) of group schemes over 𝑆 is a morphism
𝜓 ∶ 𝐺 → 𝐺′ of schemes over 𝑆 such that for every 𝑇/𝑆 the induced map 𝜓 ∶
𝐺(𝑇) → 𝐺′(𝑇) is a homomorphism of groups.

Let (𝐺, 𝑚) be a group scheme over the scheme 𝑆. By the discussion above (and the discus-
sion in Section 35.2) we obtain morphisms of schemes over 𝑆: (identity) 𝑒 ∶ 𝑆 → 𝐺 and
(inverse) 𝑖 ∶ 𝐺 → 𝐺 such that for every 𝑇 the quadruple (𝐺(𝑇), 𝑚, 𝑒, 𝑖) satsifies the axioms
of a group listed above.

Let (𝐺, 𝑚), (𝐺′, 𝑚′) be group schemes over 𝑆. Let 𝑓 ∶ 𝐺 → 𝐺′ be a morphism of schemes
over 𝑆. It follows from the definition that 𝑓 is a morphism of group schemes over 𝑆 if and
only if the following diagram is commutative:

𝐺 ×𝑆 𝐺
𝑓×𝑓
//

𝑚
��

𝐺′ ×𝑆 𝐺′

𝑚
��

𝐺
𝑓 // 𝐺′

Lemma 35.4.2. Let (𝐺, 𝑚) be a group scheme over 𝑆. Let 𝑆′ → 𝑆 be a morphism of
schemes. The pullback (𝐺𝑆′, 𝑚𝑆′) is a group scheme over 𝑆′.

Proof. Omitted. �

Definition 35.4.3. Let 𝑆 be a scheme. Let (𝐺, 𝑚) be a group scheme over 𝑆.
(1) A closed subgroup scheme of 𝐺 is a closed subscheme 𝐻 ⊂ 𝐺 such that 𝑚|𝐻×𝑆𝐻

factors through 𝐻 and induces a group scheme structure on 𝐻 over 𝑆.
(2) An open subgroup scheme of 𝐺 is an open subscheme 𝐺′ ⊂ 𝐺 such that 𝑚|𝐺′×𝑆𝐺′

factors through 𝐺′ and induces a group scheme structure on 𝐺′ over 𝑆.

Alternatively, we could say that 𝐻 is a closed subgroup scheme of 𝐺 if it is a group scheme
over 𝑆 endowed with a morphism of group schemes 𝑖 ∶ 𝐻 → 𝐺 over 𝑆 which identifies 𝐻
with a closed subscheme of 𝐺.

Definition 35.4.4. Let 𝑆 be a scheme. Let (𝐺, 𝑚) be a group scheme over 𝑆.
(1) We say 𝐺 is a smooth group scheme if the structure morphism 𝐺 → 𝑆 is smooth.
(2) We say 𝐺 is a flat group scheme if the structure morphism 𝐺 → 𝑆 is flat.
(3) We say 𝐺 is a separated group scheme if the structure morphism 𝐺 → 𝑆 is sepa-

rated.
Add more as needed.
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35.5. Examples of group schemes

Example 35.5.1. (Multiplicative group scheme.) Consider the functor which associates to
any scheme 𝑇 the group Γ(𝑇, 𝒪∗

𝑇) of units in the global sections of the structure sheaf. This
is representable by the scheme

𝐆𝑚 = 𝑆𝑝𝑒𝑐(𝐙[𝑥, 𝑥−1])
The morphism giving the group structure is the morphism

𝐆𝑚 × 𝐆𝑚 → 𝐆𝑚

𝑆𝑝𝑒𝑐(𝐙[𝑥, 𝑥−1] ⊗𝐙 𝐙[𝑥, 𝑥−1]) → 𝑆𝑝𝑒𝑐(𝐙[𝑥, 𝑥−1])
𝐙[𝑥, 𝑥−1] ⊗𝐙 𝐙[𝑥, 𝑥−1] ← 𝐙[𝑥, 𝑥−1]

𝑥 ⊗ 𝑥 ← 𝑥
Hence we see that 𝐆𝑚 is a group scheme over 𝐙. For any scheme 𝑆 the base change 𝐆𝑚,𝑆
is a group scheme over 𝑆 whose functor of points is

𝑇/𝑆 ⟼ 𝐆𝑚,𝑆(𝑇) = 𝐆𝑚(𝑇) = Γ(𝑇, 𝒪∗
𝑇)

as before.
Example 35.5.2. (Roots of unity.) Let 𝑛 ∈ 𝐍. Consider the functor which associates to any
scheme 𝑇 the subgroup of Γ(𝑇, 𝒪∗

𝑇) consisting of 𝑛th roots of unity. This is representable by
the scheme

𝜇𝑛 = 𝑆𝑝𝑒𝑐(𝐙[𝑥]/(𝑥𝑛 − 1)).
The morphism giving the group structure is the morphism

𝜇𝑛 × 𝜇𝑛 → 𝜇𝑛

𝑆𝑝𝑒𝑐(𝐙[𝑥]/(𝑥𝑛 − 1) ⊗𝐙 𝐙[𝑥]/(𝑥𝑛 − 1)) → 𝑆𝑝𝑒𝑐(𝐙[𝑥]/(𝑥𝑛 − 1))
𝐙[𝑥]/(𝑥𝑛 − 1) ⊗𝐙 𝐙[𝑥]/(𝑥𝑛 − 1) ← 𝐙[𝑥]/(𝑥𝑛 − 1)

𝑥 ⊗ 𝑥 ← 𝑥
Hence we see that 𝜇𝑛 is a group scheme over 𝐙. For any scheme 𝑆 the base change 𝜇𝑛,𝑆 is
a group scheme over 𝑆 whose functor of points is

𝑇/𝑆 ⟼ 𝜇𝑛,𝑆(𝑇) = 𝜇𝑛(𝑇) = {𝑓 ∈ Γ(𝑇, 𝒪∗
𝑇) ∣ 𝑓𝑛 = 1}

as before.
Example 35.5.3. (Additive group scheme.) Consider the functor which associates to any
scheme 𝑇 the group Γ(𝑇, 𝒪𝑇) of global sections of the structure sheaf. This is representable
by the scheme

𝐆𝑎 = 𝑆𝑝𝑒𝑐(𝐙[𝑥])
The morphism giving the group structure is the morphism

𝐆𝑎 × 𝐆𝑎 → 𝐆𝑎

𝑆𝑝𝑒𝑐(𝐙[𝑥] ⊗𝐙 𝐙[𝑥]) → 𝑆𝑝𝑒𝑐(𝐙[𝑥])
𝐙[𝑥] ⊗𝐙 𝐙[𝑥] ← 𝐙[𝑥]
𝑥 ⊗ 1 + 1 ⊗ 𝑥 ← 𝑥

Hence we see that 𝐆𝑎 is a group scheme over 𝐙. For any scheme 𝑆 the base change 𝐆𝑎,𝑆 is
a group scheme over 𝑆 whose functor of points is

𝑇/𝑆 ⟼ 𝐆𝑎,𝑆(𝑇) = 𝐆𝑎(𝑇) = Γ(𝑇, 𝒪𝑇)
as before.
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Example 35.5.4. (General linear group scheme.) Let 𝑛 ≥ 1. Consider the functor which
associates to any scheme 𝑇 the group

GL𝑛(Γ(𝑇, 𝒪𝑇))

of invertible 𝑛 × 𝑛 matrices over the global sections of the structure sheaf. This is repre-
sentable by the scheme

GL𝑛 = 𝑆𝑝𝑒𝑐(𝐙[{𝑥𝑖𝑗}1≤𝑖,𝑗≤𝑛][1/𝑑])

where 𝑑 = det((𝑥𝑖𝑗)) with (𝑥𝑖𝑗) the 𝑛 × 𝑛 matrix with entry 𝑥𝑖𝑗 in the (𝑖, 𝑗)-spot. The mor-
phism giving the group structure is the morphism

GL𝑛 × GL𝑛 → GL𝑛

𝑆𝑝𝑒𝑐(𝐙[𝑥𝑖𝑗, 1/𝑑] ⊗𝐙 𝐙[𝑥𝑖𝑗, 1/𝑑]) → 𝑆𝑝𝑒𝑐(𝐙[𝑥𝑖𝑗, 1/𝑑])
𝐙[𝑥𝑖𝑗, 1/𝑑] ⊗𝐙 𝐙[𝑥𝑖𝑗, 1/𝑑] ← 𝐙[𝑥𝑖𝑗, 1/𝑑]

∑ 𝑥𝑖𝑘 ⊗ 𝑥𝑘𝑗 ← 𝑥𝑖𝑗

Hence we see that GL𝑛 is a group scheme over 𝐙. For any scheme 𝑆 the base change GL𝑛,𝑆
is a group scheme over 𝑆 whose functor of points is

𝑇/𝑆 ⟼ GL𝑛,𝑆(𝑇) = GL𝑛(𝑇) = GL𝑛(Γ(𝑇, 𝒪𝑇))

as before.

Example 35.5.5. The determinant defines a morphisms of group schemes

det ∶ GL𝑛 ⟶ 𝐆𝑚

over 𝐙. By base change it gives a morphism of group schemes GL𝑛,𝑆 → 𝐆𝑚,𝑆 over any
base scheme 𝑆.

Example 35.5.6. (Constant group.) Let 𝐺 be an abstract group. Consider the functor
which associates to any scheme 𝑇 the group of locally constant maps 𝑇 → 𝐺 (where 𝑇 has
the Zariski topology and 𝐺 the discrete topology). This is representable by the scheme

𝐺𝑆𝑝𝑒𝑐(𝐙) = ∐𝑔∈𝐺
𝑆𝑝𝑒𝑐(𝐙).

The morphism giving the group structure is the morphism

𝐺𝑆𝑝𝑒𝑐(𝐙) ×𝑆𝑝𝑒𝑐(𝐙) 𝐺𝑆𝑝𝑒𝑐(𝐙) ⟶ 𝐺𝑆𝑝𝑒𝑐(𝐙)

which maps the component corresponding to the pair (𝑔, 𝑔′) to the component correspond-
ing to 𝑔𝑔′. For any scheme 𝑆 the base change 𝐺𝑆 is a group scheme over 𝑆 whose functor
of points is

𝑇/𝑆 ⟼ 𝐺𝑆(𝑇) = {𝑓 ∶ 𝑇 → 𝐺 locally constant}
as before.

35.6. Properties of group schemes

In this section we collect some simple properties of group schemes which hold over any
base.

Lemma 35.6.1. Let 𝑆 be a scheme. Let 𝐺 be a group scheme over 𝑆. Then 𝐺 → 𝑆 is
separated (resp. quasi-separated) if and only if the identity morphism 𝑒 ∶ 𝑆 → 𝐺 is a
closed immersion (resp. quasi-compact).
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Proof. We recall that by Schemes, Lemma 21.21.12 we have that 𝑒 is an immersion which
is a closed immersion (resp. quasi-compact) if 𝐺 → 𝑆 is separated (resp. quasi-separated).
For the converse, consider the diagram

𝐺
Δ𝐺/𝑆

//

��

𝐺 ×𝑆 𝐺

(𝑔,𝑔′)↦𝑚(𝑖(𝑔),𝑔′)
��

𝑆 𝑒 // 𝐺

It is an exercise in the functorial point of view in algebraic geometry to show that this
diagram is cartesian. In other words, we see that Δ𝐺/𝑆 is a base change of 𝑒. Hence if 𝑒 is
a closed immersion (resp. quasi-compact) so is Δ𝐺/𝑆, see Schemes, Lemma 21.18.2 (resp.
Schemes, Lemma 21.19.3). �

Lemma 35.6.2. Let 𝑆 be a scheme. Let 𝐺 be a group scheme over 𝑆. Let 𝑇 be a scheme
over 𝑆 and let 𝜓 ∶ 𝑇 → 𝐺 be a morphism over 𝑆. If 𝑇 is flat over 𝑆, then the morphism

𝑇 ×𝑆 𝐺 ⟶ 𝐺, (𝑡, 𝑔) ⟼ 𝑚(𝜓(𝑡), 𝑔)

is flat. In particular, if 𝐺 is flat over 𝑆, then 𝑚 ∶ 𝐺 ×𝑆 𝐺 → 𝐺 is flat.

Proof. Consider the diagram

𝑇 ×𝑆 𝐺
(𝑡,𝑔)↦(𝑡,𝑚(𝜓(𝑡),𝑔))

// 𝑇 ×𝑆 𝐺 pr
//

��

𝐺

��
𝑇 // 𝑆

The left top horizontal arrow is an isomorphism and the square is cartesian. Hence the
lemma follows from Morphisms, Lemma 24.24.7. �

Lemma 35.6.3. Let (𝐺, 𝑚, 𝑒, 𝑖) be a group scheme over the scheme 𝑆. Denote 𝑓 ∶ 𝐺 → 𝑆
the structure morphism. Assume 𝑓 is flat. Then there exist canonical isomorphisms

Ω𝐺/𝑆 ≅ 𝑓∗𝒞𝑆/𝐺 ≅ 𝑓∗𝑒∗Ω𝐺/𝑆

where 𝒞𝑆/𝐺 denotes the conormal sheaf of the immersion 𝑒. In particular, if 𝑆 is the spec-
trum of a field, then Ω𝐺/𝑆 is a free 𝒪𝐺-module.

Proof. InMorphisms, Section 24.32 we defined Ω𝐺/𝑆 as the conormal sheaf of the diagonal
morphism Δ𝐺/𝑆. In the proof of Lemma 35.6.1 we showed that Δ𝐺/𝑆 is a base change of
the immersion 𝑒 by the morphism (𝑔, 𝑔′) ↦ 𝑚(𝑖(𝑔), 𝑔′). This morphism is isomorphic to
the morphism (𝑔, 𝑔′) ↦ 𝑚(𝑔, 𝑔′) hence is flat by Lemma 35.6.2. Hence we get the first
isomorphism by Morphisms, Lemma 24.31.4. By Morphisms, Lemma 24.32.18 we have
𝒞𝑆/𝐺 ≅ 𝑒∗Ω𝐺/𝑆.

If 𝑆 is the spetrum of a field, then 𝐺 → 𝑆 is flat, and any 𝒪𝑆-module on 𝑆 is free. �

35.7. Properties of group schemes over a field

In this section we collect some simple properties of group schemes over a field.

Lemma 35.7.1. If (𝐺, 𝑚) is a group scheme over a field 𝑘, then the multiplication map
𝑚 ∶ 𝐺 ×𝑘 𝐺 → 𝐺 is open.
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Proof. The multiplication map is isomorphic to the projection map pr0 ∶ 𝐺 ×𝑘 𝐺 → 𝐺
because the diagram

𝐺 ×𝑘 𝐺

𝑚
��

(𝑔,𝑔′)↦(𝑚(𝑔,𝑔′),𝑔′)
// 𝐺 ×𝑘 𝐺

(𝑔,𝑔′)↦𝑔
��

𝐺 id // 𝐺

is commutative with isomorphisms as horizontal arrows. The projection is open by Mor-
phisms, Lemma 24.22.4. �

Lemma 35.7.2. Let 𝐺 be a group scheme over a field. Then 𝐺 is a separated scheme.

Proof. Say 𝑆 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field, and let 𝐺 be a group scheme over 𝑆. By Lemma
35.6.1 we have to show that 𝑒 ∶ 𝑆 → 𝐺 is a closed immersion. By Morphisms, Lemma
24.19.2 the image of 𝑒 ∶ 𝑆 → 𝐺 is a closed point of 𝐺. It is clear that 𝒪𝐺 → 𝑒∗𝒪𝑆
is surjective, since 𝑒∗𝒪𝑆 is a skyscraper sheaf supported at the neutral element of 𝐺 with
value 𝑘. We conclude that 𝑒 is a closed immersion by Schemes, Lemma 21.24.2. �

Lemma 35.7.3. Let 𝐺 be a group scheme over a field 𝑘. Then
(1) every local ring 𝒪𝐺,𝑔 of 𝐺 has a unique minimal prime ideal,
(2) there is exactly one irreducible component 𝑍 of 𝐺 passing through 𝑒, and
(3) 𝑍 is geometrically irreducible over 𝑘.

Proof. For any point 𝑔 ∈ 𝐺 there exists a field extension 𝑘 ⊂ 𝐾 and a 𝐾-valued point
𝑔′ ∈ 𝐺(𝐾) mapping to 𝑔. If we think of 𝑔′ as a 𝐾-rational point of the group scheme
𝐺𝐾, then we see that 𝒪𝐺,𝑔 → 𝒪𝐺𝐾,𝑔′ is a faithfully flat local ring map (as 𝐺𝐾 → 𝐺 is flat,
and a local flat ring map is faithfully flat, see Algebra, Lemma 7.35.16). The result for
𝒪𝐺𝐾,𝑔′ implies the result for 𝒪𝐺,𝑔, see Algebra, Lemma 7.27.5. Hence in order to prove (1)
it suffices to prove it for 𝑘-rational points 𝑔 of 𝐺. In this case translation by 𝑔 defines an
automorphism 𝐺 → 𝐺 which maps 𝑒 to 𝑔. Hence 𝒪𝐺,𝑔 ≅ 𝒪𝐺,𝑒. In this way we see that
(2) implies (1), since irreducible components passing through 𝑒 correspond one to one with
minimal prime ideals of 𝒪𝐺,𝑒.

In order to prove (2) and (3) it suffices to prove (2) when 𝑘 is algebraically closed. In
this case, let 𝑍1, 𝑍2 be two irreducible components of 𝐺 passing through 𝑒. Since 𝑘 is
algebraically closed the closed subscheme 𝑍1 ×𝑘 𝑍2 ⊂ 𝐺 ×𝑘 𝐺 is irreducible too, see
Varieties, Lemma 28.6.4. Hence 𝑚(𝑍1 ×𝑘 𝑍2) is contained in an irreducible component
of 𝐺. On the other hand it contains 𝑍1 and 𝑍2 since 𝑚|𝑒×𝐺 = id𝐺 and 𝑚|𝐺×𝑒 = id𝐺. We
conclude 𝑍1 = 𝑍2 as desired. �

Remark 35.7.4. Warning: The result of Lemma 35.7.3 does not mean that every irre-
ducible component of 𝐺/𝑘 is geometrically irreducible. For example the group scheme
𝜇3,𝐐 = 𝑆𝑝𝑒𝑐(𝐐[𝑥]/(𝑥3 − 1)) over 𝐐 has two irreducible components corresponding to the
factorization 𝑥3 − 1 = (𝑥 − 1)(𝑥2 + 𝑥 + 1). The first factor corresponds to the irreducible
component passing through the identity, and the second irreducible component is not geo-
metrically irreducible over 𝑆𝑝𝑒𝑐(𝐐).

Lemma 35.7.5. Let 𝐺 be a group scheme which is locally of finite type over a field 𝑘. Then
𝐺 is equidimensional and dim(𝐺) = dim𝑔(𝐺) for all 𝑔 ∈ 𝐺. For any closed point 𝑔 ∈ 𝐺
we have dim(𝐺) = dim(𝒪𝐺,𝑔).
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Proof. Let us first prove that dim𝑔(𝐺) = dim𝑔′(𝐺) for any pair of points 𝑔, 𝑔′ ∈ 𝐺. By
Morphisms, Lemma 24.27.3 we may extend the ground field at will. Hence we may as-
sume that both 𝑔 and 𝑔′ are defined over 𝑘. Hence there exists an automorphism of 𝐺
mapping 𝑔 to 𝑔′, whence the equality. By Morphisms, Lemma 24.27.1 we have dim𝑔(𝐺) =
dim(𝒪𝐺,𝑔) + trdeg𝑘(𝜅(𝑔)). On the other hand, the dimension of 𝐺 (or any open subset of
𝐺) is the supremum of the dimensions of the local rings of of 𝐺, see Properties, Lemma
23.11.4. Clearly this is maximal for closed points 𝑔 in which case trdeg𝑘(𝜅(𝑔)) = 0 (by the
Hilbert Nullstellensatz, see Morphisms, Section 24.15). Hence the lemma follows. �

The following result is sometimes referred to as Cartier's theorem.

Lemma 35.7.6. Let 𝐺 be a group scheme which is locally of finite type over a field 𝑘 of
characteristic zero. Then the structure morphism 𝐺 → 𝑆𝑝𝑒𝑐(𝑘) is smooth, i.e., 𝐺 is a
smooth group scheme.

Proof. By Lemma 35.6.3 the module of differentials of 𝐺 over 𝑘 is free. Hence smoothness
follows from Varieties, Lemma 28.15.1. �

Remark 35.7.7. Any group scheme over a field of characteristic 0 is reduced, see [Per75, I,
Theorem 1.1 and I, Corollary 3.9, and II, Theorem 2.4] and also [Per76, Proposition 4.2.8].
This was a question raised in [Oor66, page 80]. We have seen in Lemma 35.7.6 that this
holds when the group scheme is locally of finite type.

Lemma 35.7.8. Let 𝐺 be a group scheme which is locally of finite type over a perfect field 𝑘
of characteristic 𝑝 > 0 (see Lemma 35.7.6 for the characteristic zero case). If 𝐺 is reduced
then the structure morphism 𝐺 → 𝑆𝑝𝑒𝑐(𝑘) is smooth, i.e., 𝐺 is a smooth group scheme.

Proof. By Lemma 35.6.3 the sheaf Ω𝐺/𝑘 is free. Hence the lemma follows from Varieties,
Lemma 28.15.2. �

Remark 35.7.9. Let 𝑘 be a field of characteristic 𝑝 > 0. Let 𝛼 ∈ 𝑘 be an element which is
not a 𝑝th power. The closed subgroup scheme

𝐺 = 𝑉(𝑥𝑝 + 𝛼𝑦𝑝) ⊂ 𝐆2
𝑎,𝑘

is reduced and irreducible but not smooth (not even normal).

Lemma 35.7.10. Let 𝐺 be a group scheme over a perfect field 𝑘. Then the reduction 𝐺𝑟𝑒𝑑
of 𝐺 is a closed subgroup scheme of 𝐺.

Proof. Omitted. Hint: Use that 𝐺𝑟𝑒𝑑 ×𝑘 𝐺𝑟𝑒𝑑 is reduced by Varieties, Lemmas 28.4.3 and
28.4.7. �

The next lemmawill be generalized slightly inMore onGroupoids, Lemma 36.10.2. Namely,
if 𝐺′ → 𝐺 is a morphism of group schemes over a field whose image is open, then its image
is closed.

Lemma 35.7.11. Let 𝐺 be group scheme over a field 𝑘. Let 𝐺′ ⊂ 𝐺 be an open subgroup
scheme. Then 𝐺′ is open and closed in 𝐺.

Proof. Suppose that 𝑘 ⊂ 𝐾 is a field extension such that 𝐺′
𝐾 ⊂ 𝐺𝐾 is closed. Then it

follows from Morphisms, Lemma 24.24.10 that 𝐺′ is closed (as 𝐺𝐾 → 𝐺 is flat, quasi-
compact and surjective). Hence it suffices to prove the lemma after replacing 𝑘 by some
extension. Choose 𝐾 to be an algebraically closed field extension of very large cardinal-
ity. Then by Varieties, Lemma 28.12.2, we see that 𝐺𝐾 is a Jacobson scheme all of whose
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closed points have residue field equal to 𝐾. In other words we may assume 𝐺 is a Jacobson
scheme all of whose closed points have residue field 𝑘.

Let 𝑍 = 𝐺 ⧵ 𝐺′. We have to show that 𝑍 is open. Because 𝐺 is Jacobson and 𝑍 is closed
the closed points of 𝑍 are dense in 𝑍. Moreover any closed point 𝑧 ∈ 𝑍 is a 𝑘-rational
point and hence we translation by 𝑧 defines an automorphism 𝐿𝑧 ∶ 𝐺 → 𝐺, 𝑔 ↦ 𝑚(𝑧, 𝑔)
with 𝑒 ↦ 𝑧. As 𝐺′ is a subgroup scheme we conclude that 𝐿𝑧(𝐺′) ⊂ 𝑍. Alltogether we
see that

𝑍 = ⋃𝑧∈𝑍(𝑘)
𝐿𝑧(𝐺′)

is a union of open subsets, and hence open as desired. �

Lemma 35.7.12. Let 𝑖 ∶ 𝐺′ → 𝐺 be an immersion of group schemes over a field 𝑘. Then
𝑖 is a closed immersion, i.e., 𝑖(𝐺′) is a closed subgroup scheme of 𝐺.

Proof. To show that 𝑖 is a closed immersion it suffices to show that 𝑖(𝐺′) is a closed subset
of 𝐺. Let 𝑘 ⊂ 𝑘′ be a perfect extension of 𝑘. If 𝑖(𝐺′

𝑘′) ⊂ 𝐺𝑘′ is closed, then 𝑖(𝐺′) ⊂ 𝐺
is closed by Morphisms, Lemma 24.24.10 (as 𝐺𝑘′ → 𝐺 is flat, quasi-compact and sur-
jective). Hence we may and do assume 𝑘 is perfect. We will use without further mention
that products of reduced schemes over 𝑘 are reduced. We may replace 𝐺′ and 𝐺 by their
reductions, see Lemma 35.7.10. Let 𝐺′ ⊂ 𝐺 be the closure of 𝑖(𝐺′) viewed as a reduced
closed subscheme. By Varieties, Lemma 28.14.1 we conclude that 𝐺′ ×𝑘 𝐺′ is the closure
of the image of 𝐺′ ×𝑘 𝐺′ → 𝐺 ×𝑘 𝐺. Hence

𝑚(𝐺′ ×𝑘 𝐺′
) ⊂ 𝐺′

as 𝑚 is continuous. It follows that 𝐺′ ⊂ 𝐺 is a (reduced) closed subgroup scheme. By
Lemma 35.7.11 we see that 𝑖(𝐺′) ⊂ 𝐺′ is also closed which implies that 𝑖(𝐺′) = 𝐺′ as
desired. �

Lemma 35.7.13. Let 𝐺 be a group scheme over a field. There exists an open and closed
subscheme 𝐺′ ⊂ 𝐺 which is a countable union of affines.

Proof. Let 𝑒 ∈ 𝑈(𝑘) be a quasi-compact open neighbourhood of the identity element. By
replacing 𝑈 by 𝑈 ∩ 𝑖(𝑈) we may assume that 𝑈 is invariant under the inverse map. As 𝐺 is
separated this is still a quasi-compact set. Set

𝐺′ = ⋃𝑛≥1
𝑚𝑛(𝑈 ×𝑘 … ×𝑘 𝑈)

where𝑚𝑛 ∶ 𝐺×𝑘…×𝑘𝐺 → 𝐺 is the 𝑛-slotmultiplicationmap (𝑔1, … , 𝑔𝑛) ↦ 𝑚(𝑚(… (𝑚(𝑔1, 𝑔2), 𝑔3), …), 𝑔𝑛).
Each of these maps are open (see Lemma 35.7.1) hence 𝐺′ is an open subgroup scheme.
By Lemma 35.7.11 it is also a closed subgroup scheme. �

Remark 35.7.14. If 𝐺 is a group scheme over a field, is there always a quasi-compact open
and closed subgroup scheme? Or is there a counter example?

35.8. Actions of group schemes

Let (𝐺, 𝑚) be a group and let 𝑉 be a set. Recall that a (left) action of 𝐺 on 𝑉 is given by a
map 𝑎 ∶ 𝐺 × 𝑉 → 𝑉 such that

(1) (associativity) 𝑎(𝑚(𝑔, 𝑔′), 𝑣) = 𝑎(𝑔, 𝑎(𝑔′, 𝑣)) for all 𝑔, 𝑔′ ∈ 𝐺 and 𝑣 ∈ 𝑉, and
(2) (identity) 𝑎(𝑒, 𝑣) = 𝑣 for all 𝑣 ∈ 𝑉.
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We also say that 𝑉 is a 𝐺-set (this usually means we drop the 𝑎 from the notation -- which
is abuse of notation). A map of 𝐺-sets 𝜓 ∶ 𝑉 → 𝑉′ is any set map such that 𝜓(𝑎(𝑔, 𝑣)) =
𝑎(𝑔, 𝜓(𝑣)) for all 𝑣 ∈ 𝑉.

Definition 35.8.1. Let 𝑆 be a scheme. Let (𝐺, 𝑚) be a group scheme over 𝑆.
(1) An action of 𝐺 on the scheme 𝑋/𝑆 is a morphism 𝑎 ∶ 𝐺 ×𝑆 𝑋 → 𝑋 over 𝑆 such

that for every 𝑇/𝑆 the map 𝑎 ∶ 𝐺(𝑇) × 𝑋(𝑇) → 𝑋(𝑇) defines the structure of a
𝐺(𝑇)-set on 𝑋(𝑇).

(2) Suppose that 𝑋, 𝑌 are schemes over 𝑆 each endowed with an action of 𝐺. An
equivariant or more precisely a 𝐺-equivariant morphism 𝜓 ∶ 𝑋 → 𝑌 is a mor-
phism of schemes over 𝑆 such that for every 𝑇/𝑆 the map 𝜓 ∶ 𝑋(𝑇) → 𝑌(𝑇) is a
morphism of 𝐺(𝑇)-sets.

In situation (1) this means that the diagrams

(35.8.1.1) 𝐺 ×𝑆 𝐺 ×𝑆 𝑋
1𝐺×𝑎

//

𝑚×1𝑋
��

𝐺 ×𝑆 𝑋

𝑎
��

𝐺 ×𝑆 𝑋 𝑎 // 𝑋

𝐺 ×𝑆 𝑋 𝑎
// 𝑋

𝑋

𝑒×1𝑋

OO

1𝑋

;;

are commutative. In situation (2) this just means that the diagram

𝐺 ×𝑆 𝑋
id×𝑓
//

𝑎
��

𝐺 ×𝑆 𝑌

𝑎
��

𝑋
𝑓 // 𝑌

commutes.

35.9. Principal homogeneous spaces

In Cohomology on Sites, Definition 19.5.1 we have defined a torsor for a sheaf of groups on
a site. Suppose 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓} is a topology and (𝐺, 𝑚) is a
group scheme over 𝑆. Since 𝜏 is stronger than the canonical topology (see Descent, Lemma
31.9.3) we see that 𝐺 (see Sites, Definition 9.12.3) is a sheaf of groups on (Sch/𝑆)𝜏. Hence
we already know what it means to have a torsor for 𝐺 on (Sch/𝑆)𝜏. A special situation arises
if this sheaf is representable. In the following definitions we define directly what it means
for the representing scheme to be a 𝐺-torsor.

Definition 35.9.1. Let 𝑆 be a scheme. Let (𝐺, 𝑚) be a group scheme over 𝑆. Let 𝑋 be a
scheme over 𝑆, and let 𝑎 ∶ 𝐺 ×𝑆 𝑋 → 𝑋 be an action of 𝐺 on 𝑋.

(1) We say 𝑋 is a pseudo 𝐺-torsor or that 𝑋 is formally principally homogeneous
under 𝐺 if the induced morphism of schemes 𝐺 ×𝑆 𝑋 → 𝑋 ×𝑆 𝑋, (𝑔, 𝑥) ↦
(𝑎(𝑔, 𝑥), 𝑥) is an isomorphism of schemes over 𝑆.

(2) A pseudo 𝐺-torsor 𝑋 is called trivial if there exists an 𝐺-equivariant isomorphism
𝐺 → 𝑋 over 𝑆 where 𝐺 acts on 𝐺 by left multiplication.

It is clear that if 𝑆′ → 𝑆 is a morphism of schemes then the pullback 𝑋𝑆′ of a pseudo
𝐺-torsor over 𝑆 is a pseudo 𝐺𝑆′-torsor over 𝑆′.

Lemma 35.9.2. In the situation of Definition 35.9.1.
(1) The scheme 𝑋 is a pseudo 𝐺-torsor if and only if for every scheme 𝑇 over 𝑆 the set

𝑋(𝑇) is either empty or the action of the group 𝐺(𝑇) on 𝑋(𝑇) is simply transitive.
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(2) A pseudo 𝐺-torsor 𝑋 is trivial if and only if the morphism 𝑋 → 𝑆 has a section.

Proof. Omitted. �

Definition 35.9.3. Let 𝑆 be a scheme. Let (𝐺, 𝑚) be a group scheme over 𝑆. Let 𝑋 be a
pseudo 𝐺-torsor over 𝑆.

(1) We say 𝑋 is a principal homogeneous space or a 𝐺-torsor if there exists a fpqc
covering1 {𝑆𝑖 → 𝑆}𝑖∈𝐼 such that each 𝑋𝑆𝑖

→ 𝑆𝑖 has a section (i.e., is a trivial
pseudo 𝐺𝑆𝑖

-torsor).
(2) Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. We say 𝑋 is a 𝐺-torsor in

the 𝜏 topology, or a 𝜏 𝐺-torsor, or simply a 𝜏 torsor if there exists a 𝜏 covering
{𝑆𝑖 → 𝑆}𝑖∈𝐼 such that each 𝑋𝑆𝑖

→ 𝑆𝑖 has a section.
(3) If 𝑋 is a 𝐺-torsor, then we say that it is quasi-isotrivial if it is a torsor for the étale

topology.
(4) If 𝑋 is a 𝐺-torsor, then we say that it is locally trivial if it is a torsor for the Zariski

topology.

We sometimes say ``let 𝑋 be a 𝐺-torsor over 𝑆'' to indicate that 𝑋 is a scheme over 𝑆
equippend with an action of 𝐺 which turns it into a principal homogeneous space over 𝑆.
Next we show that this agrees with the notation introduced earlier when both apply.

Lemma 35.9.4. Let𝑆 be a scheme. Let (𝐺, 𝑚) be a group scheme over𝑆. Let𝑋 be a scheme
over𝑆, and let 𝑎 ∶ 𝐺×𝑆𝑋 → 𝑋 be an action of𝐺 on𝑋. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}.
Then 𝑋 is a 𝐺-torsor in the 𝜏-topology if and only if 𝑋 is a 𝐺-torsor on (Sch/𝑆)𝜏.

Proof. Omitted. �

Remark 35.9.5. Let (𝐺, 𝑚) be a group scheme over the scheme 𝑆. In this situation we have
the following natural types of questions:

(1) If 𝑋 → 𝑆 is a pseudo 𝐺-torsor and 𝑋 → 𝑆 is surjective, then is 𝑋 necessarily a
𝐺-torsor?

(2) Is every𝐺-torsor on (Sch/𝑆)𝑓𝑝𝑝𝑓 representable? In otherwords, does every𝐺-torsor
come from a fppf 𝐺-torsor?

(3) Is every 𝐺-torsor an fppf (resp. smooth, resp. étale, resp. Zariski) torsor?
In general the answers to these questions is no. To get a positive answer we need to impose
additional conditions on 𝐺 → 𝑆. For example: If 𝑆 is the spectrum of a field, then the
answer to (1) is yes because then {𝑋 → 𝑆} is a fpqc covering trivializing 𝑋. If 𝐺 → 𝑆 is
affine, then the answer to (2) is yes (insert future reference here). If 𝐺 = GL𝑛,𝑆 then the
answer to (3) is yes and in fact any GL𝑛,𝑆-torsor is locally trivial (insert future reference
here).

35.10. Equivariant quasi-coherent sheaves

We think of ``functions'' as dual to ``space''. Thus for a morphism of spaces the map on
functions goes the other way. Moreover, we think of the sections of a sheaf of modules as
``functions''. This leads us naturally to the direction of the arrows chosen in the following
definition.

1This means that the default type of torsor is a pseudo torsor which is trivial on an fpqc covering. This is
the definition in [ABD+66, Exposé IV, 6.5]. It is a little bit inconvenient for us as we most often work in the fppf
topology.
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Definition 35.10.1. Let 𝑆 be a scheme, let (𝐺, 𝑚) be a group scheme over 𝑆, and let 𝑎 ∶
𝐺×𝑆𝑋 → 𝑋 be an action of the group scheme 𝐺 on 𝑋/𝑆. An 𝐺-equivariant quasi-coherent
𝒪𝑋-module, or simply a equivariant quasi-coherent 𝒪𝑋-module, is a pair (ℱ, 𝛼), where ℱ
is a quasi-coherent 𝒪𝑋-module, and 𝛼 is a 𝒪𝐺×𝑆𝑋-module map

𝛼 ∶ 𝑎∗ℱ ⟶ pr∗1ℱ

where pr1 ∶ 𝐺 ×𝑆 𝑋 → 𝑋 is the projection such that
(1) the diagram

(1𝐺 × 𝑎)∗pr∗2ℱ
pr∗12𝛼

// pr∗2ℱ

(1𝐺 × 𝑎)∗𝑎∗ℱ

(1𝐺×𝑎)∗𝛼

OO

(𝑚 × 1𝑋)∗𝑎∗ℱ

(𝑚×1𝑋)∗𝛼

OO

is a commutative in the category of 𝒪𝐺×𝑆𝐺×𝑆𝑋-modules, and
(2) the pullback

(𝑒 × 1𝑋)∗𝛼 ∶ ℱ ⟶ ℱ
is the identity map.

For explanation compare with the relevant diagrams of Equation (35.8.1.1).

Note that the commutativity of the first diagram garantees that (𝑒 × 1𝑋)∗𝛼 is an idempotent
operator on ℱ, and hence condition (2) is just the condition that it is an isomorphism.

Lemma 35.10.2. Let 𝑆 be a scheme. Let 𝐺 be a group scheme over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be
a 𝐺-equivariant morphism between 𝑆-schemes endowed with 𝐺-actions. Then pullback 𝑓∗

given by (ℱ, 𝛼) ↦ (𝑓∗ℱ, (1𝐺 × 𝑓)∗𝛼) defines a functor from the category of 𝐺-equivariant
sheaves on 𝑋 to the category of quasi-coherent 𝐺-equivariant sheaves on 𝑌.

Proof. Omitted. �

35.11. Groupoids

Recall that a groupoid is a category in which every morphism is an isomorphism, see Cat-
egories, Definition 4.2.5. Hence a groupoid has a set of objects Ob, a set of arrows Arrows,
a source and target map 𝑠, 𝑡 ∶ Arrows → Ob, and a composition law 𝑐 ∶ Arrows ×𝑠,Ob,𝑡
Arrows → Arrows. These maps satisfy exactly the following axioms

(1) (associativity) 𝑐∘(1, 𝑐) = 𝑐∘(𝑐, 1) as maps Arrows×𝑠,Ob,𝑡Arrows×𝑠,Ob,𝑡Arrows →
Arrows,

(2) (identity) there exists a map 𝑒 ∶ Ob → Arrows such that
(a) 𝑠 ∘ 𝑒 = 𝑡 ∘ 𝑒 = id as maps Ob → Ob,
(b) 𝑐 ∘ (1, 𝑒 ∘ 𝑠) = 𝑐 ∘ (𝑒 ∘ 𝑡, 1) = 1 as maps Arrows → Arrows,

(3) (inverse) there exists a map 𝑖 ∶ Arrows → Arrows such that
(a) 𝑠 ∘ 𝑖 = 𝑡, 𝑡 ∘ 𝑖 = 𝑠 as maps Arrows → Ob, and
(b) 𝑐 ∘ (1, 𝑖) = 𝑒 ∘ 𝑡 and 𝑐 ∘ (𝑖, 1) = 𝑒 ∘ 𝑠 as maps Arrows → Arrows.

If this is the case the maps 𝑒 and 𝑖 are uniquely determined and 𝑖 is a bijection. Note that if
(Ob′,Arrows′, 𝑠′, 𝑡′, 𝑐′) is a second groupoid category, then a functor𝑓 ∶ (Ob,Arrows, 𝑠, 𝑡, 𝑐) →
(Ob′,Arrows′, 𝑠′, 𝑡′, 𝑐′) is given by a pair of set maps 𝑓 ∶ Ob → Ob′ and 𝑓 ∶ Arrows →
Arrows′ such that 𝑠′ ∘ 𝑓 = 𝑓 ∘ 𝑠, 𝑡′ ∘ 𝑓 = 𝑓 ∘ 𝑡, and 𝑐′ ∘ (𝑓, 𝑓) = 𝑓 ∘ 𝑐. The compatibility with
identity and inverse is automatic. We will use this below. (Warning: The compatibility
with identity has to be imposed in the case of general categories.)
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Definition 35.11.1. Let 𝑆 be a scheme.
(1) A groupoid scheme over𝑆, or simply a groupoid over𝑆 is a quintuple (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)

where 𝑈 and 𝑅 are schemes over 𝑆, and 𝑠, 𝑡 ∶ 𝑅 → 𝑈 and 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅
are morphisms of schemes over 𝑆 with the following property: For any scheme
𝑇 over 𝑆 the quintuple

(𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐)

is a groupoid category in the sense described above.
(2) A morphism 𝑓 ∶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) of groupoid schemes over 𝑆 is

given by morphisms of schemes 𝑓 ∶ 𝑈 → 𝑈′ and 𝑓 ∶ 𝑅 → 𝑅′ with the following
property: For any scheme 𝑇 over 𝑆 the maps 𝑓 define a functor from the groupoid
category (𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐) to the groupoid category (𝑈′(𝑇), 𝑅′(𝑇), 𝑠′, 𝑡′, 𝑐′).

Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. Note that, by the remarks preceding the definition
and the Yoneda lemma, there are unique morphisms of schemes 𝑒 ∶ 𝑈 → 𝑅 and 𝑖 ∶ 𝑅 → 𝑅
over 𝑆 such that for every scheme 𝑇 over 𝑆 the induced map 𝑒 ∶ 𝑈(𝑇) → 𝑅(𝑇) is the
identity, and 𝑖 ∶ 𝑅(𝑇) → 𝑅(𝑇) is the inverse of the groupoid category. The septuple
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) satisfies commutative diagrams corresponding to each of the axioms (1),
(2)(a), (2)(b), (3)(a) and (3)(b) above, and conversely given a septuple with this property
the quintuple (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid scheme. Note that 𝑖 is an isomorphism, and 𝑒 is a
section of both 𝑠 and 𝑡. Moreover, given a groupoid scheme over 𝑆 we denote

𝑗 = (𝑡, 𝑠) ∶ 𝑅 ⟶ 𝑈 ×𝑆 𝑈

which is compatible with our conventions in Section 35.3 above. We sometimes say ``let
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid over 𝑆'' to stress the existence of identity and inverse.

Lemma 35.11.2. Given a groupoid scheme (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over 𝑆 the morphism 𝑗 ∶ 𝑅 →
𝑈 ×𝑆 𝑈 is a pre-equivalence relation.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 35.11.3. Given an equivalence relation 𝑗 ∶ 𝑅 → 𝑈 over 𝑆 there is a unique way
to extend it to a groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over 𝑆.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 35.11.4. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. In the com-
mutative diagram

𝑈

𝑅

𝑠
��

𝑡
::

𝑅 ×𝑠,𝑈,𝑡 𝑅pr0
oo

pr1
��

𝑐
// 𝑅

𝑠
��

𝑡
dd

𝑈 𝑅𝑡oo 𝑠 // 𝑈
the two lower squares are fibre product squares. Moreover, the triangle on top (which is
really a square) is also cartesian.

Proof. Omitted. Exercise in the definitions and the functorial point of view in algebraic
geometry. �
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Lemma 35.11.5. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid over 𝑆. The
diagram

(35.11.5.1) 𝑅 ×𝑡,𝑈,𝑡 𝑅
pr1 //

pr0
//

pr0×𝑐∘(𝑖,1)
��

𝑅 𝑡 //

id𝑅
��

𝑈

id𝑈
��

𝑅 ×𝑠,𝑈,𝑡 𝑅
𝑐 //

pr0
//

pr1
��

𝑅 𝑡 //

𝑠
��

𝑈

𝑅
𝑠 //

𝑡
// 𝑈

is commutative. The two top rows are isomorphic via the vertical maps given. The two
lower left squares are cartesian.

Proof. The commutativity of the diagram follows from the axioms of a groupoid. Note
that, in terms of groupoids, the top left vertical arrow assigns to a pair of morphisms (𝛼, 𝛽)
with the same target, the pair of morphisms (𝛼, 𝛼−1 ∘ 𝛽). In any groupoid this defines a
bijection between Arrows ×𝑡,Ob,𝑡 Arrows and Arrows ×𝑠,Ob,𝑡 Arrows. Hence the second
assertion of the lemma. The last assertion follows from Lemma 35.11.4. �

35.12. Quasi-coherent sheaves on groupoids

See the introduction of Section 35.10 for our choices in direction of arrows.

Definition 35.12.1. Let 𝑆 be a scheme, let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆.
A quasi-coherent module on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a pair (ℱ, 𝛼), where ℱ is a quasi-coherent
𝒪𝑈-module, and 𝛼 is a 𝒪𝑅-module map

𝛼 ∶ 𝑡∗ℱ ⟶ 𝑠∗ℱ

such that
(1) the diagram

pr∗1𝑡∗ℱ
pr∗1𝛼
// pr∗1𝑠∗ℱ

pr∗0𝑠∗ℱ 𝑐∗𝑠∗ℱ

pr∗0𝑡∗ℱ
pr∗0𝛼

dd

𝑐∗𝑡∗ℱ
𝑐∗𝛼

;;

is a commutative in the category of 𝒪𝑅×𝑠,𝑈,𝑡𝑅-modules, and
(2) the pullback

𝑒∗𝛼 ∶ ℱ ⟶ ℱ
is the identity map.

Compare with the commutative diagrams of Lemma 35.11.4.

The commutativity of the first diagram forces the operator 𝑒∗𝛼 to be idempotent. Hence
the second condition can be reformulated as saying that 𝑒∗𝛼 is an isomorphism. In fact, the
condition implies that 𝛼 is an isomorphism.
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Lemma 35.12.2. Let 𝑆 be a scheme, let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. If (ℱ, 𝛼)
is a quasi-coherent module on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) then 𝛼 is an isomorphism.

Proof. Pull back the commutative diagram of Definition 35.12.1 by the morphism (𝑖, 1) ∶
𝑅 → 𝑅 ×𝑠,𝑈,𝑡 𝑅. Then we see that 𝑖∗𝛼 ∘ 𝛼 = 𝑠∗𝑒∗𝛼. Pulling back by the morphism (1, 𝑖)
we obtain the relation 𝛼 ∘ 𝑖∗𝛼 = 𝑡∗𝑒∗𝛼. By the second assumption these morphisms are the
identity. Hence 𝑖∗𝛼 is an inverse of 𝛼. �

Lemma35.12.3. Let𝑆 be a scheme. Consider amorphism 𝑓 ∶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′)
of groupoid schemes over 𝑆. Then pullback 𝑓∗ given by

(ℱ, 𝛼) ↦ (𝑓∗ℱ, 𝑓∗𝛼)

defines a functor from the category of quasi-coherent sheaves on (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) to the
category of quasi-coherent sheaves on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).

Proof. Omitted. �

Lemma 35.12.4. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. The
category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) has colimits.

Proof. Let 𝑖 ↦ (ℱ𝑖, 𝛼𝑖) be a diagram over the index category ℐ. We can form the colimit
ℱ = 𝑐𝑜𝑙𝑖𝑚 ℱ𝑖 which is a quasi-coherent sheaf on 𝑈, see Schemes, Section 21.24. Since col-
imits commute with pullback we see that 𝑠∗ℱ = 𝑐𝑜𝑙𝑖𝑚 𝑠∗ℱ𝑖 and similarly 𝑡∗ℱ = 𝑐𝑜𝑙𝑖𝑚 𝑡∗ℱ𝑖.
Hence we can set 𝛼 = 𝑐𝑜𝑙𝑖𝑚 𝛼𝑖. We omit the proof that (ℱ, 𝛼) is the colimit of the diagram
in the category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). �

Lemma 35.12.5. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. If 𝑠, 𝑡
are flat, then the category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is abelian.

Proof. Let𝜑 ∶ (ℱ, 𝛼) → (𝒢, 𝛽) be a homomorphism of quasi-coherentmodules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).
Since 𝑠 is flat we see that

0 → 𝑠∗Ker(𝜑) → 𝑠∗ℱ → 𝑠∗𝒢 → 𝑠∗Coker(𝜑) → 0

is exact and similarly for pullback by 𝑡. Hence 𝛼 and 𝛽 induce isomorphisms 𝜅 ∶ 𝑡∗Ker(𝜑) →
𝑠∗Ker(𝜑) and 𝜆 ∶ 𝑡∗Coker(𝜑) → 𝑠∗Coker(𝜑) which satisfy the cocycle condition. Then it is
straightforward to verify that (Ker(𝜑), 𝜅) and (Coker(𝜑), 𝜆) are a kernel and cokernel in the
category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). Moreover, the condition Coim(𝜑) =
Im(𝜑) follows because it holds over 𝑈. �

Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in schemes over 𝑆. Let 𝜅 be a cardinal. In
the following we will say that a quasi-coherent sheaf (ℱ, 𝛼) on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is 𝜅-generated
if ℱ is a 𝜅-generated 𝒪𝑈-module, see Properties, Definition 23.21.1.

Lemma 35.12.6. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let 𝜅 be a cardinal. There
exists a set 𝑇 and a family (ℱ𝑡, 𝛼𝑡)𝑡∈𝑇 of 𝜅-generated quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
such that every 𝜅-generated quasi-coherent module on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is isomorphic to one of
the (ℱ𝑡, 𝛼𝑡).

Proof. For each quasi-coherent module ℱ on 𝑈 there is a (possibly empty) set of maps
𝛼 ∶ 𝑡∗ℱ → 𝑠∗ℱ such that (ℱ, 𝛼) is a quasi-coherentmodules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). By Properties,
Lemma 23.21.2 there exists a set of isomorphism classes of 𝜅-generated quasi-coherent
𝒪𝑈-modules. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=077Q
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03LJ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=077R
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=077S
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=077T


1928 35. GROUPOID SCHEMES

Lemma 35.12.7. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Assume that 𝑠, 𝑡 are flat.
There exists a cardinal 𝜅 such that every quasi-coherent module (ℱ, 𝛼) on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is
the directed colimit of its 𝜅-generated quasi-coherent submodules.

Proof. In the statement of the lemma and in this proof a submodule of a quasi-coherent
module (ℱ, 𝛼) is a quasi-coherent submodule 𝒢 ⊂ ℱ such that 𝛼(𝑡∗𝒢) = 𝑠∗𝒢 as subsheaves
of 𝑠∗ℱ. This makes sense because since 𝑠, 𝑡 are flat the pullbacks 𝑠∗ and 𝑡∗ are exact, i.e.,
preserve subsheaves. The proof will be a repeat of the proof of Properties, Lemma 23.21.3.
We urge the reader to read that proof first.

Choose an affine open covering𝑈 = ⋃𝑖∈𝐼 𝑈𝑖. For each pair 𝑖, 𝑗 choose affine open coverings

𝑈𝑖 ∩ 𝑈𝑗 = ⋃𝑘∈𝐼𝑖𝑗
𝑈𝑖𝑗𝑘 and 𝑠−1(𝑈𝑖) ∩ 𝑡−1(𝑈𝑗) = ⋃𝑘∈𝐽𝑖𝑗

𝑊𝑖𝑗𝑘.

Write 𝑈𝑖 = Spec(𝐴𝑖), 𝑈𝑖𝑗𝑘 = Spec(𝐴𝑖𝑗𝑘), 𝑊𝑖𝑗𝑘 = Spec(𝐵𝑖𝑗𝑘). Let 𝜅 be any infinite cardinal
≥ than the cardinality of any of the sets 𝐼, 𝐼𝑖𝑗, 𝐽𝑖𝑗.

Let (ℱ, 𝛼) be a quasi-coherent module on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). Set 𝑀𝑖 = ℱ(𝑈𝑖), 𝑀𝑖𝑗𝑘 = ℱ(𝑈𝑖𝑗𝑘).
Note that

𝑀𝑖 ⊗𝐴𝑖
𝐴𝑖𝑗𝑘 = 𝑀𝑖𝑗𝑘 = 𝑀𝑗 ⊗𝐴𝑗

𝐴𝑖𝑗𝑘

and that 𝛼 gives isomorphisms

𝛼|𝑊𝑖𝑗𝑘
∶ 𝑀𝑖 ⊗𝐴𝑖,𝑡 𝐵𝑖𝑗𝑘 ⟶ 𝑀𝑗 ⊗𝐴𝑗,𝑠 𝐵𝑖𝑗𝑘

see Schemes, Lemma 21.7.3. Using the axiom of choice we choose a map

(𝑖, 𝑗, 𝑘, 𝑚) ↦ 𝑆(𝑖, 𝑗, 𝑘, 𝑚)

which associates to every 𝑖, 𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼𝑖𝑗 or 𝑘 ∈ 𝐽𝑖𝑗 and 𝑚 ∈ 𝑀𝑖 a finite subset
𝑆(𝑖, 𝑗, 𝑘, 𝑚) ⊂ 𝑀𝑗 such that we have

𝑚 ⊗ 1 = ∑𝑚′∈𝑆(𝑖,𝑗,𝑘,𝑚)
𝑚′ ⊗ 𝑎𝑚′ or 𝛼(𝑚 ⊗ 1) = ∑𝑚′∈𝑆(𝑖,𝑗,𝑘,𝑚)

𝑚′ ⊗ 𝑏𝑚′

in 𝑀𝑖𝑗𝑘 for some 𝑎𝑚′ ∈ 𝐴𝑖𝑗𝑘 or 𝑏𝑚′ ∈ 𝐵𝑖𝑗𝑘. Moreover, let's agree that 𝑆(𝑖, 𝑖, 𝑘, 𝑚) = {𝑚}
for all 𝑖, 𝑗 = 𝑖, 𝑘, 𝑚 when 𝑘 ∈ 𝐼𝑖𝑗. Fix such a collection 𝑆(𝑖, 𝑗, 𝑘, 𝑚)

Given a family 𝒮 = (𝑆𝑖)𝑖∈𝐼 of subsets 𝑆𝑖 ⊂ 𝑀𝑖 of cardinality at most 𝜅 we set 𝒮′ = (𝑆′
𝑖 )

where
𝑆′

𝑗 = ⋃(𝑖,𝑗,𝑘,𝑚) such that 𝑚∈𝑆𝑖
𝑆(𝑖, 𝑗, 𝑘, 𝑚)

Note that 𝑆𝑖 ⊂ 𝑆′
𝑖 . Note that 𝑆′

𝑖 has cardinality at most 𝜅 because it is a union over a set of
cardinality at most 𝜅 of finite sets. Set 𝒮(0) = 𝒮, 𝒮(1) = 𝒮′ and by induction 𝒮(𝑛+1) = (𝒮(𝑛))′.
Then set 𝒮(∞) = ⋃𝑛≥0 𝒮(𝑛). Writing 𝒮(∞) = (𝑆(∞)

𝑖 ) we see that for any element 𝑚 ∈ 𝑆(∞)
𝑖

the image of 𝑚 in 𝑀𝑖𝑗𝑘 can be written as a finite sum ∑ 𝑚′ ⊗ 𝑎𝑚′ with 𝑚′ ∈ 𝑆(∞)
𝑗 . In this

way we see that setting

𝑁𝑖 = 𝐴𝑖-submodule of 𝑀𝑖 generated by 𝑆(∞)
𝑖

we have

𝑁𝑖 ⊗𝐴𝑖
𝐴𝑖𝑗𝑘 = 𝑁𝑗 ⊗𝐴𝑗

𝐴𝑖𝑗𝑘 and 𝛼(𝑁𝑖 ⊗𝐴𝑖,𝑡 𝐵𝑖𝑗𝑘) = 𝑁𝑗 ⊗𝐴𝑗,𝑠 𝐵𝑖𝑗𝑘

as submodules of 𝑀𝑖𝑗𝑘 or 𝑀𝑗 ⊗𝐴𝑗,𝑠 𝐵𝑖𝑗𝑘. Thus there exists a quasi-coherent submodule
𝒢 ⊂ ℱ with 𝒢(𝑈𝑖) = 𝑁𝑖 such that 𝛼(𝑡∗𝒢) = 𝑠∗𝒢 as submodules of 𝑠∗ℱ. In other words,
(𝒢, 𝛼|𝑡∗𝒢) is a submodule of (ℱ, 𝛼). Moreover, by construction 𝒢 is 𝜅-generated.
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Let {(𝒢𝑡, 𝛼𝑡)}𝑡∈𝑇 be the set of 𝜅-generated quasi-coherent submodules of (ℱ, 𝛼). If 𝑡, 𝑡′ ∈ 𝑇
then 𝒢𝑡 + 𝒢𝑡′ is also a 𝜅-generated quasi-coherent submodule as it is the image of the map
𝒢𝑡 ⊕ 𝒢𝑡′ → ℱ. Hence the system (ordered by inclusion) is directed. The arguments above
show that every section of ℱ over 𝑈𝑖 is in one of the 𝒢𝑡 (because we can start with 𝒮 such
that the given section is an element of 𝑆𝑖). Hence 𝑐𝑜𝑙𝑖𝑚𝑡 𝒢𝑡 → ℱ is both injective and
surjective as desired. �

35.13. Groupoids and group schemes

There are many ways to construct a groupoid out of an action 𝑎 of a group 𝐺 on a set 𝑉. We
choose the one where we think of an element 𝑔 ∈ 𝐺 as an arrow with source 𝑣 and target
𝑎(𝑔, 𝑣). This leads to the following construction for group actions of schemes.

Lemma 35.13.1. Let 𝑆 be a scheme. Let 𝑌 be a scheme over 𝑆. Let (𝐺, 𝑚) be a group
scheme over 𝑌 with identity 𝑒𝐺 and inverse 𝑖𝐺. Let 𝑋/𝑌 be a scheme over 𝑌 and let 𝑎 ∶
𝐺 ×𝑌 𝑋 → 𝑋 be an action of 𝐺 on 𝑋/𝑌. Then we get a groupoid scheme (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖)
over 𝑆 in the following manner:

(1) We set 𝑈 = 𝑋, and 𝑅 = 𝐺 ×𝑌 𝑋.
(2) We set 𝑠 ∶ 𝑅 → 𝑈 equal to (𝑔, 𝑥) ↦ 𝑥.
(3) We set 𝑡 ∶ 𝑅 → 𝑈 equal to (𝑔, 𝑥) ↦ 𝑎(𝑔, 𝑥).
(4) We set 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 equal to ((𝑔, 𝑥), (𝑔′, 𝑥′)) ↦ (𝑚(𝑔, 𝑔′), 𝑥′).
(5) We set 𝑒 ∶ 𝑈 → 𝑅 equal to 𝑥 ↦ (𝑒𝐺(𝑥), 𝑥).
(6) We set 𝑖 ∶ 𝑅 → 𝑅 equal to (𝑔, 𝑥) ↦ (𝑖𝐺(𝑔), 𝑎(𝑔, 𝑥)).

Proof. Omitted. Hint: It is enough to show that this works on the set level. For this use
the description above the lemma describing 𝑔 as an arrow from 𝑣 to 𝑎(𝑔, 𝑣). �

Lemma 35.13.2. Let 𝑆 be a scheme. Let 𝑌 be a scheme over 𝑆. Let (𝐺, 𝑚) be a group
scheme over 𝑌. Let 𝑋 be a scheme over 𝑌 and let 𝑎 ∶ 𝐺 ×𝑌 𝑋 → 𝑋 be an action of 𝐺 on 𝑋
over 𝑌. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid scheme constructed in Lemma 35.13.1. The rule
(ℱ, 𝛼) ↦ (ℱ, 𝛼) defines an equivalence of categories between 𝐺-equivariant 𝒪𝑋-modules
and the category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).

Proof. The assertion makes sense because 𝑡 = 𝑎 and 𝑠 = pr1 as morphisms 𝑅 = 𝐺 ×𝑌
𝑋 → 𝑋, see Definitions 35.10.1 and 35.12.1. Using the translation in Lemma 35.13.1 the
commutativity requirements of the two definitions match up exactly. �

35.14. The stabilizer group scheme

Given a groupoid scheme we get a group scheme as follows.

Lemma 35.14.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. The scheme
𝐺 defined by the cartesian square

𝐺 //

��

𝑅

𝑗=(𝑡,𝑠)
��

𝑈 Δ // 𝑈 ×𝑆 𝑈

is a group scheme over 𝑈 with compostion law 𝑚 induced by the composition law 𝑐.

Proof. This is true because in a groupoid category the set of self maps of any object forms
a group. �
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Since Δ is an immersion we see that 𝐺 = 𝑗−1(Δ𝑈/𝑆) is a locally closed subscheme of 𝑅.
Thinking of it in this way, the structure morphism 𝑗−1(Δ𝑈/𝑆) → 𝑈 is induced by either 𝑠 or
𝑡 (it is the same), and 𝑚 is induced by 𝑐.

Definition 35.14.2. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. The group
scheme 𝑗−1(Δ𝑈/𝑆) → 𝑈 is called the stabilizer of the groupoid scheme (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).

In the literature the stabilizer group scheme is often denoted 𝑆 (because the word stabilizer
starts with an ``s'' presumably); we cannot do this since we have already used 𝑆 for the base
scheme.

Lemma 35.14.3. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆, and let 𝐺/𝑈
be its stabilizer. Denote 𝑅𝑡/𝑈 the scheme 𝑅 seen as a scheme over 𝑈 via the morphism
𝑡 ∶ 𝑅 → 𝑈. There is a canonical left action

𝑎 ∶ 𝐺 ×𝑈 𝑅𝑡 ⟶ 𝑅𝑡

induced by the composition law 𝑐.

Proof. In terms of points over 𝑇/𝑆 we define 𝑎(𝑔, 𝑟) = 𝑐(𝑔, 𝑟). �

Lemma 35.14.4. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let 𝐺
be the stabilizer group scheme of 𝑅. Let

𝐺0 = 𝐺 ×𝑈,pr0
(𝑈 ×𝑆 𝑈) = 𝐺 ×𝑆 𝑈

as a group scheme over 𝑈 ×𝑆 𝑈. The action of 𝐺 on 𝑅 of Lemma 35.14.3 induces an action
of 𝐺0 on 𝑅 over 𝑈 ×𝑆 𝑈 which turns 𝑅 into a pseudo 𝐺0-torsor over 𝑈 ×𝑆 𝑈.

Proof. This is true because in a groupoid category 𝒞 the set 𝑀𝑜𝑟𝒞(𝑥, 𝑦) is a principal
homogeneous set under the group 𝑀𝑜𝑟𝒞(𝑦, 𝑦). �

Lemma 35.14.5. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let
𝑝 ∈ 𝑈 ×𝑆 𝑈 be a point. Denote 𝑅𝑝 the scheme theoretic fibre of 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈.
If 𝑅𝑝≠∅, then the action

𝐺0,𝜅(𝑝) ×𝜅(𝑝) 𝑅𝑝 ⟶ 𝑅𝑝

(see Lemma 35.14.4) which turns 𝑅𝑝 into a 𝐺𝜅(𝑝)-torsor over 𝜅(𝑝).

Proof. The action is a pseudo-torsor by the lemma cited in the statement. And if 𝑅𝑝 is not
the empty scheme, then {𝑅𝑝 → 𝑝} is an fpqc covering which trivializs the pseudo-torsor.

�

35.15. Restricting groupoids

Consider a (usual) groupoid 𝒞 = (Ob,Arrows, 𝑠, 𝑡, 𝑐). Suppose we have a map of sets 𝑔 ∶
Ob′ → Ob. Then we can construct a groupoid 𝒞′ = (Ob′,Arrows′, 𝑠′, 𝑡′, 𝑐′) by thinking
of a morphism between elements 𝑥′, 𝑦′ of Ob′ as a morphisms in 𝒞 between 𝑔(𝑥′), 𝑔(𝑦′).
In other words we set

Arrows′ = Ob′ ×𝑔,Ob,𝑡 Arrows ×𝑠,Ob,𝑔 Ob′.

with obvious choices for 𝑠′, 𝑡′, and 𝑐′. There is a canonical functor 𝒞′ → 𝒞 which is
fully faithful, but not necessarily essentially surjective. This groupoid 𝒞′ endowed with the
functor 𝒞′ → 𝒞 is called the restriction of the groupoid 𝒞 to Ob′.
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Lemma 35.15.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let
𝑔 ∶ 𝑈′ → 𝑈 be a morphism of schemes. Consider the following diagram

𝑅′

��

//

𝑡′

%%

𝑠′

**𝑅 ×𝑠,𝑈 𝑈′ //

��

𝑈′

𝑔

��
𝑈′ ×𝑈,𝑡 𝑅

��

// 𝑅 𝑠 //

𝑡
��

𝑈

𝑈′ 𝑔 // 𝑈
where all the squares are fibre product squares. Then there is a canonical composition law
𝑐′ ∶ 𝑅′ ×𝑠′,𝑈′,𝑡′ 𝑅′ → 𝑅′ such that (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) is a groupoid scheme over 𝑆 and such
that 𝑈′ → 𝑈, 𝑅′ → 𝑅 defines a morphism (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) → (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) of groupoid
schemes over 𝑆. Moreover, for any scheme 𝑇 over 𝑆 the functor of groupoids

(𝑈′(𝑇), 𝑅′(𝑇), 𝑠′, 𝑡′, 𝑐′) → (𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐)

is the restriction (see above) of (𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐) via the map 𝑈′(𝑇) → 𝑈(𝑇).

Proof. Omitted. �

Definition 35.15.2. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let
𝑔 ∶ 𝑈′ → 𝑈 be a morphism of schemes. The morphism of groupoids (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) →
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) constructed in Lemma 35.15.1 is called the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝑈′.
We sometime use the notation 𝑅′ = 𝑅|𝑈′ in this case.

Lemma 35.15.3. The notions of restricting groupoids and (pre-)equivalence relations de-
fined in Definitions 35.15.2 and 35.3.3 agree via the constructions of Lemmas 35.11.2 and
35.11.3.

Proof. What we are saying here is that 𝑅′ of Lemma 35.15.1 is also equal to

𝑅′ = (𝑈′ ×𝑆 𝑈′) ×𝑈×𝑆𝑈 𝑅 ⟶ 𝑈′ ×𝑆 𝑈′

In fact this might have been a clearer way to state that lemma. �

Lemma 35.15.4. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let 𝑔 ∶
𝑈′ → 𝑈 be a morphism of schemes. Let (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
via 𝑔. Let 𝐺 be the stabilizer of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) and let 𝐺′ be the stabilizer of (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′).
Then 𝐺′ is the base change of 𝐺 by 𝑔, i.e., there is a canonical identification 𝐺′ = 𝑈′×𝑔,𝑈𝐺.

Proof. Omitted. �

35.16. Invariant subschemes

In this section we discuss briefly the notion of an invariant subscheme.

Definition 35.16.1. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over the base scheme 𝑆.
(1) We say an open 𝑊 ⊂ 𝑈 is 𝑅-invariant if 𝑡(𝑠−1(𝑊)) ⊂ 𝑊.
(2) A closed subscheme 𝑍 ⊂ 𝑈 is called 𝑅-invariant if 𝑡−1(𝑍) = 𝑠−1(𝑍). Here we

use the scheme theoretic inverse image, see Schemes, Definition 21.17.7.
(3) A monomorphism of schemes 𝑇 → 𝑈 is 𝑅-invariant if 𝑇 ×𝑈,𝑡 𝑅 = 𝑅 ×𝑠,𝑈 𝑇 as

schemes over 𝑅.
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For an open subscheme𝑊 ⊂ 𝑈 the𝑅-invariance is also equivalent to requiring that 𝑠−1(𝑊) =
𝑡−1(𝑊). If 𝑊 ⊂ 𝑈 is 𝑅-equivariant then the restriction of 𝑅 to 𝑊 is just 𝑅𝑊 = 𝑠−1(𝑊) =
𝑡−1(𝑊). Similarly, if 𝑍 ⊂ 𝑈 is an 𝑅-invariant closed subscheme, then the restriction of 𝑅
to 𝑍 is just 𝑅𝑍 = 𝑠−1(𝑍) = 𝑡−1(𝑍).

Lemma 35.16.2. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆.
(1) If 𝑠 and 𝑡 are open, then for every open 𝑊 ⊂ 𝑈 the open 𝑠(𝑡−1(𝑊)) is 𝑅-invariant.
(2) If 𝑠 and 𝑡 are open and quasi-compact, then 𝑈 has an open covering consisting

of 𝑅-invariant quasi-compact open subschemes.

Proof. Assume 𝑠 and 𝑡 open and 𝑊 ⊂ 𝑈 open. Since 𝑠 is open the set 𝑊′ = 𝑠(𝑡−1(𝑊)) is
an open subset of 𝑈. Now it is quite easy to using the functorial point of view that this is
an 𝑅-invariant open subset of 𝑈, but we are going to argue this directly by some diagrams,
since we think it is instructive. Note that 𝑡−1(𝑊′) is the image of the morphism

𝐴 ∶= 𝑡−1(𝑊) ×𝑠|𝑡−1(𝑊),𝑈,𝑡 𝑅
pr1−−→ 𝑅

and that 𝑠−1(𝑊′) is the image of the morphism

𝐵 ∶= 𝑅 ×𝑠,𝑈,𝑠|𝑡−1(𝑊)
𝑡−1(𝑊)

pr0−−→ 𝑅.

The schemes 𝐴, 𝐵 on the left of the arrows above are open subschemes of 𝑅 ×𝑠,𝑈,𝑡 𝑅 and
𝑅 ×𝑠,𝑈,𝑠 𝑅 respectively. By Lemma 35.11.4 the diagram

𝑅 ×𝑠,𝑈,𝑡 𝑅

pr1
$$

(pr1,𝑐)
// 𝑅 ×𝑠,𝑈,𝑠 𝑅

pr0
zz

𝑅
is commutative, and the horizontal arrow is an isomorphism. Moreover, it is clear that
(pr1, 𝑐)(𝐴) = 𝐵. Hence we conclude 𝑠−1(𝑊′) = 𝑡−1(𝑊′), and 𝑊′ is 𝑅-invariant. This
proves (1).

Assume now that 𝑠, 𝑡 are both open and quasi-compact. Then, if 𝑊 ⊂ 𝑈 is a quasi-compact
open, then also 𝑊′ = 𝑠(𝑡−1(𝑊)) is a quasi-compact open, and invariant by the discussion
above. Letting 𝑊 range over all affine opens of 𝑈 we see (2). �

35.17. Quotient sheaves

Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑓𝑝𝑝𝑓, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Let 𝑆 be a scheme. Let 𝑗 ∶ 𝑅 → 𝑈×𝑆 𝑈
be a pre-relation over 𝑆. Say 𝑈, 𝑅, 𝑆 are objects of a 𝜏-site Sch𝜏 (see Topologies, Section
30.2). Then we can consider the functors

ℎ𝑈, ℎ𝑅 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝜏 ⟶ Sets.

These are sheaves, see Descent, Lemma 31.9.3. The morphism 𝑗 induces a map 𝑗 ∶ ℎ𝑅 →
ℎ𝑈 × ℎ𝑈. For each object 𝑇 ∈ 𝑂𝑏((Sch/𝑆)𝜏) we can take the equivalence relation ∼𝑇 gener-
ated by 𝑗(𝑇) ∶ 𝑅(𝑇) → 𝑈(𝑇) × 𝑈(𝑇) and consider the quotient. Hence we get a presheaf

(35.17.0.1) (Sch/𝑆)𝑜𝑝𝑝
𝜏 ⟶ Sets, 𝑇 ⟼ 𝑈(𝑇)/ ∼𝑇

Definition 35.17.1. Let 𝜏, 𝑆, and the pre-relation 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 be as above. In this
setting the quotient sheaf 𝑈/𝑅 associated to 𝑗 is the sheafification of the presheaf (35.17.0.1)
in the 𝜏-topology. If 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 comes from the action of a group scheme 𝐺/𝑆 on 𝑈
as in Lemma 35.13.1 then we sometimes denote the quotient sheaf 𝑈/𝐺.
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This means exactly that the diagram

ℎ𝑅
//
// ℎ𝑈

// 𝑈/𝑅

is a coequalizer diagram in the category of sheaves of sets on (Sch/𝑆)𝜏. Using the Yoneda
embedding we may view (Sch/𝑆)𝜏 as a full subcategory of sheaves on (Sch/𝑆)𝜏 and hence
identify schemes with representable functors. Using this abuse of notation we will often
depict the diagram above simply

𝑅
𝑠 //

𝑡
// 𝑈 // 𝑈/𝑅

Wewill mostlyworkwith the fppf topologywhen considering quotient sheaves of groupoids/equiv-
alence relations.

Definition 35.17.2. In the situation of Definition 35.17.1. We say that the pre-relation 𝑗
has a representable quotient if the sheaf 𝑈/𝑅 is representable. We will say a groupoid
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) has a representable quotient if the quotient 𝑈/𝑅 with 𝑗 = (𝑡, 𝑠) is representable.

The following lemma characterizes schemes 𝑀 representing the quotient. It applies for
example if 𝜏 = 𝑓𝑝𝑝𝑓, 𝑈 → 𝑀 is flat, of finite presentation and surjective, and 𝑅 ≅ 𝑈×𝑀 𝑈.

Lemma 35.17.3. In the situation of Definition 35.17.1. Assume there is a scheme 𝑀, and
a morphism 𝑈 → 𝑀 such that

(1) the morphism 𝑈 → 𝑀 equalizes 𝑠, 𝑡,
(2) themorphism𝑈 → 𝑀 induces a surjection of sheavesℎ𝑈 → ℎ𝑀 in the 𝜏-topology,

and
(3) the induced map (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑀 𝑈 induces a surjection of sheaves ℎ𝑅 →

ℎ𝑈×𝑀𝑈 in the 𝜏-topology.
In this case 𝑀 represents the quotient sheaf 𝑈/𝑅.

Proof. Condition (1) says that ℎ𝑈 → ℎ𝑀 factors through 𝑈/𝑅. Condition (2) says that
𝑈/𝑅 → ℎ𝑀 is surjective as a map of sheaves. Condition (3) says that 𝑈/𝑅 → ℎ𝑀 is
injective as a map of sheaves. Hence the lemma follows. �

The following lemma is wrong if we do not require 𝑗 to be a pre-equivalence relation (but
just a pre-relation say).

Lemma 35.17.4. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑓𝑝𝑝𝑓, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Let 𝑆 be a scheme.
Let 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 be a pre-equivalence relation over 𝑆. Assume 𝑈, 𝑅, 𝑆 are objects of
a 𝜏-site Sch𝜏. For 𝑇 ∈ 𝑂𝑏((Sch/𝑆)𝜏) and 𝑎, 𝑏 ∈ 𝑈(𝑇) the following are equivalent:

(1) 𝑎 and 𝑏 map to the same element of (𝑈/𝑅)(𝑇), and
(2) there exists a 𝜏-covering {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇} of 𝑇 and morphisms 𝑟𝑖 ∶ 𝑇𝑖 → 𝑅 such

that 𝑎 ∘ 𝑓𝑖 = 𝑠 ∘ 𝑟𝑖 and 𝑏 ∘ 𝑓𝑖 = 𝑡 ∘ 𝑟𝑖.
In other words, in this case the map of 𝜏-sheaves

ℎ𝑅 ⟶ ℎ𝑈 ×𝑈/𝑅 ℎ𝑈

is surjective.

Proof. Omitted. Hint: The reason this works is that the presheaf (35.17.0.1) in this case is
really given by 𝑇 ↦ 𝑈(𝑇)/𝑗(𝑅(𝑇)) as 𝑗(𝑅(𝑇)) ⊂ 𝑈(𝑇) × 𝑈(𝑇) is an equivalence relation, see
Definition 35.3.1. �
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Lemma 35.17.5. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑓𝑝𝑝𝑓, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Let 𝑆 be a scheme.
Let 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 be a pre-equivalence relation over 𝑆 and 𝑔 ∶ 𝑈′ → 𝑈 a morphism of
schemes over 𝑆. Let 𝑗′ ∶ 𝑅′ → 𝑈′ ×𝑆 𝑈′ be the restriction of 𝑗 to 𝑈′. Assume 𝑈, 𝑈′, 𝑅, 𝑆
are objects of a 𝜏-site Sch𝜏. The map of quotient sheaves

𝑈′/𝑅′ ⟶ 𝑈/𝑅

is injective. If 𝑔 defines a surjection ℎ𝑈′ → ℎ𝑈 of sheaves in the 𝜏-topology (for example if
{𝑔 ∶ 𝑈′ → 𝑈} is a 𝜏-covering), then 𝑈′/𝑅′ → 𝑈/𝑅 is an isomorphism.

Proof. Suppose 𝜉, 𝜉′ ∈ (𝑈′/𝑅′)(𝑇) are sections which map to the same section of 𝑈/𝑅.
Then we can find a 𝜏-covering 𝒯 = {𝑇𝑖 → 𝑇} of 𝑇 such that 𝜉|𝑇𝑖

, 𝜉′|𝑇𝑖
are given by 𝑎𝑖, 𝑎′

𝑖 ∈
𝑈′(𝑇𝑖). By Lemma 35.17.4 and the axioms of a site we may after refining 𝒯 assume there
exist morphisms 𝑟𝑖 ∶ 𝑇𝑖 → 𝑅 such that 𝑔 ∘ 𝑎𝑖 = 𝑠 ∘ 𝑟𝑖, 𝑔 ∘ 𝑎′

𝑖 = 𝑡 ∘ 𝑟𝑖. Since by construction
𝑅′ = 𝑅 ×𝑈×𝑆𝑈 (𝑈′ ×𝑆 𝑈′) we see that (𝑟𝑖, (𝑎𝑖, 𝑎′

𝑖 )) ∈ 𝑅′(𝑇𝑖) and this shows that 𝑎𝑖 and 𝑎′
𝑖

define the same section of 𝑈′/𝑅′ over 𝑇𝑖. By the sheaf condition this implies 𝜉 = 𝜉′.

If ℎ𝑈′ → ℎ𝑈 is a surjection of sheaves, then of course 𝑈′/𝑅′ → 𝑈/𝑅 is surjective also. If
{𝑔 ∶ 𝑈′ → 𝑈} is a 𝜏-covering, then the map of sheaves ℎ𝑈′ → ℎ𝑈 is surjective, see Sites,
Lemma 9.12.5. Hence 𝑈′/𝑅′ → 𝑈/𝑅 is surjective also in this case. �

Lemma 35.17.6. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑓𝑝𝑝𝑓, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Let 𝑆 be a scheme.
Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let 𝑔 ∶ 𝑈′ → 𝑈 a morphism of schemes
over 𝑆. Let (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝑈′. Assume 𝑈, 𝑈′, 𝑅, 𝑆
are objects of a 𝜏-site Sch𝜏. The map of quotient sheaves

𝑈′/𝑅′ ⟶ 𝑈/𝑅

is injective. If the composition

𝑈′ ×𝑔,𝑈,𝑡 𝑅 pr1
//

ℎ

''𝑅 𝑠
// 𝑈

defines a surjection of sheaves in the 𝜏-topology then the map is bijective. This holds for
example if {ℎ ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑈} is a 𝜏-covering, or if 𝑈′ → 𝑈 defines a surjection of
sheaves in the 𝜏-topology, or if {𝑔 ∶ 𝑈′ → 𝑈} is a covering in the 𝜏-topology.

Proof. Injectivity follows on combining Lemmas 35.11.2 and 35.17.5. To see surjectivity
(see Sites, Section 9.11 for a characterization of surjective maps of sheaves) we argue as
follows. Suppose that 𝑇 is a scheme and 𝜎 ∈ 𝑈/𝑅(𝑇). There exists a covering {𝑇𝑖 → 𝑇}
such that 𝜎|𝑇𝑖

is the image of some element 𝑓𝑖 ∈ 𝑈(𝑇𝑖). Hence we may assume that 𝜎 if
the image of 𝑓 ∈ 𝑈(𝑇). By the assumption that ℎ is a surjection of sheaves, we can find a
𝜏-covering {𝜑𝑖 ∶ 𝑇𝑖 → 𝑇} and morphisms 𝑓𝑖 ∶ 𝑇𝑖 → 𝑈′ ×𝑔,𝑈,𝑡 𝑅 such that 𝑓 ∘ 𝜑𝑖 = ℎ ∘ 𝑓𝑖.
Denote 𝑓′

𝑖 = pr0 ∘ 𝑓𝑖 ∶ 𝑇𝑖 → 𝑈′. Then we see that 𝑓′
𝑖 ∈ 𝑈′(𝑇𝑖) maps to 𝑔 ∘ 𝑓′

𝑖 ∈ 𝑈(𝑇𝑖)
and that 𝑔 ∘ 𝑓′

𝑖 ∼𝑇𝑖
ℎ ∘ 𝑓𝑖 = 𝑓 ∘ 𝜑𝑖 notation as in (35.17.0.1). Namely, the element of 𝑅(𝑇𝑖)

giving the relation is pr1 ∘ 𝑓𝑖. This means that the restriction of 𝜎 to 𝑇𝑖 is in the image of
𝑈′/𝑅′(𝑇𝑖) → 𝑈/𝑅(𝑇𝑖) as desired.

If {ℎ} is a 𝜏-covering, then it induces a surjection of sheaves, see Sites, Lemma 9.12.5. If
𝑈′ → 𝑈 is surjective, then also ℎ is surjective as 𝑠 has a section (namely the neutral element
𝑒 of the groupoid scheme). �
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35.18. Separation conditions

This really means conditions on the morphism 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 when given a groupoid
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over 𝑆. As in the previous section we first formulate the corresponding dia-
gram.

Lemma 35.18.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. Let 𝐺 → 𝑈
be the stabilizer group scheme. The commutative diagram

𝑅

Δ𝑅/𝑈×𝑆𝑈

��

𝑓↦(𝑓,𝑠(𝑓))
// 𝑅 ×𝑠,𝑈 𝑈

��

// 𝑈

��
𝑅 ×(𝑈×𝑆𝑈) 𝑅

(𝑓,𝑔)↦(𝑓,𝑓−1∘𝑔) // 𝑅 ×𝑠,𝑈 𝐺 // 𝐺

the two left horizontal arrows are isomorphisms and the right square is a fibre product
square.

Proof. Omitted. Exercise in the definitions and the functorial point of view in algebraic
geometry. �

Lemma 35.18.2. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. Let 𝐺 → 𝑈
be the stabilizer group scheme.

(1) The following are equivalent
(a) 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is separated,
(b) 𝐺 → 𝑈 is separated, and
(c) 𝑒 ∶ 𝑈 → 𝐺 is a closed immersion.

(2) The following are equivalent
(a) 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is quasi-separated,
(b) 𝐺 → 𝑈 is quasi-separated, and
(c) 𝑒 ∶ 𝑈 → 𝐺 is quasi-compact.

Proof. The group scheme 𝐺 → 𝑈 is the base change of 𝑅 → 𝑈 ×𝑆 𝑈 by the diagonal
morphism 𝑈 → 𝑈×𝑆𝑈, see Lemma 35.14.1. Hence if 𝑗 is separated (resp. quasi-separated),
then 𝐺 → 𝑈 is separated (resp. quasi-separated). (See Schemes, Lemma 21.21.13). Thus
(a) ⇒ (b) in both (1) and (2).

If 𝐺 → 𝑈 is separated (resp. quasi-separated), then the morphism 𝑈 → 𝐺, as a section of
the structure morphism 𝐺 → 𝑈 is a closed immersion (resp. quasi-compact), see Schemes,
Lemma 21.21.12. Thus (b) ⇒ (a) in both (1) and (2).

By the result of Lemma 35.18.1 (and Schemes, Lemmas 21.18.2 and 21.19.3) we see that if
𝑒 is a closed immersion (resp. quasi-compact) Δ𝑅/𝑈×𝑆𝑈 is a closed immersion (resp. quasi-
compact). Thus (c) ⇒ (a) in both (1) and (2). �

35.19. Finite flat groupoids, affine case

Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Assume 𝑈 = 𝑆𝑝𝑒𝑐(𝐴),
and 𝑅 = 𝑆𝑝𝑒𝑐(𝐵) are affine. In this case we get two ring maps 𝑠♯, 𝑡♯ ∶ 𝐴 ⟶ 𝐵. Let 𝐶 be
the equalizer of 𝑠♯ and 𝑡♯. In a formula

(35.19.0.1) 𝐶 = {𝑎 ∈ 𝐴 ∣ 𝑡♯(𝑎) = 𝑠♯(𝑎)}.
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We will sometimes call this the ring of 𝑅-invariant functions on 𝑈. What properties does
𝑀 = 𝑆𝑝𝑒𝑐(𝐶) have? The first observation is that the diagram

𝑅 𝑠
//

𝑡
��

𝑈

��
𝑈 //𝑀

is commutative, i.e., the morphism 𝑈 → 𝑀 equalizes 𝑠, 𝑡. Moreover, if 𝑇 is any affine
scheme, and if 𝑈 → 𝑇 is a morphism which equalizes 𝑠, 𝑡, then 𝑈 → 𝑇 factors through
𝑈 → 𝑀. In other words, 𝑈 → 𝑀 is a coequalizer in the category of affine schemes.
We would like to find conditions that garantee the morphism 𝑈 → 𝑀 is really a ``quotient''
in the category of schemes. We will discuss this at length elsewhere (insert future reference
here); here we just discuss some special cases. Namely, we will focus on the case where
𝑠, 𝑡 are finite locally free.
Example 35.19.1. Let 𝑘 be a field. Let 𝑈 = GL2,𝑘. Let 𝐵 ⊂ GL2 be the closed sub-
group scheme of upper triangular matrices. Then the quotient sheaf GL2,𝑘/𝐵 (in the Zariski,
étale or fppf topology, see Definition 35.17.1) is representable by the projective line: 𝐏1 =
GL2,𝑘/𝐵. (Details omitted.) On the other hand, the ring of invariant functions in this case
is just 𝑘. Note that in this case the morphisms 𝑠, 𝑡 ∶ 𝑅 = GL2,𝑘 ×𝑘 𝐵 → GL2,𝑘 = 𝑈 are
smooth of relative dimension 3.
Recall that in Exercises, Exercises 65.15.6 and 65.15.7 we have defined the determinant
and the norm for finitely locally free modules and finite locally free ring extensions. If
𝜑 ∶ 𝐴 → 𝐵 is a finite locally free ring map, then we will denote Norm𝜑(𝑏) ∈ 𝐴 the norm
of 𝑏 ∈ 𝐵.
Lemma 35.19.2. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝐴), and 𝑅 = 𝑆𝑝𝑒𝑐(𝐵) are affine, and 𝑠, 𝑡 ∶ 𝑅 → 𝑈 finite locally free. Let 𝐶 be
as in (35.19.0.1). Let 𝑓 ∈ 𝐴. Then Norm𝑠♯(𝑡♯(𝑓)) ∈ 𝐶.
Proof. Consider the commutative diagram

𝑈

𝑅

𝑠
��

𝑡
::

𝑅 ×𝑠,𝑈,𝑡 𝑅pr0
oo

pr1
��

𝑐
// 𝑅

𝑠
��

𝑡
dd

𝑈 𝑅𝑡oo 𝑠 // 𝑈
of Lemma 35.11.4. Think of 𝑓 ∈ Γ(𝑈, 𝒪𝑈). The commutativity of the top part of the di-
agram shows that 𝑝𝑟♯

0(𝑡♯(𝑓)) = 𝑐♯(𝑡♯(𝑓)) as elements of Γ(𝑅 ×𝑆,𝑈,𝑡 𝑅, 𝒪). Looking at the
right lower cartesian square the compatibility of the norm construction with base change
shows that 𝑠♯(Norm𝑠♯(𝑡♯(𝑓))) = Normpr1(𝑐♯(𝑡♯(𝑓))). Similarly we get 𝑡♯(Norm𝑠♯(𝑡♯(𝑓))) =

Normpr1(pr♯0(𝑡♯(𝑓))). Hence by the first equality of this proofwe see that 𝑠♯(Norm𝑠♯(𝑡♯(𝑓))) =
𝑡♯(Norm𝑠♯(𝑡♯(𝑓))) as desired. �

Lemma 35.19.3. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
𝑠, 𝑡 ∶ 𝑅 → 𝑈 finite locally free. Then

𝑈 = ∐𝑟≥1
𝑈𝑟
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is a disjoint union of 𝑅-invariant opens such that the restriction 𝑅𝑟 of 𝑅 to 𝑈𝑟 has the
property that 𝑠, 𝑡 ∶ 𝑅𝑟 → 𝑈𝑟 are finite locally free of rank 1.

Proof. By Morphisms, Lemma 24.44.5 there exists a decomposition 𝑈 = ∐𝑟≥0 𝑈𝑟 such
that 𝑠 ∶ 𝑠−1(𝑈𝑟) → 𝑈𝑟 is finite locally free of rank 𝑟. As 𝑠 is surjective we see that 𝑈0 = ∅.
Note that 𝑢 ∈ 𝑈𝑟 ⇔ the scheme theoretic fibre 𝑠−1(𝑢) has degree 𝑟 over 𝜅(𝑢). Now, if 𝑧 ∈ 𝑅
with 𝑠(𝑧) = 𝑢 and 𝑡(𝑧) = 𝑢′ then pr−1

1 (𝑧) see diagram of Lemma 35.11.4 is a scheme over
𝜅(𝑧) which is the base change of both 𝑠−1(𝑢) and 𝑠−1(𝑢′) via 𝜅(𝑢) → 𝜅(𝑧) and 𝜅(𝑢′) → 𝜅(𝑧)
by the properties of that diagram. Hence we see that the open subsets 𝑈𝑟 are 𝑅-invariant.
In particular the restricton of 𝑅 to 𝑈𝑟 is just 𝑠−1(𝑈𝑟) and 𝑠 ∶ 𝑅𝑟 → 𝑈𝑟 is finite locally free
of rank 𝑟. As 𝑡 ∶ 𝑅𝑟 → 𝑈𝑟 is isomorphic to 𝑠 by the inverse of 𝑅𝑟 we see that it has also
rank 𝑟. �

Lemma 35.19.4. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝐴), and 𝑅 = 𝑆𝑝𝑒𝑐(𝐵) are affine, and 𝑠, 𝑡 ∶ 𝑅 → 𝑈 finite locally free. Let 𝐶 ⊂ 𝐴
be as in (35.19.0.1). Then 𝐴 is integral over 𝐶.

Proof. First, by Lemma 35.19.3 we know that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a disjoint union of groupoid
schemes (𝑈𝑟, 𝑅𝑟, 𝑠, 𝑡, 𝑐) such that each 𝑠, 𝑡 ∶ 𝑅𝑟 → 𝑈𝑟 has constant rank 𝑟. As 𝑈 is
quasi-compact, we have 𝑈𝑟 = for almost all 𝑟. It suffices to prove the lemma for each
(𝑈𝑟, 𝑅𝑟, 𝑠, 𝑡, 𝑐) and hence we may assume that 𝑠, 𝑡 are finite locally free of rank 𝑟.
Assume that 𝑠, 𝑡 are finite locally free of rank 𝑟. Let 𝑓 ∈ 𝐴. Consider the element 𝑥 − 𝑓 ∈
𝐴[𝑥], where we think of 𝑥 as the coordinate on 𝐀1. Since

(𝑈 × 𝐀1, 𝑅 × 𝐀1, 𝑠 × id𝐀1, 𝑡 × id𝐀1, 𝑐 × id𝐀1)
is also a groupoid scheme with finite source and target, we may apply Lemma 35.19.2 to
it and we see that 𝑃(𝑥) = Norm𝑠♯(𝑡♯(𝑥 − 𝑓)) is an element of 𝐶[𝑥]. Because 𝑠♯ ∶ 𝐴 → 𝐵
is finite locally free of rank 𝑟 we see that 𝑃 is monic of degree 𝑟. Moreover 𝑃(𝑓) = 0 by
Cayley-Hamilton (Algebra, Lemma 7.15.1). �

Lemma 35.19.5. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝐴), and 𝑅 = 𝑆𝑝𝑒𝑐(𝐵) are affine, and 𝑠, 𝑡 ∶ 𝑅 → 𝑈 finite locally free. Let
𝐶 ⊂ 𝐴 be as in (35.19.0.1). Let 𝐶 → 𝐶′ be a ring map, and set 𝑈′ = 𝑆𝑝𝑒𝑐(𝐴 ⊗𝐶 𝐶′),
𝑅′ = 𝑆𝑝𝑒𝑐(𝐵 ⊗𝐶 𝐶′). Then

(1) the maps 𝑠, 𝑡, 𝑐 induce maps 𝑠′, 𝑡′, 𝑐′ such that (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) is a groupoid
scheme, and

(2) there is a canonical map 𝜑 ∶ 𝐶′ → 𝐶1 of 𝐶′ into the 𝑅′-invariant functions 𝐶1

on 𝑈′ with the properties
(a) for every 𝑓 ∈ 𝐶1 there exists an 𝑛 > 0 such that 𝑓𝑛 is in the image of 𝜑, and
(b) for every 𝑓 ∈ Ker(𝜑) there exists an 𝑛 > 0 such that 𝑓𝑛 = 0.

(3) if 𝐶 → 𝐶′ is flat then 𝜑 is an isomorphism.

Proof. The proof of part (1) is omitted. Let us denote 𝐴′ = 𝐴 ⊗𝐶 𝐶′ and 𝐵′ = 𝐵 ⊗𝐶 𝐶′.
Then we have

𝐶1 = {𝑥 ∈ 𝐴′ ∣ (𝑡′)♯(𝑥) = (𝑠′)♯(𝑥)} = {𝑎 ∈ 𝐴 ⊗𝐶 𝐶′ ∣ 𝑡♯ ⊗ 1(𝑥) = 𝑠♯ ⊗ 1(𝑥)}.

In other words, 𝐶1 is the kernel of the difference map (𝑡♯ − 𝑠♯) ⊗ 1 which is just the base
change of the 𝐶-linear map 𝑡♯ − 𝑠♯ ∶ 𝐴 → 𝐵 by 𝐶 → 𝐶′. Hence (3) follows.
Proof of part (2)(b). Since 𝐶 → 𝐴 is integral (Lemma 35.19.4) and injective we see that
𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝐶) is surjective, see Algebra, Lemma 7.32.15. Thus also 𝑆𝑝𝑒𝑐(𝐴′) →
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𝑆𝑝𝑒𝑐(𝐶′) is surjective as a base change of a surjective morphism (Morphisms, Lemma
24.9.4). Hence 𝑆𝑝𝑒𝑐(𝐶1) → 𝑆𝑝𝑒𝑐(𝐶′) is surjective also. This implies that the kernel of
𝜑 is contained in the radical of the ring 𝐶′, i.e., (2)(b) holds.
Proof of part (2)(a). By Lemma 35.19.3 we know that 𝐴 is a finite product of rings 𝐴𝑟 and 𝐵
is a finite product of rings 𝐵𝑟 such that the groupoid scheme decomposes accordingly (see
the proof of Lemma 35.19.4). Then also 𝐶 is a product of rings 𝐶𝑟 and correspondingly 𝐶′

decomposes as a product. Hence we may and do assume that the ring maps 𝑠♯, 𝑡♯ ∶ 𝐴 → 𝐵
are finite locally free of a fixed rank 𝑟. Let 𝑓 ∈ 𝐶1 ⊂ 𝐴′ = 𝐴⊗𝐶𝐶′. Wemay replace 𝐶′ by a
finitely generated 𝐶-subalgebra of 𝐶′ and hence we may assume that 𝐶′ = 𝐶[𝑋1, … , 𝑋𝑛]/𝐼
for some ideal 𝐼. Choose a lift ̃𝑓 ∈ 𝐴 ⊗𝐶 𝐶[𝑋𝑖] = 𝐴[𝑋𝑖] of the element 𝑓. Note that
𝑓𝑟 = Norm(𝑠′)♯((𝑡′)♯(𝑓)) in 𝐴 as 𝑡♯(𝑓) = 𝑠♯(𝑓). Hence we see that

ℎ = Norm𝑠♯⊗1(𝑡♯ ⊗ 1(𝑓)) ∈ 𝐴[𝑋𝑖]
is invariant according to Lemma 35.19.2 and maps to 𝑓𝑟 in 𝐴′. Since 𝐶 → 𝐶[𝑋𝑖] is flat we
see from (3) that ℎ ∈ 𝐶[𝑋𝑖]. Hence it follows that 𝑓𝑟 is in the image of 𝜑. �

Lemma 35.19.6. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝐴), and 𝑅 = 𝑆𝑝𝑒𝑐(𝐵) are affine, and 𝑠, 𝑡 ∶ 𝑅 → 𝑈 finite locally free. Let 𝐶 ⊂ 𝐴
be as in (35.19.0.1). Then 𝑈 → 𝑀 = 𝑆𝑝𝑒𝑐(𝐶) has the following properties:

(1) the map on points |𝑈| → |𝑀| is surjective and 𝑢0, 𝑢1 ∈ |𝑈| map to the same point
if and only if there exists a 𝑟 ∈ |𝑅| with 𝑡(𝑟) = 𝑢0 and 𝑠(𝑟) = 𝑢1, in a formula

|𝑀| = |𝑈|/|𝑅|
(2) for any algebraically closed field 𝑘 we have

𝑀(𝑘) = 𝑈(𝑘)/𝑅(𝑘)

Proof. Let 𝑘 be an algebraically closed field. Since 𝐶 → 𝐴 is integral (Lemma 35.19.4)
and injective we see that 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝐶) is surjective, see Algebra, Lemma 7.32.15.
Thus |𝑀| → |𝑈| is surjective. Let 𝐶 → 𝑘 be a ring map. Since surjective morphisms are
preserved under base change (Morphisms, Lemma 24.9.4) we see that 𝐴 ⊗𝐶 𝑘 is not zero.
Now 𝑘 ⊂ 𝐴 ⊗𝐶 𝑘 is a nonzero integral extension. Hence any residue field of 𝐴 ⊗𝐶 𝑘 is an
algebraic extension of 𝑘, hence equal to 𝑘. Thus we see that 𝑈(𝑘) → 𝑀(𝑘) is surjective.

Let 𝑎0, 𝑎1 ∶ 𝐴 → 𝑘 be ring maps. If there exists a ring map 𝑏 ∶ 𝐵 → 𝑘 such that 𝑎0 = 𝑏 ∘ 𝑡♯

and 𝑎1 = 𝑏 ∘ 𝑠♯ then we see that 𝑎0|𝐶 = 𝑎1|𝐶 by definition. Conversely, suppose that
𝑎0|𝐶 = 𝑎1|𝐶. Let us name this algebra map 𝑐 ∶ 𝐶 → 𝑘. Consider the diagram

𝐵

xx𝑘 𝐴
𝑎0

oo
𝑎1oo

OO OO

𝐶

OO

𝑐

ff

We are trying to construct the dotted arrow, and if we do then part (2) follows, which in
turn implies part (1). Since 𝐴 → 𝐵 is finite and faithfully flat there exist finitely many ring
maps 𝑏1, … , 𝑏𝑛 ∶ 𝐵 → 𝑘 such that 𝑏𝑖 ∘ 𝑠♯ = 𝑎1. If the dotted arrow does not exist, then we
see that none of the 𝑎′

𝑖 = 𝑏𝑖 ∘ 𝑡♯, 𝑖 = 1, … , 𝑛 is equal to 𝑎0. Hence the maximal ideals
𝔪′

𝑖 = Ker(𝑎′
𝑖 ⊗ 1 ∶ 𝐴 ⊗𝐶 𝑘 → 𝑘)
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of 𝐴 ⊗𝐶 𝑘 are distinct from 𝔪 = Ker(𝑎0 ⊗ 1 ∶ 𝐴 ⊗𝐶 𝑘 → 𝑘). By Algebra, Lemma 7.14.3
we would get an element 𝑓 ∈ 𝐴 ⊗𝐶 𝑘 with 𝑓 ∈ 𝔪, but 𝑓∉𝔪′

𝑖 for 𝑖 = 1, … , 𝑛. Consider
the norm

𝑔 = Norm𝑠♯⊗1(𝑡♯ ⊗ 1(𝑓)) ∈ 𝐴 ⊗𝐶 𝑘
By Lemma 35.19.2 this lies in the invariants 𝐶1 ⊂ 𝐴 ⊗𝐶 𝑘 of the base change groupoid
(base change via the map 𝑐 ∶ 𝐶 → 𝑘). On the one hand, 𝑎1(𝑔) ∈ 𝑘∗ since the value of 𝑡♯(𝑓)
at all the points (which correspond to 𝑏1, … , 𝑏𝑛) lying over 𝑎1 is invertible (insert future
reference on property determinant here). On the other hand, since 𝑓 ∈ 𝔪, we see that 𝑓
is not a unit, hence 𝑡♯(𝑓) is not a unit (as 𝑡♯ ⊗ 1 is faithfully flat), hence its norm is not a
unit (insert future reference on property determinant here). We conclude that 𝐶1 contains
an element which is not nilpotent and not a unit. We will now show that this leads to a
contradiction. Namely, apply Lemma 35.19.5 to the map 𝑐 ∶ 𝐶 → 𝐶′ = 𝑘, then we see that
the map of 𝑘 into the invariants 𝐶1 is injective and moreover, that for any element 𝑥 ∈ 𝐶1

there exists an integer 𝑛 > 0 such that 𝑥𝑛 ∈ 𝑘. Hence every element of 𝐶1 is either a unit
or nilpotent. �

Lemma 35.19.7. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
(1) 𝑈 = 𝑆𝑝𝑒𝑐(𝐴), and 𝑅 = 𝑆𝑝𝑒𝑐(𝐵) are affine, and
(2) there exist elements 𝑥𝑖 ∈ 𝐴, 𝑖 ∈ 𝐼 such that 𝐵 = ⨁𝑖∈𝐼 𝑠♯(𝐴)𝑡♯(𝑥𝑖).

Then 𝐴 = ⨁𝑖∈𝐼 𝐶𝑥𝑖, and 𝐵 ≅ 𝐴 ⊗𝐶 𝐴 where 𝐶 ⊂ 𝐴 is the 𝑅-invariant functions on 𝑈 as
in (35.19.0.1).

Proof. During this proof we will write 𝑠, 𝑡 ∶ 𝐴 → 𝐵 instead of 𝑠♯, 𝑡♯, and similarly 𝑐 ∶
𝐵 → 𝐵 ⊗𝑠,𝐴,𝑡 𝐵. We write 𝑝0 ∶ 𝐵 → 𝐵 ⊗𝑠,𝐴,𝑡 𝐵, 𝑏 ↦ 𝑏 ⊗ 1 and 𝑝1 ∶ 𝐵 → 𝐵 ⊗𝑠,𝐴,𝑡 𝐵,
𝑏 ↦ 1 ⊗ 𝑏. By Lemma 35.11.5 and the definition of 𝐶 we have the following commutative
diagram

𝐵 ⊗𝑠,𝐴,𝑡 𝐵 𝐵
𝑐oo

𝑝0
oo 𝐴𝑡

oo

𝐵

𝑝1

OO

𝐴
𝑠oo

𝑡
oo

𝑠

OO

𝐶

OO

oo

Moreover the tow left squares are cocartesian in the category of rings, and the top row is
isomorphic to the diagram

𝐵 ⊗𝑡,𝐴,𝑡 𝐵 𝐵
𝑝1oo

𝑝0
oo 𝐴𝑡

oo

which is an equalizer diagram according to Descent, Lemma 31.3.6 because condition (2)
implies in particular that 𝑠 (and hence also then isomorphic arrow 𝑡) is faithfully flat. The
lower row is an equalizer diagram by definition of 𝐶. We can use the 𝑥𝑖 and get a commu-
tative diagram

𝐵 ⊗𝑠,𝐴,𝑡 𝐵 𝐵
𝑐oo

𝑝0
oo 𝐴𝑡

oo

⨁𝑖∈𝐼 𝐵𝑥𝑖

𝑝1

OO

⨁𝑖∈𝐼 𝐴𝑥𝑖

𝑠oo

𝑡
oo

𝑠

OO

⨁𝑖∈𝐼 𝐶𝑥𝑖

OO

oo

where in the right vertical arrow we map 𝑥𝑖 to 𝑥𝑖, in the middle vertical arrow we map
𝑥𝑖 to 𝑡(𝑥𝑖) and in the left vertical arrow we map 𝑥𝑖 to 𝑐(𝑡(𝑥𝑖)) = 𝑡(𝑥𝑖) ⊗ 1 = 𝑝0(𝑡(𝑥𝑖))
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(equality by the commutativity of the top part of the diagram in Lemma 35.11.4). Then the
diagram commutes. Moreover the middle vertical arrow is an isomorphism by assumption.
Since the left two squares are cocartesian we conclude that also the left vertical arrow is an
isomorphism. On the other hand, the horizontal rows are exact (i.e., they are equalizers).
Hence we conclude that also the right vertical arrow is an isomorphism. �

Proposition 35.19.8. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆.
Assume

(1) 𝑈 = 𝑆𝑝𝑒𝑐(𝐴), and 𝑅 = 𝑆𝑝𝑒𝑐(𝐵) are affine,
(2) 𝑠, 𝑡 ∶ 𝑅 → 𝑈 finite locally free, and
(3) 𝑗 = (𝑡, 𝑠) is an equivalence.

In this case, let 𝐶 ⊂ 𝐴 be as in (35.19.0.1). Then 𝑈 → 𝑀 = 𝑆𝑝𝑒𝑐(𝐶) is finite locally free
and 𝑅 = 𝑈 ×𝑀 𝑈. Moreover, 𝑀 represents the quotient sheaf 𝑈/𝑅 in the fppf topology (see
Definition 35.17.1).

Proof. During this proof we use the notation 𝑠, 𝑡 ∶ 𝐴 → 𝐵 instead of the notation 𝑠♯, 𝑡♯.
By Lemma 35.17.3 it suffices to show that 𝐶 → 𝐴 is finite locally free and that the map

𝑡 ⊗ 𝑠 ∶ 𝐴 ⊗𝐶 𝐴 ⟶ 𝐵
is an isomorphism. First, note that 𝑗 is a monomorphism, and also finite (since already 𝑠 and
𝑡 are finite). Hence we see that 𝑗 is a closed immersion by Morphisms, Lemma 24.42.13.
Hence 𝐴 ⊗𝐶 𝐴 → 𝐵 is surjective.
We will perform base change by flat ring maps 𝐶 → 𝐶′ as in Lemma 35.19.5, and we will
use that formation of invariants commutes with flat base change, see part (3) of the lemma
cited. We will show below that for every prime 𝔭 ⊂ 𝐶, there exists a local flat ring map
𝐶𝔭 → 𝐶′

𝔭 such that the result holds after a base change to 𝐶′
𝔭. This implies immediately that

𝐴 ⊗𝐶 𝐴 → 𝐵 is injective (use Algebra, Lemma 7.21.1). It also implies that 𝐶 → 𝐴 is flat,
by combining Algebra, Lemmas 7.35.16, 7.35.19, and 7.35.7. Then since 𝑈 → 𝑆𝑝𝑒𝑐(𝐶)
is surjective also (Lemma 35.19.6) we conclude that 𝐶 → 𝐴 is faithfully flat. Then the
isomorphism 𝐵 ≅ 𝐴 ⊗𝐶 𝐴 implies that 𝐴 is a finitely presented 𝐶-module, see Algebra,
Lemma 7.77.2. Hence 𝐴 is finite locally free over 𝐶, see Algebra, Lemma 7.72.2.
By Lemma 35.19.3 we know that 𝐴 is a finite product of rings 𝐴𝑟 and 𝐵 is a finite product of
rings 𝐵𝑟 such that the groupoid scheme decomposes accordingly (see the proof of Lemma
35.19.4). Then also 𝐶 is a product of rings 𝐶𝑟 and correspondingly 𝐶′ decomposes as a
product. Hence we may and do assume that the ring maps 𝑠, 𝑡 ∶ 𝐴 → 𝐵 are finite locally
free of a fixed rank 𝑟.
The local ring maps 𝐶𝔭 → 𝐶′

𝔭 we are going to use are any local flat ring maps such that the
residue field of 𝐶′

𝔭 is infinite. By Algebra, Lemma 7.142.1 such local ring maps exist.

Assume 𝐶 is a local ring with maximal ideal 𝔪 and infinite residue field, and assume that
𝑠, 𝑡 ∶ 𝐴 → 𝐵 is finite locally free of constant rank 𝑟 > 0. Since 𝐶 ⊂ 𝐴 is integral
(Lemma 35.19.4) all primes lying over 𝔪 are maximal, and all maximal ideals of 𝐴 lie
over 𝔪. Similarly for 𝐶 ⊂ 𝐵. Pick a maximal ideal 𝔪′ of 𝐴 lying over 𝔪 (exists by
Lemma 35.19.6). Since 𝑡 ∶ 𝐴 → 𝐵 is finite locally free there exist at most finitely many
maximal ideals of 𝐵 lying over 𝔪′. Hence we conclude (by Lemma 35.19.6 again) that
𝐴 has finitely many maximal ideals, i.e., 𝐴 is semi-local. This in turn implies that 𝐵 is
semi-local as well. OK, and now, because 𝑡 ⊗ 𝑠 ∶ 𝐴 ⊗𝐶 𝐴 → 𝐵 is surjective, we can
apply Algebra, Lemma 7.72.7 to the ring map 𝐶 → 𝐴, the 𝐴-module 𝑀 = 𝐵 (seen as
an 𝐴-module via 𝑡) and the 𝐶-submodule 𝑠(𝐴) ⊂ 𝐵. This lemma implies that there exist

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03BM


35.21. DESCENT DATA GIVE EQUIVALENCE RELATIONS 1941

𝑥1, … , 𝑥𝑟 ∈ 𝐴 such that 𝑀 is free over 𝐴 on the basis 𝑠(𝑥1), … , 𝑠(𝑥𝑟). Hence we conlude
that 𝐶 → 𝐴 is finite free and 𝐵 ≅ 𝐴 ⊗𝐶 𝐴 by applying Lemma 35.19.7. �

35.20. Finite flat groupoids

Lemma 35.20.1. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
𝑠, 𝑡 are finite locally free. Let 𝑢 ∈ 𝑈 be a point such that 𝑡(𝑠−1({𝑢})) is contained in an affine
open of 𝑈. Then there exists an 𝑅-invariant affine open neighbourhood of 𝑢 in 𝑈.

Proof. Since 𝑠 is finite locally free it has finite fibres. Hence 𝑡(𝑠−1({𝑢})) = {𝑢1, … , 𝑢𝑛} is a
finite set. Note that 𝑢 ∈ {𝑢1, … , 𝑢𝑛}. Let 𝑊 ⊂ 𝑈 be an affine open containing {𝑢1, … , 𝑢𝑛},
in particular 𝑢 ∈ 𝑊. Consider 𝑍 = 𝑅 ⧵ 𝑠−1(𝑊) ∩ 𝑡−1(𝑊). This is a closed subset of 𝑅. The
image 𝑡(𝑍) is a closed subset of 𝑈 which can be loosely described as the set of points of 𝑈
which are not 𝑅-equivalent to a point of 𝑊. Hence 𝑊′ = 𝑈 ⧵ 𝑡(𝑍) is an 𝑅-invariant, open
subscheme of 𝑈 contained in 𝑊, and {𝑢1, … , 𝑢𝑛} ⊂ 𝑊′. Picture

{𝑢1, … , 𝑢𝑛} ⊂ 𝑊′ ⊂ 𝑊 ⊂ 𝑈.

Let 𝑓 ∈ Γ(𝑊, 𝒪𝑊) be an element such that {𝑢1, … , 𝑢𝑛} ⊂ 𝐷(𝑓) ⊂ 𝑊′. Such an 𝑓 exists by
Algebra, Lemma 7.14.3. By our choice of 𝑊′ we have 𝑠−1(𝑊′) ⊂ 𝑡−1(𝑊), and hence we
get a diagram

𝑠−1(𝑊′)

𝑠
��

𝑡
// 𝑊

𝑊′

The vertical arrow is finite locally free by assumption. Set

𝑔 = Norm𝑠(𝑡♯𝑓) ∈ Γ(𝑊′, 𝒪𝑊′)

By construction 𝑔 is a function on 𝑊′ which is nonzero in 𝑢, as 𝑡♯(𝑓) is nonzero in each
of the points of 𝑅 lying over 𝑢, since 𝑓 is nonzero in 𝑢1, … , 𝑢𝑛. Similarly, 𝐷(𝑔) ⊂ 𝑊′ is
equal to the set of points 𝑤 such that 𝑓 is not zero in any of the points equivalent to 𝑤. This
means that 𝐷(𝑔) is an 𝑅-invariant affine open of 𝑊′. The final picture is

{𝑢1, … , 𝑢𝑛} ⊂ 𝐷(𝑔) ⊂ 𝐷(𝑓) ⊂ 𝑊′ ⊂ 𝑊 ⊂ 𝑈

and hence we win. �

35.21. Descent data give equivalence relations

In Descent, Section 31.36 we saw how descent data relative to 𝑋 → 𝑆 can be formulated
in terms of cartesian simplicial schemes over (𝑋/𝑆)•. Here we link this to equivalence
relations as follows.

Lemma 35.21.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝜋 ∶ 𝑉• → (𝑋/𝑆)• be a
cartesian morphism, see Descent, Definition 31.36.1. Then the morphism

𝑗 = (𝑑1
1, 𝑑1

0) ∶ 𝑉1 → 𝑉0 ×𝑆 𝑉0

defines an equivalence relation on 𝑉0 over 𝑆, see Definition 35.3.1.

Proof. Note that 𝑗 is a monomorphism. Namely the composition 𝑉1 → 𝑉0×𝑆𝑉0 → 𝑉0×𝑆𝑋
is an isomorphism as 𝜋 is cartesian.

Consider the morphism
(𝑑2

2, 𝑑2
0) ∶ 𝑉2 → 𝑉1 ×𝑑1

0,𝑉0,𝑑1
1

𝑉1.
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This works because 𝑑0 ∘ 𝑑2 = 𝑑1 ∘ 𝑑0, see Simplicial, Remark 14.3.3. Also, it is a morphism
over (𝑋/𝑆)2. It is an isomorphism because 𝑉• → (𝑋/𝑆)• is cartesian. Note for example that
the right hand side is isomorphic to 𝑉0 ×𝜋0,𝑋,pr1 (𝑋 ×𝑆 𝑋 ×𝑆 𝑋) = 𝑋 ×𝑆 𝑉0 ×𝑆 𝑋 because
𝜋 is cartesian. Details omitted.

As usual, see Definition 35.3.1 we denote 𝑡 = pr0 ∘ 𝑗 = 𝑑1
1 and 𝑠 = pr1 ∘ 𝑗 = 𝑑1

0. The
isomorphism above, combined with the morphism 𝑑2

1 ∶ 𝑉2 → 𝑉1 give us a composition
morphism

𝑐 ∶ 𝑉1 ×𝑠,𝑉0,𝑡 𝑉1 ⟶ 𝑉1
over 𝑉0 ×𝑆 𝑉0. This immediately implies that for any scheme 𝑇/𝑆 the relation 𝑉1(𝑇) ⊂
𝑉0(𝑇) × 𝑉0(𝑇) is transitive.

Reflexivity follows from the fact that the restriction of the morphism 𝑗 to the diagonal Δ ∶
𝑋 → 𝑋 ×𝑆 𝑋 is an isomorphism (again use the cartesian property of 𝜋).

To see symmetry we consider the morphism

(𝑑2
2, 𝑑2

1) ∶ 𝑉2 → 𝑉1 ×𝑑1
1,𝑉0,𝑑1

1
𝑉1.

This works because 𝑑1 ∘ 𝑑2 = 𝑑1 ∘ 𝑑1, see Simplicial, Remark 14.3.3. It is an isomorphism
because 𝑉• → (𝑋/𝑆)• is cartesian. Note for example that the right hand side is isomorphic
to 𝑉0 ×𝜋0,𝑋,pr0 (𝑋 ×𝑆 𝑋 ×𝑆 𝑋) = 𝑉0 ×𝑆 𝑋 ×𝑆 𝑋 because 𝜋 is cartesian. Details omitted.

Let 𝑇/𝑆 be a scheme. Let 𝑎 ∼ 𝑏 for 𝑎, 𝑏 ∈ 𝑉0(𝑇) be synonymous with (𝑎, 𝑏) ∈ 𝑉1(𝑇). The
isomorphism (𝑑2

2, 𝑑2
1) above implies that if 𝑎 ∼ 𝑏 and 𝑎 ∼ 𝑐, then 𝑏 ∼ 𝑐. Combined with

reflexivity this shows that ∼ is an equivalence relation. �

35.22. An example case

In this section we show that disjoint unions of spectra of Artinian rings can be descended
along a quasi-compact surjective flat morphism of schemes.

Lemma 35.22.1. Let 𝑋 → 𝑆 be a morphism of schemes. Suppose 𝑉• → (𝑋/𝑆)• is carte-
sian. For 𝑣 ∈ 𝑉0 a point define

𝑇𝑣 = {𝑣′ ∈ 𝑉 ∣ ∃ 𝑣1 ∈ 𝑉1 ∶ 𝑑1
1(𝑣1) = 𝑣, 𝑑1

0(𝑣1) = 𝑣′}

as a subset of 𝑉0. Then 𝑣 ∈ 𝑇𝑣 and 𝑇𝑣 ∩ 𝑇𝑣′≠∅ ⇒ 𝑇𝑣 = 𝑇𝑣′.

Proof. Combine Lemmas 35.21.1 and 35.3.4. �

Lemma 35.22.2. Let 𝑋 → 𝑆 be a morphism of schemes. Suppose 𝑉• → (𝑋/𝑆)• is carte-
sian. Let 𝑣 ∈ 𝑉0 be a point. If 𝑋 → 𝑆 is quasi-compact, then

𝑇𝑣 = {𝑣′ ∈ 𝑉 ∣ ∃ 𝑣1 ∈ 𝑉1 ∶ 𝑑1
1(𝑣1) = 𝑣, 𝑑1

0(𝑣1) = 𝑣′}

is a quasi-compact subset of 𝑉0.

Proof. Let 𝐹𝑣 be the scheme theoretic fibre of 𝑑1
1 ∶ 𝑉1 → 𝑉0 at 𝑣. Then we see that 𝑇𝑣 is

the image of the morphism

𝐹𝑣
//

��

𝑉1
𝑑1

0 //

𝑑1
1
��

𝑉0

𝑣 // 𝑉0

Note that 𝐹𝑣 is quasi-compact. This proves the lemma. �
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Lemma 35.22.3. Let 𝑋 → 𝑆 be a quasi-compact flat surjective morphism. Let (𝑉, 𝜑) be a
descent datum relative to 𝑋 → 𝑆. If 𝑉 is a disjoint union of spectra of Artinian rings, then
(𝑉, 𝜑) is effective.

Proof. Wemaywrite 𝑉 = ∐𝑖∈𝐼 𝑆𝑝𝑒𝑐(𝐴𝑖) with each 𝐴𝑖 local Artinian. Moreover, let 𝑣𝑖 ∈ 𝑉
be the unique closed point of 𝑆𝑝𝑒𝑐(𝐴𝑖) for all 𝑖 ∈ 𝐼. Write 𝑖 ∼ 𝑗 if and only if 𝑣𝑖 ∈ 𝑇𝑣𝑗

with
notation as in Lemma 35.22.1 above. By Lemmas 35.22.1 and 35.22.2 this is an equivalence
relation with finite equivalence classes. Let 𝐼 = 𝐼/ ∼. Then we can write 𝑉 = ∐𝑖∈𝐼 𝑉𝑖 with
𝑉𝑖 = ∐𝑖∈𝑖 𝑆𝑝𝑒𝑐(𝐴𝑖). By construction we see that 𝜑 ∶ 𝑉 ×𝑆 𝑋 → 𝑋 ×𝑆 𝑉 maps the open
and closed subspaces 𝑉𝑖 ×𝑆 𝑋 into the open and closed subspaces 𝑋 ×𝑆 𝑉𝑖. In other words,
we get descent data (𝑉𝑖, 𝜑𝑖), and (𝑉, 𝜑) is the coproduct of them in the category of descent
data. Since each of the 𝑉𝑖 is a finite union of spectra of Artinian local rings the morphism
𝑉𝑖 → 𝑋 is affine, see Morphisms, Lemma 24.11.13. Since {𝑋 → 𝑆} is an fpqc covering
we see that all the descent data (𝑉𝑖, 𝜑𝑖) are effective by Descent, Lemma 31.33.1. Hence
we win. �

To be sure, the lemma above has very limited applicability!
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CHAPTER 36

More on Groupoid Schemes

36.1. Introduction

This chapter is devoted to advanced topics on groupoid schemes. Even though the results
are stated in terms of groupoid schemes, the reader should keep in mind the 2-cartesian
diagram

(36.1.0.1)

𝑅 //

��

𝑈

��
𝑈 // [𝑈/𝑅]

where [𝑈/𝑅] is the quotient stack, see Groupoids in Spaces, Remark 52.19.4. Many of the
results are motivated by thinking about this diagram. See for example the beautiful paper
[KM97a] by Keel and Mori.

36.2. Notation

We continue to abide by the conventions and notation introduced in Groupoids, Section
35.2.

36.3. Useful diagrams

We briefly restate the results of Groupoids, Lemmas 35.11.4 and 35.11.5 for easy reference
in this chapter. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. In the
commutative diagram

(36.3.0.2)

𝑈

𝑅

𝑠
��

𝑡
::

𝑅 ×𝑠,𝑈,𝑡 𝑅pr0
oo

pr1
��

𝑐
// 𝑅

𝑠
��

𝑡
dd

𝑈 𝑅𝑡oo 𝑠 // 𝑈

the two lower squares are fibre product squares. Moreover, the triangle on top (which is
really a square) is also cartesian.

1945



1946 36. MORE ON GROUPOID SCHEMES

The diagram

(36.3.0.3)

𝑅 ×𝑡,𝑈,𝑡 𝑅
pr1 //

pr0
//

pr0×𝑐∘(𝑖,1)
��

𝑅 𝑡 //

id𝑅
��

𝑈

id𝑈
��

𝑅 ×𝑠,𝑈,𝑡 𝑅
𝑐 //

pr0
//

pr1
��

𝑅 𝑡 //

𝑠
��

𝑈

𝑅
𝑠 //

𝑡
// 𝑈

is commutative. The two top rows are isomorphic via the vertical maps given. The two
lower left squares are cartesian.

36.4. Sheaf of differentials

The following lemma is the analogue of Groupoids, Lemma 35.6.3.

Lemma 36.4.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. The
sheaf of differentials of 𝑅 seen as a scheme over 𝑈 via 𝑡 is a quotient of the pullback via
𝑡 of the conormal sheaf of the immersion 𝑒 ∶ 𝑈 → 𝑅. In a formula: there is a canonical
surjection 𝑡∗𝒞𝑈/𝑅 → Ω𝑅/𝑈. If 𝑠 is flat, then this map is an isomorphism.

Proof. Note that 𝑒 ∶ 𝑈 → 𝑅 is an immersion as it is a section of the morphism 𝑠, see
Schemes, Lemma 21.21.12. Consider the following diagram

𝑅
(1,𝑖)
//

𝑡
��

𝑅 ×𝑠,𝑈,𝑡 𝑅

𝑐
��

(pr0,𝑖∘pr1)
// 𝑅 ×𝑡,𝑈,𝑡 𝑅

𝑈 𝑒 // 𝑅

The square on the left is cartesian, because if 𝑎 ∘ 𝑏 = 𝑒, then 𝑏 = 𝑖(𝑎). The composition
of the horizontal maps is the diagonal morphism of 𝑡 ∶ 𝑅 → 𝑈. The right top horizontal
arrow is an isomorphism. Hence since Ω𝑅/𝑈 is the conormal sheaf of the composition it
is isomorphic to the conormal sheaf of (1, 𝑖). By Morphisms, Lemma 24.31.4 we get the
surjection 𝑡∗𝒞𝑈/𝑅 → Ω𝑅/𝑈 and if 𝑐 is flat, then this is an isomorphism. Since 𝑐 is a base
change of 𝑠 by the properties of Diagram (36.3.0.3) we conclude that if 𝑠 is flat, then 𝑐 is
flat, see Morphisms, Lemma 24.24.7. �

36.5. Properties of groupoids

Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme. The idea behind the results in this section is that
𝑠 ∶ 𝑅 → 𝑈 is a base changes of the morphism 𝑈 → [𝑈/𝑅] (see Diagram (36.1.0.1).
Hence the local properties of 𝑠 ∶ 𝑅 → 𝑈 should reflect local properties of the morphism
𝑈 → [𝑈/𝑅]. This doesn't work, because [𝑈/𝑅] is not always an algebraic stack, and hence
we cannot speak of geometric or algebraic properties of 𝑈 → [𝑈/𝑅]. But it turns out that
we can make some of it work without even referring to the quotient stack at all.

Here is a first example of such a result. The open 𝑊 ⊂ 𝑈′ found in the lemma is roughly
speaking the locus where the morphism 𝑈′ → [𝑈/𝑅] has property 𝒫.
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Lemma 36.5.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid over 𝑆. Let 𝑔 ∶
𝑈′ → 𝑈 be a morphism of schemes. Denote ℎ the composition

ℎ ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 pr1
// 𝑅 𝑠

// 𝑈.

Let 𝒫, 𝒬, ℛ be properties of morphisms of schemes. Assume
(1) ℛ ⇒ 𝒬,
(2) 𝒬 is preserved under base change and composition,
(3) for any morphism 𝑓 ∶ 𝑋 → 𝑌 which has 𝒬 there exists a largest open 𝑊(𝒫, 𝑓) ⊂

𝑋 such that 𝑓|𝑊(𝒫,𝑓) has 𝒫, and
(4) for any morphism 𝑓 ∶ 𝑋 → 𝑌 which has 𝒬, and any morphism 𝑌′ → 𝑌 which has

ℛ we have 𝑌′ ×𝑌 𝑊(𝒫, 𝑓) = 𝑊(𝒫, 𝑓′), where 𝑓′ ∶ 𝑋𝑌′ → 𝑌′ is the base change
of 𝑓.

If 𝑠, 𝑡 have ℛ and 𝑔 has 𝒬, then there exists an open subscheme 𝑊 ⊂ 𝑈′ such that 𝑊 ×𝑔,𝑈,𝑡
𝑅 = 𝑊(𝒫, ℎ).

Proof. Note that the following diagram is commutative

𝑈′ ×𝑔,𝑈,𝑡 𝑅 ×𝑡,𝑈,𝑡 𝑅 pr12
//

pr02
��

pr01
��

𝑅 ×𝑡,𝑈,𝑡 𝑅

pr1
��

pr0
��

𝑈′ ×𝑔,𝑈,𝑡 𝑅
pr1 // 𝑅

with both squares cartesian (this uses that the two maps 𝑡 ∘ pr𝑖 ∶ 𝑅 ×𝑡,𝑈,𝑡 𝑅 → 𝑈 are equal).
Combining this with the properties of diagram (36.3.0.3) we get a commutative diagram

𝑈′ ×𝑔,𝑈,𝑡 𝑅 ×𝑡,𝑈,𝑡 𝑅
𝑐∘(𝑖,1)

//

pr02
��

pr01
��

𝑅

𝑠

��
𝑡
��

𝑈′ ×𝑔,𝑈,𝑡 𝑅 ℎ // 𝑈

where both squares are cartesian.

Assume 𝑠, 𝑡 have ℛ and 𝑔 has 𝒬. Then ℎ has 𝒬 as a composition of 𝑠 (which has ℛ hence
𝒬) and a base change of 𝑔 (which has 𝒬). Thus 𝑊(𝒫, ℎ) ⊂ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 exists. By our
assumptions we have pr−1

01 (𝑊(𝒫, ℎ)) = pr−1
02 (𝑊(𝒫, ℎ)) since both are the largest open on

which 𝑐 ∘ (𝑖, 1) has 𝒫. Note that the projection 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑈′ has a section, namely
𝜎 ∶ 𝑈′ → 𝑈′ ×𝑔,𝑈,𝑡 𝑅, 𝑢′ ↦ (𝑢′, 𝑒(𝑔(𝑢′))). Also via the isomorphism

(𝑈′ ×𝑔,𝑈,𝑡 𝑅) ×𝑈′ (𝑈′ ×𝑔,𝑈,𝑡 𝑅) = 𝑈′ ×𝑔,𝑈,𝑡 𝑅 ×𝑡,𝑈,𝑡 𝑅

the two projections of the left hand side to𝑈′×𝑔,𝑈,𝑡𝑅 agreewith themorphisms pr01 and pr02
on the right hand side. Since pr−1

01 (𝑊(𝒫, ℎ)) = pr−1
02 (𝑊(𝒫, ℎ)) we conclude that 𝑊(𝒫, ℎ) is

the inverse image of a subset of 𝑈, which is necessarily the open set 𝑊 = 𝜎−1(𝑊(𝒫, ℎ)). �

Remark 36.5.2. Warning: Lemma 36.5.1 should be used with care. For example, it applies
to 𝒫 =``flat'', 𝒬 =``empty'', and ℛ =``flat and locally of finite presentation''. But given a
morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 the largest open 𝑊 ⊂ 𝑋 such that 𝑓|𝑊 is flat is not the
set of points where 𝑓 is flat!

Remark 36.5.3. Notwithstanding thewarning in Remark 36.5.2 there are some cases where
Lemma 36.5.1 can be used without causing too much ambiguity. We give a list. In each

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04LH
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case we omit the verification of assumptions (1) and (2) and we give references which imply
(3) and (4). Here is the list:

(1) 𝒬 = ℛ =``locally of finite type'', and 𝒫 =``relative dimension ≤ 𝑑''. See Mor-
phisms, Definition 24.28.1 and Morphisms, Lemmas 24.27.4 and 24.27.3.

(2) 𝒬 = ℛ =``locally of finite type'', and 𝒫 =``locally quasi-finite''. This is the case
𝑑 = 0 of the previous item, see Morphisms, Lemma 24.28.5.

(3) 𝒬 = ℛ =``locally of finite type'', and 𝒫 =``unramified''. See Morphisms, Lem-
mas 24.34.3 and 24.34.15.

What is interesting about the cases listed above is that we do not need to assume that 𝑠, 𝑡 are
flat to get a conclusion about the locus where the morphism ℎ has property 𝒫. We continue
the list:

(4) 𝒬 =``locally of finite presentation'', ℛ =``flat and locally of finite presentation'',
and 𝒫 =``flat''. See More on Morphisms, Theorem 33.11.1 and Lemma 33.11.2.

(5) 𝒬 =``locally of finite presentation'', ℛ =``flat and locally of finite presentation'',
and 𝒫 =``Cohen-Macaulay''. See More on Morphisms, Definition 33.15.1 and
More on Morphisms, Lemmas 33.15.3 and 33.15.4.

(6) 𝒬 =``locally of finite presentation'', ℛ =``flat and locally of finite presentation'',
and 𝒫 =``syntomic'' use Morphisms, Lemma 24.30.12 (the locus is automically
open).

(7) 𝒬 =``locally of finite presentation'', ℛ =``flat and locally of finite presentation'',
and 𝒫 =``smooth''. See Morphisms, Lemma 24.33.15 (the locus is automically
open).

(8) 𝒬 =``locally of finite presentation'', ℛ =``flat and locally of finite presentation'',
and 𝒫 =``étale''. See Morphisms, Lemma 24.35.17 (the locus is automically
open).

Here is the second result. The 𝑅-invariant open 𝑊 ⊂ 𝑈 should be thought of as the inverse
image of the largest open of [𝑈/𝑅] over which the morphism 𝑈 → [𝑈/𝑅] has property 𝒫.

Lemma 36.5.4. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. Let 𝜏 ∈
{𝑍𝑎𝑟𝑖𝑠𝑘𝑖, 𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}1. Let 𝒫 be a property of morphisms of schemes
which is 𝜏-local on the target (Descent, Definition 31.18.1). Assume {𝑠 ∶ 𝑅 → 𝑈} and
{𝑡 ∶ 𝑅 → 𝑈} are coverings for the 𝜏-topology. Let 𝑊 ⊂ 𝑈 be the maximal open subscheme
such that 𝑠|𝑠−1(𝑊) ∶ 𝑠−1(𝑊) → 𝑊 has property 𝒫. Then 𝑊 is 𝑅-invariant, see Groupoids,
Definition 35.16.1.

Proof. The existence and properties of the open 𝑊 ⊂ 𝑈 are described in Descent, Lemma
31.18.3. In Diagram (36.3.0.2) let 𝑊1 ⊂ 𝑅 be the maximal open subscheme over which
the morphism pr1 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 has property 𝒫. It follows from the aforementioned
Descent, Lemma 31.18.3 and the assumption that {𝑠 ∶ 𝑅 → 𝑈} and {𝑡 ∶ 𝑅 → 𝑈} are
coverings for the 𝜏-topology that 𝑡−1(𝑊) = 𝑊1 = 𝑠−1(𝑊) as desired. �

Lemma 36.5.5. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. Let 𝐺 → 𝑈 be
its stabilizer group scheme. Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Let 𝒫 be a property
of morphisms which is 𝜏-local on the target. Assume {𝑠 ∶ 𝑅 → 𝑈} and {𝑡 ∶ 𝑅 → 𝑈}
are coverings for the 𝜏-topology. Let 𝑊 ⊂ 𝑈 be the maximal open subscheme such that
𝐺𝑊 → 𝑊 has property 𝒫. Then 𝑊 is 𝑅-invariant (see Groupoids, Definition 35.16.1).

1The fact that 𝑓𝑝𝑞𝑐 is missing is not a typo.
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Proof. The existence and properties of the open 𝑊 ⊂ 𝑈 are described in Descent, Lemma
31.18.3. The morphism

𝐺 ×𝑈,𝑡 𝑅 ⟶ 𝑅 ×𝑠,𝑈 𝐺, (𝑔, 𝑟) ⟼ (𝑟, 𝑟−1 ∘ 𝑔 ∘ 𝑟)

is an isomorphism over 𝑅 (where ∘ denotes composition in the groupoid). Hence 𝑠−1(𝑊) =
𝑡−1(𝑊) by the properties of 𝑊 proved in the aforementioned Descent, Lemma 31.18.3. �

36.6. Comparing fibres

Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid scheme over 𝑆. Diagram (36.3.0.2) gives us a way to
compare the fibres of the map 𝑠 ∶ 𝑅 → 𝑈 in a groupoid. For a point 𝑢 ∈ 𝑈 we will denote
𝐹𝑢 = 𝑠−1(𝑢) the scheme theoretic fibre of 𝑠 ∶ 𝑅 → 𝑈 over 𝑢. For example the diagram
implies that if 𝑢, 𝑢′ ∈ 𝑈 are points such that 𝑠(𝑟) = 𝑢 and 𝑡(𝑟) = 𝑢′, then (𝐹𝑢)𝜅(𝑟) ≅ (𝐹𝑢′)𝜅(𝑟).
This is a special case of the more general and more precise Lemma 36.6.1 below. To see
this take 𝑟′ = 𝑖(𝑟).

A pair (𝑋, 𝑥) consisting of a scheme 𝑋 and a point 𝑥 ∈ 𝑋 is sometimes called the germ
of 𝑋 at 𝑥. A morphism of germs 𝑓 ∶ (𝑋, 𝑥) → (𝑆, 𝑠) is a morphism 𝑓 ∶ 𝑈 → 𝑆 defined
on an open neighbourhood of 𝑥 with 𝑓(𝑥) = 𝑠. Two such 𝑓, 𝑓′ are said to give the same
morphism of germs if and only if 𝑓 and 𝑓′ agree in some open neighbourhood of 𝑥. Let
𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. We temporarily introduce the following
concept: We say that two morphisms of germs 𝑓 ∶ (𝑋, 𝑥) → (𝑆, 𝑠) and 𝑓′ ∶ (𝑋′, 𝑥′) →
(𝑆′, 𝑠′) are isomorphic locally on the base in the 𝜏-topology, if there exists a pointed scheme
(𝑆″, 𝑠″) and morphisms of germs 𝑔 ∶ (𝑆″, 𝑠″) → (𝑆, 𝑠), and 𝑔′ ∶ (𝑆″, 𝑠″) → (𝑆′, 𝑠′) such
that

(1) 𝑔 and 𝑔′ are an open immersion (resp. étale, smooth, syntomic, flat and locally of
finite presentation) at 𝑠″,

(2) there exists an isomorphism

(𝑆″ ×𝑔,𝑆,𝑓 𝑋, �̃�) ≅ (𝑆″ ×𝑔′,𝑆′,𝑓′ 𝑋′, �̃�′)

of germs over the germ (𝑆″, 𝑠″) for some choice of points �̃� and �̃�′ lying over
(𝑠″, 𝑥) and (𝑠″, 𝑥′).

Finally, we simply say that the maps of germs 𝑓 ∶ (𝑋, 𝑥) → (𝑆, 𝑠) and 𝑓′ ∶ (𝑋′, 𝑥′) →
(𝑆′, 𝑠′) are flat locally on the base isomorphic if there exist 𝑆″, 𝑠″, 𝑔, 𝑔′ as above but with
(1) replaced by the condition that 𝑔 and 𝑔′ are flat at 𝑠″ (this is much weaker than any of
the 𝜏 conditions above as a flat morphism need not be open).

Lemma 36.6.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. Let 𝑟, 𝑟′ ∈ 𝑅
with 𝑡(𝑟) = 𝑡(𝑟′) in 𝑈. Set 𝑢 = 𝑠(𝑟), 𝑢′ = 𝑠(𝑟′). Denote 𝐹𝑢 = 𝑠−1(𝑢) and 𝐹𝑢′ = 𝑠−1(𝑢′) the
scheme theoretic fibres.

(1) There exists a common field extension 𝜅(𝑢) ⊂ 𝑘, 𝜅(𝑢′) ⊂ 𝑘 and an isomorphism
(𝐹𝑢)𝑘 ≅ (𝐹𝑢′)𝑘.

(2) We may choose the isomorphism of (1) such that a point lying over 𝑟 maps to a
point lying over 𝑟′.

(3) If the morphisms 𝑠, 𝑡 are flat then the morphisms of germs 𝑠 ∶ (𝑅, 𝑟) → (𝑈, 𝑢)
and 𝑠 ∶ (𝑅, 𝑟′) → (𝑈, 𝑢′) are flat locally on the base isomorphic.

(4) If the morphisms 𝑠, 𝑡 are étale (resp. smooth, syntomic, or flat and locally of finite
presentation) then the morphisms of germs 𝑠 ∶ (𝑅, 𝑟) → (𝑈, 𝑢) and 𝑠 ∶ (𝑅, 𝑟′) →
(𝑈, 𝑢′) are locally on the base isomorphic in the étale (resp. smooth, syntomic, or
fppf) topology.
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Proof. We repeatedly use the properties and the existence of diagram (36.3.0.2). By the
properties of the diagram (and Schemes, Lemma 21.17.5) there exists a point 𝜉 of 𝑅×𝑠,𝑈,𝑡 𝑅
with pr0(𝜉) = 𝑟 and 𝑐(𝜉) = 𝑟′. Let ̃𝑟 = pr1(𝜉) ∈ 𝑅.

Proof of (1). Set 𝑘 = 𝜅( ̃𝑟). Since 𝑡( ̃𝑟) = 𝑢 and 𝑠( ̃𝑟) = 𝑢′ we see that 𝑘 is a common extension
of both 𝜅(𝑢) and 𝜅(𝑢′) and in fact that both (𝐹𝑢)𝑘 and (𝐹𝑢′)𝑘 are isomorphic to the fibre of
pr1 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 over ̃𝑟. Hence (1) is proved.

Part (2) follows since the point 𝜉 maps to 𝑟, resp. 𝑟′.

Part (3) is clear from the above (using the point 𝜉 for ̃𝑢 and ̃𝑢′) and the definitions.

If 𝑠 and 𝑡 are flat and of finite presentation, then they are open morphisms (Morphisms,
Lemma 24.24.9). Hence the image of some affine open neighbourhood 𝑉″ of ̃𝑟 will cover
an open neighbourhood 𝑉 of 𝑢, resp. 𝑉′ of 𝑢′. These can be used to show that properties (1)
and (2) of the definition of ``locally on the base isomorphic in the 𝜏-topology''. �

36.7. Cohen-Macaulay presentations

Given any groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) with 𝑠, 𝑡 flat and locally of finite presentation there ex-
ists an ``equivalent'' groupoid (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) such that 𝑠′ and 𝑡′ are Cohen-Macaulay
morphisms (and locally of finite presentation). See More on Morphisms, Section 33.15
for more information on Cohen-Macaulay morphisms. Here ``equivalent'' can be taken to
mean that the quotient stacks [𝑈/𝑅] and [𝑈′/𝑅′] are equivalent stacks, see Groupoids in
Spaces, Section 52.19 and Section 52.24.

Lemma 36.7.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid over 𝑆. Assume 𝑠 and
𝑡 are flat and locally of finite presentation. Then there exists an open 𝑈′ ⊂ 𝑈 such that

(1) 𝑡−1(𝑈′) ⊂ 𝑅 is the largest open subscheme of 𝑅 on which the morphism 𝑠 is
Cohen-Macaulay,

(2) 𝑠−1(𝑈′) ⊂ 𝑅 is the largest open subscheme of 𝑅 on which the morphism 𝑡 is
Cohen-Macaulay,

(3) the morphism 𝑡|𝑠−1(𝑈′) ∶ 𝑠−1(𝑈′) → 𝑈 is surjective,
(4) the morphism 𝑠|𝑡−1(𝑈′) ∶ 𝑡−1(𝑈′) → 𝑈 is surjective, and
(5) the restriction𝑅′ = 𝑠−1(𝑈′)∩𝑡−1(𝑈′) of𝑅 to𝑈′ defines a groupoid (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′)

which has the property that the morphisms 𝑠′ and 𝑡′ are Cohen-Macaulay and lo-
cally of finite presentation.

Proof. Apply Lemma 36.5.1 with 𝑔 = id and 𝒬 =``locally of finite presentation'', ℛ =``flat
and locally of finite presentation'', and 𝒫 =``Cohen-Macaulay'', see Remark 36.5.3. This
gives us an open 𝑈′ ⊂ 𝑈 such that Let 𝑡−1(𝑈′) ⊂ 𝑅 is the largest open subscheme of 𝑅 on
which the morphism 𝑠 is Cohen-Macaulay. This proves (1). Let 𝑖 ∶ 𝑅 → 𝑅 be the inverse
of the groupoid. Since 𝑖 is an isomorphism, and 𝑠 ∘ 𝑖 = 𝑡 and 𝑡 ∘ 𝑖 = 𝑠 we see that 𝑠−1(𝑈′)
is also the largest open of 𝑅 on which 𝑡 is Cohen-Macaulay. This proves (2). By More on
Morphisms, Lemma 33.15.4 the open subset 𝑡−1(𝑈′) is dense in every fibre of 𝑠 ∶ 𝑅 → 𝑈.
This proves (3). Same argument for (4). Part (5) is a formal consequence of (1) and (2) and
the discussion of restrictions in Groupoids, Section 35.15. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0460


36.8. RESTRICTING GROUPOIDS 1951

36.8. Restricting groupoids

In this section we collect a bunch of lemmas on properties of groupoids which are inherited
by restrictions. Most of these lemmas can be proved by contemplating the defining diagram

(36.8.0.1)

𝑅′

��

//

𝑡′

%%

𝑠′

**𝑅 ×𝑠,𝑈 𝑈′ //

��

𝑈′

𝑔

��
𝑈′ ×𝑈,𝑡 𝑅

��

// 𝑅 𝑠 //

𝑡
��

𝑈

𝑈′ 𝑔 // 𝑈

of a restriction. See Groupoids, Lemma 35.15.1.

Lemma 36.8.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let 𝑔 ∶
𝑈′ → 𝑈 be a morphism of schemes. Let (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
via 𝑔.

(1) If 𝑠, 𝑡 are locally of finite type and 𝑔 is locally of finite type, then 𝑠′, 𝑡′ are locally
of finite type.

(2) If 𝑠, 𝑡 are locally of finite presentation and 𝑔 is locally of finite presentation, then
𝑠′, 𝑡′ are locally of finite presentation.

(3) If 𝑠, 𝑡 are flat and 𝑔 is flat, then 𝑠′, 𝑡′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition and arbitrary
base change, see Morphisms, Lemmas 24.14.3 and 24.14.4. Hence (1) is clear from Dia-
gram (36.8.0.1). For the other cases, see Morphisms, Lemmas 24.20.3, 24.20.4, 24.24.5,
and 24.24.7. �

The following lemma could have been used to prove the results of the preceding lemma in
a more uniform way.

Lemma 36.8.2. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let 𝑔 ∶
𝑈′ → 𝑈 be a morphism of schemes. Let (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
via 𝑔, and let ℎ = 𝑠 ∘ pr1 ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑈. If 𝒫 is a property of morphisms of schemes
such that

(1) ℎ has property 𝒫, and
(2) 𝒫 is preserved under base change,

then 𝑠′, 𝑡′ have property 𝒫.

Proof. This is clear as 𝑠′ is the base change of ℎ by Diagram (36.8.0.1) and 𝑡′ is isomorphic
to 𝑠′ as a morphism of schemes. �

Lemma 36.8.3. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let 𝑔 ∶
𝑈′ → 𝑈 and 𝑔′ ∶ 𝑈″ → 𝑈′ be morphisms of schemes. Set 𝑔″ = 𝑔∘𝑔′. Let (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′)
be the restriction of 𝑅 to 𝑈′. Let ℎ = 𝑠 ∘ pr1 ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑈, let ℎ′ = 𝑠′ ∘ pr1 ∶
𝑈″ ×𝑔′,𝑈′,𝑡 𝑅 → 𝑈′, and let ℎ″ = 𝑠 ∘ pr1 ∶ 𝑈″ ×𝑔″,𝑈,𝑡 𝑅 → 𝑈. The following diagram is
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commutative

𝑈″ ×𝑔′,𝑈′,𝑡 𝑅′

ℎ′

��

(𝑈′ ×𝑔,𝑈,𝑡 𝑅) ×𝑈 (𝑈″ ×𝑔″,𝑈,𝑡 𝑅)oo //

��

𝑈″ ×𝑔″,𝑈,𝑡 𝑅

ℎ″

��
𝑈′ 𝑈′ ×𝑔,𝑈,𝑡 𝑅

pr0oo ℎ // 𝑈

with both squares cartesian where the left upper horizontal arrow is given by the rule

(𝑈′ ×𝑔,𝑈,𝑡 𝑅) ×𝑈 (𝑈″ ×𝑔″,𝑈,𝑡 𝑅) ⟶ 𝑈″ ×𝑔′,𝑈′,𝑡 𝑅′

((𝑢′, 𝑟0), (𝑢″, 𝑟1)) ⟼ (𝑢″, (𝑐(𝑟1, 𝑖(𝑟0)), (𝑔′(𝑢″), 𝑢′)))

with notation as explained in the proof.

Proof. Wework this out by exploiting the functorial point of view and reducing the lemma
to a statement on arrows in restrictions of a groupoid category. In the last formula of the
lemma the notation ((𝑢′, 𝑟0), (𝑢″, 𝑟1)) indicates a 𝑇-valued point of (𝑈′×𝑔,𝑈,𝑡𝑅)×𝑈(𝑈″×𝑔″,𝑈,𝑡
𝑅). This means that 𝑢′, 𝑢″, 𝑟0, 𝑟1 are 𝑇-valued points of 𝑈′, 𝑈″, 𝑅, 𝑅 and that 𝑔(𝑢′) = 𝑡(𝑟0),
𝑔(𝑔′(𝑢″)) = 𝑔″(𝑢″) = 𝑡(𝑟1), and 𝑠(𝑟0) = 𝑠(𝑟1). It would be more correct here to write
𝑔 ∘ 𝑢′ = 𝑡 ∘ 𝑟0 and so on but this makes the notation even more unreadable. If we think of
𝑟1 and 𝑟0 as arrows in a groupoid category then we can represent this by the picture

𝑡(𝑟0) = 𝑔(𝑢′) 𝑠(𝑟0) = 𝑠(𝑟1)
𝑟0oo 𝑟1 // 𝑡(𝑟1) = 𝑔(𝑔′(𝑢″))

This diagram in particular demonstrates that the composition 𝑐(𝑟1, 𝑖(𝑟0)) makes sense. Re-
call that

𝑅′ = 𝑅 ×(𝑡,𝑠),𝑈×𝑆𝑈,𝑔×𝑔 𝑈′ ×𝑆 𝑈′

hence a 𝑇-valued point of 𝑅′ looks like (𝑟, (𝑢′
0, 𝑢′

1)) with 𝑡(𝑟) = 𝑔(𝑢′
0) and 𝑠(𝑟) = 𝑔(𝑢′

1). In
particular given ((𝑢′, 𝑟0), (𝑢″, 𝑟1)) as abovewe get the 𝑇-valued point (𝑐(𝑟1, 𝑖(𝑟0)), (𝑔′(𝑢″), 𝑢′))
of 𝑅′ because we have 𝑡(𝑐(𝑟1, 𝑖(𝑟0))) = 𝑡(𝑟1) = 𝑔(𝑔′(𝑢″)) and 𝑠(𝑐(𝑟1, 𝑖(𝑟0))) = 𝑠(𝑖(𝑟0)) =
𝑡(𝑟0) = 𝑔(𝑢′). We leave it to the reader to show that the left square commutes with this
definition.

To show that the left square is cartesian, suppose we are given (𝑣″, 𝑝′) and (𝑣′, 𝑝) which
are 𝑇-valued points of 𝑈″ ×𝑔′,𝑈′,𝑡 𝑅′ and 𝑈′ ×𝑔,𝑈,𝑡 𝑅 with 𝑣′ = 𝑠′(𝑝′). This also means
that 𝑔′(𝑣″) = 𝑡′(𝑝′) and 𝑔(𝑣′) = 𝑡(𝑝). By the discussion above we know that we can write
𝑝′ = (𝑟, (𝑢′

0, 𝑢′
1)) with 𝑡(𝑟) = 𝑔(𝑢′

0) and 𝑠(𝑟) = 𝑔(𝑢′
1). Using this notation we see that

𝑣′ = 𝑠′(𝑝′) = 𝑢′
1 and 𝑔′(𝑣″) = 𝑡′(𝑝′) = 𝑢′

0. Here is a picture

𝑠(𝑝)
𝑝 // 𝑔(𝑣′) = 𝑔(𝑢′

1) 𝑟 // 𝑔(𝑢′
0) = 𝑔(𝑔′(𝑣″))

What we have to show is that there exists a unique 𝑇-valued point ((𝑢′, 𝑟0), (𝑢″, 𝑟1)) as above
such that 𝑣′ = 𝑢′, 𝑝 = 𝑟0, 𝑣″ = 𝑢″ and 𝑝′ = (𝑐(𝑟1, 𝑖(𝑟0)), (𝑔′(𝑢″), 𝑢′)). Comparing the two
diagrams above it is clear that we have no choice but to take

((𝑢′, 𝑟0), (𝑢″, 𝑟1)) = ((𝑣′, 𝑝), (𝑣″, 𝑐(𝑟, 𝑝))

Some details omitted. �

Lemma 36.8.4. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let 𝑔 ∶
𝑈′ → 𝑈 and 𝑔′ ∶ 𝑈″ → 𝑈′ be morphisms of schemes. Set 𝑔″ = 𝑔∘𝑔′. Let (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′)
be the restriction of 𝑅 to 𝑈′. Let ℎ = 𝑠 ∘ pr1 ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑈, let ℎ′ = 𝑠′ ∘ pr1 ∶
𝑈″ ×𝑔′,𝑈′,𝑡 𝑅 → 𝑈′, and let ℎ″ = 𝑠 ∘ pr1 ∶ 𝑈″ ×𝑔″,𝑈,𝑡 𝑅 → 𝑈. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖,
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́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓, 𝑓𝑝𝑞𝑐}. Let 𝒫 be a property of morphisms of schemes which
is preserved under base change, and which is local on the target for the 𝜏-topology. If

(1) ℎ(𝑈′ ×𝑈 𝑅) is open in 𝑈,
(2) {ℎ ∶ 𝑈′ ×𝑈 𝑅 → ℎ(𝑈′ ×𝑈 𝑅)} is a 𝜏-covering,
(3) ℎ′ has property 𝒫,

then ℎ″ has property 𝒫. Conversely, if
(a) {𝑡 ∶ 𝑅 → 𝑈} is a 𝜏-covering,
(d) ℎ″ has property 𝒫,

then ℎ′ has property 𝒫.

Proof. This follows formally from the properties of the diagram of Lemma 36.8.3. In
the first case, note that the image of the morphism ℎ″ is contained in the image of ℎ, as
𝑔″ = 𝑔 ∘ 𝑔′. Hence we may replace the 𝑈 in the lower right corner of the diagram by
ℎ(𝑈′ ×𝑈 𝑅). This explains the significance of conditions (1) and (2) in the lemma. In the
second case, note that {pr0 ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑈′} is a 𝜏-covering as a base change of 𝜏 and
condition (a). �

36.9. Properties of groupoids on fields

A ``groupoid on a field'' indicates a groupoid scheme (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) where 𝑈 is the spectrum
of a field. It does not mean that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is defined over a field, more precisely, it does
not mean that the morphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are equal. Given any field 𝑘, an abstract group
𝐺 and a group homomorphism 𝜑 ∶ 𝐺 → Aut(𝑘) we obtain a groupoid scheme (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
over 𝐙 by setting

𝑈 = 𝑆𝑝𝑒𝑐(𝑘)

𝑅 = ∐𝑔∈𝐺
𝑆𝑝𝑒𝑐(𝑘)

𝑠 = ∐𝑔∈𝐺
𝑆𝑝𝑒𝑐(id𝑘)

𝑡 = ∐𝑔∈𝐺
𝑆𝑝𝑒𝑐(𝜑(𝑔))

𝑐 = composition in 𝐺

This example still is a groupoid scheme over 𝑆𝑝𝑒𝑐(𝑘𝐺). Hence, if 𝐺 is finite, then 𝑈 =
𝑆𝑝𝑒𝑐(𝑘) is finite over 𝑆𝑝𝑒𝑐(𝑘𝐺). In some sense our goal in this section is to show that
suitable finiteness conditions on 𝑠, 𝑡 force any groupoid on a field to be defined over a finite
index subfield 𝑘′ ⊂ 𝑘.

If 𝑘 is a field and (𝐺, 𝑚) is a group scheme over 𝑘 with structure morphism 𝑝 ∶ 𝐺 →
𝑆𝑝𝑒𝑐(𝑘), then (𝑆𝑝𝑒𝑐(𝑘), 𝐺, 𝑝, 𝑝, 𝑚) is an example of a groupoid on a field (and in this case
of course the whole structure is defined over a field). Hence this section can be viewed as
the analogue of Groupoids, Section 35.7.

Lemma 36.9.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. If 𝑈 is
the spectrum of a field, then the composition morphism 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 is open.

Proof. The composition is isomorphic to the projection map pr1 ∶ 𝑅 ×𝑡,𝑈,𝑡 𝑅 → 𝑅 by
Diagram (36.3.0.3). The projection is open by Morphisms, Lemma 24.22.4. �

Lemma 36.9.2. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. If 𝑈 is
the spectrum of a field, then 𝑅 is a separated scheme.
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Proof. By Groupoids, Lemma 35.7.2 the stabilizer group scheme 𝐺 → 𝑈 is separated.
By Groupoids, Lemma 35.18.2 the morphism 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is separated.
As 𝑈 is the spectrum of a field the scheme 𝑈 ×𝑆 𝑈 is affine (by the construction of fibre
products in Schemes, Section 21.17). Hence 𝑅 is a separated scheme, see Schemes, Lemma
21.21.13. �

Lemma 36.9.3. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field. For any points 𝑟, 𝑟′ ∈ 𝑅 there exists a field extension 𝑘 ⊂ 𝑘′

and points 𝑟1, 𝑟2 ∈ 𝑅 ×𝑠,𝑆𝑝𝑒𝑐(𝑘) 𝑆𝑝𝑒𝑐(𝑘′) and a diagram

𝑅 𝑅 ×𝑠,𝑆𝑝𝑒𝑐(𝑘) 𝑆𝑝𝑒𝑐(𝑘′)
pr0oo 𝜑 // 𝑅 ×𝑠,𝑆𝑝𝑒𝑐(𝑘) 𝑆𝑝𝑒𝑐(𝑘′)

pr0 // 𝑅

such that 𝜑 is an isomorphism of schemes over 𝑆𝑝𝑒𝑐(𝑘′), we have 𝜑(𝑟1) = 𝑟2, pr0(𝑟1) = 𝑟,
and pr0(𝑟2) = 𝑟′.

Proof. This is a special case of Lemma 36.6.1 parts (1) and (2). �

Lemma 36.9.4. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field. Let 𝑘 ⊂ 𝑘′ be a field extension, 𝑈′ = 𝑆𝑝𝑒𝑐(𝑘′) and let
(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) via 𝑈′ → 𝑈. In the defining diagram

𝑅′

��

//

𝑡′

%%

𝑠′

**

%%

𝑅 ×𝑠,𝑈 𝑈′ //

��

𝑈′

��
𝑈′ ×𝑈,𝑡 𝑅

��

// 𝑅 𝑠 //

𝑡
��

𝑈

𝑈′ // 𝑈

all the morphisms are surjective, flat, and universally open. The dotted arrow 𝑅′ → 𝑅 is
in addition affine.

Proof. The morphism 𝑈′ → 𝑈 equals 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘), hence is affine, surjective and
flat. The morphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈 and the morphism 𝑈′ → 𝑈 are universally open by
Morphisms, Lemma 24.22.4. Since 𝑅 is not empty and 𝑈 is the spectrum of a field the
morphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are surjective and flat. Then you conclude by using Morphisms,
Lemmas 24.9.4, 24.9.2, 24.22.3, 24.11.8, 24.11.7, 24.24.7, and 24.24.5. �

Lemma 36.9.5. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field. For any point 𝑟 ∈ 𝑅 there exist

(1) a field extension 𝑘 ⊂ 𝑘′ with 𝑘′ algebraically closed,
(2) a point 𝑟′ ∈ 𝑅′ where (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) is the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) via

𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘)
such that

(1) the point 𝑟′ maps to 𝑟 under the morphism 𝑅′ → 𝑅, and
(2) the maps 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑆𝑝𝑒𝑐(𝑘′) induce isomorphisms 𝑘′ → 𝜅(𝑟′).
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Proof. Translating the geometric statement into a statement on fields, this means that we
can find a diagram

𝑘′ 𝑘′
1

oo

𝑘′

𝜏

OO

𝜅(𝑟)
𝜎

``

𝑘𝑠
oo

𝑖
``

𝑘
𝑖

aa

𝑡

OO

where 𝑖 ∶ 𝑘 → 𝑘′ is the embedding of 𝑘 into 𝑘′, the maps 𝑠, 𝑡 ∶ 𝑘 → 𝜅(𝑟) are induced by
𝑠, 𝑡 ∶ 𝑅 → 𝑈, and the map 𝜏 ∶ 𝑘′ → 𝑘′ is an automorphism. To produce such a diagram
we may proceed in the following way:

(1) Pick 𝑖 ∶ 𝑘 → 𝑘′ a field map with 𝑘′ algebraically closed of very large transcen-
dence degree over 𝑘.

(2) Pick an embedding 𝜎 ∶ 𝜅(𝑟) → 𝑘′ such that 𝜎 ∘ 𝑠 = 𝑖. Such a 𝜎 exists because we
can just choose a transcendence basis {𝑥𝛼}𝛼∈𝐴 of 𝜅(𝑟) over 𝑘 and find 𝑦𝛼 ∈ 𝑘′,
𝛼 ∈ 𝐴 which are algebraically independent over 𝑖(𝑘), and map 𝑠(𝑘)({𝑥𝛼}) into
𝑘′ by the rules 𝑠(𝜆) ↦ 𝑖(𝜆) for 𝜆 ∈ 𝑘 and 𝑥𝛼 ↦ 𝑦𝛼 for 𝛼 ∈ 𝐴. Then extend to
𝜏 ∶ 𝜅(𝛼) → 𝑘′ using that 𝑘′ is algebraically closed.

(3) Pick an automorphism 𝜏 ∶ 𝑘′ → 𝑘′ such that 𝜏 ∘ 𝑖 = 𝜎 ∘ 𝑡. To do this pick a
transcendence basis {𝑥𝛼}𝛼∈𝐴 of 𝑘 over its prime field. On the one hand, extend
{𝑖(𝑥𝛼)} to a transcedence basis of 𝑘′ by adding {𝑦𝛽}𝛽∈𝐵 and extend {𝜎(𝑡(𝑥𝛼))} to
a transcendence basis of 𝑘′ by adding {𝑧𝛾}𝛾∈𝐶. As 𝑘′ is algebraically closed we
can extend the isomorphism 𝜎 ∘ 𝑡 ∘ 𝑖−1 ∶ 𝑖(𝑘) → 𝜎(𝑡(𝑘)) to an isomorphism 𝜏′ ∶
𝑖(𝑘) → 𝜎(𝑡(𝑘)) of their algebraic closures in 𝑘′. As 𝑘′ has large transcendence
degree we see that the sets 𝐵 and 𝐶 have the same cardinality. Thus we can use
a bijection 𝐵 → 𝐶 to extend 𝜏′ to an isomorphism

𝑖(𝑘)({𝑦𝛽}) ⟶ 𝜎(𝑡(𝑘))({𝑧𝛾})

and then since 𝑘′ is the algebraic closure of both sides we see that this extends to
an automorphism 𝜏 ∶ 𝑘′ → 𝑘′ as desired.

This proves the lemma. �

Lemma 36.9.6. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field. If 𝑟 ∈ 𝑅 is a point such that 𝑠, 𝑡 induce isomorphisms 𝑘 → 𝜅(𝑟),
then the map

𝑅 ⟶ 𝑅, 𝑥 ⟼ 𝑐(𝑟, 𝑥)
(see proof for precise notation) is an automorphism 𝑅 → 𝑅 which maps 𝑒 to 𝑟.

Proof. This is completely obvious if you think about groupoids in a functorial way. But
we will also spell it out completely. Denote 𝑎 ∶ 𝑈 → 𝑅 the morphism with image 𝑟 such
that 𝑠 ∘ 𝑎 = id𝑈 which exists by the hypothesis that 𝑠 ∶ 𝑘 → 𝜅(𝑟) is an isomorphism.
Similarly, denote 𝑏 ∶ 𝑈 → 𝑅 the morphism with image 𝑟 such that 𝑡 ∘ 𝑏 = id𝑈. Note that
𝑏 = 𝑎 ∘ (𝑡 ∘ 𝑎)−1, in particular 𝑎 ∘ 𝑠 ∘ 𝑏 = 𝑏.

Consider the morphism Ψ ∶ 𝑅 → 𝑅 given on 𝑇-valued points by

(𝑓 ∶ 𝑇 → 𝑅) ⟼ (𝑐(𝑎 ∘ 𝑡 ∘ 𝑓, 𝑓) ∶ 𝑇 → 𝑅)
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To see this is defined we have to check that 𝑠 ∘ 𝑎 ∘ 𝑡 ∘ 𝑓 = 𝑡 ∘ 𝑓 which is obvious as 𝑠 ∘ 𝑎 = 1.
Note that Φ(𝑒) = 𝑎, so that in order to prove the lemma it suffices to show that Φ is an
automorphism of 𝑅. Let Φ ∶ 𝑅 → 𝑅 be the morphism given on 𝑇-valued points by

(𝑔 ∶ 𝑇 → 𝑅) ⟼ (𝑐(𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔, 𝑔) ∶ 𝑇 → 𝑅).
This is defined because 𝑠 ∘ 𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔 = 𝑡 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔 = 𝑡 ∘ 𝑔. We claim that Φ and Ψ are inverse
to each other. To see this we compute

𝑐(𝑎 ∘ 𝑡 ∘ 𝑐(𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔, 𝑔), 𝑐(𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔, 𝑔))
= 𝑐(𝑎 ∘ 𝑡 ∘ 𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔, 𝑐(𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔, 𝑔))
= 𝑐(𝑎 ∘ 𝑠 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔, 𝑐(𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔, 𝑔))
= 𝑐(𝑏 ∘ 𝑡 ∘ 𝑔, 𝑐(𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔, 𝑔))
= 𝑐(𝑐(𝑏 ∘ 𝑡 ∘ 𝑔, 𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑔), 𝑔))
= 𝑐(𝑒, 𝑔)
= 𝑔

where we have used the relation 𝑎 ∘ 𝑠 ∘ 𝑏 = 𝑏 shown above. In the other direction we have
𝑐(𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑐(𝑎 ∘ 𝑡 ∘ 𝑓, 𝑓), 𝑐(𝑎 ∘ 𝑡 ∘ 𝑓, 𝑓))
= 𝑐(𝑖 ∘ 𝑏 ∘ 𝑡 ∘ 𝑎 ∘ 𝑡 ∘ 𝑓, 𝑐(𝑎 ∘ 𝑡 ∘ 𝑓, 𝑓))

= 𝑐(𝑖 ∘ 𝑎 ∘ (𝑡 ∘ 𝑎)−1 ∘ 𝑡 ∘ 𝑎 ∘ 𝑡 ∘ 𝑓, 𝑐(𝑎 ∘ 𝑡 ∘ 𝑓, 𝑓))
= 𝑐(𝑖 ∘ 𝑎 ∘ 𝑡 ∘ 𝑓, 𝑐(𝑎 ∘ 𝑡 ∘ 𝑓, 𝑓))
= 𝑐(𝑐(𝑖 ∘ 𝑎 ∘ 𝑡 ∘ 𝑓, 𝑎 ∘ 𝑡 ∘ 𝑓), 𝑓)
= 𝑐(𝑒, 𝑓)
= 𝑓

The lemma is proved. �

Lemma 36.9.7. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field. By abuse of notation denote 𝑒 ∈ 𝑅 the image of the identity
morphism 𝑒 ∶ 𝑈 → 𝑅. Then

(1) every local ring 𝒪𝑅,𝑟 of 𝑅 has a unique minimal prime ideal,
(2) there is exactly one irreducible component 𝑍 of 𝑅 passing through 𝑒, and
(3) 𝑍 is geometrically irreducible over 𝑘 via either 𝑠 or 𝑡.

Proof. Let 𝑟 ∈ 𝑅 be a point. In this proof we will use the correspondence between irre-
ducible components of 𝑅 passing through a point 𝑟 and minimal primes of the local ring
𝒪𝑅,𝑟 without further mention. Choose 𝑘 ⊂ 𝑘′ and 𝑟′ ∈ 𝑅′ as in Lemma 36.9.5. Note that
𝒪𝑅,𝑟 → 𝒪𝑅′,𝑟′ is faithfully flat and local, see Lemma 36.9.4. Hence the result for 𝑟′ ∈ 𝑅′

implies the result for 𝑟 ∈ 𝑅. In other words we may assume that 𝑠, 𝑡 ∶ 𝑘 → 𝜅(𝑟) are iso-
morphisms. By Lemma 36.9.6 there exists an automorphism moving 𝑒 to 𝑟. Hence we may
assume 𝑟 = 𝑒, i.e., part (1) follows from part (2).
We first prove (2) in case 𝑘 is separably algebraically closed. Namely, let 𝑋, 𝑌 ⊂ 𝑅 be
irreducible components passing through 𝑒. Then by Varieties, Lemma 28.6.4 and 28.6.3
the scheme 𝑋 ×𝑠,𝑈,𝑡 𝑌 is irreducible as well. Hence 𝑐(𝑋 ×𝑠,𝑈,𝑡 𝑌) ⊂ 𝑅 is an irreducible
subset. We claim it contains both 𝑋 and 𝑌 (as subsets of 𝑅). Namely, let 𝑇 be the spectrum
of a field. If 𝑥 ∶ 𝑇 → 𝑋 is a 𝑇-valued point of 𝑋, then 𝑐(𝑥, 𝑒 ∘ 𝑠 ∘ 𝑥) = 𝑥 and 𝑒 ∘ 𝑠 ∘ 𝑥 factors
through 𝑌 as 𝑒 ∈ 𝑌. Similarly for points of 𝑌. This clearly implies that 𝑋 = 𝑌, i.e., there is
a unique irreducible component of 𝑅 passing through 𝑒.
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Proof of (2) and (3) in general. Let 𝑘 ⊂ 𝑘′ be a separable algebraic closure, and let
(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) via 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘). By the pre-
vious paragraph there is exactly one irreducible component 𝑍′ of 𝑅′ passing through 𝑒′.
Denote 𝑒″ ∈ 𝑅 ×𝑠,𝑈 𝑈′ the base change of 𝑒. As 𝑅′ → 𝑅 ×𝑠,𝑈 𝑈′ is faithfully flat, see
Lemma 36.9.4, and 𝑒′ ↦ 𝑒″ we see that there is exactly one irreducible component 𝑍″ of
𝑅 ×𝑠,𝑘 𝑘′ passing through 𝑒″. This implies, as 𝑅 ×𝑘 𝑘′ → 𝑅 is faithfully flat, that there is
exactly one irreducible component 𝑍 of 𝑅 passing through 𝑒. This proves (2).

To prove (3) let 𝑍‴ ⊂ 𝑅 ×𝑘 𝑘′ be an arbitrary irreducible component of 𝑍 ×𝑘 𝑘′. By Vari-
eties, Lemma 28.6.12 we see that 𝑍‴ = 𝜎(𝑍″) for some 𝜎 ∈ Gal(𝑘′/𝑘). Since 𝜎(𝑒″) = 𝑒″

we see that 𝑒″ ∈ 𝑍‴ and hence 𝑍‴ = 𝑍″. This means that 𝑍 is geometrically irreducible
over 𝑆𝑝𝑒𝑐(𝑘) via the morphism 𝑠. The same argument implies that 𝑍 is geometrically irre-
ducible over 𝑆𝑝𝑒𝑐(𝑘) via the morphism 𝑡. �

Lemma 36.9.8. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field. Assume 𝑠, 𝑡 are locally of finite type. Then

(1) 𝑅 is equidimensional,
(2) dim(𝑅) = dim𝑟(𝑅) for all 𝑟 ∈ 𝑅,
(3) for any 𝑟 ∈ 𝑅 we have trdeg𝑠(𝑘)(𝜅(𝑟)) = trdeg𝑡(𝑘)(𝜅(𝑟)), and
(4) for any closed point 𝑟 ∈ 𝑅 we have dim(𝑅) = dim(𝒪𝑅,𝑟).

Proof. Let 𝑟, 𝑟′ ∈ 𝑅. Then dim𝑟(𝑅) = dim𝑟′(𝑅) by Lemma 36.9.3 and Morphisms,
Lemma 24.27.3. By Morphisms, Lemma 24.27.1 we have

dim𝑟(𝑅) = dim(𝒪𝑅,𝑟) + trdeg𝑠(𝑘)(𝜅(𝑟)) = dim(𝒪𝑅,𝑟) + trdeg𝑡(𝑘)(𝜅(𝑟)).

On the other hand, the dimension of 𝑅 (or any open subset of 𝑅) is the supremum of the
dimensions of the local rings of of 𝑅, see Properties, Lemma 23.11.4. Clearly this is max-
imal for closed points 𝑟 in which case trdeg𝑘(𝜅(𝑟)) = 0 (by the Hilbert Nullstellensatz, see
Morphisms, Section 24.15). Hence the lemma follows. �

Lemma 36.9.9. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Assume
𝑈 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field. Assume 𝑠, 𝑡 are locally of finite type. Then dim(𝑅) = dim(𝐺)
where 𝐺 is the stabilizer group scheme of 𝑅.

Proof. Let 𝑍 ⊂ 𝑅 be the irreducible component passing through 𝑒 (see Lemma 36.9.7)
thought of as an integral closed subscheme of 𝑅. Let 𝑘′

𝑠, resp. 𝑘′
𝑡 be the integral closure of

𝑠(𝑘), resp. 𝑡(𝑘) in Γ(𝑍, 𝒪𝑍). Recall that 𝑘′
𝑠 and 𝑘′

𝑡 are fields, see Varieties, Lemma 28.17.4.
By Varieties, Proposition 28.18.1 we have 𝑘′

𝑠 = 𝑘′
𝑡 as subrings of Γ(𝑍, 𝒪𝑍). As 𝑒 factors

through 𝑍 we obtain a commutative diagram

𝑘

𝑡 ##

1

))Γ(𝑍, 𝒪𝑍) 𝑒 // 𝑘

𝑘

𝑠
;;

1

55

This on the one hand shows that 𝑘′
𝑠 = 𝑠(𝑘), 𝑘′

𝑡 = 𝑡(𝑘), so 𝑠(𝑘) = 𝑡(𝑘), which combined with
the diagram above implies that 𝑠 = 𝑡! In other words, we conclude that 𝑍 is a closed sub-
scheme of 𝐺 = 𝑅×(𝑡,𝑠),𝑈×𝑆𝑈,Δ 𝑈. The lemma follows as both 𝐺 and 𝑅 are equidimensional,
see Lemma 36.9.8 and Groupoids, Lemma 35.7.5. �
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Remark 36.9.10. Warning: Lemma 36.9.9 is wrong without the condition that 𝑠 and 𝑡 are
locally of finite type. An easy example is to start with the action

𝐆𝑚,𝐐 ×𝐐 𝐀1
𝐐 → 𝐀1

𝐐

and restrict the corresponding groupoid scheme to the generic point of 𝐀1
𝐐. In other words

restrict via the morphism 𝑆𝑝𝑒𝑐(𝐐(𝑥)) → 𝑆𝑝𝑒𝑐(𝐐[𝑥]) = 𝐀1
𝐐. Then you get a groupoid

scheme (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) with 𝑈 = 𝑆𝑝𝑒𝑐(𝐐(𝑥)) and

𝑅 = 𝑆𝑝𝑒𝑐 (𝐐(𝑥)[𝑦] [
1

𝑃(𝑥𝑦)
, 𝑃 ∈ 𝐐[𝑇], 𝑃≠0])

In this case dim(𝑅) = 1 and dim(𝐺) = 0.

Lemma 36.9.11. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
(1) 𝑈 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field,
(2) 𝑠, 𝑡 are locally of finite type, and
(3) the characteristic of 𝑘 is zero.

Then 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are smooth.

Proof. By Lemma 36.4.1 the sheaf of differentials of 𝑅 → 𝑈 is free. Hence smoothness
follows from Varieties, Lemma 28.15.1. �

Lemma 36.9.12. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
(1) 𝑈 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 a field,
(2) 𝑠, 𝑡 are locally of finite type,
(3) 𝑅 is reduced, and
(4) 𝑘 is perfect.

Then 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are smooth.

Proof. By Lemma 36.4.1 the sheaf Ω𝑅/𝑈 is free. Hence the lemma follows from Varieties,
Lemma 28.15.2. �

36.10. Morphisms of groupoids on fields

This section studies morphisms between groupoids on fields. This is slightly more general,
but very akin to, studying morphisms of groupschemes over a field.

Situation 36.10.1. Let 𝑆 be a scheme. Let 𝑈 = 𝑆𝑝𝑒𝑐(𝑘) be a scheme over 𝑆 with 𝑘 a
field. Let (𝑈, 𝑅1, 𝑠1, 𝑡1, 𝑐1), (𝑈, 𝑅2, 𝑠2, 𝑡2, 𝑐2) be groupoid schemes over 𝑆 with identical
first component. Let 𝑎 ∶ 𝑅1 → 𝑅2 be a morphism such that (id𝑈, 𝑎) defines a morphism of
groupoid schemes over 𝑆, see Groupoids, Definition 35.11.1. In particular, the following
diagrams commute

𝑅2
𝑡2

''
𝑠2

��

𝑎
  
𝑅1

𝑡1
��

𝑠1
// 𝑈

𝑈

𝑅1 ×𝑠1,𝑈,𝑡1
𝑅1 𝑐1

//

𝑎×𝑎
��

𝑅1

𝑎
��

𝑅2 ×𝑠2,𝑈,𝑡2
𝑅2

𝑐2 // 𝑅2

The following lemma is a generalization of Groupoids, Lemma 35.7.11.
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Lemma 36.10.2. Notation and assumptions as in Situation 36.10.1. If 𝑎(𝑅1) is open in 𝑅2,
then 𝑎(𝑅1) is closed in 𝑅2.

Proof. Let 𝑟2 ∈ 𝑅2 be a point in the closure of 𝑎(𝑅1). We want to show 𝑟2 ∈ 𝑎(𝑅1). Pick
𝑘 ⊂ 𝑘′ and 𝑟′

2 ∈ 𝑅′
2 adapted to (𝑈, 𝑅2, 𝑠2, 𝑡2, 𝑐2) and 𝑟2 as in Lemma 36.9.5. Let 𝑅′

𝑖 be the
restriction of 𝑅𝑖 via the morphism 𝑈′ = 𝑆𝑝𝑒𝑐(𝑘′) → 𝑈 = 𝑆𝑝𝑒𝑐(𝑘). Let 𝑎′ ∶ 𝑅′

1 → 𝑅′
2 be

the base change of 𝑎. The diagram

𝑅′
1 𝑎′

//

𝑝1

��

𝑅′
2

𝑝2

��
𝑅1

𝑎 // 𝑅2

is a fibre square. Hence the image of 𝑎′ is the inverse image of the image of 𝑎 via the
morphism 𝑝2 ∶ 𝑅′

2 → 𝑅2. By Lemma 36.9.4 the map 𝑝2 is surjective and open. Hence
by Topology, Lemma 5.15.2 we see that 𝑟′

2 is in the closure of 𝑎′(𝑅′
1). This means that we

may assume that 𝑟2 ∈ 𝑅2 has the property that the maps 𝑘 → 𝜅(𝑟2) induced by 𝑠2 and 𝑡2
are isomorphisms.

In this case we can use Lemma 36.9.6. This lemma implies 𝑐(𝑟2, 𝑎(𝑅1)) is an open neigh-
bourhood of 𝑟2. Hence 𝑎(𝑅1)∩𝑐(𝑟2, 𝑎(𝑅1))≠∅ as we assumed that 𝑟2 was a point of the clo-
sure of 𝑎(𝑅1). Using the inverse of 𝑅2 and 𝑅1 we see this means 𝑐2(𝑎(𝑅1), 𝑎(𝑅1)) contains
𝑟2. As 𝑐2(𝑎(𝑅1), 𝑎(𝑅1)) ⊂ 𝑎(𝑐1(𝑅1, 𝑅1)) = 𝑎(𝑅1) we conclude 𝑟2 ∈ 𝑎(𝑅1) as desired. �

Lemma 36.10.3. Notation and assumptions as in Situation 36.10.1. Let 𝑍 ⊂ 𝑅2 be the
reduced closed subscheme (see Schemes, Definition 21.12.5) whose underlying topologi-
cal space is the closure of the image of 𝑎 ∶ 𝑅1 → 𝑅2. Then 𝑐2(𝑍 ×𝑠2,𝑈,𝑡2

𝑍) ⊂ 𝑍 set
theoretically.

Proof. Consider the commutative diagram

𝑅1 ×𝑠1,𝑈,𝑡1
𝑅1

//

��

𝑅1

��
𝑅2 ×𝑠2,𝑈,𝑡2

𝑅2
// 𝑅2

By Varieties, Lemma 28.14.2 the closure of the image of the left vertical arrow is (set
theoretically) 𝑍 ×𝑠2,𝑈,𝑡2

𝑍. Hence the result follows. �

Lemma 36.10.4. Notation and assumptions as in Situation 36.10.1. Assume that 𝑘 is per-
fect. Let 𝑍 ⊂ 𝑅2 be the reduced closed subscheme (see Schemes, Definition 21.12.5) whose
underlying topological space is the closure of the image of 𝑎 ∶ 𝑅1 → 𝑅2. Then

(𝑈, 𝑍, 𝑠2|𝑍, 𝑡2|𝑍, 𝑐2|𝑍)

is a groupoid scheme over 𝑆.

Proof. Wefirst explain why the statement makes sense. Since 𝑈 is the spectrum of a perfect
field 𝑘, the scheme 𝑍 is geometrically reduced over 𝑘 (via either projection), see Varieties,
Lemma 28.4.3. Hence the scheme 𝑍 ×𝑠2,𝑈,𝑡2

𝑍 ⊂ 𝑍 is reduced, see Varieties, Lemma
28.4.7. Hence by Lemma 36.10.3 we see that 𝑐 induces a morphism 𝑍 ×𝑠2,𝑈,𝑡2

𝑍 → 𝑍.
Finally, it is clear that 𝑒2 factors through 𝑍 and that the map 𝑖2 ∶ 𝑅2 → 𝑅2 preserves
𝑍. Since the morphisms of the septtuple (𝑈, 𝑅2, 𝑠2, 𝑡2, 𝑐2, 𝑒2, 𝑖2) satisfies the axioms of a
groupoid, it follows that after restricting to 𝑍 they satisfy the axioms. �
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Lemma 36.10.5. Notation and assumptions as in Situation 36.10.1. If the image 𝑎(𝑅1) is
a locally closed subset of 𝑅2 then it is a closed subset.

Proof. Let 𝑘 ⊂ 𝑘′ be a perfect closure of the field 𝑘. Let 𝑅′
𝑖 be the restriction of 𝑅𝑖 via

the morphism 𝑈′ = 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘). Note that the morphisms 𝑅′
𝑖 → 𝑅𝑖 are universal

homeomorphisms as compositions of base changes of the universal homeomorphism 𝑈′ →
𝑈 (see diagram in statement of Lemma 36.9.4). Hence it suffices to prove that 𝑎′(𝑅′

1) is
closed in 𝑅′

2. In other words, we may assume that 𝑘 is perfect.

If 𝑘 is perfect, then the closure of the image is a groupoid scheme 𝑍 ⊂ 𝑅2, by Lemma
36.10.4. By the same lemma applied to id𝑅1

∶ 𝑅1 → 𝑅1 we see that (𝑅2)𝑟𝑒𝑑 is a groupoid
scheme. Thus we may apply Lemma 36.10.2 to the morphism 𝑎|(𝑅2)𝑟𝑒𝑑

∶ (𝑅2)𝑟𝑒𝑑 → 𝑍 to
conclude that 𝑍 equals the image of 𝑎. �

Lemma 36.10.6. Notation and assumptions as in Situation 36.10.1. Assume that 𝑎 ∶ 𝑅1 →
𝑅2 is a quasi-compact morphism. Let 𝑍 ⊂ 𝑅2 be the scheme theoretic image (see Mor-
phisms, Definition 24.4.2) of 𝑎 ∶ 𝑅1 → 𝑅2. Then

(𝑈, 𝑍, 𝑠2|𝑍, 𝑡2|𝑍, 𝑐2|𝑍)

is a groupoid scheme over 𝑆.

Proof. The main difficulty is to show that 𝑐2|𝑍×𝑠2,𝑈,𝑡2𝑍 maps into 𝑍. Consider the commu-
tative diagram

𝑅1 ×𝑠1,𝑈,𝑡1
𝑅1

//

𝑎×𝑎
��

𝑅1

��
𝑅2 ×𝑠2,𝑈,𝑡2

𝑅2
// 𝑅2

By Varieties, Lemma 28.14.3 we see that the scheme theoretic image of 𝑎×𝑎 is 𝑍×𝑠2,𝑈,𝑡2
𝑍.

By the commutativity of the diagram we conclude that 𝑍 ×𝑠2,𝑈,𝑡2
𝑍 maps into 𝑍 by the

bottom horizontal arrow. As in the proof of Lemma 36.10.4 it is also true that 𝑖2(𝑍) ⊂ 𝑍
and that 𝑒2 factors through 𝑍. Hence we conclude as in the proof of that lemma. �

Lemma 36.10.7. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
𝑈 is the spectrum of a field. Let 𝑍 ⊂ 𝑈 ×𝑆 𝑈 be the reduced closed subscheme (see
Schemes, Definition 21.12.5) whose underlying topological space is the closure of the image
of 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈. Then pr02(𝑍 ×pr1,𝑈,pr0

𝑍) ⊂ 𝑍 set theoretically.

Proof. As (𝑈, 𝑈 ×𝑆 𝑈, pr1, pr0, pr02) is a groupoid scheme over 𝑆 this is a special case of
Lemma 36.10.3. But we can also prove it directly as follows.

Write 𝑈 = 𝑆𝑝𝑒𝑐(𝑘). Denote 𝑅𝑠 (resp. 𝑍𝑠, resp. 𝑈2
𝑠) the scheme 𝑅 (resp. 𝑍, resp. 𝑈 ×𝑆 𝑈)

viewed as a scheme over 𝑘 via 𝑠 (resp. pr1|𝑍, resp. pr1). Simlarly, denote 𝑡𝑅 (resp. 𝑡𝑍, resp.
𝑡𝑈2) the scheme 𝑅 (resp. 𝑍, resp. 𝑈×𝑆 𝑈) viewed as a scheme over 𝑘 via 𝑡 (resp. pr0|𝑍, resp.
pr0). The morphism 𝑗 induces morphisms of schemes 𝑗𝑠 ∶ 𝑅𝑠 → 𝑈2

𝑠 and 𝑡𝑗 ∶ 𝑡𝑅 → 𝑡𝑈2

over 𝑘. Consider the commutative diagram

𝑅𝑠 ×𝑘 𝑡𝑅
𝑐 //

𝑗𝑠×𝑡𝑗
��

𝑅

𝑗
��

𝑈2
𝑠 ×𝑘 𝑡𝑈2 // 𝑈 ×𝑆 𝑈
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By Varieties, Lemma 28.14.2 we see that the closure of the image of 𝑗𝑠 × 𝑡𝑗 is 𝑍𝑠 ×𝑘 𝑡𝑍. By
the commutativity of the diagram we conclude that 𝑍𝑠 ×𝑘 𝑡𝑍 maps into 𝑍 by the bottom
horizontal arrow. �

Lemma 36.10.8. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over𝑆. Assume
𝑈 is the spectrum of a perfect field. Let 𝑍 ⊂ 𝑈 ×𝑆 𝑈 be the reduced closed subscheme (see
Schemes, Definition 21.12.5) whose underlying topological space is the closure of the image
of 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈. Then

(𝑈, 𝑍, pr0|𝑍, pr1|𝑍, pr02|𝑍×pr1,𝑈,pr0𝑍)

is a groupoid scheme over 𝑆.

Proof. As (𝑈, 𝑈 ×𝑆 𝑈, pr1, pr0, pr02) is a groupoid scheme over 𝑆 this is a special case of
Lemma 36.10.4. But we can also prove it directly as follows.

We first explain why the statement makes sense. Since 𝑈 is the spectrum of a perfect
field 𝑘, the scheme 𝑍 is geometrically reduced over 𝑘 (via either projection), see Varieties,
Lemma 28.4.3. Hence the scheme 𝑍 ×pr1,𝑈,pr0 𝑍 ⊂ 𝑍 is reduced, see Varieties, Lemma
28.4.7. Hence by Lemma 36.10.7 we see that pr02 induces a morphism 𝑍 ×pr1,𝑈,pr0 𝑍 → 𝑍.
Finally, it is clear that Δ𝑈/𝑆 factors through 𝑍 and that the map 𝜎 ∶ 𝑈 ×𝑆 𝑈 → 𝑈 ×𝑆 𝑈,
(𝑥, 𝑦) ↦ (𝑦, 𝑥) preserves 𝑍. Since (𝑈, 𝑈 ×𝑆 𝑈, pr0, pr1, pr02, Δ𝑈/𝑆, 𝜎) satisfies the axioms
of a groupoid, it follows that after restricting to 𝑍 they satisfy the axioms. �

Lemma 36.10.9. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. As-
sume 𝑈 is the spectrum of a field and assume 𝑅 is quasi-compact (equivalently 𝑠, 𝑡 are
quasi-compact). Let 𝑍 ⊂ 𝑈 ×𝑆 𝑈 be the scheme theoretic image (see Morphisms, Defini-
tion 24.4.2) of 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈. Then

(𝑈, 𝑍, pr0|𝑍, pr1|𝑍, pr02|𝑍×pr1,𝑈,pr0𝑍)

is a groupoid scheme over 𝑆.

Proof. As (𝑈, 𝑈 ×𝑆 𝑈, pr1, pr0, pr02) is a groupoid scheme over 𝑆 this is a special case of
Lemma 36.10.6. But we can also prove it directly as follows.

Themain difficulty is to show that pr02|𝑍×pr1,𝑈,pr0𝑍 maps into 𝑍. Write 𝑈 = 𝑆𝑝𝑒𝑐(𝑘). Denote
𝑅𝑠 (resp. 𝑍𝑠, resp. 𝑈2

𝑠) the scheme 𝑅 (resp. 𝑍, resp. 𝑈 ×𝑆 𝑈) viewed as a scheme over 𝑘
via 𝑠 (resp. pr1|𝑍, resp. pr1). Simlarly, denote 𝑡𝑅 (resp. 𝑡𝑍, resp. 𝑡𝑈2) the scheme 𝑅 (resp.
𝑍, resp. 𝑈 ×𝑆 𝑈) viewed as a scheme over 𝑘 via 𝑡 (resp. pr0|𝑍, resp. pr0). The morphism
𝑗 induces morphisms of schemes 𝑗𝑠 ∶ 𝑅𝑠 → 𝑈2

𝑠 and 𝑡𝑗 ∶ 𝑡𝑅 → 𝑡𝑈2 over 𝑘. Consider the
commutative diagram

𝑅𝑠 ×𝑘 𝑡𝑅
𝑐 //

𝑗𝑠×𝑡𝑗
��

𝑅

𝑗
��

𝑈2
𝑠 ×𝑘 𝑡𝑈2 // 𝑈 ×𝑆 𝑈

By Varieties, Lemma 28.14.3 we see that the scheme theoretic image of 𝑗𝑠 × 𝑡𝑗 is 𝑍𝑠 ×𝑘 𝑡𝑍.
By the commutativity of the diagram we conclude that 𝑍𝑠 ×𝑘 𝑡𝑍 maps into 𝑍 by the bottom
horizontal arrow. As in the proof of Lemma 36.10.8 it is also true that 𝜎(𝑍) ⊂ 𝑍 and that
Δ𝑈/𝑆 factors through 𝑍. Hence we conclude as in the proof of that lemma. �
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36.11. Slicing groupoids

The following lemma shows that wemay slice a Cohen-Macaulay groupoid scheme in order
to reduce the dimension of the fibres, provided that the dimension of the stabilizer is small.
This is an essential step in the process of improving a given presentation of a quotient stack.

Situation 36.11.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆.
Let 𝑔 ∶ 𝑈′ → 𝑈 be a morphism of schemes. Let 𝑢 ∈ 𝑈 be a point, and let 𝑢′ ∈ 𝑈′ be
a point such that 𝑔(𝑢′) = 𝑢. Given these data, denote (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) the restriction of
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) via the morphism 𝑔. Denote 𝐺 → 𝑈 the stabilizer group scheme of 𝑅, which
is a locally closed subscheme of 𝑅. Denote ℎ the composition

ℎ = 𝑠 ∘ pr1 ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 ⟶ 𝑈.

Denote 𝐹𝑢 = 𝑠−1(𝑢) (scheme theoretic fibre), and 𝐺𝑢 the scheme theoretic fibre of 𝐺 over
𝑢. Similarly for 𝑅′ we denote 𝐹′

𝑢′ = (𝑠′)−1(𝑢′). Because 𝑔(𝑢′) = 𝑢 we have

𝐹′
𝑢′ = ℎ−1(𝑢) ×𝑆𝑝𝑒𝑐(𝜅(𝑢)) 𝑆𝑝𝑒𝑐(𝜅(𝑢′)).

The point 𝑒(𝑢) ∈ 𝑅 may be viewed as a point on 𝐺𝑢 and 𝐹𝑢 also, and 𝑒′(𝑢′) is a point of 𝑅′

(resp. 𝐺′
𝑢′, resp. 𝐹′

𝑢′) which maps to 𝑒(𝑢) in 𝑅 (resp. 𝐺𝑢, resp. 𝐹𝑢).

Lemma 36.11.2. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid scheme over𝑆. Let
𝐺 → 𝑈 be the stabilizer group scheme. Assume 𝑠 and 𝑡 are Cohen-Macaulay and locally
of finite presentation. Let 𝑢 ∈ 𝑈 be a finite type point of the scheme 𝑈, see Morphisms,
Definition 24.15.3. With notation as in Situation 36.11.1, set

𝑑1 = dim(𝐺𝑢), 𝑑2 = dim𝑒(𝑢)(𝐹𝑢).

If 𝑑2 > 𝑑1, then there exist an affine scheme 𝑈′ and a morphism 𝑔 ∶ 𝑈′ → 𝑈 such that
(with notation as in Situation 36.11.1)

(1) 𝑔 is an immersion
(2) 𝑢 ∈ 𝑈′,
(3) 𝑔 is locally of finite presentation,
(4) the morphism ℎ ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 ⟶ 𝑈 is Cohen-Macaulay at (𝑢, 𝑒(𝑢)), and
(5) we have dim𝑒′(𝑢)(𝐹′

𝑢) = 𝑑2 − 1.

Proof. Let𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑈 be an affine neighbourhood of 𝑢 such that 𝑢 corresponds to a closed
point of 𝑈, see Morphisms, Lemma 24.15.4. Let 𝑆𝑝𝑒𝑐(𝐵) ⊂ 𝑅 be an affine neighbourhood
of 𝑒(𝑢) which maps via 𝑗 into the open 𝑆𝑝𝑒𝑐(𝐴) ×𝑆 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑈 ×𝑆 𝑈. Let 𝔪 ⊂ 𝐴 be
the maximal ideal corresponding to 𝑢. Let 𝔮 ⊂ 𝐵 be the prime ideal corresponding to 𝑒(𝑢).
Pictures:

𝐵 𝐴𝑠
oo

𝐴

𝑡

OO

and

𝐵𝔮 𝐴𝔪𝑠
oo

𝐴𝔪

𝑡

OO

Note that the two induced maps 𝑠, 𝑡 ∶ 𝜅(𝔪) → 𝜅(𝔮) are equal and isomorphisms as 𝑠 ∘ 𝑒 =
𝑡∘𝑒 = id𝑈. In particular we see that 𝔮 is a maximal ideal as well. The ringmaps 𝑠, 𝑡 ∶ 𝐴 → 𝐵
are of finite presentation and flat. By assumption the ring

𝒪𝐹𝑢,𝑒(𝑢) = 𝐵𝔮/𝑠(𝔪)𝐵𝔮

is Cohen-Macaulay of dimension 𝑑2. The equality of dimension holds by Morphisms,
Lemma 24.27.1.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04MY
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Let 𝑅″ be the restriction of 𝑅 to 𝑢 = 𝑆𝑝𝑒𝑐(𝜅(𝑢)) via the morphism 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑈.
As 𝑢 → 𝑈 is locally of finite type, we see that (𝑆𝑝𝑒𝑐(𝜅(𝑢)), 𝑅″, 𝑠″, 𝑡″, 𝑐″) is a groupoid
scheme with 𝑠″, 𝑡″ locally of finite type, see Lemma 36.8.1. By Lemma 36.9.9 this im-
plies that dim(𝐺″) = dim(𝑅″). We also have dim(𝑅″) = dim𝑒″(𝑅″) = dim(𝒪𝑅″,𝑒″), see
Lemma 36.9.8. By Groupoids, Lemma 35.15.4 we have 𝐺″ = 𝐺𝑢. Hence we conclude that
dim(𝒪𝑅″,𝑒″) = 𝑑1.

As a scheme 𝑅″ is

𝑅″ = 𝑅 ×(𝑈×𝑆𝑈) ( 𝑆𝑝𝑒𝑐(𝜅(𝔪)) ×𝑆 𝑆𝑝𝑒𝑐(𝜅(𝔪)))
Hence an affine open neighbourhood of 𝑒″ is the spectrum of the ring

𝐵 ⊗(𝐴⊗𝐴) (𝜅(𝔪) ⊗ 𝜅(𝔪)) = 𝐵/𝑠(𝔪)𝐵 + 𝑡(𝔪)𝐵
We conclude that

𝒪𝑅″,𝑒″ = 𝐵𝔮/𝑠(𝔪)𝐵𝔮 + 𝑡(𝔪)𝐵𝔮
and so now we know that this ring has dimension 𝑑1.
We claim this implies we can find an element 𝑓 ∈ 𝔪 such that

dim(𝐵𝔮/(𝑠(𝔪)𝐵𝔮 + 𝑓𝐵𝔮) < 𝑑2

Namely, suppose 𝔫𝑗 ⊃ 𝑠(𝔪)𝐵𝔮, 𝑗 = 1, … , 𝑚 correspond to the minimal primes of the local
ring 𝐵𝔮/𝑠(𝔪)𝐵𝔮. There are finitely many as this ring is Noetherian (since it is essentially
of finite type over a field -- but also because a Cohen-Macaulay ring is Noetherian). By
the Cohen-Macaulay condition we have dim(𝐵𝔮/𝔫𝑗) = 𝑑2, for example by Algebra, Lemma
7.96.4. Note that dim(𝐵𝔮/(𝔫𝑗 + 𝑡(𝔪)𝐵𝔮)) ≤ 𝑑1 as it is a quotient of the ring 𝒪𝑅″,𝑒″ =
𝐵𝔮/𝑠(𝔪)𝐵𝔮 + 𝑡(𝔪)𝐵𝔮 which has dimension 𝑑1. As 𝑑1 < 𝑑2 this implies that 𝔪⊄𝑡−1(𝔫𝑖).
By prime avoidence, see Algebra, Lemma 7.14.3, we can find 𝑓 ∈ 𝔪 with 𝑡(𝑓)∉𝔫𝑗 for
𝑗 = 1, … , 𝑚. For this choice of 𝑓 we have the displayed inequality above, see Algebra,
Lemma 7.57.11.
Set 𝐴′ = 𝐴/𝑓𝐴 and 𝑈′ = 𝑆𝑝𝑒𝑐(𝐴′). Then it is clear that 𝑈′ → 𝑈 is an immersion, locally of
finite presentation and that 𝑢 ∈ 𝑈′. Thus (1), (2) and (3) of the lemma hold. The morphism

𝑈′ ×𝑔,𝑈,𝑡 𝑅 ⟶ 𝑈
factors through 𝑆𝑝𝑒𝑐(𝐴) and corresponds to the ring map

𝐵/𝑡(𝑓)𝐵 𝐴/(𝑓) ⊗𝐴,𝑡 𝐵 𝐴𝑠oo

Now, we see 𝑡(𝑓) is not a zero divisor on 𝐵𝔮/𝑠(𝔪)𝐵𝔮 as this is a Cohen-Macaulay ring
of positive dimension and 𝑓 is not contained in any minimal prime, see for example Al-
gebra, Lemma 7.96.2. Hence by Algebra, Lemma 7.119.5 we conclude that 𝑠 ∶ 𝐴𝔪 →
𝐵𝔮/𝑡(𝑓)𝐵𝔮 is flat with fibre ring 𝐵𝔮/(𝑠(𝔪)𝐵𝔮 + 𝑡(𝑓)𝐵𝔮) which is Cohen-Macaulay by Al-
gebra, Lemma 7.96.2 again. This implies part (4) of the lemma. To see part (5) note that
by Diagram (36.8.0.1) the fibre 𝐹′

𝑢 is equal to the fibre of ℎ over 𝑢. Hence dim𝑒′(𝑢)(𝐹′
𝑢) =

dim(𝐵𝔮/(𝑠(𝔪)𝐵𝔮 + 𝑡(𝑓)𝐵𝔮)) by Morphisms, Lemma 24.27.1 and the dimension of this ring
is 𝑑2 −1 by Algebra, Lemma 7.96.2 once more. This proves the final assertion of the lemma
and we win. �

Now that we know how to slice we can combine it with the preceding material to get the
following ``optimal'' result. It is optimal in the sense that since 𝐺𝑢 is a locally closed sub-
scheme of 𝐹𝑢 one always has the inequality dim(𝐺𝑢) = dim𝑒(𝑢)(𝐺𝑢) ≤ dim𝑒(𝑢)(𝐹𝑢) so it is
not possible to slice more than in the lemma.
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Lemma 36.11.3. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid scheme over𝑆. Let
𝐺 → 𝑈 be the stabilizer group scheme. Assume 𝑠 and 𝑡 are Cohen-Macaulay and locally
of finite presentation. Let 𝑢 ∈ 𝑈 be a finite type point of the scheme 𝑈, see Morphisms,
Definition 24.15.3. With notation as in Situation 36.11.1 there exist an affine scheme 𝑈′

and a morphism 𝑔 ∶ 𝑈′ → 𝑈 such that
(1) 𝑔 is an immersion,
(2) 𝑢 ∈ 𝑈′,
(3) 𝑔 is locally of finite presentation,
(4) the morphism ℎ ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 ⟶ 𝑈 is Cohen-Macaulay and locally of finite

presentation,
(5) the morphisms 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ are Cohen-Macaulay and locally of finite pre-

sentation, and
(6) dim𝑒(𝑢)(𝐹′

𝑢) = dim(𝐺′
𝑢).

Proof. As 𝑠 is locally of finite presentation the scheme 𝐹𝑢 is locally of finite type over 𝜅(𝑢).
Hence dim𝑒(𝑢)(𝐹𝑢) < ∞ and we may argue by induction on dim𝑒(𝑢)(𝐹𝑢).

If dim𝑒(𝑢)(𝐹𝑢) = dim(𝐺𝑢) there is nothing to prove. Assume dim𝑒(𝑢)(𝐹𝑢) > dim(𝐺𝑢). This
means that Lemma 36.11.2 applies and we find a morphism 𝑔 ∶ 𝑈′ → 𝑈 which has prop-
erties (1), (2), (3), instead of (6) we have dim𝑒(𝑢)(𝐹′

𝑢) < dim𝑒(𝑢)(𝐹𝑢), and instead of (4) and
(5) we have that the composition

ℎ = 𝑠 ∘ pr1 ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 ⟶ 𝑈

is Cohen-Macaulay at the point (𝑢, 𝑒(𝑢)). We apply Remark 36.5.3 and we obtain an open
subscheme 𝑈″ ⊂ 𝑈′ such that 𝑈″ ×𝑔,𝑈,𝑡 𝑅 ⊂ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 is the largest open subscheme
on which ℎ is Cohen-Macaulay. Since (𝑢, 𝑒(𝑢)) ∈ 𝑈″ ×𝑔,𝑈,𝑡 𝑅 we see that 𝑢 ∈ 𝑈″. Hence
we may replace 𝑈′ by 𝑈″ and assume that in fact ℎ is Cohen-Macaulay everywhere! By
Lemma 36.8.2 we conclude that 𝑠′, 𝑡′ are locally of finite presentation and Cohen-Macaulay
(use Morphisms, Lemma 24.20.4 and More on Morphisms, Lemma 33.15.3).

By construction dim𝑒′(𝑢)(𝐹′
𝑢) < dim𝑒(𝑢)(𝐹𝑢), so we may apply the induction hypothesis to

(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) and the point 𝑢 ∈ 𝑈′. Note that 𝑢 is also a finite type point of 𝑈′ (for
example you can see this using the characterization of finite type points from Morphisms,
Lemma 24.15.4). Let 𝑔′ ∶ 𝑈″ → 𝑈′ and (𝑈″, 𝑅″, 𝑠″, 𝑡″, 𝑐″) be the solution of the corre-
sponding problem starting with (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) and the point 𝑢 ∈ 𝑈′. We claim that the
composition

𝑔″ = 𝑔 ∘ 𝑔′ ∶ 𝑈″ ⟶ 𝑈
is a solution for the original problem. Properties (1), (2), (3), (5), and (6) are immediate.
To see (4) note that the morphism

ℎ″ = 𝑠 ∘ pr1 ∶ 𝑈″ ×𝑔″,𝑈,𝑡 𝑅 ⟶ 𝑈

is locally of finite presentation and Cohen-Macaulay by an application of Lemma 36.8.4
(use More on Morphisms, Lemma 33.15.7 to see that Cohen-Macaulay morphisms are fppf
local on the target). �

In case the stabilizer group scheme has fibres of dimension 0 this leads to the following
slicing lemma.

Lemma 36.11.4. Let𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid scheme over𝑆. Let
𝐺 → 𝑈 be the stabilizer group scheme. Assume 𝑠 and 𝑡 are Cohen-Macaulay and locally
of finite presentation. Let 𝑢 ∈ 𝑈 be a finite type point of the scheme 𝑈, see Morphisms,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04MZ
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Definition 24.15.3. Assume that 𝐺 → 𝑈 is locally quasi-finite. With notation as in Situation
36.11.1 there exist an affine scheme 𝑈′ and a morphism 𝑔 ∶ 𝑈′ → 𝑈 such that

(1) 𝑔 is an immersion,
(2) 𝑢 ∈ 𝑈′,
(3) 𝑔 is locally of finite presentation,
(4) the morphism ℎ ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 ⟶ 𝑈 is flat, locally of finite presentation, and

locally quasi-finite, and
(5) the morphisms 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ are flat, locally of finite presentation, and locally

quasi-finite.

Proof. Take 𝑔 ∶ 𝑈′ → 𝑈 as in Lemma 36.11.3. Since ℎ−1(𝑢) = 𝐹′
𝑢 we see that ℎ has

relative dimension ≤ 0 at (𝑢, 𝑒(𝑢)). Hence, by Remark 36.5.3, we obtain an open subscheme
𝑈″ ⊂ 𝑈′ such that 𝑢 ∈ 𝑈″ and 𝑈″ ×𝑔,𝑈,𝑡 𝑅 is the maximal open subscheme of 𝑈′ ×𝑔,𝑈,𝑡 𝑅
on which ℎ has relative dimension ≤ 0. After replacing 𝑈′ by 𝑈″ we see that ℎ has relative
dimension ≤ 0. This implies that ℎ is locally quasi-finite by Morphisms, Lemma 24.28.5.
Since it is still locally of finite presentation and Cohen-Macaulay we see that it is flat, locally
of finite presentation and locally quasi-finite, i.e., (4) above holds. This implies that 𝑠′ is
flat, locally of finite presentation and locally quasi-finite as a base change of ℎ, see Lemma
36.8.2. �

36.12. Étale localization of groupoids

In this section we begin applying the étale localization techniques of More on Morphisms,
Section 33.28 to groupoid schemes. More advanced material of this kind can be found in
More on Groupoids in Spaces, Section 53.11. Lemma 36.12.2 will be used to prove results
on algebraic spaces separated and quasi-finite over a scheme, namelyMorphisms of Spaces,
Proposition 42.39.2 and its corollary Morphisms of Spaces, Lemma 42.40.1.

Lemma 36.12.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let
𝑝 ∈ 𝑆 be a point, and let 𝑢 ∈ 𝑈 be a point lying over 𝑝. Assume that

(1) 𝑈 → 𝑆 is locally of finite type,
(2) 𝑈 → 𝑆 is quasi-finite at 𝑢,
(3) 𝑈 → 𝑆 is separated,
(4) 𝑅 → 𝑆 is separated,
(5) 𝑠, 𝑡 are flat and locally of finite presentation, and
(6) 𝑠−1({𝑢}) is finite.

Then there exists an étale neighbourhood (𝑆′, 𝑝′) → (𝑆, 𝑝) with 𝜅(𝑝) = 𝜅(𝑝′) and a base
change diagram

𝑅′ ∐ 𝑊′ 𝑆′ ×𝑆 𝑅 //

𝑠′

��
𝑡′

��

𝑅

𝑠
��

𝑡
��

𝑈′ ∐ 𝑊 𝑆′ ×𝑆 𝑈 //

��

𝑈

��
𝑆′ // 𝑆

where the equal signs are decompositions into open and closed subschemes such that
(a) there exists a point 𝑢′ of 𝑈′ mapping to 𝑢 in 𝑈,
(b) the fibre (𝑈′)𝑝′ equals 𝑡′((𝑠′)−1({𝑢′})) set theoretically,
(c) the fibre (𝑅′)𝑝′ equals (𝑠′)−1((𝑈′)𝑝′) set theoretically,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03FL


1966 36. MORE ON GROUPOID SCHEMES

(d) the schemes 𝑈′ and 𝑅′ are finite over 𝑆′,
(e) we have 𝑠′(𝑅′) ⊂ 𝑈′ and 𝑡′(𝑅′) ⊂ 𝑈′,
(f) we have 𝑐′(𝑅′ ×𝑠′,𝑈′,𝑡′ 𝑅′) ⊂ 𝑅′ where 𝑐′ is the base change of 𝑐, and
(g) themorphisms 𝑠′, 𝑡′, 𝑐′ determine a groupoid structure by taking the system (𝑈′, 𝑅′, 𝑠′|𝑅′, 𝑡′|𝑅′, 𝑐′|𝑅′×𝑠′,𝑈′,𝑡′𝑅′).

Proof. Let us denote 𝑓 ∶ 𝑈 → 𝑆 the structure morphism of 𝑈. By assumption (6) we can
write 𝑠−1({𝑢}) = {𝑟1, … , 𝑟𝑛}. Since this set is finite, we see that 𝑠 is quasi-finite at each
of these finitely many inverse images, see Morphisms, Lemma 24.19.7. Hence we see that
𝑓 ∘ 𝑠 ∶ 𝑅 → 𝑆 is quasi-finite at each 𝑟𝑖 (Morphisms, Lemma 24.19.12). Hence 𝑟𝑖 is isolated
in the fibre 𝑅𝑝, seeMorphisms, Lemma 24.19.6. Write 𝑡({𝑟1, … , 𝑟𝑛}) = {𝑢1, … , 𝑢𝑚}. Note
that it may happen that 𝑚 < 𝑛 and note that 𝑢 ∈ {𝑢1, … , 𝑢𝑚}. Since 𝑡 is flat and locally
of finite presentation, the morphism of fibres 𝑡𝑝 ∶ 𝑅𝑝 → 𝑈𝑝 is flat and locally of finite
presentation (Morphisms, Lemmas 24.24.7 and 24.20.4), hence open (Morphisms, Lemma
24.24.9). The fact that each 𝑟𝑖 is isolated in 𝑅𝑝 implies that each 𝑢𝑗 = 𝑡(𝑟𝑖) is isolated in
𝑈𝑝. Using Morphisms, Lemma 24.19.6 again, we see that 𝑓 is quasi-finite at 𝑢1, … , 𝑢𝑚.

Denote 𝐹𝑢 = 𝑠−1(𝑢) and 𝐹𝑢𝑗
= 𝑠−1(𝑢𝑗) the scheme theoretic fibres. Note that 𝐹𝑢 is finite

over 𝜅(𝑢) as it is locally of finite type over 𝜅(𝑢) with finitely many points (for example it
follows from the much more general Morphisms, Lemma 24.48.8). By Lemma 36.6.1 we
see that 𝐹𝑢 and 𝐹𝑢𝑗

become isomorphic over a common field extension of 𝜅(𝑢) and 𝜅(𝑢𝑗).
Hence we see that 𝐹𝑢𝑗

is finite over 𝜅(𝑢𝑗). In particular we see 𝑠−1({𝑢𝑗}) is a finite set for
each 𝑗 = 1, … , 𝑚. Thus we see that assumptions (2) and (6) hold for each 𝑢𝑗 also (above
we saw that 𝑈 → 𝑆 is quasi-finite at 𝑢𝑗). Hence the argument of the first paragraph applies
to each 𝑢𝑗 and we see that 𝑅 → 𝑈 is quasi-finite at each of the points of

{𝑟1, … , 𝑟𝑁} = 𝑠−1({𝑢1, … , 𝑢𝑚})

Note that 𝑡({𝑟1, … , 𝑟𝑁}) = {𝑢1, … , 𝑢𝑚} and 𝑡−1({𝑢1, … , 𝑢𝑚}) = {𝑟1, … , 𝑟𝑁} since 𝑅 is a
groupoid2. Moreover, we have pr0(𝑐−1({𝑟1, … , 𝑟𝑁})) = {𝑟1, … , 𝑟𝑁} and pr1(𝑐−1({𝑟1, … , 𝑟𝑁})) =
{𝑟1, … , 𝑟𝑁}. Similarlywe get 𝑒({𝑢1, … , 𝑢𝑚}) ⊂ {𝑟1, … , 𝑟𝑁} and 𝑖({𝑟1, … , 𝑟𝑁}) = {𝑟1, … , 𝑟𝑁}.
We may apply More on Morphisms, Lemma 33.28.4 to the pairs (𝑈 → 𝑆, {𝑢1, … , 𝑢𝑚}) and
(𝑅 → 𝑆, {𝑟1, … , 𝑟𝑁}) to get an étale neighbourhood (𝑆′, 𝑝′) → (𝑆, 𝑝) which induces an
identification 𝜅(𝑝) = 𝜅(𝑝′) such that 𝑆′ ×𝑆 𝑈 and 𝑆′ ×𝑆 𝑅 decompose as

𝑆′ ×𝑆 𝑈 = 𝑈′
∐ 𝑊, 𝑆′ ×𝑆 𝑅 = 𝑅′

∐ 𝑊′

with 𝑈′ → 𝑆′ finite and (𝑈′)𝑝′ mapping bijectively to {𝑢1, … , 𝑢𝑚}, and 𝑅′ → 𝑆′ finite and
(𝑅′)𝑝′ mapping bijectively to {𝑟1, … , 𝑟𝑁}. Moreover, no point of 𝑊𝑝′ (resp. (𝑊′)𝑝′) maps
to any of the points 𝑢𝑗 (resp. 𝑟𝑖). At this point (a), (b), (c), and (d) of the lemma are satisfied.
Moreover, the inclusions of (e) and (f) hold on fibres over 𝑝′, i.e., 𝑠′((𝑅′)𝑝′) ⊂ (𝑈′)𝑝′,
𝑡′((𝑅′)𝑝′) ⊂ (𝑈′)𝑝′, and 𝑐′((𝑅′ ×𝑠′,𝑈′,𝑡′ 𝑅′)𝑝′) ⊂ (𝑅′)𝑝′.

We claim that we can replace𝑆′ by a Zariski open neighbourhood of 𝑝′ so that the inclusions
of (e) and (f) hold. For example, consider the set 𝐸 = (𝑠′|𝑅′)−1(𝑊). This is open and
closed in 𝑅′ and does not contain any points of 𝑅′ lying over 𝑝′. Since 𝑅′ → 𝑆′ is closed,
after replacing 𝑆′ by 𝑆′ ⧵ (𝑅′ → 𝑆′)(𝐸) we reach a situation where 𝐸 is empty. In other
words 𝑠′ maps 𝑅′ into 𝑈′. Note that this property is preserved under further shrinking 𝑆′.
Similarly, we can arrange it so that 𝑡′ maps 𝑅′ into 𝑈′. At this point (e) holds. In the same

2Explanation in groupoid language: The original set {𝑟1, … , 𝑟𝑛} was the set of arrows with source 𝑢. The
set {𝑢1, … , 𝑢𝑚} was the set of objects isomorphic to 𝑢. And {𝑟1, … , 𝑟𝑁} is the set of all arrows between all the
objects equivalent to 𝑢.
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manner, consider the set 𝐸 = (𝑐′|𝑅′×𝑠′,𝑈′,𝑡′𝑅′)−1(𝑊′). It is open and closed in the scheme
𝑅′ ×𝑠′,𝑈′,𝑡′ 𝑅′ which is finite over 𝑆′, and does not contain any points lying over 𝑝′. Hence
after replacing 𝑆′ by 𝑆′ ⧵ (𝑅′ ×𝑠′,𝑈′,𝑡′ 𝑅′ → 𝑆′)(𝐸) we reach a situation where 𝐸 is empty.
In other words we obtain the inclusion in (f). We may repeat the argument also with the
identity 𝑒′ ∶ 𝑆′ ×𝑆 𝑈 → 𝑆′ ×𝑆 𝑅 and the inverse 𝑖′ ∶ 𝑆′ ×𝑆 𝑅 → 𝑆′ ×𝑆 𝑅 so that we may
assume (after shrinking 𝑆′ some more) that (𝑒′|𝑈′)−1(𝑊′) = ∅ and (𝑖′|𝑅′)−1(𝑊′) = ∅.
At this point we see that we may consider the structure

(𝑈′, 𝑅′, 𝑠′|𝑅′, 𝑡′|𝑅′, 𝑐′|𝑅′×𝑡′,𝑈′,𝑠′𝑅′, 𝑒′|𝑈′, 𝑖′|𝑅′).

The axioms of a groupoid scheme over 𝑆′ hold because they hold for the groupoid scheme
(𝑆′ ×𝑆 𝑈, 𝑆′ ×𝑆 𝑅, 𝑠′, 𝑡′, 𝑐′, 𝑒′, 𝑖′). �

Lemma 36.12.2. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let
𝑝 ∈ 𝑆 be a point, and let 𝑢 ∈ 𝑈 be a point lying over 𝑝. Assume assumptions (1) -- (6) of
Lemma 36.12.1 hold as well as

(7) 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is universally closed3.
Then we can choose (𝑆′, 𝑝′) → (𝑆, 𝑝) and decompositions 𝑆′ ×𝑆 𝑈 = 𝑈′ ⨿𝑊 and 𝑆′ ×𝑆 𝑅 =
𝑅′ ⨿ 𝑊′ and 𝑢′ ∈ 𝑈′ such that (a) -- (g) of Lemma 36.12.1 hold as well as

(h) 𝑅′ is the restriction of 𝑆′ ×𝑆 𝑅 to 𝑈′.

Proof. We apply Lemma 36.12.1 for the groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over the scheme 𝑆 with
points 𝑝 and 𝑢. Hence we get an étale neighbourhood (𝑆′, 𝑝′) → (𝑆, 𝑝) and disjoint union
decompositions

𝑆′ ×𝑆 𝑈 = 𝑈′ ⨿ 𝑊, 𝑆′ ×𝑆 𝑅 = 𝑅′ ⨿ 𝑊′

and 𝑢′ ∈ 𝑈′ satisfying conclusions (a), (b), (c), (d), (e), (f), and (g). We may shrink 𝑆′ to
a smaller neighbourhood of 𝑝′ without affecting the conclusions (a) -- (g). We will show
that for a suitable shrinking conclusion (h) holds as well. Let us denote 𝑗′ the base change
of 𝑗 to 𝑆′. By conclusion (e) it is clear that

𝑗′−1(𝑈′ ×𝑆′ 𝑈′) = 𝑅′ ⨿ 𝑅𝑒𝑠𝑡
for some open and closed 𝑅𝑒𝑠𝑡 piece. Since 𝑈′ → 𝑆′ is finite by conclusion (d) we see that
𝑈′ ×𝑆′ 𝑈′ is finite over 𝑆′. Since 𝑗 is universally closed, also 𝑗′ is universally closed, and
hence 𝑗′|𝑅𝑒𝑠𝑡 is universally closed too. By conclusions (b) and (c) we see that the fibre of

(𝑈′ ×𝑆′ 𝑈′ → 𝑆′) ∘ 𝑗′|𝑅𝑒𝑠𝑡 ∶ 𝑅𝑒𝑠𝑡 ⟶ 𝑆′

over 𝑝′ is empty. Hence, since 𝑅𝑒𝑠𝑡 → 𝑆′ is closed as a composition of closed morphisms,
after replacing𝑆′ by𝑆′⧵Im(𝑅𝑒𝑠𝑡 → 𝑆′), wemay assume that𝑅𝑒𝑠𝑡 = ∅. And this is exactly
the condition that 𝑅′ is the restriction of 𝑆′ ×𝑆 𝑅 to the open subscheme 𝑈′ ⊂ 𝑆′ ×𝑆 𝑈,
see Groupoids, Lemma 35.15.3 and its proof. �

36.13. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces

(7) Commutative Algebra
(8) Brauer Groups
(9) Sites and Sheaves

(10) Homological Algebra
(11) Derived Categories
(12) More on Algebra

3In view of the other conditions this is equivalent to requiring 𝑗 to be proper.
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CHAPTER 37

Étale Morphisms of Schemes

37.1. Introduction

In this Chapter, we discuss étale morphisms of schemes. We illustrate some of the more
important concepts by working with the Noetherian case. Our principal goal is to collect
for the reader with enough commutative algebra results to start reading a treatise on étale
cohomology. An auxiliary goal is to provide enough evidence to ensure that the reader
stops calling the phrase ``the étale topology of schemes'' an exercise in general nonsense,
if (s)he does indulge in such blasphemy.

We will refer to the other chapters of the stacks project for standard results in algebraic
geometry (on schemes and commutative algebra). We will provide detailed proofs of the
new results that we state here.

37.2. Conventions

In this chapter, frequently schemes will be assumed locally Noetherian and frequently rings
will be assumed Noetherian. But in all the statements we will reiterate this when necessary,
and make sure we list all the hypotheses! On the other hand, here are some general facts
that we will use often and are useful to keep in mind:

(1) A ring homomorphism 𝐴 → 𝐵 of finite type with 𝐴 Noetherian is of finite pre-
sentation. See Algebra, Lemma 7.28.4.

(2) A morphism (locally) of finite type between locally Noetherian schemes is auto-
matically (locally) of finite presentation. See Morphisms, Lemma 24.20.9.

(3) Add more like this here.

37.3. Unramified morphisms

We first define the notion of unramified morphisms for local rings, and then globalise it to
get one for arbitrary schemes.

Definition 37.3.1. Let 𝐴, 𝐵 be Noetherian local rings. A local homomorphism 𝐴 → 𝐵 is
said to be unramified homomorphism of local rings if

(1) 𝔪𝐴𝐵 = 𝔪𝐵,
(2) 𝜅(𝔪𝐴) is a finite separable extension of 𝜅(𝔪𝐵), and
(3) 𝐵 is essentially of finite type over 𝐴 (this means that 𝐵 is the localization of a

finite type 𝐴-algebra at a prime).

This is the local version of the definition in Algebra, Section 7.138. In that section a ring
map 𝑅 → 𝑆 is defined to be unramified if and only if it is of finite type, and Ω𝑆/𝑅 = 0. It
is shown in Algebra, Lemmas 7.138.5 and 7.138.7 that given a ring map 𝑅 → 𝑆 of finite
type, and a prime 𝔮 of 𝑆 lying over 𝔭 ⊂ 𝑅, then we have

𝑅 → 𝑆 is unramified at 𝔮 ⇔ 𝔭𝑆𝔮 = 𝔮𝑆𝔮 and 𝜅(𝔭) ⊂ 𝜅(𝔮) finite separable

1969
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Thus we see that for a local homomorphism of local rings the properties of our definition
above are closely related to the question of being unramified. In fact, we have proved the
following lemma.

Lemma 37.3.2. Let 𝐴 → 𝐵 be of finite type with 𝐴 a Noetherian ring. Let 𝔮 be a prime of
𝐵 lying over 𝔭 ⊂ 𝐴. Then 𝐴 → 𝐵 is unramified at 𝔮 if and only if 𝐴𝔭 → 𝐵𝔮 is an unramified
homomorphism of local rings.

Proof. See discussion above. �

We will characterize the property of being unramified in terms of completions. For a Noe-
therian local ring 𝐴 we denote 𝐴∧ the completion of 𝐴 with respect to the maximal ideal.
It is also a Noetherian local ring, see Algebra, Lemma 7.90.10.

Lemma 37.3.3. Let 𝐴, 𝐵 be Noetherian local rings. Let 𝐴 → 𝐵 be a local homomorphism.
(1) if 𝐴 → 𝐵 is an unramified homomorphism of local rings, then 𝐵∧ is a finite 𝐴∧

module,
(2) if 𝐴 → 𝐵 is an unramified homomorphism of local rings and 𝜅(𝔪𝐴) = 𝜅(𝔪𝐵),

then 𝐴∧ → 𝐵∧ is surjective,
(3) if 𝐴 → 𝐵 is an unramified homomorphism of local rings and 𝜅(𝔪𝐴) is separably

closed, then 𝐴∧ → 𝐵∧ is surjective,
(4) if 𝐴 and 𝐵 are complete discrete valuation rings, then 𝐴 → 𝐵 is an unrami-

fied homomorphism of local rings if and only the uniformizer for 𝐴 maps to a
uniformizer for 𝐵, and the residue field extension is finite separable (and 𝐵 is
essentially of finite type over 𝐴).

Proof. Part (1) is a special case of Algebra, Lemma 7.90.16. For part (2), note that the
𝜅(𝔪𝐴)-vector space 𝐵∧/𝔪𝐴∧𝐵∧ is generated by 1. Hence by Nakayama's lemma (Algebra,
Lemma 7.14.5) the map 𝐴∧ → 𝐵∧ is surjective. Part (3) is a special case of part (2). Part
(4) is immediate from the definitions. �

Lemma 37.3.4. Let 𝐴, 𝐵 be Noetherian local rings. Let 𝐴 → 𝐵 be a local homomorphism
such that 𝐵 is essentially of finite type over 𝐴. The following are equivalent

(1) 𝐴 → 𝐵 is an unramified homomorphism of local rings
(2) 𝐴∧ → 𝐵∧ is an unramified homomorphism of local rings, and
(3) 𝐴∧ → 𝐵∧ is unramified.

Proof. The equivalence of (1) and (2) follows from the fact that 𝔪𝐴𝐴∧ is the maximal
ideal of 𝐴∧ (and similarly for 𝐵) and faithful flatness of 𝐵 → 𝐵∧. For example if 𝐴∧ → 𝐵∧

is unramified, then 𝔪𝐴𝐵∧ = (𝔪𝐴𝐵)𝐵∧ = 𝔪𝐵𝐵∧ and hence 𝔪𝐴𝐵 = 𝔪𝐵.
Assume the equivalent conditions (1) and (2). By Lemma 37.3.3 we see that 𝐴∧ → 𝐵∧

is finite. Hence 𝐴∧ → 𝐵∧ is of finite presentation, and by Algebra, Lemma 7.138.7 we
conclude that 𝐴∧ → 𝐵∧ is unramified at 𝔪𝐵∧. Since 𝐵∧ is local we conclude that 𝐴∧ → 𝐵∧

is unramified.
Assume (3). By Algebra, Lemma 7.138.5 we conclude that 𝐴∧ → 𝐵∧ is an unramified
homomorphism of local rings, i.e., (2) holds. �

Definition 37.3.5. (See Morphisms, Definition 24.34.1 for the definition in the general
case.) Let 𝑌 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be locally of finite type. Let
𝑥 ∈ 𝑋.

(1) We say 𝑓 is unramified at 𝑥 if 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥 is an unramified homomorphism of
local rings.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=039G
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(2) The morphism 𝑓 ∶ 𝑋 → 𝑌 is said to be unramified if it is unramified at all points
of 𝑋.

Let us prove that this definition agrees with the definition in the chapter on morphisms of
schemes. This in particular garantees that the set of points where a morphism is unramified
is open.

Lemma 37.3.6. Let 𝑌 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be locally of finite
type. Let 𝑥 ∈ 𝑋. The morphism 𝑓 is unramified at 𝑥 in the sense of Definition 37.3.5 if and
only if it is unramified in the sense of Morphisms, Definition 24.34.1.

Proof. This follows from Lemma 37.3.2 and the definitions. �

Here are some results on unramifiedmorphisms. The formulations as given in this list apply
only to morphisms locally of finite type between locally Noetherian schemes. In each case
we give a reference to the general result as proved earlier in the project, but in some cases
one can prove the result more easily in the Noetherian case. Here is the list:

(1) Unramifiedness is local on the source and the target in the Zariski topology.
(2) Unramified morphisms are stable under base change and composition. See Mor-

phisms, Lemmas 24.34.5 and 24.34.4.
(3) Unramified morphisms of schemes are locally quasi-finite and quasi-compact un-

ramified morphisms are quasi-finite. See Morphisms, Lemma 24.34.10
(4) Unramified morphisms have relative dimension 0. See Morphisms, Definition

24.28.1 and Morphisms, Lemma 24.28.5.
(5) A morphism is unramified if and only if all its fibres are unramified. That is,

unramifiedness can be checked on the scheme theoretic fibres. See Morphisms,
Lemma 24.34.12.

(6) Let 𝑋 and 𝑌 be unramified over a base scheme 𝑆. Any 𝑆-morphism from 𝑋 to 𝑌
is unramified. See Morphisms, Lemma 24.34.16.

37.4. Three other characterizations of unramified morphisms

The following theorem gives three equivalent notions of being unramified at a point. See
Morphisms, Lemma 24.34.14 for (part of) the statement for general schemes.

Theorem 37.4.1. Let 𝑌 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of
schemes which is locally of finite type. Let 𝑥 be a point of 𝑋. The following are equivalent

(1) 𝑓 is unramified at 𝑥,
(2) the stalk Ω𝑋/𝑌,𝑥 of the module of relative differentials at 𝑥 is trivial,
(3) there exist open neighbourhoods𝑈 of 𝑥 and𝑉 of 𝑓(𝑥), and a commutative diagram

𝑈
𝑖

//

��

𝐀𝑛
𝑉

��
𝑉

where 𝑖 is a closed immersion defined by a quasi-coherent sheaf of ideals ℐ such
that the differentials d𝑔 for 𝑔 ∈ ℐ𝑖(𝑥) generate Ω𝐀𝑛

𝑉/𝑉,𝑖(𝑥), and
(4) the diagonal Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is a local isomorphism at 𝑥.

Proof. The equivalence of (1) and (2) is proved in Morphisms, Lemma 24.34.14.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=039J
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If 𝑓 is unramified at 𝑥, then 𝑓 is unramified in an open neighbourhood of 𝑥; this does not
follow immediately from Definition 37.3.5 of this chapter but it does follow from Mor-
phisms, Definition 24.34.1 which we proved to be equivalent in Lemma 37.3.6. Choose
affine opens 𝑉 ⊂ 𝑌, 𝑈 ⊂ 𝑋 with 𝑓(𝑈) ⊂ 𝑉 and 𝑥 ∈ 𝑈, such that 𝑓 is unramified on 𝑈, i.e.,
𝑓|𝑈 ∶ 𝑈 → 𝑉 is unramified. By Morphisms, Lemma 24.34.13 the morphism 𝑈 → 𝑈 ×𝑉 𝑈
is an open immersion. This proves that (1) implies (4).

If Δ𝑋/𝑌 is a local isomorphism at 𝑥, then Ω𝑋/𝑌,𝑥 = 0 by construction of the sheaf of relative
differentials (see Morphisms, Definition 24.32.4). Hence we see that (4) implies (2). At
this point we know that (1), (2) and (4) are all equivalent.

Assume (3). The assumption on the diagram combined with Morphisms, Lemma 24.32.17
show that Ω𝑈/𝑉,𝑥 = 0. Since Ω𝑈/𝑉,𝑥 = Ω𝑋/𝑌,𝑥 we conclude (2) holds.

Finally, assume that (2) holds. To prove (3) we may localize on 𝑋 and 𝑌 and assume that
𝑋 and 𝑌 are affine. Say 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) and 𝑌 = 𝑆𝑝𝑒𝑐(𝐴). The point 𝑥 ∈ 𝑋 corresponds to a
prime 𝔮 ⊂ 𝐵. Our assumption is that Ω𝐵/𝐴,𝔮 = 0 (see Morphisms, Lemma 24.32.7 for the
relationship between differentials on schemes and modules of differentials in commutative
algebra). Since 𝑌 is locally Noetherian and 𝑓 locally of finite type we see that 𝐴 is Noe-
therian and 𝐵 ≅ 𝐴[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑚), see Properties, Lemma 23.5.2 and Morphisms,
Lemma 24.14.2. In particular, Ω𝐵/𝐴 is a finite 𝐵-module. Hence we can find a single 𝑔 ∈ 𝐵,
𝑔∉𝔮 such that the principal localization (Ω𝐵/𝐴)𝑔 is zero. Hence after replacing 𝐵 by 𝐵𝑔 we
see that Ω𝐵/𝐴 = 0 (formation of modules of differentials commutes with localization, see
Algebra, Lemma 7.122.8). This means that d(𝑓𝑗) generate the kernel of the canonical map
Ω𝐴[𝑥1,…,𝑥𝑛]/𝐴 ⊗𝐴 𝐵 → Ω𝐵/𝐴. Thus the surjection 𝐴[𝑥1, … , 𝑥𝑛] → 𝐵 of 𝐴-algebras gives
the commutative diagram of (3), and the theorem is proved. �

How can we use this theorem? Well, here are a few remarks:
(1) Suppose that 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are two morphisms locally of finite type

between locally Noetherian schemes. There is a canonical short exact sequence

𝑓∗(Ω𝑌/𝑍) → Ω𝑋/𝑍 → Ω𝑋/𝑌 → 0

see Morphisms, Lemma 24.32.11. The theorem therefore implies that if 𝑔 ∘ 𝑓 is
unramified, then so is 𝑓. This is Morphisms, Lemma 24.34.16.

(2) The definition of Ω𝑋/𝑌 as the pullback Δ∗(𝒥/𝒥2) of the conormal sheaf of the
diagonal morphism (see Morphisms, Definition 24.32.4) allows us to conclude
that if 𝑋 → 𝑌 is a monomorphism of locally Noetherian schemes and locally of
finite type, then 𝑋 → 𝑌 is unramified. In particular, open and closed immersions
of locally Noetherian schemes are unramified. See Morphisms, Lemmas 24.34.7
and 24.34.8.

(3) The theorem also implies that the set of points where a morphism 𝑓 ∶ 𝑋 →
𝑌 (locally of finite type of locally Noetherian schemes) is not unramified is the
support of the coherent sheaf Ω𝑋/𝑌. This allows one to give a scheme theoretic
definition to the ``ramification locus''.

37.5. The functorial characterization of unramified morphisms

In basic algebraic geometry we learn that some classes of morphisms can be characterised
functorially, and that such descriptions are quite useful. Unramified morphisms too have
such a characterisation.
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Theorem 37.5.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Assume 𝑆 is a locally
Noetherian scheme, and 𝑓 is locally of finite type. Then the following are equivalent:

(1) 𝑓 is unramified,
(2) the morphism 𝑓 is formally unramified: for any affine 𝑆-scheme 𝑇 and subscheme

𝑇0 of 𝑇 defined by a square-zero ideal, the natural map

𝐻𝑜𝑚𝑆(𝑇, 𝑋) ⟶ 𝐻𝑜𝑚𝑆(𝑇0, 𝑋)

is injective.

Proof. See More on Morphisms, Lemma 33.4.8 for a more general statement and proof.
What follows is a sketch of the proof in the current case.

Firstly, one checks both properties are local on the source and the target. This we may
assume that 𝑆 and 𝑋 are affine. Say 𝑋 = 𝑆𝑝𝑒𝑐(𝐵) and 𝑆 = 𝑆𝑝𝑒𝑐(𝑅). Say 𝑇 = 𝑆𝑝𝑒𝑐(𝐶).
Let 𝐽 be the square-zero ideal of 𝐶 with 𝑇0 = 𝑆𝑝𝑒𝑐(𝐶/𝐽). Assume that we are given the
diagram

𝐵

𝜙
��

̄𝜙

!!
𝑅 //

??

𝐶 // 𝐶/𝐽
Secondly, one checks that the association 𝜙′ ↦ 𝜙′ − 𝜙 gives a bijection between the set of
liftings of ̄𝜙 and the module Der𝑅(𝐵, 𝐽). Thus, we obtain the implication (1) ⇒ (2) via the
description of unramified morphisms having trivial module of differentials, see Theorem
37.4.1.

To obtain the reverse implication, consider the surjection 𝑞 ∶ 𝐶 = (𝐵⊗𝑅 𝐵)/𝐼2 → 𝐵 = 𝐶/𝐽
defined by the square zero ideal 𝐽 = 𝐼/𝐼2 where 𝐼 is the kernel of the multiplication map
𝐵 ⊗𝑅 𝐵 → 𝐵. We already have a lifting 𝐵 → 𝐶 defined by, say, 𝑏 ↦ 𝑏 ⊗ 1. Thus,
by the same reasoning as above, we obtain a bijective correspondence between liftings of
id ∶ 𝐵 → 𝐶/𝐽 and Der𝑅(𝐵, 𝐽). The hypothesis therefore implies that the latter module is
trivial. But we know that 𝐽 ≅ Ω𝐵/𝑅. Thus, 𝐵/𝑅 is unramified. �

37.6. Topological properties of unramified morphisms

The first topological result that will be of utility to us is one which says that unramified and
separated morphisms have ``nice'' sections. The material in this section does not require
any Noetherian hypotheses.

Proposition 37.6.1. (Sections of unramified morphisms.)
(1) Any section of an unramified morphism is an open immersion.
(2) Any section of a separated morphism is a closed immersion.
(3) Any section of an unramified separated morphism is open and closed.

Proof. Fix a base scheme 𝑆. If 𝑓 ∶ 𝑋′ → 𝑋 is any 𝑆-morphism, then the graph Γ𝑓 ∶
𝑋′ → 𝑋′ ×𝑆 𝑋 is obtained as the base change of the diagonal Δ𝑋/𝑆 ∶ 𝑋 → 𝑋 ×𝑆 𝑋 via
the projection 𝑋′ ×𝑆 𝑋 → 𝑋 ×𝑆 𝑋. If 𝑔 ∶ 𝑋 → 𝑆 is separated (resp. unramified) then
the diagonal is a closed immersion (resp. open immersion) by Schemes, Definition 21.21.3
(resp. Morphisms, Lemma 24.34.13). Hence so is the graph as a base change (by Schemes,
Lemma 21.18.2). In the special case 𝑋′ = 𝑆, we obtain (1), resp. (2). Part (3) follows on
combining (1) and (2). �

We can now explicitly describe the sections of unramified morphisms.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=024R
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=024T


1974 37. ÉTALE MORPHISMS OF SCHEMES

Theorem 37.6.2. Let 𝑌 be a connected scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be unramified and sepa-
rated. Every section of 𝑓 is an isomorphism onto a connected component. There exists a
bijective correspondence

sections of 𝑓 ↔ {
connected components 𝑋′ of 𝑋 such that

the induced map 𝑋′ → 𝑌 is an isomorphism}
In particular, given 𝑥 ∈ 𝑋 there is at most one section passing through 𝑥.

Proof. Direct from Proposition 37.6.1 part (3). �

The preceding theorem gives us some idea of the ``rigidity'' of unramified morphisms. Fur-
ther indication is provided by the following proposition which, besides being intrinsically
interesting, is also useful in the theory of the algebraic fundamental group (see [Gro71,
Exposé V]). See also the more general Morphisms, Lemma 24.34.17.

Proposition 37.6.3. Let 𝑆 is be a scheme. Let 𝜋 ∶ 𝑋 → 𝑆 be unramified and separated.
Let 𝑌 be an 𝑆-scheme and 𝑦 ∈ 𝑌 a point. Let 𝑓, 𝑔 ∶ 𝑌 → 𝑋 be two 𝑆-morphisms. Assume

(1) 𝑌 is connected
(2) 𝑥 = 𝑓(𝑦) = 𝑔(𝑦), and
(3) the induced maps 𝑓♯, 𝑔♯ ∶ 𝜅(𝑥) → 𝜅(𝑦) on residue fields are equal.

Then 𝑓 = 𝑔.

Proof. The maps 𝑓, 𝑔 ∶ 𝑌 → 𝑋 define maps 𝑓′, 𝑔′ ∶ 𝑌 → 𝑋𝑌 = 𝑌 ×𝑆 𝑋 which are sections
of the structure map 𝑋𝑌 → 𝑌. Note that 𝑓 = 𝑔 if and only if 𝑓′ = 𝑔′. The structure map
𝑋𝑌 → 𝑌 is the base change of 𝜋 and hence unramified and separated also (see Morphisms,
Lemmas 24.34.5 and Schemes, Lemma 21.21.13). Thus according to Theorem 37.6.2 it
suffices to prove that 𝑓′ and 𝑔′ pass through the same point of 𝑋𝑌. And this is exactly what
the hypotheses (2) and (3) garantee, namely 𝑓′(𝑦) = 𝑔′(𝑦) ∈ 𝑋𝑌. �

37.7. Universally injective, unramified morphisms

Recall that a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 is universally injective if any base change
of 𝑓 is injective (on underlying topological spaces), see Morphisms, Definition 24.10.1.
Universally injective and unramified morphisms can be characterized as follows.

Lemma 37.7.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) 𝑓 is unramified and a monomorphism,
(2) 𝑓 is unramified and universally injective,
(3) 𝑓 is locally of finite type and a monomorphism,
(4) 𝑓 is universally injective, locally of finite type, and formally unramified,
(5) 𝑓 is locally of finite type and 𝑋𝑦 is either empty or 𝑋𝑦 → 𝑦 is an isomorphism for

all 𝑦 ∈ 𝑌.

Proof. We have seen inMore onMorphisms, Lemma 33.4.8 that being formally unramified
and locally of finite type is the same thing as being unramified. Hence (4) is equivalent to
(2). A monomorphism is certainly universally injective and formally unramified hence (3)
implies (4). It is clear that (1) implies (3). Finally, if (2) holds, then Δ ∶ 𝑋 → 𝑋×𝑆𝑋 is both
an open immersion (Morphisms, Lemma 24.34.13) and surjective (Morphisms, Lemma
24.10.2) hence an isomorphism, i.e., 𝑓 is a monomorphism. In this way we see that (2)
implies (1).
Condition (3) implies (5) becausemonomorphisms are preserved under base change (Schemes,
Lemma 21.23.5) and because of the description of monomorphisms towards the spectra of
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fields in Schemes, Lemma 21.23.10. Condition (5) implies (4) by Morphisms, Lemmas
24.10.2 and 24.34.12. �

This leads to the following useful characterization of closed immersions.

Lemma 37.7.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. The following are equivalent:
(1) 𝑓 is a closed immersion,
(2) 𝑓 is a proper monomorphism,
(3) 𝑓 is proper, unramified, and universally injective,
(4) 𝑓 is universally closed, unramified, and a monomorphism,
(5) 𝑓 is universally closed, unramified, and universally injective,
(6) 𝑓 is universally closed, locally of finite type, and a monomorphism,
(7) 𝑓 is universally closed, universally injective, locally of finite type, and formally

unramified.

Proof. The equivalence of (4) -- (7) follows immediately from Lemma 37.7.1.

Let 𝑓 ∶ 𝑋 → 𝑆 satisfy (6). Then 𝑓 is separated, see Schemes, Lemma 21.23.3 and has finite
fibres. Hence More on Morphisms, Lemma 33.29.5 shows 𝑓 is finite. Then Morphisms,
Lemma 24.42.13 implies 𝑓 is a closed immersion, i.e., (1) holds.

Note that (1) ⇒ (2) because a closed immersion is proper and a monomorphism (Mor-
phisms, Lemma 24.40.6 and Schemes, Lemma 21.23.7). By Lemma 37.7.1 we see that (2)
implies (3). It is clear that (3) implies (5). �

Here is another result of a similar flavor.

Lemma 37.7.3. Let 𝜋 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆. Assume that
(1) 𝜋 is finite,
(2) 𝜋 is unramified,
(3) 𝜋−1({𝑠}) = {𝑥}, and
(4) 𝜅(𝑠) ⊂ 𝜅(𝑥) is purely inseparable1.

Then there exists an open neighbourhood 𝑈 of 𝑠 such that 𝜋|𝜋−1(𝑈) ∶ 𝜋−1(𝑈) → 𝑈 is a
closed immersion.

Proof. The question is local on 𝑆. Hence we may assume that 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). By definition
of a finite morphism this implies 𝑋 = 𝑆𝑝𝑒𝑐(𝐵). Note that the ring map 𝜑 ∶ 𝐴 → 𝐵 defining
𝜋 is a finite unramified ring map. Let 𝔭 ⊂ 𝐴 be the prime corresponding to 𝑠. Let 𝔮 ⊂ 𝐵
be the prime corresponding to 𝑥. By Conditions (2), (3) and (4) imply that 𝐵𝔮/𝔭𝐵𝔮 = 𝜅(𝔭).
Algebra, Lemma 7.36.11 we have 𝐵𝔮 = 𝐵𝔭 (note that a finite ring map satisfies going up,
see Algebra, Section 7.36.) Hencewe see that 𝐵𝔭/𝔭𝐵𝔭 = 𝜅(𝔭). As 𝐵 is a finite 𝐴-module we
see from Nakayama's lemma (see Algebra, Lemma 7.14.5) that 𝐵𝔭 = 𝜑(𝐴𝔭). Hence (using
the finiteness of 𝐵 as an 𝐴-module again) there exists a 𝑓 ∈ 𝐴, 𝑓∉𝔭 such that 𝐵𝑓 = 𝜑(𝐴𝑓)
as desired. �

The topological results presented above will be used to give a functorial characterisation of
étale morphisms similar to Theorem 37.5.1.

1In view of condition (2) this is equivalent to 𝜅(𝑠) = 𝜅(𝑥).
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37.8. Examples of unramified morphisms

Here are a few examples.

Example 37.8.1. Let 𝑘 be a field. Unramified quasi-compact morphisms 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) are
affine. This is true because 𝑋 has dimension 0 and is Noetherian, hence is a finite discrete
set, and each point gives an affine open, so 𝑋 is a finite disjoint union of affines hence affine.
Noether normalisation forces 𝑋 to be the spectrum of a finite 𝑘-algebra 𝐴. This algebra
is a product of finite separable field extensions of 𝑘. Thus, an unramified quasi-compact
morphism to 𝑆𝑝𝑒𝑐(𝑘) corresponds to a finite number of finite separable field extensions of
𝑘. In particular, an unramified morphism with a connected source and a one point target is
forced to be a finite separable field extension. As we will see later, 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is étale
if and only if it is unramified. Thus, in this case at least, we obtain a very easy description
of the étale topology of a scheme. Of course, the cohomology of this topology is another
story.

Example 37.8.2. Property (3) in Theorem 37.4.1 gives us a canonical source of examples
for unramified morphisms. Fix a ring 𝑅 and an integer 𝑛. Let 𝐼 = (𝑔1, ⋯ , 𝑔𝑚) be an ideal
in 𝑅[𝑥1, ⋯ , 𝑥𝑛]. Let 𝔮 ⊂ 𝑅[𝑥1, … , 𝑥𝑛] be a prime. Assume 𝐼 ⊂ 𝔮 and that the matrix

(
𝜕𝑔𝑖
𝜕𝑥𝑗 ) mod 𝔮 ∈ Mat(𝑛 × 𝑚, 𝜅(𝔮))

has rank 𝑛. Then the morphism 𝑓 ∶ 𝑍 = 𝑆𝑝𝑒𝑐(𝑅[𝑥1, ⋯ , 𝑥𝑛]/𝐼) → 𝑆𝑝𝑒𝑐(𝑅) is unramified at
the point 𝑥 ∈ 𝑍 ⊂ 𝐀𝑛

𝑅 corresponding to 𝔮. Clearly wemust have 𝑚 ≥ 𝑛. In the extreme case
𝑚 = 𝑛, i.e., the differential of the map 𝐀𝑛

𝑅 → 𝐀𝑛
𝑅 defined by the 𝑔𝑖's is an isomorphism of

the tangent spaces, then 𝑓 is also flat 𝑥 and, hence, is an étale map (see Algebra, Definition
7.126.6, Lemma 7.126.7 and Example 7.126.8).

Example 37.8.3. Fix an extension of number fields 𝐿/𝐾 with rings of integers 𝒪𝐿 and
𝒪𝐾. The injection 𝐾 → 𝐿 defines a morphism 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝒪𝐿) → 𝑆𝑝𝑒𝑐(𝒪𝐾). As discussed
above, the points where 𝑓 is unramified in our sense correspond to the set of points where
𝑓 is unramified in the conventional sense. In the conventional sense, the locus of ramifi-
cation in 𝑆𝑝𝑒𝑐(𝒪𝐿) can be defined by vanishing set of the different; this is an ideal in 𝒪𝐿.
In fact, the different is nothing but the annihilator of the module Ω𝒪𝐿/𝒪𝐾

. Similarly, the
discriminant is an ideal in 𝒪𝐾, namely it is the norm of the different. The vanishing set of
the discriminant is precisely the set of points of 𝐾 which ramify in 𝐿. Thus, denoting by
𝑋 the complement of the closed subset defined by the different in 𝑆𝑝𝑒𝑐(𝒪𝐿), we obtain a
morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝒪𝐿) which is unramified. Furthermore, this morphism is also flat,
as any local homomorphism of discrete valuation rings is flat, and hence this morphism is
actually étale. If 𝐿/𝐾 is Galois, then denoting by 𝑌 the complement of the closed subset
defined by the discriminant in 𝑆𝑝𝑒𝑐(𝒪𝐾), we see that we get even a finite étale morphism
𝑋 → 𝑌. Thus, this is an example of a finite étale covering.

37.9. Flat morphisms

This section simply exists to summarise the properties of flatness that will be useful to us.
Thus, we will be content with stating the theorems precisely and giving references for the
proofs.

After briefly recalling the necessary facts about flat modules over Noetherian rings, we state
a theorem of Grothendieck which gives sufficient conditions for ``hyperplane sections'' of
certain modules to be flat.
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Definition 37.9.1. Flatness of modules and rings.
(1) A module 𝑁 over a ring 𝐴 is said to be flat if the functor 𝑀 ↦ 𝑀 ⊗𝐴 𝑁 is exact.
(2) If this functor is also faithful, we say that 𝑁 is faithfully flat over 𝐴.
(3) A morphism of rings 𝑓 ∶ 𝐴 → 𝐵 is said to be flat (resp. faithfully flat) if the

functor 𝑀 ↦ 𝑀 ⊗𝐴 𝐵 is exact (resp. faithful and exact).

Here is a list of facts with references to the algebra chapter.
(1) Free and projective modules are flat. This is clear for free modules and follows for

projective modules as they are direct summands of free modules and ⊗ commutes
with direct sums.

(2) Flatness is a local property, that is, 𝑀 is flat over 𝐴 if and only if 𝑀𝔭 is flat over
𝐴𝔭 for all 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝐴). See Algebra, Lemma 7.35.19.

(3) If 𝑀 is a flat 𝐴-module and 𝐴 → 𝐵 is a ring map, then 𝑀⊗𝐴𝐵 is a flat 𝐵-module.
See Algebra, Lemma 7.35.6.

(4) Finite flat modules over local rings are free. See Algebra, Lemma 7.72.4.
(5) If 𝑓 ∶ 𝐴 → 𝐵 is a morphism of arbitrary rings, 𝑓 is flat if and only if the induced

maps 𝐴𝑓−1(𝔮) → 𝐵𝔮 are flat for all 𝔮 ∈ 𝑆𝑝𝑒𝑐(𝐵). See Algebra, Lemma 7.35.19
(6) If 𝑓 ∶ 𝐴 → 𝐵 is a local homomorphism of local rings, 𝑓 is flat if and only if it is

faithfully flat. See Algebra, Lemma 7.35.16.
(7) A map 𝐴 → 𝐵 of rings is faithfully flat if and only if it is flat and the induced

map on spectra is surjective. See Algebra, Lemma 7.35.15.
(8) If 𝐴 is a noetherian local ring, the completion 𝐴∧ is faithfully flat over 𝐴. See

Algebra, Lemma 7.90.4.
(9) Let 𝐴 be a Noetherian local ring and 𝑀 an 𝐴-module. Then 𝑀 is flat over 𝐴

if and only if 𝑀 ⊗𝐴 𝐴∧ is flat over 𝐴∧. (Combine the previous statement with
Algebra, Lemma 7.35.7.)

Before we move on to the geometric category, we present Grothendieck's theorem, which
provides a convenient recipe for producing flat modules.

Theorem 37.9.2. Let 𝐴, 𝐵 be Noetherian local rings. Let 𝑓 ∶ 𝐴 → 𝐵 be a local homo-
morphism. If 𝑀 is a finite 𝐵-module that is flat as an 𝐴-module, and 𝑡 ∈ 𝔪𝐵 is an element
such that multiplication by 𝑡 is injective on 𝑀/𝔪𝐴𝑀, then 𝑀/𝑡𝑀 is also 𝐴-flat.

Proof. See Algebra, Lemma 7.91.1. See also [Mat70, Section 20]. �

Definition 37.9.3. (See Morphisms, Definition 24.24.1). Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism
of schemes. Let ℱ be a quasi-coherent 𝒪𝑋-module.

(1) Let 𝑥 ∈ 𝑋. We say ℱ is flat over 𝑌 at 𝑥 ∈ 𝑋 if ℱ𝑥 is a flat 𝒪𝑌,𝑓(𝑥)-module. This
uses the map 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥 to think of ℱ𝑥 as a 𝒪𝑌,𝑓(𝑥)-module.

(2) Let 𝑥 ∈ 𝑋. We say 𝑓 is flat at 𝑥 ∈ 𝑋 if 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥 is flat.
(3) We say 𝑓 is flat if it is flat at all points of 𝑋.
(4) Amorphism 𝑓 ∶ 𝑋 → 𝑌 that is flat and surjective is sometimes said to be faithfully

flat.

Once again, here is a list of results:
(1) The property (of a morphism) of being flat is, by fiat, local in the Zariski topology

on the source and the target.
(2) Open immersions are flat. (This is clear because it induces isomorphisms on local

rings.)
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(3) Flat morphisms are stable under base change and composition. Morphisms, Lem-
mas 24.24.7 and 24.24.5.

(4) If 𝑓 ∶ 𝑋 → 𝑌 is flat, then the pullback functor QCoh(𝒪𝑌) → QCoh(𝒪𝑋) is exact.
This is immediate by looking at stalks.

(5) Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes, and assume 𝑌 is quasi-compact
and quasi-separated. In this case if the functor 𝑓∗ is exact then 𝑓 is flat. (Proof
omitted. Hint: Use Properties, Lemma 23.20.1 to see that 𝑌 has ``enough'' ideal
sheaves and use the characterization of flatness in Algebra, Lemma 7.35.4.)

37.10. Topological properties of flat morphisms

We ``recall'' below some openness properties that flat morphisms enjoy.

Theorem 37.10.1. Let 𝑌 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism
which is locally of finite type. Let ℱ be a coherent 𝒪𝑋-module. The set of points in 𝑋 where
ℱ is flat over 𝑆 is an open set. In particular the set of points where 𝑓 is flat is open in 𝑋.

Proof. See More on Morphisms, Theorem 33.11.1. �

Theorem 37.10.2. Let 𝑌 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism
which is flat and locally of finite type. Then 𝑓 is (universally) open.

Proof. See Morphisms, Lemma 24.24.9. �

Theorem 37.10.3. A faithfully flat quasi-compact morphism is a quotient map for the
Zariski topology.

Proof. See Morphisms, Lemma 24.24.10. �

An important reason to study flatmorphisms is that they provide the adequate framework for
capturing the notion of a family of schemes parametrised by the points of another scheme.
Naively one may think that any morphism 𝑓 ∶ 𝑋 → 𝑆 should be thought of as a family
parametrized by the points of 𝑆. However, without a flatness restriction on 𝑓, really bizarre
things can happen in this so-called family. For instance, we aren't guaranteed that relative
dimension (dimension of the fibres) is constant in a family. Other numerical invariants,
such as the Hilbert polynomial, too may change from fibre to fibre. Flatness prevents such
things from happening and, therefore, provides some ``continuity'' to the fibres.

37.11. Étale morphisms

In this section, we will define étale morphisms and prove a number of important properties
about them. The most important one, no doubt, is the functorial characterisation presented
in Theorem 37.16.1. Following this, we will also discuss a few properties of rings which
are insensitive to an étale extension (properties which hold for a ring if and only if they
hold for all its étale extensions) to motivate the basic tenet of étale cohomology -- étale
morphisms are the algebraic analogue of local isomorphisms.

As the title suggests, we will define the class of étale morphisms -- the class of morphisms
(whose surjective families) we shall deem to be coverings in the category of schemes over
a base scheme 𝑆 in order to define the étale site 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Intuitively, an étale morphism is
supposed to capture the idea of a covering space and, therefore, should be close to a lo-
cal isomorphism. If we're working with varieties over algebraically closed fields, this last
statement can be made into a definition provided we replace ``local isomorphism'' with
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``formal local isomorphism'' (isomorphism after completion). One can then give a defini-
tion over any base field by asking that the base change to the algebraic closure be étale (in
the aforementioned sense). But, rather than proceeding via such aesthetically displeasing
constructions, we will adopt a cleaner, albeit slightly more abstract, algebraic approach.

Definition 37.11.1. Let𝐴, 𝐵 beNoetherian local rings. A local homomorphism 𝑓 ∶ 𝐴 → 𝐵
is said to be a étale homomorphism of local rings if it is flat and unramified homomorphism
of local rings (please see Definition 37.3.1).

This is the local version of the definition of an étale ringmap in Algebra, Section 7.132. The
exact definition given in that section is that it is a smooth ring map of relative dimension 0.
It is shown (in Algebra, Lemma 7.132.2 after some work) that an étale 𝑅-algebra 𝑆 always
has a presentation

𝑆 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑛)
such that

𝑔 = det
⎛
⎜
⎜
⎜
⎝

𝜕𝑓1/𝜕𝑥1 𝜕𝑓2/𝜕𝑥1 … 𝜕𝑓𝑛/𝜕𝑥1
𝜕𝑓1/𝜕𝑥2 𝜕𝑓2/𝜕𝑥2 … 𝜕𝑓𝑛/𝜕𝑥2

… … … …
𝜕𝑓1/𝜕𝑥𝑛 𝜕𝑓2/𝜕𝑥𝑛 … 𝜕𝑓𝑛/𝜕𝑥𝑛

⎞
⎟
⎟
⎟
⎠

maps to an invertible element in 𝑆. The following two lemmas link the two notions.

Lemma 37.11.2. Let 𝐴 → 𝐵 be of finite type with 𝐴 a Noetherian ring. Let 𝔮 be a prime
of 𝐵 lying over 𝔭 ⊂ 𝐴. Then 𝐴 → 𝐵 is étale at 𝔮 if and only if 𝐴𝔭 → 𝐵𝔮 is an étale
homomorphism of local rings.

Proof. See Algebra, Lemmas 7.132.3 (flatness of étale maps), 7.132.5 (étale maps are un-
ramified) and 7.132.7 (flat and unramified maps are étale). �

Lemma 37.11.3. Let𝐴, 𝐵 be Noetherian local rings. Let𝐴 → 𝐵 be a local homomorphism
such that 𝐵 is essentially of finite type over 𝐴. The following are equivalent

(1) 𝐴 → 𝐵 is an étale homomorphism of local rings
(2) 𝐴∧ → 𝐵∧ is an étale homomorphism of local rings, and
(3) 𝐴∧ → 𝐵∧ is étale.

Moreover, in this case 𝐵∧ ≅ (𝐴∧)⊕𝑛 as 𝐴∧-modules for some 𝑛 ≥ 1.

Proof. To see the equivalences of (1), (2) and (3), as we have the corresponding results for
unramified ring maps (Lemma 37.3.4) it suffices to prove that 𝐴 → 𝐵 is flat if and only if
𝐴∧ → 𝐵∧ is flat. This is clear from our lists of properties of flat maps since the ring maps
𝐴 → 𝐴∧ and 𝐵 → 𝐵∧ are faithfully flat. For the final statement, by Lemma 37.3.3 we see
that 𝐵∧ is a finite flat 𝐴∧ module. Hence it is finite free by our list of properties on flat
modules in Section 37.9. �

The integer 𝑛 which occurs in the lemma above is nothing other than the degree [𝜅(𝔪𝐵) ∶
𝜅(𝔪𝐴)] of the residue field extension. In particular, if 𝜅(𝔪𝐴) is separably closed, we see
that 𝐴∧ → 𝐵∧ is an isomorphism, which vindicates our earlier claims.

Definition 37.11.4. (See Morphisms, Definition 24.35.1.) Let 𝑌 be a locally Noetherian
scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes which is locally of finite type.

(1) Let 𝑥 ∈ 𝑋. We say 𝑓 is étale at 𝑥 ∈ 𝑋 if 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥 is an étale homomor-
phism of local rings.

(2) The morphism is said to be étale if it is étale at all its points.
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Let us prove that this definition agrees with the definition in the chapter on morphisms of
schemes. This in particular guarantees that the set of points where a morphism is étale is
open.

Lemma 37.11.5. Let 𝑌 be a locally Noetherian scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be locally of finite
type. Let 𝑥 ∈ 𝑋. The morphism 𝑓 is étale at 𝑥 in the sense of Definition 37.11.4 if and only
if it is unramified at 𝑥 in the sense of Morphisms, Definition 24.35.1.

Proof. This follows from Lemma 37.11.2 and the definitions. �

Here are some results on étale morphisms. The formulations as given in this list apply only
to morphisms locally of finite type between locally Noetherian schemes. In each case we
give a reference to the general result as proved earlier in the project, but in some cases one
can prove the result more easily in the Noetherian case. Here is the list:

(1) An étale morphism is unramified. (Clear from our definitions.)
(2) Étaleness is local on the source and the target in the Zariski topology.
(3) Étale morphisms are stable under base change and composition. See Morphisms,

Lemmas 24.35.4 and 24.35.3.
(4) Étale morphisms of schemes are locally quasi-finite and quasi-compact étale mor-

phisms are quasi-finite. (This is true because it holds for unramified morphisms
as seen earlier.)

(5) Étale morphisms have relative dimension 0. See Morphisms, Definition 24.28.1
and Morphisms, Lemma 24.28.5.

(6) A morphism is étale if and only if it is flat and all its fibres are étale. See Mor-
phisms, Lemma 24.35.8.

(7) Étale morphisms are open. This is true because an étale morphism is flat, and
Theorem 37.10.2.

(8) Let 𝑋 and 𝑌 be étale over a base scheme 𝑆. Any 𝑆-morphism from 𝑋 to 𝑌 is
étale. See Morphisms, Lemma 24.35.18.

37.12. The structure theorem

We present a theorem which describes the local structure of étale and unramified mor-
phisms. Besides its obvious independent importance, this theorem also allows us to make
the transition to another definition of étale morphisms that captures the geometric intuition
better than the one we've used so far.

To state it we need the notion of a standard étale ringmap, see Algebra, Definition 7.132.13.
Namely, suppose that 𝑅 is a ring and 𝑓, 𝑔 ∈ 𝑅[𝑡] are polynomials such that

(a) 𝑓 is a monic polynomial, and
(b) 𝑓′ = d𝑓/d𝑡 is invertible in the localization 𝑅[𝑡]𝑔.

Then the map
𝑅 ⟶ 𝑅[𝑡]𝑔/(𝑓) = 𝑅[𝑡, 1/𝑔]/(𝑓)

is a standard étale algebra, and any standard étale algebra is isomorphic to one of these. It
is a pleasant exercise to prove that such a ring map is flat, and unramified and hence étale
(as expected of course). A special case of a standard étale ring map is any ring map

𝑅 ⟶ 𝑅[𝑡]𝑓′/(𝑓) = 𝑅[𝑡, 1/𝑓′]/(𝑓)

with 𝑓 a monic polynomial, and any standard étale algebra is (isomorphic to) a principal
localization of one of these.
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Theorem 37.12.1. Let 𝑓 ∶ 𝐴 → 𝐵 be an étale homomorphism of local rings. Then there
exist 𝑓, 𝑔 ∈ 𝐴[𝑡] such that

(1) 𝐵′ = 𝐴[𝑡]𝑔/(𝑓) is standard étale -- see (a) and (b) above, and
(2) 𝐵 is isomorphic to a localization of 𝐵′ at a prime.

Proof. Write 𝐵 = 𝐵′
𝔮 for some finite type 𝐴-algebra 𝐵′ (we can do this because 𝐵 is

essentially of finite type over 𝐴). By Lemma 37.11.2 we see that 𝐴 → 𝐵′ is étale at 𝔮.
Hence we may apply Algebra, Proposition 7.132.16 to see that a principal localization of
𝐵′ is standard étale. �

Here is the version for unramified homomorphisms of local rings.

Theorem 37.12.2. Let 𝑓 ∶ 𝐴 → 𝐵 be an unramified morphism of local rings. Then there
exist 𝑓, 𝑔 ∈ 𝐴[𝑡] such that

(1) 𝐵′ = 𝐴[𝑡]𝑔/(𝑓) is standard étale -- see (a) and (b) above, and
(2) 𝐵 is isomorphic to a quotient of a localization of 𝐵′ at a prime.

Proof. Write 𝐵 = 𝐵′
𝔮 for some finite type 𝐴-algebra 𝐵′ (we can do this because 𝐵 is

essentially of finite type over 𝐴). By Lemma 37.3.2 we see that 𝐴 → 𝐵′ is unramified at 𝔮.
Hence we may apply Algebra, Proposition 7.138.8 to see that a principal localization of 𝐵′

is a quotient of a standard étale 𝐴-algebra. �

Via standard lifting arguments, one then obtains the following geometric statement which
will be of essential use to us.

Theorem 37.12.3. Let 𝜑 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑥 ∈ 𝑋. If 𝜑 is étale at
𝑥, then there exist exist affine opens 𝑉 ⊂ 𝑌 and 𝑈 ⊂ 𝑋 with 𝑥 ∈ 𝑈 and 𝜑(𝑈) ⊂ 𝑉 such that
we have the following diagram

𝑋

��

𝑈oo

��

𝑗
// 𝑆𝑝𝑒𝑐(𝑅[𝑡]𝑓′/(𝑓))

��
𝑌 𝑉oo 𝑆𝑝𝑒𝑐(𝑅)

where 𝑗 is an open immersion, and 𝑓 ∈ 𝑅[𝑡] is monic.

Proof. This is equivalent to Morphisms, Lemma 24.35.14 allthough the statements differ
slightly. �

37.13. Étale and smooth morphisms

An étale morphism is smooth of relative dimension zero. The projection 𝐀𝑛
𝑆 → 𝑆 is a

standard example of a smooth morphism of relative dimension 𝑛. It turns out that any
smooth morphism is étale locally of this form. Here is the precise statement.

Theorem 37.13.1. Let 𝜑 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑥 ∈ 𝑋. If 𝜑 is smooth
at 𝑥, then there exist exist and integer 𝑛 ≥ 0 and affine opens 𝑉 ⊂ 𝑌 and 𝑈 ⊂ 𝑋 with 𝑥 ∈ 𝑈
and 𝜑(𝑈) ⊂ 𝑉 such that there exists a commutative diagram

𝑋

��

𝑈oo

��

𝜋
// 𝐀𝑛

𝑅

��

𝑆𝑝𝑒𝑐(𝑅[𝑥1, … , 𝑥𝑛])

vv
𝑌 𝑉oo 𝑆𝑝𝑒𝑐(𝑅)

where 𝜋 is étale.
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Proof. See Morphisms, Lemma 24.35.20. �

37.14. Topological properties of étale morphisms

We present a few of the topological properties of étale and unramified morphisms. First,
we give what Grothendieck calls the fundamental property of étale morphisms, see [Gro71,
Exposé I.5].

Theorem 37.14.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes The following are equivalent:
(1) 𝑓 is an open immersion,
(2) 𝑓 is universally injective and étale, and
(3) 𝑓 is a flat monomorphism, locally of finite presentation.

Proof. An open immersion is universally injective since any base change of an open im-
mersion is an open immersion. Moreover, it is étale byMorphisms, Lemma 24.35.9. Hence
(1) implies (2).

Assume 𝑓 is universally injective and étale. Since 𝑓 is étale it is flat and locally of finite
presentation, see Morphisms, Lemmas 24.35.12 and 24.35.11. By Lemma 37.7.1 we see
that 𝑓 is a monomorphism. Hence (2) implies (3).

Assume 𝑓 is flat, locally of finite presentation, and a monomorphism. Then 𝑓 is open, see
Morphisms, Lemma 24.24.9. Thus we may replace 𝑌 by 𝑓(𝑋) and we may assume 𝑓 is sur-
jective. Then 𝑓 is open and bijective hence a homeomorphism. Hence 𝑓 is quasi-compact.
Hence Descent, Lemma 31.21.1 shows that 𝑓 is an isomorphism and we win. �

Here is another result of a similar flavor.

Lemma 37.14.2. Let 𝜋 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑠 ∈ 𝑆. Assume that
(1) 𝜋 is finite,
(2) 𝜋 is étale,
(3) 𝜋−1({𝑠}) = {𝑥}, and
(4) 𝜅(𝑠) ⊂ 𝜅(𝑥) is purely inseparable2.

Then there exists an open neighbourhood 𝑈 of 𝑠 such that 𝜋|𝜋−1(𝑈) ∶ 𝜋−1(𝑈) → 𝑈 is an
isomorphism.

Proof. By Lemma 37.7.3 there exists an open neighbourhood 𝑈 of 𝑠 such that 𝜋|𝜋−1(𝑈) ∶
𝜋−1(𝑈) → 𝑈 is a closed immersion. But a morphism which is étale and a closed immersion
is an open immersion (for example by Theorem 37.14.1). Hence after shrinking 𝑈 we obtain
an isomorphism. �

37.15. Topological invariance of the étale topology

Next, we present an extremely crucial theorem which, roughly speaking, says that étaleness
is a topological property.

Theorem 37.15.1. Let 𝑋 and 𝑌 be two schemes over a base scheme 𝑆. Let 𝑆0 be a closed
subscheme of 𝑆 whose ideal sheaf has square zero. Denote 𝑋0 (resp. 𝑌0) the base change
𝑆0 ×𝑆 𝑋 (resp. 𝑆0 ×𝑆 𝑌). If 𝑋 is étale over 𝑆, then the map

𝑀𝑜𝑟𝑆(𝑌, 𝑋) ⟶ 𝑀𝑜𝑟𝑆0
(𝑌0, 𝑋0)

is bijective.

2In view of condition (2) this is equivalent to 𝜅(𝑠) = 𝜅(𝑥).
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Proof. After base changing via 𝑌 → 𝑆, we may assume that 𝑌 = 𝑆. In this case the
theorem states that any 𝑆-morphism 𝜎0 ∶ 𝑆0 → 𝑋 actually factors uniquely through a
section 𝑆 → 𝑋 of the étale structure morphism 𝑋 → 𝑆.

Existence. Since we have equality of underlying topological spaces |𝑆0| = |𝑆| and |𝑋0| =
|𝑋|, by Theorem 37.6.2, the section 𝜎0 is uniquely determined by a connected component
𝑋′ of 𝑋 such that the base change 𝑋′

0 = 𝑆0 ×𝑆 𝑋′ maps isomorphically to 𝑆0. In particular,
𝑋′ → 𝑆 is a universal homeomorphism and therefore universally injective. Since 𝑋′ → 𝑆
is étale, it follows from Theorem 37.14.1 that 𝑋′ → 𝑆 is an isomorphism and, therefore, it
has an inverse 𝜎 which is the required section.

Uniqueness. This follows from Theorem 37.5.1, or directly from Theorem 37.6.2, or, if one
carefully observes, from our proof itself. �

From the proof of preceeding theorem, we also obtain one direction of the promised func-
torial characterisation of étale morphisms. The following theorem will be strengthened in
Étale Cohomology, Theorem 38.45.1.

Theorem 37.15.2. (Une equivalence remarquable de catégories.) Let 𝑆 be a scheme. Let
𝑆0 ⊂ 𝑆 be a closed subscheme defined by an ideal with square zero. The functor

𝑋 ⟼ 𝑋0 = 𝑆0 ×𝑆 𝑋

defines an equivalence of categories

{schemes 𝑋 étale over 𝑆} ↔ {schemes 𝑋0 étale over 𝑆0}

Proof. By Theorem 37.15.1 we see that this functor is fully faithful. It remains to show
that the functor is essentially surjective. Let 𝑌 → 𝑆0 be an étale morphism of schemes.

Suppose that the result holds if 𝑆 and 𝑌 are affine. In that case, we choose an affine open
covering 𝑌 = ⋃ 𝑉𝑗 such that each 𝑉𝑗 maps into an affine open of 𝑆. By assumption (affine
case) we can find étale morphisms 𝑊𝑗 → 𝑆 such that 𝑊𝑗,0 ≅ 𝑉𝑗 (as schemes over 𝑆0).
Let 𝑊𝑗,𝑗′ ⊂ 𝑊𝑗 be the open subscheme whose underlying topological space corresponds to
𝑉𝑗 ∩ 𝑉𝑗′. Because we have isomorphisms

𝑊𝑗,𝑗′,0 ≅ 𝑉𝑗 ∩ 𝑉𝑗′ ≅ 𝑊𝑗′,𝑗,0

as schemes over 𝑆0 we see by fully faithfulness that we obtain isomorphisms 𝜃𝑗,𝑗′ ∶ 𝑊𝑗,𝑗′ →
𝑊𝑗′,𝑗 of schemes over 𝑆. We omit the verification that these isomorphisms satisfy the cocyle
condition of Schemes, Section 21.14. Applying Schemes, Lemma 21.14.2 we obtain a
scheme 𝑋 → 𝑆 by glueing the schemes 𝑊𝑗 along the identifications 𝜃𝑗,𝑗′. It is clear that
𝑋 → 𝑆 is étale and 𝑋0 ≅ 𝑌 by construction.

Thus it suffices to show the lemma in case 𝑆 and 𝑌 are affine. Say 𝑆 = 𝑆𝑝𝑒𝑐(𝑅) and
𝑆0 = 𝑆𝑝𝑒𝑐(𝑅/𝐼) with 𝐼2 = 0. By Algebra, Lemma 7.132.2 we know that 𝑌 is the spectrum
of a ring 𝐴 with

𝐴 = (𝑅/𝐼)[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑛)
such that

𝑔 = det
⎛
⎜
⎜
⎜
⎝

𝜕𝑓1/𝜕𝑥1 𝜕𝑓2/𝜕𝑥1 … 𝜕𝑓𝑛/𝜕𝑥1
𝜕𝑓1/𝜕𝑥2 𝜕𝑓2/𝜕𝑥2 … 𝜕𝑓𝑛/𝜕𝑥2

… … … …
𝜕𝑓1/𝜕𝑥𝑛 𝜕𝑓2/𝜕𝑥𝑛 … 𝜕𝑓𝑛/𝜕𝑥𝑛

⎞
⎟
⎟
⎟
⎠
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maps to an invertible element in 𝐴. Choose any lifts 𝑓𝑖 ∈ 𝑅[𝑥1, … , 𝑥𝑛]. Since 𝐼 is nilpotent
it follows that the determinant of the matrix of partials of the 𝑓𝑖 is invertible in the algebra
𝐴 defined by

𝐴 = 𝑅[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑛)

Hence 𝑅 → 𝐴 is étale and (𝑅/𝐼) ⊗𝑅 𝐴 ≅ 𝐴. To prove the general case one argues with
glueing affine pieces. �

37.16. The functorial characterization

We finally present the promised functorial characterisation. Thus there are four ways to
think about étale morphisms of schemes:

(1) as a smooth morphism of relative dimension 0,
(2) as locally finitely presented, flat, and unramified morphisms,
(3) using the structure theorem, and
(4) using the functorial characterisation.

Theorem 37.16.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism that is locally of finite presentation. The
following are equivalent

(1) 𝑓 is étale,
(2) for all affine 𝑆-schemes 𝑌, and closed subschemes 𝑌0 ⊂ 𝑌 defined by square-zero

ideals, the natural map

𝑀𝑜𝑟𝑆(𝑌, 𝑋) ⟶ 𝑀𝑜𝑟𝑆(𝑌0, 𝑋)

is bijective.

Proof. This is More on Morphisms, Lemma 33.6.9. �

This characterisation says that solutions to the equations defining 𝑋 can be lifted uniquely
through nilpotent thickenings.

37.17. Étale local structure of unramified morphisms

In the chapter More on Morphisms, Section 33.28 the reader can find some results on the
étale local structure of quasi-finite morphisms. In this section we want to combine this with
the topological properties of unramified morphisms we have seen in this chapter. The basic
overall picture to keep in mind is

𝑉 //

  

𝑋𝑈

��

// 𝑋

𝑓
��

𝑈 // 𝑆

see More on Morphisms, Equation (33.28.0.1). We start with a very general case.

Lemma 37.17.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑋 be points
having the same image 𝑠 in 𝑆. Assume 𝑓 is unramified at each 𝑥𝑖. Then there exists an étale
neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and opens 𝑉𝑖,𝑗 ⊂ 𝑋𝑈, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚𝑖 such that

(1) 𝑉𝑖,𝑗 → 𝑈 is a closed immersion passing through 𝑢,
(2) 𝑢 is not in the image of 𝑉𝑖,𝑗 ∩ 𝑉𝑖′,𝑗′ unless 𝑖 = 𝑖′ and 𝑗 = 𝑗′, and
(3) any point of (𝑋𝑈)𝑢 mapping to 𝑥𝑖 is in some 𝑉𝑖,𝑗.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=025K
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04HH


37.18. ÉTALE LOCAL STRUCTURE OF ÉTALE MORPHISMS 1985

Proof. By Morphisms, Definition 24.34.1 there exists an open neighbourhood of each 𝑥𝑖
which is locally of finite type over𝑆. Replacing𝑋 by an open neighbourhood of {𝑥1, … , 𝑥𝑛}
we may assume 𝑓 is locally of finite type. Apply More on Morphisms, Lemma 33.28.3 to
get the étale neighbourhood (𝑈, 𝑢) and the opens 𝑉𝑖,𝑗 finite over 𝑈. By Lemma 37.7.3 after
possibly shrinking 𝑈 we get that 𝑉𝑖,𝑗 → 𝑈 is a closed immersion. �

Lemma 37.17.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑋 be points
having the same image 𝑠 in 𝑆. Assume 𝑓 is separated and 𝑓 is unramified at each 𝑥𝑖. Then
there exists an étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and a disjoint union decomposition

𝑋𝑈 = 𝑊 ⨿ ∐𝑖,𝑗
𝑉𝑖,𝑗

such that
(1) 𝑉𝑖,𝑗 → 𝑈 is a closed immersion passing through 𝑢,
(2) the fibre 𝑊𝑢 contains no point mapping to any 𝑥𝑖.

In particular, if 𝑓−1({𝑠}) = {𝑥1, … , 𝑥𝑛}, then the fibre 𝑊𝑢 is empty.

Proof. Apply Lemma 37.17.1. We may assume 𝑈 is affine, so 𝑋𝑈 is separated. Then
𝑉𝑖,𝑗 → 𝑋𝑈 is a closed map, see Morphisms, Lemma 24.40.7. Suppose (𝑖, 𝑗)≠(𝑖′, 𝑗′). Then
𝑉𝑖,𝑗 ∩ 𝑉𝑖′,𝑗′ is closed in 𝑉𝑖,𝑗 and its image in 𝑈 does not contain 𝑢. Hence after shrinking 𝑈
we may assume that 𝑉𝑖,𝑗 ∩ 𝑉𝑖′,𝑗′ = ∅. Moreover, ⋃ 𝑉𝑖,𝑗 is a closed and open subscheme of
𝑋𝑈 and hence has an open and closed complement 𝑊. This finishes the proof. �

The following lemma is in some sense much weaker than the preceding one but it may be
useful to state it explicitly here. It says that a finite uramified morphism is étale locally on
the base a closed immersion.

Lemma 37.17.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a finite unramified morphism of schemes. Let 𝑠 ∈ 𝑆.
There exists an étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and a disjoint union decomposition

𝑋𝑈 = ∐𝑗
𝑉𝑗

such that each 𝑉𝑗 → 𝑈 is a closed immersion.

Proof. Since 𝑋 → 𝑆 is finite the fibre over 𝑆 is a finite set {𝑥1, … , 𝑥𝑛} of points of 𝑋.
Apply Lemma 37.17.2 to this set (a finite morphism is separated, see Morphisms, Section
24.42). The image of 𝑊 in 𝑈 is a closed subset (as 𝑋𝑈 → 𝑈 is finite, hence proper) which
does not contain 𝑢. After removing this from 𝑈 we see that 𝑊 = ∅ as desired. �

37.18. Étale local structure of étale morphisms

This is a bit silly, but perhaps helps form intuition about étale morphisms. We simply copy
over the results of Section 37.17 and change ``closed immersion'' into ``isomorphism''.

Lemma 37.18.1. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑋 be points
having the same image 𝑠 in 𝑆. Assume 𝑓 is étale at each 𝑥𝑖. Then there exists an étale
neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and opens 𝑉𝑖,𝑗 ⊂ 𝑋𝑈, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚𝑖 such that

(1) 𝑉𝑖,𝑗 → 𝑈 is an isomorphism,
(2) 𝑢 is not in the image of 𝑉𝑖,𝑗 ∩ 𝑉𝑖′,𝑗′ unless 𝑖 = 𝑖′ and 𝑗 = 𝑗′, and
(3) any point of (𝑋𝑈)𝑢 mapping to 𝑥𝑖 is in some 𝑉𝑖,𝑗.

Proof. An étale morphism is unramified, hence wemay apply Lemma 37.17.1. Now 𝑉𝑖,𝑗 →
𝑈 is a closed immersion and étale. Hence it is an open immersion, for example by Theorem
37.14.1. Replace 𝑈 by the intersection of the images of 𝑉𝑖,𝑗 → 𝑈 to get the lemma. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04HI
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Lemma 37.18.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑋 be points
having the same image 𝑠 in 𝑆. Assume 𝑓 is separated and 𝑓 is étale at each 𝑥𝑖. Then there
exists an étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and a disjoint union decomposition

𝑋𝑈 = 𝑊 ⨿ ∐𝑖,𝑗
𝑉𝑖,𝑗

such that
(1) 𝑉𝑖,𝑗 → 𝑈 is an isomorphism,
(2) the fibre 𝑊𝑢 contains no point mapping to any 𝑥𝑖.

In particular, if 𝑓−1({𝑠}) = {𝑥1, … , 𝑥𝑛}, then the fibre 𝑊𝑢 is empty.

Proof. An étale morphism is unramified, hence we may apply Lemma 37.17.2. As in the
proof of Lemma 37.18.1 the morphisms 𝑉𝑖,𝑗 → 𝑈 are open immersions and we win after
replacing 𝑈 by the intersection of their images. �

The following lemma is in some sense much weaker than the preceding one but it may be
useful to state it explicitly here. It says that a finite étale morphism is étale locally on the
base a ``topological covering space'', i.e., a finite product of copies of the base.

Lemma 37.18.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a finite étale morphism of schemes. Let 𝑠 ∈ 𝑆. There
exists an étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) and a disjoint union decomposition

𝑋𝑈 = ∐𝑗
𝑉𝑗

such that each 𝑉𝑗 → 𝑈 is an isomorphism.

Proof. An étale morphism is unramified, hence we may apply Lemma 37.17.3. As in the
proof of Lemma 37.18.1 we see that 𝑉𝑖,𝑗 → 𝑈 is an open immersion and we win after
replacing 𝑈 by the intersection of their images. �

37.19. Permanence properties

In what follows, we present a few ``permanence'' properties of étale homomorphisms of
Noetherian local rings (as defined in Definition 37.11.1). See More on Algebra, Section
12.33 for the analogue of this material for the completion of a Noetherian local ring.

Lemma 37.19.1. Let 𝐴, 𝐵 be Noetherian local rings. Let 𝐴 → 𝐵 be a étale homomorphism
of local rings. Then dim(𝐴) = dim(𝐵).

Proof. See for example Algebra, Lemma 7.103.7. �

Proposition 37.19.2. Let 𝐴, 𝐵 be Noetherian local rings. Let 𝑓 ∶ 𝐴 → 𝐵 be an étale
homomorphism of local rings. Then depth(𝐴) = depth(𝐵)

Proof. See Algebra, Lemma 7.145.1. �

Proposition 37.19.3. Let 𝐴, 𝐵 be Noetherian local rings. Let 𝑓 ∶ 𝐴 → 𝐵 be an étale
homomorphism of local rings. Then 𝐴 is Cohen-Macaulay if and only if 𝐵 is so.

Proof. A local ring 𝐴 is Cohen-Macaulay if and only dim(𝐴) = depth(𝐴). As both of these
invariants is preserved under an étale extension, the claim follows. �

Proposition 37.19.4. Let 𝐴, 𝐵 be Noetherian local rings. Let 𝑓 ∶ 𝐴 → 𝐵 be an étale
homomorphism of local rings. Then 𝐴 is regular if and only if 𝐵 is so.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04HM
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http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=039S
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Proof. If 𝐵 is regular, then 𝐴 is regular by Algebra, Lemma 7.102.8. Assume 𝐴 is regular.
Let 𝔪 be the maximal ideal of 𝐴. Then dim𝜅(𝔪) 𝔪/𝔪2 = dim(𝐴) = dim(𝐵) (see Lemma
37.19.1). On the other hand, 𝔪𝐵 is the maximal ideal of 𝐵 and hence 𝔪𝐵/𝔪𝐵 = 𝔪𝐵/𝔪2𝐵
is generated by at most dim(𝐵) elements. Thus 𝐵 is regular. (You can also use the slightly
more general Algebra, Lemma 7.103.8.) �

Proposition 37.19.5. Let 𝐴, 𝐵 be Noetherian local rings. Let 𝑓 ∶ 𝐴 → 𝐵 be an étale
homomorphism of local rings. Then 𝐴 is reduced if and only if 𝐵 is so.

Proof. It is clear from the faithful flatness of 𝐴 → 𝐵 that if 𝐵 is reduced, so is 𝐴. See also
Algebra, Lemma 7.146.2. Conversely, assume 𝐴 is reduced. By assumption 𝐵 is a local-
ization of a finite type 𝐴-algebra 𝐵′ at some prime 𝔮. After replacing 𝐵′ by a localization
we may assume that 𝐵′ is étale over 𝐴, see Lemma 37.11.2. Then we see that Algebra,
Lemma 7.145.6 applies to 𝐴 → 𝐵′ and 𝐵′ is reduced. Hence 𝐵 is reduced. �

Remark 37.19.6. The result on ``reducedness'' does not hold with a weaker definition of
étale local ring maps 𝐴 → 𝐵 where one drops the assumption that 𝐵 is essentially of finite
type over 𝐴. Namely, it can happen that a Noetherian local domain 𝐴 has nonreduced
completion 𝐴∧, see Examples, Section 64.8. But the ring map 𝐴 → 𝐴∧ is flat, and 𝔪𝐴𝐴∧

is the maximal ideal of 𝐴∧ and of course 𝐴 and 𝐴∧ have the same residue fields. This is
why it is important to consider this notion only for ring extensions which are essentially of
finite type (or essentially of finite presentation if 𝐴 is not Noetherian).

Proposition 37.19.7. Let 𝐴, 𝐵 be Noetherian local rings. Let 𝑓 ∶ 𝐴 → 𝐵 be an étale
homomorphism of local rings. Then 𝐴 is a normal domain if and only if 𝐵 is so.

Proof. See Algebra, Lemma 7.146.3 for descending normality. Conversely, assume 𝐴 is
normal. By assumption 𝐵 is a localization of a finite type 𝐴-algebra 𝐵′ at some prime 𝔮.
After replacing 𝐵′ by a localization we may assume that 𝐵′ is étale over 𝐴, see Lemma
37.11.2. Then we see that Algebra, Lemma 7.145.7 applies to 𝐴 → 𝐵′ and we conclude
that 𝐵′ is normal. Hence 𝐵 is a normal domain. �

The preceeding propositions give some indication as to why we'd like to think of étale
maps as ``local isomorphisms''. Another property that gives an excellent indication that we
have the ``right'' definition is the fact that for 𝐂-schemes of finite type, a morphism is étale
if and only if the associated morphism on analytic spaces (the 𝐂-valued points given the
complex topology) is a local isomorphism in the analytic sense (open embedding locally on
the source). This fact can be proven with the aid of the structure theorem and the fact that
the analytification commutes with the formation of the completed local rings -- the details
are left to the reader.

37.20. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
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(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups

(9) Sites and Sheaves
(10) Homological Algebra
(11) Derived Categories
(12) More on Algebra
(13) Smoothing Ring Maps
(14) Simplicial Methods
(15) Sheaves of Modules
(16) Modules on Sites
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CHAPTER 38

Étale Cohomology

38.1. Introduction

These are the notes of a course on étale cohomology taught by Johan de Jong at Columbia
University in the Fall of 2009. The original note takers were Thibaut Pugin, Zachary Mad-
dock and Min Lee. Over time we will add references to background material in the rest of
the stacks project and provide rigorous proofs of all the statements.

38.2. Which sections to skip on a first reading?

Wewant to use thematerial in this chapter for the development of theory related to algebraic
spaces, Deligne-Mumford stacks, algebraic stacks, etc. Thus we have added some pretty
technical material to the original exposition of étale cohomology for schemes. The reader
can recognize this material by the frequency of the word ``topos'', or by discussions related
to set theory, or by proofs dealing with very general properties of morphisms of schemes.
Some of these discussions can be skipped on a first reading.
In particular, we suggest that the reader skip the following sections:

(1) Comparing big and small topoi, Section 38.39.
(2) Recovering morphisms, Section 38.40.
(3) Push and pull, Section 38.41.
(4) Property (A), Section 38.42.
(5) Property (B), Section 38.43.
(6) Property (C), Section 38.44.
(7) Topological invariance of the small étale site, Section 38.45.
(8) Integral universally injective morphisms, Section 38.47.
(9) Big sites and pushforward, Section 38.48.

(10) Exactness of big lower shriek, Section 38.49.
Besides these sections there are some sporadic results that may be skipped that the reader
can recognize by the keywords given above.

38.3. Prologue

These lectures are about another cohomology theory. The first thing to remark is that the
Zariski topology is not entirely satisfactory. One of the main reasons that it fails to give the
results that we would want is that if 𝑋 is a complex variety and ℱ is a constant sheaf then

𝐻𝑖(𝑋, ℱ) = 0, for all 𝑖 > 0.
The reason for that is the following. In an irreducible scheme (a variety in particular),
any two nonempty open subsets meet, and so the restriction mappings of a constant sheaf
are surjective. We say that the sheaf is flasque. In this case, all higher C̆ech cohomology
groups vanish, and so do all higher Zariski cohomology groups. In other words, there are
``not enough'' open sets in the Zariski topology to detect this higher cohomology.

1989
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On the other hand, if 𝑋 is a smooth projective complex variety, then

𝐻2 dim 𝑋
𝐵𝑒𝑡𝑡𝑖 (𝑋(𝐂), Λ) = Λ for Λ = 𝐙, 𝐙/𝑛𝐙,

where 𝑋(𝐂) means the set of complex points of 𝑋. This is a feature that would be nice to
replicate in algebraic geometry. In positive characteristic in particular.

38.4. The étale topology

It is very hard to simply ``add'' extra open sets to refine the Zariski topology. One efficient
way to define a topology is to consider not only open sets, but also some schemes that lie
over them. To define the étale topology, one considers all morphisms 𝜑 ∶ 𝑈 → 𝑋 which
are étale. If 𝑋 is a smooth projective variety over 𝐂, then this means

(1) 𝑈 is a disjoint union of smooth varieties ; and
(2) 𝜑 is (analytically) locally an isomorphism.

The word ``analytically'' refers to the usual (transcendental) topology over 𝐂. So the second
condition means that the derivative of 𝜑 has full rank everywhere (and in particular all the
components of 𝑈 have the same dimension as 𝑋).
A double cover -- loosely defined as a finite degree 2 map between varieties -- for example

𝑆𝑝𝑒𝑐(𝐂[𝑡]) ⟶ 𝑆𝑝𝑒𝑐(𝐂[𝑡]), 𝑡 ⟼ 𝑡2

will not be an étale morphism if it has a fibre consisting of a single point. In the example
this happens when 𝑡 = 0. For a finite map between varieties over 𝐂 to be étale all the fibers
should have the same number of points. Removing the point 𝑡 = 0 from the source of the
map in the example will make the morphism étale. But we can remove other points from
the source of the morphism also, and the morphism will still be étale. To consider the étale
topology, we have to look at all such morphisms. Unlike the Zariski topology, these need
not be merely be open subsets of 𝑋, even though their images always are.

Definition 38.4.1. A family of morphisms {𝜑𝑖 ∶ 𝑈𝑖 → 𝑋}𝑖∈𝐼 is called an étale covering if
each 𝜑𝑖 is an étale morphism and their images cover 𝑋, i.e., 𝑋 = ⋃𝑖∈𝐼 𝜑𝑖(𝑈𝑖).

This ``defines'' the étale topology. In other words, we can now say what the sheaves are.
An étale sheaf ℱ of sets (resp. abelian groups, vector spaces, etc) on 𝑋 is the data:

(1) for each étale morphism 𝜑 ∶ 𝑈 → 𝑋 a set (resp. abelian group, vector space, etc)
ℱ(𝑈),

(2) for each pair 𝑈, 𝑈′ of étale schemes over 𝑋, and each morphism 𝑈 → 𝑈′ over 𝑋
(which is automatically étale) a restriction map 𝜌𝑈

𝑈′ ∶ ℱ(𝑈) → ℱ(𝑈′)
These data have to satisfy the following sheaf axiom:

(*) for every étale covering {𝜑𝑖 ∶ 𝑈𝑖 → 𝑋}𝑖∈𝐼, the diagram

∅ // ℱ(𝑈) // Π𝑖∈𝐼ℱ(𝑈𝑖)
//
// Π𝑖,𝑗∈𝐼ℱ(𝑈𝑖 ×𝑈 𝑈𝑗)

is exact in the category of sets (resp. abelian groups, vector spaces, etc).

Remark 38.4.2. In the last statement, it is essential not to forget the case where 𝑖 = 𝑗
which is in general a highly nontrivial condition (unlike in the Zariski topology). In fact,
frequently important coverings have only one element.

Since the identity is an étale morphism, we can compute the global sections of an étale
sheaf, and cohomology will simply be the corresponding right-derived functors. In other
words, once more theory has been developed and statements have been made precise, there
will be no obstacle to defining cohomology.
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38.5. Feats of the étale topology

For a natural number 𝑛 ∈ 𝐍 = {1, 2, 3, 4, … } it is true that

𝐻2
𝑒𝑡(𝐏

1
𝐂, 𝐙/𝑛𝐙) = 𝐙/𝑛𝐙.

More generally, if 𝑋 is a complex variety, then its étale Betti numbers with coefficients in
a finite field agree with the usual Betti numbers of 𝑋(𝐂), i.e.,

dim𝐅𝑞
𝐻2𝑖

𝑒𝑡(𝑋, 𝐅𝑞) = dim𝐅𝑞
𝐻2𝑖

𝐵𝑒𝑡𝑡𝑖(𝑋(𝐂), 𝐅𝑞).

This is extremely satisfactory. However, these equalities only hold for torsion coefficients,
not in general. For integer coefficients, one has

𝐻2
𝑒𝑡(𝐏

1
𝐂, 𝐙) = 0.

There are ways to get back to nontorsion coefficients from torsion ones by a limit procedure
which we will come to shortly.

38.6. A computation

How do we compute the cohomology of 𝐏1
𝐂 with coefficients Λ = 𝐙/𝑛𝐙? We use C̆ech

cohomology. A covering of 𝐏1
𝐂 is given by the two standard opens 𝑈0, 𝑈1, which are both

isomorphic to 𝐀1
𝐂, and which intersection is isomorphic to 𝐀1

𝐂 ⧵ {0} = 𝐆𝑚,𝐂. It turns out
that the Mayer-Vietoris sequence holds in étale cohomology. This gives an exact sequence

𝐻𝑖−1
𝑒𝑡 (𝑈0 ∩ 𝑈1, Λ) → 𝐻𝑖

𝑒𝑡(𝐏
1
𝐶, Λ) → 𝐻𝑖

𝑒𝑡(𝑈0, Λ) ⊕ 𝐻𝑖
𝑒𝑡(𝑈1, Λ) → 𝐻𝑖

𝑒𝑡(𝑈0 ∩ 𝑈1, Λ).

To get the answer we expect, we would need to show that the direct sum in the third term
vanishes. In fact, it is true that, as for the usual topology,

𝐻𝑞
𝑒𝑡(𝐀

1
𝐂, Λ) = 0 for 𝑞 ≥ 1,

and

𝐻𝑞
𝑒𝑡(𝐀

1
𝐂 ⧵ {0}, Λ) = {

Λ if 𝑞 = 1, and
0 for 𝑞 ≥ 2.

These results are already quite hard (what is an elementary proof?). Let us explain how we
would compute this once the machinery of étale cohomology is at our disposal.

Higher cohomology. This is taken care of by the following general fact: if 𝑋 is an affine
curve over 𝐂, then

𝐻𝑞
𝑒𝑡(𝑋, 𝐙/𝑛𝐙) = 0 for 𝑞 ≥ 2.

This is proved by considering the generic point of the curve and doing some Galois coho-
mology. So we only have to worry about the cohomology in degree 1.

Cohomology in degree 1. We use the following identifications:

𝐻1
𝑒𝑡(𝑋, 𝐙/𝑛𝐙) = {

sheaves of sets ℱ on the étale site 𝑋ét endowed with an
action 𝐙/𝑛𝐙 × ℱ → ℱ such that ℱ is a 𝐙/𝑛𝐙-torsor. } / ≅

= {
morphisms 𝑌 → 𝑋 which are finite étale together
with a free 𝐙/𝑛𝐙 action such that 𝑋 = 𝑌/(𝐙/𝑛𝐙).} / ≅ .

The first identification is very general (it is true for any cohomology theory on a site) and
has nothing to do with the étale topology. The second identification is a consequence of
descent theory. The last set describes a collection of geometric objects on which we can
get our hands.
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The curve 𝐀1
𝐂 has no nontrivial finite étale covering and hence 𝐻1

𝑒𝑡(𝐀
1
𝐂, 𝐙/𝑛𝐙) = 0. This

can be seen either topologically or by using the argument in the next paragraph.

Let us describe the finite étale coverings 𝜑 ∶ 𝑌 → 𝐀1
𝐂 ⧵ {0}. It suffices to consider the

case where 𝑌 is connected, which we assume. We are going to find out what 𝑌 can be by
applying the Riemann-Hurwitz formula (of course this is a bit silly, and you can go ahead
and skip the the next section if you like). Say that this morphism is 𝑛 to 1, and consider a
projective compactification

𝑌 �
� //

𝜑
��

̄𝑌

�̄�
��

𝐀1
𝐂 ⧵ {0} �

� // 𝐏1
𝐂

Even though𝜑 is étale and does not ramify, �̄�may ramify at 0 and∞. Say that the preimages
of 0 are the points 𝑦1, … , 𝑦𝑟 with indices of ramification 𝑒1, … 𝑒𝑟, and that the preimages
of ∞ are the points 𝑦′

1, … , 𝑦′
𝑠 with indices of ramification 𝑑1, … 𝑑𝑠. In particular, ∑ 𝑒𝑖 =

𝑛 = ∑ 𝑑𝑗. Applying the Riemann-Hurwitz formula, we get

2𝑔𝑌 − 2 = −2𝑛 + ∑(𝑒𝑖 − 1) + ∑(𝑑𝑗 − 1)

and therefore 𝑔𝑌 = 0, 𝑟 = 𝑠 = 1 and 𝑒1 = 𝑑1 = 𝑛. Hence 𝑌 ≅ 𝐀1
𝐂 ⧵ {0}, and it is easy to see

that 𝜑(𝑧) = 𝜆𝑧𝑛 for some 𝜆 ∈ 𝐂∗. After reparametrizing 𝑌 we may assume 𝜆 = 1. Thus
our covering is given by taking the 𝑛th root of the coordinate on 𝐀1

𝐂 ⧵ {0}.

Remember that we need to classify the coverings of𝐀1
𝐂 ⧵ {0} togetherwith free𝐙/𝑛𝐙-actions

on them. In our case any such action corresponds to an automorphism of 𝑌 sending 𝑧 to
𝜁𝑛𝑧, where 𝜁𝑛 is a primitive 𝑛th root of unity. There are 𝜙(𝑛) such actions (here 𝜙(𝑛) means
the Euler function). Thus there are exactly 𝜙(𝑛) connected finite étale coverings with a
given free 𝐙/𝑛𝐙-action, each corresponding to a primitive 𝑛th root of unity. We leave it to
the reader to see that the disconnected finite étale degree 𝑛 coverings of 𝐀1

𝐂 ⧵ {0} with a
given free 𝐙/𝑛𝐙-action correspond one-to-one with 𝑛th roots of 1 which are not primitive.
In other words, this computation shows that

𝐻1
𝑒𝑡(𝐀

1
𝐂 ⧵ {0}, 𝐙/𝑛𝐙) = 𝜇𝑛(𝐂) ≅ 𝐙/𝑛𝐙.

The first identification is canonical, the second isn't. We remark that since the proof of
Riemann-Hurwitz does not use this fact, the above actually constitutes a proof (provided
we fill in the details on vanishing, etc).

38.7. Nontorsion coefficients

To study nontorsion coefficients, one makes the following definition:

𝐻𝑖
𝑒𝑡(𝑋, 𝐐ℓ) ∶= (𝑙𝑖𝑚𝑛 𝐻𝑖

𝑒𝑡(𝑋, 𝐙/ℓ𝑛𝐙)) ⊗𝐙ℓ
𝐐ℓ.

The symbol 𝑙𝑖𝑚𝑛 denote the limit of the system of cohomology groups 𝐻𝑖
𝑒𝑡(𝑋, 𝐙/ℓ𝑛𝐙) in-

dexed by 𝑛, see Categories, Section 4.19. Thus we will need to study systems of sheaves
satisfying some compatibility conditions.
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38.8. Sheaf theory

At this point we start talking about sites and sheaves in earnest. There is an amazing amount
of useful abstract material that could fit in the next few sections. Some of this material is
worked out in earlier chapters, such as the chapter on sites, modules on sites, and coho-
mology on sites. We try to refrain from adding to much material here, just enough so the
material later in this chapter makes sense.

38.9. Presheaves

A reference for this section is Sites, Section 9.2.

Definition 38.9.1. Let𝒞 be a category. A presheaf of sets (respectively, an abelian presheaf)
on 𝒞 is a functor 𝒞𝑜𝑝𝑝 → Sets (resp. Ab).

Terminology. If 𝑈 ∈ 𝑂𝑏(𝒞), then elements of ℱ(𝑈) are called sections of ℱ on 𝑈; for
𝜑 ∶ 𝑉 → 𝑈 in 𝒞, the map ℱ(𝜑) ∶ ℱ(𝑉) → ℱ(𝑈) is denoted 𝑠 ↦ ℱ(𝜑)(𝑠) = 𝜑∗(𝑠) = 𝑠|𝑉
and called restriction mapping. This last notation is ambiguous since the restriction map
depends on 𝜑, but it is a standard abuse of notation. We also use the notation Γ(𝑈, ℱ) =
ℱ(𝑈).

Saying that ℱ is a functor means that if 𝑊 → 𝑉 → 𝑈 are morphisms in 𝒞 and 𝑠 ∈ Γ(𝑈, ℱ)
then (𝑠|𝑉)|𝑊 = 𝑠|𝑊, with the abuse of notation just seen. Moreover, the restriction map-
pings corresponding to the identity morphisms id𝑈 ∶ 𝑈 → 𝑈 are the identity.

The category of presheaves of sets (respectively of abelian presheaves) on 𝒞 is denoted
PSh(𝒞) (resp. PAb(𝒞)). It is the category of functors from 𝒞𝑜𝑝𝑝 to Sets (resp. Ab), which
is to say that the morphisms of presheaves are natural transformations of functors. We only
consider the categories PSh(𝒞) and PAb(𝒞) when the category 𝒞 is small. (Our convention
is that a category is small unless otherwise mentioned, and if it isn't small it should be listed
in Categories, Remark 4.2.2.)

Example 38.9.2. Given an object 𝑋 ∈ 𝑂𝑏(𝒞), we consider the functor
ℎ𝑋 ∶ 𝒞𝑜𝑝𝑝 ⟶ Sets

𝑈 ⟼ ℎ𝑋(𝑈) = 𝑀𝑜𝑟𝒞(𝑈, 𝑋)
𝑉

𝜑
−→ 𝑈 ⟼ 𝜑 ∘ − ∶ ℎ𝑋(𝑈) → ℎ𝑋(𝑉).

It is a presheaf, called the representable presheaf associated to 𝑋. It is not true that repre-
sentable presheaves are sheaves in every topology on every site.

Lemma 38.9.3. (Yoneda) Let 𝒞 be a category, and 𝑋, 𝑌 ∈ 𝑂𝑏(𝒞). There is a natural
bijection

𝑀𝑜𝑟𝒞(𝑋, 𝑌) ⟶ 𝑀𝑜𝑟PSh(𝒞)(ℎ𝑋, ℎ𝑌)
𝜓 ⟼ ℎ𝜓 = 𝜓 ∘ − ∶ ℎ𝑋 → ℎ𝑌.

Proof. See Categories, Lemma 4.3.5. �

38.10. Sites

Definition 38.10.1. Let 𝒞 be a category. A family of morphisms with fixed target 𝒰 =
{𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 is the data of

(1) an object 𝑈 ∈ 𝒞 ;
(2) a set 𝐼 (possibly empty) ; and
(3) for all 𝑖 ∈ 𝐼, a morphism 𝜑𝑖 ∶ 𝑈𝑖 → 𝑈 of 𝒞 with target 𝑈.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NC
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03ND
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NE
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NG
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There is a notion of a morphism of families of morphisms with fixed target. A special case
of that is the notion of a refinement. A reference for this material is Sites, Section 9.8.
Definition 38.10.2. A site1 consists of a category 𝒞 and a set Cov(𝒞) consising of families
of morphisms with fixed target called coverings, such that

(1) (isomorphism) if 𝜑 ∶ 𝑉 → 𝑈 is an isomorphism in 𝒞, then {𝜑 ∶ 𝑉 → 𝑈} is a
covering,

(2) (locality) if {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering and for all 𝑖 ∈ 𝐼 we are given a
covering {𝜓𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝑈𝑖}𝑗∈𝐼𝑖

, then
{𝜑𝑖 ∘ 𝜓𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝑈}(𝑖,𝑗)∈∏𝑖∈𝐼{𝑖}×𝐼𝑖

is also a covering, and
(3) (base change) if {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering and 𝑉 → 𝑈 is a morphism in 𝒞, then

(a) for all 𝑖 ∈ 𝐼 the fibre product 𝑈𝑖 ×𝑈 𝑉 exists in 𝒞, and
(b) {𝑈𝑖 ×𝑈 𝑉 → 𝑉}𝑖∈𝐼 is a covering.

For us the category underlying a site is aways ``small'', i.e., its collection of objects form a
set, and the collection of coverings of a site is a set as well (as in the definition above). We
will mostly, in this chapter, leave out the arguments that cut down the collection of objects
and coverings to a set. For further discussion, see Sites, Remark 9.6.3.
Example 38.10.3. If 𝑋 is a topological space, then it has an associated site 𝒯𝑋 defined
as follows: the objects of 𝒯𝑋 are the open subsets of 𝑋, the morphisms between these are
the inclusion mappings, and the coverings are the usual topological (surjective) coverings.
Observe that if 𝑈, 𝑉 ⊂ 𝑊 ⊂ 𝑋 are open subsets then 𝑈 ×𝑊 𝑉 = 𝑈 ∩ 𝑉 exists: this category
has fiber products. All the verifications are trivial and everything works as expected.

38.11. Sheaves

Definition 38.11.1. A presheaf ℱ of sets (resp. abelian presheaf) on a site 𝒞 is said to be
a separated presheaf if for all coverings {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞) the map

ℱ(𝑈) ⟶ ∏𝑖∈𝐼
ℱ(𝑈𝑖)

is injective. Here the map is 𝑠 ↦ (𝑠|𝑈𝑖
)𝑖∈𝐼. The presheaf ℱ is a sheaf if for all coverings

{𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 ∈ Cov(𝒞), the diagram

(38.11.1.1) ℱ(𝑈) // ∏𝑖∈𝐼 ℱ(𝑈𝑖)
//
//∏𝑖,𝑗∈𝐼 ℱ(𝑈𝑖 ×𝑈 𝑈𝑗),

where the first map is 𝑠 ↦ (𝑠|𝑈𝑖
)𝑖∈𝐼 and the two maps on the right are (𝑠𝑖)𝑖∈𝐼 ↦ (𝑠𝑖|𝑈𝑖×𝑈𝑈𝑗

)
and (𝑠𝑖)𝑖∈𝐼 ↦ (𝑠𝑗|𝑈𝑖×𝑈𝑈𝑗

), is an equalizer diagram in the category of sets (resp. abelian
groups).
Remark 38.11.2. For the empty covering (where 𝐼 = ∅), this implies that ℱ(∅) is an
empty product, which is a final object in the corresponding category (a singleton, for both
Sets and Ab).
Example 38.11.3. Working this out for the site 𝒯𝑋 associated to a topological space, see
Example 38.10.3, gives the usual notion of sheaves.
Definition 38.11.4. We denote Sh(𝒞) (resp. Ab(𝒞)) the full subcategory of PSh(𝒞) (resp.
PAb(𝒞)) whose objects are sheaves. This is the category of sheaves of sets (resp. abelian
sheaves) on 𝒞.

1What we call a site is a called a category endowed with a pretopology in [MA71, Exposé II, Définition
1.3]. In [Art62] it is called a category with a Grothendieck topology.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NI
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NM
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NN
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NO
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38.12. The example of G-sets

Let 𝐺 be a group and define a site 𝒯𝐺 as follows: the underlying category is the category
of 𝐺-sets, i.e., its objects are sets endowed with a left 𝐺-action and the morphisms are
equivariant maps; and the coverings of 𝒯𝐺 are the families {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 satisfying
𝑈 = ⋃𝑖∈𝐼 𝜑𝑖(𝑈𝑖).

There is a special object in the site 𝒯𝐺, namely the 𝐺-set 𝐺 endowed with its natural action
by left translations. We denote it 𝐺𝐺. Observe that there is a natural group isomorphism

𝜌 ∶ 𝐺𝑜𝑝𝑝 ⟶ Aut𝐺-Sets(𝐺𝐺)
𝑔 ⟼ (ℎ ↦ ℎ𝑔).

In particular, for any presheaf ℱ, the set ℱ(𝐺𝐺) inherits a 𝐺-action via 𝜌. (Note that by
contravariance of ℱ, the set ℱ(𝐺𝐺) is again a left 𝐺-set.) In fact, the functor

Sh(𝒯𝐺) ⟶ 𝐺-Sets
ℱ ⟼ ℱ(𝐺𝐺)

is an equivalence of categories. Its quasi-inverse is the functor 𝑋 ↦ ℎ𝑋. Without giving
the complete proof (which can be found in Sites, Section 9.9) let us try to explain why this
is true.

(1) If 𝑆 is a 𝐺-set, we can decompose it into orbits 𝑆 = ∐𝑖∈𝐼 𝑂𝑖. The sheaf axiom
for the covering {𝑂𝑖 → 𝑆}𝑖∈𝐼 says that

ℱ(𝑆) // ∏𝑖∈𝐼 ℱ(𝑂𝑖)
//
// ∏𝑖,𝑗∈𝐼 ℱ(𝑂𝑖 ×𝑆 𝑂𝑗)

is an equalizer. Observing that fibered products in𝐺-Sets are induced fromfibered
products in Sets, and using the fact that ℱ(∅) is a 𝐺-singleton, we get that

∏
𝑖,𝑗∈𝐼

ℱ(𝑂𝑖 ×𝑆 𝑂𝑗) = ∏
𝑖∈𝐼

ℱ(𝑂𝑖)

and the two maps above are in fact the same. Therefore the sheaf axiom merely
says that ℱ(𝑆) = ∏𝑖∈𝐼 ℱ(𝑂𝑖).

(2) If 𝑆 is the 𝐺-set 𝑆 = 𝐺/𝐻 and ℱ is a sheaf on 𝒯𝐺, then we claim that

ℱ(𝐺/𝐻) = ℱ(𝐺𝐺)𝐻

and in particular ℱ({∗}) = ℱ(𝐺𝐺)𝐺. To see this, let's use the sheaf axiom for the
covering {𝐺𝐺 → 𝐺/𝐻} of 𝑆. We have

𝐺𝐺 ×𝐺/𝐻 𝐺𝐺 ≅ 𝐺 × 𝐻
(𝑔1, 𝑔2) ⟼ (𝑔1, 𝑔1𝑔−1

2 )

is a disjoint union of copies of 𝐺𝐺 (as a 𝐺-set). Hence the sheaf axiom reads

ℱ(𝐺/𝐻) // ℱ(𝐺𝐺)
//
// ∏ℎ∈𝐻 ℱ(𝐺𝐺)

where the two maps on the right are 𝑠 ↦ (𝑠)ℎ∈𝐻 and 𝑠 ↦ (ℎ𝑠)ℎ∈𝐻. Therefore
ℱ(𝐺/𝐻) = ℱ(𝐺𝐺)𝐻 as claimed.

This doesn't quite prove the claimed equivalence of categories, but it shows at least that a
sheaf ℱ is entirely determined by its sections over 𝐺𝐺. Details (and set theoretical remarks)
can be found in Sites, Section 9.9.
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38.13. Sheafification

Definition 38.13.1. Let ℱ be a presheaf on the site 𝒞 and 𝒰 = {𝑈𝑖 → 𝑈} ∈ Cov(𝒞). We
define the zeroth Cech cohomology group of ℱ with respect to 𝒰 by

�̌�0(𝒰, ℱ) = {(𝑠𝑖)𝑖∈𝐼 ∈ ∏𝑖∈𝐼
ℱ(𝑈𝑖) such that 𝑠𝑖|𝑈𝑖×𝑈𝑈𝑗

= 𝑠𝑗|𝑈𝑖×𝑈𝑈𝑗} .

There is a canonical map ℱ(𝑈) → �̌�0(𝒰, ℱ), 𝑠 ↦ (𝑠|𝑈𝑖
)𝑖∈𝐼. We say that a morphism of

coverings from a covering 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽 to 𝒰 is a triple (𝜒, 𝛼, 𝜒𝑗), where 𝜒 ∶ 𝒱 → 𝒰
is a morphism, 𝛼 ∶ 𝐽 → 𝐼 is a map of sets, and for all 𝑗 ∈ 𝐽 the morphism 𝜒𝑗 fits into a
commutative diagram

𝑉𝑗 𝜒𝑗
//

��

𝑈𝛼(𝑗)

��
𝑉

𝜒 // 𝑈.
Given the data 𝜒, 𝛼, {𝜒𝑗}𝑖∈𝐽 we define

�̌�0(𝒰, ℱ) ⟶ �̌�0(𝒱, ℱ)

(𝑠𝑖)𝑖∈𝐼 ⟼ (𝜒∗
𝑗 (𝑠𝛼(𝑗)))𝑗∈𝐽

.

We then claim that
(1) the map is well-defined, and
(2) depends only on 𝜒 and is independent of the choice of 𝛼, {𝜒𝑗}𝑖∈𝐽.

We omit the proof of the first fact. To see part (2), consider another triple (𝜓, 𝛽, 𝜓𝑗) with
𝜒 = 𝜓. Then we have the commutative diagram

𝑉𝑗
(𝜒𝑗,𝜓𝑗) //

��

𝑈𝛼(𝑗) ×𝑈 𝑈𝛽(𝑗)

yy %%
𝑈𝛼(𝑗)

&&

𝑈𝛽(𝑗)

xx
𝑉

𝜒=𝜓 // 𝑈.
Given a section 𝑠 ∈ ℱ(𝒰), its image in ℱ(𝑉𝑗) under the map given by (𝜒, 𝛼, {𝜒𝑗}𝑖∈𝐽) is
𝜒∗

𝑗 𝑠𝛼(𝑗), and its image under the map given by (𝜓, 𝛽, {𝜓𝑗}𝑖∈𝐽) is 𝜓∗
𝑗 𝑠𝛽(𝑗). These two are

equal since by assumption 𝑠 ∈ �̌�(𝒰, ℱ) and hence both are equal to the pullback of the
common value

𝑠𝛼(𝑗)|𝑈𝛼(𝑗)×𝑈𝑈𝛽(𝑗)
= 𝑠𝛽(𝑗)|𝑈𝛼(𝑗)×𝑈𝑈𝛽(𝑗)

pulled back by the map (𝜒𝑗, 𝜓𝑗) in the diagram.

Theorem 38.13.2. Let 𝒞 be a site and ℱ a presheaf on 𝒞.
(1) The rule

𝑈 ↦ ℱ+(𝑈) ∶= 𝑐𝑜𝑙𝑖𝑚𝒰 covering of 𝑈 �̌�0(𝒰, ℱ)

is a presheaf. And the colimit is a directed one.
(2) There is a canonical map of presheaves ℱ → ℱ+.
(3) If ℱ is a separated presheaf then ℱ+ is a sheaf and the map in (2) is injective.
(4) ℱ+ is a separated presheaf.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NR
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03NS
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(5) ℱ# = (ℱ+)+ is a sheaf, and the canonical map induces a functorial isomorphism

𝐻𝑜𝑚PSh(𝒞)(ℱ, 𝒢) = 𝐻𝑜𝑚Sh(𝒞)(ℱ#, 𝒢)
for any 𝒢 ∈ Sh(𝒞).

Proof. See Sites, Theorem 9.10.10. �

In other words, this means that the natural map ℱ → ℱ# is a left adjoint to the forgetful
functor Sh(𝒞) → PSh(𝒞).

38.14. Cohomology

The following is the basic result that makes it possible to define cohomology for abelian
sheaves on sites.

Theorem 38.14.1. The category of abelian sheaves on a site is an abelian category which
has enough injectives.

Proof. See Modules on Sites, Lemma 16.3.1 and Injectives, Theorem 17.11.4. �

So we can define cohomology as the right-derived functors of the sections functor: if 𝑈 ∈
𝑂𝑏(𝒞) and ℱ ∈ Ab(𝒞),

𝐻𝑝(𝑈, ℱ) ∶= 𝑅𝑝Γ(𝑈, ℱ) = 𝐻𝑝(Γ(𝑈, ℐ•))
where ℱ → ℐ• is an injective resolution. To do this, we should check that the functor
Γ(𝑈, −) is left exact. This is true and is part of why the category Ab(𝒞) is abelian, see
Modules on Sites, Lemma 16.3.1. For more general discussion of cohomology on sites
(including the global sections functor and its right derived functors), see Cohomology on
Sites, Section 19.3.

38.15. The fpqc topology

Before doing étale cohomology we study a bit the fpqc topology, since it works well for
quasi-coherent sheaves.

Definition 38.15.1. Let 𝑇 be a scheme. An fpqc covering of 𝑇 is a family {𝜑𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼
such that

(1) each 𝜑𝑖 is a flat morphism and ⋃𝑖∈𝐼 𝜑𝑖(𝑇𝑖) = 𝑇, and
(2) for each affine open 𝑈 ⊂ 𝑇 there exists a finite set 𝐾, a map 𝐢 ∶ 𝐾 → 𝐼 and affine

opens 𝑈𝐢(𝑘) ⊂ 𝑇𝐢(𝑘) such that 𝑈 = ⋃𝑘∈𝐾 𝜑𝐢(𝑘)(𝑈𝐢(𝑘)).

Remark 38.15.2. The first condition corresponds to fp, which stands for fidèlement plat,
faithfully flat in french, and the second to qc, quasi-compact. The second part of the first
condition is unnecessary when the second condition holds.

Example 38.15.3. Examples of fpqc coverings.
(1) Any Zariski open covering of 𝑇 is an fpqc covering.
(2) A family {𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴)} is an fpqc covering if and only if 𝐴 → 𝐵 is a

faithfully flat ring map.
(3) If 𝑓 ∶ 𝑋 → 𝑌 is flat, surjective and quasi-compact, then {𝑓 ∶ 𝑋 → 𝑌} is an fpqc

covering.
(4) The morphism 𝜑 ∶ ∐𝑥∈𝐀1

𝑘
𝑆𝑝𝑒𝑐(𝒪𝐀1

𝑘,𝑥) → 𝐀1
𝑘, where 𝑘 is a field, is flat and

surjective. It is not quasi-compact, and in fact the family {𝜑} is not an fpqc
covering.
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(5) Write 𝐀2
𝑘 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]). Denote 𝑖𝑥 ∶ 𝐷(𝑥) → 𝐀2

𝑘 and 𝑖𝑦 ∶ 𝐷(𝑦) ↪ 𝐀2
𝑘 the stan-

dard opens. Then the families {𝑖𝑥, 𝑖𝑦, 𝑆𝑝𝑒𝑐(𝑘[[𝑥, 𝑦]]) → 𝐀2
𝑘} and {𝑖𝑥, 𝑖𝑦, 𝑆𝑝𝑒𝑐(𝒪𝐀2

𝑘,0) →
𝐀2

𝑘} are fpqc coverings.

Lemma 38.15.4. The collection of fpqc coverings on the category of schemes satisfies the
axioms of site.

Proof. See Topologies, Lemma 30.8.7. �

It seems that this lemma allows us to define the fpqc site of the category of schemes. How-
ever, there is a set theoretical problem that comes up when considering the fpqc topology,
see Topologies, Section 38.15. It comes from our requirement that sites are ``small'', but
that no small category of schemes can contain a cofinal system of fpqc coverings of a given
nonempty scheme. Allthough this does not strictly speaking prevent us from defining ``par-
tial'' fpqc sites, it does not seem prudent to do so. The work-around is to allow the notion
of a sheaf for the fpqc topology (see below) but to prohibit considering the category of all
fpqc sheaves.

Definition 38.15.5. Let 𝑆 be a scheme. The category of schemes over 𝑆 is denoted Sch/𝑆.
Consider a functor ℱ ∶ (Sch/𝑆)𝑜𝑝𝑝 → Sets, in other words a presheaf of sets. We say ℱ
satisfies the sheaf property for the fpqc topology if for every fpqc covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 of
schemes over 𝑆 the diagram (38.11.1.1) is an equalizer diagram.

We similarly say that ℱ satisfies the sheaf property for the Zariski topology if for every
open covering 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 the diagram (38.11.1.1) is an equalizer diagram. See Schemes,
Definition 21.15.3. Clearly, this is equivalent to saying that for every scheme 𝑇 over 𝑆 the
restriction of ℱ to the opens of 𝑇 is a (usual) sheaf.

Lemma 38.15.6. Let ℱ be a presheaf on Sch/𝑆. Then ℱ satisfies the sheaf property for the
fpqc topology if and only if

(1) ℱ satisfies the sheaf property with respect to the Zariski topology, and
(2) for every faithfully flat morphism 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) of affine schemes over

𝑆, the sheaf axiom holds for the covering {𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴)}. Namely, this
means that

ℱ(𝑆𝑝𝑒𝑐(𝐴)) // ℱ(𝑆𝑝𝑒𝑐(𝐵))
//
// ℱ(𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝐵))

is an equalizer diagram.

Proof. See Topologies, Lemma 30.8.13. �

An alternative way to think of a presheaf ℱ on Sch/𝑆 which satisfies the sheaf condition for
the fpqc topology is as the following data:

(1) for each 𝑇/𝑆, a usual (i.e., Zariski) sheaf ℱ𝑇 on 𝑇𝑍𝑎𝑟,
(2) for every map 𝑓 ∶ 𝑇′ → 𝑇 over 𝑆, a restriction mapping 𝑓−1ℱ𝑇 → ℱ𝑇′

such that
(a) the restriction mappings are functorial,
(b) if 𝑓 ∶ 𝑇′ → 𝑇 is an open immersion then the restriction mapping 𝑓−1ℱ𝑇 → ℱ𝑇′

is an isomorphism, and
(c) for every faithfully flat morphism 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) over 𝑆, the diagram

ℱ𝑆𝑝𝑒𝑐(𝐴)(𝑆𝑝𝑒𝑐(𝐴)) // ℱ𝑆𝑝𝑒𝑐(𝐵)(𝑆𝑝𝑒𝑐(𝐵))
//
// ℱ𝑆𝑝𝑒𝑐(𝐵⊗𝐴𝐵)(𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝐵))

is an equalizer.
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Data (1) and (2) and conditions (a), (b) give the data of a presheaf on Sch/𝑆 satisfying the
sheaf condition for the Zariski topology. By Lemma 38.15.6 condition (c) then suffices to
get the sheaf condition for the fpqc topology.

Example 38.15.7. Consider the presheaf

ℱ ∶ (Sch/𝑆)𝑜𝑝𝑝 ⟶ Ab
𝑇/𝑆 ⟼ Γ(𝑇, Ω𝑇/𝑆).

The compatibility of differentials with localization implies that ℱ is a sheaf on the Zariski
site. However, it does not satisfy the sheaf condition for the fpqc topology. Namely, con-
sider the case 𝑆 = 𝑆𝑝𝑒𝑐(𝐅𝑝) and the morphism

𝜑 ∶ 𝑉 = 𝑆𝑝𝑒𝑐(𝐅𝑝[𝑣]) → 𝑈 = 𝑆𝑝𝑒𝑐(𝐅𝑝[𝑢])

given by mapping 𝑢 to 𝑣𝑝. The family {𝜑} is an fpqc covering, yet the restriction mapping
ℱ(𝑈) → ℱ(𝑉) sends the generator d𝑢 to d(𝑣𝑝) = 0, so it is the zero map, and the diagram

ℱ(𝑈) 0 // ℱ(𝑉)
//
// ℱ(𝑉 ×𝑈 𝑉)

is not an equalizer. We will see later that ℱ does in fact give rise to a sheaf on the étale and
smooth sites.

Lemma 38.15.8. Any representable presheaf on Sch/𝑆 satisfies the sheaf condition for the
fpqc topology.

Proof. See Descent, Lemma 31.9.3. �

We will return to this later, since the proof of this fact uses descent for quasi-coherent
sheaves, which we will discuss in the next section. A fancy way of expressing the lemma
is to say that the fpqc topology is weaker than the canonical topology, or that the fpqc
topology is subcanonical. In the setting of sites this is discussed in Sites, Section 9.12.

Remark 38.15.9. The fpqc is the finest topology that we will see. Hence any presheaf
satisfying the sheaf condition for the fpqc topology will be a sheaf in the subsequent sites
(étale, smooth, etc). In particular representable presheaves will be sheaves on the étale site
of a scheme for example.

Example 38.15.10. Let 𝑆 be a scheme. Consider the additive group scheme 𝐆𝑎,𝑆 = 𝐀1
𝑆

over 𝑆, see Groupoids, Example 35.5.3. The associated representable presheaf is given by

ℎ𝐆𝑎,𝑆
(𝑇) = 𝑀𝑜𝑟𝑆(𝑇, 𝐆𝑎,𝑆) = Γ(𝑇, 𝒪𝑇).

By the above we now know that this is a presheaf of sets which satisfies the sheaf condition
for the fpqc topology. On the other hand, it is clearly a presheaf of rings as well. Hence we
can think of this as a functor

𝒪 ∶ (Sch/𝑆)𝑜𝑝𝑝 ⟶ Rings
𝑇/𝑆 ⟼ Γ(𝑇, 𝒪𝑇)

which satisfies the sheaf condition for the fpqc topology. Correspondingly there is a notion
of 𝒪-module, and so on and so forth.
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38.16. Faithfully flat descent

Definition 38.16.1. Let 𝒰 = {𝑡𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 be a family of morphisms of schemes
with fixed target. A descent datum for quasi-coherent sheaves with respect to 𝒰 is a family
(ℱ𝑖, 𝜑𝑖𝑗)𝑖,𝑗∈𝐼 where

(1) for all 𝑖, ℱ𝑖 is a quasi-coherent sheaf on 𝑇𝑖 ; and
(2) for all 𝑖, 𝑗 ∈ 𝐼 the map 𝜑𝑖𝑗 ∶ pr∗0ℱ𝑖 ≅ pr∗1ℱ𝑗 is an isomorphism on 𝑇𝑖 ×𝑇 𝑇𝑗 such

that the diagrams

pr∗0ℱ𝑖

pr∗02𝜑𝑖𝑘 ##

pr∗01𝜑𝑖𝑗 // pr∗1ℱ𝑗

pr∗12𝜑𝑗𝑘{{
pr∗2ℱ𝑘

commute on 𝑇𝑖 ×𝑇 𝑇𝑗 ×𝑇 𝑇𝑘.
This descent datum is called effective if there exist a quasi-coherent sheaf ℱ over 𝑇 and
𝒪𝑇𝑖

-module isomorphisms 𝜑𝑖 ∶ 𝑡∗
𝑖 ℱ ≅ ℱ𝑖 satisfying the cocycle condition, namely

𝜑𝑖𝑗 = pr∗1(𝜑𝑗) ∘ pr∗0(𝜑𝑖)−1.

In this and the next section we discuss some ingredients of the proof of the following the-
orem, as well as some related material.

Theorem 38.16.2. If 𝒱 = {𝑇𝑖 → 𝑇}𝑖∈𝐼 is an fpqc covering, then all descent data for
quasi-coherent sheaves with respect to 𝒱 are effective.

Proof. See Descent, Proposition 31.4.2. �

In other words, the fibered category of quasi-coherent sheaves is a stack on the fpqc site.
The proof of the theorem is in two steps. The first one is to realize that for Zariski coverings
this is easy (or well-known) using standard glueing of sheaves (see Sheaves, Section 6.33)
and the locality of quasi-coherence. The second step is the case of an fpqc covering of the
form {𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴)} where 𝐴 → 𝐵 is a faithfully flat ring map. This is a lemma in
algebra, which we now present.

Descent of modules. If 𝐴 → 𝐵 is a ring map, we consider the complex

(𝐵/𝐴)• ∶ 𝐵 → 𝐵 ⊗𝐴 𝐵 → 𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝐵 → ⋯

where 𝐵 is in degree 0, 𝐵 ⊗𝐴 𝐵 in degree 1, etc, and the maps are given by

𝑏 ↦ 1 ⊗ 𝑏 − 𝑏 ⊗ 1,
𝑏0 ⊗ 𝑏1 ↦ 1 ⊗ 𝑏0 ⊗ 𝑏1 − 𝑏0 ⊗ 1 ⊗ 𝑏1 + 𝑏0 ⊗ 𝑏1 ⊗ 1,

etc.

Lemma 38.16.3. If 𝐴 → 𝐵 is faithfully flat, then the complex (𝐵/𝐴)• is exact in positive
degrees, and 𝐻0((𝐵/𝐴)•) = 𝐴.

Proof. See Descent, Lemma 31.3.6. �

Grothendieck proves this in three steps. Firstly, he assumes that the map 𝐴 → 𝐵 has a
section, and constructs an explicit homotopy to the complex where 𝐴 is the only nonzero
term, in degree 0. Secondly, he observes that to prove the result, it suffices to do so after a
faithfully flat base change 𝐴 → 𝐴′, replacing 𝐵 with 𝐵′ = 𝐵⊗𝐴 𝐴′. Thirdly, he applies the
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faithfully flat base change 𝐴 → 𝐴′ = 𝐵 and remarks that the map 𝐴′ = 𝐵 → 𝐵′ = 𝐵 ⊗𝐴 𝐵
has a natural section.

The same strategy proves the following lemma.

Lemma 38.16.4. If 𝐴 → 𝐵 is faithfully flat and 𝑀 is an 𝐴-module, then the complex
(𝐵/𝐴)• ⊗𝐴 𝑀 is exact in positive degrees, and 𝐻0((𝐵/𝐴)• ⊗𝐴 𝑀) = 𝑀.

Proof. See Descent, Lemma 31.3.6. �

Definition 38.16.5. Let 𝐴 → 𝐵 be a ring map and 𝑁 a 𝐵-module. A descent datum for 𝑁
with respect to 𝐴 → 𝐵 is an isomorphism 𝜑 ∶ 𝑁 ⊗𝐴 𝐵 ≅ 𝐵 ⊗𝐴 𝑁 of 𝐵 ⊗𝐴 𝐵-modules
such that the diagram of 𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝐵-modules

𝑁 ⊗𝐴 𝐵 ⊗𝐴 𝐵

𝜑01 ((

𝜑02 // 𝐵 ⊗𝐴 𝑁 ⊗𝐴 𝐵

𝜑12vv
𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝑁

commutes.

If 𝑁′ = 𝐵 ⊗𝐴 𝑀 for some 𝐴-module M, then it has a canonical descent datum given by
the map

𝜑can ∶ 𝑁′ ⊗𝐴 𝐵 → 𝐵 ⊗𝐴 𝑁′

𝑏0 ⊗ 𝑚 ⊗ 𝑏1 ↦ 𝑏0 ⊗ 𝑏1 ⊗ 𝑚.

Definition 38.16.6. A descent datum (𝑁, 𝜑) is called effective if there exists an 𝐴-module
𝑀 such that (𝑁, 𝜑) ≅ (𝐵 ⊗𝐴 𝑀, 𝜑can), with the obvious notion of isomorphism of descent
data.

Theorem 38.16.2 is a consequence the following result.

Theorem 38.16.7. If 𝐴 → 𝐵 is faithfully flat then all descent data with respect to 𝐴 → 𝐵
is effective.

Proof. See Descent, Proposition 31.3.9. See also Descent, Remark 31.3.11 for an alterna-
tive view of the proof. �

Remarks 38.16.8. The results on descent of modules have several applications:
(1) The exactness of the C̆ech complex in positive degrees for the covering {𝑆𝑝𝑒𝑐(𝐵) →

𝑆𝑝𝑒𝑐(𝐴)} where 𝐴 → 𝐵 is faithfully flat. This will give some vanishing of coho-
mology.

(2) If (𝑁, 𝜑) is a descent datum with respect to a faithfully flat map 𝐴 → 𝐵, then the
corresponding 𝐴-module is given by

𝑀 = ker (
𝑁 ⟶ 𝐵 ⊗𝐴 𝑁
𝑛 ⟼ 1 ⊗ 𝑛 − 𝜑(𝑛 ⊗ 1)) .

See Descent, Proposition 31.3.9.

38.17. Quasi-coherent sheaves

We can apply the descent of modules to study quasi-coherent sheaves.
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Proposition 38.17.1. For any quasi-coherent sheaf ℱ on 𝑆 the presheaf
ℱ𝑎 ∶ Sch/𝑆 → Ab

(𝑓 ∶ 𝑇 → 𝑆) ↦ Γ(𝑇, 𝑓∗ℱ)
is an 𝒪-module which satisfies the sheaf condition for the fpqc topology.
Proof. This is proved in Descent, Lemma 31.6.1. We indicate the proof here. As estab-
lished in Lemma 38.15.6, it is enough to check the sheaf property on Zariski coverings and
faithfully flat morphisms of affine schemes. The sheaf property for Zariski coverings is
standard scheme theory, since Γ(𝑈, 𝑖∗ℱ) = ℱ(𝑈) when 𝑖 ∶ 𝑈 ↪ 𝑆 is an open immersion.

For {𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴)} with 𝐴 → 𝐵 faithfully flat and ℱ|𝑆𝑝𝑒𝑐(𝐴) = 𝑀 this corresponds
to the fact that 𝑀 = 𝐻0 ((𝐵/𝐴)• ⊗𝐴 𝑀), i.e., that

0 → 𝑀 → 𝐵 ⊗𝐴 𝑀 → 𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝑀
is exact by Lemma 38.16.4. �

There is an abstract notion of a quasi-coherent sheaf on a ringed site. We briefly introduce
this here. For more information please consult Modules on Sites, Section 16.23. Let 𝒞 be
a category, and let 𝑈 be an object of 𝒞. Then 𝒞/𝑈 indicates the category of objects over
𝑈, see Categories, Example 4.2.13. If 𝒞 is a site, then 𝒞/𝑈 is a site as well, namely the
coverings of 𝑉/𝑈 are families {𝑉𝑖/𝑈 → 𝑉/𝑈} of morphisms of 𝒞/𝑈 with fixed target such
that {𝑉𝑖 → 𝑉} is a covering of 𝒞. Moreover, given any sheaf ℱ on 𝒞 the restriction ℱ|𝒞/𝑈
(defined in the obvious manner) is a sheaf as well. See Sites, Section 9.21 for details.
Definition 38.17.2. Let 𝒞 be a ringed site, i.e., a site endowed with a sheaf of rings 𝒪. A
sheaf of 𝒪-modules ℱ on 𝒞 is called quasi-coherent if for all 𝑈 ∈ 𝑂𝑏(𝒞) there exists a
covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 of 𝒞 such that the restriction ℱ|𝒞/𝑈𝑖

is isomorphic to the cokernel
of an 𝒪-linear map of free 𝒪-modules

⨁𝑘∈𝐾
𝒪|𝒞/𝑈𝑖

⟶ ⨁𝑙∈𝐿
𝒪|𝒞/𝑈𝑖

.

The direct sum over 𝐾 is the sheaf associated to the presheaf 𝑉 ↦ ⨁𝑘∈𝐾 𝒪(𝑉) and similary
for the other.
Allthough it is useful to be able to give a general definition as above this notion is not well
behaved in general.
Remark 38.17.3. In the case where 𝒞 has a final object, e.g. 𝑆, it suffices to check the
condition of the definition for 𝑈 = 𝑆 in the above statement. See Modules on Sites, Lemma
16.23.3.
Theorem 38.17.4. (Meta theorem on quasi-coherent sheaves.) Let 𝑆 be a scheme. Let 𝒞
be a site. Assume that

(1) the underlying category 𝒞 is a full subcategory of Sch/𝑆,
(2) any Zariski covering of 𝑇 ∈ 𝑂𝑏(𝒞) can be refined by a covering of 𝒞,
(3) 𝑆/𝑆 is an object of 𝒞,
(4) every covering of 𝒞 is an fpqc covering of schemes.

Then the presheaf 𝒪 is a sheaf on 𝒞 and any quasi-coherent 𝒪-module on (𝒞, 𝒪) is of the
form ℱ𝑎 for some quasi-coherent sheaf ℱ on 𝑆.
Proof. After some formal arguments this is exactly Theorem 38.16.2. Details omitted. In
Descent, Proposition 31.6.11 we prove a more precise version of the theorem for the big
Zariski, fppf, étale, smooth, and syntomic sites of 𝑆, as well as the small Zariski and étale
sites of 𝑆. �
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In other words, there is no difference between quasi-coherent modules on the scheme 𝑆
and quasi-coherent 𝒪-modules on sites 𝒞 as in the theorem. More precise statements for
the big and small sites (Sch/𝑆)𝑓𝑝𝑝𝑓, 𝑆 ́𝑒𝑡𝑎𝑙𝑒, etc can be found in Descent, Section 31.6. In this
chapter we will sometimes refer to a ``site as in Theorem 38.17.4'' in order to conveniently
state results which hold in any of those situations.

38.18. Cech cohomology

Our next goal is to use descent theory to show that 𝐻𝑖(𝒞, ℱ𝑎) = 𝐻𝑖
𝑍𝑎𝑟(𝑆, ℱ) for all quasi-

coherent sheaves ℱ on 𝑆, and any site 𝒞 as in Theorem 38.17.4. To this end, we introduce
C̆ech cohomology on sites. See [Art62] and Cohomology on Sites, Sections 19.9, 19.10
and 19.11 for more details.

Definition 38.18.1. Let 𝒞 be a category, 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 a family of morphisms of
𝒞 with fixed target, and ℱ ∈ PAb(𝒞) an abelian presheaf. We define the Cech complex

̌𝒞•(𝒰, ℱ) by

∏
𝑖0∈𝐼

ℱ(𝑈𝑖0) → ∏
𝑖0,𝑖1∈𝐼

ℱ(𝑈𝑖0 ×𝑈 𝑈𝑖1) → ∏
𝑖0,𝑖1,𝑖2∈𝐼

ℱ(𝑈𝑖0 ×𝑈 𝑈𝑖1 ×𝑈 𝑈𝑖2) → ⋯

where the first term is in degree 0, and the maps are the usual ones. Again, it is essential to
allow the case 𝑖0 = 𝑖1 etc. The Cech cohomology groups are defined by

�̌�𝑝(𝒰, ℱ) = 𝐻𝑝( ̌𝒞•(𝒰, ℱ)).

Lemma 38.18.2. The functor ̌𝒞•(𝒰, −) is exact on the category PAb(𝒞).

In other words, if 0 → ℱ1 → ℱ2 → ℱ3 → 0 is a short exact sequence of presheaves of
abelian groups, then

0 → ̌𝒞• (𝒰, ℱ1) → ̌𝒞•(𝒰, ℱ2) → ̌𝒞•(𝒰, ℱ3) → 0

is a short exact sequence of complexes.

Proof. This follows at once from the definition of a short exact sequence of presheaves.
Namely, as the category of abelian presheaves is the category of functors on some category
with values in Ab, it is automatically an abelian category: a sequence ℱ1 → ℱ2 → ℱ3 is
exact in PAb if and only if for all 𝑈 ∈ 𝑂𝑏(𝒞), the sequence ℱ1(𝑈) → ℱ2(𝑈) → ℱ3(𝑈)
is exact in Ab. So the complex above is merely a product of short exact sequences in each
degree. See also Cohomology on Sites, Lemma 19.10.1. �

This shows that �̌�•(𝒰, −) is a 𝛿-functor. We now proceed to show that it is a universal
𝛿-functor. We thus need to show that it is an effaceable functor. We start by recalling the
Yoneda lemma.

Lemma 38.18.3. (Yoneda Lemma) For any presheafℱ on a category𝒞 there is a functorial
isomophism

𝐻𝑜𝑚PSh(𝒞)(ℎ𝑈, ℱ) = ℱ(𝑈).

Proof. See Categories, Lemma 4.3.5. �

Given a set 𝐸 we denote (in this section) 𝐙[𝐸] the free abelian group on 𝐸. In a formula
𝐙[𝐸] = ⨁𝑒∈𝐸 𝐙, i.e., 𝐙[𝐸] is a free 𝐙-module having a basis consisting of the elements of
𝐸. Using this notation we introduce the free abelian presheaf on a presheaf of sets.
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Definition 38.18.4. Let 𝒞 be a category. Given a presheaf of sets 𝒢, we define the free
abelian presheaf on 𝒢, denoted 𝐙𝒢, by the rule

𝐙𝒢(𝑈) = 𝐙[𝒢(𝑈)]
for 𝑈 ∈ 𝑂𝑏(𝒞) with restriction maps induced by the restriction maps of 𝒢. In the special
case 𝒢 = ℎ𝑈 we write simply 𝐙𝑈 = 𝐙ℎ𝑈

.

The functor 𝒢 ↦ 𝐙𝒢 is left adjoint to the forgetful functor PAb(𝒞) → PSh(𝒞). Thus, for
any presheaf ℱ, there is a canonical isomorphism

𝐻𝑜𝑚PAb(𝒞)(𝐙𝑈, ℱ) = 𝐻𝑜𝑚PSh(𝒞)(ℎ𝑈, ℱ) = ℱ(𝑈)
the last equality by the Yoneda lemma. In particular, we have the following result.

Lemma 38.18.5. The Cech complex ̌𝒞•(𝒰, ℱ) can be described explicitly as follows

̌𝒞•(𝒰, ℱ) =
(∏

𝑖0∈𝐼
𝐻𝑜𝑚PAb(𝒞)(𝐙𝑈𝑖0

, ℱ) → ∏
𝑖0,𝑖1∈𝐼

𝐻𝑜𝑚PAb(𝒞)(𝐙𝑈𝑖0×𝑈𝑈𝑖1
, ℱ) → …

)

= 𝐻𝑜𝑚PAb(𝒞) ((⨁
𝑖0∈𝐼

𝐙𝑈𝑖0
← ⨁

𝑖0,𝑖1∈𝐼
𝐙𝑈𝑖0×𝑈𝑈𝑖1

← …
)

, ℱ
)

Proof. This follows from the formula above. See Cohomology on Sites, Lemma 19.10.3.
�

This reduces us to studying only the complex in the first argument of the last 𝐻𝑜𝑚.

Lemma 38.18.6. The complex of abelian presheaves

𝐙•
𝒰 ∶ ⨁

𝑖0∈𝐼
𝐙𝑈𝑖0

← ⨁
𝑖0,𝑖1∈𝐼

𝐙𝑈𝑖0×𝑈𝑈𝑖1
← ⨁

𝑖0,𝑖1,𝑖2∈𝐼
𝐙𝑈𝑖0×𝑈𝑈𝑖1×𝑈𝑈𝑖2

← …

is exact in all degrees except 0 in PAb(𝒞).

Proof. For any 𝑉 ∈ 𝑂𝑏(𝒞) the complex of abelian groups 𝐙•
𝒰(𝑉) is

𝐙
[∐

𝑖0∈𝐼
𝑀𝑜𝑟𝒞(𝑉, 𝑈𝑖0)

]
← 𝐙

[ ∐
𝑖0,𝑖1∈𝐼

𝑀𝑜𝑟𝒞(𝑉, 𝑈𝑖0 ×𝑈 𝑈𝑖1)
]

← … =

⨁
𝜑∶𝑉→𝑈 (

𝐙
[∐

𝑖0∈𝐼
𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0)

]
← 𝐙

[ ∐
𝑖0,𝑖1∈𝐼

𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖0) × 𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖1)
]

← …
)

where
𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖) = {𝑉 → 𝑈𝑖 such that 𝑉 → 𝑈𝑖 → 𝑈 equals 𝜑}.

Set 𝑆𝜑 = ∐𝑖∈𝐼 𝑀𝑜𝑟𝜑(𝑉, 𝑈𝑖), so that

𝐙•
𝒰(𝑉) = ⨁

𝜑∶𝑉→𝑈
(𝐙[𝑆𝜑] ← 𝐙[𝑆𝜑 × 𝑆𝜑] ← 𝐙[𝑆𝜑 × 𝑆𝜑 × 𝑆𝜑] ← …) .

Thus it suffices to show that for each 𝑆 = 𝑆𝜑, the complex
𝐙[𝑆] ← 𝐙[𝑆 × 𝑆] ← 𝐙[𝑆 × 𝑆 × 𝑆] ← …

is exact in negative degrees. To see this, we can give an explicit homotopy. Fix 𝑠 ∈ 𝑆
and define 𝐾 ∶ 𝑛(𝑠0,…,𝑠𝑝) ↦ 𝑛(𝑠,𝑠0,…,𝑠𝑝). One easily checks that 𝐾 is a nullhomotopy for the
operator

𝛿 ∶ 𝜂(𝑠0,…,𝑠𝑝) ↦ ∑
𝑝
𝑖=0

(−1)𝑝𝜂(𝑠0,…, ̂𝑠𝑖,…,𝑠𝑝).
See Cohomology on Sites, Lemma 19.10.4 for more details. �
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Lemma 38.18.7. Let 𝒞 be a category. If ℐ is an injective object of PAb(𝒞) and 𝒰 is a
family of morphisms with fixed target in 𝒞, then �̌�𝑝(𝒰, ℐ) = 0 for all 𝑝 > 0.

Proof. The C̆ech complex is the result of applying the functor 𝐻𝑜𝑚PAb(𝒞)(−, ℐ) to the
complex 𝐙•

𝒰, i.e.,
�̌�𝑝(𝒰; ℐ) = 𝐻𝑝(𝐻𝑜𝑚PAb(𝒞)(𝐙•

𝒰, ℐ)).
But we have just seen that 𝐙•

𝒰 is exact in negative degrees, and the functor 𝐻𝑜𝑚PAb(𝒞)(−, ℐ)
is exact, hence 𝐻𝑜𝑚PAb(𝒞)(𝐙•

𝒰, ℐ) is exact in positive degrees. �

Theorem 38.18.8. On PAb(𝒞) the functors �̌�𝑝(𝒰, −) are the right derived functors of
�̌�0(𝒰, −).

Proof. By the Lemma 38.18.7, the functors �̌�𝑝(𝒰, −) are universal 𝛿-functors since they
are effaceable. So are the right derived functors of �̌�0(𝒰, −). Since they agree in degree
0, they agree by the universal property of universal 𝛿-functors. For more details see Coho-
mology on Sites, Lemma 19.10.6. �

Remark 38.18.9. Observe that all of the preceding statements are about presheaves so we
haven't made use of the topology yet.

38.19. The Cech-to-cohomology spectral sequence

This spectral sequence is fundamental in proving foundational results on cohomology of
sheaves.

Lemma 38.19.1. The forgetful functor Ab(𝒞) → PAb(𝒞) transforms injectives into injec-
tives.

Proof. This is formal using the fact that the forgetful functor has a left adjoint, namely
sheafification, which is an exact functor. Formore details see Cohomology on Sites, Lemma
19.11.1. �

Theorem 38.19.2. Let 𝒞 be a site. For any covering 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 of 𝑈 ∈ 𝑂𝑏(𝒞) and
any abelian sheaf ℱ on 𝒞 there is a spectral sequence

𝐸𝑝,𝑞
2 = �̌�𝑝(𝒰, 𝐻𝑞(ℱ)) ⇒ 𝐻𝑝+𝑞(𝑈, ℱ),

where 𝐻𝑞(ℱ) is the abelian presheaf 𝑉 ↦ 𝐻𝑞(𝑉, ℱ).

Proof. Choose an injective resolution ℱ → ℐ• in Ab(𝒞), and consider the double complex
̌𝒞•(𝒰, ℐ•) and the maps

Γ(𝑈, 𝐼•) // ̌𝒞•(𝒰, ℐ•)

̌𝒞•(𝒰, ℱ)

OO

Here the horizontal map is the natural map Γ(𝑈, 𝐼•) → ̌𝒞0(𝒰, ℐ•) to the left column, and
the vertical map is induced by ℱ → ℐ0 and lands in the bottom row. By assumption, ℐ•

is a complex of injectives in Ab(𝒞), hence by Lemma 38.19.1, it is a complex of injectives
in PAb(𝒞). Thus, the rows of the double complex are exact in positive degrees, and the
kernel of the horizontal map is equal to Γ(𝑈, ℐ•), since ℐ• is a complex of sheaves. In
particular, the cohomology of the total complex is the standard cohomology of the global
sections functor 𝐻0(𝑈, ℱ).
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For the vertical direction, the 𝑞th cohomology group of the 𝑝th column is

∏
𝑖0,…,𝑖𝑝

𝐻𝑞(𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝, ℱ) = ∏
𝑖0,…,𝑖𝑝

𝐻𝑞(ℱ)(𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝)

in the entry 𝐸𝑝,𝑞
1 . So this is a standard double complex spectral sequence, and the 𝐸2-page

is as prescribed. For more details see Cohomology on Sites, Lemma 19.11.5. �

Remark 38.19.3. This is a Grothendieck spectral sequence for the composition of functors

Ab(𝒞) ⟶ PAb(𝒞)
�̌�0

−−−→ Ab.

38.20. Big and small sites of schemes

Let 𝑆 be a scheme. Let 𝜏 be one of the topologies we will be discussing. Thus 𝜏 ∈
{𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. Of course if you are only interested in the étale
topology, then you can simply assume 𝜏 = ́𝑒𝑡𝑎𝑙𝑒 throughout. Moreover, we will discuss
étale morphisms, étale coverings, and étale sites in more detail starting in Section 38.25.
In order to proceed with the discussion of cohomology of quasi-coherent sheaves it is con-
venient to introduce the big 𝜏-site and in case 𝜏 ∈ { ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}, the small 𝜏-site of 𝑆.
In order to do this we first introduce the notion of a 𝜏-covering.

Definition 38.20.1. (See Topologies, Definitions 30.7.1, 30.6.1, 30.5.1, 30.4.1, and 30.3.1.)
Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. A family of morphisms of schemes
{𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 with fixed target is called a 𝜏-covering if and only if each 𝑓𝑖 is flat of finite
presentation, syntomic, smooth, étale, resp. an open immersion, and we have ⋃ 𝑓𝑖(𝑇𝑖) = 𝑇.

It turns out that the class of all 𝜏-coverings satisfies the axioms (1), (2) and (3) of Definition
38.10.2 (our definition of a site), see Topologies, Lemmas 30.7.3, 30.6.3, 30.5.3, 30.4.3,
and 30.3.2. In order to be able to compare any of these new topologies to the fpqc topology
and to use the preceding results on descent on modules we single out a special class of
𝜏-coverings of affine schemes called standard coverings.

Definition 38.20.2. (See Topologies, Definitions 30.7.5, 30.6.5, 30.5.5, 30.4.5, and 30.3.4.)
Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. Let 𝑇 be an affine scheme. A standard
𝜏-covering of 𝑇 is a family {𝑓𝑗 ∶ 𝑈𝑗 → 𝑇}𝑗=1,…,𝑚 with each 𝑈𝑗 is affine, and each 𝑓𝑗 flat
and of finite presentation, standard syntomic, standard smooth, étale, resp. the immersion
of a standard principal open in 𝑇 and 𝑇 = ⋃ 𝑓𝑗(𝑈𝑗).

Lemma 38.20.3. Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. Any 𝜏-covering of an
affine scheme can be refined by a standard 𝜏-covering.

Proof. See Topologies, Lemmas 30.7.4, 30.6.4, 30.5.4, 30.4.4, and 30.3.3. �

Finally, we come to our definition of the sites we will be working with. This is actually
somewhat involved since, contrary to what happens in [MA71], we do not want to choose
a universe. Instead we pick a ``partial universe'' (which just means a suitably large set),
and consider all schemes contained in this set. Of course we make sure that our favorite
base scheme 𝑆 is contained in the partial universe. Having picked the underlying category
we pick a suitably large set of 𝜏-coverings which turns this into a site. The details are in
the chapter on topologies on schemes; there is a lot of freedom in the choices made, but in
the end the actual choices made will not affect the étale (or other) cohomology of 𝑆 (just
as in [MA71] the actual choice of universe doesn't matter at the end). Moreover, the way
the material is written the reader who is happy using strongly inaccessible cardinals (i.e.,
universes) can do so as a substitute.
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Definition 38.20.4. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}.
(1) A big 𝜏-site of 𝑆 is any of the sites (Sch/𝑆)𝜏 constructed as explained above and in

more detail in Topologies, Definitions 30.7.8, 30.6.8, 30.5.8, 30.4.8, and 30.3.7.
(2) If 𝜏 ∈ { ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}, then the small 𝜏-site of 𝑆 is the full subcategory 𝑆𝜏 of

(Sch/𝑆)𝜏 whose objects are schemes 𝑇 over 𝑆 whose structure morphism 𝑇 → 𝑆
is étale, resp. an open immersion. A covering in 𝑆𝜏 is a covering {𝑈𝑖 → 𝑈} in
(Sch/𝑆)𝜏 such that 𝑈 is an object of 𝑆𝜏.

The underlying category of the site (Sch/𝑆)𝜏 has reasonable ``closure'' properties, i.e., given
a scheme 𝑇 in it any locally closed subscheme of 𝑇 is isomorphic to an object of (Sch/𝑆)𝜏.
Other such closure properties are: closed under fibre products of schemes, taking countable
disjoint unions, taking finite type schemes over a given scheme, given an affine scheme
𝑆𝑝𝑒𝑐(𝑅) one can complete, localize, or take the quotient of 𝑅 by an ideal while staying
inside the category, etc. On the other hand, for example arbitrary disjoint unions of schemes
in (Sch/𝑆)𝜏 will take you outside of it. Also note that, given an object 𝑇 of (Sch/𝑆)𝜏 there will
exist 𝜏-coverings {𝑇𝑖 → 𝑇}𝑖∈𝐼 (as in Definition 38.20.1) which are not coverings in (Sch/𝑆)𝜏
for example because the schemes 𝑇𝑖 are not objects of the category (Sch/𝑆)𝜏. But our choice
of the sites (Sch/𝑆)𝜏 is such that there always does exist a covering {𝑈𝑗 → 𝑇}𝑗∈𝐽 of (Sch/𝑆)𝜏
which refines the covering {𝑇𝑖 → 𝑇}𝑖∈𝐼, see Topologies, Lemmas 30.7.7, 30.6.7, 30.5.7,
30.4.7, and 30.3.6. We will mostly ignore these issues in this chapter.

If ℱ is a sheaf on (Sch/𝑆)𝜏 or 𝑆𝜏, then we denote

𝐻𝑝
𝜏(𝑈, ℱ), in particular 𝐻𝑝

𝜏(𝑆, ℱ)

the cohomology groups of ℱ over the object 𝑈 of the site, see Section 38.14. Thus we have
𝐻𝑝

𝑓𝑝𝑝𝑓(𝑆, ℱ), 𝐻𝑝
𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐(𝑆, ℱ), 𝐻𝑝

𝑠𝑚𝑜𝑜𝑡ℎ(𝑆, ℱ), 𝐻𝑝
́𝑒𝑡𝑎𝑙𝑒(𝑆, ℱ)2, and 𝐻𝑝

𝑍𝑎𝑟(𝑆, ℱ). The last two
are potentially ambiguous since they might refer to either the big or small étale or Zariski
site. However, this ambiguity is harmless by the following lemma.

Lemma 38.20.5. Let 𝜏 ∈ { ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. If ℱ is an abelian sheaf defined on (Sch/𝑆)𝜏,
then the cohomology groups of ℱ over 𝑆 agree with the cohomology groups of ℱ|𝑆𝜏

over
𝑆.

Proof. By Topologies, Lemmas 30.3.13 and 30.4.13 the functors 𝑆𝜏 → (Sch/𝑆)𝜏 satisfy
the hypotheses of Sites, Lemma 9.19.8. Hence our lemma follows from Cohomology on
Sites, Lemma 19.8.2. �

For completeness we state and prove the invariance under choice of partial universe of the
cohomology groups we are considering. For notation and terminology used in this lemma
we refer to Topologies, Section 30.10.

Lemma 38.20.6. Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. Let 𝑆 be a scheme.
Let (Sch/𝑆)𝜏 and (Sch′/𝑆)𝜏 be two big 𝜏-sites of 𝑆, and assume that the first is contained in
the second. In this case for any abelian sheaf ℱ′ defined on (Sch′/𝑆)𝜏 and any object 𝑈 of
(Sch/𝑆)𝜏 we have

𝐻𝑝
𝜏(𝑈, ℱ′|(Sch/𝑆)𝜏

) = 𝐻𝑝
𝜏(𝑈, ℱ′)

In words: the cohomology of ℱ′ over 𝑈 computed in the bigger site agrees with the coho-
mology of ℱ′ restricted to the smaller site over 𝑈.

2We will sometimes abbreviate this to 𝐻𝑝
𝑒𝑡(𝑆, ℱ).
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Proof. ByTopologies, Lemma 30.10.2 the inclusion functor (Sch/𝑆)𝜏 → (Sch′/𝑆)𝜏 satisfies
the assumptions of Sites, Lemma 9.19.8. Hence our lemma follows from Cohomology on
Sites, Lemma 19.8.2. �

38.21. The étale topos

A topos is the category of sheaves of sets on a site, see Sites, Definition 9.15.1. Hence it is
customary to refer to the use the phrase ``étale topos of a scheme'' to refer to the category
of sheaves on the small étale site of a scheme. Here is the formal definition.

Definition 38.21.1. Let 𝑆 be a scheme.
(1) The étale topos, or the small étale topos of 𝑆 is the category Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) of sheaves

of sets on the small étale site of 𝑆.
(2) The Zariski topos, or the small Zariski topos of 𝑆 is the category Sh(𝑆𝑍𝑎𝑟) of

sheaves of sets on the small Zariski site of 𝑆.
(3) For 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖} a big 𝜏-topos is the category

of sheaves of set on a big 𝜏-topos of 𝑆.

Note that the small Zariski topos of 𝑆 is simply the category of sheaves of sets on the
underlying topological space of 𝑆, see Topologies, Lemma 30.3.11. Whereas the small
étale topos does not depend on the choices made in the construction of the small étale site,
in general the big topoi do depend on those choices.
Here is a lemma, which is one of many possible lemmas expressing the fact that it doesn't
matter too much which site we choose to define the small étale topos of a scheme.

Lemma 38.21.2. Let 𝑆 be a scheme. Let 𝑆𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒 denote the full subcategory of 𝑆 ́𝑒𝑡𝑎𝑙𝑒
whose objects are those 𝑈/𝑆 ∈ 𝑂𝑏(𝑆 ́𝑒𝑡𝑎𝑙𝑒) with 𝑈 affine. A covering of 𝑆𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒 will be
a standard étale covering, see Topologies, Definition 30.4.5. Then restriction

ℱ ⟼ ℱ|𝑆𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒

defines an equivalence of topoi Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) ≅ Sh(𝑆𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒).

Proof. This you can show directly from the definitions, and is a good exercise. But it
also follows immediately from Sites, Lemma 9.25.1 by checking that the inclusion functor
𝑆𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒 → 𝑆 ́𝑒𝑡𝑎𝑙𝑒 is a special cocontinuous functor (see Sites, Definition 9.25.2). �

38.22. Cohomology of quasi-coherent sheaves

We start with a simple lemma (which holds in greater generality than stated). It says that
the C̆ech complex of a standard covering is equal to the C̆ech complex of an fpqc covering
of the form {𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴)} with 𝐴 → 𝐵 faithfully flat.

Lemma 38.22.1. Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖}. Let 𝑆 be a scheme.
Let ℱ be an abelian sheaf on (Sch/𝑆)𝜏, or on 𝑆𝜏 in case 𝜏 = ́𝑒𝑡𝑎𝑙𝑒, and let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼
be a standard 𝜏-covering of this site. Let 𝑉 = ∐𝑖∈𝐼 𝑈𝑖. Then

(1) 𝑉 is an affine scheme,
(2) 𝒱 = {𝑉 → 𝑈} is an fpqc covering.
(3) the Cech complexes ̌𝒞•(𝒰, ℱ) and ̌𝒞•(𝒱, ℱ) agree.

Proof. As the covering is a standard 𝜏-covering each of the schemes 𝑈𝑖 is affine and 𝐼 is a
finite set. Hence 𝑉 is an affine scheme. It is clear that 𝑉 → 𝑈 is flat and surjective, hence 𝒱
is an fpqc covering, see Example 38.15.3. Note that 𝒰 is a refinement of 𝒱 and hence there
is a map of C̆ech complexes ̌𝒞•(𝒱, ℱ) → ̌𝒞•(𝒰, ℱ), see Cohomology on Sites, Equation
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(19.9.2.1). Next, we observe that if 𝑇 = ∐𝑗∈𝐽 𝑇𝑗 is a disjoint union of schemes in the site
on which ℱ is defined then the family of morphisms with fixed target {𝑇𝑗 → 𝑇}𝑗∈𝐽 is a
Zariski covering, and so

(38.22.1.1) ℱ(𝑇) = ℱ(∐𝑗∈𝐽
𝑇𝑗) = ∏𝑗∈𝐽

ℱ(𝑇𝑗)

by the sheaf condition of ℱ. This implies the map of C̆ech complexes above is an isomor-
phism in each degree because

𝑉 ×𝑈 … ×𝑈 𝑉 = ∏𝑖0,…𝑖𝑝
𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝

as schemes. �

Note that Equality (38.22.1.1) is false for a general presheaf. Even for sheaves it does not
hold on any site, since coproducts may not lead to coverings, and may not be disjoint. But
it does for all the usual ones (at least all the ones we will study).

Remark 38.22.2. In the statement of Lemma 38.22.1, 𝒰 is a refinement of 𝒱, so this does
not mean that it suffices to look at coverings with a single morphism to compute C̆ech
cohomology �̌�𝑛(𝑈, ℱ) (which is defined as the colimit over all coverings 𝒰 of 𝑈 of the
Cech cohomology groups of ℱ with respect to 𝒰).

Lemma 38.22.3. (Locality of cohomology) Let 𝒞 be a site, ℱ an abelian sheaf on 𝒞, 𝑈 an
object of 𝒞, 𝑝 > 0 an integer and 𝜉 ∈ 𝐻𝑝(𝑈, ℱ). Then there exists a covering 𝒰 = {𝑈𝑖 →
𝑈}𝑖∈𝐼 of 𝑈 in 𝒞 such that 𝜉|𝑈𝑖

= 0 for all 𝑖 ∈ 𝐼.

Proof. Choose an injective resolution ℱ → ℐ•. Then 𝜉 is represented by a cocycle ̃𝜉 ∈
ℐ𝑝(𝑈) with 𝑑𝑝( ̃𝜉) = 0. By assumption, the sequence ℐ𝑝−1 → ℐ𝑝 → ℐ𝑝+1 in exact in Ab(𝒞),
which means that there exists a covering 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 such that ̃𝜉|𝑈𝑖

= 𝑑𝑝−1(𝜉𝑖) for
some 𝜉𝑖 ∈ ℐ𝑝−1(𝑈𝑖). Since the cohomology class 𝜉|𝑈𝑖

is represented by the cocycle ̃𝜉|𝑈𝑖
which is a coboundary, it vanishes. For more details see Cohomology on Sites, Lemma
19.8.3. �

Theorem 38.22.4. Let 𝑆 be a scheme and ℱ a quasi-coherent 𝒪𝑆-module. Let 𝒞 be either
(Sch/𝑆)𝜏 for 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒, 𝑍𝑎𝑟𝑖𝑠𝑘𝑖} or 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Then

𝐻𝑝(𝑆, ℱ) = 𝐻𝑝
𝜏(𝑆, ℱ𝑎)

for all 𝑝 ≥ 0 where
(1) the left hand side indicates the usual cohomology of the sheafℱ on the underlying

topological space of the scheme 𝑆, and
(2) the right hand side indicates cohomology of the abelian sheafℱ𝑎 (see Proposition

38.17.1) on the site 𝒞.

Remark 38.22.5. Since 𝑆 is a final object in the category 𝒞, the cohomology groups on
the right-hand side are merely the right derived functors of the global sections functor. In
fact the proof will show that 𝐻𝑝(𝑈, 𝑓∗ℱ) = 𝐻𝑝

𝜏(𝑈, ℱ𝑎) for any object 𝑓 ∶ 𝑈 → 𝑆 of the
site 𝒞.

Proof. We are going to show that 𝐻𝑝(𝑈, 𝑓∗ℱ) = 𝐻𝑝
𝜏(𝑈, ℱ𝑎) for any object 𝑓 ∶ 𝑈 → 𝑆 of

the site 𝒞. The result is true for 𝑝 = 0 by the sheaf property.

Assume that 𝑈 is affine. Then we want to prove that 𝐻𝑝
𝜏(𝑈, ℱ𝑎) = 0 for all 𝑝 > 0. We use

induction on 𝑝.
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𝑝 = 1 Pick 𝜉 ∈ 𝐻1
𝜏(𝑈, ℱ𝑎). By Lemma 38.22.3, there exists an fpqc covering 𝒰 =

{𝑈𝑖 → 𝑈}𝑖∈𝐼 such that 𝜉|𝑈𝑖
= 0 for all 𝑖 ∈ 𝐼. Up to refining 𝒰, we may as-

sume that 𝒰 is a standard 𝜏-covering. Applying the spectral sequence of The-
orem 38.19.2, we see that 𝜉 comes from a cohomology class ̌𝜉 ∈ �̌�1(𝒰, ℱ𝑎).
Consider the covering 𝒱 = {∐𝑖∈𝐼 𝑈𝑖 → 𝑈}. By Lemma 38.22.1, �̌�•(𝒰, ℱ𝑎) =
�̌�•(𝒱, ℱ𝑎). On the other hand, since 𝒱 is a covering of the form {𝑆𝑝𝑒𝑐(𝐵) →
𝑆𝑝𝑒𝑐(𝐴)} and 𝑓∗ℱ = 𝑀 for some 𝐴-module 𝑀, we see the C̆ech complex

̌𝒞•(𝒱, ℱ) is none other than the complex (𝐵/𝐴)• ⊗𝐴 𝑀. Now by Lemma 38.16.4,
𝐻𝑝((𝐵/𝐴)• ⊗𝐴 𝑀) = 0 for 𝑝 > 0, hence ̌𝜉 = 0 and so 𝜉 = 0.

𝑝 > 1 Pick 𝜉 ∈ 𝐻𝑝
𝜏(𝑈, ℱ𝑎). By Lemma 38.22.3, there exists an fpqc covering 𝒰 =

{𝑈𝑖 → 𝑈}𝑖∈𝐼 such that 𝜉|𝑈𝑖
= 0 for all 𝑖 ∈ 𝐼. Up to refining 𝒰, we may assume

that 𝒰 is a standard 𝜏-covering. We apply the spectral sequence of Theorem
38.19.2. Observe that the intersections 𝑈𝑖0 ×𝑈 … ×𝑈 𝑈𝑖𝑝 are affine, so that by
induction hypothesis the cohomology groups

𝐸𝑝,𝑞
2 = �̌�𝑝(𝒰, 𝐻𝑞(ℱ𝑎))

vanish for all 0 < 𝑞 < 𝑝. We see that 𝜉 must come from a ̌𝜉 ∈ �̌�𝑝(𝒰, ℱ𝑎). Re-
placing 𝒰 with the covering 𝒱 containing only one morphism and using Lemma
38.16.4 again, we see that the C̆ech cohomology class ̌𝜉must be zero, hence 𝜉 = 0.

Next, assume that 𝑈 is separated. Choose an affine open covering 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 of 𝑈. The
family 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 is then an fpqc covering, and all the intersections 𝑈𝑖0 ×𝑆 ⋯×𝑆 𝑈𝑖𝑝
are affine since 𝑈 is separated. So all rows of the spectral sequence of Theorem 38.19.2 are
zero, except the zeroth row. Therefore

𝐻𝑝
𝜏(𝑆, ℱ𝑎) = �̌�𝑝(𝒰, ℱ𝑎) = �̌�𝑝(𝒰, ℱ) = 𝐻𝑝(𝑆, ℱ)

where the last equality results from standard scheme theory, see Coherent, Lemma 25.2.4.

The general case is technical and (to extend the proof as given here) requires a discussion
about maps of spectral sequences, so we won't treat it. It follows from Descent, Proposition
31.6.10 (whose proof takes a slightly different approach) combined with Cohomology on
Sites, Lemma 19.8.1. �

38.23. Examples of sheaves

Let 𝑆 and 𝜏 be as in Section 38.20. We have already seen that any representable presheaf is
a sheaf on (Sch/𝑆)𝜏 or 𝑆𝜏, see Lemma 38.15.8 and Remark 38.15.9. Here are some special
cases.

Definition 38.23.1. On any of the sites (Sch/𝑆)𝜏 or 𝑆𝜏 of Section 38.20.
(1) The sheaf 𝑇 ↦ Γ(𝑇, 𝒪𝑇) is denoted 𝒪𝑆, or 𝐆𝑎, or 𝐆𝑎,𝑆 if we want to indicate the

base scheme.
(2) Similarly, the sheaf 𝑇 ↦ Γ(𝑇, 𝒪∗

𝑇) is denoted 𝒪∗
𝑆, or 𝐆𝑚, or 𝐆𝑚,𝑆 if we want to

indicate the base scheme.
(3) The constant sheaf 𝐙/𝑛𝐙 on any site is the sheafification of the constant presheaf

𝑈 ↦ 𝐙/𝑛𝐙.

The first is a sheaf by Theorem 38.17.4 for example. The second is a sub presheaf of the
first, which is easily seen to be a sheaf itself. The third is a sheaf by definition. Note that
each of these sheaves is representable. The first and second by the schemes 𝐆𝑎,𝑆 and 𝐆𝑚,𝑆,
see Groupoids, Section 35.4. The third by the finite étale group scheme 𝐙/𝑛𝐙𝑆 sometimes
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denoted (𝐙/𝑛𝐙)𝑆 which is just 𝑛 copies of 𝑆 endowed with the obvious group scheme struc-
ture over 𝑆, see Groupoids, Example 35.5.6 and the following remark.

Remark 38.23.2. Let 𝐺 be an abstract group. On any of the sites (Sch/𝑆)𝜏 or 𝑆𝜏 of Section
38.20 the sheafification 𝐺 of the constant presheaf associated to 𝐺 in the Zariski topology
of the site already gives

Γ(𝑈, 𝐺) = {Zariski locally constant maps 𝑈 → 𝐺}

This Zariski sheaf is representable by the group scheme 𝐺𝑆 according to Groupoids, Ex-
ample 35.5.6. By Lemma 38.15.8 any representable presheaf satisfies the sheaf condition
for the 𝜏-topology as well, and hence we conclude that the Zariski sheafification 𝐺 above
is also the 𝜏-sheafification.

Definition 38.23.3. Let 𝑆 be a scheme. The structure sheaf of 𝑆 is the sheaf of rings 𝒪𝑆
on any of the sites 𝑆𝑍𝑎𝑟, 𝑆 ́𝑒𝑡𝑎𝑙𝑒, or (Sch/𝑆)𝜏 discussed above.

If there is some possible confusion as to which site we are working on then we will indicate
this by using indices. For example we may use 𝒪𝑆 ́𝑒𝑡𝑎𝑙𝑒

to stress the fact that we are working
on the small étale site of 𝑆.

Remark 38.23.4. In the terminology introduced above a special case of Theorem 38.22.4
is

𝐻𝑝
𝑓𝑝𝑝𝑓(𝑋, 𝐆𝑎) = 𝐻𝑝

́𝑒𝑡𝑎𝑙𝑒(𝑋, 𝐆𝑎) = 𝐻𝑝
𝑍𝑎𝑟(𝑋, 𝐆𝑎) = 𝐻𝑝(𝑋, 𝒪𝑋)

for all 𝑝 ≥ 0. Moreover, we could use the notation 𝐻𝑝
𝑓𝑝𝑝𝑓(𝑋, 𝒪𝑋) to indicate the cohomol-

ogy of the structure sheaf on the big fppf site of 𝑋.

38.24. Picard groups

The following theorem is sometimes called ``Hilbert 90''.

Theorem 38.24.1. For any scheme 𝑋 we have canonical identifications

𝐻1
𝑓𝑝𝑝𝑓(𝑋, 𝐆𝑚) = 𝐻1

𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐(𝑋, 𝐆𝑚)

= 𝐻1
𝑠𝑚𝑜𝑜𝑡ℎ(𝑋, 𝐆𝑚)

= 𝐻1
́𝑒𝑡𝑎𝑙𝑒(𝑋, 𝐆𝑚)

= 𝐻1
𝑍𝑎𝑟(𝑋, 𝐆𝑚)

= Pic(𝑋)

= 𝐻1(𝑋, 𝒪∗
𝑋)

Proof. Let 𝜏 be one of the topologies considered in Section 38.20. By Cohomology on
Sites, Lemma 19.7.1 we see that 𝐻1

𝜏(𝑋, 𝐆𝑚) = 𝐻1
𝜏(𝑋, 𝒪∗

𝜏 ) = Pic(𝒪𝜏) where 𝒪𝜏 is the
structure sheaf of the site (Sch/𝑋)𝜏. Now an invertible 𝒪𝜏-module is a quasi-coherent
𝒪𝜏-module. By Theorem 38.17.4 or the more precise Descent, Proposition 31.6.11 we see
that Pic(𝒪𝜏) = Pic(𝑋). The last equality is proved in the same way. �

38.25. The étale site

At this point we start exploring the étale site of a scheme in more detail. As a first step we
discuss a little the notion of an étale morphism.
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38.26. Étale morphisms

For more details, see Morphisms, Section 24.35 for the formal definition and Étale Mor-
phisms, Sections 37.11, 37.12, 37.13, 37.14, 37.16, and 37.19 for a survey of interesting
properties of étale morphisms.

Recall that an algebra 𝐴 over an algebraically closed field 𝑘 is smooth if it is of finite type
and the module of differentials Ω𝐴/𝑘 is finite locally free of rank equal to the dimension. A
scheme 𝑋 over 𝑘 is smooth over 𝑘 if it is locally of finite type and each affine open is the
spectrum of a smooth 𝑘-algebra. If 𝑘 is not algebraically closed then an 𝐴-algebra is said
to be a smooth 𝑘-algebra if 𝐴 ⊗𝑘 𝑘 is a smooth 𝑘-algebra. A ring map 𝐴 → 𝐵 is smooth
if it is flat, finitely presented, and for all primes 𝔭 ⊂ 𝐴 the fibre ring 𝜅(𝔭) ⊗𝐴 𝐵 is smooth
over the residue field 𝜅(𝔭). More generally, a morphism of schemes is smooth if it is flat,
finitely presented, and the geometric fibers are smooth.

For these facts please see Morphisms, Section 24.33. Using this we may define an étale
morphism as follows.

Definition 38.26.1. A morphism of schemes is étale if it is smooth of relative dimension
0.

In particular, a morphism of schemes 𝑋 → 𝑆 is étale if it is smooth and Ω𝑋/𝑆 = 0.

Proposition 38.26.2. (Facts on étale morphisms)
(1) Let 𝑘 be a field. A morphism of schemes 𝑈 → 𝑆𝑝𝑒𝑐(𝑘) is étale if and only if

𝑈 ≅ ∐𝑖∈𝐼 𝑆𝑝𝑒𝑐(𝑘𝑖) such that for each 𝑖 ∈ 𝐼 the ring 𝑘𝑖 is a field which is a finite
separable extension of 𝑘.

(2) Let 𝜑 ∶ 𝑈 → 𝑆 be a morphism of schemes. The following conditions are equiva-
lent:
(a) 𝜑 is étale,
(b) 𝜑 is locally finitely presented, flat, and all its fibres are étale,
(c) 𝜑 is flat, unramified and locally of finite presentation.

(3) A ring map 𝐴 → 𝐵 is étale if and only if 𝐵 ≅ 𝐴[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑛) such that

Δ = det (
𝜕𝑓𝑖
𝜕𝑥𝑗 ) is invertible in 𝐵.

(4) The base change of an étale morphism is étale.
(5) Compositions of étale morphisms are étale.
(6) Fibre products and products of étale morphisms are étale.
(7) An étale morphism has relative dimension 0.
(8) Let 𝑌 → 𝑋 be an étale morphism. If 𝑋 is reduced (respectively regular) then so

is 𝑌.
(9) Étale morphims are open.

(10) If 𝑋 → 𝑆 and 𝑌 → 𝑆 are étale, then any 𝑆-morphism 𝑋 → 𝑌 is also étale.

Proof. Wehave proved these facts (andmore) in the preceding chapters. Here is a list of ref-
erences: (1) Morphisms, Lemma 24.35.7. (2) Morphisms, Lemmas 24.35.8 and 24.35.16.
(3) Algebra, Lemma 7.132.2. (4) Morphisms, Lemma 24.35.4. (5) Morphisms, Lemma
24.35.3. (6) Follows formally from (4) and (5). (7) Morphisms, Lemmas 24.35.6 and
24.28.5. (8) See Algebra, Lemmas 7.145.6 and 7.145.5, see also more results of this kind
in ÉtaleMorphisms, Section 37.19. (9) SeeMorphisms, Lemma 24.24.9 and 24.35.12. (10)
See Morphisms, Lemma 24.35.18. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03PB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03PC


38.27. ÉTALE COVERINGS 2013

Definition 38.26.3. A ring map 𝐴 → 𝐵 is called standard étale if 𝐵 ≅ (𝐴[𝑡]/(𝑓))𝑔 with
𝑓, 𝑔 ∈ 𝐴[𝑡], with 𝑓 monic, and d𝑓/d𝑡 invertible in 𝐵.

It is true that a standard étale ring map is étale. Namely, suppose that 𝐵 = (𝐴[𝑡]/(𝑓))𝑔 with
𝑓, 𝑔 ∈ 𝐴[𝑡], with 𝑓 monic, and d𝑓/d𝑡 invertible in 𝐵. Then 𝐴[𝑡]/(𝑓) is a finite free 𝐴-module
of rank equal to the degree of the monic polynomial 𝑓. Hence 𝐵, as a localization of this
free algebra is finitely presented and flat over 𝐴. To finish the proof that 𝐵 is étale it suffices
to show that the fibre rings

𝜅(𝔭) ⊗𝐴 𝐵 ≅ 𝜅(𝔭) ⊗𝐴 (𝐴[𝑡]/(𝑓))𝑔 ≅ 𝜅(𝔭)[𝑡, 1/𝑔]/(𝑓)

are finite products of finite separable field extensions. Here 𝑓, 𝑔 ∈ 𝜅(𝔭)[𝑡] are the images
of 𝑓 and 𝑔. Let

𝑓 = 𝑓1 … 𝑓𝑎𝑓𝑒1
𝑎+1 … 𝑓𝑒𝑏

𝑎+𝑏

be the factorization of 𝑓 into powers of pairwise distinct irreducible monic factors 𝑓𝑖 with
𝑒1, … , 𝑒𝑏 > 0. By assumption d𝑓/d𝑡 is invertible in 𝜅(𝔭)[𝑡, 1/𝑔]. Hence we see that at least
all the 𝑓𝑖, 𝑖 > 𝑎 are invertible. We conclude that

𝜅(𝔭)[𝑡, 1/𝑔]/(𝑓) ≅ ∏𝑖∈𝐼
𝜅(𝔭)[𝑡]/(𝑓𝑖)

where 𝐼 ⊂ {1, … , 𝑎} is the subset of indices 𝑖 such that 𝑓𝑖 does not divide 𝑔. Moreover, the
image of d𝑓/d𝑡 in the factor 𝜅(𝔭)[𝑡]/(𝑓𝑖) is clearly equal to a unit times d𝑓𝑖/d𝑡. Hence we
conclude that 𝜅𝑖 = 𝜅(𝔭)[𝑡]/(𝑓𝑖) is a finite field extension of 𝜅(𝔭) generated by one element
whose minimal polynomial is separable, i.e., the field extension 𝜅(𝔭) ⊂ 𝜅𝑖 is finite separable
as desired.

It turns out that any étale ring map is locally standard étale. To formulate this we introduce
the following notation. A ring map 𝐴 → 𝐵 is étale at a prime 𝔮 of 𝐵 if there exists ℎ ∈ 𝐵,
ℎ∉𝔮 such that 𝐴 → 𝐵ℎ is étale. Here is the result.

Theorem 38.26.4. A ring map 𝐴 → 𝐵 is étale at a prime 𝔮 if and only if there exists 𝑔 ∈ 𝐵,
𝑔∉𝔮 such that 𝐵𝑔 is standard étale over 𝐴.

Proof. See Algebra, Proposition 7.132.16. �

38.27. Étale coverings

We recall the definition.

Definition 38.27.1. An étale covering of a scheme 𝑈 is a family of morphisms of schemes
{𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 such that

(1) each 𝜑𝑖 is an étale morphism ;
(2) the 𝑈𝑖 cover 𝑈, i.e., 𝑈 = ⋃𝑖∈𝐼 𝜑𝑖(𝑈𝑖).

Lemma 38.27.2. Any étale covering is an fpqc covering.

Proof. (See also Topologies, Lemma 30.8.6.) Let {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be an étale covering.
Since an étale morphism is flat, and the elements of the covering should cover its target,
the property fp (faithfully flat) is satisfied. To check the property qc (quasi-compact), let
𝑉 ⊂ 𝑈 be an affine open, and write 𝜑−1

𝑖 = ⋃𝑗∈𝐽𝑖
𝑉𝑖𝑗 for some affine opens 𝑉𝑖𝑗 ⊂ 𝑈𝑖. Since

𝜑𝑖 is open (as étale morphisms are open), we see that 𝑉 = ⋃𝑖∈𝐼 ⋃𝑗∈𝐽𝑖
𝜑𝑖(𝑉𝑖𝑗) is an open

covering of 𝑈. Further, since 𝑉 is quasi-compact, this covering has a finite refinement. �
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So any statement which is true for fpqc coverings remains true a fortiori for étale coverings.
For instance, the étale site is subcanonical.

Definition 38.27.3. (For more details see Section 38.20, or Topologies, Section 30.4.) Let
𝑆 be a scheme. The big étale site over 𝑆 is the site (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒, see Definition 38.20.4. The
small étale site over 𝑆 is the site 𝑆 ́𝑒𝑡𝑎𝑙𝑒, see Definition 38.20.4. We define similarly the big
and small Zariski sites on 𝑆, denoted (Sch/𝑆)𝑍𝑎𝑟 and 𝑆𝑍𝑎𝑟.

Loosely speaking the big étale site of 𝑆 is made up out of schemes over 𝑆 and coverings
the étale coverings. The small étale site of 𝑆 is made up out of schemes étale over 𝑆 with
coverings the étale coverings. Actually any morphism between objects of 𝑆 ́𝑒𝑡𝑎𝑙𝑒 is étale, in
virtue of Proposition 38.26.2, hence to check that {𝑈𝑖 → 𝑈}𝑖∈𝐼 in 𝑆 ́𝑒𝑡𝑎𝑙𝑒 is a covering it
suffices to check that ∐ 𝑈𝑖 → 𝑈 is surjective.

The small étale site has fewer objects than the big étale site, it contains only the ``opens''
of the étale topology on 𝑆. It is a full subcategory of the big étale site, and its topology is
induced from the topology on the big site. Hence it is true that the restriction functor from
the big étale site to the small one is exact and maps injectives to injectives. This has the
following consequence.

Proposition 38.27.4. Let 𝑆 be a scheme and ℱ an abelian sheaf on (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒. Then
ℱ|𝑆 ́𝑒𝑡𝑎𝑙𝑒

is a sheaf on 𝑆 ́𝑒𝑡𝑎𝑙𝑒 and

𝐻𝑝
́𝑒𝑡𝑎𝑙𝑒(𝑆, ℱ|𝑆 ́𝑒𝑡𝑎𝑙𝑒

) = 𝐻𝑝
́𝑒𝑡𝑎𝑙𝑒(𝑆, ℱ)

for all 𝑝 ≥ 0.

Proof. This is a special case of Lemma 38.20.5. �

In accordance with the general notation introduced in Section 38.20 we write 𝐻𝑝
́𝑒𝑡𝑎𝑙𝑒(𝑆, ℱ)

for the above cohomology group.

38.28. Kummer theory

Let 𝑛 ∈ 𝐍 and consider the functor 𝜇𝑛 defined by

Sch𝑜𝑝𝑝 ⟶ Ab
𝑆 ⟼ 𝜇𝑛(𝑇) = {𝑡 ∈ Γ(𝑆, 𝒪∗

𝑆) ∣ 𝑡𝑛 = 1}.

By Groupoids, Example 35.5.2 this is a representable functor, and the scheme representing
it is denoted 𝜇𝑛 also. By Lemma 38.15.8 this functor satisfies the sheaf condition for the
fpqc topology (in particular, it is also satisfies the sheaf condition for the étale, Zariski, etc
topology).

Lemma 38.28.1. If 𝑛 ∈ 𝒪∗
𝑆 then

0 → 𝜇𝑛,𝑆 → 𝐆𝑚,𝑆
(⋅)𝑛

−−−→ 𝐆𝑚,𝑆 → 0

is a short exact sequence of sheaves on both the small and big étale site of 𝑆.

Remark 38.28.2. This lemma is false when ``étale'' is replaced with ``Zariski''. Since the
étale topology is coarser than the smooth topology, see Topologies, Lemma 30.5.2 it follows
that the sequence is also exact in the smooth topology.
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Proof. By definition the sheaf 𝜇𝑛,𝑆 is the kernel of the map (⋅)𝑛. Hence it suffices to show
that the last map is surjective. Let 𝑈 be a scheme over 𝑆. Let 𝑓 ∈ 𝐆𝑚(𝑈) = Γ(𝑈, 𝒪∗

𝑈). We
need to show that we can find an étale cover of 𝑈 over the members of which the restriction
of 𝑓 is an 𝑛th power. Set

𝑈′ = 𝑆𝑝𝑒𝑐
𝑈

(𝒪𝑈[𝑇]/(𝑇𝑛 − 𝑓))
𝜋

−→ 𝑈.

(See Constructions, Section 22.3 or 22.4 for a discussion of the relative spectrum.) Let
𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑈 be an affine open, and say 𝑓|𝑈 corresponds to the unit 𝑎 ∈ 𝐴∗. Then 𝜋−1(𝑈) =
𝑆𝑝𝑒𝑐(𝐵) with 𝐵 = 𝐴[𝑇]/(𝑇𝑛 − 𝑎). The ring map 𝐴 → 𝐵 is finite free of rank 𝑛, hence it
is faithfully flat, and hence we conclude that 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) is surjective. Since
this holds for every affine open in 𝑈 we conclude that 𝜋 is surjective. In addition, 𝑛 and
𝑇𝑛−1 are invertible in 𝐵, so 𝑛𝑇𝑛−1 ∈ 𝐵∗ and the ring map 𝐴 → 𝐵 is standard étale, in
particular étale. Since this holds for every affine open of 𝑈 we conclude that 𝜋 is étale.
Hence 𝒰 = {𝜋 ∶ 𝑈′ → 𝑈} is an étale covering. Moreover, 𝑓|𝑈′ = (𝑓′)𝑛 where 𝑓′ is the
class of 𝑇 in Γ(𝑈′, 𝒪∗

𝑈′), so 𝒰 has the desired property. �

By Theorem 38.24.1 and Lemma 38.28.1 and general properties of cohomology we obtain
the long exact cohomology sequence

0 // 𝐻0
́𝑒𝑡𝑎𝑙𝑒(𝑆, 𝜇𝑛,𝑆) // Γ(𝑆, 𝒪∗

𝑆)
(⋅)𝑛
// Γ(𝑆, 𝒪∗

𝑆)

xx
𝐻1

́𝑒𝑡𝑎𝑙𝑒(𝑆, 𝜇𝑛,𝑆) // Pic(𝑆)
(⋅)𝑛

// Pic(𝑆)

xx
𝐻2

́𝑒𝑡𝑎𝑙𝑒(𝑆, 𝜇𝑛,𝑆) // ⋯

at least if 𝑛 is invertible on 𝑆. When 𝑛 is not invertible on 𝑆 we can apply the following
lemma.

Lemma 38.28.3. For any 𝑛 ∈ 𝐍 the sequence

0 → 𝜇𝑛,𝑆 → 𝐆𝑚,𝑆
(⋅)𝑛

−−−→ 𝐆𝑚,𝑆 → 0
is a short exact sequence of sheaves on the site (Sch/𝑆)𝑓𝑝𝑝𝑓 and (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐.

Remark 38.28.4. This lemma is false for the smooth, étale, or Zariski topology.

Proof. By definition the sheaf 𝜇𝑛,𝑆 is the kernel of the map (⋅)𝑛. Hence it suffices to show
that the last map is surjective. Since the syntomic topology is stronger than the fppf topol-
ogy, see Topologies, Lemma 30.7.2, it suffices to prove this for the syntomic topology. Let
𝑈 be a scheme over 𝑆. Let 𝑓 ∈ 𝐆𝑚(𝑈) = Γ(𝑈, 𝒪∗

𝑈). We need to show that we can find a
synomtic cover of 𝑈 over the members of which the restriction of 𝑓 is an 𝑛th power. Set

𝑈′ = 𝑆𝑝𝑒𝑐
𝑈

(𝒪𝑈[𝑇]/(𝑇𝑛 − 𝑓))
𝜋

−→ 𝑈.

(See Constructions, Section 22.3 or 22.4 for a discussion of the relative spectrum.) Let
𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑈 be an affine open, and say 𝑓|𝑈 corresponds to the unit 𝑎 ∈ 𝐴∗. Then 𝜋−1(𝑈) =
𝑆𝑝𝑒𝑐(𝐵) with 𝐵 = 𝐴[𝑇]/(𝑇𝑛 − 𝑎). The ring map 𝐴 → 𝐵 is finite free of rank 𝑛, hence it
is faithfully flat, and hence we conclude that 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) is surjective. Since
this holds for every affine open in 𝑈 we conclude that 𝜋 is surjective. In addition, 𝐵 is a
global relative complete intersection over 𝐴, so the ring map 𝐴 → 𝐵 is standard syntomic,
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in particular syntomic. Since this holds for every affine open of 𝑈 we conclude that 𝜋 is
syntomic. Hence 𝒰 = {𝜋 ∶ 𝑈′ → 𝑈} is a syntomic covering. Moreover, 𝑓|𝑈′ = (𝑓′)𝑛

where 𝑓′ is the class of 𝑇 in Γ(𝑈′, 𝒪∗
𝑈′), so 𝒰 has the desired property. �

By Theorem 38.24.1 and Lemma 38.28.3 and general properties of cohomology we obtain
the long exact cohomology sequence

0 // 𝐻0
𝑓𝑝𝑝𝑓(𝑆, 𝜇𝑛,𝑆) // Γ(𝑆, 𝒪∗

𝑆)
(⋅)𝑛
// Γ(𝑆, 𝒪∗

𝑆)

xx
𝐻1

𝑓𝑝𝑝𝑓(𝑆, 𝜇𝑛,𝑆) // Pic(𝑆)
(⋅)𝑛

// Pic(𝑆)

xx
𝐻2

𝑓𝑝𝑝𝑓(𝑆, 𝜇𝑛,𝑆) // ⋯

for any scheme 𝑆 and any integer 𝑛. Of course there is a similar sequence with syntomic
cohomology.

Let 𝑛 ∈ 𝐍 and let 𝑆 be any scheme. There is another more direct way to describe the first
cohomology group with values in 𝜇𝑛. Consider pairs (ℒ, 𝛼) where ℒ is an invertible sheaf
on 𝑆 and 𝛼 ∶ ℒ⊗𝑛 → 𝒪𝑆 is a trivialization of the 𝑛th tensor power of ℒ. Let (ℒ′, 𝛼′) be a
second such pair. An isomorphism 𝜑 ∶ (ℒ, 𝛼) → (ℒ′, 𝛼′) is an isomorphism 𝜑 ∶ ℒ → ℒ′

of invertible sheaves such that the diagram

ℒ⊗𝑛

𝜑⊗𝑛

��

𝛼
// 𝒪𝑆

1
��

(ℒ′)⊗𝑛 𝛼′
// 𝒪𝑆

commutes. Thus we have

(38.28.4.1) 𝐼𝑠𝑜𝑚𝑆((ℒ, 𝛼), (ℒ′, 𝛼′)) = {
∅ if they are not isomorphic

𝐻0(𝑆, 𝜇𝑛,𝑆) ⋅ 𝜑 if 𝜑 isomorphism of pairs

Moreover, given two pairs (ℒ, 𝛼), (ℒ′, 𝛼′) the tensor product

(ℒ, 𝛼) ⊗ (ℒ′, 𝛼′) = (ℒ ⊗ ℒ′, 𝛼 ⊗ 𝛼′)

is another pair. The pair (𝒪𝑆, 1) is an identity for this tensor product operation, and an
inverse is given by

(ℒ, 𝛼)−1 = (ℒ⊗−1, 𝛼⊗−1).
Hence the collection of isomorphism classes of pairs forms an abelian group. Note that

(ℒ, 𝛼)⊗𝑛 = (ℒ⊗𝑛, 𝛼⊗𝑛)
𝛼

−→ (𝒪𝑆, 1)

hence every element of this group has order dividing 𝑛. We warn the reader that this group
is in general not the 𝑛-torsion in Pic(𝑆).

Lemma 38.28.5. Let 𝑆 be a scheme. There is a canonical identification

𝐻1
́𝑒𝑡𝑎𝑙𝑒(𝑆, 𝜇𝑛) = group of pairs (ℒ, 𝛼) up to isomorphism as above

if 𝑛 is invertible on 𝑆. In general we have

𝐻1
𝑓𝑝𝑝𝑓(𝑆, 𝜇𝑛) = group of pairs (ℒ, 𝛼) up to isomorphism as above.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=040Q
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The same result holds with fppf replaced by syntomic.

Proof. We first prove the second isomorphism. Let (ℒ, 𝛼) be a pair as above. Choose an
affine open covering 𝑆 = ⋃ 𝑈𝑖 such that ℒ|𝑈𝑖

≅ 𝒪𝑈𝑖
. Say 𝑠𝑖 ∈ ℒ(𝑈𝑖) is a generator.

Then 𝛼(𝑠⊗𝑛
𝑖 ) = 𝑓𝑖 ∈ 𝒪∗

𝑆(𝑈𝑖). Writing 𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝐴𝑖) we see there exists a global relative
complete intersection 𝐴𝑖 → 𝐵𝑖 = 𝐴𝑖[𝑇]/(𝑇𝑛 − 𝑓𝑖) such that 𝑓𝑖 maps to an 𝑛th power in 𝐵𝑖.
In other words, setting 𝑉𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖) we obtain a syntomic covering 𝒱 = {𝑉𝑖 → 𝑆}𝑖∈𝐼
and trivializations 𝜑𝑖 ∶ (ℒ, 𝛼)|𝑉𝑖

→ (𝒪𝑉𝑖
, 1).

We will use this result (the existence of the covering 𝒱) to associate to this pair a cohomol-
ogy class in 𝐻1

𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐(𝑆, 𝜇𝑛,𝑆). We give two (equivalent) constructions.

First construction: using C̆ech cohomology. Over the double overlaps 𝑉𝑖 ×𝑆 𝑉𝑗 we have the
isomorphism

(𝒪𝑉𝑖×𝑆𝑉𝑗
, 1)

pr∗0𝜑−1
𝑖−−−−−→ (ℒ|𝑉𝑖×𝑆𝑉𝑗

, 𝛼|𝑉𝑖×𝑆𝑉𝑗
)

pr∗1𝜑𝑗
−−−−→ (𝒪𝑉𝑖×𝑆𝑉𝑗

, 1)

of pairs. By (38.28.4.1) this is given by an element 𝜁𝑖𝑗 ∈ 𝜇𝑛(𝑉𝑖 ×𝑆 𝑉𝑗). We omit the
verification that these 𝜁𝑖𝑗's give a 1-cocycle, i.e., give an element (𝜁𝑖0𝑖1) ∈ ̌𝐶(𝒱, 𝜇𝑛) with
𝑑(𝜁𝑖0𝑖1) = 0. Thus its class is an element in �̌�1(𝒱, 𝜇𝑛) and by Theorem 38.19.2 it maps to
a cohomology class in 𝐻1

𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐(𝑆, 𝜇𝑛,𝑆).

Second construction: Using torsors. Consider the presheaf

𝜇𝑛(ℒ, 𝛼) ∶ 𝑈 ⟼ 𝐼𝑠𝑜𝑚𝑈((𝒪𝑈, 1), (ℒ, 𝛼)|𝑈))

on (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐. We may view this as a subpresheaf of ℋ𝑜𝑚𝒪(𝒪, ℒ) (internal hom sheaf,
see Modules on Sites, Section 16.25). Since the conditions defining this subpresheaf are
local, we see that it is a sheaf. By (38.28.4.1) this sheaf has a free action of the sheaf 𝜇𝑛,𝑆.
Hence the only thing we have to check is that it locally has sections. This is true because
of the existence of the trivializing cover 𝒱. Hence 𝜇𝑛(ℒ, 𝛼) is a 𝜇𝑛,𝑆-torsor and by Coho-
mology on Sites, Lemma 19.5.3 we obtain a corresponding element of 𝐻1

𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐(𝑆, 𝜇𝑛,𝑆).

Ok, now we have to still show the following
(1) The two constructions give the same cohomology class.
(2) Isomorphic pairs give rise to the same cohomology class.
(3) The cohomology class of (ℒ, 𝛼) ⊗ (ℒ′, 𝛼′) is the sum of the cohomology classes

of ℒ, 𝛼) and (ℒ′, 𝛼′).
(4) If the cohomology class is trivial, then the pair is trivial.
(5) Any element of 𝐻1

𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐(𝑆, 𝜇𝑛,𝑆) is the cohomology class of a pair.
We omit the proof of (1). Part (2) is clear from the second construction, since isomorphic
torsors give the same cohomology classes. Part (3) is clear from the first construction,
since the resulting Cech classes add up. Part (4) is clear from the second construction since
a torsor is trivial if and only if it has a global section, see Cohomology on Sites, Lemma
19.5.2.

Part (5) can be seen as follows (allthough a direct proof would be preferable). Suppose
𝜉 ∈ 𝐻1

𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐(𝑆, 𝜇𝑛,𝑆). Then 𝜉 maps to an element 𝜉 ∈ 𝐻1
𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐(𝑆, 𝐆𝑚,𝑆) with 𝑛𝜉 = 0.

By Theorem 38.24.1 we see that 𝜉 corresponds to an invertible sheaf ℒ whose 𝑛th tensor
power is isomorphic to 𝒪𝑆. Hence there exists a pair (ℒ, 𝛼′) whose cohomology class 𝜉′

has the same image 𝜉′ in 𝐻1
𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐(𝑆, 𝐆𝑚,𝑆). Thus it suffices to show that 𝜉 − 𝜉′ is the

class of a pair. By construction, and the long exact cohomology sequence above, we see
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that 𝜉 − 𝜉′ = 𝜕(𝑓) for some 𝑓 ∈ 𝐻0(𝑆, 𝒪∗
𝑆). Consider the pair (𝒪𝑆, 𝑓). We omit the

verification that the cohomology class of this pair is 𝜕(𝑓), which finishes the proof of the
first identification (with fppf replaced with synomtic).
To see the first, note that if 𝑛 is invertible on 𝑆, then the covering 𝒱 constructed in the first
part of the proof is actually an étale covering (compare with the proof of Lemma 38.28.1).
The rest of the proof is independent of the topology, apart from the very last argument
which uses that the Kummer sequence is exact, i.e., uses Lemma 38.28.1. �

38.29. Neighborhoods, stalks and points

We can associate to any geometric point of 𝑆 a stalk functor which is exact. A map of
sheaves on 𝑆 ́𝑒𝑡𝑎𝑙𝑒 is an isomorphism if and only if it is an isomorphism on all these stalks.
A complex of abelian sheaves is exact if and only if the complex of stalks is exact at all
geometric points. Alltogether this means that the small étale site of a scheme 𝑆 has enough
points. It also turns out that any point of the small étale topos of 𝑆 (an abstract notion) is
given by a geometric point. Thus in some sense the small étale topos of 𝑆 can be understood
in terms of geometric points and neighbourhoods.

Definition 38.29.1. Let 𝑆 be a scheme.
(1) A geometric point of 𝑆 is a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 where 𝑘 is algebraically

closed. Such a point is usually denoted 𝑠, i.e., by an overlined small case letter.
We often use 𝑠 to denote the scheme 𝑆𝑝𝑒𝑐(𝑘) as well as the morphism, and we
use 𝜅(𝑠) to denote 𝑘.

(2) We say 𝑠 lies over 𝑠 to indicate that 𝑠 ∈ 𝑆 is the image of 𝑠.
(3) An étale neighborhood of a geometric point 𝑠 of 𝑆 is a commutative diagram

𝑈

𝜑
��

𝑠 𝑠 //

̄𝑢
@@

𝑆
where 𝜑 is an étale morphism of schemes. We write (𝑈, 𝑢) → (𝑆, 𝑠).

(4) Amorphism of étale neighborhoods (𝑈, 𝑢) → (𝑈′, 𝑢′) is an 𝑆-morphism ℎ ∶ 𝑈 →
𝑈′ such that 𝑢′ = ℎ ∘ 𝑢.

Remark 38.29.2. Since 𝑈 and 𝑈′ are étale over 𝑆, any 𝑆-morphism between them is also
étale, see Proposition 38.26.2. In particular all morphisms of étale neighborhoods are étale.

Remark 38.29.3. Let 𝑆 be a scheme and 𝑠 ∈ 𝑆 a point. In More on Morphisms, Definition
33.25.1 we defined the notion of an étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) of (𝑆, 𝑠). If 𝑠 is
a geometric point of 𝑆 lying over 𝑠, then any étale neighbourhood (𝑈, 𝑢) → (𝑆, 𝑠) gives
rise to an étale neighbourhood (𝑈, 𝑢) of (𝑆, 𝑠) by taking 𝑢 ∈ 𝑈 to be the unique point of 𝑈
such that 𝑢 lies over 𝑢. Conversely, given an étale neighbourhood (𝑈, 𝑢) of (𝑆, 𝑠) the residue
field extension 𝜅(𝑠) ⊂ 𝜅(𝑢) is finite separable (see Proposition 38.26.2) and hence we can
find an embedding 𝜅(𝑢) ⊂ 𝜅(𝑠) over 𝜅(𝑠). In other words, we can find a geometric point
𝑢 of 𝑈 lying over 𝑢 such that (𝑈, 𝑢) is an étale neighbourhood of (𝑆, 𝑠). We will use these
observations to go between the two types of étale neighbourhoods.

Lemma 38.29.4. Let 𝑆 be a scheme, and let 𝑠 be a geometric point of 𝑆. The category of
étale neighborhoods is cofiltered. More precisely:

(1) Let (𝑈𝑖, 𝑢𝑖)𝑖=1,2 be two étale neighborhoods of 𝑠 in 𝑆. Then there exists a third
étale neighborhood (𝑈, 𝑢) and morphisms (𝑈, 𝑢) → (𝑈𝑖, 𝑢𝑖), 𝑖 = 1, 2.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03PO
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03PP
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04HT
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(2) Let ℎ1, ℎ2 ∶ (𝑈, 𝑢) → (𝑈′, 𝑢′) be two morphisms between étale neighborhoods
of 𝑠. Then there exist an étale neighborhood (𝑈″, 𝑢″) and a morphism ℎ ∶
(𝑈″, 𝑢″) → (𝑈, 𝑢) which equalizes ℎ1 and ℎ2, i.e., such that ℎ1 ∘ ℎ = ℎ2 ∘ ℎ.

Proof. For part (1), consider the fibre product 𝑈 = 𝑈1 ×𝑆 𝑈2. It is étale over both 𝑈1 and
𝑈2 because étale morphisms are preserved under base change, see Proposition 38.26.2. The
map 𝑠 → 𝑈 defined by (𝑢1, 𝑢2) gives it the structure of an étale neighborhood mapping to
both 𝑈1 and 𝑈2. For part (2), define 𝑈″ as the fibre product

𝑈″ //

��

𝑈

(ℎ1,ℎ2)
��

𝑈′ Δ // 𝑈′ ×𝑆 𝑈′.

Since 𝑢 and 𝑢′ agree over 𝑆 with 𝑠, we see that 𝑢″ = (𝑢, 𝑢′) is a geometric point of 𝑈″.
In particular 𝑈″≠∅. Moreover, since 𝑈′ is étale over 𝑆, so is the fibre product 𝑈′ ×𝑆 𝑈′

(see Proposition 38.26.2). Hence the vertical arrow (ℎ1, ℎ2) is étale by Remark 38.29.2
above. Therefore 𝑈″ is étale over 𝑈′ by base change, and hence also étale over 𝑆 (because
compositions of étale morphisms are étale). Thus (𝑈″, 𝑢″) is a solution to the problem. �

Lemma 38.29.5. Let 𝑆 be a scheme. Let 𝑠 be a geometric point of 𝑆. Let (𝑈, 𝑢) an étale
neighborhood of 𝑠. Let 𝒰 = {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be an étale covering. Then there exist 𝑖 ∈ 𝐼
and 𝑢𝑖 ∶ 𝑠 → 𝑈𝑖 such that 𝜑𝑖 ∶ (𝑈𝑖, 𝑢𝑖) → (𝑈, 𝑢) is a morphism of étale neighborhoods.

Proof. As 𝑈 = ⋃𝑖∈𝐼 𝜑𝑖(𝑈𝑖), the fibre product 𝑠 ×𝑢,𝑈,𝜑𝑖
𝑈𝑖 is not empty for some 𝑖. Then

look at the cartesian diagram

𝑠 ×𝑢,𝑈,𝜑𝑖
𝑈𝑖

pr1
��

pr2
// 𝑈𝑖

𝜑𝑖

��
𝑆𝑝𝑒𝑐(𝑘) = 𝑠

𝜎
EE

𝑢 // 𝑈

The projection pr1 is the base change of an étale morphisms so it is étale, see Proposition
38.26.2. Therefore, 𝑠 ×𝑢,𝑈,𝜑𝑖

𝑈𝑖 is a disjoint union of finite separable extensions of 𝑘, by
Proposition 38.26.2. Here 𝑠 = 𝑆𝑝𝑒𝑐(𝑘). But 𝑘 is algebraically closed, so all these extensions
are trivial, and there exists a section 𝜎 of pr1. The composition pr2∘𝜎 gives amap compatible
with 𝑢. �

Definition 38.29.6. Let 𝑆 be a scheme. Let ℱ be a presheaf on 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Let 𝑠 be a geometric
point of 𝑆. The stalk of ℱ at 𝑠 is

ℱ𝑠 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) ℱ(𝑈)

where (𝑈, 𝑢) runs over all étale neighborhoods of 𝑠 in 𝑆.

By Lemma 38.29.4, this colimit is over a filtered index category, namely the opposite of the
category of étale neighbourhoods. In other words, an element of ℱ𝑠 can be thought of as a
triple (𝑈, 𝑢, 𝜎) where 𝜎 ∈ ℱ(𝑈). Two triples (𝑈, 𝑢, 𝜎), (𝑈′, 𝑢′, 𝜎′) define the same element
of the stalk if there exists a third étale neighbourhood (𝑈″, 𝑢″) and morphisms of étale
neighbourhoods ℎ ∶ (𝑈″, 𝑢″) → (𝑈, 𝑢), ℎ′ ∶ (𝑈″, 𝑢″) → (𝑈′, 𝑢′) such that ℎ∗𝜎 = (ℎ′)∗𝜎′

in ℱ(𝑈″). See Categories, Section 4.17.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03PR
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Lemma 38.29.7. Let 𝑆 be a scheme. Let 𝑠 be a geometric point of 𝑆. Consider the functor

𝑢 ∶ 𝑆 ́𝑒𝑡𝑎𝑙𝑒 ⟶ Sets,
𝑈 ⟼ |𝑈𝑠| = {𝑢 such that (𝑈, 𝑢) is an étale neighbourhood of 𝑠}.

Here |𝑈𝑠| denotes the underlying set of the geometric fibre. Then 𝑢 defines a point 𝑝 of
the site 𝑆 ́𝑒𝑡𝑎𝑙𝑒 (Sites, Definition 9.28.2) and its associated stalk functor ℱ ↦ ℱ𝑝 (Sites,
Equation 9.28.1.1) is the functor ℱ ↦ ℱ𝑠 defined above.

Proof. In the proof of Lemma 38.29.5 we have seen that the scheme 𝑈𝑠 is a disjoint union
of schemes isomorphic to 𝑠. Thus we can also think of |𝑈𝑠| as the set of geometric points
of 𝑈 lying over 𝑠, i.e., as the collection of morphisms 𝑢 ∶ 𝑠 → 𝑈 fitting into the diagram
of Definition 38.29.1. From this it follows that 𝑢(𝑆) is a singleton, and that 𝑢(𝑈 ×𝑉 𝑊) =
𝑢(𝑈) ×𝑢(𝑉) 𝑢(𝑊) whenever 𝑈 → 𝑉 and 𝑊 → 𝑉 are morphisms in 𝑆 ́𝑒𝑡𝑎𝑙𝑒. And, given a
covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 in 𝑆 ́𝑒𝑡𝑎𝑙𝑒 we see that ∐ 𝑢(𝑈𝑖) → 𝑢(𝑈) is surjective by Lemma
38.29.5. Hence Sites, Proposition 9.29.2 applies, so 𝑝 is a point of the site 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Finally,
the our functor ℱ ↦ ℱ𝑠 is given by exactly the same colimit as the functor ℱ ↦ ℱ𝑝
associated to 𝑝 in Sites, Equation 9.28.1.1 which proves the final assertion. �

Remark 38.29.8. Let 𝑆 be a scheme and let 𝑠 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 and 𝑠′ ∶ 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆
be two geometric points of 𝑆. A morphism 𝑎 ∶ 𝑠 → 𝑠′ of geometric points is simply a
morphism 𝑎 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝑘′) such that 𝑎 ∘ 𝑠′ = 𝑠. Given such a morphism we
obtain a functor from the category of étale neighbourhoods of 𝑠′ to the category of étale
neighbourhoods of 𝑠 by the rule (𝑈, 𝑢′) ↦ (𝑈, 𝑎 ∘ 𝑢′). Hence we obtain a canonical map

ℱ𝑠′ = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢′) ℱ(𝑈) ⟶ 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) ℱ(𝑈) = ℱ𝑠

from Categories, Lemma 4.13.7. Using the description of elements of stalks as triples this
maps the element of ℱ𝑠′ represented by the triple (𝑈, 𝑢′, 𝜎) to the element of ℱ𝑠 represented
by the triple (𝑈, 𝑎 ∘ 𝑢′, 𝜎). Since the functor above is clearly an equivalence we conclude
that this canonical map is an isomorphism of stalk functors.

Let us make sure we have the map of stalks corresponding to 𝑎 pointing in the correct
direction. Note that the above means, according to Sites, Definition 9.33.2, that 𝑎 defines a
morphism 𝑎 ∶ 𝑝 → 𝑝′ between the points 𝑝, 𝑝′ of the site 𝑆 ́𝑒𝑡𝑎𝑙𝑒 associated to 𝑠, 𝑠′ by Lemma
38.29.7. There are more general morphisms of points (corresponding to specializations of
points of 𝑆) which we will describe later, and which will not be isomorphisms (insert future
reference here).

Lemma 38.29.9. Let 𝑆 be a scheme. Let 𝑠 be a geometric point of 𝑆.
(1) The stalk functor PAb(𝑆 ́𝑒𝑡𝑎𝑙𝑒) → Ab, ℱ ↦ ℱ𝑠 is exact.
(2) We have (ℱ#)𝑠 = ℱ𝑠 for any presheaf of sets ℱ on 𝑆 ́𝑒𝑡𝑎𝑙𝑒.
(3) The functor Ab(𝑆 ́𝑒𝑡𝑎𝑙𝑒) → Ab, ℱ ↦ ℱ𝑠 is exact.
(4) Similarly the functors PSh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) → Sets and Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) → Sets given by the stalk

functor ℱ ↦ ℱ𝑥 are exact (see Categories, Definition 4.21.1) and commute with
arbitrary colimits.

Proof. Before we indicate how to prove this by direct arguments we note that the result
follows from the general material in Modules on Sites, Section 16.30. This is true because
ℱ ↦ ℱ𝑠 comes from a point of the small étale site of 𝑆, see Lemma 38.29.7. We will only
give a direct proof of (1), (2) and (3), and omit a dirext proof of (4).
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Exactness as a functor on PAb(𝑆 ́𝑒𝑡𝑎𝑙𝑒) is formal from the fact that directed colimits commute
with all colimits and with finite limits. The identification of the stalks in (2) is via the map

𝜅 ∶ ℱ𝑠 ⟶ (ℱ#)𝑠

induced by the natural morphism ℱ → ℱ#, see Theorem 38.13.2. We claim that this map
is an isomorphism of abelian groups. We will show injectivity and omit the proof of sur-
jectivity.

Let 𝜎 ∈ ℱ𝑠. There exists an étale neighborhood (𝑈, 𝑢) → (𝑆, 𝑠) such that 𝜎 is the image
of some section 𝑠 ∈ ℱ(𝑈). If 𝜅(𝜎) = 0 in (ℱ#)𝑠 then there exists a morphism of étale
neighborhoods (𝑈′, 𝑢′) → (𝑈, 𝑢) such that 𝑠|𝑈′ is zero in ℱ#(𝑈′). It follows there exists
an étale covering {𝑈′

𝑖 → 𝑈′}𝑖∈𝐼 such that 𝑠|𝑈′
𝑖

= 0 in ℱ(𝑈′
𝑖 ) for all 𝑖. By Lemma 38.29.5

there exist 𝑖 ∈ 𝐼 and a morphism 𝑢′
𝑖 ∶ 𝑠 → 𝑈′

𝑖 such that (𝑈′
𝑖 , 𝑢′

𝑖 ) → (𝑈′, 𝑢′) → (𝑈, 𝑢) are
morphisms of étale neighborhoods. Hence 𝜎 = 0 since (𝑈′

𝑖 , 𝑢′
𝑖 ) → (𝑈, 𝑢) is a morphism of

étale neighbourhoods such that we have 𝑠|𝑈′
𝑖

= 0. This proves 𝜅 is injective.

To show that the functor Ab(𝑆 ́𝑒𝑡𝑎𝑙𝑒) → Ab is exact, consider any short exact sequence in
Ab(𝑆 ́𝑒𝑡𝑎𝑙𝑒): 0 → ℱ → 𝒢 → ℋ → 0. This gives us the exact sequence of presheaves

0 → ℱ → 𝒢 → ℋ → ℋ/𝑝𝒢 → 0,

where /𝑝 denotes the quotient in PAb(𝑆 ́𝑒𝑡𝑎𝑙𝑒). Taking stalks at 𝑠, we see that (ℋ/𝑝𝒢) ̄𝑠 =
(ℋ/𝒢) ̄𝑠 = 0, since the sheafification of ℋ/𝑝𝒢 is 0. Therefore,

0 → ℱ𝑠 → 𝒢𝑠 → ℋ𝑠 → 0 = (ℋ/𝑝𝒢)𝑠

is exact, since taking stalks is exact as a functor from presheaves. �

Theorem 38.29.10. Let 𝑆 be a scheme. A map 𝑎 ∶ ℱ → 𝒢 of sheaves of sets is injective
(resp. surjective) if and only if the map on stalks 𝑎𝑠 ∶ ℱ𝑠 → 𝒢𝑠 is injective (resp. surjective)
for all geometric points of 𝑆. A sequence of abelian sheaves on 𝑆 ́𝑒𝑡𝑎𝑙𝑒 is exact if and only if
it is exact on all stalks at geometric points of 𝑆.

Proof. The necessity of exactness on stalks follows fromLemma 38.29.9. For the converse,
it suffices to show that a map of sheaves is surjective (respectively injective) if and only if it
is surjective (respectively injective) on all stalks. We prove this in the case of surjectivity,
and omit the proof in the case of injectivity.

Let 𝛼 ∶ ℱ → 𝒢 be a map of abelian sheaves such that ℱ𝑠 → 𝒢𝑠 is surjective for all
geometric points. Fix 𝑈 ∈ 𝑂𝑏(𝑆 ́𝑒𝑡𝑎𝑙𝑒) and 𝑠 ∈ 𝒢(𝑈). For every 𝑢 ∈ 𝑈 choose some 𝑢 → 𝑈
lying over 𝑢 and an étale neighborhood (𝑉𝑢, 𝑣𝑢) → (𝑈, 𝑢) such that 𝑠|𝑉𝑢

= 𝛼(𝑠𝑉𝑢
) for some

𝑠𝑉𝑢
∈ ℱ(𝑉𝑢). This is possible since 𝛼 is surjective on stalks. Then {𝑉𝑢 → 𝑈}𝑢∈𝑈 is an étale

covering on which the restrictions of 𝑠 are in the image of the map 𝛼. Thus, 𝛼 is surjective,
see Sites, Section 9.11. �

Remarks 38.29.11. On points of the geometric sites.
(1) In the terminology of Sites, Definition 9.34.1 the proof of Theorem 38.29.10

shows that the small étale site of 𝑆 has enough points.
(2) Suppose ℱ is a sheaf on the big étale site of 𝑆. Let 𝑇 → 𝑆 be an object of the big

étale site of 𝑆, and let 𝑡 be a geometric point of 𝑇. Then we define ℱ𝑡 as the stalk
of the restriction ℱ|𝑇 ́𝑒𝑡𝑎𝑙𝑒

of ℱ to the small étale site of 𝑇. In other words, we can
define the stalk ofℱ at any geometric point of any scheme 𝑇/𝑆 ∈ 𝑂𝑏((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒).

(3) The big étale site of 𝑆 also has enough points, by considering all geometric points
of all objects of this site, see (2).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03PU
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The following lemma should be skipped on a first reading.

Lemma 38.29.12. Let 𝑆 be a scheme.
(1) Let 𝑝 be a point of the small étale site 𝑆 ́𝑒𝑡𝑎𝑙𝑒 of 𝑆 given by a functor 𝑢 ∶ 𝑆 ́𝑒𝑡𝑎𝑙𝑒 →

Sets. Then there exists a geometric point 𝑠 of 𝑆 such that 𝑝 is isomorphic to the
point of 𝑆 ́𝑒𝑡𝑎𝑙𝑒 associated to 𝑠 in Lemma 38.29.7.

(2) Let 𝑝 ∶ Sh(𝑝𝑡) → Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) be a point of the small étale topos of 𝑆. Then 𝑝 comes
from a geometric point of 𝑆, i.e., the stalk functor ℱ ↦ ℱ𝑝 is isomorphic to a
stalk functor as defined in Definition 38.29.6.

Proof. By Sites, Lemma 9.28.7 there is a one to one correspondence between points of the
site and points of the associated topos, hence it suffices to prove (1). By Sites, Proposition
9.29.2 the functor 𝑢 has the following properties: (a) 𝑢(𝑆) = {∗}, (b) 𝑢(𝑈×𝑉𝑊) = 𝑢(𝑈)×𝑢(𝑉)
𝑢(𝑊), and (c) if {𝑈𝑖 → 𝑈} is an étale covering, then ∐ 𝑢(𝑈𝑖) → 𝑢(𝑈) is surjective. In
particular, if 𝑈′ ⊂ 𝑈 is an open subscheme, then 𝑢(𝑈′) ⊂ 𝑢(𝑈). Moreover, by Sites, Lemma
9.28.7 we can write 𝑢(𝑈) = 𝑝−1(ℎ#

𝑈), in other words 𝑢(𝑈) is the stalk of the representable
sheaf ℎ𝑈. If 𝑈 = 𝑉 ⨿ 𝑊, then we see that ℎ𝑈 = (ℎ𝑉 ⨿ ℎ𝑊)# and we get 𝑢(𝑈) = 𝑢(𝑉) ⨿ 𝑢(𝑊)
since 𝑝−1 is exact.

Consider the restriction of 𝑢 to 𝑆𝑍𝑎𝑟. By Sites, Examples 9.29.4 and 9.29.5 there exists
a unique point 𝑠 ∈ 𝑆 such that for 𝑆′ ⊂ 𝑆 open we have 𝑢(𝑆′) = {∗} if 𝑠 ∈ 𝑆′ and
𝑢(𝑆′) = ∅ if 𝑠∉𝑆′. Note that if 𝜑 ∶ 𝑈 → 𝑆 is an object of 𝑆 ́𝑒𝑡𝑎𝑙𝑒 then 𝜑(𝑈) ⊂ 𝑆 is open
(see Proposition 38.26.2) and {𝑈 → 𝜑(𝑈)} is an étale covering. Hence we conclude that
𝑢(𝑈) = ∅ ⇔ 𝑠 ∈ 𝜑(𝑈).

Pick a geometric point 𝑠 ∶ 𝑠 → 𝑆 lying over 𝑠, see Definition 38.29.1 for customary abuse
of notation. Suppose that 𝜑 ∶ 𝑈 → 𝑆 is an object of 𝑆 ́𝑒𝑡𝑎𝑙𝑒 with 𝑈 affine. Note that 𝜑 is
separated, and that the fibre 𝑈𝑠 of 𝜑 over 𝑠 is an affine scheme over 𝑆𝑝𝑒𝑐(𝜅(𝑠)) which is the
spectrum of a finite product of finite separable extensions 𝑘𝑖 of 𝜅(𝑠). Hence we may apply
Étale Morphisms, Lemma 37.18.2 to get an étale neighbourhood (𝑉, 𝑣) of (𝑆, 𝑠) such that

𝑈 ×𝑆 𝑉 = 𝑈1 ⨿ … ⨿ 𝑈𝑛 ⨿ 𝑊

with 𝑈𝑖 → 𝑉 an isomorphism and 𝑊 having no point lying over 𝑣. Thus we conclude that

𝑢(𝑈) × 𝑢(𝑉) = 𝑢(𝑈 ×𝑆 𝑉) = 𝑢(𝑈1) ⨿ … ⨿ 𝑢(𝑈𝑛) ⨿ 𝑢(𝑊)

and of course also 𝑢(𝑈𝑖) = 𝑢(𝑉). After shrinking 𝑉 a bit we can assume that 𝑉 has exactly
one point lying over 𝑠, and hence 𝑊 has no point lying over 𝑠. By the above this then gives
𝑢(𝑊) = ∅. Hence we obtain

𝑢(𝑈) × 𝑢(𝑉) = 𝑢(𝑈1) ⨿ … ⨿ 𝑢(𝑈𝑛) = ∐𝑖=1,…,𝑛
𝑢(𝑉)

Note that 𝑢(𝑉)≠∅ as 𝑠 is in the image of 𝑉 → 𝑆. In particular, we see that in this situation
𝑢(𝑈) is a finite set with 𝑛 elements.

Consider the limit
𝑙𝑖𝑚(𝑉,𝑣) 𝑢(𝑉)

over the category of étale neighbourhoods (𝑉, 𝑣) of 𝑠. It is clear that we get the same value
when taking the limit over the subcategory of (𝑉, 𝑣)with𝑉 affine. By the previous paragraph
(applied with the roles of 𝑉 and 𝑈 switched) we see that in this case 𝑢(𝑉) is always a finite
nonempty set. Moreover, the limit is cofiltered, see Lemma 38.29.4. Hence by Categories,
Section 4.18 the limit is nonempty. Pick an element 𝑥 from this limit. This means we obtain

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04HU
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a 𝑥𝑉,𝑣 ∈ 𝑢(𝑉) for every étale neighbourhood (𝑉, 𝑣) of (𝑆, 𝑠) such that for every morphism
of étale neighbourhoods 𝜑 ∶ (𝑉′, 𝑣′) → (𝑉, 𝑣) we have 𝑢(𝜑)(𝑥𝑉′,𝑣′) = 𝑥𝑉,𝑣.

We will use the choice of 𝑥 to construct a functorial bijective map

𝑐 ∶ |𝑈𝑠| ⟶ 𝑢(𝑈)

for 𝑈 ∈ 𝑂𝑏(𝑆 ́𝑒𝑡𝑎𝑙𝑒) which will conclude the proof. See Lemma 38.29.7 and its proof for a
description of |𝑈𝑠|. First we claim that it suffices to construct the map for 𝑈 affine. We omit
the proof of this claim. Assume 𝑈 → 𝑆 in 𝑆 ́𝑒𝑡𝑎𝑙𝑒 with 𝑈 affine, and let 𝑢 ∶ 𝑠 → 𝑈 be an
element of |𝑈𝑠|. Choose a (𝑉, 𝑣) such that 𝑈 ×𝑆 𝑉 decomposes as in the third paragraph of
the proof. Then the pair (𝑢, 𝑣) gives a geometric point of 𝑈×𝑆 𝑉 lying over 𝑣 and determines
one of the components 𝑈𝑖 of 𝑈 ×𝑆 𝑉. More precisely, there exists a section 𝜎 ∶ 𝑉 → 𝑈 ×𝑆 𝑉
of the projection pr𝑈 such that (𝑢, 𝑣) = 𝜎 ∘ 𝑣. Set 𝑐(𝑢) = 𝑢(pr𝑈)(𝑢(𝜎)(𝑥𝑉,𝑣)) ∈ 𝑢(𝑈). We
have to check this is independent of the choice of (𝑉, 𝑣). By Lemma 38.29.4 the category
of étale neighbourhoods is cofiltered. Hence it suffice to show that given a morphism of
étale neighbourhood 𝜑 ∶ (𝑉′, 𝑣′) → (𝑉, 𝑣) and a choice of a section 𝜎′ ∶ 𝑉′ → 𝑈 ×𝑆 𝑉′ of
the projection such that (𝑢, 𝑣′) = 𝜎′ ∘ 𝑣′ we have 𝑢(𝜎′)(𝑥𝑉′,𝑣′) = 𝑢(𝜎)(𝑥𝑉,𝑣). Consider the
diagram

𝑉′

𝜎′

��

𝜑
// 𝑉

𝜎
��

𝑈 ×𝑆 𝑉′ 1×𝜑 // 𝑈 ×𝑆 𝑉

Now, it may not be the case that this diagram commutes. The reason is that the schemes
𝑉′ and 𝑉 may not be connected, and hence the decompositions used to construct 𝜎′ and 𝜎
above may not be unique. But we do know that 𝜎 ∘ 𝜑 ∘ 𝑣′ = (1 × 𝜑) ∘ 𝜎′ ∘ 𝑣′ by construction.
Hence, since 𝑈 ×𝑆 𝑉 is étale over 𝑆, there exists an open neighbourhood 𝑉″ ⊂ 𝑉′ of 𝑣′ such
that the diagram does commute when restricted to 𝑉″, see Morphisms, Lemma 24.34.17.
This means we may extend the diagram above to

𝑉″ //

𝜎′|𝑉″
��

𝑉′

𝜎′

��

𝜑
// 𝑉

𝜎
��

𝑈 ×𝑆 𝑉″ // 𝑈 ×𝑆 𝑉′ 1×𝜑 // 𝑈 ×𝑆 𝑉

such that the left square and the outer rectangle commute. Since 𝑢 is a functor this implies
that 𝑥𝑉″,𝑣′ maps to the same element in 𝑢(𝑈 ×𝑆 𝑉) no matter which route we take through
the diagram. On the other hand, it maps to the elements 𝑥𝑉′,𝑣′ and 𝑥𝑉,𝑣 in 𝑢(𝑉′) and 𝑢(𝑉).
This implies the desired equality 𝑢(𝜎′)(𝑥𝑉′,𝑣′) = 𝑢(𝜎)(𝑥𝑉,𝑣).

In a similar manner one proves that the construction 𝑐 ∶ |𝑈𝑠| → 𝑢(𝑈) is functorial in 𝑈;
details omitted. And finally, by the results of the third paragraph it is clear that the map 𝑐
is bijective which ends the proof of the lemma. �

38.30. Points in other topologies

In this section we briefly discuss the existence of points for some sites other than the étale
site of a scheme. We refer to Sites, Section 9.34 and Topologies, Section 30.2 ff for the
terminology used in this section. All of the geometric sites have enough points.
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Lemma 38.30.1. Let 𝑆 be a scheme. All of the following sites have enough points 𝑆𝑍𝑎𝑟,
𝑆 ́𝑒𝑡𝑎𝑙𝑒, (Sch/𝑆)𝑍𝑎𝑟, (Aff/𝑆)𝑍𝑎𝑟, (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒, (Aff/𝑆) ́𝑒𝑡𝑎𝑙𝑒, (Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ, (Aff/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ, (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐,
(Aff/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, (Sch/𝑆)𝑓𝑝𝑝𝑓, and (Aff/𝑆)𝑓𝑝𝑝𝑓.

Proof. For each of the big sites the associated topos is equivalent to the topos defined
by the site (Aff/𝑆)𝜏, see Topologies, Lemmas 30.3.10, 30.4.11, 30.5.9, 30.6.9, and 30.7.11.
The result for the sites (Aff/𝑆)𝜏 follows immediately fromDeligne's result Sites, Proposition
9.35.3.

The result for 𝑆𝑍𝑎𝑟 is clear. The result for 𝑆 ́𝑒𝑡𝑎𝑙𝑒 either follows from (the proof of) Theorem
38.29.10 or from Lemma 38.21.2 and Deligne's result applied to 𝑆𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒. �

The lemma above guarantees the existence of points, but it doesn't tell us what these points
look like. We can explicitly construct some points as follows. Suppose 𝑠 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑆
is a geometric point with 𝑘 algebraically closed. Consider the functor

𝑢 ∶ (Sch/𝑆)𝑓𝑝𝑝𝑓 ⟶ Sets, 𝑢(𝑈) = 𝑈(𝑘) = 𝑀𝑜𝑟𝑆(𝑆𝑝𝑒𝑐(𝑘), 𝑈).

Note that 𝑈 ↦ 𝑈(𝑘) commutes with direct limits as 𝑆(𝑘) = {𝑠} and (𝑈1 ×𝑈 𝑈2)(𝑘) =
𝑈1(𝑘) ×𝑈(𝑘) 𝑈2(𝑘). Moreover, if {𝑈𝑖 → 𝑈} is an fppf covering, then ∐ 𝑈𝑖(𝑘) → 𝑈(𝑘) is
surjective. By Sites, Proposition 9.29.2 we see that 𝑢 defines a point 𝑝 of (Sch/𝑆)𝑓𝑝𝑝𝑓 with
stalks

ℱ𝑝 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑥) ℱ(𝑈)
where the colimit is over pairs 𝑈 → 𝑆, 𝑥 ∈ 𝑈(𝑘) as usual. But... this category has an initial
object, namely (𝑆𝑝𝑒𝑐(𝑘), id), hence we see that

ℱ𝑝 = ℱ(𝑆𝑝𝑒𝑐(𝑘))

which isn't terribly interesting! In fact, in general these points won't form a conservative
family of points. A more intereseting type of point is described in the following remark.

Remark 38.30.2. Let 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) be an affine scheme. Let (𝑝, 𝑢) be a point of the site
(Aff/𝑆)𝑓𝑝𝑝𝑓. Let 𝐵 = 𝒪𝑝 be the stalk of the structure sheaf at the point 𝑝. Since 𝐴 = Γ(𝑆, 𝒪)
we see that 𝐵 is an 𝐴-algebra. Ignoring set theoretical difficulties, we see that 𝑆𝑝𝑒𝑐(𝐵) is
an object of (Aff/𝑆)𝑓𝑝𝑝𝑓. Recall that

𝐵 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑥) 𝒪(𝑈) = 𝑐𝑜𝑙𝑖𝑚(𝑆𝑝𝑒𝑐(𝐶),𝑥) 𝐶

where 𝑥 ∈ 𝑢(𝑆𝑝𝑒𝑐(𝐶)). Hence there are canonical maps 𝐶 → 𝐵 and we see that the
system has an initial object (𝑆𝑝𝑒𝑐(𝐵), 𝑥𝐵) for a suitable 𝑥𝐵 ∈ 𝑢(𝑆𝑝𝑒𝑐(𝐵)). It follows that
ℱ𝑝 = ℱ(𝑆𝑝𝑒𝑐(𝐵)) for any sheaf ℱ on (Aff/𝑆)𝑓𝑝𝑝𝑓. In other words, every stalk functor is
representable. It is straightforward to see that if ℱ ↦ ℱ(𝐵) comes from a point, then 𝐵
has to be a local 𝐴-algebra such that for every faithfully flat, finitely presented ring map
𝐵 → 𝐵′ there is a section 𝐵′ → 𝐵. Conversely, any such 𝐴-algebra 𝐵 gives rise to a point.
Details omitted.

38.31. Supports of abelian sheaves

First we talk about supports of local sections.

Lemma 38.31.1. Let 𝑆 be a scheme. Let ℱ be a subsheaf of the final object of the étale
topos of 𝑆 (see Sites, Example 9.10.2). Then there exists a unique open 𝑊 ⊂ 𝑆 such that
ℱ = ℎ𝑊.
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Proof. The condition means that ℱ(𝑈) is a singleton or empty for all 𝜑 ∶ 𝑈 → 𝑆 in
𝑂𝑏(𝑆 ́𝑒𝑡𝑎𝑙𝑒). In particular local sections always glue. If ℱ(𝑈)≠∅, then ℱ(𝜑(𝑈))≠∅ because
{𝜑 ∶ 𝑈 → 𝜑(𝑈)} is a covering. Hence we can take 𝑊 = ⋃𝜑∶𝑈→𝑆,ℱ(𝑈)≠∅ 𝜑(𝑈). �

Lemma 38.31.2. Let 𝑆 be a scheme. Let ℱ be an abelian sheaf on 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Let 𝜎 ∈ ℱ(𝑈)
be a local section. There exists an open subset 𝑊 ⊂ 𝑈 such that

(1) 𝑊 ⊂ 𝑈 is the largest Zariski open subset of 𝑈 such that 𝜎|𝑊 = 0,
(2) for every 𝜑 ∶ 𝑉 → 𝑈 in 𝑆 ́𝑒𝑡𝑎𝑙𝑒 we have

𝜎|𝑉 = 0 ⇔ 𝜑(𝑉) ⊂ 𝑊,
(3) for every geometric point 𝑢 of 𝑈 we have

(𝑈, 𝑢, 𝜎) = 0 in ℱ𝑠 ⇔ 𝑢 ∈ 𝑊
where 𝑠 = (𝑈 → 𝑆) ∘ 𝑢.

Proof. Since ℱ is a sheaf in the étale topology the restriction of ℱ to 𝑈𝑍𝑎𝑟 is a sheaf on
𝑈 in the Zariski topology. Hence there exists a Zariski open 𝑊 having property (1), see
Modules, Lemma 15.5.2. Let 𝜑 ∶ 𝑉 → 𝑈 be an arrow of 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Note that 𝜑(𝑉) ⊂ 𝑈 is an
open subset and that {𝑉 → 𝜑(𝑉)} is an étale covering. Hence if 𝜎|𝑉 = 0, then by the sheaf
condition for ℱ we see that 𝜎|𝜑(𝑉) = 0. This proves (2). To prove (3) we have to show that
if (𝑈, 𝑢, 𝜎) defines the zero element of ℱ𝑠, then 𝑢 ∈ 𝑊. This is true because the assumption
means there exists a morphism of étale neighbourhoods (𝑉, 𝑣) → (𝑈, 𝑢) such that 𝜎|𝑉 = 0.
Hence by (2) we see that 𝑉 → 𝑈 maps into 𝑊, and hence 𝑢 ∈ 𝑊. �

Let 𝑆 be a scheme. Let 𝑠 ∈ 𝑆. Let ℱ be a sheaf on 𝑆 ́𝑒𝑡𝑎𝑙𝑒. By Remark 38.29.8 the
isomorphism class of the stalk of the sheaf ℱ at a geometric points lying over 𝑠 is well
defined.

Definition 38.31.3. Let 𝑆 be a scheme. Let ℱ be an abelian sheaf on 𝑆 ́𝑒𝑡𝑎𝑙𝑒.
(1) The support of ℱ is the set of points 𝑠 ∈ 𝑆 such that ℱ𝑠≠0 for any (some) geo-

metric point 𝑠 lying over 𝑠.
(2) Let 𝜎 ∈ ℱ(𝑈) be a section. The support of 𝜎 is the closed subset 𝑈 ⧵ 𝑊, where

𝑊 ⊂ 𝑈 is the largest open subset of 𝑈 on which 𝜎 restricts to zero (see Lemma
38.31.2).

In general the support of an abelian sheaf is not closed. For example, suppose that 𝑆 =
𝑆𝑝𝑒𝑐(𝐀1

𝐂). Let 𝑖𝑡 ∶ 𝑆𝑝𝑒𝑐(𝐂) → 𝑆 be the inclusion of the point 𝑡 ∈ 𝐂. We will see later that
𝐅𝑡 = 𝑖𝑡,∗(𝐙/2𝐙) is an abelian sheaf whose support is exactly {𝑡}, see Section 38.46. Then

⨁𝑛∈𝐍
ℱ𝑛

is an abelian sheaf with support {1, 2, 3, …} ⊂ 𝑆. This is true because taking stalks com-
mutes with colimits, see Lemma 38.29.9. Thus an example of an abelian sheaf whose
support is not closed. Here are some basic facts on supports of sheaves and sections.

Lemma 38.31.4. Let 𝑆 be a scheme. Let ℱ be an abelian sheaf on 𝑆 ́𝑒𝑡𝑎𝑙𝑒. Let 𝑈 ∈
𝑂𝑏(𝑆 ́𝑒𝑡𝑎𝑙𝑒) and 𝜎 ∈ ℱ(𝑈).

(1) The support of 𝜎 is closed in 𝑈.
(2) The support of 𝜎 + 𝜎′ is contained in the union of the supports of 𝜎, 𝜎′ ∈ ℱ(𝑈).
(3) If 𝜑 ∶ ℱ → 𝒢 is a map of abelian sheaves on 𝑆 ́𝑒𝑡𝑎𝑙𝑒, then the support of 𝜑(𝜎) is

contained in the support of 𝜎 ∈ ℱ(𝑈).
(4) The support of ℱ is the union of the images of the supports of all local sections

of ℱ.
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(5) If ℱ → 𝒢 is surjective then the support of 𝒢 is a subset of the support of ℱ.
(6) If ℱ → 𝒢 is injective then the support of ℱ is a subset of the support of 𝒢.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds for the re-
striction of ℱ and 𝒢 to 𝑈𝑍𝑎𝑟, see Modules, Lemma 15.5.2. Part (4) is a direct consequence
of Lemma 38.31.2 part (3). Parts (5) and (6) follow from the other parts. �

Lemma 38.31.5. The support of a sheaf of rings on 𝑆 ́𝑒𝑡𝑎𝑙𝑒 is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only if 1 = 0,
and hence the support of a sheaf of rings is the support of the unit section. �

38.32. Henselian rings

Webegin by stating a theoremwhich has already been usedmany times in the stacks project.
There are many versions of this resut; here we just state the algebraic version.

Theorem 38.32.1. Let 𝐴 → 𝐵 be finite type ring map and 𝔭 ⊂ 𝐴 a prime ideal. Then there
exist an étale ring map 𝐴 → 𝐴′ and a prime 𝔭′ ⊂ 𝐴′ lying over 𝔭 such that

(1) 𝜅(𝔭) = 𝜅(𝔭′),
(2) 𝐵 ⊗𝐴 𝐴′ = 𝐵1 × ⋯ × 𝐵𝑟 × 𝐶,
(3) 𝐴′ → 𝐵𝑖 is finite and there exists a unique prime 𝑞𝑖 ⊂ 𝐵𝑖 lying over 𝔭′, and
(4) all irreducible components of the fibre 𝑆𝑝𝑒𝑐(𝐶 ⊗𝐴′ 𝜅(𝔭′)) of 𝐶 over 𝔭′ have di-

mension at least 1.

Proof. See Algebra, Lemma 7.132.22, or see [GD67, Théorème 18.12.1]. For a slew of
versions in terms of morphisms of schemes, see More on Morphisms, Section 33.28. �

Recall Hensel's lemma. There are many versions of this lemma. Here are two:
(f) if 𝑓 ∈ 𝐙𝑝[𝑇] monic and 𝑓 mod 𝑝 = 𝑔0ℎ0 with 𝑔𝑐𝑑(𝑔0, ℎ0) = 1 then 𝑓 factors as

𝑓 = 𝑔ℎ with ̄𝑔 = 𝑔0 and ℎ̄ = ℎ0,
(r) if 𝑓 ∈ 𝐙𝑝[𝑇], monic 𝑎0 ∈ 𝐅𝑝, ̄𝑓(𝑎0) = 0 but ̄𝑓′(𝑎0) ≠ 0 then there exists 𝑎 ∈ 𝐙𝑝

with 𝑓(𝑎) = 0 and ̄𝑎 = 𝑎0.
Both versions are true (we will see this later). The first version asks for lifts of factorizations
into coprime parts, and the second version asks for lifts of simple roots modulo the maximal
ideal. It turns out that requiring these conditions for a general local ring are equivalent, and
are equivalent to many other conditions. We use the root lifting property as the definition
of a henselian local ring as it is often the easiest one to check.

Definition 38.32.2. (See Algebra, Definition 7.139.1.) A local ring (𝑅, 𝔪, 𝜅) is called
henselian if for all 𝑓 ∈ 𝑅[𝑇] monic, for all 𝑎0 ∈ 𝜅 such that ̄𝑓(𝑎0) = 0 and ̄𝑓′(𝑎0) ≠ 0,
there exists an 𝑎 ∈ 𝑅 such that 𝑓(𝑎) = 0 and 𝑎 mod 𝔪 = 𝑎0.

A good example of henselian local rings to keep in mind is complete local rings. Recall
(Algebra, Definition 7.143.1) that a complete local ring is a local ring (𝑅, 𝔪) such that
𝑅 ≅ 𝑙𝑖𝑚𝑛 𝑅/𝔪𝑛, i.e., it is complete and separated for the 𝔪-adic topology.

Theorem 38.32.3. Complete local rings are henselian.

Proof. Newton's method. See Algebra, Lemma 7.139.10. �

Theorem 38.32.4. Let (𝑅, 𝔪, 𝜅) be a local ring. The following are equivalent:
(1) 𝑅 is henselian,
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(2) for any 𝑓 ∈ 𝑅[𝑇] and any factorization ̄𝑓 = 𝑔0ℎ0 in 𝜅[𝑇] with gcd(𝑔0, ℎ0) = 1,
there exists a factorization 𝑓 = 𝑔ℎ in 𝑅[𝑇] with ̄𝑔 = 𝑔0 and ℎ̄ = ℎ0,

(3) any finite 𝑅-algebra 𝑆 is isomorphic to a finite product of finite local rings,
(4) any finite type 𝑅-algebra 𝐴 is isomorphic to a product 𝐴 ≅ 𝐴′ × 𝐶 where

𝐴′ ≅ 𝐴1 × … × 𝐴𝑟 is a product of finite local 𝑅-algebras and all the irreducible
components of 𝐶 ⊗𝑅 𝜅 have dimension at least 1,

(5) if 𝐴 is an étale 𝑅-algebra and 𝔫 is a maximal ideal of 𝐴 lying over 𝔪 such
that 𝜅 ≅ 𝐴/𝔫, then there exists an isomorphism 𝜑 ∶ 𝐴 ≅ 𝑅 × 𝐴′ such that
𝜑(𝔫) = 𝔪 × 𝐴′ ⊂ 𝑅 × 𝐴′.

Proof. This is just a subset of the results from Algebra, Lemma 7.139.3. Note that part
(5) above corresponds to part (8) of Algebra, Lemma 7.139.3 but is formulated slightly
differently. �

Lemma 38.32.5. If 𝑅 is henselian and 𝐴 is a finite 𝑅-algebra, then 𝐴 is a finite product of
henselian local rings.

Proof. See Algebra, Lemma 7.139.4. �

Definition 38.32.6. A local ring𝑅 is called strictly henselian if it is henselian and its residue
field is separably closed.

Example 38.32.7. In the case 𝑅 = 𝐂[[𝑡]], the étale 𝑅-algebras are finite products of the
trivial extension 𝑅 → 𝑅 and the extensions 𝑅 → 𝑅[𝑋, 𝑋−1]/(𝑋𝑛 −𝑡). The latter ones factor
through the open 𝐷(𝑡) ⊂ 𝑆𝑝𝑒𝑐(𝑅), so any étale covering can be refined by the covering
{id ∶ 𝑆𝑝𝑒𝑐(𝑅) → 𝑆𝑝𝑒𝑐(𝑅)}. We will see below that this is a somewhat general fact on
étale coverings of spectra of henselian rings. This will show that higher étale cohomology
of the spectrum of a strictly henselian ring is zero.

Theorem 38.32.8. Let (𝑅, 𝔪, 𝜅) be a local ring and 𝜅 ⊂ 𝜅𝑠𝑒𝑝 a separable algebraic closure.
There exist canonical flat local ring maps 𝑅 → 𝑅ℎ → 𝑅𝑠ℎ where

(1) 𝑅ℎ, 𝑅𝑠ℎ are filtered colimits of étale 𝑅-algebras,
(2) 𝑅ℎ is henselian, 𝑅𝑠ℎ is strictly henselian,
(3) 𝔪𝑅ℎ (resp. 𝔪𝑅𝑠ℎ) is the maximal ideal of 𝑅ℎ (resp. 𝑅𝑠ℎ), and
(4) 𝜅 = 𝑅ℎ/𝔪𝑅ℎ, and 𝜅𝑠𝑒𝑝 = 𝑅𝑠ℎ/𝔪𝑅𝑠ℎ as extensions of 𝜅.

Proof. The structure of𝑅ℎ and𝑅𝑠ℎ is described inAlgebra, Lemmas 7.139.12 and 7.139.13.
�

The rings constructed in Theorem 38.32.8 are called respectively the henselization and the
strict henselization of the local ring 𝑅, see Algebra, Definition 7.139.14. Many of the
properties of 𝑅 are reflected in its (strict) henselization.

Lemma 38.32.9. Let 𝑅 be a local ring. The following are equivalent: 𝑅 is reduced, the
henselization 𝑅ℎ of 𝑅 is reduced, and the strict henselization 𝑅𝑠ℎ of 𝑅 is reduced.

Proof. The ring maps 𝑅 → 𝑅ℎ → 𝑅𝑠ℎ are faithfully flat. Hence one direction of the
implications follows from Algebra, Lemma 7.146.2. Conversely, assume 𝑅 is reduced.
Since 𝑅ℎ and 𝑅𝑠ℎ are filtered colimits of étale, hence smooth 𝑅-algebras, the result follows
from Algebra, Lemma 7.145.6. �

Lemma 38.32.10. Let 𝑅 be a local ring. The following are equivalent: 𝑅 is a normal
domain, the henselization 𝑅ℎ of 𝑅 is a normal domain, and the strict henselization 𝑅𝑠ℎ of
𝑅 is a normal domain.
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Proof. A preliminary remark is that a local ring is normal if and only if it is a normal
domain (see Algebra, Definition 7.33.10). The ring maps 𝑅 → 𝑅ℎ → 𝑅𝑠ℎ are faithfully
flat. Hence one direction of the implications follows from Algebra, Lemma 7.146.3. Con-
versely, assume 𝑅 is reduced. Since 𝑅ℎ and 𝑅𝑠ℎ are filtered colimits of étale, hence smooth
𝑅-algebras, the result follows from Algebra, Lemma 7.145.7. �

Lemma 38.32.11. Let 𝑅 be a local ring. The following are equivalent: 𝑅 is Noetherian,
the henselization 𝑅ℎ of 𝑅 is Noetherian, and the strict henselization 𝑅𝑠ℎ of 𝑅 is Noetherian.
In this case the map of completions 𝑅∧ → (𝑅ℎ)∧ is an isomorphism.

Proof. Since 𝑅 → 𝑅ℎ → 𝑅𝑠ℎ are flat local ring maps, we see that 𝑅ℎ or 𝑅𝑠ℎ being
Noetherian implies that 𝑅 is Noetherian, see Algebra, Lemma 7.146.1. In the rest of the
proof we assume 𝑅 is Noetherian.

Denote 𝔪 ⊂ 𝑅 the maximal ideal. We have seen that 𝔪𝑅ℎ is the maximal ideal of 𝑅,
𝑅/𝔪 = 𝑅ℎ/𝔪𝑅ℎ, and 𝑅 → 𝑅ℎ is flat, see Theorem 38.32.8. Hence we see that 𝑅ℎ/𝔪𝑛𝑅ℎ ≅
𝑅/𝔪𝑛 because 𝑅ℎ/𝔪𝑛𝑅ℎ is flat hence free (see Algebra, Lemma 7.93.2) of rank 1 over
𝑅/𝔪𝑛. This implies that 𝑅∧ → (𝑅ℎ)∧ is an isomorphism.

Next we prove that (𝑅ℎ)∧ is flat over 𝑅ℎ. Write 𝑅ℎ = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖 as a directed colimit of
localizations of étale 𝑅-algebras. By Algebra, Lemma 7.35.5 it suffices to show that (𝑅ℎ)∧

is flat over each 𝑅𝑖. This holds because 𝑅∧
𝑖 = (𝑅ℎ)∧ (by first paragraph proof) is flat over

𝑅𝑖 (see Algebra, Lemma 7.90.4). It follows from the flatness of 𝑅ℎ → (𝑅ℎ)∧ and the
Noetherianness of 𝑅∧ = (𝑅ℎ)∧ (see Algebra, Lemma 7.90.10) that 𝑅ℎ is Noetherian, see
Algebra, Lemma 7.146.1.

By Algebra, Lemma 7.90.9 the completion (𝑅𝑠ℎ)∧ is a Noetherian local ring (as we are
completing with respect to the finitely generated maximal ideal 𝔪𝑅𝑠ℎ). Hence if we can
show that (𝑅𝑠ℎ)∧ is flat over 𝑅𝑠ℎ then 𝑅𝑠ℎ is Noetherian by Algebra, Lemma 7.146.1 again.
Using the limit argument of the second paragraph above we see that it suffices to show that
(𝑅𝑠ℎ)∧ is flat over 𝑅.

Pick a separable algebraic extension 𝜅 ⊂ 𝜅𝑠𝑒𝑝 which is separably algebraically closed. Pick
a basis {𝑥𝑗}𝑗∈𝐽 of 𝜅𝑠𝑒𝑝 over 𝜅. Let 𝑅𝑠ℎ be the strict henselization of 𝑅 with respect to
𝜅 ⊂ 𝜅𝑠𝑒𝑝. Choose 𝑥𝑗 ∈ 𝑅𝑠ℎ mapping to 𝑥𝑗 in in the residue field 𝜅𝑠ℎ = 𝑅𝑠ℎ/𝔪𝑅𝑠ℎ of the
strict henselization. Arguing as in the first paragraph of the proof, 𝑅𝑠ℎ/𝔪𝑛𝑅𝑠ℎ is free on
the elements 𝑥𝑗 as a module over 𝑅/𝔪𝑛, see Algebra, Lemma 7.93.1. It follows that (𝑅𝑠ℎ)∧

is isomorphic to the 𝔪-adic completion of ⨁𝑗∈𝐽 𝑅 as an 𝑅-module. By More on Algebra,
Lemma 12.20.2 we see this is flat over 𝑅 and we win. �

Lemma 38.32.12. Given any local ring 𝑅 we have dim(𝑅) = dim(𝑅ℎ) = dim(𝑅𝑠ℎ).

Proof. To see this note that 𝑅 → 𝑅𝑠ℎ is a flat local ring homomorphism (see Algebra,
Section 7.139) and hence dim(𝑅𝑠ℎ) ≥ dim(𝑅) by going down, see Algebra, Section 7.36.
For the converse, we write 𝑅𝑠ℎ = 𝑐𝑜𝑙𝑖𝑚 𝑅𝑖 as a directed colimit of local rings 𝑅𝑖 each of
which is a localization of an étale 𝑅-algebra. We can do this by the construction of the strict
henselization in Algebra, Section 7.139. Now if 𝔮0 ⊂ 𝔮1 ⊂ … ⊂ 𝔮𝑛 is a chain of prime
ideals in 𝑅𝑠ℎ, then for some sufficiently large 𝑖 the sequence

𝑅𝑖 ∩ 𝔮0 ⊂ 𝑅𝑖 ∩ 𝔮1 ⊂ … ⊂ 𝑅𝑖 ∩ 𝔮𝑛

is a chain of primes in 𝑅𝑖. Thus we see that dim(𝑅𝑠ℎ) ≤ sup𝑖 dim(𝑅𝑖). But by the result of
Descent, Lemma 31.17.3 we have dim(𝑅𝑖) = dim(𝑅) for each 𝑖 and we win. �
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Lemma 38.32.13. Given a Noetherian local ring 𝑅 we have depth(𝑅) = depth(𝑅ℎ) =
depth(𝑅𝑠ℎ).

Proof. By Lemma 38.32.11 we know that 𝑅ℎ and 𝑅𝑠ℎ are Noetherian. Hence the lemma
follows from Algebra, Lemma 7.145.1. �

Lemma 38.32.14. Let 𝑅 be a Noetherian local ring. The following are equivalent: 𝑅 is
Cohen-Macaulay, the henselization 𝑅ℎ of 𝑅 is Cohen-Macaulay, and the strict henseliza-
tion 𝑅𝑠ℎ of 𝑅 is Cohen-Macaulay.

Proof. By Lemma 38.32.11 we know that 𝑅ℎ and 𝑅𝑠ℎ are Noetherian, hence the lemma
makes sense. Sincewe have depth(𝑅) = depth(𝑅ℎ) = depth(𝑅𝑠ℎ) and dim(𝑅) = dim(𝑅ℎ) =
dim(𝑅𝑠ℎ) by Lemmas 38.32.13 and 38.32.12 we conclude. �

Lemma 38.32.15. Let 𝑅 be a Noetherian local ring. The following are equivalent: 𝑅
is a regular local ring, the henselization 𝑅ℎ of 𝑅 is a regular local ring, and the strict
henselization 𝑅𝑠ℎ of 𝑅 is a regular local ring.

Proof. By Lemma 38.32.11 we know that 𝑅ℎ and 𝑅𝑠ℎ are Noetherian, hence the lemma
makes sense. Let 𝔪 be the maximal ideal of 𝑅. Let 𝑥1, … , 𝑥𝑡 ∈ 𝔪 be a minimal system of
generators of 𝔪, i.e., such that the images in 𝔪/𝔪2 form a basis over 𝜅 = 𝑅/𝔪. Because
𝑅 → 𝑅ℎ and 𝑅 → 𝑅𝑠ℎ are faithfully flat, it follows that the images 𝑥ℎ

1 , … , 𝑥ℎ
𝑡 in 𝑅ℎ, resp.

𝑥𝑠ℎ
1 , … , 𝑥𝑠ℎ

𝑡 in 𝑅𝑠ℎ are a minimal system of generators for 𝔪ℎ = 𝔪𝑅ℎ, resp. 𝔪𝑠ℎ = 𝔪𝑅𝑠ℎ.
Regularity of 𝑅 by definition means 𝑡 = dim(𝑅) and similarly for 𝑅ℎ and 𝑅𝑠ℎ. Hence the
lemma follows from the equality of dimensions dim(𝑅) = dim(𝑅ℎ) = dim(𝑅𝑠ℎ) of Lemma
38.32.12 �

38.33. Stalks of the structure sheaf

In this section we identify the stalk of the structure sheaf at a geometric point with the strict
henselization of the local ring at the corresponding ``usual'' point.

Lemma 38.33.1. Let 𝑆 be a scheme. Let 𝑠 be a geometric point of 𝑆 lying over 𝑠 ∈ 𝑆. Let
𝜅 = 𝜅(𝑠) and let 𝜅 ⊂ 𝜅𝑠𝑒𝑝 ⊂ 𝜅(𝑠) denote the separable algebraic closure of 𝜅 in 𝜅(𝑠). Then
there is a canonical identification

(𝒪𝑆,𝑠)𝑠ℎ ≅ 𝒪𝑆,𝑠

where the left hand side is the strict henselization of the local ring 𝒪𝑆,𝑠 as described in
Theorem 38.32.8 and right hand side is the stalk of the structure sheaf 𝒪𝑆 on 𝑆 ́𝑒𝑡𝑎𝑙𝑒 at the
geometric point 𝑠.

Proof. Let 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑆 be an affine neighbourhood of 𝑠. Let 𝔭 ⊂ 𝐴 be the prime ideal
corresponding to 𝑠. With these choices we have canonical isomorphisms 𝒪𝑆,𝑠 = 𝐴𝔭 and
𝜅(𝑠) = 𝜅(𝔭). Thus we have 𝜅(𝔭) ⊂ 𝜅𝑠𝑒𝑝 ⊂ 𝜅(𝑠). Recall that

𝒪𝑆,𝑠 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) 𝒪(𝑈)

where the limit is over the étale neighbourhoods of (𝑆, 𝑠). A cofinal system is given by those
étale neighbourhoods (𝑈, 𝑢) such that 𝑈 is affine and 𝑈 → 𝑆 factors through 𝑆𝑝𝑒𝑐(𝐴). In
other words, we see that

𝒪𝑆,𝑠 = 𝑐𝑜𝑙𝑖𝑚(𝐵,𝔮,𝜙) 𝐵
where the colimit is over étale 𝐴-algebras 𝐵 endowed with a prime 𝔮 lying over 𝔭 and a
𝜅(𝔭)-algebra map 𝜙 ∶ 𝜅(𝔮) → 𝜅(𝑠). Note that since 𝜅(𝔮) is finite separable over 𝜅(𝔭) the
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image of 𝜙 is contained in 𝜅𝑠𝑒𝑝. Via these translations the result of the lemma is equivalent
to the result of Algebra, Lemma 7.139.24. �

Definition 38.33.2. Let 𝑆 be a scheme. Let 𝑠 be a geometric point of 𝑆 lying over the point
𝑠 ∈ 𝑆.

(1) The étale local ring of 𝑆 at 𝑠 is the stalk of the structure sheaf 𝒪𝑆 on 𝑆 ́𝑒𝑡𝑎𝑙𝑒 at 𝑠.
We sometimes call this the strict henselization of 𝒪𝑆,𝑠 relative to the geometric
point 𝑠. Notation used: 𝒪𝑆,𝑠 = 𝒪𝑠ℎ

𝑆,𝑠.
(2) The henselization of 𝒪𝑆,𝑠 is the henselization of the local ring of 𝑆 at 𝑠. See

Algebra, Definition 7.139.14, and Theorem 38.32.8. Notation: 𝒪ℎ
𝑆,𝑠.

(3) The strict henselization of 𝑆 at 𝑠 is the scheme 𝑆𝑝𝑒𝑐(𝒪𝑠ℎ
𝑆,𝑠).

(4) The henselization of 𝑆 at 𝑠 is the scheme 𝑆𝑝𝑒𝑐(𝒪ℎ
𝑆,𝑠).

Lemma 38.33.3. Let 𝑆 be a scheme. Let 𝑠 ∈ 𝑆. Then we have

𝒪ℎ
𝑆,𝑠 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) 𝒪(𝑈)

where the colimit is over the filtered category of étale neighbourhoods (𝑈, 𝑢) of (𝑆, 𝑠) such
that 𝜅(𝑠) = 𝜅(𝑢).

Proof. This lemma is a copy of More on Morphisms, Lemma 33.25.5. �

Remark 38.33.4. Let 𝑆 be a scheme. Let 𝑠 ∈ 𝑆. If 𝑆 is locally noetherian then 𝒪ℎ
𝑆,𝑠 is also

noetherian and it has the same completion:

𝒪𝑆,𝑠 ≅ 𝒪ℎ
𝑆,𝑠.

In particular, 𝒪𝑆,𝑠 ⊂ 𝒪ℎ
𝑆,𝑠 ⊂ 𝒪𝑆,𝑠. The henselization of 𝒪𝑆,𝑠 is in general much smaller than

its completion and inherits many of its properties. For example, if 𝒪𝑆,𝑠 is reduced, then so
is 𝒪ℎ

𝑆,𝑠, but this is not true for the completion in general. Insert future references here.

Lemma 38.33.5. Let 𝑆 be a scheme. The small étale site 𝑆 ́𝑒𝑡𝑎𝑙𝑒 endowed with its structure
sheaf 𝒪𝑆 is a locally ringed site, see Modules on Sites, Definition 16.34.4.

Proof. This follows because the stalks 𝒪𝑠ℎ
𝑆,𝑠 = 𝒪𝑆,𝑠 are local, and because 𝑆 ́𝑒𝑡𝑎𝑙𝑒 has enough

points, see Lemma 38.33.1, Theorem 38.29.10, and Remarks 38.29.11. See Modules on
Sites, Lemmas 16.34.2 and 16.34.3 for the fact that this implies the small étale site is locally
ringed. �

38.34. Functoriality of small étale topos

Sofar we haven't yet discussed the functoriality of the étale site, in other words what happens
when given a morphism of schemes. A precise formal discussion can be found in Topolo-
gies, Section 30.4. In this and the next sections we discuss this material briefly specifically
in the setting of small étale sites.

Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. We obtain a functor

(38.34.0.1) 𝑢 ∶ 𝑌 ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝑉/𝑌 ⟼ 𝑋 ×𝑌 𝑉/𝑋.

This functor has the following important properties
(1) 𝑢(fi) = fi,
(2) 𝑢 preserves fibre products,
(3) if {𝑉𝑗 → 𝑉} is a covering in 𝑌 ́𝑒𝑡𝑎𝑙𝑒, then {𝑢(𝑉𝑗) → 𝑢(𝑉)} is a covering in 𝑋 ́𝑒𝑡𝑎𝑙𝑒.
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Each of these is easy to check (omitted). As a consequence we obtain what is called a
morphism of sites

𝑓𝑠𝑚𝑎𝑙𝑙 ∶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑌 ́𝑒𝑡𝑎𝑙𝑒,
see Sites, Definition 9.14.1 and Sites, Proposition 9.14.6. It is not necessary to know about
the abstract notion in detail in order to work with étale sheaves and étale cohomology. It
usually suffices to know that there are functors 𝑓𝑠𝑚𝑎𝑙𝑙,∗ (pushforward) and 𝑓−1

𝑠𝑚𝑎𝑙𝑙 (pullback)
on étale sheaves, and to know some of their simple properties. We will discuss these prop-
erties in the next sections, but we will sometimes refer to the more abstract material for
proofs since that is often the natural setting to prove them.

38.35. Direct images

Let us define the pushforward of a presheaf.

Definition 38.35.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let ℱ a presheaf of sets
on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. The direct image, or pushforward of ℱ (under 𝑓) is

𝑓∗ℱ ∶ 𝑌𝑜𝑝𝑝
́𝑒𝑡𝑎𝑙𝑒 ⟶ Sets, (𝑉/𝑌) ⟼ ℱ(𝑋 ×𝑌 𝑉/𝑋).

We sometimes write 𝑓∗ = 𝑓𝑠𝑚𝑎𝑙𝑙,∗ to distinguish from other direct image functors (such as
usual Zariski pushforward or 𝑓𝑏𝑖𝑔,∗).

This is a well-defined étale presheaf since the base change of an étale morphism is again
étale. A more categorical way of saying this is that 𝑓∗ℱ is the composition of functors ℱ∘𝑢
where 𝑢 is as in Equation (38.34.0.1). This makes it clear that the construction is functorial
in the presheaf ℱ and hence we obtain a functor

𝑓∗ = 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ PSh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ PSh(𝑌 ́𝑒𝑡𝑎𝑙𝑒)
Note that if ℱ is a presheaf of abelian groups, then 𝑓∗ℱ is also a presheaf of abelian groups
and we obtain

𝑓∗ = 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ PAb(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ PAb(𝑌 ́𝑒𝑡𝑎𝑙𝑒)
as before (i.e., defined by exactly the same rule).

Remark 38.35.2. We claim that the direct image of a sheaf is a sheaf. Namely, if {𝑉𝑗 → 𝑉}
is an étale covering in 𝑌 ́𝑒𝑡𝑎𝑙𝑒 then {𝑋 ×𝑌 𝑉𝑗 → 𝑋 ×𝑌 𝑉} is an étale covering in 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Hence
the sheaf condition for ℱ with respect to {𝑋 ×𝑌 𝑉𝑖 → 𝑋 ×𝑌 𝑉} is equivalent to the sheaf
condition for 𝑓∗ℱ with respect to {𝑉𝑖 → 𝑉}. Thus if ℱ is a sheaf, so is 𝑓∗ℱ.

Definition 38.35.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let ℱ a sheaf of sets on
𝑋 ́𝑒𝑡𝑎𝑙𝑒. The direct image, or pushforward of ℱ (under 𝑓) is

𝑓∗ℱ ∶ 𝑌𝑜𝑝𝑝
́𝑒𝑡𝑎𝑙𝑒 ⟶ Sets, (𝑉/𝑌) ⟼ ℱ(𝑋 ×𝑌 𝑉/𝑋)

which is a sheaf by Remark 38.35.2. We sometimes write 𝑓∗ = 𝑓𝑠𝑚𝑎𝑙𝑙,∗ to distinguish from
other direct image functors (such as usual Zariski pushforward or 𝑓𝑏𝑖𝑔,∗).

The exact same discussion as above applies and we obtain functors
𝑓∗ = 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒)

and
𝑓∗ = 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒)

called direct image again.
The functor 𝑓∗ on abelian sheaves is left exact. (See Homology, Section 10.5 for what it
means for a functor between abelian categories to be left exact.) Namely, if 0 → ℱ1 →
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ℱ2 → ℱ3 is exact on 𝑋 ́𝑒𝑡𝑎𝑙𝑒, then for every 𝑈/𝑋 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) the sequence of abelian
groups 0 → ℱ1(𝑈) → ℱ2(𝑈) → ℱ3(𝑈) is exact. Hence for every 𝑉/𝑌 ∈ 𝑂𝑏(𝑌 ́𝑒𝑡𝑎𝑙𝑒) the
sequence of abelian groups 0 → 𝑓∗ℱ1(𝑉) → 𝑓∗ℱ2(𝑉) → 𝑓∗ℱ3(𝑉) is exact, because this is
the previous sequence with 𝑈 = 𝑋 ×𝑌 𝑉.

Definition 38.35.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The right derived functors
{𝑅𝑝𝑓∗}𝑝≥1 of 𝑓∗ ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) are called higher direct images.

The higher direct images and their derived category variants are discussed in more detail
in (insert future reference here).

38.36. Inverse image

In this section we briefly discuss pullback of sheaves on the small étale sites. The precise
construction of this is in Topologies, Section 30.4.

Definition 38.36.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The inverse image, or
pullback3 functors are the functors

𝑓−1 = 𝑓−1
𝑠𝑚𝑎𝑙𝑙 ∶ Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒)

and
𝑓−1 = 𝑓−1

𝑠𝑚𝑎𝑙𝑙 ∶ Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒)
which are left adjoint to 𝑓∗ = 𝑓𝑠𝑚𝑎𝑙𝑙,∗. Thus 𝑓−1 thus characterized by the fact that

𝐻𝑜𝑚Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒)(𝑓−1𝒢, ℱ) = 𝐻𝑜𝑚Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒)(𝒢, 𝑓∗ℱ)

functorially, for any ℱ ∈ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) and 𝒢 ∈ Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒). We similarly have

𝐻𝑜𝑚Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒)(𝑓−1𝒢, ℱ) = 𝐻𝑜𝑚Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒)(𝒢, 𝑓∗ℱ)

for ℱ ∈ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) and 𝒢 ∈ Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒).

It is not trivial that such an adjoint exists. On the other hand, it exists in a fairly general
setting, see Remark 38.36.3 below. The general machinery shows that 𝑓−1𝒢 is the sheaf
associated to the presheaf
(38.36.1.1) 𝑈/𝑋 ⟼ 𝑐𝑜𝑙𝑖𝑚𝑈→𝑋×𝑌𝑉 𝒢(𝑉/𝑌)
where the colimit is over the category of pairs (𝑉/𝑌, 𝜑 ∶ 𝑈/𝑋 → 𝑋×𝑌𝑉/𝑋). To see this apply
Sites, Proposition 9.14.6 to the functor 𝑢 of Equation (38.34.0.1) and use the description of
𝑢𝑠 = (𝑢𝑝 )# in Sites, Sections 9.13 and 9.5. We will occasionally use this formula for the
pullback in order to prove some of its basic properties.

Lemma 38.36.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes.
(1) The functor 𝑓−1 ∶ Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) is exact.
(2) The functor 𝑓−1 ∶ Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) is exact, i.e., it commutes with finite

limits and colimits, see Categories, Definition 4.21.1.
(3) Let 𝑥 → 𝑋 be a geometric point. Let 𝒢 be a sheaf on 𝑌 ́𝑒𝑡𝑎𝑙𝑒. Then there is a

canonical identification

(𝑓−1𝒢)𝑥 = 𝒢𝑦.

where 𝑦 = 𝑓 ∘ 𝑥.
(4) For any 𝑉 → 𝑌 étale we have 𝑓−1ℎ𝑉 = ℎ𝑋×𝑌𝑉.

3We use the notation 𝑓−1 for pullbacks of sheaves of sets or sheaves of abelian groups, and we reserve 𝑓∗

for pullbacks of sheaves of modules via a morphism of ringed sites/topoi.
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Proof. The exactness of 𝑓−1 on sheaves of sets is a consequence of Sites, Proposition 9.14.6
applied to our functor 𝑢 of Equation (38.34.0.1). In fact the exactness of pullback is part
of the definition of of a morphism of topoi (or sites if you like). Thus we see (2) holds.
It implies part (1) since given an abelian sheaf 𝒢 on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 the underlying sheaf of sets of
𝑓−1ℱ is the same as 𝑓−1 of the underlying sheaf of sets of ℱ, see Sites, Section 9.38. See
also Modules on Sites, Lemma 16.27.2. In the literature (1) and (2) are sometimes deduced
from (3) via Theorem 38.29.10.

Part (3) is a general fact about stalks of pullbacks, see Sites, Lemma 9.30.1. We will also
prove (3) directly as follows. Note that by Lemma 38.29.9 taking stalks commutes with
sheafification. Now recall that 𝑓−1𝒢 is the sheaf associated to the presheaf

𝑈 ⟶ 𝑐𝑜𝑙𝑖𝑚𝑈→𝑋×𝑌𝑉 𝒢(𝑉),

see Equation (38.36.1.1). Thus we have

(𝑓−1𝒢)𝑥 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) 𝑓−1𝒢(𝑈)
= 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) 𝑐𝑜𝑙𝑖𝑚𝑎∶𝑈→𝑋×𝑌𝑉 𝒢(𝑉)
= 𝑐𝑜𝑙𝑖𝑚(𝑉,𝑣) 𝒢(𝑉)
= 𝒢𝑦

in the third equality the pair (𝑈, 𝑢) and the map 𝑎 ∶ 𝑈 → 𝑋 ×𝑌 𝑉 corresponds to the pair
(𝑉, 𝑎 ∘ 𝑢).

Part (4) can be proved in a similar manner by identfying the colimits which define 𝑓−1ℎ𝑉.
Or you can use Yoneda's lemma (Categories, Lemma 4.3.5) and the functorial equalities

𝑀𝑜𝑟Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒)(𝑓−1ℎ𝑉, ℱ) = 𝑀𝑜𝑟Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒)(ℎ𝑉, 𝑓∗ℱ) = 𝑓∗ℱ(𝑉) = ℱ(𝑋 ×𝑌 𝑉)

combined with the fact that representable presheaves are sheaves. See also Sites, Lemma
9.13.5 for a completely general result. �

The pair of functors (𝑓∗, 𝑓−1) define a morphism of small étale topoi

𝑓𝑠𝑚𝑎𝑙𝑙 ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒)

Many generalities on cohomology of sheaves hold for topoi and morphisms of topoi. We
will try to point out when results are general and when they are specific to the étale topos.

Remark 38.36.3. More generally, let 𝒞1, 𝒞2 be sites, and assume they have final objects
and fibre products. Let 𝑢 ∶ 𝒞2 → 𝒞1 be a functor satisfying:

(1) if {𝑉𝑖 → 𝑉} is a covering of 𝒞2, then {𝑢(𝑉𝑖) → 𝑉𝑖} is a covering of 𝒞1 (we say
that 𝑢 is continuous), and

(2) 𝑢 commutes with finite limits (i.e., 𝑢 is left exact, i.e., 𝑢 preserves fibre products
and final objects).

Then one can define 𝑓∗ ∶ Sh(𝒞1) → Sh(𝒞2) by 𝑓∗ℱ(𝑉) = ℱ(𝑢(𝑉)). Moreover, there exists
an exact functor 𝑓−1 which is left adjoint to 𝑓∗, see Sites, Definition 9.14.1 and Proposition
9.14.6. Warning: It is not enough to require simply that 𝑢 is continuous and commutes with
fibre products in order to get a morphism of topoi.
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38.37. Functoriality of big topoi

Given a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 there are a whole host of morphisms of topoi
associated to 𝑓, see Topologies, Section 30.9 for a list. Perhaps the most used ones are the
morphisms of topoi

𝑓𝑏𝑖𝑔 = 𝑓𝑏𝑖𝑔,𝜏 ∶ Sh((Sch/𝑋)𝜏) ⟶ Sh((Sch/𝑌)𝜏)

where 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. These each correspond to a continu-
ous functor

(Sch/𝑌)𝜏 ⟶ (Sch/𝑋)𝜏, 𝑉/𝑌 ⟼ 𝑋 ×𝑌 𝑉/𝑋
which preserves final objects, fibre products and covering, and hence defines a morphism
of sites

𝑓𝑏𝑖𝑔 ∶ (Sch/𝑋)𝜏 ⟶ (Sch/𝑌)𝜏.
See Topologies, Sections 30.3, 30.4, 30.5, 30.6, and 30.7. In particular, pushforward along
𝑓𝑏𝑖𝑔 is given by the rule

(𝑓𝑏𝑖𝑔,∗ℱ)(𝑉/𝑌) = ℱ(𝑋 ×𝑌 𝑉/𝑋)

It turns out that these morphisms of topoi have an inverse image functor 𝑓−1
𝑏𝑖𝑔 which is very

easy to describe. Namely, we have

(𝑓−1
𝑏𝑖𝑔𝒢)(𝑈/𝑋) = 𝒢(𝑈/𝑌)

where the structure morphism of 𝑈/𝑌 is the composition of the structure morphism 𝑈 → 𝑋
with 𝑓, see Topologies, Lemmas 30.3.15, 30.4.15, 30.5.10, 30.6.10, and 30.7.12.

38.38. Functoriality and sheaves of modules

In this section we are going to reformulate some of the material explained in Descent,
Section 31.6 in the setting of étale topologies. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes.
We have seen above, see Sections 38.34, 38.35, and 38.36 that this induces a morphism
𝑓𝑠𝑚𝑎𝑙𝑙 of small étale sites. In Descent, Remark 31.6.4 we have seen that 𝑓 also induces a
natural map

𝑓♯
𝑠𝑚𝑎𝑙𝑙 ∶ 𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒

⟶ 𝑓𝑠𝑚𝑎𝑙𝑙,∗𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒

of sheaves of rings on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 such that (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯
𝑠𝑚𝑎𝑙𝑙) is a morphism of ringed sites. See

Modules on Sites, Definition 16.6.1 for the definition of a morphism of ringed sites. Let us
just recall here that 𝑓♯

𝑠𝑚𝑎𝑙𝑙 is defined by the compatible system of maps

pr♯𝑉 ∶ 𝒪(𝑉) ⟶ 𝒪(𝑋 ×𝑌 𝑉)

for 𝑉 varying over the objects of 𝑌 ́𝑒𝑡𝑎𝑙𝑒.

It is clear that this construction is compatible with compositions of morphisms of schemes.
More precisely, if 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are morphisms of schemes, then we have

(𝑔𝑠𝑚𝑎𝑙𝑙, 𝑔♯
𝑠𝑚𝑎𝑙𝑙) ∘ (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯

𝑠𝑚𝑎𝑙𝑙) = ((𝑔 ∘ 𝑓)𝑠𝑚𝑎𝑙𝑙, (𝑔 ∘ 𝑓)♯
𝑠𝑚𝑎𝑙𝑙)

as morphisms of ringed topoi. Moreover, by Modules on Sites, Definition 16.13.1 we see
that given a morphism 𝑓 ∶ 𝑋 → 𝑌 of schemes we get well defined pullback and direct
image functors

𝑓∗
𝑠𝑚𝑎𝑙𝑙 ∶ Mod(𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒

) ⟶ Mod(𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒
),

𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Mod(𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒
) ⟶ Mod(𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒

)
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which are adjoint in the usual way. If 𝑔 ∶ 𝑌 → 𝑍 is another morphism of schemes, then we
have (𝑔 ∘ 𝑓)∗

𝑠𝑚𝑎𝑙𝑙 = 𝑓∗
𝑠𝑚𝑎𝑙𝑙 ∘ 𝑔∗

𝑠𝑚𝑎𝑙𝑙 and (𝑔 ∘ 𝑓)𝑠𝑚𝑎𝑙𝑙,∗ = 𝑔𝑠𝑚𝑎𝑙𝑙,∗ ∘ 𝑓𝑠𝑚𝑎𝑙𝑙,∗ because of what we
said about compositions.

There is quite a bit of difference between the category of all 𝒪𝑋 modules on 𝑋 and the cat-
egory between all 𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒

-modules on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. But the results of Descent, Section 31.6 tell
us that there is not much difference between considering quasi-coherent modules on 𝑆 and
quasi-coherent modules on 𝑆 ́𝑒𝑡𝑎𝑙𝑒. (We have already seen this in Theorem 38.17.4 for ex-
ample.) In particular, if 𝑓 ∶ 𝑋 → 𝑌 is any morphism of schemes, then the pullback functors
𝑓∗

𝑠𝑚𝑎𝑙𝑙 and 𝑓∗ match for quasi-coherent sheaves, see Descent, Proposition 31.6.14. More-
over, the same is true for pushforward provided 𝑓 is quasi-compact and quasi-separated,
see Descent, Lemma 31.6.15.

A fewwords about functoriality of the structure sheaf on big sites. Let 𝑓 ∶ 𝑋 → 𝑌 be a mor-
phism of schemes. Choose any of the topologies 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐,
𝑓𝑝𝑝𝑓}. Then the morphism 𝑓𝑏𝑖𝑔 ∶ (Sch/𝑋)𝜏 → (Sch/𝑌)𝜏 becomes a morphism of ringed
sites by a map

𝑓♯
𝑏𝑖𝑔 ∶ 𝒪𝑌 ⟶ 𝑓𝑏𝑖𝑔,∗𝒪𝑋

see Descent, Remark 31.6.4. In fact it is given by the same construction as in the case of
small sites explained above.

38.39. Comparing big and small topoi

Let 𝑋 be a scheme. In Topologies, Lemma 30.4.13 we have introduced comparison mor-
phisms 𝜋𝑋 ∶ (Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒 → 𝑋 ́𝑒𝑡𝑎𝑙𝑒 and 𝑖𝑋 ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Sh((Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒) with 𝜋𝑋 ∘ 𝑖𝑋 =
id and 𝜋𝑋,∗ = 𝑖−1

𝑋 . In Descent, Remark 31.6.4 we have extended these to a morphism of
ringed sites

𝜋𝑋 ∶ ((Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒, 𝒪) → (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋)
and a morphism of ringed topoi

𝑖𝑋 ∶ (Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋) → (Sh((Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒), 𝒪)

Note that the restriction 𝑖−1
𝑋 = 𝜋𝑋,∗ (see Topologies, Definition 30.4.14) transforms 𝒪 into

𝒪𝑋. Hence 𝑖∗
𝑋ℱ = 𝑖−1

𝑋 ℱ for any 𝒪-module ℱ on (Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒. In particular 𝑖∗
𝑋 is exact. This

functor is often denoted ℱ ↦ ℱ|𝑋 ́𝑒𝑡𝑎𝑙𝑒
.

Lemma 38.39.1. Let 𝑋 be a scheme.
(1) ℐ|𝑋 ́𝑒𝑡𝑎𝑙𝑒

is injective in Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) for ℐ injective in Ab((Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒), and
(2) ℐ|𝑋 ́𝑒𝑡𝑎𝑙𝑒

is injective in Mod(𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) for ℐ injective in Mod((Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒, 𝒪).

Proof. This follows formally from the fact that the restriction functor 𝜋𝑋,∗ = 𝑖−1
𝑋 is an exact

left adjoint of 𝑖𝑋,∗, see Homology, Lemma 10.22.1. �

Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The commutative diagram of Topologies,
Lemma 30.4.16 (3) leads to a commutative diagram of ringed sites

(𝑇 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑇)

𝑓𝑠𝑚𝑎𝑙𝑙
��

((Sch/𝑇) ́𝑒𝑡𝑎𝑙𝑒, 𝒪)

𝑓𝑏𝑖𝑔
��

𝜋𝑇
oo

(𝑆 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑆) ((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒, 𝒪)
𝜋𝑆oo

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0758
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as one easily sees by writing out the definitions of 𝑓♯
𝑠𝑚𝑎𝑙𝑙, 𝑓♯

𝑏𝑖𝑔, 𝜋♯
𝑆, and 𝜋♯

𝑇. In particular this
means that

(38.39.1.1) (𝑓𝑏𝑖𝑔,∗ℱ)|𝑌 ́𝑒𝑡𝑎𝑙𝑒
= 𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑋 ́𝑒𝑡𝑎𝑙𝑒

)

for any sheaf ℱ on (Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒 and if ℱ is a sheaf of 𝒪-modules, then (38.39.1.1) is an
isomorphism of 𝒪𝑌-modules on 𝑌 ́𝑒𝑡𝑎𝑙𝑒.

Lemma 38.39.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes.
(1) For any ℱ ∈ Ab((Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒) we have

(𝑅𝑓𝑏𝑖𝑔,∗ℱ)|𝑌 ́𝑒𝑡𝑎𝑙𝑒
= 𝑅𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑋 ́𝑒𝑡𝑎𝑙𝑒

).

in 𝐷(𝑌 ́𝑒𝑡𝑎𝑙𝑒).
(2) For any object ℱ of Mod((Sch/𝑋) ́𝑒𝑡𝑎𝑙𝑒, 𝒪) we have

(𝑅𝑓𝑏𝑖𝑔,∗ℱ)|𝑌 ́𝑒𝑡𝑎𝑙𝑒
= 𝑅𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑋 ́𝑒𝑡𝑎𝑙𝑒

).

in 𝐷(Mod(𝑌 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑌)).

Proof. Follows immediately from Lemma 38.39.1 and (38.39.1.1) on choosing an injective
resolution of ℱ. �

38.40. Recovering morphisms

In this section we prove that the rule which associates to a scheme its locally ringed small
étale topos is fully faithful in a suitable sense, see Theorem 38.40.5.

Lemma 38.40.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. The morphism of ringed sites
(𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯

𝑠𝑚𝑎𝑙𝑙) associated to 𝑓 is a morphism of locally ringed sites, see Modules on Sites,
Definition 16.34.8.

Proof. Note that the assertion makes sense since we have seen that (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒
) and

(𝑌 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒
) are locally ringed sites, see Lemma 38.33.5. Moreover, we know that 𝑋 ́𝑒𝑡𝑎𝑙𝑒

has enough points, see Theorem 38.29.10 and Remarks 38.29.11. Hence it suffices to prove
that (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯

𝑠𝑚𝑎𝑙𝑙) satisfies condition (3) of Modules on Sites, Lemma 16.34.7. To see this
take a point 𝑝 of 𝑋 ́𝑒𝑡𝑎𝑙𝑒. By Lemma 38.29.12 𝑝 corresponds to a geometric point 𝑥 of 𝑋.
By Lemma 38.36.2 the point 𝑞 = 𝑓𝑠𝑚𝑎𝑙𝑙 ∘ 𝑝 corresponds to the geometric point 𝑦 = 𝑓 ∘ 𝑥 of
𝑌. Hence the assertion we have to prove is that the induced map of stalks

𝒪𝑌,𝑦 ⟶ 𝒪𝑋,𝑥

is a local ring map. Suppose that 𝑎 ∈ 𝒪𝑌,𝑦 is an element of the left hand side which maps to
an element of the maximal ideal of the right hand side. Suppose that 𝑎 is the equivalence
class of a triple (𝑉, 𝑣, 𝑎) with 𝑉 → 𝑌 étale, 𝑣 ∶ 𝑥 → 𝑉 over 𝑌, and 𝑎 ∈ 𝒪(𝑉). It maps to
the equivalence class of (𝑋 ×𝑌 𝑉, 𝑥 × 𝑣, pr♯𝑉(𝑎)) in the local ring 𝒪𝑋,𝑥. But it is clear that
being in the maximal ideal means that pulling back pr♯𝑉(𝑎) to an element of 𝜅(𝑥) gives zero.
Hence also pulling back 𝑎 to 𝜅(𝑥) is zero. Which means that 𝑎 lies in the maximal ideal of
𝒪𝑌,𝑦. �

Lemma 38.40.2. Let 𝑋, 𝑌 be schemes. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑡 be
a 2-morphism from (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯

𝑠𝑚𝑎𝑙𝑙) to itself, see Modules on Sites, Definition 16.8.1. Then
𝑡 = id.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=075A
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04I5
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04IJ
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Proof. This means that 𝑡 ∶ 𝑓−1
𝑠𝑚𝑎𝑙𝑙 → 𝑓−1

𝑠𝑚𝑎𝑙𝑙 is a transformation of functors such that the
diagram

𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌

𝑓♯
𝑠𝑚𝑎𝑙𝑙 ##

𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌𝑡

oo

𝑓♯
𝑠𝑚𝑎𝑙𝑙{{

𝒪𝑋

is commutative. Suppose 𝑉 → 𝑌 is étale with 𝑉 affine. By Morphisms, Lemma 24.38.2
we may choose an immersion 𝑖 ∶ 𝑉 → 𝐀𝑛

𝑌 over 𝑌. In terms of sheaves this means that 𝑖
induces an injection ℎ𝑖 ∶ ℎ𝑉 → ∏𝑗=1,…,𝑛 𝒪𝑌 of sheaves. The base change 𝑖′ of 𝑖 to 𝑋 is
an immersion (Schemes, Lemma 21.18.2). Hence 𝑖′ ∶ 𝑋 ×𝑌 𝑉 → 𝐀𝑛

𝑋 is an immersion,
which in turn means that ℎ𝑖′ ∶ ℎ𝑋×𝑌𝑉 → ∏𝑗=1,…,𝑛 𝒪𝑋 is an injection of sheaves. Via the
identification 𝑓−1

𝑠𝑚𝑎𝑙𝑙ℎ𝑉 = ℎ𝑋×𝑌𝑉 of Lemma 38.36.2 the map ℎ𝑖′ is equal to

𝑓−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉

𝑓−1ℎ𝑖 // ∏𝑗=1,…,𝑛 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌

∏ 𝑓♯
//∏𝑗=1,…,𝑛 𝒪𝑋

(verification omitted). This means that the map 𝑡 ∶ 𝑓−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉 → 𝑓−1

𝑠𝑚𝑎𝑙𝑙ℎ𝑉 fits into the
commutative diagram

𝑓−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉

𝑓−1ℎ𝑖 //

𝑡
��

∏𝑗=1,…,𝑛 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌

∏ 𝑓♯
//

∏ 𝑡
��

∏𝑗=1,…,𝑛 𝒪𝑋

id
��

𝑓−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉

𝑓−1ℎ𝑖 // ∏𝑗=1,…,𝑛 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌

∏ 𝑓♯
//∏𝑗=1,…,𝑛 𝒪𝑋

The commutativity of the right square holds by our assumption on 𝑡 explained above. Since
the composition of the horizontal arrows is injective by the discussion above we conclude
that the left vertical arrow is the identity map as well. Any sheaf of sets on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 admits
a surjection from a (huge) coproduct of sheaves of the form ℎ𝑉 with 𝑉 affine (combine
Lemma 38.21.2 with Sites, Lemma 9.12.4). Thus we conclude that 𝑡 ∶ 𝑓−1

𝑠𝑚𝑎𝑙𝑙 → 𝑓−1
𝑠𝑚𝑎𝑙𝑙 is

the identity transformation as desired. �

Lemma 38.40.3. Let 𝑋, 𝑌 be schemes. Any two morphisms 𝑎, 𝑏 ∶ 𝑋 → 𝑌 of schemes for
which there exists a 2-isomorphism (𝑎𝑠𝑚𝑎𝑙𝑙, 𝑎♯

𝑠𝑚𝑎𝑙𝑙) ≅ (𝑏𝑠𝑚𝑎𝑙𝑙, 𝑏♯
𝑠𝑚𝑎𝑙𝑙) in the 2-category of

ringed topoi are equal.

Proof. Let us argue this carefully since it is a bit confusing. Let 𝑡 ∶ 𝑎−1
𝑠𝑚𝑎𝑙𝑙 → 𝑏−1

𝑠𝑚𝑎𝑙𝑙 be the
2-isomorphism. Consider any open 𝑉 ⊂ 𝑌. Note that ℎ𝑉 is a subsheaf of the final sheaf ∗.
Thus both 𝑎−1

𝑠𝑚𝑎𝑙𝑙ℎ𝑉 = ℎ𝑎−1(𝑉) and 𝑏−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉 = ℎ𝑏−1(𝑉) are subsheaves of the final sheaf. Thus

the isomorphism

𝑡 ∶ 𝑎−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉 = ℎ𝑎−1(𝑉) → 𝑏−1

𝑠𝑚𝑎𝑙𝑙ℎ𝑉 = ℎ𝑏−1(𝑉)

has to be the identity, and 𝑎−1(𝑉) = 𝑏−1(𝑉). It follows that 𝑎 and 𝑏 are equal on underlying
topological spaces. Next, take a section 𝑓 ∈ 𝒪𝑌(𝑉). This determines and is determined by
a map of sheaves of sets 𝑓 ∶ ℎ𝑉 → 𝒪𝑌. Pull this back and apply 𝑡 to get a commutative
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diagram

ℎ𝑏−1(𝑉) 𝑏−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉

𝑏−1
𝑠𝑚𝑎𝑙𝑙(𝑓)
��

𝑎−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉

𝑎−1
𝑠𝑚𝑎𝑙𝑙(𝑓)
��

𝑡
oo ℎ𝑎−1(𝑉)

𝑏−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌

𝑏♯
##

𝑎−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌𝑡

oo

𝑎♯
{{

𝒪𝑋

where the triangle is commutative by definition of a 2-isomorphism in Modules on Sites,
Section 16.8. Above we have seen that the composition of the top horizontal arrows comes
from the identity 𝑎−1(𝑉) = 𝑏−1(𝑉). Thus the commutativity of the diagram tells us that
𝑎♯

𝑠𝑚𝑎𝑙𝑙(𝑓) = 𝑏♯
𝑠𝑚𝑎𝑙𝑙(𝑓) in 𝒪𝑋(𝑎−1(𝑉)) = 𝒪𝑋(𝑏−1(𝑉)). Since this holds for every open 𝑉 and

every 𝑓 ∈ 𝒪𝑌(𝑉) we conclude that 𝑎 = 𝑏 as morphisms of schemes. �

Lemma 38.40.4. Let 𝑋, 𝑌 be affine schemes. Let

(𝑔, 𝑔#) ∶ (Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋) ⟶ (Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑌)

be a morphism of locally ringed topoi. Then there exists a unique morphism of schemes
𝑓 ∶ 𝑋 → 𝑌 such that (𝑔, 𝑔#) is 2-isomorphic to (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯

𝑠𝑚𝑎𝑙𝑙), see Modules on Sites,
Definition 16.8.1.

Proof. In this proof we write 𝒪𝑋 for the structure sheaf of the small étale site 𝑋 ́𝑒𝑡𝑎𝑙𝑒, and
similarly for 𝒪𝑌. Say 𝑌 = 𝑆𝑝𝑒𝑐(𝐵) and 𝑋 = 𝑆𝑝𝑒𝑐(𝐴). Since 𝐵 = Γ(𝑌 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑌), 𝐴 =
Γ(𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) we see that 𝑔♯ induces a ring map 𝜑 ∶ 𝐵 → 𝐴. Let 𝑓 = 𝑆𝑝𝑒𝑐(𝜑) ∶ 𝑋 → 𝑌 be
the corresponding morphism of affine schemes. We will show this 𝑓 does the job.

Let 𝑉 → 𝑌 be an affine scheme étale over 𝑌. Thus we may write 𝑉 = 𝑆𝑝𝑒𝑐(𝐶) with 𝐶 an
étale 𝐵-algebra. We can write

𝐶 = 𝐵[𝑥1, … , 𝑥𝑛]/(𝑃1, … , 𝑃𝑛)

with 𝑃𝑖 polynomials such that Δ = det(𝜕𝑃𝑖/𝜕𝑥𝑗) is invertible in 𝐶, see for example Algebra,
Lemma 7.132.2. If 𝑇 is a scheme over 𝑌, then a 𝑇-valued point of 𝑉 is given by 𝑛 sections
of Γ(𝑇, 𝒪𝑇) which satisfy the polynomial equations 𝑃1 = 0, … , 𝑃𝑛 = 0. In other words, the
sheaf ℎ𝑉 on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 is the equalizer of the two maps

∏𝑖=1,…,𝑛 𝒪𝑌

𝑎 //

𝑏
// ∏𝑗=1,…,𝑛 𝒪𝑌

where 𝑏(ℎ1, … , ℎ𝑛) = 0 and 𝑎(ℎ1, … , ℎ𝑛) = (𝑃1(ℎ1, … , ℎ𝑛), … , 𝑃𝑛(ℎ1, … , ℎ𝑛)). Since
𝑔−1 is exact we conclude that the top row of the following solid commutative diagram is an
equalizer diagram as well:

𝑔−1ℎ𝑉
//

��

∏𝑖=1,…,𝑛 𝑔−1𝒪𝑌

𝑔−1𝑎 //

𝑔−1𝑏
//

∏ 𝑔♯

��

∏𝑗=1,…,𝑛 𝑔−1𝒪𝑌

∏ 𝑔♯

��
ℎ𝑋×𝑌𝑉

// ∏𝑖=1,…,𝑛 𝒪𝑋

𝑎′
//

𝑏′
//∏𝑗=1,…,𝑛 𝒪𝑋
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Here 𝑏′ is the zero map and 𝑎′ is the map defined by the images 𝑃′
𝑖 = 𝜑(𝑃𝑖) ∈ 𝐴[𝑥1, … , 𝑥𝑛]

via the same rule 𝑎′(ℎ1, … , ℎ𝑛) = (𝑃′
1(ℎ1, … , ℎ𝑛), … , 𝑃′

𝑛(ℎ1, … , ℎ𝑛)). that 𝑎 was defined
by. The commutativity of the diagram follows from the fact that 𝜑 = 𝑔♯ on global sections.
The lower row is an equalizer diagram also, by exactly the same arguments as before since
𝑋 ×𝑌 𝑉 is the affine scheme 𝑆𝑝𝑒𝑐(𝐴 ⊗𝐵 𝐶) and 𝐴 ⊗𝐵 𝐶 = 𝐴[𝑥1, … , 𝑥𝑛]/(𝑃′

1, … , 𝑃′
𝑛). Thus

we obtain a unique dotted arrow 𝑔−1ℎ𝑉 → ℎ𝑋×𝑌𝑉 fitting into the diagram

We claim that the map of sheaves 𝑔−1ℎ𝑉 → ℎ𝑋×𝑌𝑉 is an isomorphism. Since the small étale
site of 𝑋 has enough points (Theorem 38.29.10) it suffices to prove this on stalks. Hence
let 𝑥 be a geometric point of 𝑋, and denote 𝑝 the associate point of the small étale topos of
𝑋. Set 𝑞 = 𝑔 ∘ 𝑝. This is a point of the small étale topos of 𝑌. By Lemma 38.29.12 we see
that 𝑞 corresponds to a geometric point 𝑦 of 𝑌. Consider the map of stalks

(𝑔♯)𝑝 ∶ 𝒪𝑌,𝑦 = 𝒪𝑌,𝑞 = (𝑔−1𝒪𝑌)𝑝 ⟶ 𝒪𝑋,𝑝 = 𝒪𝑋,𝑥

Since (𝑔, 𝑔♯) is a morphism of locally ringed topoi (𝑔♯)𝑝 is a local ring homomorphism of
strictly henselian local rings. Applying localization to the big commutative diagram above
and Algebra, Lemma 7.139.25 we conclude that (𝑔−1ℎ𝑉)𝑝 → (ℎ𝑋×𝑌𝑉)𝑝 is an isomorphism
as desired.

We claim that the isomorphisms 𝑔−1ℎ𝑉 → ℎ𝑋×𝑌𝑉 are functorial. Namely, suppose that
𝑉1 → 𝑉2 is a morphism of affine schemes étale over 𝑌. Write 𝑉𝑖 = 𝑆𝑝𝑒𝑐(𝐶𝑖) with

𝐶𝑖 = 𝐵[𝑥𝑖,1, … , 𝑥𝑖,𝑛𝑖
]/(𝑃𝑖,1, … , 𝑃𝑖,𝑛𝑖

)

The morphism 𝑉1 → 𝑉2 is given by a 𝐵-algebra map 𝐶2 → 𝐶1 which in turn is given by
some polynomials 𝑄𝑗 ∈ 𝐵[𝑥1,1, … , 𝑥1,𝑛1

] for 𝑗 = 1, … , 𝑛2. Then it is an easy matter to
show that the diagram of sheaves

ℎ𝑉1

��

// ∏𝑖=1,…,𝑛1
𝒪𝑌

𝑄1,…,𝑄𝑛2
��

ℎ𝑉2
// ∏𝑖=1,…,𝑛2

𝒪𝑌

is commutative, and pulling back to 𝑋 ́𝑒𝑡𝑎𝑙𝑒 we obtain the solid commutative diagram

𝑔−1ℎ𝑉1

��

**

//∏𝑖=1,…,𝑛1
𝑔−1𝒪𝑌

𝑔♯

��

𝑄1,…,𝑄𝑛2

**
𝑔−1ℎ𝑉2

��

// ∏𝑖=1,…,𝑛2
𝑔−1𝒪𝑌

𝑔♯

��

ℎ𝑋×𝑌𝑉1
//

++

∏𝑖=1,…,𝑛1
𝒪𝑋

𝑄′
1,…,𝑄′

𝑛2

++
ℎ𝑋×𝑌𝑉2

// ∏𝑖=1,…,𝑛2
𝒪𝑋

where 𝑄′
𝑗 ∈ 𝐴[𝑥1,1, … , 𝑥1,𝑛1

] is the image of 𝑄𝑗 via 𝜑. Since the dotted arrows exist, make
the two squares commute, and the horizontal arrows are injective we see that the whole
diagram commutes. This proves functoriality (and also that the construction of 𝑔−1ℎ𝑉 →
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ℎ𝑋×𝑌𝑉 is independent of the choice of the presentation, allthough we strictly speaking do
not need to show this).

At this point we are able to show that 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ≅ 𝑔∗. Namely, let ℱ be a sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. For
every 𝑉 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) affine we have

(𝑔∗ℱ)(𝑉) = 𝑀𝑜𝑟Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒)(ℎ𝑉, 𝑔∗ℱ)

= 𝑀𝑜𝑟Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒)(𝑔−1ℎ𝑉, ℱ)
= 𝑀𝑜𝑟Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒)(ℎ𝑋×𝑌𝑉, ℱ)
= ℱ(𝑋 ×𝑌 𝑉)
= 𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ(𝑉)

where in the third equality we use the isomorphism 𝑔−1ℎ𝑉 ≅ ℎ𝑋×𝑌𝑉 constructed above.
These isomorphisms are clearly functorial in ℱ and functorial in 𝑉 as the isomorphisms
𝑔−1ℎ𝑉 ≅ ℎ𝑋×𝑌𝑉 are functorial. Now any sheaf on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 is determined by the restriction to
the subcategory of affine schemes (Lemma 38.21.2), and hence we obtain an isomorphism
of functors 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ≅ 𝑔∗ as desired.

Finally, we have to check that, via the isomorphism 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ≅ 𝑔∗ above, the maps 𝑓♯
𝑠𝑚𝑎𝑙𝑙

and 𝑔♯ agree. By construction this is already the case for the global sections of 𝒪𝑌, i.e., for
the elements of 𝐵. We only need to check the result on sections over an affine 𝑉 étale over
𝑌 (by Lemma 38.21.2 again). Writing 𝑉 = 𝑆𝑝𝑒𝑐(𝐶), 𝐶 = 𝐵[𝑥𝑖]/(𝑃𝑗) as before it suffices to
check that the coordinate functions 𝑥𝑖 are mapped to the same sections of 𝒪𝑋 over 𝑋 ×𝑌 𝑉.
And this is exactly what it means that the diagram

𝑔−1ℎ𝑉
//

��

∏𝑖=1,…,𝑛 𝑔−1𝒪𝑌

∏ 𝑔♯

��
ℎ𝑋×𝑌𝑉

// ∏𝑖=1,…,𝑛 𝒪𝑋

commutes. Thus the lemma is proved. �

Here is a version for general schemes.

Theorem 38.40.5. Let 𝑋, 𝑌 be schemes. Let

(𝑔, 𝑔#) ∶ (Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋) ⟶ (Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑌)

be a morphism of locally ringed topoi. Then there exists a unique morphism of schemes 𝑓 ∶
𝑋 → 𝑌 such that (𝑔, 𝑔#) is isomorphic to (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯

𝑠𝑚𝑎𝑙𝑙). In other words, the construction

Sch ⟶ Locally ringed topoi, 𝑋 ⟶ (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋)

is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. You can prove this theorem by carefully adjusting the arguments of the proof of
Lemma 38.40.4 to the global setting. However, we want to indicate how we can glue the
result of that lemma to get a global morphism due to the rigidity provided by the result of
Lemma 38.40.2. Unfortunately, this is a bit messy.

Let us prove existence when 𝑌 is affine. In this case choose an affine open covering 𝑋 =
⋃ 𝑈𝑖. For each 𝑖 the inclusion morphism 𝑗𝑖 ∶ 𝑈𝑖 → 𝑋 induces a morphism of locally ringed
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topoi (𝑗𝑖,𝑠𝑚𝑎𝑙𝑙, 𝑗♯
𝑖,𝑠𝑚𝑎𝑙𝑙) ∶ (Sh(𝑈𝑖, ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑈𝑖

) → (Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋) by Lemma 38.40.1. We can
compose this with (𝑔, 𝑔♯) to obtain a morphism of locally ringed topoi

(𝑔, 𝑔♯) ∘ (𝑗𝑖,𝑠𝑚𝑎𝑙𝑙, 𝑗♯
𝑖,𝑠𝑚𝑎𝑙𝑙) ∶ (Sh(𝑈𝑖, ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑈𝑖

) → (Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋)

see Modules on Sites, Lemma 16.34.9. By Lemma 38.40.4 there exists a unique morphism
of schemes 𝑓𝑖 ∶ 𝑈𝑖 → 𝑌 and a 2-isomorphism

𝑡𝑖 ∶ (𝑓𝑖,𝑠𝑚𝑎𝑙𝑙, 𝑓♯
𝑖,𝑠𝑚𝑎𝑙𝑙) ⟶ (𝑔, 𝑔♯) ∘ (𝑗𝑖,𝑠𝑚𝑎𝑙𝑙, 𝑗♯

𝑖,𝑠𝑚𝑎𝑙𝑙).

Set 𝑈𝑖,𝑖′ = 𝑈𝑖 ∩ 𝑈𝑖′, and denote 𝑗𝑖,𝑖′ ∶ 𝑈𝑖,𝑖′ → 𝑈𝑖 the inclusion morphism. Since we have
𝑗𝑖 ∘ 𝑗𝑖,𝑖′ = 𝑗𝑖′ ∘ 𝑗𝑖′,𝑖 we see that

(𝑔, 𝑔♯) ∘ (𝑗𝑖,𝑠𝑚𝑎𝑙𝑙, 𝑗♯
𝑖,𝑠𝑚𝑎𝑙𝑙) ∘ (𝑗𝑖,𝑖′,𝑠𝑚𝑎𝑙𝑙, 𝑗♯

𝑖,𝑖′,𝑠𝑚𝑎𝑙𝑙) =

(𝑔, 𝑔♯) ∘ (𝑗𝑖′,𝑠𝑚𝑎𝑙𝑙, 𝑗♯
𝑖′,𝑠𝑚𝑎𝑙𝑙) ∘ (𝑗𝑖′,𝑖,𝑠𝑚𝑎𝑙𝑙, 𝑗♯

𝑖′,𝑖,𝑠𝑚𝑎𝑙𝑙)

Hence by uniqueness (see Lemma 38.40.3) we conclude that 𝑓𝑖 ∘ 𝑗𝑖,𝑖′ = 𝑓𝑖′ ∘ 𝑗𝑖′,𝑖, in other
words the morphisms of schemes 𝑓𝑖 = 𝑓 ∘ 𝑗𝑖 are the restrictions of a global morphism
of schemes 𝑓 ∶ 𝑋 → 𝑌. Consider the diagram of 2-isomorphisms (where we drop the
components ♯ to ease the notation)

𝑔 ∘ 𝑗𝑖,𝑠𝑚𝑎𝑙𝑙 ∘ 𝑗𝑖,𝑖′,𝑠𝑚𝑎𝑙𝑙

𝑡𝑖⋆id𝑗𝑖,𝑖′,𝑠𝑚𝑎𝑙𝑙 // 𝑓𝑠𝑚𝑎𝑙𝑙 ∘ 𝑗𝑖,𝑠𝑚𝑎𝑙𝑙 ∘ 𝑗𝑖,𝑖′,𝑠𝑚𝑎𝑙𝑙

𝑔 ∘ 𝑗𝑖′,𝑠𝑚𝑎𝑙𝑙 ∘ 𝑗𝑖′,𝑖,𝑠𝑚𝑎𝑙𝑙

𝑡𝑖′⋆id𝑗𝑖′,𝑖,𝑠𝑚𝑎𝑙𝑙 // 𝑓𝑠𝑚𝑎𝑙𝑙 ∘ 𝑗𝑖′,𝑠𝑚𝑎𝑙𝑙 ∘ 𝑗𝑖′,𝑖,𝑠𝑚𝑎𝑙𝑙

The notation ⋆ indicates horizontal composition, see Categories, Definition 4.26.1 in gen-
eral and Sites, Section 9.32 for our particular case. By the result of Lemma 38.40.2 this
diagram commutes. Hence for any sheaf 𝒢 on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 the isomorphisms 𝑡𝑖 ∶ 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒢|𝑈𝑖
→

𝑔−1𝒢|𝑈𝑖
agree over 𝑈𝑖,𝑖′ and we obtain a global isomorphism 𝑡 ∶ 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒢 → 𝑔−1𝒢. It is

clear that this isomorphism is functorial in 𝒢 and is compatible with the maps 𝑓♯
𝑠𝑚𝑎𝑙𝑙 and

𝑔♯ (because it is compatible with these maps locally). This proves the theorem in case 𝑌 is
affine.
In the general case, let 𝑉 ⊂ 𝑌 be an affine open. Then ℎ𝑉 is a subsheaf of the final sheaf ∗
on 𝑌 ́𝑒𝑡𝑎𝑙𝑒. As 𝑔 is exact we see that 𝑔−1ℎ𝑉 is a subsheaf of the final sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Hence
by Lemma 38.31.1 there exists an open subscheme 𝑊 ⊂ 𝑋 such that 𝑔−1ℎ𝑉 = ℎ𝑊. By
Modules on Sites, Lemma 16.34.11 there exists a commutative diagram of morphisms of
locally ringed topoi

(Sh(𝑊 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑊) //

𝑔′

��

(Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋)

𝑔
��

(Sh(𝑉 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑉) // (Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑌)

where the horizontal arrows are the localization morphisms (induced by the inclusion mor-
phisms 𝑉 → 𝑌 and 𝑊 → 𝑋) and where 𝑔′ is induced from 𝑔. By the result of the pre-
ceding paragraph we obtain a morphism of schemes 𝑓′ ∶ 𝑊 → 𝑉 and a 2-isomorphism
𝑡 ∶ (𝑓′

𝑠𝑚𝑎𝑙𝑙, (𝑓′
𝑠𝑚𝑎𝑙𝑙)

♯) → (𝑔′, (𝑔′)♯). Exactly as before these morphisms 𝑓′ (for varying
affine opens 𝑉 ⊂ 𝑌) agree on overlaps by uniqueness, so we get a morphism 𝑓 ∶ 𝑋 → 𝑌.
Moreover, the 2-isomorphisms 𝑡 are compatible on overlaps by Lemma 38.40.2 again and
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we obtain a global 2-isomorphism (𝑓𝑠𝑚𝑎𝑙𝑙, (𝑓𝑠𝑚𝑎𝑙𝑙)♯) → (𝑔, (𝑔)♯). as desired. Some details
omitted. �

38.41. Push and pull

Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Here is a list of conditions we will consider in
the following:

(A) For every étale morphism 𝑈 → 𝑋 and 𝑢 ∈ 𝑈 there exist an étale morphism
𝑉 → 𝑌 and a disjoint union decomposition 𝑋 ×𝑌 𝑉 = 𝑊 ⨿ 𝑊′ and a morphism
ℎ ∶ 𝑊 → 𝑈 over 𝑋 with 𝑢 in the image of ℎ.

(B) For every 𝑉 → 𝑌 étale, and every étale covering {𝑈𝑖 → 𝑋 ×𝑌 𝑉} there exists an
étale covering {𝑉𝑗 → 𝑉} such that for each 𝑗 we have 𝑋 ×𝑌 𝑉𝑗 = ∐ 𝑊𝑗𝑖 where
𝑊𝑖𝑗 → 𝑋 ×𝑌 𝑉 factors through 𝑈𝑖 → 𝑋 ×𝑌 𝑉 for some 𝑖.

(C) For every 𝑈 → 𝑋 étale, there exists a 𝑉 → 𝑌 étale and a surjective morphism
𝑋 ×𝑌 𝑉 → 𝑈 over 𝑋.

It turns out that each of these properties has meaning in terms of the behaviour of the functor
𝑓𝑠𝑚𝑎𝑙𝑙,∗. We will work this out in the next few sections.

38.42. Property (A)

Lemma 38.42.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume (A).
(1) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) reflects injections and surjections,
(2) 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ → ℱ is surjective for any abelian sheaf ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒,
(3) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) is faithful.

Proof. Let ℱ be an abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Let 𝑈 be an object of 𝑋 ́𝑒𝑡𝑎𝑙𝑒. By assumption we
can find a covering {𝑊𝑖 → 𝑈} in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 such that each 𝑊𝑖 is an open and closed subscheme
of 𝑋 ×𝑌 𝑉𝑖 for some object 𝑉𝑖 of 𝑌 ́𝑒𝑡𝑎𝑙𝑒. The sheaf condition shows that

ℱ(𝑈) ⊂ ∏ ℱ(𝑊𝑖)

and that ℱ(𝑊𝑖) is a direct summand of ℱ(𝑋 ×𝑌 𝑉𝑖) = 𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ(𝑉𝑖). Hence it is clear that
𝑓𝑠𝑚𝑎𝑙𝑙,∗ reflects injections.

Next, suppose that 𝑎 ∶ 𝒢 → ℱ is a map of abelian sheaves such that 𝑓𝑠𝑚𝑎𝑙𝑙,∗𝑎 is surjective.
Let 𝑠 ∈ ℱ(𝑈) with 𝑈 as above. With 𝑊𝑖, 𝑉𝑖 as above we see that it suffices to show that 𝑠|𝑊𝑖
is étale locally the image of a section of 𝒢 under 𝑎. Since ℱ(𝑊𝑖) is a direct summand of
ℱ(𝑋×𝑌 𝑉𝑖) it suffices to show that for any 𝑉 ∈ 𝑂𝑏(𝑌 ́𝑒𝑡𝑎𝑙𝑒) any element 𝑠 ∈ ℱ(𝑋×𝑌 𝑉) is étale
locally on 𝑋 ×𝑌 𝑉 the image of a section of 𝒢 under 𝑎. Since ℱ(𝑋 ×𝑌 𝑉) = 𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ(𝑉)
we see by assumption that there exists a covering {𝑉𝑗 → 𝑉} such that 𝑠 is the image of
𝑠𝑗 ∈ 𝑓𝑠𝑚𝑎𝑙𝑙,∗𝒢(𝑉𝑗) = 𝒢(𝑋 ×𝑌 𝑉𝑗). This proves 𝑓𝑠𝑚𝑎𝑙𝑙,∗ reflects surjections.

Parts (2), (3) follow formally from part (1), see Modules on Sites, Lemma 16.15.1. �

Lemma 38.42.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a separated locally quasi-finite morphism of schemes.
Then property (A) above holds.

Proof. Let 𝑈 → 𝑋 be an étale morphism and 𝑢 ∈ 𝑈. The geometric statement (A) reduces
directly to the case where 𝑈 and 𝑌 are affine schemes. Denote 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 the
images of 𝑢. Since 𝑋 → 𝑌 is locally quasi-finite, and 𝑈 → 𝑋 is locally quasi-finite (see
Morphisms, Lemma 24.35.6) we see that 𝑈 → 𝑌 is locally quasi-finite (see Morphisms,
Lemma 24.19.12). Moreover both 𝑋 → 𝑌 and 𝑈 → 𝑌 are separated. Thus More on
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Morphisms, Lemma 33.28.5 applies to both morphisms. This means we may pick an étale
neighbourhood (𝑉, 𝑣) → (𝑌, 𝑦) such that

𝑋 ×𝑌 𝑉 = 𝑊 ⨿ 𝑅, 𝑈 ×𝑌 𝑉 = 𝑊′ ⨿ 𝑅′

and points 𝑤 ∈ 𝑊, 𝑤′ ∈ 𝑊′ such that
(1) 𝑊, 𝑅 are open and closed in 𝑋 ×𝑌 𝑉,
(2) 𝑊′, 𝑅′ are open and closed in 𝑈 ×𝑌 𝑉,
(3) 𝑊 → 𝑉 and 𝑊′ → 𝑉 are finite,
(4) 𝑤, 𝑤′ map to 𝑣,
(5) 𝜅(𝑣) ⊂ 𝜅(𝑤) and 𝜅(𝑣) ⊂ 𝜅(𝑤′) are purely inseparable, and
(6) no other point of 𝑊 or 𝑊′ maps to 𝑣.

Here is a commutative diagram

𝑈

��

𝑈 ×𝑌 𝑉oo

��

𝑊′ ⨿ 𝑅′

��

oo

𝑋

��

𝑋 ×𝑌 𝑉oo

��

𝑊 ⨿ 𝑅oo

𝑌 𝑉oo

After shrinking 𝑉 we may assume that 𝑊′ maps into 𝑊: just remove the image the inverse
image of 𝑅 in 𝑊′; this is a closed set (as 𝑊′ → 𝑉 is finite) not containing 𝑣. Then 𝑊′ → 𝑊
is finite because both 𝑊 → 𝑉 and 𝑊′ → 𝑉 are finite. Hence 𝑊′ → 𝑊 is finite étale, and
there is exactly one point in the fibre over 𝑤 with 𝜅(𝑤) = 𝜅(𝑤′). Hence 𝑊′ → 𝑊 is an
isomorphism in an open neighbourhood 𝑊∘ of 𝑤, see Étale Morphisms, Lemma 37.14.2.
Since 𝑊 → 𝑉 is finite the image of 𝑊 ⧵ 𝑊∘ is a closed subset 𝑇 of 𝑉 not containing 𝑣.
Thus after replacing 𝑉 by 𝑉 ⧵ 𝑇 we may assume that 𝑊′ → 𝑊 is an isomorphism. Now the
decomposition 𝑋 ×𝑌 𝑉 = 𝑊 ⨿ 𝑅 and the morphism 𝑊 → 𝑈 are as desired and we win. �

Lemma 38.42.3. Let 𝑓 ∶ 𝑋 → 𝑌 be an integral morphism of schemes. Then property (A)
holds.

Proof. Let 𝑈 → 𝑋 be étale, and let 𝑢 ∈ 𝑈 be a point. We have to find 𝑉 → 𝑌 étale, a
disjoint union decomposition 𝑋 ×𝑌 𝑉 = 𝑊 ⨿ 𝑊′ and an 𝑋-morphism 𝑊 → 𝑈 with 𝑢 in
the image. We may shrink 𝑈 and 𝑌 and assume 𝑈 and 𝑌 are affine. In this case also 𝑋 is
affine, since an integral morphism is affine by definition. Write 𝑌 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐵)
and 𝑈 = 𝑆𝑝𝑒𝑐(𝐶). Then 𝐴 → 𝐵 is an integral ring map, and 𝐵 → 𝐶 is an étale ring map.
By Algebra, Lemma 7.132.3 we can find a finite 𝐴-subalgebra 𝐵′ ⊂ 𝐵 and an étale ring
map 𝐵′ → 𝐶′ such that 𝐶 = 𝐵 ⊗𝐵′ 𝐶′. Thus the question reduces to the étale morphism
𝑈′ = 𝑆𝑝𝑒𝑐(𝐶′) → 𝑋′ = 𝑆𝑝𝑒𝑐(𝐵′) over the finite morphism 𝑋′ → 𝑌. In this case the result
follows from Lemma 38.42.2. �

Lemma 38.42.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Denote 𝑓𝑠𝑚𝑎𝑙𝑙 ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) →
Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) the associated morphism of small étale topoi. Assume at least one of the following

(1) 𝑓 is integral, or
(2) 𝑓 is separated and locally quasi-finite.

Then the functor 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) has the following properties
(1) the map 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ → ℱ is always surjective,
(2) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ is faithful, and
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(3) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ reflects injections and surjections.

Proof. Combine Lemmas 38.42.2, 38.42.3, and 38.42.1. �

38.43. Property (B)

Lemma 38.43.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume (B) holds. Then the
functor 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) transforms surjections into surjections.

Proof. This follows from Sites, Lemma 9.36.2. �

Lemma 38.43.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Suppose

(1) 𝑉 → 𝑌 is an étale morphism of schemes,
(2) {𝑈𝑖 → 𝑋 ×𝑌 𝑉} is an étale covering, and
(3) 𝑣 ∈ 𝑉 is a point.

Assume that for any such data there exists an étale neighbourhood (𝑉′, 𝑣′) → (𝑉, 𝑣), a
disjoint union decomposition 𝑋 ×𝑌 𝑉′ = ∐ 𝑊′

𝑖 , and morphisms 𝑊′
𝑖 → 𝑈𝑖 over 𝑋 ×𝑌 𝑉.

Then property (B) holds.

Proof. Omitted. �

Lemma 38.43.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite morphism of schemes. Then property (B) holds.

Proof. Consider 𝑉 → 𝑌 étale, {𝑈𝑖 → 𝑋×𝑌𝑉} an étale covering, and 𝑣 ∈ 𝑉. We have to find
a 𝑉′ → 𝑉 and decomposition andmaps as in Lemma 38.43.2. Wemay shrink 𝑉 and 𝑌, hence
we may assume that 𝑉 and 𝑌 are affine. Since 𝑋 is finite over 𝑌, this also implies that 𝑋 is
affine. During the proof we may (finitely often) replace (𝑉, 𝑣) by an étale neighbourhood
(𝑉′, 𝑣′) and correspondingly the covering {𝑈𝑖 → 𝑋 ×𝑌 𝑉} by {𝑉′ ×𝑉 𝑈𝑖 → 𝑋 ×𝑌 𝑉′}.

Since 𝑋 ×𝑌 𝑉 → 𝑉 is finite there exist finitely many (pairwise distinct) points 𝑥1, … , 𝑥𝑛 ∈
𝑋 ×𝑌 𝑉 mapping to 𝑣. We may apply More on Morphisms, Lemma 33.28.5 to 𝑋 ×𝑌 𝑉 → 𝑉
and the points 𝑥1, … , 𝑥𝑛 lying over 𝑣 and find an étale neighbourhood (𝑉′, 𝑣′) → (𝑉, 𝑣)
such that

𝑋 ×𝑌 𝑉′ = 𝑅 ⨿ ∐ 𝑇𝑎

with 𝑇𝑎 → 𝑉′ finite with exactly one point 𝑝𝑎 lying over 𝑣′ and moreover 𝜅(𝑣′) ⊂ 𝜅(𝑝𝑎)
purely inseparable, and such that 𝑅 → 𝑉′ has empty fibre over 𝑣′. Because 𝑋 → 𝑌 is finite,
also 𝑅 → 𝑉′ is finite. Hence after shrinking 𝑉′ we may assume that 𝑅 = ∅. Thus we
may assume that 𝑋 ×𝑌 𝑉 = 𝑋1 ⨿ … ⨿ 𝑋𝑛 with exactly one point 𝑥𝑙 ∈ 𝑋𝑙 lying over 𝑣
with moreover 𝜅(𝑣) ⊂ 𝜅(𝑥𝑙) purely inseparable. Note that this property is preserved under
refinement of the étale neighbourhood (𝑉, 𝑣).

For each 𝑙 choose an 𝑖𝑙 and a point 𝑢𝑙 ∈ 𝑈𝑖𝑙 mapping to 𝑥𝑙. Now we apply property (A) for
the finite morphism 𝑋 ×𝑌 𝑉 → 𝑉 and the étale morphisms 𝑈𝑖𝑙 → 𝑋 ×𝑌 𝑉 and the points
𝑢𝑙. This is permissible by Lemma 38.42.3 This gives produces an étale neighbourhood
(𝑉′, 𝑣′) → (𝑉, 𝑣) and decompositions

𝑋 ×𝑌 𝑉′ = 𝑊𝑙 ⨿ 𝑅𝑙
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and 𝑋-morphisms 𝑎𝑙 ∶ 𝑊𝑙 → 𝑈𝑖𝑙 whose image contains 𝑢𝑖𝑙. Here is a picture:

𝑈𝑖𝑙

��
𝑊𝑙

33

// 𝑊𝑙 ⨿ 𝑅𝑙 𝑋 ×𝑌 𝑉′ //

��

𝑋 ×𝑌 𝑉 //

��

𝑋

��
𝑉′ // 𝑉 // 𝑌

After replacing (𝑉, 𝑣) by (𝑉′, 𝑣′) we conclude that each 𝑥𝑙 is contained in an open and
closed neighbourhood 𝑊𝑙 such that the inclusion morphism 𝑊𝑙 → 𝑋 ×𝑌 𝑉 factors through
𝑈𝑖 → 𝑋 ×𝑌 𝑉 for some 𝑖. Replacing 𝑊𝑙 by 𝑊𝑙 ∩ 𝑋𝑙 we see that these open and closed sets
are disjoint and moreover that {𝑥1, … , 𝑥𝑛} ⊂ 𝑊1 ∪ … ∪ 𝑊𝑛. Since 𝑋 ×𝑌 𝑉 → 𝑉 is finite
we may shrink 𝑉 and assume that 𝑋 ×𝑌 𝑉 = 𝑊1 ⨿ … ⨿ 𝑊𝑛 as desired. �

Lemma 38.43.4. Let 𝑓 ∶ 𝑋 → 𝑌 be an integral morphism of schemes. Then property (B)
holds.

Proof. Consider 𝑉 → 𝑌 étale, {𝑈𝑖 → 𝑋×𝑌𝑉} an étale covering, and 𝑣 ∈ 𝑉. We have to find
a 𝑉′ → 𝑉 and decomposition andmaps as in Lemma 38.43.2. Wemay shrink 𝑉 and 𝑌, hence
we may assume that 𝑉 and 𝑌 are affine. Since 𝑋 is integral over 𝑌, this also implies that 𝑋
and 𝑋×𝑌𝑉 are affine. Wemay refine the covering {𝑈𝑖 → 𝑋×𝑌𝑉}, and hence wemay assume
that {𝑈𝑖 → 𝑋 ×𝑌 𝑉}𝑖=1,…,𝑛 is a standard étale covering. Write 𝑌 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐵),
𝑉 = 𝑆𝑝𝑒𝑐(𝐶), and 𝑈𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖). Then 𝐴 → 𝐵 is an integral ring map, and 𝐵 ⊗𝐴 𝐶 → 𝐵𝑖
are étale ring maps. By Algebra, Lemma 7.132.3 we can find a finite 𝐴-subalgebra 𝐵′ ⊂ 𝐵
and an étale ring map 𝐵′ ⊗𝐴 𝐶 → 𝐵′

𝑖 for 𝑖 = 1, … , 𝑛 such that 𝐵𝑖 = 𝐵 ⊗𝐵′ 𝐵′
𝑖 . Thus the

question reduces to the étale covering {𝑆𝑝𝑒𝑐(𝐵′
𝑖 ) → 𝑋′ ×𝑌 𝑉}𝑖=1,…,𝑛 with 𝑋′ = 𝑆𝑝𝑒𝑐(𝐵′)

finite over 𝑌. In this case the result follows from Lemma 38.43.3. �

Lemma 38.43.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume 𝑓 is integral (for
example finite). Then

(1) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ transforms surjections into surjections (on sheaves of sets and on abelian
sheaves),

(2) 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ → ℱ is surjective for any abelian sheaf ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒,

(3) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) is faithful and reflects injections and surjec-
tions, and

(4) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) is exact.

Proof. Parts (2), (3) we have seen in Lemma 38.42.4. Part (1) follows from Lemmas
38.43.4 and 38.43.1. Part (4) is a consequence of part (1), see Modules on Sites, Lemma
16.15.2. �

38.44. Property (C)

Lemma 38.44.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume (C) holds. Then the
functor 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) reflects injections and surjections.

Proof. Follows from Sites, Lemma 9.36.4. We omit the verification that property (C) im-
plies that the functor 𝑌 ́𝑒𝑡𝑎𝑙𝑒 → 𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝑉 ↦ 𝑋 ×𝑌 𝑉 satisfies the assumption of Sites, Lemma
9.36.4. �
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Remark 38.44.2. Property (C) appears to be a very strong property, but the following
example shows that it does not imply that 𝑓𝑠𝑚𝑎𝑙𝑙,∗ is exact. Let 𝐾 be an algebraic closure
of 𝑘(𝑥, 𝑦) where 𝑘 is a field. Let 𝑅 be the integral closure of 𝑘[𝑥, 𝑦] in 𝐾. Set 𝑌 = 𝑆𝑝𝑒𝑐(𝑅)
and 𝑋 = 𝑌 ⧵ {0}. Then property (C) holds for the morphism 𝑗 ∶ 𝑋 → 𝑌, as every étale
morphism 𝑈 → 𝑋 is a local isomorphism. But 𝑗𝑠𝑚𝑎𝑙𝑙,∗ is not exact on Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒). Details
omitted. Hint: In this example étale sheaves are the same thing as Zariski sheaves.

Lemma 38.44.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that for any 𝑉 → 𝑌
étale we have that

(1) 𝑋 ×𝑌 𝑉 → 𝑉 has property (C), and
(2) 𝑋 ×𝑌 𝑉 → 𝑉 is closed.

Then the functor 𝑌 ́𝑒𝑡𝑎𝑙𝑒 → 𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝑉 ↦ 𝑋 ×𝑌 𝑉 is almost cocontinuous, see Sites, Definition
9.37.3.

Proof. Let 𝑉 → 𝑌 be an object of 𝑌 ́𝑒𝑡𝑎𝑙𝑒 and let {𝑈𝑖 → 𝑋 ×𝑌 𝑉}𝑖∈𝐼 be a covering of 𝑋 ́𝑒𝑡𝑎𝑙𝑒.
By assumption (1) for each 𝑖 we can find an étale morphism ℎ𝑖 ∶ 𝑉𝑖 → 𝑉 and a surjective
morphism 𝑋 ×𝑌 𝑉𝑖 → 𝑈𝑖 over 𝑋 ×𝑌 𝑉. Note that ⋃ ℎ𝑖(𝑉𝑖) ⊂ 𝑉 is an open set containing
the closed set 𝑍 = Im(𝑋 ×𝑌 𝑉 → 𝑉). Let ℎ0 ∶ 𝑉0 = 𝑉 ⧵ 𝑍 → 𝑉 be the open immersion.
It is clear that {𝑉𝑖 → 𝑉}𝑖∈𝐼∪{0} is an étale covering such that for each 𝑖 ∈ 𝐼 ∪ {0} we have
either 𝑉𝑖 ×𝑌 𝑋 = ∅ (namely if 𝑖 = 0), or 𝑉𝑖 ×𝑌 𝑋 → 𝑉 ×𝑌 𝑋 factors through 𝑈𝑖 → 𝑋 ×𝑌 𝑉
(if 𝑖≠0). Hence the functor 𝑌 ́𝑒𝑡𝑎𝑙𝑒 → 𝑋 ́𝑒𝑡𝑎𝑙𝑒 is almost cocontinuous. �

Lemma 38.44.4. Let 𝑓 ∶ 𝑋 → 𝑌 be an integral morphism of schemes which defines a
homeomorphism of 𝑋 with a closed subset of 𝑌. Then property (C) holds.

Proof. Let 𝑔 ∶ 𝑈 → 𝑋 be an étale morphism. We need to find an object 𝑉 → 𝑌 of 𝑌 ́𝑒𝑡𝑎𝑙𝑒
and a surjective morphism 𝑋 ×𝑌 𝑉 → 𝑈 over 𝑋. Suppose that for every 𝑢 ∈ 𝑈 we can find
an object 𝑉𝑢 → 𝑌 of 𝑌 ́𝑒𝑡𝑎𝑙𝑒 and a morphism ℎ𝑢 ∶ 𝑋 ×𝑌 𝑉𝑢 → 𝑈 over 𝑋 with 𝑢 ∈ Im(ℎ𝑢).
Then we can take 𝑉 = ∐ 𝑉𝑢 and ℎ = ∐ ℎ𝑢 and we win. Hence given a point 𝑢 ∈ 𝑈
we find a pair (𝑉𝑢, ℎ𝑢) as above. To do this we may shrink 𝑈 and assume that 𝑈 is affine.
In this case 𝑔 ∶ 𝑈 → 𝑋 is locally quasi-finite. Let 𝑔−1(𝑔({𝑢})) = {𝑢, 𝑢2, … , 𝑢𝑛}. Since
there are no specializations 𝑢𝑖  𝑢 we may replace 𝑈 by an affine neighbourhood so that
𝑔−1(𝑔({𝑢})) = {𝑢}.
The image 𝑔(𝑈) ⊂ 𝑋 is open, hence 𝑓(𝑔(𝑈)) is locally closed in 𝑌. Choose an open 𝑉 ⊂ 𝑌
such that 𝑓(𝑔(𝑈)) = 𝑓(𝑋) ∩ 𝑉. It follows that 𝑔 factors through 𝑋 ×𝑌 𝑉 and that the resulting
{𝑈 → 𝑋 ×𝑌 𝑉} is an étale covering. Since 𝑓 has property (B) , see Lemma 38.43.4, we see
that there exists an étale covering {𝑉𝑗 → 𝑉} such that 𝑋 ×𝑌 𝑉𝑗 → 𝑋 ×𝑌 𝑉 factor through 𝑈.
This implies that 𝑉′ = ∐ 𝑉𝑗 is étale over 𝑌 and that there is a morphism ℎ ∶ 𝑋 ×𝑌 𝑉′ → 𝑈
whose image surjects onto 𝑔(𝑈). Since 𝑢 is the only point in its fibre it must be in the image
of ℎ and we win. �

We urge the reader to think of the following lemma as a way station4 on the journey towards
the ultimate truth regarding 𝑓𝑠𝑚𝑎𝑙𝑙,∗ for integral universally injective morphisms.

Lemma 38.44.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume that 𝑓 is universally
injective and integral (for example a closed immersion). Then

(1) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) reflects injections and surjections,
(2) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) commutes with pushouts and coequalizers (and

more generally finite, nonempty, connected colimits),

4A way station is a place where people stop to eat and rest when they are on a long journey.
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(3) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ transforms surjections into surjections (on sheaves of sets and on abelian
sheaves),

(4) the map 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ → ℱ is surjective for any sheaf (of sets or of abelian

groups) ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒,
(5) the functor 𝑓𝑠𝑚𝑎𝑙𝑙,∗ is faithful (on sheaves of sets and on abelian sheaves),
(6) 𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) is exact, and
(7) the functor 𝑌 ́𝑒𝑡𝑎𝑙𝑒 → 𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝑉 ↦ 𝑋 ×𝑌 𝑉 is almost cocontinuous.

Proof. By Lemmas 38.42.3, 38.43.4 and 38.44.4 we know that the morphism 𝑓 has prop-
erties (A), (B), and (C). Moreover, by Lemma 38.44.3 we know that the functor 𝑌 ́𝑒𝑡𝑎𝑙𝑒 →
𝑋 ́𝑒𝑡𝑎𝑙𝑒 is almost cocontinuous. Now we have

(1) property (C) implies (1) by Lemma 38.44.1,
(2) almost continuous implies (2) by Sites, Lemma 9.37.6,
(3) property (B) implies (3) by Lemma 38.43.1.

Properties (4), (5), and (6) follow formally from the first three, see Sites, Lemma 9.36.1 and
Modules on Sites, Lemma 16.15.2. Property (7) we saw above. �

38.45. Topological invariance of the small étale site

In the following theorem we show that the small étale site is a topological invariant in the
following sense: If 𝑓 ∶ 𝑋 → 𝑌 is a morphism of schemes which is a universal homeomor-
phism, then 𝑋 ́𝑒𝑡𝑎𝑙𝑒 ≅ 𝑌 ́𝑒𝑡𝑎𝑙𝑒 as sites. This improves the result of Étale Morphisms, Theorem
37.15.2.

Theorem 38.45.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Assume 𝑓 is integral,
universally injective and surjective (i.e., 𝑓 is a universal homeomorphism, see Morphisms,
Lemma 24.43.3). The functor

𝑉 ⟼ 𝑉𝑋 = 𝑋 ×𝑌 𝑉
defines an equivalence of categories

{schemes 𝑉 étale over 𝑌} ↔ {schemes 𝑈 étale over 𝑋}

Proof. We claim that it suffices to prove that the functor defines an equivalence
(38.45.1.1) {affine schemes 𝑉 étale over 𝑌} ↔ {affine schemes 𝑈 étale over 𝑋}
when 𝑋 and 𝑌 are affine. We omit the proof of this claim.
Assume 𝑋 and 𝑌 affine. Let us prove (38.45.1.1) is fully faithful. Suppose that 𝑉, 𝑉′ are
affine schemes étale over 𝑌, and that 𝜑 ∶ 𝑉𝑋 → 𝑉′

𝑋 is a morphism over 𝑋. To prove that
𝜑 = 𝜓𝑋 for some 𝜓 ∶ 𝑉 → 𝑉′ over 𝑌 we may work locally on 𝑉. The graph

Γ𝜑 ⊂ (𝑉 ×𝑌 𝑉′)𝑋

of 𝜑 is an open and closed subscheme, see Étale Morphisms, Proposition 37.6.1. Since 𝑓
is a universal homeomorphism we see that there exists an open and closed subscheme Γ ⊂
𝑉×𝑌 𝑉′ with Γ𝑋 = Γ𝜑. We see that Γ is an affine scheme endowed with an étale, universally
injective, and surjective morphism Γ → 𝑉. This implies that Γ → 𝑉 is an isomorphism (see
Étale Morphisms, Theorem 37.14.1), and hence Γ is the graph of a morphism 𝜓 ∶ 𝑉 → 𝑉′

over 𝑌 as desired.
Let us prove (38.45.1.1) is essentially surjective. Let 𝑈 → 𝑋 be an affine scheme étale
over 𝑋. We have to find 𝑉 → 𝑌 étale (and affine) such that 𝑋 ×𝑌 𝑉 is isomorphic to 𝑈 over
𝑋. Note that an étale morphism of affines has universally bounded fibres, see Morphisms,
Lemma 24.35.6 and Lemma 24.48.8. Hence we can do induction on the integer 𝑛 bounding

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04DZ


2048 38. ÉTALE COHOMOLOGY

the degree of the fibres of 𝑈 → 𝑋. See Morphisms, Lemma 24.48.7 for a description of
this integer in the case of an étale morphism. If 𝑛 = 1, then 𝑈 → 𝑋 is an open immersion
(see Étale Morphisms, Theorem 37.14.1), and the result is clear. Assume 𝑛 > 1.
By Lemma 38.44.4 there exists an étale morphism of schemes 𝑊 → 𝑌 and a surjective
morphism 𝑊𝑋 → 𝑈 over 𝑋. As 𝑈 is quasi-compact we may replace 𝑊 by a disjoint union
of finitely many affine opens of 𝑊, hence we may assume that 𝑊 is affine as well. Here is
a diagram

𝑈

��

𝑈 ×𝑌 𝑊oo

��

𝑊𝑋 ⨿ 𝑅

𝑋

��

𝑊𝑋
oo

��
𝑌 𝑊oo

The disjoint union decomposition arises because by construction the étale morphism of
affine schemes 𝑈 ×𝑌 𝑊 → 𝑊𝑋 has a section. OK, and now we see that the morphism
𝑅 → 𝑋 ×𝑌 𝑊 is an étale morphism of affine schemes whose fibres have degree universally
bounded by 𝑛−1. Hence by induction assumption there exists a scheme 𝑉′ → 𝑊 étale such
that 𝑅 ≅ 𝑊𝑋 ×𝑊 𝑉′. Taking 𝑉″ = 𝑊 ⨿ 𝑉′ we find a scheme 𝑉″ étale over 𝑊 whose base
change to 𝑊𝑋 is isomorphic to 𝑈 ×𝑌 𝑊 over 𝑋 ×𝑌 𝑊.
At this point we can use descent to find 𝑉 over 𝑌 whose base change to 𝑋 is isomorphic to
𝑈 over 𝑋. Namely, by the fully faithfulness of the functor (38.45.1.1) corresponding to the
universal homeomorphism 𝑋 ×𝑌 (𝑊 ×𝑌 𝑊) → (𝑊 ×𝑌 𝑊) there exists a unique isomorphism
𝜑 ∶ 𝑉″ ×𝑌 𝑊 → 𝑊 ×𝑌 𝑉″ whose base change to 𝑋 ×𝑌 (𝑊 ×𝑌 𝑊) is the canonical descent
datum for 𝑈 ×𝑌 𝑊 over 𝑋 ×𝑌 𝑊. In particular 𝜑 satisfies the cocycle condition. Hence
by Descent, Lemma 31.33.1 we see that 𝜑 is effective (recall that all schemes above are
affine). Thus we obtain 𝑉 → 𝑌 and an isomorphism 𝑉″ ≅ 𝑊 ×𝑌 𝑉 such that the canonical
descent datum on 𝑊×𝑌 𝑉/𝑊/𝑌 agrees with 𝜑. Note that 𝑉 → 𝑌 is étale, by Descent, Lemma
31.19.27. Moreover, there is an isomorphism 𝑉𝑋 ≅ 𝑈 which comes from descending the
isomorphism

𝑉𝑋 ×𝑋 𝑊𝑋 = 𝑋 ×𝑌 𝑉 ×𝑌 𝑊 = (𝑋 ×𝑌 𝑊) ×𝑊 (𝑊 ×𝑌 𝑉) ≅ 𝑊𝑋 ×𝑊 𝑉″ ≅ 𝑈 ×𝑌 𝑊
which we have by construction. Some details omitted. �

Remark 38.45.2. In the situation of Theorem 38.45.1 it is also true that 𝑉 ↦ 𝑉𝑋 induces an
equivalence between those étale morphisms 𝑉 → 𝑌 with 𝑉 affine and those étale morphisms
𝑈 → 𝑋 with 𝑈 affine. This follows for example from Limits, Proposition 27.7.2.

38.46. Closed immersions and pushforward

Before stating and proving Proposition 38.46.4 in its correct generality we briefly state and
prove it for closed immersions. Namely, some of the preceding arguments are quite a bit
easier to follow in the case of a closed immersion and so we repeat them here in their
simplified form.
In the rest of this section 𝑖 ∶ 𝑍 → 𝑋 is a closed immersion. The functor

Sch/𝑋 ⟶ Sch/𝑍, 𝑈 ⟼ 𝑈𝑍 = 𝑍 ×𝑋 𝑈
will be denoted 𝑈 ↦ 𝑈𝑍 as indicated. Since being a closed immersion is preserved under
arbitrary base change the scheme 𝑈𝑍 is a closed subscheme of 𝑈.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05YX
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Lemma 38.46.1. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of schemes. Let 𝑈, 𝑈′ be schemes
étale over 𝑋. Let ℎ ∶ 𝑈𝑍 → 𝑈′

𝑍 be a morphism over 𝑍. Then there exists a diagram

𝑈 𝑊𝑎oo 𝑏 // 𝑈′

such that 𝑎𝑍 ∶ 𝑊𝑍 → 𝑈𝑍 is an isomorphism and ℎ = 𝑏𝑍 ∘ (𝑎𝑍)−1.

Proof. Consider the scheme 𝑀 = 𝑈 ×𝑌 𝑈′. The graph Γℎ ⊂ 𝑀𝑍 of ℎ is open. This is
true for example as Γℎ is the image of a section of the étale morphism pr1,𝑍 ∶ 𝑀𝑍 → 𝑈𝑍,
see Étale Morphisms, Proposition 37.6.1. Hence there exists an open subscheme 𝑊 ⊂ 𝑀
whose intersection with the closed subset 𝑀𝑍 is Γℎ. Set 𝑎 = pr1|𝑊 and 𝑏 = pr2|𝑊. �

Lemma 38.46.2. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of schemes. Let 𝑉 → 𝑍 be an étale
morphism of schemes. There exist étale morphisms 𝑈𝑖 → 𝑋 and morphisms 𝑈𝑖,𝑍 → 𝑉 such
that {𝑈𝑖,𝑍 → 𝑉} is a Zariski covering of 𝑉.

Proof. Since we only have to find a Zariski covering of 𝑉 consisting of schemes of the form
𝑈𝑍 with 𝑈 étale over 𝑋, we may Zariski localize on 𝑋 and 𝑉. Hence we may assume 𝑋
and 𝑉 affine. In the affine case this is Algebra, Lemma 7.132.10. �

If 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is a geometric point of 𝑋, then either 𝑥 factors (uniquely) through the
closed subscheme 𝑍, or 𝑍𝑥 = ∅. If 𝑥 factors through 𝑍 we say that 𝑥 is a geometric point
of 𝑍 (because it is) and we use the notation ``𝑥 ∈ 𝑍'' to indicate this.

Lemma 38.46.3. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of schemes. Let 𝒢 be a sheaf of
sets on 𝑍 ́𝑒𝑡𝑎𝑙𝑒. Let 𝑥 be a geometric point of 𝑋. Then

(𝑖𝑠𝑚𝑎𝑙𝑙,∗𝒢)𝑥 = {
∗ if 𝑥∉𝑍

ℱ𝑥 if 𝑥 ∈ 𝑍
where ∗ denotes a singleton set.

Proof. Note that 𝑖𝑠𝑚𝑎𝑙𝑙,∗𝒢|𝑈 ́𝑒𝑡𝑎𝑙𝑒
= ∗ is the final object in the category of étale sheaves on 𝑈,

i.e., the sheaf which associates a singleton set to each scheme étale over 𝑈. This explains
the value of (𝑖𝑠𝑚𝑎𝑙𝑙,∗𝒢)𝑥 if 𝑥∉𝑍.

Next, suppose that 𝑥 ∈ 𝑍. Note that
(𝑖𝑠𝑚𝑎𝑙𝑙,∗𝒢)𝑥 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) 𝒢(𝑈𝑍)

and on the other hand
𝒢𝑥 = 𝑐𝑜𝑙𝑖𝑚(𝑉,𝑣) 𝒢(𝑉).

Let 𝒞1 = {(𝑈, 𝑢)}𝑜𝑝𝑝 be the opposite of the category of étale neighbourhoods of 𝑥 in 𝑋,
and let 𝒞2 = {(𝑉, 𝑣)}𝑜𝑝𝑝 be the opposite of the category of étale neighbourhoods of 𝑥 in 𝑍.
The canonical map

𝒢𝑥 ⟶ (𝑖𝑠𝑚𝑎𝑙𝑙,∗𝒢)𝑥
corresponds to the functor 𝐹 ∶ 𝒞1 → 𝒞2, 𝐹(𝑈, 𝑢) = (𝑈𝑍, 𝑥). Now Lemmas 38.46.2 and
38.46.1 imply that 𝒞1 is cofinal in 𝒞2, see Categories, Definition 4.17.5. Hence it follows
that the displayed arrow is an isomorphism, see Categories, Lemma 4.17.6. �

Proposition 38.46.4. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of schemes.
(1) The functor

𝑖𝑠𝑚𝑎𝑙𝑙,∗ ∶ Sh(𝑍 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒)
is fully faithful and its essential image is those sheaves of sets ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 whose
restriction to 𝑋 ⧵ 𝑍 is isomorphic to ∗, and

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04FV
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(2) the functor
𝑖𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑍 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒)

is fully faithful and its essential image is those abelian sheaves on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 whose
support is contained in 𝑍.

In both cases 𝑖−1
𝑠𝑚𝑎𝑙𝑙 is a left inverse to the functor 𝑖𝑠𝑚𝑎𝑙𝑙,∗.

Proof. Let's discuss the case of sheaves of sets. For any sheaf 𝒢 on 𝑍 the morphism
𝑖−1
𝑠𝑚𝑎𝑙𝑙𝑖𝑠𝑚𝑎𝑙𝑙,∗𝒢 → 𝒢 is an isomorphism by Lemma 38.46.3 (and Theorem 38.29.10). This
implies formally that 𝑖𝑠𝑚𝑎𝑙𝑙,∗ is fully faithful, see Sites, Lemma 9.36.1. It is clear that
𝑖𝑠𝑚𝑎𝑙𝑙,∗𝒢|𝑈 ́𝑒𝑡𝑎𝑙𝑒

≅ ∗ where 𝑈 = 𝑋 ⧵ 𝑍. Conversely, suppose that ℱ is a sheaf of sets on
𝑋 such that ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

≅ ∗. Consider the adjunction mapping

ℱ ⟶ 𝑖𝑠𝑚𝑎𝑙𝑙,∗𝑖−1
𝑠𝑚𝑎𝑙𝑙ℱ

Combining Lemmas 38.46.3 and 38.36.2 we see that it is an isomorphism. This finishes
the proof of (1). The proof of (2) is identical. �

38.47. Integral universally injective morphisms

Here is the general version of Proposition 38.46.4.

Proposition 38.47.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes which is integral and
universally injective.

(1) The functor
𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒)

is fully faithful and its essential image is those sheaves of sets ℱ on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 whose
restriction to 𝑌 ⧵ 𝑓(𝑋) is isomorphic to ∗, and

(2) the functor
𝑓𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒)

is fully faithful and its essential image is those abelian sheaves on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 whose
support is contained in 𝑓(𝑋).

In both cases 𝑓−1
𝑠𝑚𝑎𝑙𝑙 is a left inverse to the functor 𝑓𝑠𝑚𝑎𝑙𝑙,∗.

Proof. We may factor 𝑓 as

𝑋 ℎ // 𝑍 𝑖 // 𝑌
where ℎ is integral, universally injective and surjective and 𝑖 ∶ 𝑍 → 𝑌 is a closed immer-
sion. Apply Proposition 38.46.4 to 𝑖 and apply Theorem 38.45.1 to ℎ. �

38.48. Big sites and pushforward

In this section we prove some technical results on 𝑓𝑏𝑖𝑔,∗ for certain types of morphisms of
schemes.

Lemma 38.48.1. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let 𝑓 ∶ 𝑋 → 𝑌 be a
monomorphism of schemes. Then the canonical map 𝑓−1

𝑏𝑖𝑔𝑓𝑏𝑖𝑔,∗ℱ → ℱ is an isomorphism
for any sheaf ℱ on (Sch/𝑋)𝜏.

Proof. In this case the functor (Sch/𝑋)𝜏 → (Sch/𝑌)𝜏 is continuous, cocontinuous and fully
faithful. Hence the result follows from Sites, Lemma 9.19.7. �
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Remark 38.48.2. In the situation of Lemma 38.48.1 it is true that the canonical map ℱ →
𝑓−1

𝑏𝑖𝑔𝑓𝑏𝑖𝑔!ℱ is an isomorphism for any sheaf of sets ℱ on (Sch/𝑋)𝜏. The proof is the same.
This also holds for sheaves of abelian groups. However, note that the functor 𝑓𝑏𝑖𝑔! for
sheaves of abelian groups is defined in Modules on Sites, Section 16.16 and is in general
different from 𝑓𝑏𝑖𝑔! on sheaves of sets. The result for sheaves of abelian groups follows
from Modules on Sites, Lemma 16.16.4.

Lemma 38.48.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a closed immersion of schemes. Let 𝑈 → 𝑋 be a
syntomic (resp. smooth, resp. étale) morphism. Then there exist syntomic (resp. smooth,
resp. étale) morphisms 𝑉𝑖 → 𝑌 and morphisms 𝑉𝑖 ×𝑌 𝑋 → 𝑈 such that {𝑉𝑖 ×𝑌 𝑋 → 𝑈} is
a Zariski covering of 𝑈.

Proof. Let us prove the lemma when 𝜏 = 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐. The question is local on 𝑈. Thus
we may assume that 𝑈 is an affine scheme mapping into an affine of 𝑌. Hence we reduce
to proving the following case: 𝑌 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐴/𝐼), and 𝑈 = 𝑆𝑝𝑒𝑐(𝐵), where
𝐴/𝐼 → 𝐵 be a syntomic ring map. By Algebra, Lemma 7.125.19 we can find elements
𝑔𝑖 ∈ 𝐵 such that 𝐵𝑔𝑖

= 𝐴𝑖/𝐼𝐴𝑖 for certain syntomic ring maps 𝐴 → 𝐴𝑖. This proves
the lemma in the syntomic case. The proof of the smooth case is the same except it uses
Algebra, Lemma 7.126.19. In the étale case use Algebra, Lemma 7.132.10. �

Lemma 38.48.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a closed immersion of schemes. Let {𝑈𝑖 → 𝑋}
be a syntomic (resp. smooth, resp. étale) covering. There exists a syntomic (resp. smooth,
resp. étale) covering {𝑉𝑗 → 𝑌} such that for each 𝑗, either 𝑉𝑗 ×𝑌 𝑋 = ∅, or the morphism
𝑉𝑗 ×𝑌 𝑋 → 𝑋 factors through 𝑈𝑖 for some 𝑖.

Proof. For each 𝑖 we can choose syntomic (resp. smooth, resp. étale) morphisms 𝑔𝑖𝑗 ∶
𝑉𝑖𝑗 → 𝑌 and morphisms 𝑉𝑖𝑗 ×𝑌 𝑋 → 𝑈𝑖 over 𝑋, such that {𝑉𝑖𝑗 ×𝑌 𝑋 → 𝑈𝑖} are Zariski
coverings, see Lemma 38.48.3. This in particular implies that ⋃𝑖𝑗 𝑔𝑖𝑗(𝑉𝑖𝑗) contains the
closed subset 𝑓(𝑋). Hence the family of syntomic (resp. smooth, resp. étale) maps 𝑔𝑖𝑗
together with the open immersion 𝑌 ⧵ 𝑓(𝑋) → 𝑌 forms the desired syntomic (resp. smooth,
resp. étale) covering of 𝑌. �

Lemma38.48.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a closed immersion of schemes. Let 𝜏 ∈ {𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒}.
The functor𝑉 ↦ 𝑋×𝑌𝑉 defines an almost cocontinuous functor (see Sites, Definition 9.37.3)
(Sch/𝑌)𝜏 → (Sch/𝑋)𝜏 between big 𝜏 sites.

Proof. We have to show the following: given a morphism 𝑉 → 𝑌 and any syntomic (resp.
smooth, resp. étale) covering {𝑈𝑖 → 𝑋 ×𝑌 𝑉}, there exists a smooth (resp. smooth, resp.
étale) covering {𝑉𝑗 → 𝑉} such that for each 𝑗, either 𝑋×𝑌 𝑉𝑗 is empty, or 𝑋×𝑌 𝑉𝑗 → 𝑍×𝑌 𝑉
factors through one of the 𝑈𝑖. This follows on applying Lemma 38.48.4 above to the closed
immersion 𝑋 ×𝑌 𝑉 → 𝑉. �

Lemma38.48.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a closed immersion of schemes. Let 𝜏 ∈ {𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒}.
(1) The pushforward 𝑓𝑏𝑖𝑔,∗ ∶ Sh((Sch/𝑋)𝜏) → Sh((Sch/𝑌)𝜏) commutes with coequal-

izers and pushouts.
(2) The pushforward 𝑓𝑏𝑖𝑔,∗ ∶ Ab((Sch/𝑋)𝜏) → Ab((Sch/𝑌)𝜏) is exact.

Proof. This follows from Sites, Lemma 9.37.6, Modules on Sites, Lemma 16.15.3, and
Lemma 38.48.5 above. �

Remark 38.48.7. In Lemma 38.48.6 the case 𝜏 = 𝑓𝑝𝑝𝑓 is missing. The reason is that
given a ring 𝐴, an ideal 𝐼 and a faithfully flat, finitely presented ring map 𝐴/𝐼 → 𝐵, there
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is no reason to think that one can find any flat finitely presented ring map 𝐴 → 𝐵 with
𝐵/𝐼𝐵≠0 such that 𝐴/𝐼 → 𝐵/𝐼𝐵 factors through 𝐵. Hence the proof of Lemma 38.48.5
does not work for the fppf topology. In fact it is likely false that 𝑓𝑏𝑖𝑔,∗ ∶ Ab((Sch/𝑋)𝑓𝑝𝑝𝑓) →
Ab((Sch/𝑌)𝑓𝑝𝑝𝑓) is exact when 𝑓 is a closed immersion. If you know an example, please
email stacks.project@gmail.com.

38.49. Exactness of big lower shriek

This is just the following technical result. Note that the functor 𝑓𝑏𝑖𝑔! has nothing whatsoever
to do with cohomology with compact support in general.

Lemma 38.49.1. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let 𝑓 ∶ 𝑋 → 𝑌 be a
morphism of schemes. Let

𝑓𝑏𝑖𝑔 ∶ Sh((Sch/𝑋)𝜏) ⟶ Sh((Sch/𝑌)𝜏)
be the correspondingmorphism of topoi as in Topologies, Lemma 30.3.15, 30.4.15, 30.5.10,
30.6.10, or 30.7.12.

(1) The functor 𝑓−1
𝑏𝑖𝑔 ∶ Ab((Sch/𝑌)𝜏) → Ab((Sch/𝑋)𝜏) has a left adjoint

𝑓𝑏𝑖𝑔! ∶ Ab((Sch/𝑋)𝜏) → Ab((Sch/𝑌)𝜏)
which is exact.

(2) The functor 𝑓∗
𝑏𝑖𝑔 ∶ Mod((Sch/𝑌)𝜏, 𝒪) → Mod((Sch/𝑋)𝜏, 𝒪) has a left adjoint

𝑓𝑏𝑖𝑔! ∶ Mod((Sch/𝑋)𝜏, 𝒪) → Mod((Sch/𝑌)𝜏, 𝒪)
which is exact.

Moreover, the two functors 𝑓𝑏𝑖𝑔! agree on underlying sheaves of abelian groups.

Proof. Recall that 𝑓𝑏𝑖𝑔 is the morphism of topoi associated to the continuous and cocon-
tinuous functor 𝑢 ∶ (Sch/𝑋)𝜏 → (Sch/𝑌)𝜏, 𝑈/𝑋 ↦ 𝑈/𝑌. Moreover, we have 𝑓−1

𝑏𝑖𝑔𝒪 = 𝒪.
Hence the existence of 𝑓𝑏𝑖𝑔! follows from Modules on Sites, Lemma 16.16.2, respectively
Modules on Sites, Lemma 16.35.1. Note that if 𝑈 is an object of (Sch/𝑋)𝜏 then the functor
𝑢 induces an equivalence of categories

𝑢′ ∶ (Sch/𝑋)𝜏/𝑈 ⟶ (Sch/𝑌)𝜏/𝑈
because both sides of the arrow are equal to (Sch/𝑈)𝜏. Hence the agreement of 𝑓𝑏𝑖𝑔! on un-
derlying abelian sheaves follows from the discussion in Modules on Sites, Remark 16.35.2.
The exactness of 𝑓𝑏𝑖𝑔! follows from Modules on Sites, Lemma 16.16.3 as the functor 𝑢
above which commutes with fibre products and equalizers. �

Next, we prove a technical lemma that will be useful later when comparing sheaves of
modules on different sites associated to algebraic stacks.

Lemma 38.49.2. Let 𝑋 be a scheme. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}.
Let 𝒞1 ⊂ 𝒞2 ⊂ (Sch/𝑋)𝜏 be full subcategories with the following properties:

(1) For an object 𝑈/𝑋 of 𝒞𝑡,
(a) if {𝑈𝑖 → 𝑈} is a covering of (Sch/𝑋)𝜏, then 𝑈𝑖/𝑋 is an object of 𝒞𝑡,
(b) 𝑈 × 𝐀1/𝑋 is an object of 𝒞𝑡.

(2) 𝑋/𝑋 is an object of 𝒞𝑡.
We endow 𝒞𝑡 with the structure of a site whose coverings are exactly those coverings {𝑈𝑖 →
𝑈} of (Sch/𝑋)𝜏 with 𝑈 ∈ 𝑂𝑏(𝒞𝑡). Then

(i) The functor 𝒞1 → 𝒞2 is fully faithful, continuous, and cocontinuous.
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Denote 𝑔 ∶ Sh(𝒞1) → Sh(𝒞2) the corresponding morphism of topoi. Denote 𝒪𝑡 the restric-
tion of 𝒪 to 𝒞𝑡. Denote 𝑔! the functor of Modules on Sites, Definition 16.16.1.

(ii) The canonical map 𝑔!𝒪1 → 𝒪2 is an isomorphism.

Proof. Assertion (i) is immediate from the definitions. In this proof all schemes are schemes
over 𝑋 and all morphisms of schemes are morphisms of schemes over 𝑋. Note that 𝑔−1 is
given by restriction, so that for an object 𝑈 of 𝒞1 we have 𝒪1(𝑈) = 𝒪2(𝑈) = 𝒪(𝑈). Recall
that 𝑔!𝒪1 is the sheaf associated to the presheaf 𝑔𝑝!𝒪1 which associates to 𝑉 in 𝒞2 the group

𝑐𝑜𝑙𝑖𝑚𝑉→𝑈 𝒪(𝑈)

where 𝑈 runs over the objects of 𝒞1 and the colimit is taken in the category of abelian
groups. Below we will use frequently that if

𝑉 → 𝑈 → 𝑈′

are morphisms with 𝑈, 𝑈′ ∈ 𝑂𝑏(𝒞1) and if 𝑓′ ∈ 𝒪(𝑈′) restricts to 𝑓 ∈ 𝒪(𝑈), then (𝑉 →
𝑈, 𝑓) and (𝑉 → 𝑈′, 𝑓′) define the same element of the colimit. Also, 𝑔!𝒪1 → 𝒪2 maps the
element (𝑉 → 𝑈, 𝑓) simply to the pullback of 𝑓 to 𝑉.

Surjectivity. Let 𝑉 be a scheme and let ℎ ∈ 𝒪(𝑉). Then we obtain a morphism 𝑉 → 𝑋 × 𝐀1

induced by ℎ and the structure morphism 𝑉 → 𝑋. Writing 𝐀1 = 𝑆𝑝𝑒𝑐(𝐙[𝑥]) we see the
element 𝑥 ∈ 𝒪(𝑋 × 𝐀1) pulls back to ℎ. Since 𝑋 × 𝐀1 is an object of 𝒞1 by assumptions
(1)(b) and (2) we obtain the desired surjectivity.

Injectivity. Let 𝑉 be a scheme. Let 𝑠 = ∑𝑖=1,…,𝑛(𝑉 → 𝑈𝑖, 𝑓𝑖) be an element of the colimit
displayed above. For any 𝑖 we can use the morphism 𝑓𝑖 ∶ 𝑈𝑖 → 𝑋 × 𝐀1 to see that
(𝑉 → 𝑈𝑖, 𝑓𝑖) defines the same element of the colimit as (𝑓𝑖 ∶ 𝑉 → 𝑋 × 𝐀1, 𝑥). Then we
can consider

𝑓1 × … × 𝑓𝑛 ∶ 𝑉 → 𝑋 × 𝐀𝑛

and we see that 𝑠 is equivalent in the colimit to

∑𝑖=1,…,𝑛
(𝑓1 × … × 𝑓𝑛 ∶ 𝑉 → 𝑋 × 𝐀𝑛, 𝑥𝑖) = (𝑓1 × … × 𝑓𝑛 ∶ 𝑉 → 𝑋 × 𝐀𝑛, 𝑥1 + … + 𝑥𝑛)

Now, if 𝑥1 + … + 𝑥𝑛 restricts to zero on 𝑉, then we see that 𝑓1 × … × 𝑓𝑛 factors through
𝑋 × 𝐀𝑛−1 = 𝑉(𝑥1 + … + 𝑥𝑛). Hence we see that 𝑠 is equivalent to zero in the colimit. �

38.50. Étale cohomology

In the following sections we prove some basic results on étale cohomology.

38.51. Colimits

Let us start by recalling that if (ℱ𝑖, 𝜑𝑖𝑖′) is a diagram of sheaves on a topological space 𝑋 its
colimit (in the category of sheaves) is the sheafification of the presheaf 𝑈 ↦ 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖(𝑈).
See Sheaves, Section 6.28. In the case where 𝑋 is Noetherian and the system is directed,
the sheafification is superfluous: See [Har77, Chapter II, Exercise 1.11] for a special case,
see Sheaves, Lemma 6.29.1 for a general result. See Cohomology, Lemma 18.15.1 for a
result dealing with higher cohomology groups of colimits of abelian sheaves. Finally, see
Modules, Lemma 15.11.6 for a result on Hom sheaves of 𝒪𝑋-modules when 𝑋 is a ringed
space.
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Theorem 38.51.1. Let 𝑋 be a quasi-compact and quasi-separated scheme. Let (ℱ𝑖, 𝜑𝑖𝑗)
be a system of abelian sheaves on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 over the partially ordered set 𝐼. If 𝐼 is directed
then

𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝐻𝑝
𝑒𝑡(𝑋, ℱ𝑖) = 𝐻𝑝

𝑒𝑡(𝑋, 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 ℱ𝑖).

Sketch of proof. This is proven for all 𝑋 at the same time, by induction on 𝑝.
(1) For any quasi-compact and quasi-separated scheme 𝑋 and any étale covering 𝒰

of 𝑋, show that there exists a refinement 𝒱 = {𝒱𝑗 → 𝑋}𝑗∈𝐽 with 𝐽 finite and
each 𝑉𝑗 quasi-compact and quasi-separated such that all the 𝒱𝑗0

×𝑋 ⋯ ×𝑋 𝒱𝑗𝑝
are

also quasi-compact and quasi-separated.
(2) Using the previous step and the definition of colimits in the category of sheaves,

show that the theorem holds for 𝑝 = 0, all 𝑋. (Exercise.)
(3) Using the locality of cohomology (Lemma 38.22.3), the C̆ech-to-cohomology

spectral sequence (Theorem 38.19.2) and the fact that the induction hypothesis
applies to all 𝒱𝑗0

×𝑋 ⋯ ×𝑋 𝒱𝑗𝑝
in the above situation, prove the induction step

𝑝 → 𝑝 + 1.
�

Theorem38.51.2. Let𝐴 be a ring, (𝐼, ≤) a directed poset and (𝐵𝑖, 𝜑𝑖𝑗) a system of𝐴-algebras.
Set 𝐵 = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝐵𝑖. Let 𝑋 → 𝑆𝑝𝑒𝑐(𝐴) be a quasi-compact and quasi-separated mor-
phism of schemes and ℱ an abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Denote 𝑋𝑖 = 𝑋 ×𝑆𝑝𝑒𝑐(𝐴) 𝑆𝑝𝑒𝑐(𝐵𝑖),
𝑌 = 𝑋 ×𝑆𝑝𝑒𝑐(𝐴) 𝑆𝑝𝑒𝑐(𝐵), ℱ𝑖 = (𝑋𝑖 → 𝑋)−1ℱ and 𝒢 = (𝑌 → 𝑋)−1ℱ. Then

𝐻𝑝
𝑒𝑡(𝑌, 𝒢) = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝐻𝑝

𝑒𝑡((𝑋𝑖), ℱ𝑖).

Sketch of proof. The proof proceeds along the following steps.
(1) Given 𝒱 → 𝑌 étale with 𝒱 quasi-compact and quasi-separated, there exist 𝑖 ∈ 𝐼

and 𝒰𝑖 → 𝑋𝑖 such that 𝒱 = 𝒰𝑖 ×𝑋𝑖
𝑌.

If all the schemes considered were affine, this would correspond to the following algebra
statement: if 𝐵 = 𝑐𝑜𝑙𝑖𝑚 𝐵𝑖 and 𝐵 → 𝐶 is étale, then there exist 𝑖 ∈ 𝐼 and 𝐵𝑖 → 𝐶𝑖 étale
such that 𝐶 ≅ 𝐵 ⊗𝐵𝑖

𝐶𝑖.

This is proven as follows: write 𝐶 ≅ 𝐵 [𝑥1, … , 𝑥𝑛] /(𝑓1, … , 𝑓𝑛) with det(𝑓𝑗(𝑥𝑘)) ∈ 𝐶∗

and pick 𝑖 ∈ 𝐼 large enough so that all the coefficients of the 𝑓𝑗s lie in 𝐵𝑖, and let 𝐶𝑖 =
𝐵𝑖 [𝑥1, … , 𝑥𝑛] /(𝑓1, … , 𝑓𝑛). This makes sense by the assumption. After further increasing
𝑖, det(𝑓𝑗(𝑥𝑘)) will be invertible in 𝐶𝑖, and 𝐶𝑖 will be étale over 𝐵𝑖.

(2) By (1), we see that for every étale covering 𝒱 = {𝒱𝑗 → 𝑌}𝑗∈𝐽 with 𝐽 finite
and the 𝒱𝑗s quasi-compact and quasi-separated, there exists 𝑖 ∈ 𝐼 and an étale
covering 𝒱𝑖 = {𝒱𝑖𝑗 → 𝑋𝑖}𝑗∈𝐽 such that 𝒱 ≅ 𝒱𝑖 ×𝑋𝑖

𝑌.
(3) Show that (2) implies

�̌�∗(𝒱, 𝒢) = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 �̌�∗(𝒱𝑖, ℱ𝑖).

This is not clear, as we have not explained how to deal with ℱ𝑖 and 𝒢, in particular
with the dual.

(4) Use the C̆ech-to-cohomology spectral sequence (Theorem 38.19.2).
�
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38.52. Stalks of higher direct images

Lemma 38.52.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes and ℱ ∈ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒). Then
𝑅𝑝𝑓∗ℱ is the sheaf associated to the presheaf

(𝑉 → 𝑌) ⟼ 𝐻0
𝑒𝑡 (𝑋 ×𝑌 𝑉, ℱ|𝑋×𝑌𝑉) .

This lemma is valid for topological spaces, and the proof in this case is the same.

Theorem 38.52.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a quasi-compact and quasi-separated morphism of
schemes, ℱ an abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒, and ̄𝑠 a geometric point of 𝑆. Then

(𝑅𝑝𝑓∗ℱ) ̄𝑠 = 𝐻𝑝
𝑒𝑡 (𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪sh

𝑆, ̄𝑠), pr−1ℱ)

where pr is the projection 𝑋 ×𝑆 𝑆𝑝𝑒𝑐(𝒪sh
𝑆, ̄𝑠) → 𝑋.

Proof. Let ℐ be the category opposite to the category of étale neighborhoods of ̄𝑠 on 𝑆.
By Lemma 38.52.1 we have

(𝑅𝑝𝑓∗ℱ) ̄𝑠 = 𝑐𝑜𝑙𝑖𝑚(𝒱, ̄𝑣)∈ℐ 𝐻𝑝(𝑋 ×𝑆 𝒱, ℱ|𝑋×𝑆𝒱).

On the other hand,
𝒪sh

𝑆, ̄𝑠 = 𝑐𝑜𝑙𝑖𝑚(𝒱, ̄𝑣)∈ℐ Γ(𝒱, 𝒪𝒱).

Replacing ℐ with its cofinal subset ℐaff consisting of affine étale neighborhoods 𝒱𝑖 =
𝑆𝑝𝑒𝑐(𝐵𝑖) of ̄𝑠 mapping into some fixed affine open 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑆, we get

𝒪sh
𝑆, ̄𝑠 = 𝑐𝑜𝑙𝑖𝑚𝑖∈ℐaff 𝐵𝑖,

and the result follows from Theorem 38.51.2. �

38.53. The Leray spectral sequence

Lemma 38.53.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism and ℐ an injective sheaf in Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒).
Then

(1) for any 𝒱 ∈ 𝑂𝑏(𝑌 ́𝑒𝑡𝑎𝑙𝑒) and any étale covering 𝒱 = {𝒱𝑗 → 𝒱}𝑗∈𝐽 we have
�̌�𝑝(𝒱, 𝑓∗ℐ) = 0 for all 𝑝 > 0 ;

(2) 𝑓∗ℐ is acyclic for the functors Γ(𝑌, −) and Γ(𝒱, −) ; and
(3) if 𝑔 ∶ 𝑌 → 𝑍, then 𝑓∗ℐ is acyclic for 𝑔∗.

Proof. Observe that ̌𝒞•(𝒱, 𝑓∗ℐ) = ̌𝒞•(𝒱 ×𝑌 𝑋, ℐ) which has no cohomology by Lemma
38.18.7, which proves i. The second statement is a great exercise in using the C̆ech-to-
cohomology spectral sequence. See (insert future reference) for more details. Part iii is a
consequence of ii and the description of 𝑅𝑝𝑔∗ from Theorem 38.52.2. �

Using the formalism of Grothendieck spectral sequences, this gives the following.

Proposition 38.53.2. (Leray spectral sequence) Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes
and ℱ an étale sheaf on 𝑋. Then there is a spectral sequence

𝐸𝑝,𝑞
2 = 𝐻𝑝

𝑒𝑡(𝑌, 𝑅𝑞𝑓∗ℱ) ⇒ 𝐻𝑝+𝑞
𝑒𝑡 (𝑋, ℱ).
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38.54. Vanishing of finite higher direct images

The next goal is to prove that the higher direct images of a finite morphism of schemes
vanish.

Lemma 38.54.1. Let 𝑅 be a strictly henselian ring and 𝑆 = 𝑆𝑝𝑒𝑐(𝑅). Then the global
sections functor Γ(𝑆, −) ∶ Ab(𝑆 ́𝑒𝑡𝑎𝑙𝑒) → Ab is exact. In particular

∀𝑝 ≥ 1, 𝐻𝑝
𝑒𝑡(𝑆, ℱ) = 0

for all ℱ ∈ Ab(𝑆 ́𝑒𝑡𝑎𝑙𝑒).

Proof. Let 𝒰 = {𝑓𝑖 ∶ 𝒰𝑖 → 𝑆}𝑖∈𝐼 be an étale covering, and denote 𝑠 the closed point of
𝑆. Then 𝑠 = 𝑓𝑖(𝑢𝑖) for some 𝑖 ∈ 𝐼 and some 𝑢𝑖 ∈ 𝑈𝑖 by Lemma 38.29.5. Pick an affine
open neighborhood 𝑆𝑝𝑒𝑐(𝐴) of 𝑢𝑖 in 𝒰𝑖. Then there is a commutative diagram

𝑅 //

��

𝐴

��
𝜅(𝑠) // 𝜅(𝑢𝑖)

where 𝜅(𝑠) is separably closed, and the residue extension is finite separable. Therefore,
𝜅(𝑠) ≅ 𝜅(𝑢𝑖), and using part v of Theorem 38.32.4, we see that 𝐴 ≅ 𝑅 × 𝐴′ and we get a
section

𝑆𝑝𝑒𝑐(𝐴)

##

� � // 𝒰𝑖

��
𝑆.

VV

In particular, the covering {id ∶ 𝑆 → 𝑆} refines 𝒰. This implies that if

0 → ℱ1 → ℱ2
𝛼

−→ ℱ3 → 0

is a short exact sequence in Ab(𝑆 ́𝑒𝑡𝑎𝑙𝑒), then the sequence

0 → Γ(𝑆 ́𝑒𝑡𝑎𝑙𝑒, ℱ1) → Γ(𝑆 ́𝑒𝑡𝑎𝑙𝑒, ℱ2) → Γ(𝑆 ́𝑒𝑡𝑎𝑙𝑒, ℱ3) → 0

is also exact. Indeed, exactness is clear except possibly at the last step. But given a section
𝑠 ∈ Γ(𝑆 ́𝑒𝑡𝑎𝑙𝑒, ℱ3), we know that there exist a covering 𝒰 and local sections 𝑠𝑖 such that
𝛼(𝑠𝑖) = 𝑠|𝒰𝑖

. But since this covering can be refined by the identity, the 𝑠𝑖 must agree
locally with 𝑠, hence they glue to a global section of ℱ2. �

Proposition 38.54.2. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite morphism of schemes. Then for all 𝑞 ≥ 1
and all ℱ ∈ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝑅𝑞𝑓∗ℱ = 0.

Proof. Let 𝑋𝑠ℎ
̄𝑦 denote the fiber product 𝑋 ×𝑌 𝑆𝑝𝑒𝑐(𝒪𝑠ℎ

𝑌, ̄𝑦). It suffices to show that for all
𝑞 ≥ 1, 𝐻𝑞

𝑒𝑡(𝑋
𝑠ℎ

̄𝑦 , 𝒢) = 0. Since 𝑓 is finite, 𝑋𝑠ℎ
̄𝑦 is finite over 𝑆𝑝𝑒𝑐(𝒪𝑠ℎ

𝑌, ̄𝑦), thus 𝑋𝑠ℎ
̄𝑦 = 𝑆𝑝𝑒𝑐(𝐴)

for some ring 𝐴 finite over 𝒪𝑠ℎ
𝑌, ̄𝑦. Since the latter is strictly henselian, Lemma 38.32.5 implies

that 𝐴 is henselian and therefore splits as a product of henselian local rings 𝐴1 × ⋯ × 𝐴𝑟.
Furthermore, 𝜅(𝒪𝑠ℎ

𝑌, ̄𝑦) is separably closed and for each 𝑖, the residue field extension 𝜅(𝒪𝑠ℎ
𝑌, ̄𝑦) ⊂

𝜅(𝐴𝑖) is finite, hence 𝜅(𝐴𝑖) is separably closed and 𝐴𝑖 is strictly henselian. This implies that
𝑆𝑝𝑒𝑐(𝐴) = ∐𝑟

𝑖=1 𝑆𝑝𝑒𝑐(𝐴𝑖), and we can apply Lemma 38.54.1 to get the result. �
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38.55. Schemes étale over a point

In this section we describe schemes étale over the spectrum of a field. Before we state the
result we introduce the category of 𝐺-sets for a topological group 𝐺.

Definition 38.55.1. Let 𝐺 be a topological group. A 𝐺-set, sometime called a discrete
𝐺-set, is a set 𝑋 endowed with a left action 𝑎 ∶ 𝐺 × 𝑋 → 𝑋 such that 𝑎 is continuous
when 𝑋 is given the discrete topology and 𝐺 × 𝑋 the product topology. A morphism of
𝐺-sets 𝑓 ∶ 𝑋 → 𝑌 is simply any 𝐺-equivariant map from 𝑋 to 𝑌. The category of 𝐺-sets is
denoted 𝐺-Sets.

The condition that 𝑎 ∶ 𝐺 × 𝑋 → 𝑋 is continuous signifies simply that the stabilizer of
any 𝑥 ∈ 𝑋 is open in 𝐺. If 𝐺 is an abstract group 𝐺 (i.e., a group but not a topological
group) then this agrees with our preceding definition (see for example Sites, Example 9.6.5)
provided we endow 𝐺 with the discrete topology.
Recall that if 𝐾 ⊂ 𝐿 is an infinite Galois extension the Galois group 𝐺 = Gal(𝐿/𝐾) comes
endowed with a canonical topology. Namely the open subgroups are the subgroups of the
form Gal(𝐿/𝐾′) ⊂ 𝐺 where 𝐾′/𝐾 is a finite subextension of 𝐿/𝐾. The index of an open
subgroup is always finite. We say that 𝐺 is a profinite (topological) group.

Lemma 38.55.2. Let 𝐾 be a field. Let 𝐾𝑠𝑒𝑝 a separable closure of 𝐾. Consider the profinite
group

𝐺 = Aut𝑆𝑝𝑒𝑐(𝐾)(𝑆𝑝𝑒𝑐(𝐾𝑠𝑒𝑝))𝑜𝑝𝑝 = Gal(𝐾𝑠𝑒𝑝/𝐾)
The functor

schemes étale over 𝐾 ⟶ 𝐺-Sets
𝑋/𝐾 ⟼ 𝑀𝑜𝑟𝑆𝑝𝑒𝑐(𝐾)(𝑆𝑝𝑒𝑐(𝐾𝑠𝑒𝑝), 𝑋)

is an equivalence of categories.

Proof. A scheme 𝑋 over 𝐾 is étale over 𝐾 if and only if 𝑋 ≅ ∐𝑖∈𝐼 𝑆𝑝𝑒𝑐(𝐾𝑖) with each 𝐾𝑖
a finite separable extension of 𝐾. The functor of the lemma associates to 𝑋 the 𝐺-set

∐𝑖
𝐻𝑜𝑚𝐾(𝐾𝑖, 𝐾𝑠𝑒𝑝)

with its natural left 𝐺-action. Each element has an open stabilizer by definition of the
topology on 𝐺. Conversely, any 𝐺-set 𝑆 is a disjoint union of its orbits. Say 𝑆 = ∐ 𝑆𝑖.
Pick 𝑠𝑖 ∈ 𝑆𝑖 and denote 𝐺𝑖 ⊂ 𝐺 its open stabilizer. By Galois theory the fields (𝐾𝑠𝑒𝑝)𝐺𝑖 are
finite separable field extensions of 𝐾, and hence the scheme

∐𝑖
𝑆𝑝𝑒𝑐((𝐾𝑠𝑒𝑝)𝐺𝑖)

is étale over 𝐾. This gives an inverse to the functor of the lemma. Some details omitted. �

Remark 38.55.3. Under the correspondence of the lemma, the coverings in the small étale
site 𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒 of 𝐾 correspond to surjective families of maps in 𝐺-Sets.

38.56. Galois action on stalks

In this section we define an action of the absolute Galois group of a residue field of a point
𝑠 of 𝑆 on the stalk functor at any geometric point lying over 𝑠.
Galois action on stalks. Let 𝑆 be a scheme. Let 𝑠 be a geometric point of 𝑆. Let 𝜎 ∈
Aut(𝜅(𝑠)/𝜅(𝑠)). Define an action of 𝜎 on the stalk ℱ𝑠 of a sheaf ℱ as follows

(38.56.0.1) ℱ𝑠 ⟶ ℱ𝑠
(𝑈, 𝑢, 𝑡) ⟼ (𝑈, 𝑢 ∘ 𝑆𝑝𝑒𝑐(𝜎), 𝑡).
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where we use the description of elements of the stalk in terms of triples as in the discussion
following Definition 38.29.6. This is a left action, since if 𝜎𝑖 ∈ Aut(𝜅(𝑠)/𝜅(𝑠)) then

𝜎1 ⋅ (𝜎2 ⋅ (𝑈, 𝑢, 𝑡)) = 𝜎1 ⋅ (𝑈, 𝑢 ∘ 𝑆𝑝𝑒𝑐(𝜎2), 𝑡)
= (𝑈, 𝑢 ∘ 𝑆𝑝𝑒𝑐(𝜎2) ∘ 𝑆𝑝𝑒𝑐(𝜎1), 𝑡)
= (𝑈, 𝑢 ∘ 𝑆𝑝𝑒𝑐(𝜎1 ∘ 𝜎2), 𝑡)
= (𝜎1 ∘ 𝜎2) ⋅ (𝑈, 𝑢, 𝑡)

It is clear that this action is functorial in the sheaf ℱ. We note that we could have defined
this action by referring directly to Remark 38.29.8.

Definition 38.56.1. Let 𝑆 be a scheme. Let 𝑠 be a geometric point lying over the point
𝑠 of 𝑆. Let 𝜅(𝑠) ⊂ 𝜅(𝑠)𝑠𝑒𝑝 ⊂ 𝜅(𝑠) denote the separable algebraic closure of 𝜅(𝑠) in the
algebraically closed field 𝜅(𝑠).

(1) In this situation the absolute Galois group of 𝜅(𝑠) is Gal(𝜅(𝑠)𝑠𝑒𝑝/𝜅(𝑠)). It is some-
times denoted Gal𝜅(𝑠).

(2) The geometric point 𝑠 is called algebraic if 𝜅(𝑠) ⊂ 𝜅(𝑠) is an algebraic closure of
𝜅(𝑠).

Example 38.56.2. The geometric point 𝑆𝑝𝑒𝑐(𝐂) → 𝑆𝑝𝑒𝑐(𝐐) is not algebraic.

Let 𝜅(𝑠) ⊂ 𝜅(𝑠)𝑠𝑒𝑝 ⊂ 𝜅(𝑠) be as in the definition. Note that as 𝜅(𝑠) is algebraically closed
the map

Aut(𝜅(𝑠)/𝜅(𝑠)) ⟶ Gal(𝜅(𝑠)𝑠𝑒𝑝/𝜅(𝑠)) = Gal𝜅(𝑠)

is surjective. Suppose (𝑈, 𝑢) is an étale neighbourhood of 𝑠, and say 𝑢 lies over the point 𝑢
of 𝑈. Since 𝑈 → 𝑆 is étale, the residue field extension 𝜅(𝑠) ⊂ 𝜅(𝑢) is finite separable. This
implies the following

(1) If 𝜎 ∈ Aut(𝜅(𝑠)/𝜅(𝑠)𝑠𝑒𝑝) then 𝜎 acts trivially on ℱ𝑠.
(2) More precisely, the action of Aut(𝜅(𝑠)/𝜅(𝑠)) determines and is determined by an

action of the absolute Galois group Gal𝜅(𝑠) on ℱ𝑠.
(3) Given (𝑈, 𝑢, 𝑡) representing an element 𝜉 of ℱ𝑠 any element of Gal(𝜅(𝑠)𝑠𝑒𝑝/𝐾) acts

trivially, where 𝜅(𝑠) ⊂ 𝐾 ⊂ 𝜅(𝑠)𝑠𝑒𝑝 is the image of 𝑢♯ ∶ 𝜅(𝑢) → 𝜅(𝑠).
Alltogether we see that ℱ𝑠 becomes a Gal𝜅(𝑠)-set (see Definition 38.55.1). Hence we may
think of the stalk functor as a functor

Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Gal𝜅(𝑠)-Sets, ℱ ⟼ ℱ𝑠

and from now on we usually do think about the stalk functor in this way.

Theorem 38.56.3. Let 𝑆 = 𝑆𝑝𝑒𝑐(𝐾) with 𝐾 a field. Let 𝑠 be a geometric point of 𝑆.
Let 𝐺 = Gal𝜅(𝑠) denote the absolute Galois group. Then the functor above induces an
equivalence of categories

Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) ⟶ 𝐺-Sets, ℱ ⟼ ℱ𝑠.

Proof. Let us construct the inverse to this functor. In Lemma 38.55.2 we have seen that
given a𝐺-set𝑀 there exists an étalemorphism𝑋 → 𝑆𝑝𝑒𝑐(𝐾) such that𝑀𝑜𝑟𝐾(𝑆𝑝𝑒𝑐(𝐾𝑠𝑒𝑝), 𝑋)
is isomorphic to 𝑀 as a 𝐺-set. Consider the sheaf ℱ on 𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒 defined by the rule
𝑈 ↦ 𝑀𝑜𝑟𝐾(𝑈, 𝑋). This is a sheaf as the étale topology is subcanonical. Then we see that
ℱ𝑠 = 𝑀𝑜𝑟𝐾(𝑆𝑝𝑒𝑐(𝐾𝑠𝑒𝑝), 𝑋) = 𝑀 as 𝐺-sets (details omitted). This gives the inverse of the
functor and we win. �
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Remark 38.56.4. Another way to state the conclusions of Lemmas 38.55.2 and Theorem
38.56.3 is to say that every sheaf on 𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒 is representable by a scheme 𝑋 étale over
𝑆𝑝𝑒𝑐(𝐾). This does not mean that every sheaf is representable in the sense of Sites, Defi-
nition 9.12.3. The reason is that in our construction of 𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒 we chose a sufficiently
large set of schemes étale over 𝑆𝑝𝑒𝑐(𝐾), whereas sheaves on 𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒 form a proper
class.

Lemma 38.56.5. Assumptions and notations as in Theorem 38.56.3. There is a functorial
bijection

Γ(𝑆, ℱ) = (ℱ𝑠)𝐺

Proof. We can prove this using formal arguments and the result of Theorem 38.56.3 as
follows. Given a sheaf ℱ corresponding to the 𝐺-set 𝑀 = ℱ𝑠 we have

Γ(𝑆, ℱ) = 𝑀𝑜𝑟Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒)(ℎ𝑆𝑝𝑒𝑐(𝐾), ℱ)
= 𝑀𝑜𝑟𝐺-Sets)({∗}, 𝑀)

= 𝑀𝐺

Here the first identification is explained in Sites, Sections 9.2 and 9.12, the second results
from Theorem 38.56.3 and the third is clear. We will also give a direct proof5.
Suppose that 𝑡 ∈ Γ(𝑆, ℱ) is a global section. Then the triple (𝑆, 𝑠, 𝑡) defines an element
of ℱ𝑠 which is clearly invariant under the action of 𝐺. Conversely, suppose that (𝑈, 𝑢, 𝑡)
defines an element of ℱ𝑠 which is invariant. Then we may shrink 𝑈 and assume 𝑈 =
𝑆𝑝𝑒𝑐(𝐿) for some finite separable field extension of 𝐾, see Proposition 38.26.2. In this
case the map ℱ(𝑈) → ℱ𝑠 is injective, because for any morphism of étale neighbourhoods
(𝑈′, 𝑢′) → (𝑈, 𝑢) the restriction map ℱ(𝑈) → ℱ(𝑈′) is injective since 𝑈′ → 𝑈 is a covering
of 𝑆 ́𝑒𝑡𝑎𝑙𝑒. After enlarging 𝐿 a bit we may assume 𝐾 ⊂ 𝐿 is a finite Galois extension. At
this point we use that

𝑆𝑝𝑒𝑐(𝐿) ×𝑆𝑝𝑒𝑐(𝐾) 𝑆𝑝𝑒𝑐(𝐿) = ∐𝜎∈Gal(𝐿/𝐾)
𝑆𝑝𝑒𝑐(𝐿)

where the maps 𝑆𝑝𝑒𝑐(𝐿 ⊗𝐾 𝐿) → 𝑆𝑝𝑒𝑐(𝐿) come from the ring maps 𝑎 ⊗ 𝑏 ↦ 𝑎𝜎(𝑏).
Hence we see that the condition that (𝑈, 𝑢, 𝑡) is invariant under all of 𝐺 implies that 𝑡 ∈
ℱ(𝑆𝑝𝑒𝑐(𝐿)) maps to the same element of ℱ(𝑆𝑝𝑒𝑐(𝐿) ×𝑆𝑝𝑒𝑐(𝐾) 𝑆𝑝𝑒𝑐(𝐿)) via restriction by
either projection (this uses the injectivity mentioned above; details omitted). Hence the
sheaf condition of ℱ for the étale covering {𝑆𝑝𝑒𝑐(𝐿) → 𝑆𝑝𝑒𝑐(𝐾)} kicks in and we conclude
that 𝑡 comes from a unique section of ℱ over 𝑆𝑝𝑒𝑐(𝐾). �

Remark 38.56.6. Let 𝑆 be a scheme and let 𝑠 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 be a geometric point of
𝑆. By definition this means that 𝑘 is algebraically closed. In particular the absolute Galois
group of 𝑘 is trivial. Hence by Theorem 38.56.3 the category of sheaves on 𝑆𝑝𝑒𝑐(𝑘) ́𝑒𝑡𝑎𝑙𝑒 is
equivalent to the category of sets. The equivalence is given by taking sections over 𝑆𝑝𝑒𝑐(𝑘).
This finally provides us with an alternative definition of the stalk functor. Namely, the
functor

Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sets, ℱ ⟼ ℱ𝑠
is isomorphic to the functor

Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑆𝑝𝑒𝑐(𝑘) ́𝑒𝑡𝑎𝑙𝑒) = Sets, ℱ ⟼ 𝑠∗ℱ
To prove this rigorously one can use Lemma 38.36.2 part (3) with 𝑓 = 𝑠. Moreover, having
said this the general case of Lemma 38.36.2 part (3) follows from functoriality of pullbacks.

5For the doubting Thomases out there.
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38.57. Cohomology of a point

As a consequence of the discussion in the preceding two sections we obtain the equivalence
of étale cohomology of the spectrum of a field with Galois cohomology.

Definition 38.57.1. Let 𝐺 be a topological group. A 𝐺-module, sometime called a discrete
𝐺-module, is an abelian group 𝑀 endowed with a left action 𝑎 ∶ 𝐺 × 𝑀 → 𝑀 by group
homomorphisms such that 𝑎 is continuous when 𝑀 is given the discrete topology and 𝐺×𝑀
the product topology. A morphism of 𝐺-modules 𝑓 ∶ 𝑀 → 𝑁 is simply any 𝐺-equivariant
homomorphism from 𝑀 to 𝑁. The category of 𝐺-modules is denoted Mod𝐺.

The condition that 𝑎 ∶ 𝐺 × 𝑀 → 𝑀 is continuous signifies simply that the stabilizer of any
𝑥 ∈ 𝑀 is open in 𝐺. If 𝐺 is an abstract group 𝐺 (i.e., a group but not a topological group)
then this corresponds to the notion of an abelian group endowed with a 𝐺-action provided
we endow 𝐺 with the discrete topology.

Lemma 38.57.2. Let 𝑆 = 𝑆𝑝𝑒𝑐(𝐾) with 𝐾 a field. Let 𝑠 be a geometric point of 𝑆. Let
𝐺 = Gal𝜅(𝑠) denote the absolute Galois group. The stalk functor induces an equivalence of
categories

Ab(𝑆 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Mod𝐺, ℱ ⟼ ℱ𝑠.

Proof. In Theorem 38.56.3 we have seen the equivalence between sheaves of sets and
𝐺-sets. The current lemma follows formally from this as an abelian sheaf is just a sheaf
of sets endowed with a commutative group law, and a 𝐺-module is just a 𝐺-set endowed
with a commutative group law. �

The categoryMod𝐺 has enough injectives, see Injectives, Lemma 17.7.1. Consider the left
exact functor

Mod𝐺 ⟶ Ab, 𝑀 ⟼ 𝑀𝐺 = {𝑥 ∈ 𝑀 ∣ 𝑔 ⋅ 𝑥 = 𝑥 ∀𝑔 ∈ 𝐺}

We sometimes denote 𝑀𝐺 = 𝐻0(𝐺, 𝑀) and sometimes we write 𝑀𝐺 = Γ𝐺(𝑀). This
functor has a total right derived functor 𝑅Γ𝐺(𝑀) and 𝑖th right derived functor 𝑅𝑖Γ𝐺(𝑀) =
𝐻𝑖(𝐺, 𝑀) for any 𝑖 ≥ 0.

Definition 38.57.3. Let 𝐺 be a topological group.
(1) The right derived functors 𝐻𝑖(𝐺, 𝑀) are called the continuous group cohomology

groups of 𝑀.
(2) If 𝐺 is an abstract group endowed with the discrete topology then the 𝐻𝑖(𝐺, 𝑀)

are called the group cohomology groups of 𝑀.
(3) If 𝐺 is a Galois group, then the groups 𝐻𝑖(𝐺, 𝑀) are called the Galois cohomol-

ogy groups of 𝑀.
(4) If 𝐺 is the absolute Galois group of a field 𝐾, then the groups 𝐻𝑖(𝐺, 𝑀) are

sometimes called the Galois cohomology groups of 𝐾 with coefficients in 𝑀.

Lemma 38.57.4. Notation and assumptions as in Lemma 38.57.2. Let ℱ be an abelian
sheaf on 𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒 which corresponds to the 𝐺-module 𝑀. Then

(1) in 𝐷(Ab) we have a canonical isomorphism 𝑅Γ(𝑆, ℱ) = 𝑅Γ𝐺(𝑀),
(2) 𝐻0

𝑒𝑡(𝑆, ℱ) = 𝑀𝐺, and
(3) 𝐻𝑞

𝑒𝑡(𝑆, ℱ) = 𝐻𝑞(𝐺, 𝑀).

Proof. Combine Lemma 38.57.2 with Lemma 38.56.5. �

Example 38.57.5. Sheaves on 𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒. Let 𝐺 = Gal(𝐾𝑠𝑒𝑝/𝐾) be the absolute Galois
group of 𝐾.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04JP
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04JQ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04JR
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03QU
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03QV


38.59. BRAUER GROUPS 2061

(1) The constant sheaf 𝐙/𝑛𝐙 corresponds to the module 𝐙/𝑛𝐙 with trivial 𝐺-action,
(2) the sheaf 𝐆𝑚|𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒

corresponds to (𝐾𝑠𝑒𝑝)∗ with its 𝐺-action,
(3) the sheaf 𝐆𝑎|𝑆𝑝𝑒𝑐(𝐾𝑠𝑒𝑝) corresponds to (𝐾𝑠𝑒𝑝, +) with its 𝐺-action, and
(4) the sheaf 𝜇𝑛|𝑆𝑝𝑒𝑐(𝐾𝑠𝑒𝑝) corresponds to 𝜇𝑛(𝐾𝑠𝑒𝑝) with its 𝐺-action.

By Remark 38.23.4 and Theorem 38.24.1 we have the following identifications for coho-
mology groups:

𝐻0
𝑒𝑡(𝑆 ́𝑒𝑡𝑎𝑙𝑒, 𝐆𝑚) = Γ(𝑆, 𝒪∗

𝑆)

𝐻1
𝑒𝑡(𝑆 ́𝑒𝑡𝑎𝑙𝑒, 𝐆𝑚) = 𝐻1

𝑍𝑎𝑟(𝑆, 𝒪∗
𝑆) = Pic(𝑆)

𝐻𝑖
𝑒𝑡(𝑆 ́𝑒𝑡𝑎𝑙𝑒, 𝐆𝑎) = 𝐻𝑖

𝑍𝑎𝑟(𝑆, 𝒪𝑆)

Also, for any quasi-coherent sheaf ℱ on 𝑆 ́𝑒𝑡𝑎𝑙𝑒 we have

𝐻𝑖(𝑆 ́𝑒𝑡𝑎𝑙𝑒, ℱ) = 𝐻𝑖
𝑍𝑎𝑟(𝑆, ℱ),

see Theorem 38.22.4. In particular, this gives the following sequence of equalities

0 = Pic(𝑆𝑝𝑒𝑐(𝐾)) = 𝐻1
𝑒𝑡(𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒, 𝐆𝑚) = 𝐻1(𝐺, (𝐾𝑠𝑒𝑝)∗)

which is none other than Hilbert's 90 theorem. Similarly, for 𝑖 ≥ 1,

0 = 𝐻𝑖(𝑆𝑝𝑒𝑐(𝐾), 𝒪) = 𝐻𝑖
𝑒𝑡(𝑆𝑝𝑒𝑐(𝐾) ́𝑒𝑡𝑎𝑙𝑒, 𝐆𝑎) = 𝐻𝑖(𝐺, 𝐾𝑠𝑒𝑝)

where the 𝐾𝑠𝑒𝑝 indicates 𝐾𝑠𝑒𝑝 as a Galois module with addition as group law. In this way
we may consider the work we have done sofar as a complicated way of computing Galois
cohomology groups.

38.58. Cohomology of curves

The next task at hand is to compute the étale cohomology of a smooth curve with torsion
coefficients, and in particular show that it vanishes in degree at least 3. To prove this, we
will compute cohomology at the generic point, which amounts to some Galois cohomology.
We now review without proofs. the relevant facts about Brauer groups. For references, see
[Ser62], [Ser97] or [Wei48].

38.59. Brauer groups

Brauer groups of fields, defined using finite central simple algebras, are discussed in the
chapter Brauer Groups, Section 8.1. Here we give a synopsis.

Theorem 38.59.1. Let 𝐾 be a field. For a unital, associative (not necessarily commutative)
𝐾-algebra 𝐴 the following are equivalent

(1) 𝐴 is finite central simple 𝐾-algebra,
(2) 𝐴 is a finite dimensional 𝐾-vector space, 𝐾 is the center of 𝐴, and 𝐴 has no

nontrivial two-sided ideal,
(3) there exists 𝑑 ≥ 1 such that 𝐴 ⊗𝐾 ̄𝐾 ≅ Mat(𝑑 × 𝑑, ̄𝐾),
(4) there exists 𝑑 ≥ 1 such that 𝐴 ⊗𝐾 𝐾𝑠𝑒𝑝 ≅ Mat(𝑑 × 𝑑, 𝐾𝑠𝑒𝑝),
(5) there exist 𝑑 ≥ 1 and a finite Galois extension 𝐾 ⊂ 𝐾′ such that 𝐴 ⊗𝐾′ 𝐾′ ≅

Mat(𝑑 × 𝑑, 𝐾′),
(6) there exist 𝑛 ≥ 1 and a finite central skew field 𝐷 over 𝐾 such that 𝐴 ≅ Mat(𝑛 ×

𝑛, 𝐷).
The integer 𝑑 is called the degree of 𝐴.

Proof. This is a copy of Brauer Groups, Lemma 8.8.6. �
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Lemma 38.59.2. Let 𝐴 be a finite central simple algebra over 𝐾. Then
𝐴 ⊗𝐾 𝐴𝑜𝑝𝑝 ⟶ End𝐾(𝐴)

𝑎 ⊗ 𝑎′ ⟼ (𝑥 ↦ 𝑎𝑥𝑎′)
is an isomorphism of algebras over 𝐾.

Proof. See Brauer Groups, Lemma 8.4.10. �

Definition 38.59.3. Two finite central simple algebras 𝐴1 and 𝐴2 over 𝐾 are called similar,
or equivalent if there exist 𝑚, 𝑛 ≥ 1 such that Mat(𝑛 × 𝑛, 𝐴1) ≅ Mat(𝑚 × 𝑚, 𝐴2). We write
𝐴1 ∼ 𝐴2.

Definition 38.59.4. Let 𝐾 be a field. The Brauer group of 𝐾 is the set Br(𝐾) of similarity
classes of finite central simple algebras over 𝐾, endowed with the group law induced by
tensor product (over 𝐾). The class of 𝐴 in Br(𝐾) is denoted by [𝐴]. The neutral element is
[𝐾] = [Mat(𝑑 × 𝑑, 𝐾)] for any 𝑑 ≥ 1.

The previous lemma thus mean that inverses exist, and that −[𝐴] = [𝐴𝑜𝑝𝑝]. The Brauer
group is always torsion, but not finitely generated in general. We will see that 𝐴⊗ deg 𝐴 ∼ 𝐾
for any finite central simple algebra 𝐴 (insert future reference here).

Lemma 38.59.5. Let 𝐾 be a field and 𝒢 = Gal(𝐾𝑠𝑒𝑝|𝐾)). Then the set of isomorphism
classes of central simple algebras of degree 𝑑 over 𝐾 is in bijection with the non-abelian
cohomology 𝐻1

𝑐𝑜𝑛𝑡(𝒢,PGL𝑑(𝐾𝑠𝑒𝑝)).

Sketch of proof. The Skolem-Noether theorem (see Brauer Groups, Theorem 8.6.1) im-
plies that for any field 𝐿 the group Aut𝐿-Algebras(Mat𝑑(𝐿)) equals PGL𝑑(𝐿). By Theo-
rem 38.59.1, we see that central simple algebras of degree 𝑑 correspond to forms of the
𝐾-algebra Mat𝑑(𝐾), which in turn correspond to 𝐻1

𝑐𝑜𝑛𝑡(𝒢,PGL𝑑(𝐾𝑠𝑒𝑝)). For more details
on twisting, see for example [Sil86]. �

If 𝐴 is a finite central simple algebra over 𝐾, we denote 𝜉𝐴 the corresponding cohomology
class in 𝐻1

𝑐𝑜𝑛𝑡(𝒢,PGLdeg 𝐴(𝐾𝑠𝑒𝑝)). Consider now the short exact sequence

1 → (𝐾𝑠𝑒𝑝)∗ → GL𝑑(𝐾𝑠𝑒𝑝) → PGL𝑑(𝐾𝑠𝑒𝑝) → 1,
which gives rise to a long exact cohomology sequence (up to degree 2) with coboundary
map

𝛿𝑑 ∶ 𝐻1
𝑐𝑜𝑛𝑡(𝒢,PGL𝑑(𝐾𝑠𝑒𝑝)) → 𝐻2(𝒢, (𝐾𝑠𝑒𝑝)∗).

Explicitly, this is given as follows: if 𝜉 is a cohomology class represented by the 1-cocyle
(𝑔𝜎), then 𝛿𝑑(𝜉) is the class of the 2-cocycle ((𝑔𝜏

𝜎)−1𝑔𝜎𝜏𝑔−1
𝜏 ).

Theorem 38.59.6. The map

𝛿 ∶ Br(𝐾) ⟶ 𝐻2(𝒢, (𝐾𝑠𝑒𝑝)∗)
[𝐴] ⟼ 𝛿deg 𝐴(𝜉𝐴)

is a group isomorphism.

Proof. Omitted. Hints: In the abelian case (𝑑 = 1), one has the identification
𝐻1(𝒢,GL𝑑(𝐾𝑠𝑒𝑝)) = 𝐻1

𝑒𝑡(𝑆𝑝𝑒𝑐(𝐾),GL𝑑(𝒪))
the latter of which is trivial by fpqc descent. If this were true in the non-abelian case, this
would readily imply injectivity of 𝛿. (See [Del77].) Rather, to prove this, one can reinterpret
𝛿([𝐴]) as the obstruction to the existence of a 𝐾-vector space 𝑉 with a left 𝐴-module struc-
ture and such that dim𝐾 𝑉 = deg 𝐴. In the case where 𝑉 exists, one has 𝐴 ≅ End𝐾(𝑉). For
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surjectivity, pick a cohomology class 𝜉 ∈ 𝐻2(𝒢, (𝐾𝑠𝑒𝑝)∗), then there exists a finite Galois
extension 𝐾 ⊂ 𝐾′ ⊂ 𝐾𝑠𝑒𝑝 such that 𝜉 is the image of some 𝜉′ ∈ 𝐻2

𝑐𝑜𝑛𝑡(Gal(𝐾′|𝐾), (𝐾′)∗).
Then write down an explicit central simple algebra over 𝐾 using the data 𝐾′, 𝜉′. �

The Brauer group of a scheme. Let 𝑆 be a scheme. An 𝒪𝑆-algebra 𝒜 is called Azumaya
if it is étale locally a matrix algebra, i.e., if there exists an étale covering 𝒰 = {𝜑𝑖 ∶
𝒰𝑖 → 𝑆}𝑖∈𝐼 such that 𝜑∗

𝑖 𝒜 ≅ Mat𝑑𝑖
(𝒪𝒰𝑖

) for some 𝑑𝑖 ≥ 1. Two such 𝒜 and ℬ are called
equivalent if there exist finite locally free sheaves ℱ and 𝒢 on 𝑆 such that 𝒜 ⊗𝒪𝑆

End(ℱ) ≅
ℬ ⊗𝒪𝑆

End(𝒢). The Brauer group of 𝑆 is the set Br(𝑆) of equivalence classes of Azumaya
𝒪𝑆-algebras with the operation induced by tensor product (over 𝒪𝑆).
In this setting, the analogue of the isomorphism 𝛿 of Theorem 38.59.6 is a map

𝛿𝑆 ∶ Br(𝑆) → 𝐻2
𝑒𝑡(𝑆, 𝐆𝑚).

It is true that 𝛿𝑆 is injective (the previous argument still works). If 𝑆 is quasi-compact or
connected, then Br(𝑆) is a torsion group, so in this case the image of 𝛿𝑆 is contained in the
cohomological Brauer group of 𝑆

Br′(𝑆) ∶= 𝐻2
𝑒𝑡(𝑆, 𝐆𝑚)torsion.

So if 𝑆 is quasi-compact or connected, there is an inclusion Br(𝑆) ⊂ Br′(𝑆). This is not
always an equality: there exists a nonseparated singular surface 𝑆 for which Br(𝑆) ⊂ Br′(𝑆)
is a strict inclusion. If 𝑆 is quasi-projective, then Br(𝑆) = Br′(𝑆). However, it is not known
whether this holds for a smooth proper variety over 𝐂, say.

Proposition 38.59.7. Let 𝐾 be a field, 𝒢 = Gal(𝐾𝑠𝑒𝑝|𝐾) and suppose that for any finite
extension 𝐾′ of 𝐾, Br(𝐾′) = 0. Then

(1) for all 𝑞 ≥ 1, 𝐻𝑞(𝒢, (𝐾𝑠𝑒𝑝)∗) = 0 ; and
(2) for any torsion 𝒢-module 𝑀 and any 𝑞 ≥ 2, 𝐻𝑞

𝑐𝑜𝑛𝑡(𝒢, 𝑀) = 0.

See [Ser97] for proofs.

Definition 38.59.8. A field 𝐾 is called 𝐶𝑟 if for every 0 < 𝑑𝑟 < 𝑛 and every 𝑓 ∈
𝐾[𝑇1, … , 𝑇𝑛] homogeneous of degree 𝑑, there exist 𝛼 = (𝛼1, … , 𝛼𝑛), 𝛼𝑖 ∈ 𝐾 not all zero,
such that 𝑓(𝛼) = 0. Such an 𝛼 is called a nontrivial solution of 𝑓.

Example 38.59.9. An algebraically closed field is 𝐶𝑟.

In fact, we have the following simple lemma.

Lemma 38.59.10. Let 𝑘 be an algebraically closed field. Let 𝑓1, … , 𝑓𝑠 ∈ 𝑘[𝑇1, … , 𝑇𝑛] be
homogeneous polynomials of degree 𝑑1, … , 𝑑𝑠 with 𝑑𝑖 > 0. If 𝑠 < 𝑛, then 𝑓1 = … = 𝑓𝑠 = 0
have a common nontrivial solution.

Proof. Omitted. �

The following result computes the Brauer group of 𝐶1 fields.

Theorem 38.59.11. Let 𝐾 be a 𝐶1 field. Then Br(𝐾) = 0.

Proof. Let 𝐷 be a finite dimensional division algebra over 𝐾 with center 𝐾. We have seen
that

𝐷 ⊗𝐾 𝐾𝑠𝑒𝑝 ≅ Mat𝑑(𝐾𝑠𝑒𝑝)
uniquely up to inner isomorphism. Hence the determinant det ∶ Mat𝑑(𝐾𝑠𝑒𝑝) → 𝐾𝑠𝑒𝑝 is
Galois invariant and descends to a homogeneous degree 𝑑 map

det = 𝑁red ∶ 𝐷 ⟶ 𝐾
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called the reduced norm. Since 𝐾 is 𝐶1, if 𝑑 > 1, then there exists a nonzero 𝑥 ∈ 𝐷 with
𝑁red(𝑥) = 0. This clearly implies that 𝑥 is not invertible, which is a contradiction. Hence
Br(𝐾) = 0. �

Theorem 38.59.12. (Tsen) The function field of a variety of dimension 𝑟 over an alge-
braically closed field 𝑘 is 𝐶𝑟.

Proof. (1) Projective space. The field 𝑘(𝑥1, … , 𝑥𝑟) is 𝐶𝑟 (exercise).
(2) General case. Without loss of generality, we may assume 𝑋 to be projective. Let

𝑓 ∈ 𝐾[𝑇1, … , 𝑇𝑛]𝑑 with 0 < 𝑑𝑟 < 𝑛. Say the coefficients of 𝑓 are in Γ(𝑋, 𝒪𝑋(𝐻))
for some ample 𝐻 ⊂ 𝑋. Let 𝜶 = (𝛼1, … , 𝛼𝑛) with 𝛼𝑖 ∈ Γ(𝑋, 𝒪𝑋(𝑒𝐻)). Then
𝑓(𝜶) ∈ Γ(𝑋, 𝒪𝑋((𝑑𝑒 + 1)𝐻)). Consider the system of equations 𝑓(𝜶) = 0. Then
by asymptotic Riemann-Roch,

• the number of variables is 𝑛 dim𝐾 Γ(𝑋, 𝒪𝑋(𝑒𝐻)) ∼ 𝑛 𝑒𝑟

𝑟! (𝐻𝑟) ; and
• the number of equations is dim𝐾 Γ(𝑋, 𝒪𝑋((𝑑𝑒 + 1)𝐻)) ∼ (𝑑𝑒+1)𝑟

𝑟! (𝐻𝑟).
Since 𝑛 > 𝑑𝑟, there are more variables than equations, and since there is a trivial
solution, there are also nontrivial solutions.

�

Definition 38.59.13. We call variety a separated, geometrically irreducible and geometri-
cally reduced scheme of finite type over a field, and curve a variety of dimension 1.

Lemma 38.59.14. Let 𝐶 be a curve over an algebraically closed field 𝑘. Then the Brauer
group of the function field of 𝐶 is zero: Br(𝑘(𝐶)) = 0.

Proof. This is clear from Tsen's theorem, Theorem 38.59.12. �

Lemma 38.59.15. Let 𝑘 be an algebraically closed field and 𝑘 ⊂ 𝐾 a field extension of
transcendence degree 1. Then for all 𝑞 ≥ 1, 𝐻𝑞

𝑒𝑡(𝑆𝑝𝑒𝑐(𝐾), 𝐆𝑚) = 0.

Proof. It suffices to show that if 𝐾 ⊂ 𝐾′ is a finite field extension, then Br(𝐾′) = 0. Now
observe that 𝐾′ = 𝑐𝑜𝑙𝑖𝑚 𝐾″, where 𝐾″ runs over the finitely generated subextensions of
𝑘 contained in 𝐾′ of transcendence degree 1. By some result in [Har77], each 𝐾″ is the
function field of a curve, hence has trivial Brauer group by Lemma 38.59.14. It now suffices
to observe that Br(𝐾′) = 𝑐𝑜𝑙𝑖𝑚Br(𝐾″). �

38.60. Higher vanishing for the multiplicative group

In this section, we fix an algebraically closed field 𝑘 and a smooth curve 𝑋 over 𝑘. We
denote 𝑖𝑥 ∶ 𝑥 ↪ 𝑋 the inclusion of a closed point of 𝑋 and 𝑗 ∶ 𝜂 ↪ 𝑋 the inclusion of the
generic point. We also denote 𝑋0 the set of closed points of 𝑋.

Theorem 38.60.1. (The Fundamental Exact Sequence) There is a short exact sequence of
étale sheaves on 𝑋

0 ⟶ 𝐆𝑚,𝑋 ⟶ 𝑗∗𝐆𝑚,𝜂
÷

−−→ ⨁
𝑥∈𝑋0

𝑖𝑥∗𝐙 ⟶ 0.

Proof. Let 𝜑 ∶ 𝒰 → 𝑋 be an étale morphism. Then by properties v and vi of étale
morphisms ( Proposition 38.26.2), 𝒰 = ∐𝑖 𝒰𝑖 where each 𝒰𝑖 is a smooth curve mapping
to 𝑋. The above sequence for 𝑋 is a product of the corresponding sequences for each 𝒰𝑖,
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so it suffices to treat the case where 𝒰 is connected, hence irreducible. In this case, there is
a well known exact sequence (see [Har77])

1 ⟶ Γ(𝒰, 𝒪∗
𝒰) ⟶ 𝑘(𝒰)∗ ÷

−−→ ⨁
𝑦∈𝒰0

𝐙𝑦.

This amounts to a sequence

Γ(𝒰, 𝒪∗
𝒰) ⟶ Γ(𝜂 ×𝑋 𝒰, 𝒪∗

𝜂×𝑋𝒰)
÷

−−→ ⨁
𝑥∈𝑋0

Γ(𝑥 ×𝑋 𝒰, 𝐙)

which, unfolding definitions, is nothing but a sequence

𝐆𝑚(𝒰) ⟶ 𝑗∗𝐆𝑚,𝜂(𝒰)
÷

−−→ ⨁
𝑥∈𝑋0

𝑖𝑥∗𝐙(𝒰).

This defines the maps in the Fundamental Exact Sequence and shows it is exact except
possibly at the last step. To see surjectivity, let us recall (from [Har77] again) that if 𝐶
is a nonsingular curve and 𝐷 is a divisor on 𝐶, then there exists a Zariski open covering
{𝒱𝑗 → 𝐶} of 𝐶 such that 𝐷|𝒱𝑗

= ÷(𝑓𝑗) for some 𝑓𝑗 ∈ 𝑘(𝐶)∗. �

Lemma 38.60.2. For any 𝑞 ≥ 1, 𝑅𝑞𝑗∗𝐆𝑚,𝜂 = 0.

Proof. We need to show that (𝑅𝑞𝑗∗𝐆𝑚,𝜂)�̄� = 0 for every geometric point �̄� of 𝑋.
(1) Assume that �̄� lies over a closed point 𝑥 of 𝑋. Let 𝑆𝑝𝑒𝑐(𝐴) be an open neighbor-

hood of 𝑥 in 𝑋, and 𝐾 the fraction field of 𝐴, so that
𝑆𝑝𝑒𝑐(𝒪𝑠ℎ

𝑋,�̄�) ×𝑋 𝜂 = 𝑆𝑝𝑒𝑐(𝒪𝑠ℎ
𝑋,�̄� ⊗𝐴 𝐾).

The ring 𝒪𝑠ℎ
𝑋,�̄� ⊗𝐴 𝐾 is a localization of the discrete valuation ring 𝒪𝑠ℎ

𝑋,�̄�, so it is
either 𝒪𝑠ℎ

𝑋,�̄� again, or its fraction field 𝐾𝑠ℎ
�̄� . But since some local uniformizer gets

inverted, it must be the latter. Hence
(𝑅𝑞𝑗∗𝐆𝑚,𝜂)(𝑋,�̄�) = 𝐻𝑞

𝑒𝑡(𝑆𝑝𝑒𝑐 𝐾𝑠ℎ
�̄� , 𝐆𝑚).

Now recall that 𝒪𝑠ℎ
𝑋,�̄� = 𝑐𝑜𝑙𝑖𝑚(𝒰, ̄𝑢)→�̄� 𝒪(𝒰) = 𝑐𝑜𝑙𝑖𝑚𝐴⊂𝐵 𝐵 where 𝐴 → 𝐵 is étale,

hence 𝐾𝑠ℎ
�̄� is an algebraic extension of 𝑘(𝑋), and we may apply Lemma 38.59.15

to get the vanishing.
(2) Assume that �̄� = ̄𝜂 lies over the generic point 𝜂 of 𝑋 (in fact, this case is super-

fluous). Then 𝒪𝑋, ̄𝜂 = 𝜅(𝜂)𝑠𝑒𝑝 and thus

(𝑅𝑞𝑗∗𝐆𝑚,𝜂) ̄𝜂 = 𝐻𝑞
𝑒𝑡(𝑆𝑝𝑒𝑐(𝜅(𝜂)𝑠𝑒𝑝) ×𝑋 𝜂, 𝐆𝑚)

= 𝐻𝑞
𝑒𝑡(𝑆𝑝𝑒𝑐(𝜅(𝜂)𝑠𝑒𝑝), 𝐆𝑚)

= 0 for 𝑞 ≥ 1
since the corresponding Galois group is trivial.

�

Lemma 38.60.3. For all 𝑝 ≥ 1, 𝐻𝑝
𝑒𝑡(𝑋, 𝑗∗𝐆𝑚,𝜂) = 0.

Proof. The Leray spectral sequence reads

𝐸𝑝,𝑞
2 = 𝐻𝑝

𝑒𝑡(𝑋, 𝑅𝑞𝑗∗𝐆𝑚,𝜂) ⇒ 𝐻𝑝+𝑞
𝑒𝑡 (𝜂, 𝐆𝑚,𝜂),

which vanishes for 𝑝 + 𝑞 ≥ 1 by Lemma 38.59.15. Taking 𝑞 = 0, we get the desired
vanishing. �

Lemma 38.60.4. For all 𝑞 ≥ 1, 𝐻𝑞
𝑒𝑡(𝑋, ⨁𝑥∈𝑋0 𝑖𝑥∗𝐙) = 0.
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Proof. For 𝑋 quasi-compact and quasi-separated, cohomology commutes with colimits,
so it suffices to show the vanishing of 𝐻𝑞

𝑒𝑡(𝑋, 𝑖𝑥∗𝐙). But then the inclusion 𝑖𝑥 of a closed
point is finite so 𝑅𝑝𝑖𝑥∗𝐙 = 0 for all 𝑝 ≥ 1 by Proposition 38.54.2. Applying the Leray
spectral sequence, we see that 𝐻𝑞

𝑒𝑡(𝑋, 𝑖𝑥∗𝐙) = 𝐻𝑞
𝑒𝑡(𝑥, 𝐙). Finally, since 𝑥 is the spectrum

of an algebraically closed field, all higher cohomology on 𝑥 vanishes. �

Concluding this series of lemmata, we get the following result.

Theorem 38.60.5. Let 𝑋 be a smooth curve over an algebraically closed field. Then

𝐻𝑞
𝑒𝑡(𝑋, 𝐆𝑚) = 0 for all 𝑞 ≥ 2.

We also get the cohomology long exact sequence

0 → 𝐻0
𝑒𝑡(𝑋, 𝐆𝑚) → 𝐻0

𝑒𝑡(𝑋, 𝑗∗𝐆𝑚𝜂)
÷

−→ 𝐻0
𝑒𝑡(𝑋, ⨁ 𝑖𝑥∗𝐙) → 𝐻1

𝑒𝑡(𝑋, 𝐆𝑚) → 0

although this is the familiar

0 → 𝐻0
𝑍𝑎𝑟(𝑋, 𝒪∗

𝑋) → 𝑘(𝑋)∗ ÷
−→ Div(𝑋) → Pic(𝑋) → 0.

We would like to use the Kummer sequence to deduce some information about the coho-
mology group of a curve with finite coefficients. In order to get vanishing in the long exact
sequence, we review some facts about Picard groups.

38.61. Picards groups of curves

Let 𝑋 be a smooth projective curve over an algebraically closed field 𝑘. There exists a short
exact sequence

0 → Pic0(𝑋) → Pic(𝑋)
deg

−−−→ 𝐙 → 0.
The abelian group Pic0(𝑋) can be identified with Pic0(𝑋) = Pic0

𝑋/𝑘(𝑘), i.e., the 𝑘-valued
points of an abelian variety Pic0

𝑋/𝑘 of dimension 𝑔 = 𝑔(𝑋) over 𝑘.

Definition 38.61.1. An abelian variety over 𝑘 is a proper smooth connected group scheme
over 𝑘 (i.e., a proper group variety over 𝑘).

Proposition 38.61.2. Let 𝐴 be an abelian variety over an algebraically closed field 𝑘. Then
(1) 𝐴 is projective over 𝑘;
(2) 𝐴 is a commutative group scheme;
(3) the morphism [𝑛] ∶ 𝐴 → 𝐴 is surjective for all 𝑛 ≥ 1, in other words 𝐴(𝑘) is a

divisible abelian group;
(4) 𝐴[𝑛] = Ker(𝐴

[𝑛]
−−→ 𝐴) is a finite flat group scheme of rank 𝑛2 dim 𝐴 over 𝑘. It is

reduced if and only if 𝑛 ∈ 𝑘∗;
(5) if 𝑛 ∈ 𝑘∗ then 𝐴(𝑘)[𝑛] = 𝐴[𝑛](𝑘) ≅ (𝐙/𝑛𝐙)2 dim(𝐴).

Consequently, if 𝑛 ∈ 𝑘∗ then Pic0(𝑋)[𝑛] ≅ (𝐙/𝑛𝐙)2𝑔 as abelian groups.

Lemma 38.61.3. Let 𝑋 be a smooth projective of genus 𝑔 over an algebraically closed field
𝑘 and 𝑛 ≥ 1, 𝑛 ∈ 𝑘∗. Then there are canonical identifications

𝐻𝑞
𝑒𝑡(𝑋, 𝜇𝑛) =

⎧
⎪
⎨
⎪
⎩

𝜇𝑛(𝑘) if 𝑞 = 0 ;
Pic0(𝑋)[𝑛] if 𝑞 = 1 ;

𝐙/𝑛𝐙 if 𝑞 = 2 ;
0 if 𝑞 ≥ 3.
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Since 𝜇𝑛 ≅ 𝐙/𝑛𝐙, this gives (noncanonical) identifications

𝐻𝑞
𝑒𝑡(𝑋, 𝐙/𝑛𝐙) ≅

⎧
⎪
⎨
⎪
⎩

𝐙/𝑛𝐙 if 𝑞 = 0 ;
(𝐙/𝑛𝐙)2𝑔 if 𝑞 = 1 ;

𝐙/𝑛𝐙 if 𝑞 = 2 ;
0 if 𝑞 ≥ 3.

Proof. The Kummer sequence 0 → 𝜇𝑛,𝑋 → 𝐆𝑚,𝑋
(⋅)𝑛

−−−→ 𝐆𝑚,𝑋 → 0 give the long exact
cohomology sequence

0 // 𝜇𝑛(𝑘) // 𝑘∗ (⋅)𝑛
// 𝑘∗

yy
𝐻1

𝑒𝑡(𝑋, 𝜇𝑛) // Pic(𝑋)
(⋅)𝑛
// Pic(𝑋)

yy
𝐻2

𝑒𝑡(𝑋, 𝜇𝑛) // 0 // 0 ⋯

The 𝑛 power map 𝑘∗ → 𝑘∗ is surjective since 𝑘 is algebraically closed. So we need to
compute the kernel and cokernel of themap Pic(𝑋)

(⋅)𝑛

−−−→ Pic(𝑋). Consider the commutative
diagram with exact rows

0 // Pic0(𝑋) //

(⋅)𝑛
����

Pic(𝑋)
deg //

(⋅)𝑛

��

𝐙 //� _

𝑛
��

0

0 // Pic0(𝑋) // Pic(𝑋)
deg // 𝐙 // 0

where the left vertical map is surjective by Proposition 38.61.2 (3). Applying the snake
lemma gives the desired identifications. �

Lemma 38.61.4. Let 𝑋 be an affine smooth curve over an algebraically closed field 𝑘 and
𝑛 ∈ 𝑘∗. Then

(1) 𝐻0
𝑒𝑡(𝑋, 𝜇𝑛) = 𝜇𝑛(𝑘);

(2) 𝐻1
𝑒𝑡(𝑋, 𝜇𝑛) ≅ (𝐙/𝑛𝐙)2𝑔+𝑟−1, where 𝑟 is the number of points in �̄� − 𝑋 for some

smooth projective compactification �̄� of 𝑋 ; and
(3) for all 𝑞 ≥ 2, 𝐻𝑞

𝑒𝑡(𝑋, 𝜇𝑛) = 0.

Proof. Write 𝑋 = �̄� − {𝑥1, … , 𝑥𝑟}. Then Pic(𝑋) = Pic(�̄�)/𝑅, where 𝑅 is the subgroup
generated by 𝒪�̄�(𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑟. Since 𝑟 ≥ 1, we see that Pic0(𝑋) → Pic(𝑋) is surjective,
hence Pic(𝑋) is divisible. Applying the Kummer sequence, we get i and iii. For ii, recall
that

𝐻1
𝑒𝑡(𝑋, 𝜇𝑛) = {(ℒ, 𝛼)|ℒ ∈ Pic(𝑋), 𝛼 ∶ ℒ⊗𝑛 ≅ 𝒪𝑋} /≅

= {( ̄ℒ, 𝐷, �̄�)} /�̃�

where ̄ℒ ∈ Pic0(�̄�), 𝐷 is a divisor on �̄� supported on {𝑥1, ⋯ , 𝑥𝑟} and �̄� ∶ ̄ℒ⊗𝑛 ≅ 𝒪�̄�(𝐷)
is an isomorphism. Note that 𝐷 must have degree 0. Further �̃� is the subgroup of triples
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of the form (𝒪�̄�(𝐷′), 𝑛𝐷′, 1⊗𝑛) where 𝐷′ is supported on {𝑥1, ⋯ , 𝑥𝑟} and has degree 0.
Thus, we get an exact sequence

0 ⟶ 𝐻1
𝑒𝑡(�̄�, 𝜇𝑛) ⟶ 𝐻1

𝑒𝑡(𝑋, 𝜇𝑛) ⟶
𝑟

⨁
𝑖=1

𝐙/𝑛𝐙
∑

−−−→ 𝐙/𝑛𝐙 ⟶ 0

where the middle map sends the class of a triple ( ̄ℒ, 𝐷, �̄�) with 𝐷 = ∑𝑟
𝑖=1 𝑎𝑖(𝑥𝑖) to the

𝑟-tuple (𝑎𝑖)𝑟
𝑖=1. It now suffices to use Lemma 38.61.3 to count ranks. �

Remark 38.61.5. The ``natural'' way to prove the previous corollary is to excise 𝑋 from
�̄�. This is possible, we just haven't developed that theory.

Our main goal is to prove the following result.

Theorem 38.61.6. Let 𝑋 be a separated, finite type, dimension 1 scheme over an alge-
braically closed field 𝑘 and ℱ a torsion sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Then

𝐻𝑞
𝑒𝑡(𝑋, ℱ) = 0, ∀𝑞 ≥ 3.

If 𝑋 affine then also 𝐻2
𝑒𝑡(𝑋, ℱ) = 0.

Recall that an abelian sheaf is called a torsion sheaf if all of its stalks are torsion groups. We
have computed the cohomology of constant sheaves. We now generalize the latter notion
to get all the way to torsion sheaves.

38.62. Constructible sheaves

Definition 38.62.1. Let 𝑋 be a scheme and ℱ an abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. We say that ℱ is
finite locally constant if it is represented by a finite étale morphism to 𝑋.

Lemma 38.62.2. Let 𝑋 be a scheme and ℱ an abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Then the following
are equivalent

(1) ℱ is finite locally constant ;
(2) there exists an étale covering {𝒰𝑖 → 𝑋}𝑖∈𝐼 such that ℱ|𝒰𝑖

≅ 𝐴𝑖 for some finite
abelian group 𝐴𝑖.

For a proof, see [Del77].

Definition 38.62.3. Let 𝑋 be a quasi-compact and quasi-separated scheme. A sheaf ℱ on
𝑋 ́𝑒𝑡𝑎𝑙𝑒 is constructible if there exists a finite decomposition of 𝑋 into locally closed subsets
𝑋 = ∐𝑖 𝑋𝑖 such that ℱ|𝑋𝑖

is finite locally constant for all 𝑖.

Lemma 38.62.4. The kernel and cokernel of a map of finite locally constant sheaves are
finite locally constant.

Proof. Let 𝒰 be a connected scheme, 𝐴 and 𝐵 finite abelian groups. Then
𝐻𝑜𝑚Ab(𝒰 ́𝑒𝑡𝑎𝑙𝑒) (𝐴𝒰, 𝐵𝒰) = 𝐻𝑜𝑚Ab(𝐴, 𝐵),

so Ker(𝐴𝒰
𝜑

−→ 𝐵𝒰) = Ker(𝜑)
𝒰
and similarly for the cokernel. �

Remark 38.62.5. If 𝑋 is noetherian, then (with out definitions) any constructible sheaf on
𝑋 ́𝑒𝑡𝑎𝑙𝑒 is a torsion sheaf.

Lemma 38.62.6. Let 𝑋 be a noetherian scheme. Then:
(1) the category of constructible sheaves is abelian ;
(2) it is a full exact subcategory of Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ;
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(3) any extension of constructible sheaves is constructible ; and
(4) the image of a map from a constructible sheaf to any other sheaf is constructible.

Proof. Let 𝜑 ∶ ℱ → 𝒢 be a map of constructible sheaves. By assumption, there exists a
stratification 𝑋 = ∐ 𝑋𝑖 such that ℱ|𝑋𝑖

and 𝒢|𝑋𝑖
are finite locally constant. Since pullback

if exact, we thus have Ker(𝜑|𝑋𝑖
) = Ker(ℱ|𝑋𝑖

𝜑
−→ 𝒢|𝑋𝑖

) which is finite locally constant by
Lemma 38.62.4. Statement (4) means that if 𝜑 ∶ ℱ → 𝒢 is a map in Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) and ℱ is
constructible then Im(𝜑) is constructible. It is proven in [Del77]. �

Lemma 38.62.7. Let 𝜑 ∶ 𝒰 → 𝑋 be an étale morphism of noetherian schemes. Then there
exists a stratification 𝑋 = ∐𝑖 𝑋𝑖 such that for all 𝑖, 𝑋𝑖 ×𝑋 𝒰 → 𝑋𝑖 is finite étale.

Proof. By noetherian induction it suffices to find some nonempty open 𝒱 ⊂ 𝑋 such that
𝜑−1(𝒱) → 𝒱 is finite. This follows from the following very general lemma. �

Lemma 38.62.8. (Morphisms, Lemma 24.45.1). Let 𝑓 ∶ 𝑋 → 𝑌 be a quasi-compact and
quasi-separated morphism of schemes and 𝜂 a generic point of 𝑌 such that 𝑓−1(𝜂) is finite.
Then there exists an open 𝒱 ⊂ 𝑌 containing 𝜂 such that 𝑓−1(𝒱) → 𝒱 is finite.

38.63. Extension by zero

Definition 38.63.1. Let 𝑗 ∶ 𝒰 → 𝑋 be an étale morphism of schemes. The restriction
functor 𝑗−1 is right exact, so it has a left adjoint, denoted 𝑗! ∶ Ab(𝒰 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) and
called extension by zero. Thus it is characterized by the functorial isomorphism

𝐻𝑜𝑚𝑋(𝑗!ℱ, 𝒢) = 𝐻𝑜𝑚𝒰(ℱ, 𝑗−1𝒢)
for all ℱ ∈ Ab(𝒰 ́𝑒𝑡𝑎𝑙𝑒) and 𝒢 ∈ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒).

To describe it more explicitly, recall that 𝑗−1 is just the restriction functor 𝒰 ́𝑒𝑡𝑎𝑙𝑒 → 𝑋 ́𝑒𝑡𝑎𝑙𝑒,
that is,

𝑗−1𝒢(𝒰′ → 𝒰) = 𝒢 (𝒰′ → 𝒰
𝑗

−→ 𝑋) .

For ℱ ∈ Ab(𝒰 ́𝑒𝑡𝑎𝑙𝑒) we consider the presheaf

𝑗PSh! ℱ ∶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒 ⟶ Ab
(𝒱 → 𝑋) ⟼ ⨁

𝒱
𝜑

−→𝒰 over 𝑋

ℱ(𝒱
𝜑

−→ 𝒰),

then 𝑗!ℱ is the sheafification (𝑗PSh! ℱ)
♯.

Exercise 38.63.2. Prove directly that 𝑗! is left adjoint to 𝑗−1 and that 𝑗∗ is right adjoint to
𝑗−1.

Proposition 38.63.3. Let 𝑗 ∶ 𝒰 → 𝑋 be an étale morphism of schemes. Then
(1) the functors 𝑗−1 and 𝑗! are exact ;
(2) 𝑗−1 transforms injectives into injectives ;
(3) 𝐻𝑝

𝑒𝑡(𝒰, 𝒢) = 𝐻𝑝
𝑒𝑡(𝒰, 𝑗−1𝒢) for any 𝒢 ∈ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒)

(4) if �̄� is a geometric point of 𝑋, then (𝑗!ℱ)�̄� = ⨁
(𝒰, ̄𝑢)→(𝑋,𝑥)

ℱ ̄𝑢.

Proof. The functor 𝑗−1 has both a right and a left adjoint, so it is exact. The functor 𝑗!
has a right adjoint, so it is right exact. To see that it is left exact, use the description
above and the fact that sheafification is exact. Property ii is standard general nonsense. In
part iii, the left-hand side refers (as it should) to the right derived functors of 𝒢 ↦ 𝒢(𝒰)
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on Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒), and the right-hand side refers to global cohomology on Ab(𝒰 ́𝑒𝑡𝑎𝑙𝑒). It is a
formal consequence of ii. Part iv is again a consequence of the above description. �

Lemma 38.63.4. Extension by zero commutes with base change. More precisely, let 𝑓 ∶
𝑌 → 𝑋 be a morphism of schemes, 𝑗 ∶ 𝒱 → 𝑋 be an étale morphism and ℱ a sheaf on
𝒱 ́𝑒𝑡𝑎𝑙𝑒. Consider the cartesian diagram

𝒱′ = 𝑌 ×𝑋 𝒱

𝑓′

��

𝑗′
// 𝑌

𝑓
��

𝒱
𝑗 // 𝑋

then 𝑗′
!𝑓

′−1ℱ = 𝑓−1𝑗!ℱ.

Sketch of proof. By general nonsense, there exists a map 𝑗′
! ∘ 𝑓′−1 → 𝑓−1 ∘ 𝑗!. We merely

verify that they agree on stalks. We have

(𝑗′
!𝑓

′−1ℱ) ̄𝑦 = ⨁
̄𝑣′→ ̄𝑦

(𝑓′−1ℱ) ̄𝑣′ = ⨁̄
𝑣→𝑓( ̄𝑦)

ℱ ̄𝑣 = (𝑗!ℱ)𝑓( ̄𝑦) = (𝑓−1𝑗!ℱ) ̄𝑦.

�

Lemma 38.63.5. Let 𝑗 ∶ 𝒱 → 𝑋 be finite and étale. Then 𝑗! = 𝑗∗.

Sketch of proof. In this situation, one can again construct a map 𝑗! → 𝑗∗ although in this
case it is not just by general nonsense and uses the assumptions on 𝑗. Again, we only check
that the stalks agree. We have on the one hand

(𝑗!ℱ)�̄� = ⨁̄
𝑣→�̄�

ℱ ̄𝑣,

and on the other hand

(𝑗∗ℱ)�̄� = 𝐻0
𝑒𝑡(𝑆𝑝𝑒𝑐(𝒪𝑠ℎ

𝑋,�̄�) ×𝑋 𝒱, ℱ).

But 𝑗 is finite and 𝒪𝑋,�̄� is strictly henselian, hence 𝑆𝑝𝑒𝑐(𝒪𝑠ℎ
𝑋,�̄�) ×𝑋 𝒱 splits completely into

spectra of strictly henselian local rings

𝑆𝑝𝑒𝑐(𝒪𝑠ℎ
𝑋,�̄�) ×𝑋 𝒱 = ∐̄

𝑣→�̄�
𝑆𝑝𝑒𝑐(𝒪𝑠ℎ

𝑋,�̄�)

and so (𝑗∗ℱ)�̄� = ∏ ̄𝑣→�̄� ℱ ̄𝑣 by Lemma 38.63.4. Since finite products and finite coproducts
agree, we get the result. Note that this last step fails if we take infinite colimits, and indeed
the result is not true anymore for ind-morphisms, say. �

Lemma 38.63.6. Let 𝑋 be a noetherian scheme and 𝑗 ∶ 𝒰 → 𝑋 an étale, quasi-compact
morphism. Then 𝑗!𝐙/𝑛𝐙 is constructible on 𝑋.

Proof. By Lemma 38.62.7, 𝑋 has a stratification ∐𝑖 𝑋𝑖 such that 𝜋𝑖 ∶ 𝑗−1(𝑋𝑖) → 𝑋𝑖 is
finite étale, hence

𝑗!(𝐙/𝑛𝐙)|𝑋𝑖
= 𝜋𝑖!(𝐙/𝑛𝐙) = 𝜋𝑖∗(𝐙/𝑛𝐙)

by Lemma 38.63.5. Thus it suffices to show that for 𝜋 ∶ 𝑌 → 𝑋 finite étale, 𝜋∗(𝐙/𝑛𝐙) is
finite locally constant. This is clear because it is the sheaf represented by 𝑌 × 𝐙/𝑛𝐙. �

Remark 38.63.7. Using the alternative definition of finite locally constant (as in Lemma
38.62.2), the last step is replaced by considering a Galois closure of 𝑌.
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Lemma 38.63.8. Let 𝑋 be a noetherian scheme and ℱ a torsion sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Then ℱ
is a directed (filtered) colimit of constructible sheaves.

Sketch of proof. Let 𝑗 ∶ 𝒰 → 𝑋 in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 and 𝑠 ∈ ℱ(𝒰) for some 𝒰 noetherian. Then
𝑛𝑠 = 0 for some 𝑛 > 0. Hence we get a map 𝐙/𝑛𝐙𝒰 → ℱ|𝒰, by sending 1̄ to 𝑠. By
adjointness, this gives a map 𝜑 ∶ 𝑗!(𝐙/𝑛𝐙) → ℱ whose image contains 𝑠. There is an
element 1id𝒰

∈ Γ(𝒰, 𝑗!𝐙/𝑛𝐙) which maps to 𝑠. Thus, Im(𝜑) ⊂ ℱ is a constructible subsheaf
and 𝑠 ∈ Im(𝜑)(𝒰). A similar argument applies for a finite collection of sections, and the
result follows by taking colimits. �

38.64. Higher vanishing for torsion sheaves

The goal of this section is to prove the result that follows now.

Theorem 38.64.1. Let 𝑋 be an affine curve over an algebraically closed field 𝑘 and ℱ a
torsion sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Then 𝐻𝑞

𝑒𝑡(𝑋, ℱ) = 0 for all 𝑞 ≥ 2.

We begin by reducing the proof to a more simpler statement.
(1) If suffices to prove the vanishing when ℱ is a constructible sheaf.

Using the compatibility of étale cohomology with colimits and Lemma 38.63.8, we have
𝑐𝑜𝑙𝑖𝑚 𝐻𝑞

𝑒𝑡(𝑋, ℱ) = 𝐻𝑞
𝑒𝑡(𝑋, 𝑐𝑜𝑙𝑖𝑚 ℱ𝑖) for some constructible sheaves ℱ𝑖, whence the result.

(2) It suffices to assume that ℱ = 𝑗!𝒢 where 𝒰 ⊂ 𝑋 is open, 𝒢 is finite locally
constant on 𝒰 smooth.

Choose a nonempty open 𝒰 ⊂ 𝑋 such that ℱ|𝒰 is finite locally constant, and consider the
exact sequence

0 → 𝑗!(ℱ|𝒰) → ℱ → 𝑄 → 0.
By looking at stalks we get 𝑄�̄� = 0 unless �̄� ∈ 𝑋 − 𝑈. It follows that 𝑄 = ⨁

𝑥∈𝑋−𝑈
𝑖𝑥∗(𝑄𝑥)

which has no higher cohomology.
(3) It suffices to assume that 𝑋 is smooth and affine (over 𝑘), 𝒢 is a finite locally

constant sheaf on a open 𝒰 of 𝑋 and ℱ = 𝑗!𝒢.
Let 𝒰, 𝑋 and 𝒢 be as in the step 2, and consider the commutative diagram

𝑋𝜈

𝜈
��

𝒰
𝑗 //

𝑗𝜈
>>

𝑋
where 𝜈 ∶ 𝑋𝜈 → 𝑋 is the normalization of 𝑋. Since 𝜈 is finite, 𝐻∗

𝑒𝑡(𝑋, 𝑗!𝒢) = 𝐻∗
𝑒𝑡(𝑋

𝜈, 𝑗𝜈
! 𝒢),

which implies that 𝜈∗((𝑗𝜈)!𝒢) = 𝑗!𝒢 by looking at stalks. We are thus reduced to proving
the following lemma.

Lemma 38.64.2. Let 𝑋 be a smooth affine curve over an algebraically closed field 𝑘, 𝑗 ∶
𝒰 ↪ 𝑋 an open immersion and ℱ a finite locally constant sheaf on 𝒰 ́𝑒𝑡𝑎𝑙𝑒. Then for all
𝑞 ≥ 2, 𝐻𝑞

𝑒𝑡(𝑋, 𝑗!ℱ) = 0.

The proof of this follows the ``méthode de la trace'' as explained in [MA71, Exposé IX,
§5].

Definition 38.64.3. Let 𝑓 ∶ 𝑌 → 𝑋 be a finite étale morphism. There are pairs of adjoint
functors (𝑓!, 𝑓−1) and (𝑓−1, 𝑓∗) on Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒). The adjunction map id → 𝑓∗𝑓−1 is called
restriction. Since 𝑓 is finite, 𝑓! = 𝑓∗ and the adjunction map 𝑓∗𝑓−1 = 𝑓!𝑓−1 → id is called
the trace.
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The trace map is characterized by the following two properties:
(1) it commutes with étale localization ; and
(2) if 𝑓 ∶ 𝑌 = ∐𝑑

𝑖=1 𝑋 → 𝑋 then the trace map is just the sum map 𝑓∗𝑓−1ℱ =
ℱ⊕𝑑 → ℱ.

It follows that if 𝑓 has constant degree 𝑑, then the composition ℱ
𝑟𝑒𝑠

−−→ 𝑓∗𝑓−1ℱ
𝑡𝑟𝑎𝑐𝑒

−−−−→ ℱ is
multiplication by 𝑑. The ``méthode'' then essentially consits in the following observation:
if ℱ is an abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 such that multiplication by 𝑑 is an isomorphism ℱ ≅ ℱ,
and if furthermore 𝐻𝑞

𝑒𝑡(𝑌, 𝑓−1ℱ) = 0 then 𝐻𝑞
𝑒𝑡(𝑋, ℱ) = 0 as well. Indeed, multiplication

by 𝑑 induces an isomorphism on 𝐻𝑞
𝑒𝑡(𝑋, ℱ) which factors through 𝐻𝑞

𝑒𝑡(𝑌, 𝑓−1ℱ) = 0.

Using thismethod, we further reduce the proof of Lemma 38.64.2 to a yet simpler statement.
(4) We may assume that ℱ is killed by a prime ℓ.

Writing ℱ = ℱ1 ⊕ ⋯ ⊕ ℱ𝑟 where ℱ𝑖 is ℓ𝑖-primary for some prime ℓ𝑖, we may assume that
ℓ𝑛 kills ℱ for some prime ℓ. Now consider the exact sequence

0 → ℱ[ℓ] → ℱ → ℱ/ℱ[ℓ] → 0.

Applying the exact functor 𝑗! and looking at the long exact cohomology sequence, we see
that it suffices to assume that ℱ is ℓ-torsion, which we do.

(5) There exists a finite étale morphism 𝑓 ∶ 𝒱 → 𝒰 of degree prime to ℓ such that
𝑓−1ℱ has a filtration

0 ⊂ 𝒢1 ⊂ 𝒢2 ⊂ ⋯ ⊂ 𝒢𝑠 = 𝑓−1ℱ

with 𝒢𝑖/𝒢𝑖−1 ≅ 𝐙/ℓ𝐙𝒱 for all 𝑖 ≤ 𝑠.

Since ℱ is finite locally constant, there exists a finite étale Galois cover ℎ ∶ 𝒰′ → 𝒰 such
that ℎ−1ℱ ≅ 𝐴𝒰′ for some finite abelian group 𝐴. Note that 𝐴 ≅ (𝐙/ℓ𝐙)⊕𝑚 for some 𝑚.
Saying that the cover is Galois means that the finite group 𝐺 = Aut(𝒰′|𝒰) has (maximal)
cardinality #𝐺 = deg ℎ. Now let 𝐻 ⊂ 𝐺 be the ℓ-Sylow, and set

𝒰′ 𝜋
−−−→ 𝒱 = 𝒰′/𝐻

𝑓
−−−→ 𝒰.

The quotient exists by taking invariants (schemes are affine). By construction, deg 𝑓 =
#𝐺/#𝐻 is prime to ℓ. The sheaf 𝒢 = 𝑓−1ℱ is then a finite locally constant sheaf on 𝒱 and

𝜋−1𝒢 = ℎ−1ℱ ≅ (𝐙/ℓ𝐙)⊕𝑚
𝒰′ .

Moreover,
𝐻0

𝑒𝑡(𝒱, 𝒢) = 𝐻0
𝑒𝑡(𝒰

′, 𝜋−1𝒢)𝐻 = ((𝐙/ℓ𝐙)⊕𝑚)
𝐻 ≠ 0,

where the first equality follows from writing out the sheaf condition for 𝒢 (again, schemes
are affine), and the last inequality is an exercise in linear algebra over 𝐅ℓ. Following, we
have found a subsheaf 𝐙/ℓ𝐙𝒱 ↪ 𝒢. Repeating the argument for the quotient 𝒢/𝐙/ℓ𝐙𝒱 if
necessary, we eventually get a subsheaf of 𝒢 with quotient 𝐙/ℓ𝐙𝒱. This is the first step of
the filtration.

Exercise 38.64.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite étale morphism with 𝑌 noetherian, and 𝑋, 𝑌
irreducible. Then there exists a finite étale Galois morphism 𝑋′ → 𝑌 which dominates 𝑋
over 𝑌.
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(6) We consider the normalization 𝑌 of 𝑋 in 𝒱, that is, we have the commutative
diagram

𝒱

𝑓
��

� � 𝑗′
// 𝑌

𝑓′

��
𝒰 �
� 𝑗 // 𝑋.

Then there is an injection 𝐻𝑞
𝑒𝑡(𝑋, 𝑗!ℱ) ↪ 𝐻𝑞

𝑒𝑡(𝑌, 𝑗′
!𝑓

−1ℱ) for all 𝑞.

We have seen that the composition ℱ
𝑟𝑒𝑠

−−→ 𝑓∗𝑓−1ℱ
𝑡𝑟𝑎𝑐𝑒

−−−−→ ℱ is multiplication by the degree
of 𝑓, which is prime to ℓ. On the other hand,

𝑗!𝑓∗𝑓−1ℱ = 𝑗!𝑓!𝑓−1ℱ = 𝑓′
∗𝑗′

!𝑓
−1ℱ

since 𝑓 and 𝑓′ are both finite and the above diagram is commutative. Hence applying 𝑗! to
the previous sequence gives a sequence

𝑗!ℱ ⟶ 𝑓′∗𝑗′
!𝑓

−1ℱ ⟶ 𝑗!ℱ.

Taking cohomology, we see that 𝐻𝑞
𝑒𝑡(𝑋, 𝑗!ℱ) injects into 𝐻𝑞

𝑒𝑡(𝑋, 𝑓′∗𝑗′
!𝑓

−1ℱ). But since 𝑓′

is finite, this is merely 𝐻𝑞
𝑒𝑡(𝑌, 𝑗′

!𝑓
−1ℱ), as desired.

(7) It suffices to prove 𝐻𝑞
𝑒𝑡(𝑌, 𝑗′

!𝐙/ℓ𝐙) = 0.
By Step 3, it suffices to show vanishing of 𝐻𝑞

𝑒𝑡(𝑌, 𝑗′
!𝑓

−1ℱ). But then by Step 2, we may
assume that 𝑓−1ℱ has a finite filtration with quotients isomorphic to 𝐙/𝑛𝐙, whence the
claim.
Finally, we are reduced to proving the following lemma.

Lemma 38.64.5. Let𝑋 be a smooth affine curve over an algebraically closed field, 𝑗 ∶ 𝒰 ↪
𝑋 an open immersion and ℓ a prime number. Then for all 𝑞 ≥ 2, 𝐻𝑞

𝑒𝑡(𝑋, 𝑗!𝐙/ℓ𝐙) = 0.

Proof. Consider the short exact sequence

0 ⟶ 𝑗!𝐙/ℓ𝐙𝒰 ⟶ 𝐙/ℓ𝐙𝑋 ⟶ ⨁
𝑥∈𝑋−𝒰

𝑖𝑥∗(𝐙/ℓ𝐙) ⟶ 0.

We know that the cohomology of the middle sheaf vanishes in degree at least 2 by Lemma
38.61.4 and that of the skyscraper sheaf on the right vanishes in degree at least 1. Thus
applying the long exact cohomology sequence, we get the vanishing of 𝑗!𝐙/ℓ𝐙𝒰 in degree
at least 2. This finishes the proof of the lemma, hence of Lemma 38.64.2, hence of Theorem
38.64.1. �

Remarks 38.64.6. Here are some remarks about what happened above.
• This method is very general. For instance, it applies in Galois cohomology, and

this is essentially how Proposition 38.59.7 is proved.
• In fact, we have overlooked the case where ℓ is the characteristic of the field 𝑘,

since the Kummer sequence is not exact then and we cannot use Lemma 38.61.4
anymore. The result is still true, as shown by considering the Artin-Schreier exact
sequence for a scheme 𝑆 of characteristic 𝑝 > 0, namely

0 ⟶ 𝐙/𝑝𝐙
𝑆

⟶ 𝐆𝑎,𝑆
𝐹−1

−−−→ 𝐆𝑎,𝑆 ⟶ 0

where 𝐹 − 1 is the map 𝑥 ↦ 𝑥𝑝 − 𝑥. Using this, it can be shown that is 𝑆 is
affine then 𝐻𝑞

𝑒𝑡(𝑆, 𝐙/𝑝𝐙) = 0 for all 𝑞 ≥ 2. In fact, if 𝑋 is projective over 𝑘, then
𝐻𝑞

𝑒𝑡(𝑋, 𝐙/𝑝𝐙) = 0 for all 𝑞 ≥ dim 𝑋 + 2.
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• If 𝑋 is a projective curve over an algebraically closed field then 𝐻𝑞
𝑒𝑡(𝑋, ℱ) = 0

for all 𝑞 ≥ 3 and all torsion sheaves ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. This can be shown using Serre's
Mayer Vietoris argument, thereby proving Theorem 38.61.6.

• Wecan prove using the samemethods vanishing of higher cohomology on 1-dimensional
schemes of finite type over an algebraically closed field. However, it is easier to
reduce to the case of a curve by using the topological invariance of étale coho-
mology as stated below.

Proposition 38.64.7. (Topological invariance of étale cohomology) Let 𝑋 be a scheme
and 𝑋0 ↪ 𝑋 a closed immersion defined by a nilpotent sheaf of ideals. Then the étale sites
𝑋 ́𝑒𝑡𝑎𝑙𝑒 and (𝑋0) ́𝑒𝑡𝑎𝑙𝑒 are isomorphic. In particular, for any sheaf ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝐻𝑞(𝑋, ℱ) =
𝐻𝑞(𝑋0, ℱ|𝑋0

) for all 𝑞.

38.65. The trace formula

A typical course in étale cohomologywould normally state and prove the proper and smooth
base change theorems, purity and Poincaré duality. All of these can be found in [Del77,
Arcata]. Instead, we are going to study the trace formula for the frobenius, following the
account of Deligne in [Del77, Rapport]. We will only look at dimension 1, but using proper
base change this is enough for the general case. Since all the cohomology groups considered
will be étale, we drop the subscript ́𝑒𝑡𝑎𝑙𝑒. Let us now describe the formula we are after. Let
𝑋 be a finite type scheme of dimension 1 over a finite field 𝑘, ℓ a prime number and ℱ a
constructible, flat 𝐙/ℓ𝑛𝐙 sheaf. Then

(38.65.0.1) ∑𝑥∈𝑋(𝑘)
Tr(Frob|ℱ�̄�) = ∑

2
𝑖=0

(−1)𝑖Tr(𝜋∗
𝑋|𝐻𝑖

𝑐(𝑋 ⊗𝑘 �̄�, ℱ))

as elements of 𝐙/ℓ𝑛𝐙. As we will see, this formulation is slightly wrong as stated. Let us
nevertheless describe the symbols that occur therein.

38.66. Frobenii

Throughout this section, 𝑋 will denote a scheme of finite type over a finite field 𝑘 with
𝑞 = 𝑝𝑓 elements. Let 𝛼 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) denote the structural morphism, �̄� a fixed algebraic
closure of 𝑘 and 𝐺𝑘 = Gal(�̄�|𝑘) the absolute Galois group of 𝑘.

Definition 38.66.1. The absolute frobenius of 𝑋 is the morphism 𝐹 = 𝐹𝑋 ∶ 𝑋 → 𝑋 which
is the identity on the induced topological space, and which takes a section to its 𝑝th power.
That is, 𝐹♯ ∶ 𝒪𝑋 → 𝒪𝑋 is given by 𝑔 ↦ 𝑔𝑝. It is clear that this induces the identity on the
topological space indeed.

Theorem 38.66.2. (The Baffling Theorem) Let 𝑋 be a scheme in characteristic 𝑝 > 0.
Then the absolute frobenius induces (by pullback) the trivial map on cohomology, i.e., for
all integers 𝑗 ≥ 0,

𝐹∗
𝑋 ∶ 𝐻𝑗(𝑋, 𝐙/𝑛𝐙) ⟶ 𝐻𝑗(𝑋, 𝐙/𝑛𝐙)

is the identity.

This theorem is purely formal. It is a good idea, however, to review how to compute the
pullback of a cohomology class. Let us simply say that in the case where cohomology
agrees with C̆ech cohomology, it suffices to pull back (using the fiber products on a site)
the C̆ech cocycles. The general case is quite technical and can be found in (insert future
reference here). A topological analogue of the baffling theorem is the following.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03SI
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03SM
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03SN


38.66. FROBENII 2075

Exercise 38.66.3. Let 𝑋 be a topological space and 𝑔 ∶ 𝑋 → 𝑋 a continuous map such
that 𝑔−1(𝑈) = 𝑈 for all opens 𝑈 of 𝑋. Then 𝑔 induces the identity on cohomology on 𝑋
(for any coefficients).

We now turn to the statement for the étale site.

Lemma 38.66.4. Let 𝑋 be a scheme and 𝑔 ∶ 𝑋 → 𝑋 a morphism. Assume that for all
𝜑 ∶ 𝒰 → 𝑋 étale, there is a functorial isomorphism

𝒰

𝜑
��

∼ // 𝒰 ×𝜑,𝑋,𝑔 𝑋

pr2
zz

𝑋,
then 𝑔 induces the identity on cohomology (for any sheaf).

The proof is formal and without difficulty. To prove the theorem, we merely verify that the
assumption of the lemma holds for the frobenius.

Proof of Theorem 38.66.2. We need to verify the existence of a functorial isomorphism
as above. For an étale morphism 𝜑 ∶ 𝒰 → 𝑆, consider the diagram

𝒰

%%

𝐹𝒰

##

𝜑

&&

𝒰 ×𝜑,𝑋,𝐹𝑋
𝑋

pr1 //

pr2
��

𝒰

𝜑
��

𝑋
𝐹𝑋 // 𝑋.

The dotted arrow is an étale morphism which induces an isomorphism on the underlying
topological spaces, so it is an isomorphism. �

Definition 38.66.5. The geometric frobenius of 𝑋 is the morphism 𝜋𝑋 ∶ 𝑋 → 𝑋 over
𝑆𝑝𝑒𝑐(𝑘) which equals 𝐹𝑓

𝑋. We can base change it to any scheme over 𝑘, and in particular to
𝑋�̄� = 𝑆𝑝𝑒𝑐(�̄�) ×𝑆𝑝𝑒𝑐(𝑘) 𝑋 to get the morphism id𝑆𝑝𝑒𝑐(�̄�) × 𝜋𝑋 ∶ 𝑋�̄� → 𝑋�̄� which we denote
𝜋𝑋 again. This should not be ambiguous, as 𝑋�̄� does not have a geometric frobenius of its
own.

Lemma 38.66.6. Let ℱ be a sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Then there are canonical isomorphisms
𝜋−1

𝑋 ℱ ≅ ℱ and ℱ ≅ 𝜋𝑋∗ℱ.

This is false for the fppf site.

Proof. Let 𝜑 ∶ 𝒰 → 𝑋 be étale. Recall that 𝜋𝑋∗ℱ(𝒰) = ℱ(𝒰 × 𝜑, 𝑋, 𝜋𝑋𝑋). Since
𝜋𝑋 = 𝐹𝑓

𝑋, by Lemma 38.66.4 that there is a functorial isomorphism

𝒰

𝜑
��

∼
𝛾𝒰

// 𝒰 ×𝜑,𝑋,𝜋𝑋
𝑋

pr2
yy

𝑋

where 𝛾𝒰 = (𝜑, 𝐹𝑓
𝒰). Now we define an isomorphism

ℱ(𝒰) ⟶ 𝜋𝑋∗ℱ(𝒰) = ℱ(𝒰 ×𝜑,𝑋,𝜋𝑋
𝑋)
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by taking the restriction map of ℱ along 𝛾−1
𝒰 . The other isomorphism is analogous. �

Remark 38.66.7. It may or may not be the case that 𝐹𝑓
𝒰 equals 𝜋𝒰.

Let ℱ be an abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Consider the cohomology group 𝐻𝑗(𝑋�̄�, ℱ|𝑋�̄�
) as a

left 𝐺𝑘-module as follows: if 𝜎 ∈ 𝐺𝑘, the diagram

𝑋�̄�

  

𝑆𝑝𝑒𝑐(𝜎)×id𝑋 // 𝑋�̄�

~~
𝑋

commutes. Thus we can set, for 𝜉 ∈ 𝐻𝑗(𝑋�̄�, ℱ|𝑋�̄�
)

𝜎 ⋅ 𝜉 ∶= (𝑆𝑝𝑒𝑐(𝜎) × id𝑋)∗𝜉 ∈ 𝐻𝑗(𝑋�̄�, (𝑆𝑝𝑒𝑐(𝜎) × id𝑋)−1ℱ|𝑋�̄�) = 𝐻𝑗(𝑋�̄�, ℱ|𝑋�̄�
),

where the last equality follows from the commutativity of the previous diagram. This en-
dows the latter group with the structure of a 𝐺𝑘-module.

Lemma 38.66.8. Let ℱ be an abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Consider (𝑅𝑗𝛼∗ℱ)𝑆𝑝𝑒𝑐(�̄�) endowed
with its natural Galois action as in Section 38.56. Then the identification

(𝑅𝑗𝛼∗ℱ)𝑆𝑝𝑒𝑐(�̄�) ≅ 𝐻𝑗(𝑋�̄�, ℱ|𝑋�̄�
)

from Theorem 38.52.2 is an isomorphism of 𝐺𝑘-modules.

A similar result holds comparing (𝑅𝑗𝛼!ℱ)𝑆𝑝𝑒𝑐(�̄�) with 𝐻𝑗
𝑐(𝑋�̄�, ℱ|𝑋�̄�

). We omit the
proof.

Definition 38.66.9. The arithmetic frobenius is the map frob𝑘 ∶ �̄� → �̄�, 𝑥 ↦ 𝑥𝑞 of 𝐺𝑘.

Theorem 38.66.10. Let ℱ be an abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Then for all 𝑗 ≥ 0, frob𝑘 acts on
the cohomology group 𝐻𝑗(𝑋�̄�, ℱ|𝑋�̄�

) as the inverse of the map 𝜋∗
𝑋.

The map 𝜋∗
𝑋 is defined by the composition

𝐻𝑗(𝑋�̄�, ℱ|𝑋�̄�
)

𝜋𝑋
∗
�̄�−−−→ 𝐻𝑗(𝑋�̄�, (𝜋−1

𝑋 ℱ)|𝑋�̄�
) ≅ 𝐻𝑗(𝑋�̄�, ℱ|𝑋�̄�

).

where the last isomorphism comes from the canonical isomorphism 𝜋−1
𝑋 ℱ ≅ ℱ of Lemma

38.66.6.

Proof. The composition 𝑋�̄�
𝑆𝑝𝑒𝑐(frob𝑘)

−−−−−−−−→ 𝑋�̄�
𝜋𝑋−−→ 𝑋�̄� is equal to 𝐹𝑓

𝑋�̄�
, hence the result

follows from the baffling theorem suitably generalized to nontrivial coefficients. Note
that the previous composition commutes in the sense that 𝐹𝑓

𝑋�̄�
= 𝜋𝑋 ∘ 𝑆𝑝𝑒𝑐(frob𝑘) =

𝑆𝑝𝑒𝑐(frob𝑘) ∘ 𝜋𝑋. �

Definition 38.66.11. If 𝑥 ∈ 𝑋(𝑘) is a rational point and �̄� ∶ 𝑆𝑝𝑒𝑐(�̄�) → 𝑋 the geometric
point lying over 𝑥, we let 𝜋𝑥 ∶ ℱ�̄� → ℱ�̄� denote the action by frob−1

𝑘 and call it the
geometric frobenius6

6This notation is not standard. This operator is denoted 𝐹𝑥 in [Del77]. We will likely change this notation
in the future.
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Wecan nowmake amore precise statement (albeit a false one) of the trace formula (38.65.0.1).
Let 𝑋 be a finite type scheme of dimension 1 over a finite field 𝑘, ℓ a prime number and ℱ
a constructible, flat 𝐙/ℓ𝑛𝐙 sheaf. Then

(38.66.11.1) ∑𝑥∈𝑋(𝑘)
Tr(𝜋𝑋|ℱ�̄�) = ∑

2
𝑖=0

(−1)𝑖Tr(𝜋∗
𝑋|𝐻𝑖

𝑐(𝑋�̄�, ℱ))

as elements of 𝐙/ℓ𝑛𝐙. The reason this equation is wrong is that the trace in the right-hand
side does not make sense for the kind of sheaves considered. Before addressing this issue,
we try to motivate the appearance of the geometric frobenius (apart from the fact that it is
a natural morphism!).

Let us consider the case where 𝑋 = 𝐏1
𝑘 and ℱ = 𝐙/ℓ𝐙. For any point, the Galois module

ℱ�̄� is trivial, hence for any morphism 𝜑 acting on ℱ�̄�, the left-hand side is

∑𝑥∈𝑋(𝑘)
Tr(𝜑|ℱ�̄�) = #𝐏1

𝑘(𝑘) = 𝑞 + 1.

Now 𝐏1
𝑘 is proper, so compactly supported cohomology equals standard cohomology, and

so for a morphism 𝜋 ∶ 𝐏1
𝑘 → 𝐏1

𝑘, the right-hand side equals

Tr(𝜋∗|𝐻0(𝐏1
�̄�, 𝐙/ℓ𝐙)) + Tr(𝜋∗|𝐻2(𝐏1

�̄�, 𝐙/ℓ𝐙)).

The Galois module 𝐻0(𝐏1
�̄�, 𝐙/ℓ𝐙) = 𝐙/ℓ𝐙 is trivial, since the pullback of the identity is

the identity. Hence the first trace is 1, regardless of 𝜋. For the second trace, we need to
compute the pullback of a map 𝜋 ∶ 𝐏1

�̄� → 𝐏1
�̄� on 𝐻2(𝐏1

�̄�, 𝐙/ℓ𝐙)). This is a good exercise
and the answer is multiplication by the degree of 𝜋. In other words, this works as in the
familiar situation of complex cohomology. In particular, if 𝜋 is the geometric frobenius we
get

Tr(𝜋∗
𝑋|𝐻2(𝐏1

�̄�, 𝐙/ℓ𝐙)) = 𝑞
and if 𝜋 is the arithmetic frobenius then we get

Tr(frob∗
𝑘|𝐻2(𝐏1

�̄�, 𝐙/ℓ𝐙)) = 𝑞−1.

The latter option is clearly wrong.

Remark 38.66.12. The computation of the degrees can be done by lifting (in some obvious
sense) to characteristic 0 and considering the situation with complex coefficients. This
method almost never works, since lifting is in general impossible for schemes which are
not projective space.

The question remains as to why we have to consider compactly supported cohomology.
In fact, in view of Poincaré duality, it is not strictly necessary for smooth varieties, but it
involves adding in certain powers of 𝑞. For example, let us consider the case where 𝑋 = 𝐀1

𝑘
and ℱ = 𝐙/ℓ𝐙. The action on stalks is again trivial, so we only need look at the action on
cohomology. But then 𝜋∗

𝑋 acts as the identity on 𝐻0(𝐀1
�̄�, 𝐙/ℓ𝐙) and as multiplication by 𝑞

on 𝐻2
𝑐 (𝐀1

�̄�, 𝐙/ℓ𝐙).

38.67. Traces

We now explain how to take the trace of an endomorphism of a module over a noncommu-
tative ring. Fix a finite ring Λ with cardinality prime to 𝑝. Typically, Λ is the group ring
(𝐙/ℓ𝑛𝐙)[𝐺] for some finite group 𝐺. By convention, all the Λ-modules considered will be
left Λ-modules.
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We introduce the following notation: We set Λ♮ to be the quotient of Λ by its additive
subgroup generated by the commutators (i.e., the elements of the form 𝑎𝑏 − 𝑏𝑎, 𝑎, 𝑏 ∈ Λ).
Note that Λ♮ is not a ring.

For instance, the module (𝐙/ℓ𝑛𝐙)[𝐺]♮ is the dual of the class functions, so

(𝐙/ℓ𝑛𝐙)[𝐺]♮ = ⨁
𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑐𝑦

𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑜𝑓𝐺

𝐙/ℓ𝑛𝐙.

For a free Λ-module, we have EndΛ(Λ⊕𝑚) = Mat𝑛(Λ). Note that since the modules are left
modules, representation of endomorphism by matrices is a right action: if 𝑎 ∈ End(Λ⊕𝑚)
has matrix 𝐴 and 𝑣 ∈ Λ, then 𝑎(𝑣) = 𝑣𝐴.

Definition 38.67.1. The trace of the endomorphism 𝑎 is the sum of the diagonal entries of
a matrix representing it. This defines an additive map Tr ∶ EndΛ(Λ⊕𝑚) → Λ♮.

Exercise 38.67.2. Given maps

Λ⊕𝑛 𝑎
−→ Λ⊕𝑛 𝑏

−→ Λ⊕𝑚

show that Tr(𝑎𝑏) = Tr(𝑏𝑎).

We extend the definition of the trace to a finite projective Λ-module 𝑃 and an endomorphism
𝜑 of 𝑃 as follows. Write 𝑃 as the summand of a free Λ-module, i.e., consider maps 𝑃

𝑎
−→

Λ⊕𝑛 𝑏
−→ 𝑃 with
(1) Λ⊕𝑛 = Im(𝑎) ⊕ ker(𝑏); and
(2) 𝑏 ∘ 𝑎 = id𝑃.

Then we set Tr(𝜑) = Tr(𝑎𝜑𝑏). It is easy to check that this is well-defined, using the previous
exercise.

38.68. Why derived categories?

With this definition of the trace, let us now discuss another issue with the formula as stated.
Let 𝐶 be a smooth projective curve over 𝑘. Then there is a correspondence between finite
locally constant sheaves ℱ on 𝐶 ́𝑒𝑡𝑎𝑙𝑒 which stalks are isomorphic to (𝐙/ℓ𝑛𝐙)⊕𝑚 on the one
hand, and continuous representations 𝜌 ∶ 𝜋1(𝐶, ̄𝑐) → GL𝑚(𝐙/ℓ𝑛𝐙)) (for some fixed choice
of ̄𝑐) on the other hand. We denote ℱ𝜌 the sheaf corresponding to 𝜌. Then 𝐻2(𝐶�̄�, ℱ𝜌) is
the group of coinvariants for the action of 𝜌(𝜋1(𝐶, ̄𝑐)) on (𝐙/ℓ𝑛𝐙)⊕𝑚, and there is a short
exact sequence

0 ⟶ 𝜋1(𝐶�̄�, ̄𝑐) ⟶ 𝜋1(𝐶, ̄𝑐) ⟶ 𝐺𝑘 ⟶ 0.
For instance, let 𝐙 = 𝐙𝜎 act on 𝐙/ℓ2𝐙 via 𝜎(𝑥) = (1+ℓ)𝑥. The coinvariants are (𝐙/ℓ2𝐙)𝜎 =
𝐙/ℓ𝐙, which is not a flat 𝐙/ℓ𝐙-module. Hence we cannot take the trace of some action on
𝐻2(𝐶�̄�, ℱ𝜌), at least not in the sense of the previous section.

In fact, our goal is to consider a trace formula for ℓ-adic coefficients. But 𝐐ℓ = 𝐙ℓ[1/ℓ]
and 𝐙ℓ = 𝑙𝑖𝑚 𝐙/ℓ𝑛𝐙, and even for a flat 𝐙/ℓ𝑛𝐙 sheaf, the individual cohomology groups
may not be flat, so we cannot compute traces. One possible remedy is consider the total
derived complex 𝑅Γ(𝐶�̄�, ℱ𝜌) in the derived category 𝐷(𝐙/ℓ𝑛𝐙) and show that it is a perfect
object, which means that it is quasi-isomorphic to a finite complex of finite free module.
For such complexes, we can define the trace, but this will require an account of derived
categories.
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38.69. Derived categories

To set up notation, let 𝒜 be an abelian category. Let Comp(𝒜) be the abelian category of
complexes in 𝒜. Let 𝐾(𝒜) be the category of complexes up to homotopy, with objects equal
to complexes in 𝒜 and objects equal to homotopy classes of morphisms of complexes. This
is not an abelian category. Loosely speaking, 𝐷(𝐴) is defined to be the category obtained
by inverting all quasi-isomorphisms in Comp(𝒜) or, equivalently, in 𝐾(𝒜). Moreover, we
can define Comp+(𝒜), 𝐾+(𝒜), 𝐷+(𝒜) analogously using only bounded below complexes.
Similarly, we can define Comp−(𝒜), 𝐾−(𝒜), 𝐷−(𝒜) using bounded above complexes, and
we can define Comp𝑏(𝒜), 𝐾𝑏(𝒜), 𝐷𝑏(𝒜) using bounded complexes.

Remark 38.69.1. Notes on derived categories.
(1) There are some set-theoretical problems when 𝒜 is somewhat arbitrary, which

we will happily disregard.
(2) The categories 𝐾(𝐴) and 𝐷(𝐴) may be endowed with the structure of triangulated

category, but we will not need these structures in the following discussion.
(3) The categories Comp(𝒜) and 𝐾(𝒜) can also be defined when 𝒜 is an additive

category.

The homology functor 𝐻𝑖 ∶ Comp(𝒜) → 𝒜 taking a complex 𝐾• ↦ 𝐻𝑖(𝐾•) extends to
functors 𝐻𝑖 ∶ 𝐾(𝒜) → 𝒜 and 𝐻𝑖 ∶ 𝐷(𝒜) → 𝒜.

Lemma 38.69.2. An object 𝐸 of 𝐷(𝒜) is contained in 𝐷+(𝒜) if and only if 𝐻𝑖(𝐸) = 0 for
all 𝑖 ≪ 0. Similar statements hold for 𝐷− and 𝐷+.

The proof uses truncation functors.

Lemma 38.69.3. Morphisms between objects in the derived category.
(1) Let 𝐼• be a complex in 𝒜 with 𝐼𝑛 injective for all 𝑛 ∈ 𝐙. Then

𝐻𝑜𝑚𝐷(𝒜)(𝐾•, 𝐼•) = 𝐻𝑜𝑚𝐾(𝒜)(𝐾•, 𝐼•).

(2) Let 𝑃• ∈ Comp−(𝒜) with 𝑃𝑛 is projective for all 𝑛 ∈ 𝐙. Then

𝐻𝑜𝑚𝐷(𝒜)(𝑃•, 𝐾•) = 𝐻𝑜𝑚𝐾(𝒜)(𝑃•, 𝐾•).

(3) If 𝒜 has enough injectives and ℐ ⊂ 𝒜 is the additive subcategory of injectives,
then 𝐷+(𝒜) ≅ 𝐾+(ℐ) (as triangulated categories).

(4) If 𝒜 has enough projectives and 𝒫 ⊂ 𝒜 is the additive subcategory of projectives,
then 𝐷−(𝒜) ≅ 𝐾−(𝒫).

Proof. Omitted. �

Definition 38.69.4. Let 𝐹 ∶ 𝒜 → ℬ be a left exact functor and assume that 𝒜 has enough
injectives. We define the total right derived functor of 𝐹 as the functor 𝑅𝐹 ∶ 𝐷+(𝒜) →
𝐷+(ℬ) fitting into the diagram

𝐷+(𝒜) 𝑅𝐹 // 𝐷+(ℬ)

𝐾+(ℐ)

OO

𝐹 // 𝐾+(ℬ).

OO

This is possible since the left vertical arrow is invertible by the previous lemma. Similarly,
let 𝐺 ∶ 𝒜 → ℬ be a right exact functor and assume that 𝒜 has enough projectives. We
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define the total right derived functor of 𝐺 as the functor 𝐿𝐺 ∶ 𝐷−(𝒜) → 𝐷−(ℬ) fitting
into the diagram

𝐷−(𝒜) 𝐿𝐺 // 𝐷−(ℬ)

𝐾−(𝒫)

OO

𝐺 // 𝐾−(ℬ).

OO

This is possible since the left vertical arrow is invertible by the previous lemma.

Remark 38.69.5. In these cases, it is true that 𝑅𝑖𝐹(𝐾•) = 𝐻𝑖(𝑅𝐹(𝐾•)), where the left
hand side is defined to be 𝑖th homology of the complex 𝐹(𝐾•).

38.70. Filtered derived category

It turns out we have to do it all again and build the filtered derived category also.

Definition 38.70.1. Let 𝒜 be an abelian category. Let Fil(𝒜) be the category of filtered
objects (𝐴, 𝐹) of 𝒜, where 𝐹 is a filtration of the form

𝐴 ⊇ ⋯ ⊇ 𝐹𝑛𝐴 ⊇ 𝐹𝑛+1𝐴 ⊇ ⋯ ⊇ 0.

This is an additive category. We denote Fil𝑓(𝒜) the full subcategory of Fil(𝒜)whose objects
(𝐴, 𝐹) have finite filtration. This is also an additive category. An object 𝐼 ∈ Fil𝑓(𝒜) is called
filtered injective (respectively projective) provided that gr𝑝(𝐼) = gr𝑝𝐹(𝐼) = 𝐹𝑝𝐼/𝐹𝑝+1𝐼 is in-
jective (resp. projective) in 𝒜 for all 𝑝. The categories Comp(Fil𝑓(𝒜)) ⊇ Comp+(Fil𝑓(𝒜))
and 𝐾(Fil𝑓(𝒜)) ⊇ 𝐾+(Fil𝑓(𝒜)) are defined as before.
A morphism 𝛼 ∶ 𝐾• → 𝐿• of complexes in Comp(Fil𝑓(𝒜)) is called a filtered quasi-
isomorphism provided that

gr𝑝(𝛼) ∶ gr𝑝(𝐾•) → gr𝑝(𝐿•)

is a quasi-isomorphism for all 𝑝 ∈ 𝐙. Finally, we define 𝐷𝐹(𝒜) (resp. 𝐷𝐹+(𝒜)) by invert-
ing the filtered quasi-isomorphisms in 𝐾(Fil𝑓(𝒜)) (resp. 𝐾+(Fil𝑓(𝒜))).

Lemma 38.70.2. If 𝒜 has enough injectives, then 𝐷𝐹+(𝒜) ≅ 𝐾+(ℐ), where ℐ is the full
additive subcategory of Fil𝑓(𝒜) consisting of filtered injective objects. Similarly, if 𝒜 has
enough projectives, then 𝐷𝐹−(𝒜) ≅ 𝐾+(𝒫), where 𝒫 is the full additive subcategory of
Fil𝑓(𝒜) consisting of filtered projective objects.

Proof. Omitted. �

38.71. Filtered derived functors

And then there are the filetered derived functors.

Definition 38.71.1. Let 𝑇 ∶ 𝒜 → ℬ be a left exact functor and assume that 𝒜 has enough
injectives. Define 𝑅𝑇 ∶ 𝐷𝐹+(𝒜) → 𝐷𝐹+(ℬ) to fit in the diagram

𝐷𝐹+(𝒜) 𝑅𝑇 // 𝐷𝐹+(ℬ)

𝐾+(ℐ)

OO

𝑇 // 𝐾+(Fil𝑓(ℬ)).

OO
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This is well-defined by the previous lemma. Let 𝐺 ∶ 𝒜 → ℬ be a right exact functor and
assume that 𝒜 has enough projectives. Define 𝐿𝐺 ∶ 𝐷𝐹+(𝒜) → 𝐷𝐹+(ℬ) to fit in the
diagram

𝐷𝐹−(𝒜) 𝐿𝐺 // 𝐷𝐹−(ℬ)

𝐾−(𝒫)

OO

𝐺 // 𝐾−(Fil𝑓(ℬ)).

OO

Again, this is well-defined by the previous lemma. The functors 𝑅𝑇, resp. 𝐿𝐺, are called
the filtered derived functor of 𝑇, resp. 𝐺.

Proposition 38.71.2. In the situation above, we have

gr𝑝 ∘ 𝑅𝑇 = 𝑅𝑇 ∘ gr𝑝

where the 𝑅𝑇 on the left is the filtered derived functor while the one on the right is the total
derived functor. That is, there is a commuting diagram

𝐷𝐹+(𝒜) 𝑅𝑇 //

gr𝑝

��

𝐷𝐹+(ℬ)

gr𝑝

��
𝐷+(𝒜) 𝑅𝑇 // 𝐷+(ℬ).

Proof. Omitted. �

Given 𝐾• ∈ 𝐷𝐹+(ℬ), we get a spectral sequence

𝐸𝑝,𝑞
1 = 𝐻𝑝+𝑞(gr𝑝𝐾•) ⇒ 𝐻𝑝+𝑞(forget filt(𝐾•)).

38.72. Application of filtered complexes

Let 𝒜 be an abelian category with enough injectives, and 0 → 𝐿 → 𝑀 → 𝑁 → 0 a short
exact sequence in 𝒜. Consider 𝑀 ∈ Fil𝑓(𝒜) to be 𝑀 along with the filtration defined by

𝐹1𝑀 = 𝐿, 𝐹𝑛𝑀 = 𝑀 for 𝑛 ≤ 0, and 𝐹𝑛𝑀 = 0 for 𝑛 ≥ 2.

By definition, we have

forget filt(𝑀) = 𝑀, gr0(𝑀) = 𝑁, gr1(𝑀) = 𝐿

and gr𝑛(𝑀) = 0 for all other 𝑛 ≠ 0, 1. Let 𝑇 ∶ 𝒜 → ℬ be a left exact functor. Assume that
𝒜 has enough injectives. Then 𝑅𝑇(𝑀) ∈ 𝐷𝐹+(ℬ) is a filtered complex with

gr𝑝(𝑅𝑇(𝑀))
qis
=

⎧⎪
⎨
⎪⎩

0 if 𝑝 ≠ 0, 1,
𝑅𝑇(𝑁) if 𝑝 = 0,
𝑅𝑇(𝐿) if 𝑝 = 1.

and forget filt(𝑅𝑇(𝑀))
qis
= 𝑅𝑇(𝑀). The spectral sequence applied to 𝑅𝑇(𝑀) gives

𝐸𝑝,𝑞
1 = 𝑅𝑝+𝑞𝑇(gr𝑝(𝑀)) ⇒ 𝑅𝑝+𝑞𝑇(forget filt(𝑀)).

Unwinding the spectral sequence gives us the long exact sequence

0 // 𝑇(𝐿) // 𝑇(𝑀) // 𝑇(𝑁)

xx
𝑅1𝑇(𝐿) // 𝑅1𝑇(𝑀) // ⋯
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This will be used as follows. Let 𝑋/𝑘 be a scheme of finite type. Let ℱ be a flat constructible
𝐙/ℓ𝑛𝐙-module. Then we want to show that the trace

Tr(𝜋∗
𝑋|𝑅Γ𝑐(𝑋�̄�, ℱ)) ∈ 𝐙/ℓ𝑛𝐙

is additive on short exact sequences. To see this, it will not be enough to work with
𝑅Γ𝑐(𝑋�̄�, −) ∈ 𝐷+(𝐙/ℓ𝑛𝐙), but we will have to use the filtered derived category.

38.73. Perfectness

Let Λ be a (possibly noncommutative) ring, ModΛ the category of left Λ-modules, 𝐾(Λ) =
𝐾(ModΛ) its homotopy category, and 𝐷(Λ) = 𝐷(ModΛ) the derived category.

Definition 38.73.1. We denote by 𝐾𝑝𝑒𝑟𝑓(Λ) the category whose objects are bounded com-
plexes of finite projective Λ-modules, and whose morphisms are morphisms of complexes
up to homotopy. The functor 𝐾𝑝𝑒𝑟𝑓(Λ) → 𝐷(Λ) is fully faithful, and we denote 𝐷𝑝𝑒𝑟𝑓(Λ)
its essential image. An object of 𝐷(Λ) is called perfect if it is in 𝐷𝑝𝑒𝑟𝑓(Λ).

Proposition 38.73.2. Let 𝐾 ∈ 𝐷𝑝𝑒𝑟𝑓(Λ) and 𝑓 ∈ End𝐷(Λ)(𝐾). Then the trace Tr(𝑓) ∈ Λ♮

is well defined.

Proof. Let 𝑃• be a bounded complex of finite projective Λ-modules and 𝛼 ∶ 𝑃• ≅ 𝐾 be
an isomorphism in 𝐷(Λ). Then 𝛼−1 ∘ 𝑓 ∘ 𝛼 is the class of some morphism of complexes
𝑓• ∶ 𝑃• → 𝑃• by (insert reference here). Set

Tr(𝑓) = ∑
𝑖

(−1)𝑖Tr(𝑓𝑖 ∶ 𝑃𝑖 → 𝑃𝑖) ∈ Λ♮.

Given 𝑃• and 𝛼, this is independent of the choice of 𝑓•: any other choice is of the form
̃𝑓• = 𝑓• + 𝑑ℎ + ℎ𝑑 for some ℎ𝑖 ∶ 𝑃𝑖 → 𝑃𝑖−1(𝑖 ∈ 𝐙). But

Tr(𝑑ℎ) = ∑
𝑖

(−1)𝑖Tr(𝑃𝑖 𝑑ℎ
−−→ 𝑃𝑖)

= ∑
𝑖

(−1)𝑖Tr(𝑃𝑖−1 ℎ𝑑
−−→ 𝑃𝑖−1)

= − ∑
𝑖

(−1)𝑖−1Tr(𝑃𝑖−1 ℎ𝑑
−−→ 𝑃𝑖−1)

= −Tr(ℎ𝑑)

and so ∑𝑖(−1)𝑖Tr((𝑑ℎ + ℎ𝑑)|𝑃𝑖) = 0. Furthermore, this is independent of the choice of
(𝑃•, 𝛼): suppose (𝑄•, 𝛽) is another choice. Then by ???, the compositions

𝑄• 𝛽
−→ 𝐾

𝛼−1

−−−→ 𝑃• and 𝑃• 𝛼
−→ 𝐾

𝛽−1

−−−→ 𝑄•

are representable by morphisms of complexes 𝛾•
1 and 𝛾•

2 respectively, such that 𝛾•
1 ∘ 𝛾•

2 is
homotopic to the identity. Thus, the morphism of complexes 𝛾•

2 ∘ 𝑓• ∘ 𝛾•
1 ∶ 𝑄• → 𝑄•

represents the morphism 𝛽−1 ∘ 𝑓 ∘ 𝛽 in 𝐷(Λ). Now

Tr(𝛾•
2 ∘ 𝑓• ∘ 𝛾•

1|𝑄•) = Tr(𝛾•
1 ∘ 𝛾•

2 ∘ 𝑓•|𝑃•)
= Tr(𝑓•|𝑃•)

by the fact that 𝛾•
1 ∘𝛾•

2 is homotopic to the identity and the independence from (𝑃•, 𝛼) already
proved. �
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38.74. Filtrations and perfect complexes

We now present a filtered version of the category of perfect complexes. An object (𝑀, 𝐹)
of Fil𝑓(ModΛ) is called filtered finite projective if for all 𝑝, gr𝑝𝐹(𝑀) is finite and projective.
We then consider the homotopy category 𝐾Fperf(Λ) of bounded complexes of filtered finite
projective objects of Fil𝑓(ModΛ). We have a diagram of categories

𝐾F(Λ) ⊇ 𝐾Fperf(Λ)
↓ ↓

𝐷F(Λ) ⊇ 𝐷Fperf(Λ)
where the vertical functor on the right is fully faithful and the category 𝐷Fperf(Λ) is its
essential image, as before.

Lemma 38.74.1. (Additivity) Let 𝐾 ∈ 𝐷Fperf(Λ) and 𝑓 ∈ End𝐷F(𝐾). Then

Tr(𝑓|𝐾) = ∑𝑝∈𝐙
Tr(𝑓|gr𝑝𝐾).

Proof. By Proposition 38.73.2, we may assume we have a bounded complex 𝑃• of filtered
finite projectives of Fil𝑓(ModΛ) and a map 𝑓• ∶ 𝑃• → 𝑃• in Comp(Fil𝑓(ModΛ)). So the
lemma follows from the following result, which proof is left to the reader. �

Lemma 38.74.2. Let 𝑃 ∈ Fil𝑓(ModΛ) be filtered finite projective, and 𝑓 ∶ 𝑃 → 𝑃 an
endomorphism in Fil𝑓(ModΛ). Then

Tr(𝑓|𝑃) = ∑𝑝
Tr(𝑓|gr𝑝(𝑃)).

Proof. Omitted. �

38.75. Characterizing perfect objects

Definition 38.75.1. An object 𝐾 ∈ 𝐷−(Λ) is said to have finite Tor-dimension if there
exists 𝑟 ∈ 𝐙 such that for any right Λ-module 𝑁, 𝐻𝑖(𝑁 ⊗𝐋

Λ 𝐾) = 0 for all 𝑖 ≤ 𝑟 (in other
words, Tor𝑖Λ(𝑁, 𝐾) = 0). Recall that 𝑁 ⊗𝐋

Λ 𝐾 is the total left derived functor of the functor
ModΛ → Ab, 𝑀 ↦ 𝑁 ⊗Λ 𝑀. It is thus a complex of abelian groups.

Lemma 38.75.2. Let Λ be a left noetherian ring and 𝐾 ∈ 𝐷−(Λ). Then 𝐾 is perfect if and
only if the two following conditions hold:

(1) 𝐾 has finite Tor-dimension ; and
(2) for all 𝑖 ∈ 𝐙, 𝐻𝑖(𝐾) is a finite Λ-module.

The reader is strongly urged to try and prove this. The proof relies on the fact that a finite
module on a finitely left-presented ring is flat if and only if it is projective.

Remark 38.75.3. A common variant of this lemma is to consider instead a noetherian
scheme 𝑋 and the category 𝐷𝑝𝑒𝑟𝑓(𝒪𝑋) of complexes which are locally quasi-isomorphic to
a finite complex of finite locally free 𝒪𝑋-modules.

Notation: Let Λ be a finite ring, 𝑋 a noetherian scheme, 𝐾(𝑋, Λ) the homotopy category
of sheaves of Λ-modules on 𝑋 ́𝑒𝑡𝑎𝑙𝑒, and 𝐷(𝑋, Λ) the corresponding derived category. We
denote by 𝐷𝑏 (respectively 𝐷+, 𝐷−) the full subcategory of bounded (resp. above, below)
complexes in 𝐷(𝑋, Λ).

Definition 38.75.4. With notation as above, consider the full subcategory 𝐷𝑏
𝑐𝑡𝑓(𝑋, Λ) of

𝐷−(𝑋, Λ) consisting of objects which are quasi-isomorphic to a bounded complex of con-
structible flat Λ-modules. Its objects are abusively called perfect complexes.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03TK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03TL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03TN
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03TO
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03TP
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03TQ


2084 38. ÉTALE COHOMOLOGY

Remark 38.75.5. In fact, for a bounded complex 𝐾• of constructible flat Λ-modules each
stalk 𝐾𝑝

𝑥 is a finite projective Λ-module.
Remark 38.75.6. This construction differs from the common variant mentioned above. It
can happen that a complex of 𝒪𝑋-modules is locally quasi-isomorphic to a finite complex
of finite locally free 𝒪𝑋-modules, without being globally quasi-isomorphic to a bounded
complex of locally free 𝒪𝑋-modules. This does not happen in the étale site for constructible
sheaves.
In this framework, Lemma 38.75.2 reads as follows.
Lemma 38.75.7. Let 𝐾 ∈ 𝐷−(𝑋, Λ). Then 𝐾 ∈ 𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ) if and only if
(1) 𝐾 has finite Tor-dimension ; and
(2) for all 𝑖 ∈ 𝐙, 𝐻𝑖(𝐾) is constructible.

The first condition can be checked on stalks (provided that the bounds are uniform).
Remark 38.75.8. This lemma is used to prove that if 𝑓 ∶ 𝑋 → 𝑌 is a separated, finite
type morphism of schemes and 𝑌 is noetherian, then 𝑅𝑓! induces a functor 𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ) →
𝐷𝑏

𝑐𝑡𝑓(𝑌, Λ). We only need this fact in the case where 𝑌 is the spectrum of a field and 𝑋 is a
curve.
Proposition 38.75.9. Let 𝑋 be a projective curve over a field 𝑘, Λ a finite ring and 𝐾 ∈
𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ). Then 𝑅Γ(𝑋�̄�, 𝐾) ∈ 𝐷𝑝𝑒𝑟𝑓(Λ).

Sketch of proof. The first step is to show:
(1) The cohomology of 𝑅Γ(𝑋�̄�, 𝐾) is bounded.

Consider the spectral sequence
𝐻𝑖(𝑋�̄�, 𝐻𝑗(𝐾)) ⇒ 𝐻𝑖+𝑗(𝑅Γ(𝑋�̄�, 𝐾)).

Since 𝐾 is bounded and Λ is finite, the sheaves 𝐻𝑗(𝐾) are torsion. Moreover, 𝑋�̄� has finite
cohomological dimension, so the left-hand side is nonzero for finitely many 𝑖 and 𝑗 only.
Therefore, so is the right-hand side.

(2) The cohomology groups 𝐻𝑖+𝑗(𝑅Γ(𝑋�̄�, 𝐾)) are finite.
Since the sheaves 𝐻𝑗(𝐾) are constructible, the groups 𝐻𝑖(𝑋�̄�, 𝐻𝑗(𝐾)) are finite, 7 so it
follows by the spectral sequence again.

(3) 𝑅Γ(𝑋�̄�, 𝐾) has finite Tor-dimension.
Let 𝑁 be a right Λ-module (in fact, since Λ is finite, it suffices to assume that 𝑁 is finite).
By the projection formula (change of module),

𝑁 ⊗𝐋
Λ 𝑅Γ(𝑋�̄�, 𝐾) = 𝑅Γ(𝑋�̄�, 𝑁 ⊗𝐋

Λ 𝐾).
Therefore,

𝐻𝑖(𝑁 ⊗𝐋
Λ 𝑅Γ(𝑋�̄�, 𝐾)) = 𝐻𝑖(𝑅Γ(𝑋�̄�, 𝑁 ⊗𝐋

Λ 𝐾)).
Now consider the spectral sequence

𝐻𝑖(𝑋�̄�, 𝐻𝑗(𝑁 ⊗𝐋
Λ 𝐾)) ⇒ 𝐻𝑖+𝑗(𝑅Γ(𝑋�̄�, 𝑁 ⊗𝐋

Λ 𝐾)).

Since 𝐾 has finite Tor-dimension, 𝐻𝑗(𝑁⊗𝐋
Λ𝐾) vanishes universally for 𝑗 small enough, and

the left-hand side vanishes whenever 𝑖 < 0. Therefore 𝑅Γ(𝑋�̄�, 𝐾) has finite Tor-dimension,
as claimed. So it is a perfect complex by Lemma 38.75.2. �

7In Section 38.64 where we proved vanishing of cohomology, we should have proved -- using the exact same
arguments -- that étale cohomology with values in a torsion sheaf is finite. Maybe that section should be updated.
It's flabbergasting that we even forgot to mention it.
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38.76. Lefschetz numbers

The fact that the total cohomology of a constructible complex with finite coefficients is a
perfect complex is the key technical reason why cohomology behaves well, and allows us
to define rigorously the traces occurring in the trace formula.

Definition 38.76.1. Let Λ be a finite ring, 𝑋 a projective curve over a finite field 𝑘 and
𝐾 ∈ 𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ) (for instance 𝐾 = Λ). There is a canonical map 𝑐𝐾 ∶ 𝜋−1
𝑋 𝐾 → 𝐾, and its

base change 𝑐𝐾|𝑋�̄�
induces an action denoted 𝜋∗

𝑋 on the perfect complex𝑅Γ(𝑋�̄�, 𝐾|𝑋�̄�
). The

global Lefschetz number of 𝐾 is the trace Tr(𝜋∗
𝑋

|
|𝑅Γ(𝑋�̄�,𝐾) ) of that action. It is an element

of Λ♮.

Definition 38.76.2. With Λ, 𝑋, 𝑘, 𝐾 as in Definition 38.76.1. Since 𝐾 ∈ 𝐷𝑏
𝑐𝑡𝑓(𝑋, Λ), for

any geometric point �̄� of 𝑋, the complex 𝐾�̄� is a perfect complex (in 𝐷𝑝𝑒𝑟𝑓(Λ)). As we
have seen in Section 38.66, the Frobenius 𝜋𝑋 acts on 𝐾�̄�. The local Lefschetz number of 𝐾
is the sum

∑
𝑥∈𝑋(𝑘)

Tr(𝜋𝑋
|
|𝐾𝑥

)

which is again an element of Λ♮.

At last, we can formulate precisely the trace formula.

Theorem 38.76.3. (Lefschetz Trace Formula) Let 𝑋 be a projective curve over a finite field
𝑘, Λ a finite ring and 𝐾 ∈ 𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ). Then the global and local Lefschetz numbers of 𝐾
are equal, i.e.,

(38.76.3.1) Tr(𝜋∗
𝑋

|
|𝑅Γ(𝑋�̄�,𝐾) ) = ∑𝑥∈𝑋(𝑘)

Tr(𝜋𝑋
|
|𝐾�̄�

)

in Λ♮.

We will use, rather than prove, the trace formula. Nevertheless, we will give quite a few
details of the proof of the theorem as given in [Del77] (some of the things that are not
adequately explained are listed in Section 38.83).

We only stated the formula for curves, and in some weak sense it is a consequence of the
following result.

Theorem 38.76.4. (Weil) Let 𝐶 be a nonsingular projective curve over an algebraically
closed field 𝑘, and 𝜑 ∶ 𝐶 → 𝐶 a 𝑘-endomorphism of 𝐶 distinct from the identity. Let
𝑉(𝜑) = Δ𝐶 ⋅ Γ𝜑, where Δ𝐶 is the diagonal, Γ𝜑 is the graph of 𝜑, and the intersection
number is taken on 𝐶 × 𝐶. Let 𝐽 = Pic0

𝐶/𝑘 be the jacobian of 𝐶 and denote 𝜑∗ ∶ 𝐽 → 𝐽 the
action induced by 𝜑 by taking pullbacks. Then

𝑉(𝜑) = 1 − Tr𝐽(𝜑∗) + deg 𝜑.

The number 𝑉(𝜑) is the number of fixed points of 𝜑, it is equal to

𝑉(𝜑) = ∑
𝑐∈|𝐶|∶𝜑(𝑐)=𝑐

𝑚Fix(𝜑)(𝑐)

where 𝑚Fix(𝜑)(𝑐) is the multiplicity of 𝑐 as a fixed point of 𝜑, namely the order or vanishing
of the image of a local uniformizer under 𝜑 − id𝐶. Proofs of this theorem can be found in
[Lan02, Wei48].
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Example 38.76.5. Let 𝐶 = 𝐸 be an elliptic curve and 𝜑 = [𝑛] be multiplication by 𝑛.
Then 𝜑∗ = 𝜑𝑡 is multiplication by 𝑛 on the jacobian, so it has trace 2𝑛 and degree 𝑛2. On
the other hand, the fixed points of 𝜑 are the points 𝑝 ∈ 𝐸 such that 𝑛𝑝 = 𝑝, which is the
(𝑛 − 1)-torsion, which has cardinality (𝑛 − 1)2. So the theorem reads

(𝑛 − 1)2 = 1 − 2𝑛 + 𝑛2.

Jacobians. We now discuss without proofs the correspondence between a curve and its
jacobian which is used in Weil's proof. Let 𝐶 be a nonsingular projective curve over an
algebraically closed field 𝑘 and choose a base point 𝑐0 ∈ 𝐶(𝑘). Denote by 𝐴1(𝐶 × 𝐶) (or
Pic(𝐶 × 𝐶), or CaCl(𝐶 × 𝐶)) the abelian group of codimension 1 divisors of 𝐶 × 𝐶. Then

𝐴1(𝐶 × 𝐶) = pr∗1(𝐴1(𝐶)) ⊕ pr∗2(𝐴1(𝐶)) ⊕ 𝑅

where

𝑅 = {𝑍 ∈ 𝐴1(𝐶 × 𝐶) | 𝑍|𝐶×{𝑐0} ∼rat 0 and 𝑍|{𝑐0}×𝐶 ∼rat 0}.

In other words, 𝑅 is the subgroup of line bundles which pull back to the trivial one under
either projection. Then there is a canonical isomorphism of abelian groups 𝑅 ≅ End(𝐽)
which maps a divisor 𝑍 in 𝑅 to the endomorphism

𝐽 → 𝐽
[𝒪𝐶(𝐷)] ↦ (pr1|𝑍)∗(pr2|𝑍)∗(𝐷).

The aforementioned correspondence is the following. We denote by 𝜎 the automorphism
of 𝐶 × 𝐶 that switches the factors.

End(𝐽) 𝑅

composition of 𝛼, 𝛽 pr13∗(pr12
∗(𝛼) ∘ pr23

∗(𝛽))

id𝐽 Δ𝐶 − {𝑐0} × 𝐶 − 𝐶 × {𝑐0}

𝜑∗ Γ𝜑 − 𝐶 × {𝜑(𝑐0)} − ∑𝜑(𝑐)=𝑐0
{𝑐} × 𝐶

the trace form
𝛼, 𝛽 ↦ Tr(𝛼𝛽) 𝛼, 𝛽 ↦ − ∫𝐶×𝐶 𝛼.𝜎∗𝛽

the Rosati involution
𝛼 ↦ 𝛼† 𝛼 ↦ 𝜎∗𝛼

positivity of Rosati
Tr(𝛼𝛼†) > 0

Hodge index theorem on 𝐶 × 𝐶
− ∫𝐶×𝐶 𝛼𝜎∗𝛼 > 0.

In fact, in light of theKunneth formula, the subgroup𝑅 corresponds to the 1, 1 hodge classes
in 𝐻1(𝐶) ⊗ 𝐻1(𝐶).
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Weil's proof. Using this correspondence, we can prove the trace formula. We have

𝑉(𝜑) = ∫𝐶×𝐶
Γ𝜑.Δ

= ∫𝐶×𝐶
Γ𝜑. (Δ𝐶 − {𝑐0} × 𝐶 − 𝐶 × {𝑐0}) + ∫𝐶×𝐶

Γ𝜑. ({𝑐0} × 𝐶 + 𝐶 × {𝑐0}) .

Now, on the one hand

∫𝐶×𝐶
Γ𝜑. ({𝑐0} × 𝐶 + 𝐶 × {𝑐0}) = 1 + deg 𝜑

and on the other hand, since 𝑅 is the the orthogonal of the ample divisor {𝑐0}×𝐶+𝐶×{𝑐0},

∫𝐶×𝐶
Γ𝜑. (Δ𝐶 − {𝑐0} × 𝐶 − 𝐶 × {𝑐0})

= ∫𝐶×𝐶 (
Γ𝜑 − 𝐶 × {𝜑(𝑐0)} − ∑

𝜑(𝑐)=𝑐0

{𝑐} × 𝐶
)

. (Δ𝐶 − {𝑐0} × 𝐶 − 𝐶 × {𝑐0})

= −Tr𝐽(𝜑∗ ∘ id𝐽).

Recapitulating, we have
𝑉(𝜑) = 1 − Tr𝐽(𝜑∗) + deg 𝜑

which is the trace formula.

Lemma 38.76.6. Consider the situation of Theorem 38.76.4 and let ℓ be a prime number
invertible in 𝑘. Then

∑
2
𝑖=0

(−1)𝑖Tr(𝜑∗|𝐻𝑖(𝐶,𝐙/ℓ𝑛𝐙)) = 𝑉(𝜑) mod ℓ𝑛.

Sketch of proof. Observe first that the assumption makes sense because 𝐻𝑖(𝐶, 𝐙/ℓ𝑛𝐙) is
a free 𝐙/ℓ𝑛𝐙-module for all 𝑖. The trace of 𝜑∗ on the 0th degree cohomology is 1. The
choice of a primitive ℓ𝑛th root of unity in 𝑘 gives an isomorphism

𝐻𝑖(𝐶, 𝐙/ℓ𝑛𝐙) ≅ 𝐻𝑖(𝐶, 𝜇ℓ𝑛)

compatibly with the action of the geometric Frobenius. On the other hand, 𝐻1(𝐶, 𝜇ℓ𝑛) =
𝐽[ℓ𝑛]. Therefore,

Tr(𝜑∗|𝐻1(𝐶,𝐙/ℓ𝑛𝐙))) = Tr𝐽(𝜑∗) mod ℓ𝑛

= Tr𝐙/ℓ𝑛𝐙(𝜑∗ ∶ 𝐽[ℓ𝑛] → 𝐽[ℓ𝑛]).

Moreover, 𝐻2(𝐶, 𝜇ℓ𝑛) = Pic(𝐶)/ℓ𝑛Pic(𝐶) ≅ 𝐙/ℓ𝑛𝐙 where 𝜑∗ is multiplication by deg 𝜑.
Hence

Tr(𝜑∗|𝐻2(𝐶,𝐙/ℓ𝑛𝐙)) = deg 𝜑.

Thus we have
2

∑
𝑖=0

(−1)𝑖Tr(𝜑∗|𝐻𝑖(𝐶,𝐙/ℓ𝑛𝐙)) = 1 − Tr𝐽(𝜑∗) + deg 𝜑 mod ℓ𝑛

and the corollary follows from Theorem 38.76.4. �

An alternative way to prove this corollary is to show that

𝑋 ↦ 𝐻∗(𝑋, 𝐐ℓ) = 𝐐ℓ ⊗ 𝑙𝑖𝑚𝑛 𝐻∗(𝑋, 𝐙/ℓ𝑛𝐙)
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defines a Weil cohomology theory on smooth projective varieties over 𝑘. Then the trace
formula

𝑉(𝜑) =
2

∑
𝑖=0

(−1)𝑖Tr(𝜑∗|𝐻𝑖(𝐶,𝐐ℓ))

is a formal consequence of the axioms (it's an exercise in linear algebra, the proof is the
same as in the topological case).

38.77. Preliminaries and sorites

Notation: We fix the notation for this section. We denote by 𝐴 a commutative ring, Λ a
(possibly noncommutative) ring with a ring map 𝐴 → Λ which image lies in the center of
Λ. We let 𝐺 be a finite group, Γ a monoid extension of 𝐺 by 𝐍, meaning that there is an
exact sequence

1 → 𝐺 → Γ̃ → 𝐙 → 1
and Γ consists of those elements of Γ̃ which image is nonnegative. Finally, we let 𝑃 be
an 𝐴[Γ]-module which is finite and projective as an 𝐴[𝐺]-module, and 𝑀 a Λ[Γ]-module
which is finite and projective as a Λ-module.
Our goal is to compute the trace of 1 ∈ 𝐍 acting over Λ on the coinvariants of 𝐺 on 𝑃⊗𝐴𝑀,
that is, the number

TrΛ (1; (𝑃 ⊗𝐴 𝑀)𝐺) ∈ Λ♮.
The element 1 ∈ 𝐍 will correspond to the Frobenius.

Lemma 38.77.1. Let 𝑒 ∈ 𝐺 denote the neutral element. The map

Λ[𝐺] ⟶ Λ♮

∑ 𝜆𝑔 ⋅ 𝑔 ⟼ 𝜆𝑒

factors through Λ[𝐺]♮. We denote 𝜀 ∶ Λ[𝐺]♮ → Λ♮ the induced map.

Proof. We have to show the map annihilates commutators. One has

(∑ 𝜆𝑔𝑔) (∑ 𝜇𝑔𝑔) − (∑ 𝜇𝑔𝑔) (∑ 𝜆𝑔𝑔) = ∑
𝑔 ( ∑

𝑔1𝑔2=𝑔
𝜆𝑔1

𝜇𝑔2
− 𝜇𝑔1

𝜆𝑔2)
𝑔

The coefficient of 𝑒 is

∑
𝑔

(𝜆𝑔𝜇𝑔−1 − 𝜇𝑔𝜆𝑔−1) = ∑
𝑔

(𝜆𝑔𝜇𝑔−1 − 𝜇𝑔−1𝜆𝑔)

which is a sum of commutators, hence it it zero in Λ♮. �

Definition 38.77.2. Let 𝑓 ∶ 𝑃 → 𝑃 be an endomorphism of a finite projective Λ[𝐺]-module
𝑃. We define

Tr𝐺Λ(𝑓; 𝑃) ∶= 𝜀 (TrΛ[𝐺](𝑓; 𝑃))
to be the 𝐺-trace of 𝑓 on 𝑃.

Lemma 38.77.3. Let 𝑓 ∶ 𝑃 → 𝑃 be an endomorphism of the finite projective Λ[𝐺]-module
𝑃. Then

TrΛ(𝑓; 𝑃) = #𝐺 ⋅ Tr𝐺
Λ(𝑓; 𝑃).

Proof. By additivity, reduce to the case 𝑃 = Λ[𝐺]. In that case, 𝑓 is given by right multipli-
cation by some element ∑ 𝜆𝑔 ⋅𝑔 of Λ[𝐺]. In the basis (𝑔)𝑔∈𝐺, the matrix of 𝑓 has coefficient
𝜆𝑔−1

2 𝑔1
in the (𝑔1, 𝑔2) position. In particular, all diagonal coefficients are 𝜆𝑒, and there are

#𝐺 such coefficients. �
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Lemma 38.77.4. The map 𝐴 → Λ defines an 𝐴-module structure on Λ♮.

This is clear.

Lemma 38.77.5. Let 𝑃 be a finite projective 𝐴[𝐺]-module and 𝑀 a Λ[𝐺]-module, finite
projective as a Λ-module. Then 𝑃⊗𝐴𝑀 is a finite projective Λ[𝐺]-module, for the structure
induced by the diagonal action of 𝐺.

Note that 𝑃⊗𝐴 𝑀 is naturally a Λ-module since 𝑀 is. Explictly, together with the diagonal
action this reads

(∑ 𝜆𝑔𝑔) (𝑝 ⊗ 𝑚) = ∑ 𝑔𝑝 ⊗ 𝜆𝑔𝑔𝑚.

Proof. For any Λ[𝐺]-module 𝑁 one has

𝐻𝑜𝑚Λ[𝐺] (𝑃 ⊗𝐴 𝑀, 𝑁) = 𝐻𝑜𝑚𝐴[𝐺] (𝑃, 𝐻𝑜𝑚Λ(𝑀, 𝑁))

where the 𝐺-action on 𝐻𝑜𝑚Λ(𝑀, 𝑁) is given by (𝑔 ⋅ 𝜑)(𝑚) = 𝑔𝜑(𝑔−1𝑚). Now it suffices to
observe that the right-hand side is a composition of exact functors, because of the projec-
tivity of 𝑃 and 𝑀. �

Lemma 38.77.6. With assumptions as in Lemma 38.77.5, let 𝑢 ∈ End𝐴[𝐺](𝑃) and 𝑣 ∈
EndΛ[𝐺](𝑀). Then

Tr𝐺
Λ (𝑢 ⊗ 𝑣; 𝑃 ⊗𝐴 𝑀) = Tr𝐺

𝐴(𝑢; 𝑃) ⋅ TrΛ(𝑣; 𝑀).

Sketch of proof. Reduce to the case 𝑃 = 𝐴[𝐺]. In that case, 𝑢 is right multiplication by
some element 𝑎 = ∑ 𝑎𝑔𝑔 of 𝐴[𝐺], which we write 𝑢 = 𝑅𝑎. There is an isomorphism of
Λ[𝐺]-modules

𝜑 ∶ 𝐴[𝐺] ⊗𝐴 𝑀 ≅ (𝐴[𝐺] ⊗𝐴 𝑀)
′

𝑔 ⊗ 𝑚 ⟼ 𝑔 ⊗ 𝑔−1𝑚
where (𝐴[𝐺] ⊗𝐴 𝑀)

′ has the module structure given by the left 𝐺-action, together with
the Λ-linearity on 𝑀. This transport of structure changes 𝑢 ⊗ 𝑣 into ∑𝑔 𝑎𝑔𝑅𝑔 ⊗ 𝑔−1𝑣. In
other words,

𝜑 ∘ (𝑢 ⊗ 𝑣) ∘ 𝜑−1 = ∑
𝑔

𝑎𝑔𝑅𝑔 ⊗ 𝑔−1𝑣.

Working out explicitly both sides of the equation, we have to show

Tr𝐺Λ (∑
𝑔

𝑎𝑔𝑅𝑔 ⊗ 𝑔−1𝑣
)

= 𝑎𝑒 ⋅ TrΛ(𝑣; 𝑀).

This is done by showing that

Tr𝐺Λ (𝑎𝑔𝑅𝑔 ⊗ 𝑔−1𝑣) = {
0 if 𝑔 ≠ 𝑒

𝑎𝑒TrΛ (𝑣; 𝑀) if 𝑔 = 𝑒

by reducing to 𝑀 = Λ. �

Notation: Consider the monoid extension 1 → 𝐺 → Γ → 𝐍 → 1 and let 𝛾 ∈ Γ. Then we
write 𝑍𝛾 = {𝑔 ∈ 𝐺 | 𝑔𝛾 = 𝛾𝑔}.

Lemma 38.77.7. Let 𝑃 be a Λ[Γ]-module, finite and projective as a Λ[𝐺]-module, and
𝛾 ∈ Γ. Then

TrΛ(𝛾; 𝑃) = #𝑍𝛾 ⋅ Tr
𝑍𝛾
Λ (𝛾; 𝑃) .

Proof. This follows readily from Lemma 38.77.3. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03U8
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03U9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03UA
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03UB
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Lemma 38.77.8. Let 𝑃 be an 𝐴[Γ]-module, finite projective as 𝐴[𝐺]-module. Let 𝑀 be a
Λ[Γ]-module, finite projective as a Λ-module. Then

Tr
𝑍𝛾
Λ (𝛾; 𝑃 ⊗𝐴 𝑀) = Tr

𝑍𝛾
𝐴 (𝛾; 𝑃) ⋅ TrΛ(𝛾; 𝑀).

Proof. This follows directly from Lemma 38.77.6. �

Lemma 38.77.9. Let 𝑃 be a Λ[Γ]-module, finite projective as Λ[𝐺]-module. Then the
coinvariants 𝑃𝐺 = Λ ⊗Λ[𝐺] 𝑃 form a finite projective Λ-module, endowed with an action
of Γ/𝐺 = 𝐍. Moreover, we have

TrΛ(1; 𝑃𝐺) = ∑
′
𝛾↦1

Tr
𝑍𝛾
Λ (𝛾; 𝑃)

where ∑′
𝛾↦1 means taking the sum over the 𝐺-conjugacy classes in Γ.

Sketch of proof. We first prove this after multiplying by #𝐺.

#𝐺 ⋅ TrΛ(1; 𝑃𝐺) = TrΛ( ∑
𝛾↦1

𝛾; 𝑃𝐺) = TrΛ( ∑
𝛾↦1

𝛾; 𝑃)

where the second equality follows by considering the commutative triangle

𝑃𝐺 � � 𝑎 // 𝑃 𝑏 // // 𝑃𝐺

𝑐

hh

where 𝑎 is the canonical inclusion, 𝑏 the canonical surjection and 𝑐 = ∑𝛾↦1 𝛾. Then we
have

( ∑
𝛾↦1

𝛾)
|
|
|𝑃

= 𝑎 ∘ 𝑐 ∘ 𝑏 and ( ∑
𝛾↦1

𝛾)
|
|
|𝑃𝐺

= 𝑏 ∘ 𝑎 ∘ 𝑐

hence they have the same trace. We then have

#𝐺 ⋅ TrΛ(1; 𝑃𝐺) = ∑
𝛾↦1

′ #𝐺
#𝑍𝛾

TrΛ(𝛾; 𝑃) = #𝐺∑
𝛾↦1

′Tr
𝑍𝛾
Λ (𝛾; 𝑃).

To finish the proof, reduce to case Λ torsion-free by some universality argument. See
[Del77] for details. �

Remark 38.77.10. Let us try to illustrate the content of the formula of Lemma 38.77.8.
Suppose that Λ, viewed as a trivial Γ-module, admits a finite resolution 0 → 𝑃𝑟 → … →
𝑃1 → 𝑃0 → Λ → 0 by someΛ[Γ]-modules𝑃𝑖 which are finite and projective asΛ[𝐺]-modules.
In that case

𝐻∗ ((𝑃•)𝐺) = TorΛ[𝐺]
∗ (Λ, Λ) = 𝐻∗(𝐺, Λ);

and
Tr

𝑍𝛾
Λ (𝛾; 𝑃•) = 1

#𝑍𝛾
TrΛ(𝛾; 𝑃•) = 1

#𝑍𝛾
Tr(𝛾; Λ) = 1

#𝑍𝛾
.

Therefore, Lemma 38.77.8 says

TrΛ(1; 𝑃𝐺) = Tr(1 |
|𝐻∗(𝐺,Λ) ) = ∑

𝛾↦1

′ 1
#𝑍𝛾

.

This can be interpreted as a point count on the stack 𝐵𝐺. If Λ = 𝐅ℓ with ℓ prime to #𝐺,
then 𝐻∗(𝐺, Λ) is 𝐅ℓ in degree 0 (and 0 in other degrees) and the formula reads

1 = ∑ 𝜎-conjugacy
classes⟨𝛾⟩

1
#𝑍𝛾

mod ℓ.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03UC
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03UD
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03UE
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This is in some sense a ``trivial'' trace formula for 𝐺. Later we will see that (38.76.3.1) can
in some cases be viewed as a highly nontrivial trace formula for a certain type of group, see
Section 38.92.

38.78. Proof of the trace formula

Theorem 38.78.1. Let 𝑘 be a finite field and 𝑋 a finite type, separated scheme of dimension
at most 1 over 𝑘. Let Λ be a finite ring whose cardinality is prime to that of 𝑘, and 𝐾 ∈
𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ). Then

(38.78.1.1) Tr(𝜋∗
𝑋

||𝑅Γ𝑐(𝑋�̄�,𝐾)) = ∑𝑥∈𝑋(𝑘)
Tr(𝜋𝑥||𝐾�̄�)

in Λ♮.

Remark 38.78.2. Remarks on the formulation above.
(1) This formula holds in any dimension. By a dévissage lemma (which uses proper

base change etc.) it reduces to the current statement -- in that generality.
(2) The complex 𝑅Γ𝑐(𝑋�̄�, 𝐾) is defined by choosing an open immersion 𝑗 ∶ 𝑋 ↪ �̄�

with �̄� projective over 𝑘 of dimension at most 1 and setting

𝑅Γ𝑐(𝑋�̄�, 𝐾) ∶= 𝑅Γ(�̄��̄�, 𝑗!𝐾).

That this is independent of the choice made follows from (the missing section).

Notation: For short, we write

𝑇′(𝑋, 𝐾) = ∑𝑥∈𝑋(𝑘)
Tr(𝜋𝑥||𝐾�̄�

)

for the right-hand side of (38.78.1.1) and

𝑇″(𝑋, 𝐾) = Tr(𝜋∗
𝑥||𝑅Γ𝑐(𝑋�̄�,𝐾))

for the left-hand side.

Proof of Theorem 38.78.1. The proof proceeds in a number of steps.
(1) Let 𝑗 ∶ 𝒰 ↪ 𝑋 be an open immersion with complement 𝑌 = 𝑋 − 𝒰 and 𝑖 ∶ 𝑌 ↪

𝑋. Then 𝑇″(𝑋, 𝐾) = 𝑇″(𝒰, 𝑗−1𝐾) + 𝑇″(𝑌, 𝑖−1𝐾) and 𝑇′(𝑋, 𝐾) = 𝑇′(𝒰, 𝑗−1𝐾) +
𝑇′(𝑌, 𝑖−1𝐾).

This is clear for 𝑇′. For 𝑇″ use the exact sequence

0 → 𝑗!𝑗−1𝐾 → 𝐾 → 𝑖∗𝑖−1𝐾 → 0

to get a filtration on 𝐾. This gives rise to an object 𝐾 ∈ 𝐷F(𝑋, Λ) whose graded pieces are
𝑗!𝑗−1𝐾 and 𝑖∗𝑖−1𝐾, both of which lie in 𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ). Then, by filtered derived abstract non-
sense (INSERT REFERENCE), 𝑅Γ𝑐(𝑋�̄�, 𝐾) ∈ 𝐷F𝑝𝑒𝑟𝑓(Λ), and it comes equipped with 𝜋∗

𝑥
in 𝐷F𝑝𝑒𝑟𝑓(Λ). By the discussion of traces on filtered complexes (INSERT REFERENCE)
we get

Tr(𝜋∗
𝑋

||𝑅Γ𝑐(𝑋�̄�,𝐾)) = Tr(𝜋∗
𝑋

||𝑅Γ𝑐(𝑋�̄�,𝑗!𝑗−1𝐾)) + Tr(𝜋∗
𝑋

||𝑅Γ𝑐(𝑋�̄�,𝑖∗𝑖−1𝐾))
= 𝑇″(𝑈, 𝑖−1𝐾) + 𝑇″(𝑌, 𝑖−1𝐾).

(2) The theorem holds if dim 𝑋 ≤ 0.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03UG
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03UI
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Indeed, in that case

𝑅Γ𝑐(𝑋�̄�, 𝐾) = 𝑅Γ(𝑋�̄�, 𝐾) = Γ(𝑋�̄�, 𝐾) = ⨁̄
𝑥∈𝑋�̄�

𝐾�̄� ← 𝜋𝑋 ∗ .

Since the fixed points of 𝜋𝑋 ∶ 𝑋�̄� → 𝑋�̄� are exactly the points �̄� ∈ 𝑋�̄� which lie over a
𝑘-rational point 𝑥 ∈ 𝑋(𝑘) we get

Tr(𝜋∗
𝑋|𝑅Γ𝑐(𝑋�̄�,𝐾)) = ∑𝑥∈𝑋(𝑘)

Tr(𝜋�̄�|𝐾�̄�
).

(3) It suffices to prove the equality 𝑇′(𝒰, ℱ) = 𝑇″(𝒰, ℱ) in the case where
• 𝒰 is a smooth irreducible affine curve over 𝑘 ;
• 𝒰(𝑘) = ∅ ;
• 𝐾 = ℱ is a finite locally constant sheaf of Λ-modules on 𝒰 whose stalk(s)

are finite projective Λ-modules ; and
• Λ is killed by a power of a prime ℓ and ℓ ∈ 𝑘∗.

Indeed, because of Step 2, we can throw out any finite set of points. But we have only
finitely many rational points, so we may assume there are none8. We may assume that 𝒰
is smooth irreducible and affine by passing to irreducible components and throwing away
the bad points if necessary. The assumptions of ℱ come from unwinding the definition of
𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ) and those on Λ from considering its primary decomposition.

For the remainder of the proof, we consider the situation

𝒱

𝑓
��

� � // 𝑌

̄𝑓
��

𝒰 �
� // 𝑋

where 𝒰 is as above, 𝑓 is a finite étale Galois covering, 𝒱 is connected and the horizontal
arrows are projective completions. Denoting 𝐺 = Aut(𝒱|𝒰), we also assume (as we may)
that 𝑓−1ℱ = 𝑀 is constant, where the module 𝑀 = Γ(𝒱, 𝑓−1ℱ) is a Λ[𝐺]-module which
is finite and projective over Λ. This corresponds to the trivial monoid extension

1 → 𝐺 → Γ = 𝐺 × 𝐍 → 𝐍 → 1.

In that context, using the reductions above, we need to show that 𝑇″(𝒰, ℱ) = 0. We now
present a series of lemmata in order to complete the proof.

(A) There is a natural action of 𝐺 on 𝑓∗𝑓−1ℱ and the trace map 𝑓∗𝑓−1ℱ → ℱ defines
an isomorphism

(𝑓∗𝑓−1ℱ) ⊗Λ[𝐺] Λ = (𝑓∗𝑓−1ℱ)𝐺 ≅ ℱ.

To prove this, simply unwind everything at a geometric point.
(B) Let 𝐴 = 𝐙/ℓ𝑛𝐙 with 𝑛 ≫ 0. Then 𝑓∗𝑓−1ℱ ≅ (𝑓∗𝐴) ⊗𝐴 𝑀 with diagonal

𝐺-action.
(C) There is a canonical isomorphism (𝑓∗𝐴 ⊗𝐴 𝑀) ⊗Λ[𝐺] Λ ≅ ℱ.

In fact, this is a derived tensor product, because of the projectivity assumption on ℱ.
(D) There is a canonical isomorphism

𝑅Γ𝑐(𝒰�̄�, ℱ) = (𝑅Γ𝑐(𝒰�̄�, 𝑓∗𝐴) ⊗𝐋
𝐴 𝑀) ⊗𝐋

Λ[𝐺] Λ,

compatible with the action of 𝜋∗
𝒰.

8At this point, there should be an evil laugh in the background.
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This comes from the universal coefficient theorem, i.e., the fact that 𝑅Γ𝑐 commutes with
⊗𝐋, and the flatness of ℱ as a Λ-module.

We have

Tr(𝜋∗
𝒰

||𝑅Γ𝑐(𝒰�̄�,ℱ)) = ∑
𝑔∈𝐺

′Tr
𝑍𝑔
Λ ((𝑔, 𝜋∗

𝒰)||𝑅Γ𝑐(𝒰�̄�,𝑓∗𝐴)⊗𝐋
𝐴𝑀)

= ∑
𝑔∈𝐺

′Tr
𝑍𝑔
𝐴 ((𝑔, 𝜋∗

𝒰)||𝑅Γ𝑐(𝒰�̄�,𝑓∗𝐴)) ⋅ TrΛ(𝑔|𝑀)

where Γ acts on 𝑅Γ𝑐(𝒰�̄�, ℱ) by 𝐺 and (𝑒, 1) acts via 𝜋∗
𝒰. So the monoidal extension is given

by Γ = 𝐺 × 𝐍 → 𝐍, 𝛾 ↦ 1. The first equality follows from Lemma 38.77.9 and the second
from lemma 38.77.8.

(4) It suffices to show that Tr
𝑍𝑔
𝐴 ((𝑔, 𝜋∗

𝒰)||𝑅Γ𝑐(𝒰�̄�,𝑓∗𝐴)) ∈ 𝐴 maps to zero in Λ.

Recall that

#𝑍𝑔 ⋅ Tr
𝑍𝑔
𝐴 ((𝑔, 𝜋∗

𝒰)||𝑅Γ𝑐(𝒰�̄�,𝑓∗𝐴)) = Tr𝐴 ((𝑔, 𝜋∗
𝒰)||𝑅Γ𝑐(𝒰�̄�,𝑓∗𝐴))

= Tr𝐴 ((𝑔−1𝜋𝒱)∗||𝑅Γ𝑐(𝒱�̄�,𝐴)) .

The first equality is Lemma 38.77.7, the second is the Leray spectral sequence, using the
finiteness of 𝑓 and the fact that we are only taking traces over 𝐴. Now since 𝐴 = 𝐙/ℓ𝑛𝐙
with 𝑛 ≫ 0 and #𝑍𝑔 = ℓ𝑎 for some (fixed) 𝑎, it suffices to show the following result.

(5) Tr𝐴 ((𝑔−1𝜋𝒱)∗||𝑅Γ𝑐(𝒱,𝐴)) = 0 in 𝐴.

By additivity again, we have

Tr𝐴 ((𝑔−1𝜋𝒱)∗||𝑅Γ𝑐(𝒱�̄�𝐴)) + Tr𝐴 ((𝑔−1𝜋𝒱)∗||𝑅Γ𝑐(𝑌−𝒱)�̄�,𝐴))

= Tr𝐴 ((𝑔−1𝜋𝑌)∗||𝑅Γ(𝑌�̄�,𝐴))

The latter trace is the number of fixed points of 𝑔−1𝜋𝑌 on 𝑌, byWeil's trace formula Theorem
38.76.4. Moreover, by the 0-dimensional case already proven in step 2,

Tr𝐴 ((𝑔−1𝜋𝒱)∗||𝑅Γ𝑐(𝑌−𝒱)�̄�,𝐴))

is the number of fixed points of 𝑔−1𝜋𝑌 on (𝑌 − 𝒱)�̄�. Therefore,

Tr𝐴 ((𝑔−1𝜋𝒱)∗||𝑅Γ𝑐(𝒱�̄�,𝐴))

is the number of fixed points of 𝑔−1𝜋𝑌 on 𝒱�̄�. But there are no such points: if ̄𝑦 ∈ 𝑌�̄� is
fixed under 𝑔−1𝜋𝑌, then ̄𝑓( ̄𝑦) ∈ 𝑋�̄� is fixed under 𝜋𝑋. But 𝒰 has no 𝑘-rational point, so we
must have ̄𝑓( ̄𝑦) ∈ (𝑋 − 𝒰)�̄� and so ̄𝑦 ∉ 𝒱�̄�, a contradiction. This finishes the proof. �

Remark 38.78.3. Even though all we did are reductions and mostly algebra, the trace for-
mula Theorem 38.78.1 is much stronger than Weil's geometric trace formula (Theorem
38.76.4) because it applies to coefficient systems (sheaves), not merely constant coeffi-
cients.

38.79. Applications

OK, having indicated the proof of the trace formula, let's try to use it for something.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03UJ
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38.80. On l-adic sheaves

Definition 38.80.1. Let 𝑋 be a noetherian scheme. A 𝐙ℓ-sheaf on 𝑋, or simply a ℓ-adic
sheaf is an inverse system {ℱ𝑛}𝑛≥1 where

(1) ℱ𝑛 is a constructible 𝐙/ℓ𝑛𝐙-module on 𝑋 ́𝑒𝑡𝑎𝑙𝑒, and
(2) the transition maps ℱ𝑛+1 → ℱ𝑛 induce isomorphisms ℱ𝑛+1 ⊗𝐙/ℓ𝑛+1𝐙 𝐙/ℓ𝑛𝐙 ≅

ℱ𝑛.
We say that ℱ is lisse if each ℱ𝑛 is locally constant. A morphism of such is merely a
morphism of inverse systems.

Lemma 38.80.2. Let {𝒢𝑛}𝑛≥1 be an inverse system of constructible 𝐙/ℓ𝑛𝐙-modules. Sup-
pose that for all 𝑘 ≥ 1, the maps

𝒢𝑛+1/ℓ𝑘𝒢𝑛+1 → 𝒢𝑛/ℓ𝑘𝒢𝑛

are isomorphisms for all 𝑛 ≫ 0 (where the bound possibly depends on 𝑘). In other words,
assume that the system {𝒢/ℓ𝑘𝒢𝑛}𝑛≥1 is eventually constant, and call ℱ𝑘 the corresponding
sheaf. Then the system {ℱ𝑘}𝑘≥1 forms a 𝐙ℓ-sheaf on 𝑋.

The proof is obvious.

Lemma 38.80.3. The category of 𝐙ℓ-sheaves on 𝑋 is abelian.

Proof. Let Φ = {𝜑𝑛}𝑛≥1 ∶ {ℱ𝑛} → {𝒢𝑛} be a morphism of 𝐙ℓ-sheaves. Set

Coker(Φ) = {Coker(ℱ𝑛
𝜑𝑛−−→ 𝒢𝑛)}𝑛≥1

and Ker(Φ) is the result of Lemma 38.80.2 applied to the inverse system

{⋂
𝑚≥𝑛

Im (Ker(𝜑𝑚) → Ker(𝜑𝑛))}
𝑛≥1

.

That this defines an abelian category is left to the reader. �

Example 38.80.4. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝐂) and Φ ∶ 𝐙ℓ → 𝐙ℓ be multiplication by ℓ. More
precisely,

Φ = {𝐙/ℓ𝑛𝐙
ℓ

−→ 𝐙/ℓ𝑛𝐙}𝑛≥1
.

To compute the kernel, we consider the inverse system

⋯ → 𝐙/ℓ𝐙
0

−→ 𝐙/ℓ𝐙
0

−→ 𝐙/ℓ𝐙.

Since the images are always zero, Ker(Φ) is zero as a system.

Remark 38.80.5. If ℱ = {ℱ𝑛}𝑛≥1 is a 𝐙ℓ-sheaf on 𝑋 and �̄� is a geometric point then
𝑀𝑛 = {ℱ𝑛,�̄�} is an inverse system of finite 𝐙/ℓ𝑛𝐙-modules such that 𝑀𝑛+1 → 𝑀𝑛 is
surjective and 𝑀𝑛 = 𝑀𝑛+1/ℓ𝑛𝑀𝑛+1. It follows that

𝑀 = 𝑙𝑖𝑚𝑛 𝑀𝑛 = 𝑙𝑖𝑚 ℱ𝑛,�̄�

is a finite 𝐙ℓ-module. Indeed, 𝑀/ℓ𝑀 = 𝑀1 is finite over 𝐅ℓ, so by Nakayama 𝑀 is finite
over 𝐙ℓ. Therefore, 𝑀 ≅ 𝐙⊕𝑟

ℓ ⊕ ⊕𝑡
𝑖=1𝐙ℓ/ℓ𝑒𝑖𝐙ℓ for some 𝑟, 𝑡 ≥ 0, 𝑒𝑖 ≥ 1. The module

𝑀 = ℱ�̄� is called the stalk of ℱ at �̄�.
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Definition 38.80.6. A 𝐙ℓ-sheaf ℱ is torsion if ℓ𝑛 ∶ ℱ → ℱ is the zero map for some 𝑛. The
abelian category of 𝐐ℓ-sheaves on 𝑋 is the quotient of the abelian category of 𝐙ℓ-sheaves
by the Serre subcategory of torsion sheaves. In other words, its objects are 𝐙ℓ-sheaves on
𝑋, and if ℱ, 𝒢 are two such, then

𝐻𝑜𝑚𝐐ℓ
(ℱ, 𝒢) = 𝐻𝑜𝑚𝐙ℓ

(ℱ, 𝒢) ⊗𝐙ℓ
𝐐ℓ.

We denote by ℱ ↦ ℱ ⊗ 𝐐ℓ the quotient functor (right adjoint to the inclusion). If ℱ =
ℱ′ ⊗ 𝐐ℓ where ℱ′ is a 𝐙ℓ-sheaf and �̄� is a geometric point, then the stalk of ℱ at �̄� is
ℱ�̄� = ℱ′

�̄� ⊗ 𝐐ℓ.

Remark 38.80.7. Since a 𝐙ℓ-sheaf is only defined on a noetherian scheme, it is torsion if
and only if its stalks are torsion.

Definition 38.80.8. If 𝑋 is a separated scheme of finite type over an algebraically closed
field 𝑘 and ℱ = {ℱ𝑛}𝑛≥1 is a 𝐙ℓ-sheaf on 𝑋, then we define

𝐻𝑖(𝑋, ℱ) ∶= 𝑙𝑖𝑚𝑛 𝐻𝑖(𝑋, ℱ𝑛) and 𝐻𝑖
𝑐(𝑋, ℱ) ∶= 𝑙𝑖𝑚𝑛 𝐻𝑖

𝑐(𝑋, ℱ𝑛).
If ℱ = ℱ′ ⊗ 𝐐ℓ for a 𝐙ℓ-sheaf ℱ′ then we set

𝐻𝑖
𝑐(𝑋, ℱ) ∶= 𝐻𝑖

𝑐(𝑋, ℱ′) ⊗𝐙ℓ
𝐐ℓ.

We call these the ℓ-adic cohomology of 𝑋 with coefficients ℱ.

38.81. L-functions

Definition 38.81.1. Let 𝑋 be a scheme of finite type over a finite field 𝑘. Let Λ be a finite
ring of order prime to the characteristic of 𝑘 and ℱ a constructible flat Λ-module on 𝑋 ́𝑒𝑡𝑎𝑙𝑒.
Then we set

𝐿(𝑋, ℱ) ∶= ∏
𝑥∈|𝑋|

det (1 − 𝜋∗
𝑥 𝑇deg 𝑥|

||ℱ�̄�)

−1
∈ Λ[[𝑇]]

where |𝑋| is the set of closed points of 𝑋, deg 𝑥 = [𝜅(𝑥) ∶ 𝑘] and �̄� is a geometric point
lying over 𝑥. This definition clearly generalizes to the case where ℱ is replace by a 𝐾 ∈
𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ). We call this the 𝐿-function of ℱ.

Remark 38.81.2. Intuitively, 𝑇 should be thought of as 𝑇 = 𝑡𝑓 where 𝑝𝑓 = #𝑘. The
definitions are then independent of the size of the ground field.

Definition 38.81.3. Now assume that ℱ is a 𝐐ℓ-sheaf on 𝑋. In this case we define

𝐿(𝑋, ℱ) ∶= ∏
𝑥∈|𝑋|

det (1 − 𝜋∗
𝑥 𝑇deg 𝑥|

||ℱ�̄�)

−1
∈ 𝐐ℓ[[𝑇]].

Note that this product converges since there are finitely many points of a given degree. We
call this the 𝐿-function of ℱ.

38.82. Cohomological interpretation

This is how Grothendieck interpreted the 𝐿-function.

Theorem 38.82.1. (Finite Coefficients) Let 𝑋 be a scheme of finite type over a finite field
𝑘. Let Λ be a finite ring of order prime to the characteristic of 𝑘 and ℱ a constructible flat
Λ-module on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Then

𝐿(𝑋, ℱ) = det (1 − 𝜋∗
𝑋 𝑇|

||𝑅Γ𝑐(𝑋�̄�,ℱ))

−1
∈ Λ[[𝑇]].
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Thus far, we don't even know whether each cohomology group 𝐻𝑖
𝑐(𝑋�̄�, ℱ) is free.

Theorem 38.82.2. (𝐐ℓ-sheaves) Let 𝑋 be a scheme of finite type over a finite field 𝑘, and
ℱ a 𝐐ℓ-sheaf on 𝑋. Then

𝐿(𝑋, ℱ) = ∏
𝑖

det (1 − 𝜋∗
𝑋 𝑇|

||𝐻𝑖
𝑐(𝑋�̄�,ℱ))

(−1)𝑖+1

∈ 𝐐ℓ[[𝑇]].

Remark 38.82.3. Since we have only developed some theory of traces and not of deter-
minants, Theorem 38.82.1 is harder to prove than Theorem 38.82.2. We will only prove
the latter, for the former see [Del77]. Observe also that there is no version of this theorem
more general for 𝐙ℓ coefficients since there is no ℓ-torsion.

We reduce the proof of Theorem 38.82.2 to a trace formula. Since 𝐐ℓ has characteristic
0, it suffices to prove the equality after taking logarithmic derivatives. More precisely, we
apply 𝑇 𝑑

𝑑𝑇 log to both sides. We have on the one hand

𝑇 𝑑
𝑑𝑇

log 𝐿(𝑋, ℱ) = 𝑇 𝑑
𝑑𝑇

log ∏
𝑥∈|𝑋|

det (1 − 𝜋∗
𝑥 𝑇deg 𝑥|

||ℱ�̄�)

−1

= ∑
𝑥∈|𝑋|

𝑇 𝑑
𝑑𝑇

log (det (1 − 𝜋∗
𝑥 𝑇deg 𝑥|

||ℱ�̄�)

−1

)

= ∑
𝑥∈|𝑋|

deg 𝑥 ∑
𝑛≥1

Tr((𝜋𝑛
𝑥)

∗||ℱ�̄�) 𝑇𝑛 deg 𝑥

where the last equality results from the formula

𝑇 𝑑
𝑑𝑇

log (det (1 − 𝑓𝑇|𝑀)
−1

) = ∑
𝑛≥1

Tr(𝑓𝑛|𝑀)𝑇𝑛

which holds for any commutative ring Λ and any endomorphism 𝑓 of a finite projective
Λ-module 𝑀. On the other hand, we have

𝑇 𝑑
𝑑𝑇

log
(∏

𝑖
det (1 − 𝜋∗

𝑋 𝑇|
||𝐻𝑖

𝑐(𝑋�̄�,ℱ))

(−1)𝑖+1

)

= ∑
𝑖

(−1)𝑖
∑
𝑛≥1

Tr((𝜋𝑛
𝑋)

∗||𝐻𝑖
𝑐(𝑋�̄�,ℱ)) 𝑇𝑛

by the same formula again. Now, comparing powers of 𝑇 and using the Mobius inversion
formula, we see that Theorem 38.82.2 is a consequence of the following equality

∑
𝑑|𝑛

𝑑 ∑
𝑥∈|𝑋|

deg 𝑥=𝑑

Tr((𝜋𝑛/𝑑
𝑋 )

∗|
||ℱ�̄�) = ∑

𝑖
(−1)𝑖Tr((𝜋𝑛

𝑋)
∗ ||𝐻𝑖

𝑐(𝑋�̄�,ℱ)) .

Writing 𝑘𝑛 for the degree 𝑛 extension of 𝑘, 𝑋𝑛 = 𝑋 ×𝑆𝑝𝑒𝑐 𝑘 𝑆𝑝𝑒𝑐(𝑘𝑛) and 𝑛ℱ = ℱ|𝑋𝑛
, this

boils down to

∑
𝑥∈𝑋𝑛(𝑘𝑛)

Tr(𝜋∗
𝑋

||
𝑛ℱ�̄�) = ∑

𝑖
(−1)𝑖Tr((𝜋𝑛

𝑋)
∗ ||𝐻𝑖

𝑐((𝑋𝑛)�̄�,𝑛ℱ))

which is a consequence of the following result.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03V0
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Theorem 38.82.4. Let 𝑋 be a separated scheme of finite type over a finite field 𝑘 and ℱ be a
𝐐ℓ-sheaf on 𝑋. Then dim𝐐ℓ

𝐻𝑖
𝑐(𝑋�̄�, ℱ) is finite for all 𝑖, and is nonzero for 0 ≤ 𝑖 ≤ 2 dim 𝑋

only. Furthermore, we have

∑
𝑥∈𝑋(𝑘)

Tr(𝜋𝑥
|
|ℱ�̄� ) = ∑

𝑖
(−1)𝑖Tr(𝜋∗

𝑋
||𝐻𝑖

𝑐(𝑋�̄�,ℱ)) .

Theorem 38.82.5. Let 𝑋/𝑘 be as above, let Λ be a finite ring with #Λ ∈ 𝑘∗ and 𝐾 ∈
𝐷𝑏

𝑐𝑡𝑓(𝑋, Λ). Then 𝑅Γ𝑐(𝑋�̄�, 𝐾) ∈ 𝐷𝑝𝑒𝑟𝑓(Λ) and

∑
𝑥∈𝑋(𝑘)

Tr(𝜋𝑥
|
|𝐾�̄� ) = Tr(𝜋∗

𝑋
|
|𝑅Γ𝑐(𝑋�̄�,𝐾) ) .

Note that we have already proved this (REFERENCE) when dim 𝑋 ≤ 1. The general case
follows easily from that case together with the proper base change theorem. We now explain
how to deduce Theorem 38.82.4 from theorem 38.82.5. We first use some étale cohomology
arguments to reduce the proof to an algebraic statement which we subsequently prove.
Let ℱ be as in Theorem 38.82.4. We can write ℱ as ℱ′ ⊗ 𝐐ℓ where ℱ′ = {ℱ′

𝑛} is a
𝐙ℓ-sheaf without torsion, i.e., ℓ ∶ ℱ′ → ℱ′ has trivial kernel in the category of 𝐙ℓ-sheaves.
Then each ℱ′

𝑛 is a flat constructible 𝐙/ℓ𝑛𝐙-module on 𝑋 ́𝑒𝑡𝑎𝑙𝑒, so ℱ′
𝑛 ∈ 𝐷𝑏

𝑐𝑡𝑓(𝑋, 𝐙/ℓ𝑛𝐙) and
ℱ′

𝑛+1⊗𝐋
𝐙/ℓ𝑛+1𝐙𝐙/ℓ𝑛𝐙 = ℱ′

𝑛. Note that the last equality holds also for standard (non-derived)
tensor product, since ℱ′

𝑛 is flat (it is the same equality). Therefore,
(1) the complex 𝐾𝑛 = 𝑅Γ𝑐 (𝑋�̄�, ℱ′

𝑛) is perfect, and it is endowed with an endomor-
phism 𝜋𝑛 ∶ 𝐾𝑛 → 𝐾𝑛 in 𝐷(𝐙/ℓ𝑛𝐙) ;

(2) there are identifications
𝐾𝑛+1 ⊗𝐋

𝐙/ℓ𝑛+1𝐙 𝐙/ℓ𝑛𝐙 = 𝐾𝑛

in 𝐷𝑝𝑒𝑟𝑓(𝐙/ℓ𝑛𝐙), compatible with the endomorphisms 𝜋𝑛+1 and 𝜋𝑛 (see [Del77,
Rapport 4.12]) ;

(3) the equality Tr(𝜋∗
𝑋

|
|𝐾𝑛 ) = ∑𝑥∈𝑋(𝑘) Tr(𝜋𝑥

|
|(ℱ′

𝑛)�̄� ) holds ; and

(4) for each 𝑥 ∈ 𝑋(𝑘), the elements Tr(𝜋𝑥||ℱ′
𝑛,�̄�) ∈ 𝐙/ℓ𝑛𝐙 form an element of 𝐙ℓ

which is equal to Tr(𝜋𝑥
|
|ℱ�̄� ) ∈ 𝐐ℓ.

It thus suffices to prove the following algebra lemma.

Lemma 38.82.6. Suppose we have 𝐾𝑛 ∈ 𝐷𝑝𝑒𝑟𝑓(𝐙/ℓ𝑛𝐙), 𝜋𝑛 ∶ 𝐾𝑛 → 𝐾𝑛 and isomorphisms
𝜑𝑛 ∶ 𝐾𝑛+1 ⊗𝐋

𝐙/ℓ𝑛+1𝐙 𝐙/ℓ𝑛𝐙 ≅ 𝐾𝑛 compatible with 𝜋𝑛+1 and 𝜋𝑛. Then

(1) the elements 𝑡𝑛 = Tr(𝜋𝑛
|
|𝐾𝑛

) ∈ 𝐙/ℓ𝑛𝐙 form an element 𝑡∞ = {𝑡𝑛} of 𝐙ℓ ;
(2) the 𝐙ℓ-module 𝐻𝑖

∞ = 𝑙𝑖𝑚𝑛 𝐻𝑖(𝑘𝑛) is finite and is nonzero for finitely many 𝑖 only
; and

(3) the operators 𝐻𝑖(𝜋𝑛) ∶ 𝐻𝑖(𝐾𝑛) → 𝐻𝑖(𝐾𝑛) are compatible and define 𝜋𝑖
∞ ∶

𝐻𝑖
∞ → 𝐻𝑖

∞ satisfying

∑(−1)𝑖Tr(𝜋𝑖
∞||𝐻𝑖

∞⊗𝐙ℓ𝐐ℓ) = 𝑡∞.

Proof. Since 𝐙/ℓ𝑛𝐙 is a local ring and 𝐾𝑛 is perfect, each 𝐾𝑛 can be represented by a
finite complex 𝐾•

𝑛 of finite free 𝐙/ℓ𝑛𝐙-modules such that the map 𝐾𝑝
𝑛 → 𝐾𝑝+1

𝑛 has image
contained in ℓ𝐾𝑝+1

𝑛 . It is a fact that such a complex is unique up to isomorphism. Moreover

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03V2
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𝜋𝑛 can be represented by a morphism of complexes 𝜋•
𝑛 ∶ 𝐾•

𝑛 → 𝐾•
𝑛 (which is unique up

to homotopy). By the same token the isomorphism 𝜑𝑛 ∶ 𝐾𝑛+1 ⊗𝐋
𝐙/ℓ𝑛+1𝐙 𝐙/ℓ𝑛𝐙 → 𝐾𝑛 is

represented by a map of complexes

𝜑•
𝑛 ∶ 𝐾•

𝑛+1 ⊗𝐙/ℓ𝑛+1𝐙 𝐙/ℓ𝑛𝐙 → 𝐾•
𝑛.

In fact, 𝜑•
𝑛 is an isomorphism of complexes, thus we see that

• there exist 𝑎, 𝑏 ∈ 𝐙 independent of 𝑛 such that 𝐾𝑖
𝑛 = 0 for all 𝑖 ∉ [𝑎, 𝑏] ; and

• the rank of 𝐾𝑖
𝑛 is independent of 𝑛.

Therefore, the module 𝐾𝑖
∞ = 𝑙𝑖𝑚𝑛{𝐾𝑖

𝑛, 𝜑𝑖
𝑛} is a finite free 𝐙ℓ-module and 𝐾•

∞ is a finite
complex of finite free 𝐙ℓ-modules. By induction on the number of nonzero terms, one
can prove that 𝐻𝑖 (𝐾•

∞) = 𝑙𝑖𝑚𝑛 𝐻𝑖 (𝐾•
𝑛) (this is not true for unbounded complexes). We

conclude that 𝐻𝑖
∞ = 𝐻𝑖 (𝐾•

∞) is a finite 𝐙ℓ-module. This proves ii. To prove the remainder
of the lemma, we need to overcome the possible noncommutativity of the diagrams

𝐾•
𝑛+1

𝜋•
𝑛+1
��

𝜑•
𝑛 // 𝐾•

𝑛

𝜋•
𝑛
��

𝐾•
𝑛+1 𝜑•

𝑛

// 𝐾•
𝑛.

However, this diagram does commute in the derived category, hence it commutes up to
homotopy. We inductively replace 𝜋•

𝑛 for 𝑛 ≥ 2 by homotopic maps of complexes making
these diagrams commute. Namely, if ℎ𝑖 ∶ 𝐾𝑖

𝑛+1 → 𝐾𝑖−1
𝑛 is a homotopy, i.e.,

𝜋•
𝑛 ∘ 𝜑•

𝑛 − 𝜑•
𝑛 ∘ 𝜋•

𝑛+1 = 𝑑ℎ + ℎ𝑑,

then we choose ℎ̃𝑖 ∶ 𝐾𝑖
𝑛+1 → 𝐾𝑖−1

𝑛+1 lifting ℎ𝑖. This is possible because 𝐾𝑖
𝑛+1 free and

𝐾𝑖−1
𝑛+1 → 𝐾𝑖−1

𝑛 is surjective. Then replace 𝜋•
𝑛 by ̃𝜋•

𝑛 defined by

̃𝜋•
𝑛+1 = 𝜋•

𝑛+1 + 𝑑ℎ̃ + ℎ̃𝑑.

With this choice of {𝜋•
𝑛}, the above diagrams commute, and the maps fit together to de-

fine an endomorphism 𝜋•
∞ = 𝑙𝑖𝑚𝑛 𝜋•

𝑛 of 𝐾•
∞. Then part i is clear: the elements 𝑡𝑛 =

∑(−1)𝑖Tr(𝜋𝑖
𝑛

|
|𝐾𝑖

𝑛 ) fit into an element 𝑡∞ of 𝐙ℓ. Moreover

𝑡∞ = ∑(−1)𝑖Tr𝐙ℓ (𝜋𝑖
∞||𝐾𝑖

∞)

= ∑(−1)𝑖Tr𝐐ℓ (𝜋𝑖
∞||𝐾𝑖

∞⊗𝐙ℓ𝐐ℓ)

= ∑(−1)𝑖Tr(𝜋∞||𝐻𝑖(𝐾•
∞⊗𝐐ℓ))

where the last equality follows from the fact that 𝐐ℓ is a field, so the complex 𝐾•
∞ ⊗ 𝐐ℓ is

quasi-isomorphic to its cohomology 𝐻𝑖(𝐾•
∞ ⊗ 𝐐ℓ). The latter is also equal to 𝐻𝑖(𝐾•

∞) ⊗𝐙
𝐐ℓ = 𝐻𝑖

∞ ⊗ 𝐐ℓ, which finishes the proof of the lemma, and also that of Theorem 38.82.4.
�

38.83. List of things which we should add above

What did we skip the proof of in the lectures sofar:
(1) curves and their Jacobians,
(2) proper base change theorem,
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(3) inadequate discussion of 𝑅Γ𝑐,
(4) more generally, given 𝑓 ∶ 𝑋 → 𝑆 finite type, separated 𝑆 quasi-projective, dis-

cussion of 𝑅𝑓! on étale sheaves.
(5) discussion of ⊗𝐋

(6) discussion of why 𝑅Γ𝑐 commutes with ⊗𝐋

38.84. Examples of L-functions

We use Theorem 38.82.2 for curves to give examples of 𝐿-functions

38.85. Constant sheaves

Let 𝑘 be a finite field, 𝑋 a smooth, geometrically irreducible curve over 𝑘 and ℱ = 𝐐ℓ the
constant sheaf. If �̄� is a geometric point of 𝑋, the Galois module ℱ�̄� = 𝐐ℓ is trivial, so

det (1 − 𝜋∗
𝑥 𝑇deg 𝑥|

||ℱ�̄�)

−1
= 1

1 − 𝑇deg 𝑥 .

Applying Theorem 38.82.2, we get

𝐿(𝑋, ℱ) =
2

∏
𝑖=0

det (1 − 𝜋∗
𝑋 𝑇||𝐻𝑖

𝑐(𝑋�̄�,𝐐ℓ))
(−1)𝑖+1

=
det (1 − 𝜋∗

𝑋 𝑇||𝐻1
𝑐 (𝑋�̄�,𝐐ℓ))

det (1 − 𝜋∗
𝑋 𝑇||𝐻0

𝑐 (𝑋�̄�,𝐐ℓ)) ⋅ det (1 − 𝜋∗
𝑋 𝑇||𝐻2

𝑐 (𝑋�̄�,𝐐ℓ))
.

To compute the latter, we distinguish two cases.

Projective case. Assume that 𝑋 is projective, so 𝐻𝑖
𝑐(𝑋�̄�, 𝐐ℓ) = 𝐻𝑖(𝑋�̄�, 𝐐ℓ), and we have

𝐻𝑖(𝑋�̄�, 𝐐ℓ) =
⎧⎪
⎨
⎪⎩

𝐐ℓ if 𝑖 = 0, and 𝜋∗
𝑋 acts as 1 ;

𝐐2𝑔
ℓ if 𝑖 = 1 ;

𝐐ℓ if 𝑖 = 2, and 𝜋∗
𝑋 acts as multiplication by 𝑞 = deg 𝜋𝑋.

We do not know much about the action of 𝜋∗
𝑋 on the degree 1 cohomology. Let us call

𝛼1, … , 𝛼2𝑔 its eigenvalues in �̄�ℓ. Putting everything together, Theorem 38.82.2 yields the
equality

∏
𝑥∈|𝑋|

1
1 − 𝑇deg 𝑥 =

det (1 − 𝜋∗
𝑋 𝑇||𝐻1(𝑋�̄�,𝐐ℓ))

(1 − 𝑇)(1 − 𝑞𝑇)

from which we deduce the following result.

Lemma 38.85.1. Let 𝑋 be a smooth, projective, geometrically irreducible curve over a
finite field 𝑘. Then

(1) the 𝐿-function 𝐿(𝑋, 𝐐ℓ) is a rational funtion ;
(2) the eigenvalues 𝛼1, … , 𝛼2𝑔 of 𝜋∗

𝑋 on 𝐻1(𝑋�̄�, 𝐐ℓ) are algebraic integers indepen-
dent of ℓ,

(3) the number of rational points of 𝑋 on 𝑘𝑛, where [𝑘𝑛 ∶ 𝑘] = 𝑛, is

#𝑋(𝑘𝑛) = 1 − ∑
2𝑔
𝑖=1

𝛼𝑛
𝑖 + 𝑞𝑛,

(4) for each 𝑖, |𝛼𝑖| < 𝑞.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03V8
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Part (3) is Theorem 38.82.4 applied to ℱ = 𝐐ℓ on 𝑋 ⊗ 𝑘𝑛. For part (4), use the following
result.

Exercise 38.85.2. Let 𝛼1, … , 𝛼𝑛 ∈ 𝐂. Then for any conic sector containing the positive
real axis of the form 𝐶𝜀 = {𝑧 ∈ 𝐂 | | arg 𝑧| < 𝜀} with 𝜀 > 0, there exists an integer 𝑘 ≥ 1
such that 𝛼𝑘

1, … , 𝛼𝑘
𝑛 ∈ 𝐶𝜀.

Then prove that |𝛼𝑖| ≤ 𝑞 for all 𝑖. Then, use elementary considerations on complex numbers
to prove (as in the proof of the prime number theorem) that |𝛼𝑖| < 𝑞. In fact, the Riemann
hypothesis says that for all |𝛼𝑖| = √𝑞 for all 𝑖. We will come back to this later.

Affine case. Assume now that 𝑋 is affine, say 𝑋 = �̄�−{𝑥1, … , 𝑥𝑛} where 𝑗 ∶ 𝑋 ↪ �̄� is a
projective nonsingular completion. Then 𝐻0

𝑐 (𝑋�̄�, 𝐐ℓ) = 0 and 𝐻2
𝑐 (𝑋�̄�, 𝐐ℓ) = 𝐻2(�̄��̄�, 𝐐ℓ)

so Theorem 38.82.2 reads

𝐿(𝑋, 𝐐ℓ) = ∏
𝑥∈|𝑋|

1
1 − 𝑇deg 𝑥 =

det (1 − 𝜋∗
𝑋 𝑇||𝐻1

𝑐 (𝑋�̄�,𝐐ℓ))
1 − 𝑞𝑇

.

On the other hand, the previous case gives

𝐿(𝑋, 𝐐ℓ) = 𝐿(�̄�, 𝐐ℓ)
𝑛

∏
𝑖=1

(1 − 𝑇deg 𝑥𝑖)

=
∏𝑛

𝑖=1(1 − 𝑇deg 𝑥𝑖) ∏2𝑔
𝑗=1(1 − 𝛼𝑗𝑇)

(1 − 𝑇)(1 − 𝑞𝑇)
.

Therefore, we see that dim 𝐻1
𝑐 (𝑋�̄�, 𝐐ℓ) = 2𝑔 + ∑𝑛

𝑖=1 deg(𝑥𝑖) − 1, and the eigenvalues
𝛼1, … , 𝛼2𝑔 of 𝜋∗

�̄� acting on the degree 1 cohomology are roots of unity. More precisely,
each 𝑥𝑖 gives a complete set of deg(𝑥𝑖)th roots of unity, and one occurrence of 1 is omitted.
To see this directly using coherent sheaves, consider the short exact sequence on �̄�

0 → 𝑗!𝐐ℓ → 𝐐ℓ →
𝑛

⨁
𝑖=1

𝐐ℓ,𝑥𝑖
→ 0.

The long exact cohomology sequence reads

0 → 𝐐ℓ →
𝑛

⨁
𝑖=1

𝐐⊕ deg 𝑥𝑖
ℓ → 𝐻1

𝑐 (𝑋�̄�, 𝐐ℓ) → 𝐻1
𝑐 (�̄��̄�, 𝐐ℓ) → 0

where the action of Frobenius on ⨁𝑛
𝑖=1 𝐐⊕ deg 𝑥𝑖

ℓ is by cyclic permutation of each term; and
𝐻2

𝑐 (𝑋�̄�, 𝐐ℓ) = 𝐻2
𝑐 (�̄��̄�, 𝐐ℓ).

38.86. The Legendre family

Let 𝑘 be a finite field of odd characteristic, 𝑋 = 𝑆𝑝𝑒𝑐(𝑘[𝜆, 1
𝜆(𝜆−1) ]), and consider the family

of elliptic curves 𝑓 ∶ 𝐸 → 𝑋 on 𝐏2
𝑋 whose affine equation is 𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆). We set

ℱ = 𝑅𝑓1
∗𝐐ℓ = {𝑅1𝑓∗𝐙/ℓ𝑛𝐙}𝑛≥1 ⊗ 𝐐ℓ. In this situation, the following is true

• for each 𝑛 ≥ 1, the sheaf 𝑅1𝑓∗(𝐙/ℓ𝑛𝐙) is finite locally constant -- in fact, it is free
of rank 2 over 𝐙/ℓ𝑛𝐙 ;

• the system {𝑅1𝑓∗𝐙/ℓ𝑛𝐙}𝑛≥1 is a lisse ℓ-adic sheaf ; and
• for all 𝑥 ∈ |𝑋|, det (1 − 𝜋𝑥 𝑇deg 𝑥||ℱ�̄�) = (1−𝛼𝑥𝑇deg 𝑥)(1−𝛽𝑥𝑇deg 𝑥) where 𝛼𝑥, 𝛽𝑥

are the eigenvalues of the geometric frobenius of 𝐸𝑥 acting on 𝐻1(𝐸�̄�, 𝐐ℓ).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03V9
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Note that 𝐸𝑥 is only defined over 𝜅(𝑥) and not over 𝑘. The proof of these facts uses the
proper base change theorem and the local acyclicity of smooth morphisms. For details, see
[Del77]. It follows that

𝐿(𝐸/𝑋) ∶= 𝐿(𝑋, ℱ) = ∏
𝑥∈|𝑋|

1
(1 − 𝛼𝑥𝑇deg 𝑥)(1 − 𝛽𝑥𝑇deg 𝑥)

.

Applying Theorem 38.82.2 we get

𝐿(𝐸/𝑋) =
2

∏
𝑖=0

det (1 − 𝜋∗
𝑋 𝑇 |

|𝐻𝑖
𝑐(𝑋�̄�,ℱ) )

(−1)𝑖+1

,

and we see in particular that this is a rational function. Furthermore, it is relatively easy to
show that 𝐻0

𝑐 (𝑋�̄�, ℱ) = 𝐻2
𝑐 (𝑋�̄�, ℱ) = 0, so we merely have

𝐿(𝐸/𝑋) = det (1 − 𝜋∗
𝑋𝑇||𝐻1

𝑐 (𝑋,ℱ)) .

To compute this determinant explicitly, consider the Leray spectral sequence for the proper
morphism 𝑓 ∶ 𝐸 → 𝑋 over 𝐐ℓ, namely

𝐻𝑖
𝑐(𝑋�̄�, 𝑅𝑗𝑓∗𝐐ℓ) ⇒ 𝐻𝑖+𝑗

𝑐 (𝐸�̄�, 𝐐ℓ)

which degenerates. We have 𝑓∗𝐐ℓ = 𝐐ℓ and 𝑅1𝑓∗𝐐ℓ = ℱ. The sheaf 𝑅2𝑓∗𝐐ℓ = 𝐐ℓ(−1)
is the Tate twist of 𝐐ℓ, i.e., it is the sheaf 𝐐ℓ where the Galois action is given by multipli-
cation by #𝜅(𝑥) on the stalk at �̄�. It follows that, for all 𝑛 ≥ 1,

#𝐸(𝑘𝑛) = ∑(−1)𝑖Tr(𝜋𝑛
𝐸

∗||𝐻𝑖
𝑐(𝐸�̄�,𝐐ℓ))

= ∑
𝑖,𝑗

(−1)𝑖+𝑗Tr(𝜋𝑛
𝑋

∗||𝐻𝑖
𝑐(𝑋�̄�,𝑅𝑗𝑓∗𝐐ℓ))

= (𝑞𝑛 − 2) + Tr(𝜋𝑛
𝑋

∗||𝐻1
𝑐 (𝑋�̄�,ℱ)) + 𝑞𝑛(𝑞𝑛 − 2)

= 𝑞2𝑛 − 𝑞𝑛 − 2 + Tr(𝜋𝑛
𝑋

∗||𝐻1
𝑐 (𝑋�̄�,ℱ))

where the first equality follows from Theorem 38.82.4, the second one from the Leray spec-
tral sequence and the third one by writing down the higher direct images of 𝐐ℓ under 𝑓.
Alternatively, we could write

#𝐸(𝑘𝑛) = ∑
𝑥∈𝑋(𝑘𝑛)

#𝐸𝑥(𝑘𝑛)

and use the trace formula for each curve. We can also find the number of 𝑘𝑛-rational points
simply by counting. The zero section contributes 𝑞𝑛 − 2 points (we omit the points where
𝜆 = 0, 1) hence

#𝐸(𝑘𝑛) = 𝑞𝑛 − 2 + # {𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆), 𝜆 ≠ 0, 1} .
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Now we have
# {𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆), 𝜆 ≠ 0, 1}

= # {𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆) in 𝐀3} − # {𝑦2 = 𝑥2(𝑥 − 1)} − # {𝑦2 = 𝑥(𝑥 − 1)2}

= # {𝜆 = −𝑦2

𝑥(𝑥−1) + 𝑥, 𝑥 ≠ 0, 1} + # {𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆), 𝑥 = 0, 1} − 2(𝑞𝑛 − 𝜀𝑛)

= 𝑞𝑛(𝑞𝑛 − 2) + 2𝑞𝑛 − 2(𝑞𝑛 − 𝜀𝑛)

= 𝑞2𝑛 − 2𝑞𝑛 + 2𝜀𝑛

where 𝜀𝑛 = 1 if −1 is a square in 𝑘𝑛, 0 otherwise, i.e.,

𝜀𝑛 = 1
2 (1 + (

−1
𝑘𝑛 )) = 1

2 (1 + (−1)
𝑞𝑛−1

2
) .

Thus #𝐸(𝑘𝑛) = 𝑞2𝑛 − 𝑞𝑛 − 2 + 2𝜀𝑛. Comparing with the previous formula, we find

Tr(𝜋𝑛
𝑋

∗||𝐻1
𝑐 (𝑋�̄�,ℱ)) = 2𝜀𝑛 = 1 + (−1)

𝑞𝑛−1
2 ,

which implies, by elementary algebra of complex numbers, that if −1 is a square in 𝑘∗
𝑛, then

dim 𝐻1
𝑐 (𝑋�̄�, ℱ) = 2 and the eigenvalues are 1 and 1. Therefore, in that case we have

𝐿(𝐸/𝑋) = (1 − 𝑇)2.

38.87. Exponential sums

A standard problem in number theory is to evaluate sums of the form

𝑆𝑎,𝑏(𝑝) = ∑
𝑥∈𝐅𝑝−{0,1}

𝑒
2𝜋𝑖𝑥𝑎(𝑥−1)𝑏

𝑝 .

In our context, this can be interpreted as a cohomological sum as follows. Consider the
base scheme 𝑆 = 𝑆𝑝𝑒𝑐(𝐅𝑝[𝑥, 1

𝑥(𝑥−1) ]) and the affine curve 𝑓 ∶ 𝑋 → 𝐏1 − {0, 1, ∞} over 𝑆
given by the equation 𝑦𝑝−1 = 𝑥𝑎(𝑥 − 1)𝑏. This is a finite étale Galois cover with group 𝐅∗

𝑝
and there is a splitting

𝑓∗(�̄�∗
ℓ) = ⨁

𝜒∶𝐅∗
𝑝→�̄�∗

ℓ

ℱ𝜒

where 𝜒 varies over the characters of 𝐅∗
𝑝 and ℱ𝜒 is a rank 1 lisse 𝐐ℓ-sheaf on which 𝐅∗

𝑝 acts
via 𝜒 on stalks. We get a corresponding decomposition

𝐻1
𝑐 (𝑋�̄�, 𝐐ℓ) = ⨁

𝜒
𝐻1(𝐏1

�̄� − {0, 1, ∞}, ℱ𝜒)

and the cohomological interpretation of the exponential sum is given by the trace formula
applied to ℱ𝜒 over 𝐏1 − {0, 1, ∞} for some suitable 𝜒. It reads

𝑆𝑎,𝑏(𝑝) = −Tr(𝜋∗
𝑋

||𝐻1(𝐏1
�̄�−{0,1,∞},ℱ𝜒)) .

The general yoga of Weil suggests that there should be some cancellation in the sum. Ap-
plying (roughly) the Riemann-Hurwitz formula, we see that

2𝑔𝑋 − 2 ≈ −2(𝑝 − 1) + 3(𝑝 − 2) ≈ 𝑝
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so 𝑔𝑋 ≈ 𝑝/2, which also suggests that the 𝜒-pieces are small.

38.88. Trace formula in terms of fundamental groups

In the following sections we reformulate the trace formula completely in terms of the fun-
damental group of a curve, except if the curve happens to be 𝐏1.

38.89. Fundamental groups

𝑋 connected scheme 𝑥 → 𝑋 geometric point consider the functor

𝐹𝑥 ∶ finite étale

schemes over 𝑋
⟶ finite sets

𝑌/𝑋 ⟼ 𝐹𝑥(𝑌) = {
geom points 𝑦

of 𝑌 lying over 𝑥 } = 𝑌𝑥

Set
𝜋1(𝑋, 𝑥) = 𝐴𝑢𝑡(𝐹𝑥) = set of automorphisms of the functor 𝐹𝑥

Note that for every finite étale 𝑌 → 𝑋 there is an action
𝜋1(𝑋, 𝑥) × 𝐹𝑥(𝑌) → 𝐹𝑥(𝑌)

Definition 38.89.1. A subgroup of the form Stab(𝑦 ∈ 𝐹𝑥(𝑌)) ⊂ 𝜋1(𝑋, 𝑥) is called open.

Theorem 38.89.2. (Grothendieck, see [Gro71]) 𝑋 connected
(1) there is a topology on 𝜋1(𝑋, 𝑥) such that the open subgroups form a fundamental

system of open nbhds of 𝑒 ∈ 𝜋1(𝑋, 𝑥).
(2) 𝜋1(𝑋, 𝑥) is a profinite group.
(3) the functor

schemes finite

étale over 𝑋
→ finite discrete continuous

𝜋1(𝑋,𝑥)-sets
𝑌/𝑋 ↦ 𝐹𝑥(𝑌) with its natural action

is an equivalence of categories.

Proposition 38.89.3. Let 𝑋 be an integral normal Netherian scheme. Let 𝑦 → 𝑋 be an
algebraic geometric point lying over the generic point 𝜂 ∈ 𝑋. Then

𝜋𝑥(𝑋, 𝜂) = 𝐺𝑎𝑙(𝑀/𝜅(𝜂))
(𝜅(𝜂), function field of 𝑋) where

𝜅(𝜂) ⊃ 𝑀 ⊃ 𝜅(𝜂) = 𝑘(𝑋)
is the max sub-extension such that for every finite sub extension 𝑀 ⊃ 𝐿 ⊃ 𝜅(𝜂) the normal-
ization of 𝑋 in 𝐿 is finite étale over 𝑋.

Change of base point. For any 𝑥1, 𝑥2 geom. points of 𝑋 there exists an isom. of fibre
functions

ℱ𝑥1
≅ ℱ𝑥2

(This is a path from 𝑥1 to 𝑥2.) Conjugation by this path gives isom
𝜋1(𝑋, 𝑥1) ≅ 𝜋1(𝑋, 𝑥2)

well defined up to inner actions.
Functoriality. For any morphism 𝑋1 → 𝑋2 of connected schemes any 𝑥 ∈ 𝑋1 there is a
canonical map

𝜋1(𝑋1, 𝑥) → 𝜋1(𝑋2, 𝑥)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VE
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VF
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VG
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(Why? because the fibre functor ...)

Base field. Let 𝑋 be a variety over a field 𝑘. Then we get

𝜋1(𝑋, 𝑥) → 𝜋1(𝑆𝑝𝑒𝑐(𝑘), 𝑥) =prop 𝐺𝑎𝑙(𝑘sep/𝑘)

This map is surjective iff 𝑋 is geom. connected over 𝑘. So in the geometrically connected
case we get s.e.s. of profinite groups

1 → 𝜋1(𝑋𝑘, 𝑥) → 𝜋1(𝑋, 𝑥) → 𝐺𝑎𝑙(𝑘sep/𝑘) → 1

(𝜋1(𝑋𝑘, 𝑥): geometric fundamental group of 𝑋, 𝜋1(𝑋, 𝑥): arithmetic fundamental group of
𝑋)

Comparison. If 𝑋 is a variety over 𝐂 then

𝜋1(𝑋, 𝑥) = profinite completion of 𝜋1(𝑋(𝐂)( usual topology), 𝑥)

(have 𝑥 ∈ 𝑋(𝐂))

Frobenii. 𝑋 variety over 𝑘, ♯𝑘 < ∞. For any 𝑥 ∈ 𝑋 closed point, let

𝐹𝑥 ∈ 𝜋1(𝑥, 𝑥) = Gal(𝜅(𝑥)sep/𝜅(𝑥))

be the geometric frobenius. Let 𝜂 be an alg. geom. gen. pt. Then

𝜋1(𝑋, 𝜂) ←≅ 𝜋1(𝑋, 𝑥) fundtoriality
←

𝜋1(𝑥, 𝑥)

Easy fact:
𝜋1(𝑋, 𝜂) →deg 𝜋1(𝑆𝑝𝑒𝑐(𝑘), 𝜂)∗ = 𝐺𝑎𝑙(𝑘𝑠𝑒𝑝/𝑘)

||
�̂� ⋅ 𝐹𝑆𝑝𝑒𝑐(𝑘)

𝐹𝑥 ↦ deg(𝑥) ⋅ 𝐹𝑆𝑝𝑒𝑐(𝑘)
Recall: deg(𝑥) = [𝜅(𝑥) ∶ 𝑘]

Fundamental groups and lisse sheaves. Let 𝑋 be a connected scheme, 𝑥 geom. pt. There
are equivalences of categories

(Λ finite ring) fin. loc. const. sheaves of

Λ-modules of 𝑋 ́𝑒𝑡𝑎𝑙𝑒
↔ finite(discrete) Λ-modules

with continuous 𝜋1(𝑋,𝑥)-action

(𝑙 a prime) lisse 𝑙-adic

sheaves
↔ finitely generated 𝐙𝑙-modules 𝑀 with continuous

𝜋1(𝑋,𝑥) action where we use 𝑙-adic topology on 𝑀

In particular lisse 𝐐𝑙-sheaves correspond to continuous homomorphisms

𝜋1(𝑋, 𝑥) → 𝐺𝐿𝑟(𝐐𝑙), 𝑟 ≥ 0

Notation: A module with action (𝑀, 𝜌) corresponds to the sheaf ℱ𝜌.

Trace formulas. 𝑋 variety over 𝑘, ♯𝑘 < ∞.
(1) Λ finite ring (♯Λ, ♯𝑘) = 1

𝜌 ∶ 𝜋1(𝑋, 𝑥) → 𝐺𝐿𝑟(Λ)

continuous. For every 𝑛 ≥ 1 we have

∑
𝑑|𝑛

𝑑
⎛
⎜
⎜
⎜
⎝

∑
𝑥∈|𝑋|,

deg(𝑥)=𝑑

Tr(𝜌(𝐹𝑛/𝑑
𝑥 ))

⎞
⎟
⎟
⎟
⎠

= Tr((𝜋𝑛
𝑥)∗ |

||𝑅Γ𝑐(𝑋𝑘,ℱ𝜌) )
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(2) 𝑙 ≠ 𝑐ℎ𝑎𝑟(𝑘) prime, 𝜌 ∶ 𝜋1(𝑋, 𝑥) → 𝐺𝐿𝑟(𝐐𝑙). For any 𝑛 ≥ 1

∑
𝑑|𝑛

𝑑
⎛
⎜
⎜
⎜
⎝

∑
𝑥∈|𝑋|

deg(𝑥)=𝑑

Tr (𝜌(𝐹𝑛/𝑑
𝑥 ))

⎞
⎟
⎟
⎟
⎠

=
2 dim 𝑋

∑
𝑖=0

(−1)𝑖Tr(𝜋∗
𝑋

|
||𝐻𝑖

𝑐(𝑋𝑘,ℱ𝜌) )

Weil conjectures. (Deligne-Weil I, 1974) 𝑋 smooth proj. over 𝑘, ♯𝑘 = 𝑞, then the eigen-
values of 𝜋∗

𝑋 on 𝐻𝑖(𝑋𝑘, 𝐐𝑙) are algebraic integers 𝛼 with |𝛼| = 𝑞1/2.
Deligne's conjectures. (almost completely proved by Lafforgue + ⋯) Let 𝑋 be a normal
variety over 𝑘 finite

𝜌 ∶ 𝜋1(𝑋, 𝑥) ⟶ 𝐺𝐿𝑟(𝐐𝑙)
continuous. Assume: 𝜌 irreducible det(𝜌) of finite order. Then

(1) there exists a number field 𝐸 such that for all 𝑥 ∈ |𝑋|(closed points) the char.
poly of 𝜌(𝐹𝑥) has coefficients in 𝐸.

(2) for any 𝑥 ∈ |𝑋| the eigenvalues 𝛼𝑥,𝑖, 𝑖 = 1, … , 𝑟 of 𝜌(𝐹𝑥) have complex absolute
value 1. (these are algebraic numbers not necessary integers)

(3) for every finite place 𝜆( not dividing 𝑝), of 𝐸 (maybe after enlarging 𝐸 a bit) there
exists

𝜌𝜆 ∶ 𝜋1(𝑋, 𝑥) → 𝐺𝐿𝑟(𝐸𝜆)
compatible with 𝜌. (some char. polys of 𝐹𝑥's)

Theorem 38.89.4. (Deligne, Weil II -- not the original formulation) For a sheaf ℱ𝜌 with 𝜌
satisfying the conclusions of the conjecture above then the eigenvalues of 𝜋∗

𝑋 on𝐻𝑖
𝑐(𝑋𝑘, ℱ𝜌)

are algebraic numbers 𝛼 with absolute values

|𝛼| = 𝑞𝑤/2, for 𝑤 ∈ 𝐙, 𝑤 ≤ 𝑖
Moreover, if 𝑋 smooth and proj. then 𝑤 = 𝑖.

38.90. Profinite groups, cohomology and homology

Let 𝐺 be a profinite group.
Cohomology. Consider the category of discrete modules with continuous 𝐺-action. This
category has enough injectives and we can define

𝐻𝑖(𝐺, 𝑀) = 𝑅𝑖𝐻0(𝐺, 𝑀) = 𝑅𝑖(𝑀 ↦ 𝑀𝐺)
Also there is a derived version 𝑅𝐻0(𝐺, −).
Homology. Consider the category of compact abelian groups with continuous 𝐺-action.
This category has enough projectives and we can define

𝐻𝑖(𝐺, 𝑀) = 𝐿𝑖𝐻0(𝐺, 𝑀) = 𝐿𝑖(𝑀 ↦ 𝑀𝐺)
and there is also a derived version.
Trivial duality. The functor 𝑀 ↦ 𝑀∧ = 𝐻𝑜𝑚𝑐𝑜𝑛𝑡(𝑀, 𝑆1) exchanges the categories above
and

𝐻𝑖(𝐺, 𝑀)∧ = 𝐻𝑖(𝐺, 𝑀∧)
Moreover, this functor maps torsion discrete 𝐺-modules to profinite continuous 𝐺-modules
and vice versa, and if 𝑀 is either a discrete or profinite continuous 𝐺-module, then 𝑀∧ =
𝐻𝑜𝑚(𝑀, 𝐐/𝐙).
Notes on Homology.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VH
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(1) If we look at Λ-modules for a finite ring Λ then we can identify

𝐻𝑖(𝐺, 𝑀) = 𝑇𝑜𝑟Λ[[𝐺]]
𝑖 (𝑀, Λ)

where Λ[[𝐺]] is the limit of the group algebras of the finite quotients of 𝐺.
(2) If 𝐺 ⊲ Γ, and Γ is also profinite then

• 𝐻0(𝐺, −): discrete Γ-module→ discrete Γ/𝐺-modules
• 𝐻0(𝐺, −): compact Γ-modules → compact Γ/𝐺-modules

and hence the profinite group Γ/𝐺 acts on the cohomology groups of 𝐺 with
values in a Γ-module. In other words, there are derived functors

𝑅𝐻0(𝐺, −) ∶ 𝐷+(discrete Γ-modules) ⟶ 𝐷+(discrete Γ/𝐺-modules)

and similarly for 𝐿𝐻0(𝐺, −).

38.91. Cohomology of curves, revisited

Let 𝑘 be a field, 𝑋 be geometric connected, smooth curve over 𝑘. We have the fundamental
short exact sequence

1 → 𝜋1(𝑋𝑘, 𝜂) → 𝜋1(𝑋, 𝜂) → Gal(𝑘
𝑠𝑒𝑝

/𝑘) → 1

If Λ is a finite ring with #Λ ∈ 𝑘∗ and 𝑀 a finite Λ-module, and we are given

𝜌 ∶ 𝜋1(𝑋, 𝜂) → AutΛ(𝑀)

continuous, then ℱ𝜌 denotes the associated sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒.

Lemma 38.91.1. There is a canonical isomorphism

𝐻2
𝑐 (𝑋𝑘, ℱ𝜌) = (𝑀)𝜋1(𝑋𝑘,𝜂)(−1)

as Gal(𝑘
𝑠𝑒𝑝

/𝑘)-modules.

Here the subscript 𝜋1(𝑋𝑘,𝜂) indicates co-invariants, and (−1) indicates the Tate twist i.e.,
𝜎 ∈ Gal(𝑘

𝑠𝑒𝑝
/𝑘) acts via

𝜒𝑐𝑦𝑐𝑙(𝜎)−1.𝜎 on RHS
where

𝜒𝑐𝑦𝑐𝑙 ∶ Gal(𝑘
𝑠𝑒𝑝

/𝑘) → ∏𝑙≠𝑐ℎ𝑎𝑟(𝑘)
𝐙∗

𝑙

is the cyclotomic character.

Reformulation (Deligne, Weil II, page 338). For any finite locally constant sheaf ℱ on 𝑋
there is a maximal quotient ℱ → ℱ″ with ℱ″/𝑋𝑘 a constant sheaf, hence

ℱ″ = (𝑋 → 𝑆𝑝𝑒𝑐(𝑘))−1𝐹″

where 𝐹″ is a sheaf 𝑆𝑝𝑒𝑐(𝑘), i.e., a Gal(𝑘
𝑠𝑒𝑝

/𝑘)-module. Then

𝐻2
𝑐 (𝑋𝑘, ℱ) → 𝐻2

𝑐 (𝑋𝑘, ℱ″) → 𝐹″(−1)

is an isomorphism.

Proof of Lemma 38.91.1. Let 𝑌 →𝜑 𝑋 be the finite étale Galois covering corresponding
to 𝐾𝑒𝑟(𝜌) ⊂ 𝜋1(𝑋, 𝜂). So

Aut(𝑌/𝑋) = 𝐼𝑛𝑑(𝜌)
is Galois group. Then 𝜑∗ℱ𝜌 = 𝑀𝑌 and

𝜑∗𝜑∗ℱ𝜌 → ℱ𝜌

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VK
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which gives

𝐻2
𝑐 (𝑋𝑘, 𝜑∗𝜑∗ℱ𝜌) → 𝐻2

𝑐 (𝑋𝑘, ℱ𝜌)

= 𝐻2
𝑐 (𝑌𝑘, 𝜑∗ℱ𝜌)

= 𝐻2
𝑐 (𝑌𝑘, 𝑀) = ⊕ irred. comp. of

𝑌𝑘

𝑀

Im(𝜌) → 𝐻2
𝑐 (𝑌𝑘, 𝑀) = ⊕ irred. comp. of

𝑌𝑘

𝑀 →𝐼𝑚(𝜌) equivalent 𝐻2
𝑐 (𝑋𝑘, ℱ𝜌) ←

trivial 𝐼𝑚(𝜌)
action

irreducible curve 𝐶/𝑘, 𝐻2
𝑐 (𝐶, 𝑀) = 𝑀.

Since
set of irreducible
components of 𝑌𝑘

=
𝐼𝑚(𝜌)

𝐼𝑚(𝜌|𝜋1(𝑋𝑘,𝜂))

We conclude that 𝐻2
𝑐 (𝑋𝑘, ℱ𝜌) is a quotient of 𝑀𝜋1(𝑋𝑘,𝜂). On the other hand, there is a

surjection

ℱ𝜌 → ℱ″ = sheaf on 𝑋 associated to
(𝑀)𝜋1(𝑋𝑘,𝜂) ← 𝜋1(𝑋, 𝜂)

𝐻2
𝑐 (𝑋𝑘, ℱ𝜌) → 𝑀𝜋1(𝑋𝑘,𝜂)

The twist in Galois action comes from the fact that 𝐻2
𝑐 (𝑋𝑘, 𝜇𝑛) =can 𝐙/𝑛𝐙. �

Remark 38.91.2. Thus we conclude that if 𝑋 is also projective then we have functorially
in the representation 𝜌 the identifications

𝐻0(𝑋𝑘, ℱ𝜌) = 𝑀𝜋1(𝑋𝑘,𝜂)

and
𝐻2

𝑐 (𝑋𝑘, ℱ𝜌) = 𝑀𝜋1(𝑋𝑘,𝜂)(−1)

Of course if 𝑋 is not projective, then 𝐻0
𝑐 (𝑋𝑘, ℱ𝜌) = 0.

Proposition 38.91.3. Let 𝑋/𝑘 as before but 𝑋𝑘 ≠ 𝐏1
𝑘
The functors (𝑀, 𝜌) ↦ 𝐻2−𝑖

𝑐 (𝑋𝑘, ℱ𝜌)
are the left derived functor of (𝑀, 𝜌) ↦ 𝐻2

𝑐 (𝑋𝑘, ℱ𝜌) so

𝐻2−𝑖
𝑐 (𝑋𝑘, ℱ𝜌) = 𝐻𝑖(𝜋1(𝑋𝑘, 𝜂), 𝑀)(−1)

Moreover, there is a derived version, namely

𝑅Γ𝑐(𝑋𝑘, ℱ𝜌) = 𝐿𝐻0(𝜋1(𝑋𝑘, 𝜂), 𝑀(−1)) = 𝑀(−1) ⊗𝐋
Λ[[𝜋1(𝑋𝑘,𝜂)]] Λ

in 𝐷(Λ[[�̂�]]). Similarly, the functors (𝑀, 𝜌) ↦ 𝐻𝑖(𝑋𝑘, ℱ𝜌) are the right derived functor of
(𝑀, 𝜌) ↦ 𝑀𝜋1(𝑋𝑘,𝜂) so

𝐻𝑖(𝑋𝑘, ℱ𝜌) = 𝐻𝑖(𝜋1(𝑋𝑘, 𝜂), 𝑀)
Moreover, in this case there is a derived version too.

Proof. (Idea) Show both sides are universal 𝛿-functors. �

Remark 38.91.4. By the proposition and Trivial duality then you get

𝐻2−𝑖
𝑐 (𝑋𝑘, ℱ𝜌) × 𝐻𝑖(𝑋𝑘, ℱ∧

𝜌 (1)) → 𝐐/𝐙

a perfect pairing. If 𝑋 is projective then this is Poincare duality.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VM
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38.92. Abstract trace formula

Suppose given an extension of profinite groups,

1 → 𝐺 → Γ
deg

−−−→ �̂� → 1

We say Γ has an abstract trace formula if and only if there exist
(1) an integer 𝑞 ≥ 1, and
(2) for every 𝑑 ≥ 1 a finite set 𝑆𝑑 and for each 𝑥 ∈ 𝑆𝑑 a conjugacy class 𝐹𝑥 ∈ Γ with

deg(𝐹𝑥) = 𝑑
such that the following hold

(1) for all ℓ not dividing 𝑞 have cdℓ(𝐺) < ∞, and
(2) for all finite rings Λ with 𝑞 ∈ Λ∗, for all finite projective Λ-modules 𝑀 with

continuous Γ-action, for all 𝑛 > 0 we have

∑𝑑|𝑛
𝑑 (∑𝑥∈𝑆𝑑

Tr(𝐹𝑛/𝑑
𝑥 ||𝑀 )) = 𝑞𝑛Tr(𝐹𝑛 |

||𝑀⊗𝐋
Λ[[𝐺]]Λ

)

in Λ♮.
Here 𝑀 ⊗𝐋

Λ[[𝐺]] Λ = 𝐿𝐻0(𝐺, 𝑀) denotes derived homology, and 𝐹 = 1 in Γ/𝐺 = �̂�.

Remark 38.92.1. Here are some observations concerning this notion.
(1) If modeling projective curves then we can use cohomology and we don't need

factor 𝑞𝑛.
(2) The only examples I know are Γ = 𝜋1(𝑋, 𝜂) where 𝑋 is smooth, geometrically

irreducible and 𝐾(𝜋, 1) over finite field. In this case 𝑞 = (♯𝑘)dim 𝑋. Modulo the
proposition, we proved this for curves in this course.

(3) Given the integer 𝑞 then the sets 𝑆𝑑 are uniquely determined. (You can multiple
𝑞 by an integer 𝑚 and then replace 𝑆𝑑 by 𝑚𝑑 copies of 𝑆𝑑 without changing the
formula.)

Example 38.92.2. Fix an integer 𝑞 ≥ 1

1 → 𝐺 = �̂�(𝑞) → Γ → �̂� → 1
= ∏𝑙 ̸∣𝑞 𝐙𝑙 𝐹 ↦ 1

with 𝐹𝑥𝐹−1 = 𝑢𝑥, 𝑢 ∈ (�̂�(𝑞))∗. Just using the trivial modules 𝐙/𝑚𝐙 we see

𝑞𝑛 − (𝑞𝑢)𝑛 ≡ ∑
𝑑|𝑛

𝑑♯𝑆𝑑

in 𝐙/𝑚𝐙 for all (𝑚, 𝑞) = 1 (up to 𝑢 → 𝑢−1) this implies 𝑞𝑢 = 𝑎 ∈ 𝐙 and |𝑎| < 𝑞. The special
case 𝑎 = 1 does occur

𝜋𝑡
1(𝐆𝑚,𝐅𝑝

, 𝜂)

♯𝑆1 = 𝑞 − 1

♯𝑆2 =
(𝑞2 − 1) − (𝑞 − 1)

2

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VP
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38.93. Automorphic forms and sheaves

References: See especially the amazing papers [Dri83], [Dri84] and [Dri80] by Drinfeld.

Unramified cusp forms. Let 𝑘 be a finite field of characteristic 𝑝. Let 𝑋 geometrically
irreducible projective smooth curve over 𝑘. Set 𝐾 = 𝑘(𝑋) equal to the function field of
𝑋. Let 𝑣 be a place of 𝐾 which is the same thing as a closed point 𝑥 ∈ 𝑋. Let 𝐾𝑣 be the
completion of 𝐾 at 𝑣, which is the same thing as the fraction field of the completion of the
local ring of 𝑋 at 𝑥, i.e., 𝐾𝑣 = 𝑓.𝑓.(𝑂𝑋,𝑥). Denote 𝑂𝑣 ⊂ 𝐾𝑣 the ring of integers. We further
set

𝑂 = ∏𝑣
𝑂𝑣 ⊂ 𝐀 =

′

∏
𝑣

𝐾𝑣

and we let Λ be any ring with 𝑝 invertible in Λ.

Definition 38.93.1. An unramified cusp form on 𝐺𝐿2(𝐀) with values in Λ9 is a function

𝑓 ∶ 𝐺𝐿2(𝐀) → Λ

such that
(1) 𝑓(𝑥𝛾) = 𝑓(𝑥) for all 𝑥 ∈ 𝐺𝐿2(𝐀) and all 𝛾 ∈ 𝐺𝐿2(𝐾)
(2) 𝑓(𝑢𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝐺𝐿2(𝐀) and all 𝑢 ∈ 𝐺𝐿2(𝑂)
(3) for all 𝑥 ∈ 𝐺𝐿2(𝐀),

∫𝐀 mod 𝐾
𝑓 (𝑥 (

1 𝑧
0 1)) 𝑑𝑧 = 0

see [dJ01, Section 4.1] for an explanation of how to make sense out of this for a
general ring Λ in which 𝑝 is invertible.

Hecke Operators. For 𝑣 a place of 𝐾 and 𝑓 an unramified cusp form we set

𝑇𝑣(𝑓)(𝑥) = ∫𝑔∈𝑀𝑣

𝑓(𝑔−1𝑥)𝑑𝑔,

and

𝑈𝑣(𝑓)(𝑥) = 𝑓 ((
𝜋−1

𝑣 0
0 𝜋−1

𝑣 ) 𝑥)

Notations used: here 𝜋𝑣 ∈ 𝑂𝑣 is a uniformizer

𝑀𝑣 = {ℎ ∈ 𝑀𝑎𝑡(2 × 2, 𝑂𝑣) ||det ℎ = 𝜋𝑣𝑂∗
𝑣 }

and 𝑑𝑔 = is the Haar measure on 𝐺𝐿2(𝐾𝑣) with ∫𝐺𝐿2(𝑂𝑣) 𝑑𝑔 = 1. Explicitly we have

𝑇𝑣(𝑓)(𝑥) = 𝑓 ((
𝜋−1

𝑣 0
0 1) 𝑥) +

𝑞𝑣

∑
𝑖=1

𝑓 ((
1 0

−𝜋−1
𝑣 𝜆𝑖 𝜋−1

𝑣 ) 𝑥)

with 𝜆𝑖 ∈ 𝑂𝑣 a set of representatives of 𝑂𝑣/(𝜋𝑣) = 𝜅𝑣, 𝑞𝑣 = #𝜅𝑣.

Eigenforms. An eigenform 𝑓 is an unramified cusp form such that some value of 𝑓 is a unit
and 𝑇𝑣𝑓 = 𝑡𝑣𝑓 and 𝑈𝑣𝑓 = 𝑢𝑣𝑓 for some (uniquely determined) 𝑡𝑣, 𝑢𝑣 ∈ Λ.

9This is likely nonstandard notation.
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Theorem 38.93.2. (See [Dri80].) Given an eigenform 𝑓 with values in 𝐐𝑙 and eigenvalues
𝑢𝑣 ∈ 𝐙∗

𝑙 then there exists
𝜌 ∶ 𝜋1(𝑋) → 𝐺𝐿2(𝐸)

continuous, absolutely irreducible where 𝐸 is a finite extension of 𝐐ℓ contained in 𝐐𝑙 such
that 𝑡𝑣 = Tr(𝜌(𝐹𝑣)), and 𝑢𝑣 = 𝑞−1

𝑣 det (𝜌(𝐹𝑣)) for all places 𝑣.

Theorem 38.93.3. Suppose 𝐐𝑙 ⊂ 𝐸 finite, and

𝜌 ∶ 𝜋1(𝑋) → 𝐺𝐿2(𝐸)

absolutely irreducible, continuous. Then there exists an eigenform 𝑓 with values in 𝐐𝑙
whose eigenvalues 𝑡𝑣, 𝑢𝑣 satisfy the equalities 𝑡𝑣 = Tr(𝜌(𝐹𝑣)) and 𝑢𝑣 = 𝑞−1

𝑣 det(𝜌(𝐹𝑣)).

Remark 38.93.4. We now have, thanks to Lafforgue and many other mathematiciens, a
complete theorems like this two above for 𝐺𝐿𝑛 and allowing ramification! In other words,
the full global Langlands correspondence for GL𝑛 is known for function fields of curves over
finite fields. At the same time this does not mean there aren't a lot of interesting questions
left to answer about the fundamental groups of curves over finite fields, as we shall see
below.

Central character. If 𝑓 is an eigenform then
𝜒𝑓 ∶ 𝑂∗\𝐀∗/𝐾∗ → Λ∗

(1, … , 𝜋𝑣, 1, … , 1) ↦ 𝑢−1
𝑣

is called the central character. If corresponds to the determinant of 𝜌 via normalizations as
above. Set

𝐶(Λ) =
{

unr. cusp forms 𝑓 with coefficients in Λ
such that 𝑈𝑣𝑓 = 𝜑−1

𝑣 𝑓∀𝑣 }

Proposition 38.93.5. (See [dJ01, Proposition 4.7]) IfΛ is Noetherian then𝐶(Λ) is a finitely
generated Λ-module. Moreover, if Λ is a field with prime subfield 𝐅 ⊂ Λ then

𝐶(Λ) = (𝐶(𝐅)) ⊗𝐅 Λ

compatibly with 𝑇𝑣 acting.

This proposition trivially implies the following lemma.

Lemma 38.93.6. Algebraicity of eigenvalues. If Λ is a field then the eigenvalues 𝑡𝑣 for
𝑓 ∈ 𝐶(Λ) are algebraic over the prime subfield 𝐅 ⊂ Λ.

Combining all of the above we can do the following very useful trick.

Lemma 38.93.7. Switching 𝑙. Let 𝐸 be a number field. Start with

𝜌 ∶ 𝜋1(𝑋) → 𝑆𝐿2(𝐸𝜆)

absolutely irreducible continuous, where 𝜆 is a place of 𝐸 not lying above 𝑝. Then for any
second place 𝜆′ of 𝐸 not lying above 𝑝 there exists a finite extension 𝐸′

𝜆′ and a absolutely
irreducible continuous representation

𝜌′ ∶ 𝜋1(𝑋) → 𝑆𝐿2(𝐸′
𝜆′)

which is compatible with 𝜌 in the sense that the characteristic polynomials of all Frobenii
are the same.

Note how this is an instance of Deligne's conjecture!

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VT
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VU
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VV
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VW
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VX
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VY
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Proof. To prove the switching lemma use Theorem 38.93.3 to obtain 𝑓 ∈ 𝐶(𝐐𝑙) eigenform
ass. to 𝜌. Next, use Proposition 38.93.5 to see that we may choose 𝑓 ∈ 𝐶(𝐸′) with 𝐸 ⊂ 𝐸′

finite. Next we may complete 𝐸′ to see that we get 𝑓 ∈ 𝐶(𝐸′
𝜆′) eigenform with 𝐸′

𝜆′ a finite
extension of 𝐸𝜆′. And finally we use Theorem 38.93.2 to obtain 𝜌′ ∶ 𝜋1(𝑋) → 𝑆𝐿2(𝐸′

𝜆′)
abs. irred. and continuous after perhaps enlarging 𝐸′

𝜆′ a bit again. �

Speculation: If for a (topological) ring Λ we have

(
𝜌 ∶ 𝜋1(𝑋) → 𝑆𝐿2(Λ)

abs irred ) ↔ eigen forms in 𝐶(Λ)

then all eigenvalues of 𝜌(𝐹𝑣) algebraic (won't work in an easy way if Λ is a finite ring. Based
on the speculation that the Langlands correspondence works more generally than just over
fields one arrives at the following conjecture.

Conjecture. (See [dJ01]) For any continuous

𝜌 ∶ 𝜋1(𝑋) → 𝐺𝐿𝑛(𝐅𝑙[[𝑡]])

we have #𝜌(𝜋1(𝑋𝑘)) < ∞.

A rephrasing in the language of sheaves: "For any lisse sheaf of 𝐅𝑙((𝑡))-modules the geom
monodromy is finite. "

Theorem 38.93.8. (See [dJ01]) The Conjecture holds if 𝑛 ≤ 2.

Theorem 38.93.9. (See [Gai07]) Conjecture holds if 𝑙 > 2𝑛 modulo some unproven things.

It turns out the conjecture is useful for something. See work of Drinfeld on Kashiwara's
conjectures. But there is also the much more down to earth application as follows.

Theorem 38.93.10. (See [dJ01, Theorem 3.5]) Suppose

𝜌0 ∶ 𝜋1(𝑋) → 𝐺𝐿𝑛(𝐅𝑙)

is a continuous, 𝑙 ≠ 𝑝. Assume
(1) Conj. holds for 𝑋,
(2) 𝜌0

|
||𝜋1(𝑋𝑘) abs. irred., and

(3) 𝑙 does not divide 𝑛.
Then the universal determination ring 𝑅univ of 𝜌0 is finite flat over 𝐙𝑙.

Explanation: There is a representation 𝜌univ ∶ 𝜋1(𝑋) → 𝐺𝐿𝑛(𝑅univ) (Univ. Defo ring)
𝑅univ loc. complete, residue field 𝐅𝑙 and (𝑅univ → 𝐅𝑙) ∘ 𝜌univ ≅ 𝜌0. And given any 𝑅 → 𝐅𝑙,
𝑅 local complete and 𝜌 ∶ 𝜋1(𝑋) → 𝐺𝐿𝑛(𝑅) then there exists 𝜓 ∶ 𝑅univ → 𝑅 such that
𝜓 ∘ 𝜌univ ≅ 𝜌. The theorem says that the morphism

𝑆𝑝𝑒𝑐(𝑅univ) ⟶ 𝑆𝑝𝑒𝑐(𝐙𝑙)

is finite and flat. In particular, such a 𝜌0 lifts to a 𝜌 ∶ 𝜋1(𝑋) → 𝐺𝐿𝑛(𝐐𝑙).

Notes:
(1) The theorem on deformations is easy.
(2) Any result towards the conjecture seems hard.
(3) It would be interesting to have more conjectures on 𝜋1(𝑋)!

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03VZ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03W0
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03W1
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38.94. Counting points

Let 𝑋 be a smooth, geometrically irreducible, projective curve over 𝑘. 𝑞 = ♯𝑘. Trace
formula gives:
there exists algebraic integers 𝑤1, … , 𝑤2𝑔 such that

♯𝑋(𝑘𝑛) = 𝑞𝑛 −
2𝑔𝑋

∑
𝑖=1

𝑤𝑛
𝑖 + 1.

If 𝜎 ∈ Aut(𝑋) then for all 𝑖, there exists 𝑗 such that 𝜎(𝑤𝑖) = 𝑤𝑗.

Riemann-Hypothesis. For all 𝑖 we have |𝜔𝑖| = √𝑞.
This was formulated by Emil Artin, in 1924, for hyperelliptic curves. Proved byWeil 1940.
Weil gave two proofs

• using intersection theory on 𝑋 × 𝑋, using the Hodge index theorem, and
• using the Jacobian of 𝑋.

There is another proof whose initial idea is due to Stephanov, and which was given by
Bombieri: it uses the function field 𝑘(𝑋) and its Frobenius operator (1969). The starting
point is that given 𝑓 ∈ 𝑘(𝑋) one observes that 𝑓𝑞 − 𝑓 is a rational function which vanishes
in all the 𝐅𝑞-rational points of 𝑋, and that one can try to use this idea to give an upper bound
for the number of points.

38.95. Precise form of Chebotarov

As a first application let us prove a precise form of Chebatarov for a finite étale Galois
covering of curves. Let 𝑌 →𝜑

𝐺 𝑋, Galois covering, finite étale,

𝐺 = Aut(𝑌/𝑋) ← 𝜋1(𝑋).
𝐺 = 𝐺𝑎𝑙(𝑌/𝑋). Assume 𝑌𝑘 = irreducible.
If 𝐶 ⊂ 𝐺 is a conjugacy class then for all 𝑛 > 0, we have

|
|
||
♯ {𝑥 ∈ 𝑋(𝑘𝑛) ||𝐹𝑥 ∈ 𝐶} − ♯𝐶

♯𝐺
⋅ ♯𝑋(𝑘𝑛)

|
|
||

≤ (♯𝐶)(2𝑔 − 2)√𝑞𝑛

(Warning: Please check (♯𝐶) carefully before using.)

Sketch.
𝜑∗(𝑄𝑙) = ⊕𝜋∈𝐺ℱ𝜋

where 𝐺 = set of isom. classes of irred representations of 𝐺 over 𝐐𝑙. For 𝜋 ∈ 𝐺,

𝜒𝜋 ∶ 𝐺 → 𝐐𝑙

character of 𝜋.
𝐻∗(𝑌𝑘, 𝐐𝑙) = ⊕𝜋∈𝐺𝐻∗(𝑌𝑘, 𝐐𝑙)𝜋 =(𝜑 finite ) ⊕𝜋∈𝐺𝐻∗(𝑋𝑘, ℱ𝜋)

If 𝜋 ≠ 1
𝐻0(𝑋𝑘, ℱ𝜋) = 𝐻2(𝑋𝑘, ℱ𝜋) = 0, dim 𝐻1(𝑋𝑘, ℱ𝜋) = (2𝑔𝑋 − 2)𝑑2

𝜋

(can get this from trace formula for acting on ...)
|
|
|
||

∑
𝑥∈𝑋(𝑘𝑛)

𝜒𝜋(ℱ𝑥)
|
|
|
||

≤𝜋≠1 (2𝑔𝑋 − 2)𝑑2
𝜋√𝑞𝑛
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Write 1𝐶 = ∑𝜋 𝑎𝜋𝜒𝜋, 𝑎𝜋 = ⟨1𝐶, 𝜒𝜋⟩, 𝑎1 = ⟨1𝐶, 𝜒1⟩ = ♯𝐶
♯𝐺

⟨𝑓, ℎ⟩ = 1
♯𝐺 ∑

𝑔∈𝐺
𝑓(𝑔)ℎ(𝑔)

♯𝐶
♯𝐺

= ||1𝐶||2 = ∑ |𝑎𝜋|2

Final step:

♯ {𝑥 ∈ 𝑋(𝑘𝑛) ||𝐹𝑥 ∈ 𝐶} = ∑
𝑥∈𝑋(𝑘𝑛)

1𝐶(𝑥) = ∑
𝑥∈𝑋)𝑘𝑛

∑
𝜋

𝑎𝜋𝜒𝜋(𝐹𝑥)

= ♯𝐶
♯𝐺

♯𝑋(𝑘𝑛)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term for 𝜋=1

+ ∑
𝜋≠1

𝑎𝜋 ∑
𝑥∈𝑋(𝑘𝑛)

𝜒𝜋(𝐹𝑥)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

error term (to be bounded by 𝐸)

|𝐸| ≤ ∑
𝜋∈𝐺,
𝜋≠1

|𝑎𝜋|(2𝑔 − 2)𝑑2
𝜋√𝑞𝑛

≤ ∑
𝜋≠1

♯𝐶
♯𝐺

(2𝑔𝑋 − 2)𝑑3
𝜋√𝑞𝑛

By Weil's conjecture, ♯𝑋(𝑘𝑛) ∼ 𝑞𝑛. �

38.96. How many primes decompose completely?

This section gives a second application of the Riemann Hypothesis for curves over a finite
field. For number theorists it may be nice to look at the paper by Ihara, entitled ``How
many primes decompose completely in an infinite unramified Galois extension of a global
field?'', see [Iha83]. Consider the fundamental exact sequence

1 → 𝜋1(𝑋𝑘) → 𝜋1(𝑋)
deg

−−−→ �̂� → 1

Proposition 38.96.1. There exists a finite set 𝑥1, … , 𝑥𝑛 of closed points of 𝑋 such that that
set of all frobenius elements corresponding to these points topologically generate 𝜋1(𝑋).

Another way to state this is: There exist 𝑥1, … , 𝑥𝑛 ∈ |𝑋| such that the smallest normal
closed subgroup Γ of 𝜋1(𝑋) containing 1 frobenius element for each 𝑥𝑖 is all of 𝜋1(𝑋). i.e.,
Γ = 𝜋1(𝑋).

Proof. Pick 𝑁 ≫ 0 and let

{𝑥1, … , 𝑥𝑛} = set of all closed points of
𝑋 of degree ≤ 𝑁 over 𝑘

Let Γ ⊂ 𝜋1(𝑋) be as in variant statement for these points. Assume Γ ≠ 𝜋1(𝑋). We can
pick ΓC 𝜋1(𝑋) with 𝑈 ≠ 𝜋1(𝑋). By R.H. for 𝑋 this set I will have some 𝑥𝑖1 of degree 𝑁,
some 𝑥𝑖2 of degree 𝑁 − 1. This shows Γ →deg �̂� and 𝑧0 and so also 𝑈. This exactly means
if 𝑌 → 𝑋 is the finite étale Galois covering as to 𝑈, then 𝑌𝑘 irreducible.

𝑌 →𝐺 𝑋, 𝐺 = 𝜋1(𝑋)/𝑈

By construction all points of 𝑋 of degree ≤ 𝑁, split completely in 𝑌. So, in particular

♯𝑌(𝑘𝑁) ≥ (♯𝐺)♯𝑋(𝑘𝑁)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03W5
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Use R.H. on both sides. So you get

𝑞𝑁 + 1 + 2𝑔𝑌𝑞𝑁/2 ≥ ♯𝐺♯𝑋(𝑘𝑁) ≥ ♯𝐺(𝑞𝑁 + 1 − 2𝑔𝑋𝑞𝑁/2)

Since 2𝑔𝑌 − 2 = (♯𝐺)(2𝑔𝑋 − 2),

𝑞𝑁 + 1 + (♯𝐺)(2𝑔𝑋 − 1) + 1)𝑞𝑁/2 ≥ ♯𝐺(𝑞𝑁 + 1 − 2𝑔𝑋𝑞𝑁/2)

�

Weird Question. Set 𝑊𝑋 = deg−1(𝐙) ⊂ 𝜋1(𝑋). Is it true that for some finite set of closed
points 𝑥1, … , 𝑥𝑛 of 𝑋 the set of all frobenii corresponding to these points algebraically
generate 𝑊𝑋?

By a Baire category argument this translates into the same question for all Frobenii.

38.97. How many points are there really?

If the genus of the curve is large relative to 𝑞, then the main term in the formula #𝑋(𝑘) =
𝑞−∑ 𝜔𝑖+1 is not 𝑞 but the second term ∑ 𝜔𝑖 which can (a priori) have size about 2𝑔𝑋√𝑞. In
the paper [VD83] the authors Drinfeld and Vladut show that this maximum is (as predicted
by Ihara earlier) actually at most about 𝑔√𝑞. Fix 𝑞, set

𝐴(𝑞) = 𝑙𝑖𝑚 sup𝑋/𝑘
♯𝑋(𝑘)

𝑔𝑋

(𝑋 as behave 𝑘 = 𝐅𝑞)
𝑔𝑥 → ∞

• RH ⇒ 𝐴(𝑞) ≤ 2√𝑞
• Ihara ⇒ 𝐴(𝑞) ≤ √2𝑞
• DV 𝐴(𝑞) ≤ √𝑞 − 1 (actually this is sharp of 𝑞 is a square)

Proof. 𝑋 → 𝑤1, … , 𝑤2𝑔, 𝑔 = 𝑔𝑋. Set 𝛼𝑖 = 𝑤𝑖
√𝑞

, |𝛼𝑖| = 1 If 𝛼𝑖 occurs then 𝛼𝑖 = 𝛼−1
𝑖 also

occurs. Then
𝑁 = ♯𝑋(𝑘) ≤ 𝑋(𝑘𝑟) = 𝑞𝑟 + 1 − (∑ 𝛼𝑖)𝑞𝑟/2

Rewrite:
− ∑ 𝛼𝑟

𝑖 ≥ 𝑁𝑞−𝑟/2 − 𝑞𝑟/2 − 𝑞−𝑟/2

0 ≤ |𝛼𝑛
𝑖 + 𝛼𝑛−1

𝑖 + ⋯ + 𝛼𝑖 + 1|2 = (𝑛 + 1) +
𝑀

∑
𝑗=1

(𝑛 + 1 − 𝑗)(𝛼𝑗
𝑖 + 𝛼−𝑗

𝑖 )

So

2𝑔(𝑛 + 1) ≥ − ∑
𝑖 (

𝑛

∑
𝑗=1

(𝑛 + 1 − 𝑗)(𝛼𝑗
𝑖 + 𝛼−𝑗

𝑖 )
)

= −
𝑛

∑
𝑗=1

(𝑛 + 1 − 𝑗)
(∑

𝑖
𝛼𝑗

𝑖 + ∑
𝑖

𝛼−𝑗
𝑖 )

𝑔(𝑛 + 1) ≥ −
𝑛

∑
𝑗=1

(𝑛 + 1 − 𝑗)(∑
𝑖

𝛼𝑗
𝑖)

≥ 𝑁
𝑛

∑
𝑗=1

(𝑛 + 1 − 𝑗)𝑞−𝑗/2 −
𝑛

∑
𝑗=1

(𝑛 + 1 − 𝑗)(𝑞𝑗/2 + 𝑞−𝑗/2)
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This gives

𝑁
𝑔

≤
(

𝑛

∑
𝑗=1

𝑛 + 1 − 𝑗
𝑛 + 1

𝑞−𝑗/2
)

−1

⋅
(

1 + 1
𝑔

𝑛

∑
𝑗=1

𝑛 + 1 − 𝑗
𝑛 + 1

(𝑞𝑗/2 + 𝑞−𝑗/2)
)

Fix 𝑛 let 𝑔 → ∞

𝐴(𝑞) ≤
(

𝑛

∑
𝑗=1

𝑛 + 1 − 𝑗
𝑛 + 1

𝑞−𝑗/2
)

−1

So

𝐴(𝑞) ≤ 𝑙𝑖𝑚𝑛→∞(⋯) =
(

∞

∑
𝑗=1

𝑞−𝑗/2
)

−1

= √𝑞 − 1

�
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CHAPTER 39

Crystalline Cohomology

39.1. Introduction

This chapter is based on a lecture series given by Johan de Jong held in 2012 at Columbia
University. The goals of this chapter are to give a quick introduction to crystalline coho-
mology. A reference is the book [Ber74].

39.2. Divided powers

In this section we collect some results on divided power rings. We will use the convention
0! = 1 (as empty products should give 1).

Definition 39.2.1. Let 𝐴 be a ring. Let 𝐼 be an ideal of 𝐴. A collection of maps 𝛾𝑛 ∶ 𝐼 → 𝐼,
𝑛 > 0 is called a divided power structure on 𝐼 if for all 𝑛 ≥ 0, 𝑚 > 0, 𝑥, 𝑦 ∈ 𝐼, and 𝑎 ∈ 𝐴
we have

(1) 𝛾1(𝑥) = 𝑥, we also set 𝛾0(𝑥) = 1,
(2) 𝛾𝑛(𝑥)𝛾𝑚(𝑥) = (𝑛+𝑚)!

𝑛!𝑚! 𝛾𝑛+𝑚(𝑥),
(3) 𝛾𝑛(𝑎𝑥) = 𝑎𝑛𝛾𝑛(𝑥),
(4) 𝛾𝑛(𝑥 + 𝑦) = ∑𝑖=0,…,𝑛 𝛾𝑖(𝑥)𝛾𝑛−𝑖(𝑦),
(5) 𝛾𝑛(𝛾𝑚(𝑥)) = (𝑛𝑚)!

𝑛!(𝑚!)𝑛 𝛾𝑛𝑚(𝑥).

Note that the rational numbers (𝑛+𝑚)!
𝑛!𝑚! and (𝑛𝑚)!

𝑛!(𝑚!)𝑛 occuring in the definition are in fact in-
tegers; the first is the number of ways to choose 𝑛 out of 𝑛 + 𝑚 and the second counts the
number of ways to divide a group of 𝑛𝑚 objects into 𝑛 groups of 𝑚. We make some remarks
about the definition which show that 𝛾𝑛(𝑥) is a replacement for 𝑥𝑛/𝑛! in 𝐼.

Lemma 39.2.2. Let 𝐴 be a ring. Let 𝐼 be an ideal of 𝐴.
(1) If 𝛾 is a divided power structure on 𝐼, then 𝑛! 𝛾𝑛(𝑥) = 𝑥𝑛 for 𝑛 ≥ 1, 𝑥 ∈ 𝐼.

Assume 𝐴 is torsion free as a 𝐙-module.
(2) A divided power structure on 𝐼, if it exists, is unique.
(3) If 𝛾𝑛 ∶ 𝐼 → 𝐼 are maps then

𝛾 is a divided power structure ⇔ 𝑛! 𝛾𝑛(𝑥) = 𝑥𝑛 ∀𝑥 ∈ 𝐼, 𝑛 ≥ 1.

(4) The ideal 𝐼 has a divided power structure if and only if there exists a set of gen-
erators 𝑥𝑖 of 𝐼 as an ideal such that for all 𝑛 ≥ 1 we have 𝑥𝑛

𝑖 ∈ (𝑛! )𝐼.

Proof. Proof of (1). If 𝛾 is a divided power structure, then condition (2) implies that
𝑛𝛾𝑛(𝑥) = 𝛾1(𝑥)𝛾𝑛−1(𝑥). Hence by induction and condition (1) we get 𝑛! 𝛾𝑛(𝑥) = 𝑥𝑛.

Assume 𝐴 is torsion free as a 𝐙-module. Proof of (2). This is clear from (1).

Proof of (3). Assume that 𝑛! 𝛾𝑛(𝑥) = 𝑥𝑛 for all 𝑥 ∈ 𝐼 and 𝑛 ≥ 1. Since 𝐴 ⊂ 𝐴 ⊗𝐙 𝐐
it suffices to prove (1) -- (5) in case 𝐴 is a 𝐐-algebra. In this case 𝛾𝑛(𝑥) = 𝑥𝑛/𝑛! and it is
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straightforward to verify (1) -- (5), for example (4) corresponds to the binomial formula

(𝑥 + 𝑦)𝑛 = ∑
𝑛!

𝑖! (𝑛 − 𝑖)!
𝑥𝑖𝑦𝑛−𝑖

We encourage the reader to do the verifications to make sure that we have the coefficients
correct.

Proof of (4). Assume we have generators 𝑥𝑖 of 𝐼 as an ideal such that 𝑥𝑛
𝑖 ∈ (𝑛! )𝐼 for all

𝑛 ≥ 1. We claim that for all 𝑥 ∈ 𝐼 we have 𝑥𝑛 ∈ (𝑛! )𝐼. If the claim holds then we can set
𝛾𝑛(𝑥) = 𝑥𝑛/𝑛! which is a divided power structure by (3). To prove the claim we note that
it holds for 𝑥 = 𝑎𝑥𝑖. Hence we see that the claim holds for a set of generators of 𝐼 as an
abelian group. By induction on the length of an expression in terms of these, it suffices to
prove the claim for 𝑥+𝑦 if it holds for 𝑥 and 𝑦. This follows immediately from the binomial
theorem. �

Example 39.2.3. Let 𝑝 be a prime number. Let 𝐴 be a ring such that every integer 𝑛 not
divisible by 𝑝 is invertible, i.e., 𝐴 is a 𝐙(𝑝)-algebra. Then 𝐼 = 𝑝𝐴 has a canonical divided
power structure. Namely, given 𝑥 = 𝑝𝑎 ∈ 𝐴 we set

𝛾𝑛(𝑥) =
𝑝𝑛

𝑛!
𝑎𝑛

The reader verifies immediately that 𝑝𝑛/𝑛! ∈ 𝐙(𝑝) so that the definition makes sense. It is a
straightforward exercise to verify that conditions (1) -- (5) of Definition 39.2.1 are satisfied.
Alternatively, it is clear that the definition works for 𝐴0 = 𝐙(𝑝) and then the result follows
from Lemma 39.4.2.

Lemma 39.2.4. Let 𝐴 be a ring. Let 𝐼 be an ideal of 𝐴. Let 𝛾𝑛 ∶ 𝐼 → 𝐼, 𝑛 ≥ 1 be a
sequence of maps. Assume

(a) (1), (3), and (4) of Definition 39.2.1 hold for all 𝑥, 𝑦 ∈ 𝐼, and
(b) properties (2) and (5) hold for 𝑥 in set of generators of 𝐼 as an ideal.

Then 𝛾 is a divided power structure on 𝐼.

Proof. The numbers (1), (2), (3), (4), (5) in this proof refer to the conditions listed in
Definition 39.2.1. Applying (3) we see that if (2) and (5) hold for 𝑥 then (2) and (5) hold
for 𝑎𝑥 for all 𝑎 ∈ 𝐴. Hence we see (b) implies (2) and (5) hold for a set of generators of 𝐼
as an abelian group. Hence, by induction of the length of an expression in terms of these it
suffices to prove that, given 𝑥, 𝑦 ∈ 𝐼 such that (2) and (5) hold for 𝑥 and 𝑦, then (2) and (5)
hold for 𝑥 + 𝑦.

Proof of (2) for 𝑥 + 𝑦. By (4) we have

𝛾𝑛(𝑥 + 𝑦)𝛾𝑚(𝑥 + 𝑦) = ∑𝑖+𝑗=𝑛, 𝑘+𝑙=𝑚
𝛾𝑖(𝑥)𝛾𝑘(𝑥)𝛾𝑗(𝑦)𝛾𝑙(𝑦)

Using (2) for 𝑥 and 𝑦 this equals

∑
(𝑖 + 𝑘)!

𝑖! 𝑘!
(𝑗 + 𝑙)!

𝑗! 𝑙!
𝛾𝑖+𝑘(𝑥)𝛾𝑗+𝑙(𝑦)

Comparing this with the expansion

𝛾𝑛+𝑚(𝑥 + 𝑦) = ∑ 𝛾𝑎(𝑥)𝛾𝑏(𝑦)

we see that we have to prove that given 𝑎 + 𝑏 = 𝑛 + 𝑚 we have

∑𝑖+𝑘=𝑎, 𝑗+𝑙=𝑏, 𝑖+𝑗=𝑛, 𝑘+𝑙=𝑚
(𝑖 + 𝑘)!

𝑖! 𝑘!
(𝑗 + 𝑙)!

𝑗! 𝑙!
= (𝑛 + 𝑚)!

𝑛! 𝑚!
.
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Instead of arguing this directly, we note that the result is true for the ideal 𝐼 = (𝑥, 𝑦) in the
polynomial ring 𝐐[𝑥, 𝑦] because 𝛾𝑛(𝑓) = 𝑓𝑛/𝑛!, 𝑓 ∈ 𝐼 defines a divided power structure on
𝐼. Hence the equality of rational numbers above is true.

Proof of (5) for 𝑥 + 𝑦 given that (1) -- (4) hold and that (5) holds for 𝑥 and 𝑦. We will
again reduce the proof to an equality of rational numbers. Namely, using (4) we can write
𝛾𝑛(𝛾𝑚(𝑥 + 𝑦)) = 𝛾𝑛(∑ 𝛾𝑖(𝑥)𝛾𝑗(𝑦)). Using (4) we can write 𝛾𝑛(𝛾𝑚(𝑥 + 𝑦)) as a sum of terms
which are products of factors of the form 𝛾𝑘(𝛾𝑖(𝑥)𝛾𝑗(𝑦)). If 𝑖 > 0 then

𝛾𝑘(𝛾𝑖(𝑥)𝛾𝑗(𝑦)) = 𝛾𝑗(𝑦)𝑘𝛾𝑘(𝛾𝑖(𝑥))

= (𝑘𝑖)!
𝑘! (𝑖! )𝑘 𝛾𝑗(𝑦)𝑘𝛾𝑘𝑖(𝑥)

= (𝑘𝑖)!
𝑘! (𝑖! )𝑘

(𝑘𝑗)!
𝑘! (𝑗! )𝑘 𝛾𝑖𝑘(𝑥)𝛾𝑘𝑗(𝑦)

using (3) in the first equality, (5) for 𝑥 in the second, and (2) exactly 𝑘 times in the third.
Using (5) for 𝑦 we see the same equality holds when 𝑖 = 0. Continuing like this using all
axioms but (5) we see that we can write

𝛾𝑛(𝛾𝑚(𝑥 + 𝑦)) = ∑𝑖+𝑗=𝑛𝑚
𝑐𝑖𝑗𝛾𝑖(𝑥)𝛾𝑗(𝑦)

for certain universal constants 𝑐𝑖𝑗 ∈ 𝐙. Again the fact that the equality is valid in the
polynomial ring 𝐐[𝑥, 𝑦] implies that the coefficients 𝑐𝑖𝑗 are all equal to (𝑛𝑚)! /𝑛! (𝑚! )𝑛 as
desired. �

Lemma 39.2.5. Let 𝐴 be a ring with two ideals 𝐼, 𝐽 ⊂ 𝐴. Let 𝛾 be a divided power structure
on 𝐼 and let 𝛿 be a divided power structure on 𝐽. Then

(1) 𝛾 and 𝛿 agree on 𝐼𝐽,
(2) if 𝛾 and 𝛿 agree on 𝐼 ∩ 𝐽 then they are the restriction of a unique divided power

structure 𝜖 on 𝐼 + 𝐽.

Proof. Let 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝐽. Then

𝛾𝑛(𝑥𝑦) = 𝑦𝑛𝛾𝑛(𝑥) = 𝑛! 𝛿𝑛(𝑦)𝛾𝑛(𝑥) = 𝛿𝑛(𝑦)𝑥𝑛 = 𝛿𝑛(𝑥𝑦).

Hence 𝛾 and 𝛿 agree on a set of (additive) generators of 𝐼𝐽. By property (4) of Definition
39.2.1 it follows that they agree on all of 𝐼𝐽.

Let 𝑧 ∈ 𝐼 + 𝐽. Write 𝑧 = 𝑥 + 𝑦 with 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝐽. Then we set

𝜖𝑛(𝑧) = ∑ 𝛾𝑖(𝑥)𝛿𝑛−𝑖(𝑦)

To see that this is well defined, suppose that 𝑧 = 𝑥′ + 𝑦′ is another representation with
𝑥′ ∈ 𝐼 and 𝑦′ ∈ 𝐽. Then 𝑤 = 𝑥 − 𝑥′ = 𝑦′ − 𝑦 ∈ 𝐼 ∩ 𝐽. Hence

∑𝑖+𝑗=𝑛
𝛾𝑖(𝑥)𝛿𝑗(𝑦) = ∑𝑖+𝑗=𝑛

𝛾𝑖(𝑥′ + 𝑤)𝛿𝑗(𝑦)

= ∑𝑖′+𝑙+𝑗=𝑛
𝛾𝑖′(𝑥′)𝛾𝑙(𝑤)𝛿𝑗(𝑦)

= ∑𝑖′+𝑙+𝑗=𝑛
𝛾𝑖′(𝑥′)𝛿𝑙(𝑤)𝛿𝑗(𝑦)

= ∑𝑖′+𝑗′=𝑛
𝛾𝑖′(𝑥′)𝛿𝑗′(𝑦 + 𝑤)

= ∑𝑖′+𝑗′=𝑛
𝛾𝑖′(𝑥′)𝛿𝑗′(𝑦′)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07GQ


2120 39. CRYSTALLINE COHOMOLOGY

as desired. Next, we prove conditions (1) -- (5) of Definition 39.2.1. Properties (1) and (3)
are clear. To see (4), suppose that 𝑧 = 𝑥 + 𝑦 and 𝑧′ = 𝑥′ + 𝑦′ with 𝑥, 𝑥′ ∈ 𝐼 and 𝑦, 𝑦′ ∈ 𝐽
and compute

𝜖𝑛(𝑧 + 𝑧′) = ∑𝑎+𝑏=𝑛
𝛾𝑖(𝑥 + 𝑥′)𝛿𝑗(𝑦 + 𝑦′)

= ∑𝑖+𝑖′+𝑗+𝑗′=𝑛
𝛾𝑖(𝑥)𝛾𝑖′(𝑥′)𝛿𝑗(𝑦)𝛿𝑗′(𝑦′)

= ∑𝑘=0,…,𝑛 ∑𝑖+𝑗=𝑘
𝛾𝑖(𝑥)𝛿𝑗(𝑦) ∑𝑖′+𝑗′=𝑛−𝑘

𝛾𝑖′(𝑥′)𝛿𝑗′(𝑦′)

= ∑𝑘=0,…,𝑛
𝜖𝑘(𝑧)𝜖𝑛−𝑘(𝑧′)

as desired. Nowwe see that it suffices to prove (2) and (5) for elements of 𝐼 or 𝐽, see Lemma
39.2.4. This is clear because 𝛾 and 𝛿 are divided power structures. �

Lemma 39.2.6. Let 𝑝 be a prime number. Let 𝐴 be a ring, let 𝐼 ⊂ 𝐴 be an ideal, and let 𝛾
be a divided power structure on 𝐼. Assume 𝑝 is nilpotent in 𝐴/𝐼. Then 𝐼 is locally nilpotent
if and only if 𝑝 is nilpotent in 𝐴.

Proof. If 𝑝𝑁 = 0 in 𝐴, then for 𝑥 ∈ 𝐼 we have 𝑥𝑝𝑁 = (𝑝𝑁)! 𝛾𝑁(𝑥) = 0 because (𝑝𝑁)! is
divisible by 𝑝𝑁. Conversely, assume 𝐼 is locally nilpotent. We've also assumed that 𝑝 is
nilpotent in 𝐴/𝐼, hence 𝑝𝑟 ∈ 𝐼 for some 𝑟, hence 𝑝𝑟 nilpotent, hence 𝑝 nilpotent. �

The following lemma can be found in [BO83].

Lemma 39.2.7. Let 𝑝 be a prime number. Let 𝐴 be a ring such that every integer 𝑛 not
divisible by 𝑝 is invertible, i.e., 𝐴 is a 𝐙(𝑝)-algebra. Let 𝐼 ⊂ 𝐴 be an ideal. Two divided
power structures 𝛾, 𝛾′ on 𝐼 are equal if and only if 𝛾𝑝 = 𝛾′

𝑝. Moreover, given amap 𝛿 ∶ 𝐼 → 𝐼
such that

(1) 𝑝! 𝛿(𝑥) = 𝑥𝑝 for all 𝑥 ∈ 𝐼,
(2) 𝛿(𝑎𝑥) = 𝑎𝑝𝛿(𝑥) for all 𝑎 ∈ 𝐴, 𝑥 ∈ 𝐼, and
(3) 𝛿(𝑥 + 𝑦) = 𝛿(𝑥) + ∑𝑖+𝑗=𝑝,𝑖,𝑗≥1

1
𝑖!𝑗! 𝑥𝑖𝑦𝑗 + 𝛿(𝑦) for all 𝑥, 𝑦 ∈ 𝐼,

then there exists a unique divided power structure 𝛾 on 𝐼 such that 𝛾𝑝 = 𝛿.

Proof. If 𝑛 is not divisible by 𝑝, then 𝛾𝑛(𝑥) = 𝑐𝑥𝛾𝑛−1(𝑥) where 𝑐 is a unit in 𝐙(𝑝). Moreover,
𝛾𝑝𝑚(𝑥) = 𝑐𝛾𝑚(𝛾𝑝(𝑥))

where 𝑐 is a unit in 𝐙(𝑝). Thus the first assertion is clear. For the second assertion, we can,
working backwards, use these equalities to define all 𝛾𝑛. More precisely, if 𝑛 = 𝑎0 + 𝑎1𝑝 +
… + 𝑎𝑒𝑝𝑒 with 𝑎𝑖 ∈ {0, … , 𝑝 − 1} then we set

𝛾𝑛(𝑥) = 𝑐𝑛𝑥𝑎0𝛿(𝑥)𝑎1 … 𝛿𝑒(𝑥)𝑎𝑒

for 𝑐𝑛 ∈ 𝐙(𝑝) defined by

𝑐𝑛 = (𝑝! )𝑎1+𝑎2(1+𝑝)+…+𝑎𝑒(1+…+𝑝𝑒−1)/𝑛!.
Now we have to show the axioms (1) -- (5) of a divided power structure, see Definition
39.2.1. We observe that (1) and (3) are immediate. Verification of (2) and (5) is by a direct
calculation which we omit. Let 𝑥, 𝑦 ∈ 𝐼. We claim there is a ring map

𝜑 ∶ 𝐙(𝑝)⟨𝑥, 𝑦⟩ ⟶ 𝐴

which maps 𝑥[𝑛] to 𝛾𝑛(𝑥) and 𝑦[𝑛] to 𝛾𝑛(𝑦). By construction of 𝐙(𝑝)⟨𝑥, 𝑦⟩ this means we
have to check that 𝛾𝑛(𝑥)𝛾𝑚(𝑥) = (𝑛+𝑚)!

𝑛!𝑚! 𝛾𝑛+𝑚(𝑥) and similarly for 𝑦, which follows as (2)
holds for 𝛾. Let 𝜖 denote the divided power structure on the ideal 𝐙(𝑝)⟨𝑥, 𝑦⟩+ of 𝐙(𝑝)⟨𝑥, 𝑦⟩.
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Next, we claim that 𝜑(𝜖𝑛(𝑓)) = 𝛾𝑛(𝜑(𝑓)) for 𝑓 ∈ 𝐙(𝑝)⟨𝑥, 𝑦⟩+ and all 𝑛. This is clear for
𝑛 = 0, 1, … , 𝑝 − 1. For 𝑛 = 𝑝 it suffices to prove it for a set of generators of the ideal
𝐙(𝑝)⟨𝑥, 𝑦⟩+ because both 𝜖𝑝 and 𝛾𝑝 = 𝛿 satisfy properties (1) and (3) of the lemma. Hence it
suffices to prove that 𝛾𝑝(𝛾𝑛(𝑥)) = (𝑝𝑛)!

𝑝!(𝑛!)𝑝 𝛾𝑝𝑛(𝑥) and similarly for 𝑦, which follows as (5) holds
for 𝛾. Now, if 𝑛 = 𝑎0 + 𝑎1𝑝 + … + 𝑎𝑒𝑝𝑒 is an arbitrary integer written in 𝑝-adic expansion
as above, then

𝜖𝑛(𝑓) = 𝑐𝑛𝑓𝑎0𝛾𝑝(𝑓)𝑎1 … 𝛾𝑒
𝑝(𝑓)𝑎𝑒

because 𝜖 is a divided power structure. Hence we see that 𝜑(𝜖𝑛(𝑓)) = 𝛾𝑛(𝜑(𝑓)) holds for all
𝑛. Applying this for 𝑓 = 𝑥 + 𝑦 we see that axiom (4) for 𝛾 follows from the fact that 𝜖 is a
divided power structure. �

39.3. Divided power rings

There is a category of divided power rings. Here is the definition.

Definition 39.3.1. A divided power ring is a triple (𝐴, 𝐼, 𝛾) where 𝐴 is a ring, 𝐼 ⊂ 𝐴 is an
ideal, and 𝛾 = (𝛾𝑛)𝑛≥1 is a divided power structure on 𝐼. A homomorphism of divided power
rings 𝜑 ∶ (𝐴, 𝐼, 𝛾) → (𝐵, 𝐽, 𝛿) is a ring homomorphism 𝜑 ∶ 𝐴 → 𝐵 such that 𝜑(𝐼) ⊂ 𝐽 and
such that 𝛿𝑛(𝜑(𝑥)) = 𝜑(𝛾𝑛(𝑥)) for all 𝑥 ∈ 𝐼.

We sometimes say ``let (𝐵, 𝐽, 𝛿) be a divided power algebra over (𝐴, 𝐼, 𝛾)'' to indicate that
(𝐵, 𝐽, 𝛿) is a divided power ring which comes equipped with a homomorphism of divided
power rings (𝐴, 𝐼, 𝛾) → (𝐵, 𝐽, 𝛿).

Lemma 39.3.2. The category of divided power rings has all limits and they agree with
limits in the category of rings.

Proof. The empty limit is the zero ring (that's weird but we need it). The product of a col-
lection of divided power rings (𝐴𝑡, 𝐼𝑡, 𝛾𝑡), 𝑡 ∈ 𝑇 is given by (∏ 𝐴𝑡, ∏ 𝐼𝑡, 𝛾) where 𝛾𝑛((𝑥𝑡)) =
(𝛾𝑡,𝑛(𝑥𝑡)). The equalizer of 𝛼, 𝛽 ∶ (𝐴, 𝐼, 𝛾) → (𝐵, 𝐽, 𝛿) is just 𝐶 = {𝑎 ∈ 𝐴 ∣ 𝛼(𝑎) = 𝛽(𝑎)}
with ideal 𝐶 ∩ 𝐼 and induced divided powers. It follows that all limits exist, see Categories,
Lemma 4.13.10. �

The following lemma illustrates a very general category theoretic phenomenon in the case
of divided power algebras.

Lemma 39.3.3. Let 𝒞 be the category of divided power rings. Let 𝐹 ∶ 𝒞 → Sets be a
functor. Assume that

(1) there exists a cardinal 𝜅 such that for every 𝑓 ∈ 𝐹(𝐴, 𝐼, 𝛾) there exists a morphism
(𝐴′, 𝐼′, 𝛾′) → (𝐴, 𝐼, 𝛾) of 𝒞 such that 𝑓 is the image of 𝑓′ ∈ 𝐹(𝐴′, 𝐼′, 𝛾′) and
|𝐴′| ≤ 𝜅, and

(2) 𝐹 commutes with limits.
Then 𝐹 is representable, i.e., there exists an object (𝐵, 𝐽, 𝛿) of 𝒞 such that

𝐹(𝐴, 𝐼, 𝛾) = Hom𝒞((𝐵, 𝐽, 𝛿), (𝐴, 𝐼, 𝛾))

functorially in (𝐴, 𝐼, 𝛾).

Proof. Consider a set of objects 𝒰 of 𝒞 containing an object isomorphic to every (𝐴, 𝐼, 𝛾)
with |𝐴| ≤ 𝜅. Let ℐ be the category of pairs (𝑈, 𝑓) where 𝑈 ∈ 𝒰 and 𝑓 ∈ 𝐹(𝑈). A
morphism (𝑈, 𝑓) → (𝑈′, 𝑓′) of ℐ is a map 𝑢 ∶ 𝑈 → 𝑈′ of 𝒞 such that 𝐹(𝑢)(𝑓) = 𝑓′. Set

(𝐵, 𝐽, 𝛿) = 𝑙𝑖𝑚(𝑈,𝑓)∈ℐ 𝑈.
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The limit exists by Lemma 39.3.2. As 𝐹 commutes with limits we have

𝐹(𝐵, 𝐽, 𝛿) = 𝑙𝑖𝑚(𝑈,𝑓)∈ℐ 𝐹(𝑈).

Hence there is a universal element 𝜉 ∈ 𝐹(𝐵, 𝐽, 𝛿) which for 𝑈 ∈ 𝒰 maps to 𝑓 ∈ 𝐹(𝑈) under
𝐹 applied to the projection map (𝐵, 𝐽, 𝛿) → 𝑈 of the limit corresponding to 𝑓. Using 𝜉 we
obtain a transformation of functors

𝜉 ∶ Hom𝒞((𝐵, 𝐽, 𝛿), −) ⟶ 𝐹(−)

see Categories, Section 4.3. Let (𝐴, 𝐼, 𝛾) be an arbitrary object of 𝒞 and let 𝑓 ∈ 𝐹(𝐴, 𝐼, 𝛾).
Choose 𝑈 → (𝐴, 𝐼, 𝛾) with 𝑈 ∈ 𝒰 and 𝑓′ ∈ 𝐹(𝑈) mapping to 𝑓 which is possible by
assumption (1). Then 𝐹 applied to the maps

(𝐵, 𝐽, 𝛿) ⟶ 𝑈 ⟶ (𝐴, 𝐼, 𝛾)

(the first being the projection map of the limit defining 𝐵) sends 𝜉 to 𝑓. Hence the transfor-
mation 𝜉 is surjective. Finally, suppose that 𝑎, 𝑏 ∶ (𝐵, 𝐽, 𝛿) → (𝐴, 𝐼, 𝛾) are two maps such
that 𝐹(𝑎)(𝜉) = 𝐹(𝑏)(𝜉). Since 𝐹 commutes with limits, it commutes with equalizers. This
means that 𝜉 comes from an element 𝜉′ ∈ 𝐹(𝐵′, 𝐽′, 𝛿′) where 𝐵′ ⊂ 𝐵 is the equalizer of 𝑎
and 𝑏.

At this point there are two ways to finish the proof. The first is to show that 𝐵′ = 𝐵 using
compatibility of 𝐹 with equalizers and the construction of 𝐵 as a limit overℐ above; we omit
the details. The second is to replace 𝐵 by the smallest divided power subring (𝐵′, 𝐽′, 𝛿′) ⊂
(𝐵, 𝐽, 𝛿) such that 𝜉 comes from an element 𝜉′ ∈ 𝐹(𝐵′, 𝐽′, 𝛿′). Since 𝐹 commutes with
limits 𝐹 commutes with intersections hence a smallest divided power subring exists. It is
clear that the transformation defined by 𝜉′ is still surjective, and the argument above shows
that it is also injective. �

Lemma 39.3.4. The category of divided power rings has all colimits.

Proof. The empty colimit is 𝐙 with divided power ideal (0). Let's discuss general colimits.
Let 𝒞 be a category and let 𝑐 ↦ (𝐴𝑐, 𝐼𝑐, 𝛾𝑐) be a diagram. Consider the functor

𝐹(𝐵, 𝐽, 𝛿) = 𝑙𝑖𝑚𝑐∈𝒞 𝐻𝑜𝑚((𝐴𝑐, 𝐼𝑐, 𝛾𝑐), (𝐵, 𝐽, 𝛿))

Note that any 𝑓 = (𝑓𝑐)𝑐∈𝐶 ∈ 𝐹(𝐵, 𝐽, 𝛿) has the property that all the images 𝑓𝑐(𝐴𝑐) generate
a subring 𝐵′ of 𝐵 of bounded cardinality 𝜅 and that all the images 𝑓𝑐(𝐼𝑐) generate a divided
power sub ideal 𝐽′ of 𝐵′. And we get a factorization of 𝑓 as a 𝑓′ in 𝐹(𝐵′) followed by the
inclusion 𝐵′ → 𝐵. Also, 𝐹 commutes with limits. Hence we may apply Lemma 39.3.3 to
see that 𝐹 is representable and we win. �

Remark 39.3.5. The forgetful functor (𝐴, 𝐼, 𝛾) ↦ 𝐴 does not commute with colimits. For
example, let

(𝐵, 𝐽, 𝛿) // (𝐵″, 𝐽″, 𝛿″)

(𝐴, 𝐼, 𝛾) //

OO

(𝐵′, 𝐽′, 𝛿′)

OO

be a push out in the category of divided power rings. Then in general the map 𝐵 ⊗𝐴
𝐵′ → 𝐵″ isn't an isomorphism. (It is always surjective.) An explicit example is given
by (𝐴, 𝐼, 𝛾) = (𝐙, (0), ∅), (𝐵, 𝐽, 𝛿) = (𝐙/4𝐙, 2𝐙/4𝐙, 𝛿), and (𝐵′, 𝐽′, 𝛿′) = (𝐙/4𝐙, 2𝐙/4𝐙, 𝛿′)
where 𝛿2(2) = 2 and 𝛿′

2(2) = 0 and all higher divided powers equal to zero. Then (𝐵″, 𝐽″, 𝛿″) =
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(𝐅2, (0), ∅) which doesn't agree with the tensor product. However, note that it is always true
that

𝐵″/𝐽″ = 𝐵/𝐽 ⊗𝐴/𝐼 𝐵′/𝐽′

as can be seen from the universal property of the push out by considering maps into divided
power algebras of the form (𝐶, (0), ∅).

39.4. Extending divided powers

Here is the definition.

Definition 39.4.1. Given a divided power ring (𝐴, 𝐼, 𝛾) and a ring map 𝐴 → 𝐵 we say 𝛾
extends to 𝐵 if there exists a divided power structure ̄𝛾 on 𝐼𝐵 such that (𝐴, 𝐼, 𝛾) → (𝐵, 𝐼𝐵, ̄𝛾)
is a homomorphism of divided power rings.

Lemma 39.4.2. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝐴 → 𝐵 be a ring map. If 𝛾
extends to 𝐵 then it extends uniquely. Assume (at least) one of the following conditions
holds

(1) 𝐼𝐵 = 0,
(2) 𝐼 is principal, or
(3) 𝐴 → 𝐵 is flat.

Then 𝛾 extends to 𝐵.

Proof. Any element of 𝐼𝐵 can be written as a finite sum ∑ 𝑏𝑖𝑥𝑖 with 𝑏𝑖 ∈ 𝐵 and 𝑥𝑖 ∈ 𝐼. If
𝛾 extends to ̄𝛾 on 𝐼𝐵 then ̄𝛾𝑛(𝑥𝑖) = 𝛾𝑛(𝑥𝑖). Thus conditions (3) and (4) imply that

̄𝛾𝑛(∑ 𝑏𝑖𝑥𝑖) = ∑𝑛1+…+𝑛𝑡=𝑛 ∏
𝑡
𝑖=1

𝑏𝑛𝑖
𝑖 𝛾𝑛𝑖

(𝑥𝑖)

Thus we see that ̄𝛾 is unique if it exists.
If 𝐼𝐵 = 0 then setting ̄𝛾𝑛(0) = 0 works. If 𝐼 = (𝑥) then we define ̄𝛾𝑛(𝑏𝑥) = 𝑏𝑛𝛾𝑛(𝑥). This is
well defined: if 𝑏′𝑥 = 𝑏𝑥, i.e., (𝑏 − 𝑏′)𝑥 = 0 then

𝑏𝑛𝛾𝑛(𝑥) − (𝑏′)𝑛𝛾𝑛(𝑥) = (𝑏𝑛 − (𝑏′)𝑛)𝛾𝑛(𝑥)

= (𝑏𝑛−1 + … + (𝑏′)𝑛−1)(𝑏 − 𝑏′)𝛾𝑛(𝑥) = 0

because 𝛾𝑛(𝑥) is divisible by 𝑥 and hence annihilated by 𝑏 − 𝑏′. Next, we prove conditions
(1) -- (5) of Definition 39.2.1. Parts (1), (2), (3), (5) are obvious from the construction. For
(4) suppose that 𝑦, 𝑧 ∈ 𝐼𝐵, say 𝑦 = 𝑏𝑥 and 𝑧 = 𝑐𝑥. Then 𝑦 + 𝑧 = (𝑏 + 𝑐)𝑥 hence

̄𝛾𝑛(𝑦 + 𝑧) = (𝑏 + 𝑐)𝑛𝛾𝑛(𝑥)

= ∑
𝑛!

𝑖! (𝑛 − 𝑖)!
𝑏𝑖𝑐𝑛−𝑖𝛾𝑛(𝑥)

= ∑ 𝑏𝑖𝑐𝑛−𝑖𝛾𝑖(𝑥)𝛾𝑛−𝑖(𝑥)

= ∑ ̄𝛾𝑖(𝑦) ̄𝛾𝑛−𝑖(𝑧)

as desired.
Assume 𝐴 → 𝐵 is flat. Suppose that 𝑏1, … , 𝑏𝑟 ∈ 𝐵 and 𝑥1, … , 𝑥𝑟 ∈ 𝐼. Then

̄𝛾𝑛(∑ 𝑏𝑖𝑥𝑖) = ∑ 𝑏𝑒1
1 … 𝑏𝑒𝑟

𝑟 𝛾𝑒1
(𝑥1) … 𝛾𝑒𝑟

(𝑥𝑟)

where the sum is over 𝑒1 +…+𝑒𝑟 = 𝑛 if ̄𝛾𝑛 exists. Next suppose that we have 𝑐1, … , 𝑐𝑠 ∈ 𝐵
and 𝑎𝑖𝑗 ∈ 𝐴 such that 𝑏𝑖 = ∑ 𝑎𝑖𝑗𝑐𝑗. Setting 𝑦𝑗 = ∑ 𝑎𝑖𝑗𝑥𝑖 we claim that

∑ 𝑏𝑒1
1 … 𝑏𝑒𝑟

𝑟 𝛾𝑒1
(𝑥1) … 𝛾𝑒𝑟

(𝑥𝑟) = ∑ 𝑐𝑑1
1 … 𝑐𝑑𝑠

𝑠 𝛾𝑑1
(𝑦1) … 𝛾𝑑𝑠

(𝑦𝑠)
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in 𝐵 where on the right hand side we are summing over 𝑑1 +…+𝑑𝑠 = 𝑛. Namely, using the
axioms of a divided power structure we can expand both sides into a sumwith coefficients in
𝐙[𝑎𝑖𝑗] of terms of the form 𝑐𝑑1

1 … 𝑐𝑑𝑠
𝑠 𝛾𝑒1

(𝑥1) … 𝛾𝑒𝑟
(𝑥𝑟). To see that the coefficients agree we

note that the result is true in 𝐐[𝑥1, … , 𝑥𝑟, 𝑐1, … , 𝑐𝑠, 𝑎𝑖𝑗] with 𝛾 the unique divided power
structure on (𝑥1, … , 𝑥𝑟). By Lazard's theorem (Algebra, Theorem 7.75.4) we can write
𝐵 as a directed colimit of finite free 𝐴-modules. In particular, if 𝑧 ∈ 𝐼𝐵 is written as
𝑧 = ∑ 𝑥𝑖𝑏𝑖 and 𝑧 = ∑ 𝑥′

𝑖′𝑏′
𝑖′, then we can find 𝑐1, … , 𝑐𝑠 ∈ 𝐵 and 𝑎𝑖𝑗, 𝑎′

𝑖′𝑗 ∈ 𝐴 such that
𝑏𝑖 = ∑ 𝑎𝑖𝑗𝑐𝑗 and 𝑏′

𝑖′ = ∑ 𝑎′
𝑖′𝑗𝑐𝑗 such that 𝑦𝑗 = ∑ 𝑥𝑖𝑎𝑖𝑗 = ∑ 𝑥′

𝑖′𝑎′
𝑖′𝑗. Hence the procedure

above gives a well defined map ̄𝛾𝑛 on 𝐼𝐵. By construction ̄𝛾 satisfies conditions (1), (3),
and (4). Moreover, for 𝑥 ∈ 𝐼 we have ̄𝛾𝑛(𝑥) = 𝛾𝑛(𝑥). Hence it follows from Lemma 39.2.4
that ̄𝛾 is a divided power structure on 𝐼𝐵. �

Lemma 39.4.3. Let (𝐴, 𝐼, 𝛾) be a divided power ring.
(1) If 𝜑 ∶ (𝐴, 𝐼, 𝛾) → (𝐵, 𝐽, 𝛿) is a homomorphism of divided power rings, then

Ker(𝜑) ∩ 𝐼 is preserved by 𝛾𝑛 for all 𝑛 ≥ 1.
(2) Let 𝔞 ⊂ 𝐴 be an ideal and set 𝐼′ = 𝐼 ∩ 𝔞. The following are equivalent

(a) 𝐼′ is preserved by 𝛾𝑛 for all 𝑛 > 0,
(b) 𝛾 extends to 𝐴/𝔞, and
(c) there exist a set of generators 𝑥𝑖 of 𝐼′ as an ideal such that 𝛾𝑛(𝑥𝑖) ∈ 𝐼′ for

all 𝑛 > 0.

Proof. Proof of (1). This is clear. Assume (2)(a). Define ̄𝛾𝑛(𝑥 mod 𝐼′) = 𝛾𝑛(𝑥) mod 𝐼′

for 𝑥 ∈ 𝐼. This is well defined since 𝛾𝑛(𝑥 + 𝑦) = 𝛾𝑛(𝑥) mod 𝐼′ for 𝑦 ∈ 𝐼′ by Definition
39.2.1 (4) and the fact that 𝛾𝑗(𝑦) ∈ 𝐼′ by assumption. It is clear that ̄𝛾 is a divided power
structure as 𝛾 is one. Hence (2)(b) holds. Also, (2)(b) implies (2)(a) by part (1). It is clear
that (2)(a) implies (2)(c). Assume (2)(c). Note that 𝛾𝑛(𝑥) = 𝑎𝑛𝛾𝑛(𝑥𝑖) ∈ 𝐼′ for 𝑥 = 𝑎𝑥𝑖.
Hence we see that 𝛾𝑛(𝑥) ∈ 𝐼′ for a set of generators of 𝐼′ as an abelian group. By induction
on the length of an expression in terms of these, it suffices to prove ∀𝑛 ∶ 𝛾𝑛(𝑥 + 𝑦) ∈ 𝐼′ if
∀𝑛 ∶ 𝛾𝑛(𝑥), 𝛾𝑛(𝑦) ∈ 𝐼′. This follows immediately from the fourth axiom of a divided power
structure. �

Lemma 39.4.4. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝐸 ⊂ 𝐼 be a subset. Then the
smallest ideal 𝐽 ⊂ 𝐼 preserved by 𝛾 and containing all 𝑓 ∈ 𝐸 is the ideal 𝐽 generated by
𝛾𝑛(𝑓), 𝑛 ≥ 1, 𝑓 ∈ 𝐸.

Proof. Follows immediately from Lemma 39.4.3. �

Lemma 39.4.5. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝑝 be a prime. If 𝑝 is nilpotent in
𝐴/𝐼, then

(1) the 𝑝-adic completion 𝐴∧ = 𝑙𝑖𝑚𝑒 𝐴/𝑝𝑒𝐴 surjects onto 𝐴/𝐼,
(2) the kernel of this map is the 𝑝-adic completion 𝐼∧ of 𝐼, and
(3) each 𝛾𝑛 is continuous for the 𝑝-adic topology and extends to 𝛾∧

𝑛 ∶ 𝐼∧ → 𝐼∧

defining a divided power structure on 𝐼∧.
If moreover 𝐴 is a 𝐙(𝑝)-algebra, then

(4) for 𝑒 large enough the ideal 𝑝𝑒𝐴 ⊂ 𝐼 is preserved by the divided power structure
𝛾 and

(𝐴∧, 𝐼∧, 𝛾∧) = 𝑙𝑖𝑚𝑒(𝐴/𝑝𝑒𝐴, 𝐼/𝑝𝑒𝐴, ̄𝛾)

in the category of divided power rings.
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Proof. Let 𝑡 ≥ 1 be an integer such that 𝑝𝑡𝐴/𝐼 = 0, i.e., 𝑝𝑡𝐴 ⊂ 𝐼. The map 𝐴∧ → 𝐴/𝐼 is
the composition 𝐴∧ → 𝐴/𝑝𝑡𝐴 → 𝐴/𝐼 which is surjective (for example by Algebra, Lemma
7.90.1). As 𝑝𝑒𝐼 ⊂ 𝑝𝑒𝐴 ∩ 𝐼 ⊂ 𝑝𝑒−𝑡𝐼 for 𝑒 ≥ 𝑡 we see that the kernel of the composition
𝐴∧ → 𝐴/𝐼 is the 𝑝-adic completion of 𝐼. The map 𝛾𝑛 is continuous because

𝛾𝑛(𝑥 + 𝑝𝑒𝑦) = ∑𝑖+𝑗=𝑛
𝑝𝑗𝑒𝛾𝑖(𝑥)𝛾𝑗(𝑦) = 𝛾𝑛(𝑥) mod 𝑝𝑒𝐼

by the axioms of a divided power structure. It is clear that the axioms for divided power
structures are inherited by the maps 𝛾∧

𝑛 from the maps 𝛾𝑛. Finally, to see the last statement
say 𝑒 > 𝑡. Then 𝑝𝑒𝐴 ⊂ 𝐼 and 𝛾1(𝑝𝑒𝐴) ⊂ 𝑝𝑒𝐴 and for 𝑛 > 1 we have

𝛾𝑛(𝑝𝑒𝑎) = 𝑝𝑛𝛾𝑛(𝑝𝑒−1𝑎) =
𝑝𝑛

𝑛!
𝑝𝑛(𝑒−1)𝑎𝑛 ∈ 𝑝𝑒𝐴

as 𝑝𝑛/𝑛! ∈ 𝐙(𝑝) and as 𝑛 ≥ 2 and 𝑒 ≥ 2 so 𝑛(𝑒 − 1) ≥ 𝑒. This proves that 𝛾 extends to 𝐴/𝑝𝑒𝐴,
see Lemma 39.4.3. The statement on limits is clear from the construction of limits in the
proof of Lemma 39.3.2. �

39.5. Divided power polynomial algebras

A very useful example is the divided power polynomial algebra. Let 𝐴 be a ring. Let 𝑡 ≥ 1.
We will denote 𝐴⟨𝑥1, … , 𝑥𝑡⟩ the following 𝐴-algebra: As an 𝐴-module we set

𝐴⟨𝑥1, … , 𝑥𝑡⟩ = ⨁𝑛1,…,𝑛𝑡≥0
𝐴𝑥[𝑛1]

1 … 𝑥[𝑛𝑡]
𝑡

with multiplication given by

𝑥[𝑛]
𝑖 𝑥[𝑚]

𝑖 = (𝑛 + 𝑚)!
𝑛! 𝑚!

𝑥[𝑛+𝑚]
𝑖 .

We also set 𝑥𝑖 = 𝑥[1]
𝑖 . Note that 1 = 𝑥[0]

1 … 𝑥[0]
𝑡 . There is a similar construction which gives

the divided power polynomial algebra in infinitely many variables. There is an canonical
𝐴-algebra map 𝐴⟨𝑥1, … , 𝑥𝑡⟩ → 𝐴 sending 𝑥[𝑛]

𝑖 to zero for 𝑛 > 0. The kernel of this map is
denoted 𝐴⟨𝑥1, … , 𝑥𝑡⟩+.

Lemma 39.5.1. Let (𝐴, 𝐼, 𝛾) be a divided power ring. There exists a unique divided power
structure 𝛿 on

𝐽 = 𝐼𝐴⟨𝑥1, … , 𝑥𝑡⟩ + 𝐴⟨𝑥1, … , 𝑥𝑡⟩+
such that

(1) 𝛿𝑛(𝑥𝑖) = 𝑥[𝑛]
𝑖 , and

(2) (𝐴, 𝐼, 𝛾) → (𝐴⟨𝑥1, … , 𝑥𝑡⟩, 𝐽, 𝛿) is a homomorphism of divided power rings.
Moreover, (𝐴⟨𝑥1, … , 𝑥𝑡⟩, 𝐽, 𝛿) has the following universal property: A homomorphism of
divided power rings 𝜑 ∶ (𝐴⟨𝑥⟩, 𝐽, 𝛿) → (𝐶, 𝐾, 𝜖) is the same thing as a homomorphism of
divided power rings 𝐴 → 𝐶 and elements 𝑘1, … , 𝑘𝑡 ∈ 𝐾.

Proof. We will prove the lemma in case of a divided power polynomial algebra in one
variable. The result for the general case can be argued in exactly the same way, or by
noting that 𝐴⟨𝑥1, … , 𝑥𝑡⟩ is isomorphic to the ring obtained by adjoining the divided power
variables 𝑥1, … , 𝑥𝑡 one by one.

Let 𝐴⟨𝑥⟩+ be the ideal generated by 𝑥, 𝑥[2], 𝑥[3], …. Note that 𝐽 = 𝐼𝐴⟨𝑥⟩ + 𝐴⟨𝑥⟩+ and that

𝐼𝐴⟨𝑥⟩ ∩ 𝐴⟨𝑥⟩+ = 𝐼𝐴⟨𝑥⟩ ⋅ 𝐴⟨𝑥⟩+

Hence by Lemma 39.2.5 it suffices to show that there exist divided power structures on
the ideals 𝐼𝐴⟨𝑥⟩ and 𝐴⟨𝑥⟩+. The existence of the first follows from Lemma 39.4.2 as
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𝐴 → 𝐴⟨𝑥⟩ is flat. For the second, note that if 𝐴 is torsion free, then we can apply Lemma
39.2.2 (4) to see that 𝛿 exists. Namely, choosing as generators the elements 𝑥[𝑚] we see
that (𝑥[𝑚])𝑛 = (𝑛𝑚)!

(𝑚!)𝑛 𝑥[𝑛𝑚] and 𝑛! divides the integer (𝑛𝑚)!
(𝑚!)𝑛 . In general write 𝐴 = 𝑅/𝔞 for

some torsion free ring 𝑅 (e.g., a polynomial ring over 𝐙). The kernel of 𝑅⟨𝑥⟩ → 𝐴⟨𝑥⟩ is
⨁ 𝔞𝑥[𝑚]. Applying criterion (2)(c) of Lemma 39.4.3we see that the divided power structure
on 𝑅⟨𝑥⟩+ extends to 𝐴⟨𝑥⟩ as desired.

Proof of the universal property. Given a homomorphism 𝜑 ∶ 𝐴 → 𝐶 of divided power
rings and 𝑘1, … , 𝑘𝑡 ∈ 𝐾 we consider

𝐴⟨𝑥1, … , 𝑥𝑡⟩ → 𝐶, 𝑥[𝑛1]
1 … 𝑥[𝑛𝑡]

𝑡 ⟼ 𝜖𝑛1
(𝑘1) … 𝜖𝑛𝑡

(𝑘𝑡)

using 𝜑 on coefficients. The only thing to check is that this is an 𝐴-algebra homomorphism
(details omitted). The inverse construction is clear. �

Remark 39.5.2. Let (𝐴, 𝐼, 𝛾) be a divided power ring. There is a variant of Lemma 39.5.1
for infinitely many variables. First note that if 𝑠 < 𝑡 then there is a canonical map

𝐴⟨𝑥1, … , 𝑥𝑠⟩ → 𝐴⟨𝑥1, … , 𝑥𝑡⟩

Hence if 𝑊 is any set, then we set

𝐴⟨𝑥𝑤, 𝑤 ∈ 𝑊⟩ = 𝑐𝑜𝑙𝑖𝑚𝐸⊂𝑊 𝐴⟨𝑥𝑒, 𝑒 ∈ 𝐸⟩

(colimit over 𝐸 finite subset of 𝑊) with transition maps as above. By the definition of
a colimit we see that the universal mapping property of 𝐴⟨𝑥𝑤, 𝑤 ∈ 𝑊⟩ is completely
analogous to the mapping property stated in Lemma 39.5.1.

39.6. Divided power envelope

The construction of the following lemma will be dubbed the divided power envelope. It
will play an important role later.

Lemma 39.6.1. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝐴 → 𝐵 be a ring map. Let 𝐽 ⊂ 𝐵
be an ideal with 𝐼𝐵 ⊂ 𝐽. There exists a homomorphism of divided power rings

(𝐴, 𝐼, 𝛾) ⟶ (𝐷, ̄𝐽, ̄𝛾)

such that
𝐻𝑜𝑚(𝐴,𝐼,𝛾)((𝐷, ̄𝐽, ̄𝛾), (𝐶, 𝐾, 𝛿)) = 𝐻𝑜𝑚𝐴((𝐵, 𝐽), (𝐶, 𝐾))

functorially in the divided power algebra (𝐶, 𝐾, 𝛿) over (𝐴, 𝐼, 𝛾).

Proof. Denote 𝒞 the category of divided power rings (𝐶, 𝐾, 𝛿). Consider the functor 𝐹 ∶
𝒞 ⟶ Sets defined by

𝐹(𝐶, 𝐾, 𝛿) = {(𝜑, 𝜓)|||
𝜑 ∶ (𝐴, 𝐼, 𝛾) → (𝐶, 𝐾, 𝛿) homomorphism of divided power rings

𝜓 ∶ (𝐵, 𝐽) → (𝐶, 𝐾) an 𝐴-algebra homomorphism with 𝜓(𝐽) ⊂ 𝐾}

We will show that Lemma 39.3.3 applies to this functor which will prove the lemma. Sup-
pose that (𝜑, 𝜓) ∈ 𝐹(𝐶, 𝐾, 𝛿). Let 𝐶′ ⊂ 𝐶 be the subring generated by 𝜑(𝐴), 𝜓(𝐵), and
𝛿𝑛(𝜓(𝑓)) for all 𝑓 ∈ 𝐽. Let 𝐾′ ⊂ 𝐾 ∩ 𝐶′ be the ideal of 𝐶′ generated by 𝜑(𝐼) and 𝛿𝑛(𝜓(𝑓))
for 𝑓 ∈ 𝐽. Then (𝐶′, 𝐾′, 𝛿|𝐾′) is a divided power ring and 𝐶′ has cardinality bounded by
the cardinal 𝜅 = |𝐴| ⊗ |𝐵|ℵ0. Moreover, 𝜑 factors as 𝐴 → 𝐶′ → 𝐶 and 𝜓 factors as
𝐵 → 𝐵′ → 𝐵. This proves assumption (1) of Lemma 39.3.3 holds. Assumption (2) is
clear as limits in the category of divided power rings commute with the forgetful functor
(𝐶, 𝐾, 𝛿) ↦ (𝐶, 𝐾), see Lemma 39.3.2 and its proof. �
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Definition 39.6.2. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝐴 → 𝐵 be a ring map. Let
𝐽 ⊂ 𝐵 be an ideal with 𝐼𝐵 ⊂ 𝐽. The divided power algebra (𝐷, ̄𝐽, ̄𝛾) constructed in Lemma
39.6.1 is called the divided power envelope of 𝐽 in 𝐵 relative to (𝐴, 𝐼, 𝛾) and is denoted
𝐷𝐵(𝐽) or 𝐷𝐵,𝛾(𝐽).

Let (𝐴, 𝐼, 𝛾) → (𝐶, 𝐾, 𝛿) be a homomorphism of divided power rings. The universal prop-
erty of 𝐷𝐵,𝛾(𝐽) = (𝐷, ̄𝐽, ̄𝛾) is

ring maps 𝐵 → 𝐶
which map 𝐽 into 𝐾 ⟷ divided power homomorphisms

(𝐷, ̄𝐽, ̄𝛾) → (𝐶, 𝐾, 𝛿)

and the correspondence is given by precomposing with the map 𝐵 → 𝐷 which corresponds
to id𝐷. Here are some properties of (𝐷, ̄𝐽, ̄𝛾) which follow directly from the universal prop-
erty. There are 𝐴-algebra maps

(39.6.2.1) 𝐵 ⟶ 𝐷 ⟶ 𝐵/𝐽

The first arrow maps 𝐽 into ̄𝐽 and ̄𝐽 is the kernel of the second arrow. The elements ̄𝛾𝑛(𝑥)
where 𝑛 > 0 and 𝑥 is an element in the image of 𝐽 → 𝐷 generate ̄𝐽 as an ideal in 𝐷 and
generate 𝐷 as a 𝐵-algebra.

Lemma 39.6.3. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝜑 ∶ 𝐵′ → 𝐵 be a surjection of
𝐴-algebras with kernel 𝐾. Let 𝐼𝐵 ⊂ 𝐽 ⊂ 𝐵 be an ideal. Let 𝐽′ ⊂ 𝐵′ be the inverse image
of 𝐽. Write 𝐷𝐵′,𝛾(𝐽′) = (𝐷′, ̄𝐽′, ̄𝛾). Then 𝐷𝐵,𝛾(𝐽) = (𝐷′/𝐾′, ̄𝐽′/𝐾′, ̄𝛾) where 𝐾′ is the ideal
generated by the elements ̄𝛾𝑛(𝑘) for 𝑛 ≥ 1 and 𝑘 ∈ 𝐾.

Proof. Write 𝐷𝐵,𝛾(𝐽) = (𝐷, ̄𝐽, ̄𝛾). The universal property of 𝐷′ gives us a homomorphism
𝐷′ → 𝐷 of divided power algebras. As 𝐵′ → 𝐵 and 𝐽′ → 𝐽 are surjective, we see that
𝐷′ → 𝐷 is surjective (see remarks above). It is clear that ̄𝛾𝑛(𝑘) is in the kernel for 𝑛 ≥ 1 and
𝑘 ∈ 𝐾, i.e., we obtain a homomorphism 𝐷′/𝐾′ → 𝐷. Conversely, there exists a divided
power structure on ̄𝐽′/𝐾′ ⊂ 𝐷′/𝐾′, see Lemma 39.4.3. Hence the universal property of 𝐷
gives an inverse 𝐷 → 𝐷′/𝐾′ and we win. �

In the situation of Definition 39.6.2 we can choose a surjection 𝑃 → 𝐵 where 𝑃 is a poly-
nomial algebra over 𝐴 and let 𝐽′ ⊂ 𝑃 be the inverse image of 𝐽. The previous lemma
describes 𝐷𝐵,𝛾(𝐽) in terms of 𝐷𝑃,𝛾(𝐽′). Note that 𝛾 extends to a divided power structure 𝛾′

on 𝐼𝑃 by Lemma 39.4.2. Hence 𝐷𝑃,𝛾(𝐽′) = 𝐷𝑃,𝛾′(𝐽′) is an example of a special case of
divided power envelopes we describe in the following lemma.

Lemma 39.6.4. Let (𝐵, 𝐼, 𝛾) be a divided power algebra. Let 𝐼 ⊂ 𝐽 ⊂ 𝐵 be an ideal. Let
(𝐷, ̄𝐽, ̄𝛾) be the divided power envelope of 𝐽 relative to 𝛾. Choose elements 𝑓𝑡 ∈ 𝐽, 𝑡 ∈ 𝑇
such that 𝐽 = 𝐼 + (𝑓𝑡). Then there exists a surjection

Ψ ∶ 𝐵⟨𝑥𝑡⟩ ⟶ 𝐷

of divided power rings mapping 𝑥𝑡 to the image of 𝑓𝑡 in 𝐷. The kernel of Ψ is generated by
the elements 𝑥𝑡 − 𝑓𝑡 and all

𝛿𝑛 (∑ 𝑟𝑡𝑥𝑡 − 𝑟0)
whenever ∑ 𝑟𝑡𝑓𝑡 = 𝑟0 in 𝐵 for some 𝑟𝑡 ∈ 𝐵, 𝑟0 ∈ 𝐼.

Proof. In the statement of the lemma we think of 𝐵⟨𝑥𝑡⟩ as a divided power ring with ideal
𝐽′ = 𝐼𝐵⟨𝑥𝑡⟩ + 𝐵⟨𝑥𝑡⟩+, see Remark 39.5.2. The existence of Ψ follows from the universal
property of divided power polynomial rings. Surjectivity of Ψ follows from the fact that its
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image is a divided power subring of 𝐷, hence equal to 𝐷 by the universal property of 𝐷. It
is clear that 𝑥𝑡 − 𝑓𝑡 is in the kernel. Set

ℛ = {(𝑟0, 𝑟𝑡) ∈ 𝐼 ⊕ ⨁𝑡∈𝑇
𝐵 ∣ ∑ 𝑟𝑡𝑓𝑡 = 𝑟0 in 𝐵}

If (𝑟0, 𝑟𝑡) ∈ ℛ then it is clear that ∑ 𝑟𝑡𝑥𝑡 − 𝑟0 is in the kernel. As Ψ is a homomorphism
of divided power rings and ∑ 𝑟𝑡𝑥𝑡 = 𝑟0 ∈ 𝐽′ it follows that 𝛿𝑛(∑ 𝑟𝑡𝑥𝑡 − 𝑟0) is in the kernel
as well. Let 𝐾 ⊂ 𝐵⟨𝑥𝑡⟩ be the ideal generated by 𝑥𝑡 − 𝑓𝑡 and the elements 𝛿𝑛(∑ 𝑟𝑡𝑥𝑡 − 𝑟0)
for (𝑟0, 𝑟𝑡) ∈ ℛ. To show that 𝐾 = Ker(Ψ) it suffices to show that 𝛿 extends to 𝐵⟨𝑥𝑡⟩/𝐾.
Namely, if so the universal property of 𝐷 gives a map 𝐷 → 𝐵⟨𝑥𝑡⟩/𝐾 inverse to Ψ. Hence
we have to show that 𝐾 ∩ 𝐽′ is preserved by 𝛿𝑛, see Lemma 39.4.3. Let 𝐾′ ⊂ 𝐵⟨𝑥𝑡⟩ be the
ideal generated by the elements

(1) 𝛿𝑚(∑ 𝑟𝑡𝑥𝑡 − 𝑟0) where 𝑚 > 0 and (𝑟0, 𝑟𝑡) ∈ ℛ,
(2) 𝑥[𝑚]

𝑡′ (𝑥𝑡 − 𝑓𝑡) where 𝑚 > 0 and 𝑡′, 𝑡 ∈ 𝐼.

We claim that 𝐾′ = 𝐾 ∩ 𝐽′. The claim proves that 𝐾 ∩ 𝐽′ is preserved by 𝛿𝑛, 𝑛 > 0 by the
criterion of Lemma 39.4.3 (2)(c) and a computation of 𝛿𝑛 of the elements listed which we
leave to the reader. To prove the claim note that 𝐾′ ⊂ 𝐾 ∩ 𝐽′. Conversely, if ℎ ∈ 𝐾 ∩ 𝐽′

then, modulo 𝐾′ we can write
ℎ = ∑ 𝑟𝑡(𝑥𝑡 − 𝑓𝑡)

for some 𝑟𝑡 ∈ 𝐵. As ℎ ∈ 𝐾 ∩ 𝐽′ ⊂ 𝐽′ we see that 𝑟0 = ∑ 𝑟𝑡𝑓𝑡 ∈ 𝐼. Hence (𝑟0, 𝑟𝑡) ∈ ℛ and
we see that

ℎ = ∑ 𝑟𝑡𝑥𝑡 − 𝑟0

is in 𝐾′ as desired. �

Lemma 39.6.5. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝐵 be an 𝐴-algebra and 𝐼𝐵 ⊂
𝐽 ⊂ 𝐵 an ideal. Let 𝑥𝑖 be a set of variables. Then

𝐷𝐵[𝑥𝑖],𝛾(𝐽𝐵[𝑥𝑖] + (𝑥𝑖)) = 𝐷𝐵,𝛾(𝐽)⟨𝑥𝑖⟩

Proof. One possible proof is to deduce this from Lemma 39.6.4 as any relation between 𝑥𝑖
in 𝐵[𝑥𝑖] is trivial. On the other hand, the lemma follows from the universal property of the
divided power polynomial algebra and the universal property of divided power envelopes.

�

Conditions (1) and (2) of the following lemma hold if 𝐵 → 𝐵′ is flat at all primes of
𝑉(𝐼𝐵′) ⊂ 𝑆𝑝𝑒𝑐(𝐵′) and is very closely related to that condition, see Algebra, Lemma
7.91.8. It in particular says that taking the divided power envelope commutes with lo-
calization.

Lemma 39.6.6. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝐵 → 𝐵′ be a homomorphism of
𝐴-algebras. Assume that

(1) 𝐵/𝐼𝐵 → 𝐵′/𝐼𝐵′ is flat, and
(2) Tor𝐵

1 (𝐵′, 𝐵/𝐼𝐵) = 0.
Then for any ideal 𝐼𝐵 ⊂ 𝐽 ⊂ 𝐵 the canonical map

𝐷𝐵(𝐽) ⊗𝐵 𝐵′ ⟶ 𝐷𝐵′(𝐽𝐵′)

is an isomorphism.
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Proof. Set 𝐷 = 𝐷𝐵(𝐽) and denote ̄𝐽 ⊂ 𝐷 its divided power ideal with divided power
structure ̄𝛾. The universal property of 𝐷 produces a 𝐵-algebra map 𝐷 → 𝐷𝐵′(𝐽𝐵′), whence
a map as in the lemma. It suffices to show that the divided powers ̄𝛾 extend to 𝐷 ⊗𝐵 𝐵′

since then the universal property of 𝐷𝐵′(𝐽𝐵′) will produce a map 𝐷𝐵′(𝐽𝐵′) → 𝐷 ⊗𝐵 𝐵′

inverse to the one in the lemma.

Choose a surjection 𝑃 → 𝐵′ where 𝑃 is a polynomial algebra over 𝐵. In particular 𝐵 → 𝑃
is flat, hence 𝐷 → 𝐷 ⊗𝐵 𝑃 is flat by Algebra, Lemma 7.35.6. Then ̄𝛾 extends to 𝐷 ⊗𝐵 𝑃 by
Lemma 39.4.2; we will denote this extension ̄𝛾 also. Set 𝔞 = Ker(𝑃 → 𝐵′) so that we have
the short exact sequence

0 → 𝔞 → 𝑃 → 𝐵′ → 0
Thus Tor𝐵1 (𝐵′, 𝐵/𝐼𝐵) = 0 implies that 𝔞 ∩ 𝐼𝑃 = 𝐼𝔞. Now we have the following commuta-
tive diagram

𝐵/𝐽 ⊗𝐵 𝔞
𝛽
// 𝐵/𝐽 ⊗𝐵 𝑃 // 𝐵/𝐽 ⊗𝐵 𝐵′

𝐷 ⊗𝐵 𝔞 𝛼 //

OO

𝐷 ⊗𝐵 𝑃 //

OO

𝐷 ⊗𝐵 𝐵′

OO

̄𝐽 ⊗𝐵 𝔞 //

OO

̄𝐽 ⊗𝐵 𝑃 //

OO

̄𝐽 ⊗𝐵 𝐵′

OO

This diagram is exact even with 0's added at the top and the right. We have to show the
divided powers on the ideal ̄𝐽 ⊗𝐵 𝑃 preserve the ideal Im(𝛼) ∩ ̄𝐽 ⊗𝐵 𝑃, see Lemma 39.4.3.
Consider the exact sequence

0 → 𝔞/𝐼𝔞 → 𝑃/𝐼𝑃 → 𝐵′/𝐼𝐵′ → 0

(which uses that 𝔞 ∩ 𝐼𝑃 = 𝐼𝔞 as seen above). As 𝐵′/𝐼𝐵′ is flat over 𝐵/𝐼𝐵 this sequence
remains exact after applying 𝐵/𝐽 ⊗𝐵/𝐼𝐵 −, see Algebra, Lemma 7.35.11. Hence

Ker(𝐵/𝐽 ⊗𝐵/𝐼𝐵 𝔞/𝐼𝔞 → 𝐵/𝐽 ⊗𝐵/𝐼𝐵 𝑃/𝐼𝑃) = Ker(𝔞/𝐽𝔞 → 𝑃/𝐽𝑃)

is zero. Thus 𝛽 is injective. It follows that Im(𝛼) ∩ ̄𝐽 ⊗𝐵 𝑃 is the image of ̄𝐽 ⊗ 𝔞. Now if
𝑓 ∈ ̄𝐽 and 𝑎 ∈ 𝔞, then ̄𝛾𝑛(𝑓 ⊗ 𝑎) = ̄𝛾𝑛(𝑓) ⊗ 𝑎𝑛 hence the result is clear. �

The following lemma is a special case of [dJ95, Proposition 2.1.7] which in turn is a gen-
eralization of [Ber74, Proposition 2.8.2].

Lemma 39.6.7. Let (𝐵, 𝐼, 𝛾) → (𝐵′, 𝐼′, 𝛾′) be a homomorphism of divided power rings.
Let 𝐼 ⊂ 𝐽 ⊂ 𝐵 and 𝐼′ ⊂ 𝐽′ ⊂ 𝐵′ be ideals. Assume

(1) 𝐵/𝐼 → 𝐵′/𝐼′ is flat, and
(2) 𝐽′ = 𝐽𝐵′ + 𝐼′.

Then the canonical map
𝐷𝐵,𝛾(𝐽) ⊗𝐵 𝐵′ ⟶ 𝐷𝐵′,𝛾′(𝐽′)

is an isomorphism.

Proof. Set 𝐷 = 𝐷𝐵(𝐽) and denote ̄𝐽 ⊂ 𝐷 its divided power ideal with divided power
structure ̄𝛾. The universal property of 𝐷 produces a homomorphism of divided power rings
𝐷 → 𝐷𝐵′(𝐽′), whence a map as in the lemma. It suffices to show that there exist divided
powers on the image of 𝐷 ⊗𝐵 𝐼′ + ̄𝐽 ⊗𝐵 𝐵′ → 𝐷 ⊗𝐵 𝐵′ compatible with ̄𝛾 and 𝛾′ since
then the universal property of 𝐷𝐵′(𝐽′) will produce a map 𝐷𝐵′(𝐽′) → 𝐷 ⊗𝐵 𝐵′ inverse to
the one in the lemma.
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Choose elements 𝑓𝑡 ∈ 𝐽 which generate 𝐽/𝐼. Set ℛ = {(𝑟0, 𝑟𝑡) ∈ 𝐼 ⊕ ⨁𝑡∈𝑇 𝐵 ∣ ∑ 𝑟𝑡𝑓𝑡 =
𝑟0 in 𝐵} as in the proof of Lemma 39.6.4. This lemma shows that

𝐷 = 𝐵⟨𝑥𝑡⟩/𝐾

where 𝐾 is generated by the elements 𝑥𝑡 − 𝑓𝑡 and 𝛿𝑛(∑ 𝑟𝑡𝑥𝑡 − 𝑟0) for (𝑟0, 𝑟𝑡) ∈ ℛ. Thus we
see that

(39.6.7.1) 𝐷 ⊗𝐵 𝐵′ = 𝐵′⟨𝑥𝑡⟩/𝐾′

where 𝐾′ is generated by the images in 𝐵′⟨𝑥𝑡⟩ of the generators of 𝐾 listed above. Let
𝑓′

𝑡 ∈ 𝐵′ be the image of 𝑓𝑡. By assumption (1) we see that the elements 𝑓′
𝑡 ∈ 𝐽′ generate

𝐽′/𝐼′ and we see that 𝑥𝑡 − 𝑓′
𝑡 ∈ 𝐾′. Set

ℛ′ = {(𝑟′
0, 𝑟′

𝑡 ) ∈ 𝐼′ ⊕ ⨁𝑡∈𝑇
𝐵′ ∣ ∑ 𝑟′

𝑡 𝑓
′
𝑡 = 𝑟′

0 in 𝐵′}

To finish the proof we have to show that 𝛿′
𝑛(∑ 𝑟′

𝑡 𝑥𝑡−𝑟′
0) ∈ 𝐾′ for (𝑟′

0, 𝑟′
𝑡 ) ∈ ℛ′, because then

the presentation (39.6.7.1) of 𝐷 ⊗𝐵 𝐵′ is identical to the presentation of 𝐷𝐵′,𝛾′(𝐽′) obtain
in Lemma 39.6.4 from the generators 𝑓′

𝑡 . Suppose that (𝑟′
0, 𝑟′

𝑡 ) ∈ ℛ′. Then ∑ 𝑟′
𝑡 𝑓

′
𝑡 = 0 in

𝐵′/𝐼′. As 𝐵/𝐼 → 𝐵′/𝐼′ is flat by assumption (1) we can apply the equational criterion of
flatness (Algebra, Lemma 7.35.10) to see that there exist an 𝑚 > 0 and 𝑟𝑗𝑡 ∈ 𝐵 and 𝑐𝑗 ∈ 𝐵′,
𝑗 = 1, … , 𝑚 such that

𝑟𝑗0 = ∑ 𝑟𝑗𝑡𝑓𝑡 ∈ 𝐼 for 𝑗 = 1, … , 𝑚, and 𝑟′
𝑡 = ∑ 𝑐𝑗𝑟𝑗𝑡.

Note that this also implies that 𝑟′
0 = ∑ 𝑐𝑗𝑟𝑗0. Then we have

𝛿′
𝑛(∑ 𝑟′

𝑡 𝑥𝑡 − 𝑟′
0) = 𝛿′

𝑛(∑ 𝑐𝑗(∑ 𝑟𝑗𝑡𝑥𝑡 − 𝑟𝑗0))

= ∑ 𝑐𝑛1
1 … 𝑐𝑛𝑚

𝑚 𝛿𝑛1
(∑ 𝑟1𝑡𝑥𝑡 − 𝑟10) … 𝛿𝑛𝑚

(∑ 𝑟𝑚𝑡𝑥𝑡 − 𝑟𝑚0)

where the sum is over 𝑛1 + … + 𝑛𝑚 = 𝑛. This proves what we want. �

39.7. Some explicit divided power thickenings

The constructions in this sectionwill help us to define the connection on a crystal inmodules
on the crystalline site.

Lemma 39.7.1. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝑀 be an 𝐴-module. Let 𝐵 =
𝐴 ⊕ 𝑀 as an 𝐴-algebra where 𝑀 is an ideal of square zero and set 𝐽 = 𝐼 ⊕ 𝑀. Set

𝛿𝑛(𝑥 + 𝑧) = 𝛾𝑛(𝑥) + 𝛾𝑛−1(𝑥)𝑧

for 𝑥 ∈ 𝐼 and 𝑧 ∈ 𝑀. Then 𝛿 is a divided power structure and 𝐴 → 𝐵 is a homomorphism
of divided power rings from (𝐴, 𝐼, 𝛾) to (𝐵, 𝐽, 𝛿).

Proof. We have to check conditions (1) -- (5) of Definition 39.2.1. We will prove this
directly for this case, but please see the proof of the next lemma for a method which avoids
calculations. Conditions (1) and (3) are clear. Condition (2) follows from

𝛿𝑛(𝑥 + 𝑧)𝛿𝑚(𝑥 + 𝑧) = (𝛾𝑛(𝑥) + 𝛾𝑛−1(𝑥)𝑧)(𝛾𝑚(𝑥) + 𝛾𝑚−1(𝑥)𝑧)
= 𝛾𝑛(𝑥)𝛾𝑚(𝑥) + 𝛾𝑛(𝑥)𝛾𝑚−1(𝑥)𝑧 + 𝛾𝑛−1(𝑥)𝛾𝑚(𝑥)𝑧

= (𝑛 + 𝑚)!
𝑛! 𝑚!

𝛾𝑛+𝑚(𝑥) + (
(𝑛 + 𝑚 − 1)!
𝑛! (𝑚 − 1)!

+ (𝑛 + 𝑚 − 1)!
(𝑛 − 1)! 𝑚! ) 𝛾𝑛+𝑚−1(𝑥)𝑧

= (𝑛 + 𝑚)!
𝑛! 𝑚!

𝛿𝑛+𝑚(𝑥 + 𝑧)
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Condition (5) follows from

𝛿𝑛(𝛿𝑚(𝑥 + 𝑧)) = 𝛿𝑛(𝛾𝑚(𝑥) + 𝛾𝑚−1(𝑥)𝑧)
= 𝛾𝑛(𝛾𝑚(𝑥)) + 𝛾𝑛−1(𝛾𝑚(𝑥))𝛾𝑚−1(𝑥)𝑧

= (𝑛𝑚)!
𝑛! (𝑚! )𝑛 𝛾𝑛𝑚(𝑥) + ((𝑛 − 1)𝑚)!

(𝑛 − 1)! (𝑚! )𝑛−1 𝛾(𝑛−1)𝑚(𝑥)𝛾𝑚−1(𝑥)𝑧

= (𝑛𝑚)!
𝑛! (𝑚! )𝑛 (𝛾𝑛𝑚(𝑥) + 𝛾𝑛𝑚−1(𝑥)𝑧)

by elementary number theory. To prove (4) we have to see that

𝛿𝑛(𝑥 + 𝑥′ + 𝑧 + 𝑧′) = 𝛾𝑛(𝑥 + 𝑥′) + 𝛾𝑛−1(𝑥 + 𝑥′)(𝑧 + 𝑧′)

is equal to

∑
𝑛
𝑖=0

(𝛾𝑖(𝑥) + 𝛾𝑖−1(𝑥)𝑧)(𝛾𝑛−𝑖(𝑥′) + 𝛾𝑛−𝑖−1(𝑥′)𝑧′)

This follows easily on collecting the coefficients of 1, 𝑧, and 𝑧′ and using condition (4) for
𝛾. �

Lemma 39.7.2. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝑀, 𝑁 be 𝐴-modules. Let 𝑞 ∶
𝑀×𝑀 → 𝑁 be an𝐴-bilinearmap. Let𝐵 = 𝐴⊕𝑀⊕𝑁 as an𝐴-algebra withmultiplication

(𝑥, 𝑧, 𝑤) ⋅ (𝑥′, 𝑧′, 𝑤′) = (𝑥𝑥′, 𝑥𝑧′ + 𝑥′𝑧, 𝑥𝑤′ + 𝑥′𝑤 + 𝑞(𝑧, 𝑧′) + 𝑞(𝑧′, 𝑧))

and set 𝐽 = 𝐼 ⊕ 𝑀 ⊕ 𝑁. Set

𝛿𝑛(𝑥, 𝑧, 𝑤) = (𝛾𝑛(𝑥), 𝛾𝑛−1(𝑥)𝑧, 𝛾𝑛−1(𝑧)𝑤 + 𝛾𝑛−2(𝑥)𝑞(𝑧, 𝑧))

for (𝑎, 𝑚, 𝑛) ∈ 𝐽. Then 𝛿 is a divided power structure and 𝐴 → 𝐵 is a homomorphism of
divided power rings from (𝐴, 𝐼, 𝛾) to (𝐵, 𝐽, 𝛿).

Proof. Suppose we want to prove that property (4) of Definition 39.2.1 is satisfied. Pick
(𝑥, 𝑧, 𝑤) and (𝑥′, 𝑧′, 𝑤′) in 𝐽. Pick a map

𝐴0 = 𝐙⟨𝑠, 𝑠′⟩ ⟶ 𝐴, 𝑠 ⟼ 𝑥, 𝑠′ ⟼ 𝑥′

which is possible by the universal property of divided power polynomial rings. Set 𝑀0 =
𝐴0 ⊕ 𝐴0 and 𝑁0 = 𝐴0 ⊕ 𝐴0 ⊕ 𝑀0 ⊗𝐴0

𝑀0. Let 𝑞0 ∶ 𝑀0 × 𝑀0 → 𝑁0 be the obvious
map. Define 𝑀0 → 𝑀 as the 𝐴0-linear map which sends the basis vectors of 𝑀0 to 𝑧 and
𝑧′. Define 𝑁0 → 𝑁 as the 𝐴0 linear map which sends the first two basis vectors of 𝑁0 to 𝑤
and 𝑤′ and uses 𝑀0 ⊗𝐴0

𝑀0 → 𝑀 ⊗𝐴 𝑀
𝑞

−→ 𝑁 on the last summand. Then we see that it
suffices to prove the identitity (4) for the situation (𝐴0, 𝑀0, 𝑁0, 𝑞0). Similarly for the other
identities. This reduces us to the case of a 𝐙-torsion free ring and 𝐀-torsion free modules.
In this case all we have to do is show that

𝑛! 𝛿𝑛(𝑥, 𝑧, 𝑤) = (𝑥, 𝑧, 𝑤)𝑛

in the ring 𝐴, see Lemma 39.2.2. To see this note that

(𝑥, 𝑧, 𝑤)2 = (𝑥2, 2𝑥𝑧, 2𝑥𝑤 + 2𝑞(𝑧, 𝑧))

and by induction

(𝑥, 𝑧, 𝑤)𝑛 = (𝑥𝑛, 𝑛𝑥𝑛−1𝑧, 𝑛𝑥𝑛−1𝑤 + 𝑛(𝑛 − 1)𝑥𝑛−2𝑞(𝑧, 𝑧))

On the other hand,

𝑛! 𝛿𝑛(𝑥, 𝑧, 𝑤) = (𝑛! 𝛾𝑛(𝑥), 𝑛! 𝛾𝑛−1(𝑥)𝑧, 𝑛! 𝛾𝑛−1(𝑥)𝑤 + 𝑛! 𝛾𝑛−2(𝑥)𝑞(𝑧, 𝑧))

which matches. This finishes the proof. �
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39.8. Compatibility

This section isn't required reading; it explains how our discussion fits with that of [Ber74].
Consider the following technical notion.

Definition 39.8.1. Let (𝐴, 𝐼, 𝛾) and (𝐵, 𝐽, 𝛿) be divided power rings. Let 𝐴 → 𝐵 be a ring
map. We say 𝛿 is compatible with 𝛾 if there exists a divided power structure ̄𝛾 on 𝐽 + 𝐼𝐵
such that

(𝐴, 𝐼, 𝛾) → (𝐵, 𝐽 + 𝐼𝐵, ̄𝛾) and (𝐵, 𝐽, 𝛿) → (𝐵, 𝐽 + 𝐼𝐵, ̄𝛾)

are homomorphisms of divided power rings.

Let 𝑝 be a prime number. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝐴 → 𝐶 be a ring map
with 𝑝 nilpotent in 𝐶. Assume that 𝛾 extends to 𝐼𝐶 (see Lemma 39.4.2). In this situation, the
(big affine) crystalline site of 𝑆𝑝𝑒𝑐(𝐶) over 𝑆𝑝𝑒𝑐(𝐴) as defined in [Ber74] is the opposite
of the category of systems

(𝐵, 𝐽, 𝛿, 𝐴 → 𝐵, 𝐶 → 𝐵/𝐽)

where
(1) (𝐵, 𝐽, 𝛿) is a divided power ring with 𝑝 nilpotent in 𝐵,
(2) 𝛿 is compatible with 𝛾, and
(3) the diagram

𝐵 // 𝐵/𝐽

𝐴

OO

// 𝐶

OO

is commutative.
The conditions ``𝛾 extends to 𝐶 and 𝛿 compatible with 𝛾'' are used in [Ber74] to insure
that the crystalline cohomology of 𝑆𝑝𝑒𝑐(𝐶) is the same as the crystalline cohomology of
𝑆𝑝𝑒𝑐(𝐶/𝐼𝐶). We will avoid this issue by working exclusively with 𝐶 such that 𝐼𝐶 = 01.
In this case, for a system (𝐵, 𝐽, 𝛿, 𝐴 → 𝐵, 𝐶 → 𝐵/𝐽) as above, the commutativity of the
displayed diagram above implies 𝐼𝐵 ⊂ 𝐽 and compatibility is equivalent to the condition
that (𝐴, 𝐼, 𝛾) → (𝐵, 𝐽, 𝛿) is a homomorphism of divided power rings.

39.9. Affine crystalline site

In this section we discuss the algebraic variant of the crystalline site. Our basic situation in
which we discuss this material will be as follows.

Situation 39.9.1. Here 𝑝 is a prime number, (𝐴, 𝐼, 𝛾) is a divided power ring such that 𝐴 is
a 𝐙(𝑝)-algebra, and 𝐴 → 𝐶 is a ring map such that 𝐼𝐶 = 0 and such that 𝑝 is nilpotent in 𝐶.

Usually the prime number 𝑝 will be contained in the divided power ideal 𝐼.

Definition 39.9.2. In Situation 39.9.1.
(1) A divided power thickening of 𝐶 over (𝐴, 𝐼, 𝛾) is a homomorphism of divided

power algebras (𝐴, 𝐼, 𝛾) → (𝐵, 𝐽, 𝛿) such that 𝑝 is nilpotent in 𝐵 and a ring map

1Of course there will be a price to pay.
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𝐶 → 𝐵/𝐽 such that

𝐵 // 𝐵/𝐽

𝐶

OO

𝐴

OO

// 𝐴/𝐼

OO

is commutative.
(2) A homomorphism of divided power thickenings

(𝐵, 𝐽, 𝛿, 𝐶 → 𝐵/𝐽) ⟶ (𝐵′, 𝐽′, 𝛿′, 𝐶 → 𝐵′/𝐽′)

is a homomorphism 𝜑 ∶ 𝐵 → 𝐵′ of divided power 𝐴-algebras such that 𝐶 →
𝐵/𝐽 → 𝐵′/𝐽′ is the given map 𝐶 → 𝐵′/𝐽′.

(3) We denote CRIS(𝐶/𝐴, 𝐼, 𝛾) or simply CRIS(𝐶/𝐴) the category of divided power
thickenings of 𝐶 over (𝐴, 𝐼, 𝛾).

(4) We denote Cris(𝐶/𝐴, 𝐼, 𝛾) or simply Cris(𝐶/𝐴) the full subcategory consisting of
(𝐵, 𝐽, 𝛿, 𝐶 → 𝐵/𝐽) such that 𝐶 → 𝐵/𝐽 is an isomorphism. We often denote such
an object (𝐵 → 𝐶, 𝛿) with 𝐽 = Ker(𝐵 → 𝐶) being understood.

Note that for a divided power thickening (𝐵, 𝐽, 𝛿) as above the ideal 𝐽 is locally nilpotent,
see Lemma 39.2.6. There is a canonical functor

(39.9.2.1) CRIS(𝐶/𝐴) ⟶ 𝐶-algebras, (𝐵, 𝐽, 𝛿) ⟼ 𝐵/𝐽

This category does not have equalizers or fibre products in general. It also doesn't have an
initial object (= empty colimit) in general.

Lemma 39.9.3. In Situation 39.9.1.

(1) CRIS(𝐶/𝐴) has products,
(2) CRIS(𝐶/𝐴) has all finite nonempty colimits and (39.9.2.1) commutes with these,

and
(3) Cris(𝐶/𝐴) has all finite nonempty colimits and Cris(𝐶/𝐴) → CRIS(𝐶/𝐴) com-

mutes with them.

Proof. The empty product is (𝐶, 0, ∅). If (𝐵𝑡, 𝐽𝑡, 𝛿𝑡) is a family of objects of CRIS(𝐶/𝐴)
then we can form the product (∏ 𝐵𝑡, ∏ 𝐽𝑡, ∏ 𝛿𝑡) as in Lemma 39.3.4. The map 𝐶 →
∏ 𝐵𝑡/ ∏ 𝐽𝑡 = ∏ 𝐵𝑡/𝐽𝑡 is clear.

Given two objects (𝐵, 𝐽, 𝛾) and (𝐵′, 𝐽′, 𝛾′) of CRIS(𝐶/𝐴) we can form a cocartesian diagram

(𝐵, 𝐽, 𝛿) // (𝐵″, 𝐽″, 𝛿″)

(𝐴, 𝐼, 𝛾) //

OO

(𝐵′, 𝐽′, 𝛿′)

OO

in the category of divided power rings. Then we see that we have

𝐵″/𝐽″ = 𝐵/𝐽 ⊗𝐴/𝐼 𝐵′/𝐽′ ⟵ 𝐶 ⊗𝐴/𝐼 𝐶
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see Remark 39.3.5. Denote 𝐽″ ⊂ 𝐾 ⊂ 𝐵″ the ideal such that
𝐵″/𝐽″ // 𝐵″/𝐾

𝐶 ⊗𝐴/𝐼 𝐶 //

OO

𝐶

OO

is a pushout, i.e., 𝐵″/𝐾 ≅ 𝐵/𝐽 ⊗𝐶 𝐵′/𝐽′. Let 𝐷𝐵″(𝐾) = (𝐷, ̄𝐾, ̄𝛿) be the divided power
envelope of 𝐾 in 𝐵″ relative to (𝐵″, 𝐽″, 𝛿″). Then it is easily verified that (𝐷, ̄𝐾, ̄𝛿) is a
coproduct of (𝐵, 𝐽, 𝛿) and (𝐵′, 𝐽′, 𝛿′) in CRIS(𝐶/𝐴).
Next, we come to coequalizers. Let 𝛼, 𝛽 ∶ (𝐵, 𝐽, 𝛿) → (𝐵′, 𝐽′, 𝛿′) bemorphisms of CRIS(𝐶/𝐴).
Consider 𝐵″ = 𝐵′/(𝛼(𝑏) − 𝛽(𝑏)). Let 𝐽″ ⊂ 𝐵″ be the image of 𝐽′. Let 𝐷𝐵″(𝐽″) = (𝐷, ̄𝐽, ̄𝛿)
be the divided power envelope of 𝐽″ in 𝐵″ relative to (𝐵′, 𝐽′, 𝛿′). Then it is easily verified
that (𝐷, ̄𝐽, ̄𝛿) is the coequalizer of (𝐵, 𝐽, 𝛿) and (𝐵′, 𝐽′, 𝛿′) in CRIS(𝐶/𝐴).
By Categories, Lemma 4.16.6 we have all finite nonempty colimits in CRIS(𝐶/𝐴). The
constructions above shows that (39.9.2.1) commutes with them. This formally implies part
(3) as Cris(𝐶/𝐴) is the fibre category of (39.9.2.1) over 𝐶. �

Remark 39.9.4. In Situation 39.9.1 we denote Cris∧(𝐶/𝐴) the category whose objects are
pairs (𝐵 → 𝐶, 𝛿) such that

(1) 𝐵 is a 𝑝-adically complete 𝐴-algebra,
(2) 𝐵 → 𝐶 is a surjection of 𝐴-algebras,
(3) 𝛿 is a divided power structure on Ker(𝐵 → 𝐶),
(4) 𝐴 → 𝐵 is a homomorphism of divided power rings.

Morphisms are defined as in Definition 39.9.2. Then Cris(𝐶/𝐴) ⊂ Cris∧(𝐶/𝐴) is the full
subcategory consisting of those 𝐵 such that 𝑝 is nilpotent in 𝐵. Conversely, any object
(𝐵 → 𝐶, 𝛿) of Cris∧(𝐶/𝐴) is equal to the limit

(𝐵 → 𝐶, 𝛿) = 𝑙𝑖𝑚𝑒(𝐵/𝑝𝑒𝐵 → 𝐶, 𝛿)
where for 𝑒 ≫ 0 the object (𝐵/𝑝𝑒𝐵 → 𝐶, 𝛿) lies in Cris(𝐶/𝐴), see Lemma 39.4.5. In
particular, we see that Cris∧(𝐶/𝐴) is a full subcategory of the category of pro-objects of
Cris(𝐶/𝐴), see Categories, Remark 4.20.4.

Lemma 39.9.5. In Situation 39.9.1. Let 𝑃 → 𝐶 be a surjection of 𝐴-algebras with kernel
𝐽. Write 𝐷𝑃,𝛾(𝐽) = (𝐷, ̄𝐽, ̄𝛾). Let (𝐷∧, 𝐽∧, ̄𝛾∧) be the 𝑝-adic completion of 𝐷, see Lemma
39.4.5. For every 𝑒 ≥ 1 set 𝑃𝑒 = 𝑃/𝑝𝑒𝑃 and 𝐽𝑒 ⊂ 𝑃𝑒 the image of 𝐽 and write 𝐷𝑃𝑒,𝛾(𝐽𝑒) =
(𝐷𝑒, ̄𝐽𝑒, ̄𝛾). Then for all 𝑒 large enough we have

(1) 𝑝𝑒𝐷 ⊂ ̄𝐽 and 𝑝𝑒𝐷∧ ⊂ ̄𝐽∧ are preserved by divided powers,
(2) 𝐷∧/𝑝𝑒𝐷∧ = 𝐷/𝑝𝑒𝐷 = 𝐷𝑒 as divided power rings,
(3) (𝐷𝑒, ̄𝐽𝑒, ̄𝛾) is an object of Cris(𝐶/𝐴),
(4) (𝐷∧, ̄𝐽∧, ̄𝛾∧) is equal to 𝑙𝑖𝑚𝑒(𝐷𝑒, ̄𝐽𝑒, ̄𝛾), and
(5) (𝐷∧, ̄𝐽∧, ̄𝛾∧) is an object of Cris∧(𝐶/𝐴).

Proof. Part (1) follows from Lemma 39.4.5. It is a general property of 𝑝-adic completion
that 𝐷/𝑝𝑒𝐷 = 𝐷∧/𝑝𝑒𝐷∧. Since 𝐷/𝑝𝑒𝐷 is a divided power ring and since 𝑃 → 𝐷/𝑝𝑒𝐷 factors
through 𝑃𝑒, the universal property of 𝐷𝑒 produces a map 𝐷𝑒 → 𝐷/𝑝𝑒𝐷. Conversely, the
universal property of 𝐷 produces a map 𝐷 → 𝐷𝑒 which factors through 𝐷/𝑝𝑒𝐷. We omit
the verification that these maps are mutually inverse. This proves (2). If 𝑒 is large enough,
then 𝑝𝑒𝐶 = 0, hence we see (3) holds. Part (4) follows from Lemma 39.4.5. Part (5) is clear
from the definitions. �
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Lemma 39.9.6. In Situation 39.9.1. Let 𝑃 be a polynomial algebra over 𝐴 and let 𝑃 → 𝐶
be a surjection of 𝐴-algebras with kernel 𝐽. With (𝐷𝑒, ̄𝐽𝑒, ̄𝛾) as in Lemma 39.9.5: for every
object (𝐵, 𝐽𝐵, 𝛿) of CRIS(𝐶/𝐴) there exists an 𝑒 and a morphsm 𝐷𝑒 → 𝐵 of CRIS(𝐶/𝐴).

Proof. We can find an 𝐴-algebra homomorphism 𝑃 → 𝐵 lifting the map 𝐶 → 𝐵/𝐽𝐵. By
our definition of CRIS(𝐶/𝐴) we see that 𝑝𝑒𝐵 = 0 for some 𝑒 hence 𝑃 → 𝐵 factors as
𝑃 → 𝑃𝑒 → 𝐵. By the universal property of the divided power envelope we conclude that
𝑃𝑒 → 𝐵 factors through 𝐷𝑒. �

Lemma 39.9.7. In Situation 39.9.1. Let 𝑃 be a polynomial algebra over𝐴 and let 𝑃 → 𝐶 be
a surjection of 𝐴-algebras with kernel 𝐽. Let (𝐷, ̄𝐽, ̄𝛾) be the 𝑝-adic completion of 𝐷𝑃,𝛾(𝐽).
For every object (𝐵 → 𝐶, 𝛿) of Cris∧(𝐶/𝐴) there exists a morphsm 𝐷 → 𝐵 of Cris∧(𝐶/𝐴).

Proof. We can find an 𝐴-algebra homomorphism 𝑃 → 𝐵 compatible with maps to 𝐶. By
our definition of Cris(𝐶/𝐴) we see that 𝑃 → 𝐵 factors as 𝑃 → 𝐷𝑃,𝛾(𝐽) → 𝐵. As 𝐵 is
𝑝-adically complete we can factor this map through 𝐷. �

39.10. Module of differentials

In this section we develop a theory of modules of differentials for divided power rings.

Definition 39.10.1. Let 𝐴 be a ring. Let (𝐵, 𝐽, 𝛿) be a divided power ring. Let 𝐴 → 𝐵
be a ring map. Let 𝑀 be an 𝐵-module. A divided power 𝐴-derivation into 𝑀 is a map
𝜃 ∶ 𝐵 → 𝑀 which is additive, annihilates the elements of 𝐴, satisfies the Leibniz rule
𝜃(𝑏𝑏′) = 𝑏𝜃(𝑏′) + 𝑏′𝜃(𝑏) and satisfies

𝜃(𝛾𝑛(𝑥)) = 𝛾𝑛−1(𝑥)𝜃(𝑥)
for all 𝑛 ≥ 1 and all 𝑥 ∈ 𝐽.

In the situation of the definition, just as in the case of usual derivations, there exists a
universal divided power 𝐴-derivation

d𝐵/𝐴,𝛿 ∶ 𝐵 → Ω𝐵/𝐴,𝛿

such that any divided power 𝐴-derivation 𝜃 ∶ 𝐵 → 𝑀 is equal to 𝜃 = 𝜉 ∘ 𝑑𝐵/𝐴,𝛿 for
some 𝐵-linear map Ω𝐵/𝐴,𝛿 → 𝑀. If (𝐴, 𝐼, 𝛾) → (𝐵, 𝐽, 𝛿) is a homomorphism of divided
power rings, then we can forget the divided powers on 𝐴 and consider the divided power
derivations of 𝐵 over 𝐴. Here are some basic properties of the divided power module of
differentials.

Lemma 39.10.2. Let 𝐴 be a ring. Let (𝐵, 𝐽, 𝛿) be a divided power ring and 𝐴 → 𝐵 a ring
map.

(1) Consider 𝐵[𝑥] with divided power ideal (𝐽𝐵[𝑥], 𝛿′) where 𝛿′ is the extension of
𝛿 to 𝐵[𝑥]. Then

Ω𝐵[𝑥]/𝐴,𝛿′ = Ω𝐵/𝐴,𝛿 ⊗𝐵 𝐵[𝑥] ⊕ 𝐵[𝑥]d𝑥.
(2) Consider 𝐵⟨𝑥⟩ with divided power ideal (𝐽𝐵⟨𝑥⟩ + 𝐵⟨𝑥⟩+, 𝛿′). Then

Ω𝐵⟨𝑥⟩/𝐴,𝛿′ = Ω𝐵/𝐴,𝛿 ⊗𝐵 𝐵⟨𝑥⟩ ⊕ 𝐵⟨𝑥⟩d𝑥.

(3) Let 𝐾 ⊂ 𝐽 be an ideal preserved by 𝛿𝑛 for all 𝑛 > 0. Set 𝐵′ = 𝐵/𝐾 and denote 𝛿′

the induced divided power on 𝐽/𝐾. Then Ω𝐵′/𝐴,𝛿′ is the quotient of Ω𝐵/𝐴,𝛿 ⊗𝐵 𝐵′

by the 𝐵′-submodule generated by d𝑘 for 𝑘 ∈ 𝐾.

Proof. These are proved directly from the construction of Ω𝐵/𝐴,𝛿 as the free 𝐵-module on
the elements d𝑏 modulo the relations
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(1) d(𝑏 + 𝑏′) = d𝑏 + d𝑏′, 𝑏, 𝑏′ ∈ 𝐵,
(2) d𝑎 = 0, 𝑎 ∈ 𝐴,
(3) d(𝑏𝑏′) = 𝑏d𝑏′ + 𝑏′d𝑏, 𝑏, 𝑏′ ∈ 𝐵,
(4) d𝛿𝑛(𝑓) = 𝛿𝑛−1(𝑓)d𝑓, 𝑓 ∈ 𝐽, 𝑛 > 1.

Note that the last relation explains why we get ``the same'' answer for the divided power
polynomial algebra and the usual polynomial algebra: in the first case 𝑥 is an element of
the divided power ideal and hence d𝑥[𝑛] = 𝑥[𝑛−1]d𝑥. �

Let (𝐴, 𝐼, 𝛾) be a divided power ring. In this setting the correct version of the powers of 𝐼
is given by the divided powers

𝐼[𝑛] = ideal generate by 𝛾𝑒1
(𝑥1) … 𝛾𝑒𝑡

(𝑥𝑡) with ∑ 𝑒𝑗 ≥ 𝑛 and 𝑥𝑗 ∈ 𝐼.

Of course we have 𝐼𝑛 ⊂ 𝐼[𝑛]. Note that 𝐼[1] = 𝐼. Sometimes we also set 𝐼[0] = 𝐴.

Lemma 39.10.3. Let (𝐴, 𝐼, 𝛾) → (𝐵, 𝐽, 𝛿) be a homomorphism of divided power rings. Let
(𝐵(1), 𝐽(1), 𝛿(1)) be the coproduct of (𝐵, 𝐽, 𝛿) with itself over (𝐴, 𝐼, 𝛾), i.e., such that

(𝐵, 𝐽, 𝛿) // (𝐵(1), 𝐽(1), 𝛿(1))

(𝐴, 𝐼, 𝛾) //

OO

(𝐵, 𝐽, 𝛿)

OO

is cocartesian. Denote 𝐾 = Ker(𝐵(1) → 𝐵). Then 𝐾 ∩ 𝐽(1) ⊂ 𝐽(1) is preserved by the
divided power structure and

Ω𝐵/𝐴,𝛿 = 𝐾/ (𝐾2 + (𝐾 ∩ 𝐽(1))[2])
canonically.

Proof. The fact that 𝐾 ∩ 𝐽(1) ⊂ 𝐽(1) is preserved by the divided power structure follows
from the fact that 𝐵(1) → 𝐵 is a homomorphism of divided power rings.

Recall that 𝐾/𝐾2 has a canonical 𝐵-module structure. Denote 𝑠0, 𝑠1 ∶ 𝐵 → 𝐵(1) the two
coprojections and consider themap d ∶ 𝐵 → 𝐾/𝐾2+(𝐾∩𝐽(1))[2] given by 𝑏 ↦ 𝑠1(𝑏)−𝑠0(𝑏).
It is clear that d is additive, annihilates 𝐴, and satisfies the Leibniz rule. We claim that d is an
𝐴-derivation. Let 𝑥 ∈ 𝐽. Set 𝑦 = 𝑠1(𝑥) and 𝑧 = 𝑠0(𝑥). Denote 𝛿 the divided power structure
on 𝐽(1). We have to show that 𝛿𝑛(𝑦) − 𝛿𝑛(𝑧) = 𝛿𝑛−1(𝑦)(𝑦 − 𝑧) modulo 𝐾2 + (𝐾 ∩ 𝐽(1))[2]

for 𝑛 ≥ 1. We will show this by induction on 𝑛. It is true for 𝑛 = 1. Let 𝑛 > 1 and that it
holds for all smaller values. Note that

𝛿𝑛(𝑧 − 𝑦) = ∑
𝑛
𝑖=0

(−1)𝑛−𝑖𝛿𝑖(𝑧)𝛿𝑛−𝑖(𝑦)

is an element of 𝐾2 + (𝐾 ∩ 𝐽(1))[2]. From this and induction we see that working modulo
𝐾2 + (𝐾 ∩ 𝐽(1))[2] we have

𝛿𝑛(𝑦) − 𝛿𝑛(𝑧)

= 𝛿𝑛(𝑦) + ∑
𝑛−1
𝑖=0

(−1)𝑛−𝑖𝛿𝑖(𝑧)𝛿𝑛−𝑖(𝑦)

= 𝛿𝑛(𝑦) + (−1)𝑛𝛿𝑛(𝑦) + ∑
𝑛−1
𝑖=1

(−1)𝑛−𝑖(𝛿𝑖(𝑦) − 𝛿𝑖−1(𝑦)(𝑦 − 𝑧))𝛿𝑛−𝑖(𝑦)

Using that 𝛿𝑖(𝑦)𝛿𝑛−𝑖(𝑦) = (
𝑛

𝑖
)𝛿𝑛(𝑦) and that 𝛿𝑖−1(𝑦)𝛿𝑛−𝑖(𝑦) = (

𝑛−1

𝑖
)𝛿𝑛−1(𝑦) the reader easily

verifies that this expression comes out to give 𝛿𝑛−1(𝑦)(𝑦 − 𝑧) as desired.
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Let 𝑀 be a 𝐵-module. Let 𝜃 ∶ 𝐵 → 𝑀 be a divided power 𝐴-derivation. Set 𝐷 = 𝐵 ⊕ 𝑀
where 𝑀 is an ideal of square zero. Define a divided power structure on 𝐽 ⊕ 𝑀 ⊂ 𝐷
by setting 𝛿𝑛(𝑥 + 𝑚) = 𝛿𝑛(𝑥) + 𝛿𝑛−1(𝑥)𝑚 for 𝑛 > 1, see Lemma 39.7.1. There are two
divided power algebra homomorphisms 𝐵 → 𝐷: the first is given by the inclusion and the
second by the map 𝑏 ↦ 𝑏 + 𝜃(𝑏). Hence we get a canonical homomorphism 𝐵(1) → 𝐷
of divided power algebras over (𝐴, 𝐼, 𝛾). This induces a map 𝐾 → 𝑀 which annihilates
𝐾2 (as 𝑀 is an ideal of square zero) and (𝐾 ∩ 𝐽(1))[2] as 𝑀[2] = 0. The composition
𝐵 → 𝐾/𝐾2 + (𝐾 ∩ 𝐽(1))[2] → 𝑀 equals 𝜃 by construction. It follows that d is a universal
divided power 𝐴-derivation and we win. �

Remark 39.10.4. Let 𝐴 → 𝐵 be a ring map and let (𝐽, 𝛿) be a divided power structure
on 𝐵. The universal module Ω𝐵/𝐴,𝛿 comes with a little bit of extra structure, namely the
𝐵-submodule 𝑁 of Ω𝐵/𝐴,𝛿 generated by d𝐵/𝐴,𝛿(𝐽). In terms of the isomorphism given in
Lemma 39.10.3 this corresponds to the image of 𝐾∩𝐽(1) in Ω𝐵/𝐴,𝛿. Consider the 𝐴-algebra
𝐷 = 𝐵 ⊕ Ω1

𝐵/𝐴,𝛿 with ideal ̄𝐽 = 𝐽 ⊕ 𝑁 and divided powers ̄𝛿 as in the proof of the lemma.
Then (𝐷, ̄𝐽, ̄𝛿) is a divided power ring and the two maps 𝐵 → 𝐷 given by 𝑏 ↦ 𝑏 and
𝑏 ↦ 𝑏 + d𝐵/𝐴,𝛿(𝑏) are homomorphisms of divided power rings over 𝐴. Moreover, 𝑁 is the
smallest submodule of Ω𝐵/𝐴,𝛿 such that this is true.

Lemma39.10.5. In Situation 39.9.1. Let (𝐵, 𝐽, 𝛿) be an object of CRIS(𝐶/𝐴). Let (𝐵(1), 𝐽(1), 𝛿(1))
be the coproduct of (𝐵, 𝐽, 𝛿) with itself in CRIS(𝐶/𝐴). Denote 𝐾 = Ker(𝐵(1) → 𝐵). Then
𝐾 ∩ 𝐽(1) ⊂ 𝐽(1) is preserved by the divided power structure and

Ω𝐵/𝐴,𝛿 = 𝐾/ (𝐾2 + (𝐾 ∩ 𝐽(1))[2])

canonically.

Proof. Word for word the same as the proof of Lemma 39.10.3. The only point that has to
be checked is that the divided power ring 𝐷 = 𝐵 ⊕ 𝑀 is an object of CRIS(𝐶/𝐴) and that
the two maps 𝐵 → 𝐶 are morphisms of CRIS(𝐶/𝐴). Since 𝐷/(𝐽 ⊕ 𝑀) = 𝐵/𝐽 we can use
𝐶 → 𝐵/𝐽 to view 𝐷 as an object of CRIS(𝐶/𝐴) and the statement on morphisms is clear
from the construction. �

Lemma 39.10.6. Let (𝐴, 𝐼, 𝛾) be a divided power ring. Let 𝐴 → 𝐵 be a ring map and let
𝐼𝐵 ⊂ 𝐽 ⊂ 𝐵 be an ideal. Let 𝐷𝐵,𝛾(𝐽) = (𝐷, ̄𝐽, ̄𝛾) be the divided power envelope. Then we
have

Ω𝐷/𝐴, ̄𝛾 = Ω𝐵/𝐴 ⊗𝐵 𝐷

Proof. We will prove this first when 𝐵 is flat over 𝐴. In this case 𝛾 extends to a divided
power structure 𝛾′ on 𝐼𝐵, see Lemma 39.4.2. Hence 𝐷 = 𝐷𝐵′,𝛾′(𝐽) is equal to a quotient
of the divided power ring (𝐷′, 𝐽′, 𝛿) where 𝐷′ = 𝐵⟨𝑥𝑡⟩ and 𝐽′ = 𝐼𝐵⟨𝑥𝑡⟩ + 𝐵⟨𝑥𝑡⟩+ by the
elements 𝑥𝑡 −𝑓𝑡 and 𝛿𝑛(∑ 𝑟𝑡𝑥𝑡 −𝑟0), see Lemma 39.6.4 for notation and explanation. Write
d ∶ 𝐷′ → Ω𝐷′/𝐴,𝛿 for the universal derivation. Note that

Ω𝐷′/𝐴,𝛿 = Ω𝐵/𝐴 ⊗𝐵 𝐷′ ⊕ ⨁ 𝐷′d𝑥𝑡,

see Lemma 39.10.2. We conclude that Ω𝐷/𝐴, ̄𝛾 is the quotient of Ω𝐷′/𝐴,𝛿 ⊗𝐷′ 𝐷 by the
submodule generated by d applied to the generators of the kernel of 𝐷′ → 𝐷 listed above,
see Lemma 39.10.2. Since d(𝑥𝑡 − 𝑓𝑡) = −d𝑓𝑡 + d𝑥𝑡 we see that we have d𝑥𝑡 = d𝑓𝑡 in the
quotient. In particular we see that Ω𝐵/𝐴 ⊗𝐵 𝐷 → Ω𝐷/𝐴,𝛾 is surjective with kernel given
by the images of d applied to the elements 𝛿𝑛(∑ 𝑟𝑡𝑥𝑡 − 𝑟0). However, given a relation
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∑ 𝑟𝑡𝑓𝑡 − 𝑟0 = 0 in 𝐵 with 𝑟𝑡 ∈ 𝐵 and 𝑟0 ∈ 𝐼𝐵 we see that

d𝛿𝑛(∑ 𝑟𝑡𝑥𝑡 − 𝑟0) = 𝛿𝑛−1(∑ 𝑟𝑡𝑥𝑡 − 𝑟0)d(∑ 𝑟𝑡𝑥𝑡 − 𝑟0)

= 𝛿𝑛−1(∑ 𝑟𝑡𝑥𝑡 − 𝑟0) (∑ 𝑟𝑡d(𝑥𝑡 − 𝑓𝑡) + ∑(𝑥𝑡 − 𝑓𝑡)d𝑟𝑡)
because ∑ 𝑟𝑡𝑓𝑡 − 𝑟0 = 0 in 𝐵. Hence this is already zero in Ω𝐵/𝐴 ⊗𝐴 𝐷 and we win in the
case that 𝐵 is flat over 𝐴.

In the general case we write 𝐵 as a quotient of a polynomial ring 𝑃 → 𝐵 and let 𝐽′ ⊂ 𝑃
be the inverse image of 𝐽. Then 𝐷 = 𝐷′/𝐾′ with notation as in Lemma 39.6.3. By the
case handled in the first paragraph of the proof we have Ω𝐷′/𝐴, ̄𝛾′ = Ω𝑃/𝐴 ⊗𝑃 𝐷′. Then
Ω𝐷/𝐴, ̄𝛾 is the quotient of Ω𝑃/𝐴 ⊗𝑃 𝐷 by the submodule generated by d ̄𝛾′

𝑛(𝑘) where 𝑘 is an
element of the kernel of 𝑃 → 𝐵, see Lemma 39.10.2 and the description of 𝐾′ from Lemma
39.6.3. Since d ̄𝛾′

𝑛(𝑘) = ̄𝛾′
𝑛−1(𝑘)d𝑘 we see again that it suffices to divided by the submodule

generated by d𝑘 with 𝑘 ∈ Ker(𝑃 → 𝐵) and since Ω𝐵/𝐴 is the quotient of Ω𝑃/𝐴 ⊗𝐴 𝐵 by
these elements (Algebra, Lemma 7.122.9) we win. �

Remark 39.10.7. Let 𝐵 be a ring. Write Ω𝐵 = Ω𝐵/𝐙 for the absolute2 module of differ-
entials of 𝐵. Let d ∶ 𝐵 → Ω𝐵 denote the universal derivation. Set Ω𝑖

𝐵 = ∧𝑖
𝐵(Ω𝐵) as in

Algebra, Section 7.12. The absolute de Rham complex

Ω0
𝐵 → Ω1

𝐵 → Ω2
𝐵 → …

Here d ∶ Ω𝑝
𝐵 → Ω𝑝+1

𝐵 is defined by the rule

d (𝑏0d𝑏1 ∧ … ∧ d𝑏𝑝) = d𝑏0 ∧ d𝑏1 ∧ … ∧ d𝑏𝑝

which we will show is well defined; note that d ∘d = 0 so we get a complex. Recall that Ω𝐵
is the 𝐵-module generated by elements d𝑏 subject to the relations d(𝑎 + 𝑏) = d𝑎 + d𝑏 and
d(𝑎𝑏) = 𝑏d𝑎 + 𝑎d𝑏 for 𝑎, 𝑏 ∈ 𝐵. To prove that our map is well defined for 𝑝 = 1 we have to
show that the elements

𝑎d(𝑏 + 𝑐) − 𝑎d𝑏 − 𝑎d𝑐 and 𝑎d(𝑏𝑐) − 𝑎𝑐d𝑏 − 𝑎𝑏d𝑐, 𝑎, 𝑏, 𝑐 ∈ 𝐵

are mapped to zero by our rule. This is clear by direct computation (using the Leibniz rule).
Thus we get a map

Ω𝐵 ⊗𝐙 … ⊗𝐙 Ω𝐵 ⟶ Ω𝑝+1
𝐵

defined by the formula

𝜔1 ⊗ … ⊗ 𝜔𝑝 ⟼ ∑(−1)𝑖+1𝜔1 ∧ … ∧ d(𝜔𝑖) ∧ … ∧ 𝜔𝑝

which matches our rule above on elements of the form 𝑏0d𝑏1 ⊗ d𝑏2 ⊗ … ⊗ d𝑏𝑝. It is clear
that this map is alternating. To finish we have to show that

𝜔1 ⊗ … ⊗ 𝑓𝜔𝑖 ⊗ … ⊗ 𝜔𝑝 and 𝜔1 ⊗ … ⊗ 𝑓𝜔𝑗 ⊗ … ⊗ 𝜔𝑝

are mapped to the same element. By 𝐙-linearity and the alternating property, it is enough
to show this for 𝑝 = 2, 𝑖 = 1, 𝑗 = 2, 𝜔1 = 𝑎1d𝑏1 and 𝜔2 = 𝑎2d𝑏2. Thus we need to show
that

d𝑓𝑎1 ∧ d𝑏1 ∧ 𝑎2d𝑏2 − 𝑓𝑎1d𝑏1 ∧ d𝑎2 ∧ d𝑏2

= d𝑎1 ∧ d𝑏1 ∧ 𝑓𝑎2d𝑏2 − 𝑎1d𝑏1 ∧ d𝑓𝑎2 ∧ d𝑏2

2This actually makes sense: if Ω𝐵 is the module of differentials where we only assume the Leibniz rule and
not the vanishing of d1, then the Leibniz rule gives d1 = d(1 ⋅ 1) = 1d1 + 1d1 = 2d1 and hence d1 = 0 in Ω𝐵.
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in other words that

(𝑎2d𝑓𝑎1 + 𝑓𝑎1d𝑎2 − 𝑓𝑎2d𝑎1 − 𝑎1d𝑓𝑎2) ∧ d𝑏1 ∧ d𝑏2 = 0.

This follows from the Leibniz rule.

Lemma 39.10.8. Let 𝐵 be a ring. Let 𝜋 ∶ Ω𝐵 → Ω be a surjective 𝐵-module map. Denote
d ∶ 𝐵 → Ω the composition of 𝜋 with d𝐵 ∶ 𝐵 → Ω𝐵. Set Ω𝑖 = ∧𝑖

𝐵(Ω). Assume that the
kernel of 𝜋 is generated, as a 𝐵-module, by elements 𝜔 ∈ Ω𝐵 such that d𝐵(𝜔) ∈ Ω2

𝐵 maps
to zero in Ω2. Then there is a de Rham complex

Ω0 → Ω1 → Ω2 → …

whose differential is defined by the rule

d ∶ Ω𝑝 → Ω𝑝+1, d (𝑓0d𝑓1 ∧ … ∧ d𝑓𝑝) = d𝑓0 ∧ d𝑓1 ∧ … ∧ d𝑓𝑝

Proof. We will show that there exists a commutative diagram

Ω0
𝐵

��

d𝐵

// Ω1
𝐵

𝜋
��

d𝐵

// Ω2
𝐵

∧2𝜋
��

d𝐵

// …

Ω0 d // Ω1 d // Ω2 d // …

the description of the map d will follow from the construction of d𝐵 in Remark 39.10.7.
Since the left most vertical arrow is an isomorphism we have the first square. Because 𝜋
is surjective, to get the second square it suffices to show that d𝐵 maps the kernel of 𝜋 into
the kernel of ∧2𝜋. We are given that any element of the kernel of 𝜋 is of the form ∑ 𝑏𝑖𝜔𝑖
with 𝜋(𝜔𝑖) = 0 and ∧2𝜋(d𝐵(𝜔𝑖)) = 0. By the Leibniz rule for d𝐵 we have d𝐵(∑ 𝑏𝑖𝜔𝑖) =
∑ 𝑏𝑖d𝐵(𝜔𝑖) + ∑ d𝐵(𝑏𝑖) ∧ 𝜔𝑖. Hence this maps to zero under ∧2𝜋.

For 𝑖 > 1 we note that ∧𝑖𝜋 is surjective with kernel the image of Ker(𝜋) ∧ Ω𝑖−1
𝐵 → Ω𝑖

𝐵. For
𝜔1 ∈ Ker(𝜋) and 𝜔2 ∈ Ω𝑖−1

𝐵 we have

d𝐵(𝜔1 ∧ 𝜔2) = d𝐵(𝜔1) ∧ 𝜔2 − 𝜔1 ∧ d𝐵(𝜔2)

which is in the kernel of ∧𝑖+1𝜋 by what we just proved above. Hence we get the (𝑖 + 1)st
square in the diagram above. This concludes the proof. �

Remark 39.10.9. Let 𝐴 → 𝐵 be a ring map and let (𝐽, 𝛿) be a divided power structure
on 𝐵. Set Ω𝑖

𝐵/𝐴,𝛿 = ∧𝑖
𝐵Ω𝐵/𝐴,𝛿 where Ω𝐵/𝐴,𝛿 is the target of the universal divided power

𝐴-derivation d = d𝐵/𝐴 ∶ 𝐵 → Ω𝐵/𝐴,𝛿. Note that Ω𝐵/𝐴,𝛿 is the quotient of Ω𝐵 by the
𝐵-submodule generated by the elements d𝑎 = 0 for 𝑎 ∈ 𝐴 and d𝛿𝑛(𝑥) − 𝛿𝑛−1(𝑥)d𝑥 for
𝑥 ∈ 𝐽. We claim Lemma 39.10.8 applies. To see this it suffices to verify the elements d𝑎
and d𝛿𝑛(𝑥) − 𝛿𝑛−1(𝑥)d𝑥 of Ω𝐵 are mapped to zero in Ω2

𝐵/𝐴,𝛿. This is clear for the first, and
for the last we observe that

d(𝛿𝑛−1(𝑥)) ∧ d𝑥 = 𝛿𝑛−2(𝑥)d𝑥 ∧ d𝑥 = 0

in Ω2
𝐵/𝐴,𝛿 as desired. Hence we obtain a divided power de Rham complex

Ω0
𝐵/𝐴,𝛿 → Ω1

𝐵/𝐴,𝛿 → Ω2
𝐵/𝐴,𝛿 → …

which will play an important role in the sequel.
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Remark 39.10.10. Let 𝐵 be a ring. Let Ω𝐵 → Ω be a quotient satisfying the assumptions
of Lemma 39.10.8. Let 𝑀 be a 𝐵-module. A connection is an additive map

∇ ∶ 𝑀 ⟶ 𝑀 ⊗𝐵 Ω

such that ∇(𝑏𝑚) = 𝑏∇(𝑚) + 𝑚 ⊗ d𝑏 for 𝑏 ∈ 𝐵 and 𝑚 ∈ 𝑀. In this situation we can define
maps

∇ ∶ 𝑀 ⊗𝐵 Ω𝑖 ⟶ 𝑀 ⊗𝐵 Ω𝑖+1

by the rule ∇(𝑚 ⊗ 𝜔) = ∇(𝑚) ∧ 𝜔 + 𝑚 ⊗ d𝜔. This works because if 𝑏 ∈ 𝐵, then

∇(𝑏𝑚 ⊗ 𝜔) − ∇(𝑚 ⊗ 𝑏𝜔) = ∇(𝑏𝑚) ⊗ 𝜔 + 𝑏𝑚 ⊗ d𝜔 − ∇(𝑚) ⊗ 𝑏𝜔 − 𝑚 ⊗ d(𝑏𝜔)
= 𝑏∇(𝑚) ⊗ 𝜔 + 𝑚 ⊗ d𝑏 ∧ 𝜔 + 𝑏𝑚 ⊗ d𝜔

− 𝑏∇(𝑚) ⊗ 𝜔 − 𝑏𝑚 ⊗ d(𝜔) − 𝑚 ⊗ d𝑏 ∧ 𝜔 = 0

As is customary we say the connection is integrable if and only if the composition

𝑀
∇

−−→ 𝑀 ⊗𝐵 Ω1 ∇
−−→ 𝑀 ⊗𝐵 Ω2

is zero. In this case we obtain a complex

𝑀
∇

−−→ 𝑀 ⊗𝐵 Ω1 ∇
−−→ 𝑀 ⊗𝐵 Ω2 ∇

−−→ 𝑀 ⊗𝐵 Ω3 ∇
−−→ 𝑀 ⊗𝐵 Ω4 → …

which is called the de Rham complex of the connection.

Remark 39.10.11. Let 𝜑 ∶ 𝐵 → 𝐵′ be a ring map. Let Ω𝐵 → Ω and Ω𝐵′ → Ω′ be
quotients satisfying the assumptions of Lemma 39.10.8. Assume that the map Ω𝐵 → Ω𝐵′,
𝑏1d𝑏2 ↦ 𝜑(𝑏1)d𝜑(𝑏2) fits into a commutative diagram

𝐵 //

��

Ω𝐵
//

��

Ω

𝜑
��

𝐵′ // Ω𝐵′ // Ω′

In this situation, given any pair (𝑀, ∇) where 𝑀 is a 𝐵-module and ∇ ∶ 𝑀 → 𝑀 ⊗𝐵 Ω is
a connection we obtain a base change (𝑀 ⊗𝐵 𝐵′, ∇′) where

∇′ ∶ 𝑀 ⊗𝐵 𝐵′ ⟶ (𝑀 ⊗𝐵 𝐵′) ⊗𝐵′ Ω′ = 𝑀 ⊗𝐵 Ω′

is defined by the rule

∇′(𝑚 ⊗ 𝑏′) = ∑ 𝑚𝑖 ⊗ 𝑏′d𝜑(𝑏𝑖) + 𝑚 ⊗ d𝑏′

if ∇(𝑚) = ∑ 𝑚𝑖 ⊗ d𝑏𝑖. If ∇ is integrable, then so is ∇′, and in this case there is a canonical
map of de Rham complexes

(39.10.11.1) 𝑀 ⊗𝐵 Ω• ⟶ (𝑀 ⊗𝐵 𝐵′) ⊗𝐵′ (Ω′)• = 𝑀 ⊗𝐵 (Ω′)•

which maps 𝑚 ⊗ 𝜂 to 𝑚 ⊗ 𝜑(𝜂).

Lemma 39.10.12. Let 𝐴 → 𝐵 be a ring map and let (𝐽, 𝛿) be a divided power structure on
𝐵. Let 𝑝 be a prime number. Assume that 𝐴 is a 𝐙(𝑝)-algebra and that 𝑝 is nilpotent in 𝐵/𝐽.
Then we have

𝑙𝑖𝑚𝑒 Ω𝐵𝑒/𝐴, ̄𝛿 = 𝑙𝑖𝑚𝑒 Ω𝐵/𝐴,𝛿/𝑝𝑒Ω𝐵/𝐴,𝛿 = 𝑙𝑖𝑚𝑒 Ω𝐵∧/𝐴,𝛿∧/𝑝𝑒Ω𝐵∧/𝐴,𝛿∧

see proof for notation and explanation.
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Proof. By Lemma 39.4.5 we see that 𝛿 extends to 𝐵𝑒 = 𝐵/𝑝𝑒𝐵 for all sufficiently large 𝑒.
Hence the first limit make sense. The lemma also produces a divided power structure 𝛿∧ on
the completion 𝐵∧ = 𝑙𝑖𝑚𝑒 𝐵𝑒, hence the last limit makes sense. By Lemma 39.10.2 and the
fact that d𝑝𝑒 = 0 (always) we see that the surjection Ω𝐵/𝐴,𝛿 → Ω𝐵𝑒/𝐴, ̄𝛿 has kernel 𝑝𝑒Ω𝐵/𝐴,𝛿.
Similarly for the kernel of Ω𝐵∧/𝐴,𝛿∧ → Ω𝐵𝑒/𝐴, ̄𝛿. Hence the lemma is clear. �

39.11. Divided power schemes

Some remarks on how to globalize the previous notions.

Definition 39.11.1. Let 𝒞 be a site. Let 𝒪 be a sheaf of rings on 𝒞. Let ℐ ⊂ 𝒪 be a sheaf
of ideals. A divided power structure 𝛾 on ℐ is a sequence of maps 𝛾𝑛 ∶ ℐ → ℐ, 𝑛 ≥ 1 such
that for any object 𝑈 of 𝒞 the triple

(𝒪(𝑈), ℐ(𝑈), 𝛾)

is a divided power ring.

To be sure this applies in particular to sheaves of rings on topological spaces. But it's
good to be a little bit more general as the structure sheaf of the crystalline site lives on
a... site! A triple (𝒞, ℐ, 𝛾) as in the definition above is sometimes called a divided power
topos in this chapter. Given a second (𝒞′, ℐ′, 𝛾′) and given a morphism of ringed topoi
(𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪) → (Sh(𝒞′), 𝒪′) we say that (𝑓, 𝑓♯) induces a morphism of divided
power topoi if 𝑓♯(𝑓−1ℐ′) ⊂ ℐ and the diagrams

𝑓−1ℐ′

𝑓−1𝛾′
𝑛
��

𝑓♯
// ℐ

𝛾𝑛

��
𝑓−1ℐ′ 𝑓♯

// ℐ

are commutative for all 𝑛 ≥ 1. If 𝑓 comes from a morphism of sites induced by a functor
𝑢 ∶ 𝒞′ → 𝒞 then this just means that

(𝒪′(𝑈′), ℐ′(𝑈′), 𝛾′) ⟶ (𝒪(𝑢(𝑈′)), ℐ(𝑢(𝑈′)), 𝛾)

is a homomorphism of divided power rings for all 𝑈′ ∈ 𝑂𝑏(𝒞′).

In the case of schemes we require the divided power ideal to be quasi-coherent. But apart
from this the definition is exactly the same as in the case of topoi. Here it is.

Definition 39.11.2. A divided power scheme is a triple (𝑆, ℐ, 𝛾) where 𝑆 is a scheme, ℐ is
a quasi-coherent sheaf of ideals, and 𝛾 is a divided power structure on ℐ. A morphism of
divided power schemes (𝑆, ℐ, 𝛾) → (𝑆′, ℐ′, 𝛾′) is a morphism of schemes 𝑓 ∶ 𝑆 → 𝑆′ such
that 𝑓−1ℐ′𝒪𝑆 ⊂ ℐ and such that

(𝒪𝑆(𝑈′), ℐ(𝑈′), 𝛾) ⟶ (𝒪𝑆′(𝑓−1𝑈′), ℐ(𝑓−1𝑈′), 𝛾)

is a homomorphism of divided power rings for all 𝑈′ ⊂ 𝑆′ open.

Recall that there is a 1-to-1 correspondence between quasi-coherent sheaves of ideals and
closed immersions, see Morphisms, Section 24.2. Thus given a divided power scheme
(𝑇, 𝒥, 𝛾) we get a canonical closed immersion 𝑈 → 𝑇 defined by 𝒥. Conversely, given a
closed immersion 𝑈 → 𝑇 and a divided power structure 𝛾 on the sheaf of ideals 𝒥 associated
to 𝑈 → 𝑇 we obtain a divided power scheme (𝑇, 𝒥, 𝛾). In many situations we only want to
consider such triples (𝑈, 𝑇, 𝛾) when the morphism 𝑈 → 𝑇 is a thickening, see More on
Morphisms, Definition 33.2.1.
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Definition 39.11.3. A triple (𝑈, 𝑇, 𝛾) as above is called a divided power thickening if 𝑈 → 𝑇
is a thickening.

Fibre products of divided power schemes exist when one of the three is a divided power
thickening. Here is a formal statement.

Lemma 39.11.4. Let (𝑈′, 𝑇′, 𝛿′) → (𝑆′
0, 𝑆′, 𝛾′) and (𝑆0, 𝑆, 𝛾) → (𝑆′

0, 𝑆′, 𝛾′) be morphisms
of divided power schemes. If (𝑈′, 𝑇′, 𝛿′) is a divided power thickening, then there exists a
divided power scheme (𝑇0, 𝑇, 𝛿) and

𝑇 //

��

𝑇′

��
𝑆 // 𝑆′

which is a cartesian diagram in the category of divided power schemes.

Proof. Omitted. Hints: If 𝑇 exists, then 𝑇0 = 𝑆0 ×𝑆′
0

𝑈′ (argue as in Remark 39.3.5).
Since 𝑇′ is a divided power thickening, we see that 𝑇 (if it exists) will be a divided power
thickening too. Hence we can define 𝑇 as the scheme with underlying topological space the
underlying topological space of 𝑇0 = 𝑆0 ×𝑆′

0
𝑈′ and as structure sheaf on affine pieces the

ring given by Lemma 39.9.3. �

We make the following observation. Suppose that (𝑈, 𝑇, 𝛾) is triple as above. Assume that
𝑇 is a scheme over 𝐙(𝑝) and that 𝑝 is locally nilpotent on 𝑈. Then

(1) 𝑝 locally nilpotent on 𝑇 ⇔ 𝑈 → 𝑇 is a thickening (see Lemma 39.2.6), and
(2) 𝑝𝑒𝒪𝑇 is locally on 𝑇 preserved by 𝛾 for 𝑒 ≫ 0 (see Lemma 39.4.5).

This suggest that good results on divided power thickenings will be available under the
following hypotheses.

Situation 39.11.5. Here 𝑝 is a prime number and (𝑆, ℐ, 𝛾) is a divided power scheme over
𝐙(𝑝). We set 𝑆0 = 𝑉(ℐ) ⊂ 𝑆. Finally, 𝑋 → 𝑆0 is a morphism of schemes such that 𝑝 is
locally nilpotent on 𝑋.

It is in this situation that we will define the big and small crystalline sites.

39.12. The big crystalline site

We first define the big site. Given a divided power scheme (𝑆, ℐ, 𝛾) we say (𝑇, 𝒥, 𝛿) is
a divided power scheme over (𝑆, ℐ, 𝛾) if 𝑇 comes endowed with a morphism 𝑇 → 𝑆 of
divided power schemes. Similarly, we say a divided power thickening (𝑈, 𝑇, 𝛿) is a divided
power thickening over (𝑆, ℐ, 𝛾) if 𝑇 comes endowed with a morphism 𝑇 → 𝑆 of divided
power schemes.

Definition 39.12.1. In Situation 39.11.5.
(1) A divided power thickening of 𝑋 relative to (𝑆, ℐ, 𝛾) is given by a divided power

thickening (𝑈, 𝑇, 𝛿) over (𝑆, ℐ, 𝛾) and an 𝑆-morphism 𝑈 → 𝑋.
(2) A morphism of divided power thickenings of 𝑋 relative to (𝑆, ℐ, 𝛾) is defined in

the obvious manner.
The category of divided power thickenings of𝑋 relative to (𝑆, ℐ, 𝛾) is denotedCRIS(𝑋/𝑆, ℐ, 𝛾)
or simply CRIS(𝑋/𝑆).
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For any (𝑈, 𝑇, 𝛿) in CRIS(𝑋/𝑆) we have that 𝑝 is locally nilpotent on 𝑇, see discussion
after Definition 39.11.3. A good way to visualize all the data associated to (𝑈, 𝑇, 𝛿) is the
commutative diagram

𝑇

��

𝑈oo

��
𝑋

��
𝑆 𝑆0
oo

where 𝑆0 = 𝑉(ℐ) ⊂ 𝑆. Morphisms of CRIS(𝑋/𝑆) can be similarly visualized as huge
commutative diagrams. In particular, there is a canonical forgetful functor
(39.12.1.1) CRIS(𝑋/𝑆) ⟶ Sch/𝑋, (𝑈, 𝑇, 𝛿) ⟼ 𝑈
as well as its one sided inverse (and left adjoint)
(39.12.1.2) Sch/𝑋 ⟶ CRIS(𝑋/𝑆), 𝑈 ⟼ (𝑈, 𝑈, ∅)
which is sometimes useful.

Lemma 39.12.2. In Situation 39.11.5. The category CRIS(𝑋/𝑆) has all finite nonempty
limits, in particular products of pairs and fibre products. The functor (39.12.1.1) commutes
with limits.

Proof. Omitted. Hint: See Lemma 39.9.3 for the affine case. See also Remark 39.3.5. �

Lemma 39.12.3. In Situation 39.11.5. Let

(𝑈3, 𝑇3, 𝛿3)

��

// (𝑈2, 𝑇2, 𝛿2)

��
(𝑈1, 𝑇1, 𝛿1) // (𝑈, 𝑇, 𝛿)

be a fibre square in the category of divided power thickenings of 𝑋 relative to (𝑆, ℐ, 𝛾). If
𝑇2 → 𝑇 is flat, then 𝑇3 = 𝑇1 ×𝑇 𝑇2 (as schemes).

Proof. This is true because a divided power structure extends uniquely along a flat ring
map. See Lemma 39.4.2. �

The lemma above means that the base change of a flat morphism of divided power thick-
enings is another flat morphism, and in fact is the ``usual'' base change of the morphism.
This implies that the following definition makes sense.

Definition 39.12.4. In Situation 39.11.5.
(1) A family of morphisms {(𝑈𝑖, 𝑇𝑖, 𝛿𝑖) → (𝑈, 𝑇, 𝛿)} of divided power thickenings

of 𝑋/𝑆 is a Zariski, étale, smooth, syntomic, or fppf covering if and only if the
family of morphisms of schemes {𝑇𝑖 → 𝑇} is one.

(2) The big crystalline site of 𝑋 over (𝑆, ℐ, 𝛾), is the category CRIS(𝑋/𝑆) endowed
with the Zariski topology.

(3) The topos of sheaves onCRIS(𝑋/𝑆) is denoted (𝑋/𝑆)CRIS or sometimes (𝑋/𝑆, ℐ, 𝛾)CRIS
3.

There are some obvious functorialities concerining these topoi.

3This clashes with our convention to denote the topos associated to a site 𝒞 by Sh(𝒞).
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Remark 39.12.5 (Functoriality). Let 𝑝 be a prime number. Let (𝑆, ℐ, 𝛾) → (𝑆′, ℐ′, 𝛾′) be
a morphism of divided power schemes over 𝐙(𝑝). Set 𝑆0 = 𝑉(ℐ) and 𝑆′

0 = 𝑉(ℐ′). Let

𝑋
𝑓
//

��

𝑌

��
𝑆0

// 𝑆′
0

be a commutative diagram of morphisms of schemes and assume 𝑝 is locally nilpotent on
𝑋 and 𝑌. Then we get a continuous and cocontinuous functor

CRIS(𝑋/𝑆) ⟶ CRIS(𝑌/𝑆′)

by letting (𝑈, 𝑇, 𝛿) correspond to (𝑈, 𝑇, 𝛿) with 𝑈 → 𝑋 → 𝑌 as the 𝑆′-morphism from 𝑈 to
𝑌. Hence we get a morphism of topoi

𝑓CRIS ∶ (𝑋/𝑆)CRIS ⟶ (𝑌/𝑆′)CRIS

see Sites, Section 9.19.

Remark 39.12.6 (Comparisonwith Zariski site). In Situation 39.11.5. The functor (39.12.1.1)
is continuous, cocontinuous, and commutes with products and fibred products. Hence we
obtain a morphism of topoi

𝑈𝑋/𝑆 ∶ (𝑋/𝑆)CRIS ⟶ Sh((Sch/𝑋)𝑍𝑎𝑟)

from the big crystalline topos of 𝑋/𝑆 to the big Zarisk topos of 𝑋. See Sites, Section 9.19.

Remark 39.12.7 (Structure morphism). In Situation 39.11.5. Consider the closed sub-
scheme 𝑆0 = 𝑉(ℐ) ⊂ 𝑆. If we assume that 𝑝 is locally nilpotent on 𝑆0 (which is always
the case in practice) then we obtain a situation as in Definition 39.12.1 with 𝑆0 instead of
𝑋. Hence we get a site CRIS(𝑆0/𝑆). If 𝑓 ∶ 𝑋 → 𝑆0 is the structure morphism of 𝑋 over
𝑆, then we get a commutative diagram of morphisms of ringed topoi

(𝑋/𝑆)CRIS 𝑓CRIS
//

𝑈𝑋/𝑆
��

(𝑆0/𝑆)CRIS

𝑈𝑆0/𝑆
��

Sh((Sch/𝑋)𝑍𝑎𝑟)
𝑓𝑏𝑖𝑔 // Sh((Sch/𝑆0)𝑍𝑎𝑟)

((
Sh((Sch/𝑆)𝑍𝑎𝑟)

by Remark 39.12.5. We think of the composition (𝑋/𝑆)CRIS → Sh((Sch/𝑆)𝑍𝑎𝑟) as the
structure morphism of the big crystalline site. Even if 𝑝 is not locally nilpotent on 𝑆0 the
structure morphism

(𝑋/𝑆)CRIS ⟶ Sh((Sch/𝑆)𝑍𝑎𝑟)

is defined as we can take the lower route through the diagram above. Thus it is themorphism
of topoi corresponding to the cocontinuous functor CRIS(𝑋/𝑆) → (Sch/𝑆)𝑍𝑎𝑟 given by the
rule (𝑈, 𝑇, 𝛿)/𝑆 ↦ 𝑇/𝑆, see Sites, Section 9.19.

Remark 39.12.8 (Compatibilities). The morphisms defined above satisfy numerous com-
patibilities. For example, in the situation of Remark 39.12.5 we obtain a commutative

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07IC
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07ID
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07IE
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MG


39.13. THE CRYSTALLINE SITE 2145

diagram of ringed topoi

(𝑋/𝑆)CRIS

��

// (𝑌/𝑆′)CRIS

��
Sh((Sch/𝑆)𝑍𝑎𝑟) // Sh((Sch/𝑆′)𝑍𝑎𝑟)

where the vertical arrows are the structure morphisms.

39.13. The crystalline site

Since (39.12.1.1) commutes with products and fibre products, we see that looking at those
(𝑈, 𝑇, 𝛿) such that 𝑈 → 𝑋 is an open immersion defines a full subcategory preserved under
fibre products (and more generally finite nonempty limits). Hence the following definition
makes sense.

Definition 39.13.1. In Situation 39.11.5.
(1) The (small) crystalline site of 𝑋 over (𝑆, ℐ, 𝛾), denoted Cris(𝑋/𝑆, ℐ, 𝛾) or simply

Cris(𝑋/𝑆) is the full subcategory of CRIS(𝑋/𝑆) consisting of those (𝑈, 𝑇, 𝛿) in
CRIS(𝑋/𝑆) such that 𝑈 → 𝑋 is an open immersion. It comes endowed with the
Zariski topology.

(2) The topos of sheaves onCris(𝑋/𝑆) is denoted (𝑋/𝑆)cris or sometimes (𝑋/𝑆, ℐ, 𝛾)cris4.

For any (𝑈, 𝑇, 𝛿) in Cris(𝑋/𝑆) the morphism 𝑈 → 𝑋 defines an object of the small Zariski
site 𝑋𝑍𝑎𝑟 of 𝑋. Hence a canonical forgetful functor

(39.13.1.1) Cris(𝑋/𝑆) ⟶ 𝑋𝑍𝑎𝑟, (𝑈, 𝑇, 𝛿) ⟼ 𝑈

and a left adjoint

(39.13.1.2) 𝑋𝑍𝑎𝑟 ⟶ Cris(𝑋/𝑆), 𝑈 ⟼ (𝑈, 𝑈, ∅)

which is sometimes useful.

We can compare the small and big crystalline sites, just like we can compare the small and
big Zariski sites of a scheme, see Topologies, Lemma 30.3.13.

Lemma 39.13.2. Assumptions as in Definition 39.12.1. The inclusion functor

Cris(𝑋/𝑆) → CRIS(𝑋/𝑆)

commutes with finite nonempty limits, is fully faithful, continuous, and cocontinuous. There
are morphisms of topoi

(𝑋/𝑆)cris
𝑖

−→ (𝑋/𝑆)CRIS
𝜋

−→ (𝑋/𝑆)cris
whose composition is the identity and of which the first is induced by the inclusion functor.
Moreover, 𝜋∗ = 𝑖−1.

Proof. For the first assertion see Lemma 39.12.2. This gives us a morphism of topoi 𝑖 ∶
(𝑋/𝑆)cris → (𝑋/𝑆)CRIS and a left adjoint 𝑖! such that 𝑖−1𝑖! = 𝑖−1𝑖∗ = id, see Sites, Lemmas
9.19.5, 9.19.6, and 9.19.7. We claim that 𝑖! is exact. If this is true, then we can define 𝜋
by the rules 𝜋−1 = 𝑖! and 𝜋∗ = 𝑖−1 and everything is clear. To prove the claim, note that
we already know that 𝑖! is right exact and preserves fibre products (see references given).
Hence it suffices to show that 𝑖!∗ = ∗ where ∗ indicates the final object in the category

4This clashes with our convention to denote the topos associated to a site 𝒞 by Sh(𝒞).
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of sheaves of sets. To see this it suffices to produce a set of objects (𝑈𝑖, 𝑇𝑖, 𝛿𝑖), 𝑖 ∈ 𝐼 of
Cris(𝑋/𝑆) such that

∐𝑖∈𝐼
ℎ(𝑈𝑖,𝑇𝑖,𝛿𝑖) → ∗

is surjective in (𝑋/𝑆)CRIS (details omitted; hint: use that Cris(𝑋/𝑆) has products and that
the functor Cris(𝑋/𝑆) → CRIS(𝑋/𝑆) commutes with them). In the affine case this follows
from Lemma 39.9.6. We omit the proof in general. �

Remark 39.13.3 (Functoriality). Let 𝑝 be a prime number. Let (𝑆, ℐ, 𝛾) → (𝑆′, ℐ′, 𝛾′) be
a morphism of divided power schemes over 𝐙(𝑝). Let

𝑋
𝑓
//

��

𝑌

��
𝑆0

// 𝑆′
0

be a commutative diagram of morphisms of schemes and assume 𝑝 is locally nilpotent on
𝑋 and 𝑌. By analogy with Topologies, Lemma 30.3.16 we define

𝑓cris ∶ (𝑋/𝑆)cris ⟶ (𝑌/𝑆′)cris
by the formula 𝑓cris = 𝜋𝑌 ∘ 𝑓CRIS ∘ 𝑖𝑋 where 𝑖𝑋 and 𝜋𝑌 are as in Lemma 39.13.2 for 𝑋 and
𝑌 and where 𝑓CRIS is as in Remark 39.12.5.

Remark 39.13.4 (Comparisonwith Zariski site). In Situation 39.11.5. The functor (39.13.1.1)
is continuous, cocontinuous, and commutes with products and fibred products. Hence we
obtain a morphism of topoi

𝑢𝑋/𝑆 ∶ (𝑋/𝑆)cris ⟶ Sh(𝑋𝑍𝑎𝑟)

relating the small crystalline topos of 𝑋/𝑆 with the small Zarisk topos of 𝑋. See Sites,
Section 9.19.

Lemma 39.13.5. In Situation 39.11.5. Let 𝑋′ ⊂ 𝑋 and 𝑆′ ⊂ 𝑆 be open subschemes such
that 𝑋′ maps into 𝑆′. Then there is a fully faithful functor Cris(𝑋′/𝑆′) → Cris(𝑋/𝑆) which
gives rise to a morphism of topoi fitting into the commutative diagram

(𝑋′/𝑆′)cris //

𝑢𝑋′/𝑆′

��

(𝑋/𝑆)cris
𝑢𝑋/𝑆

��
Sh(𝑋′

𝑍𝑎𝑟) // Sh(𝑋𝑍𝑎𝑟)

Moreover, this diagram is an example of localization of morphisms of topoi as in Sites,
Lemma 9.27.1.

Proof. The fully faithful functor comes from thinking of objects of Cris(𝑋′/𝑆′) as divided
power thickenings (𝑈, 𝑇, 𝛿) of 𝑋 where 𝑈 → 𝑋 factors through 𝑋′ ⊂ 𝑋 (since then auto-
matically 𝑇 → 𝑆 will factor through 𝑆′). This functor is clearly cocontinuous hence we
obtain a morphism of topoi as indicated. Let ℎ𝑋′ ∈ Sh(𝑋𝑍𝑎𝑟) be the representable sheaf
associated to 𝑋′ viewed as an object of 𝑋𝑍𝑎𝑟. It is clear that Sh(𝑋′

𝑍𝑎𝑟) is the localiza-
tion Sh(𝑋𝑍𝑎𝑟)/ℎ𝑋′. On the other hand, the category Cris(𝑋/𝑆)/𝑢−1

𝑋/𝑆ℎ𝑋′ (see Sites, Lemma
9.26.3) is canonically identified with Cris(𝑋′/𝑆′) by the functor above. This finishes the
proof. �
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Remark 39.13.6 (Structure morphism). In Situation 39.11.5. Consider the closed sub-
scheme 𝑆0 = 𝑉(ℐ) ⊂ 𝑆. If we assume that 𝑝 is locally nilpotent on 𝑆0 (which is always
the case in practice) then we obtain a situation as in Definition 39.12.1 with 𝑆0 instead of
𝑋. Hence we get a site Cris(𝑆0/𝑆). If 𝑓 ∶ 𝑋 → 𝑆0 is the structure morphism of 𝑋 over 𝑆,
then we get a commutative diagram of ringed topoi

(𝑋/𝑆)cris 𝑓cris
//

𝑢𝑋/𝑆

��

(𝑆0/𝑆)cris
𝑢𝑆0/𝑆

��
Sh(𝑋𝑍𝑎𝑟)

𝑓𝑠𝑚𝑎𝑙𝑙 // Sh(𝑆0,𝑍𝑎𝑟)

&&
Sh(𝑆𝑍𝑎𝑟)

see Remark 39.13.3. We think of the compostion (𝑋/𝑆)cris → Sh(𝑆𝑍𝑎𝑟) as the structure
morphism of the crystalline site. Even if 𝑝 is not locally nilpotent on 𝑆0 the structure
morphism

𝜏𝑋/𝑆 ∶ (𝑋/𝑆)cris ⟶ Sh(𝑆𝑍𝑎𝑟)
is defined as we can take the lower route through the diagram above.

Remark 39.13.7 (Compatibilities). The morphisms defined above satisfy numerous com-
patibilities. For example, in the situation of Remark 39.13.3 we obtain a commutative
diagram of ringed topoi

(𝑋/𝑆)cris

��

// (𝑌/𝑆′)cris

��
Sh((Sch/𝑆)𝑍𝑎𝑟) // Sh((Sch/𝑆′)𝑍𝑎𝑟)

where the vertical arrows are the structure morphisms.

39.14. Sheaves on the crystalline site

Notation and assumptions as in Situation 39.11.5. In order to discuss the small and big
crystalline sites of 𝑋/𝑆 simultaneously in this section we let

𝒞 = CRIS(𝑋/𝑆) or 𝒞 = Cris(𝑋/𝑆).

A sheaf ℱ on 𝒞 gives rise to a restriction ℱ𝑇 for every object (𝑈, 𝑇, 𝛿) of 𝒞. Namely, ℱ𝑇 is
the Zariski sheaf on the scheme 𝑇 defined by the rule

ℱ𝑇(𝑊) = ℱ(𝑈 ∩ 𝑊, 𝑊, 𝛿|𝑊)

for 𝑊 ⊂ 𝑇 is open. Moreover, if 𝑓 ∶ 𝑇 → 𝑇′ is a morphism between objects (𝑈, 𝑇, 𝛿) and
(𝑈′, 𝑇′, 𝛿′) of 𝒞, then there is a canonical comparison map

(39.14.0.1) 𝑐𝑓 ∶ 𝑓−1ℱ𝑇′ ⟶ ℱ𝑇.

Namely, if 𝑊′ ⊂ 𝑇′ is open then 𝑓 induces a morphism

𝑓|𝑓−1𝑊′ ∶ (𝑈 ∩ 𝑓−1(𝑊′), 𝑓−1𝑊′, 𝛿|𝑓−1𝑊′) ⟶ (𝑈′ ∩ 𝑊′, 𝑊′, 𝛿|𝑊′)

of 𝒞, hence we can use the restriction mapping (𝑓|𝑓−1𝑊′)∗ of ℱ to define a map ℱ𝑇′(𝑊′) →
ℱ𝑇(𝑓−1𝑊′). These maps are clearly compatible with further restriction, hence define an
𝑓-map fromℱ𝑇′ toℱ𝑇 (see Sheaves, Section 6.21 and especially Sheaves, Definition 6.21.7).
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Thus a map 𝑐𝑓 as in (39.14.0.1). Note that if 𝑓 is an open immersion, then 𝑐𝑓 is an isomor-
phism, because in that case ℱ𝑇 is just the restriction of ℱ𝑇′ to 𝑇.

Conversely, given Zariski sheaves ℱ𝑇 for every object (𝑈, 𝑇, 𝛿) of 𝒞 and comparion maps
𝑐𝑓 as above which (a) are isomorphisms for open immersions, and (b) satisfy a suitable
cocycle condition, we obtain a sheaf on 𝒞. This is proved exactly as in Topologies, Lemma
30.3.18.

The structure sheaf on 𝒞 is the sheaf 𝒪𝑋/𝑆 defined by the rule

𝒪𝑋/𝑆 ∶ (𝑈, 𝑇, 𝛿) ⟼ Γ(𝑇, 𝒪𝑇)

This is a sheaf by the definition of coverings in𝒞. Suppose thatℱ is a sheaf of𝒪𝑋/𝑆-modules.
In this case the comparison mappings (39.14.0.1) define a comparison map

(39.14.0.2) 𝑐𝑓 ∶ 𝑓∗ℱ𝑇 ⟶ ℱ𝑇′

of 𝒪𝑇-modules.

Another type of example comes by starting with a sheaf 𝒢 on (Sch/𝑋)𝑍𝑎𝑟 or 𝑋𝑍𝑎𝑟 (depend-
ing on whether 𝒞 = CRIS(𝑋/𝑆) or 𝒞 = Cris(𝑋/𝑆)). Then 𝒢 defined by the rule

𝒢 ∶ (𝑈, 𝑇, 𝛿) ⟼ 𝒢(𝑈)

is a sheaf on 𝒞. In particular, if we take 𝒢 = 𝐆𝑎 = 𝒪𝑋, then we obtain

𝐆𝑎 ∶ (𝑈, 𝑇, 𝛿) ⟼ Γ(𝑈, 𝒪𝑈)

There is a surjective map of sheaves 𝒪𝑋/𝑆 → 𝐆𝑎 defined by the canonical maps Γ(𝑇, 𝒪𝑇) →
Γ(𝑈, 𝒪𝑈) for objects (𝑈, 𝑇, 𝛿). The kernel of this map is denoted 𝒥𝑋/𝑆, hence a short exact
sequence

0 → 𝒥𝑋/𝑆 → 𝒪𝑋/𝑆 → 𝐆𝑎 → 0

Note that 𝒥𝑋/𝑆 comes equipped with a canonical divided power structure. After all, for
each object (𝑈, 𝑇, 𝛿) the third component 𝛿 is a divided power structure on the kernel of
𝒪𝑇 → 𝒪𝑈. Hence the (big) crystalline topos is a divided power topos.

39.15. Crystals in modules

It turns out that a crystal is a very general gadget. However, the definition may be a bit hard
to parse, so we first give the definition in the case of modules on the crystalline sites.

Definition 39.15.1. In Situation 39.11.5. Let 𝒞 = CRIS(𝑋/𝑆) or 𝒞 = Cris(𝑋/𝑆). Let ℱ
be a sheaf of 𝒪𝑋/𝑆-modules on 𝒞.

(1) We say ℱ is locally quasi-coherent if for every object (𝑈, 𝑇, 𝛿) of 𝒞 the restriction
ℱ𝑇 is a quasi-coherent 𝒪𝑇-module.

(2) We say ℱ is quasi-coherent if it is quasi-coherent in the sense of Modules on
Sites, Definition 16.23.1.

(3) We say ℱ is a crystal in 𝒪𝑋/𝑆-modules if all the comparison maps (39.14.0.2) are
isomorphisms.

It turns out that we can relate these notions as follows.

Lemma 39.15.2. With notation 𝑋/𝑆, ℐ, 𝛾, 𝒞, ℱ as in Definition 39.15.1. The following are
equivalent

(1) ℱ is quasi-coherent, and
(2) ℱ is locally quasi-coherent and a crystal in 𝒪𝑋/𝑆-modules.
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Proof. Assume (1). Let 𝑓 ∶ (𝑈′, 𝑇′, 𝛿′) → (𝑈, 𝑇, 𝛿) be an object of 𝒞. We have to prove
(a) ℱ𝑇 is a quasi-coherent 𝒪𝑇-module and (b) 𝑐𝑓 ∶ 𝑓∗ℱ𝑇 → ℱ𝑇′ is an isomorphism. The
assumption means that we can find a covering {(𝑇𝑖, 𝑈𝑖, 𝛿𝑖) → (𝑇, 𝑈, 𝛿)} and for each 𝑖 the
restriction of ℱ to 𝒞/(𝑇𝑖, 𝑈𝑖, 𝛿𝑖) has a global presentation. Since it suffices to prove (a)
and (b) Zariski locally, we may replace 𝑓 ∶ (𝑇′, 𝑈′, 𝛿′) → (𝑇, 𝑈, 𝛿) by the base change to
(𝑇𝑖, 𝑈𝑖, 𝛿𝑖) and assume that ℱ restricted to 𝒞/(𝑇, 𝑈, 𝛿) has a global presentation

⨁𝑗∈𝐽
𝒪𝑋/𝑆|𝒞/(𝑈,𝑇,𝛿) ⟶ ⨁𝑖∈𝐼

𝒪𝑋/𝑆|𝒞/(𝑈,𝑇,𝛿) ⟶ ℱ|𝒞/(𝑈,𝑇,𝛿) ⟶ 0

It is clear that this gives a presentation

⨁𝑗∈𝐽
𝒪𝑇 ⟶ ⨁𝑖∈𝐼

𝒪𝑇 ⟶ ℱ𝑇 ⟶ 0

and hence (a) holds. Moreover, the presentation restricts to 𝑇′ to give a similar presentation
of ℱ𝑇′, whence (b) holds.

Assume (2). Let (𝑈, 𝑇, 𝛿) be an object of 𝒞. We have to find a covering of (𝑈, 𝑇, 𝛿) such that
ℱ has a global presentation when we restrict to the localization of 𝒞 at the members of the
covering. Thus we may assume that 𝑇 is affine. In this case we can choose a presentation

⨁𝑗∈𝐽
𝒪𝑇 ⟶ ⨁𝑖∈𝐼

𝒪𝑇 ⟶ ℱ𝑇 ⟶ 0

as ℱ𝑇 is assumed to be a quasi-coherent 𝒪𝑇-module. Then by the crystal property of ℱ we
see that this pulls back to a presentation ofℱ𝑇′ for anymorphism 𝑓 ∶ (𝑈′, 𝑇′, 𝛿′) → (𝑈, 𝑇, 𝛿)
of 𝒞. Thus the desired presentation of ℱ|𝒞/(𝑈,𝑇,𝛿). �

Definition 39.15.3. If ℱ satisfies the equivalent conditions of Lemma 39.15.2, then we say
that ℱ is a crystal in quasi-coherent modules. We say that ℱ is a crystal in finite locally
free modules if, in addition, ℱ is finite locally free.

Of course, as Lemma 39.15.2 shows, this notation is somewhat heavy since a quasi-coherent
module is always a crystal. But it is standard terminology in the literature.

Remark 39.15.4. To formulate the general notion of a crystal we use the language of stacks
and strongly cartesian morphisms, see Stacks, Definition 50.4.1 and Categories, Definition
4.30.1. In Situation 39.11.5 let 𝑝 ∶ 𝒞 → Cris(𝑋/𝑆) be a stack. A crystal in objects of 𝒞 on
𝑋 relative to 𝑆 is a cartesian section 𝜎 ∶ Cris(𝑋/𝑆) → 𝒞, i.e., a functor 𝜎 such that 𝑝∘𝜎 = id
and such that 𝜎(𝑓) is strongly cartesian for all morphisms 𝑓 of Cris(𝑋/𝑆). Similarly for the
big crystalline site.

39.16. Sheaf of differentials

In this section we will stick with the (small) crystalline site as it seems more natural. We
globalize Definition 39.10.1 as follows.

Definition 39.16.1. In Situation 39.11.5 let ℱ be a sheaf of 𝒪𝑋/𝑆-modules on Cris(𝑋/𝑆).
An 𝑆-derivation 𝐷 ∶ 𝒪𝑋/𝑆 → ℱ is a map of sheaves such that for every object (𝑈, 𝑇, 𝛿) of
Cris(𝑋/𝑆) the map

𝐷 ∶ Γ(𝑇, 𝒪𝑇) ⟶ Γ(𝑇, ℱ)

is a divided power Γ(𝑉, 𝒪𝑉)-derivation where 𝑉 ⊂ 𝑆 is any open such that 𝑇 → 𝑆 factors
through 𝑉.
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This means that 𝐷 is additive, satisfies the Leibniz rule, annihilates functions coming from
𝑆, and satisfies 𝐷(𝑓[𝑛]) = 𝑓[𝑛−1]𝐷(𝑓) for a local section 𝑓 of the divided power ideal 𝒥𝑋/𝑆.
This is a special case of a very general notion which we now describe.

Please compare the following discussion with Modules on Sites, Section 16.29. Let 𝒞 be a
site, let 𝒜 → ℬ be a map of sheaves of rings on 𝒞, let 𝒥 ⊂ ℬ be a sheaf of ideals, let 𝛿 be
a divided power structure on 𝒥, and let ℱ be a sheaf of ℬ-modules. Then there is a notion
of a divided power 𝒜-derivation 𝐷 ∶ ℬ → ℱ. This means that 𝐷 is 𝒜-linear, satisfies
the Leibnize rule, and satisfies 𝐷(𝛿𝑛(𝑥)) = 𝛿𝑛−1(𝑥)𝐷(𝑥) for local sections 𝑥 of 𝒥. In this
situation there exists a universal divided power 𝒜-derivation

dℬ/𝒜,𝛿 ∶ ℬ ⟶ Ωℬ/𝒜,𝛿

Moreover, dℬ/𝒜,𝛿 is the compostion

ℬ ⟶ Ωℬ/𝒜 ⟶ Ωℬ/𝒜,𝛿

where the first map is the universal derivation constructed in the proof of Modules on Sites,
Lemma 16.29.2 and the second arrow is the quotient by the submodule generated by the
local sections dℬ/𝒜(𝛿𝑛(𝑥)) − 𝛿𝑛−1(𝑥)dℬ/𝒜(𝑥).

We translate this into a relative notion as follows. Suppose (𝑓, 𝑓♯) ∶ (Sh(𝒞), 𝒪) → (Sh(𝒞′), 𝒪′)
is a morphism of ringed topoi, 𝒥 ⊂ 𝒪 a sheaf of ideals, 𝛿 a divided power structure on 𝒥,
and ℱ a sheaf of 𝒪-modules. In this situation we say 𝐷 ∶ 𝒪 → ℱ is a divided power
𝒪′-derivation if 𝐷 is a divided power 𝑓−1𝒪′-derivation as defined above. Moreover, we
write

Ω𝒪/𝒪′,𝛿 = Ω𝒪/𝑓−1𝒪′,𝛿

which is the receptacle of the universal divided power 𝒪′-derivation.

Appying this to the structure morphism

(𝑋/𝑆)Cris ⟶ Sh(𝑆𝑍𝑎𝑟)

(see Remark 39.13.6) we recover the notion of Definition 39.16.1 above. In particular, there
is a universal divided power derivation

𝑑𝑋/𝑆 ∶ 𝒪𝑋/𝑆 → Ω𝑋/𝑆

Note that we omit from the notation the decoration indicating the module of differentials is
compatible with divided powers (it seems unlikely anybody would ever consider the usual
module of differentials of the structure sheaf on the crystalline site).

Lemma 39.16.2. Let (𝑇, 𝒥, 𝛿) be a divided power scheme. Let 𝑇 → 𝑆 be a morphism of
schemes. The quotient Ω𝑇/𝑆 → Ω𝑇/𝑆,𝛿 described above is a quasi-coherent 𝒪𝑇-module. For
𝑊 ⊂ 𝑇 affine open mapping into 𝑉 ⊂ 𝑆 affine open we have

Γ(𝑊, Ω𝑇/𝑆,𝛿) = ΩΓ(𝑊,𝒪)/Γ(𝑉,𝒪𝑉),𝛿

where the right hand side is as constructed in Section 39.10.

Proof. Omitted. �

Lemma 39.16.3. In Situation 39.11.5. For (𝑈, 𝑇, 𝛿) in Cris(𝑋/𝑆) the restriction (Ω𝑋/𝑆)𝑇
to 𝑇 is Ω𝑇/𝑆,𝛿 and the restriction d𝑋/𝑆|𝑇 is equal to d𝑇/𝑆,𝛿.

Proof. Omitted. �
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Lemma 39.16.4. In Situation 39.11.5. For any affine object (𝑈, 𝑇, 𝛿) of Cris(𝑋/𝑆) mapping
into an affine open 𝑉 ⊂ 𝑆 we have

Γ((𝑈, 𝑇, 𝛿), Ω𝑋/𝑆) = ΩΓ(𝑇,𝒪)/Γ(𝑉,𝒪𝑉),𝛿

where the right hand side is as constructed in Section 39.10.

Proof. Combine Lemmas 39.16.2 and 39.16.3. �

Lemma 39.16.5. In Situation 39.11.5. Let (𝑈, 𝑇, 𝛿) be an object of Cris(𝑋/𝑆). Let

(𝑈(1), 𝑇(1), 𝛿(1)) = (𝑈, 𝑇, 𝛿) × (𝑈, 𝑇, 𝛿)

in Cris(𝑋/𝑆). Let 𝒦 ⊂ 𝒪𝑇(1) be the quasi-coherent sheaf of ideals corresponding to the
closed immersion Δ ∶ 𝑇 → 𝑇(1). Then 𝒦 ⊂ 𝒥𝑇(1) is preserved by the divided structure on
𝒥𝑇(1) and we have

(Ω𝑋/𝑆)𝑇 = 𝒦/𝒦[2]

Proof. Note that 𝑈 = 𝑈(1) as 𝑈 → 𝑋 is an open immersion and as (39.13.1.1) commutes
with products. Hence we see that 𝒦 ⊂ 𝒥𝑇(1). Given this fact the lemma follows by working
affine locally on 𝑇 and using Lemmas 39.16.4 and 39.10.5. �

It turns out that Ω𝑋/𝑆 is not a crystal in quasi-coherent 𝒪𝑋/𝑆-modules. But it does satisfy
two closely related properties (compare with Lemma 39.15.2).

Lemma 39.16.6. In Situation 39.11.5. The sheaf of differentials Ω𝑋/𝑆 has the following
two properties:

(1) Ω𝑋/𝑆 is locally quasi-coherent, and
(2) for any morphism (𝑈, 𝑇, 𝛿) → (𝑈′, 𝑇′, 𝛿′) of Cris(𝑋/𝑆) where 𝑓 ∶ 𝑇 → 𝑇′ is a

closed immersion the map 𝑐𝑓 ∶ 𝑓∗(Ω𝑋/𝑆)𝑇′ → (Ω𝑋/𝑆)𝑇 is surjective.

Proof. Part (1) follows from a combination of Lemmas 39.16.2 and 39.16.3. Part (2) fol-
lows from the fact that (Ω𝑋/𝑆)𝑇 = Ω𝑇/𝑆,𝛿 is a quotient of Ω𝑇/𝑆 and that 𝑓∗Ω𝑇′/𝑆 → Ω𝑇/𝑆 is
surjective. �

39.17. Two universal thickenings

The constructions in this section will help us define a connection on a crystal in modules
on the crystalline site. In some sense the constructions here are the ``sheafified, universal''
versions of the constructions in Section 39.7.

Remark 39.17.1. In Situation 39.11.5. Let (𝑈, 𝑇, 𝛿) be an object of Cris(𝑋/𝑆). Write
Ω𝑇/𝑆,𝛿 = (Ω𝑋/𝑆)𝑇, see Lemma 39.16.3. We explicitly describe a first order thickening 𝑇′ of
𝑇. Namely, set

𝒪𝑇′ = 𝒪𝑇 ⊕ Ω𝑇/𝑆,𝛿

with algebra structure such that Ω𝑇/𝑆,𝛿 is an ideal of square zero. Let 𝒥 ⊂ 𝒪𝑇 be the ideal
sheaf of the closed immersion 𝑈 → 𝑇. Set 𝒥′ = 𝒥 ⊕ Ω𝑇/𝑆,𝛿. Define a divided power
structure on 𝒥′ by setting

𝛿′
𝑛(𝑓, 𝜔) = (𝛿𝑛(𝑓), 𝛿𝑛−1(𝑓)𝜔),

see Lemma 39.7.1. There are two ring maps

𝑝0, 𝑝1 ∶ 𝒪𝑇 → 𝒪𝑇′
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The first is given by 𝑓 ↦ (𝑓, 0) and the second by 𝑓 ↦ (𝑓, d𝑇/𝑆,𝛿𝑓). Note that both are
compatible with the divided power structures on 𝒥 and 𝒥′ and so is the quotient map 𝒪𝑇′ →
𝒪𝑇. Thus we get an object (𝑈, 𝑇′, 𝛿′) of Cris(𝑋/𝑆) and a commutative diagram

𝑇
id

��
𝑖
��

id

��
𝑇 𝑇′𝑝0oo 𝑝1 // 𝑇

of Cris(𝑋/𝑆) such that 𝑖 is a first order thickening whose ideal sheaf is identified with Ω𝑇/𝑆,𝛿
and such that 𝑝∗

1 −𝑝∗
0 ∶ 𝒪𝑇 → 𝒪𝑇′ is identified with the universal derivation d𝑇/𝑆,𝛿 composed

with the inclusion Ω𝑇/𝑆,𝛿 → 𝒪𝑇′.

Remark 39.17.2. In Situation 39.11.5. Let (𝑈, 𝑇, 𝛿) be an object of Cris(𝑋/𝑆). Write
Ω𝑇/𝑆,𝛿 = (Ω𝑋/𝑆)𝑇, see Lemma 39.16.3. We also write Ω2

𝑇/𝑆,𝛿 for its second exterior power.
We explicitly describe a second order thickening 𝑇″ of 𝑇. Namely, set

𝒪𝑇″ = 𝒪𝑇 ⊕ Ω𝑇/𝑆,𝛿 ⊕ Ω𝑇/𝑆,𝛿 ⊕ Ω2
𝑇/𝑆,𝛿

with algebra structure defined in the following way

(𝑓, 𝜔1, 𝜔2, 𝜂)⋅(𝑓′, 𝜔′
1, 𝜔′

2, 𝜂′) = (𝑓𝑓′, 𝑓𝜔′
1+𝑓′𝜔1, 𝑓𝜔′

2+𝑓′𝜔′
2, 𝑓𝜂′+𝑓′𝜂+𝜔1∧𝜔′

2+𝜔′
1∧𝜔2).

Let 𝒥 ⊂ 𝒪𝑇 be the ideal sheaf of the closed immersion 𝑈 → 𝑇. Let 𝒥″ be the inverse image
of 𝒥 under the projection 𝒪𝑇″ → 𝒪𝑇. Define a divided power structure on 𝒥″ by setting

𝛿″
𝑛 (𝑓, 𝜔1, 𝜔2, 𝜂) = (𝛿𝑛(𝑓), 𝛿𝑛−1(𝑓)𝜔1, 𝛿𝑛−1(𝑓)𝜔2, 𝛿𝑛−1(𝑓)𝜂 + 𝛿𝑛−2(𝑓)𝜔1 ∧ 𝜔2)

see Lemma 39.7.2. There are three ring maps 𝑞0, 𝑞1, 𝑞2 ∶ 𝒪𝑇 → 𝒪𝑇″ given by

𝑞0(𝑓) = (𝑓, 0, 0, 0),
𝑞1(𝑓) = (𝑓, d𝑓, 0, 0),
𝑞2(𝑓) = (𝑓, d𝑓, d𝑓, 0)

where d = d𝑇/𝑆,𝛿. Note that all three are compatible with the divided power structures on
𝒥 and 𝒥″. There are three ring maps 𝑞01, 𝑞12, 𝑞02 ∶ 𝒪𝑇′ → 𝒪𝑇″ where 𝒪𝑇′ is as in Remark
39.17.1. Namely, set

𝑞01(𝑓, 𝜔) = (𝑓, 𝜔, 0, 0),
𝑞12(𝑓, 𝜔) = (𝑓, d𝑓, 𝜔, d𝜔),
𝑞02(𝑓, 𝜔) = (𝑓, 𝜔, 𝜔, 0)

These are also compatible with the given divided power structures. Let's do the verifications
for 𝑞12: Note that 𝑞12 is a ring homomorphism as

𝑞12(𝑓, 𝜔)𝑞12(𝑔, 𝜂) = (𝑓, d𝑓, 𝜔, d𝜔)(𝑔, d𝑔, 𝜂, d𝜂)
= (𝑓𝑔, 𝑓d𝑔 + 𝑔d𝑓, 𝑓𝜂 + 𝑔𝜔, 𝑓d𝜂 + 𝑔d𝜔 + d𝑓 ∧ 𝜂 + d𝑔 ∧ 𝜔)
= 𝑞12(𝑓𝑔, 𝑓𝜂 + 𝑔𝜔) = 𝑞12((𝑓, 𝜔)(𝑔, 𝜂))

Note that 𝑞12 is compatible with divided powers because

𝛿″
𝑛 (𝑞12(𝑓, 𝜔)) = 𝛿″

𝑛 ((𝑓, d𝑓, 𝜔, d𝜔))
= (𝛿𝑛(𝑓), 𝛿𝑛−1(𝑓)d𝑓, 𝛿𝑛−1(𝑓)𝜔, 𝛿𝑛−1(𝑓)d𝜔 + 𝛿𝑛−2(𝑓)d(𝑓) ∧ 𝜔)
= 𝑞12((𝛿𝑛(𝑓), 𝛿𝑛−1(𝑓)𝜔)) = 𝑞12(𝛿′

𝑛(𝑓, 𝜔))
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The verifications for 𝑞01 and 𝑞02 are easier. Note that 𝑞0 = 𝑞01∘𝑝0, 𝑞1 = 𝑞01∘𝑝1, 𝑞1 = 𝑞12∘𝑝0,
𝑞2 = 𝑞12 ∘ 𝑝1, 𝑞0 = 𝑞02 ∘ 𝑝0, and 𝑞2 = 𝑞02 ∘ 𝑝1. Thus (𝑈, 𝑇″, 𝛿″) is an object of Cris(𝑋/𝑆)
and we get morphisms

𝑇″
//
//
//
𝑇′ //

// 𝑇

of Cris(𝑋/𝑆) satisfying the relations described above. In applications wewill use 𝑞𝑖 ∶ 𝑇″ →
𝑇 and 𝑞𝑖𝑗 ∶ 𝑇″ → 𝑇′ to denote the morphisms associated to the ring maps described above.

39.18. The de Rham complex

In Situation 39.11.5. Working on the (small) crystalline site, we define Ω𝑖
𝑋/𝑆 = ∧𝑖

𝒪𝑋/𝑆
Ω𝑋/𝑆

for 𝑖 ≥ 0. The universal 𝑆-derivation d𝑋/𝑆 gives rise to the de Rham complex

𝒪𝑋/𝑆 → Ω1
𝑋/𝑆 → Ω2

𝑋/𝑆 → …

on Cris(𝑋/𝑆), see Lemma 39.16.4 and Remark 39.10.9.

39.19. Connections

In Situation 39.11.5. Given an 𝒪𝑋/𝑆-module ℱ on Cris(𝑋/𝑆) a connection is a map of
abelian sheaves

∇ ∶ ℱ ⟶ ℱ ⊗𝒪𝑋/𝑆
Ω𝑋/𝑆

such that ∇(𝑓𝑠) = 𝑓∇(𝑠) + 𝑠 ⊗d𝑓 for local sections 𝑠, 𝑓 of ℱ and 𝒪𝑋/𝑆. Given a connection
there are canonical maps ∇ ∶ ℱ ⊗𝒪𝑋/𝑆

Ω𝑖
𝑋/𝑆 ⟶ ℱ ⊗𝒪𝑋/𝑆

Ω𝑖+1
𝑋/𝑆 defined by the rule ∇(𝑠 ⊗

𝜔) = ∇(𝑠) ∧ 𝜔 + 𝑠 ⊗ d𝜔 as in Remark 39.10.10. We say the connection is integrable if
∇ ∘ ∇ = 0. If ∇ is integrable we obtain the de Rham complex

ℱ → ℱ ⊗𝒪𝑋/𝑆
Ω1

𝑋/𝑆 → ℱ ⊗𝒪𝑋/𝑆
Ω2

𝑋/𝑆 → …

on Cris(𝑋/𝑆). It turns out that any crystal in 𝒪𝑋/𝑆-modules comes equipped with a canon-
ical integrable connection.

Lemma 39.19.1. In Situation 39.11.5. Let ℱ be a crystal in 𝒪𝑋/𝑆-modules on Cris(𝑋/𝑆).
Then ℱ comes equipped with a canonical integrable connection.

Proof. Say (𝑈, 𝑇, 𝛿) is an object of Cris(𝑋/𝑆). Let (𝑈, 𝑇′, 𝛿′) be the infinitesimal thickening
of 𝑇 by (Ω𝑋/𝑆)𝑇 = Ω𝑇/𝑆,𝛿 constructed in Remark 39.17.1. It comes with projections 𝑝0, 𝑝1 ∶
𝑇′ → 𝑇 and a diagonal 𝑖 ∶ 𝑇 → 𝑇(1). By assumption we get isomorphisms

𝑝∗
0ℱ𝑇

𝑐0−−→ ℱ𝑇′
𝑐1←−− 𝑝∗

1ℱ𝑇

of 𝒪𝑇′-modules. Pulling 𝑐 = 𝑐−1
1 ∘𝑐0 back to 𝑇 by 𝑖 we obtain the identity map of ℱ𝑇. Hence

if 𝑠 ∈ Γ(𝑇, ℱ𝑇) then ∇(𝑠) = 𝑝∗
1𝑠 − 𝑐(𝑝∗

0𝑠) is a section of 𝑝∗
1ℱ𝑇 which vanishes on pulling

back by Δ. Hence ∇(𝑠) is a section of

ℱ𝑇 ⊗𝒪𝑇
Ω𝑇/𝑆,𝛿

because this is the kernel of 𝑝∗
1ℱ𝑇 → ℱ𝑇 as Ω𝑇/𝑆,𝛿 is the kernel of 𝒪𝑇′ → 𝒪𝑇 by construction.

The collection of maps

∇ ∶ Γ(𝑇, ℱ𝑇) → Γ(𝑇, ℱ𝑇 ⊗𝒪𝑇
Ω𝑇/𝑆,𝛿)

so obtained is functorial in 𝑇 because the construction of 𝑇′ is functorial in 𝑇. Hence we
obtain a connection.
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To show that the connection is integrable we consider the object (𝑈, 𝑇″, 𝛿″) constructed in
Remark 39.17.2. Because ℱ is a sheaf we see that

𝑞∗
0ℱ𝑇 𝑞∗

01𝑐
//

𝑞∗
02𝑐 ""

𝑞∗
1ℱ𝑇

𝑞∗
12𝑐||

𝑞∗
2ℱ𝑇

is a commutative map of 𝒪𝑇″-modules. For 𝑠 ∈ Γ(𝑇, ℱ𝑇) we have 𝑐(𝑝∗
0𝑠) = 𝑝∗

1𝑠 − ∇(𝑠).
Write ∇(𝑠) = ∑ 𝑝∗

1𝑠𝑖 ⋅𝜔𝑖 where 𝑠𝑖 is a local section of ℱ𝑇 and 𝜔𝑖 is a local section of Ω𝑇/𝑆,𝛿.
We think of 𝜔𝑖 as a local section of the structure sheaf of 𝒪𝑇′ and hence we write product
instead of tensor product. On the one hand

𝑞∗
12𝑐 ∘ 𝑞∗

01𝑐(𝑞∗
0𝑠) = 𝑞∗

12𝑐(𝑞∗
1𝑠 − ∑ 𝑞∗

1𝑠𝑖 ⋅ 𝑞∗
01𝜔𝑖)

= 𝑞∗
2𝑠 − ∑ 𝑞∗

2𝑠𝑖 ⋅ 𝑞∗
12𝜔𝑖 − ∑ 𝑞∗

2𝑠𝑖 ⋅ 𝑞∗
01𝜔𝑖 + ∑ 𝑞∗

12∇(𝑠𝑖) ⋅ 𝑞∗
01𝜔𝑖

and on the other hand
𝑞∗

02𝑐(𝑞∗
0𝑠) = 𝑞∗

2𝑠 − ∑ 𝑞∗
2𝑠𝑖 ⋅ 𝑞∗

02𝜔𝑖.

From the formulae of Remark 39.17.2 we see that 𝑞∗
01𝜔𝑖 + 𝑞∗

12𝜔𝑖 − 𝑞∗
02𝜔𝑖 = d𝜔𝑖. Hence the

difference of the two expressions above is

∑ 𝑞∗
2𝑠𝑖 ⋅ d𝜔𝑖 − ∑ 𝑞∗

12∇(𝑠𝑖) ⋅ 𝑞∗
01𝜔𝑖

Note that 𝑞∗
12𝜔 ⋅ 𝑞∗

01𝜔′ = 𝜔′ ∧ 𝜔 = −𝜔 ∧ 𝜔′ by the definition of the multiplication on 𝒪𝑇″.
Thus the expression above is ∇2(𝑠) viewed as a section of the subsheaf ℱ𝑇 ⊗ Ω2

𝑇/𝑆,𝛿 of 𝑞∗
2ℱ.

Hence we get the integrability condition. �

39.20. Cosimplicial algebra

This section should be moved somewhere else. A cosimplicial ring is a cosimplicial object
in the category of rings. Given a ring 𝑅, a cosimplicial 𝑅-algebra is a cosimplicial object
in the category of 𝑅-algebras. A cosimplicial ideal in a cosimplicial ring 𝐴∗ is given by an
ideal 𝐼𝑛 ⊂ 𝐴𝑛 for all 𝑛 such that 𝐴(𝑓)(𝐼𝑛) ⊂ 𝐼𝑚 for all 𝑓 ∶ [𝑛] → [𝑚] in Δ.

Let 𝐴∗ be a cosimplicial ring. Let 𝒞 be the category of pairs (𝐴, 𝑀) where 𝐴 is a ring and
𝑀 is a module over 𝐴. A morphism (𝐴, 𝑀) → (𝐴′, 𝑀′) consists of a ring map 𝐴 → 𝐴′

and an 𝐴-module map 𝑀 → 𝑀′ where 𝑀′ is viewed as an 𝐴-module via 𝐴 → 𝐴′ and the
𝐴′-module structure on 𝑀′. Having said this we can define a cosimplicial module 𝑀∗ over
𝐴∗ as a cosimplicial object (𝐴∗, 𝑀∗) of 𝒞 whose first entry is equal to𝐴∗. A homomorphism
𝜑∗ ∶ 𝑀∗ → 𝑁∗ of cosimplicial modules over 𝐴∗ is a morphism (𝐴∗, 𝑀∗) → (𝐴∗, 𝑁∗) of
cosimplicial objects in 𝒞 whose first component is 1𝐴∗

.

A homotopy between homomorphisms 𝜑∗, 𝜓∗ ∶ 𝑀∗ → 𝑁∗ of cosimplicial modules over
𝐴∗ is a homotopy between the associated maps (𝐴∗, 𝑀∗) → (𝐴∗, 𝑁∗) whose first compo-
nent is the trival homotopy (dual to Simplicial, Example 14.24.3). We spell out what this
means. Such a homotopy is a homotopy

ℎ ∶ 𝑀∗ ⟶ Hom(Δ[1], 𝑁∗)

between 𝜑∗ and 𝜓∗ as homomorphisms of cosimplicial abelian groups such that for each
𝑛 the map ℎ𝑛 ∶ 𝑀𝑛 → ∏𝛼∈Δ[1]𝑛

𝑁𝑛 is 𝐴𝑛-linear. The following lemma is a version of
Simplicial, Lemma 14.26.3 for cosimplicial modules.
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Lemma 39.20.1. Let 𝐴∗ be a cosimplicial ring. Let 𝜑∗, 𝜓∗ ∶ 𝐾∗ → 𝑀∗ be homomor-
phisms of cosimplicial 𝐴∗-modules.

(1) If 𝜑∗ and 𝜓∗ are homotopic, then

𝜑∗ ⊗ 1, 𝜓∗ ⊗ 1 ∶ 𝐾∗ ⊗𝐴∗
𝐿∗ ⟶ 𝑀∗ ⊗𝐴∗

𝐿∗

are homotopic for any cosimplicial 𝐴∗-module 𝐿∗.
(2) If 𝜑∗ and 𝜓∗ are homotopic, then

∧𝑖(𝜑∗), ∧𝑖(𝜓∗) ∶ ∧𝑖(𝐾∗) ⟶ ∧𝑖(𝑀∗)

are homotopic.
(3) If 𝜑∗ and 𝜓∗ are homotopic, and 𝐴∗ → 𝐵∗ is a homomorphism of cosimplicial

rings, then

𝜑∗ ⊗ 1, 𝜓∗ ⊗ 1 ∶ 𝐾∗ ⊗𝐴∗
𝐵∗ ⟶ 𝑀∗ ⊗𝐴∗

𝐵∗

are homotopic as homomorphisms of cosimplicial 𝐵∗-modules.
(4) If 𝐼∗ ⊂ 𝐴∗ is a cosimplicial ideal, then the induced maps

𝜑∧
∗ , 𝜓∧

∗ ∶ 𝐾∧
∗ ⟶ 𝑀∧

∗

between completions are homotopic.
(5) Add more here as needed, for example symmetric powers.

Proof. Let ℎ ∶ 𝑀∗ ⟶ Hom(Δ[1], 𝑁∗) be the given homotopy. In degree 𝑛 we have

ℎ𝑛 = (ℎ𝑛,𝛼) ∶ 𝐾𝑛 ⟶ ∏𝛼∈Δ[1]𝑛
𝐾𝑛

see Simplicial, Section 14.26. In order for a collection of ℎ𝑛,𝛼 to form a homotopy, it is
necessary and sufficient if for every 𝑓 ∶ [𝑛] → [𝑚] we have

ℎ𝑚,𝛼 ∘ 𝑀∗(𝑓) = 𝑁∗(𝑓) ∘ ℎ𝑛,𝛼∘𝑓

see Simplicial, Equation (14.26.1.1). We also should have that 𝜓𝑛 = ℎ𝑛,0∶[𝑛]→[1] and 𝜑𝑛 =
ℎ𝑛,1∶[𝑛]→[1].

In each of the cases of the lemma we can produce the corresponding maps. Case (1). We
can use the homotopy ℎ ⊗ 1 defined in degree 𝑛 by setting

(ℎ ⊗ 1)𝑛,𝛼 = ℎ𝑛,𝛼 ⊗ 1𝐿𝑛
∶ 𝐾𝑛 ⊗𝐴𝑛

𝐿𝑛 ⟶ 𝑀𝑛 ⊗𝐴𝑛
𝐿𝑛.

Case (2). We can use the homotopy ∧𝑖ℎ defined in degree 𝑛 by setting

∧𝑖(ℎ)𝑛,𝛼 = ∧𝑖(ℎ𝑛,𝛼) ∶ ∧𝐴𝑛
(𝐾𝑛) ⟶ ∧𝑖

𝐴𝑛
(𝑀𝑛).

Case (3). We can use the homotopy ℎ ⊗ 1 defined in degree 𝑛 by setting

(ℎ ⊗ 1)𝑛,𝛼 = ℎ𝑛,𝛼 ⊗ 1 ∶ 𝐾𝑛 ⊗𝐴𝑛
𝐵𝑛 ⟶ 𝑀𝑛 ⊗𝐴𝑛

𝐵𝑛.

Case (4). We can use the homotopy ℎ∧ defined in degree 𝑛 by setting

(ℎ∧)𝑛,𝛼 = ℎ∧
𝑛,𝛼 ∶ 𝐾∧

𝑛 ⟶ 𝑀∧
𝑛 .

This works because each ℎ𝑛,𝛼 is 𝐴𝑛-linear. �
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2156 39. CRYSTALLINE COHOMOLOGY

39.21. Notes on Rlim

This section should be moved somewhere else. We briefly discuss 𝑅1 𝑙𝑖𝑚. Consider the
category 𝐍 whose objects are natural numbers and whose morphisms are unique arrows
𝑖 → 𝑗 if 𝑗 ≥ 𝑖. Endow 𝐍 with the chaotic topology so that a sheaf ℱ is the same thing as an
inverse system

ℱ1 ← ℱ2 ← ℱ3 ← …
over 𝐍. Note that Γ(𝐍, ℱ) = 𝑙𝑖𝑚 ℱ𝑛. For an inverse system of abelian groups ℱ𝑛 we define

𝑅𝑝 𝑙𝑖𝑚 ℱ𝑛 = 𝐻𝑝(𝐍, ℱ).

Actually, it turns out that 𝑅𝑝 𝑙𝑖𝑚 = 0 for 𝑝 > 1. Namely, note that the morphisms 𝑖 → 𝑗 are
monomorphisms, which are turned into surjections by an injective sheaf of abelian groups
(this is a generality about injective sheaves on any site). In particular, injective modules
satisfy the Mittag-Leffler condition (see Homology, Section 10.23). Apply Derived Cate-
gories, Lemma 11.15.6 using Homology, Lemma 10.23.3 to the collection of inverse sys-
tems of abelian groups having ML, to conclude that 𝑅𝑝 𝑙𝑖𝑚, 𝑝 > 0 vanishes on all systems
with ML. Applying Homology, Lemma 10.23.3 one more time we see that any inverse sys-
tem of abelian groups has a two term resolution by systems having ML, which proves that
𝑅𝑝 𝑙𝑖𝑚 = 0 for 𝑝 > 1.

Next, let's consider the derived functor

𝑅 𝑙𝑖𝑚 ∶ 𝐷(Ab(𝐍)) ⟶ 𝐷(Ab)

as defined in Cohomology on Sites, Section 19.19. Another possible reference for the exis-
tence of 𝑅 𝑙𝑖𝑚 is Derived Categories, Lemma 11.29.2. An object of 𝐷(Ab(𝐍)) is a complex
of inverse systems of abelian groups. You can also think of this as an inverse system (𝐾•

𝑒)
of complexes. However, this is not the same thing as an inverse system of objects of 𝐷(Ab);
we will come back and explain the difference later.

Lemma 39.21.1. Let 𝐾 = (𝐾•
𝑒) be an object of 𝐷(Ab(𝐍)). If for each 𝑛 the inverse sys-

tem (𝐾𝑛
𝑒) satisfies the Mittag-Leffler condition, then 𝑅 𝑙𝑖𝑚 𝐾 is represented by the complex

whose term in degree 𝑛 is 𝑙𝑖𝑚𝑒 𝐾𝑛
𝑒 .

Proof. In the case that 𝐾 is in 𝐷+(Ab(𝐍)) this follows from the fact that each system (𝐾𝑛
𝑒)𝑒

is acyclic for 𝑅 𝑙𝑖𝑚 (see above) and Derived Categories, Proposition 11.15.8. In fact, the
same result holds for unbounded complexes, see Derived Categories, Lemma 11.29.2. �

The products in the following lemma can be seen as termwise products of complexes or as
products in the derived category 𝐷(Ab), see Injectives, Remark 17.17.6.

Lemma 39.21.2. Let 𝐾 = (𝐾•
𝑒) be an object of 𝐷(Ab(𝐍)). There exists a canonical distin-

guished triangle
𝑅 𝑙𝑖𝑚 𝐾 → ∏𝑒

𝐾•
𝑒 → ∏𝑒

𝐾•
𝑒 → 𝑅 𝑙𝑖𝑚 𝐾[1]

in 𝐷(Ab) where the middle map fits into the commutative diagrams

∏𝑒 𝐾•
𝑒

//

��

∏𝑒 𝐾•
𝑒

��
𝐾•

𝑒 ⊕ 𝐾•
𝑒+1

1−𝜋 // 𝐾•
𝑒

whose vertical maps are projections and where 𝜋 ∶ 𝐾•
𝑒+1 → 𝐾•

𝑒 is the transition map of the
system.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07KW
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Proof. Suppose that all the transition maps 𝐾•
𝑒+1 → 𝐾•

𝑒 are surjective. Then the map of
complexes ∏𝑒 𝐾•

𝑒 → ∏𝑒 𝐾•
𝑒 of the statement of the lemma is surjective with kernel equal

to the complex with term 𝑙𝑖𝑚𝑒 𝐾𝑛
𝑒 in degree 𝑛. Since this complex computes 𝑅 𝑙𝑖𝑚 𝐾 by

Lemma 39.21.1 we see that the lemma holds in this case.

In general one uses that there exists a quasi-isomorphism 𝐾 → 𝐾′ in 𝐷(Ab(𝐍)) such that
the preceding argument applies to 𝐾′. Namely, given any complex in Ab(𝐍) there exists
a quasi-isomorphism to a complex whose terms are injective objects of Ab(𝐍), see for ex-
ample Injectives, Theorem 17.16.6. (We encourage the reader to find a direct argument
him/herself in this special case.) Note that ∏ 𝐾•

𝑒 is quasi-isomorphic to ∏(𝐾′)•
𝑒 as prod-

ucts are exact in Ab, whence the result for 𝐾′ does imply the result for 𝐾. �

Lemma 39.21.3. With notation as in Lemma 39.21.2 the long exact cohomology sequence
associated to the distinguished triangle breaks up into short exact sequences

0 → 𝑅1 𝑙𝑖𝑚𝑒 𝐻𝑝−1(𝐾•
𝑒) → 𝐻𝑝(𝑅 𝑙𝑖𝑚 𝐾) → 𝑙𝑖𝑚𝑒 𝐻𝑝(𝐾•

𝑒) → 0

Proof. The long exact sequence of the distinguished triangle is

… → 𝐻𝑝(𝑅 𝑙𝑖𝑚 𝐾) → ∏𝑒
𝐻𝑝(𝐾•

𝑒) → ∏𝑒
𝐻𝑝(𝐾•

𝑒) → 𝐻𝑝+1(𝑅 𝑙𝑖𝑚 𝐾) → …

Themap in the middle has kernel 𝑙𝑖𝑚𝑒 𝐻𝑝(𝐾•
𝑒) by its explict description given in the lemma.

Moreover, the cokernel of this map is 𝑅1 𝑙𝑖𝑚𝑒 𝐻𝑝(𝐾•
𝑒) by an application of Lemma 39.21.2

to the case of an inverse system of abelian groups (placed in degree 0). The lemma follows.
�

A sheaf of rings on 𝐍 is just an inverse system of rings (𝐴𝑒). A sheaf of modules over (𝐴𝑒)
is an inverse system (𝑀𝑒) of abelian groups such that each 𝑀𝑒 is an 𝐴𝑒-module and the
transition maps 𝑀𝑒+1 → 𝑀𝑒 are 𝐴𝑒+1-module maps. The results on cohomology above
apply to sheaves of modules as it is true in general that cohomology of groups and modules
agree, see Cohomology on Sites, Lemma 19.12.4. Alternatively, one can rerun the argu-
ments above for the case of modules. In particular we obtain a derived 𝑅 𝑙𝑖𝑚 on modules

𝑅 𝑙𝑖𝑚 ∶ 𝐷(Mod(𝐍, (𝐴𝑒))) ⟶ 𝐷(𝐴)

where 𝐴 = 𝑙𝑖𝑚 𝐴𝑒 is the global sections of our given sheaf of modules. As in the case of
abelian groups an object 𝑀 = (𝑀•

𝑒) of 𝐷(Mod(𝐍, (𝐴𝑒))) is an inverse system of complexes
of modules, which is not the same thing as an inverse system of objects in the derived
categories. However, it turns out one can still define 𝑅 𝑙𝑖𝑚 of such a system well defined
up to noncanonical isomorphism.

Remark 39.21.4. Suppose that we have an inverse system of rings (𝐴𝑒) as above. Now
suppose that we have an inverse system of objects 𝐾•

𝑒 of 𝐷(𝐴𝑒). More precisely, suppose
that we are given

(1) for every 𝑒 an object 𝐾•
𝑒 of 𝐷(𝐴𝑒), and

(2) for every 𝑒 a map 𝜑𝑒 ∶ 𝐾•
𝑒+1 → 𝐾•

𝑒 of 𝐷(𝐴𝑒+1) where we think of 𝐾•
𝑒 as an object

of 𝐷(𝐴𝑒+1) by restriction via the restriction map 𝐴𝑒+1 → 𝐴𝑒.
To be completely clear, by our definitions each𝐾•

𝑒 is a complex of 𝐴𝑒-modules, but themaps
𝜑𝑒 are in the derived category, hencemay not be given bymaps of complexes. We claim that
there exists an object 𝑀 = (𝑀•

𝑒) ∈ 𝐷(Mod(𝐍, (𝐴𝑒))) and isomorphisms 𝜓𝑒 ∶ 𝑀•
𝑒 → 𝐾•

𝑒 in

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07KY
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𝐷(𝐴𝑒) such that the diagrams
𝑀•

𝑒+1

��

𝜓𝑒+1
// 𝐾•

𝑒+1

𝜑𝑒
��

𝑀•
𝑒

𝜓𝑒 // 𝐾•
𝑒

commute in 𝐷(𝐴𝑒+1). Namely, set 𝑀•
1 = 𝐾•

1. Suppose we have constructed 𝑀•
𝑛 →

𝑀•
𝑛−1 → … → 𝑀•

1 and maps of complexes 𝜓𝑒 ∶ 𝑀•
𝑒 → 𝐾•

𝑒 such that the diagrams
above commute for all 𝑒 < 𝑛. Then we consider the diagram

𝑀•
𝑛

𝜓𝑛
��

𝐾•
𝑛+1

𝜑𝑛 // 𝐾•
𝑛

in 𝐷(𝐴𝑛+1). By the definition of morphisms in 𝐷(𝐴𝑛+1) we can find a quasi-isomorphism
𝜓𝑛+1 ∶ 𝑀•

𝑛+1 → 𝐾•
𝑛+1 of complexes of 𝐴𝑛+1-modules such that there exists a morphism of

complexes 𝑀•
𝑛+1 → 𝑀•

𝑛 of 𝐴𝑛+1-modules representing the composition 𝜓−1
𝑛 ∘ 𝜑𝑛 ∘ 𝜓𝑛+1 in

𝐷(𝐴𝑛+1). Thus the claim holds by induction.
A priori there are many isomorphism classes of objects 𝑀 of 𝐷(Mod(𝐍, (𝐴𝑒))) which
give rise to the system (𝐾•

𝑒 , 𝜑𝑒) as above. For each such 𝑀 we can consider the com-
plex 𝑅 𝑙𝑖𝑚 𝑀 ∈ 𝐷(𝐴) where 𝐴 = 𝑙𝑖𝑚 𝐴𝑒. By Lemma 39.21.2 there exists a canonical
distinguished triangle

𝑅 𝑙𝑖𝑚 𝑀 → ∏𝑒
𝐾•

𝑒 → ∏𝑒
𝐾•

𝑒 → 𝑅 𝑙𝑖𝑚 𝑀[1]

in 𝐷(𝐴). Hence we see that the isomorphism class of 𝑅 𝑙𝑖𝑚 𝑀 in 𝐷(𝐴) is independent of
the choices made in constructing 𝑀, by axiom TR3 of triangulated categories and Derived
Categories, Lemma 11.4.3.

39.22. Crystals in quasi-coherent modules

In Situation 39.9.1. Set 𝑋 = 𝑆𝑝𝑒𝑐(𝐶) and 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). We are going to classify crystals
in quasi-coherent modules on Cris(𝑋/𝑆). Before we do so we fix some notation.
Choose a polynomial ring 𝑃 = 𝐴[𝑥𝑖] over 𝐴 and a surjection 𝑃 → 𝐶 of 𝐴-algebras with
kernel 𝐽 = Ker(𝑃 → 𝐶). Set
(39.22.0.1) 𝐷 = 𝑙𝑖𝑚𝑒 𝐷𝑃,𝛾(𝐽)/𝑝𝑒𝐷𝑃,𝛾(𝐽)
for the 𝑝-adically completed divided power envelope. This ring comes with a divided power
ideal ̄𝐽 and divided power structure ̄𝛾, see Lemma 39.9.5. Set 𝐷𝑒 = 𝐷/𝑝𝑒𝐷 and denote ̄𝐽𝑒
the image of ̄𝐽 in 𝐷𝑒. We will use the short hand
(39.22.0.2) Ω𝐷 = 𝑙𝑖𝑚𝑒 Ω𝐷𝑒/𝐴, ̄𝛾 = 𝑙𝑖𝑚𝑒 Ω𝐷/𝐴, ̄𝛾/𝑝𝑒Ω𝐷/𝐴, ̄𝛾

for the 𝑝-adic completion of themodule of divided power differentials, see Lemma 39.10.12.
It is also the 𝑝-adic completion of Ω𝐷𝑃,𝛾(𝐽)/𝐴, ̄𝛾 which is free on d𝑥𝑖, see Lemma 39.10.6.
Hence any element of Ω𝐷 can be written uniquely as a sum ∑ 𝑓𝑖d𝑥𝑖 with for all 𝑒 only
finitely many 𝑓𝑖 not in 𝑝𝑒𝐷. Moreover, the maps d𝐷𝑒/𝐴, ̄𝛾 ∶ 𝐷𝑒 → Ω𝐷𝑒/𝐴, ̄𝛾 fit together to
define a divided power 𝐴-derivation
(39.22.0.3) d ∶ 𝐷 ⟶ Ω𝐷

on 𝑝-adic completions.
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We will also need the ``products 𝑆𝑝𝑒𝑐(𝐷(𝑛)) of 𝑆𝑝𝑒𝑐(𝐷)'', see Proposition 39.26.1 and its
proof for an explanation. Formally these are defined as follows. For 𝑛 ≥ 0 let 𝐽(𝑛) =
Ker(𝑃 ⊗𝐴 … ⊗𝐴 𝑃 → 𝐶) where the tensor product has 𝑛 + 1 factors. We set

(39.22.0.4) 𝐷(𝑛) = 𝑙𝑖𝑚𝑒 𝐷𝑃⊗𝐴…⊗𝐴𝑃,𝛾(𝐽(𝑛))/𝑝𝑒𝐷𝑃⊗𝐴…⊗𝐴𝑃,𝛾(𝐽(𝑛))

equal to the 𝑝-adic completion of the divided power envelope. We denote ̄𝐽(𝑛) its divided
power ideal and ̄𝛾(𝑛) its divided powers. We also introduce 𝐷(𝑛)𝑒 = 𝐷(𝑛)/𝑝𝑒𝐷(𝑛) as well
as the 𝑝-adically completed module of differentials

(39.22.0.5) Ω𝐷(𝑛) = 𝑙𝑖𝑚𝑒 Ω𝐷(𝑛)𝑒/𝐴, ̄𝛾 = 𝑙𝑖𝑚𝑒 Ω𝐷(𝑛)/𝐴, ̄𝛾/𝑝𝑒Ω𝐷(𝑛)/𝐴, ̄𝛾

and derivation

(39.22.0.6) d ∶ 𝐷(𝑛) ⟶ Ω𝐷(𝑛)

Of course we have 𝐷 = 𝐷(0). Note that the rings 𝐷(0), 𝐷(1), 𝐷(2), … form a cosimplicial
object in the category of divided power rings.

Lemma 39.22.1. Let 𝐷 and 𝐷(𝑛) be as in (39.22.0.1) and (39.22.0.4). The coprojection
𝑃 → 𝑃 ⊗𝐴 … ⊗𝐴 𝑃, 𝑓 ↦ 𝑓 ⊗ 1 ⊗ … ⊗ 1 induces an isomorphism

(39.22.1.1) 𝐷(𝑛) = 𝑙𝑖𝑚𝑒 𝐷⟨𝜉𝑖(𝑗)⟩/𝑝𝑒𝐷⟨𝜉𝑖(𝑗)⟩

of algebras over 𝐷 with

𝜉𝑖(𝑗) = 𝑥𝑖 ⊗ 1 ⊗ … ⊗ 1 − 1 ⊗ … ⊗ 1 ⊗ 𝑥𝑖 ⊗ 1 ⊗ … ⊗ 1

for 𝑗 = 1, … , 𝑛.

Proof. We have
𝑃 ⊗𝐴 … ⊗𝐴 𝑃 = 𝑃[𝜉𝑖(𝑗)]

and 𝐽(𝑛) is generated by 𝐽 and the elements 𝜉𝑖(𝑗). Hence the lemma follows from Lemma
39.6.5. �

Lemma 39.22.2. Let 𝐷 and 𝐷(𝑛) be as in (39.22.0.1) and (39.22.0.4). Then (𝐷, ̄𝐽, ̄𝛾) and
(𝐷(𝑛), ̄𝐽(𝑛), ̄𝛾(𝑛)) are objects of Cris∧(𝐶/𝐴), see Remark 39.9.4, and

𝐷(𝑛) = ∐𝑗=0,…,𝑛
𝐷

in Cris∧(𝐶/𝐴).

Proof. The first assertion is clear. For the second, if (𝐵 → 𝐶, 𝛿) is an object of Cris∧(𝐶/𝐴),
then we have

MorCris∧(𝐶/𝐴)(𝐷, 𝐵) = Hom𝐴((𝑃, 𝐽), (𝐵,Ker(𝐵 → 𝐶)))

and similarly for 𝐷(𝑛) replacing (𝑃, 𝐽) by (𝑃⊗𝐴 …⊗𝐴 𝑃, 𝐽(𝑛)). The property on coproducts
follows as 𝑃 ⊗𝐴 … ⊗𝐴 𝑃 is a coproduct. �

In the lemma below we will consider pairs (𝑀, ∇) satisfying the following conditions
(1) 𝑀 is a 𝑝-adically complete 𝐷-module,
(2) ∇ ∶ 𝑀 → 𝑀 ⊗∧

𝐷 Ω𝐷 is a connection, i.e., ∇(𝑓𝑚) = 𝑚 ⊗ d𝑓 + 𝑓∇(𝑚),
(3) ∇ is integrable (see Remark 39.10.10), and
(4) ∇ is topologically quasi-nilpotent: If we write ∇(𝑚) = ∑ 𝜃𝑖(𝑚)d𝑥𝑖 for some

operators 𝜃𝑖 ∶ 𝑀 → 𝑀, then for any 𝑚 ∈ 𝑀 there are only finitely many pairs
(𝑖, 𝑘) such that 𝜃𝑘

𝑖 (𝑚)∉𝑝𝑀.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07L2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07L4
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The operators 𝜃𝑖 are sometimes denoted ∇𝜕/𝜕𝑥𝑖
in the literature. In the following lemma we

construct a functor from crystals in quasi-coherent modules on Cris(𝑋/𝑆) to the category
of such pairs. We will show this functor is an equivalent in Proposition 39.22.4.

Lemma 39.22.3. In the situation above there is a functor

crystals in quasi-coherent
𝒪𝑋/𝑆-modules on Cris(𝑋/𝑆) ⟶ pairs (𝑀, ∇) satisfying

(1), (2), (3), and (4)

Proof. Let ℱ be a crystal in quasi-coherent modules on 𝑋/𝑆. Set 𝑇𝑒 = 𝑆𝑝𝑒𝑐(𝐷𝑒) so that
(𝑋, 𝑇𝑒, ̄𝛾) is an object of Cris(𝑋/𝑆) for 𝑒 ≫ 0. We have morphisms

(𝑋, 𝑇𝑒, ̄𝛾) → (𝑋, 𝑇𝑒+1, ̄𝛾) → …

which are closed immersions. We set

𝑀 = 𝑙𝑖𝑚𝑒 Γ((𝑋, 𝑇𝑒, ̄𝛾), ℱ) = 𝑙𝑖𝑚𝑒 Γ(𝑇𝑒, ℱ𝑇𝑒
) = 𝑙𝑖𝑚𝑒 𝑀𝑒

Note that since ℱ is locally quasi-coherent we have ℱ𝑇𝑒
= 𝑀𝑒. Since ℱ is a crystal we have

𝑀𝑒 = 𝑀𝑒+1/𝑝𝑒𝑀𝑒+1. Hence we see that 𝑀𝑒 = 𝑀/𝑝𝑒𝑀 and that 𝑀 is 𝑝-adically complete.

By Lemma 39.19.1 we know that ℱ comes endowed with a canonical integrable connection
∇ ∶ ℱ → ℱ ⊗ Ω𝑋/𝑆. If we evaluate this connection on the objects 𝑇𝑒 constructed above
we obtain a canonical integrable connection

∇ ∶ 𝑀 ⟶ 𝑀 ⊗∧
𝐷 Ω𝐷

To see that this is topologically nilpotent we work out what this means.

Now we can do the same procedure for the rings 𝐷(𝑛). This produces a 𝑝-adically complete
𝐷(𝑛)-module 𝑀(𝑛). Again using the crystal property of ℱ we obtain isomorphisms

𝑀 ⊗∧
𝐷,𝑝0

𝐷(1) → 𝑀(1) ← 𝑀 ⊗∧
𝐷,𝑝1

𝐷(1)

compare with the proof of Lemma 39.19.1. Denote 𝑐 the composition from left to right.
Pick 𝑚 ∈ 𝑀. Write 𝜉𝑖 = 𝑥𝑖 ⊗ 1 − 1 ⊗ 𝑥𝑖. Using (39.22.1.1) we can write uniquely

𝑐(𝑚 ⊗ 1) = ∑𝐾
𝜃𝐾(𝑚) ⊗ ∏ 𝜉[𝑘𝑖]

𝑖

for some 𝜃𝐾(𝑚) ∈ 𝑀 where the sum is over multi-indices 𝐾 = (𝑘𝑖) with 𝑘𝑖 ≥ 0 and
∑ 𝑘𝑖 < ∞. Set 𝜃𝑖 = 𝜃𝐾 where 𝐾 has a 1 in the 𝑖th spot and zeros elsewhere. We have

∇(𝑚) = ∑ 𝜃𝑖(𝑚)d𝑥𝑖.

as can be seen by comparing with the definition of ∇. Namely, the defining equation is
𝑝∗

1𝑚 = ∇(𝑚) − 𝑐(𝑝∗
0𝑚) in Lemma 39.19.1 but the sign works out because in the stacks

project we consistently use d𝑓 = 𝑝1(𝑓) − 𝑝0(𝑓) modulo the ideal of the diagonal squared,
and hence 𝜉𝑖 = 𝑥𝑖 ⊗ 1 − 1 ⊗ 𝑥𝑖 maps to −d𝑥𝑖 modulo the ideal of the diagonal squared.

Denote 𝑞𝑖 ∶ 𝐷 → 𝐷(2) and 𝑞𝑖𝑗 ∶ 𝐷(1) → 𝐷(2) the coprojections corresponding to the
indices 𝑖, 𝑗. As in the last paragraph of the proof of Lemma 39.19.1 we see that

𝑞∗
02𝑐 = 𝑞∗

12𝑐 ∘ 𝑞∗
01𝑐.

This means that

∑𝐾″ 𝜃𝐾″(𝑚) ⊗ ∏ 𝜁″
𝑖

[𝑘″
𝑖 ] = ∑𝐾′,𝐾

𝜃𝐾′(𝜃𝐾(𝑚)) ⊗ ∏ 𝜁′
𝑖
[𝑘′

𝑖 ]
∏ 𝜁[𝑘𝑖]

𝑖

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07JG
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in 𝑀 ⊗∧
𝐷,𝑞2

𝐷(2) where

𝜁𝑖 = 𝑥𝑖 ⊗ 1 ⊗ 1 − 1 ⊗ 𝑥𝑖 ⊗ 1,
𝜁′

𝑖 = 1 ⊗ 𝑥𝑖 ⊗ 1 − 1 ⊗ 1 ⊗ 𝑥𝑖,
𝜁″

𝑖 = 𝑥𝑖 ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ 𝑥𝑖.

In particular 𝜁″
𝑖 = 𝜁𝑖 + 𝜁′

𝑖 and we have that 𝐷(2) is the 𝑝-adic completion of the divided
power polynomial ring in 𝜁𝑖, 𝜁′

𝑖 over 𝑞2(𝐷), see Lemma 39.22.1. Comparing coefficients in
the expression above it follows immediately that 𝜃𝑖 ∘𝜃𝑗 = 𝜃𝑗 ∘𝜃𝑖 (this provides an alternative
proof of the integrability of ∇) and that

𝜃𝐾(𝑚) = (∏ 𝜃𝑘𝑖
𝑖 )(𝑚).

In particular, as the sum expressing 𝑐(𝑚 ⊗ 1) above has to converge 𝑝-adically we conclude
that for each 𝑖 and each 𝑚 ∈ 𝑀 only a finite number of 𝜃𝑘

𝑖 (𝑚) are allowed to be nonzero
modulo 𝑝. �

Proposition 39.22.4. The functor

crystals in quasi-coherent
𝒪𝑋/𝑆-modules on Cris(𝑋/𝑆) ⟶ pairs (𝑀, ∇) satisfying

(1), (2), (3), and (4)

of Lemma 39.22.3 is an equivalence of categories.

Proof. Let (𝑀, ∇) be given. We are going to construct a crystal in quasi-coherent modules
ℱ. Write ∇(𝑚) = ∑ 𝜃𝑖(𝑚)d𝑥𝑖. Then 𝜃𝑖 ∘ 𝜃𝑗 = 𝜃𝑗 ∘ 𝜃𝑖 and we can set 𝜃𝐾(𝑚) = (∏ 𝜃𝑘𝑖

𝑖 )(𝑚) for
any multi-index 𝐾 = (𝑘𝑖) with 𝑘𝑖 ≥ 0 and ∑ 𝑘𝑖 < ∞.

Let (𝑈, 𝑇, 𝛿) be any object of Cris(𝑋/𝑆) with 𝑇 affine. Say 𝑇 = 𝑆𝑝𝑒𝑐(𝐵) and the ideal of
𝑈 → 𝑇 is 𝐽𝐵 ⊂ 𝐵. By Lemma 39.9.6 there exists an integer 𝑒 and a morphism

𝑓 ∶ (𝑈, 𝑇, 𝛿) ⟶ (𝑋, 𝑇𝑒, ̄𝛾)

where 𝑇𝑒 = 𝑆𝑝𝑒𝑐(𝐷𝑒) as in the proof of Lemma 39.22.3. Choose such an 𝑒 and 𝑓; denote
𝑓 ∶ 𝐷 → 𝐵 also the corresponding divided power 𝐴-algebra map. We will set ℱ𝑇 equal to
the quasi-coherent sheaf of 𝒪𝑇-modules associated to the 𝐵-module

𝑀 ⊗𝐷,𝑓 𝐵.

However, we have to show that this is independent of the choice of 𝑓. Suppose that 𝑔 ∶
𝐷 → 𝐵 is a second such morphism. Since 𝑓 and 𝑔 are morphisms in Cris(𝑋/𝑆) we see
that the image of 𝑓 − 𝑔 ∶ 𝐷 → 𝐵 is contained in the divided power ideal 𝐽𝐵. Write
𝜉𝑖 = 𝑓(𝑥𝑖) − 𝑔(𝑥𝑖) ∈ 𝐽𝐵. By analogy with the proof of Lemma 39.22.3 we define an
isomorphism

𝑐𝑓,𝑔 ∶ 𝑀 ⊗𝐷,𝑓 𝐵 ⟶ 𝑀 ⊗𝐷,𝑔 𝐵
by the formula

𝑚 ⊗ 1 ⟼ ∑𝐾
𝜃𝐾(𝑚) ⊗ ∏ 𝜉[𝑘𝑖]

𝑖

which makes sense by our remarks above and the fact that ∇ is topologically quasi-nilpotent
(so the sum is finite!). A computation shows that

𝑐𝑔,ℎ ∘ 𝑐𝑓,𝑔 = 𝑐𝑓,ℎ

if given a third morphism ℎ ∶ (𝑈, 𝑇, 𝛿) ⟶ (𝑋, 𝑇𝑒, ̄𝛾). It is also true that 𝑐𝑓,𝑓 = 1. Hence
these maps are all isomorphisms and we see that the module ℱ𝑇 is independent of the choice
of 𝑓.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07JH
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If 𝑎 ∶ (𝑈′, 𝑇′, 𝛿′) → (𝑈, 𝑇, 𝛿) is a morphism of affine objects of Cris(𝑋/𝑆), then choosing
𝑓′ = 𝑓 ∘ 𝑎 it is clear that there exists a canonical isomorphism 𝑎∗ℱ𝑇 → ℱ𝑇′. We omit
the verification that this map is independent of the choice of 𝑓. Using these maps as the
restriction maps it is clear that we obtain a crystal in quasi-coherent modules on the full
subcategory of Cris(𝑋/𝑆) consisting of affine objects. We omit the proof that this extends
to a crystal on all of Cris(𝑋/𝑆). We also omit the proof that this procedure is a functor and
that it is quasi-inverse to the functor constructed in Lemma 39.22.3. �

Lemma 39.22.5. In Situation 39.9.1. Let 𝐴 → 𝑃′ → 𝐶 be ring maps with 𝐴 → 𝑃′ smooth
and 𝑃′ → 𝐶 surjective with kernel 𝐽′. Let 𝐷′ be the 𝑝-adic completion of 𝐷𝑃′,𝛾(𝐽′). There
are homomorphisms of divided power 𝐴-algebras

𝑎 ∶ 𝐷 ⟶ 𝐷′, 𝑏 ∶ 𝐷′ ⟶ 𝐷

compatible with the maps 𝐷 → 𝐶 and 𝐷′ → 𝐶 such that 𝑎 ∘ 𝑏 = id𝐷′. These maps induce
an equivalence of categories of pairs (𝑀, ∇) satisfying (1), (2), (3), and (4) over 𝐷 and
pairs (𝑀′, ∇′) satisfying (1), (2), (3), and (4) over 𝐷′. In particular, the equivalence of
categories of Proposition 39.22.4 also holds for the corresponding functor towards pairs
over 𝐷′.

Proof. We can pick the map 𝑃 = 𝐴[𝑥𝑖] → 𝐶 such that it factors through a surjection of
𝐴-algebras 𝑃 → 𝑃′ (we may have to increase the number of variables in 𝑃 to do this).
Hence we obtain a surjective map 𝑎 ∶ 𝐷 → 𝐷′ by functoriality of divided power envelopes
and completion. Pick 𝑒 large enough so that 𝐷𝑒 is a divided power thickening of 𝐶 over
𝐴. Then 𝐷𝑒 → 𝐶 is a surjection whose kernel is locally nilpotent, see Lemma 39.2.6.
Setting 𝐷′

𝑒 = 𝐷′/𝑝𝑒𝐷′ we see that the kernel of 𝐷𝑒 → 𝐷′
𝑒 is locally nilpotent. Hence by

Algebra, Lemma 7.127.16 we can find a lift 𝛽𝑒 ∶ 𝑃′ → 𝐷𝑒 of the map 𝑃′ → 𝐷′
𝑒. Note that

𝐷𝑒+𝑖+1 → 𝐷𝑒+𝑖 ×𝐷′
𝑒+𝑖

𝐷′
𝑒+𝑖+1 is surjective with square zero kernel for any 𝑖 ≥ 0 because

𝑝𝑒+𝑖𝐷 → 𝑝𝑒+𝑖𝐷′ is surjective. Applying the usual lifting property (Algebra, Proposition
7.127.13) succesively to the diagrams

𝑃′ // 𝐷𝑒+𝑖 ×𝐷′
𝑒+𝑖

𝐷′
𝑒+𝑖+1

𝐴

OO

// 𝐷𝑒+𝑖+1

OO

we see that we can find an 𝐴-algebra map 𝛽 ∶ 𝑃′ → 𝐷 whose composition with 𝑎 is the
given map 𝑃′ → 𝐷′. By the universal property of the divided power envelope we obtain
a map 𝐷𝑃′,𝛾(𝐽′) → 𝐷. As 𝐷 is 𝑝-adically complete we obtain 𝑏 ∶ 𝐷′ → 𝐷 such that
𝑎 ∘ 𝑏 = id𝐷′.

Consider the base change functor

(𝑀, ∇) ⟼ (𝑀 ⊗∧
𝐷 𝐷′, ∇′)

from pairs for 𝐷 to pairs for 𝐷′, see Remark 39.10.11. Similarly, we have the base change
functor corresponding to the divided power homomorphism 𝐷′ → 𝐷. To finish the proof
of the lemma we have to show that the base change for the compositions 𝑏 ∘ 𝑎 ∶ 𝐷 → 𝐷
and 𝑎 ∘ 𝑏 ∶ 𝐷′ → 𝐷′ are isomorphic to the identity functor. This is clear for the second as
𝑎 ∘ 𝑏 = id𝐷′. To prove it for the first, we use the functorial isomorphism

𝑐id𝐷,𝑏∘𝑎 ∶ 𝑀 ⊗𝐷,id𝐷
𝐷 ⟶ 𝑀 ⊗𝐷,𝑏∘𝑎 𝐷
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of the proof of Proposition 39.22.4. The only thing to prove is that thesemaps are horizontal,
which we omit.

The last statement of the proof now follows. �

Remark 39.22.6. The equivalence of Proposition 39.22.4 holds if we start with a surjection
𝑃 → 𝐶 where 𝑃/𝐴 satisfies the strong lifting property of Algebra, Lemma 7.127.16. To
prove this we can argue as in the proof of Lemma 39.22.5. (Details will be added here if
we ever need this.) Presumably there is also a direct proof of this result, but the advantage
of using polynomial rings is that the rings 𝐷(𝑛) are 𝑝-adic completions of divided power
polynomial rings and the algebra is simplified.

39.23. General remarks on cohomology

In this section we do a bit of work to translate the cohomology of modules on the cristalline
site of an affine scheme into an algebraic question.

Lemma 39.23.1. In Situation 39.11.5. Let ℱ be a locally quasi-coherent 𝒪𝑋/𝑆-module on
Cris(𝑋/𝑆). Then we have

𝐻𝑝((𝑈, 𝑇, 𝛿), ℱ) = 0
for all 𝑝 > 0 and all (𝑈, 𝑇, 𝛿) with 𝑇 or 𝑈 affine.

Proof. As 𝑈 → 𝑇 is a thickening we see that 𝑈 is affine if and only if 𝑇 is affine, see Limits,
Lemma 27.7.1. Having said this, let us apply Cohomology on Sites, Lemma 19.11.8 to
the collection ℬ of affine objects (𝑈, 𝑇, 𝛿) and the collection Cov of affine open coverings
𝒰 = {(𝑈𝑖, 𝑇𝑖, 𝛿𝑖) → (𝑈, 𝑇, 𝛿)}. The Čech complex ̌𝐶∗(𝒰, ℱ) for such a covering is simply
the Cech complex of the quasi-coherent 𝒪𝑇-module ℱ𝑇 (here we are using the assumption
that ℱ is locally quasi-coherent) with respect to the affine open covering {𝑇𝑖 → 𝑇} of the
affine scheme 𝑇. Hence the Čech cohomology is zero by Coherent, Lemma 25.2.4 and
25.2.2. Thus the hypothesis of Cohomology on Sites, Lemma 19.11.8 are satisfied and we
win. �

Lemma 39.23.2. In Situation 39.11.5. Assume moreover 𝑋 and 𝑆 are affine schemes.
Consider the full subcategory 𝒞 ⊂ Cris(𝑋/𝑆) consisting of divided power thickenings
(𝑋, 𝑇, 𝛿) endowed with the chaotic topology (see Sites, Example 9.6.6). For any locally
quasi-coherent 𝒪𝑋/𝑆-module ℱ we have

𝑅Γ(𝒞, ℱ|𝒞) = 𝑅Γ(Cris(𝑋/𝑆), ℱ)

Proof. We will use without further mention that 𝒞 and Cris(𝑋/𝑆) have products and fibre
products, see Lemma 39.12.2. Note that the inclusion functor 𝑢 ∶ 𝒞 → Cris(𝑋/𝑆) is fully
faithful, continuous and commutes with products and fibre products. We claim it defines a
morphism of ringed sites

𝑓 ∶ (Cris(𝑋/𝑆), 𝒪𝑋/𝑆) ⟶ (Sh(𝒞), 𝒪𝑋/𝑆|𝒞)

To see this we will use Sites, Lemma 9.14.5. Note that 𝒞 has fibre products and 𝑢 commutes
with them so the categories ℐ𝑢

(𝑈,𝑇,𝛿) are disjoint unions of directed categories (by Sites,
Lemma 9.5.1 and Categories, Lemma 4.17.3). Hence it suffices to show that ℐ𝑢

(𝑈,𝑇,𝛿) is
nonempty and directed. Nonempty follows from Lemma 39.9.6 and connected follows
from the fact that 𝒞 has products and that 𝑢 commutes with them (compare with the proof
of Sites, Lemma 9.5.2).
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Note that 𝑓∗ℱ = ℱ|𝒞. Hence the lemma follows if 𝑅𝑝𝑓∗ℱ = 0 for 𝑝 > 0, see Cohomology
on Sites, Lemma 19.14.5. By Cohomology on Sites, Lemma 19.8.4 it suffices to show that
𝐻𝑝((𝑋, 𝑇, 𝛿), ℱ) = 0 for all (𝑋, 𝑇, 𝛿). This follows from Lemma 39.23.1. �

Lemma 39.23.3. In Situation 39.9.1. Set 𝒞 = (Cris(𝐶/𝐴))𝑜𝑝𝑝 and 𝒞∧ = (Cris∧(𝐶/𝐴))𝑜𝑝𝑝

endowed with the chaotic topology, see Remark 39.9.4 for notation. There is a morphism
of topoi

𝑔 ∶ Sh(𝒞) ⟶ Sh(𝒞∧)
such that if ℱ is a sheaf of abelian groups on 𝒞, then

𝑅𝑝𝑔∗ℱ(𝐵 → 𝐶, 𝛿) =
⎧⎪
⎨
⎪⎩

𝑙𝑖𝑚𝑒 ℱ(𝐵𝑒 → 𝐶, 𝛿) if 𝑝 = 0
𝑅1 𝑙𝑖𝑚𝑒 ℱ(𝐵𝑒 → 𝐶, 𝛿) if 𝑝 = 1

0 else

where 𝐵𝑒 = 𝐵/𝑝𝑒𝐵 for 𝑒 ≫ 0.

Proof. Any functor between categories defines a morphism between chaotic topoi in the
same direction, for example because such a functor can be considered as a cocontinuous
functor between sites, see Sites, Section 9.19. Proof of the description of 𝑔∗ℱ is omitted.
Note that in the statement we take (𝐵𝑒 → 𝐶, 𝛿) is an object of Cris(𝐶/𝐴) only for 𝑒 large
enough. Let ℐ be an injective abelian sheaf on 𝒞. Then the transition maps

ℐ(𝐵𝑒 → 𝐶, 𝛿) ← ℐ(𝐵𝑒+1 → 𝐶, 𝛿)

are surjective as the morphisms

(𝐵𝑒 → 𝐶, 𝛿) ⟶ (𝐵𝑒+1 → 𝐶, 𝛿)

are monomorphisms in the category 𝒞. Hence for an injective abelian sheaf both sides of
the displayed formula of the lemma agree. Taking an injective resolution of ℱ one easily
obtains the result (sheaves are presheaves, so exactness is measured on the level of groups
of sections over objects). �

Lemma 39.23.4. Let 𝒞 be a category endowed with the chaotic topology. Let 𝑋 be an
object of 𝒞 such that every object of 𝒞 has a morphism towards 𝑋. Assume that 𝒞 has
products. Then for every abelian sheaf ℱ on 𝒞 the total cohomology 𝑅Γ(𝒞, ℱ) is repre-
sented by the complex

ℱ(𝑋) → ℱ(𝑋 × 𝑋) → ℱ(𝑋 × 𝑋 × 𝑋) → …

associated to the cosimplicial abelian group [𝑛] ↦ ℱ(𝑋𝑛).

Proof. Note that 𝐻𝑞(𝑋𝑝, ℱ) = 0 for all 𝑞 > 0 as sheaves are presheaves on 𝒞. The as-
sumption on 𝑋 is that ℎ𝑋 → ∗ is surjective. Using that 𝐻𝑞(𝑋, ℱ) = 𝐻𝑝(ℎ𝑋, ℱ) and
𝐻𝑝(𝒞, ℱ) = 𝐻𝑝(∗, ℱ) we see that our statement is a special case of Cohomology on Sites,
Lemma 19.13.2. �

39.24. Cosimplicial preparations

In this section we compare crystalline cohomology with de Rham cohomology. We follow
[Bd11].

Example 39.24.1. Suppose that 𝐴∗ is any cosimplicial ring. Consider the cosimplicial
module 𝑀∗ defined by the rule

𝑀𝑛 = ⨁𝑖=0,...,𝑛
𝐴𝑛𝑒𝑖
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For a map 𝑓 ∶ [𝑛] → [𝑚] define 𝑀∗(𝑓) ∶ 𝑀𝑛 → 𝑀𝑚 to be the unique 𝐴∗(𝑓)-linear map
which maps 𝑒𝑖 to 𝑒𝑓(𝑖). We claim the identity on 𝑀∗ is homotopic to 0. Namely, a homotopy
is given by a map of cosimplicial modules

ℎ ∶ 𝑀∗ ⟶ Hom(Δ[1], 𝑀∗)

see Section 39.20. For 𝑗 ∈ {0, … , 𝑛 + 1} we let 𝛼𝑛
𝑗 ∶ [𝑛] → [1] be the map defined by

𝛼𝑛
𝑗 (𝑖) = 0 ⇔ 𝑖 < 𝑗. Then Δ[1]𝑛 = {𝛼𝑛

0, … , 𝛼𝑛
𝑛+1} and correspondingly Hom(Δ[1], 𝑀∗)𝑛 =

∏𝑗=0,…,𝑛+1 𝑀𝑛, see Simplicial, Sections 14.24 and 14.26. Instead of using this product
representation, we think of an element in Hom(Δ[1], 𝑀∗)𝑛 as a function Δ[1]𝑛 → 𝑀𝑛.
Using this notation, we define ℎ in degree 𝑛 by the rule

ℎ𝑛(𝑒𝑖)(𝛼𝑛
𝑗 ) = {

𝑒𝑖 if 𝑖 < 𝑗
0 else

We first check ℎ is a morphism of cosimplicial modules. Namely, for 𝑓 ∶ [𝑛] → [𝑚] we
will show that

(39.24.1.1) ℎ𝑚 ∘ 𝑀∗(𝑓) = Hom(Δ[1], 𝑀∗)(𝑓) ∘ ℎ𝑛

The left hand side of (39.24.1.1) evaluted at 𝑒𝑖 and then in turn evaluated at 𝛼𝑚
𝑗 is

ℎ𝑚(𝑒𝑓(𝑖))(𝛼𝑚
𝑗 ) = {

𝑒𝑓(𝑖) if 𝑓(𝑖) < 𝑗
0 else

Note that 𝛼𝑚
𝑗 ∘𝑓 = 𝛼𝑛

𝑗′ where 0 ≤ 𝑗′ ≤ 𝑛+1 is the unique index such that 𝑓(𝑖) < 𝑗 if and only
if 𝑖 < 𝑗′. Thus the right hand side of (39.24.1.1) evaluted at 𝑒𝑖 and then in turn evaluated at
𝛼𝑚

𝑗 is

𝑀∗(𝑓)(ℎ𝑛(𝑒𝑖)(𝛼𝑚
𝑗 ∘ 𝑓) = 𝑀∗(𝑓)(ℎ𝑛(𝑒𝑖)(𝛼𝑛

𝑗′)) = {
𝑒𝑓(𝑖) if 𝑖 < 𝑗′

0 else
It follows from our description of 𝑗′ that the two answers are equal. Hence ℎ is a map of
cosimplicial modules. Let 0 ∶ Δ[0] → Δ[1] and 1 ∶ Δ[0] → Δ[1] be the obvious maps,
and denote 𝑒𝑣0, 𝑒𝑣1 ∶ Hom(Δ[1], 𝑀∗) → 𝑀∗ the corresponding evaluation maps. The
reader verifies readily that the the compositions

𝑒𝑣0 ∘ ℎ, 𝑒𝑣1 ∘ ℎ ∶ 𝑀∗ ⟶ 𝑀∗

are 0 and 1 respectively, whence ℎ is the desired homotopy between 0 and 1.

Lemma 39.24.2. With notation as in (39.22.0.5) the complex

Ω𝐷(0) → Ω𝐷(1) → Ω𝐷(2) → ⋯

is homotopic to zero as a 𝐷(∗)-cosimplicial module.

Proof. We are going to use the principle of Simplicial, Lemma 14.26.3 and more specifi-
cally Lemma 39.20.1 which tells us that homotopic maps between (co)simplicial objects
are transformed by any functor into homotopic maps. The complex of the lemma is equal
to the 𝑝-adic completion of the base change of the cosimplicial module

𝑀∗ = (Ω𝑃/𝐴 → Ω𝑃⊗𝐴𝑃/𝐴 → Ω𝑃⊗𝐴𝑃⊗𝐴𝑃/𝐴 → ⋯)
via the cosimplicial ring map 𝑃 ⊗𝐴 … ⊗𝐴 𝑃 → 𝐷(𝑛). This follows from Lemma 39.10.6,
see comments following (39.22.0.2). Hence it suffices to show that the cosimplicial module
𝑀∗ is homotopic to zero (uses base change and 𝑝-adic completion). We can even assume
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𝐴 = 𝐙 and 𝑃 = 𝐙[{𝑥𝑖}𝑖∈𝐼] as we can use base change with 𝐙 → 𝐴. In this case 𝑃⊗𝑛+1 is
the polynomial algebra on the elements

𝑥𝑖(𝑒) = 1 ⊗ ⋯ ⊗ 𝑥𝑖 ⊗ ⋯ ⊗ 1

with 𝑥𝑖 in the 𝑒th slot. The modules of the complex are free on the generators d𝑥𝑖(𝑒). Note
that if 𝑓 ∶ [𝑛] → [𝑚] is a map then we see that

𝑀∗(𝑓)(d𝑥𝑖(𝑒)) = d𝑥𝑖(𝑓(𝑒))

Hence we see that 𝑀∗ is a direct sum over 𝐼 of copies of the module studied in Example
39.24.1 and we win. �

Lemma 39.24.3. With notation as in (39.22.0.4) and (39.22.0.5), given any cosimplicial
module 𝑀∗ over 𝐷(∗) and 𝑖 > 0 the cosimplicial module

𝑀0 ⊗∧
𝐷(0) Ω𝑖

𝐷(0) → 𝑀1 ⊗∧
𝐷(1) Ω𝑖

𝐷(1) → 𝑀2 ⊗∧
𝐷(2) Ω𝑖

𝐷(2) → …

is homotopic to zero, whereΩ𝑖
𝐷(𝑛) is the 𝑝-adic completion of the 𝑖th exterior power ofΩ𝐷(𝑛).

Proof. By Lemma 39.24.2 the endomorphisms 0 and 1 of Ω𝐷(∗) are homotopic. If we apply
the functor ∧𝑖 we see that the same is true for the cosimplicial module ∧𝑖Ω𝐷(∗), see Lemma
39.20.1. Another application of the same lemma shows the 𝑝-adic completion Ω𝑖

𝐷(∗) is
homotopy equivalent to zero. Tensoring with 𝑀∗ we see that 𝑀∗ ⊗𝐷(∗) Ω𝑖

𝐷(∗) is homotopic
to zero, see Lemma 39.20.1 again. A final application of the 𝑝-adic completion functor
finishes the proof. �

39.25. Divided power Poincaré lemma

Just the simplest possible version.

Lemma 39.25.1. Let 𝐴 be a ring. Let 𝑃 = 𝐴⟨𝑥𝑖⟩ be a divided power polynomial ring over
𝐴. For any 𝐴-module 𝑀 the complex

0 → 𝑀 → 𝑀 ⊗𝐴 𝑃 → 𝑀 ⊗𝐴 Ω1
𝑃/𝐴,𝛿 → 𝑀 ⊗𝐴 Ω2

𝑃/𝐴,𝛿 → …

is exact. Let 𝐷 be the 𝑝-adic completion of 𝑃. Let Ω𝑖
𝐷 be the 𝑝-adic completion of the 𝑖th

exterior power of Ω𝐷/𝐴,𝛿. For any 𝑝-adically complete 𝐴-module 𝑀 the complex

0 → 𝑀 → 𝑀 ⊗∧
𝐴 𝐷 → 𝑀 ⊗∧

𝐴 Ω1
𝐷 → 𝑀 ⊗∧

𝐴 Ω2
𝐷 → …

is exact.

Proof. It suffices to show that the complex

𝐸 ∶ (0 → 𝐴 → 𝑃 → Ω1
𝑃/𝐴,𝛿 → Ω2

𝑃/𝐴,𝛿 → …)

is homotopy equivalent to zero as a complex of 𝐴-modules. For every multi-index 𝐾 = (𝑘𝑖)
we can consider the subcomplex 𝐸(𝐾) which in degree 𝑗 consists of

⨁𝐼={𝑖1,…,𝑖𝑗}⊂Supp(𝐾)
𝐴 ∏𝑖∉𝐼

𝑥[𝑘𝑖]
𝑖 ∏𝑖∈𝐼

𝑥[𝑘𝑖−1]
𝑖 d𝑥𝑖1 ∧ … ∧ d𝑥𝑖𝑗

Since 𝐸 = ⨁ 𝐸(𝐾) we see that it suffices to prove each of the complexes 𝐸(𝐾) is homotopic
to zero. If 𝐾 = 0, then 𝐸(𝐾) ∶ (𝐴 → 𝐴) is homotopic to zero. If 𝐾 has nonempty (finite)
support 𝑆, then the complex 𝐸(𝐾) is isomorphic to the complex

0 → 𝐴 → ⨁𝑠∈𝑆
𝐴 → ∧2(⨁𝑠∈𝑆

𝐴) → … → ∧#𝑆(⨁𝑠∈𝑆
𝐴) → 0

which is homotopic to zero, for example by More on Algebra, Lemma 12.21.5. �
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An alternative (more direct) approach to the following lemma is explained in Example
39.30.2.

Lemma 39.25.2. Let 𝐴 be a ring. Let (𝐵, 𝐽, 𝛿) be a divided power ring. Let 𝑃 = 𝐵⟨𝑥𝑖⟩ be a
divided power polynomial ring over 𝐵 with divided power ideal 𝐽 = 𝐼𝑃 + 𝐵⟨𝑥𝑖⟩+ as usual.
Let 𝑀 be a 𝐵-module endowed with an integrable connection ∇ ∶ 𝑀 → 𝑀 ⊗𝐵 Ω1

𝐵/𝐴,𝛿.
Then the map of de Rham complexes

𝑀 ⊗𝐵 Ω∗
𝐵/𝐴,𝛿 ⟶ 𝑀 ⊗𝑃 Ω∗

𝑃/𝐴,𝛿

is a quasi-isomorphism. Let 𝐷, resp. 𝐷′ be the 𝑝-adic completion of 𝐵, resp. 𝑃 and let Ω𝑖
𝐷,

resp. Ω𝑖
𝐷′ be the 𝑝-adic completion of Ω𝑖

𝐵/𝐴,𝛿, resp. Ω𝑖
𝑃/𝐴,𝛿. Let 𝑀 be a 𝑝-adically complete

𝐷-module endowed with an integral connection ∇ ∶ 𝑀 → 𝑀 ⊗∧
𝐷 Ω1

𝐷. Then the map of de
Rham complexes

𝑀 ⊗∧
𝐷 Ω∗

𝐷 ⟶ 𝑀 ⊗∧
𝐷 Ω∗

𝐷′

is a quasi-isomorphism.

Proof. Consider the decreasing filtration𝐹∗ onΩ∗
𝐵/𝐴,𝛿 given by the subcomplexes𝐹𝑖(Ω∗

𝐵/𝐴,𝛿) =
𝜎≥𝑖Ω∗

𝐵/𝐴,𝛿. See Homology, Section 10.11. This induces a decreasing filtration 𝐹∗ on Ω∗
𝑃/𝐴,𝛿

by setting
𝐹𝑖(Ω∗

𝑃/𝐴,𝛿) = 𝐹𝑖(Ω∗
𝐵/𝐴,𝛿) ∧ Ω∗

𝑃/𝐴,𝛿.
We have a split short exact sequence

0 → Ω1
𝐵/𝐴,𝛿 ⊗𝐵 𝑃 → Ω1

𝑃/𝐴,𝛿 → Ω1
𝑃/𝐵,𝛿 → 0

and the last module is free on d𝑥𝑖. It follows from this that𝐹𝑖(Ω∗
𝑃/𝐴,𝛿) → Ω∗

𝑃/𝐴,𝛿 is a termwise
split injection and that

gr𝑖𝐹(Ω∗
𝐵/𝐴,𝛿) = Ω𝑖

𝐵/𝐴,𝛿 ⊗𝐵 Ω∗
𝑃/𝐵,𝛿

as complexes. Thus we can define a filtration 𝐹∗ on 𝑀 ⊗𝐵 Ω∗
𝐵/𝐴,𝛿 by setting

𝐹𝑖(𝑀 ⊗𝐵 Ω∗
𝑃/𝐴,𝛿) = 𝑀 ⊗𝐵 𝐹𝑖(Ω∗

𝑃/𝐴,𝛿)

and we have
gr𝑖𝐹(𝑀 ⊗𝐵 Ω∗

𝑃/𝐴,𝛿) = 𝑀 ⊗𝐵 Ω𝑖
𝐵/𝐴,𝛿 ⊗𝐵 Ω∗

𝑃/𝐵,𝛿
as complexes. By Lemma 39.25.1 each of these complexes is quasi-isomorphic to 𝑀 ⊗𝐵
Ω𝑖

𝐵/𝐴,𝛿 placed in degree 0. Hence we see that the first displayed map of the lemma is a
morphism of filtered complexes which induces a quasi-isomorphism on graded pieces. This
implies that it is a quasi-isomorphism, for example by the spectral sequence associated to
a filtered complex, see Homology, Section 10.18.

The proof of the second quasi-isomorphism is exactly the same. �

39.26. Cohomology in the affine case

Let's go back to the situation studied in Section 39.22. We start with (𝐴, 𝐼, 𝛾) and 𝐴/𝐼 → 𝐶
and set 𝑋 = 𝑆𝑝𝑒𝑐(𝐶) and 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). Then we choose a polynomial ring 𝑃 over 𝐴 and
a surjection 𝑃 → 𝐶 with kernel 𝐽. We obtain 𝐷 and 𝐷(𝑛) see (39.22.0.1) and (39.22.0.4).
Set 𝑇(𝑛)𝑒 = Spec(𝐷(𝑛)/𝑝𝑒𝐷(𝑛)) so that (𝑋, 𝑇(𝑛)𝑒, 𝛿(𝑛)) is an object of Cris(𝑋/𝑆). Let ℱ be
a sheaf of 𝒪𝑋/𝑆-modules and set

𝑀(𝑛) = 𝑙𝑖𝑚𝑒 Γ((𝑋, 𝑇(𝑛)𝑒, 𝛿(𝑛)), ℱ)

for 𝑛 = 0, 1, 2, 3, …. This forms a cosimplicial module over the cosimplicial ring𝐷(0), 𝐷(1), 𝐷(2), ….
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Proposition 39.26.1. With notations as above assume that
(1) ℱ is locally quasi-coherent, and
(2) for any morphism (𝑈, 𝑇, 𝛿) → (𝑈′, 𝑇′, 𝛿′) of Cris(𝑋/𝑆) where 𝑓 ∶ 𝑇 → 𝑇′ is a

closed immersion the map 𝑐𝑓 ∶ 𝑓∗ℱ𝑇′ → ℱ𝑇 is surjective.
Then the complex

𝑀(0) → 𝑀(1) → 𝑀(2) → …

computes 𝑅Γ(Cris(𝑋/𝑆), ℱ).

Proof. Using assumption (1) and Lemma 39.23.2 we see that 𝑅Γ(Cris(𝑋/𝑆), ℱ) is isomor-
phic to 𝑅Γ(𝒞, ℱ). Note that the categories 𝒞 used in Lemmas 39.23.2 and 39.23.3 agree.
Let 𝑓 ∶ 𝑇 → 𝑇′ be a closed immersion as in (2). Surjectivity of 𝑐𝑓 ∶ 𝑓∗ℱ𝑇′ → ℱ𝑇 is
equivalent to surjectivity of ℱ𝑇′ → 𝑓∗ℱ𝑇. Hence, if ℱ satisfies (1) and (2), then we obtain
a short exact sequence

0 → 𝒦 → ℱ𝑇′ → 𝑓∗ℱ𝑇 → 0

of quasi-coherent 𝒪𝑇′-modules on 𝑇′, see Schemes, Section 21.24 and in particular Lemma
21.24.1. Thus, if 𝑇′ is affine, then we conclude that the restriction map ℱ(𝑈′, 𝑇′, 𝛿′) →
ℱ(𝑈, 𝑇, 𝛿) is surjective by the vanishing of 𝐻1(𝑇′, 𝒦), see Coherent, Lemma 25.2.2. Hence
the transition maps of the inverse systems in Lemma 39.23.3 are surjective. We conclude
that that 𝑅𝑝𝑔∗(ℱ|𝒞) = 0 for all 𝑝 ≥ 1 where 𝑔 is as in Lemma 39.23.3. The object 𝐷 of the
category 𝒞∧ satisfies the assumption of Lemma 39.23.4 by Lemma 39.9.7 with

𝐷 × … × 𝐷 = 𝐷(𝑛)

in 𝒞 because 𝐷(𝑛) is the 𝑛 + 1-fold coproduct of 𝐷 in Cris∧(𝐶/𝐴), see Lemma 39.22.2.
Thus we win. �

Lemma 39.26.2. Assumptions and notation as in Proposition 39.26.1. Then

𝐻𝑗(Cris(𝑋/𝑆), ℱ ⊗𝒪𝑋/𝑆
Ω𝑖

𝑋/𝑆) = 0

for all 𝑖 > 0 and all 𝑗 ≥ 0.

Proof. Using Lemma 39.16.6 it follows that ℋ = ℱ ⊗𝒪𝑋/𝑆
Ω𝑖

𝑋/𝑆 also satisfies assumptions
(1) and (2) of Proposition 39.26.1. Write 𝑀(𝑛)𝑒 = Γ((𝑋, 𝑇(𝑛)𝑒, 𝛿(𝑛)), ℱ) so that 𝑀(𝑛) =
𝑙𝑖𝑚𝑒 𝑀(𝑛)𝑒. Then

𝑙𝑖𝑚𝑒 Γ((𝑋, 𝑇(𝑛)𝑒, 𝛿(𝑛)), ℋ) = 𝑙𝑖𝑚𝑒 𝑀(𝑛)𝑒 ⊗𝐷(𝑛)𝑒
Ω𝐷(𝑛)/𝑝𝑒Ω𝐷(𝑛)

= 𝑙𝑖𝑚𝑒 𝑀(𝑛)𝑒 ⊗𝐷(𝑛) Ω𝐷(𝑛)

By Lemma 39.24.3 the cosimplicial modules

𝑀(0)𝑒 ⊗𝐷(0) Ω𝑖
𝐷(0) → 𝑀(1)𝑒 ⊗𝐷(1) Ω𝑖

𝐷(1) → 𝑀(2)𝑒 ⊗𝐷(2) Ω𝑖
𝐷(2) → …

are homotopic to zero. Because the transition maps 𝑀(𝑛)𝑒+1 → 𝑀(𝑛)𝑒 are surjective, we
see that the inverse limit of the associated complexes are acyclic5. Hence the vanshing of
cohomology of ℋ by Proposition 39.26.1. �

5Actually, they are even homotopic to zero as the homotopies fit together, but we don't need this. The reason
for this roundabout argument is that the limit 𝑙𝑖𝑚𝑒 𝑀(𝑛)𝑒 ⊗𝐷(𝑛) Ω𝑖

𝐷(𝑛) isn't the 𝑝-adic completion of 𝑀(𝑛) ⊗𝐷(𝑛)

Ω𝑖
𝐷(𝑛) as with the assumptions of the lemma we don't know that 𝑀(𝑛)𝑒 = 𝑀(𝑛)𝑒+1/𝑝𝑒𝑀(𝑛)𝑒+1. If ℱ is a crystal

then this does hold.
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Proposition 39.26.3. Assumptions as in Proposition 39.26.1 but now assume that ℱ is a
crystal in quasi-coherent modules. Let (𝑀, ∇) be the corresponding module with connec-
tion over 𝐷, see Proposition 39.22.4. Then the complex

𝑀 ⊗∧
𝐷 Ω∗

𝐷

computes 𝑅Γ(Cris(𝑋/𝑆), ℱ).

Proof. We will prove this using the two spectral sequences associated to the double com-
plex 𝐾∗,∗ with terms

𝐾𝑎,𝑏 = 𝑀 ⊗∧
𝐷 Ω𝑎

𝐷(𝑏)

What do we know so far? Well, Lemma 39.24.3 tells us that each column 𝐾𝑎,∗, 𝑎 > 0
is acyclic. Proposition 39.26.1 tells us that the first column 𝐾0,∗ is quasi-isomorphic to
𝑅Γ(Cris(𝑋/𝑆), ℱ). Hence the first spectral sequence associated to the double complex
shows that there is a canonical quasi-isomorphism of 𝑅Γ(Cris(𝑋/𝑆), ℱ) with Tot(𝐾∗,∗).

Next, let's consider the rows 𝐾∗,𝑏. By Lemma 39.22.1 each of the 𝑏 + 1 maps 𝐷 → 𝐷(𝑏)
presents 𝐷(𝑏) as the 𝑝-adic completion of a divided power polynomial algebra over 𝐷.
Hence Lemma 39.25.2 shows that the map

𝑀 ⊗∧
𝐷 Ω∗

𝐷 ⟶ 𝑀 ⊗∧
𝐷(𝑏) Ω∗

𝐷(𝑏) = 𝐾∗,𝑏

is a quasi-isomorphism. Note that each of these maps defines the samemap on cohomology
(and even the same map in the derived category) as the inverse is given by the co-diagonal
map 𝐷(𝑏) → 𝐷 (corresponding to the multiplication map 𝑃 ⊗𝐴 … ⊗𝐴 𝑃 → 𝑃). Hence if
we look at the 𝐸1 page of the second spectral sequence we obtain

𝐸𝑎,𝑏
1 = 𝐻𝑎(𝑀 ⊗∧

𝐷 Ω∗
𝐷)

with differentals
𝐸𝑎,0

1
0

−→ 𝐸𝑎,1
1

1
−→ 𝐸𝑎,2

1
0

−→ 𝐸𝑎,3
1

1
−→ …

as each of these is the alternation sum of the given identifications 𝐻𝑎(𝑀 ⊗∧
𝐷 Ω∗

𝐷) = 𝐸𝑎,0
1 =

𝐸𝑎,1
1 = …. Thus we see that the 𝐸2 page is equal 𝐻𝑎(𝑀 ⊗∧

𝐷 Ω∗
𝐷) on the first row and

zero elsewhere. It follows that the identification of 𝑀 ⊗∧
𝐷 Ω∗

𝐷 with the first row induces a
quasi-isomorphism of 𝑀 ⊗∧

𝐷 Ω∗
𝐷 with Tot(𝐾∗,∗). �

Lemma 39.26.4. Assumptions as in Proposition 39.26.3. Let 𝐴 → 𝑃′ → 𝐶 be ring maps
with 𝐴 → 𝑃′ smooth and 𝑃′ → 𝐶 surjective with kernel 𝐽′. Let 𝐷′ be the 𝑝-adic completion
of 𝐷𝑃′,𝛾(𝐽′). Let (𝑀′, ∇′) be the pair over 𝐷′ corresponding to ℱ, see Lemma 39.22.5.
Then the complex

𝑀′ ⊗∧
𝐷′ Ω∗

𝐷′

computes 𝑅Γ(Cris(𝑋/𝑆), ℱ).

Proof. Choose 𝑎 ∶ 𝐷 → 𝐷′ and 𝑏 ∶ 𝐷′ → 𝐷 as in Lemma 39.22.5. Note that the base
change 𝑀 = 𝑀′ ⊗𝐷′,𝑏 𝐷 with its connection ∇ corresponds to ℱ. Hence we know that
𝑀 ⊗∧

𝐷 Ω∗
𝐷 computes the crystalline cohomology of ℱ, see Proposition 39.26.3. Hence it

suffices to show that the base change maps (induced by 𝑎 and 𝑏)

𝑀′ ⊗∧
𝐷′ Ω∗

𝐷′ ⟶ 𝑀 ⊗∧
𝐷 Ω∗

𝐷 and 𝑀 ⊗∧
𝐷 Ω∗

𝐷 ⟶ 𝑀′ ⊗∧
𝐷′ Ω∗

𝐷′

are quasi-isomorphisms. Since 𝑎 ∘ 𝑏 = id𝐷′ we see that the composition one way around is
the identity on the complex 𝑀′ ⊗∧

𝐷′ Ω∗
𝐷′. Hence it suffices to show that the map

𝑀 ⊗∧
𝐷 Ω∗

𝐷 ⟶ 𝑀 ⊗∧
𝐷 Ω∗

𝐷
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induced by 𝑏 ∘ 𝑎 ∶ 𝐷 → 𝐷 is a quasi-isomorphism. (Note that we have the same complex
on both sides as 𝑀 = 𝑀′ ⊗∧

𝐷′,𝑏 𝐷, hence 𝑀 ⊗∧
𝐷,𝑏∘𝑎 𝐷 = 𝑀′ ⊗∧

𝐷′,𝑏∘𝑎∘𝑏 𝐷 = 𝑀′ ⊗∧
𝐷′,𝑏 𝐷 =

𝑀.) In fact, we claim that for any divided power 𝐴-algebra homomorphism 𝜌 ∶ 𝐷 → 𝐷
compatible with the augmentation to 𝐶 the induced map 𝑀 ⊗∧

𝐷 Ω∗
𝐷 → 𝑀 ⊗∧

𝐷,𝜌 Ω∗
𝐷 is a

quasi-isomorphism.
Write 𝜌(𝑥𝑖) = 𝑥𝑖 + 𝑧𝑖. The elements 𝑧𝑖 are in the divided power ideal of 𝐷 because 𝜌 is
compatible with the augmentation to 𝐶. Hence we can factor the map 𝜌 as a composition

𝐷
𝜎

−→ 𝐷⟨𝜉𝑖⟩∧ 𝜏
−→ 𝐷

where the first map is given by 𝑥𝑖 ↦ 𝑥𝑖 + 𝜉𝑖 and the second map is the divided power
𝐷-algebra map which maps 𝜉𝑖 to 𝑧𝑖. (This uses the universal properties of polynomial alge-
bra, divided power polynomial algebras, divided power envelopes, and 𝑝-adic completion.)
Note that there exists an automorphism 𝛼 of 𝐷⟨𝜉𝑖⟩∧ with 𝛼(𝑥𝑖) = 𝑥𝑖 − 𝜉𝑖 and 𝛼(𝜉𝑖) = 𝜉𝑖.
Applying Lemma 39.25.2 to 𝛼 ∘ 𝜎 (which maps 𝑥𝑖 to 𝑥𝑖) and using that 𝛼 is an isomorphism
we conclude that 𝜎 induces a quasi-isomorphism of 𝑀⊗∧

𝐷 Ω∗
𝐷 with 𝑀⊗∧

𝐷,𝜎 Ω∗
𝐷⟨𝑥𝑖⟩∧. On the

other hand the map 𝜏 has as a left inverse the map 𝐷 → 𝐷⟨𝑥𝑖⟩∧, 𝑥𝑖 ↦ 𝑥𝑖 and we conclude
(using Lemma 39.25.2 once more) that 𝜏 induces a quasi-isomorphism of 𝑀 ⊗∧

𝐷,𝜎 Ω∗
𝐷⟨𝑥𝑖⟩∧

with 𝑀 ⊗∧
𝐷,𝜏∘𝜎 Ω∗

𝐷. Composing these two quasi-isomorphisms we obtain that 𝜌 induces a
quasi-isomorphism 𝑀 ⊗∧

𝐷 Ω∗
𝐷 → 𝑀 ⊗∧

𝐷,𝜌 Ω∗
𝐷 as desired. �

39.27. Two counter examples

Before we turn to some of the successes of crystalline cohomology, let us give two exam-
ples which explain why crystalline cohomology does not work very well if the schemes in
question are either not proper over the base, or singular. The first example can be found in
[BO83].

Example 39.27.1. Let 𝐴 = 𝐙𝑝 with divided power ideal (𝑝) endowed with its unique
divided powers 𝛾. Let 𝐶 = 𝐅𝑝[𝑥, 𝑦]/(𝑥2, 𝑥𝑦, 𝑦2). We choose the presentation

𝐶 = 𝑃/𝐽 = 𝐙𝑝[𝑥, 𝑦]/(𝑥2, 𝑥𝑦, 𝑦2, 𝑝)

Let 𝐷 = 𝐷𝑃,𝛾(𝐽)∧ with divided power ideal ( ̄𝐽, ̄𝛾) as in Section 39.22. We will denote 𝑥, 𝑦
also the images of 𝑥 and 𝑦 in 𝐷. Consider the element

𝜏 = ̄𝛾𝑝(𝑥2) ̄𝛾𝑝(𝑦2) − ̄𝛾𝑝(𝑥𝑦)2 ∈ 𝐷

We note that 𝑝𝜏 = 0 as

𝑝! ̄𝛾𝑝(𝑥2) ̄𝛾𝑝(𝑦2) = 𝑥2𝑝 ̄𝛾𝑝(𝑦2) = ̄𝛾𝑝(𝑥2𝑦2) = 𝑥𝑝𝑦𝑝 ̄𝛾𝑝(𝑥𝑦) = 𝑝! ̄𝛾𝑝(𝑥𝑦)2

in 𝐷. We also note that d𝜏 = 0 in Ω𝐷 as

d( ̄𝛾𝑝(𝑥2) ̄𝛾𝑝(𝑦2)) = ̄𝛾𝑝−1(𝑥2) ̄𝛾𝑝(𝑦2)d𝑥2 + ̄𝛾𝑝(𝑥2) ̄𝛾𝑝−1(𝑦2)d𝑦2

= 2𝑥 ̄𝛾𝑝−1(𝑥2) ̄𝛾𝑝(𝑦2)d𝑥 + 2𝑦 ̄𝛾𝑝(𝑥2) ̄𝛾𝑝−1(𝑦2)d𝑦

= 2/(𝑝 − 1)! (𝑥2𝑝−1 ̄𝛾𝑝(𝑦2)d𝑥 + 𝑦2𝑝−1 ̄𝛾𝑝(𝑥2)d𝑦)

= 2/(𝑝 − 1)! (𝑥𝑝−1 ̄𝛾𝑝(𝑥𝑦2)d𝑥 + 𝑦𝑝−1 ̄𝛾𝑝(𝑥2𝑦)d𝑦)

= 2/(𝑝 − 1)! (𝑥𝑝−1𝑦𝑝 ̄𝛾𝑝(𝑥𝑦)d𝑥 + 𝑥𝑝𝑦𝑝−1 ̄𝛾𝑝(𝑥𝑦)d𝑦)
= 2 ̄𝛾𝑝−1(𝑥𝑦) ̄𝛾𝑝(𝑥𝑦)(𝑦d𝑥 + 𝑥d𝑦)

= d( ̄𝛾𝑝(𝑥𝑦)2)
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Finally, we claim that 𝜏≠0 in𝐷. To see this it suffices to produce an object (𝐵 → 𝐅𝑝[𝑥, 𝑦]/(𝑥2, 𝑥𝑦, 𝑦2), 𝛿)
of Cris(𝐶/𝑆) such that 𝜏 does not map to zero in 𝐵. To do this take

𝐵 = 𝐅𝑝[𝑥, 𝑦, 𝑢, 𝑣]/(𝑥3, 𝑥2𝑦, 𝑥𝑦2, 𝑦3, 𝑥𝑢, 𝑦𝑢, 𝑥𝑣, 𝑦𝑣, 𝑢2, 𝑣2)

with the obvious surjection to 𝐶. Let 𝐾 = Ker(𝐵 → 𝐶) and consider the map

𝛿𝑝 ∶ 𝐾 ⟶ 𝐾, 𝑎𝑦2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑢 + 𝑒𝑣 + 𝑓𝑢𝑣 ⟼ 𝑎𝑝𝑢 + 𝑐𝑝𝑣

One checks this satisfies the assumptions (1), (2), (3) of Lemma 39.2.7 and hence defines
a divided power structure. Moreover, we see that 𝜏 maps to 𝑢𝑣 which is not zero in 𝐵. Set
𝑋 = 𝑆𝑝𝑒𝑐(𝐶) and 𝑆 = 𝑆𝑝𝑒𝑐(𝐴). We draw the following conclusions

(1) 𝐻0(Cris(𝑋/𝑆), 𝒪𝑋/𝑆) has 𝑝-torsion, and
(2) pull back by frobenius 𝐹∗ ∶ 𝐻0(Cris(𝑋/𝑆), 𝒪𝑋/𝑆) → 𝐻0(Cris(𝑋/𝑆), 𝒪𝑋/𝑆) is not

injective.
Namely, 𝜏 defines a nonzero torsion element of𝐻0(Cris(𝑋/𝑆), 𝒪𝑋/𝑆) by Proposition 39.26.3.
Similarly, 𝐹∗(𝜏) = 𝜎(𝜏) where 𝜎 ∶ 𝐷 → 𝐷 is the map induced by any lift of Frobenius on
𝑃. If we choose 𝜎(𝑥) = 𝑥𝑝 and 𝜎(𝑦) = 𝑦𝑝, then an easy computation shows that 𝐹∗(𝜏) = 0.

The next example shows that even for affine 𝑛-space crystalline cohomology does not give
the correct thing.

Example 39.27.2. Let 𝐴 = 𝐙𝑝 with divided power ideal (𝑝) endowed with its unique
divided powers 𝛾. Let 𝐶 = 𝐅𝑝[𝑥1, … , 𝑥𝑟]. We choose the presentation

𝐶 = 𝑃/𝐽 = 𝑃/𝑝𝑃 with 𝑃 = 𝐙𝑝[𝑥1, … , 𝑥𝑟]

Note that 𝑝𝑃 has divided powers by Lemma 39.4.2. Hence setting 𝐷 = 𝑃∧ with divided
power ideal (𝑝)we obtain a situation as in Section 39.22. We conclude that𝑅Γ(Cris(𝑋/𝑆), 𝒪𝑋/𝑆)
is represented by the complex

𝐷 → Ω1
𝐷 → Ω2

𝐷 → … → Ω𝑟
𝐷

see Proposition 39.26.3. Assuming 𝑟 > 0 we conclude the following
(1) The cristalline cohomology of the cristalline structure sheaf of 𝑋 = 𝐀𝑟

𝐅𝑝
over

𝑆 = 𝑆𝑝𝑒𝑐(𝐙𝑝) is zero except in degrees 0, … , 𝑟.
(2) We have 𝐻0(Cris(𝑋/𝑆), 𝒪𝑋/𝑆) = 𝐙𝑝.
(3) The cohomology group𝐻𝑟(Cris(𝑋/𝑆), 𝒪𝑋/𝑆) is infinite and is not a torsion abelian

group.
(4) The cohomology group 𝐻𝑟(Cris(𝑋/𝑆), 𝒪𝑋/𝑆) is not separated for the 𝑝-adic topol-

ogy.
While the first two statements are reasonable, parts (3) and (4) are disconcerting! The truth
of these statements follows immediately from working out what the complex displayed
above looks like. Let's just do this in case 𝑟 = 1. Then we are just looking at the two term
complex of 𝑝-adically complete modules

d ∶ 𝐷 = (⨁𝑛≥0
𝐙𝑝𝑥𝑛

)
∧

⟶ Ω1
𝐷 = (⨁𝑛≥1

𝐙𝑝𝑥𝑛−1d𝑥)
∧

The map is given by diag(0, 1, 2, 3, 4, …) except that the first summand is missing on the
right hand side. Now it is clear that ⨁𝑛>0 𝐙𝑝/𝑛𝐙𝑝 is a subgroup of the cokernel, hence the
cokernel is infinite. In fact, the element

𝜔 = ∑𝑒>0
𝑝𝑒𝑥𝑝2𝑒−1d𝑥
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is clearly not a torsion element of the cokernel. But it gets worse. Namely, consider the
element

𝜂 = ∑𝑒>0
𝑝𝑒𝑥𝑝𝑒−1d𝑥

For every 𝑡 > 0 the element 𝜂 is congruent to ∑𝑒>𝑡 𝑝𝑒𝑥𝑝𝑒−1d𝑥 modulo the image of d which
is divisible by 𝑝𝑡. But 𝜂 is not in the image of d because it would have to be the image of
𝑎 + ∑𝑒>0 𝑥𝑝𝑒

for some 𝑎 ∈ 𝐙𝑝 which is not an element of the left hand side. In fact, 𝑝𝑁𝜂 is
similarly not in the image of d for any integer 𝑁. This implies that 𝜂 ``generates'' a copy of
𝐐𝑝 inside of 𝐻1

cris(𝐀
1
𝐅𝑝

/ 𝑆𝑝𝑒𝑐(𝐙𝑝)).

39.28. Applications

In this section we collect some applications of the material in the previous sections.

Proposition 39.28.1. In Situation 39.11.5. Let ℱ be a crystal in quasi-coherent modules
on Cris(𝑋/𝑆). The truncation map of complexes

(ℱ → ℱ ⊗𝒪𝑋/𝑆
Ω1

𝑋/𝑆 → ℱ ⊗𝒪𝑋/𝑆
Ω2

𝑋/𝑆 → ⋯) ⟶ ℱ[0],

while not a quasi-isomorphism, becomes a quasi-isomorphism after applying 𝑅𝑢𝑋/𝑆,∗. In
fact, for any 𝑖 > 0, we have

𝑅𝑢𝑋/𝑆,∗(ℱ ⊗𝒪𝑋/𝑆
Ω𝑖

𝑋/𝑆) = 0.

Proof. By Lemma 39.19.1 we get a de Rham complex as indicated in the lemma. We
abbreviate ℋ = ℱ ⊗ Ω𝑖

𝑋/𝑆. Let 𝑋′ ⊂ 𝑋 be an affine open subscheme which maps into an
affine open subscheme 𝑆′ ⊂ 𝑆. Then

(𝑅𝑢𝑋/𝑆,∗ℋ)|𝑋′
𝑍𝑎𝑟

= 𝑅𝑢𝑋′/𝑆′,∗(ℋ|Cris(𝑋′/𝑆′)),

see Lemma 39.13.5. Thus Lemma 39.26.2 shows that 𝑅𝑢𝑋/𝑆,∗ℋ is a complex of sheaves
on 𝑋𝑍𝑎𝑟 whose cohomology on any affine open is trivial. As 𝑋 has a basis for its topology
consisting of affine opens this implies that 𝑅𝑢𝑋/𝑆,∗ℋ is quasi-isomorphic to zero. �

Remark 39.28.2. The proof of Proposition 39.28.1 shows that the conclusion

𝑅𝑢𝑋/𝑆,∗(ℱ ⊗𝒪𝑋/𝑆
Ω𝑖

𝑋/𝑆) = 0

for 𝑖 > 0 is true for any 𝒪𝑋/𝑆-module ℱ which satisfies conditions (1) and (2) of Proposition
39.26.1. This applies to the following non-crystals: Ω𝑖

𝑋/𝑆 for all 𝑖, and any sheaf of the
form ℱ, where ℱ is a quasi-coherent 𝒪𝑋-module. In particular, it applies to the sheaf
𝒪𝑋 = 𝐆𝑎. But note that we need something like Lemma 39.19.1 to produce a de Rham
complex which requires ℱ to be a crystal. Hence (currently) the collection of sheaves of
modules for which the full statement of Proposition 39.28.1 holds is exactly the category
of crystals in quasi-coherent modules.

In Situation 39.11.5. Let ℱ be a crystal in quasi-coherent modules on Cris(𝑋/𝑆). Let
(𝑈, 𝑇, 𝛿) be an object of Cris(𝑋/𝑆). Proposition 39.28.1 allows us to construct a canonical
map

(39.28.2.1) 𝑅Γ(Cris(𝑋/𝑆), ℱ) ⟶ 𝑅Γ(𝑇, ℱ𝑇 ⊗𝒪𝑇
Ω∗

𝑇/𝑆,𝛿)

Namely, we have 𝑅Γ(Cris(𝑋/𝑆), ℱ) = 𝑅Γ(Cris(𝑋/𝑆), ℱ ⊗ Ω∗
𝑋/𝑆), we can restrict global

cohomology classes to 𝑇, and Ω𝑋/𝑆 restricts to Ω𝑇/𝑆,𝛿 by Lemma 39.16.3.
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39.29. Some further results

In this section we mention some results whose proof is missing. We will formulate these
as a series of remarks and we will convert them into actual lemmas and propositions only
when we add detailed proofs.

Remark 39.29.1 (Higher direct images). Let 𝑝 be a prime number. Let (𝑆, ℐ, 𝛾) → (𝑆′, ℐ′, 𝛾′)
be a morphism of divided power schemes over 𝐙(𝑝). Let

𝑋
𝑓
//

��

𝑋′

��
𝑆0

// 𝑆′
0

be a commutative diagram of morphisms of schemes and assume 𝑝 is locally nilpotent on
𝑋 and 𝑋′. Let ℱ be an 𝒪𝑋/𝑆-module on Cris(𝑋/𝑆). Then 𝑅𝑓cris,∗ℱ can be computed as
follows.

Given an object (𝑈′, 𝑇′, 𝛿′) of Cris(𝑋′/𝑆′) set 𝑈 = 𝑋×𝑋′𝑈′ = 𝑓−1(𝑈′) (an open subscheme
of 𝑋). Denote (𝑇0, 𝑇, 𝛿) the divided power scheme over 𝑆 such that

𝑇 //

��

𝑇′

��
𝑆 // 𝑆′

is cartesian in the category of divided power schemes, see Lemma 39.11.4. There is an
induced morphism 𝑈 → 𝑇0 and we obtain a morphism (𝑈/𝑇)cris → (𝑋/𝑆)cris, see Remark
39.13.3. Let ℱ𝑈 be the pullback of ℱ. Let 𝜏𝑈/𝑇 ∶ (𝑈/𝑇)cris → 𝑇𝑍𝑎𝑟 be the structure
morphism. Then we have

(39.29.1.1) (𝑅𝑓cris,∗ℱ)𝑇′ = 𝑅(𝑇 → 𝑇′)∗ (𝑅𝜏𝑈/𝑇,∗ℱ𝑈)

where the left hand side is the restriction (see Section 39.14).

Hints: First, show that Cris(𝑈/𝑇) is the localization (in the sense of Sites, Lemma 9.26.3) of
Cris(𝑋/𝑆) at the sheaf of sets 𝑓−1

crisℎ(𝑈′,𝑇′,𝛿′). Next, reduce the statement to the case where ℱ
is an injective module and push forward of modules using that the pullback of an injective
𝒪𝑋/𝑆-module is an injective 𝒪𝑈/𝑇-module on Cris(𝑈/𝑇). Finally, check the result holds for
plain push forward.

Remark 39.29.2 (Mayer-Vietoris). In the situation of Remark 39.29.1 suppose we have an
open covering 𝑋 = 𝑋′ ∪ 𝑋″. Denote 𝑋‴ = 𝑋′ ∩ 𝑋″. Let 𝑓′, 𝑓″, and 𝑓″ be the restriction
of 𝑓 to 𝑋′, 𝑋″, and 𝑋‴. Moreover, Let ℱ′, ℱ″, and ℱ‴ be the restriction of ℱ to the
crystalline sites of 𝑋′, 𝑋″, and 𝑋‴. Then there exists a distinguished triangle

𝑅𝑓cris,∗ℱ ⟶ 𝑅𝑓′
cris,∗ℱ′ ⊕ 𝑅𝑓″

cris,∗ℱ″ ⟶ 𝑅𝑓‴
cris,∗ℱ‴ ⟶ 𝑅𝑓cris,∗ℱ[1]

in 𝐷(𝒪𝑋′/𝑆′).

Hints: This is a formal consequence of the fact that the subcategories Cris(𝑋′/𝑆), Cris(𝑋″/𝑆),
Cris(𝑋‴/𝑆) correspond to open subobjects of the final sheaf on Cris(𝑋/𝑆) and that the last
is the intersection of the first two.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MJ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07ML


2174 39. CRYSTALLINE COHOMOLOGY

Remark 39.29.3 (Čech complex). Let 𝑝 be a prime number. Let (𝐴, 𝐼, 𝛾) be a divided power
ring with 𝐴 a 𝐙(𝑝)-algebra. Set 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴/𝐼). Let 𝑋 be a separated6
scheme over 𝑆0 such that 𝑝 is locally nilpotent on 𝑋. Let ℱ be a crystal in quasi-coherent
𝒪𝑋/𝑆-modules.

Choose an affine open covering 𝑋 = ⋃𝜆∈Λ 𝑈𝜆 of 𝑋. Write 𝑈𝜆 = 𝑆𝑝𝑒𝑐(𝐶𝜆). Choose a
polynomial algebra 𝑃𝜆 over 𝐴 and a surjection 𝑃𝜆 → 𝐶𝜆. Having fixed these choices we
can construct a Čech complex which computes 𝑅Γ(Cris(𝑋/𝑆), ℱ).

Given 𝑛 ≥ 0 and 𝜆0, … , 𝜆𝑛 ∈ Λ write 𝑈𝜆0…𝜆𝑛
= 𝑈𝜆0

∩ … ∩ 𝑈𝜆𝑛
. This is an affine scheme

by assumption. Write 𝑈𝜆0…𝜆𝑛
= 𝑆𝑝𝑒𝑐(𝐶𝜆0…𝜆𝑛

). Set

𝑃𝜆0…𝜆𝑛
= 𝑃𝜆0

⊗𝐴 … ⊗𝐴 𝑃𝜆𝑛

which comes with a canonical surjection onto 𝐶𝜆0…𝜆𝑛
. Denote the kernel 𝐽𝜆0…𝜆𝑛

and set
𝐷𝜆0…𝜆𝑛

the 𝑝-adically completed divided power envelope of 𝐽𝜆0…𝜆𝑛
in 𝑃𝜆0…𝜆𝑛

relative to 𝛾.
Denote Ω𝜆0…𝜆𝑛

the 𝑝-adically completed module of differentials of 𝐷𝜆0…𝜆𝑛
over 𝐴 compat-

ible with the divided power structure. Let 𝑀𝜆0…𝜆𝑛
be the 𝑃𝜆0…𝜆𝑛

-module corresponding to
the restriction of ℱ to Cris(𝑈𝜆0…𝜆𝑛

/𝑆) via Proposition 39.22.4. By construction we obtain
a cosimplicial divided power ring 𝐷(∗) having in degree 𝑛 the ring

𝐷(𝑛) = ∏𝜆0…𝜆𝑛
𝐷𝜆0…𝜆𝑛

(use that divided power envelopes are functorial and the trivial cosimplicial structure on the
ring 𝑃(∗) defined similarly). Since 𝑀𝜆0…𝜆𝑛

is the ``value'' of ℱ on the objects 𝑆𝑝𝑒𝑐(𝐷𝜆0…𝜆𝑛
)

we see that 𝑀(∗) defined by the rule

𝑀(𝑛) = ∏𝜆0…𝜆𝑛
𝑀𝜆0…𝜆𝑛

forms a cosimplicial 𝐷(∗)-module. Now we claim that we have

𝑅Γ(Cris(𝑋/𝑆), ℱ) = 𝑠(𝑀(∗))

Here 𝑠(−) denotes the cochain complex associated to a cosimplicial module (see Simplicial,
Section 14.23).

Hints: The proof of this is similar to the proof of Proposition 39.26.1 (in particular the result
holds for any module satisfying the assumptions of that proposition).

Remark 39.29.4 (Alternating Čech complex). Let 𝑝 be a prime number. Let (𝐴, 𝐼, 𝛾) be a
divided power ring with 𝐴 a 𝐙(𝑝)-algebra. Set 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴/𝐼). Let 𝑋 be
a separated quasi-compact scheme over 𝑆0 such that 𝑝 is locally nilpotent on 𝑋. Let ℱ be
a crystal in quasi-coherent 𝒪𝑋/𝑆-modules.

Choose a finite affine open covering 𝑋 = ⋃𝜆∈Λ 𝑈𝜆 of 𝑋 and a total ordering on Λ. Write
𝑈𝜆 = 𝑆𝑝𝑒𝑐(𝐶𝜆). Choose a polynomial algebra 𝑃𝜆 over 𝐴 and a surjection 𝑃𝜆 → 𝐶𝜆.
Having fixed these choices we can construct an alternating Čech complex which computes
𝑅Γ(Cris(𝑋/𝑆), ℱ).

We are going to use the notation introduced in Remark 39.29.3. DenoteΩ𝜆0…𝜆𝑛
the 𝑝-adically

completed module of differentials of 𝐷𝜆0…𝜆𝑛
over 𝐴 compatible with the divided power

6This assumption is not strictly necessary, as using hypercoverings the construction of the remark can be
extended to the general case.
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structure. Let ∇ be the integrable connection on 𝑀𝜆0…𝜆𝑛
coming from Proposition 39.22.4.

Consider the double complex 𝑀•,• with terms

𝑀𝑛,𝑚 = ⨁𝜆0<…<𝜆𝑛
𝑀𝜆0…𝜆𝑛

⊗∧
𝐷𝜆0…𝜆𝑛

Ω𝑚
𝐷𝜆0…𝜆𝑛

.

For the differential 𝑑1 (increasing 𝑛) we use the usual Čech differential and for the differ-
ential 𝑑2 we use the connection, i.e., the differential of the de Rham complex. We claim
that

𝑅Γ(Cris(𝑋/𝑆), ℱ) = Tot(𝑀•,•)
Here Tot(−) denotes the total complex associated to a double complex, see Homology,
Definition 10.19.2.
Hints: We have

𝑅Γ(Cris(𝑋/𝑆), ℱ) = 𝑅Γ(Cris(𝑋/𝑆), ℱ ⊗𝒪𝑋/𝑆
Ω•

𝑋/𝑆)

by Proposition 39.28.1. The right hand side of the formula is simply the alternating Čech
complex for the covering 𝑋 = ⋃𝜆∈Λ 𝑈𝜆 (which induces an open covering of the final sheaf
of Cris(𝑋/𝑆)) and the complex ℱ ⊗𝒪𝑋/𝑆

Ω•
𝑋/𝑆, see Proposition 39.26.3. Now the result

follows from a general result in cohomology on sites, namely that the alternating Čech
complex computes the cohomology provided it gives the correct answer on all the pieces
(insert future reference here).

Remark 39.29.5 (Quasi-coherence). In the situation of Remark 39.29.1 assume that 𝑆 →
𝑆′ is quasi-compact and quasi-separated and that 𝑋 → 𝑆0 is quasi-compact and quasi-
separated. Then for a crystal in quasi-coherent 𝒪𝑋/𝑆-modules ℱ the sheaves 𝑅𝑖𝑓cris,∗ℱ are
locally quasi-coherent.
Hints: We have to show that the restrictions to 𝑇′ are quasi-coherent 𝒪𝑇′-modules, where
(𝑈′, 𝑇′, 𝛿′) is any object of Cris(𝑋′/𝑆′). It suffices to do this when 𝑇′ is affine. We use
the formula (39.29.1.1), the fact that 𝑇 → 𝑇′ is quasi-compact and quasi-separated (as 𝑇 is
affine over the base change of 𝑇′ by 𝑆 → 𝑆′), and Coherent, Lemma 25.5.3 to see that it
suffices to show that the sheaves 𝑅𝑖𝜏𝑈/𝑇,∗ℱ𝑈 are quasi-coherent. Note that 𝑈 → 𝑇0 is also
quasi-compact and quasi-separated, see Schemes, Lemmas 21.21.15 and 21.21.15.
This reduces us to proving that 𝑅𝑖𝜏𝑋/𝑆,∗ℱ is quasi-coherent on 𝑆 in the case that 𝑝 locally
nilpotent on 𝑆. Here 𝜏𝑋/𝑆 is the structure morphism, see Remark 39.13.6. We may work
locally on 𝑆, hence wemay assume 𝑆 affine (see Lemma 39.13.5). Induction on the number
of affines covering 𝑋 andMayer-Vietoris (Remark 39.29.2) reduces the question to the case
where 𝑋 is also affine (as in the proof of Coherent, Lemma 25.5.3). Say 𝑋 = 𝑆𝑝𝑒𝑐(𝐶) and
𝑆 = 𝑆𝑝𝑒𝑐(𝐴) so that (𝐴, 𝐼, 𝛾) and 𝐴 → 𝐶 are as in Situation 39.9.1. Choose a polynomial
algebra 𝑃 over 𝐴 and a surjection 𝑃 → 𝐶 as in Section 39.22. Let (𝑀, ∇) be the module
corresponding to ℱ, see Proposition 39.22.4. Applying Proposition 39.26.3 we see that
𝑅Γ(Cris(𝑋/𝑆), ℱ) is represented by 𝑀 ⊗𝐷 Ω∗

𝐷. Note that completion isn't necessary as 𝑝
is nilpotent in 𝐴! We have to show that this is compatible with taking principal opens in
𝑆 = 𝑆𝑝𝑒𝑐(𝐴). Suppose that 𝑔 ∈ 𝐴. Then we conclude that similarly 𝑅Γ(Cris(𝑋𝑔/𝑆𝑔), ℱ) is
computed by 𝑀𝑔 ⊗𝐷𝑔

Ω∗
𝐷𝑔

(again this uses that 𝑝-adic completion isn't necessary). Hence
we conclude because localization is an exact functor on 𝐴-modules.

Remark 39.29.6 (Boundedness). In the situation of Remark 39.29.1 assume that 𝑆 → 𝑆′

is quasi-compact and quasi-separated and that 𝑋 → 𝑆0 is of finite type and quasi-separated.
Then there exists an integer 𝑖0 such that for any crystal in quasi-coherent 𝒪𝑋/𝑆-modules ℱ
we have 𝑅𝑖𝑓cris,∗ℱ = 0 for all 𝑖 > 𝑖0.
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Hints: Arguing as in Remark 39.29.5 (using Coherent, Lemma 25.5.3) we reduce to proving
that 𝐻𝑖(Cris(𝑋/𝑆), ℱ) = 0 for 𝑖 ≫ 0 in the situation of Proposition 39.26.3 when 𝐶 is a
finite type algebra over 𝐴. This is clear as we can choose a finite polynomial algebra and
we see that Ω𝑖

𝐷 = 0 for 𝑖 ≫ 0.

Remark 39.29.7 (Specific boundedness). In Situation 39.11.5 let ℱ be a crystal in quasi-
coherent 𝒪𝑋/𝑆-modules. Assume that 𝑆0 has a unique point and that 𝑋 → 𝑆0 is of finite
presentation.

(1) If dim 𝑋 = 𝑑 and 𝑋/𝑆0 has embedding dimension 𝑒, then 𝐻𝑖(Cris(𝑋/𝑆), ℱ) = 0
for 𝑖 > 𝑑 + 𝑒.

(2) If 𝑋 is separated and can be covered by 𝑞 affines, and 𝑋/𝑆0 has embedding di-
mension 𝑒, then 𝐻𝑖(Cris(𝑋/𝑆), ℱ) = 0 for 𝑖 > 𝑞 + 𝑒.

Hints: In case (1) we can use that

𝐻𝑖(Cris(𝑋/𝑆), ℱ) = 𝐻𝑖(𝑋𝑍𝑎𝑟, 𝑅𝑢𝑋/𝑆,∗ℱ)

and that 𝑅𝑢𝑋/𝑆,∗ℱ is locally calculated by a de Rham complex constructed using an em-
bedding of 𝑋 into a smooth scheme of dimension 𝑒 over 𝑆 (see Lemma 39.26.4). These de
Rham complexes are zero in all degrees > 𝑒. Hence (1) follows from Cohomology, Lemma
18.16.5. In case (2) we use the alternating Čech complex (see Remark 39.29.4) to reduce
to the case 𝑋 affine. In the affine case we prove the result using the de Rham complex as-
sociated to an embedding of 𝑋 into a smooth scheme of dimension 𝑒 over 𝑆 (it takes some
work to construct such a thing).

Remark 39.29.8 (Base change map). In the situation of Remark 39.29.1 assume 𝑆 =
𝑆𝑝𝑒𝑐(𝐴) and 𝑆′ = 𝑆𝑝𝑒𝑐(𝐴′) are affine. Let ℱ′ be an 𝒪𝑋′/𝑆′-module. Let ℱ be the pullback
of ℱ′. Then there is a canonical base change map

𝐿(𝑆′ → 𝑆)∗𝑅𝜏𝑋′/𝑆′,∗ℱ′ ⟶ 𝑅𝜏𝑋/𝑆,∗ℱ

where 𝜏𝑋/𝑆 and 𝜏𝑋′/𝑆′ are the structure morphisms, see Remark 39.13.6. On global sections
this gives a base change map

(39.29.8.1) 𝑅Γ(Cris(𝑋′/𝑆′), ℱ′) ⊗𝐋
𝐴′ 𝐴 ⟶ 𝑅Γ(Cris(𝑋/𝑆), ℱ)

in 𝐷(𝐴).

Hint: Compose the very general base changemap of Cohomology on Sites, Remark 19.19.2
with the canonical map 𝐿𝑓∗

crisℱ
′ → 𝑓∗

crisℱ
′ = ℱ.

Remark 39.29.9 (Base change isomorphism). The map (39.29.8.1) is an isomorphism pro-
vided all of the following conditions are satisfied:

(1) 𝑝 is nilpotent in 𝐴′,
(2) ℱ′ is a crystal in quasi-coherent 𝒪𝑋′/𝑆′-modules,
(3) 𝑋′ → 𝑆′

0 is a quasi-compact, quasi-separated morphism,
(4) 𝑋 = 𝑋′ ×𝑆′

0
𝑆0,

(5) ℱ′ is a flat 𝒪𝑋′/𝑆′-module,
(6) 𝑋′ → 𝑆′

0 is a local complete intersection morphism (see More on Morphisms,
Definition 33.38.2; this holds for example if 𝑋′ → 𝑆′

0 is syntomic or smooth),
(7) 𝑋′ and 𝑆0 are Tor independent over 𝑆′

0 (see More on Algebra, Definition 12.5.1;
this holds for example if either 𝑆0 → 𝑆′

0 or 𝑋′ → 𝑆′
0 is flat).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MR
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MU
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Hints: Condition (1) means that in the arguments below 𝑝-adic completion does nothing and
can be ignored. Using condition (3) and Mayer Vietoris (see Remark 39.29.2) this reduces
to the casewhere𝑋′ is affine. In fact by condition (6), after shrinking further, we can assume
that 𝑋′ = 𝑆𝑝𝑒𝑐(𝐶′) and we are given a presentation 𝐶′ = 𝐴′/𝐼′[𝑥1, … , 𝑥𝑛]/( ̄𝑓′

1, … , ̄𝑓′
𝑐)

where ̄𝑓′
1, … , ̄𝑓′

𝑐 is a Koszul-regular sequence in 𝐴′/𝐼′. (This means that smooth locally
̄𝑓′

1, … , ̄𝑓′
𝑐 forms a regular sequence, see More on Algebra, Lemma 12.22.16.) We choose

a lift of ̄𝑓′
𝑖 to an element 𝑓′

𝑖 ∈ 𝐴′[𝑥1, … , 𝑥𝑛]. By (4) we see that 𝑋 = 𝑆𝑝𝑒𝑐(𝐶) with
𝐶 = 𝐴/𝐼[𝑥1, … , 𝑥𝑛]/( ̄𝑓1, … , ̄𝑓𝑐) where 𝑓𝑖 ∈ 𝐴[𝑥1, … , 𝑥𝑛] is the image of 𝑓′

𝑖 . By property
(7) we see that ̄𝑓1, … , ̄𝑓𝑐 is a Koszul-regular sequence in 𝐴/𝐼[𝑥1, … , 𝑥𝑛]. The divided
power envelope of 𝐼′𝐴′[𝑥1, … , 𝑥𝑛] + (𝑓′

1, … , 𝑓′
𝑐) in 𝐴′[𝑥1, … , 𝑥𝑛] relative to 𝛾′ is

𝐷′ = 𝐴′[𝑥1, … , 𝑥𝑛]⟨𝜉1, … , 𝜉𝑐⟩/(𝜉𝑖 − 𝑓′
𝑖 )

see Lemma 39.6.4. Then you check that 𝜉1 − 𝑓′
1, … , 𝜉𝑛 − 𝑓′

𝑛 is a Koszul-regular se-
quence in the ring 𝐴′[𝑥1, … , 𝑥𝑛]⟨𝜉1, … , 𝜉𝑐⟩. Similarly the divided power envelope of
𝐼𝐴[𝑥1, … , 𝑥𝑛] + (𝑓1, … , 𝑓𝑐) in 𝐴[𝑥1, … , 𝑥𝑛] relative to 𝛾 is

𝐷 = 𝐴[𝑥1, … , 𝑥𝑛]⟨𝜉1, … , 𝜉𝑐⟩/(𝜉𝑖 − 𝑓𝑖)

and 𝜉1 − 𝑓1, … , 𝜉𝑛 − 𝑓𝑛 is a Koszul-regular sequence in the ring 𝐴[𝑥1, … , 𝑥𝑛]⟨𝜉1, … , 𝜉𝑐⟩.
It follows that 𝐷′ ⊗𝐋

𝐴′ 𝐴 = 𝐷. Condition (2) implies ℱ′ corresponds to a pair (𝑀′, ∇)
consisting of a 𝐷′-module with connection, see Proposition 39.22.4. Then 𝑀 = 𝑀′ ⊗𝐷′ 𝐷
corresponds to the pullback ℱ. By assumption (5) we see that 𝑀′ is a flat 𝐷′-module, hence

𝑀 = 𝑀′ ⊗𝐷′ 𝐷 = 𝑀′ ⊗𝐷′ 𝐷′ ⊗𝐋
𝐴′ 𝐴 = 𝑀′ ⊗𝐋

𝐴′ 𝐴

Since themodules of differentialsΩ𝐷′ andΩ𝐷 (as defined in Section 39.22) are free𝐷′-modules
on the same generators we see that

𝑀 ⊗𝐷 Ω•
𝐷 = 𝑀′ ⊗𝐷′ Ω•

𝐷′ ⊗𝐷′ 𝐷 = 𝑀′ ⊗𝐷′ Ω•
𝐷′ ⊗𝐋

𝐴′ 𝐴

which proves what we want by Proposition 39.26.3.

Remark 39.29.10 (Rlim). Let 𝑝 be a prime number. Let (𝐴, 𝐼, 𝛾) be a divided power ring
with 𝐴 an algebra over 𝐙(𝑝) with 𝑝 nilpotent in 𝐴/𝐼. Set 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴/𝐼).
Let 𝑋 be a scheme over 𝑆0 with 𝑝 locally nilpotent on 𝑋. Let ℱ be any 𝒪𝑋/𝑆-module. For
𝑒 ≫ 0 we have (𝑝𝑒) ⊂ 𝐼 is preserved by 𝛾, see Lemma 39.4.5. Set 𝑆𝑒 = 𝑆𝑝𝑒𝑐(𝐴/𝑝𝑒𝐴) for
𝑒 ≫ 0. Then Cris(𝑋/𝑆𝑒) is a full subcategory of Cris(𝑋/𝑆) and we denote ℱ𝑒 the restriction
of ℱ to Cris(𝑋/𝑆𝑒). Then

𝑅Γ(Cris(𝑋/𝑆), ℱ) = 𝑅 𝑙𝑖𝑚𝑒 𝑅Γ(Cris(𝑋/𝑆𝑒), ℱ𝑒)

Hints: Suffices to prove this for ℱ injective. In this case the sheaves ℱ𝑒 are injective
modules too, the transition maps Γ(ℱ𝑒+1) → Γ(ℱ𝑒) are surjective, and we have Γ(ℱ) =
𝑙𝑖𝑚𝑒 Γ(ℱ𝑒) because any object of Cris(𝑋/𝑆) is locally an object of one of the categories
Cris(𝑋/𝑆𝑒) by definition of Cris(𝑋/𝑆).

Remark 39.29.11 (Comparison). Let 𝑝 be a prime number. Let (𝐴, 𝐼, 𝛾) be a divided power
ring with 𝑝 nilpotent in 𝐴. Set 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴/𝐼). Let 𝑌 be a smooth scheme
over 𝑆 and set 𝑋 = 𝑌 ×𝑆 𝑆0. Let ℱ be a crystal in quasi-coherent 𝒪𝑋/𝑆-modules. Then

(1) 𝛾 extends to a divided power structure on the ideal of 𝑋 in 𝑌 so that (𝑋, 𝑌, 𝛾) is an
object of Cris(𝑋/𝑆),

(2) the restriction ℱ𝑌 (see Section 39.14) comes endowed with a canonical integrable
connection ∇ ∶ ℱ𝑌 → ℱ𝑌 ⊗𝒪𝑌

Ω𝑌/𝑆, and

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MV
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MW
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(3) we have
𝑅Γ(Cris(𝑋/𝑆), ℱ) = 𝑅Γ(𝑌, ℱ𝑌 ⊗𝒪𝑌

Ω•
𝑌/𝑆)

in 𝐷(𝐴).

Hints: See Lemma 39.4.2 for (1). See Lemma 39.19.1 for (2). For Part (3) note that there is
a map, see (39.28.2.1). This map is an isomorphism when 𝑋 is affine, see Lemma 39.26.4.
This shows that 𝑅𝑢𝑋/𝑆,∗ℱ and ℱ𝑌 ⊗ Ω•

𝑌/𝑆 are quasi-isomorphic as complexes on 𝑌𝑍𝑎𝑟 =
𝑋𝑍𝑎𝑟. Since 𝑅Γ(Cris(𝑋/𝑆), ℱ) = 𝑅Γ(𝑋𝑍𝑎𝑟, 𝑅𝑢𝑋/𝑆,∗ℱ) the result follows.

Remark 39.29.12 (Perfectness). Let 𝑝 be a prime number. Let (𝐴, 𝐼, 𝛾) be a divided power
ring with 𝑝 nilpotent in 𝐴. Set 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴/𝐼). Let 𝑋 be a proper smooth
scheme over 𝑆0. Let ℱ be a crystal in finite locally free quasi-coherent 𝒪𝑋/𝑆-modules. Then
𝑅Γ(Cris(𝑋/𝑆), ℱ) is a perfect object of 𝐷(𝐴).
Hints: By Remark 39.29.9 we have

𝑅Γ(Cris(𝑋/𝑆), ℱ) ⊗𝐋
𝐴 𝐴/𝐼 ≅ 𝑅Γ(Cris(𝑋/𝑆0), ℱ|Cris(𝑋/𝑆0))

By Remark 39.29.11 we have
𝑅Γ(Cris(𝑋/𝑆0), ℱ|Cris(𝑋/𝑆0)) = 𝑅Γ(𝑋, ℱ𝑋 ⊗ Ω•

𝑋/𝑆0
)

Using the stupid filtration on the de Rham complex we see that the last displayed complex
is perfect in 𝐷(𝐴/𝐼) as soon as the complexes

𝑅Γ(𝑋, ℱ𝑋 ⊗ Ω𝑞
𝑋/𝑆0

)

are perfect complexes in 𝐷(𝐴/𝐼), see More on Algebra, Lemma 12.42.4. This is true by
standard arguments in coherent cohomology using that ℱ𝑋 ⊗ Ω𝑞

𝑋/𝑆0
is a finite locally free

sheaf and 𝑋 → 𝑆0 is proper and flat (insert future reference here). Applying More on
Algebra, Lemma 12.43.4 we see that

𝑅Γ(Cris(𝑋/𝑆), ℱ) ⊗𝐋
𝐴 𝐴/𝐼𝑛

is a perfect object of 𝐷(𝐴/𝐼𝑛) for all 𝑛. This isn't quite enough unless 𝐴 is Noetherian.
Namely, even though 𝐼 is locally nilpotent by our assumption that 𝑝 is nilpotent, see Lemma
39.2.6, we cannot conclude that 𝐼𝑛 = 0 for some 𝑛. A counter example is 𝐅𝑝⟨𝑥⟩. To prove
it in general when ℱ = 𝒪𝑋/𝑆 the argument of http://math.columbia.edu/~dejong/
wordpress/?p=2227 works. When the coefficients ℱ are non-trivial the argument of
[Fal99] seems to be as follows. Reduce to the case 𝑝𝐴 = 0 by More on Algebra, Lemma
12.43.4. In this case the Frobenius map 𝐴 → 𝐴, 𝑎 ↦ 𝑎𝑝 factors as 𝐴 → 𝐴/𝐼

𝜑
−→ 𝐴 (as

𝑥𝑝 = 0 for 𝑥 ∈ 𝐼). Set 𝑋(1) = 𝑋 ⊗𝐴/𝐼,𝜑 𝐴. The absolute Frobenius morphism of 𝑋 fac-
tors through a morphism 𝐹𝑋 ∶ 𝑋 → 𝑋(1) (a kind of relative Frobenius). Affine locally
if 𝑋 = 𝑆𝑝𝑒𝑐(𝐶) then 𝑋(1) = 𝑆𝑝𝑒𝑐(𝐶 ⊗𝐴/𝐼,𝜑 𝐴) and 𝐹𝑋 corresponds to 𝐶 ⊗𝐴/𝐼,𝜑 𝐴 → 𝐶,
𝑐 ⊗ 𝑎 ↦ 𝑐𝑝𝑎. This defines morphisms of ringed topoi

(𝑋/𝑆)cris
(𝐹𝑋)cris−−−−−−→ (𝑋(1)/𝑆)cris

𝑢𝑋(1)/𝑆−−−−−→ Sh(𝑋(1)
𝑍𝑎𝑟)

whose composition is denoted Frob𝑋. One then shows that 𝑅Frob𝑋,∗ℱ is representable by
a perfect complex of 𝒪𝑋(1)-modules(!) by a local calculation.

Remark 39.29.13 (Complete perfectness). Let 𝑝 be a prime number. Let (𝐴, 𝐼, 𝛾) be a
divided power ring with 𝐴 a Noetherian 𝑝-adically complete ring and 𝑝 nilpotent in 𝐴/𝐼.
Set 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴/𝐼). Let 𝑋 be a proper smooth scheme over 𝑆0. Let ℱ
be a crystal in finite locally free quasi-coherent 𝒪𝑋/𝑆-modules. Then 𝑅Γ(Cris(𝑋/𝑆), ℱ) is
a perfect object of 𝐷(𝐴).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MX
http://math.columbia.edu/~dejong/wordpress/?p=2227
http://math.columbia.edu/~dejong/wordpress/?p=2227
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MY
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Hints: We know that 𝐾 = 𝑅Γ(Cris(𝑋/𝑆), ℱ) is the derived limit 𝐾 = 𝑅 𝑙𝑖𝑚 𝐾𝑒 of the
cohomologies over𝐴/𝑝𝑒𝐴, see Remark 39.29.10. Each𝐾𝑒 is a perfect complex of𝐷(𝐴/𝑝𝑒𝐴)
by Remark 39.29.12. Since 𝐴 is Noetherian and 𝑝-adically complete the result follows from
(insert future reference here).
Remark 39.29.14 (Complete comparison). Let 𝑝 be a prime number. Let (𝐴, 𝐼, 𝛾) be a
divided power ring with 𝐴 a Noetherian 𝑝-adically complete ring and 𝑝 nilpotent in 𝐴/𝐼.
Set 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) and 𝑆0 = 𝑆𝑝𝑒𝑐(𝐴/𝐼). Let 𝑌 be a proper smooth scheme over 𝑆 and set
𝑋 = 𝑌 ×𝑆 𝑆0. Let ℱ be a finite type crystal in quasi-coherent 𝒪𝑋/𝑆-modules. Then

(1) there exists a coherent 𝒪𝑌-module ℱ𝑌 endowed with integrable connection
∇ ∶ ℱ𝑌 ⟶ ℱ𝑌 ⊗𝒪𝑌

Ω𝑌/𝑆

such that ℱ𝑌/𝑝𝑒ℱ𝑌 is the module with connection over 𝐴/𝑝𝑒𝐴 found in Remark
39.29.11, and

(2) we have
𝑅Γ(Cris(𝑋/𝑆), ℱ) = 𝑅Γ(𝑌, ℱ𝑌 ⊗𝒪𝑌

Ω•
𝑌/𝑆)

in 𝐷(𝐴).

Hints: The existence of ℱ𝑌 is Grothendieck's existence theorem (insert future reference
here). The isomorphism of cohomologies follows as both sides are computed as 𝑅 𝑙𝑖𝑚 of
the versions modulo 𝑝𝑒 (see Remark 39.29.10 for the left hand side; use the theorem on
formal functions, see Coherent, Theorem 25.19.5 for the right hand side). Each of the
versions modulo 𝑝𝑒 are isomorphic by Remark 39.29.11.

39.30. Pulling back along 𝛼𝑝-covers

By an 𝛼𝑝-cover we mean a morphism of the form

𝑋′ = 𝑆𝑝𝑒𝑐(𝐶[𝑧]/(𝑧𝑝 − 𝑐)) ⟶ 𝑆𝑝𝑒𝑐(𝐶) = 𝑋
where 𝐶 is an 𝐅𝑝-algebra and 𝑐 ∈ 𝐶. Equivalently, 𝑋′ is an 𝛼𝑝-torsor over 𝑋. An iterated
𝛼𝑝-cover

7 is a morphism of schemes in characteristic 𝑝 which is locally on the target a
composition of finitely many 𝛼𝑝-covers. In this section we prove that pullback along such
a morphism induces a quasi-isomorphism on crystalline cohomology after inverting the
prime 𝑝. In fact, we prove a precise version of this result. We being with a preliminary
lemma whose formulation need some notation.
Assume we have a ring map 𝐵 → 𝐵′ and quotients Ω𝐵 → Ω and Ω𝐵′ → Ω′ satisfy-
ing the assumptions of Remark 39.10.11. Thus (39.10.11.1) provides a canonical map of
complexes

𝑐•
𝑀 ∶ 𝑀 ⊗𝐵 Ω• ⟶ 𝑀 ⊗𝐵 (Ω′)•

for all 𝐵-modules 𝑀 endowed with integrable connection ∇ ∶ 𝑀 → 𝑀 ⊗𝐵 Ω𝐵.
Suppose we have 𝑎 ∈ 𝐵, 𝑧 ∈ 𝐵′, and a map 𝜃 ∶ 𝐵′ → 𝐵′ satisfying the following
assumptions

(1) d(𝑎) = 0,
(2) Ω′ = 𝐵′ ⊗𝐵 Ω ⊕ 𝐵′d𝑧; we write d(𝑓) = d1(𝑓) + 𝜕𝑧(𝑓)d𝑧 with d1(𝑓) ∈ 𝐵′ ⊗ Ω

and 𝜕𝑧(𝑓) ∈ 𝑁′ for all 𝑓 ∈ 𝐵′,
(3) 𝜃 ∶ 𝐵′ → 𝐵′ is 𝐵-linear,
(4) 𝜕𝑧 ∘ 𝜃 = 𝑎,
(5) 𝐵 → 𝐵′ is universally injective (and hence Ω → Ω′ is injective),

7This is nonstandard notation.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07MZ
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(6) 𝑎𝑓 − 𝜃(𝜕𝑧(𝑓)) ∈ 𝐵 for all 𝑓 ∈ 𝐵′,
(7) (𝜃 ⊗ 1)(d1(𝑓)) − d1(𝜃(𝑓)) ∈ Ω for all 𝑓 ∈ 𝐵′ where 𝜃 ⊗ 1 ∶ 𝐵′ ⊗ Ω → 𝐵′ ⊗ Ω

These conditions are not logically independent. For example, assumption (4) implies that
𝜕𝑧(𝑎𝑓 − 𝜃(𝜕𝑧(𝑓))) = 0. Hence if the image of 𝐵 → 𝐵′ is the collection of elements annihi-
lated by 𝜕𝑧, then (6) follows. A similar argument can be made for condition (7).

Lemma 39.30.1. In the situation above there exists a map of complexes

𝑒•
𝑀 ∶ 𝑀 ⊗𝐵 (Ω′)• ⟶ 𝑀 ⊗𝐵 Ω•

such that 𝑐•
𝑀 ∘ 𝑒•

𝑀 and 𝑒•
𝑀 ∘ 𝑐•

𝑀 are homotopic to multiplication by 𝑎.

Proof. In this proof all tensor products are over 𝐵. Assumption (2) implies that

𝑀 ⊗ (Ω′)𝑖 = (𝐵′ ⊗ 𝑀 ⊗ Ω𝑖) ⊕ (𝐵′d𝑧 ⊗ 𝑀 ⊗ Ω𝑖−1)

for all 𝑖 ≥ 0. A collection of additive generators for 𝑀⊗(Ω′)𝑖 is formed by elements of the
form 𝑓𝜔 and elements of the form 𝑓d𝑧 ∧ 𝜂 where 𝑓 ∈ 𝐵′, 𝜔 ∈ 𝑀 ⊗ Ω𝑖, and 𝜂 ∈ 𝑀 ⊗ Ω𝑖−1.

For 𝑓 ∈ 𝐵′ we write

𝜖(𝑓) = 𝑎𝑓 − 𝜃(𝜕𝑧(𝑓)) and 𝜖′(𝑓) = (𝜃 ⊗ 1)(d1(𝑓)) − d1(𝜃(𝑓))

so that 𝜖(𝑓) ∈ 𝐵 and 𝜖′(𝑓) ∈ Ω by assumptions (6) and (7). We define 𝑒•
𝑀 by the rules

𝑒𝑖
𝑀(𝑓𝜔) = 𝜖(𝑓)𝜔 and 𝑒𝑖

𝑀(𝑓d𝑧 ∧ 𝜂) = 𝜖′(𝑓) ∧ 𝜂. We will see below that the collection of
maps 𝑒𝑖

𝑀 is a map of complexes.

We define
ℎ𝑖 ∶ 𝑀 ⊗𝐵 (Ω′)𝑖 ⟶ 𝑀 ⊗𝐵 (Ω′)𝑖−1

by the rules ℎ𝑖(𝑓𝜔) = 0 and ℎ𝑖(𝑓d𝑧 ∧ 𝜂) = 𝜃(𝑓)𝜂 for elements as above. We claim that

d ∘ ℎ + ℎ ∘ d = 𝑎 − 𝑐•
𝑀 ∘ 𝑒•

𝑀

Note that multiplication by 𝑎 is a map of complexes by (1). Hence, since 𝑐•
𝑀 is an injective

map of complexes by assumption (5), we conclude that 𝑒•
𝑀 is a map of complexes. To prove

the claim we compute

(d ∘ ℎ + ℎ ∘ d)(𝑓𝜔) = ℎ (d(𝑓) ∧ 𝜔 + 𝑓∇(𝜔))
= 𝜃(𝜕𝑧(𝑓))𝜔
= 𝑎𝑓𝜔 − 𝜖(𝑓)𝜔

= 𝑎𝑓𝜔 − 𝑐𝑖
𝑀(𝑒𝑖

𝑀(𝑓𝜔))

The second equality because d𝑧 does not occur in ∇(𝜔) and the third equality by assumption
(6). Similarly, we have

(d ∘ ℎ + ℎ ∘ d)(𝑓d𝑧 ∧ 𝜂) = d(𝜃(𝑓)𝜂) + ℎ (d(𝑓) ∧ d𝑧 ∧ 𝜂 − 𝑓d𝑧 ∧ ∇(𝜂))
= d(𝜃(𝑓)) ∧ 𝜂 + 𝜃(𝑓)∇(𝜂) − (𝜃 ⊗ 1)(d1(𝑓)) ∧ 𝜂 − 𝜃(𝑓)∇(𝜂)
= d1(𝜃(𝑓)) ∧ 𝜂 + 𝜕𝑧(𝜃(𝑓))d𝑧 ∧ 𝜂 − (𝜃 ⊗ 1)(d1(𝑓)) ∧ 𝜂
= 𝑎𝑓d𝑧 ∧ 𝜂 − 𝜖′(𝑓) ∧ 𝜂

= 𝑎𝑓d𝑧 ∧ 𝜂 − 𝑐𝑖
𝑀(𝑒𝑖

𝑀(𝑓d𝑧 ∧ 𝜂))

The second equality because d(𝑓) ∧ d𝑧 ∧ 𝜂 = −d𝑧 ∧ d1(𝑓) ∧ 𝜂. The fourth equality by
assumption (4). On the other hand it is immediate from the definitions that 𝑒𝑖

𝑀(𝑐𝑖
𝑀(𝜔)) =

𝜖(1)𝜔 = 𝑎𝜔. This proves the lemma. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07Q7
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Example 39.30.2. A standard example of the situation above occurs when 𝐵′ = 𝐵⟨𝑧⟩ is
the divided power polynomial ring over a divided power ring (𝐵, 𝐽, 𝛿) with divided powers
𝛿′ on 𝐽′ = 𝐵′

+ + 𝐽𝐵′ ⊂ 𝐵′. Namely, we take Ω = Ω𝐵,𝛿 and Ω′ = Ω𝐵′,𝛿′. In this case we
can take 𝑎 = 1 and

𝜃(∑ 𝑏𝑚𝑧[𝑚]) = ∑ 𝑏𝑚𝑧[𝑚+1]

Note that
𝑓 − 𝜃(𝜕𝑧(𝑓)) = 𝑓(0)

equals the constant term. It follows that in this case Lemma 39.30.1 recovers the crystalline
Poincaré lemma (Lemma 39.25.2).

Lemma39.30.3. In Situation 39.9.1. Assume𝐷 andΩ𝐷 are as in (39.22.0.1) and (39.22.0.2).
Let 𝜆 ∈ 𝐷. Let 𝐷′ be the 𝑝-adic completion of

𝐷[𝑧]⟨𝜉⟩/(𝜉 − (𝑧𝑝 − 𝜆))

and let Ω𝐷′ be the 𝑝-adic completion of the module of divided power differentials of 𝐷′

over 𝐴. For any pair (𝑀, ∇) over 𝐷 satisfying (1), (2), (3), and (4) the canonical map of
complexes (39.10.11.1)

𝑐•
𝑀 ∶ 𝑀 ⊗∧

𝐷 Ω•
𝐷 ⟶ 𝑀 ⊗∧

𝐷 Ω•
𝐷′

has the following property: There exists a map 𝑒•
𝑀 in the opposite direction such that both

𝑐•
𝑀 ∘ 𝑒•

𝑀 and 𝑒•
𝑀 ∘ 𝑐•

𝑀 are homotopic to multiplication by 𝑝.

Proof. We will prove this using Lemma 39.30.1 with 𝑎 = 𝑝. Thus we have to find 𝜃 ∶
𝐷′ → 𝐷′ and prove (1), (2), (3), (4), (5), (6), (7). We first collect some information about
the rings 𝐷 and 𝐷′ and the modules Ω𝐷 and Ω𝐷′.

Writing
𝐷[𝑧]⟨𝜉⟩/(𝜉 − (𝑧𝑝 − 𝜆)) = 𝐷⟨𝜉⟩[𝑧]/(𝑧𝑝 − 𝜉 − 𝜆)

we see that 𝐷′ is the 𝑝-adic completion of the free 𝐷-module

⨁𝑖=0,…,𝑝−1 ⨁𝑛≥0
𝑧𝑖𝜉[𝑛]𝐷

where 𝜉[0] = 1. It follows that 𝐷 → 𝐷′ has a continuous 𝐷-linear section, in particular
𝐷 → 𝐷′ is universally injective, i.e., (5) holds. We think of 𝐷′ as a divided power algebra
over 𝐴 with divided power ideal 𝐽′ = 𝐽𝐷′ + (𝜉). Then 𝐷′ is also the 𝑝-adic completion
of the divided power envelope of the ideal generated by 𝑧𝑝 − 𝜆 in 𝐷, see Lemma 39.6.4.
Hence

Ω𝐷′ = Ω𝐷 ⊗∧
𝐷 𝐷′ ⊕ 𝐷′d𝑧

by Lemma 39.10.6. This proves (2). Note that (1) is obvious.

At this point we construct 𝜃. (We wrote a PARI/gp script theta.gp verifying some of the
formulas in this proof which can be found in the scripts subdirectory of the stacks project.)
Before we do so we compute the derivative of the elements 𝑧𝑖𝜉[𝑛]. We have d𝑧𝑖 = 𝑖𝑧𝑖−1d𝑧.
For 𝑛 ≥ 1 we have

d𝜉[𝑛] = 𝜉[𝑛−1]d𝜉 = −𝜉[𝑛−1]d𝜆 + 𝑝𝑧𝑝−1𝜉[𝑛−1]d𝑧

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07Q8
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because 𝜉 = 𝑧𝑝 − 𝜆. For 0 < 𝑖 < 𝑝 and 𝑛 ≥ 1 we have

d(𝑧𝑖𝜉[𝑛]) = 𝑖𝑧𝑖−1𝜉[𝑛]d𝑧 + 𝑧𝑖𝜉[𝑛−1]d𝜉

= 𝑖𝑧𝑖−1𝜉[𝑛]d𝑧 + 𝑧𝑖𝜉[𝑛−1]d(𝑧𝑝 − 𝜆)

= −𝑧𝑖𝜉[𝑛−1]d𝜆 + (𝑖𝑧𝑖−1𝜉[𝑛] + 𝑝𝑧𝑖+𝑝−1𝜉[𝑛−1])d𝑧

= −𝑧𝑖𝜉[𝑛−1]d𝜆 + (𝑖𝑧𝑖−1𝜉[𝑛] + 𝑝𝑧𝑖−1(𝜉 + 𝜆)𝜉[𝑛−1])d𝑧

= −𝑧𝑖𝜉[𝑛−1]d𝜆 + ((𝑖 + 𝑝𝑛)𝑧𝑖−1𝜉[𝑛] + 𝑝𝜆𝑧𝑖−1𝜉[𝑛−1])d𝑧

the last equality because 𝜉𝜉[𝑛−1] = 𝑛𝜉[𝑛]. Thus we see that

𝜕𝑧(𝑧𝑖) = 𝑖𝑧𝑖−1

𝜕𝑧(𝜉[𝑛]) = 𝑝𝑧𝑝−1𝜉[𝑛−1]

𝜕𝑧(𝑧𝑖𝜉[𝑛]) = (𝑖 + 𝑝𝑛)𝑧𝑖−1𝜉[𝑛] + 𝑝𝜆𝑧𝑖−1𝜉[𝑛−1]

Motivated by these formulas we define 𝜃 by the rules

𝜃(𝑧𝑗) = 𝑝 𝑧𝑗+1

𝑗+1 𝑗 = 0, … 𝑝 − 1,
𝜃(𝑧𝑝−1𝜉[𝑚]) = 𝜉[𝑚+1] 𝑚 ≥ 1,
𝜃(𝑧𝑗𝜉[𝑚]) = 𝑝𝑧𝑗+1𝜉[𝑚]−𝜃(𝑝𝜆𝑧𝑗𝜉[𝑚−1])

(𝑗+1+𝑝𝑚) 0 ≤ 𝑗 < 𝑝 − 1, 𝑚 ≥ 1

where in the last line we use induction on 𝑚 to define our choice of 𝜃. Working this out we
get (for 0 ≤ 𝑗 < 𝑝 − 1 and 1 ≤ 𝑚)

𝜃(𝑧𝑗𝜉[𝑚]) = 𝑝𝑧𝑗+1𝜉[𝑚]

(𝑗+1+𝑝𝑚) − 𝑝2𝜆𝑧𝑗+1𝜉[𝑚−1]

(𝑗+1+𝑝𝑚)(𝑗+1+𝑝(𝑚−1)) + … + (−1)𝑚𝑝𝑚+1𝜆𝑚𝑧𝑗+1

(𝑗+1+𝑝𝑚)…(𝑗+1)

although we will not use this expression below. It is clear that 𝜃 extends uniquely to a
𝑝-adically continuous 𝐷-linear map on 𝐷′. By construction we have (3) and (4). It remains
to prove (6) and (7).

Proof of (6) and (7). As 𝜃 is 𝐷-linear and continuous it suffices to prove that 𝑝 − 𝜃 ∘ 𝜕𝑧,
resp. (𝜃 ⊗ 1) ∘ d1 − d1 ∘ 𝜃 gives an element of 𝐷, resp. Ω𝐷 when evaluated on the elements
𝑧𝑖𝜉[𝑛]8. Set 𝐷0 = 𝐙(𝑝)[𝜆] and 𝐷′

0 = 𝐙(𝑝)[𝑧, 𝜆]⟨𝜉⟩/(𝜉 − 𝑧𝑝 + 𝜆). Observe that each of the
expressions above is an element of 𝐷′

0 or Ω𝐷′
0
. Hence it suffices to prove the result in the

case of 𝐷0 → 𝐷′
0. Note that 𝐷0 and 𝐷′

0 are torsion free rings and that 𝐷0 ⊗ 𝐐 = 𝐐[𝜆] and
𝐷′

0 ⊗ 𝐐 = 𝐐[𝑧, 𝜆]. Hence 𝐷0 ⊂ 𝐷′
0 is the subring of elements annihilated by 𝜕𝑧 and (6)

follows from (4), see the discussion directly preceding Lemma 39.30.1. Similarly, we have
d1(𝑓) = 𝜕𝜆(𝑓)d𝜆 hence

((𝜃 ⊗ 1) ∘ d1 − d1 ∘ 𝜃) (𝑓) = (𝜃(𝜕𝜆(𝑓)) − 𝜕𝜆(𝜃(𝑓))) d𝜆

Applying 𝜕𝑧 to the coefficient we obtain

𝜕𝑧 (𝜃(𝜕𝜆(𝑓)) − 𝜕𝜆(𝜃(𝑓))) = 𝑝𝜕𝜆(𝑓) − 𝜕𝑧(𝜕𝜆(𝜃(𝑓)))
= 𝑝𝜕𝜆(𝑓) − 𝜕𝜆(𝜕𝑧(𝜃(𝑓)))
= 𝑝𝜕𝜆(𝑓) − 𝜕𝜆(𝑝𝑓) = 0

whence the coefficient does not depend on 𝑧 as desired. This finishes the proof of the
lemma. �

8This can be done by direct computation: It turns out that 𝑝 − 𝜃 ∘ 𝜕𝑧 evaluated on 𝑧𝑖𝜉[𝑛] gives zero except for
1 which is mapped to 𝑝 and 𝜉 which is mapped to −𝑝𝜆. It turns out that (𝜃 ⊗ 1) ∘ d1 − d1 ∘ 𝜃 evaluated on 𝑧𝑖𝜉[𝑛]

gives zero except for 𝑧𝑝−1𝜉 which is mapped to −𝜆.
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Note that an interated 𝛼𝑝-cover 𝑋′ → 𝑋 (as defined in the introduction to this section) is
finite locally free. Hence if 𝑋 is connected the degree of 𝑋′ → 𝑋 is constant and is a power
of 𝑝.

Lemma 39.30.4. Let 𝑝 be a prime number. Let (𝑆, ℐ, 𝛾) be a divided power scheme over
𝐙(𝑝) with 𝑝 ∈ ℐ. We set 𝑆0 = 𝑉(ℐ) ⊂ 𝑆. Let 𝑓 ∶ 𝑋′ → 𝑋 be an iterated 𝛼𝑝-cover of
schemes over 𝑆0 with constant degree 𝑞. Let ℱ be any crystal in quasi-coherent sheaves on
𝑋 and set ℱ′ = 𝑓∗

crisℱ. In the distinguished triangle

𝑅𝑢𝑋/𝑆,∗ℱ ⟶ 𝑓∗𝑅𝑢𝑋′/𝑆,∗ℱ′ ⟶ 𝐸 ⟶ 𝑅𝑢𝑋/𝑆,∗ℱ[1]

the object 𝐸 has cohomology sheaves annihilated by 𝑞.

Proof. Note that 𝑋′ → 𝑋 is a homeomorphism hence we can identify the underlying
topological spaces of 𝑋 and 𝑋′. The question is clearly local on 𝑋, hence we may assume
𝑋, 𝑋′, and 𝑆 affine and 𝑋′ → 𝑋 given as a composition

𝑋′ = 𝑋𝑛 → 𝑋𝑛−1 → 𝑋𝑛−2 → … → 𝑋0 = 𝑋

where each morphism 𝑋𝑖+1 → 𝑋𝑖 is an 𝛼𝑝-cover. Denote ℱ𝑖 the pullback of ℱ to 𝑋𝑖. It
suffices to prove that each of the maps

𝑅Γ(Cris(𝑋𝑖/𝑆), ℱ𝑖) ⟶ 𝑅Γ(Cris(𝑋𝑖+1/𝑆), ℱ𝑖+1)

fits into a triangle whose third member has cohomology groups annihilated by 𝑝. (This uses
axiom TR4 for the triangulated category 𝐷(𝑋). Details omitted.)

Hence we may assume that 𝑆 = 𝑆𝑝𝑒𝑐(𝐴), 𝑋 = 𝑆𝑝𝑒𝑐(𝐶), 𝑋′ = 𝑆𝑝𝑒𝑐(𝐶′) and 𝐶′ =
𝐶[𝑧]/(𝑧𝑝 − 𝑐) for some 𝑐 ∈ 𝐶. Choose a polynomial algebra 𝑃 over 𝐴 and a surjection
𝑃 → 𝐶. Let 𝐷 be the 𝑝-adically completed divided power envelop of Ker(𝑃 → 𝐶) in
𝑃 as in (39.22.0.1). Set 𝑃′ = 𝑃[𝑧] with surjection 𝑃′ → 𝐶′ mapping 𝑧 to the class of
𝑧 in 𝐶′. Choose a lift 𝜆 ∈ 𝐷 of 𝑐 ∈ 𝐶. Then we see that the 𝑝-adically completed di-
vided power envelope 𝐷′ of Ker(𝑃′ → 𝐶′) in 𝑃′ is isomorphic to the 𝑝-adic completion of
𝐷[𝑧]⟨𝜉⟩/(𝜉−(𝑧𝑝 −𝜆)), see Lemma 39.30.3 and its proof. Thus we see that the result follows
from this lemma by the computation of cohomology of crystals in quasi-coherent modules
in Proposition 39.26.3. �

The bound in the following lemma is probably not optimal.

Lemma 39.30.5. With notations and assumptions as in Lemma 39.30.4 the map

𝑓∗ ∶ 𝐻𝑖(Cris(𝑋/𝑆), ℱ) ⟶ 𝐻𝑖(Cris(𝑋′/𝑆), ℱ′)

has kernel and cokernel annihilated by 𝑞𝑖+1.

Proof. This follows from the fact that 𝐸 has nonzero cohomology sheaves in degrees −1
and up, so that the spectral sequence 𝐻𝑎(ℋ𝑏(𝐸)) ⇒ 𝐻𝑎+𝑏(𝐸) coverges. This combined
with the long exact cohomology sequence associated to a distinguished triangle gives the
bound. �

In Situation 39.11.5 assume that 𝑝 ∈ ℐ. Set

𝑋(1) = 𝑋 ×𝑆0,𝐹𝑆0
𝑆0.

Denote 𝐹𝑋/𝑆0
∶ 𝑋 → 𝑋(1) the relative Frobenius morphism.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07Q9
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Lemma 39.30.6. In the situation above, assume that 𝑋 → 𝑆0 is smooth of relative di-
mension 𝑑. Then 𝐹𝑋/𝑆0

is an iterated 𝛼𝑝-cover of degree 𝑝𝑑. Hence Lemmas 39.30.4 and
39.30.5 apply to this situation. In particular, for any crystal in quasi-coherent modules 𝒢
on Cris(𝑋(1)/𝑆) the map

𝐹∗
𝑋/𝑆0

∶ 𝐻𝑖(Cris(𝑋(1)/𝑆), 𝒢) ⟶ 𝐻𝑖(Cris(𝑋/𝑆), 𝐹∗
𝑋/𝑆0,cris𝒢)

has kernel and cokernel annihilated by 𝑝𝑑(𝑖+1).

Proof. It suffices to prove the first statement. To see this we may assume that 𝑋 is étale
over 𝐀𝑑

𝑆0
, see Morphisms, Lemma 24.35.20. Denote 𝜑 ∶ 𝑋 → 𝐀𝑑

𝑆0
this étale morphism.

In this case the relative Frobenius of 𝑋/𝑆0 fits into a diagram

𝑋

��

// 𝑋(1)

��
𝐀𝑑

𝑆0
// 𝐀𝑑

𝑆0

where the lower horizontal arrow is the relative frobenius morphism of 𝐀𝑑
𝑆0

over 𝑆0. This
is the morphism which raises all the coordinates to the 𝑝th power, hence it is an iterated
𝛼𝑝-cover. The proof is finished by observing that the diagram is a fibre square, see the
proof of Étale Cohomology, Theorem 38.66.2. �

39.31. Frobenius action on crystalline cohomology

In this section we prove that Frobenius pullback induces a quasi-isomorphism on crystalline
cohomology after inverting the prime 𝑝. But in order to even formulate this we need to work
in a special situation.

Situation 39.31.1. In Situation 39.11.5 assume the following
(1) 𝑆 = 𝑆𝑝𝑒𝑐(𝐴) for some divided power ring (𝐴, 𝐼, 𝛾) with 𝑝 ∈ 𝐼,
(2) there is given a homomorphism of divided power rings 𝜎 ∶ 𝐴 → 𝐴 such that

𝜎(𝑥) = 𝑥𝑝 mod 𝑝𝐴 for all 𝑥 ∈ 𝐴.

In Situation 39.31.1 the morphism 𝑆𝑝𝑒𝑐(𝜎) ∶ 𝑆 → 𝑆 is a lift of the absolute Frobenius
𝐹𝑆0

∶ 𝑆0 → 𝑆0 and since the diagram

𝑋

��

𝐹𝑋
// 𝑋

��
𝑆0

𝐹𝑆0 // 𝑆0

is commutative where 𝐹𝑋 ∶ 𝑋 → 𝑋 is the absolute Frobenius morphism of 𝑋. Thus we
obtain a morphism of crystalline topoi

(𝐹𝑋)cris ∶ (𝑋/𝑆)cris ⟶ (𝑋/𝑆)cris
see Remark 39.13.3. Here is the terminology concerning 𝐹-crystals following the notation
of Saavedra, see [SR72].

Definition 39.31.2. In Situation 39.31.1 an 𝐹-crystal on 𝑋/𝑆 (relative to 𝜎) is a pair (ℰ, 𝐹ℰ)
given by a crystal in finite locally free 𝒪𝑋/𝑆-modules ℰ together with a map

𝐹ℰ ∶ (𝐹𝑋)∗
crisℰ ⟶ ℰ

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07QB
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An 𝐹-crystal is called nondegenerate if there exists an integer 𝑖 ≥ 0 a map 𝑉 ∶ ℰ →
(𝐹𝑋)∗

crisℰ such that 𝑉 ∘ 𝐹ℰ = 𝑝𝑖id.

Remark 39.31.3. Let (ℰ, 𝐹) be an 𝐹-crystal as in Definition 39.31.2. In the literature the
nondegeneracy condition is often part of the definition of an 𝐹-crystal. Moreover, often
it is also assumed that 𝐹 ∘ 𝑉 = 𝑝𝑛id. What is needed for the result below is that there
exists an integer 𝑗 ≥ 0 such that Ker(𝐹) and Coker(𝐹) are killed by 𝑝𝑗. If the rank of ℰ
is bounded (for example if 𝑋 is quasi-compact), then both of these conditions follow from
the nondegeneracy condition as formulated in the definition. Namely, suppose 𝑅 is a ring,
𝑟 ≥ 1 is an integer and 𝐾, 𝐿 ∈ Mat(𝑟 × 𝑟, 𝑅) are matrices with 𝐾𝐿 = 𝑝𝑖1𝑟×𝑟. Then
det(𝐾) det(𝐿) = 𝑝𝑟𝑖. Let 𝐿′ be the adjugate matrix of 𝐿, i.e., 𝐿′𝐿 = 𝐿𝐿′ = det(𝐿). Set
𝐾′ = 𝑝𝑟𝑖𝐾 and 𝑗 = 𝑟𝑖 + 𝑖. Then we have 𝐾′𝐿 = 𝑝𝑗1𝑟×𝑟 as 𝐾𝐿 = 𝑝𝑖 and

𝐿𝐾′ = 𝐿𝐾 det(𝐿) det(𝑀) = 𝐿𝐾𝐿𝐿′ det(𝑀) = 𝐿𝑝𝑖𝐿′ det(𝑀) = 𝑝𝑗1𝑟×𝑟

It follows that if 𝑉 is as in Definition 39.31.2 then setting 𝑉′ = 𝑝𝑁𝑉 where 𝑁 > 𝑖 ⋅ rank(ℰ)
we get 𝑉′ ∘ 𝐹 = 𝑝𝑁+𝑖 and 𝐹 ∘ 𝑉′ = 𝑝𝑁+𝑖.

Theorem 39.31.4. In Situation 39.31.1 let (ℰ, 𝐹ℰ) be a nondegenerate 𝐹-crystal. Assume
𝐴 is a 𝑝-adically complete Noetherian ring and that 𝑋 → 𝑆0 is proper smooth. Then the
canonical map

𝐹ℰ ∘ (𝐹𝑋)∗
cris ∶ 𝑅Γ(Cris(𝑋/𝑆), ℰ) ⊗𝐋

𝐴,𝜎 𝐴 ⟶ 𝑅Γ(Cris(𝑋/𝑆), ℰ)

becomes an isomorphism after inverting 𝑝.

Proof. We first write the arrow as a composition of three arrows. Namely, set

𝑋(1) = 𝑋 ×𝑆0,𝐹𝑆0
𝑆0

and denote 𝐹𝑋/𝑆0
∶ 𝑋 → 𝑋(1) the relative Frobenius morphism. Denote ℰ(1) the base

change of ℰ by 𝑆𝑝𝑒𝑐(𝜎), in other words the pullback of ℰ to Cris(𝑋(1)/𝑆) by the morphism
of crystalline topoi associated to the commutative diagram

𝑋(1) //

��

𝑋

��
𝑆

𝑆𝑝𝑒𝑐(𝜎) // 𝑆
Then we have the base change map

(39.31.4.1) 𝑅Γ(Cris(𝑋/𝑆), ℰ) ⊗𝐋
𝐴,𝜎 𝐴 ⟶ 𝑅Γ(Cris(𝑋(1)/𝑆), ℰ(1))

see Remark 39.29.8. Note that the composition of 𝐹𝑋/𝑆0
∶ 𝑋 → 𝑋(1) with the projec-

tion 𝑋(1) → 𝑋 is the absolute Frobenius morphism 𝐹𝑋. Hence we see that 𝐹∗
𝑋/𝑆0

ℰ(1) =
(𝐹𝑋)∗

crisℰ. Thus pullback by 𝐹𝑋/𝑆0
is a map

(39.31.4.2) 𝐹∗
𝑋/𝑆0

∶ 𝑅Γ(Cris(𝑋(1)/𝑆), ℰ(1)) ⟶ 𝑅Γ(Cris(𝑋/𝑆), (𝐹𝑋)∗
crisℰ)

Finally we can use 𝐹ℰ to get a map

(39.31.4.3) 𝑅Γ(Cris(𝑋/𝑆), (𝐹𝑋)∗
crisℰ) ⟶ 𝑅Γ(Cris(𝑋/𝑆), ℰ)

The map of the theorem is the composition of the three maps (39.31.4.1), (39.31.4.2), and
(39.31.4.3) above. The first is a quasi-isomorphism modulo all powers of 𝑝 by Remark
39.29.9. Hence it is a quasi-isomorphism since the complexes involved are perfect in 𝐷(𝐴)
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see Remark 39.29.13. The third map is a quasi-ismorphism after inverting 𝑝 simply be-
cause 𝐹ℰ has an inverse up to a power of 𝑝, see Remark 39.31.3. Finally, the second is an
isomorphism after inverting 𝑝 by Lemma 39.30.6. �
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CHAPTER 40

Algebraic Spaces

40.1. Introduction

Algebraic spaces were first introduced byMichael Artin, see [Art69c], [Art70a], [Art73a],
[Art71c], [Art71a], [Art69a], [Art69e], and [Art74a]. Some of the foundational material
was developed jointly with Knutson, who produced the book [Knu71a]. Artin defined
(see [Art69e, Definition 1.3]) an algebraic space as a sheaf for the étale topology which
is locally in the étale topology representable. In most of Artin's work the categories of
schemes considered are schemes locally of finite type over a fixed excellent Noetherian
base.

Our definition is slightly different. First of all we consider sheaves for the fppf topology.
This is just a technical point and scarcely makes any difference. Second, we include the
condition that the diagonal is representable.

After defining algebraic spaces we make some foundational observations. The main result
in this chapter is that with our definitions an algebraic space is the same thing as an étale
equivalence relation, see the discussion in Section 40.9 and Theorem 40.10.5. The analogue
of this theorem in Artin's setting is [Art69e, Theorem 1.5], or [Knu71a, Proposition II.1.7].
In other words, the sheaf defined by an étale equivalence relation has a representable diag-
onal. It follows that our definition agrees with Artin's original definition in a broad sense.
It also means that one can give examples of algebraic spaces by simply writing down an
étale equivalence relation.

In Section 40.13 we introduce various separation axioms on algebraic spaces that we have
found in the literatur. Finally in Section 40.14 we give some weird and not so weird exam-
ples of algebraic spaces.

40.2. General remarks

We work in a suitable big fppf site Sch𝑓𝑝𝑝𝑓 as in Topologies, Definition 30.7.6. So, if not
explicitly stated otherwise all schemes will be objects of Sch𝑓𝑝𝑝𝑓. We will record elsewhere
what changes if you change the big fppf site (insert future reference here).

We will always work relative to a base 𝑆 contained in Sch𝑓𝑝𝑝𝑓. And we will then work with
the big fppf site (Sch/𝑆)𝑓𝑝𝑝𝑓, see Topologies, Definition 30.7.8. The absolute case can be
recovered by taking 𝑆 = 𝑆𝑝𝑒𝑐(𝐙).

If 𝑈, 𝑇 are schemes over 𝑆, then we denote 𝑈(𝑇) for the set of 𝑇-valued points over 𝑆. In a
formula: 𝑈(𝑇) = 𝑀𝑜𝑟𝑆(𝑇, 𝑈).

Note that any fpqc covering is a universal effective epimorphism, see Descent, Lemma
31.9.3. Hence the topology on Sch𝑓𝑝𝑝𝑓 is weaker than the canonical topology and all rep-
resentable presheaves are sheaves.
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40.3. Representable morphisms of presheaves

Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets. Let 𝑎 ∶ 𝐹 → 𝐺

be a representable transformation of functors, see Categories, Definition 4.8.2. This means
that for every 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and any 𝜉 ∈ 𝐺(𝑈) the fiber product ℎ𝑈 ×𝜉,𝐺 𝐹 is
representable. Choose a representing object 𝑉𝜉 and an isomorphism ℎ𝑉𝜉

→ ℎ𝑈 ×𝐺 𝐹. By
the Yoneda lemma, see Categories, Lemma 4.3.5, the projection ℎ𝑉𝜉

→ ℎ𝑈 ×𝐺 𝐹 → ℎ𝑈
comes from a unique morphism of schemes 𝑎𝜉 ∶ 𝑉𝜉 → 𝑈. Suggestively we could represent
this by the diagram

𝑉𝜉
//

𝑎𝜉

��

ℎ𝑉𝜉

��

// 𝐹

𝑎
��

𝑈 // ℎ𝑈
𝜉 // 𝐺

where the squiggly arrows represent the Yoneda embedding. Here are some lemmas about
this notion that work in great generality.

Lemma 40.3.1. Let 𝑆, 𝑋, 𝑌 be objects of Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of
schemes. Then

ℎ𝑓 ∶ ℎ𝑋 ⟶ ℎ𝑌

is a representable transformation of functors.

Proof. This is formal and relies only on the fact that the category (Sch/𝑆)𝑓𝑝𝑝𝑓 has fibre
products. �

Lemma 40.3.2. Let𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺, 𝑏 ∶ 𝐺 → 𝐻 be representable transformations of functors. Then

𝑏 ∘ 𝑎 ∶ 𝐹 ⟶ 𝐻

is a representable transformation of functors.

Proof. This is entirely formal and works in any category. �

Lemma 40.3.3. Let𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺 be a representable transformations of functors. Let 𝑏 ∶ 𝐻 → 𝐺 be any
transformation of functors. Consider the fibre product diagram

𝐻 ×𝑏,𝐺,𝑎 𝐹
𝑏′
//

𝑎′

��

𝐹

𝑎
��

𝐻 𝑏 // 𝐺

Then the base change 𝑎′ is a representable transformation of functors.

Proof. This is entirely formal and works in any category. �

Lemma 40.3.4. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹𝑖, 𝐺𝑖 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets,

𝑖 = 1, 2. Let 𝑎𝑖 ∶ 𝐹𝑖 → 𝐺𝑖, 𝑖 = 1, 2 be representable transformations of functors. Then

𝑎1 × 𝑎2 ∶ 𝐹1 × 𝐹2 ⟶ 𝐺1 × 𝐺2

is a representable transformation of functors.
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Proof. Write 𝑎1 × 𝑎2 as the composition 𝐹1 × 𝐹2 → 𝐺1 × 𝐹2 → 𝐺1 × 𝐺2. The first arrow is
the base change of 𝑎1 by the map 𝐺1 × 𝐹2 → 𝐺1, and the second arrow is the base change
of 𝑎2 by the map 𝐺1 × 𝐺2 → 𝐺2. Hence this lemma is a formal consequence of Lemmas
40.3.2 and 40.3.3. �

Lemma 40.3.5. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺 be a representable transformation of functors. If 𝐺 is a sheaf, then so is 𝐹.

Proof. Let {𝜑𝑖 ∶ 𝑇𝑖 → 𝑇} be a covering of the site (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝑠𝑖 ∈ 𝐹(𝑇𝑖) which
satisfy the sheaf condition. Then 𝜎𝑖 = 𝑎(𝑠𝑖) ∈ 𝐺(𝑇𝑖) satisfy the sheaf condition also. Hence
there exists a unique 𝜎 ∈ 𝐺(𝑇) such that 𝜎𝑖 = 𝜎|𝑇𝑖

. By assumption 𝐹′ = ℎ𝑇 ×𝜎,𝐺,𝑎 𝐹 is a
representable presheaf and hence (see remarks in Section 40.2) a sheaf. Note that (𝜑𝑖, 𝑠𝑖) ∈
𝐹′(𝑇𝑖) satisfy the sheaf condition also, and hence come from some unique (id𝑇, 𝑠) ∈ 𝐹′(𝑇).
Clearly 𝑠 is the section of 𝐹 we are looking for. �

Lemma 40.3.6. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺 be a representable transformation of functors. Then Δ𝐹/𝐺 ∶ 𝐹 → 𝐹 ×𝐺 𝐹 is
representable.

Proof. Let 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓). Let 𝜉 = (𝜉1, 𝜉2) ∈ (𝐹 ×𝐺 𝐹)(𝑈). Set 𝜉′ = 𝑎(𝜉1) = 𝑎(𝜉2) ∈
𝐺(𝑈). By assumption there exist a scheme 𝑉 and a morphism 𝑉 → 𝑈 representing the fibre
product ℎ𝑈 ×𝜉′,𝐺 𝐹. In particular, the elements 𝜉1, 𝜉2 give morphisms 𝑓1, 𝑓2 ∶ 𝑈 → 𝑉 over
𝑈. Because 𝑉 represents the fibre product ℎ𝑈 ×𝜉′,𝐺 𝐹 and because 𝜉′ = 𝑎 ∘ 𝜉1 = 𝑎 ∘ 𝜉2 we
see that if 𝑔 ∶ 𝑈′ → 𝑈 is a morphism then

𝑔∗𝜉1 = 𝑔∗𝜉2 ⇔ 𝑓1 ∘ 𝑔 = 𝑓2 ∘ 𝑔.
In other words, we see that ℎ𝑈 ×𝜉,𝐹×𝐺𝐹 𝐹 is represented by 𝑉 ×Δ,𝑉×𝑉,(𝑓1,𝑓2) 𝑈 which is a
scheme. �

40.4. Lists of useful properties of morphisms of schemes

For ease of reference we list in the following remarks the properties of morphisms which
possess some of the properties required of them in later results.

Remark 40.4.1. Here is a list of properties/types of morphisms which are stable under
arbitrary base change:

(1) closed, open, and locally closed immersions, see Schemes, Lemma 21.18.2,
(2) quasi-compact, see Schemes, Lemma 21.19.3,
(3) universally closed, see Schemes, Definition 21.20.1,
(4) (quasi-)separated, see Schemes, Lemma 21.21.13,
(5) monomorphism, see Schemes, Lemma 21.23.5
(6) surjective, see Morphisms, Lemma 24.9.4,
(7) universally injective, see Morphisms, Lemma 24.10.2,
(8) affine, see Morphisms, Lemma 24.11.8,
(9) quasi-affine, see Morphisms, Lemma 24.12.5,

(10) (locally) of finite type, see Morphisms, Lemma 24.14.4,
(11) (locally) quasi-finite, see Morphisms, Lemma 24.19.13,
(12) (locally) of finite presentation, see Morphisms, Lemma 24.20.4,
(13) locally of finite type of relative dimension 𝑑, see Morphisms, Lemma 24.28.2,
(14) universally open, see Morphisms, Definition 24.22.1,
(15) flat, see Morphisms, Lemma 24.24.7,
(16) syntomic, see Morphisms, Lemma 24.30.4,
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(17) smooth, see Morphisms, Lemma 24.33.5,
(18) unramified (resp. G-unramified), see Morphisms, Lemma 24.34.5,
(19) étale, see Morphisms, Lemma 24.35.4,
(20) proper, see Morphisms, Lemma 24.40.5,
(21) H-projective, see Morphisms, Lemma 24.41.8,
(22) (locally) projective, see Morphisms, Lemma 24.41.9,
(23) finite or integral, see Morphisms, Lemma 24.42.6,
(24) finite locally free, see Morphisms, Lemma 24.44.4.

Add more as needed.

Remark 40.4.2. Of the properties of morphisms which are stable under base change (as
listed in Remark 40.4.1) the following are also stable under compositions:

(1) closed, open and locally closed immersions, see Schemes, Lemma 21.24.3,
(2) quasi-compact, see Schemes, Lemma 21.19.4,
(3) universally closed, see Morphisms, Lemma 24.40.4,
(4) (quasi-)separated, see Schemes, Lemma 21.21.13,
(5) monomorphism, see Schemes, Lemma 21.23.4,
(6) surjective, see Morphisms, Lemma 24.9.2,
(7) universally injective, see Morphisms, Lemma 24.10.5,
(8) affine, see Morphisms, Lemma 24.11.7,
(9) quasi-affine, see Morphisms, Lemma 24.12.4,

(10) (locally) of finite type, see Morphisms, Lemma 24.14.3,
(11) (locally) quasi-finite, see Morphisms, Lemma 24.19.12,
(12) (locally) of finite presentation, see Morphisms, Lemma 24.20.3,
(13) universally open, see Morphisms, Lemma 24.22.3,
(14) flat, see Morphisms, Lemma 24.24.5,
(15) syntomic, see Morphisms, Lemma 24.30.3,
(16) smooth, see Morphisms, Lemma 24.33.4,
(17) unramified (resp. G-unramified), see Morphisms, Lemma 24.34.4,
(18) étale, see Morphisms, Lemma 24.35.3,
(19) proper, see Morphisms, Lemma 24.40.4,
(20) H-projective, see Morphisms, Lemma 24.41.7,
(21) finite or integral, see Morphisms, Lemma 24.42.5,
(22) finite locally free, see Morphisms, Lemma 24.44.3.

Add more as needed.

Remark 40.4.3. Of the properties mentioned which are stable under base change (as listed
in Remark 40.4.1) the following are also fpqc local on the base (and a fortiori fppf local on
the base):

(1) for immersions we have this for
(a) closed immersions, see Descent, Lemma 31.19.17,
(b) open immersions, see Descent, Lemma 31.19.14, and
(c) quasi-compact immersions, see Descent, Lemma 31.19.19,

(2) quasi-compact, see Descent, Lemma 31.19.1,
(3) universally closed, see Descent, Lemma 31.19.3,
(4) (quasi-)separated, see Descent, Lemmas 31.19.2, and 31.19.5,
(5) monomorphism, see Descent, Lemma 31.19.29,
(6) surjective, see Descent, Lemma 31.19.6,
(7) universally injective, see Descent, Lemma 31.19.7,
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(8) affine, see Descent, Lemma 31.19.16,
(9) quasi-affine, see Descent, Lemma 31.19.18,

(10) (locally) of finite type, see Descent, Lemmas 31.19.8, and 31.19.10,
(11) (locally) quasi-finite, see Descent, Lemma 31.19.22,
(12) (locally) of finite presentation, see Descent, Lemmas 31.19.9, and 31.19.11,
(13) locally of finite type of relative dimension 𝑑, see Descent, Lemma 31.19.23,
(14) universally open, see Descent, Lemma 31.19.4,
(15) flat, see Descent, Lemma 31.19.13,
(16) syntomic, see Descent, Lemma 31.19.24,
(17) smooth, see Descent, Lemma 31.19.25,
(18) unramified (resp. G-unramified), see Descent, Lemma 31.19.26,
(19) étale, see Descent, Lemma 31.19.27,
(20) proper, see Descent, Lemma 31.19.12,
(21) finite or integral, see Descent, Lemma 31.19.21,
(22) finite locally free, see Descent, Lemma 31.19.28.

Note that the property of being an ``immersion'' may not be fpqc local on the base, but in
Descent, Lemma 31.20.1 we proved that it is fppf local on the base.

40.5. Properties of representable morphisms of presheaves

Here is the definition that makes this work.

Definition 40.5.1. With 𝑆, and 𝑎 ∶ 𝐹 → 𝐺 representable as above. Let 𝒫 be a property of
morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 21.18.3, and
(2) is fppf local on the base, see Descent, Definition 31.18.1.

In this case we say that 𝑎 has property 𝒫 if for every 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and any 𝜉 ∈ 𝐺(𝑈)
the resulting morphism of schemes 𝑉𝜉 → 𝑈 has property 𝒫.

It is important to note that we will only use this definition for properties of morphisms
that are stable under base change, and local in the fppf topology on the base. This is not
because the definition doesn't make sense otherwise; rather it is because we may want to
give a different definition which is better suited to the property we have in mind.

Remark 40.5.2. Consider the property 𝒫 =``surjective''. In this case there could be some
ambiguity if we say ``let 𝐹 → 𝐺 be a surjective map''. Namely, we could mean the notion
defined in Definition 40.5.1 above, or we could mean a surjective map of presheaves, see
Sites, Definition 9.3.1, or, if both 𝐹 and 𝐺 are sheaves, we could mean a surjective map
of sheaves, see Sites, Definition 9.11.1, If not mentioned otherwise when discussing mor-
phisms of algebraic spaces we will always mean the first. See Lemma 40.5.9 for a case
where surjectivity implies surjectivity as a map of sheaves.

Here is a sanity check.

Lemma 40.5.3. Let 𝑆, 𝑋, 𝑌 be objects of Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of
schemes. Let 𝒫 be as in Definition 40.5.1. Then ℎ𝑋 ⟶ ℎ𝑌 has propery 𝒫 if and only if 𝑓
has property 𝒫.

Proof. Note that the lemma makes sense by Lemma 40.3.1. Proof omitted. �

Lemma 40.5.4. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 →

Sets. Let 𝒫 be a property as in Definition 40.5.1 which is stable under composition. Let
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𝑎 ∶ 𝐹 → 𝐺, 𝑏 ∶ 𝐺 → 𝐻 be representable transformations of functors. If 𝑎 and 𝑏 have
property 𝒫 so does 𝑏 ∘ 𝑎 ∶ 𝐹 ⟶ 𝐻.

Proof. Note that the lemma makes sense by Lemma 40.3.2. Proof omitted. �

Lemma 40.5.5. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 →

Sets. Let 𝒫 be a property as in Definition 40.5.1. Let 𝑎 ∶ 𝐹 → 𝐺 be a representable
transformations of functors. Let 𝑏 ∶ 𝐻 → 𝐺 be any transformation of functors. Consider
the fibre product diagram

𝐻 ×𝑏,𝐺,𝑎 𝐹
𝑏′
//

𝑎′

��

𝐹

𝑎
��

𝐻 𝑏 // 𝐺
If 𝑎 has property 𝒫 then also the base change 𝑎′ has property 𝒫.

Proof. Note that the lemma makes sense by Lemma 40.3.3. Proof omitted. �

Lemma 40.5.6. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 →

Sets. Let 𝒫 be a property as in Definition 40.5.1. Let 𝑎 ∶ 𝐹 → 𝐺 be a representable
transformations of functors. Let 𝑏 ∶ 𝐻 → 𝐺 be any transformation of functors. Consider
the fibre product diagram

𝐻 ×𝑏,𝐺,𝑎 𝐹
𝑏′
//

𝑎′

��

𝐹

𝑎
��

𝐻 𝑏 // 𝐺
Assume that 𝑏 induces a surjective map of fppf sheaves 𝐻# → 𝐺#. In this case, if 𝑎′ has
property 𝒫, then also 𝑎 has property 𝒫.

Proof. First we remark that by Lemma 40.3.3 the transformation 𝑎′ is representable. Let
𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), and let 𝜉 ∈ 𝐺(𝑈). By assumption there exists an fppf covering
{𝑈𝑖 → 𝑈}𝑖∈𝐼 and elements 𝜉𝑖 ∈ 𝐻(𝑈𝑖) mapping to 𝜉|𝑈 via 𝑏. From general category
theory it follows that for each 𝑖 we have a fibre product diagram

𝑈𝑖 ×𝜉𝑖,𝐻,𝑎′ (𝐻 ×𝑏,𝐺,𝑎 𝐹) //

��

𝑈 ×𝜉,𝐺,𝑎 𝐹

��
𝑈𝑖

// 𝑈

By assumption the left vertical arrow is amorphism of schemeswhich has property𝒫. Since
𝒫 is local in the fppf topology this implies that also the right vertical arrow has property 𝒫
as desired. �

Lemma 40.5.7. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹𝑖, 𝐺𝑖 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets,

𝑖 = 1, 2. Let 𝑎𝑖 ∶ 𝐹𝑖 → 𝐺𝑖, 𝑖 = 1, 2 be representable transformations of functors. Let 𝒫
be a property as in Definition 40.5.1 which is stable under composition. If 𝑎1 and 𝑎2 have
property 𝒫 so does 𝑎1 × 𝑎2 ∶ 𝐹1 × 𝐹2 ⟶ 𝐺1 × 𝐺2.

Proof. Note that the lemma makes sense by Lemma 40.3.4. Proof omitted. �

Lemma 40.5.8. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺 be a representable transformation of functors. Let 𝒫, 𝒫′ be properties
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as in Definition 40.5.1. Suppose that for any morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 we have
𝒫(𝑓) ⇒ 𝒫′(𝑓). If 𝑎 has property 𝒫 then 𝑎 has property 𝒫′.

Proof. Formal. �

Lemma 40.5.9. Let 𝑆 be a scheme. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be sheaves. Let

𝑎 ∶ 𝐹 → 𝐺 be representable, flat, locally of finite presentation, and surjective. Then
𝑎 ∶ 𝐹 → 𝐺 is surjective as a map of sheaves.

Proof. Let 𝑇 be a scheme over𝑆 and let 𝑔 ∶ 𝑇 → 𝐺 be a 𝑇-valued point of𝐺. By assumption
𝑇′ = 𝐹 ×𝐺 𝑇 is (representable by) a scheme and the morphism 𝑇′ → 𝑇 is a flat, locally of
finite presentation, and surjective. Hence {𝑇′ → 𝑇} is an fppf covering such that 𝑔|𝑇′ ∈
𝐺(𝑇′) comes from an element of 𝐹(𝑇′), namely the map 𝑇′ → 𝐹. This proves the map is
surjective as a map of sheaves, see Sites, Definition 9.11.1. �

Here is a characterization of those functors for which the diagonal is representable.

Lemma 40.5.10. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹 be a presheaf of sets on
(Sch/𝑆)𝑓𝑝𝑝𝑓. The following are equivalent:

(1) The diagonal 𝐹 → 𝐹 × 𝐹 is representable.
(2) For every scheme 𝑈 over 𝑆, 𝑈/𝑆 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and any 𝜉 ∈ 𝐹(𝑈) the map

𝜉 ∶ ℎ𝑈 → 𝐹 is representable.

Proof. This is completely formal, see Categories, Lemma 4.8.4. It depends only on the
fact that the category (Sch/𝑆)𝑓𝑝𝑝𝑓 has products of pairs of objects and fibre products, see
Topologies, Lemma 30.7.10. �

In the situation of the lemma, for any morphism 𝜉 ∶ ℎ𝑈 → 𝐹 as in the lemma, it makes
sense to say that 𝜉 has property 𝒫, for any property as in Definition 40.5.1. In particular
this holds for 𝒫 = ``surjective'' and 𝒫 = ``étale'', see Remark 40.4.3 above. We will use
these in the definition of algebraic spaces below.

40.6. Algebraic spaces

Here is the definition.

Definition 40.6.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. An algebraic space over 𝑆 is
a presheaf

𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 ⟶ Sets

with the following properties
(1) The presheaf 𝐹 is a sheaf.
(2) The diagonal morphism 𝐹 → 𝐹 × 𝐹 is representable.
(3) There exists a scheme 𝑈 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓) and a map ℎ𝑈 → 𝐹 which is surjective,

and étale.

There are two differences with the ``usual'' definition, for example the definition in Knut-
son's book [Knu71a].

The first is that we require 𝐹 to be a sheaf in the fppf topology. One reason for doing this
is that many natural examples of algebraic spaces satisfy the sheaf condition for the fppf
coverings (and even for fpqc coverings). Also, one of the reasons that algebraic spaces have
been so useful is via Michael Artin's results on algebraic spaces. Built into his method is
a condition which guarantees the result is locally of finite presentation over 𝑆. Combined
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it somehow seems to us that the fppf topology is the natural topology to work with. In the
end the category of algebraic spaces ends up being the same. See Bootstrap, Section 54.12.

The second is that we only require the diagonal map for 𝐹 to be representable, whereas in
[Knu71a] it is required that it also be quasi-compact. If 𝐹 = ℎ𝑈 for some scheme 𝑈 over
𝑆 this corresponds to the condition that 𝑆 be quasi-separated. Our point of view is to try
to prove a certain number of the results that follow only assuming that the diagonal of 𝐹
be representable, and simply add an addition hypothesis wherever this is necessary. In any
case it has the pleasing consquence that the following lemma is true.

Lemma 40.6.2. A scheme is an algebraic space. More precisely, given a scheme 𝑇 ∈
𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) the representable functor ℎ𝑇 is an algebraic space.

Proof. The functor ℎ𝑇 is a sheaf by our remarks in Section 40.2. The diagonal ℎ𝑇 →
ℎ𝑇 × ℎ𝑇 = ℎ𝑇×𝑇 is representable because (Sch/𝑆)𝑓𝑝𝑝𝑓 has fibre products. The identity map
ℎ𝑇 → ℎ𝑇 is surjective étale. �

Definition 40.6.3. Let 𝐹, 𝐹′ be algebraic spaces over 𝑆. A morphism 𝑓 ∶ 𝐹 → 𝐹′ of
algebraic spaces over 𝑆 is a transformation of functors from 𝐹 to 𝐹′.

The category of algebraic spaces over 𝑆 contains the category (Sch/𝑆)𝑓𝑝𝑝𝑓 as a full subcat-
egory via the Yoneda embedding 𝑇/𝑆 ↦ ℎ𝑇. From now on we no longer distinghuish
between a scheme 𝑇/𝑆 and the algebraic space it represents. Thus when we say ``Let
𝑓 ∶ 𝑇 → 𝐹 be a morphism from the scheme 𝑇 to the algebraic space 𝐹'', we mean that
𝑇 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), that 𝐹 is an algebraic space over 𝑆, and that 𝑓 ∶ ℎ𝑇 → 𝐹 is a mor-
phism of algebraic spaces over 𝑆.

40.7. Fibre products of algebraic spaces

The category of algebraic spaces over 𝑆 has both products and fibre products.

Lemma 40.7.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 be algebraic spaces over
𝑆. Then 𝐹 × 𝐺 is an algebraic space, and is a product in the category of algebraic spaces
over 𝑆.

Proof. It is clear that 𝐻 = 𝐹 × 𝐺 is a sheaf. The diagonal of 𝐻 is simply the product of the
diagonals of 𝐹 and 𝐺. Hence it is representable by Lemma 40.3.4. Finally, if 𝑈 → 𝐹 and
𝑉 → 𝐺 are surjective étale morphisms, with 𝑈, 𝑉 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), then 𝑈 × 𝑉 → 𝐹 × 𝐺
is surjective étale by Lemma 40.5.7. �

Lemma 40.7.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐻 be a sheaf on (Sch/𝑆)𝑓𝑝𝑝𝑓
whose diagonal is representable. Let 𝐹, 𝐺 be algebraic spaces over 𝑆. Let 𝐹 → 𝐻, 𝐺 → 𝐻
be maps of sheaves. Then 𝐹 ×𝐻 𝐺 is an algebraic space.

Proof. We check the 3 conditions of Definition 40.6.1. A fibre product of sheaves is a
sheaf, hence 𝐹 ×𝐻 𝐺 is a sheaf. The diagonal of 𝐹 ×𝐻 𝐺 is the left vertical arrow in

𝐹 ×𝐻 𝐺 //

Δ
��

𝐹 × 𝐺

Δ𝐹×Δ𝐺
��

(𝐹 × 𝐹) ×(𝐻×𝐻) (𝐺 × 𝐺) // (𝐹 × 𝐹) × (𝐺 × 𝐺)

which is cartesian. HenceΔ is representable as the base change of themorphism on the right
which is representable, see Lemmas 40.3.4 and 40.3.3. Finally, let 𝑈, 𝑉 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓)
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and 𝑎 ∶ 𝑈 → 𝐹, 𝑏 ∶ 𝑉 → 𝐺 be surjective and étale. As Δ𝐻 is representable, we see that
𝑈 ×𝐻 𝑉 is a scheme. The morphism

𝑈 ×𝐻 𝑉 ⟶ 𝐹 ×𝐻 𝐺

is surjective and étale as a composition of the base changes 𝑈×𝐻𝑉 → 𝑈×𝐻𝐺 and 𝑈×𝐻𝐺 →
𝐹×𝐻𝐺 of the étale surjectivemorphisms 𝑈 → 𝐹 and 𝑉 → 𝐺, see Lemmas 40.3.2 and 40.3.3.
This proves the last condition of Definition 40.6.1 holds and we conclude that 𝐹 ×𝐻 𝐺 is an
algebraic space. �

Lemma 40.7.3. Let𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let𝐹 → 𝐻, 𝐺 → 𝐻 bemorphisms
of algebraic spaces over 𝑆. Then 𝐹 ×𝐻 𝐺 is an algebraic space, and is a fibre product in
the category of algebraic spaces over 𝑆.

Proof. It follows from the stronger Lemma 40.7.2 that 𝐹 ×𝐻 𝐺 is an algebraic space. It is
clear that 𝐹 ×𝐻 𝐺 is a fibre product in the category of algebraic spaces over 𝑆 since that is
a full subcategory of the category of (pre)sheaves of sets on (Sch/𝑆)𝑓𝑝𝑝𝑓. �

40.8. Glueing algebraic spaces

In this section we really start abusing notation and not distinguish between schemes and
the spaces they represent.

Lemma 40.8.1. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓). Let 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓). Given a set 𝐼 and sheaves
𝐹𝑖 on 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), if 𝑈 ≅ ∐𝑖∈𝐼 𝐹𝑖 as sheaves, then each 𝐹𝑖 is representable by an open
and closed subscheme 𝑈𝑖 and 𝑈 ≅ ∐ 𝑈𝑖 as schemes.

Proof. By assumption this means there exists an fppf covering {𝑈𝑗 → 𝑈}𝑗∈𝐽 such that each
𝑈𝑗 → 𝑈 factors through 𝐹𝑖(𝑗) for some 𝑖(𝑗) ∈ 𝐼. Denote 𝑉𝑗 = Im(𝑈𝑗 → 𝑈). This is an open
of 𝑈 by Morphisms, Lemma 24.24.9, and {𝑈𝑗 → 𝑉𝑗} is an fppf covering. Hence it follows
that 𝑉𝑗 → 𝑈 factors through 𝐹𝑖(𝑗) since 𝐹𝑖(𝑗) is a subsheaf. It follows from 𝐹𝑖 ∩𝐹𝑖′ = ∅, 𝑖≠𝑖′

that 𝑉𝑗 ∩ 𝑉𝑗′ = ∅ unless 𝑖(𝑗) = 𝑖(𝑗′). Hence we can take 𝑈𝑖 = ⋃𝑗, 𝑖(𝑗)=𝑖 𝑉𝑗 and everything
is clear. �

Lemma 40.8.2. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓). Let 𝐹 be an algebraic space over 𝑆. Given a set 𝐼
and sheaves 𝐹𝑖 on 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), if 𝐹 ≅ ∐𝑖∈𝐼 𝐹𝑖 as sheaves, then each 𝐹𝑖 is an algebraic
space over 𝑆.

Proof. It follows directly from the representability of 𝐹 → 𝐹 × 𝐹 that each diagonal mor-
phism 𝐹𝑖 → 𝐹𝑖 × 𝐹𝑖 is representable. Choose a scheme 𝑈 in (Sch/𝑆)𝑓𝑝𝑝𝑓 and a surjective
étale morphism 𝑈 → ∐ 𝐹𝑖 (this exist by hypothesis). By considering the inverse image of
𝐹𝑖 we get a decomposition of 𝑈 (as a sheaf) into a coproduct of sheaves. By Lemma 40.8.1
we get correspondingly 𝑈 ≅ ∐ 𝑈𝑖. Then it follows easily that 𝑈𝑖 → 𝐹𝑖 is surjective and
étale (from the corresponding property of 𝑈 → 𝐹). �

The condition on the size of 𝐼 and the 𝐹𝑖 in the following lemma may be ignored by those
not worried about set theoretic questions.

Lemma 40.8.3. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓). Suppose given a set 𝐼 and algebraic spaces 𝐹𝑖,
𝑖 ∈ 𝐼. Then 𝐹 = ∐𝑖∈𝐼 𝐹𝑖 is an algebraic space provided 𝐼, and the 𝐹𝑖 are not too ``large'':
for example if we can choose surjective étale morphisms 𝑈𝑖 → 𝐹𝑖 such that ∐𝑖∈𝐼 𝑈𝑖 is
isomorphic to an object of (Sch/𝑆)𝑓𝑝𝑝𝑓, then 𝐹 is an algebraic space.
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Proof. By construction 𝐹 is a sheaf. We omit the verification that the diagonal morphism
of 𝐹 is representable. Finally, if 𝑈 is an object of (Sch/𝑆)𝑓𝑝𝑝𝑓 isomorphic to ∐𝑖∈𝐼 𝑈𝑖 then
it is straightforward to verify that the resulting map 𝑈 → ∐ 𝐹𝑖 is surjective and étale. �

Here is the analogue of Schemes, Lemma 21.15.4.

Lemma 40.8.4. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓). Let 𝐹 be a presheaf of sets on (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume
(1) 𝐹 is a sheaf,
(2) there exists an index set 𝐼 and subfunctors 𝐹𝑖 ⊂ 𝐹 such that

(a) each 𝐹𝑖 is an algebraic space,
(b) each 𝐹𝑖 → 𝐹 is a representable,
(c) each 𝐹𝑖 → 𝐹 is an open immersion (see Definition 40.5.1),
(d) the map of sheaves ∐ 𝐹𝑖 → 𝐹 is surjective, and
(e) ∐ 𝐹𝑖 is an algebraic space (set theoretic condition, see Lemma 40.8.3).

Then 𝐹 is an algebraic space.

Proof. Let 𝑇, 𝑇′ be objects of (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝑇 → 𝐹, 𝑇′ → 𝐹 morphisms. The assump-
tions imply that there exists an open covering 𝑇 = ⋃ 𝑉𝑖 such that 𝑉𝑖 = 𝑇 ×𝐹 𝐹𝑖. Note that
this in particular implies that ∐ 𝐹𝑖 → 𝐹 is surjective in the Zariski topology! Also write
similarly 𝑇′ = ⋃ 𝑉′

𝑖 with 𝑉′
𝑖 = 𝑇′ ×𝐹 𝐹𝑖.

To show that the diagonal 𝐹 → 𝐹 × 𝐹 is representable we have to show that 𝐺 = 𝑇 ×𝐹 𝑇′ is
representable. Consider the subfunctors 𝐺𝑖 = 𝐺 ×𝐹 𝐹𝑖. Note that 𝐺𝑖 = 𝑉𝑖 ×𝐹𝑖

𝑉′
𝑖 , and hence

is representable as 𝐹𝑖 is an algebraic space. By the above the 𝐺𝑖 form a Zariski covering of
𝐹. Hence by Schemes, Lemma 21.15.4 we see 𝐺 is representable.
Choose a scheme 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective étale morphism 𝑈 → ∐ 𝐹𝑖 (this
exist by hypothesis). We may write 𝑈 = ∐ 𝑈𝑖 with 𝑈𝑖 the inverse image of 𝐹𝑖, see Lemma
40.8.1. We claim that 𝑈 → 𝐹 is surjective and étale. Surjectivity follows as ∐ 𝐹𝑖 → 𝐹 is
surjective. Consider the fibre product 𝑈 ×𝐹 𝑇 where 𝑇 → 𝐹 is as above. We have to show
that 𝑈 ×𝐹 𝑇 → 𝑇 is étale. Since 𝑈 ×𝐹 𝑇 = ∐ 𝑈𝑖 ×𝐹 𝑇 it suffices to show each 𝑈𝑖 ×𝐹 𝑇 → 𝑇 is
étale. Since 𝑈𝑖 ×𝐹 𝑇 = 𝑈𝑖 ×𝐹𝑖

𝑉𝑖 this follows from the fact that 𝑈𝑖 → 𝐹𝑖 is étale and 𝑉𝑖 → 𝑇
is an open immersion (and Morphisms, Lemmas 24.35.9 and 24.35.3). �

40.9. Presentations of algebraic spaces

Given an algebraic space we can find a ``presentation'' of it.

Lemma 40.9.1. Let 𝐹 be an algebraic space over 𝑆. Let 𝑓 ∶ 𝑈 → 𝐹 be a surjective étale
morphism from a scheme to 𝐹. Set 𝑅 = 𝑈 ×𝐹 𝑈. Then

(1) 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 defines an equivalence relation on 𝑈 over 𝑆 (see Groupoids,
Definition 35.3.1).

(2) the morphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are étale, and
(3) the diagram

𝑅
//
// 𝑈 // 𝐹

is a coequalizer diagram in Sh((Sch/𝑆)𝑓𝑝𝑝𝑓).

Proof. Let 𝑇/𝑆 be an object of (Sch/𝑆)𝑓𝑝𝑝𝑓. Then 𝑅(𝑇) = {(𝑎, 𝑏) ∈ 𝑈(𝑇) × 𝑈(𝑇) ∣ 𝑓 ∘ 𝑎 =
𝑓∘𝑏} which is clearly defines an equivalence relation on 𝑈(𝑇). Themorphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈
are étale because the morphism 𝑈 → 𝐹 is étale.
To prove (3) we first show that 𝑈 → 𝐹 is a surjection of sheaves, see Sites, Definition
9.11.1. Let 𝜉 ∈ 𝐹(𝑇) with 𝑇 as above. Let 𝑉 = 𝑇 ×𝜉,𝐹,𝑓 𝑈. By assumption 𝑉 is a scheme

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WR
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and 𝑉 → 𝑇 is surjective étale. Hence {𝑉 → 𝑇} is a covering for the fppf topology. Since
𝜉|𝑉 factors through 𝑈 by construction we conclude 𝑈 → 𝐹 is surjective. To conclude we
have to show that given any two morphisms 𝑎, 𝑏 ∶ 𝑇 → 𝑈 such that 𝑓 ∘ 𝑎 = 𝑓 ∘ 𝑏 there is a
morphism 𝑐 ∶ 𝑇 → 𝑅 such that 𝑎 = pr0 ∘ 𝑐 and 𝑏 = pr1 ∘ 𝑏. This is clear from the definition
of 𝑅. �

This lemma suggests the following definitions.

Definition 40.9.2. Let 𝑆 be a scheme. Let 𝑈 be a scheme over 𝑆. An étale equivalence
relation on 𝑈 over 𝑆 is an equivalence relation 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 such that 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are
étale morphisms of schemes.

Definition 40.9.3. Let 𝐹 be an algebraic space over 𝑆. A presentation of 𝐹 is given by a
scheme 𝑈 over 𝑆 and an étale equivalence relation 𝑅 on 𝑈 over 𝑆, and a surjective étale
morphism 𝑈 → 𝐹 such that 𝑅 = 𝑈 ×𝐹 𝑈.

Equivalently we could ask for the existence of an isomorphism
𝑈/𝑅 ≅ 𝐹

where the quotient 𝑈/𝑅 is as defined in Groupoids, Section 35.17. To construct algebraic
spaces we will study the converse question, namely, for which equivalence relations the
quotient sheaf 𝑈/𝑅 is an algebraic space. It will finally turn out this is always the case if 𝑅
is an étale equivalence relation on 𝑈 over 𝑆, see Theorem 40.10.5.

40.10. Algebraic spaces and equivalence relations

Suppose given a scheme 𝑈 over 𝑆 and an étale equivalence relation 𝑅 on 𝑈 over 𝑆. We
would like to show this defines an algebraic space. We will produce a series of lemmas
that prove the quotient sheaf 𝑈/𝑅 (see Groupoids, Definition 35.17.1) has all the properties
required of it in Definition 40.6.1.

Lemma 40.10.1. Let𝑆 be a scheme. Let𝑈 be a scheme over𝑆. Let 𝑗 = (𝑠, 𝑡) ∶ 𝑅 → 𝑈×𝑆𝑈
be an étale equivalence relation on 𝑈 over 𝑆. Let 𝑈′ → 𝑈 be an étale morphism. Let 𝑅′

be the restriction of 𝑅 to 𝑈′, see Groupoids, Definition 35.3.3. Then 𝑗′ ∶ 𝑅′ → 𝑈′ ×𝑆 𝑈′

is an étale equivalence relation also.

Proof. It is clear from the description of 𝑠′, 𝑡′ in Groupoids, Lemma 35.15.1 that 𝑠′, 𝑡′ ∶
𝑅′ → 𝑈′ are étale as compositions of base changes of étale morphisms (see Morphisms,
Lemma 24.35.4 and 24.35.3). �

We will often use the following lemma to find open subspaces of algebraic spaces. A slight
improvement (with more general hypotheses) of this lemma is Bootstrap, Lemma 54.7.1.

Lemma 40.10.2. Let𝑆 be a scheme. Let𝑈 be a scheme over𝑆. Let 𝑗 = (𝑠, 𝑡) ∶ 𝑅 → 𝑈×𝑆𝑈
be a pre-relation. Let 𝑔 ∶ 𝑈′ → 𝑈 be a morphism. Assume

(1) 𝑗 is an equivalence relation,
(2) 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are surjective, flat and locally of finite presentation,
(3) 𝑔 is flat and locally of finite presentation.

Let 𝑅′ = 𝑅|𝑈′ be the restriction of 𝑅 to 𝑈. Then 𝑅′/𝑈′ → 𝑅/𝑈 is representable, and is an
open immersion.

Proof. By Groupoids, Lemma 35.3.2 the morphism 𝑗′ = (𝑡′, 𝑠′) ∶ 𝑅′ → 𝑈′ ×𝑆 𝑈′ de-
fines an equivalence relation. Since 𝑔 is flat and locally of finite presentation we see that
𝑔 is universally open as well (Morphisms, Lemma 24.24.9). For the same reason 𝑠, 𝑡 are

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02WS
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universally open as well. Let 𝑊1 = 𝑔(𝑈′) ⊂ 𝑈, and let 𝑊 = 𝑡(𝑠−1(𝑊1)). Then 𝑊1 and
𝑊 are open in 𝑈. Moreover, as 𝑗 is an equivalence relation we have 𝑡(𝑠−1(𝑊)) = 𝑊 (see
Groupoids, Lemma 35.16.2 for example).

By Groupoids, Lemma 35.17.5 the map of sheaves 𝐹′ = 𝑈′/𝑅′ → 𝐹 = 𝑈/𝑅 is injective.
Let 𝑎 ∶ 𝑇 → 𝐹 be a morphism from a scheme into 𝑈/𝑅. We have to show that 𝑇 ×𝐹 𝐹′ is
representable by an open subscheme of 𝑇.

The morphism 𝑎 is given by the following data: an fppf covering {𝜑𝑗 ∶ 𝑇𝑗 → 𝑇}𝑗∈𝐽 of 𝑇
and morphsms 𝑎𝑗 ∶ 𝑇𝑗 → 𝑈 such that the maps

𝑎𝑗 × 𝑎𝑗′ ∶ 𝑇𝑗 ×𝑇 𝑇𝑗′ ⟶ 𝑈 ×𝑆 𝑈

factor through 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 via some (unique) maps 𝑟𝑗𝑗′ ∶ 𝑇𝑗 ×𝑇 𝑇𝑗′ → 𝑅. The system
(𝑎𝑗) corresponds to 𝑎 in the sense that the diagrams

𝑇𝑗 𝑎𝑗
//

��

𝑈

��
𝑇 𝑎 // 𝐹

commute.

Consider the open subsets 𝑊𝑗 = 𝑎−1
𝑗 (𝑊) ⊂ 𝑇𝑗. Since 𝑡(𝑠−1(𝑊)) = 𝑊 we see that

𝑊𝑗 ×𝑇 𝑇𝑗′ = 𝑟−1
𝑗𝑗′(𝑡−1(𝑊)) = 𝑟−1

𝑗𝑗′(𝑠−1(𝑊)) = 𝑇𝑗 ×𝑇 𝑊𝑗′.

By Descent, Lemma 31.9.2 this means there exists an open 𝑊𝑇 ⊂ 𝑇 such that 𝜑−1
𝑗 (𝑊𝑇) =

𝑊𝑗 for all 𝑗 ∈ 𝐽. We claim that 𝑊𝑇 → 𝑇 represents 𝑇 ×𝐹 𝐹′ → 𝑇.

First, let us show that 𝑊𝑇 → 𝑇 → 𝐹 is an element of 𝐹′(𝑊𝑇). Since {𝑊𝑗 → 𝑊𝑇}𝑗∈𝐽 is an
fppf covering of 𝑊𝑇, it is enough to show that each 𝑊𝑗 → 𝑈 → 𝐹 is an element of 𝐹′(𝑊𝑗)
(as 𝐹′ is a sheaf for the fppf topology). Consider the commutative diagram

𝑊′
𝑗

//

��

""

𝑈′

𝑔
��

𝑠−1(𝑊1) 𝑠
//

𝑡
��

𝑊1

��
𝑊𝑗

𝑎𝑗|𝑊𝑗 // 𝑊 // 𝐹

where 𝑊′
𝑗 = 𝑊𝑗 ×𝑊 𝑠−1(𝑊1) ×𝑊1 𝑈′. Since 𝑡 and 𝑔 are surjective, flat and locally of finite

presentation, so is 𝑊′
𝑗 → 𝑊𝑗. Hence the restriction of the element 𝑊𝑗 → 𝑈 → 𝐹 to 𝑊′

𝑗 is
an element of 𝐹′ as desired.

Suppose that 𝑓 ∶ 𝑇′ → 𝑇 is a morphism of schemes such that 𝑎|𝑇′ ∈ 𝐹′(𝑇′). We have to
show that 𝑓 factors through the open 𝑊𝑇. Since {𝑇′ ×𝑇 𝑇𝑗 → 𝑇} is an fppf covering of 𝑇′ it
is enough to show each 𝑇′ ×𝑇 𝑇𝑗 → 𝑇 factors through 𝑊𝑇. Hence we may assume 𝑓 factors
as 𝜑𝑗 ∘ 𝑓𝑗 ∶ 𝑇′ → 𝑇𝑗 → 𝑇 for some 𝑗. In this case the condition 𝑎|𝑇′ ∈ 𝐹′(𝑇′) means that
there exists some fppf covering {𝜓𝑖 ∶ 𝑇′

𝑖 → 𝑇′}𝑖∈𝐼 and some morphisms 𝑏𝑖 ∶ 𝑇′
𝑖 → 𝑈′
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such that
𝑇′

𝑖 𝑏𝑖
//

𝑓𝑗∘𝜓𝑖

��

𝑈′
𝑔
// 𝑈

��
𝑇𝑗

𝑎𝑗 // 𝑈 // 𝐹

is commutative. This commutativity means that there exists a morphism 𝑟′
𝑖 ∶ 𝑇′

𝑖 → 𝑅 such
that 𝑡 ∘ 𝑟′

𝑖 = 𝑎𝑗 ∘ 𝑓𝑗 ∘ 𝜓𝑖, and 𝑠 ∘ 𝑟′
𝑖 = 𝑔 ∘ 𝑏𝑖. This implies that Im(𝑓𝑗 ∘ 𝜓𝑖) ⊂ 𝑊𝑗 and we

win. �

The following lemma is not completely trivial although it looks like it should be trivial.

Lemma 40.10.3. Let𝑆 be a scheme. Let𝑈 be a scheme over𝑆. Let 𝑗 = (𝑠, 𝑡) ∶ 𝑅 → 𝑈×𝑆𝑈
be an étale equivalence relation on 𝑈 over 𝑆. If the quotient 𝑈/𝑅 is an algebraic space,
then 𝑈 → 𝑈/𝑅 is étale and surjective. Hence (𝑈, 𝑅, 𝑈 → 𝑈/𝑅) is a presentation of the
algebraic space 𝑈/𝑅.

Proof. Denote 𝑐 ∶ 𝑈 → 𝑈/𝑅 the morphism in question. Let 𝑇 be a scheme and let 𝑎 ∶ 𝑇 →
𝑈/𝑅 be a morphism. We have to show that the morphism (of schemes) 𝜋 ∶ 𝑇×𝑎,𝑅/𝑈,𝑐 𝑈 → 𝑇
is étale and surjective. The morphism 𝑎 corresponds to an fppf covering {𝜑𝑖 ∶ 𝑇𝑖 → 𝑇}
and morphisms 𝑎𝑖 ∶ 𝑇𝑖 → 𝑈 such that 𝑎𝑖 × 𝑎𝑖′ ∶ 𝑇𝑖 ×𝑇 𝑇𝑖′ → 𝑈 ×𝑆 𝑈 factors through 𝑅,
and such that 𝑐 ∘ 𝑎𝑖 = 𝜑𝑖 ∘ 𝑎. Hence

𝑇𝑖 ×𝜑𝑖,𝑇 𝑇 ×𝑎,𝑅/𝑈,𝑐 𝑈 = 𝑇𝑖 ×𝑐∘𝑎𝑖,𝑅/𝑈,𝑐 𝑈 = 𝑇𝑖 ×𝑎𝑖,𝑈 𝑈 ×𝑐,𝑅/𝑈,𝑐 𝑈 = 𝑇𝑖 ×𝑎𝑖,𝑈,𝑡 𝑅.
Since 𝑡 is étale and surjective we conclude that the base change of 𝜋 to 𝑇𝑖 is surjective
and étale. Since the property of being surjective and étale is local on the base in the fpqc
topology (see Remark 40.4.3) we win. �

Lemma 40.10.4. Let𝑆 be a scheme. Let𝑈 be a scheme over𝑆. Let 𝑗 = (𝑠, 𝑡) ∶ 𝑅 → 𝑈×𝑆𝑈
be an étale equivalence relation on 𝑈 over 𝑆. Assume that 𝑈 is affine. Then the quotient
𝐹 = 𝑈/𝑅 is an algebraic space, and 𝑈 → 𝐹 is étale and surjective.

Proof. Since 𝑗 ∶ 𝑅 → 𝑈×𝑆 𝑈 is a monomorphism we see that 𝑗 is separated (see Schemes,
Lemma 21.23.3). Since 𝑈 is affine we see that 𝑈 ×𝑆 𝑈 (which comes equipped with a
monomorphism into the affine scheme 𝑈×𝑈) is separated. Hence we see that 𝑅 is separated.
In particular the morphisms 𝑠, 𝑡 are separated as well as étale.
Since the compostition 𝑅 → 𝑈 ×𝑆 𝑈 → 𝑈 is locally of finite type we conclude that 𝑗 is
locally of finite type (see Morphisms, Lemma 24.14.8). As 𝑗 is also a monomorphism it
has finite fibres and we see that 𝑗 is locally quasi-finite by Morphisms, Lemma 24.19.7.
Alltogether we see that 𝑗 is separated and locally quasi-finite.
Our first step is to show that the quotient map 𝑐 ∶ 𝑈 → 𝐹 is representable. Consider a
scheme 𝑇 and a morphism 𝑎 ∶ 𝑇 → 𝐹. We have to show that the sheaf 𝐺 = 𝑇 ×𝑎,𝐹,𝑐 𝑈 is
representable. As seen in the proofs of Lemmas 40.10.2 and 40.10.3 there exists an fppf
covering {𝜑𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 and morphisms 𝑎𝑖 ∶ 𝑇𝑖 → 𝑈 such that 𝑎𝑖 × 𝑎𝑖′ ∶ 𝑇𝑖 ×𝑇 𝑇𝑖′ →
𝑈 ×𝑆 𝑈 factors through 𝑅, and such that 𝑐 ∘ 𝑎𝑖 = 𝜑𝑖 ∘ 𝑎. As in the proof of Lemma 40.10.3
we see that

𝑇𝑖 ×𝜑𝑖,𝑇 𝐺 = 𝑇𝑖 ×𝜑𝑖,𝑇 𝑇 ×𝑎,𝑅/𝑈,𝑐 𝑈
= 𝑇𝑖 ×𝑐∘𝑎𝑖,𝑅/𝑈,𝑐 𝑈
= 𝑇𝑖 ×𝑎𝑖,𝑈 𝑈 ×𝑐,𝑅/𝑈,𝑐 𝑈
= 𝑇𝑖 ×𝑎𝑖,𝑈,𝑡 𝑅
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Since 𝑡 is separated and étale, and in particular separated and locally quasi-finite (by Mor-
phisms, Lemmas 24.34.10 and 24.35.16) we see that the restriction of 𝐺 to each 𝑇𝑖 is repre-
sentable by a morphism of schemes 𝑋𝑖 → 𝑇𝑖 which is separated and locally quasi-finite. By
Descent, Lemma 31.35.1 we obtain a descent datum (𝑋𝑖, 𝜑𝑖𝑖′) relative to the fppf-covering
{𝑇𝑖 → 𝑇}. Since each 𝑋𝑖 → 𝑇𝑖 is separated and locally quasi-finite we see by More
on Morphisms, Lemma 33.35.1 that this descent datum is effective. Hence by Descent,
Lemma 31.35.1 (2) we conclude that 𝐺 is representable as desired.
The second step of the proof is to show that 𝑈 → 𝐹 is surjective and étale. This is clear
from the above since in the first step above we saw that 𝐺 = 𝑇 ×𝑎,𝐹,𝑐 𝑈 is a scheme over
𝑇 which base changes to schemes 𝑋𝑖 → 𝑇𝑖 which are surjective and étale. Thus 𝐺 → 𝑇 is
surjective and étale (see Remark 40.4.3). Alternatively one can reread the proof of Lemma
40.10.3 in the current situation.
The third and final step is to show that the diagonal map 𝐹 → 𝐹 × 𝐹 is representable. We
first observe that the diagram

𝑅 //

𝑗
��

𝐹

Δ
��

𝑈 ×𝑆 𝑈 // 𝐹 × 𝐹

is a fibre product square. By Lemma 40.3.4 the morphism 𝑈 ×𝑆 𝑈 → 𝐹 × 𝐹 is representable
(note that ℎ𝑈 ×ℎ𝑈 = ℎ𝑈×𝑆𝑈). Moreover, by Lemma 40.5.7 the morphism 𝑈×𝑆 𝑈 → 𝐹×𝐹 is
surjective and étale (note also that étale and surjective occur in the lists of Remarks 40.4.3
and 40.4.2). It follows either from Lemma 40.3.3 and the diagram above, or by writing
𝑅 → 𝐹 as 𝑅 → 𝑈 → 𝐹 and Lemmas 40.3.1 and 40.3.2 that 𝑅 → 𝐹 is representable as
well. Let 𝑇 be a scheme and let 𝑎 ∶ 𝑇 → 𝐹 × 𝐹 be a morphism. We have to show that
𝐺 = 𝑇 ×𝑎,𝐹×𝐹,Δ 𝐹 is representable. By what was said above the morphism (of schemes)

𝑇′ = (𝑈 ×𝑆 𝑈) ×𝐹×𝐹,𝑎 𝑇 ⟶ 𝑇

is surjective and étale. Hence {𝑇′ → 𝑇} is an étale covering of 𝑇. Note also that
𝑇′ ×𝑇 𝐺 = 𝑇′ ×𝑈×𝑆𝑈,𝑗 𝑅

as can be seen contemplating the following cube

𝑅 //

��

𝐹

��

𝑇′ ×𝑇 𝐺 //

��

99

𝐺

��

==

𝑈 ×𝑆 𝑈 // 𝐹 × 𝐹

𝑇′ //

99

𝑇

==

Hence we see that the restriction of 𝐺 to 𝑇′ is representable by a scheme 𝑋, and moreover
that the morphism 𝑋 → 𝑇′ is a base change of the morphism 𝑗. Hence 𝑋 → 𝑇′ is separated
and locally quasi-finite (see second paragraph of the proof). By Descent, Lemma 31.35.1
we obtain a descent datum (𝑋, 𝜑) relative to the fppf-covering {𝑇′ → 𝑇}. Since 𝑋 → 𝑇 is
separated and locally quasi-finite we see by More on Morphisms, Lemma 33.35.1 that this
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descent datum is effective. Hence by Descent, Lemma 31.35.1 (2) we conclude that 𝐺 is
representable as desired. �

Theorem 40.10.5. Let 𝑆 be a scheme. Let 𝑈 be a scheme over 𝑆. Let 𝑗 = (𝑠, 𝑡) ∶ 𝑅 →
𝑈 ×𝑆 𝑈 be an étale equivalence relation on 𝑈 over 𝑆. Then the quotient 𝑈/𝑅 is an alge-
braic space, and 𝑈 → 𝑈/𝑅 is étale and surjective, in other words (𝑈, 𝑅, 𝑈 → 𝑈/𝑅) is a
presentation of 𝑈/𝑅.

Proof. By Lemma 40.10.3 it suffice to just prove that 𝑈/𝑅 is an algebraic space. Let 𝑈′ →
𝑈 be a surjective, étale morphism. Then {𝑈′ → 𝑈} is in particular an fppf covering. Let
𝑅′ be the restriction of 𝑅 to 𝑈′, see Groupoids, Definition 35.3.3. According to Groupoids,
Lemma 35.17.6 we see that 𝑈/𝑅 ≅ 𝑈′/𝑅′. By Lemma 40.10.1 𝑅′ is an étale equivalence
relation on 𝑈′. Thus we may replace 𝑈 by 𝑈′.
We apply the previous remark to 𝑈′ = ∐ 𝑈𝑖, where 𝑈 = ⋃ 𝑈𝑖 is an affine open covering
of 𝑆. Hence we may and do assume that 𝑈 = ∐ 𝑈𝑖 where each 𝑈𝑖 is an affine scheme.
Consider the restriction 𝑅𝑖 of 𝑅 to 𝑈𝑖. By Lemma 40.10.1 this is an étale equivalence
relation. Set 𝐹𝑖 = 𝑈𝑖/𝑅𝑖 and 𝐹 = 𝑈/𝑅. It is clear that ∐ 𝐹𝑖 → 𝐹 is surjective. By
Lemma 40.10.2 each 𝐹𝑖 → 𝐹 is representable, and an open immersion. By Lemma 40.10.4
applied to (𝑈𝑖, 𝑅𝑖) we see that 𝐹𝑖 is an algebraic space. Then by Lemma 40.10.3 we see that
𝑈𝑖 → 𝐹𝑖 is étale and surjective. From Lemma 40.8.3 it follows that ∐ 𝐹𝑖 is an algebraic
space. Finally, we have verified all hypotheses of Lemma 40.8.4 and it follows that 𝐹 = 𝑈/𝑅
is an algebraic space. �

40.11. Algebraic spaces, retrofitted

We start building our arsenal of lemmas dealing with algebraic spaces.

Lemma 40.11.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹 be an algebraic space
over 𝑆. Let 𝐺 → 𝐹 be a representable transformation of functors. Then 𝐺 is an algebraic
space.

Proof. By Lemma 40.3.5 we see that 𝐺 is a sheaf. The diagram

𝐺 ×𝐹 𝐺 //

��

𝐹

Δ𝐹
��

𝐺 × 𝐺 // 𝐹 × 𝐹
is cartesian. Hence we see that 𝐺 ×𝐹 𝐺 → 𝐺 × 𝐺 is representable by Lemma 40.3.3. By
Lemma 40.3.6 we see that 𝐺 → 𝐺 ×𝐹 𝐺 is representable. Hence Δ𝐺 ∶ 𝐺 → 𝐺 × 𝐺 is repre-
sentable as a composition of representable transformations, see Lemma 40.3.2. Finally, let
𝑈 be an object of (Sch/𝑆)𝑓𝑝𝑝𝑓 and let 𝑈 → 𝐹 be surjective and étale. By assumption 𝑈 ×𝐹 𝐺
is representable by a scheme 𝑈′. By Lemma 40.5.5 the morphism 𝑈′ → 𝐺 is surjective
and étale. This verifies the final condition of Definition 40.6.1 and we win. �

Lemma 40.11.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 be algebraic spaces
over 𝑆. Let 𝐺 → 𝐹 be a representable morphism. Let 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), and 𝑞 ∶ 𝑈 → 𝐹
surjective and étale. Set 𝑉 = 𝐺 ×𝐹 𝑈. Finally, let 𝒫 be a property of morphisms of schemes
as in Definition 40.5.1. Then 𝐺 → 𝐹 has property 𝒫 if and only if 𝑉 → 𝑈 has property 𝒫.

Proof. (This lemma follows from Lemmas 40.5.5 and 40.5.6, but we give a direct proof
here also.) It is clear from the definitions that if 𝐺 → 𝐹 has property 𝒫, then 𝑉 → 𝑈 has
property 𝒫. Conversely, assume 𝑉 → 𝑈 has property 𝒫. Let 𝑇 → 𝐹 be a morphism from a
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scheme to 𝐹. Let 𝑇′ = 𝑇 ×𝐹 𝐺 which is a scheme since 𝐺 → 𝐹 is representable. We have
to show that 𝑇′ → 𝑇 has property 𝑇. Consider the commutative diagram of schemes

𝑉

��

𝑇 ×𝐹 𝑉

��

oo // 𝑇 ×𝐹 𝐺

��

𝑇′

𝑈 𝑇 ×𝐹 𝑈oo // 𝑇

where both squares are fibre product squares. Hence we conclude the middle arrow has
property 𝒫 as a base change of 𝑉 → 𝑈. Finally, {𝑇 ×𝐹 𝑈 → 𝑇} is a fppf covering as it is
surjective étale, and hence we conclude that 𝑇′ → 𝑇 has property 𝒫 as it is local on the base
in the fppf topology. �

Lemma 40.11.3. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐺 → 𝐹 be a transformation
of presheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝒫 be a property of morphisms of schemes. Assume

(1) 𝒫 is preserved under any base change, fppf local on the base, and morphisms of
type 𝒫 satisfy descent for fppf coverings, see Descent, Definition 31.32.1,

(2) 𝐺 is a sheaf,
(3) 𝐹 is an algebraic space,
(4) there exists a 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective étale morphism 𝑈 → 𝐹 such

that 𝑉 = 𝐺 ×𝐹 𝑈 is representable, and
(5) 𝑉 → 𝑈 has 𝒫.

Then 𝐺 is an algebraic space, 𝐺 → 𝐹 is representable and has property 𝒫.

Proof. Let 𝑅 = 𝑈 ×𝐹 𝑈, and denote 𝑡, 𝑠 ∶ 𝑅 → 𝑈 the projection morphisms as usual. Let
𝑇 be a scheme and let 𝑇 → 𝐹 be a morphism. Then 𝑈 ×𝐹 𝑇 → 𝑇 is surjective étale, hence
{𝑈 ×𝐹 𝑇 → 𝑇} is a covering for the étale topology. Consider

𝑊 = 𝐺 ×𝐹 (𝑈 ×𝐹 𝑇) = 𝑉 ×𝐹 𝑇 = 𝑉 ×𝑈 (𝑈 ×𝐹 𝑇).

It is a scheme since 𝐹 is an algebraic space. The morphism 𝑊 → 𝑈 ×𝐹 𝑇 has property 𝒫
since it is a base change of 𝑉 → 𝑈. There is an isomorphism

𝑊 ×𝑇 (𝑈 ×𝐹 𝑇) = (𝐺 ×𝐹 (𝑈 ×𝐹 𝑇)) ×𝑇 (𝑈 ×𝐹 𝑇)
= (𝑈 ×𝐹 𝑇) ×𝑇 (𝐺 ×𝐹 (𝑈 ×𝐹 𝑇))
= (𝑈 ×𝐹 𝑇) ×𝑇 𝑊

over (𝑈×𝐹𝑇)×𝑇(𝑈×𝐹𝑇). Themiddle equalitymaps ((𝑔, (𝑢1, 𝑡)), (𝑢2, 𝑡)) to ((𝑢1, 𝑡), (𝑔, (𝑢2, 𝑡))).
This defines a descent datum for 𝑊/𝑈×𝐹 𝑇/𝑇, see Descent, Definition 31.30.1. This follows
from Descent, Lemma 31.35.1. Namely we have a sheaf 𝐺 ×𝐹 𝑇, whose base change to
𝑈×𝐹 𝑇 is represented by 𝑊 and the isomorphism above is the one from the proof of Descent,
Lemma 31.35.1. By assumption on 𝒫 the descent datum above is representable. Hence by
the last statement of Descent, Lemma 31.35.1 we see that 𝐺 ×𝐹 𝑇 is representable. This
proves that 𝐺 → 𝐹 is a representable transformation of functors.

As 𝐺 → 𝐹 is representable, we see that 𝐺 is an algebraic space by Lemma 40.11.1. The
fact that 𝐺 → 𝐹 has property 𝒫 now follows from Lemma 40.11.2. �

Lemma 40.11.4. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 be algebraic spaces
over 𝑆. Let 𝑎 ∶ 𝐹 → 𝐺 be a morphism. Given any 𝑉 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective
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étale morphism 𝑞 ∶ 𝑉 → 𝐺 there exists a 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a commutative diagram

𝑈

𝑝
��

𝛼
// 𝑉

𝑞
��

𝐹 𝑎 // 𝐺
with 𝑝 surjective and étale.

Proof. First choose 𝑊 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) with surjective étale morphism 𝑊 → 𝐹. Next,
put 𝑈 = 𝑊 ×𝐺 𝑉. Since 𝐺 is an algebraic space we see that 𝑈 is isomorphic to an object
of (Sch/𝑆)𝑓𝑝𝑝𝑓. As 𝑞 is surjective étale, we see that 𝑈 → 𝑊 is surjective étale (see Lemma
40.5.5). Thus 𝑈 → 𝐹 is surjective étale as a composition of surjective étale morphisms (see
Lemma 40.5.4). �

40.12. Immersions and Zariski coverings of algebraic spaces

At this point an intersting phenomenon occurs. We have already defined the notion of an
open immersion of algebraic spaces (through Definition 40.5.1) but we have yet to define
the notion of a point1. Thus the Zariski topology of an algebraic space has already been
defined, but there is no space yet!

Perhaps superfluously we formally introduce immersions as follows.

Definition 40.12.1. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓) be a scheme. Let 𝐹 be an algebraic space over 𝑆.
(1) A morphism of algebraic spaces over 𝑆 is called an open immersion if it is rep-

resentable, and an open immersion in the sense of Definition 40.5.1.
(2) An open subspace of 𝐹 is a subfunctor 𝐹′ ⊂ 𝐹 such that 𝐹′ is an algebraic space

and 𝐹′ → 𝐹 is an open immersion.
(3) A morphism of algebraic spaces over 𝑆 is called a closed immersion if it is rep-

resentable, and a closed immersion in the sense of Definition 40.5.1.
(4) A closed subspace of 𝐹 is a subfunctor 𝐹′ ⊂ 𝐹 such that 𝐹′ is an algebraic space

and 𝐹′ → 𝐹 is a closed immersion.
(5) A morphism of algebraic spaces over 𝑆 is called an immersion if it is repre-

sentable, and an immersion in the sense of Definition 40.5.1.
(6) A locally closed subspace of 𝐹 is a subfunctor 𝐹′ ⊂ 𝐹 such that 𝐹′ is an algebraic

space and 𝐹′ → 𝐹 is an immersion.

We note that these definitions make sense since an immersion is in particular a monomor-
phism (see Schemes, Lemma 21.23.7 and Lemma 40.5.8), and hence the image of an im-
mersion 𝐺 → 𝐹 of algebraic spaces is a subfunctor 𝐹′ ⊂ 𝐹 which is (canonically) isomor-
phic to 𝐺. Thus some of the discussion of Schemes, Section 21.10 carries over to the setting
of algebraic spaces.

Lemma 40.12.2. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓) be a scheme. A composition of (closed, resp. open)
immersions of algebraic spaces over 𝑆 is a (closed, resp. open) immersion of algebraic
spaces over 𝑆.

Proof. See Lemma 40.5.4 and Remarks 40.4.3 (see very last line of that remark) and 40.4.2.
�

1We will associate a topological space to an algebraic space in Properties of Spaces, Section 41.4, and its
opens will correspond exactly to the open subspaces defined below.
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Lemma 40.12.3. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓) be a scheme. A base change of a (closed, resp.
open) immersion of algebraic spaces over𝑆 is a (closed, resp. open) immersion of algebraic
spaces over 𝑆.

Proof. See Lemma 40.5.5 and Remark 40.4.3 (see very last line of that remark). �

Lemma 40.12.4. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓) be a scheme. Let 𝐹 be an algebraic space over 𝑆.
Let 𝐹1, 𝐹2 be locally closed subspaces of 𝐹. If 𝐹1 ⊂ 𝐹2 as subfunctors of 𝐹, then 𝐹1 is a
locally closed subspace of 𝐹2. Similarly for closed and open subspaces.

Proof. Let 𝑇 → 𝐹2 be a morphism with 𝑇 a scheme. Since 𝐹2 → 𝐹 is a monomorphism,
we see that 𝑇 ×𝐹2

𝐹1 = 𝑇 ×𝐹 𝐹1. The lemma follows formally from this. �

Let us formally define the notion of a Zariski open covering of algebraic spaces. Note
that in Lemma 40.8.4 we have already encountered such open coverings as a method for
constructing algebraic spaces.

Definition 40.12.5. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓) be a scheme. Let 𝐹 be an algebraic space over
𝑆. A Zariski covering {𝐹𝑖 ⊂ 𝐹}𝑖∈𝐼 of 𝐹 is given by a set 𝐼, a collection of open subspaces
𝐹𝑖 ⊂ 𝐹 such that ∐ 𝐹𝑖 → 𝐹 is a surjective map of sheaves.

Note that if 𝑇 is a schemes, and 𝑎 ∶ 𝑇 → 𝐹 is a morphism, then each of the fibre products
𝑇 ×𝐹 𝐹𝑖 is identified with an open subscheme 𝑇𝑖 ⊂ 𝑇. The final condition of the definition
signifies exactly that 𝑇 = ⋃𝑖∈𝐼 𝑇𝑖.

It is clear that the collection 𝒯 of open subspaces of 𝐹 is a set (as (Sch/𝑆)𝑓𝑝𝑝𝑓 is a site, hence
a set). Moreover, we can turn 𝒯 into a category by letting the morphisms be inclusions
of subfunctors (which are automatically open immersions by Lemma 40.12.4). Finally,
Definition 40.12.5 provides the notion of a Zariski covering {𝐹𝑖 → 𝐹′}𝑖∈𝐼 in the category
𝒯. Hence, just as in the case of a topological space (see Sites, Example 9.6.4) by suitably
choosing a set of coverings we may obtain a Zariski site of the algebraic space 𝐹.

Definition 40.12.6. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓) be a scheme. Let 𝐹 be an algebraic space over 𝑆.
A small Zariski site 𝐹𝑍𝑎𝑟 of an algebraic space 𝐹 is one of the sites 𝒯 described above.

Hence this gives a notion of what it means for something to be true Zariski locally on an
algebraic space, which is how we will use this notion. In general the Zariski topology is not
fine enough for our purposes. For example we can consider the category of Zariski sheaves
on an algebraic space. It will turn out that this is not the correct thing to consider, even for
quasi-coherent sheaves. One only gets the desired result when using the étale or fppf site
of 𝐹 to define quasi-coherent sheaves.

40.13. Separation conditions on algebraic spaces

A separation condition on an algebraic space 𝐹 is a condition on the diagonal morphism
𝐹 → 𝐹×𝐹. Let us first list the properties the diagonal has automatically. Since the diagonal
is representable by definition the following lemmamakes sense (through Definition 40.5.1).

Lemma 40.13.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹 be an algebraic space over
𝑆. Let Δ ∶ 𝐹 → 𝐹 × 𝐹 be the diagonal morphism. Then

(1) Δ is locally of finite type,
(2) Δ is a monomorphism,
(3) Δ is separated, and
(4) Δ is locally quasi-finite.
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Proof. Let 𝐹 = 𝑈/𝑅 be a presentation of 𝐹. As in the proof of Lemma 40.10.4 the diagram

𝑅 //

𝑗
��

𝐹

Δ
��

𝑈 ×𝑆 𝑈 // 𝐹 × 𝐹

is cartesian. Hence according to Lemma 40.11.2 it suffices to show that 𝑗 has the properties
listed in the lemma. (Note that each of the properties (1) -- (4) occur in the lists of Remarks
40.4.1 and 40.4.3.) Since 𝑗 is an equivalence relation it is a monomorphism. Hence it is
separated by Schemes, Lemma 21.23.3. As 𝑅 is an étale equivalence relation we see that
𝑠, 𝑡 ∶ 𝑅 → 𝑈 are étale. Hence 𝑠, 𝑡 are locally of finite type. Then it follows fromMorphisms,
Lemma 24.14.8 that 𝑗 is locally of finite type. Finally, as it is a monomorphism its fibres are
finite. Thus we conclude that it is locally quasi-finite by Morphisms, Lemma 24.19.7. �

Here are some common types of separation conditions, relative to the base scheme 𝑆. There
is also an absolute notion of these conditions which we will discuss in Properties of Spaces,
Section 41.3. Moreover, we will discuss separation conditions for a morphism of algebraic
spaces in Morphisms of Spaces, Section 42.5.

Definition 40.13.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹 be an algebraic space
over 𝑆. Let Δ ∶ 𝐹 → 𝐹 × 𝐹 be the diagonal morphism.

(1) We say 𝐹 is separated over 𝑆 if Δ is a closed immersion.
(2) We say 𝐹 is locally separated over 𝑆2 if Δ is an immersion.
(3) We say 𝐹 is quasi-separated over 𝑆 if Δ is quasi-compact.
(4) We say 𝐹 is Zariski locally quasi-separated over 𝑆3 if there exists a Zariski cov-

ering 𝐹 = ⋃𝑖∈𝐼 𝐹𝑖 such that each 𝐹𝑖 is quasi-separated.

Note that if the diagonal is quasi-compact (when 𝐹 is separated or quasi-separated) then the
diagonal is actually quasi-finite and separated, hence quasi-affine (by More on Morphisms,
Lemma 33.29.3).

40.14. Examples of algebraic spaces

In this section we construct some examples of algebraic spaces. Some of these were sug-
gested by B. Conrad. Since we do not yet have a lot of theory at our disposal the discussion
is a bit awkward in some places.

Example 40.14.1. Let 𝑘 be a field. Let 𝑈 = 𝐀1
𝑘. Set

𝑗 ∶ 𝑅 = Δ ∐ Γ ⟶ 𝑈 ×𝑘 𝑈

whereΔ = {(𝑥, 𝑥) ∣ 𝑥 ∈ 𝐀1
𝑘} andΓ = {(𝑥, −𝑥) ∣ 𝑥 ∈ 𝐀1

𝑘, 𝑥≠0}. It is clear that 𝑠, 𝑡 ∶ 𝑅 → 𝑈
are étale, and hence 𝑗 is an étale equivalence relation. The quotient 𝑋 = 𝑈/𝑅 is an algebraic
space by Theorem 40.10.5. Since 𝑅 is quasi-compact we see that 𝑋 is quasi-separated. On
the other hand, 𝑋 is not locally separated because the morphism 𝑗 is not an immersion.

Example 40.14.2. Let 𝑘 be a field. Let 𝑘 ⊂ 𝑘′ be a degree 2 Galois extension with
Gal(𝑘′/𝑘) = {1, 𝜎}. Let 𝑆 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]) and 𝑈 = 𝑆𝑝𝑒𝑐(𝑘′[𝑥]). Note that

𝑈 ×𝑆 𝑈 = 𝑆𝑝𝑒𝑐((𝑘′ ⊗𝑘 𝑘′)[𝑥]) = Δ(𝑈) ∐ Δ′(𝑈)

2In the literature this often refers to quasi-separated and locally separated algebraic spaces.
3This definition was suggested by B. Conrad.
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where Δ′ = (1, 𝜎) ∶ 𝑈 → 𝑈 ×𝑆 𝑈. Take

𝑅 = Δ(𝑈) ∐ Δ′(𝑈 ⧵ {0𝑈})

where 0𝑈 ∈ 𝑈 denotes the 𝑘′-rational point whose 𝑥-coordinate is zero. It is easy to see
that 𝑅 is an étale equivalence relation on 𝑈 over 𝑆 and hence 𝑋 = 𝑈/𝑅 is an algebraic
space by Theorem 40.10.5. Here are some properties of 𝑋 (some of which will not make
sense until later):

(1) 𝑋 → 𝑆 is an isomorphism over 𝑆 ⧵ {0𝑆},
(2) the morphism 𝑋 → 𝑆 is étale (see Properties of Spaces, Definition 41.13.2)
(3) the fibre 0𝑋 of 𝑋 → 𝑆 over 0𝑆 is isomorphic to 𝑆𝑝𝑒𝑐(𝑘′) = 0𝑈,
(4) 𝑋 is not a scheme (because if it where, then 𝒪𝑋,0𝑋

would be a local domain
(𝒪, 𝔪, 𝜅) with fraction field 𝑘(𝑥), with 𝑥 ∈ 𝔪 and residue field 𝜅 = 𝑘′ which is
impossible),

(5) the algebraic space 𝑋 is not separated, but it is locally separated and hence quasi-
separated,

(6) there exists a surjective, finite, étale morphism 𝑆′ → 𝑆 such that the base change
𝑋′ = 𝑆′ ×𝑆 𝑋 is a scheme (namely, if we base change to 𝑆′ = 𝑆𝑝𝑒𝑐(𝑘′[𝑥]) then
𝑈 splits into two copies of 𝑆′ and 𝑋′ becomes isomorphic to the affine line with
0 doubled, see Schemes, Example 21.14.3), and

(7) if we think of 𝑋 as a finite type algebraic space over 𝑆𝑝𝑒𝑐(𝑘), then similarly the
base change 𝑋𝑘′ is a scheme but 𝑋 is not a scheme.

In particular, this gives an example of a descent datum for schemes relative to the covering
{𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘)} which is not effective.

We will use the following lemma as a convenient way to construct algebraic spaces as
quotients of schemes by free group actions.

Lemma 40.14.3. Let 𝑈 → 𝑆 be a morphism of Sch𝑓𝑝𝑝𝑓. Let 𝐺 be an abstract group. Let
𝐺 → Aut𝑆(𝑈) be a group homomorphism. Assume

(∗) if 𝑢 ∈ 𝑈 is a point, and 𝑔(𝑢) = 𝑢 for some non-identity element 𝑔 ∈ 𝐺, then 𝑔
induces a nontrivial automorphism of 𝜅(𝑢).

Then
𝑗 ∶ 𝑅 = ∐𝑔∈𝐺

𝑈 ⟶ 𝑈 ×𝑆 𝑈, (𝑔, 𝑥) ⟼ (𝑔(𝑥), 𝑥)

is an étale equivalence relation and hence
𝐹 = 𝑈/𝑅

is an algebraic space by Theorem 40.10.5.

Proof. In the statement of the lemma the symbol Aut𝑆(𝑈) denotes the group of automor-
phisms of 𝑈 over 𝑆. Assume (∗) holds. Let us show that

𝑗 ∶ 𝑅 = ∐𝑔∈𝐺
𝑈 ⟶ 𝑈 ×𝑆 𝑈, (𝑔, 𝑥) ⟼ (𝑔(𝑥), 𝑥)

is a monomorphism. This signifies that if 𝑇 is a nonempty scheme, and ℎ ∶ 𝑇 → 𝑈 is
a 𝑇-valued point such that 𝑔 ∘ ℎ = 𝑔′ ∘ ℎ then 𝑔 = 𝑔′. Suppose 𝑇≠∅, ℎ ∶ 𝑇 → 𝑈 and
𝑔∘ℎ = 𝑔′ ∘ℎ. Let 𝑡 ∈ 𝑇. Consider the composition 𝑆𝑝𝑒𝑐(𝜅(𝑡)) → 𝑆𝑝𝑒𝑐(𝜅(ℎ(𝑡))) → 𝑈. Then
we conclude that 𝑔′ ∘ 𝑔−1 fixes 𝑢 = ℎ(𝑡) and acts as the identity on its residue field. Hence
𝑔 = 𝑔′ by (∗).
Thus if (∗) holds we see that 𝑗 is a relation (see Groupoids, Definition 35.3.1). Moreover,
it is an equivalence relation since on 𝑇-valued points for a connected scheme 𝑇 we see that
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𝑅(𝑇) = 𝐺 × 𝑈(𝑇) → 𝑈(𝑇) × 𝑈(𝑇) (recall that we always work over 𝑆). Moreover, the
morphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are étale since 𝑅 is a disjoint product of copies of 𝑈. This proves
that 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is an étale equivalence relation. �

Given a scheme 𝑈 and an action of a group 𝐺 on 𝑈 we say the action of 𝐺 on 𝑈 is free if
condition (∗) of Lemma 40.14.3 holds. Thus the lemma says that quotients of schemes by
free actions of groups exist in the category of algebraic spaces.

Definition 40.14.4. Notation 𝑈 → 𝑆, 𝐺, 𝑅 as in Lemma 40.14.3. If the action of 𝐺 on 𝑈
satisfies (∗) we say 𝐺 acts freely on the scheme 𝑈. In this case the algebraic space 𝑈/𝑅 is
denoted 𝑈/𝐺 and is called the quotient of 𝑈 by 𝐺.

This notation is consistent with the notation𝑈/𝐺 introduced inGroupoids, Definition 35.17.1.
We will later make sense of the quotient as an algebraic stack without any assumptions on
the action whatsoever; when we do this we will use the notation [𝑈/𝐺]. Before we discuss
the examples we prove some more lemmas to facilitate the discussion. Here is a lemma
discussing the various separation conditions for this quotient when 𝐺 is finite.

Lemma 40.14.5. Notation and assumptions as in Lemma 40.14.3. Assume 𝐺 is finite. Then
(1) if 𝑈 → 𝑆 is quasi-separated, then 𝑈/𝐺 is quasi-separated, and
(2) if 𝑈 → 𝑆 is separated, then 𝑈/𝐺 is separated.

Proof. In the proof of Lemma 40.13.1 we saw that it suffices to prove the corresponding
properties for the morphism 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈. If 𝑈 → 𝑆 is quasi-separated, then for every
affine open 𝑉 ⊂ 𝑈 the opens 𝑔(𝑉) ∩ 𝑉 are quasi-compact. It follows that 𝑗 is quasi-compact.
If 𝑈 → 𝑆 is separated, the the diagonal Δ𝑈/𝑆 is a closed immersion. Hence 𝑗 ∶ 𝑅 →
𝑈 ×𝑆 𝑈 is a finite coproduct of closed immersions with disjoint images. Hence 𝑗 is a closed
immersion. �

Lemma 40.14.6. Notation and assumptions as in Lemma 40.14.3. If 𝑆𝑝𝑒𝑐(𝑘) → 𝑈/𝐺 is a
morphism, then there exist

(1) a finite Galois extension 𝑘 ⊂ 𝑘′,
(2) a finite subgroup 𝐻 ⊂ 𝐺,
(3) an isomorphism 𝐻 → Gal(𝑘′/𝑘), and
(4) an 𝐻-equivariant morphism 𝑆𝑝𝑒𝑐(𝑘′) → 𝑈.

Conversely, such data determine a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑈/𝐺.

Proof. Consider the fibre product 𝑉 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑈/𝐺 𝑈. Here is a diagram

𝑉 //

��

𝑈

��
𝑆𝑝𝑒𝑐(𝑘) // 𝑈/𝐺

This is a nonempty scheme étale over 𝑆𝑝𝑒𝑐(𝑘) and hence is a disjoint union of spectra of
fields finite separable over 𝑘 (Morphisms, Lemma 24.35.7). So write 𝑉 = ∐𝑖∈𝐼 𝑆𝑝𝑒𝑐(𝑘𝑖).
The action of 𝐺 on 𝑈 induces an action of 𝐺 on 𝑉 = ∐ 𝑆𝑝𝑒𝑐(𝑘𝑖). Pick an 𝑖, and let 𝐻 ⊂ 𝐺
be the stabilizer of 𝑖. Since

𝑉 ×𝑆𝑝𝑒𝑐(𝑘) 𝑉 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑈/𝐺 𝑈 ×𝑈/𝐺 𝑈 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑈/𝐺 𝑈 × 𝐺 = 𝑉 × 𝐺

we see that (a) the orbit of 𝑆𝑝𝑒𝑐(𝑘𝑖) is 𝑉 and (b) 𝑆𝑝𝑒𝑐(𝑘𝑖 ⊗𝑘 𝑘𝑖) = 𝑆𝑝𝑒𝑐(𝑘𝑖) × 𝐻. Thus 𝐻
is finite and is the Galois group of 𝑘𝑖/𝑘. We omit the converse construction. �
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It follows from this lemma for example that if 𝑘′/𝑘 is a finite Galois extension, then𝑆𝑝𝑒𝑐(𝑘′)/Gal(𝑘′/𝑘) ≅
𝑆𝑝𝑒𝑐(𝑘). What happens if the extension is infinite? Here is an example.

Example 40.14.7. Let 𝑆 = 𝑆𝑝𝑒𝑐(𝐐). Let 𝑈 = 𝑆𝑝𝑒𝑐(𝐐). Let 𝐺 = Gal(𝐐/𝐐) with obvious
action on 𝑈. Then by construction property (∗) of Lemma 40.14.3 holds and we obtain an
algebraic space

𝑋 = 𝑆𝑝𝑒𝑐(𝐐)/𝐺 ⟶ 𝑆 = 𝑆𝑝𝑒𝑐(𝐐).
Of course this is totally ridiculus as an approximation of 𝑆! Namely, by the Artin-Schreier
theorem, see [Jac64, Theorem 17, page 316], the only finite subgroups of Gal(𝐐/𝐐) are
{1} and the conjugates of the order two group Gal(𝐐/𝐐 ∩ 𝐑). Hence, if 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is
a morphism with 𝑘 algebraic over 𝐐, then it follows from Lemma 40.14.6 and the theorem
just mentioned that either 𝑘 is 𝐐 or isomorphic to 𝐐 ∩ 𝐑.

What is wrong with the example above is that the Galois group comes equipped with a
topology, and this should somehow be part of any construction of a quotient of 𝑆𝑝𝑒𝑐(𝐐).
The following example is much more reasonable in my opinion and may actually occur in
``nature''.

Example 40.14.8. Let 𝑘 be a field of characteristic zero. Let 𝑈 = 𝐀1
𝑘 and let 𝐺 = 𝐙. As

action we take 𝑛(𝑥) = 𝑥 + 𝑛, i.e., the action of 𝐙 on the affine line by translation. The only
fixed point is the generic point and it is clearly the case that 𝐙 injects into the automorphism
group of the field 𝑘(𝑥). (This is where we use the characteristic zero assumption.) Consider
the morphism

𝛾 ∶ 𝑆𝑝𝑒𝑐(𝑘(𝑥)) ⟶ 𝑋 = 𝐀1
𝑘/𝐙

of the generic point of the affine line into the quotient. We claim that this morphism does not
factor through any monomorphism 𝑆𝑝𝑒𝑐(𝐿) → 𝑋 of the spectrum of a field to 𝑋. (Contrary
to what happens for schemes, see Schemes, Section 21.13.) In fact, since 𝐙 does not have
any finite subgroups we see from Lemma 40.14.6 that for any such factorization 𝑘(𝑥) = 𝐿.
Finally, 𝛾 is not a monomorphism since

𝑆𝑝𝑒𝑐(𝑘(𝑥)) ×𝛾,𝑋,𝛾 𝑆𝑝𝑒𝑐(𝑘(𝑥)) ≅ 𝑆𝑝𝑒𝑐(𝑘(𝑥)) × 𝐙.

This example suggests that in order to define points of an algebraic space 𝑋 we should
consider equivalence classes of morphisms from spectra of fields into 𝑋 and not the set of
monomorphisms from spectra of fields.
We finish with a truly awful example.

Example 40.14.9. Let 𝑘 be a field. Let 𝐴 = ∏𝑛∈𝐍 𝑘 be the infinite product. Set 𝑈 =
𝑆𝑝𝑒𝑐(𝐴) seen as a scheme over 𝑆 = 𝑆𝑝𝑒𝑐(𝑘). Note that the projection maps pr𝑛 ∶ 𝐴 → 𝑘
define open and closed immersions 𝑓𝑛 ∶ 𝑆 → 𝑈. Set

𝑅 = 𝑈 ∐ ∐(𝑛,𝑚)∈𝐍2, 𝑛≠𝑚
𝑆

with morphism 𝑗 equal to Δ𝑈/𝑆 on the component 𝑈 and 𝑗 = (𝑓𝑛, 𝑓𝑚) on the component 𝑆
corresponding to (𝑚, 𝑚). It is clear from the remark above that 𝑠, 𝑡 are étale. It is also clear
that 𝑗 is an equivalence relation. Hence we obtain an algebraic space

𝑋 = 𝑈/𝑅.
To see what this means we specialize to the case where the field 𝑘 is finite with 𝑞 elements.
Let us first discuss the topological space |𝑈| associated to the scheme 𝑈 a little bit. All
elements of 𝐴 satisfy 𝑥𝑞 = 𝑥. Hence every residue field of 𝐴 is isomorphic to 𝑘, and all
points of 𝑈 are closed. But the topology on 𝑈 isn't the discrete topology. Let 𝑢𝑛 ∈ |𝑈| be the
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point corresponding to 𝑓𝑛. As mentioned above the points 𝑢𝑛 are the open points (and hence
isolated). This implies there have to be other points since we know 𝑈 is quasi-compact, see
Algebra, Lemma 7.16.10 (hence not equal to an infinite discrete set). Another way to see
this is because the (proper) ideal

𝐼 = {𝑥 = (𝑥𝑛) ∈ 𝐴 ∣ all but a finite number of 𝑥𝑛 are zero}

is contained in a maximal ideal. Note also that every element 𝑥 of 𝐴 is of the form 𝑥 = 𝑢𝑒
where 𝑢 is a unit and 𝑒 is an idempotent. Hence a basis for the topology of 𝐴 consists of
open and closed subsets (see Algebra, Lemma 7.18.1.) So the topology on |𝑈| is totally
disconnected, but nontrivial. Finally, note that {𝑢𝑛} is dense in |𝑈|.

We will later define a topological space |𝑋| associated to 𝑋, see Properties of Spaces,
Section 41.4. What can we say about |𝑋|? It turns out that the map |𝑈| → |𝑋| is surjective
and continuous. All the points 𝑢𝑛 map to the same point 𝑥0 of |𝑋|, and none of the other
points get identified. Since {𝑢𝑛} is dense in |𝑈| we conclude that the closure of 𝑥0 in |𝑋| is
|𝑋|. In other words |𝑋| is irreducible and 𝑥0 is a generic point of |𝑋|. This seems bizarre
since also 𝑥0 is the image of a section 𝑆 → 𝑋 of the structure morphism 𝑋 → 𝑆 (and in the
case of schemes this would imply it was a closed point, see Morphisms, Lemma 24.19.2).

Whatever you think is actually going on in this example, it certainly shows that some care
has to be exercised when defining irreducible components, connectedness, etc of algebraic
spaces.

40.15. Change of big site

In this section we briefly discuss what happens when we change big sites. The upshot is
that we can always enlarge the big site at will, hence we may assume any set of schemes
we want to consider is contained in the big fppf site over which we consider our algebraic
space. Here is a precise statement of the result.

Lemma 40.15.1. Suppose given big sites Sch𝑓𝑝𝑝𝑓 and Sch′
𝑓𝑝𝑝𝑓. Assume that Sch𝑓𝑝𝑝𝑓 is

contained in Sch′
𝑓𝑝𝑝𝑓, see Topologies, Section 30.10. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓. Let

𝑔 ∶ Sh((Sch/𝑆)𝑓𝑝𝑝𝑓) ⟶ Sh((Sch′/𝑆)𝑓𝑝𝑝𝑓),
𝑓 ∶ Sh((Sch′/𝑆)𝑓𝑝𝑝𝑓) ⟶ Sh((Sch/𝑆)𝑓𝑝𝑝𝑓)

be the morphisms of topoi of Topologies, Lemma 30.10.2. Let 𝐹 be a sheaf of sets on
(Sch/𝑆)𝑓𝑝𝑝𝑓. Then

(1) if 𝐹 is representable by a scheme 𝑋 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) over 𝑆, then 𝑓−1𝐹 is
representable too, in fact it is representable by the same scheme 𝑋, now viewed
as an object of (Sch′/𝑆)𝑓𝑝𝑝𝑓, and

(2) if 𝐹 is an algebraic space over 𝑆, then 𝑓−1𝐹 is an algebraic space over 𝑆 also.

Proof. Let𝑋 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓). Let uswriteℎ𝑋 for the representable sheaf on (Sch/𝑆)𝑓𝑝𝑝𝑓
associated to 𝑋, and ℎ′

𝑋 for the representable sheaf on (Sch′/𝑆)𝑓𝑝𝑝𝑓 associated to 𝑋. By the
description of 𝑓−1 in Topologies, Section 30.10 we see that 𝑓−1ℎ𝑋 = ℎ′

𝑋. This proves (1).

Next, suppose that 𝐹 is an algebraic space over 𝑆. By Lemma 40.9.1 this means that 𝐹 =
ℎ𝑈/ℎ𝑅 for some étale equivalence relation 𝑅 → 𝑈 ×𝑆 𝑈 in (Sch/𝑆)𝑓𝑝𝑝𝑓. Since 𝑓−1 is an
exact functor we conclude that 𝑓−1𝐹 = ℎ′

𝑈/ℎ′
𝑅. Hence 𝑓−1𝐹 is an algebraic space over 𝑆

by Theorem 40.10.5. �
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Note that this lemma is purely set theoretical and has virtually no content. Moreover, it
is not true (in general) that the restriction of an algebraic space over the bigger site is an
algebraic space over the smaller site (simply by reasons of cardinality). Hence we can only
ever use a simple lemma of this kind to enlarge the base category and never to shrink it.

Lemma 40.15.2. Suppose Sch𝑓𝑝𝑝𝑓 is contained in Sch′
𝑓𝑝𝑝𝑓. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓.

Denote Spaces/𝑆 the category of algebraic spaces over 𝑆 defined using Sch𝑓𝑝𝑝𝑓. Similarly,
denote Spaces′/𝑆 the category of algebraic spaces over 𝑆 defined using Sch′

𝑓𝑝𝑝𝑓. The con-
struction of Lemma 40.15.1 defines a fully faithful functor

Spaces/𝑆 ⟶ Spaces′/𝑆

whose essential image consists of those 𝑋′ ∈ 𝑂𝑏(Spaces′/𝑆) such that there exists an
object 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective étale morphism 𝑈 → 𝑋′ in the category
Sh((Sch′/𝑆)𝑓𝑝𝑝𝑓).

Proof. In Sites, Lemma 9.19.8 we have seen that the functor 𝑓−1 ∶ Sh((Sch/𝑆)𝑓𝑝𝑝𝑓) →
Sh((Sch′/𝑆)𝑓𝑝𝑝𝑓) is fully faithful. Hence we see that the displayed functor of the lemma
is fully faithful. Suppose that 𝑋′ ∈ 𝑂𝑏(Spaces′/𝑆) such that there exists an object 𝑈 ∈
𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective étale morphism ℎ′

𝑈 → 𝑋 (with notation as in the proof
of Lemma 40.15.1). Let 𝑅 be an object of (Sch′/𝑆)𝑓𝑝𝑝𝑓 representing ℎ′

𝑈 ×𝑋 ℎ′
𝑈. Note

that 𝑅 → 𝑈 ×𝑆 𝑈 is a monomorphism of schemes. Hence by Sets, Lemma 3.9.9 the
scheme 𝑅 is isomorphic to an object of (Sch/𝑆)𝑓𝑝𝑝𝑓 and hence we may (after replacing 𝑅
by an isomorphic scheme) assume 𝑅 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓). Now we use Lemma 40.9.1 and
Theorem 40.10.5 to see that 𝑋 = ℎ𝑈/ℎ𝑅 is an object of Spaces/𝑆 such that 𝑓−1𝑋 ≅ 𝑋′ as
desired. �

40.16. Change of base scheme

In this section we briefly discuss what happens when we change base schemes. The upshot
is that given a morphism 𝑆 → 𝑆′ of base schemes, any algebraic space over 𝑆 can be
viewed as an algebraic space over 𝑆′. And, given an algebraic space 𝐹′ over 𝑆′ there is a
base change 𝐹′

𝑆 which is an algebraic space over 𝑆. We explain only what happens in case
𝑆 → 𝑆′ is a morphism of the big fppf site under consideration, if only 𝑆 or 𝑆′ is contained
in the big site, then one first enlarges the big site as in Section 40.15.

Lemma 40.16.1. Suppose given a big site Sch𝑓𝑝𝑝𝑓. Let 𝑔 ∶ 𝑆 → 𝑆′ be morphism of
Sch𝑓𝑝𝑝𝑓. Let 𝑗 ∶ (Sch/𝑆)𝑓𝑝𝑝𝑓 → (Sch/𝑆′)𝑓𝑝𝑝𝑓 be the corresponding localization functor. Let
𝐹 be a sheaf of sets on (Sch/𝑆)𝑓𝑝𝑝𝑓. Then

(1) for a scheme 𝑇′ over 𝑆′ we have 𝑗!𝐹(𝑇′/𝑆′) = ∐𝜑∶𝑇′→𝑆 𝐹(𝑇′ 𝜑
−→ 𝑆),

(2) if 𝐹 is representable by a scheme 𝑋 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), then 𝑗!𝐹 is representable
by 𝑗(𝑋) which is 𝑋 viewed as a scheme over 𝑆′, and

(3) if 𝐹 is an algebraic space over 𝑆, then 𝑗!𝐹 is an algebraic space over 𝑆′, and if
𝐹 = 𝑈/𝑅 is a presentation, then 𝑗!𝐹 = 𝑗(𝑈)/𝑗(𝑅) is a presentation.

Let 𝐹′ be a sheaf of sets on (Sch/𝑆′)𝑓𝑝𝑝𝑓. Then

(4) for a scheme 𝑇 over 𝑆 we have 𝑗−1𝐹′(𝑇/𝑆) = 𝐹′(𝑇/𝑆′),
(5) if 𝐹′ is representable by a scheme 𝑋′ ∈ 𝑂𝑏((Sch/𝑆′)𝑓𝑝𝑝𝑓), then 𝑗−1𝐹′ is repre-

sentable, namely by 𝑋′
𝑆 = 𝑆 ×𝑆′ 𝑋′, and

(6) if 𝐹′ is an algebraic space, then 𝑗−1𝐹′ is an algebraic space, and if 𝐹′ = 𝑈′/𝑅′

is a presentation, then 𝑗−1𝐹′ = 𝑈′
𝑆/𝑅′

𝑆 is a presentation.
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Proof. The functors 𝑗!, 𝑗∗ and 𝑗−1 are defined in Sites, Lemma 9.21.7 where it is also shown
that 𝑗 = 𝑗𝑆/𝑆′ is the localization of (Sch/𝑆′)𝑓𝑝𝑝𝑓 at the object 𝑆/𝑆′. Hence all of the material
on localization functors is available for 𝑗. The formula in (1) is Sites, Lemma 9.23.1. By
definition 𝑗! is the left adjoint to restriction 𝑗−1, hence 𝑗! is right exact. By Sites, Lemma
9.21.5 it also commutes with fibre products and equalizers. By Sites, Lemma 9.21.3 we
see that 𝑗!ℎ𝑋 = ℎ𝑗(𝑋) hence (2) holds. If 𝐹 is an algebraic space over 𝑆, then we can write
𝐹 = 𝑈/𝑅 (Lemma 40.9.1) and we get

𝑗!𝐹 = 𝑗(𝑈)/𝑗(𝑅)

because 𝑗! being right exact commutes with coequalizers, and moreover 𝑗(𝑅) = 𝑗(𝑈) ×𝑗!𝐹
𝑗(𝑈) as 𝑗! commutes with fibre products. Since the morphisms 𝑗(𝑠), 𝑗(𝑡) ∶ 𝑗(𝑅) → 𝑗(𝑈) are
simply the morphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈 (but viewed as morphisms of schemes over 𝑆′), they
are still étale. Thus (𝑗(𝑈), 𝑗(𝑅), 𝑠, 𝑡) is an étale equivalence relation. Hence by Theorem
40.10.5 we conclude that 𝑗!𝐹 is an algebraic space.

Proof of (4), (5), and (6). The description of 𝑗−1 is in Sites, Section 9.21. The restriction of
the representable sheaf associated to 𝑋′/𝑆′ is the representable sheaf associated to 𝑋′

𝑆 =
𝑆 ×𝑆′ 𝑌′ by Sites, Lemma 9.23.2. The restriction functor 𝑗−1 is exact, hence 𝑗−1𝐹′ =
𝑈′

𝑆/𝑅′
𝑆. Again by exactness the sheaf 𝑅′

𝑆 is still an equivalence relation on 𝑈′
𝑆. Finally the

two maps 𝑅′
𝑆 → 𝑈′

𝑆 are étale as base changes of the étale morphisms 𝑅′ → 𝑈′. Hence
𝑗−1𝐹′ = 𝑈′

𝑆/𝑅′
𝑆 is an algebraic space by Theorem 40.10.5 and we win. �

Note how the presentation 𝑗!𝐹 = 𝑗(𝑈)/𝑗(𝑅) is just the presentation of 𝐹 but viewed as a
presentation by schemes over 𝑆′. Hence the following definition makes sense.

Definition 40.16.2. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site. Let 𝑆 → 𝑆′ be a morphism of this site.
(1) If 𝐹′ is an algebraic space over 𝑆′, then the base change of 𝐹′ to 𝑆 is the algebraic

space 𝑗−1𝐹′ described in Lemma 40.16.1. We denote it 𝐹′
𝑆.

(2) If 𝐹 is an algebraic space over 𝑆, then 𝐹 viewed as an algebraic space over 𝑆′

is the algebraic space 𝑗!𝐹 over 𝑆′ described in Lemma 40.16.1. We often simply
denote this 𝐹; if not then we will write 𝑗!𝐹.

The algebraic space 𝑗!𝐹 comes equipped with a canonical morphism 𝑗!𝐹 → 𝑆 of algebraic
spaces over 𝑆′. This is true simply because the sheaf 𝑗!𝐹 maps to ℎ𝑆 (see for example the
explicit description in Lemma 40.16.1). In fact, in Sites, Lemma 9.21.4 we have seen that
the category of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓 is equivalent to the category of pairs (ℱ′, ℱ′ → ℎ𝑆)
consisting of a sheaf on (Sch/𝑆′)𝑓𝑝𝑝𝑓 and a map of sheaves ℱ′ → ℎ𝑆. The equivalence
assigns to the sheaf ℱ the pair (𝑗!ℱ, 𝑗!ℱ → ℎ𝑆). This, combined with the above, leads to
the following result for categories of algebraic spaces.

Lemma 40.16.3. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site. Let 𝑆 → 𝑆′ be a morphism of this site. The
construction above give an equivalence of categories

{
category of algebraic

spaces over 𝑆 } ↔
⎧⎪
⎨
⎪⎩

category of pairs (𝐹′, 𝐹′ → 𝑆) consisting
of an algebraic space 𝐹′ over 𝑆′ and a

morphism 𝐹′ → 𝑆 of algebraic spaces over 𝑆′

⎫⎪
⎬
⎪⎭

Proof. Let 𝐹 be an algebraic space over 𝑆. The functor from left to right assigns the pair
(𝑗!𝐹, 𝑗!𝐹 → 𝑆) ot 𝐹 which is an object of the right hand side by Lemma 40.16.1. Since this
defines an equivalence of categories of sheaves by Sites, Lemma 9.21.4 to finish the proof
it suffices to show: if 𝐹 is a sheaf and 𝑗!𝐹 is an algebraic space, then 𝐹 is an algebraic space.
To do this, write 𝑗!𝐹 = 𝑈′/𝑅′ as in Lemma 40.9.1 with 𝑈′, 𝑅′ ∈ 𝑂𝑏((Sch/𝑆′)𝑓𝑝𝑝𝑓). Then
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the compositions 𝑈′ → 𝑗!𝐹 → 𝑆 and 𝑅′ → 𝑗!𝐹 → 𝑆 are morphisms of schemes over 𝑆′.
Denote 𝑈, 𝑅 the corresponding objects of (Sch/𝑆)𝑓𝑝𝑝𝑓. The two morphisms 𝑅′ → 𝑈′ are
morphisms over 𝑆 and hence correspond to morpisms 𝑅 → 𝑈. Since these are simply the
same morphisms (but viewed over 𝑆) we see that we get an étale equivalence relation over
𝑆. As 𝑗! defines an equivalence of categories of sheaves (see reference above) we see that
𝐹 = 𝑈/𝑅 and by Theorem 40.10.5 we see that 𝐹 is an algebraic space. �

The following lemma is a slight rephrasing of the above.

Lemma 40.16.4. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site. Let 𝑆 → 𝑆′ be a morphism of this site. Let
𝐹′ be a sheaf on (Sch/𝑆′)𝑓𝑝𝑝𝑓. The following are equivalent:

(1) The restriction 𝐹′|(Sch/𝑆)𝑓𝑝𝑝𝑓
is an algebraic space over 𝑆, and

(2) the sheaf ℎ𝑆 × 𝐹′ is an algebraic space over 𝑆′.

Proof. The restriction and the product match under the equivalence of categories of Sites,
Lemma 9.21.4 so that Lemma 40.16.3 above gives the result. �

We finish this section with a lemma on a compatibility.

Lemma 40.16.5. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site. Let 𝑆 → 𝑆′ be a morphism of this site.
Let 𝐹 be an algebraic space over 𝑆. Let 𝑇 be a scheme over 𝑆 and let 𝑓 ∶ 𝑇 → 𝐹 be a
morphism over 𝑆. Let 𝑓′ ∶ 𝑇′ → 𝐹′ be the morphism over 𝑆′ we get from 𝑓 by applying the
equivalence of categories described in Lemma 40.16.3. For any property 𝒫 as in Definition
40.5.1 we have 𝒫(𝑓′) ⇔ 𝒫(𝑓).

Proof. Suppose that 𝑈 is a scheme over 𝑆, and 𝑈 → 𝐹 is a surjective étale morphism.
Denote 𝑈′ the scheme 𝑈 viewed as a scheme over 𝑆′. In Lemma 40.16.1 we have seen that
𝑈′ → 𝐹′ is surjective étale. Since

𝑗(𝑇 ×𝑓, 𝐹 𝑈) = 𝑇′ ×𝑓′, 𝐹′ 𝑈′

the morphism of schemes 𝑇×𝑓,𝐹𝑈 → 𝑈 is identified with themorphism of schemes 𝑇′×𝑓′,𝐹′

𝑈′ → 𝑈′. It is the same morphism, just viewed over different base schemes. Hence the
lemma follows from Lemma 40.11.2. �
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CHAPTER 41

Properties of Algebraic Spaces

41.1. Introduction

Please see Spaces, Section 40.1 for a brief introduction to algebraic spaces, and please read
some of that chapter for our basic definitions and conventions concerning algebraic spaces.
In this chapter we start introducing some basic notions and properties of algebraic spaces.
A fundamental reference for the case of quasi-separated algebraic spaces is [Knu71a].

The discussion is somewhat awkward at times since we made the design descision to first
talk about properties of algebraic spaces by themselves, and only later about properties
of morphisms of algebraic spaces. We make an exception for this rule regarding étale
morphisms of algebraic spaces, which we introduce in Section 41.13. But until that section
whenever we say a morphism has a certain property, it automatically means the source of
the morphism is a scheme (or perhaps the morphism is representable).

Some of the material in the chapter (especially regarding points) will be improved upon in
the chapter on decent algebraic spaces.

41.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.

Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋. The reason is that we want to avoid confusion when changing
base schemes, as in Spaces, Section 40.16.

41.3. Separation axioms

In this section we collect all the ``absolute'' separation conditions of algebraic spaces. Since
in our language any algebraic space is an algebraic space over some definite base scheme,
any absolute property of 𝑋 over 𝑆 corresponds to a conditions imposed on 𝑋 viewed as an
algebraic space over 𝑆𝑝𝑒𝑐(𝐙). Here is the precise formulation.

Definition 41.3.1. (Compare Spaces, Definition 40.13.2.) Consider a big fppf site Sch𝑓𝑝𝑝𝑓 =
(Sch/ 𝑆𝑝𝑒𝑐(𝐙))𝑓𝑝𝑝𝑓. Let 𝑋 be an algebraic space over 𝑆𝑝𝑒𝑐(𝐙). Let Δ ∶ 𝑋 → 𝑋 × 𝑋 be the
diagonal morphism.

(1) We say 𝑋 is separated if Δ is a closed immersion.
(2) We say 𝑋 is locally separated1 if Δ is an immersion.
(3) We say 𝑋 is quasi-separated if Δ is quasi-compact.

1In the literature this often refers to quasi-separated and locally separated algebraic spaces.
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(4) We say𝑋 is Zariski locally quasi-separated2 if there exists a Zariski covering𝑋 =
⋃𝑖∈𝐼 𝑋𝑖 (see Spaces, Definition 40.12.5) such that each 𝑋𝑖 is quasi-separated.

Let 𝑆 is a scheme contained in Sch𝑓𝑝𝑝𝑓, and let 𝑋 be an algebraic space over 𝑆. Then we
say 𝑋 is separated, locally separated, quasi-separated, or Zariski locally quasi-separated
if 𝑋 viewed as an algebraic space over 𝑆𝑝𝑒𝑐(𝐙) (see Spaces, Definition 40.16.2) has the
corresponding property.

It is true that an algebraic space 𝑋 over 𝑆 which is separated (in the absolute sense above)
is separated over 𝑆 (and similarly for the other absolute separation properties above). This
will be discussed in great detail in Morphisms of Spaces, Section 42.5. We will see in
Lemma 41.6.5 that being Zariski locally separated is independent of the base scheme (hence
equivalent to the absolute notion).

Lemma 41.3.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. We have the
following implications among the separation axioms of Definition 41.3.1:

(1) separated implies all the others,
(2) quasi-separated implies Zariski locally quasi-separated.

Proof. Omitted. �

41.4. Points of algebraic spaces

As is clear fromSpaces, Example 40.14.8 a point of an algebraic space should not be defined
as a monomorphism from the spectrum of a field. Instead we define them as equivalence
classes of morphisms of specra of fields as equivalence classes of morphisms from spectra
of fields. exactly as explained in Schemes, Section 21.13.
Let 𝑆 be a scheme. Let 𝐹 be a presheaf on (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝐾 is a field. Consider a
morphism

𝑆𝑝𝑒𝑐(𝐾) ⟶ 𝐹.
By the Yoneda Lemma this is given by an element 𝑝 ∈ 𝐹(𝑆𝑝𝑒𝑐(𝐾)). We say that two
such pairs (𝑆𝑝𝑒𝑐(𝐾), 𝑝) and (𝑆𝑝𝑒𝑐(𝐿), 𝑞) are equivalent if there exists a third field Ω and a
commutative diagram

𝑆𝑝𝑒𝑐(Ω) //

��

𝑆𝑝𝑒𝑐(𝐿)

𝑞
��

𝑆𝑝𝑒𝑐(𝐾)
𝑝 // 𝐹.

In other words, there are field extensions 𝐾 → Ω and 𝐿 → Ω such that 𝑝 and 𝑞 map to
the same element of 𝐹(𝑆𝑝𝑒𝑐(Ω)). We omit the verification that this defines an equivalence
relation.

Definition 41.4.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. A point of 𝑋 is
an equivalence class of morphisms from spectra of fields into 𝑋. The set of points of 𝑋 is
denoted |𝑋|.

Note that if 𝑓 ∶ 𝑋 → 𝑌 is a morphism of algebraic spaces over 𝑆, then there is an induced
map |𝑓| ∶ |𝑋| → |𝑌| which maps a representative 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 to the representative
𝑓 ∘ 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑌.

Lemma 41.4.2. Let 𝑆 be a scheme. Let 𝑋 be a scheme over 𝑆. The points of 𝑋 as a scheme
are in canonical 1-1 correspondence with the points of 𝑋 as an algebraic space.

2 This notion was suggested by B. Conrad.
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Proof. This is Schemes, Lemma 21.13.3. �

Lemma 41.4.3. Let 𝑆 be a scheme. Let

𝑍 ×𝑌 𝑋 //

��

𝑋

��
𝑍 // 𝑌

be a cartesian diagram of algebraic spaces. Then the map of sets of points

|𝑍 ×𝑌 𝑋| ⟶ |𝑍| ×|𝑌| |𝑋|

is surjective.

Proof. Namely, suppose given fields 𝐾, 𝐿 and morphisms 𝑆𝑝𝑒𝑐(𝐾) → 𝑋, 𝑆𝑝𝑒𝑐(𝐿) →
𝑍, then the assumption that they agree as elements of |𝑌| means that there is a common
extension 𝐾 ⊂ 𝑀 and 𝐿 ⊂ 𝑀 such that 𝑆𝑝𝑒𝑐(𝑀) → 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 → 𝑌 and 𝑆𝑝𝑒𝑐(𝑀) →
𝑆𝑝𝑒𝑐(𝐿) → 𝑍 → 𝑌 agree. And this is exactly the condition which says you get a morphism
𝑆𝑝𝑒𝑐(𝑀) → 𝑍 ×𝑌 𝑋. �

Lemma 41.4.4. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑓 ∶ 𝑇 → 𝑋
be a morphism from a scheme to 𝑋. The following are equivalent

(1) 𝑓 ∶ 𝑇 → 𝑋 is surjective (according to Spaces, Definition 40.5.1), and
(2) |𝑓| ∶ |𝑇| → |𝑋| is surjective.

Proof. Assume (1). Let 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 be a morphism from the spectrum of a field
into 𝑋. By assumption the morphism of schemes 𝑆𝑝𝑒𝑐(𝐾) ×𝑋 𝑇 → 𝑆𝑝𝑒𝑐(𝐾) is surjective.
Hence there exists a field extension 𝐾 ⊂ 𝐾′ and a morphism 𝑆𝑝𝑒𝑐(𝐾′) → 𝑆𝑝𝑒𝑐(𝐾) ×𝑋 𝑇
such that the left square in the diagram

𝑆𝑝𝑒𝑐(𝐾′) //

��

𝑆𝑝𝑒𝑐(𝐾) ×𝑋 𝑇

��

// 𝑇

��
𝑆𝑝𝑒𝑐(𝐾) 𝑆𝑝𝑒𝑐(𝐾) 𝑥 // 𝑋

is commutative. This shows that |𝑓| ∶ |𝑇| → |𝑋| is surjective.

Assume (2). Let 𝑍 → 𝑋 be a morphism where 𝑍 is a scheme. We have to show that the
morphism of schemes 𝑍 ×𝑋 𝑇 → 𝑇 is surjective, i.e., that |𝑍 ×𝑋 𝑇| → |𝑍| is surjective.
This follows from (2) and Lemma 41.4.3. �

Lemma 41.4.5. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑋 = 𝑈/𝑅 be
a presentation of 𝑋, see Spaces, Definition 40.9.3. Then the image of |𝑅| → |𝑈| × |𝑈| is
an equivalence relation and |𝑋| is the quotient of |𝑈| by this equivalence relation.

Proof. The assumption means that 𝑈 is a scheme, 𝑝 ∶ 𝑈 → 𝑋 is a surjective, étale mor-
phism, 𝑅 = 𝑈 ×𝑋 𝑈 is a scheme and defines an étale equivalence relation on 𝑈 such that
𝑋 = 𝑈/𝑅 as sheaves. By Lemma 41.4.4 we see that |𝑈| → |𝑋| is surjective. By Lemma
41.4.3 the map

|𝑅| ⟶ |𝑈| ×|𝑋| |𝑈|
is surjective. Hence the image of |𝑅| → |𝑈| × |𝑈| is exactly the set of pairs (𝑢1, 𝑢2) ∈
|𝑈| × |𝑈| such that 𝑢1 and 𝑢2 have the same image in |𝑋|. Combining these two statements
we get the result of the lemma. �
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Lemma 41.4.6. Let 𝑆 be a scheme. There exists a unique topology on the set of points of
algebraic spaces over 𝑆 with the following properties:

(1) for every morphism of algebraic spaces 𝑋 → 𝑌 over 𝑆 the map |𝑋| → |𝑌| is
continuous, and

(2) for every étale morphism 𝑈 → 𝑋 with 𝑈 a scheme the map of topological spaces
|𝑈| → |𝑋| is continuous and open.

Proof. Let 𝑋 be an algebraic space over 𝑆. Let 𝑝 ∶ 𝑈 → 𝑋 be a surjective étale morphism
where 𝑈 is a scheme over 𝑆. We define 𝑊 ⊂ |𝑋| is open if and only if |𝑝|−1(𝑊) is an open
subset of |𝑈|. This is a topology on |𝑋|.
Let us prove that the topology is independent of the choice of the presentation. To do
this it suffices to show that if 𝑈′ is a scheme, and 𝑈′ → 𝑋 is an étale morphism, then
the map |𝑈′| → |𝑋| (with topology on |𝑋| defined using 𝑈 → 𝑋 as above) is open and
continuous; which in addition will prove that (2) holds. Set 𝑈″ = 𝑈 ×𝑋 𝑈′, so that we have
the commutative diagram

𝑈″ //

��

𝑈′

��
𝑈 // 𝑋

As 𝑈 → 𝑋 and 𝑈′ → 𝑋 are étale we see that both 𝑈″ → 𝑈 and 𝑈″ → 𝑈′ are étale
morphisms of schemes. Moreover, 𝑈″ → 𝑈′ is surjective. Hence we get a commutative
diagram of maps of sets

|𝑈″| //

��

|𝑈′|

��
|𝑈| // |𝑋|

The lower horizontal arrow is surjective (see Lemma 41.4.4 or Lemma 41.4.5) and continu-
ous by definition of the topology on |𝑋|. The top horizontal arrow is surjective, continuous,
and open by Morphisms, Lemma 24.35.13. The left vertical arrow is continuous and open
(by Morphisms, Lemma 24.35.13 again.) Hence it follows formally that the right vertical
arrow is continuous and open.
To finish the proof we prove (1). Let 𝑎 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces.
According to Spaces, Lemma 40.11.4 we can find a diagram

𝑈

𝑝
��

𝛼
// 𝑉

𝑞
��

𝑋 𝑎 // 𝑌
where 𝑈 and 𝑉 are schemes, and 𝑝 and 𝑞 are surjective and étale. This gives rise to the
diagram

|𝑈|

𝑝
��

𝛼
// |𝑉|

𝑞
��

|𝑋| 𝑎 // |𝑌|
where all but the lower horizontal arrows are known to be continuous and the two vertical
arrows are surjective and open. It follows that the lower horizontal arrow is continuous as
desired. �
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Definition 41.4.7. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The underlying
topological space of 𝑋 is the set of points |𝑋| endowed with the topology constructed in
Lemma 41.4.6.

It turns out that this topological space carries the same information as the small Zariski site
𝑋𝑍𝑎𝑟 of Spaces, Definition 40.12.6.

Lemma 41.4.8. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) The rule 𝑋′ ↦ |𝑋′| defines an inclusion preserving bijection between open sub-

spaces 𝑋′ (see Spaces, Definition 40.12.1) of 𝑋, and opens of the topological
space |𝑋|.

(2) A family {𝑋𝑖 ⊂ 𝑋}𝑖∈𝐼 of open subspaces of 𝑋 is a Zariski covering (see Spaces,
Definition 40.12.5) if and only if |𝑋| = ⋃ |𝑋𝑖|.

In other words, the small Zariski site 𝑋𝑍𝑎𝑟 of 𝑋 is canonically identified with a site asso-
ciated to the topological space |𝑋| (see Sites, Example 9.6.4).

Proof. In order to prove (1) let us construct the inverse of the rule. Namely, suppose that
𝑊 ⊂ |𝑋| is open. Choose a presentation 𝑋 = 𝑈/𝑅 corresponding to the surjective étale
map 𝑝 ∶ 𝑈 → 𝑋 and étale maps 𝑠, 𝑡 ∶ 𝑅 → 𝑈. By construction we see that |𝑝|−1(𝑊)
is an open of 𝑈. Denote 𝑊′ ⊂ 𝑈 the corresponding open subscheme. It is clear that
𝑅′ = 𝑠−1(𝑊′) = 𝑡−1(𝑊′) is a Zariski open of 𝑅 which defines an étale equivalence relation
on 𝑊′. By Spaces, Lemma 40.10.2 the morphism 𝑋′ = 𝑊′/𝑅′ → 𝑋 is an open immersion.
Hence 𝑋′ is an algebraic space by Spaces, Lemma 40.11.1. By construction |𝑋′| = 𝑊,
i.e., 𝑋′ is a subspace of 𝑋 corresponding to 𝑊. Thus (1) is proved.

To prove (2), note that if {𝑋𝑖 ⊂ 𝑋}𝑖∈𝐼 is a collection of open subspaces, then it is a Zariski
covering if and only if the 𝑈 = ⋃ 𝑈 ×𝑋 𝑋𝑖 is an open covering. This follows from the
definition of a Zariski covering and the fact that the morphism 𝑈 → 𝑋 is surjective as a
map of presheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. On the other hand, we see that |𝑋| = ⋃ |𝑋𝑖| if and only
if 𝑈 = ⋃ 𝑈 ×𝑋 𝑋𝑖 by Lemma 41.4.5 (and the fact that the projections 𝑈 ×𝑋 𝑋𝑖 → 𝑋𝑖 are
surjective and étale). Thus the equivalence of (2) follows. �

Lemma 41.4.9. Let 𝑆 be a scheme. Let 𝑋, 𝑌 be algebraic spaces over 𝑆. Let 𝑋′ ⊂ 𝑋 be an
open subspace. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism of algebraic spaces over 𝑆. Then 𝑓 factors
through 𝑋′ if and only if |𝑓| ∶ |𝑌| → |𝑋| factors through |𝑋′| ⊂ |𝑋|.

Proof. By Spaces, Lemma 40.12.3 we see that 𝑌′ = 𝑌 ×𝑋 𝑋′ → 𝑌 is an open immersion.
If |𝑓|(|𝑌|) ⊂ |𝑋′|, then clearly |𝑌′| = |𝑌|. Hence 𝑌′ = 𝑌 by Lemma 41.4.8. �

Lemma 41.4.10. Let 𝑆 be a scheme. Let 𝑋 be an algebraic spaces over 𝑆. Let 𝑈 be a
scheme and let 𝑓 ∶ 𝑈 → 𝑋 be an étale morphism. Let 𝑋′ ⊂ 𝑋 be the open subspace
corresponding to the open |𝑓|(|𝑈|) ⊂ |𝑋| via Lemma 41.4.8. Then 𝑓 factors through a
surjective étale morphism 𝑓′ ∶ 𝑈 → 𝑋′. Moreover, if 𝑅 = 𝑈 ×𝑋 𝑈, then 𝑅 = 𝑈 ×𝑋′ 𝑈 and
𝑋′ has the presentation 𝑋′ = 𝑈/𝑅.

Proof. The existence of the factorization follows from Lemma 41.4.9. The morphism 𝑓′

is surjective according to Lemma 41.4.4. To see 𝑓′ is étale, suppose that 𝑇 → 𝑋′ is a
morphism where 𝑇 is a scheme. Then 𝑇 ×𝑋 𝑈 = 𝑇 ×𝑋′ 𝑈 as 𝑋" → 𝑋 is a monomorphism
of sheaves. Thus the projection 𝑇 ×𝑋′ 𝑈 → 𝑇 is étale as we assumed 𝑓 étale. We have
𝑈 ×𝑋 𝑈 = 𝑈 ×𝑋′ 𝑈 as 𝑋′ → 𝑋 is a monomorphism. Then 𝑋′ = 𝑈/𝑅 follows from Spaces,
Lemma 40.9.1. �
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Lemma 41.4.11. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Consider the
map

{𝑆𝑝𝑒𝑐(𝑘) → 𝑋 monomorphism} ⟶ |𝑋|
This map is injective.

Proof. Suppose that 𝜑𝑖 ∶ 𝑆𝑝𝑒𝑐(𝑘𝑖) → 𝑋 are monomorphisms for 𝑖 = 1, 2. If 𝜑1 and 𝜑2
define the same point of |𝑋|, then we see that the scheme

𝑌 = 𝑆𝑝𝑒𝑐(𝑘1) ×𝜑1,𝑋,𝜑2
𝑆𝑝𝑒𝑐(𝑘2)

is nonempty. Since the base change of a monomorphism is a monomorphism this means
that the projection morphisms 𝑌 → 𝑆𝑝𝑒𝑐(𝑘𝑖) are monomorphisms. Hence 𝑆𝑝𝑒𝑐(𝑘1) = 𝑌 =
𝑆𝑝𝑒𝑐(𝑘2) as schemes over 𝑋, see Schemes, Lemma 21.23.10. We conclude that 𝜑1 = 𝜑2,
which proves the lemma. �

We will see in Decent Spaces, Lemma 43.9.1 that this map is a bijection when 𝑋 is very
reasonable.

41.5. Quasi-compact spaces

Definition 41.5.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. We say 𝑋 is
quasi-compact if there exists a surjective étale morphism 𝑈 → 𝑋 with 𝑈 quasi-compact.

Lemma 41.5.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Then 𝑋 is quasi-
compact if and only if |𝑋| is quasi-compact.

Proof. Choose a scheme 𝑈 and an étale surjective morphism 𝑈 → 𝑋. We will use Lemma
41.4.4. If 𝑈 is quasi-compact, then since |𝑈| → |𝑋| is surjective we conclude that |𝑋| is
quasi-compact. If |𝑋| is quasi-compact, then since |𝑈| → |𝑋| is open we see that there
exists a quasi-compact open 𝑈′ ⊂ 𝑈 such that |𝑈′| → |𝑋| is surjective (and still étale).
Hence we win. �

Lemma41.5.3. Afinite disjoint union of quasi-compact algebraic spaces is a quasi-compact
algebraic space.

Proof. This is clear from Lemma 41.5.2 and the corresponding topological fact. �

Example 41.5.4. The space 𝐀1
𝐐/𝐙 is quasi-compact but not very reasonable.

Lemma 41.5.5. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Every point of
|𝑋| has a fundamental system of open quasi-compact neighbourhoods. In particular |𝑋|
is locally quasi-compact in the sense of Topology, Definition 5.18.1.

Proof. This follows formally from the fact that there exists a scheme 𝑈 and a surjective,
open, continuous map 𝑈 → |𝑋| of topological spaces. To be a bit more precise, if 𝑢 ∈ 𝑈
maps to 𝑥 ∈ |𝑋|, then the images of the affine neighbourhoods of 𝑢 will give a fundamental
system of quasi-compact open neighbourhoods of 𝑥. �

41.6. Special coverings

In this section we collect some straightforward lemmas on the existence of étale surjective
coverings of algebraic spaces.

Lemma 41.6.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. There exists a
surjective étale morphism 𝑈 → 𝑋 where 𝑈 is a disjoint union of affine schemes. We may
in addition assume each of these affines maps into an affine open of 𝑆.
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Proof. Let 𝑉 → 𝑋 be a surjective étale morphism. Let 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 be a Zariski open
covering such that each 𝑉𝑖 maps into an affine open of 𝑆. Then set 𝑈 = ∐𝑖∈𝐼 𝑉𝑖 with
induced morphism 𝑈 → 𝑉 → 𝑋. This is étale and surjective as a composition of étale
and surjective representable transformations of functors (via the general principle Spaces,
Lemma 40.5.4 and Morphisms, Lemmas 24.9.2 and 24.35.3). �

Lemma 41.6.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. There exists
a Zariski covering 𝑋 = ⋃ 𝑋𝑖 such that each algebraic space 𝑋𝑖 has a surjective étale
covering by an affine scheme. We may in addition assume each 𝑋𝑖 maps into an affine open
of 𝑆.

Proof. By Lemma 41.6.1 we can find a surjective étale morphism 𝑈 = ∐ 𝑈𝑖 → 𝑋, with
𝑈𝑖 affine and mapping into an affine open of 𝑆. Let 𝑋𝑖 ⊂ 𝑋 be the open subspace of 𝑋 such
that 𝑈𝑖 → 𝑋 factors through an étale surjective morphism 𝑈𝑖 → 𝑋𝑖, see Lemma 41.4.10.
Since 𝑈 = ⋃ 𝑈𝑖 we see that 𝑋 = ⋃ 𝑋𝑖. As 𝑈𝑖 → 𝑋𝑖 is surjective it follows that 𝑋𝑖 → 𝑆
maps into an affine open of 𝑆. �

Lemma 41.6.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Then 𝑋 is quasi-
compact if and only if there exists an étale surjective morphism 𝑈 → 𝑋 with 𝑈 an affine
scheme.

Proof. If there exists an étale surjective morphism 𝑈 → 𝑋 with 𝑈 affine then 𝑋 is quasi-
compact byDefinition 41.5.1. Conversely, if𝑋 is quasi-compact, then |𝑋| is quasi-compact.
Let 𝑈 = ∐𝑖∈𝐼 𝑈𝑖 be a disjoint union of affine schemes with an étale and surjective map
𝜑 ∶ 𝑈 → 𝑋 (Lemma 41.6.1). Then |𝑋| = ⋃ 𝜑(|𝑈𝑖|) and by quasi-compactness there is a
finite subset 𝑖1, … , 𝑖𝑛 such that |𝑋| = ⋃ 𝜑(|𝑈𝑖𝑗|). Hence 𝑈𝑖1 ∪ … ∪ 𝑈𝑖𝑛 is an affine scheme
with a finite surjective morphism towards 𝑋. �

The following lemma will be obsoleted by the discussion of separated morphisms in the
chapter on morphisms of algebraic spaces.

Lemma 41.6.4. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑈 be a
separated scheme and 𝑈 → 𝑋 étale. Then 𝑈 → 𝑋 is separated, and 𝑅 = 𝑈 ×𝑋 𝑈 is a
separated scheme.

Proof. Let 𝑋′ ⊂ 𝑋 be the open subscheme such that 𝑈 → 𝑋 factors through an étale
surjection 𝑈 → 𝑋′, see Lemma 41.4.10. If 𝑈 → 𝑋′ is separated, then so is 𝑈 → 𝑋, see
Spaces, Lemma 40.5.4 (as the open immersion 𝑋′ → 𝑋 is separated by Spaces, Lemma
40.5.8 and Schemes, Lemma 21.23.7). Moreover, since 𝑈 ×𝑋′ 𝑈 = 𝑈 ×𝑋 𝑈 it suffices to
prove the result after replacing 𝑋 by 𝑋′, i.e., we may assume 𝑈 → 𝑋 surjective. Consider
the commutative diagram

𝑅 = 𝑈 ×𝑋 𝑈 //

��

𝑈

��
𝑈 // 𝑋

In the proof of Spaces, Lemma 40.13.1 we have seen that 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is separated.
The morphism of schemes 𝑈 → 𝑆 is separated as 𝑈 is a separated scheme, see Schemes,
Lemma 21.21.14. Hence 𝑈 ×𝑆 𝑈 → 𝑈 is separated as a base change, see Schemes, Lemma
21.21.13. Hence the scheme 𝑈 ×𝑆 𝑈 is separated (by the same lemma). Since 𝑗 is separated
we see in the same way that 𝑅 is separated. Hence 𝑅 → 𝑈 is a separated morphism (by
Schemes, Lemma 21.21.14 again). Thus by Spaces, Lemma 40.11.2 and the diagram above
we conclude that 𝑈 → 𝑋 is separated. �
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Lemma 41.6.5. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The following are
equivalent

(1) 𝑋 is Zariski locally quasi-separated over 𝑆,
(2) 𝑋 is Zariski locally quasi-separated,
(3) there exists a Zariski open covering 𝑋 = ⋃ 𝑋𝑖 such that for each 𝑖 there exists an

affine scheme 𝑈𝑖 and a quasi-compact surjective étale morphism 𝑈𝑖 → 𝑋𝑖, and
(4) there exists a Zariski open covering 𝑋 = ⋃ 𝑋𝑖 such that for each 𝑖 there exists

an affine scheme 𝑈𝑖 which maps into an affine open of 𝑆 and a quasi-compact
surjective étale morphism 𝑈𝑖 → 𝑋𝑖.

Proof. Assume 𝑈𝑖 → 𝑋𝑖 ⊂ 𝑋 are as in (3). To prove (4) choose for each 𝑖 a finite affine
open covering 𝑈𝑖 = 𝑈𝑖1 ∪ … ∪ 𝑈𝑖𝑛𝑖

such that each 𝑈𝑖𝑗 maps into an affine open of 𝑆. The
compositions 𝑈𝑖𝑗 → 𝑈𝑖 → 𝑋𝑖 are étale and quasi-compact (see Spaces, Lemma 40.5.4).
Let 𝑋𝑖𝑗 ⊂ 𝑋𝑖 be the open subspace corresponding to the image of |𝑈𝑖𝑗| → |𝑋𝑖|, see Lemma
41.4.10. Note that 𝑈𝑖𝑗 → 𝑋𝑖𝑗 is quasi-compact as 𝑋𝑖𝑗 ⊂ 𝑋𝑖 is a monomorphism and as
𝑈𝑖𝑗 → 𝑋 is quasi-compact. Then 𝑋 = ⋃ 𝑋𝑖𝑗 is a covering as in (4). The implication (4) ⇒
(3) is immediate.

Assume (4). To show that 𝑋 is Zariski locally quasi-separated over 𝑆 it suffices to show
that 𝑋𝑖 is quasi-separated over 𝑆. Hence we may assume there exists an affine scheme 𝑈
mapping into an affine open of 𝑆 and a quasi-compact surjective étale morphism 𝑈 → 𝑋.
Consider the fibre product square

𝑈 ×𝑋 𝑈 //

��

𝑈 ×𝑆 𝑈

��
𝑋

Δ𝑋/𝑆 // 𝑋 ×𝑆 𝑋

The right vertical arrow is surjective étale (see Spaces, Lemma 40.5.7) and 𝑈 ×𝑆 𝑈 is affine
(as 𝑈 maps into an affine open of 𝑆, see Schemes, Section 21.17), and 𝑈 ×𝑋 𝑈 is quasi-
compact because the projection 𝑈 ×𝑋 𝑈 → 𝑈 is quasi-compact as a base change of 𝑈 → 𝑋.
It follows from Spaces, Lemma 40.11.2 that Δ𝑋/𝑆 is quasi-compact as desired.

Assume (1). To prove (3) there is an immediate reduction to the case where 𝑋 is quasi-
separated over 𝑆. By Lemma 41.6.2 we can find a Zariski open covering 𝑋 = ⋃ 𝑋𝑖 such
that each 𝑋𝑖 maps into an affine open of 𝑆, and such that there exist affine schemes 𝑈𝑖 and
surjective étale morphisms 𝑈𝑖 → 𝑋𝑖. Since 𝑈𝑖 → 𝑆 maps into an affine open of 𝑆 we see
that 𝑈𝑖 ×𝑆 𝑈𝑖 is affine, see Schemes, Section 21.17. As 𝑋 is quasi-separated over 𝑆, the
morphisms

𝑅𝑖 = 𝑈𝑖 ×𝑋𝑖
𝑈𝑖 = 𝑈𝑖 ×𝑋 𝑈𝑖 ⟶ 𝑈𝑖 ×𝑆 𝑈𝑖

as base changes of Δ𝑋/𝑆 are quasi-compact. Hence we conclude that 𝑅𝑖 is a quasi-compact
scheme. This in turn implies that each projection 𝑅𝑖 → 𝑈𝑖 is quasi-compact. Hence,
applying Spaces, Lemma 40.11.2 to the covering 𝑈𝑖 → 𝑋𝑖 and the morphism 𝑈𝑖 → 𝑋𝑖 we
conclude that the morphisms 𝑈𝑖 → 𝑋𝑖 are quasi-compact as desired.

At this point we see that (1), (3), and (4) are equivalent. Since (3) does not refer to the base
scheme we conclude that these are also equivalent with (2). �

41.7. Properties of Spaces defined by properties of schemes

Any étale local property of schemes gives rise to a corresponding property of algebraic
spaces via the following lemma.
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Lemma 41.7.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝒫 be a
property of schemes which is local in the étale topology, see Descent, Definition 31.11.1.
The following are equivalent

(1) for some scheme 𝑈 and surjective étale morphism 𝑈 → 𝑋 the scheme 𝑈 has
property 𝒫, and

(2) for every scheme 𝑈 and every étale morphism 𝑈 → 𝑋 the scheme 𝑈 has property
𝒫.

If 𝑋 is representable this is equivalent to 𝒫(𝑋).

Proof. Omitted. �

Definition 41.7.2. Let 𝒫 be a property of schemes which is local in the étale topology. Let
𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. We say 𝑋 has property 𝒫 if any of the
equivalent conditions of Lemma 41.7.1 hold.

Remark 41.7.3. Here is a list of properties which are local for the étale topology (keep
in mind that the fpqc, fppf, syntomic, and smooth topologies are stronger than the étale
topology):

(1) locally Noetherian, see Descent, Lemma 31.12.1,
(2) Jacobson, see Descent, Lemma 31.12.2,
(3) locally Noetherian and (𝑆𝑘), see Descent, Lemma 31.13.1,
(4) Cohen-Macaulay, see Descent, Lemma 31.13.2,
(5) reduced, see Descent, Lemma 31.14.1,
(6) normal, see Descent, Lemma 31.14.2,
(7) locally Noetherian and (𝑅𝑘), see Descent, Lemma 31.14.3,
(8) regular, see Descent, Lemma 31.14.4,
(9) Nagata, see Descent, Lemma 31.14.5.

Any étale local property of germs of schemes gives rise to a corresponding property of
algebraic spaces. Here is the obligatory lemma.

Lemma 41.7.4. Let 𝒫 be a property of germs of schemes which is étale local, see Descent,
Definition 31.17.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋| be
a point of 𝑋. Consider étale morphisms 𝑎 ∶ 𝑈 → 𝑋 where 𝑈 is a scheme. The following
are equivalent

(1) for any 𝑈 → 𝑋 as above and 𝑢 ∈ 𝑈 with 𝑎(𝑢) = 𝑥 we have 𝒫(𝑈, 𝑢), and
(2) for some 𝑈 → 𝑋 as above and 𝑢 ∈ 𝑈 with 𝑎(𝑢) = 𝑥 we have 𝒫(𝑈, 𝑢).

If 𝑋 is representable, then this is equivalent to 𝒫(𝑋, 𝑥).

Proof. Omitted. �

Definition 41.7.5. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|.
Let 𝒫 be a property of germs of schemes which is étale local. We say 𝑋 has property 𝒫 at
𝑥 if any of the equivalent conditions of Lemma 41.7.4 hold.

41.8. Dimension at a point

We can use Descent, Lemma 31.17.2 to define the dimension of an algebraic space 𝑋 at a
point 𝑥. This will give us a different notion than the topological one (i.e., the dimension of
|𝑋| at 𝑥).
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Definition 41.8.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋| be a
point of 𝑋. We define the dimension of 𝑋 at 𝑥 to be the element dim𝑥(𝑋) ∈ {0, 1, 2, … , ∞}
such that dim𝑥(𝑋) = dim𝑢(𝑈) for any (equivalently some) pair (𝑎 ∶ 𝑈 → 𝑋, 𝑢) consisting
of an étale morphism 𝑎 ∶ 𝑈 → 𝑋 from a scheme to 𝑋 and a point 𝑢 ∈ 𝑈 with 𝑎(𝑢) = 𝑥.
See Definition 41.7.5, Lemma 41.7.4, and Descent, Lemma 31.17.2.

Warning: It is not the case that dim𝑥(𝑋) = dim𝑥(|𝑋|) in general. A counter example
is the algebraic space 𝑋 of Spaces, Example 40.14.9. Namely, in this example we have
dim𝑥(𝑋) = 0 and dim𝑥(|𝑋|) = 1 (this holds for any 𝑥 ∈ |𝑋|). In particular, it also means
that the dimension of 𝑋 (as defined below) is different from the dimension of |𝑋|.

Definition 41.8.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The dimension
dim(𝑋) of 𝑋 is defined by the rule

dim(𝑋) = sup𝑥∈|𝑋| dim𝑥(𝑋)

By Properties, Lemma 23.10.2 we see that this is the usual notion if 𝑋 is a scheme. There is
another integer that measures the dimension of a scheme at a point, namely the dimension
of the local ring. This invariant is compatible with étale morphisms also, see Section 41.20.

41.9. Reduced spaces

We have already defined reduced algebraic spaces in Section 41.7. Here we just prove some
simple lemmas regarding reduced algebraic spaces.

Lemma 41.9.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑇 ⊂ |𝑋| be a
closed subset. There exists a unique closed subspace 𝑍 ⊂ 𝑋 with the following properties:
(a) we have |𝑍| = 𝑇, and (b) 𝑍 is reduced.

Proof. Let 𝑈 → 𝑋 be a surjective étale morphism, where 𝑈 is a scheme. Set 𝑅 = 𝑈 ×𝑋 𝑈,
so that 𝑋 = 𝑈/𝑅, see Spaces, Lemma 40.9.1. As usual we denote 𝑠, 𝑡 ∶ 𝑅 → 𝑈 the
two projection morphisms. By Lemma 41.4.5 we see that 𝑇 corresponds to a closed sub-
set 𝑇′ ⊂ |𝑈| such that 𝑠−1(𝑇′) = 𝑡−1(𝑇′). Let 𝑍′ ⊂ 𝑈 be the reduced induced scheme
structure on 𝑇′. In this case the fibre products 𝑍′ ×𝑈,𝑡 𝑅 and 𝑍′ ×𝑈,𝑠 𝑅 are closed sub-
schemes of 𝑅 (Schemes, Lemma 21.18.2) which are étale over 𝑍′ (Morphisms, Lemma
24.35.4), and hence reduced (because being reduced is local in the étale topology, see Re-
mark 41.7.3). Since they have the same underlying topological space (see above) we con-
clude that 𝑍′ ×𝑈,𝑡 𝑅 = 𝑍′ ×𝑈,𝑠 𝑅. Hence the common value 𝑅′ is the restriction of 𝑅 to 𝑍′,
see Groupoids, Definition 35.15.2. By Spaces, Theorem 40.10.5 we see that 𝑍 = 𝑍′/𝑅′

is an algebraic space. By Groupoids, Lemma 35.17.6 we see that 𝑍 → 𝑋 is a monomor-
phism. By construction we have 𝑈 ×𝑋 𝑍 = 𝑍′, so 𝑈 ×𝑋 𝑍 → 𝑍 is a closed immersion.
This means all the hypotheses of Spaces, Lemma 40.11.3 are satisfied for the transformation
𝑍 → 𝑋, 𝒫 =``closed immersion'' (closed immersions satisfy descent for étale coverings,
see Descent, Lemma 31.33.2), and the étale surjective morphism 𝑈 → 𝑋. We conclude that
𝑍 → 𝑋 is representable, a monomorphism and a closed immersion, which is the definition
of a closed subspace (see Spaces, Definition 40.12.1). By construction |𝑍| = 𝑇 and 𝑍 is
reduced. This proves existence. We omit the proof of uniqueness. �

Lemma 41.9.2. Let 𝑆 be a scheme. Let 𝑋, 𝑌 be algebraic spaces over 𝑆. Let 𝑍 ⊂ 𝑋 be a
closed subspace. Assume 𝑌 is reduced. A morphism 𝑓 ∶ 𝑌 → 𝑋 factors through 𝑍 if and
only if 𝑓(|𝑌|) ⊂ |𝑍|.
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Proof. Assume 𝑓(|𝑌|) ⊂ |𝑍|. Choose a diagram

𝑉

𝑏
��

ℎ
// 𝑈

𝑎
��

𝑌
𝑓 // 𝑋

where 𝑈, 𝑉 are schemes, and the vertical arrows are surjective and étale. The scheme 𝑉 is
reduced, see Lemma 41.7.1. Hence ℎ factors through 𝑎−1(𝑍) by Schemes, Lemma 21.12.6.
So 𝑎 ∘ ℎ factors through 𝑍. As 𝑍 ⊂ 𝑋 is a subsheaf, and 𝑉 → 𝑌 is a surjection of sheaves
on (Sch/𝑆)𝑓𝑝𝑝𝑓 we conclude that 𝑋 → 𝑌 factors through 𝑍. �

Definition 41.9.3. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. Let 𝑍 ⊂ |𝑋|
be a closed subset. An algebraic space structure on 𝑍 is given by a closed subspace 𝑍′ of
𝑋 with |𝑍′| equal to 𝑍. The reduced induced algebraic space structure on 𝑍 is the one
constructed in Lemma 41.9.1. The reduction 𝑋𝑟𝑒𝑑 of 𝑋 is the reduced induced algebraic
space structure on |𝑋|.

41.10. The schematic locus

Every algebraic space has a largest open subspace which is a scheme; this is more or less
clear but we also write out the proof below. Of course this subspace may be empty, for
example if 𝑋 = 𝐀1

𝐐/𝐙 (the universal counter example). On the other hand, if 𝑋 is very
reasonable, then this largest open subscheme is actually dense in 𝑋!

Lemma 41.10.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. There exists a
largest open subspace 𝑋′ ⊂ 𝑋 which is a scheme.

Proof. Let 𝑈 → 𝑋 be an étale surjective morphism, where 𝑈 is a scheme. Let 𝑅 = 𝑈 ×𝑋
𝑈. The open subspaces of 𝑋 correspond 1 − 1 with open subschemes of 𝑈 which are
𝑅-invariant. Hence there is a set of them. Let 𝑋𝑖, 𝑖 ∈ 𝐼 be the set of open subspaces of
𝑋 which are schemes, i.e., are representable. Consider the open subspace 𝑋′ ⊂ 𝑋 whose
underlying set of points is the open ⋃ |𝑋𝑖| of |𝑋|. By Lemma 41.4.4 we see that

∐ 𝑋𝑖 ⟶ 𝑋′

is a surjective map of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. But since each 𝑋𝑖 → 𝑋′ is representable by
open immersions we see that in fact the map is surjective in the Zariski topology. (Because
if 𝑇 → 𝑋′ is a morphism from a scheme into 𝑋′, then 𝑋𝑖 ×′

𝑋 𝑇 is an open subscheme of 𝑇.)
Hence we can apply Schemes, Lemma 21.15.4 to see that 𝑋′ is a scheme. �

In the rest of this section we say that an open subspace 𝑋′ of an algebraic space 𝑋 is dense
if the corresponding open subset |𝑋′| ⊂ |𝑋| is dense.

Lemma 41.10.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. If there exists
a finite, étale, surjective morphism 𝑈 → 𝑋 where 𝑈 is a scheme, then there exists a dense
open subspace of 𝑋 which is a scheme.

Proof. Assume 𝑋 is an algebraic space, 𝑈 a scheme, and 𝑈 → 𝑋 is a finite étale surjective
morphism. Write 𝑅 = 𝑈 ×𝑋 𝑈 and denote 𝑠, 𝑡 ∶ 𝑅 → 𝑈 the projections as usual. Note that
𝑠, 𝑡 are surjective, finite and étale. Claim: The union of the 𝑅-invariant affine opens of 𝑈 is
topologically dense in 𝑈.
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Proof of the claim3. Let 𝑊 ⊂ 𝑈 be an affine open. Set 𝑊′ = 𝑡(𝑠−1(𝑊)) ⊂ 𝑈. Since 𝑠−1(𝑊)
is affine (hence quasi-compact) we see that 𝑊′ ⊂ 𝑈 is a quasi-compact open. By Properties,
Lemma 23.26.3 there exists a dense open 𝑊″ ⊂ 𝑊′ which is a separated scheme. Set
Δ′ = 𝑊′⧵𝑊″. This is a nowhere dense closed subset of𝑊″. Since 𝑡|𝑠−1(𝑊) ∶ 𝑠−1(𝑊) → 𝑊′

is open (because it is étale) we see that the inverse image (𝑡|𝑠−1(𝑊))−1(Δ′) ⊂ 𝑠−1(𝑊) is
a nowhere dense closed subset (see Topology, Lemma 5.17.6). Hence, by Morphisms,
Lemma 24.44.7 we see that

Δ = 𝑠 ((𝑡|𝑠−1(𝑊))−1(Δ′))
is a nowhere dense closed subset of 𝑊. Pick any point 𝜂 ∈ 𝑊, 𝜂∉Δ which is a generic
point of an irreducible component of 𝑊 (and hence of 𝑈). By our choices above the finite
set 𝑡(𝑠−1({𝜂})) = {𝜂1, … , 𝜂𝑛} is contained in the separated scheme 𝑊″. Note that the fibres
of 𝑠 is are finite discrete spaces, and that generalizations lift along the étale morphism 𝑡,
see Morphisms, Lemmas 24.35.12 and 24.24.8. In this way we see that each 𝜂𝑖 is a generic
point of an irreducible component of 𝑊″. Thus, by Properties, Lemma 23.26.1 we can
find an affine open 𝑉 ⊂ 𝑊″ such that {𝜂1, … , 𝜂𝑛} ⊂ 𝑉. By Groupoids, Lemma 35.20.1 this
implies that 𝜂 is contained in an 𝑅-invariant affine open subscheme of 𝑈. The claim follows
as 𝑊 was chosen as an arbitrary affine open of 𝑈 and because the set of generic points of
irreducible components of 𝑊 ⧵ Δ is dense in 𝑊.
Using the claim we can finish the proof. Namely, if 𝑊 ⊂ 𝑈 is an 𝑅-invariant affine open,
then the restriction 𝑅𝑊 of 𝑅 to 𝑊 equals 𝑅𝑊 = 𝑠−1(𝑊) = 𝑡−1(𝑊) (see Groupoids, Defini-
tion 35.16.1 and discussion following it). In particular the maps 𝑅𝑊 → 𝑊 are finite étale
also. It follows in particular that 𝑅𝑊 is affine. Thus we see that 𝑊/𝑅𝑊 is a scheme, by
Groupoids, Proposition 35.19.8. On the other hand, 𝑊/𝑅𝑊 is an open subspace of 𝑋 by
Spaces, Lemma 40.10.2. Hence having a dense collection of points contained in𝑅-invariant
affine open of 𝑈 certainly implies that the schematic locus of 𝑋 (see Lemma 41.10.1) is open
dense in 𝑋. �

We will improve the following proposition to the case of very reasonable algebraic spaces
in Decent Spaces, Proposition 43.8.1.

Proposition 41.10.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. If 𝑋 is
Zariski locally quasi-separated (e.g., 𝑋 is quasi-separated), then there exists a dense open
subspace of 𝑋 which is a scheme.

Proof. By Lemma 41.10.1 and Lemma 41.6.5 we may assume that there exists an affine
scheme 𝑈 and a surjective, quasi-compact, étale morphism 𝑈 → 𝑋. Set 𝑅 = 𝑈 ×𝑋 𝑈,
and denote 𝑠, 𝑡 ∶ 𝑅 → 𝑈 the projections as usual. Note that 𝑠, 𝑡 are surjective, quasi-
compact and étale, hence also quasi-finite (see Étale Morphisms, Section 37.11). By More
on Morphisms, Lemma 33.29.7 there exists a dense open subscheme 𝑊 ⊂ 𝑈 such that
𝑠−1(𝑊) → 𝑊 is finite. By Descent, Lemma 31.19.21 being finite is fpqc (and in particular
étale) local on the target. Hence we may apply More on Groupoids, Lemma 36.5.4 which
says that the largest open 𝑊 ⊂ 𝑈 over which 𝑠 is finite is 𝑅-invariant. It is still dense of
course. The restriction 𝑅𝑊 of 𝑅 to 𝑊 equals 𝑅𝑊 = 𝑠−1(𝑊) = 𝑡−1(𝑊) (see Groupoids,
Definition 35.16.1 and discussion following it). By construction 𝑠𝑊, 𝑡𝑊 ∶ 𝑅𝑊 → 𝑊 are
finite étale. If we can show the open subspace 𝑊/𝑅𝑊 ⊂ 𝑋 (see Spaces, Lemma 40.10.2)
contains a dense open subspace which is a scheme, then the proposition follows for 𝑋. This
reduces us to Lemma 41.10.2. �

3The claim is easier to prove if 𝑈 is assumed quasi-separated, since in that case Properties, Lemma 23.26.1
may be applied immediately to the 𝑅-equivalence class of any generic point of 𝑈.
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41.11. Points on quasi-separated spaces

Points can behave very badly on algebraic spaces in the generality introduced in the stacks
project. However, for quasi-separated spaces their behaviour is mostly like the behaviour
of points on schemes. We prove a few results on this in this section.

The following lemma is a key lemma which we will use to prove that certain algebraic
spaces are isomorphic to the spectrum of a field.

Lemma 41.11.1. Let 𝑆 be a scheme. Let 𝑘 be a field. Let 𝑋 be an algebraic space over
𝑆 and assume that there exists a surjective étale morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋. If 𝑋 is quasi-
separated, then 𝑋 ≅ 𝑆𝑝𝑒𝑐(𝑘′) where 𝑘′ ⊂ 𝑘 is a finite separable extension.

Proof. Set 𝑅 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑆𝑝𝑒𝑐(𝑘), so that we have a fibre product diagram

𝑅 𝑠
//

𝑡
��

𝑆𝑝𝑒𝑐(𝑘)

��
𝑆𝑝𝑒𝑐(𝑘) // 𝑋

BySpaces, Lemma 40.9.1we know𝑋 = 𝑆𝑝𝑒𝑐(𝑘)/𝑅 is the quotient sheaf. Because𝑆𝑝𝑒𝑐(𝑘) →
𝑋 is étale, the morphisms 𝑠 and 𝑡 are étale. Hence 𝑅 = ∐𝑖∈𝐼 𝑆𝑝𝑒𝑐(𝑘𝑖) is a disjoint union
of spectra of fields, and both 𝑠 and 𝑡 induce finite separable field extensions 𝑠, 𝑡 ∶ 𝑘 ⊂ 𝑘𝑖,
see Morphisms, Lemma 24.35.7. Because

𝑅 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑆𝑝𝑒𝑐(𝑘) = (𝑆𝑝𝑒𝑐(𝑘) ×𝑆 𝑆𝑝𝑒𝑐(𝑘)) ×𝑋×𝑆𝑋,Δ 𝑋

and since Δ is quasi-compact by assumption we conclude that 𝑅 → 𝑆𝑝𝑒𝑐(𝑘) ×𝑆 𝑆𝑝𝑒𝑐(𝑘) is
quasi-compact. Hence𝑅 is quasi-compact as𝑆𝑝𝑒𝑐(𝑘)×𝑆𝑆𝑝𝑒𝑐(𝑘) is affine. We conclude that
𝐼 is finite. This implies that 𝑠 and 𝑡 are finite locally free morphisms. Hence by Groupoids,
Proposition 35.19.8 we conclude that 𝑆𝑝𝑒𝑐(𝑘)/𝑅 is represented by 𝑆𝑝𝑒𝑐(𝑘′), with 𝑘′ ⊂ 𝑘
finite locally free where

𝑘′ = {𝑥 ∈ 𝑘 ∣ 𝑠𝑖(𝑥) = 𝑡𝑖(𝑥) for all 𝑖 ∈ 𝐼}

It is easy to see that 𝑘′ is a field. �

Remark 41.11.2. For improvements of the lemma above, see Decent Spaces, Lemmas
43.9.2 and 43.11.1. It is possible that Lemma 41.11.1 also holds when 𝑋 is locally sepa-
rated. To prove this one would have to show that the index set 𝐼 in the proof of Lemma
41.11.1 is finite, if we only assume that 𝑅 → 𝑆𝑝𝑒𝑐(𝑘) ×𝑆 𝑆𝑝𝑒𝑐(𝑘) is an immersion (and an
étale equivalence relation of course).

Lemma 41.11.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑈 be a
scheme. Let 𝜑 ∶ 𝑈 → 𝑋 be an étale morphism such that the projections 𝑅 = 𝑈 ×𝑋 𝑈 → 𝑈
are quasi-compact; for example if 𝜑 is quasi-compact. Then the fibres of

|𝑈| → |𝑋| and |𝑅| → |𝑋|

are finite.

Proof. Denote 𝑅 = 𝑈 ×𝑋 𝑈, and 𝑠, 𝑡 ∶ 𝑅 → 𝑈 the projections. Let 𝑢 ∈ 𝑈 be a point, and
let 𝑥 ∈ |𝑋| be its image. The fibre of |𝑈| → |𝑋| over 𝑥 is equal to 𝑠(𝑡−1({𝑢})) by Lemma
41.4.3, and the fibre of |𝑅| → |𝑋| over 𝑥 is 𝑡−1(𝑠(𝑡−1({𝑢}))). Since 𝑡 ∶ 𝑅 → 𝑈 is étale
and quasi-compact, it has finite fibres (as its fibres are disjoint unions of spectra of fields
by Morphisms, Lemma 24.35.7 and quasi-compact). Hence we win. �
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Lemma 41.11.4. Let 𝑆 be a scheme. Let 𝑋 be a Zariski locally quasi-separated algebraic
space over 𝑆. Then the topological space |𝑋| is sober (see Topology, Definition 5.5.4).

Proof. Combining Topology, Lemma 5.5.5 and Lemma 41.6.5 we see that we may assume
that there exists an affine scheme 𝑈 and a surjective, quasi-compact, étale morphism 𝑈 →
𝑋. Set 𝑅 = 𝑈 ×𝑋 𝑈 with projection maps 𝑠, 𝑡 ∶ 𝑅 → 𝑈. Applying Lemma 41.11.3 we see
that the fibres of 𝑠, 𝑡 are finite. It follows all the assumptions of Topology, Lemma 5.14.7
are met, and we conclude that |𝑋| is Kolmogorov4.
It remains to show that every irreducible closed subset 𝑇 ⊂ |𝑋| has a generic point. By
Lemma 41.9.1 there exists a closed subspace 𝑍 ⊂ 𝑋 with |𝑍| = |𝑇|. Note that 𝑈×𝑋𝑍 → 𝑍
is a quasi-compact, surjective, étale morphism from an affine scheme to 𝑍, hence 𝑍 is
Zariski locally quasi-separated by Lemma 41.6.5. By Proposition 41.10.3 we see that there
exists an open dense subspace 𝑍′ ⊂ 𝑍 which is a scheme. This means that |𝑍′| ⊂ 𝑇 is
open dense. Hence the topological space |𝑍′| is irreducible, which means that 𝑍′ is an
irreducible scheme. By Schemes, Lemma 21.11.1 we conclude that |𝑍′| is the closure of a
single point 𝜂 ∈ |𝑍′| ⊂ 𝑇 and hence also 𝑇 = {𝜂}, and we win. �

41.12. Noetherian spaces

We have already defined locally Noetherian algebraic spaces in Section 41.7.

Definition 41.12.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. We say 𝑋 is
Noetherian if 𝑋 is quasi-compact, quasi-separated and locally Noetherian.

Note that a Noetherian algebraic space 𝑋 is not just quasi-compact and locally Noetherian,
but also quasi-separated. This does not conflict with the definition of a Noetherian scheme,
as a locally Noetherian scheme is quasi-separated, see Properties, Lemma 23.5.4. This does
not hold for algebraic spaces. Namely, 𝑋 = 𝐀1

𝑘/𝐙, see Spaces, Example 40.14.8 is locally
Noetherian and quasi-compact but not quasi-separated (hence not Noetherian according to
our definitions).
A consequence of the choice made above is that an algebraic space of finite type over a Noe-
therian algebraic space is not automatically Noetherian, i.e., the analogue of Morphisms,
Lemma 24.14.6 does not hold. The correct statement is that an algebraic space of finite
presentation over a Noetherian algebraic space is Noetherian (see Morphisms of Spaces,
Lemma 42.26.6).
A Noetherian algebraic space 𝑋 is very close to being a scheme. In the rest of this section
we collect some lemmas to illustrate this.

Lemma 41.12.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) If 𝑋 is locally Noetherian then |𝑋| is a locally Noetherian topological space.
(2) If 𝑋 is quasi-compact and locally Noetherian, then |𝑋| is a Noetherian toplogical

space.

Proof. Assume 𝑋 is locally Noetherian. Choose a scheme 𝑈 and a surjective étale mor-
phism 𝑈 → 𝑋. As 𝑋 is locally Noetherian we see that 𝑈 is locally Noetherian. By Prop-
erties, Lemma 23.5.5 this means that |𝑈| is a locally Noetherian topological space. Since
|𝑈| → |𝑋| is open and surjective we conclude that |𝑋| is locally Noetherian by Topology,

4 Actually we use here also Schemes, Lemma 21.11.1 (soberness schemes), Morphisms, Lemmas 24.35.12
and 24.24.8 (generalizations lift along étale morphisms), Lemma 41.4.5 (points on an algebraic space in terms of
a presentation), and Lemma 41.4.6 (openness quotient map).
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Lemma 5.6.3. This proves (1). If 𝑋 is quasi-compact and locally Noetherian, then |𝑋|
is quasi-compact and locally Noetherian. Hence |𝑋| is Noetherian by Topology, Lemma
5.9.10. �

Lemma 41.12.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. If 𝑋 is Noether-
ian, then |𝑋| is a sober Noetherian topological space.

Proof. A quasi-separated algebraic space has an underlying sober topological space, see
Lemma 41.11.4. It is Noetherian by Lemma 41.12.2. �

41.13. Étale morphisms of algebraic spaces

This section really belongs in the chapter on morphisms of algebraic spaces, but we need
the notion of an algebraic space étale over another in order to define the small étale site of
an algebraic space. Thus we need to do some preliminary work on étale morphisms from
schemes to algebraic spaces, and étale morphisms between algebraic spaces. For more
about étale morphisms of algebraic spaces, see Morphisms of Spaces, Section 42.35.

Lemma 41.13.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑈, 𝑈′ be
schemes over 𝑆.

(1) If 𝑈 → 𝑈′ is an étale morphism of schemes, and if 𝑈′ → 𝑋 is an étale morphism
from 𝑈′ to 𝑋, then the composition 𝑈 → 𝑋 is an étale morphism from 𝑈 to 𝑋.

(2) If 𝜑 ∶ 𝑈 → 𝑋 and 𝜑′ ∶ 𝑈′ → 𝑋 are étale morphisms towards 𝑋, and if
𝜒 ∶ 𝑈 → 𝑈′ is a morphism of schemes such that 𝜑 = 𝜑′ ∘ 𝜒, then 𝜒 is an étale
morphism of schemes.

Proof. Recall that our definition of an étale morphism from a scheme into an algebraic
space comes from Spaces, Definition 40.5.1 via the fact that any morphism from a scheme
into an algebraic space is representable. Part (1) of the lemma follows from this, the fact
that étale morphisms are preserved under composition (Morphisms, Lemma 24.35.3) and
Spaces, Lemmas 40.5.4 and 40.5.3 (which are formal). To prove part (2) choose a scheme𝑊
over 𝑆 and a surjective étale morphism 𝑊 → 𝑋. Consider the base change 𝜒𝑊 ∶ 𝑊×𝑋 𝑈 →
𝑊 ×𝑋 𝑈′ of 𝜒. As 𝑊 ×𝑋 𝑈 and 𝑊 ×𝑋 𝑈′ are étale over 𝑊, we conclude that 𝜒𝑊 is étale,
by Morphisms, Lemma 24.35.19. On the other hand, in the commutative diagram

𝑊 ×𝑋 𝑈 //

��

𝑊 ×𝑋 𝑈′

��
𝑈 // 𝑈′

the two vertical arrows are étale and surjective. Hence by Descent, Lemma 31.10.4 we
conclude that 𝑈 → 𝑈′ is étale. �

Definition 41.13.2. Let 𝑆 be a scheme. A morphism 𝑓 ∶ 𝑋 → 𝑌 between algebraic spaces
over 𝑆 is called étale if and only if for every étale morphism 𝜑 ∶ 𝑈 → 𝑋 where 𝑈 is a
scheme, the composition 𝜑 ∘ 𝑓 is étale also.

If 𝑋 and 𝑌 are schemes, then this agree with the usual notion of an étale morphism of
schemes. In fact, whenever 𝑋 → 𝑌 is a representable morphism of algebraic spaces, then
this agrees with the notion defined via Spaces, Definition 40.5.1. This follows by combining
Lemma 41.13.3 below and Spaces, Lemma 40.11.2.

Lemma 41.13.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:
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(1) 𝑓 is étale,
(2) there exists a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋, where 𝑈 is a scheme, such

that the composition 𝑓 ∘ 𝜑 is étale (as a morphism of algebraic spaces),
(3) there exists a surjective étale morphism 𝜓 ∶ 𝑉 → 𝑌, where 𝑉 is a scheme, such

that the base change 𝑉 ×𝑋 𝑌 → 𝑉 is étale (as a morphism of algebraic spaces),
(4) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes, the vertical arrows are étale, and the left vertical arrow
is surjective such that the horizontal arrow is étale.

Proof. Let us prove that (4) implies (1). Assume a diagram as in (4) given. Let 𝑊 → 𝑋
be an étale morphism with 𝑊 a scheme. Then we see that 𝑊 ×𝑋 𝑈 → 𝑈 is étale. Hence
𝑊 ×𝑋 𝑈 → 𝑉 is étale, and also 𝑊 ×𝑋 𝑈 → 𝑌 is étale by Lemma 41.13.1 (1). Since also the
projection 𝑊 ×𝑋 𝑈 → 𝑊 is surjective and étale, we conclude from Lemma 41.13.1 (2) that
𝑊 → 𝑌 is étale.

Let us prove that (1) implies (4). Assume (1). Choose a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈 → 𝑋 and 𝑉 → 𝑌 are surjective and étale, see Spaces, Lemma 40.11.4. By as-
sumption the morphism 𝑈 → 𝑌 is étale, and hence 𝑈 → 𝑉 is étale by Lemma 41.13.1
(2).

We omit the proof that (2) and (3) are also equivalent to (1). �

Lemma 41.13.4. The composition of two étale morphisms of algebraic spaces is étale.

Proof. This is immediate from the definition. �

Lemma 41.13.5. The base change of an étale morphism of algebraic spaces by any mor-
phism of algebraic spaces is étale.

Proof. Let 𝑋 → 𝑌 be an étale morphism of algebraic spaces over 𝑆. Let 𝑍 → 𝑌 be a
morphism of algebraic spaces. Choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋.
Choose a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝑍. Then 𝑈 → 𝑌 is étale, hence
in the diagram

𝑊 ×𝑌 𝑈

��

// 𝑊

��
𝑍 ×𝑌 𝑋 // 𝑍

the top horizontal arrow is étale. Moreover, the left vertical arrow is surjective and étale
(verification omitted). Hencewe conclude that the lower horizontal arrow is étale by Lemma
41.13.3. �
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Lemma 41.13.6. Let 𝑆 be a scheme. Let 𝑋, 𝑌, 𝑍 be algebraic spaces. Let 𝑔 ∶ 𝑋 → 𝑍,
ℎ ∶ 𝑌 → 𝑍 be étale morphisms and let 𝑓 ∶ 𝑋 → 𝑌 be a morphism such that ℎ ∘ 𝑓 = 𝑔.
Then 𝑓 is étale.

Proof. Choose a commutative diagram

𝑈

��

𝜒
// 𝑉

��
𝑋 // 𝑌

where 𝑈 → 𝑋 and 𝑉 → 𝑌 are surjective and étale, see Spaces, Lemma 40.11.4. By assump-
tion the morphisms 𝜑 ∶ 𝑈 → 𝑋 → 𝑍 and 𝜓 ∶ 𝑉 → 𝑌 → 𝑍 are étale. Moreover, 𝜓 ∘ 𝜒 = 𝜑
by our assumption on 𝑓, 𝑔, ℎ. Hence 𝑈 → 𝑉 is étale by Lemma 41.13.1 part (2). �

Lemma 41.13.7. Let 𝑆 be a scheme. If 𝑋 → 𝑌 is an étale morphism of algebraic spaces
over 𝑆, then the associated map |𝑋| → |𝑌| of topological spaces is open.

Proof. This is clear from the diagram in Lemma 41.13.3 and Lemma 41.4.6. �

Finally, here is a fun lemma. It is not true that an algebraic space with an étale morphism
towards a scheme is a scheme, see Spaces, Example 40.14.2. But it is true if the target is
the spectrum of a field.

Lemma 41.13.8. Let 𝑆 be a scheme. Let 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) be étale morphism over 𝑆, where
𝑘 is a field. Then 𝑋 is a scheme.

Proof. Let 𝑈 be an affine scheme, and let 𝑈 → 𝑋 be an étale morphism. By Definition
41.13.2 we see that 𝑈 → 𝑆𝑝𝑒𝑐(𝑘) is an étale morphism. Hence 𝑈 = ∐𝑖=1,…,𝑛 𝑆𝑝𝑒𝑐(𝑘𝑖) is a
finite disjoint union of spectra of finite separable extensions 𝑘𝑖 of 𝑘, seeMorphisms, Lemma
24.35.7. The 𝑅 = 𝑈×𝑋𝑈 → 𝑈×𝑆𝑝𝑒𝑐(𝑘)𝑈 is a monomorphism and 𝑈×𝑆𝑝𝑒𝑐(𝑘)𝑈 is also a finite
disjoint union of spectra of finite separable extensions of 𝑘. Hence by Schemes, Lemma
21.23.10 we see that 𝑅 is similarly a finite disjoint union of spectra of finite separable
extensions of 𝑘. This 𝑈 and 𝑅 are affine and both projections 𝑅 → 𝑈 are finite locally free.
Hence 𝑈/𝑅 is a scheme by Groupoids, Proposition 35.19.8. By Spaces, Lemma 40.10.2 it
is also an open subspace of 𝑋. By Lemma 41.10.1 we conclude that 𝑋 is a scheme. �

41.14. Spaces and fpqc coverings

Let 𝑆 be a scheme. An algebraic space over 𝑆 is defined as a sheaf in the fppf topology
with additional properties. Hence it is not clear that it satisfies the sheaf property for the
fpqc topology (see Topologies, Definition 30.8.12). In this section we discuss this question.
However, when we say that the algebraic space 𝑋 satisfies the sheaf property for the fpqc
topology we really only consider fpqc coverings {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 such that 𝑇, 𝑇𝑖 are objects
of the big site (Sch/𝑆)𝑓𝑝𝑝𝑓 (as per our conventions, see Section 41.2). We first address the
question as to whether an algebraic space is separated as a presheaf for the fpqc topology.

Lemma 41.14.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let {𝑓𝑖 ∶ 𝑇𝑖 →
𝑇}𝑖∈𝐼 be a fpqc covering of schemes over 𝑆. Then the map

𝑀𝑜𝑟𝑆(𝑇, 𝑋) ⟶ ∏𝑖∈𝐼
𝑀𝑜𝑟𝑆(𝑇𝑖, 𝑋)

is injective.
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Proof. Let 𝑎, 𝑏 ∶ 𝑇 → 𝑋 be two morphisms such that 𝑎 ∘ 𝑓𝑖 = 𝑏 ∘ 𝑓𝑖 for all 𝑖. Consider the
fibre product

𝑇′ = 𝑋 ×Δ𝑋/𝑆,𝑋×𝑆𝑋,(𝑎,𝑏) 𝑇.

By Spaces, Lemma 40.13.1 the morphism Δ𝑋/𝑆 is a representable monomorphism which
is locally of finite type. Hence 𝑇′ → 𝑇 is a monomorphism of schemes which is locally of
finite type. Our assumption that 𝑎 ∘ 𝑓𝑖 = 𝑏 ∘ 𝑓𝑖 implies that each 𝑇𝑖 → 𝑇 factors (uniquely)
through 𝑇′. Consider the commutative diagram

𝑇𝑖 ×𝑇 𝑇′ //

��

𝑇′

��
𝑇𝑖

//

;; ;;

𝑇

Since the projection 𝑇𝑖 ×𝑇 𝑇′ → 𝑇𝑖 is a monomorphism with a section we conclude it is
an isomorphism. Hence we conclude that 𝑇′ → 𝑇 is an isomorphism by Descent, Lemma
31.19.15. This means 𝑎 = 𝑏 as desired. �

Lemma 41.14.2. Let 𝑆 be a scheme. Let𝑋 be an algebraic space over𝑆. Let𝑋 = ⋃𝑗∈𝐽 𝑋𝑗
be a Zariski covering, see Spaces, Definition 40.12.5. If each 𝑋𝑗 satisfies the sheaf property
for the fpqc topology then 𝑋 satisfies the sheaf property for the fpqc topology.

Proof. Assume each 𝑋𝑗 satisfies the sheaf property for the fpqc topology. Let {𝑓𝑖 ∶ 𝑇𝑖 →
𝑇}𝑖∈𝐼 be a fpqc covering of schemes over 𝑆. Let 𝑎𝑖 ∈ 𝑀𝑜𝑟𝑆(𝑇𝑖, 𝑋) be such that 𝑎𝑖 ∘ pr0 =
𝑎𝑖′ ∘ pr1 as morphisms 𝑇𝑖 ×𝑇 𝑇𝑖′ → 𝑋. We have to prove that these morphisms come from
a morphism 𝑎 ∶ 𝑇 → 𝑋. Consider the open subsets 𝑇𝑖,𝑗 = 𝑎−1

𝑖 (𝑋𝑗). Then it is clear that
pr−1

0 (𝑇𝑖,𝑗) = pr−1
1 (𝑇𝑖′,𝑗) as open subsets of 𝑇𝑖 ×𝑇 𝑇𝑖′. Hence there exist open subsets 𝑈𝑗 ⊂ 𝑇

such that 𝑇𝑖,𝑗 = 𝑓−1
𝑖 (𝑈𝑗), see Descent, Lemma 31.9.2. In particular, {𝑇𝑖,𝑗 → 𝑈𝑗}𝑖∈𝐼 is a

fpqc covering of 𝑈𝑗, and the morphisms 𝑎𝑖,𝑗 = 𝑎𝑖|𝑇𝑖,𝑗
are morphisms into 𝑋𝑗. By assumption

there exist morphisms 𝛼𝑗 ∶ 𝑈𝑗 → 𝑋𝑗 such that 𝑇𝑖,𝑗 → 𝑈𝑗 → 𝑋𝑗 agrees with 𝑎𝑖,𝑗. By Lemma
41.14.1 we conclude that 𝛼𝑗|𝑈𝑗∩𝑈𝑗′ agrees with 𝛼𝑗′|𝑈𝑗∩𝑈𝑗′ . Hence, since 𝑋 is a sheaf for the
Zariski topology we conclude that the 𝛼𝑗 glue to a morphism 𝑎 ∶ 𝑇 → 𝑋. By construction
we have 𝑎 ∘ 𝑓𝑖|𝑇𝑖,𝑗

= 𝑎𝑖,𝑗 = 𝑎𝑖|𝑇𝑖,𝑗
. Using the sheaf condition for the Zariski topology one

more time we conclude that 𝑎 ∘ 𝑓𝑖 = 𝑎𝑖 as desired. �

Lemma 41.14.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. If 𝑋 is Zariski
locally quasi-separated over 𝑆, then 𝑋 satisfies the sheaf condition for the fpqc topology.

Proof. By Lemmas 41.6.5 and 41.14.2 we may assume there exists an affine scheme 𝑈 and
a surjective étale quasi-compact morphism 𝜑 ∶ 𝑈 → 𝑋. By Lemma 41.6.4 the morphism
𝑈 → 𝑋 is also separated.

Let {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 be a fpqc covering of schemes over 𝑆. Let 𝑎𝑖 ∈ 𝑀𝑜𝑟𝑆(𝑇𝑖, 𝑋) be such
that 𝑎𝑖 ∘ pr0 = 𝑎𝑗 ∘ pr1 as morphisms 𝑇𝑖 ×𝑇 𝑇𝑗 → 𝑋. We have to prove that these morphisms
come from a morphism 𝑎 ∶ 𝑇 → 𝑋. Consider the schemes

𝑊𝑖 = 𝑇𝑖 ×𝑎𝑖,𝑋,𝜑 𝑈.

The strucure morphisms 𝑊𝑖 → 𝑇𝑖 are surjective, separated, quasi-compact and étale, in
particular also quasi-finite (see Morphisms, Lemma 24.35.6). Hence each 𝑊𝑖 → 𝑇𝑖 is
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quasi-affine, see More on Morphisms, Lemma 33.29.3. For each pair of indices 𝑖, 𝑗 ∈ 𝐼 we
have canonical isomorphisms

𝑊𝑖 ×𝑇 𝑇𝑗 = (𝑇𝑖 ×𝑎𝑖,𝑋,𝜑 𝑈) ×𝑇 𝑇𝑗

= (𝑇𝑖 ×𝑇 𝑇𝑗) ×𝑎𝑖∘pr0,𝑋,𝜑 𝑈
= (𝑇𝑖 ×𝑇 𝑇𝑗) ×𝑎𝑗∘pr1,𝑋,𝜑 𝑈
= 𝑇𝑖 ×𝑇 (𝑇𝑗 ×𝑎𝑗,𝑋,𝜑 𝑈)
= 𝑇𝑖 ×𝑇 𝑊𝑗.

These isomorphisms satsify the cocycle condition of Descent, Definition 31.30.3 as 𝑎𝑖, 𝑎𝑗
and 𝑎𝑘 agree over 𝑇𝑖 ×𝑇 𝑇𝑗 ×𝑇 𝑇𝑘 (some details omitted). By Descent, Lemma 31.34.1
this descent datum is effective and we conclude that there exists a scheme 𝑊 → 𝑇 and
isomorphisms 𝑇𝑖 ×𝑇 𝑊 = 𝑊𝑖 compatible with the canonical descent datum and the one
given above. In particular we see that {𝑊𝑖 → 𝑊}𝑖∈𝐼 is the base change of a fpqc covering,
and hence a fpqc covering. Note that by construction themorphisms 𝑏𝑖 ∶ 𝑊𝑖 = 𝑇𝑖×𝑋𝑈 → 𝑈
have the property 𝑏𝑖 ∘ pr0 = 𝑏𝑗 ∘ pr1 as morphisms 𝑊𝑖 ×𝑊 𝑊𝑗 → 𝑈. Hence by Descent,
Lemma 31.9.3 we see that there exists a morphism of schemes 𝑏 ∶ 𝑊 → 𝑈 which restricts
to 𝑏𝑖 on 𝑊𝑖 for all 𝑖.

By Descent, Lemmas 31.19.6 and 31.19.27 the morphism 𝑊 → 𝑇 is surjective and étale.
Hence, in order to see that 𝑏 gives rise to the morphism 𝑎 ∶ 𝑇 → 𝑋 we are looking for, it
suffices to show that 𝑏 ∘ pr0 = 𝑏 ∘ pr1 as morphisms 𝑊 ×𝑇 𝑊 → 𝑋. For this we note that we
do know that 𝑏𝑖 ∘ pr0 = 𝑏𝑗 ∘ pr1 as morphisms 𝑊𝑖 ×𝑇 𝑊𝑗 → 𝑋, because

𝑊𝑖 ×𝑇 𝑊𝑗 = (𝑇𝑖 ×𝑇 𝑇𝑗) ×(𝑎𝑖,𝑎𝑗),𝑋×𝑆𝑋 𝑈 ×𝑆 𝑈

and (𝑎𝑖, 𝑎𝑗) ∶ 𝑇𝑖 ×𝑇 𝑇𝑗 → 𝑋 ×𝑆 𝑋 factors through Δ𝑋/𝑆 by assumption. In other words we
conclude that over the members of the fpqc covering {𝑊𝑖×𝑇𝑊𝑗 → 𝑊×𝑇𝑊} the morphisms
𝑏 ∘ pr0 and 𝑏 ∘ pr1 agree, and hence by Lemma 41.14.1 they agree. As 𝑋 is a sheaf for the
fppf topology we obtain a unique morphism 𝑎 ∶ 𝑇 → 𝑋 whose composition with 𝑊 → 𝑇
agrees with 𝑏. We omit the final verification that 𝑎|𝑇𝑖

= 𝑎𝑖. �

Remark 41.14.4. The proof of Lemma 41.14.3 works for any algebraic space which has
a Zariski covering 𝑋 = ⋃ 𝑋𝑖 such that for each 𝑖 there exists a surjective étale separated
quasi-compact morphism 𝑈𝑖 → 𝑋𝑖 where 𝑈𝑖 is a scheme. This condition is slightly stronger
than the condition of being very reasonable, and the current proof does not work even for
very reasonable spaces. There are results in the literature, see David Rydh's paper [Ryd07b]
and its references, to remedy this. On the other hand, it seems that the question for general
algebraic spaces as defined in the stacks project is still open. If this is no longer the case,
please email stacks.project@gmail.com so we can update this remark.

41.15. The étale site of an algebraic space

In this section we define the small étale site of an algebraic space. This is the analogue of
the small étale site 𝑆 ́𝑒𝑡𝑎𝑙𝑒 of a scheme. Lemma 41.13.1 implies that in the definition below
any morphism between objects of the étale site of 𝑋 is étale, and that any scheme étale over
an object of 𝑋 ́𝑒𝑡𝑎𝑙𝑒 is also an object of 𝑋 ́𝑒𝑡𝑎𝑙𝑒.

Definition 41.15.1. Let 𝑆 be a scheme. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site containing 𝑆, and let
Sch ́𝑒𝑡𝑎𝑙𝑒 be the corresponding big étale site (i.e., having the same underlying category). Let
𝑋 be an algebraic space over 𝑆. The small étale site 𝑋 ́𝑒𝑡𝑎𝑙𝑒 of 𝑋 is defined as follows:
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(1) An object of 𝑋 ́𝑒𝑡𝑎𝑙𝑒 is a morphism 𝜑 ∶ 𝑈 → 𝑋 where 𝑈 ∈ 𝑂𝑏((Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒) is a
scheme and 𝜑 is an étale morphism,

(2) a morphism (𝜑 ∶ 𝑈 → 𝑋) → (𝜑′ ∶ 𝑈′ → 𝑋) is given by a morphism of schemes
𝜒 ∶ 𝑈 → 𝑈′ such that 𝜑 = 𝜑′ ∘ 𝜒, and

(3) a family of morphisms {(𝑈𝑖 → 𝑋) → (𝑈 → 𝑋)}𝑖∈𝐼 of 𝑋 ́𝑒𝑡𝑎𝑙𝑒 is a covering if and
only if {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering of (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒.

A consequence of our choice is that the étale site of an algebraic space in general does not
have a final object! On the other hand, if 𝑋 happens to be a scheme, then the definition
above agrees with Topologies, Definition 30.4.8.

There are several other choices we could have made here. For example we could have
considered all algebraic spaces 𝑈 which are étale over 𝑋, or we could have considered all
affine schemes 𝑈 which are étale over 𝑋. We decided not to do so, since we like to think of
plain old schemes as the fundamental objects of algebraic geometry. On the other hand, we
do need these notions also, since the small étale site of an algebraic space is not sufficiently
flexible, especially when discussing functoriality of the small étale site, see Lemma 41.15.7
below.

Definition 41.15.2. Let 𝑆 be a scheme. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site containing 𝑆, and let
Sch ́𝑒𝑡𝑎𝑙𝑒 be the corresponding big étale site (i.e., having the same underlying category). Let
𝑋 be an algebraic space over 𝑆. The site 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 of 𝑋 is defined as follows:

(1) An object of 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 is a morphism 𝜑 ∶ 𝑈 → 𝑋 where 𝑈 is an algebraic
space over 𝑆 and 𝜑 is an étale morphism of algebraic spaces over 𝑆,

(2) a morphism (𝜑 ∶ 𝑈 → 𝑋) → (𝜑′ ∶ 𝑈′ → 𝑋) of 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 is given by a
morphism of algebraic spaces 𝜒 ∶ 𝑈 → 𝑈′ such that 𝜑 = 𝜑′ ∘ 𝜒, and

(3) a family of morphisms {𝜑𝑖 ∶ (𝑈𝑖 → 𝑋) → (𝑈 → 𝑋)}𝑖∈𝐼 of 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 is a
covering if and only if |𝑈| = ⋃ 𝜑𝑖(|𝑈𝑖|).

(As usual we choose a set of coverings of this type, including at least the coverings in 𝑋 ́𝑒𝑡𝑎𝑙𝑒,
as in Sets, Lemma 3.11.1 to turn 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 into a site.)

Since the identity morphism of 𝑋 is étale it is clear that 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 does have a final object.
Let us show right away that the corresponding topos equals the small étale topos of 𝑋.

Lemma 41.15.3. The functor

𝑋 ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝑈/𝑋 ⟼ 𝑈/𝑋

is a special cocontinuous functor (Sites, Definition 9.25.2) and hence induces an equiva-
lence of topoi Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒).

Proof. We have to show that the functor satisfies the assumptions (1) -- (5) of Sites, Lemma
9.25.1. It is clear that the functor is continuous and cocontinuous, which proves assumptions
(1) and (2). Assumptions (3) and (4) hold simply because the functor is fully faithful.
Assumption (5) holds, because an algebraic space by definition has a covering by a scheme.

�

Remark 41.15.4. Let us explain the meaning of Lemma 41.15.3. Let 𝑆 be a scheme, and
let 𝑋 be an algebraic space over 𝑆. Let ℱ be a sheaf on the small étale site 𝑋 ́𝑒𝑡𝑎𝑙𝑒 of 𝑋.
The lemma says that there exists a unique sheaf ℱ′ on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 which restricts back to
ℱ on the subcategory 𝑋 ́𝑒𝑡𝑎𝑙𝑒. If 𝑈 → 𝑋 is an étale morphism of algebraic spaces, then how
do we compute ℱ′(𝑈)? Well, by definition of an algebraic space there exists a scheme 𝑈′
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and a surjective étale morphism 𝑈′ → 𝑈. Then {𝑈′ → 𝑈} is a covering in 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 and
hence we get an equalizer diagram

ℱ′(𝑈) // ℱ(𝑈′)
//
// ℱ(𝑈′ ×𝑈 𝑈′).

Note that 𝑈′ ×𝑈 𝑈′ is a scheme, and hence we may write ℱ and not ℱ′. Thus we see how
to compute ℱ′ when given the sheaf ℱ.

Lemma 41.15.5. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑋𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒
denote the full subcategory of 𝑋 ́𝑒𝑡𝑎𝑙𝑒 whose objects are those 𝑈/𝑋 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) with 𝑈
affine. A covering of 𝑋𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒 will be a standard étale covering, see Topologies, Defini-
tion 30.4.5. Then restriction

ℱ ⟼ ℱ|𝑋𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒

defines an equivalence of topoi Sh(𝑆 ́𝑒𝑡𝑎𝑙𝑒) ≅ Sh(𝑆𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒).

Proof. This you can show directly from the definitions, and is a good exercise. But it
also follows immediately from Sites, Lemma 9.25.1 by checking that the inclusion functor
𝑋𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒 → 𝑋 ́𝑒𝑡𝑎𝑙𝑒 is a special cocontinuous functor as in Sites, Definition 9.25.2. �

Definition 41.15.6. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The étale topos
of 𝑋, or more precisely the small étale topos of 𝑋 is the category Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) of sheaves of
sets on 𝑋 ́𝑒𝑡𝑎𝑙𝑒.

By Lemma 41.15.3 we have Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) = Sh(𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒), so we can also think of this
as the category of sheaves of sets on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. Similarly, by Lemma 41.15.5 we see
that Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) = Sh(𝑋𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒). It turns out that the topos is functorial with respect to
morphisms of algebraic spaces. Here is a precise statement.

Lemma 41.15.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) The continuous functor

𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝑉 ⟼ 𝑋 ×𝑌 𝑉

induces a morphism of sites

𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 ∶ 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 → 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒.

(2) The rule 𝑓 ↦ 𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 is compatible with compositions, in other words (𝑓 ∘
𝑔)𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 = 𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 ∘ 𝑔𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 (see Sites, Definition 9.14.4).

(3) The morphism of topoi associated to 𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 induces, via Lemma 41.15.3, a
morphism of topoi 𝑓𝑠𝑚𝑎𝑙𝑙 ∶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) whose construction is com-
patible with compositions.

(4) If 𝑓 is a representable morphism of algebraic spaces, then 𝑓𝑠𝑚𝑎𝑙𝑙 comes from
a morphism of sites 𝑋 ́𝑒𝑡𝑎𝑙𝑒 → 𝑌 ́𝑒𝑡𝑎𝑙𝑒, corresponding to the continuous functor
𝑉 ↦ 𝑋 ×𝑌 𝑉.

Proof. Let us show that the functor described in (1) satisfies the assumptions of Sites,
Proposition 9.14.6. Thus we have to show that 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 has a final object (namely 𝑌) and
that the functor transforms this into a final object in 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 (namely 𝑋). This is clear
as 𝑋 ×𝑌 𝑌 = 𝑋 in any category. Next, we have to show that 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 has fibre products.
This is true since the category of algebraic spaces has fibre products, and since 𝑉 ×𝑌 𝑉′ is
étale over 𝑌 if 𝑉 and 𝑉′ are étale over 𝑌 (see Lemmas 41.13.4 and 41.13.5 above). OK, so
the proposition applies and we see that we get a morphism of sites as described in (1).
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Part (2) you get by unwinding the definitions. Part (3) is clear by using the equivalences for
𝑋 and 𝑌 from Lemma 41.15.3 above. Part (4) follows, because if 𝑓 is representable, then
the functors above fit into a commutative diagram

𝑋 ́𝑒𝑡𝑎𝑙𝑒
// 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

𝑌 ́𝑒𝑡𝑎𝑙𝑒
//

OO

𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

OO

of categories. �

We can do a little bit better than the lemma above in describing the relationship between
sheaves on 𝑋 and sheaves on 𝑌. Namely, we can formulate this in turns of 𝑓-maps, compare
Sheaves, Definition 6.21.7, as follows.

Definition 41.15.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let ℱ be a sheaf of sets on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 and let 𝒢 be a sheaf of sets on 𝑌 ́𝑒𝑡𝑎𝑙𝑒. An 𝑓-map
𝜑 ∶ 𝒢 → ℱ is a collection of maps 𝜑(𝑈,𝑉,𝑔) ∶ 𝒢(𝑉) → ℱ(𝑈) indexed by commutative
diagrams

𝑈

𝑔
��

// 𝑋

𝑓
��

𝑉 // 𝑌
where 𝑈 ∈ 𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝑉 ∈ 𝑌 ́𝑒𝑡𝑎𝑙𝑒 such that whenever given an extended diagram

𝑈′ //

𝑔′

��

𝑈

𝑔
��

// 𝑋

𝑓
��

𝑉′ // 𝑉 // 𝑌
with 𝑉′ → 𝑉 and 𝑈′ → 𝑈 étale morphisms of schemes the diagram

𝒢(𝑉) 𝜑(𝑈,𝑉,𝑔)
//

restriction of 𝒢
��

ℱ(𝑈)

restriction of ℱ
��

𝒢(𝑉′)
𝜑(𝑈′,𝑉′,𝑔′) // ℱ(𝑈′)

commutes.

Lemma 41.15.9. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let ℱ be a sheaf of sets on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 and let 𝒢 be a sheaf of sets on 𝑌 ́𝑒𝑡𝑎𝑙𝑒. There are
canonical bijections between the following three sets:

(1) The set of maps 𝒢 → 𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ.
(2) The set of maps 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒢 → ℱ.
(3) The set of 𝑓-maps 𝜑 ∶ 𝒢 → ℱ.

Proof. Note that (1) and (2) are the same because the functors 𝑓𝑠𝑚𝑎𝑙𝑙,∗ and 𝑓−1
𝑠𝑚𝑎𝑙𝑙 are a pair

of adjoint functors. Suppose that 𝛼 ∶ 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒢 → ℱ is a map of sheaves on 𝑌 ́𝑒𝑡𝑎𝑙𝑒. Let a

diagram
𝑈

𝑔
��

𝑗𝑈
// 𝑋

𝑓
��

𝑉
𝑗𝑉 // 𝑌
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as in Definition 41.15.8 be given. By the commutativity of the diagram we also get a
map 𝑔−1

𝑠𝑚𝑎𝑙𝑙(𝑗𝑉)−1𝒢 → (𝑗𝑈)−1ℱ (compare Sites, Section 9.21 for the description of the
localization functors). Hence we certainly get a map 𝜑(𝑉,𝑈,𝑔) ∶ 𝒢(𝑉) = (𝑗𝑉)−1𝒢(𝑉) →
(𝑗𝑈)−1ℱ(𝑈) = ℱ(𝑈). We omit the verification that this rule is compatible with further
restrictions and defines an 𝑓-map from 𝒢 to ℱ.
Conversely, suppose that we are given an 𝑓-map 𝜑 = (𝜑(𝑈,𝑉,𝑔)). Let 𝒢′ (resp. ℱ′) denote
the extension of 𝒢 (resp. ℱ) to 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒), see Lemma 41.15.3. Then
we have to construct a map of sheaves

𝒢′ ⟶ (𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒)∗ℱ′

To do this, let 𝑉 → 𝑌 be an étale morphism of algebraic spaces. We have to construct a
map of sets

𝒢′(𝑉) → ℱ′(𝑋 ×𝑌 𝑉)
Choose an étale surjective morphism 𝑉′ → 𝑉 with 𝑉′ a scheme, and after that choose an
étale surjective morphsm 𝑈′ → 𝑋 ×𝑈 𝑉′ with 𝑈′ a scheme. We get a morphism of schemes
𝑔′ ∶ 𝑈′ → 𝑉′ and also a morphism of schemes

𝑔″ ∶ 𝑈′ ×𝑋×𝑌𝑉 𝑈′ ⟶ 𝑉′ ×𝑉 𝑉′

Consider the following diagram

ℱ′(𝑋 ×𝑌 𝑉) // ℱ(𝑈′)
//
// ℱ(𝑈′ ×𝑋×𝑌𝑉 𝑈′)

𝒢′(𝑋 ×𝑌 𝑉) //

OO

𝒢(𝑉′)
//
//

𝜑(𝑈′,𝑉′,𝑔′)

OO

𝒢(𝑉′ ×𝑉 𝑉′)

𝜑(𝑈″,𝑉″,𝑔″)

OO

The compatibility of the maps 𝜑... with restriction shows that the two right squares com-
mute. The definition of coverings in 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 shows that the horizontal rows are equal-
izer diagrams. Hence we get the dotted arrow. We leave it to the reader to show that these
arrows are compatible with the restriction mappings. �

If themorphism of algebraic spaces𝑋 → 𝑌 is étale, then themorphism of topoi Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) →
Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) is a localization. Here is a statement.

Lemma 41.15.10. Let 𝑆 be a scheme, and let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic
spaces over 𝑆. Assume 𝑓 is étale. In this case there is a functor

𝑗 ∶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒 → 𝑌 ́𝑒𝑡𝑎𝑙𝑒, (𝜑 ∶ 𝑈 → 𝑋) ↦ (𝑓 ∘ 𝜑 ∶ 𝑈 → 𝑌)
which is cocontinuous. The morphism of topoi 𝑓𝑠𝑚𝑎𝑙𝑙 is the morphism of topoi associated to
𝑗, see Sites, Lemma 9.19.1. Moreover, 𝑗 is continuous as well, hence Sites, Lemma 9.19.5
applies. In particular 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒢(𝑈) = 𝒢(𝑗𝑈) for all sheaves 𝒢 on 𝑌 ́𝑒𝑡𝑎𝑙𝑒.

Proof. Note that by our very definition of an étale morphism of algebraic spaces (Definition
41.13.2) it is indeed the case that the rule given defines a functor 𝑗 as indicated. It is clear
that 𝑗 is cocontinuous and continuous, simply because a covering {𝑈𝑖 → 𝑈} of 𝑗(𝜑 ∶ 𝑈 →
𝑋) in 𝑌 ́𝑒𝑡𝑎𝑙𝑒 is the same thing as a covering of (𝜑 ∶ 𝑈 → 𝑋) in 𝑋 ́𝑒𝑡𝑎𝑙𝑒. It remains to show
that 𝑗 induces the same morphism of topoi as 𝑓𝑠𝑚𝑎𝑙𝑙. To see this we consider the diagram

𝑋 ́𝑒𝑡𝑎𝑙𝑒
//

𝑗
��

𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

𝑗𝑠𝑝𝑎𝑐𝑒𝑠

��
𝑌 ́𝑒𝑡𝑎𝑙𝑒

// 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

𝑣∶𝑉↦𝑋×𝑌𝑉
TT
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of categories. Here the functor 𝑗𝑠𝑝𝑎𝑐𝑒𝑠 is the obvious extension of 𝑗 to the category𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒.
Thus the inner square is commutative. In fact 𝑗𝑠𝑝𝑎𝑐𝑒𝑠 can be identified with the localization
functor 𝑗𝑋 ∶ 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒/𝑋 → 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 discussed in Sites, Section 9.21. Hence, by Sites,
Lemma 9.23.2 the cocontinuous functor 𝑗𝑠𝑝𝑎𝑐𝑒𝑠 and the functor 𝑣 of the diagram induce the
same morphism of topoi. By Sites, Lemma 9.19.2 the commutativity of the inner square
(consisting of cocontinuous functors between sites) gives a commutative diagram of as-
sociated morphisms of topoi. Hence, by the construction of 𝑓𝑠𝑚𝑎𝑙𝑙 in Lemma 41.15.7 we
win. �

The lemma above says that the pullback of 𝒢 via an étale morphism 𝑓 ∶ 𝑋 → 𝑌 of algebraic
spaces is simply the restriction of 𝒢 to the category 𝑋 ́𝑒𝑡𝑎𝑙𝑒. We will often use the short hand

(41.15.10.1) 𝒢|𝑋 ́𝑒𝑡𝑎𝑙𝑒
= 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒢
to indicate this. Note that the functor 𝑗 ∶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒 → 𝑌 ́𝑒𝑡𝑎𝑙𝑒 of the lemma in this situation is
faithful, but not fully faithful in general. We will discuss this in a more technical fashion in
Section 41.24.
Lemma 41.15.11. Let 𝑆 be a scheme. Let

𝑋′ //

𝑓′

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑌
be a cartesian square of algebraic spaces over 𝑆. Let ℱ be a sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. If 𝑔 is étale,
then

(1) 𝑓′
𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑋′) = (𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ)|𝑌′ in Sh(𝑌′

́𝑒𝑡𝑎𝑙𝑒)5, and
(2) if ℱ is an abelian sheaf, then 𝑅𝑖𝑓′

𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑋′) = (𝑅𝑖𝑓𝑠𝑚𝑎𝑙𝑙,∗ℱ)|𝑌′.

Proof. Consider the following diagram of functors

𝑋′
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 𝑗

// 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

𝑌′
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

𝑗 //

𝑉′↦𝑉′×𝑌′𝑋′

OO

𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

𝑉↦𝑉×𝑌𝑋

OO

The horizontal arrows are localizations and the vertical arrows induce morphisms of sites.
Hence the last statement of Sites, Lemma 9.24.1 gives (1). To see (2) apply (1) to an
injective resolution of ℱ and use that restriction is exact and preserves injectives (see Co-
homology on Sites, Lemma 19.8.1). �

The following lemma says that you can think of a sheaf on the small étale site of an al-
gebraic space as a compatible collection of sheaves on the small étale sites of schemes
étale over the space. Please note that all the comparison mappings 𝑐𝑓 in the lemma are
isomorphisms, which is compatible with Topologies, Lemma 30.4.18 and the fact that all
morphisms between objects of 𝑋 ́𝑒𝑡𝑎𝑙𝑒 are étale.
Lemma 41.15.12. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. A sheaf ℱ on
𝑋 ́𝑒𝑡𝑎𝑙𝑒 is given by the following data:

(1) for every 𝑈 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) a sheaf ℱ𝑈 on 𝑈 ́𝑒𝑡𝑎𝑙𝑒,
(2) for every 𝑓 ∶ 𝑈′ → 𝑈 in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 an isomorphism 𝑐𝑓 ∶ 𝑓−1

𝑠𝑚𝑎𝑙𝑙ℱ𝑈 → ℱ𝑈′.

5Also (𝑓′)−1
𝑠𝑚𝑎𝑙𝑙(𝒢|𝑌′) = (𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒢)|𝑋′ because of commutativity of the diagram and (41.15.10.1)
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These data are subject to the condition that given any 𝑓 ∶ 𝑈′ → 𝑈 and 𝑔 ∶ 𝑈″ → 𝑈′ in
𝑋 ́𝑒𝑡𝑎𝑙𝑒 the composition 𝑔−1

𝑠𝑚𝑎𝑙𝑙𝑐𝑓 ∘ 𝑐𝑔 is equal to 𝑐𝑓∘𝑔.

Proof. Given a sheaf ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 and an object 𝜑 ∶ 𝑈 → 𝑋 of 𝑋 ́𝑒𝑡𝑎𝑙𝑒 we set ℱ𝑈 = 𝜑−1
𝑠𝑚𝑎𝑙𝑙ℱ.

If 𝜑′ ∶ 𝑈′ → 𝑋 is a second object of 𝑋 ́𝑒𝑡𝑎𝑙𝑒, and 𝑓 ∶ 𝑈′ → 𝑈 is a morphism between
them, then the isomorphism 𝑐𝑓 comes from the fact that 𝑓−1

𝑠𝑚𝑎𝑙𝑙 ∘ 𝜑−1
𝑠𝑚𝑎𝑙𝑙 = (𝜑′)−1

𝑠𝑚𝑎𝑙𝑙, see
Lemma 41.15.7. The condition on the transitivity of the isomorphisms 𝑐𝑓 follows from the
functoriality of the small étale sites also; verification omitted.
Conversely, suppose we are given a collection of data (ℱ𝑈, 𝑐𝑓) as in the lemma. In this case
we simply define ℱ by the rule 𝑈 ↦ ℱ𝑈(𝑈). Details omitted. �

Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑋 = 𝑈/𝑅 be a presentation of
𝑋 coming from any surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋, see Spaces, Definition 40.9.3.
In particular, we obtain a groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) such that 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈, see
Groupoids, Lemma 35.11.3.
Lemma 41.15.13. With 𝑆, 𝜑 ∶ 𝑈 → 𝑋, and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) as above. For any sheaf ℱ
on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 the sheaf6 𝒢 = 𝜑−1ℱ comes equipped with a canonical isomorphism

𝛼 ∶ 𝑡−1𝒢 ⟶ 𝑠−1𝒢
such that the diagram

pr−1
1 𝑡−1𝒢

pr−1
1 𝛼
// pr−1

1 𝑠−1𝒢

pr−1
0 𝑠−1𝒢 𝑐−1𝑠−1𝒢

pr−1
0 𝑡−1𝒢

pr−1
0 𝛼

ee

𝑐−1𝑡−1𝒢
𝑐−1𝛼

99

is a commutative. The functor ℱ ↦ (𝒢, 𝛼) defines an equivalence of categories between
sheaves on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 and pairs (𝒢, 𝛼) as above.
First proof of Lemma 41.15.13. Let 𝒞 = 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. By Lemma 41.15.10 and its proof
we have 𝑈𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 = 𝒞/𝑈 and the pullback functor 𝜑−1 is just the restriction functor.
Moreover, {𝑈 → 𝑋} is a covering of the site 𝒞 and 𝑅 = 𝑈 ×𝑋 𝑈. The isomorphism 𝛼 is
just the canonical identification

(ℱ|𝒞/𝑈) |𝒞/𝑈×𝑋𝑈 = (ℱ|𝒞/𝑈) |𝒞/𝑈×𝑋𝑈

and the commutativity of the diagram is the cocylce condition for glueing data. Hence this
lemma is a special case of glueing of sheaves, see Sites, Section 9.22. �

Second proof of Lemma 41.15.13. The existence of 𝛼 comes from the fact that 𝜑 ∘ 𝑡 =
𝜑 ∘ 𝑠 and that pullback is functorial in the morphism, see Lemma 41.15.7. In exacty the
same way, i.e., by functoriality of pullback, we see that the isomorphism 𝛼 fits into the
commutative diagram. The construction ℱ ↦ (𝜑−1ℱ, 𝛼) is clearly functorial in the sheaf
ℱ. Hence we obtain the functor.
Conversely, suppose that (𝒢, 𝛼) is a pair. Let 𝑉 → 𝑋 be an object of 𝑋 ́𝑒𝑡𝑎𝑙𝑒. In this case the
morphism 𝑉′ = 𝑈×𝑋𝑉 → 𝑉 is a surjective étale morphism of schemes, and hence {𝑉′ → 𝑉}

6In this lemma and its proof we write simply 𝜑−1 instead of 𝜑−1
𝑠𝑚𝑎𝑙𝑙 and similarly for all the other pullbacks.
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is an étale covering of 𝑉. Set 𝒢′ = (𝑉′ → 𝑉)−1𝒢. Since 𝑅 = 𝑈 ×𝑋 𝑈 with 𝑡 = pr0 and
𝑠 = pr0 we see that 𝑉′ ×𝑉 𝑉′ = 𝑅 ×𝑋 𝑉 with projection maps 𝑠′, 𝑡′ ∶ 𝑉′ ×𝑉 𝑉′ → 𝑉′ equal to
the pullbacks of 𝑡 and 𝑠. Hence 𝛼 pulls back to an isomorphism 𝛼′ ∶ (𝑡′)−1𝒢′ → (𝑠′)−1𝒢′.
Having said this we simply define

ℱ(𝑉) Equalizer(𝒢(𝑉′)
//
// 𝒢(𝑉′ ×𝑉 𝑉′).

We omit the verification that this defines a sheaf. To see that 𝒢(𝑉) = ℱ(𝑉) if there exists a
morphism 𝑉 → 𝑈 note that in this case the equalizer is 𝐻0({𝑉′ → 𝑉}, 𝒢) = 𝒢(𝑉). �

41.16. Points of the small étale site

This section is the analogue of Étale Cohomology, Section 38.29.

Definition 41.16.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) A geometric point of 𝑋 is a morphism 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋, where 𝑘 is an alge-

braically closed field. We often abuse notation and write 𝑥 = 𝑆𝑝𝑒𝑐(𝑘).
(2) For every geometric point 𝑥 we have the corresponding ``image'' point 𝑥 ∈ |𝑋|.

We say that 𝑥 is a geometric point lying over 𝑥.

It turns out that we can take stalks of sheaves on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 at geometric point exactly in the
same way as was done in the case of the small étale site of a scheme. In order to do this we
define the notion of an étale neighbourhood as follows.

Definition 41.16.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 be a
geometric point of 𝑋.

(1) An étale neighborhood of 𝑥 of 𝑋 is a commutative diagram

𝑈

𝜑
��

�̄� �̄� //

̄𝑢
??

𝑋
where 𝜑 is an étale morphism of algebraic spaces over 𝑆. Wewill use the notation
𝜑 ∶ (𝑈, 𝑢) → (𝑋, 𝑥) to indicate this situation.

(2) A morphism of étale neighborhoods (𝑈, 𝑢) → (𝑈′, 𝑢′) is an 𝑋-morphism ℎ ∶
𝑈 → 𝑈′ such that 𝑢′ = ℎ ∘ 𝑢.

Note that we allow 𝑈 to be an algebraic space. When we take stalks of a sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 we
have to restrict to those 𝑈 which are in 𝑋 ́𝑒𝑡𝑎𝑙𝑒, and so in this case we will only consider the
case where 𝑈 is a scheme. Alternately we can work with the site 𝑋𝑠𝑝𝑎𝑐𝑒, ́𝑒𝑡𝑎𝑙𝑒 and consider
all étale neighbourhoods. And there won't be any difference because of the last assertion in
the following lemma.

Lemma 41.16.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 be a
geometric point of 𝑋. The category of étale neighborhoods is cofiltered. More precisely:

(1) Let (𝑈𝑖, 𝑢𝑖)𝑖=1,2 be two étale neighborhoods of 𝑥 in 𝑋. Then there exists a third
étale neighborhood (𝑈, 𝑢) and morphisms (𝑈, 𝑢) → (𝑈𝑖, 𝑢𝑖), 𝑖 = 1, 2.

(2) Let ℎ1, ℎ2 ∶ (𝑈, 𝑢) → (𝑈′, 𝑢′) be two morphisms between étale neighborhoods
of 𝑠. Then there exist an étale neighborhood (𝑈″, 𝑢″) and a morphism ℎ ∶
(𝑈″, 𝑢″) → (𝑈, 𝑢) which equalizes ℎ1 and ℎ2, i.e., such that ℎ1 ∘ ℎ = ℎ2 ∘ ℎ.

Moreover, given any étale neighbourhood (𝑈, 𝑢) → (𝑋, 𝑥) there exists a morphism of étale
neighbourhoods (𝑈′, 𝑢′) → (𝑈, 𝑢) where 𝑈′ is a scheme.
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Proof. For part (1), consider the fibre product 𝑈 = 𝑈1 ×𝑋 𝑈2. It is étale over both 𝑈1
and 𝑈2 because étale morphisms are preserved under base change and composition, see
Lemmas 41.13.5 and 41.13.4. The map 𝑢 → 𝑈 defined by (𝑢1, 𝑢2) gives it the structure of
an étale neighborhood mapping to both 𝑈1 and 𝑈2.

For part (2), define 𝑈″ as the fibre product

𝑈″ //

��

𝑈

(ℎ1,ℎ2)
��

𝑈′ Δ // 𝑈′ ×𝑋 𝑈′.

Since 𝑢 and 𝑢′ agree over 𝑋 with 𝑥, we see that 𝑢″ = (𝑢, 𝑢′) is a geometric point of 𝑈″.
In particular 𝑈″≠∅. Moreover, since 𝑈′ is étale over 𝑋, so is the fibre product 𝑈′ ×𝑋 𝑈′

(as seen above in the case of 𝑈1 ×𝑋 𝑈2). Hence the vertical arrow (ℎ1, ℎ2) is étale by
Lemma 41.13.6. Therefore 𝑈″ is étale over 𝑈′ by base change, and hence also étale over
𝑋 (because compositions of étale morphisms are étale). Thus (𝑈″, 𝑢″) is a solution to the
problem posed by (2).

To see the final assertion, choose any surjective étale morphism 𝑈′ → 𝑈 where 𝑈′ is a
scheme. Then 𝑈′×𝑈𝑢 is a scheme surjective and étale over 𝑢 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑘 algebraically
closed. It follows (see Morphisms, Lemma 24.35.7) that 𝑈′ ×𝑈 𝑢 → 𝑢 has a section which
gives us the desired 𝑢′. �

Lemma 41.16.4. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∶
𝑆𝑝𝑒𝑐(𝑘) → 𝑋 be a geometric point of 𝑋 lying over 𝑥 ∈ |𝑋|. Let 𝜑 ∶ 𝑈 → 𝑋 be an
étale morphism of algebraic spaces and let 𝑢 ∈ |𝑈| with 𝜑(𝑢) = 𝑥. Then there exists a
geometric point 𝑢 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈 lying over 𝑢 with 𝑥 = 𝑓 ∘ 𝑢.

Proof. Choose an affine scheme 𝑈′ with 𝑢′ ∈ 𝑈′ and an étale morphism 𝑈′ → 𝑈 which
maps 𝑢′ to 𝑢. If we can prove the lemma for (𝑈′, 𝑢′) → (𝑋, 𝑥) then the lemma follows.
Hence we may assume that 𝑈 is a scheme, in particular that 𝑈 → 𝑋 is representable. Then
look at the cartesian diagram

𝑆𝑝𝑒𝑐(𝑘) ×𝑥,𝑋,𝜑 𝑈

pr1
��

pr2
// 𝑈

𝜑
��

𝑆𝑝𝑒𝑐(𝑘) 𝑥 // 𝑋

The projection pr1 is the base change of an étale morphisms so it is étale, see Lemma
41.13.5. Therefore, the scheme 𝑆𝑝𝑒𝑐(𝑘) ×𝑥,𝑋,𝜑 𝑈 is a disjoint union of finite separable
extensions of 𝑘, see Morphisms, Lemma 24.35.7. But 𝑘 is algebraically closed, so all these
extensions are trivial, so 𝑆𝑝𝑒𝑐(𝑘) ×𝑥,𝑋,𝜑 𝑈 is a disjoint union of copies of 𝑆𝑝𝑒𝑐(𝑘) and each
of these corresponds to a geometric point 𝑢 with 𝑓 ∘ 𝑢 = 𝑥. By Lemma 41.4.3 the map

| 𝑆𝑝𝑒𝑐(𝑘) ×𝑥,𝑋,𝜑 𝑈| ⟶ | 𝑆𝑝𝑒𝑐(𝑘)| ×|𝑋| |𝑈|

is surjective, hence we can pick 𝑢 to lie over 𝑢. �

Lemma 41.16.5. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 be a
geometric point of 𝑋. Let (𝑈, 𝑢) an étale neighborhood of 𝑥. Let {𝜑𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼
be an étale covering in 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. Then there exist 𝑖 ∈ 𝐼 and 𝑢𝑖 ∶ 𝑥 → 𝑈𝑖 such that
𝜑𝑖 ∶ (𝑈𝑖, 𝑢𝑖) → (𝑈, 𝑢) is a morphism of étale neighborhoods.
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Proof. Let 𝑢 ∈ |𝑈| be the image of 𝑢. As |𝑈| = ⋃𝑖∈𝐼 𝜑𝑖(|𝑈𝑖|) there exists an 𝑖 and a point
𝑢𝑖 ∈ 𝑈𝑖 mapping to 𝑥. Apply Lemma 41.16.4 to (𝑈𝑖, 𝑢𝑖) → (𝑈, 𝑢) and 𝑢 to get the desired
geometric point. �

Definition 41.16.6. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be a
presheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Let 𝑥 be a geometric point of 𝑋. The stalk of ℱ at 𝑥 is

ℱ�̄� = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) ℱ(𝑈)

where (𝑈, 𝑢) runs over all étale neighborhoods of 𝑥 in 𝑋 with 𝑈 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒).

By Lemma 41.16.3, this colimit is over a filtered index category, namely the oppsite of
the category of étale neighborhoods in 𝑋 ́𝑒𝑡𝑎𝑙𝑒. More precisely Lemma 41.16.3 says the
opposite of the category of all étale neighbourhoods is filtered, and the full subcategory of
those which are in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 is a cofinal subcategory hence also filtered.

This means an element of ℱ𝑥 can be thought of as a triple (𝑈, 𝑢, 𝜎) where 𝑈 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒)
and 𝜎 ∈ ℱ(𝑈). Two triples (𝑈, 𝑢, 𝜎), (𝑈′, 𝑢′, 𝜎′) define the same element of the stalk if
there exists a third étale neighbourhood (𝑈″, 𝑢″), 𝑈″ ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) and morphisms of étale
neighbourhoods ℎ ∶ (𝑈″, 𝑢″) → (𝑈, 𝑢), ℎ′ ∶ (𝑈″, 𝑢″) → (𝑈′, 𝑢′) such that ℎ∗𝜎 = (ℎ′)∗𝜎′

in ℱ(𝑈″). See Categories, Section 4.17.

This also implies that if ℱ′ is the sheaf on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 corresponding to ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒, then

(41.16.6.1) ℱ𝑥 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) ℱ′(𝑈)

where now the colimit is over all the étale neighbourhoods of 𝑥. Wewill often jump between
the point of view of using 𝑋 ́𝑒𝑡𝑎𝑙𝑒 and 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 without further mention.

In particular this means that if ℱ is a presheaf of abelian groups, rings, etc then ℱ𝑥 is an
abelian group, ring, etc simply by the usual way of defining the group structure on a directed
colimit of abelian groups, rings, etc.

Lemma 41.16.7. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 be a
geometric point of 𝑋. Consider the functor

𝑢 ∶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒 ⟶ Sets, 𝑈 ⟼ |𝑈𝑥|

Then 𝑢 defines a point 𝑝 of the site 𝑋 ́𝑒𝑡𝑎𝑙𝑒 (Sites, Definition 9.28.2) and its associated stalk
functor ℱ ↦ ℱ𝑝 (Sites, Equation 9.28.1.1) is the functor ℱ ↦ ℱ𝑥 defined above.

Proof. In the proof of Lemma 41.16.5 we have seen that the scheme 𝑈𝑥 is a disjoint union
of schemes isomorphic to 𝑥. Thus we can also think of |𝑈𝑥| as the set of geometric points
of 𝑈 lying over 𝑥, i.e., as the collection of morphisms 𝑢 ∶ 𝑥 → 𝑈 fitting into the diagram
of Definition 41.16.1. From this it follows that 𝑢(𝑋) is a singleton, and that 𝑢(𝑈 ×𝑉 𝑊) =
𝑢(𝑈) ×𝑢(𝑉) 𝑢(𝑊) whenever 𝑈 → 𝑉 and 𝑊 → 𝑉 are morphisms in 𝑋 ́𝑒𝑡𝑎𝑙𝑒. And, given a
covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 we see that ∐ 𝑢(𝑈𝑖) → 𝑢(𝑈) is surjective by Lemma
41.16.5. Hence Sites, Proposition 9.29.2 applies, so 𝑝 is a point of the site 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Finally,
the our functor ℱ ↦ ℱ𝑠 is given by exactly the same colimit as the functor ℱ ↦ ℱ𝑝
associated to 𝑝 in Sites, Equation 9.28.1.1 which proves the final assertion. �

Lemma 41.16.8. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 be a
geometric point of 𝑋.

(1) The stalk functor PAb(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Ab, ℱ ↦ ℱ𝑥 is exact.
(2) We have (ℱ#)𝑥 = ℱ𝑥 for any presheaf of sets ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒.
(3) The functor Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Ab, ℱ ↦ ℱ𝑥 is exact.
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(4) Similarly the functors PSh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Sets and Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) → Sets given by the
stalk functor ℱ ↦ ℱ𝑥 are exact (see Categories, Definition 4.21.1) and commute
with arbitrary colimits.

Proof. This result follows from the general material in Modules on Sites, Section 16.30.
This is true because ℱ ↦ ℱ𝑥 comes from a point of the small étale site of 𝑋, see Lemma
41.16.7. See the proof of Étale Cohomology, Lemma 38.29.9 for a direct proof of some of
these statements in the setting of the small étale site of a scheme. �

We will see below that the stalk functor ℱ ↦ ℱ𝑥 is really the pullback along the morphism
𝑥. In that sense the following lemma is a generalization of the lemma above.

Lemma 41.16.9. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) The functor 𝑓−1
𝑠𝑚𝑎𝑙𝑙 ∶ Ab(𝑌 ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) is exact.

(2) The functor 𝑓−1
𝑠𝑚𝑎𝑙𝑙 ∶ Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) is exact, i.e., it commutes with finite

limits and colimits, see Categories, Definition 4.21.1.
(3) For any étale morphism 𝑉 → 𝑌 of algebraic spaces we have 𝑓−1

𝑠𝑚𝑎𝑙𝑙ℎ𝑉 = ℎ𝑋×𝑌𝑉.
(4) Let 𝑥 → 𝑋 be a geometric point. Let 𝒢 be a sheaf on 𝑌 ́𝑒𝑡𝑎𝑙𝑒. Then there is a

canonical identification

(𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒢)𝑥 = 𝒢𝑦.

where 𝑦 = 𝑓 ∘ 𝑥.

Proof. Recall that 𝑓𝑠𝑚𝑎𝑙𝑙 is defined via 𝑓𝑠𝑝𝑎𝑐𝑒𝑠,𝑠𝑚𝑎𝑙𝑙 in Lemma 41.15.7. Parts (1), (2) and
(3) are general consequences of the fact that 𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 ∶ 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 → 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 is a
morphism of sites, see Sites, Definition 9.14.1 for (2), Modules on Sites, Lemma 16.27.2
for (1), and Sites, Lemma 9.13.5 for (3).

Proof of (4). This statement is a special case of Sites, Lemma 9.30.1 via Lemma 41.16.7.
We also provide a direct proof. Note that by Lemma 41.16.8. taking stalks commutes with
sheafification. Let 𝒢′ be the sheaf on 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 whose restriction to 𝑌 ́𝑒𝑡𝑎𝑙𝑒 is 𝒢. Recall that
𝑓−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒢′ is the sheaf associated to the presheaf

𝑈 ⟶ 𝑐𝑜𝑙𝑖𝑚𝑈→𝑋×𝑌𝑉 𝒢′(𝑉),

see Sites, Sections 9.13 and 9.5. Thus we have

(𝑓−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒢′)𝑥 = 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) 𝑓−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒢′(𝑈)

= 𝑐𝑜𝑙𝑖𝑚(𝑈,𝑢) 𝑐𝑜𝑙𝑖𝑚𝑎∶𝑈→𝑋×𝑌𝑉 𝒢′(𝑉)
= 𝑐𝑜𝑙𝑖𝑚(𝑉,𝑣) 𝒢′(𝑉)
= 𝒢′

𝑦

in the third equality the pair (𝑈, 𝑢) and the map 𝑎 ∶ 𝑈 → 𝑋 ×𝑌 𝑉 corresponds to the pair
(𝑉, 𝑎∘𝑢). Since the stalk of 𝒢′ (resp. 𝑓−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒢′) agrees with the stalk of 𝒢 (resp. 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒢),

see Equation (41.16.6.1) the result follows. �

Remark 41.16.10. This remark is the analogue of Étale Cohomology, Remark 38.56.6.
Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 be a
geometric point of 𝑋. By Étale Cohomology, Theorem 38.56.3 the category of sheaves on
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𝑆𝑝𝑒𝑐(𝑘) ́𝑒𝑡𝑎𝑙𝑒 is equivalent to the category of sets (by taking a sheaf to its global sections).
Hence it follows from Lemma 41.16.9 part (4) applied to the morphism 𝑥 that the functor

Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sets, ℱ ⟼ ℱ𝑥

is isomorphic to the functor
Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑆𝑝𝑒𝑐(𝑘) ́𝑒𝑡𝑎𝑙𝑒) = Sets, ℱ ⟼ 𝑥∗ℱ

Hence we may view the stalk functors as pullback functors along geometric morphisms
(and not just some abstract morphisms of topoi as in the result of Lemma 41.16.7).
Remark 41.16.11. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|.
We claim that for any pair of geometric points 𝑥 and 𝑥′ lying over 𝑥 the stalk functors are
isomorphic. By definition of |𝑋| we can find a third geometric point 𝑥″ so that there exists
a commutative diagram

𝑥″ //

��

𝑥″

  

𝑥′

𝑥′

��
𝑥 𝑥 // 𝑋.

Since the stalk functor ℱ ↦ ℱ𝑥 is given by pullback along the morphism 𝑥 (and similarly
for the others) we conclude by functoriality of pullbacks.
The following theorem says that the small étale site of an algebraic space has enough points.
Theorem 41.16.12. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. A map
𝑎 ∶ ℱ → 𝒢 of sheaves of sets is injective (resp. surjective) if and only if the map on stalks
𝑎𝑥 ∶ ℱ𝑥 → 𝒢𝑥 is injective (resp. surjective) for all geometric points of 𝑋. A sequence of
abelian sheaves on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 is exact if and only if it is exact on all stalks at geometric points
of 𝑆.

Proof. We know the theorem is true if 𝑋 is a scheme, see Étale Cohomology, Theorem
38.29.10. Choose a surjective étale morphism 𝑓 ∶ 𝑈 → 𝑋 where 𝑈 is a scheme. Since
{𝑈 → 𝑋} is a covering (in 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒) we can check whether a map of sheaves is injective,
or surjective by restricting to 𝑈. Now if 𝑢 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈 is a geometric point of 𝑈, then
(ℱ|𝑈)𝑢 = ℱ𝑥 where 𝑥 = 𝑓 ∘ 𝑢. (This is clear from the colimits defining the stalks at 𝑢 and
𝑥, but it also follows from Lemma 41.16.9.) Hence the result for 𝑈 implies the result for 𝑋
and we win. �

The following lemma should be skipped on a first reading.
Lemma 41.16.13. Let𝑆 be a scheme. Let𝑋 be an algebraic space over𝑆. Let 𝑝 ∶ Sh(𝑝𝑡) →
Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) be a point of the small étale topos of 𝑋. Then there exists a geometric point 𝑥 of
𝑋 such that the stalk functor ℱ ↦ ℱ𝑝 is isomorphic to the stalk functor ℱ ↦ ℱ𝑥.

Proof. By Sites, Lemma 9.28.7 there is a one to one correspondence between points of the
site and points of the associated topos. Hence we may assume that 𝑝 is given by a functor
𝑢 ∶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒 → Sets which defines a point of the site 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Let 𝑈 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) be an
object whose structure morphism 𝑗 ∶ 𝑈 → 𝑋 is surjective. Note that ℎ𝑈 is a sheaf which
surjects onto the final sheaf. Since taking stalks is exact we see that (ℎ𝑈)𝑝 = 𝑢(𝑈) is not
empty (use Sites, Lemma 9.28.3). Pick 𝑥 ∈ 𝑢(𝑈). By Sites, Lemma 9.31.1 we obtain a
point 𝑞 ∶ Sh(𝑝𝑡) → Sh(𝑈 ́𝑒𝑡𝑎𝑙𝑒) such that 𝑝 = 𝑗𝑠𝑚𝑎𝑙𝑙 ∘ 𝑞, so that ℱ𝑝 = (ℱ|𝑈)𝑞 functorially.
By Étale Cohomology, Lemma 38.29.12 there is a geometric point 𝑢 of 𝑈 and a functorial
isomorphism 𝒢𝑞 = 𝒢𝑢 for 𝒢 ∈ Sh(𝑈 ́𝑒𝑡𝑎𝑙𝑒). Set 𝑥 = 𝑗 ∘ 𝑢. Then we see that ℱ𝑥 ≅ (ℱ|𝑈)𝑢
functorially in ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 by Lemma 41.16.9 and we win. �
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41.17. Supports of abelian sheaves

First we talk about supports of local sections.

Lemma 41.17.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be a
subsheaf of the final object of the étale topos of 𝑋 (see Sites, Example 9.10.2). Then there
exists a unique open 𝑊 ⊂ 𝑋 such that ℱ = ℎ𝑊.

Proof. The condition means that ℱ(𝑈) is a singleton or empty for all 𝜑 ∶ 𝑈 → 𝑋 in
𝑂𝑏(𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒). In particular local sections always glue. If ℱ(𝑈)≠∅, then ℱ(𝜑(𝑈))≠∅
because 𝜑(𝑈) ⊂ 𝑋 is an open subspace (Lemma 41.13.7) and {𝜑 ∶ 𝑈 → 𝜑(𝑈)} is a
covering in 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. Take 𝑊 = ⋃𝜑∶𝑈→𝑆,ℱ(𝑈)≠∅ 𝜑(𝑈) to conclude. �

Lemma 41.17.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be an
abelian sheaf on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. Let 𝜎 ∈ ℱ(𝑈) be a local section. There exists an open
subspace 𝑊 ⊂ 𝑈 such that

(1) 𝑊 ⊂ 𝑈 is the largest open subspace of 𝑈 such that 𝜎|𝑊 = 0,
(2) for every 𝜑 ∶ 𝑉 → 𝑈 in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 we have

𝜎|𝑉 = 0 ⇔ 𝜑(𝑉) ⊂ 𝑊,
(3) for every geometric point 𝑢 of 𝑈 we have

(𝑈, 𝑢, 𝜎) = 0 in ℱ𝑠 ⇔ 𝑢 ∈ 𝑊
where 𝑠 = (𝑈 → 𝑆) ∘ 𝑢.

Proof. Since ℱ is a sheaf in the étale topology the restriction of ℱ to 𝑈𝑍𝑎𝑟 is a sheaf on
𝑈 in the Zariski topology. Hence there exists a Zariski open 𝑊 having property (1), see
Modules, Lemma 15.5.2. Let 𝜑 ∶ 𝑉 → 𝑈 be an arrow of 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Note that 𝜑(𝑉) ⊂ 𝑈
is an open subspace (Lemma 41.13.7) and that {𝑉 → 𝜑(𝑉)} is an étale covering. Hence
if 𝜎|𝑉 = 0, then by the sheaf condition for ℱ we see that 𝜎|𝜑(𝑉) = 0. This proves (2).
To prove (3) we have to show that if (𝑈, 𝑢, 𝜎) defines the zero element of ℱ𝑠, then 𝑢 ∈ 𝑊.
This is true because the assumption means there exists a morphism of étale neighbourhoods
(𝑉, 𝑣) → (𝑈, 𝑢) such that 𝜎|𝑉 = 0. Hence by (2) we see that 𝑉 → 𝑈 maps into 𝑊, and hence
𝑢 ∈ 𝑊. �

Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|. Let ℱ be a sheaf on
𝑋 ́𝑒𝑡𝑎𝑙𝑒. By Remark 41.16.11 the isomorphism class of the stalk of the sheaf ℱ at a geometric
points lying over 𝑥 is well defined.

Definition 41.17.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be an
abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒.

(1) The support of ℱ is the set of points 𝑥 ∈ |𝑋| such that ℱ𝑥≠0 for any (some)
geometric point 𝑥 lying over 𝑥.

(2) Let 𝜎 ∈ ℱ(𝑈) be a section. The support of 𝜎 is the closed subset 𝑈 ⧵ 𝑊, where
𝑊 ⊂ 𝑈 is the largest open subset of 𝑈 on which 𝜎 restricts to zero (see Lemma
41.17.2).

Lemma 41.17.4. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be an
abelian sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Let 𝑈 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) and 𝜎 ∈ ℱ(𝑈).

(1) The support of 𝜎 is closed in |𝑋|.
(2) The support of 𝜎 + 𝜎′ is contained in the union of the supports of 𝜎, 𝜎′ ∈ ℱ(𝑋).
(3) If 𝜑 ∶ ℱ → 𝒢 is a map of abelian sheaves on 𝑋 ́𝑒𝑡𝑎𝑙𝑒, then the support of 𝜑(𝜎) is

contained in the support of 𝜎 ∈ ℱ(𝑈).
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(4) The support of ℱ is the union of the images of the supports of all local sections
of ℱ.

(5) If ℱ → 𝒢 is surjective then the support of 𝒢 is a subset of the support of ℱ.
(6) If ℱ → 𝒢 is injective then the support of ℱ is a subset of the support of 𝒢.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds for the re-
striction of ℱ and 𝒢 to 𝑈𝑍𝑎𝑟, see Modules, Lemma 15.5.2. Part (4) is a direct consequence
of Lemma 41.17.2 part (3). Parts (5) and (6) follow from the other parts. �

Lemma 41.17.5. The support of a sheaf of rings on the small étale site of an algebraic
space is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only if 1 = 0,
and hence the support of a sheaf of rings is the support of the unit section. �

41.18. The structure sheaf of an algebraic space

The structure sheaf of an algebraic space is the sheaf of rings of the following lemma.

Lemma 41.18.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The rule 𝑈 ↦
Γ(𝑈, 𝒪𝑈) defines a sheaf of rings on 𝑋 ́𝑒𝑡𝑎𝑙𝑒.

Proof. Immediate from the definition of a covering and Descent, Lemma 31.6.1. �

Definition 41.18.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The structure
sheaf of 𝑋 is the sheaf of rings 𝒪𝑋 on the small étale site 𝑋 ́𝑒𝑡𝑎𝑙𝑒 described in Lemma 41.18.1.

According to Lemma 41.15.12 the sheaf 𝒪𝑋 corresponds to a system of étale sheaves (𝒪𝑋)𝑈
for 𝑈 ranging through the objects of 𝑋 ́𝑒𝑡𝑎𝑙𝑒. It is clear from the proof of that lemma and
our definition that we have simply (𝒪𝑋)𝑈 = 𝒪𝑈 where 𝒪𝑈 is the structure sheaf of 𝑈 ́𝑒𝑡𝑎𝑙𝑒
as introduced in Descent, Definition 31.6.2. In particular, if 𝑋 is a scheme we recover the
sheaf 𝒪𝑋 on the small étale site of 𝑋.
Via the equivalence Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒) = Sh(𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒) of Lemma 41.15.3 we may also think of
𝒪𝑋 as a sheaf of rings on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. It is explained in Remark 41.15.4 how to compute
𝒪𝑋(𝑌), and in particular 𝒪𝑋(𝑋), when 𝑌 → 𝑋 is an object of 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒.

Lemma 41.18.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Then there is a canonical map 𝑓♯ ∶ 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒪𝑌 → 𝒪𝑋 such that

(𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) ∶ (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) ⟶ (𝑌 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑌)
is a morphism of ringed topoi. Furthermore,

(1) The construction 𝑓 ↦ (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) is compatible with compositions.
(2) If 𝑓 is a morphism of schemes, then 𝑓♯ is the map described in Descent, Remark

31.6.4.

Proof. By Lemma 41.15.9 it suffices to give an 𝑓-map from 𝒪𝑌 to 𝒪𝑋. In other words, for
every commutative diagram

𝑈

𝑔
��

// 𝑋

𝑓
��

𝑉 // 𝑌
where 𝑈 ∈ 𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝑉 ∈ 𝑌 ́𝑒𝑡𝑎𝑙𝑒 we have to give a map of rings (𝑓♯)(𝑈,𝑉,𝑔) ∶ Γ(𝑉, 𝒪𝑉) →
Γ(𝑈, 𝒪𝑈). Of course we just take (𝑓♯)(𝑈,𝑉,𝑔) = 𝑔♯. It is clear that this is compatible with
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restriction mappings and hence indeed gives an 𝑓-map. We omit checking compatibility
with compositions and agreement with the construction in Descent, Remark 31.6.4. �

41.19. Stalks of the structure sheaf

This section is the analogue of Étale Cohomology, Section 41.19.

Lemma 41.19.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 be a
geometric point of 𝑋. Let (𝑈, 𝑢) be an étale neighbourhood of 𝑥 where 𝑈 is a scheme. Then
we have

𝒪𝑋,𝑥 = 𝒪𝑈,𝑢 = 𝒪𝑠ℎ
𝑈,𝑢

where the left hand side is the stalk of the structure sheaf of 𝑋, and the right hand side is
the strict henselization of the local ring of 𝑈 at the point 𝑢 at which 𝑢 is centered.

Proof. We know that the structure sheaf 𝒪𝑈 on 𝑈 ́𝑒𝑡𝑎𝑙𝑒 is the restriction of the structure sheaf
of 𝑋. Hence the first equality follows from Lemma 41.16.9 part (4). The second equality
is explained in Étale Cohomology, Lemma 38.33.1. �

Definition 41.19.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 be a
geometric point of 𝑋 lying over the point 𝑥 ∈ |𝑋|.

(1) The étale local ring of 𝑋 at 𝑥 is the stalk of the structure sheaf 𝒪𝑋 on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 at 𝑥.
Notation: 𝒪𝑋,𝑥.

(2) The strict henselization of 𝑋 at 𝑥 is the scheme 𝑆𝑝𝑒𝑐(𝒪𝑋,𝑥).

The isomorphism type of the strict henselization of 𝑋 at 𝑥 (as a scheme over 𝑋) depends
only on the point 𝑥 ∈ |𝑋| and not on the choice of the geometric point lying over 𝑥, see
Remark 41.16.11.

Lemma 41.19.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The small étale
site 𝑋 ́𝑒𝑡𝑎𝑙𝑒 endowed with its structure sheaf 𝒪𝑋 is a locally ringed site, see Modules on Sites,
Definition 16.34.4.

Proof. This follows because the stalks 𝒪𝑋,𝑥 are local, and because 𝑆 ́𝑒𝑡𝑎𝑙𝑒 has enough points,
see Lemmas 41.19.1 and Theorem 41.16.12. See Modules on Sites, Lemma 16.34.2 and
16.34.3 for the fact that this implies the small étale site is locally ringed. �

41.20. Dimension of local rings

It turns out the dimension of the local ring of an algebraic space is a well defined concept.

Lemma 41.20.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋| be
a point. Let 𝑑 ∈ {0, 1, 2, … , ∞}. The following are equivalent

(1) for some scheme 𝑈 and étale morphism 𝑎 ∶ 𝑈 → 𝑋 and point 𝑢 ∈ 𝑈 with
𝑎(𝑢) = 𝑥 we have dim(𝒪𝑈,𝑢) = 𝑑,

(2) for any scheme 𝑈, any étale morphism 𝑎 ∶ 𝑈 → 𝑋, and any point 𝑢 ∈ 𝑈 with
𝑎(𝑢) = 𝑥 we have dim(𝒪𝑈,𝑢) = 𝑑,

(3) dim(𝒪𝑋,𝑥) = 𝑑 for some geometric point 𝑥 lying over 𝑥, and
(4) dim(𝒪𝑋,𝑥) = 𝑑 for any geometric point 𝑥 lying over 𝑥.

Proof. The equivalence of (1) and (2) follows from a combination of Lemma 41.7.4 and
Descent, Lemma 31.17.3. The equivalence of (3) and (4) follows from the fact that the
isomorphism type of 𝒪𝑋,𝑥 only depends on 𝑥 ∈ |𝑋|, see Remark 41.16.11.
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Using Lemma 41.19.1 the equivalence of (1)+(2) and (3)+(4) comes down to the following
statement: Given any local ring 𝑅 we have dim(𝑅) = dim(𝑅𝑠ℎ). This is Étale Cohomology,
Lemma 38.32.12. �

Definition 41.20.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|
be a point. The dimension of the local ring of 𝑋 at 𝑥 is the element 𝑑 ∈ {0, 1, 2, … , ∞}
satisfying the equivalent conditions of Lemma 41.20.1.

41.21. Local irreducibility

A point on an algebraic space has a well defined étale local ring, which corresponds to the
strict henselization of the local ring in the case of a scheme. In general it is impossible to
read of from the étale local ring the irreducible components of the algebraic stack passing
through the given point. Here is something we can do.

Lemma 41.21.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋| be
a point. The following are equivalent

(1) for any scheme 𝑈 and étale morphism 𝑎 ∶ 𝑈 → 𝑋 and 𝑢 ∈ 𝑈 with 𝑎(𝑢) = 𝑥 the
local ring 𝒪𝑈,𝑢 has a unique minimal prime,

(2) for any scheme 𝑈 and étale morphism 𝑎 ∶ 𝑈 → 𝑋 and 𝑢 ∈ 𝑈 with 𝑎(𝑢) = 𝑥 there
is a unique irreducible component of 𝑈 through 𝑢, and

(3) 𝒪𝑋,𝑥 has a unique minimal prime for any geometric point 𝑥 lying over 𝑥.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible components of
𝑈 passing through 𝑢 are in 1 − 1 correspondence with minimal primes of the local ring of 𝑈
at 𝑢. Let 𝑎 ∶ 𝑈 → 𝑋 and 𝑢 ∈ 𝑈 be as in (1). Then 𝒪𝑈,𝑢 → 𝒪𝑋,𝑥 is flat in particular injective.
Hence if 𝑓, 𝑔 ∈ 𝒪𝑈,𝑢 are non-nilpotent elements such that 𝑓𝑔 = 0, then the same is true in
𝒪𝑋,𝑥. Conversely, suppose that 𝑓, 𝑔 ∈ 𝒪𝑋,𝑥 are non-nilpotent such that 𝑓𝑔 = 0. Since 𝒪𝑋,𝑥
is the filtered colimit of the rings 𝒪𝑈,𝑢 we see that 𝑓, 𝑔 are the images of elements of 𝒪𝑈,𝑢
for some choice of 𝑎 ∶ 𝑈 → 𝑋. Hence we see that 𝒪𝑈,𝑢 doesn't have a unique minimal
prime. In this way we see the equivalence of (1) and (3). �

Definition 41.21.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|.
We say that𝑋 is geometrically unibranch at 𝑥 if the equivalent conditions of Lemma 41.21.1
hold. We say that 𝑋 is geometrically unibranch if 𝑋 is geometrically unibranch at every
𝑥 ∈ |𝑋|.

To prove this is consistent with the definition of [DG67] for schemes we offer the following
lemma (see [Art66, Lemma 2.2]).

Lemma 41.21.3. Let𝐴 be a local ring. Let𝐴𝑠ℎ be a strict henselization of𝐴. The following
are equivalent

(1) 𝐴𝑠ℎ has a unique minimal prime, and
(2) 𝐴 has a unique minimal prime 𝔭 and the integral closure 𝐴′ of 𝐴/𝔭 in its fraction

field is a local ring whose residue field is purely inseparable over the residue field
of 𝐴.

Proof. Denote 𝔪 the maximal ideal of the ring 𝐴. Denote 𝜅, 𝜅𝑠ℎ the residue field of 𝐴,
𝐴𝑠ℎ.
Assume (1). Let 𝔭𝑠ℎ be the unique minimal prime of 𝐴𝑠ℎ. The flatness of 𝐴 → 𝐴𝑠ℎ implies
that 𝔭 = 𝐴 ∩ 𝔭𝑠ℎ is the unique minimal prime of 𝐴 (by going down, see Algebra, Lemma
7.35.17). Also, since 𝐴𝑠ℎ/𝔭𝐴𝑠ℎ = (𝐴/𝔭)𝑠ℎ (see Algebra, Lemma 7.139.22) is reduced by
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Étale Cohomology, Lemma 38.32.9 we see that 𝔭𝑠ℎ = 𝔭𝐴𝑠ℎ. Since 𝐴 → 𝐴′ is integral,
every maximal ideal of 𝐴′ lies over 𝔪 (by going up for integral ring maps, see Algebra,
Lemma 7.32.20). If 𝐴′ is not local, then we can find distinct maximal ideals 𝔪1, 𝔪2.
Choosing elements 𝑓1, 𝑓2 ∈ 𝐴′ with 𝑓𝑖 ∈ 𝔪𝑖, 𝑓𝑖∉𝔪3−𝑖 we find a finite subalgebra 𝐵 =
𝐴[𝑓1, 𝑓2] ⊂ 𝐴′ with distinct maximal ideals 𝐵 ∩ 𝔪𝑖, 𝑖 = 1, 2. If 𝐴′ is local with maximal
ideal 𝔪′, but 𝐴/𝔪 ⊂ 𝐴′/𝔪′ is not purely inseparable, then we can find a 𝑓 ∈ 𝐴′ whose
image in 𝐴′/𝔪′ generates finite, not purely inseparable extension of 𝐴/𝔪 and we find a
finite local subalgebra 𝐵 = 𝐴[𝑓] ⊂ 𝐴′ whose residue field is not a purely inseparable
extension of 𝐴/𝔪. Note that the inclusions

𝐴/𝔭 ⊂ 𝐵 ⊂ 𝜅(𝔭)

give, on tensoring with the flat ring map 𝐴 → 𝐴𝑠ℎ the inclusions

𝐴𝑠ℎ/𝔭𝑠ℎ ⊂ 𝐵 ⊗𝐴 𝐴𝑠ℎ ⊂ 𝜅(𝔭) ⊗𝐴 𝐴𝑠ℎ ⊂ 𝜅(𝔭𝑠ℎ)

the last inclusion because 𝜅(𝔭) ⊗𝐴 𝐴𝑠ℎ = 𝜅(𝔭) ⊗𝐴/𝔭 𝐴𝑠ℎ/𝔭𝑠ℎ is a localization of the domain
𝐴𝑠ℎ/𝔭𝑠ℎ. Note that 𝐵 ⊗𝐴 𝜅𝑠ℎ has at least two maximal ideals because 𝐵/𝔪𝐵 either has two
maximal ideals or one whose residue field is not purely inseparable over 𝜅, and because 𝜅𝑠ℎ

is separably algebraically closed. Hence, as 𝐴𝑠ℎ is strictly henselian we see that 𝐵 ⊗𝐴 𝐴𝑠ℎ

is a product of ≥ 2 local rings, see Algebra, Lemma 7.139.7. But we've just seen that
𝐵 ⊗𝐴 𝐴𝑠ℎ is a subring of a domain and we get a contradiction.

Assume (2). Let 𝐴 → 𝐵 be a local map of local rings which is a localization of an étale
𝐴-algebra. In particular 𝔪𝐵 is the unique prime containing 𝔪𝐴𝐵. Then 𝐵′ = 𝐴′ ⊗𝐴 𝐵 is
integral over 𝐵 and the assumption that 𝐴 → 𝐴′ is local with purely inseparable residue
field extension implies that 𝐵′ is local. On the other hand, 𝐴′ → 𝐵′ is the localization of
an étale ring map, hence 𝐵′ is normal, see Algebra, Lemma 7.145.7. Thus 𝐵′ is a (local)
normal domain. Finally, we have

𝐵/𝔭𝐵 ⊂ 𝐵 ⊗𝐴 𝜅(𝔭) = 𝐵′ ⊗𝐴′ 𝑓.𝑓.(𝐴′) ⊂ 𝑓.𝑓.(𝐵′)

Hence𝐵/𝔭𝐵 is a domain, which implies that𝐵 has a uniqueminimal prime (since by flatness
of 𝐴 → 𝐵 these all have to lie over 𝔭). Hence, by Lemma 41.21.1 we see that 𝐴𝑠ℎ has a
unique minimal prime. �

41.22. Regular algebraic spaces

We have already defined regular algebraic spaces in Section 41.7.

Lemma 41.22.1. Let 𝑆 be a scheme. Let 𝑋 be a locally Noetherian algebraic space over
𝑆. The following are equivalent

(1) 𝑋 is regular, and
(2) every étale local ring 𝒪𝑋,𝑥 is regular.

Proof. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be a surjective étale morphism. By assumption
𝑈 is locally Noetherian. Moreover, every étale local ring 𝒪𝑋,𝑥 is the strict henselization of
a local ring on 𝑈 and conversely, see Lemma 41.19.1. Thus by Étale Cohomology, Lemma
38.32.15 we see that (2) is equivalent to every local ring of 𝑈 being regular, i.e., 𝑈 being
a regular scheme (see Properties, Lemma 23.9.2). This equivalent to (1) by Definition
41.7.2. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06LQ
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41.23. Sheaves of modules on algebraic spaces

If 𝑋 is an algebraic space, then a sheaf of modules on 𝑋 is a sheaf of 𝒪𝑋-modules on the
small étale site of 𝑋 where 𝒪𝑋 is the structure sheaf of 𝑋. The category of sheaves of
modules is denoted Mod(𝒪𝑋).

Given a morphism 𝑓 ∶ 𝑋 → 𝑌 of algebraic spaces, by Lemma 41.18.3 we get a morphism
of ringed topoi and hence by Modules on Sites, Definition 16.13.1 we get well defined
pullback and direct image functors

(41.23.0.1) 𝑓∗ ∶ Mod(𝒪𝑌) ⟶ Mod(𝒪𝑋), 𝑓∗ ∶ Mod(𝒪𝑋) ⟶ Mod(𝒪𝑌)

which are adjoint in the usual way. If 𝑔 ∶ 𝑌 → 𝑍 is another morphism of algebraic spaces
over 𝑆, then we have (𝑔 ∘ 𝑓)∗ = 𝑓∗ ∘ 𝑔∗ and (𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗ simply because the morphisms
of ringed topoi compose in the corresponding way (by the lemma).

Lemma 41.23.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be an étale morphism of algebraic
spaces over 𝑆. Then 𝑓−1𝒪𝑌 = 𝒪𝑋, and 𝑓∗𝒢 = 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒢 for any sheaf of 𝒪𝑌-modules 𝒢. In
particular, 𝑓∗ ∶ Mod(𝒪𝑋) → Mod(𝒪𝑌) is exact.

Proof. By the description of inverse image in Lemma 41.15.10 and the definition of the
structure sheaves it is clear that 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒪𝑌 = 𝒪𝑋. Since the pullback

𝑓∗𝒢 = 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒢 ⊗𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒪𝑌
𝒪𝑋

by definition we conclude that 𝑓∗𝒢 = 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒢. The exactness is clear because 𝑓−1

𝑠𝑚𝑎𝑙𝑙 is
exact, as 𝑓𝑠𝑚𝑎𝑙𝑙 is a morphism of topoi. �

We continue our abuse of notation introduced in Equation (41.15.10.1) by writing

(41.23.1.1) 𝒢|𝑋 ́𝑒𝑡𝑎𝑙𝑒
= 𝑓∗𝒢 = 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒢

in the situation of the lemma above. We will discuss this in a more technical fashion in
Section 41.24.

Lemma 41.23.2. Let 𝑆 be a scheme. Let

𝑋′ //

𝑓′

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑌
be a cartesian square of algebraic spaces over 𝑆. Let ℱ ∈ Mod(𝒪𝑋). If 𝑔 is étale, then
𝑓′

∗(ℱ|𝑋′) = (𝑓∗ℱ)|𝑌′ and 𝑅𝑖𝑓′
∗(ℱ|𝑋′) = (𝑅𝑖𝑓∗ℱ)|𝑌′ in Mod(𝒪𝑌′).

Proof. This is a reformulation of Lemma 41.15.11 in the case of modules. �

Lemma 41.23.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. A sheaf ℱ of
𝒪𝑋-modules is given by the following data:

(1) for every 𝑈 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) a sheaf ℱ𝑈 of 𝒪𝑈-modules on 𝑈 ́𝑒𝑡𝑎𝑙𝑒,
(2) for every 𝑓 ∶ 𝑈′ → 𝑈 in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 an isomorphism 𝑐𝑓 ∶ 𝑓∗

𝑠𝑚𝑎𝑙𝑙ℱ𝑈 → ℱ𝑈′.
These data are subject to the condition that given any 𝑓 ∶ 𝑈′ → 𝑈 and 𝑔 ∶ 𝑈″ → 𝑈′ in
𝑋 ́𝑒𝑡𝑎𝑙𝑒 the composition 𝑔−1

𝑠𝑚𝑎𝑙𝑙𝑐𝑓 ∘ 𝑐𝑔 is equal to 𝑐𝑓∘𝑔.

Proof. Combine Lemmas 41.23.1 and 41.15.12, and use the fact that any morphism be-
tween objects of 𝑋 ́𝑒𝑡𝑎𝑙𝑒 is an étale morphism of schemes. �
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41.24. Étale localization

Reading this section should be avoided at all cost.

Let 𝑋 → 𝑌 be an étale morphism of algebraic spaces. Then 𝑋 is an object of 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒
and it is immediate from the definitions, see also the proof of Lemma 41.15.10, that

(41.24.0.1) 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 = 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒/𝑋

where the right hand side is the localization of the site 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 at the object 𝑋, see Sites,
Definition 9.21.1. Moreover, this identification is compatible with the structure sheaves by
Lemma 41.23.1. Hence the ringed site (𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) is identified with the localization
of the ringed site (𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑌) at the object 𝑋:

(41.24.0.2) (𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) = (𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒/𝑋, 𝒪𝑌|𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒/𝑋)

The localization of a ringed site used on the right hand side is defined in Modules on Sites,
Definition 16.19.1.

Assume now 𝑋 → 𝑌 is an étale morphism of algebraic spaces and 𝑋 is a scheme. Then 𝑋
is an object of 𝑌 ́𝑒𝑡𝑎𝑙𝑒 and it follows that

(41.24.0.3) 𝑋 ́𝑒𝑡𝑎𝑙𝑒 = 𝑌 ́𝑒𝑡𝑎𝑙𝑒/𝑋

and

(41.24.0.4) (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) = (𝑌 ́𝑒𝑡𝑎𝑙𝑒/𝑋, 𝒪𝑌|𝑌 ́𝑒𝑡𝑎𝑙𝑒/𝑋)

as above.

Finally, if 𝑋 → 𝑌 is an étale morphism of algebraic spaces and 𝑋 is an affine scheme, then
𝑋 is an object of 𝑌𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒 and

(41.24.0.5) 𝑋𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒 = 𝑌𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒/𝑋

and

(41.24.0.6) (𝑋𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) = (𝑌𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒/𝑋, 𝒪𝑌|𝑌𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒/𝑋)

as above.

Next, we show that these localizations are compatible with morphisms.

Lemma 41.24.1. Let 𝑆 be a scheme. Let

𝑈

𝑝
��

𝑔
// 𝑉

𝑞
��

𝑋
𝑓 // 𝑌

be a commutative diagram of algebraic spaces over 𝑆 with 𝑝 and 𝑞 étale. Via the identifi-
cations (41.24.0.2) for 𝑈 → 𝑋 and 𝑉 → 𝑌 the morphism of ringed topoi

(𝑔𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝑔♯) ∶ (Sh(𝑈𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑈) ⟶ (Sh(𝑉𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑉)

is 2-isomorphic to the morphism (𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒,𝑐, 𝑓♯
𝑐) constructed in Modules on Sites, Lemma

16.20.2 starting with the morphism of ringed sites (𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝑓♯) and the map 𝑐 ∶ 𝑈 →
𝑉 ×𝑌 𝑋 corresponding to 𝑔.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04M4
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Proof. The morphism (𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒,𝑐, 𝑓♯
𝑐) is defined as a composition 𝑓′ ∘ 𝑗 of a localization

and a base change map. Similarly 𝑔 is a composition 𝑈 → 𝑉 ×𝑌 𝑋 → 𝑉. Hence it suffices
to prove the lemma in the following two cases: (1) 𝑓 = id, and (2) 𝑈 = 𝑋 ×𝑌 𝑉. In
case (1) the morphism 𝑔 ∶ 𝑈 → 𝑉 is étale, see Lemma 41.13.6. Hence (𝑔𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝑔♯) is a
localization morphism by the discussion surrounding Equations (41.24.0.1) and (41.24.0.2)
which is exactly the content of the lemma in this case. In case (2) the morphism 𝑔𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒
comes from the morphism of ringed sites given by the functor 𝑉𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 → 𝑈𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒,
𝑉′/𝑉 ↦ 𝑉′ ×𝑉 𝑈/𝑈 which is also what the morphism 𝑓′ is defined by, see Sites, Lemma
9.24.1. We omit the verification that (𝑓′)♯ = 𝑔♯ in this case (both are the restriction of 𝑓♯

to 𝑈𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒). �

Lemma 41.24.2. Same notation and assumptions as in Lemma 41.24.1 except that we also
assume 𝑈 and 𝑉 are schemes. Via the identifications (41.24.0.4) for 𝑈 → 𝑋 and 𝑉 → 𝑌 the
morphism of ringed topoi

(𝑔𝑠𝑚𝑎𝑙𝑙, 𝑔♯) ∶ (Sh(𝑈 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑈) ⟶ (Sh(𝑉 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑉)

is 2-isomorphic to the morphism (𝑓𝑠𝑚𝑎𝑙𝑙,𝑠, 𝑓♯
𝑠) constructed in Modules on Sites, Lemma

16.22.3 starting with (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) and the map 𝑠 ∶ ℎ𝑈 → 𝑓−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉 corresponding to 𝑔.

Proof. Note that (𝑔𝑠𝑚𝑎𝑙𝑙, 𝑔♯) is 2-isomorphic as a morphism of ringed topoi to the mor-
phism of ringed topoi associated to the morphism of ringed sites (𝑔𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝑔♯). Hence
we conclude by Lemma 41.24.1 and Modules on Sites, Lemma 16.22.4. �

41.25. Recovering morphisms

In this section we prove that the rule which associates to an algebraic space its locally ringed
small étale topos is fully faithful in a suitable sense, see Theorem 41.25.4.

Lemma 41.25.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The morphism of ringed topoi (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) associated to 𝑓 is a morphism of locally
ringed topoi, see Modules on Sites, Definition 16.34.8.

Proof. Note that the assertion makes sense since we have seen that (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒
) and

(𝑌 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒
) are locally ringed sites, see Lemma 41.19.3. Moreover, we know that 𝑋 ́𝑒𝑡𝑎𝑙𝑒

has enough points, see Theorem 41.16.12. Hence it suffices to prove that (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) satis-
fies condition (3) of Modules on Sites, Lemma 16.34.7. To see this take a point 𝑝 of 𝑋 ́𝑒𝑡𝑎𝑙𝑒.
By Lemma 41.16.13 𝑝 corresponds to a geometric point 𝑥 of 𝑋. By Lemma 41.16.9 the
point 𝑞 = 𝑓𝑠𝑚𝑎𝑙𝑙 ∘ 𝑝 corresponds to the geometric point 𝑦 = 𝑓 ∘ 𝑥 of 𝑌. Hence the assertion
we have to prove is that the induced map of étale local rings

𝒪𝑌,𝑦 ⟶ 𝒪𝑋,𝑥

is a local ring map. You can prove this directly, but instead we deduce it from the corre-
sponding result for schemes. To do this choose a commutative diagram

𝑈

��

𝜓
// 𝑉

��
𝑋 // 𝑌

where 𝑈 and 𝑉 are schemes, and the vertical arrows are surjective étale (see Spaces, Lemma
40.11.4). Choose a lift 𝑢 ∶ 𝑥 → 𝑈 (possible by Lemma 41.16.5). Set 𝑣 = 𝜓 ∘ 𝑢. We obtain

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04M5
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a commutative diagram of étale local rings

𝒪𝑈,𝑢 𝒪𝑉,𝑣
oo

𝒪𝑋,𝑥

OO

𝒪𝑌,𝑦.oo

OO

By Étale Cohomology, Lemma 38.40.1 the top horizontal arrow is a local ring map. Finally
by Lemma 41.19.1 the vertical arrows are isomorphisms. Hence we win. �

Lemma 41.25.2. Let 𝑆 be a scheme. Let 𝑋, 𝑌 be algebraic spaces over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌
be a morphism of algebraic spaces over 𝑆. Let 𝑡 be a 2-morphism from (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) to itself,
see Modules on Sites, Definition 16.8.1. Then 𝑡 = id.

Proof. Let 𝑋′, resp. 𝑌′ be 𝑋 viewed as an algebraic space over 𝑆𝑝𝑒𝑐(𝐙), see Spaces, Defi-
nition 40.16.2. It is clear from the construction that (𝑋𝑠𝑚𝑎𝑙𝑙, 𝒪) is equal to (𝑋′

𝑠𝑚𝑎𝑙𝑙, 𝒪) and
similarly for 𝑌. Hence we may work with 𝑋′ and 𝑌′. In other words we may assume that
𝑆 = 𝑆𝑝𝑒𝑐(𝐙).

Assume 𝑆 = 𝑆𝑝𝑒𝑐(𝐙), 𝑓 ∶ 𝑋 → 𝑌 and 𝑡 are as in the lemma. This means that 𝑡 ∶ 𝑓−1
𝑠𝑚𝑎𝑙𝑙 →

𝑓−1
𝑠𝑚𝑎𝑙𝑙 is a transformation of functors such that the diagram

𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌

𝑓♯
##

𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌𝑡

oo

𝑓♯
{{

𝒪𝑋

is commutative. Suppose 𝑉 → 𝑌 is étale with 𝑉 affine. Write 𝑉 = 𝑆𝑝𝑒𝑐(𝐵). Choose
generators 𝑏𝑗 ∈ 𝐵, 𝑗 ∈ 𝐽 for 𝐵 as a 𝐙-algebra. Set 𝑇 = 𝑆𝑝𝑒𝑐(𝐙[{𝑥𝑗}𝑗∈𝐽]). In the following
we will use that 𝑀𝑜𝑟Sch(𝑈, 𝑇) = ∏𝑗∈𝐽 Γ(𝑈, 𝒪𝑈) for any scheme 𝑈 without further mention.
The surjective ring map 𝐙[𝑥𝑗] → 𝐵, 𝑥𝑗 ↦ 𝑏𝑗 corresponds to a closed immersion 𝑉 → 𝑇.
We obtain a monomorphism

𝑖 ∶ 𝑉 ⟶ 𝑇𝑌 = 𝑇 × 𝑌
of algebraic spaces over 𝑌. In terms of sheaves on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 the morphism 𝑖 induces an injection
ℎ𝑖 ∶ ℎ𝑉 → ∏𝑗∈𝐽 𝒪𝑌 of sheaves. The base change 𝑖′ ∶ 𝑋 ×𝑌 𝑉 → 𝑇𝑋 of 𝑖 to 𝑋 is a
monomorphism too (Spaces, Lemma 40.5.5). Hence 𝑖′ ∶ 𝑋×𝑌𝑉 → 𝑇𝑋 is a monomorphism,
which in turn means that ℎ𝑖′ ∶ ℎ𝑋×𝑌𝑉 → ∏𝑗∈𝐽 𝒪𝑋 is an injection of sheaves. Via the
identification 𝑓−1

𝑠𝑚𝑎𝑙𝑙ℎ𝑉 = ℎ𝑋×𝑌𝑉 of Lemma 41.16.9 the map ℎ𝑖′ is equal to

𝑓−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉

𝑓−1ℎ𝑖 // ∏𝑗∈𝐽 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌

∏ 𝑓♯
//∏𝑗∈𝐽 𝒪𝑋

(verification omitted). This means that the map 𝑡 ∶ 𝑓−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉 → 𝑓−1

𝑠𝑚𝑎𝑙𝑙ℎ𝑉 fits into the
commutative diagram

𝑓−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉

𝑓−1ℎ𝑖 //

𝑡
��

∏𝑗∈𝐽 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌

∏ 𝑓♯
//

∏ 𝑡
��

∏𝑗∈𝐽 𝒪𝑋

id
��

𝑓−1
𝑠𝑚𝑎𝑙𝑙ℎ𝑉

𝑓−1ℎ𝑖 // ∏𝑗∈𝐽 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌

∏ 𝑓♯
//∏𝑗∈𝐽 𝒪𝑋
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The commutativity of the right square holds by our assumption on 𝑡 explained above. Since
the composition of the horizontal arrows is injective by the discussion above we conclude
that the left vertical arrow is the identity map as well. Any sheaf of sets on 𝑌 ́𝑒𝑡𝑎𝑙𝑒 admits
a surjection from a (huge) coproduct of sheaves of the form ℎ𝑉 with 𝑉 affine (combine
Lemma 41.15.5 with Sites, Lemma 9.12.4). Thus we conclude that 𝑡 ∶ 𝑓−1

𝑠𝑚𝑎𝑙𝑙 → 𝑓−1
𝑠𝑚𝑎𝑙𝑙 is

the identity transformation as desired. �

Lemma 41.25.3. Let 𝑆 be a scheme. Let 𝑋, 𝑌 be algebraic spaces over 𝑆. Any two mor-
phisms 𝑎, 𝑏 ∶ 𝑋 → 𝑌 of algebraic spaces over 𝑆 for which there exists a 2-isomorphism
(𝑎𝑠𝑚𝑎𝑙𝑙, 𝑎♯) ≅ (𝑏𝑠𝑚𝑎𝑙𝑙, 𝑏♯) in the 2-category of ringed topoi are equal.

Proof. Let 𝑡 ∶ 𝑎−1
𝑠𝑚𝑎𝑙𝑙 → 𝑏−1

𝑠𝑚𝑎𝑙𝑙 be the 2-isomorphism. We may equivalently think of 𝑡 as a
transformation 𝑡 ∶ 𝑎−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 → 𝑏−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 since there is not difference between sheaves

on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 and sheaves on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. Choose a commutative diagram

𝑈

𝑝
��

𝛼
// 𝑉

𝑞
��

𝑋 𝑎 // 𝑌
where 𝑈 and 𝑉 are schemes, and 𝑝 and 𝑞 are surjective étale. Consider the diagram

ℎ𝑈 𝛼
// 𝑎−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒ℎ𝑉

𝑡
��

ℎ𝑈
// 𝑏−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒ℎ𝑉

Since the sheaf 𝑏−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒ℎ𝑉 is isomorphic to ℎ𝑉×𝑌,𝑏𝑋 we see that the dotted arrow comes

from a morphism of schemes 𝛽 ∶ 𝑈 → 𝑉 fitting into a commutative diagram

𝑈

𝑝
��

𝛽
// 𝑉

𝑞
��

𝑋 𝑏 // 𝑌
We claim that there exists a sequence of 2-isomorphisms

(𝛼𝑠𝑚𝑎𝑙𝑙, 𝛼♯) ≅ (𝛼𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝛼♯)

≅ (𝑎𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒,𝑐, 𝑎♯
𝑐)

≅ (𝑏𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒,𝑑, 𝑏♯
𝑑)

≅ (𝛽𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝛽♯)

≅ (𝛽𝑠𝑚𝑎𝑙𝑙, 𝛽♯)

The first and the last 2-isomorphisms come from the identifications between sheaves on
𝑈𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 and sheaves on𝑈 ́𝑒𝑡𝑎𝑙𝑒 and similarly for𝑉. The second and fourth 2-isomorphisms
are those of Lemma 41.24.1 with 𝑐 ∶ 𝑈 → 𝑋 ×𝑎,𝑌 𝑉 induced by 𝛼 and 𝑑 ∶ 𝑈 → 𝑋 ×𝑏,𝑌 𝑉
induced by 𝛽. The middle 2-isomorphism comes from the transformation 𝑡. Namely, the
functor 𝑎−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒,𝑐 corresponds to the functor

(ℋ → ℎ𝑉) ⟼ (𝑎−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒ℋ ×𝑎−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒ℎ𝑉,𝛼 ℎ𝑈 → ℎ𝑈)
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and similarly for 𝑏−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒,𝑑, see Sites, Lemma 9.24.3. This uses the identification of

sheaves on 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒/𝑉 as arrows (ℋ → ℎ𝑉) in Sh(𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒) and similarly for 𝑈/𝑋,
see Sites, Lemma 9.21.4. Via this identification the structure sheaf 𝒪𝑉 corresponds to the
pair (𝒪𝑌 × ℎ𝑉 → ℎ𝑉) and similarly for 𝒪𝑈, see Modules on Sites, Lemma 16.21.3. Since 𝑡
switches 𝛼 and 𝛽 we see that 𝑡 induces an isomorphism

𝑡 ∶ 𝑎−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒ℋ ×𝑎−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒ℎ𝑉,𝛼 ℎ𝑈 ⟶ 𝑏−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒ℋ ×𝑏−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒ℎ𝑉,𝛽 ℎ𝑈

over ℎ𝑈 functorially in (ℋ → ℎ𝑉). Also, 𝑡 is compatible with 𝑎♯
𝑐 and 𝑏♯

𝑑 as 𝑡 is compatible
with 𝑎♯ and 𝑏♯ by our description of the structure sheaves 𝒪𝑈 and 𝒪𝑉 above. Hence, the
morphisms of ringed topoi (𝛼𝑠𝑚𝑎𝑙𝑙, 𝛼♯) and (𝛽𝑠𝑚𝑎𝑙𝑙, 𝛽♯) are 2-isomorphic. By Étale Coho-
mology, Lemma 38.40.3 we conclude 𝛼 = 𝛽! Since 𝑝 ∶ 𝑈 → 𝑋 is a surjection of sheaves
it follows that 𝑎 = 𝑏. �

Here is the main result of this section.

Theorem 41.25.4. Let 𝑋, 𝑌 be algebraic spaces over 𝑆𝑝𝑒𝑐(𝐙). Let

(𝑔, 𝑔♯) ∶ (Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋) ⟶ (Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑌)

be a morphism of locally ringed topoi. Then there exists a unique morphism of algebraic
spaces 𝑓 ∶ 𝑋 → 𝑌 such that (𝑔, 𝑔♯) is isomorphic to (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯). In other words, the
construction

Spaces/ 𝑆𝑝𝑒𝑐(𝐙) ⟶ Locally ringed topoi, 𝑋 ⟶ (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋)

is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. The uniqueness we have seen in Lemma 41.25.3. Thus it suffices to prove existence.
In this proof we will freely use the identifications of Equation (41.24.0.4) as well as the
result of Lemma 41.24.2.

Let 𝑈 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒), let 𝑉 ∈ 𝑂𝑏(𝑌 ́𝑒𝑡𝑎𝑙𝑒) and let 𝑠 ∈ 𝑔−1ℎ𝑉(𝑈) be a section. We may think of
𝑠 as a map of sheaves 𝑠 ∶ ℎ𝑈 → 𝑔−1ℎ𝑉. By Modules on Sites, Lemma 16.22.3 we obtain a
commutative diagram of morphisms of ringed topoi

(Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒/𝑈), 𝒪𝑈)
(𝑗,𝑗♯)

//

(𝑔𝑠,𝑔♯
𝑠)
��

(Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋)

(𝑔,𝑔♯)
��

(Sh(𝑉 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑉) // (Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑌).

By Étale Cohomology, Theorem 38.40.5 we obtain a unique morphism of schemes 𝑓𝑠 ∶
𝑈 → 𝑉 such that (𝑔𝑠, 𝑔♯

𝑠) is 2-isomorphic to (𝑓𝑠,𝑠𝑚𝑎𝑙𝑙, 𝑓♯
𝑠). The construction (𝑈, 𝑉, 𝑠)  𝑓𝑠

just explained satisfies the following functoriality property: Suppose given morphisms 𝑎 ∶
𝑈′ → 𝑈 in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 and 𝑏 ∶ 𝑉′ → 𝑉 in 𝑌 ́𝑒𝑡𝑎𝑙𝑒 and a map 𝑠′ ∶ ℎ𝑈′ → 𝑔−1ℎ𝑉′ such that the
diagram

ℎ𝑈′

𝑎
��

𝑠′
// 𝑔−1ℎ𝑉′

𝑔−1𝑏
��

ℎ𝑈
𝑠 // 𝑔−1ℎ𝑉
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commutes. Then the diagram
𝑈′

𝑓𝑠′
//

𝑎
��

𝑢(𝑉′)

𝑢(𝑏)
��

𝑈
𝑓𝑠 // 𝑢(𝑉)

of schemes commutes. The reason this is true is that the same condition holds for the
morphisms (𝑔𝑠, 𝑔♯

𝑠) constructed in Modules on Sites, Lemma 16.22.3 and the uniqueness in
Étale Cohomology, Theorem 38.40.5.

The problem is to glue the morphisms 𝑓𝑠 to a morphism of algebraic spaces. To do this
first choose a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌. This means that ℎ𝑉 → ∗ is
surjective and hence 𝑔−1ℎ𝑉 → ∗ is surjective too. This means there exists a scheme 𝑈 and a
surjective étale morphism 𝑈 → 𝑋 and a morphism 𝑠 ∶ ℎ𝑈 → 𝑔−1ℎ𝑉. Next, set 𝑅 = 𝑉 ×𝑌 𝑉
and 𝑅′ = 𝑈 ×𝑋 𝑈. Then we get 𝑔−1ℎ𝑅 = 𝑔−1ℎ𝑉 × 𝑔−1ℎ𝑉 as 𝑔−1 is exact. Thus 𝑠 induces
a morphism 𝑠 × 𝑠 ∶ ℎ𝑅′ → 𝑔−1ℎ𝑅. Applying the constructions above we see that we get a
commutative diagram of morphisms of schemes

𝑅′

����

𝑓𝑠×𝑠
// 𝑅

����
𝑈

𝑓𝑠 // 𝑉

Since we have 𝑋 = 𝑈/𝑅′ and 𝑌 = 𝑉/𝑅 (see Spaces, Lemma 40.9.1) we conclude that
this diagram defines a morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 fitting into an obvious
commutative diagram. Nowwe still have to show that (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) is 2-isomorphic to (𝑔, 𝑔♯).
Let 𝑡𝑉 ∶ 𝑓−1

𝑠,𝑠𝑚𝑎𝑙𝑙 → 𝑔−1
𝑠 and 𝑡𝑅 ∶ 𝑓−1

𝑠×𝑠,𝑠𝑚𝑎𝑙𝑙 → 𝑔−1
𝑠×𝑠 be the 2-isomorphisms which are given

to us by the construction above. Let 𝒢 be a sheaf on 𝑌 ́𝑒𝑡𝑎𝑙𝑒. Then we see that 𝑡𝑉 defines an
isomorphism

𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒢|𝑈 ́𝑒𝑡𝑎𝑙𝑒

= 𝑓−1
𝑠,𝑠𝑚𝑎𝑙𝑙𝒢|𝑉 ́𝑒𝑡𝑎𝑙𝑒

𝑡𝑉−−→ 𝑔−1
𝑠 𝒢|𝑉 ́𝑒𝑡𝑎𝑙𝑒

= 𝑔−1𝒢|𝑈 ́𝑒𝑡𝑎𝑙𝑒
.

Moreover, this isomorphism pulled back to 𝑅′ via either projection 𝑅′ → 𝑈 is the isomor-
phism

𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒢|𝑅′

́𝑒𝑡𝑎𝑙𝑒
= 𝑓−1

𝑠×𝑠,𝑠𝑚𝑎𝑙𝑙𝒢|𝑅 ́𝑒𝑡𝑎𝑙𝑒

𝑡𝑅−−→ 𝑔−1
𝑠×𝑠𝒢|𝑅 ́𝑒𝑡𝑎𝑙𝑒

= 𝑔−1𝒢|𝑅′
́𝑒𝑡𝑎𝑙𝑒

.

Since {𝑈 → 𝑋} is a covering in the site 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 this means the first displayed isomor-
phism descends to an isomorphism 𝑡 ∶ 𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒢 → 𝑔−1𝒢 of sheaves (small detail omitted).
The isomorphism is functorial in 𝒢 since 𝑡𝑉 and 𝑡𝑅 are transformations of functors. Finally,
𝑡 is compatible with 𝑓♯ and 𝑔♯ as 𝑡𝑉 and 𝑡𝑅 are (some details omitted). This finishes the
proof of the theorem. �

Lemma 41.25.5. Let 𝑋, 𝑌 be algebraic spaces over 𝐙. If

(𝑔, 𝑔♯) ∶ (Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋) ⟶ (Sh(𝑌 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑌)

is an isomorphism of ringed topoi, then there exists a unique morphism 𝑓 ∶ 𝑋 → 𝑌 of alge-
braic spaces such that (𝑔, 𝑔♯) is isomorphic to (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) andmoreover 𝑓 is an isomorphism
of algebraic spaces.

Proof. By Theorem 41.25.4 it suffices to show that (𝑔, 𝑔♯) is a morphism of locally ringed
topoi. By Modules on Sites, Lemma 16.34.7 (and since the site 𝑋 ́𝑒𝑡𝑎𝑙𝑒 has enough points) it
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suffices to check that the map 𝒪𝑌,𝑞 → 𝒪𝑋,𝑝 induced by 𝑔♯ is a local ring map where 𝑞 = 𝑓∘𝑝
and 𝑝 is any point of 𝑋 ́𝑒𝑡𝑎𝑙𝑒. As it is an isomorphism this is clear. �

41.26. Quasi-coherent sheaves on algebraic spaces

In Descent, Section 31.6 we have seen that for a scheme 𝑈, there is no difference between a
quasi-coherent 𝒪𝑈-module on 𝑈, or a quasi-coherent 𝒪-module on the small étale site of 𝑈.
Hence the following definition is compatible with our original notion of a quasi-coherent
sheaf on a scheme (Schemes, Section 21.24), when applied to a representable algebraic
space.

Definition 41.26.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. A quasi-
coherent 𝒪𝑋-module is a quasi-coherent module on the ringed site (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) in the sense
of Modules on Sites, Definition 16.23.1. The category of quasi-coherent sheaves on 𝑋 is
denoted QCoh(𝒪𝑋) or QCoh(𝑋).

Note that as being quasi-coherent is an intrinsic notion (see Modules on Sites, Lemma
16.23.2) this is equivalent to saying that the corresponding 𝒪𝑋-module on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 is
quasi-coherent.

As usual, quasi-coherent sheaves behave well with respect to pullback.

Lemma 41.26.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over𝑆. The pullback functor 𝑓∗ ∶ Mod(𝒪𝑌) → Mod(𝒪𝑋) preserves quasi-coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 16.23.4. �

Note that this pullback functor agreeswith the usual pullback functor between quasi-coherent
sheaves of modules if 𝑋 and 𝑌 happen to be schemes, see Descent, Proposition 31.6.14.
Here is the obligatory lemma comparing this with quasi-coherent sheaves on the objects of
the small étale site of 𝑋.

Lemma 41.26.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. A quasi-coherent
𝒪𝑋-module ℱ is given by the following data:

(1) for every 𝑈 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) a quasi-coherent 𝒪𝑈-module ℱ𝑈 on 𝑈 ́𝑒𝑡𝑎𝑙𝑒,
(2) for every 𝑓 ∶ 𝑈′ → 𝑈 in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 an isomorphism 𝑐𝑓 ∶ 𝑓∗

𝑠𝑚𝑎𝑙𝑙ℱ𝑈 → ℱ𝑈′.
These data are subject to the condition that given any 𝑓 ∶ 𝑈′ → 𝑈 and 𝑔 ∶ 𝑈″ → 𝑈′ in
𝑋 ́𝑒𝑡𝑎𝑙𝑒 the composition 𝑔−1

𝑠𝑚𝑎𝑙𝑙𝑐𝑓 ∘ 𝑐𝑔 is equal to 𝑐𝑓∘𝑔.

Proof. Combine Lemmas 41.26.2 and 41.23.3. �

Lemma 41.26.4. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be a
quasi-coherent 𝒪𝑋-module. Let 𝑥 ∈ |𝑋| be a point and let 𝑥 be a geometric point lying
over 𝑥. Finally, let 𝜑 ∶ (𝑈, 𝑢) → (𝑋, 𝑥) be an étale neighbourhood where 𝑈 is a scheme.
Then

(𝜑∗ℱ)𝑢 ⊗𝒪𝑈,𝑢
𝒪𝑋,𝑥 = ℱ𝑥

where 𝑢 ∈ 𝑈 is the image of 𝑢.

Proof. Note that 𝒪𝑋,𝑥 = 𝒪𝑠ℎ
𝑈,𝑢 by Lemma 41.19.1 hence the tensor product makes sense.

Moreover, from Definition 41.16.6 it is clear that

ℱ𝑢 = 𝑐𝑜𝑙𝑖𝑚(𝜑∗ℱ)𝑢
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where the colimit is over 𝜑 ∶ (𝑈, 𝑢) → (𝑋, 𝑥) as in the lemma. Hence there is a canonical
map from left to right in the statement of the lemma. We have a similar colimit description
for 𝒪𝑋,𝑥 and by Lemma 41.26.3 we have

((𝜑′)∗ℱ)𝑢′ = (𝜑∗ℱ)𝑢 ⊗𝒪𝑈,𝑢
𝒪𝑈′,𝑢′

whenever (𝑈′, 𝑢′) → (𝑈, 𝑢) is a morphism of étale neighbourhoods. To complete the proof
we use that ⊗ commutes with colimits. �

Lemma 41.26.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝒢 be a quasi-coherent 𝒪𝑌-module. Let 𝑥 be a geometric point of 𝑋 and let
𝑦 = 𝑓 ∘ 𝑥 be the image in 𝑌. Then there is a canonical isomorphism

(𝑓∗𝒢)𝑥 = 𝒢𝑦 ⊗𝒪𝑌,𝑦
𝒪𝑋,𝑥

of the stalk of the pullback with the tensor product of the stalk with the local ring of 𝑋 at 𝑥.

Proof. Since 𝑓∗𝒢 = 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒢 ⊗𝑓−1

𝑠𝑚𝑎𝑙𝑙𝒪𝑌
𝒪𝑋 this follows from the description of stalks of

pullbacks in Lemma 41.16.9 and the fact that taking stalks commutes with tensor products.
A more direct way to see this is as follows. Choose a commutative diagram

𝑈

𝑝
��

𝛼
// 𝑉

𝑞
��

𝑋 𝑎 // 𝑌
where 𝑈 and 𝑉 are schemes, and 𝑝 and 𝑞 are surjective étale. By Lemma 41.16.4 we can
choose a geometric point 𝑢 of 𝑈 such that 𝑥 = 𝑝 ∘ 𝑢. Set 𝑣 = 𝛼 ∘ 𝑢. Then we see that

(𝑓∗𝒢)𝑥 = (𝑝∗𝑓∗𝒢)𝑢 ⊗𝒪𝑈,𝑢
𝒪𝑋,𝑥

= (𝛼∗𝑞∗𝒢)𝑢 ⊗𝒪𝑈,𝑢
𝒪𝑋,𝑥

= (𝑞∗𝒢)𝑣 ⊗𝒪𝑉,𝑣
𝒪𝑈,𝑢 ⊗𝒪𝑈,𝑢

𝒪𝑋,𝑥

= (𝑞∗𝒢)𝑣 ⊗𝒪𝑉,𝑣
𝒪𝑋,𝑥

= (𝑞∗𝒢)𝑣 ⊗𝒪𝑉,𝑣
𝒪𝑌,𝑦 ⊗𝒪𝑌,𝑦

𝒪𝑋,𝑥

= 𝒢𝑦 ⊗𝒪𝑌,𝑦
𝒪𝑋,𝑥

Here we have used Lemma 41.26.4 (twice) and the corresponding result for pullbacks of
quasi-coherent sheaves on schemes, see Sheaves, Lemma 6.26.4. �

Lemma 41.26.6. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be a sheaf
of 𝒪𝑋-modules. The following are equivalent

(1) ℱ is a quasi-coherent 𝒪𝑋-module,
(2) there exists an étale morphism 𝑓 ∶ 𝑌 → 𝑋 of algebraic spaces over 𝑆 with

|𝑓| ∶ |𝑌| → |𝑋| surjective such that 𝑓∗ℱ is quasi-coherent on 𝑌,
(3) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

𝜑∗ℱ is a quasi-coherent 𝒪𝑈-module, and
(4) for every affine scheme 𝑈 and étale morphism 𝜑 ∶ 𝑈 → 𝑋 the restriction 𝜑∗ℱ is

a quasi-coherent 𝒪𝑈-module.

Proof. It is clear that (1) implies (2) by considering id𝑋. Assume 𝑓 ∶ 𝑌 → 𝑋 is as in
(2), and let 𝑉 → 𝑌 be a surjective étale morphism from a scheme towards 𝑌. Then the
composition 𝑉 → 𝑋 is surjective étale as well and by Lemma 41.26.2 the pullback of ℱ to
𝑉 is quasi-coherent as well. Hence we see that (2) implies (3).
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Let 𝑈 → 𝑋 be as in (3). Let us use the abuse of notation introduced in Equation (41.23.1.1).
As ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is quasi-coherent there exists an étale covering {𝑈𝑖 → 𝑈} such that ℱ|𝑈𝑖, ́𝑒𝑡𝑎𝑙𝑒
has

a global presentation, see Modules on Sites, Definition 16.17.1 and Lemma 16.23.3. Let
𝑉 → 𝑋 be an object of 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Since 𝑈 → 𝑋 is surjective and étale, the family of maps
{𝑈𝑖 ×𝑋 𝑉 → 𝑉} is an étale covering of 𝑉. Via the morphisms 𝑈𝑖 ×𝑋 𝑉 → 𝑈𝑖 we can restrict
the global presentations of ℱ|𝑈𝑖, ́𝑒𝑡𝑎𝑙𝑒

to get a global presentation of ℱ|(𝑈𝑖×𝑋𝑉) ́𝑒𝑡𝑎𝑙𝑒
Hence the

sheaf ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 satisfies the condition of Modules on Sites, Definition 16.23.1 and hence
is quasi-coherent.

The equivalence of (3) and (4) comes from the fact that any scheme has an affine open
covering. �

Lemma 41.26.7. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The category
QCoh(𝒪𝑋) of quasi-coherent sheaves on 𝑋 has the following properties:

(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(2) Any colimit of quasi-coherent sheaves is quasi-coherent.
(3) The kernel and cokernel of amorphism of quasi-coherent sheaves is quasi-coherent.
(4) Given a short exact sequence of 𝒪𝑋-modules 0 → ℱ1 → ℱ2 → ℱ3 → 0 if two

out of three are quasi-coherent so is the third.
(5) Given two quasi-coherent 𝒪𝑋-modules the tensor product is quasi-coherent.
(6) Given two quasi-coherent 𝒪𝑋-modules ℱ, 𝒢 such that ℱ is of finite presentation

(see Section 41.27), then the internal hom ℋ𝑜𝑚𝒪𝑋
(ℱ, 𝒢) is quasi-coherent.

Proof. Note that we have the corresponding result for quasi-coherent modules on schemes,
see Schemes, Section 21.24. We will reduce the lemma to this case by étale localization.
Choose a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋. In order to formulate
this proof correctly, we temporarily go back to making the (pedantic) distinction between
a quasi-coherent sheaf 𝒢 on the scheme 𝑈 and the associated quasi-coherent sheaf 𝒢𝑎 (see
Descent, Definition 31.6.2) on 𝑈 ́𝑒𝑡𝑎𝑙𝑒 We have a commutative diagram

QCoh(𝒪𝑋) //

��

QCoh(𝒪𝑈)

��
Mod(𝒪𝑋) // Mod(𝒪𝑈)

The bottom horizontal arrow is the restriction functor (41.23.1.1) 𝒢 ↦ 𝒢|𝑈 ́𝑒𝑡𝑎𝑙𝑒
. This functor

has both a left adjoint and a right adjoint, see Modules on Sites, Section 16.19, hence
commutes with all limits and colimits. Moreover, we know that an object of Mod(𝒪𝑋)
is in QCoh(𝒪𝑋) if and only if its restriction to 𝑈 is in QCoh(𝒪𝑈), see Lemma 41.26.6.
Let ℱ𝑖 be a family of quasi-coherent 𝒪𝑋-modules. Then ⨁ ℱ𝑖 is an 𝒪𝑋-module whose
restriction to 𝑈 is the direct sum of the restrictions. Let 𝒢𝑖 be a quasi-coherent sheaf on 𝑈
with ℱ𝑖|𝑈 ́𝑒𝑡𝑎𝑙𝑒

= 𝒢𝑎
𝑖 . Combining the above with Descent, Lemma 31.6.13 we see that

( ⨁ ℱ𝑖)|𝑈 ́𝑒𝑡𝑎𝑙𝑒
= ⨁ ℱ𝑖|𝑈 ́𝑒𝑡𝑎𝑙𝑒

= ⨁ 𝒢𝑎
𝑖 = ( ⨁ 𝒢𝑖)

𝑎

hence ⨁ ℱ𝑖 is quasi-coherent and (1) follows. The other statements are proved just so
(using the same references). �

It is in general not the case that the pushforward of a quasi-coherent sheaf along a morphism
of algebraic spaces is quasi-coherent. We will return to this issue in Morphisms of Spaces,
Section 42.15.
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41.27. Properties of modules

In Modules on Sites, Sections 16.17, 16.23, and Definition 16.26.1 we have defined a num-
ber of intrinsic properties of modules of 𝒪-module on any ringed topos. If 𝑋 is an algebraic
space, we will apply these notions freely to modules on the ringed site (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋), or
equivalently on the ringed site (𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋).
Global properties 𝒫:

(1) free,
(2) finite free,
(3) generated by global sections,
(4) generated by finitely many global sections,
(5) having a global presentation, and
(6) having a global finite presentation.

Local properties 𝒫:
(1) locally free,
(2) finite locally free,
(3) locally generated by sections,
(4) finite type,
(5) quasi-coherent (see Section 41.26),
(6) of finite presentation,
(7) coherent, and
(8) flat.

In each case, except for 𝒫 =``coherent'', the property is preserved under pullback, see
Modules on Sites, Lemma 16.17.2, Modules on Sites, Lemma 16.23.4, and Modules on
Sites, Lemma 16.33.3. In particular, if ℱ is an 𝒪𝑋-module on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 satisfying one of the
properties 𝒫 above and 𝜑 ∶ 𝑈 → 𝑋 is a surjective étale morphism with 𝑈 a scheme, then
the pullback 𝜑∗ℱ has property 𝒫 as a sheaf of modules on 𝑈 ́𝑒𝑡𝑎𝑙𝑒. Moreover, for each of the
local properties 𝒫, the fact that 𝜑∗𝒢 has 𝒫 implies that 𝒢 has 𝒫. This follows as {𝑈 → 𝑋}
is a covering in 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 andModules on Sites, Lemma 16.23.3. Finally, if 𝒢 is assumed
quasi-coherent and for any 𝒫 except 𝒫 =``coherent'' or ``locally free'', then 𝒫 for 𝜑∗𝒢 on
𝑈 ́𝑒𝑡𝑎𝑙𝑒 is equivalent to the corresponding property for 𝜑∗𝒢|𝑈𝑍𝑎𝑟

, i.e., it corresponds to 𝒫 for
𝜑∗𝒢 when we think of it as a quasi-coherent sheaf on the scheme 𝑈. See Descent, Lemma
31.6.12.

41.28. Locally projective modules

Recall that in Properties, Section 23.19 we defined the notion of a locally projective quasi-
coherent module.

Lemma 41.28.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be a
quasi-coherent 𝒪𝑋-module. The following are equivalent

(1) for some scheme 𝑈 and surjective étale morphism 𝑈 → 𝑋 the restriction ℱ|𝑈 is
locally projective on 𝑈, and

(2) for any scheme 𝑈 and any étale morphism 𝑈 → 𝑋 the restriction ℱ|𝑈 is locally
projective on 𝑈.

Proof. Let𝑈 → 𝑋 be as in (1) and let𝑉 → 𝑋 be étale where𝑉 is a scheme. Then {𝑈×𝑋𝑉 →
𝑉} is an fppf covering of schemes. Hence if ℱ|𝑈 is locally projective, then ℱ|𝑈×𝑋𝑉 is locally
projective (see Properties, Lemma 23.19.3) and henceℱ|𝑉 is locally projective, seeDescent,
Lemma 31.5.5. �
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Definition 41.28.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be a
quasi-coherent 𝒪𝑋-module. We say ℱ is locally projective if the equivalent conditions of
Lemma 41.28.1 are satisfied.

Lemma 41.28.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝒢 be a quasi-coherent 𝒪𝑌-module. If 𝒢 is locally projective on 𝑌, then 𝑓∗𝒢 is
locally projective on 𝑋.

Proof. Choose a surjective étale morphism 𝑉 → 𝑌 with 𝑉 a scheme. Choose a surjective
étale morphism 𝑈 → 𝑉 ×𝑌 𝑋 with 𝑈 a scheme. Denote 𝜓 ∶ 𝑈 → 𝑉 the induced morphism.
Then

𝑓∗𝒢|𝑈 = 𝜓∗(𝒢|𝑉)
Hence the lemma follows from the definition and the result in the case of schemes, see
Properties, Lemma 23.19.3. �

41.29. Quasi-coherent sheaves and presentations

Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑋 = 𝑈/𝑅 be a presentation of
𝑋 coming from any surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋, see Spaces, Definition 40.9.3.
In particular, we obtain a groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐), such that 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈,
see Groupoids, Lemma 35.11.3. In Groupoids, Definition 35.12.1 we have the defined the
notion of a quasi-coherent sheaf on an arbitrary groupoid. With these notions in place we
have the following observation.

Proposition 41.29.1. With 𝑆, 𝜑 ∶ 𝑈 → 𝑋, and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) as above. For any quasi-
coherent 𝒪𝑋-module ℱ the sheaf 𝜑∗ℱ comes equipped with a canonical isomorphism

𝛼 ∶ 𝑡∗𝜑∗ℱ ⟶ 𝑠∗𝜑∗ℱ
which satisfies the conditions of Groupoids, Definition 35.12.1 and therefore defines a
quasi-coherent sheaf on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). The functor ℱ ↦ (𝜑∗ℱ, 𝛼) defines an equivalence of
categories

Quasi-coherent
𝒪𝑋-modules

⟷ Quasi-coherent modules
on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)

Proof. In the statement of the proposition, and in this proof we think of a quasi-coherent
sheaf on a scheme as a quasi-coherent sheaf on the small étale site of that scheme. This is
permissible by the results of Descent, Section 31.6.
The existence of 𝛼 comes from the fact that 𝜑 ∘ 𝑡 = 𝜑 ∘ 𝑠 and that pullback is functorial in
the morphism, see discussion surrounding Equation (41.23.0.1). In exacty the same way,
i.e., by functoriality of pullback, we see that the isomorphism 𝛼 satisfies condition (1) of
Groupoids, Definition 35.12.1. To see condition (2) of the definition it suffices to see that
𝛼 is an isomorphism which is clear. The construction ℱ ↦ (𝜑∗ℱ, 𝛼) is clearly functorial in
the quasi-coherent sheaf ℱ. Hence we obtain the functor from left to right in the displayed
formula of the lemma.
Conversely, suppose that (ℱ, 𝛼) is a quasi-coherent sheaf on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). Let 𝑉 → 𝑋 be an
object of 𝑋 ́𝑒𝑡𝑎𝑙𝑒. In this case the morphism 𝑉′ = 𝑈×𝑋 𝑉 → 𝑉 is a surjective étale morphism
of schemes, and hence {𝑉′ → 𝑉} is an étale covering of 𝑉. Moreover, the quasi-coherent
sheaf ℱ pulls back to a quasi-coherent sheaf ℱ′ on 𝑉′. Since 𝑅 = 𝑈 ×𝑋 𝑈 with 𝑡 = pr0 and
𝑠 = pr0 we see that 𝑉′ ×𝑉 𝑉′ = 𝑅 ×𝑋 𝑉 with projection maps 𝑉′ ×𝑉 𝑉′ → 𝑉′ equal to the
pullbacks of 𝑡 and 𝑠. Hence 𝛼 pulls back to an isomorphism 𝛼′ ∶ pr∗0ℱ′ → pr∗1ℱ′, and the
pair (ℱ′, 𝛼′) is a descend datum for quasi-coherent sheaves with respect to {𝑉′ → 𝑉}. By
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Descent, Proposition 31.4.2 this descent datum is effective, and we obtain a quasi-coherent
𝒪𝑉-module ℱ𝑉 on 𝑉 ́𝑒𝑡𝑎𝑙𝑒. To see that this gives a quasi-coherent sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 we have to
show (by Lemma 41.26.3) that for any morphism 𝑓 ∶ 𝑉1 → 𝑉2 in 𝑋 ́𝑒𝑡𝑎𝑙𝑒 there is a canonical
isomorphism 𝑐𝑓 ∶ ℱ𝑉1

→ ℱ𝑉2
compatible with compositions of morphisms. We omit the

verification. We also omit the verification that this defines a functor from the category on
the right to the category on the left which is inverse to the functor described above. �

Proposition 41.29.2. Let 𝑆 be a scheme Let 𝑋 be an algebraic space over 𝑆. The inclusion
functor QCoh(𝒪𝑋) → Mod(𝒪𝑋) has a right adjoint

𝑄7 ∶ Mod(𝒪𝑋) ⟶ QCoh(𝒪𝑋)

such that for every quasi-coherent sheaf ℱ the adjunction mapping 𝑄(ℱ) → ℱ is an iso-
morphism. Moreover, the category QCoh(𝒪𝑋) has limits and enough injectives.

Proof. This proof is a repeat of the proof in the case of schemes, see Properties, Proposition
23.21.4. We urge the reader to read that proof first.

The two assertions about 𝑄(ℱ) → ℱ and limits in QCoh(𝒪𝑋) are formal consequences of
the existence of 𝑄, the fact that the inclusion is fully faithful, and the fact thatMod(𝒪𝑋) has
limits (see Modules on Sites, Lemma 16.14.2). The existence of injectives follows from
the existence of injectives in Mod(𝒪𝑋) (see Injectives, Theorem 17.12.4) and Homology,
Lemma 10.22.3. Thus it suffices to construct 𝑄.

Choose a presentation 𝑋 = 𝑈/𝑅 so that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is an étale groupoid scheme and
in particular 𝑠 and 𝑡 are flat morphisms of schemes. Pick a cardinal 𝜅 as in Groupoids,
Lemma 35.12.7. Pick a collection (ℰ𝑡, 𝛼𝑡)𝑡∈𝑇 of 𝜅-generated quasi-coherent modules on
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) as in Groupoids, Lemma 35.12.6. Let ℱ𝑡 be the quasi-coherent module on 𝑋
which corresponds to the quasi-coherent module (ℰ𝑡, 𝛼𝑡) via the equivalence of categories
of Proposition 41.29.1. Then we see that every quasi-coherent module ℋ is the directed
colimit of its quasi-coherent submodules which are isomorphic to one of the ℱ𝑡.

Given an object 𝒢 of QCoh(𝒪𝑋) we set
𝑄(𝒢) = 𝑐𝑜𝑙𝑖𝑚(𝑡,𝜓) ℱ𝑡

The colimit is over the category of pairs (𝑡, 𝜓) where 𝑡 ∈ 𝑇 and 𝜓 ∶ ℱ𝑡 → 𝒢 is a morphism
of 𝒪𝑋-modules. A morphism (𝑡, 𝜓) → (𝑡′, 𝜓′) is given by a morphism 𝛽 ∶ ℱ𝑡 → ℱ𝑡′ such
that 𝜓′ ∘ 𝛽 = 𝜓. By Lemma 41.26.7 the colimit is quasi-coherent. Note that there is a
canonical map 𝑄(𝒢) → 𝒢 by definition of the colimit. The formula

𝐻𝑜𝑚(ℋ, 𝑄(𝒢)) = 𝐻𝑜𝑚(ℋ, 𝒢)

holds for ℋ = ℱ𝑡 by construction. It follows formally from this and the fact that every
ℋ is a directed colimit of 𝒪𝑋-modules isomorphic to ℱ𝑡 that this equality holds for any
quasi-coherent module ℋ on 𝑋. This finishes the proof. �

41.30. Morphisms towards schemes

Here is the analogue of Schemes, Lemma 21.6.4.

Lemma 41.30.1. Let 𝑋 be an algebraic space over 𝐙. Let 𝑇 be an affine scheme. The map

𝑀𝑜𝑟(𝑋, 𝑇) ⟶ 𝐻𝑜𝑚(Γ(𝑇, 𝒪𝑇), Γ(𝑋, 𝒪𝑋))

which maps 𝑓 to 𝑓♯ (on global sections) is bijective.

7This functor is sometimes called the coherator.
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Proof. We construct the inverse of the map. Let 𝜑 ∶ Γ(𝑇, 𝒪𝑇) → Γ(𝑋, 𝒪𝑋) be a ring
map. Choose a presentation 𝑋 = 𝑈/𝑅, see Spaces, Definition 40.9.3. By Schemes, Lemma
21.6.4 the composition

Γ(𝑇, 𝒪𝑇) → Γ(𝑋, 𝒪𝑋) → Γ(𝑈, 𝒪𝑈)
corresponds to a unique morphism of schemes 𝑔 ∶ 𝑈 → 𝑇. By the same lemma the two
compositions 𝑅 → 𝑈 → 𝑇 are equal. Hence we obtain a morphism 𝑓 ∶ 𝑋 = 𝑈/𝑅 → 𝑇
such that 𝑈 → 𝑋 → 𝑇 equals 𝑔. By construction the diagram

Γ(𝑈, 𝒪𝑈) Γ(𝑋, 𝒪𝑋)
𝑓♯
oo

Γ(𝑇, 𝒪𝑇)
𝑔♯

ff
𝜑

OO

commutes. Hence 𝑓♯ equals 𝜑 because 𝑈 → 𝑋 is an étale covering and 𝒪𝑋 is a sheaf on
𝑋 ́𝑒𝑡𝑎𝑙𝑒. The uniqueness of 𝑓 follows from the uniqueness of 𝑔. �

41.31. Quotients by free actions

Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝐺 be an abstract group. Let
𝑎 ∶ 𝐺 → Aut(𝑋) be a homomorphism, i.e., 𝑎 is an action of 𝐺 on 𝑋. We will say the action
is free if for every scheme 𝑇 over 𝑆 the map

𝐺 × 𝑋(𝑇) ⟶ 𝑋(𝑇)

is free. (We cannot use a criterion as in Spaces, Lemma 40.14.3 because points may not
have well defined residue fields.) In case the action is free we're going to construct the
quotient 𝑋/𝐺 as an algebraic space. This is a special case of the general Bootstrap, Lemma
54.11.5 that we will prove later.

Lemma 41.31.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝐺 be an
abstract group with a free action on 𝑋. Then the quotient sheaf 𝑋/𝐺 is an algebraic space.

Proof. The statement means that the sheaf 𝐹 associated to the presheaf

𝑇 ⟼ 𝑋(𝑇)/𝐺

is an algebraic space. To see this wewill construct a presentation. Namely, choose a scheme
𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋. Set 𝑉 = ∐𝑔∈𝐺 𝑈 and set 𝜓 ∶ 𝑉 → 𝑋
equal to 𝑎(𝑔) ∘ 𝜑 on the component corresponding to 𝑔 ∈ 𝐺. Let 𝐺 act on 𝑉 by permuting
the components, i.e., 𝑔0 ∈ 𝐺 maps the component corresponding to 𝑔 to the component
corresponding to 𝑔0𝑔 via the identity morphism of 𝑈. Then 𝜓 is a 𝐺-equivariant morphism,
i.e., we reduce to the case dealt with in the next paragraph.

Assume that there exists a𝐺-action on𝑈 and that𝑈 → 𝑋 is surjective, étale and𝐺-equivariant.
In this case there is an induced action of 𝐺 on 𝑅 = 𝑈 ×𝑋 𝑈 compatible with the projection
mappings 𝑡, 𝑠 ∶ 𝑅 → 𝑈. Now we claim that

𝑋/𝐺 = 𝑈/ ∐𝑔∈𝐺
𝑅

where the map
𝑗 ∶ ∐𝑔∈𝐺

𝑅 ⟶ 𝑈 ×𝑆 𝑈

is given by (𝑟, 𝑔) ↦ (𝑡(𝑟), 𝑔(𝑠(𝑟))). Note that 𝑗 is a monomorphism: If (𝑡(𝑟), 𝑔(𝑠(𝑟))) =
(𝑡(𝑟′), 𝑔′(𝑠(𝑟′))), then 𝑡(𝑟) = 𝑡(𝑟′), hence 𝑟 and 𝑟′ have the same image in 𝑋 under both 𝑠
and 𝑡, hence 𝑔 = 𝑔′ (as 𝐺 acts freely on 𝑋), hence 𝑠(𝑟) = 𝑠(𝑟′), hence 𝑟 = 𝑟′ (as 𝑅 is an
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2264 41. PROPERTIES OF ALGEBRAIC SPACES

equivalence relation on 𝑈). Moreover 𝑗 is an equivalence relation (details omitted). Both
projections ∐𝑔∈𝐺 𝑅 → 𝑈 are étale, as 𝑠 and 𝑡 are étale. Thus 𝑗 is an étale equivalence
relation and 𝑈/ ∐𝑔∈𝐺 𝑅 is an algebaic space by Spaces, Theorem 40.10.5. There is a map

𝑈/ ∐𝑔∈𝐺
𝑅 ⟶ 𝑋/𝐺

induced by the map 𝑈 → 𝑋. We omit the proof that it is an isomorphism of sheaves. �
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CHAPTER 42

Morphisms of Algebraic Spaces

42.1. Introduction

In this chapter we introduce some types of morphisms of algebraic spaces. A reference is
[Knu71a].
The goal is to extend the definition of each of the types of morphisms of schemes defined in
the chapters on schemes, and on morphisms of schemes to the category of algebraic spaces.
Each case is slightly different and it seems best to treat them all separately.

42.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.
Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋.

42.3. Properties of representable morphisms

Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of algebraic spaces.
In Spaces, Section 40.5 we defined what it means for 𝑓 to have property 𝒫 in case 𝒫 is a
property of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 21.18.3, and
(2) is fppf local on the base, see Descent, Definition 31.18.1.

Namely, in this case we say 𝑓 has property 𝒫 if and only if for every scheme 𝑈 and any
morphism 𝑈 → 𝑌 the morphism of schemes 𝑋 ×𝑌 𝑈 → 𝑈 has property 𝒫.
According to the lists in Spaces, Section 40.4 this applies to the following properties: (1)(a)
closed immersions, (1)(b) open immersions, (1)(c) quasi-compact immersions, (2) quasi-
compact, (3) universally-closed, (4) (quasi-)separated, (5) monomorphism, (6) surjective,
(7) universally injective, (8) affine, (9) quasi-affine, (10) (locally) of finite type, (11) (lo-
cally) quasi-finite, (12) (locally) of finite presentation, (13) locally of finite type of relative
dimension 𝑑, (14) universally open, (15) flat, (16) syntomic, (17) smooth, (18) unramified
(resp. G-unramified), (19) étale, (20) proper, (21) finite or integral, (22) finite locally free,
and (23) immersion.
In this chapter we will redefine these notions for not necessarily representable morphisms
of algebraic spaces. Whenever we do this we will make sure that the new definition agrees
with the old one, in order to avoid ambiguity.
Note that the definition above applies whenever 𝑋 is a scheme, since a morphism from a
scheme to an algebraic space is representable. And in particular it applies when both 𝑋
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and 𝑌 are schemes. In Spaces, Lemma 40.5.3 we have seen that in this case the definitions
match, and no ambiguity arise.

Furthermore, in Spaces, Lemma 40.5.5 we have seen that the property of representable
morphisms of algebraic spaces so defined is stable under arbitrary base change by a mor-
phism of algebraic spaces. And finally, in Spaces, Lemmas 40.5.4 and 40.5.7 we have seen
that if 𝒫 is stable under compositions, which holds for the properties (1)(a), (1)(b), (1)(c),
(2) -- (23), except (13) above, then taking products of representable morphisms preserves
property 𝒫 and compositions of representable morphisms preserves property 𝒫.

We will use these facts below, and whenever we do we will simply refer to this section as a
reference.

42.4. Immersions

Open, closed and locally closed immersions of algebraic spaces were defined in Spaces,
Section 40.12. Namely, a morphism of algebraic spaces is a closed immersion (resp. open
immersion, resp. immersion) if it is representable and a closed immersion (resp. open im-
mersion, resp. immersion) in the sense of Section 42.3.

In particular these types of morphisms are stable under base change and compositions of
morphisms in the category of algebraic spaces over 𝑆, see Spaces, Lemmas 40.12.2 and
40.12.3.

Lemma 42.4.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is a closed immersion (resp. open immersion, resp. immersion),
(2) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is a

closed immersion (resp. open immersion, resp. immersion),
(3) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is a closed immersion (resp. open immersion, resp. immersion),
(4) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is a closed immersion (resp. open immersion, resp. immersion), and
(5) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →

𝑌𝑖 is a closed immersion (resp. open immersion, resp. immersion).

Proof. Using that a base change of a closed immersion (resp. open immersion, resp. im-
mersion) is another one it is clear that (1) implies (2) and (2) implies (3). Also (3) implies
(4) since we can take 𝑉 to be a disjoint union of affines, see Properties of Spaces, Lemma
41.6.1.

Assume 𝑉 → 𝑌 is as in (4). Let 𝒫 be the property closed immersion (resp. open im-
mersion, resp. immersion) of morphisms of schemes. Note that property 𝒫 is preserved
under any base change and fppf local on the base (see Section 42.3). Moreover, mor-
phisms of type 𝒫 are separated and locally quasi-finite (in each of the three cases, see
Schemes, Lemma 21.23.7, and Morphisms, Lemma 24.19.14). Hence by More on Mor-
phisms, Lemma 33.35.1 the morphisms of type 𝒫 satisfy descent for fppf covering. Thus
Spaces, Lemma 40.11.3 applies and we see that 𝑋 → 𝑌 is representable and has property
𝒫, in other words (1) holds.

The equivalence of (1) and (5) follows from the fact that 𝒫 is Zariski local on the target
(since we saw above that 𝒫 is in fact fppf local on the target). �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03M4


42.5. SEPARATION AXIOMS 2267

Lemma 42.4.2. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of algebraic spaces
over 𝑆. Then |𝑖|(|𝑍|) ⊂ |𝑋| is a locally closed subset, and 𝑖 is a closed immersion if and
only if |𝑖|(|𝑍|) ⊂ |𝑋| is a closed subset.

Proof. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be a surjective étale morphism. By assumption
𝑇 = 𝑈 ×𝑋 𝑍 is a scheme and the morphism 𝑗 ∶ 𝑇 → 𝑈 is an immersion of schemes.
Moreover, note that |𝑗|(|𝑇|) ⊂ |𝑈| is the inverse image of |𝑖|(|𝑍|) ⊂ |𝑋|, see Properties
of Spaces, Lemma 41.4.3. Recall that |𝑈| → |𝑋| is surjective and open, see Properties
of Spaces, Lemma 41.4.6. Hence since |𝑇| is locally closed in |𝑈| it follows that |𝑖|(|𝑍|)
is locally closed in |𝑋|, see Topology, Lemma 5.15.2. And in the same way we see that
|𝑖|(|𝑍|) ⊂ |𝑋| is closed if and only if 𝑇 ⊂ 𝑈 is closed, Thus we can combine Lemma 42.4.1
above and Schemes, Lemma 21.10.4 to finish the proof. �

Remark 42.4.3. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of algebraic spaces
over 𝑆. Since 𝑖 is a monomorphism we may think of |𝑍| as a subset of |𝑋|; in the rest of
this remark we do so. Let 𝜕|𝑍| be the boundary of |𝑍| in the topological space |𝑋|. In a
formula

𝜕|𝑍| = |𝑍| ⧵ |𝑍|.

Let 𝜕𝑍 be the reduced closed subspace of 𝑋 with |𝜕𝑍| = 𝜕|𝑍| obtained by taking the
reduced induced closed subspace structure, see Properties of Spaces, Definition 41.9.3. By
construction we see that |𝑍| is closed in |𝑋| ⧵ |𝜕𝑍| = |𝑋 ⧵ 𝜕𝑍|. Hence it is true that any
immersion of algebraic spaces can be factored as a closed immmersion followed by an open
immersion (but not the other way in general, see Morphisms, Example 24.2.10).

Remark 42.4.4. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑇 ⊂ |𝑋|
be a locally closed subset. Let 𝜕𝑇 be the boundary of 𝑇 in the topological space |𝑋|. In a
formula

𝜕𝑇 = 𝑇 ⧵ 𝑇.

Let 𝑈 ⊂ 𝑋 be the open subspace of 𝑋 with |𝑈| = |𝑋|⧵𝜕𝑇, see Properties of Spaces, Lemma
41.4.8. Let 𝑍 be the reduced closed subspace of 𝑈 with |𝑍| = 𝑇 obtained by taking the
reduced induced closed subspace structure, see Properties of Spaces, Definition 41.9.3. By
construction 𝑍 → 𝑈 is a closed immersion of algebraic spaces and 𝑈 → 𝑋 is an open
immersion, hence 𝑍 → 𝑋 is an immersion of algebraic spaces over 𝑆 (see Spaces, Lemma
40.12.2). Note that 𝑍 is a reduced algebraic space and that |𝑍| = 𝑇 as subsets of |𝑋|. We
sometimes say 𝑍 is the reduced induced subspace structure on 𝑇.

42.5. Separation axioms

It makes sense to list some a priori properties of the diagonal of a morphism of algebraic
spaces.

Lemma 42.5.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of
algebraic spaces over 𝑆. Let Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 be the diagonal morphism. Then

(1) Δ𝑋/𝑌 is representable,
(2) Δ𝑋/𝑌 is locally of finite type,
(3) Δ𝑋/𝑌 is a monomorphism,
(4) Δ𝑋/𝑌 is separated, and
(5) Δ𝑋/𝑌 is locally quasi-finite.
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Proof. We are going to use the fact that Δ𝑋/𝑆 is representable (by definition of an algebraic
space) and that it satisfies properties (2) -- (5), see Spaces, Lemma 40.13.1. Note that we
have a factorization

𝑋 ⟶ 𝑋 ×𝑌 𝑋 ⟶ 𝑋 ×𝑆 𝑋

of the diagonal Δ𝑋/𝑆 ∶ 𝑋 → 𝑋 ×𝑆 𝑋. Since 𝑋 ×𝑌 𝑋 → 𝑋 ×𝑆 𝑋 is a monomorphism, and
since Δ𝑋/𝑆 is representable, it follows formally that Δ𝑋/𝑌 is representable. In particular, the
rest of the statements now make sense, see Section 42.3.

Choose a surjective étale morphism 𝑈 → 𝑋, with 𝑈 a scheme. Consider the diagram

𝑅 = 𝑈 ×𝑋 𝑈 //

��

𝑈 ×𝑌 𝑈

��

// 𝑈 ×𝑆 𝑈

��
𝑋 // 𝑋 ×𝑌 𝑋 // 𝑋 ×𝑆 𝑋

Both squares are cartesian, hence so is the outer rectangle. The top row consists of schemes,
and the vertical arrows are surjective étale morphisms. By Spaces, Lemma 40.11.2 the
properties (2) -- (5) for Δ𝑋/𝑌 are equivalent to those of 𝑅 → 𝑈×𝑌 𝑈. In the proof of Spaces,
Lemma 40.13.1 we have seen that 𝑅 → 𝑈 ×𝑆 𝑈 has properties (2) -- (5). The morphism
𝑈 ×𝑌 𝑈 → 𝑈 ×𝑆 𝑈 is a monomorphism of schemes. These facts imply that 𝑅 → 𝑈 ×𝑆 𝑈
have properties (2) -- (5).

Namely: For (3), note that 𝑅 → 𝑈 ×𝑌 𝑈 is a monomorphism as the composition 𝑅 →
𝑈 ×𝑆 𝑈 is a monomorphism. For (2), note that 𝑅 → 𝑈 ×𝑌 𝑈 is locally of finite type, as
the composition 𝑅 → 𝑈 ×𝑆 𝑈 is locally of finite type (Morphisms, Lemma 24.14.8). A
monomorphism which is locally of finite type is locally quasi-finite because it has finite
fibres (Morphisms, Lemma 24.19.7), hence (5). A monomorphism is separated (Schemes,
Lemma 21.23.3), hence (4). �

Definition 42.5.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 be the diagonal morphism.

(1) We say 𝑓 is separated if Δ𝑋/𝑌 is a closed immersion.
(2) We say 𝑓 is locally separated1 if Δ𝑋/𝑌 is an immersion.
(3) We say 𝑓 is quasi-separated if Δ𝑋/𝑌 is quasi-compact.

This definition makes sense since Δ𝑋/𝑌 is representable, and hence we know what it means
for it to have one of the properties described in the definition. We will see below (Lemma
42.5.13) that this definition matches the ones we already have for morphisms of schemes
and representable morphisms.

Lemma 42.5.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is separated, then 𝑓 is locally separated and 𝑓 is quasi-separated.

Proof. This is true, via the general principle Spaces, Lemma 40.5.8, because a closed im-
mersion of schemes is an immersion and is quasi-compact. �

Lemma 42.5.4. All of the separation axioms listed in Definition 42.5.2 are stable under
base change.

1In the literature this term often refers to quasi-separated and locally separated morphisms.
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Proof. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑌′ → 𝑌 be morphisms of algebraic spaces. Let 𝑓′ ∶ 𝑋′ → 𝑌′ be
the base change of 𝑓 by 𝑌′ → 𝑌. Then Δ𝑋′/𝑌′ is the base change of Δ𝑋/𝑌 by the morphism
𝑋′ ×𝑌′ 𝑋′ → 𝑋 ×𝑌 𝑋. By the results of Section 42.3 each of the properties of the diagonal
used in Definition 42.5.2 is stable under base change. Hence the lemma is true. �

Lemma 42.5.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑍, 𝑔 ∶ 𝑌 → 𝑍 and 𝑍 → 𝑇 be morphisms
of algebraic spaces over 𝑆. Consider the induced morphism 𝑖 ∶ 𝑋 ×𝑍 𝑌 → 𝑋 ×𝑇 𝑌. Then

(1) 𝑖 is representable, locally of finite type, locally quasi-finite, separated and a
monomorphism,

(2) if 𝑍 → 𝑇 is locally separated, then 𝑖 is an immersion,
(3) if 𝑍 → 𝑇 is separated, then 𝑖 is a closed immersion, and
(4) if 𝑍 → 𝑇 is quasi-separated, then 𝑖 is quasi-compact.

Proof. By general category theory the following diagram

𝑋 ×𝑍 𝑌
𝑖
//

��

𝑋 ×𝑇 𝑌

��
𝑍

Δ𝑍/𝑇 //// 𝑍 ×𝑇 𝑍

is a fibre product diagram. Hence 𝑖 is the base change of the diagonal morphism Δ𝑍/𝑇. Thus
the lemma follows from Lemma 42.5.1, and the material in Section 42.3. �

Lemma 42.5.6. Let 𝑆 be a scheme. Let 𝑇 be an algebraic space over 𝑆. Let 𝑔 ∶ 𝑋 → 𝑌 be
a morphism of algebraic spaces over 𝑇. Consider the graph 𝑖 ∶ 𝑋 → 𝑋 ×𝑇 𝑌 of 𝑔. Then

(1) 𝑖 is representable, locally of finite type, locally quasi-finite, separated and a
monomorphism,

(2) if 𝑌 → 𝑇 is locally separated, then 𝑖 is an immersion,
(3) if 𝑌 → 𝑇 is separated, then 𝑖 is a closed immersion, and
(4) if 𝑌 → 𝑇 is quasi-separated, then 𝑖 is quasi-compact.

Proof. This is a special case of Lemma 42.5.5 applied to the morphism 𝑋 = 𝑋 ×𝑌 𝑌 →
𝑋 ×𝑇 𝑌. �

Lemma 42.5.7. Let 𝑆 be a schemes. Let 𝑓 ∶ 𝑋 → 𝑇 be a morphism of algebraic spaces
over 𝑆. Let 𝑠 ∶ 𝑇 → 𝑋 be a section of 𝑓 (in a formula 𝑓 ∘ 𝑠 = id𝑇). Then

(1) 𝑠 is representable, locally of finite type, locally quasi-finite, separated and a
monomorphism,

(2) if 𝑓 is locally separated, then 𝑠 is an immersion,
(3) if 𝑓 is separated, then 𝑠 is a closed immersion, and
(4) if 𝑓 is quasi-separated, then 𝑠 is quasi-compact.

Proof. This is a special case of Lemma 42.5.6 applied to 𝑔 = 𝑠 so the morphism 𝑖 = 𝑠 ∶
𝑇 → 𝑇 ×𝑇 𝑋. �

Lemma 42.5.8. All of the separation axioms listed in Definition 42.5.2 are stable under
composition of morphisms.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms of algebraic spaces to which the
axiom in question applies. The diagonal Δ𝑋/𝑍 is the composition

𝑋 ⟶ 𝑋 ×𝑌 𝑋 ⟶ 𝑋 ×𝑍 𝑋.
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Our separation axiom is defined by requiring the diagonal to have some property 𝒫. By
Lemma 42.5.5 above we see that the second arrow also has this property. Hence the lemma
follows since the composition of (representable) morphisms with property 𝒫 also is a mor-
phism with property 𝒫, see Section 42.3. �

Lemma 42.5.9. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) If 𝑌 is separated and 𝑓 is separated, then 𝑋 is separated.
(2) If 𝑌 is quasi-separated and 𝑓 is quasi-separated, then 𝑋 is quasi-separated.
(3) If 𝑌 is locally separated and 𝑓 is locally separated, then 𝑋 is locally separated.
(4) If 𝑌 is separated over 𝑆 and 𝑓 is separated, then 𝑋 is separated over 𝑆.
(5) If 𝑌 is quasi-separated over𝑆 and 𝑓 is quasi-separated, then𝑋 is quasi-separated

over 𝑆.
(6) If 𝑌 is locally separated over 𝑆 and 𝑓 is locally separated, then 𝑋 is locally sep-

arated over 𝑆.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 42.5.8 and Spaces, Defini-
tion 40.13.2. Parts (1), (2), and (3) reduce to parts (4), (5), and (6) by thinking of 𝑋 and 𝑌
as algebraic spaces over 𝑆𝑝𝑒𝑐(𝐙), see Properties of Spaces, Definition 41.3.1. �

Lemma 42.5.10. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms of
algebraic spaces over 𝑆.

(1) If 𝑔 ∘ 𝑓 is separated then so is 𝑓.
(2) If 𝑔 ∘ 𝑓 is locally separated then so is 𝑓.
(3) If 𝑔 ∘ 𝑓 is quasi-separated then so is 𝑓.

Proof. Consider the factorization
𝑋 → 𝑋 ×𝑌 𝑋 → 𝑋 ×𝑍 𝑋

of the diagonal morphism of 𝑔 ∘ 𝑓. In any case the last morphism is a monomorphism.
Hence for any scheme 𝑇 and morphism 𝑇 → 𝑋 ×𝑌 𝑋 we have the equality

𝑋 ×(𝑋×𝑌𝑋) 𝑇 = 𝑋 ×(𝑋×𝑍𝑋) 𝑇.
Hence the result is clear. �

Lemma 42.5.11. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) If 𝑋 is separated then 𝑋 is separated over 𝑆.
(2) If 𝑋 is locally separated then 𝑋 is locally separated over 𝑆.
(3) If 𝑋 is quasi-separated then 𝑋 is quasi-separated over 𝑆.

Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆.
(4) If 𝑋 is separated over 𝑆 then 𝑓 is separated.
(5) If 𝑋 is locally separated over 𝑆 then 𝑓 is locally separated.
(6) If 𝑋 is quasi-separated over 𝑆 then 𝑓 is quasi-separated.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 42.5.10 and Spaces, Defi-
nition 40.13.2. Parts (1), (2), and (3) follow from parts (4), (5), and (6) by thinking of 𝑋
and 𝑌 as algebraic spaces over 𝑆𝑝𝑒𝑐(𝐙), see Properties of Spaces, Definition 41.3.1. �

Lemma 42.5.12. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝒫 be any of the separation axioms of Definition 42.5.2. The following are
equivalent

(1) 𝑓 is 𝒫,
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(2) for every scheme 𝑍 and morphism 𝑍 → 𝑌 the base change 𝑍 ×𝑌 𝑋 → 𝑍 of 𝑓 is
𝒫,

(3) for every affine scheme 𝑍 and every morphism 𝑍 → 𝑌 the base change 𝑍×𝑌 𝑋 →
𝑍 of 𝑓 is 𝒫,

(4) for every affine scheme 𝑍 and every morphism 𝑍 → 𝑌 the algebraic space 𝑍×𝑌𝑋
is 𝒫 (see Properties of Spaces, Definition 41.3.1),

(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that the base
change 𝑉 ×𝑌 𝑋 → 𝑉 has 𝒫, and

(6) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →
𝑌𝑖 has 𝒫.

Proof. We will repeatedly use Lemma 42.5.4 without further mention. In particular, it is
clear that (1) implies (2) and (2) implies (3).

Let us prove that (3) and (4) are equivalent. Note that if 𝑍 is an affine scheme, then the
morphism 𝑍 → 𝑆𝑝𝑒𝑐(𝐙) is a separated morphism as a morphism of algebraic spaces over
𝑆𝑝𝑒𝑐(𝐙). If 𝑍 ×𝑌 𝑋 → 𝑍 is 𝒫, then 𝑍 ×𝑌 𝑋 → 𝑆𝑝𝑒𝑐(𝐙) is 𝒫 as a composition (see Lemma
42.5.8). Hence the algebraic space 𝑍 ×𝑌 𝑋 is 𝒫. Conversely, if the algebraic space 𝑍 ×𝑌 𝑋
is 𝒫, then 𝑍 ×𝑌 𝑋 → 𝑆𝑝𝑒𝑐(𝐙) is 𝒫, and hence by Lemma 42.5.10 we see that 𝑍 ×𝑌 𝑋 → 𝑍
is 𝒫.

Let us prove that (3) implies (5). Assume (3). Let 𝑉 be a scheme and let 𝑉 → 𝑌 be étale
surjective. We have to show that 𝑉 ×𝑌 𝑋 → 𝑉 has property 𝒫. In other words, we have to
show that the morphism

𝑉 ×𝑌 𝑋 ⟶ (𝑉 ×𝑌 𝑋) ×𝑉 (𝑉 ×𝑌 𝑋) = 𝑉 ×𝑌 𝑋 ×𝑌 𝑋

has the corresponding property (i.e., is a closed immersion, immersion, or quasi-compact).
Let 𝑉 = ⋃ 𝑉𝑗 be an affine open covering of 𝑉. By assumption we know that each of the
morphisms

𝑉𝑗 ×𝑌 𝑋 ⟶ 𝑉𝑗 ×𝑌 𝑋 ×𝑌 𝑋

does have the corresponding property. Since being a closed immersion, immersion, quasi-
compact immersion, or quasi-compact is Zariski local on the target, and since the 𝑉𝑗 cover
𝑉 we get the desired conclusion.

Let us prove that (5) implies (1). Let 𝑉 → 𝑌 be as in (5). Then we have the fibre product
diagram

𝑉 ×𝑌 𝑋 //

��

𝑋

��
𝑉 ×𝑌 𝑋 ×𝑌 𝑋 // 𝑋 ×𝑌 𝑋

By assumption the left vertical arrow is a closed immersion, immersion, quasi-compact im-
mersion, or quasi-compact. It follows fromSpaces, Lemma 40.5.6 that also the right vertical
arrow is a closed immersion, immersion, quasi-compact immersion, or quasi-compact.

It is clear that (1) implies (6) by taking the covering 𝑌 = 𝑌. Assume 𝑌 = ⋃ 𝑌𝑖 is as in
(6). Choose schemes 𝑉𝑖 and surjective étale morphisms 𝑉𝑖 → 𝑌𝑖. Note that the morphisms
𝑉𝑖 ×𝑌 𝑋 → 𝑉𝑖 have 𝒫 as they are base changes of the morphisms 𝑓−1(𝑌𝑖) → 𝑌𝑖. Set
𝑉 = ∐ 𝑉𝑖. Then 𝑉 → 𝑌 is a morphism as in (5) (details omitted). Hence (6) implies (5)
and we are done. �
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Lemma 42.5.13. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆.

(1) The morphism 𝑓 is locally separated.
(2) The morphism 𝑓 is (quasi-)separated in the sense of Definition 42.5.2 above if

and only if 𝑓 is (quasi-)separated in the sense of Section 42.3.
In particular, if 𝑓 ∶ 𝑋 → 𝑌 is a morphism of schemes over 𝑆, then 𝑓 is (quasi-)separated in
the sense of Definition 42.5.2 if and only if 𝑓 is (quasi-)separated as a morphism of schemes.

Proof. This is the equivalence of (1) and (2) of Lemma 42.5.12 combined with the fact
that any morphism of schemes is locally separated, see Schemes, Lemma 21.21.2. �

42.6. Surjective morphisms

We have already defined in Section 42.3 what it means for a representable morphism of
algebraic spaces to be surjective.

Lemma 42.6.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆. Then 𝑓 is surjective if and only if |𝑓| ∶ |𝑋| → |𝑌| is surjective.

Proof. Namely, if 𝑓 ∶ 𝑋 → 𝑌 is representable, then it is surjective if and only if for
every scheme 𝑇 and every morphism 𝑇 → 𝑌 the base change 𝑓𝑇 ∶ 𝑇 ×𝑌 𝑋 → 𝑇 of 𝑓
is a surjective morphism of schemes, in other words, if and only if |𝑓𝑇| is surjective. By
Properties of Spaces, Lemma 41.4.3 the map |𝑇 ×𝑌 𝑋| → |𝑇| ×|𝑌| |𝑋| is always surjective.
Hence |𝑓𝑇| ∶ |𝑇 ×𝑌 𝑋| → |𝑇| is surjective if |𝑓| ∶ |𝑋| → |𝑌| is surjective. Conversely, if
|𝑓𝑇| is surjective for every 𝑇 → 𝑌 as above, then by taking 𝑇 to be the spectrum of a field
we conclude that |𝑋| → |𝑌| is surjective. �

This clears the way for the following definition.

Definition 42.6.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. We say 𝑓 is surjective if the map |𝑓| ∶ |𝑋| → |𝑌| of associated topological spaces
is surjective.

Lemma 42.6.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is surjective,
(2) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is

surjective,
(3) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is surjective,
(4) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is a surjective morphism,
(5) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

the composition 𝑓 ∘ 𝜑 is surjective,
(6) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes and the vertical arrows are surjective étale such that the
top horizontal arrow is surjective, and
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(7) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →
𝑌𝑖 is surjective.

Proof. Omitted. �

Lemma 42.6.4. The composition of surjective morphisms is surjective.

Proof. This is immediate from the definition. �

Lemma 42.6.5. The base change of a surjective morphism is surjective.

Proof. Follows immediately from Properties of Spaces, Lemma 41.4.3. �

42.7. Open morphisms

For a representable morphism of algebraic spaces we have already defined (in Section 42.3)
what it means to be universally open. Hence before we give the natural definition we check
that it agrees with this in the representable case.

Lemma 42.7.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆. The following are equivalent

(1) 𝑓 is universally open, and
(2) for every morphism of algebraic spaces 𝑍 → 𝑌 the morphism of topological

spaces |𝑍 ×𝑌 𝑋| → |𝑍| is open.

Proof. Assume (1), and let 𝑍 → 𝑌 be as in (2). Choose a scheme 𝑉 and a surjective étale
morphism 𝑉 → 𝑌. By assumption the morphism of schemes 𝑉 ×𝑌 𝑋 → 𝑉 is universally
open. By Properties of Spaces, Section 41.4 in the commutative diagram

|𝑉 ×𝑌 𝑋| //

��

|𝑍 ×𝑌 𝑋|

��
|𝑉| // |𝑍|

the horizontal arrows are open and surjective, and moreover
|𝑉 ×𝑌 𝑋| ⟶ |𝑉| ×|𝑍| |𝑍 ×𝑌 𝑋|

is surjective. Hence as the left vertical arrow is open it follows that the right vertical arrow
is open. This proves (2). The implication (2) ⇒ (1) is immediate from the definitions. �

Thus we may use the following natural definition.

Definition 42.7.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is open if the map of topological spaces |𝑓| ∶ |𝑋| → |𝑌| is open.
(2) We say 𝑓 is universally open if for every morphism of algebraic spaces 𝑍 → 𝑌

the morphism of topological spaces
|𝑍 ×𝑌 𝑋| → |𝑍|

is open, i.e., the base change 𝑍 ×𝑌 𝑋 → 𝑍 is open.

Note that an étale morphism of algebraic spaces is universally open, see Properties of
Spaces, Definition 41.13.2 and Lemmas 41.13.7 and 41.13.5.

Lemma 42.7.3. The base change of a universally open morphism of algebraic spaces by
any morphism of algebraic spaces is universally open.
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Proof. This is immediate from the definition. �

Lemma 42.7.4. The composition of a pair of (universally) open morphisms of algebraic
spaces is (universally) open.

Proof. Omitted. �

Lemma 42.7.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent

(1) 𝑓 is universally open,
(2) for every scheme 𝑍 and every morphism 𝑍 → 𝑌 the projection |𝑍 ×𝑌 𝑋| → |𝑍|

is open,
(3) for every affine scheme 𝑍 and every morphism 𝑍 → 𝑌 the projection |𝑍×𝑌 𝑋| →

|𝑍| is open, and
(4) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is a universally open morpism of algebraic spaces, and
(5) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →

𝑌𝑖 is universally open.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism 𝑉 → 𝑌. We are going to show that
𝑉×𝑌 𝑋 → 𝑉 is a universally open morphism of algebraic spaces. Let 𝑍 → 𝑉 be a morphism
from an algebraic space to 𝑉. Let 𝑊 → 𝑍 be a surjective étale morphism where 𝑊 = ∐ 𝑊𝑖
is a disjoint union of affine schemes, see Properties of Spaces, Lemma 41.6.1. Then we have
the following commutative diagram

∐𝑖 |𝑊𝑖 ×𝑌 𝑋|

��

|𝑊 ×𝑌 𝑋| //

��

|𝑍 ×𝑌 𝑋|

��

|𝑍 ×𝑉 (𝑉 ×𝑌 𝑋)|

ww
∐ |𝑊𝑖| |𝑊| // |𝑍|

We have to show the south-east arrow is open. The middle horizontal arrows are surjective
and open (Properties of Spaces, Lemma 41.13.7). By assumption (3), and the fact that 𝑊𝑖
is affine we see that the left vertical arrows are open. Hence it follows that the right vertical
arrow is open.

Assume 𝑉 → 𝑌 is as in (4). We will show that 𝑓 is universally open. Let 𝑍 → 𝑌 be a
morphism of algebraic spaces. Consider the diagram

|(𝑉 ×𝑌 𝑍) ×𝑉 (𝑉 ×𝑌 𝑋)|

((

|𝑉 ×𝑌 𝑋| //

��

|𝑍 ×𝑌 𝑋|

��
|𝑉 ×𝑌 𝑍| // |𝑍|

The south-west arrow is open by assumption. The horizontal arrows are surjective and
open because the corresponding morphisms of algebraic spaces are étale (see Properties of
Spaces, Lemma 41.13.7). It follows that the right vertical arrow is open.

Of course (1) implies (5) by taking the covering 𝑌 = 𝑌. Assume 𝑌 = ⋃ 𝑌𝑖 is as in (5).
Then for any 𝑍 → 𝑌 we get a corresponding Zariski covering 𝑍 = ⋃ 𝑍𝑖 such that the base
change of 𝑓 to 𝑍𝑖 is open. By a simple topological argument this implies that 𝑍 ×𝑌 𝑋 → 𝑍
is open. Hence (1) holds. �
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Lemma 42.7.6. Let 𝑆 be a scheme. Let 𝑝 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) be a morphism of algebraic
spaces over 𝑆 where 𝑘 is a field. Then 𝑝 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is universally open.
Proof. Choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋. The composition
𝑈 → 𝑆𝑝𝑒𝑐(𝑘) is universally open (as a morphism of schemes) by Morphisms, Lemma
24.22.4. Let 𝑍 → 𝑆𝑝𝑒𝑐(𝑘) be a morphism of schemes. Then 𝑈 ×𝑆𝑝𝑒𝑐(𝑘) 𝑍 → 𝑋 ×𝑆𝑝𝑒𝑐(𝑘) 𝑍
is surjective, see Lemma 42.6.5. Hence the first of the maps

|𝑈 ×𝑆𝑝𝑒𝑐(𝑘) 𝑍| → |𝑋 ×𝑆𝑝𝑒𝑐(𝑘) 𝑍| → |𝑍|
is surjective. Since the composition is open by the above we conclude that the second map
is open as well. Whence 𝑝 is universally open by Lemma 42.7.5. �

42.8. Submersive morphisms

Definition 42.8.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is submersive2 if the continuous map |𝑋| → |𝑌| is submersive, see
Topology, Definition 5.15.1.

(2) We say 𝑓 is universally submersive if for every morphism of algebraic spaces
𝑌′ → 𝑌 the base change 𝑌′ ×𝑌 𝑋 → 𝑌′ is submersive.

We note that a submersive morphism is in particular surjective.

42.9. Quasi-compact morphisms

By Section 42.3 we knowwhat it means for a representable morphism of algebraic spaces to
be quasi-compact. In order to formulate the definition for a general morphism of algebraic
spaces we make the following observation.
Lemma 42.9.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆. The following are equivalent:

(1) 𝑓 is quasi-compact, and
(2) for every quasi-compact algebraic space 𝑍 and any morphism 𝑍 → 𝑌 the alge-

braic space 𝑍 ×𝑌 𝑋 is quasi-compact.
Proof. Assume (1), and let 𝑍 → 𝑌 be a morphism of algebraic spaces with 𝑍 quasi-
compact. By Properties of Spaces, Definition 41.5.1 there exists a quasi-compact scheme
𝑈 and a surjective étale morphism 𝑈 → 𝑍. Since 𝑓 is representable and quasi-compact we
see by definition that 𝑈 ×𝑌 𝑋 is a scheme, and that 𝑈 ×𝑌 𝑋 → 𝑈 is quasi-compact. Hence
𝑈×𝑌 𝑋 is a quasi-compact scheme. The morphism 𝑈×𝑌 𝑋 → 𝑍×𝑌 𝑋 is étale and surjective
(as the base change of the representable étale and surjective morphism 𝑈 → 𝑍, see Section
42.3). Hence by definition 𝑍 ×𝑌 𝑋 is quasi-compact.
Assume (2). Let 𝑍 → 𝑌 be a morphism, where 𝑍 is a scheme. We have to show that
𝑝 ∶ 𝑍 ×𝑌 𝑋 → 𝑍 is quasi-compact. Let 𝑈 ⊂ 𝑍 be affine open. Then 𝑝−1(𝑈) = 𝑈 ×𝑌 𝑍
and the scheme 𝑈 ×𝑌 𝑍 is quasi-compact by assumption (2). Hence 𝑝 is quasi-compact, see
Schemes, Section 21.19. �

This motivates the following definition.
Definition 42.9.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. We say 𝑓 is quasi-compact if for every quasi-compact algebraic space 𝑍 and mor-
phism 𝑍 → 𝑌 the fibre product 𝑍 ×𝑌 𝑋 is quasi-compact.

2This is very different from the notion of a submersion of differential manifolds.
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By Lemma 42.9.1 above this agrees with the already existing notion for representable mor-
phisms of algebraic spaces.

Lemma 42.9.3. The base change of a quasi-compact morphism of algebraic spaces by any
morphism of algebraic spaces is quasi-compact.

Proof. Omitted. �

Lemma 42.9.4. The composition of a pair of quasi-compact morphisms of algebraic spaces
is quasi-compact.

Proof. Omitted. �

Lemma 42.9.5. Let 𝑆 be a scheme.
(1) If 𝑋 → 𝑌 is a surjective morphism of algebraic spaces over 𝑆, and 𝑋 is quasi-

compact then 𝑌 is quasi-compact.
(2) If

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

is a commutative diagram of morphisms of algebraic spaces over 𝑆 and 𝑓 is sur-
jective and 𝑝 is quasi-compact, then 𝑞 is quasi-compact.

Proof. Assume 𝑋 is quasi-compact and 𝑋 → 𝑌 is surjective. By Definition 42.6.2 the map
|𝑋| → |𝑌| is surjective, hence we see 𝑌 is quasi-compact by Properties of Spaces, Lemma
41.5.2 and the topological fact that the image of a quasi-compact space under a continuous
map is quasi-compact, see Topology, Lemma 5.9.5. Let 𝑓, 𝑝, 𝑞 be as in (2). Let 𝑇 → 𝑍 be
a morphism whose source is a quasi-compact algebraic space. By assumption 𝑇 ×𝑍 𝑋 is
quasi-compact. By Lemma 42.6.5 the morphism 𝑇 ×𝑍 𝑋 → 𝑇 ×𝑍 𝑌 is surjective. Hence by
part (1) we see 𝑇 ×𝑍 𝑌 is quasi-compact too. Thus 𝑞 is quasi-compact. �

Lemma 42.9.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑔 ∶ 𝑌′ → 𝑌 be a universally open and surjective morphism of algebraic spaces
such that the base change 𝑓′ ∶ 𝑋′ → 𝑌′ is quasi-compact. Then 𝑓 is quasi-compact.

Proof. Let 𝑍 → 𝑌 be a morphism of algebraic spaces with 𝑍 quasi-compact. As 𝑔 is
universally open and surjective, we see that 𝑌′ ×𝑌 𝑍 → 𝑍 is open and surjective. As every
point of |𝑌′ ×𝑌 𝑍| has a fundamental system of quasi-compact open neighbourhoods (see
Properties of Spaces, Lemma 41.5.5) we can find a quasi-compact open 𝑊 ⊂ |𝑌′ ×𝑌 𝑍|
which surjects onto 𝑍. Denote 𝑓″ ∶ 𝑊 ×𝑌 𝑋 → 𝑊 the base change of 𝑓′ by 𝑊 → 𝑌′.
By assumption 𝑊 ×𝑌 𝑋 is quasi-compact. As 𝑊 → 𝑍 is surjective we see that 𝑊 ×𝑌
𝑋 → 𝑍 ×𝑌 𝑋 is surjective. Hence 𝑍 ×𝑌 𝑋 is quasi-compact by Lemma 42.9.5. Thus 𝑓 is
quasi-compact. �

Lemma 42.9.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is quasi-compact,
(2) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism of algebraic spaces

𝑍 ×𝑌 𝑋 → 𝑍 is quasi-compact,
(3) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the algebraic space 𝑍 ×𝑌 𝑋

is quasi-compact,
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(4) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →
𝑉 is a quasi-compact morphism of algebraic spaces, and

(5) there exists a surjective étale morphism 𝑌′ → 𝑌 of algebraic spaces such that
𝑌′ ×𝑌 𝑋 → 𝑌′ is a quasi-compact morphism of algebraic spaces, and

(6) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →
𝑌𝑖 is quasi-compact.

Proof. We will use Lemma 42.9.3 without further mention. It is clear that (1) implies (2)
and that (2) implies (3). Assume (3). Let 𝑍 be a quasi-compact algebraic space over 𝑆,
and let 𝑍 → 𝑌 be a morphism. By Properties of Spaces, Lemma 41.6.3 there exists an
affine scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑍. Then 𝑈 ×𝑌 𝑋 → 𝑍 ×𝑌 𝑋 is a
surjective morphism of algebraic spaces, see Lemma 42.6.5. By assumption |𝑈 ×𝑌 𝑋| is
quasi-compact. It surjects onto |𝑍×𝑌𝑋|, hence we conclude that |𝑍×𝑌𝑋| is quasi-compact,
see Topology, Lemma 5.9.5. This proves that (3) implies (1).

The implications (1) ⇒ (4), (4) ⇒ (5) are clear. The implication (5) ⇒ (1) follows from
Lemma 42.9.6 and the fact that an étale morphism of algebraic spaces is universally open
(see discussion following Definition 42.7.2).

Of course (1) implies (6) by taking the covering 𝑌 = 𝑌. Assume 𝑌 = ⋃ 𝑌𝑖 is as in (6).
Let 𝑍 be affine and let 𝑍 → 𝑌 be a morphism. Then there exists a finite standard affine
covering 𝑍 = 𝑍1 ∪ … ∪ 𝑍𝑛 such that each 𝑍𝑗 → 𝑌 factors through 𝑌𝑖𝑗 for some 𝑖𝑗. Hence
the algebraic space

𝑍𝑗 ×𝑌 𝑋 = 𝑍𝑗 ×𝑌𝑖𝑗
𝑓−1(𝑌𝑖𝑗)

is quasi-compact. Since 𝑍 ×𝑌 𝑋 = ⋃𝑗=1,…,𝑛 𝑍𝑗 ×𝑌 𝑋 is a Zariski covering we see that
|𝑍 ×𝑌 𝑋| = ⋃𝑗=1,…,𝑛 |𝑍𝑗 ×𝑌 𝑋| (see Properties of Spaces, Lemma 41.4.8) is a finite union
of quasi-compact spaces, hence quasi-compact. Thus we see that (6) implies (3). �

The following (and the next) lemma guarantees in particular that a morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝐴)
is quasi-compact as soon as 𝑋 is a quasi-compact algebraic space

Lemma 42.9.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms
of algebraic spaces over 𝑆. If 𝑔 ∘ 𝑓 is quasi-compact and 𝑔 is quasi-separated then 𝑓 is
quasi-compact.

Proof. This is true because 𝑓 equals the composition (1, 𝑓) ∶ 𝑋 → 𝑋 ×𝑍 𝑌 → 𝑌. The
first map is quasi-compact by Lemma 42.5.7 because it is a section of the quasi-separated
morphism 𝑋 ×𝑍 𝑌 → 𝑋 (a base change of 𝑔, see Lemma 42.5.4). The second map is
quasi-compact as it is the base change of 𝑓, see Lemma 42.9.3. And compositions of quasi-
compact morphisms are quasi-compact, see Lemma 42.9.4. �

Lemma 42.9.9. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over a scheme 𝑆.
(1) If 𝑋 is quasi-compact and 𝑌 is quasi-separated, then 𝑓 is quasi-compact.
(2) If 𝑋 is quasi-compact and quasi-separated and 𝑌 is quasi-separated, then 𝑓 is

quasi-compact and quasi-separated.
(3) A fibre product of quasi-compact and quasi-separated algebraic spaces is quasi-

compact and quasi-separated.

Proof. Part (1) follows from Lemma 42.9.8 with 𝑍 = 𝑆 = 𝑆𝑝𝑒𝑐(𝐙). Part (2) follows from
(1) and Lemma 42.5.10. For (3) let 𝑋 → 𝑌 and 𝑍 → 𝑌 be morphisms of quasi-compact and
quasi-separated algebraic spaces. Then 𝑋 ×𝑌 𝑍 → 𝑍 is quasi-compact and quasi-separated
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as a base change of 𝑋 → 𝑌 using (2) and Lemmas 42.9.3 and 42.5.4. Hence 𝑋×𝑌𝑍 is quasi-
compact and quasi-separated as an algebraic space quasi-compact and quasi-separated over
𝑍, see Lemmas 42.5.9 and 42.9.4. �

42.10. Universally closed morphisms

For a representable morphism of algebraic spaces we have already defined (in Section 42.3)
what it means to be universally closed. Hence before we give the natural definition we check
that it agrees with this in the representable case.

Lemma 42.10.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆. The following are equivalent

(1) 𝑓 is universally closed, and
(2) for every morphism of algebraic spaces 𝑍 → 𝑌 the morphism of topological

spaces |𝑍 ×𝑌 𝑋| → |𝑍| is closed.

Proof. Assume (1), and let 𝑍 → 𝑌 be as in (2). Choose a scheme 𝑉 and a surjective étale
morphism 𝑉 → 𝑌. By assumption the morphism of schemes 𝑉 ×𝑌 𝑋 → 𝑉 is universally
closed. By Properties of Spaces, Section 41.4 in the commutative diagram

|𝑉 ×𝑌 𝑋| //

��

|𝑍 ×𝑌 𝑋|

��
|𝑉| // |𝑍|

the horizontal arrows are open and surjective, and moreover
|𝑉 ×𝑌 𝑋| ⟶ |𝑉| ×|𝑍| |𝑍 ×𝑌 𝑋|

is surjective. Hence as the left vertical arrow is closed it follows that the right vertical arrow
is closed. This proves (2). The implication (2) ⇒ (1) is immediate from the definitions. �

Thus we may use the following natural definition.

Definition 42.10.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is closed if the map of topological spaces |𝑋| → |𝑌| is closed.
(2) We say 𝑓 is universally closed if for every morphism of algebraic spaces 𝑍 → 𝑌

the morphism of topological spaces
|𝑍 ×𝑌 𝑋| → |𝑍|

is closed, i.e., the base change 𝑍 ×𝑌 𝑋 → 𝑍 is closed.

Lemma 42.10.3. The base change of a universally closed morphism of algebraic spaces
by any morphism of algebraic spaces is universally closed.

Proof. This is immediate from the definition. �

Lemma 42.10.4. The composition of a pair of (universally) closed morphisms of algebraic
spaces is (universally) closed.

Proof. Omitted. �

Lemma 42.10.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent

(1) 𝑓 is universally closed,
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(2) for every scheme 𝑍 and every morphism 𝑍 → 𝑌 the projection |𝑍 ×𝑌 𝑋| → |𝑍|
is closed,

(3) for every affine scheme 𝑍 and every morphism 𝑍 → 𝑌 the projection |𝑍×𝑌 𝑋| →
|𝑍| is closed,

(4) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →
𝑉 is a universally closed morpism of algebraic spaces, and

(5) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →
𝑌𝑖 is universally closed.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism 𝑉 → 𝑌. We are going to show that
𝑉×𝑌 𝑋 → 𝑉 is a universally closed morpism of algebraic spaces. Let 𝑍 → 𝑉 be a morphism
from an algebraic space to 𝑉. Let 𝑊 → 𝑍 be a surjective étale morphism where 𝑊 = ∐ 𝑊𝑖
is a disjoint union of affine schemes, see Properties of Spaces, Lemma 41.6.1. Then we have
the following commutative diagram

∐𝑖 |𝑊𝑖 ×𝑌 𝑋|

��

|𝑊 ×𝑌 𝑋| //

��

|𝑍 ×𝑌 𝑋|

��

|𝑍 ×𝑉 (𝑉 ×𝑌 𝑋)|

ww
∐ |𝑊𝑖| |𝑊| // |𝑍|

We have to show the south-east arrow is closed. The middle horizontal arrows are surjective
and open (Properties of Spaces, Lemma 41.13.7). By assumption (3), and the fact that 𝑊𝑖 is
affine we see that the left vertical arrows are closed. Hence it follows that the right vertical
arrow is closed.

Assume (4). We will show that 𝑓 is universally closed. Let 𝑍 → 𝑌 be a morphism of
algebraic spaces. Consider the diagram

|(𝑉 ×𝑌 𝑍) ×𝑉 (𝑉 ×𝑌 𝑋)|

((

|𝑉 ×𝑌 𝑋| //

��

|𝑍 ×𝑌 𝑋|

��
|𝑉 ×𝑌 𝑍| // |𝑍|

The south-west arrow is closed by assumption. The horizontal arrows are surjective and
open because the corresponding morphisms of algebraic spaces are étale (see Properties of
Spaces, Lemma 41.13.7). It follows that the right vertical arrow is closed.

Of course (1) implies (5) by taking the covering 𝑌 = 𝑌. Assume 𝑌 = ⋃ 𝑌𝑖 is as in (5).
Then for any 𝑍 → 𝑌 we get a corresponding Zariski covering 𝑍 = ⋃ 𝑍𝑖 such that the base
change of 𝑓 to 𝑍𝑖 is closed. By a simple topological argument this implies that 𝑍×𝑌 𝑋 → 𝑍
is closed. Hence (1) holds. �

Example 42.10.6. Strange example of a universally closed morphism. Let 𝐐 ⊂ 𝑘 be a
field of characteristic zero. Let 𝑋 = 𝐀1

𝑘/𝐙 as in Spaces, Example 40.14.8. We claim the
structuremorphism 𝑝 ∶ 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is universally closed. Namely, if𝑍/𝑘 is a scheme, and
𝑇 ⊂ |𝑋 ×𝑘 𝑍| is closed, then 𝑇 corresponds to a 𝐙-invariant closed subset of 𝑇′ ⊂ |𝐀1 × 𝑍|.
It is easy to see that this implies that 𝑇′ is the inverse image of a subset 𝑇″ of 𝑍. By
Morphisms, Lemma 24.24.10 we have that 𝑇″ ⊂ 𝑍 is closed. Of course 𝑇″ is the image of
𝑇. Hence 𝑝 is universally closed by Lemma 42.10.5.
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Lemma 42.10.7. Let 𝑆 be a scheme. A universally closed morphism of algebraic spaces
over 𝑆 is quasi-compact.

Proof. This proof is a repeat of the proof in the case of schemes, see Morphisms, Lemma
24.40.9. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆. Assume that 𝑓 is
not quasi-compact. Our goal is to show that 𝑓 is not universally closed. By Lemma 42.9.7
there exists an affine scheme 𝑍 and a morphism 𝑍 → 𝑌 such that 𝑍 ×𝑌 𝑋 → 𝑍 is not
quasi-compact. To achieve our goal it suffices to show that 𝑍 ×𝑌 𝑋 → 𝑍 is not universally
closed, hence we may assume that 𝑌 = 𝑆𝑝𝑒𝑐(𝐵) for some ring 𝐵.

Write 𝑋 = ⋃𝑖∈𝐼 𝑋𝑖 where the 𝑋𝑖 are quasi-compact open subspaces of 𝑋. For example,
choose a surjective étale morphism 𝑈 → 𝑋 where 𝑈 is a scheme, choose an affine open
covering 𝑈 = ⋃ 𝑈𝑖 and let 𝑋𝑖 ⊂ 𝑋 be the image of 𝑈𝑖. We will use later that the morphisms
𝑋𝑖 → 𝑌 are quasi-compact, see Lemma 42.9.8. Let 𝑇 = 𝑆𝑝𝑒𝑐(𝐵[𝑎𝑖; 𝑖 ∈ 𝐼]). Let 𝑇𝑖 =
𝐷(𝑎𝑖) ⊂ 𝑇. Let 𝑍 ⊂ 𝑇 ×𝑌 𝑋 be the reduced closed subspace whose underlying closed set
of points is |𝑇 ×𝑌 𝑍| ⧵ ⋃𝑖∈𝐼 |𝑇𝑖 ×𝑌 𝑋𝑖|, see Properties of Spaces, Lemma 41.9.1. (Note that
by the results of Section 42.4 the algebraic spaces 𝑇𝑖 ×𝑌 𝑋𝑖 are open subspaces of 𝑇 ×𝑌 𝑋.)
Here is a diagram

𝑍 //

""

𝑇 ×𝑌 𝑋

𝑓𝑇
��

𝑞
// 𝑋

𝑓
��

𝑇
𝑝 // 𝑌

It suffices to prove that the image 𝑓𝑇(|𝑍|) is not closed in |𝑇|.

We claim there exists a point 𝑦 ∈ 𝑌 such that there is no affine open neighborhood 𝑉 of 𝑦
in 𝑌 such that 𝑋𝑉 is quasi-compact. If not then we can cover 𝑌 with finitely many such 𝑉
and for each 𝑉 the morphism 𝑌𝑉 → 𝑉 is quasi-compact by Lemma 42.9.8 and then Lemma
42.9.7 implies 𝑓 quasi-compact, a contradiction. Fix a 𝑦 ∈ 𝑌 as in the claim.

Let 𝑡 ∈ 𝑇 be the point lying over 𝑦 with 𝜅(𝑡) = 𝜅(𝑦) such that 𝑎𝑖 = 1 in 𝜅(𝑡) for all 𝑖. Suppose
𝑧 ∈ |𝑍| with 𝑓𝑇(𝑧) = 𝑡. Then 𝑞(𝑡) ∈ 𝑋𝑖 for some 𝑖. Hence 𝑓𝑇(𝑧)∉𝑇𝑖 by construction of 𝑍,
which contradicts the fact that 𝑡 ∈ 𝑇𝑖 by construction. Hence we see that 𝑡 ∈ |𝑇| ⧵ 𝑓𝑇(|𝑍|).

Assume 𝑓𝑇(|𝑍|) is closed in |𝑇|. Then there exists an element 𝑔 ∈ 𝐵[𝑎𝑖; 𝑖 ∈ 𝐼] with
𝑓𝑇(|𝑍|) ⊂ 𝑉(𝑔) but 𝑡∉𝑉(𝑔). Hence the image of 𝑔 in 𝜅(𝑡) is nonzero. In particular some
coefficient of 𝑔 has nonzero image in 𝜅(𝑦). Hence this coefficient is invertible on some
affine open neighborhood 𝑉 of 𝑦. Let 𝐽 be the finite set of 𝑗 ∈ 𝐼 such that the variable
𝑎𝑗 appears in 𝑔. Since 𝑋𝑉 is not quasi-compact and each 𝑋𝑖,𝑉 is quasi-compact, we may
choose a point 𝑥 ∈ |𝑋𝑉| ⧵ ⋃𝑗∈𝐽 |𝑋𝑗,𝑉|. In other words, 𝑥 ∈ |𝑋| ⧵ ⋃𝑗∈𝐽 |𝑋𝑗| and 𝑥 lies
above some 𝑣 ∈ 𝑉. Since 𝑔 has a coefficient that is invertible on 𝑉, we can find a point
𝑡′ ∈ 𝑇 lying above 𝑣 such that 𝑡′∉𝑉(𝑔) and 𝑡′ ∈ 𝑉(𝑎𝑖) for all 𝑖 ∉ 𝐽. This is true because
𝑉(𝑎𝑖; 𝑖 ∈ 𝐼 ⧵ 𝐽) = 𝑆𝑝𝑒𝑐(𝐵[𝑎𝑗; 𝑗 ∈ 𝐽]) and the set of points of this scheme lying over 𝑣 is
bijective with 𝑆𝑝𝑒𝑐(𝜅(𝑣)[𝑎𝑗; 𝑗 ∈ 𝐽]) and 𝑔 restricts to a nonzero element of this polynomial
ring by construction. In other words 𝑡′∉𝑇𝑖 for each 𝑖∉𝐽. By Properties of Spaces, Lemma
41.4.3 we can find a point 𝑧 of 𝑋 ×𝑌 𝑇 mapping to 𝑥 ∈ 𝑋 and to 𝑡′ ∈ 𝑇. Since 𝑥∉|𝑋𝑗| for
𝑗 ∈ 𝐽 and 𝑡′∉𝑇𝑖 for 𝑖 ∈ 𝐼 ⧵ 𝐽 we see that 𝑧 ∈ |𝑍|. On the other hand 𝑓𝑇(𝑧) = 𝑡′∉𝑉(𝑔)
which contradicts 𝑓𝑇(𝑍) ⊂ 𝑉(𝑔). Thus the assumption ``𝑓𝑇(|𝑍|) closed'' is wrong and we
conclude indeed that 𝑓𝑇 is not closed as desired. �

The target of a separated algebraic space under a surjective universally closed morphism is
separated.
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Lemma 42.10.8. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌
be a surjective universally closed morphism of algebraic spaces over 𝐵.

(1) If 𝑋 is quasi-separated, then 𝑌 is quasi-separated.
(2) If 𝑋 is separated, then 𝑌 is separated.
(3) If 𝑋 is quasi-separated over 𝐵, then 𝑌 is quasi-separated over 𝐵.
(4) If 𝑋 is separated over 𝐵, then 𝑌 is separated over 𝐵.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for 𝑆 = 𝐵 = 𝑆𝑝𝑒𝑐(𝐙) (see
Properties of Spaces, Definition 41.3.1). Consider the commutative diagram

𝑋

��

Δ𝑋/𝐵

// 𝑋 ×𝐵 𝑋

��
𝑌

Δ𝑌/𝐵 // 𝑌 ×𝐵 𝑌

The left vertical arrow is surjective (i.e., universally surjective). The right vertical arrow
is universally closed as a composition of the universally closed morphisms 𝑋 ×𝐵 𝑋 →
𝑋 ×𝐵 𝑌 → 𝑌 ×𝐵 𝑌. Hence it is also quasi-compact, see Lemma 42.10.7.

Assume 𝑋 is quasi-separated over 𝐵, i.e., Δ𝑋/𝐵 is quasi-compact. Then if 𝑍 is quasi-
compact and 𝑍 → 𝑌 ×𝐵 𝑌 is a morphism, then 𝑍 ×𝑌×𝐵𝑌 𝑋 → 𝑍 ×𝑌×𝐵𝑌 𝑌 is surjective and
𝑍×𝑌×𝐵𝑌𝑋 is quasi-compact by our remarks above. We conclude that Δ𝑌/𝐵 is quasi-compact,
i.e., 𝑌 is quasi-separated over 𝐵.

Assume 𝑋 is quasi-separated over 𝐵, i.e., Δ𝑋/𝐵 is a closed immersion. Then if 𝑍 is affine,
and 𝑍 → 𝑌×𝐵 𝑌 is a morphism, then 𝑍×𝑌×𝐵𝑌 𝑋 → 𝑍×𝑌×𝐵𝑌 𝑌 is surjective and 𝑍×𝑌×𝐵𝑌 𝑋 →
𝑍 is universally closed by our remarks above. We conclude that Δ𝑌/𝐵 is universally closed.
It follows that Δ𝑌/𝐵 is representable, locally of finite type, a monomorphism (see Lemma
42.5.1) and universally closed, hence a closed immersion, see Étale Morphisms, Lemma
37.7.2 (and also the abstract principle Spaces, Lemma 40.5.8). Thus 𝑌 is separated over
𝐵. �

42.11. Valuative criteria

The formulation of the existence part of the valuative criterion is slightly different for mor-
phisms of algebraic spaces, since it may be necessary to extend the fraction field of the
valuation ring. See Example 42.11.4. Here is the definition.

Definition 42.11.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic
spaces over 𝑆. We say 𝑓 satisfies the uniqueness part of the valuative criterion if given any
commutative solid diagram

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) //

;;

𝑌

where 𝐴 is a valuation ring with field of fractions 𝐾, there exists at most one dotted arrow
(without requiring existence). We say 𝑓 satisfies the existence part of the valuative criterion
if given any solid diagram as above there exists an extension 𝐾 ⊂ 𝐾′ of fields, a valuation
ring𝐴′ ⊂ 𝐾′ dominating𝐴 and amorphism𝑆𝑝𝑒𝑐(𝐴′) → 𝑋 such that the following diagram
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commutes
𝑆𝑝𝑒𝑐(𝐾′) //

��

𝑆𝑝𝑒𝑐(𝐾) // 𝑋

��
𝑆𝑝𝑒𝑐(𝐴′) //

44

𝑆𝑝𝑒𝑐(𝐴) // 𝑌
We say 𝑓 satisfies the valuative criterion if 𝑓 satisfies both the existence and uniqueness
part.

It turns out that for algebraic spaces, it always sufffices to take a finite separable extension
𝐾 ⊂ 𝐾′ above. See Lemma 42.11.3. Before we prove it we show that the criterion is
identical to the criterion as formulated for morphisms of schemes in case the morphism of
algebraic spaces is representable.

Lemma 42.11.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Assume 𝑓 is representable. The following are equivalent

(1) 𝑓 satisfies the existence part of the valuation criterion as in Definition 42.11.1
above, and

(2) given any commutative solid diagram

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) //

;;

𝑌

where 𝐴 is a valuation ring with field of fractions 𝐾, there exists a dotted ar-
row, i.e., 𝑓 satisfies the existence part of the valuative criterion as in Schemes,
Definition 21.20.3.

Proof. It suffices to show that given a commutative diagram of the form

𝑆𝑝𝑒𝑐(𝐾′) //

��

𝑆𝑝𝑒𝑐(𝐾) // 𝑋

��
𝑆𝑝𝑒𝑐(𝐴′) //

𝜑

44

𝑆𝑝𝑒𝑐(𝐴) // 𝑌

as in Definition 42.11.1, then we can find a morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑋 fitting into the diagram
too. Set 𝑋𝐴 = 𝑆𝑝𝑒𝑐(𝐴) ×𝑌 𝑌. As 𝑓 is representable we see that 𝑋𝐴 is a scheme. The
morphism 𝜑 gives a morphism 𝜑′ ∶ 𝑆𝑝𝑒𝑐(𝐴′) → 𝑋𝐴. Let 𝑥 ∈ 𝑋𝐴 be the image of the
closed point of 𝜑′ ∶ 𝑆𝑝𝑒𝑐(𝐴′) → 𝑋𝐴. Then we have the following commutative diagram
of rings

𝐾′ 𝐾oo 𝒪𝑋𝐴,𝑥
oo

ww𝐴′

OO

𝐴oo 𝐴oo

OO

Since 𝐴 is a valuation ring, and since 𝐴′ dominates 𝐴, we see that 𝐾 ∩ 𝐴′ = 𝐴. Hence the
ring map 𝒪𝑋𝐴,𝑥 → 𝐾 has image contained in 𝐴. Whence a morphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑋𝐴 (see
Schemes, Section 21.13) as desired. �

Lemma 42.11.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent
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(1) 𝑓 satisfies the existence part of the valuation criterion as in Definition 42.11.1,
and

(2) 𝑓 satisfies the existence part of the valuation criterion as in Definition 42.11.1
modified by requiring the extension 𝐾 ⊂ 𝐾′ to be finite separable.

Proof. We have to show that (1) implies (2). Suppose given a diagram

𝑆𝑝𝑒𝑐(𝐾′) //

��

𝑆𝑝𝑒𝑐(𝐾) // 𝑋

��
𝑆𝑝𝑒𝑐(𝐴′) //

44

𝑆𝑝𝑒𝑐(𝐴) // 𝑌

as in Definition 42.11.1 with 𝐾 ⊂ 𝐾′ arbitrary. Choose a scheme 𝑈 and a surjective étale
morphism 𝑈 → 𝑋. Then

𝑆𝑝𝑒𝑐(𝐴′) ×𝑋 𝑈 ⟶ 𝑆𝑝𝑒𝑐(𝐴′)
is surjective étale. Let 𝑝 be a point of 𝑆𝑝𝑒𝑐(𝐴′) ×𝑋 𝑈 mapping to the closed point of
𝑆𝑝𝑒𝑐(𝐴′). Let 𝑝′  𝑝 be a generalization of 𝑝 mapping to the generic point of 𝑆𝑝𝑒𝑐(𝐴′).
Such a generalization exists because generalizations lift along flat morphisms of schemes,
seeMorphisms, Lemma 24.24.8. Then 𝑝′ corresponds to a point of the scheme 𝑆𝑝𝑒𝑐(𝐾′)×𝑋
𝑈. Note that

𝑆𝑝𝑒𝑐(𝐾′) ×𝑋 𝑈 = 𝑆𝑝𝑒𝑐(𝐾′) ×𝑆𝑝𝑒𝑐(𝐾) (𝑆𝑝𝑒𝑐(𝐾) ×𝑋 𝑈)

Hence 𝑝′ maps to a point 𝑞′ ∈ 𝑆𝑝𝑒𝑐(𝐾) ×𝑋 𝑈 whose residue field is a finite separable
extension of 𝐾. Finally, 𝑝′  𝑝 maps to a specialization 𝑢′  𝑢 on the scheme 𝑈. With all
this notation we get the following diagram of rings

𝜅(𝑝′) 𝜅(𝑞′)oo 𝜅(𝑢′)oo

𝒪𝑆𝑝𝑒𝑐(𝐴′)×𝑋𝑈,𝑝

ff

𝒪𝑈,𝑢
oo

OO

𝐾′

OO

𝐴′oo

OO

𝐴oo

OO

This means that the ring 𝐵 ⊂ 𝜅(𝑞′) generated by the images of 𝐴 and 𝒪𝑈,𝑢 maps to a subring
of 𝜅(𝑝′) contained in the image 𝐵′ of 𝒪𝑆𝑝𝑒𝑐(𝐴′)×𝑋𝑈,𝑝 → 𝜅(𝑝′). Note that 𝐵′ is a local ring.
Let 𝔪 ⊂ 𝐵 be the maximal ideal. By construction 𝐴 ∩ 𝔪, (resp. 𝒪𝑈,𝑢 ∩ 𝔪, resp. 𝐴′ ∩ 𝔪)
is the maximal ideal of 𝐴 (resp. 𝒪𝑈,𝑢, resp. 𝐴′). Set 𝔮 = 𝐵 ∩ 𝔪. This is a prime ideal such
that 𝐴 ∩ 𝔮 is the maximal ideal of 𝐴. Hence 𝐵𝔮 ⊂ 𝜅(𝑞′) is a local ring dominating 𝐴. By
Algebra, Lemma 7.46.2 we can find a valuation ring 𝐴1 ⊂ 𝜅(𝑞′) with field of fractions 𝜅(𝑞′)
dominating 𝐵𝔮. The (local) ring map 𝒪𝑈,𝑢 → 𝐴1 gives a morphism 𝑆𝑝𝑒𝑐(𝐴1) → 𝑈 → 𝑋
such that the diagram

𝑆𝑝𝑒𝑐(𝜅(𝑞′)) //

��

𝑆𝑝𝑒𝑐(𝐾) // 𝑋

��
𝑆𝑝𝑒𝑐(𝐴1) //

44

𝑆𝑝𝑒𝑐(𝐴) // 𝑌

is commutative. Since 𝑓.𝑓.(𝐴1) = 𝜅(𝑞′) ⊃ 𝐾 is finite separable by construction the lemma
is proved. �
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Example 42.11.4. Consider the algebraic space 𝑋 constructed in Spaces, Example 40.14.2.
Recall that it is the affine line with zero doubled in a Galois twisted relative to a degree two
Galois extension 𝑘 ⊂ 𝑘′. As such it comes with a morphism

𝜋 ∶ 𝑋 ⟶ 𝑆 = 𝐀1
𝑘

which is quasi-compact. We claim that 𝜋 is universally closed. Namely, after base change
by 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘) the morphism 𝜋 is identified with the morphism

affine line with zero doubled ⟶ affine line

which is universally closed (some details omitted). Since themorphism𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘)
is universally closed and surjective, a diagram chase shows that 𝜋 is universally closed. On
the other hand, consider the diagram

𝑆𝑝𝑒𝑐(𝑘((𝑥))) //

��

𝑋

𝜋
��

𝑆𝑝𝑒𝑐(𝑘[[𝑥]]) //

::

𝐀1
𝑘

Since the unique point of 𝑋 above 0 ∈ 𝐀1
𝑘 corresponds to a monomorphism 𝑆𝑝𝑒𝑐(𝑘′) → 𝑋

it is clear there cannot exist a dotted arrow! This shows that a finite separable field extension
is needed in general.

Lemma 42.11.5. The base change of a morphism of algebraic spaces which satisfies the
existence part of (resp. uniqueness part of) the valuative criterion by any morphism of alge-
braic spaces satisfies the existence part of (resp. uniqueness part of) the valuative criterion.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over the scheme 𝑆. Let 𝑍 → 𝑌
be any morphism of algebraic spaces over 𝑆. Consider a solid commutative diagram of the
following shape

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑍 ×𝑌 𝑋 //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) //

99
55

𝑍 // 𝑌

Then the set of north-west dotted arrows making the diagram commute is in 1-1 correspon-
dence with the set of west-north-west dotted arrows making the diagram commute. This
proves the lemma in the case of ``uniqueness''. For the existence part, assume 𝑓 satisfies
the existence part of the valuative criterion. If we are given a solid commutative diagram
as above, then by assumption there exists an extension 𝐾 ⊂ 𝐾′ of fields and a valuation
ring 𝐴′ ⊂ 𝐾′ dominating 𝐴 and a morphism 𝑆𝑝𝑒𝑐(𝐴′) → 𝑋 fitting into the following
commutative diagram

𝑆𝑝𝑒𝑐(𝐾′) //

��

𝑆𝑝𝑒𝑐(𝐾) // 𝑍 ×𝑌 𝑋 // 𝑋

��
𝑆𝑝𝑒𝑐(𝐴′) //

33

𝑆𝑝𝑒𝑐(𝐴) // 𝑍 // 𝑌

And by the remarks above the skew arrow corresponds to an arrow 𝑆𝑝𝑒𝑐(𝐴′) → 𝑍 ×𝑌 𝑋 as
desired. �
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Lemma 42.11.6. The composition of two morphisms of algebraic spaces which satisfy the
(existence part of, resp. uniqueness part of) the valuative criterion satisfies the (existence
part of, resp. uniqueness part of) the valuative criterion.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍 be morphisms of algebraic spaces over the scheme 𝑆.
Consider a solid commutative diagram of the following shape

𝑆𝑝𝑒𝑐(𝐾)

��

// 𝑋

𝑓
��

𝑌

𝑔
��

𝑆𝑝𝑒𝑐(𝐴) //

;;

DD

𝑍

If we have the uniqueness part for 𝑔, then there exists at most one north-west dotted arrow
making the diagram commute. If we also have the uniqueness part for 𝑓, then we have at
most one north-north-west dotted arrow making the diagram commute. The proof in the
existence case comes from contemplating the following diagram

𝑆𝑝𝑒𝑐(𝐾″) //

��

𝑆𝑝𝑒𝑐(𝐾′) // 𝑆𝑝𝑒𝑐(𝐾) // 𝑋

𝑓
��

𝑌

𝑔
��

𝑆𝑝𝑒𝑐(𝐴″) //

66

𝑆𝑝𝑒𝑐(𝐴′) //

44

𝑆𝑝𝑒𝑐(𝐴) // 𝑍

Namely, the existence part for 𝑔 gives us the extension 𝐾′, the valuation ring 𝐴′ and the
arrow 𝑆𝑝𝑒𝑐(𝐴′) → 𝑌, whereupon the existence part for 𝑓 gives us the extension 𝐾″, the
valuation ring 𝐴″ and the arrow 𝑆𝑝𝑒𝑐(𝐴″) → 𝑋. �

42.12. Valuative criterion for universal closedness

This is a littlemore involved than in the case of schemes, especially since themost optimistic
guess is wrong. See discussion below.

Lemma 42.12.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Assume

(1) 𝑓 is quasi-compact, and
(2) 𝑓 satisfies the existence part of the valuative criterion.

Then 𝑓 is universally closed.

Proof. By Lemmas 42.9.3 and 42.11.5 properties (1) and (2) are preserved under any base
change. By Lemma 42.10.5 we only have to show that 𝑇 ×𝑌 𝑋 → 𝑇 is universally closed,
whenever 𝑇 is an affine scheme over 𝑆 mapping into 𝑌. Hence it suffices to prove: If 𝑌
is an affine scheme, 𝑓 ∶ 𝑋 → 𝑌 is quasi-compact and satisfies the existence part of the
valuative criterion, then 𝑓 ∶ |𝑋| → |𝑌| is closed. In this situation 𝑋 is a quasi-compact
algebraic space. By Properties of Spaces, Lemma 41.6.3 there exists an affine scheme 𝑈
and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋. Let 𝑇 ⊂ |𝑋| closed. The inverse image
𝜑−1(𝑇) ⊂ 𝑈 is closed, and hence is the set of points of an affine closed subscheme 𝑍 ⊂ 𝑈.
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Thus, by Algebra, Lemma 7.36.5 we see that 𝑓(𝑇) = 𝑓(𝜑(|𝑍|)) ⊂ |𝑌| is closed if it is closed
under specialization.

Let 𝑦′  𝑦 be a specialization in 𝑌 with 𝑦′ ∈ 𝑓(𝑇). Choose a point 𝑥′ ∈ 𝑇 ⊂ |𝑋| mapping
to 𝑦′ under 𝑓. We may represent 𝑥′ by a morphism 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 for some field 𝐾. Thus
we have the following diagram

𝑆𝑝𝑒𝑐(𝐾)
𝑥′
//

��

𝑋

𝑓
��

𝑆𝑝𝑒𝑐(𝒪𝑌,𝑦) // 𝑌,

see Schemes, Section 21.13 for the existence of the left vertical map. Choose a valuation
ring 𝐴 ⊂ 𝐾 dominating the image of the ring map 𝒪𝑌,𝑦 → 𝐾 (this is possible since the
image is a local ring and not a field as 𝑦′≠𝑦, see Algebra, Lemma 7.46.2). By assumption
there exists a field extension 𝐾 ⊂ 𝐾′ and a valuation ring 𝐴′ ⊂ 𝐾′ dominating 𝐴, and a
morphism 𝑆𝑝𝑒𝑐(𝐴′) → 𝑋 fitting into the commutative diagram. Since 𝐴′ dominates 𝐴,
and 𝐴 dominates 𝒪𝑌,𝑦 we see that the closed point of 𝑆𝑝𝑒𝑐(𝐴′) maps to a point 𝑥 ∈ 𝑋 with
𝑓(𝑥) = 𝑦 which is a specialization of 𝑥′. Hence 𝑥 ∈ 𝑇 as 𝑇 is closed, and hence 𝑦 ∈ 𝑓(𝑇)
as desired. �

We also want to prove the converse of Lemma 42.12.1. Namely, we would like to show,
under additional conditions, that a quasi-compact morphism is universallly closed if and
only if the existence part of the valuative criterion holds. Example 42.10.6 shows that
𝐀1

𝑘/𝐙 → 𝑆𝑝𝑒𝑐(𝑘) is universally closed, but it is easy to see that the existence part of the
valuative criterion fails. Hence some additional hypothesis is needed. We address this in
Decent Spaces, Section 43.12 when the source of the morphism is a decent space. See also
Decent Spaces, Lemma 43.13.8 for a slight weakening of the hypothesis.

42.13. Valuative criterion of separatedness

Lemma 42.13.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is separated, then 𝑓 satisfies the uniqueness part of the valuative criterion.

Proof. Let a diagram as in Definition 42.11.1 be given. Suppose there are two distinct
morphisms 𝑎, 𝑏 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑋 fitting into the diagram. Let 𝑍 ⊂ 𝑆𝑝𝑒𝑐(𝐴) be the equalizer
of 𝑎 and 𝑏. Then 𝑍 = 𝑆𝑝𝑒𝑐(𝐴) ×(𝑎,𝑏),𝑋×𝑌𝑋,Δ 𝑋. If 𝑓 is separated, then Δ is a closed
immersion, and this is a closed subscheme of 𝑆𝑝𝑒𝑐(𝐴). By assumption it contains the
generic point of 𝑆𝑝𝑒𝑐(𝐴). Since 𝐴 is a domain this implies 𝑍 = 𝑆𝑝𝑒𝑐(𝐴). Hence 𝑎 = 𝑏 as
desired. �

Lemma 42.13.2. (Valuative criterion separatedness.) Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌
be a morphism of algebraic spaces over 𝑆. Assume

(1) the morphism 𝑓 is quasi-separated, and
(2) the morphism 𝑓 satisfies the uniqueness part of the valuative criterion.

Then 𝑓 is separated.

Proof. Assumption (1) means Δ𝑋/𝑌 is quasi-compact. We claim the morphism Δ𝑋/𝑌 ∶
𝑋 → 𝑋 ×𝑌 𝑋 satisfies the existence part of the valuative criterion. Let a solid commutative
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diagram
𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) //

99

𝑋 ×𝑌 𝑋
be given. The lower right arrow corresponds to a pair of morphisms 𝑎, 𝑏 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑋
over 𝑌. By assumption (2) we see that 𝑎 = 𝑏. Hence using 𝑎 as the dotted arrow works.
Hence Lemma 42.12.1 applies, and we see that Δ𝑋/𝑌 is universally closed. Since always
Δ𝑋/𝑌 is locally of finite type and separated, we conclude fromMore onMorphisms, Lemma
33.29.5 that Δ𝑋/𝑌 is a finite morphism (also, use the general principle of Spaces, Lemma
40.5.8). At this point Δ𝑋/𝑌 is a representable, finite monomorphism, hence a closed immer-
sion by Morphisms, Lemma 24.42.13. �

42.14. Monomorphisms

A representable morphism 𝑋 → 𝑌 of algebraic spaces is a monomorphism according to
Section 42.3 if for every scheme 𝑍 and morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is
representable by a monomorphism of schemes. This means exactly that 𝑍 ×𝑌 𝑋 → 𝑍 is
an injective map of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. Since this is supposed to hold for all 𝑍 and all
maps 𝑍 → 𝑌 this is in turn equivalent to the map 𝑋 → 𝑌 being an injective map of sheaves
on (Sch/𝑆)𝑓𝑝𝑝𝑓. Thus we may define a monomorphism of a (possibly nonrepresentable3)
morphism of algebraic spaces as follows.

Definition 42.14.1. Let 𝑆 be a scheme. A morphism of algebraic spaces over 𝑆 is called a
monomorphism if it is an injective map of sheaves, i.e., a monomorphism in the category
of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓.

The following lemma shows that this also means that it is a monomorphism in the category
of algebraic spaces over 𝑆.

Lemma 42.14.2. Let 𝑆 be a scheme. Let 𝑗 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑗 is a monomorphism (as in Definition 42.14.1),
(2) 𝑗 is a monomorphism in the category of algebraic spaces over 𝑆, and
(3) the diagonal morphism Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is an isomorphism.

Proof. Note that 𝑋×𝑌 𝑋 is both the fibre product in the category of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓
and the fibre product in the category of algebraic spaces over 𝑆, see Spaces, Lemma 40.7.3.
The equivalence of (1) and (3) is a general characterization of injective maps of sheaves
on any site. The equivalence of (2) and (3) is a characterization of monomorphisms in any
category with fibre products. �

Lemma 42.14.3. A monomorphism of algebraic spaces is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma 42.14.2
above. �

Lemma 42.14.4. A composition of monomorphisms is a monomorphism.

Proof. True because a composition of injective sheaf maps is injective. �

3We do not knowwhether or not every monomorphism of algebraic spaces is representable. If you do, please
email stacks.project@gmail.com.
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Lemma 42.14.5. The base change of a monomorphism is a monomorphism.

Proof. This is a general fact about fibre products in a category of sheaves. �

Lemma 42.14.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent

(1) 𝑓 is a monomorphism,
(2) for every scheme 𝑍 and morphism 𝑍 → 𝑌 the base change 𝑍 ×𝑌 𝑋 → 𝑍 of 𝑓 is

a monomorphism,
(3) for every affine scheme 𝑍 and every morphism 𝑍 → 𝑌 the base change 𝑍×𝑌 𝑋 →

𝑍 of 𝑓 is a monomorphism,
(4) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that the base

change 𝑉 ×𝑌 𝑋 → 𝑉 is a monomorphism, and
(5) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →

𝑌𝑖 is a monomorphism.

Proof. We will use without further mention that a base change of a monomorphism is a
monomorphism, see Lemma 42.14.5. In particular it is clear that (1) ⇒ (2) ⇒ (3) ⇒ (4)
(by taking 𝑉 to be a disjoint union of affine schemes étale over 𝑌, see Properties of Spaces,
Lemma 41.6.1). Let 𝑉 be a scheme, and let 𝑉 → 𝑌 be a surjective étale morphism. If
𝑉 ×𝑌 𝑋 → 𝑉 is a monomorphism, then it follows that 𝑋 → 𝑌 is a monomorphism. Namely,
given any cartesian diagram of sheaves

ℱ 𝑎
//

𝑏
��

𝒢

𝑐
��

ℋ 𝑑 // ℐ

ℱ = ℋ ×ℐ 𝒢

if 𝑐 is a surjection of sheaves, and 𝑎 is injective, then also 𝑑 is injective. Thus (4) implies
(1). Proof of the equivalence of (5) and (1) is omitted. �

Lemma 42.14.7. An immersion of algebraic spaces is a monomorphism. In particular, any
immersion is separated.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be an immersion of algebraic spaces. For any morphism 𝑍 → 𝑌
with 𝑍 representable the base change 𝑍 ×𝑌 𝑋 → 𝑍 is an immersion of schemes, hence a
monomorphism, see Schemes, Lemma 21.23.7. Hence 𝑓 is representable, and a monomor-
phism. �

We will improve on the following lemma in Decent Spaces, Lemma 43.14.1.

Lemma 42.14.8. Let 𝑆 be a scheme. Let 𝑘 be a field and let 𝑍 → 𝑆𝑝𝑒𝑐(𝑘) be a monomor-
phism of algebraic spaces over 𝑆. Then either 𝑍 = ∅ or 𝑍 = 𝑆𝑝𝑒𝑐(𝑘).

Proof. By Lemmas 42.14.3 and 42.5.9 we see that 𝑍 is a separated algebraic space. Hence
there exists an open dense subspace 𝑍′ ⊂ 𝑍 which is a scheme, see Properties of Spaces,
Proposition 41.10.3. By Schemes, Lemma 21.23.10 we see that either 𝑍′ = ∅ or 𝑍′ ≅
𝑆𝑝𝑒𝑐(𝑘). In the first case we conclude that 𝑍 = ∅ and in the second case we conclude that
𝑍′ = 𝑍 = 𝑆𝑝𝑒𝑐(𝑘) as 𝑍 → 𝑆𝑝𝑒𝑐(𝑘) is a monomorphism which is an isomorphism over
𝑍′. �

Lemma 42.14.9. Let 𝑆 be a scheme. If 𝑋 → 𝑌 is a monomorphism of algebraic spaces
over 𝑆, then |𝑋| → |𝑌| is injective.

Proof. Immediate from the definitions. �
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42.15. Pushforward of quasi-coherent sheaves

We first prove a simple lemma that relates pushforward of sheaves of modules for a mor-
phism of algebraic spaces to pushforward of sheaves of modules for a morphism of schemes.

Lemma 42.15.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑈 → 𝑋 be a surjective étale morphism from a scheme to 𝑋. Set 𝑅 = 𝑈 ×𝑋 𝑈
and denote 𝑡, 𝑠 ∶ 𝑅 → 𝑈 the projection morphisms as usual. Denote 𝑎 ∶ 𝑈 → 𝑌 and
𝑏 ∶ 𝑅 → 𝑌 the induced morphisms. For any object ℱ of Mod(𝒪𝑋) there exists an exact
sequence

0 → 𝑓∗ℱ → 𝑎∗(ℱ|𝑈) → 𝑏∗(ℱ|𝑅)
where the second arrow is the difference 𝑡∗ − 𝑠∗.

Proof. We denote ℱ also its extension to a sheaf of modules on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, see Properties
of Spaces, Remark 41.15.4. Let 𝑉 → 𝑌 be an object of 𝑌 ́𝑒𝑡𝑎𝑙𝑒. Then 𝑉 ×𝑌 𝑋 is an object of
𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, and by definition 𝑓∗ℱ(𝑉) = ℱ(𝑉 ×𝑌 𝑋). Since 𝑈 → 𝑋 is surjective étale, we
see that {𝑉 ×𝑌 𝑈 → 𝑉 ×𝑌 𝑋} is a covering. Also, we have (𝑉 ×𝑌 𝑈) ×𝑋 (𝑉 ×𝑌 𝑈) = 𝑉 ×𝑌 𝑅.
Hence, by the sheaf condition of ℱ on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 we have a short exact sequence

0 → ℱ(𝑉 ×𝑌 𝑋) → ℱ(𝑉 ×𝑌 𝑈) → ℱ(𝑉 ×𝑌 𝑅)

where the second arrow is the difference of restricting via 𝑡 or 𝑠. This exact sequence is
functorial in 𝑉 and hence we obtain the lemma. �

Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a quasi-compact and quasi-separated morphism
of representable algebraic spacdes 𝑋 and 𝑌 over 𝑆. By Descent, Proposition 31.6.14 the
functor 𝑓∗ ∶ QCoh(𝑋) → QCoh(𝑌) agrees with the usual functor if we think of 𝑋 and 𝑌 as
schemes.

More generally, suppose 𝑓 ∶ 𝑋 → 𝑌 is a representable, quasi-compact, and quasi-separated
morphism of algebraic spaces over 𝑆. Let 𝑉 be a scheme and let 𝑉 → 𝑌 be an étale surjective
morphism. Let 𝑈 = 𝑉 ×𝑌 𝑋 and let 𝑓′ ∶ 𝑈 → 𝑉 be the base change of 𝑓. Then for any
quasi-coherent 𝒪𝑋-module ℱ we have

(42.15.1.1) 𝑓′
∗(ℱ|𝑈) = (𝑓∗ℱ)|𝑉,

see Properties of Spaces, Lemma 41.23.2. And because 𝑓′ ∶ 𝑈 → 𝑉 is a quasi-compact
and quasi-separated morphism of schemes, by the remark of the preceding paragraph we
may compute 𝑓′

∗(ℱ|𝑈) by thinking of ℱ|𝑈 as a quasi-coherent sheaf on the scheme 𝑈, and
𝑓′ as a morphism of schemes. We will frequently use this without further mention.

The next level of generality is to consider an arbitrary quasi-compact and quasi-separated
morphism of algebraic spaces.

Lemma 42.15.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is quasi-compact and quasi-separated, then 𝑓∗ transforms quasi-coherent
𝒪𝑋-modules into quasi-coherent 𝒪𝑌-modules.

Proof. Let ℱ be a quasi-coherent sheaf on 𝑋. We have to show that 𝑓∗ℱ is a quasi-coherent
sheaf on 𝑌. For this it suffices to show that for any affine scheme 𝑉 and étale morphism
𝑉 → 𝑌 the restriction of 𝑓∗ℱ to 𝑉 is quasi-coherent, see Properties of Spaces, Lemma
41.26.6. Let 𝑓′ ∶ 𝑉 ×𝑌 𝑋 → 𝑉 be the base change of 𝑓 by 𝑉 → 𝑌. Note that 𝑓′ is
also quasi-compact and quasi-separated, see Lemmas 42.9.3 and 42.5.4. By (42.15.1.1) we
know that the restriction of 𝑓∗ℱ to 𝑉 is 𝑓′

∗ of the restriction of ℱ to 𝑉 ×𝑌 𝑋. Hence we may
replace 𝑓 by 𝑓′, and assume that 𝑌 is an affine scheme.
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Assume 𝑌 is an affine scheme. Since 𝑓 is quasi-compact we see that 𝑋 is quasi-compact.
Thus we may choose an affine scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋, see
Properties of Spaces, Lemma 41.6.3. By Lemma 42.15.1 we get an exact sequence

0 → 𝑓∗ℱ → 𝑎∗(ℱ|𝑈) → 𝑏∗(ℱ|𝑅).

where𝑅 = 𝑈×𝑋𝑈. As 𝑋 → 𝑌 is quasi-separatedwe see that 𝑅 → 𝑈×𝑌𝑈 is a quasi-compact
monomorphism. This implies that 𝑅 is a quasi-compact separated scheme (as 𝑈 and 𝑌
are affine at this point). Hence 𝑎 ∶ 𝑈 → 𝑌 and 𝑏 ∶ 𝑅 → 𝑌 are quasi-compact and
quasi-separated morphisms of schemes. Thus by Descent, Proposition 31.6.14 the sheaves
𝑎∗(ℱ|𝑈) and 𝑏∗(ℱ|𝑅 are quasi-coherent (see also the discussion preceding this lemma). This
implies that 𝑓∗ℱ is a kernel of quasi-coherent modules, and hence itself quasi-coherent, see
Properties of Spaces, Lemma 41.26.7. �

Higher direct images are discussed in Cohomology of Spaces, Section 49.4.

42.16. Closed immersions

In this section we elucidate some of the results obtained previously on immersions of alge-
braic spaces; it should parallel Morphisms, Section 24.2.

Lemma 42.16.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. For every
closed immersion 𝑖 ∶ 𝑍 → 𝑋 the sheaf 𝑖∗𝒪𝑍 is a quasi-coherent 𝒪𝑋-module, the map
𝑖♯ ∶ 𝒪𝑋 → 𝑖∗𝒪𝑍 is surjective and its kernel is a quasi-coherent sheaf of ideals. The rule
𝑍 ↦ Ker(𝒪𝑋 → 𝑖∗𝒪𝑍) defines an inclusion reversing bijection

closed subschemes
𝑍 ⊂ 𝑋 ⟶ quasi-coherent sheaves

of ideals ℐ ⊂ 𝒪𝑋

Moreover, given a closed subscheme 𝑍 corresponding to the quasi-coherent sheaf of ideals
ℐ ⊂ 𝒪𝑋 a morphism of algebraic spaces ℎ ∶ 𝑌 → 𝑋 factors through 𝑍 if and only if the
map ℎ∗ℐ → ℎ∗𝒪𝑋 = 𝒪𝑌 is zero.

Proof. Let 𝑈 → 𝑋 be a surjective étale morphism whose source is a scheme. Consider the
diagram

𝑈 ×𝑋 𝑍 //

𝑖′
��

𝑍

𝑖
��

𝑈 // 𝑋
By Lemma 42.4.1 we see that 𝑖 is a closed immersion if and only if 𝑖′ is a closed immersion.
By Properties of Spaces, Lemma 41.23.2 we see that 𝑖′

∗𝒪𝑈×𝑋𝑍 is the restriction of 𝑖∗𝒪𝑍 to
𝑈. Hence the assertions on 𝒪𝑋 → 𝑖∗𝒪𝑍 are equivalent to the corresponding assertions on
𝒪𝑈 → 𝑖′

∗𝒪𝑈×𝑋𝑍. And since 𝑖′ is a closed immersion of schemes, these results follow from
Morphisms, Lemma 24.2.1.

Let us prove that given a quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑋 the formula

𝑍(𝑇) = {ℎ ∶ 𝑇 → 𝑋 ∣ ℎ∗ℐ → 𝒪𝑇 is zero}

defines a closed subspace of 𝑋. It is clearly a subfunctor of 𝑋. To show that 𝑍 → 𝑋 is
representable by closed immersions, let 𝜑 ∶ 𝑈 → 𝑋 be a morphism from a scheme towards
𝑋. Then 𝑍×𝑋 𝑈 is represented by the analogous subfunctor of 𝑈 corresponding to the sheaf
of ideals Im(𝜑∗ℐ → 𝒪𝑈). By Properties of Spaces, Lemma 41.26.2 the 𝒪𝑈-module 𝜑∗ℐ
is quasi-coherent on on 𝑈, and hence Im(𝜑∗ℐ → 𝒪𝑈) is a quasi-coherent sheaf of ideals
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on 𝑈. By Schemes, Lemma 21.4.6 we conclude that 𝑍 ×𝑋 𝑈 is represented by the closed
subscheme of 𝑈 associated to Im(𝜑∗ℐ → 𝒪𝑈). Thus 𝑍 is a closed subspace of 𝑋.

In the formula for 𝑍 above the inputs 𝑇 are schemes since algebraic spaces are sheaves on
(Sch/𝑆)𝑓𝑝𝑝𝑓. We omit the verification that the same formula remains true if 𝑇 is an algebraic
space. �

Lemma 42.16.2. A closed immersion of algebraic spaces is quasi-compact.

Proof. This follows from Schemes, Lemma 21.19.5 by general principles, see Spaces,
Lemma 40.5.8. �

Lemma 42.16.3. A closed immersion of algebraic spaces is separated.

Proof. This follows from Schemes, Lemma 21.23.7 by general principles, see Spaces,
Lemma 40.5.8. �

Lemma 42.16.4. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of algebraic
spaces over 𝑆.

(1) The functor
𝑖𝑠𝑚𝑎𝑙𝑙,∗ ∶ Sh(𝑍 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑋 ́𝑒𝑡𝑎𝑙𝑒)

is fully faithful and its essential image is those sheaves of sets ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 whose
restriction to 𝑋 ⧵ 𝑍 is isomorphic to ∗, and

(2) the functor
𝑖𝑠𝑚𝑎𝑙𝑙,∗ ∶ Ab(𝑍 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒)

is fully faithful and its essential image is those abelian sheaves on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 whose
support is contained in 𝑍.

In both cases 𝑖−1
𝑠𝑚𝑎𝑙𝑙 is a left inverse to the functor 𝑖𝑠𝑚𝑎𝑙𝑙,∗.

Proof. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be surjective étale. Set 𝑉 = 𝑍 ×𝑋 𝑈. Then 𝑉
is a scheme and 𝑖′ ∶ 𝑉 → 𝑈 is a closed immersion of schemes. By Properties of Spaces,
Lemma 41.15.11 for any sheaf 𝒢 on 𝑍 we have

(𝑖−1
𝑠𝑚𝑎𝑙𝑙𝑖𝑠𝑚𝑎𝑙𝑙,∗𝒢)|𝑉 = (𝑖′)−1

𝑠𝑚𝑎𝑙𝑙𝑖
′
𝑠𝑚𝑎𝑙𝑙,∗(𝒢|𝑉)

By Étale Cohomology, Proposition 38.46.4 the map (𝑖′)−1
𝑠𝑚𝑎𝑙𝑙𝑖

′
𝑠𝑚𝑎𝑙𝑙,∗(𝒢|𝑉) → 𝒢|𝑉 is an iso-

morphism. Since 𝑉 → 𝑍 is surjective and étale this implies that 𝑖−1
𝑠𝑚𝑎𝑙𝑙𝑖𝑠𝑚𝑎𝑙𝑙,∗𝒢 → 𝒢 is an

isomorphism. This clearly implies that 𝑖𝑠𝑚𝑎𝑙𝑙,∗ is fully faithful, see Sites, Lemma 9.36.1.
To prove the statement on the essential image, consider a sheaf of sets ℱ on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 whose
restriction to 𝑋 ⧵ 𝑍 is isomorphic to ∗. As in the proof of Étale Cohomology, Proposition
38.46.4 we consider the adjunction mapping

ℱ ⟶ 𝑖𝑠𝑚𝑎𝑙𝑙,∗𝑖−1
𝑠𝑚𝑎𝑙𝑙ℱ.

As in the first part we see that the restriction of this map to 𝑈 is an isomorphism by the
corresponding result for the case of schemes. Since 𝑈 is an étale covering of 𝑋 we conclude
it is an isomorphism. �

The following lemma holds more generally in the setting of a closed immersion of topoi
(insert future reference here).
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Lemma 42.16.5. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of algebraic
spaces over 𝑆. Let 𝒜 be a sheaf of rings on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Let ℬ be a sheaf of rings on 𝑍 ́𝑒𝑡𝑎𝑙𝑒.
Let 𝜑 ∶ 𝒜 → 𝑖𝑠𝑚𝑎𝑙𝑙,∗ℬ (or what is the same thing 𝜑 ∶ 𝑖−1

𝑠𝑚𝑎𝑙𝑙𝒜 → ℬ) be a homomorphism
of sheaves of rings. Then for any sheaf of 𝒜-modules ℱ the adjunction mapping ℱ →
𝑖𝑠𝑚𝑎𝑙𝑙,∗𝑖−1

𝑠𝑚𝑎𝑙𝑙ℱ induces an isomorphism

ℱ ⊗𝒜 𝑖𝑠𝑚𝑎𝑙𝑙,∗ℬ ⟶ 𝑖𝑠𝑚𝑎𝑙𝑙,∗(𝑖−1
𝑠𝑚𝑎𝑙𝑙ℱ ⊗𝑖−1

𝑠𝑚𝑎𝑙𝑙𝒜
ℬ).

Proof. During this proof we drop the subscript 𝑠𝑚𝑎𝑙𝑙 from the notation. There is a map
𝑖−1ℱ → 𝑖−1ℱ ⊗𝑖−1𝒜 ℬ to which we can apply 𝑖∗ and compose with the adjunction map:

ℱ ⟶ 𝑖∗(𝑖−1ℱ) ⟶ 𝑖∗(𝑖−1ℱ ⊗𝑖−1𝒜 ℬ).

The composition is𝒜-linear where𝒜 acts on the target via𝜑. Note that this target 𝑖∗(𝑖−1ℱ⊗𝑖−1𝒜
ℬ) has a canonical 𝑖∗ℬ-module structure. Hence by the universal property of tensor prod-
uct we obtain a map as in the lemma.

Let 𝒢 be a sheaf of 𝑖∗ℬ-modules on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. Since the support of the sheaf of rings 𝑖∗ℬ is
contained in 𝑍 we see that the support of 𝒢 is contained in 𝑍. Hence by Lemma 42.16.4 we
conclude that there exists a unique sheaf of ℬ-modules ℋ and an isomorphism 𝑖∗ℋ = 𝒢
as 𝑖∗ℬ-modules. To show that the map of the lemma is an isomorphism we show that the
right hand side of the arrow satisfies the universal property enjoyed by the tensor product
on the left (i.e., we will use Yoneda's lemma, see Categories, Lemma 4.3.5). To see this
we have to show that maps into 𝒢 agree. This can be seen using the following sequence of
canonical isomorphisms

𝐻𝑜𝑚𝑖∗ℬ(ℱ ⊗𝒜 𝑖∗ℬ, 𝒢) = 𝐻𝑜𝑚𝒜(ℱ, 𝒢)
= 𝐻𝑜𝑚𝒜(ℱ, 𝑖∗(ℋ))

= 𝐻𝑜𝑚𝑖−1𝒜(𝑖−1ℱ, ℋ)

= 𝐻𝑜𝑚ℬ(𝑖−1ℱ ⊗𝑖−1𝒜 ℬ, ℋ)

= 𝐻𝑜𝑚𝑖∗ℬ(𝑖∗(𝑖−1ℱ ⊗𝑖−1𝒜 ℬ), 𝑖∗ℋ)

= 𝐻𝑜𝑚𝑖∗ℬ(𝑖∗(𝑖−1ℱ ⊗𝑖−1𝒜 ℬ), 𝒢)

The fifth equality holds because of the equivalence of categories in Lemma 42.16.4. �

42.17. Closed immersions and quasi-coherent sheaves

This section is the analogue of Morphisms, Section 24.3.

Lemma 42.17.1. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of algebraic
spaces over 𝑆. Let ℐ ⊂ 𝒪𝑋 be the quasi-coherent sheaf of ideals cutting out 𝑍.

(1) For any 𝒪𝑋-module ℱ the adjunction map ℱ → 𝑖∗𝑖∗ℱ induces an isomorphism
ℱ/ℐℱ ≅ 𝑖∗𝑖∗ℱ.

(2) The functor 𝑖∗ is a left inverse to 𝑖∗, i.e., for any 𝒪𝑍-module 𝒢 the adjunction map
𝑖∗𝑖∗𝒢 → 𝒢 is an isomorphism.

(3) The functor
𝑖∗ ∶ QCoh(𝒪𝑍) ⟶ QCoh(𝒪𝑋)

is exact, fully faithful, with essential image those quasi-coherent 𝒪𝑋-modules ℱ
such that ℐℱ = 0.
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Proof. During this proof we work exclusively with sheaves on the small étale sites, and we
use 𝑖∗, 𝑖−1, … to denote pushforward and pullback of sheaves of abelian groups instead of
𝑖𝑠𝑚𝑎𝑙𝑙,∗, 𝑖−1

𝑠𝑚𝑎𝑙𝑙.

Let ℱ be an 𝒪𝑋-module. By Lemma 42.16.5 we see that 𝑖∗𝑖∗ℱ = ℱ ⊗𝒪𝑋
𝒪𝑍. By Lemma

42.16.1 we see that we have a short exact sequence

0 → ℐ → 𝒪𝑋 → 𝑖∗𝒪𝑍 → 0

It follows from properties of the tensor product that ℱ ⊗𝒪𝑋
𝑖∗𝒪𝑍 = ℱ/ℐℱ. This proves (1)

(except that we omit the verification that the map is induced by the adjunction mapping).

Let 𝒢 be any 𝒪𝑍-module. By Lemma 42.16.4 we see that 𝑖−1𝑖∗𝒢 = 𝒢. Hence to prove
(2) we have to show that the canonical map 𝒢 ⊗𝑖−1𝒪𝑋

𝒪𝑍 → 𝒢 is an isomorphism. This
follows from general properties of tensor products if we can show that 𝑖−1𝒪𝑋 → 𝒪𝑍 is
surjective. By Lemma 42.16.4 it suffices to prove that 𝑖∗𝑖−1𝒪𝑋 → 𝑖∗𝒪𝑍 is surjective. Since
the surjective map 𝒪𝑋 → 𝑖∗𝒪𝑍 factors through this map we see that (2) holds.

Finally we prove the most interesting part of the lemma, namely part (3). A closed immer-
sion is quasi-compact and separated, see Lemmas 42.16.2 and 42.16.3. Hence Lemma
42.15.2 applies and the pushforward of a quasi-coherent sheaf on 𝑍 is indeed a quasi-
coherent sheaf on 𝑋. Thus we obtain our functor 𝑖𝑄𝐶𝑜ℎ

∗ ∶ QCoh(𝒪𝑍) → QCoh(𝒪𝑋). It
is clear from part (2) that 𝑖𝑄𝐶𝑜ℎ

∗ is fully faithful since it has a left inverse, namely 𝑖∗.

Now we turn to the description of the essential image of the functor 𝑖∗. It is clear that
ℐ(𝑖∗𝒢) = 0 for any 𝒪𝑍-module, since ℐ is the kernel of the map 𝒪𝑋 → 𝑖∗𝒪𝑍 which
is the map we use to put an 𝒪𝑋-module structure on 𝑖∗𝒢. Next, suppose that ℱ is any
quasi-coherent 𝒪𝑋-module such that ℐℱ = 0. Then we see that ℱ is an 𝑖∗𝒪𝑍-module
because 𝑖∗𝒪𝑍 = 𝒪𝑋/ℐ. Hence in particular its support is contained in 𝑍. We apply Lemma
42.16.4 to see that ℱ ≅ 𝑖∗𝒢 for some 𝒪𝑍-module 𝒢. The only small detail left over is to
see why 𝒢 is quasi-coherent. This is true because 𝒢 ≅ 𝑖∗ℱ by part (2) and Properties of
Spaces, Lemma 41.26.2. �

Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of algebraic spaces. Because of the lemma above
we often, by abuse of notation, denote ℱ the sheaf 𝑖∗ℱ on 𝑋.

Lemma 42.17.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let ℱ be a quasi-
coherent 𝒪𝑋-module. Let 𝒢 ⊂ ℱ be a 𝒪𝑋-submodule. There exists a unique quasi-coherent
𝒪𝑋-submodule 𝒢′ ⊂ 𝒢 with the following property: For every quasi-coherent 𝒪𝑋-module
ℋ the map

𝐻𝑜𝑚𝒪𝑋
(ℋ, 𝒢′) ⟶ 𝐻𝑜𝑚𝒪𝑋

(ℋ, 𝒢)

is bijective. In particular 𝒢′ is the largest quasi-coherent 𝒪𝑋-submodule of ℱ contained in
𝒢.

Proof. Let 𝒢𝑎, 𝑎 ∈ 𝐴 be the set of quasi-coherent 𝒪𝑋-submodules contained in 𝒢. Then
the image 𝒢′ of

⨁𝑎∈𝐴
𝒢𝑎 ⟶ ℱ

is quasi-coherent as the image of a map of quasi-coherent sheaves on 𝑋 is quasi-coherent
and since a direct sum of quasi-coherent sheaves is quasi-coherent, see Properties of Spaces,
Lemma 41.26.7. The module 𝒢′ is contained in 𝒢. Hence this is the largest quasi-coherent
𝒪𝑋-module contained in 𝒢.
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To prove the formula, let ℋ be a quasi-coherent 𝒪𝑋-module and let 𝛼 ∶ ℋ → 𝒢 be an
𝒪𝑋-module map. The image of the composition ℋ → 𝒢 → ℱ is quasi-coherent as the
image of a map of quasi-coherent sheaves. Hence it is contained in 𝒢′. Hence 𝛼 factors
through 𝒢′ as desired. �

Lemma 42.17.3. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of algebraic
spaces over 𝑆. There is a functor4 𝑖! ∶ QCoh(𝒪𝑋) → QCoh(𝒪𝑍) which is a right adjoint to
𝑖∗. (Compare Modules, Lemma 15.6.3.)

Proof. Given quasi-coherent 𝒪𝑋-module 𝒢 we consider the subsheaf ℋ𝑍(𝒢) of 𝒢 of local
sections annihilated by ℐ. By Lemma 42.17.2 there is a canonical largest quasi-coherent
𝒪𝑋-submodule ℋ𝑍(𝒢)′. By construction we have

𝐻𝑜𝑚𝒪𝑋
(𝑖∗ℱ, ℋ𝑍(𝒢)′) = 𝐻𝑜𝑚𝒪𝑋

(𝑖∗ℱ, 𝒢)

for any quasi-coherent 𝒪𝑍-module ℱ. Hence we can set 𝑖!𝒢 = 𝑖∗(ℋ𝑍(𝒢)′). Details omitted.
�

42.18. Universally injective morphisms

We have already defined in Section 42.3 what it means for a representable morphism of
algebraic spaces to be universally injective. For a field 𝐾 over 𝑆 (recall this means that we
are given a structure morphism 𝑆𝑝𝑒𝑐(𝐾) → 𝑆) and an algebraic space 𝑋 over 𝑆 we write
𝑋(𝐾) = 𝑀𝑜𝑟𝑆(𝑆𝑝𝑒𝑐(𝐾), 𝑋). We first translate the condition for representable morphisms
into a condition on the functor of points.

Lemma 42.18.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆. Then 𝑓 is universally injective if and only if for all fields 𝐾 the
map 𝑋(𝐾) → 𝑌(𝐾) is injective.

Proof. We are going to use Morphisms, Lemma 24.10.2 without further mention. Suppose
that 𝑓 is universally injective. Then for any field 𝐾 and any morphism 𝑆𝑝𝑒𝑐(𝐾) → 𝑌 the
morphism of schemes 𝑆𝑝𝑒𝑐(𝐾)×𝑌𝑋 → 𝑆𝑝𝑒𝑐(𝐾) is universally injective. Hence there exists
at most one section of the morphism 𝑆𝑝𝑒𝑐(𝐾) ×𝑌 𝑋 → 𝑆𝑝𝑒𝑐(𝐾). Hence the map 𝑋(𝐾) →
𝑌(𝐾) is injective. Conversely, suppose that for every field 𝐾 the map 𝑋(𝐾) → 𝑌(𝐾) is
injective. Let 𝑇 → 𝑌 be a morphism from a scheme into 𝑌, and consider the base change
𝑓𝑇 ∶ 𝑇 ×𝑌 𝑋 → 𝑇. For any field 𝐾 we have

(𝑇 ×𝑌 𝑋)(𝐾) = 𝑇(𝐾) ×𝑌(𝐾) 𝑋(𝐾)
by definition of the fibre product, and hence the injectivity of 𝑋(𝐾) → 𝑌(𝐾) garantees
the injectivity of (𝑇 ×𝑌 𝑋)(𝐾) → 𝑇(𝐾) which means that 𝑓𝑇 is universally injective as
desired. �

Next, we translate the property that the transformation between field valued points is injec-
tive into something more geometric.

Lemma 42.18.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) the map 𝑋(𝐾) → 𝑌(𝐾) is injective for every field 𝐾 over 𝑆
(2) for every morphism 𝑌′ → 𝑌 of algebraic spaces over 𝑆 the induced map |𝑌′ ×𝑌

𝑋| → |𝑌′| is injective, and
(3) the diagonal morphism 𝑋 → 𝑋 ×𝑌 𝑋 is surjective.

4This is likely nonstandard notation.
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Proof. Assume (1). Let 𝑔 ∶ 𝑌′ → 𝑌 be a morphism of algebraic spaces, and denote 𝑓′ ∶
𝑌′×𝑌𝑋 → 𝑌′ the base change of 𝑓. Let𝐾𝑖, 𝑖 = 1, 2 be fields and let𝜑𝑖 ∶ 𝑆𝑝𝑒𝑐(𝐾𝑖) → 𝑌′×𝑌𝑋
be morphisms such that 𝑓′ ∘ 𝜑1 and 𝑓′ ∘ 𝜑2 define the same element of |𝑌′|. By definition
this means there exists a field Ω and embeddings 𝛼𝑖 ∶ 𝐾𝑖 ⊂ Ω such that the two morphisms
𝑓′ ∘ 𝜑𝑖 ∘ 𝛼𝑖 ∶ 𝑆𝑝𝑒𝑐(Ω) → 𝑌′ are equal. Here is the corresponding commutative diagram

𝑆𝑝𝑒𝑐(Ω)

..

𝛼1

%%

𝛼2
// 𝑆𝑝𝑒𝑐(𝐾2)

𝜑2

%%
𝑆𝑝𝑒𝑐(𝐾1)

𝜑1 // 𝑌′ ×𝑌 𝑋

𝑓′

��

𝑔′
// 𝑋

𝑓
��

𝑌′ 𝑔 // 𝑌.
In particular the compositions 𝑔∘𝑓′∘𝜑𝑖∘𝛼𝑖 are equal. By assumption (1) this implies that the
morphism 𝑔′ ∘ 𝜑𝑖 ∘ 𝛼𝑖 are equal, where 𝑔′ ∶ 𝑌′ ×𝑌 𝑋 → 𝑋 is the projection. By the universal
property of the fibre product we conclude that the morphisms 𝜑𝑖 ∘ 𝛼𝑖 ∶ 𝑆𝑝𝑒𝑐(Ω) → 𝑌′ ×𝑌 𝑋
are equal. In other words 𝜑1 and 𝜑2 define the same point of 𝑌′ ×𝑌 𝑋. We conclude that
(2) holds.
Assume (2). Let 𝐾 be a field over 𝑆, and let 𝑎, 𝑏 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 be two morphisms such
that 𝑓∘𝑎 = 𝑓∘𝑏. Denote 𝑐 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑌 the common value. By assumption | 𝑆𝑝𝑒𝑐(𝐾)×𝑐,𝑌
𝑋| → | 𝑆𝑝𝑒𝑐(𝐾)| is injective. Thismeans there exists a fieldΩ and embeddings 𝛼𝑖 ∶ 𝐾 → Ω
such that

𝑆𝑝𝑒𝑐(Ω) 𝛼1
//

𝛼2
��

𝑆𝑝𝑒𝑐(𝐾)

𝑎
��

𝑆𝑝𝑒𝑐(𝐾) 𝑏 // 𝑆𝑝𝑒𝑐(𝐾) ×𝑐,𝑌 𝑋

is commutative. Composing with the projection to 𝑆𝑝𝑒𝑐(𝐾) we see that 𝛼1 = 𝛼2. Denote
the common value 𝛼. Then we see that {𝛼 ∶ 𝑆𝑝𝑒𝑐(Ω) → 𝑆𝑝𝑒𝑐(𝐾)} is a fpqc covering of
𝑆𝑝𝑒𝑐(𝐾) such that the two morphisms 𝑎, 𝑏 become equal on the members of the covering.
By Properties of Spaces, Lemma 41.14.1 we conclude that 𝑎 = 𝑏. We conclude that (1)
holds.
Assume (3). Let 𝑥, 𝑥′ ∈ |𝑋| be a pair of points such that 𝑓(𝑥) = 𝑓(𝑥′) in |𝑌|. By Properties
of Spaces, Lemma 41.4.3 we see there exists a 𝑥″ ∈ |𝑋 ×𝑌 𝑋| whose projections are 𝑥 and
𝑥′. By assumption and Properties of Spaces, Lemma 41.4.4 there exists a 𝑥‴ ∈ |𝑋| with
Δ𝑋/𝑌(𝑥‴) = 𝑥″. Thus 𝑥 = 𝑥′. In other words 𝑓 is injective. Since condition (3) is stable
under base change we see that 𝑓 satsifies (2).
Assume (2). Then in particular |𝑋×𝑌 𝑋| → |𝑋| is injective which implies immediately that
|Δ𝑋/𝑌| ∶ |𝑋| → |𝑋 ×𝑌 𝑋| is surjective, which implies that Δ𝑋/𝑌 is surjective by Properties
of Spaces, Lemma 41.4.4. �

By the two lemmas above the following definition does not conflict with the already defined
notion of a universally injective representable morphism of algebraic spaces.

Definition 42.18.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. We say 𝑓 is universally injective if for every morphism 𝑌′ → 𝑌 the induced map
|𝑌′ ×𝑌 𝑋| → |𝑌′| is injective.

To be sure this means that any or all of the equivalent conditions of Lemma 42.18.2 hold.
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Remark 42.18.4. A universally injective morphism of schemes is separated, see Mor-
phisms, Lemma 24.10.3. This is not the case for morphisms of algebraic spaces. Namely,
the algebraic space 𝑋 = 𝐀1

𝑘/{𝑥 ∼ −𝑥 ∣ 𝑥≠0} constructed in Spaces, Example 40.14.1
comes equipped with a morphsm 𝑋 → 𝐀1

𝑘 which maps the point with coordinate 𝑥 to the
point with coordinate 𝑥2. This is an isomorphism away from 0, and there is a unique point of
𝑋 lying above 0. As 𝑋 isn't separated this is a universally injective morphism of algebraic
spaces which is not separated.

Lemma 42.18.5. The base change of a universally injective morphism is universally injec-
tive.

Proof. Omitted. Hint: This is formal. �

Lemma 42.18.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is universally injective,
(2) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is

universally injective,
(3) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is universally injective,
(4) there exists a scheme 𝑍 and a surjective morphism 𝑍 → 𝑌 such that 𝑍×𝑌 𝑋 → 𝑍

is universally injective, and
(5) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →

𝑌𝑖 is universally injective.

Proof. Wewill use that being universally injective is preserved under base change (Lemma
42.18.5) without further mention in this proof. It is clear that (1) ⇒ (2) ⇒ (3) ⇒ (4).
Assume 𝑔 ∶ 𝑍 → 𝑌 as in (4). Let 𝑦 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑌 be a morphism from the spectrum of
a field into 𝑌. By assumption we can find an extension field 𝛼 ∶ 𝐾 ⊂ 𝐾′ and a morphism
𝑧 ∶ 𝑆𝑝𝑒𝑐(𝐾′) → 𝑍 such that 𝑦 ∘ 𝛼 = 𝑔 ∘ 𝑧 (with obvious abuse of notation). By assumption
the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is universally injective, hence there is at most one lift of
𝑔 ∘ 𝑧 ∶ 𝑆𝑝𝑒𝑐(𝐾′) → 𝑌 to a morphism into 𝑋. Since {𝛼 ∶ 𝑆𝑝𝑒𝑐(𝐾′) → 𝑆𝑝𝑒𝑐(𝐾)} is a fpqc
covering this implies there is at most one lift of 𝑦 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑌 to a morphism into 𝑋,
see Properties of Spaces, Lemma 41.14.1. Thus we see that (1) holds.
We omit the verification that (5) is equivalent to (1). �

Lemma 42.18.7. A composition of universally injective morphisms is universally injective.

Proof. Omitted. �

42.19. Affine morphisms

We have already defined in Section 42.3 what it means for a representable morphism of
algebraic spaces to be affine.

Lemma 42.19.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of alge-
braic spaces over 𝑆. Then 𝑓 is affine if and only if for all affine schemes 𝑍 and morphisms
𝑍 → 𝑌 the scheme 𝑋 ×𝑌 𝑍 is affine.

Proof. This follows directly from the definition of an affine morphism of schemes (Mor-
phisms, Definition 24.11.1). �

This clears the way for the following definition.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05VS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03MW
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03MX
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03MY
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03WE


42.20. QUASI-AFFINE MORPHISMS 2297

Definition 42.19.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. We say 𝑓 is affine if for every affine scheme 𝑍 and morphism 𝑍 → 𝑌 the algebraic
space 𝑋 ×𝑌 𝑍 is representable by an affine scheme.

Lemma 42.19.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is representable and affine,
(2) 𝑓 is affine,
(3) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is affine, and
(4) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →

𝑌𝑖 is affine.

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking 𝑉 to be a disjoint
union of affines étale over 𝑌, see Properties of Spaces, Lemma 41.6.1. Assume 𝑉 → 𝑌 is as
in (3). Then for every affine open 𝑊 of 𝑉 we see that 𝑊 ×𝑌 𝑋 is an affine open of 𝑉 ×𝑌 𝑋.
Hence by Properties of Spaces, Lemma 41.10.1 we conclude that 𝑉×𝑌𝑋 is a scheme. More-
over the morphism 𝑉 ×𝑌 𝑋 → 𝑉 is affine. This means we can apply Spaces, Lemma 40.11.3
because the class of affine morphisms satisfies all the required properties (see Morphisms,
Lemmas 24.11.8 and Descent, Lemmas 31.19.16 and 31.33.1). The conclusion of applying
this lemma is that 𝑓 is representable and affine, i.e., (1) holds.

The equivalence of (1) and (4) follows from the fact that being affine is Zariski local on the
target (the reference above shows that being affine is in fact fpqc local on the target). �

Lemma 42.19.4. The composition of affine morphisms is affine.

Proof. Omitted. �

Lemma 42.19.5. The base change of an affine morphism is affine.

Proof. Omitted. �

42.20. Quasi-affine morphisms

We have already defined in Section 42.3 what it means for a representable morphism of
algebraic spaces to be quasi-affine.

Lemma 42.20.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆. Then 𝑓 is quasi-affine if and only if for all affine schemes 𝑍 and
morphisms 𝑍 → 𝑌 the scheme 𝑋 ×𝑌 𝑍 is quasi-affine.

Proof. This follows directly from the definition of a quasi-affine morphism of schemes
(Morphisms, Definition 24.12.1). �

This clears the way for the following definition.

Definition 42.20.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. We say 𝑓 is quasi-affine if for every affine scheme 𝑍 and morphism 𝑍 → 𝑌 the
algebraic space 𝑋 ×𝑌 𝑍 is representable by a quasi-affine scheme.

Lemma 42.20.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is representable and quasi-affine,
(2) 𝑓 is quasi-affine,
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(3) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →
𝑉 is quasi-affine, and

(4) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →
𝑌𝑖 is quasi-affine.

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking 𝑉 to be a disjoint
union of affines étale over 𝑌, see Properties of Spaces, Lemma 41.6.1. Assume 𝑉 → 𝑌 is
as in (3). Then for every affine open 𝑊 of 𝑉 we see that 𝑊 ×𝑌 𝑋 is a quasi-affine open
of 𝑉 ×𝑌 𝑋. Hence by Properties of Spaces, Lemma 41.10.1 we conclude that 𝑉 ×𝑌 𝑋 is
a scheme. Moreover the morphism 𝑉 ×𝑌 𝑋 → 𝑉 is quasi-affine. This means we can ap-
ply Spaces, Lemma 40.11.3 because the class of quasi-affine morphisms satisfies all the
required properties (see Morphisms, Lemmas 24.12.5 and Descent, Lemmas 31.19.18 and
31.34.1). The conclusion of applying this lemma is that 𝑓 is representable and quasi-affine,
i.e., (1) holds.

The equivalence of (1) and (4) follows from the fact that being quasi-affine is Zariski local
on the target (the reference above shows that being quasi-affine is in fact fpqc local on the
target). �

Lemma 42.20.4. The composition of quasi-affine morphisms is quasi-affine.

Proof. Omitted. �

Lemma 42.20.5. The base change of a quasi-affine morphism is quasi-affine.

Proof. Omitted. �

42.21. Types of morphisms étale local on source-and-target

Given a property of morphisms of schemes which is étale local on the source-and-target,
see Descent, Definition 31.28.3 we may use it to define a corresponding property of mor-
phisms of algebraic spaces, namely by imposing either of the equivalent conditions of the
lemma below.

Lemma 42.21.1. Let 𝒫 be a property of morphisms of schemes which is étale local on the
source-and-target. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Consider commutative diagrams

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

where 𝑈 and 𝑉 are schemes and the vertical arrows are étale. The following are equivalent
(1) for any diagram as above the morphism ℎ has property 𝒫, and
(2) for some diagram as above with 𝑎 ∶ 𝑈 → 𝑋 surjective the morphism ℎ has

property 𝒫.
If 𝑋 and 𝑌 are representable, then this is also equivalent to 𝑓 (as a morphism of schemes)
having property 𝒫. If 𝒫 is also preserved under any base change, and fppf local on the
base, then for representable morphisms 𝑓 this is also equivalent to 𝑓 having property 𝒫 in
the sense of Section 42.3.
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Proof. Let us prove the equivalence of (1) and (2). The implication (1) ⇒ (2) is immediate
(taking into account Spaces, Lemma 40.11.4). Assume

𝑈

��

ℎ
// 𝑉

��
𝑋

𝑓 // 𝑌

𝑈′

��

ℎ′
// 𝑉′

��
𝑋

𝑓 // 𝑌
are two diagrams as in the lemma. Assume 𝑈 → 𝑋 is surjective and ℎ has propery 𝒫. To
show that (2) implies (1) we have to prove that ℎ′ has 𝒫. To do this consider the diagram

𝑈

ℎ
��

𝑈 ×𝑋 𝑈′oo

(ℎ,ℎ′)
��

// 𝑈′

ℎ′

��
𝑉 𝑉 ×𝑌 𝑉′oo // 𝑉′

By Descent, Lemma 31.28.5 we see that ℎ has 𝒫 implies (ℎ, ℎ′) has 𝒫 and since 𝑈×𝑋 𝑈′ →
𝑈′ is surjective this implies (by the same lemma) that ℎ′ has 𝒫.

If 𝑋 and 𝑌 are representable, then Descent, Lemma 31.28.5 applies which shows that (1)
and (2) are equivalent to 𝑓 having 𝒫.

Finally, suppose 𝑓 is representable, and 𝑈, 𝑉, 𝑎, 𝑏, ℎ are as in part (2) of the lemma, and that
𝒫 is preserved under arbitrary base change. We have to show that for any scheme 𝑍 and
morphism 𝑍 → 𝑋 the base change 𝑍 ×𝑌 𝑋 → 𝑍 has property 𝒫. Consider the diagram

𝑍 ×𝑌 𝑈

��

// 𝑍 ×𝑌 𝑉

��
𝑍 ×𝑌 𝑋 // 𝑍

Note that the top horizontal arrow is a base change of ℎ and hence has property 𝒫. The
left vertical arrow is étale and surjective and the right vertical arrow is étale. Thus Descent,
Lemma 31.28.5 once again kicks in and shows that 𝑍 ×𝑌 𝑋 → 𝑍 has property 𝒫. �

Definition 42.21.2. Let 𝑆 be a scheme. Let 𝒫 be a property of morphisms of schemes
which is étale local on the source-and-target. We say a morphism 𝑓 ∶ 𝑋 → 𝑌 of algebraic
spaces over 𝑆 has property 𝒫 if the equivalent conditions of Lemma 42.21.1 hold.

Given a property of morphisms of germs of schemes which is étale local on the source-and-
target, see Descent, Definition 31.29.1 we may use it to define a corresponding property of
morphisms of algebraic spaces at a point, namely by imposing either of the equivalent con-
ditions of the lemma below.

Lemma 42.21.3. Let 𝒬 be a property of morphisms of germs which is étale local on the
source-and-target. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑥 ∈ |𝑋| be a point of 𝑋. Consider the diagrams

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

𝑢

��

// 𝑣

��
𝑥 // 𝑦

where 𝑈 and 𝑉 are schemes, 𝑎, 𝑏 are étale, and 𝑢, 𝑣, 𝑥, 𝑦 are points of the corresponding
spaces. The following are equivalent
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(1) for any diagram as above we have 𝒬((𝑈, 𝑢) → (𝑉, 𝑣)), and
(2) for some diagram as above we have 𝒬((𝑈, 𝑢) → (𝑉, 𝑣)).

If 𝑋 and 𝑌 are representable, then this is also equivalent to 𝒬((𝑋, 𝑥) → (𝑌, 𝑦)).

Proof. Omitted. Hint: Very similar to the proof of Lemma 42.21.1. �

Definition 42.21.4. Let 𝒬 be a property of morphisms of germs of schemes which is étale
local on the source-and-target. Let 𝑆 be a scheme. Given a morphism 𝑓 ∶ 𝑋 → 𝑌 of
algebraic spaces over 𝑆 and a point 𝑥 ∈ |𝑋| we say that 𝑓 has property 𝒬 at 𝑥 if the
equivalent conditions of Lemma 42.21.3 hold.

The following lemma should not be used blindly to go from a property of morphisms to a
property of morphisms at a point. For example if 𝒫 is the property of being flat, then the
property 𝑄 in the following lemma means ``𝑓 is flat in an open neighbourhood of 𝑥'' which
is not the same as ``𝑓 is flat at 𝑥''.

Lemma 42.21.5. Let 𝒫 be a property of morphisms of schemes which is étale local on
the source-and-target. Consider the property 𝒬 of morphisms of germs associated to 𝒫 in
Descent, Lemma 31.29.2. Then

(1) 𝒬 is étale local on the source-and-target.
(2) given a morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 and 𝑥 ∈ |𝑋| the following are

equivalent
(a) 𝑓 has 𝒬 at 𝑥, and
(b) there is an open neighbourhood 𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑋′ → 𝑌 has 𝒫.

(3) given a morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 the following are equivalent:
(a) 𝑓 has 𝒫,
(b) for every 𝑥 ∈ |𝑋| the morphism 𝑓 has 𝒬 at 𝑥.

Proof. See Descent, Lemma 31.29.2 for (1). The implication (1)(a) ⇒ (2)(b) follows on
letting 𝑋′ = 𝑎(𝑈) ⊂ 𝑋 given a diagram as in Lemma 42.21.3. The implication (2)(b) ⇒
(1)(a) is clear. The equivalence of (3)(a) and (3)(b) follows from the corresponding result
for morphisms of schemes, see Descent, Lemma 31.29.3. �

Remark 42.21.6. We will apply Lemma 42.21.5 above to all cases listed in Descent, Re-
mark 31.28.7 except ``flat''. In each case we will do this by defining 𝑓 to have property 𝒫
at 𝑥 if 𝑓 has 𝒫 in a neighbourhood of 𝑥.

42.22. Morphisms of finite type

The property ``locally of finite type'' of morphisms of schemes is étale local on the source-
and-target, see Descent, Remark 31.28.7. It is also stable under base change and fpqc local
on the target, see Morphisms, Lemma 24.14.4, and Descent, Lemmas 31.19.8. Hence, by
Lemma 42.21.1 above, we may define what it means for a morphism of algebraic spaces to
be locally of finite type as follows and it agrees with the already existing notion defined in
Section 42.3 when the morphism is representable.

Definition 42.22.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 locally of finite type if the equivalent conditions of Lemma 42.21.1 hold
with 𝒫 = locally of finite type.

(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is of finite type at 𝑥 if there exists an open neighbourhood
𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is locally of finite type.
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(3) We say 𝑓 is of finite type if it is locally of finite type and quasi-compact.

Consider the algebraic space 𝐀1
𝑘/𝐙 of Spaces, Example 40.14.8. The morphism 𝐀1

𝑘/𝐙 →
𝑆𝑝𝑒𝑐(𝑘) is of finite type.

Lemma 42.22.2. The composition of finite type morphisms is of finite type. The same holds
for locally of finite type.

Proof. Omitted. �

Lemma 42.22.3. A base change of a finite type morphism is finite type. The same holds for
locally of finite type.

Proof. Omitted. �

Lemma 42.22.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is locally of finite type,
(2) for every 𝑥 ∈ |𝑋| the morphism 𝑓 is of finite type at 𝑥,
(3) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is

locally of finite type,
(4) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is locally of finite type,
(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is locally of finite type,
(6) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

the composition 𝑓 ∘ 𝜑 is locally of finite type,
(7) for every commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes and the vertical arrows are étale the top horizontal arrow
is locally of finite type,

(8) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes, the vertical arrows are étale, 𝑈 → 𝑋 is surjective, and
the top horizontal arrow is locally of finite type, and

(9) there exist Zariski coverings 𝑌 = ⋃𝑖∈𝐼 𝑌𝑖, and 𝑓−1(𝑌𝑖) = ⋃ 𝑋𝑖𝑗 such that each
morphism 𝑋𝑖𝑗 → 𝑌𝑖 is locally of finite type.

Proof. Omitted. �

Lemma 42.22.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is locally of finite type and 𝑌 is locally Noetherian, then 𝑋 is locally Noetherian.
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Proof. Let
𝑈

��

// 𝑉

��
𝑋 // 𝑌

be a commutative diagram where 𝑈, 𝑉 are schemes and the vertical arrows are surjective
étale. If 𝑓 is locally of finite type, then 𝑈 → 𝑉 is locally of finite type. If 𝑌 is locally
Noetherian, then 𝑉 is locally Noetherian. By Morphisms, Lemma 24.14.6 we see that 𝑈 is
locally Noetherian, which means that 𝑋 is locally Noetherian. �

Lemma 42.22.6. Let𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍 be morphisms of algebraic
spaces over 𝑆. If 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 is locally of finite type, then 𝑓 ∶ 𝑋 → 𝑌 is locally of finite
type.

Proof. We can find a diagram

𝑈 //

��

𝑉 //

��

𝑊

��
𝑋 // 𝑌 // 𝑍

where 𝑈, 𝑉, 𝑊 are schemes, the vertical arrows are étale and surjective, see Spaces, Lemma
40.11.4. At this point we can use Lemma 42.22.4 and Morphisms, Lemma 24.14.8 to con-
clude. �

Lemma 42.22.7. An immersion is locally of finite type.

Proof. Follows from the general principle Spaces, Lemma 40.5.8 andMorphisms, Lemmas
24.14.5. �

42.23. Points and geometric points

In this section we make some remarks on points and geometric points (see Properties of
Spaces, Definition 41.16.1). One way to think about a geometric point of 𝑋 is to consider
a geometric point 𝑠 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 of 𝑆 and a lift of 𝑠 to a morphism 𝑥 into 𝑋. Here is a
diagram

𝑆𝑝𝑒𝑐(𝑘)
𝑥
//

𝑠 ##

𝑋

��
𝑆.

We often say ``let 𝑘 be an algebraically closed field over 𝑆'' to indicate that 𝑆𝑝𝑒𝑐(𝑘) comes
equipped with a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑆. In this situation we write

𝑋(𝑘) = 𝑀𝑜𝑟𝑆(𝑆𝑝𝑒𝑐(𝑘), 𝑋) = {𝑥 ∈ 𝑋 lying over 𝑠}

for the set of 𝑘-valued points of 𝑋. In this case the map 𝑋(𝑘) → |𝑋| maps into the subset
|𝑋𝑠| ⊂ |𝑋|. Here 𝑋𝑠 = 𝑆𝑝𝑒𝑐(𝜅(𝑠)) ×𝑆 𝑋, where 𝑠 ∈ 𝑆 is the point corresponding to 𝑠. As
𝑆𝑝𝑒𝑐(𝜅(𝑠)) → 𝑆 is a monomorphism, also the base change 𝑋𝑠 → 𝑋 is a monomorphism,
and |𝑋𝑠| is indeed a subset of |𝑋|.

Lemma 42.23.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Assume 𝑓 is locally of finite type. The following are equivalent:

(1) 𝑓 is surjective, and

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0462
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(2) for every algebraically closed field 𝑘 over 𝑆 the induced map 𝑋(𝑘) → 𝑌(𝑘) is
surjective.

Proof. Choose a diagram
𝑈

��

// 𝑉

��
𝑋 // 𝑌

with 𝑈, 𝑉 schemes over 𝑆 and vertical arrows surjective and étale, see Spaces, Lemma
40.11.4. Since 𝑓 is locally of finite type we see that 𝑈 → 𝑉 is locally of finite type.

Assume (1) and let 𝑦 ∈ 𝑌(𝑘). Then 𝑈 → 𝑌 is surjective and locally of finite type by
Lemmas 42.6.4 and 42.22.2. Let 𝑍 = 𝑈 ×𝑌,𝑦 𝑆𝑝𝑒𝑐(𝑘). This is a scheme. The projection
𝑍 → 𝑆𝑝𝑒𝑐(𝑘) is surjective and locally of finite type by Lemmas 42.6.5 and 42.22.3. It
follows from Varieties, Lemma 28.12.1 that 𝑍 has a 𝑘 valued point 𝑧. The image 𝑥 ∈ 𝑋(𝑘)
of 𝑧 maps to 𝑦 as desired.

Assume (2). By Properties of Spaces, Lemma 41.4.4 it suffices to show that |𝑋| → |𝑌|
is surjective. Let 𝑦 ∈ |𝑌|. Choose a 𝑢 ∈ 𝑈 mapping to 𝑦. Let 𝑘 ⊃ 𝜅(𝑢) be an algebraic
closure. Denote 𝑢 ∈ 𝑈(𝑘) the corresponding point and 𝑦 ∈ 𝑌(𝑘) its image. By assumption
there exists a 𝑥 ∈ 𝑋(𝑘) mapping to 𝑦. Then it is clear that the image 𝑥 ∈ |𝑋| of 𝑥 maps to
𝑦. �

In order to state the next lemma we introduce the following notation. Given a scheme 𝑇 we
denote

𝜆(𝑇) = sup{ℵ0, |𝜅(𝑡)|; 𝑡 ∈ 𝑇}.
In words 𝜆(𝑇) is the smallest infinite cardinal bounding all the cardinalities of residue fields
ot 𝑇. Note that if 𝑅 is a ring then the cardinality of any residue field 𝜅(𝔭) of 𝑅 is bounded
by the cardinality of 𝑅 (details omitted). This implies that 𝜆(𝑇) ≤ size(𝑇) where size(𝑇) is
the size of the scheme 𝑇 as introduced in Sets, Section 3.9. If 𝐾 ⊂ 𝐿 is a finitely generated
field extension then |𝐾| ≤ |𝐿| ≤ max{ℵ0, |𝐾|}. It follows that if 𝑇′ → 𝑇 is a morphism of
schemes which is locally of finite type then 𝜆(𝑇′) ≤ 𝜆(𝑇), and if 𝑇′ → 𝑇 is also surjective
then equality holds. Next, suppose that 𝑆 is a scheme and that 𝑋 is an algebraic space over
𝑆. In this case we define

𝜆(𝑋) ∶= 𝜆(𝑈)
where 𝑈 is any scheme over 𝑆 which has a surjective étale morphism towards 𝑋. The reason
that this is independent of the choice of 𝑈 is that given a pair of such schemes 𝑈 and 𝑈′ the
fibre product 𝑈 ×𝑋 𝑈′ is a scheme which admits a surjective étale morphism to both 𝑈 and
𝑈′, whence 𝜆(𝑈) = 𝜆(𝑈 ×𝑋 𝑈′) = 𝜆(𝑈′) by the discussion above.

Lemma 42.23.2. Let 𝑆 be a scheme. Let 𝑋, 𝑌 be algebraic spaces over 𝑆.
(1) As 𝑘 ranges over all algebraically closed fields over 𝑆 the collection of geometric

points 𝑦 ∈ 𝑌(𝑘) cover all of |𝑌|.
(2) As 𝑘 ranges over all algebraically closed fields over 𝑆 with |𝑘| ≥ 𝜆(𝑌) and |𝑘| >

𝜆(𝑋) the geometric points 𝑦 ∈ 𝑌(𝑘) cover all of |𝑌|.
(3) For any geometric point 𝑠 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 where 𝑘 has cardinality > 𝜆(𝑋) the

map
𝑋(𝑘) ⟶ |𝑋𝑠|

is surjective.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0488
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(4) Let 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆. For any geometric point
𝑠 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑆 where 𝑘 has cardinality > 𝜆(𝑋) the map

𝑋(𝑘) ⟶ |𝑋| ×|𝑌| 𝑌(𝑘)

is surjective.
(5) Let 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆. The following are equiv-

alent:
(a) the map 𝑋 → 𝑌 is surjective,
(b) for all algebraically closed fields 𝑘 over 𝑆 with |𝑘| > 𝜆(𝑋), and |𝑘| ≥ 𝜆(𝑌)

the map 𝑋(𝑘) → 𝑌(𝑘) is surjective.

Proof. To prove part (1) choose a surjective étale morphism 𝑉 → 𝑌 where 𝑉 is a scheme.
For each 𝑣 ∈ 𝑉 choose an algebraic closure 𝜅(𝑣) ⊂ 𝑘𝑣. Consider the morphisms 𝑥 ∶
𝑆𝑝𝑒𝑐(𝑘𝑣) → 𝑉 → 𝑌. By construction of |𝑌| these cover |𝑌|.

To prove part (2) we will use the following two facts whose proofs we omit: (i) If 𝐾 is a
field and 𝐾 is algebraic closure then |𝐾| ≤ max{ℵ0, |𝐾|}. (ii) For any algebraically closed
field 𝑘 and any cardinal ℵ, ℵ ≥ |𝑘| there exists an extension of algebraically closed fields
𝑘 ⊂ 𝑘′ with |𝑘′| = ℵ. Now we set ℵ = max{𝜆(𝑋), 𝜆(𝑌)}+. Here 𝜆+ > 𝜆 indicates the
next bigger cardinal, see Sets, Section 3.6. Now (i) implies that the fields 𝑘𝑢 constructed in
the first paragraph of the proof all have cardinality bounded by 𝜆(𝑋). Hence by (ii) we can
find extensions 𝑘𝑢 ⊂ 𝑘′

𝑢 such that |𝑘′
𝑢| = ℵ. The morphisms 𝑥′ ∶ 𝑆𝑝𝑒𝑐(𝑘′

𝑢) → 𝑋 cover |𝑋|
as desired. To really finish the proof of (2) we need to show that the schemes 𝑆𝑝𝑒𝑐(𝑘′

𝑢) are
(isomorphic to) objects of Sch𝑓𝑝𝑝𝑓 because our conventions are that all schemes are objects
of Sch𝑓𝑝𝑝𝑓; the rest of this paragraph should be skipped by anyone who is not interested
in set theoretical considerations. By construction there exists an object 𝑇 of Sch𝑓𝑝𝑝𝑓 such
that 𝜆(𝑋) and 𝜆(𝑌) are bounded by size(𝑇). By our construction of the category Sch𝑓𝑝𝑝𝑓 in
Topologies, Definitions 30.7.6 as the category Sch𝛼 constructed in Sets, Lemma 3.9.2 we
see that any scheme whose size is ≤ size(𝑇)+ is isomorphic to an object of Sch𝑓𝑝𝑝𝑓. See
the expression for the function 𝐵𝑜𝑢𝑛𝑑 in Sets, Equation (3.9.1.1). Since ℵ ≤ size(𝑇)+ we
conclude.

The notation 𝑋𝑠 in part (3) means the fibre product 𝑆𝑝𝑒𝑐(𝜅(𝑠)) ×𝑆 𝑋, where 𝑠 ∈ 𝑆 is the
point corresponding to 𝑠. Hence part (2) follows from (4) with 𝑌 = 𝑆𝑝𝑒𝑐(𝜅(𝑠)).

Let us prove (4). Let 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆. Let 𝑘 be an
algebraically closed field over 𝑆 of cardinality > 𝜆(𝑋). Let 𝑦 ∈ 𝑌(𝑘) and 𝑥 ∈ |𝑋| which
map to the same element 𝑦 of |𝑌|. We have to find 𝑥 ∈ 𝑋(𝑘) mapping to 𝑥 and 𝑦. Choose
a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

with 𝑈, 𝑉 schemes over 𝑆 and vertical arrows surjective and étale, see Spaces, Lemma
40.11.4. Choose a 𝑢 ∈ |𝑈| which maps to 𝑥, and denote 𝑣 ∈ |𝑉| the image. We will think
of 𝑢 = 𝑆𝑝𝑒𝑐(𝜅(𝑢)) and 𝑣 = 𝑆𝑝𝑒𝑐(𝜅(𝑣)) as schemes. Note that 𝑉 ×𝑌 𝑆𝑝𝑒𝑐(𝑘) is a scheme
étale over 𝑘. Hence it is a disjoint union of spectra of finite separable extensions of 𝑘, see
Morphisms, Lemma 24.35.7. As 𝑣 maps to 𝑦 we see that 𝑣×𝑌𝑆𝑝𝑒𝑐(𝑘) is a nonempty scheme.
As 𝑣 → 𝑉 is amonomorphism, we see that 𝑣×𝑌𝑆𝑝𝑒𝑐(𝑘) → 𝑉×𝑌𝑆𝑝𝑒𝑐(𝑘) is amonomorphism.
Hence 𝑣 ×𝑌 𝑆𝑝𝑒𝑐(𝑘) is a disjoint union of spectra of finite separable extensions of 𝑘, by
Schemes, Lemma 21.23.10. We conclude that the morphism 𝑣 ×𝑌 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝑘) has
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a section, i.e., we can find a morphism 𝑣 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑉 lying over 𝑣 and over 𝑦. Finally
we consider the scheme

𝑢 ×𝑉,𝑣 𝑆𝑝𝑒𝑐(𝑘) = 𝑆𝑝𝑒𝑐(𝜅(𝑢) ⊗𝜅(𝑣) 𝑘)

where 𝜅(𝑣) → 𝑘 is the field map defining the morphism 𝑣. Since the cardinality of 𝑘 is
larger than the cardinality of 𝜅(𝑢) by assumption we may apply Algebra, Lemma 7.31.12 to
see that anymaximal ideal 𝔪 ⊂ 𝜅(𝑢)⊗𝜅(𝑣)𝑘 has a residue field which is algebraic over 𝑘 and
hence equal to 𝑘. Such a maximal ideal will hence produce a morphism 𝑢 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈
lying over 𝑢 and mapping to 𝑣. The composition 𝑆𝑝𝑒𝑐(𝑘) → 𝑈 → 𝑋 will be the desired
geometric point 𝑥 ∈ 𝑋(𝑘). This concludes the proof of part (4).

Part (5) is a formal consequence of parts (2) and (4) and Properties of Spaces, Lemma
41.4.4. �

42.24. Points of finite type

Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. A finite type point 𝑥 ∈ |𝑋| is
a point which can be represented by a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 which is locally of finite
type. Finite type points are a suitable replacement of closed points for algebraic spaces and
algebraic stacks. There are always ``enough of them'' for example.

Lemma 42.24.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|.
The following are equivalent:

(1) There exists a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 which is locally of finite type and repre-
sents 𝑥.

(2) There exists a scheme𝑈, a closed point 𝑢 ∈ 𝑈, and an étalemorphism𝜑 ∶ 𝑈 → 𝑋
such that 𝜑(𝑢) = 𝑥.

Proof. Let 𝑢 ∈ 𝑈 and 𝑈 → 𝑋 be as in (2). Then 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑈 is of finite type, and
𝑈 → 𝑋 is representable and locally of finite type (by the general principle Spaces, Lemma
40.5.8 and Morphisms, Lemmas 24.35.11 and 24.20.8). Hence we see (1) holds by Lemma
42.22.2.

Conversely, assume 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is locally of finite type and represents 𝑥. Let 𝑈 → 𝑋 be
a surjective étale morphism where 𝑈 is a scheme. By assumption 𝑈 ×𝑋 𝑆𝑝𝑒𝑐(𝑘) → 𝑈 is
locally of finite type. Pick a finite type point 𝑣 of 𝑈 ×𝑋 𝑆𝑝𝑒𝑐(𝑘) (there exists at least one,
see Morphisms, Lemma 24.15.4). By Morphisms, Lemma 24.15.5 the image 𝑢 ∈ 𝑈 of 𝑣 is
a finite type point of 𝑈. Hence by Morphisms, Lemma 24.15.4 after shrinking 𝑈 we may
assume that 𝑢 is a closed point of 𝑈, i.e., (2) holds. �

Definition 42.24.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. We say a point
𝑥 ∈ |𝑋| is a finite type point5 if the equivalent conditions of Lemma 42.24.1 are satisfied.
We denote 𝑋ft-pts the set of finite type points of 𝑋.

We can describe the set of finite type points as follows.

Lemma 42.24.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. We have

𝑋ft-pts = ⋃𝜑∶𝑈→𝑋 étale
|𝜑|(𝑈0)

where 𝑈0 is the set of closed points of 𝑈. Here we may let 𝑈 range over all schemes étale
over 𝑋 or over all affine schemes étale over 𝑋.

5This is a slight abuse of language as it would perhaps be more correct to say ``locally finite type point''.
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Proof. Immediate from Lemma 42.24.1. �

Lemma 42.24.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is locally of finite type, then 𝑓(𝑋ft-pts) ⊂ 𝑌ft-pts.

Proof. Take 𝑥 ∈ 𝑋ft-pts. Represent 𝑥 by a locally finite type morphism 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋.
Then 𝑓 ∘ 𝑥 is locally of finite type by Lemma 42.22.2. Hence 𝑓(𝑥) ∈ 𝑌ft-pts. �

Lemma 42.24.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is locally of finite type and surjective, then 𝑓(𝑋ft-pts) = 𝑌ft-pts.

Proof. We have 𝑓(𝑋ft-pts) ⊂ 𝑌ft-pts by Lemma 42.24.4. Let 𝑦 ∈ |𝑌| be a finite type point.
Represent 𝑦 by a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑌 which is locally of finite type. As 𝑓 is surjective
the algebraic space 𝑋𝑘 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 is nonempty, therefore has a finite type point
𝑥 ∈ |𝑋𝑘| by Lemma 42.24.3. Now 𝑋𝑘 → 𝑋 is a morphism which is locally of finite type
as a base change of 𝑆𝑝𝑒𝑐(𝑘) → 𝑌 (Lemma 42.22.3). Hence the image of 𝑥 in 𝑋 is a finite
type point by Lemma 42.24.4 which maps to 𝑦 by construction. �

Lemma 42.24.6. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. For any locally
closed subset 𝑇 ⊂ |𝑋| we have

𝑇≠∅ ⇒ 𝑇 ∩ 𝑋ft-pts≠∅.

In particular, for any closed subset 𝑇 ⊂ |𝑋| we see that 𝑇 ∩ 𝑋ft-pts is dense in 𝑇.

Proof. Let 𝑖 ∶ 𝑍 → 𝑋 be the reduced induce subspace structure on 𝑇, see Remark 42.4.4.
Any immersion is locally of finite type, see Lemma 42.22.7. Hence by Lemma 42.24.4 we
see 𝑍ft-pts ⊂ 𝑋ft-pts ∩ 𝑇. Finally, any nonempty affine scheme 𝑈 with an étale morphism
towards 𝑍 has at least one closed point. Hence 𝑍 has at least one finite type point by Lemma
42.24.3. The lemma follows. �

Here is another, more technical, characterization of a finite type point on an algebraic space.

Lemma 42.24.7. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|.
The following are equivalent:

(1) 𝑥 is a finite type point,
(2) there exists an algebraic space 𝑍 whose underlying topological space |𝑍| is a

singleton, and a morphism 𝑓 ∶ 𝑍 → 𝑋 which is locally of finite type such that
{𝑥} = |𝑓|(|𝑍|), and

(3) there exists an algebraic space 𝑍 and a morphism 𝑓 ∶ 𝑍 → 𝑋 with the following
properties:
(a) there is a surjective étale morphism 𝑧 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑍 where 𝑘 is a field,
(b) 𝑓 is locally of finite type,
(c) 𝑓 is a monomorphism, and
(d) 𝑥 = 𝑓(𝑧).

Proof. Assume 𝑥 is a finite type point. Choose an affine scheme 𝑈, a closed point 𝑢 ∈ 𝑈,
and an étale morphism 𝜑 ∶ 𝑈 → 𝑋 with 𝜑(𝑢) = 𝑥, see Lemma 42.24.3. Set 𝑢 = 𝑆𝑝𝑒𝑐(𝜅(𝑢))
as usual. The projection morphisms 𝑢 ×𝑋 𝑢 → 𝑢 are the compositions

𝑢 ×𝑋 𝑢 → 𝑢 ×𝑋 𝑈 → 𝑢 ×𝑋 𝑋 = 𝑢

where the first arrow is a closed immersion (a base change of 𝑢 → 𝑈) and the second arrow
is étale (a base change of the étale morphism 𝑈 → 𝑋). Hence 𝑢 ×𝑋 𝑈 is a disjoint union of
spectra of finite separable extensions of 𝑘 (see Morphisms, Lemma 24.35.7) and therefore
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the closed subscheme 𝑢 ×𝑋 𝑢 is a disjoint union of finite separable extension of 𝑘, i.e.,
𝑢 ×𝑋 𝑢 → 𝑢 is étale. By Spaces, Theorem 40.10.5 we see that 𝑍 = 𝑢/𝑢 ×𝑋 𝑢 is an algebraic
space. By construction the diagram

𝑢

��

// 𝑈

��
𝑍 // 𝑋

is commutative with étale vertical arrows. Hence 𝑍 → 𝑋 is locally of finite type (see
Lemma 42.22.4). By construction the morphism 𝑍 → 𝑋 is a monomorphism and the
image of 𝑧 is 𝑥. Thus (3) holds.

It is clear that (3) implies (2). If (2) holds then 𝑥 is a finite type point of 𝑋 by Lemma
42.24.4 (and Lemma 42.24.6 to see that 𝑍ft-pts is nonempty, i.e., the unique point of 𝑍 is a
finite type point of 𝑍). �

42.25. Quasi-finite morphisms

The property ``locally quasi-finite'' of morphisms of schemes is étale local on the source-
and-target, see Descent, Remark 31.28.7. It is also stable under base change and fpqc local
on the target, see Morphisms, Lemma 24.19.13, and Descent, Lemma 31.19.22. Hence, by
Lemma 42.21.1 above, we may define what it means for a morphism of algebraic spaces to
be locally quasi-finite as follows and it agrees with the already existing notion defined in
Section 42.3 when the morphism is representable.

Definition 42.25.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is locally quasi-finite if the equivalent conditions of Lemma 42.21.1
hold with 𝒫 = locally quasi-finite.

(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is quasi-finite at 𝑥 if there exists an open neighbourhood
𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is locally quasi-finite.

(3) A morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 is quasi-finite if it is locally quasi-
finite and quasi-compact.

The last part is compatible with the notion of quasi-finiteness for morphisms of schemes by
Morphisms, Lemma 24.19.9.

Lemma 42.25.2. The composition of quasi-finite morphisms is quasi-finite. The same holds
for locally quasi-finite.

Proof. Omitted. �

Lemma 42.25.3. A base change of a quasi-finite morphism is quasi-finite. The same holds
for locally quasi-finite.

Proof. Omitted. �

The following lemma characterizes locally quasi-finite morphisms as those morphisms
which are locally of finite type and have ``discrete fibres''. However, it isn't enough to
assume that |𝑋| → |𝑌| has discrete fibres as the discussion in Examples, Section 64.30
shows.

Lemma 42.25.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces.
Assume 𝑓 is locally of finite type. The following are equivalent
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(1) 𝑓 is locally quasi-finite,
(2) for every morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑌 where 𝑘 is a field the space |𝑋𝑘| is discrete.

Here 𝑋𝑘 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋.

Proof. Assume 𝑓 is locally quasi-finite. Let 𝑆𝑝𝑒𝑐(𝑘) → 𝑌 be as in (2). Choose a surjective
étale morphism 𝑈 → 𝑋 where 𝑈 is a scheme. Then 𝑈𝑘 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑈 → 𝑋𝑘 is an étale
morphism of algebraic spaces by Properties of Spaces, Lemma 41.13.5. By Lemma 42.25.3
we see that 𝑋𝑘 → 𝑆𝑝𝑒𝑐(𝑘) is locally quasi-finite. By definition this means that 𝑈𝑘 →
𝑆𝑝𝑒𝑐(𝑘) is locally quasi-finite. Hence |𝑈𝑘| is discrete by Morphisms, Lemma 24.19.8.
Since |𝑈𝑘| → |𝑋𝑘| is surjective and open we conclude that |𝑋𝑘| is discrete.

Conversely, assume (2). Choose a surjective étale morphism 𝑉 → 𝑌 where 𝑉 is a scheme.
Choose a surjective étale morphism 𝑈 → 𝑉 ×𝑌 𝑋 where 𝑈 is a scheme. Note that 𝑈 → 𝑉 is
locally of finite type as 𝑓 is locally of finite type. Picture

𝑈 //

""

𝑋 ×𝑌 𝑉

��

// 𝑉

��
𝑋 // 𝑌

If 𝑓 is not locally quasi-finite then 𝑈 → 𝑉 is not locally quasi-finite. Hence there exists a
specialization 𝑢 𝑢′ for some 𝑢, 𝑢′ ∈ 𝑈 lying over the same point 𝑣 ∈ 𝑉, see Morphisms,
Lemma 24.19.6. We claim that 𝑢, 𝑢′ do not have the same image in 𝑋𝑣 = 𝑆𝑝𝑒𝑐(𝜅(𝑣)) ×𝑌 𝑋
which will contradict the assumption that |𝑋𝑣| is discrete as desired. Let 𝑑 = trdeg𝜅(𝑣)(𝜅(𝑢))
and 𝑑′ = trdeg𝜅(𝑣)(𝜅(𝑢′)). Then we see that 𝑑 > 𝑑′ by Morphisms, Lemma 24.27.6. Note
that 𝑈𝑣 (the fibre of 𝑈 → 𝑉 over 𝑣) is the fibre product of 𝑈 and 𝑋𝑣 over 𝑋 ×𝑌 𝑉, hence
𝑈𝑣 → 𝑋𝑣 is étale (as a base change of the étale morphism 𝑈 → 𝑋 ×𝑌 𝑉). If 𝑢, 𝑢′ ∈ 𝑈𝑣 map
to the same element of |𝑋𝑣| then there exists a point 𝑟 ∈ 𝑅𝑣 = 𝑈𝑣 ×𝑋𝑣

𝑈𝑣 with 𝑡(𝑟) = 𝑢
and 𝑠(𝑟) = 𝑢′, see Properties of Spaces, Lemma 41.4.3. Note that 𝑠, 𝑡 ∶ 𝑅𝑣 → 𝑈𝑣 are étale
morphisms of schemes over 𝜅(𝑣), hence 𝜅(𝑢) ⊂ 𝜅(𝑟) ⊃ 𝜅(𝑢′) are finite separable extensions
of fields over 𝜅(𝑣) (see Morphisms, Lemma 24.35.7). We conclude that the transcendence
degrees are equal. This contradiction finishes the proof. �

Lemma 42.25.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is locally quasi-finite,
(2) for every 𝑥 ∈ |𝑋| the morphism 𝑓 is quasi-finite at 𝑥,
(3) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is

locally quasi-finite,
(4) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is locally quasi-finite,
(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is locally quasi-finite,
(6) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

the composition 𝑓 ∘ 𝜑 is locally quasi-finite,
(7) for every commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌
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where 𝑈, 𝑉 are schemes and the vertical arrows are étale the top horizontal arrow
is locally quasi-finite,

(8) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes, the vertical arrows are étale, and 𝑈 → 𝑋 is surjective
such that the top horizontal arrow is locally quasi-finite, and

(9) there exist Zariski coverings 𝑌 = ⋃𝑖∈𝐼 𝑌𝑖, and 𝑓−1(𝑌𝑖) = ⋃ 𝑋𝑖𝑗 such that each
morphism 𝑋𝑖𝑗 → 𝑌𝑖 is locally quasi-finite.

Proof. Omitted. �

Lemma 42.25.6. An immersion is locally quasi-finite.

Proof. Omitted. �

Lemma 42.25.7. Let 𝑆 be a scheme. Let 𝑋 → 𝑌 → 𝑍 be morphisms of algebraic spaces
over 𝑆. If 𝑋 → 𝑍 is locally quasi-finite, then 𝑋 → 𝑌 is locally quasi-finite.

Proof. Choose a commutative diagram

𝑈

��

// 𝑉

��

// 𝑊

��
𝑋 // 𝑌 // 𝑍

with vertical arrows étale and surjective. (See Spaces, Lemma 40.11.4.) ApplyMorphisms,
Lemma 24.19.15 to the top row. �

Lemma 42.25.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is locally of finite type and a monomorphism, then 𝑓 is separated and locally
quasi-finite.

Proof. A monomorphism is separated, see Lemma 42.14.3. By Lemma 42.25.5 it suffices
to prove the lemma after performing a base change by 𝑍 → 𝑌 with 𝑍 affine. Hence we
may assume that 𝑌 is an affine scheme. Choose an affine scheme 𝑈 and an étale morphism
𝑈 → 𝑋. Since 𝑋 → 𝑌 is locally of finite type the morphism of affine schemes 𝑈 → 𝑌 is of
finite type. Since 𝑋 → 𝑌 is a monomorphism we have 𝑈 ×𝑋 𝑈 = 𝑈 ×𝑌 𝑈. In particular the
maps 𝑈×𝑌 𝑈 → 𝑈 are étale. Let 𝑦 ∈ 𝑌. Then either 𝑈𝑦 is empty, or 𝑆𝑝𝑒𝑐(𝜅(𝑢))×𝑆𝑝𝑒𝑐(𝜅(𝑦)) 𝑈𝑦
is isomorphic to the fibre of 𝑈 ×𝑌 𝑈 → 𝑈 over 𝑢 for some 𝑢 ∈ 𝑈 lying over 𝑦. This implies
that the fibres of 𝑈 → 𝑌 are finite discrete sets (as 𝑈×𝑌𝑈 → 𝑈 is an étale morphism of affine
schemes, see Morphisms, Lemma 24.35.7). Hence 𝑈 → 𝑌 is quasi-finite, see Morphisms,
Lemma 24.19.6. As 𝑈 → 𝑋 was an arbitrary étale morphism with 𝑈 affine this implies that
𝑋 → 𝑌 is locally quasi-finite. �

42.26. Morphisms of finite presentation

The property ``locally of finite presentation'' of morphisms of schemes is étale local on the
source-and-target, seeDescent, Remark 31.28.7. It is also stable under base change and fpqc
local on the target, see Morphisms, Lemma 24.20.4, and Descent, Lemma 31.19.9. Hence,
by Lemma 42.21.1 above, we may define what it means for a morphism of algebraic spaces
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to be locally of finite presentation as follows and it agrees with the already existing notion
defined in Section 42.3 when the morphism is representable.

Definition 42.26.1. Let 𝑆 be a scheme. Let 𝑋 → 𝑌 be a morphism of algebraic spaces over
𝑆.

(1) We say 𝑓 is locally of finite presentation if the equivalent conditions of Lemma
42.21.1 hold with 𝒫 =``locally of finite presentation''.

(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is of finite presentation at 𝑥 if there exists an open neigh-
bourhood 𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is locally of finite presentation6.

(3) A morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 is of finite presentation if it is locally
of finite presentation, quasi-compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism which is
locally of finite presentation.

Lemma 42.26.2. The composition of morphisms of finite presentation is of finite presenta-
tion. The same holds for locally of finite presentation.

Proof. Omitted. �

Lemma 42.26.3. A base change of a morphism of finite presentation is of finite presentation
The same holds for locally of finite presentation.

Proof. Omitted. �

Lemma 42.26.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is locally of finite presentation,
(2) for every 𝑥 ∈ |𝑋| the morphism 𝑓 is of finite presentation at 𝑥,
(3) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is

locally of finite presentation,
(4) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is locally of finite presentation,
(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is locally of finite presentation,
(6) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

the composition 𝑓 ∘ 𝜑 is locally of finite presentation,
(7) for every commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes and the vertical arrows are étale the top horizontal arrow
is locally of finite presentation,

6It seems awkward to use ``locally of finite presentation at 𝑥'', but the current terminologymay be misleading
in the sense that ``of finite presentation at 𝑥'' does not mean that there is an open neighbourhood 𝑋′ ⊂ 𝑋 such
that 𝑓|𝑋′ is of finite presentation.
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(8) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes, the vertical arrows are étale, and 𝑈 → 𝑋 is surjective
such that the top horizontal arrow is locally of finite presentation, and

(9) there exist Zariski coverings 𝑌 = ⋃𝑖∈𝐼 𝑌𝑖, and 𝑓−1(𝑌𝑖) = ⋃ 𝑋𝑖𝑗 such that each
morphism 𝑋𝑖𝑗 → 𝑌𝑖 is locally of finite presentation.

Proof. Omitted. �

Lemma 42.26.5. A morphism which is locally of finite presentation is locally of finite type.
A morphism of finite presentation is of finite type.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces which is locally of finite pre-
sentation. This means there exists a diagram as in Lemma 42.21.1 with ℎ locally of finite
presentation and surjective vertical arrow 𝑎. By Morphisms, Lemma 24.20.8 ℎ is locally of
finite type. Hence 𝑋 → 𝑌 is locally of finite type by definition. If 𝑓 is of finite presentation
then it is quasi-compact and it follows that 𝑓 is of finite type. �

Lemma 42.26.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is of finite presentation and 𝑌 is Noetherian, then 𝑋 is Noetherian.

Proof. Assume 𝑓 is of finite presentation and 𝑌 Noetherian. By Lemmas 42.26.5 and
42.22.5 we see that 𝑋 is locally Noetherian. As 𝑓 is quasi-compact and 𝑌 is quasi-compact
we see that 𝑋 is quasi-compact. As 𝑓 is of finite presentation it is quasi-separated (see
Definition 42.26.1) and as 𝑌 is Noetherian it is quasi-separated (see Properties of Spaces,
Definition 41.12.1). Hence 𝑋 is quasi-separated by Lemma 42.5.9. Hence we have checked
all three conditions of Properties of Spaces, Definition 41.12.1 and we win. �

Lemma 42.26.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) If 𝑌 is locally Noetherian and 𝑓 locally of finite type then 𝑓 is locally of finite
presentation.

(2) If 𝑌 is locally Noetherian and 𝑓 of finite type and quasi-separated then 𝑓 is of
finite presentation.

Proof. Assume 𝑓 ∶ 𝑋 → 𝑌 locally of finite type and 𝑌 locally Noetherian. This means
there exists a diagram as in Lemma 42.21.1 with ℎ locally of finite type and surjective
vertical arrow 𝑎. By Morphisms, Lemma 24.20.9 ℎ is locally of finite presentation. Hence
𝑋 → 𝑌 is locally of finite presentation by definition. This proves (1). If 𝑓 is of finite
type and quasi-separated then it is also quasi-compact and quasi-separated and (2) follows
immediately. �

Lemma 42.26.8. Let 𝑆 be a scheme. Let 𝑌 be an algebraic space over 𝑆 which is quasi-
compact and quasi-separated. If 𝑋 is of finite presentation over 𝑌, then 𝑋 is quasi-compact
and quasi-separated.

Proof. Omitted. �
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Lemma 42.26.9. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑌 → 𝑍 be morphisms of algebraic
spaces over 𝑆. If 𝑋 is locally of finite presentation over 𝑍, and 𝑌 is locally of finite type
over 𝑍, then 𝑓 is locally of finite presentation.

Proof. Choose a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝑍. Then choose a
scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑊 ×𝑍 𝑌. Finally choose a scheme 𝑈 and a
surjective étale morphism 𝑈 → 𝑉×𝑌 𝑋. By definition 𝑈 is locally of finite presentation over
𝑊 and 𝑉 is locally of finite type over 𝑊. By Morphisms, Lemma 24.20.11 the morphism
𝑈 → 𝑉 is locally of finite presentation. Hence 𝑓 is locally of finite presentation. �

Lemma 42.26.10. An open immersion of algebraic spaces is locally of finite presentation.

Proof. An open immersion is by definition representable, hence we can use the general
principle Spaces, Lemma 40.5.8 and Morphisms, Lemma 24.20.5. �

42.27. Flat morphisms

The property ``flat'' of morphisms of schemes is étale local on the source-and-target, see
Descent, Remark 31.28.7. It is also stable under base change and fpqc local on the target,
seeMorphisms, Lemma 24.24.7 and Descent, Lemma 31.19.13. Hence, by Lemma 42.21.1
above, we may define the notion of a flat morphism of algebraic spaces as follows and
it agrees with the already existing notion defined in Section 42.3 when the morphism is
representable.

Definition 42.27.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is flat if the equivalent conditions of Lemma 42.21.1 with 𝒫 =``flat''.
(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is flat at 𝑥 if the equivalent conditions of Lemma 42.21.3

holds with 𝒬 =``induced map local rings is flat''.
Note that the second part makes sense by Descent, Lemma 31.29.4.

Lemma 42.27.2. The composition of flat morphisms is flat.

Proof. Omitted. �

Lemma 42.27.3. The base change of a flat morphism is flat.

Proof. Omitted. �

Lemma 42.27.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is flat,
(2) for every 𝑥 ∈ |𝑋| the morphism 𝑓 is flat at 𝑥,
(3) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is flat,
(4) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is flat,
(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is flat,
(6) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

the composition 𝑓 ∘ 𝜑 is flat,
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(7) for every commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes and the vertical arrows are étale the top horizontal arrow
is flat,

(8) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes, the vertical arrows are étale, and 𝑈 → 𝑋 is surjective
such that the top horizontal arrow is flat, and

(9) there exists a Zariski coverings 𝑌 = ⋃ 𝑌𝑖 and 𝑓−1(𝑌𝑖) = ⋃ 𝑋𝑖𝑗 such that each
morphism 𝑋𝑖𝑗 → 𝑌𝑖 is flat.

Proof. Omitted. �

Lemma 42.27.5. A flat morphism locally of finite presentation is universally open.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat morphism locally of finite presentation of algebraic spaces
over 𝑆. Choose a diagram

𝑈 𝛼
//

��

𝑉

��
𝑋 // 𝑌

where 𝑈 and 𝑉 are schemes and the vertical arrows are surjective and étale, see Spaces,
Lemma 40.11.4. By Lemmas 42.27.4 and 42.26.4 the morphism 𝛼 is flat and locally of
finite presentation. Hence byMorphisms, Lemma 24.24.9 we see that 𝛼 is universally open.
Hence 𝑋 → 𝑌 is universally open according to Lemma 42.7.5. �

Lemma 42.27.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a flat, quasi-compact, surjective
morphism of algebraic spaces over 𝑆. A subset 𝑇 ⊂ |𝑌| is open (resp. closed) if and only
𝑓−1(|𝑇|) is open (resp. closed) in |𝑋|. In other words 𝑓 is submersive, and in fact universally
submersive.

Proof. Choose affine schemes 𝑉𝑖 and étale morphisms 𝑉𝑖 → 𝑌 such that 𝑉 = ∐ 𝑉𝑖 → 𝑌 is
surjective, see Properties of Spaces, Lemma 41.6.1. For each 𝑖 the algebraic space 𝑉𝑖 ×𝑌 𝑋
is quasi-compact. Hence we can find an affine scheme 𝑈𝑖 and a surjective étale morphism
𝑈𝑖 → 𝑉𝑖 ×𝑌 𝑋, see Properties of Spaces, Lemma 41.6.3. Then the composition 𝑈𝑖 →
𝑉𝑖 ×𝑌 𝑋 → 𝑉𝑖 is a surjective, flat morphism of affines. Of course then 𝑈 = ∐ 𝑈𝑖 → 𝑋 is
surjective and étale and 𝑈 = 𝑉 ×𝑌 𝑋. Moreover, the morphism 𝑈 → 𝑉 is the disjoint union
of the morphisms 𝑈𝑖 → 𝑉𝑖. Hence 𝑈 → 𝑉 is surjective, quasi-compact and flat. Consider
the diagram

𝑈 //

��

𝑋

��
𝑉 // 𝑌
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By definition of the topology on |𝑌| the set 𝑇 is closed (resp. open) if and only if 𝑔−1(𝑇) ⊂ |𝑉|
is closed (resp. open). The same holds for 𝑓−1(𝑇) and its inverse image in |𝑈|. Since 𝑈 → 𝑉
is quasi-compact, surjective, and flat we win by Morphisms, Lemma 24.24.10. �

Lemma 42.27.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑥 be a geometric point of 𝑋 lying over the point 𝑥 ∈ |𝑋|. Let 𝑦 = 𝑓 ∘ 𝑥. The
following are equivalent

(1) 𝑓 is flat at 𝑥, and
(2) the map on étale local rings 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥 is flat.

Proof. Choose a commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

where 𝑈 and 𝑉 are schemes, 𝑎, 𝑏 are étale, and 𝑢 ∈ 𝑈 mapping to 𝑥. We can find a geometric
point 𝑢 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈 lying over 𝑢with 𝑥 = 𝑎∘𝑢, see Properties of Spaces, Lemma 41.16.4.
Set 𝑣 = ℎ ∘ 𝑢 with image 𝑣 ∈ 𝑉. We know that

𝒪𝑋,𝑥 = 𝒪𝑠ℎ
𝑈,𝑢 and 𝒪𝑌,𝑦 = 𝒪𝑠ℎ

𝑉,𝑣

see Properties of Spaces, Lemma 41.19.1. We obtain a commutative diagram

𝒪𝑈,𝑢
// 𝒪𝑋,𝑥

𝒪𝑉,𝑣

OO

// 𝒪𝑌,𝑦

OO

of local rings with flat horizontal arrows. We have to show that the left vertical arrow is flat
if and only if the right vertical arrow is. Algebra, Lemma 7.35.8 tells us 𝒪𝑈,𝑢 is flat over
𝒪𝑉,𝑣 if and only if 𝒪𝑋,𝑥 is flat over 𝒪𝑉,𝑣. Hence the result follows from More on Flatness,
Lemma 34.3.5. �

Lemma 42.27.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Then 𝑓 is flat if and only if the morphism of sites (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) ∶ (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) →
(𝑌 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑌) associated to 𝑓 is flat.

Proof. Flatness of (𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) is defined in terms of flatness of 𝒪𝑋 as a 𝑓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌-module.

This can be checked at stalks, see Modules on Sites, Lemma 16.33.2 and Properties of
Spaces, Theorem 41.16.12. But we've already seen that flatness of 𝑓 can be checked on
stalks, see Lemma 42.27.7. �

42.28. Flat modules

In this section we define what it means for a module to be flat at a point. To do this we will
use the notion of the stalk of a sheaf on the small étale site 𝑋 ́𝑒𝑡𝑎𝑙𝑒 of an algebraic space, see
Properties of Spaces, Definition 41.16.6.

Lemma 42.28.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let ℱ be a quasi-coherent sheaf on 𝑋. Let 𝑥 ∈ |𝑋|. The following are equivalent
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(1) for some commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

where 𝑈 and 𝑉 are schemes, 𝑎, 𝑏 are étale, and 𝑢 ∈ 𝑈 mapping to 𝑥 the module
𝑎∗ℱ is flat at 𝑢 over 𝑉,

(2) the stalk ℱ𝑥 is flat over the étale local ring 𝒪𝑌,𝑦 where 𝑥 is any geometric point
lying over 𝑥 and 𝑦 = 𝑓 ∘ 𝑥.

Proof. During this proof we fix a geometric proof 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 over 𝑥 and we denote
𝑦 = 𝑓 ∘ 𝑥 its image in 𝑌. Given a diagram as in (1) we can find a geometric point 𝑢 ∶
𝑆𝑝𝑒𝑐(𝑘) → 𝑈 lying over 𝑢 with 𝑥 = 𝑎 ∘ 𝑢, see Properties of Spaces, Lemma 41.16.4. Set
𝑣 = ℎ ∘ 𝑢 with image 𝑣 ∈ 𝑉. We know that

𝒪𝑋,𝑥 = 𝒪𝑠ℎ
𝑈,𝑢 and 𝒪𝑌,𝑦 = 𝒪𝑠ℎ

𝑉,𝑣

see Properties of Spaces, Lemma 41.19.1. We obtain a commutative diagram

𝒪𝑈,𝑢
// 𝒪𝑋,𝑥

𝒪𝑉,𝑣

OO

// 𝒪𝑌,𝑦

OO

of local rings. Finally, we have

ℱ𝑥 = (𝜑∗ℱ)𝑢 ⊗𝒪𝑈,𝑢
𝒪𝑋,𝑥

by Properties of Spaces, Lemma 41.26.4. Thus Algebra, Lemma 7.35.8 tells us (𝜑∗ℱ)𝑢 is
flat over 𝒪𝑉,𝑣 if and only if ℱ𝑥 is flat over 𝒪𝑉,𝑣. Hence the result follows from More on
Flatness, Lemma 34.3.5. �

Definition 42.28.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let ℱ be a quasi-coherent sheaf on 𝑋.

(1) Let 𝑥 ∈ |𝑋|. We say ℱ is flat at 𝑥 over 𝑌 if the equivalent conditions of Lemma
42.28.1 hold.

(2) We say ℱ is flat over 𝑌 if ℱ is flat over 𝑌 at all 𝑥 ∈ |𝑋|.

Having defined this we have the obligatory base change lemma. This lemma implies that
formation of the flat locus of a quasi-coherent sheaf commutes with flat base change.

Lemma 42.28.3. Let 𝑆 be a scheme. Let

𝑋′

𝑓′

��

𝑔′
// 𝑋

𝑓
��

𝑌′ 𝑔 // 𝑌
be a cartesian diagram of algebraic spaces over 𝑆. Let 𝑥′ ∈ |𝑋′| with image 𝑥 ∈ |𝑋|. Let
ℱ be a quasi-coherent sheaf on 𝑋 and denote ℱ′ = (𝑔′)∗ℱ.

(1) If ℱ is flat at 𝑥 over 𝑌 then ℱ′ is flat at 𝑥′ over 𝑌′.
(2) If 𝑔 is flat at 𝑓′(𝑥′) and ℱ′ is flat at 𝑥′ over 𝑌′, then ℱ is flat at 𝑥 over 𝑌.

In particular, if ℱ is flat over 𝑌, then ℱ′ is flat over 𝑌′.
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Proof. Choose a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌. Choose a scheme 𝑈
and a surjective étale morphism 𝑈 → 𝑉 ×𝑌 𝑋. Choose a scheme 𝑉′ and a surjective étale
morphism 𝑉′ → 𝑉 ×𝑌 𝑌′. Then 𝑈′ = 𝑉′ ×𝑉 𝑈 is a scheme endowed with a surjective étale
morphism 𝑈′ = 𝑉′ ×𝑉 𝑈 → 𝑌′ ×𝑌 𝑋 = 𝑋′. Pick 𝑢′ ∈ 𝑈′ mapping to 𝑥′ ∈ |𝑋′|. Then we
can check flatness of ℱ′ at 𝑥′ over 𝑌′ in terms of flatness of ℱ′|𝑈′ at 𝑢′ over 𝑉′. Hence the
lemma follows from More on Morphisms, Lemma 33.11.2. �

The following lemma discusses ``composition'' of flat morphisms in terms of modules. It
also shows that flatness satisfies a kind of top down descent.

Lemma 42.28.4. Let 𝑆 be a scheme. Let 𝑋 → 𝑌 → 𝑍 be morphisms of algebraic spaces
over 𝑆. Let ℱ be a quasi-coherent sheaf on 𝑋. Let 𝑥 ∈ |𝑋| with image 𝑦 ∈ |𝑌|.

(1) If ℱ is flat at 𝑥 over 𝑌 and 𝑌 is flat at 𝑦 over 𝑍, then ℱ is flat at 𝑥 over 𝑍.
(2) Let 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 be a representative of 𝑥. If

(a) ℱ is flat at 𝑥 over 𝑌,
(b) 𝑥∗ℱ≠0, and
(c) ℱ is flat at 𝑥 over 𝑍,
then 𝑌 is flat at 𝑦 over 𝑍.

(3) Let 𝑥 be a geometric point of 𝑋 lying over 𝑥 with image 𝑦 in 𝑌. If ℱ𝑥 is a faithfully
flat 𝒪𝑌,𝑦-module and ℱ is flat at 𝑥 over 𝑍, then 𝑌 is flat at 𝑦 over 𝑍.

Proof. Pick 𝑥 and 𝑦 as in part (3) and denote 𝑧 the induced geometric point of 𝑍. Via the
characterization of flatness in Lemmas 42.28.1 and 42.27.7 the lemma reduces to a purely
algebraic question on the local ring map 𝒪𝑍,𝑧 → 𝒪𝑌,𝑦 and the module ℱ𝑥. Part (1) follows
from Algebra, Lemma 7.35.3. We remark that condition (2)(b) guarantees that ℱ𝑥/𝔪𝑦ℱ𝑥 is
nonzero. Hence (2)(a) + (2)(b) imply that ℱ𝑥 is a faithfully flat 𝒪𝑌,𝑦-module, see Algebra,
Lemma 7.35.14. Thus (2) is a special case of (3). Finally, (3) follows fromAlgebra, Lemma
7.35.9. �

Sometimes the base change happens ``up on top''. Here is a precise statement.

Lemma 42.28.5. Let𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍 be morphisms of algebraic
spaces over 𝑆. Let 𝒢 be a quasi-coherent sheaf on 𝑌. Let 𝑥 ∈ |𝑋| with image 𝑦 ∈ |𝑌|. If 𝑓
is flat at 𝑥, then

𝒢 flat over 𝑍 at 𝑦 ⇔ 𝑓∗𝒢 flat over 𝑍 at 𝑥.
In particular: If 𝑓 is surjective and flat, then 𝒢 is flat over 𝑍, if and only if 𝑓∗𝒢 is flat over
𝑍.

Proof. Pick a geometric point 𝑥 of 𝑋 and denote 𝑦 the image in 𝑌 and 𝑧 the image in 𝑍.
Via the characterization of flatness in Lemmas 42.28.1 and 42.27.7 and the description of
the stalk of 𝑓∗𝒢 at 𝑥 of Properties of Spaces, Lemma 41.26.5 the lemma reduces to a purely
algebraic question on the local ring maps 𝒪𝑍,𝑧 → 𝒪𝑌,𝑦 → 𝒪𝑋,𝑥 and the module 𝒢𝑦. This
algebraic statement is Algebra, Lemma 7.35.8. �

42.29. Generic flatness

This section is the analogue of Morphisms, Section 24.26.

Proposition 42.29.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic
spaces over 𝑆. Let ℱ be a quasi-coherent sheaf of 𝒪𝑋-modules. Assume

(1) 𝑌 is reduced,
(2) 𝑓 is of finite type, and
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(3) ℱ is a finite type 𝒪𝑋-module.
Then there exists an open dense subspace 𝑊 ⊂ 𝑌 such that the base change 𝑋𝑊 → 𝑊 of 𝑓
is flat, locally of finite presentation, and quasi-compact and such that ℱ|𝑋𝑊

is flat over 𝑊
and of finite presentation over 𝒪𝑋𝑊

.

Proof. Let 𝑉 be a scheme and let 𝑉 → 𝑌 be a surjective étale morphism. Let 𝑋𝑉 = 𝑉 ×𝑌 𝑋
and let ℱ𝑉 be the restriction of ℱ to 𝑋𝑉. Suppose that the result holds for the morphism
𝑋𝑉 → 𝑉 and the sheaf ℱ𝑉. Then there exists an open subscheme 𝑉′ ⊂ 𝑉 such that 𝑋𝑉′ → 𝑉′

is flat and of finite presentation and ℱ𝑉′ is an 𝒪𝑋𝑉′-module of finite presentation flat over
𝑉′. Let 𝑊 ⊂ 𝑌 be the image of the étale morphism 𝑉′ → 𝑌, see Properties of Spaces,
Lemma 41.4.10. Then 𝑉′ → 𝑊 is a surjective étale morphism, hence we see that 𝑋𝑊 → 𝑊
is flat, locally of finite presentation, and quasi-compact by Lemmas 42.26.4, 42.27.4, and
42.9.7. By the discussion in Properties of Spaces, Section 41.27 we see that ℱ𝑊 is of finite
presentation as a 𝒪𝑋𝑊

-module and by Lemma 42.28.3 we see that ℱ𝑊 is flat over 𝑊. This
argument reduces the proposition to the case where 𝑌 is a scheme.

Suppose we can prove the proposition when 𝑌 is an affine scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a
finite type morphism of algebraic spaces over 𝑆 with 𝑌 a scheme, and let ℱ be a finite type,
quasi-coherent 𝒪𝑋-module. Choose an affine open covering 𝑌 = ⋃ 𝑉𝑗. By assumption we
can find dense open 𝑊𝑗 ⊂ 𝑉𝑗 such that 𝑋𝑊𝑗

→ 𝑊𝑗 is flat, locally of finite presentation,
and quasi-compact and such that ℱ|𝑋𝑊𝑗

is flat over 𝑊𝑗 and of finite presentation as an
𝒪𝑋𝑊𝑗

-module. In this situation we simply take 𝑊 = ⋃ 𝑊𝑗 and we win. Hence we reduce
the proposition to the case where 𝑌 is an affine scheme.

Let 𝑌 be an affine scheme over 𝑆, let 𝑓 ∶ 𝑋 → 𝑌 be a finite type morphism of algebraic
spaces over 𝑆, and let ℱ be a finite type, quasi-coherent 𝒪𝑋-module. Since 𝑓 is of finite
type it is quasi-compact, hence 𝑋 is quasi-compact. Thus we can find an affine scheme 𝑈
and a surjective étale morphism 𝑈 → 𝑋, see Properties of Spaces, Lemma 41.6.3. Note
that 𝑈 → 𝑌 is of finite type (this is what it means for 𝑓 to be of finite type in this case).
Hence we can apply Morphisms, Proposition 24.26.2 to see that there exists a dense open
𝑊 ⊂ 𝑌 such that 𝑈𝑊 → 𝑊 is flat and of finite presentation and such that ℱ|𝑈𝑊

is flat over
𝑊 and of finite presentation as an 𝒪𝑈𝑊

-module. According to our definitions this means
that the base change 𝑋𝑊 → 𝑊 of 𝑓 is flat, locally of finite presentation, and quasi-compact
and ℱ|𝑋𝑊

is flat over 𝑊 and of finite presentation over 𝒪𝑋𝑊
. �

We cannot improve the result of the lemma above to requiring 𝑋𝑊 → 𝑊 to be of finite
presentation as𝐀1

𝐐/𝐙 → 𝑆𝑝𝑒𝑐(𝐐) gives a counter example. The problem is that the diagonal
morphism Δ𝑋/𝑌 may not be quasi-compact, i.e., 𝑓 may not be quasi-separated. Clearly, this
is also the only problem.

Proposition 42.29.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic
spaces over 𝑆. Let ℱ be a quasi-coherent sheaf of 𝒪𝑋-modules. Assume

(1) 𝑌 is reduced,
(2) 𝑓 is quasi-separated,
(3) 𝑓 is of finite type, and
(4) ℱ is a finite type 𝒪𝑋-module.

Then there exists an open dense subspace 𝑊 ⊂ 𝑌 such that the base change 𝑋𝑊 → 𝑊 of 𝑓
is flat and of finite presentation and such that ℱ|𝑋𝑊

is flat over 𝑊 and of finite presentation
over 𝒪𝑋𝑊

.
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Proof. This follows immediately from Proposition 42.29.1 and the fact that ``of finite pre-
sentation'' = ``locally of finite presentation'' + ``quasi-compact'' + ``quasi-separated''. �

42.30. Relative dimension

In this section we define the relative dimension of a morphism of algebraic spaces at a point,
and some closely related properties.

Definition 42.30.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑥 ∈ |𝑋|. Let 𝑑, 𝑟 ∈ {0, 1, 2, … , ∞}.

(1) We say the dimension of the local ring of the fibre of 𝑓 at 𝑥 is 𝑑 if the equiva-
lent conditions of Lemma 42.21.3 hold for the property 𝒫𝑑 described in Descent,
Lemma 31.29.6.

(2) We say the transcendence degree of 𝑥/𝑓(𝑥) is 𝑟 if the equivalent conditions of
Lemma 42.21.3 hold for the property 𝒫𝑟 described in Descent, Lemma 31.29.7.

(3) We say the 𝑓 has relative dimension 𝑑 at 𝑥 if the equivalent conditions of Lemma
42.21.3 hold for the property 𝒫𝑑 described in Descent, Lemma 31.29.8.

Let us spell out what this means. Namely, choose some diagrams

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

𝑢

��

// 𝑣

��
𝑥 // 𝑦

as in Lemma 42.21.3. Then we have
relative dimension of 𝑓 at 𝑥 = dim𝑢(𝑈𝑣)

dimension of local ring of the fibre of 𝑓 at 𝑥 = dim(𝒪𝑈𝑣,𝑢)
transcendence degree of 𝑥/𝑓(𝑥) = trdeg𝜅(𝑣)(𝜅(𝑢))

Note that if 𝑌 = 𝑆𝑝𝑒𝑐(𝑘) is the spectrum of a field, then the relative dimension of 𝑋/𝑌 at
𝑥 is the same as dim𝑥(𝑋), the transcendence degree of 𝑥/𝑓(𝑥) is the transcendence degree
over 𝑘, and the dimension of the local ring of the fibre of 𝑓 at 𝑥 is just the dimension of the
local ring at 𝑥, i.e., the relative notions become absolute notions in that case.

Definition 42.30.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑑 ∈ {0, 1, 2, …}.

(1) We say 𝑓 has relative dimension≤ 𝑑 if 𝑓 has relative dimension≤ 𝑑 at all 𝑥 ∈ |𝑋|.
(2) We say 𝑓 has relative dimension 𝑑 if 𝑓 has relative dimension 𝑑 at all 𝑥 ∈ |𝑋|.

Having relative dimension equal to 𝑑 means roughly speaking that all nonempty fibres are
equidimensional of dimension 𝑑.

Lemma 42.30.3. Let 𝑆 be a scheme. Let 𝑋 → 𝑌 → 𝑍 be morphisms of algebraic spaces
over 𝑆. Let 𝑥 ∈ |𝑋| and let 𝑦 ∈ |𝑌|, 𝑧 ∈ |𝑍| be the images. Assume 𝑋 → 𝑌 is locally
quasi-finite and 𝑌 → 𝑍 locally of finite type. Then the transcendence degree of 𝑥/𝑧 is equal
to the transcendence degree of 𝑦/𝑧.

Proof. We can choose commutative diagrams

𝑈

��

// 𝑉

��

// 𝑊

��
𝑋 // 𝑌 // 𝑍

𝑢

��

// 𝑣

��

// 𝑤

��
𝑥 // 𝑦 // 𝑧
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where 𝑈, 𝑉, 𝑊 are schemes and the vertical arrows are étale. By definition the morphism
𝑈 → 𝑉 is locally quasi-finite which implies that 𝜅(𝑣) ⊂ 𝜅(𝑢) is finite, see Morphisms,
Lemma 24.19.5. Hence the result is clear. �

42.31. Morphisms and dimensions of fibres

This section is the analogue of Morphisms, Section 24.27. The formulations in this section
are a bit awkward since we do not have local rings of algebraic spaces at points.

Lemma 42.31.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑥 ∈ |𝑋|. Assume 𝑓 is locally of finite type. Then we have

relative dimension of 𝑓 at 𝑥
=

dimension of local ring of the fibre of 𝑓 at 𝑥
+

transcendence degree of 𝑥/𝑓(𝑥)

where the notation is as in Definition 42.30.1.

Proof. This follows immediately from Morphisms, Lemma 24.27.1 applied to ℎ ∶ 𝑈 → 𝑉
and 𝑢 ∈ 𝑈 as in Lemma 42.21.3. �

Lemma 42.31.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms of
algebraic spaces over 𝑆. Let 𝑥 ∈ |𝑋| and set 𝑦 = 𝑓(𝑥). Assume 𝑓 and 𝑔 locally of finite
type. Then

relative dimension of 𝑔 ∘ 𝑓 at 𝑥
≤

relative dimension of 𝑓 at 𝑥
+

relative dimension of 𝑔 at 𝑦

Moreover, equality holds if for some morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑍 from the spectrum of a field
in the class of 𝑔(𝑓(𝑥)) = 𝑔(𝑦) The morphism 𝑋𝑘 → 𝑌𝑘 is flat at 𝑥. This holds for example
if 𝑓 is flat at 𝑥.

Proof. Choose a diagram
𝑈

��

// 𝑉

��

// 𝑊

��
𝑋 // 𝑌 // 𝑍

with𝑈, 𝑉, 𝑊 schemes and vertical arrows étale and surjective. (See Spaces, Lemma 40.11.4.)
Choose 𝑢 ∈ 𝑈 mapping to 𝑥. Set 𝑣, 𝑤 equal to the images of 𝑢 in 𝑉, 𝑊. Apply Morphisms,
Lemma 24.27.2 to the top row and the points 𝑢, 𝑣, 𝑤. Details omitted. �

Lemma 42.31.3. Let 𝑆 be a scheme. Let

𝑋′
𝑔′
//

𝑓′

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑌
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be a fibre product diagram of algebraic spaces over 𝑆. Let 𝑥′ ∈ |𝑋′|. Set 𝑥 = 𝑔′(𝑥′).
Assume 𝑓 locally of finite type. Then we have

relative dimension of 𝑓 at 𝑥
=

relative dimension of 𝑓′ at 𝑥′

Proof. Choose a surjective étale morphism 𝑉 → 𝑌 with 𝑉 a scheme. By Spaces, Lemma
40.11.4 we may choose morphisms of schemes 𝑉′ → 𝑉 lifting the morphism 𝑔 and 𝑈 → 𝑉
lifting the morphism 𝑓 such that 𝑉′ → 𝑌′ and 𝑈 → 𝑋 are also surjective and étale. Set
𝑈′ = 𝑉′ ×𝑉 𝑈. Then the induced morphism 𝑈′ → 𝑋′ is also surjective and étale (argument
omitted). Hence we can choose a 𝑢′ ∈ 𝑈′ mapping to 𝑥′. At this point the result follows
by applying Morphisms, Lemma 24.27.3 to the diagram of schemes involving 𝑈′, 𝑈, 𝑉′, 𝑉
and the point 𝑢′. �

Lemma 42.31.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑛 ≥ 0. Assume 𝑓 is locally of finite type. The set

𝑊𝑛 = {𝑥 ∈ |𝑋| such that the relative dimension of 𝑓 at 𝑥 ≤ 𝑛}

is open in |𝑋|.

Proof. Choose a diagram
𝑈

ℎ
//

𝑎
��

𝑉

��
𝑋 // 𝑌

where 𝑈 and 𝑉 are schemes and the vertical arrows are surjective and étale, see Spaces,
Lemma 40.11.4. By Morphisms, Lemma 24.27.4 the set 𝑈𝑛 of points where ℎ has relative
dimension ≤ 𝑛 is open in 𝑈. By our definition of relative dimension for morphisms of
algebraic spaces at points we see that 𝑈𝑛 = 𝑎−1(𝑊𝑛). The lemma follows by definition of
the toplogy on |𝑋|. �

Lemma 42.31.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆 Let 𝑛 ≥ 0. Assume 𝑓 is locally of finite presentation. The open

𝑊𝑛 = {𝑥 ∈ |𝑋| such that the relative dimension of 𝑓 at 𝑥 ≤ 𝑛}

of Lemma 42.31.4 is retrocompact in |𝑋|. (See Topology, Definition 5.9.1.)

Proof. Choose a diagram
𝑈

ℎ
//

𝑎
��

𝑉

��
𝑋 // 𝑌

where 𝑈 and 𝑉 are schemes and the vertical arrows are surjective and étale, see Spaces,
Lemma 40.11.4. In the proof of Lemma 42.31.4 we have seen that 𝑎−1(𝑊𝑛) = 𝑈𝑛 is the
corresponding set for the morphism ℎ. By Morphisms, Lemma 24.27.5 we see that 𝑈𝑛 is
retrocompact in 𝑈. The lemma follows by definition of the toplogy on |𝑋|, compare with
Properties of Spaces, Lemma 41.5.5 and its proof. �

Lemma 42.31.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Assume 𝑓 is locally of finite type. Then 𝑓 is locally quasi-finite if and only if 𝑓 has
relative dimension 0 at each 𝑥 ∈ |𝑋|.
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Proof. Choose a diagram
𝑈

ℎ
//

𝑎
��

𝑉

��
𝑋 // 𝑌

where 𝑈 and 𝑉 are schemes and the vertical arrows are surjective and étale, see Spaces,
Lemma 40.11.4. The definitions imply that ℎ is locally quasi-finite if and only if 𝑓 is locally
quasi-finite, and that 𝑓 has relative dimension 0 at all 𝑥 ∈ |𝑋| if and only if ℎ has relative
dimension 0 at all 𝑢 ∈ 𝑈. Hence the result follows from the result for ℎ which isMorphisms,
Lemma 24.28.5. �

Lemma 42.31.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Assume 𝑓 is locally of finite type. Then there exists a canonical open subspace
𝑋′ ⊂ 𝑋 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is locally quasi-finite, and such that the relative dimension
of 𝑓 at any 𝑥 ∈ |𝑋|, 𝑥∉|𝑋′| is ≥ 1. Formation of 𝑋′ commutes with arbitrary base change.

Proof. Combine Lemmas 42.31.4, 42.31.6, and 42.31.3. �

Lemma 42.31.8. Let 𝑆 be a scheme. Consider a cartesian diagram

𝑋

��

𝐹𝑝
oo

��
𝑌 𝑆𝑝𝑒𝑐(𝑘)oo

where 𝑋 → 𝑌 is a morphism of algebraic spaces over 𝑆 which is locally of finite type and
where 𝑘 is a field over 𝑆. Let 𝑧 ∈ |𝐹| be such that dim𝑧(𝐹) = 0. Then, after replacing 𝑋
by an open subspace containing 𝑝(𝑧), the morphism

𝑋 ⟶ 𝑌

is locally quasi-finite.

Proof. Let 𝑋′ ⊂ 𝑋 be the open subspace over which 𝑓 is locally quasi-finite found in
Lemma 42.31.7. Since the formation of 𝑋′ commutes with arbotrary base change we see
that 𝑧 ∈ 𝑋′ ×𝑌 𝑆𝑝𝑒𝑐(𝑘). Hence the lemma is clear. �

42.32. Syntomic morphisms

The property ``syntomic'' of morphisms of schemes is étale local on the source-and-target,
see Descent, Remark 31.28.7. It is also stable under base change and fpqc local on the
target, see Morphisms, Lemma 24.30.4 and Descent, Lemma 31.19.24. Hence, by Lemma
42.21.1 above, we may define the notion of a syntomic morphism of algebraic spaces as
follows and it agrees with the already existing notion defined in Section 42.3 when the
morphism is representable.

Definition 42.32.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is syntomic if the equivalent conditions of Lemma 42.21.1 hold with
𝒫 =``syntomic''.

(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is syntomic at 𝑥 if there exists an open neighbourhood
𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is syntomic.

Lemma 42.32.2. The composition of syntomic morphisms is syntomic.
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Proof. Omitted. �

Lemma 42.32.3. The base change of a syntomic morphism is syntomic.

Proof. Omitted. �

Lemma 42.32.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is syntomic,
(2) for every 𝑥 ∈ |𝑋| the morphism 𝑓 is syntomic at 𝑥,
(3) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is

syntomic,
(4) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is syntomic,
(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is a syntomic morphism,
(6) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

the composition 𝑓 ∘ 𝜑 is syntomic,
(7) for every commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes and the vertical arrows are étale the top horizontal arrow
is syntomic,

(8) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes, the vertical arrows are étale, and 𝑈 → 𝑋 is surjective
such that the top horizontal arrow is syntomic, and

(9) there exist Zariski coverings 𝑌 = ⋃𝑖∈𝐼 𝑌𝑖, and 𝑓−1(𝑌𝑖) = ⋃ 𝑋𝑖𝑗 such that each
morphism 𝑋𝑖𝑗 → 𝑌𝑖 is syntomic.

Proof. Omitted. �

42.33. Smooth morphisms

The property ``syntomic'' of morphisms of schemes is étale local on the source-and-target,
seeDescent, Remark 31.28.7. It is also stable under base change and fpqc local on the target,
seeMorphisms, Lemma 24.33.5 and Descent, Lemma 31.19.25. Hence, by Lemma 42.21.1
above, we may define the notion of a smooth morphism of algebraic spaces as follows and
it agrees with the already existing notion defined in Section 42.3 when the morphism is
representable.

Definition 42.33.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is smooth if the equivalent conditions of Lemma 42.21.1 hold with
𝒫 =``smooth''.
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(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is smooth at 𝑥 if there exists an open neighbourhood
𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is smooth.

Lemma 42.33.2. The composition of smooth morphisms is smooth.

Proof. Omitted. �

Lemma 42.33.3. The base change of a smooth morphism is smooth.

Proof. Omitted. �

Lemma 42.33.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is smooth,
(2) for every 𝑥 ∈ |𝑋| the morphism 𝑓 is smooth at 𝑥,
(3) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is

smooth,
(4) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is smooth,
(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is a smooth morphism,
(6) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

the composition 𝑓 ∘ 𝜑 is smooth,
(7) for every commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes and the vertical arrows are étale the top horizontal arrow
is smooth,

(8) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes, the vertical arrows are étale, and 𝑈 → 𝑋 is surjective
such that the top horizontal arrow is smooth, and

(9) there exist Zariski coverings 𝑌 = ⋃𝑖∈𝐼 𝑌𝑖, and 𝑓−1(𝑌𝑖) = ⋃ 𝑋𝑖𝑗 such that each
morphism 𝑋𝑖𝑗 → 𝑌𝑖 is smooth.

Proof. Omitted. �

Lemma 42.33.5. A smooth morphism of algebraic spaces is locally of finite presentation.

Proof. Let 𝑋 → 𝑌 be a smooth morphism of algebraic spaces. By definition this means
there exists a diagram as in Lemma 42.21.1 with ℎ smooth and surjective vertical arrow 𝑎.
By Morphisms, Lemma 24.33.8 ℎ is locally of finite presentation. Hence 𝑋 → 𝑌 is locally
of finite presentation by definition. �

Lemma 42.33.6. A smooth morphism of algebraic spaces is locally of finite type.

Proof. Combine Lemmas 42.33.5 and 42.26.5. �
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Lemma 42.33.7. A smooth morphism of algebraic spaces is flat.

Proof. Let 𝑋 → 𝑌 be a smooth morphism of algebraic spaces. By definition this means
there exists a diagram as in Lemma 42.21.1 with ℎ smooth and surjective vertical arrow 𝑎.
By Morphisms, Lemma 24.33.8 ℎ is flat. Hence 𝑋 → 𝑌 is flat by definition. �

Lemma 42.33.8. A smooth morphism of algebraic spaces is syntomic.

Proof. Let 𝑋 → 𝑌 be a smooth morphism of algebraic spaces. By definition this means
there exists a diagram as in Lemma 42.21.1 with ℎ smooth and surjective vertical arrow 𝑎.
ByMorphisms, Lemma 24.33.7 ℎ is syntomic. Hence 𝑋 → 𝑌 is syntomic by definition. �

42.34. Unramified morphisms

The property ``unramified'' (resp. ``G-unramified'') of morphisms of schemes is étale local
on the source-and-target, see Descent, Remark 31.28.7. It is also stable under base change
and fpqc local on the target, seeMorphisms, Lemma 24.34.5 andDescent, Lemma 31.19.26.
Hence, by Lemma 42.21.1 above, we may define the notion of an unramified morphism
(resp. G-unramified morphism) of algebraic spaces as follows and it agrees with the already
existing notion defined in Section 42.3 when the morphism is representable.

Definition 42.34.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is unramified if the equivalent conditions of Lemma 42.21.1 hold with
𝒫 = unramified.

(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is unramified at 𝑥 if there exists an open neighbourhood
𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is unramified.

(3) We say 𝑓 is G-unramified if the equivalent conditions of Lemma 42.21.1 hold
with 𝒫 = G-unramified.

(4) Let 𝑥 ∈ |𝑋|. We say 𝑓 isG-unramified at 𝑥 if there exists an open neighbourhood
𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is G-unramified.

Because of the following lemma, from here on we will only develop theory for unramified
morphisms, and whenever we want to use a G-unramified morphism we will simply say
``an unramified morphism locally of finite presentation''.

Lemma 42.34.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Then 𝑓 is G-unramified if and only if 𝑓 is unramified and locally of finite presenta-
tion.

Proof. Consider any diagram as in Lemma 42.21.1. Then all we are saying is that the
morphism ℎ is G-unramified if and only if it is unramified and locally of finite presentation.
This is clear from Morphisms, Definition 24.34.1. �

Lemma 42.34.3. The composition of unramified morphisms is unramified.

Proof. Omitted. �

Lemma 42.34.4. The base change of an unramified morphism is unramified.

Proof. Omitted. �

Lemma 42.34.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is unramified,
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(2) for every 𝑥 ∈ |𝑋| the morphism 𝑓 is unramified at 𝑥,
(3) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is

unramified,
(4) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is unramified,
(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is an unramified morphism,
(6) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

the composition 𝑓 ∘ 𝜑 is unramified,
(7) for every commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes and the vertical arrows are étale the top horizontal arrow
is unramified,

(8) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes, the vertical arrows are étale, and 𝑈 → 𝑋 is surjective
such that the top horizontal arrow is unramified, and

(9) there exist Zariski coverings 𝑌 = ⋃𝑖∈𝐼 𝑌𝑖, and 𝑓−1(𝑌𝑖) = ⋃ 𝑋𝑖𝑗 such that each
morphism 𝑋𝑖𝑗 → 𝑌𝑖 is unramified.

Proof. Omitted. �

Lemma 42.34.6. An unramified morphism of algebraic spaces is locally of finite type.

Proof. Via a diagram as in Lemma 42.21.1 this translates intoMorphisms, Lemma 24.34.9.
�

Lemma 42.34.7. If 𝑓 is unramified at 𝑥 then 𝑓 is quasi-finite at 𝑥. In particular, an un-
ramified morphism is locally quasi-finite.

Proof. Via a diagram as in Lemma 42.21.1 this translates intoMorphisms, Lemma 24.34.10.
�

Lemma 42.34.8. An immersion of algebraic spaces is unramified.

Proof. Let 𝑖 ∶ 𝑋 → 𝑌 be an immersion of algebraic spaces. Choose a scheme 𝑉 and
a surjective étale morphism 𝑉 → 𝑌. Then 𝑉 ×𝑌 𝑋 → 𝑉 is an immersion of schemes,
hence unramified (see Morphisms, Lemmas 24.34.7 and 24.34.8). Thus by definition 𝑖 is
unramified. �

Lemma 42.34.9. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) If 𝑓 is unramified, then the diagonal morphism Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is an open
immersion.

(2) If 𝑓 is locally of finite type and Δ𝑋/𝑌 is an open immersion, then 𝑓 is unramified.
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Proof. We know in any case that Δ𝑋/𝑌 is a representable monomorphism, see Lemma
42.5.1. Choose a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌. Choose a scheme
𝑈 and a surjective étale morphism 𝑈 → 𝑋 ×𝑌 𝑉. Consider the commutative diagram

𝑈

��

Δ𝑈/𝑉
// 𝑈 ×𝑉 𝑈

��

// 𝑉

Δ𝑉/𝑌
��

𝑋
Δ𝑋/𝑌 // 𝑋 ×𝑌 𝑋 // 𝑉 ×𝑌 𝑉

with cartesian right square. The left vertical arrow is surjective étale. The right vertical ar-
row is étale as a morphism between schemes étale over 𝑌, see Properties of Spaces, Lemma
41.13.6. Hence the middle vertical arrow is étale too (but it need not be surjective).

Assume 𝑓 is unramified. Then 𝑈 → 𝑉 is unramified, hence Δ𝑈/𝑉 is an open immersion by
Morphisms, Lemma 24.34.13. Looking at the left square of the diagram above we conclude
that Δ𝑋/𝑌 is an étale morphism, see Properties of Spaces, Lemma 41.13.3. Hence Δ𝑋/𝑌 is
a representable étale monomorphism, which implies that it is an open immersion by Étale
Morphisms, Theorem 37.14.1. (See also Spaces, Lemma 40.5.8 for the translation from
schemes language into the language of functors.)

Assume that 𝑓 is locally of finite type and that Δ𝑋/𝑌 is an open immersion. This implies that
𝑈 → 𝑉 is locally of finite type too (by definition of a morphism of algebraic spaces which
is locally of finite type). Looking at the displayed diagram above we conclude that Δ𝑈/𝑉 is
étale as a morphism between schemes étale over 𝑋 ×𝑌 𝑋, see Properties of Spaces, Lemma
41.13.6. But since Δ𝑈/𝑉 is the diagonal of a morphism between schemes we see that it is
in any case an immersion, see Schemes, Lemma 21.21.2. Hence it is an open immersion,
and we conclude that 𝑈 → 𝑉 is unramified by Morphisms, Lemma 24.34.13. This in turn
means that 𝑓 is unramified by definition. �

Lemma 42.34.10. Let 𝑆 be a scheme. Consider a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces over𝑆. Assume that𝑋 → 𝑍 is locally of finite type. Then there exists an
open subspace 𝑈(𝑓) ⊂ 𝑋 such that |𝑈(𝑓)| ⊂ |𝑋| is the set of points where 𝑓 is unramified.
Moreover, for any morphism of algebraic spaces 𝑍′ → 𝑍, if 𝑓′ ∶ 𝑋′ → 𝑌′ is the base
change of 𝑓 by 𝑍′ → 𝑍, then 𝑈(𝑓′) is the inverse image of 𝑈(𝑓) under the projection
𝑋′ → 𝑋.

Proof. This lemma is the analogue of Morphisms, Lemma 24.34.15 and in fact we will
deduce the lemma from it. By Definition 42.34.1 the set {𝑥 ∈ |𝑋| ∶ 𝑓 is unramified at 𝑥}
is open in 𝑋. Hence we only need to prove the final statement. By Lemma 42.22.6 the
morphism 𝑋 → 𝑌 is locally of finite type. By Lemma 42.22.3 the morphism 𝑋′ → 𝑌′ is
locally of finite type.

Choose a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝑍. Choose a scheme 𝑉 and a
surjective étale morphism 𝑉 → 𝑊×𝑍𝑌. Choose a scheme 𝑈 and a surjective étale morphism
𝑈 → 𝑉×𝑌 𝑋. Finally, choose a scheme 𝑊′ and a surjective étale morphism 𝑊′ → 𝑊×𝑍 𝑍′.
Set 𝑉′ = 𝑊′ ×𝑊 𝑉 and 𝑈′ = 𝑊′ ×𝑊 𝑈, so that we obtain surjective étale morphisms 𝑉′ → 𝑌′

and 𝑈′ → 𝑋′. We will use without further mention an étale morphism of algebraic spaces
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induces an open map of associated topological spaces (see Properties of Spaces, Lemma
41.13.7). This combined with Lemma 42.34.5 implies that 𝑈(𝑓) is the image in |𝑋| of the
set 𝑇 of points in 𝑈 where the morphism 𝑈 → 𝑉 is unramified. Similarly, 𝑈(𝑓′) is the image
in |𝑋′| of the set 𝑇′ of points in 𝑈′ where the morphism 𝑈′ → 𝑉′ is unramified. Now, by
construction the diagram

𝑈′ //

��

𝑈

��
𝑉′ // 𝑉

is cartesian (in the category of schemes). Hence the aforementioned Morphisms, Lemma
24.34.15 applies to show that 𝑇′ is the inverse image of 𝑇. Since |𝑈′| → |𝑋′| is surjective
this implies the lemma. �

Lemma 42.34.11. Let 𝑆 be a scheme. Let 𝑋 → 𝑌 → 𝑍 be morphisms of algebraic spaces
over 𝑆. If 𝑋 → 𝑍 is unramified, then 𝑋 → 𝑌 is unramified.

Proof. Choose a commutative diagram

𝑈

��

// 𝑉

��

// 𝑊

��
𝑋 // 𝑌 // 𝑍

with vertical arrows étale and surjective. (See Spaces, Lemma 40.11.4.) ApplyMorphisms,
Lemma 24.34.16 to the top row. �

42.35. Étale morphisms

The notion of an étale morphism of algebraic spaces was defined in Properties of Spaces,
Definition 41.13.2. Here is the what it means for a morphism to be étale at a point.

Definition 42.35.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑥 ∈ |𝑋|. We say 𝑓 is étale at 𝑥 if there exists an open neighbourhood 𝑋′ ⊂ 𝑋
of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is étale

Lemma 42.35.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is étale,
(2) for every 𝑥 ∈ |𝑋| the morphism 𝑓 is étale at 𝑥,
(3) for every scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍 is

étale,
(4) for every affine scheme 𝑍 and any morphism 𝑍 → 𝑌 the morphism 𝑍 ×𝑌 𝑋 → 𝑍

is étale,
(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is an étale morphism,
(6) there exists a scheme 𝑈 and a surjective étale morphism 𝜑 ∶ 𝑈 → 𝑋 such that

the composition 𝑓 ∘ 𝜑 is étale,
(7) for every commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌
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where 𝑈, 𝑉 are schemes and the vertical arrows are étale the top horizontal arrow
is étale,

(8) there exists a commutative diagram

𝑈

��

// 𝑉

��
𝑋 // 𝑌

where 𝑈, 𝑉 are schemes, the vertical arrows are étale, and 𝑈 → 𝑋 surjective
such that the top horizontal arrow is étale, and

(9) there exist Zariski coverings 𝑌 = ⋃ 𝑌𝑖 and 𝑓−1(𝑌𝑖) = ⋃ 𝑋𝑖𝑗 such that each
morphism 𝑋𝑖𝑗 → 𝑌𝑖 is étale.

Proof. Combine Properties of Spaces, Lemmas 41.13.3, 41.13.5 and 41.13.4. Some details
omitted. �

Lemma 42.35.3. The composition of two étale morphisms of algebraic spaces is étale.

Proof. This is a copy of Properties of Spaces, Lemma 41.13.4. �

Lemma 42.35.4. The base change of an étale morphism of algebraic spaces by any mor-
phism of algebraic spaces is étale.

Proof. This is a copy of Properties of Spaces, Lemma 41.13.5. �

Lemma 42.35.5. An étale morphism of algebraic spaces is locally quasi-finite.

Proof. Let 𝑋 → 𝑌 be an étale morphism of algebraic spaces, see Properties of Spaces,
Definition 41.13.2. By Properties of Spaces, Lemma 41.13.3 we see this means there exists
a diagram as in Lemma 42.21.1 with ℎ étale and surjective vertical arrow 𝑎. ByMorphisms,
Lemma 24.35.6 ℎ is locally quasi-finite. Hence 𝑋 → 𝑌 is locally quasi-finite by definition.

�

Lemma 42.35.6. An étale morphism of algebraic spaces is smooth.

Proof. The proof is identical to the proof of Lemma 42.35.5. It uses the fact that an étale
morphism of schemes is smooth (by definition of an étale morphism of schemes). �

Lemma 42.35.7. An étale morphism of algebraic spaces is flat.

Proof. The proof is identical to the proof of Lemma 42.35.5. It uses Morphisms, Lemma
24.35.12. �

Lemma 42.35.8. An étale morphism of algebraic spaces is locally of finite presentation.

Proof. The proof is identical to the proof of Lemma 42.35.5. It uses Morphisms, Lemma
24.35.11. �

Lemma 42.35.9. An étale morphism of algebraic spaces is locally of finite type.

Proof. An étale morphism is locally of finite presentation and a morphism locally of finite
presentation is locally of finite type, see Lemmas 42.35.8 and 42.26.5. �

Lemma 42.35.10. An étale morphism of algebraic spaces is unramified.

Proof. The proof is identical to the proof of Lemma 42.35.5. It uses Morphisms, Lemma
24.35.5. �
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Lemma 42.35.11. Let 𝑆 be a scheme. Let 𝑋, 𝑌 be algebraic spaces étale over an algebraic
space 𝑍. Any morphism 𝑋 → 𝑌 over 𝑍 is étale.

Proof. This is a copy of Properties of Spaces, Lemma 41.13.6. �

Lemma42.35.12. A locally finitely presented, flat, unramifiedmorphism of algebraic spaces
is étale.

Proof. Let 𝑋 → 𝑌 be a locally finitely presented, flat, unramified morphism of algebraic
spaces. By Properties of Spaces, Lemma 41.13.3 we see this means there exists a diagram as
in Lemma 42.21.1 with ℎ locally finitely presented, flat, unramified and surjective vertical
arrow 𝑎. By Morphisms, Lemma 24.35.16 ℎ is étale. Hence 𝑋 → 𝑌 is étale by definition.

�

42.36. Proper morphisms

The notion of a proper morphism plays an important role in algebraic geometry. Here is
the definition of a proper morphism of algebraic spaces.

Definition 42.36.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. We say 𝑓 is proper if 𝑓 is separated, finite type, and universally closed.

Some of the results in this section are results on universally closed morphisms.

Lemma 42.36.2. A base change of a proper morphism is proper.

Proof. See Lemmas 42.5.4, 42.22.3, and 42.10.3. �

Lemma 42.36.3. A composition of proper morphisms is proper.

Proof. See Lemmas 42.5.8, 42.22.2, and 42.10.4. �

Lemma42.36.4. A closed immersion of algebraic spaces is a propermorphism of algebraic
spaces.

Proof. As a closed immersion is by definition representable this follows from Spaces,
Lemma 40.5.8 and the corresponding result for morphisms of schemes, see Morphisms,
Lemma 24.40.6. �

Lemma 42.36.5. Let 𝑆 be a scheme. Consider a commutative diagram of algebraic spaces

𝑋 //

��

𝑌

��
𝐵

over 𝑆.
(1) If 𝑋 → 𝐵 is universally closed and 𝑌 → 𝐵 is separated, then the morphism

𝑋 → 𝑌 is universally closed. In particular, the image of |𝑋| in |𝑌| is closed.
(2) If 𝑋 → 𝐵 is proper and 𝑌 → 𝐵 is separated, then the morphism 𝑋 → 𝑌 is proper.

Proof. Assume 𝑋 → 𝐵 is universally closed and 𝑌 → 𝐵 is separated. We factor the mor-
phism as 𝑋 → 𝑋 ×𝐵 𝑌 → 𝑌. The first morphism is a closed immersion, see Lemma 42.5.6
hence universally closed. The projection 𝑋 ×𝐵 𝑌 → 𝑌 is the base change of a unviversally
closed morphism and hence universally closed, see Lemma 42.10.3. Thus 𝑋 → 𝑌 is uni-
versally closed as the composition of universally closed morphisms, see Lemma 42.10.4.
This proves (1). To deduce (2) combine (1) with Lemmas 42.5.10, 42.9.8, and 42.22.6. �
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Lemma 42.36.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is separated,
(2) Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is universally closed, and
(3) Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is proper.

Proof. The implication (1) ⇒ (3) follows from Lemma 42.36.4. We will use Spaces,
Lemma 40.5.8 without further mention in the rest of the proof. Recall that Δ𝑋/𝑌 is a rep-
resentable monomorphism which is locally of finite type, see Lemma 42.5.1. Since proper
⇒ universally closed for morphisms of schemes we conclude that (3) implies (2). If Δ𝑋/𝑌
is universally closed then Étale Morphisms, Lemma 37.7.2 implies that it is a closed im-
mersion. Thus (2) ⇒ (1) and we win. �

42.37. Integral and finite morphisms

We have already defined in Section 42.3 what it means for a representable morphism of
algebraic spaces to be integral (resp. finite).

Lemma 42.37.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆. Then 𝑓 is integral (resp. finite) if and only if for all affine schemes
𝑍 and morphisms 𝑍 → 𝑌 the scheme 𝑋 ×𝑌 𝑍 is affine and integral (resp. finite) over 𝑍.

Proof. This follows directly from the definition of an integral (resp. finite) morphism of
schemes (Morphisms, Definition 24.42.1). �

This clears the way for the following definition.

Definition 42.37.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say that 𝑓 is integral if for every affine scheme 𝑍 and morphisms 𝑍 → 𝑌 the
algebraic space 𝑋 ×𝑌 𝑍 is representable by an affine scheme integral over 𝑍.

(2) We say that 𝑓 is finite if for every affine scheme 𝑍 and morphisms 𝑍 → 𝑌 the
algebraic space 𝑋 ×𝑌 𝑍 is representable by an affine scheme finite over 𝑍.

Lemma 42.37.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is representable and integral (resp. finite),
(2) 𝑓 is integral (resp. finite),
(3) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is integral (resp. finite), and
(4) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each of themorphisms 𝑓−1(𝑌𝑖) →

𝑌𝑖 is integral (resp. finite).

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking 𝑉 to be a disjoint
union of affines étale over 𝑌, see Properties of Spaces, Lemma 41.6.1. Assume 𝑉 → 𝑌 is as
in (3). Then for every affine open 𝑊 of 𝑉 we see that 𝑊 ×𝑌 𝑋 is an affine open of 𝑉 ×𝑌 𝑋.
Hence by Properties of Spaces, Lemma 41.10.1 we conclude that 𝑉×𝑌𝑋 is a scheme. More-
over the morphism 𝑉 ×𝑌 𝑋 → 𝑉 is affine. This means we can apply Spaces, Lemma 40.11.3
because the class of integral (resp. finite) morphisms satisfies all the required properties
(see Morphisms, Lemmas 24.42.6 and Descent, Lemmas 31.19.20, 31.19.21, and 31.33.1).
The conclusion of applying this lemma is that 𝑓 is representable and integral (resp. finite),
i.e., (1) holds.
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The equivalence of (1) and (4) follows from the fact that being integral (resp. finite) is
Zariski local on the target (the reference above shows that being integral or finite is in fact
fpqc local on the target). �

Lemma 42.37.4. The composition of integral (resp. finite) morphisms is integral (resp.
finite).

Proof. Omitted. �

Lemma 42.37.5. The base change of an integral (resp. finite) morphism is integral (resp.
finite).

Proof. Omitted. �

Lemma 42.37.6. A finite morphism of algebraic spaces is integral. An integral morphism
of algebraic spaces which is locally of finite type is finite.

Proof. In both cases the morphism is representable, and you can check the condition after
a base change by an affine scheme mapping into 𝑌, see Lemmas 42.37.3. Hence this lemma
follows from the same lemma for the case of schemes, seeMorphisms, Lemma 24.42.4. �

Lemma 42.37.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent

(1) 𝑓 is integral, and
(2) 𝑓 is affine and universally closed.

Proof. In both cases the morphism is representable, and you can check the condition after a
base change by an affine schememapping into 𝑌, see Lemmas 42.37.3, 42.19.3, and 42.10.5.
Hence the result follows from Morphisms, Lemma 24.42.7. �

Lemma 42.37.8. A finite morphism of algebraic spaces is quasi-finite.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces. By Definition 42.37.2 and
Lemmas 42.9.7 and 42.25.5 both properties may be checked after base change to an affine
over 𝑌, i.e., we may assume 𝑌 affine. If 𝑓 is finite then 𝑋 is a scheme. Hence the result
follows from the corresponding result for schemes, see Morphisms, Lemma 24.42.9. �

Lemma 42.37.9. A finite morphism of algebraic spaces is proper.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces. We think of proper as synony-
mous to ``finite type, separated, and universally closed''. ByDefinition 42.37.2 and Lemmas
42.22.4, 42.5.12, and 42.10.5 both properties may be checked after base change to an affine
over 𝑌, i.e., we may assume 𝑌 affine. If 𝑓 is finite then 𝑋 is a scheme. Hence the result
follows from the corresponding result for schemes, see Morphisms, Lemma 24.42.10. �

42.38. Finite locally free morphisms

We have already defined in Section 42.3 what it means for a representable morphism of
algebraic spaces to be finite locally free.

Lemma 42.38.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆. Then 𝑓 is finite locally free if and only if 𝑓 is affine and the sheaf
𝑓∗𝒪𝑋 is a finite locally free 𝒪𝑌-module.
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Proof. Assume 𝑓 is finite locally free (as defined in Section 42.3). This means that for
every morphism 𝑉 → 𝑌 whose source is a scheme the base change 𝑓′ ∶ 𝑉 ×𝑌 𝑋 → 𝑉 is a
finite locally free morphism of schemes. This in turn means (by the definition of a finite
locally free morphism of schemes) that 𝑓′

∗𝒪𝑉×𝑌𝑋 is a finite locally free 𝒪𝑉-module. We
may choose 𝑉 → 𝑌 to be surjective and étale. By Properties of Spaces, Lemma 41.23.2
we conclude the restriction of 𝑓∗𝒪𝑋 to 𝑉 is finite locally free. Hence by Modules on Sites,
Lemma 16.23.3 applied to the sheaf 𝑓∗𝒪𝑋 on 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 we conclude that 𝑓∗𝒪𝑋 is finite
locally free.

Conversely, assume 𝑓 is affine and that 𝑓∗𝒪𝑋 is a finite locally free 𝒪𝑌-module. Let 𝑉 be
a scheme, and let 𝑉 → 𝑌 be a surjective étale morphism. Again by Properties of Spaces,
Lemma 41.23.2 we see that 𝑓′

∗𝒪𝑉×𝑌𝑋 is finite locally free. Hence 𝑓′ ∶ 𝑉 ×𝑌 𝑋 → 𝑉 is finite
locally free (as it is also affine). By Spaces, Lemma 40.11.3 we conclude that 𝑓 is finite
locally free (use Morphisms, Lemma 24.44.4 Descent, Lemmas 31.19.28 and 31.33.1).
Thus we win. �

This clears the way for the following definition.

Definition 42.38.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. We say that 𝑓 is finite locally free if 𝑓 is affine and 𝑓∗𝒪𝑋 is a finite locally free
𝒪𝑌-module. In this case we say 𝑓 is has rank or degree 𝑑 if the sheaf 𝑓∗𝒪𝑋 is finite locally
free of rank 𝑑.

Lemma 42.38.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is representable and finite locally free,
(2) 𝑓 is finite locally free,
(3) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that 𝑉×𝑌𝑋 →

𝑉 is finite locally free, and
(4) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each morphism 𝑓−1(𝑌𝑖) → 𝑌𝑖

is finite locally free.

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking 𝑉 to be a disjoint
union of affines étale over 𝑌, see Properties of Spaces, Lemma 41.6.1. Assume 𝑉 → 𝑌
is as in (3). Then for every affine open 𝑊 of 𝑉 we see that 𝑊 ×𝑌 𝑋 is an affine open of
𝑉 ×𝑌 𝑋. Hence by Properties of Spaces, Lemma 41.10.1 we conclude that 𝑉 ×𝑌 𝑋 is a
scheme. Moreover the morphism 𝑉 ×𝑌 𝑋 → 𝑉 is affine. This means we can apply Spaces,
Lemma 40.11.3 because the class of finite locally free morphisms satisfies all the required
properties (see Morphisms, Lemma 24.44.4 Descent, Lemmas 31.19.28 and 31.33.1). The
conclusion of applying this lemma is that 𝑓 is representable and finite locally free, i.e., (1)
holds.

The equivalence of (1) and (4) follows from the fact that being finite locally free is Zariski
local on the target (the reference above shows that being finite locally free is in fact fpqc
local on the target). �

Lemma 42.38.4. The composition of finite locally free morphisms is finite locally free.

Proof. Omitted. �

Lemma 42.38.5. The base change of a finite locally free morphism is finite locally free.

Proof. Omitted. �
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Lemma 42.38.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is finite locally free,
(2) 𝑓 is finite, flat, and locally of finite presentation.

If 𝑌 is locally Noetherian these are also equivalent to
(3) 𝑓 is finite and flat.

Proof. In each of the three cases the morphism is representable and you can check the
property after base change by a surjective étale morphism 𝑉 → 𝑌, see Lemmas 42.37.3,
42.38.3, 42.27.4, and 42.26.4. If 𝑌 is locally Noetherian, then 𝑉 is locally Noetherian.
Hence the result follows from the corresponding result in the schemes case, seeMorphisms,
Lemma 24.44.2. �

42.39. Separated, locally quasi-finite morphisms

We prove a result that is so interesting it deserves its own section. The result is that an
algebraic space which is locally quasi-finite and separated over a scheme is a scheme. It
implies that a separated and locally quasi-finite morphism is representable. But first... a
lemma (which will be obsoleted by Proposition 42.39.2).

Lemma 42.39.1. Let 𝑆 be a scheme. Consider a commutative diagram

𝑉′ //

##

𝑇′ ×𝑇 𝑋 //

��

𝑋

��
𝑇′ // 𝑇

Assume
(1) 𝑇′ → 𝑇 is an étale morphism of affine schemes,
(2) 𝑋 is an algebraic space,
(3) 𝑋 → 𝑇 is a separated, locally quasi-finite morphism,
(4) 𝑉′ is an open subspace of 𝑇′ ×𝑇 𝑋, and
(5) 𝑉′ → 𝑇′ is quasi-affine.

In this situation the image 𝑈 of 𝑉′ in 𝑋 is a quasi-compact open subspace of 𝑋 which is
representable.

Proof. We first make some trivial observations. Note that 𝑉′ is a representable by Lemma
42.20.3. It is also quasi-compact (as a quasi-affine scheme over an affine scheme, see Mor-
phisms, Lemma 24.12.2). Since 𝑇′ ×𝑇 𝑋 → 𝑋 is étale (Properties of Spaces, Lemma
41.13.5) the map |𝑇′ ×𝑇 𝑋| → |𝑋| is open, see Properties of Spaces, Lemma 41.13.7. Let
𝑈 ⊂ 𝑋 be the open subspace corresponding to the image of |𝑉′|, see Properties of Spaces,
Lemma 41.4.8. As |𝑉′| is quasi-compact we see that |𝑈| is quasi-compact, hence 𝑈 is a
quasi-compact algebraic spaces, by Properties of Spaces, Lemma 41.5.2.

By Morphisms, Lemma 24.48.8 the morphism 𝑇′ → 𝑇 is universally bounded. Hence we
can do induction on the integer 𝑛 bounding the degree of the fibres of 𝑇′ → 𝑇, see Mor-
phisms, Lemma 24.48.7 for a description of this integer in the case of an étale morphism.
If 𝑛 = 1, then 𝑇′ → 𝑇 is an open immersion (see Étale Morphisms, Theorem 37.14.1), and
the result is clear. Assume 𝑛 > 1.

Consider the affine scheme 𝑇″ = 𝑇′ ×𝑇 𝑇′. As 𝑇′ → 𝑇 is étale we have a decomposition
(into open and closed affine subschemes) 𝑇″ = Δ(𝑇′) ⨿ 𝑇∗. Namely Δ = Δ𝑇′/𝑇 is open by
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Morphisms, Lemma 24.34.13 and closed because 𝑇′ → 𝑇 is separated as a morphism of
affines. As a base change the degrees of the fibres of the second projection pr1 ∶ 𝑇′ ×𝑇 𝑇′ →
𝑇′ are bounded by 𝑛, see Morphisms, Lemma 24.48.4. On the other hand, pr1|Δ(𝑇′) ∶
Δ(𝑇′) → 𝑇′ is an isomorphism and every fibre has exactly one point. Thus, on applying
Morphisms, Lemma 24.48.7 we conclude the degrees of the fibres of the restriction pr1|𝑇∗ ∶
𝑇∗ → 𝑇′ are bounded by 𝑛 − 1. Hence the induction hypothesis applied to the diagram

𝑝−1
0 (𝑉′) ∩ 𝑋∗ //

%%

𝑋∗
𝑝1|𝑋∗

//

��

𝑋′

��
𝑇∗ pr1|𝑇∗ // 𝑇′

gives that 𝑝1(𝑝−1
0 (𝑉′) ∩ 𝑋∗) is a quasi-compact scheme. Here we set 𝑋″ = 𝑇″ ×𝑇 𝑋,

𝑋∗ = 𝑇∗ ×𝑇 𝑋, and 𝑋′ = 𝑇′ ×𝑇 𝑋, and 𝑝0, 𝑝1 ∶ 𝑋″ → 𝑋′ are the base changes of pr0, pr1.
Most of the hypotheses of the lemma imply by base change the corresponding hypothesis
for the diagram above. For example 𝑝−1

0 (𝑉′) = 𝑇″ ×𝑇′ 𝑉′ is a scheme quasi-affine over 𝑇″

as a base change. Some verifications omitted.
By Properties of Spaces, Lemma 41.10.1 we conclude that

𝑝1(𝑝−1
0 (𝑉′)) = 𝑉′ ∪ 𝑝1(𝑝−1

0 (𝑉′) ∩ 𝑋∗)

is a quasi-compact scheme. Moreover, it is clear that 𝑝1(𝑝−1
0 (𝑉′)) is the inverse image of

the quasi-compact open subspace 𝑈 ⊂ 𝑋 discussed in the first paragraph of the proof. In
other words, 𝑇′ ×𝑇 𝑈 is a scheme! Note that 𝑇′ ×𝑇 𝑈 is quasi-compact and separated and
locally quasi-finite over 𝑇′, as 𝑇′ ×𝑇 𝑋 → 𝑇′ is locally quasi-finite and separated being
a base change of the original morphism 𝑋 → 𝑇 (see Lemmas 42.5.4 and 42.25.3). This
implies by More on Morphisms, Lemma 33.29.3 that 𝑇′ ×𝑇 𝑈 → 𝑇′ is quasi-affine.
By Descent, Lemma 31.35.1 this gives a descent datum on 𝑇′ ×𝑇 𝑈/𝑇′ relative to the étale
covering {𝑇′ → 𝑊}, where 𝑊 ⊂ 𝑇 is the image of the morphism 𝑇′ → 𝑇. Because 𝑈′

is quasi-affine over 𝑇′ we see from Descent, Lemma 31.34.1 that this datum is effective,
and by the last part of Descent, Lemma 31.35.1 this implies that 𝑈 is a scheme as desired.
Some minor details omitted. �

Proposition 42.39.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑇 be a morphism of algebraic
spaces. Assume

(1) 𝑇 is representable,
(2) 𝑓 is locally quasi-finite, and
(3) 𝑓 is separated.

Then 𝑋 is representable.

Proof. Let 𝑇 = ⋃ 𝑇𝑖 be an affine open covering of the scheme 𝑇. If we can show that the
open subspaces 𝑋𝑖 = 𝑓−1(𝑇𝑖) are representable, then 𝑋 is representable, see Properties of
Spaces, Lemma 41.10.1. Note that 𝑋𝑖 = 𝑇𝑖 ×𝑇 𝑋 and that locally quasi-finite and separated
are both stable under base change, see Lemmas 42.5.4 and 42.25.3. Hence we may assume
𝑇 is an affine scheme.
By Properties of Spaces, Lemma 41.6.2 there exists a Zariski covering 𝑋 = ⋃ 𝑋𝑖 such
that each 𝑋𝑖 has a surjective étale covering by an affine scheme. By Properties of Spaces,
Lemma 41.10.1 again it suffices to prove the propostion for each 𝑋𝑖. Hence we may assume
there exists an affine scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋. This reduces us
to the situation in the next paragraph.
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Assume we have
𝑈 ⟶ 𝑋 ⟶ 𝑇

where 𝑈 and 𝑇 are affine schemes, 𝑈 → 𝑋 is étale surjective, and 𝑋 → 𝑇 is separated
and locally quasi-finite. By Lemmas 42.35.5 and 42.25.2 the morphism 𝑈 → 𝑇 is locally
quasi-finite. Since 𝑈 and 𝑇 are affine it is quasi-finite. Set 𝑅 = 𝑈 ×𝑋 𝑈. Then 𝑋 = 𝑈/𝑅,
see Spaces, Lemma 40.9.1. As 𝑋 → 𝑇 is separated the morphism 𝑅 → 𝑈 ×𝑇 𝑈 is a closed
immersion, see Lemma 42.5.5. In particular 𝑅 is an affine scheme also. As 𝑈 → 𝑋 is
étale the projection morphisms 𝑡, 𝑠 ∶ 𝑅 → 𝑈 are étale as well. In particular 𝑠 and 𝑡 are
quasi-finite, flat and of finite presentation (see Morphisms, Lemmas 24.35.6, 24.35.12 and
24.35.11).

Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid associated to the étale equivalence relation 𝑅 on 𝑈. Let
𝑢 ∈ 𝑈 be a point, and denote 𝑝 ∈ 𝑇 its image. We are going to use More on Groupoids,
Lemma 36.12.2 for the groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over the scheme 𝑇 with points 𝑝 and 𝑢 as
above. By the discussion in the previous paragraph all the assumptions (1) -- (7) of that
lemma are satisfied. Hence we get an étale neighbourhood (𝑇′, 𝑝′) → (𝑇, 𝑝) and disjoint
union decompositions

𝑈𝑇′ = 𝑈′ ⨿ 𝑊, 𝑅𝑇′ = 𝑅′ ⨿ 𝑊′

and 𝑢′ ∈ 𝑈′ satisfying conclusions (a), (b), (c), (d), (e), (f), (g), and (h) of the aforemen-
tioned More on Groupoids, Lemma 36.12.2. We may and do assume that 𝑇′ is affine (after
possibly shrinking 𝑇′). Conclusion (h) implies that 𝑅′ = 𝑈′ ×𝑋𝑇′ 𝑈′ with projection map-
pings identified with the restrictions of 𝑠′ and 𝑡′. Thus (𝑈′, 𝑅′, 𝑠′|𝑅′, 𝑡′|𝑅′, 𝑐′|𝑅′×𝑡′,𝑈′,𝑠′𝑅′)
of conclusion (g) is an étale equivalence relation. By Spaces, Lemma 40.10.2 we conclude
that 𝑈′/𝑅′ is an open subspace of 𝑋𝑇′. By conclusion (d) the schemes 𝑈′, 𝑅′ are affine and
the morphisms 𝑠′|𝑅′, 𝑡′|𝑅′ are finite étale. Hence Groupoids, Proposition 35.19.8 kicks in
and we see that 𝑈′/𝑅′ is an affine scheme.

We conclude that for every pair of points (𝑢, 𝑝) as above we can find an étale neighbourhood
(𝑇′, 𝑝′) → (𝑇, 𝑝) with 𝜅(𝑝) = 𝜅(𝑝′) and a point 𝑢′ ∈ 𝑈𝑇′ mapping to 𝑢 such that the image
𝑥′ of 𝑢′ in |𝑋𝑇′| has an open neighbourhood 𝑉′ in 𝑋𝑇′ which is an affine scheme. We
apply Lemma 42.39.1 to obtain an open subspace 𝑊 ⊂ 𝑋 which is a scheme, and which
contains 𝑥 (the image of 𝑢 in |𝑋|). Since this works for every 𝑥 we see that 𝑋 is a scheme
by Properties of Spaces, Lemma 41.10.1. This ends the proof. �

42.40. Applications

Here is another formulation of the result above.

Lemma 42.40.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is locally quasi-finite and separated, then 𝑓 is representable.

Proof. This is immediate from Proposition 42.39.2 and the fact that being locally quasi-
finite and separated is preserved under any base change, see Lemmas 42.25.3 and 42.5.4.

�

Lemma 42.40.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be an étale and universally injective
morphism of algebraic spaces over 𝑆. Then 𝑓 is an open immersion.

Proof. Let 𝑇 → 𝑌 be a morphism from a scheme into 𝑌. If we can show that 𝑋 ×𝑌 𝑇 → 𝑇
is an open immersion, then we are done. Since being étale and being universally injective
are properties of morphisms stable under base change (see Lemmas 42.35.4 and 42.18.5)
we may assume that 𝑌 is a scheme. Note that the diagonal Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is étale,
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a monomorphism, and surjective by Lemma 42.18.2. Hence we see that Δ𝑋/𝑌 is an iso-
morphism (see Spaces, Lemma 40.5.9), in particular we see that 𝑋 is separated over 𝑌. It
follows that 𝑋 is a scheme too, by Proposition 42.39.2. Finally, 𝑋 → 𝑌 is an open immer-
sion by the fundamental theorem for étale morphisms of schemes, see Étale Morphisms,
Theorem 37.14.1. �

42.41. Universal homeomorphisms

In Morphisms, Section 24.43 we have shown that a morphism of schemes is a universal
homeomorphism if and only if it is integral, universally injective and surjective. In partic-
ular the class of universal homeomorphisms of schemes is closed under composition and
arbtriary base change and is fppf local on the base (as this is true for integral, universally
injective, and surjective morphisms). Thus, if we apply the discussion in Section 42.3 to
this notion we see that we know what it means for a representable morphism of algebraic
spaces to be a universal homeomorphism.

Lemma 42.41.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of
algebraic spaces over 𝑆. Then 𝑓 is a universal homeomorphism (as discussed above) if and
only if for every morphism of algebraic spaces 𝑍 → 𝑌 the base change map 𝑍 ×𝑌 𝑋 → 𝑍
induces a homeomorphism |𝑍 ×𝑌 𝑋| → |𝑍|.

Proof. If for every morphism of algebraic spaces 𝑍 → 𝑌 the base change map 𝑍×𝑌 𝑋 → 𝑍
induces a homeomorphism |𝑍 ×𝑌 𝑋| → |𝑍|, then the same is true whenever 𝑍 is a scheme,
which formally implies that 𝑓 is a universal homeomorphism in the sense of Section 42.3.
Conversely, if 𝑓 is a universal homeomorphism in the sense of Section 42.3 then 𝑋 → 𝑌 is
integral, universally injective and surjective (see discussion above). Hence 𝑓 is universally
closed, see Lemma 42.37.7 and universally injective and (universally) surjective, i.e., 𝑓 is
a universal homeomorphism. �

Definition 42.41.2. Let 𝑆 be a scheme. A morphisms 𝑓 ∶ 𝑋 → 𝑌 of algebraic spaces
over 𝑆 is called a universal homeomorphism if and only if for every morphism of algebraic
spaces 𝑍 → 𝑌 the base change 𝑍 ×𝑌 𝑋 → 𝑍 induces a homeomorphism |𝑍 ×𝑌 𝑋| → |𝑍|.

This definition does not clash with the pre-existing definition for representable morphisms
of algebraic spaces by our Lemma 42.41.1. For morphisms of algebraic spaces it is not the
case that universal homeomorphisms are always integral.

Example 42.41.3. This is a continuation of Remark 42.18.4. Consider the algebraic space
𝑋 = 𝐀1

𝑘/{𝑥 ∼ −𝑥 ∣ 𝑥≠0}. There are morphisms

𝐀1
𝑘 ⟶ 𝑋 ⟶ 𝐀1

𝑘

such that the first arrow is étale surjective, the second arrow is universally injective, and
the composition is the map 𝑥 ↦ 𝑥2. Hence the composition is universally closed. Thus it
follows that the map 𝑋 → 𝐀1

𝑘 is a universal homeomorphism, but 𝑋 → 𝐀1
𝑘 is not separated.

Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a universal homeomorphism of algebraic spaces
over 𝑆. Then 𝑓 is universally closed, hence is quasi-compact, see Lemma 42.10.7. But 𝑓
need not be separated (see example above), and not even quasi-separated: an example is
to take infinite dimensional affine space 𝐀∞ = 𝑆𝑝𝑒𝑐(𝑘[𝑥1, 𝑥2, …]) modulo the equivalence
relation given by flipping finitely many signs of nonzero coordinates (details omitted).
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CHAPTER 43

Decent Algebraic Spaces

43.1. Introduction

In this chapter we talk study ``local'' properties of general algebraic spaces, i.e., those alge-
braic spaces which aren't quasi-separated. Quasi-separated algebraic spaces are studied in
[Kol96]. It turns out that essentially new phenomena happen, especially regarding points
and specializations of points, on more general algebraic spaces. On the other hand, for
most basic results on algebraic spaces, one needn't worry about these phenomena, which
is why we have decided to have this material in a separate chapter following the standard
development of the theory.

43.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.

Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋.

43.3. Universally bounded fibres

We briefly discuss what it means for a morphism from a scheme to an algebraic space
to have universally bounded fibres. Please refer to Morphisms, Section 24.48 for similar
definitions and results on morphisms of schemes.

Definition 43.3.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆, and let 𝑈 be
a scheme over 𝑆. Let 𝑓 ∶ 𝑈 → 𝑋 be a morphism over 𝑆. We say the fibres of 𝑓 are
universally bounded1 if there exists an integer 𝑛 such that for all fields 𝑘 and all morphisms
𝑆𝑝𝑒𝑐(𝑘) → 𝑋 the fibre product 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 is a finite scheme over 𝑘 whose degree over
𝑘 is ≤ 𝑛.

This definition makes sense because the fibre product 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 is a scheme. More-
over, if 𝑌 is a scheme we recover the notion of Morphisms, Definition 24.48.1 by virtue of
Morphisms, Lemma 24.48.2.

Lemma 43.3.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑉 → 𝑈 be a
morphism of schemes over 𝑆, and let 𝑈 → 𝑋 be a morphism from 𝑈 to 𝑋. If the fibres of
𝑉 → 𝑈 and 𝑈 → 𝑋 are universally bounded, then so are the fibres of 𝑉 → 𝑋.

1This is probably nonstandard notation.
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Proof. Let 𝑛 be an integer which works for 𝑉 → 𝑈, and let 𝑚 be an integer which works for
𝑈 → 𝑋 in Definition 43.3.1. Let 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 be a morphism, where 𝑘 is a field. Consider
the morphisms

𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑉 ⟶ 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 ⟶ 𝑆𝑝𝑒𝑐(𝑘).

By assumption the scheme 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 is finite of degree at most 𝑚 over 𝑘, and 𝑛 is an
integer which bounds the degree of the fibres of the first morphism. Hence by Morphisms,
Lemma 24.48.3 we conclude that 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑉 is finite over 𝑘 of degree at most 𝑛𝑚. �

Lemma 43.3.3. Let 𝑆 be a scheme. Let 𝑌 → 𝑋 be a representable morphism of algebraic
spaces over 𝑆. Let 𝑈 → 𝑋 be a morphism from a scheme to 𝑋. If the fibres of 𝑈 → 𝑋 are
universally bounded, then the fibres of 𝑈 ×𝑋 𝑌 → 𝑌 are universally bounded.

Proof. This is clear from the definition, and properties of fibre products. (Note that 𝑈 ×𝑋 𝑌
is a scheme as we assumed 𝑌 → 𝑋 representable, so the definition applies.) �

Lemma 43.3.4. Let 𝑆 be a scheme. Let 𝑔 ∶ 𝑌 → 𝑋 be a representable morphism of
algebraic spaces over 𝑆. Let 𝑓 ∶ 𝑈 → 𝑋 be a morphism from a scheme towards 𝑋. Let
𝑓′ ∶ 𝑈 ×𝑋 𝑌 → 𝑌 be the base change of 𝑓. If

Im(|𝑓| ∶ |𝑈| → |𝑋|) ⊂ Im(|𝑔| ∶ |𝑌| → |𝑋|)

and 𝑓′ has universally bounded fibres, then 𝑓 has universally bounded fibres.

Proof. Let 𝑛 ≥ 0 be an integer bounding the degrees of the fibre products 𝑆𝑝𝑒𝑐(𝑘) ×𝑌
(𝑈 ×𝑋 𝑌) as in Definition 43.3.1 for the morphism 𝑓′. We claim that 𝑛 works for 𝑓 also.
Namely, suppose that 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is a morphism from the spectrum of a field. Then
either 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 is empty (and there is nothing to prove), or 𝑥 is in the image of |𝑓|.
By Properties of Spaces, Lemma 41.4.3 and the assumption of the lemma we see that this
means there exists a field extension 𝑘 ⊂ 𝑘′ and a commutative diagram

𝑆𝑝𝑒𝑐(𝑘′) //

��

𝑌

��
𝑆𝑝𝑒𝑐(𝑘) // 𝑋

Hence we see that

𝑆𝑝𝑒𝑐(𝑘′) ×𝑌 (𝑈 ×𝑋 𝑌) = 𝑆𝑝𝑒𝑐(𝑘′) ×𝑆𝑝𝑒𝑐(𝑘) (𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈)

Since the scheme 𝑆𝑝𝑒𝑐(𝑘′) ×𝑌 (𝑈 ×𝑋 𝑌) is assumed finite of degree ≤ 𝑛 over 𝑘′ it follows
that also 𝑆𝑝𝑒𝑐(𝑘)×𝑋 𝑈 is finite of degree ≤ 𝑛 over 𝑘 as desired. (Some details omitted.) �

Lemma 43.3.5. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Consider a
commutative diagram

𝑈

𝑔 ��

𝑓
// 𝑉

ℎ��
𝑋

where 𝑈 and 𝑉 are schemes. If 𝑔 has universally bounded fibres, and 𝑓 is surjective and
flat, then also ℎ has universally bounded fibres.
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Proof. Assume 𝑔 has universally bounded fibres, and 𝑓 is surjective and flat. Say 𝑛 ≥ 0 is
an integer which bounds the degrees of the schemes 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 as in Definition 43.3.1.
We claim 𝑛 also works for ℎ. Let 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 be a morphism from the spectrum of a field
to 𝑋. Consider the morphism of schemes

𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑉 ⟶ 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈

It is flat and surjective. By assumption the scheme on the left is finite of degree ≤ 𝑛 over
𝑆𝑝𝑒𝑐(𝑘). It follows from Morphisms, Lemma 24.48.9 that the degree of the scheme on the
right is also bounded by 𝑛 as desired. �

Lemma 43.3.6. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆, and let 𝑈 be a
scheme over 𝑆. Let 𝜑 ∶ 𝑈 → 𝑋 be a morphism over 𝑆. If the fibres of 𝜑 are universally
bounded, then there exists an integer 𝑛 such that each fibre of |𝑈| → |𝑋| has at most 𝑛
elements.

Proof. The integer 𝑛 of Definition 43.3.1 works. Namely, pick 𝑥 ∈ |𝑋|. Represent 𝑥 by a
morphism 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋. Then we get a commutative diagram

𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 //

��

𝑈

��
𝑆𝑝𝑒𝑐(𝑘) 𝑥 // 𝑋

which shows (via Properties of Spaces, Lemma 41.4.3) that the inverse image of 𝑥 in |𝑈|
is the image of the top horizontal arrow. Since 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 is finite of degree ≤ 𝑛 over 𝑘
it has at most 𝑛 points. �

43.4. Finiteness conditions and points

In this section we elaborate on the question of when points can be represented by monomor-
phisms from spectra of fields into the space.

Remark 43.4.1. Before we give the proof of the next lemma let us recall some facts about
étale morphisms of schemes:

(1) An étale morphism is flat and hence generalizations lift along an étale morphism
(Morphisms, Lemmas 24.35.12 and 24.24.8).

(2) An étale morphism is unramified, an unramified morphism is locally quasi-finite,
hence fibres are discrete (Morphisms, Lemmas 24.35.16, 24.34.10, and 24.19.6).

(3) A quasi-compact étale morphism is quasi-finite and in particular has finite fibres
(Morphisms, Lemmas 24.19.9 and 24.19.10).

(4) An étale scheme over a field 𝑘 is a disjoint union of spectra of finite separable
field extension of 𝑘 (Morphisms, Lemma 24.35.7).

For a general discussion of étale morphisms, please see Étale Morphisms, Section 37.11.

Lemma 43.4.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|. The
following are equivalent:

(1) there exists a family of schemes 𝑈𝑖 and étale morphisms 𝜑𝑖 ∶ 𝑈𝑖 → 𝑋 such that
∐ 𝜑𝑖 ∶ ∐ 𝑈𝑖 → 𝑋 is surjective, and such that for each 𝑖 the fibre of |𝑈𝑖| → |𝑋|
over 𝑥 is finite, and

(2) for every affine scheme 𝑈 and étale morphism 𝜑 ∶ 𝑈 → 𝑋 the fibre of |𝑈| → |𝑋|
over 𝑥 is finite.
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Proof. The implication (2) ⇒ (1) is trivial. Let 𝜑𝑖 ∶ 𝑈𝑖 → 𝑋 be a family of étale mor-
phisms as in (1). Let 𝜑 ∶ 𝑈 → 𝑋 be an étale morphism from an affine scheme towards 𝑋.
Consider the fibre product diagrams

𝑈 ×𝑋 𝑈𝑖 𝑝𝑖
//

𝑞𝑖
��

𝑈𝑖

𝜑𝑖
��

𝑈
𝜑 // 𝑋

∐ 𝑈 ×𝑋 𝑈𝑖 ∐ 𝑝𝑖

//

∐ 𝑞𝑖
��

∐ 𝑈𝑖

∐ 𝜑𝑖
��

𝑈
𝜑 // 𝑋

Since 𝑞𝑖 is étale it is open (see Remark 43.4.1). Moreover, the morphism ∐ 𝑞𝑖 is surjective.
Hence there exist finitely many indices 𝑖1, … , 𝑖𝑛 and a quasi-compact opens 𝑊𝑖𝑗 ⊂ 𝑈×𝑋 𝑈𝑖𝑗
which surject onto 𝑈. The morphism 𝑝𝑖 is étale, hence locally quasi-finite (see remark
on étale morphisms above). Thus we may apply Morphisms, Lemma 24.48.8 to see the
fibres of 𝑝𝑖𝑗|𝑊𝑖𝑗

∶ 𝑊𝑖𝑗 → 𝑈𝑖 are finite. Hence by Properties of Spaces, Lemma 41.4.3 and
the assumption on 𝜑𝑖 we conclude that the fibre of 𝜑 over 𝑥 is finite. In other words (2)
holds. �

Lemma 43.4.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|. The
following are equivalent:

(1) there exists a scheme 𝑈, an étale morphism 𝜑 ∶ 𝑈 → 𝑋, and points 𝑢, 𝑢′ ∈ 𝑈
mapping to 𝑥 such that setting 𝑅 = 𝑈 ×𝑋 𝑈 the fibre of

|𝑅| → |𝑈| ×|𝑋| |𝑈|

over (𝑢, 𝑢′) is finite,
(2) for every scheme 𝑈, étale morphism 𝜑 ∶ 𝑈 → 𝑋 and any points 𝑢, 𝑢′ ∈ 𝑈

mapping to 𝑥 setting 𝑅 = 𝑈 ×𝑋 𝑈 the fibre of
|𝑅| → |𝑈| ×|𝑋| |𝑈|

over (𝑢, 𝑢′) is finite,
(3) there exists a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 with 𝑘 a field in the equivalence class

of 𝑥 such that the projections 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝑘) are étale and
quasi-compact, and

(4) there exists a monomorphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 with 𝑘 a field in the equivalence class
of 𝑥.

Proof. Assume (1), i.e., let 𝜑 ∶ 𝑈 → 𝑋 be an étale morphism from a scheme towards 𝑋,
and let 𝑢, 𝑢′ be points of 𝑈 lying over 𝑥 such that the fibre of |𝑅| → |𝑈| ×|𝑋| |𝑈| over (𝑢, 𝑢′)
is a finite set. In this proof we think of a point 𝑢 = 𝑆𝑝𝑒𝑐(𝜅(𝑢)) as a scheme. Note that 𝑢 → 𝑈,
𝑢′ → 𝑈 are monomorphisms (see Schemes, Lemma 21.23.6), hence 𝑢×𝑋 𝑢′ → 𝑅 = 𝑈×𝑋 𝑈
is a monomorphism. In this language the assumption really means that 𝑢 ×𝑋 𝑢′ is a scheme
whose underlying topological space has finitely many points. Let 𝜓 ∶ 𝑊 → 𝑋 be an étale
morphism from a scheme towards 𝑋. Let 𝑤, 𝑤′ ∈ 𝑊 be points of 𝑊 mapping to 𝑥. We
have to show that 𝑤 ×𝑋 𝑤′ is a scheme whose underlying topological space has finitely
many points. Consider the fibre product diagram

𝑊 ×𝑋 𝑈 𝑝
//

𝑞
��

𝑈

𝜑
��

𝑊
𝜓 // 𝑋

As 𝑥 is the image of 𝑢 and 𝑢′ we may pick points �̃�, �̃�′ in 𝑊 ×𝑋 𝑈 with 𝑞(�̃�) = 𝑤,
𝑞(�̃�′) = 𝑤′, 𝑢 = 𝑝(�̃�) and 𝑢′ = 𝑝(�̃�′), see Properties of Spaces, Lemma 41.4.3. As 𝑝, 𝑞
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are étale the field extensions 𝜅(𝑤) ⊂ 𝜅(�̃�) ⊃ 𝜅(𝑢) and 𝜅(𝑤′) ⊂ 𝜅(�̃�′) ⊃ 𝜅(𝑢′) are finite
separable, see Remark 43.4.1. Then we get a commutative diagram

𝑤 ×𝑋 𝑤′

��

�̃� ×𝑋 �̃�′oo

��

// 𝑢 ×𝑋 𝑢′

��
𝑤 ×𝑋 𝑤′ �̃� ×𝑆 �̃�′oo // 𝑢 ×𝑆 𝑢′

where the squares are fibre product squares. The lower horizontal morpisms are étale and
quasi-compact, as any scheme of the form 𝑆𝑝𝑒𝑐(𝑘) ×𝑆 𝑆𝑝𝑒𝑐(𝑘′) is affine, and by our ob-
servations about the field extensions above. Thus we see that the top horizontal arrows are
étale and quasi-compact and hence have finite fibres. We have seen above that |𝑢 ×𝑋 𝑢′| is
finite, so we conclude that |𝑤 ×𝑋 𝑤′| is finite. In other words, (2) holds.

Assume (2). Let 𝑈 → 𝑋 be an étale morphism from a scheme 𝑈 such that 𝑥 is in the image
of |𝑈| → |𝑋|. Let 𝑢 ∈ 𝑈 be a point mapping to 𝑥. Then we have seen in the previous
paragraph that 𝑢 = 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑋 has the property that 𝑢 ×𝑋 𝑢 has a finite underlying
topological space. On the other hand, the projection maps 𝑢 ×𝑋 𝑢 → 𝑢 are the composition

𝑢 ×𝑋 𝑢 ⟶ 𝑢 ×𝑋 𝑈 ⟶ 𝑢 ×𝑋 𝑋 = 𝑢,

i.e., the composition of a monomorphism (the base change of the monomorphism 𝑢 → 𝑈)
by an étale morphism (the base change of the étale morphism 𝑈 → 𝑋). Hence 𝑢 ×𝑋 𝑈 is
a disjoint union of spectra of fields finite separable over 𝜅(𝑢) (see Remark 43.4.1). Since
𝑢 ×𝑋 𝑢 is finite the image of it in 𝑢 ×𝑋 𝑈 is a finite disjoint union of spectra of fields finite
separable over 𝜅(𝑢). By Schemes, Lemma 21.23.10 we conclude that 𝑢 ×𝑋 𝑢 is a finite
disjoint union of spectra of fields finite separable over 𝜅(𝑢). In other words, we see that
𝑢 ×𝑋 𝑢 → 𝑢 is quasi-compact and étale. This means that (3) holds.

Let us prove that (3) implies (4). Let 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 be a morphism from the spectrum
of a field into 𝑋, in the equivalence class of 𝑥 such that the two projections 𝑡, 𝑠 ∶ 𝑅 =
𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝑘) are quasi-compact and étale. This means in particular that
𝑅 is an étale equivalence relation on 𝑆𝑝𝑒𝑐(𝑘). By Spaces, Theorem 40.10.5 we know that
the quotient sheaf 𝑋′ = 𝑆𝑝𝑒𝑐(𝑘)/𝑅 is an algebraic space. By Groupoids, Lemma 35.17.6
the map 𝑋′ → 𝑋 is a monomorphism. Since 𝑠, 𝑡 are quasi-compact, we see that 𝑅 is
quasi-compact and hence Properties of Spaces, Lemma 41.11.1 applies to 𝑋′, and we see
that 𝑋′ = 𝑆𝑝𝑒𝑐(𝑘′) for some field 𝑘′. Hence we get a factorization

𝑆𝑝𝑒𝑐(𝑘) ⟶ 𝑆𝑝𝑒𝑐(𝑘′) ⟶ 𝑋

which shows that 𝑆𝑝𝑒𝑐(𝑘′) → 𝑋 is a monomorphism mapping to 𝑥 ∈ |𝑋|. In other words
(4) holds.

Finally, we prove that (4) implies (1). Let 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 be a monomorphism with 𝑘 a field
in the equivalence class of 𝑥. Let 𝑈 → 𝑋 be a surjectve étale morphism from a scheme 𝑈 to
𝑋. Let 𝑢 ∈ 𝑈 be a point over 𝑥. Since 𝑆𝑝𝑒𝑐(𝑘)×𝑋𝑢 is nonempty, and since 𝑆𝑝𝑒𝑐(𝑘)×𝑋𝑢 → 𝑢
is a monomorphism we conclude that 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑢 = 𝑢 (see Schemes, Lemma 21.23.10).
Hence 𝑢 → 𝑈 → 𝑋 factors through 𝑆𝑝𝑒𝑐(𝑘) → 𝑋, here is a picture

𝑢 //

��

𝑈

��
𝑆𝑝𝑒𝑐(𝑘) // 𝑋
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Since the right vertical arrow is étale this implies that 𝑘 ⊂ 𝜅(𝑢) is a finite separable exten-
sion. Hence we conclude that

𝑢 ×𝑋 𝑢 = 𝑢 ×𝑆𝑝𝑒𝑐(𝑘) 𝑢

is a finite scheme, and we win by the discussion of the meaning of property (1) in the first
paragraph of this proof. �

Lemma 43.4.4. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|. Let
𝑈 be a scheme and let 𝜑 ∶ 𝑈 → 𝑋 be an étale morphism. The following are equivalent:

(1) 𝑥 is in the image of |𝑈| → |𝑋|, and setting 𝑅 = 𝑈 ×𝑋 𝑈 the fibres of both

|𝑈| ⟶ |𝑋| and |𝑅| ⟶ |𝑋|

over 𝑥 are finite,
(2) there exists a monomorphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 with 𝑘 a field in the equivalence class

of 𝑥, and the fibre product 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 is a finite nonempty scheme over 𝑘.

Proof. Assume (1). This clearly implies the first condition of Lemma 43.4.3 and hence we
obtain a monomorphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 in the class of 𝑥. Taking the fibre product we see
that 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 → 𝑆𝑝𝑒𝑐(𝑘) is a scheme étale over 𝑆𝑝𝑒𝑐(𝑘) with finitely many points,
hence a finite nonempty scheme over 𝑘, i.e., (2) holds.

Assume (2). By assumption 𝑥 is in the image of |𝑈| → |𝑋|. The finiteness of the fibre
of |𝑈| → |𝑋| over 𝑥 is clear since this fibre is equal to | 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈| by Properties of
Spaces, Lemma 41.4.3. The finiteness of the fibre of |𝑅| → |𝑋| above 𝑥 is also clear since
it is equal to the set underlying the scheme

(𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈) ×𝑆𝑝𝑒𝑐(𝑘) (𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈)

which is finite over 𝑘. Thus (1) holds. �

Lemma 43.4.5. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|. The
following are equivalent:

(1) for every affine scheme 𝑈, any étale morphism 𝜑 ∶ 𝑈 → 𝑋 setting 𝑅 = 𝑈 ×𝑋 𝑈
the fibres of both

|𝑈| ⟶ |𝑋| and |𝑅| ⟶ |𝑋|

over 𝑥 are finite,
(2) there exist schemes 𝑈𝑖 and étale morphisms 𝑈𝑖 → 𝑋 such that ∐ 𝑈𝑖 → 𝑋 is

surjective and for each 𝑖, setting 𝑅𝑖 = 𝑈𝑖 ×𝑋 𝑈𝑖 the fibres of both

|𝑈𝑖| ⟶ |𝑋| and |𝑅𝑖| ⟶ |𝑋|

over 𝑥 are finite,
(3) there exists a monomorphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 with 𝑘 a field in the equivalence class

of 𝑥, and for any affine scheme 𝑈 and étale morphism 𝑈 → 𝑋 the fibre product
𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈 is a finite scheme over 𝑘, and

(4) there exists a quasi-compact monomorphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 with 𝑘 a field in the
equivalence class of 𝑥.

Proof. The equivalence of (1) and (3) follows on applying Lemma 43.4.4 to every étale
morphism 𝑈 → 𝑋 with 𝑈 affine. It is clear that (3) implies (2). Assume 𝑈𝑖 → 𝑋 and
𝑅𝑖 are as in (2). We conclude from Lemma 43.4.2 that for any affine scheme 𝑈 and étale
morphism 𝑈 → 𝑋 the fibre of |𝑈| → |𝑋| over 𝑥 is finite. Say this fibre is {𝑢1, … , 𝑢𝑛}.
Then, as Lemma 43.4.3 (1) applies to 𝑈𝑖 → 𝑋 for some 𝑖 such that 𝑥 is in the image of
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|𝑈𝑖| → |𝑋|, we see that the fibre of |𝑅 = 𝑈 ×𝑋 𝑈| → |𝑈| ×|𝑋| |𝑈| is finite over (𝑢𝑎, 𝑢𝑏),
𝑎, 𝑏 ∈ {1, … , 𝑛}. Hence the fibre of |𝑅| → |𝑋| over 𝑥 is finite. In this way we see that (1)
holds. At this point we know that (1), (2), and (3) are equivalent.

If (4) holds, then for any affine scheme𝑈 and étalemorphism𝑈 → 𝑋 the scheme𝑆𝑝𝑒𝑐(𝑘)×𝑋
𝑈 is on the one hand étale over 𝑘 (hence a disjoint union of spectra of finite separable ex-
tensions of 𝑘 by Remark 43.4.1) and on the other hand quasi-compact over 𝑈 (hence quasi-
compact). Thus we see that (3) holds. Conversely, if 𝑈𝑖 → 𝑋 is as in (2) and 𝑆𝑝𝑒𝑐(𝑘) → 𝑋
is a monomorphism as in (3), then

∐ 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈𝑖 ⟶ ∐ 𝑈𝑖

is quasi-compact (because over each 𝑈𝑖 we see that 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈𝑖 is a finite disjoint union
spectra of fields). Thus 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is quasi-compact by Morphisms of Spaces, Lemma
42.9.7. �

Lemma 43.4.6. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The following are
equivalent:

(1) there exist schemes 𝑈𝑖 and étale morphisms 𝑈𝑖 → 𝑋 such that ∐ 𝑈𝑖 → 𝑋 is
surjective and each 𝑈𝑖 → 𝑋 has universally bounded fibres, and

(2) for every affine scheme 𝑈 and étale morphism 𝜑 ∶ 𝑈 → 𝑋 the fibres of 𝑈 → 𝑋
are universally bounded.

Proof. The implication (2) ⇒ (1) is trivial. Assume (1). Let (𝜑𝑖 ∶ 𝑈𝑖 → 𝑋)𝑖∈𝐼 be a
collection of étale morphisms from schemes towards 𝑋, covering 𝑋, such that each 𝜑𝑖 has
universally bounded fibres. Let 𝜓 ∶ 𝑈 → 𝑋 be an étale morphism from an affine scheme
towards 𝑋. For each 𝑖 consider the fibre product diagram

𝑈 ×𝑋 𝑈𝑖 𝑝𝑖
//

𝑞𝑖
��

𝑈𝑖

𝜑𝑖
��

𝑈
𝜓 // 𝑋

Since 𝑞𝑖 is étale it is open (see Remark 43.4.1). Moreover, we have 𝑈 = ⋃ Im(𝑞𝑖), since
the family (𝜑𝑖)𝑖∈𝐼 is surjective. Since 𝑈 is affine, hence quasi-compact we can finite finitely
many 𝑖1, … , 𝑖𝑛 ∈ 𝐼 and quasi-compact opens 𝑊𝑗 ⊂ 𝑈×𝑋 𝑈𝑖𝑗 such that 𝑈 = ⋃ 𝑝𝑖𝑗(𝑊𝑗). The
morphism 𝑝𝑖𝑗 is étale, hence locally quasi-finite (see remark on étale morphisms above).
Thus we may apply Morphisms, Lemma 24.48.8 to see the fibres of 𝑝𝑖𝑗|𝑊𝑗

∶ 𝑊𝑗 → 𝑈𝑖𝑗
are universally bounded. Hence by Lemma 43.3.2 we see that the fibres of 𝑊𝑗 → 𝑋 are
universally bounded. Thus also ∐𝑗=1,…,𝑛 𝑊𝑗 → 𝑋 has universally bounded fibres. Since
∐𝑗=1,…,𝑛 𝑊𝑗 → 𝑋 factors through the surjective étale map ∐ 𝑞𝑖𝑗|𝑊𝑗

∶ ∐𝑗=1,…,𝑛 𝑊𝑗 → 𝑈
we see that the fibres of 𝑈 → 𝑋 are universally bounded by Lemma 43.3.5. In other words
(2) holds. �

Lemma 43.4.7. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The following are
equivalent:

(1) there exists a Zariski covering 𝑋 = ⋃ 𝑋𝑖 and for each 𝑖 a scheme 𝑈𝑖 and a
quasi-compact surjective étale morphism 𝑈𝑖 → 𝑋𝑖, and

(2) there exist schemes 𝑈𝑖 and étale morphisms 𝑈𝑖 → 𝑋 such that the projections
𝑈𝑖 ×𝑋 𝑈𝑖 → 𝑈𝑖 are quasi-compact and ∐ 𝑈𝑖 → 𝑋 is surjective.
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Proof. If (1) holds then the morphisms 𝑈𝑖 → 𝑋𝑖 → 𝑋 are étale (combine Morphisms,
Lemma 24.35.3 and Spaces, Lemmas 40.5.4 and 40.5.3 ). Moreover, as 𝑈𝑖 ×𝑋 𝑈𝑖 = 𝑈𝑖 ×𝑋𝑖
𝑈𝑖, both projections 𝑈𝑖 ×𝑋 𝑈𝑖 → 𝑈𝑖 are quasi-compact.
If (2) holds then let 𝑋𝑖 ⊂ 𝑋 be the open subspace corresponding to the image of the open
map |𝑈𝑖| → |𝑋|, see Properties of Spaces, Lemma 41.4.10. The morphisms 𝑈𝑖 → 𝑋𝑖
are surjective. Hence 𝑈𝑖 → 𝑋𝑖 is surjective étale, and the projections 𝑈𝑖 ×𝑋𝑖

𝑈𝑖 → 𝑈𝑖
are quasi-compact, because 𝑈𝑖 ×𝑋𝑖

𝑈𝑖 = 𝑈𝑖 ×𝑋 𝑈𝑖. Thus by Spaces, Lemma 40.11.2 the
morphisms 𝑈𝑖 → 𝑋𝑖 are quasi-compact. �

43.5. Conditions on algebraic spaces

In this section we discuss the relationship between various natural conditions on algebraic
spaces we have seen above. Please read Section 43.6 to get a feeling for the meaning of
these conditions.

Lemma 43.5.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Consider the
following conditions on 𝑋:

(𝛼) For every 𝑥 ∈ |𝑋|, the equivalent conditions of Lemma 43.4.2 hold.
(𝛽) For every 𝑥 ∈ |𝑋|, the equivalent conditions of Lemma 43.4.3 hold.
(𝛾) For every 𝑥 ∈ |𝑋|, the equivalent conditions of Lemma 43.4.5 hold.
(𝛿) The equivalent conditions of Lemma 43.4.6 hold.
(𝜖) The equivalent conditions of Lemma 43.4.7 hold.
(𝜁) The space 𝑋 is Zariski locally quasi-separated.
(𝜂) The space 𝑋 is quasi-separated
(𝜃) The space 𝑋 is representable, i.e., 𝑋 is a scheme.
(𝜄) The space 𝑋 is a quasi-separated scheme.

We have
(𝜃)

�$
(𝜄)

:B

�$

(𝜁) +3 (𝜖) +3 (𝛿) +3 (𝛾) ks +3 (𝛼) + (𝛽)

(𝜂)

:B

Proof. The implication (𝛾) ⇔ (𝛼) + (𝛽) is immediate. The implications in the diamond on
the left are clear from the definitions.
Assume (𝜁), i.e., that 𝑋 is Zariski locally quasi-separated. Then (𝜖) holds by Properties of
Spaces, Lemma 41.6.5.
Assume (𝜖). By Lemma 43.4.7 there exists a Zariski open covering 𝑋 = ⋃ 𝑋𝑖 such that for
each 𝑖 there exists a scheme 𝑈𝑖 and a quasi-compact surjective étale morphism 𝑈𝑖 → 𝑋𝑖.
Choose an 𝑖 and an affine open subscheme 𝑊 ⊂ 𝑈𝑖. It suffices to show that 𝑊 → 𝑋 has
universally bounded fibres, since then the family of all these morphisms 𝑊 → 𝑋 covers 𝑋.
To do this we consider the diagram

𝑊 ×𝑋 𝑈𝑖 𝑝
//

𝑞
��

𝑈𝑖

��
𝑊 // 𝑋
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Since 𝑊 → 𝑋 factors through 𝑋𝑖 we see that 𝑊 ×𝑋 𝑈𝑖 = 𝑊 ×𝑋𝑖
𝑈𝑖, and hence 𝑞 is

quasi-compact. Since 𝑊 is affine this implies that the scheme 𝑊 ×𝑋 𝑈𝑖 is quasi-compact.
Thus we may apply Morphisms, Lemma 24.48.8 and we conclude that 𝑝 has universally
bounded fibres. From Lemma 43.3.4 we conclude that 𝑊 → 𝑋 has universally bounded
fibres as well.
Assume (𝛿). Let 𝑈 be an affine scheme, and let 𝑈 → 𝑋 be an étale morphism. By assump-
tion the fibres of the morphism 𝑈 → 𝑋 are universally bounded. Thus also the fibres of
both projections 𝑅 = 𝑈 ×𝑋 𝑈 → 𝑈 are universally bounded, see Lemma 43.3.3. And by
Lemma 43.3.2 also the fibres of 𝑅 → 𝑋 are universally bounded. Hence for any 𝑥 ∈ 𝑋 the
fibres of |𝑈| → |𝑋| and |𝑅| → |𝑋| over 𝑥 are finite, see Lemma 43.3.6. In other words,
the equivalent conditions of Lemma 43.4.5 hold. This proves that (𝛿) ⇒ (𝛾). �

Lemma 43.5.2. Let 𝑆 be a scheme. Let 𝒫 be one of the properties (𝛼), (𝛽), (𝛾), (𝛿), (𝜖), (𝜁),
or (𝜃) of algebraic spaces listed in Lemma 43.5.1. Then if 𝑋 is an algebraic space over 𝑆,
and 𝑋 = ⋃ 𝑋𝑖 is a Zariski open covering such that each 𝑋𝑖 has 𝒫, then 𝑋 has 𝒫.

Proof. Let 𝑋 be an algebraic space over 𝑆, and let 𝑋 = ⋃ 𝑋𝑖 is a Zariski open covering
such that each 𝑋𝑖 has 𝒫.
The case 𝒫 = (𝛼). The condition (𝛼) for 𝑋𝑖 means that for every 𝑥 ∈ |𝑋𝑖| and every affine
scheme 𝑈, and étale morphism 𝜑 ∶ 𝑈 → 𝑋𝑖 the fibre of 𝜑 ∶ |𝑈| → |𝑋𝑖| over 𝑥 is finite.
Consider 𝑥 ∈ 𝑋, an affine scheme 𝑈 and an étale morphism 𝑈 → 𝑋. Since 𝑋 = ⋃ 𝑋𝑖 is a
Zariski open covering there exits a finite affine open covering 𝑈 = 𝑈1 ∪ … ∪ 𝑈𝑛 such that
each 𝑈𝑗 → 𝑋 factors through some 𝑋𝑖𝑗. By assumption the fibres of |𝑈𝑗| → |𝑋𝑖𝑗| over 𝑥
are finite for 𝑗 = 1, … , 𝑛. Clearly this means that the fibre of |𝑈| → |𝑋| over 𝑥 is finite.
This proves the result for (𝛼).
The case 𝒫 = (𝛽). The condition (𝛽) for 𝑋𝑖 means that every 𝑥 ∈ |𝑋𝑖| is represented by a
monomorphism from the spectrum of a field towards 𝑋𝑖. Hence the same follows for 𝑋 as
𝑋𝑖 → 𝑋 is a monomorphism and 𝑋 = ⋃ 𝑋𝑖.
The case 𝒫 = (𝛾). Note that (𝛾) = (𝛼) + (𝛽) by Lemma 43.5.1 hence the lemma for (𝛾)
follows from the cases treated above.
The case 𝒫 = (𝛿). The condition (𝛿) for 𝑋𝑖 means there exist schemes 𝑈𝑖𝑗 and étale mor-
phisms 𝑈𝑖𝑗 → 𝑋𝑖 with universally bounded fibres which cover 𝑋𝑖. These schemes also give
an étale surjective morphism ∐ 𝑈𝑖𝑗 → 𝑋 and 𝑈𝑖𝑗 → 𝑋 still has universally bounded fibres.
The case 𝒫 = (𝜖). The condition (𝜖) for 𝑋𝑖 means we can find a set 𝐽𝑖 and morphisms 𝜑𝑖𝑗 ∶
𝑈𝑖𝑗 → 𝑋𝑖 such that each 𝜑𝑖𝑗 is étale, both projections 𝑈𝑖𝑗 ×𝑋𝑖

𝑈𝑖𝑗 → 𝑈𝑖𝑗 are quasi-compact,
and ∐𝑗∈𝐽𝑖

𝑈𝑖𝑗 → 𝑋𝑖 is surjective. In this case the compositions 𝑈𝑖𝑗 → 𝑋𝑖 → 𝑋 are étale
(combineMorphisms, Lemmas 24.35.3 and 24.35.9 and Spaces, Lemmas 40.5.4 and 40.5.3
). Since 𝑋𝑖 ⊂ 𝑋 is a subspace we see that 𝑈𝑖𝑗 ×𝑋𝑖

𝑈𝑖𝑗 = 𝑈𝑖𝑗 ×𝑋 𝑈𝑖𝑗, and hence the condition
on fibre products is preserved. And clearly ∐𝑖,𝑗 𝑈𝑖𝑗 → 𝑋 is surjective. Hence 𝑋 satisfies
(𝜖).
The case 𝒫 = (𝜁). The condition (𝜁) for 𝑋𝑖 means that 𝑋𝑖 is Zariski locally quasi-separated.
It is immediately clear that this means 𝑋 is Zariski locally quasi-separated.
For (𝜃), see Properties of Spaces, Lemma 41.10.1. �

Lemma 43.5.3. Let 𝑆 be a scheme. Let 𝒫 be one of the properties (𝛽), (𝛾), (𝛿), (𝜖), or (𝜃) of
algebraic spaces listed in Lemma 43.5.1. Let 𝑋, 𝑌 be algebraic spaces over 𝑆. Let 𝑋 → 𝑌
be a representable morphism. If 𝑌 has property 𝒫, so does 𝑋.
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Proof. Assume 𝑓 ∶ 𝑋 → 𝑌 is a representable morphism of algebraic spaces, and assume
that 𝑌 has 𝒫. Let 𝑥 ∈ |𝑋|, and set 𝑦 = 𝑓(𝑥) ∈ |𝑌|.

The case 𝒫 = (𝛽). Condition (𝛽) for 𝑌 means there exists a monomorphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑌
representing 𝑦. The fibre product 𝑋𝑦 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 is a scheme, and 𝑥 corresponds to a
point of 𝑋𝑦, i.e., to a monomorphism 𝑆𝑝𝑒𝑐(𝑘′) → 𝑋𝑦. As 𝑋𝑦 → 𝑋 is a monomorphism
also we see that 𝑥 is represented by the monomorphism 𝑆𝑝𝑒𝑐(𝑘′) → 𝑋𝑦 → 𝑋. In other
words (𝛽) holds for 𝑋.

The case 𝒫 = (𝛾). Since (𝛾) ⇒ (𝛽) we have seen in the preceding paragraph that 𝑦 and 𝑥
can be represented by monomorphisms as in the following diagram

𝑆𝑝𝑒𝑐(𝑘′) 𝑥
//

��

𝑋

��
𝑆𝑝𝑒𝑐(𝑘)

𝑦 // 𝑌

Also, by definition of property (𝛾) via Lemma 43.4.5 (2) there exist schemes 𝑉𝑖 and étale
morphisms 𝑉𝑖 → 𝑌 such that ∐ 𝑉𝑖 → 𝑌 is surjective and for each 𝑖, setting 𝑅𝑖 = 𝑉𝑖 ×𝑌 𝑉𝑖
the fibres of both

|𝑉𝑖| ⟶ |𝑌| and |𝑅𝑖| ⟶ |𝑌|

over 𝑦 are finite. This means that the schemes (𝑉𝑖)𝑦 and (𝑅𝑖)𝑦 are finite schemes over
𝑦 = 𝑆𝑝𝑒𝑐(𝑘). As 𝑋 → 𝑌 is representable, the fibre products 𝑈𝑖 = 𝑉𝑖 ×𝑌 𝑋 are schemes.
The morphisms 𝑈𝑖 → 𝑋 are étale, and ∐ 𝑈𝑖 → 𝑋 is surjective. Finally, for each 𝑖 we have

(𝑈𝑖)𝑥 = (𝑉𝑖 ×𝑌 𝑋)𝑥 = (𝑉𝑖)𝑦 ×𝑆𝑝𝑒𝑐(𝑘) 𝑆𝑝𝑒𝑐(𝑘′)

and
(𝑈𝑖 ×𝑋 𝑈𝑖)𝑥 = ((𝑉𝑖 ×𝑌 𝑋) ×𝑋 (𝑉𝑖 ×𝑌 𝑋))𝑥 = (𝑅𝑖)𝑦 ×𝑆𝑝𝑒𝑐(𝑘) 𝑆𝑝𝑒𝑐(𝑘′)

hence these are finite over 𝑘′ as base changes of the finite schemes (𝑉𝑖)𝑦 and (𝑅𝑖)𝑦. This
implies that (𝛾) holds for 𝑋, again via the second condition of Lemma 43.4.5.

The case 𝒫 = (𝛿). Let 𝑉 → 𝑌 be an étale morphism with 𝑉 an affine scheme. Since 𝑌
has property (𝛿) this morphism has universally bounded fibres. By Lemma 43.3.3 the base
change 𝑉 ×𝑌 𝑋 → 𝑋 also has universally bounded fibres. Hence the first part of Lemma
43.4.6 applies and we see that 𝑌 also has property (𝛿).

The case 𝒫 = (𝜖). We will repeatedly use Spaces, Lemma 40.5.5. Let 𝑉𝑖 → 𝑌 be as in
Lemma 43.4.7 (2). Set 𝑈𝑖 = 𝑋 ×𝑌 𝑉𝑖. The morphisms 𝑈𝑖 → 𝑋 are étale, and ∐ 𝑈𝑖 → 𝑋 is
surjective. Because 𝑈𝑖 ×𝑋 𝑈𝑖 = 𝑋 ×𝑌 (𝑉𝑖 ×𝑌 𝑉𝑖) we see that the projections 𝑈𝑖 ×𝑌 𝑈𝑖 → 𝑈𝑖
are base changes of the projections 𝑉𝑖 ×𝑌 𝑉𝑖 → 𝑉𝑖, and so quasi-compact as well. Hence 𝑋
satisfies Lemma 43.4.7 (2).

The case 𝒫 = (𝜃). In this case the result is Categories, Lemma 4.8.3. �

43.6. Reasonable and decent algebraic spaces

In Lemma 43.5.1 we have seen a number of conditions on algebraic spaces related to the
behaviour of étale morphisms from affine schemes into 𝑋 and related to the existence of
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special étale coverings of 𝑋 by schemes. We tabulate the different types of conditions here:

(𝛼) fi
(𝛽) points come from monomorphisms of spectra of fields
(𝛾) points come from quasi-compact monomorphisms of spectra of fields
(𝛿) fi
(𝜖) cover by etale morphisms from schemes quasi-compact onto their image

The conditions in the following definition are not exactly conditions on the diagonal of 𝑋,
but they are in some sense separation conditions on 𝑋.

Definition 43.6.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) We say 𝑋 is decent if for every point 𝑥 ∈ 𝑋 the equivalent conditions of Lemma

43.4.5 hold, in other words property (𝛾) of Lemma 43.5.1 holds.
(2) We say 𝑋 is reasonable if the equivalent conditions of Lemma 43.4.6 hold, in

other words property (𝛿) of Lemma 43.5.1 holds.
(3) We say 𝑋 is very reasonable if the equivalent conditions of Lemma 43.4.7 hold,

i.e., property (𝜖) of Lemma 43.5.1 holds.

In particular we have
very reasonable ⇒ reasonable ⇒ decent.

The notion of a very reasonable algebraic space was introduced because the assumption was
sufficient to prove some of the results below, especially Proposition 43.8.1 and Proposition
43.9.6. We hope (in the future) to strengthen these results to the case where the space
𝑋 is reasonable or even just decent. If there exists a scheme 𝑈 and a surjective, étale,
quasi-compact morphism 𝑈 → 𝑋, then 𝑋 is very reasonable, see Lemma 43.4.7.

Lemma 43.6.2. A scheme is very reasonable.

Proof. This is true because the identity map is a quasi-compact, surjective étale morphism.
�

Lemma 43.6.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. If there exists
a Zariski open covering 𝑋 = ⋃ 𝑋𝑖 such that each 𝑋𝑖 is very reasonable, then 𝑋 is very
reasonable.

Proof. This is case (𝜖) of Lemma 43.5.2. �

Lemma 43.6.4. An algebraic space which is Zariski locally quasi-separated is very rea-
sonable. In particular any quasi-separated algebraic space is very reasonable.

Proof. This is one of the implications of Lemma 43.5.1. �

Lemma 43.6.5. Let 𝑆 be a scheme. Let 𝑋, 𝑌 be algebraic spaces over 𝑆. Let 𝑌 → 𝑋 be a
representable morphism. If 𝑋 is very reasonable, so is 𝑌.

Proof. This is case (𝜖) of Lemma 43.5.3. �

Remark 43.6.6. Very reasonable algebraic spaces form a stricly larger collection than
Zariski locally quasi-separated algebraic spaces. Consider an algebraic space of the form
𝑋 = [𝑈/𝐺] (see Spaces, Definition 40.14.4) where 𝐺 is a finite group acting without fixed
points on a non-quasi-separated scheme 𝑈. Namely, in this case 𝑈 ×𝑋 𝑈 = 𝑈 × 𝐺 and
clearly both projections to 𝑈 are quasi-compact, hence 𝑋 is very reasonable. On the other
hand, the diagonal 𝑈 ×𝑋 𝑈 → 𝑈 × 𝑈 is not quasi-compact, hence this algebraic space is
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not quasi-separated. Now, take 𝑈 the infinite affine space over a field 𝑘 of characteristic ≠2
with zero doubled, see Schemes, Example 21.21.4. Let 01, 02 be the two zeros of 𝑈. Let
𝐺 = {+1, −1}, and let −1 act by −1 on all coordinates, and by switching 01 and 02. Then
[𝑈/𝐺] is very reasonable but not Zariski locally quasi-separated (details omitted).

Example 43.6.7. The algebraic space 𝐀1
𝐐/𝐙 constructed in Spaces, Example 40.14.8 is not

decent as its ``generic point'' cannot be represented by a monomorphism from the spectrum
of a point.

Remark 43.6.8. Reasonable algebraic spaces are technically easier to work with than very
reasonable algebraic spaces. For example, if 𝑋 → 𝑌 is a quasi-compact étale surjective
morphism of algebraic spaces and 𝑋 is reasonable, then so is 𝑌, see Lemma 43.13.5 but we
don't know if this is true for the property ``very reasonble''. On the other hand, we do not
know whether a reasonable algebraic space has an open dense subspace which is a scheme,
and we also do not know whether its underlying topological space is sober, whereas we do
know that very reasonable spaces have those properties (see Proposition 43.8.1 and Propo-
sition 43.9.6). Below we give another technical property enjoyed by reasonable algebraic
spaces.

Lemma 43.6.9. Let 𝑆 be a scheme. Let 𝑋 be a quasi-compact reasonable algebraic space.
Then there exists a directed system of quasi-compact and quasi-separated algebraic spaces
𝑋𝑖 such that 𝑋 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑋𝑖 (colimit in the category of sheaves).

Proof. We sketch the proof. By Properties of Spaces, Lemma 41.6.3 we have 𝑋 = 𝑈/𝑅
with 𝑈 affine. In this case, reasonable means 𝑈 → 𝑋 is universally bounded. Hence there
exists an integer 𝑁 such that the ``fibres'' of 𝑈 → 𝑋 have degree at most 𝑁, see Definition
43.3.1. Denote 𝑠, 𝑡 ∶ 𝑅 → 𝑈 and 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 the groupoid structural maps.

Claim: for every quasi-compact open 𝐴 ⊂ 𝑅 there exists an open 𝑅′ ⊂ 𝑅 such that
(1) 𝐴 ⊂ 𝑅′,
(2) 𝑅′ is quasi-compact, and
(3) (𝑈, 𝑅′, 𝑠|𝑅′, 𝑡|𝑅′, 𝑐|𝑅′×𝑠,𝑈,𝑡𝑅′) is a groupoid scheme.

Note that 𝑒 ∶ 𝑈 → 𝑅 is open as it is a section of the étale morphism 𝑠 ∶ 𝑅 → 𝑈, see Étale
Morphisms, Proposition 37.6.1. Moreover 𝑈 is affine hence quasi-compact. Hence we may
replace 𝐴 by 𝐴 ∪ 𝑒(𝑈) ⊂ 𝑅, and assume that 𝐴 contains 𝑒(𝑈). Next, we define inductively
𝐴1 = 𝐴, and

𝐴𝑛 = 𝑐(𝐴𝑛−1 ×𝑠,𝑈,𝑡 𝐴) ⊂ 𝑅
for 𝑛 ≥ 2. Arguing inductively, we see that 𝐴𝑛 is quasi-compact for all 𝑛 ≥ 2, as the image
of the quasi-compact fibre product 𝐴𝑛−1 ×𝑠,𝑈,𝑡 𝐴. If 𝑘 is an algebraically closed field over
𝑆, and we consider 𝑘-points then

𝐴𝑛(𝑘) = {(𝑢, 𝑢′) ∈ 𝑈(𝑘) ∶ there exist 𝑢 = 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑈(𝑘) with
(𝑢𝑖, 𝑢𝑖+1) ∈ 𝐴 for all 𝑖 = 1, … , 𝑛 − 1. }

But as the fibres of 𝑈(𝑘) → 𝑋(𝑘) have size at most 𝑁 we see that if 𝑛 > 𝑁 then we get a
repeat in the sequence above, and we can shorten it proving 𝐴𝑁 = 𝐴𝑛 for all 𝑛 ≥ 𝑁. This
implies that 𝑅′ = 𝐴𝑁 gives a groupoid scheme (𝑈, 𝑅′, 𝑠|𝑅′, 𝑡|𝑅′, 𝑐|𝑅′×𝑠,𝑈,𝑡𝑅′), proving the
claim above.

Consider the map of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓

𝑐𝑜𝑙𝑖𝑚𝑅′⊂𝑅 𝑈/𝑅′ ⟶ 𝑈/𝑅
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where 𝑅′ ⊂ 𝑅 runs over the quasi-compact open subschemes of 𝑅 which give étale equiva-
lence relations as above. Each of the quotients 𝑈/𝑅′ is an algebraic space (see Spaces, The-
orem 40.10.5). Since 𝑅′ is quasi-compact, and 𝑈 affine the morphism 𝑅′ → 𝑈×𝑆𝑝𝑒𝑐(𝐙) 𝑈 is
quasi-compact, and hence 𝑈/𝑅′ is quasi-separated. Finally, if 𝑇 is a quasi-compact scheme,
then

𝑐𝑜𝑙𝑖𝑚𝑅′⊂𝑅 𝑈(𝑇)/𝑅′(𝑇) ⟶ 𝑈(𝑇)/𝑅(𝑇)

is a bijection, since every morphism from 𝑇 into 𝑅 ends up in one of the open subrelations
𝑅′ by the claim above. This clearly implies that the colimit of the sheaves 𝑈/𝑅′ is 𝑈/𝑅.
In other words the algebraic space 𝑋 = 𝑈/𝑅 is the colimit of the quasi-separated algebraic
spaces 𝑈/𝑅′. �

Warning: The following lemma should be used with caution, as the schemes 𝑈𝑖 in it are
not necessarily separated or even quasi-separated.

Lemma 43.6.10. Let 𝑆 be a scheme. Let 𝑋 be a very reasonable algebraic space over 𝑆.
There exists a set of schemes 𝑈𝑖 and morphisms 𝑈𝑖 → 𝑋 such that

(1) each 𝑈𝑖 is a quasi-compact scheme,
(2) each 𝑈𝑖 → 𝑋 is étale,
(3) both projections 𝑈𝑖 ×𝑋 𝑈𝑖 → 𝑈𝑖 are quasi-compact, and
(4) the morphism ∐ 𝑈𝑖 → 𝑋 is surjective (and étale).

Proof. Definition 43.6.1 says that there exist 𝑈𝑖 → 𝑋 such that (2), (3) and (4) hold. Fix
𝑖, and set 𝑅𝑖 = 𝑈𝑖 ×𝑋 𝑈𝑖, and denote 𝑠, 𝑡 ∶ 𝑅𝑖 → 𝑈𝑖 the projections. For any affine
open 𝑊 ⊂ 𝑈𝑖 the open 𝑊′ = 𝑡(𝑠−1(𝑊)) ⊂ 𝑈𝑖 is a quasi-compact 𝑅𝑖-invariant open (see
Groupoids, Lemma 35.16.2). Hence 𝑊′ is a quasi-compact scheme, 𝑊′ → 𝑋 is étale, and
𝑊′ ×𝑋 𝑊′ = 𝑠−1(𝑊′) = 𝑡−1(𝑊′) so both projections 𝑊′ ×𝑋 𝑊′ → 𝑊′ are quasi-compact.
This means the family of 𝑊′ → 𝑋, where 𝑊 ⊂ 𝑈𝑖 runs through the members of affine open
coverings of the 𝑈𝑖 gives what we want. �

43.7. Points and specializations

There exists an étale morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 and a nontrivial specializa-
tions between points in a fibre of |𝑓| ∶ |𝑋| → |𝑌|, see Examples, Lemma 64.30.1. If the
source of the morphism is a scheme we can avoid this by imposing condition (𝛼) on 𝑌.

Lemma 43.7.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑈 → 𝑋 be
an étale morphism from a scheme to 𝑋. Assume 𝑢, 𝑢′ ∈ |𝑈| map to the same point 𝑥 of
|𝑋|, and 𝑢′  𝑢. If the pair (𝑋, 𝑥) satisfies the equivalent conditions of Lemma 43.4.2 then
𝑢 = 𝑢′.

Proof. Assume the pair (𝑋, 𝑥) satisfies the equivalent conditions for Lemma 43.4.2. Let 𝑈
be a scheme, 𝑈 → 𝑋 étale, and let 𝑢, 𝑢′ ∈ |𝑈| map to 𝑥 of |𝑋|, and 𝑢′  𝑢. We may and
do replace 𝑈 by an affine neighbourhood of 𝑢. Let 𝑡, 𝑠 ∶ 𝑅 = 𝑈 ×𝑋 𝑈 → 𝑈 be the étale
projection maps.

Pick a point 𝑟 ∈ 𝑅 with 𝑡(𝑟) = 𝑢 and 𝑠(𝑟) = 𝑢′. This is possible by Properties of Spaces,
Lemma 41.4.5. Because generalizations lift along the étale morphism 𝑡 (Remark 43.4.1)
we can find a specialization 𝑟′  𝑟 with 𝑡(𝑟′) = 𝑢′. Set 𝑢″ = 𝑠(𝑟′). Then 𝑢″  𝑢′. Thus
we may repeat and find 𝑟″  𝑟′ with 𝑡(𝑟″) = 𝑢″. Set 𝑢‴ = 𝑠(𝑟″), and so on. Here is a
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In Remark 43.4.1 we have seen that there are no specializations among points in the fibres
of the étale morphism 𝑠. Hence if 𝑢(𝑛+1) = 𝑢(𝑛) for some 𝑛, then also 𝑟(𝑛) = 𝑟(𝑛−1) and hence
also (by taking 𝑡) 𝑢(𝑛) = 𝑢(𝑛−1). This then forces the whole tower to collapse, in particular
𝑢 = 𝑢′. Thus we see that if 𝑢≠𝑢′, then all the specializations are strict and {𝑢, 𝑢′, 𝑢″, …}
is an infinite set of points in 𝑈 which map to the point 𝑥 in |𝑋|. As we chose 𝑈 affine this
contradicts the second part of Lemma 43.4.2, as desired. �

Lemma 43.7.2. Let 𝑆 be an algebraic space. Let 𝑋 be an algebraic space over 𝑆. Let
𝑥, 𝑥′ ∈ |𝑋| and assume 𝑥′  𝑥, i.e., 𝑥 is a specialization of 𝑥′. Assume the pair (𝑋, 𝑥′)
satisfies the equivalent conditions of Lemma 43.4.5. Then for every étale morphism 𝜑 ∶
𝑈 → 𝑋 from a scheme 𝑈 and any 𝑢 ∈ 𝑈 with 𝜑(𝑢) = 𝑥, exists a point 𝑢′ ∈ 𝑈, 𝑢′  𝑢 with
𝜑(𝑢′) = 𝑥′.

Proof. We may replace 𝑈 by an affine open neighbourhood of 𝑢. Hence we may assume
that 𝑈 is affine. As 𝑥 is in the image of the open map |𝑈| → |𝑋|, so is 𝑥′. Thus we
may replace 𝑋 by the Zariski open subspace corresponding to the image of |𝑈| → |𝑋|,
see Properties of Spaces, Lemma 41.4.10. In other words we may assume that 𝑈 → 𝑋 is
surjective and étale. Let 𝑠, 𝑡 ∶ 𝑅 = 𝑈 ×𝑋 𝑈 → 𝑈 be the projections. By our assumption
that (𝑋, 𝑥′) satisfies the equivalent conditions of Lemma 43.4.5 we see that the fibres of
|𝑈| → |𝑋| and |𝑅| → |𝑋| over 𝑥′ are finite. Say {𝑢′

1, … , 𝑢′
𝑛} ⊂ 𝑈 and {𝑟′

1, … , 𝑟′
𝑚} ⊂ 𝑅

form the complete inverse image of {𝑥′}. Consider the closed sets

𝑇 = {𝑢′
1} ∪ … ∪ {𝑢′

𝑛} ⊂ |𝑈|, 𝑇′ = {𝑟′
1} ∪ … ∪ {𝑟′

𝑚} ⊂ |𝑅|.

Trivially we have 𝑠(𝑇′) ⊂ 𝑇. Because 𝑅 is an equivalence relation we also have 𝑡(𝑇′) =
𝑠(𝑇′) as the set {𝑟′

𝑗} is invariant under the inverse of 𝑅 by construction. Let 𝑤 ∈ 𝑇 be any
point. Then 𝑢′

𝑖  𝑤 for some 𝑖. Choose 𝑟 ∈ 𝑅 with 𝑠(𝑟) = 𝑤. Since generalizations lift
along 𝑠 ∶ 𝑅 → 𝑈, see Remark 43.4.1, we can find 𝑟′  𝑟 with 𝑠(𝑟′) = 𝑢′

𝑖 . Then 𝑟′ = 𝑟′
𝑗 for

some 𝑗 and we conclude that 𝑤 ∈ 𝑠(𝑇′). Hence 𝑇 = 𝑠(𝑇′) = 𝑡(𝑇′) is an |𝑅|-invariant closed
set in |𝑈|. This means 𝑇 is the inverse image of a closed (!) subset 𝑇″ = 𝜑(𝑇) of |𝑋|, see
Properties of Spaces, Lemmas 41.4.5 and 41.4.6. Hence 𝑇″ = {𝑥′}. Thus 𝑇 contains some
point 𝑢1 mapping to 𝑥 as 𝑥 ∈ 𝑇″. I.e., we see that for some 𝑖 there exists a specialization
𝑢′

𝑖  𝑢1 which maps to the given specialization 𝑥′  𝑥.

To finish the proof, choose a point 𝑟 ∈ 𝑅 such that 𝑠(𝑟) = 𝑢 and 𝑡(𝑟) = 𝑢1 (using Properties
of Spaces, Lemma 41.4.3). As generalizations lift along 𝑡, and 𝑢′

𝑖  𝑢1 we can find a
specialization 𝑟′  𝑟 such that 𝑡(𝑟′) = 𝑢′

𝑖 . Set 𝑢′ = 𝑠(𝑟′). Then 𝑢′  𝑢 and 𝜑(𝑢′) = 𝑥′ as
desired. �
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Lemma 43.7.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Assume that 𝑋 is
decent. Then |𝑋| is Kolmogorov (see Topology, Definition 5.5.4).

Proof. Let 𝑥1, 𝑥2 ∈ |𝑋| with 𝑥1  𝑥2 and 𝑥2  𝑥1. We have to show that 𝑥1 = 𝑥2.
Pick a scheme 𝑈 and an étale morphism 𝑈 → 𝑋 such that 𝑥1, 𝑥2 are both in the image
of |𝑈| → |𝑋|. By Lemma 43.7.2 we can find a specialization 𝑢1  𝑢2 in 𝑈 mapping to
𝑥1  𝑥2. By Lemma 43.7.2 we can find 𝑢′

2  𝑢1 mapping to 𝑥2  𝑥1. This means that
𝑢′

2  𝑢2 is a specialization between points of 𝑈 mapping to the same point of 𝑋, namely 𝑥2.
This is not possible, unless 𝑢′

2 = 𝑢2, see Lemma 43.7.1. Hence also 𝑢1 = 𝑢2 as desired. �

43.8. Schematic locus

Proposition 43.8.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. If 𝑋 is very
reasonable, then there exists a dense open subspace of 𝑋 which is a scheme.

Proof. By Properties of Spaces, Lemma 41.10.1 and Lemma 43.4.7 we may assume that
there exists a scheme 𝑈 and a surjective quasi-compact, étale morphism 𝑈 → 𝑋. Set
𝑅 = 𝑈 ×𝑋 𝑈, and denote 𝑠, 𝑡 ∶ 𝑅 → 𝑈 the projections as usual. Note that 𝑠, 𝑡 are surjective,
quasi-compact and étale, hence also quasi-finite (see Étale Morphisms, Section 37.11). By
More onMorphisms, Lemma 33.29.7 there exists a dense open subscheme 𝑊 ⊂ 𝑈 such that
𝑠−1(𝑊) → 𝑊 is finite. By Descent, Lemma 31.19.21 being finite is fpqc (and in particular
étale) local on the target. Hence we may apply More on Groupoids, Lemma 36.5.4 which
says that the largest open 𝑊 ⊂ 𝑈 over which 𝑠 is finite is 𝑅-invariant. It is still dense of
course. The restriction 𝑅𝑊 of 𝑅 to 𝑊 equals 𝑅𝑊 = 𝑠−1(𝑊) = 𝑡−1(𝑊) (see Groupoids,
Definition 35.16.1 and discussion following it). By construction 𝑠𝑊, 𝑡𝑊 ∶ 𝑅𝑊 → 𝑊 are
finite étale. If we can show the open subspace 𝑊/𝑅𝑊 ⊂ 𝑋 (see Spaces, Lemma 40.10.2)
contains a dense open subspace which is a scheme, then the proposition follows for 𝑋. This
reduces us to Properties of Spaces, Lemma 41.10.2. �

43.9. Points on very reasonable spaces

In this section we prove some properties of points on very reasonable algebraic spaces.

Lemma 43.9.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Consider the map
{𝑆𝑝𝑒𝑐(𝑘) → 𝑋 monomorphism} ⟶ |𝑋|

This map is always injective. If 𝑋 is very reasonable then this map is a bijection.

Proof. We have seen in Properties of Spaces, Lemma 41.4.11 that the map is an injection
in general. By Lemma 43.5.1 it is surjective when 𝑋 is very reasonable. �

The following lemma is a tiny bit stronger than Properties of Spaces, Lemma 41.11.1. We
will improve this lemma in Lemma 43.11.1.

Lemma 43.9.2. Let 𝑆 be a scheme. Let 𝑘 be a field. Let 𝑋 be an algebraic space over
𝑆 and assume that there exists a surjective étale morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋. If 𝑋 is very
reasonable, then 𝑋 ≅ 𝑆𝑝𝑒𝑐(𝑘′) where 𝑘′ ⊂ 𝑘 is a finite separable extension.

Proof. This can be proved directly by adding a few words to the proof of Properties of
Spaces, Lemma 41.11.1, but we think it is fun to deduce it from the results obtained so far.
By Lemma 43.9.1 we see that 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 factors as 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝑘′) → 𝑋 where
𝑆𝑝𝑒𝑐(𝑘′) → 𝑋 is a monomorphism. But since 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is a surjection of sheaves on
(Sch/𝑆)𝑓𝑝𝑝𝑓, we see that also 𝑆𝑝𝑒𝑐(𝑘′) → 𝑋 is surjective (as a map of sheaves). But a map
of sheaves which is both injective and surjective is an isomorphism. Finally, the fact that
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𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is étale means that 𝑘 ⊗𝑘′ 𝑘 is étale over 𝑘, which implies easily that 𝑘′ ⊂ 𝑘
is a finite separable extension. �

The following lemma shows that specialization of points behaves in a reasonable manner
on very reasonable algebraic spaces. Spaces, Example 40.14.9 shows that this is not true
in general.

Lemma 43.9.3. Let 𝑆 be a scheme. Let 𝑋 be a very reasonable algebraic space over 𝑆.
Let 𝑈 → 𝑋 be an étale morphism from a scheme to 𝑋. If 𝑢, 𝑢′ ∈ |𝑈| map to the same point
of |𝑋|, and 𝑢′  𝑢, then 𝑢 = 𝑢′.

Proof. Combine Lemmas 43.5.1 and 43.7.1. �

Lemma 43.9.4. Let 𝑆 be an algebraic space. Let 𝑋 be an algebraic space over 𝑆. Let
𝑥, 𝑥′ ∈ |𝑋| and assume 𝑥′  𝑥, i.e., 𝑥 is a specialization of 𝑥′. Assume 𝑋 is very reason-
able. Then for every étale morphism 𝜑 ∶ 𝑈 → 𝑋 from a scheme 𝑈 and any 𝑢 ∈ 𝑈 with
𝜑(𝑢) = 𝑥, exists a point 𝑢′ ∈ 𝑈, 𝑢′  𝑢 with 𝜑(𝑢′) = 𝑥′.

Proof. Combine Lemmas 43.5.1 and 43.7.2. �

Lemma 43.9.5. Let 𝑆 be a scheme. Let 𝑋 be a very reasonable algebraic space over 𝑆.
Then |𝑋| is Kolmogorov (see Topology, Definition 5.5.4).

Proof. Combine Lemmas 43.5.1 and 43.7.3. �

Proposition 43.9.6. Let 𝑆 be a scheme. Let 𝑋 be a very reasonable algebraic space over
𝑆. Then the topological space |𝑋| is sober (see Topology, Definition 5.5.4).

Proof. We have seen in Lemma 43.9.5 that |𝑋| is Kolmogorov. Hence it remains to show
that every irreducible closed subset 𝑇 ⊂ |𝑋| has a generic point. By Properties of Spaces,
Lemma 41.9.1 there exists a closed subspace 𝑍 ⊂ 𝑋 with |𝑍| = |𝑇|. By definition this
means that 𝑍 → 𝑋 is a representable morphism of algebraic spaces. Hence 𝑍 is a very
reasonable algebraic space by Lemma 43.6.5. By Proposition 43.8.1 we see that there ex-
ists an open dense subspace 𝑍′ ⊂ 𝑍 which is a scheme. This means that |𝑍′| ⊂ 𝑇 is
open dense. Hence the topological space |𝑍′| is irreducible, which means that 𝑍′ is an
irreducible scheme. By Schemes, Lemma 21.11.1 we conclude that |𝑍′| is the closure of a
single point 𝜂 ∈ 𝑇 and hence also 𝑇 = {𝜂}, and we win. �

43.10. Reduced singleton spaces

A singleton space is an algebraic space 𝑋 such that |𝑋| is a singleton. It turns out that
these can be more interesting than just being the spectrum of a field, see Spaces, Example
40.14.7. We develop a tiny bit of machinery to be able to talk about these.

Lemma 43.10.1. Let 𝑆 be a scheme. Let 𝑍 be an algebraic space over 𝑆. Let 𝑘 be a field
and let 𝑆𝑝𝑒𝑐(𝑘) → 𝑍 be surjective and flat. Then any morphism 𝑆𝑝𝑒𝑐(𝑘′) → 𝑍 where 𝑘′

is a field is surjective and flat.

Proof. Consider the fibre square

𝑇

��

// 𝑆𝑝𝑒𝑐(𝑘)

��
𝑆𝑝𝑒𝑐(𝑘′) // 𝑍
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Note that 𝑇 → 𝑆𝑝𝑒𝑐(𝑘′) is flat and surjective hence 𝑇 is not empty. On the other hand
𝑇 → 𝑆𝑝𝑒𝑐(𝑘) is flat as 𝑘 is a field. Hence 𝑇 → 𝑍 is flat and surjective. It follows from
Morphisms of Spaces, Lemma 42.28.5 that 𝑆𝑝𝑒𝑐(𝑘′) → 𝑍 is flat. It is surjective as by
assumption |𝑍| is a singleton. �

Lemma 43.10.2. Let 𝑆 be a scheme. Let 𝑍 be an algebraic space over 𝑆. The following
are equivalent

(1) 𝑍 is reduced and |𝑍| is a singleton,
(2) there exists a surjective flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑍 where 𝑘 is a field, and
(3) there exists a locally of finite type, surjective, flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑍 where

𝑘 is a field.

Proof. Assume (1). Let 𝑊 be a scheme and let 𝑊 → 𝑍 be a surjective étale morphism.
Then 𝑊 is a reduced scheme. Let 𝜂 ∈ 𝑊 be a generic point of an irreducible component
of 𝑊. Since 𝑊 is reduced we have 𝒪𝑊,𝜂 = 𝜅(𝜂). It follows that the canonical morphism
𝜂 = 𝑆𝑝𝑒𝑐(𝜅(𝜂)) → 𝑊 is flat. We see that the composition 𝜂 → 𝑍 is flat (see Morphisms
of Spaces, Lemma 42.27.2). It is also surjective as |𝑍| is a singleton. In other words (2)
holds.

Assume (2). Let 𝑊 be a scheme and let 𝑊 → 𝑍 be a surjective étale morphism. Choose a
field 𝑘 and a surjective flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑍. Then 𝑊 ×𝑍 𝑆𝑝𝑒𝑐(𝑘) is a scheme étale
over 𝑘. Hence 𝑊 ×𝑍 𝑆𝑝𝑒𝑐(𝑘) is a disjoint union of spectra of fields (see Remark 43.4.1), in
particular reduced. Since 𝑊 ×𝑍 𝑆𝑝𝑒𝑐(𝑘) → 𝑊 is surjective and flat we conclude that 𝑊 is
reduced (Descent, Lemma 31.15.1). In other words (1) holds.

It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme 𝑊 and
an étale morphism 𝑊 → 𝑍. Pick a closed point 𝑤 ∈ 𝑊 and set 𝑘 = 𝜅(𝑤). The composition

𝑆𝑝𝑒𝑐(𝑘)
𝑤

−−→ 𝑊 ⟶ 𝑍

is locally of finite type by Morphisms of Spaces, Lemmas 42.22.2 and 42.35.9. It is also
flat and surjective by Lemma 43.10.1. Hence (3) holds. �

The following lemma singles out a slightly better class of singleton algebraic spaces than
the preceding lemma.

Lemma 43.10.3. Let 𝑆 be a scheme. Let 𝑍 be an algebraic space over 𝑆. The following
are equivalent

(1) 𝑍 is reduced, locally Noetherian, and |𝑍| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑍

where 𝑘 is a field.

Proof. Assume (2) holds. By Lemma 43.10.2 we see that 𝑍 is reduced and |𝑍| is a single-
ton. Let 𝑊 be a scheme and let 𝑊 → 𝑍 be a surjective étale morphism. Choose a field 𝑘 and
a locally finitely presented, surjective, flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑍. Then 𝑊 ×𝑍 𝑆𝑝𝑒𝑐(𝑘)
is a scheme étale over 𝑘, hence a disjoint union of spectra of fields (see Remark 43.4.1),
hence locally Noetherian. Since 𝑊 ×𝑍 𝑆𝑝𝑒𝑐(𝑘) → 𝑊 is flat, surjective, and locally of finite
presentation, we see that {𝑊 ×𝑍 𝑆𝑝𝑒𝑐(𝑘) → 𝑊} is an fppf covering and we conclude that
𝑊 is locally Noetherian (Descent, Lemma 31.12.1). In other words (1) holds.

Assume (1). Pick a nonempty affine scheme 𝑊 and an étale morphism 𝑊 → 𝑍. Pick a
closed point 𝑤 ∈ 𝑊 and set 𝑘 = 𝜅(𝑤). Because 𝑊 is locally Noetherian the morphism
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𝑤 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑊 is of finite presentation, see Morphisms, Lemma 24.20.7. Hence the
composition

𝑆𝑝𝑒𝑐(𝑘)
𝑤

−−→ 𝑊 ⟶ 𝑍
is locally of finite presentation by Morphisms of Spaces, Lemmas 42.26.2 and 42.35.8. It
is also flat and surjective by Lemma 43.10.1. Hence (2) holds. �

Lemma 43.10.4. Let 𝑆 be a scheme. Let 𝑍′ → 𝑍 be a monomorphism of algebraic spaces
over 𝑆. Assume there exists a field 𝑘 and a locally finitely presented, surjective, flat mor-
phism 𝑆𝑝𝑒𝑐(𝑘) → 𝑍. Then either 𝑍′ is empty or 𝑍′ = 𝑍.

Proof. We may assume that 𝑍′ is nonempty. In this case the fibre product 𝑇 = 𝑍′ ×𝑍
𝑆𝑝𝑒𝑐(𝑘) is nonempty, see Properties of Spaces, Lemma 41.4.3. Now 𝑇 is an algebraic
space and the projection 𝑇 → 𝑆𝑝𝑒𝑐(𝑘) is a monomorphism. Hence 𝑇 = 𝑆𝑝𝑒𝑐(𝑘), see
Morphisms of Spaces, Lemma 42.14.8. We conclude that 𝑆𝑝𝑒𝑐(𝑘) → 𝑍 factors through
𝑍′. But as 𝑆𝑝𝑒𝑐(𝑘) → 𝑍 is surjective, flat and locally of finite presentation, we see that
𝑆𝑝𝑒𝑐(𝑘) → 𝑍 is surjective as a map of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓 (see Spaces, Remark 40.5.2)
and we conclude that 𝑍′ = 𝑍. �

The following lemma says that to each point of an algebraic space we can associate a canon-
ical reduced, locally Noetherian singleton algebraic space.

Lemma 43.10.5. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈ |𝑋|.
Then there exists a unique monomorphism 𝑍 → 𝑋 of algebraic spaces over 𝑆 such that 𝑍
is an algebraic space which satisfies the equivalent conditions of Lemma 43.10.3 and such
that the image of |𝑍| → |𝑋| is {𝑥}.

Proof. Choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋. Set 𝑅 = 𝑈 ×𝑋 𝑈 so
that 𝑋 = 𝑈/𝑅 is a presentation (see Spaces, Section 40.9). Set

𝑈′ = ∐𝑢∈𝑈 lying over 𝑥
𝑆𝑝𝑒𝑐(𝜅(𝑢)).

The canonical morphism 𝑈′ → 𝑈 is a monomorphism. Let

𝑅′ = 𝑈′ ×𝑋 𝑈′ = 𝑅 ×(𝑈×𝑆𝑈) (𝑈′ ×𝑆 𝑈′).

Because 𝑈′ → 𝑈 is a monomorphism we see that the projections 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ factor
as a monomorphism followed by an étale morphism. Hence, as 𝑈′ is a disjoint union of
spectra of fields, using Remark 43.4.1, and using Schemes, Lemma 21.23.10 we conclude
that 𝑅′ is a disjoint union of spectra of fields and that the morphisms 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′

are étale. Hence 𝑍 = 𝑈′/𝑅′ is an algebraic space by Spaces, Theorem 40.10.5. As 𝑅′

is the restriction of 𝑅 by 𝑈′ → 𝑈 we see 𝑍 → 𝑋 is a monomorphism by Groupoids,
Lemma 35.17.6. Since 𝑍 → 𝑋 is a monomorphism we see that |𝑍| → |𝑋| is injective,
see Morphisms of Spaces, Lemma 42.14.9. By Properties of Spaces, Lemma 41.4.3 we see
that

|𝑈′| = |𝑍 ×𝑋 𝑈′| → |𝑍| ×|𝑋| |𝑈′|
is surjective which implies (by our choice of 𝑈′) that |𝑍| → |𝑋| has image {𝑥}. We
conclude that |𝑍| is a singleton. Finally, by construction 𝑈′ is locally Noetherian and
reduced, i.e., we see that 𝑍 satisfies the equivalent conditions of Lemma 43.10.3.

Let us prove uniqueness of 𝑍 → 𝑋. Suppose that 𝑍′ → 𝑋 is a second such monomorphism
of algebraic spaces. Then the projections

𝑍′ ⟵ 𝑍′ ×𝑋 𝑍 ⟶ 𝑍
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are monomorphisms. The algebraic space in the middle is nonempty by Properties of
Spaces, Lemma 41.4.3. Hence the two projections are isomorphisms by Lemma 43.10.4
and we win. �

We introduce the following terminology which foreshadows the residual gerbes we will
introduce later, see Properties of Stacks, Definition 60.11.8.

Definition 43.10.6. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑥 ∈
|𝑋|. The residual space of 𝑋 at 𝑥2 is the monomorphism 𝑍𝑥 → 𝑋 constructed in Lemma
43.10.5.

In particular we know that 𝑍𝑥 is a locally Noetherian, reduced, singleton algebraic space
and that there exists a field and a surjective, flat, locally finitely presented morphism

𝑆𝑝𝑒𝑐(𝑘) ⟶ 𝑍𝑥.
It turns out that 𝑍𝑥 is a regular algebraic space as follows from the following lemma.

Lemma 43.10.7. A reduced, locally Noetherian singleton algebraic space 𝑍 is regular.

Proof. Let 𝑍 be a reduced, locally Noetherian singleton algebraic space over a scheme 𝑆.
Let 𝑊 → 𝑍 be a surjective étale morphism where 𝑊 is a scheme. Let 𝑘 be a field and let
𝑆𝑝𝑒𝑐(𝑘) → 𝑍 be surjective, flat, and locally of finite presentation (see Lemma 43.10.3). The
scheme 𝑇 = 𝑊 ×𝑍 𝑆𝑝𝑒𝑐(𝑘) is étale over 𝑘 in particular regular, see Remark 43.4.1. Since
𝑇 → 𝑊 is locally of finite presentation, flat, and surjective it follows that 𝑊 is regular, see
Descent, Lemma 31.15.2. By definition this means that 𝑍 is regular. �

43.11. Decent spaces

In this section we collect some useful facts on decent spaces.

Lemma 43.11.1. Let 𝑆 be a scheme. Let 𝑋 be a decent reduced algebraic space over 𝑆.
Assume that |𝑋| is a singleton. Then 𝑋 ≅ 𝑆𝑝𝑒𝑐(𝑘) for some field 𝑘.

Proof. As |𝑋| is a singleton 𝑋 is quasi-compact, see Properties of Spaces, Lemma 41.5.2.
Let 𝑈 → 𝑋 be surjective étale with 𝑈 an affine scheme, see Properties of Spaces, Lemma
41.6.3. Since 𝑋 is reduced we see that 𝑈 is reduced, see Properties of Spaces, Section
41.7. As 𝑋 is decent there exists a monomorphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 and 𝑉 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑋 𝑈
is a scheme finite étale over 𝑆𝑝𝑒𝑐(𝑘). Namely, this follows from the definition of decent,
see Definition 43.6.1, which says that the equivalent conditions of Lemma 43.4.5 hold at
the unique point of 𝑋. Hence 𝑉 is a finite disjoint union of spectra of finite separable
field extensions of 𝑘, see Morphisms, Lemma 24.35.7. On the other hand 𝑉 → 𝑈 is a
monomorphism (as 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is a monomorphism) and surjective (as 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is
surjective by Properties of Spaces, Lemma 41.4.4). In particular 𝑈 has finitely many points.
By Lemma 43.7.1 there are no specializations among the points of 𝑈 (note that decent
implies the condition of that lemma are satisfied in view of Lemma 43.5.1). It follows
that 𝑈 is a finite discrete topological space. As 𝑈 is also reduced it follows that 𝑈 is a
disjoint union of spectra of fields. By Schemes, Lemma 21.23.10 we conclude that 𝑉 → 𝑈
is an isomorphism. Hence we see that 𝑈 → 𝑋 factors through 𝑆𝑝𝑒𝑐(𝑘) which implies that
𝑆𝑝𝑒𝑐(𝑘) → 𝑋 is also a surjection of sheaves, whence an isomorphism as desired. �

Remark 43.11.2. We will see later (insert future reference here) that an algebraic space
whose reduction is a scheme is a scheme. Hence it follows from Lemma 43.11.1 that a
decent algebraic space with one point is a scheme.

2This is nonstandard notation.
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43.12. Valuative criterion

For a quasi-compact morphism from a decent space the valuative criterion is necessary in
order for the morphism to be universally closed.

Proposition 43.12.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic
spaces over 𝑆. Assume

(1) 𝑓 is quasi-compact, and
(2) 𝑋 is decent.

Then 𝑓 is universally closed if and only if the existence part of the valuative criterion holds.

Proof. In Morphisms of Spaces, Lemma 42.12.1 we have seen one of the implications. To
prove the other, assume that 𝑓 is universally closed. Let

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝐴) // 𝑌

be a diagram as in Morphisms of Spaces, Definition 42.11.1. Let 𝑋𝐴 = 𝑆𝑝𝑒𝑐(𝐴) ×𝑌 𝑋, so
that we have

𝑆𝑝𝑒𝑐(𝐾) //

%%

𝑋𝐴

��
𝑆𝑝𝑒𝑐(𝐴)

By Morphisms of Spaces, Lemma 42.9.3 we see that 𝑋𝐴 → 𝑆𝑝𝑒𝑐(𝐴) is quasi-compact.
Since 𝑋𝐴 → 𝑋 is representable, we see that 𝑋𝐴 has is decent also, see Lemma 43.5.3.
Moreover, as 𝑓 is universally closed, we see that 𝑋𝐴 → 𝑆𝑝𝑒𝑐(𝐴) is universally closed.
Hence we may and do replace 𝑋 by 𝑋𝐴 and 𝑌 by 𝑆𝑝𝑒𝑐(𝐴).

Let 𝑥′ ∈ |𝑋| be the equivalence class of 𝑆𝑝𝑒𝑐(𝐾) → 𝑋. Let 𝑦 ∈ |𝑌| = | 𝑆𝑝𝑒𝑐(𝐴)| be
the closed point. Set 𝑦′ = 𝑓(𝑥′); it is the generic point of 𝑆𝑝𝑒𝑐(𝐴). Since 𝑓 is universally
closed we see that 𝑓({𝑥′}) contains {𝑦′}, and hence contains 𝑦. Let 𝑥 ∈ {𝑥′} be a point
such that 𝑓(𝑥) = 𝑦. Let 𝑈 be a scheme, and 𝜑 ∶ 𝑈 → 𝑋 an étale morphism such that
there exists a 𝑢 ∈ 𝑈 with 𝜑(𝑢) = 𝑥. By Lemma 43.7.2 and our assumption that 𝑋 is decent
there exists a specialization 𝑢′  𝑢 on 𝑈 with 𝜑(𝑢′) = 𝑥′. This means that there exists a
common field extension 𝐾 ⊂ 𝐾′ ⊃ 𝜅(𝑢′) such that

𝑆𝑝𝑒𝑐(𝐾′) //

��

𝑈

��
𝑆𝑝𝑒𝑐(𝐾) //

&&

𝑋

��
𝑆𝑝𝑒𝑐(𝐴)
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is commutative. This gives the following commutative diagram of rings

𝐾′ 𝒪𝑈,𝑢
oo

𝐾

OO

𝐴

bb

OO

By Algebra, Lemma 7.46.2 we can find a valuation ring 𝐴′ ⊂ 𝐾′ dominating the image of
𝒪𝑈,𝑢 in 𝐾′. Since by construction 𝒪𝑈,𝑢 dominates 𝐴 we see that 𝐴′ dominates 𝐴 also. Hence
we obtain a diagram resembling the second diagram of Morphisms of Spaces, Definition
42.11.1 and the proposition is proved. �

43.13. Relative conditions

This is a (yet another) technical section dealing with conditions on algebraic spaces having
to do with points. It is probably a good idea to skip this section.

Definition 43.13.1. Let 𝑆 be a scheme. We say an algebraic space 𝑋 over 𝑆 has property
(𝛽) if 𝑋 has the corresponding property of Lemma 43.5.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism
of algebraic spaces over 𝑆.

(1) We say 𝑓 has property (𝛽) if for any scheme 𝑇 and morphism 𝑇 → 𝑌 the fibre
product 𝑇 ×𝑌 𝑋 has property (𝛽).

(2) We say 𝑓 is decent if for any scheme 𝑇 and morphism 𝑇 → 𝑌 the fibre product
𝑇 ×𝑌 𝑋 is a decent algebraic space.

(3) We say 𝑓 is reasonable if for any scheme 𝑇 and morphism 𝑇 → 𝑌 the fibre product
𝑇 ×𝑌 𝑋 is a reasonable algebraic space.

(4) We say 𝑓 is very reasonable if for any scheme 𝑇 and morphism 𝑇 → 𝑌 the fibre
product 𝑇 ×𝑌 𝑋 is a very reasonable algebraic space.

We refer to Remark 43.13.7 for an informal discussion. It will turn out that the class of
very reasonable morphisms is not so useful, but that the classes of decent and reasonable
morphisms are useful.

Lemma 43.13.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. We have the following implications among the conditions on 𝑓:

representable

$,
very reasonable +3 reasonable +3 decent +3 (𝛽)

quasi-separated

2:

Proof. This is clear from the definitions, Lemma 43.5.1 andMorphisms of Spaces, Lemma
42.5.12. �

Lemma 43.13.3. Having property (𝛽), (𝛾), (𝛿), or (𝜖) is preserved under arbitrary base
change.
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Proof. Omitted. �

Lemma 43.13.4. Having property (𝛽), being decent, or being reasonable is preserved un-
der compositions.

Proof. Let 𝜔 ∈ {𝛽, 𝑑𝑒𝑐𝑒𝑛𝑡, 𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒}. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be morphisms
of algebraic spaces over the scheme 𝑆. Assume 𝑓 and 𝑔 both have property (𝜔). Then we
have to show that for any scheme 𝑇 and morphism 𝑇 → 𝑍 the space 𝑇 ×𝑍 𝑋 has (𝜔). By
Lemma 43.13.3 this reduces us to the following claim: Suppose that 𝑌 is an algebraic space
having property (𝜔), and that 𝑓 ∶ 𝑋 → 𝑌 is a morphism with (𝜔). Then 𝑋 has (𝜔).

Let us prove the claim in case 𝜔 = 𝛽. In this case we have to show that any 𝑥 ∈ |𝑋| is
represented by a monomorphism from the spectrum of a field into 𝑋. Let 𝑦 = 𝑓(𝑥) ∈ |𝑌|.
By assumption there exists a field 𝑘 and a monomorphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑌 representing 𝑦.
Then 𝑥 corresponds to a point 𝑥′ of 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋. By assumption 𝑥′ is represented by a
monomorphism 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋. Clearly the composition 𝑆𝑝𝑒𝑐(𝑘′) → 𝑋 is a
monomorphism representing 𝑥.

Let us prove the claim in case 𝜔 = 𝑑𝑒𝑐𝑒𝑛𝑡. Let 𝑥 ∈ |𝑋| and 𝑦 = 𝑓(𝑥) ∈ |𝑌|. By the result
of the preceding paragraph we can choose a diagram

𝑆𝑝𝑒𝑐(𝑘′) 𝑥
//

��

𝑋

𝑓
��

𝑆𝑝𝑒𝑐(𝑘)
𝑦 // 𝑌

whose horizontal arrowsmonomorphisms. As 𝑌 is decent the morphism 𝑦 is quasi-compact.
As 𝑓 is decent the algebraic space 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 is decent. Hence the monomorphism
𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 is quasi-compact. Then the monomorphism 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘′) → 𝑋
is quasi-compact as a composition of quasi-compact morphisms (useMorphisms of Spaces,
Lemmas 42.9.3 and 42.9.4). As the point 𝑥 was arbitrary this implies 𝑋 is decent.

Let us prove the claim in case 𝜔 = 𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒. Choose 𝑉 → 𝑌 étale with 𝑉 an affine
scheme. Choose 𝑈 → 𝑉 ×𝑌 𝑋 étale with 𝑈 an affine scheme. By assumption 𝑉 → 𝑌 has
universally bounded fibres. By Lemma 43.3.3 the morphism 𝑉 ×𝑌 𝑋 → 𝑋 has universally
bounded fibres. By assumption on 𝑓 we see that 𝑈 → 𝑉×𝑌𝑋 has universally bounded fibres.
By Lemma 43.3.2 the composition 𝑈 → 𝑋 has universally bounded fibres. Hence there
exists sufficiently many étale morphisms 𝑈 → 𝑋 from schemes with universally bounded
fibres, and we conclude that 𝑋 is reasonable. �

Lemma 43.13.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝒫 ∈ {(𝛽), 𝑑𝑒𝑐𝑒𝑛𝑡, 𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒}. Assume

(1) 𝑓 is quasi-compact,
(2) 𝑓 is étale,
(3) |𝑓| ∶ |𝑋| → |𝑌| is surjective, and
(4) the algebraic space 𝑋 has property 𝒫.

Then 𝑌 has property 𝒫.

Proof. Let us prove this in case 𝒫 = (𝛽). Let 𝑦 ∈ |𝑌| be a point. We have to show that 𝑦 can
be represented by a monomorphism from a field. Choose a point 𝑥 ∈ |𝑋| with 𝑓(𝑥) = 𝑦.
By assumption we may represent 𝑥 by a monomorphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑋, with 𝑘 a field. By
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Lemma 43.4.3 it suffices to show that the projections 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝑘) are
étale and quasi-compact. We can factor the first projection as

𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑆𝑝𝑒𝑐(𝑘) ⟶ 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 ⟶ 𝑆𝑝𝑒𝑐(𝑘)

The first morphism is a monomorphism, and the second is étale and quasi-compact. By
Properties of Spaces, Lemma 41.13.8 we see that 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 is a scheme. Hence it is a
finite disjoint union of spectra of finite separable field extensions of 𝑘. By Schemes, Lemma
21.23.10 we see that the first arrow identifies 𝑆𝑝𝑒𝑐(𝑘)×𝑌 𝑆𝑝𝑒𝑐(𝑘) with a finite disjoint union
of spectra of finite separable field extensions of 𝑘. Hence the projection morphism is étale
and quasi-compact.

Let us prove this in case 𝒫 = 𝑑𝑒𝑐𝑒𝑛𝑡. We have already seen in the first paragraph of
the proof that this implies that every 𝑦 ∈ |𝑌| can be represented by a monomorphism
𝑦 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑌. Pick such a 𝑦. Pick an affine scheme 𝑈 and an étale morphism 𝑈 → 𝑋
such that the image of |𝑈| → |𝑌| contains 𝑦. By Lemma 43.4.5 it suffices to show that 𝑈𝑦
is a finite scheme over 𝑘. The fibre product 𝑋𝑦 = 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 is a quasi-compact étale
algebraic space over 𝑘. Hence by Properties of Spaces, Lemma 41.13.8 it is a scheme. So it
is a finite disjoint union of spectra of finite separable extensions of 𝑘. Say 𝑋𝑦 = {𝑥1, … , 𝑥𝑛}
so 𝑥𝑖 is given by 𝑥𝑖 ∶ 𝑆𝑝𝑒𝑐(𝑘𝑖) → 𝑋 with [𝑘𝑖 ∶ 𝑘] < ∞. By assumption 𝑋 is decent, so
the schemes 𝑈𝑥𝑖

= 𝑆𝑝𝑒𝑐(𝑘𝑖) ×𝑋 𝑈 are finite over 𝑘𝑖. Finally, we note that 𝑈𝑦 = ∐ 𝑈𝑥𝑖
as a

scheme and we conclude that 𝑈𝑦 is finite over 𝑘 as desired.

Let us prove this in case 𝒫 = 𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒. Pick an affine scheme 𝑉 and an étale morphism
𝑉 → 𝑌. We have the show the fibres of 𝑉 → 𝑌 are universally bounded. The algebraic
space 𝑉 ×𝑌 𝑋 is quasi-compact. Thus we can find an affine scheme 𝑊 and a surjective étale
morphism 𝑊 → 𝑉 ×𝑌 𝑋, see Properties of Spaces, Lemma 41.6.3. Here is a picture (solid
diagram)

𝑊 //

##

𝑉 ×𝑌 𝑋 //

��

𝑋

𝑓
��

𝑆𝑝𝑒𝑐(𝑘)𝑥
oo

𝑦
{{

𝑉 // 𝑌
The morphism 𝑊 → 𝑋 is universally bounded by our assumption that the space 𝑋 is
reasonable. Let 𝑛 be an integer bounding the degrees of the fibres of 𝑊 → 𝑋. We claim
that the same integer works for bounding the fibres of 𝑉 → 𝑌. Namely, suppose 𝑦 ∈ |𝑌| is
a point. Then there exists a 𝑥 ∈ |𝑋| with 𝑓(𝑥) = 𝑦 (see above). This means we can find a
field 𝑘 and morphisms 𝑥, 𝑦 given as dotted arrows in the diagram above. In particular we
get a surjective étale morphism

𝑆𝑝𝑒𝑐(𝑘) ×𝑥,𝑋 𝑊 → 𝑆𝑝𝑒𝑐(𝑘) ×𝑥,𝑋 (𝑉 ×𝑌 𝑋) = 𝑆𝑝𝑒𝑐(𝑘) ×𝑦,𝑌 𝑉

which shows that the degree of 𝑆𝑝𝑒𝑐(𝑘) ×𝑦,𝑌 𝑉 over 𝑘 is less than or equal to the degree of
𝑆𝑝𝑒𝑐(𝑘) ×𝑥,𝑋 𝑊 over 𝑘, i.e., ≤ 𝑛, and we win. (This last part of the argument is the same
as the argument in the proof of Lemma 43.3.4. Unfortunately that lemma is not general
enough because it only applies to representable morphisms.) �

Lemma 43.13.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝒫 ∈ {(𝛽), 𝑑𝑒𝑐𝑒𝑛𝑡, 𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒, 𝑣𝑒𝑟𝑦 𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒}. The following are equivalent

(1) 𝑓 is 𝒫,
(2) for every affine scheme 𝑍 and every morphism 𝑍 → 𝑌 the base change 𝑍×𝑌 𝑋 →

𝑍 of 𝑓 is 𝒫,
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(3) for every affine scheme 𝑍 and every morphism 𝑍 → 𝑌 the algebraic space 𝑍×𝑌𝑋
is 𝒫, and

(4) there exists a Zariski covering 𝑌 = ⋃ 𝑌𝑖 such that each morphism 𝑓−1(𝑌𝑖) → 𝑌𝑖
has 𝒫.

If 𝒫 ∈ {(𝛽), 𝑑𝑒𝑐𝑒𝑛𝑡, 𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒}, then this is also equivalent to
(5) there exists a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌 such that the base

change 𝑉 ×𝑌 𝑋 → 𝑉 has 𝒫.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are trivial. The implication (3) ⇒ (1) can
be seen as follows. Let 𝑍 → 𝑌 be a morphism whose source is a scheme over 𝑆. Consider
the algebraic space 𝑍 ×𝑌 𝑋. If we assume (3), then for any affine open 𝑊 ⊂ 𝑍, the open
subspace 𝑊 ×𝑌 𝑋 of 𝑍 ×𝑌 𝑋 has property 𝒫. Hence by Lemma 43.5.2 the space 𝑍 ×𝑌 𝑋
has property 𝒫, i.e., (1) holds. A similar argument (omitted) shows that (4) implies (1).
The implication (1) ⇒ (5) is trivial. Let 𝑉 → 𝑌 be an étale morphism from a scheme as in
(5). Let 𝑍 be an affine scheme, and let 𝑍 → 𝑌 be a morphism. Consider the diagram

𝑍 ×𝑌 𝑉 𝑞
//

𝑝
��

𝑉

��
𝑍 // 𝑌

Since 𝑝 is étale, and hence open, we can choose finitely many affine open subschemes
𝑊𝑖 ⊂ 𝑍 ×𝑌 𝑉 such that 𝑍 = ⋃ 𝑝(𝑊𝑖). Consider the commutative diagram

𝑉 ×𝑌 𝑋

��

(∐ 𝑊𝑖) ×𝑌 𝑋oo

��

// 𝑍 ×𝑌 𝑋

��
𝑉 ∐ 𝑊𝑖
oo // 𝑍

We know 𝑉 ×𝑌 𝑋 has property 𝒫. By Lemma 43.5.3 we see that (∐ 𝑊𝑖) ×𝑌 𝑋 has property
𝒫. Note that the morphism (∐ 𝑊𝑖) ×𝑌 𝑋 → 𝑍 ×𝑌 𝑋 is étale and quasi-compact as the base
change of ∐ 𝑊𝑖 → 𝑍. Hence by Lemma 43.13.5 we conclude that 𝑍 ×𝑌 𝑋 has property
𝒫. �

Remark 43.13.7. An informal description of the properties (𝛽), decent, reasonable, very
reasonable was given in Section 43.6. A morphism has one of these properties if (very)
loosely speaking the fibres of the morphism have the corresponding properties. Being de-
cent is useful to prove things about specializations of points on |𝑋|. Being reasonable is a
bit stronger, and technically quite easy to work with. Very reasonable is a good condition in
the sense that it implies that 𝑋 has a dense open subspace which is a scheme, and that |𝑋| is
a sober topological space. This is not clear for reasonable spaces and probably not true; al-
though Lemma 43.6.9 shows reasonable spaces are very close to being quasi-separated. On
the other hand, we do not know whether the class of very reasonable morphisms is closed
under composition, and we do not know whether very reasonable spaces satisfy a descent
property as the one in Lemma 43.13.5 (even with 𝑓 assumed representable).

Here is a lemma we promised earlier which uses decent morphisms.

Lemma 43.13.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Assume 𝑓 is quasi-compact and decent. (For example if 𝑓 is representable, or
quasi-separated, see Lemma 43.13.2.) Then 𝑓 is universally closed if and only if the exis-
tence part of the valuative criterion holds.
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Proof. In Morphisms of Spaces, Lemma 42.12.1 we proved that any quasi-compact mor-
phism which satsifies the existence part of the valuative criterion is universally closed. To
prove the other, assume that 𝑓 is universally closed. In the proof of Proposition 43.12.1 we
have seen that it suffices to show, for any valuation ring 𝐴, and anymorphism 𝑆𝑝𝑒𝑐(𝐴) → 𝑌,
that the base change 𝑓𝐴 ∶ 𝑋𝐴 → 𝑆𝑝𝑒𝑐(𝐴) satisfies the existence part of the valuative crite-
rion. By definition the algebraic space 𝑋𝐴 has property (𝛾) and hence Proposition 43.12.1
applies to the morphism 𝑓𝐴 and we win. �

43.14. Monomorphisms

Here is another case where monomorphisms are representable.

Lemma 43.14.1. Let𝑆 be a scheme. Let 𝑌 be a disjoint union of spectra of zero dimensional
local rings over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a monomorphism of algebraic spaces over 𝑆. Then
𝑓 is representable, i.e., 𝑋 is a scheme.

Proof. This immediately reduces to the case 𝑌 = 𝑆𝑝𝑒𝑐(𝐴) where 𝐴 is a zero dimensional
local ring, i.e., 𝑆𝑝𝑒𝑐(𝐴) = {𝔪𝐴} is a singleton. If 𝑋 = ∅, then there is nothing to prove.
If not, choose a nonempty affine scheme 𝑈 = 𝑆𝑝𝑒𝑐(𝐵) and an étale morphism 𝑈 → 𝑋. As
|𝑋| is a singleton (as a subset of |𝑌|, see Morphisms of Spaces, Lemma 42.14.9) we see
that 𝑈 → 𝑋 is surjective. Note that 𝑈 ×𝑋 𝑈 = 𝑈 ×𝑌 𝑈 = 𝑆𝑝𝑒𝑐(𝐵 ⊗𝐴 𝐵). Thus we see that
the ring maps 𝐵 → 𝐵 ⊗𝐴 𝐵 are étale. Since

(𝐵 ⊗𝐴 𝐵)/𝔪𝐴(𝐵 ⊗𝐴 𝐵) = (𝐵/𝔪𝐴𝐵) ⊗𝐴/𝔪𝐴
(𝐵/𝔪𝐴𝐵)

we see that 𝐵/𝔪𝐴𝐵 → (𝐵 ⊗𝐴 𝐵)/𝔪𝐴(𝐵 ⊗𝐴 𝐵) is flat and in fact free of rank equal to
the dimension of 𝐵/𝔪𝐴𝐵 as a 𝐴/𝔪𝐴-vector space. Since 𝐵 → 𝐵 ⊗𝐴 𝐵 is étale, this can
only happen if this dimension is finite (see for example Morphisms, Lemmas 24.48.7 and
24.48.8). Every prime of 𝐵 lies over 𝔪𝐴 (the unique prime of 𝐴). Hence 𝑆𝑝𝑒𝑐(𝐵) =
𝑆𝑝𝑒𝑐(𝐵/𝔪𝐴) as a topological space, and this space is a finite discrete set as 𝐵/𝔪𝐴𝐵 is an
Artinian ring, see Algebra, Lemmas 7.49.2 and 7.49.8. Hence all prime ideals of 𝐵 are
maximal and 𝐵 = 𝐵1 × … × 𝐵𝑛 is a product of finitely many local rings of dimension
zero, see Algebra, Lemma 7.49.7. Thus 𝐵 → 𝐵 ⊗𝐴 𝐵 is finite étale as all the local rings
𝐵𝑖 are henselian by Algebra, Lemma 7.139.11. Thus 𝑋 is an affine scheme by Groupoids,
Proposition 35.19.8. �
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CHAPTER 44

Topologies on Algebraic Spaces

44.1. Introduction

In this chapter we introduce some topologies on the category of algebraic spaces. Compare
with the material in [Gro71], [BLR90], [LMB00a] and [Knu71a]. Before doing so we
would like to point out that there are many different choices of sites (as defined in Sites,
Definition 9.6.2) which give rise to the same notion of sheaf on the underlying category.
Hence our choices may be slightly different from those in the references but ultimately lead
to the same cohomology groups, etc.

44.2. The general procedure

In this section we explain a general procedure for producing the sites we will be working
with. This discussion will make little or no sense unless the reader has read Topologies,
Section 30.2.

Let 𝑆 be a base scheme. Take any category Sch𝛼 constructed as in Sets, Lemma 3.9.2
starting with 𝑆 and any set of schemes over 𝑆 you want to be included. Choose any set
of coverings Cov𝑓𝑝𝑝𝑓 on Sch𝛼 as in Sets, Lemma 3.11.1 starting with the category Sch𝛼
and the class of fppf coverings. Let Sch𝑓𝑝𝑝𝑓 denote the big fppf site so obtained, and let
(Sch/𝑆)𝑓𝑝𝑝𝑓 denote the corresponding big fppf site of 𝑆. (The above is entirely as prescribed
in Topologies, Section 30.7.)

Given choices as above the category of algebraic spaces over 𝑆 has a set of isomorphism
classes. One way to see this is to use the fact that any algebraic space over 𝑆 is of the form
𝑈/𝑅 for some étale equivalence relation 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 with 𝑈, 𝑅 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓),
see Spaces, Lemma 40.9.1. Hence we can find a full subcategory Spaces/𝑆 of the category
of algebraic spaces over 𝑆 which has a set of objects such that each algebraic space is
isomorphic to an object of Spaces/𝑆. We fix a choice of such a category.

In the sections below, given a topology 𝜏, the big site (Spaces/𝑆)𝜏 (resp. the big site (Spaces/𝑋)𝜏
of an algebraic space 𝑋 over 𝑆) has as underlying category the category Spaces/𝑆 (resp. the
subcategory Spaces/𝑋 of Spaces/𝑆, see Categories, Example 4.2.13). The procedure for
turning this into a site is as usual by defining a class of 𝜏-coverings and using Sets, Lemma
3.11.1 to choose a sufficiently large set of coverings which defines the topology.

We point out that the small étale site𝑋 ́𝑒𝑡𝑎𝑙𝑒 of an algebraic space𝑋 has already been defined
in Properties of Spaces, Definition 41.15.1. Its objects are schemes étale over 𝑋, of which
there are plenty by definition of an algebraic spaces. However, a more natural site, from the
perspective of this chapter (compare Topologies, Definition 30.4.8) is the site 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒
of Properties of Spaces, Definition 41.15.2. These two sites define the same topos, see
Properties of Spaces, Lemma 41.15.3. We will not redefine these in this chapter; instead
we will simply use them.
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Finally, we intend not to define the Zariski sites, since these do not seem particularly useful
(allthough the Zariski topology is occasionally useful).

44.3. Fpqc topology

We briefly discuss the notion of an fpqc covering of algebraic spaces. Please compare with
Topologies, Section 30.8. We will show in Descent on Spaces, Proposition 45.4.1 that
quasi-coherent sheaves descent along these.

Definition 44.3.1. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. An fpqc
covering of𝑋 is a family ofmorphisms {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 of algebraic spaces such that each
𝑓𝑖 is flat and such that for every affine scheme 𝑍 and morphism ℎ ∶ 𝑍 → 𝑋 there exists a
standard fpqc covering {𝑔𝑗 ∶ 𝑍𝑗 → 𝑍}𝑗=1,…,𝑛 which refines the family {𝑋𝑖 ×𝑋 𝑍 → 𝑍}𝑖∈𝐼.

In other words, there exists indices 𝑖1, … , 𝑖𝑛 ∈ 𝐼 and morphisms ℎ𝑗 ∶ 𝑈𝑗 → 𝑋𝑖𝑗 such that
𝑓𝑖𝑗 ∘ ℎ𝑗 = ℎ ∘ 𝑔𝑗. Note that if 𝑋 and all 𝑋𝑖 are representable, this is the same as a fpqc
covering of schemes by Topologies, Lemma 30.8.11.

Lemma 44.3.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) If 𝑋′ → 𝑋 is an isomorphism then {𝑋′ → 𝑋} is an fpqc covering of 𝑋.
(2) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is an fpqc covering and for each 𝑖 we have an fpqc covering

{𝑋𝑖𝑗 → 𝑋𝑖}𝑗∈𝐽𝑖
, then {𝑋𝑖𝑗 → 𝑋}𝑖∈𝐼,𝑗∈𝐽𝑖

is an fpqc covering.
(3) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is an fpqc covering and 𝑋′ → 𝑋 is a morphism of algebraic

spaces then {𝑋′ ×𝑋 𝑋𝑖 → 𝑋′}𝑖∈𝐼 is an fpqc covering.

Proof. Part (1) is clear. Consider 𝑔 ∶ 𝑋′ → 𝑋 and {𝑋𝑖 → 𝑋}𝑖∈𝐼 an fpqc covering
as in (3). By Morphisms of Spaces, Lemma 42.27.3 the morphisms 𝑋′ ×𝑋 𝑋𝑖 → 𝑋′

are flat. If ℎ′ ∶ 𝑍 → 𝑋′ is a morphism from an affine scheme towards 𝑋′, then set
ℎ = 𝑔 ∘ ℎ′ ∶ 𝑍 → 𝑋. The assumption on {𝑋𝑖 → 𝑋}𝑖∈𝐼 means there exists a standard fpqc
covering {𝑍𝑗 → 𝑍}𝑗=1,…,𝑛 and morphisms 𝑍𝑗 → 𝑋𝑖(𝑗) covering ℎ for certain 𝑖(𝑗) ∈ 𝐼. By
the universal property of the fibre product we obtain morphisms 𝑍𝑗 → 𝑋′ ×𝑋 𝑋𝑖(𝑗) over ℎ′

also. Hence {𝑋′ ×𝑋 𝑋𝑖 → 𝑋′}𝑖∈𝐼 is an fpqc covering. This proves (3).

Let {𝑋𝑖 → 𝑋}𝑖∈𝐼 and {𝑋𝑖𝑗 → 𝑋𝑖}𝑗∈𝐽𝑖
be as in (2). Let ℎ ∶ 𝑍 → 𝑋 be a morphism

from an affine scheme towards 𝑋. By assumption there exists a standard fpqc covering
{𝑍𝑗 → 𝑍}𝑗=1,…,𝑛 and morphisms ℎ𝑗 ∶ 𝑍𝑗 → 𝑋𝑖(𝑗) covering ℎ for some indices 𝑖(𝑗) ∈ 𝐼.
By assumption there exist standard fpqc coverings {𝑍𝑗,𝑙 → 𝑍𝑗}𝑙=1,…,𝑛(𝑗) and morphisms
𝑍𝑗,𝑙 → 𝑋𝑖(𝑗)𝑗(𝑙) coveringℎ𝑗 for some indices 𝑗(𝑙) ∈ 𝐽𝑖(𝑗). By Topologies, Lemma 30.8.10 the
family {𝑍𝑗,𝑙 → 𝑍} is a standard fpqc covering. Hence we conclude that {𝑋𝑖𝑗 → 𝑋}𝑖∈𝐼,𝑗∈𝐽𝑖
is an fpqc covering. �

Lemma 44.3.3. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. Suppose that
{𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 is a family of morphisms of algebraic spaces with target 𝑋. Let 𝑈 → 𝑋
be a surjective étale morphism from a scheme towards 𝑋. Then {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 is an
fpqc covering of 𝑋 if and only if {𝑈 ×𝑋 𝑋𝑖 → 𝑈}𝑖∈𝐼 is an fpqc covering of 𝑈.

Proof. If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is an fpqc covering, then so is {𝑈 ×𝑋 𝑋𝑖 → 𝑈}𝑖∈𝐼 by Lemma
44.3.2. Assume that {𝑈 ×𝑋 𝑋𝑖 → 𝑈}𝑖∈𝐼 is an fpqc covering. Let ℎ ∶ 𝑍 → 𝑋 be a
morphism from an affine scheme towards 𝑋. Then we see that 𝑈 ×𝑋 𝑍 → 𝑍 is a surjective
étalemorphism of schemes, in particular open. Hencewe can find finitelymany affine opens
𝑊1, … , 𝑊𝑡 of 𝑈 ×𝑋 𝑍 whose images cover 𝑍. For each 𝑗 we may apply the condition that
{𝑈×𝑋𝑋𝑖 → 𝑈}𝑖∈𝐼 is an fpqc covering to the morphism 𝑊𝑗 → 𝑈, and obtain a standard fpqc
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covering {𝑊𝑗𝑙 → 𝑊𝑗} which refines {𝑊𝑗×𝑋𝑋𝑖 → 𝑊𝑗}𝑖∈𝐼. Hence {𝑊𝑗𝑙 → 𝑍} is a standard
fpqc covering of 𝑍 (see Topologies, Lemma 30.8.10) which refines {𝑍 ×𝑋 𝑋𝑖 → 𝑋} and
we win. �

Lemma 44.3.4. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. Suppose
that 𝒰 = {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 is an fpqc covering of 𝑋. Then there exists a refinement
𝒱 = {𝑔𝑖 ∶ 𝑇𝑖 → 𝑋} of 𝒰 which is an fpqc covering such that each 𝑇𝑖 is a scheme.

Proof. Omitted. Hint: For each 𝑖 choose a scheme 𝑇𝑖 and a surjective étale morphism
𝑇𝑖 → 𝑋𝑖. Then check that {𝑇𝑖 → 𝑋} is an fpqc covering. �

To be continued...

44.4. Fppf topology

In this section we discuss the notion of an fppf covering of algebraic spaces, and we define
the big fppf site of an algebraic space. Please compare with Topologies, Section 30.7.

Definition 44.4.1. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. An fppf
covering of 𝑋 is a family of morphisms {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 of algebraic spaces such that
each 𝑓𝑖 is flat and locally of finite presentation and such that ⋃𝑖∈𝐼 𝑓𝑖(𝑋𝑖) = 𝑋.

This is exactly the same as Topologies, Definition 30.7.1. In particular, if 𝑋 and all the 𝑋𝑖
are schemes, then we recover the usual notion of an fppf covering of schemes.

Lemma 44.4.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) If 𝑋′ → 𝑋 is an isomorphism then {𝑋′ → 𝑋} is an fppf covering of 𝑋.
(2) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is an fppf covering and for each 𝑖 we have an fppf covering

{𝑋𝑖𝑗 → 𝑋𝑖}𝑗∈𝐽𝑖
, then {𝑋𝑖𝑗 → 𝑋}𝑖∈𝐼,𝑗∈𝐽𝑖

is an fppf covering.
(3) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is an fppf covering and 𝑋′ → 𝑋 is a morphism of algebraic

spaces then {𝑋′ ×𝑋 𝑋𝑖 → 𝑋′}𝑖∈𝐼 is an fppf covering.

Proof. Omitted. �

Lemma 44.4.3. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. Suppose
that 𝒰 = {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 is an fppf covering of 𝑋. Then there exists a refinement
𝒱 = {𝑔𝑖 ∶ 𝑇𝑖 → 𝑋} of 𝒰 which is an fppf covering such that each 𝑇𝑖 is a scheme.

Proof. Omitted. Hint: For each 𝑖 choose a scheme 𝑇𝑖 and a surjective étale morphism
𝑇𝑖 → 𝑋𝑖. Then check that {𝑇𝑖 → 𝑋} is an fppf covering. �

Lemma 44.4.4. Let 𝑆 be a scheme. Let {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fppf covering of algebraic
spaces over 𝑆. Then the map of sheaves

∐ 𝑋𝑖 ⟶ 𝑋

is surjective.

Proof. Omitted. See Spaces, Remark 40.5.2 if you are confused about the meaning of this
simple lemma. �

To be continued...
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44.5. Syntomic topology

In this section we discuss the notion of a syntomic covering of algebraic spaces, and we
define the big syntomic site of an algebraic space. Please compare with Topologies, Section
30.6.

Definition 44.5.1. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. A syntomic
covering of 𝑋 is a family of morphisms {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 of algebraic spaces such that
each 𝑓𝑖 is syntomic and such that ⋃𝑖∈𝐼 𝑓𝑖(𝑋𝑖) = 𝑋.

This is exactly the same as Topologies, Definition 30.6.1. In particular, if 𝑋 and all the 𝑋𝑖
are schemes, then we recover the usual notion of a syntomic covering of schemes.

Lemma 44.5.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) If 𝑋′ → 𝑋 is an isomorphism then {𝑋′ → 𝑋} is a syntomic covering of 𝑋.
(2) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is a syntomic covering and for each 𝑖we have a syntomic covering

{𝑋𝑖𝑗 → 𝑋𝑖}𝑗∈𝐽𝑖
, then {𝑋𝑖𝑗 → 𝑋}𝑖∈𝐼,𝑗∈𝐽𝑖

is a syntomic covering.
(3) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is a syntomic covering and 𝑋′ → 𝑋 is a morphism of algebraic

spaces then {𝑋′ ×𝑋 𝑋𝑖 → 𝑋′}𝑖∈𝐼 is a syntomic covering.

Proof. Omitted. �

To be continued...

44.6. Smooth topology

In this section we discuss the notion of a smooth covering of algebraic spaces, and we define
the big smooth site of an algebraic space. Please compare with Topologies, Section 30.5.

Definition 44.6.1. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. A smooth
covering of 𝑋 is a family of morphisms {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 of algebraic spaces such that
each 𝑓𝑖 is smooth and such that ⋃𝑖∈𝐼 𝑓𝑖(𝑋𝑖) = 𝑋.

This is exactly the same as Topologies, Definition 30.5.1. In particular, if 𝑋 and all the 𝑋𝑖
are schemes, then we recover the usual notion of a smooth covering of schemes.

Lemma 44.6.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) If 𝑋′ → 𝑋 is an isomorphism then {𝑋′ → 𝑋} is a smooth covering of 𝑋.
(2) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is a smooth covering and for each 𝑖 we have a smooth covering

{𝑋𝑖𝑗 → 𝑋𝑖}𝑗∈𝐽𝑖
, then {𝑋𝑖𝑗 → 𝑋}𝑖∈𝐼,𝑗∈𝐽𝑖

is a smooth covering.
(3) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is a smooth covering and 𝑋′ → 𝑋 is a morphism of algebraic

spaces then {𝑋′ ×𝑋 𝑋𝑖 → 𝑋′}𝑖∈𝐼 is a smooth covering.

Proof. Omitted. �

To be continued...

44.7. Étale topology

In this section we discuss the notion of a étale covering of algebraic spaces, and we define
the big étale site of an algebraic space. Please compare with Topologies, Section 30.4.

Definition 44.7.1. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. A étale
covering of 𝑋 is a family of morphisms {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 of algebraic spaces such that
each 𝑓𝑖 is étale and such that ⋃𝑖∈𝐼 𝑓𝑖(𝑋𝑖) = 𝑋.
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This is exactly the same as Topologies, Definition 30.4.1. In particular, if 𝑋 and all the 𝑋𝑖
are schemes, then we recover the usual notion of a étale covering of schemes.

Lemma 44.7.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) If 𝑋′ → 𝑋 is an isomorphism then {𝑋′ → 𝑋} is a étale covering of 𝑋.
(2) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is a étale covering and for each 𝑖 we have a étale covering

{𝑋𝑖𝑗 → 𝑋𝑖}𝑗∈𝐽𝑖
, then {𝑋𝑖𝑗 → 𝑋}𝑖∈𝐼,𝑗∈𝐽𝑖

is a étale covering.
(3) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is a étale covering and 𝑋′ → 𝑋 is a morphism of algebraic

spaces then {𝑋′ ×𝑋 𝑋𝑖 → 𝑋′}𝑖∈𝐼 is a étale covering.

Proof. Omitted. �

To be continued...

44.8. Zariski topology

In Spaces, Section 40.12 we introduced the notion of a Zariski covering of an algebraic
space by open subspaces. Here is the corresponding notion with open subspaces replaces
by open immersions.

Definition 44.8.1. Let 𝑆 be a scheme, and let 𝑋 be an algebraic space over 𝑆. A Zariski
covering of 𝑋 is a family of morphisms {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 of algebraic spaces such that
each 𝑓𝑖 is an open immersion and such that ⋃𝑖∈𝐼 𝑓𝑖(𝑋𝑖) = 𝑋.

Allthough Zariski coverings are occasionally useful the corresponding topology on the cat-
egory of algebraic spaces is really too coarse, and not particularly useful. Still, it does define
a site.

Lemma 44.8.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆.
(1) If 𝑋′ → 𝑋 is an isomorphism then {𝑋′ → 𝑋} is a Zariski covering of 𝑋.
(2) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is a Zariski covering and for each 𝑖 we have a Zariski covering

{𝑋𝑖𝑗 → 𝑋𝑖}𝑗∈𝐽𝑖
, then {𝑋𝑖𝑗 → 𝑋}𝑖∈𝐼,𝑗∈𝐽𝑖

is a Zariski covering.
(3) If {𝑋𝑖 → 𝑋}𝑖∈𝐼 is a Zariski covering and 𝑋′ → 𝑋 is a morphism of algebraic

spaces then {𝑋′ ×𝑋 𝑋𝑖 → 𝑋′}𝑖∈𝐼 is a Zariski covering.

Proof. Omitted. �
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CHAPTER 45

Descent and Algebraic Spaces

45.1. Introduction

In the chapter on topologies on algebraic spaces (see Topologies on Spaces, Section 44.1)
we introduced étale, fppf, smooth, syntomic and fpqc coverings of algebraic spaces. In this
chapter we discuss what kind of structures over algebraic spaces can be descended through
such coverings. See for example [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and
[Gro95d].

45.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.

Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋.

45.3. Descent data for quasi-coherent sheaves

This section is the analogue of Descent, Section 31.2 for algebraic spaces. It makes sense
to read that section first.

Definition 45.3.1. Let 𝑆 be a scheme. Let {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 be a family of morphisms of
algebraic spaces over 𝑆 with fixed target 𝑋.

(1) A descent datum (ℱ𝑖, 𝜑𝑖𝑗) for quasi-coherent sheaves with respect to the given
family is given by a quasi-coherent sheaf ℱ𝑖 on 𝑋𝑖 for each 𝑖 ∈ 𝐼, an isomorphism
of quasi-coherent 𝒪𝑋𝑖×𝑋𝑋𝑗

-modules 𝜑𝑖𝑗 ∶ pr∗0ℱ𝑖 → pr∗1ℱ𝑗 for each pair (𝑖, 𝑗) ∈ 𝐼2

such that for every triple of indices (𝑖, 𝑗, 𝑘) ∈ 𝐼3 the diagram

pr∗0ℱ𝑖

pr∗01𝜑𝑖𝑗 ##

pr∗02𝜑𝑖𝑘

// pr∗2ℱ𝑘

pr∗1ℱ𝑗

pr∗12𝜑𝑗𝑘

;;

of 𝒪𝑋𝑖×𝑋𝑋𝑗×𝑋𝑋𝑘
-modules commutes. This is called the cocycle condition.
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(2) A morphism 𝜓 ∶ (ℱ𝑖, 𝜑𝑖𝑗) → (ℱ′
𝑖 , 𝜑′

𝑖𝑗) of descent data is given by a family 𝜓 =
(𝜓𝑖)𝑖∈𝐼 of morphisms of 𝒪𝑋𝑖

-modules 𝜓𝑖 ∶ ℱ𝑖 → ℱ′
𝑖 such that all the diagrams

pr∗0ℱ𝑖 𝜑𝑖𝑗
//

pr∗0𝜓𝑖
��

pr∗1ℱ𝑗

pr∗1𝜓𝑗
��

pr∗0ℱ′
𝑖

𝜑′
𝑖𝑗 // pr∗1ℱ′

𝑗

commute.

Lemma 45.3.2. Let 𝑆 be a scheme. Let 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼 and 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽
be families of morphisms of algebraic spaces over 𝑆 with fixed targets. Let (𝑔, 𝛼 ∶ 𝐼 →
𝐽, (𝑔𝑖)) ∶ 𝒰 → 𝒱 be a morphism of families of maps with fixed target, see Sites, Definition
9.8.1. Let (ℱ𝑗, 𝜑𝑗𝑗′) be a descent datum for quasi-coherent sheaves with respect to the
family {𝑉𝑗 → 𝑉}𝑗∈𝐽. Then

(1) The system
(𝑔∗

𝑖 ℱ𝛼(𝑖), (𝑔𝑖 × 𝑔𝑖′)∗𝜑𝛼(𝑖)𝛼(𝑖′))
is a descent datum with respect to the family {𝑈𝑖 → 𝑈}𝑖∈𝐼.

(2) This construction is functorial in the descent datum (ℱ𝑗, 𝜑𝑗𝑗′).
(3) Given a second morphism (𝑔′, 𝛼′ ∶ 𝐼 → 𝐽, (𝑔′

𝑖 )) of families of maps with fixed
target with 𝑔 = 𝑔′ there exists a functorial isomorphism of descent data

(𝑔∗
𝑖 ℱ𝛼(𝑖), (𝑔𝑖 × 𝑔𝑖′)∗𝜑𝛼(𝑖)𝛼(𝑖′)) ≅ ((𝑔′

𝑖 )
∗ℱ𝛼′(𝑖), (𝑔′

𝑖 × 𝑔′
𝑖′)∗𝜑𝛼′(𝑖)𝛼′(𝑖′)).

Proof. Omitted. Hint: The maps 𝑔∗
𝑖 ℱ𝛼(𝑖) → (𝑔′

𝑖 )
∗ℱ𝛼′(𝑖) which give the ismorphism of

descent data in part (3) are the pullbacks of the maps 𝜑𝛼(𝑖)𝛼′(𝑖) by the morphisms (𝑔𝑖, 𝑔′
𝑖 ) ∶

𝑈𝑖 → 𝑉𝛼(𝑖) ×𝑉 𝑉𝛼′(𝑖). �

Let 𝑔 ∶ 𝑈 → 𝑉 be a morphism of algebraic spaces. The lemma above tells us that there is
a well defined pullback functor between the categories of descent data relative to families
of maps with target 𝑉 and 𝑈 provided there is a morphism between those families of maps
which ``lives over 𝑔''.

Definition 45.3.3. Let 𝑆 be a scheme. Let {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of morphisms of
algebraic spaces over 𝑆 with fixed target.

(1) Let ℱ be a quasi-coherent 𝒪𝑈-module. We call the unique descent on ℱ datum
with respect to the covering {𝑈 → 𝑈} the trivial descent datum.

(2) The pullback of the trival descent datum to {𝑈𝑖 → 𝑈} is called the canonical
descent datum. Notation: (ℱ|𝑈𝑖

, 𝑐𝑎𝑛).
(3) A descent datum (ℱ𝑖, 𝜑𝑖𝑗) for quasi-coherent sheaves with respect to the given

family is said to be effective if there exists a quasi-coherent sheaf ℱ on 𝑈 such
that (ℱ𝑖, 𝜑𝑖𝑗) is isomorphic to (ℱ|𝑈𝑖

, 𝑐𝑎𝑛).

Lemma 45.3.4. Let 𝑆 be a scheme. Let 𝑈 be an algebraic space over 𝑆. Let {𝑈𝑖 →
𝑈} be a Zariski covering of 𝑈, see Topologies on Spaces, Definition 44.8.1. Any descent
datum on quasi-coherent sheaves for the family 𝒰 = {𝑈𝑖 → 𝑈} is effective. Moreover, the
functor from the category of quasi-coherent 𝒪𝑈-modules to the category of descent data
with respect to {𝑈𝑖 → 𝑈} is fully faithful.

Proof. Omitted. �
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45.4. Fpqc descent of quasi-coherent sheaves

The main application of flat descent for modules is the corresponding descent statement for
quasi-coherent sheaves with respect to fpqc-coverings.

Proposition 45.4.1. Let 𝑆 be a scheme. Let {𝑋𝑖 → 𝑋} be an fpqc covering of algebraic
spaces over 𝑆, see Topologies on Spaces, Definition 44.3.1. Any descent datum on quasi-
coherent sheaves for {𝑋𝑖 → 𝑋} is effective. Moreover, the functor from the category of
quasi-coherent 𝒪𝑋-modules to the category of descent data with respect to {𝑋𝑖 → 𝑋} is
fully faithful.

Proof. This is more or less a formal consequence of the corresponding result for schemes,
see Descent, Proposition 31.4.2. Here is a strategy for a proof:

(1) The fact that {𝑋𝑖 → 𝑋} is a refinement of the trivial covering {𝑋 → 𝑋} gives,
via Lemma 45.3.2, a functor QCoh(𝑋) → 𝐷𝐷({𝑋𝑖 → 𝑋}) from the category of
quasi-coherent 𝒪𝑋-modules to the category of descent data for the given family.

(2) In order to prove the proposition we will construct a quasi-inverse functor 𝑏𝑎𝑐𝑘 ∶
𝐷𝐷({𝑋𝑖 → 𝑋}) → QCoh(𝑋).

(3) Applying again Lemma 45.3.2 we see that there is a functor 𝐷𝐷({𝑋𝑖 → 𝑋}) →
𝐷𝐷({𝑇𝑗 → 𝑋}) if {𝑇𝑗 → 𝑋} is a refinement of the given family. Hence in
order to construct the functor 𝑏𝑎𝑐𝑘 we may assume that each 𝑋𝑖 is a scheme, see
Topologies on Spaces, Lemma 44.3.4. This reduces us to the case where all the
𝑋𝑖 are schemes.

(4) A quasi-coherent sheaf on 𝑋 is by definition a quasi-coherent 𝒪𝑋-module on
𝑋 ́𝑒𝑡𝑎𝑙𝑒. Now for any 𝑈 ∈ 𝑂𝑏(𝑋 ́𝑒𝑡𝑎𝑙𝑒) we get an fppf covering {𝑈𝑖 ×𝑋 𝑋𝑖 → 𝑈}
by schemes and a morphism 𝑔 ∶ {𝑈𝑖 ×𝑋 𝑋𝑖 → 𝑈} → {𝑋𝑖 → 𝑋} of coverings
lying over 𝑈 → 𝑋. Given a descent datum 𝜉 = (ℱ𝑖, 𝜑𝑖𝑗) we obtain a quasi-
coherent 𝒪𝑈-module ℱ𝜉,𝑈 corresponding to the pullback 𝑔∗𝜉 of Lemma 45.3.2 to
the covering of 𝑈 and using effectivity for fppf covering of schemes, see Descent,
Proposition 31.4.2.

(5) Check that 𝜉 ↦ ℱ𝜉,𝑈 is functorial in 𝜉. Omitted.
(6) Check that 𝜉 ↦ ℱ𝜉,𝑈 is compatible with morphisms 𝑈 → 𝑈′ of the site 𝑋 ́𝑒𝑡𝑎𝑙𝑒,

so that the system of sheaves ℱ𝜉,𝑈 corresponds to a quasi-coherent ℱ𝜉 on 𝑋 ́𝑒𝑡𝑎𝑙𝑒,
see Properties of Spaces, Lemma 41.26.3. Details omitted.

(7) Check that 𝑏𝑎𝑐𝑘 ∶ 𝜉 ↦ ℱ𝜉 is quasi-inverse to the functor constructed in (1).
Omitted.

This finishes the proof. �

45.5. Descent of finiteness properties of modules

This section is the analogue for the case of algebraic spaces of Descent, Section 31.5. The
goal is to show that one can check a quasi-coherent module has a certain finiteness con-
ditions by checking on the members of a covering. We will repeatedly use the following
proof scheme. Suppose that 𝑋 is an algebraic space, and that {𝑋𝑖 → 𝑋} is a fppf (resp.
fpqc) covering. Let 𝑈 → 𝑋 be a surjective étale morphism such that 𝑈 is a scheme. Then
there exists an fppf (resp. fpqc) covering {𝑌𝑗 → 𝑋} such that

(1) {𝑌𝑗 → 𝑋} is a refinement of {𝑋𝑖 → 𝑋},
(2) each 𝑌𝑗 is a scheme, and
(3) each morphism 𝑌𝑗 → 𝑋 factors though 𝑈, and
(4) {𝑌𝑗 → 𝑈} is an fppf (resp. fpqc) covering of 𝑈.
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Namely, first refine {𝑋𝑖 → 𝑋} by an fppf (resp. fpqc) covering such that each 𝑋𝑖 is a
scheme, see Topologies on Spaces, Lemma 44.4.3, resp. Lemma 44.3.4. Then set 𝑌𝑖 =
𝑈 ×𝑋 𝑋𝑖. A quasi-coherent 𝒪𝑋-module ℱ is of finite type, of finite presentation, etc if and
only if the quasi-coherent 𝒪𝑈-module ℱ|𝑈 is of finite type, of finite presentation, etc. Hence
we can use the existence of the refinement {𝑌𝑗 → 𝑋} to reduce the proof of the following
lemmas to the case of schemes. We will indicate this by saying that ``the result follows from
the case of schemes by étale localization''.

Lemma 45.5.1. Let 𝑋 be an algebraic space over a scheme 𝑆. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is a finite type
𝒪𝑋𝑖

-module. Then ℱ is a finite type 𝒪𝑋-module.

Proof. This follows from the case of schemes, see Descent, Lemma 31.5.1, by étale local-
ization. �

Lemma 45.5.2. Let 𝑋 be an algebraic space over a scheme 𝑆. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is an𝒪𝑋𝑖
-module

of finite presentation. Then ℱ is an 𝒪𝑋-module of finite presentation.

Proof. This follows from the case of schemes, see Descent, Lemma 31.5.2, by étale local-
ization. �

Lemma 45.5.3. Let 𝑋 be an algebraic space over a scheme 𝑆. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is a flat
𝒪𝑋𝑖

-module. Then ℱ is a flat 𝒪𝑋-module.

Proof. This follows from the case of schemes, see Descent, Lemma 31.5.3, by étale local-
ization. �

Lemma 45.5.4. Let 𝑋 be an algebraic space over a scheme 𝑆. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is a finite
locally free 𝒪𝑋𝑖

-module. Then ℱ is a finite locally free 𝒪𝑋-module.

Proof. This follows from the case of schemes, see Descent, Lemma 31.5.4, by étale local-
ization. �

The definition of a locally projective quasi-coherent sheaf can be found in Properties of
Spaces, Section 41.28. It is also proved there that this notion is preserved under pullback.

Lemma 45.5.5. Let 𝑋 be an algebraic space over a scheme 𝑆. Let ℱ be a quasi-coherent
𝒪𝑋-module. Let {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋}𝑖∈𝐼 be an fpqc covering such that each 𝑓∗

𝑖 ℱ is a locally
projective 𝒪𝑋𝑖

-module. Then ℱ is a locally projective 𝒪𝑋-module.

Proof. This follows from the case of schemes, see Descent, Lemma 31.5.5, by étale local-
ization. �

We also add here two results which are related to the results above, but are of a slightly
different nature.

Lemma 45.5.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let ℱ be a quasi-coherent 𝒪𝑋-module. Assume 𝑓 is a finite morphism. Then ℱ is
an 𝒪𝑋-module of finite type if and only if 𝑓∗ℱ is an 𝒪𝑌-module of finite type.
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Proof. As 𝑓 is finite it is representable. Choose a scheme 𝑉 and a surjective étale morphism
𝑉 → 𝑌. Then 𝑈 = 𝑉 ×𝑌 𝑋 is a scheme with a surjective étale morphism towards 𝑋 and
a finite morphism 𝜓 ∶ 𝑈 → 𝑉 (the base change of 𝑓). Since 𝜓∗(ℱ|𝑈) = 𝑓∗ℱ|𝑉 the result
of the lemma follows immediately from the schemes version which is Descent, Lemma
31.5.7. �

Lemma 45.5.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let ℱ be a quasi-coherent 𝒪𝑋-module. Assume 𝑓 is finite and of finite presentation.
Then ℱ is an 𝒪𝑋-module of finite presentation if and only if 𝑓∗ℱ is an 𝒪𝑌-module of finite
presentation.

Proof. As 𝑓 is finite it is representable. Choose a scheme 𝑉 and a surjective étale morphism
𝑉 → 𝑌. Then 𝑈 = 𝑉 ×𝑌 𝑋 is a scheme with a surjective étale morphism towards 𝑋 and
a finite morphism 𝜓 ∶ 𝑈 → 𝑉 (the base change of 𝑓). Since 𝜓∗(ℱ|𝑈) = 𝑓∗ℱ|𝑉 the result
of the lemma follows immediately from the schemes version which is Descent, Lemma
31.5.8. �

45.6. Fpqc coverings

This section is the analogue of Descent, Section 31.9. At the moment we do not know if all
of the material for fpqc coverings of schemes holds also for algebraic spaces.

Lemma 45.6.1. Let 𝑆 be a scheme. Let {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}𝑖∈𝐼 be an fpqc covering of algebraic
spaces over 𝑆. Suppose that for each 𝑖 we have an open subspace 𝑊𝑖 ⊂ 𝑇𝑖 such that for all
𝑖, 𝑗 ∈ 𝐼 we have pr−1

0 (𝑊𝑖) = pr−1
1 (𝑊𝑗) as open subspaces of 𝑇𝑖 ×𝑇 𝑇𝑗. Then there exists a

unique open subspace 𝑊 ⊂ 𝑇 such that 𝑊𝑖 = 𝑓−1
𝑖 (𝑊) for each 𝑖.

Proof. By Topologies on Spaces, Lemma 44.3.4 we may assume each 𝑇𝑖 is a scheme.
Choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑇. Then {𝑇𝑖 ×𝑇 𝑈 → 𝑈} is an
fpqc covering of 𝑈 and 𝑇𝑖 ×𝑇 𝑈 is a scheme for each 𝑖. Hence we see that the collection of
opens 𝑊𝑖 ×𝑇 𝑈 comes from a unique open subscheme 𝑊′ ⊂ 𝑈 by Descent, Lemma 31.9.2.
As 𝑈 → 𝑋 is open we can define 𝑊 ⊂ 𝑋 the Zariski open which is the image of 𝑊′, see
Properties of Spaces, Section 41.4. We omit the verification that this works, i.e., that 𝑊𝑖 is
the inverse image of 𝑊 for each 𝑖. �

We do not know whether the following lemma holds for fpqc instead of fppf, see Properties
of Spaces, Remark 41.14.4.

Lemma 45.6.2. Let 𝑆 be a scheme. Let {𝑇𝑖 → 𝑇} be an fppf covering of algebraic spaces
over 𝑆, see Topologies on Spaces, Definition 44.4.1. Then given an algebraic space 𝐵 over
𝑆 the sequence

𝑀𝑜𝑟𝑆(𝑇, 𝐵) //∏𝑖 𝑀𝑜𝑟𝑆(𝑇𝑖, 𝐵)
//
// ∏𝑖,𝑗 𝑀𝑜𝑟𝑆(𝑇𝑖 ×𝑇 𝑇𝑗, 𝐵)

is an equalizer diagram. In other words, every representable functor on the category of
algebraic spaces over 𝑆 satisfies the sheaf condition for the fppf topology.

Proof. We have seen in Topologies on Spaces, Lemma 44.4.4 that ∐ 𝑇𝑖 → 𝑇 is surjective
as a map of sheaves. Also note that 𝑇𝑖 ×𝑇 𝑇𝑗 is the fibre product as sheaves. Since we have

𝑀𝑜𝑟𝑆(𝑇, 𝐵) = 𝑀𝑜𝑟Sh((Sch/𝑆)𝑓𝑝𝑝𝑓)(𝑇, 𝐵)

by definition the lemma follows formally. �
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45.7. Descent of finiteness properties of morphisms

The following type of lemma is occasionally useful.

Lemma 45.7.1. Let 𝑆 be a scheme. Let 𝑋 → 𝑌 → 𝑍 be morphism of algebraic spaces. Let
𝑃 be one of the following properties of morphisms of algebraic spaces over 𝑆: flat, locally
finite type, locally finite presentation. Assume that 𝑋 → 𝑍 has 𝑃 and that 𝑋 → 𝑌 is a
surjection of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. Then 𝑌 → 𝑍 is 𝑃.

Proof. Choose a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝑍. Choose a scheme
𝑉 and a surjective étale morphism 𝑉 → 𝑊 ×𝑍 𝑌. Choose a scheme 𝑈 and a surjective
étale morphism 𝑈 → 𝑉 ×𝑌 𝑋. By assumption we can find an fppf covering {𝑉𝑖 → 𝑉}
and lifts 𝑉𝑖 → 𝑋 of the morphism 𝑉𝑖 → 𝑌. Since 𝑈 → 𝑋 is surjective étale we see
that over the members of the fppf covering {𝑉𝑖 ×𝑋 𝑈 → 𝑉} we have lifts into 𝑈. Hence
𝑈 → 𝑉 induces a surjection of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. By our definition of what it means to
have property 𝑃 for a morphism of algebraic spaces (see Morphisms of Spaces, Definition
42.27.1, Definition 42.22.1, and Definition 42.26.1) we see that 𝑈 → 𝑊 has 𝑃 and we have
to show 𝑉 → 𝑊 has 𝑃. Thus we reduce the question to the case of morphisms of schemes
which is treated in Descent, Lemma 31.10.8. �

45.8. Descending properties of spaces

In this section we put some results of the following kind.

Lemma 45.8.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑥 ∈ |𝑋|. If 𝑓 is flat at 𝑥 and 𝑋 is geometrically unibranch at 𝑥, then 𝑌 is
geometrically unibranch at 𝑓(𝑥).

Proof. Consider the map of étale local rings 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥. By Morphisms of Spaces,
Lemma 42.27.7 this is flat. Hence if 𝒪𝑋,𝑥 has a unique minimal prime, so does 𝒪𝑌,𝑓(𝑥) (by
going down, see Algebra, Lemma 7.35.17). �

Lemma 45.8.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is flat and surjective and 𝑋 is reduced, then 𝑌 is reduced.

Proof. Choose a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌. Choose a scheme 𝑈
and a surjective étale morphism 𝑈 → 𝑋 ×𝑌 𝑉. As 𝑓 is surjective and flat, the morphism
of schemes 𝑈 → 𝑉 is surjective and flat. In this way we reduce the problem to the case
of schemes (as reducedness of 𝑋 and 𝑌 is defined in terms of reducedness of 𝑈 and 𝑉, see
Properties of Spaces, Section 41.7). The case of schemes is Descent, Lemma 31.15.1. �

Lemma 45.8.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces. If 𝑓 is locally of finite
presentation, flat, and surjective and 𝑋 is locally Noetherian, then 𝑌 is locally Noetherian.

Proof. Choose a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌. Choose a scheme
𝑈 and a surjective étale morphism 𝑈 → 𝑋 ×𝑌 𝑉. As 𝑓 is surjective, flat, and locally of
finite presentation the morphism of schemes 𝑈 → 𝑉 is surjective, flat, and locally of finite
presentation. In this way we reduce the problem to the case of schemes (as being locally
Noetherian for 𝑋 and 𝑌 is defined in terms of being locally Noetherian of 𝑈 and 𝑉, see
Properties of Spaces, Section 41.7). In the case of schemes the result follows from Descent,
Lemma 31.12.1. �

Lemma 45.8.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces. If 𝑓 is locally of finite
presentation, flat, and surjective and 𝑋 is regular, then 𝑌 is regular.
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Proof. By Lemma 45.8.3 we know that 𝑌 is locally Noetherian. Choose a scheme 𝑉 and
a surjective étale morphism 𝑉 → 𝑌. It suffices to prove that the local rings of 𝑉 are all
regular local rings, see Properties, Lemma 23.9.2. Choose a scheme 𝑈 and a surjective
étale morphism 𝑈 → 𝑋 ×𝑌 𝑉. As 𝑓 is surjective and flat the morphism of schemes 𝑈 → 𝑉
is surjective and flat. By assumption 𝑈 is a regular scheme in particular all of its local
rings are regular (by the lemma above). Hence the lemma follows from Algebra, Lemma
7.102.8. �

45.9. Descending properties of morphisms

In this section we introduce the notion of when a property of morphisms of algebraic spaces
is local on the target in a topology. Please compare with Descent, Section 31.18.

Definition 45.9.1. Let 𝑆 be a scheme. Let 𝒫 be a property of morphisms of algebraic
spaces over 𝑆. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒}. We say 𝒫 is 𝜏 local on the
base, or 𝜏 local on the target, or local on the base for the 𝜏-topology if for any 𝜏-covering
{𝑌𝑖 → 𝑌}𝑖∈𝐼 of algebraic spaces and any morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 we have

𝑓 has 𝒫 ⇔ each 𝑌𝑖 ×𝑌 𝑋 → 𝑌𝑖 has 𝒫.

To be sure, since isomorphisms are always coverings we see (or require) that property 𝒫
holds for 𝑋 → 𝑌 if and only if it holds for any arrow 𝑋′ → 𝑌′ isomorphic to 𝑋 → 𝑌. If a
property is 𝜏-local on the target then it is preserved by base changes by morphisms which
occur in 𝜏-coverings. Here is a formal statement.

Lemma 45.9.2. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒}. Let 𝒫
be a property of morphisms of algebraic spaces over 𝑆 which is 𝜏 local on the target. Let
𝑓 ∶ 𝑋 → 𝑌 have property 𝒫. For any morphism 𝑌′ → 𝑌 which is flat, resp. flat and locally
of finite presentation, resp. syntomic, resp. étale, the base change 𝑓′ ∶ 𝑌′ ×𝑌 𝑋 → 𝑌′ of 𝑓
has property 𝒫.

Proof. This is true because we can fit 𝑌′ → 𝑌 into a family of morphisms which forms a
𝜏-covering. �

A simple often used consequence of the above is that if 𝑓 ∶ 𝑋 → 𝑌 has property 𝒫 which
is 𝜏-local on the target and 𝑓(𝑋) ⊂ 𝑉 for some open subspace 𝑉 ⊂ 𝑌, then also the induced
morphism 𝑋 → 𝑉 has 𝒫. Proof: The base change 𝑓 by 𝑉 → 𝑌 gives 𝑋 → 𝑉.

Lemma 45.9.3. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒}. Let 𝒫 be
a property of morphisms of algebraic spaces over 𝑆 which is 𝜏 local on the target. For
any morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 over 𝑆 there exists a largest open subspace
𝑊(𝑓) ⊂ 𝑌 such that the restriction 𝑋𝑊(𝑓) → 𝑊(𝑓) has 𝒫. Moreover,

(1) if 𝑔 ∶ 𝑌′ → 𝑌 is a morphism of algebraic spaces which is flat and locally of finite
presentation, syntomic, smooth, or étale and the base change 𝑓′ ∶ 𝑋𝑌′ → 𝑌′ has
𝒫, then 𝑔 factors through 𝑊(𝑓),

(2) if 𝑔 ∶ 𝑌′ → 𝑌 is flat and locally of finite presentation, syntomic, smooth, or étale,
then 𝑊(𝑓′) = 𝑔−1(𝑊(𝑓)), and

(3) if {𝑔𝑖 ∶ 𝑌𝑖 → 𝑌} is a 𝜏-covering, then 𝑔−1
𝑖 (𝑊(𝑓)) = 𝑊(𝑓𝑖), where 𝑓𝑖 is the base

change of 𝑓 by 𝑌𝑖 → 𝑌.

Proof. Consider the union 𝑊𝑠𝑒𝑡 ⊂ |𝑌| of the images 𝑔(|𝑌′|) ⊂ |𝑌| ofmorphisms 𝑔 ∶ 𝑌′ → 𝑌
with the properties:

(1) 𝑔 is flat and locally of finite presentation, syntomic, smooth, or étale, and

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=03YH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06EM
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06R2


2378 45. DESCENT AND ALGEBRAIC SPACES

(2) the base change 𝑌′ ×𝑔,𝑌 𝑋 → 𝑌′ has property 𝒫.
Since such a morphism 𝑔 is open (see Morphisms of Spaces, Lemma 42.27.5) we see that
𝑊𝑠𝑒𝑡 is an open subset of |𝑌|. Denote 𝑊 ⊂ 𝑌 the open subspace whose underlying set of
points is𝑊𝑠𝑒𝑡, see Properties of Spaces, Lemma 41.4.8. Since𝒫 is local in the 𝜏 topology the
restriction 𝑋𝑊 → 𝑊 has property 𝒫 because we are given a covering {𝑌′ → 𝑊} of 𝑊 such
that the pullbacks have 𝒫. This proves the existence and proves that 𝑊(𝑓) has property (1).
To see property (2) note that 𝑊(𝑓′) ⊃ 𝑔−1(𝑊(𝑓)) because 𝒫 is stable under base change by
flat and locally of finite presentation, syntomic, smooth, or étale morphisms, see Lemma
45.9.2. On the other hand, if 𝑌″ ⊂ 𝑌′ is an open such that 𝑋𝑌″ → 𝑌″ has property 𝒫,
then 𝑌″ → 𝑌 factors through 𝑊 by construction, i.e., 𝑌″ ⊂ 𝑔−1(𝑊(𝑓)). This proves (2).
Assertion (3) follows from (2) because each morphism 𝑌𝑖 → 𝑌 is flat and locally of finite
presentation, syntomic, smooth, or étale by our definition of a 𝜏-covering. �

Lemma 45.9.4. Let 𝑆 be a scheme. Let 𝒫 be a property of morphisms of algebraic spaces
over 𝑆. Assume

(1) if 𝑋𝑖 → 𝑌𝑖, 𝑖 = 1, 2 have property 𝒫 so does 𝑋1 ⨿ 𝑋2 → 𝑌1 ⨿ 𝑌2,
(2) a morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 has property 𝒫 if and only if for

every affine scheme 𝑍 and morphism 𝑍 → 𝑌 the base change 𝑍 ×𝑌 𝑋 → 𝑍 of 𝑓
has property 𝒫, and

(3) for any surjective flat morphism of affine schemes𝑍′ → 𝑍 over𝑆 and amorphism
𝑓 ∶ 𝑋 → 𝑍 from an algebraic space to 𝑍 we have

𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ has 𝒫 ⇒ 𝑓 has 𝒫.

Then 𝒫 is fpqc local on the base.

Proof. If 𝒫 has property (2), then it is automatically stable under any base change. Hence
the direct implication in Definition 45.9.1.

Let {𝑌𝑖 → 𝑌}𝑖∈𝐼 be an fpqc covering of algebraic spaces over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a
morphism of algebraic spaces over 𝑆. Assume each base change 𝑓𝑖 ∶ 𝑌𝑖 ×𝑌 𝑋 → 𝑌𝑖 has
property 𝒫. Our goal is to show that 𝑓 has 𝒫. Let 𝑍 be an affine scheme, and let 𝑍 → 𝑌 be
a morphism. By (2) it suffices to show that the morphism of algebraic spaces 𝑍 ×𝑌 𝑋 → 𝑍
has 𝒫. Since {𝑌𝑖 → 𝑌}𝑖∈𝐼 is an fpqc covering we know there exists a standard fpqc covering
{𝑍𝑗 → 𝑍}𝑗=1,…,𝑛 and morphisms 𝑍𝑗 → 𝑌𝑖𝑗 over 𝑌 for suitable indices 𝑖𝑗 ∈ 𝐼. Since 𝑓𝑖𝑗 has
𝒫 we see that

𝑍𝑗 ×𝑌 𝑋 = 𝑍𝑗 ×𝑌𝑖𝑗
(𝑌𝑖𝑗 ×𝑌 𝑋) ⟶ 𝑍𝑗

has 𝒫 as a base change of 𝑓𝑖𝑗 (see first remark of the proof). Set 𝑍′ = ∐𝑗=1,…,𝑛 𝑍𝑗, so that
𝑍′ → 𝑍 is a flat and surjective morphism of affine schemes over 𝑆. By (1) we conclude that
𝑍′ ×𝑌 𝑋 → 𝑍′ has property 𝒫. Since this is the base change of the morphism 𝑍 ×𝑌 𝑋 → 𝑍
by the morphism 𝑍′ → 𝑍 we conclude that 𝑍 ×𝑌 𝑋 → 𝑍 has property 𝒫 as desired. �

45.10. Descending properties of morphisms in the fpqc topology

In this section we find a large number of properties of morphisms of algebraic spaces which
are local on the base in the fpqc topology. Please compare with Descent, Section 31.19 for
the case of morphisms of schemes.

Lemma 45.10.1. Let 𝑆 be a scheme. The property 𝒫(𝑓) =``𝑓 is quasi-compact'' is fpqc
local on the base on algebraic spaces over 𝑆.
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Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.9.7. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces, and
assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is quasi-compact. We have to show
that 𝑓 is quasi-compact. To see this, using Morphisms of Spaces, Lemma 42.9.7 again, it
is enough to show that for every affine scheme 𝑌 and morphism 𝑌 → 𝑍 the fibre product
𝑌 ×𝑍 𝑋 is quasi-compact. Here is a picture:

(45.10.1.1)

𝑌 ×𝑍 𝑍′ ×𝑍 𝑋

��

//

&&

𝑍′ ×𝑍 𝑋

𝑓′

��

##
𝑌 ×𝑍 𝑋

��

// 𝑋

𝑓

��

𝑌 ×𝑍 𝑍′ //

''

𝑍′

##
𝑌 // 𝑍

Note that all squares are cartesian and the bottom square consists of affine schemes. The
assumption that 𝑓′ is quasi-compact combined with the fact that 𝑌 ×𝑍 𝑍′ is affine implies
that 𝑌 ×𝑍 𝑍′ ×𝑍 𝑋 is quasi-compact. Since

𝑌 ×𝑍 𝑍′ ×𝑍 𝑋 ⟶ 𝑌 ×𝑍 𝑋

is surjective as a base change of 𝑍′ → 𝑍 we conclude that 𝑌 ×𝑍 𝑋 is quasi-compact, see
Morphisms of Spaces, Lemma 42.9.5. This finishes the proof. �

Lemma 45.10.2. Let 𝑆 be a scheme. The property 𝒫(𝑓) =``𝑓 is quasi-separated'' is fpqc
local on the base on algebraic spaces over 𝑆.

Proof. A base change of a quasi-separated morphism is quasi-separated, see Morphisms
of Spaces, Lemma 42.5.4. Hence the direct implication in Definition 45.9.1.

Let {𝑌𝑖 → 𝑌}𝑖∈𝐼 be an fpqc covering of algebraic spaces over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a
morphism of algebraic spaces over 𝑆. Assume each base change 𝑋𝑖 ∶= 𝑌𝑖 ×𝑌 𝑋 → 𝑌𝑖 is
quasi-separated. This means that each of the morphisms

Δ𝑖 ∶ 𝑋𝑖 ⟶ 𝑋𝑖 ×𝑌𝑖
𝑋𝑖 = 𝑌𝑖 ×𝑌 (𝑋 ×𝑌 𝑋)

is quasi-compact. The base change of a fpqc covering is an fpqc covering, see Topologies
on Spaces, Lemma 44.3.2 hence {𝑌𝑖×𝑌(𝑋×𝑌𝑋) → 𝑋×𝑌𝑋} is an fpqc covering of algebraic
spaces. Moreover, each Δ𝑖 is the base change of the morphism Δ ∶ 𝑋 → 𝑋 ×𝑌 𝑋. Hence
it follows from Lemma 45.10.1 that Δ is quasi-compact, i.e., 𝑓 is quasi-separated. �

Lemma 45.10.3. Let 𝑆 be a scheme. The property 𝒫(𝑓) =``𝑓 is universally closed'' is fpqc
local on the base on algebraic spaces over 𝑆.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.10.5. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces,
and assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is universally closed. We have to
show that 𝑓 is universally closed. To see this, using Morphisms of Spaces, Lemma 42.10.5
again, it is enough to show that for every affine scheme 𝑌 and morphism 𝑌 → 𝑍 the map
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|𝑌 ×𝑍 𝑋| → |𝑌| is closed. Consider the cube (45.10.1.1). The assumption that 𝑓′ is uni-
versally closed implies that |𝑌 ×𝑍 𝑍′ ×𝑍 𝑋| → |𝑌 ×𝑍 𝑍′| is closed. As 𝑌 ×𝑍 𝑍′ → 𝑌
is surjective and flat as a base change of 𝑍′ → 𝑍 we see the map |𝑌 ×𝑍 𝑍′| → |𝑌| is
submersive, see Morphisms, Lemma 24.24.10. Moreover the map

|𝑌 ×𝑍 𝑍′ ×𝑍 𝑋| ⟶ |𝑌 ×𝑍 𝑍′| ×|𝑌| |𝑌 ×𝑍 𝑋|

is surjective, see Properties of Spaces, Lemma 41.4.3. It follows by elementary topology
that |𝑌 ×𝑍 𝑋| → |𝑌| is closed. �

Lemma 45.10.4. Let 𝑆 be a scheme. The property 𝒫(𝑓) =``𝑓 is universally open'' is fpqc
local on the base on algebraic spaces over 𝑆.

Proof. The proof is the same as the proof of Lemma 45.10.3. �

Lemma 45.10.5. The property 𝒫(𝑓) =``𝑓 is surjective'' is fpqc local on the base.

Proof. Omitted. (Hint: Use Properties of Spaces, Lemma 41.4.3.) �

Lemma 45.10.6. The property 𝒫(𝑓) =``𝑓 is universally injective'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.10.5. Let 𝑍′ → 𝑍 be a flat surjective mor-
phism of affine schemes over 𝑆 and let 𝑓 ∶ 𝑋 → 𝑍 be a morphism from an algebraic space
to 𝑍. Assume that the base change 𝑓′ ∶ 𝑋′ → 𝑍′ is universally injective. Let 𝐾 be a field,
and let 𝑎, 𝑏 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 be two morphisms such that 𝑓 ∘ 𝑎 = 𝑓 ∘ 𝑏. As 𝑍′ → 𝑍 is
surjective there exists a field extension 𝐾 ⊂ 𝐾′ and a morphism 𝑆𝑝𝑒𝑐(𝐾′) → 𝑍′ such that
the following solid diagram commutes

𝑆𝑝𝑒𝑐(𝐾′)

))
𝑎′,𝑏′

$$

��

𝑋′ //

��

𝑍′

��
𝑆𝑝𝑒𝑐(𝐾) 𝑎,𝑏 // 𝑋 // 𝑍

As the square is cartesian we get the two dotted arrows 𝑎′, 𝑏′ making the diagram com-
mute. Since 𝑋′ → 𝑍′ is universally injective we get 𝑎′ = 𝑏′. This forces 𝑎 = 𝑏 as
{𝑆𝑝𝑒𝑐(𝐾′) → 𝑆𝑝𝑒𝑐(𝐾)} is an fpqc covering, see Properties of Spaces, Lemma 41.14.1.
Hence 𝑓 is universally injective as desired. �

Lemma 45.10.7. The property 𝒫(𝑓) =``𝑓 is locally of finite type'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.22.4. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces, and
assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is locally of finite type. We have to show
that 𝑓 is locally of finite type. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be surjective and étale. By
Morphisms of Spaces, Lemma 42.22.4 again, it is enough to show that 𝑈 → 𝑍 is locally
of finite type. Since 𝑓′ is locally of finite type, and since 𝑍′ ×𝑍 𝑈 is a scheme étale over
𝑍′ ×𝑍 𝑋 we conclude (by the same lemma again) that 𝑍′ ×𝑍 𝑈 → 𝑍′ is locally of finite
type. As {𝑍′ → 𝑍} is an fpqc covering we conclude that 𝑈 → 𝑍 is locally of finite type
by Descent, Lemma 31.19.8 as desired. �
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Lemma 45.10.8. The property 𝒫(𝑓) =``𝑓 is locally of finite presentation'' is fpqc local on
the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.26.4. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces, and
assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is locally of finite presentation. We
have to show that 𝑓 is locally of finite presentation. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be
surjective and étale. By Morphisms of Spaces, Lemma 42.26.4 again, it is enough to show
that 𝑈 → 𝑍 is locally of finite presentation. Since 𝑓′ is locally of finite presentation, and
since 𝑍′ ×𝑍 𝑈 is a scheme étale over 𝑍′ ×𝑍 𝑋 we conclude (by the same lemma again)
that 𝑍′ ×𝑍 𝑈 → 𝑍′ is locally of finite presentation. As {𝑍′ → 𝑍} is an fpqc covering
we conclude that 𝑈 → 𝑍 is locally of finite presentation by Descent, Lemma 31.19.9 as
desired. �

Lemma 45.10.9. The property 𝒫(𝑓) =``𝑓 is of finite type'' is fpqc local on the base.

Proof. Combine Lemmas 45.10.1 and 45.10.7. �

Lemma 45.10.10. The property 𝒫(𝑓) =``𝑓 is of finite presentation'' is fpqc local on the
base.

Proof. Combine Lemmas 45.10.1, 45.10.2 and 45.10.8. �

Lemma 45.10.11. The property 𝒫(𝑓) =``𝑓 is flat'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.27.4. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces, and
assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is flat. We have to show that 𝑓 is flat. Let
𝑈 be a scheme and let 𝑈 → 𝑋 be surjective and étale. By Morphisms of Spaces, Lemma
42.27.4 again, it is enough to show that 𝑈 → 𝑍 is flat. Since 𝑓′ is flat, and since 𝑍′ ×𝑍 𝑈 is
a scheme étale over 𝑍′ ×𝑍 𝑋 we conclude (by the same lemma again) that 𝑍′ ×𝑍 𝑈 → 𝑍′ is
flat. As {𝑍′ → 𝑍} is an fpqc covering we conclude that 𝑈 → 𝑍 is flat by Descent, Lemma
31.19.13 as desired. �

Lemma 45.10.12. The property 𝒫(𝑓) =``𝑓 is an open immersion'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.4.1. Consider a cartesian diagram

𝑋′ //

��

𝑋

��
𝑍′ // 𝑍

of algebraic spaces over 𝑆 where 𝑍′ → 𝑍 is a surjective flat morphism of affine schemes,
and 𝑋′ → 𝑍′ is an open immersion. We have to show that 𝑋 → 𝑍 is an open immersion.
Note that |𝑋′| ⊂ |𝑍′| corresponds to an open subscheme 𝑈′ ⊂ 𝑍′ (isomorphic to 𝑋′)
with the property that pr−1

0 (𝑈′) = pr−1
1 (𝑈′) as open subschemes of 𝑍′ ×𝑍 𝑍′. Hence there

exists an open subscheme 𝑈 ⊂ 𝑍 such that 𝑋′ = (𝑍′ → 𝑍)−1(𝑈), see Descent, Lemma
31.9.2. As 𝑋′ → 𝑍′ is quasi-separated also 𝑋 → 𝑍 is quasi-separated, by Lemma 45.10.2.
Hence 𝑋 is quasi-separated over 𝑆 (since 𝑍 is affine, hence separated, hence 𝑍 → 𝑆 is
separated, hence 𝑋 → 𝑍 → 𝑆 is quasi-separated byMorphisms of Spaces, Lemma 42.5.8).
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Thus by Properties of Spaces, Lemma 41.14.3 we see that 𝑋 satisfies the sheaf condition
for the fpqc topology. Now we have the fpqc covering 𝒰 = {𝑈′ → 𝑈} and the element
𝑈′ → 𝑋′ → 𝑋 ∈ �̌�0(𝒰, 𝑋). By the sheaf condition we obtain a morphism 𝑈 → 𝑋 such
that

𝑈′ //

≅
��

��

𝑈

��

��

𝑋′ //

��

𝑋

��
𝑍′ // 𝑍

is commutative. On the other hand, we know that for any scheme 𝑇 pver 𝑆 and 𝑇-valued
point 𝑇 → 𝑋 the composition 𝑇 → 𝑋 → 𝑍 is a morphism such that 𝑍′ ×𝑍 𝑇 → 𝑍′ factors
through 𝑈′. Clearly this means that 𝑇 → 𝑍 factors through 𝑈. In other words the map of
sheaves 𝑈 → 𝑋 is bijective and we win. �

Lemma 45.10.13. The property 𝒫(𝑓) =``𝑓 is an isomorphism'' is fpqc local on the base.

Proof. Combine Lemmas 45.10.5 and 45.10.12. �

Lemma 45.10.14. The property 𝒫(𝑓) =``𝑓 is affine'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.19.3. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces, and
assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is affine. This implies that 𝑍′ ×𝑍 𝑋 is rep-
resentable, and that 𝑍′ ×𝑍 𝑋 → 𝑍′ is quasi-separated. Hence we conclude that 𝑋 → 𝑍 is
quasi-separated by Lemma 45.10.2. In particular 𝑋 is quasi-separated over 𝑆, and satisfies
the sheaf condition for the fpqc topology, see Properties of Spaces, Lemma 41.14.3.
Let 𝑋′ be a scheme representing 𝑍′ ×𝑍 𝑋. We obtain a canonical isomorphism

𝜑 ∶ 𝑋′ ×𝑍 𝑍′ ⟶ 𝑍′ ×𝑍 𝑋′

since both schemes represent the algebraic space 𝑍′ ×𝑍 𝑍′ ×𝑍 𝑋. This is a descent datum
for 𝑋′/𝑍′/𝑍, see Descent, Definition 31.30.1 (verification omitted, compare with Descent,
Lemma 31.35.1). Since 𝑋′ → 𝑍′ is affine this descent datum is effective, see Descent,
Lemma 31.33.1. Thus there exists a scheme 𝑌 → 𝑍 over 𝑍 and an isomorphism 𝜓 ∶
𝑍′ ×𝑍 𝑌 → 𝑋′ compatible with descent data. Of course 𝑌 → 𝑍 is affine (by construction
or by Descent, Lemma 31.19.16). Note that 𝒴 = {𝑍′ ×𝑍 𝑌 → 𝑌} is a fpqc covering,
and interpreting 𝜓 as an element of 𝑋(𝑍′ ×𝑍 𝑌) we see that 𝜓 ∈ �̌�0(𝒴, 𝑋). By the sheaf
condition for 𝑋 (see above) we obtain a morphism 𝑌 → 𝑋. By construction the base change
of this to 𝑍′ is an isomorphism, hence an isomorphism by Lemma 45.10.13. This proves
that 𝑋 is representable by an affine scheme and we win. �

Lemma 45.10.15. The property𝒫(𝑓) =``𝑓 is a closed immersion'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.4.1. Consider a cartesian diagram

𝑋′ //

��

𝑋

��
𝑍′ // 𝑍
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of algebraic spaces over 𝑆 where 𝑍′ → 𝑍 is a surjective flat morphism of affine schemes,
and 𝑋′ → 𝑍′ is a closed immersion. We have to show that 𝑋 → 𝑍 is a closed immersion.
The morphism 𝑋′ → 𝑍′ is affine. Hence by Lemma 45.10.14 we see that 𝑋 is a scheme
and 𝑋 → 𝑍 is affine. It follows from Descent, Lemma 31.19.17 that 𝑋 → 𝑍 is a closed
immersion as desired. �

Lemma 45.10.16. The property 𝒫(𝑓) =``𝑓 is separated'' is fpqc local on the base.

Proof. A base change of a separated morphism is separated, see Morphisms of Spaces,
Lemma 42.5.4. Hence the direct implication in Definition 45.9.1.

Let {𝑌𝑖 → 𝑌}𝑖∈𝐼 be an fpqc covering of algebraic spaces over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a
morphism of algebraic spaces over 𝑆. Assume each base change 𝑋𝑖 ∶= 𝑌𝑖 ×𝑌 𝑋 → 𝑌𝑖 is
separated. This means that each of the morphisms

Δ𝑖 ∶ 𝑋𝑖 ⟶ 𝑋𝑖 ×𝑌𝑖
𝑋𝑖 = 𝑌𝑖 ×𝑌 (𝑋 ×𝑌 𝑋)

is a closed immersion. The base change of a fpqc covering is an fpqc covering, see Topolo-
gies on Spaces, Lemma 44.3.2 hence {𝑌𝑖 ×𝑌 (𝑋 ×𝑌 𝑋) → 𝑋 ×𝑌 𝑋} is an fpqc covering of
algebraic spaces. Moreover, each Δ𝑖 is the base change of the morphism Δ ∶ 𝑋 → 𝑋 ×𝑌 𝑋.
Hence it follows fromLemma 45.10.15 thatΔ is a closed immersion, i.e., 𝑓 is separated. �

Lemma 45.10.17. The property 𝒫(𝑓) =``𝑓 is proper'' is fpqc local on the base.

Proof. The lemma follows by combining Lemmas 45.10.3, 45.10.16 and 45.10.9. �

Lemma 45.10.18. The property 𝒫(𝑓) =``𝑓 is quasi-affine'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.20.3. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces,
and assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is quasi-affine. This implies that
𝑍′ ×𝑍 𝑋 is representable, and that 𝑍′ ×𝑍 𝑋 → 𝑍′ is quasi-separated. Hence we conclude
that 𝑋 → 𝑍 is quasi-separated by Lemma 45.10.2. In particular 𝑋 is quasi-separated over
𝑆, and satisfies the sheaf condition for the fpqc topology, see Properties of Spaces, Lemma
41.14.3.

Let 𝑋′ be a scheme representing 𝑍′ ×𝑍 𝑋. We obtain a canonical isomorphism

𝜑 ∶ 𝑋′ ×𝑍 𝑍′ ⟶ 𝑍′ ×𝑍 𝑋′

since both schemes represent the algebraic space 𝑍′ ×𝑍 𝑍′ ×𝑍 𝑋. This is a descent datum
for 𝑋′/𝑍′/𝑍, see Descent, Definition 31.30.1 (verification omitted, compare with Descent,
Lemma 31.35.1). Since 𝑋′ → 𝑍′ is quasi-affine this descent datum is effective, see De-
scent, Lemma 31.34.1. Thus there exists a scheme 𝑌 → 𝑍 over 𝑍 and an isomorphism
𝜓 ∶ 𝑍′ ×𝑍 𝑌 → 𝑋′ compatible with descent data. Of course 𝑌 → 𝑍 is quasi-affine (by
construction or by Descent, Lemma 31.19.18). Note that 𝒴 = {𝑍′ ×𝑍 𝑌 → 𝑌} is a fpqc
covering, and interpreting 𝜓 as an element of 𝑋(𝑍′ ×𝑍 𝑌) we see that 𝜓 ∈ �̌�0(𝒴, 𝑋). By
the sheaf condition for 𝑋 (see above) we obtain a morphism 𝑌 → 𝑋. By construction the
base change of this to 𝑍′ is an isomorphism, hence an isomorphism by Lemma 45.10.13.
This proves that 𝑋 is representable by a quasi-affine scheme and we win. �

Lemma 45.10.19. The property 𝒫(𝑓) =``𝑓 is a quasi-compact immersion'' is fpqc local on
the base.
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Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemmas 42.4.1 and 42.9.7. Consider a cartesian dia-
gram

𝑋′ //

��

𝑋

��
𝑍′ // 𝑍

of algebraic spaces over 𝑆 where 𝑍′ → 𝑍 is a surjective flat morphism of affine schemes,
and 𝑋′ → 𝑍′ is a quasi-compact immersion. We have to show that 𝑋 → 𝑍 is a closed
immersion. The morphism 𝑋′ → 𝑍′ is quasi-affine. Hence by Lemma 45.10.18 we see
that 𝑋 is a scheme and 𝑋 → 𝑍 is quasi-affine. It follows from Descent, Lemma 31.19.19
that 𝑋 → 𝑍 is a quasi-compact immersion as desired. �

Lemma 45.10.20. The property 𝒫(𝑓) =``𝑓 is integral'' is fpqc local on the base.

Proof. An integral morphism is the same thing as an affine, universally closed morphism.
See Morphisms of Spaces, Lemma 42.37.7. Hence the lemma follows on combining Lem-
mas 45.10.3 and 45.10.14. �

Lemma 45.10.21. The property 𝒫(𝑓) =``𝑓 is finite'' is fpqc local on the base.

Proof. An finite morphism is the same thing as an integral, morphism which is locally
of finite type. See Morphisms of Spaces, Lemma 42.37.6. Hence the lemma follows on
combining Lemmas 45.10.7 and 45.10.20. �

Lemma 45.10.22. The properties𝒫(𝑓) =``𝑓 is locally quasi-finite'' and𝒫(𝑓) =``𝑓 is quasi-
finite'' are fpqc local on the base.

Proof. We have already seen that ``quasi-compact'' is fpqc local on the base, see Lemma
45.10.1. Hence it is enough to prove the lemma for ``locally quasi-finite''. We will use
Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma follow fromMorphisms
of Spaces, Lemma 42.25.5. Let 𝑍′ → 𝑍 be a surjective flat morphism of affine schemes
over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces, and assume that the base
change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is locally quasi-finite. We have to show that 𝑓 is locally
quasi-finite. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be surjective and étale. By Morphisms of
Spaces, Lemma 42.25.5 again, it is enough to show that 𝑈 → 𝑍 is locally quasi-finite. Since
𝑓′ is locally quasi-finite, and since 𝑍′ ×𝑍 𝑈 is a scheme étale over 𝑍′ ×𝑍 𝑋 we conclude
(by the same lemma again) that 𝑍′ ×𝑍 𝑈 → 𝑍′ is locally quasi-finite. As {𝑍′ → 𝑍} is an
fpqc covering we conclude that 𝑈 → 𝑍 is locally quasi-finite by Descent, Lemma 31.19.22
as desired. �

Lemma 45.10.23. The property 𝒫(𝑓) =``𝑓 is syntomic'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.32.4. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces, and
assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is syntomic. We have to show that 𝑓
is syntomic. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be surjective and étale. By Morphisms of
Spaces, Lemma 42.32.4 again, it is enough to show that 𝑈 → 𝑍 is syntomic. Since 𝑓′ is
syntomic, and since 𝑍′ ×𝑍 𝑈 is a scheme étale over 𝑍′ ×𝑍 𝑋 we conclude (by the same
lemma again) that 𝑍′ ×𝑍 𝑈 → 𝑍′ is syntomic. As {𝑍′ → 𝑍} is an fpqc covering we
conclude that 𝑈 → 𝑍 is syntomic by Descent, Lemma 31.19.24 as desired. �
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Lemma 45.10.24. The property 𝒫(𝑓) =``𝑓 is smooth'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.33.4. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces,
and assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is smooth. We have to show that
𝑓 is smooth. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be surjective and étale. By Morphisms
of Spaces, Lemma 42.33.4 again, it is enough to show that 𝑈 → 𝑍 is smooth. Since 𝑓′ is
smooth, and since 𝑍′ ×𝑍 𝑈 is a scheme étale over 𝑍′ ×𝑍 𝑋 we conclude (by the same lemma
again) that 𝑍′ ×𝑍 𝑈 → 𝑍′ is smooth. As {𝑍′ → 𝑍} is an fpqc covering we conclude that
𝑈 → 𝑍 is smooth by Descent, Lemma 31.19.25 as desired. �

Lemma 45.10.25. The property 𝒫(𝑓) =``𝑓 is unramified'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.34.5. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces, and
assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is unramified. We have to show that 𝑓 is
unramified. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be surjective and étale. By Morphisms of
Spaces, Lemma 42.34.5 again, it is enough to show that 𝑈 → 𝑍 is unramified. Since 𝑓′ is
unramified, and since 𝑍′ ×𝑍 𝑈 is a scheme étale over 𝑍′ ×𝑍 𝑋 we conclude (by the same
lemma again) that 𝑍′ ×𝑍 𝑈 → 𝑍′ is unramified. As {𝑍′ → 𝑍} is an fpqc covering we
conclude that 𝑈 → 𝑍 is unramified by Descent, Lemma 31.19.26 as desired. �

Lemma 45.10.26. The property 𝒫(𝑓) =``𝑓 is étale'' is fpqc local on the base.

Proof. We will use Lemma 45.9.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 42.35.2. Let 𝑍′ → 𝑍 be a surjective flat mor-
phism of affine schemes over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑍 be a morphism of algebraic spaces, and
assume that the base change 𝑓′ ∶ 𝑍′ ×𝑍 𝑋 → 𝑍′ is étale. We have to show that 𝑓 is
étale. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be surjective and étale. By Morphisms of Spaces,
Lemma 42.35.2 again, it is enough to show that 𝑈 → 𝑍 is étale. Since 𝑓′ is étale, and
since 𝑍′ ×𝑍 𝑈 is a scheme étale over 𝑍′ ×𝑍 𝑋 we conclude (by the same lemma again) that
𝑍′ ×𝑍 𝑈 → 𝑍′ is étale. As {𝑍′ → 𝑍} is an fpqc covering we conclude that 𝑈 → 𝑍 is
étale by Descent, Lemma 31.19.27 as desired. �

Lemma 45.10.27. The property 𝒫(𝑓) =``𝑓 is finite locally free'' is fpqc local on the base.

Proof. Being finite locally free is equivalent to being finite, flat and locally of finite presen-
tation (Morphisms of Spaces, Lemma 42.38.6). Hence this follows from Lemmas 45.10.21,
45.10.11, and 45.10.8. �

Lemma 45.10.28. The property 𝒫(𝑓) =``𝑓 is a monomorphism'' is fpqc local on the base.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces. Let {𝑌𝑖 → 𝑌} be an fpqc
covering, and assume each of the base changes 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 of 𝑓 is a monomorphism. We
have to show that 𝑓 is a monomorphism.
First proof. Note that 𝑓 is a monomorphism if and only if Δ ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is an isomor-
phism. By applying this to 𝑓𝑖 we see that each of the morphisms

Δ𝑖 ∶ 𝑋𝑖 ⟶ 𝑋𝑖 ×𝑌𝑖
𝑋𝑖 = 𝑌𝑖 ×𝑌 (𝑋 ×𝑌 𝑋)

is an isomorphism. The base change of an fpqc covering is an fpqc covering, see Topologies
on Spaces, Lemma 44.3.2 hence {𝑌𝑖×𝑌(𝑋×𝑌𝑋) → 𝑋×𝑌𝑋} is an fpqc covering of algebraic
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spaces. Moreover, each Δ𝑖 is the base change of the morphism Δ ∶ 𝑋 → 𝑋 ×𝑌 𝑋. Hence
it follows from Lemma 45.10.13 that Δ is an isomorphism, i.e., 𝑓 is a monomorphism.

Second proof. Let 𝑉 be a scheme, and let 𝑉 → 𝑌 be a surjective étale morphism. If we can
show that 𝑉×𝑌 𝑋 → 𝑉 is a monomorphism, then it follows that 𝑋 → 𝑌 is a monomorphism.
Namely, given any cartesian diagram of sheaves

ℱ 𝑎
//

𝑏
��

𝒢

𝑐
��

ℋ 𝑑 // ℐ

ℱ = ℋ ×ℐ 𝒢

if 𝑐 is a surjection of sheaves, and 𝑎 is injective, then also 𝑑 is injective. This reduces
the problem to the case where 𝑌 is a scheme. Moreover, in this case we may assume that
the algebraic spaces 𝑌𝑖 are schemes also, since we can always refine the covering to place
ourselves in this situation, see Topologies on Spaces, Lemma 44.3.4.

Assume {𝑌𝑖 → 𝑌} is an fpqc covering of schemes. Let 𝑎, 𝑏 ∶ 𝑇 → 𝑋 be two morphisms
such that 𝑓∘𝑎 = 𝑓∘𝑏. We have to show that 𝑎 = 𝑏. Since 𝑓𝑖 is a monomorphism we see that
𝑎𝑖 = 𝑏𝑖, where 𝑎𝑖, 𝑏𝑖 ∶ 𝑌𝑖 ×𝑌 𝑇 → 𝑋𝑖 are the base changes. In particular the compositions
𝑌𝑖 ×𝑌 𝑇 → 𝑇 → 𝑋 are equal. Since {𝑌𝑖 ×𝑌 𝑇 → 𝑇} is an fpqc covering we deduce that 𝑎 = 𝑏
from Properties of Spaces, Lemma 41.14.1. �

45.11. Descending properties of morphisms in the fppf topology

In this section we find some properties of morphisms of algebraic spaces for which we could
not (yet) show they are local on the base in the fpqc topology which, however, are local on
the base in the fppf topology.

Lemma 45.11.1. The property 𝒫(𝑓) =``𝑓 is an immersion'' is fppf local on the base.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces. Let {𝑌𝑖 → 𝑌}𝑖∈𝐼 be an fppf
covering of 𝑌. Let 𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 be the base change of 𝑓.

If 𝑓 is an immersion, then each 𝑓𝑖 is an immersion by Spaces, Lemma 40.12.3. This proves
the direct implication in Definition 45.9.1.

Conversely, assume each 𝑓𝑖 is an immersion. By Morphisms of Spaces, Lemma 42.14.7
this implies each 𝑓𝑖 is separated. By Morphisms of Spaces, Lemma 42.25.6 this implies
each 𝑓𝑖 is locally quasi-finite. Hence we see that 𝑓 is locally quasi-finite and separated, by
applying Lemmas 45.10.16 and 45.10.22. By Morphisms of Spaces, Lemma 42.40.1 this
implies that 𝑓 is representable!

By Morphisms of Spaces, Lemma 42.4.1 it suffices to show that for every scheme 𝑍 and
morphism 𝑍 → 𝑌 the base change 𝑍×𝑌 𝑋 → 𝑍 is an immersion. By Topologies on Spaces,
Lemma 44.4.3 we can find an fppf covering {𝑍𝑖 → 𝑍} by schemes which refines the pull
back of the covering {𝑌𝑖 → 𝑌} to 𝑍. Hence we see that 𝑍 ×𝑌 𝑋 → 𝑍 (which is a morphism
of schemes according to the result of the preceding paragraph) becomes an immersion after
pulling back to the members of an fppf (by schemes) of 𝑍. Hence 𝑍 ×𝑌 𝑋 → 𝑍 is an
immersion by the result for schemes, see Descent, Lemma 31.20.1. �

Lemma 45.11.2. The property 𝒫(𝑓) =``𝑓 is locally separated'' is fppf local on the base.

Proof. A base change of a locally separated morphism is locally separated, see Morphisms
of Spaces, Lemma 42.5.4. Hence the direct implication in Definition 45.9.1.
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Let {𝑌𝑖 → 𝑌}𝑖∈𝐼 be an fppf covering of algebraic spaces over 𝑆. Let 𝑓 ∶ 𝑋 → 𝑌 be a
morphism of algebraic spaces over 𝑆. Assume each base change 𝑋𝑖 ∶= 𝑌𝑖 ×𝑌 𝑋 → 𝑌𝑖 is
locally separated. This means that each of the morphisms

Δ𝑖 ∶ 𝑋𝑖 ⟶ 𝑋𝑖 ×𝑌𝑖
𝑋𝑖 = 𝑌𝑖 ×𝑌 (𝑋 ×𝑌 𝑋)

is an immersion. The base change of a fppf covering is an fppf covering, see Topologies on
Spaces, Lemma 44.4.2 hence {𝑌𝑖 ×𝑌 (𝑋 ×𝑌 𝑋) → 𝑋 ×𝑌 𝑋} is an fppf covering of algebraic
spaces. Moreover, each Δ𝑖 is the base change of the morphism Δ ∶ 𝑋 → 𝑋 ×𝑌 𝑋. Hence
it follows from Lemma 45.11.1 that Δ is a immersion, i.e., 𝑓 is locally separated. �

45.12. Properties of morphisms local on the source

In this section we define what it means for a property of morphisms of algebraic spaces to
be local on the source. Please compare with Descent, Section 31.22.

Definition 45.12.1. Let 𝑆 be a scheme. Let 𝒫 be a property of morphisms of algebraic
spaces over 𝑆. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒}. We say 𝒫 is 𝜏 local on
the source, or local on the source for the 𝜏-topology if for any morphism 𝑓 ∶ 𝑋 → 𝑌 of
algebraic spaces over 𝑆, and any 𝜏-covering {𝑋𝑖 → 𝑋}𝑖∈𝐼 of algebraic spaces we have

𝑓 has 𝒫 ⇔ each 𝑋𝑖 → 𝑌 has 𝒫.

To be sure, since isomorphisms are always coverings we see (or require) that property 𝒫
holds for 𝑋 → 𝑌 if and only if it holds for any arrow 𝑋′ → 𝑌′ isomorphic to 𝑋 → 𝑌. If
a property is 𝜏-local on the source then it is preserved by precomposing with morphisms
which occur in 𝜏-coverings. Here is a formal statement.

Lemma 45.12.2. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒}. Let
𝒫 be a property of morphisms of algebraic spaces over 𝑆 which is 𝜏 local on the source.
Let 𝑓 ∶ 𝑋 → 𝑌 have property 𝒫. For any morphism 𝑎 ∶ 𝑋′ → 𝑋 which is flat, resp. flat
and locally of finite presentation, resp. syntomic, resp. smooth, resp. étale, the composition
𝑓 ∘ 𝑎 ∶ 𝑋′ → 𝑌 has property 𝒫.

Proof. This is true because we can fit 𝑋′ → 𝑋 into a family of morphisms which forms a
𝜏-covering. �

Lemma 45.12.3. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑓𝑝𝑞𝑐, 𝑓𝑝𝑝𝑓, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑠𝑚𝑜𝑜𝑡ℎ, ́𝑒𝑡𝑎𝑙𝑒}. Sup-
pose that 𝒫 is a property of morphisms of schemes over 𝑆 which is étale local on the source-
and-target. Denote 𝒫𝑠𝑝𝑎𝑐𝑒𝑠 the corresponding property of morphisms of algebraic spaces
over 𝑆, see Morphisms of Spaces, Definition 42.21.2. If 𝒫 is local on the source for the
𝜏-topology, then 𝒫𝑠𝑝𝑎𝑐𝑒𝑠 is local on the source for the 𝜏-topology.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of of algebraic spaces over 𝑆. Let {𝑋𝑖 → 𝑋}𝑖∈𝐼
be a 𝜏-covering of algebraic spaces. Choose a scheme 𝑉 and a surjective étale morphism
𝑉 → 𝑌. Choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋 ×𝑌 𝑉. For each 𝑖
choose a scheme 𝑈𝑖 and a surjective étale morphism 𝑈𝑖 → 𝑋𝑖 ×𝑋 𝑈.

Note that {𝑋𝑖 ×𝑋 𝑈 → 𝑈}𝑖∈𝐼 is a 𝜏-covering. Note that each {𝑈𝑖 → 𝑋𝑖 ×𝑋 𝑈} is an étale
covering, hence a 𝜏-covering. Hence {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a 𝜏-covering of algebraic spaces over
𝑆. But since 𝑈 and each 𝑈𝑖 is a scheme we see that {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a 𝜏-covering of schemes
over 𝑆.
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Now we have
𝑓 has 𝒫𝑠𝑝𝑎𝑐𝑒𝑠 ⇔ 𝑈 → 𝑉 has 𝒫

⇔ each 𝑈𝑖 → 𝑉 has 𝒫
⇔ each 𝑋𝑖 → 𝑌 has 𝒫𝑠𝑝𝑎𝑐𝑒𝑠.

the first and last equivalence by the definition of 𝒫𝑠𝑝𝑎𝑐𝑒𝑠 the middle equivalence because
we assumed 𝒫 is local on the source in the 𝜏-topology. �

45.13. Properties of morphisms local in the fpqc topology on the source

Here are some properties of morphisms that are fpqc local on the source.

Lemma 45.13.1. The property 𝒫(𝑓) =``𝑓 is flat'' is fpqc local on the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.27.1 and
Descent, Lemma 31.23.1. �

45.14. Properties of morphisms local in the fppf topology on the source

Here are some properties of morphisms that are fppf local on the source.

Lemma 45.14.1. The property 𝒫(𝑓) =``𝑓 is locally of finite presentation'' is fppf local on
the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.26.1 and
Descent, Lemma 31.24.1. �

Lemma 45.14.2. The property𝒫(𝑓) =``𝑓 is locally of finite type'' is fppf local on the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.22.1 and
Descent, Lemma 31.24.2. �

Lemma 45.14.3. The property 𝒫(𝑓) =``𝑓 is open'' is fppf local on the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.7.2 and
Descent, Lemma 31.24.3. �

Lemma 45.14.4. The property 𝒫(𝑓) =``𝑓 is universally open'' is fppf local on the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.7.2 and
Descent, Lemma 31.24.4. �

45.15. Properties of morphisms local in the syntomic toplogy on the source

Here are some properties of morphisms that are syntomic local on the source.

Lemma 45.15.1. The property 𝒫(𝑓) =``𝑓 is syntomic'' is syntomic local on the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.32.1 and
Descent, Lemma 31.25.1. �

45.16. Properties of morphisms local in the smooth topology on the source

Here are some properties of morphisms that are smooth local on the source.

Lemma 45.16.1. The property 𝒫(𝑓) =``𝑓 is smooth'' is smooth local on the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.33.1 and
Descent, Lemma 31.26.1. �
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45.17. Properties of morphisms local in the étale topology on the source

Here are some properties of morphisms that are étale local on the source.

Lemma 45.17.1. The property 𝒫(𝑓) =``𝑓 is étale'' is étale local on the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.35.1 and
Descent, Lemma 31.27.1. �

Lemma45.17.2. The property𝒫(𝑓) =``𝑓 is locally quasi-finite'' is étale local on the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.25.1 and
Descent, Lemma 31.27.2. �

Lemma 45.17.3. The property 𝒫(𝑓) =``𝑓 is unramified'' is étale local on the source.

Proof. Follows from Lemma 45.12.3 using Morphisms of Spaces, Definition 42.34.1 and
Descent, Lemma 31.27.3. �

45.18. Properties of morphisms smooth local on source-and-target

Let 𝒫 be a property of morphisms of algebraic spaces. There is an intuitive meaning to
the phrase ``𝒫 is smooth local on the source and target''. However, it turns out that this
notion is not the same as asking 𝒫 to be both smooth local on the source and smooth local
on the target. We have discussed a similar phenomenon (for the étale topology and the
category of schemes) in great detail in Descent, Section 31.28 (for a quick overview take a
look at Descent, Remark 31.28.8). However, there is an important difference between the
case of the smooth and the étale topology. To see this difference we encourage the reader
to ponder the difference beween Descent, Lemma 31.28.4 and Lemma 45.18.2 as well as
the difference between Descent, Lemma 31.28.5 and Lemma 45.18.3. Namely, in the étale
setting the choice of the étale ``covering'' of the target is immaterial, whereas in the smooth
setting it is not.

Definition 45.18.1. Let 𝑆 be a scheme. Let 𝒫 be a property of morphisms of algebraic
spaces over 𝑆. We say 𝒫 is smooth local on source-and-target if

(1) (stable under precomposing with smooth maps) if 𝑓 ∶ 𝑋 → 𝑌 is smooth and
𝑔 ∶ 𝑌 → 𝑍 has 𝒫, then 𝑔 ∘ 𝑓 has 𝒫,

(2) (stable under smooth base change) if 𝑓 ∶ 𝑋 → 𝑌 has 𝒫 and 𝑌′ → 𝑌 is smooth,
then the base change 𝑓′ ∶ 𝑌′ ×𝑌 𝑋 → 𝑌′ has 𝒫, and

(3) (locality) given a morphism 𝑓 ∶ 𝑋 → 𝑌 the following are equivalent
(a) 𝑓 has 𝒫,
(b) for every 𝑥 ∈ |𝑋| there exists a commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

with smooth vertical arrows and 𝑢 ∈ |𝑈| with 𝑎(𝑢) = 𝑥 such that ℎ has 𝒫.

The above serves as our definition. In the lemmas belowwewill show that this is equivalent
to 𝒫 being local on the target, local on the source, and stable under post-composing by
smooth morphisms.

Lemma 45.18.2. Let 𝑆 be a scheme. Let 𝒫 be a property of morphisms of algebraic spaces
over 𝑆 which is smooth local on source-and-target. Then
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(1) 𝒫 is smooth local on the source,
(2) 𝒫 is smooth local on the target,
(3) 𝒫 is stable under postcomposing with smooth morphisms: if 𝑓 ∶ 𝑋 → 𝑌 has 𝒫

and 𝑔 ∶ 𝑌 → 𝑍 is smooth, then 𝑔 ∘ 𝑓 has 𝒫, and

Proof. We write everything out completely.

Proof of (1). Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆. Let {𝑋𝑖 → 𝑋}𝑖∈𝐼
be a smooth covering of 𝑋. If each composition ℎ𝑖 ∶ 𝑋𝑖 → 𝑌 has 𝒫, then for each |𝑥| ∈ 𝑋
we can find an 𝑖 ∈ 𝐼 and a point 𝑥𝑖 ∈ |𝑋𝑖| mapping to 𝑥. Then (𝑋𝑖, 𝑥𝑖) → (𝑋, 𝑥) is a
smooth morphism of pairs, and id𝑌 ∶ 𝑌 → 𝑌 is a smooth morphism, and ℎ𝑖 is as in part (3)
of Definition 45.18.1. Thus we see that 𝑓 has 𝒫. Conversely, if 𝑓 has 𝒫 then each 𝑋𝑖 → 𝑌
has 𝒫 by Definition 45.18.1 part (1).

Proof of (2). Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆. Let {𝑌𝑖 → 𝑌}𝑖∈𝐼
be a smooth covering of 𝑌. Write 𝑋𝑖 = 𝑌𝑖 ×𝑌 𝑋 and ℎ𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 for the base change of 𝑓.
If each ℎ𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 has 𝒫, then for each 𝑥 ∈ |𝑋| we pick an 𝑖 ∈ 𝐼 and a point 𝑥𝑖 ∈ |𝑋𝑖|
mapping to 𝑥. Then (𝑋𝑖, 𝑥𝑖) → (𝑋, 𝑥) is a smooth morphism of pairs, 𝑌𝑖 → 𝑌 is smooth,
and ℎ𝑖 is as in part (3) of Definition 45.18.1. Thus we see that 𝑓 has 𝒫. Conversely, if 𝑓
has 𝒫, then each 𝑋𝑖 → 𝑌𝑖 has 𝒫 by Definition 45.18.1 part (2).

Proof of (3). Assume 𝑓 ∶ 𝑋 → 𝑌 has 𝒫 and 𝑔 ∶ 𝑌 → 𝑍 is smooth. For every 𝑥 ∈ |𝑋| we
can think of (𝑋, 𝑥) → (𝑋, 𝑥) as a smooth morphism of pairs, 𝑌 → 𝑍 is a smooth morphism,
and ℎ = 𝑓 is as in part (3) of Definition 45.18.1. Thus we see that 𝑔 ∘ 𝑓 has 𝒫. �

The following lemma is the analogue of Morphisms, Lemma 24.13.4.

Lemma 45.18.3. Let 𝑆 be a scheme. Let 𝒫 be a property of morphisms of algebraic spaces
over 𝑆 which is smooth local on source-and-target. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of
algebraic spaces over 𝑆. The following are equivalent:

(a) 𝑓 has property 𝒫,
(b) for every 𝑥 ∈ |𝑋| there exists a smooth morphism of pairs 𝑎 ∶ (𝑈, 𝑢) → (𝑋, 𝑥), a

smooth morphism 𝑏 ∶ 𝑉 → 𝑌, and a morphism ℎ ∶ 𝑈 → 𝑉 such that 𝑓 ∘ 𝑎 = 𝑏 ∘ ℎ
and ℎ has 𝒫,

(c) for some commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

with 𝑎, 𝑏 smooth and 𝑎 surjective the morphism ℎ has 𝒫,
(d) for any commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

with 𝑏 smooth and 𝑈 → 𝑋 ×𝑌 𝑉 smooth the morphism ℎ has 𝒫,
(e) there exists a smooth covering {𝑌𝑖 → 𝑌}𝑖∈𝐼 such that each base change 𝑌𝑖×𝑌𝑋 →

𝑌𝑖 has 𝒫,
(f) there exists a smooth covering {𝑋𝑖 → 𝑋}𝑖∈𝐼 such that each composition 𝑋𝑖 → 𝑌

has 𝒫,
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(g) there exists a smooth covering {𝑌𝑖 → 𝑌}𝑖∈𝐼 and for each 𝑖 ∈ 𝐼 a smooth covering
{𝑋𝑖𝑗 → 𝑌𝑖 ×𝑌 𝑋}𝑗∈𝐽𝑖

such that each morphism 𝑋𝑖𝑗 → 𝑌𝑖 has 𝒫.

Proof. The equivalence of (a) and (b) is part of Definition 45.18.1. The equivalence of (a)
and (e) is Lemma 45.18.2 part (2). The equivalence of (a) and (f) is Lemma 45.18.2 part
(1). As (a) is now equivalent to (e) and (f) it follows that (a) equivalent to (g).

It is clear that (c) implies (b). If (b) holds, then for any 𝑥 ∈ |𝑋| we can choose a smooth
morphism of pairs 𝑎𝑥 ∶ (𝑈𝑥, 𝑢𝑥) → (𝑋, 𝑥), a smooth morphism 𝑏𝑥 ∶ 𝑉𝑥 → 𝑌, and a
morphism ℎ𝑥 ∶ 𝑈𝑥 → 𝑉𝑥 such that 𝑓 ∘ 𝑎𝑥 = 𝑏𝑥 ∘ ℎ𝑥 and ℎ𝑥 has 𝒫. Then ℎ = ∐ ℎ𝑥 ∶
∐ 𝑈𝑥 → ∐ 𝑉𝑥 with 𝑎 = ∐ 𝑎𝑥 and 𝑏 = ∐ 𝑏𝑥 is a diagram as in (c). (Note that ℎ has
property 𝒫 as {𝑉𝑥 → ∐ 𝑉𝑥} is a smooth covering and 𝒫 is smooth local on the target.)
Thus (b) is equivalent to (c).

Now we know that (a), (b), (c), (e), (f), and (g) are equivalent. Suppose (a) holds. Let
𝑈, 𝑉, 𝑎, 𝑏, ℎ be as in (d). Then 𝑋 ×𝑌 𝑉 → 𝑉 has 𝒫 as 𝒫 is stable under smooth base change,
whence 𝑈 → 𝑉 has 𝒫 as 𝒫 is stable under precomposing with smooth morphisms. Con-
versely, if (d) holds, then setting 𝑈 = 𝑋 and 𝑉 = 𝑌 we see that 𝑓 has 𝒫. �

Lemma 45.18.4. Let 𝑆 be a scheme. Let 𝒫 be a property of morphisms of algebraic spaces
over 𝑆. Assume

(1) 𝒫 is smooth local on the source,
(2) 𝒫 is smooth local on the target, and
(3) 𝒫 is stable under postcomposing with smooth morphisms: if 𝑓 ∶ 𝑋 → 𝑌 has 𝒫

and 𝑌 ⊂ 𝑍 is a smooth morphism then 𝑋 → 𝑍 has 𝒫.
Then 𝒫 is smooth local on the source-and-target.

Proof. Let 𝒫 be a property of morphisms of algebraic spaces which satisfies conditions (1),
(2) and (3) of the lemma. By Lemma 45.12.2 we see that 𝒫 is stable under precomposing
with smooth morphisms. By Lemma 45.9.2 we see that 𝒫 is stable under smooth base
change. Hence it suffices to prove part (3) of Definition 45.18.1 holds.

More precisely, suppose that 𝑓 ∶ 𝑋 → 𝑌 is a morphism of algebraic spaces over 𝑆 which
satisfies Definition 45.18.1 part (3)(b). In other words, for every 𝑥 ∈ 𝑋 there exists a
smooth morphism 𝑎𝑥 ∶ 𝑈𝑥 → 𝑋, a point 𝑢𝑥 ∈ |𝑈𝑥| mapping to 𝑥, a smooth morphism
𝑏𝑥 ∶ 𝑉𝑥 → 𝑌, and a morphism ℎ𝑥 ∶ 𝑈𝑥 → 𝑉𝑥 such that 𝑓 ∘ 𝑎𝑥 = 𝑏𝑥 ∘ ℎ𝑥 and ℎ𝑥 has 𝒫.
The proof of the lemma is complete once we show that 𝑓 has 𝒫. Set 𝑈 = ∐ 𝑈𝑥, 𝑎 = ∐ 𝑎𝑥,
𝑉 = ∐ 𝑉𝑥, 𝑏 = ∐ 𝑏𝑥, and ℎ = ∐ ℎ𝑥. We obtain a commutative diagram

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

with 𝑎, 𝑏 smooth, 𝑎 surjective. Note that ℎ has 𝒫 as each ℎ𝑥 does and 𝒫 is smooth local on
the target. Because 𝑎 is surjective and 𝒫 is smooth local on the source, it suffices to prove
that 𝑏 ∘ ℎ has 𝒫. This follows as we assumed that 𝒫 is stable under postcomposing with a
smooth morphism and as 𝑏 is smooth. �

Remark 45.18.5. Using Lemma 45.18.4 and the work done in the earlier sections of this
chapter it is easy to make a list of types of morphisms which are smooth local on the source-
and-target. In each case we list the lemma which implies the property is smooth local on
the source and the lemma which implies the property is smooth local on the target. In each
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case the third assumption of Lemma 45.18.4 is trivial to check, and we omit it. Here is the
list:

(1) flat, see Lemmas 45.13.1 and 45.10.11,
(2) locally of finite presentation, see Lemmas 45.14.1 and 45.10.8,
(3) locally finite type, see Lemmas 45.14.2 and 45.10.7,
(4) universally open, see Lemmas 45.14.4 and 45.10.4,
(5) syntomic, see Lemmas 45.15.1 and 45.10.23,
(6) smooth, see Lemmas 45.16.1 and 45.10.24,
(7) add more here as needed.
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CHAPTER 46

More on Morphisms of Spaces

46.1. Introduction

In this chapter we continue our study of properties of morphisms of algebraic spaces. A
fundamental reference is [Knu71a].

46.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.
Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋.

46.3. Radicial morphisms

It turns out that a radicial morphism is not the same thing as a universally injective mor-
phism, contrary to what happens with morphisms of schemes. In fact it is a bit stronger.

Definition 46.3.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. We say 𝑓 is radicial if for any morphism 𝑆𝑝𝑒𝑐(𝐾) → 𝑌 where 𝐾 is a field the
reduction (𝑆𝑝𝑒𝑐(𝐾) ×𝑌 𝑋)𝑟𝑒𝑑 is either empty or representable by the spectrum of a purely
inseparable field extension of 𝐾.

Lemma 46.3.2. A radicial morphism of algebraic spaces is universally injective.

Proof. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a radicial morphism of algebraic spaces
over 𝑆. It is clear from the definition that given a morphism 𝑆𝑝𝑒𝑐(𝐾) → 𝑌 there is at most
one lift of this morphism to a morphism into 𝑋. Hence we conclude that 𝑓 is universally
injective by Morphisms of Spaces, Lemma 42.18.2. �

Example 46.3.3. It is no longer true that universally injective is equivalent to radicial. For
example the morphism

𝑋 = [𝑆𝑝𝑒𝑐(𝐐)/Gal(𝐐/𝐐)] ⟶ 𝑆 = 𝑆𝑝𝑒𝑐(𝐐)
of Spaces, Example 40.14.7 is universally injective, but is not radicial in the sense above.

Nonetheless it is often the case that the reverse implication holds.

Lemma 46.3.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a universally injective morphism of
algebraic spaces over 𝑆.

(1) If 𝑓 is decent then 𝑓 is radicial.
(2) If 𝑓 is quasi-separated then 𝑓 is radicial.
(3) If 𝑓 is locally separated then 𝑓 is radicial.
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Proof. Let 𝒫 be a property of morphisms of algebraic spaces which is stable under base
change and composition and holds for closed immersions. Assume 𝑓 ∶ 𝑋 → 𝑌 has 𝒫 and is
universally injective. Then, in the situation of Definition 46.3.1 the morphism (𝑆𝑝𝑒𝑐(𝐾) ×𝑌
𝑋)𝑟𝑒𝑑 → 𝑆𝑝𝑒𝑐(𝐾) is universally injective and has 𝒫. This reduces the problem of proving

𝒫 + universally injective ⇒ radicial

to the problem of proving that any nonempty reduced algebraic space 𝑋 over field whose
structure morphism 𝑋 → 𝑆𝑝𝑒𝑐(𝐾) is universally injective and 𝒫 is representable by the
spectrum of a field. Namely, then 𝑋 → 𝑆𝑝𝑒𝑐(𝐾) will be a morphism of schemes and we
conclude by the equivalence of radicial and universally injective for morphisms of schemes,
see Morphisms, Lemma 24.10.2.

Let us prove (1). Assume 𝑓 is decent and universally injective. By Decent Spaces, Lemmas
43.13.3, 43.13.4, and 43.13.2 (to see that an immersion is decent) we see that the discus-
sion in the first pararagraph applies. Let 𝑋 be a nonempty decent reduced algebraic space
universally injective over a field 𝐾. In particular we see that |𝑋| is a singleton. By Decent
Spaces, Lemma 43.11.1 we conclude that 𝑋 ≅ 𝑆𝑝𝑒𝑐(𝐿) for some extension 𝐾 ⊂ 𝐿 as
desired.

A quasi-separated morphism is decent, see Decent Spaces, Lemma 43.13.2. Hence (1)
implies (2).

Let us prove (3). Recall that the separation axioms are stable under base change and compo-
sition and that closed immersions are separated, see Morphisms of Spaces, Lemmas 42.5.4,
42.5.8, and 42.14.7. Thus the discussion in the first paragraph of the proof applies. Let 𝑋
be a reduced algebraic space universally injective and locally separated over a field 𝐾. In
particular |𝑋| is a singleton hence 𝑋 is quasi-compact, see Properties of Spaces, Lemma
41.5.2. We can find a surjective étale morphism 𝑈 → 𝑋 with 𝑈 affine, see Properties of
Spaces, Lemma 41.6.3. Consider the morphism of schemes

𝑗 ∶ 𝑈 ×𝑋 𝑈 ⟶ 𝑈 ×𝑆𝑝𝑒𝑐(𝐾) 𝑈

As 𝑋 → 𝑆𝑝𝑒𝑐(𝐾) is universally injective 𝑗 is surjective, and as 𝑋 → 𝑆𝑝𝑒𝑐(𝐾) is locally
separated 𝑗 is an immersion. A surjective immersion is a closed immersion, see Schemes,
Lemma 21.10.4. Hence 𝑅 = 𝑈 ×𝑋 𝑈 is affine as a closed subscheme of an affine scheme.
In particular 𝑅 is quasi-compact. It follows that 𝑋 = 𝑈/𝑅 is quasi-separated, and the result
follows from (2). �

Remark 46.3.5. Let 𝑋 → 𝑌 be a morphism of algebraic spaces. For some applications (of
radicial morphisms) it is enough to require that for every 𝑆𝑝𝑒𝑐(𝐾) → 𝑌 where 𝐾 is a field

(1) the space | 𝑆𝑝𝑒𝑐(𝐾) ×𝑌 𝑋| is a singleton,
(2) there exists a monomorphism 𝑆𝑝𝑒𝑐(𝐿) → 𝑆𝑝𝑒𝑐(𝐾) ×𝑌 𝑋, and
(3) 𝐾 ⊂ 𝐿 is purely inseparable.

If needed later wewill may call such amorphismweakly radicial. For example if 𝑋 → 𝑌 is a
surjective weakly radicial morphism then 𝑋(𝑘) → 𝑌(𝑘) is surjective for every algebraically
closed field 𝑘. Note that the base change 𝑋𝐐 → 𝑆𝑝𝑒𝑐(𝐐) of the morphism in Example
46.3.3 is weakly radicial, but not radicial. The analogue of Lemma 46.3.4 is that if 𝑋 → 𝑌
has property (𝛽) and is universally injective, then it is weakly radicial (proof omitted).
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46.4. Morphisms of finite presentation

In this section we generalize Limits, Proposition 27.4.1 to morphisms of algebraic spaces.
The motivation for the following definition comes from the proposition just cited.

Definition 46.4.1. Let 𝑆 be a scheme.
(1) A functor 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝

𝑓𝑝𝑝𝑓 → Sets is said to be locally of finite presentation or
limit preserving if for every affine scheme 𝑇 over 𝑆 which is a limit 𝑇 = 𝑙𝑖𝑚 𝑇𝑖 of
a directed inverse system of affine schemes 𝑇𝑖 over 𝑆, we have

𝐹(𝑇) = 𝑐𝑜𝑙𝑖𝑚 𝐹(𝑇𝑖).

We sometimes say that 𝐹 is locally of finite presentation over 𝑆.
(2) Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝

𝑓𝑝𝑝𝑓 → Sets. A transformation of functors 𝑎 ∶ 𝐹 → 𝐺 is
locally of finite presentation if for every scheme 𝑇 over 𝑆 and every 𝑦 ∈ 𝐺(𝑇) the
functor

𝐹𝑦 ∶ (Sch/𝑇)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 ⟶ Sets, 𝑇′/𝑇 ⟼ {𝑥 ∈ 𝐹(𝑇′) ∣ 𝑎(𝑥) = 𝑦|𝑇′}

is locally of finite presentation over 𝑇1. We sometimes say that 𝐹 is relatively
limit preserving over 𝐺.

The functor 𝐹𝑦 is in some sense the fiber of 𝑎 ∶ 𝐹 → 𝐺 over 𝑦, except that it is a presheaf
on the big fppf site of 𝑇. A formula for this functor is:

(46.4.1.1) 𝐹𝑦 = 𝐹|(Sch/𝑇)𝑓𝑝𝑝𝑓
×𝐺|(Sch/𝑇)𝑓𝑝𝑝𝑓

∗

Here ∗ is the final object in the category of (pre)sheaves on (Sch/𝑇)𝑓𝑝𝑝𝑓 (see Sites, Exam-
ple 9.10.2) and the map ∗ → 𝐺|(Sch/𝑇)𝑓𝑝𝑝𝑓

is given by 𝑦. Note that if 𝑗 ∶ (Sch/𝑇)𝑓𝑝𝑝𝑓 →
(Sch/𝑆)𝑓𝑝𝑝𝑓 is the localization functor, then the formula above becomes 𝐹𝑦 = 𝑗−1𝐹 ×𝑗−1𝐺 ∗
and 𝑗!𝐹𝑦 is just the fiber product 𝐹 ×𝐺,𝑦 𝑇. (See Sites, Section 9.21, for information on
localization, and especially Sites, Remark 9.21.9 for information on 𝑗! for presheaves.)

At this point we temporarily have two definitions of what it means for a morphism 𝑋 → 𝑌
of algebraic spaces over 𝑆 to be locally of finite presentation. Namely, one by Morphisms
of Spaces, Definition 42.26.1 and one using that 𝑋 → 𝑌 is a transformation of functors so
that Definition 46.4.1 applies. We will show in Proposition 46.4.9 that these two definitions
agree.

Lemma 46.4.2. Let 𝑆 be a scheme. Let 𝑎 ∶ 𝐹 → 𝐺 be a transformation of functors
(Sch/𝑆)𝑜𝑝𝑝

𝑓𝑝𝑝𝑓 → Sets. The following are equivalent
(1) 𝐹 is relatively limit preserving over 𝐺, and
(2) for every every affine scheme 𝑇 over 𝑆 which is a limit 𝑇 = 𝑙𝑖𝑚 𝑇𝑖 of a directed

inverse system of affine schemes 𝑇𝑖 over 𝑆 the diagram of sets

𝑐𝑜𝑙𝑖𝑚𝑖 𝐹(𝑇𝑖) //

𝑎
��

𝐹(𝑇)

𝑎
��

𝑐𝑜𝑙𝑖𝑚𝑖 𝐺(𝑇𝑖) // 𝐺(𝑇)

is a fibre product diagram.

1The characterization (2) in Lemma 46.4.2 may be easier to parse.
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Proof. Assume (1). Consider 𝑇 = 𝑙𝑖𝑚𝑖∈𝐼 𝑇𝑖 as in (2). Let (𝑦, 𝑥𝑇) be an element of the fibre
product 𝑐𝑜𝑙𝑖𝑚𝑖 𝐺(𝑇𝑖) ×𝐺(𝑇) 𝐹(𝑇). Then 𝑦 comes from 𝑦𝑖 ∈ 𝐺(𝑇𝑖) for some 𝑖. Consider the
functor 𝐹𝑦𝑖

on (Sch/𝑇𝑖)𝑓𝑝𝑝𝑓 as in Definition 46.4.1. We see that 𝑥𝑇 ∈ 𝐹𝑦𝑖
(𝑇). Moreover

𝑇 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑇𝑖′ is a directed system of affine schemes over 𝑇𝑖. Hence (1) implies that 𝑥𝑇
the image of a unique element 𝑥 of 𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖 𝐹𝑦𝑖

(𝑇𝑖′). Thus 𝑥 is the unique element of
𝑐𝑜𝑙𝑖𝑚 𝐹(𝑇𝑖) which maps to the pair (𝑦, 𝑥𝑇). This proves that (2) holds.

Assume (2). Let 𝑇 be a scheme and 𝑦𝑇 ∈ 𝐺(𝑇). We have to show that 𝐹𝑦𝑇
is limit preserving.

Let 𝑇′ = 𝑙𝑖𝑚𝑖∈𝐼 𝑇′
𝑖 be an affine scheme over 𝑇 which is the directed limit of affine scheme

𝑇′
𝑖 over 𝑇. Let 𝑥𝑇′ ∈ 𝐹𝑦𝑇

. Pick 𝑖 ∈ 𝐼 which is possible as 𝐼 is a directed partially ordered
set. Denote 𝑦𝑖 ∈ 𝐹(𝑇′

𝑖 ) the image of 𝑦𝑇′. Then we see that (𝑦𝑖, 𝑥𝑇′) is an element of the fibre
product 𝑐𝑜𝑙𝑖𝑚𝑖 𝐺(𝑇′

𝑖 ) ×𝐺(𝑇′) 𝐹(𝑇′). Hence by (2) we get a unique element 𝑥 of 𝑐𝑜𝑙𝑖𝑚𝑖 𝐹(𝑇′
𝑖 )

mapping to (𝑦𝑖, 𝑥𝑇′). It is clear that 𝑥 defines an element of 𝑐𝑜𝑙𝑖𝑚𝑖 𝐹𝑦(𝑇′
𝑖 ) mapping to 𝑥𝑇′

and we win. �

Lemma 46.4.3. Let𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺, 𝑏 ∶ 𝐺 → 𝐻 be transformations of functors. If 𝑎 and 𝑏 are locally of finite
presentation, then

𝑏 ∘ 𝑎 ∶ 𝐹 ⟶ 𝐻
is locally of finite presentation.

Proof. Let 𝑇 = 𝑙𝑖𝑚𝑖∈𝐼 𝑇𝑖 as in characterization (2) of Lemma 46.4.2. Consider the diagram

𝑐𝑜𝑙𝑖𝑚𝑖 𝐹(𝑇𝑖) //

𝑎
��

𝐹(𝑇)

𝑎
��

𝑐𝑜𝑙𝑖𝑚𝑖 𝐺(𝑇𝑖) //

𝑏
��

𝐺(𝑇)

𝑏
��

𝑐𝑜𝑙𝑖𝑚𝑖 𝐻(𝑇𝑖) // 𝐻(𝑇)

By assumption the two squares are fibre product squares. Hence the outer rectangle is a
fibre product diagram too which proves the lemma. �

Lemma 46.4.4. Let𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺, 𝑏 ∶ 𝐻 → 𝐺 be transformations of functors. Consider the fibre product
diagram

𝐻 ×𝑏,𝐺,𝑎 𝐹
𝑏′
//

𝑎′

��

𝐹

𝑎
��

𝐻 𝑏 // 𝐺
If 𝑎 is locally of finite presentation, then the base change 𝑎′ is locally of finite presentation.

Proof. Omitted. Hint: This is formal. �

Lemma 46.4.5. Let 𝑇 be an affine scheme which is written as a limit 𝑇 = 𝑙𝑖𝑚𝑖∈𝐼 𝑇𝑖 of a
directed inverse system of affine schemes.

(1) Let 𝒱 = {𝑉𝑗 → 𝑇}𝑗=1,…,𝑚 be a standard fppf covering of 𝑇, see Topologies,
Definition 30.7.5. Then there exists an index 𝑖 and a standard fppf covering 𝒱𝑖 =
{𝑉𝑖,𝑗 → 𝑇𝑖}𝑗=1,…,𝑚 whose base change 𝑇 ×𝑇𝑖

𝒱𝑖 to 𝑇 is isomorphic to 𝒱.
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(2) Let 𝒱𝑖, 𝒱′
𝑖 be a pair of standard fppf coverings of 𝑇𝑖. If 𝑓 ∶ 𝑇 ×𝑇𝑖

𝒱 → 𝑇 ×𝑇𝑖
𝒱′

𝑖
is a morphism of coverings of 𝑇, then there exists an index 𝑖′ ≥ 𝑖 and a morphism
𝑓𝑖′ ∶ 𝑇𝑖′ ×𝑇𝑖

𝒱 → 𝑇𝑖′ ×𝑇𝑖
𝒱′

𝑖 whose base change to 𝑇 is 𝑓.
(3) If 𝑓, 𝑔 ∶ 𝒱 → 𝒱′

𝑖 are morphisms of standard fppf coverings of 𝑇𝑖 whose base
changes 𝑓𝑇, 𝑔𝑇 to 𝑇 are equal then there exists an index 𝑖′ ≥ 𝑖 such that 𝑓𝑇𝑖′

= 𝑔𝑇𝑖′
.

In other words, the category of standard fppf coverings of 𝑇 is the colimit over 𝐼 of the
categories of standard fppf coverings of 𝑇𝑖

Proof. By Limits, Lemma 27.6.1 the category of schemes of finite presentation over 𝑇
is the colimit over 𝐼 of the categories of finite presentation over 𝑇𝑖. By Limits, Lemmas
27.6.2 and 27.6.3 the same is true for category of schemes which are affine, flat and of finite
presentation over 𝑇. To finish the proof of the lemma it suffices to show that if {𝑉𝑗,𝑖 →
𝑇𝑖}𝑗=1,…,𝑚 is a finite family of flat finitely presented morphisms with 𝑉𝑗,𝑖 affine, and the
base change ∐𝑗 𝑇 ×𝑇𝑖

𝑉𝑗,𝑖 → 𝑇 is surjective, then for some 𝑖′ ≥ 𝑖 the morphism ∐ 𝑇𝑖′ ×𝑇𝑖
𝑉𝑗,𝑖 → 𝑇𝑖′ is surjective. Denote 𝑊𝑖′ ⊂ 𝑇𝑖′, resp. 𝑊 ⊂ 𝑇 the image. Of course 𝑊 = 𝑇
by assumption. Since the morphisms are flat and of finite presentation we see that 𝑊𝑖 is
a quasi-compact open of 𝑇𝑖, see Morphisms, Lemma 24.24.9. Moreover, 𝑊 = 𝑇 ×𝑇𝑖

𝑊𝑖
(formation of image commutes with base change). Hence by Limits, Lemma 27.3.5 we
conclude that 𝑊𝑖′ = 𝑇𝑖′ for some large enough 𝑖′ and we win. �

Lemma 46.4.6. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be

a functor. If 𝐹 is locally of finite presentation over 𝑆 then its sheafification 𝐹# is locally of
finite presentation over 𝑆.

Proof. Assume 𝐹 is locally of finite presentation. It suffices to show that 𝐹+ is locally
of finite presentation, since 𝐹# = (𝐹+)+, see Sites, Theorem 9.10.10. Let 𝑇 be an affine
scheme over 𝑆, and let 𝑇 = 𝑙𝑖𝑚 𝑇𝑖 be written as the directed limit of an inverse system of
affine 𝑆 schemes. Recall that 𝐹+(𝑇) is the colimit of �̌�0(𝒱, 𝐹) where the limit is over all
coverings of 𝑇 in (Sch/𝑆)𝑓𝑝𝑝𝑓. Any fppf covering of an affine scheme can be refined by a
standard fppf covering, see Topologies, Lemma 30.7.4. Hence we can write

𝐹+(𝑇) = 𝑐𝑜𝑙𝑖𝑚𝒱 standard covering 𝑇 �̌�0(𝒱, 𝐹).
By Lemma 46.4.5 we may rewrite this as

𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑐𝑜𝑙𝑖𝑚𝒱𝑖 standard covering 𝑇𝑖
�̌�0(𝑇 ×𝑇𝑖

𝒱𝑖, 𝐹).

(The order of the colimits is irrelevant by Categories, Lemma 4.13.9.) Given a standard
fppf covering 𝒱𝑖 = {𝑉𝑗 → 𝑇𝑖}𝑗=1,…,𝑚 of 𝑇𝑖 we see that

𝑇 ×𝑇𝑖
𝑉𝑗 = 𝑙𝑖𝑚𝑖′≥𝑖 𝑇𝑖′ ×𝑇 𝑉𝑗

by Limits, Lemma 27.2.4, and similarly
𝑇 ×𝑇𝑖

(𝑉𝑗 ×𝑇𝑖
𝑉𝑗′) = 𝑙𝑖𝑚𝑖′≥𝑖 𝑇𝑖′ ×𝑇 (𝑉𝑗 ×𝑇𝑖

𝑉𝑗′).

As the presheaf 𝐹 is locally of finite presentation this means that

�̌�0(𝑇 ×𝑇𝑖
𝒱𝑖, 𝐹) = 𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖 �̌�0(𝑇𝑖′ ×𝑇𝑖

𝒱𝑖, 𝐹).

Hence the colimit expression for 𝐹+(𝑇) above collapses to

𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑐𝑜𝑙𝑖𝑚𝒱 standard covering 𝑇𝑖
�̌�0(𝒱, 𝐹). = 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝐹+(𝑇𝑖).

In other words 𝐹+(𝑇) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐹+(𝑇𝑖) and hence the lemma holds. �

Lemma 46.4.7. Let 𝑆 be a scheme. Let 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be a functor. Assume that
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(1) 𝐹 is a sheaf, and
(2) there exists an fppf covering {𝑈𝑗 → 𝑆}𝑗∈𝐽 such that 𝐹|(Sch/𝑈𝑗)𝑓𝑝𝑝𝑓

is locally of
finite presentation.

Then 𝐹 is locally of finite presentation.

Proof. Let 𝑇 be an affine scheme over 𝑆. Let 𝐼 be a directed partially ordered set, and let
𝑇𝑖 be an inverse system of affine schemes over 𝑆 such that 𝑇 = 𝑙𝑖𝑚 𝑇𝑖. We have to show
that the canonical map 𝑐𝑜𝑙𝑖𝑚 𝐹(𝑇𝑖) → 𝐹(𝑇) is bijective.

Choose some 0 ∈ 𝐼 and choose a standard fppf covering {𝑉0,𝑘 → 𝑇0}𝑘=1,…,𝑚 which refines
the pullback {𝑈𝑗 ×𝑆 𝑇0 → 𝑇0} of the given fppf covering of 𝑆. For each 𝑖 ≥ 0 we set
𝑉𝑖,𝑘 = 𝑇𝑖 ×𝑇0

𝑉0,𝑘, and we set 𝑉𝑘 = 𝑇 ×𝑇0
𝑉0,𝑘. Note that 𝑉𝑘 = 𝑙𝑖𝑚𝑖≥0 𝑉𝑖,𝑘, see Limits,

Lemma 27.2.4.

Suppose that 𝑥, 𝑥′ ∈ 𝑐𝑜𝑙𝑖𝑚 𝐹(𝑇𝑖) map to the same element of 𝐹(𝑇). Say 𝑥, 𝑥′ are given by
elements 𝑥𝑖, 𝑥′

𝑖 ∈ 𝐹(𝑇𝑖) for some 𝑖 ∈ 𝐼 (we may choose the same 𝑖 for both as 𝐼 is directed).
By assumption (2) and the fact that 𝑥𝑖, 𝑥′

𝑖 map to the same element of 𝐹(𝑇) this implies that

𝑥𝑖|𝑉𝑖′,𝑘
= 𝑥′

𝑖 |𝑉𝑖′,𝑘

for some suitably large 𝑖′ ∈ 𝐼. We can choose the same 𝑖′ for each 𝑘 as 𝑘 ∈ {1, … , 𝑚}
ranges over a finite set. Since {𝑉𝑖′,𝑘 → 𝑇𝑖′} is an fppf covering and 𝐹 is a sheaf this implies
that 𝑥𝑖|𝑇𝑖′

= 𝑥′
𝑖 |𝑇𝑖′

as desired. This proves that the map 𝑐𝑜𝑙𝑖𝑚 𝐹(𝑇𝑖) → 𝐹(𝑇) is injective.

To show surjectivity we argue in a similar fashion. Let 𝑥 ∈ 𝐹(𝑇). By assumption (2) for
each 𝑘 we can choose a 𝑖 such that 𝑥|𝑉𝑘

comes from an element 𝑥𝑖,𝑘 ∈ 𝐹(𝑉𝑖,𝑘). As before
we may choose a single 𝑖 which works for all 𝑘. By the injectivity proved above we see that

𝑥𝑖,𝑘|𝑉𝑖′,𝑘×𝑇𝑖′
𝑉𝑖′,𝑙

= 𝑥𝑖,𝑙|𝑉𝑖′,𝑘×𝑇𝑖′
𝑉𝑖′,𝑙

for some large enough 𝑖′. Hence by the sheaf condition of 𝐹 the elements 𝑥𝑖,𝑘|𝑉𝑖′,𝑘
glue to

an element 𝑥𝑖′ ∈ 𝐹(𝑇𝑖′) as desired. �

Lemma 46.4.8. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets

be functors. If 𝑎 ∶ 𝐹 → 𝐺 is a transformation which is locally of finite presentation, then
the induced transformation of sheaves 𝐹# → 𝐺# is of finite presentation.

Proof. Suppose that 𝑇 is a scheme and 𝑦 ∈ 𝐺#(𝑇). We have to show the functor 𝐹#
𝑦 ∶

(Sch/𝑇)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets constructed from 𝐹# → 𝐺# and 𝑦 as in Definition 46.4.1 is locally

of finite presentation. By Equation (46.4.1.1) we see that 𝐹#
𝑦 is a sheaf. Choose an fppf

covering {𝑉𝑗 → 𝑇}𝑗∈𝐽 such that 𝑦|𝑉𝑗
comes from an element 𝑦𝑗 ∈ 𝐹(𝑉𝑗). Note that the

restriction of 𝐹# to (Sch/𝑉𝑗)𝑓𝑝𝑝𝑓 is just 𝐹#
𝑦𝑗
. If we can show that 𝐹#

𝑦𝑗
is locally of finite

presentation then Lemma 46.4.7 garantees that 𝐹#
𝑦 is locally of finite presentation and we

win. This reduces us to the case 𝑦 ∈ 𝐺(𝑇).

Let 𝑦 ∈ 𝐺(𝑇). In this case we claim that 𝐹#
𝑦 = (𝐹𝑦)#. This follows from Equation (46.4.1.1).

Thus this case follows from Lemma 46.4.6. �

Proposition 46.4.9. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) The morphism 𝑓 is a morphism of algebraic spaces which is locally of finite pre-
sentation, see Morphisms of Spaces, Definition 42.26.1.
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(2) The morphism 𝑓 ∶ 𝑋 → 𝑌 is locally of finite presentation as a transformation of
functors, see Definition 46.4.1.

Proof. Assume (1). Let 𝑇 be a scheme and let 𝑦 ∈ 𝑌(𝑇). We have to show that 𝑇 ×𝑋 𝑌 is
locally of finite presentation over 𝑇 in the sense of Definition 46.4.1. Hence we are reduced
to proving that if 𝑋 is an algebraic space which is locally of finite presentation over 𝑆 as an
algebraic space, then it is locally of finite presentation as a functor 𝑋 ∶ (Sch/𝑆)𝑜𝑝𝑝

𝑓𝑝𝑝𝑓 → Sets.
To see this choose a presentation 𝑋 = 𝑈/𝑅, see Spaces, Definition 40.9.3. It follows from
Morphisms of Spaces, Definition 42.26.1 that both 𝑈 and 𝑅 are schemes which are locally
of finite presentation over 𝑆. Hence by Limits, Proposition 27.4.1 we have

𝑈(𝑇) = 𝑐𝑜𝑙𝑖𝑚 𝑈(𝑇𝑖), 𝑅(𝑇) = 𝑐𝑜𝑙𝑖𝑚 𝑅(𝑇𝑖)

whenever 𝑇 = 𝑙𝑖𝑚𝑖 𝑇𝑖 in (Sch/𝑆)𝑓𝑝𝑝𝑓. It follows that the presheaf

(Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 ⟶ Sets, 𝑊 ⟼ 𝑈(𝑊)/𝑅(𝑊)

is locally of finite presentation. Hence by Lemma 46.4.6 its sheafification 𝑋 = 𝑈/𝑅 is
locally of finite presentation too.

Assume (2). Choose a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌. Next, choose a
scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑉 ×𝑌 𝑋. By Lemma 46.4.4 the transfor-
mation of functors 𝑉 ×𝑌 𝑋 → 𝑉 is locally of finite presentation. By Morphisms of Spaces,
Lemma 42.35.8 the morphism of algebraic spaces 𝑈 → 𝑉 ×𝑌 𝑋 is locally of finite presen-
tation, hence locally of finite presentation as a transformation of functors by the first part
of the proof. By Lemma 46.4.3 the composition 𝑈 → 𝑉 ×𝑌 𝑋 → 𝑉 is locally of finite
presentation as a transformation of functors. Hence the morphism of schemes 𝑈 → 𝑉 is
locally of finite presentation by Limits, Proposition 27.4.1 (modulo a set theoretic remark,
see last paragraph of the proof). This means, by definition, that (1) holds.

Set theoretic remark. Let 𝑈 → 𝑉 be a morphism of (Sch/𝑆)𝑓𝑝𝑝𝑓. In the statement of Limits,
Proposition 27.4.1 we characterize 𝑈 → 𝑉 as being locally of finite presentation if for all
directed inverse systems (𝑇𝑖, 𝑓𝑖𝑖′) of affine schemes over 𝑉 we have 𝑈(𝑇) = 𝑐𝑜𝑙𝑖𝑚 𝑉(𝑇𝑖), but
in the current setting we may only consider affine schemes 𝑇𝑖 over 𝑉 which are (isomorphic
to) an object of (Sch/𝑆)𝑓𝑝𝑝𝑓. So we have to make sure that there are enough affines in
(Sch/𝑆)𝑓𝑝𝑝𝑓 to make the proof work. Inspecting the proof of (2) ⇒ (1) of Limits, Proposition
27.4.1 we see that the question reduces to the case that 𝑈 and 𝑉 are affine. Say 𝑈 = 𝑆𝑝𝑒𝑐(𝐴)
and 𝑉 = 𝑆𝑝𝑒𝑐(𝐵). By construction of (Sch/𝑆)𝑓𝑝𝑝𝑓 the spectrum of any ring of cardinality
≤ |𝐵| is isomorphic to an object of (Sch/𝑆)𝑓𝑝𝑝𝑓. Hence it suffices to observe that in the
"only if" part of the proof of Algebra, Lemma 7.118.2 only 𝐴-algebras of cardinality ≤ |𝐵|
are used. �

Remark 46.4.10. Here is an important special case of Proposition 46.4.9. Let 𝑆 be a
scheme. Let 𝑋 be an algebraic space over 𝑆. Then 𝑋 is locally of finite presentation over 𝑆
if and only if 𝑋, as a functor (Sch/𝑆)𝑜𝑝𝑝 → Sets, is limit preserving. Compare with Limits,
Remark 27.4.2.

46.5. Conormal sheaf of an immersion

Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be a closed immersion of algebraic spaces over 𝑆. Let
ℐ ⊂ 𝒪𝑋 be the corresponding quasi-coherent sheaf of ideals, see Morphisms of Spaces,
Lemma 42.16.1. Consider the short exact sequence

0 → ℐ2 → ℐ → ℐ/ℐ2 → 0

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05N0


2400 46. MORE ON MORPHISMS OF SPACES

of quasi-coherent sheaves on 𝑋. Since the sheaf ℐ/ℐ2 is annihilated by ℐ it corresponds to
a sheaf on 𝑍 by Morphisms of Spaces, Lemma 42.17.1. This quasi-coherent 𝒪𝑍-module is
the conormal sheaf of 𝑍 in 𝑋 and is often denoted ℐ/ℐ2 by the abuse of notation mentioned
in Morphisms of Spaces, Section 42.17.

In case 𝑖 ∶ 𝑍 → 𝑋 is a (locally closed) immersion we define the conormal sheaf of 𝑖 as
the conormal sheaf of the closed immersion 𝑖 ∶ 𝑍 → 𝑋 ⧵ 𝜕𝑍, see Morphisms of Spaces,
Remark 42.4.3. It is often denoted ℐ/ℐ2 where ℐ is the ideal sheaf of the closed immersion
𝑖 ∶ 𝑍 → 𝑋 ⧵ 𝜕𝑍.

Definition 46.5.1. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion. The conormal sheaf 𝒞𝑍/𝑋 of 𝑍 in 𝑋
or the conormal sheaf of 𝑖 is the quasi-coherent 𝒪𝑍-module ℐ/ℐ2 described above.

In [DG67, IV Definition 16.1.2] this sheaf is denoted 𝒩𝑍/𝑋. Wewill not follow this conven-
tion since we would like to reserve the notation 𝒩𝑍/𝑋 for the normal sheaf of the immersion.
It is defined as

𝒩𝑍/𝑋 = ℋ𝑜𝑚𝒪𝑍
(𝒞𝑍/𝑋, 𝒪𝑍) = ℋ𝑜𝑚𝒪𝑍

(ℐ/ℐ2, 𝒪𝑍)

provided the conormal sheaf is of finite presentation (otherwise the normal sheaf may not
even be quasi-coherent). We will come back to the normal sheaf later (insert future refer-
ence here).

Lemma 46.5.2. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion. Let 𝜑 ∶ 𝑈 → 𝑋
be an étale morphism where 𝑈 is a scheme. Set 𝑍𝑈 = 𝑈 ×𝑋 𝑍 which is a locally closed
subscheme of 𝑈. Then

𝒞𝑍/𝑋|𝑍𝑈
= 𝒞𝑍𝑈/𝑈

canonically and functorially in 𝑈.

Proof. Let 𝑇 ⊂ 𝑋 be a closed subspace such that 𝑖 defines a closed immersion into 𝑋 ⧵ 𝑇.
Let ℐ be the quasi-coherent sheaf of ideals on 𝑋⧵𝑇 defining 𝑍. Then the lemma just states
that ℐ|𝑈⧵𝜑−1(𝑇) is the sheaf of ideals of the immersion 𝑍′ → 𝑈 ⧵ 𝜑−1(𝑇). This is clear from
the construction of ℐ in Morphisms of Spaces, Lemma 42.16.1. �

Lemma 46.5.3. Let 𝑆 be a scheme. Let

𝑍
𝑖
//

𝑓
��

𝑋

𝑔
��

𝑍′ 𝑖′ // 𝑋′

be a commutative diagram of algebraic spaces over 𝑆. Assume 𝑖, 𝑖′ immersions. There is a
canonical map of 𝒪𝑍-modules

𝑓∗𝒞𝑍′/𝑋′ ⟶ 𝒞𝑍/𝑋

Proof. First find open subspaces 𝑈′ ⊂ 𝑋′ and 𝑈 ⊂ 𝑋 such that 𝑔(𝑈) ⊂ 𝑈′ and such that
𝑖(𝑍) ⊂ 𝑈 and 𝑖(𝑍′) ⊂ 𝑈′ are closed (proof existence omitted). Replacing 𝑋 by 𝑈 and 𝑋′

by 𝑈′ we may assume that 𝑖 and 𝑖′ are closed immersions. Let ℐ′ ⊂ 𝒪𝑋′ and ℐ ⊂ 𝒪𝑋
be the quasi-coherent sheaves of ideals associated to 𝑖′ and 𝑖, see Morphisms of Spaces,
Lemma 42.16.1. Consider the composition

𝑔−1ℐ′ → 𝑔−1𝒪𝑋′
𝑔♯

−−→ 𝒪𝑋 → 𝒪𝑋/ℐ = 𝑖∗𝒪𝑍
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Since 𝑔(𝑖(𝑍)) ⊂ 𝑍′ we conclude this composition is zero (see statement on factorizations
in Morphisms of Spaces, Lemma 42.16.1). Thus we obtain a commutative diagram

0 // ℐ // 𝒪𝑋
// 𝑖∗𝒪𝑍

// 0

0 // 𝑔−1ℐ′ //

OO

𝑔−1𝒪𝑋′ //

OO

𝑔−1𝑖′
∗𝒪𝑍′ //

OO

0

The lower row is exact since 𝑔−1 is an exact functor. By exactnesswe also see that (𝑔−1ℐ′)2 =
𝑔−1((ℐ′)2). Hence the diagram induces a map 𝑔−1(ℐ′/(ℐ′)2) → ℐ/ℐ2. Pulling back (using
𝑖−1 for example) to 𝑍 we obtain 𝑖−1𝑔−1(ℐ′/(ℐ′)2) → 𝒞𝑍/𝑋. Since 𝑖−1𝑔−1 = 𝑓−1(𝑖′)−1 this
gives a map 𝑓−1𝒞𝑍′/𝑋′ → 𝒞𝑍/𝑋, which induces the desired map. �

Lemma 46.5.4. Let 𝑆 be a scheme. The conormal sheaf of Definition 46.5.1, and its func-
toriality of Lemma 46.5.3 satisfy the following properties:

(1) If 𝑍 → 𝑋 is an immersion of schemes over 𝑆, then the conormal sheaf agrees
with the one from Morphisms, Definition 24.31.1.

(2) If in Lemma 46.5.3 all the spaces are schemes, then the map 𝑓∗𝒞𝑍′/𝑋′ → 𝒞𝑍/𝑋
is the same as the one constructed in Morphisms, Lemma 24.31.3.

(3) Given a commutative diagram

𝑍
𝑖
//

𝑓
��

𝑋

𝑔
��

𝑍′ 𝑖′ //

𝑓′

��

𝑋′

𝑔′

��
𝑍″ 𝑖″ // 𝑋″

then themap (𝑓′∘𝑓)∗𝒞𝑍″/𝑋″ → 𝒞𝑍/𝑋 is the same as the composition of 𝑓∗𝒞𝑍′/𝑋′ →
𝒞𝑍/𝑋 with the pullback by 𝑓 of (𝑓′)∗𝒞𝑍″/𝑋″ → 𝒞𝑍′/𝑋′

Proof. Omitted. Note that Part (1) is a special case of Lemma 46.5.2. �

Lemma 46.5.5. Let 𝑆 be a scheme. Let

𝑍
𝑖
//

𝑓
��

𝑋

𝑔
��

𝑍′ 𝑖′ // 𝑋′

be a fibre product diagram of algebraic spaces over 𝑆. Assume 𝑖, 𝑖′ immersions. Then the
canonical map 𝑓∗𝒞𝑍′/𝑋′ → 𝒞𝑍/𝑋 of Lemma 46.5.3 is surjective. If 𝑔 is flat, then it is an
isomorphism.

Proof. Choose a commutative diagram

𝑈 //

��

𝑋

��
𝑈′ // 𝑋′

where 𝑈, 𝑈′ are schemes and the horizontal arrows are surjective and étale, see Spaces,
Lemma 40.11.4. Then using Lemmas 46.5.2 and 46.5.4 we see that the question reduces
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to the case of a morphism of schemes. In the schemes case this is Morphisms, Lemma
24.31.4. �

Lemma 46.5.6. Let 𝑆 be a scheme. Let 𝑍 → 𝑌 → 𝑋 be immersions of algebraic spaces.
Then there is a canonical exact sequence

𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0

where the maps come from Lemma 46.5.3 and 𝑖 ∶ 𝑍 → 𝑌 is the first morphism.

Proof. Let 𝑈 be a scheme and let 𝑈 → 𝑋 be a surjective étale morphism. Via Lemmas
46.5.2 and 46.5.4 the exactness of the sequence translates immediately into the exactness
of the corresponding sequence for the immersions of schemes 𝑍 ×𝑋 𝑈 → 𝑌 ×𝑋 𝑈 → 𝑈.
Hence the lemma follows from Morphisms, Lemma 24.31.5. �

46.6. Sheaf of differentials of a morphism

We suggest the reader take a look at the corresponding section in the chapter on commuta-
tive algebra (Algebra, Section 7.122), the corresponding section in the chapter onmorphism
of schemes (Morphisms, Section 24.32) as well as Modules on Sites, Section 16.29. We
first show that the notion of sheaf of differentials for a morphism of schemes agrees with
the corresponding morphism of small étale (ringed) sites.

To clearly state the following lemma we temporarily go back to denoting ℱ𝑎 the sheaf of
𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒

-modules associated to a quasi-coherent 𝒪𝑋-module ℱ on the scheme 𝑋, see Descent,
Definition 31.6.2.

Lemma 46.6.1. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes. Let 𝑓𝑠𝑚𝑎𝑙𝑙 ∶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒 → 𝑌 ́𝑒𝑡𝑎𝑙𝑒 be
the associated morphism of small étale sites, see Descent, Remark 31.6.4. Then there is a
canonical isomorphism

(Ω𝑋/𝑌)𝑎 = Ω𝑋 ́𝑒𝑡𝑎𝑙𝑒/𝑌 ́𝑒𝑡𝑎𝑙𝑒

compatible with universal derivations. Here the first module is the sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 asso-
ciated to the quasi-coherent 𝒪𝑋-module Ω𝑋/𝑌, see Morphisms, Definition 24.32.4, and the
second module is the one from Modules on Sites, Definition 16.29.3.

Proof. Let ℎ ∶ 𝑈 → 𝑋 be an étale morphism. In this case the natural map ℎ∗Ω𝑋/𝑌 → Ω𝑈/𝑌
is an isomorphism, see More on Morphisms, Lemma 33.7.7. This means that there is a
natural 𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒

-derivation
d𝑎 ∶ 𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒

⟶ (Ω𝑋/𝑌)𝑎

since we have just seen that the value of (Ω𝑋/𝑌)𝑎 on any object 𝑈 of 𝑋 ́𝑒𝑡𝑎𝑙𝑒 is canonically
identified with Γ(𝑈, Ω𝑈/𝑌). By the universal property of d𝑋/𝑌 ∶ 𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒

→ Ω𝑋 ́𝑒𝑡𝑎𝑙𝑒/𝑌 ́𝑒𝑡𝑎𝑙𝑒
there

is a unique 𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒
-linear map 𝑐 ∶ Ω𝑋 ́𝑒𝑡𝑎𝑙𝑒/𝑌 ́𝑒𝑡𝑎𝑙𝑒

→ (Ω𝑋/𝑌)𝑎 such that d𝑎 = 𝑐 ∘ d𝑋/𝑌.

Conversely, suppose that ℱ is an 𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒
-module and 𝐷 ∶ 𝒪𝑋 ́𝑒𝑡𝑎𝑙𝑒

→ ℱ is a 𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒
-derivation.

Then we can simply restrict 𝐷 to the small Zariski site 𝑋𝑍𝑎𝑟 of 𝑋. Since sheaves on 𝑋𝑍𝑎𝑟
agree with sheaves on 𝑋, see Descent, Remark 31.6.3, we see that 𝐷|𝑋𝑍𝑎𝑟

∶ 𝒪𝑋 → ℱ|𝑋𝑍𝑎𝑟
is just a ``usual'' 𝑌-derivation. Hence we obtain a map 𝜓 ∶ Ω𝑋/𝑌 ⟶ ℱ|𝑋𝑍𝑎𝑟

such that
𝐷|𝑋𝑍𝑎𝑟

= 𝜓 ∘ d. In particular, if we apply this with ℱ = Ω𝑋 ́𝑒𝑡𝑎𝑙𝑒/𝑌 ́𝑒𝑡𝑎𝑙𝑒
we obtain a map

𝑐′ ∶ Ω𝑋/𝑌 ⟶ Ω𝑋 ́𝑒𝑡𝑎𝑙𝑒/𝑌 ́𝑒𝑡𝑎𝑙𝑒
|𝑋𝑍𝑎𝑟

Denote id ́𝑒𝑡𝑎𝑙𝑒,𝑍𝑎𝑟 ∶ 𝑋 ́𝑒𝑡𝑎𝑙𝑒 → 𝑋𝑍𝑎𝑟 the morphism of ringed sites discussed in Descent,
Remark 31.6.4 and Lemma 31.6.5. Since the restriction functor ℱ ↦ ℱ|𝑋𝑍𝑎𝑟

is equal to
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id ́𝑒𝑡𝑎𝑙𝑒,𝑍𝑎𝑟,∗, since id∗
́𝑒𝑡𝑎𝑙𝑒,𝑍𝑎𝑟 is left adjoint to id ́𝑒𝑡𝑎𝑙𝑒,𝑍𝑎𝑟,∗ and since (Ω𝑋/𝑌)𝑎 = id∗

́𝑒𝑡𝑎𝑙𝑒,𝑍𝑎𝑟Ω𝑋/𝑌
we see that 𝑐′ is adjoint to a map

𝑐″ ∶ (Ω𝑋/𝑌)𝑎 ⟶ Ω𝑋 ́𝑒𝑡𝑎𝑙𝑒/𝑌 ́𝑒𝑡𝑎𝑙𝑒
.

We claim that 𝑐″ and 𝑐′ are mutually inverse. This claim finishes the proof of the lemma.
To see this it is enough to show that 𝑐″(d(𝑓)) = d𝑋/𝑌(𝑓) and 𝑐(d𝑋/𝑌(𝑓)) = d(𝑓) if 𝑓 is a local
section of 𝒪𝑋 over an open of 𝑋. We omit the verification. �

This clears the way for the following definition. For an alternative, see Remark 46.6.5.

Definition 46.6.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The sheaf of differentials Ω𝑋/𝑌 of 𝑋 over 𝑌 is sheaf of differentials (Modules on
Sites, Definition 16.29.6) for the morphism of ringed topoi

(𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓♯) ∶ (𝑋 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑋) → (𝑌 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝑌)

of Properties of Spaces, Lemma 41.18.3. The universal 𝑌-derivationwill be denoted d𝑋/𝑌 ∶
𝒪𝑋 → Ω𝑋/𝑌.

By Lemma 46.6.1 this does not conflict with the already existing notion in case 𝑋 and 𝑌
are representable. From now on, if 𝑋 and 𝑌 are representable, we no longer distinguish
between the sheaf of differentials defined above and the one defined in Morphisms, Defini-
tion 24.32.4. We want to relate this to the usual modules of differentials for morphisms of
schemes. Here is the key lemma.

Lemma 46.6.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Consider any commutative diagram

𝑈

𝑎
��

𝜓
// 𝑉

𝑏
��

𝑋
𝑓 // 𝑌

where the vertical arrows are étale morphisms of algebraic spaces. Then

Ω𝑋/𝑌|𝑈 ́𝑒𝑡𝑎𝑙𝑒
= Ω𝑈/𝑉

In particular, if 𝑈, 𝑉 are schemes, then this is equal to the usual sheaf of differentials of the
morphism of schemes 𝑈 → 𝑉.

Proof. By Properties of Spaces, Lemma 41.15.10 and Equation (41.15.10.1) we may think
of the restriction of a sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 to 𝑈 ́𝑒𝑡𝑎𝑙𝑒 as the pullback by 𝑎𝑠𝑚𝑎𝑙𝑙. Similarly for 𝑏. By
Modules on Sites, Lemma 16.29.4 we have

Ω𝑋/𝑌|𝑈 ́𝑒𝑡𝑎𝑙𝑒
= Ω𝒪𝑈 ́𝑒𝑡𝑎𝑙𝑒/𝑎−1

𝑠𝑚𝑎𝑙𝑙𝑓
−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒

Since 𝑎−1
𝑠𝑚𝑎𝑙𝑙𝑓

−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒

= 𝜓−1
𝑠𝑚𝑎𝑙𝑙𝑏

−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑌 ́𝑒𝑡𝑎𝑙𝑒

= 𝜓−1
𝑠𝑚𝑎𝑙𝑙𝒪𝑉 ́𝑒𝑡𝑎𝑙𝑒

we see that the lemma holds.
�

Lemma 46.6.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Then Ω𝑋/𝑌 is a quasi-coherent 𝒪𝑋-module.

Proof. Choose a diagram as in Lemma 46.6.3 with 𝑎 and 𝑏 surjective and 𝑈 and 𝑉 schemes.
Thenwe see thatΩ𝑋/𝑌|𝑈 = Ω𝑈/𝑉 which is quasi-coherent byMorphisms, Definition 24.32.4.
Hence we conclude that Ω𝑋/𝑌 is quasi-coherent by Properties of Spaces, Lemma 41.26.6.

�
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Remark 46.6.5. Now that we know that Ω𝑋/𝑌 is quasi-coherent we can attempt to construct
it in another manner. For example we can use the result of Properties of Spaces, Section
41.29 to construct the sheaf of differentials by glueing. For example if 𝑌 is a scheme and if
𝑈 → 𝑋 is a surjective étale morphism from a scheme towards 𝑋, then we see that Ω𝑈/𝑌 is
a quasi-coherent 𝒪𝑈-module, and since 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are étale we get an isomorphism

𝛼 ∶ 𝑠∗Ω𝑈/𝑌 → Ω𝑅/𝑌 → 𝑡∗Ω𝑈/𝑌

by using Morphisms, Lemma 24.33.16. You check that this satisfies the cocycle condition
and you're done. If 𝑌 is not a scheme, then you define Ω𝑈/𝑌 as the cokernel of the map
(𝑈 → 𝑌)∗Ω𝑌/𝑆 → Ω𝑈/𝑆, and proceed as before. This two step process is a little bit ugly.
Another possibility is to glue the sheaves Ω𝑈/𝑉 for any diagram as in Lemma 46.6.3 but
this is not very elegant either. Both approaches will work however, and will give a slightly
more elementary construction of the sheaf of differentials.

Lemma 46.6.6. Let 𝑆 be a scheme. Let

𝑋′

��

𝑓
// 𝑋

��
𝑌′ // 𝑌

be a commutative diagram of algebraic spaces. The map 𝑓♯ ∶ 𝒪𝑋 → 𝑓∗𝒪𝑋′ composed with
the map 𝑓∗d𝑋′/𝑌′ ∶ 𝑓∗𝒪𝑋′ → 𝑓∗Ω𝑋′/𝑌′ is a 𝑌-derivation. Hence we obtain a canonical map
of 𝒪𝑋-modules Ω𝑋/𝑌 → 𝑓∗Ω𝑋′/𝑌′, and by adjointness of 𝑓∗ and 𝑓∗ a canonical 𝒪𝑋′-module
homomorphism

𝑐𝑓 ∶ 𝑓∗Ω𝑋/𝑌 ⟶ Ω𝑋′/𝑌′.
It is uniquely characterized by the property that 𝑓∗d𝑋/𝑌(𝑡) mapsto d𝑋′/𝑌′(𝑓∗𝑡) for any local
section 𝑡 of 𝒪𝑋.

Proof. This is a special case of Modules on Sites, Lemma 16.29.7. �

Lemma 46.6.7. Let 𝑆 be a scheme. Let

𝑋″

��

𝑔
// 𝑋′

��

𝑓
// 𝑋

��
𝑌″ // 𝑌′ // 𝑌

be a commutative diagram of algebraic spaces over 𝑆. Then we have

𝑐𝑓∘𝑔 = 𝑐𝑔 ∘ 𝑔∗𝑐𝑓

as maps (𝑓 ∘ 𝑔)∗Ω𝑋/𝑌 → Ω𝑋″/𝑌″.

Proof. Omitted. Hint: Use the characterization of 𝑐𝑓, 𝑐𝑔, 𝑐𝑓∘𝑔 in terms of the effect these
maps have on local sections. �

Lemma 46.6.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝐵 be morphisms of algebraic
spaces over 𝑆. Then there is a canonical exact sequence

𝑓∗Ω𝑌/𝐵 → Ω𝑋/𝐵 → Ω𝑋/𝑌 → 0

where the maps come from applications of Lemma 46.6.6.

Proof. Follows from the schemes version, see Morphisms, Lemma 24.32.11, of this result
via étale localization, see Lemma 46.6.3. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04CW
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04CX
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05Z7
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05Z8


46.6. SHEAF OF DIFFERENTIALS OF A MORPHISM 2405

Lemma 46.6.9. Let 𝑆 be a scheme. If 𝑋 → 𝑌 is an immersion of algebraic spaces over 𝑆
then Ω𝑋/𝑆 is zero.

Proof. Follows from the schemes version, see Morphisms, Lemma 24.32.16, of this result
via étale localization, see Lemma 46.6.3. �

Lemma 46.6.10. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝑖 ∶ 𝑍 → 𝑋
be an immersion of algebraic spaces over 𝐵. There is a canonical exact sequence

𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝐵 → Ω𝑍/𝐵 → 0
where the first arrow is induced by d𝑋/𝐵 and the second arrow comes from Lemma 46.6.6.

Proof. This is the algebraic spaces version of Morphisms, Lemma 24.32.17 and will be
a consequence of that lemma by étale localization, see Lemmas 46.6.3 and 46.5.2. How-
ever, we should make sure we can define the first arrow globally. Hence we explain the
meaning of ``induced by d𝑋/𝐵'' here. Namely, we may assume that 𝑖 is a closed immersion
after replacing 𝑋 by an open subspace. Let ℐ ⊂ 𝒪𝑋 be the quasi-coherent sheaf of ideals
corresponding to 𝑍 ⊂ 𝑋. Then d𝑋/𝑆 ∶ ℐ → Ω𝑋/𝑆 maps the subsheaf ℐ2 ⊂ ℐ to ℐΩ𝑋/𝑆.
Hence it induces a map ℐ/ℐ2 → Ω𝑋/𝑆/ℐΩ𝑋/𝑆 which is 𝒪𝑋/ℐ-linear. By Morphisms of
Spaces, Lemma 42.17.1 this corresponds to a map 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑆 as desired. �

Lemma 46.6.11. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝑖 ∶ 𝑍 → 𝑋
be an immersion of schemes over 𝐵, and assume 𝑖 (étale locally) has a left inverse. Then
the canonical sequence

0 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝐵 → Ω𝑍/𝐵 → 0
of Lemma 46.6.10 is (étale locally) split exact.

Proof. Clarification: we claim that if 𝑔 ∶ 𝑋 → 𝑍 is a left inverse of 𝑖, then 𝑖∗𝑐𝑔 is a
right inverse of the map 𝑖∗Ω𝑋/𝐵 → Ω𝑍/𝐵. Having said this, the result follows from the
corresponding result for morphisms of schemes by étale localization, see Lemmas 46.6.3
and 46.5.2. �

Lemma 46.6.12. Let 𝑆 be a scheme. Let 𝑋 → 𝑌 be a morphism of algebraic spaces over
𝑆. Let 𝑔 ∶ 𝑌′ → 𝑌 be a morphism of algebraic spaces over 𝑆. Let 𝑋′ = 𝑋𝑌′ be the base
change of 𝑋. Denote 𝑔′ ∶ 𝑋′ → 𝑋 the projection. Then the map

(𝑔′)∗Ω𝑋/𝑌 → Ω𝑋′/𝑌′

of Lemma 46.6.6 is an isomorphism.

Proof. Follows from the schemes version, see Morphisms, Lemma 24.32.12 and étale lo-
calization, see Lemma 46.6.3. �

Lemma 46.6.13. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝐵 and 𝑔 ∶ 𝑌 → 𝐵 be morphisms of
algebraic spaces over 𝑆 with the same target. Let 𝑝 ∶ 𝑋 ×𝐵 𝑌 → 𝑋 and 𝑞 ∶ 𝑋 ×𝐵 𝑌 → 𝑌
be the projection morphisms. The maps from Lemma 46.6.6

𝑝∗Ω𝑋/𝑆 ⊕ 𝑞∗Ω𝑌/𝑆 ⟶ Ω𝑋×𝑆𝑌/𝑆

give an isomorphism.

Proof. Follows from the schemes version, see Morphisms, Lemma 24.32.13 and étale lo-
calization, see Lemma 46.6.3. �

Lemma 46.6.14. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is locally of finite type, then Ω𝑋/𝑌 is a finite type 𝒪𝑋-module.
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Proof. Follows from the schemes version, see Morphisms, Lemma 24.32.14 and étale lo-
calization, see Lemma 46.6.3. �

Lemma 46.6.15. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is locally of finite type, then Ω𝑋/𝑌 is an 𝒪𝑋-module of finite presentation.

Proof. Follows from the schemes version, see Morphisms, Lemma 24.32.15 and étale lo-
calization, see Lemma 46.6.3. �

46.7. Topological invariance of an étale site

We show that the site 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 is a ``topological invariant''. We will prove later that actu-
ally also 𝑋 ́𝑒𝑡𝑎𝑙𝑒, which consists of the representable objects in 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, is a topological
invariant too (insert future reference here).

Theorem 46.7.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Assume 𝑓 is integral, universally injective and surjective. The functor

𝑉 ⟼ 𝑉𝑋 = 𝑋 ×𝑌 𝑉

defines an equivalence of categories 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 → 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒.

Proof. The morphism 𝑓 is representable and a universal homeomorphism, see Morphisms
of Spaces, Section 42.41.

We first prove that the functor is faithful. Suppose that 𝑉′, 𝑉 are objects of 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 and
that 𝑎, 𝑏 ∶ 𝑉′ → 𝑉 are distinct morphisms over 𝑌. Since 𝑉′, 𝑉 are étale over 𝑌 the equalizer

𝐸 = 𝑉′ ×(𝑎,𝑏),𝑉×𝑌𝑉,Δ𝑉/𝑌
𝑉

of 𝑎, 𝑏 is étale over 𝑌 also. Hence 𝐸 → 𝑉′ is an étale monomorphism (i.e., an open immer-
sion) which is an isomorphism if and only if it is surjective. Since 𝑋 → 𝑌 is a universal
homeomorphism we see that this is the case if and only if 𝐸𝑋 = 𝑉′

𝑋, i.e., if and only if
𝑎𝑋 = 𝑏𝑋.

Next, we prove that the functor is fully faithful. Suppose that 𝑉′, 𝑉 are objects of 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒
and that 𝑐 ∶ 𝑉′

𝑋 → 𝑉𝑋 is a morphism over 𝑋. We want to construct a morphism 𝑎 ∶ 𝑉′ → 𝑉
over 𝑌 such that 𝑎𝑋 = 𝑐. Let 𝑎′ ∶ 𝑉″ → 𝑉′ be a surjective étale morphism such that 𝑉″

is a separated algebraic space. If we can construct a morphism 𝑎″ ∶ 𝑉″ → 𝑉 such that
𝑎″

𝑋 = 𝑐 ∘ 𝑎′
𝑋, then the two compositions

𝑉″ ×𝑉′ 𝑉″ pr𝑖−−→ 𝑉″ 𝑎″

−−→ 𝑉

will be equal by the faithfulness of the functor proved in the first paragraph. Hence 𝑎″ will
factor through a unique morphism 𝑎 ∶ 𝑉′ → 𝑉 as 𝑉′ is (as a sheaf) the quotient of 𝑉″ by
the equivalence relation 𝑉″ ×𝑉′ 𝑉″. Hence we may assume that 𝑉′ is separated. In this case
the graph

Γ𝑐 ⊂ (𝑉′ ×𝑌 𝑉)𝑋
is open and closed (details omitted). Since 𝑋 → 𝑌 is a universal homeomorphism, there
exists an open and closed subspace Γ ⊂ 𝑉′ ×𝑌 𝑉 such that Γ𝑋 = Γ𝑐. The projection Γ → 𝑉′

is an étale morphism whose base change to 𝑋 is an isomorphism. Hence Γ → 𝑉′ is étale,
universally injective, and surjective, so an isomorphism by Morphisms of Spaces, Lemma
42.40.2. Thus Γ is the graph of a morphism 𝑎 ∶ 𝑉′ → 𝑉 as desired.

Finally, we prove that the functor is essentially surjective. Suppose that 𝑈 is an object of
𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. We have to find an object 𝑉 of 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 such that 𝑉𝑋 ≅ 𝑈. Let 𝑈′ → 𝑈 be a
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surjective étale morphism such that 𝑈′ ≅ 𝑉′
𝑋 and 𝑈′ ×𝑈 𝑈′ ≅ 𝑉″

𝑋 for some objects 𝑉″, 𝑉′ of
𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. Then by fully faithfulness of the functor we obtain morphisms 𝑠, 𝑡 ∶ 𝑉″ → 𝑉′

with 𝑡𝑋 = pr0 and 𝑠𝑋 = pr1 as morphisms 𝑈′ ×𝑈 𝑈′ → 𝑈′. Using that (pr0, pr1) ∶
𝑈′ ×𝑈 𝑈′ → 𝑈′ ×𝑆 𝑈′ is an étale equivalence relation, and that 𝑈′ → 𝑉′ and 𝑈′ ×𝑈 𝑈′ → 𝑉″

are universally injective and surjective we deduce that (𝑡, 𝑠) ∶ 𝑉″ → 𝑉′ ×𝑆 𝑉′ is an étale
equivalence relation. Then the quotient 𝑉 = 𝑉′/𝑉″ (see Spaces, Theorem 40.10.5) is an
algebraic space 𝑉 over 𝑌. There is a morphism 𝑉′ → 𝑉 such that 𝑉″ = 𝑉′ ×𝑉 𝑉′. Thus we
obtain a morphism 𝑉 → 𝑌 (see Descent on Spaces, Lemma 45.6.2). On base change to 𝑋 we
see that we have amorphism 𝑈′ → 𝑉𝑋 and a compatibe isomorphism 𝑈′×𝑉𝑋

𝑈′ = 𝑈′×𝑈𝑈′,
which implies that 𝑉𝑋 ≅ 𝑈 (by the lemma just cited once more).
Pick a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝑌. Pick a scheme 𝑈′ and a surjective
étale morphism 𝑈′ → 𝑈×𝑋 𝑊𝑋. Note that 𝑈′ and 𝑈′ ×𝑈 𝑈′ are schemes étale over 𝑋 whose
structure morphism to 𝑋 factors through the scheme 𝑊𝑋. Hence by Étale Cohomology,
Theorem 38.45.1 there exist schemes 𝑉′, 𝑉″ étale over 𝑊 whose base change to 𝑊𝑋 is
isomorphic to respectively 𝑈′ and 𝑈′ ×𝑈 𝑈′. This finishes the proof. �

Remark 46.7.2. Auniversal homeomorphism of algebraic spaces need not be representable,
see Morphisms of Spaces, Example 42.41.3. The argument in the proof of Theorem 46.7.1
above cannot be used in this case. In fact we do not know whether given a universal home-
omorphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 the categories 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 and 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 are
equivalent. If you do, please email stacks.project@gmail.com.

46.8. Thickenings

The following terminology may not be completely standard, but it is convenient.
Definition 46.8.1. Thickenings. Let 𝑆 be a scheme.

(1) We say an algebraic space 𝑋′ is a thickening of an algebraic space 𝑋 if 𝑋 is a
closed subspace of 𝑋′ and the associated topological spaces are equal.

(2) We say 𝑋′ is a first order thickening of 𝑋 if 𝑋 is a closed subspace of 𝑋′ and the
quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑋′ defining 𝑋 has square zero.

(3) Given two thickenings 𝑋 ⊂ 𝑋′ and 𝑌 ⊂ 𝑌′ a morphism of thickenings is a mor-
phism 𝑓′ ∶ 𝑋′ → 𝑌′ such that 𝑓(𝑋) ⊂ 𝑌, i.e., such that 𝑓′|𝑋 factors through the
closed subspace 𝑌. In this situation we set 𝑓 = 𝑓′|𝑋 ∶ 𝑋 → 𝑌 and we say that
(𝑓, 𝑓′) ∶ (𝑋 ⊂ 𝑋′) → (𝑌 ⊂ 𝑌′) is a morphism of thickenings.

(4) Let 𝐵 be an algebraic space. We similarly define thickenings over 𝐵, and mor-
phisms of thickenings over 𝐵. This means that the spaces 𝑋, 𝑋′, 𝑌, 𝑌′ above are
algebraic spaces endowedwith a structuremorphism to𝐵, and that themorphisms
𝑋 → 𝑋′, 𝑌 → 𝑌′ and 𝑓′ ∶ 𝑋′ → 𝑌′ are morphisms over 𝐵.

The fundamental equivalence. Note that if 𝑋 ⊂ 𝑋′ is a thickening, then 𝑋 → 𝑋′ is integral
and universally bijective. This implies that
(46.8.1.1) 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 = 𝑋′

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

via the pullback functor, see Theorem 46.7.1. Hence we may think of 𝒪𝑋′ as a sheaf on
𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. Thus a canonical equivalence of locally ringed topoi

(46.8.1.2) (Sh(𝑋′
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋′) ≅ (Sh(𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋′)

Below we will frequently combine this with the fully faithfulness result of Properties of
Spaces, Theorem 41.25.4. For example the closed immersion 𝑖𝑋 ∶ 𝑋 → 𝑋′ corresponds
to the surjective map 𝑖♯

𝑋 ∶ 𝒪𝑋′ → 𝒪𝑋.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05ZI
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Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let (𝑓, 𝑓′) ∶ (𝑋 ⊂ 𝑋′) → (𝑌 ⊂
𝑌′) be a morphism of thickenings over 𝐵. Note that the diagram of continuous functors

𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒
oo

𝑋′
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

OO

𝑌′
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒

OO

oo

is commutative and the vertical arrows are equivalences. Hence 𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝑓𝑠𝑚𝑎𝑙𝑙, 𝑓′
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒,

and 𝑓′
𝑠𝑚𝑎𝑙𝑙 all define the same morphism of topoi. Thus we may think of

(𝑓′)♯ ∶ 𝑓−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒪𝑌′ ⟶ 𝒪𝑋′

as a map of sheaves of 𝒪𝐵-algebras fitting into the commutative diagram

𝑓−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒪𝑌

𝑓♯
//// 𝒪𝑋

𝑓−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒪𝑌′

(𝑓′)♯
//

𝑖♯𝑌

OO

𝒪𝑋′

𝑖♯𝑋

OO

Here 𝑖𝑋 ∶ 𝑋 → 𝑋′ and 𝑖𝑌 ∶ 𝑌 → 𝑌′ are the names of the given closed immersions.

Lemma 46.8.2. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝑋 ⊂ 𝑋′

and 𝑌 ⊂ 𝑌′ be thickenings of algebraic spaces over 𝐵. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of
algebraic spaces over 𝐵. Given any map of 𝒪𝐵-algebras

𝛼 ∶ 𝑓−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒪𝑌′ → 𝒪𝑋′

such that
𝑓−1

𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒪𝑌
𝑓♯
//// 𝒪𝑋

𝑓−1
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒𝒪𝑌′

𝛼 //

𝑖♯𝑌

OO

𝒪𝑋′

𝑖♯𝑋

OO

commutes, there exists a unique morphism of (𝑓, 𝑓′) of thickenings over 𝐵 such that 𝛼 =
(𝑓′)♯.

Proof. To find 𝑓′, by Properties of Spaces, Theorem 41.25.4, all we have to do is show that
the morphism of ringed topoi

(𝑓𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝛼) ∶ (Sh(𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑋′) ⟶ (Sh(𝑌𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝑌′)
is a morphism of locally ringed topoi. This follows directly from the definition of mor-
phisms of locally ringed topoi (Modules on Sites, Definition 16.34.8), the fact that (𝑓, 𝑓♯)
is a morphism of locally ringed topoi (Properties of Spaces, Lemma 41.25.1), that 𝛼 fits
into the given commutative diagram, and the fact that the kernels of 𝑖♯

𝑋 and 𝑖♯
𝑌 are locally

nilpotent. Finally, the fact that 𝑓′∘𝑖𝑋 = 𝑖𝑌∘𝑓 follows from the commutativity of the diagram
and another application of Properties of Spaces, Theorem 41.25.4. We omit the verification
that 𝑓′ is a morphism over 𝐵. �

Lemma 46.8.3. Let 𝑆 be a scheme. Let 𝑋 ⊂ 𝑋′ be a thickening of algebraic spaces over
𝑆. For any open subspace 𝑈 ⊂ 𝑋 there exists a unique open subspace 𝑈′ ⊂ 𝑋′ such that
𝑈 = 𝑋 ×𝑋′ 𝑈′.
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Proof. Let 𝑈′ → 𝑋′ be the object of 𝑋′
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 corresponding to the object 𝑈 → 𝑋 of

𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 via (46.8.1.1). The morphism 𝑈′ → 𝑋′ is étale and universally injective, hence
an open immersion, see Morphisms of Spaces, Lemma 42.40.2. �

Finite order thickenings. Let 𝑖𝑋 ∶ 𝑋 → 𝑋′ be a thickening of algebraic spaces. Any local
section of the kernel ℐ = Ker(𝑖♯

𝑋) ⊂ 𝒪𝑋′ is locally nilpotent. Let us say that 𝑋 ⊂ 𝑋′ is
a finite order thickening if the ideal sheaf ℐ is ``globally'' nilpotent, i.e., if there exists an
𝑛 ≥ 0 such that ℐ𝑛+1 = 0. Technically the class of finite order thickenings 𝑋 ⊂ 𝑋′ is much
easier to handle than the general case. Namely, in this case we have a filtration

0 ⊂ ℐ𝑛 ⊂ ℐ𝑛−1 ⊂ … ⊂ ℐ ⊂ 𝒪𝑋′

and we see that 𝑋′ is filtered by closed subspaces

𝑋 = 𝑋0 ⊂ 𝑋1 ⊂ … ⊂ 𝑋𝑛−1 ⊂ 𝑋𝑛+1 = 𝑋′

such that each pair 𝑋𝑖 ⊂ 𝑋𝑖+1 is a first order thickening over 𝐵. Using simple induction
arguments many results proved for first order thickenings can be rephrased as results on
finite order thickenings.

Lemma 46.8.4. Let 𝑆 be a scheme. Let 𝑋 ⊂ 𝑋′ be a finite order thickening of algebraic
spaces over 𝑆. Let 𝑈 be an affine object of 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒. Then

Γ(𝑈, 𝒪𝑋′) → Γ(𝑈, 𝒪𝑋)

is surjective where we think of 𝒪𝑋′ as a sheaf on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 via (46.8.1.2).

Proof. We may assume that 𝑋 ⊂ 𝑋′ is a first order thickening by the principle explained
above. Denote ℐ the kernel of the surjection 𝒪𝑋′ → 𝒪𝑋. As ℐ is a quasi-coherent
𝒪𝑋′-module and since ℐ2 = 0 by the definition of a first order thickening we may ap-
ply Morphisms of Spaces, Lemma 42.17.1 to see that ℐ is a quasi-coherent 𝒪𝑋-module.
Hence the lemma follows from the long exact cohomology sequence associated to the short
exact sequence

0 → ℐ → 𝒪𝑋′ → 𝒪𝑋 → 0

and the fact that 𝐻1
́𝑒𝑡𝑎𝑙𝑒(𝑈, ℐ) = 0 as ℐ is quasi-coherent, see Descent, Proposition 31.6.10

and Coherent, Lemma 25.2.2. �

Lemma 46.8.5. Let 𝑆 be a scheme. Let 𝑋 ⊂ 𝑋′ be a finite order thickening of algebraic
spaces over 𝑆. If 𝑋 is (representable by) a scheme, then so is 𝑋′.

Proof. It suffices to prove this when 𝑋′ is a first order thickening of 𝑋. By Properties of
Spaces, Lemma 41.10.1 there is a largest open subspace of 𝑋′ which is a scheme. Thus
we have to show that every point 𝑥 of |𝑋′| = |𝑋| is contained in an open subspace of 𝑋′

which is a scheme. Using Lemma 46.8.3 we may replace 𝑋 ⊂ 𝑋′ by 𝑈 ⊂ 𝑈′ with 𝑥 ∈ 𝑈
and 𝑈 an affine scheme. Hence we may assume that 𝑋 is affine. Thus we reduce to the case
discussed in the next paragraph.

Assume 𝑋 ⊂ 𝑋′ is a first order thickening where 𝑋 is an affine scheme. Set 𝐴 = Γ(𝑋, 𝒪𝑋)
and 𝐴′ = Γ(𝑋′, 𝒪𝑋′). By Lemma 46.8.4 the map 𝐴 → 𝐴′ is surjective. The kernel 𝐼 is
an ideal of square zero. By Properties of Spaces, Lemma 41.30.1 we obtain a canonical
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morphism 𝑓 ∶ 𝑋′ → 𝑆𝑝𝑒𝑐(𝐴′) which fits into the following commutative diagram

𝑋 // 𝑋′

𝑓
��

𝑆𝑝𝑒𝑐(𝐴) // 𝑆𝑝𝑒𝑐(𝐴′)

Because the horizontal arrows are thickenings it is clear that 𝑓 is universally injective and
surjective. Hence it suffices to show that 𝑓 is étale, since thenMorphisms of Spaces, Lemma
42.40.2 will imply that 𝑓 is an isomorphism.

To prove that 𝑓 is étale choose an affine scheme 𝑈′ and an étale morphism 𝑈′ → 𝑋′. It
suffices to show that 𝑈′ → 𝑋′ → 𝑆𝑝𝑒𝑐(𝐴′) is étale, see Properties of Spaces, Definition
41.13.2. Write 𝑈′ = 𝑆𝑝𝑒𝑐(𝐵′). Set 𝑈 = 𝑋×𝑋′ 𝑈′. Since 𝑈 is a closed subspace of 𝑈′, it is a
closed subscheme, hence 𝑈 = 𝑆𝑝𝑒𝑐(𝐵) with 𝐵′ → 𝐵 surjective. Denote 𝐽 = Ker(𝐵′ → 𝐵)
and note that 𝐽 = Γ(𝑈, ℐ) where ℐ = Ker(𝒪𝑋′ → 𝒪𝑋) on 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 as in the proof of
Lemma 46.8.4. The morphism 𝑈′ → 𝑋′ → 𝑆𝑝𝑒𝑐(𝐴′) induces a commutative diagram

0 // 𝐽 // 𝐵′ // 𝐵 // 0

0 // 𝐼 //

OO

𝐴′ //

OO

𝐴 //

OO

0

Now, since ℐ is a quasi-coherent 𝒪𝑋-module we have ℐ = ( ̃𝐼)𝑎, see Descent, Definition
31.6.2 for notation and Descent, Proposition 31.6.11 for why this is true. Hence we see
that 𝐽 = 𝐼 ⊗𝐴 𝐵. Finally, note that 𝐴 → 𝐵 is étale as 𝑈 → 𝑋 is étale as the base change
of the étale morphism 𝑈′ → 𝑋′. We conclude that 𝐴′ → 𝐵′ is étale by Algebra, Lemma
7.132.11. �

The following lemma will be superseded by the more general (insert future reference here).

Lemma 46.8.6. Let 𝑆 be a scheme. Let 𝑋 ⊂ 𝑋′ be a first order thickening of algebraic
spaces over 𝑆. The functor

𝑉′ ⟼ 𝑉 = 𝑋 ×𝑋′ 𝑉′

defines an equivalence of categories 𝑋′
́𝑒𝑡𝑎𝑙𝑒 → 𝑋 ́𝑒𝑡𝑎𝑙𝑒.

Proof. The functor𝑉′ ↦ 𝑉 defines an equivalence of categories𝑋′
𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 → 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒,

see Theorem 46.7.1. Thus it suffices to show that 𝑉 is a scheme if and only if 𝑉′ is a scheme.
This is the content of Lemma 46.8.5. �

First order thickening are described as follows.

Lemma 46.8.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝐵 be a morphism of algebraic spaces
over 𝑆. Consider a short exact sequence

0 → ℐ → 𝒜 → 𝒪𝑋 → 0

of sheaves on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 where 𝒜 is a sheaf of 𝑓−1𝒪𝐵-algebras, 𝒜 → 𝒪𝑋 is a surjection of
sheaves of 𝑓−1𝒪𝐵-algebras, and ℐ is its kernel. If

(1) ℐ is an ideal of square zero in 𝒜, and
(2) ℐ is quasi-coherent as an 𝒪𝑋-module

then there exists a first order thickening 𝑋 ⊂ 𝑋′ over 𝐵 and an isomorphism 𝒪𝑋′ → 𝒜 of
𝑓−1𝒪𝐵-algebras compatible with the surjections to 𝒪𝑋.
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Proof. In this proof we redo some of the arguments used in the proofs of Lemmas 46.8.4
and 46.8.5. We first handle the case 𝐵 = 𝑆 = 𝑆𝑝𝑒𝑐(𝐙). Let 𝑈 be an affine scheme, and let
𝑈 → 𝑋 be étale. Then

0 → ℐ(𝑈) → 𝒜(𝑈) → 𝒪𝑋(𝑈) → 0
is exact as 𝐻1(𝑈 ́𝑒𝑡𝑎𝑙𝑒, ℐ) = 0 as ℐ is quasi-coherent, see Descent, Proposition 31.6.10 and
Coherent, Lemma 25.2.2. If 𝑉 → 𝑈 is a morphism of affine objects of 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 then

ℐ(𝑉) = ℐ(𝑈) ⊗𝒪𝑋(𝑈) 𝒪𝑋(𝑉)

since ℐ is a quasi-coherent 𝒪𝑋-module, see Descent, Proposition 31.6.11. Hence 𝒜(𝑈) →
𝒜(𝑉) is an étale ring map, see Algebra, Lemma 7.132.11. Hence we see that

𝑈 ⟼ 𝑈′ = 𝑆𝑝𝑒𝑐(𝒜(𝑈))
is a functor from 𝑋𝑎𝑓𝑓𝑖𝑛𝑒, ́𝑒𝑡𝑎𝑙𝑒 to the category of affine schemes and étale morphisms. In
fact, we claim that this functor can be extended to a functor 𝑈 ↦ 𝑈′ on all of 𝑋 ́𝑒𝑡𝑎𝑙𝑒. To
see this, if 𝑈 is an object of 𝑋 ́𝑒𝑡𝑎𝑙𝑒, note that

0 → ℐ|𝑈𝑍𝑎𝑟
→ 𝒜|𝑈𝑍𝑎𝑟

→ 𝒪𝑋|𝑈𝑍𝑎𝑟
→ 0

and ℐ|𝑈𝑍𝑎𝑟
is a quasi-coherent sheaf on 𝑈, see Descent, Proposition 31.6.14. Hence by

More on Morphisms, Lemma 33.2.2 we obtain a first order thickening 𝑈 ⊂ 𝑈′ of schemes
such that 𝒪𝑈′ is isomorphic to 𝒜|𝑈𝑍𝑎𝑟

. It is clear that this construction is compatible with
the construction for affines above.
Choose a presentation 𝑋 = 𝑈/𝑅, see Spaces, Definition 40.9.3 so that 𝑠, 𝑡 ∶ 𝑅 → 𝑈 define
an étale equivalence relation. Applying the functor above we obtain an étale equivalence
relation 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ in schemes. Consider the algebraic space𝑋′ = 𝑈′/𝑅′ (see Spaces,
Theorem 40.10.5). The morphism 𝑋 = 𝑈/𝑅 → 𝑈′/𝑅′ = 𝑋′ is a first order thickening.
Consider 𝒪𝑋′ viewed as a sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. By construction we have an isomorphism

𝛾 ∶ 𝒪𝑋′|𝑈 ́𝑒𝑡𝑎𝑙𝑒
⟶ 𝒜|𝑈 ́𝑒𝑡𝑎𝑙𝑒

such that 𝑠−1𝛾 agrees with 𝑡−1𝛾 on 𝑅 ́𝑒𝑡𝑎𝑙𝑒. Hence by Properties of Spaces, Lemma 41.15.13
this implies that 𝛾 comes from a unique isomorphism 𝒪𝑋′ → 𝒜 as desired.
To handle the case of a general base algebraic space 𝐵, we first construct 𝑋′ as an algebraic
space over 𝐙 as above. Then we use the isomorphism 𝒪𝑋′ → 𝒜 to define 𝑓−1𝒪𝐵 → 𝒪𝑋′.
According to Lemma 46.8.2 this defines a morphism 𝑋′ → 𝐵 compatible with the given
morphism 𝑋 → 𝐵 and we are done. �

46.9. First order infinitesimal neighbourhood

A natural construction of first order thickenings is the following. Suppose that 𝑖 ∶ 𝑍 → 𝑋
be an immersion of algebraic spaces. Choose an open subspace 𝑈 ⊂ 𝑋 such that 𝑖 identifies
𝑍 with a closed subspace 𝑍 ⊂ 𝑈 (see Morphisms of Spaces, Remark 42.4.3). Let ℐ ⊂ 𝒪𝑈
be the quasi-coherent sheaf of ideals defining 𝑍 in 𝑈, see Morphisms of Spaces, Lemma
42.16.1. Then we can consider the closed subspace 𝑍′ ⊂ 𝑈 defined by the quasi-coherent
sheaf of ideals ℐ2.

Definition 46.9.1. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of algebraic spaces. The first order
infinitesimal neighbourhood of 𝑍 in 𝑋 is the first order thickening 𝑍 ⊂ 𝑍′ over 𝑋 described
above.

This thickening has the following universal property (which will assuage any fears that the
construction above depends on the choice of the open 𝑈).
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Lemma 46.9.2. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of algebraic spaces. The first order
infinitesimal neighbourhood 𝑍′ of 𝑍 in 𝑋 has the following universal property: Given any
commutative diagram

𝑍

𝑖
��

𝑇𝑎
oo

��
𝑋 𝑇′𝑏oo

where 𝑇 ⊂ 𝑇′ is a first order thickening over 𝑋, there exists a unique morphism (𝑎′, 𝑎) ∶
(𝑇 ⊂ 𝑇′) → (𝑍 ⊂ 𝑍′) of thickenings over 𝑋.

Proof. Let 𝑈 ⊂ 𝑋 be the open subspace used in the construction of 𝑍′, i.e., an open such
that 𝑍 is identified with a closed subspace of 𝑈 cut out by the quasi-coherent sheaf of ideals
ℐ. Since |𝑇| = |𝑇′| we see that |𝑏|(|𝑇′|) ⊂ |𝑈|. Hence we can think of 𝑏 as a morphism into
𝑈, see Properties of Spaces, Lemma 41.4.9. Let 𝒥 ⊂ 𝒪𝑇′ be the square zero quasi-coherent
sheaf of ideals cutting out 𝑇. By the commutativity of the diagram we have 𝑏|𝑇 = 𝑖 ∘ 𝑎
where 𝑖 ∶ 𝑍 → 𝑈 is the closed immersion. We conclude that 𝑏♯(𝑏−1ℐ) ⊂ 𝒥 by Morphisms
of Spaces, Lemma 42.16.1. As 𝑇′ is a first order thickening of 𝑇 we see that 𝒥2 = 0 hence
𝑏♯(𝑏−1(ℐ2)) = 0. By Morphisms of Spaces, Lemma 42.16.1 this implies that 𝑏 factors
through 𝑍′. Letting 𝑎′ ∶ 𝑇′ → 𝑍′ be this factorization we win. �

Lemma 46.9.3. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of algebraic spaces. Let 𝑍 ⊂ 𝑍′ be the
first order infinitesimal neighbourhood of 𝑍 in 𝑋. Then the diagram

𝑍 //

��

𝑍′

��
𝑍 // 𝑋

induces a map of conormal sheaves 𝒞𝑍/𝑋 → 𝒞𝑍/𝑍′ by Lemma 46.5.3. This map is an
isomorphism.

Proof. This is clear from the construction of 𝑍′ above. �

46.10. Formally smooth, étale, unramified transformations

Recall that a ring map 𝑅 → 𝐴 is called formally smooth, resp. formally étale, resp. for-
mally unramified (see Algebra, Definition 7.127.1, resp. Definition 7.137.1, resp. Definition
7.135.1) if for every commutative solid diagram

𝐴 //

!!

𝐵/𝐼

𝑅 //

OO

𝐵

OO

where 𝐼 ⊂ 𝐵 is an ideal of square zero, there exists a, resp. exists a unique, resp. exists at
most one dotted arrow which makes the diagram commute. This motivates the following
analogue for morphisms of algebraic spaces, and more generally functors.
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Definition 46.10.1. Let 𝑆 be a scheme. Let 𝑎 ∶ 𝐹 → 𝐺 be a transformation of functors
𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝

𝑓𝑝𝑝𝑓 → Sets. Consider commutative solid diagrams of the form

𝐹

𝑎
��

𝑇

𝑖
��

oo

𝐺 𝑇′oo

__

where 𝑇 and 𝑇′ are affine schemes and 𝑖 is a closed immersion defined by an ideal of square
zero.

(1) We say 𝑎 is formally smooth if given any solid diagram as above there exists a
dotted arrow making the diagram commute2.

(2) We say 𝑎 is formally étale if given any solid diagram as above there exists exactly
one dotted arrow making the diagram commute.

(3) We say 𝑎 is formally unramified if given any solid diagram as above there exists
at most one dotted arrow making the diagram commute.

Lemma 46.10.2. Let 𝑆 be a scheme. Let 𝑎 ∶ 𝐹 → 𝐺 be a transformation of functors
𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝

𝑓𝑝𝑝𝑓 → Sets. Then 𝑎 is formally étale if and only if 𝑎 is both formally smooth
and formally unramified.

Proof. Formal from the definition. �

Lemma 46.10.3. Composition.
(1) A composition of formally smooth transformations of functors is formally smooth.
(2) A composition of formally étale transformations of functors is formally étale.
(3) A composition of formally unramified transformations of functors is formally un-

ramified.

Proof. This is formal. �

Lemma 46.10.4. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 →

Sets. Let 𝑎 ∶ 𝐹 → 𝐺, 𝑏 ∶ 𝐻 → 𝐺 be transformations of functors. Consider the fibre
product diagram

𝐻 ×𝑏,𝐺,𝑎 𝐹
𝑏′
//

𝑎′

��

𝐹

𝑎
��

𝐻 𝑏 // 𝐺
(1) If 𝑎 is formally smooth, then the base change 𝑎′ is formally smooth.
(2) If 𝑎 is formally étale, then the base change 𝑎′ is formally étale.
(3) If 𝑎 is formally unramified, then the base change 𝑎′ is formally unramified.

Proof. This is formal. �

Lemma 46.10.5. Let 𝑆 be a scheme. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets. Let 𝑎 ∶ 𝐹 → 𝐺 be a

representable tranformation of functors.
(1) If 𝑎 is smooth then 𝑎 is formally smooth.
(2) If 𝑎 is étale, then 𝑎 is formally étale.
(3) If 𝑎 is unramified, then 𝑎 is formally unramified.

2This is just one possible definition that one can make here. Another slightly weaker condition would be
to require that the dotted arrow exists fppf locally on 𝑇′. This weaker notion has in some sense better formal
properties.
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Proof. Consider a solid commutative diagram

𝐹

𝑎
��

𝑇

𝑖
��

oo

𝐺 𝑇′oo

__

as in Definition 46.10.1. Then 𝐹 ×𝐺 𝑇′ is a scheme smooth (resp. étale, resp. unramified)
over 𝑇′. Hence by More on Morphisms, Lemma 33.9.7 (resp. Lemma 33.6.9, resp. Lemma
33.4.8) we can fill in (resp. uniquely fill in, resp. fill in in at most one way) the dotted arrow
in the diagram

𝐹 ×𝐺 𝑇′

��

𝑇

𝑖
��

oo

𝑇′ 𝑇′oo

cc

an hence we also obtain the corresponding assertion in the first diagram. �

Lemma 46.10.6. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 →

Sets. Let 𝑎 ∶ 𝐹 → 𝐺, 𝑏 ∶ 𝐺 → 𝐻 be transformations of functors. Assume that 𝑎 is
representable, surjective, and étale.

(1) If 𝑏 is formally smooth, then 𝑏 ∘ 𝑎 is formally smooth.
(2) If 𝑏 is formally étale, then 𝑏 ∘ 𝑎 is formally étale.
(3) If 𝑏 is formally unramified, then 𝑏 ∘ 𝑎 is formally unramified.

Conversely, consider a solid commutative diagram

𝐺

𝑏
��

𝑇

𝑖
��

oo

𝐻 𝑇′oo

``

with 𝑇′ an affine scheme over 𝑆 and 𝑖 ∶ 𝑇 → 𝑇′ a closed immersion defined by an ideal of
square zero.

(4) If 𝑏 ∘ 𝑎 is formally smooth, then for every 𝑡 ∈ 𝑇 there exists an étale morphism of
affines 𝑈′ → 𝑇′ and a morphism 𝑈′ → 𝐺 such that

𝐺

𝑏
��

𝑇oo 𝑇 ×𝑇′ 𝑈′

��

oo

𝐻 𝑇′oo 𝑈′

hh

oo

commutes and 𝑡 is in the image of 𝑈′ → 𝑇′.
(5) If 𝑏 ∘ 𝑎 is formally unramified, then there exists at most one dotted arrow in the

diagram above, i.e., 𝑏 is formally unramified.
(6) If 𝑏 ∘ 𝑎 is formally étale, then there exists exactly one dotted arrow in the diagram

above, i.e., 𝑏 is formally étale.

Proof. Assume 𝑏 is formally smooth (resp. formally étale, resp. formally unramified). Since
an étale morphism is both smooth and unramified we see that 𝑎 is representable and smooth
(resp. étale, resp. unramified). Hence parts (1), (2) and (3) follow from a combination of
Lemma 46.10.5 and Lemma 46.10.3.
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Assume that 𝑏 ∘ 𝑎 is formally smooth. Consider a diagram as in the statement of the lemma.
Let 𝑊 = 𝐹×𝐺𝑇. By assumption 𝑊 is a scheme surjective étale over 𝑇. By ÉtaleMorphisms,
Theorem 37.15.2 there exists a scheme 𝑊′ étale over 𝑇′ such that 𝑊 = 𝑇 ×𝑇′ 𝑊′. Choose
an affine open subscheme 𝑈′ ⊂ 𝑊′ such that 𝑡 is in the image of 𝑈′ → 𝑇′. Because 𝑏 ∘ 𝑎 is
formally smooth we see that the exist morphisms 𝑈′ → 𝐹 such that

𝐹

𝑏∘𝑎
��

𝑊oo 𝑇 ×𝑇′ 𝑈′

��

oo

𝐻 𝑇′oo 𝑈′

hh

oo

commutes. Taking the composition 𝑈′ → 𝐹 → 𝐺 gives a map as in part (5) of the lemma.

Assume that 𝑓, 𝑔 ∶ 𝑇′ → 𝐺 are two dotted arrows fitting into the diagram of the lemma. Let
𝑊 = 𝐹 ×𝐺 𝑇. By assumption 𝑊 is a scheme surjective étale over 𝑇. By Étale Morphisms,
Theorem 37.15.2 there exists a scheme 𝑊′ étale over 𝑇′ such that 𝑊 = 𝑇 ×𝑇′ 𝑊′. Since 𝑎
is formally étale the compositions

𝑊′ → 𝑇′ 𝑓
−→ 𝐺 and 𝑊′ → 𝑇′ 𝑔

−→ 𝐺

lift to morphisms 𝑓′, 𝑔′ ∶ 𝑊′ → 𝐹 (lift on affine opens and glue by uniqueness). Now if
𝑏 ∘ 𝑎 ∶ 𝐹 → 𝐻 is formally unramified, then 𝑓′ = 𝑔′ and hence 𝑓 = 𝑔 as 𝑊′ → 𝑇′ is an étale
covering. This proves part (6) of the lemma.

Assume that 𝑏 ∘ 𝑎 is formally étale. Then by part (4) we can étale locally on 𝑇′ find a dotted
arrow fitting into the diagram and by part (5) this dotted arrow is unique. Hence we may
glue the local solutions to get assertion (6). Some details omitted. �

Remark 46.10.7. It is tempting to think that in the situation of Lemma 46.10.6 we have ``𝑏
formally smooth'' ⇔ ``𝑏 ∘ 𝑎 formally smooth''. However, this is likely not true in general.

Lemma 46.10.8. Let 𝑆 be a scheme. Let 𝐹, 𝐺, 𝐻 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets. Let 𝑎 ∶ 𝐹 → 𝐺,

𝑏 ∶ 𝐺 → 𝐻 be transformations of functors. Assume 𝑏 is formally unramified.
(1) If 𝑏 ∘ 𝑎 is formally unramified then 𝑎 is formally unramified.
(2) If 𝑏 ∘ 𝑎 is formally étale then 𝑎 is formally étale.
(3) If 𝑏 ∘ 𝑎 is formally smooth then 𝑎 is formally smooth.

Proof. Let 𝑇 ⊂ 𝑇′ be a closed immersion of affine schemes defined by an ideal of square
zero. Let 𝑔′ ∶ 𝑇′ → 𝐺 and 𝑓 ∶ 𝑇 → 𝐹 be given such that 𝑔′|𝑇 = 𝑎∘𝑓. Because 𝑏 is formally
unramified, there is a one to one correspondence between

{𝑓′ ∶ 𝑇′ → 𝐹 ∣ 𝑓 = 𝑓′|𝑇 and 𝑎 ∘ 𝑓′ = 𝑔′}

and
{𝑓′ ∶ 𝑇′ → 𝐹 ∣ 𝑓 = 𝑓′|𝑇 and 𝑏 ∘ 𝑎 ∘ 𝑓′ = 𝑏 ∘ 𝑔′}.

From this the lemma follows formally. �

46.11. Formally unramified morphisms

In this section we work out what it means that a morphism of algebraic spaces is formally
unramified.

Definition 46.11.1. Let 𝑆 be a scheme. A morphism 𝑓 ∶ 𝑋 → 𝑌 of algebraic spaces over 𝑆
is said to be formally unramified if it is formally unramified as a transformation of functors
as in Definition 46.10.1.
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We will not restate the results proved in the more general setting of formally unramified
transformations of functors in Section 46.10. It turns out we can characterize this property
in terms of vanishing of the module of relative differentials, see Lemma 46.11.6.

Lemma 46.11.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is formally unramified,
(2) for every diagram

𝑈

��

𝜓
// 𝑉

��
𝑋

𝑓 // 𝑌
where 𝑈 and 𝑉 are schemes and the vertical arrows are étale the morphism of
schemes 𝜓 is formally unramified (as in More on Morphisms, Definition 33.4.1),
and

(3) for one such diagram with surjective vertical arrows the morphism 𝜓 is formally
unramified.

Proof. Assume 𝑓 is formally unramified. By Lemma 46.10.5 the morphisms 𝑈 → 𝑋 and
𝑉 → 𝑌 are formally unramified. Thus by Lemma 46.10.3 the composition 𝑈 → 𝑌 is formally
unramified. Then it follows from Lemma 46.10.8 that 𝑈 → 𝑉 is formally unramified. Thus
(1) implies (2). And (2) implies (3) trivially

Assume given a diagram as in (3). By Lemma 46.10.5 the morphism 𝑉 → 𝑌 is formally
unramified. Thus by Lemma 46.10.3 the composition 𝑈 → 𝑌 is formally unramified. Then
it follows from Lemma 46.10.6 that 𝑋 → 𝑌 is formally unramified, i.e., (1) holds. �

Lemma 46.11.3. Let 𝑆 be a scheme. If 𝑓 ∶ 𝑋 → 𝑌 is a formally unramified morphism of
algebraic spaces over 𝑆, then given any solid commutative diagram

𝑋

𝑓
��

𝑇

𝑖
��

oo

𝑆 𝑇′oo

``

where 𝑇 ⊂ 𝑇′ is a first order thickening of algebraic spaces over 𝑆 there exists at most
one dotted arrow making the diagram commute. In other words, in Definition 46.11.1 the
condition that 𝑇 be an affine scheme may be dropped.

Proof. This is true because there exists a surjective étale morphism 𝑈′ → 𝑇′ where 𝑈′ is a
disjoint union of affine schemes (see Properties of Spaces, Lemma 41.6.1) and a morphism
𝑇′ → 𝑋 is determined by its restriction to 𝑈′. �

Lemma 46.11.4. A composition of formally unramified morphisms is formally unramified.

Proof. This is formal. �

Lemma 46.11.5. A base change of a formally unramified morphism is formally unramified.

Proof. This is formal. �

Lemma 46.11.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is formally unramified, and
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(2) Ω𝑋/𝑌 = 0.

Proof. This is a combination of Lemma 46.11.2, More on Morphisms, Lemma 33.4.7, and
Lemma 46.6.3. �

Lemma 46.11.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) The morphism 𝑓 is unramified,
(2) the morphism 𝑓 is locally of finite type and Ω𝑋/𝑌 = 0, and
(3) the morphism 𝑓 is locally of finite type and formally unramified.

Proof. Choose a diagram

𝑈

��

𝜓
// 𝑉

��
𝑋

𝑓 // 𝑌

where 𝑈 and 𝑉 are schemes and the vertical arrows are étale and surjective. Then we see

𝑓 unramified ⇔ 𝜓 unramified
⇔ 𝜓 locally finite type and Ω𝑈/𝑉 = 0
⇔ 𝑓 locally finite type and Ω𝑋/𝑌 = 0
⇔ 𝑓 locally finite type and formally unramified

Here we have used Morphisms, Lemma 24.34.2 and Lemma 46.11.6. �

Lemma 46.11.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is unramified and a monomorphism,
(2) 𝑓 is unramified and universally injective,
(3) 𝑓 is locally of finite type and a monomorphism,
(4) 𝑓 is universally injective, locally of finite type, and formally unramified.

Moreover, in this case 𝑓 is also representable, separated, and locally quasi-finite.

Proof. We have seen in Lemma 46.11.7 that being formally unramified and locally of finite
type is the same thing as being unramified. Hence (4) is equivalent to (2). A monomor-
phism is certainly formally unramified hence (3) implies (4). It is clear that (1) implies (3).
Finally, if (2) holds, then Δ ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is both an open immersion (Morphisms of
Spaces, Lemma 42.34.9) and surjective (Morphisms of Spaces, Lemma 42.18.2) hence an
isomorphism, i.e., 𝑓 is a monomorphism. In this way we see that (2) implies (1). Finally,
we see that 𝑓 is representable, separated, and locally quasi-finite by Morphisms of Spaces,
Lemmas 42.25.8 and 42.40.1. �

46.12. Universal first order thickenings

Let 𝑆 be a scheme. Let ℎ ∶ 𝑍 → 𝑋 be a morphism of algebraic spaces over 𝑆. A universal
first order thickening of 𝑍 over 𝑋 is a first order thickening 𝑍 ⊂ 𝑍′ over 𝑋 such that given
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any first order thickening 𝑇 ⊂ 𝑇′ over 𝑋 and a solid commutative diagram

(46.12.0.1)

𝑍

~~

𝑇

��

𝑎
oo

𝑍′

''

𝑇′𝑎′
oo

𝑏
ww𝑋

there exists a unique dotted arrow making the diagram commute. Note that in this situation
(𝑎, 𝑎′) ∶ (𝑇 ⊂ 𝑇′) → (𝑍 ⊂ 𝑍′) is a morphism of thickenings over 𝑋. Thus if a universal first
order thickening exists, then it is unique up to unique isomorphism. In general a universal
first order thickening does not exist, but if ℎ is formally unramified then it does. Before we
prove this, let us show that a universal first order thickening in the category of schemes is
a universal first order thickening in the category of algebraic spaces.

Lemma 46.12.1. Let 𝑆 be a scheme. Let ℎ ∶ 𝑍 → 𝑋 be a morphism of algebraic spaces
over 𝑆. Let 𝑍 ⊂ 𝑍′ be a first order thickening over 𝑋. The following are equivalent

(1) 𝑍 ⊂ 𝑍′ is a universal first order thickening,
(2) for any diagram (46.12.0.1) with 𝑇′ a scheme a unique dotted arrow exists making

the diagram commute, and
(3) for any diagram (46.12.0.1) with 𝑇′ an affine scheme a unique dotted arrow exists

making the diagram commute.

Proof. The implications (1) ⇒ (2) ⇒ (3) are formal. Assume (3) a assume given an ar-
bitrary diagram (46.12.0.1). Choose a presentation 𝑇′ = 𝑈′/𝑅′, see Spaces, Definition
40.9.3. We may assume that 𝑈′ = ∐ 𝑈′

𝑖 is a disjoint union of affines, so 𝑅′ = 𝑈′ ×𝑇′ 𝑈′ =
∐𝑖,𝑗 𝑈′

𝑖 ×′
𝑇 𝑈′

𝑗. For each pair (𝑖, 𝑗) choose an affine open covering 𝑈′
𝑖 ×′

𝑇 𝑈′
𝑗 = ⋃𝑘 𝑅′

𝑖𝑗𝑘.
Denote 𝑈𝑖, 𝑅𝑖𝑗𝑘 the fibre products with 𝑇 over 𝑇′. Then each 𝑈𝑖 ⊂ 𝑈′

𝑖 and 𝑅𝑖𝑗𝑘 ⊂ 𝑅′
𝑖𝑗𝑘 is a

first order thickening of affine schemes. Denote 𝑎𝑖 ∶ 𝑈𝑖 → 𝑍, resp. 𝑎𝑖𝑗𝑘 ∶ 𝑅𝑖𝑗𝑘 → 𝑍 the
composition of 𝑎 ∶ 𝑇 → 𝑍 with the morphism 𝑈𝑖 → 𝑇, resp. 𝑅𝑖𝑗𝑘 → 𝑇. By (3) applied
to 𝑎𝑖 ∶ 𝑈𝑖 → 𝑍 we obtain unique morphisms 𝑎′

𝑖 ∶ 𝑈′
𝑖 → 𝑍′. By (3) applied to 𝑎𝑖𝑗𝑘 we

see that the two compositions 𝑅′
𝑖𝑗𝑘 → 𝑅′

𝑖 → 𝑍′ and 𝑅′
𝑖𝑗𝑘 → 𝑅′

𝑗 → 𝑍′ are equal. Hence
𝑎′ = ∐ 𝑎′

𝑖 ∶ 𝑈′ = ∐ 𝑈′
𝑖 → 𝑍′ descends to the quotient sheaf 𝑇′ = 𝑈′/𝑅′ and we win. �

Lemma 46.12.2. Let 𝑆 be a scheme. Let 𝑍 → 𝑌 → 𝑋 be morphisms of algebraic spaces
over 𝑆. If 𝑍 ⊂ 𝑍′ is a universal first order thickening of 𝑍 over 𝑌 and 𝑌 → 𝑋 is formally
étale, then 𝑍 ⊂ 𝑍′ is a universal first order thickening of 𝑍 over 𝑋.

Proof. This is formal. Namely, by Lemma 46.12.1 it suffices to consider solid commutative
diagrams (46.12.0.1) with 𝑇′ an affine scheme. The composition 𝑇 → 𝑍 → 𝑌 lifts uniquely
to 𝑇′ → 𝑌 as 𝑌 → 𝑋 is assumed formally étale. Hence the fact that 𝑍 ⊂ 𝑍′ is a universal
first order thickening over 𝑌 produces the desired morphism 𝑎′ ∶ 𝑇′ → 𝑍′. �

Lemma 46.12.3. Let 𝑆 be a scheme. Let 𝑍 → 𝑌 → 𝑋 be morphisms of algebraic spaces
over 𝑆. Assume 𝑍 → 𝑌 is étale.

(1) If 𝑌 ⊂ 𝑌′ is a universal first order thickening of 𝑌 over 𝑋, then the unique étale
morphism 𝑍′ → 𝑌′ such that 𝑍 = 𝑌 ×𝑌′ 𝑍′ (see Theorem 46.7.1) is a universal
first order thickening of 𝑍 over 𝑋.
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(2) If 𝑍 → 𝑌 is surjective and (𝑍 ⊂ 𝑍′) → (𝑌 ⊂ 𝑌′) is an étale morphism of first
order thickenings over 𝑋 and 𝑍′ is a universal first order thickening of 𝑍 over
𝑋, then 𝑌′ is a universal first order thickening of 𝑌 over 𝑋.

Proof. Proof of (1). By Lemma 46.12.1 it suffices to consider solid commutative diagrams
(46.12.0.1) with 𝑇′ an affine scheme. The composition 𝑇 → 𝑍 → 𝑌 lifts uniquely to
𝑇′ → 𝑌′ as 𝑌′ is the universal first order thickening. Then the fact that 𝑍′ → 𝑌′ is étale
implies (see Lemma 46.10.5) that 𝑇′ → 𝑌′ lifts to the desired morphism 𝑎′ ∶ 𝑇′ → 𝑍′.
Proof of (2). Let 𝑇 ⊂ 𝑇′ be a first order thickening over 𝑋 and let 𝑎 ∶ 𝑇 → 𝑌 be a morphism.
Set 𝑊 = 𝑇 ×𝑌 𝑍 and denote 𝑐 ∶ 𝑊 → 𝑍 the projection Let 𝑊′ → 𝑇′ be the unique étale
morphism such that 𝑊 = 𝑇 ×𝑇′ 𝑊′, see Theorem 46.7.1. Note that 𝑊′ → 𝑇′ is surjective
as 𝑍 → 𝑌 is surjective. By assumption we obtain a unique morphism 𝑐′ ∶ 𝑊′ → 𝑍′ over
𝑋 restricting to 𝑐 on 𝑊. By uniqueness the two restrictions of 𝑐′ to 𝑊′ ×𝑇′ 𝑊′ are equal (as
the two restrictions of 𝑐 to 𝑊 ×𝑇 𝑊 are equal). Hence 𝑐′ descends to a unique morphism
𝑎′ ∶ 𝑇′ → 𝑌′ and we win. �

Lemma 46.12.4. Let 𝑆 be a scheme. Let ℎ ∶ 𝑍 → 𝑋 be a formally unramified morphism
of algebraic spaces over 𝑆. There exists a universal first order thickening 𝑍 ⊂ 𝑍′ of 𝑍
over 𝑋.

Proof. Choose any commutative diagram

𝑉

��

// 𝑈

��
𝑍 // 𝑋

where 𝑉 and 𝑈 are schemes and the vertical arrows are étale. Note that 𝑉 → 𝑈 is a formally
unramified morphism of schemes, see Lemma 46.11.2. Combining Lemma 46.12.1 and
More on Morphisms, Lemma 33.5.1 we see that a universal first order thickening 𝑉 ⊂ 𝑉′

of 𝑉 over 𝑈 exists. By Lemma 46.12.2 part (1) 𝑉′ is a universal first order thickening of 𝑉
over 𝑋.
Fix a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋. The argument above shows
that for any 𝑉 → 𝑍 étale with 𝑉 a scheme such that 𝑉 → 𝑍 → 𝑋 factors through 𝑈 a
universal first order thickening 𝑉 ⊂ 𝑉′ of 𝑉 over 𝑋 exists (but does not depend on the chosen
factorization of 𝑉 → 𝑋 through 𝑈). Now we may choose 𝑉 such that 𝑉 → 𝑍 is surjective
étale (see Spaces, Lemma 40.11.4). Then 𝑅 = 𝑉 ×𝑍 𝑉 a scheme étale over 𝑍 such that
𝑅 → 𝑋 factors through 𝑈 also. Hence we obtain universal first order thickenings 𝑉 ⊂ 𝑉′

and 𝑅 ⊂ 𝑅′ over 𝑋. As 𝑉 ⊂ 𝑉′ is a universal first order thickening, the two projections
𝑠, 𝑡 ∶ 𝑅 → 𝑉 lift to morphisms 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑉′. By Lemma 46.12.3 as 𝑅′ is the universal
first order thickening of 𝑅 over 𝑋 these morphisms are étale. Then (𝑡′, 𝑠′) ∶ 𝑅′ → 𝑉′ is
an étale equivalence relation and we can set 𝑍′ = 𝑉′/𝑅′. Since 𝑉′ → 𝑍′ is surjective étale
and 𝑣′ is the universal first order thickening of 𝑉 over 𝑋 we conclude from Lemma 46.12.2
part (2) that 𝑍′ is a universal first order thickening of 𝑍 over 𝑋. �

Definition 46.12.5. Let 𝑆 be a scheme. Let ℎ ∶ 𝑍 → 𝑋 be a formally unramifiedmorphism
of algebraic spaces over 𝑆.

(1) The universal first order thickening of 𝑍 over 𝑋 is the thickening 𝑍 ⊂ 𝑍′ con-
structed in Lemma 46.12.4.

(2) The conormal sheaf of 𝑍 over 𝑋 is the conormal sheaf of 𝑍 in its universal first
order thickening 𝑍′ over 𝑋.
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We often denote the conormal sheaf 𝒞𝑍/𝑋 in this situation.

Thus we see that there is a short exact sequence of sheaves

0 → 𝒞𝑍/𝑋 → 𝒪𝑍′ → 𝒪𝑍 → 0

on 𝑍 ́𝑒𝑡𝑎𝑙𝑒 and 𝒞𝑍/𝑋 is a quasi-coherent 𝒪𝑍-module. The following lemma proves that there
is no conflict between this definition and the definition in case 𝑍 → 𝑋 is an immersion.

Lemma 46.12.6. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of algebraic spaces
over 𝑆. Then

(1) 𝑖 is formally unramified,
(2) the universal first order thickening of 𝑍 over 𝑋 is the first order infinitesimal

neighbourhood of 𝑍 in 𝑋 of Definition 46.9.1,
(3) the conormal sheaf of 𝑖 in the sense of Definition 46.5.1 agrees with the conormal

sheaf of 𝑖 in the sense of Definition 46.12.5.

Proof. An immersion of algebraic spaces is by definition a representable morphism. Hence
by Morphisms, Lemmas 24.34.7 and 24.34.8 an immersion is unramified (via the abstract
principle of Spaces, Lemma 40.5.8). Hence it is formally unramified by Lemma 46.11.7.
The other assertions follow by combining Lemmas 46.9.2 and 46.9.3 and the definitions.

�

Lemma 46.12.7. Let 𝑆 be a scheme. Let 𝑍 → 𝑋 be a formally unramified morphism of
algebraic spaces over 𝑆. Then the universal first order thickening 𝑍′ is formally unramified
over 𝑋.

Proof. Let 𝑇 ⊂ 𝑇′ be a first order thickening of affine schemes over 𝑋. Let

𝑍′

��

𝑇𝑐
oo

��
𝑋 𝑇′oo

𝑎,𝑏

``

be a commutative diagram. Set 𝑇0 = 𝑐−1(𝑍) ⊂ 𝑇 and 𝑇′
𝑎 = 𝑎−1(𝑍) (scheme theoretically).

Since 𝑍′ is a first order thickening of 𝑍, we see that 𝑇′ is a first order thickening of 𝑇′
𝑎.

Moreover, since 𝑐 = 𝑎|𝑇 we see that 𝑇0 = 𝑇 ∩ 𝑇′
𝑎 (scheme theoretically). As 𝑇′ is a first

order thickening of 𝑇 it follows that 𝑇′
𝑎 is a first order thickening of 𝑇0. Now 𝑎|𝑇′

𝑎
and 𝑏|𝑇′

𝑎
are morphisms of 𝑇′

𝑎 into 𝑍′ over 𝑋 which agree on 𝑇0 as morphisms into 𝑍. Hence by the
universal property of 𝑍′ we conclude that 𝑎|𝑇′

𝑎
= 𝑏|𝑇′

𝑎
. Thus 𝑎 and 𝑏 are morphism from

the first order thickening 𝑇′ of 𝑇′
𝑎 whose restrictions to 𝑇′

𝑎 agree as morphisms into 𝑍. Thus
using the universal property of 𝑍′ once more we conclude that 𝑎 = 𝑏. In other words, the
defining property of a formally unramified morphism holds for 𝑍′ → 𝑋 as desired. �

Lemma 46.12.8. Let 𝑆 be a scheme Consider a commutative diagram of algebraic spaces
over 𝑆

𝑍
ℎ
//

𝑓
��

𝑋

𝑔
��

𝑊 ℎ′
// 𝑌

with ℎ and ℎ′ formally unramified. Let 𝑍 ⊂ 𝑍′ be the universal first order thickening of
𝑍 over 𝑋. Let 𝑊 ⊂ 𝑊′ be the universal first order thickening of 𝑊 over 𝑌. There exists a
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canonical morphism (𝑓, 𝑓′) ∶ (𝑍, 𝑍′) → (𝑊, 𝑊′) of thickenings over 𝑌 which fits into the
following commutative diagram

𝑍′

~~
𝑓′

��
𝑍 //

𝑓
��

55

𝑋

��

𝑊′

~~
𝑊

44

// 𝑌

In particular the morphism (𝑓, 𝑓′) of thickenings induces a morphism of conormal sheaves
𝑓∗𝒞𝑊/𝑌 → 𝒞𝑍/𝑋.

Proof. The first assertion is clear from the universal property of 𝑊′. The induced map on
conormal sheaves is the map of Lemma 46.5.3 applied to (𝑍 ⊂ 𝑍′) → (𝑊 ⊂ 𝑊′). �

Lemma 46.12.9. Let 𝑆 be a scheme. Let

𝑍
ℎ
//

𝑓
��

𝑋

𝑔
��

𝑊 ℎ′
// 𝑌

be a fibre product diagram of algebraic spaces over 𝑆 with ℎ′ formally unramified. Then
ℎ is formally unramified and if 𝑊 ⊂ 𝑊′ is the universal first order thickening of 𝑊 over
𝑌, then 𝑍 = 𝑋 ×𝑌 𝑊 ⊂ 𝑋 ×𝑌 𝑊′ is the universal first order thickening of 𝑍 over 𝑋. In
particular the canonical map 𝑓∗𝒞𝑊/𝑌 → 𝒞𝑍/𝑋 of Lemma 46.12.8 is surjective.

Proof. The morphism ℎ is formally unramified by Lemma 46.11.5. It is clear that 𝑋 ×𝑌 𝑊′

is a first order thickening. It is straightforward to check that it has the universal property be-
cause 𝑊′ has the universal property (by mapping properties of fibre products). See Lemma
46.5.5 for why this implies that the map of conormal sheaves is surjective. �

Lemma 46.12.10. Let 𝑆 be a scheme. Let

𝑍
ℎ
//

𝑓
��

𝑋

𝑔
��

𝑊 ℎ′
// 𝑌

be a fibre product diagram of algebraic spaces over 𝑆 with ℎ′ formally unramified and 𝑔
flat. In this case the corresponding map 𝑍′ → 𝑊′ of universal first order thickenings is
flat, and 𝑓∗𝒞𝑊/𝑌 → 𝒞𝑍/𝑋 is an isomorphism.

Proof. Flatness is preserved under base change, seeMorphisms of Spaces, Lemma 42.27.3.
Hence the first statement follows from the description of 𝑊′ in Lemma 46.12.9. It is clear
that 𝑋×𝑌 𝑊′ is a first order thickening. It is straightforward to check that it has the universal
property because 𝑊′ has the universal property (by mapping properties of fibre products).
See Lemma 46.5.5 for why this implies that themap of conormal sheaves is an isomorphism.

�

Lemma 46.12.11. Taking the universal first order thickenings commutes with étale local-
ization. More precisely, let ℎ ∶ 𝑍 → 𝑋 be a formally unramified morphism of algebraic
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spaces over a base scheme 𝑆. Let
𝑉

��

// 𝑈

��
𝑍 // 𝑋

be a commutative diagram with étale vertical arrows. Let 𝑍′ be the universal first order
thickening of 𝑍 over 𝑋. Then 𝑉 → 𝑈 is formally unramified and the universal first order
thickening 𝑉′ of 𝑉 over 𝑈 is étale over 𝑍′. In particular, 𝒞𝑍/𝑋|𝑉 = 𝒞𝑉/𝑈.

Proof. The first statement is Lemma 46.11.2. The compatibility of universal first order
thickenings is a consequence of Lemmas 46.12.2 and 46.12.3. �

Lemma 46.12.12. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let ℎ ∶ 𝑍 → 𝑋
be a formally unramified morphism of algebraic spaces over𝐵. Let𝑍 ⊂ 𝑍′ be the universal
first order thickening of 𝑍 over 𝑋 with structure morphism ℎ′ ∶ 𝑍′ → 𝑋. The canonical
map

dℎ′ ∶ (ℎ′)∗Ω𝑋/𝐵 → Ω𝑍′/𝐵

induces an isomorphism ℎ∗Ω𝑋/𝐵 → Ω𝑍′/𝐵 ⊗ 𝒪𝑍.

Proof. The map 𝑐ℎ′ is the map defined in Lemma 46.6.6. If 𝑖 ∶ 𝑍 → 𝑍′ is the given
closed immersion, then 𝑖∗𝑐ℎ′ is a map ℎ∗Ω𝑋/𝑆 → Ω𝑍′/𝑆 ⊗ 𝒪𝑍. Checking that it is an
isomorphism reduces to the case of schemes by étale localization, see Lemma 46.12.11 and
Lemma 46.6.3. In this case the result is More on Morphisms, Lemma 33.5.9. �

Lemma 46.12.13. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let ℎ ∶ 𝑍 → 𝑋
be a formally unramified morphism of algebraic spaces over 𝐵. There is a canonical exact
sequence

𝒞𝑍/𝑋 → ℎ∗Ω𝑋/𝐵 → Ω𝑍/𝐵 → 0.
The first arrow is induced by d𝑍′/𝐵 where 𝑍′ is the universal first order neighbourhood of
𝑍 over 𝑋.

Proof. We know that there is a canonical exact sequence

𝒞𝑍/𝑍′ → Ω𝑍′/𝑆 ⊗ 𝒪𝑍 → Ω𝑍/𝑆 → 0.

see Lemma 46.6.10. Hence the result follows on applying Lemma 46.12.12. �

Lemma 46.12.14. Let 𝑆 be a scheme. Let

𝑍
𝑖
//

𝑗   

𝑋

��
𝑌

be a commutative diagram of algebraic spaces over𝑆where 𝑖 and 𝑗 are formally unramified.
Then there is a canonical exact sequence

𝒞𝑍/𝑌 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑌 → 0

where the first arrow comes from Lemma 46.12.8 and the second from Lemma 46.12.13.

Proof. Since the maps have been defined, checking the sequence is exact reduces to the
case of schemes by étale localization, see Lemma 46.12.11 and Lemma 46.6.3. In this case
the result is More on Morphisms, Lemma 33.5.11. �
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Lemma 46.12.15. Let 𝑆 be a scheme. Let 𝑍 → 𝑌 → 𝑋 be formally unramified morphisms
of algebraic spaces over 𝑆.

(1) If 𝑍 ⊂ 𝑍′ is the universal first order thickening of 𝑍 over 𝑋 and 𝑌 ⊂ 𝑌′ is the
universal first order thickening of 𝑌 over 𝑋, then there is a morphism 𝑍′ → 𝑌′

and 𝑌 ×𝑌′ 𝑍′ is the universal first order thickening of 𝑍 over 𝑌.
(2) There is a canonical exact sequence

𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0

where the maps come from Lemma 46.12.8 and 𝑖 ∶ 𝑍 → 𝑌 is the first morphism.

Proof. The map ℎ ∶ 𝑍′ → 𝑌′ in (1) comes from Lemma 46.12.8. The assertion that
𝑌 ×𝑌′ 𝑍′ is the universal first order thickening of 𝑍 over 𝑌 is clear from the universal
properties of 𝑍′ and 𝑌′. By Lemma 46.5.6 we have an exact sequence

(𝑖′)∗𝒞𝑌×𝑌′𝑍′/𝑍′ → 𝒞𝑍/𝑍′ → 𝒞𝑍/𝑌×𝑌′𝑍′ → 0

where 𝑖′ ∶ 𝑍 → 𝑌×𝑌′ 𝑍′ is the given morphism. By Lemma 46.5.5 there exists a surjection
ℎ∗𝒞𝑌/𝑌′ → 𝒞𝑌×𝑌′𝑍′/𝑍′. Combined with the equalities 𝒞𝑌/𝑌′ = 𝒞𝑌/𝑋, 𝒞𝑍/𝑍′ = 𝒞𝑍/𝑋, and
𝒞𝑍/𝑌×𝑌′𝑍′ = 𝒞𝑍/𝑌 this proves the lemma. �

46.13. Formally étale morphisms

In this section we work out what it means that a morphism of algebraic spaces is formally
étale.

Definition 46.13.1. Let 𝑆 be a scheme. A morphism 𝑓 ∶ 𝑋 → 𝑌 of algebraic spaces over
𝑆 is said to be formally étale if it is formally étale as a transformation of functors as in
Definition 46.10.1.

We will not restate the results proved in the more general setting of formally étale transfor-
mations of functors in Section 46.10.

Lemma 46.13.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is formally étale,
(2) for every diagram

𝑈

��

𝜓
// 𝑉

��
𝑋

𝑓 // 𝑌
where 𝑈 and 𝑉 are schemes and the vertical arrows are étale the morphism of
schemes 𝜓 is formally étale (as in More on Morphisms, Definition 33.6.1), and

(3) for one such diagram with surjective vertical arrows the morphism 𝜓 is formally
étale.

Proof. Assume 𝑓 is formally étale. By Lemma 46.10.5 the morphisms 𝑈 → 𝑋 and 𝑉 → 𝑌
are formally étale. Thus by Lemma 46.10.3 the composition 𝑈 → 𝑌 is formally étale. Then
it follows from Lemma 46.10.8 that 𝑈 → 𝑉 is formally étale. Thus (1) implies (2). And (2)
implies (3) trivially

Assume given a diagram as in (3). By Lemma 46.10.5 the morphism 𝑉 → 𝑌 is formally
étale. Thus by Lemma 46.10.3 the composition 𝑈 → 𝑌 is formally étale. Then it follows
from Lemma 46.10.6 that 𝑋 → 𝑌 is formally étale, i.e., (1) holds. �
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Lemma 46.13.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a formally étale morphism of
algebraic spaces over 𝑆. Then given any solid commutative diagram

𝑋

𝑓
��

𝑇

𝑖
��

𝑎oo

𝑌 𝑇′oo

``

where 𝑇 ⊂ 𝑇′ is a first order thickening of algebraic spaces over 𝑌 there exists exactly
one dotted arrow making the diagram commute. In other words, in Definition 46.13.1 the
condition that 𝑇 be affine may be dropped.

Proof. Let 𝑈′ → 𝑇′ be a surjective étale morphism where 𝑈′ = ∐ 𝑈′
𝑖 is a disjoint union

of affine schemes. Let 𝑈𝑖 = 𝑇 ×𝑇′ 𝑈′
𝑖 . Then we get morphisms 𝑎′

𝑖 ∶ 𝑈′
𝑖 → 𝑋 such that 𝑎′

𝑖 |𝑈𝑖
equals the composition 𝑈𝑖 → 𝑇 → 𝑋. By uniqueness (see Lemma 46.11.3) we see that 𝑎′

𝑖
and 𝑎′

𝑗 agree on the fibre product 𝑈′
𝑖 ×𝑇′ 𝑈′

𝑗. Hence ∐ 𝑎′
𝑖 ∶ 𝑈′ → 𝑋 descends to give a

unique morphism 𝑎′ ∶ 𝑇′ → 𝑋. �

Lemma 46.13.4. A composition of formally étale morphisms is formally étale.

Proof. This is formal. �

Lemma 46.13.5. A base change of a formally étale morphism is formally étale.

Proof. This is formal. �

Lemma 46.13.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆 The following are equivalent:

(1) 𝑓 is formally étale,
(2) 𝑓 is formally unramified and the universal first order thickening of 𝑋 over 𝑌 is

equal to 𝑋,
(3) 𝑓 is formally unramified and 𝒞𝑋/𝑌 = 0, and
(4) Ω𝑋/𝑌 = 0 and 𝒞𝑋/𝑌 = 0.

Proof. Actually, the last assertion only make sense because Ω𝑋/𝑌 = 0 implies that 𝒞𝑋/𝑌 is
defined via Lemma 46.11.6 and Definition 46.12.5. This also makes it clear that (3) and (4)
are equivalent.

Either of the assumptions (1), (2), and (3) imply that 𝑓 is formally unramified. Hence we
may assume 𝑓 is formally unramified. The equivalence of (1), (2), and (3) follow from the
universal property of the universal first order thickening 𝑋′ of 𝑋 over 𝑆 and the fact that
𝑋 = 𝑋′ ⇔ 𝒞𝑋/𝑌 = 0 since after all by definition 𝒞𝑋/𝑌 = 𝒞𝑋/𝑋′ is the ideal sheaf of 𝑋 in
𝑋′. �

Lemma 46.13.7. An unramified flat morphism is formally étale.

Proof. Follows from the case of schemes, see More on Morphisms, Lemma 33.6.7 and
étale localization, see Lemmas 46.11.2 and 46.13.2 and Morphisms of Spaces, Lemma
42.27.4. �

Lemma 46.13.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) The morphism 𝑓 is étale, and
(2) the morphism 𝑓 is locally of finite presentation and formally étale.
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Proof. Follows from the case of schemes, see More on Morphisms, Lemma 33.6.9 and
étale localization, see Lemma 46.13.2 and Morphisms of Spaces, Lemmas 42.26.4 and
42.35.2. �

46.14. Infinitesimal deformations of maps

In this section we explain how a derivation can be used to infinitesimally move a map.
Throughout this section we use that a sheaf on a thickening 𝑋′ of 𝑋 can be seen as a sheaf
on 𝑋, see Equations (46.8.1.1) and (46.8.1.2).

Lemma 46.14.1. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝑋 ⊂ 𝑋′ and
𝑌 ⊂ 𝑌′ be two first order thickenings of algebraic spaces over 𝐵. Let (𝑎, 𝑎′), (𝑏, 𝑏′) ∶ (𝑋 ⊂
𝑋′) → (𝑌 ⊂ 𝑌′) be two morphisms of thickenings over 𝐵. Assume that

(1) 𝑎 = 𝑏, and
(2) the two maps 𝑎∗𝒞𝑌/𝑌′ → 𝒞𝑋/𝑋′ (Lemma 46.5.3) are equal.

Then the map (𝑎′)♯ − (𝑏′)♯ factors as

𝒪𝑌′ → 𝒪𝑌
𝐷

−−→ 𝑎∗𝒞𝑋/𝑋′ → 𝑎∗𝒪𝑋′

where 𝐷 is an 𝒪𝐵-derivation.

Proof. Instead of working on 𝑌 we work on 𝑋. The advantage is that the pullback functor
𝑎−1 is exact. Using (1) and (2) we obtain a commutive diagram with exact rows

0 // 𝒞𝑋/𝑋′ // 𝒪𝑋′ // 𝒪𝑋
// 0

0 // 𝑎−1𝒞𝑌/𝑌′ //

OO

𝑎−1𝒪𝑌′ //

(𝑎′)♯

OO

(𝑏′)♯

OO

𝑎−1𝒪𝑌
//

OO

0

Now it is a general fact that in such a situation the difference of the 𝒪𝐵-algebra maps (𝑎′)♯

and (𝑏′)♯ is an 𝒪𝐵-derivation from 𝑎−1𝒪𝑌 to 𝒞𝑋/𝑋′. By adjointness of the functors 𝑎−1

and 𝑎∗ this is the same thing as an 𝒪𝐵-derivation from 𝒪𝑌 into 𝑎∗𝒞𝑋/𝑋′. Some details
omitted. �

Note that in the situation of the lemma above we may write 𝐷 as

(46.14.1.1) 𝐷 = d𝑌/𝐵 ∘ 𝜃

where 𝜃 is an 𝒪𝑌-linear map 𝜃 ∶ Ω𝑌/𝐵 → 𝑎∗𝒞𝑋/𝑋′. Of course, then by adjunction again we
may view 𝜃 as an 𝒪𝑋-linear map 𝜃 ∶ 𝑎∗Ω𝑌/𝐵 → 𝒞𝑋/𝑋′.

Lemma 46.14.2. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let (𝑎, 𝑎′) ∶
(𝑋 ⊂ 𝑋′) → (𝑌 ⊂ 𝑌′) be a morphism of first order thickenings over 𝐵. Let

𝜃 ∶ 𝑎∗Ω𝑌/𝐵 → 𝒞𝑋/𝑋′

be an 𝒪𝑋-linear map. Then there exists a unique morphism of pairs (𝑏, 𝑏′) ∶ (𝑋 ⊂ 𝑋′) →
(𝑌 ⊂ 𝑌′) such that (1) and (2) of Lemma 46.14.1 hold and the derivation 𝐷 and 𝜃 are related
by Equation (46.14.1.1).

Proof. Consider the map

𝛼 = (𝑎′)♯ + 𝐷 ∶ 𝑎−1𝒪𝑌′ → 𝒪𝑋′

where 𝐷 is as in Equation (46.14.1.1). As 𝐷 is an 𝒪𝐵-derivation it follows that 𝛼 is a map
of sheaves of 𝒪𝐵-algebras. By construction we have 𝑖♯

𝑋 ∘ 𝛼 = 𝑎♯ ∘ 𝑖♯
𝑌 where 𝑖𝑋 ∶ 𝑋 → 𝑋′
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and 𝑖𝑌 ∶ 𝑌 → 𝑌′ are the given closed immersions. By Lemma 46.8.2 we obtain a unique
morphism (𝑎, 𝑏′) ∶ (𝑋 ⊂ 𝑋′) → (𝑌 ⊂ 𝑌′) of thickenings over 𝐵 such that 𝛼 = (𝑏′)♯. Setting
𝑏 = 𝑎 we win. �

Lemma 46.14.3. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝑋 ⊂ 𝑋′

and 𝑌 ⊂ 𝑌′ be first order thickenings over 𝐵. Assume given a morphism 𝑎 ∶ 𝑋 → 𝑌 and
a map 𝐴 ∶ 𝑎∗𝒞𝑌/𝑌′ → 𝒞𝑋/𝑋′ of 𝒪𝑋-modules. For an object 𝑈′ of (𝑋′)𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 with
𝑈 = 𝑋 ×𝑋′ 𝑈′ consider morphisms 𝑎′ ∶ 𝑈′ → 𝑌′ such that

(1) 𝑎′ is a morphism over 𝐵,
(2) 𝑎′|𝑈 = 𝑎|𝑈, and
(3) the induced map 𝑎∗𝒞𝑌/𝑌′|𝑈 → 𝒞𝑋/𝑋′|𝑈 is the restriction of 𝐴 to 𝑈.

Then the rule

(46.14.3.1) 𝑈′ ↦ {𝑎′ ∶ 𝑈′ → 𝑌′ such that (1), (2), (3) hold.}

defines a sheaf of sets on (𝑋′)𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒.

Proof. Denote ℱ the rule of the lemma. The restriction mapping ℱ(𝑈′) → ℱ(𝑉′) for
𝑉′ ⊂ 𝑈′ ⊂ 𝑋′ of ℱ is really the restriction map 𝑎′ ↦ 𝑎′|𝑉′. With this definition in place
it is clear that ℱ is a sheaf since morphisms of algebraic spaces satisfy étale descent, see
Descent on Spaces, Lemma 45.6.2. �

Lemma46.14.4. Same notation and assumptions as in Lemma 46.14.3. We identify sheaves
on 𝑋 and 𝑋′ via (46.8.1.1). There is an action of the sheaf

ℋ𝑜𝑚𝒪𝑋
(𝑎∗Ω𝑌/𝐵, 𝒞𝑋/𝑋′)

on the sheaf (46.14.3.1). Moreover, the action is simply transitive for any object 𝑈′ of
(𝑋′)𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 over which the sheaf (46.14.3.1) has a section.

Proof. This is a combination of Lemmas 46.14.1, 46.14.2, and 46.14.3. �

Remark 46.14.5. A special case of Lemmas 46.14.1, 46.14.2, 46.14.3, and 46.14.4 is where
𝑌 = 𝑌′. In this case the map 𝐴 is always zero. The sheaf of Lemma 46.14.3 is just given
by the rule

𝑈′ ↦ {𝑎′ ∶ 𝑈′ → 𝑌 over 𝑆 with 𝑎′|𝑈 = 𝑎|𝑈}

and we act on this by the sheaf ℋ𝑜𝑚𝒪𝑋
(𝑎∗Ω𝑌/𝐵, 𝒞𝑋/𝑋′). The action of a local section 𝜃 on

𝑎′ is sometimes indicated by 𝜃 ⋅ 𝑎′. Note that this means nothing else than the fact that (𝑎′)♯

and (𝜃 ⋅ 𝑎′)♯ differ by a derivation 𝐷 which is related to 𝜃 by Equation (46.14.1.1).

46.15. Infinitesimal deformations of algebraic spaces

The following simple lemma is often a convenient tool to check whether an infinitesimal
deformation of a map is flat.

Lemma 46.15.1. Let 𝑆 be a scheme. Let (𝑓, 𝑓′) ∶ (𝑋 ⊂ 𝑋′) → (𝑌 ⊂ 𝑌′) be a morphism of
first order thickenings of algebraic spaces over 𝑆. Assume that 𝑓 is flat. Then the following
are equivalent

(1) 𝑓′ is flat and 𝑋 = 𝑌 ×𝑌′ 𝑋′, and
(2) the canonical map 𝑓∗𝒞𝑌/𝑌′ → 𝒞𝑋/𝑋′ is an isomorphism.
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Proof. Choose a scheme 𝑉′ and a surjective étale morphism 𝑉′ → 𝑌′. Choose a scheme
𝑈′ and a surjective étale morphism 𝑈′ → 𝑋′ ×𝑌′ 𝑉′. Set 𝑈 = 𝑋 ×𝑋′ 𝑈′ and 𝑉 = 𝑌 ×𝑌′

𝑉′. According to our definition of a flat morphism of algebraic spaces we see that the
induced map 𝑔 ∶ 𝑈 → 𝑉 is a flat morphism of schemes and that 𝑓′ is flat if and only
if the corresponding morphism 𝑔′ ∶ 𝑈′ → 𝑉′ is flat. Also, 𝑋 = 𝑌 ×𝑌′ 𝑋′ if and only
if 𝑈 = 𝑉 ×𝑉′ 𝑉′. Finally, the map 𝑓∗𝒞𝑌/𝑌′ → 𝒞𝑋/𝑋′ is an isomorphism if and only if
𝑔∗𝒞𝑉/𝑉′ → 𝒞𝑈/𝑈′ is an isomorphism. Hence the lemma follows from its analogue for
morphisms of schemes, see More on Morphisms, Lemma 33.8.1. �

46.16. Formally smooth morphisms

In this section we introduce the notion of a formally smooth morphism 𝑋 → 𝑌 of algebraic
spaces. Such a morphism is characterized by the property that 𝑇-valued points of 𝑋 lift
to inifinitesimal thickenings of 𝑇 provided 𝑇 is affine. The main result is that a morphism
which is formally smooth and locally of finite presentation is smooth, see Lemma 46.16.6.
It turns out that this criterion is often easier to use than the Jacobian criterion.

Definition 46.16.1. Let 𝑆 be a scheme. A morphism 𝑓 ∶ 𝑋 → 𝑌 of algebraic spaces over
𝑆 is said to be formally smooth if it is formally smooth as a transformation of functors as in
Definition 46.10.1.

In the cases of formally unramified and formally étale morphisms the condition that 𝑇′ be
affine could be dropped, see Lemmas 46.11.3 and 46.13.3. This is no longer true in the case
of formally smooth morphisms. In fact, a slightly more natural condition would be that we
should be able to fill in the dotted arrow étale locally on 𝑇′. In fact, analyzing the proof of
Lemma 46.16.6 shows that this would be equivalent to the definition as it currently stands.
It is also true that requiring the existence of the dotted arrow fppf locally on 𝑇′ would be
sufficient, but that is slightly more difficult to prove.

We will not restate the results proved in the more general setting of formally smooth trans-
formations of functors in Section 46.10.

Lemma 46.16.2. A composition of formally smooth morphisms is formally smooth.

Proof. Omitted. �

Lemma 46.16.3. A base change of a formally smooth morphism is formally smooth.

Proof. Omitted, but see Algebra, Lemma 7.127.2 for the algebraic version. �

Lemma 46.16.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Then 𝑓 is formally étale if
and only if 𝑓 is formally smooth and formally unramified.

Proof. Omitted. �

Here is a helper lemma which will be superseded by Lemma 46.16.9.

Lemma 46.16.5. Let 𝑆 be a scheme. Let

𝑈

��

𝜓
// 𝑉

��
𝑋

𝑓 // 𝑌
be a commutative diagram of morphisms of algebraic spaces over 𝑆. If the vertical arrows
are étale and 𝑓 is formally smooth, then 𝜓 is formally smooth.
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Proof. By Lemma 46.10.5 the morphisms 𝑈 → 𝑋 and 𝑉 → 𝑌 are formally étale. By
Lemma 46.10.3 the composition 𝑈 → 𝑌 is formally smooth. By Lemma 46.10.8 we see
𝜓 ∶ 𝑈 → 𝑉 is formally smooth. �

The following lemma is the main result of this section. It implies, combined with Proposi-
tion 46.4.9, that we can recognize whether a morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 is
smooth in terms of ``simple'' properties of the transformation of functors 𝑋 → 𝑌.

Lemma 46.16.6. (Infinitesimal lifting criterion) Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a
morphism of algebraic spaces over 𝑆. The following are equivalent:

(1) The morphism 𝑓 is smooth.
(2) The morphism 𝑓 is locally of finite presentation, and formally smooth.

Proof. Assume 𝑓 ∶ 𝑋 → 𝑆 is locally of finite presentation and formally smooth. Consider
a commutative diagram

𝑈

��

𝜓
// 𝑉

��
𝑋

𝑓 // 𝑌
where 𝑈 and 𝑉 are schemes and the vertical arrows are étale and surjective. By Lemma
46.16.5 we see 𝜓 ∶ 𝑈 → 𝑉 is formally smooth. By Morphisms of Spaces, Lemma 42.26.4
themorphism𝜓 is locally of finite presentation. Hence by the case of schemes themorphism
𝜓 is smooth, see More on Morphisms, Lemma 33.9.7. Hence 𝑓 is smooth, see Morphisms
of Spaces, Lemma 42.33.4.

Conversely, assume that 𝑓 ∶ 𝑋 → 𝑌 is smooth. Consider a solid commutative diagram

𝑋

𝑓
��

𝑇

𝑖
��

𝑎
oo

𝑌 𝑇′oo

``

as in Definition 46.16.1. We will show the dotted arrow exists thereby proving that 𝑓 is
formally smooth. Let ℱ be the sheaf of sets on (𝑇′)𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 of Lemma 46.14.3, see also
Remark 46.14.5. Let

ℋ = ℋ𝑜𝑚𝒪𝑇
(𝑎∗Ω𝑋/𝑌, 𝒞𝑇/𝑇′)

be the sheaf of 𝒪𝑇-modules on 𝑇 ́𝑒𝑡𝑎𝑙𝑒 introduced in Lemma 46.14.4. The action ℋ×ℱ → ℱ
turns ℱ into a pseudo ℋ-torsor, see Cohomology on Sites, Definition 19.5.1. Our goal is
to show that ℱ is a trivial ℋ-torsor. There are two steps: (I) To show that ℱ is a torsor we
have to show that ℱ has étale locally a section. (II) To show that ℱ is the trivial torsor it
suffices to show that 𝐻1(𝑇 ́𝑒𝑡𝑎𝑙𝑒, ℋ) = 0, see Cohomology on Sites, Lemma 19.5.3.

First we prove (I). To see this choose a commutative diagram

𝑈

��

𝜓
// 𝑉

��
𝑋

𝑓 // 𝑌
where 𝑈 and 𝑉 are schemes and the vertical arrows are étale and surjective. As 𝑓 is assumed
smooth we see that 𝜓 is smooth and hence formally smooth by Lemma 46.10.5. By the same
lemma the morphism 𝑉 → 𝑌 is formally étale. Thus by Lemma 46.10.3 the composition
𝑈 → 𝑌 is formally smooth. Then (I) follows from Lemma 46.10.6 part (4).
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Finally we prove (II). By Lemma 46.6.15 we see that Ω𝑋/𝑆 is of finite presentation. Hence
𝑎∗Ω𝑋/𝑆 is of finite presentation (see Properties of Spaces, Section 41.27). Hence the sheaf
ℋ = ℋ𝑜𝑚𝒪𝑇

(𝑎∗Ω𝑋/𝑌, 𝒞𝑇/𝑇′) is quasi-coherent by Properties of Spaces, Lemma 41.26.7.
Thus by Descent, Proposition 31.6.10 and Coherent, Lemma 25.2.2 we have

𝐻1(𝑇𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, ℋ) = 𝐻1(𝑇 ́𝑒𝑡𝑎𝑙𝑒, ℋ) = 𝐻1(𝑇, ℋ) = 0
as desired. �

We do a bit more work to show that being formally smooth is étale local on the source.
To begin we show that a formally smooth morphism has a nice sheaf of differentials. The
notion of a locally projective quasi-coherent module is defined in Properties of Spaces,
Section 41.28.

Lemma 46.16.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a formally smooth morphism of
algebraic spaces over 𝑆. Then Ω𝑋/𝑌 is locally projective on 𝑋.

Proof. Choose a diagram
𝑈

��

𝜓
// 𝑉

��
𝑋

𝑓 // 𝑌
where 𝑈 and 𝑉 are affine(!) schemes and the vertical arrows are étale. By Lemma 46.16.5
we see 𝜓 ∶ 𝑈 → 𝑉 is formally smooth. Hence Γ(𝑉, 𝒪𝑉) → Γ(𝑈, 𝒪𝑈) is a formally smooth
ring map, see More on Morphisms, Lemma 33.9.6. Hence by Algebra, Lemma 7.127.7
the Γ(𝑈, 𝒪𝑈)-module ΩΓ(𝑈,𝒪𝑈)/Γ(𝑉,𝒪𝑉) is projective. Hence Ω𝑈/𝑉 is locally projective, see
Properties, Section 23.19. Since Ω𝑋/𝑌|𝑈 = Ω𝑈/𝑉 we see that Ω𝑋/𝑌 is locally projective too.
(Because we can find an étale covering of 𝑋 by the affine 𝑈's fitting into diagrams as above
-- details omitted.) �

Lemma 46.16.8. Let 𝑇 be an affine scheme. Let ℱ, 𝒢 be quasi-coherent 𝒪𝑇-modules on
𝑇 ́𝑒𝑡𝑎𝑙𝑒. Consider the internal hom sheaf ℋ = ℋ𝑜𝑚𝒪𝑇

(ℱ, 𝒢) on 𝑇 ́𝑒𝑡𝑎𝑙𝑒. If ℱ is locally projec-
tive, then 𝐻1(𝑇 ́𝑒𝑡𝑎𝑙𝑒, ℋ) = 0.

Proof. By the definition of a locally projective sheaf on an algebraic space (see Properties
of Spaces, Definition 41.28.2) we see that ℱ𝑍𝑎𝑟 = ℱ|𝑇𝑍𝑎𝑟

is a locally projective sheaf on
the scheme 𝑇. Thus ℱ𝑍𝑎𝑟 is a direct summand of a free 𝒪𝑇𝑍𝑎𝑟

-module. Whereupon we
conclude (as ℱ = (ℱ𝑍𝑎𝑟)𝑎, see Descent, Proposition 31.6.11) that ℱ is a direct summand of
a free 𝒪𝑇-module on 𝑇 ́𝑒𝑡𝑎𝑙𝑒. Hence we may assume that ℱ = ⨁𝑖∈𝐼 𝒪𝑇 is a free module. In
this case ℋ = ∏𝑖∈𝐼 𝒢 is a product of quasi-coherent modules. By Cohomology on Sites,
Lemma 19.12.5 we conclude that 𝐻1 = 0 because the cohomology of a quasi-coherent
sheaf on an affine scheme is zero, see Descent, Proposition 31.6.10 and Coherent, Lemma
25.2.2. �

Lemma 46.16.9. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is formally smooth,
(2) for every diagram

𝑈

��

𝜓
// 𝑉

��
𝑋

𝑓 // 𝑌
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where 𝑈 and 𝑉 are schemes and the vertical arrows are étale the morphism of
schemes 𝜓 is formally smooth (as in More on Morphisms, Definition 33.4.1), and

(3) for one such diagram with surjective vertical arrows the morphism 𝜓 is formally
smooth.

Proof. We have seen that (1) implies (2) and (3) in Lemma 46.16.5. Assume (3). The proof
that 𝑓 is formally smooth is entirely similar to the proof of (1) ⇒ (2) of Lemma 46.16.6.
Consider a solid commutative diagram

𝑋

𝑓
��

𝑇

𝑖
��

𝑎
oo

𝑌 𝑇′oo

``

as in Definition 46.16.1. We will show the dotted arrow exists thereby proving that 𝑓 is
formally smooth. Let ℱ be the sheaf of sets on (𝑇′)𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 of Lemma 46.14.3, see also
Remark 46.14.5. Let

ℋ = ℋ𝑜𝑚𝒪𝑇
(𝑎∗Ω𝑋/𝑌, 𝒞𝑇/𝑇′)

be the sheaf of 𝒪𝑇-modules on 𝑇 ́𝑒𝑡𝑎𝑙𝑒 introduced in Lemma 46.14.4. The action ℋ×ℱ → ℱ
turns ℱ into a pseudo ℋ-torsor, see Cohomology on Sites, Definition 19.5.1. Our goal is
to show that ℱ is a trivial ℋ-torsor. There are two steps: (I) To show that ℱ is a torsor we
have to show that ℱ has étale locally a section. (II) To show that ℱ is the trivial torsor it
suffices to show that 𝐻1(𝑇 ́𝑒𝑡𝑎𝑙𝑒, ℋ) = 0, see Cohomology on Sites, Lemma 19.5.3.
First we prove (I). To see this consider a diagram (which exists because we are assuming
(3))

𝑈

��

𝜓
// 𝑉

��
𝑋

𝑓 // 𝑌
where 𝑈 and 𝑉 are schemes, the vertical arrows are étale and surjective, and 𝜓 is formally
smooth. By Lemma 46.10.5 the morphism 𝑉 → 𝑌 is formally étale. Thus by Lemma
46.10.3 the composition 𝑈 → 𝑌 is formally smooth. Then (I) follows from Lemma 46.10.6
part (4).
Finally we prove (II). By Lemma 46.16.7 we see that Ω𝑈/𝑉 locally projective. Hence Ω𝑋/𝑌
is locally projective, see Descent on Spaces, Lemma 45.5.5. Hence 𝑎∗Ω𝑋/𝑌 is locally pro-
jective, see Properties of Spaces, Lemma 41.28.3. Hence

𝐻1(𝑇 ́𝑒𝑡𝑎𝑙𝑒, ℋ) = 𝐻1(𝑇 ́𝑒𝑡𝑎𝑙𝑒, ℋ𝑜𝑚𝒪𝑇
(𝑎∗Ω𝑋/𝑌, 𝒞𝑇/𝑇′) = 0

by Lemma 46.16.8 as desired. �

Lemma 46.16.10. The property 𝒫(𝑓) =``𝑓 is formally smooth'' is fpqc local on the base.

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over a scheme 𝑆. Choose an
index set 𝐼 and diagrams

𝑈𝑖

��

𝜓𝑖
// 𝑉𝑖

��
𝑋

𝑓 // 𝑌
with étale vertical arrows and 𝑈𝑖, 𝑉𝑖 affine schemes. Moreover, assume that ∐ 𝑈𝑖 → 𝑋 and
∐ 𝑉𝑖 → 𝑌 are surjective, see Properties of Spaces, Lemma 41.6.1. By Lemma 46.16.9 we
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see that 𝑓 is formally smooth if and only if each of the morphisms 𝜓𝑖 are formally smooth.
Hence we reduce to the case of a morphism of affine schemes. In this case the result follows
from Algebra, Lemma 7.127.15. Some details omitted. �

Lemma 46.16.11. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍 be morphisms of
algebraic spaces over 𝑆. Assume 𝑓 is formally smooth. Then

0 → 𝑓∗Ω𝑌/𝑍 → Ω𝑋/𝑍 → Ω𝑋/𝑍 → 0

Lemma 46.6.8 is short exact.

Proof. Follows from the case of schemes, seeMore onMorphisms, Lemma 33.9.9, by étale
localization, see Lemmas 46.16.9 and 46.6.3. �

Lemma 46.16.12. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let ℎ ∶ 𝑍 → 𝑋
be a formally unramified morphism of algebraic spaces over 𝐵. Assume that 𝑍 is formally
smooth over 𝐵. Then the canonical exact sequence

0 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝐵 → Ω𝑍/𝐵 → 0

of Lemma 46.12.13 is short exact.

Proof. Let 𝑍 → 𝑍′ be the universal first order thickening of 𝑍 over 𝑋. From the proof of
Lemma 46.12.13 we see that our sequence is identified with the sequence

𝒞𝑍/𝑍′ → Ω𝑍′/𝐵 ⊗ 𝒪𝑍 → Ω𝑍/𝐵 → 0.

Since 𝑍 → 𝑆 is formally smooth we can étale locally on 𝑍′ find a left inverse 𝑍′ → 𝑍
over 𝐵 to the inclusion map 𝑍 → 𝑍′. Thus the sequence is étale locally split, see Lemma
46.6.11. �

Lemma 46.16.13. Let 𝑆 be a scheme. Let

𝑍
𝑖
//

𝑗   

𝑋

𝑓
��

𝑌
be a commutative diagram of algebraic spaces over 𝑆 where 𝑖 and 𝑗 are formally unramified
and 𝑓 is formally smooth. Then the canonical exact sequence

0 → 𝒞𝑍/𝑌 → 𝒞𝑍/𝑋 → 𝑖∗Ω𝑋/𝑌 → 0

of Lemma 46.12.14 is exact and locally split.

Proof. Denote 𝑍 → 𝑍′ the universal first order thickening of 𝑍 over 𝑋. Denote 𝑍 → 𝑍″

the universal first order thickening of 𝑍 over 𝑌. By Lemma 46.12.13 here is a canonical
morpism 𝑍′ → 𝑍″ so that we have a commutative diagram

𝑍
𝑖′
//

𝑗′   

𝑍′
𝑎
//

𝑘
��

𝑋

𝑓
��

𝑍″ 𝑏 // 𝑌
The sequence above is identified with the sequence

𝒞𝑍/𝑍″ → 𝒞𝑍/𝑍′ → (𝑖′)∗Ω𝑍′/𝑍″ → 0

via our definitions concering conormal sheaves of formally unramified morphisms. Let
𝑈″ → 𝑍″ be an étale morphism with 𝑈″ affine. Denote 𝑈 → 𝑍 and 𝑈′ → 𝑍′ the
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corresponding affine schemes étale over 𝑍 and 𝑍′. As 𝑓 is formally smooth there exists a
morphism ℎ ∶ 𝑈″ → 𝑋 which agrees with 𝑖 on 𝑈 and such that 𝑓 ∘ ℎ equals 𝑏|𝑈″. Since 𝑍′

is the universal first order thickening we obtain a unique morphism 𝑔 ∶ 𝑈″ → 𝑍′ such that
𝑔 = 𝑎 ∘ ℎ. The universal property of 𝑍″ implies that 𝑘 ∘ 𝑔 is the inclusion map 𝑈″ → 𝑍″.
Hence 𝑔 is a left inverse to 𝑘. Picture

𝑈

��

// 𝑍′

𝑘
��

𝑈″ //

𝑔
==

𝑍″

Thus 𝑔 induces a map 𝒞𝑍/𝑍′|𝑈 → 𝒞𝑍/𝑍″|𝑈 which is a left inverse to the map 𝒞𝑍/𝑍″ →
𝒞𝑍/𝑍′ over 𝑈. �

46.17. Openness of the flat locus

This section is analogue of More on Morphisms, Section 33.11. Note that we have de-
fined the notion of flatness for quasi-coherent modules on algebraic spaces in Morphisms
of Spaces, Section 42.28.

Theorem 46.17.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let ℱ be a quasi-coherent sheaf on 𝑋. Assume 𝑓 is locally of finite presentation
and that ℱ is an 𝒪𝑋-module which is locally of finite presentation. Then

{𝑥 ∈ |𝑋| ∶ ℱ is flat over 𝑌 at 𝑥}
is open in |𝑋|.

Proof. Choose a commutative diagram

𝑈

𝑝
��

𝛼
// 𝑉

𝑞
��

𝑋 𝑎 // 𝑌
with 𝑈, 𝑉 schemes and 𝑝, 𝑞 surjective and étale as in Spaces, Lemma 40.11.4. By More
on Morphisms, Theorem 33.11.1 the set 𝑈′ = {𝑢 ∈ |𝑈| ∶ 𝑝∗ℱ is flat over 𝑉 at 𝑢} is open
in 𝑈. By Morphisms of Spaces, Definition 42.28.2 the image of 𝑈′ in |𝑋| is the set of the
theorem. Hence we are done because the map |𝑈| → |𝑋| is open, see Properties of Spaces,
Lemma 41.4.6. �

Lemma 46.17.2. Let 𝑆 be a scheme. Let

𝑋′
𝑔′
//

𝑓′

��

𝑋

𝑓
��

𝑌′ 𝑔 // 𝑌
be a cartesian diagram of algebraic spaces over 𝑆. Let ℱ be a quasi-coherent 𝒪𝑋-module.
Assume 𝑔 is flat, 𝑓 is locally of finite presentation, and ℱ is locally of finite presentation.
Then

{𝑥′ ∈ |𝑋′| ∶ (𝑔′)∗ℱ is flat over 𝑌′ at 𝑥′}
is the inverse image of the open subset of Theorem 46.17.1 under the continuous map |𝑔′| ∶
|𝑋′| → |𝑋|.

Proof. This follows from Morphisms of Spaces, Lemma 42.28.3. �
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46.18. Critère de platitude par fibres

Let 𝑆 be a scheme. Consider a commutative diagram of algebraic spaces over 𝑆

𝑋
𝑓

//

𝑔   

𝑌

ℎ��
𝑍

and a quasi-coherent 𝒪𝑋-module ℱ. Given a point 𝑥 ∈ |𝑋| we consider the question as to
whether ℱ is flat over 𝑌 at 𝑥. If ℱ is flat over 𝑍 at 𝑥, then the theorem below states this
question is intimately related to the question of whether the restriction of ℱ to the fibre of
𝑋 → 𝑍 over 𝑔(𝑥) is flat over the fibre of 𝑌 → 𝑍 over 𝑔(𝑥). To make sense out of this we
offer the following preliminary lemma.

Lemma 46.18.1. In the situation above the following are equivalent
(1) Pick a geometric point 𝑥 of 𝑋 lying over 𝑥. Set 𝑦 = 𝑓 ∘ 𝑥 and 𝑧 = 𝑔 ∘ 𝑥. Then the

module ℱ𝑥/𝔪𝑧ℱ𝑥 is flat over 𝒪𝑌,𝑦/𝔪𝑧𝒪𝑌,𝑦.
(2) Pick a morphism 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 in the equivalence class of 𝑥. Set 𝑧 = 𝑔 ∘ 𝑥,

𝑋𝑧 = 𝑆𝑝𝑒𝑐(𝐾)×𝑧,𝑍𝑋, 𝑌𝑧 = 𝑆𝑝𝑒𝑐(𝐾)×𝑧,𝑍𝑌, andℱ𝑧 the pullback ofℱ to𝑋𝑧. Then
ℱ𝑧 is flat at 𝑥 over 𝑌𝑧 (as defined in Morphisms of Spaces, Definition 42.28.2).

(3) Pick a commutative diagram

𝑈
𝑎

tt

//

  

𝑉

𝑏
tt ��

𝑋
𝑓

//

𝑔   

𝑌

ℎ��

𝑊
𝑐

tt𝑍
where 𝑈, 𝑉, 𝑊 are schemes, and 𝑎, 𝑏, 𝑐 are étale, and a point 𝑢 ∈ 𝑈 mapping to
𝑥. Let 𝑤 ∈ 𝑊 be the image of 𝑢. Let ℱ𝑤 be the pullback of ℱ to the fibre 𝑈𝑤 of
𝑈 → 𝑊 at 𝑤. Then ℱ𝑤 is flat over 𝑉𝑤 at 𝑢.

Proof. Note that in (2) the morphism 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 defines a 𝐾-rational point of 𝑋𝑧,
hence the statement makes sense. Moreover, note that we can always choose a diagram as in
(3) by: first choosing a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝑍, then choosing
a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑊 ×𝑍 𝑌, and finally choosing a scheme 𝑈
and a surjective étale morphism 𝑈 → 𝑉 ×𝑌 𝑋. Having made these choices we set 𝑈 → 𝑊
equal to the composition 𝑈 → 𝑉 → 𝑊 and we can pick a point 𝑢 ∈ 𝑈 mapping to 𝑥 because
the morphism 𝑈 → 𝑋 is surjective.

Suppose given both a diagram as in (3) and a geometric point 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 as in (1). By
Properties of Spaces, Lemma 41.16.4 we can choose a geometric point 𝑢 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈
lying over 𝑢 such that 𝑥 = 𝑎 ∘ 𝑢. Denote 𝑣 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑉 and 𝑤 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑊
the induced geometric points of 𝑉 and 𝑊. In this setting we know that 𝒪𝑋,𝑥 = 𝒪𝑠ℎ

𝑈,𝑢 and
similarly for 𝑌 and 𝑍, see Properties of Spaces, Lemma 41.19.1. In the same vein we have

ℱ𝑥 = (𝑎∗ℱ)𝑢 ⊗𝒪𝑈,𝑢
𝒪𝑠ℎ

𝑈,𝑢

see Properties of Spaces, Lemma 41.26.4. Note that the stalk of ℱ𝑤 at 𝑢 is given by

(ℱ𝑤)𝑢 = (𝑎∗ℱ)𝑢/𝔪𝑤(𝑎∗ℱ)𝑢
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and the local ring of 𝑉𝑤 at 𝑣 is given by
𝒪𝑉𝑤,𝑣 = 𝒪𝑉,𝑣/𝔪𝑤𝒪𝑉,𝑣.

Since 𝔪𝑧 = 𝔪𝑤𝒪𝑍,𝑧 = 𝔪𝑤𝒪𝑠ℎ
𝑊,𝑤 we see that

ℱ𝑥/𝔪𝑧ℱ𝑥 = (𝑎∗ℱ)𝑢 ⊗𝒪𝑈,𝑢
𝒪𝑋,𝑥/𝔪𝑧𝒪𝑋,𝑥

= (ℱ𝑤)𝑢 ⊗𝒪𝑈𝑤,𝑢
𝒪𝑠ℎ

𝑈,𝑢/𝔪𝑤𝒪𝑠ℎ
𝑈,𝑢

= (ℱ𝑤)𝑢 ⊗𝒪𝑈𝑤,𝑢
𝒪𝑠ℎ

𝑈𝑤,𝑢

= (ℱ𝑤)𝑢

the penultimate equality by Algebra, Lemma 7.139.22 and the last equality by Properties
of Spaces, Lemma 41.26.4. The same arguments applied to the structure sheaves of 𝑉 and
𝑌 show that

𝒪𝑠ℎ
𝑉𝑤,𝑣 = 𝒪𝑠ℎ

𝑉,𝑣/𝔪𝑤𝒪𝑠ℎ
𝑉,𝑣 = 𝒪𝑌,𝑦/𝔪𝑧𝒪𝑌,𝑦.

OK, and now we can use Morphisms of Spaces, Lemma 42.28.1 to see that (1) is equivalent
to (3).
Finally we prove the equivalence of (2) and (3). To do this we pick a field extension ̃𝐾
of 𝐾 and and a morphism �̃� ∶ 𝑆𝑝𝑒𝑐( ̃𝐾) → 𝑈 which lies over 𝑢 (this is possible because
𝑢 ×𝑋,𝑥 𝑆𝑝𝑒𝑐(𝐾) is a nonempty scheme). Set ̃𝑧 ∶ 𝑆𝑝𝑒𝑐( ̃𝐾) → 𝑈 → 𝑊 be the composition.
We obtain a commutative diagram

𝑈𝑤 ×𝑤 ̃𝑧
𝑎

tt

//

##

𝑉𝑤 ×𝑤 ̃𝑧

𝑏
ss ||

𝑋𝑧 𝑓
//

𝑔
  

𝑌𝑧

ℎ��

̃𝑧
𝑐

ss𝑧
where 𝑧 = 𝑆𝑝𝑒𝑐(𝐾) and 𝑤 = 𝑆𝑝𝑒𝑐(𝜅(𝑤)). Now it is clear that ℱ𝑤 and ℱ𝑧 pull back to the
same module on 𝑈𝑤 ×𝑤 ̃𝑧. This leads to a commutative diagram

𝑋𝑧

��

𝑈𝑤 ×𝑤 ̃𝑧oo

��

// 𝑈𝑤

��
𝑌𝑧 𝑉𝑤 ×𝑤 ̃𝑧oo // 𝑉𝑤

both of whose squares are cartesian and whose bottom horizontal arrows are flat: the lower
left horizontal arrow is the composition of the morphism 𝑌 ×𝑍 ̃𝑧 → 𝑌 ×𝑍 𝑧 = 𝑌𝑧 (base
change of a flat morphism), the étale morphism 𝑉 ×𝑍 ̃𝑧 → 𝑌 ×𝑍 ̃𝑧, and the étale morphism
𝑉 ×𝑊 ̃𝑧 → 𝑉 ×𝑍 ̃𝑧. Thus it follows from Morphisms of Spaces, Lemma 42.28.3 that

ℱ𝑧 flat at 𝑥 over 𝑌𝑧 ⇔ ℱ|𝑈𝑤×𝑤 ̃𝑧 flat at �̃� over 𝑉𝑤 ×𝑤 ̃𝑧 ⇔ ℱ𝑤 flat at 𝑢 over 𝑉𝑤

and we win. �

Definition 46.18.2. Let 𝑆 be a scheme. Let 𝑋 → 𝑌 → 𝑍 be morphisms of algebraic spaces
over 𝑆. Let ℱ be a quasi-coherent 𝒪𝑋-module. Let 𝑥 ∈ |𝑋| be a point and denote 𝑧 ∈ |𝑍|
its image.

(1) We say the restriction of ℱ to its fibre over 𝑧 is flat at 𝑥 over the fibre of 𝑌 over 𝑧
if the equivalent conditions of Lemma 46.18.1 are satisfied.
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(2) We say the fibre of 𝑋 over 𝑧 is flat at 𝑥 over the fibre of 𝑌 over 𝑧 if the quivalent
conditions of Lemma 46.18.1 holds with ℱ = 𝒪𝑋.

(3) We say the fibre of 𝑋 over 𝑧 is flat over the fibre of 𝑌 over 𝑧 if for all 𝑥 ∈ |𝑋|
lying over 𝑧 the fibre of 𝑋 over 𝑧 is flat at 𝑥 over the fibre of 𝑌 over 𝑧

With this definition in hand we can state the criterion as follows. (We leave the Noetherian
version for later; insert future reference here.)

Theorem 46.18.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑌 → 𝑍 be a morphisms of
algebraic spaces over 𝑆. Let ℱ be a quasi-coherent 𝒪𝑋-module. Assume

(1) 𝑋 is locally of finite presentation over 𝑍,
(2) ℱ an 𝒪𝑋-module of finite presentation, and
(3) 𝑌 is locally of finite type over 𝑍.

Let 𝑥 ∈ |𝑋| and let 𝑦 ∈ |𝑌| and 𝑧 ∈ |𝑍| be the images of 𝑥. If ℱ𝑥≠0, then the following
are equivalent:

(1) ℱ is flat over 𝑍 at 𝑥 and the restriction of ℱ to its fibre over 𝑧 is flat at 𝑥 over the
fibre of 𝑌 over 𝑧, and

(2) 𝑌 is flat over 𝑍 at 𝑦 and ℱ is flat over 𝑌 at 𝑥.
Moreover, the set of points 𝑥 where (1) and (2) hold is open in Supp(ℱ).

Proof. Choose a diagram as in Lemma 46.18.1 part (3). It follows from the definitions that
this reduces to the corresponding theorem for the morphisms of schemes 𝑈 → 𝑉 → 𝑊,
the quasi-coherent sheaf 𝑎∗ℱ, and the point 𝑢 ∈ 𝑈. Thus the theorem follows from the
corresponding result for schemes which is More on Morphisms, Theorem 33.12.2. �

Lemma 46.18.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑌 → 𝑍 be a morphism of
algebraic spaces over 𝑆. Assume

(1) 𝑋 is locally of finite presentation over 𝑍,
(2) 𝑋 is flat over 𝑍,
(3) for every 𝑧 ∈ |𝑍| the fibre of 𝑋 over 𝑧 is flat over the fibre of 𝑌 over 𝑧, and
(4) 𝑌 is locally of finite type over 𝑍.

Then 𝑓 is flat. If 𝑓 is also surjective, then 𝑌 is flat over 𝑍.

Proof. This is a special case of Theorem 46.18.3. �

Lemma 46.18.5. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑌 → 𝑍 be morphisms of algebraic
spaces over 𝑆. Let ℱ be a quasi-coherent 𝒪𝑋-module. Assume

(1) 𝑋 is locally of finite presentation over 𝑍,
(2) ℱ an 𝒪𝑋-module of finite presentation,
(3) ℱ is flat over 𝑍, and
(4) 𝑌 is locally of finite type over 𝑍.

Then the set
𝐴 = {𝑥 ∈ |𝑋| ∶ ℱ flat at 𝑥 over 𝑌}.

is open in |𝑋| and its formation commutes with arbitrary base change: If 𝑍′ → 𝑍 is
a morphism of algebraic spaces, and 𝐴′ is the set of points of 𝑋′ = 𝑋 ×𝑍 𝑍′ where
ℱ′ = ℱ ×𝑍 𝑍′ is flat over 𝑌′ = 𝑌 ×𝑍 𝑍′, then 𝐴′ is the inverse image of 𝐴 under the
continuous map |𝑋′| → |𝑋|.

Proof. One way to prove this is to translate the proof as given in More on Morphisms,
Lemma 33.12.4 into the category of algebraic spaces. Insteadwewill prove this by reducing
to the case of schemes instead. Namely, choose a diagram as in Lemma 46.18.1 part (3)
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such that 𝑎, 𝑏, and 𝑐 are surjective. It follows from the definitions that this reduces to the
corresponding theorem for the morphisms of schemes 𝑈 → 𝑉 → 𝑊, the quasi-coherent
sheaf 𝑎∗ℱ, and the point 𝑢 ∈ 𝑈. The only minor point to make is that given a morphism
of algebraic spaces 𝑍′ → 𝑍 we choose a scheme 𝑊′ and a surjective étale morphism
𝑊′ → 𝑊 ×𝑍 𝑍′. Then we set 𝑈′ = 𝑊′ ×𝑊 𝑈 and 𝑉′ = 𝑊′ ×𝑊 𝑉. We write 𝑎′, 𝑏′, 𝑐′ for the
morphisms from 𝑈′, 𝑉′, 𝑊′ to 𝑋′, 𝑌′, 𝑍′. In this case 𝐴, resp. 𝐴′ are images of the open
subsets of 𝑈, resp. 𝑈′ associated to 𝑎∗ℱ, resp. (𝑎′)∗ℱ′. This indeed does reduce the lemma
to More on Morphisms, Lemma 33.12.4. �

Lemma 46.18.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑌 → 𝑍 be a morphism of
algebraic spaces over 𝑆. Assume

(1) 𝑋 is locally of finite presentation over 𝑍,
(2) 𝑋 is flat over 𝑍, and
(3) 𝑌 is locally of finite type over 𝑍.

Then the set
{𝑥 ∈ |𝑋| ∶ 𝑋 flat at 𝑥 over 𝑌}.

is open in |𝑋| and its formation commutes with arbitrary base change 𝑍′ → 𝑍.

Proof. This is a special case of Lemma 46.18.5. �

46.19. Slicing Cohen-Macaulay morphisms

Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Let 𝑓1, … , 𝑓𝑟 ∈ Γ(𝑋, 𝒪𝑋). In
this case we denote 𝑉(𝑓1, … , 𝑓𝑟) the closed subspace of 𝑋 cut out by 𝑓1, … , 𝑓𝑟. More
precisely, we can define 𝑉(𝑓1, … , 𝑓𝑟) as the closed subspace of 𝑋 corresponding to the
quasi-coherent sheaf of ideals generated by 𝑓1, … , 𝑓𝑟, see Morphisms of Spaces, Lemma
42.16.1. Alternatively, we can choose a presentation 𝑋 = 𝑈/𝑅 and consider the closed
subscheme 𝑍 ⊂ 𝑈 cut out by 𝑓1|𝑈, … , 𝑓𝑟|𝑈. It is clear that 𝑍 is an 𝑅-invariant (see
Groupoids, Definition 35.16.1) closed subscheme and we may set 𝑉(𝑓1, … , 𝑓𝑟) = 𝑍/𝑅𝑍.

Lemma 46.19.1. Let 𝑆 be a scheme. Consider a cartesian diagram

𝑋

��

𝐹𝑝
oo

��
𝑌 𝑆𝑝𝑒𝑐(𝑘)oo

where 𝑋 → 𝑌 is a morphism of algebraic spaces over 𝑆 which is flat and locally of finite
presentation, and where 𝑘 is a field over 𝑆. Let 𝑓1, … , 𝑓𝑟 ∈ Γ(𝑋, 𝒪𝑋) and 𝑧 ∈ |𝐹| such
that 𝑓1, … , 𝑓𝑟 map to a regular sequence in the local ring 𝒪𝐹,𝑧. Then, after replacing 𝑋 by
an open subspace containing 𝑝(𝑧), the morphism

𝑉(𝑓1, … , 𝑓𝑟) ⟶ 𝑌

is flat and locally of finite presentation.

Proof. Set 𝑍 = 𝑉(𝑓1, … , 𝑓𝑟). It is clear that 𝑍 → 𝑋 is locally of finite presentation, hence
the composition 𝑍 → 𝑌 is locally of finite presentation, see Morphisms of Spaces, Lemma
42.26.2. Hence it suffices to show that 𝑍 → 𝑌 is flat in a neighbourhood of 𝑝(𝑧). Let 𝑘 ⊂ 𝑘′

be an extension field. Then 𝐹′ = 𝐹 ×𝑆𝑝𝑒𝑐(𝑘) 𝑆𝑝𝑒𝑐(𝑘′) is surjective and flat over 𝐹, hence
we can find a point 𝑧′ ∈ |𝐹′| mapping to 𝑧 and the local ring map 𝒪𝐹,𝑧 → 𝒪𝐹′,𝑧′ is flat,
see Morphisms of Spaces, Lemma 42.27.7. Hence the image of 𝑓1, … , 𝑓𝑟 in 𝒪𝐹′,𝑧′ is a
regular sequence too, see Algebra, Lemma 7.65.7. Thus, during the proof we may replace
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𝑘 by an extension field. In particular, we may assume that 𝑧 ∈ |𝐹| comes from a section
𝑧 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝐹 of the structure morphism 𝐹 → 𝑆𝑝𝑒𝑐(𝑘).

Choose a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌. Choose a scheme 𝑈 and a
surjective étale morphism 𝑈 → 𝑋 ×𝑌 𝑉. After possibly enlarging 𝑘 once more we may
assume that 𝑆𝑝𝑒𝑐(𝑘) → 𝐹 → 𝑋 factors through 𝑈 (as 𝑈 → 𝑋 is surjective). Let 𝑢 ∶
𝑆𝑝𝑒𝑐(𝑘) → 𝑈 be such a factorization and denote 𝑣 ∈ 𝑉 the image of 𝑢. Note that the
morphisms

𝑈𝑣 ×𝑆𝑝𝑒𝑐(𝜅(𝑣)) 𝑆𝑝𝑒𝑐(𝑘) = 𝑈 ×𝑉 𝑆𝑝𝑒𝑐(𝑘) → 𝑈 ×𝑌 𝑆𝑝𝑒𝑐(𝑘) → 𝐹

are étale (the first as the base change of 𝑉 → 𝑉 ×𝑌 𝑉 and the second as the base change of
𝑈 → 𝑋). Moreover, by construction the point 𝑢 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈 gives a point of the left
most space which maps to 𝑧 on the right. Hence the elements 𝑓1, … , 𝑓𝑟 map to a regular
sequence in the local ring on the right of the following map

𝒪𝑈𝑣,𝑢 ⟶ 𝒪𝑈𝑣×𝑆𝑝𝑒𝑐(𝜅(𝑣)𝑆𝑝𝑒𝑐(𝑘),𝑢 = 𝒪𝑈×𝑉𝑆𝑝𝑒𝑐(𝑘),𝑢.

But since the displayed arrow is flat (combine More on Flatness, Lemma 34.3.5 and Mor-
phisms of Spaces, Lemma 42.27.7) we see from Algebra, Lemma 7.65.7 that 𝑓1, … , 𝑓𝑟
maps to a regular sequence in 𝒪𝑈𝑣,𝑢. By More on Morphisms, Lemma 33.16.2 we conclude
that the morphism of schemes

𝑉(𝑓1, … , 𝑓𝑟) ×𝑋 𝑈 = 𝑉(𝑓1|𝑈, … , 𝑓𝑟|𝑈) → 𝑉

is flat in an open neighbourhood 𝑈′ of 𝑢. Let 𝑋′ ⊂ 𝑋 be the open subspace corresponding
to the image of |𝑈′| → |𝑋| (see Properties of Spaces, Lemmas 41.4.6 and 41.4.8). We
conclude that 𝑉(𝑓1, … , 𝑓𝑟) ∩ 𝑋′ → 𝑌 is flat (see Morphisms of Spaces, Definition 42.27.1)
as we have the commutative diagram

𝑉(𝑓1, … , 𝑓𝑟) ×𝑋 𝑈′

𝑎
��

// 𝑉

𝑏
��

𝑉(𝑓1, … , 𝑓𝑟) ∩ 𝑋′ // 𝑌

with 𝑎, 𝑏 étale and 𝑎 surjective. �

46.20. The structure of quasi-finite morphisms

Lemma 46.20.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent:

(1) 𝑓 is a closed immersion,
(2) 𝑓 is universally closed, unramified, and a monomorphism,
(3) 𝑓 is universally closed, unramified, and universally injective,
(4) 𝑓 is universally closed, locally of finite type, and a monomorphism,
(5) 𝑓 is universally closed, universally injective, locally of finite type, and formally

unramified.

Proof. The equivalence of (2) -- (5) follows immediately from Lemma 46.11.8. Moreover,
if (2) -- (5) are satisfied then 𝑓 is representable. Similarly, if (1) is satified then 𝑓 is repre-
sentable. Hence the result follows from the case of schemes, see Étale Morphisms, Lemma
37.7.2. �
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46.21. Regular immersions

This section is the analogue of Divisors, Section 26.13 for morphisms of schemes. The
reader is encouraged to read up on regular immersions of schemes in that section first.

In Divisors, Section 26.13 we defined four types of regular immersions for morphisms
of schemes. Of these only three are (as far as we know) local on the target for the étale
topology; as usual plain old regular immersions aren't. This is why for morphisms of al-
gebraic spaces we cannot actually define regular immersions. (These kinds of annoyances
prompted Grothendieck and his school to replace original notion of a regular immersion
by a Koszul-regular immersions, see [BGI71, Exposee VII, Definition 1.4].) But we can
define Koszul-regular, 𝐻1-regular, and quasi-regular immersions. Another remark is that
since Koszul-regular immersions are not preserved by arbitrary base change, we cannot use
the strategy of Morphisms of Spaces, Section 42.3 to define them. Similarly, as Koszul-
regular immersions are not étale local on the source, we cannot use Morphisms of Spaces,
Lemma 42.21.1 to define them either. We replace this lemma instead by the following.

Lemma 46.21.1. Let 𝒫 be a property of morphisms of schemes which is étale local on the
target. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a representable morphism of algebraic spaces
over 𝑆. Consider commutative diagrams

𝑋 ×𝑌 𝑉

��

// 𝑉

��
𝑋

𝑓 // 𝑌

where 𝑉 is a scheme and 𝑉 → 𝑌 is étale. The following are equivalent
(1) for any diagram as above the projection 𝑋 ×𝑌 𝑉 → 𝑉 has property 𝒫, and
(2) for some diagram as above with 𝑉 → 𝑌 surjective the projection 𝑋 ×𝑌 𝑉 → 𝑉 has

property 𝒫.
If 𝑋 and 𝑌 are representable, then this is also equivalent to 𝑓 (as a morphism of schemes)
having property 𝒫.

Proof. Let us prove the equivalence of (1) and (2). The implication (1) ⇒ (2) is immediate.
Assume

𝑋 ×𝑌 𝑉

��

// 𝑉

��
𝑋

𝑓 // 𝑌

𝑋 ×𝑌 𝑉′

��

// 𝑉′

��
𝑋

𝑓 // 𝑌
are two diagrams as in the lemma. Assume 𝑉 → 𝑌 is surjective and 𝑋×𝑌 𝑉 → 𝑉 has propery
𝒫. To show that (2) implies (1) we have to prove that 𝑋 ×𝑌 𝑉′ → 𝑉′ has 𝒫. To do this
consider the diagram

𝑋 ×𝑌 𝑉

��

(𝑋 ×𝑌 𝑉) ×𝑋 (𝑋 ×𝑌 𝑉′)oo

��

// 𝑋 ×𝑌 𝑉′

��
𝑉 𝑉 ×𝑌 𝑉′oo // 𝑉′

By our assumption that 𝒫 is étale local on the source, we see that 𝒫 is preserved under étale
base change, see Descent, Lemma 31.18.2. Hence if the left vertical arrow has 𝒫 the so
does the middle vertical arrow. Since 𝑈 ×𝑋 𝑈′ → 𝑈′ is surjective and étale (hence defines
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an étale covering of 𝑈′) this implies (as 𝒫 is assumed local for the étale topology on the
target) that the left vertical arrow has 𝒫.

If 𝑋 and 𝑌 are representable, then we can take id𝑌 ∶ 𝑌 → 𝑌 as our étale covering to see the
final statement of the lemma is true. �

Note that ``being a Koszul-regular (resp. 𝐻1-regular, resp. quasi-regular) immersion'' is a
property of morphisms of schemes which is fpqc local on the target, see Descent, Lemma
31.19.30. Hence the following definition now makes sense.

Definition 46.21.2. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑖 is a Koszul-regular immersion if 𝑖 is representable and the equivalent
conditions of Lemma 46.21.1 hold with 𝒫(𝑓) =``𝑓 is a Koszul-regular immer-
sion''.

(2) We say 𝑖 is an 𝐻1-regular immersion if 𝑖 is representable and the equivalent con-
ditions of Lemma 46.21.1 hold with 𝒫(𝑓) =``𝑓 is an 𝐻1-regular immersion''.

(3) We say 𝑖 is a quasi-regular immersion if 𝑖 is representable and the equivalent
conditions of Lemma 46.21.1 hold with 𝒫(𝑓) =``𝑓 is a quasi-regular immersion''.

Lemma 46.21.3. Let 𝑆 be a scheme. Let 𝑖 ∶ 𝑍 → 𝑋 be an immersion of algebraic spaces
over 𝑆. We have the following implications: 𝑖 is Koszul-regular ⇒ 𝑖 is 𝐻1-regular ⇒ 𝑖 is
quasi-regular.

Proof. Via the definition this lemma immediately reduces to Divisors, Lemma 26.13.2.
�

To be continued...

46.22. Pseudo-coherent morphisms

This section is the analogue ofMore onMorphisms, Section 33.36 formorphisms of schemes.
The reader is encouraged to read up on pseudo-coherent morphisms of schemes in that sec-
tion first.

The property ``pseudo-coherent'' of morphisms of schemes is étale local on the source-and-
target. To see this use More on Morphisms, Lemmas 33.36.9 and 33.36.12 and Descent,
Lemma 31.28.6. By Morphisms of Spaces, Lemma 42.21.1 we may define the notion of
a pseudo-coherent morphism of algebraic spaces as follows and it agrees with the already
existing notion defined in More on Morphisms, Section 33.36 when the algebraic spaces in
question are representable.

Definition 46.22.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is pseudo-coherent if the equivalent conditions ofMorphisms of Spaces,
Lemma 42.21.1 hold with 𝒫 =``pseudo-coherent''.

(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is pseudo-coherent at 𝑥 if there exists an open neighbour-
hood 𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is pseudo-coherent.

Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent in gen-
eral.

Lemma 46.22.2. A flat base change of a pseudo-coherent morphism is pseudo-coherent.
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Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.36.3. �

Lemma 46.22.3. A composition of pseudo-coherent morphisms of schemes is pseudo-
coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.36.4. �

Lemma 46.22.4. A pseudo-coherent morphism is locally of finite presentation.

Proof. Immediate from the definitions. �

Lemma 46.22.5. A flat morphism which is locally of finite presentation is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.36.6. �

Lemma 46.22.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces pseudo-coherent over
a base algebraic space 𝐵. Then 𝑓 is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.36.7. �

Lemma 46.22.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑌 is locally Noetherian, then 𝑓 is pseudo-coherent if and only if 𝑓 is locally of
finite type.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.36.8. �

46.23. Perfect morphisms

This section is the analogue ofMore onMorphisms, Section 33.37 formorphisms of schemes.
The reader is encouraged to read up on perfect morphisms of schemes in that section first.
The property ``perfect'' of morphisms of schemes is étale local on the source-and-target.
To see this use More on Morphisms, Lemmas 33.37.10 and 33.37.12 and Descent, Lemma
31.28.6. By Morphisms of Spaces, Lemma 42.21.1 we may define the notion of a per-
fect morphism of algebraic spaces as follows and it agrees with the already existing notion
defined in More on Morphisms, Section 33.37 when the algebraic spaces in question are
representable.

Definition 46.23.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is perfect if the equivalent conditions of Morphisms of Spaces, Lemma
42.21.1 hold with 𝒫 =``perfect''.

(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is perfect at 𝑥 if there exists an open neighbourhood
𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is perfect.

Note that a perfect morphism is pseudo-coherent, hence locally of finite presentation. Be-
ware that a base change of a perfect morphism is not perfect in general.

Lemma 46.23.2. A flat base change of a perfect morphism is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.37.3. �
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Lemma 46.23.3. A composition of perfect morphisms of schemes is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.37.4. �

Lemma 46.23.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent

(1) 𝑓 is flat and perfect, and
(2) 𝑓 is flat and locally of finite presentation.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.37.5. �

46.24. Local complete intersection morphisms

This section is the analogue ofMore onMorphisms, Section 33.38 formorphisms of schemes.
The reader is encouraged to read up on local complete intersection morphisms of schemes
in that section first.
The property ``being a local complete intersection morphism'' of morphisms of schemes is
étale local on the source-and-target. To see this useMore onMorphisms, Lemmas 33.38.11
and 33.38.12 and Descent, Lemma 31.28.6. By Morphisms of Spaces, Lemma 42.21.1
we may define the notion of a local complete intersection morphism of algebraic spaces
as follows and it agrees with the already existing notion defined in More on Morphisms,
Section 33.38 when the algebraic spaces in question are representable.

Definition 46.24.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆.

(1) We say 𝑓 is a Koszul morphism, or that 𝑓 is a local complete intersection mor-
phism if the equivalent conditions of Morphisms of Spaces, Lemma 42.21.1 hold
with 𝒫(𝑓) =``𝑓 is a local complete intersection morphism''.

(2) Let 𝑥 ∈ |𝑋|. We say 𝑓 is Koszul at 𝑥 if there exists an open neighbourhood
𝑋′ ⊂ 𝑋 of 𝑥 such that 𝑓|𝑋′ ∶ 𝑋′ → 𝑌 is a local complete intersection morphism.

In some sense the defining property of a local complete intersection morphism is the result
of the following lemma.

Lemma 46.24.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a local complete intersection
morphism of algebraic spaces over 𝑆. Let 𝑃 be an algebraic space smooth over 𝑌. Let
𝑈 → 𝑋 be an étale morphism of algebraic spaces and let 𝑖 ∶ 𝑈 → 𝑃 an immersion of
algebraic spaces over 𝑌. Picture:

𝑋

��

𝑈oo

��

𝑖
// 𝑃

��
𝑌

Then 𝑖 is a Koszul-regular immersion of algebraic spaces.

Proof. Choose a scheme 𝑉 and a surjective étale morphism 𝑉 → 𝑌. Choose a scheme 𝑊
and a surjective étale morphism 𝑊 → 𝑃 ×𝑌 𝑉. Set 𝑈′ = 𝑈 ×𝑃 𝑊, which is a scheme étale
over 𝑈. We have to show that 𝑈′ → 𝑊 is a Koszul-regular immersion of schemes, see
Definition 46.21.2. By Definition 46.24.1 above the morphism of schemes 𝑈′ → 𝑉 is a
local complete intersection morphism. Hence the result follows from More on Morphisms,
Lemma 33.38.3. �
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It seems like a good idea to collect here some properties in common with all Koszul mor-
phisms.

Lemma 46.24.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a local complete intersection
morphism of algebraic spaces over 𝑆. Then

(1) 𝑓 is locally of finite presentation,
(2) 𝑓 is pseudo-coherent, and
(3) 𝑓 is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.38.4. �

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 46.24.4. A flat base change of a local complete intersection morphism is a local
complete intersection morphism.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.38.6. �

Lemma 46.24.5. A composition of local complete intersection morphisms of schemes is a
local complete intersection morphism.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.38.7. �

Lemma 46.24.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The following are equivalent

(1) 𝑓 is flat and a local complete intersection morphism, and
(2) 𝑓 is syntomic.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Morphisms,
Lemma 33.38.8. �

Lemma 46.24.7. Let 𝑆 be a scheme. Consider a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces over 𝑆. Assume that both 𝑝 and 𝑞 are flat and locally of finite presen-
tation. Then there exists an open subspace 𝑈(𝑓) ⊂ 𝑋 such that |𝑈(𝑓)| ⊂ |𝑋| is the set
of points where 𝑓 is Koszul. Moreover, for any morphism of algebraic spaces 𝑍′ → 𝑍, if
𝑓′ ∶ 𝑋′ → 𝑌′ is the base change of 𝑓 by 𝑍′ → 𝑍, then 𝑈(𝑓′) is the inverse image of 𝑈(𝑓)
under the projection 𝑋′ → 𝑋.

Proof. This lemma is the analogue ofMore onMorphisms, Lemma 33.38.13 and in fact we
will deduce the lemma from it. By Definition 46.24.1 the set {𝑥 ∈ |𝑋| ∶ 𝑓 is Koszul at 𝑥}
is open in |𝑋| hence by Properties of Spaces, Lemma 41.4.8 it corresponds to an open
subspace 𝑈(𝑓) of 𝑋. Hence we only need to prove the final statement.
Choose a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝑍. Choose a scheme 𝑉 and
a surjective étale morphism 𝑉 → 𝑊 ×𝑍 𝑌. Choose a scheme 𝑈 and a surjective étale
morphism 𝑈 → 𝑉 ×𝑌 𝑋. Finally, choose a scheme 𝑊′ and a surjective étale morphism
𝑊′ → 𝑊 ×𝑍 𝑍′. Set 𝑉′ = 𝑊′ ×𝑊 𝑉 and 𝑈′ = 𝑊′ ×𝑊 𝑈, so that we obtain surjective étale
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morphisms 𝑉′ → 𝑌′ and 𝑈′ → 𝑋′. We will use without further mention an étale morphism
of algebraic spaces induces an open map of associated topological spaces (see Properties
of Spaces, Lemma 41.13.7). Note that by definition 𝑈(𝑓) is the image in |𝑋| of the set 𝑇 of
points in 𝑈 where the morphism of schemes 𝑈 → 𝑉 is Koszul. Similarly, 𝑈(𝑓′) is the image
in |𝑋′| of the set 𝑇′ of points in 𝑈′ where the morphism of schemes 𝑈′ → 𝑉′ is Koszul.
Now, by construction the diagram

𝑈′ //

��

𝑈

��
𝑉′ // 𝑉

is cartesian (in the category of schemes). Hence the aforementioned More on Morphisms,
Lemma 33.38.13 applies to show that 𝑇′ is the inverse image of 𝑇. Since |𝑈′| → |𝑋′| is
surjective this implies the lemma. �

Lemma 46.24.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a local complete intersection
morphism of algebraic spaces over 𝑆. Then 𝑓 is unramified if and only if 𝑓 is formally
unramified and in this case the conormal sheaf 𝒞𝑋/𝑌 is finite locally free on 𝑋.

Proof. This follows from the corresponding result for morphisms of schemes, see More
on Morphisms, Lemma 33.38.14, by étale localization, see Lemma 46.12.11. (Note that
in the situation of this lemma the morphism 𝑉 → 𝑈 is unramified and a local complete
intersection morphism by definition.) �

Lemma 46.24.9. Let 𝑆 be a scheme. Let 𝑍 → 𝑌 → 𝑋 be formally unramified morphisms
of algebraic spaces over 𝑆. Assume that 𝑍 → 𝑌 is a local complete intersection morphism.
The exact sequence

0 → 𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0
of Lemma 46.5.6 is short exact.

Proof. Choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋. Choose a scheme 𝑉
and a surjective étale morphism 𝑉 → 𝑈 ×𝑋 𝑌. Choose a scheme 𝑊 and a surjective étale
morphism 𝑊 → 𝑉 ×𝑌 𝑍. By Lemma 46.12.11 the morphisms 𝑊 → 𝑉 and 𝑉 → 𝑈 are
formally unramified. Moreover the sequence 𝑖∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0 restricts to
the corresponding sequence 𝑖∗𝒞𝑉/𝑈 → 𝒞𝑊/𝑈 → 𝒞𝑊/𝑉 → 0 for 𝑊 → 𝑉 → 𝑈. Hence the
result follows from the result for schemes (More on Morphisms, Lemma 33.38.15) as by
definition the morphism 𝑊 → 𝑉 is a local complete intersection morphism. �

46.25. Exact sequences of differentials and conormal sheaves

In this section we collect some results on exact sequences of conormal sheaves and sheaves
of differentials. In some sense these are all realizations of the triangle of cotangent com-
plexes associated to composable morphisms of algebraic spaces.
In the sequences below each of the maps are as constructed in either Lemma 46.6.6 or
Lemma 46.12.8. Let 𝑆 be a scheme. Let 𝑔 ∶ 𝑍 → 𝑌 and 𝑓 ∶ 𝑌 → 𝑋 be morphisms of
algebraic spaces over 𝑆.

(1) There is a canonical exact sequence
𝑔∗Ω𝑌/𝑋 → Ω𝑍/𝑋 → Ω𝑍/𝑌 → 0,

see Lemma 46.6.8. If 𝑔 ∶ 𝑍 → 𝑌 is formally smooth, then this sequence is a
short exact sequence, see Lemma 46.16.11.
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(2) If 𝑔 is formally unramified, then there is a canonical exact sequence
𝒞𝑍/𝑌 → 𝑔∗Ω𝑌/𝑋 → Ω𝑍/𝑋 → 0,

see Lemma 46.12.13. If 𝑓 ∘ 𝑔 ∶ 𝑍 → 𝑋 is formally smooth, then this sequence is
a short exact sequence, see Lemma 46.16.12.

(3) if 𝑔 and 𝑓 ∘ 𝑔 are formally unramified, then there is a canonical exact sequence
𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 𝑔∗Ω𝑌/𝑋 → 0,

see Lemma 46.12.14. If 𝑓 ∶ 𝑌 → 𝑋 is formally smooth, then this sequence is a
short exact sequence, see Lemma 46.16.13.

(4) if 𝑔 and 𝑓 are formally unramified, then there is a canonical exact sequence
𝑔∗𝒞𝑌/𝑋 → 𝒞𝑍/𝑋 → 𝒞𝑍/𝑌 → 0.

see Lemma 46.12.15. If 𝑔 ∶ 𝑍 → 𝑌 is a local complete intersection morphism,
then this sequence is a short exact sequence, see Lemma 46.24.9.
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CHAPTER 47

Quot and Hilbert Spaces

47.1. Introduction

The purpose of this chapter is to write about Quot and Hilbert functors and to prove that
these are algebraic spaces provided certain technical conditions are satisfied. In this chap-
ter we will discuss this in the setting of algebraic space. A reference is Grothendieck's
lectures, see [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and [Gro95d]. Another
reference is the paper [OS03a], allthough this paper discusses themore general case of Quot
and Hilbert spaces associated to a morphism of algebraic stacks which we will discuss in
another chapter, see (insert future reference here).

In the case of Hilbert spaces there is a more general notion of ``Hilbert stacks'' which we
will discuss in a separate chapter, see (insert future reference here).

47.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.

Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋.

47.3. When is a morphism an isomorphism?

More generally we can ask: ``When does a morphism have property 𝒫?'' A more precise
question is the following. Suppose given a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces. Does there exist a monomorphism of algebraic spaces 𝑊 → 𝑍 with
the following two properties:

(1) the base change 𝑓𝑊 ∶ 𝑋𝑊 → 𝑌𝑊 has property 𝒫, and
(2) any morphism 𝑍′ → 𝑍 of algebraic spaces factors through 𝑊 if and only if the

base change 𝑓𝑍′ ∶ 𝑋𝑍′ → 𝑌𝑍′ has property 𝒫.
In many cases, if 𝑊 → 𝑍 exists, then it is an immersion, open immersion, or closed im-
mersion.

The answer to this question may depend on auxiliary properties of the morphisms 𝑓, 𝑝, and
𝑞. An example is 𝒫(𝑓) =``𝑓 is flat'' which we have discussed for morphisms of schemes
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in the case 𝑌 = 𝑆 in great detail in the chapter ``More on Flatness'', starting with More on
Flatness, Section 34.20.

Lemma 47.3.1. Consider a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces. Assume that 𝑝 is locally of finite type and closed. Then there exists an
open subspace 𝑊 ⊂ 𝑍 such that a morphism 𝑍′ → 𝑍 factors through 𝑊 if and only if the
base change 𝑓𝑍′ ∶ 𝑋𝑍′ → 𝑌𝑍′ is unramified.

Proof. ByMorphisms of Spaces, Lemma 42.34.10 there exists an open subspace 𝑈(𝑓) ⊂ 𝑋
which is the set of points where 𝑓 is unramified. Moreover, formation of 𝑈(𝑓) commutes
with arbitrary base change. Let 𝑊 ⊂ 𝑍 be the open subspace (see Properties of Spaces,
Lemma 41.4.8) with underlying set of points

|𝑊| = |𝑍| ⧵ |𝑝| (|𝑋| ⧵ |𝑈(𝑓)|)
i.e., 𝑧 ∈ |𝑍| is a point of 𝑊 if and only if 𝑓 is unramified at every point of 𝑋 above 𝑧. Note
that this is open because we assumed that 𝑝 is closed. Since the formation of 𝑈(𝑓) commutes
with arbitrary base change we immediately see (using Properties of Spaces, Lemma 41.4.9)
that 𝑊 has the desired universal property. �

Lemma 47.3.2. Consider a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces. Assume that
(1) 𝑝 is locally of finite type,
(2) 𝑝 is closed, and
(3) 𝑝2 ∶ 𝑋 ×𝑌 𝑋 → 𝑍 is closed.

Then there exists an open subspace 𝑊 ⊂ 𝑍 such that a morphism 𝑍′ → 𝑍 factors through
𝑊 if and only if the base change 𝑓𝑍′ ∶ 𝑋𝑍′ → 𝑌𝑍′ is unramified and universally injective.

Proof. After replacing 𝑍 by the open subspace found in Lemma 47.3.1 wemay assume that
𝑓 is already unramified; note that this does not destroy assumption (2) or (3). ByMorphisms
of Spaces, Lemma 42.34.9 we see that Δ𝑋/𝑌 ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is an open immersion. This
remains true after any base change. Hence by Morphisms of Spaces, Lemma 42.18.2 we
see that 𝑓𝑍′ is universally injective if and only if the base change of the diagonal 𝑋𝑍′ →
(𝑋×𝑌 𝑋)𝑍′ is an isomorphism. Let 𝑊 ⊂ 𝑍 be the open subspace (see Properties of Spaces,
Lemma 41.4.8) with underlying set of points

|𝑊| = |𝑍| ⧵ |𝑝2| (|𝑋 ×𝑌 𝑋| ⧵ Im(|Δ𝑋/𝑌|))
i.e., 𝑧 ∈ |𝑍| is a point of 𝑊 if and only if the fibre of |𝑋 ×𝑌 𝑋| → |𝑍| over 𝑧 is in the
image of |𝑋| → |𝑋 ×𝑌 𝑋|. Then it is clear from the discussion above that the restriction
𝑝−1(𝑊) → 𝑞−1(𝑊) of 𝑓 is unramified and universally injective.
Conversely, suppose that 𝑓𝑍′ is unramified and universally injective. In order to show that
𝑍′ → 𝑍 factors through 𝑊 it suffices to show that |𝑍′| → |𝑍| has image contained in |𝑊|,

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05X8
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see Properties of Spaces, Lemma 41.4.9. Hence it suffices to prove the result when 𝑍′ is
the spectrum of a field. Denote 𝑧 ∈ |𝑍| the image of |𝑍′| → |𝑍|. The discussion above
shows that

|𝑋𝑍′| ⟶ |(𝑋 ×𝑌 𝑋)𝑍′|
is surjective. By Properties of Spaces, Lemma 41.4.3 in the commutative diagram

|𝑋𝑍′|

��

// |(𝑋 ×𝑌 𝑋)𝑍′|

��
|𝑝|−1({𝑧}) // |𝑝2|−1({𝑧})

the vertical arrows are surjective. It follows that 𝑧 ∈ |𝑊| as desired. �

Lemma 47.3.3. Consider a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces. Assume that
(1) 𝑝 is locally of finite type,
(2) 𝑝 is universally closed, and
(3) 𝑞 ∶ 𝑌 → 𝑍 is separated.

Then there exists an open subspace 𝑊 ⊂ 𝑍 such that a morphism 𝑍′ → 𝑍 factors through
𝑊 if and only if the base change 𝑓𝑍′ ∶ 𝑋𝑍′ → 𝑌𝑍′ is a closed immersion.

Proof. We will use the characterization of closed immersions as universally closed, un-
ramified, and universally injective morphisms, see More on Morphisms of Spaces, Lemma
46.20.1. First, note that since 𝑝 is universally closed and 𝑞 is separated, we see that 𝑓 is
universally closed, see Morphisms of Spaces, Lemma 42.36.5. It follows that any base
change of 𝑓 is universally closed, see Morphisms of Spaces, Lemma 42.10.3. Thus to fin-
ish the proof of the lemma it suffices to prove that the assumptions of Lemma 47.3.2 are
satisfied. The projection pr0 ∶ 𝑋 ×𝑌 𝑋 → 𝑋 is universally closed as a base change of 𝑓,
see Morphisms of Spaces, Lemma 42.10.3. Hence 𝑋 ×𝑌 𝑋 → 𝑍 is universally closed as a
composition of universally closed morphisms (see Morphisms of Spaces, Lemma 42.10.4).
This finishes the proof of the lemma. �

Lemma 47.3.4. Consider a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces. Assume that
(1) 𝑝 is locally of finite presentation,
(2) 𝑝 is flat,
(3) 𝑝 is closed, and
(4) 𝑞 is locally of finite type.

Then there exists an open subspace 𝑊 ⊂ 𝑍 such that a morphism 𝑍′ → 𝑍 factors through
𝑊 if and only if the base change 𝑓𝑍′ ∶ 𝑋𝑍′ → 𝑌𝑍′ is flat.
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Proof. By More on Morphisms of Spaces, Lemma 46.18.6 the set

𝐴 = {𝑥 ∈ |𝑋| ∶ 𝑋 flat at 𝑥 over 𝑌}.

is open in |𝑋| and its formation commutes with arbitrary base change. Let 𝑊 ⊂ 𝑍 be the
open subspace (see Properties of Spaces, Lemma 41.4.8) with underlying set of points

|𝑊| = |𝑍| ⧵ |𝑝| (|𝑋| ⧵ 𝐴)

i.e., 𝑧 ∈ |𝑍| is a point of 𝑊 if and only if the whole fibre of |𝑋| → |𝑍| over 𝑧 is contained
in 𝐴. This is open because 𝑝 is closed. Since the formation of 𝐴 commutes with arbitrary
base change it follows that 𝑊 works. �

Lemma 47.3.5. Consider a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces. Assume that

(1) 𝑝 is locally of finite presentation,
(2) 𝑝 is flat,
(3) 𝑝 is closed,
(4) 𝑞 is locally of finite type, and
(5) 𝑞 is closed.

Then there exists an open subspace 𝑊 ⊂ 𝑍 such that a morphism 𝑍′ → 𝑍 factors through
𝑊 if and only if the base change 𝑓𝑍′ ∶ 𝑋𝑍′ → 𝑌𝑍′ is surjective and flat.

Proof. By Lemma 47.3.4 we may assume that 𝑓 is flat. Note that 𝑓 is locally of finite
presentation by Morphisms of Spaces, Lemma 42.26.9. Hence 𝑓 is open, see Morphisms
of Spaces, Lemma 42.27.5. Let 𝑊 ⊂ 𝑍 be the open subspace (see Properties of Spaces,
Lemma 41.4.8) with underlying set of points

|𝑊| = |𝑍| ⧵ |𝑞| (|𝑌| ⧵ |𝑓|(|𝑋|)) .

in other words for 𝑧 ∈ |𝑍| we have 𝑧 ∈ |𝑊| if and only if the whole fibre of |𝑌| → |𝑍|
over 𝑧 is in the image of |𝑋| → |𝑌|. Since 𝑞 is closed this set is open in |𝑍|. The morphism
𝑋𝑊 → 𝑌𝑊 is surjective by construction. Finally, suppose that 𝑋𝑍′ → 𝑌𝑍′ is surjective. In
order to show that 𝑍′ → 𝑍 factors through 𝑊 it suffices to show that |𝑍′| → |𝑍| has image
contained in |𝑊|, see Properties of Spaces, Lemma 41.4.9. Hence it suffices to prove the
result when 𝑍′ is the spectrum of a field. Denote 𝑧 ∈ |𝑍| the image of |𝑍′| → |𝑍|. By
Properties of Spaces, Lemma 41.4.3 in the commutative diagram

|𝑋𝑍′|

��

// |𝑌𝑍′|

��
|𝑝|−1({𝑧}) // |𝑞|−1({𝑧})

the vertical arrows are surjective. It follows that 𝑧 ∈ |𝑊| as desired. �
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Lemma 47.3.6. Consider a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces. Assume that
(1) 𝑝 is locally of finite presentation,
(2) 𝑝 is flat,
(3) 𝑝 is universally closed,
(4) 𝑞 is locally of finite type,
(5) 𝑞 is closed, and
(6) 𝑞 is separated.

Then there exists an open subspace 𝑊 ⊂ 𝑍 such that a morphism 𝑍′ → 𝑍 factors through
𝑊 if and only if the base change 𝑓𝑍′ ∶ 𝑋𝑍′ → 𝑌𝑍′ is an isomorphism.

Proof. By Lemma 47.3.5 there exists an open subspace 𝑊1 ⊂ 𝑍 such that 𝑓𝑍′ is surjective
and flat if and only if 𝑍′ → 𝑍 factors through 𝑊1. By Lemma 47.3.3 there exists an open
subspace 𝑊2 ⊂ 𝑍 such that 𝑓𝑍′ is a closed immersion if and only if 𝑍′ → 𝑍 factors
through 𝑊2. We claim that 𝑊 = 𝑊1 ∩ 𝑊2 works. Certainly, if 𝑓𝑍′ is an isomorphism,
then 𝑍′ → 𝑍 factors through 𝑊. Hence it suffices to show that 𝑓𝑊 is an isomorphism.
By construction 𝑓𝑊 is a surjective flat closed immersion. In particular 𝑓𝑊 is representable.
Since a surjective flat closed immersion of schemes is an isomorphism (see Morphisms,
Lemma 24.25.1) we win. (Note that actually 𝑓𝑊 is locally of finite presentation, whence
open, so you can avoid the use of this lemma if you like.) �

Lemma 47.3.7. Consider a commutative diagram

𝑋
𝑓

//

𝑝   

𝑌

𝑞��
𝑍

of algebraic spaces. Assume that
(1) 𝑝 is flat and locally of finite presentation,
(2) 𝑝 is closed, and
(3) 𝑞 is flat and locally of finite presentation,

Then there exists an open subspace 𝑊 ⊂ 𝑍 such that a morphism 𝑍′ → 𝑍 factors through
𝑊 if and only if the base change 𝑓𝑍′ ∶ 𝑋𝑍′ → 𝑌𝑍′ is a local complete intersection mor-
phism.

Proof. By More on Morphisms of Spaces, Lemma 46.24.7 there exists an open subspace
𝑈(𝑓) ⊂ 𝑋 which is the set of points where 𝑓 is Koszul. Moreover, formation of 𝑈(𝑓)
commutes with arbitrary base change. Let 𝑊 ⊂ 𝑍 be the open subspace (see Properties of
Spaces, Lemma 41.4.8) with underlying set of points

|𝑊| = |𝑍| ⧵ |𝑝| (|𝑋| ⧵ |𝑈(𝑓)|)
i.e., 𝑧 ∈ |𝑍| is a point of 𝑊 if and only if 𝑓 is Koszul at every point of 𝑋 above 𝑧. Note that
this is open because we assumed that 𝑝 is closed. Since the formation of 𝑈(𝑓) commutes
with arbitrary base change we immediately see (using Properties of Spaces, Lemma 41.4.9)
that 𝑊 has the desired universal property. �
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CHAPTER 48

Algebraic Spaces over Fields

48.1. Introduction

This chapter is the analogue of the chapter on varieties in the setting of algebraic spaces. A
reference for algebraic spaces is [Kol96].

48.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.

Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋.

48.3. Geometric components

Lemma 48.3.1. Let 𝑘 be an algebraically closed field. Let 𝐴, 𝐵 be strictly henselian local
𝑘-algebras with residue field equal to 𝑘. Let 𝐶 be the strict henselization of 𝐴 ⊗𝑘 𝐵 at the
maximal ideal 𝔪𝐴 ⊗𝑘 𝐵 + 𝐴 ⊗𝑘 𝔪𝐵. Then the minimal primes of 𝐶 correspond 1-to-1 to
pairs of minimal primes of 𝐴 and 𝐵.

Proof. First note that a minimal prime 𝔯 of 𝐶 maps to a minimal prime 𝔭 in 𝐴 and to
a minimal prime 𝔮 of 𝐵 because the ring maps 𝐴 → 𝐶 and 𝐵 → 𝐶 are flat (by going
down for flat ring map Algebra, Lemma 7.35.17). Hence it suffices to show that the strict
henselization of (𝐴/𝔭⊗𝑘𝐵/𝔮)𝔪𝐴⊗𝑘𝐵+𝐴⊗𝑘𝔪𝐵

has a uniqueminimal prime ideal. By Algebra,
Lemma 7.139.22 the rings 𝐴/𝔭, 𝐵/𝔮 are strictly henselian. Hence wemay assume that 𝐴 and
𝐵 are strictly henselian local domains and our goal is to show that 𝐶 has a unique minimal
prime. By Properties of Spaces, Lemma 41.21.3. we see that the integral closure 𝐴′ of 𝐴 in
its fraction field is a normal local domain with residue field 𝑘 and similarly for the integral
closure 𝐵′ of 𝐵 into its fraction field. By Algebra, Lemma 7.147.4 we see that 𝐴′ ⊗𝑘 𝐵′ is
a normal ring. Hence its localization

𝑅 = (𝐴′ ⊗𝑘 𝐵′)𝔪𝐴′⊗𝑘𝐵′+𝐴′⊗𝑘𝔪𝐵′

is a normal local domain. Note that 𝐴 ⊗𝑘 𝐵 → 𝐴′ ⊗𝑘 𝐵′ is integral (hence gong up holds
-- Algebra, Lemma 7.32.20) and that 𝔪𝐴′ ⊗𝑘 𝐵′ + 𝐴′ ⊗𝑘 𝔪𝐵′ is the unique maximal ideal
of 𝐴′ ⊗𝑘 𝐵′ lying over 𝔪𝐴 ⊗𝑘 𝐵 + 𝐴 ⊗𝑘 𝔪𝐵. Hence we see that

𝑅 = (𝐴′ ⊗𝑘 𝐵′)𝔪𝐴⊗𝑘𝐵+𝐴⊗𝑘𝔪𝐵

by Algebra, Lemma 7.36.11. It follows that

(𝐴 ⊗𝑘 𝐵)𝔪𝐴⊗𝑘𝐵+𝐴⊗𝑘𝔪𝐵
⟶ 𝑅
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is integral. We conclude that 𝑅 is the integral closure of (𝐴 ⊗𝑘 𝐵)𝔪𝐴⊗𝑘𝐵+𝐴⊗𝑘𝔪𝐵
in its

fraction field, and by Properties of Spaces, Lemma 41.21.3 once again we conclude that 𝐶
has a unique prime ideal. �

48.4. Schematic locus

Lemma 48.4.1. Let 𝑘 be a field. Let 𝑋 be an algebraic space over 𝑆𝑝𝑒𝑐(𝑘). If 𝑋 is locally
of finite type over 𝑘 and has dimension 0, then 𝑋 is a scheme.

Proof. Let 𝑈 be an affine scheme and let 𝑈 → 𝑋 be an étale morphism. Set 𝑅 = 𝑈 ×𝑋 𝑈.
Note that the two projection morphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are étale morphisms of schemes. By
Properties of Spaces, Definition 41.8.2 we see that dim(𝑈) = 0 and similarly dim(𝑅) = 0.
On the other hand, the morphism 𝑈 → 𝑆𝑝𝑒𝑐(𝑘) is locally of finite type as the composition of
the étale morphism 𝑈 → 𝑋 and 𝑋 → 𝑆𝑝𝑒𝑐(𝑘), see Morphisms of Spaces, Lemmas 42.22.2
and 42.35.9. Similarly, 𝑅 → 𝑆𝑝𝑒𝑐(𝑘) is locally of finite type. Hence by Varieties, Lemma
28.13.2 we see that 𝑈 and 𝑅 are disjoint unions of spectra of local Artinian 𝑘-algebras 𝐴
finite over 𝑘. In particular, as

𝑅 = 𝑈 ×𝑋 𝑈 ⟶ 𝑈 ×𝑆𝑝𝑒𝑐(𝑘) 𝑈
is a monomorphism, we see that 𝑅 is a finite union of spectra of finite 𝑘-algebras. It follows
that 𝑅 is affine, see Schemes, Lemma 21.6.8. Applying Varieties, Lemma 28.13.2 once
more we see that 𝑅 is finite over 𝑘. Hence 𝑠, 𝑡 are finite, see Morphisms, Lemma 24.42.12.
Thus Groupoids, Proposition 35.19.8 shows that the open subspace 𝑈/𝑅 of 𝑋 is an affine
scheme. Since the schematic locus of 𝑋 is an open subspace (see Properties of Spaces,
Lemma 41.10.1), and since 𝑈 → 𝑋 was an arbtrary étale morphisms from an affine scheme
we conclude that 𝑋 is a scheme. �

Lemma 48.4.2. Let 𝑘 be a field. Let 𝑋 be an algebraic space over 𝑘. The following are
equivalent

(1) 𝑋 is locally quasi-finite over 𝑘,
(2) 𝑋 is locally of finite type over 𝑘 and has dimension 0,
(3) 𝑋 is a scheme and is locally quasi-finite over 𝑘,
(4) 𝑋 is a scheme and is locally of finite type over 𝑘 and has dimension 0, and
(5) 𝑋 is a disjoint union of spectra of Artinian local 𝑘-algebras𝐴 over 𝑘with dim𝑘(𝐴) <

∞.

Proof. Because we are over a field relative dimension of 𝑋/𝑘 is the same as the dimen-
sion of 𝑋. Hence by Morphisms of Spaces, Lemma 42.31.6 we see that (1) and (2) are
equivalent. Hence it follows from Lemma 48.4.1 (and trivial implications) that (1) -- (4)
are equivalent. Finally, Varieties, Lemma 28.13.2 shows that (1) -- (4) are equivalent with
(5). �

Lemma 48.4.3. Let 𝑘 be a field. Let 𝑓 ∶ 𝑋 → 𝑌 be a monomorphism of algebraic spaces
over 𝑘. If 𝑌 is locally quasi-finite over 𝑘 so is 𝑋.

Proof. Assume 𝑌 is locally quasi-finite over 𝑘. By Lemma 48.4.2we see that 𝑌 = ∐ 𝑆𝑝𝑒𝑐(𝐴𝑖)
where each 𝐴𝑖 is an Artinian local ring finite over 𝑘. By Decent Spaces, Lemma 43.14.1
we see that 𝑋 is a scheme. Consider 𝑋𝑖 = 𝑓−1(𝑆𝑝𝑒𝑐(𝐴𝑖)). Then 𝑋𝑖 has either one or
zero points. If 𝑋𝑖 has zero points there is nothing to prove. If 𝑋𝑖 has one point, then
𝑋𝑖 = 𝑆𝑝𝑒𝑐(𝐵𝑖) with 𝐵𝑖 a zero dimensional local ring and 𝐴𝑖 → 𝐵𝑖 is an epimorphism
of rings. In particular 𝐴𝑖/𝔪𝐴𝑖

= 𝐵𝑖/𝔪𝐴𝑖
𝐵𝑖 and we see that 𝐴𝑖 → 𝐵𝑖 is surjective by

Nakayama's lemma, Algebra, Lemma 7.14.5 (because 𝔪𝐴𝑖
is a nilpotent ideal!). Thus 𝐵𝑖
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is a finite local 𝑘-algebra, and we conclude by Lemma 48.4.2 that 𝑋 → 𝑆𝑝𝑒𝑐(𝑘) is locally
quasi-finite. �

48.5. Spaces smooth over fields

Lemma 48.5.1. Let 𝑘 be a field. Let 𝑋 be an algebraic space smooth over 𝑘. Then 𝑋 is a
regular algebraic space.

Proof. Choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑋. The morphism 𝑈 →
𝑆𝑝𝑒𝑐(𝑘) is smooth as a composition of an étale (hence smooth) morphism and a smooth
morphism (see Morphisms of Spaces, Lemmas 42.35.6 and 42.33.2). Hence 𝑈 is regular
by Varieties, Lemma 28.15.3. By Properties of Spaces, Definition 41.7.2 this means that 𝑋
is regular. �
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CHAPTER 49

Cohomology of Algebraic Spaces

49.1. Introduction

In this chapter we write about cohomology of algebraic spaces. This mean in particular
cohomology of quasi-coherent sheaves, i.e., we prove analogues of the results in the chap-
ter entitled ``Coherent Cohomology''. Some of the results in this chapter can be found in
[Knu71b].

49.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.
Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋.

49.3. Derived category of quasi-coherent modules

Let 𝑆 be a scheme. In Descent, Lemma 31.8.1 we proved that the category 𝐷𝑄𝐶𝑜ℎ(𝒪𝑆)
can be defined in terms of complexes of 𝒪𝑆-modules on the scheme 𝑆 or by complexes of
𝒪-modules on the small étale site of 𝑆. Hence the following definition is compatible with
the definition in the case of schemes.

Definition 49.3.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. The derived
category of 𝒪𝑋-modules with quasi-coherent cohomology sheaves is denoted 𝐷𝑄𝐶𝑜ℎ(𝒪𝑋).

This makes sense by Properties of Spaces, Lemma 41.26.7 and Derived Categories, Section
11.12.

49.4. Higher direct images

Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a quasi-compact and quasi-separated morphism of
representable algebraic spaces 𝑋 and 𝑌 over 𝑆. Let ℱ be a quasi-coherent module on 𝑋.
By Descent, Lemma 31.6.15 the sheaf 𝑅𝑖𝑓∗ℱ agrees with the usual higher direct image
(computed for the Zariski topologies) if we think of 𝑋 and 𝑌 as schemes.
More generally, suppose 𝑓 ∶ 𝑋 → 𝑌 is a representable, quasi-compact, and quasi-separated
morphism of algebraic spaces over 𝑆. Let 𝑉 be a scheme and let 𝑉 → 𝑌 be an étale surjective
morphism. Let 𝑈 = 𝑉 ×𝑌 𝑋 and let 𝑓′ ∶ 𝑈 → 𝑉 be the base change of 𝑓. Then for any
quasi-coherent 𝒪𝑋-module ℱ we have
(49.4.0.1) 𝑅𝑖𝑓′

∗(ℱ|𝑈) = (𝑅𝑖𝑓∗ℱ)|𝑉,
see Properties of Spaces, Lemma 41.23.2. And because 𝑓′ ∶ 𝑈 → 𝑉 is a quasi-compact
and quasi-separated morphism of schemes, by the remark of the preceding paragraph we

2457
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may compute 𝑅𝑖𝑓′
∗(ℱ|𝑈) by thinking of ℱ|𝑈 as a quasi-coherent sheaf on the scheme 𝑈,

and 𝑓′ as a morphism of schemes. We will frequently use this without further mention.

Next, we prove that higher direct images of quasi-coherent sheaves are quasi-coherent for
any quasi-compact and quasi-separated morphism of algebraic spaces. In the proof we use
a trick; a ``better'' proof would use a relative Cech complex, as discussed in Sheaves on
Stacks, Sections 58.17 and 58.18 ff.

Lemma 49.4.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is quasi-compact and quasi-separated, then 𝑅𝑖𝑓∗ transforms quasi-coherent
𝒪𝑋-modules into quasi-coherent 𝒪𝑌-modules and induces a functor 𝑅𝑓∗ ∶ 𝐷+

𝑄𝐶𝑜ℎ(𝒪𝑋) →
𝐷+

𝑄𝐶𝑜ℎ(𝒪𝑌).

Proof. Let 𝑉 → 𝑌 be an étale morphism where 𝑉 is an affine scheme. Set 𝑈 = 𝑉 ×𝑌 𝑋
and denote 𝑓′ ∶ 𝑈 → 𝑉 the induced morphism. Let ℐ• be a bounded above complex of
injective 𝒪𝑋-modules. By Properties of Spaces, Lemma 41.23.2 we have

𝑓′
∗(ℐ•|𝑈) = (𝑓∗ℐ•)|𝑉.

The complex ℐ•|𝑈 is a bounded below complex of injective 𝒪𝑈-modules, see Cohomology
on Sites, Lemma 19.8.1. Since the property of being a quasi-coherent module is local in
the étale topology on 𝑌 (see Properties of Spaces, Lemma 41.26.6) we may replace 𝑌 by 𝑉,
i.e., we may assume 𝑌 is an affine scheme.

Assume 𝑌 is affine. Since 𝑓 is quasi-compact we see that 𝑋 is quasi-compact. Thus we
may choose an affine scheme 𝑈 and a surjective étale morphism 𝑔 ∶ 𝑈 → 𝑋, see Properties
of Spaces, Lemma 41.6.3. Note that the morphism 𝑔 ∶ 𝑈 → 𝑋 is representable, separated
and quasi-compact because 𝑋 is quasi-separated. Hence the lemma holds for 𝑔 (either by
the discussion above the lemma or by applying the reduction in the first paragraph of this
proof). It also holds for 𝑓 ∘ 𝑔 ∶ 𝑈 → 𝑌 (as this is a morphism of affine schemes). Moreover,
for an injective 𝒪𝑈-module ℐ the module 𝑔∗ℐ is injective (see Homology, Lemma 10.22.1)
whence 𝑅𝑓∗ ∘ 𝑅𝑔∗ = 𝑅(𝑔 ∘ 𝑓)∗, see Derived Categories, Lemma 11.21.1.

In the situation described in the previous paragraph we will show by induction on 𝑛 that
𝐼𝐻𝑛: for any quasi-coherent sheaf ℱ on 𝑋 the sheaves 𝑅𝑖𝑓ℱ are quasi-coherent for 𝑖 ≤ 𝑛.
The case 𝑛 = 0 follows from Morphisms of Spaces, Lemma 42.15.2. Assume 𝐼𝐻𝑛. In the
rest of the proof we show that 𝐼𝐻𝑛+1 holds.

The hypothesis 𝐼𝐻𝑛 implies, via the spectral sequence of Derived Categories, Lemma
11.20.3, that 𝑅𝑖𝑓∗𝒢• is quasi-coherent for 𝑖 ≤ 𝑛 if 𝒢• is a complex of 𝒪𝑋-modules with
𝐻𝑗(𝒢•) = 0 for 𝑗 < 0 and 𝐻𝑗(𝒢•) is quasi-coherent for all 𝑗. Suppose ℋ is a quasi-coherent
𝒪𝑈-module. Consider the distinguished triangle

𝑔∗ℋ → 𝑅𝑔∗ℋ → 𝜏≥1𝑅𝑔∗ℋ → 𝑔∗ℋ[1].

Note that 𝑅𝑔∗ℋ and 𝑅𝑓∗𝑅𝑔∗ℋ = 𝑅(𝑓 ∘ 𝑔)∗ℋ have quasi-coherent cohomology sheaves
(see above). Combined with the remark above we conclude that 𝐼𝐻𝑛 implies that 𝑅𝑖𝑓∗𝑔∗ℋ
is quasi-coherent for 𝑖 ≤ 𝑛 + 1.

Let ℱ be a quasi-coherent 𝒪𝑋-module. Consider the exact sequence

0 → ℱ → 𝑔∗𝑔∗ℱ → 𝒢 → 0

where 𝒢 is the cokernel of the first map. Applying the long exact cohomology sequence we
obtain

𝑅𝑛𝑓∗𝑔∗𝑔∗ℱ → 𝑅𝑛𝑓∗𝒢 → 𝑅𝑛+1𝑓∗ℱ → 𝑅𝑛+1𝑓∗𝑔∗𝑔∗ℱ → 𝑅𝑛+1𝑓∗𝒢
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By the above we see that 𝑅𝑛+1𝑓∗𝑔∗𝑔∗ℱ is quasi-coherent. Thus 𝑅𝑛+1𝑓∗ℱ has a 2-step
filtration where the first step is quasi-coherent and the second a subsheaf of a quasi-coherent
sheaf. Applying this to 𝑅𝑛+1𝑓∗𝒢 we find an exact sequence 0 → 𝒜 → 𝑅𝑛+1𝑓∗𝒢 → ℬ wit
𝒜, ℬ quasi-coherent 𝒪𝑌-modules. Then the kernel 𝒦 of 𝑅𝑛+1𝑓∗𝑔∗𝑔∗ℱ → 𝑅𝑛+1𝑓∗𝒢 → ℬ
is quasi-coherent, whereupon we obtain a map 𝒦 → 𝒜 whose kernel 𝒦′ is quasi-coherent
too. Hence 𝑅𝑛+1𝑓∗ℱ sits in an exact sequence

𝑅𝑛𝑓∗𝑔∗𝑔∗ℱ → 𝑅𝑛𝑓∗𝒢 → 𝑅𝑛+1𝑓∗ℱ → 𝒦′ → 0

and we win. �

49.5. Colimits and cohomology

The following lemma in particular applies to diagrams of quasi-coherent sheaves.

Lemma 49.5.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. If 𝑋 is quasi-
compact and quasi-separated, then

𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑝(𝑋, ℱ𝑖) ⟶ 𝐻𝑝(𝑋, 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)

for every filtered diagram of abelian sheaves on 𝑋 ́𝑒𝑡𝑎𝑙𝑒.

Proof. This follows fromCohomology on Sites, Lemma 19.16.2. Namely, letℬ ⊂ 𝑂𝑏(𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒)
be the set of quasi-compact and quasi-separated spaces étale over 𝑋. Note that if 𝑈 ∈ ℬ
then, because 𝑈 is quasi-compact, the collection of finite coverings {𝑈𝑖 → 𝑈} with 𝑈𝑖 ∈ ℬ
is cofinal in the set of coverings of 𝑈 in 𝑋 ́𝑒𝑡𝑎𝑙𝑒. ByMorphisms of Spaces, Lemma 42.9.9 the
set ℬ satisfies all the assumptions of Cohomology on Sites, Lemma 19.16.2. Since 𝑋 ∈ ℬ
we win. �

49.6. The alternating Čech complex

Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑈 → 𝑋 be an étale morphism of algebraic spaces over 𝑆. The
functor

𝑗 ∶ 𝑈𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒, 𝑉/𝑈 ⟼ 𝑉/𝑋
induces an equivalence of 𝑈𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 with the localization 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒/𝑈, see Properties
of Spaces, Section 41.24. Hence there exist functors

𝑓! ∶ Ab(𝑈 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒), 𝑓! ∶ Mod(𝒪𝑈) ⟶ Mod(𝒪𝑋),

which are left adjoint to

𝑓−1 ∶ Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) ⟶ Ab(𝑈 ́𝑒𝑡𝑎𝑙𝑒), 𝑓∗ ∶ Mod(𝒪𝑋) ⟶ Mod(𝒪𝑈)

see Modules on Sites, Section 16.19. Warning: This functor, a priori, has nothing to do
with cohomology with compact supports! We dubbed this functor ``extension by zero'' in
the reference above. Note that the two versions of 𝑓! agree as 𝑓∗ = 𝑓−1 for sheaves of
𝒪𝑋-modules.

As we are going to use this construction below let us recall some of its properties. Given
an abelian sheaf 𝒢 on 𝑈 ́𝑒𝑡𝑎𝑙𝑒 the sheaf 𝑓! is the sheafification of the presheaf

𝑉/𝑋 ⟼ 𝑓!𝒢(𝑉) = ⨁𝜑∈𝑀𝑜𝑟𝑋(𝑉,𝑈)
𝒢(𝑉

𝜑
−→ 𝑈),

see Modules on Sites, Lemma 16.19.2. Moreover, if 𝒢 is an 𝒪𝑈-module, then 𝑓!𝒢 is
the sheafification of the exact same presheaf of abelian groups which is endowed with an
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𝒪𝑋-module structure in an obvious way (see loc. cit.). Let 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑋 be a geometric
point. Then there is a canonical identification

(𝑓!𝒢)𝑥 = ⨁𝑢
𝒢𝑢

where the sum is over all 𝑢 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈 such that 𝑓 ∘ 𝑢 = 𝑥, see Modules on Sites,
Lemma 16.32.1. In the following we are going to study the sheaf 𝑓!𝐙. Here 𝐙 denotes the
constant sheaf on 𝑋 ́𝑒𝑡𝑎𝑙𝑒 or 𝑈 ́𝑒𝑡𝑎𝑙𝑒.

Lemma 49.6.1. Let 𝑆 be a scheme. Let 𝑓𝑖 ∶ 𝑈𝑖 → 𝑋 be étale morphisms of algebraic
spaces over 𝑆. Then there are isomorphisms

𝑓1,!𝐙 ⊗𝐙 𝑓2,!𝐙 ⟶ 𝑓12,!𝐙
where 𝑓12 ∶ 𝑈1 ×𝑋 𝑈2 → 𝑋 is the structure morphism and

(𝑓1 ⨿ 𝑓2)!𝐙 ⟶ 𝑓1,!𝐙 ⊕ 𝑓2,!𝐙

Proof. Once we have defined the map it will be an isomorphism by our description of stalks
above. To define the map it suffices to work on the level of presheaves. Thus we have to
define a map

(⨁𝜑1∈𝑀𝑜𝑟𝑋(𝑉,𝑈1)
𝐙) ⊗𝐙 (⨁𝜑2∈𝑀𝑜𝑟𝑋(𝑉,𝑈2)

𝐙) ⟶ ⨁𝜑∈𝑀𝑜𝑟𝑋(𝑉,𝑈1×𝑋𝑈2)
𝐙

We map the element 1𝜑1
⊗ 1𝜑2

to the element 1𝜑1×𝜑2
with obvious notation. We omit the

proof of the second equality. �

Another important feature is the trace map
Tr𝑓 ∶ 𝑓!𝐙 ⟶ 𝐙.

The trace map is adjoint to the map 𝐙 → 𝑓−1𝐙 (which is an isomorphism). If 𝑥 is above,
then Tr𝑓 on stalks at 𝑥 is the map

(Tr𝑓)𝑥 ∶ (𝑓!𝐙)𝑥 = ⨁𝑢
𝐙 ⟶ 𝐙 = 𝐙𝑥

which sums the given integers. This is true because it is adjoint to the map 1 ∶ 𝐙 → 𝑓−1𝐙.
In particular, if 𝑓 is surjective as well as étale then Tr𝑓 is surjective.
Assume that 𝑓 ∶ 𝑈 → 𝑋 is a surjective étale morphism of algebraic spaces. Consider the
Koszul complex associated to the trace map we discussed above

… → ∧3𝑓!𝐙 → ∧2𝑓!𝐙 → 𝑓!𝐙 → 𝐙 → 0
Here the exterior powers are over the sheaf of rings 𝐙. The maps are defined by the rule

𝑒1 ∧ … ∧ 𝑒𝑛 ⟼ ∑𝑖=1,…,𝑛
(−1)𝑖+1Tr𝑓(𝑒𝑖)𝑒1 ∧ … ∧ 𝑒𝑖 ∧ … ∧ 𝑒𝑛

where 𝑒1, … , 𝑒𝑛 are local sections of 𝑓!𝐙. Let 𝑥 be a geometric point of 𝑋 and set 𝑀𝑥 =
(𝑓!𝐙)𝑥 = ⨁𝑢 𝐙. Then the stalk of the complex above at 𝑥 is the complex

… → ∧3𝑀𝑥 → ∧2𝑀𝑥 → 𝑀𝑥 → 𝐙 → 0
which is exact because 𝑀𝑥 → 𝐙 is surjective, see More on Algebra, Lemma 12.21.5.
Hence if we let 𝐾• = 𝐾•(𝑓) be the complex with 𝐾𝑖 = ∧𝑖+1𝑓!𝐙, then we obtain a quasi-
isomorphism
(49.6.1.1) 𝐾• ⟶ 𝐙[0]

We use the complex 𝐾• to define what we call the alternating Čech complex associated to
𝑓 ∶ 𝑈 → 𝑋.
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Definition 49.6.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑈 → 𝑋 be a surjective étale morphism of
algebraic spaces over 𝑆. Let ℱ be an object of Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒). The alternating Čech complex1

̌𝒞•
𝑎𝑙𝑡(𝑓, ℱ) associated to ℱ and 𝑓 is the complex

𝐻𝑜𝑚(𝐾0, ℱ) → 𝐻𝑜𝑚(𝐾1, ℱ) → 𝐻𝑜𝑚(𝐾2, ℱ) → …
with Hom groups computed in Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒).

The reader may verify that if 𝑈 = ∐ 𝑈𝑖 and 𝑓|𝑈𝑖
∶ 𝑈𝑖 → 𝑋 is the open immersion of

a subspace, then ̌𝒞•
𝑎𝑙𝑡(𝑓, ℱ) agrees with the complex introduced in Cohomology, Section

18.17 for the Zariski covering 𝑋 = ⋃ 𝑈𝑖 and the restriction of ℱ to the Zariski site of
𝑋. What is more important however, is to relate the cohomology of the alternating Čech
complex to the cohomology.

Lemma 49.6.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑈 → 𝑋 be a surjective étale morphism of
algebraic spaces over 𝑆. Let ℱ be an object of Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒). There exists a canonical map

̌𝒞•
𝑎𝑙𝑡(𝑓, ℱ) ⟶ 𝑅Γ(𝑋, ℱ)

in 𝐷(Ab). Moreover, there is a spectral sequence with 𝐸1-page

𝐸𝑝,𝑞
1 = Ext𝑞Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒)(𝐾

𝑝, ℱ)

converging to 𝐻𝑝+𝑞(𝑋, ℱ) where 𝐾𝑝 = ∧𝑝+1𝑓!𝐙.

Proof. Recall that we have the quasi-isomorphism 𝐾• → 𝐙[0], see (49.6.1.1). Choose an
injective resolution ℱ → ℐ• in Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒). Consider the double complex 𝐴•,• with terms

𝐴𝑝,𝑞 = 𝐻𝑜𝑚(𝐾𝑝, ℐ𝑞)
where the differential 𝑑𝑝,𝑞

1 ∶ 𝐴𝑝,𝑞 → 𝐴𝑝+1,𝑞 is the one coming from the differential 𝐾𝑝+1 →
𝐾𝑝 and the differential 𝑑𝑝,𝑞

2 ∶ 𝐴𝑝,𝑞 → 𝐴𝑝,𝑞+1 is the one coming from the differential ℐ𝑞 →
ℐ𝑞+1. Denote 𝑠𝐴• the total complex associated to the double complex 𝐴•,•. We will use
the two spectral sequences (′𝐸𝑟, ′𝑑𝑟) and (″𝐸𝑟, ″𝑑𝑟) associated to this double complex, see
Homology, Section 10.19.
Because 𝐾• is a resolution of 𝐙 we see that the complexes

𝐴•,𝑞 ∶ 𝐻𝑜𝑚(𝐾0, ℐ𝑞) → 𝐻𝑜𝑚(𝐾1, ℐ𝑞) → 𝐻𝑜𝑚(𝐾2, ℐ𝑞) → …
are acyclic in positive degrees and have 𝐻0 equal to Γ(𝑋, ℐ𝑞). Hence byHomology, Lemma
10.19.6 and its proof the spectral sequence (″𝐸𝑟, ″𝑑𝑟) degenerates, and the natural map

ℐ•(𝑋) ⟶ 𝑠𝐴•

is a quasi-isomorphism of complexes of abelian groups. In particular we conclude that
𝐻𝑛(𝑠𝐴•) = 𝐻𝑛(𝑋, ℱ).
The map ̌𝒞•

𝑎𝑙𝑡(𝑓, ℱ) → 𝑅Γ(𝑋, ℱ) of the lemma is the composition of ̌𝒞•
𝑎𝑙𝑡(𝑓, ℱ) → 𝑆𝐴•

with the inverse of the displayed quasi-isomorphism.
Finally, consider the spectral sequence (′𝐸𝑟, ′𝑑𝑟). We have

𝐸𝑝,𝑞
1 = 𝑞th cohomology of 𝐻𝑜𝑚(𝐾𝑝, ℐ0) → 𝐻𝑜𝑚(𝐾𝑝, ℐ1) → 𝐻𝑜𝑚(𝐾𝑝, ℐ2) → …

This proves the lemma. �

It follows from the lemma that it is important to understand the ext groups ExtAb(𝑋 ́𝑒𝑡𝑎𝑙𝑒)(𝐾𝑝, ℱ),
i.e., the right derived functors of ℱ ↦ 𝐻𝑜𝑚(𝐾𝑝, ℱ).

1This may be nonstandard notation
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Lemma 49.6.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑈 → 𝑋 be a surjective, étale, and separated
morphism of algebraic spaces over 𝑆. For 𝑝 ≥ 0 set

𝑊𝑝 = 𝑈 ×𝑋 … ×𝑋 𝑈 ⧵ all diagonals

where the fibre product has 𝑝 + 1 factors. There is a free action of 𝑆𝑝+1 on 𝑊𝑝 over 𝑋 and

𝐻𝑜𝑚(𝐾𝑝, ℱ) = 𝑆𝑝+1-anti-invariant elements of ℱ(𝑊𝑝)

functorially in ℱ where 𝐾𝑝 = ∧𝑝+1𝑓!𝐙.

Proof. Because 𝑈 → 𝑋 is separated the diagonal 𝑈 → 𝑈 ×𝑋 𝑈 is a closed immersion.
Since 𝑈 → 𝑋 is étale the diagonal 𝑈 → 𝑈 ×𝑋 𝑈 is an open immersion, see Morphisms
of Spaces, Lemmas 42.35.10 and 42.34.9. Hence 𝑊𝑝 is an open and closed subspace of
𝑈𝑝+1 = 𝑈 ×𝑋 … ×𝑋 𝑈. The action of 𝑆𝑝+1 on 𝑊𝑝 is free as we've thrown out the fixed
points of the action. By Lemma 49.6.1 we see that

(𝑓!𝐙)⊗𝑝+1 = 𝑓𝑝+1
! 𝐙 = (𝑊𝑝 → 𝑋)!𝐙 ⊕ 𝑅𝑒𝑠𝑡

where 𝑓𝑝+1 ∶ 𝑈𝑝+1 → 𝑋 is the structure morphism. Looking at stalks over a geometric
point 𝑥 of 𝑋 we see that

(⨁𝑢↦𝑥
𝐙)

⊗𝑝+1
⟶ (𝑊𝑝 → 𝑋)!𝐙𝑥

is the quotient whose kernel is generated by all tensors 1𝑢0
⊗ … ⊗ 1𝑢𝑝

where 𝑢𝑖 = 𝑢𝑗 for
some 𝑖≠𝑗. Thus the quotient map

(𝑓!𝐙)⊗𝑝+1 ⟶ ∧𝑝+1𝑓!𝐙

factors through (𝑊𝑝 → 𝑋)!𝐙, i.e., we get

(𝑓!𝐙)⊗𝑝+1 ⟶ (𝑊𝑝 → 𝑋)!𝐙 ⟶ ∧𝑝+1𝑓!𝐙

This already proves that 𝐻𝑜𝑚(𝐾𝑝, ℱ) is (functorially) a subgroup of

𝐻𝑜𝑚((𝑊𝑝 → 𝑋)!𝐙, ℱ) = ℱ(𝑊𝑝)

To identify it with the 𝑆𝑝+1-anti-invariants we have to prove that the surjection (𝑊𝑝 →
𝑋)!𝐙 → ∧𝑝+1𝑓!𝐙 is the maximal 𝑆𝑝+1-anti-invariant quotient. In other words, we have to
show that ∧𝑝+1𝑓!𝐙 is the quotient of (𝑊𝑝 → 𝑋)!𝐙 by the subsheaf generated by the local
sections 𝑠 − sign(𝜎)𝜎(𝑠) where 𝑠 is a local section of (𝑊𝑝 → 𝑋)!𝐙. This can be checked on
the stacks, where it is clear. �

Lemma 49.6.5. Let 𝑆 be a scheme. Let 𝑊 be an algebraic space over 𝑆. Let 𝐺 be a
finite group acting freely on 𝑊. Let 𝑈 = 𝑊/𝐺, see Properties of Spaces, Lemma 41.31.1.
Let 𝜒 ∶ 𝐺 → {+1, −1} be a character. Then there exists a rank 1 locally free sheaf of
𝐙-modules 𝐙(𝜒) on 𝑈 ́𝑒𝑡𝑎𝑙𝑒 such that for every abelian sheaf ℱ on 𝑈 ́𝑒𝑡𝑎𝑙𝑒 we have

𝐻0(𝑊, ℱ|𝑊)𝜒 = 𝐻0(𝑈, ℱ ⊗𝐙 𝐙(𝜒))

Proof. The quotient morphism 𝑞 ∶ 𝑊 → 𝑈 is a 𝐺-torsor, i.e., there exists a surjective
étale morphism 𝑈′ → 𝑈 such that 𝑊 ×𝑈 𝑈′ = ∐𝑔∈𝐺 𝑈′ as spaces with 𝐺-action over 𝑈′.
(Namely, 𝑈′ = 𝑊 works.) Hence 𝑞∗𝐙 is a finite locally free 𝐙-module with an action of 𝐺.
For any geometric point 𝑢 of 𝑈, then we get 𝐺-equivariant isomorphisms

(𝑞∗𝐙)𝑢 = ⨁𝑤↦𝑢
𝐙 = ⨁𝑔∈𝐺

𝐙 = 𝐙[𝐺]
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where the second = uses a geometric point 𝑤0 lying over 𝑢 and maps the summand corre-
sponding to 𝑔 ∈ 𝐺 to the summand corresponding to 𝑔(𝑤0). We have

𝐻0(𝑊, ℱ|𝑊) = 𝐻0(𝑈, ℱ ⊗𝐙 𝑞∗𝐙)

because 𝑞∗ℱ|𝑊 = ℱ ⊗𝐙 𝑞∗𝐙 as one can check by restricting to 𝑈′. Let

𝐙(𝜒) = (𝑞∗𝐙)𝜒 ⊂ 𝑞∗𝐙

be the subsheaf of sections that transform according to 𝜒. For any geometric point 𝑢 of 𝑈
we have

𝐙(𝜒)𝑢 = 𝐙 ⋅ ∑𝑔
𝜒(𝑔)𝑔 ⊂ 𝐙[𝐺] = (𝑞∗𝐙)𝑢

It follows that 𝐙(𝜒) is locally free of rank 1 (more precisely, this should be checked after
restricting to 𝑈′). Note that for any 𝐙-module 𝑀 the 𝜒-semi-invariants of 𝑀[𝐺] are the
elements of the form 𝑚 ⋅ ∑𝑔 𝜒(𝑔)𝑔. Thus we see that for any abelian sheaf ℱ on 𝑈 we have

(ℱ ⊗𝐙 𝑞∗𝐙)
𝜒 = ℱ ⊗𝐙 𝐙(𝜒)

because we have equality at all stalks. The result of the lemma follows by taking global
sections. �

Now we can put everything together and obtain the following pleasing result.

Lemma 49.6.6. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑈 → 𝑋 be a surjective, étale, and separated
morphism of algebraic spaces over 𝑆. For 𝑝 ≥ 0 set

𝑊𝑝 = 𝑈 ×𝑋 … ×𝑋 𝑈 ⧵ all diagonals

(with 𝑝 + 1 factors) as in Lemma 49.6.4. Let 𝜒𝑝 ∶ 𝑆𝑝+1 → {+1, −1} be the sign character.
Let 𝑈𝑝 = 𝑊𝑝/𝑆𝑝+1 and 𝐙(𝜒𝑝) be as in Lemma 49.6.5. Then the spectral sequence of Lemma
49.6.3 has 𝐸1-page

𝐸𝑝,𝑞
1 = 𝐻𝑞(𝑈𝑝, ℱ|𝑈𝑝

⊗𝐙 𝐙(𝜒𝑝))

and converges to 𝐻𝑝+𝑞(𝑋, ℱ).

Proof. Note that since the action of 𝑆𝑝+1 on 𝑊𝑝 is over 𝑋 we do obtain a morphism 𝑈𝑝 →
𝑋. Since 𝑊𝑝 → 𝑋 is étale and since 𝑊𝑝 → 𝑈𝑝 is surjective étale, it follows that also
𝑈𝑝 → 𝑋 is étale, see Descent on Spaces, Lemma 45.17.1. Therefore an injective object of
Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) restricts to an injective object of Ab(𝑈𝑝, ́𝑒𝑡𝑎𝑙𝑒), see Cohomology on Sites, Lemma
19.8.1. Moreover, the functor 𝒢 ↦ 𝒢 ⊗𝐙 𝐙(𝜒𝑝)) is an auto-equivalence of Ab(𝑈𝑝), whence
transforms injective objects into injective objects and is exact (because𝐙(𝜒𝑝) is an invertible
𝐙-module). Thus given an injective resolution ℱ → ℐ• in Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒) the complex

Γ(𝑈𝑝, ℐ0|𝑈𝑝
⊗𝐙 𝐙(𝜒𝑝)) → Γ(𝑈𝑝, ℐ1|𝑈𝑝

⊗𝐙 𝐙(𝜒𝑝)) → Γ(𝑈𝑝, ℐ2|𝑈𝑝
⊗𝐙 𝐙(𝜒𝑝)) → …

computes 𝐻∗(𝑈𝑝, ℱ|𝑈𝑝
⊗𝐙 𝐙(𝜒𝑝)). On the other hand, by Lemma 49.6.5 it is equal to the

complex of 𝑆𝑝+1-anti-invariants in

Γ(𝑊𝑝, ℐ0) → Γ(𝑊𝑝, ℐ1) → Γ(𝑊𝑝, ℐ2) → …

which by Lemma 49.6.4 is equal to the complex

𝐻𝑜𝑚(𝐾𝑝, ℐ0) → 𝐻𝑜𝑚(𝐾𝑝, ℐ1) → 𝐻𝑜𝑚(𝐾𝑝, ℐ2) → …

which computes Ext∗Ab(𝑋 ́𝑒𝑡𝑎𝑙𝑒)(𝐾
𝑝, ℱ). Putting everything together we win. �
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49.7. Higher vanishing for quasi-coherent sheaves

In this section we show that given a quasi-compact and quasi-separated algebraic space 𝑋
there exists an integer 𝑛 = 𝑛(𝑋) such that the cohomology of any quasi-coherent sheaf on
𝑋 vanishes beyond degree 𝑛.

Lemma49.7.1. With𝑆,𝑊,𝐺,𝑈, 𝜒 as in Lemma 49.6.5. Ifℱ is a quasi-coherent𝒪𝑈-module,
then so is ℱ ⊗𝐙 𝐙(𝜒).

Proof. The 𝒪𝑈-module structure is clear. To check that ℱ ⊗𝐙 𝐙(𝜒) is quasi-coherent it
suffices to check étale locally. Hence the lemma follows as 𝐙(𝜒) is finite locally free as a
𝐙-module. �

The following proposition is interesting even if𝑋 is a scheme. It is the natural generalization
of Coherent, Lemma 25.5.1. Before we state it, observe that given an étale morphism
𝑓 ∶ 𝑈 → 𝑋 from an affine scheme towards a quasi-separated algebraic space 𝑋 the fibres
of 𝑓 are universally bounded, in particular there exists an integer 𝑑 such that the fibres of
|𝑈| → |𝑋| all have size at most 𝑑; this is the implication (𝜂) ⇒ (𝛿) of Decent Spaces,
Lemma 43.5.1.

Proposition 49.7.2. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Assume 𝑋 is
quasi-compact and separated. Let 𝑈 be an affine scheme, and let 𝑓 ∶ 𝑈 → 𝑋 be a surjective
étale morphism. Let 𝑑 be an upper bound for the size of the fibres of |𝑈| → |𝑋|. Then for
any quasi-coherent 𝒪𝑋-module ℱ we have 𝐻𝑞(𝑋, ℱ) = 0 for 𝑞 ≥ 𝑑.

Proof. We will use the spectral sequence of Lemma 49.6.6. The lemma applies since 𝑓 is
separated as 𝑈 is separated, see Morphisms of Spaces, Lemma 42.5.10. Since 𝑋 is sepa-
rated the scheme 𝑈 ×𝑋 … ×𝑋 𝑈 is a closed subscheme of 𝑈 ×𝑆𝑝𝑒𝑐(𝐙) … ×𝑆𝑝𝑒𝑐(𝐙) 𝑈 hence is
affine. Thus 𝑊𝑝 is affine. Hence 𝑈𝑝 = 𝑊𝑝/𝑆𝑝+1 is an affine scheme by Groupoids, Propo-
sition 35.19.8. The discussion in Section 49.4 shows that cohomology of quasi-coherent
sheaves on 𝑊𝑝 (as an algebraic space) agrees with the cohomology of the corresponding
quasi-coherent sheaf on the underlying affine scheme, hence vanishes in positive degrees by
Coherent, Lemma 25.2.2. By Lemma 49.7.1 the sheaves ℱ|𝑈𝑝

⊗𝐙 𝐙(𝜒𝑝) are quasi-coherent.
Hence 𝐻𝑞(𝑊𝑝, ℱ|𝑈𝑝

⊗𝐙 𝐙(𝜒𝑝)) is zero when 𝑞 > 0. By our definition of the integer 𝑑 we
see that 𝑊𝑝 = ∅ for 𝑝 ≥ 𝑑. Hence also 𝐻0(𝑊𝑝, ℱ|𝑈𝑝

⊗𝐙 𝐙(𝜒𝑝)) is zero when 𝑝 ≥ 𝑑. This
proves the proposition. �

In the following lemma we esthablish that a quasi-compact and quasi-separated algebraic
space has finite cohomological dimension for quasi-coherent modules. We are explicit
about the bound only because we will use it later to prove a similar result for higher di-
rect images.

Lemma 49.7.3. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Assume 𝑋 is
quasi-compact and quasi-separated. Then we can choose

(1) an affine scheme 𝑈,
(2) a surjective étale morphism 𝑓 ∶ 𝑈 → 𝑋,
(3) an integer 𝑑 bounding the degrees of the fibres of 𝑈 → 𝑋,
(4) for every 𝑝 = 0, 1, … , 𝑑 a surjective étale morphism 𝑉𝑝 → 𝑈𝑝 from an affine

scheme 𝑉𝑝 where 𝑈𝑝 is as in Lemma 49.6.6, and
(5) an integer 𝑑𝑝 bounding the degree of the fibres of 𝑉𝑝 → 𝑈𝑝.

Then for any quasi-coherent 𝒪𝑋-module ℱ we have 𝐻𝑞(𝑋, ℱ) = 0 for 𝑞 ≥ max(𝑑𝑝 + 𝑝).
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Proof. Since 𝑋 is quasi-compact we can find a surjective étale morphism 𝑈 → 𝑋 with
𝑈 affine, see Properties of Spaces, Lemma 41.6.3. By Decent Spaces, Lemma 43.5.1 the
fibres of 𝑓 are universally bounded, hence we can find 𝑑. We have 𝑈𝑝 = 𝑊𝑝/𝑆𝑝+1 and
𝑊𝑝 ⊂ 𝑈 ×𝑋 … ×𝑋 𝑈 is open and closed. Since 𝑋 is quasi-separated the schemes 𝑊𝑝
are quasi-compact, hence 𝑈𝑝 is quasi-compact. Since 𝑈 is separated, the schemes 𝑊𝑝 are
separated, hence 𝑈𝑝 is separated by (the absolute version of) Spaces, Lemma 40.14.5. By
Properties of Spaces, Lemma 41.6.3 we can find the morphisms 𝑉𝑝 → 𝑊𝑝. By Decent
Spaces, Lemma 43.5.1 we can find the integers 𝑑𝑝.

At this point the proof uses the spectral sequence

𝐸𝑝,𝑞
1 = 𝐻𝑞(𝑈𝑝, ℱ|𝑈𝑝

⊗𝐙 𝐙(𝜒𝑝)) ⇒ 𝐻𝑝+𝑞(𝑋, ℱ)

see Lemma 49.6.6. By definition of the integer 𝑑 we see that 𝑈𝑝 = 0 for 𝑝 ≥ 𝑑. By
Proposition 49.7.2 and Lemma 49.7.1 we see that 𝐻𝑞(𝑈𝑝, ℱ|𝑈𝑝

⊗𝐙 𝐙(𝜒𝑝)) is zero for 𝑞 ≥ 𝑑𝑝
for 𝑝 = 0, … , 𝑑. Whence the lemma. �

49.8. Vanishing for higher direct images

We apply the results of Section 49.7 to obtain vanishing of higher direct images of quasi-
coherent sheaves for quasi-compact and quasi-separated morphisms. This is useful because
it allows one to argue by descending induction on the cohomological degree in certain sit-
uations.

Lemma 49.8.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Assume that

(1) 𝑓 is quasi-compact and quasi-separated, and
(2) 𝑌 is quasi-compact.

Then there exists an integer 𝑛(𝑋 → 𝑌) such that for any algebraic space 𝑌′, any morphism
𝑌′ → 𝑌 and any quasi-coherent sheaf ℱ′ on 𝑋′ = 𝑌′ ×𝑌 𝑋 the higher direct images 𝑅𝑖𝑓′

∗ℱ′

are zero for 𝑖 ≥ 𝑛(𝑋 → 𝑌).

Proof. Let 𝑉 → 𝑌 be a surjective étale morphism where 𝑉 is an affine scheme, see Prop-
erties of Spaces, Lemma 41.6.3. Suppose we prove the result for the base change 𝑓𝑉 ∶
𝑉 ×𝑌 𝑋 → 𝑉. Then the result holds for 𝑓 with 𝑛(𝑋 → 𝑌) = 𝑛(𝑋𝑉 → 𝑉). Namely, if
𝑌′ → 𝑌 and ℱ′ are as in the lemma, then 𝑅𝑖𝑓′

∗ℱ′|𝑉×𝑌𝑌′ is equal to 𝑅𝑖𝑓′
𝑉,∗ℱ′|𝑋′

𝑉
where

𝑓′
𝑉 ∶ 𝑋′

𝑉 = 𝑉 ×𝑌 𝑌′ ×𝑌 𝑋 → 𝑉 ×𝑌 𝑌′ = 𝑌′
𝑉, see Properties of Spaces, Lemma 41.23.2. Thus

we may assume that 𝑌 is an affine scheme.

Moreover, to prove the vanishing for all 𝑌′ → 𝑌 and ℱ′ it suffices to do so when 𝑌′ is an
affine scheme. In this case, 𝑅𝑖𝑓′

∗ℱ′ is quasi-coherent by Lemma 49.4.1. Hence it suffices
to prove that 𝐻𝑖(𝑋′, ℱ′) = 0, because 𝐻𝑖(𝑋′, ℱ′) = 𝐻0(𝑌′, 𝑅𝑖𝑓′

∗ℱ′) by Cohomology on
Sites, Lemma 19.14.5 and the vanishing of higher cohomology of quasi-coherent sheaves
on affine algebraic spaces (Proposition 49.7.2).

Choose 𝑈 → 𝑋, 𝑑, 𝑉𝑝 → 𝑈𝑝 and 𝑑𝑝 as in Lemma 49.7.3. For any affine scheme 𝑌′ and
morphism 𝑌′ → 𝑌 denote 𝑋′ = 𝑌′ ×𝑌 𝑋, 𝑈′ = 𝑌′ ×𝑌 𝑈, 𝑉′

𝑝 = 𝑌′ ×𝑌 𝑉𝑝. Then 𝑈′ → 𝑋′,
𝑑′ = 𝑑, 𝑉′

𝑝 → 𝑈′
𝑝 and 𝑑′

𝑝 = 𝑑 is a collection of choices as in Lemma 49.7.3 for the algebraic
space 𝑋′ (details omitted). Hence we see that 𝐻𝑖(𝑋′, ℱ′) = 0 for 𝑖 ≥ max(𝑝 + 𝑑𝑝) and we
win. �

Lemma 49.8.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be an affine morphism of algebraic
spaces over 𝑆. Then 𝑅𝑖𝑓∗ℱ = 0 for 𝑖 > 0 and any quasi-coherent 𝒪𝑋-module ℱ.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=073G
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Proof. Recall that an affine morphism of algebraic spaces is representable. Hence this
follows from (49.4.0.1) and Coherent, Lemma 25.2.3. �

49.9. Cohomology and base change, I

Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆. Let ℱ be
a quasi-coherent sheaf on 𝑋. Suppose further that 𝑔 ∶ 𝑌′ → 𝑌 is a morphism of algebraic
spaces over 𝑆. Denote 𝑋′ = 𝑋𝑌′ = 𝑌′ ×𝑌 𝑋 the base change of 𝑋 and denote 𝑓′ ∶ 𝑋′ → 𝑌′

the base change of 𝑓. Also write 𝑔′ ∶ 𝑋′ → 𝑋 the projection, and set ℱ′ = (𝑔′)∗ℱ. Here
is a diagram representing the situation:

(49.9.0.1)

ℱ′ = (𝑔′)∗ℱ 𝑋′
𝑔′
//

𝑓′

��

𝑋

𝑓
��

ℱ

𝑅𝑓′
∗ℱ′ 𝑌′ 𝑔 // 𝑌 𝑅𝑓∗ℱ

Here is the basic result for a flat base change.

Lemma 49.9.1. In the situation above, assume that 𝑔 is flat and that 𝑓 is quasi-compact
and quasi-separated. Then the base change map for any 𝑖 ≥ 0 we have

𝑅𝑝𝑓′
∗ℱ′ = 𝑔∗𝑅𝑝𝑓∗ℱ

with notation as in (49.9.0.1).

Proof. The morphism 𝑔′ is flat by Morphisms of Spaces, Lemma 42.27.3. Note that flat-
ness of 𝑔 and 𝑔′ is equivalent to flatness of the morphisms of small étale ringed sites, see
Morphisms of Spaces, Lemma 42.27.8. Hence we can apply Cohomology on Sites, Lemma
19.15.1 to obtain a base change map

𝑔∗𝑅𝑝𝑓∗ℱ ⟶ 𝑅𝑝𝑓′
∗ℱ′

To prove this map is an isomorphism we can work locally in the étale topology on 𝑌′. Thus
we may assume that 𝑌 and 𝑌′ are affine schemes. Say 𝑌 = Spec(𝐴) and 𝑌′ = Spec(𝐵). In
this case we are really trying to show that the map

𝐻𝑝(𝑋, ℱ) ⊗𝐴 𝐵 ⟶ 𝐻𝑝(𝑋𝐵, ℱ𝐵)

is an isomorphism where 𝑋𝐵 = Spec(𝐵) ×Spec(𝐴) 𝑋 and ℱ𝐵 is the pullback of ℱ to 𝑋𝐵.

Fix 𝐴 → 𝐵 a flat ring map and let 𝑋 be a quasi-compact and quasi-separated algebraic
space over 𝐴. Note that 𝑔′ ∶ 𝑋𝐵 → 𝑋 is affine as a base change of 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴).
Hence the higher direct images 𝑅𝑖(𝑔′)∗ℱ𝐵 are zero by Lemma 49.8.2. Thus 𝐻𝑝(𝑋𝐵, ℱ𝐵) =
𝐻𝑝(𝑋, 𝑔′

∗ℱ𝐵), see Cohomology on Sites, Lemma 19.14.5. Moreover, we have

𝑔′
∗ℱ𝐵 = ℱ ⊗𝐴 𝐵

where 𝐴, 𝐵 denotes the constant sheaf of rings with value 𝐴, 𝐵. Namely, it is clear that
there is a map from right to left. For any affine scheme 𝑈 étale over 𝑋 we have

𝑔′
∗ℱ𝐵(𝑈) = ℱ𝐵(𝑆𝑝𝑒𝑐(𝐵) ×𝑆𝑝𝑒𝑐(𝐴) 𝑈)

= Γ(𝑆𝑝𝑒𝑐(𝐵) ×𝑆𝑝𝑒𝑐(𝐴) 𝑈, (𝑆𝑝𝑒𝑐(𝐵) ×𝑆𝑝𝑒𝑐(𝐴) 𝑈 → 𝑈)∗ℱ|𝑈)
= 𝐵 ⊗𝐴 ℱ(𝑈)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=073K
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hence the map is an isomorphism. Write 𝐵 = 𝑐𝑜𝑙𝑖𝑚 𝑀𝑖 as a filtered colimit of finite free
𝐴-modules 𝑀𝑖 using Lazard's theorem, see Algebra, Theorem 7.75.4. We deduce that

𝐻𝑝(𝑋, 𝑔′
∗ℱ𝐵) = 𝐻𝑝(𝑋, ℱ ⊗𝐴 𝐵)

= 𝐻𝑝(𝑋, 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ ⊗𝐴 𝑀𝑖)

= 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑝(𝑋, ℱ ⊗𝐴 𝑀𝑖)

= 𝑐𝑜𝑙𝑖𝑚𝑖 𝐻𝑝(𝑋, ℱ) ⊗𝐴 𝑀𝑖

= 𝐻𝑝(𝑋, ℱ) ⊗𝐴 𝑐𝑜𝑙𝑖𝑚𝑖 𝑀𝑖

= 𝐻𝑝(𝑋, ℱ) ⊗𝐴 𝐵

The first equality because 𝑔′
∗ℱ𝐵 = ℱ⊗𝐴𝐵 as seen above. The second because ⊗ commutes

with colimits. The third equality because cohomology on 𝑋 commutes with colimits (see
Lemma 49.5.1). The fourth equality because 𝑀𝑖 is finite free (i.e., because cohomology
commutes with finite direct sums). The fith because ⊗ commutes with colimits. The sixth
by choice of our system. �
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CHAPTER 50

Stacks

50.1. Introduction

In this very short chapter we introduce stacks, and stacks in groupoids. See [DM69a], and
[Vis].

50.2. Presheaves of morphisms associated to fibred categories

Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category, see Categories, Section 4.30.
Suppose that 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮𝑈) are objects in the fibre category over 𝑈. We are going to define
a functor

𝑀𝑜𝑟(𝑥, 𝑦) ∶ (𝒞/𝑈)𝑜𝑝𝑝 ⟶ Sets.

In other words this will be a presheaf on 𝒞/𝑈, see Sites, Definition 9.2.2. Make a choice of
pullbacks as in Categories, Definition 4.30.5. Then, for 𝑓 ∶ 𝑉 → 𝑈 we set

𝑀𝑜𝑟(𝑥, 𝑦)(𝑓 ∶ 𝑉 → 𝑈) = 𝑀𝑜𝑟𝒮𝑉
(𝑓∗𝑥, 𝑓∗𝑦).

Let 𝑓′ ∶ 𝑉′ → 𝑈 be a second object of 𝒞/𝑈. We also have to define the restriction map
corresponding to a morphism 𝑔 ∶ 𝑉′/𝑈 → 𝑉/𝑈 in 𝒞/𝑈, in other words 𝑔 ∶ 𝑉′ → 𝑉 and
𝑓′ = 𝑓 ∘ 𝑔. This will be a map

𝑀𝑜𝑟𝒮𝑉
(𝑓∗𝑥, 𝑓∗𝑦) ⟶ 𝑀𝑜𝑟𝒮𝑉′(𝑓′∗𝑥, 𝑓′∗𝑦), 𝜙 ⟼ 𝜙|𝑉′

This map will basically be 𝑔∗, except that this transforms an element 𝜙 of the left hand side
into an element 𝑔∗𝜙 of 𝑀𝑜𝑟𝒮𝑉′(𝑔∗𝑓∗𝑥, 𝑔∗𝑓∗𝑦). At this point we use the transformation 𝛼𝑔,𝑓
of Categories, Lemma 4.30.6. In a formula, the restriction map is described by

𝜙|𝑉′ = (𝛼𝑔,𝑓)−1
𝑦 ∘ 𝑔∗𝜙 ∘ (𝛼𝑔,𝑓)𝑥.

Of course, nobody thinks of this restriction map in this way. We will only do this once in
order to verify the following lemma.

Lemma 50.2.1. This actually does give a presheaf.

Proof. Let 𝑔 ∶ 𝑉′/𝑈 → 𝑉/𝑈 be as above and similarly 𝑔′ ∶ 𝑉″/𝑈 → 𝑉′/𝑈 be morphisms in
𝒞/𝑈. So 𝑓′ = 𝑓 ∘ 𝑔 and 𝑓″ = 𝑓′ ∘ 𝑔′ = 𝑓 ∘ 𝑔 ∘ 𝑔′. Let 𝜙 ∈ 𝑀𝑜𝑟𝒮𝑉

(𝑓∗𝑥, 𝑓∗𝑦). Then we have

(𝛼𝑔∘𝑔′,𝑓)−1
𝑦 ∘ (𝑔 ∘ 𝑔′)∗𝜙 ∘ (𝛼𝑔∘𝑔′,𝑓)𝑥

= (𝛼𝑔∘𝑔′,𝑓)−1
𝑦 ∘ (𝛼𝑔′,𝑔)−1

𝑓∗𝑦 ∘ (𝑔′)∗𝑔∗𝜙 ∘ (𝛼𝑔′,𝑔)𝑓∗𝑥 ∘ (𝛼𝑔∘𝑔′,𝑓)𝑥

= (𝛼𝑔′,𝑓′)−1
𝑦 ∘ (𝑔′)∗(𝛼𝑔,𝑓)−1

𝑦 ∘ (𝑔′)∗𝑔∗𝜙 ∘ (𝑔′)∗(𝛼𝑔,𝑓)𝑥 ∘ (𝛼𝑔′,𝑓′)𝑥

= (𝛼𝑔′,𝑓′)−1
𝑦 ∘ (𝑔′)∗

((𝛼𝑔,𝑓)−1
𝑦 ∘ 𝑔∗𝜙 ∘ (𝛼𝑔,𝑓)𝑥) ∘ (𝛼𝑔′,𝑓′)𝑥

2469
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which is what we want, namely 𝜙|𝑉″ = (𝜙|𝑉′)|𝑉″. The first equality holds because 𝛼𝑔′,𝑔 is
a transformation of functors, and hence

(𝑔 ∘ 𝑔′)∗𝑓∗𝑥
(𝑔∘𝑔′)∗𝜙

//

(𝛼𝑔′,𝑔)𝑓∗𝑥
��

(𝑔 ∘ 𝑔′)∗𝑓∗𝑦

(𝛼𝑔′,𝑔)𝑓∗𝑦
��

(𝑔′)∗𝑔∗𝑓∗𝑥
(𝑔′)∗𝑔∗𝜙 // (𝑔′)∗𝑔∗𝑓∗𝑦

commutes. The second equality holds because of property (d) of a pseudo functor since
𝑓′ = 𝑓 ∘ 𝑔 (see Categories, Definition 4.26.5). The last equality follows from the fact that
(𝑔′)∗ is a functor. �

From now on we often omit mentioning the transformations 𝛼𝑔,𝑓 and we simply identify
the functors 𝑔∗ ∘ 𝑓∗ and (𝑓 ∘ 𝑔)∗. In particular, given 𝑔 ∶ 𝑉′/𝑈 → 𝑉/𝑈 the restriction
mappings for the presheaf 𝑀𝑜𝑟(𝑥, 𝑦) will sometimes be denoted 𝜙 ↦ 𝑔∗𝜙. We formalize
the construction in a definition.

Definition 50.2.2. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category, see Categories,
Section 4.30. Given an object 𝑈 of 𝒞 and objects 𝑥, 𝑦 of the fibre category, the presheaf of
morphisms from 𝑥 to 𝑦 is the presheaf

(𝑓 ∶ 𝑉 → 𝑈) ⟼ 𝑀𝑜𝑟𝒮𝑉
(𝑓∗𝑥, 𝑓∗𝑦)

described above. It is denoted 𝑀𝑜𝑟(𝑥, 𝑦). The subpresheaf 𝐼𝑠𝑜𝑚(𝑥, 𝑦) whose values over
𝑉 is the set of isomorphisms 𝑓∗𝑥 → 𝑓∗𝑦 in the fibre category 𝒮𝑉 is called the presheaf of
isomorphisms from 𝑥 to 𝑦.

If 𝒮 is fibred in groupoids then of course 𝐼𝑠𝑜𝑚(𝑥, 𝑦) = 𝑀𝑜𝑟(𝑥, 𝑦), and it is customary to
use the 𝐼𝑠𝑜𝑚 notation.

Lemma 50.2.3. Let 𝐹 ∶ 𝒮1 → 𝒮2 be a 1-morphism of fibred categories over the category
𝒞. Let 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮𝑈). Then 𝐹 defines a canonical morphism of presheaves

𝑀𝑜𝑟𝒮1
(𝑥, 𝑦) ⟶ 𝑀𝑜𝑟𝒮2

(𝐹(𝑥), 𝐹(𝑦))

on 𝒞/𝑈.

Proof. By Categories, Definition 4.30.8 the functor 𝐹 maps strongly cartesian morphisms
to strongly cartesian morphisms. Hence if 𝑓 ∶ 𝑉 → 𝑈 is a morphism in 𝒞, then there
are canonical isomorphisms 𝛼𝑉 ∶ 𝑓∗𝐹(𝑥) → 𝐹(𝑓∗𝑥), 𝛽𝑉 ∶ 𝑓∗𝐹(𝑦) → 𝐹(𝑓∗𝑦) such that
𝑓∗𝐹(𝑥) → 𝐹(𝑓∗𝑥) → 𝐹(𝑥) is the canonical morphism 𝑓∗𝐹(𝑥) → 𝐹(𝑥), and similarly for 𝛽𝑉.
Thus we may define

𝑀𝑜𝑟𝒮1
(𝑥, 𝑦)(𝑓 ∶ 𝑉 → 𝑈) 𝑀𝑜𝑟𝒮1,𝑉

(𝑓∗𝑥, 𝑓∗𝑦)

��
𝑀𝑜𝑟𝒮2

(𝐹(𝑥), 𝐹(𝑦))(𝑓 ∶ 𝑉 → 𝑈) 𝑀𝑜𝑟𝒮2,𝑉
(𝑓∗𝐹(𝑥), 𝑓∗𝐹(𝑦))

by 𝜙 ↦ 𝛽−1
𝑉 ∘ 𝐹(𝜙) ∘ 𝛼𝑉. We omit the verification that this is compatible with the restriction

mappings. �

Remark 50.2.4. Suppose that 𝑝 ∶ 𝒮 → 𝒞 is fibred in groupoids. In this case we can prove
Lemma 50.2.1 using Categories, Lemma 4.33.4 which says that 𝒮 → 𝒞 is equivalent to the
category associated to a contravariant functor 𝐹 ∶ 𝒞 → Groupoids. In the case of the fibred
category associated to 𝐹 we have 𝑔∗ ∘ 𝑓∗ = (𝑓 ∘ 𝑔)∗ on the nose and there is no need to use
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the maps 𝛼𝑔,𝑓. In this case the lemma is (even more) trivial. Of course then one uses that
the 𝑀𝑜𝑟(𝑥, 𝑦) presheaf is unchanged when passing to an equivalent fibred category which
follows from Lemma 50.2.3.

Lemma 50.2.5. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category, see Categories,
Section 4.30. Let 𝑈 ∈ 𝑂𝑏(𝒞) and let 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮𝑈). Denote 𝑥, 𝑦 ∶ 𝒞/𝑈 → 𝒮 also the
corresponding 1-morphisms, see Categories, Lemma 4.38.1. Then

(1) the 2-fibre product 𝒮 ×𝒮×𝒮,(𝑥,𝑦) 𝒞/𝑈 is fibred in setoids over 𝒞/𝑈, and
(2) 𝐼𝑠𝑜𝑚(𝑥, 𝑦) is the presheaf of sets corresponding to this category fibred in setoids,

see Categories, Lemma 4.36.6.

Proof. Omitted. Hint: Objects of the 2-fibre product are (𝑎 ∶ 𝑉 → 𝑈, 𝑧, 𝑎 ∶ 𝑉 → 𝑈, (𝛼, 𝛽))
where 𝛼 ∶ 𝑧 → 𝑎∗𝑥 and 𝛽 ∶ 𝑧 → 𝑎∗𝑦 are isomorphisms in 𝒮𝑉. Thus the relationship with
𝐼𝑠𝑜𝑚(𝑥, 𝑦) comes by assigning to such an object the isomorphism 𝛽 ∘ 𝛼−1. �

50.3. Descent data in fibred categories

In this section we define the notion of a descent datum in the abstract setting of a fibred
category. Before we do so we point out that this is completely analogous to descent data for
quasi-coherent sheaves (Descent, Section 31.2) and descent data for schemes over schemes
(Descent, Section 31.30).

We will use the convention where the projection maps pr𝑖 ∶ 𝑋 × … × 𝑋 → 𝑋 are labeled
starting with 𝑖 = 0. Hence we have pr0, pr1 ∶ 𝑋 × 𝑋 → 𝑋, pr0, pr1, pr2 ∶ 𝑋 × 𝑋 × 𝑋 → 𝑋,
etc.

Definition 50.3.1. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category. Make a choice
of pullbacks as in Categories, Definition 4.30.5. Let 𝒰 = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family of
morphisms of 𝒞. Assume all the fibre products 𝑈𝑖 ×𝑈 𝑈𝑗, and 𝑈𝑖 ×𝑈 𝑈𝑗 ×𝑈 𝑈𝑘 exist.

(1) A descent datum (𝑋𝑖, 𝜑𝑖𝑗) in 𝒮 relative to the family {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈} is given by
an object 𝑋𝑖 of 𝒮𝑈𝑖

for each 𝑖 ∈ 𝐼, an isomorphism 𝜑𝑖𝑗 ∶ pr∗0𝑋𝑖 → pr∗1𝑋𝑗 in
𝒮𝑈𝑖×𝑈𝑈𝑗

for each pair (𝑖, 𝑗) ∈ 𝐼2 such that for every triple of indices (𝑖, 𝑗, 𝑘) ∈ 𝐼3

the diagram
pr∗0𝑋𝑖

pr∗01𝜑𝑖𝑗 ##

pr∗02𝜑𝑖𝑘

// pr∗2𝑋𝑘

pr∗1𝑋𝑗

pr∗12𝜑𝑗𝑘

;;

in the category 𝒮𝑈𝑖×𝑈𝑈𝑗×𝑈𝑈𝑘
commutes. This is called the cocycle condition.

(2) A morphism 𝜓 ∶ (𝑋𝑖, 𝜑𝑖𝑗) → (𝑋′
𝑖 , 𝜑′

𝑖𝑗) of descent data is given by a family
𝜓 = (𝜓𝑖)𝑖∈𝐼 of morphisms 𝜓𝑖 ∶ 𝑋𝑖 → 𝑋′

𝑖 in 𝒮𝑈𝑖
such that all the diagrams

pr∗0𝑋𝑖 𝜑𝑖𝑗
//

pr∗0𝜓𝑖
��

pr∗1𝑋𝑗

pr∗1𝜓𝑗
��

pr∗0𝑋′
𝑖

𝜑′
𝑖𝑗 // pr∗1𝑋′

𝑗

in the categories 𝒮𝑈𝑖×𝑈𝑈𝑗
commute.

(3) The category of descent data relative to 𝒰 is denoted 𝐷𝐷(𝒰).
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The fibre products 𝑈𝑖 ×𝑈 𝑈𝑗 and 𝑈𝑖 ×𝑈 𝑈𝑗 ×𝑈 𝑈𝑘 will exist if each of the morphisms 𝑓𝑖 ∶
𝑈𝑖 → 𝑈 is representable, see Categories, Definition 4.6.3. Recall that in a site one of the
conditions for a covering {𝑈𝑖 → 𝑈} is that each of the morphisms is representable, see
Sites, Definition 9.6.2 part (3). In fact the main interest in the definition above is where 𝒞
is a site and {𝑈𝑖 → 𝑈} is a covering of 𝒞. However, a descent datum is just an abstract
gadget that can be defined as above. This is useful: for example, given a fibred category
over 𝒞 one can look at the collection of families with respect to which descent data are
effective, and try to use these as the family of coverings for a site.

Remarks 50.3.2. Two remarks on Definition 50.3.1 are in order. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred
category. Let {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼, and (𝑋𝑖, 𝜑𝑖𝑗) be as in Definition 50.3.1.

(1) There is a diagonal morphism Δ ∶ 𝑈𝑖 → 𝑈𝑖 ×𝑈 𝑈𝑖. We can pull back 𝜑𝑖𝑖 via
this morphism to get an automorphism Δ∗𝜑𝑖𝑖 ∈ Aut𝑈𝑖

(𝑥𝑖). On pulling back the
cocycle condition for the triple (𝑖, 𝑖, 𝑖) by Δ123 ∶ 𝑈𝑖 → 𝑈𝑖 ×𝑈 𝑈𝑖 ×𝑈 𝑈𝑖 we deduce
that Δ∗𝜑𝑖𝑖 ∘ Δ∗𝜑𝑖𝑖 = Δ∗𝜑𝑖𝑖; thus Δ∗𝜑𝑖𝑖 = id𝑥𝑖

.
(2) There is a morphism Δ13 ∶ 𝑈𝑖 ×𝑈 𝑈𝑗 → 𝑈𝑖 ×𝑈 𝑈𝑗 ×𝑈 𝑈𝑖 and we can pull back the

cocycle condition for the triple (𝑖, 𝑗, 𝑖) to get the identity (𝜎∗𝜑𝑗𝑖) ∘ 𝜑𝑖𝑗 = idpr∗0𝑥𝑖
,

where 𝜎 ∶ 𝑈𝑖 ×𝑈 𝑈𝑗 → 𝑈𝑗 ×𝑈 𝑈𝑖 is the switching morphism.

Lemma 50.3.3. (Pullback of descent data.) Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be
a fibred category. Make a choice pullbacks as in Categories, Definition 4.30.5. Let 𝒰 =
{𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼, and 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽 be a families of morphisms of 𝒞 with fixed target.
Assume all the fibre products 𝑈𝑖 ×𝑈 𝑈𝑖′, 𝑈𝑖 ×𝑈 𝑈𝑖′ ×𝑈 𝑈𝑖″, 𝑉𝑗 ×𝑉 𝑉𝑗′, and 𝑉𝑗 ×𝑉 𝑉𝑗′ ×𝑉 𝑉𝑗″

exist. Let 𝛼 ∶ 𝐼 → 𝐽, ℎ ∶ 𝑈 → 𝑉 and 𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝛼(𝑖) be a morphism of families of maps
with fixed target, see Sites, Definition 9.8.1.

(1) Let (𝑌𝑗, 𝜑𝑗𝑗′) be a descent datum relative to the family {𝑉𝑗 → 𝑉}. The system

(𝑔∗
𝑖 𝑌𝛼(𝑖), (𝑔𝑖 × 𝑔𝑖′)∗𝜑𝛼(𝑖)𝛼(𝑖′))

is a descent datum relative to 𝒰.
(2) This construction defines a functor between descent data relative to𝒱 and descent

data relative to 𝒰.
(3) Given a second 𝛼′ ∶ 𝐼 → 𝐽, ℎ′ ∶ 𝑈 → 𝑉 and 𝑔′

𝑖 ∶ 𝑈𝑖 → 𝑉𝛼′(𝑖) morphism
of families of maps with fixed target, then if ℎ = ℎ′ the two resulting functors
between descent data are canonically isomorphic.

Proof. Omitted. �

Definition 50.3.4. With 𝒰 = {𝑈𝑖 → 𝑈}𝑖∈𝐼, 𝒱 = {𝑉𝑗 → 𝑉}𝑗∈𝐽, 𝛼 ∶ 𝐼 → 𝐽, ℎ ∶ 𝑈 → 𝑉,
and 𝑔𝑖 ∶ 𝑈𝑖 → 𝑉𝛼(𝑖) as in Lemma 50.3.3 the functor

(𝑌𝑗, 𝜑𝑗𝑗′) ⟼ (𝑔∗
𝑖 𝑌𝛼(𝑖), (𝑔𝑖 × 𝑔𝑖′)∗𝜑𝛼(𝑖)𝛼(𝑖′))

constructed in that lemma is called the pullback functor on descent data.

Given ℎ ∶ 𝑈 → 𝑉, if there exists a morphism ℎ̃ ∶ 𝒰 → 𝒱 covering ℎ then ℎ̃∗ is independent
of the choice of ℎ̃ as we saw in Lemma 50.3.3. Hence we will sometimes simply write ℎ∗

to indicate the pullback functor.

Definition 50.3.5. Let 𝒞 be a category. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category. Make a choice
of pullbacks as in Categories, Definition 4.30.5. Let 𝒰 = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be a family
of morphisms with target 𝑈. Assume all the fibre products 𝑈𝑖 ×𝑈 𝑈𝑗 and 𝑈𝑖 ×𝑈 𝑈𝑗 ×𝑈 𝑈𝑘
exist.
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(1) Given an object 𝑋 of 𝒮𝑈 the trivial descent datum is the descent datum (𝑋, id𝑋)
with respect to the family {id𝑈 ∶ 𝑈 → 𝑈}.

(2) Given an object 𝑋 of 𝒮𝑈 we have a canonical descent datum on the family of
objects 𝑓∗

𝑖 𝑋 by pulling back the trivial descent datum (𝑋, id𝑋) via the obvious
map {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈} → {id𝑈 ∶ 𝑈 → 𝑈}. We denote this descent datum
(𝑓∗

𝑖 𝑋, 𝑐𝑎𝑛).
(3) A descent datum (𝑋𝑖, 𝜑𝑖𝑗) relative to {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈} is called effective if there

exists an object 𝑋 of 𝒮𝑈 such that (𝑋𝑖, 𝜑𝑖𝑗) is isomorphic to (𝑓∗
𝑖 𝑋, 𝑐𝑎𝑛).

Note that the rule that associates to 𝑋 ∈ 𝒮𝑈 its canonical descent datum relative to 𝒰
defines a functor

𝒮𝑈 ⟶ 𝐷𝐷(𝒰).
A descent datum is effective if and only if it is in the essential image of this functor. Let us
make explicit the canonical descent datum as follows.

Lemma 50.3.6. In the situation of Definition 50.3.5 part (2) the maps 𝑐𝑎𝑛𝑖𝑗 ∶ pr∗
0𝑓∗

𝑖 𝑋 →
pr∗

1𝑓∗
𝑗 𝑋 are equal to (𝛼pr1,𝑓𝑗

)𝑋 ∘ (𝛼pr0,𝑓𝑖
)−1
𝑋 where 𝛼⋅,⋅ is as in Categories, Lemma 4.30.6 and

where we use the equality 𝑓𝑖 ∘ pr0 = 𝑓𝑗 ∘ pr1 as maps 𝑈𝑖 ×𝑈 𝑈𝑗 → 𝑈.

Proof. Omitted. �

50.4. Stacks

Here is the definition of a stack. It mixes the notion of a fibred category with the notion of
descent.

Definition 50.4.1. Let 𝒞 be a site. A stack over 𝒞 is a category 𝑝 ∶ 𝒮 → 𝒞 over 𝒞 which
satisfies the following conditions:

(1) 𝑝 ∶ 𝒮 → 𝒞 is a fibred category, see Categories, Definition 4.30.4,
(2) for any 𝑈 ∈ 𝑂𝑏(𝒞) and any 𝑥, 𝑦 ∈ 𝒮𝑈 the presheaf 𝑀𝑜𝑟(𝑥, 𝑦) (see Definition

50.2.2) is a sheaf on the site 𝒞/𝑈, and
(3) for any covering 𝒰 = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 of the site 𝒞, any descent datum in 𝒮

relative to 𝒰 is effective.

We find the formulation above the most convenient way to think about a stack. Namely,
given a category over 𝒞 in order to verify that it is a stack you proceed to check properties
(1), (2) and (3) in that order. Certainly properties (2) and (3) do not make sense if the
category isn't fibred. Without (2) we cannot prove that the descent in (3) is unique up to
unique isomorphism and functorial.
The following lemma provides an alternative definition.

Lemma 50.4.2. Let 𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category over 𝒞. The following
are equivalent

(1) 𝒮 is a stack over 𝒞, and
(2) for any covering 𝒰 = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 of the site 𝒞 the functor

𝒮𝑈 ⟶ 𝐷𝐷(𝒰)
which associates to an object its canonical descent datum is an equivalence.

Proof. Omitted. �

Lemma 50.4.3. Let 𝑝 ∶ 𝒮 → 𝒞 be a stack over the site 𝒞. Let 𝒮′ be a subcategory of 𝒮.
Assume
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(1) if 𝜑 ∶ 𝑦 → 𝑥 is a strongly cartesian morphism of 𝒮 and 𝑥 is an object of 𝒮′, then
𝑦 is isomorphic to an object of 𝒮′,

(2) 𝒮′ is a full subcategory of 𝒮, and
(3) if {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈} is a covering of 𝒞, and 𝑥 an object of 𝒮 over 𝑈 such that 𝑓∗

𝑖 𝑥 is
isomorphic to an object of 𝒮′ for each 𝑖, then 𝑥 is isomorphic to an object of 𝒮′.

Then 𝒮′ → 𝒞 is a stack.

Proof. Omitted. Hints: The first condition garantees that 𝒮′ is a fibred category. The
second condition garantees that the 𝐼𝑠𝑜𝑚-presheaves of 𝒮′ are sheaves (as they are identical
to their counter parts in 𝒮). The third condition garantees that the descent condition holds
in 𝒮′ as we can first descend in 𝒮 and then (3) implies the resulting object is isomorphic to
an object of 𝒮′. �

Lemma 50.4.4. Let 𝒞 be a site. Let 𝒮1, 𝒮2 be categories over 𝒞. Suppose that 𝒮1 and 𝒮2
are equivalent as categories over 𝒞. Then 𝒮1 is a stack over 𝒞 if and only if 𝒮2 is a stack
over 𝒞.

Proof. Let 𝐹 ∶ 𝒮1 → 𝒮2, 𝐺 ∶ 𝒮2 → 𝒮1 be functors over 𝒞, and let 𝑖 ∶ 𝐹 ∘ 𝐺 → id𝒮2
,

𝑗 ∶ 𝐺 ∘ 𝐹 → id𝒮1
be isomorphisms of functors over 𝒞. By Categories, Lemma 4.30.7

we see that 𝒮1 is fibred if and only if 𝒮2 is fibred over 𝒞. Hence we may assume that
both 𝒮1 and 𝒮2 are fibred. Moreover, the proof of Categories, Lemma 4.30.7 shows that
𝐹 and 𝐺 map strongly cartesian morphisms to strongly cartesian morphisms, i.e., 𝐹 and
𝐺 are 1-morphisms of fibred cateogires over 𝒞. This means that given 𝑈 ∈ 𝑂𝑏(𝒞), and
𝑥, 𝑦 ∈ 𝒮1,𝑈 then the presheaves

𝑀𝑜𝑟𝒮1
(𝑥, 𝑦), 𝑀𝑜𝑟𝒮1

(𝐹(𝑥), 𝐹(𝑦)) ∶ (𝒞/𝑈)𝑜𝑝𝑝 ⟶ Sets.

are identified, see Lemma 50.2.3. Hence the first is a sheaf if and only if the second is a
sheaf. Finally, we have to show that if every descent datum in 𝒮1 is effective, then so is
every descent datum in 𝒮2. To do this, let (𝑋𝑖, 𝜑𝑖𝑖′) be a descent datum in 𝒮2 relative the
covering {𝑈𝑖 → 𝑈} of the site 𝒞. Then (𝐺(𝑋𝑖), 𝐺(𝜑𝑖𝑖′)) is a descent datum in 𝒮1 relative
the covering {𝑈𝑖 → 𝑈}. Let 𝑋 be an object of 𝒮1,𝑈 such that the descent datum (𝑓∗

𝑖 𝑋, 𝑐𝑎𝑛)
is isomorphic to (𝐺(𝑋𝑖), 𝐺(𝜑𝑖𝑖′)). Then 𝐹(𝑋) is an object of 𝒮2,𝑈 such that the descent
datum (𝑓∗

𝑖 𝐹(𝑋), 𝑐𝑎𝑛) is isomorphic to (𝐹(𝐺(𝑋𝑖)), 𝐹(𝐺(𝜑𝑖𝑖′))) which in turn is isomorphic
to the original descent datum (𝑋𝑖, 𝜑𝑖𝑖′) using 𝑖. �

The 2-category of stacks over 𝒞 is defined as follows.

Definition 50.4.5. Let 𝒞 be a site. The 2-category of stacks over 𝒞 is the sub 2-category
of the 2-category of fibred categories over 𝒞 (see Categories, Definition 4.30.8) defined as
follows:

(1) Its objects will be stacks 𝑝 ∶ 𝒮 → 𝒞.
(2) Its 1-morphisms (𝒮, 𝑝) → (𝒮′, 𝑝′) will be functors 𝐺 ∶ 𝒮 → 𝒮′ such that 𝑝′ ∘

𝐺 = 𝑝 and such that 𝐺 maps strongly cartesian morphisms to strongly cartesian
morphisms.

(3) Its 2-morphisms 𝑡 ∶ 𝐺 → 𝐻 for 𝐺, 𝐻 ∶ (𝒮, 𝑝) → (𝒮′, 𝑝′) will be morphisms of
functors such that 𝑝′(𝑡𝑥) = id𝑝(𝑥) for all 𝑥 ∈ 𝑂𝑏(𝒮).

Lemma 50.4.6. Let 𝒞 be a site. The (2, 1)-category of stacks over 𝒞 has 2-fibre products,
and they are described as in Categories, Lemma 4.29.3.

Proof. Let 𝑓 ∶ 𝒳 → 𝒮 and 𝑔 ∶ 𝒴 → 𝒮 be 1-morphisms of stacks over 𝒞 as defined above.
The category 𝒳×𝒮 𝒴 described in Categories, Lemma 4.29.3 is a fibred category according
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to Categories, Lemma 4.30.9. (This is where we use that 𝑓 and 𝑔 preserve strongly cartesian
morphisms.) It remains to show that the morphism presheaves are sheaves and that descent
relative to coverings of 𝒞 is effective.

Recall that an object of 𝒳 ×𝒮 𝒴 is given by a quadruple (𝑈, 𝑥, 𝑦, 𝜙). It lies over the object
𝑈 of 𝒞. Next, let (𝑈, 𝑥′, 𝑦′, 𝜙′) be second object lying over 𝑈. Recall that 𝜙 ∶ 𝑓(𝑥) →
𝑔(𝑦), and 𝜙′ ∶ 𝑓(𝑥′) → 𝑔(𝑦′) are isomorphisms in the category 𝒮𝑈. Let us use these
isomorphisms to identify 𝑧 = 𝑓(𝑥) = 𝑔(𝑦) and 𝑧′ = 𝑓(𝑥′) = 𝑔(𝑦′). With this identifications
it is clear that

𝑀𝑜𝑟((𝑈, 𝑥, 𝑦, 𝜙), (𝑈, 𝑥′, 𝑦′, 𝜙′)) = 𝑀𝑜𝑟(𝑥, 𝑥′) ×𝑀𝑜𝑟(𝑧,𝑧′) 𝑀𝑜𝑟(𝑦, 𝑦′)

as presheaves. However, as the fibred product in the category of presheaves preserves
sheaves (Sites, Lemma 9.10.1) we see that this is a sheaf.

Let 𝒰 = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of the site 𝒞. Let (𝑋𝑖, 𝜒𝑖𝑗) be a descent datum
in 𝒳 ×𝒮 𝒴 relative to 𝒰. Write 𝑋𝑖 = (𝑈𝑖, 𝑥𝑖, 𝑦𝑖, 𝜙𝑖) as above. Write 𝜒𝑖𝑗 = (𝜑𝑖𝑗, 𝜓𝑖𝑗) as
in the definition of the category 𝒳 ×𝒮 𝒴 (see Categories, Lemma 4.29.3). It is clear that
(𝑥𝑖, 𝜑𝑖𝑗) is a descent datum in 𝒳 and that (𝑦𝑖, 𝜓𝑖𝑗) is a descent datum in 𝒴. Since 𝒳 and
𝒴 are stacks these descent data are effective. Thus we get 𝑥 ∈ 𝑂𝑏(𝒳𝑈), and 𝑦 ∈ 𝑂𝑏(𝒴𝑈)
with 𝑥𝑖 = 𝑥|𝑈𝑖

, and 𝑦𝑖 = 𝑦|𝑈𝑖
compatibly with descent data. Set 𝑧 = 𝑓(𝑥) and 𝑧′ = 𝑔(𝑦)

which are both objects of 𝒮𝑈. The morphisms 𝜙𝑖 are elements of 𝐼𝑠𝑜𝑚(𝑧, 𝑧′)(𝑈𝑖) with the
property that 𝜙𝑖|𝑈𝑖×𝑈𝑈𝑗

= 𝜙𝑗|𝑈𝑖×𝑈𝑈𝑗
. Hence by the sheaf property of 𝐼𝑠𝑜𝑚(𝑧, 𝑧′) we obtain

an isomorphism 𝜙 ∶ 𝑧 = 𝑓(𝑥) → 𝑧′ = 𝑔(𝑦). We omit the verification that the canonical
descent datum associated to the object (𝑈, 𝑥, 𝑦, 𝜙) of (𝒳×𝒮𝒴)𝑈 is isomorphic to the descent
datum we started with. �

Lemma 50.4.7. Let 𝒞 be a site. Let 𝒮1, 𝒮2 be stacks over 𝒞. Let 𝐹 ∶ 𝒮1 → 𝒮2 be a
1-morphism. Then the following are equivalent

(1) 𝐹 is fully faithful,
(2) for every 𝑈 ∈ 𝑂𝑏(𝒞) and for every 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮1,𝑈) the map

𝐹 ∶ 𝑀𝑜𝑟𝒮1
(𝑥, 𝑦) ⟶ 𝑀𝑜𝑟𝒮2

(𝑥, 𝑦)

is an isomorphism of sheaves on 𝒞/𝑈.

Proof. Omitted. �

Lemma 50.4.8. Let 𝒞 be a site. Let 𝒮1, 𝒮2 be stacks over 𝒞. Let 𝐹 ∶ 𝒮1 → 𝒮2 be a
1-morphism which is fully faithful. Then the following are equivalent

(1) 𝐹 is an equivalence,
(2) for every 𝑈 ∈ 𝑂𝑏(𝒞) and for every 𝑥 ∈ 𝑂𝑏(𝒮2,𝑈) there exists a covering {𝑓𝑖 ∶

𝑈𝑖 → 𝑈} such that 𝑓∗
𝑖 𝑥 is in the essential image of the functor 𝐹 ∶ 𝒮1,𝑈𝑖

→ 𝒮2,𝑈𝑖
.

Proof. The implication (1) ⇒ (2) is immediate. To see that (2) implies (1) we have to show
that every 𝑥 as in (2) is in the essential image of the functor 𝐹. To do this choose a covering
as in (2), 𝑥𝑖 ∈ 𝑂𝑏(𝒮1,𝑈𝑖

), and isomorphisms 𝜑𝑖 ∶ 𝐹(𝑥𝑖) → 𝑓∗
𝑖 𝑥. Then we get a descent

datum for 𝒮1 relative to {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈} by taking

𝜑𝑖𝑗 ∶ 𝑥𝑖|𝑈𝑖×𝑈𝑈𝑗
⟶ 𝑥𝑗|𝑈𝑖×𝑈𝑈𝑗

the arrow such that 𝐹(𝜑𝑖𝑗) = 𝜑−1
𝑗 ∘ 𝜑𝑖. This descent datum is effective by the axioms of a

stack, and hence we obtain an object 𝑥1 of 𝒮1 over 𝑈. We omit the verification that 𝐹(𝑥1)
is isomorphic to 𝑥 over 𝑈. �
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Remark 50.4.9. (Cutting down a ``big'' stack to get a stack.) Let 𝒞 be a site. Suppose that
𝑝 ∶ 𝒮 → 𝒞 is functor from a ``big'' category to 𝒞, i.e., suppose that the collection of objects
of 𝒮 forms a proper class. Finally, suppose that 𝑝 ∶ 𝒮 → 𝒞 satisfies conditions (1), (2),
(3) of Definition 50.4.1. In general there is no way to replace 𝑝 ∶ 𝒮 → 𝒞 by a equivalent
category such that we obtain a stack. The reason is that it can happen that a fibre categories
𝒮𝑈 may have a proper class of isomorphism classes of objects. On the other hand, suppose
that

(4) for every 𝑈 ∈ 𝑂𝑏(𝒞) there exists a set 𝑆𝑈 ⊂ 𝑂𝑏(𝒮𝑈) such that every object of
𝒮𝑈 is isomorphic in 𝒮𝑈 to an element of 𝑆𝑈.

In this case we can find a full subcategory 𝒮𝑠𝑚𝑎𝑙𝑙 of 𝒮 such that, setting 𝑝𝑠𝑚𝑎𝑙𝑙 = 𝑝|𝒮𝑠𝑚𝑎𝑙𝑙
,

we have
(a) the functor 𝑝𝑠𝑚𝑎𝑙𝑙 ∶ 𝒮𝑠𝑚𝑎𝑙𝑙 → 𝒞 defines a stack, and
(b) the inclusion 𝒮𝑠𝑚𝑎𝑙𝑙 → 𝒮 is fully faithful and essentially surjective.

(Hint: For every 𝑈 ∈ 𝑂𝑏(𝒞) let 𝛼(𝑈) denote the smallest ordinal such that 𝑂𝑏(𝒮𝑈) ∩ 𝑉𝛼(𝑈)
surjects onto the set of isomorphism classes of 𝒮𝑈, and set 𝛼 = sup𝑈∈𝑂𝑏(𝒞) 𝛼(𝑈). Then take
𝑂𝑏(𝒮𝑠𝑚𝑎𝑙𝑙) = 𝑂𝑏(𝒮) ∩ 𝑉𝛼. For notation used see Sets, Section 3.5.)

50.5. Stacks in groupoids

Among stacks those which are fibred in groupoids are somewhat easier to comprehend. We
redefine them as follows.

Definition 50.5.1. A stack in groupoids over a site 𝒞 is a category 𝑝 ∶ 𝒮 → 𝒞 over 𝒞 such
that

(1) 𝑝 ∶ 𝒮 → 𝒞 is fibred in groupoids over 𝒞 (see Categories, Definition 4.32.1),
(2) for all 𝑈 ∈ 𝑂𝑏(𝒞), for all 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮𝑈) the presheaf 𝐼𝑠𝑜𝑚(𝑥, 𝑦) is a sheaf on the

site 𝒞/𝑈, and
(3) for all coverings 𝒰 = {𝑈𝑖 → 𝑈} in 𝒞, all descent data (𝑥𝑖, 𝜙𝑖𝑗) for 𝒰 are effective.

Usually the hardest part to check is the third condition. Here is the lemma comparing this
with the notion of a stack.

Lemma 50.5.2. Let 𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 be a category over 𝒞. The following are
equivalent

(1) 𝒮 is a stack in groupoids over 𝒞,
(2) 𝒮 is a stack over 𝒞 and all fibre categories are groupoids, and
(3) 𝒮 is fibred in groupoids over 𝒞 and is a stack over 𝒞.

Proof. Omitted, but see Categories, Lemma 4.32.2. �

Lemma 50.5.3. Let 𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 be a stack. Let 𝑝′ ∶ 𝒮′ → 𝒞 be the
category fibred in groupoids associated to 𝒮 constructed in Categories, Lemma 4.32.3.
Then 𝑝′ ∶ 𝒮′ → 𝒞 is a stack in groupoids.

Proof. Recall that the morphisms in 𝒮′ are exactly the strongly cartesian morphisms of 𝒮,
and that any isomorphism of 𝒮 is such a morphism. Hence descent data in 𝒮′ are exactly
the same thing as descent data in 𝒮. Now apply Lemma 50.4.2. Some details omitted. �

Lemma 50.5.4. Let 𝒞 be a site. Let 𝒮1, 𝒮2 be categories over 𝒞. Suppose that 𝒮1 and 𝒮2
are equivalent as categories over 𝒞. Then 𝒮1 is a stack in groupoids over 𝒞 if and only if
𝒮2 is a stack in groupoids over 𝒞.
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Proof. Follows by combining Lemmas 50.5.2 and 50.4.4. �

The 2-category of stacks in groupoids over 𝒞 is defined as follows.

Definition 50.5.5. Let 𝒞 be a site. The 2-category of stacks in groupoids over 𝒞 is the sub
2-category of the 2-category of stacks over 𝒞 (see Definition 50.4.5) defined as follows:

(1) Its objects will be stacks in groupoids 𝑝 ∶ 𝒮 → 𝒞.
(2) Its 1-morphisms (𝒮, 𝑝) → (𝒮′, 𝑝′) will be functors 𝐺 ∶ 𝒮 → 𝒮′ such that 𝑝′ ∘ 𝐺 =

𝑝. (Since every morphism is strongly cartesian every functor preserves them.)
(3) Its 2-morphisms 𝑡 ∶ 𝐺 → 𝐻 for 𝐺, 𝐻 ∶ (𝒮, 𝑝) → (𝒮′, 𝑝′) will be morphisms of

functors such that 𝑝′(𝑡𝑥) = id𝑝(𝑥) for all 𝑥 ∈ 𝑂𝑏(𝒮).

Note that any 2-morphism is automatically an isomorphism, so that in fact the 2-category
of stacks in groupoids over 𝒞 is a (strict) (2, 1)-category.

Lemma 50.5.6. Let 𝒞 be a category. The 2-category of stacks in groupoids over 𝒞 has
2-fibre products, and they are described as in Categories, Lemma 4.29.3.

Proof. This is clear from Categories, Lemma 4.32.7 and Lemmas 50.5.2 and 50.4.6. �

50.6. Stacks in setoids

This is just a brief section saying that a stack in sets is the same thing as a sheaf of sets.
Please consult Categories, Section 4.36 for notation.

Definition 50.6.1. Let 𝒞 be a site.
(1) A stack in setoids over 𝒞 is a stack over 𝒞 all of whose fibre categories are setoids.
(2) A stack in sets, or a stack in discrete categories is a stack over 𝒞 all of whose

fibre categories are discrete.

From the discussion in Section 50.5 this is the same thing as a stack in groupoids whose
fibre categories are setoids (resp. discrete). Moreover, it is also the same thing as a category
fibred in setoids (resp. sets) which is a stack.

Lemma 50.6.2. Let 𝒞 be a site. Under the equivalence

{
the category of presheaves

of sets over 𝒞 } ↔ {
the category of categories

fi𝒞 }

of Categories, Lemma 4.35.6 the stacks in sets correspond precisely to the sheaves.

Proof. Omitted. Hint: Show that effectivity of descent corresponds exactly to the sheaf
condition. �

Lemma 50.6.3. Let 𝒞 be a site. Let 𝒮 be a category fibred in setoids over 𝒞. Then 𝒮
is a stack in setoids if and only if the unique equivalent category 𝒮′ fibred in sets (see
Categories, Lemma 4.36.5) is a stack in sets. In other words, if and only if the presheaf

𝑈 ⟼ 𝑂𝑏(𝒮𝑈)/≅

is a sheaf.

Proof. Omitted. �

Lemma 50.6.4. Let 𝒞 be a site. Let 𝒮1, 𝒮2 be categories over 𝒞. Suppose that 𝒮1 and 𝒮2
are equivalent as categories over 𝒞. Then 𝒮1 is a stack in setoids over 𝒞 if and only if 𝒮2
is a stack in setoids over 𝒞.
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Proof. By Categories, Lemma 4.36.5 we see that a category 𝒮 over 𝒞 is fibred in setoids
over 𝒞 if and only if it is equivalent over 𝒞 to a category fibred in sets. Hence we see that
𝒮1 is fibred in setoids over 𝒞 if and only if 𝒮2 is fibred in setoids over 𝒞. Hence now the
lemma follows from Lemma 50.6.3. �

The 2-category of stacks in setoids over 𝒞 is defined as follows.

Definition 50.6.5. Let 𝒞 be a site. The 2-category of stacks in setoids over 𝒞 is the sub
2-category of the 2-category of stacks over 𝒞 (see Definition 50.4.5) defined as follows:

(1) Its objects will be stacks in setoids 𝑝 ∶ 𝒮 → 𝒞.
(2) Its 1-morphisms (𝒮, 𝑝) → (𝒮′, 𝑝′) will be functors 𝐺 ∶ 𝒮 → 𝒮′ such that 𝑝′ ∘ 𝐺 =

𝑝. (Since every morphism is strongly cartesian every functor preserves them.)
(3) Its 2-morphisms 𝑡 ∶ 𝐺 → 𝐻 for 𝐺, 𝐻 ∶ (𝒮, 𝑝) → (𝒮′, 𝑝′) will be morphisms of

functors such that 𝑝′(𝑡𝑥) = id𝑝(𝑥) for all 𝑥 ∈ 𝑂𝑏(𝒮).

Note that any 2-morphism is automatically an isomorphism, so that in fact the 2-category
of stacks in setoids over 𝒞 is a (strict) (2, 1)-category.

Lemma 50.6.6. Let 𝒞 be a site. The 2-category of stacks in setoids over 𝒞 has 2-fibre
products, and they are described as in Categories, Lemma 4.29.3.

Proof. This is clear from Categories, Lemmas 4.32.7 and 4.36.4 and Lemmas 50.5.2 and
50.4.6. �

Lemma 50.6.7. Let 𝒞 be a site. Let 𝒮, 𝒯 be stacks in groupoids over 𝒞 and let ℛ be a
stack in setoids over 𝒞. Let 𝑓 ∶ 𝒯 → 𝒮 and 𝑔 ∶ ℛ → 𝒮 be 1-morphisms. If 𝑓 is faithful,
then the 2-fibre product

𝒯 ×𝑓,𝒮,𝑔 ℛ
is a stack in setoids over 𝒞.

Proof. Immediate from the explict description of the 2-fibre product in Categories, Lemma
4.29.3. �

Lemma 50.6.8. Let 𝒞 be a site. Let 𝒮 be a stack in groupoids over 𝒞 and let 𝒮𝑖, 𝑖 = 1, 2
be stacks in setoids over 𝒞. Let 𝑓𝑖 ∶ 𝒮𝑖 → 𝒮 be 1-morphisms. Then the 2-fibre product

𝒮1 ×𝑓1,𝒮,𝑓2
𝒮2

is a stack in setoids over 𝒞.

Proof. This is a special case of Lemma 50.6.7 as 𝑓2 is faithful. �

Lemma 50.6.9. Let 𝒞 be a site. Let

𝒯2
//

𝐺′

��

𝒯1

𝐺
��

𝒮2
𝐹 // 𝒮1

be a 2-cartesian diagram of stacks in groupoids over 𝒞. Assume
(1) for every 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑥 ∈ 𝑂𝑏((𝒮1)𝑈) there exists a covering {𝑈𝑖 → 𝑈} such

that 𝑥|𝑈𝑖
is in the essential image of 𝐹 ∶ (𝒮2)𝑈𝑖

→ (𝒮1)𝑈𝑖
, and

(2) 𝐺′ is faithful,
then 𝐺 is faithful.
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Proof. We may assume that 𝒯2 is the category 𝒮2 ×𝒮1
𝒯1 described in Categories, Lemma

4.29.3. By Categories, Lemma 4.32.8 the faithfulness of 𝐺, 𝐺′ can be checked on fibre
categories. Suppose that 𝑦, 𝑦′ are objects of 𝒯1 over the object 𝑈 of 𝒞. Let 𝛼, 𝛽 ∶ 𝑦 → 𝑦′ be
morphisms of (𝒯1)𝑈 such that 𝐺(𝛼) = 𝐺(𝛽). Our object is to show that 𝛼 = 𝛽. Considering
instead 𝛾 = 𝛼−1 ∘ 𝛽 we see that 𝐺(𝛾) = id𝐺(𝑦) and we have to show that 𝛾 = id𝑦. By
assumption we can find a covering {𝑈𝑖 → 𝑈} such that 𝐺(𝑦)|𝑈𝑖

is in the essential image of
𝐹 ∶ (𝒮2)𝑈𝑖

→ (𝒮1)𝑈𝑖
. Since it suffices to show that 𝛾|𝑈𝑖

= id for each 𝑖, we may therefore
assume that we have 𝑓 ∶ 𝐹(𝑥) → 𝐺(𝑦) for some object 𝑥 of 𝒮2 over 𝑈 and morphisms 𝑓 of
(𝒮1)𝑈. In this case we get a morphism

(1, 𝛾) ∶ (𝑈, 𝑥, 𝑦, 𝑓) ⟶ (𝑈, 𝑥, 𝑦, 𝑓)

in the fibre category of 𝒮2 ×𝒮1
𝒯1 over 𝑈 whose image under 𝐺′ in 𝒮1 is id𝑥. As 𝐺′ is

faithful we conclude that 𝛾 = id𝑦 and we win. �

Lemma 50.6.10. Let 𝒞 be a site. Let

𝒯2
//

��

𝒯1

𝐺
��

𝒮2
𝐹 // 𝒮1

be a 2-cartesian diagram of stacks in groupoids over 𝒞. If
(1) 𝐹 ∶ 𝒮2 → 𝒮1 is fully faithful,
(2) for every 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑥 ∈ 𝑂𝑏((𝒮1)𝑈) there exists a covering {𝑈𝑖 → 𝑈} such

that 𝑥|𝑈𝑖
is in the essential image of 𝐹 ∶ (𝒮2)𝑈𝑖

→ (𝒮1)𝑈𝑖
, and

(3) 𝒯2 is a stack in setoids.
then 𝒯1 is a stack in setoids.

Proof. We may assume that 𝒯2 is the category 𝒮2 ×𝒮1
𝒯1 described in Categories, Lemma

4.29.3. Pick 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑦 ∈ 𝑂𝑏((𝒯1)𝑈). We have to show that the sheaf Aut(𝑦) on 𝒞/𝑈
is trivial. To to this we may replace 𝑈 by the members of a covering of 𝑈. Hence by as-
sumption (2) we may assume that there exists an object 𝑥 ∈ 𝑂𝑏((𝒮2)𝑈) and an isomorphism
𝑓 ∶ 𝐹(𝑥) → 𝐺(𝑦). Then 𝑦′ = (𝑈, 𝑥, 𝑦, 𝑓) is an object of 𝒯2 over 𝑈 which is mapped to 𝑦
under the projection 𝒯2 → 𝒯1. Because 𝐹 is fully faithful by (1) the map Aut(𝑦′) → Aut(𝑦)
is surjective, use the explicit description of morphisms in 𝒯2 in Categories, Lemma 4.29.3.
Since by (3) the sheaf Aut(𝑦′) is trivial we get the the result of the lemma. �

50.7. The inertia stack

Let 𝑝 ∶ 𝒮 → 𝒞 and 𝑝′ ∶ 𝒮′ → 𝒞 be fibred categories over the category 𝒞. Let 𝐹 ∶ 𝒮 → 𝒮′

be a 1-morphism of fibred categories over 𝒞. Recall that we have defined in Categories,
Definition 4.31.2 an relative inertia fibred category ℐ𝒮/𝒮′ → 𝒞 as the category whose
objects are pairs (𝑥, 𝛼) where 𝑥 ∈ 𝑂𝑏(𝒮) and 𝛼 ∶ 𝑥 → 𝑥 with 𝐹(𝛼) = id𝐹(𝑥). There is also
an absolute version, namely the inertia ℐ𝒮 of 𝒮. These inertia categories are actually stacks
over 𝒞 provided that 𝒮 and 𝒮′ are stacks.

Lemma 50.7.1. Let 𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 and 𝑝′ ∶ 𝒮′ → 𝒞 be stacks over the site 𝒞.
Let 𝐹 ∶ 𝒮 → 𝒮′ be a 1-morphism of stacks over 𝒞.

(1) The inertia ℐ𝒮/𝒮′ and ℐ𝒮 are stacks over 𝒞.
(2) If 𝒮, 𝒮′ are stacks in groupoids over 𝒮, then so are ℐ𝒮/𝒮′ and ℐ𝒮.
(3) If 𝒮, 𝒮′ are stacks in setoids over 𝒮, then so are ℐ𝒮/𝒮′ and ℐ𝒮.
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Proof. The first three assertions follow from Lemmas 50.4.6, 50.5.6, and 50.6.6 and the
equivalence in Categories, Lemma 4.31.1 part (1). �

Lemma 50.7.2. Let 𝒞 be a site. If 𝒮 is a stack in groupoids, then the canonical 1-morphism
ℐ𝒮 → 𝒮 is an equivalence if and only if 𝒮 is a stack in setoids.

Proof. Follows directly from Categories, Lemma 4.36.7. �

50.8. Stackification of fibred categories

Here is the result.

Lemma 50.8.1. Let 𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category over 𝒞. There exists
a stack 𝑝′ ∶ 𝒮′ → 𝒞 and a 1-morphism 𝐺 ∶ 𝒮 → 𝒮′ of fibred categories over 𝒞 (see
Categories, Definition 4.30.8) such that

(1) for every 𝑈 ∈ 𝑂𝑏(𝒞), and any 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮𝑈) the map
𝑀𝑜𝑟(𝑥, 𝑦) ⟶ 𝑀𝑜𝑟(𝐺(𝑥), 𝐺(𝑦))

induced by 𝐺 identifies the right hand side with the sheafification of the left hand
side, and

(2) for every 𝑈 ∈ 𝑂𝑏(𝒞), and any 𝑥′ ∈ 𝑂𝑏(𝒮′
𝑈) there exists a covering {𝑈𝑖 → 𝑈}𝑖∈𝐼

such that for every 𝑖 ∈ 𝐼 the object 𝑥′|𝑈𝑖
is in the essential image of the functor

𝐺 ∶ 𝒮𝑈 → 𝒮′
𝑈.

Moreover the stack 𝒮′ is determined up to unique 2-isomorphism by these conditions.

Proof by naive method. In this proof method we proceed in stages:
First, given 𝑥 lying over 𝑈 and any object 𝑦 of 𝒮, we say that twomorphisms 𝑎, 𝑏 ∶ 𝑥 → 𝑦 of
𝒮 lying over the same arrow of 𝒞 are locally equal if there exists a covering {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}
of 𝒞 such that the compositions

𝑓∗
𝑖 𝑥 → 𝑥

𝑎
−→ 𝑦, 𝑓∗

𝑖 𝑥 → 𝑥
𝑏

−→ 𝑦
are equal. This gives an equivalence relation∼ on arrows of𝒮. If 𝑏 ∼ 𝑏′ then 𝑎∘𝑏∘𝑐 ∼ 𝑎∘𝑏′∘𝑐
(verification omitted). Hence we can quotient out by this equivalence relation to obtain a
new category 𝒮1 over 𝒞 to gether with a morphism 𝐺1 ∶ 𝒮 → 𝒮1.
One checks that 𝐺1 preserves strongly cartesian morphisms and that 𝒮1 is a fibred category
over 𝒞. Checks omitted. Thus we reduce to the case where locally equal morphisms are
equal.
Next, we add morphisms as follows. Given 𝑥 lying over 𝑈 and any object 𝑦 of lying over 𝑉
a locally defined morphism from 𝑥 to 𝑦 is given by

(1) a morphism 𝑓 ∶ 𝑈 → 𝑉,
(2) a covering {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈} of 𝑈, and
(3) morphisms 𝑎𝑖 ∶ 𝑓∗

𝑖 𝑥 → 𝑌 with 𝑝(𝑎𝑖) = ℎ ∘ 𝑓𝑖
with the property that the compositions

(𝑓𝑖 × 𝑓𝑗)∗𝑥 → 𝑓∗
𝑖 𝑥

𝑎𝑖−−→ 𝑦, (𝑓𝑖 × 𝑓𝑗)∗𝑥 → 𝑓∗
𝑗 𝑥

𝑎𝑗
−−→ 𝑦

are equal. Note that a usual morphism 𝑎 ∶ 𝑥 → 𝑦 gives a locally defined morphism (𝑝(𝑎) ∶
𝑈 → 𝑉, {id𝑈}, 𝑎). We say two locally defined morphisms (𝑓, {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}, 𝑎𝑖) and
(𝑔, {𝑔𝑗 ∶ 𝑈𝑖 → 𝑈}, 𝑏𝑗) are equal if 𝑓 = 𝑔 and the compositions

(𝑓𝑖 × 𝑔𝑗)∗𝑥 → 𝑓∗
𝑖 𝑥

𝑎𝑖−−→ 𝑦, (𝑓𝑖 × 𝑔𝑗)∗𝑥 → 𝑔∗
𝑗 𝑥

𝑏𝑗
−−→ 𝑦
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are equal (this is the right condition since we are in the situation where locally equal mor-
phisms are equal). To compose locally defined morphisms (𝑓, {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}, 𝑎𝑖) from 𝑥
to 𝑦 and (𝑔, {𝑔𝑗 ∶ 𝑉𝑗 → 𝑉}, 𝑏𝑗) from 𝑦 to 𝑧 lying over 𝑊, just take 𝑔 ∘ 𝑓 ∶ 𝑈 → 𝑊, the
covering {𝑈𝑖 ×𝑉 𝑉𝑗 → 𝑈}, and as maps the compositions

𝑥|𝑈𝑖×𝑉𝑉𝑗

pr∗0𝑎𝑖
−−−−→ 𝑦|𝑉𝑗

𝑏𝑗
−−→ 𝑧

We omit the verification that this is a locally defined morphism.

One checks that 𝒮2 with the same objects as 𝒮 and with locally defined morphisms as
morphisms is a category over 𝒞, that there is a functor 𝐺2 ∶ 𝒮 → 𝒮2 over 𝒞, that this
functor preserves strongly cartesian objects, and that 𝒮2 is a fibred category over 𝒞. Checks
omitted. This reduces one to the case where the morphism presheaves of 𝒮 are all sheaves,
by checking that the effect of using locally defined morphisms is to take the sheafification
of the (separated) morphisms presheaves.

Finally, in the case where the morphism presheaves are all sheaves we have to add objects
in order to make sure descent conditions are effective in the end result. The simplest way to
do this is to consider the category 𝒮′ whose objects are pairs (𝒰, 𝜉) where 𝒰 = {𝑈𝑖 → 𝑈}
is a covering of 𝒞 and 𝜉 = (𝑋𝑖, 𝜑𝑖𝑖′) is a descent datum relative 𝒰. Suppose given two such
data (𝒰, 𝜉) = ({𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}, 𝑥𝑖, 𝜑𝑖𝑖′) and (𝒱, 𝜂) = ({𝑔𝑗 ∶ 𝑉𝑗 → 𝑉}, 𝑦𝑗, 𝜓𝑗𝑗′). We define

𝑀𝑜𝑟𝒮′((𝒰, 𝜉), (𝒱, 𝜂))

as the set of (𝑓, 𝑎𝑖𝑗), where 𝑓 ∶ 𝑈 → 𝑉 and

𝑎𝑖𝑗 ∶ 𝑥𝑖|𝑈𝑖×𝑉𝑉𝑗
⟶ 𝑦𝑗

are morphisms of 𝒮 lying over 𝑈𝑖×𝑉𝑉𝑗 → 𝑉𝑗. These have to satisfy the following condition:
for any 𝑖, 𝑖′ ∈ 𝐼 and 𝑗, 𝑗′ ∈ 𝐽 set 𝑊 = (𝑈𝑖 ×𝑈 𝑈𝑖′) ×𝑉 (𝑉𝑗 ×𝑉 𝑉𝑗′). Then

𝑥𝑖|𝑊 𝑎𝑖𝑗|𝑊

//

𝜑𝑖𝑖′|𝑊
��

𝑦𝑗|𝑊

𝜓𝑗𝑗′|𝑊

��
𝑥𝑖′|𝑊

𝑎𝑖′𝑗′|𝑊 // 𝑦𝑗′|𝑊

commutes. At this point you have to verify the following things:
(1) there is a well defined composition on morphisms as above,
(2) this turns 𝒮′ into a category over 𝒞,
(3) there is a functor 𝐺 ∶ 𝒮 → 𝒮′ over 𝒞,
(4) for 𝑥, 𝑦 objects of 𝒮 we have 𝑀𝑜𝑟𝒮(𝑥, 𝑦) = 𝑀𝑜𝑟𝒮′(𝐺(𝑥), 𝐺(𝑦)),
(5) any object of 𝒮′ locally comes from an object of 𝒮, i.e., part (2) of the lemma

holds,
(6) 𝐺 preserves strongly cartesian morphisms,
(7) 𝒮′ is a fibred category over 𝒞, and
(8) 𝒮′ is a stack over 𝒞.

This is all not hard but there is a lot of it. Details omitted. �

Less naive proof. Here is a less naive proof. By Categories, Lemma 4.33.4 there exists
an equivalence of fibred categories 𝒮 → 𝒮′ where 𝒮′ is a split fibred category, i.e., one in
which the pullback functors compose on the nose. Obviously the lemma for 𝒮′ implies the
lemma for 𝒮. Hence we may think of 𝒮 as a presheaf in categories.
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Consider the 2-category Cat temporarily as a category by forgetting about 2-morphisms.
Let us think of a category as a quintuple (Ob,Arrows, 𝑠, 𝑡, ∘) as in Categories, Section 4.2.
Consider the forgetful functor

𝑓𝑜𝑟𝑔𝑒𝑡 ∶ Cat → Sets, (Ob,Arrows, 𝑠, 𝑡, ∘) ↦ Ob∐Arrows.

Then 𝑓𝑜𝑟𝑔𝑒𝑡 is faithful, Cat has limits and 𝑓𝑜𝑟𝑔𝑒𝑡 commutes with them, Cat has directed
colimits and 𝑓𝑜𝑟𝑔𝑒𝑡 commutes with them, and 𝑓𝑜𝑟𝑔𝑒𝑡 reflects isomorphisms. Hence, ac-
cording to the first part of Sites, Section 9.38 we can sheafify presheaves with values in
Cat, and the result commutes with 𝑓𝑜𝑟𝑔𝑒𝑡. Applying this to 𝒮 we obtain a sheafification
𝒮# which has a sheaf of objects and a sheaf of morphisms both of which are the sheafifica-
tions of the corresponding presheaves for 𝒮. In this case it is quite easy to see that the map
𝒮 → 𝒮# has the properties (1) and (2) of the lemma.

However, the category 𝒮# may not yet be a stack since, allthough the presheaf of objects
is a sheaf, the descent condition may not yet be satisfied. To remedy this we have to add
more objects. But the argument above does reduce us to the case where 𝒮 = 𝒮𝐹 for some
sheaf(!) 𝐹 ∶ 𝒞𝑜𝑝𝑝 → Cat of categories. In this case consider the functor 𝐹′ ∶ 𝒞𝑜𝑝𝑝 → Cat
defined by

(1) The set 𝑂𝑏(𝐹′(𝑈)) is the set of pairs (𝒰, 𝜉) where 𝒰 = {𝑈𝑖 → 𝑈} is a covering
of 𝑈 and 𝜉 = (𝑥𝑖, 𝜑𝑖𝑖′) is a descent datum relative to 𝒰.

(2) A morphism in 𝐹′(𝑈) from (𝒰, 𝜉) to (𝒱, 𝜂) is an element of

𝑐𝑜𝑙𝑖𝑚 𝑀𝑜𝑟𝐷𝐷(𝒲)(𝑎∗𝜉, 𝑏∗𝜂)

where the colimit is over all common refinements 𝑎 ∶ 𝒲 → 𝒰, 𝑏 ∶ 𝒲 → 𝒱.
This colimit is filtered (verification omitted). Hence composition of morphisms
in 𝐹(𝑈) is defined by finding a common refinement and composing in 𝐷𝐷(𝒲).

(3) Given ℎ ∶ 𝑉 → 𝑈 and an object (𝒰, 𝜉) of 𝐹′(𝑈) we set 𝐹′(ℎ)(𝒰, 𝜉) equal to
(𝑉×𝑈𝒰, pr∗1𝜉). More precisely, if 𝒰 = {𝑈𝑖 → 𝑈} and 𝜉 = (𝑥𝑖, 𝜑𝑖𝑖′), then 𝑉×𝑈𝒰 =
{𝑉 ×𝑈 𝑈𝑖 → 𝑉} which comes with a canonical morphism pr1 ∶ 𝑉 ×𝑈 𝒰 → 𝒰 and
pr∗1𝜉 is the pullback of 𝜉 with respect to this morphism (see Definition 50.3.4).

(4) Given ℎ ∶ 𝑉 → 𝑈, objects (𝒰, 𝜉) and (𝒱, 𝜂) and a morphism between them,
represented by 𝑎 ∶ 𝒲 → 𝒰, 𝑏 ∶ 𝒲 → 𝒱, and 𝛼 ∶ 𝑎∗𝜉 → 𝑏∗𝜂, then 𝐹′(ℎ)(𝛼) is
represented by 𝑎′ ∶ 𝑉 ×𝑈 𝒲 → 𝑉 ×𝑈 𝒰, 𝑏′ ∶ 𝑉 ×𝑈 𝒲 → 𝑉 ×𝑈 𝒱, and the pullback
𝛼′ of the morphism 𝛼 via the map 𝑉 ×𝑈 𝒲 → 𝒲. This works since pullbacks in
𝒮𝐹 commute on the nose.

There is a map 𝐹 → 𝐹′ given by associating to an object 𝑥 of 𝐹(𝑈) the object ({𝑈 →
𝑈}, (𝑥, 𝑡𝑟𝑖𝑣)) of 𝐹′(𝑈). At this point you have to check that the corresponding functor 𝒮𝐹 →
𝒮𝐹′ has properties (1) and (2) of the lemma, and finally that 𝒮𝐹′ is a stack. Details omitted.

�

Lemma 50.8.2. Let 𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category over 𝒞. Let 𝑝′ ∶
𝒮′ → 𝒞 and 𝐺 ∶ 𝒮 → 𝒮′ the the stack and 1-morphism constructed in Lemma 50.8.1.
This construction has the following universal property: Given a stack 𝑞 ∶ 𝒳 → 𝒞 and a
1-morphism𝐹 ∶ 𝒮 → 𝒮′ of fibred categories over𝒞 there exists a 1-morphism𝐻 ∶ 𝒮′ → 𝒳
such that the diagram

𝒮
𝐹

//

𝐺 ��

𝒳

𝒮′
𝐻

>>
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is 2-commutative.

Proof. Omitted. Hint: Suppose that 𝑥′ ∈ 𝑂𝑏(𝒮′
𝑈). By the result of Lemma 50.8.1 there

exists a covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 such that 𝑥′|𝑈𝑖
= 𝐺(𝑥𝑖) for some 𝑥𝑖 ∈ 𝑂𝑏(𝒮𝑈𝑖

). Moreover,
there exist coverings {𝑈𝑖𝑗𝑘 → 𝑈𝑖 ×𝑈 𝑈𝑗} and isomorphisms 𝛼𝑖𝑗𝑘 ∶ 𝑥𝑖|𝑈𝑖𝑗𝑘

→ 𝑥𝑗|𝑈𝑖𝑗𝑘
with

𝐺(𝛼𝑖𝑗𝑘) = id𝑥′|𝑈𝑖𝑗𝑘
. Set 𝑦𝑖 = 𝐹(𝑥𝑖). Then you can check that

𝐹(𝛼𝑖𝑗𝑘) ∶ 𝑦𝑖|𝑈𝑖𝑗𝑘
→ 𝑦𝑗|𝑈𝑖𝑗𝑘

agree on overlaps and therefore (as 𝒳 is a stack) define a morphism 𝛽𝑖𝑗 ∶ 𝑦𝑖|𝑈𝑖×𝑈𝑈𝑗
→

𝑦𝑗|𝑈𝑖×𝑈𝑈𝑗
. Next, you check that the 𝛽𝑖𝑗 define a descent datum. Since 𝒳 is a stack these

descent data are effective and we find an object 𝑦 of 𝒳𝑈 agreeing with 𝐺(𝑥𝑖) over 𝑈𝑖. The
hint is to set 𝐻(𝑥′) = 𝑦. �

Lemma 50.8.3. Notation and assumptions as in Lemma 50.8.2. There is a canonical equiv-
alence of categories

𝑀𝑜𝑟Fib/𝒞(𝒮, 𝒳) = 𝑀𝑜𝑟Stacks/𝒞(𝒮′, 𝒳)
given by the constructions in the proof of the aforementioned lemma.

Proof. Omitted. �

Lemma 50.8.4. Let 𝒞 be a site. Let 𝑓 ∶ 𝒳 → 𝒴 and 𝑔 ∶ 𝒵 → 𝒴 be morphisms of fibred
categories over 𝒞. In this case the stackification of the 2-fibre product is the 2-fibre product
of the stackifications.

Proof. Let us denote 𝒳′, 𝒴′, 𝒵′ the stackifications and 𝒲 the stackification of 𝒳×𝒴 𝒵. By
construction of 2-fibre products there is a canonical 1-morphism 𝒳 ×𝒴 𝒵 → 𝒳′ ×𝒴′ 𝒵′.
As the second 2-fibre product is a stack (see Lemma 50.4.6) this 1-morphism induces a
1-morphism ℎ ∶ 𝒲 → 𝒳′ ×𝒴′ 𝒵′ by the universal property of stackification, see Lemma
50.8.2. Now ℎ is a morphism of stacks, and we may check that it is an equivalence using
Lemmas 50.4.7 and 50.4.8.
Thus we first prove that ℎ induces isomorphisms of 𝑀𝑜𝑟-sheaves. Let 𝜉, 𝜉′ be objects of 𝒲
over 𝑈 ∈ 𝑂𝑏(𝒞). We want to show that

ℎ ∶ 𝑀𝑜𝑟(𝜉, 𝜉′) ⟶ 𝑀𝑜𝑟(ℎ(𝜉), ℎ(𝜉′))
is an isomorphism. To do this we may work locally on 𝑈 (see Sites, Section 9.22). Hence
by construction of 𝒲 (see Lemma 50.8.1) we may assume that 𝜉, 𝜉′ actually come from
objects (𝑥, 𝑦, 𝛼) and (𝑥′, 𝑦′, 𝛼′) of 𝒳 ×𝒴 𝒵 over 𝑈. By the same lemma once more we see
that in this case 𝑀𝑜𝑟(𝜉, 𝜉′) is the sheafification of

𝑉/𝑈 ⟼ 𝑀𝑜𝑟𝒳𝑉
(𝑥|𝑉, 𝑥′|𝑉) ×𝑀𝑜𝑟𝒵𝑉(𝑓(𝑥)|𝑉,𝑓(𝑥′)|𝑉) 𝑀𝑜𝑟𝒴𝑉

(𝑦|𝑉, 𝑦′|𝑉)

and that 𝑀𝑜𝑟(ℎ(𝜉), ℎ(𝜉′)) is equal to the fibre product
𝑀𝑜𝑟(𝑖(𝑥), 𝑖(𝑥′)) ×𝑀𝑜𝑟(𝑘(𝑓(𝑥)),𝑘(𝑓(𝑥′)) 𝑀𝑜𝑟(𝑗(𝑥), 𝑗(𝑥′))

where 𝑖 ∶ 𝒳 → 𝒳′, 𝑗 ∶ 𝒴 → 𝒴′, and 𝑘 ∶ 𝒵 → 𝒵′ are the canonical functors. Thus the
first displayed map of this paragraph is an isomorphism as sheafification is exact (and hence
the sheafification of a fibre product of presheaves is the fibre product of the sheafifications).
Finally, we have to check that any object of 𝒳′ ×𝒴′ 𝒵′ over 𝑈 is locally on 𝑈 in the essential
image of ℎ. Write such an object as a triple (𝑥′, 𝑦′, 𝛼). Then 𝑥′ locally comes from an
object of 𝒳, 𝑦′ locally comes from an object of 𝒴, and having made suitable replacements
for 𝑥′, 𝑦′ the morphism 𝛼 of 𝒵′

𝑈 locally comes from a morphism of 𝒵. In other words, we
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have shown that any object of 𝒳′ ×𝒴′ 𝒵′ over 𝑈 is locally on 𝑈 in the essential image of
𝒳 ×𝒴 𝒵 → 𝒳′ ×𝒴′ 𝒵′, hence a fortiori it is locally in the essential image of ℎ. �

Lemma 50.8.5. Let 𝒞 be a site. Let 𝒳 be a fibred category over 𝒞. The stackification of
the inertia fibred category ℐ𝒳 is intertia of the stackification of 𝒳.

Proof. This follows from the fact that stackification is compatible with 2-fibre products by
Lemma 50.8.4 and the fact that there is a formula for the inertia in terms of 2-fibre products
of categories over 𝒞, see Categories, Lemma 4.31.1. �

50.9. Stackification of categories fibred in groupoids

Here is the result.

Lemma 50.9.1. Let 𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 be a category fibred in groupoids over 𝒞.
There exists a stack in groupoids 𝑝′ ∶ 𝒮′ → 𝒞 and a 1-morphism 𝐺 ∶ 𝒮 → 𝒮′ of categories
fibred in groupoids over 𝒞 (see Categories, Definition 4.32.6) such that

(1) for every 𝑈 ∈ 𝑂𝑏(𝒞), and any 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮𝑈) the map

𝑀𝑜𝑟(𝑥, 𝑦) ⟶ 𝑀𝑜𝑟(𝐺(𝑥), 𝐺(𝑦))

induced by 𝐺 identifies the right hand side with the sheafification of the left hand
side, and

(2) for every 𝑈 ∈ 𝑂𝑏(𝒞), and any 𝑥′ ∈ 𝑂𝑏(𝒮′
𝑈) there exists a covering {𝑈𝑖 → 𝑈}𝑖∈𝐼

such that for every 𝑖 ∈ 𝐼 the object 𝑥′|𝑈𝑖
is in the essential image of the functor

𝐺 ∶ 𝒮𝑈𝑖
→ 𝒮′

𝑈𝑖
.

Moreover the stack in groupoids 𝒮′ is determined up to unique 2-isomorphism by these
conditions.

Proof. Apply Lemma 50.8.1. The result will be a stack in groupoids by applying Lemma
50.5.2. �

Lemma 50.9.2. Let 𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 be a category fibred in groupoids over 𝒞.
Let 𝑝′ ∶ 𝒮′ → 𝒞 and 𝐺 ∶ 𝒮 → 𝒮′ the the stack in groupoids and 1-morphism constructed
in Lemma 50.9.1. This construction has the following universal property: Given a stack in
groupoids 𝑞 ∶ 𝒳 → 𝒞 and a 1-morphism 𝐹 ∶ 𝒮 → 𝒳 of categories over 𝒞 there exists a
1-morphism 𝐻 ∶ 𝒮′ → 𝒳 such that the diagram

𝒮
𝐹

//

𝐺 ��

𝒳

𝒮′
𝐻

>>

is 2-commutative.

Proof. This is a special case of Lemma 50.8.2. �

Lemma 50.9.3. Let 𝒞 be a site. Let 𝑓 ∶ 𝒳 → 𝒴 and 𝑔 ∶ 𝒴 → 𝒵 be morphisms categories
fibred in groupoids over 𝒞. In this case the stackification of the 2-fibre product is the 2-fibre
product of the stackifications.

Proof. This is a special case of Lemma 50.8.4. �
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50.10. Inherited topologies

It turns out that a fibred category over a site inherits a canonical topology from the under-
lying site.

Lemma 50.10.1. Let 𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category. Let Cov(𝒮) be the
set of families {𝑥𝑖 → 𝑥}𝑖∈𝐼 of morphisms in 𝒮 with fixed target such that (a) each 𝑥𝑖 → 𝑥
is strongly cartesian, and (b) {𝑝(𝑥𝑖) → 𝑝(𝑥)}𝑖∈𝐼 is a covering of 𝒞. Then (𝒮,Cov(𝒮)) is a
site.

Proof. We have to check the three conditions of Sites, Definition 9.6.2.
(1) If 𝑥 → 𝑦 is an isomorphism of 𝒮, then it is strongly cartesian by Categories,

Lemma 4.30.2 and 𝑝(𝑥) → 𝑝(𝑦) is an isomorphism of 𝒞. Thus {𝑝(𝑥) → 𝑝(𝑦)} is
a covering of 𝒞 whence {𝑥 → 𝑦} ∈ Cov(𝒮).

(2) If {𝑥𝑖 → 𝑥}𝑖∈𝐼 ∈ Cov(𝒮) and for each 𝑖 we have {𝑦𝑖𝑗 → 𝑥𝑖}𝑗∈𝐽𝑖
∈ Cov(𝒮),

then each composition 𝑝(𝑦𝑖𝑗) → 𝑝(𝑥) is strongly cartesian by Categories, Lemma
4.30.2 and {𝑝(𝑦𝑖𝑗) → 𝑝(𝑥)}𝑖∈𝐼,𝑗∈𝐽𝑖

∈ Cov(𝒞). Hence also {𝑦𝑖𝑗 → 𝑥}𝑖∈𝐼,𝑗∈𝐽𝑖
∈

Cov(𝒮).
(3) Suppose {𝑥𝑖 → 𝑥}𝑖∈𝐼 ∈ Cov(𝒮) and 𝑦 → 𝑥 is a morphism of 𝒮. As {𝑝(𝑥𝑖) →

𝑝(𝑥)} is a covering of 𝒞 we see that 𝑝(𝑥𝑖) ×𝑝(𝑥) 𝑝(𝑦) exists. Hence Categories,
Lemma 4.30.11 implies that 𝑥𝑖 ×𝑥 𝑦 exists, that 𝑝(𝑥𝑖 ×𝑥 𝑦) = 𝑝(𝑥𝑖) ×𝑝(𝑥) 𝑝(𝑦), and
that 𝑥𝑖 ×𝑥 𝑦 → 𝑦 is strongly cartesian. Since also {𝑝(𝑥𝑖) ×𝑝(𝑥) 𝑝(𝑦) → 𝑝(𝑦)}𝑖∈𝐼 ∈
Cov(𝒞) we conclude that {𝑥𝑖 ×𝑥 𝑦 → 𝑦}𝑖∈𝐼 ∈ Cov(𝒮)

This finishes the proof. �

Note that if 𝑝 ∶ 𝒮 → 𝒞 is fibred in groupoids, then the coverings of the site 𝒮 in Lemma
50.10.1 are characterized by

{𝑥𝑖 → 𝑥} ∈ Cov(𝒮) ⇔ {𝑝(𝑥𝑖) → 𝑝(𝑥)} ∈ Cov(𝒞)

because every morphism of 𝒮 is strongly cartesian.

Definition 50.10.2. Let𝒞 be a site. Let 𝑝 ∶ 𝒮 → 𝒞 be a fibred category. We say (𝒮,Cov(𝒮))
as in Lemma 50.10.1 is the structure of site on 𝒮 inherited from 𝒞. We sometimes indicate
this by saying that 𝒮 is endowed with the topology inherited from 𝒞.

In particular we obtain a topos of sheaves Sh(𝒮) in this situation. It turns out that this topos
is functorial with respect to 1-morphisms of fibred categories.

Lemma 50.10.3. Let𝒞 be a site. Let𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of fibred categories over
𝒞. Then 𝐹 is a continuous and cocontinuous functor between the structure of sites inherited
from 𝒞. Hence 𝐹 induces a morphism of topoi 𝑓 ∶ Sh(𝒳) → Sh(𝒴) with 𝑓∗ = 𝑠𝐹 = 𝑝𝐹 and
𝑓−1 = 𝐹𝑠 = 𝐹𝑝. In particular 𝑓−1(𝒢)(𝑥) = 𝒢(𝐹(𝑥)) for a sheaf 𝒢 on 𝒴 and object 𝑥 of 𝒳.

Proof. We first prove that 𝐹 is continuous. Let {𝑥𝑖 → 𝑥}𝑖∈𝐼 be a covering of 𝒳. By
Categories, Definition 4.30.8 the functor 𝐹 transforms strongly cartesian morphisms into
strongly cartesian morphisms, hence {𝐹(𝑥𝑖) → 𝐹(𝑥)}𝑖∈𝐼 is a covering of 𝒴. This proves
part (1) of Sites, Definition 9.13.1. Moreover, let 𝑥′ → 𝑥 be a morphism of 𝒳. By Cat-
egories, Lemma 4.30.11 the fibre product 𝑥𝑖 ×𝑥 𝑥′ exists and 𝑥𝑖 ×𝑥 𝑥′ → 𝑥′ is strongly
cartesian. Hence 𝐹(𝑥𝑖 ×𝑥 𝑥′) → 𝐹(𝑥′) is strongly cartesian. By Categories, Lemma 4.30.11
applied to 𝒴 this means that 𝐹(𝑥𝑖 ×𝑥 𝑥′) = 𝐹(𝑥𝑖) ×𝐹(𝑥) 𝐹(𝑥′). This proves part (2) of Sites,
Definition 9.13.1 and we conclude that 𝐹 is continuous.
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Next we prove that 𝐹 is cocontinuous. Let 𝑥 ∈ 𝑂𝑏(𝒳) and let {𝑦𝑖 → 𝐹(𝑥)}𝑖∈𝐼 be a covering
in 𝒴. Denote {𝑈𝑖 → 𝑈}𝑖∈𝐼 the corresponding covering of 𝒞. For each 𝑖 choose a strongly
cartesian morphism 𝑥𝑖 → 𝑥 in 𝒳 lying over 𝑈𝑖 → 𝑈. Then 𝐹(𝑥𝑖) → 𝐹(𝑥) and 𝑦𝑖 → 𝐹(𝑥) are
both a strongly cartesian morphisms in 𝒴 lying over 𝑈𝑖 → 𝑈. Hence there exists a unique
isomorphism 𝐹(𝑥𝑖) → 𝑦𝑖 in 𝒴𝑈𝑖

compatible with the maps to 𝐹(𝑥). Thus {𝑥𝑖 → 𝑥}𝑖∈𝐼 is a
covering of 𝒳 such that {𝐹(𝑥𝑖) → 𝐹(𝑥)}𝑖∈𝐼 is isomorphic to {𝑦𝑖 → 𝐹(𝑥)}𝑖∈𝐼. Hence 𝐹 is
cocontinuous, see Sites, Definition 9.18.1.

The final assertion follows from the first two, see Sites, Lemmas 9.19.1, 9.18.2, and 9.19.5.
�

Lemma 50.10.4. Let 𝒞 be a site. Let 𝑝 ∶ 𝒳 → 𝒞 and 𝑞 ∶ 𝒴 → 𝒞 be stacks in groupoids.
Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of categories over 𝒞. If 𝐹 turns 𝒳 into a category fibred
in groupoids over 𝒴, then 𝒳 is a stack in groupoids over 𝒴 (with topology inherited from
𝒞).

Proof. Let us prove descent for objects. Let {𝑦𝑖 → 𝑦} be a covering of 𝒴. Let (𝑥𝑖, 𝜑𝑖𝑗) be
a descent datum in 𝒳 with respect to this covering. Then (𝑥𝑖, 𝜑𝑖𝑗) is also a descent datum
with respect to the covering {𝑞(𝑦𝑖) → 𝑞(𝑦)} of 𝒞. As 𝒳 is a stack in groupoids we obtain
an object 𝑥 over 𝑞(𝑦) and isomorphisms 𝜓𝑖 ∶ 𝑥|𝑞(𝑦𝑖) → 𝑥𝑖 over 𝑞(𝑦𝑖) compatible with the
𝜑𝑖𝑗, i.e., such that

𝜑𝑖𝑗 = 𝜓𝑗|𝑞(𝑦𝑖)×𝑞(𝑦)𝑞(𝑦𝑗) ∘ 𝜓−1
𝑖 |𝑞(𝑦𝑖)×𝑞(𝑦)𝑞(𝑦𝑗).

Consider the sheaf 𝐼 = 𝐼𝑠𝑜𝑚𝒴(𝐹(𝑥), 𝑦) on 𝒞/𝑝(𝑥). Note that 𝑠𝑖 = 𝐹(𝜓𝑖) ∈ 𝐼(𝑞(𝑥𝑖)) because
𝐹(𝑥𝑖) = 𝑦𝑖. Because 𝐹(𝜑𝑖𝑗) = id (as we started with a descent datum over {𝑦𝑖 → 𝑦}) the
displayed formula shows that 𝑠𝑖|𝑞(𝑦𝑖)×𝑞(𝑦)𝑞(𝑦𝑗) = 𝑠𝑗|𝑞(𝑦𝑖)×𝑞(𝑦)𝑞(𝑦𝑗). Hence the local sections 𝑠𝑖
glue to 𝑠 ∶ 𝐹(𝑥) → 𝑦. As 𝐹 is fibred in groupoids we see that 𝑥 is isomorphic to an object
𝑥′ with 𝐹(𝑥′) = 𝑦. We omit the verification that 𝑥′ in the fibre category of 𝒳 over 𝑦 is a
solution to the problem of descent posed by the descent datum (𝑥𝑖, 𝜑𝑖𝑗). We also omit the
proof of the sheaf property of the 𝐼𝑠𝑜𝑚-presheaves of 𝒳/𝒴. �

50.11. Gerbes

Gerbes are a special kind of stacks in groupoids.

Definition 50.11.1. A gerbe over a site 𝒞 is a category 𝑝 ∶ 𝒮 → 𝒞 over 𝒞 such that
(1) 𝑝 ∶ 𝒮 → 𝒞 is a stack in groupoids over 𝒞 (see Definition 50.5.1),
(2) for 𝑈 ∈ 𝑂𝑏(𝒞) there exists a covering {𝑈𝑖 → 𝑈} in 𝒞 such that 𝒮𝑈𝑖

is nonempty,
and

(3) for 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑥, 𝑦 ∈ 𝑂𝑏(𝒮𝑈) there exists a covering {𝑈𝑖 → 𝑈} in 𝒞 such
that 𝑥|𝑈𝑖

≅ 𝑦|𝑈𝑖
in 𝒮𝑈𝑖

.

In other words, a gerbe is a stack in groupoids such that any two objects are locally isomor-
phic and such that objects exist locally.

Lemma 50.11.2. Let 𝒞 be a site. Let 𝒮1, 𝒮2 be categories over 𝒞. Suppose that 𝒮1 and 𝒮2
are equivalent as categories over 𝒞. Then 𝒮1 is a gerbe over 𝒞 if and only if 𝒮2 is a gerbe
over 𝒞.

Proof. Assume 𝒮1 is a gerbe over 𝒞. By Lemma 50.5.4 we see 𝒮2 is a stack in groupoids
over 𝒞. Let 𝐹 ∶ 𝒮1 → 𝒮2, 𝐺 ∶ 𝒮2 → 𝒮1 be equivalences of categories over 𝒞. Given
𝑈 ∈ 𝑂𝑏(𝒞) we see that there exists a covering {𝑈𝑖 → 𝑈} such that (𝒮1)𝑈𝑖

is nonempty.
Applying 𝐹 we see that (𝒮2)𝑈𝑖

is nonempty. Given 𝑈 ∈ 𝑂𝑏(𝒞) and 𝑥, 𝑦 ∈ 𝑂𝑏((𝒮2)𝑈) there
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exists a covering {𝑈𝑖 → 𝑈} in 𝒞 such that 𝐺(𝑥)|𝑈𝑖
≅ 𝐺(𝑦)|𝑈𝑖

in (𝒮1)𝑈𝑖
. By Categories,

Lemma 4.32.8 this implies 𝑥|𝑈𝑖
≅ 𝑦|𝑈𝑖

in (𝒮2)𝑈𝑖
. �

We want to generalize the definition of gerbes a bit. Namely, let 𝐹 ∶ 𝒳 → 𝒴 be a
1-morphism of stacks in groupoids over a site 𝒞. We want to say what it means for 𝒳
to be a gerbe over 𝒴. By Section 50.10 the category 𝒴 inherits the structure of a site from
𝒞. A naive guess is: Just require that 𝒳 → 𝒴 is a gerbe in the sense above. Except the
notion so obtained is not invariants under replacing 𝒳 by an equivalent stack in groupoids
over 𝒞; this is even the case for the property of being fibred in groupoids over 𝒴. However,
it turns out that we can replace 𝒳 by an equivalent stack in groupoids over 𝒴 which is fibred
in groupoids over 𝒴, and then the property of being a gerbe over 𝒴 is independent of this
choice. Here is the precise formulation.

Lemma 50.11.3. Let 𝒞 be a site. Let 𝑝 ∶ 𝒳 → 𝒞 and 𝑞 ∶ 𝒴 → 𝒞 be stacks in groupoids.
Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of categories over 𝒞. The following are equivalent

(1) For some (equivalently any) factorization 𝐹 = 𝐹′ ∘ 𝑎 where 𝑎 ∶ 𝒳 → 𝒳′ is an
equivalence of categories over 𝒞 and 𝐹′ is fibred in groupoids, the map 𝐹′ ∶
𝒳′ → 𝒴 is a gerbe (with the topology on 𝒴 inherited from 𝒞).

(2) The following two conditions are satisfied
(a) for 𝑦 ∈ 𝑂𝑏(𝒴) lying over 𝑈 ∈ 𝑂𝑏(𝒞) there exists a covering {𝑈𝑖 → 𝑈} in

𝒞 and objects 𝑥𝑖 of 𝒳 over 𝑈𝑖 such that 𝐹(𝑥𝑖) ≅ 𝑦|𝑈𝑖
in 𝒴𝑈𝑖

, and
(b) for 𝑈 ∈ 𝑂𝑏(𝒞), 𝑥, 𝑥′ ∈ 𝑂𝑏(𝒳𝑈), and 𝑏 ∶ 𝐹(𝑥) → 𝐹(𝑥′) in 𝒴𝑈 there exists

a covering {𝑈𝑖 → 𝑈} in 𝒞 and morphisms 𝑎𝑖 ∶ 𝑥|𝑈𝑖
→ 𝑥′|𝑈𝑖

in 𝒳𝑈𝑖
with

𝐹(𝑎𝑖) = 𝑏|𝑈𝑖
.

Proof. By Categories, Lemma 4.32.14 there exists a factorization 𝐹 = 𝐹′ ∘ 𝑎 where 𝑎 ∶
𝒳 → 𝒳′ is an equivalence of categories over𝒞 and𝐹′ is fibred in groupoids. ByCategories,
Lemma 4.32.15 given any two such factorizations 𝐹 = 𝐹′ ∘ 𝑎 = 𝐹″ ∘ 𝑏 we have that 𝒳′ is
equivalent to 𝒳″ as categories over 𝒴. Hence Lemma 50.11.2 guarantees that the condition
(1) is independent of the choice of the factorization. Moreover, this means that we may
assume 𝒳′ = 𝒳 ×𝐹,𝒴,id 𝒴 as in the proof of Categories, Lemma 4.32.14

Let us prove that (a) and (b) imply that 𝒳′ → 𝒴 is a gerbe. First of all, by Lemma 50.10.4
we see that 𝒳′ → 𝒴 is a stack in groupoids. Next, let 𝑦 be an object of 𝒴 lying over
𝑈 ∈ 𝑂𝑏(𝒞). By (a) we can find a covering {𝑈𝑖 → 𝑈} in 𝒞 and objects 𝑥𝑖 of 𝒳 over 𝑈𝑖
and isomorphisms 𝑓𝑖 ∶ 𝐹(𝑥𝑖) → 𝑦|𝑈𝑖

in 𝒴𝑈𝑖
. Then (𝑈𝑖, 𝑥𝑖, 𝑦|𝑈𝑖

, 𝑓𝑖) are objects of 𝒳′
𝑈𝑖
, i.e.,

the second condition of Definition 50.11.1 holds. Finally, let (𝑈, 𝑥, 𝑦, 𝑓) and (𝑈, 𝑥′, 𝑦, 𝑓′)
be objects of 𝒳′ lying over the same object 𝑦 ∈ 𝑂𝑏(𝒴). Set 𝑏 = (𝑓′)−1 ∘ 𝑓. By condition
(b) we can find a convering {𝑈𝑖 → 𝑈} and isomorphisms 𝑎𝑖 ∶ 𝑥|𝑈𝑖

→ 𝑥′|𝑈𝑖
in 𝒳𝑈𝑖

with
𝐹(𝑎𝑖) = 𝑏|𝑈𝑖

. Then
(𝑎𝑖, id) ∶ (𝑈, 𝑥, 𝑦, 𝑓)|𝑈𝑖

→ (𝑈, 𝑥′, 𝑦, 𝑓′)|𝑈𝑖

is a morphism in 𝒳′
𝑈𝑖

as desired. This proves that (2) implies (1).

To prove that (1) implies (2) one reads the arguments in the preceding paragraph backwards.
Details omitted. �

Definition 50.11.4. Let 𝒞 be a site. Let 𝒳 and 𝒴 be stacks in groupoids over 𝒞. Let
𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of categories over 𝒞. We say 𝒳 is a gerbe over 𝒴 if the
equivalent conditions of Lemma 50.11.3 are satisfied.
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This definition does not conflict with Definition 50.11.1 when 𝒴 = 𝒞 because in this case
we may take 𝒳′ = 𝒳 in part (1) of Lemma 50.11.3. Note that conditions (2)(a) and (2)(b)
of Lemma 50.11.3 are quite close in spirit to conditions (2) and (3) of Definition 50.11.1.
Namely, (2)(a) says that the map of presheaves of isomorphism classes of objects becomes
a surjection after sheafification. Moreover, (2)(b) says that

𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥′) ⟶ 𝐼𝑠𝑜𝑚𝒴(𝐹(𝑥), 𝐹(𝑥′))

is a surjection of sheaves on 𝒞/𝑈 for any 𝑈 and 𝑥, 𝑥′ ∈ 𝑂𝑏(𝒳𝑈).

Lemma 50.11.5. Let 𝒞 be a site. Let

𝒳′
𝐺′
//

𝐹′

��

𝒳

𝐹
��

𝒴′ 𝐺 // 𝒴

be a 2-fibre product of stacks in groupoids over 𝒞. If 𝒳 is a gerbe over 𝒴, then 𝒳′ is a
gerbe over 𝒴′.

Proof. By the uniqueness property of a 2-fibre product may assume that 𝒳′ = 𝒴′ ×𝒴 𝒳 as
in Categories, Lemma 4.29.3. Let us prove properties (2)(a) and (2)(b) of Lemma 50.11.3
for 𝒴′ ×𝒴 𝒳 → 𝒴′.

Let 𝑦′ be an object of 𝒴′ lying over the object 𝑈 of 𝒞. By assumption there exists a covering
{𝑈𝑖 → 𝑈} of 𝑈 and objects 𝑥𝑖 ∈ 𝒳𝑈𝑖

with isomorphisms 𝛼𝑖 ∶ 𝐺(𝑦′)|𝑈𝑖
→ 𝐹(𝑥𝑖). Then

(𝑈𝑖, 𝑦′|𝑈𝑖
, 𝑥𝑖, 𝛼𝑖) is an object of 𝒴′ ×𝒴 𝒳 over 𝑈𝑖 whose image in 𝒴′ is 𝑦′|𝑈𝑖

. Thus (2)(a)
holds.

Let 𝑈 ∈ 𝑂𝑏(𝒞), let 𝑥′
1, 𝑥′

2 be objects of 𝒴′ ×𝒴 𝒳 over 𝑈, and let 𝑏′ ∶ 𝐹′(𝑥′
1) → 𝐹′(𝑥′

2)
be a morphism in 𝒴′

𝑈. Write 𝑥′
𝑖 = (𝑈, 𝑦′

𝑖 , 𝑥𝑖, 𝛼𝑖). Note that 𝐹′(𝑥′
𝑖 ) = 𝑥𝑖 and 𝐺′(𝑥′

𝑖 ) = 𝑦′
𝑖 .

By assumption there exists a covering {𝑈𝑖 → 𝑈} in 𝒞 and morphisms 𝑎𝑖 ∶ 𝑥1|𝑈𝑖
→ 𝑥2|𝑈𝑖

in 𝒳𝑈𝑖
with 𝐹(𝑎𝑖) = 𝐺(𝑏′)|𝑈𝑖

. Then (𝑏′|𝑈𝑖
, 𝑎𝑖) is a morphism 𝑥′

1|𝑈𝑖
→ 𝑥′

2|𝑈𝑖
as required in

(2)(b). �

Lemma 50.11.6. Let 𝒞 be a site. Let 𝐹 ∶ 𝒳 → 𝒴 and 𝐺 ∶ 𝒴 → 𝒵 be 1-morphisms of
stacks in groupoids over 𝒞. If 𝒳 is a gerbe over 𝒴 and 𝒴 is a gerbe over 𝒵, then 𝒳 is a
gerbe over 𝒵.

Proof. Let us prove properties (2)(a) and (2)(b) of Lemma 50.11.3 for 𝒳 → 𝒵.

Let 𝑧 be an object of 𝒵 lying over the object 𝑈 of 𝒞. By assumption on 𝐺 there exists a
covering {𝑈𝑖 → 𝑈} of 𝑈 and objects 𝑦𝑖 ∈ 𝒴𝑈𝑖

such that 𝐺(𝑦𝑖) ≅ 𝑧|𝑈𝑖
. By assumption on

𝐹 there exist coverings {𝑈𝑖𝑗 → 𝑈𝑖} and objects 𝑥𝑖𝑗 ∈ 𝒳𝑈𝑖𝑗
such that 𝐹(𝑥𝑖𝑗) ≅ 𝑦𝑖|𝑈𝑖𝑗

. Then
{𝑈𝑖𝑗 → 𝑈} is a covering of 𝒞 and (𝐺 ∘ 𝐹)(𝑥𝑖𝑗) ≅ 𝑧|𝑈𝑖𝑗

. Thus (2)(a) holds.

Let 𝑈 ∈ 𝑂𝑏(𝒞), let 𝑥1, 𝑥2 be objects of 𝒳 over 𝑈, and let 𝑐 ∶ (𝐺 ∘ 𝐹)(𝑥1) → (𝐺 ∘ 𝐹)(𝑥2)
be a morphism in 𝒵𝑈. By assumption on 𝐺 there exists a covering {𝑈𝑖 → 𝑈} of 𝑈 and
morphisms 𝑏𝑖 ∶ 𝐹(𝑥1)|𝑈𝑖

→ 𝐹(𝑥2)|𝑈𝑖
in 𝒴𝑈𝑖

such that 𝐺(𝑏𝑖) = 𝑐|𝑈𝑖
. By assumption on 𝐹

there exist coverings {𝑈𝑖𝑗 → 𝑈𝑖} and morphisms 𝑎𝑖𝑗 ∶ 𝑥1|𝑈𝑖𝑗
→ 𝑥2|𝑈𝑖𝑗

in 𝒳𝑈𝑖𝑗
such that

𝐹(𝑎𝑖𝑗) = 𝑏𝑖|𝑈𝑖𝑗
. Then {𝑈𝑖𝑗 → 𝑈} is a covering of 𝒞 and (𝐺 ∘ 𝐹)(𝑎𝑖𝑗) = 𝑐|𝑈𝑖𝑗

as required in
(2)(b). �
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Lemma 50.11.7. Let 𝒞 be a site. Let

𝒳′
𝐺′
//

𝐹′

��

𝒳

𝐹
��

𝒴′ 𝐺 // 𝒴

be a 2-cartesian diagram of stacks in groupoids over 𝒞. If for every 𝑈 ∈ 𝑂𝑏(𝒞) and
𝑥 ∈ 𝑂𝑏(𝒴𝑈) there exists a covering {𝑈𝑖 → 𝑈} such that 𝑥|𝑈𝑖

is in the essential image of
𝐺 ∶ 𝒴′

𝑈𝑖
→ 𝒴𝑈𝑖

and 𝒳′ is a gerbe over 𝒴′, then 𝒳 is a gerbe over 𝒴.

Proof. By the uniqueness property of a 2-fibre product may assume that 𝒳′ = 𝒴′ ×𝒴 𝒳 as
in Categories, Lemma 4.29.3. Let us prove properties (2)(a) and (2)(b) of Lemma 50.11.3
for 𝒳 → 𝒴.

Let 𝑦 be an object of 𝒴 lying over the object 𝑈 of 𝒞. By assumption there exists a covering
{𝑈𝑖 → 𝑈} of 𝑈 and objects 𝑦′

𝑖 ∈ 𝒴′
𝑈𝑖

with 𝐺(𝑦′
𝑖 ) ≅ 𝑦|𝑈𝑖

. By (2)(a) for 𝒳′ → 𝒴′ there
exist coverings {𝑈𝑖𝑗 → 𝑈𝑖} and objects 𝑥′

𝑖𝑗 of 𝒳′ over 𝑈𝑖𝑗 with 𝐹′(𝑥′
𝑖𝑗) isomorphic to the

restriction of 𝑦′
𝑖 to 𝑈𝑖𝑗. Then {𝑈𝑖𝑗 → 𝑈} is a covering of 𝒞 and 𝐺′(𝑥′

𝑖𝑗) are objects of 𝒳
over 𝑈𝑖𝑗 whose images in 𝒴 are isomorphic to the restrictions 𝑦|𝑈𝑖𝑗

. This proves (2)(a) for
𝒳 → 𝒴.

Let 𝑈 ∈ 𝑂𝑏(𝒞), let 𝑥1, 𝑥2 be objects of 𝒳 over 𝑈, and let 𝑏 ∶ 𝐹(𝑥1) → 𝐹(𝑥2) be a morphism
in 𝒴𝑈. By assumption we may choose a covering {𝑈𝑖 → 𝑈} and objects 𝑦′

1𝑖, 𝑦′
2𝑖 of 𝒴′ over

𝑈𝑖 such that there exist isomorphisms 𝛼1𝑖 ∶ 𝐺(𝑦′
1𝑖) ≅ 𝐹(𝑥1)|𝑈𝑖

and 𝛼2𝑖 ∶ 𝐺(𝑦′
2𝑖) ≅ 𝐹(𝑥2)|𝑈𝑖

.
Then we get objects 𝑥′

1𝑖 = (𝑈𝑖, 𝑦′
1𝑖, 𝑥1|𝑈𝑖

, 𝛼1𝑖) and 𝑥′
2𝑖 = (𝑈𝑖, 𝑦′

1𝑖, 𝑥1|𝑈𝑖
, 𝛼2𝑖) of 𝒳′ over 𝑈𝑖.

The restriction 𝑏|𝑈𝑖
is a morphism 𝐹′(𝑥′

1𝑖) → 𝐹′(𝑥′
2𝑖). By (2)(b) for 𝒳′ → 𝒴′ there exist

coverings {𝑈𝑖𝑗 → 𝑈𝑖} and morphisms 𝑎′
𝑖𝑗 ∶ 𝑥′

1𝑖|𝑈𝑖𝑗
→ 𝑥′

2𝑖|𝑈𝑖𝑗
such that 𝐹′(𝑎′

𝑖𝑗) = 𝑏|𝑈𝑖𝑗
.

Unwinding the definition of morphisms in 𝒴′ ×𝒴 𝒳 we see that 𝐺′(𝑎′
𝑖𝑗) ∶ 𝑥1|𝑈𝑖𝑗

→ 𝑥2|𝑈𝑖𝑗
are the morphism we're looking for, i.e., (2)(b) holds for 𝒳 → 𝒴. �

50.12. Functoriality for stacks

In this section we study what happens if we want to change the base site of a stack. This
section can be skipped on a first reading.

Let 𝑢 ∶ 𝒞 → 𝒟 be a functor between categories. Let 𝑝 ∶ 𝒮 → 𝒟 be a category over 𝒟. In
this situation we denote 𝑢𝑝𝒮 the category over 𝒞 defined as follows

(1) An object of 𝑢𝑝𝒮 is a pair (𝑈, 𝑦) consisting of an object 𝑈 of 𝒞 and an object 𝑦 of
𝒮𝑢(𝑈).

(2) A morphism (𝑎, 𝛽) ∶ (𝑈, 𝑦) → (𝑈′, 𝑦′) is given by a morphism 𝑎 ∶ 𝑈 → 𝑈′ of 𝒞
and a morphism 𝛽 ∶ 𝑦 → 𝑦′ of 𝒮 such that 𝑝(𝛽) = 𝑢(𝑎).

Note that with these definitions the fibre category of 𝑢𝑝𝒮 over 𝑈 is equal to the fibre category
of 𝒮 over 𝑢(𝑈).

Lemma 50.12.1. In the situation above, if 𝒮 is a fibred category over 𝒟 then 𝑢𝑝𝒮 is a fibred
category over 𝒞.

Proof. Please take a look at the discussion surrounding Categories, Definitions 4.30.1 and
4.30.4 before reading this proof. Let (𝑎, 𝛽) ∶ (𝑈, 𝑦) → (𝑈′, 𝑦′) be a morphism of 𝑢𝑝𝒮. We
claim that (𝑎, 𝛽) is strongly cartesian if and only if 𝛽 is strongly cartesian. First, assume 𝛽
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is strongly cartesian. Consider any second morphism (𝑎1, 𝛽1) ∶ (𝑈1, 𝑦1) → (𝑈′, 𝑦′) of 𝑢𝑝𝒮.
Then

𝑀𝑜𝑟𝑢𝑝𝒮((𝑈1, 𝑦1), (𝑈, 𝑦))
= 𝑀𝑜𝑟𝒞(𝑈1, 𝑈) ×𝑀𝑜𝑟𝒟(𝑢(𝑈1),𝑢(𝑈)) 𝑀𝑜𝑟𝒮(𝑦1, 𝑦)
= 𝑀𝑜𝑟𝒞(𝑈1, 𝑈) ×𝑀𝑜𝑟𝒟(𝑢(𝑈1),𝑢(𝑈)) 𝑀𝑜𝑟𝒮(𝑦1, 𝑦′) ×𝑀𝑜𝑟𝒟(𝑢(𝑈1),𝑢(𝑈′)) 𝑀𝑜𝑟𝒟(𝑢(𝑈1), 𝑢(𝑈))
= 𝑀𝑜𝑟𝒮(𝑦1, 𝑦′) ×𝑀𝑜𝑟𝒟(𝑢(𝑈1),𝑢(𝑈′)) 𝑀𝑜𝑟𝒞(𝑈1, 𝑈)
= 𝑀𝑜𝑟𝑢𝑝𝒮((𝑈1, 𝑦1), (𝑈′, 𝑦′)) ×𝑀𝑜𝑟𝒞(𝑈1,𝑈′) 𝑀𝑜𝑟𝒞(𝑈1, 𝑈)

the second equality as 𝛽 is strongly cartesian. Hence we see that indeed (𝑎, 𝛽) is strongly
cartesian. Conversely, suppose that (𝑎, 𝛽) is strongly cartesian. Choose a strongly cartesian
morphism 𝛽′ ∶ 𝑦″ → 𝑦′ in 𝒮 with 𝑝(𝛽′) = 𝑢(𝑎). Then bot (𝑎, 𝛽) ∶ (𝑈, 𝑦) → (𝑈, 𝑦′) and
(𝑎, 𝛽′) ∶ (𝑈, 𝑦″) → (𝑈, 𝑦) are strongly cartesian and lift 𝑎. Hence, by the uniqueness of
strongly cartesian morphisms (see discussion in Categories, Section 4.30) there exists an
isomorphism 𝜄 ∶ 𝑦 → 𝑦″ in 𝒮𝑢(𝑈) such that 𝛽 = 𝛽′ ∘ 𝜄, which implies that 𝛽 is strongly
cartesian in 𝒮 by Categories, Lemma 4.30.2.

Finally, we have to show that given (𝑈′, 𝑦′) and 𝑈 → 𝑈′ we can find a strongly cartesian
morphism (𝑈, 𝑦) → (𝑈′, 𝑦′) in 𝑢𝑝𝒮 lifting the morphism 𝑈 → 𝑈′. This follows from
the above as by assumption we can find a strongly cartesian morphism 𝑦 → 𝑦′ lifting the
morphism 𝑢(𝑈) → 𝑢(𝑈′). �

Lemma 50.12.2. Let 𝑢 ∶ 𝒞 → 𝒟 be a continuous functor of sites. Let 𝑝 ∶ 𝒮 → 𝒟 be a
stack over 𝒟. Then 𝑢𝑝𝒮 is a stack over 𝒮.

Proof. We have seen in Lemma 50.12.1 that 𝑢𝑝𝒮 is a fibred category over 𝒮. Moreover,
in the proof of that lemma we have seen that a morphism (𝑎, 𝛽) of 𝑢𝑝𝒮 is strongly cartesian
if and only 𝛽 is strongly cartesian in 𝒮. Hence, given a morphism 𝑎 ∶ 𝑈 → 𝑈′ of 𝒞, not
only do we have the equalities (𝑢𝑝𝒮)𝑈 = 𝒮𝑈 and (𝑢𝑝𝒮)𝑈′ = 𝒮𝑈′, but via these equalities
the pullback functors agree; in a formula 𝑎∗(𝑈′, 𝑦′) = (𝑈, 𝑢(𝑎)∗𝑦′).

Having said this, let 𝒰 = {𝑈𝑖 → 𝑈} be a covering of 𝒞. As 𝑢 is continuous we see that
𝒱 = {𝑢(𝑈𝑖) → 𝑢(𝑈)} is a covering of 𝒟, and that 𝑢(𝑈𝑖 ×𝑈 𝑈𝑗) = 𝑢(𝑈𝑖) ×𝑢(𝑈) 𝑢(𝑈𝑗) and
similarly for the triple fibre products 𝑈𝑖 ×𝑈 𝑈𝑗 ×𝑈 𝑈𝑘. As we have the identifications of fibre
categories and pullbacks we see that descend data relative to 𝒰 are identical to descend data
relative to 𝒱. Since by assumption we have effective descent in 𝒮 we conclude the same
holds for 𝑢𝑝𝒮. �

Lemma 50.12.3. Let 𝑢 ∶ 𝒞 → 𝒟 be a continuous functor of sites. Let 𝑝 ∶ 𝒮 → 𝒟 be a
stack in groupoids over 𝒟. Then 𝑢𝑝𝒮 is a stack in groupoids over 𝒮.

Proof. This follows immediately from Lemma 50.12.2 and the fact that all fibre categories
are groupoids. �

Definition 50.12.4. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites given by the continuous functor
𝑢 ∶ 𝒞 → 𝒟. Let 𝒮 be a fibred category over 𝒟. In this setting we write 𝑓∗𝒮 for the fibred
category 𝑢𝑝𝒮 defined above. We say that 𝑓∗𝒮 is the pushforward of 𝒮 along 𝑓.

By the results above we know that 𝑓∗𝒮 is a stack (in groupoids) if 𝒮 is a stack (in groupoids).
It is harder to define the pullback of a stack (and we'll need additional assumptions for our
particular construction -- feel free to write up and submit a more general construction). We
do this in several steps.
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Let 𝑢 ∶ 𝒞 → 𝒟 be a functor between categories. Let 𝑝 ∶ 𝒮 → 𝒞 be a category over 𝒞. In
this setting we define a category 𝑢𝑝𝑝𝒮 as follows:

(1) An object of 𝑢𝑝𝑝𝒮 is a triple (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥) where 𝑈 ∈ 𝑂𝑏(𝒞), the map
𝜙 ∶ 𝑉 → 𝑢(𝑈) is a morphism in 𝒟, and 𝑥 ∈ 𝑂𝑏(𝒮𝑈).

(2) A morphism

(𝑈1, 𝜙1 ∶ 𝑉1 → 𝑢(𝑈1), 𝑥1) ⟶ (𝑈2, 𝜙2 ∶ 𝑉2 → 𝑢(𝑈2), 𝑥2)

of 𝑢𝑝𝑝𝒮 is given by a (𝑎, 𝑏, 𝛼) where 𝑎 ∶ 𝑈1 → 𝑈2 is a morphism of 𝒞, 𝑏 ∶ 𝑉1 →
𝑉2 is a morphism of 𝒟, and 𝛼 ∶ 𝑥1 → 𝑥2 is morphism of 𝒮, such that 𝑝(𝛼) = 𝑎
and the diagram

𝑉1

𝜙1
��

𝑏
// 𝑉2

𝜙2
��

𝑢(𝑈1)
𝑢(𝑎) // 𝑢(𝑈2)

commutes in 𝒟.
We think of 𝑢𝑝𝑝𝒮 as a category over 𝒟 via

𝑝𝑝𝑝 ∶ 𝑢𝑝𝑝𝒮 ⟶ 𝒟, (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥) ⟼ 𝑉.

The fibre category of 𝑢𝑝𝑝𝒮 over an object 𝑉 of 𝒟 does not have a simple description. More-
over, it is in general not the case that 𝑢𝑝𝑝𝒮 is a fibred category over 𝒟 if 𝒮 is a fibred category
over 𝒞.

Lemma 50.12.5. In the situation above assume
(1) 𝑝 ∶ 𝒮 → 𝒞 is a fibred category,
(2) 𝒞 has nonempty finite limits, and
(3) 𝑢 ∶ 𝒞 → 𝒟 commutes with nonempty finite limits.

Consider the set 𝑅 ⊂ Arrows(𝑢𝑝𝑝𝒮) of morphisms of the form

(𝑎, id𝑉, 𝛼) ∶ (𝑈′, 𝜙′ ∶ 𝑉 → 𝑢(𝑈′), 𝑥′) ⟶ (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥)

with 𝛼 strongly cartesian. Then 𝑅 is a right multiplicative system.

Proof. According to Categories, Definition 4.24.1 we have to check RMS1, RMS2, RMS3.
Condition RMS1 holds as a composition of strongly cartesian morphisms is strongly carte-
sian, see Categories, Lemma 4.30.2.

To check RMS2 suppose we have a morphism

(𝑎, 𝑏, 𝛼) ∶ (𝑈1, 𝜙1 ∶ 𝑉1 → 𝑢(𝑈1), 𝑥1) ⟶ (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥)

of 𝑢𝑝𝑝𝒮 and a morphism

(𝑐, id𝑉, 𝛾) ∶ (𝑈′, 𝜙′ ∶ 𝑉 → 𝑢(𝑈′), 𝑥′) ⟶ (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥)

with 𝛾 strongly cartesian from 𝑅. In this situation set 𝑈′
1 = 𝑈1 ×𝑈 𝑈′, and denote 𝑎′ ∶

𝑈′
1 → 𝑈′ and 𝑐′ ∶ 𝑈′

1 → 𝑈1 the projections. As 𝑢(𝑈′
1) = 𝑢(𝑈1) ×𝑢(𝑈) 𝑢(𝑈′) we see that

𝜙′
1 = (𝜙1, 𝜙′) ∶ 𝑉1 → 𝑢(𝑈′

1) is a morphism in 𝒟. Let 𝛾1 ∶ 𝑥′
1 → 𝑥1 be a strongly cartesian

morphism of 𝒮 with 𝑝(𝛾1) = 𝜙′
1 (which exists because 𝒮 is a fibred category over 𝒞). Then

as 𝛾 ∶ 𝑥′ → 𝑥 is strongly cartesian there exists a unique morphism 𝛼′ ∶ 𝑥′
1 → 𝑥′ with

𝑝(𝛼′) = 𝑎′. At this point we see that

(𝑎′, 𝑏, 𝛼′) ∶ (𝑈1, 𝜙1 ∶ 𝑉1 → 𝑢(𝑈′
1), 𝑥′

1) ⟶ (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈′), 𝑥′)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WF
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is a morphism and that

(𝑐′, id𝑉1
, 𝛾1) ∶ (𝑈′

1, 𝜙′
1 ∶ 𝑉1 → 𝑢(𝑈′

1), 𝑥′
1) ⟶ (𝑈1, 𝜙 ∶ 𝑉1 → 𝑢(𝑈1), 𝑥1)

is an element of 𝑅 which form a solution of the existence problem posed by RMS2.

Finally, suppose that

(𝑎, 𝑏, 𝛼), (𝑎′, 𝑏′, 𝛼′) ∶ (𝑈1, 𝜙1 ∶ 𝑉1 → 𝑢(𝑈1), 𝑥1) ⟶ (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥)

are two morphisms of 𝑢𝑝𝑝𝒮 and suppose that

(𝑐, id𝑉, 𝛾) ∶ (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥) ⟶ (𝑈′, 𝜙 ∶ 𝑉 → 𝑢(𝑈′), 𝑥′)

is an element of 𝑅 which equalizes the morphisms (𝑎, 𝑏, 𝛼) and (𝑎′, 𝑏′, 𝛼′). This implies
in particular that 𝑏 = 𝑏′. Let 𝑑 ∶ 𝑈2 → 𝑈1 be the equalizer of 𝑎, 𝑎′ which exists (see
Categories, Lemma 4.16.3). Moreover, 𝑢(𝑑) ∶ 𝑢(𝑈2) → 𝑢(𝑈1) is the equalizer of 𝑢(𝑎), 𝑢(𝑎′)
hence (as 𝑏 = 𝑏′) there is a morphism 𝜙2 ∶ 𝑉1 → 𝑢(𝑈2) such that 𝜙1 = 𝑢(𝑑) ∘ 𝜙1. Let
𝛿 ∶ 𝑥2 → 𝑥1 be a strongly cartesian morphism of 𝒮 with 𝑝(𝛿) = 𝑢(𝑑). Now we claim
that 𝛼 ∘ 𝛿 = 𝛼′ ∘ 𝛿. This is true because 𝛾 is strongly cartesian, 𝛾 ∘ 𝛼 ∘ 𝛿 = 𝛾 ∘ 𝛼′ ∘ 𝛿, and
𝑝(𝛼 ∘ 𝛿) = 𝑝(𝛼′ ∘ 𝛿). Hence the arrow

(𝑑, id𝑉1
, 𝛿) ∶ (𝑈2, 𝜙2 ∶ 𝑉1 → 𝑢(𝑈2), 𝑥2) ⟶ (𝑈1, 𝜙1 ∶ 𝑉1 → 𝑢(𝑈1), 𝑥1)

is an element of 𝑅 and equalizes (𝑎, 𝑏, 𝛼) and (𝑎′, 𝑏′, 𝛼′). Hence 𝑅 satisfies RMS3 as well.
�

Lemma50.12.6. With notation and assumptions as in Lemma 50.12.5. Set 𝑢𝑝𝒮 = 𝑅−1𝑢𝑝𝑝𝒮,
see Categories, Section 4.24. Then 𝑢𝑝𝒮 is a fibred category over 𝒟.

Proof. Weuse the description of 𝑢𝑝𝒮 given just above Categories, Lemma 4.24.9. Note that
the functor 𝑝𝑝𝑝 ∶ 𝑢𝑝𝑝𝒮 → 𝒟 transforms every element of 𝑅 to an identity morphism. Hence
by Categories, Lemma 4.24.13 we obtain a canonical functor 𝑝𝑝 ∶ 𝑢𝑝𝒮 → 𝒟 extending the
given functor. This is how we think of 𝑢𝑝𝒮 as a category over 𝒟.

First we want to characterize the 𝒟-strongly cartesian morphisms in 𝑢𝑝𝒮. A morphism
𝑓 ∶ 𝑋 → 𝑌 of 𝑢𝑝𝒮 is the equivalence class of a pair (𝑓′ ∶ 𝑋′ → 𝑌, 𝑟 ∶ 𝑋′ → 𝑋) with
𝑟 ∈ 𝑅. In fact, in 𝑢𝑝𝒮 we have 𝑓 = (𝑓′, 1) ∘ (𝑟, 1)−1 with obvious notation. Note that an
isomorphism is always strongly cartesian, as are compositions of strongly cartesian mor-
phisms, see Categories, Lemma 4.30.2. Hence 𝑓 is strongly cartesian if and only if (𝑓′, 1)
is so. Thus the following claim completely characterizes strongly cartesian morphisms.
Claim: A morphism

(𝑎, 𝑏, 𝛼) ∶ 𝑋1 = (𝑈1, 𝜙1 ∶ 𝑉1 → 𝑢(𝑈1), 𝑥1) ⟶ (𝑈2, 𝜙2 ∶ 𝑉2 → 𝑢(𝑈2), 𝑥2) = 𝑋2

of 𝑢𝑝𝑝𝒮 has image 𝑓 = ((𝑎, 𝑏, 𝛼), 1) strongly cartesian in 𝑢𝑝𝒮 if and only if 𝛼 is a strongly
cartesian morphism of 𝒮.

Assume 𝛼 strongly cartesian. Let 𝑋 = (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥) be another object, and let 𝑓2 ∶
𝑋 → 𝑋2 be amorphism of 𝑢𝑝𝒮 such that 𝑝𝑝(𝑓2) = 𝑏∘𝑏1 for some 𝑏1 ∶ 𝑈 → 𝑈1. To show that
𝑓 is strongly cartesian we have to show that there exists a unique morphism 𝑓1 ∶ 𝑋 → 𝑋1 in
𝑢𝑝𝒮 such that 𝑝𝑝(𝑓1) = 𝑏1 and 𝑓2 = 𝑓∘𝑓1 in 𝑢𝑝𝒮. Write 𝑓2 = (𝑓′

2 ∶ 𝑋′ → 𝑋2, 𝑟 ∶ 𝑋′ → 𝑋).
Again we can write 𝑓2 = (𝑓′

2, 1) ∘ (𝑟, 1)−1 in 𝑢𝑝𝒮. Since (𝑟, 1) is an isomorphism whose
image in 𝒟 is an identity we see that finding a morphism 𝑓1 ∶ 𝑋 → 𝑋1 with the required
properties is the same thing as finding a morphism 𝑓′

1 ∶ 𝑋′ → 𝑋1 in 𝑢𝑝𝒮 with 𝑝(𝑓′
1) = 𝑏1

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WG
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and 𝑓′
2 = 𝑓 ∘ 𝑓′

1. Hence we may assume that 𝑓2 is of the form 𝑓2 = ((𝑎2, 𝑏2, 𝛼2), 1) with
𝑏2 = 𝑏 ∘ 𝑏1. Here is a picture

(𝑈1, 𝑉1 → 𝑢(𝑈1), 𝑥1)

(𝑎,𝑏,𝛼)
��

(𝑈, 𝑉 → 𝑢(𝑈), 𝑥)
(𝑎2,𝑏2,𝛼2) // (𝑈2, 𝑉2 → 𝑢(𝑈2), 𝑥2)

Now it is clear how to construct the morphism 𝑓1. Namely, set 𝑈′ = 𝑈 ×𝑈2
𝑈1 with

projections 𝑐 ∶ 𝑈′ → 𝑈 and 𝑎1 ∶ 𝑈′ → 𝑈1. Pick a strongly cartesian morphism 𝛾 ∶ 𝑥′ → 𝑥
lifting the morphism 𝑐. Since 𝑏2 = 𝑏 ∘ 𝑏1, and since 𝑢(𝑈′) = 𝑢(𝑈) ×𝑢(𝑈2) 𝑢(𝑈1) we see that
𝜙′ = (𝜙, 𝜙1 ∘ 𝑏1) ∶ 𝑉 → 𝑢(𝑈′). Since 𝛼 is strongly cartesian, and 𝑎 ∘ 𝑎1 = 𝑎2 ∘ 𝑐 = 𝑝(𝛼2 ∘ 𝛾)
there exists a morphism 𝛼1 ∶ 𝑥′ → 𝑥1 lifting 𝑎1 such that 𝛼∘𝛼1 = 𝛼2 ∘ 𝛾. Set 𝑋′ = (𝑈′, 𝜙′ ∶
𝑉 → 𝑢(𝑈′), 𝑥′). Thus we see that

𝑓1 = ((𝑎1, 𝑏1, 𝛼1) ∶ 𝑋′ → 𝑋1, (𝑐, id𝑉, 𝛾) ∶ 𝑋′ → 𝑋) ∶ 𝑋 ⟶ 𝑋1

works, in fact the diagram

(𝑈′, 𝜙′ ∶ 𝑉 → 𝑢(𝑈′), 𝑥′)

(𝑐,id𝑉,𝛾)
��

(𝑎1,𝑏1,𝛼1)
// (𝑈1, 𝑉1 → 𝑢(𝑈1), 𝑥1)

(𝑎,𝑏,𝛼)
��

(𝑈, 𝑉 → 𝑢(𝑈), 𝑥)
(𝑎2,𝑏2,𝛼2) // (𝑈2, 𝑉2 → 𝑢(𝑈2), 𝑥2)

is commutative by construction. This proves existence.

Next we prove uniqueness, still in the special case 𝑓 = ((𝑎, 𝑏, 𝛼), 1) and 𝑓2 = ((𝑎2, 𝑏2, 𝛼2), 1).
We strongly advise the reader to skip this part. Suppose that 𝑔1, 𝑔′

1 ∶ 𝑋 → 𝑋1 are two
morphisms of 𝑢𝑝𝒮 such that 𝑝𝑝(𝑔1) = 𝑝𝑝(𝑔′

1) = 𝑏1 and 𝑓2 = 𝑓 ∘ 𝑔1 = 𝑓 ∘ 𝑔′
1. Our goal is

to show that 𝑔1 = 𝑔′
1. By Categories, Lemma 4.24.10 we may represent 𝑔1 and 𝑔′

1 as the
equivalence classes of (𝑓1 ∶ 𝑋′ → 𝑋1, 𝑟 ∶ 𝑋′ → 𝑋) and (𝑓′

1 ∶ 𝑋′ → 𝑋1, 𝑟 ∶ 𝑋′ → 𝑋) for
some 𝑟 ∈ 𝑅. By Categories, Lemma 4.24.11 we see that 𝑓2 = 𝑓 ∘ 𝑔1 = 𝑓 ∘ 𝑔′

1 means that
there exists a morphism 𝑟′ ∶ 𝑋″ → 𝑋′ in 𝑢𝑝𝑝𝒮 such that 𝑟′ ∘ 𝑟 ∈ 𝑅 and

(𝑎, 𝑏, 𝛼) ∘ 𝑓1 ∘ 𝑟′ = (𝑎, 𝑏, 𝛼) ∘ 𝑓′
1 ∘ 𝑟′ = (𝑎2, 𝑏2, 𝛼2) ∘ 𝑟′

in 𝑢𝑝𝑝𝒮. Note that now 𝑔1 is represented by (𝑓1 ∘ 𝑟′, 𝑟 ∘ 𝑟′) and similarly for 𝑔′
1. Hence we

may assume that
(𝑎, 𝑏, 𝛼) ∘ 𝑓1 = (𝑎, 𝑏, 𝛼) ∘ 𝑓′

1 = (𝑎2, 𝑏2, 𝛼2).
Write 𝑟 = (𝑐, id𝑉, 𝛾) ∶ (𝑈′, 𝜙′ ∶ 𝑉 → 𝑢(𝑈′), 𝑥′), 𝑓1 = (𝑎1, 𝑏1, 𝛼1), and 𝑓′

1 = (𝑎′
1, 𝑏1, 𝛼′

1).
Here we have used the condition that 𝑝𝑝(𝑔1) = 𝑝𝑝(𝑔′

1). The equalities above are now equiv-
alent to 𝑎∘𝑎1 = 𝑎∘𝑎′

1 = 𝑎2 ∘𝑐 and 𝛼∘𝛼1 = 𝛼∘𝛼′
1 = 𝛼2 ∘𝛾. It need not be the case that 𝑎1 = 𝑎′

1
in this situation. Thus we have to precompose by one more morphism from 𝑅. Namely,
let 𝑈″ = Eq(𝑎1, 𝑎′

1) be the equalizer of 𝑎1 and 𝑎′
1 which is a subobject of 𝑈′. Denote

𝑐′ ∶ 𝑈″ → 𝑈′ the canonical monomorphism. Because of the relations among the mor-
phisms above we see that 𝑉 → 𝑢(𝑈′) maps into 𝑢(𝑈″) = 𝑢(Eq(𝑎1, 𝑎′

1)) = Eq(𝑢(𝑎1), 𝑢(𝑎′
1)).

Hence we get a new object (𝑈″, 𝜙″ ∶ 𝑉 → 𝑢(𝑈″), 𝑥″), where 𝛾′ ∶ 𝑥″ → 𝑥′ is a strongly
cartesian morphism lifting 𝛾. Then we see that we may precompose 𝑓1 and 𝑓′

1 with the
element (𝑐′, id𝑉, 𝛾′) of 𝑅. After doing this, i.e., replacing (𝑈′, 𝜙′ ∶ 𝑉 → 𝑢(𝑈′), 𝑥′) with
(𝑈″, 𝜙″ ∶ 𝑉 → 𝑢(𝑈″), 𝑥″), we get back to the previous situation where in addition we now
have that 𝑎1 = 𝑎′

1. In this case it follows formally from the fact that 𝛼 is strongly cartesian
(!) that 𝛼1 = 𝛼′

1. This shows that 𝑔1 = 𝑔′
1 as desired.
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We omit the proof of the fact that for any strongly cartesian morphism of 𝑢𝑝𝒮 of the form
((𝑎, 𝑏, 𝛼), 1) the morphism 𝛼 is strongly cartesian in 𝒮. (We do not need the characterization
of strongly cartesian morphisms in the rest of the proof, although we do use it later in this
section.)

Let (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥) be an object of 𝑢𝑝𝒮. Let 𝑏 ∶ 𝑉′ → 𝑉 be a morphism of 𝒟. Then
the morphism

(id𝑈, 𝑏, id𝑥) ∶ (𝑈, 𝜙 ∘ 𝑏 ∶ 𝑉′ → 𝑢(𝑈), 𝑥) ⟶ (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥)

is strongly cartesian by the result of the preceding paragraphs and we win. �

Lemma 50.12.7. With notation and assumptions as in Lemma 50.12.6. If 𝒮 is fibred in
groupoids, then 𝑢𝑝𝒮 is fibred in groupoids.

Proof. By Lemma 50.12.6 we know that 𝑢𝑝𝒮 is a fibred category. Let 𝑓 ∶ 𝑋 → 𝑌 be
a morphism of 𝑢𝑝𝒮 with 𝑝𝑝(𝑓) = id𝑉. We are done if we can show that 𝑓 is invertible,
see Categories, Lemma 4.32.2. Write 𝑓 as the equivalence class of a pair ((𝑎, 𝑏, 𝛼), 𝑟) with
𝑟 ∈ 𝑅. Then 𝑝𝑝(𝑟) = id𝑉, hence 𝑝𝑝𝑝((𝑎, 𝑏, 𝛼)) = id𝑉. Hence 𝑏 = id𝑉. But any morphism
of 𝒮 is strongly cartesian, see Categories, Lemma 4.32.2 hence we see that (𝑎, 𝑏, 𝛼) ∈ 𝑅 is
invertible in 𝑢𝑝𝒮 as desired. �

Lemma 50.12.8. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor. Let 𝑝 ∶ 𝒮 → 𝒞 and 𝑞 ∶ 𝒯 → 𝒟 be
categories over 𝒞 and 𝒟. Assume that

(1) 𝑝 ∶ 𝒮 → 𝒞 is a fibred category,
(2) 𝑞 ∶ 𝒯 → 𝒟 is a fibred category,
(3) 𝒞 has nonempty finite limits, and
(4) 𝑢 ∶ 𝒞 → 𝒟 commutes with nonempty finite limits.

Then we have a canonical equivalence of categories

𝑀𝑜𝑟Fib/𝒞(𝒮, 𝑢𝑝𝒯) = 𝑀𝑜𝑟Fib/𝒟(𝑢𝑝𝒮, 𝒯)

of morphism categories.

Proof. In this proof we use the notation 𝑥/𝑈 to denote an object 𝑥 of 𝒮 which lies over
𝑈 in 𝒞. Similarly 𝑦/𝑉 denotes an object 𝑦 of 𝒯 which lies over 𝑉 in 𝒟. In the same vein
𝛼/𝑎 ∶ 𝑥/𝑈 → 𝑥′/𝑈′ denotes the morphism 𝛼 ∶ 𝑥 → 𝑥′ with image 𝑎 ∶ 𝑈 → 𝑈′ in 𝒞.

Let 𝐺 ∶ 𝑢𝑝𝒮 → 𝒯 be a 1-morphism of fibred categories over 𝒟. Denote 𝐺′ ∶ 𝑢𝑝𝑝𝒮 → 𝒯
the composition of 𝐺 with the canonical (localization) functor 𝑢𝑝𝑝𝒮 → 𝑢𝑝𝒮. Then consider
the functor 𝐻 ∶ 𝒮 → 𝑢𝑝𝒯 given by

𝐻(𝑥/𝑈) = (𝑈, 𝐺′(𝑈, id𝑢(𝑈) ∶ 𝑢(𝑈) → 𝑢(𝑈), 𝑥))

on objects and by
𝐻((𝛼, 𝑎) ∶ 𝑥/𝑈 → 𝑥′/𝑈′) = 𝐺′(𝑎, 𝑢(𝑎), 𝛼)

on morphisms. Since 𝐺 transforms strongly cartesian morphisms into strongly cartesian
morphisms, we see that if 𝛼 is strongly cartesian, then 𝐻(𝛼) is strongly cartesian. Namely,
we've seen in the proof of Lemma 50.12.6 that in this case the map (𝑎, 𝑢(𝑎), 𝛼) becomes
strongly cartesian in 𝑢𝑝𝒮. Clearly this construction is functorial in 𝐺 andwe obtain a functor

𝐴 ∶ 𝑀𝑜𝑟Fib/𝒟(𝑢𝑝𝒮, 𝒯) ⟶ 𝑀𝑜𝑟Fib/𝒞(𝒮, 𝑢𝑝𝒯)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WH
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Conversely, let 𝐻 ∶ 𝒮 → 𝑢𝑝𝒯 be a 1-morphism of fibred categories. Recall that an object of
𝑢𝑝𝒯 is a pair (𝑈, 𝑦) with 𝑦 ∈ 𝑂𝑏(𝒯𝑢(𝑈)). We denote pr ∶ 𝑢𝑝𝒯 → 𝒯 the functor (𝑈, 𝑦) ↦ 𝑦.
In this case we define a functor 𝐺′ ∶ 𝑢𝑝𝑝𝒮 → 𝒯 by the rules

𝐺′(𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥) = 𝜙∗pr(𝐻(𝑥))
on objects and we let

𝐺′((𝑎, 𝑏, 𝛼) ∶ (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥) → (𝑈′, 𝜙′ ∶ 𝑉′ → 𝑢(𝑈′), 𝑥′)) = 𝛽
be the unique morphism 𝛽 ∶ 𝜙∗pr(𝐻(𝑥)) → (𝜙′)∗pr(𝐻(𝑥′)) such that 𝑞(𝛽) = 𝑏 and the
diagram

𝜙∗pr(𝐻(𝑥))

��

𝛽
// (𝜙′)∗pr(𝐻(𝑥′))

��
pr(𝐻(𝑥))

pr(𝐻(𝑎,𝛼)) // pr(𝐻(𝑥′))
Such a morphism exists and is unique because 𝒯 is a fibred category.
We check that 𝐺′(𝑟) is an isomorphism if 𝑟 ∈ 𝑅. Namely, if

(𝑎, id𝑉, 𝛼) ∶ (𝑈′, 𝜙′ ∶ 𝑉 → 𝑢(𝑈′), 𝑥′) ⟶ (𝑈, 𝜙 ∶ 𝑉 → 𝑢(𝑈), 𝑥)
with 𝛼 strongly cartesian is an element of the right multiplicative system 𝑅 of Lemma
50.12.5 then 𝐻(𝛼) is strongly cartesian, and pr(𝐻(𝛼)) is strongly cartesian, see proof of
Lemma 50.12.1. Hence in this case the morphism 𝛽 has 𝑞(𝛽) = id𝑉 and is strongly cartesian.
Hence 𝛽 is an isomorphism by Categories, Lemma 4.30.2. Thus by Categories, Lemma
4.24.13 we obtain a canonical extension 𝐺 ∶ 𝑢𝑝𝒮 → 𝒯.
Next, let us prove that 𝐺 transforms strongly cartesian morphisms into strongly cartesian
morphisms. Suppose that 𝑓 ∶ 𝑋 → 𝑌 is a strongly cartesian. By the characterization of
strongly cartesian morphisms in 𝑢𝑝𝒮 we can write 𝑓 as ((𝑎, 𝑏, 𝛼) ∶ 𝑋′ → 𝑌, 𝑟 ∶ 𝑋′ → 𝑌)
where 𝑟 ∈ 𝑅 and 𝛼 strongly cartesian in 𝒮. By the above it suffices to show that 𝐺′(𝑎, 𝑏𝛼)
is strongly cartesian. As before the condition that 𝛼 is strongly cartesian implies that
pr(𝐻(𝑎, 𝛼)) ∶ pr(𝐻(𝑥)) → pr(𝐻(𝑥′)) is strongly cartesian in 𝒯. Since in the commuta-
tive square above now all arrows except possibly 𝛽 is strongly cartesian it follows that also
𝛽 is strongly cartesian as desired. Clearly the construction 𝐻 ↦ 𝐺 is functorial in 𝐻 and
we obtain a functor

𝐵 ∶ 𝑀𝑜𝑟Fib/𝒞(𝒮, 𝑢𝑝𝒯) ⟶ 𝑀𝑜𝑟Fib/𝒟(𝑢𝑝𝒮, 𝒯)
To finish the proof of the lemma we have to show that the functors 𝐴 and 𝐵 are mutually
quasi-inverse. We omit the verifications. �

Definition 50.12.9. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites given by a continuous functor
𝑢 ∶ 𝒞 → 𝒟 satisyfing the hypotheses and conclusions of Sites, Proposition 9.14.6. Let 𝒮
be a stack over 𝒞. In this setting we write 𝑓−1𝒮 for the stackification of the fibred category
𝑢𝑝𝒮 over 𝒟 constructed above. We say that 𝑓−1𝒮 is the pullback of 𝒮 along 𝑓.

Of course, if 𝒮 is a stack in groupoids, then 𝑓−1𝒮 is a stack in groupoids by Lemmas 50.9.1
and 50.12.7.

Lemma 50.12.10. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites given by a continuous functor
𝑢 ∶ 𝒞 → 𝒟 satisyfing the hypotheses and conclusions of Sites, Proposition 9.14.6. Let
𝑝 ∶ 𝒮 → 𝒞 and 𝑞 ∶ 𝒯 → 𝒟 be stacks. Then we have a canonical equivalence of categories

𝑀𝑜𝑟Stacks/𝒞(𝒮, 𝑓∗𝒯) = 𝑀𝑜𝑟Stacks/𝒟(𝑓−1𝒮, 𝒯)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WJ
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of morphism categories.

Proof. For 𝑖 = 1, 2 an 𝑖-morphism of stacks is the same thing as a 𝑖-morphism of fibred
categories, see Definition 50.4.5. By Lemma 50.12.8 we have already

𝑀𝑜𝑟Fib/𝒞(𝒮, 𝑢𝑝𝒯) = 𝑀𝑜𝑟Fib/𝒟(𝑢𝑝𝒮, 𝒯)

Hence the result follows from Lemma 50.8.3 as 𝑢𝑝𝒯 = 𝑓∗𝒯 and 𝑓−1𝒮 is the stackification
of 𝑢𝑝𝒮. �

Lemma 50.12.11. Let 𝑓 ∶ 𝒟 → 𝒞 be a morphism of sites given by a continuous functor
𝑢 ∶ 𝒞 → 𝒟 satisyfing the hypotheses and conclusions of Sites, Proposition 9.14.6. Let
𝒮 → 𝒞 be a fibred category, and let 𝒮 → 𝒮′ be the stackification of 𝒮. Then 𝑓−1𝒮′ is the
stackification of 𝑢𝑝𝒮.

Proof. Omitted. Hint: This is the analogue of Sites, Lemma 9.13.4. �

The following lemma tells us that the 2-category of stacks over Sch𝑓𝑝𝑝𝑓 is a ``full 2-sub
category'' of the 2-category of stacks over Sch′

𝑓𝑝𝑝𝑓 provided that Sch′
𝑓𝑝𝑝𝑓 contains Sch𝑓𝑝𝑝𝑓

(see Topologies, Section 30.10).

Lemma 50.12.12. Let 𝒞 and 𝒟 be sites. Let 𝑢 ∶ 𝒞 → 𝒟 be a functor satisfying the
assumptions of Sites, Lemma 9.19.8. Let 𝑓 ∶ 𝒟 → 𝒞 be the corresponding morphism of
sites. Then

(1) for every stack 𝑝 ∶ 𝒮 → 𝒞 the canonical functor 𝒮 → 𝑓∗𝑓−1𝒮 is an equivalence
of stacks,

(2) given stacks 𝒮, 𝒮′ over 𝒞 the construction 𝑓−1 induces an equivalence

𝑀𝑜𝑟Stacks/𝒞(𝒮, 𝒮′) ⟶ 𝑀𝑜𝑟Stacks/𝒟(𝑓−1𝒮, 𝑓−1𝒮′)
of morphism categories.

Proof. Note that by Lemma 50.12.10 we have an equivalence of categories

𝑀𝑜𝑟Stacks/𝒟(𝑓−1𝒮, 𝑓−1𝒮′) = 𝑀𝑜𝑟Stacks/𝒞(𝒮, 𝑓∗𝑓−1𝒮′)
Hence (2) follows from (1).
To prove (1) we are going to use Lemma 50.4.8. This lemma tells us that we have to show
that 𝑐𝑎𝑛 ∶ 𝒮 → 𝑓∗𝑓−1𝒮 is fully faithful and that all objects of 𝑓∗𝑓−1𝒮 are locally in the
essential image.
We quickly describe the functor 𝑐𝑎𝑛, see proof of Lemma 50.12.8. To do this we introduce
the functor 𝑐″ ∶ 𝒮 → 𝑢𝑝𝑝𝒮 defined by 𝑐″(𝑥/𝑈) = (𝑈, id ∶ 𝑢(𝑈) → 𝑢(𝑈), 𝑥), and 𝑐″(𝛼/𝑎) =
(𝑎, 𝑢(𝑎), 𝛼). We set 𝑐′ ∶ 𝒮 → 𝑢𝑝𝒮 equal to the composition of 𝑐″ and the canonical functor
𝑢𝑝𝑝𝒮 → 𝑢𝑝𝒮. We set 𝑐 ∶ 𝒮 → 𝑓−1𝒮 equal to the composition of 𝑐′ and the canonical
functor 𝑢𝑝𝒮 → 𝑓−1𝒮. Then 𝑐𝑎𝑛 ∶ 𝒮 → 𝑓∗𝑓−1𝒮 is the functor which to 𝑥/𝑈 associates the
pair (𝑈, 𝑐(𝑥)) and to 𝛼/𝑎 the morphism (𝑎, 𝑐(𝛼)).
Fully faithfulness. To prove this we are going to use Lemma 50.4.7. Let 𝑈 ∈ 𝑂𝑏(𝒞). Let
𝑥, 𝑦 ∈ 𝒮𝑈. First off, as 𝑢 is fully faithful, we have

𝑀𝑜𝑟(𝑓∗𝑓−1𝒮)𝑈
(𝑐𝑎𝑛(𝑥), 𝑐𝑎𝑛(𝑦)) = 𝑀𝑜𝑟(𝑓−1𝒮)𝑢(𝑈)

(𝑐(𝑥), 𝑐(𝑦))

directly from the definition of 𝑓∗. Similarly holds after pull back to any 𝑈′/𝑈. Because
𝑓−1𝒮 is the stackification of 𝑢𝑝𝒮, and since 𝑢 is continuous and cocontinuous the presheaf

𝑈′/𝑈 ⟼ 𝑀𝑜𝑟(𝑓−1𝒮)𝑢(𝑈′)
(𝑐(𝑥|𝑈′), 𝑐(𝑦|𝑈′))

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WR
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is the sheafification of the presheaf
𝑈′/𝑈 ⟼ 𝑀𝑜𝑟(𝑢𝑝𝒮)𝑢(𝑈′)

(𝑐′(𝑥|𝑈′), 𝑐′(𝑦|𝑈′))

Hence to finish the proof of fully faithfulness it suffices to show that for any 𝑈 and 𝑥, 𝑦 the
map

𝑀𝑜𝑟𝒮𝑈
(𝑥, 𝑦) ⟶ 𝑀𝑜𝑟(𝑢𝑝𝒮)𝑈

(𝑐′(𝑥), 𝑐′(𝑦))
is bijective. A morphism 𝑓 ∶ 𝑥 → 𝑦 in 𝑢𝑝𝒮 over 𝑢(𝑈) is given by an equivalence class of
diagrams

(𝑈′, 𝜙 ∶ 𝑢(𝑈) → 𝑢(𝑈′), 𝑥′)

(𝑐,id𝑢(𝑈),𝛾)
��

(𝑎,𝑏,𝛼)
// (𝑈, id ∶ 𝑢(𝑈) → 𝑢(𝑈), 𝑦)

(𝑈, id ∶ 𝑢(𝑈) → 𝑢(𝑈), 𝑥)
with 𝛾 strongly cartesian and 𝑏 = id𝑢(𝑈). But since 𝑢 is fully faithful we can write 𝜙 = 𝑢(𝑐′)
for some morphism 𝑐′ ∶ 𝑈 → 𝑈′ and then we see that 𝑎 ∘ 𝑐′ = id𝑈 and 𝑐 ∘ 𝑐′ = id𝑈′.
Because 𝛾 is strongly cartesian we can find a morphism 𝛾′ ∶ 𝑥 → 𝑥′ lifting 𝑐′ such that
𝛾 ∘ 𝛾′ = id𝑥. By definition of the equivalence classes defining morphisms in 𝑢𝑝𝒮 it follows
that the morphism

(𝑈, id ∶ 𝑢(𝑈) → 𝑢(𝑈), 𝑥)
(id,id,𝛼∘𝛾′)

// (𝑈, id ∶ 𝑢(𝑈) → 𝑢(𝑈), 𝑦)

of 𝑢𝑝𝑝𝒮 induces the morphism 𝑓 in 𝑢𝑝𝒮. This proves that the map is surjective. We omit
the proof that it is injective.
Finally, we have to show that any object of 𝑓∗𝑓−1𝒮 locally comes from an object of 𝒮. This
is clear from the constructions (details omitted). �

50.13. Stacks and localization

Let 𝒞 be a site. Let 𝑈 be an object of 𝒞. We want to understand stacks over 𝒞/𝑈 as stacks
over 𝒞 together with a morphism towards 𝑈. The following lemma is the reason why this
is easier to do when the presheaf ℎ𝑈 is a sheaf.

Lemma 50.13.1. Let 𝒞 be a site. Let 𝑈 ∈ 𝑂𝑏(𝒞). Then 𝑗𝑈 ∶ 𝒞/𝑈 → 𝒞 is a stack over 𝒞 if
and only if ℎ𝑈 is a sheaf.

Proof. Combine Lemma 50.6.3 with Categories, Example 4.35.7. �

Assume that 𝒞 is a site, and 𝑈 is an object of 𝒞 whose associated representable presheaf is
a sheaf. We denote 𝑗 ∶ 𝒞/𝑈 → 𝒞 the localization functor.
Construction A. Let 𝑝 ∶ 𝒮 → 𝒞/𝑈 be a stack over the site 𝒞/𝑈. We define a stack 𝑗!𝑝 ∶
𝑗!𝒮 → 𝒞 as follows:

(1) As a category 𝑗!𝒮 = 𝒮, and
(2) the functor 𝑗!𝑝 ∶ 𝑗!𝒮 → 𝒞 is just the composition 𝑗 ∘ 𝑝.

We omit the verification that this is a stack (hint: Use that ℎ𝑈 is a sheaf to glue morphisms
to 𝑈). There is a canonical functor

𝑗!𝒮 ⟶ 𝒞/𝑈
namely the functor 𝑝 which is a 1-morphism of stacks over 𝒞.
Construction B. Let 𝑞 ∶ 𝒯 → 𝒞 be a stack over 𝒞 which is endowed with a morphism of
stacks 𝑝 ∶ 𝒯 → 𝒞/𝑈 over 𝒞. In this case it is automically the case that 𝑝 ∶ 𝒯 → 𝒞/𝑈 is a
stack over 𝒞/𝑈.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WU
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Lemma 50.13.2. Assume that 𝒞 is a site, and 𝑈 is an object of 𝒞 whose associated rep-
resentable presheaf is a sheaf. Constructions A and B above define mutually inverse (!)
functors of 2-categories

{
2-category of
stacks over 𝒞/𝑈} ↔

⎧⎪
⎨
⎪⎩

2-category of pairs (𝒯, 𝑝) consisting
of a stack 𝒯 over 𝒞 and a morphism

𝑝 ∶ 𝒯 → 𝒞/𝑈 of stacks over 𝒞

⎫⎪
⎬
⎪⎭

Proof. This is clear. �
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CHAPTER 51

Formal Deformation Theory

51.1. Introduction

This chapter develops formal deformation theory in a form applicable later in the stacks
project, closely followingRim [GRR72, ExposeeVI] and Schlessinger [Sch68]. We strongly
encourage the reader new to this topic to read the paper by Schlessinger first, as it is suffi-
ciently general for most applications, and Schlessinger's results are indeed used in most
papers that use this kind of formal deformation theory.

Let Λ be a complete Noetherian local ring with residue field 𝑘, and let 𝒞Λ denote the cat-
egory of Artinian local Λ-algebras with residue field 𝑘. Given a functor 𝐹 ∶ 𝒞Λ → Sets
such that 𝐹(𝑘) is a one element set, Schlessinger's paper introduced conditions (H1)-(H4)
such that:

(1) 𝐹 has a ``hull'' if and only if (H1)-(H3) hold.
(2) 𝐹 is prorepresentable if and only (H1)-(H4) hold.

The purpose of this chapter is to generalize these results in two ways exactly as is done in
Rim's paper:

(A) The functor 𝐹 is replaced by a category ℱ cofibered in groupoids over 𝒞Λ, see
Section 51.3.

(B) We let Λ be a Noetherian ring and Λ → 𝑘 a finite ring map to a field. The
category 𝒞Λ is the category of Artinian local Λ-algebras 𝐴 endowed with a given
identification 𝐴/𝔪𝐴 = 𝑘.

The analogue of the condition that 𝐹(𝑘) is a one element set is that ℱ(𝑘) is the trivial
groupoid. If ℱ satisfies this condition then we say it is a predeformation category, but
in general we do not make this assumption. Rim's paper [GRR72, Exposee VI] is the
original source for the results in this document. We also mention the useful paper [TV],
which discusses deformation theory with groupoids but in less generality than we do here.

An important role is played by the ``completion'' 𝒞Λ of the category 𝒞Λ. An object of 𝒞Λ
is a Noetherian complete local Λ-algebra 𝑅 whose residue field is identified with 𝑘, see
Section 51.4. On the one hand 𝒞Λ ⊂ 𝒞Λ is a strictly full subcategory and on the other
hand 𝒞Λ is a full subcategory of the category of pro-objects of 𝒞Λ. A functor 𝒞Λ → Sets
is prorepresentable if it is isomorphic to the restriction of a representable functor 𝑅 =
𝑀𝑜𝑟𝒞Λ

(𝑅, −) to 𝒞Λ where 𝑅 ∈ 𝑂𝑏(𝒞Λ).

Categories cofibred in groupoids are dual to categories fibred in groupoids; we introduced
them in Section 51.5. A smooth morphism of categories cofibred in groupoids over 𝒞Λ
is one that satisfies the infinitesimal lifting criterion for objects, see Section 51.8. This is
analogous to the definition of a formally smooth ring map, see Algebra, Definition 7.127.1
and is exactly dual to the notion in Criteria for Representability, Section 59.6. This is an
important notion as we eventually want to prove that certain kinds of categories cofibred in
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groupoids have a smooth prorepresentable presentation, much like the characterization of
algebraic stacks in Algebraic Stacks, Sections 57.16 and 57.17. A versal formal object of
a category ℱ cofibred in groupoids over 𝒞Λ is an object 𝜉 ∈ ℱ̂(𝑅) of the completion such
that the associated morphism 𝜉 ∶ 𝑅 → ℱ is smooth.

In Section 51.9, we define conditions (S1) and (S2) on ℱ generalizing Schlessinger's (H1)
and (H2). The analogue of Schlessinger's (H3)---the condition that ℱ has finite dimensional
tangent space---is not given a name. A key step in the development of the theory is the exis-
tence of versal formal objects for predeformation categories satisfying (S1), (S2) and (H3),
see Lemma 51.12.4. Schlessinger's notion of a hull for a functor 𝐹 ∶ 𝒞Λ → Sets is, in our
terminology, a versal formal object 𝜉 ∈ 𝐹(𝑅) such that the induced map of tangent spaces
𝑑𝜉 ∶ 𝑇𝑅 → 𝑇𝐹 is an isomorphism. In the literature a hull is often called a ``miniversal''
object. We do not do so, and here is why. It can happen that a functor has a versal formal
object without having a hull. Moreover, we show in Section 51.13 that if a predeformation
category has a versal formal object, then it always has a minimal one (as defined in Defini-
tion 51.13.4) which is unique up to isomorphism, see Lemma 51.13.5. But it can happen
that the minimal versal formal object does not induce an isomorphism on tangent spaces!
(See Examples 51.14.3 and 51.14.8.)

Keeping in mind the differences pointed out above, Theorem 51.14.5 is the direct general-
ization of (1) above: it recovers Schlessinger's result in the case that ℱ is a functor and it
characterizes minimal versal formal objects, in the presence of conditions (S1) and (S2), in
terms of the map 𝑑𝜉 ∶ 𝑇𝑅 → 𝑇𝐹 on tangent spaces.

In Section 51.15, we define Rim's condition (RS) on ℱ generalizing Schlessinger's (H4).
A deformation category is defined as a predeformation category satisfying (RS). The ana-
logue to prorepresentable functors are the categories cofibred in groupoids over 𝒞Λ which
have a presentation by a smooth prorepresentable groupoid in functors on 𝒞Λ, see Defi-
nitions 51.19.1, 51.20.1, and 51.21.1. This notion of a presentation takes into account the
groupoid structure of the fibers of ℱ. In Theorem 51.24.5 we prove that ℱ has a presentation
by a smooth prorepresentable groupoid in functors if and only if ℱ has a finite dimensional
tangent space and finite dimensionsal infinitesimal automorphism space. This is the gen-
eralization of (2) above: it reduces to Schlessinger's result in the case that ℱ is a functor.
There is a final Section 51.25 where we discuss how to use minimal versal formal objects to
produce a (unique up to isomorphism) minimal presentation by a smooth prorepresentable
groupoid in functors.

We also find the following conceptual explanation for Schlessinger's conditions. If a pre-
deformation category ℱ satisfies (RS), then the associated functor of isomorphism classes
ℱ ∶ 𝒞Λ → Sets satisfies (H1) and (H2) (Lemmas 51.15.6 and 51.9.5). Conversely, if a
functor 𝐹 ∶ 𝒞Λ → Sets arises naturally as the functor of isomorphism classes of a category
ℱ cofibered in groupoids, then it seems to happen in practice that an argument showing 𝐹
satisfies (H1) and (H2) will also show ℱ satisfies (RS) (see Section 51.27 for examples).
Moreover, if ℱ satisfies (RS), then condition (H4) for ℱ has a simple interpretation in terms
of extending automorphisms of objects of ℱ (Lemma 51.15.7). These observations suggest
that (RS) should be regarded as the fundamental deformation theoretic glueing condition.

51.2. Notation and Conventions

A ring is commutative with 1. The maximal ideal of a local ring 𝐴 is denoted by 𝔪𝐴. The
set of positive integers is denoted by 𝐍 = {1, 2, 3, … }. If 𝑈 is an object of a category 𝒞,
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we denote by 𝑈 the functor 𝑀𝑜𝑟𝒞(𝑈, −) ∶ 𝒞 → Sets, see Remarks 51.5.2 (12). Warning:
this may conflict with the notation in other chapters where sometimes use 𝑈 to denote
ℎ𝑈(−) = 𝑀𝑜𝑟𝒞(−, 𝑈).

Throughout this chapter Λ is a Noetherian ring and Λ → 𝑘 is a finite ring map from Λ to
a field. The kernel of this map is denoted 𝔪Λ and the image 𝑘′ ⊂ 𝑘. It turns out that 𝔪Λ
is a maximal ideal, 𝑘′ = Λ/𝔪Λ is a field, and the extension 𝑘′ ⊂ 𝑘 is finite. See discussion
surrounding (51.3.3.1).

51.3. The category 𝒞Λ

Motivation. An important application of formal deformation theory is to criteria for repre-
sentability by algebraic spaces. Suppose given a locally Noetherian base change 𝑆 and a
functor 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝

𝑓𝑝𝑝𝑓 → Sets. Let 𝑘 be a finite type field over 𝑆, i.e., we are given a finite
type morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑆. One of Artin's criteria is that for any element 𝑥 ∈ 𝐹(𝑆𝑝𝑒𝑐(𝑘))
the predeformation functor associated to the triple (𝑆, 𝑘, 𝑥) should be prorepresentable. By
Morphisms, Lemma 24.15.1 the condition that 𝑘 is of finite type over 𝑆 means that there
exists an affine open 𝑆𝑝𝑒𝑐(Λ) ⊂ 𝑆 such that 𝑘 is a finite Λ-algebra. This motivates why we
work throughout this chapter with a base category as follows.

Definition 51.3.1. Let Λ be a Noetherian ring and let Λ → 𝑘 be a finite ring map where 𝑘
is a field. We define 𝒞Λ to be the category with

(1) objects are pairs (𝐴, 𝜑) where 𝐴 is an Artinian local Λ-algebra and where 𝜑 ∶
𝐴/𝔪𝐴 → 𝑘 is a Λ-algebra isomorphism, and

(2) morphisms 𝑓 ∶ (𝐵, 𝜓) → (𝐴, 𝜑) are local Λ-algebra homomorphisms such that
𝜑 ∘ (𝑓 mod 𝔪) = 𝜓.

We say we are in the classical case if Λ is a Noetherian complete local ring and 𝑘 is its
residue field.

Note that if Λ → 𝑘 is surjective and if 𝐴 is an Artinian local Λ-algebra, then the identifica-
tion 𝜑, if it exists, is unique. Moreover, in this case any Λ-algebra map 𝐴 → 𝐵 is going to
be compatible with the identifications. Hence in this case 𝒞Λ is just the category of local
Artinian Λ-algebras whose residue field ``is'' 𝑘. By abuse of notation we also denote objects
of 𝒞Λ simply 𝐴 in the general case. Moreover, we will often write 𝐴/𝔪 = 𝑘, i.e., we will
pretend all rings in 𝒞Λ have residue field 𝑘 (since all ring maps in 𝒞Λ are compatible with
the given identifications this should never cause any problems). Throughout the rest of this
chapter the base ring Λ and the field 𝑘 are fixed. The category 𝒞Λ will be the base category
for the cofibered categories considered below.

Definition 51.3.2. Let 𝑓 ∶ 𝐵 → 𝐴 be a ring map in 𝒞Λ. We say 𝑓 is a small extension if it
is surjective and ker(𝑓) is a nonzero principal ideal which is annihilated by 𝔪𝐵.

By the following lemma we can often reduce arguments involving surjective ring maps in
𝒞Λ to the case of small extensions.

Lemma 51.3.3. Let 𝑓 ∶ 𝐵 → 𝐴 be a surjective ring map in 𝒞Λ. Then 𝑓 can be factored as
a composition of small extensions.

Proof. Let 𝐼 be the kernel of 𝑓. The maximal ideal 𝔪𝐵 is nilpotent since 𝐵 is Artinian, say
𝔪𝑛

𝐵 = 0. Hence we get a factorization

𝐵 = 𝐵/𝐼𝔪𝑛−1
𝐵 → 𝐵/𝐼𝔪𝑛−2

𝐵 → ⋯ → 𝐵/𝐼 ≅ 𝐴
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of 𝑓 into a composition of surjective maps whose kernels are annihilated by the maximal
ideal. Thus it suffices to prove the lemma when 𝑓 itself is such a map, i.e. when 𝐼 is anni-
hilated by 𝔪𝐵. In this case 𝐼 is a 𝑘-vector space, which has finite dimension, see Algebra,
Lemma 7.49.8. Take a basis 𝑥1, … , 𝑥𝑛 of 𝐼 as a 𝑘-vector space to get a factorization

𝐵 → 𝐵/(𝑥1) → ⋯ → 𝐵/(𝑥1, … , 𝑥𝑛) ≅ 𝐴
of 𝑓 into a composition of small extensions. �

The next lemma says that we can compute the length of a module over a local Λ-algebra
with residue field 𝑘 in terms of the length over Λ. To explain the notation in the statement,
let 𝑘′ ⊂ 𝑘 be the image of our fixed finite ring map Λ → 𝑘. Note that 𝑘/𝑘′ is a finite
extension of rings. Hence 𝑘′ is a field and 𝑘′/𝑘 is a finite extension, see Algebra, Lemma
7.32.16. Moreover, as Λ → 𝑘′ is surjective we see that its kernel is a maximal ideal 𝔪Λ.
Thus
(51.3.3.1) [𝑘 ∶ 𝑘′] = [𝑘 ∶ Λ/𝔪Λ] < ∞
and in the classical case we have 𝑘 = 𝑘′. The notation 𝑘′ = Λ/𝔪Λ will be fixed throughout
this chapter.

Lemma 51.3.4. Let 𝐴 be a local Λ-algebra with residue field 𝑘. Let 𝑀 be an 𝐴-module.
Then [𝑘 ∶ 𝑘′]length𝐴(𝑀) = lengthΛ(𝑀). In the classical case we have length𝐴(𝑀) =
lengthΛ(𝑀).

Proof. If 𝑀 is a simple 𝐴-module then 𝑀 ≅ 𝑘 as an 𝐴-module, see Algebra, Lemma
7.48.10. In this case length𝐴(𝑀) = 1 and lengthΛ(𝑀) = [𝑘′ ∶ 𝑘], see Algebra, Lemma
7.48.6. If length𝐴(𝑀) is finite, then the result follows on choosing a filtration of 𝑀 by
𝐴-submoduleswith simple quotients using additivity, seeAlgebra, Lemma 7.48.3. If length𝐴(𝑀)
is infinite, the result follows from the obvious inequality length𝐴(𝑀) ≤ lengthΛ(𝑀). �

Lemma 51.3.5. Let 𝐴 → 𝐵 be a ring map in 𝒞Λ. The following are equivalent
(1) 𝑓 is surjective,
(2) 𝔪𝐴/𝔪2

𝐴 → 𝔪𝐵/𝔪2
𝐵 is surjective, and

(3) 𝔪𝐴/(𝔪Λ𝐴 + 𝔪2
𝐴) → 𝔪𝐵/(𝔪Λ𝐵 + 𝔪2

𝐵) is surjective.

Proof. For any ring map 𝑓 ∶ 𝐴 → 𝐵 in 𝒞Λ we have 𝑓(𝔪𝐴) ⊂ 𝔪𝐵 for example because
𝔪𝐴, 𝔪𝐵 is the set of nilpotent elements of 𝐴, 𝐵. Suppose 𝑓 is surjective. Let 𝑦 ∈ 𝔪𝐵.
Choose 𝑥 ∈ 𝐴 with 𝑓(𝑥) = 𝑦. Since 𝑓 induces an isomorphism 𝐴/𝔪𝐴 → 𝐵/𝔪𝐵 we see
that 𝑥 ∈ 𝔪𝐴. Hence the induced map 𝔪𝐴/𝔪2

𝐴 → 𝔪𝐵/𝔪2
𝐵 is surjective. In this way we see

that (1) implies (2).
It is clear that (2) implies (3). The map 𝐴 → 𝐵 gives rise to a canonical commutative
diagram

𝔪Λ/𝔪2
Λ ⊗𝑘′ 𝑘 //

��

𝔪𝐴/𝔪2
𝐴

//

��

𝔪𝐴/(𝔪Λ𝐴 + 𝔪2
𝐴) //

��

0

𝔪Λ/𝔪2
Λ ⊗𝑘′ 𝑘 // 𝔪𝐵/𝔪2

𝐵
// 𝔪𝐵/(𝔪Λ𝐵 + 𝔪2

𝐵) // 0

with exact rows. Hence if (3) holds, then so does (2).
Assume (2). To show that 𝐴 → 𝐵 is surjective it suffices by Nakayama's lemma (Algebra,
Lemma 7.14.5) to show that 𝐴/𝔪𝐴 → 𝐵/𝔪𝐴𝐵 is surjective. (Note that 𝔪𝐴 is a nilpotent
ideal.) As 𝑘 = 𝐴/𝔪𝐴 = 𝐵/𝔪𝐵 it suffices to show that 𝔪𝐴𝐵 → 𝔪𝐵 is surjective. Applying
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Nakayama's lemma once more we see that it suffces to see that 𝔪𝐴𝐵/𝔪𝐴𝔪𝐵 → 𝔪𝐵/𝔪2
𝐵 is

surjective which is what we assumed. �

If 𝐴 → 𝐵 is a ring map in 𝒞Λ, then the map 𝔪𝐴/(𝔪Λ𝐴 + 𝔪2
𝐴) → 𝔪𝐵/(𝔪Λ𝐵 + 𝔪2

𝐵) is the
map on relative cotangent spaces. Here is a formal definition.

Definition 51.3.6. Let 𝑅 → 𝑆 be a local homomorphism of local rings. The relative
cotangent space1 of 𝑅 over 𝑆 is the 𝑆/𝔪𝑆-vector space 𝔪𝑆/(𝔪𝑅𝑆 + 𝔪2

𝑆).

If 𝑓1 ∶ 𝐴1 → 𝐴 and 𝑓2 ∶ 𝐴2 → 𝐴 are two ring maps, then the fiber product 𝐴1 ×𝐴 𝐴2
is the subring of 𝐴1 × 𝐴2 consisting of elements whose two projections to 𝐴 are equal.
Throughout this chapter we will be considering conditions involving such a fiber product
when 𝑓1 and 𝑓2 are in 𝒞Λ. It isn't always the case that the fibre product is an object of 𝒞Λ.

Example 51.3.7. Let 𝑝 be a prime number and let 𝑛 ∈ 𝐍. Let Λ = 𝐅𝑝(𝑡1, 𝑡2, … , 𝑡𝑛) and let
𝑘 = 𝐅𝑝(𝑥1, … , 𝑥𝑛) with map Λ → 𝑘 given by 𝑡𝑖 ↦ 𝑥𝑝

𝑖 . Let 𝐴 = 𝑘[𝜖] = 𝑘[𝑥]/(𝑥2). Then
𝐴 is an object of 𝒞Λ. Suppose that 𝐷 ∶ 𝑘 → 𝑘 is a derivation of 𝑘 over Λ, for example
𝐷 = 𝜕/𝜕𝑥𝑖. Then the map

𝑓𝐷 ∶ 𝑘 ⟶ 𝑘[𝜖], 𝑎 ↦ 𝑎 + 𝐷(𝑎)𝜖
is a morphism of 𝒞Λ. Set 𝐴1 = 𝐴2 = 𝑘 and set 𝑓1 = 𝑓𝜕/𝜕𝑥1

and 𝑓2(𝑎) = 𝑎. Then
𝐴1 ×𝐴 𝐴2 = {𝑎 ∈ 𝑘 ∣ 𝜕/𝜕𝑥1(𝑎) = 0} which does not surject onto 𝑘. Hence the fibre product
isn't an object of 𝒞Λ.

It turns out that this problem can only occur if the residue field extension 𝑘′ ⊂ 𝑘 (51.3.3.1)
is inseparable and neither 𝑓1 nor 𝑓2 is surjective.

Lemma 51.3.8. Let 𝑓1 ∶ 𝐴1 → 𝐴 and 𝑓2 ∶ 𝐴2 → 𝐴 be ring maps in 𝒞Λ. Then:
(1) If 𝑓1 or 𝑓2 is surjective, then 𝐴1 ×𝐴 𝐴2 is in 𝒞Λ.
(2) If 𝑓2 is a small extension, then so is 𝐴1 ×𝐴 𝐴2 → 𝐴1.
(3) If the field extension 𝑘′ ⊂ 𝑘 is separable, then 𝐴1 ×𝐴 𝐴2 is in 𝒞Λ.

Proof. The ring 𝐴1 ×𝐴 𝐴2 is a Λ-algebra via the map Λ → 𝐴1 ×𝐴 𝐴2 induced by the maps
Λ → 𝐴1 and Λ → 𝐴2. It is a local ring with unique maximal ideal

𝔪𝐴1
×𝔪𝐴

𝔪𝐴2
= Ker(𝐴1 ×𝐴 𝐴2 ⟶ 𝑘)

A ring is Artinian if and only if it has finite length as a module over itself, see Algebra,
Lemma 7.49.8. Since 𝐴1 and 𝐴2 are Artinian, Lemma 51.3.4 implies lengthΛ(𝐴1) and
lengthΛ(𝐴2), and hence lengthΛ(𝐴1 × 𝐴2), are all finite. As 𝐴1 ×𝐴 𝐴2 ⊂ 𝐴1 × 𝐴2 is a
Λ-submodule, this implies length𝐴1×𝐴𝐴2

(𝐴1 ×𝐴 𝐴2) ≤ lengthΛ(𝐴1 ×𝐴 𝐴2) is finite. So
𝐴1 ×𝐴 𝐴2 is Artinian. Thus the only thing that is keeping 𝐴1 ×𝐴 𝐴2 from being an object
of 𝒞Λ is the possibility that its residue field maps to a proper subfield of 𝑘 via the map
𝐴1 ×𝐴 𝐴2 → 𝐴 → 𝐴/𝔪𝐴 = 𝑘 above.
Proof of (1). If 𝑓2 is surjective, then the projection 𝐴1 ×𝐴 𝐴2 → 𝐴1 is surjective. Hence the
composition 𝐴1 ×𝐴 𝐴2 → 𝐴1 → 𝐴1/𝔪𝐴1

= 𝑘 is surjective and we conclude that 𝐴1 ×𝐴 𝐴2
is an object of 𝒞Λ.
Proof of (2). If 𝑓2 is a small extension then 𝐴2 → 𝐴 and 𝐴1 ×𝐴 𝐴2 → 𝐴1 are both surjective
with the same kernel. Hence the kernel of 𝐴1×𝐴𝐴2 → 𝐴1 is a 1-dimensional 𝑘-vector space
and we see that 𝐴1 ×𝐴 𝐴2 → 𝐴1 is a small extension.

1Caution: We will see later that in our general setting the tangent space of an object 𝐴 ∈ 𝒞Λ over Λ should
not be defined simply as the 𝑘-linear dual of the relative cotangent space. In fact, the correct definition of the
relative cotangent space is Ω𝑆/𝑅 ⊗𝑆 𝑆/𝔪𝑆.
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Proof of (3). Choose 𝑥 ∈ 𝑘 such that 𝑘 = 𝑘′(𝑥) (see Algebra, Lemma 7.38.5). Let
𝑃′(𝑇) ∈ 𝑘′[𝑇] be the minimal polynomial of 𝑥 over 𝑘′. Since 𝑘/𝑘′ is separable we see
that d𝑃/d𝑇(𝑥)≠0. Choose a monic 𝑃 ∈ Λ[𝑇] which maps to 𝑃′ under the surjective map
Λ[𝑇] → 𝑘′[𝑇]. Because 𝐴, 𝐴1, 𝐴2 are henselian, see Algebra, Lemma 7.139.11, we can
find 𝑥, 𝑥1, 𝑥2 ∈ 𝐴, 𝐴1, 𝐴2 with 𝑃(𝑥) = 0, 𝑃(𝑥1) = 0, 𝑃(𝑥2) = 0 and such that the image of
𝑥, 𝑥1, 𝑥2 in 𝑘 is 𝑥. Then (𝑥1, 𝑥2) ∈ 𝐴1 ×𝐴 𝐴2 because 𝑥1, 𝑥2 map to 𝑥 ∈ 𝐴 by uniqueness,
see Algebra, Lemma 7.139.2. Hence the residue field of 𝐴1 ×𝐴 𝐴2 contains a generator of
𝑘 over 𝑘′ and we win. �

Next we define essential surjections in 𝒞Λ. A necessary and sufficient condition for a sur-
jection in 𝒞Λ to be essential is given in Lemma 51.3.12.

Definition 51.3.9. Let 𝑓 ∶ 𝐵 → 𝐴 be a ring map in 𝒞Λ. We say 𝑓 is an essential surjection
if it has the following properties:

(1) 𝑓 is surjective.
(2) If 𝑔 ∶ 𝐶 → 𝐵 is a ring map in 𝒞Λ such that 𝑓 ∘ 𝑔 is surjective, then 𝑔 is surjective.

Using Lemma 51.3.5, we can characterize essential surjections in 𝒞Λ as follows.

Lemma 51.3.10. Let 𝑓 ∶ 𝐵 → 𝐴 be a ring map in 𝒞Λ. The following are equivalent

(1) 𝑓 is an essential surjection,
(2) the map 𝐵/𝔪2

𝐵 → 𝐴/𝔪2
𝐴 is an essential surjection, and

(3) the map 𝐵/(𝔪Λ𝐵 + 𝔪2
𝐵) → 𝐴/(𝔪Λ𝐴 + 𝔪2

𝐴) is an essential surjection.

Proof. Assume (3). Let 𝐶 → 𝐵 be a ring map in 𝒞Λ such that 𝐶 → 𝐴 is surjective. Then
𝐶 → 𝐴/(𝔪Λ𝐴 + 𝔪2

𝐴) is surjective too. We conclude that 𝐶 → 𝐵/(𝔪Λ𝐵 + 𝔪2
𝐵) is surjective

by our assumption. Hence 𝐶 → 𝐵 is surjective by applying Lemma 51.3.5 (2 times).

Assume (1). Let 𝐶 → 𝐵/(𝔪Λ𝐵+𝔪2
𝐵) be a morphism of 𝒞Λ such that 𝐶 → 𝐴/(𝔪Λ𝐴+𝔪2

𝐴)
is surjective. Set 𝐶′ = 𝐶 ×𝐵/(𝔪Λ𝐵+𝔪2

𝐵) 𝐵 which is an object of 𝒞Λ by Lemma 51.3.8. Note
that 𝐶′ → 𝐴/(𝔪Λ𝐴 + 𝔪2

𝐴) is still surjective, hence 𝐶′ → 𝐴 is surjective by Lemma 51.3.5.
Thus 𝐶′ → 𝐵 is surjective by our assumption. This implies that 𝐶′ → 𝐵/(𝔪Λ𝐵 + 𝔪2

𝐵) is
surjective, which implies by the construction of 𝐶′ that 𝐶 → 𝐵/(𝔪Λ𝐵 + 𝔪2

𝐵) is surjective.

In the first paragraph we proved (3) ⇒ (1) and in the second paragraph we proved (1) ⇒
(3). The equivalence of (2) and (3) is a special case of the equivalence of (1) and (3), hence
we are done. �

To analyze essential surjections in 𝒞Λ a bit more we introduce some notation. Suppose that
𝐴 is an object of 𝒞Λ. There is a canonical exact sequence

(51.3.10.1) 𝔪𝐴/𝔪2
𝐴

d𝐴−−→ Ω𝐴/Λ ⊗𝐴 𝑘 → Ω𝑘/Λ → 0

see Algebra, Lemma 7.122.9. Note that Ω𝑘/Λ = Ω𝑘/𝑘′ with 𝑘′ as in (51.3.3.1). Let 𝐻1(𝐿𝑘/Λ)
be the first homology module of the naive cotangent complex of 𝑘 over Λ, see Algebra,
Definition 7.123.1. Then we can extend (51.3.10.1) to the exact sequence

(51.3.10.2) 𝐻1(𝐿𝑘/Λ) → 𝔪𝐴/𝔪2
𝐴

d𝐴−−→ Ω𝐴/Λ ⊗𝐴 𝑘 → Ω𝑘/Λ → 0,
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see Algebra, Lemma 7.123.3. If 𝐵 → 𝐴 is a ring map in 𝒞Λ then we obtain a commutative
diagram

(51.3.10.3)

𝐻1(𝐿𝑘/Λ) // 𝔪𝐵/𝔪2
𝐵 d𝐵

//

��

Ω𝐵/Λ ⊗𝐵 𝑘 //

��

Ω𝑘/Λ
// 0

𝐻1(𝐿𝑘/Λ) // 𝔪𝐴/𝔪2
𝐴

d𝐴 // Ω𝐴/Λ ⊗𝐴 𝑘 // Ω𝑘/Λ
// 0

with exact rows.

Lemma 51.3.11. There is a canonical map

𝔪Λ/𝔪2
Λ ⟶ 𝐻1(𝐿𝑘/Λ).

If 𝑘′ ⊂ 𝑘 is separable (for example if the characteristic of 𝑘 is zero), then this map induces
an isomorphism 𝔪Λ/𝔪2

Λ ⊗𝑘′ 𝑘 = 𝐻1(𝐿𝑘/Λ). If 𝑘 = 𝑘′ (for example in the classical case),
then 𝔪Λ/𝔪2

Λ = 𝐻1(𝐿𝑘/Λ). The composition

𝔪Λ/𝔪2
Λ ⟶ 𝐻1(𝐿𝑘/Λ) ⟶ 𝔪𝐴/𝔪2

𝐴

comes from the canonical map 𝔪Λ → 𝔪𝐴.

Proof. Note that 𝐻1(𝐿𝑘′/Λ) = 𝔪Λ/𝔪2
Λ as Λ → 𝑘′ is surjective with kernel 𝔪Λ. The map

arises from functoriality of the naive cotangent complex. If 𝑘′ ⊂ 𝑘 is separable, then 𝑘′ → 𝑘
is an étale ring map, see Algebra, Lemma 7.132.4. Thus its naive cotangent complex has
trivial homology groups, see Algebra, Definition 7.132.1. Then Algebra, Lemma 7.123.3
applied to the ring maps Λ → 𝑘′ → 𝑘 implies that 𝔪Λ/𝔪2

Λ ⊗𝑘′ 𝑘 = 𝐻1(𝐿𝑘/Λ). We omit
the proof of the final statement. �

Lemma 51.3.12. Let 𝑓 ∶ 𝐵 → 𝐴 be a ring map in 𝒞Λ. Notation as in (51.3.10.3).
(1) The equivalent conditions of Lemma 51.3.10 characterizing when 𝑓 is surjective

are also equivalent to
(a) Im(d𝐵) → Im(d𝐴) is surjective, and
(b) the map Ω𝐵/Λ ⊗𝐵 𝑘 → Ω𝐴/Λ ⊗𝐴 𝑘 is surjective.

(2) The following are equivalent
(a) 𝑓 is an essential surjection,
(b) the map Im(d𝐵) → Im(d𝐴) is an isomorphism, and
(c) the map Ω𝐵/Λ ⊗𝐵 𝑘 → Ω𝐴/Λ ⊗𝐴 𝑘 is an isomorphism.

(3) If 𝑘/𝑘′ is separable, then 𝑓 is an essential surjection if and only if themap𝔪𝐵/(𝔪Λ𝐵+
𝔪2

𝐵) → 𝔪𝐴/(𝔪Λ𝐴 + 𝔪2
𝐴) is an isomorphism.

(4) If 𝑓 is a small extension, then 𝑓 is not essential if and only if 𝑓 has a section
𝑠 ∶ 𝐴 → 𝐵 in 𝒞Λ with 𝑓 ∘ 𝑠 = id𝐴.

Proof. Proof of (1). It follows from (51.3.10.3) that (1)(a) and (1)(b) are equivalent. Also,
if 𝐴 → 𝐵 is surjective, then (1)(a) and (1)(b) hold. Assume (1)(a). Since the kernel of d𝐴 is
the image of 𝐻1(𝐿𝑘/Λ) which also maps to 𝔪𝐵/𝔪2

𝐵 we conclude that 𝔪𝐵/𝔪2
𝐵 → 𝔪𝐴/𝔪2

𝐴
is surjective. Hence 𝐵 → 𝐴 is surjective by Lemma 51.3.5. This finishes the proof of (1).
Proof of (2). The equivalence of (2)(b) and (2)(c) is immediate from (51.3.10.3).
Assume (2)(b). Let 𝑔 ∶ 𝐶 → 𝐵 be a ring map in 𝒞Λ such that 𝑓 ∘ 𝑔 is surjective. We
conclude that 𝔪𝐶/𝔪2

𝐶 → 𝔪𝐴/𝔪2
𝐴 is surjective by Lemma 51.3.5. Hence Im(d𝐶) → Im(d𝐴)

is surjective and by the assumption we see that Im(d𝐶) → Im(d𝐵) is surjective. It follows
that 𝐶 → 𝐵 is surjective by (1).
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Assume (2)(a). Then 𝑓 is surjective and we see that Ω𝐵/Λ ⊗𝐵 𝑘 → Ω𝐴/Λ ⊗𝐴 𝑘 is surjective.
Let 𝐾 be the kernel. Note that 𝐾 = d𝐵(Ker(𝔪𝐵/𝔪2

𝐵 → 𝔪𝐴/𝔪2
𝐴)) by (51.3.10.3). Choose

a splitting
Ω𝐵/Λ ⊗𝐵 𝑘 = Ω𝐴/Λ ⊗𝐴 𝑘 ⊕ 𝐾

of 𝑘-vector space. The map d ∶ 𝐵 → Ω𝐵/Λ induces via the projection onto 𝐾 a map
𝐷 ∶ 𝐵 → 𝐾. Set 𝐶 = {𝑏 ∈ 𝐵 ∣ 𝐷(𝑏) = 0}. The Leibniz rule shows that this is a
Λ-subalgebra of 𝐵. Let 𝑥 ∈ 𝑘. Choose 𝑥 ∈ 𝐵 mapping to 𝑥. If 𝐷(𝑥)≠0, then we can find
an element 𝑦 ∈ 𝔪𝐵 such that 𝐷(𝑦) = 𝐷(𝑥). Hence 𝑥 − 𝑦 ∈ 𝐶 is an element which maps
to 𝑥. Thus 𝐶 → 𝑘 is surjective and 𝐶 is an object of 𝒞Λ. Similarly, pick 𝜔 ∈ Im(d𝐴). We
can find 𝑥 ∈ 𝔪𝐵 such that d𝐵(𝑥) maps to 𝜔 by (1). If 𝐷(𝑥)≠0, then we can find an element
𝑦 ∈ 𝔪𝐵 which maps to zero in 𝔪𝐴/𝔪2

𝐴 such that 𝐷(𝑦) = 𝐷(𝑥). Hence 𝑧 = 𝑥 − 𝑦 is an
element of 𝔪𝐶 whose image d𝐶(𝑧) ∈ Ω𝐶/𝑘 ⊗𝐶 𝑘 maps to 𝜔. Hence Im(d𝐶) → Im(d𝐴) is
surjective. We conclude that 𝐶 → 𝐴 is surjective by (1). Hence 𝐶 → 𝐵 is surjective by
assumption. Hence 𝐷 = 0, i.e., 𝐾 = 0, i.e., (2)(c) holds. This finishes the proof of (2).
Proof of (3). If 𝑘′/𝑘 is separable, then 𝐻1(𝐿𝑘/Λ) = 𝔪Λ/𝔪2

Λ ⊗𝑘′ 𝑘, see Lemma 51.3.11.
Hence Im(d𝐴) = 𝔪𝐴/(𝔪Λ𝐴 + 𝔪2

𝐴) and similarly for 𝐵. Thus (3) follows from (2).
Proof of (4). A section 𝑠 of 𝑓 is not surjective (by definition a small extension has nontrivial
kernel), hence 𝑓 is not essentially surjective. Conversely, assume 𝑓 is a small surjection but
not an essential surjection. Choose a ring map 𝐶 → 𝐵 in 𝒞Λ which is not surjective, such
that 𝐶 → 𝐴 is surjective. Let 𝐶′ ⊂ 𝐵 be the image of 𝐶 → 𝐵. Then 𝐶′≠𝐵 but 𝐶′ surjects
onto 𝐴. Since 𝑓 ∶ 𝐵 → 𝐴 is a small extension, length𝐶(𝐵) = length𝐶(𝐴) + 1. Thus
length𝐶(𝐶′) ≤ length𝐶(𝐴) since 𝐶′ is a proper subring of 𝐵. But 𝐶′ → 𝐴 is surjective,
so in fact we must have length𝐶(𝐶′) = length𝐶(𝐴) and 𝐶′ → 𝐴 is an isomorphism which
gives us our section. �

Example 51.3.13. Let Λ = 𝑘[[𝑥]] be the power series ring in 1 variable over 𝑘. Set 𝐴 = 𝑘
and 𝐵 = Λ/(𝑥2). Then 𝐵 → 𝐴 is an essential surjection by Lemma 51.3.12 because it is
a small extension and the map 𝐵 → 𝐴 does not have a right inverse (in the category 𝒞Λ).
But the map

𝑘 ≅ 𝔪𝐵/𝔪2
𝐵 ⟶ 𝔪𝐴/𝔪2

𝐴 = 0
is not an isomorphism. Thus in Lemma 51.3.12 (3) it is necessary to consider the map of
relative cotangent spaces 𝔪𝐵/(𝔪Λ𝐵 + 𝔪2

𝐵) → 𝔪𝐴/(𝔪Λ𝐴 + 𝔪2
𝐴).

51.4. The category 𝒞Λ

The following ``completion'' of the category 𝒞Λ will serve as the base category of the com-
pletion of a category cofibered in groupoids over 𝒞Λ (Section 51.7).

Definition 51.4.1. Let Λ be a Noetherian ring and let Λ → 𝑘 be a finite ring map where 𝑘
is a field. We define 𝒞Λ to be the category with

(1) objects are pairs (𝑅, 𝜑) where 𝑅 is a Noetherian complete local Λ-algebra and
where 𝜑 ∶ 𝑅/𝔪𝑅 → 𝑘 is a Λ-algebra isomorphism, and

(2) morphisms 𝑓 ∶ (𝑆, 𝜓) → (𝑅, 𝜑) are local Λ-algebra homomorphisms such that
𝜑 ∘ (𝑓 mod 𝔪) = 𝜓.

As in the discussion following Definition 51.3.1 we will usually denote an object of 𝒞Λ
simply 𝑅, with the identification 𝑅/𝔪𝑅 = 𝑘 understood. In this section we discuss some
basic properties of objects and morphisms of the category 𝒞Λ paralleling our discussion of
the category 𝒞Λ in the previous section.
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Our first observation is that any object 𝐴 ∈ 𝒞Λ is an object of 𝒞Λ as an Artinian local ring
is always Noetherian and complete with respect to its maximal ideal (which is after all a
nilpotent ideal). Moreover, it is clear from the definitions that 𝒞Λ ⊂ 𝒞Λ is the strictly full
subcategory consisting of all Artinian rings. As it turns out, conversely every object of 𝒞Λ
is a limit of objects of 𝒞Λ.

Suppose that 𝑅 is an object of 𝒞Λ. Consider the rings 𝑅𝑛 = 𝑅/𝔪𝑛
𝑅 for 𝑛 ∈ 𝐍. These are

Noetherian local rings with a unique nilpotent prime ideal, hence Artinian, see Algebra,
Proposition 7.57.6. The ring maps

… → 𝑅𝑛+1 → 𝑅𝑛 → … → 𝑅2 → 𝑅1 = 𝑘
are all surjective. Completeness of 𝑅 by definition means that 𝑅 = 𝑙𝑖𝑚 𝑅𝑛. If 𝑓 ∶ 𝑅 → 𝑆
is a ring map in 𝒞Λ then we obtain a system of ring maps 𝑓𝑛 ∶ 𝑅𝑛 → 𝑆𝑛 whose limit is the
given map.

Lemma 51.4.2. Let 𝑓 ∶ 𝑅 → 𝑆 be a ring map in 𝒞Λ. The following are equivalent
(1) 𝑓 is surjective,
(2) the map 𝔪𝑅/𝔪2

𝑅 → 𝔪𝑆/𝔪2
𝑆 is surjective, and

(3) the map 𝔪𝑅/(𝔪Λ𝑅 + 𝔪2
𝑅) → 𝔪𝑆/(𝔪Λ𝑆 + 𝔪2

𝑆) is surjective.

Proof. Note that for 𝑛 ≥ 2 we have the equality of relative cotangent spaces
𝔪𝑅/(𝔪Λ𝑅 + 𝔪2

𝑅) = 𝔪𝑅𝑛
/(𝔪Λ𝑅𝑛 + 𝔪2

𝑅𝑛
)

and similarly for 𝑆. Hence by Lemma 51.3.5 we see that 𝑅𝑛 → 𝑆𝑛 is surjective for all 𝑛.
Now let 𝐾𝑛 be the kernel of 𝑅𝑛 → 𝑆𝑛. Then the sequences

0 → 𝐾𝑛 → 𝑅𝑛 → 𝑆𝑛 → 0
form an exact sequence of directed inverse systems. The system (𝐾𝑛) isMittag-Leffler since
each 𝐾𝑛 is Artinian. Hence by Algebra, Lemma 7.80.4 taking limits preserves exactness.
So 𝑙𝑖𝑚 𝑅𝑛 → 𝑙𝑖𝑚 𝑆𝑛 is surjective, i.e., 𝑓 is surjective. �

Lemma 51.4.3. The category 𝒞Λ admits pushouts.

Proof. Let 𝑅 → 𝑆1 and 𝑅 → 𝑆2 be morphisms of 𝒞Λ. Consider the ring 𝐶 = 𝑆1 ⊗𝑅 𝑆2.
This ring has a finitely generated maximal ideal 𝔪 = 𝔪𝑆1

⊗ 𝑆2 + 𝑆1 ⊗ 𝔪𝑆2
with residue

field 𝑘. Set 𝐶∧ equal to the completion of 𝐶 with respect to 𝔪. Then 𝐶∧ is a Noetherian ring
complete with respect to the maximal ideal 𝔪∧ = 𝔪𝐶∧ whose residue field is identified
with 𝑘, see Algebra, Lemma 7.90.9. Hence 𝐶∧ is an object of 𝒞Λ. Then 𝑆1 → 𝐶∧ and
𝑆2 → 𝐶∧ turn 𝐶∧ into a pushout over 𝑅 in 𝒞Λ (details omitted). �

We will not need the following lemma.

Lemma 51.4.4. The category 𝒞Λ admits coproducts of pairs of objects.

Proof. Let 𝑅 and 𝑆 be objects of 𝒞Λ. Consider the ring 𝐶 = 𝑅 ⊗Λ 𝑆. There is a canonical
surjective map 𝐶 → 𝑅 ⊗Λ 𝑆 → 𝑘 ⊗Λ 𝑘 → 𝑘 where the last map is the multiplication map.
The kernel of 𝐶 → 𝑘 is a maximal ideal 𝔪. Note that 𝔪 is generated by 𝔪𝑅𝐶, 𝔪𝑆𝐶 and
finitely many elements of 𝐶 which map to generators of the kernel of 𝑘 ⊗Λ 𝑘 → 𝑘. Hence
𝔪 is a finitely generated ideal. Set 𝐶∧ equal to the completion of 𝐶 with respect to 𝔪.
Then 𝐶∧ is a Noetherian ring complete with respect to the maximal ideal 𝔪∧ = 𝔪𝐶∧ with
residue field 𝑘, see Algebra, Lemma 7.90.9. Hence 𝐶∧ is an object of 𝒞Λ. Then 𝑅 → 𝐶∧

and 𝑆 → 𝐶∧ turn 𝐶∧ into a coproduct in 𝒞Λ (details omitted). �
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An empty coproduct in a category is an initial object of the category. In the classical case
𝒞Λ has an initial object, namely Λ itself. More generally, if 𝑘′ = 𝑘, then the completion
Λ∧ of Λ with respect to 𝔪Λ is an initial object. More generally still, if 𝑘′ ⊂ 𝑘 is separable,
then 𝒞Λ has an initial object too. Namely, choose a monic polynomial 𝑃 ∈ Λ[𝑇] such that
𝑘 ≅ 𝑘′[𝑇]/(𝑃′) where 𝑝′ ∈ 𝑘′[𝑇] is the image of 𝑃. Then 𝑅 = Λ∧[𝑇]/(𝑃) is an initial object,
see proof of Lemma 51.3.8.

If 𝑅 is an initial object as above, then we have 𝒞Λ = 𝒞𝑅 and 𝒞Λ = 𝒞𝑅 which effectively
brings the whole discussion in this chapter back to the classical case. But, if 𝑘′ ⊂ 𝑘 is
inseparable, then an initial object does not exist.

Lemma 51.4.5. Let 𝑆 be an object of 𝒞Λ. Then dim𝑘 DerΛ(𝑆, 𝑘) < ∞.

Proof. Let 𝑥1, … , 𝑥𝑛 ∈ 𝔪𝑆 map to a 𝑘-basis for the relative cotangent space 𝔪𝑆/(𝔪Λ𝑆 +
𝔪2

𝑆). Choose 𝑦1, … , 𝑦𝑚 ∈ 𝑆 whose images in 𝑘 generate 𝑘 over 𝑘′. We claim that
dim𝑘 DerΛ(𝑆, 𝑘) ≤ 𝑛 + 𝑚. To see this it suffices to prove that if 𝐷(𝑥𝑖) = 0 and 𝐷(𝑦𝑗) = 0,
then 𝐷 = 0. Let 𝑎 ∈ 𝑆. We can find a polynomial 𝑃 = ∑ 𝜆𝐽𝑦𝐽 with 𝜆𝐽 ∈ Λ whose image
in 𝑘 is the same as the image of 𝑎 in 𝑘. Then we see that 𝐷(𝑎−𝑃) = 𝐷(𝑎)−𝐷(𝑃) = 𝐷(𝑎) by
our assumption that 𝐷(𝑦𝑗) = 0 for all 𝑗. Thus we may assume 𝑎 ∈ 𝔪𝑆. Write 𝑎 = ∑ 𝑎𝑖𝑥𝑖
with 𝑎𝑖 ∈ 𝑆. By the Leibniz rule

𝐷(𝑎) = ∑ 𝑥𝑖𝐷(𝑎𝑖) + ∑ 𝑎𝑖𝐷(𝑥𝑖) = ∑ 𝑥𝑖𝐷(𝑎𝑖)

as we assumed 𝐷(𝑥𝑖) = 0. We have ∑ 𝑥𝑖𝐷(𝑎𝑖) = 0 as multiplication by 𝑥𝑖 is zero on 𝑘. �

Lemma 51.4.6. Let 𝑓 ∶ 𝑅 → 𝑆 be a morphism of 𝒞Λ. If DerΛ(𝑆, 𝑘) → DerΛ(𝑅, 𝑘) is
injective, then 𝑓 is surjective.

Proof. If 𝑓 is not surjective, then 𝔪𝑆/(𝔪𝑅𝑆 + 𝔪2
𝑆) is nonzero by Lemma 51.4.2. Then

also 𝑄 = 𝑆/(𝑓(𝑅)+𝔪𝑅𝑆+𝔪2
𝑆) is nonzero. Note that 𝑄 is a 𝑘 = 𝑅/𝔪𝑅-vector space via 𝑓.

We turn 𝑄 into an 𝑆-module via 𝑆 → 𝑘. The quotient map 𝐷 ∶ 𝑆 → 𝑄 is an 𝑅-derivation:
if 𝑎1, 𝑎2 ∈ 𝑆, we can write 𝑎1 = 𝑓(𝑏1) + 𝑎′

1 and 𝑎2 = 𝑓(𝑏2) + 𝑎′
2 for some 𝑏1, 𝑏2 ∈ 𝑅 and

𝑎′
1, 𝑎′

2 ∈ 𝔪𝑆. Then 𝑏𝑖 and 𝑎𝑖 have the same image in 𝑘 for 𝑖 = 1, 2 and

𝑎1𝑎2 = (𝑓(𝑏1) + 𝑎′
1)(𝑓(𝑏2) + 𝑎′

2)
= 𝑓(𝑏1)𝑎′

2 + 𝑓(𝑏2)𝑎′
1

= 𝑓(𝑏1)(𝑓(𝑏2) + 𝑎′
2) + 𝑓(𝑏2)(𝑓(𝑏1) + 𝑎′

1)
= 𝑓(𝑏1)𝑎2 + 𝑓(𝑏2)𝑎1

in 𝑄 which proves the Leibnize rule. Hence 𝐷 ∶ 𝑆 → 𝑄 is a Λ-derivation which is zero
on composing with 𝑅 → 𝑆. Since 𝑄≠0 there also exist derivations 𝐷 ∶ 𝑆 → 𝑘 which are
zero on composing with 𝑅 → 𝑆, i.e., DerΛ(𝑆, 𝑘) → DerΛ(𝑅, 𝑘) is not injective. �

Lemma 51.4.7. Let 𝑅 be an object of 𝒞Λ. Let (𝐽𝑛) be a decreasing sequence of ideals such
that 𝔪𝑛

𝑅 ⊂ 𝐽𝑛. Set 𝐽 = ⋂ 𝐽𝑛. Then the sequence (𝐽𝑛/𝐽) defines the 𝔪𝑅/𝐽-adic topology on
𝑅/𝐽.

Proof. It is clear that 𝔪𝑛
𝑅/𝐽 ⊂ 𝐽𝑛/𝐽. Thus it suffices to show that for every 𝑛 there exists an

𝑁 such that 𝐽𝑁/𝐽 ⊂ 𝔪𝑛
𝑅/𝐽. This is equivalent to 𝐽𝑁 ⊂ 𝔪𝑛

𝑅 + 𝐽. For each 𝑛 the ring 𝑅/𝔪𝑛
𝑅

is Artinian, hence there exists a 𝑁𝑛 such that

𝐽𝑁𝑛
+ 𝔪𝑛

𝑅 = 𝐽𝑁𝑛+1 + 𝔪𝑛
𝑅 = …
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Set 𝐸𝑛 = (𝐽𝑁𝑛
+ 𝔪𝑛

𝑅)/𝔪𝑛
𝑅. Set 𝐸 = 𝑙𝑖𝑚 𝐸𝑛 ⊂ 𝑙𝑖𝑚 𝑅/𝔪𝑛

𝑅 = 𝑅. Note that 𝐸 ⊂ 𝐽 as for
any 𝑓 ∈ 𝐸 and any 𝑚 we have 𝑓 ∈ 𝐽𝑚 + 𝔪𝑛

𝑅 for all 𝑛 ≫ 0, so 𝑓 ∈ 𝐽𝑚 by Artin-Rees, see
Algebra, Lemma 7.47.6. Since the transition maps 𝐸𝑛 → 𝐸𝑛−1 are all surjective, we see
that 𝐽 surjects onto 𝐸𝑛. Hence for 𝑁 = 𝑁𝑛 works. �

Lemma 51.4.8. Let … → 𝐴3 → 𝐴2 → 𝐴1 be a sequence of surjective ring maps in
𝒞Λ. If dim𝑘(𝔪𝐴𝑛

/𝔪2
𝐴𝑛

) is bounded, then 𝑆 = 𝑙𝑖𝑚 𝐴𝑛 is an object in 𝒞Λ and the ideals
𝐼𝑛 = Ker(𝑆 → 𝐴𝑛) define the 𝔪𝑆-adic topology on 𝑆.

Proof. Wewill use freely that the maps 𝑆 → 𝐴𝑛 are surjective for all 𝑛. Note that the maps
𝔪𝐴𝑛+1

/𝔪2
𝐴𝑛+1

→ 𝔪𝐴𝑛
/𝔪2

𝐴𝑛
are surjective, see Lemma 51.4.2. Hence for 𝑛 sufficiently large

the dimension dim𝑘(𝔪𝐴𝑛
/𝔪2

𝐴𝑛
) stabilizes to an integer, say 𝑟. Thus we can find 𝑥1, … , 𝑥𝑟 ∈

𝔪𝑆 whose images in 𝐴𝑛 generate 𝔪𝐴𝑛
. Moreover, pick 𝑦1, … , 𝑦𝑡 ∈ 𝑆 whose images in

𝑘 generate 𝑘 over Λ. Then we get a ring map 𝑃 = Λ[𝑧1, … , 𝑧𝑟+𝑡] → 𝑆, 𝑧𝑖 ↦ 𝑥𝑖 and
𝑧𝑟+𝑗 ↦ 𝑦𝑗 such that the composition 𝑃 → 𝑆 → 𝐴𝑛 is surjective for all 𝑛. Let 𝔪 ⊂ 𝑃
be the kernel of 𝑃 → 𝑘. Let 𝑅 = 𝑃∧ be the 𝔪-adic completion of 𝑃; this is an object
of 𝒞Λ. Since we still have the compatible system of (surjective) maps 𝑅 → 𝐴𝑛 we get a
map 𝑅 → 𝑆. Set 𝐽𝑛 = Ker(𝑅 → 𝐴𝑛). Set 𝐽 = ⋂ 𝐽𝑛. By Lemma 51.4.7 we see that
𝑅/𝐽 = 𝑙𝑖𝑚 𝑅/𝐽𝑛 = 𝑙𝑖𝑚 𝐴𝑛 = 𝑆 and that the ideals 𝐽𝑛/𝐽 = 𝐼𝑛 define the 𝔪-adic topology.
(Note that for each 𝑛 we have 𝔪𝑁𝑛

𝑅 ⊂ 𝐽𝑛 for some 𝑁𝑛 and not necessarily 𝑁𝑛 = 𝑛, so a
renumbering of the ideals 𝐽𝑛 may be necessary before applying the lemma.) �

Lemma 51.4.9. Let 𝑅′, 𝑅 ∈ 𝑂𝑏(𝒞Λ). Suppose that 𝑅 = 𝑅′ ⊕ 𝐼 for some ideal 𝐼 of
𝑅. Let 𝑥1, … , 𝑥𝑟 ∈ 𝐼 map to a basis of 𝐼/𝔪𝑅𝐼. Set 𝑆 = 𝑅′[[𝑋1, … , 𝑋𝑟]] and consider
the 𝑅′-algebra map 𝑆 → 𝑅 mapping 𝑋𝑖 to 𝑥𝑖. Assume that for every 𝑛 ≫ 0 the map
𝑆/𝔪𝑛

𝑆 → 𝑅/𝔪𝑛
𝑅 has a left inverse in 𝒞Λ. Then 𝑆 → 𝑅 is an isomorphism.

Proof. As 𝑅 = 𝑅′ ⊕ 𝐼 we have

𝔪𝑅/𝔪2
𝑅 = 𝔪𝑅′/𝔪2

𝑅′ ⊕ 𝐼/𝔪𝑅𝐼

and similarly
𝔪𝑅/𝔪2

𝑅 = 𝔪𝑅′/𝔪2
𝑅′ ⊕ ⨁ 𝑘𝑋𝑖

Hence for 𝑛 > 1 the map 𝑆/𝔪𝑛
𝑆 → 𝑅/𝔪𝑛

𝑅 induces an isomorphism on cotangent spaces.
Thus a left inverse ℎ𝑛 ∶ 𝑅/𝔪𝑛

𝑅 → 𝑆/𝔪𝑛
𝑆 is surjective by Lemma 51.4.2. Since ℎ𝑛 is

injective as a left inverse it is an isomorphism. Thus the canonical surjections 𝑆/𝔪𝑛
𝑆 →

𝑅/𝔪𝑛
𝑅 are all isomorphisms and we win. �

51.5. Categories cofibered in groupoids

In developing the theory we work with categories cofibered in groupoids. We assume as
known the definition and basic properties of categories fibered in groupoids, see Categories,
Section 4.32.

Definition 51.5.1. Let 𝒞 be a category. A category cofibered in groupoids over 𝒞 is a
category ℱ equipped with a functor 𝑝 ∶ ℱ → 𝒞 such that ℱ𝑜𝑝𝑝 is a category fibered in
groupoids over 𝒞𝑜𝑝𝑝 via 𝑝𝑜𝑝𝑝 ∶ ℱ𝑜𝑝𝑝 → 𝒞𝑜𝑝𝑝.

Explicitly, 𝑝 ∶ ℱ → 𝒞 is cofibered in groupoids if the following two conditions hold:
(1) For every morphism 𝑓 ∶ 𝑈 → 𝑉 in 𝒞 and every object 𝑥 lying over 𝑈, there is a

morphism 𝑥 → 𝑦 of ℱ lying over 𝑓.
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(2) For every pair of morphisms 𝑎 ∶ 𝑥 → 𝑦 and 𝑏 ∶ 𝑥 → 𝑧 of ℱ and any morphism
𝑓 ∶ 𝑝(𝑦) → 𝑝(𝑧) such that 𝑝(𝑏) = 𝑓 ∘ 𝑝(𝑎), there exists a unique morphism
𝑐 ∶ 𝑦 → 𝑧 of ℱ lying over 𝑓 such that 𝑏 = 𝑐 ∘ 𝑎.

Remarks 51.5.2. Everything about categories fibered in groupoids translates directly to
the cofibered setting. The following remarks are meant to fix notation. Let 𝒞 be a category.

(1) We often omit the functor 𝑝 ∶ ℱ → 𝒞 from the notation.
(2) The fiber category over an object 𝑈 in 𝒞 is denoted by ℱ(𝑈). Its objects are those

of ℱ lying over 𝑈 and its morphisms are those of ℱ lying over id𝑈. If 𝑥, 𝑦 are
objects of ℱ(𝑈), we sometimes write 𝑀𝑜𝑟𝑈(𝑥, 𝑦) for 𝑀𝑜𝑟ℱ(𝑈)(𝑥, 𝑦).

(3) The fibre categories ℱ(𝑈) are groupoids, see Categories, Lemma 4.32.2. Hence
the morphisms in ℱ(𝑈) are all isomorphisms. We sometimes write Aut𝑈(𝑥) for
𝑀𝑜𝑟ℱ(𝑈)(𝑥, 𝑥).

(4) Let ℱ be a category cofibered in groupoids over 𝒞, let 𝑓 ∶ 𝑈 → 𝑉 be a morphism
in 𝒞, and let 𝑥 ∈ 𝑂𝑏(ℱ(𝑈)). A pushforward of 𝑥 along 𝑓 is a morphism 𝑥 → 𝑦
of ℱ lying over 𝑓. A pushforward is unique up to unique isomorphism (see the
discussion following Categories, Definition 4.30.1). We sometimes write 𝑥 →
𝑓∗𝑥 for ``the'' pushforward of 𝑥 along 𝑓.

(5) A choice of pushforwards for ℱ is the choice of a pushforward of 𝑥 along 𝑓 for
every pair (𝑥, 𝑓) as above. We can make such a choice of pushforwards for ℱ by
the axiom of choice.

(6) Let ℱ be a category cofibered in groupoids over 𝒞. Given a choice of pushfor-
wards for ℱ, there is an associated pseudo-functor 𝒞 → Groupoids. We will
never use this construction so we give no details.

(7) A morphism of categories cofibered in groupoids over 𝒞 is a functor commuting
with the projections to 𝒞. If ℱ and ℱ′ are categories cofibered in groupoids over
𝒞, we denote the morphisms from ℱ to ℱ′ by 𝑀𝑜𝑟𝒞(ℱ, ℱ′).

(8) Categories cofibered in groupoids form a (2, 1)-categoryCof(𝒞). Its 1-morphisms
are the morphisms described in (7). If 𝑝 ∶ ℱ → 𝐶 and 𝑝′ ∶ ℱ′ → 𝒞 are cat-
egories cofibered in groupoids and 𝜑, 𝜓 ∶ ℱ → ℱ′ are 1-morphisms, then a
2-morphism 𝑡 ∶ 𝜑 → 𝜓 is a morphism of functors such that 𝑝′(𝑡𝑥) = id𝑝(𝑥) for all
𝑥 ∈ 𝑂𝑏(ℱ).

(9) Let 𝐹 ∶ 𝒞 → Groupoids be a functor. There is a category cofibered in groupoids
ℱ → 𝒞 associated to 𝐹 as follows. An object of ℱ is a pair (𝑈, 𝑥) where 𝑈 ∈
𝑂𝑏(𝒞) and 𝑥 ∈ 𝑂𝑏(𝐹(𝑈)). A morphism (𝑈, 𝑥) → (𝑉, 𝑦) is a pair (𝑓, 𝑎) where
𝑓 ∈ 𝑀𝑜𝑟𝒞(𝑈, 𝑉) and 𝑎 ∈ 𝑀𝑜𝑟𝐹(𝑉)(𝐹(𝑓)(𝑥), 𝑦). The functor ℱ → 𝒞 sends (𝑈, 𝑥)
to 𝑈. See Categories, Section 4.34.

(10) Let ℱ be cofibered in groupoids over 𝒞. For 𝑈 ∈ 𝑂𝑏(𝒞) set 𝐹(𝑈) equal to the set
of isomorphisms classes of the category ℱ(𝑈). If 𝑓 ∶ 𝑈 → 𝑉 is a morphism of 𝒞,
then we obtain a map of sets 𝐹(𝑈) → 𝐹(𝑉) by mapping the isomorphism class of
𝑥 to the isomorphism class of a pushforward 𝑓∗𝑥 of 𝑥 see (4). Then ℱ ∶ 𝒞 → Sets
is a functor. Similarly, if 𝜑 ∶ ℱ → 𝒢 is a morphism of cofibered categories, we
denote by 𝜑 ∶ ℱ → 𝒢 the associated morphism of functors.

(11) Let 𝐹 ∶ 𝒞 → Sets be a functor. We can think of a set as a discrete category,
i.e., as a groupoid with only identity morphisms. Then the construction (9) asso-
ciates to 𝐹 a category cofibered in sets. This defines a fully faithful embedding
of the category of functors 𝒞 → Sets to the category of categories cofibered in
groupoids over 𝒞. We identify the category of functors with its image under this
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embedding. Hence if 𝐹 ∶ 𝒞 → Sets is a functor, we denote the associated cate-
gory cofibered in sets also by 𝐹; and if 𝜑 ∶ 𝐹 → 𝐺 is a morphism of functors,
we denote still by 𝜑 the corresponding morphism of categories cofibered in sets,
and vice-versa. See Categories, Section 4.35.

(12) Let 𝑈 be an object of 𝒞. Wewrite 𝑈 for the functor 𝑀𝑜𝑟𝒞(𝑈, −) ∶ 𝒞 → Sets. This
defines a fully faithful embedding of 𝒞𝑜𝑝𝑝 into the category of functors 𝒞 → Sets.
Hence, if 𝑓 ∶ 𝑈 → 𝑉 is a morphism, we are justified in denoting still by 𝑓 the
induced morphism 𝑉 → 𝑈, and vice-versa.

(13) Fiber products of categories cofibered in groupoids: If ℱ → ℋ and 𝒢 → ℋ
are morphisms of categories cofibered in groupoids over 𝒞Λ, then a construction
of their 2-fiber product is given by the construction for their 2-fiber product as
categories over 𝒞Λ, as described in Categories, Lemma 4.29.3.

(14) Restricting the base category: Let 𝑝 ∶ ℱ → 𝒞 be a category cofibered in groupoids,
and let 𝒞′ be a full subcategory of 𝒞. The restriction ℱ|𝒞′ is the full subcategory
of ℱ whose objects lie over objects of 𝒞′. It is a category cofibered in groupoids
via the functor 𝑝|𝒞′ ∶ ℱ|𝒞′ → 𝒞′.

51.6. Prorepresentable functors and predeformation categories

Our basic goal is to understand categories cofibered in groupoids over 𝒞Λ and 𝒞Λ. Since 𝒞Λ
is a full subcategory of 𝒞Λ we can restrict categories cofibred in groupoids over 𝒞Λ to 𝒞Λ,
see Remarks 51.5.2 (14). In particular we can do this with functors, in particular with rep-
resentable functors. The functors on 𝒞Λ one obtains in this way are called prorepresentable
functors.

Definition 51.6.1. Let 𝐹 ∶ 𝒞Λ → Sets be a functor. We say 𝐹 is prorepresentable if there
exists an isomorphism 𝐹 ≅ 𝑅|𝒞Λ

of functors for some 𝑅 ∈ 𝑂𝑏(𝒞Λ).

Note that if 𝐹 ∶ 𝒞Λ → Sets is prorepresentable by 𝑅 ∈ 𝑂𝑏(𝒞Λ), then

𝐹(𝑘) = 𝑀𝑜𝑟𝒞Λ
(𝑅, 𝑘) = {∗}

is a singleton. The categories cofibered in groupoids over 𝒞Λ that are arise in deformation
theory will often satisfy an analogous condition.

Definition 51.6.2. A predeformation category ℱ is a category cofibered in groupoids over
𝒞Λ such that ℱ(𝑘) is equivalent to a category with a single object and a single morphism,
i.e., ℱ(𝑘) contains at least one object and there is a unique morphism between any two
objects. A morphism of predeformation categories is a morphism of categories cofibered
in groupoids over 𝒞Λ.

A feature of a predeformation category is the following. Let 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)). Then every
object of ℱ comes equipped with a unique morphism to 𝑥0. Namely, if 𝑥 is an object of
ℱ over 𝐴, then we can choose a pushforward 𝑥 → 𝑞∗𝑥 where 𝑞 ∶ 𝐴 → 𝑘 is the quotient
map. There is a unique isomorphism 𝑞∗𝑥 → 𝑥0 and the composition 𝑥 → 𝑞∗𝑥 → 𝑥0 is the
desired morphism.

Remark 51.6.3. We say that a functor 𝐹 ∶ 𝒞Λ → Sets is a predeformation functor if the
associated cofibered set is a predeformation category, i.e. if 𝐹(𝑘) is a one element set. Thus
if ℱ is a predeformation category, then ℱ is a predeformation functor.
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Remark 51.6.4. Let 𝑝 ∶ ℱ → 𝒞Λ be a category cofibered in groupoids, and let 𝑥 ∈
𝑂𝑏(ℱ(𝑘)). We denote by ℱ𝑥 the category of objects over 𝑥. An object of ℱ𝑥 is an arrow
𝑦 → 𝑥. A morphism (𝑦 → 𝑥) → (𝑧 → 𝑥) in ℱ𝑥 is a commutative diagram

𝑦 //

��

𝑧

��
𝑥

There is a forgetful functor ℱ𝑥 → ℱ. We define the functor 𝑝𝑥 ∶ ℱ𝑥 → 𝒞Λ as the compo-
sition ℱ𝑥 → ℱ

𝑝
−→ 𝒞Λ. Then 𝑝𝑥 ∶ ℱ𝑥 → 𝒞Λ is a predeformation category (proof omitted).

In this way we can pass from an arbitrary category cofibered in groupoids over 𝒞Λ to a
predeformation category at any 𝑥 ∈ 𝑂𝑏(ℱ(𝑘)).

51.7. Formal objects and completion categories

In this section we discuss how to go between categories cofibred in groupoids over 𝒞Λ to
categories cofibred in groupoids over 𝒞Λ and vice versa.

Definition 51.7.1. Let ℱ be a category cofibered in groupoids over 𝒞Λ. The category ℱ̂ of
formal objects of ℱ is the category with the following objects and morphisms.

(1) A formal object 𝜉 = (𝑅, 𝜉𝑛, 𝑓𝑛) ofℱ consists of an object 𝑅 of 𝒞Λ, and a collection
indexed by 𝑛 ∈ 𝐍 of objects 𝜉𝑛 of ℱ(𝑅/𝔪𝑛

𝑅) and morphisms 𝑓𝑛 ∶ 𝜉𝑛+1 → 𝜉𝑛 lying
over the projection 𝑅/𝔪𝑛+1

𝑅 → 𝑅/𝔪𝑛
𝑅.

(2) Let 𝜉 = (𝑅, 𝜉𝑛, 𝑓𝑛) and 𝜂 = (𝑆, 𝜂𝑛, 𝑔𝑛) be formal objects of ℱ. A morphism
𝑎 ∶ 𝜉 → 𝜂 of formal objects consists of a map 𝑎0 ∶ 𝑅 → 𝑆 in 𝒞Λ and a collection
𝑎𝑛 ∶ 𝜉𝑛 → 𝜂𝑛 of morphisms of ℱ lying over 𝑅/𝔪𝑛

𝑅 → 𝑆/𝔪𝑛
𝑆, such that for every

𝑛 the diagram

𝜉𝑛+1
𝑓𝑛 //

𝑎𝑛+1

��

𝜉𝑛

𝑎𝑛

��
𝜂𝑛+1

𝑔𝑛 // 𝜂𝑛

commutes.

The category of formal objects comes with a functor ̂𝑝 ∶ ℱ̂ → 𝒞Λ which sends an object
(𝑅, 𝜉𝑛, 𝑓𝑛) to 𝑅 and a morphism (𝑅, 𝜉𝑛, 𝑓𝑛) → (𝑆, 𝜂𝑛, 𝑔𝑛) to the map 𝑅 → 𝑆.

Lemma 51.7.2. Let 𝑝 ∶ ℱ → 𝒞Λ be a category cofibered in groupoids. Then ̂𝑝 ∶ ℱ̂ → 𝒞Λ
is a category cofibered in groupoids.

Proof. Let 𝑅 → 𝑆 be a ring map in 𝒞Λ. Let (𝑅, 𝜉𝑛, 𝑓𝑛) be an object of ℱ̂. For each 𝑛
choose a pushforward 𝜉𝑛 → 𝜂𝑛 of 𝜉𝑛 along 𝑅/𝔪𝑛

𝑅 → 𝑆/𝔪𝑛
𝑆. For each 𝑛 there exists a

unique morphism 𝑔𝑛 ∶ 𝜂𝑛+1 → 𝜂𝑛 in ℱ lying over 𝑆/𝔪𝑛+1
𝑆 → 𝑆/𝔪𝑛

𝑆 such that

𝜉𝑛+1

��

𝑓𝑛
// 𝜉𝑛

��
𝜂𝑛+1

𝑔𝑛 // 𝜂𝑛

commutes (by the first axiom of a category cofibred in groupoids). Hence we obtain a
morphism (𝑅, 𝜉𝑛, 𝑓𝑛) → (𝑆, 𝜂𝑛, 𝑔𝑛) lying over 𝑅 → 𝑆, i.e., the first axiom of a category
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cofibred in groupoids holds for ℱ̂. To see the second axiom suppose that we have mor-
phisms 𝑎 ∶ (𝑅, 𝜉𝑛, 𝑓𝑛) → (𝑆, 𝜂𝑛, 𝑔𝑛) and 𝑏 ∶ (𝑅, 𝜉𝑛, 𝑓𝑛) → (𝑇, 𝜃𝑛, ℎ𝑛) in ℱ̂ and a morphism
𝑐0 ∶ 𝑆 → 𝑇 in 𝒞Λ such that 𝑐0 ∘ 𝑎0 = 𝑏0. By the second axiom of a category cofibred in
groupoids for ℱ we obtain unique maps 𝑐𝑛 ∶ 𝜂𝑛 → 𝜃𝑛 lying over 𝑆/𝔪𝑛

𝑆 → 𝑇/𝔪𝑛
𝑇 such that

𝑐𝑛 ∘ 𝑎𝑛 = 𝑏𝑛. Setting 𝑐 = (𝑐𝑛)𝑛≥0 gives the desired morphism 𝑐 ∶ (𝑆, 𝜂𝑛, 𝑔𝑛) → (𝑇, 𝜃𝑛, ℎ𝑛) in
ℱ̂ (we omit the verification that ℎ𝑛 ∘ 𝑐𝑛+1 = 𝑐𝑛 ∘ 𝑔𝑛). �

Definition 51.7.3. Let 𝑝 ∶ ℱ → 𝒞Λ be a category cofibered in groupoids. The category
cofibered in groupoids ̂𝑝 ∶ ℱ̂ → 𝒞Λ is called the completion of ℱ.

If ℱ is a category cofibered in groupoids over 𝒞Λ, we have defined ℱ̂(𝑅) for 𝑅 ∈ 𝑂𝑏(𝒞Λ)
in terms of the filtration of 𝑅 by powers of its maximal ideal. But suppose ℐ = (𝐼𝑛) is
a filtration of 𝑅 by ideals inducing the 𝔪𝑅-adic topology. We define ℱ̂ℐ(𝑅) to be the
category with the following objects and morphisms:

(1) An object is a collection (𝜉𝑛, 𝑓𝑛)𝑛∈𝐍 of objects 𝜉𝑛 of ℱ(𝑅/𝐼𝑛) and morphisms
𝑓𝑛 ∶ 𝜉𝑛+1 → 𝜉𝑛 lying over the projections 𝑅/𝐼𝑛+1 → 𝑅/𝐼𝑛.

(2) A morphism 𝑎 ∶ (𝜉𝑛, 𝑓𝑛) → (𝜂𝑛, 𝑔𝑛) consists of a collection 𝑎𝑛 ∶ 𝜉𝑛 → 𝜂𝑛 of
morphisms in ℱ(𝑅/𝐼𝑛), such that for every 𝑛 the diagram

𝜉𝑛+1
𝑓𝑛 //

𝑎𝑛+1

��

𝜉𝑛

𝑎𝑛

��
𝜂𝑛+1

𝑔𝑛 // 𝜂𝑛

commutes.

Lemma 51.7.4. In the situation above, ℱ̂ℐ(𝑅) is equivalent to the category ℱ̂(𝑅).

Proof. An equivalence ℱ̂ℐ(𝑅) → ℱ̂(𝑅) can be defined as follows. For each 𝑛, let 𝑚(𝑛) be
the least 𝑚 that 𝐼𝑚 ⊂ 𝔪𝑛

𝑅. Given an object (𝜉𝑛, 𝑓𝑛) of ℱ̂ℐ(𝑅), let 𝜂𝑛 be the pushforward of
𝜉𝑚(𝑛) along 𝑅/𝐼𝑚(𝑛) → 𝑅/𝔪𝑛

𝑅. Let 𝑔𝑛 ∶ 𝜂𝑛+1 → 𝜂𝑛 be the unique morphism of ℱ lying over
𝑅/𝔪𝑛+1

𝑅 → 𝑅/𝔪𝑛
𝑅 such that

𝜉𝑚(𝑛+1) 𝑓𝑚(𝑛)∘…∘𝑓𝑚(𝑛+1)−1
//

��

𝜉𝑚(𝑛)

��
𝜂𝑛+1

𝑔𝑛 // 𝜂𝑛

commutes (existence and uniqueness is garanteed by the axioms of a cofibred category).
The functor ℱ̂ℐ(𝑅) → ℱ̂(𝑅) sends (𝜉𝑛, 𝑓𝑛) to (𝑅, 𝜂𝑛, 𝑔𝑛). We omit the verification that this
is indeed an equivalence of categories. �

Remark 51.7.5. Let 𝑝 ∶ ℱ → 𝒞Λ be a category cofibered in groupoids. Suppose that for
each 𝑅 ∈ 𝑂𝑏(𝒞Λ) we are given a filtration ℐ𝑅 of 𝑅 by ideals. If ℐ𝑅 induces the 𝔪𝑅-adic
topology on 𝑅 for all 𝑅, then one can define a category ℱ̂ℐ by mimicking the definition
of ℱ̂. This category comes equipped with a morphism ̂𝑝ℐ ∶ ℱ̂ℐ → 𝒞Λ making it into
a category cofibered in groupoids such that ℱ̂ℐ(𝑅) is isomorphic to ℱ̂ℐ𝑅

(𝑅) as defined
above. The categories cofibered in groupoids ℱ̂ℐ and ℱ̂ are equivalent, by using over an
object 𝑅 ∈ 𝑂𝑏(𝒞Λ) the equivalence of Lemma 51.7.4.
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Remark 51.7.6. Let 𝐹 ∶ 𝒞Λ → Sets be a functor. Identifying functors with cofibered sets,
the completion of 𝐹 is the functor 𝐹 ∶ 𝒞Λ → Sets given by 𝐹(𝑆) = 𝑙𝑖𝑚 𝐹(𝑆/𝔪𝑛

𝑆). This
agrees with the definition in Schlessinger's paper [Sch68].

Remark 51.7.7. Let ℱ be a category cofibred in groupoids over 𝒞Λ. We claim that there
is a canonical equivalence

𝑐𝑎𝑛 ∶ ℱ̂|𝒞Λ
⟶ ℱ.

Namely, let 𝐴 ∈ 𝑂𝑏(𝒞Λ) and let (𝐴, 𝜉𝑛, 𝑓𝑛) be an object of ℱ̂|𝒞Λ
(𝐴). Since 𝐴 is Artinian

there is aminimal𝑚 ∈ 𝐍 such that𝔪𝑚
𝐴 = 0. Then 𝑐𝑎𝑛 sends (𝐴, 𝜉𝑛, 𝑓𝑛) to 𝜉𝑚. This functor is

an equivalence of categories cofibered in groupoids by Categories, Lemma 4.32.8 because
it is an equivalence on all fibre categories by Lemma 51.7.4 and the fact that the 𝔪𝐴-adic
topology on a local Artinian ring 𝐴 comes from the zero ideal. We will frequently identify
ℱ with a full subcategory of ℱ̂ via a quasi-inverse to the functor 𝑐𝑎𝑛.

Remark 51.7.8. Let 𝜑 ∶ ℱ → 𝒢 be a morphism of categories cofibered in groupoids over
𝒞Λ. Then there is an induced morphism �̂� ∶ ℱ̂ → 𝒢 of categories cofibered in groupoids
over𝒞Λ. It sends an object 𝜉 = (𝑅, 𝜉𝑛, 𝑓𝑛) of ℱ̂ to (𝑅, 𝜑(𝜉𝑛), 𝜑(𝑓𝑛)), and it sends amorphism
(𝑎0 ∶ 𝑅 → 𝑆, 𝑎𝑛 ∶ 𝜉𝑛 → 𝜂𝑛) between objects 𝜉 and 𝜂 of ℱ̂ to (𝑎0 ∶ 𝑅 → 𝑆, 𝜑(𝑎𝑛) ∶ 𝜑(𝜉𝑛) →
𝜑(𝜂𝑛)). Finally, if 𝑡 ∶ 𝜑 → 𝜑′ is a 2-morphism between 1-morphisms 𝜑, 𝜑′ ∶ ℱ → 𝒢 of
categories cofibred in groupoids, then we obtain a 2-morphism ̂𝑡 ∶ �̂� → �̂�′. Namely, for
𝜉 = (𝑅, 𝜉𝑛, 𝑓𝑛) as above we set ̂𝑡𝜉 = (𝑡𝜑(𝜉𝑛)). Hence completion defines a functor between
2-categories

̂ ∶ Cof(𝒞Λ) ⟶ Cof(𝒞Λ)
from the 2-category of categories cofibred in groupoids over 𝒞Λ to the 2-category of cate-
gories cofibred in groupoids over 𝒞Λ.

Remark 51.7.9. We claim the completion functor of Remark 51.7.8 and the restriction
functor |𝒞Λ

∶ Cof(𝒞Λ) → Cof(𝒞Λ) of Remarks 51.5.2 (14) are ``2-adjoint'' in the follow-
ing precise sense. Let ℱ ∈ 𝑂𝑏(Cof(𝒞Λ)) and let 𝒢 ∈ 𝑂𝑏(Cof(𝒞Λ)). Then there is an
equivalence of categories

Φ ∶ 𝑀𝑜𝑟𝒞Λ
(𝒢|𝒞Λ

, ℱ) ⟶ 𝑀𝑜𝑟𝒞Λ
(𝒢, ℱ̂)

To describe this equivalence, we define canonical morphisms 𝒢 → 𝒢|𝒞Λ
and ℱ̂|𝒞Λ

→ ℱ
as follows

(1) Let 𝑅 ∈ 𝑂𝑏(𝒞Λ)) and let 𝜉 be an object of the fiber category 𝒢(𝑅). Choose a
pushforward 𝜉 → 𝜉𝑛 of 𝜉 to 𝑅/𝔪𝑛

𝑅 for each 𝑛 ∈ 𝐍, and let 𝑓𝑛 ∶ 𝜉𝑛+1 → 𝜉𝑛 be the
induced morphism. Then 𝒢 → 𝒢|𝒞Λ

sends 𝜉 to (𝑅, 𝜉𝑛, 𝑓𝑛).
(2) This is the equivalence 𝑐𝑎𝑛 ∶ ℱ̂|𝒞Λ

→ ℱ of Remark 51.7.7.

Having said this, the equivalence Φ ∶ 𝑀𝑜𝑟𝒞Λ
(𝒢|𝒞Λ

, ℱ) → 𝑀𝑜𝑟𝒞Λ
(𝒢, ℱ̂) sends a morphism

𝜑 ∶ 𝒢|𝒞Λ
→ ℱ to

𝒢 → 𝒢|𝒞Λ

�̂�
−→ ℱ̂

There is a quasi-inverse Ψ ∶ 𝑀𝑜𝑟𝒞Λ
(𝒢, ℱ̂) → 𝑀𝑜𝑟𝒞Λ

(𝒢|𝒞Λ
, ℱ) to Φ which sends 𝜓 ∶ 𝒢 →

ℱ̂ to

𝒢|𝒞Λ

𝜓|𝒞Λ−−−−→ ℱ̂|𝒞Λ
→ ℱ.
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Weomit the verification thatΦ andΨ are quasi-inverse. We also do not address functoriality
of Φ (because it would lead into 3-category territory which we want to avoid at all cost).

Remark 51.7.10. For a category 𝒞 we denote by CofSet(𝒞) the category of cofibered sets
over 𝒞. It is a 1-category isomorphic the category of functors 𝒞 → Sets. See Remarks
51.5.2 (11). The completion and restriction functors restrict to functors ̂ ∶ CofSet(𝒞Λ) →
CofSet(𝒞Λ) and |𝒞Λ

∶ CofSet(𝒞Λ) → CofSet(𝒞Λ) which we denote by the same symbols.
As functors on the categories of cofibered sets, completion and restriction are adjoints in the
usual 1-categorical sense: the same construction as in Remark 51.7.9 defines a functorial
bijection

𝑀𝑜𝑟𝒞Λ
(𝐺|𝒞Λ

, 𝐹) ⟶ 𝑀𝑜𝑟𝒞Λ
(𝐺, 𝐹)

for 𝐹 ∈ 𝑂𝑏(CofSet(𝒞Λ)) and 𝐺 ∈ 𝑂𝑏(CofSet(𝒞Λ)). Again the map 𝐹|𝒞Λ
→ 𝐹 is an

isomorphism.

Remark 51.7.11. Let 𝐺 ∶ 𝒞Λ → Sets be a functor that commutes with limits. Then the
map 𝐺 → 𝐺|𝒞Λ

described in Remark 51.7.9 is an isomorphism. Indeed, if 𝑆 is an object of
𝒞Λ, then we have canonical bijections

𝐺|𝒞Λ
(𝑆) = 𝑙𝑖𝑚𝑛 𝐺(𝑆/𝔪𝑛

𝑆) = 𝐺(𝑙𝑖𝑚𝑛 𝑆/𝔪𝑛
𝑆) = 𝐺(𝑆).

In particular, if 𝑅 is an object of 𝒞Λ then 𝑅 = 𝑅|𝒞Λ
because the representable functor 𝑅

commutes with limits by definition of limits.

Remark 51.7.12. Let𝑅 be an object of𝒞Λ. It defines a functor𝑅 ∶ 𝒞Λ → Sets as described
in Remarks 51.5.2 (12). As usual we identify this functor with the associated cofibered set.
If ℱ is a cofibered category over 𝒞Λ, then there is an equivalence of categories

(51.7.12.1) 𝑀𝑜𝑟𝒞Λ
(𝑅|𝒞Λ

, ℱ) ⟶ ℱ̂(𝑅).

It is given by the composition

𝑀𝑜𝑟𝒞Λ
(𝑅|𝒞Λ

, ℱ)
Φ

−−→ 𝑀𝑜𝑟𝒞Λ
(𝑅, ℱ̂)

∼
−→ ℱ̂(𝑅)

where Φ is as in Remark 51.7.9 and the second equivalence comes from the 2-Yoneda
lemma (the cofibered analogue of Categories, Lemma 4.38.1). Explicitly, the equivalence
sends a morphism 𝜑 ∶ 𝑅|𝒞Λ

→ ℱ to the formal object (𝑅, 𝜑(𝑅 → 𝑅/𝔪𝑛
𝑅), 𝜑(𝑓𝑛)) in ℱ̂(𝑅),

where 𝑓𝑛 ∶ 𝑅/𝔪𝑛+1
𝑅 → 𝑅/𝔪𝑛

𝑅 is the projection.

Assume a choice of pushforwards for ℱ has been made. Given any 𝜉 ∈ 𝑂𝑏(ℱ̂(𝑅)) we
construct an explicit 𝜉 ∶ 𝑅|𝒞Λ

→ ℱ which maps to 𝜉 under (51.7.12.1). Namely, say
𝜉 = (𝑅, 𝜉𝑛, 𝑓𝑛). An object 𝛼 in 𝑅|𝒞Λ

is the same thing as a morphism 𝛼 ∶ 𝑅 → 𝐴 of 𝒞Λ
with 𝐴 Artinian. Let 𝑚 ∈ 𝐍 be minimal such that 𝔪𝑚

𝐴 = 0. Then 𝛼 factors through a
unique 𝛼𝑚 ∶ 𝑅/𝔪𝑚

𝑅 → 𝐴 and we can set 𝜉(𝛼) = 𝛼𝑚,∗𝜉𝑚. We omit the description of 𝜉 on
morphisms and we omit the proof that 𝜉 maps to 𝜉 via (51.7.12.1).

Assume a choice of pushforwards for ℱ̂ has been made. In this case the proof of Categories,
Lemma 4.38.1 gives an explicit quasi-inverse

𝜄 ∶ ℱ̂(𝑅) ⟶ 𝑀𝑜𝑟𝒞Λ
(𝑅, ℱ̂)
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to the 2-Yoneda equivalence which takes 𝜉 to the the morphism 𝜄(𝜉) ∶ 𝑅 → ℱ̂ sending
𝑓 ∈ 𝑅(𝑆) = 𝑀𝑜𝑟𝒞Λ

(𝑅, 𝑆) to 𝑓∗𝜉. A quasi-inverse to (51.7.12.1) is then

ℱ̂(𝑅)
𝜄

−→ 𝑀𝑜𝑟𝒞Λ
(𝑅, ℱ̂)

Ψ
−−→ 𝑀𝑜𝑟𝒞Λ

(𝑅|𝒞Λ
, ℱ)

where Ψ is as in Remark 51.7.9. Given 𝜉 ∈ 𝑂𝑏(ℱ̂(𝑅)) we have Ψ(𝜄(𝜉)) ≅ 𝜉 where 𝜉 is as in
the previous paragraph, because both are mapped to 𝜉 under the equivalence of categories
(51.7.12.1). Using 𝑅 = 𝑅|𝒞Λ

(see Remark 51.7.11) and unwinding the definitions of Φ and
Ψ we conclude that 𝜄(𝜉) is isomorphic to the completion of 𝜉.

Remark 51.7.13. Let ℱ be a category cofibred in groupoids over 𝒞Λ. Let 𝜉 = (𝑅, 𝜉𝑖, 𝑓𝑛)
and 𝜂 = (𝑆, 𝜂𝑛, 𝑔𝑛) be formal objects of ℱ. Let 𝑎 = (𝑎𝑛) ∶ 𝜉 → 𝜂 be a morphism of formal
objects, i.e., a morphism of ℱ̂. Let 𝑓 = ̂𝑝(𝑎) = 𝑎0 ∶ 𝑅 → 𝑆 be the projection of 𝑎 in 𝒞Λ.
Then we obtain a 2-commutative diagram

𝑅|𝒞Λ

𝜉
!!

𝑆|𝒞Λ𝑓
oo

𝜂
}}

ℱ
where 𝜉 and 𝜂 are the morphisms constructed in Remark 51.7.12. To see this let 𝛼 ∶ 𝑆 → 𝐴
be an object of 𝑆|𝒞Λ

(see loc. cit.). Let 𝑚 ∈ 𝐍 be minimal such that 𝔪𝑚
𝐴 = 0. We get a

commutative diagram
𝑅

𝑓
��

// 𝑅/𝔪𝑚
𝑅

𝑓𝑚
��

𝛽𝑚

!!
𝑆 // 𝑆/𝔪𝑚

𝑆
𝛼𝑚 // 𝐴

such that the bottom arrows compose to give 𝛼. Then 𝜂(𝛼) = 𝛼𝑚,∗𝜂𝑚 and 𝜉(𝛼 ∘ 𝑓) = 𝛽𝑚,∗𝜉𝑚.
The morphism 𝑎𝑚 ∶ 𝜉𝑚 → 𝜂𝑚 lies over 𝑓𝑚 hence we obtain a canonical morphism

𝜉(𝛼 ∘ 𝑓) = 𝛽𝑚,∗𝜉𝑚 ⟶ 𝜂(𝛼) = 𝛼𝑚,∗𝜂𝑚

lying over id𝐴 such that
𝜉𝑚

//

𝑎𝑚

��

𝛽𝑚,∗𝜉𝑚

��
𝜂𝑚

// 𝛼𝑚,∗𝜂𝑚

commutes by the axioms of a category cofibred in groupoids. This defines a transformation
of functors 𝜉 ∘ 𝑓 → 𝜂 which witnesses the 2-commutativity of the first diagram of this
remark.

Remark 51.7.14. According to Remark 51.7.12, giving a formal object 𝜉 of ℱ is equivalent
to giving a prorepresentable functor 𝑈 ∶ 𝒞Λ → Sets and a morphism 𝑈 → ℱ.

51.8. Smooth morphisms

In this section we discuss smooth morphisms of categories cofibered in groupoids over 𝒞Λ.

Definition 51.8.1. Let 𝜑 ∶ ℱ → 𝒢 be a morphism of categories cofibered in groupoids over
𝒞Λ. We say 𝜑 is smooth if it satisfies the following condition: Let 𝐵 → 𝐴 be a surjective
ring map in 𝒞Λ. Let 𝑦 ∈ 𝑂𝑏(𝒢(𝐵)), 𝑥 ∈ 𝑂𝑏(ℱ(𝐴)), and 𝑦 → 𝜑(𝑥) be a morphism lying
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over 𝐵 → 𝐴. Then there exists 𝑥′ ∈ 𝑂𝑏(ℱ(𝐵)), a morphism 𝑥′ → 𝑥 lying over 𝐵 → 𝐴,
and a morphism 𝜑(𝑥′) → 𝑦 lying over id ∶ 𝐵 → 𝐵, such that the diagram

𝜑(𝑥′) //

##

𝑦

��
𝜑(𝑥)

commutes.

Lemma 51.8.2. Let 𝜑 ∶ ℱ → 𝒢 be a morphism of categories cofibered in groupoids over
𝒞Λ. Then 𝜑 is smooth if the condition in Definition 51.8.1 is assumed to hold only for small
extensions 𝐵 → 𝐴.

Proof. Let 𝐵 → 𝐴 be a surjective ring map in 𝒞Λ. Let 𝑦 ∈ 𝑂𝑏(𝒢(𝐵)), 𝑥 ∈ 𝑂𝑏(ℱ(𝐴)), and
𝑦 → 𝜑(𝑥) be a morphism lying over 𝐵 → 𝐴. By Lemma 51.3.3 we can factor 𝐵 → 𝐴 into
small extensions 𝐵 = 𝐵𝑛 → 𝐵𝑛−1 → … → 𝐵0 = 𝐴. We argue by induction on 𝑛. If 𝑛 = 1
the result is true by assumption. If 𝑛 > 1, then denote 𝑓 ∶ 𝐵 = 𝐵𝑛 → 𝐵𝑛−1 and denote
𝑔 ∶ 𝐵𝑛−1 → 𝐵0 = 𝐴. Choose a pushforward 𝑦 → 𝑓∗𝑦 of 𝑦 along 𝑓, so that the morphism
𝑦 → 𝜑(𝑥) factors as 𝑦 → 𝑓∗𝑦 → 𝜑(𝑥). By the induction hypothesis we can find 𝑥𝑛−1 → 𝑥
lying over 𝑔 ∶ 𝐵𝑛−1 → 𝐴 and 𝑎 ∶ 𝜑(𝑥𝑛−1) → 𝑓∗𝑦 lying over id ∶ 𝐵𝑛−1 → 𝐵𝑛−1 such that

𝜑(𝑥𝑛−1) 𝑎
//

$$

𝑓∗𝑦

��
𝜑(𝑥)

commutes. We can apply the assumption to the composition 𝑦 → 𝜑(𝑥𝑛−1) of 𝑦 → 𝑓∗𝑦 with
𝑎−1 ∶ 𝑓∗𝑦 → 𝜑(𝑥𝑛−1). We obtain 𝑥𝑛 → 𝑥𝑛−1 lying over 𝐵𝑛 → 𝐵𝑛−1 and 𝜑(𝑥𝑛) → 𝑦 lying
over id ∶ 𝐵𝑛 → 𝐵𝑛 so that the diagram

𝜑(𝑥𝑛) //

��

𝑦

��
𝜑(𝑥𝑛−1) 𝑎 //

$$

𝑓∗𝑦

��
𝜑(𝑥)

commutes. Then the composition 𝑥𝑛 → 𝑥𝑛−1 → 𝑥 and 𝜑(𝑥𝑛) → 𝑦 are the morphisms
required by the definition of smoothness. �

Remark 51.8.3. Let 𝜑 ∶ ℱ → 𝒢 be a morphism of categories cofibered in groupoids over
𝒞Λ. Let 𝐵 → 𝐴 be a ring map in 𝒞Λ. Choices of pushforwards along 𝐵 → 𝐴 for objects in
the fiber categories ℱ(𝐵) and 𝒢(𝐵) determine functors ℱ(𝐵) → ℱ(𝐴) and 𝒢(𝐵) → 𝒢(𝐴)
fitting into a 2-commutative diagram

ℱ(𝐵)
𝜑 //

��

𝒢(𝐵)

��
ℱ(𝐴)

𝜑 // 𝒢(𝐴).
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Hence there is an induced functor ℱ(𝐵) → ℱ(𝐴) ×𝒢(𝐴) 𝒢(𝐵). Unwinding the definitions
shows that 𝜑 ∶ ℱ → 𝒢 is smooth if and only if this induced functor is essentially surjective
whenever 𝐵 → 𝐴 is surjective (or equivalently, by Lemma 51.8.2, whenever 𝐵 → 𝐴 is a
small extension).

Remark 51.8.4. The characterization of smooth morphisms in Remark 51.8.3 is analogous
to Schlessinger's notion of a smooth morphism of functors, cf. [Sch68, Definition 2.2.]. In
fact, when ℱ and 𝒢 are cofibered in sets then our notion is equivalent to Schlessinger's.
Namely, in this case let 𝐹, 𝐺 ∶ 𝒞Λ → Sets be the corresponding functors, see Remarks
51.5.2 (11). Then 𝐹 → 𝐺 is smooth if and only if for every surjection of rings 𝐵 → 𝐴 in
𝒞Λ the map 𝐹(𝐵) → 𝐹(𝐴) ×𝐺(𝐴) 𝐺(𝐵) is surjective.

Remark 51.8.5. Let ℱ be a category cofibered in groupoids over 𝒞Λ. Then the morphism
ℱ → ℱ is smooth.

If 𝑅 → 𝑆 is a ring map 𝒞Λ, then there is an induced morphism 𝑆 → 𝑅 between the
functors 𝑆, 𝑅 ∶ 𝒞Λ → Sets. In this situation, smoothness of the restriction 𝑆|𝒞Λ

→ 𝑅|𝒞Λ
is a familiar notion:

Lemma 51.8.6. Let𝑅 → 𝑆 be a ringmap in𝒞Λ. Then the inducedmorphism𝑆|𝒞Λ
→ 𝑅|𝒞Λ

is smooth if and only if 𝑆 is a power series ring over 𝑅.

Proof. Assume 𝑆 is a power series ring over 𝑅. Say 𝑆 = 𝑅[[𝑥1, … , 𝑥𝑛]]. Smoothness
of 𝑆|𝒞Λ

→ 𝑅|𝒞Λ
means the following (see Remark 51.8.4): Given a surjective ring map

𝐵 → 𝐴 in 𝒞Λ, a ring map 𝑅 → 𝐵, a ring map 𝑆 → 𝐴 such that the solid diagram

𝑆 //

��

𝐴

𝑅

OO

// 𝐵

OO

is commutative then a dotted arrow exists making the diagram commute. (Note the sim-
ilarity with Algebra, Definition 7.127.1.) To construct the dotted arrow choose elements
𝑏𝑖 ∈ 𝐵 whose images in 𝐴 are equal to the images of 𝑥𝑖 in 𝐴. Note that 𝑏𝑖 ∈ 𝔪𝐵 as 𝑥𝑖 maps
to an element of 𝔪𝐴. Hence there is a unique 𝑅-algebra map 𝑅[[𝑥1, … , 𝑥𝑛]] → 𝐵 which
maps 𝑥𝑖 to 𝑏𝑖 and which can serve as our dotted arrow.
Conversely, assume 𝑆|𝒞Λ

→ 𝑅|𝒞Λ
is smooth. Let 𝑥1, … , 𝑥𝑛 ∈ 𝑆 be elements whose

images form a basis in the relative cotangent space 𝔪𝑆/(𝔪𝑅𝑆 + 𝔪2
𝑆) of 𝑆 over 𝑅. Set

𝑇 = 𝑅[[𝑋1, … , 𝑋𝑛]]. Note that both

𝑆/(𝔪𝑅𝑆 + 𝔪2
𝑆) ≅ 𝑅/𝔪𝑅[𝑥1, … , 𝑥𝑛]/(𝑥𝑖𝑥𝑗)

and
𝑇/(𝔪𝑅𝑇 + 𝔪2

𝑇) ≅ 𝑅/𝔪𝑅[𝑋1, … , 𝑋𝑛]/(𝑋𝑖𝑋𝑗).
Let 𝑆/(𝔪𝑅𝑆+𝔪2

𝑆) → 𝑇/(𝔪𝑅𝑇+𝔪2
𝑇) be the local 𝑅-algebra isomorphism given bymapping

the class of 𝑥𝑖 to the class of 𝑋𝑖. Let 𝑓1 ∶ 𝑆 → 𝑇/(𝔪𝑅𝑇 + 𝔪2
𝑇) be the composition

𝑆 → 𝑆/(𝔪𝑅𝑆 + 𝔪2
𝑆) → 𝑇/(𝔪𝑅𝑇 + 𝔪2

𝑇). The assumption that 𝑆|𝒞Λ
→ 𝑅|𝒞Λ

is smooth
means we can lift 𝑓1 to a map 𝑓2 ∶ 𝑆 → 𝑇/𝔪2

𝑇, then to a map 𝑓3 ∶ 𝑆 → 𝑇/𝔪3
𝑇, and so on,

for all 𝑛 ≥ 1. Thus we get an induced map 𝑓 ∶ 𝑆 → 𝑇 = 𝑙𝑖𝑚 𝑇/𝔪𝑛
𝑇 of local 𝑅-algebras. By

our choice of 𝑓1, the map 𝑓 induces an isomorphism 𝔪𝑆/(𝔪𝑅𝑆 + 𝔪2
𝑆) → 𝔪𝑇/(𝔪𝑅𝑇 + 𝔪2

𝑇)
of relative cotangent spaces. Hence 𝑓 is surjective by Lemma 51.4.2 (where we think of
𝑓 as a map in 𝒞𝑅). Choose preimages 𝑦𝑖 ∈ 𝑆 of 𝑋𝑖 ∈ 𝑇 under 𝑓. As 𝑇 is a power series
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ring over 𝑅 there exists a local 𝑅-algebra homomorphism 𝑠 ∶ 𝑇 → 𝑆 mapping 𝑋𝑖 to 𝑦𝑖.
By construction 𝑓 ∘ 𝑠 = id. Then 𝑠 is injective. But 𝑠 induces an isomorphism on relative
cotangent spaces since 𝑓 does, so it is also surjective by Lemma 51.4.2 again. Hence 𝑠 and
𝑓 are isomorphisms. �

Smooth morphisms satisfy the following functorial properties.

Lemma 51.8.7. Let 𝜑 ∶ ℱ → 𝒢 and 𝜓 ∶ 𝒢 → ℋ be morphisms of categories cofibered in
groupoids over 𝒞Λ.

(1) If 𝜑 and 𝜓 are smooth, then 𝜓 ∘ 𝜑 is smooth.
(2) If 𝜑 is essentially surjective and 𝜓 ∘ 𝜑 is smooth, then 𝜓 is smooth.
(3) If 𝒢′ → 𝒢 is a morphism of categories cofibered in groupoids and 𝜑 is smooth,

then ℱ ×𝒢 𝒢′ → 𝒢′ is smooth.

Proof. Statements (1) and (2) follow immediately from the definitions. Proof of (3) omit-
ted. Hints: use the formulation of smoothness given in Remark 51.8.3 and use that ℱ×𝒢 𝒢′

is the 2-fibre product, see Remarks 51.5.2 (13). �

Lemma 51.8.8. Let𝜑 ∶ ℱ → 𝒢 be a smoothmorphism of categories cofibered in groupoids
over 𝒞Λ. Assume 𝜑 ∶ ℱ(𝑘) → 𝒢(𝑘) is essentially surjective. Then 𝜑 ∶ ℱ → 𝒢 and
�̂� ∶ ℱ̂ → 𝒢 are essentially surjective.

Proof. Let 𝑦 be an object of 𝒢 lying over 𝐴 ∈ 𝑂𝑏(𝒞Λ). Let 𝑦 → 𝑦0 be a pushforward of 𝑦
along 𝐴 → 𝑘. By the assumption on essential surjectivity of 𝜑 ∶ ℱ(𝑘) → 𝒢(𝑘) there exist
an object 𝑥0 of ℱ lying over 𝑘 and an isomorphism 𝑦0 → 𝜑(𝑥0). Smoothness of 𝜑 implies
there exists an object 𝑥 of ℱ over 𝐴 whose image 𝜑(𝑥) is isomorphic to 𝑦. Thus 𝜑 ∶ ℱ → 𝒢
is essentially surjective.

Let 𝜂 = (𝑅, 𝜂𝑛, 𝑔𝑛) be an object of 𝒢. We construct an object 𝜉 of ℱ̂ with an isomorphism
𝜂 → 𝜑(𝜉). By the assumption on essential surjectivity of 𝜑 ∶ ℱ(𝑘) → 𝒢(𝑘), there exists
a morphism 𝜂1 → 𝜑(𝜉1) in 𝒢(𝑘) for some 𝜉1 ∈ 𝑂𝑏(ℱ(𝑘)). The morphism 𝜂2

𝑔1−−→ 𝜂1 →
𝜑(𝜉1) lies over the surjective ring map 𝑅/𝔪2

𝑅 → 𝑘, hence by smoothness of 𝜑 there exists
𝜉2 ∈ 𝑂𝑏(ℱ(𝑅/𝔪2

𝑅)), a morphism 𝑓1 ∶ 𝜉2 → 𝜉1 lying over 𝑅/𝔪2
𝑅 → 𝑘, and a morphism

𝜂2 → 𝜑(𝜉2) such that

𝜑(𝜉2)
𝜑(𝑓1) // 𝜑(𝜉1)

𝜂2

OO

𝑔1 // 𝜂1

OO

commutes. Continuing in this way we construct an object 𝜉 = (𝑅, 𝜉𝑛, 𝑓𝑛) of ℱ̂ and a mor-
phism 𝜂 → 𝜑(𝜉) = (𝑅, 𝜑(𝜉𝑛), 𝜑(𝑓𝑛)) in 𝒢(𝑅). �

Remark 51.8.9. Let 𝑝 ∶ ℱ → 𝒞Λ be a category cofibered in groupoids. We can consider
𝒞Λ as the trivial category cofibered in groupoids over 𝒞Λ, and then 𝑝 is a morphism of
categories cofibered in groupoids over 𝒞Λ. We say ℱ is smooth if its structure morphism 𝑝
is smooth. This is the ``absolute'' notion of smoothness for a category cofibered in groupoids
over 𝒞Λ.

Example 51.8.10. Let 𝑅 ∈ 𝑂𝑏(𝒞Λ). When is 𝑅|𝒞Λ
smooth? In the classical case this

means that 𝑅 is a power series ring over Λ, see Lemma 51.8.6. (Strictly speaking this uses
that Λ|𝒞Λ

= 𝒞Λ because Λ is an initial object of 𝒞Λ in the classical case.) In the general
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case we can construct examples as follows. Pick an integer 𝑛 ≥ 0 and a maximal ideal
𝔪 ⊂ Λ[𝑥1, … , 𝑥𝑛] lying over 𝔪Λ so that

𝑘′ = Λ/𝔪Λ ⟶ Λ[𝑥1, … , 𝑥𝑛]/𝔪
is isomorphic to 𝑘′ → 𝑘. Fix such an identification 𝑘 = Λ[𝑥1, … , 𝑥𝑛]/𝔪. Set 𝑅 =
Λ[𝑥1, … , 𝑥𝑛]∧ equal to the 𝔪-adic completion of Λ[𝑥1, … , 𝑥𝑛]. Then 𝑅 is an object of
𝒞Λ. Namely, it is a complete local Noetherian ring (see Algebra, Lemma 7.90.10) and its
residue field is identified with 𝑘. We claim that 𝑅|𝒞Λ

is smooth. To see this we have to
show: Given a surjection 𝐵 → 𝐴 in 𝒞Λ and a map 𝑅 → 𝐴 there exists a lift of this map
to 𝐵. This is clear as we can first lift the composition Λ[𝑥1, … , 𝑥𝑛] → 𝑅 → 𝐴 to a map
Λ[𝑥1, … , 𝑥𝑛] → 𝐵 and then observe that this latter map factors through the completion 𝑅
as 𝐵 is complete (being Artinian). In fact, it turns out that whenever 𝑅|𝒞Λ

is smooth, then
𝑅 is isomorphic to a completion of a smooth algebra over Λ, but we won't use this.

Example 51.8.11. Here is a more explict example of an 𝑅 as in Example 51.8.10. Let 𝑝
be a prime number and let 𝑛 ∈ 𝐍. Let Λ = 𝐅𝑝(𝑡1, 𝑡2, … , 𝑡𝑛) and let 𝑘 = 𝐅𝑝(𝑥1, … , 𝑥𝑛) with
map Λ → 𝑘 given by 𝑡𝑖 ↦ 𝑥𝑝

𝑖 . Then we can take

𝑅 = Λ[𝑥1, … , 𝑥𝑛]∧
(𝑥𝑝

1−𝑡1,…,𝑥𝑝
𝑛−𝑡𝑛)

We cannot do ``better'' in this example, i.e., we cannot approximate 𝒞Λ by a smaller smooth
object of 𝒞Λ (one can argue that the dimension of 𝑅 has to be at least 𝑛 since the map
Ω𝑅/Λ ⊗𝑅 𝑘 → Ω𝑘/Λ is surjective). We will discuss this phenomenon later in more detail.

Remark 51.8.12. Suppose ℱ is a predeformation category admitting a smooth morphism
𝜑 ∶ 𝒰 → ℱ from a predeformation category 𝒰. Then by Lemma 51.8.8 𝜑 is essentially
surjective, so by Lemma 51.8.7 𝑝 ∶ ℱ → 𝒞Λ is smooth if and only if the composition
𝒰

𝜑
−→ ℱ

𝑝
−→ 𝒞Λ is smooth, i.e. ℱ is smooth if and only if 𝒰 is smooth.

Later we are interested in producing smooth morphisms from prorepresentable functors
to predeformation categories ℱ. By the discussion in Remark 51.7.12 these morphisms
correspond to certain formal objects of ℱ More precisely, these are the so-called versal
formal objects of ℱ.

Definition 51.8.13. Let ℱ be a category cofibered in groupoids. Let 𝜉 be a formal object of
ℱ lying over 𝑅 ∈ 𝑂𝑏(𝒞Λ). We say 𝜉 is versal if the correspondingmorphism 𝜉 ∶ 𝑅|𝒞Λ

→ ℱ
of Remark 51.7.12 is smooth.

Remark 51.8.14. Let ℱ be a category cofibered in groupoids over 𝒞Λ, and let 𝜉 be a formal
object of ℱ. It follows from the definition of smoothness that versality of 𝜉 is equivalent to
the following condition: If

𝑦

��
𝜉 // 𝑥

is a diagram in ℱ̂ such that 𝑦 → 𝑥 lies over a surjective map 𝐵 → 𝐴 of Artinian rings (we
may assume it is a small extension), then there exists a morphism 𝜉 → 𝑦 such that

𝑦

��
𝜉 //

@@

𝑥
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commutes. In particular, the condition that 𝜉 be versal does not depend on the choices of
pushforwards made in the construction of 𝜉 ∶ 𝑅|𝒞Λ

→ ℱ in Remark 51.7.12.

Lemma 51.8.15. Let ℱ be a predeformation category. Let 𝜉 be a versal formal object of
ℱ. For any formal object 𝜂 of ℱ̂, there exists a morphism 𝜉 → 𝜂.

Proof. By assumption the morphism 𝜉 ∶ 𝑅|𝒞Λ
→ ℱ is smooth. Then 𝜄(𝜉) ∶ 𝑅 → ℱ̂ is

the completion of 𝜉, see Remark 51.7.12. By Lemma 51.8.8 there exists an object 𝑓 of 𝑅
such that 𝜄(𝜉)(𝑓) = 𝜂. Then 𝑓 is a ring map 𝑓 ∶ 𝑅 → 𝑆 in 𝒞Λ. And 𝜄(𝜉)(𝑓) = 𝜂 means that
𝑓∗𝜉 ≅ 𝜂 which means exactly that there is a morphism 𝜉 → 𝜂 lying over 𝑓. �

51.9. Schlessinger's conditions

In the following we often consider fibre products 𝐴1 ×𝐴 𝐴2 of rings in the category 𝒞Λ.
We have seen in Example 51.3.7 that such a fibre product may not always be an object of
𝒞Λ. However, in virtually all cases below one of the two maps 𝐴𝑖 → 𝐴 is surjective and
𝐴1 ×𝐴 𝐴2 will be an object of 𝒞Λ by Lemma 51.3.8. We will use this result without further
mention.

We denote by 𝑘[𝜖] the ring of dual numbers over 𝑘. More generally, for a 𝑘-vector space
𝑉, we denote by 𝑘[𝑉] the 𝑘-algebra whose underlying vector space is 𝑘 ⊕ 𝑉 and whose
multiplication is given by (𝑎, 𝑣) ⋅ (𝑎′, 𝑣′) = (𝑎𝑎′, 𝑎𝑣′ + 𝑎′𝑣). When 𝑉 = 𝑘, 𝑘[𝑉] is the ring
of dual numbers over 𝑘. For any finite dimensional 𝑘-vector space 𝑉 the ring 𝑘[𝑉] is in 𝒞Λ.

Definition 51.9.1. Let ℱ be a category cofibered in groupoids over 𝒞Λ. We define condi-
tions (S1) and (S2) on ℱ as follows:

(S1) Every diagram in ℱ

𝑥2

��
𝑥1

// 𝑥

lying over

𝐴2

��
𝐴1

// 𝐴

in 𝒞Λ with 𝐴2 → 𝐴 surjective can be completed to a commutative diagram

𝑦 //

��

𝑥2

��
𝑥1

// 𝑥

lying over

𝐴1 ×𝐴 𝐴2
//

��

𝐴2

��
𝐴1

// 𝐴.

(S2) The condition of (S1) holds for diagrams in ℱ lying over a diagram in 𝒞Λ of the
form

𝑘[𝜖]

��
𝐴 // 𝑘.

Moreover, if we have two commutative diagrams in ℱ

𝑦 𝑐
//

𝑎
��

𝑥𝜖

𝑒
��

𝑥 𝑑 // 𝑥0

and

𝑦′
𝑐′
//

𝑎′

��

𝑥𝜖

𝑒

��
𝑥 𝑑 // 𝑥0

lying over

𝐴 ×𝑘 𝑘[𝜖] //

��

𝑘[𝜖]

��
𝐴 // 𝑘
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then there exists a morphism 𝑏 ∶ 𝑦 → 𝑦′ in ℱ(𝐴 ×𝑘 𝑘[𝜖]) such that 𝑎 = 𝑎′ ∘ 𝑏.
We can partly explain the meaning of conditions (S1) and (S2) in terms of fibre categories.
Suppose that 𝑓1 ∶ 𝐴1 → 𝐴 and 𝑓2 ∶ 𝐴2 → 𝐴 are ring maps in 𝒞Λ with 𝑓2 surjective.
Denote 𝑝𝑖 ∶ 𝐴1 ×𝐴 𝐴2 → 𝐴𝑖 the projection maps. Assume a choice of pushforwards for
ℱ has been made. Then the commutative diagram of rings tranlates into a 2-commutative
diagram

ℱ(𝐴1 ×𝐴 𝐴2) 𝑝2,∗
//

𝑝1,∗

��

ℱ(𝐴2)

𝑓2,∗
��

ℱ(𝐴1)
𝑓1,∗ // ℱ(𝐴)

of fibre categories whence a functor
(51.9.1.1) ℱ(𝐴1 ×𝐴 𝐴2) → ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2)
into the 2-fibre product of categories. Condition (S1) requires that this functor be essen-
tially surjective. The first part of condition (S2) requires that this functor be a essentially
surjective if 𝑓2 equals the map 𝑘[𝜖] → 𝑘. Moreover in this case, the second part of (S2) im-
plies that two objects which become isomorphic in the target are isomorphic in the source
(but it is not equivalent to this statement). The advantage of stating the conditions as in the
definition is that no choices have to be made.
Lemma 51.9.2. Let ℱ be a category cofibered in groupoids over 𝒞Λ. Then ℱ satisfies (S1)
if the condition of (S1) is assumed to hold only when 𝐴2 → 𝐴 is a small extension.

Proof. Proof omitted. Hints: apply Lemma 51.3.3 and use induction similar to the proof
of Lemma 51.8.2. �

Remark 51.9.3. When ℱ is cofibered in sets, conditions (S1) and (S2) are exactly condi-
tions (H1) and (H2) from Schlessinger's paper [Sch68]. Namely, for a functor 𝐹 ∶ 𝒞Λ →
Sets, conditions (S1) and (S2) state:

(S1) If 𝐴1 → 𝐴 and 𝐴2 → 𝐴 are maps in 𝒞Λ with 𝐴2 → 𝐴 surjective, then the induced
map 𝐹(𝐴1 ×𝐴 𝐴2) → 𝐹(𝐴1) ×𝐹(𝐴) 𝐹(𝐴2) is surjective.

(S2) If 𝐴 → 𝑘 is a map in 𝒞Λ, then the induced map 𝐹(𝐴×𝑘 𝑘[𝜖]) → 𝐹(𝐴)×𝐹(𝑘) 𝐹(𝑘[𝜖])
is bijective.

The injectivity of the map 𝐹(𝐴 ×𝑘 𝑘[𝜖]) → 𝐹(𝐴) ×𝐹(𝑘) 𝐹(𝑘[𝜖]) comes from the second part
of condition (S2) and the fact that morphisms are identities.
Lemma 51.9.4. Let ℱ be a category cofibred in groupoids over 𝒞Λ. If ℱ satisfies (S2), then
the condition of (S2) also holds when 𝑘[𝜖] is replaced by 𝑘[𝑉] for any finite dimensional
𝑘-vector space 𝑉.
Proof. In the case that ℱ is cofibred in sets, i.e., corresponds to a functor 𝐹 ∶ 𝒞Λ → Sets
this follows from the description of (S2) for 𝐹 in Remark 51.9.3 and the fact that 𝑘[𝑉] ≅
𝑘[𝜖] ×𝑘 … ×𝑘 𝑘[𝜖] with dim𝑘 𝑉 factors. The case of functors is what we will use in the rest
of this chapter.
We prove the general case by induction on dim(𝑉). If dim(𝑉) = 1, then 𝑘[𝑉] ≅ 𝑘[𝜖] and the
result holds by assumption. If dim(𝑉) > 1 we write 𝑉 = 𝑉′ ⊕ 𝑘𝜖. Pick a diagram

𝑥𝑉

��
𝑥 // 𝑥0

lying over

𝑘[𝑉]

��
𝐴 // 𝑘
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Choose a morphism 𝑥𝑉 → 𝑥𝑉′ lying over 𝑘[𝑉] → 𝑘[𝑉′] and a morphism 𝑥𝑉 → 𝑥𝜖 lying
over 𝑘[𝑉] → 𝑘[𝜖]. Note that the morphism 𝑥𝑉 → 𝑥0 factors as 𝑥𝑉 → 𝑥𝑉′ → 𝑥0 and as
𝑥𝑉 → 𝑥𝜖 → 𝑥0. By induction hypothesis we can find a diagram

𝑦′

��

// 𝑥𝑉′

��
𝑥 // 𝑥0

lying over

𝐴 ×𝑘 𝑘[𝑉′]

��

// 𝑘[𝑉′]

��
𝐴 // 𝑘

This gives us a commutative diagram

𝑥𝜖

��
𝑦′ // 𝑥0

lying over

𝑘[𝜖]

��
𝐴 ×𝑘 𝑘[𝑉′] // 𝑘

Hence by (S2) we get a commutative diagram

𝑦

��

// 𝑥𝜖

��
𝑦′ // 𝑥0

lying over

(𝐴 ×𝑘 𝑘[𝑉′]) ×𝑘 𝑘[𝜖]

��

// 𝑘[𝜖]

��
𝐴 ×𝑘 𝑘[𝑉′] // 𝑘

Note that (𝐴 ×𝑘 𝑘[𝑉′]) ×𝑘 𝑘[𝜖] = 𝐴 ×𝑘 𝑘[𝑉′ ⊕ 𝑘𝜖] = 𝐴 ×𝑘 𝑘[𝑉]. We claim that 𝑦 fits into
the correct commutative diagram. To see this we let 𝑦 → 𝑦𝑉 be a morphism lying over
𝐴 ×𝑘 𝑘[𝑉] → 𝑘[𝑉]. We can factor the morphisms 𝑦 → 𝑦′ → 𝑥𝑉′ and 𝑦 → 𝑥𝜖 through the
morphism 𝑦 → 𝑦𝑉 (by the axioms of categories cofibred in groupoids). Hence we see that
both 𝑦𝑉 and 𝑥𝑉 fit into commutative diagrams

𝑦𝑉
//

��

𝑥𝜖

��
𝑥𝑉′ // 𝑥0

and

𝑥𝑉
//

��

𝑥𝜖

��
𝑥𝑉′ // 𝑥0

and hence by the second part of (S2) there exists an isomorphism 𝑦𝑉 → 𝑥𝑉 compatible with
𝑦𝑉 → 𝑥𝑉′ and 𝑥𝑉 → 𝑥𝑉′ and in particular compatible with the maps to 𝑥0. The composition
𝑦 → 𝑦𝑉 → 𝑥𝑉 then fits into the required commutative diagram

𝑦 //

��

𝑥𝑉

��
𝑥 // 𝑥0

lying over

𝐴 ×𝑘 𝑘[𝑉]

��

// 𝑘[𝑉]

��
𝐴 // 𝑘

In this way we see that the first part of (𝑆2) holds with 𝑘[𝜖] replaced by 𝑘[𝑉].

To prove the second part suppose given two commutative diagrams

𝑦 //

��

𝑥𝑉

��
𝑥 // 𝑥0

and

𝑦′ //

��

𝑥𝑉

��
𝑥 // 𝑥0

lying over

𝐴 ×𝑘 𝑘[𝑉]

��

// 𝑘[𝑉]

��
𝐴 // 𝑘
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We will use the morphisms 𝑥𝑉 → 𝑥𝑉′ → 𝑥0 and 𝑥𝑉 → 𝑥𝜖 → 𝑥0 introduced in the first
paragraph of the proof. Choose morphisms 𝑦 → 𝑦𝑉′ and 𝑦′ → 𝑦′

𝑉′ lying over 𝐴 ×𝑘 𝑘[𝑉] →
𝐴 ×𝑘 𝑘[𝑉′]. The axioms of a cofibred category imply we can find commutative diagrams

𝑦𝑉′ //

��

𝑥𝑉′

��
𝑥 // 𝑥0

and

𝑦′
𝑉′

//

��

𝑥𝑉′

��
𝑥 // 𝑥0

lying over

𝐴 ×𝑘 𝑘[𝑉′]

��

// 𝑘[𝑉′]

��
𝐴 // 𝑘

By induction hypothesis we obtain an isomorphism 𝑏 ∶ 𝑦𝑉′ → 𝑦′
𝑉′ compatible with the

morphisms 𝑦𝑉′ → 𝑥 and 𝑦′
𝑉′ → 𝑥, in particular compatible with the morphisms to 𝑥0. Then

we have commutative diagrams

𝑦 //

��

𝑥𝜖

��
𝑦′

𝑉′
// 𝑥0

and

𝑦′ //

��

𝑥𝜖

��
𝑦′

𝑉′
// 𝑥0

lying over

𝐴 ×𝑘 𝑘[𝜖]

��

// 𝑘[𝜖]

��
𝐴 // 𝑘

where the morphism 𝑦 → 𝑦′
𝑉′ is the composition 𝑦 → 𝑦𝑉′

𝑏
−→ 𝑦′

𝑉′ and where the morphisms
𝑦 → 𝑥𝜖 and 𝑦′ → 𝑥𝜖 are the compositions of the maps 𝑦 → 𝑥𝑉 and 𝑦′ → 𝑥𝑉 with the
morphism 𝑥𝑉 → 𝑥𝜖. Then the second part of (S2) garantees the existence of an isomorphism
𝑦 → 𝑦′ compatible with the maps to 𝑦′

𝑉′, in particular compatible with the maps to 𝑥
(because 𝑏 was compatible with the maps to 𝑥). �

Lemma 51.9.5. Let ℱ be a category cofibered in groupoids over 𝒞Λ.
(1) If ℱ satisfies (S1), then so does ℱ.
(2) Ifℱ satisfies (S2), then so doesℱ provided at least one of the following conditions

is satisfied
(a) ℱ is a predeformation category,
(b) the category ℱ(𝑘) is a set or a setoid, or
(c) for any morphism 𝑥𝜖 → 𝑥0 of ℱ lying over 𝑘[𝜖] → 𝑘 the pushforward map

Aut𝑘[𝜖](𝑥𝜖) → Aut𝑘(𝑥0) is surjective.

Proof. Assume ℱ has (S1). Suppose we have ring maps 𝑓𝑖 ∶ 𝐴𝑖 → 𝐴 in 𝒞Λ with 𝑓2
surjective. Let 𝑥𝑖 ∈ ℱ(𝐴𝑖) such that the pushforwards 𝑓1,∗(𝑥1) and 𝑓2,∗(𝑥2) are isomorphic.
Then we can denote 𝑥 an object of ℱ over 𝐴 isomorphic to both of these and we obtain a
diagram as in (S1). Hence we find an object 𝑦 of ℱ over 𝐴1 ×𝐴 𝐴2 whose pushforward to
𝐴1, resp. 𝐴2 is isomorphic to 𝑥1, resp. 𝑥2. In this way we see that (S1) holds for ℱ.

Assume ℱ has (S2). The first part of (S2) for ℱ follows as in the argument above. The
second part of (S2) for ℱ signifies that the map

ℱ(𝐴 ×𝑘 𝑘[𝜖]) → ℱ(𝐴) ×ℱ(𝑘) ℱ(𝑘[𝜖])

is injective for any ring 𝐴 in 𝒞Λ. Suppose that 𝑦, 𝑦′ ∈ ℱ(𝐴 ×𝑘 𝑘[𝜖]). Using the axioms of
cofibred categories we can choose commutative diagrams

𝑦 𝑐
//

𝑎
��

𝑥𝜖

𝑒
��

𝑥 𝑑 // 𝑥0

and

𝑦′
𝑐′
//

𝑎′

��

𝑥′
𝜖

𝑒′

��
𝑥′ 𝑑′

// 𝑥′
0

lying over

𝐴 ×𝑘 𝑘[𝜖]

��

// 𝑘[𝜖]

��
𝐴 // 𝑘

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06I0
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Assume that there exist isomorphisms 𝛼 ∶ 𝑥 → 𝑥′ in ℱ(𝐴) and 𝛽 ∶ 𝑥𝜖 → 𝑥′
𝜖 in ℱ(𝑘[𝜖]).

This also means there exists an isomorphism 𝛾 ∶ 𝑥0 → 𝑥′
0 compatible with 𝛼. To prove

(S2) for ℱ we have to show that there exists an isomorphism 𝑦 → 𝑦′ in ℱ(𝐴 ×𝑘 𝑘[𝜖]). By
(S2) for ℱ such a morphism will exist if we can choose the isomorphisms 𝛼 and 𝛽 and 𝛾
such that

𝑥

𝛼
��

// 𝑥0

𝛾
��

𝑥𝜖

𝛽
��

𝑒
oo

𝑥′ // 𝑥′
0 𝑥′

𝜖
𝑒′
oo

is commutative (because then we can replace 𝑥 by 𝑥′ and 𝑥𝜖 by 𝑥′
𝜖 in the previous displayed

diagram). The left hand square commutes by our choice of 𝛾. We can factor 𝑒′ ∘ 𝛽 as 𝛾′ ∘ 𝑒
for some second map 𝛾′ ∶ 𝑥0 → 𝑥′

0. Now the question is whether we can arrange it so that
𝛾 = 𝛾′? This is clear if ℱ(𝑘) is a set, or a setoid. Moreover, if Aut𝑘[𝜖](𝑥𝜖) → Aut𝑘(𝑥0) is
surjective, then we can adjust the choice of 𝛽 by precomposing with an automorphism of
𝑥𝜖 whose image is 𝛾−1 ∘ 𝛾′ to make things work. �

Lemma 51.9.6. Let ℱ be a category cofibered in groupoids over 𝒞Λ. Let 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)).
Let ℱ𝑥0

be the category cofibred in groupoids over 𝒞Λ constructed in Remark 51.6.4.
(1) If ℱ satisfies (S1), then so does ℱ𝑥0

.
(2) If ℱ satisfies (S2), then so does ℱ𝑥0

.

Proof. Any diagram as in Definition 51.9.1 in ℱ𝑥0
gives rise to a diagram in ℱ and the

output of condition (S1) or (S2) for this diagram in ℱ can be viewed as an output for ℱ𝑥0
as well. �

Lemma 51.9.7. Let 𝑝 ∶ ℱ → 𝒞Λ be a category cofibered in groupoids. Consider a diagram
of ℱ

𝑦 //

𝑎
��

𝑥𝜖

𝑒
��

𝑥 𝑑 // 𝑥0

lying over

𝐴 ×𝑘 𝑘[𝜖] //

��

𝑘[𝜖]

��
𝐴 // 𝑘.

in 𝒞Λ. Assume ℱ satisfies (S2). Then there exists a morphism 𝑠 ∶ 𝑥 → 𝑦 with 𝑎 ∘ 𝑠 = id𝑥 if
and only if there exists a morphism 𝑠𝜖 ∶ 𝑥 → 𝑥𝜖 with 𝑒 ∘ 𝑠𝜖 = 𝑑.

Proof. The ``only if'' direction is clear. Conversely, assume there exists a morphism 𝑠𝜖 ∶
𝑥 → 𝑥𝜖 with 𝑒 ∘ 𝑠𝜖 = 𝑑. Note that 𝑝(𝑠𝜖) ∶ 𝐴 → 𝑘[𝜖] is a ring map compatible with the map
𝐴 → 𝑘. Hence we obtain

𝜎 = (id𝐴, 𝑝(𝑠𝜖)) ∶ 𝐴 → 𝐴 ×𝑘 𝑘[𝜖].

Choose a pushforward 𝑥 → 𝜎∗𝑥. By construction we can factor 𝑠𝜖 as 𝑥 → 𝜎∗𝑥 → 𝑥𝜖.
Moreover, as 𝜎 is a section of 𝐴 ×𝑘 𝑘[𝜖] → 𝐴, we get a morphism 𝜎∗𝑥 → 𝑥 such that
𝑥 → 𝜎∗𝑥 → 𝑥 is id𝑥. Because 𝑒 ∘ 𝑠𝜖 = 𝑑 we find that the diagram

𝜎∗𝑥 //

��

𝑥𝜖

𝑒
��

𝑥 𝑑 // 𝑥0

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06SQ
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is commutative. Hence by (S2) we obtain a morphism 𝜎∗𝑥 → 𝑦 such that 𝜎∗𝑥 → 𝑦 → 𝑥 is
the given map 𝜎∗𝑥 → 𝑥. The solution to the problem is now to take 𝑎 ∶ 𝑥 → 𝑦 equal to the
composition 𝑥 → 𝜎∗𝑥 → 𝑦. �

Lemma 51.9.8. Consider a commutative diagram in a predeformation category ℱ

𝑦 //

��

𝑥2

𝑎2

��
𝑥1

𝑎1 // 𝑥

lying over

𝐴1 ×𝐴 𝐴2
//

��

𝐴2

𝑓2
��

𝐴1
𝑓1 // 𝐴

in 𝒞Λ where 𝑓2 ∶ 𝐴2 → 𝐴 is a small extension. Assume there is a map ℎ ∶ 𝐴1 → 𝐴2 such
that 𝑓2 = 𝑓1 ∘ ℎ. Let 𝐼 = Ker(𝑓2). Consider the ring map

𝑔 ∶ 𝐴1 ×𝐴 𝐴2 ⟶ 𝑘[𝐼] = 𝑘 ⊕ 𝐼, (𝑢, 𝑣) ⟼ 𝑢 ⊕ (𝑣 − ℎ(𝑢))

Choose a pushforward 𝑦 → 𝑔∗𝑦. Assume ℱ satisfies (S2). If there exists a morphism
𝑥1 → 𝑔∗𝑦, then there exists a morphism 𝑏 ∶ 𝑥1 → 𝑥2 such that 𝑎1 = 𝑎2 ∘ 𝑏.

Proof. Note that id𝐴1
×𝑔 ∶ 𝐴1 ×𝐴 𝐴2 → 𝐴1 ×𝑘 𝑘[𝐼] is an isomorphism and that 𝑘[𝐼] ≅ 𝑘[𝜖].

Hence we have a diagram

𝑦 //

��

𝑔∗𝑦

��
𝑥1

// 𝑥0

lying over

𝐴1 ×𝑘 𝑘[𝜖] //

��

𝑘[𝜖]

��
𝐴1

// 𝑘.

where 𝑥0 is an object of ℱ lying over 𝑘 (every object of ℱ has a unique morphism to 𝑥0,
see discussion following Definition 51.6.2). If we have a morphism 𝑥1 → 𝑔∗𝑦 then Lemma
51.9.7 provides us with a section 𝑠 ∶ 𝑥1 → 𝑦 of the map 𝑦 → 𝑥1. Composing this with the
map 𝑦 → 𝑥2 we obtain 𝑏 ∶ 𝑥1 → 𝑥2 which has the property that 𝑎1 = 𝑎2 ∘ 𝑏 because the
diagram of the lemma commutes and because 𝑠 is a section. �

51.10. Tangent spaces of functors

Let 𝑅 be a ring. We write Mod(𝑅) for the category of 𝑅-modules and Mod𝑓𝑔(𝑅) for the
category of finitely generated 𝑅-modules.

Definition 51.10.1. Let 𝐿 ∶ Mod𝑓𝑔(𝑅) → Mod(𝑅) be a functor. We say that 𝐿 is 𝑅-linear
if for every 𝑀, 𝑁 ∈ 𝑂𝑏(Mod𝑓𝑔(𝑅)) the map

𝐿 ∶ 𝐻𝑜𝑚𝑅(𝑀, 𝑁) ⟶ 𝐻𝑜𝑚𝑅(𝐿(𝑀), 𝐿(𝑁))

is a map of 𝑅-modules.

Remark 51.10.2. One can define the notion of an 𝑅-linearity for any functor between
categories enriched over Mod(𝑅). We made the definition specifically for a functor 𝐿 ∶
Mod𝑓𝑔(𝑅) → Mod(𝑅) because this is the case that occurs below.

Remark 51.10.3. If 𝐿 ∶ Mod𝑓𝑔(𝑅) → Mod(𝑅) is an 𝑅-linear functor, then 𝐿 preserves fi-
nite products and sends the zero module to the zero module, see Homology, Lemma 10.3.7.
On the other hand, if a functor Mod𝑓𝑔(𝑅) → Sets preserves finite products and sends the
zero module to a one element set, then it has a unique lift to a 𝑅-linear functor, see Lemma
51.10.4.
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Lemma 51.10.4. Let 𝐿 ∶ Mod𝑓𝑔(𝑅) → Sets be a functor. Suppose 𝐿(0) is a one el-
ement set and 𝐿 preserves finite products. Then there exists a unique 𝑅-linear functor
�̃� ∶ Mod𝑓𝑔(𝑅) → Mod(𝑅) such that the diagram

Mod(𝑅)
forget

##
Mod𝑓𝑔(𝑅)

�̃�
99

𝐿 // Sets

commutes.

Proof. Let 𝑀 be a finitely generated 𝑅-module. We define �̃�(𝑀) to be the set 𝐿(𝑀) with
the following 𝑅-module structure.

Multiplication: If 𝑟 ∈ 𝑅, multiplication by 𝑟 on 𝐿(𝑀) is defined to be the map 𝐿(𝑀) →
𝐿(𝑀) induced by the multiplication map 𝑟⋅ ∶ 𝑀 → 𝑀.

Addition: The sum map 𝑀 × 𝑀 → 𝑀 ∶ (𝑚1, 𝑚2) ↦ 𝑚1 + 𝑚2 induces a map 𝐿(𝑀 × 𝑀) →
𝐿(𝑀). By assumption 𝐿(𝑀 × 𝑀) is canonically isomorphic to 𝐿(𝑀) × 𝐿(𝑀). Addition
on 𝐿(𝑀) is defined by the map 𝐿(𝑀) × 𝐿(𝑀) ≅ 𝐿(𝑀 × 𝑀) → 𝐿(𝑀).

Zero: There is a unique map 0 → 𝑀. The zero element of 𝐿(𝑀) is the image of 𝐿(0) →
𝐿(𝑀).

We omit the verification that this defines an 𝑅-module �̃�(𝑀), the unique such that is
𝑅-linearly functorial in 𝑀. �

Lemma 51.10.5. Let 𝐿1, 𝐿2 ∶ Mod𝑓𝑔(𝑅) → Sets be functors that take 0 to a one element
set and preserve finite products. Let 𝑡 ∶ 𝐿1 → 𝐿2 be a morphism of functors. Then 𝑡
induces a morphism ̃𝑡 ∶ �̃�1 → �̃�2 between the functors guaranteed by Lemma 51.10.4,
which is given simply by ̃𝑡𝑀 = 𝑡𝑀 ∶ �̃�1(𝑀) → �̃�2(𝑀) for each 𝑀 ∈ 𝑂𝑏(Mod𝑓𝑔(𝑅)). In
other words, 𝑡𝑀 ∶ �̃�1(𝑀) → �̃�2(𝑀) is a map of 𝑅-modules.

Proof. Omitted. �

In the case 𝑅 = 𝐾 is a field, a 𝐾-linear functor 𝐿 ∶ Mod𝑓𝑔(𝐾) → Mod(𝐾) is determined
by its value 𝐿(𝐾).

Lemma 51.10.6. Let 𝐾 be a field. Let 𝐿 ∶ Mod𝑓𝑔(𝐾) → Mod(𝐾) be a 𝐾-linear functor.
Then 𝐿 is isomorphic to the functor 𝐿(𝐾) ⊗𝐾 − ∶ Mod𝑓𝑔(𝐾) → Mod(𝐾).

Proof. For 𝑉 ∈ 𝑂𝑏(Mod𝑓𝑔(𝐾)), the isomorphism 𝐿(𝐾) ⊗𝐾 𝑉 → 𝐿(𝑉) is given on pure
tensors by 𝑥 ⊗ 𝑣 ↦ 𝐿(𝑓𝑣)(𝑥), where 𝑓𝑣 ∶ 𝐾 → 𝑉 is the 𝐾-linear map sending 1 ↦ 𝑣.
When 𝑉 = 𝐾, this is the isomorphism 𝐿(𝐾) ⊗𝐾 𝐾 → 𝐿(𝐾) given by multiplication by 𝐾.
For general 𝑉, it is an isomorphism by the case 𝑉 = 𝐾 and the fact that 𝐿 commutes with
finite products (Remark 51.10.3). �

For a ring 𝑅 and an 𝑅-module 𝑀, let 𝑅[𝑀] be the 𝑅-algebra whose underlying 𝑅-module
is 𝑅 ⊕ 𝑀 and whose multiplication is given by (𝑟, 𝑚) ⋅ (𝑟′, 𝑚′) = (𝑟𝑟′, 𝑟𝑚′ + 𝑟′𝑚). When
𝑀 = 𝑅 this is the ring of dual numbers over 𝑅, which we denote by 𝑅[𝜖].

Now let 𝑆 be a ring and assume 𝑅 is an 𝑆-algebra. Then the assignment 𝑀 ↦ 𝑅[𝑀] deter-
mines a functor Mod(𝑅) → 𝑆-Alg/𝑅, where 𝑆-Alg/𝑅 denotes the category of 𝑆-algebras
over 𝑅. Note that 𝑆-Alg/𝑅 admits finite products: if 𝐴1 → 𝑅 and 𝐴2 → 𝑅 are two objects,
then 𝐴1 ×𝑅 𝐴2 is a product.
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Lemma 51.10.7. Let 𝑅 be an 𝑆-algebra. Then the functor Mod(𝑅) → 𝑆-Alg/𝑅 described
above preserves finite products.

Proof. This is merely the statement that if 𝑀 and 𝑁 are 𝑅-modules, then the map 𝑅[𝑀 ×
𝑁] → 𝑅[𝑀] ×𝑅 𝑅[𝑁] is an isomorphism in 𝑆-Alg/𝑅. �

Lemma 51.10.8. Let 𝑅 be an 𝑆-algebra, and let 𝒞 be a strictly full subcategory of 𝑆-Alg/𝑅
containing 𝑅[𝑀] for all 𝑀 ∈ 𝑂𝑏(Mod𝑓𝑔(𝑅)). Let 𝐹 ∶ 𝒞 → Sets be a functor. Suppose
that 𝐹(𝑅) is a one element set and that for any 𝑀, 𝑁 ∈ 𝑂𝑏(Mod𝑓𝑔(𝑅)), the induced map

𝐹(𝑅[𝑀] ×𝑅 𝑅[𝑁]) → 𝐹(𝑅[𝑀]) × 𝐹(𝑅[𝑁])
is a bijection. Then𝐹(𝑅[𝑀]) has a natural𝑅-module structure for any𝑀 ∈ 𝑂𝑏(Mod𝑓𝑔(𝑅)).

Proof. Note that 𝑅 ≅ 𝑅[0] and 𝑅[𝑀] ×𝑅 𝑅[𝑁] ≅ 𝑅[𝑀 × 𝑁] hence 𝑅 and 𝑅[𝑀] ×𝑅 𝑅[𝑁]
are objects of 𝒞 by our assumptions on 𝒞. Thus the conditions on 𝐹 make sense. The
functor Mod(𝑅) → 𝑆-Alg/𝑅 of Lemma 51.10.7 restricts to a functor Mod𝑓𝑔(𝑅) → 𝒞 by
the assumption on 𝒞. Let 𝐿 be the composition Mod𝑓𝑔(𝑅) → 𝒞 → Sets, i.e., 𝐿(𝑀) =
𝐹(𝑅[𝑀]). Then 𝐿 preserves finite products by Lemma 51.10.7 and the assumption on 𝐹.
Hence Lemma 51.10.4 shows that 𝐿(𝑀) = 𝐹(𝑅[𝑀]) has a natural 𝑅-module structure for
any 𝑀 ∈ 𝑂𝑏(Mod𝑓𝑔(𝑅)). �

Definition 51.10.9. Let 𝒞 be a category as in Lemma 51.10.8. Let 𝐹 ∶ 𝒞 → Sets be a
functor such that 𝐹(𝑅) is a one element set. The tangent space 𝑇𝐹 of 𝐹 is 𝐹(𝑅[𝜖]).

When 𝐹 ∶ 𝒞 → Sets satisfies the hypotheses of Lemma 51.10.8, the tangent space 𝑇𝐹 has
a natural 𝑅-module structure.

Example 51.10.10. Since 𝒞Λ contains all 𝑘[𝑉] for finite dimensional vector spaces 𝑉 we
see that Definition 51.10.9 applies with 𝑆 = Λ, 𝑅 = 𝑘, 𝒞 = 𝒞Λ, and 𝐹 ∶ 𝒞Λ → Sets a
predeformation functor. The tangent space is 𝑇𝐹 = 𝐹(𝑘[𝜖]).

Example 51.10.11. Let us work out the tangent space of Example 51.10.10 when 𝐹 ∶
𝒞Λ → Sets is a prorepresentable functor, say 𝐹 = 𝑆|𝒞Λ

for 𝑆 ∈ 𝑂𝑏(𝒞Λ). Then 𝐹 commutes
with arbitrary limits and thus satisfies the hypotheses of Lemma 51.10.8. We compute

𝑇𝐹 = 𝐹(𝑘[𝜖]) = 𝑀𝑜𝑟𝒞Λ
(𝑆, 𝑘[𝜖]) = DerΛ(𝑆, 𝑘)

and more generally for a finite dimensional 𝑘-vector space 𝑉 we have
𝐹(𝑘[𝑉]) = 𝑀𝑜𝑟𝒞Λ

(𝑆, 𝑘[𝑉]) = DerΛ(𝑆, 𝑉).
Explicitly, a Λ-algebra map 𝑓 ∶ 𝑆 → 𝑘[𝑉] compatible with the augmentations 𝑞 ∶ 𝑆 → 𝑘
and 𝑘[𝑉] → 𝑘 corresponds to the derivation 𝐷 defined by 𝑠 ↦ 𝑓(𝑠) − 𝑞(𝑠). Conversely,
a Λ-derivation 𝐷 ∶ 𝑆 → 𝑉 corresponds to 𝑓 ∶ 𝑆 → 𝑘[𝑉] in 𝒞Λ defined by the rule
𝑓(𝑠) = 𝑞(𝑠) + 𝐷(𝑠). Since these identifications are functorial we see that the 𝑘-vector
spaces structures on 𝑇𝐹 and DerΛ(𝑆, 𝑘) correspond (see Lemma 51.10.5). It follows that
dim𝑘 𝑇𝐹 is finite by Lemma 51.4.5.

Example 51.10.12. The computation of Example 51.10.11 simplifies in the classical case.
Namely, in this case the tangent space of the functor 𝐹 = 𝑆|𝒞Λ

is simply the relative cotan-
gent space of 𝑆 over Λ, in a formula 𝑇𝐹 = 𝑇𝑆/Λ. In fact, this works more generally when
the field extension 𝑘′ ⊂ 𝑘 is separable. See Exercises, Exercise 65.28.2.

Lemma 51.10.13. Let 𝐹, 𝐺 ∶ 𝒞 → Sets be functors satisfying the hypotheses of Lemma
51.10.8. Let 𝑡 ∶ 𝐹 → 𝐺 be a morphism of functors. For any 𝑀 ∈ 𝑂𝑏(Mod𝑓𝑔(𝑅)), the map
𝑡𝑅[𝑀] ∶ 𝐹(𝑅[𝑀]) → 𝐺(𝑅[𝑀]) is a map of 𝑅-modules, where 𝐹(𝑅[𝑀]) and 𝐺(𝑅[𝑀]) are
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given the 𝑅-module structure from Lemma 51.10.8. In particular, 𝑡𝑅[𝜖] ∶ 𝑇𝐹 → 𝑇𝐺 is a
map of 𝑅-modules.

Proof. Follows from Lemma 51.10.5. �

Example 51.10.14. Suppose that 𝑓 ∶ 𝑅 → 𝑆 is a ring map in 𝒞Λ. Set 𝐹 = 𝑅|𝒞Λ
and

𝐺 = 𝑆|𝒞Λ
. The ring map 𝑓 induces a transformation of functors 𝐺 → 𝐹. By Lemma

51.10.13 we get a 𝑘-linear map 𝑇𝐺 → 𝑇𝐹. This is the map
𝑇𝐺 = DerΛ(𝑆, 𝑘) ⟶ DerΛ(𝑅, 𝑘) = 𝑇𝐹

as follows from the canonical identifications𝐹(𝑘[𝑉]) = DerΛ(𝑅, 𝑉) and𝐺(𝑘[𝑉]) = DerΛ(𝑆, 𝑉)
of Example 51.10.11 and the rule for computing the map on tangent spaces.

Lemma 51.10.15. Let 𝐹 ∶ 𝒞 → Sets be a functor satisfying the hypotheses of Lemma
51.10.8. Assume 𝑅 = 𝐾 is a field. Then 𝐹(𝐾[𝑉]) ≅ 𝑇𝐹 ⊗𝐾 𝑉 for any finite dimensional
𝐾-vector space 𝑉.

Proof. Follows from Lemma 51.10.6. �

51.11. Tangent spaces of predeformation categories

Wewill define tangent spaces of predeformation functors using the general Definition 51.10.9.
We have spelled this out in Example 51.10.10. It applies to predeformation categories by
looking at the associated functor of isomorphism classes.

Definition 51.11.1. Let ℱ be a predeformation category. The tangent space 𝑇ℱ of ℱ is the
set ℱ(𝑘[𝜖]) of isomorphism classes of objects in the fiber category ℱ(𝑘[𝜖]).

Thus 𝑇ℱ is nothing but the tangent space of the associated functor ℱ ∶ 𝒞Λ → Sets. It has
a natural vector space structure when ℱ satisfies (S2), or, in fact, as long as ℱ does.

Lemma 51.11.2. Let ℱ be a predeformation category such that ℱ satisfies (S2). Then 𝑇ℱ
has a natural 𝑘-vector space structure. For any finite dimensional vector space 𝑉 we have
ℱ(𝑘[𝑉]) = 𝑇ℱ ⊗𝑘 𝑉 functorially in 𝑉.

Proof. Let us write 𝐹 = ℱ ∶ 𝒞Λ → Sets. This is a predeformation functor and 𝐹 satisfies
(S2). By Lemma 51.9.4 (and the translation of Remark 51.9.3) we see that

𝐹(𝐴 ×𝑘 𝑘[𝑉]) ⟶ 𝐹(𝐴) × 𝐹(𝑘[𝑉])
is a bijection for every finite dimensional vector space 𝑉 and every 𝐴 ∈ 𝑂𝑏(𝒞Λ). In partic-
ular, if 𝐴 = 𝑘[𝑊] then we see that 𝐹(𝑘[𝑊] ×𝑘 𝑘[𝑉]) = 𝐹(𝑘[𝑊]) × 𝐹(𝑘[𝑉]). In other words,
the hypotheses of Lemma 51.10.8 hold and we see that 𝑇𝐹 = 𝑇ℱ has a natural 𝑘-vector
space structure. The final assertion follows from Lemma 51.10.15. �

A morphism of predeformation categories induces a map on tangent spaces.

Definition 51.11.3. Let 𝜑 ∶ ℱ → 𝒢 be a morphism predeformation categories. The differ-
ential 𝑑𝜑 ∶ 𝑇ℱ → 𝑇𝒢 of 𝜑 is the map obtained by evaluating the morphism of functors
𝜑 ∶ ℱ → 𝒢 at 𝐴 = 𝑘[𝜖].

Lemma 51.11.4. Let 𝜑 ∶ ℱ → 𝒢 be a morphism predeformation categories. Assume ℱ
and 𝒢 both satisfy (S2). Then 𝑑𝜑 ∶ 𝑇ℱ → 𝑇𝒢 is 𝑘-linear.

Proof. In the proof of Lemma 51.11.2 we have seen that ℱ and 𝒢 satisfy the hypotheses
of Lemma 51.10.8. Hence the lemma follows from Lemma 51.10.13. �
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Remark 51.11.5. We can globalize the notions of tangent space and differential to arbitrary
categories cofibered in groupoids as follows. Let ℱ be a category cofibered in groupoids
over 𝒞Λ, and let 𝑥 ∈ 𝑂𝑏(ℱ(𝑘)). As in Remark 51.6.4, we get a predeformation category ℱ𝑥.
We define the tangent space 𝑇𝑥ℱ of ℱ at 𝑥 to be the tangent space 𝑇ℱ𝑥 of ℱ𝑥. Similarly, if
𝜑 ∶ ℱ → 𝒢 is a morphism of categories cofibered in groupoids over 𝒞Λ and 𝑥 ∈ 𝑂𝑏(ℱ(𝑘)),
then there is an induced morphism 𝜑𝑥 ∶ ℱ𝑥 → 𝒢𝜑(𝑥). We define the differential 𝑑𝑥𝜑 ∶
𝑇𝑥ℱ → 𝑇𝜑(𝑥)𝒢 of 𝜑 at 𝑥 to be the map 𝑑𝜑𝑥 ∶ 𝑇ℱ𝑥 → 𝑇𝒢𝜑(𝑥). If both ℱ and 𝒢 satisfy
(S2) then all of these tangent spaces have a natural 𝑘-vector space structure and all the
differentials 𝑑𝑥𝜑 ∶ 𝑇𝑥ℱ → 𝑇𝜑(𝑥)𝒢 are 𝑘-linear (use Lemmas 51.9.6 and 51.11.4).

The following observations are uninteresting in the classical case or when 𝑘′ ⊂ 𝑘 is a sepa-
rable field extension, because then DerΛ(𝑘, 𝑘) and DerΛ(𝑉, 𝑘) are zero. There is a canonical
identification

𝑀𝑜𝑟𝒞Λ
(𝑘, 𝑘[𝜖]) = DerΛ(𝑘, 𝑘).

Namely, for 𝐷 ∈ DerΛ(𝑘, 𝑘) let 𝑓𝐷 ∶ 𝑘 → 𝑘[𝜖] be the map 𝑎 ↦ 𝑎 + 𝐷(𝑎)𝜖. More generally,
given a finite dimensional vector space 𝑉 over 𝑘 we have

𝑀𝑜𝑟𝒞Λ
(𝑘, 𝑘[𝑉]) = DerΛ(𝑘, 𝑉)

and we will use the same notation 𝑓𝐷 for the map associated to the derivation 𝐷. We also
have

𝑀𝑜𝑟𝒞Λ
(𝑘[𝑊], 𝑘[𝑉]) = 𝐻𝑜𝑚𝑘(𝑉, 𝑊) ⊕ DerΛ(𝑘, 𝑉)

where (𝜑, 𝐷) corresponds to the map 𝑓𝜑,𝐷 ∶ 𝑎+𝑤 ↦ 𝑎+𝜑(𝑤)+𝐷(𝑎). We will sometimes
write 𝑓1,𝐷 ∶ 𝑎+𝑣 → 𝑎+𝑣+𝐷(𝑎) for the automorphism of 𝑘[𝑉] determined by the derivation
𝐷 ∶ 𝑘 → 𝑉. Note that 𝑓1,𝐷 ∘ 𝑓1,𝐷′ = 𝑓1,𝐷+𝐷′.
Let ℱ be a predeformation category over 𝒞Λ. Let 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)). By the above there is a
canonical map

𝛾𝑉 ∶ DerΛ(𝑘, 𝑉) ⟶ ℱ(𝑘[𝑉])
defined by 𝐷 ↦ 𝑓𝐷,∗(𝑥0). Moreover, there is an action

𝑎𝑉 ∶ DerΛ(𝑘, 𝑉) × ℱ(𝑘[𝑉]) ⟶ ℱ(𝑘[𝑉])
defined by (𝐷, 𝑥) ↦ 𝑓1,𝐷,∗(𝑥). These two maps are compatible, i.e., 𝑓1,𝐷,∗𝑓𝐷′,∗𝑥0 =
𝑓𝐷+𝐷′,∗𝑥0 as follows from a computation of the compositions of these maps. Note that
the maps 𝛾𝑉 and 𝑎𝑉 are independent of the choice of 𝑥0 as there is a unique 𝑥0 up to iso-
morphism.

Lemma 51.11.6. Let ℱ be a predeformation category over 𝒞Λ. If ℱ has (S2) then the maps
𝛾𝑉 are 𝑘-linear and we have 𝑎𝑉(𝐷, 𝑥) = 𝑥 + 𝛾𝑉(𝐷).

Proof. In the proof of Lemma 51.11.2 we have seen that the functor 𝑉 ↦ ℱ(𝑘[𝑉]) trans-
forms 0 to a singleton and products to products. The same is true of the functor 𝑉 ↦
DerΛ(𝑘, 𝑉). Hence 𝛾𝑉 is linear by Lemma 51.10.5. Let 𝐷 ∶ 𝑘 → 𝑉 be a Λ-derivation. Set
𝐷1 ∶ 𝑘 → 𝑉⊕2 equal to 𝑎 ↦ (𝐷(𝑎), 0). Then

𝑘[𝑉 × 𝑉] +
//

𝑓1,𝐷1
��

𝑘[𝑉]

𝑓1,𝐷
��

𝑘[𝑉 × 𝑉] + // 𝑘[𝑉]

commutes. Unwinding the definitions and using that 𝐹(𝑉×𝑉) = 𝐹(𝑉)×𝐹(𝑉) this means that
𝑎𝐷(𝑥1) + 𝑥2 = 𝑎𝐷(𝑥1 + 𝑥2) for all 𝑥1, 𝑥2 ∈ 𝐹(𝑉). Thus it suffices to show that 𝑎𝑉(𝐷, 0) =
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0 + 𝛾𝑉(𝐷) where 0 ∈ 𝐹(𝑉) is the zero vector. By definition this is the element 𝑓0,∗(𝑥0).
Since 𝑓𝐷 = 𝑓1,𝐷 ∘ 𝑓0 the desired result follows. �

A special case of the constructions above are the map

(51.11.6.1) 𝛾 ∶ DerΛ(𝑘, 𝑘) ⟶ 𝑇ℱ

and the action

(51.11.6.2) 𝑎 ∶ DerΛ(𝑘, 𝑘) × 𝑇ℱ ⟶ 𝑇ℱ

defined for any predeformation category ℱ. Note that if 𝜑 ∶ ℱ → 𝒢 is a morphism of
predeformation categories, then we get commutative diagrams

DerΛ(𝑘, 𝑘) 𝛾
//

𝛾
$$

𝑇ℱ

𝑑𝜑
��

𝑇𝒢

and

DerΛ(𝑘, 𝑘) × 𝑇ℱ 𝑎
//

1×𝑑𝜑
��

𝑇ℱ

𝑑𝜑
��

DerΛ(𝑘, 𝑘) × 𝑇𝒢 𝑎 // 𝑇𝒢

51.12. Versal formal objects

The existence of a versal formal object forces ℱ to have property (S1).

Lemma 51.12.1. Let ℱ be a predeformation category. Assume ℱ has a versal formal
object. Then ℱ satisfies (S1).

Proof. Let 𝜉 be a versal formal object of ℱ. Let

𝑥2

��
𝑥1

// 𝑥

be a diagram in ℱ such that 𝑥2 → 𝑥 lies over a surjective ring map. Since the natural
morphism ℱ̂|𝒞Λ

∼
−→ ℱ is an equivalence (see Remark 51.7.7), we can consider this diagram

also as a diagram in ℱ̂. By Lemma 51.8.15 there exists a morphism 𝜉 → 𝑥1, so by Remark
51.8.14 we also get a morphism 𝜉 → 𝑥2 making the diagram

𝜉 //

��

𝑥2

��
𝑥1

// 𝑥

commute. If 𝑥1 → 𝑥 and 𝑥2 → 𝑥 lie above ring maps 𝐴1 → 𝐴 and 𝐴2 → 𝐴 then taking the
pushforward of 𝜉 to 𝐴1 ×𝐴 𝐴2 gives an object 𝑦 as required by (S1). �

In the case that our cofibred category satisfies (S1) and (S2) we can characterize the versal
formal objects as follows.

Lemma 51.12.2. Let ℱ be a predeformation category satisfying (S1) and (S2). Let 𝜉 be a
formal object of ℱ corresponding to 𝜉 ∶ 𝑅|𝒞Λ

→ ℱ, see Remark 51.7.12. Then 𝜉 is versal
if and only if the following two conditions hold:

(1) the map 𝑑𝜉 ∶ 𝑇𝑅|𝒞Λ
→ 𝑇ℱ on tangent spaces is surjective, and
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(2) given a diagram in ℱ̂
𝑦

��
𝜉 // 𝑥

lying over

𝐵

𝑓
��

𝑅 // 𝐴

in 𝒞Λ with 𝐵 → 𝐴 a small extension of Artinian rings, then there exists a ring
map 𝑅 → 𝐵 such that

𝐵

𝑓
��

𝑅

??

// 𝐴
commutes.

Proof. If 𝜉 is versal then (1) holds by Lemma 51.8.8 and (2) holds by Remark 51.8.14.
Assume (1) and (2) hold. By Remark 51.8.14 we must show that given a diagram in ℱ̂ as
in (2), there exists 𝜉 → 𝑦 such that

𝑦

��
𝜉

@@

// 𝑥
commutes. Let 𝑏 ∶ 𝑅 → 𝐵 be the map guaranteed by (2). Denote 𝑦′ = 𝑏∗𝜉 and choose a
factorization 𝜉 → 𝑦′ → 𝑥 lying over 𝑅 → 𝐵 → 𝐴 of the given morphism 𝜉 → 𝑥. By (S1)
we obtain a commutative diagram

𝑧 //

��

𝑦

��
𝑦′ // 𝑥

lying over

𝐵 ×𝐴 𝐵

��

// 𝐵

𝑓
��

𝐵
𝑓 // 𝐴.

Set 𝐼 = Ker(𝑘). Let 𝑔 ∶ 𝐵 ×𝐴 𝐵 → 𝑘[𝐼] be the ring map (𝑢, 𝑣) ↦ 𝑢 ⊕ (𝑣 − 𝑢), cf. Lemma
51.9.8. By (1) there exists a morphism 𝜉 → 𝑔∗𝑧 which lies over a ring map 𝑖 ∶ 𝑅 → 𝑘[𝜖].
Choose an Artinian quotient 𝑏1 ∶ 𝑅 → 𝐵1 such that both 𝑏 ∶ 𝑅 → 𝐵 and 𝑖 ∶ 𝑅 → 𝑘[𝜖]
factor through 𝑅 → 𝐵1, i.e., giving ℎ ∶ 𝐵1 → 𝐵 and 𝑖′ ∶ 𝐵1 → 𝑘[𝜖]. Choose a pushforward
𝑦1 = 𝑏1,∗𝜉, a factorization 𝜉 → 𝑦1 → 𝑦′ lying over 𝑅 → 𝐵1 → 𝐵 of 𝜉 → 𝑦′, and a
factorization 𝜉 → 𝑦1 → 𝑔∗𝑧 lying over 𝑅 → 𝐵1 → 𝑘[𝜖] of 𝜉 → 𝑔∗𝑧. Applying (S1) once
more we obtain

𝑧1
//

��

𝑧 //

��

𝑦

��
𝑦1

// 𝑦′ // 𝑥

lying over

𝐵1 ×𝐴 𝐵

��

// 𝐵 ×𝐴 𝐵 //

��

𝐵

𝑓
��

𝐵1
// 𝐵 // 𝐴.

Note that themap 𝑔 ∶ 𝐵1×𝐴𝐵 → 𝑘[𝐼] of Lemma 51.9.8 (defined using ℎ) is the composition
of 𝐵1 ×𝐴 𝐵 → 𝐵 ×𝐴 𝐵 and the map 𝑔 above. By construction there exists a morphism
𝑦1 → 𝑔∗𝑧1 ≅ 𝑔∗𝑧! Hence Lemma 51.9.8 applies (to the outer rectangles in the diagrams
above) to give a morphism 𝑦1 → 𝑦 and precomposing with 𝜉 → 𝑦1 gives the desired
morphism 𝜉 → 𝑦. �

If ℱ has property (S1) then the ``largest quotient where a lift exists'' exists. Here is a precise
statement.
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Lemma 51.12.3. Let ℱ be a category cofibred in groupoids over 𝒞Λ which has (S1). Let
𝐵 → 𝐴 be a surjection in 𝒞Λ with kernel 𝐼 annihilated by 𝔪𝐵. Let 𝑥 ∈ ℱ(𝐴). The set of
ideals

𝒥 = {𝐽 ⊂ 𝐼 ∣ there exists an 𝑦 → 𝑥 lying over 𝐵/𝐽 → 𝐴}
has a smallest element.

Proof. Note that 𝒥 is nonempty as 𝐼 ∈ 𝒥. Also, if 𝐽 ∈ 𝒥 and 𝐽 ⊂ 𝐽′ ⊂ 𝐼 then 𝐽′ ∈ 𝒥
because we can pushforward the object 𝑦 to an object 𝑦′ over 𝐵/𝐽′. Let 𝐽 and 𝐾 be elements
of the displayed set. We claim that 𝐽 ∩ 𝐾 ∈ 𝒥 which will prove the lemma. Since 𝐼 is a
𝑘-vector space we can find an ideal 𝐽 ⊂ 𝐽′ ⊂ 𝐼 such that 𝐽 ∩ 𝐾 = 𝐽′ ∩ 𝐾 and such that
𝐽′ + 𝐾 = 𝐼. By the above we may replace 𝐽 by 𝐽′ and assume that 𝐽 + 𝐾 = 𝐼. In this case

𝐴/(𝐽 ∩ 𝐾) = 𝐴/𝐽 ×𝐴/𝐼 𝐴/𝐾.
Hence the existence of an element 𝑧 ∈ ℱ(𝐴/(𝐽 ∩ 𝐾)) mapping to 𝑥 follows, via (S1), from
the existence of the elements we have assumed exist over 𝐴/𝐽 and 𝐴/𝐾. �

We will improve on the following result later.

Lemma 51.12.4. Let ℱ be a category cofibred in groupoids over 𝒞Λ. Assume the following
conditions hold:

(1) ℱ is a predeformation category.
(2) ℱ satisfies (S1).
(3) ℱ satisfies (S2).
(4) dim𝑘 𝑇ℱ is finite.

Then ℱ has a versal formal object.

Proof. Assume (1), (2), (3), and (4) hold. Choose an object 𝑅 ∈ 𝑂𝑏(𝒞Λ) such that 𝑅|𝒞Λ
is smooth, see Example 51.8.10. Let 𝑟 = dim𝑘 𝑇ℱ and put 𝑆 = 𝑅[[𝑋1, … , 𝑋𝑟]].
We are going to inductively construct for 𝑛 ≥ 2 pairs (𝐽𝑛, 𝑓𝑛−1 ∶ 𝜉𝑛 → 𝜉𝑛−1) where 𝐽𝑛 ⊂ 𝑆
is an decreasing sequence of ideals and 𝑓𝑛−1 ∶ 𝜉𝑛 → 𝜉𝑛−1 is a morphism of ℱ lying over
the projection 𝑆/𝐽𝑛 → 𝑆/𝐽𝑛−1.
Step 1. Let 𝐽1 = 𝔪𝑆. Let 𝜉1 be the unique (up to unique isomorphism) object of ℱ over
𝑘 = 𝑆/𝐽1 = 𝑆/𝔪𝑆

Step 2. Let 𝐽2 = 𝔪2
𝑆 + 𝔪𝑅𝑆. Then 𝑆/𝐽2 = 𝑘[𝑉] with 𝑉 = 𝑘𝑋1 ⊕ … ⊕ 𝑘𝑋𝑟 By (S2) for ℱ

we get a bijection
ℱ(𝑆/𝐽2) ⟶ 𝑇ℱ ⊗𝑘 𝑉,

see Lemmas 51.9.5 and 51.11.2. Choose a basis 𝜃1, … , 𝜃𝑟 for 𝑇ℱ and set 𝜉2 = ∑ 𝜃𝑖 ⊗𝑋𝑖 ∈
𝑂𝑏(ℱ(𝑆/𝐽2)). The point of this choice is that

𝑑𝜉2 ∶ 𝑀𝑜𝑟𝒞Λ
(𝑆/𝐽2, 𝑘[𝜖]) ⟶ 𝑇ℱ

is surjective. Let 𝑓1 ∶ 𝜉2 → 𝜉1 be the unique morphism.
Induction step. Assume (𝐽𝑛, 𝑓𝑛−1 ∶ 𝜉𝑛 → 𝜉𝑛−1) has been constructed for some 𝑛 ≥ 2.
There is a minimal element 𝐽𝑛+1 of the set of ideals 𝐽 ⊂ 𝑆 satisfying: (a) 𝔪𝑆𝐽𝑛 ⊂ 𝐽 ⊂ 𝐽𝑛
and (b) there exists a morphism 𝜉𝑛+1 → 𝜉𝑛 lying over 𝑆/𝐽 → 𝑆/𝐽𝑛, see Lemma 51.12.3.
Let 𝑓𝑛 ∶ 𝜉𝑛+1 → 𝜉𝑛 be any morphism of ℱ lying over 𝑆/𝐽𝑛+1 → 𝑆/𝐽𝑛.

Set 𝐽 = ⋂ 𝐽𝑛. Set 𝑆 = 𝑆/𝐽. Set 𝐽𝑛 = 𝐽𝑛/𝐽. By Lemma 51.4.7 the sequence of ideals (𝐽𝑛)
induces the 𝔪𝑆-adic topology on 𝑆. Since (𝜉𝑛, 𝑓𝑛) is an object of ℱ̂ℐ(𝑆), where ℐ is the
filtration (𝐽𝑛) of 𝑆, we see that (𝜉𝑛, 𝑓𝑛) induces an object 𝜉 of ℱ̂(𝑆). see Lemma 51.7.4.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06SZ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06IW


2534 51. FORMAL DEFORMATION THEORY

We prove 𝜉 is versal. For versality it suffices to check conditions (1) and (2) of Lemma
51.12.2. Condition (1) follows from our choice of 𝜉2 in Step 2 above. Suppose given a
diagram in ℱ̂

𝑦

��
𝜂 // 𝑥

lying over

𝐵

𝑓
��

𝑆 // 𝐴

in 𝒞Λ with 𝑓 ∶ 𝐵 → 𝐴 a small extension of Artinian rings. We have to show there is a map
𝑆 → 𝐵 fitting into the diagram on the right. Choose 𝑛 such that 𝑆 → 𝐴 factors through
𝑆 → 𝑆/𝐽𝑛. This is possible as the sequence (𝐽𝑛) induces the 𝔪𝑆-adic topology as we saw
above. The pushforward of 𝜉 along 𝑆 → 𝑆/𝐽𝑛 is 𝜉𝑛. We may factor 𝜉 → 𝑥 as 𝜉 → 𝜉𝑛 → 𝑥
hence we get a diagram in ℱ

𝑦

��
𝜉𝑛

// 𝑥

lying over

𝐵

𝑓
��

𝑆/𝐽𝑛
// 𝐴.

To check condition (2) of Lemma 51.12.2 it suffices to complete the diagram

𝑆/𝐽𝑛+1

��

// 𝐵

𝑓
��

𝑆/𝐽𝑛
// 𝐴

or equivalently, to complete the diagram

𝑆/𝐽𝑛 ×𝐴 𝐵

𝑝1
��

𝑆/𝐽𝑛+1

99

// 𝑆/𝐽𝑛.

If 𝑝1 has a section we are done. If not, by Lemma 51.3.8 (2) 𝑝1 is a small extension, so by
Lemma 51.3.12 (4) 𝑝1 is an essential surjection. Recall that 𝑆 = 𝑅[[𝑋1, … , 𝑋𝑟]] and that
we chose 𝑅 such that 𝑅|𝒞Λ

is smooth. Hence there exists a map ℎ ∶ 𝑅 → 𝐵 lifting the
map 𝑅 → 𝑆 → 𝑆/𝐽𝑛 → 𝐴. By the universal property of a power series ring there is an
𝑅-algebra map ℎ ∶ 𝑆 = 𝑅[[𝑋1, … , 𝑋2]] → 𝐵 lifting the given map 𝑆 → 𝑆/𝐽𝑛 → 𝐴. This
induces a map 𝑔 ∶ 𝑆 → 𝑆/𝐽𝑛 ×𝐴 𝐵 making the solid square in the diagram

𝑆

��

𝑔
// 𝑆/𝐽𝑛 ×𝐴 𝐵

𝑝1
��

𝑆/𝐽𝑛+1

99

// 𝑆/𝐽𝑛

commute. Then 𝑔 is a surjection since 𝑝1 is an essential surjection. We claim the ideal
𝐾 = Ker(𝑔) of 𝑆 satisfies conditions (a) and (b) of the construction of 𝐽𝑛+1 in the induction
step above. Namely, 𝐾 ⊂ 𝐽𝑛 is clear and 𝔪𝑆𝐽𝑛 ⊂ 𝐾 as 𝑝1 is a small extension; this proves
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(a). By (S1) applied to
𝑦

��
𝜉𝑛

// 𝑥,
there exists a lifting of 𝜉𝑛 to 𝑆/𝐾 ≅ 𝑆/𝐽𝑛 ×𝐴 𝐵, so (b) holds. Since 𝐽𝑛+1 was the minimal
ideal with properties (a) and (b) this implies 𝐽𝑛+1 ⊂ 𝐾. Thus the desired map 𝑆/𝐽𝑛+1 →
𝑆/𝐾 ≅ 𝑆/𝐽𝑛 ×𝐴 𝐵 exists. �

51.13. Minimal versal formal objects

We do a little bit of work to try and understand (non)uniqueness of versal formal objects. It
turns out that if a predeformation category has a versal formal object, then it has a minimal
versal formal object and any two such are isomorphic. Moreover, all versal formal objects
are ``more or less'' the same up to replacing the base ring by a power series extension.
Let ℱ be a category cofibred in groupoids over 𝒞Λ. For every object 𝑥 of ℱ lying over
𝐴 ∈ 𝑂𝑏(𝒞Λ) consider the category 𝒮𝑥 with objects

𝑂𝑏(𝒮𝑥) = {𝑥′ → 𝑥 ∣ 𝑥′ → 𝑥 lies over 𝐴′ ⊂ 𝐴}
and morphisms are morphisms over 𝑥. For every 𝑦 → 𝑥 in ℱ lying over 𝑓 ∶ 𝐵 → 𝐴 in
𝒞Λ there is a functor 𝑓∗ ∶ 𝒮𝑦 → 𝒮𝑥 defined as follows: Given 𝑦′ → 𝑦 lying over 𝐵′ ⊂ 𝐵
set 𝐴′ = 𝑓(𝐵′) and let 𝑦′ → 𝑥′ be over 𝐵′ → 𝑓(𝐵′) be the pushforward of 𝑦′. By the
axioms of a category cofibred in groupoids we obtain a unique morphism 𝑥′ → 𝑥 lying
over 𝑓(𝐵′) → 𝐴 such that

𝑦′

��

// 𝑥′

��
𝑦 // 𝑥

commutes. Then 𝑥′ → 𝑥 is an object of 𝒮𝑥. We say an object 𝑥′ → 𝑥 of 𝒮𝑥 is minimal if
any morphism (𝑥′

1 → 𝑥) → (𝑥′ → 𝑥) in 𝒮𝑥 is an isomorphism, i.e., 𝑥′ and 𝑥′
1 are defined

over the same subring of 𝐴. Since 𝐴 has finite length as a Λ-module we see that minimal
objects always exist.

Lemma 51.13.1. Let ℱ be a category cofibred in groupoids over 𝒞Λ which has (S1).
(1) For 𝑦 → 𝑥 in ℱ a minimal object in 𝒮𝑦 maps to a minimal object of 𝒮𝑥.
(2) For 𝑦 → 𝑥 in ℱ lying over a surjection 𝑓 ∶ 𝐵 → 𝐴 in 𝒞Λ every minimal object

of 𝒮𝑥 is the image of a minimal object of 𝒮𝑦.

Proof. Proof of (1). Say 𝑦 → 𝑥 lies over 𝑓 ∶ 𝐵 → 𝐴. Let 𝑦′ → 𝑦 lying over 𝐵′ ⊂ 𝐵 be a
minimal object of 𝒮𝑦. Let

𝑦′

��

// 𝑥′

��
𝑦 // 𝑥

lying over

𝐵′

��

// 𝑓(𝐵′)

��
𝐵 // 𝐴

be as in the construction of 𝑓∗ above. Suppose that (𝑥″ → 𝑥) → (𝑥′ → 𝑥) is a morphism
of 𝒮𝑥 with 𝑥″ → 𝑥′ lying over 𝐴″ ⊂ 𝑓(𝐵′). By (S1) there exists 𝑦″ → 𝑦′ lying over
𝐵′ ×𝑓(𝐵′) 𝐴″ → 𝐵′. Since 𝑦′ → 𝑦 is minimal we conclude that 𝐵′ ×𝑓(𝐵′) 𝐴″ → 𝐵′ is an
isomorphism, which implies that 𝐴″ = 𝑓(𝐵′), i.e., 𝑥′ → 𝑥 is minimal.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06T1
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Proof of (2). Suppose 𝑓 ∶ 𝐵 → 𝐴 is surjective and 𝑦 → 𝑥 lies over 𝑓. Let 𝑥′ → 𝑥
be a minimal object of 𝒮𝑥 lying over 𝐴′ ⊂ 𝐴. By (S1) there exists 𝑦′ → 𝑦 lying over
𝐵′ = 𝑓−1(𝐴′) = 𝐵 ×𝐴 𝐴′ → 𝐵 whose image in 𝒮𝑥 is 𝑥′ → 𝑥. So 𝑓∗(𝑦′ → 𝑦) = 𝑥′ → 𝑥.
Choose a morphism (𝑦″ → 𝑦) → (𝑦′ → 𝑦) in 𝒮𝑦 with 𝑦″ → 𝑦 a minimal object (this is
possible by the remark on lengths above the lemma). Then 𝑓∗(𝑦″ → 𝑦) is an object of 𝒮𝑥
which maps to 𝑥′ → 𝑥 (by functoriality of 𝑓∗) hence is isomorphic to 𝑥′ → 𝑥 by minimality
of 𝑥′ → 𝑥. �

Lemma 51.13.2. Let ℱ be a category cofibred in groupoids over 𝒞Λ which has (S1). Let
𝜉 be a versal formal object of ℱ lying over 𝑅. There exists a morphism 𝜉′ → 𝜉 lying over
𝑅′ ⊂ 𝑅 with the following minimality properties

(1) for every 𝑓 ∶ 𝑅 → 𝐴 with 𝐴 ∈ 𝑂𝑏(𝒞Λ) the pushforwards

𝜉′

��

// 𝑥′

��
𝜉 // 𝑥

lying over

𝑅′

��

// 𝑓(𝑅′)

��
𝑅 // 𝐴

produce a minimal object 𝑥′ → 𝑥 of 𝒮𝑥, and
(2) for any morphism of formal objects 𝜉″ → 𝜉′ the corresponding morphism 𝑅″ →

𝑅′ is surjective.

Proof. Write 𝜉 = (𝑅, 𝜉𝑛, 𝑓𝑛). Set 𝑅′
1 = 𝑘 and 𝜉′

1 = 𝜉1. Suppose that we have constructed
minimal objects 𝜉′

𝑚 → 𝜉𝑚 of 𝒮𝜉𝑚
lying over 𝑅′

𝑚 ⊂ 𝑅/𝔪𝑚
𝑅 for 𝑚 ≤ 𝑛 and morphisms

𝑓′
𝑚 ∶ 𝜉′

𝑚+1 → 𝜉′
𝑚 compatible with 𝑓𝑚 for 𝑚 ≤ 𝑛 − 1. By Lemma 51.13.1 (2) there exists

a minimal object 𝜉′
𝑛+1 → 𝜉𝑛+1 lying over 𝑅′

𝑛+1 ⊂ 𝑅/𝔪𝑛+1
𝑅 whose image is 𝜉′

𝑛 → 𝜉𝑛 over
𝑅′

𝑛 ⊂ 𝑅/𝔪𝑛
𝑅. This produces the commutative diagram

𝜉′
𝑛+1 𝑓′

𝑛

//

��

𝜉′
𝑛

��
𝜉𝑛+1

𝑓𝑛 // 𝜉𝑛

by construction. Moreover the ring map 𝑅′
𝑛+1 → 𝑅′

𝑛 is surjective. Set 𝑅′ = 𝑙𝑖𝑚𝑛 𝑅′
𝑛. Then

𝑅′ → 𝑅 is injective.

However, it isn't a priori clear that 𝑅′ is Noetherian. To prove this we use that 𝜉 is versal.
Namely, versality implies that there exists a morphism 𝜉 → 𝜉′

𝑛 in ℱ̂, see Lemma 51.8.15.
The corresponding map 𝑅 → 𝑅′

𝑛 has to be surjective (as 𝜉′
𝑛 → 𝜉𝑛 is minimal in 𝒮𝜉𝑛

).
Thus the dimensions of the cotangent spaces are bounded and Lemma 51.4.8 implies 𝑅′ is
Noetherian, i.e., an object of 𝒞Λ. By Lemma 51.7.4 (plus the result on filtrations of Lemma
51.4.8) the sequence of elements 𝜉′

𝑛 defines a formal object 𝜉′ over 𝑅′ and we have a map
𝜉′ → 𝜉.

By construction (1) holds for 𝑅 → 𝑅/𝔪𝑛
𝑅 for each 𝑛. Since each 𝑅 → 𝐴 as in (1) factors

through 𝑅 → 𝑅/𝔪𝑛
𝑅 → 𝐴 we see that (1) for 𝑥′ → 𝑥 over 𝑓(𝑅) ⊂ 𝐴 follows from the

minimality of 𝜉′
𝑛 → 𝜉𝑛 over 𝑅′

𝑛 → 𝑅/𝔪𝑛
𝑅 by Lemma 51.13.1 (1).

If 𝑅″ → 𝑅′ as in (2) is not surjective, then 𝑅″ → 𝑅′ → 𝑅′
𝑛 would not be surjective

for some 𝑛 and 𝜉′
𝑛 → 𝜉𝑛 wouldn't be minimal, a contradiction. This contradiction proves

(2). �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06T2
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Lemma 51.13.3. Let ℱ be a category cofibred in groupoids over 𝒞Λ which has (S1). Let
𝜉 be a versal formal object of ℱ lying over 𝑅. Let 𝜉′ → 𝜉 be a morphism of formal objects
lying over 𝑅′ ⊂ 𝑅 as constructed in Lemma 51.13.2. Then

𝑅 ≅ 𝑅′[[𝑥1, … , 𝑥𝑟]]

is a power series ring over 𝑅′. Moreover, 𝜉′ is a versal formal object too.

Proof. By Lemma 51.8.15 there exists a morphism 𝜉 → 𝜉′. By Lemma 51.13.2 the cor-
responding map 𝑓 ∶ 𝑅 → 𝑅′ induces a surjection 𝑓|𝑅′ ∶ 𝑅′ → 𝑅′. This is an iso-
morphism by Algebra, Lemma 7.28.8. Hence 𝐼 = Ker(𝑓) is an ideal of 𝑅 such that
𝑅 = 𝑅′ ⊕ 𝐼. Let 𝑥1, … , 𝑥𝑛 ∈ 𝐼 be elements which form a basis for 𝐼/𝔪𝑅𝐼. Consider
the map 𝑆 = 𝑅′[[𝑋1, … , 𝑋𝑟]] → 𝑅 mapping 𝑋𝑖 to 𝑥𝑖. For every 𝑛 ≥ 1 we get a sur-
jection of Artinian 𝑅′-algebras 𝐵 = 𝑆/𝔪𝑛

𝑆 → 𝑅/𝔪𝑛
𝑅 = 𝐴. Denote 𝑦 ∈ 𝑂𝑏(ℱ(𝐵), resp.

𝑥 ∈ 𝑂𝑏(ℱ(𝐴)) the pushforward of 𝜉′ along 𝑅′ → 𝑆 → 𝐵, resp. 𝑅′ → 𝑆 → 𝐴. Note that
𝑥 is also the pushforward of 𝜉 along 𝑅 → 𝐴 as 𝜉 is the pushforward of 𝜉′ along 𝑅′ → 𝑅.
Thus we have a solid diagram

𝑦

��
𝜉 //

@@

𝑥

lying over

𝑆/𝔪𝑛
𝑆

��
𝑅 //

==

𝑅/𝔪𝑛
𝑅

Because 𝜉 is versal, using Remark 51.8.14 we obtain the dotted arrows fitting into these
diagrams. In particular, the maps 𝑆/𝔪𝑛

𝑆 → 𝑅/𝔪𝑛
𝑅 have sections ℎ𝑛 ∶ 𝑅/𝔪𝑛

𝑅 → 𝑆/𝔪𝑛
𝑆. It

follows from Lemma 51.4.9 that 𝑆 → 𝑅 is an isomorphism.

As 𝜉 is a pushforward of 𝜉′ along 𝑅′ → 𝑅 we obtain from Remark 51.7.13 a commutative
diagram

𝑅|𝒞Λ
//

𝜉
!!

𝑅′|𝒞Λ

𝜉′
}}

ℱ
Since 𝑅′ → 𝑅 has a left inverse (namely 𝑅 → 𝑅/𝐼 = 𝑅′) we see that 𝑅|𝒞Λ

→ 𝑅′|𝒞Λ
is

essentially surjective. Hence by Lemma 51.8.7 we see that 𝜉′ is smooth, i.e., 𝜉′ is a versal
formal object. �

Motivated by the preceding lemmas we make the following definition.

Definition 51.13.4. Let ℱ be a predeformation category. We say a versal formal object 𝜉
of ℱ is minimal2 if for any morphism of formal objects 𝜉′ → 𝜉 the underlying map on rings
is surjective. Sometimes a minimal versal formal object is called miniversal.

The work in this section shows this definition is reasonable. First of all, the existence of
a versal formal object implies that ℱ has (S1). Then the preceding lemmas show there
exists a minimal versal formal object. Finally, any two minimal versal formal objects are
isomorphic. Here is a summary of our results (with detailed proofs).

Lemma 51.13.5. Let ℱ be a predeformation category which has a versal formal object.
Then

2This may be nonstandard terminology. Many authors tie this notion in with properties of tangent spaces.
We will make the link in Section 51.14.
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(1) ℱ has a minimal versal formal object,
(2) minimal versal objects are unique up to isomorphism, and
(3) any versal object is the pushforward of a minimal versal object along a power

series ring extension.

Proof. Suppse ℱ has a versal formal object 𝜉 over 𝑅. Then it satisfies (S1), see Lemma
51.12.1. Let 𝜉′ → 𝜉 over 𝑅′ ⊂ 𝑅 be any of the morphisms constructed in Lemma 51.13.2.
By Lemma 51.13.3 we see that 𝜉′ is versal, hence it is a minimal versal formal object (by
construction). This proves (1). Also, 𝑅 ≅ 𝑅′[[𝑥1, … , 𝑥𝑛]] which proves (3).

Suppose that 𝜉𝑖/𝑅𝑖 are two minimal versal formal objects. By Lemma 51.8.15 there exist
morphisms 𝜉1 → 𝜉2 and 𝜉2 → 𝜉1. The corresponding ring maps 𝑓 ∶ 𝑅1 → 𝑅2 and
𝑔 ∶ 𝑅2 → 𝑅1 are surjective by minimality. Hence the compositions 𝑔 ∘ 𝑓 ∶ 𝑅1 → 𝑅1
and 𝑓 ∘ 𝑔 ∶ 𝑅2 → 𝑅2 are isomorphisms by Algebra, Lemma 7.28.8. Thus 𝑓 and 𝑔 are
isomorphisms whence the maps 𝜉1 → 𝜉2 and 𝜉2 → 𝜉1 are isomorphisms (because ℱ̂ is
cofibred in groupoids by Lemma 51.7.2). This proves (2) and finishes the proof of the
lemma. �

51.14. Miniversal formal objects and tangent spaces

The general notion of minimality introduced in Definition 51.13.4 can sometimes be de-
duced from the behaviour on tangent spaces. Let 𝜉 be a formal object of the predeformation
category ℱ and let 𝜉 ∶ 𝑅|𝒞Λ

→ ℱ be the corresponding morphism. Then we can consider
the following two conditions

𝑑𝜉 ∶ DerΛ(𝑅, 𝑘) → 𝑇ℱ is bijective(51.14.0.1)
𝑑𝜉 ∶ DerΛ(𝑅, 𝑘) → 𝑇ℱ is bijective on DerΛ(𝑘, 𝑘)-orbits.(51.14.0.2)

Here we are using the identification 𝑇𝑅|𝒞Λ
= DerΛ(𝑅, 𝑘) of Example 51.10.11 and the ac-

tion (51.11.6.2) of derivations on the tangent spaces. If 𝑘′ ⊂ 𝑘 is separable, thenDerΛ(𝑘, 𝑘) =
0 and the two conditions are equivalent. It turns out that, in the presence of condition (S2) a
versal formal object is minimal if and only if 𝜉 satisfies (51.14.0.2). Moreover, if 𝜉 satisfies
(51.14.0.1), then ℱ satisfies (S2).

Lemma 51.14.1. Let ℱ be a predeformation category. Let 𝜉 be a versal formal object of ℱ
such that (51.14.0.2) holds. Then 𝜉 is a minimal versal formal object. In particular, such 𝜉
are unique up to isomorphism.

Proof. If 𝜉 is not minimal, then there exists a morphism 𝜉′ → 𝜉 lying over 𝑅′ → 𝑅 such
that 𝑅 = 𝑅′[[𝑥1, … , 𝑥𝑛]] with 𝑛 > 0, see Lemma 51.13.5. Thus 𝑑𝜉 factors as

DerΛ(𝑅, 𝑘) → DerΛ(𝑅′, 𝑘) → 𝑇ℱ

and we see that (51.14.0.2) cannot hold because 𝐷 ∶ 𝑓 ↦ 𝜕/𝜕𝑥1(𝑓) mod 𝔪𝑅 is an element
of the kernel of the first arrow which is not in the image of DerΛ(𝑘, 𝑘) → DerΛ(𝑅, 𝑘). �

Lemma 51.14.2. Let ℱ be a predeformation category. Let 𝜉 be a versal formal object of
ℱ such that (51.14.0.1) holds. Then

(1) ℱ satisfies (S1).
(2) ℱ satisfies (S2).
(3) dim𝑘 𝑇ℱ is finite.
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Proof. Condition (S1) holds by Lemma 51.12.1. The first part of (S2) holds since (S1)
holds. Let

𝑦 𝑐
//

𝑎
��

𝑥𝜖

𝑒
��

𝑥 𝑑 // 𝑥0

and

𝑦′
𝑐′
//

𝑎′

��

𝑥𝜖

𝑒

��
𝑥 𝑑 // 𝑥0

lying over

𝐴 ×𝑘 𝑘[𝜖] //

��

𝑘[𝜖]

��
𝐴 // 𝑘

be diagrams as in the second part of (S2). As above we can find morphisms 𝑏 ∶ 𝜉 → 𝑦 and
𝑏′ ∶ 𝜉 → 𝑦′ such that

𝜉 𝑏′
//

𝑏
��

𝑦′

𝑎′

��
𝑦 𝑎 // 𝑥

commutes. Let 𝑝 ∶ ℱ → 𝒞Λ denote the structure morphism. Say ̂𝑝(𝜉) = 𝑅, i.e., 𝜉 lies over
𝑅 ∈ 𝑂𝑏(𝒞Λ). We see that the pushforward of 𝜉 via 𝑝(𝑐) ∘𝑝(𝑏) is 𝑥𝜖 and that the pushforward
of 𝜉 via 𝑝(𝑐′) ∘ 𝑝(𝑏′) is 𝑥𝜖. Since 𝜉 satisfies (51.14.0.1), we see that 𝑝(𝑐) ∘ 𝑝(𝑏) = 𝑝(𝑐′) ∘ 𝑝(𝑏′)
as maps 𝑅 → 𝑘[𝜖]. Hence 𝑝(𝑏) = 𝑝(𝑏′) as maps from 𝑅 → 𝐴 ×𝑘 𝑘[𝜖]. Thus we see that 𝑦
and 𝑦′ are isomorphic to the pushforward of 𝜉 along this map and we get a unique morphism
𝑦 → 𝑦′ over 𝐴 ×𝑘 𝑘[𝜖] compatible with 𝑏 and 𝑏′ as desired.

Finally, by Example 51.10.11 we see dim𝑘 𝑇ℱ = dim𝑘 𝑇𝑅|𝒞Λ
is finite. �

Example 51.14.3. There exist predeformation categories which have a versal formal object
satisfying (51.14.0.2) but which do not satisfy (S2). A quick example is to take 𝐹 = 𝑘[𝜖]/𝐺
where 𝐺 ⊂ Aut𝒞Λ

(𝑘[𝜖]) is a finite nontrivial subgroup. Namely, the map 𝑘[𝜖] → 𝐹 is
smooth, but the tangent space of 𝐹 does not have a natural 𝑘-vector space structure (as it is
a quotient of a 𝑘-vector space by a finite group).

Lemma 51.14.4. Let ℱ be a predeformation category satisfying (S2) which has a versal
formal object. Then its minimal versal formal object satisfies (51.14.0.2).

Proof. Let 𝜉 be a minimal versal formal object for ℱ, see Lemma 51.13.5. Say 𝜉 lies over
𝑅 ∈ 𝑂𝑏(𝒞Λ). In order to parse (51.14.0.2) we point out that 𝑇ℱ has a natural 𝑘-vector space
structure (see Lemma 51.11.2), that 𝑑𝜉 ∶ DerΛ(𝑅, 𝑘) → 𝑇ℱ is linear (see Lemma 51.11.4),
and that the action of DerΛ(𝑘, 𝑘) is given by addition (see Lemma 51.11.6). Consider the
diagram

𝐻𝑜𝑚𝑘(𝔪𝑅/𝔪2
𝑅, 𝑘)

𝐾 // DerΛ(𝑅, 𝑘)
𝑑𝜉

//

OO

𝑇ℱ

DerΛ(𝑘, 𝑘)

OO 88

The vector space 𝐾 is the kernel of 𝑑𝜉. Note that the middle column is exact in the middle
as it is dual to the sequence (51.3.10.1). If (51.14.0.2) fails, then we can find a nonzero
element 𝐷 ∈ 𝐾 which does not map to zero in 𝐻𝑜𝑚𝑘(𝔪𝑅/𝔪2

𝑅, 𝑘). This means there exists
an 𝑡 ∈ 𝔪𝑅 such that 𝐷(𝑡) = 1. Set 𝑅′ = {𝑎 ∈ 𝑅 ∣ 𝐷(𝑎) = 0}. As 𝐷 is a derivation this is
a subring of 𝑅. Since 𝐷(𝑡) = 1 we see that 𝑅′ → 𝑘 is surjective (compare with the proof
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of Lemma 51.3.12). Note that 𝔪𝑅′ = Ker(𝐷 ∶ 𝔪𝑅 → 𝑘) is an ideal of 𝑅 and 𝔪2
𝑅 ⊂ 𝔪𝑅′.

Hence
𝔪𝑅/𝔪2

𝑅 = 𝔪𝑅′/𝔪2
𝑅 + 𝑘𝑡

which implies that the map
𝑅′/𝔪2

𝑅 ×𝑘 𝑘[𝜖] → 𝑅/𝔪2
𝑅

sending 𝜖 to 𝑡 is an isomorphism. In particular there is a map 𝑅/𝔪2
𝑅 → 𝑅′/𝔪2

𝑅.

Let 𝜉 → 𝑦 be a morphism lying over 𝑅 → 𝑅/𝔪2
𝑅. Let 𝑦 → 𝑥 be a morphism lying

over 𝑅/𝔪2
𝑅 → 𝑅′/𝔪2

𝑅. Let 𝑦 → 𝑥𝜖 be a morphism lying over 𝑅/𝔪2
𝑅 → 𝑘[𝜖]. Let 𝑥0 be

the unique (up to unique isomorphism) object of ℱ over 𝑘. By the axioms of a category
cofibred in groupoids we obtain a commutative diagram

𝑦 //

��

𝑥𝜖

��
𝑥 // 𝑥0

lying over

𝑅′/𝔪2
𝑅 ×𝑘 𝑘[𝜖] //

��

𝑘[𝜖]

��
𝑅′/𝔪2

𝑅
// 𝑘.

Because 𝐷 ∈ 𝐾 we see that 𝑥𝜖 is isomorphic to 0 ∈ ℱ(𝑘[𝜖]), i.e., 𝑥𝜖 is the pushforward of 𝑥0
via 𝑘 → 𝑘[𝜖], 𝑎 ↦ 𝑎. Hence by Lemma 51.9.7 we see that there exists a morphism 𝑥 → 𝑦.
Since lengthΛ(𝑅′/𝔪2

𝑅) < lengthΛ(𝑅/𝔪2
𝑅) the corresponding ring map 𝑅′/𝔪2

𝑅 → 𝑅/𝔪2
𝑅 is

not surjective. This contradicts the minimality of 𝜉/𝑅, see part (1) of Lemma 51.13.2. This
contradiction shows that such a 𝐷 cannot exist, hence we win. �

Theorem 51.14.5. Let ℱ be a predeformation category. Consider the following conditions
(1) ℱ has a minimal versal formal object satisfying (51.14.0.1),
(2) ℱ has a minimal versal formal object satisfying (51.14.0.2),
(3) the following conditions hold:

(a) ℱ satisfies (S1).
(b) ℱ satisfies (S2).
(c) dim𝑘 𝑇ℱ is finite.

We always have
(1) ⇒ (3) ⇒ (2).

If 𝑘′ ⊂ 𝑘 is separable, then all three are equivalent.

Proof. Lemma 51.14.2 shows that (1) ⇒ (3). Lemmas 51.12.4 and 51.14.4 show that (3)
⇒ (2). If 𝑘′ ⊂ 𝑘 is separable then DerΛ(𝑘, 𝑘) = 0 and we see that (51.14.0.1) = (51.14.0.2),
i.e., (1) is the same as (2).

An alternative proof of (3) ⇒ (1) in the classical case is to add a few words to the proof
of Lemma 51.12.4 to see that one can right away construct a versal object which satisfies
(51.14.0.1) in this case. This avoids the use of Lemma 51.12.4 in the classical case. Details
omitted. �

Remark 51.14.6. When ℱ is a predeformation functor, the condition dim𝑘 𝑇ℱ < ∞ is
precisely condition (H3) from Schlessinger's paper. In the classical case (or the case where
𝑘′ ⊂ 𝑘 is separable), Theorem 51.14.5 recovers Schlessinger's theorem on the existence of
``hulls''. In our terminology a hull is a versal formal object 𝜉 for a predeformation functor
such that 𝑑𝜉 is an isomorphism.
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Remark 51.14.7. Let ℱ be a predeformation category satisfying (S1), (S2), and dim𝑘 𝑇ℱ <
∞. Then ℱ also satisfies (S1), (S2), and dim𝑘 𝑇ℱ < ∞, see Lemma 51.9.5. Thus, if 𝑘′ ⊂ 𝑘
is separable, then ℱ has a hull (see Remark 51.14.6). In fact, if 𝜉 is a minimal versal object
for ℱ lying over 𝑅, then the composition

𝑅|𝒞Λ
⟶ ℱ ⟶ ℱ

is smooth and identifies tangent spaces, i.e., the image 𝜉 of 𝜉 in ℱ is a hull. This follows
from the fact that ℱ → ℱ identifies tangent spaces.

Example 51.14.8. In Example 51.8.10 we constructed objects 𝑅 ∈ 𝒞Λ such that 𝑅|𝒞Λ
is smooth. We can reformulate this as follows. Let ℱ = 𝒞Λ considered as cofibred in
groupoids via the identity functor. In other words, ℱ is the category cofibred in sets cor-
responding to the functor 𝐹 ∶ 𝐴 ↦ {∗} (this is the final object in the category of functors
𝒞Λ → Sets). The condition that 𝑅|𝒞Λ

is smooth means exactly that 𝑅|𝒞Λ
→ 𝐹 is smooth,

i.e., that 𝜉 = ∗ is a formal versal object of ℱ over 𝑅. Hence ℱ has a versal formal object.
In fact, it is easy to see that ℱ satisfies condition (3) of Theorem 51.14.5. The theorem
implies that (2) holds. This means we can find a minimal versal formal object ∗ ∈ ℱ̂(𝑆)
over some 𝑆 ∈ 𝒞Λ such that 𝑑∗ ∶ DerΛ(𝑆, 𝑘) → 0 is bijective on DerΛ(𝑘, 𝑘)-orbits. Clearly
this means that the injection DerΛ(𝑘, 𝑘) → DerΛ(𝑆, 𝑘) is also surjective. In other words,
the exact sequence (51.3.10.2) turns into a pair of isomorphisms

𝐻1(𝐿𝑘/Λ) = 𝔪𝑆/𝔪2
𝑆 and Ω𝑆/Λ ⊗𝑆 𝑘 = Ω𝑘/Λ.

(The first arrow is injective because of the formal smoothness of 𝑆 over Λ; details omitted.)
Of course the existence of such a ring 𝑆 can be proved directly by judiciously slicing the
ring 𝑅 constructed in Example 51.8.10.

51.15. Rim-Schlessinger conditions and deformation categories

There is a very natural property of categories fibred in groupoids over 𝒞Λ which is easy
to check in practice and which implies Schlessinger's properties (S1) and (S2) we have
introduced earlier.

Definition 51.15.1. Let ℱ be a category cofibered in groupoids over 𝒞Λ. We say that ℱ
satisfies condition (RS) if for every diagram in ℱ

𝑥2

��
𝑥1

// 𝑥

lying over

𝐴2

��
𝐴1

// 𝐴

in 𝒞Λ with 𝐴2 → 𝐴 surjective, there exits a fiber product 𝑥1×𝑥𝑥2 in ℱ such that the diagram

𝑥1 ×𝑥 𝑥2
//

��

𝑥2

��
𝑥1

// 𝑥

lies over

𝐴1 ×𝐴 𝐴2
//

��

𝐴2

��
𝐴1

// 𝐴.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06IZ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06T9
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06J2


2542 51. FORMAL DEFORMATION THEORY

Lemma 51.15.2. Letℱ be a category cofibered in groupoids over𝒞Λ satisfying (RS). Given
a commutative diagram in ℱ

𝑦 //

��

𝑥2

��
𝑥1

// 𝑥

lying over

𝐴1 ×𝐴 𝐴2
//

��

𝐴2

��
𝐴1

// 𝐴.

with 𝐴2 → 𝐴 surjective, then it is a fiber square.

Proof. Since ℱ satisfies (RS), there exists a fiber product diagram

𝑥1 ×𝑥 𝑥2
//

��

𝑥2

��
𝑥1

// 𝑥

lying over

𝐴1 ×𝐴 𝐴2
//

��

𝐴2

��
𝐴1

// 𝐴.

The induced map 𝑦 → 𝑥1 ×𝑥 𝑥2 lies over id ∶ 𝐴1 ×𝐴 𝐴1 → 𝐴1 ×𝐴 𝐴1, hence it is an
isomorphism. �

Lemma 51.15.3. Let ℱ be a category cofibered in groupoids over 𝒞Λ. Then ℱ satisfies
(RS) if the condition in Definition 51.15.1 is assumed to hold only when 𝐴2 → 𝐴 is a small
extension.

Proof. Apply Lemma 51.3.3. The proof is similar to that of Lemma 51.8.2. �

Lemma 51.15.4. Let ℱ be a category cofibered in groupoids over 𝒞Λ. The following are
equivalent

(1) ℱ satisfies (RS),
(2) the functor ℱ(𝐴1 ×𝐴 𝐴2) → ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2) see (51.9.1.1) is an equivalence

of categories whenever 𝐴2 → 𝐴 is surjective, and
(3) same as in (2) whenever 𝐴2 → 𝐴 is a small extension.

Proof. Assume (1). By Lemma 51.15.2 we see that every object of ℱ(𝐴1 ×𝐴 𝐴2) is of the
form 𝑥1 ×𝑥 𝑥2. Moreover

𝑀𝑜𝑟𝐴1×𝐴𝐴2
(𝑥1 ×𝑥 𝑥2, 𝑦1 ×𝑦 𝑦2) = 𝑀𝑜𝑟𝐴1

(𝑥1, 𝑦1) ×𝑀𝑜𝑟𝐴(𝑥,𝑦) 𝑀𝑜𝑟𝐴2
(𝑥2, 𝑦2).

Hence we see that ℱ(𝐴1 ×𝐴 𝐴2) is a 2-fibre product of ℱ(𝐴1) with ℱ(𝐴2) over ℱ(𝐴) by
Categories, Remark 4.28.5. In other words, we see that (2) holds.

The implication (2) ⇒ (3) is immediate.

Assume (3). Let 𝑞1 ∶ 𝐴1 → 𝐴 and 𝑞2 ∶ 𝐴2 → 𝐴 be given with 𝑞2 a small extension. We
will use the description of the 2-fibre product ℱ(𝐴1)×ℱ(𝐴) ℱ(𝐴2) from Categories, Remark
4.28.5. Hence let 𝑦 ∈ ℱ(𝐴1 ×𝐴 𝐴2) correspond to (𝑥1, 𝑥2, 𝑥, 𝑎1 ∶ 𝑥1 → 𝑥, 𝑎2 ∶ 𝑥2 → 𝑥).
Let 𝑧 be an object of ℱ lying over 𝐶. Then

𝑀𝑜𝑟ℱ(𝑧, 𝑦) = {(𝑓, 𝛼) ∣ 𝑓 ∶ 𝐶 → 𝐴1 ×𝐴 𝐴2, 𝛼 ∶ 𝑓∗𝑧 → 𝑦}
= {(𝑓1, 𝑓2, 𝛼1, 𝛼2) ∣ 𝑓𝑖 ∶ 𝐶 → 𝐴𝑖, 𝛼𝑖 ∶ 𝑓𝑖,∗𝑧 → 𝑥𝑖,

𝑞1 ∘ 𝑓1 = 𝑞2 ∘ 𝑓2, 𝑞1,∗𝛼1 = 𝑞2,∗𝛼2}
= 𝑀𝑜𝑟ℱ(𝑧, 𝑥1) ×𝑀𝑜𝑟ℱ(𝑧,𝑥) 𝑀𝑜𝑟ℱ(𝑧, 𝑥2)

whence 𝑦 is a fibre product of 𝑥1 and 𝑥2 over 𝑥. Thus we see that ℱ satisfies (RS) in case
𝐴2 → 𝐴 is a small extension. Hence (RS) holds by Lemma 51.15.3. �
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Remark 51.15.5. When ℱ is cofibered in sets, condition (RS) is exactly condition (H4)
from Schlessinger's paper [Sch68, Theorem 2.11]. Namely, for a functor 𝐹 ∶ 𝒞Λ → Sets,
condition (RS) states: If 𝐴1 → 𝐴 and 𝐴2 → 𝐴 are maps in 𝒞Λ with 𝐴2 → 𝐴 surjective,
then the induced map 𝐹(𝐴1 ×𝐴 𝐴2) → 𝐹(𝐴1) ×𝐹(𝐴) 𝐹(𝐴2) is bijective.

Lemma 51.15.6. Let ℱ be a category cofibered in groupoids over 𝒞Λ. The condition (RS)
for ℱ implies both (S1) and (S2) for ℱ.

Proof. Using the reformulation of Lemma 51.15.4 and the explanation of (S1) following
Definition 51.9.1 it is immediate that (RS) implies (S1). This proves the first part of (S2).
The second part of (S2) follows because Lemma 51.15.2 tells us that 𝑦 = 𝑥1 ×𝑑,𝑥0,𝑒 𝑥2 = 𝑦′

if 𝑦, 𝑦′ are as in the second part of the definition of (S2) in Definition 51.9.1. (In fact the
morphism 𝑦 → 𝑦′ is compatible with both 𝑎, 𝑎′ and 𝑐, 𝑐′!) �

The following lemma is the analogue of Lemma 51.9.5. Recall that if ℱ is a category cofi-
bred in groupoids over 𝒞Λ and 𝑥 is an object of ℱ lying over 𝐴, then we denote Aut𝐴(𝑥) =
𝑀𝑜𝑟𝐴(𝑥, 𝑥) = 𝑀𝑜𝑟ℱ(𝐴)(𝑥, 𝑥). If 𝑥′ → 𝑥 is a morphism of ℱ lying over 𝐴′ → 𝐴 then there
is a well defined map of groups Aut𝐴′(𝑥′) → Aut𝐴(𝑥).

Lemma 51.15.7. Let ℱ be a category cofibered in groupoids over 𝒞Λ satisfying (RS). The
following conditions are equivalent:

(1) ℱ satisfies (RS).
(2) Let 𝑓1 ∶ 𝐴1 → 𝐴 and 𝑓2 ∶ 𝐴2 → 𝐴 be ring maps in 𝒞Λ with 𝑓2 surjective. The

induced map of sets of isomorphism classes

ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2) → ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2)

is injective.
(3) For every morphism 𝑥′ → 𝑥 in ℱ lying over a surjective ring map 𝐴′ → 𝐴, the

map Aut𝐴′(𝑥′) → Aut𝐴(𝑥) is surjective.
(4) For every morphism 𝑥′ → 𝑥 in ℱ lying over a small extension 𝐴′ → 𝐴, the map

Aut𝐴′(𝑥′) → Aut𝐴(𝑥) is surjective.

Proof. We prove that (1) is equivalent to (2) and (2) is equivalent to (3). The equivalence
of (3) and (4) follows from Lemma 51.3.3.

Let 𝑓1 ∶ 𝐴1 → 𝐴 and 𝑓2 ∶ 𝐴2 → 𝐴 be ring maps in 𝒞Λ with 𝑓2 surjective. By Remark
51.15.5 we see ℱ satisfies (RS) if and only if the map

ℱ(𝐴1 ×𝐴 𝐴2) → ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2)

is bijective for any such 𝑓1, 𝑓2. This map is at least surjective since that is the condition of
(S1) and ℱ satisfies (S1) by Lemmas 51.15.6 and 51.9.5. Moreover, this map factors as

ℱ(𝐴1 ×𝐴 𝐴2) ⟶ ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2) ⟶ ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2),

where the first map is a bijection since

ℱ(𝐴1 ×𝐴 𝐴2) ⟶ ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2)

is an equivalence by (RS) for ℱ. Hence (1) is equivalent to (2).

Assume (2) holds. Let 𝑥′ → 𝑥 be a morphism in ℱ lying over a surjective ring map
𝑓 ∶ 𝐴′ → 𝐴. Let 𝑎 ∈ Aut𝐴(𝑥). The objects

(𝑥′, 𝑥′, 𝑎 ∶ 𝑥 → 𝑥), (𝑥′, 𝑥′, id ∶ 𝑥 → 𝑥)
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of ℱ(𝐴′) ×ℱ(𝐴) ℱ(𝐴′) have the same image in ℱ(𝐴′) ×ℱ(𝐴) ℱ(𝐴′). By (2) there exists maps
𝑏1, 𝑏2 ∶ 𝑥′ → 𝑥′ such that

𝑥 𝑎
//

𝑓∗𝑏1
��

𝑥
𝑓∗𝑏2
��

𝑥 id // 𝑥
commutes. Hence 𝑏−1

2 ∘ 𝑏1 ∈ Aut𝐴′(𝑥′) has image 𝑎 ∈ Aut𝐴(𝑥). Hence (3) holds.

Assume (3) holds. Suppose

(𝑥1, 𝑥2, 𝑎 ∶ (𝑓1)∗𝑥1 → (𝑓2)∗𝑥2), (𝑥′
1, 𝑥′

2, 𝑎′ ∶ (𝑓1)∗𝑥′
1 → (𝑓2)∗𝑥′

2)

are objects of ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2) with the same image in ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2). Then there
are morphisms 𝑏1 ∶ 𝑥1 → 𝑥′

1 in ℱ(𝐴1) and 𝑏2 ∶ 𝑥2 → 𝑥′
2 in ℱ(𝐴2). By (3) we can modify

𝑏2 by an automorphism of 𝑥2 over 𝐴2 so that the diagram

(𝑓1)∗𝑥1 𝑎
//

(𝑓1)∗𝑏1
��

(𝑓2)∗𝑥2

(𝑓2)∗𝑏2
��

(𝑓1)∗𝑥′
1

𝑎′
// (𝑓2)∗𝑥′

2.

commutes. This proves (𝑥1, 𝑥2, 𝑎) ≅ (𝑥′
1, 𝑥′

2, 𝑎′) in ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2). Hence (2) holds.
�

Finally we define the notion of a deformation category.

Definition 51.15.8. A deformation category is a predeformation category ℱ satisfying
(RS). A morphism of deformation categories is a morphism of categories over 𝒞Λ.

Remark 51.15.9. We say that a functor 𝐹 ∶ 𝒞Λ → Sets is a deformation functor if the
associated cofibered set is a deformation category, i.e. if 𝐹(𝑘) is a one element set and 𝐹
satisfies (RS). If ℱ is a deformation category, then ℱ is a predeformation functor but not
necessarily a deformation functor, as Lemma 51.15.7 shows.

Example 51.15.10. A prorepresentable functor 𝐹 is a deformation functor. Namely, sup-
pose 𝑅 ∈ 𝑂𝑏(𝒞Λ) and 𝐹(𝐴) = 𝑀𝑜𝑟𝒞Λ

(𝑅, 𝐴). There is a unique morphism 𝑅 → 𝑘, so 𝐹(𝑘)
is a one element set. Since

𝐻𝑜𝑚Λ(𝑅, 𝐴1 ×𝐴 𝐴2) = 𝐻𝑜𝑚Λ(𝑅, 𝐴1) ×𝐻𝑜𝑚Λ(𝑅,𝐴) 𝐻𝑜𝑚Λ(𝑅, 𝐴2)

the same is true for maps in 𝒞Λ and we see that 𝐹 has (RS).

The following is one of our typical remarks on passing from a category cofibered in groupoids
to the predeformation category at a point over 𝑘: it says that this process preserves (RS).

Lemma 51.15.11. Letℱ be a category cofibered in groupoids over𝒞Λ. Let 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)).
Let ℱ𝑥0

be the category cofibred in groupoids over 𝒞Λ constructed in Remark 51.6.4. If ℱ
satisfies (RS), then so does ℱ𝑥0

. In particular, ℱ𝑥0
is a deformation category.

Proof. Any diagram as in Definition 51.15.1 in ℱ𝑥0
gives rise to a diagram in ℱ and the

output of (RS) for this diagram in ℱ can be viewed as an output for ℱ𝑥0
as well. �

The following lemma is the analogue of the fact that 2-fibre products of algebraic stacks
are algebraic stacks.
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Lemma 51.15.12. Let
ℋ ×ℱ 𝒢 //

��

𝒢

𝑔
��

ℋ
𝑓 // ℱ

be 2-fibre product of categories cofibered in groupoids over 𝒞Λ. If ℱ, 𝒢, ℋ all satisfy (RS),
then ℋ ×ℱ 𝒢 satisfies (RS).

Proof. If 𝐴 is an object of 𝒞Λ, then an object of the fiber category of ℋ ×ℱ 𝒢 over 𝐴 is a
triple (𝑢, 𝑣, 𝑎) where 𝑢 ∈ ℋ(𝐴), 𝑣 ∈ 𝒢(𝐴), and 𝑎 ∶ 𝑓(𝑢) → 𝑔(𝑣) is a morphism in ℱ(𝐴).
Consider a diagram in ℋ ×ℱ 𝒢

(𝑢2, 𝑣2, 𝑎2)

��
(𝑢1, 𝑣1, 𝑎1) // (𝑢, 𝑣, 𝑎)

lying over

𝐴2

��
𝐴1

// 𝐴

in 𝒞Λ with 𝐴2 → 𝐴 surjective. Since ℋ and 𝒢 satisfy (RS), there are fiber products 𝑢1 ×𝑢 𝑢2
and 𝑣1 ×𝑣 𝑣2 lying over 𝐴1 ×𝐴 𝐴2. Since ℱ satisfies (RS), Lemma 51.15.2 shows

𝑓(𝑢1 ×𝑢 𝑢2) //

��

𝑓(𝑢2)

��
𝑓(𝑢1) // 𝑓(𝑢)

and

𝑔(𝑣1 ×𝑣 𝑣2) //

��

𝑔(𝑣2)

��
𝑔(𝑣1) // 𝑔(𝑣)

are both fiber squares in ℱ. Thus we can view 𝑎1 ×𝑎 𝑎2 as a morphism from 𝑓(𝑢1 ×𝑢 𝑢2) to
𝑔(𝑣1 ×𝑣 𝑣2) over 𝐴1 ×𝐴 𝐴2. It follows that

(𝑢1 ×𝑢 𝑢2, 𝑣1 ×𝑣 𝑣2, 𝑎1 ×𝑎 𝑎2)

��

// (𝑢2, 𝑣2, 𝑎2)

��
(𝑢1, 𝑣1, 𝑎1) // (𝑢, 𝑣, 𝑎)

is a fiber square in ℋ ×ℱ 𝒢 as desired. �

51.16. Lifts of objects

The content of this section is that the tangent space has a principal homogeneous action on
the set of lifts along a small surjection in the case of a deformation category.

Definition 51.16.1. Let ℱ be a category cofibered in groupoids over 𝒞Λ. Let 𝑓 ∶ 𝐴′ → 𝐴
be a map in 𝒞Λ. Let 𝑥 ∈ ℱ(𝐴). The category Lift(𝑥, 𝑓) of lifts of 𝑥 along 𝑓 is the category
with the following objects and morphisms.

(1) Objects: A lift of 𝑥 along 𝑓 is a morphism 𝑥′ → 𝑥 lying over 𝑓.
(2) Morphisms: Amorphism of lifts from 𝑎1 ∶ 𝑥′

1 → 𝑥 to 𝑎2 ∶ 𝑥′
2 → 𝑥 is a morphism

𝑏 ∶ 𝑥′
1 → 𝑥′

2 in ℱ(𝐴′) such that 𝑎2 = 𝑎1 ∘ 𝑏.
The set Lift(𝑥, 𝑓) of lifts of 𝑥 along 𝑓 is the set of isomorphism classes of Lift(𝑥, 𝑓).

Remark 51.16.2. When the map 𝑓 ∶ 𝐴′ → 𝐴 is clear from the context, we may write
Lift(𝑥, 𝐴′) and Lift(𝑥, 𝐴′) in place of Lift(𝑥, 𝑓) and Lift(𝑥, 𝑓).
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Remark 51.16.3. Let ℱ be a category cofibred in groupoids over 𝒞Λ. Let 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)).
Let 𝑉 be a finite dimesional vector space. Then Lift(𝑥0, 𝑘[𝑉]) is the set of isomorphism
classes of ℱ𝑥0

(𝑘[𝑉]) where ℱ𝑥0
is the predeformation category of objects in ℱ lying over

𝑥0, see Remark 51.6.4. Hence if ℱ satisfies (S2), then so does ℱ𝑥0
(see Lemma 51.9.6) and

by Lemma 51.11.2 we see that
Lift(𝑥0, 𝑘[𝑉]) = 𝑇ℱ𝑥0

⊗𝑘 𝑉

as 𝑘-vector spaces.

Remark 51.16.4. Let ℱ be a category cofibered in groupoids over 𝒞Λ satisfying (RS). Let

𝐴1 ×𝐴 𝐴2
//

��

𝐴2

��
𝐴1

// 𝐴

be a fibre square in 𝒞Λ such that either 𝐴1 → 𝐴 or 𝐴2 → 𝐴 is surjective. Let 𝑥 ∈ 𝑂𝑏(ℱ(𝐴)).
Given lifts 𝑥1 → 𝑥 and 𝑥2 → 𝑥 of 𝑥 to 𝐴1 and 𝐴2, we get by (RS) a lift 𝑥1 ×𝑥 𝑥2 → 𝑥 of
𝑥 to 𝐴1 ×𝐴 𝐴2. Conversely, by Lemma 51.15.2 any lift of 𝑥 to 𝐴1 ×𝐴 𝐴2 is of this form.
Hence a bijection

Lift(𝑥, 𝐴1) × Lift(𝑥, 𝐴2) ⟶ Lift(𝑥, 𝐴1 ×𝐴 𝐴2).
Similarly, if 𝑥1 → 𝑥 is a fixed lifting of 𝑥 to 𝐴1, then there is a bijection

Lift(𝑥1, 𝐴1 ×𝐴 𝐴2) ⟶ Lift(𝑥, 𝐴2).
Now let

𝐴′
1 ×𝐴 𝐴2

//

��

𝐴1 ×𝐴 𝐴2
//

��

𝐴2

��
𝐴′

1
// 𝐴1

// 𝐴

be a composition of fibre squares in 𝒞Λ with both 𝐴′
1 → 𝐴1 and 𝐴1 → 𝐴 surjective. Let

𝑥1 → 𝑥 be a morphism lying over 𝐴1 → 𝐴. Then by the above we have bijections
Lift(𝑥1, 𝐴′

1 ×𝐴 𝐴2) = Lift(𝑥1, 𝐴′
1) × Lift(𝑥1, 𝐴1 ×𝐴 𝐴2)

= Lift(𝑥1, 𝐴′
1) × Lift(𝑥, 𝐴2).

Lemma 51.16.5. Let ℱ be a deformation category. Let 𝐴′ → 𝐴 be a surjective ring map
in 𝒞Λ whose kernel 𝐼 is annihilated by 𝔪𝐴′. Let 𝑥 ∈ 𝑂𝑏(ℱ(𝐴)). If Lift(𝑥, 𝐴′) is nonempty,
then there is a free and transitive action of 𝑇ℱ ⊗𝑘 𝐼 on Lift(𝑥, 𝐴′).

Proof. Consider the ring map 𝑔 ∶ 𝐴′ ×𝐴 𝐴′ → 𝑘[𝐼] defined by the rule 𝑔(𝑎1, 𝑎2) = 𝑎1 ⊕
𝑎2 − 𝑎1 (compare with Lemma 51.9.8). There is an isomorphism

𝐴′ ×𝐴 𝐴′ ∼
−→ 𝐴′ ×𝑘 𝑘[𝐼]

given by (𝑎1, 𝑎2) ↦ (𝑎1, 𝑔(𝑎1, 𝑎2)). This isomorphism commutes with the projections to 𝐴′

on the first factor, and hence with the projections of 𝐴′ ×𝐴 𝐴′ and 𝐴′ ×𝑘 𝑘[𝐼] to 𝐴. Thus
there is a bijection
(51.16.5.1) Lift(𝑥, 𝐴′ ×𝐴 𝐴′) ⟶ Lift(𝑥, 𝐴′ ×𝑘 𝑘[𝐼])
By Remark 51.16.4 there is a bijection
(51.16.5.2) Lift(𝑥, 𝐴′) × Lift(𝑥, 𝐴′) ⟶ Lift(𝑥, 𝐴′ ×𝐴 𝐴′)
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There is a commutative diagram

𝐴′ ×𝑘 𝑘[𝐼] //

��

𝐴 ×𝑘 𝑘[𝐼] //

��

𝑘[𝐼]

��
𝐴′ // 𝐴 // 𝑘.

Thus if we choose a pushforward 𝑥 → 𝑥0 of 𝑥 along 𝐴 → 𝑘, we obtain by the end of
Remark 51.16.4 a bijection

(51.16.5.3) Lift(𝑥, 𝐴′ ×𝑘 𝑘[𝐼]) ⟶ Lift(𝑥, 𝐴′) × Lift(𝑥0, 𝑘[𝐼])

Composing (51.16.5.2), (51.16.5.1), and (51.16.5.3) we get a bijection

Φ ∶ Lift(𝑥, 𝐴′) × Lift(𝑥, 𝐴′) ⟶ Lift(𝑥, 𝐴′) × Lift(𝑥0, 𝑘[𝐼]).

This bijection commutes with the projections on the first factors. By Remark 51.16.3 we
see that Lift(𝑥0, 𝑘[𝐼]) = 𝑇ℱ⊗𝑘 𝐼. If pr2 is the second projection of Lift(𝑥, 𝐴′)×Lift(𝑥, 𝐴′),
then we get a map

𝑎 = pr2 ∘ Φ−1 ∶ Lift(𝑥, 𝐴′) × (𝑇ℱ ⊗𝑘 𝐼) ⟶ Lift(𝑥, 𝐴′).

Unwinding all the above we see that 𝑎(𝑥′ → 𝑥, 𝜃) is the unique lift 𝑥″ → 𝑥 such that
𝑔∗(𝑥′, 𝑥″) = 𝜃 in Lift(𝑥0, 𝑘[𝐼]) = 𝑇ℱ ⊗𝑘 𝐼. To see this is an action of 𝑇ℱ ⊗𝑘 𝐼 on
Lift(𝑥, 𝐴′) we have to show the following: if 𝑥′, 𝑥″, 𝑥‴ are lifts of 𝑥 and 𝑔∗(𝑥′, 𝑥″) = 𝜃,
𝑔∗(𝑥″, 𝑥‴) = 𝜃′, then 𝑔∗(𝑥′, 𝑥‴) = 𝜃 + 𝜃′. This follows from the commutative diagram

𝐴′ ×𝐴 𝐴′ ×𝐴 𝐴′
(𝑎1,𝑎2,𝑎3)↦(𝑔(𝑎1,𝑎2),𝑔(𝑎2,𝑎3))

//

(𝑎1,𝑎2,𝑎3)↦𝑔(𝑎1,𝑎3)
,,

𝑘[𝐼] ×𝑘 𝑘[𝐼] = 𝑘[𝐼 × 𝐼]

+
��

𝑘[𝐼]

The action is free and transitive because Φ is bijective. �

Remark 51.16.6. The action of Lemma 51.16.5 is functorial. Let 𝜑 ∶ ℱ → 𝒢 be a mor-
phism of deformation categories. Let 𝐴′ → 𝐴 be a surjective ring map whose kernel 𝐼 is
annihilated by 𝔪𝐴′. Let 𝑥 ∈ 𝑂𝑏(ℱ(𝐴)). In this situation 𝜑 induces the vertical arrows in
the following commutative diagram

Lift(𝑥, 𝐴′) × (𝑇ℱ ⊗𝑘 𝐼)

(𝜑,𝑑𝜑⊗id𝐼)
��

// Lift(𝑥, 𝐴′)

𝜑
��

Lift(𝜑(𝑥), 𝐴′) × (𝑇𝒢 ⊗𝑘 𝐼) // Lift(𝜑(𝑥), 𝐴′)

The commutativity follows as each of the maps (51.16.5.2), (51.16.5.1), and (51.16.5.3) of
the proof of Lemma 51.16.5 gives rise to a similar commutative diagram.

51.17. Schlessinger's theorem on prorepresentable functors

We deduce Schlessinger's theorem characterizing prorepresentable functors on 𝒞Λ.

Lemma 51.17.1. Let 𝐹, 𝐺 ∶ 𝒞Λ → Sets be deformation functors. Let 𝜑 ∶ 𝐹 → 𝐺 be a
smooth morphism which induces an isomorphism 𝑑𝜑 ∶ 𝑇𝐹 → 𝑇𝐺 of tangent spaces. Then
𝜑 is an isomorphism.
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Proof. Weprove𝐹(𝐴) → 𝐺(𝐴) is a bijection for all𝐴 ∈ 𝑂𝑏(𝒞Λ) by induction on length𝐴(𝐴).
For 𝐴 = 𝑘 the statement follows from the assumption that 𝐹 and 𝐺 are deformation func-
tors. Suppose that the statement holds for rings of length less than 𝑛 and let 𝐴′ be a ring of
length 𝑛. Choose a small extension 𝑓 ∶ 𝐴′ → 𝐴. We have a commutative diagram

𝐹(𝐴′) //

𝐹(𝑓)
��

𝐺(𝐴′)

𝐺(𝑓)
��

𝐹(𝐴) ∼ // 𝐺(𝐴)

where the map 𝐹(𝐴) → 𝐺(𝐴) is a bijection. By smoothness of 𝐹 → 𝐺, 𝐹(𝐴′) → 𝐺(𝐴′) is
surjective (Lemma 51.8.8). Thuswe can check bijectivity by checking it on fibers𝐹(𝑓)−1(𝑥) →
𝐺(𝑓)−1(𝜑(𝑥)) for 𝑥 ∈ 𝐹(𝐴) such that 𝐹(𝑓)−1(𝑥) is nonempty. These fibers are precisely
Lift(𝑥, 𝐴′) and Lift(𝜑(𝑥), 𝐴′) and by assumption we have an isomorphism 𝑑𝜑 ⊗ id ∶
𝑇𝐹⊗𝑘Ker(𝑓) → 𝑇𝐺⊗𝑘Ker(𝑓). Thus, by Lemma 51.16.5 andRemark 51.16.6, for 𝑥 ∈ 𝐹(𝐴)
such that 𝐹(𝑓)−1(𝑥) is nonempty the map 𝐹(𝑓)−1(𝑥) → 𝐺(𝑓)−1(𝜑(𝑥)) is a map of sets com-
muting with free transitive actions by 𝑇𝐹 ⊗𝑘 Ker(𝑓). Hence it is bijective. �

Note that in case 𝑘′ ⊂ 𝑘 is separable condition (c) in the theorem below is empty.

Theorem 51.17.2. Let 𝐹 ∶ 𝒞Λ → Sets be a functor. Then 𝐹 is prorepresentable if and
only if (a) 𝐹 is a deformation functor, (b) dim𝑘 𝑇𝐹 is finite, and (c) 𝛾 ∶ DerΛ(𝑘, 𝑘) → 𝑇𝐹 is
injective.

Proof. Assume 𝐹 is prorepresentable by 𝑅 ∈ 𝒞Λ. We see 𝐹 is a deformation functor by
Example 51.15.10. We see dim𝑘 𝑇𝐹 is finite by Example 51.10.11. Finally, DerΛ(𝑘, 𝑘) →
𝑇𝐹 is identified with DerΛ(𝑘, 𝑘) → DerΛ(𝑅, 𝑘) by Example 51.10.14 which is injective
because 𝑅 → 𝑘 is surjective.

Conversely, assume (a), (b), and (c) hold. By Lemma 51.15.6 we see that (S1) and (S2)
hold. Hence by Theorem 51.14.5 there exists a minimal versal formal object 𝜉 of 𝐹 such
that (51.14.0.2) holds. Say 𝜉 lies over 𝑅. The map

𝑑𝜉 ∶ DerΛ(𝑅, 𝑘) → 𝑇ℱ

is bijective on DerΛ(𝑘, 𝑘)-orbits. Since the action of DerΛ(𝑘, 𝑘) on the left hand side is
free by (c) and Lemma 51.11.6 we see that the map is bijective. Thus we see that 𝜉 is an
isomorphism by Lemma 51.17.1. �

51.18. Infinitesimal automorphisms

Let ℱ be a category cofibered in groupoids over 𝒞Λ. Given a morphism 𝑥′ → 𝑥 in ℱ lying
over 𝐴′ → 𝐴, there is an induced homomorphism

Aut𝐴′(𝑥′) → Aut𝐴(𝑥).

Lemma 51.15.7 says that the cokernel of this homomorphism determines whether condition
(RS) on ℱ passes to ℱ. In this section we study the kernel of this homomorphism. We will
see that it also gives a measure of how far ℱ is from ℱ.

Definition 51.18.1. Let ℱ be a category cofibered in groupoids over 𝒞Λ. Let 𝑥′ → 𝑥 be a
morphism in ℱ lying over 𝐴′ → 𝐴. The group of infinitesimal automorphisms of 𝑥′ over 𝑥
is the kernel of Aut𝐴′(𝑥′) → Aut𝐴(𝑥). Notation Inf(𝑥′/𝑥) = Ker(Aut𝐴′(𝑥′) → Aut𝐴(𝑥)).
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Definition 51.18.2. Letℱ be a category cofibered in groupoids over𝒞Λ. Let 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)).
Assume a choice of pushforward 𝑥0 → 𝑥′

0 of 𝑥0 along the map 𝑘 → 𝑘[𝜖], 𝑎 ↦ 𝑎 has been
made. Then there is a unique map 𝑥′

0 → 𝑥0 such that 𝑥0 → 𝑥′
0 → 𝑥0 is the identity on 𝑥0.

The group of infinitesimal automorphisms of 𝑥0 is Inf𝑥0
(ℱ) ∶= Inf(𝑥′

0/𝑥0).

Remark 51.18.3. Up to isomorphism, Inf𝑥0
(ℱ) does not depend on the choice of pushfor-

ward 𝑥0 → 𝑥′
0. Moreover, if 𝑦0 ∈ ℱ(𝑘) and 𝑥0 ≅ 𝑦0 in ℱ(𝑘), then Inf𝑥0

(ℱ) ≅ Inf𝑦0
(ℱ).

Remark 51.18.4. When ℱ is a predeformation category, Aut𝑘(𝑥0) is trivial and hence
Inf𝑥0

(ℱ) = Aut𝑘[𝜖](𝑥′
0).

We will see that Inf𝑥0
(ℱ) has a natural 𝑘-vector space structure when ℱ satisfies (RS). At

the same time, we will see that if ℱ satisfies (RS), then the infinitesimal automorphisms
Inf(𝑥′/𝑥) of a morphism 𝑥′ → 𝑥 lying over a small extension are governed by Inf𝑥0

(ℱ),
where 𝑥0 is a pushforward of 𝑥 to ℱ(𝑘). In order to do this, we introduce the automorphism
functor for any object 𝑥 ∈ 𝑂𝑏(ℱ) as follows.

Definition 51.18.5. Let 𝑝 ∶ ℱ → 𝒞 be a category cofibered in groupoids over an arbitrary
base category 𝒞. Assume a choice of pushforwards has been made. Let 𝑥 ∈ 𝑂𝑏(ℱ) and
let 𝑈 = 𝑝(𝑥). Let 𝑈/𝒞 denote the category of objects under 𝑈. The automorphism functor
of 𝑥 is the functor 𝐴𝑢𝑡(𝑥) ∶ 𝑈/𝒞 → Sets sending an object 𝑓 ∶ 𝑈 → 𝑉 to Aut𝑉(𝑓∗𝑥) and
sending a morphism

𝑉′ // 𝑉

𝑈
𝑓′

__

𝑓

??

to the homomorphism Aut𝑉′(𝑓′
∗𝑥) → Aut𝑉(𝑓∗𝑥) coming from the unique morphism 𝑓′

∗𝑥 →
𝑓∗𝑥 lying over 𝑉′ → 𝑉 and compatible with 𝑥 → 𝑓′

∗𝑥 and 𝑥 → 𝑓∗𝑥.

We will be concerned with the automorphism functors of objects in a category cofibered in
groupoids ℱ over 𝒞Λ. If 𝐴 ∈ 𝑂𝑏(𝒞Λ), then the category 𝐴/𝒞Λ is nothing but the category
𝒞𝐴, i.e. the category defined in Section 51.3 where we take Λ = 𝐴 and 𝑘 = 𝐴/𝔪𝐴. Hence
the automorphism functor of an object 𝑥 ∈ 𝑂𝑏(ℱ(𝐴)) is a functor 𝐴𝑢𝑡(𝑥) ∶ 𝒞𝐴 → Sets.

The following lemma could be deduced from Lemma 51.15.12 by thinking about the ``in-
ertia'' of a category cofibred in groupoids, see for example Stacks, Section 50.7 and Cate-
gories, Section 4.31. However, it is easier to see it directly.

Lemma 51.18.6. Let ℱ be a category cofibered in groupoids over 𝒞Λ satisfying (RS). Let
𝑥 ∈ 𝑂𝑏(ℱ(𝐴)). Then 𝐴𝑢𝑡(𝑥) ∶ 𝒞𝐴 → Sets satisfies (RS).

Proof. It follows that𝐴𝑢𝑡(𝑥) satisfies (RS) from the fully faithfulness of the functorℱ(𝐴1×𝐴
𝐴2) → ℱ(𝐴1) ×ℱ(𝐴) ℱ(𝐴2) in Lemma 51.15.4. �

Lemma 51.18.7. Let ℱ be a category cofibered in groupoids over 𝒞Λ satisfying (RS). Let
𝑥 ∈ 𝑂𝑏(ℱ(𝐴)). Let 𝑥0 be a pushforward of 𝑥 to ℱ(𝑘).

(1) 𝑇id𝑥0
𝐴𝑢𝑡(𝑥) has a natural 𝑘-vector space structure such that addition agrees with

composition in 𝑇id𝑥0
𝐴𝑢𝑡(𝑥). In particular, composition in 𝑇id𝑥0

𝐴𝑢𝑡(𝑥) is commu-
tative.

(2) There is a canonical isomorphism 𝑇id𝑥0
𝐴𝑢𝑡(𝑥) → 𝑇id𝑥0

𝐴𝑢𝑡(𝑥0) of 𝑘-vector spaces.
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Proof. We apply Remark 51.6.4 to the functor 𝐴𝑢𝑡(𝑥) ∶ 𝒞𝐴 → Sets and the element
id𝑥0

∈ 𝐴𝑢𝑡(𝑥)(𝑘) to get a predeformation functor 𝐹 = 𝐴𝑢𝑡(𝑥)id𝑥0
. By Lemmas 51.18.6 and

51.15.11 𝐹 is a deformation functor. By definition 𝑇id𝑥0
𝐴𝑢𝑡(𝑥) = 𝑇𝐹 = 𝐹(𝑘[𝜖]) which has

a natural 𝑘-vector space structure specified by Lemma 51.10.8.

Addition is defined as the composition

𝐹(𝑘[𝜖]) × 𝐹(𝑘[𝜖]) ⟶ 𝐹(𝑘[𝜖] ×𝑘 𝑘[𝜖]) ⟶ 𝐹(𝑘[𝜖])

where the first map is the inverse of the bijection guaranteed by (RS) and the second is in-
duced by the 𝑘-algebra map 𝑘[𝜖] ×𝑘 𝑘[𝜖] → 𝑘[𝜖] which maps (𝜖, 0) and (0, 𝜖) to 𝜖. If 𝐴 → 𝐵
is a ring map in 𝒞Λ, then 𝐹(𝐴) → 𝐹(𝐵) is a homomorphism where 𝐹(𝐴) = 𝐴𝑢𝑡(𝑥)id𝑥0

(𝐴)
and 𝐹(𝐵) = 𝐴𝑢𝑡(𝑥)id𝑥0

(𝐵) are groups under composition. We conclude that + ∶ 𝐹(𝑘[𝜖]) ×
𝐹(𝑘[𝜖]) → 𝐹(𝑘[𝜖]) is a homomorphism where 𝐹(𝑘[𝜖]) is regarded as a group under com-
position. With id ∈ 𝐹(𝑘[𝜖]) the unit element we see that +(𝑣, id) = +(id, 𝑣) = 𝑣 for any
𝑣 ∈ 𝐹(𝑘[𝜖]) because (id, 𝑣) is the pushforward of 𝑣 along the ring map 𝑘[𝜖] → 𝑘[𝜖] ×𝑘 𝑘[𝜖]
with 𝜖 ↦ (𝜖, 0). In general, given a group 𝐺 with multiplication ∘ and + ∶ 𝐺 × 𝐺 → 𝐺 is
a homomorphism such that +(𝑔, 1) = +(1, 𝑔) = 𝑔, where 1 is the identity of 𝐺, then + = ∘.
This shows addition in the 𝑘-vector space structure on 𝐹(𝑘[𝜖]) agrees with composition.

Finally, (2) is a matter of unwinding the definitions. Namely 𝑇id𝑥0
𝐴𝑢𝑡(𝑥) is the set of au-

tomorphisms 𝛼 of the pushforward of 𝑥 along 𝐴 → 𝑘 → 𝑘[𝜖] which are trivial modulo 𝜖.
On the other hand 𝑇id𝑥0

𝐴𝑢𝑡(𝑥0) is the set of automorphisms of the pushforward of 𝑥0 along
𝑘 → 𝑘[𝜖] which are trivial modulo 𝜖. Since 𝑥0 is the pushforward of 𝑥 along 𝐴 → 𝑘 the
result is clear. �

Remark 51.18.8. We point out some basic relationships between infinitesimal automor-
phism groups, liftings, and tangent spaces to automorphism functors. Let ℱ be a category
cofibered in groupoids over 𝒞Λ. Let 𝑥′ → 𝑥 be a morphism lying over a ring map 𝐴′ → 𝐴.
Let 𝑥0 be a pushforward of 𝑥 to ℱ(𝑘). Then from the definitions we have an equality

Inf(𝑥′/𝑥) = Lift(id𝑥, 𝐴′)

where the liftings are of id𝑥 as an object of 𝐴𝑢𝑡(𝑥′). If 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)) and 𝑥′
0 is the

pushforward to ℱ(𝑘[𝜖]), then applying this to 𝑥′
0 → 𝑥0 we get

Inf𝑥0
(ℱ) = Lift(id𝑥0

, 𝑘[𝜖]) = 𝑇id𝑥0
𝐴𝑢𝑡(𝑥0),

the last equality following directly from the definitions.

Lemma 51.18.9. Let ℱ be a category cofibered in groupoids over 𝒞Λ satisfying (RS). Let
𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)). Then Inf𝑥0

(ℱ) is equal as a set to 𝑇id𝑥0
𝐴𝑢𝑡(𝑥0), and so has a natural

𝑘-vector space structure such that addition agrees with composition of automorphisms.

Proof. The equality of sets is as in the end of Remark 51.18.8 and the statement about the
vector space structure follows from Lemma 51.18.7. �

Lemma 51.18.10. Let ℱ be a category cofibered in groupoids over 𝒞Λ satisfying (RS). Let
𝑥′ → 𝑥 be a morphism lying over a surjective ring map 𝐴′ → 𝐴 with kernel 𝐼 annihilated
by 𝔪𝐴′. Let 𝑥0 be a pushforward of 𝑥 to ℱ(𝑘). Then Inf(𝑥′/𝑥) has a free and transitive
action by 𝑇id𝑥0

𝐴𝑢𝑡(𝑥′) ⊗𝑘 𝐼 = Inf𝑥0
(ℱ) ⊗𝑘 𝐼.

Proof. This is just the analogue of Lemma 51.16.5 in the setting of automorphism sheaves.
To be precise, we apply Remark 51.6.4 to the functor 𝐴𝑢𝑡(𝑥′) ∶ 𝒞𝐴′ → Sets and the element
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id𝑥0
∈ 𝐴𝑢𝑡(𝑥)(𝑘) to get a predeformation functor 𝐹 = 𝐴𝑢𝑡(𝑥′)id𝑥0

. By Lemmas 51.18.6 and
51.15.11 𝐹 is a deformation functor. Hence Lemma 51.16.5 gives a free and transitive
action of 𝑇𝐹⊗𝑘 𝐼 on Lift(id𝑥, 𝐴′), because as Lift(id𝑥, 𝐴′) is a group it is always nonempty.
Note that we have equalities of vector spaces

𝑇𝐹 = 𝑇id𝑥0
𝐴𝑢𝑡(𝑥′) ⊗𝑘 𝐼 = Inf𝑥0

(ℱ) ⊗𝑘 𝐼

by Lemma 51.18.7. The equality Inf(𝑥′/𝑥) = Lift(id𝑥, 𝐴′) of Remark 51.18.8 finishes the
proof. �

Lemma 51.18.11. Let ℱ be a category cofibered in groupoids over 𝒞Λ satisfying (RS). Let
𝑥′ → 𝑥 be a morphism in ℱ lying over a surjective ring map. Let 𝑥0 be a pushforward of
𝑥 to ℱ(𝑘). If Inf𝑥0

(ℱ) = 0 then Inf(𝑥′/𝑥) = 0.

Proof. Follows from Lemmas 51.3.3 and 51.18.10. �

Lemma 51.18.12. Let ℱ be a category cofibered in groupoids over 𝒞Λ satisfying (RS). Let
𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)). Then Inf𝑥0

(ℱ) = 0 if and only if the natural morphism ℱ𝑥0
→ ℱ𝑥0

of
categories cofibered in groupoids is an equivalence.

Proof. The morphism ℱ𝑥0
→ ℱ𝑥0

is an equivalence if and only if ℱ𝑥0
is fibered in setoids,

cf. Categories, Section 4.36 (a setoid is by definition a groupoid in which the only automor-
phism of any object is the identity). We prove that Inf𝑥0

(ℱ) = 0 if and only if this condition
holds for ℱ𝑥0

. Obviously if ℱ𝑥0
is fibered in setoids then Inf𝑥0

(ℱ) = 0. Conversely assume
Inf𝑥0

(ℱ) = 0. Let 𝐴 be an object of 𝒞Λ. Then by Lemma 51.18.11, Inf(𝑥/𝑥0) = 0 for any
object 𝑥 → 𝑥0 of ℱ𝑥0

(𝐴). Since by definition Inf(𝑥/𝑥0) equals the group of automorphisms
of 𝑥 → 𝑥0 in ℱ𝑥0

(𝐴), this proves ℱ𝑥0
(𝐴) is a setoid. �

51.19. Groupoids in functors on an arbitrary category

We begin with generalities on groupoids in functors on an arbitrary category. In the next
section we will pass to the category 𝒞Λ. For clarity we shall sometimes refer to an ordinary
groupoid, i.e., a category whose morphisms are all isomorphisms, as a groupoid category.

Definition 51.19.1. Let 𝒞 be a category. The category of groupoids in functors on 𝒞 is the
category with the following objects and morphisms.

(1) Objects: A groupoid in functors on 𝒞 is a quintuple (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) where 𝑈, 𝑅 ∶
𝒞 → Sets are functors and 𝑠, 𝑡 ∶ 𝑅 → 𝑈 and 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 are morphisms
with the following property: For any object 𝑇 of 𝒞, the quintuple

(𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐)
is a groupoid category.

(2) Morphisms: A morphism (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) of groupoids in func-
tors on 𝒞 consists of morphisms 𝑈 → 𝑈′ and 𝑅 → 𝑅′ with the following prop-
erty: For any object 𝑇 of 𝒞, the induced maps 𝑈(𝑇) → 𝑈′(𝑇) and 𝑅(𝑇) → 𝑅′(𝑇)
define a functor between groupoid categories

(𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐) → (𝑈′(𝑇), 𝑅′(𝑇), 𝑠′, 𝑡′, 𝑐′).

Remark 51.19.2. A groupoid in functors on 𝒞 amounts to the data of a functor 𝒞 →
Groupoids, and a morphism of groupoids in functors on 𝒞 amounts to a morphism of the
corresponding functors 𝒞 → Groupoids (where Groupoids is regarded as a 1-category).
However, for our purposes it is more convenient to use the terminology of groupoids in
functors. In fact, thinking of a groupoid in functors as the corresponding functor 𝒞 →
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Groupoids, or equivalently as the category cofibered in groupoids associated to that functor,
can lead to confusion (Remark 51.21.2).

Remark 51.19.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on a category 𝒞. There are
unique morphisms 𝑒 ∶ 𝑈 → 𝑅 and 𝑖 ∶ 𝑅 → 𝑅 such that for every object 𝑇 of 𝒞, 𝑒 ∶ 𝑈(𝑇) →
𝑅(𝑇) sends 𝑥 ∈ 𝑈(𝑇) to the identity morphism on 𝑥 and 𝑖 ∶ 𝑅(𝑇) → 𝑅(𝑇) sends 𝑎 ∈ 𝑈(𝑇)
to the inverse of 𝑎 in the groupoid category (𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐). We will sometimes refer to
𝑠, 𝑡, 𝑐, 𝑒, and 𝑖 as ``source'', ``target'', ``composition'', ``identity'', and ``inverse''.

Definition 51.19.4. Let 𝒞 be a category. A groupoid in functors on 𝒞 is representable if
it is isomorphic to one of the form (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) where 𝑈 and 𝑅 are objects of 𝒞 and the
pushout 𝑅 ⨿𝑠,𝑈,𝑡 𝑅 exists.

Remark 51.19.5. Hence a representable groupoid in functors on𝒞 is given by objects𝑈 and
𝑅 of 𝒞 and morphisms 𝑠, 𝑡 ∶ 𝑈 → 𝑅 and 𝑐 ∶ 𝑅 → 𝑅⨿𝑠,𝑈,𝑡 𝑅 such that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) satisfies
the condition of Definition 51.19.1. The reason for requiring the existence of the pushout
𝑅 ∐𝑠,𝑈,𝑡 𝑅 is so that the composition morphism 𝑐 is defined at the level of morphisms in 𝒞.
This requirement will always be satisfied below when we consider representable groupoids
in functors on 𝒞Λ, since by Lemma 51.4.3 the category 𝒞Λ admits pushouts.

Remark 51.19.6. We will say ``let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on 𝒞'' to mean
that we have a representable groupoid in functors. Thus this means that 𝑈 and 𝑅 are objects
of 𝒞, there are morphisms 𝑠, 𝑡 ∶ 𝑈 → 𝑅, the pushout 𝑅 ⨿𝑠,𝑈,𝑡 𝑅 exists, there is a morphism
𝑐 ∶ 𝑅 → 𝑅 ⨿𝑠,𝑈,𝑡 𝑅, and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid in functors on 𝒞.

We introduce notation for restriction of groupoids in functors. This will be relevant below
in situations where we restrict from 𝒞Λ to 𝒞Λ.

Definition 51.19.7. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on a category 𝒞. Let 𝒞′ be
a subcategory of 𝒞. The restriction (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)|𝒞′ of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝒞′ is the groupoid in
functors on 𝒞′ given by (𝑈|𝒞′, 𝑅|𝒞′, 𝑠|𝒞′, 𝑡|𝒞′, 𝑐|𝒞′).

Remark 51.19.8. In the situation of Definition 51.19.7, we often denote 𝑠|𝒞′, 𝑡|𝒞′, 𝑐|𝒞′

simply by 𝑠, 𝑡, 𝑐.

Definition 51.19.9. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on a category 𝒞.
(1) The assignment 𝑇 ↦ (𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐) determines a functor 𝒞 → Groupoids.

The quotient category cofibered in groupoids [𝑈/𝑅] → 𝒞 is the category cofibered
in groupoids over 𝒞 associated to this functor (as in Remarks 51.5.2 (9)).

(2) The quotient morphism 𝑈 → [𝑈/𝑅] is the morphism of categories cofibered in
groupoids over 𝒞 defined by the rules
(a) 𝑥 ∈ 𝑈(𝑇) maps to the object (𝑇, 𝑥) ∈ 𝑂𝑏([𝑈/𝑅](𝑇)), and
(b) 𝑥 ∈ 𝑈(𝑇) and 𝑓 ∶ 𝑇 → 𝑇′ give rise to the morphism (𝑓, id𝑈(𝑓)(𝑥)) ∶ (𝑇, 𝑥) →

(𝑇, 𝑈(𝑓)(𝑥)) lying over 𝑓 ∶ 𝑇 → 𝑇′.

51.20. Groupoids in functors on 𝒞Λ

In this section we discuss groupoids in functors on 𝒞Λ. Our eventual goal is to show that
prorepresentable groupoids in functors on 𝒞Λ serve as ``presentations'' for well-behaved
deformation categories in the same way that smooth groupoids in algebraic spaces serve as
presentations for algebraic stacks, cf. Algebraic Stacks, Section 57.16.
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Definition 51.20.1. A groupoid in functors on 𝒞Λ is prorepresentable if it is isomorphic to
(𝑅0, 𝑅1, 𝑠, 𝑡, 𝑐)|𝒞Λ

for some representable groupoid in functors (𝑅0, 𝑅1, 𝑠, 𝑡, 𝑐) on the cate-

gory 𝒞Λ.

Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on 𝒞Λ. Taking completions, we get a quintuple
(𝑈, 𝑅, ̂𝑠, ̂𝑡, ̂𝑐). By Remark 51.7.10 completion as a functor on CofSet(𝒞Λ) is a right adjoint,
so it commutes with limits. In particular, there is a canonical isomorphism

̂𝑅 ×𝑠,𝑈,𝑡 𝑅 ⟶ 𝑅 × ̂𝑠,𝑈, ̂𝑡 𝑅,

so ̂𝑐 can be regarded as a functor 𝑅 × ̂𝑠,𝑈, ̂𝑡 𝑅 → 𝑅. Then (𝑈, 𝑅, ̂𝑠, ̂𝑡, ̂𝑐) is a groupoid in
functors on 𝒞Λ, with identity and inverse morphisms being the completions of those of
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐).

Definition 51.20.2. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on 𝒞Λ. The completion
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐)∧ of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is the groupoid in functors (𝑈, 𝑅, ̂𝑠, ̂𝑡, ̂𝑐) on 𝒞Λ described
above.

Remark 51.20.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on 𝒞Λ. Then there is a canon-
ical isomorphism (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)∧|𝒞Λ

≅ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐), see Remark 51.7.7. On the other hand,
let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on 𝒞Λ such that 𝑈, 𝑅 ∶ 𝒞Λ → Sets both com-
mute with limits, e.g. if 𝑈, 𝑅 are representable. Then there is a canonical isomorphism
((𝑈, 𝑅, 𝑠, 𝑡, 𝑐)|𝒞Λ

)∧ ≅ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). This follows from Remark 51.7.11.

Lemma 51.20.4. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on 𝒞Λ.
(1) (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is prorepresentable if and only if its completion is representable as

a groupoid in functors on 𝒞Λ.
(2) (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is prorepresentable if and only if 𝑈 and 𝑅 are prorepresentable.

Proof. Part (1) follows from Remark 51.20.3. For (2), the ``only if'' direction is clear
from the definition of a prorepresentable groupoid in functors. Conversely, assume 𝑈
and 𝑅 are prorepresentable, say 𝑈 ≅ 𝑅0|𝒞Λ

and 𝑅 ≅ 𝑅1|𝒞Λ
for objects 𝑅0 and 𝑅1 of

𝒞Λ. Since 𝑅0 ≅ 𝑅0|𝒞Λ
and 𝑅1 ≅ 𝑅1|𝒞Λ

by Remark 51.7.11 we see that the completion
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐)∧ is a groupoid in functors of the form (𝑅0, 𝑅1, ̂𝑠, ̂𝑡, ̂𝑐). By Lemma 51.4.3 the
pushout 𝑅1 × ̂𝑠,𝑅1, ̂𝑡 𝑅1 exists. Hence (𝑅0, 𝑅1, ̂𝑠, ̂𝑡, ̂𝑐) is a representable groupoid in func-

tors on 𝒞Λ. Finally, the restriction (𝑅0, 𝑅1, 𝑠, 𝑡, 𝑐)|𝒞Λ
gives back (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) by Remark

51.20.3 hence (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is prorepresentable by definition. �

51.21. Smooth groupoids in functors on 𝒞Λ

The notion of smoothness for groupoids in functors on 𝒞Λ is defined as follows.

Definition 51.21.1. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on 𝒞Λ. We say (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
is smooth if 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are smooth.

Remark 51.21.2. We note that this terminology is potentially confusing: if (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
is a smooth groupoid in functors, then the quotient [𝑈/𝑅] need not be a smooth category
cofibred in groupoids as defined in Remark 51.8.9. However smoothness of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
does imply (in fact is equivalent to) smoothness of the quotient morphism 𝑈 → [𝑈/𝑅] as
we shall see in Lemma 51.21.4.
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Remark 51.21.3. Let (𝑅0, 𝑅1, 𝑠, 𝑡, 𝑐)|𝒞Λ
be a prorepresentable groupoid in functors on 𝒞Λ.

Then (𝑅0, 𝑅1, 𝑠, 𝑡, 𝑐)|𝒞Λ
is smooth if and only if 𝑅1 is a power series over 𝑅0 via both 𝑠 and

𝑡. This follows from Lemma 51.8.6.

Lemma 51.21.4. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on 𝒞Λ. The following are
equivalent:

(1) The groupoid in functors (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is smooth.
(2) The morphism 𝑠 ∶ 𝑅 → 𝑈 is smooth.
(3) The morphism 𝑡 ∶ 𝑅 → 𝑈 is smooth.
(4) The quotient morphism 𝑈 → [𝑈/𝑅] is smooth.

Proof. Statement (2) is equivalent to (3) since the inverse 𝑖 ∶ 𝑅 → 𝑅 of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is an
isomorphism and 𝑡 = 𝑠 ∘ 𝑖. By definition (1) is equivalent to (2) and (3) together, hence it
is equivalent to either of them individually.

Finally we prove (2) is equivalent to (4). Unwinding the definitions:
(2) Smoothness of 𝑠 ∶ 𝑅 → 𝑈 amounts to the following condition: If 𝑓 ∶ 𝐵 → 𝐴 is

a surjective ring map in 𝒞Λ, 𝑎 ∈ 𝑅(𝐴), and 𝑦 ∈ 𝑈(𝐵) such that 𝑠(𝑎) = 𝑈(𝑓)(𝑦),
then there exists 𝑎′ ∈ 𝑅(𝐵) such that 𝑅(𝑓)(𝑎′) = 𝑎 and 𝑠(𝑎′) = 𝑦.

(4) Smoothness of 𝑈 → [𝑈/𝑅] amounts to the following condition: If 𝑓 ∶ 𝐵 → 𝐴 is
a surjective ring map in 𝒞Λ and (𝑓, 𝑎) ∶ (𝐵, 𝑦) → (𝐴, 𝑥) is a morphism of [𝑈/𝑅],
then there exists 𝑥′ ∈ 𝑈(𝐵) and 𝑏 ∈ 𝑅(𝐵) with 𝑠(𝑏) = 𝑥′, 𝑡(𝑏) = 𝑦 such that
𝑐(𝑎, 𝑅(𝑓)(𝑏)) = 𝑒(𝑥). Here 𝑒 ∶ 𝑈 → 𝑅 denotes the identity and the notation
(𝑓, 𝑎) is as in Remarks 51.5.2 (9); in particular 𝑎 ∈ 𝑅(𝐴) with 𝑠(𝑎) = 𝑈(𝑓)(𝑦)
and 𝑡(𝑎) = 𝑥.

If (4) holds and 𝑓, 𝑎, 𝑦 as in (2) are given, let 𝑥 = 𝑡(𝑎) so that we have a morphism (𝑓, 𝑎) ∶
(𝐵, 𝑦) → (𝐴, 𝑥). Then (4) produces 𝑥′ and 𝑏, and 𝑎′ = 𝑖(𝑏) satisfies the requirements of (2).
Conversely, assume (2) holds and let (𝑓, 𝑎) ∶ (𝐵, 𝑦) → (𝐴, 𝑥) as in (4) be given. Then (2)
produces 𝑎′ ∈ 𝑅(𝐵), and 𝑥′ = 𝑡(𝑎′) and 𝑏 = 𝑖(𝑎′) satisfy the requirements of (4). �

51.22. Deformation categories as quotients of groupoids in functors

We discuss conditions on a groupoid in functors on 𝒞Λ which guarantee that the quotient
is a deformation category, and we calculate the tangent and infinitesimal automorphism
spaces of such a quotient.

Lemma 51.22.1. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a smooth groupoid in functors on 𝒞Λ. Assume 𝑈 and
𝑅 satisfy (RS). Then [𝑈/𝑅] satisfies (RS).

Proof. Let
(𝐴2, 𝑥2)

(𝑓2,𝑎2)
��

(𝐴1, 𝑥1)
(𝑓1,𝑎1) // (𝐴, 𝑥)

be a diagram in [𝑈/𝑅] such that 𝑓2 ∶ 𝐴2 → 𝐴 is surjective. The notation is as in Remarks
51.5.2 (9). Hence 𝑓1 ∶ 𝐴1 → 𝐴, 𝑓2 ∶ 𝐴2 → 𝐴 are maps in 𝒞Λ, 𝑥 ∈ 𝑈(𝐴), 𝑥1 ∈ 𝑈(𝐴1),
𝑥2 ∈ 𝑈(𝐴2), and 𝑎1, 𝑎2 ∈ 𝑅(𝐴) with 𝑠(𝑎1) = 𝑈(𝑓1)(𝑥1), 𝑡(𝑎1) = 𝑥 and 𝑠(𝑎2) = 𝑈(𝑓2)(𝑥2),
𝑡(𝑎2) = 𝑥. We construct a fiber product lying over 𝐴1 ×𝐴 𝐴2 for this diagram in [𝑈/𝑅] as
follows.
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Let 𝑎 = 𝑐(𝑖(𝑎1), 𝑎2), where 𝑖 ∶ 𝑅 → 𝑅 is the inverse morphism. Then 𝑎 ∈ 𝑅(𝐴), 𝑥2 ∈
𝑈(𝐴2) and 𝑠(𝑎) = 𝑈(𝑓2)(𝑥2). Hence an element (𝑎, 𝑥2) ∈ 𝑅(𝐴) ×𝑠,𝑈(𝐴),𝑈(𝑓2) 𝑈(𝐴2). By
smoothness of 𝑠 ∶ 𝑅 → 𝑈 there is an element ̃𝑎 ∈ 𝑅(𝐴2) with 𝑅(𝑓2)( ̃𝑎) = 𝑎 and 𝑠( ̃𝑎) = 𝑥2.
In particular 𝑈(𝑓2)(𝑡( ̃𝑎)) = 𝑡(𝑎) = 𝑈(𝑓1)(𝑥1). Thus 𝑥1 and 𝑡( ̃𝑎) define an element

(𝑥1, 𝑡( ̃𝑎)) ∈ 𝑈(𝐴1) ×𝑈(𝐴) 𝑈(𝐴2).

By the assumption that 𝑈 satisfies (RS), we have an identification 𝑈(𝐴1) ×𝑈(𝐴) 𝑈(𝐴2) =
𝑈(𝐴1 ×𝐴 𝐴2). Let us denote 𝑥1 × 𝑡( ̃𝑎) ∈ 𝑈(𝐴1 ×𝐴 𝐴2) the element corresponding to
(𝑥1, 𝑡( ̃𝑎)) ∈ 𝑈(𝐴1) ×𝑈(𝐴) 𝑈(𝐴2). Let 𝑝1, 𝑝2 be the projections of 𝐴1 ×𝐴 𝐴2. We claim

(𝐴1 ×𝐴 𝐴2, 𝑥1 × 𝑡( ̃𝑎))

(𝑝1,𝑒(𝑥1))
��

(𝑝2,𝑖( ̃𝑎))
// (𝐴2, 𝑥2)

(𝑓2,𝑎2)
��

(𝐴1, 𝑥1)
(𝑓1,𝑎1) // (𝐴, 𝑥)

is a fiber square in [𝑈/𝑅]. (Note 𝑒 ∶ 𝑈 → 𝑅 denotes the identity.)

The diagram is commutative because 𝑐(𝑎2, 𝑅(𝑓2)(𝑖( ̃𝑎))) = 𝑐(𝑎2, 𝑖(𝑎)) = 𝑎1. To check it is a
fiber square, let

(𝐵, 𝑧)

(𝑔1,𝑏1)
��

(𝑔2,𝑏2)
// (𝐴2, 𝑥2)

(𝑓2,𝑎2)
��

(𝐴1, 𝑥1)
(𝑓1,𝑎1) // (𝐴, 𝑥)

be a commutative diagram in [𝑈/𝑅]. We will show there is a unique morphism (𝑔, 𝑏) ∶
(𝐵, 𝑧) → (𝐴1 ×𝐴 𝐴2, 𝑥1 ×𝑡( ̃𝑎)) compatible with the morphisms to (𝐴1, 𝑥1) and (𝐴2, 𝑥2). We
must take 𝑔 = (𝑔1, 𝑔2) ∶ 𝐵 → 𝐴1 ×𝐴 𝐴2. Since by assumption 𝑅 satisfies (RS), we have an
identification 𝑅(𝐴1 ×𝐴 𝐴2) = 𝑅(𝐴1)×𝑅(𝐴) 𝑅(𝐴2). Hence we can write 𝑏 = (𝑏′

1, 𝑏′
2) for some

𝑏′
1 ∈ 𝑅(𝐴1), 𝑏′

2 ∈ 𝑅(𝐴2) which agree in 𝑅(𝐴). Then ((𝑔1, 𝑔2), (𝑏′
1, 𝑏′

2)) ∶ (𝐵, 𝑧) → (𝐴1 ×𝐴
𝐴2, 𝑥1 × 𝑡( ̃𝑎)) will commute with the projections if and only if 𝑏′

1 = 𝑏1 and 𝑏′
2 = 𝑐( ̃𝑎, 𝑏2)

proving unicity and existence. �

Lemma 51.22.2. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a smooth groupoid in functors on 𝒞Λ. Assume 𝑈 and
𝑅 are deformation functors. Then:

(1) The quotient [𝑈/𝑅] is a deformation category.
(2) The tangent space of [𝑈/𝑅] is

𝑇[𝑈/𝑅] = Coker(𝑑𝑠 − 𝑑𝑡 ∶ 𝑇𝑅 → 𝑇𝑈).

(3) Let 𝑥0 be the unique object of [𝑈/𝑅](𝑘). The space of infinitesimal automorphisms
of [𝑈/𝑅] is

Inf𝑥0
([𝑈/𝑅]) = Ker(𝑑𝑠 ⊕ 𝑑𝑡 ∶ 𝑇𝑅 → 𝑇𝑈 ⊕ 𝑇𝑈).

Proof. Since 𝑈 and 𝑅 are deformation functors [𝑈/𝑅] is a predeformation category. Since
(RS) holds for deformation functors by definition we see that (RS) holds for [U/R] by
Lemma 51.22.1. Hence [𝑈/𝑅] is a deformation category. Statements (2) and (3) follow
directly from the definitions. �
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51.23. Presentations of categories cofibered in groupoids

A presentation is defined as follows.

Definition 51.23.1. Let ℱ be a category cofibered in groupoids over a category 𝒞. Let
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in functors on 𝒞. A presentation of ℱ by (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is an
equivalence 𝜑 ∶ [𝑈/𝑅] → ℱ of categories cofibered in groupoids over 𝒞.

The following two general lemmas will be used to get presentations.

Lemma 51.23.2. Let ℱ be category cofibered in groupoids over a category 𝒞. Let 𝑈 ∶
𝒞 → Sets be a functor. Let 𝑓 ∶ 𝑈 → ℱ be a morphism of categories cofibered in groupoids
over 𝒞. Define 𝑅, 𝑠, 𝑡, 𝑐 as follows:

(1) 𝑅 ∶ 𝒞 → Sets is the functor 𝑈 ×𝑓,ℱ,𝑓 𝑈.
(2) 𝑡, 𝑠 ∶ 𝑅 → 𝑈 are the first and second projections, respectively.
(3) 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 is the morphism given by projection onto the first and last

factors of 𝑈 ×𝑓,ℱ,𝑓 𝑈 ×𝑓,ℱ,𝑓 𝑈 under the canonical isomorphism 𝑅 ×𝑠,𝑈,𝑡 𝑅 →
𝑈 ×𝑓,ℱ,𝑓 𝑈 ×𝑓,ℱ,𝑓 𝑈.

Then (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid in functors on 𝒞.

Proof. Omitted. �

Lemma 51.23.3. Let ℱ be category cofibered in groupoids over a category 𝒞. Let 𝑈 ∶
𝒞 → Sets be a functor. Let 𝑓 ∶ 𝑈 → ℱ be a morphism of categories cofibered in groupoids
over 𝒞. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid in functors on 𝒞 constructed from 𝑓 ∶ 𝑈 → ℱ in
Lemma 51.23.2. Then there is a natural morphism [𝑓] ∶ [𝑈/𝑅] → ℱ such that:

(1) [𝑓] ∶ [𝑈/𝑅] → ℱ is fully faithful.
(2) [𝑓] ∶ [𝑈/𝑅] → ℱ is an equivalence if and only if 𝑓 ∶ 𝑈 → ℱ is essentially

surjective.

Proof. Omitted. �

51.24. Presentations of deformation categories

According to the next lemma, a smooth morphism from a predeformation functor to a pre-
deformation category ℱ gives rise to a presentation of ℱ by a smooth groupoid in functors.

Lemma 51.24.1. Let ℱ be a category cofibered in groupoids over 𝒞Λ. Let 𝑈 ∶ 𝒞Λ → Sets
be a functor. Let 𝑓 ∶ 𝑈 → ℱ be a smooth morphism of categories cofibered in groupoids.
Then:

(1) If (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is the groupoid in functors on 𝒞Λ constructed from 𝑓 ∶ 𝑈 → ℱ in
Lemma 51.23.2, then (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is smooth.

(2) If 𝑓 ∶ 𝑈(𝑘) → ℱ(𝑘) is essentially surjective, then the morphism [𝑓] ∶ [𝑈/𝑅] → ℱ
of Lemma 51.23.3 is an equivalence.

Proof. From the construction of Lemma 51.23.2 we have a commutative diagram

𝑅 = 𝑈 ×𝑓,ℱ,𝑓 𝑈 𝑠
//

𝑡
��

𝑈

𝑓
��

𝑈
𝑓 // ℱ

where 𝑡, 𝑠 are the first and second projections. So 𝑡, 𝑠 are smooth by Lemma 51.8.7. Hence
(1) holds.
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If the assumption of (2) holds, then by Lemma 51.8.8 the morphism 𝑓 ∶ 𝑈 → ℱ is es-
sentially surjective. Hence by Lemma 51.23.3 the morphism [𝑓] ∶ [𝑈/𝑅] → ℱ is an
equivalence. �

Lemma 51.24.2. Let ℱ be a deformation category. Let 𝑈, 𝑉 ∶ 𝒞Λ → Sets be deformation
functors. Let 𝑓 ∶ 𝑈 → ℱ and 𝑔 ∶ 𝑉 → ℱ be morphisms of categories cofibered in
groupoids. Then:

(1) 𝑈 ×𝑓,ℱ,𝑔 𝑉 is a deformation functor.
(2) Let 𝑢0 be the unique element of 𝑈(𝑘) and 𝑢′

0 its pushforward to 𝑈(𝑘[𝜖]); define 𝑣0
and 𝑣′

0 similarly. There is an exact sequence of 𝑘-vector spaces
0 → 𝐾 → 𝑇(𝑈 ×𝑓,ℱ,𝑔 𝑉) → 𝑇𝑈 ⊕ 𝑇𝑉

where 𝐾 is the subspace of 𝑇(𝑈 ×𝑓,ℱ,𝑔 𝑉) consisting of elements of the form
(𝑢′

0, 𝑣′
0, 𝑎 ∶ 𝑓(𝑢′

0) → 𝑔(𝑣′
0)), 𝑎 ∈ 𝐻𝑜𝑚𝑘[𝜖](𝑓(𝑢′

0), 𝑔(𝑣′
0)).

Proof. Part (1) follows from Lemma 51.15.12 and the fact that (𝑈×𝑓,ℱ,𝑔 𝑉)(𝑘) is a singleton
as 𝑈(𝑘), 𝑉(𝑘) are singletons and ℱ(𝑘) is a setoid with exactly one isomorphism class.
Taking the differentials of the projections of 𝑈 ×𝑓,ℱ,𝑔 𝑉 to 𝑈 and 𝑉 gives 𝑘-linear maps
𝑇(𝑈 ×𝑓,ℱ,𝑔 𝑉) → 𝑇𝑈 and 𝑇(𝑈 ×𝑓,ℱ,𝑔 𝑉) → 𝑇𝑉 by Lemma 51.11.4. Hence a 𝑘-linear map
𝑇(𝑈 ×𝑓,ℱ,𝑔 𝑉) → 𝑇𝑈 ⊕ 𝑇𝑉. Explicitly, this map sends an element (𝑢, 𝑣, 𝑎 ∶ 𝑓(𝑢) → 𝑔(𝑣)) of
𝑇(𝑈 ×𝑓,ℱ,𝑔 𝑉) to (𝑢, 𝑣). So the kernel is exactly 𝐾 (this proves that 𝐾 is a subspace). Hence
(2) holds. �

Lemma 51.24.3. Let ℱ be a deformation category. Let 𝑈 ∶ 𝒞Λ → Sets be a deformation
functor. Let 𝑓 ∶ 𝑈 → ℱ be a morphism of categories cofibered in groupoids. Let 𝑢0 be the
unique element of 𝑈(𝑘). Then 𝑈×𝑓,ℱ,𝑓 𝑈 is a deformation functor with tangent space fitting
into an exact sequence of 𝑘-vector spaces

0 → Inf𝑓(𝑢0)(ℱ) → 𝑇(𝑈 ×𝑓,ℱ,𝑔 𝑈) → 𝑇𝑈 ⊕ 𝑇𝑈

Proof. Follows from Lemma 51.24.2 and Definition 51.18.2. �

Lemma 51.24.4. Let ℱ be a deformation category. Let 𝑈 ∶ 𝒞Λ → Sets be a prorepre-
sentable functor. Let 𝑓 ∶ 𝑈 → ℱ be a morphism of categories cofibered in groupoids. Let
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid in functors on 𝒞Λ constructed from 𝑓 ∶ 𝑈 → ℱ in Lemma
51.23.2. Assume dim𝑘 Inf𝑥0

(ℱ) is finite for 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)). Then (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is prorepre-
sentable.

Proof. Note that 𝑈 is a deformation functor by Example 51.15.10. By Lemma 51.24.3 we
see that 𝑅 = 𝑈 ×𝑓,ℱ,𝑓 𝑈 is a deformation functor whose tangent space 𝑇𝑅 = 𝑇(𝑈 ×𝑓,ℱ,𝑓 𝑈)
sits in an exact sequence 0 → Inf𝑥0

(ℱ) → 𝑇𝑅 → 𝑇𝑈 ⊕ 𝑇𝑈. Since we have assumed the
first space has finite dimension and since 𝑇𝑈 has finite dimension by Example 51.10.11 we
see that dim 𝑇𝑅 < ∞. The map 𝛾 ∶ DerΛ(𝑘, 𝑘) → 𝑇𝑅 see (51.11.6.1) is injective because
its composition with 𝑇𝑅 → 𝑇𝑈 is injective by Theorem 51.17.2 for the prorepresentable
functor 𝑈. Thus 𝑅 is prorepresentable by Theorem 51.17.2. It follows from Lemma 51.20.4
that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is prorepresentable. �

Theorem 51.24.5. Let ℱ be a category cofibered in groupoids over 𝒞Λ. Then ℱ admits
a presentation by a smooth prorepresentable groupoid in functors on 𝒞Λ if and only if the
following conditions hold:

(1) ℱ is a deformation category.
(2) dim𝑘 𝑇ℱ is finite.
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(3) dim𝑘 Inf𝑥0
(ℱ) is finite for some 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)).

Proof. Recall that a prorepresentable functor is a deformation functor, see Example 51.15.10.
Thus if ℱ is equivalent to a smooth prorepresentable groupoid in functors, then conditions
(1), (2), and (3) follow from Lemma 51.22.2 (1), (2), and (3).

Conversely, assume conditions (1), (2), and (3) hold. Condition (1) implies that (S1) and
(S2) are satisfied, see Lemma 51.15.6. By Lemma 51.12.4 there exists a versal formal
object 𝜉. Setting 𝑈 = 𝑅|𝒞Λ

the associated map 𝜉 ∶ 𝑈 → ℱ is smooth (this is the definition
of a versal formal object). Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid in functors constructed in
Lemma 51.23.2 from the map 𝜉. By Lemma 51.24.1 we see that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a smooth
groupoid in functors and that [𝑈/𝑅] → ℱ is an equivalence. By Lemma 51.24.4 we see that
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is prorepresentable. Hence [𝑈/𝑅] → ℱ is the desired presentation of ℱ. �

51.25. Remarks regarding minimality

The main theorem of this chapter is Theorem 51.24.5 above. It describes completely those
categories cofibred in groupoids over 𝒞Λ which have a presentation by a smooth prorepre-
sentable groupoid in functors. In this section we briefly discuss how the minimality dis-
cussed in Sections 51.13 and 51.14 can be used to obtain a ``minimal'' smooth prorepre-
sentable presentation.

Definition 51.25.1. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a smooth prorepresentable groupoid in functors on
𝒞Λ.

(1) We say (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is normalized if the groupoid (𝑈(𝑘[𝜖]), 𝑅(𝑘[𝜖]), 𝑠, 𝑡, 𝑐) is to-
tally disconnected, i.e., there are no morphisms between distinct objects.

(2) We say (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is minimal if the 𝑈 → [𝑈/𝑅] is given by a minimal versal
formal object of [𝑈/𝑅].

The difference between the two notions is related to the difference between conditions
(51.14.0.1) and (51.14.0.2) and disappears when 𝑘′ ⊂ 𝑘 is separable. Also a normalized
smooth prorepresentable groupoid in functors is minimal as the following lemma shows.
Here is a precise statement.

Lemma 51.25.2. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a smooth prorepresentable groupoid in functors on
𝒞Λ.

(1) (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is normalized if and only if the morphism 𝑈 → [𝑈/𝑅] induces an
isomorphism on tangent spaces, and

(2) (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is minimal if and only if the kernel of 𝑇𝑈 → 𝑇[𝑈/𝑅] is contained in
the image of DerΛ(𝑘, 𝑘) → 𝑇𝑈.

Proof. Part (1) follows immediately from the definitions. To see part (2) set ℱ = [𝑈/𝑅].
Since ℱ has a presentation it is a deformation category, see Theorem 51.24.5. In particular
it satisfies (RS), (S1), and (S2), see Lemma 51.15.6. Recall that minimal versal formal
objects are unique up to isomorphism, see Lemma 51.13.5. By Theorem 51.14.5 a minimal
versal object induces a map 𝜉 ∶ 𝑅|𝒞Λ

→ ℱ satisfying (51.14.0.2). Since 𝑈 ≅ 𝑅|𝒞Λ
over ℱ

we see that 𝑇𝑈 → 𝑇ℱ = 𝑇[𝑈/𝑅] satisfies the property as stated in the lemma. �

The quotient of a minimal prorepresentable groupoid in functors on 𝒞Λ does not admit
autoequivalences which are not automorphisms. To prove this, we first note the following
lemma.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06KM
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06KN


51.25. REMARKS REGARDING MINIMALITY 2559

Lemma 51.25.3. Let 𝑈 ∶ 𝒞Λ → Sets be a prorepresentable functor. Let 𝜑 ∶ 𝑈 → 𝑈 be a
morphism such that 𝑑𝜑 ∶ 𝑇𝑈 → 𝑇𝑈 is an isomorphism. Then 𝜑 is an isomorphism.

Proof. If 𝑈 ≅ 𝑅|𝒞Λ
for some 𝑅 ∈ 𝑂𝑏(𝒞Λ), then completing 𝜑 gives a morphism 𝑅 → 𝑅.

If 𝑓 ∶ 𝑅 → 𝑅 is the corresponding morphism in 𝒞Λ, then 𝑓 induces an isomorphism
DerΛ(𝑅, 𝑘) → DerΛ(𝑅, 𝑘), see Example 51.10.14. In particular 𝑓 is a surjection by Lemma
51.4.6. As a surjective endomorphism of a Noetherian ring is an isomorphism (see Algebra,
Lemma 7.28.8) we conclude 𝑓, hence 𝑅 → 𝑅, hence 𝜑 ∶ 𝑈 → 𝑈 is an isomorphism. �

Lemma 51.25.4. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a minimal smooth prorepresentable groupoid in func-
tors on 𝒞Λ. If 𝜑 ∶ [𝑈/𝑅] → [𝑈/𝑅] is an equivalence of categories cofibered in groupoids,
then 𝜑 is an isomorphism.

Proof. Amorphism𝜑 ∶ [𝑈/𝑅] → [𝑈/𝑅] is the same thing as amorphism𝜑 ∶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) →
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) of groupoids in functors over 𝒞Λ as defined in Definition 51.19.1. Denote
𝜙 ∶ 𝑈 → 𝑈 and 𝜓 ∶ 𝑅 → 𝑅 the corresponding morphisms. Because the diagram

DerΛ(𝑘, 𝑘)

𝛾
&&

𝛾
xx

𝑇𝑈
𝑑𝜙

//

��

𝑇𝑈

��
𝑇[𝑈/𝑅]

𝑑𝜑 // 𝑇[𝑈/𝑅]

is commutative, since 𝑑𝜑 is bijective, and since we have the characterization of minimality
in Lemma 51.25.2 we conclude that 𝑑𝜙 is injective (hence bijective by dimension reasons).
Thus 𝜙 ∶ 𝑈 → 𝑈 is an isomorphism by Lemma 51.25.3. We can use a similar argument,
using the exact sequence

0 → Inf𝑥0
([𝑈/𝑅]) → 𝑇𝑅 → 𝑇𝑈 ⊕ 𝑇𝑈

of Lemma 51.24.3 to prove that 𝜓 ∶ 𝑅 → 𝑅 is an isomorphism. But is also a consequence
of the fact that 𝑅 = 𝑈 ×[𝑈/𝑅] 𝑈 and that 𝜑 and 𝜙 are isomorphisms. �

Lemma51.25.5. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) and (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) beminimal smooth prorepresentable
groupoids in functors on 𝒞Λ. If 𝜑 ∶ [𝑈/𝑅] → [𝑈′/𝑅′] is an equivalence of categories
cofibered in groupoids, then 𝜑 is an isomorphism.

Proof. Let 𝜓 ∶ [𝑈′/𝑅′] → [𝑈/𝑅] be a quasi-inverse to 𝜑. Then 𝜓 ∘ 𝜑 and 𝜑 ∘ 𝜓 are
isomorphisms by Lemma 51.25.4, hence 𝜑 and 𝜓 are isomorphisms. �

The following lemma summarizes some of the things we have seen earlier in this chapter.

Lemma51.25.6. Letℱ be a deformation category such that dim𝑘 𝑇ℱ < ∞ and dim𝑘 Inf𝑥0
(ℱ) <

∞ for some 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)). Then there exists a minimal versal formal object 𝜉 of ℱ. Say
𝜉 lies over 𝑅 ∈ 𝑂𝑏(𝒞Λ). Let 𝑈 = 𝑅|𝒞Λ

. Let 𝑓 = 𝜉 ∶ 𝑈 → ℱ be the associated morphism.
Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid in functors on 𝒞Λ constructed from 𝑓 ∶ 𝑈 → ℱ in Lemma
51.23.2. Then (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a minimal smooth prorepresentable groupoid in functors on
𝒞Λ and there is an equivalence [𝑈/𝑅] → ℱ.

Proof. As ℱ is a deformation category it satisfies (S1) and (S2), see Lemma 51.15.6. By
Lemma 51.12.4 there exists a versal formal object. By Lemma 51.13.5 there exists a min-
imal versal formal object 𝜉/𝑅 as in the statement of the lemma. Setting 𝑈 = 𝑅|𝒞Λ

the
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associated map 𝜉 ∶ 𝑈 → ℱ is smooth (this is the definition of a versal formal object).
Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid in functors constructed in Lemma 51.23.2 from the map
𝜉. By Lemma 51.24.1 we see that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a smooth groupoid in functors and that
[𝑈/𝑅] → ℱ is an equivalence. By Lemma 51.24.4 we see that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is prorepre-
sentable. Finally, (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is minimal because 𝑈 → [𝑈/𝑅] = ℱ corresponds to the
minimal versal formal object 𝜉. �

Presentations byminimal prorepresentable groupoids in functors satisfy the following unique-
ness property.

Lemma 51.25.7. Let ℱ be category cofibered in groupoids over 𝒞Λ. Assume there exist
presentations of ℱ by minimal smooth prorepresentable groupoids in functors (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
and (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′). Then (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) and (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) are isomorphic.

Proof. Follows fromLemma 51.25.5 and the observation that amorphism [𝑈/𝑅] → [𝑈′/𝑅′]
is the same thing as a morphism of groupoids in functors (by our explicit construction of
[𝑈/𝑅] in Definition 51.19.9). �

In summary we have proved the following theorem.

Theorem 51.25.8. Let ℱ be a category cofibered in groupoids over 𝒞Λ. Consider the
following conditions

(1) ℱ admits a presentation by a normalized smooth prorepresentable groupoid in
functors on 𝒞Λ,

(2) ℱ admits a presentation by a smooth prorepresentable groupoid in functors on
𝒞Λ,

(3) ℱ admits a presentation by a minimal smooth prorepresentable groupoid in func-
tors on 𝒞Λ, and

(4) ℱ satisfies the following conditions
(a) ℱ is a deformation category.
(b) dim𝑘 𝑇ℱ is finite.
(c) dim𝑘 Inf𝑥0

(ℱ) is finite for some 𝑥0 ∈ 𝑂𝑏(ℱ(𝑘)).

Then (2), (3), (4) are equivalent and are implied by (1). If 𝑘′ ⊂ 𝑘 is separable, then (1), (2),
(3), (4) are all equivalent. Furthermore, the minimal smooth prorepresentable groupoids
in functors which provide a presentation of ℱ are unique up to isomorphism.

Proof. We see that (1) implies (3) and is equivalent to (3) if 𝑘′ ⊂ 𝑘 is separable from
Lemma 51.25.2. It is clear that (3) implies (2). We see that (2) implies (4) by Theorem
51.24.5. We see that (4) implies (3) by Lemma 51.25.6. This proves all the implications.
The final uniqueness statement follows from Lemma 51.25.7. �

51.26. The Deformation Category of a Point of an Algebraic Stack

To do: Show that an algebraic stack of finite type over a locally Noetherian base satisfies
(RS) at any finite type point (this may have to go in a later chapter). This will provide
some motivation for Artin's criteria later. A perhaps more roundabout way of showing this
(which does give more information, though) is to show that a groupoid presentation of the
stack gives rise to a presentation of the deformation category at any point.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06L3
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51.27. Examples

List of things that should go here:
(1) Describe the general outline of an example.
(2) Deformations of schemes:

(a) The Rim-Schlessinger condition.
(b) Computing the tangent space.
(c) Computing the infinitesimal deformations.
(d) The deformation category of an affine hypersurface.

(3) Deformations of representations of abstract groups.
(4) Deformations of representations of topological groups (e.g., profinite ones).
(5) Deformations of sheaves (for example fix 𝑋/𝑆, a finite type point 𝑠 of 𝑆, and a

quasi-coherent sheaf ℱ𝑠 over 𝑋𝑠).
(6) Deformations of algebraic spaces (very similar to deformations of schemes; maybe

even easier?).
(7) Deformations of maps (eg morphisms between schemes; you can fix both or one

of the target and/or source).
(8) Add more here.

51.28. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups
(9) Sites and Sheaves
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(13) Smoothing Ring Maps
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(15) Sheaves of Modules
(16) Modules on Sites
(17) Injectives
(18) Cohomology of Sheaves
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(20) Hypercoverings
(21) Schemes
(22) Constructions of Schemes
(23) Properties of Schemes
(24) Morphisms of Schemes
(25) Coherent Cohomology
(26) Divisors
(27) Limits of Schemes
(28) Varieties

(29) Chow Homology
(30) Topologies on Schemes
(31) Descent
(32) Adequate Modules
(33) More on Morphisms
(34) More on Flatness
(35) Groupoid Schemes
(36) More on Groupoid Schemes
(37) Étale Morphisms of Schemes
(38) Étale Cohomology
(39) Crystalline Cohomology
(40) Algebraic Spaces
(41) Properties of Algebraic Spaces
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(43) Decent Algebraic Spaces
(44) Topologies on Algebraic Spaces
(45) Descent and Algebraic Spaces
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CHAPTER 52

Groupoids in Algebraic Spaces

52.1. Introduction

This chapter is devoted to generalities concering groupoids in algebraic spaces. We recom-
mend reading the beautiful paper [KM97a] by Keel and Mori.

A lot of what we say here is a repeat of what we said in the chapter on groupoid schemes,
see Groupoids, Section 35.1. The discussion of quotient stacks is new here.

52.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.

Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋.

We continue our convention to label projection maps starting with index 0, so we have
pr0 ∶ 𝑋 ×𝑆 𝑌 → 𝑋 and pr1 ∶ 𝑋 ×𝑆 𝑌 → 𝑌.

52.3. Notation

Let 𝑆 be a scheme; this will be our base scheme and all algebraic spaces will be over 𝑆.
Let 𝐵 be an algebraic space over 𝑆; this will be our base algebraic space, and often other
algebraic spaces, and schemes will be over 𝐵. If we say that 𝑋 is an algebraic space over
𝐵, then we mean that 𝑋 is an algebraic space over 𝑆 which comes equipped with structure
morphism 𝑋 → 𝐵. Moreover, we try to reserve the letter 𝑇 to denote a ``test'' scheme over
𝐵. In other words 𝑇 is a scheme which comes equipped with a structure morphism 𝑇 → 𝐵.
In this situation we denote 𝑋(𝑇) for the set of 𝑇-valued points of 𝑋 over 𝐵. In a formula:

𝑋(𝑇) = 𝑀𝑜𝑟𝐵(𝑇, 𝑋).

Similarly, given a second algebraic space 𝑌 over 𝐵 we set

𝑋(𝑌) = 𝑀𝑜𝑟𝐵(𝑌, 𝑋).

Suppose we are given algebraic spaces 𝑋, 𝑌 over 𝐵 as above and a morphism 𝑓 ∶ 𝑋 → 𝑌
over 𝐵. For any scheme 𝑇 over 𝐵 we get an induced map of sets

𝑓 ∶ 𝑋(𝑇) ⟶ 𝑌(𝑇)

which is functorial in the scheme 𝑇 over 𝐵. As 𝑓 is a map of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓 over the
sheaf 𝐵 it is clear that 𝑓 determines and is determined by this rule. More generally, we use
the same notation for maps between fibre products. For example, if 𝑋, 𝑌, 𝑍 are algebraic
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spaces over 𝐵, and if 𝑚 ∶ 𝑋 ×𝐵 𝑌 → 𝑍 ×𝐵 𝑍 is a morphism of algebraic spaces over 𝐵,
then we think of 𝑚 as corresponding to a collection of maps between 𝑇-valued points

𝑋(𝑇) × 𝑌(𝑇) ⟶ 𝑍(𝑇) × 𝑍(𝑇).

And so on and so forth.

Finally, given two maps 𝑓, 𝑔 ∶ 𝑋 → 𝑌 of algebraic spaces over 𝐵, if the induced maps
𝑓, 𝑔 ∶ 𝑋(𝑇) → 𝑌(𝑇) are equal for every scheme 𝑇 over 𝐵, then 𝑓 = 𝑔, and hence also
𝑓, 𝑔 ∶ 𝑋(𝑍) → 𝑌(𝑍) are equal for every third algebraic space 𝑍 over 𝐵. Hence, for
example, to check the axioms for an group algebraic space 𝐺 over 𝐵, it suffices to check
commutativity of diagram on 𝑇-valued points where 𝑇 is a scheme over 𝐵 as we do in
Definition 52.5.1 below.

52.4. Equivalence relations

Please refer to Groupoids, Section 35.3 for notation.

Definition 52.4.1. Let 𝐵 → 𝑆 as in Section 52.3. Let 𝑈 be an algebraic space over 𝐵.
(1) A pre-relation on 𝑈 over 𝐵 is any morphism 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 of algebraic spaces

over 𝐵. In this case we set 𝑡 = pr0 ∘ 𝑗 and 𝑠 = pr1 ∘ 𝑗, so that 𝑗 = (𝑡, 𝑠).
(2) A relation on 𝑈 over 𝐵 is a monomorphism 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 of algebraic spaces

over 𝐵.
(3) A pre-equivalence relation is a pre-relation 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 such that the image

of 𝑗 ∶ 𝑅(𝑇) → 𝑈(𝑇) × 𝑈(𝑇) is an equivalence relation for all schemes 𝑇 over 𝐵.
(4) We say a morphism 𝑅 → 𝑈 ×𝐵 𝑈 of algebraic spaces over 𝐵 is an equivalence

relation on 𝑈 over 𝐵 if and only if for every 𝑇 over 𝐵 the 𝑇-valued points of 𝑅
define an equivalence relation on the set of 𝑇-valued points of 𝑈.

In other words, an equivalence relation is a pre-equivalence relation such that 𝑗 is a relation.

Lemma 52.4.2. Let 𝐵 → 𝑆 as in Section 52.3. Let 𝑈 be an algebraic space over 𝐵. Let
𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation. Let 𝑔 ∶ 𝑈′ → 𝑈 be a morphism of algebraic spaces
over 𝐵. Finally, set

𝑅′ = (𝑈′ ×𝐵 𝑈′) ×𝑈×𝐵𝑈 𝑅
𝑗′

−−→ 𝑈′ ×𝐵 𝑈′

Then 𝑗′ is a pre-relation on 𝑈′ over 𝐵. If 𝑗 is a relation, then 𝑗′ is a relation. If 𝑗 is
a pre-equivalence relation, then 𝑗′ is a pre-equivalence relation. If 𝑗 is an equivalence
relation, then 𝑗′ is an equivalence relation.

Proof. Omitted. �

Definition 52.4.3. Let 𝐵 → 𝑆 as in Section 52.3. Let 𝑈 be an algebraic space over 𝐵. Let
𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation. Let 𝑔 ∶ 𝑈′ → 𝑈 be a morphism of algebraic spaces
over 𝐵. The pre-relation 𝑗′ ∶ 𝑅′ → 𝑈′ ×𝐵 𝑈′ is called the restriction, or pullback of the
pre-relation 𝑗 to 𝑈′. In this situation we sometimes write 𝑅′ = 𝑅|𝑈′.

Lemma 52.4.4. Let 𝐵 → 𝑆 as in Section 52.3. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation of
algebraic spaces over 𝐵. Consider the relation on |𝑈| defined by the rule

𝑥 ∼ 𝑦 ⇔ ∃ 𝑟 ∈ |𝑅| ∶ 𝑡(𝑟) = 𝑥, 𝑠(𝑟) = 𝑦.

If 𝑗 is a pre-equivalence relation then this is an equivalence relation.
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Proof. Suppose that 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧. Pick 𝑟 ∈ |𝑅| with 𝑡(𝑟) = 𝑥, 𝑠(𝑟) = 𝑦 and pick
𝑟′ ∈ |𝑅| with 𝑡(𝑟′) = 𝑦, 𝑠(𝑟′) = 𝑧. We may pick a field 𝐾 such that 𝑟 and 𝑟′ can be
represented by morphisms 𝑟, 𝑟′ ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑅 with 𝑠 ∘ 𝑟 = 𝑡 ∘ 𝑟′. Denote 𝑥 = 𝑡 ∘ 𝑟,
𝑦 = 𝑠∘𝑟 = 𝑡∘𝑟′, and 𝑧 = 𝑠∘𝑟′, so 𝑥, 𝑦, 𝑧 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑈. By construction (𝑥, 𝑦) ∈ 𝑗(𝑅(𝐾))
and (𝑦, 𝑧) ∈ 𝑗(𝑅(𝐾)). Since 𝑗 is a pre-equivalence relationwe see that also (𝑥, 𝑧) ∈ 𝑗(𝑅(𝐾)).
This clearly implies that 𝑥 ∼ 𝑧.

The proof that ∼ is reflexive and symmetric is omitted. �

52.5. Group algebraic spaces

Please refer to Groupoids, Section 35.4 for notation.

Definition 52.5.1. Let 𝐵 → 𝑆 as in Section 52.3.
(1) A group algebraic space over 𝐵 is a pair (𝐺, 𝑚), where 𝐺 is an algebraic space

over 𝐵 and 𝑚 ∶ 𝐺 ×𝐵 𝐺 → 𝐺 is a morphism of algebraic spaces over 𝐵 with the
following property: For every scheme 𝑇 over 𝐵 the pair (𝐺(𝑇), 𝑚) is a group.

(2) A morphism 𝜓 ∶ (𝐺, 𝑚) → (𝐺′, 𝑚′) of group algebraic spaces over 𝐵 is a mor-
phism 𝜓 ∶ 𝐺 → 𝐺′ of algebraic spaces over 𝐵 such that for every 𝑇/𝐵 the induced
map 𝜓 ∶ 𝐺(𝑇) → 𝐺′(𝑇) is a homomorphism of groups.

Let (𝐺, 𝑚) be a group algebraic space over the algebraic space 𝐵. By the discussion in
Groupoids, Section 35.4 we obtain morphisms of algebraic spaces over 𝐵 (identity) 𝑒 ∶
𝐵 → 𝐺 and (inverse) 𝑖 ∶ 𝐵 → 𝐵 such that for every 𝑇 the quadruple (𝐺(𝑇), 𝑚, 𝑒, 𝑖) satisfies
the axioms of a group.

Let (𝐺, 𝑚), (𝐺′, 𝑚′) be group algebraic spaces over 𝐵. Let 𝑓 ∶ 𝐺 → 𝐺′ be a morphism
of algebraic spaces over 𝐵. It follows from the definition that 𝑓 is a morphism of group
algebraic spaces over 𝐵 if and only if the following diagram is commutative:

𝐺 ×𝐵 𝐺
𝑓×𝑓
//

𝑚
��

𝐺′ ×𝐵 𝐺′

𝑚
��

𝐺
𝑓 // 𝐺′

Lemma 52.5.2. Let 𝐵 → 𝑆 as in Section 52.3. Let (𝐺, 𝑚) be a group algebraic space over
𝐵. Let 𝐵′ → 𝐵 be a morphism of algebraic spaces. The pullback (𝐺𝐵′, 𝑚𝐵′) is a group
algebraic space over 𝐵′.

Proof. Omitted. �

52.6. Properties of group algebraic spaces

In this section we collect some simple properties of group algebraic spaces which hold over
any base.

Lemma 52.6.1. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝐺 be a group
algebraic space over 𝐵. Then 𝐺 → 𝐵 is separated (resp. quasi-separated, resp. locally
separated) if and only if the identity morphism 𝑒 ∶ 𝐵 → 𝐺 is a closed immersion (resp.
quasi-compact, resp. an immersion).
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Proof. We recall that by Morphisms of Spaces, Lemma 42.5.7 we have that 𝑒 is a closed
immersion (resp. quasi-compact, resp. an immersion) if 𝐺 → 𝐵 is separated (resp. quasi-
separated, resp. locally separated). For the converse, consider the diagram

𝐺
Δ𝐺/𝐵

//

��

𝐺 ×𝐵 𝐺

(𝑔,𝑔′)↦𝑚(𝑖(𝑔),𝑔′)
��

𝐵 𝑒 // 𝐺
It is an exercise in the functorial point of view in algebraic geometry to show that this
diagram is cartesian. In other words, we see that Δ𝐺/𝐵 is a base change of 𝑒. Hence if 𝑒 is a
closed immersion (resp. quasi-compact, resp. an immersion) so is Δ𝐺/𝐵, see Spaces, Lemma
40.12.3 (resp. Morphisms of Spaces, Lemma 42.9.3, resp. Spaces, Lemma 40.12.3). �

52.7. Examples of group algebraic spaces

If 𝐺 → 𝑆 is a group scheme over the base scheme 𝑆, then the base change 𝐺𝐵 to any
algebraic space 𝐵 over 𝑆 is an group algebraic space over 𝐵 by Lemma 52.5.2. We will
frequently use this in the examples below.

Example 52.7.1. (Multiplicative group algebraic space.) Let 𝐵 → 𝑆 as in Section 52.3.
Consider the functor which associates to any scheme 𝑇 over 𝐵 the group Γ(𝑇, 𝒪∗

𝑇) of units
in the global sections of the structure sheaf. This is representable by the group algebraic
space

𝐆𝑚,𝐵 = 𝐵 ×𝑆 𝐆𝑚,𝑆
over 𝐵. Here 𝐆𝑚,𝑆 is the multiplicative group scheme over 𝑆, see Groupoids, Example
35.5.1.

Example 52.7.2. (Roots of unity as a group algebraic space.) Let 𝐵 → 𝑆 as in Section 52.3.
Let 𝑛 ∈ 𝐍. Consider the functor which associates to any scheme 𝑇 over 𝐵 the subgroup of
Γ(𝑇, 𝒪∗

𝑇) consisting of 𝑛th roots of unity. This is representable by the group algebraic space

𝜇𝑛,𝐵 = 𝐵 ×𝑆 𝜇𝑛,𝑆

over 𝐵. Here 𝜇𝑛,𝑆 is the group scheme of 𝑛th roots of unity over 𝑆, see Groupoids, Example
35.5.2.

Example 52.7.3. (Additive group algebraic space.) Let𝐵 → 𝑆 as in Section 52.3. Consider
the functor which associates to any scheme 𝑇 over 𝐵 the group Γ(𝑇, 𝒪𝑇) of global sections
of the structure sheaf. This is representable by the group algebraic space

𝐆𝑎,𝐵 = 𝐵 ×𝑆 𝐆𝑎,𝑆

over 𝐵. Here 𝐆𝑎,𝑆 is the additive group scheme over 𝑆, see Groupoids, Example 35.5.3.

Example 52.7.4. (General linear group algebraic space.) Let 𝐵 → 𝑆 as in Section 52.3.
Let 𝑛 ≥ 1. Consider the functor which associates to any scheme 𝑇 over 𝐵 the group

GL𝑛(Γ(𝑇, 𝒪𝑇))

of invertible 𝑛 × 𝑛 matrices over the global sections of the structure sheaf. This is repre-
sentable by the group algebraic space

GL𝑛,𝐵 = 𝐵 ×𝑆 GL𝑛,𝑆

over 𝐵. Here 𝐆𝑚,𝑆 is the general linear group scheme over 𝑆, see Groupoids, Example
35.5.4.
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Example 52.7.5. Let 𝐵 → 𝑆 as in Section 52.3. Let 𝑛 ≥ 1. The determinant defines a
morphisms of group algebraic spaces

det ∶ GL𝑛,𝐵 ⟶ 𝐆𝑚,𝐵

over 𝐵. It is the base change of the determinant morphism over 𝑆 fromGroupoids, Example
35.5.5.

Example 52.7.6. Let 𝐵 → 𝑆 as in Section 52.3. (Constant group algebraic space.) Let 𝐺
be an abstract group. Consider the functor which associates to any scheme 𝑇 over 𝐵 the
group of locally constant maps 𝑇 → 𝐺 (where 𝑇 has the Zariski topology and 𝐺 the discrete
topology). This is representable by the group algebraic space

𝐺𝐵 = 𝐵 ×𝑆 𝐺𝑆

over 𝐵. Here 𝐺𝑆 is the constant group scheme introduced in Groupoids, Example 35.5.6.

52.8. Actions of group algebraic spaces

Please refer to Groupoids, Section 35.8 for notation.

Definition 52.8.1. Let 𝐵 → 𝑆 as in Section 52.3. Let (𝐺, 𝑚) be a group algebraic space
over 𝐵. Let 𝑋 be an algebraic space over 𝐵.

(1) An action of 𝐺 on the algebraic space 𝑋/𝐵 is a morphism 𝑎 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 over
𝐵 such that for every scheme 𝑇 over 𝐵 the map 𝑎 ∶ 𝐺(𝑇) × 𝑋(𝑇) → 𝑋(𝑇) defines
the structure of a 𝐺(𝑇)-set on 𝑋(𝑇).

(2) Suppose that 𝑋, 𝑌 are algebraic spaces over 𝐵 each endowed with an action of
𝐺. An equivariant or more precisely a 𝐺-equivariant morphism 𝜓 ∶ 𝑋 → 𝑌
is a morphism of algebraic spaces over 𝐵 such that for every 𝑇 over 𝐵 the map
𝜓 ∶ 𝑋(𝑇) → 𝑌(𝑇) is a morphism of 𝐺(𝑇)-sets.

In situation (1) this means that the diagrams

(52.8.1.1) 𝐺 ×𝐵 𝐺 ×𝐵 𝑋
1𝐺×𝑎

//

𝑚×1𝑋
��

𝐺 ×𝐵 𝑋

𝑎
��

𝐺 ×𝐵 𝑋 𝑎 // 𝑋

𝐺 ×𝐵 𝑋 𝑎
// 𝑋

𝑋

𝑒×1𝑋

OO

1𝑋

;;

are commutative. In situation (2) this just means that the diagram

𝐺 ×𝐵 𝑋
id×𝑓
//

𝑎
��

𝐺 ×𝐵 𝑌

𝑎
��

𝑋
𝑓 // 𝑌

commutes.

Definition 52.8.2. Let 𝐵 → 𝑆, 𝐺 → 𝐵, and 𝑋 → 𝐵 as in Definition 52.8.1. Let 𝑎 ∶
𝐺×𝐵 𝑋 → 𝑋 be an action of 𝐺 on 𝑋/𝐵. We say the action is free if for every scheme 𝑇 over
𝐵 the action 𝑎 ∶ 𝐺(𝑇) × 𝑋(𝑇) → 𝑋(𝑇) is a free action of the group 𝐺(𝑇) on the set 𝑋(𝑇).

Lemma 52.8.3. Situation as in Definition 52.8.2, The action 𝑎 is free if and only if

𝐺 ×𝐵 𝑋 → 𝑋 ×𝐵 𝑋, (𝑔, 𝑥) ↦ (𝑎(𝑔, 𝑥), 𝑥)
is a monomorphism of algebraic spaces.

Proof. Immediate from the definitions. �
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52.9. Principal homogeneous spaces

This section is the analogue of Groupoids, Section 35.9. We suggest reading that section
first.

Definition 52.9.1. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let (𝐺, 𝑚) be a
group algebraic space over 𝐵. Let 𝑋 be an algebraic space over 𝐵, and let 𝑎 ∶ 𝐺×𝐵 𝑋 → 𝑋
be an action of 𝐺 on 𝑋.

(1) We say 𝑋 is a pseudo 𝐺-torsor or that 𝑋 is formally principally homogeneous
under 𝐺 if the induced morphism 𝐺 ×𝐵 𝑋 → 𝑋 ×𝐵 𝑋, (𝑔, 𝑥) ↦ (𝑎(𝑔, 𝑥), 𝑥) is an
isomorphism.

(2) A pseudo 𝐺-torsor 𝑋 is called trivial if there exists an 𝐺-equivariant isomorphism
𝐺 → 𝑋 over 𝐵 where 𝐺 acts on 𝐺 by left multiplication.

It is clear that if 𝐵′ → 𝐵 is a morphism of algebraic spaces then the pullback 𝑋𝐵′ of a
pseudo 𝐺-torsor over 𝐵 is a pseudo 𝐺𝐵′-torsor over 𝐵′.

Lemma 52.9.2. In the situation of Definition 52.9.1.
(1) The algebraic space 𝑋 is a pseudo 𝐺-torsor if and only if for every scheme 𝑇 over

𝐵 the set 𝑋(𝑇) is either empty or the action of the group 𝐺(𝑇) on 𝑋(𝑇) is simply
transitive.

(2) A pseudo 𝐺-torsor 𝑋 is trivial if and only if the morphism 𝑋 → 𝐵 has a section.

Proof. Omitted. �

Definition 52.9.3. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let (𝐺, 𝑚) be a
group algebraic space over 𝐵. Let 𝑋 be a pseudo 𝐺-torsor over 𝐵.

(1) We say 𝑋 is a principal homogeneous space, or more precisely a principal homo-
geneous 𝐺-space over 𝐵 if there exists a fpqc covering1 {𝐵𝑖 → 𝐵}𝑖∈𝐼 such that
each 𝑋𝐵𝑖

→ 𝐵𝑖 has a section (i.e., is a trivial pseudo 𝐺𝐵𝑖
-torsor).

(2) Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. We say 𝑋 is a 𝐺-torsor in
the 𝜏 topology, or a 𝜏 𝐺-torsor, or simply a 𝜏 torsor if there exists a 𝜏 covering
{𝐵𝑖 → 𝐵}𝑖∈𝐼 such that each 𝑋𝐵𝑖

→ 𝐵𝑖 has a section.
(3) If 𝑋 is a 𝐺-torsor, then we say that it is quasi-isotrivial if it is a torsor for the étale

topology.
(4) If 𝑋 is a 𝐺-torsor, then we say that it is locally trivial if it is a torsor for the Zariski

topology.

We sometimes say ``let 𝑋 be a 𝐺-principal homogeneous space over 𝐵'' to indicate that 𝑋
is an algebraic space over 𝐵 equippend with an action of 𝐺 which turns it into a principal
homogeneous space over 𝐵. Next we show that this agrees with the notation introduced
earlier when both apply.

Lemma 52.9.4. Let 𝑆 be a scheme. Let (𝐺, 𝑚) be a group algebraic space over 𝑆. Let 𝑋
be an algebraic space over 𝑆, and let 𝑎 ∶ 𝐺 ×𝑆 𝑋 → 𝑋 be an action of 𝐺 on 𝑋. Then
𝑋 is a 𝐺-torsor in the 𝑓𝑝𝑝𝑓-topology in the sense of Definition 52.9.3 if and only if 𝑋 is a
𝐺-torsor on (Sch/𝑆)𝑓𝑝𝑝𝑓 in the sense of Cohomology on Sites, Definition 19.5.1.

Proof. Omitted. �

1The default type of torsor in Groupoids, Definition 35.9.3 is a pseudo torsor which is trivial on an fpqc
covering. Since 𝐺, as an algebraic space, can be seen a sheaf of groups there already is a notion of a 𝐺-torsor
which corresponds to fppf-torsor, see Lemma 52.9.4. Hence we use ``principal homogeneous space'' for a pseudo
torsor which is fpqc locally trivial, and we try to avoid using the word torsor in this situation.
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52.10. Equivariant quasi-coherent sheaves

Please compare with Groupoids, Section 35.10.

Definition 52.10.1. Let 𝐵 → 𝑆 as in Section 52.3. Let (𝐺, 𝑚) be a group algebraic space
over 𝐵, and let 𝑎 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 be an action of 𝐺 on the algebraic space 𝑋 over
𝐵. An 𝐺-equivariant quasi-coherent 𝒪𝑋-module, or simply a equivariant quasi-coherent
𝒪𝑋-module, is a pair (ℱ, 𝛼), whereℱ is a quasi-coherent𝒪𝑋-module, and 𝛼 is a𝒪𝐺×𝐵𝑋-module
map

𝛼 ∶ 𝑎∗ℱ ⟶ pr∗1ℱ
where pr1 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 is the projection such that

(1) the diagram

(1𝐺 × 𝑎)∗pr∗2ℱ
pr∗12𝛼

// pr∗2ℱ

(1𝐺 × 𝑎)∗𝑎∗ℱ

(1𝐺×𝑎)∗𝛼

OO

(𝑚 × 1𝑋)∗𝑎∗ℱ

(𝑚×1𝑋)∗𝛼

OO

is a commutative in the category of 𝒪𝐺×𝐵𝐺×𝐵𝑋-modules, and
(2) the pullback

(𝑒 × 1𝑋)∗𝛼 ∶ ℱ ⟶ ℱ
is the identity map.

For explanation compare with the relevant diagrams of Equation (52.8.1.1).

Note that the commutativity of the first diagram garantees that (𝑒 × 1𝑋)∗𝛼 is an idempotent
operator on ℱ, and hence condition (2) is just the condition that it is an isomorphism.

Lemma 52.10.2. Let 𝐵 → 𝑆 as in Section 52.3. Let 𝐺 be a group algebraic space over
𝐵. Let 𝑓 ∶ 𝑋 → 𝑌 be a 𝐺-equivariant morphism between algebraic spaces over 𝐵 en-
dowed with 𝐺-actions. Then pullback 𝑓∗ given by (ℱ, 𝛼) ↦ (𝑓∗ℱ, (1𝐺 × 𝑓)∗𝛼) defines a
functor from the category of 𝐺-equivariant sheaves on 𝑋 to the category of quasi-coherent
𝐺-equivariant sheaves on 𝑌.

Proof. Omitted. �

52.11. Groupoids in algebraic spaces

Please refer to Groupoids, Section 35.11 for notation.

Definition 52.11.1. Let 𝐵 → 𝑆 as in Section 52.3.
(1) A groupoid in algebraic spaces over 𝐵 is a quintuple (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) where 𝑈 and

𝑅 are algebraic spaces over 𝐵, and 𝑠, 𝑡 ∶ 𝑅 → 𝑈 and 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅
are morphisms of algebraic spaces over 𝐵 with the following property: For any
scheme 𝑇 over 𝐵 the quintuple

(𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐)

is a groupoid category.
(2) A morphism 𝑓 ∶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) of groupoids in algebraic

spaces over 𝐵 is given by morphisms of algebraic spaces 𝑓 ∶ 𝑈 → 𝑈′ and
𝑓 ∶ 𝑅 → 𝑅′ over 𝐵 with the following property: For any scheme 𝑇 over 𝐵
the maps 𝑓 define a functor from the groupoid category (𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐) to the
groupoid category (𝑈′(𝑇), 𝑅′(𝑇), 𝑠′, 𝑡′, 𝑐′).
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Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic spaces over 𝐵. Note that there are unique mor-
phisms of algebraic spaces 𝑒 ∶ 𝑈 → 𝑅 and 𝑖 ∶ 𝑅 → 𝑅 over 𝐵 such that for every scheme
𝑇 over 𝐵 the induced map 𝑒 ∶ 𝑈(𝑇) → 𝑅(𝑇) is the identity, and 𝑖 ∶ 𝑅(𝑇) → 𝑅(𝑇) is the
inverse of the groupoid category. The septuple (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) satisfies commutative dia-
grams corresponding to each of the axioms (1), (2)(a), (2)(b), (3)(a) and (3)(b) of Groupoids,
Section 35.11. Conversely given a septuple with this property the quintuple (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is
a groupoid in algebraic spaces over 𝐵. Note that 𝑖 is an isomorphism, and 𝑒 is a section of
both 𝑠 and 𝑡. Moreover, given a groupoid in algebraic spaces over 𝐵 we denote

𝑗 = (𝑡, 𝑠) ∶ 𝑅 ⟶ 𝑈 ×𝐵 𝑈
which is compatible with our conventions in Section 52.4 above. We sometimes say ``let
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid in algebraic spaces over 𝐵'' to stress the existence of identity
and inverse.

Lemma 52.11.2. Let 𝐵 → 𝑆 as in Section 52.3. Given a groupoid in algebraic spaces
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over 𝐵 the morphism 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 is a pre-equivalence relation.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 52.11.3. Let 𝐵 → 𝑆 as in Section 52.3. Given an equivalence relation 𝑗 ∶ 𝑅 → 𝑈
over 𝐵 there is a unique way to extend it to a groupoid in algebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
over 𝐵.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 52.11.4. Let𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic
spaces over 𝐵. In the commutative diagram

𝑈

𝑅

𝑠
��

𝑡
::

𝑅 ×𝑠,𝑈,𝑡 𝑅pr0
oo

pr1
��

𝑐
// 𝑅

𝑠
��

𝑡
dd

𝑈 𝑅𝑡oo 𝑠 // 𝑈
the two lower squares are fibre product squares. Moreover, the triangle on top (which is
really a square) is also cartesian.

Proof. Omitted. Exercise in the definitions and the functorial point of view in algebraic
geometry. �

Lemma 52.11.5. Let 𝐵 → 𝑆 be as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid in
algebraic spaces over 𝐵. The diagram

(52.11.5.1) 𝑅 ×𝑡,𝑈,𝑡 𝑅
pr1 //

pr0
//

pr0×𝑐∘(𝑖,1)
��

𝑅 𝑡 //

id𝑅
��

𝑈

id𝑈
��

𝑅 ×𝑠,𝑈,𝑡 𝑅
𝑐 //

pr0
//

pr1
��

𝑅 𝑡 //

𝑠
��

𝑈

𝑅
𝑠 //

𝑡
// 𝑈

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=043X
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=043Y
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=043Z
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0450


52.12. QUASI-COHERENT SHEAVES ON GROUPOIDS 2571

is commutative. The two top rows are isomorphic via the vertical maps given. The two
lower left squares are cartesian.

Proof. The commutativity of the diagram follows from the axioms of a groupoid. Note
that, in terms of groupoids, the top left vertical arrow assigns to a pair of morphisms (𝛼, 𝛽)
with the same target, the pair of morphisms (𝛼, 𝛼−1 ∘ 𝛽). In any groupoid this defines a
bijection between Arrows ×𝑡,Ob,𝑡 Arrows and Arrows ×𝑠,Ob,𝑡 Arrows. Hence the second
assertion of the lemma. The last assertion follows from Lemma 52.11.4. �

52.12. Quasi-coherent sheaves on groupoids

Please compare with Groupoids, Section 35.12.

Definition 52.12.1. Let 𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over 𝐵. A quasi-coherent module on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a pair (ℱ, 𝛼), where
ℱ is a quasi-coherent 𝒪𝑈-module, and 𝛼 is a 𝒪𝑅-module map

𝛼 ∶ 𝑡∗ℱ ⟶ 𝑠∗ℱ
such that

(1) the diagram

pr∗1𝑡∗ℱ
pr∗1𝛼
// pr∗1𝑠∗ℱ

pr∗0𝑠∗ℱ 𝑐∗𝑠∗ℱ

pr∗0𝑡∗ℱ
pr∗0𝛼

dd

𝑐∗𝑡∗ℱ
𝑐∗𝛼

;;

is a commutative in the category of 𝒪𝑅×𝑠,𝑈,𝑡𝑅-modules, and
(2) the pullback

𝑒∗𝛼 ∶ ℱ ⟶ ℱ
is the identity map.

Compare with the commutative diagrams of Lemma 52.11.4.

The commutativity of the first diagram forces the operator 𝑒∗𝛼 to be idempotent. Hence
the second condition can be reformulated as saying that 𝑒∗𝛼 is an isomorphism. In fact, the
condition implies that 𝛼 is an isomorphism.

Lemma 52.12.2. Let 𝑆 be a scheme, let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. If (ℱ, 𝛼)
is a quasi-coherent module on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) then 𝛼 is an isomorphism.

Proof. Pull back the commutative diagram of Definition 52.12.1 by the morphism (𝑖, 1) ∶
𝑅 → 𝑅 ×𝑠,𝑈,𝑡 𝑅. Then we see that 𝑖∗𝛼 ∘ 𝛼 = 𝑠∗𝑒∗𝛼. Pulling back by the morphism (1, 𝑖)
we obtain the relation 𝛼 ∘ 𝑖∗𝛼 = 𝑡∗𝑒∗𝛼. By the second assumption these morphisms are the
identity. Hence 𝑖∗𝛼 is an inverse of 𝛼. �

Lemma 52.12.3. Let 𝐵 → 𝑆 as in Section 52.3. Consider a morphism 𝑓 ∶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) →
(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) of groupoid in algebraic spacess over 𝐵. Then pullback 𝑓∗ given by

(ℱ, 𝛼) ↦ (𝑓∗ℱ, 𝑓∗𝛼)
defines a functor from the category of quasi-coherent sheaves on (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) to the
category of quasi-coherent sheaves on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).
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Proof. Omitted. �

Lemma 52.12.4. Let 𝐵 → 𝑆 be as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over 𝐵. The category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) has
colimits.

Proof. Let 𝑖 ↦ (ℱ𝑖, 𝛼𝑖) be a diagram over the index category ℐ. We can form the colimit
ℱ = 𝑐𝑜𝑙𝑖𝑚 ℱ𝑖 which is a quasi-coherent sheaf on 𝑈, see Properties of Spaces, Lemma
41.26.7. Since colimits commute with pullback we see that 𝑠∗ℱ = 𝑐𝑜𝑙𝑖𝑚 𝑠∗ℱ𝑖 and similarly
𝑡∗ℱ = 𝑐𝑜𝑙𝑖𝑚 𝑡∗ℱ𝑖. Hence we can set 𝛼 = 𝑐𝑜𝑙𝑖𝑚 𝛼𝑖. We omit the proof that (ℱ, 𝛼) is the
colimit of the diagram in the category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). �

Lemma 52.12.5. Let𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic
spaces over 𝐵. If 𝑠, 𝑡 are flat, then the category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
is abelian.

Proof. Let𝜑 ∶ (ℱ, 𝛼) → (𝒢, 𝛽) be a homomorphism of quasi-coherentmodules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).
Since 𝑠 is flat we see that

0 → 𝑠∗Ker(𝜑) → 𝑠∗ℱ → 𝑠∗𝒢 → 𝑠∗Coker(𝜑) → 0

is exact and similarly for pullback by 𝑡. Hence 𝛼 and 𝛽 induce isomorphisms 𝜅 ∶ 𝑡∗Ker(𝜑) →
𝑠∗Ker(𝜑) and 𝜆 ∶ 𝑡∗Coker(𝜑) → 𝑠∗Coker(𝜑) which satisfy the cocycle condition. Then it is
straightforward to verify that (Ker(𝜑), 𝜅) and (Coker(𝜑), 𝜆) are a kernel and cokernel in the
category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). Moreover, the condition Coim(𝜑) =
Im(𝜑) follows because it holds over 𝑈. �

52.13. Crystals in quasi-coherent sheaves

Let (𝐼, Φ, 𝑗) be a pair consisting of a set 𝐼 and a pre-relation 𝑗 ∶ Φ → 𝐼 × 𝐼. Assume given
for every 𝑖 ∈ 𝐼 a scheme 𝑋𝑖 and for every 𝜙 ∈ Φ a morphisms of schemes 𝑓𝜙 ∶ 𝑋𝑖′ → 𝑋𝑖
where 𝑗(𝜙) = (𝑖, 𝑖′). Set 𝑋 = ({𝑋𝑖}𝑖∈𝐼, {𝑓𝜙}𝜙∈Φ). Define a crystal in quasi-coherent
modules on 𝑋 as a rule which associates to every 𝑖 ∈ 𝑂𝑏(ℐ) a quasi-coherent sheaf ℱ𝑖 on
𝑋𝑖 and for every 𝜙 ∈ Φ with 𝑗(𝜙) = (𝑖, 𝑖′) an isomorphism

𝛼𝜙 ∶ 𝑓∗
𝜙ℱ𝑖 ⟶ ℱ𝑖′

of quasi-coherent sheaves on 𝑋𝑖′. These crystals in quasi-coherent modules form an ad-
ditive category CQC(𝑋)2. This category has colimits (proof is the same as the proof of
Lemma 52.12.4). If all the morphisms 𝑓𝜙 are flat, then CQC(𝑋) is abelian (proof is the
same as the proof of Lemma 52.12.5). Let 𝜅 be a cardinal. We say that a crystal in quasi-
coherent modules ℱ on 𝑋 is 𝜅-generated if each ℱ𝑖 is 𝜅-generated (see Properties, Defini-
tion 23.21.1).

Lemma 52.13.1. In the situation above, if all the morphisms 𝑓𝜙 are flat, then there exists
a cardinal 𝜅 such that every object ({ℱ𝑖}𝑖∈𝐼, {𝛼𝜙}𝜙∈Φ) of CQC(𝑋) is the directed colimit
of its 𝜅-generated submodules.

2We could single out a set of triples 𝜙, 𝜙′, 𝜙″ ∈ Φ with 𝑗(𝜙) = (𝑖, 𝑖′), 𝑗(𝜙′) = (𝑖′, 𝑖″), and 𝑗(𝜙″) = (𝑖, 𝑖″)
such that 𝑓𝜙″ = 𝑓𝜙 ∘ 𝑓𝜙′ and require that 𝛼𝜙′ ∘ 𝑓∗

𝜙′𝛼𝜙 = 𝛼𝜙″ for these triples. This would define an additive
subcategory. For example the data (𝐼, Φ) could be the set of objects and arrows of an index category and 𝑋
could be a diagram of schemes over this index category. The result of Lemma 52.13.1 immediately gives the
corresponding result in the subcategory.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=077X
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06VZ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=077Z
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Proof. In the the lemma and in this proof a submodule of ({ℱ𝑖}𝑖∈𝐼, {𝛼𝜙}𝜙∈Φ) means the
data of a quasi-coherent submodule 𝒢𝑖 ⊂ ℱ𝑖 for all 𝑖 such that 𝛼𝜙(𝑓∗

𝜙𝒢𝑖) = 𝒢𝑖′ as subsheaves
of ℱ𝑖′ for all 𝜙 ∈ Φ. This makes sense because since 𝑓𝜙 is flat the pullback 𝑓∗

𝜙 is exact,
i.e., preserves subsheaves. The proof will be a variant to the proof of Properties, Lemma
23.21.3. We urge the reader to read that proof first.
We claim that it suffices to prove the lemma in case all the schemes 𝑋𝑖 are affine. To see
this let

𝐽 = ∐𝑖∈𝐼
{𝑈 ⊂ 𝑋𝑖 affine open}

and let
Ψ = ∐𝜙∈Φ

{(𝑈, 𝑉) ∣ 𝑈 ⊂ 𝑋𝑖, 𝑉 ⊂ 𝑋𝑖′ affine open with 𝑓𝜙(𝑈) ⊂ 𝑉}

∐ ∐𝑖∈𝐼
{(𝑈, 𝑈′) ∣ 𝑈, 𝑈′ ⊂ 𝑋𝑖 affine open with 𝑈 ⊂ 𝑈′}

endowed with the obvious map Ψ → 𝐽 × 𝐽. Then our (ℱ, 𝛼) induces a crystal in quasi-
coherent sheaves ({ℋ𝑗}𝑗∈𝐽, {𝛽𝜓}𝜓∈Ψ) on 𝑌 = (𝐽, Ψ) by setting ℋ(𝑖,𝑈) = ℱ𝑖|𝑈 for (𝑖, 𝑈) ∈ 𝐽
and setting 𝛽𝜓 for 𝜓 ∈ Ψ equal to the restriction of 𝛼𝜙 to 𝑈 if 𝜓 = (𝜙, 𝑈, 𝑉) and equal to
id ∶ (ℱ𝑖|𝑈′)|𝑈 → ℱ𝑖|𝑈 when𝜓 = (𝑖, 𝑈, 𝑈′). Moreover, submodules of ({ℋ𝑗}𝑗∈𝐽, {𝛽𝜓}𝜓∈Ψ)
correspond 1-to-1 with submodules of ({ℱ𝑖}𝑖∈𝐼, {𝛼𝜙}𝜙∈Φ). We omit the proof (hint: use
Sheaves, Section 6.30). Moreover, it is clear that if 𝜅 works for 𝑌, then the same 𝜅 works
for 𝑋 (by the definition of 𝜅-generated modules). Hence it suffices to proof the lemma for
crystals in quasi-coherent sheaves on 𝑌.
Assume that all the schemes 𝑋𝑖 are affine. Let 𝜅 be an infinite cardinal larger than the
cardinality of 𝐼 or Φ. Let ({ℱ𝑖}𝑖∈𝐼, {𝛼𝜙}𝜙∈Φ) be an object of CQC(𝑋). For each 𝑖 write
𝑋𝑖 = 𝑆𝑝𝑒𝑐(𝐴𝑖) and 𝑀𝑖 = Γ(𝑋𝑖, ℱ𝑖). For every 𝜙 ∈ Φ with 𝑗(𝜙) = (𝑖, 𝑖′) the map 𝛼𝜙
translates into an 𝐴𝑖′-module isomorphism

𝛼𝜙 ∶ 𝑀𝑖 ⊗𝐴𝑖
𝐴𝑖′ ⟶ 𝑀𝑖′

Using the axiom of choice choose a rule
(𝜙, 𝑚) ⟼ 𝑆(𝜙, 𝑚′)

where the source is the collection of pairs (𝜙, 𝑚′) such that 𝜙 ∈ Φ with 𝑗(𝜙) = (𝑖, 𝑖′) and
𝑚′ ∈ 𝑀𝑖′ and where the output is a finite subset 𝑆(𝜙, 𝑚′) ⊂ 𝑀𝑖 so that

𝑚′ = 𝛼𝜙 (∑𝑚∈𝑆(𝜙,𝑚′)
𝑚 ⊗ 𝑎′

𝑚)
for some 𝑎′

𝑚 ∈ 𝐴𝑖′.
Havingmade these choiceswe claim that any section of anyℱ𝑖 over any𝑋𝑖 is in a 𝜅-generated
submodule. To see this suppose that we are given a collection 𝒮 = {𝑆𝑖}𝑖∈𝐼 of subsets
𝑆𝑖 ⊂ 𝑀𝑖 each with cardinality at most 𝜅. Then we define a new collection 𝒮′ = {𝑆′

𝑖 }𝑖∈𝐼
with

𝑆′
𝑖 = 𝑆𝑖 ∪ ⋃(𝜙,𝑚′), 𝑗(𝜙)=(𝑖,𝑖′), 𝑚′∈𝑆𝑖′

𝑆(𝜙, 𝑚′)

Note that each 𝑆′
𝑖 still has cardinality at most 𝜅. Set 𝒮(0) = 𝒮, 𝒮(1) = 𝒮′ and by induction

𝒮(𝑛+1) = (𝒮(𝑛))′. Then set 𝑆(∞)
𝑖 = ⋃𝑛≥0 𝑆(𝑛)

𝑖 and 𝒮(∞) = {𝑆(∞)
𝑖 }𝑖∈𝐼. By construction, for

every 𝜙 ∈ Φ with 𝑗(𝜙) = (𝑖, 𝑖′) and every 𝑚′ ∈ 𝑆(∞)
𝑖′ we can write 𝑚′ as a finite linear

combination of images 𝛼𝜙(𝑚 ⊗ 1) with 𝑚 ∈ 𝑆(∞)
𝑖 . Thus we see that setting 𝑁𝑖 equal to

the 𝐴𝑖-submodule of 𝑀𝑖 generated by 𝑆(∞)
𝑖 the corresponding quasi-coherent submodules

𝑁𝑖 ⊂ ℱ𝑖 form a 𝜅-generated submodule. This finishes the proof. �
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Lemma 52.13.2. Let𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic
spaces over 𝐵. If 𝑠, 𝑡 are flat, then there exists a set 𝑇 and a family of objects (ℱ𝑡, 𝛼𝑡)𝑡∈𝑇
of QCoh(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) such that every object (ℱ, 𝛼) is the directed colimit of its submodules
isomorphic to one of the objects (ℱ𝑡, 𝛼𝑡).

Proof. This lemma is a generalization of Groupoids, Lemma 35.12.7 which deals with the
case of a groupoid in schemes. We can't quite use the same argument, so we use the material
on ``crystals of quasi-coherent sheaves'' we developed above.

Choose a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝑈. Choose a scheme 𝑉 and
a surjective étale morphism 𝑉 → 𝑊 ×𝑈,𝑠 𝑅. Choose a scheme 𝑉′ and a surjective étale
morphism 𝑉′ → 𝑅 ×𝑡,𝑈 𝑊. Consider the collection of schemes

𝐼 = {𝑊, 𝑊 ×𝑈 𝑊, 𝑉, 𝑉′, 𝑉 ×𝑅 𝑉′}

and the set of morphisms of schemes

Φ = {pr𝑖 ∶ 𝑊 ×𝑈 𝑊 → 𝑊, 𝑉 → 𝑊, 𝑉′ → 𝑊, 𝑉 ×𝑅 𝑉′ → 𝑉, 𝑉 ×𝑅 𝑉′ → 𝑉′}

Set 𝑋 = (𝐼, Φ). Recall that we have defined a category CQC(𝑋) of crystals of quasi-
coherent sheaves on 𝑋. There is a functor

QCoh(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) ⟶ CQC(𝑋)

which assigns to (ℱ, 𝛼) the sheaf ℱ|𝑊 on 𝑊, the sheaf ℱ|𝑊×𝑈𝑊 on 𝑊 ×𝑈 𝑊, the pull back
of ℱ via 𝑉 → 𝑊 ×𝑈,𝑠 𝑅 → 𝑊 → 𝑈 on 𝑉, the pull back of ℱ via 𝑉′ → 𝑅 ×𝑡,𝑈 𝑊 → 𝑊 → 𝑈
on 𝑉′, and finally the pull back of ℱ via 𝑉 ×𝑅 𝑉′ → 𝑉 → 𝑊 ×𝑈,𝑠 𝑅 → 𝑊 → 𝑈 on
𝑉×𝑅𝑉′. As comparison maps {𝛼𝜙}𝜙∈Φ we use the obvious ones (coming from associativity
of pullbacks) except for the map 𝜙 = pr𝑉′ ∶ 𝑉×𝑅𝑉′ → 𝑉′ we use the pullback of 𝛼 ∶ 𝑡∗ℱ →
𝑠∗ℱ to 𝑉 ×𝑅 𝑉′. This makes sense because of the following commutative diagram

𝑉 ×𝑅 𝑉′

{{ ##
𝑉

##

��

𝑉′

{{

��

𝑅

𝑠

��

𝑡

��

𝑊

##

𝑊

{{
𝑈

The functor displayed above isn't an equivalence of categories. However, since 𝑊 → 𝑈
is surjective étale it is faithful3. Since all the morphisms in the diagram above are flat
we see that it is an exact functor of abelian categories. Moreover, we claim that given
(ℱ, 𝛼) with image ({ℱ𝑖}𝑖∈𝐼, {𝛼𝜙}𝜙∈Φ) there is a 1-to-1 correspondence between quasi-
coherent submodules of (ℱ, 𝛼) and ({ℱ𝑖}𝑖∈𝐼, {𝛼𝜙}𝜙∈Φ). Namely, given a submodule of
({ℱ𝑖}𝑖∈𝐼, {𝛼𝜙}𝜙∈Φ) compatibility of the submodule over 𝑊 with the projection maps 𝑊×𝑈
𝑊 → 𝑊 will guarantee the submodule comes from a quasi-coherent submodule of ℱ (by

3In fact the functor is fully faithful, but we won't need this.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0780
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Properties of Spaces, Proposition 41.29.1) and compatibility with 𝛼pr𝑉′ will insure this sub-
sheaf is compatible with 𝛼 (details omitted).

Choose a cardinal 𝜅 as in Lemma 52.13.1 for the system 𝑋 = (𝐼, Φ). It is clear from
Properties, Lemma 23.21.2 that there is a set of isomorphism classes of 𝜅-generated crystals
in quasi-coherent sheaves on 𝑋. Hence the result is clear. �

52.14. Groupoids and group spaces

Please compare with Groupoids, Section 35.13.

Lemma 52.14.1. Let 𝐵 → 𝑆 as in Section 52.3. Let (𝐺, 𝑚) be a group algebraic space
over 𝐵 with identity 𝑒𝐺 and inverse 𝑖𝐺. Let 𝑋 be an algebraic space over 𝐵 and let 𝑎 ∶
𝐺 ×𝐵 𝑋 → 𝑋 be an action of 𝐺 on 𝑋 over 𝐵. Then we get a groupoid in algebraic spaces
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) over 𝐵 in the following manner:

(1) We set 𝑈 = 𝑋, and 𝑅 = 𝐺 ×𝐵 𝑋.
(2) We set 𝑠 ∶ 𝑅 → 𝑈 equal to (𝑔, 𝑥) ↦ 𝑥.
(3) We set 𝑡 ∶ 𝑅 → 𝑈 equal to (𝑔, 𝑥) ↦ 𝑎(𝑔, 𝑥).
(4) We set 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 equal to ((𝑔, 𝑥), (𝑔′, 𝑥′)) ↦ (𝑚(𝑔, 𝑔′), 𝑥′).
(5) We set 𝑒 ∶ 𝑈 → 𝑅 equal to 𝑥 ↦ (𝑒𝐺(𝑥), 𝑥).
(6) We set 𝑖 ∶ 𝑅 → 𝑅 equal to (𝑔, 𝑥) ↦ (𝑖𝐺(𝑔), 𝑎(𝑔, 𝑥)).

Proof. Omitted. Hint: It is enough to show that this works on the set level. For this use
the description above the lemma describing 𝑔 as an arrow from 𝑣 to 𝑎(𝑔, 𝑣). �

Lemma 52.14.2. Let 𝐵 → 𝑆 as in Section 52.3. Let (𝐺, 𝑚) be a group algebraic space
over 𝐵. Let 𝑋 be an algebraic space over 𝐵 and let 𝑎 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 be an action
of 𝐺 on 𝑋 over 𝐵. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid in algebraic spaces constructed in
Lemma 52.14.1. The rule (ℱ, 𝛼) ↦ (ℱ, 𝛼) defines an equivalence of categories between
𝐺-equivariant 𝒪𝑋-modules and the category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).

Proof. The assertion makes sense because 𝑡 = 𝑎 and 𝑠 = pr1 as morphisms 𝑅 = 𝐺 ×𝐵
𝑋 → 𝑋, see Definitions 52.10.1 and 52.12.1. Using the translation in Lemma 52.14.1 the
commutativity requirements of the two definitions match up exactly. �

52.15. The stabilizer group algebraic space

Please compare with Groupoids, Section 35.14. Given a groupoid in algebraic spaces we
get a group algebraic space as follows.

Lemma 52.15.1. Let𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic
spaces over 𝐵. The algebraic space 𝐺 defined by the cartesian square

𝐺 //

��

𝑅

𝑗=(𝑡,𝑠)
��

𝑈 Δ // 𝑈 ×𝐵 𝑈

is a group algebraic space over 𝑈 with compostion law 𝑚 induced by the composition law
𝑐.

Proof. This is true because in a groupoid category the set of self maps of any object forms
a group. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0444
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0445
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0447
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Since Δ is a monomorphism we see that 𝐺 = 𝑗−1(Δ𝑈/𝐵) is a subsheaf of 𝑅. Thinking of it
in this way, the structure morphism 𝐺 = 𝑗−1(Δ𝑈/𝐵) → 𝑈 is induced by either 𝑠 or 𝑡 (it is
the same), and 𝑚 is induced by 𝑐.

Definition 52.15.2. Let 𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over 𝐵. The group algebraic space 𝑗−1(Δ𝑈/𝐵) → 𝑈 is called the stabilizer
of the groupoid in algebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).

In the literature the stabilizer group algebraic space is often denoted 𝑆 (because the word
stabilizer starts with an ``s'' presumably); we cannot do this since we have already used 𝑆
for the base scheme.

Lemma 52.15.3. Let𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic
spaces over 𝐵, and let 𝐺/𝑈 be its stabilizer. Denote 𝑅𝑡/𝑈 the algebraic space 𝑅 seen as an
algebraic space over 𝑈 via the morphism 𝑡 ∶ 𝑅 → 𝑈. There is a canonical left action

𝑎 ∶ 𝐺 ×𝑈 𝑅𝑡 ⟶ 𝑅𝑡

induced by the composition law 𝑐.

Proof. In terms of points over 𝑇/𝐵 we define 𝑎(𝑔, 𝑟) = 𝑐(𝑔, 𝑟). �

52.16. Restricting groupoids

Please refer to Groupoids, Section 35.15 for notation.

Lemma 52.16.1. Let𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic
spaces over 𝐵. Let 𝑔 ∶ 𝑈′ → 𝑈 be a morphism of algebraic spaces. Consider the following
diagram

𝑅′

��

//

𝑡′

%%

𝑠′

**𝑅 ×𝑠,𝑈 𝑈′ //

��

𝑈′

𝑔

��
𝑈′ ×𝑈,𝑡 𝑅

��

// 𝑅 𝑠 //

𝑡
��

𝑈

𝑈′ 𝑔 // 𝑈
where all the squares are fibre product squares. Then there is a canonical composition law
𝑐′ ∶ 𝑅′ ×𝑠′,𝑈′,𝑡′ 𝑅′ → 𝑅′ such that (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) is a groupoid in algebraic spaces over
𝐵 and such that 𝑈′ → 𝑈, 𝑅′ → 𝑅 defines a morphism (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) → (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
of groupoids in algebraic spaces over 𝐵. Moreover, for any scheme 𝑇 over 𝐵 the functor of
groupoids

(𝑈′(𝑇), 𝑅′(𝑇), 𝑠′, 𝑡′, 𝑐′) → (𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐)
is the restriction (see Groupoids, Section 35.15) of (𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐) via the map 𝑈′(𝑇) →
𝑈(𝑇).

Proof. Omitted. �

Definition 52.16.2. Let 𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over 𝐵. Let 𝑔 ∶ 𝑈′ → 𝑈 be a morphism of algebraic spaces over 𝐵. The
morphism of groupoids in algebraic spaces (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) → (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) constructed
in Lemma 52.16.1 is called the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝑈′. We sometime use the
notation 𝑅′ = 𝑅|𝑈′ in this case.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0448
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Lemma 52.16.3. The notions of restricting groupoids and (pre-)equivalence relations de-
fined in Definitions 52.16.2 and 52.4.3 agree via the constructions of Lemmas 52.11.2 and
52.11.3.

Proof. What we are saying here is that 𝑅′ of Lemma 52.16.1 is also equal to

𝑅′ = (𝑈′ ×𝐵 𝑈′) ×𝑈×𝐵𝑈 𝑅 ⟶ 𝑈′ ×𝐵 𝑈′

In fact this might have been a clearer way to state that lemma. �

52.17. Invariant subspaces

In this section we discuss briefly the notion of an invariant subspace.

Definition 52.17.1. Let 𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over the base 𝐵.

(1) We say an open subspace 𝑊 ⊂ 𝑈 is 𝑅-invariant if 𝑡(𝑠−1(𝑊)) ⊂ 𝑊.
(2) A locally closed subspace 𝑍 ⊂ 𝑈 is called 𝑅-invariant if 𝑡−1(𝑍) = 𝑠−1(𝑍) as

locally closed subspaces of 𝑅.
(3) Amonomorphism of algebraic spaces 𝑇 → 𝑈 is 𝑅-invariant if 𝑇×𝑈,𝑡𝑅 = 𝑅×𝑠,𝑈𝑇

as algebraic spaces over 𝑅.

For an open subspace 𝑊 ⊂ 𝑈 the 𝑅-invariance is also equivalent to requiring that 𝑠−1(𝑊) =
𝑡−1(𝑊). If 𝑊 ⊂ 𝑈 is 𝑅-invariant then the restriction of 𝑅 to 𝑊 is just 𝑅𝑊 = 𝑠−1(𝑊) =
𝑡−1(𝑊). Similarly, if 𝑍 ⊂ 𝑈 is an 𝑅-invariant locally closed subspace, then the restriction
of 𝑅 to 𝑍 is just 𝑅𝑍 = 𝑠−1(𝑍) = 𝑡−1(𝑍).

Lemma 52.17.2. Let𝐵 → 𝑆 as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic
spaces over 𝐵.

(1) If 𝑠 and 𝑡 are open, then for every open 𝑊 ⊂ 𝑈 the open 𝑠(𝑡−1(𝑊)) is 𝑅-invariant.
(2) If 𝑠 and 𝑡 are open and quasi-compact, then 𝑈 has an open covering consisting

of 𝑅-invariant quasi-compact open subspaces.

Proof. Assume 𝑠 and 𝑡 open and 𝑊 ⊂ 𝑈 open. Since 𝑠 is open we see that 𝑊′ = 𝑠(𝑡−1(𝑊))
is an open subspace of 𝑈. Now it is quite easy to using the functorial point of view that
this is an 𝑅-invariant open subset of 𝑈, but we are going to argue this directly by some
diagrams, since we think it is instructive. Note that 𝑡−1(𝑊′) is the image of the morphism

𝐴 ∶= 𝑡−1(𝑊) ×𝑠|𝑡−1(𝑊),𝑈,𝑡 𝑅
pr1−−→ 𝑅

and that 𝑠−1(𝑊′) is the image of the morphism

𝐵 ∶= 𝑅 ×𝑠,𝑈,𝑠|𝑡−1(𝑊)
𝑡−1(𝑊)

pr0−−→ 𝑅.

The algebraic spaces 𝐴, 𝐵 on the left of the arrows above are open subspaces of 𝑅 ×𝑠,𝑈,𝑡 𝑅
and 𝑅 ×𝑠,𝑈,𝑠 𝑅 respectively. By Lemma 52.11.4 the diagram

𝑅 ×𝑠,𝑈,𝑡 𝑅

pr1
$$

(pr1,𝑐)
// 𝑅 ×𝑠,𝑈,𝑠 𝑅

pr0
zz

𝑅
is commutative, and the horizontal arrow is an isomorphism. Moreover, it is clear that
(pr1, 𝑐)(𝐴) = 𝐵. Hence we conclude 𝑠−1(𝑊′) = 𝑡−1(𝑊′), and 𝑊′ is 𝑅-invariant. This
proves (1).
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Assume now that 𝑠, 𝑡 are both open and quasi-compact. Then, if 𝑊 ⊂ 𝑈 is a quasi-compact
open, then also 𝑊′ = 𝑠(𝑡−1(𝑊)) is a quasi-compact open, and invariant by the discussion
above. Letting 𝑊 range over images of affines étale over 𝑈 we see (2). �

52.18. Quotient sheaves

Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a
pre-relation over 𝐵. For each scheme 𝑆′ over 𝑆 we can take the equivalence relation ∼𝑆′

generated by the image of 𝑗(𝑆′) ∶ 𝑅(𝑆′) → 𝑈(𝑆′) × 𝑈(𝑆′). Hence we get a presheaf

(52.18.0.1)
(Sch/𝑆)𝑜𝑝𝑝

𝑓𝑝𝑝𝑓 ⟶ Sets,
𝑆′ ⟼ 𝑈(𝑆′)/ ∼𝑆′

Note that since 𝑗 is a morphism of algebraic spaces over 𝐵 and into 𝑈 ×𝐵 𝑈 there is a
canonical transformation of presheaves from the presheaf (52.18.0.1) to 𝐵.

Definition 52.18.1. Let 𝐵 → 𝑆 and the pre-relation 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be as above. In this
setting the quotient sheaf 𝑈/𝑅 associated to 𝑗 is the sheafification of the presheaf (52.18.0.1)
on (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 comes from the action of a group algebraic space 𝐺
over 𝐵 on 𝑈 as in Lemma 52.14.1 then we denote the quotient sheaf 𝑈/𝐺.

This means exactly that the diagram

𝑅
//
// 𝑈 // 𝑈/𝑅

is a coequalizer diagram in the category of sheaves of sets on (Sch/𝑆)𝑓𝑝𝑝𝑓. Again there is
a canonical map of sheaves 𝑈/𝑅 → 𝐵 as 𝑗 is a morphism of algebraic spaces over 𝐵 into
𝑈 ×𝐵 𝑈.

Remark 52.18.2. A variant of the construction above would have been to sheafify the
functor

(Spaces/𝐵)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 ⟶ Sets,

𝑋 ⟼ 𝑈(𝑋)/ ∼𝑋
where now ∼𝑋⊂ 𝑈(𝑋) × 𝑈(𝑋) is the equivalence relation generated by the image of 𝑗 ∶
𝑅(𝑋) → 𝑈(𝑋) × 𝑈(𝑋). Here of course 𝑈(𝑋) = 𝑀𝑜𝑟𝐵(𝑋, 𝑈) and 𝑅(𝑋) = 𝑀𝑜𝑟𝐵(𝑋, 𝑅). In
fact, the result would have been the same, via the identifications of (insert future reference
in Topologies of Spaces here).

Definition 52.18.3. In the situation of Definition 52.18.1. We say that the pre-relation 𝑗 has
a quotient representable by an algebraic space if the sheaf 𝑈/𝑅 is an algebraic space. We
say that the pre-relation 𝑗 has a representable quotient if the sheaf 𝑈/𝑅 is representable by a
scheme. We will say a groupoid in algebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over 𝐵 has a representable
quotient (resp. quotient representable by an algebraic space if the quotient 𝑈/𝑅 with 𝑗 =
(𝑡, 𝑠) is representable (resp. an algebraic space).

If the quotient 𝑈/𝑅 is representable by 𝑀 (either a scheme or an algebraic space over 𝑆),
then it comes equipped with a canonical structure morphism 𝑀 → 𝐵 as we've seen above.

The following lemma characterizes 𝑀 representing the quotient. It applies for example if
𝑈 → 𝑀 is flat, of finite presentation and surjective, and 𝑅 ≅ 𝑈 ×𝑀 𝑈.

Lemma 52.18.4. In the situation of Definition 52.18.1. Assume there is an algebraic space
𝑀 over 𝑆, and a morphism 𝑈 → 𝑀 such that

(1) the morphism 𝑈 → 𝑀 equalizes 𝑠, 𝑡,
(2) the map 𝑈 → 𝑀 is a surjection of sheaves, and
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(3) the induced map (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑀 𝑈 is a surjection of sheaves.
In this case 𝑀 represents the quotient sheaf 𝑈/𝑅.

Proof. Condition (1) says that 𝑈 → 𝑀 factors through 𝑈/𝑅. Condition (2) says that 𝑈/𝑅 →
𝑀 is surjective as a map of sheaves. Condition (3) says that 𝑈/𝑅 → 𝑀 is injective as a
map of sheaves. Hence the lemma follows. �

The following lemma is wrong if we do not require 𝑗 to be a pre-equivalence relation (but
just a pre-relation say).

Lemma 52.18.5. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 →
𝑈 ×𝐵 𝑈 be a pre-equivalence relation over 𝐵. For a scheme 𝑆′ over 𝑆 and 𝑎, 𝑏 ∈ 𝑈(𝑆′) the
following are equivalent:

(1) 𝑎 and 𝑏 map to the same element of (𝑈/𝑅)(𝑆′), and
(2) there exists an fppf covering {𝑓𝑖 ∶ 𝑆𝑖 → 𝑆′} of 𝑆′ and morphisms 𝑟𝑖 ∶ 𝑆𝑖 → 𝑅

such that 𝑎 ∘ 𝑓𝑖 = 𝑠 ∘ 𝑟𝑖 and 𝑏 ∘ 𝑓𝑖 = 𝑡 ∘ 𝑟𝑖.
In other words, in this case the map of sheaves

𝑅 ⟶ 𝑈 ×𝑈/𝑅 𝑈

is surjective.

Proof. Omitted. Hint: The reason this works is that the presheaf (52.18.0.1) in this case is
really given by 𝑇 ↦ 𝑈(𝑇)/𝑗(𝑅(𝑇)) as 𝑗(𝑅(𝑇)) ⊂ 𝑈(𝑇) × 𝑈(𝑇) is an equivalence relation, see
Definition 52.4.1. �

Lemma 52.18.6. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 →
𝑈 ×𝐵 𝑈 be a pre-relation over 𝐵 and 𝑔 ∶ 𝑈′ → 𝑈 a morphism of algebraic spaces over 𝐵.
Let 𝑗′ ∶ 𝑅′ → 𝑈′ ×𝐵 𝑈′ be the restriction of 𝑗 to 𝑈′. The map of quotient sheaves

𝑈′/𝑅′ ⟶ 𝑈/𝑅

is injective. If 𝑈′ → 𝑈 is surjective as a map of sheaves, for example if {𝑔 ∶ 𝑈′ → 𝑈} is
an fppf covering (see Topologies on Spaces, Definition 44.4.1), then 𝑈′/𝑅′ → 𝑈/𝑅 is an
isomorphism of sheaves.

Proof. Suppose 𝜉, 𝜉′ ∈ (𝑈′/𝑅′)(𝑆′) are sections which map to the same section of 𝑈/𝑅.
Then we can find an fppf covering 𝒮 = {𝑆𝑖 → 𝑆′} of 𝑆′ such that 𝜉|𝑆𝑖

, 𝜉′|𝑆𝑖
are given

by 𝑎𝑖, 𝑎′
𝑖 ∈ 𝑈′(𝑆𝑖). By Lemma 52.18.5 and the axioms of a site we may after refining 𝒯

assume there exist morphisms 𝑟𝑖 ∶ 𝑆𝑖 → 𝑅 such that 𝑔 ∘ 𝑎𝑖 = 𝑠 ∘ 𝑟𝑖, 𝑔 ∘ 𝑎′
𝑖 = 𝑡 ∘ 𝑟𝑖. Since

by construction 𝑅′ = 𝑅 ×𝑈×𝑆𝑈 (𝑈′ ×𝑆 𝑈′) we see that (𝑟𝑖, (𝑎𝑖, 𝑎′
𝑖 )) ∈ 𝑅′(𝑆𝑖) and this shows

that 𝑎𝑖 and 𝑎′
𝑖 define the same section of 𝑈′/𝑅′ over 𝑆𝑖. By the sheaf condition this implies

𝜉 = 𝜉′.

If 𝑈′ → 𝑈 is a surjective map of sheaves, then 𝑈′/𝑅′ → 𝑈/𝑅 is surjective also. Finally,
if {𝑔 ∶ 𝑈′ → 𝑈} is a fppf covering, then the map of sheaves 𝑈′ → 𝑈 is surjective, see
Topologies on Spaces, Lemma 44.4.4. �

Lemma 52.18.7. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
be a groupoid in algebraic spaces over 𝐵. Let 𝑔 ∶ 𝑈′ → 𝑈 a morphism of algebraic spaces
over 𝐵. Let (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝑈′. The map of quotient
sheaves

𝑈′/𝑅′ ⟶ 𝑈/𝑅
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is injective. If the composition

𝑈′ ×𝑔,𝑈,𝑡 𝑅 pr1
//

ℎ

''𝑅 𝑠
// 𝑈

is a surjection of fppf sheaves then the map is bijective. This holds for example if {ℎ ∶
𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑈} is an 𝑓𝑝𝑝𝑓-covering, or if 𝑈′ → 𝑈 is a surjection of sheaves, or if
{𝑔 ∶ 𝑈′ → 𝑈} is a covering in the fppf topology.

Proof. Injectivity follows on combining Lemmas 52.11.2 and 52.18.6. To see surjectivity
(see Sites, Section 9.11 for a characterization of surjective maps of sheaves) we argue as
follows. Suppose that 𝑇 is a scheme and 𝜎 ∈ 𝑈/𝑅(𝑇). There exists a covering {𝑇𝑖 → 𝑇}
such that 𝜎|𝑇𝑖

is the image of some element 𝑓𝑖 ∈ 𝑈(𝑇𝑖). Hence we may assume that 𝜎 if the
image of 𝑓 ∈ 𝑈(𝑇). By the assumption that ℎ is a surjection of sheaves, we can find an fppf
covering {𝜑𝑖 ∶ 𝑇𝑖 → 𝑇} and morphisms 𝑓𝑖 ∶ 𝑇𝑖 → 𝑈′ ×𝑔,𝑈,𝑡 𝑅 such that 𝑓 ∘ 𝜑𝑖 = ℎ ∘ 𝑓𝑖.
Denote 𝑓′

𝑖 = pr0 ∘ 𝑓𝑖 ∶ 𝑇𝑖 → 𝑈′. Then we see that 𝑓′
𝑖 ∈ 𝑈′(𝑇𝑖) maps to 𝑔 ∘ 𝑓′

𝑖 ∈ 𝑈(𝑇𝑖)
and that 𝑔 ∘ 𝑓′

𝑖 ∼𝑇𝑖
ℎ ∘ 𝑓𝑖 = 𝑓 ∘ 𝜑𝑖 notation as in (52.18.0.1). Namely, the element of 𝑅(𝑇𝑖)

giving the relation is pr1 ∘ 𝑓𝑖. This means that the restriction of 𝜎 to 𝑇𝑖 is in the image of
𝑈′/𝑅′(𝑇𝑖) → 𝑈/𝑅(𝑇𝑖) as desired.
If {ℎ} is an fppf covering, then it induces a surjection of sheaves, see Topologies on Spaces,
Lemma 44.4.4. If 𝑈′ → 𝑈 is surjective, then also ℎ is surjective as 𝑠 has a section (namely
the neutral element 𝑒 of the groupoid scheme). �

52.19. Quotient stacks

In this section and the next few sections we describe a kind of generalization of Section
52.18 above and Groupoids, Section 35.17. It is different in the following way: We are
going to take quotient stacks instead of quotient sheaves.
Let us assumewe have a scheme 𝑆, and algebraic space 𝐵 over 𝑆 and a groupoid in algebraic
spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over 𝐵. Given these data we consider the functor

(52.19.0.1)
(Sch/𝑆)𝑜𝑝𝑝

𝑓𝑝𝑝𝑓 ⟶ Groupoids
𝑆′ ⟼ (𝑈(𝑆′), 𝑅(𝑆′), 𝑠, 𝑡, 𝑐)

By Categories, Example 4.34.1 this ``presheaf in groupoids'' corresponds to a category
fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. In this chapter we will denote this

[𝑈/𝑝𝑅] → (Sch/𝑆)𝑓𝑝𝑝𝑓

where the subscript 𝑝 is there to distinguish from the quotient stack.

Definition 52.19.1. Quotient stacks. Let 𝐵 → 𝑆 be as above.
(1) Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic spaces over 𝐵. The quotient stack

𝑝 ∶ [𝑈/𝑅] ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is the stackification (see Stacks, Lemma 50.9.1) of the category
fibred in groupoids [𝑈/𝑝𝑅] over (Sch/𝑆)𝑓𝑝𝑝𝑓 associated to (52.19.0.1).

(2) Let (𝐺, 𝑚) be a group algebraic space over 𝐵. Let 𝑎 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 be an action
of 𝐺 on an algebraic space over 𝐵. The quotient stack

𝑝 ∶ [𝑋/𝐺] ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

is the quotient stack associated to the groupoid in algebraic spaces (𝑋, 𝐺 ×𝐵
𝑋, 𝑠, 𝑡, 𝑐) over 𝐵 of Lemma 52.14.1.
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Thus [𝑈/𝑅] and [𝑋/𝐺] are stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. These stacks will be very
important later on and hence it makes sense to give a detailed description. Recall that given
an algebraic space 𝑋 over 𝑆 we use the notation 𝒮𝑋 → (Sch/𝑆)𝑓𝑝𝑝𝑓 to denote the stack in
sets associated to the sheaf 𝑋, see Categories, Lemma 4.35.6 and Stacks, Lemma 50.6.2.

Lemma 52.19.2. Assume 𝐵 → 𝑆 and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) as in Definition 52.19.1 (1). There
are canonical 1-morphisms 𝜋 ∶ 𝒮𝑈 → [𝑈/𝑅], and [𝑈/𝑅] → 𝒮𝐵 of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. The composition 𝒮𝑈 → 𝒮𝐵 is the 1-morphism associated to the structure
morphism 𝑈 → 𝐵.

Proof. During this proof let us denote [𝑈/𝑝𝑅] the category fibred in groupoids associated
to the presheaf in groupoids (52.19.0.1). By construction of the stackification there is a
1-morphism [𝑈/𝑝𝑅] → [𝑈/𝑅]. The 1-morphism 𝒮𝑈 → [𝑈/𝑅] is simply the composition
𝒮𝑈 → [𝑈/𝑝𝑅] → [𝑈/𝑅], where the first arrow associates to the scheme 𝑆′/𝑆 and morphism
𝑥 ∶ 𝑆′ → 𝑈 over 𝑆 the object 𝑥 ∈ 𝑈(𝑆′) of the fibre category of [𝑈/𝑝𝑅] over 𝑆′.

To construct the 1-morphism [𝑈/𝑅] → 𝒮𝐵 it is enough to construct the 1-morphism [𝑈/𝑝𝑅] →
𝒮𝐵, see Stacks, Lemma 50.9.2. On objects over 𝑆′/𝑆 we just use the map

𝑈(𝑆′) ⟶ 𝐵(𝑆′)

coming from the structure morphism 𝑈 → 𝐵. And clearly, if 𝑎 ∈ 𝑅(𝑆′) is an ``arrow''
with source 𝑠(𝑎) ∈ 𝑈(𝑆′) and target 𝑡(𝑎) ∈ 𝑈(𝑆′), then since 𝑠 and 𝑡 are morphisms over 𝐵
these both map to the same element 𝑎 of 𝐵(𝑆′). Hence we can map an arrow 𝑎 ∈ 𝑅(𝑆′) to
the identity morphism of 𝑎. (This is good because the fibre category (𝒮𝐵)𝑆′ only contains
identities.) We omit the verification that this rule is compatible with pullback on these split
fibred categories, and hence defines a 1-morphism [𝑈/𝑝𝑅] → 𝒮𝐵 as desired.

We omit the verification of the last statement. �

Lemma 52.19.3. Assumptions and notation as in Lemma 52.19.2. There exists a canonical
2-morphism 𝛼 ∶ 𝜋 ∘ 𝑠 → 𝜋 ∘ 𝑡 making the diagram

𝒮𝑅 𝑠
//

𝑡
��

𝒮𝑈

𝜋
��

𝒮𝑈
𝜋 // [𝑈/𝑅]

2-commutative.

Proof. Let 𝑆′ be a scheme over 𝑆. Let 𝑟 ∶ 𝑆′ → 𝑅 be a morphism over 𝑆. Then 𝑟 ∈ 𝑅(𝑆′)
is an isomorphism between the objects 𝑠 ∘ 𝑟, 𝑡 ∘ 𝑟 ∈ 𝑈(𝑆′). Moreover, this construction is
compatible with pullbacks. This gives a canonical 2-morphism 𝛼𝑝 ∶ 𝜋𝑝 ∘ 𝑠 → 𝜋𝑝 ∘ 𝑡 where
𝜋𝑝 ∶ 𝒮𝑈 → [𝑈/𝑝𝑅] is as in the proof of Lemma 52.19.2. Thus even the diagram

𝒮𝑅 𝑠
//

𝑡
��

𝒮𝑈

𝜋𝑝

��
𝒮𝑈

𝜋𝑝 // [𝑈/𝑝𝑅]

is 2-commutative. Thus a fortiori the diagram of the lemma is 2-commutative. �
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Remark 52.19.4. In future chapters we will use the ambiguous notation where instead of
writing 𝒮𝑋 for the stack in sets associated to 𝑋 we simply write 𝑋. Using this notation the
diagram of Lemma 52.19.3 becomes the familiar diagram

𝑅 𝑠
//

𝑡
��

𝑈

𝜋
��

𝑈 𝜋 // [𝑈/𝑅]

In the following sections we will show that this diagram has many good properties. In
particular we will show that it is a 2-fibre product (Section 52.21) and that it is close to
being a 2-coequalizer of 𝑠 and 𝑡 (Section 52.22).

52.20. Functoriality of quotient stacks

A morphism of groupoids in algebraic spaces gives an associated morphism of quotient
stacks.

Lemma 52.20.1. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝑓 ∶
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be a morphism of groupoids in algebraic spacess over
𝐵. Then 𝑓 induces a canonical 1-morphism of quotient stacks

[𝑓] ∶ [𝑈/𝑅] ⟶ [𝑈′/𝑅′].

Proof. Denote [𝑈/𝑝𝑅] and [𝑈′/𝑝𝑅′] the categories fibred in groupoids over the base site
(Sch/𝑆)𝑓𝑝𝑝𝑓 associated to the functors (52.19.0.1). It is clear that 𝑓 defines a 1-morphism
[𝑈/𝑝𝑅] → [𝑈′/𝑝𝑅′] which we can compose with the stackyfication functor for [𝑈′/𝑅′] to get
[𝑈/𝑝𝑅] → [𝑈′/𝑅′]. Then, by the universal property of the stackyfication functor [𝑈/𝑝𝑅] →
[𝑈/𝑅], see Stacks, Lemma 50.9.2 we get [𝑈/𝑅] → [𝑈′/𝑅′]. �

Let 𝐵 → 𝑆 and 𝑓 ∶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be as in Lemma 52.20.1. In this situ-
ation, we define a third groupoid in algebraic spaces over 𝐵 as follows, using the language
of 𝑇-valued points where 𝑇 is a (varying) scheme over 𝐵:

(1) 𝑈″ = 𝑈 ×𝑓,𝑈′,𝑡′ 𝑅′ so that a 𝑇-valued point is a pair (𝑢, 𝑟′) with 𝑓(𝑢) = 𝑡′(𝑟′),
(2) 𝑅″ = 𝑅 ×𝑓∘𝑠,𝑈′,𝑡′ 𝑅′ so that a 𝑇-valued point is a pair (𝑟, 𝑟′) with 𝑓(𝑠(𝑟)) = 𝑡′(𝑟′),
(3) 𝑠″ ∶ 𝑅″ → 𝑈″ is given by 𝑠″(𝑟, 𝑟′) = (𝑠(𝑟), 𝑟′),
(4) 𝑡″ ∶ 𝑅″ → 𝑈″ is given by 𝑡″(𝑟, 𝑟′) = (𝑡(𝑟), 𝑐′(𝑓(𝑟), 𝑟′)),
(5) 𝑐″ ∶ 𝑅″ ×𝑠″,𝑈″,𝑡″ 𝑅″ → 𝑅″ is given by 𝑐″((𝑟1, 𝑟′

1), (𝑟2, 𝑟′
2)) = (𝑐(𝑟1, 𝑟2), 𝑟′

2).

The formula for 𝑐″ makes sense as 𝑠″(𝑟1, 𝑟′
1) = 𝑡″(𝑟2, 𝑟′

2). It is clear that 𝑐″ is associa-
tive. The identity 𝑒″ is given by 𝑒″(𝑢, 𝑟) = (𝑒(𝑢), 𝑟). The inverse of (𝑟, 𝑟′) is given by
(𝑖(𝑟), 𝑐′(𝑓(𝑟), 𝑟′)). Thus we do indeed get a groupoid in algebraic spaces over 𝐵.

Clearly the maps 𝑈″ → 𝑈 and 𝑅″ → 𝑅 define a morphism 𝑔 ∶ (𝑈″, 𝑅″, 𝑠″, 𝑡″, 𝑐″) →
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) of groupoids in algebraic spaces over 𝐵. Moreover, the maps 𝑈″ → 𝑈′,
(𝑢, 𝑟′) ↦ 𝑠′(𝑟′) and 𝑅″ → 𝑈′, (𝑟, 𝑟′) ↦ 𝑠′(𝑟′) show that in fact (𝑈″, 𝑅″, 𝑠″, 𝑡″, 𝑐″) is a
groupoid in algebraic spaces over 𝑈′.

Lemma 52.20.2. Notation and assumption as in Lemma 52.20.1. Let (𝑈″, 𝑅″, 𝑠″, 𝑡″, 𝑐″)
be the groupoid in algebraic spaces over 𝐵 constructed above. There is a 2-commutative
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square

[𝑈″/𝑅″]

��

[𝑔]
// [𝑈/𝑅]

[𝑓]
��

𝒮𝑈′ // [𝑈′/𝑅′]

which identifies [𝑈″/𝑅″] with the 2-fibre product.

Proof. The maps [𝑓] and [𝑔] come from an application of Lemma 52.20.1 and the other
two maps come from Lemma 52.19.2 (and the fact that (𝑈″, 𝑅″, 𝑠″, 𝑡″, 𝑐″) lives over 𝑈′).
To show the 2-fibre product property, it suffices to prove the lemma for the diagram

[𝑈″/𝑝𝑅″]

��

[𝑔]
// [𝑈/𝑝𝑅]

[𝑓]
��

𝒮𝑈′ // [𝑈′/𝑝𝑅′]

of categories fibred in groupoids, see Stacks, Lemma 50.9.3. In other words, it suffices
to show that an object of the 2-fibre product 𝒮𝑈 ×[𝑈′/𝑝𝑅′] [𝑈/𝑝𝑅] over 𝑇 corresponds to a
𝑇-valued point of 𝑈″ and similarly for morphisms. And of course this is exactly how we
constructed 𝑈″ and 𝑅″ in the first place.

In detail, an object of 𝒮𝑈 ×[𝑈′/𝑝𝑅′] [𝑈/𝑝𝑅] over 𝑇 is a triple (𝑢′, 𝑢, 𝑟′) where 𝑢′ is a 𝑇-valued
point of 𝑈′, 𝑢 is a 𝑇-valued point of 𝑈, and 𝑟′ is a morphism from 𝑢′ to 𝑓(𝑢) in [𝑈′/𝑅′]𝑇, i.e.,
𝑟′ is a 𝑇-valued point of 𝑅 with 𝑠′(𝑟′) = 𝑢′ and 𝑡′(𝑟′) = 𝑓(𝑢). Clearly we can forget about 𝑢′

without losing information and we see that these objects are in one-to-one correspondence
with 𝑇-valued points of 𝑅″.

Similarly for morphisms: Let (𝑢′
1, 𝑢1, 𝑟′

1) and (𝑢′
2, 𝑢2, 𝑟′

2) be two objects of the fibre product
over 𝑇. Then a morphism from (𝑢′

2, 𝑢2, 𝑟′
2) to (𝑢′

1, 𝑢1, 𝑟′
1) is given by (1, 𝑟) where 1 ∶ 𝑢′

1 → 𝑢′
2

means simply 𝑢′
1 = 𝑢′

2 (this is so because 𝒮𝑈 is fibred in sets), and 𝑟 is a 𝑇-valued point of
𝑅 with 𝑠(𝑟) = 𝑢2, 𝑡(𝑟) = 𝑢1 and moreover 𝑐′(𝑓(𝑟), 𝑟′

2) = 𝑟′
1. Hence the arrow

(1, 𝑟) ∶ (𝑢′
2, 𝑢2, 𝑟′

2) → (𝑢′
1, 𝑢1, 𝑟′

1)

is completely determined by knowing the pair (𝑟, 𝑟′
2). Thus the functor of arrows is rep-

resented by 𝑅″, and moreover the morphisms 𝑠″, 𝑡″, and 𝑐″ clearly correspond to source,
target and composition in the 2-fibre product 𝒮𝑈 ×[𝑈′/𝑝𝑅′] [𝑈/𝑝𝑅]. �

52.21. The 2-cartesian square of a quotient stack

In this section we compute the 𝐼𝑠𝑜𝑚-sheaves for a quotient stack and we deduce that the
defining diagram of a quotient stack is a 2-fibre product.

Lemma 52.21.1. Assume 𝐵 → 𝑆, (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) and 𝜋 ∶ 𝒮𝑈 → [𝑈/𝑅] are as in Lemma
52.19.2. Let 𝑆′ be a scheme over 𝑆. Let 𝑥, 𝑦 ∈ 𝑂𝑏([𝑈/𝑅]𝑆′) be objects of the quotient
stack over 𝑆′. If 𝑥 = 𝜋(𝑥′) and 𝑦 = 𝜋(𝑦′) for some morphisms 𝑥′, 𝑦′ ∶ 𝑆′ → 𝑈, then

𝐼𝑠𝑜𝑚(𝑥, 𝑦) = 𝑆′ ×(𝑦′,𝑥′),𝑈×𝑆𝑈 𝑅

as sheaves over 𝑆′.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=044V


2584 52. GROUPOIDS IN ALGEBRAIC SPACES

Proof. Let [𝑈/𝑝𝑅] be the category fibred in groupoids associated to the presheaf in groupoids
(52.19.0.1) as in the proof of Lemma 52.19.2. By construction the sheaf 𝐼𝑠𝑜𝑚(𝑥, 𝑦) is the
sheaf associated to the presheaf 𝐼𝑠𝑜𝑚(𝑥′, 𝑦′). On the other hand, by definition ofmorphisms
in [𝑈/𝑝𝑅] we have

𝐼𝑠𝑜𝑚(𝑥′, 𝑦′) = 𝑆′ ×(𝑦′,𝑥′),𝑈×𝑆𝑈 𝑅
and the right hand side is an algebraic space, therefore a sheaf. �

Lemma 52.21.2. Assume 𝐵 → 𝑆, (𝑈, 𝑅, 𝑠, 𝑡, 𝑐), and 𝜋 ∶ 𝒮𝑈 → [𝑈/𝑅] are as in Lemma
52.19.2. The 2-commutative square

𝒮𝑅 𝑠
//

𝑡
��

𝒮𝑈

𝜋
��

𝒮𝑈
𝜋 // [𝑈/𝑅]

of Lemma 52.19.3 is a 2-fibre product of stacks in groupoids of (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. According to Stacks, Lemma 50.5.6 the lemma makes sense. It also tells us that we
have to show that the functor

𝒮𝑅 ⟶ 𝒮𝑈 ×[𝑈/𝑅] 𝒮𝑈

which maps 𝑟 ∶ 𝑇 → 𝑅 to (𝑇, 𝑡(𝑟), 𝑠(𝑟), 𝛼(𝑟)) is an equivalence, where the right hand side
is the 2-fibre product as described in Categories, Lemma 4.29.3. This is, after spelling out
the definitions, exactly the content of Lemma 52.21.1. (Alternative proof: Work out the
meaning of Lemma 52.20.2 in this situation will give you the result also.) �

Lemma 52.21.3. Assume 𝐵 → 𝑆 and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) are as in Definition 52.19.1 (1). For any
scheme 𝑇 over 𝑆 and objects 𝑥, 𝑦 of [𝑈/𝑅] over 𝑇 the sheaf 𝐼𝑠𝑜𝑚(𝑥, 𝑦) on (Sch/𝑇)𝑓𝑝𝑝𝑓 has the
following property: There exists a fppf covering {𝑇𝑖 → 𝑇}𝑖∈𝐼 such that 𝐼𝑠𝑜𝑚(𝑥, 𝑦)|(Sch/𝑇𝑖)𝑓𝑝𝑝𝑓
is representable by an algebraic space.

Proof. Follows immediately from Lemma 52.21.1 and the fact that both 𝑥 and 𝑦 locally in
the fppf topology come from objects of 𝒮𝑈 by construction of the quotient stack. �

52.22. The 2-coequalizer property of a quotient stack

On a groupoid we have the composition, which leads to a cocyle condition for the canonical
2-morphism of the lemma above. To give the precise formulation we will use the notation
introduced in Categories, Sections 4.25 and 4.26.

Lemma 52.22.1. Assumptions and notation as in Lemmas 52.19.2 and 52.19.3. The verti-
cal composition of

𝒮𝑅×𝑠,𝑈,𝑡𝑅

𝜋∘𝑠∘pr1=𝜋∘𝑠∘𝑐

++�� 𝛼⋆idpr1
𝜋∘𝑡∘pr1=𝜋∘𝑠∘pr0

// 33

𝜋∘𝑡∘pr0=𝜋∘𝑡∘𝑐
�� 𝛼⋆idpr0

[𝑈/𝑅]

is the 2-morphism 𝛼 ⋆ id𝑐. In a formula 𝛼 ⋆ id𝑐 = (𝛼 ⋆ idpr0
) ∘ (𝛼 ⋆ idpr1

).

Proof. We make two remarks:
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(1) The formula 𝛼 ⋆ id𝑐 = (𝛼 ⋆ idpr0) ∘ (𝛼 ⋆ idpr1) only makes sense if you realize the
equalities 𝜋 ∘ 𝑠 ∘ pr1 = 𝜋 ∘ 𝑠 ∘ 𝑐, 𝜋 ∘ 𝑡 ∘ pr1 = 𝜋 ∘ 𝑠 ∘ pr0, and 𝜋 ∘ 𝑡 ∘ pr0 = 𝜋 ∘ 𝑡 ∘ 𝑐.
Namely, the second one implies the vertical composition ∘ makes sense, and the
other two garantee the two sides of the formula are 2-morphisms with the same
source and target.

(2) The reason the lemma holds is that composition in the category fibred in groupoids
[𝑈/𝑝𝑅] associated to the presheaf in groupoids (52.19.0.1) comes from the com-
position law 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅.

We omit the proof of the lemma. �

Note that, in the situation of the lemma, we actually have the equalities 𝑠 ∘ pr1 = 𝑠 ∘ 𝑐,
𝑡 ∘ pr1 = 𝑠 ∘ pr0, and 𝑡 ∘ pr0 = 𝑡 ∘ 𝑐 before composing with 𝜋. Hence the formula in the
lemma below makes sense in exactly the same way that the formula in the lemma above
makes sense.

Lemma52.22.2. Assumptions and notation as in Lemmas 52.19.2 and 52.19.3. The 2-commutative
diagram of Lemma 52.19.3 is a 2-coequalizer in the following sense: Given

(1) a stack in groupoids 𝒳 over (Sch/𝑆)𝑓𝑝𝑝𝑓,
(2) a 1-morphism 𝑓 ∶ 𝒮𝑈 → 𝒳, and
(3) a 2-arrow 𝛽 ∶ 𝑓 ∘ 𝑠 → 𝑓 ∘ 𝑡

such that

𝛽 ⋆ id𝑐 = (𝛽 ⋆ idpr0
) ∘ (𝛽 ⋆ idpr1

)

then there exists a 1-morphism [𝑈/𝑅] → 𝒳 which makes the diagram

𝒮𝑅 𝑠
//

𝑡
��

𝒮𝑈

�� 𝑓

��

𝒮𝑈
//

𝑓
))

[𝑈/𝑅]

""
𝒳

2-commute.

Proof. Suppose given 𝒳, 𝑓 and 𝛽 as in the lemma. By Stacks, Lemma 50.9.2 it suffices to
construct a 1-morphism 𝑔 ∶ [𝑈/𝑝𝑅] → 𝒳. First we note that the 1-morphism 𝒮𝑈 → [𝑈/𝑝𝑅]
is bijective on objects. Hence on objects we can set 𝑔(𝑥) = 𝑓(𝑥) for 𝑥 ∈ 𝑂𝑏(𝒮𝑈) =
𝑂𝑏([𝑈/𝑝𝑅]). A morphism 𝜑 ∶ 𝑥 → 𝑦 of [𝑈/𝑝𝑅] arises from a commutative diagram

𝑆2

ℎ

��

𝑥
//

𝜑
  

𝑈

𝑅

𝑠

OO

𝑡
��

𝑆1
𝑦 // 𝑈.
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Thus we can set 𝑔(𝜑) equal to the composition

𝑓(𝑥)

--

𝑓(𝑠 ∘ 𝜑) (𝑓 ∘ 𝑠)(𝜑)
𝛽 // (𝑓 ∘ 𝑡)(𝜑) 𝑓(𝜑 ∘ 𝑡) 𝑓(𝑦 ∘ ℎ)

��
𝑓(𝑦).

The vertical arrow is the result of applying the functor 𝑓 to the canonical morphism 𝑦∘ℎ → 𝑦
in 𝒮𝑈 (namely, the strongly cartesian morphism lifting ℎ with target 𝑦). Let us verify that
𝑓 so defined is compatible with composition, at least on fibre categories. So let 𝑆′ be a
scheme over 𝑆, and let 𝑎 ∶ 𝑆′ → 𝑅 ×𝑠,𝑈,𝑡 𝑅 be a morphism. In this situation we set
𝑥 = 𝑠 ∘ pr1 ∘ 𝑎 = 𝑠 ∘ 𝑐 ∘ 𝑎, 𝑦 = 𝑡 ∘ pr1 ∘ 𝑎 = 𝑠 ∘ pr0 ∘ 𝑎, and 𝑧 = 𝑡 ∘ pr0 ∘ 𝑎 = 𝑡 ∘ pr0 ∘ 𝑐 to get a
commutative diagram

𝑥 𝑐∘𝑎
//

pr1∘𝑎
��

𝑧

𝑦
pr0∘𝑎

??

in the fibre category [𝑈/𝑝𝑅]𝑆′. Moreover, any commutative triangle in this fibre category
has this form. Then we see by our definitions above that 𝑓 maps this to a commutative
diagram if and only if the diagram

(𝑓 ∘ 𝑠)(𝑐 ∘ 𝑎)
𝛽
// (𝑓 ∘ 𝑡)(𝑐 ∘ 𝑎)

(𝑓 ∘ 𝑠)(pr1 ∘ 𝑎)
𝛽

((

(𝑓 ∘ 𝑡)(pr0 ∘ 𝑎)

(𝑓 ∘ 𝑡)(pr1 ∘ 𝑎) (𝑓 ∘ 𝑠)(pr0 ∘ 𝑎)

𝛽
66

is commutative which is exactly the condition expressed by the formula in the lemma. We
omit the verification that 𝑓 maps identities to idenities and is compatible with composition
for arbitrary morphisms. �

52.23. Explicit description of quotient stacks

In order to formulate the result we need to introduce some notation. Assume 𝐵 → 𝑆 and
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) are as in Definition 52.19.1 (1). Let 𝑇 be a scheme over 𝑆. Let 𝒯 = {𝑇𝑖 →
𝑇}𝑖∈𝐼 be an fppf covering. A [𝑈/𝑅]-descent datum relative to 𝒯 is given by a system (𝑢𝑖, 𝑟𝑖𝑗)
where

(1) for each 𝑖 a morphism 𝑢𝑖 ∶ 𝑇𝑖 → 𝑈, and
(2) for each 𝑖, 𝑗 a morphism 𝑟𝑖𝑗 ∶ 𝑇𝑖 ×𝑇 𝑇𝑗 → 𝑅

such that
(a) as morphisms 𝑇𝑖 ×𝑇 𝑇𝑗 → 𝑈 we have

𝑠 ∘ 𝑟𝑖𝑗 = 𝑢𝑖 ∘ pr0 and 𝑡 ∘ 𝑟𝑖𝑗 = 𝑢𝑗 ∘ pr1,

(b) as morphisms 𝑇𝑖 ×𝑇 𝑇𝑗 ×𝑇 𝑇𝑘 → 𝑅 we have

𝑐 ∘ (𝑟𝑗𝑘 ∘ pr12, 𝑟𝑖𝑗 ∘ pr01) = 𝑟𝑖𝑘 ∘ pr02.

A morphism (𝑢𝑖, 𝑟𝑖𝑗) → (𝑢′
𝑖 , 𝑟′

𝑖𝑗) between two [𝑈/𝑅]-descent data over the same covering 𝒯
is a collection (𝑟𝑖 ∶ 𝑇𝑖 → 𝑅) such that
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(𝛼) as morphisms 𝑇𝑖 → 𝑈 we have
𝑢𝑖 = 𝑠 ∘ 𝑟𝑖 and 𝑢′

𝑖 = 𝑡 ∘ 𝑟𝑖

(𝛽) as morphisms 𝑇𝑖 ×𝑇 𝑇𝑗 → 𝑅 we have

𝑐 ∘ (𝑟′
𝑖𝑗, 𝑟𝑖 ∘ pr0) = 𝑐 ∘ (𝑟𝑗 ∘ pr1, 𝑟𝑖𝑗).

There is a natural composition law onmorphisms of descent data relative to a fixed covering
and we obtain a category of descent data. This category is a groupoid. Finally, if 𝒯′ =
{𝑇′

𝑗 → 𝑇}𝑗∈𝐽 is a second fppf covering which refines 𝒯 then there is a notion of pullback
of descent data. This is particularly easy to describe explicitly in this case. Namely, if
𝛼 ∶ 𝐽 → 𝐼 and 𝜑𝑗 ∶ 𝑇′

𝑗 → 𝑇𝛼(𝑖) is the morphism of coverings, then the pullback of the
descent datum (𝑢𝑖, 𝑟𝑖𝑖′) is simply

(𝑢𝛼(𝑖) ∘ 𝜑𝑗, 𝑟𝛼(𝑗)𝛼(𝑗′) ∘ 𝜑𝑗 × 𝜑𝑗′).
Pullback defined in this manner defines a functor from the category of descent data over 𝒯
to the category of descend data over 𝒯′.

Lemma 52.23.1. Assume 𝐵 → 𝑆 and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) are as in Definition 52.19.1 (1). Let
𝜋 ∶ 𝒮𝑈 → [𝑈/𝑅] be as in Lemma 52.19.2. Let 𝑇 be a scheme over 𝑆.

(1) for every object 𝑥 of the fibre category [𝑈/𝑅]𝑇 there exists an fppf covering {𝑓𝑖 ∶
𝑇𝑖 → 𝑇}𝑖∈𝐼 such that 𝑓∗

𝑖 𝑥 ≅ 𝜋(𝑢𝑖) for some 𝑢𝑖 ∈ 𝑈(𝑇𝑖),
(2) the composition of the isomorphisms

𝜋(𝑢𝑖 ∘ pr0) = pr∗
0𝜋(𝑢𝑖) ≅ pr∗

0𝑓∗
𝑖 𝑥 ≅ pr∗

1𝑓∗
𝑗 𝑥 ≅ pr∗

1𝜋(𝑢𝑗) = 𝜋(𝑢𝑗 ∘ pr1)

are of the form 𝜋(𝑟𝑖𝑗) for certain morphisms 𝑟𝑖𝑗 ∶ 𝑇𝑖 ×𝑇 𝑇𝑗 → 𝑅,
(3) the system (𝑢𝑖, 𝑟𝑖𝑗) forms a [𝑈/𝑅]-descent datum as defined above,
(4) any [𝑈/𝑅]-descent datum (𝑢𝑖, 𝑟𝑖𝑗) arises in this manner,
(5) if 𝑥 corresponds to (𝑢𝑖, 𝑟𝑖𝑗) as above, and 𝑦 ∈ 𝑂𝑏([𝑈/𝑅]𝑇) corresponds to (𝑢′

𝑖 , 𝑟′
𝑖𝑗)

then there is a canonical bijection

𝑀𝑜𝑟[𝑈/𝑅]𝑇
(𝑥, 𝑦) ⟷ {

morphisms (𝑢𝑖, 𝑟𝑖𝑗) → (𝑢′
𝑖 , 𝑟′

𝑖𝑗)
of [𝑈/𝑅]-descent data }

(6) this correspondence is compatible with refinements of fppf coverings.

Proof. Statement (1) is part of the construction of the stackyfication. Part (2) follows from
Lemma 52.21.1. We omit the verification of (3). Part (4) is a translation of the fact that in
a stack all descent data are effective. We omit the verifications of (5) and (6). �

52.24. Restriction and quotient stacks

In this section we study what happens to the quotient stack when taking a restriction.

Lemma 52.24.1. Notation and assumption as in Lemma 52.20.1. The morphism of quotient
stacks

[𝑓] ∶ [𝑈/𝑅] ⟶ [𝑈′/𝑅′]
is fully faithful if and only if 𝑅 is the restriction of 𝑅 via the morphism 𝑓 ∶ 𝑈 → 𝑈′.

Proof. Let 𝑥, 𝑦 be objects of [𝑈/𝑅] over a scheme 𝑇/𝑆. Let 𝑥′, 𝑦′ be the images of 𝑥, 𝑦 in
the category [𝑈′/′𝑅]𝑇. The functor [𝑓] is fully faithful if and only if the map of sheaves

𝐼𝑠𝑜𝑚(𝑥, 𝑦) ⟶ 𝐼𝑠𝑜𝑚(𝑥′, 𝑦′)
is an isomorphism for every 𝑇, 𝑥, 𝑦. We may test this locally on 𝑇 (in the fppf topology).
Hence, by Lemma 52.23.1 we may assume that 𝑥, 𝑦 come from 𝑎, 𝑏 ∈ 𝑈(𝑇). In that case we
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see that 𝑥′, 𝑦′ correspond to 𝑓 ∘ 𝑎, 𝑓 ∘ 𝑏. By Lemma 52.21.1 the displayed map of sheaves
in this case becomes

𝑇 ×(𝑎,𝑏),𝑈×𝐵𝑈 𝑅 ⟶ 𝑇 ×𝑓∘𝑎,𝑓∘𝑏,𝑈′×𝐵𝑈′ 𝑅′.

This is an isomorphism if 𝑅 is the restriction, because in that case 𝑅 = (𝑈×𝐵𝑈)×𝑈′×𝐵𝑈′ 𝑅′,
see Lemma 52.16.3 and its proof. Conversely, if the last displayed map is an isomorphism
for all 𝑇, 𝑎, 𝑏, then it follows that 𝑅 = (𝑈 ×𝐵 𝑈) ×𝑈′×𝐵𝑈′ 𝑅′, i.e., 𝑅 is the restriction of
𝑅′. �

Lemma 52.24.2. Notation and assumption as in Lemma 52.20.1. The morphism of quotient
stacks

[𝑓] ∶ [𝑈/𝑅] ⟶ [𝑈′/𝑅′]
is an equivalence if and only if

(1) (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is the restriction of (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) via 𝑓 ∶ 𝑈 → 𝑈′, and
(2) the map

𝑈 ×𝑓,𝑈′,𝑡′ 𝑅′
pr1
//

ℎ
((𝑅′

𝑠′
// 𝑈′

is a surjection of sheaves.
Part (2) holds for example if {ℎ ∶ 𝑈×𝑓,𝑈′,𝑡′ 𝑅′ → 𝑈′} is an fppf covering, or if 𝑓 ∶ 𝑈 → 𝑈′

is a surjection of sheaves, or if {𝑓 ∶ 𝑈 → 𝑈′} is an fppf covering.

Proof. We already know that part (1) is equivalent to fully faithfulness by Lemma 52.24.1.
Hence wemay assume that (1) holds and that [𝑓] is fully faithful. Our goal is to show, under
these assumptions, that [𝑓] is an equivalence if and only if (2) holds. We may use Stacks,
Lemma 50.4.8 which characterizes equivalences.

Assume (2). We will use Stacks, Lemma 50.4.8 to prove [𝑓] is an equivalence. Suppose
that 𝑇 is a scheme and 𝑥′ ∈ 𝑂𝑏([𝑈′/𝑅′]𝑇). There exists a covering {𝑔𝑖 ∶ 𝑇𝑖 → 𝑇} such that
𝑔∗

𝑖 𝑥′ is the image of some element 𝑎′
𝑖 ∈ 𝑈′(𝑇𝑖), see Lemma 52.23.1. Hence we may assume

that 𝑥′ is the image of 𝑎′ ∈ 𝑈′(𝑇). By the assumption that ℎ is a surjection of sheaves, we
can find an fppf covering {𝜑𝑖 ∶ 𝑇𝑖 → 𝑇} and morphisms 𝑏𝑖 ∶ 𝑇𝑖 → 𝑈 ×𝑔,𝑈′,𝑡′ 𝑅′ such
that 𝑎′ ∘ 𝜑𝑖 = ℎ ∘ 𝑏𝑖. Denote 𝑎𝑖 = pr0 ∘ 𝑏𝑖 ∶ 𝑇𝑖 → 𝑈. Then we see that 𝑎𝑖 ∈ 𝑈(𝑇𝑖) maps
to 𝑓 ∘ 𝑎𝑖 ∈ 𝑈′(𝑇𝑖) and that 𝑓 ∘ 𝑎𝑖 ≅𝑇𝑖

ℎ ∘ 𝑏𝑖 = 𝑎′ ∘ 𝜑𝑖, where ≅𝑇𝑖
denotes isomorphism

in the fibre category [𝑈′/𝑅′]𝑇𝑖
. Namely, the element of 𝑅′(𝑇𝑖) giving the isomorphism is

pr1 ∘ 𝑏𝑖. This means that the restriction of 𝑥 to 𝑇𝑖 is in the essential image of the functor
[𝑈/𝑅]𝑇𝑖

→ [𝑈′/𝑅′]𝑇𝑖
as desired.

Assume [𝑓] is an equivalence. Let 𝜉′ ∈ [𝑈′/𝑅′]𝑈′ denote the object corresponding to
the identity morphism of 𝑈′. Applying Stacks, Lemma 50.4.8 we see there exists an fppf
covering 𝒰′ = {𝑔′

𝑖 ∶ 𝑈′
𝑖 → 𝑈′} such that (𝑔′

𝑖 )
∗𝜉′ ≅ [𝑓](𝜉𝑖) for some 𝜉𝑖 in [𝑈/𝑅]𝑈′

𝑖
. After

refining the covering 𝒰′ (using Lemma 52.23.1) wemay assume 𝜉𝑖 comes from amorphism
𝑎𝑖 ∶ 𝑈′

𝑖 → 𝑈. The fact that [𝑓](𝜉𝑖) ≅ (𝑔′
𝑖 )

∗𝜉′ means that, after possibly refining the covering
𝒰′ once more, there exist morphisms 𝑟′

𝑖 ∶ 𝑈′
𝑖 → 𝑅′ with 𝑡′ ∘𝑟′

𝑖 = 𝑓∘𝑎𝑖 and 𝑠′ ∘𝑟′
𝑖 = id𝑈′ ∘𝑔′

𝑖 .
Picture

𝑈

𝑓
��

𝑈′
𝑖𝑎𝑖

oo

𝑟′
𝑖

~~
𝑔′

𝑖
��

𝑈′ 𝑅′𝑡′
oo 𝑠′

// 𝑈′
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Thus (𝑎𝑖, 𝑟′
𝑖 ) ∶ 𝑈′

𝑖 → 𝑈×𝑔,𝑈′,𝑡′ 𝑅′ are morphisms such that ℎ∘(𝑎𝑖, 𝑟′
𝑖 ) = 𝑔′

𝑖 and we conclude
that {ℎ ∶ 𝑈 ×𝑔,𝑈′,𝑡′ 𝑅′ → 𝑈′} can be refined by the fppf covering 𝒰′ which means that ℎ
induces a surjection of sheaves, see Topologies on Spaces, Lemma 44.4.4.
If {ℎ} is an fppf covering, then it induces a surjection of sheaves, see Topologies on Spaces,
Lemma 44.4.4. If 𝑈′ → 𝑈 is surjective, then also ℎ is surjective as 𝑠 has a section (namely
the neutral element 𝑒 of the groupoid in algebraic spaces). �

Lemma 52.24.3. Notation and assumption as in Lemma 52.20.1. Assume that

𝑅

𝑠
��

𝑓
// 𝑅′

𝑠′

��
𝑈

𝑓 // 𝑈′

is cartesian. Then
𝒮𝑈

��

// [𝑈/𝑅]

[𝑓]
��

𝒮𝑈′ // [𝑈′/𝑅′]
is a 2-fibre product square.

Proof. Applying the inverse isomorphisms 𝑖 ∶ 𝑅 → 𝑅 and 𝑖′ ∶ 𝑅′ → 𝑅′ to the (first)
cartesian diagram of the statement of the lemma we see that

𝑅

𝑡
��

𝑓
// 𝑅′

𝑡′

��
𝑈

𝑓 // 𝑈′

is cartesian as well. By Lemma 52.20.2 we have a 2-fibre square

[𝑈″/𝑅″]

��

// [𝑈/𝑅]

��
𝒮𝑈′ // [𝑈′/𝑅′]

where 𝑈″ = 𝑈 ×𝑓,𝑈′,𝑡′ 𝑅′ and 𝑅″ = 𝑅 ×𝑓∘𝑠,𝑈′,𝑡′ 𝑅′. By the above we see that (𝑡, 𝑓) ∶ 𝑅 →
𝑈″ is an isomorphism, and that

𝑅″ = 𝑅 ×𝑓∘𝑠,𝑈′,𝑡′ 𝑅′ = 𝑅 ×𝑠,𝑈 𝑈 ×𝑓,𝑈′,𝑡′ 𝑅′ = 𝑅 ×𝑠,𝑈,𝑡 ×𝑅.

Explicitly the isomorphism 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅″ is given by the rule (𝑟0, 𝑟1) ↦ (𝑟0, 𝑓(𝑟1)).
Moreover, 𝑠″, 𝑡″, 𝑐″ translate into the maps

𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅, 𝑠″(𝑟0, 𝑟1) = 𝑟1, 𝑡″(𝑟0, 𝑟1) = 𝑐(𝑟0, 𝑟1)
and

𝑐″ ∶ (𝑅 ×𝑠,𝑈,𝑡 𝑅) ×𝑠″,𝑅,𝑡″ (𝑅 ×𝑠,𝑈,𝑡 𝑅) ⟶ 𝑅 ×𝑠,𝑈,𝑡 𝑅,
((𝑟0, 𝑟1), (𝑟2, 𝑟3)) ⟼ (𝑐(𝑟0, 𝑟2), 𝑟3).

Precomposing with the isomorphism
𝑅 ×𝑠,𝑈,𝑠 𝑅 ⟶ 𝑅 ×𝑠,𝑈,𝑡 𝑅, (𝑟0, 𝑟1) ⟼ (𝑐(𝑟0, 𝑖(𝑟1)), 𝑟1)

we see that 𝑡″ and 𝑠″ turn into pr0 and pr1 and that 𝑐″ turns into pr02 ∶ 𝑅×𝑠,𝑈,𝑠 𝑅×𝑠,𝑈,𝑠 𝑅 →
𝑅 ×𝑠,𝑈,𝑠 𝑅. Hence we see that there is an isomorphism [𝑈″/𝑅″] ≅ [𝑅/𝑅 ×𝑠,𝑈,𝑠 𝑅] where
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as a groupoid in algebraic spaces (𝑅, 𝑅 ×𝑠,𝑈,𝑠 𝑅, 𝑠″, 𝑡″, 𝑐″) is the restriction of the trivial
groupoid (𝑈, 𝑈, id, id, id) via 𝑠 ∶ 𝑅 → 𝑈. Since 𝑠 ∶ 𝑅 → 𝑈 is a surjection of fppf sheaves
(as it has a right inverse) the morphism

[𝑈″/𝑅″] ≅ [𝑅/𝑅 ×𝑠,𝑈,𝑠 𝑅] ⟶ [𝑈/𝑈] = 𝒮𝑈

is an equivalence by Lemma 52.24.2. This proves the lemma. �

52.25. Inertia and quotient stacks

The (relative) inertia stack of a stack in groupoids is defined in Stacks, Section 50.7. The
actual construction, in the setting of fibred categories, and some of its properties is in Cat-
egories, Section 4.31.

Lemma 52.25.1. Assume 𝐵 → 𝑆 and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) as in Definition 52.19.1 (1). Let 𝐺/𝑈
be the stabilizer group algebraic space of the groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖), see Definition
52.15.2. Set 𝑅′ = 𝑅 ×𝑠,𝑈 𝐺 and set

(1) 𝑠′ ∶ 𝑅′ → 𝐺, (𝑟, 𝑔) ↦ 𝑔,
(2) 𝑡′ ∶ 𝑅′ → 𝐺, (𝑟, 𝑔) ↦ 𝑐(𝑟, 𝑐(𝑔, 𝑖(𝑟))),
(3) 𝑐′ ∶ 𝑅′ ×𝑠′,𝐺,𝑡′ 𝑅′ → 𝑅′, ((𝑟1, 𝑔1), (𝑟2, 𝑔2) ↦ (𝑐(𝑟1, 𝑟2), 𝑔1).

Then (𝐺, 𝑅′, 𝑠′, 𝑡′, 𝑐′) is a groupoid in algebraic spaces over 𝐵 and

ℐ[𝑈/𝑅] = [𝐺/𝑅′].

i.e., the associated quotient stack is the inertia stack of [𝑈/𝑅].

Proof. By Stacks, Lemma 50.8.5 it suffices to prove that ℐ[𝑈/𝑝𝑅] = [𝐺/𝑝𝑅′]. Let 𝑇 be
a scheme over 𝑆. Recall that an object of the inertia fibred category of [𝑈/𝑝𝑅] over 𝑇 is
given by a pair (𝑥, 𝑔) where 𝑥 is an object of [𝑈/𝑝𝑅] over 𝑇 and 𝑔 is an automorphism of
𝑥 in its fibre category over 𝑇. In other words, 𝑥 ∶ 𝑇 → 𝑈 and 𝑔 ∶ 𝑇 → 𝑅 such that
𝑥 = 𝑠 ∘ 𝑔 = 𝑡 ∘ 𝑔. This means exactly that 𝑔 ∶ 𝑇 → 𝐺. A morphism in the inertia fibred
category from (𝑥, 𝑔) → (𝑦, ℎ) over 𝑇 is given by 𝑟 ∶ 𝑇 → 𝑅 such that 𝑠(𝑟) = 𝑥, 𝑡(𝑟) = 𝑦 and
𝑐(𝑟, 𝑔) = 𝑐(ℎ, 𝑟), see the commutative diagram in Categories, Lemma 4.31.1. In a formula

ℎ = 𝑐(𝑟, 𝑐(𝑔, 𝑖(𝑟))) = 𝑐(𝑐(𝑟, 𝑔), 𝑖(𝑟)).

The notation 𝑠(𝑟), etc is a short hand for 𝑠∘𝑟, etc. The composition of 𝑟1 ∶ (𝑥2, 𝑔2) → (𝑥1, 𝑔1)
and 𝑟2 ∶ (𝑥1, 𝑔1) → (𝑥2, 𝑔2) is 𝑐(𝑟1, 𝑟2) ∶ (𝑥1, 𝑔1) → (𝑥3, 𝑔3).

Note that in the above we could have written 𝑔 in stead of (𝑥, 𝑔) for an object of ℐ[𝑈/𝑝𝑅]
over 𝑇 as 𝑥 is the image of 𝑔 under the structure morphism 𝐺 → 𝑈. Then the morphisms
𝑔 → ℎ in ℐ[𝑈/𝑝𝑅] over 𝑇 correspond exactly to morphisms 𝑟′ ∶ 𝑇 → 𝑅′ with 𝑠′(𝑟′) = 𝑔 and
𝑡′(𝑟′) = ℎ. Moreover, the composition corresponds to the rule explained in (3). Thus the
lemma is proved. �

Lemma 52.25.2. Assume 𝐵 → 𝑆 and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) as in Definition 52.19.1 (1). Let 𝐺/𝑈
be the stabilizer group algebraic space of the groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖), see Definition
52.15.2. There is a canonical 2-cartesian diagram

𝒮𝐺
//

��

𝒮𝑈

��
ℐ[𝑈/𝑅]

// [𝑈/𝑅]

of stacks in groupoids of (Sch/𝑆)𝑓𝑝𝑝𝑓.
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Proof. By Lemma 52.24.3 it suffices to prove that the morphism 𝑠′ ∶ 𝑅′ → 𝐺 of Lemma
52.25.1 isomorphic to the base change of 𝑠 by the structure morphism 𝐺 → 𝑈. This base
change property is clear from the construction of 𝑠′. �

52.26. Gerbes and quotient stacks

In this section we relate quotient stacks to the discussion Stacks, Section 50.11 and espe-
cially gerbes as defined in Stacks, Definition 50.11.4. The stacks in groupoids occuring in
this section are generally speaking not algebraic stacks!

Lemma 52.26.1. Notation and assumption as in Lemma 52.20.1. The morphism of quotient
stacks

[𝑓] ∶ [𝑈/𝑅] ⟶ [𝑈′/𝑅′]
turns [𝑈/𝑅] into a gerbe over [𝑈′/𝑅′] if 𝑓 ∶ 𝑈 → 𝑈′ and 𝑅 → 𝑅′|𝑈 are surjective maps of
fppf sheaves. Here 𝑅′|𝑈 is the restriction of 𝑅′ to 𝑈 via 𝑓 ∶ 𝑈 → 𝑈′.

Proof. Wewill verify that Stacks, Lemma 50.11.3 properties (2) (a) and (2) (b) hold. Prop-
erty (2)(a) holds because 𝑈 → 𝑈′ is a surjective map of sheaves (use Lemma 52.23.1 to see
that objects in [𝑈′/𝑅′] locally come from 𝑈′). To prove (2)(b) let 𝑥, 𝑦 be objects of [𝑈/𝑅]
over a scheme 𝑇/𝑆. Let 𝑥′, 𝑦′ be the images of 𝑥, 𝑦 in the category [𝑈′/′𝑅]𝑇. Condition
(2)(b) requires us to check the map of sheaves

𝐼𝑠𝑜𝑚(𝑥, 𝑦) ⟶ 𝐼𝑠𝑜𝑚(𝑥′, 𝑦′)
on (Sch/𝑇)𝑓𝑝𝑝𝑓 is surjective. To see this we may work fppf locally on 𝑇 and assume that
come from 𝑎, 𝑏 ∈ 𝑈(𝑇). In that case we see that 𝑥′, 𝑦′ correspond to 𝑓 ∘ 𝑎, 𝑓 ∘ 𝑏. By Lemma
52.21.1 the displayed map of sheaves in this case becomes

𝑇 ×(𝑎,𝑏),𝑈×𝐵𝑈 𝑅 ⟶ 𝑇 ×𝑓∘𝑎,𝑓∘𝑏,𝑈′×𝐵𝑈′ 𝑅′ = 𝑇 ×(𝑎,𝑏),𝑈×𝐵𝑈 𝑅′|𝑈.

Hence the assumption that 𝑅 → 𝑅′|𝑈 is a surjective map of fppf sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓
implies the desired surjectivity. �

Lemma 52.26.2. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let 𝐺 be a group
algebraic space over 𝐵. Endow 𝐵 with the trivial action of 𝐺. The morphism

[𝐵/𝐺] ⟶ 𝒮𝐵

(Lemma 52.19.2) turns [𝐵/𝐺] into a gerbe over 𝐵.

Proof. Immediate from Lemma 52.26.1 as the morphisms 𝐵 → 𝐵 and 𝐵 ×𝐵 𝐺 → 𝐵 are
surjective as morphisms of sheaves. �

52.27. Quotient stacks and change of big site

We suggest skipping this section on a first reading. Pullbacks of stacks are defined in Stacks,
Section 50.12.

Lemma 52.27.1. Suppose given big sites Sch𝑓𝑝𝑝𝑓 and Sch′
𝑓𝑝𝑝𝑓. Assume that Sch𝑓𝑝𝑝𝑓 is

contained in Sch′
𝑓𝑝𝑝𝑓, see Topologies, Section 30.10. Let 𝑆 ∈ 𝑂𝑏(Sch𝑓𝑝𝑝𝑓). Let 𝐵, 𝑈, 𝑅 ∈

Sh((Sch/𝑆)𝑓𝑝𝑝𝑓) be algebraic spaces, and let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic spaces
over 𝐵. Let 𝑓 ∶ (Sch′/𝑆)𝑓𝑝𝑝𝑓 → (Sch/𝑆)𝑓𝑝𝑝𝑓 the morphism of sites corresponding to the
inclusion functor 𝑢 ∶ Sch𝑓𝑝𝑝𝑓 → Sch′

𝑓𝑝𝑝𝑓. Then we have a canonical equivalence

[𝑓−1𝑈/𝑓−1𝑅] ⟶ 𝑓−1[𝑈/𝑅]
of stacks in groupoids over (Sch′/𝑆)𝑓𝑝𝑝𝑓.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06PE
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06PF
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WX
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Proof. Note that 𝑓−1𝐵, 𝑓−1𝑈, 𝑓−1𝑅 ∈ Sh((Sch′/𝑆)𝑓𝑝𝑝𝑓) are algebraic spaces by Spaces,
Lemma 40.15.1 and hence (𝑓−1𝑈, 𝑓−1𝑅, 𝑓−1𝑠, 𝑓−1𝑡, 𝑓−1𝑐) is a groupoid in algebraic spaces
over 𝑓−1𝐵. Thus the statement makes sense.
The category 𝑢𝑝[𝑈/𝑝𝑅] is the localization of the category 𝑢𝑝𝑝[𝑈/𝑝𝑅] at right multiplicative
system 𝐼 of morphisms. An object of 𝑢𝑝𝑝[𝑈/𝑝𝑅] is a triple

(𝑇′, 𝜙 ∶ 𝑇′ → 𝑇, 𝑥)
where 𝑇′ ∈ 𝑂𝑏((Sch′/𝑆)𝑓𝑝𝑝𝑓), 𝑇 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), 𝜙 is a morphism of schemes over
𝑆, and 𝑥 ∶ 𝑇 → 𝑈 is a morphism of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. Note that the morphism
of schemes 𝜙 ∶ 𝑇′ → 𝑇 is the same thing as a morphism 𝜙 ∶ 𝑇′ → 𝑢(𝑇), and since
𝑢(𝑇) represents 𝑓−1𝑇 it is the same thing as a morphism 𝑇′ → 𝑓−1𝑇. Moreover, as 𝑓−1

on algebraic spaces is fully faithful, see Spaces, Lemma 40.15.2, we may think of 𝑥 as a
morphism 𝑥 ∶ 𝑓−1𝑇 → 𝑓−1𝑈 as well. From now on we will make such identifications
without further mention. A morphism

(𝑎, 𝑎′, 𝛼) ∶ (𝑇′
1, 𝜙1 ∶ 𝑇′

1 → 𝑇1, 𝑥1) ⟶ (𝑇′
2, 𝜙2 ∶ 𝑇′

2 → 𝑇2, 𝑥2)
of 𝑢𝑝𝑝[𝑈/𝑝𝑅] is a commutative diagram

𝑈

𝑇′
1

𝑎′

��

𝜙1
// 𝑇1

𝑎
��

𝑥1

??

𝛼
// 𝑅

𝑡
��

𝑠

OO

𝑇′
2

𝜙2 // 𝑇2
𝑥2 // 𝑈

and such a morphism is an element of 𝐼 if and only if 𝑇′
1 = 𝑇′

2 and 𝑎′ = id. We define a
functor

𝑢𝑝𝑝[𝑈/𝑝𝑅] ⟶ [𝑓−1𝑈/𝑝𝑓−1𝑅]
by the rules

(𝑇′, 𝜙 ∶ 𝑇′ → 𝑇, 𝑥) ⟼ (𝑥 ∘ 𝜙 ∶ 𝑇′ → 𝑓−1𝑈)
on objects and

(𝑎, 𝑎′, 𝛼) ⟼ (𝛼 ∘ 𝜙1 ∶ 𝑇′
1 → 𝑓−1𝑅)

on morphisms as above. It is clear that elements of 𝐼 are transformed into isomorphisms
as (𝑓−1𝑈, 𝑓−1𝑅, 𝑓−1𝑠, 𝑓−1𝑡, 𝑓−1𝑐) is a groupoid in algebraic spaces over 𝑓−1𝐵. Hence this
functor factors in a canonical way through a functor

𝑢𝑝[𝑈/𝑝𝑅] ⟶ [𝑓−1𝑈/𝑝𝑓−1𝑅]
Applying stackification we obtain a functor of stacks

𝑓−1[𝑈/𝑅] ⟶ [𝑓−1𝑈/𝑓−1𝑅]
over (Sch′/𝑆)𝑓𝑝𝑝𝑓, as by Stacks, Lemma 50.12.11 the stack 𝑓−1[𝑈/𝑅] is the stackification
of 𝑢𝑝[𝑈/𝑝𝑅].
At this point we have a morphism of stacks, and to verify that it is an equivalence it suffices
to show that it is fully faithful and that objects are locally in the essential image, see Stacks,
Lemmas 50.4.7 and 50.4.8. The statement on objects holds as 𝑓−1𝑅 admits a surjective
étale morphism 𝑓−1𝑊 → 𝑓−1𝑅 for some object 𝑊 of (Sch/𝑆)𝑓𝑝𝑝𝑓. To show that the functor
is ``full'', it suffices to show that morphisms are locally in the image of the functor which



52.28. SEPARATION CONDITIONS 2593

holds as 𝑓−1𝑈 admits a surjective étale morphism 𝑓−1𝑊 → 𝑓−1𝑈 for some object 𝑊 of
(Sch/𝑆)𝑓𝑝𝑝𝑓. We omit the proof that the functor is faithful. �

52.28. Separation conditions

This really means conditions on the morphism 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 when given a groupoid
in algebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over 𝐵. As in the previous section we first formulate the
corresponding diagram.

Lemma 52.28.1. Let 𝐵 → 𝑆 be as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in alge-
braic spaces over 𝐵. Let 𝐺 → 𝑈 be the stabilizer group algebraic space. The commutative
diagram

𝑅

Δ𝑅/𝑈×𝐵𝑈

��

𝑓↦(𝑓,𝑠(𝑓))
// 𝑅 ×𝑠,𝑈 𝑈

��

// 𝑈

��
𝑅 ×(𝑈×𝐵𝑈) 𝑅

(𝑓,𝑔)↦(𝑓,𝑓−1∘𝑔) // 𝑅 ×𝑠,𝑈 𝐺 // 𝐺

the two left horizontal arrows are isomorphisms and the right square is a fibre product
square.

Proof. Omitted. Exercise in the definitions and the functorial point of view in algebraic
geometry. �

Lemma 52.28.2. Let 𝐵 → 𝑆 be as in Section 52.3. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over 𝐵. Let 𝐺 → 𝑈 be the stabilizer group algebraic space.

(1) The following are equivalent
(a) 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 is separated,
(b) 𝐺 → 𝑈 is separated, and
(c) 𝑒 ∶ 𝑈 → 𝐺 is a closed immersion.

(2) The following are equivalent
(a) 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 is locally separated,
(b) 𝐺 → 𝑈 is locally separated, and
(c) 𝑒 ∶ 𝑈 → 𝐺 is an immersion.

(3) The following are equivalent
(a) 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 is quasi-separated,
(b) 𝐺 → 𝑈 is quasi-separated, and
(c) 𝑒 ∶ 𝑈 → 𝐺 is quasi-compact.

Proof. The group algebraic space 𝐺 → 𝑈 is the base change of 𝑅 → 𝑈 ×𝐵 𝑈 by the
diagonal morphism 𝑈 → 𝑈×𝐵 𝑈, see Lemma 52.15.1. Hence if 𝑗 is separated (resp. locally
separated, resp. quasi-separated), then 𝐺 → 𝑈 is separated (resp. locally separated, resp.
quasi-separated). See Morphisms of Spaces, Lemma 42.5.4. Thus (a) ⇒ (b) in (1), (2), and
(3).
Conversely, if 𝐺 → 𝑈 is separated (resp. locally separated, resp. quasi-separated), then the
morphism 𝑒 ∶ 𝑈 → 𝐺, as a section of the structure morphism 𝐺 → 𝑈 is a closed immersion
(resp. an immersion, resp. quasi-compact), see Morphisms of Spaces, Lemma 42.5.7. Thus
(b) ⇒ (c) in (1), (2), and (3).
If 𝑒 is a closed immersion (resp. an immersion, resp. quasi-compact) then by the result of
Lemma 52.28.1 (and Spaces, Lemma 40.12.3, and Morphisms of Spaces, Lemma 42.9.3)
we see that Δ𝑅/𝑈×𝐵𝑈 is a closed immersion (resp. an immerion, resp. quasi-compact). Thus
(c) ⇒ (a) in (1), (2), and (3). �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0454
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0455
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CHAPTER 53

More on Groupoids in Spaces

53.1. Introduction

This chapter is devoted to advanced topics on groupoids in algebraic spaces. Even though
the results are stated in terms of groupoids in algebraic spaces, the reader should keep in
mind the 2-cartesian diagram

(53.1.0.1)

𝑅 //

��

𝑈

��
𝑈 // [𝑈/𝑅]

where [𝑈/𝑅] is the quotient stack, see Groupoids in Spaces, Remark 52.19.4. Many of the
results are motivated by thinking about this diagram. See for example the beautiful paper
[KM97a] by Keel and Mori.

53.2. Notation

We continue to abide by the conventions and notation introduced in Groupoids in Spaces,
Section 52.3.

53.3. Useful diagrams

We briefly restate the results of Groupoids in Spaces, Lemmas 52.11.4 and 52.11.5 for easy
reference in this chapter. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic spaces over 𝐵. In the commutative diagram

(53.3.0.2)

𝑈

𝑅

𝑠
��

𝑡
::

𝑅 ×𝑠,𝑈,𝑡 𝑅pr0
oo

pr1
��

𝑐
// 𝑅

𝑠
��

𝑡
dd

𝑈 𝑅𝑡oo 𝑠 // 𝑈

the two lower squares are fibre product squares. Moreover, the triangle on top (which is
really a square) is also cartesian.

2595
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The diagram

(53.3.0.3)

𝑅 ×𝑡,𝑈,𝑡 𝑅
pr1 //

pr0
//

pr0×𝑐∘(𝑖,1)
��

𝑅 𝑡 //

id𝑅
��

𝑈

id𝑈
��

𝑅 ×𝑠,𝑈,𝑡 𝑅
𝑐 //

pr0
//

pr1
��

𝑅 𝑡 //

𝑠
��

𝑈

𝑅
𝑠 //

𝑡
// 𝑈

is commutative. The two top rows are isomorphic via the vertical maps given. The two
lower left squares are cartesian.

53.4. Properties of groupoids

This section is the analogue of More on Groupoids, Section 36.5. The reader is strongly
encouraged to read that section first.

The following lemma is the analogue of More on Groupoids, Lemma 36.5.4.

Lemma 53.4.1. Let 𝐵 → 𝑆 be as in Section 53.2. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over 𝐵. Let 𝜏 ∈ {𝑓𝑝𝑝𝑓, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Let 𝒫 be a property of
morphisms of algebraic spaces which is 𝜏-local on the target (Descent on Spaces, Definition
45.9.1). Assume {𝑠 ∶ 𝑅 → 𝑈} and {𝑡 ∶ 𝑅 → 𝑈} are coverings for the 𝜏-topology. Let
𝑊 ⊂ 𝑈 be the maximal open subspace such that 𝑠−1(𝑊) → 𝑊 has property 𝒫. Then 𝑊 is
𝑅-invariant (Groupoids in Spaces, Definition 52.17.1).

Proof. The existence and properties of the open𝑊 ⊂ 𝑈 are described inDescent on Spaces,
Lemma 45.9.3. In Diagram (53.3.0.2) let 𝑊1 ⊂ 𝑅 be the maximal open subscheme over
which the morphism pr1 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 has property 𝒫. It follows from the afore-
mentioned Descent on Spaces, Lemma 45.9.3 and the assumption that {𝑠 ∶ 𝑅 → 𝑈} and
{𝑡 ∶ 𝑅 → 𝑈} are coverings for the 𝜏-topology that 𝑡−1(𝑊) = 𝑊1 = 𝑠−1(𝑊) as desired. �

Lemma 53.4.2. Let 𝐵 → 𝑆 be as in Section 53.2. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over𝐵. Let𝐺 → 𝑈 be its stabilizer group algebraic space. Let 𝜏 ∈ {𝑓𝑝𝑝𝑓,

́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐}. Let 𝒫 be a property of morphisms of algebraic spaces which is
𝜏-local on the target. Assume {𝑠 ∶ 𝑅 → 𝑈} and {𝑡 ∶ 𝑅 → 𝑈} are coverings for the
𝜏-topology. Let 𝑊 ⊂ 𝑈 be the maximal open subspace such that 𝐺𝑊 → 𝑊 has property 𝒫.
Then 𝑊 is 𝑅-invariant (see Groupoids in Spaces, Definition 52.17.1).

Proof. The existence and properties of the open𝑊 ⊂ 𝑈 are described inDescent on Spaces,
Lemma 45.9.3. The morphism

𝐺 ×𝑈,𝑡 𝑅 ⟶ 𝑅 ×𝑠,𝑈 𝐺, (𝑔, 𝑟) ⟼ (𝑟, 𝑟−1 ∘ 𝑔 ∘ 𝑟)

is an isomorphism of algebraic spaces over𝑅 (where ∘ denotes composition in the groupoid).
Hence 𝑠−1(𝑊) = 𝑡−1(𝑊) by the properties of 𝑊 proved in the aforementioned Descent on
Spaces, Lemma 45.9.3. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=044Z
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06R4
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53.5. Comparing fibres

This section is the analogue of More on Groupoids, Section 36.6. The reader is strongly
encouraged to read that section first.

Lemma 53.5.1. Let 𝐵 → 𝑆 be as in Section 53.2. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over 𝐵. Let 𝐾 be a field and let 𝑟, 𝑟′ ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑅 be morphisms such
that 𝑡 ∘ 𝑟 = 𝑡 ∘ 𝑟′ ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑈. Set 𝑢 = 𝑠 ∘ 𝑟, 𝑢′ = 𝑠 ∘ 𝑟′ and denote 𝐹𝑢 = 𝑆𝑝𝑒𝑐(𝐾) ×𝑢,𝑈,𝑠 𝑅
and 𝐹𝑢′ = 𝑆𝑝𝑒𝑐(𝐾) ×𝑢′,𝑈,𝑠 𝑅 the fibre products. Then 𝐹𝑢 ≅ 𝐹𝑢′ as algebraic spaces over
𝐾.

Proof. We use the properties and the existence of Diagram (53.3.0.2). There exists a mor-
phism 𝜉 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑅×𝑠,𝑈,𝑡 𝑅 with pr0 ∘𝜉 = 𝑟 and 𝑐∘𝜉 = 𝑟′. Let ̃𝑟 = pr1 ∘𝜉 ∶ 𝑆𝑝𝑒𝑐(𝐾) →
𝑅. Then looking at the bottom two squares of Diagram (53.3.0.2) we see that both 𝐹𝑢 and
𝐹𝑢′ are identified with the algebraic space 𝑆𝑝𝑒𝑐(𝐾) × ̃𝑟,𝑅,pr1 (𝑅 ×𝑠,𝑈,𝑡 𝑅). �

Actually, in the situation of the lemma the morphisms of pairs 𝑠 ∶ (𝑅, 𝑟) → (𝑈, 𝑢) and
𝑠 ∶ (𝑅, 𝑟′) → (𝑈, 𝑢′) are locally isomorphic in the 𝜏-topology, provided {𝑠 ∶ 𝑅 → 𝑈} is a
𝜏-covering. We will insert a precise statement here if needed.

53.6. Restricting groupoids

In this section we collect a bunch of lemmas on properties of groupoids which are inherited
by restrictions. Most of these lemmas can be proved by contemplating the defining diagram

(53.6.0.1)

𝑅′

��

//

𝑡′

%%

𝑠′

**𝑅 ×𝑠,𝑈 𝑈′ //

��

𝑈′

𝑔

��
𝑈′ ×𝑈,𝑡 𝑅

��

// 𝑅 𝑠 //

𝑡
��

𝑈

𝑈′ 𝑔 // 𝑈

of a restriction. See Groupoids in Spaces, Lemma 52.16.1.

Lemma 53.6.1. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
be a groupoid in algebraic spaces over 𝐵. Let 𝑔 ∶ 𝑈′ → 𝑈 be a morphism of algebraic
spaces over 𝐵. Let (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) via 𝑔.

(1) If 𝑠, 𝑡 are locally of finite type and 𝑔 is locally of finite type, then 𝑠′, 𝑡′ are locally
of finite type.

(2) If 𝑠, 𝑡 are locally of finite presentation and 𝑔 is locally of finite presentation, then
𝑠′, 𝑡′ are locally of finite presentation.

(3) If 𝑠, 𝑡 are flat and 𝑔 is flat, then 𝑠′, 𝑡′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition and arbitrary
base change, see Morphisms of Spaces, Lemmas 42.22.2 and 42.22.3. Hence (1) is clear
from Diagram (53.6.0.1). For the other cases, see Morphisms of Spaces, Lemmas 42.26.2,
42.26.3, 42.27.2, and 42.27.3. �
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53.7. Properties of groups over fields and groupoids on fields

The reader is advised to first look at the corresponding sections for groupoid schemes, see
Groupoids, Section 35.7 and More on Groupoids, Section 36.9.

Situation 53.7.1. Here 𝑆 is a scheme, 𝑘 is a field over 𝑆, and (𝐺, 𝑚) is a group algebraic
spaces over 𝑆𝑝𝑒𝑐(𝑘).

Situation 53.7.2. Here𝑆 is a scheme, 𝐵 is an algebraic space, and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid
in algebraic spaces over 𝐵 with 𝑈 = 𝑆𝑝𝑒𝑐(𝑘) for some field 𝑘.

Note that in Situation 53.7.1 we obtain a groupoid in algebraic spaces

(53.7.2.1) (𝑆𝑝𝑒𝑐(𝑘), 𝐺, 𝑝, 𝑝, 𝑚)

where 𝑝 ∶ 𝐺 → 𝑆𝑝𝑒𝑐(𝑘) is the structure morphism of 𝐺, see Groupoids in Spaces, Lemma
52.14.1. This is a situation as in Situation 53.7.2. We will use this without further mention
in the rest of this section.

Lemma 53.7.3. In Situation 53.7.2 the composition morphism 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 is flat
and universally open. In Situation 53.7.1 the group law 𝑚 ∶ 𝐺 ×𝑘 𝐺 → 𝐺 is flat and
universally open.

Proof. The composition is isomorphic to the projection map pr1 ∶ 𝑅 ×𝑡,𝑈,𝑡 𝑅 → 𝑅 by
Diagram (53.3.0.3). The projection is flat as a base change of the flat morphism 𝑡 and open
by Morphisms of Spaces, Lemma 42.7.6. The second assertion follows immediately from
the first because 𝑚 matches 𝑐 in (53.7.2.1). �

Lemma 53.7.4. In Situation 53.7.2. Let 𝑘 ⊂ 𝑘′ be a field extension, 𝑈′ = 𝑆𝑝𝑒𝑐(𝑘′) and let
(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) be the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) via 𝑈′ → 𝑈. In the defining diagram

𝑅′

��

//

𝑡′

%%

𝑠′

**

%%

𝑅 ×𝑠,𝑈 𝑈′ //

��

𝑈′

��
𝑈′ ×𝑈,𝑡 𝑅

��

// 𝑅 𝑠 //

𝑡
��

𝑈

𝑈′ // 𝑈
all the morphisms are surjective, flat, and universally open. The dotted arrow 𝑅′ → 𝑅 is
in addition affine.

Proof. The morphism 𝑈′ → 𝑈 equals 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘), hence is affine, surjective and
flat. The morphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈 and the morphism 𝑈′ → 𝑈 are universally open by
Morphisms, Lemma 24.22.4. Since 𝑅 is not empty and 𝑈 is the spectrum of a field the
morphisms 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are surjective and flat. Then you conclude by using Morphisms
of Spaces, Lemmas 42.6.5, 42.6.4, 42.7.4, 42.19.5, 42.19.4, 42.27.3, and 42.27.2. �

Lemma 53.7.5. In Situation 53.7.2. For any point 𝑟 ∈ |𝑅| there exist
(1) a field extension 𝑘 ⊂ 𝑘′ with 𝑘′ algebraically closed,
(2) a point 𝑟′ ∶ 𝑆𝑝𝑒𝑐(𝑘′) → 𝑅′ where (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) is the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)

via 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘)
such that
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(1) the point 𝑟′ maps to 𝑟 under the morphism 𝑅′ → 𝑅, and
(2) the maps 𝑠′ ∘ 𝑟′, 𝑡′ ∘ 𝑟′ ∶ 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘′) are automorphisms.

Proof. Let's represent 𝑟 by a morphism 𝑟 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑅 for some field 𝐾. To prove the
lemma we have to find an algebraically closed field 𝑘′ and a commutative diagram

𝑘′ 𝑘′
1

oo

𝑘′

𝜏

OO

𝐾
𝜎

__

𝑘𝑠
oo

𝑖
__

𝑘
𝑖

``

𝑡

OO

where 𝑠, 𝑡 ∶ 𝑘 → 𝐾 are the field maps coming from 𝑠 ∘ 𝑟 and 𝑡 ∘ 𝑟. In the proof of More on
Groupoids, Lemma 36.9.5 it is shown how to construct such a diagram. �

Lemma 53.7.6. In Situation 53.7.2. If 𝑟 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑅 is a morphism such that 𝑠 ∘ 𝑟, 𝑡 ∘ 𝑟
are automorphisms of 𝑆𝑝𝑒𝑐(𝑘), then the map

𝑅 ⟶ 𝑅, 𝑥 ⟼ 𝑐(𝑟, 𝑥)

is an automorphism 𝑅 → 𝑅 which maps 𝑒 to 𝑟.

Proof. Proof is identical to the proof of More on Groupoids, Lemma 36.9.6. �

Lemma 53.7.7. In Situation 53.7.2 the algebraic space 𝑅 is geometrically unibranch. In
Situation 53.7.1 the algebraic space 𝐺 is geometrically unibranch.

Proof. Let 𝑟 ∈ |𝑅|. We have to show that 𝑅 is geometrically unibranch at 𝑟. Combining
Lemma 53.7.4 with Descent on Spaces, Lemma 45.8.1 we see that it suffices to prove this
in case 𝑘 is algebraically closed and 𝑟 comes from a morphism 𝑟 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑅 such that
𝑠 ∘ 𝑟 and 𝑡 ∘ 𝑟 are automorphisms of 𝑆𝑝𝑒𝑐(𝑘). By Lemma 53.7.6 we reduce to the case that
𝑟 = 𝑒 is the identity of 𝑅 and 𝑘 is algebraically closed.

Assume 𝑟 = 𝑒 and 𝑘 is algebraically closed. Let 𝐴 = 𝒪𝑅,𝑒 be the étale local ring of 𝑅
at 𝑒 and let 𝐶 = 𝒪𝑅×𝑠,𝑈,𝑡𝑅,(𝑒,𝑒) be the étale local ring of 𝑅 ×𝑠,𝑈,𝑡 𝑅 at (𝑒, 𝑒). By Spaces
over Fields, Lemma 48.3.1 the minimal prime ideals 𝔮 of 𝐶 correspond 1-to-1 to pairs of
minimal primes 𝔭, 𝔭′ ⊂ 𝐴. On the other hand, the composition law induces a flat ring map

𝐴
𝑐♯

// 𝐶 𝔮

𝐴 ⊗𝑠♯,𝑘,𝑡♯ 𝐴

OO

𝔭 ⊗ 𝐴 + 𝐴 ⊗ 𝔭′

_

Note that (𝑐♯)−1(𝔮) contains both 𝔭 and 𝔭′ as the diagrams

𝐴
𝑐♯

// 𝐶

𝐴 ⊗𝑠♯,𝑘 𝑘

OO

𝐴 ⊗𝑠♯,𝑘,𝑡♯ 𝐴1⊗𝑒♯
oo

OO 𝐴
𝑐♯

// 𝐶

𝑘 ⊗𝑘,𝑡♯ 𝐴

OO

𝐴 ⊗𝑠♯,𝑘,𝑡♯ 𝐴𝑒♯⊗1oo

OO

commute by (53.3.0.2). Since 𝑐♯ is flat (as 𝑐 is a flat morphism by Lemma 53.7.3), we see
that (𝑐♯)−1(𝔮) is a minimal prime of 𝐴. Hence 𝔭 = (𝑐♯)−1(𝔮) = 𝔭′. �
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In the following lemma we use dimension of algebraic spaces (at a point) as defined in
Properties of Spaces, Section 41.8. We also use the dimension of the local ring defined in
Properties of Spaces, Section 41.20 and transcendence degree of points, see Morphisms of
Spaces, Section 42.30.

Lemma 53.7.8. In Situation 53.7.2 assume 𝑠, 𝑡 are locally of finite type. For all 𝑟 ∈ |𝑅|
(1) dim(𝑅) = dim𝑟(𝑅),
(2) the transcendence degree of 𝑟 over 𝑆𝑝𝑒𝑐(𝑘) via 𝑠 equals the transcendence degree

of 𝑟 over 𝑆𝑝𝑒𝑐(𝑘) via 𝑡, and
(3) if the transcendence degree mentioned in (2) is 0, then dim(𝑅) = dim(𝒪𝑅,𝑟).

Proof. Let 𝑟 ∈ |𝑅|. Denote trdeg(𝑟/𝑠𝑘) the transcendence degree of 𝑟 over 𝑆𝑝𝑒𝑐(𝑘) via 𝑠.
Choose an étale morphism 𝜑 ∶ 𝑉 → 𝑅 where 𝑉 is a scheme and 𝑣 ∈ 𝑉 mapping to 𝑟. Using
the definitions mentioned above the lemma we see that

dim𝑟(𝑅) = dim𝑣(𝑉) = dim(𝒪𝑉,𝑣) + trdeg𝑠(𝑘)(𝜅(𝑣)) = dim(𝒪𝑅,𝑟) + trdeg(𝑟/𝑠𝑘)

and similarly for 𝑡 (the second equality by Morphisms, Lemma 24.27.1). Hence we see that
trdeg(𝑟/𝑠𝑘) = trdeg(𝑟/𝑡𝑘), i.e., (2) holds.

Let 𝑘 ⊂ 𝑘′ be a field extension. Note that the restriction 𝑅′ of 𝑅 to 𝑆𝑝𝑒𝑐(𝑘′) (see Lemma
53.7.4) is obtained from 𝑅 by two base changes bymorphisms of fields. ThusMorphisms of
Spaces, Lemma 42.31.3 shows the dimension of 𝑅 at a point is unchanged by this operation.
Hence in order to prove (1) we may assume, by Lemma 53.7.5, that 𝑟 is represented by a
morphism 𝑟 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑅 such that both 𝑠 ∘ 𝑟 and 𝑡 ∘ 𝑟 are automorphisms of 𝑆𝑝𝑒𝑐(𝑘). In
this case there exists an automorphism 𝑅 → 𝑅 which maps 𝑟 to 𝑒 (Lemma 53.7.6). Hence
we see that dim𝑟(𝑅) = dim𝑒(𝑅) for any 𝑟. By definition this means that dim𝑟(𝑅) = dim(𝑅).

Part (3) is a formal consequence of the results obtained in the discussion above. �

Lemma 53.7.9. In Situation 53.7.1 assume 𝐺 locally of finite type. For all 𝑔 ∈ |𝐺|
(1) dim(𝐺) = dim𝑔(𝐺),
(2) if the transcendence degree of 𝑔 over 𝑘 is 0, then dim(𝐺) = dim(𝒪𝐺,𝑔).

Proof. Immediate from Lemma 53.7.8 via (53.7.2.1). �

Lemma53.7.10. In Situation 53.7.2 assume 𝑠, 𝑡 are locally of finite type. Let𝐺 = 𝑆𝑝𝑒𝑐(𝑘)×Δ,𝑆𝑝𝑒𝑐(𝑘)×𝐵𝑆𝑝𝑒𝑐(𝑘),𝑡×𝑠
𝑅 be the stabilizer group algebraic space. Then we have dim(𝑅) = dim(𝐺).

Proof. Since 𝐺 and 𝑅 are equidimensional (see Lemmas 53.7.8 and 53.7.9) it suffices to
prove that dim𝑒(𝑅) = dim𝑒(𝐺). Let 𝑉 be an affine scheme, 𝑣 ∈ 𝑉, and let 𝜑 ∶ 𝑉 → 𝑅
be an étale morphism of schemes such that 𝜑(𝑣) = 𝑒. Note that 𝑉 is a Noetherian scheme
as 𝑠 ∘ 𝜑 is locally of finite type as a composition of morphisms locally of finite type and
as 𝑉 is quasi-compact (use Morphisms of Spaces, Lemmas 42.22.2, 42.35.8, and 42.26.5
and Morphisms, Lemma 24.14.6). Hence 𝑉 is locally connected (see Properties, Lemma
23.5.5 and Topology, Lemma 5.6.6). Thus we may replace 𝑉 by the connected component
containing 𝑣 (it is still affine as it is an open and closed subscheme of 𝑉). Set 𝑇 = 𝑉𝑟𝑒𝑑 equal
to the reduction of 𝑉. Consider the two morphisms 𝑎, 𝑏 ∶ 𝑇 → 𝑆𝑝𝑒𝑐(𝑘) given by 𝑎 = 𝑠 ∘ 𝜑|𝑇
and 𝑏 = 𝑡 ∘ 𝜑|𝑇. Note that 𝑎, 𝑏 induce the same field map 𝑘 → 𝜅(𝑣) because 𝜑(𝑣) = 𝑒!
Let 𝑘𝑎 ⊂ Γ(𝑇, 𝒪𝑇) be the integral closure of 𝑎♯(𝑘) ⊂ Γ(𝑇, 𝒪𝑇). Similarly, let 𝑘𝑏 ⊂ Γ(𝑇, 𝒪𝑇)
be the integral closure of 𝑏♯(𝑘) ⊂ Γ(𝑇, 𝒪𝑇). By Varieties, Proposition 28.18.1 we see that
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𝑘𝑎 = 𝑘𝑏. Thus we obtain the following commutative diagram

𝑘
𝑎

"" ++𝑘𝑎 = 𝑘𝑏
// Γ(𝑇, 𝒪𝑇) // 𝜅(𝑣)

𝑘
𝑏

<<
33

As discussed above the long arrows are equal. Since 𝑘𝑎 = 𝑘𝑏 → 𝜅(𝑣) is injective we
conclude that the two morphisms 𝑎 and 𝑏 agree. Hence 𝑇 → 𝑅 factors through 𝐺. It follows
that 𝑅𝑟𝑒𝑑 = 𝐺𝑟𝑒𝑑 in an open neighbourhood of 𝑒 which certainly implies that dim𝑒(𝑅) =
dim𝑒(𝐺). �

53.8. The finite part of a morphism

Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆. For an
algebraic space or a scheme 𝑇 over 𝑆 consider pairs (𝑎, 𝑍) where

(53.8.0.1) 𝑎 ∶ 𝑇 → 𝑌 is a morphism over 𝑆,
𝑍 ⊂ 𝑇 ×𝑌 𝑋 is an open subspace such that pr0|𝑍 ∶ 𝑍 → 𝑇 is finite.

Suppose ℎ ∶ 𝑇′ → 𝑇 is a morphism of algebraic spaces over 𝑆 and (𝑎, 𝑍) is a pair over 𝑇.
Set 𝑎′ = 𝑎 ∘ ℎ and 𝑍′ = (ℎ × id𝑋)−1(𝑍) = 𝑇′ ×𝑇 𝑍. Then the pair (𝑎′, 𝑍′) satisfies (1), (2)
over 𝑇′. This follows as finite morphisms are preserved under base change, see Morphisms
of Spaces, Lemma 42.37.5. Thus we obtain a functor

(53.8.0.2) (𝑋/𝑌)𝑓𝑖𝑛 ∶ (Sch/𝑆)𝑜𝑝𝑝 ⟶ Sets
𝑇 ⟼ {(𝑎, 𝑍) as above}

For applications we are mainly interested in this functor (𝑋/𝑌)𝑓𝑖𝑛 when 𝑓 is separated and
locally of finite type. To get an idea of what this is all about, take a look at Remark 53.8.6.

Lemma 53.8.1. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Then we have

(1) The presheaf (𝑋/𝑌)𝑓𝑖𝑛 satisfies the sheaf condition for the fppf topology.
(2) If 𝑇 is an algebraic space over 𝑆, then there is a canonical bijection

𝑀𝑜𝑟Sh((Sch/𝑆)𝑓𝑝𝑝𝑓)(𝑇, (𝑋/𝑌)𝑓𝑖𝑛) = {(𝑎, 𝑍) satisfying 53.8.0.1}

Proof. Let 𝑇 be an algebraic space over 𝑆. Let {𝑇𝑖 → 𝑇} be an fppf covering (by algebraic
spaces). Let 𝑠𝑖 = (𝑎𝑖, 𝑍𝑖) be pairs over 𝑇𝑖 satisfying 53.8.0.1 such that we have 𝑠𝑖|𝑇𝑖×𝑇𝑇𝑗

=
𝑠𝑗|𝑇𝑖×𝑇𝑇𝑗

. First, this implies in particular that 𝑎𝑖 and 𝑎𝑗 define the same morphism 𝑇𝑖 ×𝑇 𝑇𝑗 →
𝑌. By Descent on Spaces, Lemma 45.6.2 we deduce that there exists a unique morphism
𝑎 ∶ 𝑇 → 𝑌 such that 𝑎𝑖 equals the composition 𝑇𝑖 → 𝑇 → 𝑌. Second, this implies that
𝑍𝑖 ⊂ 𝑇𝑖 ×𝑌 𝑋 are open subspaces whose inverse images in (𝑇𝑖 ×𝑇 𝑇𝑗) ×𝑌 𝑋 are equal. Since
{𝑇𝑖 ×𝑌 𝑋 → 𝑇×𝑌 𝑋} is an fppf covering we deduce that there exists a unique open subspace
𝑍 ⊂ 𝑇 ×𝑌 𝑋 which restricts back to 𝑍𝑖 over 𝑇𝑖, see Descent on Spaces, Lemma 45.6.1. We
claim that the projection 𝑍 → 𝑇 is finite. This follows as being finite is local for the fpqc
topology, see Descent on Spaces, Lemma 45.10.21.

Note that the result of the preceding paragraph in particular implies (1).
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Let 𝑇 be an algebraic space over 𝑆. In order to prove (2) we will construct mutually inverse
maps between the displayed sets. In the following when we say ``pair'' we mean a pair
satisfying conditions 53.8.0.1.
Let 𝑣 ∶ 𝑇 → (𝑋/𝑌)𝑓𝑖𝑛 be a natural transformation. Choose a scheme 𝑈 and a surjective étale
morphism 𝑝 ∶ 𝑈 → 𝑇. Then 𝑣(𝑝) ∈ (𝑋/𝑌)𝑓𝑖𝑛(𝑈) corresponds to a pair (𝑎𝑈, 𝑍𝑈) over 𝑈. Let
𝑅 = 𝑈 ×𝑇 𝑈 with projections 𝑡, 𝑠 ∶ 𝑅 → 𝑈. As 𝑣 is a transformation of functors we see that
the pullbacks of (𝑎𝑈, 𝑍𝑈) by 𝑠 and 𝑡 agree. Hence, since {𝑈 → 𝑇} is an fppf covering, we
may apply the result of the first paragraph that deduce that there exists a unique pair (𝑎, 𝑍)
over 𝑇.
Conversely, let (𝑎, 𝑍) be a pair over 𝑇. Let 𝑈 → 𝑇, 𝑅 = 𝑈 ×𝑇 𝑈, and 𝑡, 𝑠 ∶ 𝑅 → 𝑈 be
as above. Then the restriction (𝑎, 𝑍)|𝑈 gives rise to a tranformation of functors 𝑣 ∶ ℎ𝑈 →
(𝑋/𝑌)𝑓𝑖𝑛 by the Yoneda lemma (Categories, Lemma 4.3.5). As the two pullbacks 𝑠∗(𝑎, 𝑍)|𝑈
and 𝑡∗(𝑎, 𝑍)|𝑈 are equal, we see that 𝑣 coequalizes the two maps ℎ𝑡, ℎ𝑠 ∶ ℎ𝑅 → ℎ𝑈. Since
𝑇 = 𝑈/𝑅 is the fppf quotient sheaf by Spaces, Lemma 40.9.1 and since (𝑋/𝑌)𝑓𝑖𝑛 is an fppf
sheaf by (1) we conclude that 𝑣 factors through a map 𝑇 → (𝑋/𝑌)𝑓𝑖𝑛.
We omit the verification that the two constructions above are mutually inverse. �

Lemma 53.8.2. Let 𝑆 be a scheme. Consider a commutative diagram

𝑋′
𝑗

//

  

𝑋

��
𝑌

of algebraic spaces over 𝑆. If 𝑗 is an open immersion, then there is a canonical injective
map of sheaves 𝑗 ∶ (𝑋′/𝑌)𝑓𝑖𝑛 → (𝑋/𝑌)𝑓𝑖𝑛.

Proof. If (𝑎, 𝑍) is a pair over 𝑇 for 𝑋′/𝑌, then (𝑎, 𝑗(𝑍)) is a pair over 𝑇 for 𝑋/𝑌. �

Lemma 53.8.3. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over
𝑆 which is locally of finite type. Let 𝑋′ ⊂ 𝑋 be the maximal open subspace over which 𝑓 is
locally quasi-finite, see Morphisms of Spaces, Lemma 42.31.7. Then (𝑋/𝑌)𝑓𝑖𝑛 = (𝑋′/𝑌)𝑓𝑖𝑛.

Proof. Lemma 53.8.2 gives us an injective map (𝑋′/𝑌)𝑓𝑖𝑛 → (𝑋/𝑌)𝑓𝑖𝑛. Morphisms of
Spaces, Lemma 42.31.7 assures us that formation of 𝑋′ commutes with base change. Hence
everything comes down to proving that if 𝑍 ⊂ 𝑋 is a open subspace such that 𝑓|𝑍 ∶ 𝑍 → 𝑌
is finite, then 𝑍 ⊂ 𝑋′. This is true because a finite morphism is locally quasi-finite, see
Morphisms of Spaces, Lemma 42.37.8. �

Lemma 53.8.4. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝑇 be an algebraic space over 𝑆, and let (𝑎, 𝑍) be a pair as in 53.8.0.1. If 𝑓 is
separated, then 𝑍 is closed in 𝑇 ×𝑌 𝑋.

Proof. Afinitemorphism of algebraic spaces is universally closed byMorphisms of Spaces,
Lemma 42.37.9. Since 𝑓 is separated so is the morphism 𝑇 ×𝑌 𝑋 → 𝑇, see Morphisms of
Spaces, Lemma 42.5.4. Thus the closedness of 𝑍 follows from Morphisms of Spaces,
Lemma 42.36.5. �

Remark 53.8.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a separated morphism of algebraic spaces. The sheaf
(𝑋/𝑌)𝑓𝑖𝑛 comes with a natural map (𝑋/𝑌)𝑓𝑖𝑛 → 𝑌 by mapping the pair (𝑎, 𝑍) ∈ (𝑋/𝑌)𝑓𝑖𝑛(𝑇)
to the element 𝑎 ∈ 𝑌(𝑇). We can use Lemma 53.8.4 to define operations

⋆𝑖 ∶ (𝑋/𝑌)𝑓𝑖𝑛 ×𝑌 (𝑋/𝑌)𝑓𝑖𝑛 ⟶ (𝑋/𝑌)𝑓𝑖𝑛

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04PF
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04PG
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04PH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04PI


53.8. THE FINITE PART OF A MORPHISM 2603

by the rules
⋆1 ∶ ((𝑎, 𝑍1), (𝑎, 𝑍2)) ⟼ (𝑎, 𝑍1 ∪ 𝑍2)
⋆2 ∶ ((𝑎, 𝑍1), (𝑎, 𝑍2)) ⟼ (𝑎, 𝑍1 ∩ 𝑍2)
⋆3 ∶ ((𝑎, 𝑍1), (𝑎, 𝑍2)) ⟼ (𝑎, 𝑍1 ⧵ 𝑍2)
⋆4 ∶ ((𝑎, 𝑍1), (𝑎, 𝑍2)) ⟼ (𝑎, 𝑍2 ⧵ 𝑍1).

The reason this works is that 𝑍1 ∩ 𝑍2 is both open and closed inside 𝑍1 and 𝑍2 (which
also implies that 𝑍1 ∪ 𝑍2 is the disjoint union of the other three pieces). Thus we can
think of (𝑋/𝑌)𝑓𝑖𝑛 as an 𝐅2-algebras (without unit) over 𝑌 with multiplication given by 𝑠𝑠′ =
⋆2(𝑠, 𝑠′), and addition given by

𝑠 + 𝑠′ = ⋆1(⋆3(𝑠, 𝑠′), ⋆4(𝑠, 𝑠′))
which boils down to taking the symmetric difference. Note that in this sheaf of algebras
0 = (1𝑌, ∅) and that indeed 𝑠+𝑠 = 0 for any local section 𝑠. If 𝑓 ∶ 𝑋 → 𝑌 is finite, then this
algebra has a unit namely 1 = (1𝑌, 𝑋) and ⋆3(𝑠, 𝑠′) = 𝑠(1 + 𝑠′), and ⋆4(𝑠, 𝑠′) = (1 + 𝑠)𝑠′.

Remark 53.8.6. Let 𝑓 ∶ 𝑋 → 𝑌 be a separated, locally quasi-finite morphism of schemes.
In this case the sheaf (𝑋/𝑌)𝑓𝑖𝑛 is closely related to the sheaf 𝑓!𝐅2 (insert future reference
here) on 𝑌 ́𝑒𝑡𝑎𝑙𝑒. Namely, if 𝑉 → 𝑌 is étale, and 𝑠 ∈ Γ(𝑉, 𝑓!𝐅2), then 𝑠 ∈ Γ(𝑉 ×𝑌 𝑋, 𝐅2) is
a section with proper support 𝑍 = Supp(𝑠) over 𝑉. Since 𝑓 is als locally quasi-finite we
see that the projection 𝑍 → 𝑉 is actually finite. Since the support of a section of a constant
abelian sheaf is open we see that the pair (𝑉 → 𝑌, Supp(𝑠)) satisfies 53.8.0.1. In fact,
𝑓!𝐅2 ≅ (𝑋/𝑌)𝑓𝑖𝑛|𝑌 ́𝑒𝑡𝑎𝑙𝑒

in this case which also explains the 𝐅2-algebra structure introduced
in Remark 53.8.5.

Lemma 53.8.7. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. The diagonal of (𝑋/𝑌)𝑓𝑖𝑛 → 𝑌

(𝑋/𝑌)𝑓𝑖𝑛 ⟶ (𝑋/𝑌)𝑓𝑖𝑛 ×𝑌 (𝑋/𝑌)𝑓𝑖𝑛

is representable (by schemes) and an open immersion and the ``absolute'' diagonal

(𝑋/𝑌)𝑓𝑖𝑛 ⟶ (𝑋/𝑌)𝑓𝑖𝑛 × (𝑋/𝑌)𝑓𝑖𝑛

is representable (by schemes).

Proof. The second statement follows from the first as the absolute diagonal is the composi-
tion of the relative diagonal and a base change of the diagonal of 𝑌 (which is representable
by schemes), see Spaces, Section 40.3. To prove the first assertion we have to show the
following: Given a scheme 𝑇 and two pairs (𝑎, 𝑍1) and (𝑎, 𝑍2) over 𝑇 with identical first
component satisfying 53.8.0.1 there is an open subscheme 𝑉 ⊂ 𝑇 with the following prop-
erty: For any morphism of schemes ℎ ∶ 𝑇′ → 𝑇 we have

ℎ(𝑇′) ⊂ 𝑉 ⇔ (𝑇′ ×𝑇 𝑍1 = 𝑇′ ×𝑇 𝑍2 as subspaces of 𝑇′ ×𝑌 𝑋)
Let us construct 𝑉. Note that 𝑍1 ∩ 𝑍2 is open in 𝑍1 and in 𝑍2. Since pr0|𝑍𝑖

∶ 𝑍𝑖 → 𝑇 is
finite, hence proper (see Morphisms of Spaces, Lemma 42.37.9) we see that

𝐸 = pr0|𝑍1 (𝑍1 ⧵ 𝑍1 ∩ 𝑍2)) ∪ pr0|𝑍2 (𝑍2 ⧵ 𝑍1 ∩ 𝑍2))
is closed in 𝑇. Now it is clear that 𝑉 = 𝑇 ⧵ 𝐸 works. �

Lemma 53.8.8. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Suppose that 𝑈 is a scheme, 𝑈 → 𝑌 is an étale morphism and 𝑍 ⊂ 𝑈 ×𝑌 𝑋 is an
open subspace finite over 𝑈. Then the induced morphism 𝑈 → (𝑋/𝑌)𝑓𝑖𝑛 is étale.
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Proof. This is formal from the description of the diagonal in Lemma 53.8.7 but we write
it out since it is an important step in the development of the theory. We have to check that
for any scheme 𝑇 over 𝑆 and a morphism 𝑇 → (𝑋/𝑌)𝑓𝑖𝑛 the projection map

𝑇 ×(𝑋/𝑌)𝑓𝑖𝑛
𝑈 ⟶ 𝑇

is étale. Note that

𝑇 ×(𝑋/𝑌)𝑓𝑖𝑛
𝑈 = (𝑋/𝑌)𝑓𝑖𝑛 ×((𝑋/𝑌)𝑓𝑖𝑛×𝑌(𝑋/𝑌)𝑓𝑖𝑛) (𝑇 ×𝑌 𝑈)

Applying the result of Lemma 53.8.7 we see that 𝑇 ×(𝑋/𝑌)𝑓𝑖𝑛
𝑈 is represented by an open

subscheme of 𝑇 ×𝑌 𝑈. As the projection 𝑇 ×𝑌 𝑈 → 𝑇 is étale by Morphisms of Spaces,
Lemma 42.35.4 we conclude. �

Lemma 53.8.9. Let 𝑆 be a scheme. Let

𝑋′

��

// 𝑋

��
𝑌′ // 𝑌

be a fibre product square of algebraic spaces over 𝑆. Then

(𝑋′/𝑌′)𝑓𝑖𝑛

��

// (𝑋/𝑌)𝑓𝑖𝑛

��
𝑌′ // 𝑌

is a fibre product square of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. It follows immediately from the definitions that the sheaf (𝑋′/𝑌′)𝑓𝑖𝑛 is equal to the
sheaf 𝑌′ ×𝑌 (𝑋/𝑌)𝑓𝑖𝑛. �

Lemma 53.8.10. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. If 𝑓 is separated and locally quasi-finite, then there exists a scheme 𝑈 étale over 𝑌
and a surjective étale morphism 𝑈 → (𝑋/𝑌)𝑓𝑖𝑛 over 𝑌.

Proof. Note that the assertion makes sense by the result of Lemma 53.8.7 on the diagonal
of (𝑋/𝑌)𝑓𝑖𝑛, see Spaces, Lemma 40.5.10. Let 𝑉 be a scheme and let 𝑉 → 𝑌 be a surjective
étale morphism. By Lemma 53.8.9 the morphism (𝑉×𝑌𝑋/𝑉)𝑓𝑖𝑛 → (𝑋/𝑌)𝑓𝑖𝑛 is a base change
of the map 𝑉 → 𝑌 and hence is surjective and étale, see Spaces, Lemma 40.5.5. Hence it
suffices to prove the lemma for (𝑉 ×𝑌 𝑋/𝑉)𝑓𝑖𝑛. (Here we implicitly use that the composition
of representable, surjective, and étale transformations of functors is again representable,
surjective, and étale, see Spaces, Lemmas 40.3.2 and 40.5.4, and Morphisms, Lemmas
24.9.2 and 24.35.3.) Note that the properties of being separated and locally quasi-finite
are preserved under base change, see Morphisms of Spaces, Lemmas 42.5.4 and 42.25.3.
Hence 𝑉 ×𝑌 𝑋 → 𝑉 is separated and locally quasi-finite as well, and by Morphisms of
Spaces, Proposition 42.39.2 we see that 𝑉 ×𝑌 𝑋 is a scheme as well. Thus we may assume
that 𝑓 ∶ 𝑋 → 𝑌 is a separated and locally quasi-finite morphism of schemes.

Pick a point 𝑦 ∈ 𝑌. Pick 𝑥1, … , 𝑥𝑛 ∈ 𝑋 points lying over 𝑦. Pick an étale neighbourhood
𝑎 ∶ (𝑈, 𝑢) → (𝑌, 𝑦) and a decomposition

𝑈 ×𝑆 𝑋 = 𝑊 ∐ ∐𝑖=1,…,𝑛 ∐𝑗=1,…,𝑚𝑗
𝑉𝑖,𝑗
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as in More on Morphisms, Lemma 33.28.5. Pick any subset

𝐼 ⊂ {(𝑖, 𝑗) ∣ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑖}.

Given these choices we obtain a pair (𝑎, 𝑍) with 𝑍 = ⋃(𝑖,𝑗)∈𝐼 𝑉𝑖,𝑗 which satisfies conditions
53.8.0.1. In other words we obtain a morphism 𝑈 → (𝑋/𝑌)𝑓𝑖𝑛. The construction of this
morphism depends on all the things we picked above, so we should really write

𝑈(𝑦, 𝑛, 𝑥1, … , 𝑥𝑛, 𝑎, 𝐼) ⟶ (𝑋/𝑌)𝑓𝑖𝑛

This morphism is étale by Lemma 53.8.8.

Claim: The disjoint union of all of these is surjective onto (𝑋/𝑌)𝑓𝑖𝑛. It is clear that if the
claim holds, then the lemma is true.

To show surjectivity we have to show the following (see Spaces, Remark 40.5.2): Given a
scheme 𝑇 over𝑆, a point 𝑡 ∈ 𝑇, and amap 𝑇 → (𝑋/𝑌)𝑓𝑖𝑛 we can find a datum (𝑦, 𝑛, 𝑥1, … , 𝑥𝑛, 𝑎, 𝐼)
as above such that 𝑡 is in the image of the projection map

𝑈(𝑦, 𝑛, 𝑥1, … , 𝑥𝑛, 𝑎, 𝐼) ×(𝑋/𝑌)𝑓𝑖𝑛
𝑇 ⟶ 𝑇.

To prove this we may clearly replace 𝑇 by 𝑆𝑝𝑒𝑐(𝜅(𝑡)) and 𝑇 → (𝑋/𝑌)𝑓𝑖𝑛 by the composition
𝑆𝑝𝑒𝑐(𝜅(𝑡)) → 𝑇 → (𝑋/𝑌)𝑓𝑖𝑛. In other words, we may assume that 𝑇 is the spectrum of an
algebraically closed field.

Let 𝑇 = 𝑆𝑝𝑒𝑐(𝑘) be the spectrum of an algebraically closed field 𝑘. The morphism 𝑇 →
(𝑋/𝑌)𝑓𝑖𝑛 is given by a pair (𝑇 → 𝑌, 𝑍) satisfying conditions 53.8.0.1. Here is a picture:

𝑍

��

// 𝑋

��
𝑆𝑝𝑒𝑐(𝑘) 𝑇 // 𝑌

Let 𝑦 ∈ 𝑌 be the image point of 𝑇 → 𝑌. Since 𝑍 is finite over 𝑘 it has finitely many
points. Thus there exist finitely many points 𝑥1, … , 𝑥𝑛 ∈ 𝑋 such that the image of 𝑍 in
𝑋 is contained in {𝑥1, … , 𝑥𝑛}. Choose 𝑎 ∶ (𝑈, 𝑢) → (𝑌, 𝑦) adapted to 𝑦 and 𝑥1, … , 𝑥𝑛 as
above, which gives the diagram

𝑊 ∐ ∐𝑖=1,…,𝑛 ∐𝑗=1,…,𝑚𝑗
𝑉𝑖,𝑗

��

// 𝑋

��
𝑈 // 𝑌.

Since 𝑘 is algebraically closed and 𝜅(𝑦) ⊂ 𝜅(𝑢) is finite separable we may factor the mor-
phism 𝑇 = 𝑆𝑝𝑒𝑐(𝑘) → 𝑌 through the morphism 𝑢 = 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑆𝑝𝑒𝑐(𝜅(𝑦)) = 𝑦 ⊂ 𝑌.
With this choice we obtain the commutative diagram:

𝑍

��

// 𝑊 ∐ ∐𝑖=1,…,𝑛 ∐𝑗=1,…,𝑚𝑗
𝑉𝑖,𝑗

��

// 𝑋

��
𝑆𝑝𝑒𝑐(𝑘) // 𝑈 // 𝑌

We know that the image of the left upper arrow ends up in ∐ 𝑉𝑖,𝑗. Recall also that 𝑍 is an
open subscheme of 𝑆𝑝𝑒𝑐(𝑘) ×𝑌 𝑋 by definition of (𝑋/𝑌)𝑓𝑖𝑛 and that the right hand square is
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a fibre product square. Thus we see that

𝑍 ⊂ ∐𝑖=1,…,𝑛 ∐𝑗=1,…,𝑚𝑗
𝑆𝑝𝑒𝑐(𝑘) ×𝑈 𝑉𝑖,𝑗

is an open subscheme. By construction (seeMore onMorphisms, Lemma 33.28.5) each 𝑉𝑖,𝑗
has a unique point 𝑣𝑖,𝑗 lying over 𝑢 with purely inseparable residue field extension 𝜅(𝑢) ⊂
𝜅(𝑣𝑖,𝑗). Hence each scheme 𝑆𝑝𝑒𝑐(𝑘) ×𝑈 𝑉𝑖,𝑗 has exactly one point. Thus we see that

𝑍 = ∐(𝑖,𝑗)∈𝐼
𝑆𝑝𝑒𝑐(𝑘) ×𝑈 𝑉𝑖,𝑗

for a unique subset 𝐼 ⊂ {(𝑖, 𝑗) ∣ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑖}. Unwinding the definitions this
shows that

𝑈(𝑦, 𝑛, 𝑥1, … , 𝑥𝑛, 𝑎, 𝐼) ×(𝑋/𝑌)𝑓𝑖𝑛
𝑇

with 𝐼 as found above is nonempty as desired. �

Proposition 53.8.11. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic
spaces over 𝑆 which is separated and locally of finite type. Then (𝑋/𝑌)𝑓𝑖𝑛 is an algebraic
space. Moreover, the morphism (𝑋/𝑌)𝑓𝑖𝑛 → 𝑌 is étale.

Proof. By Lemma 53.8.3 we may replace 𝑋 by the open subscheme which is locally quasi-
finite over 𝑌. Hence we may assume that 𝑓 is separated and locally quasi-finite. We will
check the three conditions of Spaces, Definition 40.6.1. Condition (1) follows from Lemma
53.8.1. Condition (2) follows from Lemma 53.8.7. Finally, condition (3) follows from
Lemma 53.8.10. Thus (𝑋/𝑌)𝑓𝑖𝑛 is an algebraic space. Moreover, that lemma shows that
there exists a commutative diagram

𝑈 //

��

(𝑋/𝑌)𝑓𝑖𝑛

||
𝑌

with horizontal arrow surjective and étale and south-east arrow étale. By Properties of
Spaces, Lemma 41.13.3 this implies that the south-west arrow is étale as well. �

Remark 53.8.12. The condition that 𝑓 be separated cannot be dropped from Proposition
53.8.11. An example is to take 𝑋 the affine line with zero doubled, see Schemes, Ex-
ample 21.14.3, 𝑌 = 𝐀1

𝑘 the affine line, and 𝑋 → 𝑌 the obvious map. Recall that over
0 ∈ 𝑌 there are two points 01 and 02 in 𝑋. Thus (𝑋/𝑌)𝑓𝑖𝑛 has four points over 0, namely
∅, {01}, {02}, {01, 02}. Of these four points only three can be lifted to an open subscheme
of 𝑈 ×𝑌 𝑋 finite over 𝑈 for 𝑈 → 𝑌 étale, namely ∅, {01}, {02}. This shows that (𝑋/𝑌)𝑓𝑖𝑛
if representable by an algebraic space is not étale over 𝑌. Similar arguments show that
(𝑋/𝑌)𝑓𝑖𝑛 is really not an algebraic space. Details omitted.

Remark 53.8.13. Let 𝑌 = 𝐀1
𝐑 be the affine line over the real numbers, and let 𝑋 = 𝑆𝑝𝑒𝑐(𝐂)

mapping to the 𝐑-rational point 0 in 𝑌. In this case the morphism 𝑓 ∶ 𝑋 → 𝑌 is finite, but
it is not the case that (𝑋/𝑌)𝑓𝑖𝑛 is a scheme. Namely, one can show that in this case the
algebraic space (𝑋/𝑌)𝑓𝑖𝑛 is isomorphic to the algebraic space of Spaces, Example 40.14.2
associated to the extension 𝐑 ⊂ 𝐂. Thus it is really necessary to leave the category of
schemes in order to represent the sheaf (𝑋/𝑌)𝑓𝑖𝑛, even when 𝑓 is a finite morphism.

Lemma 53.8.14. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆 which is separated, flat, and locally of finite presentation. In this case

(1) (𝑋/𝑌)𝑓𝑖𝑛 → 𝑌 is separated, representable, and étale, and

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04QH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04QI
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04QJ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04RI
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(2) if 𝑌 is a scheme, then (𝑋/𝑌)𝑓𝑖𝑛 is (representable by) a scheme.

Proof. Since 𝑓 is in particular separated and locally of finite type (see Morphisms of
Spaces, Lemma 42.26.5) we see that (𝑋/𝑌)𝑓𝑖𝑛 is an algebraic space by Proposition 53.8.11.
To prove that (𝑋/𝑌)𝑓𝑖𝑛 → 𝑌 is separated we have to show the following: Given a scheme 𝑇
and two pairs (𝑎, 𝑍1) and (𝑎, 𝑍2) over 𝑇 with identical first component satisfying 53.8.0.1
there is a closed subscheme 𝑉 ⊂ 𝑇 with the following property: For any morphism of
schemes ℎ ∶ 𝑇′ → 𝑇 we have

ℎ factors through 𝑉 ⇔ (𝑇′ ×𝑇 𝑍1 = 𝑇′ ×𝑇 𝑍2 as subspaces of 𝑇′ ×𝑌 𝑋)

In the proof of Lemma 53.8.7 we have seen that 𝑉 = 𝑇′ ⧵ 𝐸 is an open subscheme of 𝑇′

with closed complement

𝐸 = pr0|𝑍1 (𝑍1 ⧵ 𝑍1 ∩ 𝑍2)) ∪ pr0|𝑍2 (𝑍2 ⧵ 𝑍1 ∩ 𝑍2)) .

Thus everything comes down to showing that 𝐸 is also open. By Lemma 53.8.4 we see
that 𝑍1 and 𝑍2 are closed in 𝑇′ ×𝑌 𝑋. Hence 𝑍1 ⧵ 𝑍1 ∩ 𝑍2 is open in 𝑍1. As 𝑓 is flat and
locally of finite presentation, so is pr0|𝑍1

. This is true as 𝑍1 is an open subspace of the base
change 𝑇′ ×𝑌 𝑋, and Morphisms of Spaces, Lemmas 42.26.3 and Lemmas 42.27.3. Hence
pr0|𝑍1

is open, see Morphisms of Spaces, Lemma 42.27.5. Thus pr0|𝑍1 (𝑍1 ⧵ 𝑍1 ∩ 𝑍2))
is open and it follows that 𝐸 is open as desired.

We have already seen that (𝑋/𝑌)𝑓𝑖𝑛 → 𝑌 is étale, see Proposition 53.8.11. Hence now we
know it is locally quasi-finite (see Morphisms of Spaces, Lemma 42.35.5) and separated,
hence representable by Morphisms of Spaces, Lemma 42.40.1. The final assertion is clear
(if you like you can use Morphisms of Spaces, Proposition 42.39.2). �

Variant: Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces over 𝑆. Let
𝜎 ∶ 𝑌 → 𝑋 be a section of 𝑓. For an algebraic space or a scheme 𝑇 over 𝑆 consider pairs
(𝑎, 𝑍) where

(53.8.14.1)
𝑎 ∶ 𝑇 → 𝑌 is a morphism over 𝑆,
𝑍 ⊂ 𝑇 ×𝑌 𝑋 is an open subspace such that pr0|𝑍 ∶ 𝑍 → 𝑇 is finite, and
(1𝑇, 𝜎 ∘ 𝑎) ∶ 𝑇 → 𝑇 ×𝑌 𝑋 factors through 𝑍.

We will denote (𝑋/𝑌, 𝜎)𝑓𝑖𝑛 the subfunctor of (𝑋/𝑌)𝑓𝑖𝑛 parametrizing these pairs.

Lemma 53.8.15. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Let 𝜎 ∶ 𝑌 → 𝑋 be a section of 𝑓. Consider the transformation of functors

𝑡 ∶ (𝑋/𝑌, 𝜎)𝑓𝑖𝑛 ⟶ (𝑋/𝑌)𝑓𝑖𝑛.

defined above. Then
(1) 𝑡 is representable by open immersions,
(2) if 𝑓 is separated, then 𝑡 is representable by open and closed immersions,
(3) if (𝑋/𝑌)𝑓𝑖𝑛 is an algebraic space, then (𝑋/𝑌, 𝜎)𝑓𝑖𝑛 is an algebraic space and an

open subspace of (𝑋/𝑌)𝑓𝑖𝑛, and
(4) if (𝑋/𝑌)𝑓𝑖𝑛 is a scheme, then (𝑋/𝑌, 𝜎)𝑓𝑖𝑛 is an open subscheme of it.

Proof. Omitted. Hint: Given a pair (𝑎, 𝑍) over 𝑇 as in (53.8.0.1) the inverse image of 𝑍
by (1𝑇, 𝜎 ∘ 𝑎) ∶ 𝑇 → 𝑇 ×𝑌 𝑋 is the open subscheme of 𝑇 we are looking for. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04RR
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53.9. Finite collections of arrows

Let 𝒞 be a groupoid, see Categories, Definition 4.2.5. As discussed in Groupoids, Section
35.11 this corresponds to a septuple (Ob,Arrows, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖).

Using this data we can make another groupoid 𝒞𝑓𝑖𝑛 as follows:
(1) An object of 𝒞𝑓𝑖𝑛 consists of a finite subset 𝑍 ⊂ Arrows with the following

properties:
(a) 𝑠(𝑍) = {𝑢} is a singleton, and
(b) 𝑒(𝑢) ∈ 𝑍.

(2) A morphism of 𝒞𝑓𝑖𝑛 consists of a pair (𝑍, 𝑧), where 𝑍 is an object of 𝒞𝑓𝑖𝑛 and
𝑧 ∈ 𝑍.

(3) The source of (𝑍, 𝑧) is 𝑍.
(4) The target of (𝑍, 𝑧) is 𝑡(𝑍, 𝑧) = {𝑧′ ∘ 𝑧−1; 𝑧′ ∈ 𝑍}.
(5) Given (𝑍1, 𝑧1), (𝑍2, 𝑧2) such that 𝑠(𝑍1, 𝑧1) = 𝑡(𝑍2, 𝑧2) the composition (𝑍1, 𝑧1)∘

(𝑍2, 𝑧2) is (𝑍2, 𝑧1 ∘ 𝑧2).
We omit the verification that this defines a groupoid. Pictorially an object of 𝒞𝑓𝑖𝑛 can be
viewed as a diagram

•

•𝑒 ::

??

//

��

•

•
To make a morphism of 𝒞𝑓𝑖𝑛 you pick one of the arrows and you precompose the other
arrows by its inverse. For example if we pick the middle horizontal arrow then the target is
the picture

•

• •oo

OO

𝑒
zz

��
•

Note that the cardinalities of 𝑠(𝑍, 𝑧) and 𝑡(𝑍, 𝑧) are equal. So 𝒞𝑓𝑖𝑛 is really a countable
disjoint union of groupoids.

53.10. The finite part of a groupoid

In this section we are going to use the idea explained in Section 53.9 to take the finite part
of a groupoid in algebraic spaces.

Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖) be a groupoid
in algebraic spaces over 𝐵. Assumption: The morphisms 𝑠, 𝑡 are separated and locally of
finite type. This notation and assumption will we be fixed throughout this section.

Denote 𝑅𝑠 the algebraic space 𝑅 seen as an algebraic space over 𝑈 via 𝑠. Let 𝑈′ =
(𝑅𝑠/𝑈, 𝑒)𝑓𝑖𝑛. Since 𝑠 is separated and locally of finite type, by Proposition 53.8.11 and
Lemma 53.8.15, we see that 𝑈′ is an algebraic space endowed with an étale morphism
𝑔 ∶ 𝑈′ → 𝑈. Moreover, by Lemma 53.8.1 there exists a universal open subspace 𝑍𝑢𝑛𝑖𝑣 ⊂
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𝑅 ×𝑠,𝑈,𝑔 𝑈′ which is finite over 𝑈′ and such that (1𝑈′, 𝑒 ∘ 𝑔) ∶ 𝑈′ → 𝑅 ×𝑠,𝑈,𝑔 𝑈′ fac-
tors through 𝑍𝑢𝑛𝑖𝑣. Moreover, by Lemma 53.8.4 the open subspace 𝑍𝑢𝑛𝑖𝑣 is also closed in
𝑅 ×𝑠,𝑈′,𝑔 𝑈. Picture so far:

𝑍𝑢𝑛𝑖𝑣

�� $$
𝑅 ×𝑠,𝑈,𝑔 𝑈′

��

// 𝑈′

𝑔
��

𝑅 𝑠 // 𝑈
Let 𝑇 be a scheme over 𝐵. We see that a 𝑇-valued point of 𝑍𝑢𝑛𝑖𝑣 may be viewed as a triple
(𝑢, 𝑍, 𝑧) where

(1) 𝑢 ∶ 𝑇 → 𝑈 is a 𝑇-valued point of 𝑈,
(2) 𝑍 ⊂ 𝑅 ×𝑠,𝑈,𝑢 𝑇 is an open and closed subspace finite over 𝑇 such that (𝑒 ∘ 𝑢, 1𝑇)

factors through it, and
(3) 𝑧 ∶ 𝑇 → 𝑅 is a 𝑇-valued point of 𝑅 with 𝑠 ∘ 𝑧 = 𝑢 and such that (𝑧, 1𝑇) factors

through 𝑍.
Having said this, it is morally clear from the discussion in Section 53.9 that we can turn
(𝑍𝑢𝑛𝑖𝑣, 𝑈′) into a groupoid in algebraic spaces over 𝐵. To make sure will define the mor-
phisms 𝑠′, 𝑡′, 𝑐′, 𝑒′, 𝑖′ one by one using the functorial point of view. (Please don't read this
before reading and understanding the simple construction in Section 53.9.)

The morphism 𝑠′ ∶ 𝑍𝑢𝑛𝑖𝑣 → 𝑈′ corresponds to the rule

𝑠′ ∶ (𝑢, 𝑍, 𝑧) ↦ (𝑢, 𝑍).

The morphism 𝑡′ ∶ 𝑍𝑢𝑛𝑖𝑣 → 𝑈′ is given by the rule

𝑡′ ∶ (𝑢, 𝑍, 𝑧) ↦ (𝑡 ∘ 𝑧, 𝑐(𝑍, 𝑖 ∘ 𝑧)).

The entry 𝑐(𝑍, 𝑖 ∘ 𝑧) makes sense as the map 𝑐(−, 𝑖 ∘ 𝑧) ∶ 𝑅 ×𝑠,𝑈,𝑢 𝑇 → 𝑅 ×𝑠,𝑈,𝑡∘𝑧 𝑇 is an
isomorphism with inverse 𝑐(−, 𝑧). The morphism 𝑒′ ∶ 𝑈′ → 𝑍𝑢𝑛𝑖𝑣 is given by the rule

𝑒′ ∶ (𝑢, 𝑍) ↦ (𝑢, 𝑍, (𝑒 ∘ 𝑢, 1𝑇)).

Note that this makes sense by the requirement that (𝑒 ∘ 𝑢, 1𝑇) factors through 𝑍. The mor-
phism 𝑖′ ∶ 𝑍𝑢𝑛𝑖𝑣 → 𝑍𝑢𝑛𝑖𝑣 is given by the rule

𝑖′ ∶ (𝑢, 𝑍, 𝑧) ↦ (𝑡 ∘ 𝑧, 𝑐(𝑍, 𝑖 ∘ 𝑧), 𝑖 ∘ 𝑧).

Finally, composition is defined by the rule

𝑐′ ∶ ((𝑢1, 𝑍1, 𝑧1), (𝑢2, 𝑍2, 𝑧2)) ↦ (𝑢2, 𝑍2, 𝑧1 ∘ 𝑧2).

Weomit the verification that the axioms of a groupoid in algebraic spaces hold for (𝑈′, 𝑍𝑢𝑛𝑖𝑣, 𝑠′, 𝑡′, 𝑐′, 𝑒′, 𝑖′).

A final piece of information is that there is a canonical morphism of groupoids

(𝑈′, 𝑍𝑢𝑛𝑖𝑣, 𝑠′, 𝑡′, 𝑐′, 𝑒′, 𝑖′) ⟶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖)

Namely, the morphism 𝑈′ → 𝑈 is the morphism 𝑔 ∶ 𝑈′ → 𝑈 which is defined by the rule
(𝑢, 𝑍) ↦ 𝑢. The morphism 𝑍𝑢𝑛𝑖𝑣 → 𝑅 is defined by the rule (𝑢, 𝑍, 𝑧) ↦ 𝑧. This finishes
the construction. Let us summarize our findings as follows.
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Lemma53.10.1. Let𝑆 be a scheme. Let𝐵 be an algebraic space over𝑆. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖)
be a groupoid in algebraic spaces over 𝐵. Assume the morphisms 𝑠, 𝑡 are separated and
locally of finite type. There exists a canonical morphism

(𝑈′, 𝑍𝑢𝑛𝑖𝑣, 𝑠′, 𝑡′, 𝑐′, 𝑒′, 𝑖′) ⟶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖)
of groupoids in algebraic spaces over 𝐵 where

(1) 𝑔 ∶ 𝑈′ → 𝑈 is identified with (𝑅𝑠/𝑈, 𝑒)𝑓𝑖𝑛 → 𝑈, and
(2) 𝑍𝑢𝑛𝑖𝑣 ⊂ 𝑅 ×𝑠,𝑈,𝑔 𝑈′ is the universal open (and closed) subspace finite over 𝑈′

which contains the base change of the unit 𝑒.

Proof. See discussion above. �

53.11. Étale localization of groupoid schemes

In this section we prove results similar to [KM97a, Proposition 4.2]. We try to be a bit
more general, and we try to avoid using Hilbert schemes by using the finite part of a mor-
phism instead. The goal is to "split" a groupoid in algebraic spaces over a point after étale
localization. Here is the definition (very similar to [KM97a, Definition 4.1]).

Definition 53.11.1. Let 𝑆 be a scheme. Let 𝐵 be an algebraic space over 𝑆 Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
be a groupoid in algebraic spaces over 𝐵. Let 𝑢 ∈ |𝑈| be a point.

(1) We say 𝑅 is split over 𝑢 if there exists an open subspace 𝑃 ⊂ 𝑅 such that
(a) (𝑈, 𝑃, 𝑠|𝑃, 𝑡|𝑃, 𝑐|𝑃×𝑠,𝑈,𝑡𝑃) is a groupoid in algebraic spaces over 𝐵,
(b) 𝑠|𝑃, 𝑡|𝑃 are finite, and
(c) {𝑟 ∈ |𝑅| ∶ 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢} ⊂ 𝑃.
The choice of such a 𝑃 will be called a splitting of 𝑅 over 𝑢.

(2) We say 𝑅 is quasi-split over 𝑢 if there exists an open subspace 𝑃 ⊂ 𝑅 such that
(a) (𝑈, 𝑃, 𝑠|𝑃, 𝑡|𝑃, 𝑐|𝑃×𝑠,𝑈,𝑡𝑃) is a groupoid in algebraic spaces over 𝐵,
(b) 𝑠|𝑃, 𝑡|𝑃 are finite, and
(c) 𝑒(𝑢) ∈ |𝑃|1.
The choice of such a 𝑃 will be called a quasi-splitting of 𝑅 over 𝑢.

Note the similarity of the conditions on 𝑃 to the conditions on pairs in (53.8.0.1). In par-
ticular, if 𝑠, 𝑡 are separated, then 𝑃 is also closed in 𝑅 (see Lemma 53.8.4).
Suppose we start with a groupoid in algebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over 𝐵 and a point 𝑢 ∈
|𝑈|. Since the goal is to split the groupoid after étale localization we may as well replace
𝑈 by an affine scheme (what we mean is that this is harmless for any possible application).
Moreover, the additional hypotheses we are going to have to impose will force 𝑅 to be a
scheme at least in a neighbourhood of {𝑟 ∈ |𝑅| ∶ 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢} or 𝑒(𝑢). This is why
we start with a groupoid scheme as described below. However, our technique of proof leads
us outside of the category of schemes, which is why we have formulated a splitting for the
case of groupoids in algebraic spaces above. On the other hand, we know of no applications
but the case where the morphisms 𝑠, 𝑡 are also flat and of finite presentation, in which case
we end up back in the category of schemes.

Situation 53.11.2. (Assumptions for splitting.) Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a
groupoid scheme over 𝑆. Let 𝑢 ∈ 𝑈 be a point. Assume that

(1) 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are separated,
(2) 𝑠, 𝑡 are locally of finite type,

1This condition is implied by (a).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04RU
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04RK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04RL
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(3) the set {𝑟 ∈ 𝑅 ∶ 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢} is finite, and
(4) 𝑠 is quasi-finite at each point of the set in (3).

Note that assumptions (3) and (4) are implied by the assumption that the fibre 𝑠−1({𝑢}) is
finite, see Morphisms, Lemma 24.19.7.

Situation 53.11.3. (Assumptions for quasi-splitting.) Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
be a groupoid scheme over 𝑆. Let 𝑢 ∈ 𝑈 be a point. Assume that

(1) 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are separated,
(2) 𝑠, 𝑡 are locally of finite type, and
(3) 𝑠 is quasi-finite at 𝑒(𝑢).

It turns out that for applications to the existence theorems for algebraic spaces the case of
quasi-splittings is sufficient. In fact, it is for us somehow a more natural case to consider, as
in the stacks project there are no finiteness conditions on the diagonal of an algebaic space,
hence the assumption that {𝑟 ∈ 𝑅 ∶ 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢} is finite need not hold even for a
presentation 𝑋 = 𝑈/𝑅 of an algebraic space 𝑋.

Lemma 53.11.4. Assumptions and notation as in Situation 53.11.2. Then there exists an
algebraic space 𝑈′, an étale morphism 𝑈′ → 𝑈, and a point 𝑢′ ∶ 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑈′ lying
over 𝑢 ∶ 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑈 such that the restriction 𝑅′ = 𝑅|𝑈′ of 𝑅 to 𝑈′ splits over 𝑢′.

Proof. Let 𝑓 ∶ (𝑈′, 𝑍𝑢𝑛𝑖𝑣, 𝑠′, 𝑡′, 𝑐′) → (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be as constructed in Lemma 53.10.1.
Recall that 𝑅′ = 𝑅 ×(𝑈×𝑆𝑈) (𝑈′ ×𝑆 𝑈′). Thus we get a morphism (𝑓, 𝑡′, 𝑠′) ∶ 𝑍𝑢𝑛𝑖𝑣 → 𝑅′

of groupoids in algebraic spaces

(𝑈′, 𝑍𝑢𝑛𝑖𝑣, 𝑠′, 𝑡′, 𝑐′) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′)

(by abuse of notationwe indicate themorphisms in the two groupoids by the same symbols).
Now, as 𝑍 ⊂ 𝑅 ×𝑠,𝑈,𝑔 𝑈′ is open and 𝑅′ → 𝑅 ×𝑠,𝑈,𝑔 𝑈′ is étale (as a base change of
𝑈′ → 𝑈) we see that 𝑍𝑢𝑛𝑖𝑣 → 𝑅′ is an open immersion. By construction the morphisms
𝑠′, 𝑡′ ∶ 𝑍𝑢𝑛𝑖𝑣 → 𝑈′ are finite. It remains to find the point 𝑢′ of 𝑈′.

We think of 𝑢 as a morphism 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑈 as in the statement of the lemma. Set
𝐹𝑢 = 𝑅 ×𝑠,𝑈 𝑆𝑝𝑒𝑐(𝜅(𝑢)). The set {𝑟 ∈ 𝑅 ∶ 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢} is finite by assumption and
𝐹𝑢 → 𝑆𝑝𝑒𝑐(𝜅(𝑢)) is quasi-finite at each of its elements. Hence we can find a decomposition
into open and closed subschemes

𝐹𝑢 = 𝑍𝑢 ∐ 𝑅𝑒𝑠𝑡

for some scheme 𝑍𝑢 finite over 𝜅(𝑢) whose support is {𝑟 ∈ 𝑅 ∶ 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢}.
Note that 𝑒(𝑢) ∈ 𝑍𝑢. Hence by the construction of 𝑈′ in Section 53.10 (𝑢, 𝑍𝑢) defines a
𝑆𝑝𝑒𝑐(𝜅(𝑢))-valued point 𝑢′ of 𝑈′.

We still have to show that the set {𝑟′ ∈ |𝑅′| ∶ 𝑠′(𝑟′) = 𝑢′, 𝑡′(𝑟′) = 𝑢′} is contained in
|𝑍𝑢𝑛𝑖𝑣|. Pick any point 𝑟′ in this set and represent it by a morphism 𝑟′ ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑅′.
Denote 𝑧 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑅 the composition of 𝑟′ with the map 𝑅′ → 𝑅. Since 𝜅(𝑢) = 𝜅(𝑢′),
and since 𝑠′(𝑟′) = 𝑢′, 𝑡(𝑟′) = 𝑢′ no information is lost by considering the point 𝑧 rather than
the point 𝑟′, i.e., we can recover 𝑟′ from the point 𝑧. For example 𝑧 is an element of the set
{𝑟 ∈ 𝑅 ∶ 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢} by our assumption on 𝑟′. The composition 𝑠∘𝑧 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈
factors through 𝑢, so we may think of 𝑠 ∘ 𝑧 as a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝜅(𝑢)). Hence
we can consider the triple

(𝑠 ∘ 𝑧, 𝑍𝑢 ×𝑆𝑝𝑒𝑐(𝜅(𝑢)),𝑠∘𝑧 𝑆𝑝𝑒𝑐(𝑘), 𝑧)
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where 𝑍𝑢 is as above. This defines a 𝑆𝑝𝑒𝑐(𝑘)-valued point of 𝑍𝑢𝑛𝑖𝑣 above whose image
under the map 𝑍𝑢𝑛𝑖𝑣 → 𝑅′ is the point 𝑟′ by the relationship between 𝑧 and 𝑟′ mentioned
above. This finishes the proof. �

Lemma 53.11.5. Assumptions and notation as in Situation 53.11.3. Then there exists an
algebraic space 𝑈′, an étale morphism 𝑈′ → 𝑈, and a point 𝑢′ ∶ 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑈′ lying
over 𝑢 ∶ 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑈 such that the restriction 𝑅′ = 𝑅|𝑈′ of 𝑅 to 𝑈′ is quasi-split over
𝑢′.

Proof. The proof is almost exactly the same as the proof of Lemma 53.11.4. Let 𝑓 ∶
(𝑈′, 𝑍𝑢𝑛𝑖𝑣, 𝑠′, 𝑡′, 𝑐′) → (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be as constructed in Lemma 53.10.1. Recall that 𝑅′ =
𝑅 ×(𝑈×𝑆𝑈) (𝑈′ ×𝑆 𝑈′). Thus we get a morphism (𝑓, 𝑡′, 𝑠′) ∶ 𝑍𝑢𝑛𝑖𝑣 → 𝑅′ of groupoids in
algebraic spaces

(𝑈′, 𝑍𝑢𝑛𝑖𝑣, 𝑠′, 𝑡′, 𝑐′) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′)

(by abuse of notationwe indicate themorphisms in the two groupoids by the same symbols).
Now, as 𝑍 ⊂ 𝑅 ×𝑠,𝑈,𝑔 𝑈′ is open and 𝑅′ → 𝑅 ×𝑠,𝑈,𝑔 𝑈′ is étale (as a base change of
𝑈′ → 𝑈) we see that 𝑍𝑢𝑛𝑖𝑣 → 𝑅′ is an open immersion. By construction the morphisms
𝑠′, 𝑡′ ∶ 𝑍𝑢𝑛𝑖𝑣 → 𝑈′ are finite. It remains to find the point 𝑢′ of 𝑈′.

We think of 𝑢 as a morphism 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑈 as in the statement of the lemma. Set 𝐹𝑢 =
𝑅 ×𝑠,𝑈 𝑆𝑝𝑒𝑐(𝜅(𝑢)). The morphism 𝐹𝑢 → 𝑆𝑝𝑒𝑐(𝜅(𝑢)) is quasi-finite at 𝑒(𝑢) by assumption.
Hence we can find a decomposition into open and closed subschemes

𝐹𝑢 = 𝑍𝑢 ∐ 𝑅𝑒𝑠𝑡

for some scheme 𝑍𝑢 finite over 𝜅(𝑢) whose support is 𝑒(𝑢). Hence by the construction of
𝑈′ in Section 53.10 (𝑢, 𝑍𝑢) defines a 𝑆𝑝𝑒𝑐(𝜅(𝑢))-valued point 𝑢′ of 𝑈′. To finish the proof
we have to show that 𝑒′(𝑢′) ∈ 𝑍𝑢𝑛𝑖𝑣 which is clear. �

Finally, when we add additional assumptions we obtain schemes.

Lemma 53.11.6. Assumptions and notation as in Situation 53.11.2. Assume in addition
that 𝑠, 𝑡 are flat and locally of finite presentation. Then there exists a scheme𝑈′, a separated
étale morphism 𝑈′ → 𝑈, and a point 𝑢′ ∈ 𝑈′ lying over 𝑢 with 𝜅(𝑢) = 𝜅(𝑢′) such that the
restriction 𝑅′ = 𝑅|𝑈′ of 𝑅 to 𝑈′ splits over 𝑢′.

Proof. This follows from the construction of 𝑈′ in the proof of Lemma 53.11.4 because in
this case 𝑈′ = (𝑅𝑠/𝑈, 𝑒)𝑓𝑖𝑛 is a scheme separated over 𝑈 by Lemmas 53.8.14 and 53.8.15.

�

Lemma 53.11.7. Assumptions and notation as in Situation 53.11.3. Assume in addition
that 𝑠, 𝑡 are flat and locally of finite presentation. Then there exists a scheme𝑈′, a separated
étale morphism 𝑈′ → 𝑈, and a point 𝑢′ ∈ 𝑈′ lying over 𝑢 with 𝜅(𝑢) = 𝜅(𝑢′) such that the
restriction 𝑅′ = 𝑅|𝑈′ of 𝑅 to 𝑈′ is quasi-split over 𝑢′.

Proof. This follows from the construction of 𝑈′ in the proof of Lemma 53.11.5 because in
this case 𝑈′ = (𝑅𝑠/𝑈, 𝑒)𝑓𝑖𝑛 is a scheme separated over 𝑈 by Lemmas 53.8.14 and 53.8.15.

�

In fact we can obtain affine schemes by applying an earlier result on finite locally free
groupoids.
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Lemma 53.11.8. Assumptions and notation as in Situation 53.11.2. Assume in addition
that 𝑠, 𝑡 are flat and locally of finite presentation and that 𝑈 is affine. Then there exists
an affine scheme 𝑈′, an étale morphism 𝑈′ → 𝑈, and a point 𝑢′ ∈ 𝑈′ lying over 𝑢 with
𝜅(𝑢) = 𝜅(𝑢′) such that the restriction 𝑅′ = 𝑅|𝑈′ of 𝑅 to 𝑈′ splits over 𝑢′.

Proof. Let 𝑈′ → 𝑈 and 𝑢′ ∈ 𝑈′ be the étale morphism of schemes we found in Lemma
53.11.6. Let 𝑃 ⊂ 𝑅′ be the splitting of 𝑅′ over 𝑢′. By More on Groupoids, Lemma 36.8.1
the morphisms 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ are flat and locally of finite presentation. They are finite by
assumption. Hence 𝑠′, 𝑡′ are finite locally free, see Morphisms, Lemma 24.44.2. In partic-
ular 𝑡(𝑠−1(𝑢′)) is a finite set of points {𝑢′

1, 𝑢′
2, … , 𝑢′

𝑛} of 𝑈′. Choose a quasi-compact open
𝑊 ⊂ 𝑈′ containing each 𝑢′

𝑖 . As 𝑈 is affine the morphism 𝑊 → 𝑈 is quasi-compact (see
Schemes, Lemma 21.19.2). The morphism 𝑊 → 𝑈 is also locally quasi-finite (see Mor-
phisms, Lemma 24.35.6) and separated. Hence by More on Morphisms, Lemma 33.29.3
(a version of Zariski's Main Theorem) we conclude that 𝑊 is quasi-affine. By Properties,
Lemma 23.26.5 we see that {𝑢′

1, … , 𝑢′
𝑛} are contained in an affine open of 𝑈′. Thus we

may apply Groupoids, Lemma 35.20.1 to conclude that there exists an affine 𝑃-invariant
open 𝑈″ ⊂ 𝑈′ which contains 𝑢′.
To finish the proof denote 𝑅″ = 𝑅|𝑈″ the restriction of 𝑅 to 𝑈″. This is the same as the
restriction of 𝑅′ to 𝑈″. As 𝑃 ⊂ 𝑅′ is an open and closed subscheme, so is 𝑃|𝑈″ ⊂ 𝑅″.
By construction the open subscheme 𝑈″ ⊂ 𝑈′ is 𝑃-invariant which means that 𝑃|𝑈″ =
(𝑠′|𝑃)−1(𝑈″) = (𝑡′|𝑃)−1(𝑈″) (see discussion inGroupoids, Section 35.16) so the restrictions
of 𝑠″ and 𝑡″ to 𝑃|𝑈″ are still finite. The sub groupoid scheme 𝑃|𝑈″ is still a splitting of 𝑅″

over 𝑢″; above we verified (a), (b) and (c) holds as {𝑟′ ∈ 𝑅′ ∶ 𝑡′(𝑟′) = 𝑢′, 𝑠′(𝑟′) = 𝑢′} =
{𝑟″ ∈ 𝑅″ ∶ 𝑡″(𝑟″) = 𝑢′, 𝑠″(𝑟″) = 𝑢′} trivially. The lemma is proved. �

Lemma 53.11.9. Assumptions and notation as in Situation 53.11.3. Assume in addition
that 𝑠, 𝑡 are flat and locally of finite presentation and that 𝑈 is affine. Then there exists
an affine scheme 𝑈′, an étale morphism 𝑈′ → 𝑈, and a point 𝑢′ ∈ 𝑈′ lying over 𝑢 with
𝜅(𝑢) = 𝜅(𝑢′) such that the restriction 𝑅′ = 𝑅|𝑈′ of 𝑅 to 𝑈′ is quasi-split over 𝑢′.

Proof. The proof of this lemma is literally the same as the proof of Lemma 53.11.8 except
that ``splitting'' needs to be replaced by ``quasi-splitting'' (2 times) and that the reference to
Lemma 53.11.6. needs to be replaced by a reference to Lemma 53.11.7. �
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CHAPTER 54

Bootstrap

54.1. Introduction

In this chapter we use the material from the preceding sections to give criteria under which
a presheaf of sets on the category of schemes is an algebraic space. Some of this material
comes from the work of Artin, see [Art69c], [Art70a], [Art73a], [Art71c], [Art71a],
[Art69a], [Art69e], and [Art74a]. However, our method will be to use as much as possible
arguments similar to those of the paper by Keel and Mori, see [KM97a].

54.2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Sch𝑓𝑝𝑝𝑓. And
all rings 𝐴 considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this
big site.

Let 𝑆 be a scheme and let 𝑋 be an algebraic space over 𝑆. In this chapter and the following
we will write 𝑋 ×𝑆 𝑋 for the product of 𝑋 with itself (in the category of algebraic spaces
over 𝑆), instead of 𝑋 × 𝑋.

54.3. Morphisms representable by algebraic spaces

Here we define the notion of one presheaf being relatively representabe by algebraic spaces
over another, and we prove some properties of this notion.

Definition 54.3.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 be presheaves on
Sch𝑓𝑝𝑝𝑓/𝑆. We say a morphism 𝑎 ∶ 𝐹 → 𝐺 is representable by algebraic spaces if for
every 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and any 𝜉 ∶ 𝑈 → 𝐺 the fiber product 𝑈 ×𝜉,𝐺 𝐹 is an algebraic
space.

Here is a sanity check.

Lemma 54.3.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of algebraic spaces
over 𝑆. Then 𝑓 is representable by algebraic spaces.

Proof. This is formal. It relies on the fact that the category of algebraic spaces over 𝑆 has
fibre products, see Spaces, Lemma 40.7.3. �

Lemma 54.3.3. Let 𝑆 be a scheme. Let

𝐺′ ×𝐺 𝐹 //

𝑎′

��

𝐹

𝑎
��

𝐺′ // 𝐺
be a fibre square of presheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑎 is representable by algebraic spaces so
is 𝑎′.

2615
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Proof. Omitted. Hint: This is formal. �

Lemma 54.3.4. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺 be representable by algebraic spaces. If 𝐺 is a sheaf, then so is 𝐹.

Proof. (Same as the proof of Spaces, Lemma 40.3.5.) Let {𝜑𝑖 ∶ 𝑇𝑖 → 𝑇} be a covering of
the site (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝑠𝑖 ∈ 𝐹(𝑇𝑖) which satisfy the sheaf condition. Then 𝜎𝑖 = 𝑎(𝑠𝑖) ∈
𝐺(𝑇𝑖) satisfy the sheaf condition also. Hence there exists a unique 𝜎 ∈ 𝐺(𝑇) such that
𝜎𝑖 = 𝜎|𝑇𝑖

. By assumption 𝐹′ = ℎ𝑇 ×𝜎,𝐺,𝑎 𝐹 is a sheaf. Note that (𝜑𝑖, 𝑠𝑖) ∈ 𝐹′(𝑇𝑖) satisfy the
sheaf condition also, and hence come from some unique (id𝑇, 𝑠) ∈ 𝐹′(𝑇). Clearly 𝑠 is the
section of 𝐹 we are looking for. �

Lemma 54.3.5. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺 be representable by algebraic spaces. Then Δ𝐹/𝐺 ∶ 𝐹 → 𝐹 ×𝐺 𝐹 is
representable by algebraic spaces.

Proof. (Same as the proof of Spaces, Lemma 40.3.6.) Let𝑈 be a scheme. Let 𝜉 = (𝜉1, 𝜉2) ∈
(𝐹×𝐺𝐹)(𝑈). Set 𝜉′ = 𝑎(𝜉1) = 𝑎(𝜉2) ∈ 𝐺(𝑈). By assumption there exist an algebraic space 𝑉
and a morphism 𝑉 → 𝑈 representing the fibre product 𝑈×𝜉′,𝐺 𝐹. In particular, the elements
𝜉1, 𝜉2 give morphisms 𝑓1, 𝑓2 ∶ 𝑈 → 𝑉 over 𝑈. Because 𝑉 represents the fibre product
𝑈 ×𝜉′,𝐺 𝐹 and because 𝜉′ = 𝑎 ∘ 𝜉1 = 𝑎 ∘ 𝜉2 we see that if 𝑔 ∶ 𝑈′ → 𝑈 is a morphism then

𝑔∗𝜉1 = 𝑔∗𝜉2 ⇔ 𝑓1 ∘ 𝑔 = 𝑓2 ∘ 𝑔.
In other words, we see that 𝑈 ×𝜉,𝐹×𝐺𝐹 𝐹 is represented by 𝑉 ×Δ,𝑉×𝑉,(𝑓1,𝑓2) 𝑈 which is an
algebraic space. �

The proof of Lemma 54.3.6 below is actually slightly tricky. Namely, we cannot use the
argument of the proof of Spaces, Lemma 40.11.1 because we do not yet know that a com-
position of transformations representable by algebraic spaces is representable by algebraic
spaces. In fact, we will use this lemma to prove that statement.

Lemma 54.3.6. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets.

Let 𝑎 ∶ 𝐹 → 𝐺 be representable by algebraic spaces. If 𝐺 is an algebraic space, then so is
𝐹.

Proof. We have seen in Lemma 54.3.4 that 𝐹 is a sheaf.
Let 𝑈 be a scheme and let 𝑈 → 𝐺 be a surjective étale morphism. In this case 𝑈 ×𝐺 𝐹 is an
algebraic space. Let 𝑊 be a scheme and let 𝑊 → 𝑈 ×𝐺 𝐹 be a surjective étale morphism.
First we claim that 𝑊 → 𝐹 is representable. To see this let 𝑋 be a scheme and let 𝑋 → 𝐹
be a morphism. Then

𝑊 ×𝐹 𝑋 = 𝑊 ×𝑈×𝐺𝐹 𝑈 ×𝐺 𝐹 ×𝐹 𝑋 = 𝑊 ×𝑈×𝐺𝐹 (𝑈 ×𝐺 𝑋)

Since both 𝑈 ×𝐺 𝐹 and 𝐺 are algebraic spaces we see that this is a scheme.
Next, we claim that 𝑊 → 𝐹 is surjective and étale (this makes sense now that we know it is
representable). This follows from the formula above since both 𝑊 → 𝑈 ×𝐺 𝐹 and 𝑈 → 𝐺
are étale and surjective, hence 𝑊×𝑈×𝐺𝐹 (𝑈×𝐺 𝑋) → 𝑈×𝐺 𝑋 and 𝑈×𝐺 𝑋 → 𝑋 are surjective
and étale, and the composition of surjective étale morphisms is surjective and étale.
Set 𝑅 = 𝑊 ×𝐹 𝑊. By the above 𝑅 is a scheme and the projections 𝑡, 𝑠 ∶ 𝑅 → 𝑊 are étale.
It is clear that 𝑅 is an equivalence relation, and 𝑊 → 𝐹 is a surjection of sheaves. Hence
𝑅 is an étale equivalence relation and 𝐹 = 𝑊/𝑅. Hence 𝐹 is an algebraic space by Spaces,
Theorem 40.10.5. �
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Lemma 54.3.7. Let 𝑆 be a scheme. Let 𝑎 ∶ 𝐹 → 𝐺 be a map of presheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓.
Suppose 𝑎 ∶ 𝐹 → 𝐺 is representable by algebraic spaces. If 𝑋 is an algebraic space over
𝑆, and 𝑋 → 𝐺 is a map of presheaves then 𝑋 ×𝐺 𝐹 is an algebraic space.

Proof. By Lemma 54.3.3 the transformation 𝑋 ×𝐺 𝐹 → 𝑋 is representable by algebraic
spaces. Hence it is an algebraic space by Lemma 54.3.6. �

Lemma 54.3.8. Let 𝑆 be a scheme. Let

𝐹 𝑎 // 𝐺 𝑏 // 𝐻
be maps of presheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑎 and 𝑏 are representable by algebraic spaces, so
is 𝑏 ∘ 𝑎.

Proof. Let 𝑇 be a scheme over 𝑆, and let 𝑇 → 𝐻 be a morphism. By assumption 𝑇 ×𝐻 𝐺
is an algebraic space. Hence by Lemma 54.3.7 we see that 𝑇 ×𝐻 𝐹 = (𝑇 ×𝐻 𝐺) ×𝐺 𝐹 is an
algebraic space as well. �

Lemma 54.3.9. Let 𝑆 be a scheme. Let 𝐹𝑖, 𝐺𝑖 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets, 𝑖 = 1, 2. Let 𝑎𝑖 ∶

𝐹𝑖 → 𝐺𝑖, 𝑖 = 1, 2 be representable by algebraic spaces. Then

𝑎1 × 𝑎2 ∶ 𝐹1 × 𝐹2 ⟶ 𝐺1 × 𝐺2

is a representable by algebraic spaces.

Proof. Write 𝑎1 × 𝑎2 as the composition 𝐹1 × 𝐹2 → 𝐺1 × 𝐹2 → 𝐺1 × 𝐺2. The first arrow is
the base change of 𝑎1 by the map 𝐺1 × 𝐹2 → 𝐺1, and the second arrow is the base change
of 𝑎2 by the map 𝐺1 × 𝐺2 → 𝐺2. Hence this lemma is a formal consequence of Lemmas
54.3.8 and 54.3.3. �

54.4. Properties of maps of presheaves representable by algebraic spaces

Here is the definition that makes this work.

Definition 54.4.1. Let 𝑆 be a scheme. Let 𝑎 ∶ 𝐹 → 𝐺 be a map of presheaves on
(Sch/𝑆)𝑓𝑝𝑝𝑓 which is representable by algebraic spaces. Let 𝒫 be a property of morphisms
of algebraic spaces which

(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 45.9.1.

In this case we say that 𝑎 has property 𝒫 if for every scheme 𝑈 and 𝜉 ∶ 𝑈 → 𝐺 the resulting
morphism of algebraic spaces 𝑈 ×𝐺 𝐹 → 𝑈 has property 𝒫.

It is important to note that we will only use this definition for properties of morphisms
that are stable under base change, and local in the fppf topology on the base. This is not
because the definition doesn't make sense otherwise; rather it is because we may want to
give a different definition which is better suited to the property we have in mind.
The definition above applies for example to the properties of being ``surjective'', ``flat'',
``étale'', and ``locally of finite presentation''. In other words, 𝑎 is surjective (resp. étale, flat,
locally of finite presentation) if for every scheme 𝑇 and map 𝜉 ∶ 𝑇 → 𝐺 the morphism of
algebraic spaces 𝑇 ×𝜉,𝐺 𝐹 → 𝑇 is surjective (resp. étale, flat, locally of finite presentation).
By Lemma 54.3.2 any morphism between algebraic spaces over 𝑆 is representable by alge-
braic spaces. And byMorphisms of Spaces, Lemma 42.6.3 (resp. 42.35.2, 42.27.4, 42.26.4)
the definition of surjective (resp. étale, flat, locally of finite presentation) above agrees with
the already existing definition of morphisms of algebraic spaces.
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Some formal lemmas follow.

Lemma 54.4.2. Let 𝑆 be a scheme. Let 𝒫 be a property as in Definition 54.4.1. Let

𝐺′ ×𝐺 𝐹 //

𝑎′

��

𝐹

𝑎
��

𝐺′ // 𝐺

be a fibre square of presheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑎 is representable by algebraic spaces
and has 𝒫 so does 𝑎′.

Proof. Omitted. Hint: This is formal. �

Lemma 54.4.3. Let 𝑆 be a scheme. Let 𝒫 be a property as in Definition 54.4.1, and assume
𝒫 is stable under composition. Let

𝐹 𝑎 // 𝐺 𝑏 // 𝐻

be maps of presheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑎, 𝑏 are representable by algebraic spaces and
has 𝒫 so does 𝑏 ∘ 𝑎.

Proof. Omitted. Hint: See Lemma 54.3.8 and use stability under composition. �

Lemma 54.4.4. Let 𝑆 be a scheme. Let 𝐹𝑖, 𝐺𝑖 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets, 𝑖 = 1, 2. Let 𝑎𝑖 ∶

𝐹𝑖 → 𝐺𝑖, 𝑖 = 1, 2 be representable by algebraic spaces. Let 𝒫 be a property as in Definition
54.4.1 which is stable under composition. If 𝑎1 and 𝑎2 have property 𝒫 so does 𝑎1 × 𝑎2 ∶
𝐹1 × 𝐹2 ⟶ 𝐺1 × 𝐺2.

Proof. Note that the lemma makes sense by Lemma 54.3.9. Proof omitted. �

Lemma 54.4.5. Let 𝑆 be a scheme. Let 𝐹, 𝐺 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be sheaves. Let

𝑎 ∶ 𝐹 → 𝐺 be representable by algebraic spaces, flat, locally of finite presentation, and
surjective. Then 𝑎 ∶ 𝐹 → 𝐺 is surjective as a map of sheaves.

Proof. Let 𝑇 be a scheme over𝑆 and let 𝑔 ∶ 𝑇 → 𝐺 be a 𝑇-valued point of𝐺. By assumption
𝑇′ = 𝐹 ×𝐺 𝑇 is an algebraic space and the morphism 𝑇′ → 𝑇 is a flat, locally of finite
presentation, and surjective morphism of algebraic spaces. Let 𝑈 → 𝑇′ be a surjective
étale morphism, where 𝑈 is a scheme. Then by the definition of flat morphisms of algebraic
spaces themorphism of schemes𝑈 → 𝑇 is flat. Similarly for ``locally of finite presentation''.
The morphism 𝑈 → 𝑇 is surjective also, see Morphisms of Spaces, Lemma 42.6.3. Hence
we see that {𝑈 → 𝑇} is an fppf covering such that 𝑔|𝑈 ∈ 𝐺(𝑈) comes from an element of
𝐹(𝑈), namely the map 𝑈 → 𝑇′ → 𝐹. This proves the map is surjective as a map of sheaves,
see Sites, Definition 9.11.1. �

54.5. Bootstrapping the diagonal

Lemma 54.5.1. Let 𝑆 be a scheme. If 𝐹 is a presheaf on (Sch/𝑆)𝑓𝑝𝑝𝑓. The following are
equivalent:

(1) Δ𝐹 ∶ 𝐹 → 𝐹 × 𝐹 is representable by algebraic spaces,
(2) for every scheme 𝑇 any map 𝑇 → 𝐹 is representable by algebraic spaces, and
(3) for every algebraic space𝑋 anymap𝑋 → 𝐹 is representable by algebraic spaces.
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Proof. Assume (1). Let 𝑋 → 𝐹 be as in (3). Let 𝑇 be a scheme, and let 𝑇 → 𝐹 be a
morphism. Then we have

𝑇 ×𝐹 𝑋 = (𝑇 ×𝑆 𝑋) ×𝐹×𝐹,Δ 𝐹

which is an algebraic space by Lemma 54.3.7 and (1). Hence 𝑋 → 𝐹 is representable, i.e.,
(3) holds. The implication (3) ⇒ (2) is trivial. Assume (2). Let 𝑇 be a scheme, and let
(𝑎, 𝑏) ∶ 𝑇 → 𝐹 × 𝐹 be a morphism. Then

𝐹 ×Δ𝐹,𝐹×𝐹 𝑇 = 𝑇 ×𝑎,𝐹,𝑏 𝑇

which is an algebraic space by assumption. Hence Δ𝐹 is representable by algebraic spaces,
i.e., (1) holds. �

In particular if 𝐹 is a presheaf satisfying the equivalent conditions of the lemma, then for
any morphism 𝑋 → 𝐹 where 𝑋 is an algebraic space it makes sense to say that 𝑋 → 𝐹 is
surjective (resp. étale, flat, locally of finite presentation) by using Definition 54.4.1.

Before we actually do the bootstrap we prove a fun lemma.

Lemma 54.5.2. Let 𝑆 be a scheme. Let

𝐸 𝑎
//

𝑓
��

𝐹

𝑔
��

𝐻 𝑏 // 𝐺
be a cartesian diagram of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓, so 𝐸 = 𝐻 ×𝐺 𝐹. If

(1) 𝑔 is representable by algebraic spaces, surjective, flat, and locally of finite pre-
sentation, and

(2) 𝑎 is representable by algebraic spaces, separated, and locally quasi-finite
then 𝑏 is representable (by schemes) as well as separated and locally quasi-finite.

Proof. Let 𝑇 be a scheme, and let 𝑇 → 𝐺 be a morphism. We have to show that 𝑇 ×𝐺 𝐻 is
an algebraic space, and that the morphism 𝑇×𝐺 𝐻 → 𝑇 is separated and locally quasi-finite.
Thus we may base change the whole diagram to 𝑇 and assume that 𝐺 is a scheme. In this
case 𝐹 is an algebraic space. Let 𝑈 be a scheme, and let 𝑈 → 𝐹 be a surjective étale
morphism. Then 𝑈 → 𝐹 is representable, surjective, flat and locally of finite presentation
by Morphisms of Spaces, Lemmas 42.35.7 and 42.35.8. By Lemma 54.3.8 𝑈 → 𝐺 is
surjective, flat and locally of finite presentation also. Note that the base change 𝐸×𝐹 𝑈 → 𝑈
of 𝑎 is still separated and locally quasi-finite (by Lemma 54.4.2). Hence we may replace
the upper part of the diagram of the lemma by 𝐸 ×𝐹 𝑈 → 𝑈. In other words, we may
assume that 𝐹 → 𝐺 is a surjective, flat morphism of schemes which is locally of finite
presentation. In particular, {𝐹 → 𝐺} is an fppf covering of schemes. By Morphisms of
Spaces, Proposition 42.39.2 we conclude that 𝐸 is a scheme also. By Descent, Lemma
31.35.1 the fact that 𝐸 = 𝐻 ×𝐺 𝐹 means that we get a descent datum on 𝐸 relative to the
fppf covering {𝐹 → 𝐺}. By More on Morphisms, Lemma 33.35.1 this descent datum is
effective. By Descent, Lemma 31.35.1 again this implies that 𝐻 is a scheme. By Descent,
Lemmas 31.19.5 and 31.19.22 it now follows that 𝑏 is separated and locally quasi-finite. �

Here is the result that the section title refers to.

Lemma 54.5.3. Let 𝑆 be a scheme. Let 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be a functor. Assume that

(1) the presheaf 𝐹 is a sheaf,
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(2) there exists an algebraic space 𝑋 and a map 𝑋 → 𝐹 which is representable by
algebraic spaces, surjective, flat and locally of finite presentation.

Then Δ𝐹 is representable (by schemes).

Proof. Let 𝑈 → 𝑋 be a surjective étale morphism from a scheme towards 𝑋. Then 𝑈 → 𝑋
is representable, surjective, flat and locally of finite presentation by Morphisms of Spaces,
Lemmas 42.35.7 and 42.35.8. By Lemma 54.4.3 the composition 𝑈 → 𝐹 is representable
by algebraic spaces, surjective, flat and locally of finite presentation also. Thus we see that
𝑅 = 𝑈 ×𝐹 𝑈 is an algebraic space, see Lemma 54.3.7. The morphism of algebraic spaces
𝑅 → 𝑈 ×𝑆 𝑈 is a monomorphism, hence separated (as the diagonal of a monomorphism
is an isomorphism, see Morphisms of Spaces, Lemma 42.14.2). Since 𝑈 → 𝐹 is locally of
finite presentation, both morphisms 𝑅 → 𝑈 are locally of finite presentation, see Lemma
54.4.2. Hence 𝑅 → 𝑈 ×𝑆 𝑈 is locally of finite type (use Morphisms of Spaces, Lemmas
42.26.5 and 42.22.6). Altogether this means that 𝑅 → 𝑈×𝑆 𝑈 is a monomorphism which is
locally of finite type, hence a separated and locally quasi-finite morphism, see Morphisms
of Spaces, Lemma 42.25.8.

Now we are ready to prove that Δ𝐹 is representable. Let 𝑇 be a scheme, and let (𝑎, 𝑏) ∶ 𝑇 →
𝐹 × 𝐹 be a morphism. Set

𝑇′ = (𝑈 ×𝑆 𝑈) ×𝐹×𝐹 𝑇.
Note that 𝑈 ×𝑆 𝑈 → 𝐹 × 𝐹 is representable by algebraic spaces, surjective, flat and locally
of finite presentation by Lemma 54.4.4. Hence 𝑇′ is an algebraic space, and the projection
morphism 𝑇′ → 𝑇 is surjective, flat, and locally of finite presentation. Consider 𝑍 =
𝑇 ×𝐹×𝐹 𝐹 (this is a sheaf) and

𝑍′ = 𝑇′ ×𝑈×𝑆𝑈 𝑅 = 𝑇′ ×𝑇 𝑍.

We see that 𝑍′ is an algebraic space, and 𝑍′ → 𝑇′ is separated and locally quasi-finite by
the discussion in the first paragraph of the proof which showed that 𝑅 is an algebraic space
and that the morphism 𝑅 → 𝑈 ×𝑆 𝑈 has those properties. Hence we may apply Lemma
54.5.2 to the diagram

𝑍′ //

��

𝑇′

��
𝑍 // 𝑇

and we conclude. �

54.6. Bootstrap

We warn the reader right away that the result of this section will be superseded by the
stronger Theorem 54.10.1. On the other hand, the theorem in this section is quite a bit
easier to prove and still provides quite a bit of insight into how things work, especially for
those readers mainly interested in Deligne-Mumford stacks.

In Spaces, Section 40.6 we defined an algebraic space as a sheaf in the fppf topology whose
diagonal is representable, and such that there exist a surjective étale morphism from a
scheme towards it. In this section we show that a sheaf in the fppf topology whose di-
agonal is representable by algebraic spaces and which has an étale surjective covering by
an algebraic space is also an algebraic space. In other words, the category of algebraic
spaces is an enlargement of the category of schemes by those fppf sheaves 𝐹 which have a
representable diagonal and an étale covering by a scheme. The result of this section says
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that doing the same process again starting with the category of algebraic spaces, does not
lead to yet another category.
Another motivation for the material in this section is that it will guarantee later that a
Deligne-Mumford stack whose inertia stack is trivial is equivalent to an algebraic space,
see Algebraic Stacks, Lemma 57.13.2.
Here is the main result of this section (as we mentioned above this will be superseded by
the stronger Theorem 54.10.1).

Theorem 54.6.1. Let 𝑆 be a scheme. Let 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be a functor. Assume

that
(1) the presheaf 𝐹 is a sheaf,
(2) the diagonal morphism 𝐹 → 𝐹 × 𝐹 is representable by algebraic spaces, and
(3) there exists an algebraic space 𝑋 and a map 𝑋 → 𝐹 which is surjective, and

étale.
Then 𝐹 is an algebraic space.

Proof. We will use the remarks directly below Definition 54.4.1 without further mention.
In the situation of the theorem, let 𝑈 → 𝑋 be a surjective étale morphism from a scheme
towards 𝑋. By Lemma 54.3.8 𝑈 → 𝐹 is surjective and étale also. Hence the theorem boils
down to proving that Δ𝐹 is representable. This follows immediately from Lemma 54.5.3.
On the other hand we can circumvent this lemma and show directly 𝐹 is an algebraic space
as in the next paragraph.
Let 𝑈 be a scheme, and let 𝑈 → 𝐹 be surjective and étale. Set 𝑅 = 𝑈 ×𝐹 𝑈, which is an
algebraic space (see Lemma 54.5.1). The morphism of algebraic spaces 𝑅 → 𝑈 ×𝑆 𝑈 is a
monomorphism, hence separated (as the diagonal of a monomorphism is an isomorphism).
Moreover, since 𝑈 → 𝐹 is étale, we see that 𝑅 → 𝑈 is étale, by Lemma 54.4.2. In particular,
we see that 𝑅 → 𝑈 is locally quasi-finite, see Morphisms of Spaces, Lemma 42.35.5. We
conclude that also 𝑅 → 𝑈 ×𝑆 𝑈 is locally quasi-finite by Morphisms of Spaces, Lemma
42.25.7. Hence Morphisms of Spaces, Proposition 42.39.2 applies and 𝑅 is a scheme.
Hence 𝐹 = 𝑈/𝑅 is an algebraic space according to Spaces, Theorem 40.10.5. �

54.7. Finding opens

First we prove a lemmawhich is a slight improvement and generalization of Spaces, Lemma
40.10.2 to quotient sheaves associated to groupoids.

Lemma 54.7.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let
𝑔 ∶ 𝑈′ → 𝑈 be a morphism. Assume

(1) the composition

𝑈′ ×𝑔,𝑈,𝑡 𝑅 pr1
//

ℎ

''𝑅 𝑠
// 𝑈

has an open image 𝑊 ⊂ 𝑈, and
(2) the resulting map ℎ ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑊 defines a surjection of sheaves in the fppf

topology.
Let 𝑅′ = 𝑅|𝑈′ be the restriction of 𝑅 to 𝑈. Then the map of quotient sheaves

𝑅′/𝑈′ → 𝑅/𝑈
in the fppf topology is representable, and is an open immersion.
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Proof. Note that 𝑊 is an 𝑅-invariant open subscheme of 𝑈. This is true because the set of
points of 𝑊 is the set of points of 𝑈 which are equivalent in the sense of Groupoids, Lemma
35.3.4 to a point of 𝑔(𝑈′) ⊂ 𝑈 (the lemma applies as 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is a pre-equivalence
relation by Groupoids, Lemma 35.11.2). Also 𝑔 ∶ 𝑈′ → 𝑈 factors through 𝑊. Let 𝑅|𝑊 be
the restriction of 𝑅 to 𝑊. Then it follows that 𝑅′ is also the restriction of 𝑅|𝑊 to 𝑈′. Hence
we can factor the map of sheaves of the lemma as

𝑈′/𝑅′ ⟶ 𝑊/𝑅|𝑊 ⟶ 𝑈/𝑅

By Groupoids, Lemma 35.17.6 we see that the first arrow is an isomorphism of sheaves.
Hence it suffices to show the lemma in case 𝑔 is the immersion of an 𝑅-invariant open into
𝑈.

Assume 𝑈′ ⊂ 𝑈 is an 𝑅-invariant open and 𝑔 is the inclusion morphism. Set 𝐹 = 𝑈/𝑅
and 𝐹′ = 𝑈′/𝑅′. By Groupoids, Lemma 35.17.5 or 35.17.6 the map 𝐹′ → 𝐹 is injective.
Let 𝜉 ∈ 𝐹(𝑇). We have to show that 𝑇 ×𝜉,𝐹 𝐹′ is representable by an open subscheme of 𝑇.
There exists an fppf covering {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇} such that 𝜉|𝑇𝑖

is the image via 𝑈 → 𝑈/𝑅 of
a morphism 𝑎𝑖 ∶ 𝑇𝑖 → 𝑈. Set 𝑉𝑖 = 𝑠−1

𝑖 (𝑈′). We claim that 𝑉𝑖 ×𝑇 𝑇𝑗 = 𝑇𝑖 ×𝑇 𝑉𝑗 as open
subschemes of 𝑇𝑖 ×𝑇 𝑇𝑗.

As 𝑎𝑖 ∘pr0 and 𝑎𝑗 ∘pr1 are morphisms 𝑇𝑖 ×𝑇 𝑇𝑗 → 𝑈 which both map to the section 𝜉|𝑇𝑖×𝑇𝑇𝑗
∈

𝐹(𝑇𝑖 ×𝑇 𝑇𝑗) we can find an fppf covering {𝑓𝑖𝑗𝑘 ∶ 𝑇𝑖𝑗𝑘 → 𝑇𝑖 ×𝑇 𝑇𝑗} and morphisms 𝑟𝑖𝑗𝑘 ∶
𝑇𝑖𝑗𝑘 → 𝑅 such that

𝑎𝑖 ∘ pr0 ∘ 𝑓𝑖𝑗𝑘 = 𝑠 ∘ 𝑟𝑖𝑗𝑘, 𝑎𝑗 ∘ pr1 ∘ 𝑓𝑖𝑗𝑘 = 𝑡 ∘ 𝑟𝑖𝑗𝑘,

see Groupoids, Lemma 35.17.4. Since 𝑈′ is 𝑅-invariant we have 𝑠−1(𝑈′) = 𝑡−1(𝑈′) and
hence 𝑓−1

𝑖𝑗𝑘(𝑉𝑖 ×𝑇 𝑇𝑗) = 𝑓−1
𝑖𝑗𝑘(𝑇𝑖 ×𝑇 𝑉𝑗). As {𝑓𝑖𝑗𝑘} is surjective this implies the claim above.

Hence by Descent, Lemma 31.9.2 there exists an open subscheme 𝑉 ⊂ 𝑇 such that 𝑓−1
𝑖 (𝑉) =

𝑉𝑖. We claim that 𝑉 represents 𝑇 ×𝜉,𝐹 𝐹′.

As a first step, we will show that 𝜉|𝑉 lies in 𝐹′(𝑉) ⊂ 𝐹(𝑉). Namely, the family of morphisms
{𝑉𝑖 → 𝑉} is an fppf covering, and by construction we have 𝜉|𝑉𝑖

∈ 𝐹′(𝑉𝑖). Hence by the
sheaf property of 𝐹′ we get 𝜉|𝑉 ∈ 𝐹′(𝑉). Finally, let 𝑇′ → 𝑇 be a morphism of schemes
and that 𝜉|𝑇′ ∈ 𝐹′(𝑇′). To finish the proof we have to show that 𝑇′ → 𝑇 factors through 𝑉.
We can find a fppf covering {𝑇′

𝑗 → 𝑇′}𝑗∈𝐽 and morphisms 𝑏𝑗 ∶ 𝑇′
𝑗 → 𝑈′ such that 𝜉|𝑇′

𝑗
is

the image via 𝑈′ → 𝑈/𝑅 of 𝑏𝑗. Clearly, it is enough to show that the compositions 𝑇′
𝑗 → 𝑇

factor through 𝑉. Hence we may assume that 𝜉|𝑇′ is the image of a morphism 𝑏 ∶ 𝑇′ → 𝑈′.
Now, it is enough to show that 𝑇′ ×𝑇 𝑇𝑖 → 𝑇𝑖 factors through 𝑉𝑖. Over the scheme 𝑇′ ×𝑇 𝑇𝑖
the restriction of 𝜉 is the image of two elements of (𝑈/𝑅)(𝑇′ ×𝑇 𝑇𝑖), namely 𝑎𝑖 ∘ pr1, and
𝑏 ∘ pr0, the second of which factors through the 𝑅-invariant open 𝑈′. Hence by Groupoids,
Lemma 35.17.4 there exists a covering {ℎ𝑘 ∶ 𝑍𝑘 → 𝑇′ ×𝑇 𝑇𝑖} and morphisms 𝑟𝑘 ∶ 𝑍𝑘 → 𝑅
such that 𝑎𝑖 ∘ pr1 ∘ ℎ𝑘 = 𝑠 ∘ 𝑟𝑘 and 𝑏 ∘ pr0 ∘ ℎ𝑘 = 𝑡 ∘ 𝑟𝑘. As 𝑈′ is an 𝑅-invariant open the fact
that 𝑏 has image in 𝑈′ then implies that each 𝑎𝑖 ∘ pr1 ∘ ℎ𝑘 has image in 𝑈′. It follows from
this that 𝑇′ ×𝑇 𝑇𝑖 → 𝑇𝑖 has image in 𝑉𝑖 by definition of 𝑉𝑖 which concludes the proof. �

54.8. Slicing equivalence relations

In this section we explain how to ``improve'' a given equivalence relation by slicing. This
is not a kind of ``étale slicing'' that you may be used to but a much coarser kind of slicing.
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Lemma 54.8.1. Let 𝑆 be a scheme. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 be an equivalence relation on
schemes over 𝑆. Assume 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are flat and locally of finite presentation. Then there
exists an equivalence relation 𝑗′ ∶ 𝑅′ → 𝑈′ ×𝑆 𝑈′ on schemes over 𝑆, and an isomorphism

𝑈′/𝑅′ ⟶ 𝑈/𝑅

induced by a morphism 𝑈′ → 𝑈 which maps 𝑅′ into 𝑅 such that 𝑠′, 𝑡′ ∶ 𝑅 → 𝑈 are flat,
locally of finite presentation and locally quasi-finite.

Proof. We will prove this lemma in several steps. We will use without further mention
that an equivalence relation gives rise to a groupoid scheme and that the restriction of an
equivalence relation is an equivalence relation, see Groupoids, Lemmas 35.3.2, 35.11.3,
and 35.15.3.

Step 1: We may assume that 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are locally of finite presentation and Cohen-
Macaulay morphisms. Namely, as in More on Groupoids, Lemma 36.7.1 let 𝑔 ∶ 𝑈′ → 𝑈
be the open subscheme such that 𝑡−1(𝑈′) ⊂ 𝑅 is the maximal open over which 𝑠 ∶ 𝑅 → 𝑈
is Cohen-Macaulay, and denote 𝑅′ the restriction of 𝑅 to 𝑈′. By the lemma cited above we
see that

𝑡−1(𝑈′) 𝑈′ ×𝑔,𝑈,𝑡 𝑅 pr1
//

ℎ

''𝑅 𝑠
// 𝑈

is surjective. Since ℎ is flat and locally of finite presentation, we see that {ℎ} is a fppf
covering. Hence by Groupoids, Lemma 35.17.6 we see that 𝑈′/𝑅′ → 𝑈/𝑅 is an isomor-
phism. By the construction of 𝑈′ we see that 𝑠′, 𝑡′ are Cohen-Macaulay and locally of finite
presentation.

Step 2. Assume 𝑠, 𝑡 are Cohen-Macaulay and locally of finite presentation. Let 𝑢 ∈ 𝑈 be a
point of finite type. By More on Groupoids, Lemma 36.11.4 there exists an affine scheme
𝑈′ and a morphism 𝑔 ∶ 𝑈′ → 𝑈 such that

(1) 𝑔 is an immersion,
(2) 𝑢 ∈ 𝑈′,
(3) 𝑔 is locally of finite presentation,
(4) ℎ is flat, locally of finite presentation and locally quasi-finite, and
(5) the morphisms 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ are flat, locally of finite presentation and locally

quasi-finite.
Here we have used the notation introduced in More on Groupoids, Situation 36.11.1.

Step 3. For each point 𝑢 ∈ 𝑈 which is of finite type choose a 𝑔𝑢 ∶ 𝑈′
𝑢 → 𝑈 as in Step 2

and denote 𝑅′
𝑢 the restriction of 𝑅 to 𝑈′

𝑢. Denote ℎ𝑢 = 𝑠 ∘ pr1 ∶ 𝑈′
𝑢 ×𝑔𝑢,𝑈,𝑡 𝑅 → 𝑈. Set

𝑈′ = ∐𝑢∈𝑈 𝑈′
𝑢, and 𝑔 = ∐ 𝑔𝑢. Let 𝑅′ be the restriction of 𝑅 to 𝑈 as above. We claim that

the pair (𝑈′, 𝑔) works1. Note that

𝑅′ = ∐𝑢1,𝑢2∈𝑈
(𝑈′

𝑢1
×𝑔𝑢1,𝑈,𝑡 𝑅) ×𝑅 (𝑅 ×𝑠,𝑈,𝑔𝑢2

𝑈′
𝑢2

)

= ∐𝑢1,𝑢2∈𝑈
(𝑈′

𝑢1
×𝑔𝑢1,𝑈,𝑡 𝑅) ×ℎ𝑢1,𝑈,𝑔𝑢2

𝑈′
𝑢2

1Here we should check that 𝑈′ is not too large, i.e., that it is isomorphic to an object of the category Sch𝑓𝑝𝑝𝑓,
see Section 54.2. This is a purely set theoretical matter; let us use the notion of size of a scheme introduced in
Sets, Section 3.9. Note that each 𝑈′

𝑢 has size at most the size of 𝑈 and that the cardinality of the index set is at
most the cardinality of |𝑈| which is bounded by the size of 𝑈. Hence 𝑈′ is isomorphic to an object of Sch𝑓𝑝𝑝𝑓 by
Sets, Lemma 3.9.9 part (6).
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Hence the projection 𝑠′ ∶ 𝑅′ → 𝑈′ = ∐ 𝑈′
𝑢2

is flat, locally of finite presentation and
locally quasi-finite as a base change of ∐ ℎ𝑢1

. Finally, by construction the morphism ℎ ∶
𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑈 is equal to ∐ ℎ𝑢 hence its image contains all points of finite type of 𝑈.
Since each ℎ𝑢 is flat and locally of finite presentation we conclude that ℎ is flat and locally of
finite presentation. In particular, the image of ℎ is open (see Morphisms, Lemma 24.24.9)
and since the set of points of finite type is dense (see Morphisms, Lemma 24.15.7) we
conclude that the image of ℎ is 𝑈. This implies that {ℎ} is an fppf covering. By Groupoids,
Lemma 35.17.6 this means that 𝑈′/𝑅′ → 𝑈/𝑅 is an isomorphism. This finishes the proof
of the lemma. �

54.9. Quotient by a subgroupoid

We need one more lemma before we can do our final bootstrap. Let us discuss what is going
on in terms of ``plain'' groupoids before embarking on the scheme theoretic version.
Let 𝒞 be a groupoid, see Categories, Definition 4.2.5. As discussed in Groupoids, Section
35.11 this corresponds to a quintuple (Ob,Arrows, 𝑠, 𝑡, 𝑐). Suppose we are given a subset
𝑃 ⊂ Arrows such that (Ob, 𝑃, 𝑠|𝑃, 𝑡|𝑃, 𝑐|𝑃) is also a groupoid and such that there are no non-
trivial automorphisms in𝑃. Thenwe can construct the quotient groupoid (Ob,Arrows, 𝑠, 𝑡, 𝑐)
as follows:

(1) Ob = Ob/𝑃 is the set of 𝑃-isomorphism classes,
(2) Arrows = 𝑃\Arrows/𝑃 is the set of arrows in 𝒞 up to pre-composing and post-

composing by arrows of 𝑃,
(3) the source and target maps 𝑠, 𝑡 ∶ 𝑃\Arrows/𝑃 → Ob/𝑃 are induced by 𝑠, 𝑡,
(4) composition is defined by the rule 𝑐(𝑎, 𝑏) = 𝑐(𝑎, 𝑏) which is well defined.

In fact, it turns out that the original groupoid (Ob,Arrows, 𝑠, 𝑡, 𝑐) is canonically isomorphic
to the restriction (see discussion inGroupoids, Section 35.15) of the groupoid (Ob,Arrows, 𝑠, 𝑡, 𝑐)
via the quotient map 𝑔 ∶ Ob → Ob. Recall that this means that

Arrows = Ob ×𝑔,Ob,𝑡 Arrows ×𝑠,Ob,𝑔 Ob

which holds as 𝑃 has no nontrivial automorphisms. We omit the details.
The following lemma holds in much greater generality, but this is the version we use in the
proof of the final bootstrap (after which we can more easily prove the more general versions
of this lemma).

Lemma 54.9.1. Let 𝑆 be a scheme. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid scheme over 𝑆. Let
𝑃 → 𝑅 be monomorphism of schemes. Assume that

(1) (𝑈, 𝑃, 𝑠|𝑃, 𝑡|𝑃, 𝑐|𝑃×𝑠,𝑈,𝑡𝑃) is a groupoid scheme,
(2) 𝑠|𝑃, 𝑡|𝑃 ∶ 𝑃 → 𝑈 are finite locally free,
(3) 𝑗|𝑃 ∶ 𝑃 → 𝑈 ×𝑆 𝑈 is a monomorphism.
(4) 𝑈 is affine, and
(5) 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is separated and locally quasi-finite,

Then 𝑈/𝑃 is representable by an affine scheme 𝑈, the quotient morphism 𝑈 → 𝑈 is fi-
nite locally free, and 𝑃 = 𝑈 ×𝑈 𝑈. Moreover, 𝑅 is the restriction of a groupoid scheme
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) on 𝑈 via the quotient morphism 𝑈 → 𝑈.

Proof. Conditions (1), (2), (3), and (4) and Groupoids, Proposition 35.19.8 imply the affine
scheme 𝑈 representing 𝑈/𝑃 exists, the morphism 𝑈 → 𝑈 is finite locally free, and 𝑃 =
𝑈 ×𝑈 𝑈. The identification 𝑃 = 𝑈 ×𝑈 𝑈 is such that 𝑡|𝑃 = pr0 and 𝑠|𝑃 = pr1, and such
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that composition is equal to pr02 ∶ 𝑈 ×𝑈 𝑈 ×𝑈 𝑈 → 𝑈 ×𝑈 𝑈. A product of finite locally
free morphisms is finite locally free (see Spaces, Lemma 40.5.7 and Morphisms, Lemmas
24.44.4 and 24.44.3). To get 𝑅 we are going to descend the scheme 𝑅 via the finite locally
free morphism 𝑈 ×𝑆 𝑈 → 𝑈 ×𝑆 𝑈. Namely, note that

(𝑈 ×𝑆 𝑈) ×(𝑈×𝑆𝑈) (𝑈 ×𝑆 𝑈) = 𝑃 ×𝑆 𝑃

by the above. Thus giving a descent datum (see Descent, Definition 31.30.1) for 𝑅/𝑈 ×𝑆
𝑈/𝑈 ×𝑆 𝑈 consists of an isomorphism

𝜑 ∶ 𝑅 ×(𝑈×𝑆𝑈),𝑡×𝑡 (𝑃 ×𝑆 𝑃) ⟶ (𝑃 ×𝑆 𝑃) ×𝑠×𝑠,(𝑈×𝑆𝑈) 𝑅

over 𝑃 ×𝑆 𝑃 satisfying a cocycle condition. We define 𝜑 on 𝑇-valued points by the rule

𝜑 ∶ (𝑟, (𝑝, 𝑝′)) ⟼ ((𝑝, 𝑝′), 𝑝−1 ∘ 𝑟 ∘ 𝑝′)

where the composition is taken in the groupoid category (𝑈(𝑇), 𝑅(𝑇), 𝑠, 𝑡, 𝑐). This makes
sense because for (𝑟, (𝑝, 𝑝′)) to be a 𝑇-valued point of the source of 𝜑 it needs to be the case
that 𝑡(𝑟) = 𝑡(𝑝) and 𝑠(𝑟) = 𝑡(𝑝′). Note that this map is an isomorphism with inverse given
by ((𝑝, 𝑝′), 𝑟′) ↦ (𝑝 ∘ 𝑟′ ∘ (𝑝′)−1, (𝑝, 𝑝′)). To check the cocycle condition we have to verify
that 𝜑02 = 𝜑12 ∘ 𝜑01 as maps over

(𝑈 ×𝑆 𝑈) ×(𝑈×𝑆𝑈) (𝑈 ×𝑆 𝑈) ×(𝑈×𝑆𝑈) (𝑈 ×𝑆 𝑈) = (𝑃 ×𝑆 𝑃) ×𝑠×𝑠,(𝑈×𝑆𝑈),𝑡×𝑡 (𝑃 ×𝑆 𝑃)

By explicit calculation we see that

𝜑02 (𝑟, (𝑝1, 𝑝′
1), (𝑝2, 𝑝′

2)) ↦ ((𝑝1, 𝑝′
1), (𝑝2, 𝑝′

2), (𝑝1 ∘ 𝑝2)−1 ∘ 𝑟 ∘ (𝑝′
1 ∘ 𝑝′

2))
𝜑01 (𝑟, (𝑝1, 𝑝′

1), (𝑝2, 𝑝′
2)) ↦ ((𝑝1, 𝑝′

1), 𝑝−1
1 ∘ 𝑟 ∘ 𝑝′

1, (𝑝2, 𝑝′
2))

𝜑12 ((𝑝1, 𝑝′
1), 𝑟, (𝑝2, 𝑝′

2)) ↦ ((𝑝1, 𝑝′
1), (𝑝2, 𝑝′

2), 𝑝−1
2 ∘ 𝑟 ∘ 𝑝′

2)

(with obvious notation) which implies what we want. As 𝑗 is separated and locally quasi-
finite by (5)wemay applyMore onMorphisms, Lemma 33.35.1 to get a scheme𝑅 → 𝑈×𝑆𝑈
and an isomorphism

𝑅 → 𝑅 ×(𝑈×𝑆𝑈) (𝑈 ×𝑆 𝑈)

which identifies the descent datum 𝜑 with the canonical descent datum on 𝑅 ×(𝑈×𝑆𝑈) (𝑈 ×𝑆
𝑈), see Descent, Definition 31.30.10.

Since 𝑈 ×𝑆 𝑈 → 𝑈 ×𝑆 𝑈 is finite locally free we conclude that 𝑅 → 𝑅 is finite locally
free as a base change. Hence 𝑅 → 𝑅 is surjective as a map of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. Our
choice of 𝜑 implies that given 𝑇-valued points 𝑟, 𝑟′ ∈ 𝑅(𝑇) these have the same image in
𝑅 if and only if 𝑝−1 ∘ 𝑟 ∘ 𝑝′ for some 𝑝, 𝑝′ ∈ 𝑃(𝑇). Thus 𝑅 represents the sheaf

𝑇 ⟼ 𝑅(𝑇) = 𝑃(𝑇)\𝑅(𝑇)/𝑃(𝑇)

with notation as in the discussion preceding the lemma. Hence we can define the groupoid
structure on (𝑈 = 𝑈/𝑃, 𝑅 = 𝑃\𝑅/𝑃) exactly as in the discussion of the ``plain'' groupoid
case. It follows from this that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is the pullback of this groupoid structure via the
morphism 𝑈 → 𝑈. This concludes the proof. �

54.10. Final bootstrap

The results in this section go quite a bit beyond the earlier results.

Theorem 54.10.1. Let 𝑆 be a scheme. Let 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be a functor. Any one

of the following conditions implies that 𝐹 is an algebraic space:
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(1) 𝐹 = 𝑈/𝑅 where (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid in algebraic spaces over 𝑆 such that
𝑠, 𝑡 are flat and locally of finite presentation, and 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is an
equivalence relation,

(2) 𝐹 = 𝑈/𝑅 where (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid scheme over 𝑆 such that 𝑠, 𝑡 are flat
and locally of finite presentation, and 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is an equivalence
relation,

(3) 𝐹 is a sheaf and there exists an algebraic space 𝑈 and a morphism 𝑈 → 𝐹 which
is which is representable by algebraic spaces, surjective, flat and locally of finite
presentation,

(4) 𝐹 is a sheaf and there exists a scheme 𝑈 and a morphism 𝑈 → 𝐹 which is which
is representable (by algebraic spaces or schemes), surjective, flat and locally of
finite presentation,

(5) 𝐹 is a sheaf,Δ𝐹 is representable by algebraic spaces, and there exists an algebraic
space 𝑈 and a morphism 𝑈 → 𝐹 which is surjective, flat, and locally of finite
presentation, or

(6) 𝐹 is a sheaf, Δ𝐹 is representable, and there exists a scheme 𝑈 and a morphism
𝑈 → 𝐹 which is surjective, flat, and locally of finite presentation.

Proof. Trivial observations: (6) is a special case of (5) and (4) is a special case of (3). We
first prove that cases (5) and (3) reduce to case (1). Namely, by bootstrapping the diagonal
Lemma 54.5.3 we see that (3) implies (5). In case (5) we set 𝑅 = 𝑈 ×𝐹 𝑈 which is an
algebraic space by assumption. Moreover, by assumption both projections 𝑠, 𝑡 ∶ 𝑅 → 𝑈
are surjective, flat and locally of finite presentation. The map 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is clearly an
equivalence relation. By Lemma 54.4.5 the map 𝑈 → 𝐹 is a surjection of sheaves. Thus
𝐹 = 𝑈/𝑅 which reduces us to case (1).

Next, we show that (1) reduces to (2). Namely, let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic
spaces over 𝑆 such that 𝑠, 𝑡 are flat and locally of finite presentation, and 𝑗 = (𝑡, 𝑠) ∶ 𝑅 →
𝑈 ×𝑆 𝑈 is an equivalence relation. Choose a scheme 𝑈′ and a surjective étale morphism
𝑈′ → 𝑈. Let 𝑅′ = 𝑅|𝑈′ be the restriction of 𝑅 to 𝑈′. By Groupoids in Spaces, Lemma
52.18.6 we see that 𝑈/𝑅 = 𝑈′/𝑅′. Since 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ are also flat and locally of finite
presentation (see More on Groupoids in Spaces, Lemma 53.6.1) this reduces us to the case
where 𝑈 is a scheme. As 𝑗 is an equivalence relation we see that 𝑗 is a monomorphism.
As 𝑠 ∶ 𝑅 → 𝑈 is locally of finite presentation we see that 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is locally of
finite type, see Morphisms of Spaces, Lemma 42.22.6. By Morphisms of Spaces, Lemma
42.25.8 we see that 𝑗 is locally quasi-finite and separated. Hence if 𝑈 is a scheme, then 𝑅
is a scheme by Morphisms of Spaces, Proposition 42.39.2. Thus we reduce to proving the
theorem in case (2).

Assume 𝐹 = 𝑈/𝑅 where (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid scheme over 𝑆 such that 𝑠, 𝑡 are flat
and locally of finite presentation, and 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is an equivalence relation.
By Lemma 54.8.1 we reduce to that case where 𝑠, 𝑡 are flat, locally of finite presentation,
and locally quasi-finite. Let 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 be an affine open covering (with index set 𝐼 of
cardinality ≤ than the size of 𝑈 to avoid set theoretic problems later -- most readers can
safely ignore this remark). Let (𝑈𝑖, 𝑅𝑖, 𝑠𝑖, 𝑡𝑖, 𝑐𝑖) be the restriction of 𝑅 to 𝑈𝑖. It is clear
that 𝑠𝑖, 𝑡𝑖 are still flat, locally of finite presentation, and locally quasi-finite as 𝑅𝑖 is the open
subscheme 𝑠−1(𝑈𝑖)∩𝑡−1(𝑈𝑖) of 𝑅 and 𝑠𝑖, 𝑡𝑖 are the restrictions of 𝑠, 𝑡 to this open. By Lemma
54.7.1 (or the simpler Spaces, Lemma 40.10.2) the map 𝑈𝑖/𝑅𝑖 → 𝑈/𝑅 is representable
by open immersions. Hence if we can show that 𝐹𝑖 = 𝑈𝑖/𝑅𝑖 is an algebraic space, then
∐𝑖∈𝐼 𝐹𝑖 is an algebraic space by Spaces, Lemma 40.8.3. As 𝑈 = ⋃ 𝑈𝑖 is an open covering
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it is clear that ∐ 𝐹𝑖 → 𝐹 is surjective. Thus it follows that 𝑈/𝑅 is an algebraic space, by
Spaces, Lemma 40.8.4. In this way we reduce to the case where 𝑈 is affine and 𝑠, 𝑡 are flat,
locally of finite presentation, and locally quasi-finite and 𝑗 is an equivalence.

Assume (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid scheme over 𝑆, with 𝑈 affine, such that 𝑠, 𝑡 are flat, lo-
cally of finite presentation, and locally quasi-finite, and 𝑗 is an equivalence relation. Choose
𝑢 ∈ 𝑈. We apply More on Groupoids in Spaces, Lemma 53.11.9 to 𝑢 ∈ 𝑈, 𝑅, 𝑠, 𝑡, 𝑐. We ob-
tain an affine scheme 𝑈′, an étale morphism 𝑔 ∶ 𝑈′ → 𝑈, a point 𝑢′ ∈ 𝑈′ with 𝜅(𝑢) = 𝜅(𝑢′)
such that the restriction 𝑅′ = 𝑅|𝑈′ is quasi-split over 𝑢′. Note that the image 𝑔(𝑈′) is open
as 𝑔 is étale and contains 𝑢′. Hence, repeatedly applying the lemma, we can find finitely
many points 𝑢𝑖 ∈ 𝑈, 𝑖 = 1, … , 𝑛, affine schemes 𝑈′

𝑖 , étale morphisms 𝑔𝑖 ∶ 𝑈′
𝑖 → 𝑈, points

𝑢′
𝑖 ∈ 𝑈′

𝑖 with 𝑔(𝑢′
𝑖 ) = 𝑢𝑖 such that (a) each restriction 𝑅′

𝑖 is quasi-split over some point
in 𝑈′

𝑖 and (b) 𝑈 = ⋃𝑖=1,…,𝑛 𝑔𝑖(𝑈′
𝑖 ). Now we rerun the last part of the argument in the

preceding paragraph: Using Lemma 54.7.1 (or the simpler Spaces, Lemma 40.10.2) the
map 𝑈′

𝑖 /𝑅
′
𝑖 → 𝑈/𝑅 is representable by open immersions. If we can show that 𝐹𝑖 = 𝑈′

𝑖 /𝑅
′
𝑖

is an algebraic space, then ∐𝑖∈𝐼 𝐹𝑖 is an algebraic space by Spaces, Lemma 40.8.3. As
{𝑔𝑖 ∶ 𝑈′

𝑖 → 𝑈} is an étale covering it is clear that ∐ 𝐹𝑖 → 𝐹 is surjective. Thus it follows
that 𝑈/𝑅 is an algebraic space, by Spaces, Lemma 40.8.4. In this way we reduce to the case
where 𝑈 is affine and 𝑠, 𝑡 are flat, locally of finite presentation, and locally quasi-finite, 𝑗 is
an equivalence, and 𝑅 is quasi-split over 𝑢 for some 𝑢 ∈ 𝑈.

Assume (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid scheme over 𝑆, with 𝑈 affine, 𝑢 ∈ 𝑈 such that 𝑠, 𝑡 are
flat, locally of finite presentation, and locally quasi-finite and 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is an
equivalence relation and 𝑅 is quasi-split over 𝑢. Let 𝑃 ⊂ 𝑅 be a quasi-splitting of 𝑅 over
𝑢. By Lemma 54.9.1 we see that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is the restriction of a groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
by a surjective finite locally free morphism 𝑈 → 𝑈 such that 𝑃 = 𝑈 ×𝑈 𝑈. Note that 𝑠, 𝑡
are the base changes of the morphsms 𝑠, 𝑡 by 𝑈 → 𝑈. As {𝑈 → 𝑈} is an fppf covering
we conclude 𝑠, 𝑡 are flat, locally of finite presentation, and locally quasi-finite, see Descent,
Lemmas 31.19.13, 31.19.9, and 31.19.22. Consider the commutative diagram

𝑈 ×𝑈 𝑈

""

𝑃 //

��

𝑅

��
𝑈 𝑒 // 𝑅

It is a general fact about restrictions that the outer four corners form a cartesian diagram.
By the equality we see the inner square is cartesian. Since 𝑃 is open in 𝑅 (by definition of a
quasi-splitting) we conclude that 𝑒 is an open immersion by Descent, Lemma 31.19.14. An
application of Groupoids, Lemma 35.17.5 shows that 𝑈/𝑅 = 𝑈/𝑅. Hence we have reduced
to the case where (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid scheme over 𝑆, with 𝑈 affine, 𝑢 ∈ 𝑈 such that
𝑠, 𝑡 are flat, locally of finite presentation, and locally quasi-finite and 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈×𝑆𝑈
is an equivalence relation and 𝑒 ∶ 𝑈 → 𝑅 is an open immersion!

But of course, if 𝑒 is an open immersion and 𝑠, 𝑡 are flat and locally of finite presentation then
the morphisms 𝑡, 𝑠 are étale. For example you can see this by applying More on Groupoids,
Lemma 36.4.1 which shows that Ω𝑅/𝑈 = 0 which in turn implies that 𝑠, 𝑡 ∶ 𝑅 → 𝑈 is
G-unramified (see Morphisms, Lemma 24.34.2), which in turn implies that 𝑠, 𝑡 are étale
(see Morphisms, Lemma 24.35.16). And if 𝑠, 𝑡 are étale then finally 𝑈/𝑅 is an algebraic
space by Spaces, Theorem 40.10.5. �
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54.11. Applications

As a first application we obtain the following fundamental fact:

A sheaf which is fppf locally an algebraic space is an algebraic space.

This is the content of the following lemma. Note that assumption (2) is equivalent to the
condition that 𝐹|(Sch/𝑆𝑖)𝑓𝑝𝑝𝑓

is an algebraic space, see Spaces, Lemma 40.16.4. Assumption
(3) is a set theoretic condition whichmay be ignored by those not worried about set theoretic
questions.

Lemma 54.11.1. Let 𝑆 be a scheme. Let 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be a functor. Let {𝑆𝑖 →

𝑆}𝑖∈𝐼 be a covering of (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume that
(1) 𝐹 is a sheaf,
(2) each 𝐹𝑖 = ℎ𝑆𝑖

× 𝐹 is an algebraic space, and
(3) ∐𝑖∈𝐼 𝐹𝑖 is an algebraic space (see Spaces, Lemma 40.8.3).

Then 𝐹 is an algebraic space.

Proof. Consider the morphism ∐ 𝐹𝑖 → 𝐹. This is the base change of ∐ 𝑆𝑖 → 𝑆 via
𝐹 → 𝑆. Hence it is representable, locally of finite presentation, flat and surjective by our
definition of an fppf covering and Lemma 54.4.2. Thus Theorem 54.10.1 applies to show
that 𝐹 is an algebraic space. �

Here is a special case where we do not need to worry about set theoretical issues.

Lemma 54.11.2. Let 𝑆 be a scheme. Let 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be a functor. Let {𝑆𝑖 →

𝑆}𝑖∈𝐼 be a covering of (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume that
(1) 𝐹 is a sheaf,
(2) each 𝐹𝑖 = ℎ𝑆𝑖

× 𝐹 is an algebraic space, and
(3) the morphisms 𝐹𝑖 → 𝑆𝑖 are of finite type.

Then 𝐹 is an algebraic space.

Proof. We will use Lemma 54.11.1 above. To do this we will show that the assumption
that 𝐹𝑖 is of finite type over 𝑆𝑖 to prove that the set theoretic condition in the lemma is
satisfied (after perhaps refining the given covering of 𝑆 a bit). We suggest the reader skip
the rest of the proof.

If 𝑆′
𝑖 → 𝑆𝑖 is a morphism of schemes then

ℎ𝑆′
𝑖

× 𝐹 = ℎ𝑆′
𝑖

×ℎ𝑆𝑖
ℎ𝑆𝑖

× 𝐹 = ℎ𝑆′
𝑖

×ℎ𝑆𝑖
𝐹𝑖

is an algebraic space of finite type over 𝑆′
𝑖 , see Spaces, Lemma 40.7.3 and Morphisms of

Spaces, Lemma 42.22.3. Thus we may refine the given covering. After doing this we may
assume: (a) each 𝑆𝑖 is affine, and (b) the cardinality of 𝐼 is at most the cardinality of the
set of points of 𝑆. (Since to cover all of 𝑆 it is enough that each point is in the image of
𝑆𝑖 → 𝑆 for some 𝑖.)

Since each 𝑆𝑖 is affine and each 𝐹𝑖 of finite type over 𝑆𝑖 we conclude that 𝐹𝑖 is quasi-
compact. Hence by Properties of Spaces, Lemma 41.6.3we can find an affine𝑈𝑖 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓)
and a surjective étale morphism 𝑈𝑖 → 𝐹𝑖. The fact that 𝐹𝑖 → 𝑆𝑖 is locally of finite type then
implies that 𝑈𝑖 → 𝑆𝑖 is locally of finite type, and in particular 𝑈𝑖 → 𝑆 is locally of finite
type. By Sets, Lemma 3.9.7 we conclude that size(𝑈𝑖) ≤ size(𝑆). Since also |𝐼| ≤ size(𝑆)
we conclude that ∐𝑖∈𝐼 𝑈𝑖 is isomorphic to an object of (Sch/𝑆)𝑓𝑝𝑝𝑓 by Sets, Lemma 3.9.5

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04SK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04U0
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and the construction of Sch. This implies that ∐ 𝐹𝑖 is an algebraic space by Spaces, Lemma
40.8.3 and we win. �

Lemma 54.11.3. Assume 𝐵 → 𝑆 and (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) are as in Groupoids in Spaces, Defi-
nition 52.19.1 (1). For any scheme 𝑇 over 𝑆 and objects 𝑥, 𝑦 of [𝑈/𝑅] over 𝑇 the sheaf
𝐼𝑠𝑜𝑚(𝑥, 𝑦) on (Sch/𝑇)𝑓𝑝𝑝𝑓 is an algebraic space.

Proof. By Groupoids in Spaces, Lemma 52.21.3 there exists an fppf covering {𝑇𝑖 → 𝑇}𝑖∈𝐼
such that 𝐼𝑠𝑜𝑚(𝑥, 𝑦)|(Sch/𝑇𝑖)𝑓𝑝𝑝𝑓

is an algebraic space for each 𝑖. By Spaces, Lemma 40.16.4
this means that each 𝐹𝑖 = ℎ𝑆𝑖

× 𝐼𝑠𝑜𝑚(𝑥, 𝑦) is an algebraic space. Thus to prove the lemma
we only have to verify the set theoretic condition that ∐ 𝐹𝑖 is an algebraic space of Lemma
54.11.1 above to conclude. To do this we use Spaces, Lemma 40.8.3 which requires show-
ing that 𝐼 and the 𝐹𝑖 are not ``too large''. We suggest the reader skip the rest of the proof.

Choose 𝑈′ ∈ 𝑂𝑏(Sch/𝑆)𝑓𝑝𝑝𝑓 and a surjective étale morphism 𝑈′ → 𝑈. Let 𝑅′ be the
restriction of 𝑅 to 𝑈′. Since [𝑈/𝑅] = [𝑈′/𝑅′] we may, after replacing 𝑈 by 𝑈′, assume that
𝑈 is a scheme. (This step is here so that the fibre products below are over a scheme.)

Note that if we refine the covering {𝑇𝑖 → 𝑇} then it remains true that each 𝐹𝑖 is an algebraic
space. Hence we may assume that each 𝑇𝑖 is affine. Since 𝑇𝑖 → 𝑇 is locally of finite
presentation, this then implies that size(𝑇𝑖) ≤ size(𝑇), see Sets, Lemma 3.9.7. We may also
assume that the cardinality of the index set 𝐼 is at most the cardinality of the set of points
of 𝑇 since to get a covering it suffices to check that each point of 𝑇 is in the image. Hence
|𝐼| ≤ size(𝑇). Choose 𝑊 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective étale morphism 𝑊 → 𝑅. Note
that in the proof of Groupoids in Spaces, Lemma 52.21.3 we showed that 𝐹𝑖 is representable
by 𝑇𝑖 ×(𝑦𝑖,𝑥𝑖),𝑈×𝐵𝑈 𝑅 for some 𝑥𝑖, 𝑦𝑖 ∶ 𝑇𝑖 → 𝑈. Hence nowwe see that 𝑉𝑖 = 𝑇𝑖 ×(𝑦𝑖,𝑥𝑖),𝑈×𝐵𝑈 𝑊
is a scheme which comes with an étale surjection 𝑉𝑖 → 𝐹𝑖. By Sets, Lemma 3.9.6 we see
that

size(𝑉𝑖) ≤ max{size(𝑇𝑖), size(𝑊)} ≤ max{size(𝑇), size(𝑊)}
Hence, by Sets, Lemma 3.9.5 we conclude that

size(∐𝑖∈𝐼
𝑉𝑖) ≤ max{|𝐼|, size(𝑇), size(𝑊)}.

Hence we conclude by our construction of Sch that ∐𝑖∈𝐼 𝑉𝑖 is isomorphic to an object 𝑉 of
(Sch/𝑆)𝑓𝑝𝑝𝑓. This verifies the hypothesis of Spaces, Lemma 40.8.3 and we win. �

Lemma 54.11.4. Let 𝑆 be a scheme. Consider an algebraic space 𝐹 of the form 𝐹 = 𝑈/𝑅
where (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid in algebraic spaces over𝑆 such that 𝑠, 𝑡 are flat and locally
of finite presentation, and 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is an equivalence relation. Then 𝑈 → 𝐹
is surjective, flat, and locally of finite presentation.

Proof. This is almost but not quite a triviality. Namely, by Groupoids in Spaces, Lemma
52.18.5 and the fact that 𝑗 is a monomorphism we see that 𝑅 = 𝑈 ×𝐹 𝑈. Choose a scheme
𝑊 and a surjective étale morphism 𝑊 → 𝐹. As 𝑈 → 𝐹 is a surjection of sheaves we can
find an fppf covering {𝑊𝑖 → 𝑊} and maps 𝑊𝑖 → 𝑈 lifting the morphisms 𝑊𝑖 → 𝐹. Then
we see that

𝑊𝑖 ×𝐹 𝑈 = 𝑊𝑖 ×𝑈 𝑈 ×𝐹 𝑈 = 𝑊𝑖 ×𝑈,𝑡 𝑅
and the projection 𝑊𝑖 ×𝐹 𝑈 → 𝑊𝑖 is the base change of 𝑡 ∶ 𝑅 → 𝑈 hence flat and locally
of finite presentation, see Morphisms of Spaces, Lemmas 42.27.3 and 42.26.3. Hence by
Descent on Spaces, Lemmas 45.10.11 and 45.10.8 we see that 𝑈 → 𝐹 is flat and locally of
finite presentation. It is surjective by Spaces, Remark 40.5.2. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04TB
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Lemma 54.11.5. Let 𝑆 be a scheme. Let 𝑋 → 𝐵 be a morphism of algebraic spaces over
𝑆. Let 𝐺 be a group algebraic space over 𝐵 and let 𝑎 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 be an action of 𝐺 on
𝑋/𝐵. If

(1) 𝑎 is a free action, and
(2) 𝐺 → 𝐵 is flat and locally of finite presentation,

then 𝑋/𝐺 (see Groupoids in Spaces, Definition 52.18.1) is an algebraic space and 𝑋 →
𝑋/𝐺 is surjective, flat, and locally of finite presentation.

Proof. The fact that 𝑋/𝐺 is an algebraic space is immediate from Theorem 54.10.1 and the
definitions. Namely, 𝑋/𝐺 = 𝑋/𝑅 where 𝑅 = 𝐺 ×𝐵 𝑋. The morphisms 𝑠, 𝑡 ∶ 𝐺 ×𝐵 𝑋 → 𝑋
are flat and locally of finite presentation (clear for 𝑠 as a base change of 𝐺 → 𝐵 and by
symmetry using the inverse it follows for 𝑡) and the morphism 𝑗 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 ×𝐵 𝑋
is a monomorphism by Groupoids in Spaces, Lemma 52.8.3 as the action is free. The
asssertions about the morphism 𝑋 → 𝑋/𝐺 follow from Lemma 54.11.4. �

Lemma 54.11.6. Let {𝑆𝑖 → 𝑆}𝑖∈𝐼 be a covering of (Sch/𝑆)𝑓𝑝𝑝𝑓. Let𝐺 be a group algebraic
space over 𝑆, and denote 𝐺𝑖 = 𝐺𝑆𝑖

the base changes. Suppose given

(1) for each 𝑖 ∈ 𝐼 an fppf 𝐺𝑖-torsor 𝑋𝑖 over 𝑆𝑖, and
(2) for each 𝑖, 𝑗 ∈ 𝐼 a 𝐺𝑆𝑖×𝑆𝑆𝑗

-equivariant isomorphism 𝜑𝑖𝑗 ∶ 𝑋𝑖 ×𝑆 𝑆𝑗 → 𝑆𝑖 ×𝑆 𝑋𝑗
satisfying the cocycle condition over every 𝑆𝑖 ×𝑆 𝑆𝑗 ×𝑆 𝑆𝑗.

Then there exists an fppf 𝐺-torsor 𝑋 over 𝑆 whose base change to 𝑆𝑖 is isomorphic to 𝑋𝑖
such that we recover the descent datum 𝜑𝑖𝑗.

Proof. We may think of 𝑋𝑖 as a sheaf on (Sch/𝑆𝑖)𝑓𝑝𝑝𝑓, see Spaces, Section 40.16. By
Sites, Section 9.22 the descent datum (𝑋𝑖, 𝜑𝑖𝑗) is effective in the sense that there exists
a unique sheaf 𝑋 on (Sch/𝑆)𝑓𝑝𝑝𝑓 which recovers the algebraic spaces 𝑋𝑖 after restricting
back to (Sch/𝑆𝑖)𝑓𝑝𝑝𝑓. Hence we see that 𝑋𝑖 = ℎ𝑆𝑖

× 𝑋. By Lemma 54.11.1 we see that
𝑋 is an algebraic space, modulo verifying that ∐ 𝑋𝑖 is an algebraic space which we do at
the end of the proof. By the equivalence of categories in Sites, Lemma 9.22.3 the action
maps 𝐺𝑖 ×𝑆𝑖

𝑋𝑖 → 𝑋𝑖 glue to give a map 𝑎 ∶ 𝐺 ×𝑆 𝑋 → 𝑋. Now we have to show
that 𝑎 is an action and that 𝑋 is a pseudo-torsor, and fppf locally trivial (see Groupoids in
Spaces, Definition 52.9.3). These may be checked fppf locally, and hence follow from the
corresponding properties of the actions 𝐺𝑖 ×𝑆𝑖

𝑋𝑖 → 𝑋𝑖. Hence the lemma is true.

We suggest the reader skip the rest of the proof, which is purely set theoretical. Pick cov-
erings {𝑆𝑖𝑗 → 𝑆𝑗}𝑗∈𝐽𝑖

of (Sch/𝑆)𝑓𝑝𝑝𝑓 which trivialize the 𝐺𝑖 torsors 𝑋𝑖 (possible by as-
sumption, and Topologies, Lemma 30.7.7 part (1)). Then {𝑆𝑖𝑗 → 𝑆}𝑖∈𝐼,𝑗∈𝐽𝑖

is a cover-
ing of (Sch/𝑆)𝑓𝑝𝑝𝑓 and hence we may assume that each 𝑋𝑖 is the trivial torsor! Of course
we may also refine the covering further, hence we may assume that each 𝑆𝑖 is affine and
that the index set 𝐼 has cardinality bounded by the cardinality of the set of points of 𝑆.
Choose 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective étale morphism 𝑈 → 𝐺. Then we see
that 𝑈𝑖 = 𝑈 ×𝑆 𝑆𝑖 comes with an étale surjective morphism to 𝑋𝑖 ≅ 𝐺𝑖. By Sets,
Lemma 3.9.6 we see size(𝑈𝑖) ≤ max{size(𝑈), size(𝑆𝑖)}. By Sets, Lemma 3.9.7 we have
size(𝑆𝑖) ≤ size(𝑆). Hence we see that size(𝑈𝑖) ≤ max{size(𝑈), size(𝑆)} for all 𝑖 ∈ 𝐼.
Together with the bound on |𝐼| we found above we conclude from Sets, Lemma 3.9.5 that
size(∐ 𝑈𝑖) ≤ max{size(𝑈), size(𝑆)}. Hence Spaces, Lemma 40.8.3 applies to show that
∐ 𝑋𝑖 is an algebraic space which is what we had to prove. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06PH
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54.12. Algebraic spaces in the étale topology

Let 𝑆 be a scheme. Instead of working with sheaves over the big fppf site (Sch/𝑆)𝑓𝑝𝑝𝑓 we
could work with sheaves over the big étale site (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒. All of the material in Algebraic
Spaces, Sections 40.3 and 40.5 makes sense for sheaves over (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒. Thus we get a
second notion of algebraic spaces by working in the étale topology. This notion is (a priori)
weaker then the notion introduced inAlgebraic Spaces, Definition 40.6.1 since a sheaf in the
fppf topology is certainly a sheaf in the étale topology. However, the notions are equivalent
as is shown by the following lemma.

Lemma 54.12.1. Denote the common underlying category of Sch𝑓𝑝𝑝𝑓 and Sch ́𝑒𝑡𝑎𝑙𝑒 by Sch𝛼
(see Topologies, Remark 30.9.1). Let 𝑆 be an object of Sch𝛼.

𝐹 ∶ (Sch𝛼/𝑆)𝑜𝑝𝑝 ⟶ Sets
be a presheaf with the following properties:

(1) 𝐹 is a sheaf for the étale topology,
(2) the diagonal Δ ∶ 𝐹 → 𝐹 × 𝐹 is representable, and
(3) there exists 𝑈 ∈ 𝑂𝑏(Sch𝛼/𝑆) and 𝑈 → 𝐹 which is surjective and étale.

Then 𝐹 is an algebraic space in the sense of Algebraic Spaces, Definition 40.6.1.

Proof. Note that properties (2) and (3) of the lemma and the corresponding properties (2)
and (3) of Algebraic Spaces, Definition 40.6.1 are independent of the topology. This is true
because these properties involve only the notion of a fibre product of presheaves, maps of
presheaves, the notion of a representable transformation of functors, and what it means for
such a transformation to be surjective and étale. Thus all we have to prove is that an étale
sheaf 𝐹 with properties (2) and (3) is also an fppf sheaf.
To do this, let 𝑅 = 𝑈 ×𝐹 𝑈. By (2) the presheaf 𝑅 is representable by a scheme and by (3)
the projections 𝑅 → 𝑈 are étale. Thus 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈 is an étale equivalence relation.
Moreover the map 𝑈 → 𝐹 identifies 𝐹 as the quotient of 𝑈 by 𝑅 for the étale topology
(follows exactly as in the proof of Algebraic Spaces, Lemma 40.9.1). Next, let 𝑈/𝑅 denote
the quotient sheaf in the fppf topology which is an algebraic space by Spaces, Theorem
40.10.5. Thus we have morphisms (tranformations of functors)

𝑈 → 𝐹 → 𝑈/𝑅.
By the aforementioned Spaces, Theorem 40.10.5 the composition is representable, sur-
jective, and étale. Hence for any scheme 𝑇 and morphism 𝑇 → 𝑈/𝑅 the fibre product
𝑉 = 𝑇 ×𝑈/𝑅 𝑈 is a scheme surjective and étale over 𝑇. In other words, {𝑉 → 𝑈} is an étale
covering. This proves that 𝑈 → 𝑈/𝑅 is surjective as a map of sheaves in the étale topology.
It follows that 𝐹 → 𝑈/𝑅 is surjective as a map of sheaves in the étale topology. On the other
hand, the map 𝐹 → 𝑈/𝑅 is injective (as a map of presheaves) since 𝑅 = 𝑈 ×𝑈/𝑅 𝑈 again by
Spaces, Theorem 40.10.5. It follows that 𝐹 → 𝑈/𝑅 is an isomorphism of étale sheaves, see
Sites, Lemma 9.11.2 which concludes the proof. �
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CHAPTER 55

Examples of Stacks

55.1. Introduction

This is a discussion of examples of stacks in algebraic geometry. Some of them are algebraic
stacks, some are not. We will discuss which are algebraic stacks in a later chapter. This
means that in this chapter we mainly worry about the descent conditions. See [Vis] for
example.

55.2. Notation

In this chapter we fix a suitable big fppf site Sch𝑓𝑝𝑝𝑓 as in Topologies, Definition 30.7.6.
So, if not explicitly stated otherwise all schemes will be objects of Sch𝑓𝑝𝑝𝑓. We will always
work relative to a base 𝑆 contained in Sch𝑓𝑝𝑝𝑓. And we will then work with the big fppf
site (Sch/𝑆)𝑓𝑝𝑝𝑓, see Topologies, Definition 30.7.8. The absolute case can be recovered by
taking 𝑆 = 𝑆𝑝𝑒𝑐(𝐙).

55.3. Examples of stacks

We first give some important examples of stacks over (Sch/𝑆)𝑓𝑝𝑝𝑓.

55.4. Quasi-coherent sheaves

We define a category QCoh as follows:
(1) An object of QCoh is a pair (𝑋, ℱ), where 𝑋/𝑆 is an object of (Sch/𝑆)𝑓𝑝𝑝𝑓, and

ℱ is a quasi-coherent 𝒪𝑋-module, and
(2) a morphism (𝑓, 𝜑) ∶ (𝑌, 𝒢) → (𝑋, ℱ) is a pair consisting of a morphism 𝑓 ∶ 𝑌 →

𝑋 of schemes over 𝑆 and an 𝑓-map (see Sheaves, Section 6.26) 𝜑 ∶ ℱ → 𝒢.
(3) The composition of morphisms

(𝑍, ℋ)
(𝑔,𝜓)

−−−−→ (𝑌, 𝒢)
(𝑓,𝜙)

−−−−→ (𝑋, ℱ)

is (𝑓 ∘ 𝑔, 𝜓 ∘ 𝜙) where 𝜓 ∘ 𝜙 is the composition of 𝑓-maps.
Thus QCoh is a category and

𝑝 ∶ QCoh → (Sch/𝑆)𝑓𝑝𝑝𝑓, (𝑋, ℱ) ↦ 𝑋

is a functor. Note that the fibre category of QCoh over a scheme 𝑋 is just the category
QCoh(𝑋) of quasi-coherent𝒪𝑋-modules. We remark for later use that given (𝑋, ℱ), (𝑌, 𝒢) ∈
𝑂𝑏(QCoh) we have

(55.4.0.1) 𝑀𝑜𝑟QCoh((𝑌, 𝒢), (𝑋, ℱ)) = ∐𝑓∈𝑀𝑜𝑟𝑆(𝑌,𝑋)
𝑀𝑜𝑟QCoh(𝑌)(𝑓∗ℱ, 𝒢)

See the discussion on 𝑓-maps of modules in Sheaves, Section 6.26.
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The category QCoh is not a stack over (Sch/𝑆)𝑓𝑝𝑝𝑓 because its collection of objects is a
proper class. On the other hand we will see that it does satisfy all the axioms of a stack.
We will get around the set theoretical issue in Section 55.5.

Lemma 55.4.1. A morphism (𝑓, 𝜑) ∶ (𝑌, 𝒢) → (𝑋, ℱ) of QCoh is strongly cartesian if and
only if the map 𝜑 induces an isomorphism 𝑓∗ℱ → 𝒢.

Proof. Let (𝑋, ℱ) ∈ 𝑂𝑏(QCoh). Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism of (Sch/𝑆)𝑓𝑝𝑝𝑓. Note that
there is a canonical 𝑓-map 𝑐 ∶ ℱ → 𝑓∗ℱ and hence we get a morphism (𝑓, 𝑐) ∶ (𝑌, 𝑓∗ℱ) →
(𝑋, ℱ). We claim that (𝑓, 𝑐) is strongly cartesian. Namely, for any object (𝑍, ℋ) of QCoh
we have

𝑀𝑜𝑟QCoh((𝑍, ℋ), (𝑌, 𝑓∗ℱ)) = ∐𝑔∈𝑀𝑜𝑟𝑆(𝑍,𝑌)
𝑀𝑜𝑟QCoh(𝑍)(𝑔∗𝑓∗ℱ, ℋ)

= ∐𝑔∈𝑀𝑜𝑟𝑆(𝑍,𝑌)
𝑀𝑜𝑟QCoh(𝑍)((𝑓 ∘ 𝑔)∗ℱ, ℋ)

= 𝑀𝑜𝑟QCoh((𝑍, ℋ), (𝑋, ℱ)) ×𝑀𝑜𝑟𝑆(𝑍,𝑋) 𝑀𝑜𝑟𝑆(𝑍, 𝑌)

where we have used Equation (55.4.0.1) twice. This proves that the condition of Categories,
Definition 4.30.1 holds for (𝑓, 𝑐), and hence our claim is true. Now by Categories, Lemma
4.30.2 we see that isomorphisms are strongly cartesian and compositions of strongly carte-
sian morphisms are strongly cartesian which proves the ``if'' part of the lemma. For the
converse, note that given (𝑋, ℱ) and 𝑓 ∶ 𝑌 → 𝑋, if there exists a strongly cartesian mor-
phism lifting 𝑓 with target (𝑋, ℱ) then it has to be isomorphic to (𝑓, 𝑐) (see discussion
following Categories, Definition 4.30.1). Hence the "only if" part of the lemma holds. �

Lemma 55.4.2. The functor 𝑝 ∶ QCoh → (Sch/𝑆)𝑓𝑝𝑝𝑓 satisfies conditions (1), (2) and (3)
of Stacks, Definition 50.4.1.

Proof. It is clear from Lemma 55.4.1 that QCoh is a fibred category over (Sch/𝑆)𝑓𝑝𝑝𝑓.
Given covering 𝒰 = {𝑋𝑖 → 𝑋}𝑖∈𝐼 of (Sch/𝑆)𝑓𝑝𝑝𝑓 the functor

QCoh(𝑇) ⟶ 𝐷𝐷(𝒰)
is fully faithful and essentially surjective, see Descent, Proposition 31.4.2. Hence Stacks,
Lemma 50.4.2 applies to show that QCoh satisfies all the axioms of a stack. �

55.5. The stack of finitely generated quasi-coherent sheaves

It turns out that we can get a stack of quasi-coherent sheaves if we only consider finite type
quasi-coherent modules. Let us denote

𝑝𝑓𝑔 ∶ QCoh𝑓𝑔 → (Sch/𝑆)𝑓𝑝𝑝𝑓

the full subcategory of QCoh over (Sch/𝑆)𝑓𝑝𝑝𝑓 consisting of pairs (𝑇, ℱ) such that ℱ is a
quasi-coherent 𝒪𝑇-module of finite type.

Lemma 55.5.1. The functor 𝑝𝑓𝑔 ∶ QCoh𝑓𝑔 → (Sch/𝑆)𝑓𝑝𝑝𝑓 satisfies conditions (1), (2) and
(3) of Stacks, Definition 50.4.1.

Proof. We will verify assumptions (1), (2), (3) of Stacks, Lemma 50.4.3 to prove this.
By Lemma 55.4.1 a morphism (𝑌, 𝒢) → (𝑋, ℱ) is strongly cartesian if and only if it in-
duces an isomorphism 𝑓∗ℱ → 𝒢. By Modules, Lemma 15.9.2 the pullback of a finite type
𝒪𝑋-module is of finite type. Hence assumption (1) of Stacks, Lemma 50.4.3 holds. As-
sumption (2) holds trivially. Finally, to prove assumption (3) we have to show: If ℱ is a
quasi-coherent 𝒪𝑋-module and {𝑓𝑖 ∶ 𝑋𝑖 → 𝑋} is an fppf covering such that each 𝑓∗

𝑖 ℱ is of
finite type, then ℱ is of finite type. Considering the restriction of ℱ to an affine open of 𝑋
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this reduces to the following algebra statement: Suppose that 𝑅 → 𝑆 is a finitely presented,
faithfully flat ring map and 𝑀 an 𝑅-module. If 𝑀 ⊗𝑅 𝑆 is a finitely generated 𝑆-module,
then 𝑀 is a finitely generated 𝑅-module. A stronger form of the algebra fact can be found
in Algebra, Lemma 7.77.2. �

Lemma 55.5.2. Let (𝑋, 𝒪𝑋) be a ringed space.
(1) The category of finite type 𝒪𝑋-modules has a set of isomorphism classes.
(2) The category of finite type quasi-coherent 𝒪𝑋-modules has a set of isomorphism

classes.

Proof. Part (2) follows from part (1) as the category in (2) is a full subcategory of the
category in (1). Consider any open covering 𝒰 ∶ 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖. Denote 𝑗𝑖 ∶ 𝑈𝑖 → 𝑋 the
inclusion maps. Consider any map 𝑟 ∶ 𝐼 → 𝐍. If ℱ is an 𝒪𝑋-module whose restriction to
𝑈𝑖 is generated by at most 𝑟(𝑖) sections from ℱ(𝑈𝑖), then ℱ is a quotient of the sheaf

ℋ𝒰,𝑟 = ⨁𝑖∈𝐼
𝑗𝑖,!𝒪

⊕𝑟(𝑖)
𝑈𝑖

By definition, if ℱ is of finite type, then there exists some open covering with 𝒰 whose
index set is 𝐼 = 𝑋 such that this condition is true. Hence it suffices to show that there is a
set of possible choices for 𝒰 (obvious), a set of possible choices for 𝑟 ∶ 𝐼 → 𝐍 (obvious),
and a set of possible quotient modules of ℋ𝒰,𝑟 for each 𝒰 and 𝑟. In other words, it suffices to
show that given an 𝒪𝑋-module ℋ there is at most a set of isomorphism classes of quotients.
This last assertion becomes obvious by thinking of the kernels of a quotient map ℋ → ℱ
as being parametrized by a subset of the power set of ∏𝑈⊂𝑋 open ℋ(𝑈). �

Lemma 55.5.3. There exists a subcategory QCoh𝑓𝑔,𝑠𝑚𝑎𝑙𝑙 ⊂ QCoh𝑓𝑔 with the following
properties:

(1) the inclusion functor QCoh𝑓𝑔,𝑠𝑚𝑎𝑙𝑙 → QCoh𝑓𝑔 is fully faithful and essentially
surjective, and

(2) the functor 𝑝𝑓𝑔,𝑠𝑚𝑎𝑙𝑙 ∶ QCoh𝑓𝑔,𝑠𝑚𝑎𝑙𝑙 → (Sch/𝑆)𝑓𝑝𝑝𝑓 turns QCoh𝑓𝑔,𝑠𝑚𝑎𝑙𝑙 into a
stack over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. We have seen in Lemmas 55.5.1 and 55.5.2 that 𝑝𝑓𝑔 ∶ QCoh𝑓𝑔 → (Sch/𝑆)𝑓𝑝𝑝𝑓
satisfies (1), (2) and (3) of Stacks, Definition 50.4.1 as well as the additional condition
(4) of Stacks, Remark 50.4.9. Hence we obtain QCoh𝑓𝑔,𝑠𝑚𝑎𝑙𝑙 from the discussion in that
remark. �

We will often perform the replacement

QCoh𝑓𝑔  QCoh𝑓𝑔,𝑠𝑚𝑎𝑙𝑙

without further remarking on it, and by abuse of notation we will simply denote QCoh𝑓𝑔
this replacement.

Remark 55.5.4. Note that the whole discussion in this section works if we want to consider
those quasi-coherent sheaves which are locally generated by at most 𝜅 sections, for some
infinite cardinal 𝜅, e.g., 𝜅 = ℵ0.

55.6. Algebraic spaces

We define a category Spaces as follows:
(1) An object of Spaces is a morphism 𝑋 → 𝑈 of algebraic spaces over 𝑆, where 𝑈

is representable by an object of (Sch/𝑆)𝑓𝑝𝑝𝑓, and
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(2) a morphism (𝑓, 𝑔) ∶ (𝑋 → 𝑈) → (𝑌 → 𝑉) is a commutative diagram

𝑋

��

𝑓
// 𝑌

��
𝑈

𝑔 // 𝑉
of morphisms of algebraic spaces over 𝑆.

Thus Spaces is a category and

𝑝 ∶ Spaces → (Sch/𝑆)𝑓𝑝𝑝𝑓, (𝑋 → 𝑈) ↦ 𝑈

is a functor. Note that the fibre category of Spaces over a scheme 𝑈 is just the category
Spaces/𝑈 of algebraic spaces over 𝑈 (see Topologies on Spaces, Section 44.2). Hence we
sometimes think of an object of Spaces as a pair 𝑋/𝑈 consisting of a scheme 𝑈 and an
algebraic space 𝑋 over 𝑈. We remark for later use that given (𝑋/𝑈), (𝑌/𝑉) ∈ 𝑂𝑏(Spaces)
we have

(55.6.0.1) 𝑀𝑜𝑟Spaces(𝑋/𝑈, 𝑌/𝑉) = ∐𝑔∈𝑀𝑜𝑟𝑆(𝑈,𝑉)
𝑀𝑜𝑟Spaces/𝑈(𝑋, 𝑈 ×𝑔,𝑉 𝑌)

The category Spaces is almost, but not quite a stack over (Sch/𝑆)𝑓𝑝𝑝𝑓. The problem is a set
theoretical issue as we will explain below.

Lemma 55.6.1. A morphism (𝑓, 𝑔) ∶ 𝑋/𝑈 → 𝑌/𝑉 of Spaces is strongly cartesian if and
only if the map 𝑓 induces an isomorphism 𝑋 → 𝑈 ×𝑔,𝑉 𝑌.

Proof. Let 𝑌/𝑉 ∈ 𝑂𝑏(Spaces). Let 𝑔 ∶ 𝑈 → 𝑉 be a morphism of (Sch/𝑆)𝑓𝑝𝑝𝑓. Note that the
projection 𝑝 ∶ 𝑈 ×𝑔,𝑉 𝑌 → 𝑌 gives rise a morphism (𝑝, 𝑔) ∶ 𝑈 ×𝑔,𝑉 𝑌/𝑈 → 𝑌/𝑉 of Spaces.
We claim that (𝑝, 𝑔) is strongly cartesian. Namely, for any object 𝑍/𝑊 of Spaces we have

𝑀𝑜𝑟Spaces(𝑍/𝑊, 𝑈 ×𝑔,𝑉 𝑌/𝑈) = ∐ℎ∈𝑀𝑜𝑟𝑆(𝑊,𝑈)
𝑀𝑜𝑟Spaces/𝑊(𝑍, 𝑊 ×ℎ,𝑈 𝑈 ×𝑔,𝑉 𝑌)

= ∐ℎ∈𝑀𝑜𝑟𝑆(𝑊,𝑈)
𝑀𝑜𝑟Spaces/𝑊(𝑍, 𝑊 ×𝑔∘ℎ,𝑉 𝑌)

= 𝑀𝑜𝑟Spaces(𝑍/𝑊, 𝑌/𝑉) ×𝑀𝑜𝑟𝑆(𝑊,𝑉) 𝑀𝑜𝑟𝑆(𝑊, 𝑈)

where we have used Equation (55.6.0.1) twice. This proves that the condition of Categories,
Definition 4.30.1 holds for (𝑝, 𝑔), and hence our claim is true. Now by Categories, Lemma
4.30.2 we see that isomorphisms are strongly cartesian and compositions of strongly carte-
sian morphisms are strongly cartesian which proves the ``if'' part of the lemma. For the
converse, note that given 𝑌/𝑉 and 𝑔 ∶ 𝑈 → 𝑉, if there exists a strongly cartesian morphism
lifting 𝑔 with target 𝑌/𝑉 then it has to be isomorphic to (𝑝, 𝑔) (see discussion following
Categories, Definition 4.30.1). Hence the "only if" part of the lemma holds. �

Lemma 55.6.2. The functor 𝑝 ∶ Spaces → (Sch/𝑆)𝑓𝑝𝑝𝑓 satisfies conditions (1) and (2) of
Stacks, Definition 50.4.1.

Proof. It is follows from Lemma 55.6.1 that Spaces is a fibred category over (Sch/𝑆)𝑓𝑝𝑝𝑓
which proves (1). Suppose that {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering of (Sch/𝑆)𝑓𝑝𝑝𝑓. Suppose that
𝑋, 𝑌 are algebraic spaces over 𝑈. Finally, suppose that 𝜑𝑖 ∶ 𝑋𝑈𝑖

→ 𝑌𝑈𝑖
are morphisms

of Spaces/𝑈𝑖 such that 𝜑𝑖 and 𝜑𝑗 restrict to the same morphisms 𝑋𝑈𝑖×𝑈𝑈𝑗
→ 𝑌𝑈𝑖×𝑈𝑈𝑗

of
algebraic spaces over 𝑈𝑖 ×𝑈 𝑈𝑗. To prove (2) we have to show that there exists a unique
morphism 𝜑 ∶ 𝑋 → 𝑌 over 𝑈 whose base change to 𝑈𝑖 is equal to 𝜑𝑖. As a morphism
from 𝑋 to 𝑌 is the same thing as a map of sheaves this follows directly from Sites, Lemma
9.22.1. �
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Remark 55.6.3. Ignoring set theoretical difficulties1 Spaces also satisfies descent for ob-
jects and hence is a stack. Namely, we have to show that given

(1) an fppf covering {𝑈𝑖 → 𝑈}𝑖∈𝐼,
(2) for each 𝑖 ∈ 𝐼 an algebraic space 𝑋𝑖/𝑈𝑖, and
(3) for each 𝑖, 𝑗 ∈ 𝐼 an isomorphism 𝜑𝑖𝑗 ∶ 𝑋𝑖 ×𝑈 𝑈𝑗 → 𝑈𝑖 ×𝑈 𝑋𝑗 of algebraic spaces

over 𝑈𝑖 ×𝑈 𝑈𝑗 satisfying the cocycle condition over 𝑈𝑖 ×𝑈 𝑈𝑗 ×𝑈 𝑈𝑘,
there exists an algebraic space 𝑋/𝑈 and isomorphisms 𝑋𝑈𝑖

≅ 𝑋𝑖 over 𝑈𝑖 recovering the iso-
morphisms 𝜑𝑖𝑗. First, note that by Sites, Lemma 9.22.2 there exists a sheaf 𝑋 on (Sch/𝑈)𝑓𝑝𝑝𝑓
recovering the 𝑋𝑖 and the 𝜑𝑖𝑗. Then by Bootstrap, Lemma 54.11.1 we see that 𝑋 is an al-
gebraic space (if we ignore the set theoretic condition of that lemma). We will use this
argument in the next section to show that if we consider only algebraic spaces of finite
type, then we obtain a stack.

55.7. The stack of finite type algebraic spaces

It turns out that we can get a stack of spaces if we only consider spaces of finite type. Let
us denote

𝑝𝑓𝑡 ∶ Spaces𝑓𝑡 → (Sch/𝑆)𝑓𝑝𝑝𝑓
the full subcategory of Spaces over (Sch/𝑆)𝑓𝑝𝑝𝑓 consisting of pairs 𝑋/𝑈 such that 𝑋 → 𝑈
is a morphism of finite type.

Lemma 55.7.1. The functor 𝑝𝑓𝑡 ∶ Spaces𝑓𝑡 → (Sch/𝑆)𝑓𝑝𝑝𝑓 satisfies the conditions (1), (2)
and (3) of Stacks, Definition 50.4.1.

Proof. We are going to write this out in ridiculous detail (which may make it hard to see
what is going on).
We have seen in Lemma 55.6.1 that a morphism (𝑓, 𝑔) ∶ 𝑋/𝑈 → 𝑌/𝑉 of Spaces is strongly
cartesian if the induced morphism 𝑓 ∶ 𝑋 → 𝑈 ×𝑉 𝑌 is an isomorphism. Note that if 𝑌 → 𝑉
is of finite type then also 𝑈 ×𝑉 𝑌 → 𝑈 is of finite type, see Morphisms of Spaces, Lemma
42.22.3. So if (𝑓, 𝑔) ∶ 𝑋/𝑈 → 𝑌/𝑉 of Spaces is strongly cartesian in Spaces and 𝑌/𝑉 is
an object of Spaces𝑓𝑡 then automatically also 𝑋/𝑈 is an object of Spaces𝑓𝑡, and of course
(𝑓, 𝑔) is also strongly cartesian in Spaces𝑓𝑡. In this way we conclude that Spaces𝑓𝑡 is a fibred
category over (Sch/𝑆)𝑓𝑝𝑝𝑓. This proves (1).
The argument above also shows that the inclusion functor Spaces𝑓𝑡 → Spaces transforms
strongly cartesianmorphisms into strongly cartesianmorphisms. In otherwords Spaces𝑓𝑡 →
Spaces is a 1-morphism of fibred categories over (Sch/𝑆)𝑓𝑝𝑝𝑓.
Let 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓). Let 𝑋, 𝑌 be algebraic spaces of finite type over 𝑈. By Stacks,
Lemma 50.2.3 we obtain a map of presheaves

𝑀𝑜𝑟Spaces𝑓𝑡
(𝑋, 𝑌) ⟶ 𝑀𝑜𝑟Spaces(𝑋, 𝑌)

which is an isomorphism as Spaces𝑓𝑡 is a full subcategory of Spaces. Hence the left hand
side is a sheaf, because in Lemma 55.6.2 we showed the right hand side is a sheaf. This
proves (2).
To prove condition (3) of Stacks, Definition 50.4.1 we have to show the following: Given

(1) a covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 of (Sch/𝑆)𝑓𝑝𝑝𝑓,

1The difficulty is not that Spaces is a proper class, since by our definition of an algebraic space over 𝑆 there
is only a set worth of isomorphism classes of algebraic spaces over 𝑆. It is rather that arbitrary disjoint unions of
algebraic spaces may end up being too large, hence lie outside of our chosen ``partial universe'' of sets.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04UB
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(2) for each 𝑖 ∈ 𝐼 an algebraic space 𝑋𝑖 of finite type over 𝑈𝑖, and
(3) for each 𝑖, 𝑗 ∈ 𝐼 an isomorphism 𝜑𝑖𝑗 ∶ 𝑋𝑖 ×𝑈 𝑈𝑗 → 𝑈𝑖 ×𝑈 𝑋𝑗 of algebraic spaces

over 𝑈𝑖 ×𝑈 𝑈𝑗 satisfying the cocycle condition over 𝑈𝑖 ×𝑈 𝑈𝑗 ×𝑈 𝑈𝑘,
there exists an algebraic space 𝑋 of finite type over 𝑈 and isomorphisms 𝑋𝑈𝑖

≅ 𝑋𝑖 over
𝑈𝑖 recovering the isomorphisms 𝜑𝑖𝑗. By Sites, Lemma 9.22.2 there exists a sheaf 𝑋 on
(Sch/𝑈)𝑓𝑝𝑝𝑓 recovering the 𝑋𝑖 and the 𝜑𝑖𝑗. Then by Bootstrap, Lemma 54.11.2 we see that
𝑋 is an algebraic space. By Descent on Spaces, Lemma 45.10.8 we see that 𝑋 → 𝑈 is of
finite type which concludes the proof. �

Lemma 55.7.2. There exists a subcategory Spaces𝑓𝑡,𝑠𝑚𝑎𝑙𝑙 ⊂ Spaces𝑓𝑡 with the following
properties:

(1) the inclusion functor Spaces𝑓𝑡,𝑠𝑚𝑎𝑙𝑙 → Spaces𝑓𝑡 is fully faithful and essentially
surjective, and

(2) the functor 𝑝𝑓𝑡,𝑠𝑚𝑎𝑙𝑙 ∶ Spaces𝑓𝑡,𝑠𝑚𝑎𝑙𝑙 → (Sch/𝑆)𝑓𝑝𝑝𝑓 turns Spaces𝑓𝑡,𝑠𝑚𝑎𝑙𝑙 into a
stack over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. We have seen in Lemmas 55.7.1 that 𝑝𝑓𝑔 ∶ QCoh𝑓𝑔 → (Sch/𝑆)𝑓𝑝𝑝𝑓 satisfies (1), (2)
and (3) of Stacks, Definition 50.4.1. The additional condition (4) of Stacks, Remark 50.4.9
holds because every algebraic space𝑋 over𝑆 is of the form𝑈/𝑅 for𝑈, 𝑅 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓),
see Spaces, Lemma 40.9.1. Thus there is only a set worth of isomorphism classes of objects.
Hence we obtain Spaces𝑓𝑡,𝑠𝑚𝑎𝑙𝑙 from the discussion in that remark. �

We will often perform the replacement

Spaces𝑓𝑡  Spaces𝑓𝑡,𝑠𝑚𝑎𝑙𝑙

without further remarking on it, and by abuse of notation we will simply denote Spaces𝑓𝑡
this replacement.

Remark 55.7.3. Note that the whole discussion in this section works if we want to consider
those algebraic spaces 𝑋/𝑈 which are locally of finite type such that the inverse image in
𝑋 of an affine open of 𝑈 can be covered by countably many affines. If needed we can
also introduce the notion of a morphism of 𝜅-type (meaning some bound on the number of
generators of ring extensions and some bound on the cardinality of the affines over a given
affine in the base) where 𝜅 is a cardinal, and then we can produce a stack

Spaces𝜅 ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

in exactly the same manner as above (provided we make sure that Sch is large enough
depending on 𝜅).

55.8. Examples of stacks in groupoids

The examples above are examples of stacks which are not stacks in groupoids. In the rest
of this chapter we give algebraic geometric examples of stacks in groupoids.

55.9. The stack associated to a sheaf

Let 𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets be a presheaf. We obtain a category fibred in sets

𝑝𝐹 ∶ 𝒮𝐹 → (Sch/𝑆)𝑓𝑝𝑝𝑓,

see Categories, Example 4.35.5. This is a stack in sets if and only if 𝐹 is a sheaf, see Stacks,
Lemma 50.6.3.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04UE
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55.10. The stack in groupoids of finitely generated quasi-coherent sheaves

Let 𝑝 ∶ QCoh𝑓𝑔 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be the stack introduced in Section 55.5 (using the abuse
of notation introduced there). We can turn this into a stack in groupoids 𝑝′ ∶ QCoh′

𝑓𝑔 →
(Sch/𝑆)𝑓𝑝𝑝𝑓 by the procedure of Categories, Lemma 4.32.3, see Stacks, Lemma 50.5.3. In
this particular case this simply means QCoh′

𝑓𝑔 has the same objects as QCoh𝑓𝑔 but the
morphsms are pairs (𝑓, 𝑔) ∶ (𝑈, ℱ) → (𝑈′, ℱ′) where 𝑔 is an isomorphism 𝑔 ∶ 𝑓∗ℱ′ → ℱ.

55.11. The stack in groupoids of finite type algebraic spaces

Let 𝑝 ∶ Spaces𝑓𝑡 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be the stack introduced in Section 55.7 (using the abuse
of notation introduced there). We can turn this into a stack in groupoids 𝑝′ ∶ Spaces′

𝑓𝑡 →
(Sch/𝑆)𝑓𝑝𝑝𝑓 by the procedure of Categories, Lemma 4.32.3, see Stacks, Lemma 50.5.3. In
this particular case this simply means Spaces′

𝑓𝑡 has the same objects as Spaces𝑓𝑡, i.e., finite
type morphisms 𝑋 → 𝑈 where 𝑋 is an algebraic space over 𝑆 and 𝑈 is a scheme over 𝑆.
But the morphsms (𝑓, 𝑔) ∶ 𝑋/𝑈 → 𝑌/𝑉 are now commutative diagrams

𝑋

��

𝑓
// 𝑌

��
𝑈

𝑔 // 𝑉

which are cartesian.

55.12. Quotient stacks

Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic spaces over 𝑆. In this case the quotient stack

[𝑈/𝑅] ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

is a stack in groupoids by construction, see Groupoids in Spaces, Definition 52.19.1. It is
even the case that the 𝐼𝑠𝑜𝑚-sheaves are representable by algebraic spaces, see Bootstrap,
Lemma 54.11.3. These quotient stacks are of fundamental importance to the theory of
algebraic stacks.

A special case of the construction above is the quotient stack

[𝑋/𝐺] ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

associated to a datum (𝐵, 𝐺/𝐵, 𝑚, 𝑋/𝐵, 𝑎). Here
(1) 𝐵 is an algebraic space over 𝑆,
(2) (𝐺, 𝑚) is a group algebraic space over 𝐵,
(3) 𝑋 is an algebraic space over 𝐵, and
(4) 𝑎 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 is an action of 𝐺 on 𝑋 over 𝐵.

Namely, by Groupoids in Spaces, Definition 52.19.1 the stack in groupoids [𝑋/𝐺] is the
quotient stack [𝑋/𝐺 ×𝐵 𝑋] given above. It behooves us to spell out what the category
[𝑋/𝐺] really looks like. We will do this in Section 55.14.

55.13. Classifying torsors

We want to carefully explain a number of variants of what it could mean to study the stack
of torsors for a group algebraic space 𝐺 or a sheaf of groups 𝒢.
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55.13.1. Torsors for a sheaf of groups. Let 𝒢 be a sheaf of groups on (Sch/𝑆)𝑓𝑝𝑝𝑓.
For 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) we denote 𝒢|𝑈 the restriction of 𝒢 to (Sch/𝑈)𝑓𝑝𝑝𝑓. We define a
category 𝒢-Torsors as follows:

(1) An object of 𝒢-Torsors is a pair (𝑈, ℱ) where 𝑈 is an object of (Sch/𝑆)𝑓𝑝𝑝𝑓 and
ℱ is a 𝒢|𝑈-torsor, see Cohomology on Sites, Definition 19.5.1.

(2) Amorphism (𝑈, ℱ) → (𝑉, ℋ) is given by a pair (𝑓, 𝛼), where 𝑓 ∶ 𝑈 → 𝑉 is a mor-
phism of schemes over 𝑆, and 𝛼 ∶ 𝑓−1ℋ → ℱ is an isomorphism of 𝒢|𝑈-torsors.

Thus 𝒢-Torsors is a category and

𝑝 ∶ 𝒢-Torsors ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓, (𝑈, ℱ) ⟼ 𝑈

is a functor. Note that the fibre category of 𝒢-Torsors over 𝑈 is the category of 𝒢|𝑈-torsors
which is a groupoid.

Lemma 55.13.2. Up to a replacement as in Stacks, Remark 50.4.9 the functor

𝑝 ∶ 𝒢-Torsors ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

defines a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. The most difficult part of the proof is to show that we have descent for objects.
Let {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of (Sch/𝑆)𝑓𝑝𝑝𝑓. Suppose that for each 𝑖 we are given a
𝒢|𝑈𝑖

-torsor ℱ𝑖, and for each 𝑖, 𝑗 ∈ 𝐼 an isomorphism 𝜑𝑖𝑗 ∶ ℱ𝑖|𝑈𝑖×𝑈𝑈𝑗
→ ℱ𝑗|𝑈𝑖×𝑈𝑈𝑗

of
𝒢|𝑈𝑖×𝑈𝑈𝑗

-torsors satisfying a suitable cocycle condition on 𝑈𝑖 ×𝑈 𝑈𝑗 ×𝑈 𝑈𝑘. Then by Sites,
Section 9.22 we obtain a sheaf ℱ on (Sch/𝑈)𝑓𝑝𝑝𝑓 whose restriction to each 𝑈𝑖 recovers ℱ𝑖
as well as recovering the descent data. By the equivalence of categories in Sites, Lemma
9.22.3 the action maps 𝒢|𝑈𝑖

× ℱ𝑖 → ℱ𝑖 glue to give a map 𝑎 ∶ 𝒢|𝑈 × ℱ → ℱ. Now we have
to show that 𝑎 is an action and that ℱ becomes a 𝒢|𝑈-torsor. Both properties may be checked
locally, and hence follow from the corresponding properties of the actions 𝒢|𝑈𝑖

× ℱ𝑖 → ℱ𝑖.
This proves that descent for objects holds in 𝒢-Torsors. Some details omitted. �

55.13.3. Variant on torsors for a sheaf. The construction of Subsection 55.13.1 can
be generalized slightly. Namely, let 𝒢 → ℬ be a map of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓 and let

𝑚 ∶ 𝒢 ×ℬ 𝒢 ⟶ 𝒢

be a group law on 𝒢/ℬ. In other words, the pair (𝒢, 𝑚) is a group object of the topos
Sh((Sch/𝑆)𝑓𝑝𝑝𝑓)/ℬ. See Sites, Section 9.26 for information regarding localizations of topoi.
In this setting we can define a category 𝒢/ℬ-Torsors as follows (where we use the Yoneda
embedding to think of schemes as sheaves):

(1) An object of 𝒢/ℬ-Torsors is a triple (𝑈, 𝑏, ℱ) where
(a) 𝑈 is an object of (Sch/𝑆)𝑓𝑝𝑝𝑓,
(b) 𝑏 ∶ 𝑈 → ℬ is a section of ℬ over 𝑈, and
(c) ℱ is a 𝑈 ×𝑏,ℬ 𝒢-torsor over 𝑈.

(2) A morphism (𝑈, 𝑏, ℱ) → (𝑈′, 𝑏′, ℱ′) is given by a pair (𝑓, 𝑔), where 𝑓 ∶ 𝑈 → 𝑈′

is a morphism of schemes over 𝑆 such that 𝑏 = 𝑏′ ∘ 𝑓, and 𝑔 ∶ 𝑓−1ℱ′ → ℱ is an
isomorphism of 𝑈 ×𝑏,ℬ 𝒢-torsors.

Thus 𝒢/ℬ-Torsors is a category and

𝑝 ∶ 𝒢/ℬ-Torsors ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓, (𝑈, 𝑏, ℱ) ⟼ 𝑈

is a functor. Note that the fibre category of 𝒢/ℬ-Torsors over 𝑈 is the disjoint union over
𝑏 ∶ 𝑈 → ℬ of the categories of 𝑈 ×𝑏,ℬ 𝒢-torsors, hence is a groupoid.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04UK
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In the special case ℬ = 𝑆 we recover the category 𝒢-Torsors introduced in Subsection
55.13.1.

Lemma 55.13.4. Up to a replacement as in Stacks, Remark 50.4.9 the functor

𝑝 ∶ 𝒢/ℬ-Torsors ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

defines a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. This proof is a repeat of the proof of Lemma 55.13.2. The reader is encouraged
to read that proof first since the notation is less cumbersome. The most difficult part of
the proof is to show that we have descent for objects. Let {𝑈𝑖 → 𝑈}𝑖∈𝐼 be a covering of
(Sch/𝑆)𝑓𝑝𝑝𝑓. Suppose that for each 𝑖 we are given a pair (𝑏𝑖, ℱ𝑖) consisting of a morphism
𝑏𝑖 ∶ 𝑈𝑖 → ℬ and a 𝑈𝑖 ×𝑏𝑖,ℬ 𝒢-torsor ℱ𝑖, and for each 𝑖, 𝑗 ∈ 𝐼 we have 𝑏𝑖|𝑈𝑖×𝑈𝑈𝑗

= 𝑏𝑗|𝑈𝑖×𝑈𝑈𝑗
and we are given an isomorphism 𝜑𝑖𝑗 ∶ ℱ𝑖|𝑈𝑖×𝑈𝑈𝑗

→ ℱ𝑗|𝑈𝑖×𝑈𝑈𝑗
of (𝑈𝑖 ×𝑈 𝑈𝑗) ×ℬ 𝒢-torsors

satisfying a suitable cocycle condition on 𝑈𝑖 ×𝑈 𝑈𝑗 ×𝑈 𝑈𝑘. Then by Sites, Section 9.22
we obtain a sheaf ℱ on (Sch/𝑈)𝑓𝑝𝑝𝑓 whose restriction to each 𝑈𝑖 recovers ℱ𝑖 as well as
recovering the descent data. By the sheaf axiom for ℬ the morphisms 𝑏𝑖 come from a
unique morphism 𝑏 ∶ 𝑈 → ℬ. By the equivalence of categories in Sites, Lemma 9.22.3
the action maps (𝑈𝑖 ×𝑏𝑖,ℬ 𝒢) ×𝑈𝑖

ℱ𝑖 → ℱ𝑖 glue to give a map (𝑈 ×𝑏,ℬ 𝒢) × ℱ → ℱ.
Now we have to show that this is an action and that ℱ becomes a 𝑈 ×𝑏,ℬ 𝒢-torsor. Both
properties may be checked locally, and hence follow from the corresponding properties of
the actions on the ℱ𝑖. This proves that descent for objects holds in 𝒢/ℬ-Torsors. Some
details omitted. �

55.13.5. Principal homogeneous spaces. Let 𝐵 be an algebraic space over 𝑆. Let 𝐺
be a group algebraic space over 𝐵. We define a category 𝐺-Principal as follows:

(1) An object of 𝐺-Principal is a triple (𝑈, 𝑏, 𝑋) where
(a) 𝑈 is an object of (Sch/𝑆)𝑓𝑝𝑝𝑓,
(b) 𝑏 ∶ 𝑈 → 𝐵 is a morphism over 𝑆, and
(c) 𝑋 is a principal homogeneous 𝐺𝑈-space over 𝑈 where 𝐺𝑈 = 𝑈 ×𝑏,𝐵 𝐺.
See Groupoids in Spaces, Definition 52.9.3.

(2) A morphism (𝑈, 𝑏, 𝑋) → (𝑈′, 𝑏′, 𝑋′) is given by a pair (𝑓, 𝑔), where 𝑓 ∶ 𝑈 → 𝑈′

is a morphism of schemes over 𝐵, and 𝑔 ∶ 𝑋 → 𝑈 ×𝑓,𝑈′ 𝑋′ is an isomorphism of
principal homogeneous 𝐺𝑈-spaces.

Thus 𝐺-Principal is a category and

𝑝 ∶ 𝐺-Principal ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓, (𝑈, 𝑏, 𝑋) ⟼ 𝑈

is a functor. Note that the fibre category of 𝐺-Principal over 𝑈 is the disjoint union over 𝑏 ∶
𝑈 → 𝐵 of the categories of principal homogeneous 𝑈 ×𝑏,𝐵 𝐺-spaces, hence is a groupoid.

In the special case 𝑆 = 𝐵 the objects are simply pairs (𝑈, 𝑋) where 𝑈 is a scheme over
𝑆, and 𝑋 is a principal homogeneous 𝐺𝑈-space over 𝑈. Moreover, morphisms are simply
cartesian diagrams

𝑋

��

𝑔
// 𝑋′

��
𝑈

𝑓 // 𝑈′

where 𝑔 is 𝐺-equivariant.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04UM
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Remark 55.13.6. We conjecture that up to a replacement as in Stacks, Remark 50.4.9 the
functor

𝑝 ∶ 𝐺-Principal ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓
defines a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. This would follow if one could show that
given

(1) a covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 of (Sch/𝑆)𝑓𝑝𝑝𝑓,
(2) an group algebraic space 𝐻 over 𝑈,
(3) for every 𝑖 a principal homogeneous 𝐻𝑈𝑖

-space 𝑋𝑖 over 𝑈𝑖, and
(4) 𝐻-equivariant isomorphisms 𝜑𝑖𝑗 ∶ 𝑋𝑖,𝑈𝑖×𝑈𝑈𝑗

→ 𝑋𝑗,𝑈𝑖×𝑈𝑈𝑗
satisfying the cocycle

condition,
there exists a principal homogeneous 𝐻-space 𝑋 over 𝑈 which recovers (𝑋𝑖, 𝜑𝑖𝑗). The tech-
nique of the proof of Bootstrap, Lemma 54.11.6 reduces this to a set theoretical question,
so the reader who ignores set theoretical questions will ``know'' that the result is true. In
http://math.columbia.edu/~dejong/wordpress/?p=591 there is a suggestion as to
how to approach this problem.

55.13.7. Variant on principal homogeneous spaces. Let 𝑆 be a scheme. Let 𝐵 = 𝑆.
Let 𝐺 be a group scheme over 𝐵 = 𝑆. In this setting we can define a full subcategory
𝐺-Principal-Schemes ⊂ 𝐺-Principalwhose objects are pairs (𝑈, 𝑋) where 𝑈 is an object of
(Sch/𝑆)𝑓𝑝𝑝𝑓 and 𝑋 → 𝑈 is a principal homogeneous 𝐺-space over 𝑈 which is representable,
i.e., a scheme.

It is in general not the case that𝐺-Principal-Schemes is a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
The reason is that in general there really do exist principal homogeneous spaces which are
not schemes, hence descent for objects will not be satisfied in general.

55.13.8. Torsors in fppf topology. Let 𝐵 be an algebraic space over 𝑆. Let 𝐺 be a
group algebraic space over 𝐵. We define a category 𝐺-Torsors as follows:

(1) An object of 𝐺-Torsors is a triple (𝑈, 𝑏, 𝑋) where
(a) 𝑈 is an object of (Sch/𝑆)𝑓𝑝𝑝𝑓,
(b) 𝑏 ∶ 𝑈 → 𝐵 is a morphism, and
(c) 𝑋 is an fppf 𝐺𝑈-torsor over 𝑈 where 𝐺𝑈 = 𝑈 ×𝑏,𝐵 𝐺.
See Groupoids in Spaces, Definition 52.9.3.

(2) A morphism (𝑈, 𝑏, 𝑋) → (𝑈′, 𝑏′, 𝑋′) is given by a pair (𝑓, 𝑔), where 𝑓 ∶ 𝑈 → 𝑈′

is a morphism of schemes over 𝐵, and 𝑔 ∶ 𝑋 → 𝑈 ×𝑓,𝑈′ 𝑋′ is an isomorphism of
𝐺𝑈-torsors.

Thus 𝐺-Torsors is a category and

𝑝 ∶ 𝐺-Torsors ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓, (𝑈, 𝑎, 𝑋) ⟼ 𝑈

is a functor. Note that the fibre category of 𝐺-Torsors over 𝑈 is the disjoint union over
𝑏 ∶ 𝑈 → 𝐵 of the categories of fppf 𝑈 ×𝑏,𝐵 𝐺-torsors, hence is a groupoid.

In the special case 𝑆 = 𝐵 the objects are simply pairs (𝑈, 𝑋) where 𝑈 is a scheme over 𝑆,
and 𝑋 is an fppf 𝐺𝑈-torsor over 𝑈. Moreover, morphisms are simply cartesian diagrams

𝑋

��

𝑔
// 𝑋′

��
𝑈

𝑓 // 𝑈′

where 𝑔 is 𝐺-equivariant.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04UP
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Lemma 55.13.9. Up to a replacement as in Stacks, Remark 50.4.9 the functor

𝑝 ∶ 𝐺-Torsors ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

defines a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. The most difficult part of the proof is to show that we have descent for objects,
which is Bootstrap, Lemma 54.11.6. Some details omitted. �

Lemma 55.13.10. Let 𝐵 be an algebraic space over 𝑆. Let 𝐺 be a group algebraic space
over 𝐵. Denote 𝒢, resp. ℬ the algebraic space 𝐺, resp. 𝐵 seen as a sheaf on (Sch/𝑆)𝑓𝑝𝑝𝑓.
The functor

𝐺-Torsors ⟶ 𝒢/ℬ-Torsors
which associates to a triple (𝑈, 𝑏, 𝑋) the triple (𝑈, 𝑏, 𝒳) where 𝒳 is 𝑋 viewed as a sheaf is
an equivalence of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. We will use the result of Stacks, Lemma 50.4.8 to prove this. The functor is fully
faithful since the category of algebraic spaces over 𝑆 is a full subcategory of the category
of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. Moreover, all objects (on both sides) are locally trivial torsors
so condition (2) of the lemma referenced above holds. Hence the functor is an equivalence.

�

55.13.11. Variant on torsors in fppf topology. Let 𝑆 be a scheme. Let 𝐵 = 𝑆.
Let 𝐺 be a group scheme over 𝐵 = 𝑆. In this setting we can define a full subcategory
𝐺-Torsors-Schemes ⊂ 𝐺-Torsors whose objects are pairs (𝑈, 𝑋) where 𝑈 is an object of
(Sch/𝑆)𝑓𝑝𝑝𝑓 and 𝑋 → 𝑈 is an fppf 𝐺-torsor over 𝑈 which is representable, i.e., a scheme.

It is in general not the case that 𝐺-Torsors-Schemes is a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
The reason is that in general there really do exist fppf 𝐺-torsors which are not schemes,
hence descent for objects will not be satisfied in general.

55.14. Quotients by group actions

At this point we have introduced enough notation that we can work out in more detail what
the stacks [𝑋/𝐺] of Section 55.12 look like.

Situation 55.14.1. Here
(1) 𝑆 is a scheme contained in Sch𝑓𝑝𝑝𝑓,
(2) 𝐵 is an algebraic space over 𝑆,
(3) (𝐺, 𝑚) is a group algebraic space over 𝐵,
(4) 𝜋 ∶ 𝑋 → 𝐵 is an algebraic space over 𝐵, and
(5) 𝑎 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 is an action of 𝐺 on 𝑋 over 𝐵.

In this situation we construct a category [[𝑋/𝐺]]2 as follows:
(1) An object of [[𝑋/𝐺]] consists of a quadruple (𝑈, 𝑏, 𝑃, 𝜑 ∶ 𝑃 → 𝑋) where

(a) 𝑈 is an object of (Sch/𝑆)𝑓𝑝𝑝𝑓,
(b) 𝑏 ∶ 𝑈 → 𝐵 is a morphism over 𝑆,
(c) 𝑃 is an fppf 𝐺𝑈-torsor over 𝑈 where 𝐺𝑈 = 𝑈 ×𝑏,𝐵 𝐺, and

2The notation [[𝑋/𝐺]] with double brackets serves to distinguish this category from the stack [𝑋/𝐺] intro-
duced earlier. In Proposition 55.14.4 we show that the two are canonically equivalent. Afterwards we will use the
notation [𝑋/𝐺] to indicate either.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04US
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04UT
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(d) 𝜑 ∶ 𝑃 → 𝑋 is a 𝐺-equivariant morphism fitting into the commutative dia-
gram

𝑃

��

𝜑
// 𝑋

��
𝑈 𝑏 // 𝐵

(2) A morphism of [[𝑋/𝐺]] is a pair (𝑓, 𝑔) ∶ (𝑈, 𝑏, 𝑃, 𝜑) → (𝑈′, 𝑏′, 𝑃′, 𝜑′) where
𝑓 ∶ 𝑈 → 𝑈′ is a morphism of schemes over 𝐵 and 𝑔 ∶ 𝑃 → 𝑃′ is a 𝐺-equivariant
morphism over 𝑓 which induces an isomorphism 𝑃 ≅ 𝑈 ×𝑓,𝑈′ 𝑃′, and has the
property that 𝜑 = 𝜑′ ∘𝑔. In other words (𝑓, 𝑔) fits into the following commutative
diagram

𝑃

��
𝜑

))

𝑔 // 𝑃′

��

𝜑′

&&𝑈

𝑏
**

𝑓 // 𝑈′

𝑏′

&&

𝑋

��
𝐵

Thus [[𝑋/𝐺]] is a category and

𝑝 ∶ [[𝑋/𝐺]] ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓, (𝑈, 𝑏, 𝑃, 𝜑) ⟼ 𝑈

is a functor. Note that the fibre category of [[𝑋/𝐺]] over 𝑈 is the disjoint union over 𝑏 ∈
𝑀𝑜𝑟𝑆(𝑈, 𝐵) of 𝑈 ×𝑏,𝐵 𝐺-torsors 𝑃 endowed with a 𝐺-equivariant morphism to 𝑋. Hence
the fibre categories of [[𝑋/𝐺]] are groupoids.

Note that the functor

[[𝑋/𝐺]] ⟶ 𝐺-Torsors, (𝑈, 𝑏, 𝑃, 𝜑) ⟼ (𝑈, 𝑏, 𝑃)

is a 1-morphism of categories over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Lemma 55.14.2. Up to a replacement as in Stacks, Remark 50.4.9 the functor

𝑝 ∶ [[𝑋/𝐺]] ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

defines a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. The most difficult part of the proof is to show that we have descent for objects.
Suppose that {𝑈𝑖 → 𝑈}𝑖∈𝐼 is a covering in (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜉𝑖 = (𝑈𝑖, 𝑏𝑖, 𝑃𝑖, 𝜑𝑖) be objects of
[[𝑋/𝐺]] over 𝑈𝑖, and let 𝜑𝑖𝑗 ∶ pr∗0𝜉𝑖 → pr∗1𝜉𝑗 be a descent datum. This in particular implies
that we get a descent datum on the triples (𝑈𝑖, 𝑏𝑖, 𝑃𝑖) for the stack in groupoids 𝐺-Torsors
by applying the functor [[𝑋/𝐺]] → 𝐺-Torsors above. Hence we may assume that 𝑏𝑖 = 𝑏|𝑈𝑖
for some morphism 𝑏 ∶ 𝑈 → 𝐵, and that 𝑃𝑖 = 𝑈𝑖 ×𝑈 𝑃 for some fppf 𝐺𝑈 = 𝑈 ×𝑏,𝐵 𝐺-torsor
𝑃 over 𝑈. Then finally the morphisms 𝜑𝑖 are compatible with the canonical descent datum
on the restrictions 𝑈𝑖 ×𝑈 𝑃 and hence define a morphism 𝜑 ∶ 𝑃 → 𝑋. (For example you
can use Sites, Lemma 9.22.3 or you can use Descent on Spaces, Lemma 45.6.2 to get 𝜑.)
This proves descent for objects. We omit the proof of the other two defining properties of
a stack in groupoids. �

Remark 55.14.3. Let 𝑆 be a scheme. Let 𝐺 be an abstract group. Let 𝑋 be an algebraic
space over 𝑆. Let 𝐺 → Aut𝑆(𝑋) be a group homomorphism. In this setting we can define
[[𝑋/𝐺]] similarly to the above as follows:

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0370
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0371
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(1) An object of [[𝑋/𝐺]] consists of a triple (𝑈, 𝑃, 𝜑 ∶ 𝑃 → 𝑋) where
(a) 𝑈 is an object of (Sch/𝑆)𝑓𝑝𝑝𝑓,
(b) 𝑃 is a sheaf on (Sch/𝑈)𝑓𝑝𝑝𝑓 which comes with an action of 𝐺 that turns it

into a torsor under the constant sheaf with value 𝐺, and
(c) 𝜑 ∶ 𝑃 → 𝑋 is a 𝐺-equivariant map of sheaves.

(2) A morphism (𝑓, 𝑔) ∶ (𝑈, 𝑃, 𝜑) → (𝑈′, 𝑃′, 𝜑′) is given by a morphism of schemes
𝑓 ∶ 𝑇 → 𝑇′ and a𝐺-equivariant isomorphism 𝑔 ∶ 𝑃 → 𝑓−1𝑃′ such that𝜑 = 𝜑′∘𝑔.

In exactly the same manner as above we obtain a functor
[[𝑋/𝐺]] ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

which turns [[𝑋/𝐺]] into a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. The constant sheaf 𝐺 is
(provided the cardinality of 𝐺 is not too large) representable by 𝐺𝑆 on (Sch/𝑆)𝑓𝑝𝑝𝑓 and this
version of [[𝑋/𝐺]] is equivalent to the stack [[𝑋/𝐺𝑆]] introduced above.

Proposition 55.14.4. In Situation 55.14.1 there exists a canonical equivalence

[𝑋/𝐺] ⟶ [[𝑋/𝐺]]
of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. We write this out in detail, to make sure that all the definitions work out in exactly
the correct manner. Recall that [𝑋/𝐺] is the quotient stack associated to the groupoid in
algebraic spaces (𝑋, 𝐺 ×𝐵 𝑋, 𝑠, 𝑡, 𝑐), see Groupoids in Spaces, Definition 52.19.1. This
means that [𝑋/𝐺] is the stackification of the category fibred in groupoids [𝑋/𝑝𝐺] associated
to the functor

(Sch/𝑆)𝑓𝑝𝑝𝑓 ⟶ Groupoids, 𝑈 ⟼ (𝑋(𝑈), 𝐺(𝑈) ×𝐵(𝑈) 𝑋(𝑈), 𝑠, 𝑡, 𝑐)

where 𝑠(𝑔, 𝑥) = 𝑥, 𝑡(𝑔, 𝑥) = 𝑎(𝑔, 𝑥), and 𝑐((𝑔, 𝑥), (𝑔′, 𝑥′)) = (𝑚(𝑔, 𝑔′), 𝑥′). By the con-
struction of Categories, Example 4.34.1 an object of [𝑋/𝑝𝐺] is a pair (𝑈, 𝑥) with 𝑥 ∈ 𝑋(𝑈)
and a morphism (𝑓, 𝑔) ∶ (𝑈, 𝑥) → (𝑈′, 𝑥′) of [𝑋/𝑝𝐺] is given by a morphism of schemes
𝑓 ∶ 𝑈 → 𝑈′ and an element 𝑔 ∈ 𝐺(𝑈) such that 𝑎(𝑔, 𝑥) = 𝑥′ ∘ 𝑓. Hence we can define a
1-morphism of stacks in groupoids

𝐹𝑝 ∶ [𝑋/𝑝𝐺] ⟶ [[𝑋/𝐺]]
by the following rules: On objects we set

𝐹𝑝(𝑈, 𝑥) = (𝑈, 𝜋 ∘ 𝑥, 𝐺 ×𝐵,𝜋∘𝑥 𝑈, 𝑎 ∘ (id𝐺 × 𝑥))
This makes sense because the diagram

𝐺 ×𝐵,𝜋∘𝑥 𝑈

��

id𝐺×𝑥
// 𝐺 ×𝐵,𝜋 𝑋 𝑎

// 𝑋

𝜋
��

𝑈 𝜋∘𝑥 // 𝐵
commutes, and the two horizontal arrows are 𝐺-equivariant if we think of the fibre products
as trivial 𝐺-torsors over 𝑈, resp. 𝑋. On morphisms (𝑓, 𝑔) ∶ (𝑈, 𝑥) → (𝑈′, 𝑥′) we set
𝐹𝑝(𝑓, 𝑔) = (𝑓, 𝑅𝑔) where 𝑅𝑔 denotes right translation by 𝑔. More precisely, the morphism
of 𝐹𝑝(𝑓, 𝑔) ∶ 𝐹𝑝(𝑈, 𝑥) → 𝐹𝑝(𝑈′, 𝑥′) is given by the cartesian diagram

𝐺 ×𝐵,𝜋∘𝑥 𝑈

��

𝑅𝑔
// 𝐺 ×𝐵,𝜋∘𝑥′ 𝑈′

��
𝑈

𝑓 // 𝑈′

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WM
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where 𝑅𝑔 on 𝑇-valued points is given by

𝑅𝑔(𝑔′, 𝑢) = (𝑚(𝑔′, 𝑔), 𝑓(𝑢))
To see that this works we have to verify that

𝑎 ∘ (id𝐺 × 𝑥) = 𝑎 ∘ (id𝐺 × 𝑥′) ∘ 𝑅𝑔

which is true because the right hand side applied to the 𝑇-valued point (𝑔′, 𝑢) gives
𝑎((id𝐺 × 𝑥′)(𝑚(𝑔′, 𝑔), 𝑓(𝑢))) = 𝑎(𝑚(𝑔′, 𝑔), 𝑥′(𝑓(𝑢)))

= 𝑎(𝑔′, 𝑎(𝑔, 𝑥′(𝑓(𝑢))))
= 𝑎(𝑔′, 𝑥(𝑢))

because 𝑎(𝑔, 𝑥) = 𝑥′ ∘ 𝑓 as desired.
By the universal property of stackification from Stacks, Lemma 50.9.2 we obtain a canon-
ical extension 𝐹 ∶ [𝑋/𝐺] → [[𝑋/𝐺]] of the 1-morphism 𝐹𝑝 above. We first prove that 𝐹
is fully faithful. To do this, since both source and target are stacks in groupoids, it suffices
to prove that the 𝐼𝑠𝑜𝑚-sheaves are identified under 𝐹. Pick a scheme 𝑈 and objects 𝜉, 𝜉′ of
[𝑋/𝐺] over 𝑈. We want to show that

𝐹 ∶ 𝐼𝑠𝑜𝑚[𝑋/𝐺](𝜉, 𝜉′) ⟶ 𝐼𝑠𝑜𝑚[[𝑋/𝐺]](𝐹(𝜉), 𝐹(𝜉′))
is an isomorphism of sheaves. To do this it suffices to work locally on 𝑈, and hence we may
assume that 𝜉, 𝜉′ come from objects (𝑈, 𝑥), (𝑈, 𝑥′) of [𝑋/𝑝𝐺] over 𝑈; this follows directly
from the construction of the stackification, and it is also worked out in detail in Groupoids
in Spaces, Section 52.23. Either by directly using the description of morphisms in [𝑋/𝑝𝐺]
above, or using Groupoids in Spaces, Lemma 52.21.1 we see that in this case

𝐼𝑠𝑜𝑚[𝑋/𝐺](𝜉, 𝜉′) = 𝑈 ×(𝑥,𝑥′),𝑋×𝑆𝑋,(𝑠,𝑡) (𝐺 ×𝐵 𝑋)

A 𝑇-valued point of this fibre product corresponds to a pair (𝑢, 𝑔) with 𝑢 ∈ 𝑈(𝑇), and
𝑔 ∈ 𝐺(𝑇) such that 𝑎(𝑔, 𝑥 ∘ 𝑢) = 𝑥′ ∘ 𝑢. (Note that this implies 𝜋 ∘ 𝑥 ∘ 𝑢 = 𝜋 ∘ 𝑥′ ∘ 𝑢.) On
the other hand, a 𝑇-valued point of 𝐼𝑠𝑜𝑚[[𝑋/𝐺]](𝐹(𝜉), 𝐹(𝜉′)) by definition corresponds to a
morphism 𝑢 ∶ 𝑇 → 𝑈 such that 𝜋 ∘ 𝑥 ∘ 𝑢 = 𝜋 ∘ 𝑥′ ∘ 𝑢 ∶ 𝑇 → 𝐵 and an isomorphism

𝑅 ∶ 𝐺 ×𝐵,𝜋∘𝑥∘𝑢 𝑇 ⟶ 𝐺 ×𝐵,𝜋∘𝑥′∘𝑢 𝑇
of trivial 𝐺𝑇-torsors compatible with the given maps to 𝑋. Since the torsors are trivial we
see that 𝑅 = 𝑅𝑔 (right multiplication) by some 𝑔 ∈ 𝐺(𝑇). Compatibility with the maps
𝑎∘(1𝐺, 𝑥∘𝑢), 𝑎∘(1𝐺, 𝑥′∘𝑢) ∶ 𝐺×𝐵𝑇 → 𝑋 is equivalent to the condition that 𝑎(𝑔, 𝑥∘𝑢) = 𝑥′∘𝑢.
Hence we obtain the desired equality of 𝐼𝑠𝑜𝑚-sheaves.
Now that we know that 𝐹 is fully faithful we see that Stacks, Lemma 50.4.8 applies. Thus
to show that 𝐹 is an equivalence it suffices to show that objects of [[𝑋/𝐺]] are fppf locally
in the essential image of 𝐹. This is clear as fppf torsors are locally trivial, and hence we
win. �

55.15. The Picard stack

Let 𝑆 be a scheme. Let 𝜋 ∶ 𝑋 → 𝐵 be a morphism of algebraic spaces over 𝑆. We define
a category Pic𝑋/𝐵 as follows:

(1) An object is a triple (𝑈, 𝑏, ℒ), where
(a) 𝑈 is an object of (Sch/𝑆)𝑓𝑝𝑝𝑓,
(b) 𝑏 ∶ 𝑈 → 𝐵 is a morphism over 𝑆, and
(c) ℒ is in invertible sheaf on the base change 𝑋𝑈 = 𝑈 ×𝑏,𝐵 𝑋.
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(2) A morphism (𝑓, 𝑔) ∶ (𝑈, 𝑏, ℒ) → (𝑈′, 𝑏′, ℒ′) is given by a morphism of schemes
𝑓 ∶ 𝑈 → 𝑈′ over 𝐵 and an isomorphism 𝑔 ∶ 𝑓∗ℒ′ → ℒ.

The composition of (𝑓, 𝑔) ∶ (𝑈, 𝑏, ℒ) → (𝑈′, 𝑏′, ℒ′) with (𝑓′, 𝑔′) ∶ (𝑈′, 𝑏′, ℒ′) →
(𝑈″, 𝑏″, ℒ″) is given by (𝑓 ∘ 𝑓′, 𝑔 ∘ 𝑓∗(𝑔′)). Thus we get a category Pic𝑋/𝐵 and

𝑝 ∶ Pic𝑋/𝐵 ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓, (𝑈, 𝑏, ℒ) ⟼ 𝑈

is a functor. Note that the fibre category of Pic𝑋/𝐵 over 𝑈 is the disjoint union over 𝑏 ∈
𝑀𝑜𝑟𝑆(𝑈, 𝐵) of the categories of invertible sheaves on 𝑋𝑈 = 𝑈 ×𝑏,𝐵 𝑋. Hence the fibre
categories are groupoids.

Lemma 55.15.1. Up to a replacement as in Stacks, Remark 50.4.9 the functor

Pic𝑋/𝐵 ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

defines a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. As usual, the hardest part is to show descent for objects. To see this let {𝑈𝑖 → 𝑈} be
a covering of (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜉𝑖 = (𝑈𝑖, 𝑏𝑖, ℒ𝑖) be an object of Pic𝑋/𝐵 lying over 𝑈, and let
𝜑𝑖𝑗 ∶ pr∗0𝜉𝑖 → pr∗1𝜉𝑗 be a descent datum. This implies in particular that the morphisms 𝑏𝑖 are
the restrictions of a morphism 𝑏 ∶ 𝑈 → 𝐵. Write 𝑋𝑈 = 𝑈 ×𝑏,𝐵 𝑋 and 𝑋𝑖 = 𝑈𝑖 ×𝑏𝑖,𝐵 𝑋 =
𝑈𝑖 ×𝑈 𝑈 ×𝑏,𝐵 𝑋 = 𝑈𝑖 ×𝑈 𝑋𝑈. Observe that ℒ𝑖 is an invertible 𝒪𝑋𝑖

-module. Note that
{𝑋𝑖 → 𝑋𝑈} forms an fppf covering as well. Moreover, the descent datum 𝜑𝑖𝑗 translates
into a descent datum on the invertible sheaves ℒ𝑖 relative to the fppf covering {𝑋𝑖 → 𝑋𝑈}.
Hence by Descent on Spaces, Proposition 45.4.1 we obtain a unique invertible sheaf ℒ on
𝑋𝑈 which recovers ℒ𝑖 and the descent data over 𝑋𝑖. The triple (𝑈, 𝑏, ℒ) is therefore the
object of Pic𝑋/𝐵 over 𝑈 we were looking for. Details omitted. �

55.16. Examples of inertia stacks

Here are some examples of inertia stacks.

Example 55.16.1. Let 𝑆 be a scheme. Let 𝐺 be a commutative group. Let 𝑋 → 𝑆 be
a scheme over 𝑆. Let 𝑎 ∶ 𝐺 × 𝑋 → 𝑋 be an action of 𝐺 on 𝑋. For 𝑔 ∈ 𝐺 we denote
𝑔 ∶ 𝑋 → 𝑋 the corresponding automorphism. In this case the inertia stack of [𝑋/𝐺] (see
Remark 55.14.3) is given by

𝐼[𝑋/𝐺] = ∐𝑔∈𝐺
[𝑋𝑔/𝐺],

where, given an element 𝑔 of 𝐺, the symbol 𝑋𝑔 denotes the scheme 𝑋𝑔 = {𝑥 ∈ 𝑋 ∣ 𝑔(𝑥) =
𝑥}. In a formula 𝑋𝑔 is really the fibre product

𝑋𝑔 = 𝑋 ×(1,1),𝑋×𝑆𝑋,(𝑔,1) 𝑋.

Indeed, for any 𝑆-scheme 𝑇, a 𝑇-point on the inertia stack of [𝑋/𝐺] consists of a triple
(𝑃/𝑇, 𝜙, 𝛼) consisting of a 𝐺-torsor 𝑃 → 𝑇 together with a 𝐺-equivariant isomorphism
𝜙 ∶ 𝑃 → 𝑋, together with an automorphism 𝛼 of 𝑃 → 𝑇 over 𝑇 such that 𝜙 ∘ 𝛼 = 𝜙.
Since 𝐺 is a sheaf of commutative groups, 𝛼 is, locally in the fppf topology over 𝑇, given
by multiplication by some element 𝑔 of 𝐺. The condition that 𝜙 ∘ 𝛼 = 𝜙 means that 𝜙
factors through the inclusion of 𝑋𝑔 in 𝑋, i.e., 𝜙 is obtained by composing that inclusion
with a morphism 𝑃 → 𝑋𝛾. The above discussion allows us to define a morphism of fibred
categories 𝐼[𝑋/𝐺] → ∐𝑔∈𝐺[𝑋𝑔/𝐺] given on 𝑇-points by the discussion above. We omit
showing that this is an equivalence.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WN
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0374
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Example 55.16.2. Let 𝑋 → 𝑆 be a morphism of schemes. Assume that for any 𝑇 → 𝑆 the
base change 𝑓𝑇 ∶ 𝑋𝑇 → 𝑇 has the property that the map 𝒪𝑇 → 𝑓𝑇,∗𝒪𝑋𝑇

is an isomorphism.
(This implies that 𝑓 is cohomologically flat in dimension 0 (insert future reference here) but
is stronger.) Consider the Picard stack Pic𝑋/𝑆, see Section 55.15. The points of its inertia
stack over an 𝑆-scheme 𝑇 consist of pairs (ℒ, 𝛼) where ℒ is a line bundle on 𝑋𝑇 and 𝛼 is an
automorphism of that line bundle. I.e., we can think of 𝛼 as an element of 𝐻0(𝑋𝑇, 𝒪𝑋𝑇

)× =
𝐻0(𝑇, 𝒪∗

𝑇) by our condition. Note that 𝐻0(𝑇, 𝒪∗
𝑇) = 𝐆𝑚,𝑆(𝑇), see Groupoids, Example

35.5.1. Hence the inertia stack of Pic𝑋/𝑆 is

𝐼Pic𝑋/𝑆
= 𝐆𝑚,𝑆 ×𝑆 Pic𝑋/𝑆.

as a stack over (Sch/𝑆)𝑓𝑝𝑝𝑓.

55.17. Finite Hilbert stacks

We formulate this in somewhat greater generality than is perhaps strictly needed. Fix a
1-morphism

𝐹 ∶ 𝒳 ⟶ 𝒴
of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. For each integer 𝑑 ≥ 1 consider a category
ℋ𝑑(𝒳/𝒴) defined as follows:

(1) An object (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) where 𝑈, 𝑍 are objects of in (Sch/𝑆)𝑓𝑝𝑝𝑓 and 𝑍 is a finite
locally free of degree 𝑑 over 𝑈, where 𝑦 ∈ 𝑂𝑏(𝒴𝑈), 𝑥 ∈ 𝑂𝑏(𝒳𝑍) and 𝛼 ∶ 𝑦|𝑍 →
𝐹(𝑥) is an isomorphism3.

(2) Amorphism (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) → (𝑈′, 𝑍′, 𝑦′, 𝑥′, 𝛼′) is given by amorphism of schemes
𝑓 ∶ 𝑈 → 𝑈′, a morphism of schemes 𝑔 ∶ 𝑍 → 𝑍′ which induces an isomor-
phism 𝑍 → 𝑍′ ×𝑈 𝑈′, and isomorphisms 𝑏 ∶ 𝑦 → 𝑓∗𝑦′, 𝑎 ∶ 𝑥 → 𝑔∗𝑥′ inducing
a commutative diagram

𝑦|𝑍 𝛼
//

𝑏|𝑍
��

𝐹(𝑥)

𝐹(𝑎)
��

𝑓∗𝑦′|𝑍
𝛼′

// 𝐹(𝑔∗𝑥′)

It is clear from the definitions that there is a canonical forgetful functor

𝑝 ∶ ℋ𝑑(𝒳/𝒴) ⟶ (Sch/𝑆)𝑓𝑝𝑝𝑓

which assignes to the quintuple (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) the scheme𝑈 and to themorphism (𝑓, 𝑔, 𝑏, 𝑎) ∶
(𝑈, 𝑍, 𝑦, 𝑥, 𝛼) → (𝑈′, 𝑍′, 𝑦′, 𝑥′, 𝛼′) the morphism 𝑓 ∶ 𝑈 → 𝑈′.

3 This means the data gives rise, via the 2-Yoneda lemma (Categories, Lemma 4.38.1), to a 2-commutative
diagram

(Sch/𝑍)𝑓𝑝𝑝𝑓 𝑥
//

��

𝒳

𝐹

��
(Sch/𝑈)𝑓𝑝𝑝𝑓

𝑦 // 𝒴

of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Alternatively, we may picture 𝛼 as a 2-morphism

(Sch/𝑍)𝑓𝑝𝑝𝑓

𝑦∘(𝑍→𝑈)
))

𝐹∘𝑥

55�� 𝛼 𝒴.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0375
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Lemma 55.17.1. The category ℋ𝑑(𝒳/𝒴) endowed with the functor 𝑝 above defines a stack
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. As usual, the hardest part is to show descent for objects. To see this let {𝑈𝑖 → 𝑈}
be a covering of (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜉𝑖 = (𝑈𝑖, 𝑍𝑖, 𝑦𝑖, 𝑥𝑖, 𝛼𝑖) be an object of ℋ𝑑(𝒳/𝒴) lying
over 𝑈𝑖, and let 𝜑𝑖𝑗 ∶ pr∗0𝜉𝑖 → pr∗1𝜉𝑗 be a descent datum. First, observe that 𝜑𝑖𝑗 induces a
descent datum (𝑍𝑖/𝑈𝑖, 𝜑𝑖𝑗) which is effective by Descent, Lemma 31.33.1 This produces a
scheme 𝑍/𝑈 which is finite locally free of degree 𝑑 by Descent, Lemma 31.19.28. From
now onwe identify 𝑍𝑖 with 𝑍×𝑈𝑈𝑖. Next, the objects 𝑦𝑖 in the fibre categories 𝒴𝑈𝑖

descend
to an object 𝑦 in 𝒴𝑈 because 𝒴 is a stack in groupoids. Similarly the objects 𝑥𝑖 in the fibre
categories 𝒳𝑍𝑖

descend to an object 𝑥 in 𝒳𝑍 because 𝒳 is a stack in groupoids. Finally,
the given isomorpisms

𝛼𝑖 ∶ (𝑦|𝑍)𝑍𝑖
= 𝑦𝑖|𝑍𝑖

⟶ 𝐹(𝑥𝑖) = 𝐹(𝑥|𝑍𝑖
)

glue to a morphism 𝛼 ∶ 𝑦|𝑍 → 𝐹(𝑥) as the 𝒴 is a stack and hence 𝐼𝑠𝑜𝑚𝒴(𝑦|𝑍, 𝐹(𝑥)) is a
sheaf. Details omitted. �

Definition 55.17.2. We will denote ℋ𝑑(𝒳/𝒴) the degree 𝑑 finite Hilbert stack of 𝒳 over
𝒴 constructed above. If 𝒴 = 𝑆 we write ℋ𝑑(𝒳) = ℋ𝑑(𝒳/𝒴). If 𝒳 = 𝒴 = 𝑆 we denote it
ℋ𝑑.

Note that given 𝐹 ∶ 𝒳 → 𝒴 as above we have the following natural 1-morphisms of stacks
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓:

(55.17.2.1)

ℋ𝑑(𝒳)

%%

ℋ𝑑(𝒳/𝒴)

��

oo // 𝒴

ℋ𝑑

Each of the arrows is given by a "forgetful functor".

Lemma 55.17.3. The 1-morphism ℋ𝑑(𝒳/𝒴) → ℋ𝑑(𝒳) is faithful.

Proof. To check that ℋ𝑑(𝒳/𝒴) → ℋ𝑑(𝒳) is faithful it suffices to prove that it is faithful on
fibre categories. Suppose that 𝜉 = (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) and 𝜉′ = (𝑈, 𝑍′, 𝑦′, 𝑥′, 𝛼′) are two objects
of ℋ𝑑(𝒳/𝒴) over the scheme 𝑈. Let (𝑔, 𝑏, 𝑎), (𝑔′, 𝑏′, 𝑎′) ∶ 𝜉 → 𝜉′ be two morphisms in the
fibre category of ℋ𝑑(𝒳/𝒴) over 𝑈. The image of these morphisms in ℋ𝑑(𝒳) agree if and
only if 𝑔 = 𝑔′ and 𝑎 = 𝑎′. Then the commutative diagram

𝑦|𝑍 𝛼
//

𝑏|𝑍, 𝑏′|𝑍
��

𝐹(𝑥)

𝐹(𝑎)=𝐹(𝑎′)
��

𝑦′|𝑍
𝛼′

// 𝐹(𝑔∗𝑥′) = 𝐹((𝑔′)∗𝑥′)

implies that 𝑏|𝑍 = 𝑏′|𝑍. Since 𝑍 → 𝑈 is finite locally free of degree 𝑑 we see {𝑍 → 𝑈} is
an fppf covering, hence 𝑏 = 𝑏′. �

55.18. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories

(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05WB
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05WC
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05XV
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CHAPTER 56

Quotients of Groupoids

56.1. Introduction

This chapter is devoted to generalities concering groupoids and their quotients (as far as
they exist). There is a lot of literature on this subject, see for example [MFK94], [Ses72],
[Kol97], [KM97a], [Kol08] and many more.

56.2. Conventions and notation

In this chapter the conventions and notation are those introduced in Groupoids in Spaces,
Sections 52.2 and 52.3.

56.3. Invariant morphisms

Definition 56.3.1. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 =
(𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation of algebraic spaces over 𝐵. We say a morphism
𝜙 ∶ 𝑈 → 𝑋 of algebraic spaces over 𝐵 is 𝑅-invariant if the diagram

𝑅 𝑠
//

𝑡
��

𝑈

𝜙
��

𝑈
𝜙 // 𝑋

is commutative. If 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 comes from the action of a group algebraic space 𝐺
on 𝑈 over 𝐵 as in Groupoids in Spaces, Lemma 52.14.1, then we say that 𝜙 is 𝐺-invariant.

In other words, a morphism 𝑈 → 𝑋 is 𝑅-invariant if it equalizes 𝑠 and 𝑡. We can reformulate
this in terms of associated quotient sheaves as follows.

Lemma 56.3.2. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 = (𝑡, 𝑠) ∶
𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation of algebraic spaces over 𝐵. A morphism of algebraic spaces
𝜙 ∶ 𝑈 → 𝑋 is 𝑅-invariant if and only if it factors as 𝑈 → 𝑈/𝑅 → 𝑋.

Proof. This is clear from the definition of the quotient sheaf in Groupoids in Spaces, Sec-
tion 52.18. �

Lemma 56.3.3. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 = (𝑡, 𝑠) ∶
𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation of algebraic spaces over 𝐵. Let 𝑈 → 𝑋 be an 𝑅-invariant
morphism of algebraic spaces over 𝐵. Let 𝑋′ → 𝑋 be any morphism of algebraic spaces.

(1) Setting𝑈′ = 𝑋′×𝑋𝑈,𝑅′ = 𝑋′×𝑋𝑅we obtain a pre-relation 𝑗′ ∶ 𝑅′ → 𝑈′×𝐵𝑈′.
(2) The pre-relation 𝑗′ ∶ 𝑅′ → 𝑈′ ×𝐵 𝑈′ is the restriction of 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 via

𝑈′ → 𝑈, see Groupoids in Spaces, Definition 52.4.3.
(3) If 𝑗 is a relation, then 𝑗′ is a relation.
(4) If 𝑗 is a pre-equivalence relation, then 𝑗′ is a pre-equivalence relation.
(5) If 𝑗 is an equivalence relation, then 𝑗′ is an equivalence relation.
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(6) If 𝑗 comes from a groupoid in algebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over 𝐵, then 𝑗′ comes
from the restriction of this groupoid to 𝑈′, see Groupoids in Spaces, Definition
52.16.2.

(7) If 𝑗 comes from the action of a group algebraic space 𝐺/𝐵 on 𝑈 as in Groupoids
in Spaces, Lemma 52.14.1 then 𝑗′ comes from the induced action of 𝐺 on 𝑈′.

Proof. Omitted. Hint: Functorial point of view combined with the picture:

𝑅′ = 𝑋′ ×𝑋 𝑅

��

//

%%

𝑋′ ×𝑋 𝑈 = 𝑈′

��

%%𝑅

��

// 𝑈

��

𝑈′ = 𝑋′ ×𝑋 𝑈 //

%%

𝑋′

%%
𝑈 // 𝑋

�

Definition 56.3.4. In the situation of Lemma 56.3.3 we call 𝑗′ ∶ 𝑅′ → 𝑈′ ×𝐵 𝑈′ the
pullback of the pre-relation 𝑗 to 𝑋′. We say it is a flat pullback if 𝑋′ → 𝑋 is a flat morphism
of algebraic spaces.

56.4. Categorical quotients

This is the most basic kind of quotient one can consider.

Definition 56.4.1. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 =
(𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be pre-relation in algebraic spaces over 𝐵.

(1) We say a morphism 𝜙 ∶ 𝑈 → 𝑋 of algebraic spaces over 𝐵 is a categorical
quotient if it is 𝑅-invariant, and for every 𝑅-invariant morphism 𝜓 ∶ 𝑈 → 𝑌 of
algebraic spaces over 𝐵 there exists a unique morphism 𝜒 ∶ 𝑋 → 𝑌 such that
𝜓 = 𝜙 ∘ 𝜒.

(2) Let 𝒞 be a full subcategory of the category of algebraic spaces over 𝐵. Assume 𝑈,
𝑅 are objects of 𝒞. In this situation we say a morphism 𝜙 ∶ 𝑈 → 𝑋 of algebraic
spaces over 𝐵 is a categorical quotient in 𝒞 if 𝑋 ∈ 𝑂𝑏(𝒞), and 𝜙 is 𝑅-invariant,
and for every 𝑅-invariant morphism 𝜓 ∶ 𝑈 → 𝑌 with 𝑌 ∈ 𝑂𝑏(𝒞) there exists a
unique morphism 𝜒 ∶ 𝑋 → 𝑌 such that 𝜓 = 𝜙 ∘ 𝜒.

(3) If 𝐵 = 𝑆 and 𝒞 is the category of schemes over 𝑆, then we say 𝑈 → 𝑋 is a
categorical quotient in the category of schemes, or simply a categorical quotient
in schemes.

We often single out a category 𝒞 of algebraic spaces over 𝐵 by some separation axiom, see
Example 56.4.3 for some standard cases. Note that if 𝜙 ∶ 𝑈 → 𝑋 is a categorical quotient
if and only if 𝑈 → 𝑋 is a coequalizer for the morphisms 𝑡, 𝑠 ∶ 𝑅 → 𝑈 in the category.
Hence we immediately deduce the following lemma.

Lemma 56.4.2. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 →
𝑈×𝐵𝑈 be a pre-relation in algebraic spaces over𝐵. If a categorical quotient in the category
of algebaic spaces over 𝐵 exists, then it is unique up to unique isomorphism. Similarly for
categorical quotients in full subcategories of Spaces/𝐵.
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Proof. See Categories, Section 4.11. �

Example 56.4.3. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Here are some
standard examples of categories 𝒞 that we often come up when applying Definition 56.4.1:

(1) 𝒞 is the category of all algebraic spaces over 𝐵,
(2) 𝐵 is separated and 𝒞 is the category of all separated algebraic spaces over 𝐵,
(3) 𝐵 is quasi-separated and 𝒞 is the category of all quasi-separated algebraic spaces

over 𝐵,
(4) 𝐵 is locally separated and 𝒞 is the category of all locally separated algebraic

spaces over 𝐵,
(5) 𝐵 is decent and 𝒞 is the category of all decent algebraic spaces over 𝐵, and
(6) 𝑆 = 𝐵 and 𝒞 is the category of schemes over 𝑆.

In this case, if 𝜙 ∶ 𝑈 → 𝑋 is a categorical quotient then we say 𝑈 → 𝑋 is (1) a categorical
quotient, (2) a categorical quotient in separated algebraic spaces, (3) a categorical quo-
tient in quasi-separated algebraic spaces, (4) a categorical quotient in locally separated
algebraic spaces, (5) a categorical quotient in decent algebraic spaces, (6) a categorical
quotient in schemes.

Definition 56.4.4. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝒞 be a
full subcategory of the category of algebraic spaces over 𝐵 closed under fibre products. Let
𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be pre-relation in 𝒞, and let 𝑈 → 𝑋 be an 𝑅-invariant morphism
with 𝑋 ∈ 𝑂𝑏(𝒞).

(1) We say 𝑈 → 𝑋 is a universal categorical quotient in 𝒞 if for every morphism
𝑋′ → 𝑋 in 𝒞 the morphism 𝑈′ = 𝑋′ ×𝑋 𝑈 → 𝑋′ is the categorical quotient in
𝒞 of the pullback 𝑗′ ∶ 𝑅′ → 𝑈′ of 𝑗.

(2) We say 𝑈 → 𝑋 is a uniform categorical quotient in 𝒞 if for every flat morphism
𝑋′ → 𝑋 in 𝒞 the morphism 𝑈′ = 𝑋′ ×𝑋 𝑈 → 𝑋′ is the categorical quotient in
𝒞 of the pullback 𝑗′ ∶ 𝑅′ → 𝑈′ of 𝑗.

Lemma 56.4.5. In the situation of Definition 56.4.1. If 𝜙 ∶ 𝑈 → 𝑋 is a categorical
quotient and 𝑈 is reduced, then 𝑋 is reduced. The same holds for categorical quotients in
a category of spaces 𝒞 listed in Example 56.4.3.

Proof. Let𝑋𝑟𝑒𝑑 be the reduction of the algebraic space𝑋. Since𝑈 is reduced themorphism
𝜙 ∶ 𝑈 → 𝑋 factors through 𝑖 ∶ 𝑋𝑟𝑒𝑑 → 𝑋 (insert future reference here). Denote this
morphism by 𝜙𝑟𝑒𝑑 ∶ 𝑈 → 𝑋𝑟𝑒𝑑. Since 𝜙 ∘ 𝑠 = 𝜙 ∘ 𝑡 we see that also 𝜙𝑟𝑒𝑑 ∘ 𝑠 = 𝜙𝑟𝑒𝑑 ∘ 𝑡 (as
𝑖 ∶ 𝑋𝑟𝑒𝑑 → 𝑋 is a monomorphism). Hence by the universal property of 𝜙 there exists a
morphism 𝜒 ∶ 𝑋 → 𝑋𝑟𝑒𝑑 such that 𝜙𝑟𝑒𝑑 = 𝜙 ∘ 𝜒. By uniqueness we see that 𝑖 ∘ 𝜒 = id𝑋
and 𝜒 ∘ 𝑖 = id𝑋𝑟𝑒𝑑

. Hence 𝑖 is an isomorphism and 𝑋 is reduced.

To show that this argument works in a category 𝒞 one just needs to show that the reduction
of an object of 𝒞 is an object of 𝒞. We omit the verification that this holds for each of the
standard examples. �

56.5. Quotients as orbit spaces

Let 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation. If 𝑗 is a pre-equivalence relation, then
loosely speaking the ``orbits'' of 𝑅 on 𝑈 are the subsets 𝑡(𝑠−1({𝑢})) of 𝑈. However, if 𝑗 is
just a pre-relation, then we need to take the equivalence relation generated by 𝑅.
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Definition 56.5.1. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 →
𝑈 ×𝐵 𝑈 be a pre-relation over 𝐵. If 𝑢 ∈ |𝑈|, then the orbit, or more precisely the 𝑅-orbit
of 𝑢 is

𝑂𝑢 =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑢′ ∈ |𝑈| ∶

∃𝑛 ≥ 1, ∃𝑢0, … , 𝑢𝑛 ∈ |𝑈| such that
for all 𝑖 ∈ {0, … , 𝑛 − 1} either

𝑢𝑖 = 𝑢𝑖+1 or
∃𝑟 ∈ |𝑅|, 𝑠(𝑟) = 𝑢𝑖, 𝑡(𝑟) = 𝑢𝑖+1 or

∃𝑟 ∈ |𝑅|, 𝑡(𝑟) = 𝑢𝑖, 𝑠(𝑟) = 𝑢𝑖+1

⎫⎪
⎪
⎬
⎪
⎪⎭

It is clear that these are the equivalence classes of an equivalence relation, i.e., we have
𝑢′ ∈ 𝑂𝑢 if and only if 𝑢 ∈ 𝑂𝑢′. The following lemma is a reformulation of Groupoids in
Spaces, Lemma 52.4.4.

Lemma 56.5.2. Let 𝐵 → 𝑆 as in Section 56.2. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-equivalence
relation of algebraic spaces over 𝐵. Then

𝑂𝑢 = {𝑢′ ∈ |𝑈| such that ∃𝑟 ∈ |𝑅|, 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢′}.

Proof. By the aforemetioned Groupoids in Spaces, Lemma 52.4.4 we see that the orbits
𝑂𝑢 as defined in the lemma give a disjoint union decomposition of |𝑈|. Thus we see they
are equal to the orbits as defined in Definition 56.5.1. �

Lemma 56.5.3. In the situation of Definition 56.5.1. Let 𝜙 ∶ 𝑈 → 𝑋 be an 𝑅-invariant
morphism of algebraic spaces over 𝐵. Then |𝜙| ∶ |𝑈| → |𝑋| is constant on the orbits.

Proof. To see this we just have to show that 𝜙(𝑢) = 𝜙(𝑢′) for all 𝑢, 𝑢′ ∈ |𝑈| such that there
exists an 𝑟 ∈ |𝑅| such that 𝑠(𝑟) = 𝑢 and 𝑡(𝑟) = 𝑢′. And this is clear since 𝜙 equalizes 𝑠 and
𝑡. �

There are several problems with considering the orbits 𝑂𝑢 ⊂ |𝑈| as a tool for singling out
properties of quotient maps. One issue is the following. Suppose that 𝑆𝑝𝑒𝑐(𝑘) → 𝐵 is a
geometric point of 𝐵. Consider the canonical map

𝑈(𝑘) ⟶ |𝑈|.

Then it is usually not the case that the equivalence classes of the equivalence relation gen-
erated by 𝑗(𝑅(𝑘)) ⊂ 𝑈(𝑘) × 𝑈(𝑘) are the inverse images of the orbits 𝑂𝑢 ⊂ |𝑈|. A silly
example is to take 𝑆 = 𝐵 = 𝑆𝑝𝑒𝑐(𝐙), 𝑈 = 𝑅 = 𝑆𝑝𝑒𝑐(𝑘) with 𝑠 = 𝑡 = id𝑘. Then
|𝑈| = |𝑅| is a single point but 𝑈(𝑘)/𝑅(𝑘) is enormous. A more interesting example is to
take 𝑆 = 𝐵 = 𝑆𝑝𝑒𝑐(𝐐), choose some of number fields 𝐾 ⊂ 𝐿, and set 𝑈 = 𝑆𝑝𝑒𝑐(𝐿) and
𝑅 = 𝑆𝑝𝑒𝑐(𝐿 ⊗𝐾 𝐿) with obvious maps 𝑠, 𝑡 ∶ 𝑅 → 𝑈. In this case |𝑈| still has just one
point, but the quotient

𝑈(𝑘)/𝑅(𝑘) = 𝐻𝑜𝑚(𝐾, 𝑘)
consists of more than one element. We conclude from both examples that if 𝑈 → 𝑋 is an
𝑅-invariant map and if wewant it to ``separate orbits'' we get amuch stronger and interesting
notion by considering the induced maps 𝑈(𝑘) → 𝑋(𝑘) and ask that those maps separate
orbits.

There is an issue with this too. Namely, suppose that 𝑆 = 𝐵 = 𝑆𝑝𝑒𝑐(𝐑), 𝑈 = 𝑆𝑝𝑒𝑐(𝐂),
and 𝑅 = 𝑆𝑝𝑒𝑐(𝐂) ⨿ 𝑆𝑝𝑒𝑐(𝐾) for some field extension 𝜎 ∶ 𝐂 → 𝐾. Let the maps 𝑠, 𝑡 be
given by the identity on the component 𝑆𝑝𝑒𝑐(𝐂), but by 𝜎, 𝜎 ∘ 𝜏 on the second component
where 𝜏 is complex conjugation. If 𝐾 is a nontrivial extension of 𝐂, then the two points
1, 𝜏 ∈ 𝑈(𝐂) are not equivalent under 𝑗(𝑅(𝐂)). But after choosing an extension 𝐂 ⊂ Ω of
sufficiently large cardinality (for example larger than the cardinality of 𝐾) then the images
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of 1, 𝜏 ∈ 𝑈(𝐂) in 𝑈(Ω) do become equivalent! It seems intuitively clear that this happens
either because 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are not locally of finite type or because the cardinality of the
field 𝑘 is not large enough.

Keeping this in mind we make the following definition.

Definition 56.5.4. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 →
𝑈 ×𝐵 𝑈 be a pre-relation over 𝐵. Let 𝑆𝑝𝑒𝑐(𝑘) → 𝐵 be a geometric point of 𝐵.

(1) We say 𝑢, 𝑢′ ∈ 𝑈(𝑘) are weakly 𝑅-equivalent if they are in the same equivalence
class for the equivalence relation generated by the relation 𝑗(𝑅(𝑘)) ⊂ 𝑈(𝑘)×𝑈(𝑘).

(2) We say 𝑢, 𝑢′ ∈ 𝑈(𝑘) are 𝑅-equivalent if for some overfield 𝑘 ⊂ Ω the images in
𝑈(Ω) are weakly 𝑅-equivalent.

(3) The weak orbit, or more precisely the weak 𝑅-orbit of 𝑢 ∈ 𝑈(𝑘) is set of all
elements of 𝑈(𝑘) which are weakly 𝑅-equivalent to 𝑢.

(4) The orbit, or more precisely the 𝑅-orbit of 𝑢 ∈ 𝑈(𝑘) is set of all elements of 𝑈(𝑘)
which are 𝑅-equivalent to 𝑢.

It turns out that in good cases orbits and weak orbits agree, see Lemma 56.5.7. The follow-
ing lemma illustrates the difference in the special case of a pre-equivalence relation.

Lemma 56.5.5. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑆𝑝𝑒𝑐(𝑘) →
𝐵 be a geometric point of 𝐵. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-equivalence relation over 𝐵. In
this case the weak orbit of 𝑢 ∈ 𝑈(𝑘) is simply

{𝑢′ ∈ 𝑈(𝑘) such that ∃𝑟 ∈ 𝑅(𝑘), 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢′}

and the orbit of 𝑢 ∈ 𝑈(𝑘) is

{𝑢′ ∈ 𝑈(𝑘) ∶ ∃ field extension 𝑘 ⊂ 𝐾, ∃ 𝑟 ∈ 𝑅(𝐾), 𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢′}

Proof. This is true because by definition of a pre-equivalence relation the image 𝑗(𝑅(𝑘)) ⊂
𝑈(𝑘) × 𝑈(𝑘) is an equivalence relation. �

Let us describe the recipe for turning any pre-relation into a pre-equivalence relation. We
will use the morphisms

(56.5.5.1)
𝑗𝑑𝑖𝑎𝑔 ∶ 𝑈 ⟶ 𝑈 ×𝐵 𝑈, 𝑢 ⟼ (𝑢, 𝑢)
𝑗𝑓𝑙𝑖𝑝 ∶ 𝑅 ⟶ 𝑈 ×𝐵 𝑈, 𝑟 ⟼ (𝑠(𝑟), 𝑡(𝑟))
𝑗𝑐𝑜𝑚𝑝 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 ⟶ 𝑈 ×𝐵 𝑈, (𝑟, 𝑟′) ⟼ (𝑡(𝑟), 𝑠(𝑟′))

We define 𝑗1 = (𝑡1, 𝑠1) ∶ 𝑅1 → 𝑈 ×𝐵 𝑈 to be the morphism

𝑗 ⨿ 𝑗𝑑𝑖𝑎𝑔 ⨿ 𝑗𝑓𝑙𝑖𝑝 ∶ 𝑅 ⨿ 𝑈 ⨿ 𝑅 ⟶ 𝑈 ×𝐵 𝑈

with notation as in Equation (56.5.5.1). For 𝑛 > 1 we set

𝑗𝑛 = (𝑡𝑛, 𝑠𝑛) ∶ 𝑅𝑛 = 𝑅1 ×𝑠1,𝑈,𝑡𝑛−1
𝑅𝑛−1 ⟶ 𝑈 ×𝐵 𝑈

where 𝑡𝑛 comes from 𝑡1 precomposed with projection onto 𝑅1 and 𝑠𝑛 comes from 𝑠𝑛−1
precomposed with projection onto 𝑅𝑛−1. Finally, we denote

𝑗∞ = (𝑡∞, 𝑠∞) ∶ 𝑅∞ = ∐𝑛≥1
𝑅𝑛 ⟶ 𝑈 ×𝐵 𝑈.

Lemma 56.5.6. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 →
𝑈 ×𝐵 𝑈 be a pre-relation over 𝐵. Then 𝑗∞ ∶ 𝑅∞ → 𝑈 ×𝐵 𝑈 is a pre-equivalence relation
over 𝐵. Moreover

(1) 𝜙 ∶ 𝑈 → 𝑋 is 𝑅-invariant if and only if it is 𝑅∞-invariant,
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(2) the canonical map of quotient sheaves 𝑈/𝑅 → 𝑈/𝑅∞ (see Groupoids in Spaces,
Section 52.18) is an ismorphism,

(3) weak 𝑅-orbits agree with weak 𝑅∞-orbits,
(4) 𝑅-orbits agree with 𝑅∞-orbits,
(5) if 𝑠, 𝑡 are locally of finite type, then 𝑠∞, 𝑡∞ are locally of finite type,
(6) add more here as needed.

Proof. Omitted. Hint for (5): Any property of 𝑠, 𝑡 which is stable under composition and
stable under base change, and Zariski local on the source will be inherited by 𝑠∞, 𝑡∞. �

Lemma 56.5.7. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 →
𝑈 ×𝐵 𝑈 be a pre-relation over 𝐵. Let 𝑆𝑝𝑒𝑐(𝑘) → 𝐵 be a geometric point of 𝐵.

(1) If 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are locally of finite type then weak 𝑅-equivalence on 𝑈(𝑘) agrees
with 𝑅-equivalence, and weak 𝑅-orbits agree with 𝑅-orbits on 𝑈(𝑘).

(2) If 𝑘 has sufficiently large cardinality then weak 𝑅-equivalence on 𝑈(𝑘) agrees
with 𝑅-equivalence, and weak 𝑅-orbits agree with 𝑅-orbits on 𝑈(𝑘).

Proof. We first prove (1). Assume 𝑠, 𝑡 locally of finite type. By Lemma 56.5.6 we may
assume that 𝑅 is a pre-equivalence relation. Let 𝑘 be an algebraically closed field over 𝐵.
Suppose 𝑢, 𝑢′ ∈ 𝑈(𝑘) are 𝑅-equivalent. Then for some extension field 𝑘 ⊂ Ω there exists a
point 𝑟 ∈ 𝑅(Ω) mapping to (𝑢, 𝑢′) ∈ (𝑈 ×𝐵 𝑈)(Ω), see Lemma 56.5.5. Hence

𝑍 = 𝑅 ×𝑗,𝑈×𝐵𝑈,(𝑢,𝑢′) 𝑆𝑝𝑒𝑐(𝑘)

is nonempty. As 𝑠 is locally of finite type we see that also 𝑗 is locally of finite type, see
Morphisms of Spaces, Lemma 42.22.6. This implies 𝑍 is a nonempty algebraic space
locally of finite type over the algebraically closed field 𝑘 (useMorphisms of Spaces, Lemma
42.22.3). Thus 𝑍 has a 𝑘-valued point, see Morphisms of Spaces, Lemma 42.23.1. Hence
we conclude there exists a 𝑟 ∈ 𝑅(𝑘) with 𝑗(𝑟) = (𝑢, 𝑢′), and we conclude that 𝑢, 𝑢′ are
𝑅-equivalent as desired.

The proof of part (2) is the same, except that it uses Morphisms of Spaces, Lemma 42.23.2
instead of Morphisms of Spaces, Lemma 42.23.1. This shows that the assertion holds as
soon as |𝑘| > 𝜆(𝑅) with 𝜆(𝑅) as introduced just above Morphisms of Spaces, Lemma
42.23.1. �

In the following definition we use the terminology ``𝑘 is a field over 𝐵'' to mean that 𝑆𝑝𝑒𝑐(𝑘)
comes equipped with a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝐵.

Definition 56.5.8. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 →
𝑈 ×𝐵 𝑈 be a pre-relation over 𝐵.

(1) We say 𝜙 ∶ 𝑈 → 𝑋 is set-theoretically 𝑅-invariant if and only if the map 𝑈(𝑘) →
𝑋(𝑘) equalizes the two maps 𝑠, 𝑡 ∶ 𝑅(𝑘) → 𝑈(𝑘) for every algebraically closed
field 𝑘 over 𝐵.

(2) We say 𝜙 ∶ 𝑈 → 𝑋 separates orbits, or separates𝑅-orbits if it is set-theoretically
𝑅-invariant and 𝜙(𝑢) = 𝜙(𝑢′) in 𝑋(𝑘) implies that 𝑢, 𝑢′ ∈ 𝑈(𝑘) are in the same
orbit for every algebraically closed field 𝑘 over 𝐵.

In Example 56.5.12 we show that being set-theoretically invariant is ``too weak'' a notion
in the category of algebraic spaces. A more geometric reformulation of what it means to
be set-theoretically invariant or to separate orbits is in Lemma 56.5.17.
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Lemma 56.5.9. In the situation of Definition 56.5.8. A morphism 𝜙 ∶ 𝑈 → 𝑋 is set-
theoretically 𝑅-invariant if and only if for any algebraically closed field 𝑘 over 𝐵 the map
𝑈(𝑘) → 𝑋(𝑘) is constant on orbits.

Proof. This is true because the condition is supposed to hold for all algebraically closed
fields over 𝐵. �

Lemma56.5.10. In the situation of Definition 56.5.8. An invariant morphism is set-theoretically
invariant.

Proof. This is immediate from the definitions. �

Lemma 56.5.11. In the situation of Definition 56.5.8. Let 𝜙 ∶ 𝑈 → 𝑋 be a morphism of
algebraic spaces over 𝐵. Assume

(1) 𝜙 is set-theoretically 𝑅-invariant,
(2) 𝑅 is reduced, and
(3) 𝑋 is locally separated over 𝐵.

Then 𝜙 is 𝑅-invariant.

Proof. Consider the equalizer
𝑍 = 𝑅 ×(𝜙,𝜙)∘𝑗,𝑋×𝐵𝑋,Δ𝑋/𝐵

𝑋
algebraic space. Then 𝑍 → 𝑅 is an immersion by assumption (3). By assumption (1)
|𝑍| → |𝑅| is surjective. This implies that 𝑍 → 𝑅 is a bijective closed immersion (use
Schemes, Lemma 21.10.4) and by assumption (2) we conclude that 𝑍 = 𝑅. �

Example 56.5.12. There exist reduced quasi-separated algebraic spaces 𝑋, 𝑌 and a pair of
morphisms 𝑎, 𝑏 ∶ 𝑌 → 𝑋 which agree on all 𝑘-valued points but are not equal. To get an
example take 𝑌 = 𝑆𝑝𝑒𝑐(𝑘[[𝑥]]) and

𝑋 = 𝐀1
𝑘/(Δ ⨿ {(𝑥, −𝑥) ∣ 𝑥≠0})

the algebraic space of Spaces, Example 40.14.1. The two morphisms 𝑎, 𝑏 ∶ 𝑌 → 𝑋 come
from the two maps 𝑥 ↦ 𝑥 and 𝑥 ↦ −𝑥 from 𝑌 to 𝐀1

𝑘 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]). On the generic point
the two maps are the same because on the open part 𝑥≠0 of the space 𝑋 the functions 𝑥
and −𝑥 are equal. On the closed point the maps are obviously the same. It is also true that
𝑎≠𝑏. This implies that Lemma 56.5.11 does not hold with assumption (3) replaced by the
assumption that 𝑋 be quasi-separated. Namely, consider the diagram

𝑌

−1
��

1
// 𝑌

𝑎
��

𝑌 𝑎 // 𝑋
then the composition 𝑎 ∘ (−1) = 𝑏. Hence we can set 𝑅 = 𝑌, 𝑈 = 𝑌, 𝑠 = 1, 𝑡 = −1, 𝜙 = 𝑎
to get an example of a set-theoretically invariant morphism which is not invariant.

The example above is instructive because the map 𝑌 → 𝑋 even separates orbits. It shows
that in the category of algebraic spaces there are simply too many set-theoretically invariant
morphisms lying around. Next, let us define what it means for 𝑅 to be a set-theoretic
equivalence relation, while remembering that we need to allow for field extensions to make
this work correctly.

Definition 56.5.13. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶
𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation over 𝐵.
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(1) We say 𝑗 is a set-theoretic pre-equivalence relation if

𝑢 ∼𝑅 𝑢′ ⇔ ∃ field extension 𝑘 ⊂ 𝐾, ∃ 𝑟 ∈ 𝑅(𝐾),
𝑠(𝑟) = 𝑢, 𝑡(𝑟) = 𝑢′

defines an equivalence relation on 𝑈(𝑘) for all algebraically closed fields 𝑘 over
𝐵.

(2) We say 𝑗 is a set-theoretic equivalence relation if 𝑗 is universally injective and a
set-theoretic pre-equivalence relation.

Let us reformulate this in more geometric terms.

Lemma 56.5.14. In the situation of Definition 56.5.13. The following are equivalent:
(1) The morphism 𝑗 is a set-theoretic pre-equivalence relation.
(2) The subset 𝑗(|𝑅|) ⊂ |𝑈 ×𝐵 𝑈| contains the image of |𝑗′| for any of the morphisms

𝑗′ as in Equation (56.5.5.1).
(3) For every algebraically closed field 𝑘 over 𝐵 of sufficiently large cardinality the

subset 𝑗(𝑅(𝑘)) ⊂ 𝑈(𝑘) × 𝑈(𝑘) is an equivalence relation.
If 𝑠, 𝑡 are locally of finite type these are also equivalent to

(4) For every algebraically closed field 𝑘 over 𝐵 the subset 𝑗(𝑅(𝑘)) ⊂ 𝑈(𝑘) × 𝑈(𝑘) is
an equivalence relation.

Proof. Assume (2). Let 𝑘 be an algebraically closed field over 𝐵. We are going to show
that ∼𝑅 is an equivalence relation. Suppose that 𝑢𝑖 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈, 𝑖 = 1, 2 are 𝑘-valued
points of 𝑈. Suppose that (𝑢1, 𝑢2) is the image of a 𝐾-valued point 𝑟 ∈ 𝑅(𝐾). Consider the
solid commutative diagram

𝑆𝑝𝑒𝑐(𝐾′) //

��

𝑆𝑝𝑒𝑐(𝑘)

(𝑢2,𝑢1)
��

𝑆𝑝𝑒𝑐(𝐾)

��

oo

𝑅
𝑗 // 𝑈 ×𝐵 𝑈 𝑅

𝑗𝑓𝑙𝑖𝑝oo

We also denote 𝑟 ∈ |𝑅| the image of 𝑟. By assumption the image of |𝑗𝑓𝑙𝑖𝑝| is contained
in the image of |𝑗|, in other words there exists a 𝑟′ ∈ |𝑅| such that |𝑗|(𝑟′) = |𝑗𝑓𝑙𝑖𝑝|(𝑟).
But note that (𝑢2, 𝑢1) is in the equivalence class that defines |𝑗|(𝑟′) (by the commutativity
of the solid part of the diagram). This means there exists a field extension 𝑘 ⊂ 𝐾′ and a
morphism 𝑟′ ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑅 (abusively denoted 𝑟′ as well) with 𝑗 ∘ 𝑟′ = (𝑢2, 𝑢1) ∘ 𝑖 where
𝑖 ∶ 𝑆𝑝𝑒𝑐(𝐾′) → 𝑆𝑝𝑒𝑐(𝐾) is the obvious map. In other words the dotted part of the diagram
commutes. This proves that ∼𝑅 is a symmetric relation on 𝑈(𝑘). In the similar way, using
that the image of |𝑗𝑑𝑖𝑎𝑔| is contained in the image of |𝑗| we see that ∼𝑅 is reflexive (details
omitted).

To show that ∼𝑅 is transitive assume given 𝑢𝑖 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑈, 𝑖 = 1, 2, 3 and field ex-
tensions 𝑘 ⊂ 𝐾𝑖 and points 𝑟𝑖 ∶ 𝑆𝑝𝑒𝑐(𝐾𝑖) → 𝑅, 𝑖 = 1, 2 such that 𝑗(𝑟1) = (𝑢1, 𝑢2) and
𝑗(𝑟1) = (𝑢2, 𝑢3). Then we may choose a commutative diagram of fields

𝐾 𝐾2
oo

𝐾1

OO

𝑘oo

OO
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and we may think of 𝑟1, 𝑟2 ∈ 𝑅(𝐾). We consider the commutative solid diagram

𝑆𝑝𝑒𝑐(𝐾′) //

��

𝑆𝑝𝑒𝑐(𝑘)

(𝑢1,𝑢3)
��

𝑆𝑝𝑒𝑐(𝐾)

(𝑟1,𝑟2)
��

oo

𝑅
𝑗 // 𝑈 ×𝐵 𝑈 𝑅 ×𝑠,𝑈,𝑡 𝑅

𝑗𝑐𝑜𝑚𝑝oo

By exactly the same reasoning as in the first part of the proof, but this time using that
|𝑗𝑐𝑜𝑚𝑝|((𝑟1, 𝑟2)) is in the image of |𝑗|, we conclude that a field 𝐾′ and dotted arrows exist
making the diagram commute. This proves that ∼𝑅 is transitive and concludes the proof
that (2) implies (1).

Assume (1) and let 𝑘 be an algebraically closed field over 𝐵 whose cardinality is larger
than 𝜆(𝑅), see Morphisms of Spaces, Lemma 42.23.2. Suppose that 𝑢 ∼𝑅 𝑢′ with 𝑢, 𝑢′ ∈
𝑈(𝑘). By assumption there exists a point in |𝑅| mapping to (𝑢, 𝑢′) ∈ |𝑈 ×𝐵 𝑈|. Hence by
Morphisms of Spaces, Lemma 42.23.2 we conclude there exists an 𝑟 ∈ 𝑅(𝑘) with 𝑗(𝑟) =
(𝑢, 𝑢′). In this way we see that (1) implies (3).

Assume (3). Let us show that Im(|𝑗𝑐𝑜𝑚𝑝|) ⊂ Im(|𝑗|). Pick any point 𝑐 ∈ |𝑅×𝑠,𝑈,𝑡𝑅|. Wemay
represent this by a morphism 𝑐 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑅 ×𝑠,𝑈,𝑡 𝑅, with 𝑘 over 𝐵 having sufficiently
large cardinality. By assumption we see that 𝑗𝑐𝑜𝑚𝑝(𝑐) ∈ 𝑈(𝑘) × 𝑈(𝑘) = (𝑈 ×𝐵 𝑈)(𝑘) is also
the image 𝑗(𝑟) for some 𝑟 ∈ 𝑅(𝑘). Hence 𝑗𝑐𝑜𝑚𝑝(𝑐) = 𝑗(𝑟) in |𝑈×𝐵𝑈| as desired (with 𝑟 ∈ |𝑅|
the equivalence class of 𝑟). The same argument shows also that Im(|𝑗𝑑𝑖𝑎𝑔|) ⊂ Im(|𝑗|) and
Im(|𝑗𝑓𝑙𝑖𝑝|) ⊂ Im(|𝑗|) (details omitted). In this way we see that (3) implies (2). At this point
we have shown that (1), (2) and (3) are all equivalent.

It is clear that (4) implies (3) (without any assumptions on 𝑠, 𝑡). To finish the proof of the
lemma we show that (1) implies (4) if 𝑠, 𝑡 are locally of finite type. Namely, let 𝑘 be an
algebraically closed field over 𝐵. Suppose that 𝑢 ∼𝑅 𝑢′ with 𝑢, 𝑢′ ∈ 𝑈(𝑘). By assumption
the algebraic space 𝑍 = 𝑅 ×𝑗,𝑈×𝐵𝑈,(𝑢,𝑢′) 𝑆𝑝𝑒𝑐(𝑘) is nonempty. On the other hand, since
𝑗 = (𝑡, 𝑠) is locally of finite type the morphism 𝑍 → 𝑆𝑝𝑒𝑐(𝑘) is locally of finite type as
well (use Morphisms of Spaces, Lemmas 42.22.6 and 42.22.3). Hence 𝑍 has a 𝑘 point by
Morphisms of Spaces, Lemma 42.23.1 and we conclude that (𝑢, 𝑢′) ∈ 𝑗(𝑅(𝑘)) as desired.
This finishes the proof of the lemma. �

Lemma 56.5.15. In the situation of Definition 56.5.13. The following are equivalent:
(1) The morphism 𝑗 is a set-theoretic equivalence relation.
(2) The morphism 𝑗 is universally injective and 𝑗(|𝑅|) ⊂ |𝑈×𝐵 𝑈| contains the image

of |𝑗′| for any of the morphisms 𝑗′ as in Equation (56.5.5.1).
(3) For every algebraically closed field 𝑘 over 𝐵 of sufficiently large cardinality the

map 𝑗 ∶ 𝑅(𝑘) → 𝑈(𝑘)×𝑈(𝑘) is injective and its image is an equivalence relation.
If 𝑗 is decent, or locally separated, or quasi-separated these are also equivalent to

(4) For every algebraically closed field 𝑘 over 𝐵 the map 𝑗 ∶ 𝑅(𝑘) → 𝑈(𝑘) × 𝑈(𝑘) is
injective and its image is an equivalence relation.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) follow from Lemma 56.5.14 and the defi-
nitions. The same lemma shows that (3) implies 𝑗 is a set-theoretic pre-equivalence relation.
But of course condition (3) also implies that 𝑗 is universally injective, see Morphisms of
Spaces, Lemma 42.18.2, so that 𝑗 is indeed a set-theoretic equivalence relation. At this
point we know that (1), (2), (3) are all equivalent.
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Condition (4) implies (3) without any further hypotheses on 𝑗. Assume 𝑗 is decent, or locally
separated, or quasi-separated and the equivalent conditions (1), (2), (3) hold. By More on
Morphisms of Spaces, Lemma 46.3.4 we see that 𝑗 is radicial. Let 𝑘 be any algebraically
closed field over 𝐵. Let 𝑢, 𝑢′ ∈ 𝑈(𝑘) with 𝑢 ∼𝑅 𝑢′. We see that 𝑅 ×𝑈×𝐵𝑈,(𝑢,𝑢′) 𝑆𝑝𝑒𝑐(𝑘) is
nonempty. Hence, as 𝑗 is radicial, its reduction is the spectrum of a field purely inseparable
over 𝑘. As 𝑘 = 𝑘 we see that it is the spectrum of 𝑘. Whence a point 𝑟 ∈ 𝑅(𝑘) with 𝑡(𝑟) = 𝑢
and 𝑠(𝑟) = 𝑢′ as desired. �

Lemma 56.5.16. Let 𝑆 be a scheme, and let 𝐵 be an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 →
𝑈 ×𝐵 𝑈 be a pre-relation over 𝐵.

(1) If 𝑗 is a pre-equivalence relation, then 𝑗 is a set-theoretic pre-equivalence relation.
This holds in particular when 𝑗 comes from a groupoid in algebraic spaces, or
from an action of a group algebraic space on 𝑈.

(2) If 𝑗 is an equivalence relation, then 𝑗 is a set-theoretic equivalence relation.

Proof. Omitted. �

Lemma 56.5.17. Let 𝐵 → 𝑆 be as in Section 56.2. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation.
Let 𝜙 ∶ 𝑈 → 𝑋 be a morphism of algebraic spaces over 𝐵. Consider the diagram

(𝑈 ×𝑋 𝑈) ×(𝑈×𝐵𝑈) 𝑅

𝑞
��

𝑝
// 𝑅

𝑗
��

𝑈 ×𝑋 𝑈 𝑐 // 𝑈 ×𝐵 𝑈

Then we have:
(1) The morphism 𝜙 is set-theoretically invariant if and only if 𝑝 is surjective.
(2) If 𝑗 is a set-theoretic pre-equivalence relation then 𝜙 separates orbits if and only

if 𝑝 and 𝑞 are surjective.
(3) If 𝑝 and 𝑞 are surjective, then 𝑗 is a set-theoretic pre-equivalence relation (and 𝜙

separates orbits).
(4) If 𝜙 is 𝑅-invariant and 𝑗 is a set-theoretic pre-equivalence relation, then 𝜙 sepa-

rates orbits if and only if the induced morphism 𝑅 → 𝑈 ×𝑋 𝑈 is surjective.

Proof. Assume 𝜙 is set-theoretically invariant. Thismeans that for any algebraically closed
field 𝑘 over 𝐵 and any 𝑟 ∈ 𝑅(𝑘) we have 𝜙(𝑠(𝑟)) = 𝜙(𝑡(𝑟)). Hence ((𝜙(𝑡(𝑟)), 𝜙(𝑠(𝑟))), 𝑟)
defines a point in the fibre product mapping to 𝑟 via 𝑝. This shows that 𝑝 is surjective.
Conversely, assume 𝑝 is surjective. Pick 𝑟 ∈ 𝑅(𝑘). As 𝑝 is surjective, we can find a field
extension 𝑘 ⊂ 𝐾 and a 𝐾-valued point ̃𝑟 of the fibre product with 𝑝( ̃𝑟) = 𝑟. Then 𝑞( ̃𝑟) ∈
𝑈 ×𝑋 𝑈 maps to (𝑡(𝑟), 𝑠(𝑟)) in 𝑈 ×𝐵 𝑈 and we conclude that 𝜙(𝑠(𝑟)) = 𝜙(𝑡(𝑟)). This proves
that 𝜙 is set-theoretically invariant.

The proofs of (2), (3), and (4) are omitted. Hint: Assume 𝑘 is an algebraically closed field
over 𝐵 of large cardinality. Consider the associated diagram of sets

(𝑈(𝑘) ×𝑋(𝑘) 𝑈(𝑘)) ×𝑈(𝑘)×𝑈(𝑘) 𝑅(𝑘)

𝑞
��

𝑝
// 𝑅(𝑘)

𝑗
��

𝑈(𝑘) ×𝑋(𝑘) 𝑈(𝑘) 𝑐 // 𝑈(𝑘) × 𝑈(𝑘)
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By the lemmas above the equivalences posed in (2), (3), and (4) become set-theoretic ques-
tions related to the diagram we just displayed, using that surjectivity translates into surjec-
tivity on 𝑘-valued points by Morphisms of Spaces, Lemma 42.23.2. �

Because we have seen above that the notion of a set-theoretically invariant morphism is
a rather weak one in the category of algebraic spaces, we define an orbit space for a pre-
relation as follows.

Definition 56.5.18. Let 𝐵 → 𝑆 as in Section 56.2. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation.
We say 𝜙 ∶ 𝑈 → 𝑋 is an orbit space for 𝑅 if

(1) 𝜙 is 𝑅-invariant,
(2) 𝜙 separates 𝑅-orbits, and
(3) 𝜙 is surjective.

The definition of separating 𝑅-orbits involves a discussion of points with values in alge-
braically closed fields. But as we've seen in many cases this just corresponds to the sur-
jectivity of certain canonically associated morphisms of algebraic spaces. We summarize
some of the discussion above in the following characterization of orbit spaces.

Lemma 56.5.19. Let 𝐵 → 𝑆 as in Section 56.2. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a set-theoretic
pre-equivalence relation. A morphism 𝜙 ∶ 𝑈 → 𝑋 is an orbit space for 𝑅 if and only if

(1) 𝜙 ∘ 𝑠 = 𝜙 ∘ 𝑡, i.e., 𝜙 is invariant,
(2) the induced morphism (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑋 𝑈 is surjective, and
(3) the morphism 𝜙 ∶ 𝑈 → 𝑋 is surjective.

This characterization applies for example if 𝑗 is a pre-equivalence relation, or comes from
a groupoid in algebraic spaces over 𝐵, or comes from the action of a group algebraic space
over 𝐵 on 𝑈.

Proof. Follows immediately from Lemma 56.5.17 part (4). �

In the following lemma it is (probably) not good enough to assume just that the morphisms
𝑠, 𝑡 are locally of finite type. The reason is that it may happen that some map 𝜙 ∶ 𝑈 → 𝑋
is an orbit space, yet is not locally of finite type. In that case 𝑈(𝑘) → 𝑋(𝑘) may not be
surjective for all algebraically closed fields 𝑘 over 𝐵.

Lemma 56.5.20. Let 𝐵 → 𝑆 as in Section 56.2. Let 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be
a pre-relation. Assume 𝑅, 𝑈 are locally of finite type over 𝐵. Let 𝜙 ∶ 𝑈 → 𝑋 be an
𝑅-invariant morphism of algebraic spaces over 𝐵. Then 𝜙 is an orbit space for 𝑅 if and
only if the natural map

𝑈(𝑘)/(equivalence relation generated by 𝑗(𝑅(𝑘))) ⟶ 𝑋(𝑘)

is bijective for all algebraically closed fields 𝑘 over 𝐵.

Proof. Note that since 𝑈, 𝑅 are locally of finite type over 𝐵 all of themorphisms 𝑠, 𝑡, 𝑗, 𝜙 are
locally of finite type, see Morphisms of Spaces, Lemma 42.22.6. We will also use without
further mention Morphisms of Spaces, Lemma 42.23.1. Assume 𝜙 is an orbit space. Let 𝑘
be any algebraically closed field over 𝐵. Let 𝑥 ∈ 𝑋(𝑘). Consider 𝑈 ×𝜙,𝑋,𝑥 𝑆𝑝𝑒𝑐(𝑘). This is
a nonempty algebraic space which is locally of finite type over 𝑘. Hence it has a 𝑘-valued
point. This shows the displayed map of the lemma is surjective. Suppose that 𝑢, 𝑢′ ∈ 𝑈(𝑘)
map to the same element of 𝑋(𝑘). By Definition 56.5.8 this means that 𝑢, 𝑢′ are in the
same 𝑅-orbit. By Lemma 56.5.7 this means that they are equivalent under the equivalence
relation generated by 𝑗(𝑅(𝑘)). Thus the displayed morphism is injective.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0493
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=049Z
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04A0


2662 56. QUOTIENTS OF GROUPOIDS

Conversely, assume the displayed map is bijective for all algebraically closed fields 𝑘 over
𝐵. This condition clearly implies that 𝜙 is surjective. We have already assumed that 𝜙 is
𝑅-invariant. Finally, the injectivity of all the displayed maps implies that 𝜙 separates orbits.
Hence 𝜙 is an orbit space. �

56.6. Coarse quotients

We only add this here so that we can later say that coarse quotients correspond to coarse
moduli spaces (or moduli schemes).

Definition 56.6.1. Let 𝑆 be a scheme and 𝐵 an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 → 𝑈×𝐵 𝑈
be a pre-relation. A morphism 𝜙 ∶ 𝑈 → 𝑋 of algebraic spaces over 𝐵 is called a coarse
quotient if

(1) 𝜙 is a categorical quotient, and
(2) 𝜙 is an orbit space.

If 𝑆 = 𝐵, 𝑈, 𝑅 are all schemes, then we say a morphism of schemes 𝜙 ∶ 𝑈 → 𝑋 is a coarse
quotient in schemes if

(1) 𝜙 is a categorical quotient in schemes, and
(2) 𝜙 is an orbit space.

In many situations the algebraic spaces 𝑅 and 𝑈 are locally of finite type over 𝐵 and the
orbit space condition simply means that

𝑈(𝑘)/(equivalence relation generated by 𝑗(𝑅(𝑘))) ≅ 𝑋(𝑘)

for all algebraically closed fields 𝑘. See Lemma 56.5.20. If 𝑗 is also a (set-theoretic) pre-
equivalence relation, then the condition is simply equivalent to 𝑈(𝑘)/𝑗(𝑅(𝑘)) → 𝑋(𝑘) being
bijective for all algebraically closed fields 𝑘.

56.7. Topological properties

Let 𝑆 be a scheme and 𝐵 an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 → 𝑈 ×𝐵 𝑈 be a pre-relation.
We say a subset 𝑇 ⊂ |𝑈| is 𝑅-invariant if 𝑠−1(𝑇) = 𝑡−1(𝑇) as subsets of |𝑅|. Note that if 𝑇 is
closed, then it may not be the case that the corresponding reduced closed subspace of 𝑈 is
𝑅-invariant (as in Groupoids in Spaces, Definition 52.17.1) because the pullbacks 𝑠−1(𝑇),
𝑡−1(𝑇) may not be reduced. Here are some conditions that we can consider for an invariant
morphism 𝜙 ∶ 𝑈 → 𝑋.

Definition 56.7.1. Let 𝑆 be a scheme and 𝐵 an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 → 𝑈×𝐵 𝑈
be a pre-relation. Let 𝜙 ∶ 𝑈 → 𝑋 be an 𝑅-invariant morphism of algebraic spaces over 𝐵.

(56.7.1.1) The morphism 𝜙 is submersive.
(56.7.1.2) For any 𝑅-invariant closed subset 𝑍 ⊂ |𝑈| the image 𝜙(𝑍) is closed in |𝑋|.
(56.7.1.3) Condition (56.7.1.2) holds and for any pair of𝑅-invariant closed subsets𝑍1, 𝑍2 ⊂

|𝑈| we have
𝜙(𝑍1 ∩ 𝑍2) = 𝜙(𝑍1) ∩ 𝜙(𝑍2)

(56.7.1.4) The morphism (𝑡, 𝑠) ∶ 𝑅 → 𝑈 ×𝑋 𝑈 is universally submersive.
For each of these properties we can also require them to hold after any flat pullback, or after
any pullback, see Definition 56.3.4. In this case we say condition (56.7.1.1), (56.7.1.2),
(56.7.1.3), or (56.7.1.4) holds uniformly or universally.
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56.8. Invariant functions

In some cases it is convenient to pin down the structure sheaf of a quotient by requiring any
invariant function to be a local section of the structure sheaf of the quotient.

Definition 56.8.1. Let 𝑆 be a scheme and 𝐵 an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 → 𝑈×𝐵 𝑈
be a pre-relation. Let 𝜙 ∶ 𝑈 → 𝑋 be an 𝑅-invariant morphism. Denote 𝜙′ = 𝜙 ∘ 𝑠 = 𝜙 ∘ 𝑡 ∶
𝑅 → 𝑋.

(1) We denote (𝜙∗𝒪𝑈)𝑅 the 𝒪𝑋-sub-algebra of 𝜙∗𝒪𝑈 which is the equalizer of the
two maps

𝜙∗𝒪𝑈

𝜙∗𝑠♯
//

𝜙∗𝑡♯
// 𝜙′

∗𝒪𝑅

on 𝑋 ́𝑒𝑡𝑎𝑙𝑒. We sometimes call this the sheaf of 𝑅-invariant functions on 𝑋.
(2) We say the functions on 𝑋 are the 𝑅-invariant functions on 𝑈 if the natural map

𝒪𝑋 → (𝜙∗𝒪𝑈)𝑅 is an isomorphism.

Of course we can require this property holds after any (flat or any) pullback, leading to a
(uniform or) universal notion. This condition is often thrown in with other conditions in
order to obtain a (more) unique quotient. And of course a good deal of motivation for the
whole subject comes from the following special case: 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) is an affine scheme
over a field 𝑆 = 𝐵 = 𝑆𝑝𝑒𝑐(𝑘) and where 𝑅 = 𝐺 × 𝑈, with 𝐺 an affine group scheme over
𝑘. In this case you have the option of taking for the quotient:

𝑋 = 𝑆𝑝𝑒𝑐(𝐴𝐺)

so that at least the condition of the definition above is satisfied. Even though this is a nice
thing you can do it is often not the right quotient; for example if 𝑈 = GL𝑛,𝑘 and 𝐺 is the
group of upper triangular matrices, then the above gives 𝑋 = 𝑆𝑝𝑒𝑐(𝑘), whereas a much
better quotient (namely the flag variety) exists.

56.9. Good quotients

Especially when taking quotients by group actions the following definition is useful.

Definition 56.9.1. Let 𝑆 be a scheme and 𝐵 an algebraic space over 𝑆. Let 𝑗 ∶ 𝑅 → 𝑈×𝐵 𝑈
be a pre-relation. A morphism 𝜙 ∶ 𝑈 → 𝑋 of algebraic spaces over 𝐵 is called a good
quotient if

(1) 𝜙 is invariant,
(2) 𝜙 is affine,
(3) 𝜙 is surjective,
(4) condition (56.7.1.3) holds universally, and
(5) the functions on 𝑋 are the 𝑅-invariant functions on 𝑈.

In [Ses72] Seshadri gives almost the same definition, except that instead of (4) he simply
requires the condition (56.7.1.3) to hold -- he does not require it to hold universally.

56.10. Geometric quotients

This is Mumford's definition of a geometric quotient (at least the definition from the first
edition of GIT; as far as we can tell later editions changed ``universally submersive'' to
``submersive'').
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Definition 56.10.1. Let𝑆 be a scheme and𝐵 an algebraic space over𝑆. Let 𝑗 ∶ 𝑅 → 𝑈×𝐵𝑈
be a pre-relation. A morphism 𝜙 ∶ 𝑈 → 𝑋 of algebraic spaces over 𝐵 is called a geometric
quotient if

(1) 𝜙 is an orbit space,
(2) condition (56.7.1.1) holds universally, i.e., 𝜙 is universally submersive, and
(3) the functions on 𝑋 are the 𝑅-invariant functions on 𝑈.
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CHAPTER 57

Algebraic Stacks

57.1. Introduction

This is where we define algebraic stacks and make some very elementary observations. The
general philosophy will be to have no separation conditions whatsoever and add those con-
ditions necessary to make lemmas, propositions, theorems true/provable. Thus the notions
discussed here differ slightly from those in other places in the literature, e.g., [LMB00a].

This chapter is not an introduction to algebraic stacks. For an informal discussion of alge-
braic stacks, please take a look at Introducing Algebraic Stacks, Section 63.1.

57.2. Conventions

The conventions we use in this chapter are the same as those in the chapter on algebraic
spaces. For convenience we repeat them here.

We work in a suitable big fppf site Sch𝑓𝑝𝑝𝑓 as in Topologies, Definition 30.7.6. So, if not
explicitly stated otherwise all schemes will be objects of Sch𝑓𝑝𝑝𝑓. We discuss what changes
if you change the big fppf site in Section 57.18.

We will always work relative to a base 𝑆 contained in Sch𝑓𝑝𝑝𝑓. And we will then work with
the big fppf site (Sch/𝑆)𝑓𝑝𝑝𝑓, see Topologies, Definition 30.7.8. The absolute case can be
recovered by taking 𝑆 = 𝑆𝑝𝑒𝑐(𝐙).

If 𝑈, 𝑇 are schemes over 𝑆, then we denote 𝑈(𝑇) for the set of 𝑇-valued points over 𝑆. In a
formula: 𝑈(𝑇) = 𝑀𝑜𝑟𝑆(𝑇, 𝑈).

Note that any fpqc covering is a universal effective epimorphism, see Descent, Lemma
31.9.3. Hence the topology on Sch𝑓𝑝𝑝𝑓 is weaker than the canonical topology and all rep-
resentable presheaves are sheaves.

57.3. Notation

Weuse the letters 𝑆, 𝑇, 𝑈, 𝑉, 𝑋, 𝑌 to indicate schemes. We use the letters 𝒳, 𝒴, 𝒵 to indicate
categories (fibred, fibred in groupoids, stacks, ...) over (Sch/𝑆)𝑓𝑝𝑝𝑓. We use small case
letters 𝑓, 𝑔 for functors such as 𝑓 ∶ 𝒳 → 𝒴 over (Sch/𝑆)𝑓𝑝𝑝𝑓. We use capital 𝐹, 𝐺, 𝐻
for algebraic spaces over 𝑆, and more generally for presheaves of sets on (Sch/𝑆)𝑓𝑝𝑝𝑓. (In
future chapters we will revert to using also 𝑋, 𝑌, etc for algebraic spaces.)

The reason for these choices is that we want to clearly distinguish between the different
types of objects in this chapter, to build the foundations.
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57.4. Representable categories fibred in groupoids

Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. The basic object of study in this chapter will be a
category fibred in groupoids 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓, see Categories, Definition 4.32.1. We
will often simply say ``let 𝒳 be a category fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓'' to indicate
this situation. A 1-morphism 𝒳 → 𝒴 of categories in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 will
be a 1-morphism in the 2-category of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, see
Categories, Definition 4.32.6. It is simply a functor 𝒳 → 𝒴 over (Sch/𝑆)𝑓𝑝𝑝𝑓. We recall
this is really a (2, 1)-category and that all 2-fibre products exist.
Let 𝒳 be a category fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Recall that 𝒳 is said to be repre-
sentable if there exists a scheme 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and an equivalence

𝑗 ∶ 𝒳 ⟶ (Sch/𝑈)𝑓𝑝𝑝𝑓

of categories over (Sch/𝑆)𝑓𝑝𝑝𝑓, see Categories, Definition 4.37.1. We will sometimes say
that 𝒳 is representable by a scheme to distinguish from the case where 𝒳 is representable
by an algebraic space (see below).
If 𝒳, 𝒴 are fibred in groupoids and representable by 𝑈, 𝑉, then we have

(57.4.0.1) 𝑀𝑜𝑟Cat/(Sch/𝑆)𝑓𝑝𝑝𝑓
(𝒳, 𝒴)/2-isomorphism = 𝑀𝑜𝑟Sch/𝑆(𝑈, 𝑉)

see Categories, Lemma 4.37.3. More precisely, any 1-morphism 𝒳 → 𝒴 gives rise to a
morphism 𝑈 → 𝑉. Conversely, given a morphism of schemes 𝑈 → 𝑉 over 𝑆 there exists
a 1-morphism 𝜙 ∶ 𝒳 → 𝒴 which gives rise to 𝑈 → 𝑉 and which is unique up to unique
2-isomorphism.

57.5. The 2-Yoneda lemma

Let 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), and let 𝒳 be a category fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
We will frequently use the 2-Yoneda lemma, see Categories, Lemma 4.38.1. Technically it
says that there is an equivalence of categories

𝑀𝑜𝑟Cat/(Sch/𝑆)𝑓𝑝𝑝𝑓
((Sch/𝑈)𝑓𝑝𝑝𝑓, 𝒳) ⟶ 𝒳𝑈, 𝑓 ⟼ 𝑓(𝑈/𝑈).

It says that 1-morphisms (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 correspond to objects 𝑥 of the fibre category 𝒳𝑈.
Namely, given a 1-morphism 𝑓 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 we obtain the object 𝑥 = 𝑓(𝑈/𝑈) ∈
𝑂𝑏(𝒳𝑈). Conversely, given a choice of pullbacks for 𝒳 as in Categories, Definition 4.30.5,
and an object 𝑥 of 𝒳𝑈, we obtain a functor (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 defined by the rule

(𝜑 ∶ 𝑉 → 𝑈) ⟼ 𝜑∗𝑥
on objects. By abuse of notation we use 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 to indicate this functor.
It indeed has the property that 𝑥(𝑈/𝑈) = 𝑥 and moreover, given any other functor 𝑓 with
𝑓(𝑈/𝑈) = 𝑥 there exists a unique 2-isomorphism 𝑥 → 𝑓. In other words the functor 𝑥 is
well determined by the object 𝑥 up to unique 2-isomorphism.
We will use this without further mention in the following.

57.6. Representable morphisms of categories fibred in groupoids

Let 𝒳, 𝒴 be categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝒳 → 𝒴 be a
representable 1-morphism, see Categories, Definition 4.38.5. This means that for every
𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and any 𝑦 ∈ 𝑂𝑏(𝒴𝑈) the 2-fibre product (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳 is rep-
resentable. Choose a representing object 𝑉𝑦 and an equivalence

(Sch/𝑉𝑦)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳.
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The projection (Sch/𝑉𝑦)𝑓𝑝𝑝𝑓 → (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝒴 𝒴 → (Sch/𝑈)𝑓𝑝𝑝𝑓 comes from a morphism
of schemes 𝑓𝑦 ∶ 𝑉𝑦 → 𝑈, see Section 57.4. We represent this by the diagram

(57.6.0.2)

𝑉𝑦
//

𝑓𝑦

��

(Sch/𝑉𝑦)𝑓𝑝𝑝𝑓

��

// 𝒳

𝑓
��

𝑈 // (Sch/𝑈)𝑓𝑝𝑝𝑓
𝑦 // 𝒴

where the squiggly arrows represent the 2-Yoneda embedding. Here are some lemmas
about this notion that work in great generality (namely, they work for categories fibred
in groupoids over any base category which has fibre products).

Lemma 57.6.1. Let 𝑆, 𝑋, 𝑌 be objects of Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of
schemes. Then the 1-morphism induced by 𝑓

(Sch/𝑋)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑌)𝑓𝑝𝑝𝑓

is a representable 1-morphism.

Proof. This is formal and relies only on the fact that the category (Sch/𝑆)𝑓𝑝𝑝𝑓 has fibre
products. �

Lemma 57.6.2. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓. Consider a 2-commutative diagram

𝒳′ //

𝑓′

��

𝒳

𝑓
��

𝒴′ // 𝒴

of 1-morphisms of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume the horizontal
arrows are equivalences. Then 𝑓 is representable if and only if 𝑓′ is representable.

Proof. Omitted. �

Lemma 57.6.3. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴, 𝒵 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 Let 𝑓 ∶ 𝒳 → 𝒴, 𝑔 ∶ 𝒴 → 𝒵 be representable 1-morphisms.
Then

𝑔 ∘ 𝑓 ∶ 𝒳 ⟶ 𝒵
is a representable 1-morphism.

Proof. This is entirely formal and works in any category. �

Lemma 57.6.4. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴, 𝒵 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 Let 𝑓 ∶ 𝒳 → 𝒴 be a representable 1-morphism. Let 𝑔 ∶
𝒵 → 𝒴 be any 1-morphism. Consider the fibre product diagram

𝒵 ×𝑔,𝒴,𝑓 𝒳
𝑔′
//

𝑓′

��

𝒳

𝑓
��

𝒵
𝑔 // 𝒴

Then the base change 𝑓′ is a representable 1-morphism.

Proof. This is entirely formal and works in any category. �
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Lemma 57.6.5. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳𝑖, 𝒴𝑖 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, 𝑖 = 1, 2. Let 𝑓𝑖 ∶ 𝒳𝑖 → 𝒴𝑖, 𝑖 = 1, 2 be representable
1-morphisms. Then

𝑓1 × 𝑓2 ∶ 𝒳1 × 𝒳2 ⟶ 𝒴1 × 𝒴2
is a representable 1-morphism.

Proof. Write 𝑓1 × 𝑓2 as the composition 𝒳1 × 𝒳2 → 𝒴1 × 𝒳2 → 𝒴1 × 𝒴2. The first
arrow is the base change of 𝑓1 by the map 𝒴1 × 𝒳2 → 𝒴1, and the second arrow is the base
change of 𝑓2 by the map 𝒴1 × 𝒴2 → 𝒴2. Hence this lemma is a formal consequence of
Lemmas 57.6.3 and 57.6.4. �

57.7. Split categories fibred in groupoids

Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Recall that given a ``presheaf of groupoids''

𝐹 ∶ (Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 ⟶ Groupoids

we get a category fibred in groupoids 𝒮𝐹 over (Sch/𝑆)𝑓𝑝𝑝𝑓, see Categories, Example 4.34.1.
Any category fibred in groupoids isomorphic (!) to one of these is called a split category
fibred in groupoids. Any category fibred in groupoids is equivalent to a split one.

If 𝐹 is a presheaf of sets then 𝒮𝐹 is fibred in sets, see Categories, Definition 4.35.2, and
Categories, Example 4.35.5. The rule 𝐹 ↦ 𝒮𝐹 is in some sense fully faithful on presheaves,
see Categories, Lemma 4.35.6. If 𝐹, 𝐺 are presheaves, then

𝒮𝐹×𝐺 = 𝒮𝐹 ×(Sch/𝑆)𝑓𝑝𝑝𝑓
𝒮𝐺

and if 𝐹 → 𝐻 and 𝐺 → 𝐻 are maps of presheaves of sets, then

𝒮𝐹×𝐻𝐺 = 𝒮𝐹 ×𝒮𝐻
𝒮𝐺

where the right hand sides are 2-fibre products. This is immediate from the definitions as
the fibre categories of 𝒮𝐹, 𝒮𝐺, 𝒮𝐻 have only identity morphisms.

An even more special case is where 𝐹 = ℎ𝑋 is a representable presheaf. In this case we
have 𝒮ℎ𝑋

= (Sch/𝑋)𝑓𝑝𝑝𝑓, see Categories, Example 4.35.7.

We will use the notation 𝒮𝐹 without further mention in the following.

57.8. Categories fibred in groupoids representable by algebraic spaces

A slightly weaker notion than being representable is the notion of being representable by
algebraic spaces which we discuss in this section. This discussion might have been avoided
had we worked with some category Spaces𝑓𝑝𝑝𝑓 of algebraic spaces instead of the category
Sch𝑓𝑝𝑝𝑓. However, it seems to us natural to consider the category of schemes as the natural
collection of ``test objects'' over which the fibre categories of an algebraic stack are defined.

In analogy with Categories, Definitions 4.37.1 we make the following definition.

Definition 57.8.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. A category fibred in groupoids
𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 is called representable by an algebraic space over 𝑆 if there exists an
algebraic space 𝐹 over 𝑆 and an equivalence 𝑗 ∶ 𝒳 → 𝒮𝐹 of categories over (Sch/𝑆)𝑓𝑝𝑝𝑓.

We continue our abuse of notation in surpressing the equivalence 𝑗 whenever we encounter
such a situation. It follows formally from the above that if 𝒳 is representable (by a scheme),
then it is representable by an algebraic space. Here is the analogue of Categories, Lemma
4.37.2.
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Lemma 57.8.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a
category fibred in groupoids. Then 𝒳 is representable by an algebraic space over 𝑆 if and
only if the following conditions are satisfied:

(1) 𝒳 is fibred in setoids1, and
(2) the presheaf 𝑈 ↦ 𝑂𝑏(𝒳𝑈)/≅ is an algebraic space.

Proof. Omitted, but see Categories, Lemma 4.37.2. �

If 𝒳, 𝒴 are fibred in groupoids and representable by algebraic spaces 𝐹, 𝐺 over 𝑆, then we
have

(57.8.2.1) 𝑀𝑜𝑟Cat/(Sch/𝑆)𝑓𝑝𝑝𝑓
(𝒳, 𝒴)/2-isomorphism = 𝑀𝑜𝑟Sch/𝑆(𝐹, 𝐺)

see Categories, Lemma 4.36.6. More precisely, any 1-morphism 𝒳 → 𝒴 gives rise to a
morphism 𝐹 → 𝐺. Conversely, give a morphism of sheaves 𝐹 → 𝐺 over 𝑆 there exists a
1-morphism 𝜙 ∶ 𝒳 → 𝒴 which gives rise to 𝐹 → 𝐺 and which is unique up to unique
2-isomorphism.

57.9. Morphisms representable by algebraic spaces

In analogy with Categories, Definition 4.38.5 we make the following definition.

Definition 57.9.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. A 1-morphism 𝑓 ∶ 𝒳 → 𝒴 of
categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 is called representable by algebraic spaces
if for any 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and any 𝑦 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒴 the category fibred in
groupoids

(Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳
over (Sch/𝑈)𝑓𝑝𝑝𝑓 is representable by an algebraic space over 𝑈.

Choose an algebraic space 𝐹𝑦 over 𝑈 which represents (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳. We may think
of 𝐹𝑦 as an algebraic stack over 𝑆 which comes equipped with a canonical morphism 𝑓𝑦 ∶
𝐹𝑦 → 𝑈 over 𝑆, see Spaces, Section 40.16. Here is the diagram

(57.9.1.1)

𝐹𝑦

𝑓𝑦

��

(Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳oo

pr0
��

pr1
// 𝒳

𝑓
��

𝑈 (Sch/𝑈)𝑓𝑝𝑝𝑓
oo 𝑦 // 𝒴

where the squiggly arrows represent the constructionwhich associates to a stack fibred in se-
toids its associated sheaf of isomorphism classes of objects. The right square is 2-commutative,
and is a 2-fibre product square.

Here is the analogue of Categories, Lemma 4.38.7.

Lemma 57.9.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism
of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. The following are necessary and suffi-
cient conditions for 𝑓 to be representable by algebraic spaces:

(1) for each scheme 𝑈/𝑆 the functor 𝑓𝑈 ∶ 𝒳𝑈 ⟶ 𝒴𝑈 between fibre categories is
faithful, and

1This means that it is fibred in groupoids and objects in the fibre categories have no nontrivial automor-
phisms, see Categories, Definition 4.35.2.
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(2) for each 𝑈 and each 𝑦 ∈ 𝑂𝑏(𝒴𝑈) the presheaf
(ℎ ∶ 𝑉 → 𝑈) ⟼ {(𝑥, 𝜙) ∣ 𝑥 ∈ 𝑂𝑏(𝒳𝑉), 𝜙 ∶ ℎ∗𝑦 → 𝑓(𝑥)}/ ≅

is an algebraic space over 𝑈.
Here we have made a choice of pullbacks for 𝒴.

Proof. This follows from the description of fibre categories of the 2-fibre products (Sch/𝑈)𝑓𝑝𝑝𝑓×𝑦,𝒴
𝒳 in Categories, Lemma 4.38.3 combined with Lemma 57.8.2. �

Here are some lemmas about this notion that work in great generality.

Lemma 57.9.3. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓. Consider a 2-commutative diagram

𝒳′ //

𝑓′

��

𝒳

𝑓
��

𝒴′ // 𝒴

of 1-morphisms of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume the horizontal
arrows are equivalences. Then 𝑓 is representable by algebraic spaces if and only if 𝑓′ is
representable by algebraic spaces.

Proof. Omitted. �

Lemma 57.9.4. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of
categories fibred in groupoids over 𝑆. If 𝒳 and 𝒴 are representable by algebraic spaces
over 𝑆, then the 1-morphism 𝑓 is representable by algebraic spaces.

Proof. Omitted. This relies only on the fact that the category of algebraic spaces over 𝑆
has fibre products, see Spaces, Lemma 40.7.3. �

Lemma 57.9.5. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓. Let 𝑎 ∶ 𝐹 → 𝐺 be a map of presheaves of
sets on (Sch/𝑆)𝑓𝑝𝑝𝑓. Denote 𝑎′ ∶ 𝒮𝐹 → 𝒮𝐺 the associated map of categories fibred in sets.
Then 𝑎 is representable by algebraic spaces (see Bootstrap, Definition 54.3.1) if and only
if 𝑎′ is representable by algebraic spaces.

Proof. Omitted. �

Lemma 57.9.6. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of
categories fibred in setoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝐹, resp. 𝐺 be the presheaf which to 𝑇
associates the set of isomorphism classes of objects of 𝒳𝑇, resp. 𝒴𝑇. Let 𝑎 ∶ 𝐹 → 𝐺 be the
map of presheaves corresponding to 𝑓. Then 𝑎 is representable by algebraic spaces (see
Bootstrap, Definition 54.3.1) if and only if 𝑓 is representable by algebraic spaces.

Proof. Omitted. Hint: Combine Lemmas 57.9.3 and 57.9.5. �

Lemma 57.9.7. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴, 𝒵 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism representable by algebraic
spaces. Let 𝑔 ∶ 𝒵 → 𝒴 be any 1-morphism. Consider the fibre product diagram

𝒵 ×𝑔,𝒴,𝑓 𝒳
𝑔′
//

𝑓′

��

𝒳

𝑓
��

𝒵
𝑔 // 𝒴

Then the base change 𝑓′ is a 1-morphism representable by algebraic spaces.
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Proof. This is formal. �

Lemma 57.9.8. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴, 𝒵 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 Let 𝑓 ∶ 𝒳 → 𝒴, 𝑔 ∶ 𝒵 → 𝒴 be 1-morphisms. Assume

(1) 𝑓 is representable by algebraic spaces, and
(2) 𝒵 is representable by an algebraic space over 𝑆.

Then the 2-fibre product 𝒵 ×𝑔,𝒴,𝑓 𝒳 is representable by an algebraic space.

Proof. This is a reformulation of Bootstrap, Lemma 54.3.6. First note that 𝒵 ×𝑔,𝒴,𝑓 𝒳
is fibred in setoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Hence it is equivalent to 𝒮𝐹 for some presheaf 𝐹 on
(Sch/𝑆)𝑓𝑝𝑝𝑓, see Categories, Lemma 4.36.5. Moreover, let 𝐺 be an algebraic space which
represents 𝒵. The 1-morphism 𝒵 ×𝑔,𝒴,𝑓 𝒳 → 𝒵 is representable by algebraic spaces by
Lemma 57.9.7. And 𝒵 ×𝑔,𝒴,𝑓 𝒳 → 𝒵 corresponds to a morphism 𝐹 → 𝐺 by Categories,
Lemma 4.36.6. Then 𝐹 → 𝐺 is representable by algebraic spaces by Lemma 57.9.6. Hence
Bootstrap, Lemma 54.3.6 implies that 𝐹 is an algebraic space as desired. �

Let 𝑆, 𝒳, 𝒴, 𝒵, 𝑓, 𝑔 be as in Lemma 57.9.8. Let 𝐹 and 𝐺 be algebraic spaces over 𝑆 such
that 𝐹 represents 𝒵 ×𝑔,𝒴,𝑓 𝒳 and 𝐺 represents 𝒵. The 1-morphism 𝑓′ ∶ 𝒵 ×𝑔,𝒴,𝑓 𝒳 → 𝒵
corresponds to a morphism 𝑓′ ∶ 𝐹 → 𝐺 of algebraic spaces by (57.8.2.1). Thus we have
the following diagram

(57.9.8.1)

𝐹

𝑓′

��

𝒵 ×𝑔,𝒴,𝑓 𝒳oo

��

// 𝒳

𝑓
��

𝐺 𝒵oo 𝑔 // 𝒴

where the squiggly arrows represent the construction which associates to a stack fibred
in setoids its associated sheaf of isomorphism classes of objects. The middle square is
2-commutative with equivalences as horizontal arrows.

Lemma 57.9.9. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴, 𝒵 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑓 ∶ 𝒳 → 𝒴, 𝑔 ∶ 𝒴 → 𝒵 are 1-morphisms representable
by algebraic spaces, then

𝑔 ∘ 𝑓 ∶ 𝒳 ⟶ 𝒵

is a 1-morphism representable by algebraic spaces.

Proof. This follows from Lemma 57.9.8. Details omitted. �

Lemma 57.9.10. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳𝑖, 𝒴𝑖 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, 𝑖 = 1, 2. Let 𝑓𝑖 ∶ 𝒳𝑖 → 𝒴𝑖, 𝑖 = 1, 2 be 1-morphisms
representable by algebraic spaces. Then

𝑓1 × 𝑓2 ∶ 𝒳1 × 𝒳2 ⟶ 𝒴1 × 𝒴2

is a 1-morphism representable by algebraic spaces.

Proof. Write 𝑓1 × 𝑓2 as the composition 𝒳1 × 𝒳2 → 𝒴1 × 𝒳2 → 𝒴1 × 𝒴2. The first
arrow is the base change of 𝑓1 by the map 𝒴1 × 𝒳2 → 𝒴1, and the second arrow is the base
change of 𝑓2 by the map 𝒴1 × 𝒴2 → 𝒴2. Hence this lemma is a formal consequence of
Lemmas 57.9.9 and 57.9.7. �
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57.10. Properties of morphisms representable by algebraic spaces

Here is the definition that makes this work.

Definition 57.10.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝒳 → 𝒴 be a
1-morphism of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume 𝑓 is representable
by algebraic spaces. Let 𝒫 be a property of morphisms of algebraic spaces which

(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 45.9.1.

In this case we say that 𝑓 has property 𝒫 if for every 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and any 𝑦 ∈ 𝒴𝑈
the resulting morphism of algebraic spaces 𝑓𝑦 ∶ 𝐹𝑦 → 𝑈, see diagram (57.9.1.1), has
property 𝒫.

It is important to note that we will only use this definition for properties of morphisms
that are stable under base change, and local in the fppf topology on the target. This is not
because the definition doesn't make sense otherwise; rather it is because we may want to
give a different definition which is better suited to the property we have in mind.

Lemma 57.10.2. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓. Let 𝒫 be as in Definition 57.10.1. Consider
a 2-commutative diagram

𝒳′ //

𝑓′

��

𝒳

𝑓
��

𝒴′ // 𝒴
of 1-morphisms of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume the horizontal
arrows are equivalences and 𝑓 (or equivalently 𝑓′) is representably by algebraic spaces.
Then 𝑓 has 𝒫 if and only if 𝑓′ has 𝒫.

Proof. Note that this makes sense by Lemma 57.9.3. Proof omitted. �

Here is a sanity check.

Lemma 57.10.3. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑎 ∶ 𝐹 → 𝐺 be a map of
presheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝒫 be as in Definition 57.10.1. Assume 𝑎 is representable
by algebraic spaces. Then 𝑎 ∶ 𝐹 → 𝐺 has property 𝒫 (see Bootstrap, Definition 54.4.1)
if and only if the corresponding morphism 𝒮𝐹 → 𝒮𝐺 of categories fibred in groupoids has
propery 𝒫.

Proof. Note that the lemma makes sense by Lemma 57.9.5. Proof omitted. �

Lemma 57.10.4. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓. Let 𝒫 be as in Definition 57.10.1. Let
𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in setoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝐹, resp.
𝐺 be the presheaf which to 𝑇 associates the set of isomorphism classes of objects of 𝒳𝑇,
resp. 𝒴𝑇. Let 𝑎 ∶ 𝐹 → 𝐺 be the map of presheaves corresponding to 𝑓. Then 𝑎 has 𝒫 if
and only if 𝑓 has 𝒫.

Proof. The lemmamakes sense by Lemma 57.9.6. The lemma follows on combining Lem-
mas 57.10.2 and 57.10.3. �

Lemma 57.10.5. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴, 𝒵 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝒫 be a property as in Definition 57.10.1 which is stable
under composition. Let 𝑓 ∶ 𝒳 → 𝒴, 𝑔 ∶ 𝒴 → 𝒵 be 1-morphisms which are representable
by algebraic spaces. If 𝑓 and 𝑔 have property 𝒫 so does 𝑔 ∘ 𝑓 ∶ 𝒳 → 𝒵.
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Proof. Note that the lemma makes sense by Lemma 57.9.9. Proof omitted. �

Lemma 57.10.6. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴, 𝒵 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let𝒫 be a property as in Definition 57.10.1. Let 𝑓 ∶ 𝒳 → 𝒴
be a 1-morphism representable by algebraic spaces. Let 𝑔 ∶ 𝒵 → 𝒴 be any 1-morphism.
Consider the 2-fibre product diagram

𝒵 ×𝑔,𝒴,𝑓 𝒳
𝑔′
//

𝑓′

��

𝒳

𝑓
��

𝒵
𝑔 // 𝒴

If 𝑓 has 𝒫, then the base change 𝑓′ has 𝒫.

Proof. The lemma makes sense by Lemma 57.9.7. Proof omitted. �

Lemma 57.10.7. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴, 𝒵 be categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let𝒫 be a property as in Definition 57.10.1. Let 𝑓 ∶ 𝒳 → 𝒴
be a 1-morphism representable by algebraic spaces. Let 𝑔 ∶ 𝒵 → 𝒴 be any 1-morphism.
Consider the fibre product diagram

𝒵 ×𝑔,𝒴,𝑓 𝒳
𝑔′
//

𝑓′

��

𝒳

𝑓
��

𝒵
𝑔 // 𝒴

Assume that for every scheme 𝑈 and object 𝑥 of 𝒴𝑈, there exists an fppf covering {𝑈𝑖 → 𝑈}
such that 𝑥|𝑈𝑖

is in the essential image of the functor 𝑔 ∶ 𝒵𝑈𝑖
→ 𝒴𝑈𝑖

. In this case, if 𝑓′

has 𝒫, then 𝑓 has 𝒫.

Proof. Proof omitted. Hint: Compare with the proof of Spaces, Lemma 40.5.6. �

Lemma 57.10.8. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒫 be a property as in Defini-
tion 57.10.1 which is stable under composition. Let𝒳𝑖, 𝒴𝑖 be categories fibred in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓, 𝑖 = 1, 2. Let 𝑓𝑖 ∶ 𝒳𝑖 → 𝒴𝑖, 𝑖 = 1, 2 be 1-morphisms representable by
algebraic spaces. If 𝑓1 and 𝑓2 have property 𝒫 so does 𝑓1 × 𝑓2 ∶ 𝒳1 × 𝒳2 → 𝒴1 × 𝒴2.

Proof. The lemma makes sense by Lemma 57.9.10. Proof omitted. �

Lemma 57.10.9. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴 be categories fibred in
groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism representable by algebraic
spaces. Let 𝒫, 𝒫′ be properties as in Definition 57.10.1. Suppose that for any morphism
of algebraic spaces 𝑎 ∶ 𝐹 → 𝐺 we have 𝒫(𝑎) ⇒ 𝒫′(𝑎). If 𝑓 has property 𝒫 then 𝑓 has
property 𝒫′.

Proof. Formal. �

Lemma57.10.10. Let𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑗 ∶ 𝒳 → 𝒴 be a 1-morphism
of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume 𝑗 is representable by alge-
braic spaces and a monomorphism (see Definition 57.10.1 and Descent on Spaces, Lemma
45.10.28). Then 𝑗 is fully faithful on fibre categories.

Proof. We have seen in Lemma 57.9.2 that 𝑗 is faithful on fibre categories. Consider a
scheme 𝑈, two objects 𝑢, 𝑣 of 𝒳𝑈, and an isomorphism 𝑡 ∶ 𝑗(𝑢) → 𝑗(𝑣) in 𝒴𝑈. We have
to construct an isomorphism in 𝒳𝑈 between 𝑢 and 𝑣. By the 2-Yoneda lemma (see Section
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57.5) we think of 𝑢, 𝑣 as 1-morphisms 𝑢, 𝑣 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 and we consider the 2-fibre
product

(Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑗∘𝑣,𝒴 𝒳.
By assumption this is representable by an algebraic space 𝐹𝑗∘𝑣, over 𝑈 and the morphism
𝐹𝑗∘𝑣 → 𝑈 is a monomorphism. But since (1𝑈, 𝑣, 1𝑗(𝑣)) gives a 1-morphism of (Sch/𝑈)𝑓𝑝𝑝𝑓
into the displayed 2-fibre product, we see that 𝐹𝑗∘𝑣 = 𝑈 (here we use that if 𝑉 → 𝑈 is
a monomorphism of algebraic spaces which has a section, then 𝑉 = 𝑈). Therefore the
1-morphism projecting to the first coordinate

(Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑗∘𝑣,𝒴 𝒳 → (Sch/𝑈)𝑓𝑝𝑝𝑓

is an equivalence of fibre categories. Since (1𝑈, 𝑢, 𝑡) and (1𝑈, 𝑣, 1𝑗(𝑣)) give two objects in
((Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑗∘𝑣,𝒴 𝒳)𝑈 which have the same first coordinate, there must be a 2-morphism
between them in the 2-fibre product. This is by definition a morphism ̃𝑡 ∶ 𝑢 → 𝑣 such that
𝑗( ̃𝑡) = 𝑡. �

Here is a characterization of those categories fibred in groupoids for which the diagonal is
representable by algebraic spaces.

Lemma 57.10.11. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳 be a category fibred in
groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. The following are equivalent:

(1) the diagonal 𝒳 → 𝒳 × 𝒳 is representable by algebraic spaces,
(2) for every scheme 𝑈 over 𝑆, and any 𝑥, 𝑦 ∈ 𝑂𝑏(𝒳𝑈) the sheaf 𝐼𝑠𝑜𝑚(𝑥, 𝑦) is rep-

resentable by an algebraic space over 𝑈,
(3) for every scheme 𝑈 over 𝑆, and any 𝑥 ∈ 𝑂𝑏(𝒳𝑈) the associated 1-morphism

𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 is representable by algebraic spaces,
(4) for every pair of schemes 𝑇1, 𝑇2 over 𝑆, and any 𝑥𝑖 ∈ 𝑂𝑏(𝒳𝑇𝑖

), 𝑖 = 1, 2 the 2-fibre
product (Sch/𝑇1)𝑓𝑝𝑝𝑓 ×𝑥1,𝒳,𝑥2

(Sch/𝑇2)𝑓𝑝𝑝𝑓 is representable by an algebraic space,
(5) for every representable category fibred in groupoids 𝒰 over (Sch/𝑆)𝑓𝑝𝑝𝑓 every

1-morphism 𝒰 → 𝒳 is representable by algebraic spaces,
(6) for every pair𝒯1, 𝒯2 of representable categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓

and any 1-morphisms 𝑥𝑖 ∶ 𝒯𝑖 → 𝒳, 𝑖 = 1, 2 the 2-fibre product 𝒯1 ×𝑥1,𝒳,𝑥2
𝒯2 is

representable by an algebraic space,
(7) for every category fibred in groupoids 𝒰 over (Sch/𝑆)𝑓𝑝𝑝𝑓 which is representable

by an algebraic space every 1-morphism 𝒰 → 𝒳 is representable by algebraic
spaces,

(8) for every pair 𝒯1, 𝒯2 of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 which
are representable by algebraic spaces, and any 1-morphisms 𝑥𝑖 ∶ 𝒯𝑖 → 𝒳 the
2-fibre product 𝒯1 ×𝑥1,𝒳,𝑥2

𝒯2 is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 50.2.5 and the defi-
nitions. Let us prove the equivalence of (1) and (3). Write 𝒞 = (Sch/𝑆)𝑓𝑝𝑝𝑓 for the base
category. We will use some of the observations of the proof of the similar Categories,
Lemma 4.38.8. We will use the symbol ≅ to mean ``equivalence of categories fibred in
groupoids over 𝒞 = (Sch/𝑆)𝑓𝑝𝑝𝑓''. Assume (1). Suppose given 𝑈 and 𝑥 as in (3). For any
scheme 𝑉 and 𝑦 ∈ 𝑂𝑏(𝒳𝑉) we see (compare reference above) that

𝒞/𝑈 ×𝑥,𝒳,𝑦 𝒞/𝑉 ≅ (𝒞/𝑈 ×𝑆 𝑉) ×(𝑥,𝑦),𝒳×𝒳,Δ 𝒳

which is representable by an algebraic space by assumption. Conversely, assume (3). Con-
sider any scheme 𝑈 over 𝑆 and a pair (𝑥, 𝑥′) of objects of 𝒳 over 𝑈. We have to show that
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𝒳 ×Δ,𝒳×𝒳,(𝑥,𝑥′) 𝑈 is representable by an algebraic space. This is clear because (compare
reference above)

𝒳 ×Δ,𝒳×𝒳,(𝑥,𝑥′) 𝒞/𝑈 ≅ (𝒞/𝑈 ×𝑥,𝒳,𝑥′ 𝒞/𝑈) ×𝒞/𝑈×𝑆𝑈,Δ 𝒞/𝑈

and the right hand side is representable by an algebraic space by assumption and the fact
that the category of algebraic spaces over 𝑆 has fibre products and contains 𝑈 and 𝑆.

The equivalences (3) ⇔ (4), (5) ⇔ (6), and (7) ⇔ (8) are formal. The equivalences (3) ⇔
(5) and (4) ⇔ (6) follow from Lemma 57.9.3. Assume (3), and let 𝒰 → 𝒳 be as in (7). To
prove (7) we have to show that for every scheme 𝑉 and 1-morphism 𝑦 ∶ (Sch/𝑉)𝑓𝑝𝑝𝑓 → 𝒳
the 2-fibre product (Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦,𝒳 𝒰 is representable by an algebraic space. Property (3)
tells us that 𝑦 is representable by algebraic spaces hence Lemma 57.9.8 implies what we
want. Finally, (7) directly implies (3). �

In the situation of the lemma, for any 1-morphism 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 as in the lemma,
it makes sense to say that 𝑥 has property 𝒫, for any property as in Definition 57.10.1. In
particular this holds for 𝒫 = ``surjective'', 𝒫 = ``smooth'', and 𝒫 = ``étale'', see Descent
on Spaces, Lemmas 45.10.5, 45.10.24, and 45.10.26. We will use these three cases in the
definitions of algebraic stacks below.

57.11. Stacks in groupoids

Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Recall that a category 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 over
(Sch/𝑆)𝑓𝑝𝑝𝑓 is said to be a stack in groupoids (see Stacks, Definition 50.5.1) if and only if

(1) 𝑝 ∶ 𝒳 → 𝒞 is fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓,
(2) for all 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), for all 𝑥, 𝑦 ∈ 𝑂𝑏(𝒳𝑈) the presheaf 𝐼𝑠𝑜𝑚(𝑥, 𝑦) is a

sheaf on the site (Sch/𝑈)𝑓𝑝𝑝𝑓, and
(3) for all coverings 𝒰 = {𝑈𝑖 → 𝑈} in (Sch/𝑆)𝑓𝑝𝑝𝑓, all descent data (𝑥𝑖, 𝜙𝑖𝑗) for 𝒰

are effective.
For examples see Examples of Stacks, Section 55.8 ff.

57.12. Algebraic stacks

Here is the definition of an algebraic stack. We remark that condition (2) implies we can
make sense out of the condition in part (3) that (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 is smooth and surjective,
see discussion following Lemma 57.10.11.

Definition 57.12.1. Let 𝑆 be a base scheme contained in Sch𝑓𝑝𝑝𝑓. An algebraic stack over
𝑆 is a category

𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓

over (Sch/𝑆)𝑓𝑝𝑝𝑓 with the following properties:
(1) The category 𝒳 is a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
(2) The diagonal Δ ∶ 𝒳 → 𝒳 × 𝒳 is representable by algebraic spaces.
(3) There exists a scheme 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a 1-morphism (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳

which is surjective and smooth2.

2In future chapters we will denote this simply 𝑈 → 𝒳 as is customary in the literature. Another good
alterative would be to formulate this condition as the existence of a representable category fibred in groupoids 𝒰
and a surjective smooth 1-morphism 𝒰 → 𝒳.
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There are some differences with other definitions found in the literature.

The first is that we require 𝒳 to be a stack in groupoids in the fppf topology, whereas in
many references the étale topology is used. It somehow seems to us that the fppf topology
is the natural topology to work with. In the end the resulting 2-category of algebraic stacks
ends up being the same. This is explained in Criteria for Representability, Section 59.19.

The second is that we only require the diagonal map of 𝒳 to be representable by algebraic
spaces, whereas in most references some other conditions are imposed. Our point of view is
to try to prove a certain number of the results that follow only assuming that the diagonal of
𝒳 be representable by algebraic spaces, and simply add an additional hypothesis wherever
this is necessary. It has the added benefit that any algebraic space (as defined in Spaces,
Definition 40.6.1) gives rise to an algebraic stack.

The third is that in some papers it is required that there exists a scheme 𝑈 and a surjective
and étale morphism 𝑈 → 𝒳. In the groundbreaking paper [DM69a] where algebraic stacks
were first introduced Deligne and Mumford used this definition and showed that the moduli
stack of stable genus 𝑔 > 1 curves is an algebraic stack which has an étale covering by a
scheme. Micheal Artin, see [Art74b], realized that many natural results on algebraic stacks
generalize to the case where one only assume a smooth covering by a scheme. Hence our
choice above. To distinguish the two cases one sees the terms ``Deligne-Mumford stack''
and ``Artin stack'' used in the literature. We will reserve the term ``Artin stack'' for later
use (insert future reference here), and continue to use ``algebraic stack'', but we will use
``Deligne-Mumford stack'' to indicate those algebraic stacks which have an étale covering
by a scheme.

Definition 57.12.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳 be an algebraic stack
over 𝑆. We say 𝒳 is a Deligne-Mumford stack if there exists a scheme 𝑈 and a surjective
étale morphism (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳.

We will compare our notion of a Deligne-Mumford stack with the notion as defined in the
paper by Deligne and Mumford later (see insert future reference here).

The category of algebraic stacks over 𝑆 forms a 2-category. Here is the precise definition.

Definition 57.12.3. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. The 2-category of algebraic
stacks over 𝑆 is the sub 2-category of the 2-category of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓 (see Categories, Definition 4.32.6) defined as follows:

(1) Its objects are those categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 which are
algebraic stacks over 𝑆.

(2) Its 1-morphisms 𝑓 ∶ 𝒳 → 𝒴 are any functors of categories over (Sch/𝑆)𝑓𝑝𝑝𝑓, as
in Categories, Definition 4.29.1.

(3) Its 2-morphisms are transformations between functors over (Sch/𝑆)𝑓𝑝𝑝𝑓, as in Cat-
egories, Definition 4.29.1.

In other words this 2-category is the full sub 2-category of Cat/(Sch/𝑆)𝑓𝑝𝑝𝑓 whose objects
are algebraic stacks. Note that every 2-morphism is automatically an isomorphism. Hence
this is actually a (2, 1)-category and not just a 2-category.

We will see later (insert future reference here) that this 2-category has 2-fibre products.

Similar to the remark above the 2-category of algebraic stacks over 𝑆 is a full sub 2-category
of the 2-category of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. It turns out that it is
closed under equivalences. Here is the precise statement.
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Lemma 57.12.4. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴 be categories over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Assume 𝒳, 𝒴 are equivalent as categories over (Sch/𝑆)𝑓𝑝𝑝𝑓. Then 𝒳 is an
algebraic stack if and only if 𝒴 is an algebraic stack. Similarly, 𝒳 is a Deligne-Mumford
stack if and only if 𝒴 is a Deligne-Mumford stack.

Proof. Assume𝒳 is an algebraic stack (resp. aDeligne-Mumford stack). By Stacks, Lemma
50.5.4 this implies that 𝒴 is a stack in groupoids over Sch𝑓𝑝𝑝𝑓. Choose an equivalence
𝑓 ∶ 𝒳 → 𝒴 over Sch𝑓𝑝𝑝𝑓. This gives a 2-commutative diagram

𝒳
𝑓

//

Δ𝒳
��

𝒴

Δ𝒴
��

𝒳 × 𝒳
𝑓×𝑓 // 𝒴 × 𝒴

whose horizontal arrows are equivalences. This implies that Δ𝒴 is representable by al-
gebraic spaces according to Lemma 57.9.3. Finally, let 𝑈 be a scheme over 𝑆, and let
𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 be a 1-morphism which is surjective and smooth (resp. étale). Con-
sidering the diagram

(Sch/𝑈)𝑓𝑝𝑝𝑓 id
//

𝑥
��

(Sch/𝑈)𝑓𝑝𝑝𝑓

𝑓∘𝑥
��

𝒳
𝑓 // 𝒴

and applying Lemma 57.10.2 we conclude that 𝑥 ∘ 𝑓 is surjective and smooth (resp. étale)
as desired. �

57.13. Algebraic stacks and algebraic spaces

In this section we discuss some simple criteria which imply that an algebraic stack is an
algebraic space. Themain result is that this happens exactly when objects of fibre categories
have no nontrivial automorphisms. This is not a triviality! Before we come to this we first
do a sanity check.

Lemma 57.13.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓.
(1) A category fibred in groupoids 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 which is representable by

an algebraic space is a Deligne-Mumford stack.
(2) If 𝐹 is an algebraic space over 𝑆, then the associated category fibred in groupoids

𝑝 ∶ 𝒮𝐹 → (Sch/𝑆)𝑓𝑝𝑝𝑓 is a Deligne-Mumford stack.
(3) If 𝑋 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), then (Sch/𝑋)𝑓𝑝𝑝𝑓 → (Sch/𝑆)𝑓𝑝𝑝𝑓 is a Deligne-Mumford

stack.

Proof. It is clear that (2) implies (3). Parts (1) and (2) are equivalent by Lemma 57.12.4.
Hence it suffices to prove (2). First, we note that 𝒮𝐹 is stack in sets since 𝐹 is a sheaf (see
Examples of Stacks, Section 55.9). A fortiori it is a stack in groupoids. Second the diagonal
morphism 𝒮𝐹 → 𝒮𝐹 × 𝒮𝐹 is the same as the morphism 𝒮𝐹 → 𝒮𝐹×𝐹 which comes from the
diagonal of 𝐹. Hence this is representable by algebraic spaces according to Lemma 57.9.4.
Actually it is even representable (by schemes), as the diagonal of an algebraic space is
representable, but we do not need this. Let 𝑈 be a scheme and let ℎ𝑈 → 𝐹 be a surjective
étale morphism. We may think of this a surjective étale morphism of algebraic spaces.
Hence by Lemma 57.10.3 the corresponding 1-morphism (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒮𝐹 is surjective
and étale. �
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The following result says that a Deligne-Mumford stack whose inertia is trivial ``is'' an
algebraic space. This lemma will be obsoleted by the stronger Proposition 57.13.3 below
which says that this holds more generally for algebraic stacks...

Lemma 57.13.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳 be an algebraic stack over
𝑆. The following are equivalent

(1) 𝒳 is a Deligne-Mumford stack and is a stack in setoids,
(2) 𝒳 is a Deligne-Mumford stack such that the canonical 1-morphism ℐ𝒳 → 𝒳 is

an equivalence, and
(3) 𝒳 is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 50.7.2. The implication
(3) ⇒ (1) follows from Lemma 57.13.1. Finally, assume (1). By Stacks, Lemma 50.6.3
there exists a sheaf 𝐹 on (Sch/𝑆)𝑓𝑝𝑝𝑓 and an equivalence 𝑗 ∶ 𝒳 → 𝒮𝐹. By Lemma 57.9.5
the fact that Δ𝒳 is representable by algebraic spaces, means that Δ𝐹 ∶ 𝐹 → 𝐹 × 𝐹 is
representable by algebraic spaces. Let 𝑈 be a scheme, and let 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 be a
surjective étale morphism. The composition 𝑗 ∘ 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒮𝐹 corresponds to a
morphism ℎ𝑈 → 𝐹 of sheaves. By Bootstrap, Lemma 54.5.1 this morphism is representable
by algebraic spaces. Hence by Lemma 57.10.4 we conclude that ℎ𝑈 → 𝐹 is surjective and
étale. Finally, we apply Bootstrap, Theorem 54.6.1 to see that 𝐹 is an algebraic space. �

Proposition 57.13.3. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳 be an algebraic stack
over 𝑆. The following are equivalent

(1) 𝒳 is a stack in setoids,
(2) the canonical 1-morphism ℐ𝒳 → 𝒳 is an equivalence, and
(3) 𝒳 is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 50.7.2. The implication
(3) ⇒ (1) follows from Lemma 57.13.2. Finally, assume (1). By Stacks, Lemma 50.6.3
there exists an equivalence 𝑗 ∶ 𝒳 → 𝒮𝐹 where 𝐹 is a sheaf on (Sch/𝑆)𝑓𝑝𝑝𝑓. By Lemma
57.9.5 the fact that Δ𝒳 is representable by algebraic spaces, means that Δ𝐹 ∶ 𝐹 → 𝐹 × 𝐹
is representable by algebraic spaces. Let 𝑈 be a scheme and let 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 be a
surjective smooth morphism. The composition 𝑗 ∘ 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒮𝐹 corresponds to a
morphism ℎ𝑈 → 𝐹 of sheaves. By Bootstrap, Lemma 54.5.1 this morphism is representable
by algebraic spaces. Hence by Lemma 57.10.4 we conclude that ℎ𝑈 → 𝐹 is surjective and
smooth. In particular it is surjective, flat and locally of finite presentation (by Lemma
57.10.9 and the fact that a smooth morphism of algebraic spaces is flat and locally of finite
presentation, see Morphisms of Spaces, Lemmas 42.33.5 and 42.33.7). Finally, we apply
Bootstrap, Theorem 54.10.1 to see that 𝐹 is an algebraic space. �

57.14. 2-Fibre products of algebraic stacks

The 2-category of algebraic stacks has products and 2-fibre products. The first lemma is
really a special case of Lemma 57.14.3 but its proof is slightly easier.

Lemma 57.14.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴 be algebraic stacks
over 𝑆. Then 𝒳 ×(Sch/𝑆)𝑓𝑝𝑝𝑓

𝒴 is an algebraic stack, and is a product in the 2-category of
algebraic stacks over 𝑆.

Proof. An object of 𝒳 ×(Sch/𝑆)𝑓𝑝𝑝𝑓
𝒴 over 𝑇 is just a pair (𝑥, 𝑦) where 𝑥 is an object of 𝒳𝑇

and 𝑦 is an object of 𝒴𝑇. Hence it is immediate from the definitions that 𝒳 ×(Sch/𝑆)𝑓𝑝𝑝𝑓
𝒴 is
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a stack in groupoids. If (𝑥, 𝑦) and (𝑥′, 𝑦′) are two objects of 𝒳 ×(Sch/𝑆)𝑓𝑝𝑝𝑓
𝒴 over 𝑇, then

𝐼𝑠𝑜𝑚((𝑥, 𝑦), (𝑥′, 𝑦′)) = 𝐼𝑠𝑜𝑚(𝑥, 𝑥′) × 𝐼𝑠𝑜𝑚(𝑦, 𝑦′).

Hence it follows from the equivalences in Lemma 57.10.11 and the fact that the category
of algebraic spaces has products that the diagonal of 𝒳 ×(Sch/𝑆)𝑓𝑝𝑝𝑓

𝒴 is representable by
algebraic spaces. Finally, suppose that 𝑈, 𝑉 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), and let 𝑥, 𝑦 be surjective
smooth morphisms 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳, 𝑦 ∶ (Sch/𝑌)𝑓𝑝𝑝𝑓 → 𝒴. Note that

(Sch/𝑈 ×𝑆 𝑉)𝑓𝑝𝑝𝑓 = (Sch/𝑈)𝑓𝑝𝑝𝑓 ×(Sch/𝑆)𝑓𝑝𝑝𝑓
(Sch/𝑉)𝑓𝑝𝑝𝑓.

The object (pr∗𝑈𝑥, pr∗𝑉𝑦) of 𝒳×(Sch/𝑆)𝑓𝑝𝑝𝑓
𝒴 over (Sch/𝑈×𝑆 𝑉)𝑓𝑝𝑝𝑓 thus defines a 1-morphism

(Sch/𝑈 ×𝑆 𝑉)𝑓𝑝𝑝𝑓 ⟶ 𝒳 ×(Sch/𝑆)𝑓𝑝𝑝𝑓
𝒴

which is the composition of base changes of 𝑥 and 𝑦, hence is surjective and smooth, see
Lemmas 57.10.6 and 57.10.5. We conclude that 𝒳 ×(Sch/𝑆)𝑓𝑝𝑝𝑓

𝒴 is indeed an algebraic
stack. We omit the verification that it really is a product. �

Lemma 57.14.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒵 be a stack in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓 whose diagonal is representable by algebraic spaces. Let 𝒳, 𝒴 be alge-
braic stacks over 𝑆. Let 𝑓 ∶ 𝒳 → 𝒵, 𝑔 ∶ 𝒴 → 𝒵 be 1-morphisms of stacks in groupoids.
Then the 2-fibre product 𝒳 ×𝑓,𝒵,𝑔 𝒴 is an algebraic stack.

Proof. We have to check conditions (1), (2), and (3) of Definition 57.12.1. The first con-
dition follows from Stacks, Lemma 50.5.6.

The second condition we have to check is that the 𝐼𝑠𝑜𝑚-sheaves are representable by al-
gebraic spaces. To do this, suppose that 𝑇 is a scheme over 𝑆, and 𝑢, 𝑣 are objects of
(𝒳 ×𝑓,𝒵,𝑔 𝒴)𝑇. By our construction of 2-fibre products (which goes all the way back
to Categories, Lemma 4.29.3) we may write 𝑢 = (𝑥, 𝑦, 𝛼) and 𝑣 = (𝑥′, 𝑦′, 𝛼′). Here
𝛼 ∶ 𝑓(𝑥) → 𝑔(𝑦) and similarly for 𝛼′. Then it is clear that

𝐼𝑠𝑜𝑚(𝑢, 𝑣)

��

// 𝐼𝑠𝑜𝑚(𝑦, 𝑦′)

𝜙↦𝑔(𝜙)∘𝛼
��

𝐼𝑠𝑜𝑚(𝑥, 𝑥′)
𝜓↦𝛼′∘𝑓(𝜓) // 𝐼𝑠𝑜𝑚(𝑓(𝑥), 𝑔(𝑦′))

is a cartesian diagram of sheaves on (Sch/𝑇)𝑓𝑝𝑝𝑓. Since by assumption the sheaves 𝐼𝑠𝑜𝑚(𝑦, 𝑦′),
𝐼𝑠𝑜𝑚(𝑥, 𝑥′), 𝐼𝑠𝑜𝑚(𝑓(𝑥), 𝑔(𝑦′)) are algebraic spaces (see Lemma 57.10.11)we see that 𝐼𝑠𝑜𝑚(𝑢, 𝑣)
is an algebraic space.

Let𝑈, 𝑉 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), and let 𝑥, 𝑦 be surjective smoothmorphisms 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 →
𝒳, 𝑦 ∶ (Sch/𝑌)𝑓𝑝𝑝𝑓 → 𝒴. Consider the morphism

(Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑓∘𝑥,𝒵,𝑔∘𝑦 (Sch/𝑉)𝑓𝑝𝑝𝑓 ⟶ 𝒳 ×𝑓,𝒵,𝑔 𝒴.

As the diagonal of 𝒵 is representable by algebraic spaces the source of this arrow is rep-
resentable by an algebraic space 𝐹, see Lemma 57.10.11. Moreover, the morphism is the
composition of base changes of 𝑥 and 𝑦, hence surjective and smooth, see Lemmas 57.10.6
and 57.10.5. Choosing a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝐹 we see that
the composition of the displayed 1-morphism with the corresponding 1-morphism

(Sch/𝑊)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑓∘𝑥,𝒵,𝑔∘𝑦 (Sch/𝑉)𝑓𝑝𝑝𝑓

is surjective and smooth which proves the last condition. �
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Lemma 57.14.3. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳, 𝒴, 𝒵 be algebraic stacks
over 𝑆. Let 𝑓 ∶ 𝒳 → 𝒵, 𝑔 ∶ 𝒴 → 𝒵 be 1-morphisms of algebraic stacks. Then the 2-fibre
product 𝒳 ×𝑓,𝒵,𝑔 𝒴 is an algebraic stack. It is also the 2-fibre product in the 2-category of
algebraic stacks over (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. The fact that 𝒳 ×𝑓,𝒵,𝑔 𝒴 is an algebraic stack follows from the stronger Lemma
57.14.2. The fact that 𝒳 ×𝑓,𝒵,𝑔 𝒴 is a 2-fibre product in the 2-category of algebraic stacks
over 𝑆 follows formally from the fact that the 2-category of algebraic stacks over 𝑆 is a full
sub 2-category of the 2-category of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. �

57.15. Algebraic stacks, overhauled

Some basic results on algebraic stacks.

Lemma 57.15.1. Let𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism
of algebraic stacks over𝑆. Let 𝑉 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓). Let 𝑦 ∶ (Sch/𝑉)𝑓𝑝𝑝𝑓 → 𝒴 be surjective
and smooth. Then there exists an object𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a 2-commutative diagram

(Sch/𝑈)𝑓𝑝𝑝𝑓 𝑎
//

𝑥
��

(Sch/𝑉)𝑓𝑝𝑝𝑓

𝑦
��

𝒳
𝑓 // 𝒴

with 𝑥 surjective and smooth.

Proof. First choose𝑊 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective smooth 1-morphism 𝑧 ∶ (Sch/𝑊)𝑓𝑝𝑝𝑓 →
𝒳. As 𝒴 is an algebraic stack we may choose an equivalence

𝑗 ∶ 𝒮𝐹 ⟶ (Sch/𝑊)𝑓𝑝𝑝𝑓 ×𝑓∘𝑧,𝒴,𝑦 (Sch/𝑉)𝑓𝑝𝑝𝑓

where 𝐹 is an algebraic space. By Lemma 57.10.6 the morphism 𝒮𝐹 → (Sch/𝑊)𝑓𝑝𝑝𝑓 is sur-
jective and smooth as a base change of 𝑦. Hence by Lemma 57.10.5 we see that 𝒮𝐹 → 𝒳
is surjective and smooth. Choose an object 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective étale
morphism 𝑈 → 𝐹. Then applying Lemma 57.10.5 once more we obtain the desired prop-
erties. �

This lemma is a generalization of Proposition 57.13.3.

Lemma 57.15.2. Let𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism
of algebraic stacks over 𝑆. The following are equivalent:

(1) for 𝑈 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) the functor 𝑓 ∶ 𝒳𝑈 → 𝒴𝑈 is faithful,
(2) the functor 𝑓 is faithful, and
(3) 𝑓 is representable by algebraic spaces.

Proof. Parts (1) and (2) are equivalent by general properties of 1-morphisms of categories
fibred in groupoids, see Categories, Lemma 4.32.8. We see that (3) implies (2) by Lemma
57.9.2. Finally, assume (2). Let 𝑈 be a scheme. Let 𝑦 ∈ 𝑂𝑏(𝒴𝑈). We have to prove that

𝒲 = (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳

is representable by an algebraic space over 𝑈. Since (Sch/𝑈)𝑓𝑝𝑝𝑓 is an algebraic stack we see
from Lemma 57.14.3 that 𝒲 is an algebraic stack. On the other hand the explicit description
of objects of 𝒲 as triples (𝑉, 𝑥, 𝛼 ∶ 𝑦(𝑉) → 𝑓(𝑥)) and the fact that 𝑓 is faithful, shows
that the fibre categories of 𝒲 are setoids. Hence Proposition 57.13.3 garantees that 𝒲 is
representable by an algebraic space. �
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Lemma 57.15.3. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑢 ∶ 𝒰 → 𝒳 be a 1-morphism
of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. If

(1) 𝒰 is representable by an algebraic space, and
(2) 𝑢 is representable by algebraic spaces, surjective and smooth,

then 𝒳 is an algebraic stack over 𝑆.

Proof. We have to show that Δ ∶ 𝒳 → 𝒳 × 𝒳 is representable by algebraic spaces, see
Definition 57.12.1. Given two schemes 𝑇1, 𝑇2 over 𝑆 denote 𝒯𝑖 = (Sch/𝑇𝑖)𝑓𝑝𝑝𝑓 the associ-
ated representable fibre categories. Suppose given 1-morphisms 𝑓𝑖 ∶ 𝒯𝑖 → 𝒳. According
to Lemma 57.10.11 it suffices to prove that the 2-fibered product 𝒯1 ×𝒳 𝒯2 is representable
by an algebraic space. By Stacks, Lemma 50.6.8 this is in any case a stack in setoids. Thus
𝒯1 ×𝒳 𝒯2 corresponds to some sheaf 𝐹 on (Sch/𝑆)𝑓𝑝𝑝𝑓, see Stacks, Lemma 50.6.3. Let 𝑈
be the algebraic space which represents 𝒰. By assumption

𝒯′
𝑖 = 𝒰 ×𝑢,𝒳,𝑓𝑖

𝒯𝑖

is representable by an algebraic space 𝑇′
𝑖 over 𝑆. Hence 𝒯′

1 ×𝒰 𝒯′
2 is representable by the

algebraic space 𝑇′
1 ×𝑈 𝑇′

2. Consider the commutative diagram

𝒯1 ×𝒳 𝒯2
//

��

𝒯1

��

𝒯′
1 ×𝒰 𝒯′

2

88

//

��

𝒯′
1

??

��

𝒯2
// 𝒳

𝒯′
2

//

88

𝒰

??

In this diagram the bottom square, the right square, the back square, and the front square
are 2-fibre products. A formal argument then shows that 𝒯′

1 ×𝒰 𝒯′
2 → 𝒯1 ×𝒳 𝒯2 is the

``base change'' of 𝒰 → 𝒳, more precisely the diagram

𝒯′
1 ×𝒰 𝒯′

2

��

// 𝒰

��
𝒯1 ×𝒳 𝒯2

// 𝒳

is a 2-fibre square. Hence 𝑇′
1 ×𝑈 𝑇′

2 → 𝐹 is representable by algebraic spaces, smooth, and
surjective, see Lemmas 57.9.6, 57.9.7, 57.10.4, and 57.10.6. Therefore 𝐹 is an algebraic
space by Bootstrap, Theorem 54.10.1 and we win. �

An application of Lemma 57.15.3 is that something which is an algebraic space over an
algebraic stack is an algebraic stack. This is the analogue of Bootstrap, Lemma 54.3.6.
Actually, it suffices to assume the morphism 𝒳 → 𝒴 is ``algebraic'', as we will see in
Criteria for Representability, Lemma 59.8.2.

Lemma 57.15.4. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳 → 𝒴 be a morphism of
stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume that

(1) 𝒳 → 𝒴 is representable by algebraic spaces, and
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(2) 𝒴 is an algebraic stack over 𝑆.
Then 𝒳 is an algebraic stack over 𝑆.

Proof. Let 𝒱 → 𝒴 be a surjective smooth 1-morphism from a representable stack in
groupoids to 𝒴. This exists by Definition 57.12.1. Then the 2-fibre product 𝒰 = 𝒱×𝒴 𝒳 is
representable by an algebraic space by Lemma 57.9.8. The 1-morphism 𝒰 → 𝒳 is repre-
sentable by algebraic spaces, smooth, and surjective, see Lemmas 57.9.7 and 57.10.6. By
Lemma 57.15.3 we conclude that 𝒳 is an algebraic stack. �

Lemma 57.15.5. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝑗 ∶ 𝒳 → 𝒴 be a 1 morphism
of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume 𝑗 is representable by algebraic
spaces and a monomorphism3. Then, if 𝒴 is a stack in groupoids (resp. an algebraic stack),
so is 𝒳.

Proof. We prove that 𝒳 is a stack. The case of algebraic stacks will then follow from
Lemma 57.15.4. It suffices to check effectiveness of descent for 𝒳. Fix a scheme 𝑇 and
an fppf covering {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇}. Suppose we have objects 𝑥𝑖 of the fibre categories 𝒳𝑇𝑖
together with a descent datum. Then since 𝒴 is a stack, there exists an object 𝑦 in the fibre
category 𝒴𝑇 such that 𝑓∗

𝑖 (𝑦) ≃ 𝑗(𝑥𝑖) in 𝒴𝑇𝑖
. By hypothesis, the 2-fibered product

𝒳 ×𝑗,𝒴,𝑦 (Sch/𝑇)𝑓𝑝𝑝𝑓

is representable by an algebraic space 𝑈 such that the induced morphism 𝑈 → 𝑇 is a
monomorphism of algebraic spaces. By the universal property of the 2-fibre product and
the fact that 𝑓∗

𝑖 (𝑦) ≅ 𝑗(𝑥𝑖), we have that 𝑓𝑖 ∶ 𝑇𝑖 → 𝑇 factors through 𝑈 → 𝑇 for all 𝑖.
Hence 𝑈 → 𝑇 is a monomorphism of fppf sheaves, but also surjective as {𝑓𝑖 ∶ 𝑇𝑖 → 𝑇} is a
covering. We conclude that 𝑈 = 𝑇. Thus 𝑦 comes from some object 𝑥 of the fibre category
𝒳𝑇. We have 𝑓∗

𝑖 𝑥 ≅ 𝑥𝑖 in the fibre category 𝒳𝑇𝑖
as the functor 𝑗 is fully faithful on fibre

categories, see Lemma 57.10.10. �

57.16. From an algebraic stack to a presentation

Given an algebraic stack over 𝑆 we obtain a groupoid in algebraic spaces over 𝑆 whose
associated quotient stack is the algebraic stack.

Recall that if (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid in algebraic spaces over 𝑆 then [𝑈/𝑅] denotes
the quotient stack associated to this datum, see Groupoids in Spaces, Definition 52.19.1.
In general [𝑈/𝑅] is not an algebraic stack. In particular the stack [𝑈/𝑅] occuring in the
following lemma is in general not algebraic.

Lemma 57.16.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳 be an algebraic stack over
𝑆. Let 𝒰 be an algebraic stack over 𝑆 which is representable by an algebraic space. Let
𝑓 ∶ 𝒰 → 𝒳 be a 1-morphism. Then

(1) the 2-fibre product ℛ = 𝒰 ×𝑓,𝒳,𝑓 𝒰 is representable by an algebraic space,
(2) there is a canonical equivalence

𝒰 ×𝑓,𝒳,𝑓 𝒰 ×𝑓,𝒳,𝑓 𝒰 = ℛ ×pr1,𝒰,pr0
ℛ,

(3) the projection pr02 induces via (2) a 1-morphism

pr02 ∶ ℛ ×pr1,𝒰,pr0
ℛ ⟶ ℛ

3For example an open immersion.
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(4) let 𝑈, 𝑅 be the algebraic spaces representing 𝒰, ℛ and 𝑡, 𝑠 ∶ 𝑅 → 𝑈 and 𝑐 ∶
𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑈 are the morphisms corresponding to the 1-morphisms pr0, pr1 ∶
ℛ → 𝒰 and pr02 ∶ ℛ ×pr1,𝒰,pr0

ℛ → ℛ above, then the quintuple (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
is a groupoid in algebraic spaces over 𝑆,

(5) the morphism 𝑓 induces a canonical 1-morphism 𝑓𝑐𝑎𝑛 ∶ [𝑈/𝑅] → 𝒳 of stacks in
groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, and

(6) the 1-morphism 𝑓𝑐𝑎𝑛 ∶ [𝑈/𝑅] → 𝒳 is fully faithful.

Proof. Proof of (1). By definition Δ𝒳 is representable by algebraic spaces so Lemma
57.10.11 applies to show that 𝒰 → 𝒳 is representable by algebraic spaces. Hence the
result follows from Lemma 57.9.8.

Let 𝑇 be a scheme over 𝑆. By construction of the 2-fibre product (see Categories, Lemma
4.29.3) we see that the objects of the fibre category ℛ𝑇 are triples (𝑎, 𝑏, 𝛼) where 𝑎, 𝑏 ∈
𝑂𝑏(𝒰𝑇) and 𝛼 ∶ 𝑓(𝑎) → 𝑓(𝑏) is a morphism in the fibre category 𝒳𝑇.

Proof of (2). The equivalence comes from repeatedly applying Categories, Lemmas 4.28.8
and 4.28.10. Let us identify 𝒰 ×𝒳 𝒰 ×𝒳 𝒰 with (𝒰 ×𝒳 𝒰) ×𝒳 𝒰. If 𝑇 is a scheme over 𝑆,
then on fibre categories over 𝑇 this equivalence maps the object ((𝑎, 𝑏, 𝛼), 𝑐, 𝛽) on the left
hand side to the object ((𝑎, 𝑏, 𝛼), (𝑏, 𝑐, 𝛽)) of the right hand side.

Proof of (3). The 1-morphism pr02 is constructed in the proof of Categories, Lemma
4.28.9. In terms of the description of objects of the fibre category above we see that
((𝑎, 𝑏, 𝛼), (𝑏, 𝑐, 𝛽)) maps to (𝑎, 𝑐, 𝛽 ∘ 𝛼).

Unfortunately, this is not compatible with our conventions on groupoids where we always
have 𝑗 = (𝑡, 𝑠) ∶ 𝑅 → 𝑈, and we ``think'' of a 𝑇-valued point 𝑟 of 𝑅 as a morphism
𝑟 ∶ 𝑠(𝑟) → 𝑡(𝑟). However, this does not affect the proof of (4), since the opposite of a
groupoid is a groupoid. But in the proof of (5) it is responsible for the inverses in the
displayed formula below.

Proof of (4). Recall that the sheaf𝑈 is isomorphic to the sheaf 𝑇 ↦ 𝑂𝑏(𝒰𝑇)/≅, and similarly
for 𝑅, see Lemma 57.8.2. It follows from Categories, Lemma 4.36.8 that this description
is compatible with 2-fibre products so we get a similar matching of ℛ ×pr1,𝒰,pr0 ℛ and
𝑅 ×𝑠,𝑈,𝑡 𝑅. The morphisms 𝑡, 𝑠 ∶ 𝑅 → 𝑈 and 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 we get from the general
equality (57.8.2.1). Explicitly these maps are the transformations of functors that come
from letting pr0, pr0, pr02 act on isomorphism classes of objects of fibre categories. Hence
to show that we obtain a groupoid in algebraic spaces it suffices to show that for every
scheme 𝑇 over 𝑆 the structure

(𝑂𝑏(𝒰𝑇)/≅, 𝑂𝑏(ℛ𝑇)/≅, pr1, pr0, pr02)

is a groupoid which is clear from our description of objects of ℛ𝑇 above.

Proof of (5). We will eventually apply Groupoids in Spaces, Lemma 52.22.2 to obtain
the functor [𝑈/𝑅] → 𝒳. Consider the 1-morphism 𝑓 ∶ 𝒰 → 𝒳. We have a 2-arrow
𝜏 ∶ 𝑓∘pr1 → 𝑓∘pr0 by definition of ℛ as the 2-fibre product. Namely, on an object (𝑎, 𝑏, 𝛼)
of ℛ over 𝑇 it is the map 𝛼−1 ∶ 𝑏 → 𝑎. We claim that

𝜏 ∘ idpr02
= (𝜏 ⋆ idpr0) ∘ (𝜏 ⋆ idpr1).

This identity says that given an object ((𝑎, 𝑏, 𝛼), (𝑏, 𝑐, 𝛽)) of ℛ ×pr1,𝒰,pr0 ℛ over 𝑇, then the
composition of

𝑐
𝛽−1
// 𝑏 𝛼−1

// 𝑎
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is the same as the arrow (𝛽∘𝛼)−1 ∶ 𝑎 → 𝑐. This is clearly true, hence the claim holds. In this
way we see that all the assumption of Groupoids in Spaces, Lemma 52.22.2 are satisfied for
the structure (𝒰, ℛ, pr0, pr1, pr02) and the 1-morphism 𝑓 and the 2-morphism 𝜏. Except, to
apply the lemma we need to prove this holds for the structure (𝒮𝑈, 𝒮𝑅, 𝑠, 𝑡, 𝑐) with suitable
morphisms.

Now there should be some general abstract nonsense argument which transfer these data
between the two, but it seems to be quite long. Instead, we use the following trick. Pick a
quasi-inverse 𝑗−1 ∶ 𝒮𝑈 → 𝒰 of the canonical equivalence 𝑗 ∶ 𝒰 → 𝒮𝑈 which comes from
𝑈(𝑇) = 𝑂𝑏(𝒰𝑇)/≅. This just means that for every scheme 𝑇/𝑆 and every object 𝑎 ∈ 𝒰𝑇
we have picked out a particular element of its isomorphism class, namely 𝑗−1(𝑗(𝑎)). Using
𝑗−1 we may therefore see 𝒮𝑈 as a subcategory of 𝒰. Having chosen this subcategory we
can consider those objects (𝑎, 𝑏, 𝛼) of ℛ𝑇 such that 𝑎, 𝑏 are objects of (𝒮𝑈)𝑇, i.e., such that
𝑗−1(𝑗(𝑎)) = 𝑎 and 𝑗−1(𝑗(𝑏)) = 𝑏. Then it is clear that this forms a subcategory of ℛ which
maps isomorphically to 𝒮𝑅 via the canonical equivalence ℛ → 𝒮𝑅. Moreover, this is
clearly compatible with forming the 2-fibre product ℛ ×pr1,𝒰,pr0 ℛ. Hence we see that we
may simply restrict 𝑓 to 𝒮𝑈 and restrict 𝜏 to a transformation beween functors 𝒮𝑅 → 𝒳.
Hence it is clear that the displayed equality of Groupoids in Spaces, Lemma 52.22.2 holds
since it holds even as an equality of transformations of functors ℛ ×pr1,𝒰,pr0 ℛ → 𝒳 before
restricting to the subcategory 𝒮𝑅×𝑠,𝑈,𝑡𝑅.

This proves that Groupoids in Spaces, Lemma 52.22.2 applies and we get our desired mor-
phism of stacks 𝑓𝑐𝑎𝑛 ∶ [𝑈/𝑅] → 𝒳. We briefly spell out how 𝑓𝑐𝑎𝑛 is defined in this special
case. On an object 𝑎 of 𝒮𝑈 over 𝑇 we have 𝑓𝑐𝑎𝑛(𝑎) = 𝑓(𝑎), where we think of 𝒮𝑈 ⊂ 𝒰 by
the chosen embedding above. If 𝑎, 𝑏 are objects of 𝒮𝑈 over 𝑇, then a morphism 𝜑 ∶ 𝑎 → 𝑏
in [𝑈/𝑅] is by definition an object of the form 𝜑 = (𝑏, 𝑎, 𝛼) of ℛ over 𝑇. (Note switch.)
And the rule in the proof of Groupoids in Spaces, Lemma 52.22.2 is that

(57.16.1.1) 𝑓𝑐𝑎𝑛(𝜑) = (𝑓(𝑎)
𝛼−1

−−−→ 𝑓(𝑏)).

Proof of (6). Both [𝑈/𝑅] and 𝒳 are stacks. Hence given a scheme 𝑇/𝑆 and objects 𝑎, 𝑏 of
[𝑈/𝑅] over 𝑇 we obtain a transformation of fppf sheaves

𝐼𝑠𝑜𝑚(𝑎, 𝑏) ⟶ 𝐼𝑠𝑜𝑚(𝑓𝑐𝑎𝑛(𝑎), 𝑓𝑐𝑎𝑛(𝑏))

on (Sch/𝑇)𝑓𝑝𝑝𝑓. We have to show that this is an isomorphism. We may work fppf locally on
𝑇, hence we may assume that 𝑎, 𝑏 come from morphisms 𝑎, 𝑏 ∶ 𝑇 → 𝑈. By the embedding
𝒮𝑈 ⊂ 𝒰 above we may also think of 𝑎, 𝑏 as objects of 𝒰 over 𝑇. In Groupoids in Spaces,
Lemma 52.21.1 we have seen that the left hand sheaf is represented by the algebraic space

𝑅 ×(𝑡,𝑠),𝑈×𝑆𝑈,(𝑏,𝑎) 𝑇

over 𝑇. On the other hand, the right hand side is by Stacks, Lemma 50.2.5 equal to the sheaf
associated to the following stack in setoids:

𝒳 ×𝒳×𝒳,(𝑓∘𝑏,𝑓∘𝑎) 𝑇 = 𝒳 ×𝒳×𝒳,(𝑓,𝑓) (𝒰 × 𝒰) ×𝒰×𝒰,(𝑏,𝑎) 𝑇 = ℛ ×(pr0,pr1),𝒰×𝒰,(𝑏,𝑎) 𝑇

which is representable by the fibre product desplayed above. At this point we have shown
that the two 𝐼𝑠𝑜𝑚-sheaves are isomorphic. Our 1-morphism 𝑓𝑐𝑎𝑛 ∶ [𝑈/𝑅] → 𝒳 induces
this isomorphism on 𝐼𝑠𝑜𝑚-sheaves by Equation (57.16.1.1). �

We can use the previous very abstract lemma to produce presentations.
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Lemma 57.16.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let 𝒳 be an algebraic stack over
𝑆. Let 𝑈 be an algebraic space over 𝑆. Let 𝑓 ∶ 𝒮𝑈 → 𝒳 be a surjective smooth morphism.
Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid in algebraic spaces and 𝑓𝑐𝑎𝑛 ∶ [𝑈/𝑅] → 𝒳 be the result
of applying Lemma 57.16.1 to 𝑈 and 𝑓. Then

(1) the morphisms 𝑠, 𝑡 are smooth, and
(2) the 1-morphism 𝑓𝑐𝑎𝑛 ∶ [𝑈/𝑅] → 𝒳 is an equivalence.

Proof. Themorphisms 𝑠, 𝑡 are smooth by Lemmas 57.10.2 and 57.10.3. As the 1-morphism
𝑓 is smooth and surjective it is clear that given any scheme 𝑇 and any object 𝑎 ∈ 𝑂𝑏(𝒳𝑇)
there exists a smooth and surjective morphism 𝑇′ → 𝑇 such that 𝑎|′

𝑇 comes from an object
of [𝑈/𝑅]𝑇′. Since 𝑓𝑐𝑎𝑛 ∶ [𝑈/𝑅] → 𝒳 is fully faithful, we deduce that [𝑈/𝑅] → 𝒳 is
essentially surjective as descent data on objects are effective on both sides, see Stacks,
Lemma 50.4.8. �

Remark 57.16.3. If the morphism 𝑓 ∶ 𝒮𝑈 → 𝒳 of Lemma 57.16.2 is only assumed
surjective, flat and locally of finite presentation, then it will still be the case that 𝑓𝑐𝑎𝑛 ∶
[𝑈/𝑅] → 𝒳 is an equivalence. In this case the morphisms 𝑠, 𝑡 will be flat and locally of
finite presentation, but of course not smooth in general.
Lemma 57.16.2 suggests the following definitions.
Definition 57.16.4. Let𝑆 be a scheme. Let𝐵 be an algebraic space over𝑆. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
be a groupoid in algebraic spaces over 𝐵. We say (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a smooth groupoid4 if
𝑠, 𝑡 ∶ 𝑅 → 𝑈 are smooth morphisms of algebraic spaces.
Definition 57.16.5. Let 𝒳 be an algebraic stack over 𝑆. A presentation of 𝒳 is given by a
smooth groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in algebraic spaces over 𝑆, and an equivalence 𝑓 ∶ [𝑈/𝑅] →
𝒳.
We have seen above that every algebraic stack has a presentation. Our next task is to show
that every smooth groupoid in algebraic spaces over 𝑆 gives rise to an algebraic stack.

57.17. The algebraic stack associated to a smooth groupoid

In this section we start with a smooth groupoid in algebraic spaces and we show that the
associated quotient stack is an algebraic stack.
Lemma 57.17.1. Let𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in
algebraic spaces over 𝑆. Then the diagonal of [𝑈/𝑅] is representable by algebraic spaces.
Proof. It suffices to show that the 𝐼𝑠𝑜𝑚-sheaves are algebraic spaces, see Lemma 57.10.11.
This follows from Bootstrap, Lemma 54.11.3. �

Lemma 57.17.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a smooth
groupoid in algebraic spaces over 𝑆. Then the morphism 𝒮𝑈 → [𝑈/𝑅] is smooth and
surjective.

Proof. Let 𝑇 be a scheme and let 𝑥 ∶ (Sch/𝑇)𝑓𝑝𝑝𝑓 → [𝑈/𝑅] be a 1-morphism. We have to
show that the projection

𝒮𝑈 ×[𝑈/𝑅] (Sch/𝑇)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑇)𝑓𝑝𝑝𝑓

is surjective and smooth. We already know that the left hand side is representable by an
algebraic space 𝐹, see Lemmas 57.17.1 and 57.10.11. Hence we have to show the corre-
sponding morphism 𝐹 → 𝑇 of algebraic spaces is surjective and smooth. Since we are

4This terminology might be a bit confusing: it does not imply that [𝑈/𝑅] is smooth over anything.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04T5
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WY
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04TH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04TI
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04WZ
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04X0
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working with properties of morphisms of algebraic spaces which are local on the target in
the fppf topology we may check this fppf locally on 𝑇. By construction, there exists an fppf
covering {𝑇𝑖 → 𝑇} of 𝑇 such that 𝑥|(Sch/𝑇𝑖)𝑓𝑝𝑝𝑓

comes from a morphism 𝑥𝑖 ∶ 𝑇𝑖 → 𝑈. (Note
that 𝐹×𝑇𝑇𝑖 represents the 2-fibre product 𝒮𝑈×[𝑈/𝑅] (Sch/𝑇𝑖)𝑓𝑝𝑝𝑓 so everything is compatible
with the base change via 𝑇𝑖 → 𝑇.) Hence we may assume that 𝑥 comes from 𝑥 ∶ 𝑇 → 𝑈.
In this case we see that

𝒮𝑈 ×[𝑈/𝑅] (Sch/𝑇)𝑓𝑝𝑝𝑓 = (𝒮𝑈 ×[𝑈/𝑅] 𝒮𝑈) ×𝒮𝑈
(Sch/𝑇)𝑓𝑝𝑝𝑓 = 𝒮𝑅 ×𝒮𝑈

(Sch/𝑇)𝑓𝑝𝑝𝑓

The first equality by Categories, Lemma 4.28.10 and the second equality by Groupoids in
Spaces, Lemma 52.21.2. Clearly the last 2-fibre product is represented by the algebraic
space 𝐹 = 𝑅 ×𝑠,𝑈,𝑥 𝑇 and the projection 𝑅 ×𝑠,𝑈,𝑥 𝑇 → 𝑇 is smooth as the base change of the
smooth morphism of algebraic spaces 𝑠 ∶ 𝑅 → 𝑈. It is also surjective as 𝑠 has a section
(namely the identity 𝑒 ∶ 𝑈 → 𝑅 of the groupoid). This proves the lemma. �

Here is the main result of this section.

Theorem 57.17.3. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a smooth
groupoid in algebraic spaces over 𝑆. Then the quotient stack [𝑈/𝑅] is an algebraic stack
over 𝑆.

Proof. We check the three conditions of Definition 57.12.1. By construction we have that
[𝑈/𝑅] is a stack in groupoids which is the first condition.

The second condition follows from the stronger Lemma 57.17.1.

Finally, we have to show there exists a scheme𝑊 over𝑆 and a surjective smooth 1-morphism
(Sch/𝑊)𝑓𝑝𝑝𝑓 ⟶ 𝒳. First choose 𝑊 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓) and a surjective étale morphism
𝑊 → 𝑈. Note that this gives a surjective étale morphism 𝒮𝑊 → 𝒮𝑈 of categories fibred
in sets, see Lemma 57.10.3. Of course then 𝒮𝑊 → 𝒮𝑈 is also surjective and smooth, see
Lemma 57.10.9. Hence 𝒮𝑊 → 𝒮𝑈 → [𝑈/𝑅] is surjective and smooth by a combination of
Lemmas 57.17.2 and 57.10.5. �

57.18. Change of big site

In this section we briefly discuss what happens when we change big sites. The upshot is
that we can always enlarge the big site at will, hence we may assume any set of schemes
we want to consider is contained in the big fppf site over which we consider our algebraic
space. We encourage the reader to skip this section.

Pullbacks of stacks is defined in Stacks, Section 50.12.

Lemma 57.18.1. Suppose given big sites Sch𝑓𝑝𝑝𝑓 and Sch′
𝑓𝑝𝑝𝑓. Assume that Sch𝑓𝑝𝑝𝑓 is

contained in Sch′
𝑓𝑝𝑝𝑓, see Topologies, Section 30.10. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓. Let

Let 𝑓 ∶ (Sch′/𝑆)𝑓𝑝𝑝𝑓 → (Sch/𝑆)𝑓𝑝𝑝𝑓 the morphism of sites corresponding to the inclusion
functor 𝑢 ∶ (Sch/𝑆)𝑓𝑝𝑝𝑓 → (Sch′/𝑆)𝑓𝑝𝑝𝑓. Let 𝒳 be a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

(1) if 𝒳 is representable by some 𝑋 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓), then 𝑓−1𝒳 is representable
too, in fact it is representable by the same scheme 𝑋, now viewed as an object of
(Sch′/𝑆)𝑓𝑝𝑝𝑓,

(2) if 𝒳 is representable by 𝐹 ∈ Sh((Sch/𝑆)𝑓𝑝𝑝𝑓) which is an algebraic space, then
𝑓−1𝒳 is representable by the algebraic space 𝑓−1𝐹,

(3) if 𝒳 is an algebraic stack, then 𝑓−1𝒳 is an algebraic stack, and
(4) if 𝒳 is a Deligne-Mumford stack, then 𝑓−1𝒳 is a Deligne-Mumford stack too.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04TK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04X2
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Proof. Let us prove (3). By Lemma 57.16.2 we may write 𝒳 = [𝑈/𝑅] for some smooth
groupoid in algebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). By Groupoids in Spaces, Lemma 52.27.1 we
see that 𝑓−1[𝑈/𝑅] = [𝑓−1𝑈/𝑓−1𝑅]. Of course (𝑓−1𝑈, 𝑓−1𝑅, 𝑓−1𝑠, 𝑓−1𝑡, 𝑓−1𝑐) is a smooth
groupoid in algebraic spaces too. Hence (3) is proved.

Now the other cases (1), (2), (4) each mean that 𝒳 has a presentation [𝑈/𝑅] of a particular
kind, and hence translate into the same kind of presentation for 𝑓−1𝒳 = [𝑓−1𝑈/𝑓−1𝑅].
Whence the lemma is proved. �

It is not true (in general) that the restriction of an algebraic space over the bigger site is an
algebraic space over the smaller site (simply by reasons of cardinality). Hence we can only
ever use a simple lemma of this kind to enlarge the base category and never to shrink it.

Lemma 57.18.2. Suppose Sch𝑓𝑝𝑝𝑓 is contained in Sch′
𝑓𝑝𝑝𝑓. Let 𝑆 be an object of Sch𝑓𝑝𝑝𝑓.

Denote Algebraic-Stacks/𝑆 the 2-category of algebraic spaces over𝑆 defined using Sch𝑓𝑝𝑝𝑓.
Similarly, denote Algebraic-Stacks′/𝑆 the 2-category of algebraic spaces over 𝑆 defined
using Sch′

𝑓𝑝𝑝𝑓. The rule 𝒳 ↦ 𝑓−1𝒳 of Lemma 57.18.1 defines a functor of 2-categories

Algebraic-Stacks/𝑆 ⟶ Algebraic-Stacks′/𝑆

which defines equivalences of morphism categories

𝑀𝑜𝑟Algebraic-Stacks/𝑆(𝒳, 𝒴) ⟶ 𝑀𝑜𝑟Algebraic-Stacks′/𝑆(𝑓−1𝒳, 𝑓−1𝒴)

for every objects 𝒳, 𝒴 of Algebraic-Stacks/𝑆. An object 𝒳′ of Algebraic-Stacks′/𝑆 is
equivalence to 𝑓−1𝒳 for some 𝒳 in Algebraic-Stacks/𝑆 if and only if it has a presentation
𝒳 = [𝑈′/𝑅′] with 𝑈′, 𝑅′ isomorphic to 𝑓−1𝑈, 𝑓−1𝑅 for some 𝑈, 𝑅 ∈ Spaces/𝑆.

Proof. The statement on morphism categories is a consequence of the more general Stacks,
Lemma 50.12.12. The characterization of the ``essential image'' follows from the descrip-
tion of 𝑓−1 in the proof of Lemma 57.18.1. �

57.19. Change of base scheme

In this section we briefly discuss what happens when we change base schemes. The upshot
is that given a morphism 𝑆 → 𝑆′ of base schemes, any algebraic stack over 𝑆 can be viewed
as an algebraic stack over 𝑆′.

Lemma 57.19.1. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site. Let 𝑆 → 𝑆′ be a morphism of this site. The
constructions A and B of Stacks, Section 50.13 above give ismorphisms of 2-categories

{
2-category of algebraic

stacks 𝒳 over 𝑆 } ↔
⎧⎪
⎨
⎪⎩

2-category of pairs (𝒳′, 𝑓) consisting of an
algebraic stack 𝒳′ over 𝑆′ and a morphism

𝑓 ∶ 𝒳′ → (Sch/𝑆)𝑓𝑝𝑝𝑓 of algebraic stacks over 𝑆′

⎫⎪
⎬
⎪⎭

Proof. The statement makes sense as the functor 𝑗 ∶ (Sch/𝑆)𝑓𝑝𝑝𝑓 → (Sch/𝑆′)𝑓𝑝𝑝𝑓 is the lo-
calization functor assocated to the object 𝑆/𝑆′ of (Sch/𝑆′)𝑓𝑝𝑝𝑓. By Stacks, Lemma 50.13.2
the only thing to show is that the constructions A and B preserve the subcategories of alge-
braic stacks. But for example, if 𝒳 = [𝑈/𝑅] then we have construction A applied to 𝒳 just
produces 𝒳′ = 𝒳. Conversely, if 𝒳′ = [𝑈′/𝑅′] the the morphism 𝑝 induces morphisms of
algebraic spaces 𝑈′ → 𝑆 and 𝑅′ → 𝑆, and then 𝒳 = [𝑈′/𝑅′] but now viewed as a stack
over 𝑆. Hence the lemma is clear. �
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Definition 57.19.2. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site. Let 𝑆 → 𝑆′ be a morphism of this site.
If 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 is an algebraic stack over 𝑆, then 𝒳 viewed as an algebraic stack
over 𝑆′ is the algebraic stack

𝒳 ⟶ (Sch/𝑆′)𝑓𝑝𝑝𝑓
gotten by applying construction A of Lemma 57.19.1 to 𝒳.

Conversely, what if we start with an algebraic stack 𝒳′ over 𝑆′ and we want to get an
algebraic stack over 𝑆? Well, then we consider the 2-fibre product

𝒳′
𝑆 = (Sch/𝑆)𝑓𝑝𝑝𝑓 ×(Sch/𝑆′)𝑓𝑝𝑝𝑓

𝒳′

which is an algebraic stack over 𝑆′ according to Lemma 57.14.3. Moreover, it comes
equipped with a natural 1-morphism 𝑝 ∶ 𝒳′

𝑆 → (Sch/𝑆)𝑓𝑝𝑝𝑓 and hence by Lemma 57.19.1
it corresponds in a canonical way to an algebraic stack over 𝑆.

Definition 57.19.3. Let Sch𝑓𝑝𝑝𝑓 be a big fppf site. Let 𝑆 → 𝑆′ be a morphism of this site.
Let 𝒳′ be an algebraic stack over 𝑆′. The change of base of 𝒳′ is the algebraic space 𝒳′

𝑆
over 𝑆 described above.
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CHAPTER 58

Sheaves on Algebraic Stacks

58.1. Introduction

There is a myriad of ways to think about sheaves on algebraic stacks. In this chapter we
discuss one approach, which is particularly well adapted to our foundations for algebraic
stacks. Whenever we introduce a type of sheaves we will indicate the precise relationship
with similar notions in the literature. The goal of this chapter is to state those results that
are either obviously true or straightforward to prove and leave more intricate constructions
till later.

In fact, it turns out that to develop a fully fledged theory of constructible étale sheaves and/or
an adequate discussion of derived categories of complexes 𝒪-modules whose cohomology
sheaves are quasi-coherent takes a significant amount of work, see [Ols07b]. We will return
to these issues later (insert future reference here).

In the literature and in research papers on sheaves on algebraic stacks the lisse-étale site of
an algebraic stack often plays a prominent role. However, it is a problematic beast, because
it turns out that a morphism of algebraic stacks does not induce a morphism of lisse-étale
topoi. We have therefore made the design decision to avoid any mention of the lisse-étale
site as long as possible. Arguments that traditionally use the lisse-étale site will be replaced
by an argument using a Čech covering in the site 𝒳𝑠𝑚𝑜𝑜𝑡ℎ defined below.

58.2. Conventions

The conventions we use in this chapter are the same as those in the chapter on algebraic
stacks, see Algebraic Stacks, Section 57.2. For convenience we repeat them here.

We work in a suitable big fppf site Sch𝑓𝑝𝑝𝑓 as in Topologies, Definition 30.7.6. So, if not
explicitly stated otherwise all schemes will be objects of Sch𝑓𝑝𝑝𝑓. We record what changes
if you change the big fppf site elsewhere (insert future reference here).

We will always work relative to a base 𝑆 contained in Sch𝑓𝑝𝑝𝑓. And we will then work with
the big fppf site (Sch/𝑆)𝑓𝑝𝑝𝑓, see Topologies, Definition 30.7.8. The absolute case can be
recovered by taking 𝑆 = 𝑆𝑝𝑒𝑐(𝐙).

58.3. Presheaves

In this section we define presheaves on categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, but
most of the discussion works for categories over any base category. This section also serves
to introduce the notation we will use later on.

Definition 58.3.1. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids.
(1) A presheaf on 𝒳 is a presheaf on the underlying category of 𝒳.
(2) A morphism of presheaves on 𝒳 is a morphism of presheaves on the underlying

category of 𝒳.

2691
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We denote PSh(𝒳) the category of presheaves on 𝒳.

This defines presheaves of sets. Of course we can also talk about presheaves of pointed sets,
abelian groups, groups, monoids, rings, modules over a fixed ring, and lie algebras over a
fixed field, etc. The category of abelian presheaves, i.e., presheaves of abelian groups, is
denoted PAb(𝒳).

Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Recall
that this means just that 𝑓 is a functor over (Sch/𝑆)𝑓𝑝𝑝𝑓. The material in Sites, Section 9.17
provides us with a pair of adjoint functors1

(58.3.1.1) 𝑓𝑝 ∶ PSh(𝒴) ⟶ PSh(𝒳) and 𝑝𝑓 ∶ PSh(𝒳) ⟶ PSh(𝒴).

The adjointness is
𝑀𝑜𝑟PSh(𝒳)(𝑓𝑝𝒢, ℱ) = 𝑀𝑜𝑟PSh(𝒴)(𝒢, 𝑝𝑓ℱ)

where ℱ ∈ 𝑂𝑏(PSh(𝒳)) and 𝒢 ∈ 𝑂𝑏(PSh(𝒴)). We call 𝑓𝑝𝒢 the pullback of 𝒢. It follows
from the definitions that

𝑓𝑝𝒢(𝑥) = 𝒢(𝑓(𝑥))
for any 𝑥 ∈ 𝑂𝑏(𝒳). The presheaf 𝑝𝑓ℱ is called the pushforward of ℱ. It is described by
the formula

(𝑝𝑓ℱ)(𝑦) = 𝑙𝑖𝑚𝑓(𝑥)→𝑦 ℱ(𝑥).
The rest of this section should probably be moved to the chapter on sites and in any case
should be skipped on a first reading.

Lemma 58.3.2. Let 𝑓𝒳 → 𝒴 and 𝑔 ∶ 𝒴 → 𝒵 be 1-morphisms of categories fibred in
groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Then (𝑔 ∘ 𝑓)𝑝 = 𝑓𝑝 ∘ 𝑔𝑝 and there is a canonical isomorphism
𝑝(𝑔∘𝑓) → 𝑝𝑔∘𝑝𝑓 compatible with with adjointness of (𝑓𝑝, 𝑝𝑓), (𝑔𝑝, 𝑝𝑔), and ((𝑔∘𝑓)𝑝, 𝑝(𝑔∘𝑓)).

Proof. Let ℋ be a presheaf on 𝒵. Then (𝑔 ∘ 𝑓)𝑝ℋ = 𝑓𝑝(𝑔𝑝ℋ) is given by the equalities

(𝑔 ∘ 𝑓)𝑝ℋ(𝑥) = ℋ((𝑔 ∘ 𝑓)(𝑥)) = ℋ(𝑔(𝑓(𝑥))) = 𝑓𝑝(𝑔𝑝ℋ)(𝑥).

We omit the verification that this is compatible with restriction maps.

Next, we define the transformation 𝑝(𝑔 ∘ 𝑓) → 𝑝𝑔 ∘ 𝑝𝑓. Let ℱ be a presheaf on 𝒳. If 𝑧 is
an object of 𝒵 then we get a category 𝒥 of quadruples (𝑥, 𝑓(𝑥) → 𝑦, 𝑦, 𝑔(𝑦) → 𝑧) and a
category ℐ of pairs (𝑥, 𝑔(𝑓(𝑥)) → 𝑧). There is a canonical functor 𝒥 → ℐ sending the
object (𝑥, 𝛼 ∶ 𝑓(𝑥) → 𝑦, 𝑦, 𝛽 ∶ 𝑔(𝑦) → 𝑧) to (𝑥, 𝛽 ∘ 𝑓(𝛼) ∶ 𝑔(𝑓(𝑥)) → 𝑧). This gives the
arrow in

(𝑝(𝑔 ∘ 𝑓)ℱ)(𝑧) = 𝑙𝑖𝑚𝑔(𝑓(𝑥))→𝑧 ℱ(𝑥)
= 𝑙𝑖𝑚ℐ ℱ
→ 𝑙𝑖𝑚𝒥 ℱ

= 𝑙𝑖𝑚𝑔(𝑦)→𝑧 ( 𝑙𝑖𝑚𝑓(𝑥)→𝑦 ℱ(𝑥))
= (𝑝𝑔 ∘ 𝑝𝑓ℱ)(𝑥)

by Categories, Lemma 4.13.8. We omit the verification that this is compatible with restric-
tion maps. An alternative to this direct construction is to define 𝑝(𝑔 ∘ 𝑓) ≅ 𝑝𝑔 ∘ 𝑝𝑓 as the
unique map compatible with the adjointness properties. This also has the advantage that
one does not need to prove the compatibility.

1These functors will be denoted 𝑓−1 and 𝑓∗ after Lemma 58.4.4 has been proved.
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Compatibility with adjointness of (𝑓𝑝, 𝑝𝑓), (𝑔𝑝, 𝑝𝑔), and ((𝑔 ∘ 𝑓)𝑝, 𝑝(𝑔 ∘ 𝑓)) means that given
presheaves ℋ and ℱ as above we have a commutative diagram

𝑀𝑜𝑟PSh(𝒳)(𝑓𝑝𝑔𝑝ℋ, ℱ) 𝑀𝑜𝑟PSh(𝒴)(𝑔𝑝ℋ, 𝑝𝑓ℱ) 𝑀𝑜𝑟PSh(𝒴)(ℋ, 𝑝𝑔𝑝𝑓ℱ)

𝑀𝑜𝑟PSh(𝒳)((𝑔 ∘ 𝑓)𝑝𝒢, ℱ) 𝑀𝑜𝑟PSh(𝒴)(𝒢, 𝑝(𝑔 ∘ 𝑓)ℱ)

OO

Proof omitted. �

Lemma 58.3.3. Let 𝑓, 𝑔 ∶ 𝒳 → 𝒴 be 1-morphisms of categories fibred in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝑡 ∶ 𝑓 → 𝑔 be a 2-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Assigned to 𝑡 there are canonical isomorphisms of functors

𝑡𝑝 ∶ 𝑔𝑝 ⟶ 𝑓𝑝 and 𝑝𝑡 ∶ 𝑝𝑓 ⟶ 𝑝𝑔

which compatible with adjointness of (𝑓𝑝, 𝑝𝑓) and (𝑔𝑝, 𝑝𝑔) and with vertical and horizontal
composition of 2-morphisms.

Proof. Let 𝒢 be a presheaf on 𝒴. Then 𝑡𝑝 ∶ 𝑔𝑝𝒢 → 𝑓𝑝𝒢 is given by the family of maps

𝑔𝑝𝒢(𝑥) = 𝒢(𝑔(𝑥))
𝒢(𝑡𝑥)

−−−−→ 𝒢(𝑓(𝑥)) = 𝑓𝑝𝒢(𝑥)

parametrized by 𝑥 ∈ 𝑂𝑏(𝒳). This makes sense as 𝑡𝑥 ∶ 𝑓(𝑥) → 𝑔(𝑥) and 𝒢 is a contravariant
functor. We omit the verification that this is compatible with restriction mappings.

To define the transformation 𝑝𝑡 for 𝑦 ∈ 𝑂𝑏(𝒴) define 𝑓
𝑦ℐ, resp. 𝑔

𝑦ℐ to be the category of
pairs (𝑥, 𝜓 ∶ 𝑓(𝑥) → 𝑦), resp. (𝑥, 𝜓 ∶ 𝑔(𝑥) → 𝑦), see Sites, Section 9.17. Note that 𝑡 defines
a functor 𝑦𝑡 ∶ 𝑔

𝑦ℐ → 𝑓
𝑦ℐ given by the rule

(𝑥, 𝑔(𝑥) → 𝑦) ⟼ (𝑥, 𝑓(𝑥)
𝑡𝑥−−→ 𝑔(𝑥) → 𝑦).

Note that for ℱ a presheaf on 𝒳 the composition of 𝑦𝑡 with ℱ ∶ 𝑓
𝑦ℐ𝑜𝑝𝑝 → Sets, (𝑥, 𝑓(𝑥) →

𝑦) ↦ ℱ(𝑥) is equal to ℱ ∶ 𝑔
𝑦ℐ𝑜𝑝𝑝 → Sets. Hence by Categories, Lemma 4.13.8 we get for

every 𝑦 ∈ 𝑂𝑏(𝒴) a canonical map

(𝑝𝑓ℱ)(𝑦) = 𝑙𝑖𝑚𝑓
𝑦ℐ ℱ ⟶ 𝑙𝑖𝑚𝑔

𝑦ℐ ℱ = (𝑝𝑔ℱ)(𝑦)

We omit the verification that this is compatible with restriction mappings. An alternative
to this direct construction is to define 𝑝𝑡 as the unique map compatible with the adjointness
properties of the pairs (𝑓𝑝, 𝑝𝑓) and (𝑔𝑝, 𝑝𝑔) (see below). This also has the advantage that
one does not need to prove the compatibility.

Compatibility with adjointness of (𝑓𝑝, 𝑝𝑓) and (𝑔𝑝, 𝑝𝑔) means that given presheaves 𝒢 and
ℱ as above we have a commutative diagram

𝑀𝑜𝑟PSh(𝒳)(𝑓𝑝𝒢, ℱ)

−∘𝑡𝑝

��

𝑀𝑜𝑟PSh(𝒴)(𝒢, 𝑝𝑓ℱ)

𝑝𝑡∘−

��
𝑀𝑜𝑟PSh(𝒳)(𝑔𝑝𝒢, ℱ) 𝑀𝑜𝑟PSh(𝒴)(𝒢, 𝑝𝑔ℱ)

Proof omitted. Hint: Work through the proof of Sites, Lemma 9.17.2 and observe the com-
patibility from the explicit description of the horizontal and vertical maps in the diagram.
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We omit the verification that this is compatible with vertical and horizontal compositions.
Hint: The proof of this for 𝑡𝑝 is straightforward and one can conclude that this holds for the
𝑝𝑡 maps using compatibility with adjointness. �

58.4. Sheaves

We first make an observation that is important and trivial (especially for those readers who
do not worry about set theoretical issues).
Consider a big fppf site Sch𝑓𝑝𝑝𝑓 as in Topologies, Definition 30.7.6 and denote its under-
lying category Sch𝛼. Besides being the underlying category of a fppf site, the category
Sch𝛼 can also can serve as the underlying category for a big Zariski site, a big étale site,
a big smooth site, and a big syntomic site, see Topologies, Remark 30.9.1. We denote
these sites Sch𝑍𝑎𝑟, Sch ́𝑒𝑡𝑎𝑙𝑒, Sch𝑠𝑚𝑜𝑜𝑡ℎ, and Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐. In this situation, since we have
defined the big Zariski site (Sch/𝑆)𝑍𝑎𝑟 of 𝑆, the big étale site (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 of 𝑆, the big
smooth site (Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ of 𝑆, the big syntomic site (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐 of 𝑆, and the big fppf
site (Sch/𝑆)𝑓𝑝𝑝𝑓 of 𝑆 as the localizations (see Sites, Section 9.21) Sch𝑍𝑎𝑟/𝑆, Sch ́𝑒𝑡𝑎𝑙𝑒/𝑆,
Sch𝑠𝑚𝑜𝑜𝑡ℎ/𝑆, Sch𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐/𝑆, and Sch𝑓𝑝𝑝𝑓/𝑆 of these (absolute) big sites we see that all of
these have the same underlying category, namely Sch𝛼/𝑆.
It follows that if we have a category 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 fibred in groupoids, then 𝒳 in-
herits a Zariski, étale, smooth, syntomic, and fppf topology, see Stacks, Definition 50.10.2.

Definition 58.4.1. Let 𝒳 be a category fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
(1) The associated Zariski site, denoted 𝒳𝑍𝑎𝑟, is the structure of site on 𝒳 inherited

from (Sch/𝑆)𝑍𝑎𝑟.
(2) The associated étale site, denoted 𝒳 ́𝑒𝑡𝑎𝑙𝑒, is the structure of site on 𝒳 inherited

from (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒.
(3) The associated smooth site, denoted𝒳𝑠𝑚𝑜𝑜𝑡ℎ, is the structure of site on𝒳 inherited

from (Sch/𝑆)𝑠𝑚𝑜𝑜𝑡ℎ.
(4) The associated syntomic site, denoted 𝒳𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, is the structure of site on 𝒳 in-

herited from (Sch/𝑆)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐.
(5) The associated fppf site, denoted 𝒳𝑓𝑝𝑝𝑓, is the structure of site on 𝒳 inherited

from (Sch/𝑆)𝑓𝑝𝑝𝑓.

This definitionmakes sense by the discussion above. If 𝒳 is an algebraic stack, the literature
calls 𝒳𝑓𝑝𝑝𝑓 (or a site equivalent to it) the big fppf site of 𝒳 and similarly for the other ones.
We may occasionally use this terminology to distinguish this construction from others.

Remark 58.4.2. We only use this notation when the symbol 𝒳 refers to a category fibred
in groupoids, and not a scheme, an algebraic space, etc. In this way we will avoid confusion
with the small étale site of a scheme, or algebraic space which is denoted 𝑋 ́𝑒𝑡𝑎𝑙𝑒 (in which
case we use a roman capital instead of a calligraphic one).

Now that we have these topologies defined we can say what it means to have a sheaf on 𝒳,
i.e., define the corresponding topoi.

Definition 58.4.3. Let 𝒳 be a category fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let ℱ be a
presheaf on 𝒳.

(1) We say ℱ is a Zariski sheaf, or a sheaf for the Zariski topology if ℱ is a sheaf on
the associated Zariski site 𝒳𝑍𝑎𝑟.

(2) We say ℱ is an étale sheaf, or a sheaf for the étale topology if ℱ is a sheaf on the
associated étale site 𝒳 ́𝑒𝑡𝑎𝑙𝑒.
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(3) We say ℱ is a smooth sheaf, or a sheaf for the smooth topology if ℱ is a sheaf on
the associated smooth site 𝒳𝑠𝑚𝑜𝑜𝑡ℎ.

(4) We say ℱ is a syntomic sheaf, or a sheaf for the syntomic topology if ℱ is a sheaf
on the associated syntomic site 𝒳𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐.

(5) We say ℱ is an fppf sheaf, or a sheaf, or a sheaf for the fppf topology if ℱ is a
sheaf on the associated fppf site 𝒳𝑓𝑝𝑝𝑓.

A morphism of sheaves is just a morphism of presheaves. We denote these categories of
sheaves Sh(𝒳𝑍𝑎𝑟), Sh(𝒳 ́𝑒𝑡𝑎𝑙𝑒), Sh(𝒳𝑠𝑚𝑜𝑜𝑡ℎ), Sh(𝒳𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐), and Sh(𝒳𝑓𝑝𝑝𝑓).

Of course we can also talk about sheaves of pointed sets, abelian groups, groups, monoids,
rings, modules over a fixed ring, and lie algebras over a fixed field, etc. The category of
abelian sheaves, i.e., sheaves of abelian groups, is denoted Ab(𝒳𝑓𝑝𝑝𝑓) and similarly for the
other topologies. If 𝒳 is an algebraic stack, then Sh(𝒳𝑓𝑝𝑝𝑓) is equivalent (modulo set the-
oretical problems) to what in the literature would be termed the category of sheaves on the
big fppf site of 𝒳. Similar for other topologies. We may occasionally use this terminology
to distinguish this construction from others.

Since the topologies are listed in increasing order of strength we have the following strictly
full inclusions

Sh(𝒳𝑓𝑝𝑝𝑓) ⊂ Sh(𝒳𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐) ⊂ Sh(𝒳𝑠𝑚𝑜𝑜𝑡ℎ) ⊂ Sh(𝒳 ́𝑒𝑡𝑎𝑙𝑒) ⊂ Sh(𝒳𝑍𝑎𝑟) ⊂ PSh(𝒳)

We sometimes write Sh(𝒳𝑓𝑝𝑝𝑓) = Sh(𝒳) and Ab(𝒳𝑓𝑝𝑝𝑓) = Ab(𝒳) in accordance with our
terminology that a sheaf on 𝒳 is an fppf sheaf on 𝒳.

With this setup functoriality of these topoi is straightforward, and moreover, is compatible
with the inclusion functors above.

Lemma 58.4.4. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. The functors 𝑝𝑓 and 𝑓𝑝 of
(58.3.1.1) transform 𝜏 sheaves into 𝜏 sheaves and define a morphism of topoi 𝑓 ∶ Sh(𝒳𝜏) →
Sh(𝒴𝜏).

Proof. This follows immediately from Stacks, Lemma 50.10.3. �

In other words, pushforward and pullback of presheaves as defined in Section 58.3 also
produces pushforward and pullback of 𝜏-sheaves. Having said all of the above we see that
we can write 𝑓𝑝 = 𝑓−1 and 𝑝𝑓 = 𝑓∗ without any possibility of confusion.

Definition 58.4.5. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. We denote

𝑓 = (𝑓−1, 𝑓∗) ∶ Sh(𝒳𝑓𝑝𝑝𝑓) ⟶ Sh(𝒴𝑓𝑝𝑝𝑓)

the associated morphism of fppf topoi constructed above. Similarly for the associated
Zariski, étale, smooth, and syntomic topoi.

As discussed in Sites, Section 9.38 the same formula (on the underlying sheaf of sets)
defines pushforward and pullback for sheaves (for one of our topologies) of pointed sets,
abelian groups, groups, monoids, rings, modules over a fixed ring, and lie algebras over a
fixed field, etc.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06TS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06TT


2696 58. SHEAVES ON ALGEBRAIC STACKS

58.5. Computing pushforward

Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let ℱ
be a presheaf on 𝒳. Let 𝑦 ∈ 𝑂𝑏(𝒴). We can compute 𝑓∗ℱ(𝑦) in the followingway. Suppose
that 𝑦 lies over the scheme 𝑉 and using the 2-Yoneda lemma think of 𝑦 as a 1-morphism.
Consider the projection

pr ∶ (Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳 ⟶ 𝒳
Then we have a canonical identification

(58.5.0.1) 𝑓∗ℱ(𝑦) = Γ((Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳, pr−1ℱ)
Namely, objects of the 2-fibre product are triples (ℎ ∶ 𝑈 → 𝑉, 𝑥, 𝑓(𝑥) → ℎ∗𝑦). Dropping
the ℎ from the notation we see that this is equivalent to the data of an object 𝑥 of 𝒳 and a
morphism 𝛼 ∶ 𝑓(𝑥) → 𝑦 of 𝒴. Since 𝑓∗ℱ(𝑦) = 𝑙𝑖𝑚𝑓(𝑥)→𝑦 ℱ(𝑥) by definition the equality
follows.
As a consequence we have the following ``base change'' result for pushforwards. This result
is trivial and hinges on the fact that we are using ``big'' sites.

Lemma 58.5.1. Let 𝑆 be a scheme. Let
𝒴′ ×𝒴 𝒳

𝑔′
//

𝑓′

��

𝒳

𝑓
��

𝒴′ 𝑔 // 𝒴

be a 2-cartesian diagram of categories fibred in groupoids over 𝑆. Then we have a canon-
ical isomorphism

𝑔−1𝑓∗ℱ ⟶ 𝑓′
∗(𝑔′)−1ℱ

functorial in the presheaf ℱ on 𝒳.

Proof. Given an object 𝑦′ of 𝒴′ over 𝑉 there is an equivalence
(Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑔(𝑦′),𝒴 𝒳 = (Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦′,𝒴′ (𝒴′ ×𝒴 𝒳)

Hence by (58.5.0.1) a bijection 𝑔−1𝑓∗ℱ(𝑦′) → 𝑓′
∗(𝑔′)−1ℱ(𝑦′). We omit the verification

that this is compatible with restriction mappings. �

In the case of a representable morphism of categories fibred in groupoids this formula
(58.5.0.1) simplifies. We suggest the reader skip the rest of this section.

Lemma 58.5.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. The following are equivalent

(1) 𝑓 is representable, and
(2) for every 𝑦 ∈ 𝑂𝑏(𝒴) the functor 𝒳𝑜𝑝𝑝 → Sets, 𝑥 ↦ 𝑀𝑜𝑟𝒴(𝑓(𝑥), 𝑦) is repre-

sentable.

Proof. According to the discussion in Algebraic Stacks, Section 57.6 we see that 𝑓 is repre-
sentable if and only if for every 𝑦 ∈ 𝑂𝑏(𝒴) lying over 𝑈 the 2-fibre product (Sch/𝑈)𝑓𝑝𝑝𝑓×𝑦,𝒴
𝒳 is representable, i.e., of the form (Sch/𝑉𝑦)𝑓𝑝𝑝𝑓 for some scheme 𝑉𝑦 over 𝑈. Objects in this
2-fibre products are triples (ℎ ∶ 𝑉 → 𝑈, 𝑥, 𝛼 ∶ 𝑓(𝑥) → ℎ∗𝑦) where 𝛼 lies over id𝑉. Drop-
ping the ℎ from the notation we see that this is equivalent to the data of an object 𝑥 of 𝒳
and a morphism 𝑓(𝑥) → 𝑦. Hence the 2-fibre product is representable by 𝑉𝑦 and 𝑓(𝑥𝑦) → 𝑦
where 𝑥𝑦 is an object of 𝒳 over 𝑉𝑦 if and only if the functor in (2) is representable by 𝑥𝑦
with universal object a map 𝑓(𝑥𝑦) → 𝑦. �
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Let

𝒳
𝑓

//

𝑝
$$

𝒴

𝑞
zz

(Sch/𝑆)𝑓𝑝𝑝𝑓

be a 1-morphism of categories fibred in groupoids. Assume 𝑓 is representable. For every
𝑦 ∈ 𝑂𝑏(𝒴) we choose an object 𝑢(𝑦) ∈ 𝑂𝑏(𝒳) representing the functor 𝑥 ↦ 𝑀𝑜𝑟𝒴(𝑓(𝑥), 𝑦)
of Lemma 58.5.2 (this is possible by the axiom of choice). The objects come with canonical
morphisms 𝑓(𝑢(𝑦)) → 𝑦 by construction. For every morphism 𝛽 ∶ 𝑦′ → 𝑦 in 𝒴 we obtain
a unique morphism 𝑢(𝛽) ∶ 𝑢(𝑦′) → 𝑢(𝑦) in 𝒳 such that the diagram

𝑓(𝑢(𝑦′))

��

𝑓(𝑢(𝛽))
// 𝑓(𝑢(𝑦))

��
𝑦′ // 𝑦

commutes. In other words, 𝑢 ∶ 𝒴 → 𝒳 is a functor. In fact, we can say a little bit more.
Namely, suppose that 𝑉′ = 𝑞(𝑦′), 𝑉 = 𝑞(𝑦), 𝑈′ = 𝑝(𝑢(𝑦′)) and 𝑈 = 𝑝(𝑢(𝑦)). Then

𝑈′
𝑝(𝑢(𝛽))

//

��

𝑈

��
𝑉′ 𝑞(𝛽) // 𝑉

is a fibre product square. This is true because𝑈′ → 𝑈 represents the base change (Sch/𝑉′)𝑓𝑝𝑝𝑓×𝑦′,𝒴
𝒳 → (Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳 of 𝑉′ → 𝑉.

Lemma 58.5.3. Let 𝑓 ∶ 𝒳 → 𝒴 be a representable 1-morphism of categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Then the
functor 𝑢 ∶ 𝒴𝜏 → 𝒳𝜏 is continuous and defines a morphism of sites 𝒳𝜏 → 𝒴𝜏 which
induces the same morphism of topoi Sh(𝒳𝜏) → Sh(𝒴𝜏) as the morphism 𝑓 constructed in
Lemma 58.4.4. Moreover, 𝑓∗ℱ(𝑦) = ℱ(𝑢(𝑦)) for any presheaf ℱ on 𝒳.

Proof. Let {𝑦𝑖 → 𝑦} be a 𝜏-covering in 𝒴. By definition this simply means that {𝑞(𝑦𝑖) →
𝑞(𝑦)} is a 𝜏-covering of schemes. By the final remark above the lemmawe see that {𝑝(𝑢(𝑦𝑖)) →
𝑝(𝑢(𝑦))} is the base change of the 𝜏-covering {𝑞(𝑦𝑖) → 𝑞(𝑦)} by 𝑝(𝑢(𝑦)) → 𝑞(𝑦), hence is
itself a 𝜏-covering by the axioms of a site. Hence {𝑢(𝑦𝑖) → 𝑢(𝑦)} is a 𝜏-covering of 𝒳. This
proves that 𝑢 is continuous.

Let's use the notation 𝑢𝑝, 𝑢𝑠, 𝑢𝑝, 𝑢𝑠 of Sites, Sections 9.5 and 9.13. If we can show the final
assertion of the lemma, then we see that 𝑓∗ = 𝑢𝑝 = 𝑢𝑠 (by continuity of 𝑢 seen above)
and hence by adjointness 𝑓−1 = 𝑢𝑠 which will prove 𝑢𝑠 is exact, hence that 𝑢 determines
a morphism of sites, and the equality will be clear as well. To see that 𝑓∗ℱ(𝑦) = ℱ(𝑢(𝑦))
note that by definition

𝑓∗ℱ(𝑦) = (𝑝𝑓ℱ)(𝑦) = 𝑙𝑖𝑚𝑓(𝑥)→𝑦 ℱ(𝑥).

Since 𝑢(𝑦) is a final object in the category the limit is taken over we conclude. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06W8
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58.6. The structure sheaf

Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category
fibred in groupoids. The 2-category of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 has
a final object, namely, id ∶ (Sch/𝑆)𝑓𝑝𝑝𝑓 → (Sch/𝑆)𝑓𝑝𝑝𝑓 and 𝑝 is a 1-morphism from 𝒳 to
this final object. Hence any presheaf 𝒢 on (Sch/𝑆)𝑓𝑝𝑝𝑓 gives a presheaf 𝑝−1𝒢 on 𝒳 defined
by the rule 𝑝−1𝒢(𝑥) = 𝒢(𝑝(𝑥)). Moreover, the discussion in Section 58.4 shows that 𝑝−1𝒢
is a 𝜏 sheaf whenever 𝒢 is a 𝜏-sheaf.

Recall that the site (Sch/𝑆)𝑓𝑝𝑝𝑓 is a ringed site with structure sheaf 𝒪 defined by the rule

(Sch/𝑆)𝑜𝑝𝑝 ⟶ Rings, 𝑈/𝑆 ⟼ Γ(𝑈, 𝒪𝑈)

see Descent, Definition 31.6.2.

Definition 58.6.1. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. The struc-
ture sheaf of 𝒳 is the sheaf of rings 𝒪𝒳 = 𝑝−1𝒪.

For an object 𝑥 of 𝒳 lying over 𝑈 we have 𝒪𝒳(𝑥) = 𝒪(𝑈) = Γ(𝑈, 𝒪𝑈). Needless to say
𝒪𝒳 is also a Zariski, étale, smooth, and syntomic sheaf, and hence each of the sites 𝒳𝑍𝑎𝑟,
𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒳𝑠𝑚𝑜𝑜𝑡ℎ, 𝒳𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, and 𝒳𝑓𝑝𝑝𝑓 is a ringed site. This construction is functorial as well.

Lemma 58.6.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. There is a canonical identifi-
cation 𝑓−1𝒪𝒳 = 𝒪𝒴 which turns 𝑓 ∶ Sh(𝒳𝜏) → Sh(𝒴𝜏) into a morphism of ringed topoi.

Proof. Denote 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 and 𝑞 ∶ 𝒴 → (Sch/𝑆)𝑓𝑝𝑝𝑓 the structural functors.
Then 𝑞 = 𝑝 ∘ 𝑓, hence 𝑞−1 = 𝑓−1 ∘ 𝑝−1 by Lemma 58.3.2. The result follows. �

Remark 58.6.3. In the situation of Lemma 58.6.2 the morphism of ringed topoi 𝑓 ∶
Sh(𝒳𝜏) → Sh(𝒴𝜏) is flat as is clear from the equality 𝑓−1𝒪𝒳 = 𝒪𝒴. This is a bit counter
intuitive, for example because a closed immersion of algebraic stacks is typically not flat
(as a morphism of algebraic stacks). However, exactly the same thing happens when taking
a closed immersion 𝑖 ∶ 𝑋 → 𝑌 of schemes: in this case the associated morphism of big
𝜏-sites 𝑖 ∶ (Sch/𝑋)𝜏 → (Sch/𝑌)𝜏 also is flat.

58.7. Sheaves of modules

Since we have a structure sheaf we have modules.

Definition 58.7.1. Let 𝒳 be a category fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
(1) A presheaf of modules on 𝒳 is a presheaf of 𝒪𝒳-modules. The category of

presheaves of modules is denoted PMod(𝒪𝒳).
(2) We say a presheaf of modules ℱ is an 𝒪𝒳-module, or more precisely a sheaf

of 𝒪𝒳-modules if ℱ is an fppf sheaf. The category of 𝒪𝒳-modules is denoted
Mod(𝒪𝒳).

These (pre)sheaves of modules occur in the literature as (pre)sheaves of 𝒪𝒳-modules on the
big fppf site of 𝒳. We will occasionally use this terminology if we want to distinguish these
categories from others. We will also encounter presheaves of modules which are sheaves
in the Zariski, étale, smooth, or syntomic topologies (without necessarily being sheaves).
If need be these will be denoted Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) and similarly for the other topologies.
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Next, we address functoriality -- first for presheaves of modules. Let

𝒳
𝑓

//

𝑝
$$

𝒴

𝑞
zz

(Sch/𝑆)𝑓𝑝𝑝𝑓

be a 1-morphism of categories fibred in groupoids. The functors𝑓−1, 𝑓∗ on abelian presheaves
extend to functors

(58.7.1.1) 𝑓−1 ∶ PMod(𝒪𝒴) ⟶ PMod(𝒪𝒳) and 𝑓∗ ∶ PMod(𝒪𝒴) ⟶ PMod(𝒪𝒳)

This is immediate for 𝑓−1 because 𝑓−1𝒢(𝑥) = 𝒢(𝑓(𝑥)) which is a module over 𝒪𝒴(𝑓(𝑥)) =
𝒪(𝑞(𝑓(𝑥))) = 𝒪(𝑝(𝑥)) = 𝒪𝒳(𝑥). Afternatively it follows because 𝑓−1𝒪𝒴 = 𝒪𝒳 and because
𝑓−1 commutes with limits (on presheaves). Since 𝑓∗ is a right adjoint it commutes with
all limits (on presheaves) in particular products. Hence we can extend 𝑓∗ to a functor on
presheaves of modules as in the proof of Modules on Sites, Lemma 16.12.1. We claim that
the functors (58.7.1.1) form an adjoint pair of functors:

𝑀𝑜𝑟PMod(𝒪𝒳)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟PMod(𝒪𝒴)(𝒢, 𝑓∗ℱ).

As 𝑓−1𝒪𝒴 = 𝒪𝒳 this follows from Modules on Sites, Lemma 16.12.3 by endowing 𝒳 and
𝒴 with the chaotic topology.

Next, we discuss functoriality for modules, i.e., for sheaves of modules in the fppf topology.
Denote by 𝑓 also the induced morphism of ringed topoi, see Lemma 58.6.2 (for the fppf
toplogies right now). Note that the functors 𝑓−1 and 𝑓∗ of (58.7.1.1) preserve the subcate-
gories of sheaves of modules, see Lemma 58.4.4. Hence it follows immediately that

(58.7.1.2) 𝑓−1 ∶ Mod(𝒪𝒴) ⟶ Mod(𝒪𝒳) and 𝑓∗ ∶ Mod(𝒪𝒴) ⟶ Mod(𝒪𝒳)

form an adjoint pair of functors:

𝑀𝑜𝑟Mod(𝒪𝒳)(𝑓−1𝒢, ℱ) = 𝑀𝑜𝑟Mod(𝒪𝒴)(𝒢, 𝑓∗ℱ).

By uniqueness of adjoints we conclude that 𝑓∗ = 𝑓−1 where 𝑓∗ is as defined in Modules
on Sites, Section 16.13 for the morphism of ringed topoi 𝑓 above. Of course we could have
seen this directly because 𝑓∗(−) = 𝑓−1(−) ⊗𝑓−1𝒪𝒴

𝒪𝒳 and because 𝑓−1𝒪𝒴 = 𝒪𝒳.

Similarly for sheaves of modules in the Zariski, étale, smooth, syntomic topology.

58.8. Representable categories

In this short section we compare our definitions with what happens in case the algebraic
stacks in question are representable.

Lemma 58.8.1. Let 𝑆 be a scheme. Let 𝒳 be a category fibred in groupoids over (Sch/𝑆).
Assume 𝒳 is representable by a scheme 𝑋. For 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}
there is a canonical equivalence

(𝒳𝜏, 𝒪𝒳) = ((Sch/𝑋)𝜏, 𝒪𝑋)

of ringed sites.

Proof. This follows by choosing an equivalence (Sch/𝑋)𝜏 → 𝒳 of categories fibred in
groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 and using the functoriality of the construction 𝒳 𝒳𝜏. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=075I
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Lemma 58.8.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of categories fibred
in groupoids over 𝑆. Assume 𝒳, 𝒴 are representable by schemes 𝑋, 𝑌. Let 𝑓 ∶ 𝑋 → 𝑌
be the morphism of schemes corresponding to 𝑓. For 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐,
𝑓𝑝𝑝𝑓} the morphism of ringed topoi 𝑓 ∶ (Sh(𝒳𝜏), 𝒪𝒳) → (Sh(𝒳𝜏), 𝒪𝒳) agrees with the
morphisms of ringed topoi 𝑓 ∶ (Sh((Sch/𝑋)𝜏), 𝒪𝑋) → (Sh((Sch/𝑌)𝜏), 𝒪𝑌) via the identifica-
tions of Lemma 58.8.1.

Proof. Follows by unwinding the definitions. �

58.9. Restriction

A trivial but useful observation is that the localization of a category fibred in groupoids at
an object is equivalent to the big site of the scheme it lies over.

Lemma 58.9.1. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. Let 𝜏 ∈
{𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let 𝑥 ∈ 𝑂𝑏(𝒳) lying over 𝑈 = 𝑝(𝑥). The functor 𝑝
induces an equivalence of sites 𝒳𝜏/𝑥 → (Sch/𝑈)𝜏.

Proof. Note that (Sch/𝑈)𝜏 is the localization of the site (Sch/𝑆)𝑓𝑝𝑝𝑓 at the object 𝑈. It
follows from Categories, Definition 4.32.1 that the rule 𝑥′/𝑥 ↦ 𝑝(𝑥′)/𝑝(𝑥) defines an
equivalence of categories 𝒳𝜏/𝑥 → (Sch/𝑈)𝜏. Whereupon it follows from Stacks, Defini-
tion 50.10.2 that coverings of 𝑥′ in 𝒳𝜏/𝑥 are in bijective correspondence with coverings of
𝑝(𝑥′) in (Sch/𝑈)𝜏. �

We use the lemma above to talk about the pullback and the restriction of a (pre)sheaf to a
scheme.

Definition 58.9.2. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. Let 𝑥 ∈
𝑂𝑏(𝒳) lying over 𝑈 = 𝑝(𝑥). Let ℱ be a presheaf on 𝒳.

(1) The pullback 𝑥−1ℱ ofℱ is the restrictionℱ|(𝒳/𝑥) viewed as a presheaf on (Sch/𝑈)𝑓𝑝𝑝𝑓
via the equivalence 𝒳/𝑥 → (Sch/𝑈)𝑓𝑝𝑝𝑓 of Lemma 58.9.1.

(2) The restriction of ℱ to 𝑈 ́𝑒𝑡𝑎𝑙𝑒 is 𝑥−1ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
, abusively written ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

.

This notation makes sense because to the object 𝑥 the 2-Yoneda lemma, see Algebraic
Stacks, Section 57.5 associates a 1-morphism 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳/𝑥 which is quasi-
inverse to 𝑝 ∶ 𝒳/𝑥 → (Sch/𝑈)𝑓𝑝𝑝𝑓. Hence 𝑥−1ℱ truly is the pullback of ℱ via this
1-morphism. In particular, by the material above, if ℱ is a sheaf (or a Zariski, étale, smooth,
syntomic sheaf), then 𝑥−1ℱ is a sheaf on (Sch/𝑈)𝑓𝑝𝑝𝑓 (or on (Sch/𝑈)𝑍𝑎𝑟, (Sch/𝑈) ́𝑒𝑡𝑎𝑙𝑒, (Sch/𝑈)𝑠𝑚𝑜𝑜𝑡ℎ,
(Sch/𝑈)𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐).

Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. Let 𝜑 ∶ 𝑥 → 𝑦 be a morphism
of 𝒳 lying over the morphism of schemes 𝑎 ∶ 𝑈 → 𝑉. Recall that 𝑎 induces a morphism
of small étale sites 𝑎𝑠𝑚𝑎𝑙𝑙 ∶ 𝑈 ́𝑒𝑡𝑎𝑙𝑒 → 𝑉 ́𝑒𝑡𝑎𝑙𝑒, see Étale Cohomology, Section 38.34. Let ℱ
be a presheaf on 𝒳. Let ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

and ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
be the restrictions of ℱ via 𝑥 and 𝑦. There is a

natural comparison map

(58.9.2.1) 𝑐𝜑 ∶ ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
⟶ 𝑎𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=075J
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of presheaves on 𝑈 ́𝑒𝑡𝑎𝑙𝑒. Namely, if 𝑉′ → 𝑉 is étale, set 𝑈′ = 𝑉′ ×𝑉 𝑈 and define 𝑐𝜑 on
sections over 𝑉′ via

𝑎𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
)(𝑉′) ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

(𝑈′) ℱ(𝑥′)

ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
(𝑉′)

𝑐𝜑

OO

ℱ(𝑦′)

ℱ(𝜑′)

OO

Here 𝜑′ ∶ 𝑥′ → 𝑦′ is a morphism of 𝒳 fitting into a commutative diagram

𝑥′ //

𝜑′

��

𝑥

𝜑

��
𝑦′ // 𝑦

lying over

𝑈′ //

��

𝑈

𝑎
��

𝑉′ // 𝑉

The existence and uniqueness of𝜑′ follow from the axioms of a category fibred in groupoids.
We omit the verification that 𝑐𝜑 so defined is indeed a map of presheaves (i.e., compatible
with restriction mappings) and that it is functorial in ℱ. In case ℱ is a sheaf for the étale
topology we obtain a comparison map

(58.9.2.2) 𝑐𝜑 ∶ 𝑎−1
𝑠𝑚𝑎𝑙𝑙(ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒

) ⟶ ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

which is also denoted 𝑐𝜑 as indicated (this is the customary abuse of notation in not distin-
guishing between adjoint maps).

Lemma 58.9.3. Let ℱ be an étale sheaf on 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓.
(1) If 𝜑 ∶ 𝑥 → 𝑦 and 𝜓 ∶ 𝑦 → 𝑧 are morphisms of 𝒳 lying over 𝑎 ∶ 𝑈 → 𝑉 and

𝑏 ∶ 𝑉 → 𝑊, then the composition

𝑎−1
𝑠𝑚𝑎𝑙𝑙(𝑏

−1
𝑠𝑚𝑎𝑙𝑙(ℱ|𝑊 ́𝑒𝑡𝑎𝑙𝑒

))
𝑎−1

𝑠𝑚𝑎𝑙𝑙𝑐𝜓
−−−−−−→ 𝑎−1

𝑠𝑚𝑎𝑙𝑙(ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
)

𝑐𝜑
−−→ ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is equal to 𝑐𝜓∘𝜑 via the identification

(𝑏 ∘ 𝑎)−1
𝑠𝑚𝑎𝑙𝑙(ℱ|𝑊 ́𝑒𝑡𝑎𝑙𝑒

) = 𝑎−1
𝑠𝑚𝑎𝑙𝑙(𝑏

−1
𝑠𝑚𝑎𝑙𝑙(ℱ|𝑊 ́𝑒𝑡𝑎𝑙𝑒

)).

(2) If 𝜑 ∶ 𝑥 → 𝑦 lies over an étale morphism of schemes 𝑎 ∶ 𝑈 → 𝑉, then (58.9.2.2)
is an isomorphism.

(3) Suppose 𝑓 ∶ 𝒴 → 𝒳 is a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓 and 𝑦 is an object of 𝒴 lying over the scheme 𝑈 with image 𝑥 = 𝑓(𝑦).
Then there is a canonical identification 𝑓−1ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

= ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
.

(4) Moreover, given 𝜓 ∶ 𝑦′ → 𝑦 in 𝒴 lying over 𝑎 ∶ 𝑈′ → 𝑈 the comparison
map 𝑐𝜓 ∶ 𝑎−1

𝑠𝑚𝑎𝑙𝑙(𝐹
−1ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

) → 𝐹−1ℱ|𝑈′
́𝑒𝑡𝑎𝑙𝑒

is equal to the comparison map
𝑐𝑓(𝜓) ∶ 𝑎−1

𝑠𝑚𝑎𝑙𝑙ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
→ ℱ|𝑈′

́𝑒𝑡𝑎𝑙𝑒
via the indentifications in (3).

Proof. The verification of these properties is omitted. �

Next, we turn to the restriction of (pre)sheaves of modules.

Lemma 58.9.4. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. Let 𝜏 ∈
{𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let 𝑥 ∈ 𝑂𝑏(𝒳) lying over 𝑈 = 𝑝(𝑥). The equiva-
lence of Lemma 58.9.1 extends to an equivalence of ringed sites (𝒳𝜏/𝑥, 𝒪𝒳|𝑥) → ((Sch/𝑈)𝜏, 𝒪).

Proof. This is immediate from the construction of the structure sheaves. �
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Let 𝒳 be a category fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let ℱ be a (pre)sheaf of modules
on 𝒳 as in Definition 58.7.1. Let 𝑥 be an object of 𝒳 lying over 𝑈. Then Lemma 58.9.4
guarantees that the restriction 𝑥−1ℱ is a (pre)sheaf of modules on (Sch/𝑈)𝑓𝑝𝑝𝑓. We will
sometimes write 𝑥∗ℱ = 𝑥−1ℱ in this case. Similarly, if ℱ is a sheaf for the Zariski, étale,
smooth, or syntomic topology, then 𝑥−1ℱ is as well. Moreover, the restriction ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

=
𝑥−1ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

to 𝑈 is a presheaf of 𝒪𝑈 ́𝑒𝑡𝑎𝑙𝑒
-modules. If ℱ is a sheaf for the étale topology, then

ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
is a sheaf of modules. Moreover, if 𝜑 ∶ 𝑥 → 𝑦 is a morphism of 𝒳 lying over

𝑎 ∶ 𝑈 → 𝑉 then the comparison map (58.9.2.2) is compatible with 𝑎♯
𝑠𝑚𝑎𝑙𝑙 (see Descent,

Remark 31.6.4) and induces a comparison map

(58.9.4.1) 𝑐𝜑 ∶ 𝑎∗
𝑠𝑚𝑎𝑙𝑙(ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒

) ⟶ ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

of 𝒪𝑈 ́𝑒𝑡𝑎𝑙𝑒
-modules. Note that the properties (1), (2), (3), and (4) of Lemma 58.9.3 hold in

the setting of étale sheaves of modules as well. We will use this in the following without
further mention.

Lemma 58.9.5. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. Let 𝜏 ∈
{𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. The site 𝒳𝜏 has enough points.

Proof. By Sites, Lemma 9.34.5 we have to show that there exists a family of objects 𝑥 of
𝒳 such that 𝒳𝜏/𝑥 has enough points and such that the sheaves ℎ#

𝑥 cover the final object of
the category of sheaves. By Lemma 58.9.1 and Étale Cohomology, Lemma 38.30.1 we see
that 𝒳𝜏/𝑥 has enough points for every object 𝑥 and we win. �

58.10. Restriction to algebraic spaces

In this section we consider sheaves on categories representable by algebraic spaces. The
following lemma is the analogue of Topologies, Lemma 30.4.13 for algebraic spaces.

Lemma58.10.1. Let𝑆 be a scheme. Let𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids.
Assume 𝒳 is representably by an algebraic space 𝐹. Then there exists a continuous and
cocontinuous functor 𝐹 ́𝑒𝑡𝑎𝑙𝑒 → 𝒳 ́𝑒𝑡𝑎𝑙𝑒 which induces a morphism of ringed sites

𝜋𝐹 ∶ (𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) ⟶ (𝐹 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝐹)

and a morphism of ringed topoi

𝑖𝐹 ∶ (Sh(𝐹 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝐹) ⟶ (Sh(𝒳 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝒳)

such that 𝜋𝐹 ∘ 𝑖𝐹 = id. Moreover 𝜋𝐹,∗ = 𝑖−1
𝐹 .

Proof. Choose an equivalence 𝑗 ∶ 𝒮𝐹 → 𝒳, see Algebraic Stacks, Sections 57.7 and 57.8.
An object of 𝐹 ́𝑒𝑡𝑎𝑙𝑒 is a scheme 𝑈 together with an étale morphism 𝜑 ∶ 𝑈 → 𝐹. Then 𝜑 is
an object of 𝒮𝐹 over 𝑈. Hence 𝑗(𝜑) is an object of 𝒳 over 𝑈. In this way 𝑗 induces a functor
𝑢 ∶ 𝐹 ́𝑒𝑡𝑎𝑙𝑒 → 𝒳. It is clear that 𝑢 is continuous and cocontinuous for the étale topology
on 𝒳. Since 𝑗 is an equivalence, the functor 𝑢 is fully faithful. Also, fibre products and
equalizers exist in 𝐹 ́𝑒𝑡𝑎𝑙𝑒 and 𝑢 commutes with them because these are computed on the
level of underlying schemes in 𝐹 ́𝑒𝑡𝑎𝑙𝑒. Thus Sites, Lemmas 9.19.5, 9.19.6, and 9.19.7 apply.
In particular 𝑢 defines a morphism of topoi 𝑖𝐹 ∶ Sh(𝐹 ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝒳 ́𝑒𝑡𝑎𝑙𝑒) and there exists a
left adjoint 𝑖𝐹,! of 𝑖−1

𝐹 which commutes with fibre products and equalizers.

We claim that 𝑖𝐹,! is exact. If this is true, then we can define 𝜋𝐹 by the rules 𝜋−1
𝐹 = 𝑖𝐹,! and

𝜋𝐹,∗ = 𝑖−1
𝐹 and everything is clear. To prove the claim, note that we already know that 𝑖𝐹,!

is right exact and preserves fibre products. Hence it suffices to show that 𝑖𝐹,!∗ = ∗ where

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06W4
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∗ indicates the final object in the category of sheaves of sets. Let 𝑈 be a scheme and let
𝜑 ∶ 𝑈 → 𝐹 be surjective and étale. Set 𝑅 = 𝑈 ×𝐹 𝑈. Then

ℎ𝑅
//
// ℎ𝑈

// ∗

is a coequalizer diagram in Sh(𝐹 ́𝑒𝑡𝑎𝑙𝑒). Using the right exactness of 𝑖𝐹,!, using 𝑖𝐹,! = (𝑢𝑝 )#,
and using Sites, Lemma 9.5.6 we see that

ℎ𝑢(𝑅)
//
// ℎ𝑢(𝑈)

// 𝑖𝐹,!∗

is a coequalizer diagram in Sh(𝐹 ́𝑒𝑡𝑎𝑙𝑒). Using that 𝑗 is an equivalence and that 𝐹 = 𝑈/𝑅 it
follows that the coequalizer in Sh(𝒳 ́𝑒𝑡𝑎𝑙𝑒) of the two maps ℎ𝑢(𝑅) → ℎ𝑢(𝑈) is ∗. We omit the
proof that these morphisms are compatible with structure sheaves. �

Assume 𝒳 is an algebraic stack represented by the algebraic space 𝐹. Let 𝑗 ∶ 𝒮𝐹 → 𝒳 be
an equivalence and denote 𝑢 ∶ 𝐹 ́𝑒𝑡𝑎𝑙𝑒 → 𝒳 ́𝑒𝑡𝑎𝑙𝑒 the functor of the proof of Lemma 58.10.1
above. Given a sheaf ℱ on 𝒳 ́𝑒𝑡𝑎𝑙𝑒 we have

𝜋𝐹,∗ℱ(𝑈) = 𝑖−1
𝐹 ℱ(𝑈) = ℱ(𝑢(𝑈)).

This is why we often think of 𝑖−1
𝐹 as a restriction functor similarly to Definition 58.9.2 and

to the restriction of a sheaf on the big étale site of a scheme to the small étale site of a
scheme. We often use the notation

(58.10.1.1) ℱ|𝐹 ́𝑒𝑡𝑎𝑙𝑒
= 𝑖−1

𝐹 ℱ = 𝜋𝐹,∗ℱ

in this situation.

Lemma 58.10.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of categories fibred
in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume 𝒳, 𝒴 are representable by algebraic spaces 𝐹, 𝐺.
Denote 𝑓 ∶ 𝐹 → 𝐺 the induced morphism of algebraic spaces, and 𝑓𝑠𝑚𝑎𝑙𝑙 ∶ 𝐹 ́𝑒𝑡𝑎𝑙𝑒 → 𝐺 ́𝑒𝑡𝑎𝑙𝑒
the corresponding morphism of ringed topoi. Then

(Sh(𝒳 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝒳)

𝜋𝐹

��

𝑓
// (Sh(𝒴 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝒴)

𝜋𝐺

��
(Sh(𝐹 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝐹)

𝑓𝑠𝑚𝑎𝑙𝑙 // (Sh(𝐺 ́𝑒𝑡𝑎𝑙𝑒), 𝒪𝐺)

is a commutative diagram of ringed topoi.

Proof. This is similar to Topologies, Lemma 30.4.16 (3) but there is a small snag due to
the fact that 𝐹 → 𝐺 may not be representable by schemes. In particular we don't get a
commutative diagram of ringed sites, but only a commutative diagram of ringed topoi.

Before we start the proof proper, we choose equivalences 𝑗 ∶ 𝒮𝐹 → 𝒳 and 𝑗′ ∶ 𝒮𝐺 → 𝒴
which induce functors 𝑢 ∶ 𝐹 ́𝑒𝑡𝑎𝑙𝑒 → 𝒳 and 𝑢′ ∶ 𝐺 ́𝑒𝑡𝑎𝑙𝑒 → 𝒴 as in the proof of Lemma
58.10.1. Because of the 2-functoriality of sheaves on categories fibred in groupoids over
Sch𝑓𝑝𝑝𝑓 (see discussion in Section 58.3) we may assume that 𝒳 = 𝒮𝐹 and 𝒴 = 𝒮𝐺 and that
𝑓 ∶ 𝒮𝐹 → 𝒮𝐺 is the functor associated to the morphism 𝑓 ∶ 𝐹 → 𝐺. Correspondingly we
will omit 𝑢 and 𝑢′ from the notation, i.e., given an object 𝑈 → 𝐹 of 𝐹 ́𝑒𝑡𝑎𝑙𝑒 we denote 𝑈/𝐹
the corresponding object of 𝒳. Similarly for 𝐺.

Let 𝒢 be a sheaf on 𝒳 ́𝑒𝑡𝑎𝑙𝑒. To prove (2) we compute 𝜋𝐺,∗𝑓∗𝒢 and 𝑓𝑠𝑚𝑎𝑙𝑙,∗𝜋𝐹,∗𝒢. To do this
let 𝑉 → 𝐺 be an object of 𝐺 ́𝑒𝑡𝑎𝑙𝑒. Then

𝜋𝐺,∗𝑓∗𝒢(𝑉) = 𝑓∗𝒢(𝑉/𝐺) = Γ((Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝒴 𝒳, pr−1𝒢)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=073N
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see (58.5.0.1). The fibre product in the formula is
(Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝒴 𝒳 = (Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝒮𝐺

𝒮𝐹 = 𝒮𝑉×𝐺𝐹

i.e., it is the split category fibred in groupoids associated to the algebraic space 𝑉×𝐺 𝐹. And
pr−1𝒢 is a sheaf on 𝒮𝑉×𝐺𝐹 for the étale topology.

In particular, if 𝑉×𝐺𝐹 is representable, i.e., if it is a scheme, then 𝜋𝐺,∗𝑓∗𝒢(𝑉) = 𝒢(𝑉×𝐺𝐹/𝐹)
and also

𝑓𝑠𝑚𝑎𝑙𝑙,∗𝜋𝐹,∗𝒢(𝑉) = 𝜋𝐹,∗𝒢(𝑉 ×𝐺 𝐹) = 𝒢(𝑉 ×𝐺 𝐹/𝐹)
which proves the desired equality in this special case.
In general, choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑉 ×𝐺 𝐹. Set 𝑅 =
𝑈 ×𝑉×𝐺𝐹 𝑈. Then 𝑈/𝑉 ×𝐺 𝐹 and 𝑅/𝑉 ×𝐺 𝐹 are objects of the fibre product category above.
Since pr−1𝒢 is a sheaf for the étale topology on 𝒮𝑉×𝐺𝐹 the diagram

Γ((Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝒴 𝒳, pr−1𝒢) // pr−1𝒢(𝑈/𝑉 ×𝐺 𝐹)
//
// pr−1𝒢(𝑅/𝑉 ×𝐺 𝐹)

is an equalizer diagram. Note that pr−1𝒢(𝑈/𝑉 ×𝐺 𝐹) = 𝒢(𝑈/𝐹) and pr−1𝒢(𝑅/𝑉 ×𝐺 𝐹) =
𝒢(𝑅/𝐹) by the definition of pullbacks. Moreover, by the material in Properties of Spaces,
Section 41.15 (especially, Properties of Spaces, Remark 41.15.4 and Lemma 41.15.7) we
see that there is an equalizer diagram

𝑓𝑠𝑚𝑎𝑙𝑙,∗𝜋𝐹,∗𝒢(𝑉) // 𝜋𝐹,∗𝒢(𝑈/𝐹)
//
// 𝜋𝐹,∗𝒢(𝑅/𝐹)

Since we also have 𝜋𝐹,∗𝒢(𝑈/𝐹) = 𝒢(𝑈/𝐹) and 𝜋𝐹,∗𝒢(𝑈/𝐹) = 𝒢(𝑈/𝐹) we obtain a canonical
identification 𝑓𝑠𝑚𝑎𝑙𝑙,∗𝜋𝐹,∗𝒢(𝑉) = 𝜋𝐺,∗𝑓∗𝒢(𝑉). We omit the proof that this is compatible
with restriction mappings and that it is functorial in 𝒢. �

Let 𝑓 ∶ 𝒳 → 𝒴 and 𝑓 ∶ 𝐹 → 𝐺 be as in the second part of the lemma above. A consequence
of the lemma, using (58.10.1.1), is that
(58.10.2.1) (𝑓∗ℱ)|𝐺 ́𝑒𝑡𝑎𝑙𝑒

= 𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝐹 ́𝑒𝑡𝑎𝑙𝑒
)

for any sheaf ℱ on 𝒳 ́𝑒𝑡𝑎𝑙𝑒. Moreover, if ℱ is a sheaf of 𝒪-modules, then (58.10.2.1) is an
isomorphism of 𝒪𝐺-modules on 𝐺 ́𝑒𝑡𝑎𝑙𝑒.
Finally, suppose that we have a 2-commutative diagram

𝒰 𝑎 //

𝑓 ��

|� 𝜑

𝒱

𝑔
��

𝒳
of 1-morphisms of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, that ℱ is a sheaf on
𝒳 ́𝑒𝑡𝑎𝑙𝑒, and that 𝒰, 𝒱 are representable by algebraic spaces 𝑈, 𝑉. Then we obtain a compar-
ison map

(58.10.2.2) 𝑐𝜑 ∶ 𝑎−1
𝑠𝑚𝑎𝑙𝑙(𝑔

−1ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
) ⟶ 𝑓−1ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

where 𝑎 ∶ 𝑈 → 𝑉 denotes the morphism of algebraic spaces corresponding to 𝑎. This is
the analogue of (58.9.2.2). We define 𝑐𝜑 as the adjoint to the map

𝑔−1ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
⟶ 𝑎𝑠𝑚𝑎𝑙𝑙,∗(𝑓−1ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

) = (𝑎∗𝑓−1ℱ)|𝑉 ́𝑒𝑡𝑎𝑙𝑒

(equality by (58.10.2.1)) which is the restriction to 𝑉 (58.10.1.1) of the map

𝑔−1ℱ → 𝑎∗𝑎−1𝑔−1ℱ = 𝑎∗𝑓−1ℱ
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where the last equality uses the 2-commutativity of the diagram above. In case ℱ is a sheaf
of 𝒪𝒳-modules 𝑐𝜑 induces a comparison map

(58.10.2.3) 𝑐𝜑 ∶ 𝑎∗
𝑠𝑚𝑎𝑙𝑙(𝑔

∗ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
) ⟶ 𝑓∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

of 𝒪𝑈 ́𝑒𝑡𝑎𝑙𝑒
-modules. Note that the properties (1), (2), (3), and (4) of Lemma 58.9.3 hold in

this setting as well.

58.11. Quasi-coherent modules

At this point we can apply the general definition of a quasi-coherent module to the situation
discussed in this chapter.

Definition 58.11.1. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. A quasi-
coherent module on 𝒳, or a quasi-coherent 𝒪𝒳-module is a quasi-coherent module on the
ringed site (𝒳𝑓𝑝𝑝𝑓, 𝒪𝒳) as in Modules on Sites, Definition 16.23.1. The category of quasi-
coherent sheaves on 𝒳 is denoted QCoh(𝒪𝒳) or QCoh(𝒳).

If 𝒳 is an algebraic stack, then this definition agrees with all definitions in the literature
in the sense that QCoh(𝒳) is equivalent (modulo set theoretic issues) to any variant of
this category defined in the literature. For example, we will match our definition with the
definition in [Ols07b, Definition 6.1] in Cohomology on Stacks, Lemma 58.11.5. We will
also see alternative constructions of this category later on.

In general (as is the case for morphisms of schemes) the pushforward of quasi-coherent
sheaf along a 1-morphism is not quasi-coherent. Pullback does preserve quasi-coherence.

Lemma 58.11.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. The pullback functor 𝑓∗ = 𝑓−1 ∶ Mod(𝒪𝒴) → Mod(𝒪𝒳) preserves
quasi-coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 16.23.4. �

It turns out that quasi-coherent sheaves have a very simple characterization in terms of their
pullbacks. See also Lemma 58.11.5 for a characterization in terms of restrictions.

Lemma 58.11.3. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. Let ℱ be
a sheaf of 𝒪𝒳-modules. Then ℱ is quasi-coherent if and only if 𝑥∗ℱ is a quasi-coherent
sheaf on (Sch/𝑈)𝑓𝑝𝑝𝑓 for every object 𝑥 of 𝒳 with 𝑈 = 𝑝(𝑥).

Proof. By Lemma 58.11.2 the condition is necessary. Conversely, since 𝑥∗ℱ is just the
restriction to 𝒳𝑓𝑝𝑝𝑓/𝑥 we see that it is sufficient directly from the definition of a quasi-
coherent sheaf (and the fact that the notion of being quasi-coherent is an intrinsic property
of sheaves of modules, see Modules on Sites, Section 16.18). �

Although there is a variant for the Zariski topology, it seems that the étale topology is the
natural topology to use in the following definition.

Definition 58.11.4. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. Let ℱ be
a presheaf of 𝒪𝒳-modules. We say ℱ is locally quasi-coherent2 if ℱ is a sheaf for the étale
topology and for every object 𝑥 of 𝒳 the restriction 𝑥∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is a quasi-coherent sheaf.
Here 𝑈 = 𝑝(𝑥).

2This is nonstandard notation.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WG
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WH
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WI
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WJ
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We use LQCoh(𝒪𝒳) to indicate the category of locally quasi-coherent modules. We now
have the following diagram of categories of modules

QCoh(𝒪𝒳) //

��

Mod(𝒪𝒳)

��
LQCoh(𝒪𝒳) // Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)

where the arrows are strictly full embeddings. It turns out that many results for quasi-
coherent sheaves have a counter part for locally quasi-coherent modules. Moreover, from
many points of view (as we shall see later) this is a natural category to consider. For ex-
ample the quasi-coherent sheaves are exactly those locally quasi-coherent modules that are
``cartesian'', i.e., satisfy the second condition of the lemma below.

Lemma 58.11.5. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids. Let ℱ
be a presheaf of 𝒪𝒳-modules. Then ℱ is quasi-coherent if and only if the following two
conditions hold

(1) ℱ is locally quasi-coherent, and
(2) for any morphism 𝜑 ∶ 𝑥 → 𝑦 of 𝒳 lying over 𝑓 ∶ 𝑈 → 𝑉 the comparison map

𝑐𝜑 ∶ 𝑓∗
𝑠𝑚𝑎𝑙𝑙ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒

→ ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
of (58.9.4.1) is an isomorphism.

Proof. Assume ℱ is quasi-coherent. Then ℱ is a sheaf for the fppf topology, hence a sheaf
for the étale topology. Moreover, any pullback of ℱ to a ringed topos is quasi-coherent,
hence the restrictions 𝑥∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

are quasi-coherent. This proves ℱ is locally quasi-coherent.
Let 𝑦 be an object of 𝒳 with 𝑉 = 𝑝(𝑦). We have seen that 𝒳/𝑦 = (Sch/𝑉)𝑓𝑝𝑝𝑓. By De-
scent, Proposition 31.6.11 it follows that 𝑦∗ℱ is the quasi-coherent module associated to a
(usual) quasi-coherent module ℱ𝑉 on the scheme 𝑉. Hence certainly the comparison maps
(58.9.4.1) are isomorphisms.

Conversely, suppose that ℱ satisfies (1) and (2). Let 𝑦 be an object of 𝒳 with 𝑉 = 𝑝(𝑦).
Denote ℱ𝑉 the quasi-coherent module on the scheme 𝑉 corresponding to the restriction
𝑦∗ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒

which is quasi-coherent by assumption (1), see Descent, Proposition 31.6.11.
Condition (2) now signifies that the restrictions 𝑥∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

for 𝑥 over 𝑦 are each isomorphic
to the (étale sheaf associated to the) pullback of ℱ𝑉 via the corresponding morphism of
schemes 𝑈 → 𝑉. Hence 𝑦∗ℱ is the sheaf on (Sch/𝑉)𝑓𝑝𝑝𝑓 associated to ℱ𝑉. Hence it is
quasi-coherent (by Descent, Proposition 31.6.11 again) and we see that ℱ is quasi-coherent
on 𝒳 by Lemma 58.11.3. �

Lemma 58.11.6. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. The pullback functor 𝑓∗ = 𝑓−1 ∶ Mod(𝒴 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒴) → Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)
preserves locally quasi-coherent sheaves.

Proof. Let 𝒢 be locally quasi-coherent on 𝒴. Choose an object 𝑥 of 𝒳 lying over the
scheme 𝑈. The restriction 𝑥∗𝑓∗𝒢|𝑈 ́𝑒𝑡𝑎𝑙𝑒

equals (𝑓 ∘ 𝑥)∗𝒢|𝑈 ́𝑒𝑡𝑎𝑙𝑒
hence is a quasi-coherent

sheaf by assumption on 𝒢. �

Lemma 58.11.7. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids.
(1) The category LQCoh(𝒪𝒳) has colimits and they agree with colimits in the cate-

gory Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳).
(2) The category LQCoh(𝒪𝒳) is abelian with kernels and cokernels computed in

Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳), in other words the inclusion functor is exact.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WM


58.12. STACKIFICATION AND SHEAVES 2707

(3) Given a short exact sequence 0 → ℱ1 → ℱ2 → ℱ3 → 0 of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) if
two out of three are locally quasi-coherent so is the third.

(4) Given ℱ, 𝒢 in LQCoh(𝒪𝒳) the tensor product ℱ ⊗𝒪𝒳
𝒢 in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) is an

object of LQCoh(𝒪𝒳).
(5) Given ℱ, 𝒢 in LQCoh(𝒪𝒳) with ℱ locally of finite presentation on 𝒳 ́𝑒𝑡𝑎𝑙𝑒 the sheaf

ℋ𝑜𝑚𝒪𝒳
(ℱ, 𝒢) in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) is an object of LQCoh(𝒪𝒳).

Proof. Each of these statements follows from the corresponding statement of Descent,
Lemma 31.6.13. For example, suppose that ℐ → LQCoh(𝒪𝒳), 𝑖 ↦ ℱ𝑖 is a diagram. Con-
sider the object ℱ = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳). For any object 𝑥 of 𝒳 with 𝑈 = 𝑝(𝑥)
the pullback functor 𝑥∗ commutes with all colimits as it is a left adjoint. Hence 𝑥∗ℱ =
𝑐𝑜𝑙𝑖𝑚𝑖 𝑥∗ℱ𝑖. Similarly we have 𝑥∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

= 𝑐𝑜𝑙𝑖𝑚𝑖 𝑥∗ℱ𝑖|𝑈 ́𝑒𝑡𝑎𝑙𝑒
. Now by assumption each

𝑥∗ℱ𝑖|𝑈 ́𝑒𝑡𝑎𝑙𝑒
is quasi-coherent, hence the colimit is quasi-coherent by the aforementioned

Descent, Lemma 31.6.13. This proves (1).
It follows from (1) that cokernels exist in LQCoh(𝒪𝒳) and agree with the cokernels com-
puted in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳). Let 𝜑 ∶ ℱ → 𝒢 be a morphism of LQCoh(𝒪𝒳) and let 𝒦 =
Ker(𝜑) computed in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳). If we can show that 𝒦 is a locally quasi-coherent
module, then the proof of (2) is complete. To see this, note that kernels are computed in
the category of presheaves (no sheafification necessary). Hence 𝒦|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is the kernel of
the map ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

→ 𝒢|𝑈 ́𝑒𝑡𝑎𝑙𝑒
, i.e., is the kernel of a map of quasi-coherent sheaves on 𝑈 ́𝑒𝑡𝑎𝑙𝑒

whence quasi-coherent by Descent, Lemma 31.6.13. This proves (2).
Parts (3), (4), and (5) follow in exactly the same way. Details omitted. �

In the generality discussed here we don't know how to prove that the category of quasi-
coherent sheaves is abelian. Here is what we can prove without any further work.

Lemma 58.11.8. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids.
(1) The category QCoh(𝒪𝒳) has colimits and they agree with colimits in the category

Mod(𝒪𝒳) as well as with colimits in the category LQCoh(𝒪𝒳).
(2) Given ℱ, 𝒢 in QCoh(𝒪𝒳) the tensor product ℱ ⊗𝒪𝒳

𝒢 in Mod(𝒪𝒳) is an object
of QCoh(𝒪𝒳).

(3) Given ℱ, 𝒢 in QCoh(𝒪𝒳) with ℱ locally of finite presentation on 𝒳𝑓𝑝𝑝𝑓 the sheaf
ℋ𝑜𝑚𝒪𝒳

(ℱ, 𝒢) in Mod(𝒪𝒳) is an object of QCoh(𝒪𝒳).

Proof. Let ℐ → QCoh(𝒪𝒳), 𝑖 ↦ ℱ𝑖 be a diagram. Consider the object ℱ = 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 of
Mod(𝒪𝒳). For any object 𝑥 of 𝒳 with 𝑈 = 𝑝(𝑥) the pullback functor 𝑥∗ commutes with all
colimits as it is a left adjoint. Hence 𝑥∗ℱ = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑥∗ℱ𝑖 in Mod((Sch/𝑈)𝑓𝑝𝑝𝑓, 𝒪). We con-
clude from Descent, Lemma 31.6.13 that 𝑥∗ℱ is quasi-coherent, hence ℱ is quasi-coherent,
see Lemma 58.11.3. Thus we see that QCoh(𝒪𝒳) has colimits and they agree with colimits
in the categoryMod(𝒪𝒳). In particular the (fppf) sheaf ℱ is also the colimit of the diagram
in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳), hence ℱ is also the colimit in LQCoh(𝒪𝒳). This proves (1).
Parts (2) and (3) are proved in the same way. Details omitted. �

58.12. Stackification and sheaves

It turns out that the category of sheaves on a category fibred in groupoids only ``knows
about'' the stackification.

Lemma 58.12.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑓 induces an equivalence of stackifications, then the morphism of topoi
𝑓 ∶ Sh(𝒳𝑓𝑝𝑝𝑓) → Sh(𝒴𝑓𝑝𝑝𝑓) is an equivalence.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WN
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Proof. Wemay assume 𝒴 is the stackification of 𝒳. We claim that 𝑓 ∶ 𝒳 → 𝒴 is a special
cocontinuous functor, see Sites, Definition 9.25.2 which will prove the lemma. By Stacks,
Lemma 50.10.3 the functor 𝑓 is continuous and cocontinuous. By Stacks, Lemma 50.8.1
we see that conditions (3), (4), and (5) of Sites, Lemma 9.25.1 hold. �

Lemma 58.12.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑓 induces an equivalence of stackifications, then 𝑓∗ induces equivalences
Mod(𝒪𝒳) → Mod(𝒪𝒴) and QCoh(𝒪𝒳) → QCoh(𝒪𝒴).

Proof. Wemay assume𝒴 is the stackification of𝒳. The first assertion is clear fromLemma
58.12.1 and 𝒪𝒳 = 𝑓−1𝒪𝒴. Pullback of quasi-coherent sheaves are quasi-coherent, see
Lemma 58.11.2. Hence it suffices to show that if 𝑓∗𝒢 is quasi-coherent, then 𝒢 is. To see
this, let 𝑦 be an object of 𝒴. Translating the condition that 𝒴 is the stackification of 𝒳 we
see there exists an fppf covering {𝑦𝑖 → 𝑦} in 𝒴 such that 𝑦𝑖 ≅ 𝑓(𝑥𝑖) for some 𝑥𝑖 object of 𝒳.
Say 𝑥𝑖 and 𝑦𝑖 lie over the scheme 𝑈𝑖. Then 𝑓∗𝒢 being quasi-coherent, means that 𝑥∗

𝑖 𝑓∗𝒢 is
quasi-coherent. Since 𝑥∗

𝑖 𝑓∗𝒢 is isomorphic to 𝑦∗
𝑖 𝒢 (as sheaves on (Sch/𝑈𝑖)𝑓𝑝𝑝𝑓 we see that

𝑦∗
𝑖 𝒢 is quasi-coherent. It follows fromModules on Sites, Lemma 16.23.3 that the restriction

of 𝒢 to 𝒴/𝑦 is quasi-coherent. Hence 𝒢 is quasi-coherent by Lemma 58.11.3. �

58.13. Quasi-coherent sheaves and presentations

In Groupoids in Spaces, Definition 52.12.1 we have the defined the notion of a quasi-
coherent module on an arbitrary groupoid. The following (formal) proposition tells us that
we can study quasi-coherent sheaves on quotient stacks in terms of quasi-coherent modules
on presentations.

Proposition 58.13.1. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic spaces over 𝑆. Let 𝒳 =
[𝑈/𝑅] be the quotient stack. The category of quasi-coherent modules on 𝒳 is equivalent to
the category of quasi-coherent modules on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).

Proof. Denote QCoh(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) the category of quasi-coherent modules on the groupoid
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐). We will construct quasi-inverse functors

QCoh(𝒪𝒳) ⟷ QCoh(𝑈, 𝑅, 𝑠, 𝑡, 𝑐).
According to Lemma 58.12.2 the stackification map [𝑈/𝑝𝑅] → [𝑈/𝑅] (see Groupoids in
Spaces, Definition 52.19.1) induces an equivalence of categories of quasi-coherent sheaves.
Thus it suffices to prove the lemma with 𝒳 = [𝑈/𝑝𝑅].
Recall that an object 𝑥 = (𝑇, 𝑢) of 𝒳 = [𝑈/𝑝𝑅] is given by a scheme 𝑇 and a morphism
𝑢 ∶ 𝑇 → 𝑈. A morphism (𝑇, 𝑢) → (𝑇′, 𝑢′) is given by a pair (𝑓, 𝑟) where 𝑓 ∶ 𝑇 → 𝑇′ and
𝑟 ∶ 𝑇 → 𝑅 with 𝑠 ∘ 𝑟 = 𝑢 and 𝑡 ∘ 𝑟 = 𝑢′ ∘ 𝑓. Let us call a special morphism any morphism of
the form (𝑓, 𝑒 ∘𝑢′ ∘𝑓) ∶ (𝑇, 𝑢′ ∘𝑓) → (𝑇′, 𝑢′). The category of (𝑇, 𝑢) with special morphisms
is just the category of schemes over 𝑈.
Let ℱ be a quasi-coherent sheaf on 𝒳. Then we obtain for every 𝑥 = (𝑇, 𝑢) a quasi-coherent
sheaf ℱ(𝑇,𝑢) = 𝑥∗ℱ|𝑇 ́𝑒𝑡𝑎𝑙𝑒

on 𝑇. Moreover, for any morphism (𝑓, 𝑟) ∶ 𝑥 = (𝑇, 𝑢) → (𝑇′, 𝑢′) =
𝑥′ we obtain a comparison isomorphism

𝑐(𝑓,𝑟) ∶ 𝑓∗
𝑠𝑚𝑎𝑙𝑙ℱ(𝑇′,𝑢′) ⟶ ℱ(𝑇,𝑢)

see Lemma 58.11.5. Moreover, these isomorphisms are compatible with compositions, see
Lemma 58.9.3. If 𝑈, 𝑅 are schemes, then we can construct the quasi-coherent sheaf on the
groupoid as follows: First the object (𝑈, id) corresponds to a quasi-coherent sheaf ℱ(𝑈,id)
on 𝑈. Next, the isomorphism 𝛼 ∶ 𝑡∗

𝑠𝑚𝑎𝑙𝑙ℱ(𝑈,id) → 𝑠∗
𝑠𝑚𝑎𝑙𝑙ℱ(𝑈,id) comes from

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WR
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(1) the morphism (𝑅, id𝑅) ∶ (𝑅, 𝑠) → (𝑅, 𝑡) in the category [𝑈/𝑝𝑅] which produces
an isomorphism ℱ(𝑅,𝑡) → ℱ(𝑅,𝑠),

(2) the specialmorphism (𝑅, 𝑠) → (𝑈, id)which produces an isomorphism 𝑠∗
𝑠𝑚𝑎𝑙𝑙ℱ(𝑈,id) →

ℱ(𝑅,𝑠), and
(3) the specialmorphism (𝑅, 𝑡) → (𝑈, id)which produces an isomorphism 𝑡∗

𝑠𝑚𝑎𝑙𝑙ℱ(𝑈,id) →
ℱ(𝑅,𝑡).

The cocycle condition for 𝛼 follows from the condition that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is groupoid, i.e.,
that composition is associative (details omitted).

To do this in general, i.e., when 𝑈 and 𝑅 are algebraic spaces, it suffices to explain how to
associate to an algebraic space (𝑊, 𝑢) over 𝑈 a quasi-coherent sheaf ℱ(𝑊,𝑢) and to construct
the comparison maps for morphisms between these. We set ℱ(𝑊,𝑢) = 𝑥∗ℱ|𝑊 ́𝑒𝑡𝑎𝑙𝑒

where 𝑥 is
the 1-morphism𝒮𝑊 → 𝒮𝑈 → [𝑈/𝑝𝑅] and the comparisonmaps are explained in (58.10.2.3).

Conversely, suppose that (𝒢, 𝛼) is a quasi-coherent module on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). We are going
to define a presheaf of modules ℱ on 𝒳 as follows. Given an object (𝑇, 𝑢) of [𝑈/𝑝𝑅] we set

ℱ(𝑇, 𝑢) ∶= Γ(𝑇, 𝑢∗
𝑠𝑚𝑎𝑙𝑙𝒢).

Given a morphism (𝑓, 𝑟) ∶ (𝑇, 𝑢) → (𝑇′, 𝑢′) we get a map

ℱ(𝑇′, 𝑢′) = Γ(𝑇′, (𝑢′)∗
𝑠𝑚𝑎𝑙𝑙𝒢)

→ Γ(𝑇, 𝑓∗
𝑠𝑚𝑎𝑙𝑙(𝑢

′)∗
𝑠𝑚𝑎𝑙𝑙𝒢) = Γ(𝑇, (𝑢′ ∘ 𝑓)∗

𝑠𝑚𝑎𝑙𝑙𝒢)
= Γ(𝑇, (𝑡 ∘ 𝑟)∗

𝑠𝑚𝑎𝑙𝑙𝒢) = Γ(𝑇, 𝑟∗
𝑠𝑚𝑎𝑙𝑙𝑡

∗
𝑠𝑚𝑎𝑙𝑙𝒢)

→ Γ(𝑇, 𝑟∗
𝑠𝑚𝑎𝑙𝑙𝑠

∗
𝑠𝑚𝑎𝑙𝑙𝒢) = Γ(𝑇, (𝑠 ∘ 𝑟)∗

𝑠𝑚𝑎𝑙𝑙𝒢)
= Γ(𝑇, 𝑢∗

𝑠𝑚𝑎𝑙𝑙𝒢)
= ℱ(𝑇, 𝑢)

where the first arrow is pullback along 𝑓 and the second arrow is 𝛼. Note that if (𝑇, 𝑟) is
a special morphism, then this map is just pullback along 𝑓 as 𝑒∗

𝑠𝑚𝑎𝑙𝑙𝛼 = id by the axioms
of a sheaf of quasi-coherent modules on a groupoid. The cocycle condition implies that
ℱ is a presheaf of modules (details omitted). It is immediate from the definition that ℱ is
quasi-coherent when pulled back to (Sch/𝑇)𝑓𝑝𝑝𝑓 (by the simple description of the restriction
maps of ℱ in case of a special morphism).

We omit the verification that the functors constructed above are quasi-inverse to each other.
�

We finish this section with a technical lemma on maps out of quasi-coherent sheaves. It is
an analogue of Schemes, Lemma 21.7.1. We will see later (Criteria for Representability,
Theorem 59.17.2) that the assumptions on the groupoid imply that 𝒳 is an algebraic stack.

Lemma 58.13.2. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid in algebraic spaces over 𝑆. Assume 𝑠, 𝑡
are flat and locally of finite presentation. Let 𝒳 = [𝑈/𝑅] be the quotient stack. Denote
𝜋 ∶ 𝒮𝑈 → 𝒳 the quotient map. Let ℱ be a quasi-coherent 𝒪𝒳-module, and let ℋ be any
object of Mod(𝒪𝒳). The map

Hom𝒪𝒳
(ℱ, ℋ) ⟶ Hom𝒪𝑈

(𝑥∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
, 𝑥∗ℋ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

), 𝜙 ⟼ 𝑥∗𝜙|𝑈 ́𝑒𝑡𝑎𝑙𝑒

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=076S
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is injective and its image consists of exactly those 𝜑 ∶ 𝑥∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
→ 𝑥∗ℋ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

which give
rise to a commutative diagram

𝑠∗
𝑠𝑚𝑎𝑙𝑙(𝑥

∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
) //

𝑠∗
𝑠𝑚𝑎𝑙𝑙𝜑
��

(𝑥 ∘ 𝑠)∗ℱ|𝑅 ́𝑒𝑡𝑎𝑙𝑒
= (𝑥 ∘ 𝑡)∗ℱ|𝑅 ́𝑒𝑡𝑎𝑙𝑒

𝑡∗
𝑠𝑚𝑎𝑙𝑙(𝑥

∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
)oo

𝑡∗
𝑠𝑚𝑎𝑙𝑙𝜑

��
𝑠∗

𝑠𝑚𝑎𝑙𝑙(𝑥
∗ℋ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

) // (𝑥 ∘ 𝑠)∗ℋ|𝑅 ́𝑒𝑡𝑎𝑙𝑒
= (𝑥 ∘ 𝑡)∗ℋ|𝑅 ́𝑒𝑡𝑎𝑙𝑒

𝑡∗
𝑠𝑚𝑎𝑙𝑙(𝑥

∗ℋ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
)oo

of modules on 𝑅 ́𝑒𝑡𝑎𝑙𝑒 where the horizontal arrows are the comparison maps (58.10.2.3).

Proof. According to Lemma 58.12.2 the stackificationmap [𝑈/𝑝𝑅] → [𝑈/𝑅] (seeGroupoids
in Spaces, Definition 52.19.1) induces an equivalence of categories of quasi-coherent sheaves
and of fppf 𝒪-modules. Thus it suffices to prove the lemma with 𝒳 = [𝑈/𝑝𝑅]. By Propo-
sition 58.13.1 and its proof there exists a quasi-coherent module (𝒢, 𝛼) on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
such that ℱ is given by the rule ℱ(𝑇, 𝑢) = Γ(𝑇, 𝑢∗𝒢). In particular 𝑥∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

= 𝒢 and it
is clear that the map of the statement of the lemma is injective. Moreover, given a map
𝜑 ∶ 𝒢 → 𝑥∗ℋ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

and given any object 𝑦 = (𝑇, 𝑢) of [𝑈/𝑝𝑅] we can consider the map

ℱ(𝑦) = Γ(𝑇, 𝑢∗𝒢)
𝑢∗

𝑠𝑚𝑎𝑙𝑙𝜑−−−−−→ Γ(𝑇, 𝑢∗
𝑠𝑚𝑎𝑙𝑙𝑥

∗ℋ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
) → Γ(𝑇, 𝑦∗ℋ|𝑇 ́𝑒𝑡𝑎𝑙𝑒

) = ℋ(𝑦)

where the second arrow is the comparison map (58.9.4.1) for the sheaf ℋ. This assignment
is compatible with the restriction mappings of the sheaves ℱ and 𝒢 for morphisms of [𝑈/𝑝𝑅]
if the cocycle condition of the lemma is satisfied. Proof omitted. Hint: the restriction maps
of ℱ are made explicit in terms of (𝒢, 𝛼) in the proof of Proposition 58.13.1. �

58.14. Quasi-coherent sheaves on algebraic stacks

Let 𝒳 be an algebraic stack over 𝑆. By Algebraic Stacks, Lemma 57.16.2 we can find an
equivalence [𝑈/𝑅] → 𝒳 where (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a smooth groupoid in algebraic spaces. Then

QCoh(𝒪𝒳) ≅ QCoh(𝒪[𝑈/𝑅]) ≅ QCoh(𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
where the second equivalence is Proposition 58.13.1. Hence the category of quasi-coherent
sheaves on an algebraic stack is equivalent to the category of quasi-coherent modules on
a smooth groupoid in algebraic spaces. In particular, by Groupoids in Spaces, Lemma
52.12.5 we see that QCoh(𝒪𝒳) is abelian!
There is something slightly disconcerting about our current setup. It is that the fully faithful
embedding

QCoh(𝒪𝒳) ⟶ Mod(𝒪𝒳)
is in general not exact. However, exactly the same thing happens for schemes: for most
schemes 𝑋 the embedding

QCoh(𝒪𝑋) ≅ QCoh((Sch/𝑋)𝑓𝑝𝑝𝑓, 𝒪𝑋) ⟶ Mod((Sch/𝑋)𝑓𝑝𝑝𝑓, 𝒪𝑋)
isn't exact, see Descent, Lemma 31.6.13. Parenthetically, the example in the proof of De-
scent, Lemma 31.6.13 shows that in general the strictly full embedding QCoh(𝒪𝒳) →
LQCoh(𝒪𝒳) isn't exact either.
We collect all the positive results obtained so far in a single statement.

Lemma 58.14.1. Let 𝒳 be an algebraic stack over 𝑆.
(1) If [𝑈/𝑅] → 𝒳 is a presentation of 𝒳 then there is a canonical equivalence

QCoh(𝒪𝒳) ≅ QCoh(𝑈, 𝑅, 𝑠, 𝑡, 𝑐).
(2) The category QCoh(𝒪𝒳) is abelian.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WV
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(3) The category QCoh(𝒪𝒳) has colimits and they agree with colimits in the category
Mod(𝒪𝒳).

(4) Given ℱ, 𝒢 in QCoh(𝒪𝒳) the tensor product ℱ ⊗𝒪𝒳
𝒢 in Mod(𝒪𝒳) is an object

of QCoh(𝒪𝒳).
(5) Given ℱ, 𝒢 in QCoh(𝒪𝒳) with ℱ locally of finite presentation on 𝒳𝑓𝑝𝑝𝑓 the sheaf

ℋ𝑜𝑚𝒪𝒳
(ℱ, 𝒢) in Mod(𝒪𝒳) is an object of QCoh(𝒪𝒳).

Proof. Properties (3), (4), and (5) were proven in Lemma 58.11.8. Part (1) is Proposition
58.13.1. Part (2) follows from Groupoids in Spaces, Lemma 52.12.5 as discussed above.

�

Proposition 58.14.2. Let𝒳 be an algebraic stack over𝑆. The inclusion functorQCoh(𝒪𝒳) →
Mod(𝒪𝒳) has a right adjoint

𝑄3 ∶ Mod(𝒪𝒳) ⟶ QCoh(𝒪𝒳)

such that for every quasi-coherent sheaf ℱ the adjunction mapping 𝑄(ℱ) → ℱ is an iso-
morphism. Moreover, the category QCoh(𝒪𝒳) has limits and enough injectives.

Proof. This proof is a repeat of the proof in the case of schemes, see Properties, Proposition
23.21.4 and the case of algebraic spaces, see Properties of Spaces, Proposition 41.29.2. We
urge the reader to read either of those proofs first.

The two assertions about 𝑄(ℱ) → ℱ and limits in QCoh(𝒪𝒳) are formal consequences of
the existence of 𝑄, the fact that the inclusion is fully faithful, and the fact thatMod(𝒪𝒳) has
limits (see Modules on Sites, Lemma 16.14.2). The existence of injectives follows from
the existence of injectives in Mod(𝒪𝒳) (see Injectives, Theorem 17.12.4) and Homology,
Lemma 10.22.3. Thus it suffices to construct 𝑄.

Choose a presentation 𝒳 = [𝑈/𝑅] so that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a smooth groupoid in algebraic
spaces and in particular 𝑠 and 𝑡 are flat morphisms of algebraic spaces. By Lemma 58.14.1
above we have QCoh(𝒪𝒳) = QCoh(𝑈, 𝑅, 𝑠, 𝑡, 𝑐). By Groupoids in Spaces, Lemma 52.13.2
there exists a set 𝑇 and a family (ℱ𝑡)𝑡∈𝑇 of quasi-coherent sheaves on 𝒳 such that every
quasi-coherent sheaf on 𝒳 is the directed colimit of its subsheaves which are isomorphic to
one of the ℱ𝑡.

Given an object 𝒢 of QCoh(𝒪𝒳) we set

𝑄(𝒢) = 𝑐𝑜𝑙𝑖𝑚(𝑡,𝜓) ℱ𝑡

The colimit is over the category of pairs (𝑡, 𝜓) where 𝑡 ∈ 𝑇 and 𝜓 ∶ ℱ𝑡 → 𝒢 is a morphism
of 𝒪𝒳-modules. A morphism (𝑡, 𝜓) → (𝑡′, 𝜓′) is given by a morphism 𝛽 ∶ ℱ𝑡 → ℱ𝑡′ such
that 𝜓′ ∘ 𝛽 = 𝜓. By Lemma 58.14.1 the colimit is quasi-coherent. Note that there is a
canonical map 𝑄(𝒢) → 𝒢 by definition of the colimit. The formula

𝐻𝑜𝑚(ℋ, 𝑄(𝒢)) = 𝐻𝑜𝑚(ℋ, 𝒢)

holds for ℋ = ℱ𝑡 by construction. It follows formally from this and the fact that every
ℋ is a directed colimit of 𝒪𝒳-modules isomorphic to ℱ𝑡 that this equality holds for any
quasi-coherent module ℋ on 𝑋. This finishes the proof. �

3This functor is sometimes called the coherator.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0781
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58.15. Cohomology

Let 𝑆 be a scheme and let 𝒳 be a category fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. For any
𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓} the categories Ab(𝒳𝜏) and Mod(𝒳𝜏, 𝒪𝒳)
have enough injectives, see Injectives, Theorems 17.11.4 and 17.12.4. Thus we can use
the machinery of Cohomology on Sites, Section 19.3 to define the cohomology groups

𝐻𝑝(𝒳𝜏, ℱ) = 𝐻𝑝
𝜏(𝒳, ℱ) and 𝐻𝑝(𝑥, ℱ) = 𝐻𝑝

𝜏(𝑥, ℱ)

for any 𝑥 ∈ 𝑂𝑏(𝒳) and any object ℱ of Ab(𝒳𝜏) orMod(𝒳𝜏, 𝒪𝒳). Moreover, if 𝑓 ∶ 𝒳 → 𝒴
is a 1-morphism of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, then we obtain the
higher direct images 𝑅𝑖𝑓∗ℱ in Ab(𝒴𝜏) or Mod(𝒴𝜏, 𝒪𝒴). Of course, as explained in Coho-
mology on Sites, Section 19.4 there are also derived versions of 𝐻𝑝(−) and 𝑅𝑖𝑓∗.

Lemma58.15.1. Let𝑆 be a scheme. Let𝒳 be a category fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let 𝑥 ∈ 𝑂𝑏(𝒳) be an object lying over
the scheme 𝑈. Let ℱ be an object of Ab(𝒳𝜏) or Mod(𝒳𝜏, 𝒪𝒳). Then

𝐻𝑝
𝜏(𝑥, ℱ) = 𝐻𝑝((Sch/𝑈)𝜏, 𝑥−1ℱ)

and if 𝜏 = ́𝑒𝑡𝑎𝑙𝑒, then we also have

𝐻𝑝
́𝑒𝑡𝑎𝑙𝑒(𝑥, ℱ) = 𝐻𝑝(𝑈 ́𝑒𝑡𝑎𝑙𝑒, ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

).

Proof. The first statement follows from Cohomology on Sites, Lemma 19.8.1 and the
equivalence of Lemma 58.9.4. The second statement follows from the first combined with
Étale Cohomology, Lemma 38.20.5. �

58.16. Injective sheaves

The pushfoward of an injective abelian sheaf or module is injective.

Lemma 58.16.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}.

(1) 𝑓∗ℐ is injective in Ab(𝒴𝜏) for ℐ injective in Ab(𝒳𝜏), and
(2) 𝑓∗ℐ is injective in Mod(𝒴𝜏, 𝒪𝒴) for ℐ injective in Mod(𝒳𝜏, 𝒪𝒳).

Proof. This follows formally from the fact that 𝑓−1 is an exact left adjoint of 𝑓∗, see Ho-
mology, Lemma 10.22.1. �

In the rest of this section we prove that pullback 𝑓−1 has a left adjoint 𝑓! on abelian sheaves
and modules. If 𝑓 is representable (by schemes or by algebraic spaces), then it will turn out
that 𝑓! is exact and 𝑓−1 will preserve injectives. We first prove a few preliminary lemmas
about fibre products and equalizers in categories fibred in groupoids and their behaviour
with respect to morphisms.

Lemma 58.16.2. Let 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 be a category fibred in groupoids.
(1) The category 𝒳 has fibre products.
(2) If the 𝐼𝑠𝑜𝑚-presheaves of 𝒳 are representable by algebraic spaces, then 𝒳 has

equalizers.
(3) If 𝒳 is an algebraic stack (or more generally a quotient stack), then 𝒳 has equal-

izers.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=075F
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Proof. Part (1) follows Categories, Lemma 4.32.13 as (Sch/𝑆)𝑓𝑝𝑝𝑓 has fibre products.

Let 𝑎, 𝑏 ∶ 𝑥 → 𝑦 be morphisms of 𝒳. Set 𝑈 = 𝑝(𝑥) and 𝑉 = 𝑝(𝑦). The category of schemes
has equalizers hence we can let 𝑊 → 𝑈 be the equalizer of 𝑝(𝑎) and 𝑝(𝑏). Denote 𝑐 ∶ 𝑧 → 𝑥
a morphism of 𝒳 lying over 𝑊 → 𝑈. The equalizer of 𝑎 and 𝑏, if it exists, is the equalizer
of 𝑎 ∘ 𝑐 and 𝑏 ∘ 𝑐. Thus we may assume that 𝑝(𝑎) = 𝑝(𝑏) = 𝑓 ∶ 𝑈 → 𝑉. As 𝒳 is fibred
in groupoids, there exists a unique automorphism 𝑖 ∶ 𝑥 → 𝑥 in the fibre category of 𝒳
over 𝑈 such that 𝑎 ∘ 𝑖 = 𝑏. Again the equalizer of 𝑎 and 𝑏 is the equalizer of id𝑥 and 𝑖.
Recall that the 𝐼𝑠𝑜𝑚𝒳(𝑥) is the presheaf on (Sch/𝑈)𝑓𝑝𝑝𝑓 which to 𝑉/𝑈 associates the set of
automorphisms of 𝑥|𝑉 in the fibre category of 𝒳 over 𝑉, see Stacks, Definition 50.2.2. If
𝐼𝑠𝑜𝑚𝒳(𝑥) is representable by an algebraic space 𝐺 → 𝑈, then we see that id𝑥 and 𝑖 define
morphisms 𝑒, 𝑖 ∶ 𝑈 → 𝐺 over 𝑈. Set 𝑉 = 𝑈 ×𝑒,𝐺,𝑖 𝑈, which by Morphisms of Spaces,
Lemma 42.5.7 is a scheme. Then it is clear that 𝑥|𝑉 → 𝑥 is the equalizer of the maps id𝑥
and 𝑖 in 𝒳. This proves (2).

If𝒳 = [𝑈/𝑅] for some groupoid in algebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) over𝑆, then the hypothesis
of (2) holds by Bootstrap, Lemma 54.11.3. If 𝒳 is an algebraic stack, then we can choose
a presentation [𝑈/𝑅] ≅ 𝒳 by Algebraic Stacks, Lemma 57.16.2. �

Lemma 58.16.3. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓.

(1) The functor 𝑓 transforms fibre products into fibre products.
(2) If 𝑓 is faithful, then 𝑓 transforms equalizers into equalizers.

Proof. By Categories, Lemma 4.32.13 we see that a fibre product in 𝒳 is any commutative
square lying over a fibre product diagram in (Sch/𝑆)𝑓𝑝𝑝𝑓. Similarly for 𝒴. Hence (1) is
clear.

Let 𝑥 → 𝑥′ be the equalizer of two morphisms 𝑎, 𝑏 ∶ 𝑥′ → 𝑥″ in 𝒳. We will show
that 𝑓(𝑥) → 𝑓(𝑥′) is the equalizer of 𝑓(𝑎) and 𝑓(𝑏). Let 𝑦 → 𝑓(𝑥) be a morphism of 𝒴
equalizing 𝑓(𝑎) and 𝑓(𝑏). Say 𝑥, 𝑥′, 𝑥″ lie over the schemes 𝑈, 𝑈′, 𝑈″ and 𝑦 lies over 𝑉.
Denote ℎ ∶ 𝑉 → 𝑈′ the image of 𝑦 → 𝑓(𝑥) in the category of schemes. The morphism
𝑦 → 𝑓(𝑥) is isomorphic to 𝑓(ℎ∗𝑥′) → 𝑓(𝑥′) by the axioms of fibred categories. Hence, as
𝑓 is faithful, we see that ℎ∗𝑥′ → 𝑥′ equalizes 𝑎 and 𝑏. Thus we obtain a unique morphism
ℎ∗𝑥′ → 𝑥 whose image 𝑦 = 𝑓(ℎ∗𝑥′) → 𝑓(𝑥) is the desired morphism in 𝒴. �

Lemma 58.16.4. Let 𝑓 ∶ 𝒳 → 𝒴, 𝑔 ∶ 𝒵 → 𝒴 be faithful 1-morphisms of categories
fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.

(1) the functor 𝒳 ×𝒴 𝒵 → 𝒴 is faithful, and
(2) if 𝒳, 𝒵 have equalizers, so does 𝒳 ×𝒴 𝒵.

Proof. We think of objects in 𝒳 ×𝒴 𝒵 as quadruples (𝑈, 𝑥, 𝑧, 𝛼) where 𝛼 ∶ 𝑓(𝑥) → 𝑔(𝑧)
is an isomorphism over 𝑈, see Categories, Lemma 4.29.3. A morphism (𝑈, 𝑥, 𝑧, 𝛼) →
(𝑈′, 𝑥′, 𝑧′, 𝛼′) is a pair of morphisms 𝑎 ∶ 𝑥 → 𝑥′ and 𝑏 ∶ 𝑧 → 𝑧′ compatible with 𝛼 and 𝛼′.
Thus it is clear that if 𝑓 and 𝑔 are faithful, so is the functor 𝒳 ×𝒴 𝒵 → 𝒴. Now, suppose
that (𝑎, 𝑏), (𝑎′, 𝑏′) ∶ (𝑈, 𝑥, 𝑧, 𝛼) → (𝑈′, 𝑥′, 𝑧′, 𝛼′) are two morphisms of the 2-fibre product.
Then consider the equalizer 𝑥″ → 𝑥 of 𝑎 and 𝑎′ and the equalizer 𝑧″ → 𝑧 of 𝑏 and 𝑏′. Since
𝑓 commutes with equalizers (by Lemma 58.16.3) we see that 𝑓(𝑥″) → 𝑓(𝑥) is the equalizer

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06WZ
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of 𝑓(𝑎) and 𝑓(𝑎′). Similarly, 𝑔(𝑧″) → 𝑔(𝑧) is the equalizer of 𝑔(𝑏) and 𝑔(𝑏′). Picture

𝑓(𝑥″) //

𝛼″

��

𝑓(𝑥)

𝛼
��

𝑓(𝑎) //

𝑓(𝑎′)
// 𝑓(𝑥′)

𝛼′

��
𝑔(𝑧″) // 𝑔(𝑧)

𝑔(𝑏) //

𝑔(𝑏′)
// 𝑔(𝑧′)

It is clear that the dotted arrow exists and is an isomorphism. However, it is not a priori the
case that the image of 𝛼″ in the category of schemes is the identity of its source. On the
other hand, the existence of 𝛼″ means that we can assume that 𝑥″ and 𝑧″ are defined over
the same scheme and that the morphisms 𝑥″ → 𝑥 and 𝑧″ → 𝑧 have the same image in the
category of schemes. Redoing the diagram above we see that the dotted arrow now does
project to an identity morphism and we win. Some details omitted. �

As we are working with big sites we have the following somewhat counter intuitive result
(which also holds for morphisms of big sites of schemes). Warning: This result isn't true if
we drop the hypothesis that 𝑓 is faithful.

Lemma 58.16.5. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. The functor 𝑓−1 ∶ Ab(𝒴𝜏) →
Ab(𝒳𝜏) has a left adjoint 𝑓! ∶ Ab(𝒳𝜏) → Ab(𝒴𝜏). If 𝑓 is faithful and 𝒳 has equalizers,
then

(1) 𝑓! is exact, and
(2) 𝑓−1ℐ is injective in Ab(𝒳𝜏) for ℐ injective in Ab(𝒴𝜏).

Proof. By Stacks, Lemma 50.10.3 the functor 𝑓 is continuous and cocontinuous. Hence by
Modules on Sites, Lemma 16.16.2 the functor 𝑓−1 ∶ Ab(𝒴𝜏) → Ab(𝒳𝜏) has a left adjoint
𝑓! ∶ Ab(𝒳𝜏) → Ab(𝒴𝜏). To see (1) we apply Modules on Sites, Lemma 16.16.3 and to
see that the hypotheses of that lemma are satisfied use Lemmas 58.16.2 and 58.16.3 above.
Part (2) follows from this formally, see Homology, Lemma 10.22.1. �

Lemma 58.16.6. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. The functor𝑓∗ ∶ Mod(𝒴𝜏, 𝒪𝒴) →
Mod(𝒳𝜏, 𝒪𝒳) has a left adjoint 𝑓! ∶ Mod(𝒳𝜏, 𝒪𝒳) → Mod(𝒴𝜏, 𝒪𝒴) which agrees with the
functor 𝑓! of Lemma 58.16.5 on underlying abelian sheaves. If 𝑓 is faithful and 𝒳 has
equalizers, then

(1) 𝑓! is exact, and
(2) 𝑓−1ℐ is injective in Mod(𝒳𝜏, 𝒪𝒳) for ℐ injective in Mod(𝒴𝜏, 𝒪𝒳).

Proof. Recall that 𝑓 is a continuous and cocontinuous functor of sites and that 𝑓−1𝒪𝒴 =
𝒪𝒳. Hence Modules on Sites, Lemma 16.35.1 implies 𝑓∗ has a left adjoint 𝑓𝑀𝑜𝑑

! . Let 𝑥 be
an object of 𝒳 lying over the scheme 𝑈. Then 𝑓 induces an equivalence of ringed sites

𝒳/𝑥 ⟶ 𝒴/𝑓(𝑥)

as both sides are equivalent to (Sch/𝑈)𝜏, see Lemma 58.9.4. Modules on Sites, Remark
16.35.2 shows that 𝑓! agrees with the functor on abelian sheaves.

Assume now that 𝒳 has equalizers and that 𝑓 is faithful. Lemma 58.16.5 tells us that 𝑓! is
exact. Finally, Homology, Lemma 10.22.1 implies the statement on pullbacks of injective
modules. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06X1
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58.17. The Čech complex

To compute the cohomology of a sheaf on an algebraic stack we compare it to the coho-
mology of the sheaf restricted to coverings of the given algebraic stack.
Throughout this section the situation will be as follows. We are given a 1-morphism of
categories fibred in groupoids

(58.17.0.1)

𝒰
𝑓

//

𝑞
$$

𝒳

𝑝
zz

(Sch/𝑆)𝑓𝑝𝑝𝑓

We are going to think about 𝒰 as a ``covering'' of 𝒳. Hence we want to consider the
simplicial object

𝒰 ×𝒳 𝒰 ×𝒳 𝒰
////// 𝒰 ×𝒳 𝒰 //// 𝒰

in the category of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. However, since this
is a (2, 1)-category and not a category, we should say explicitly what we mean. Namely,
we let 𝒰𝑛 be the category with objects (𝑢0, … , 𝑢𝑛, 𝑥, 𝛼0, … , 𝛼𝑛) where 𝛼𝑖 ∶ 𝑓(𝑢𝑖) → 𝑥
is an isomorphism in 𝒳. We denote 𝑓𝑛 ∶ 𝒰𝑛 → 𝒳 the 1-morphism which assigns to
(𝑢0, … , 𝑢𝑛, 𝑥, 𝛼0, … , 𝛼𝑛) the object 𝑥. Note that 𝒰0 = 𝒰 and 𝑓0 = 𝑓. Given a map 𝜑 ∶
[𝑚] → [𝑛] we consider the 1-morphism 𝒰𝜑 ∶ 𝒰𝑛 ⟶ 𝒰𝑛 given by

(𝑢0, … , 𝑢𝑛, 𝑥, 𝛼0, … , 𝛼𝑛) ⟼ (𝑢𝜑(0), … , 𝑢𝜑(𝑛), 𝑥, 𝛼𝜑(0), … , 𝛼𝜑(𝑛))
on objects. All of these 1-morphisms compose correctly on the nose (no 2-morphisms re-
quired) and all of these 1-morphisms are 1-morphisms over𝒳. We denote𝒰• this simplicial
object. If ℱ is a presheaf of sets on 𝒳, then we obtain a cosimplicial set

Γ(𝒰0, 𝑓−1
0 ℱ) //// Γ(𝒰1, 𝑓−1

1 ℱ)
////// Γ(𝒰2, 𝑓−1

2 ℱ)

Here the arrows are the pullback maps along the given morphisms of the simplicial object.
If ℱ is a presheaf of abelian groups, this is a cosimplicial abelian group.
Let𝒰 → 𝒳 be as above and letℱ be an abelian presheaf on𝒳. TheČech complex associated
to the situation is denoted ̌𝒞•(𝒰 → 𝒳, ℱ). It is the cochain complex associated to the
cosimplicial abelian group above, see Simplicial, Section 14.23. It has terms

̌𝒞𝑛(𝒰 → 𝒳, ℱ) = Γ(𝒰𝑛, 𝑓−1
𝑛 ℱ).

The boundary maps are the maps

𝑑𝑛 = ∑
𝑛+1
𝑖=0

(−1)𝑖𝛿𝑛+1
𝑖 ∶ Γ(𝒰𝑛, 𝑓−1

𝑛 ℱ) ⟶ Γ(𝒰𝑛+1, 𝑓−1
𝑛+1ℱ)

where 𝛿𝑛+1
𝑖 corresponds to the map [𝑛] → [𝑛 + 1] omitting the index 𝑖. Note that the

map Γ(𝒳, ℱ) → Γ(𝒰0, 𝑓−1
0 ℱ0) is in the kernel of the differential 𝑑0. Hence we define the

extended Čech complex to be the complex

… → 0 → Γ(𝒳, ℱ) → Γ(𝒰0, 𝑓−1
0 ℱ0) → Γ(𝒰1, 𝑓−1

1 ℱ1) → …

with Γ(𝒳, ℱ) placed in degree −1. The extended Čech complex is acyclic if and only if the
canonical map

Γ(𝒳, ℱ)[0] ⟶ ̌𝒞•(𝒰 → 𝒳, ℱ)
is a quasi-isomorphism of complexes.

Lemma 58.17.1. Generalities on Čech complexes.
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(1) If
𝒱

𝑔
��

ℎ
// 𝒰

𝑓
��

𝒴 𝑒 // 𝒳
is 2-commutative diagram of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, then
there is a morphism of Čech complexes

̌𝒞•(𝒰 → 𝒳, ℱ) ⟶ ̌𝒞•(𝒱 → 𝒴, 𝑒−1ℱ)

(2) if ℎ and 𝑒 are equivalences, then the map of (1) is an isomorphism,
(3) if 𝑓, 𝑓′ ∶ 𝒰 → 𝒳 are 2-isomorphic, then the associated Čech complexes are

isomorphic,

Proof. In the situation of (1) let 𝑡 ∶ 𝑓 ∘ ℎ → 𝑒 ∘ 𝑔 be a 2-morphism. The map on complexes
is given in degree 𝑛 by pullback along the 1-morphisms 𝒱𝑛 → 𝒰𝑛 given by the rule

(𝑣0, … , 𝑣𝑛, 𝑦, 𝛽0, … , 𝛽𝑛) ⟼ (ℎ(𝑣0), … , ℎ(𝑣𝑛), 𝑒(𝑦), 𝑒(𝛽0) ∘ 𝑡𝑣0
, … , 𝑒(𝛽𝑛) ∘ 𝑡𝑣𝑛

).

For (2), note that pullback on global sections is an isomorphism for any presheaf of sets
when the pullback is along an equivalence of categories. Part (3) follows on combining (1)
and (2). �

Lemma 58.17.2. If there exists a 1-morphism 𝑠 ∶ 𝒳 → 𝒰 such that 𝑓 ∘ 𝑠 is 2-isomorphic
to id𝒳 then the extended Čech complex is homotopic to zero.

Proof. Set 𝒰′ = 𝒰 ×𝒳 𝒳 equal to the fibre product as described in Categories, Lemma
4.29.3. Set 𝑓′ ∶ 𝒰′ → 𝒳 equal to the second projection. Then 𝒰 → 𝒰′, 𝑢 ↦ (𝑢, 𝑓(𝑥), 1) is
an equivalence over 𝒳, hence we may replace (𝒰, 𝑓) by (𝒰′, 𝑓′) by Lemma 58.17.1. The
advantage of this is that now 𝑓′ has a section 𝑠′ such that 𝑓′ ∘𝑠′ = id𝒳 on the nose. Namely,
if 𝑡 ∶ 𝑠 ∘ 𝑓 → id𝒳 is a 2-isomorphism then we can set 𝑠′(𝑥) = (𝑠(𝑥), 𝑥, 𝑡𝑥). Thus we may
assume that 𝑓 ∘ 𝑠 = id𝒳.

In the case that 𝑓∘𝑠 = id𝒳 the result follows from general principles. We give the homotopy
explicitly. Namely, for 𝑛 ≥ 0 define 𝑠𝑛 ∶ 𝒰𝑛 → 𝒰𝑛+1 to be the 1-morphism defined by the
rule on objects

(𝑢0, … , 𝑢𝑛, 𝑥, 𝛼0, … , 𝛼𝑛) ⟼ (𝑢0, … , 𝑢𝑛, 𝑠(𝑥), 𝑥, 𝛼0, … , 𝛼𝑛, id𝑥).

Define
ℎ𝑛+1 ∶ Γ(𝒰𝑛+1, 𝑓−1

𝑛+1ℱ) ⟶ Γ(𝒰𝑛, 𝑓−1
𝑛 ℱ)

as pullback along 𝑠𝑛. We also set 𝑠−1 = 𝑠 and ℎ0 ∶ Γ(𝒰0, 𝑓−1
0 ℱ) → Γ(𝒳, ℱ) equal to

pullback along 𝑠−1. Then the family of maps {ℎ𝑛}𝑛≥0 is a homotopy between 1 and 0 on
the extended Čech complex. �

58.18. The relative Čech complex

Let 𝑓 ∶ 𝒰 → 𝒳 be a 1-morphism of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 as in
(58.17.0.1). Consider the associated simplicial object 𝒰• and the maps 𝑓𝑛 ∶ 𝒰𝑛 → 𝒳. Let
𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Finally, suppose that ℱ is a sheaf (of sets) on
𝒳𝜏. Then

𝑓0,∗𝑓−1
0 ℱ //// 𝑓1,∗𝑓−1

1 ℱ
////// 𝑓2,∗𝑓−1

2 ℱ
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is a cosimplicial sheaf on 𝒳𝜏 where we use the pullback maps introduced in Sites, Section
9.39. If ℱ is an abelian sheaf, then 𝑓𝑛,∗𝑓−1

𝑛 ℱ form a cosimplicial abelian sheaf on 𝒳𝜏. The
associated complex (see Simplicial, Section 14.23)

… → 0 → 𝑓0,∗𝑓−1
0 ℱ → 𝑓1,∗𝑓−1

1 ℱ → 𝑓2,∗𝑓−1
2 ℱ → …

is called the relative Čech complex associated to the situation. We will denote this complex
𝒦•(𝑓, ℱ). The extended relative Čech complex is the complex

… → 0 → ℱ → 𝑓0,∗𝑓−1
0 ℱ → 𝑓1,∗𝑓−1

1 ℱ → 𝑓2,∗𝑓−1
2 ℱ → …

with ℱ in degree −1. The extended relative Čech complex is acyclic if and only if the map
ℱ[0] → 𝒦•(𝑓, ℱ) is a quasi-isomorphism of complexes of sheaves.

Remark 58.18.1. We can define the complex 𝒦•(𝑓, ℱ) also if ℱ is a presheaf, only we
cannot use the reference to Sites, Section 9.39 to define the pullback maps. To explain the
pullback maps, suppose given a commutative diagram

𝒱

𝑔 ��

ℎ
// 𝒰

𝑓��
𝒳

of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 and a presheaf 𝒢 on 𝒰 we can define the
pullback map 𝑓∗𝒢 → 𝑔∗ℎ−1𝒢 as the composition

𝑓∗𝒢 ⟶ 𝑓∗ℎ∗ℎ−1𝒢 = 𝑔∗ℎ−1𝒢

where the map comes from the adjunction map 𝒢 → ℎ∗ℎ−1𝒢. This works because in our
situation the functors ℎ∗ and ℎ−1 are adjoint in presheaves (and agree with their counter
parts on sheaves). See Sections 58.3 and 58.4.

Lemma 58.18.2. Generalities on relative Čech complexes.
(1) If

𝒱

𝑔
��

ℎ
// 𝒰

𝑓
��

𝒴 𝑒 // 𝒳

is 2-commutative diagram of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, then
there is a morphism 𝑒−1𝒦•(𝑓, ℱ) → 𝒦•(𝑔, 𝑒−1ℱ).

(2) if ℎ and 𝑒 are equivalences, then the map of (1) is an isomorphism,
(3) if 𝑓, 𝑓′ ∶ 𝒰 → 𝒳 are 2-isomorphic, then the associated relative Čech complexes

are isomorphic,

Proof. Literally the same as the proof of Lemma 58.17.1 using the pullback maps of Re-
mark 58.18.1. �

Lemma 58.18.3. If there exists a 1-morphism 𝑠 ∶ 𝒳 → 𝒰 such that 𝑓 ∘ 𝑠 is 2-isomorphic
to id𝒳 then the extended relative Čech complex is homotopic to zero.

Proof. Literally the same as the proof of Lemma 58.17.2. �
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Remark 58.18.4. Let us ``compute'' the value of the relative Čech complex on an object 𝑥
of 𝒳. Say 𝑝(𝑥) = 𝑈. Consider the 2-fibre product diagram (which serves to introduce the
notation 𝑔 ∶ 𝒱 → 𝒴)

𝒱

𝑔
��

(Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑥,𝒳 𝒰 //

��

𝒰

𝑓
��

𝒴 (Sch/𝑈)𝑓𝑝𝑝𝑓
𝑥 // 𝒳

Note that the morphism 𝒱𝑛 → 𝒰𝑛 of the proof of Lemma 58.17.1 induces an equivalence
𝒱𝑛 = (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑥,𝒳 𝒰𝑛. Hence we see from (58.5.0.1) that

Γ(𝑥, 𝒦•(𝑓, ℱ)) = ̌𝒞•(𝒱 → 𝒴, 𝑥−1ℱ)

In words: The value of the relative Čech complex on an object 𝑥 of 𝒳 is the Čech complex of
the base change of 𝑓 to 𝒳/𝑥 ≅ (Sch/𝑈)𝑓𝑝𝑝𝑓. This implies for example that Lemma 58.17.2
implies Lemma 58.18.3 and more generally that results on the (usual) Čech complex imply
results for the relative Čech complex.

Lemma 58.18.5. Let
𝒱

𝑔
��

ℎ
// 𝒰

𝑓
��

𝒴 𝑒 // 𝒳
be a 2-fibre product of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 and let ℱ be an
abelian presheaf on 𝒳. Then the map 𝑒−1𝒦•(𝑓, ℱ) → 𝒦•(𝑔, 𝑒−1ℱ) of Lemma 58.18.2 is
an isomorphism of complexes of abelian presheaves.

Proof. Let 𝑦 be an object of 𝒴 lying over the scheme 𝑇. Set 𝑥 = 𝑒(𝑦). We are going to
show that the map induces an isomorphism on sections over 𝑦. Note that

Γ(𝑦, 𝑒−1𝒦•(𝑓, ℱ)) = Γ(𝑥, 𝒦•(𝑓, ℱ)) = ̌𝒞•((Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝑥,𝒳 𝒰 → (Sch/𝑇)𝑓𝑝𝑝𝑓, 𝑥−1ℱ)

by Remark 58.18.4. On the other hand,

Γ(𝑦, 𝒦•(𝑔, 𝑒−1ℱ)) = ̌𝒞•((Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒱 → (Sch/𝑇)𝑓𝑝𝑝𝑓, 𝑦−1𝑒−1ℱ)

also by Remark 58.18.4. Note that 𝑦−1𝑒−1ℱ = 𝑥−1ℱ and since the diagram is 2-cartesian
the 1-morphism

(Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒱 → (Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝑥,𝒳 𝒰
is an equivalence. Hence the map on sections over 𝑦 is an isomorphism by Lemma 58.17.1.

�

Exactness can be checked on a ``covering''.

Lemma 58.18.6. Let 𝑓 ∶ 𝒰 → 𝒳 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let

ℱ → 𝒢 → ℋ

be a complex in Ab(𝒳𝜏). Assume that
(1) for every object 𝑥 of 𝒳 there exists a covering {𝑥𝑖 → 𝑥} in 𝒳𝜏 such that each 𝑥𝑖

is isomorphic to 𝑓(𝑢𝑖) for some object 𝑢𝑖 of 𝒰, and
(2) 𝑓−1ℱ → 𝑓−1𝒢 → 𝑓−1ℋ is exact.
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Then the sequence ℱ → 𝒢 → ℋ is exact.

Proof. Let 𝑥 be an object of 𝒳 lying over the scheme 𝑇. Consider the sequence 𝑥−1ℱ →
𝑥−1𝒢 → 𝑥−1ℋ of abelian sheaves on (Sch/𝑇)𝜏. It suffices to show this sequence is exact.
By assumption there exists a 𝜏-covering {𝑇𝑖 → 𝑇} such that 𝑥|𝑇𝑖

is isomorphic to 𝑓(𝑢𝑖) for
some object 𝑢𝑖 of 𝒰 over 𝑇𝑖 and moreover the sequence 𝑢−1

𝑖 𝑓−1ℱ → 𝑢−1
𝑖 𝑓−1𝒢 → 𝑢−1

𝑖 𝑓−1ℋ
of abelian sheaves on (Sch/𝑇𝑖)𝜏 is exact. Since 𝑢−1

𝑖 𝑓−1ℱ = 𝑥−1ℱ|(Sch/𝑇𝑖)𝜏
we conclude that

the sequence 𝑥−1ℱ → 𝑥−1𝒢 → 𝑥−1ℋ become exact after localizing at each of the members
of a covering, hence the sequence is exact. �

Proposition 58.18.7. Let 𝑓 ∶ 𝒰 → 𝒳 be a 1-morphism of categories fibred in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. If

(1) ℱ is an abelian sheaf on 𝒳𝜏, and
(2) for every object 𝑥 of 𝒳 there exists a covering {𝑥𝑖 → 𝑥} in 𝒳𝜏 such that each 𝑥𝑖

is isomorphic to 𝑓(𝑢𝑖) for some object 𝑢𝑖 of 𝒰,
then the extended relative Čech complex

… → 0 → ℱ → 𝑓0,∗𝑓−1
0 ℱ → 𝑓1,∗𝑓−1

1 ℱ → 𝑓2,∗𝑓−1
2 ℱ → …

is exact in Ab(𝒳𝜏).

Proof. ByLemma 58.18.6 it suffices to check exactness after pulling back to 𝒰. By Lemma
58.18.5 the pullback of the extended relative Čech complex is isomorphic to the extend
relative Čech complex for the morphism 𝒰 ×𝒳 𝒰 → 𝒰 and an abelian sheaf on 𝒰𝜏. Since
there is a section Δ𝒰/𝒳 ∶ 𝒰 → 𝒰 ×𝒳 𝒰 exactness follows from Lemma 58.18.3. �

Using this we can construct the Čech-to-cohomology spectral sequence as follows. We first
give a technical, precise version. In the next section we give a version that applies only to
algebraic stacks.

Lemma 58.18.8. Let 𝑓 ∶ 𝒰 → 𝒳 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Assume

(1) ℱ is an abelian sheaf on 𝒳𝜏,
(2) for every object 𝑥 of 𝒳 there exists a covering {𝑥𝑖 → 𝑥} in 𝒳𝜏 such that each 𝑥𝑖

is isomorphic to 𝑓(𝑢𝑖) for some object 𝑢𝑖 of 𝒰,
(3) the category 𝒰 has equalizers, and
(4) the functor 𝑓 is faithful.

Then there is a first quadrant spectral sequence of abelian groups

𝐸𝑝,𝑞
2 = 𝐻𝑞((𝒰𝑝)𝜏, 𝑓−1

𝑝 ℱ) ⇒ 𝐻𝑝+𝑞(𝒳𝜏, ℱ)

converging to the cohomology of ℱ in the 𝜏-topology.

Proof. Before we start the proof we make some remarks. By Lemma 58.16.4 (and induc-
tion) all of the categories fibred in groupoids 𝒰𝑝 have equalizers and all of the morphisms
𝑓𝑝 ∶ 𝒰𝑝 → 𝒳 are faithful. Let ℐ be an injective object of Ab(𝒳𝜏). By Lemma 58.16.5
we see 𝑓−1

𝑝 ℐ is an injective object of Ab((𝒰𝑝)𝜏). Hence 𝑓𝑝,∗𝑓−1
𝑝 ℐ is an injective object of

Ab(𝒳𝜏) by Lemma 58.16.1. Hence Proposition 58.18.7 shows that the extended relative
Čech complex

… → 0 → ℐ → 𝑓0,∗𝑓−1
0 ℐ → 𝑓1,∗𝑓−1

1 ℐ → 𝑓2,∗𝑓−1
2 ℐ → …
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is an exact complex in Ab(𝒳𝜏) all of whose terms are injective. Taking global sections of
this complex is exact and we see that the Čech complex ̌𝒞•(𝒰 → 𝒳, ℐ) is quasi-isomorphic
to Γ(𝒳𝜏, ℐ)[0].
With these preliminaries out of the way consider the two spectral sequences associated to
the double complex (see Homology, Section 10.19)

̌𝒞•(𝒰 → 𝒳, ℐ•)
where ℱ → ℐ• is an injective resolution in Ab(𝒳𝜏). The discussion above shows that
Homology, Lemma 10.19.6 applies which shows that Γ(𝒳𝜏, ℐ•) is quasi-isomorphic to the
total complex associated to the double complex. By our remarks above the complex 𝑓−1

𝑝 ℐ•

is an injective resolution of 𝑓−1
𝑝 ℱ. Hence the other spectral sequence is as indicated in the

lemma. �

To be sure there is a version for modules as well.

Lemma 58.18.9. Let 𝑓 ∶ 𝒰 → 𝒳 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Assume

(1) ℱ is an object of Mod(𝒳𝜏, 𝒪𝒳),
(2) for every object 𝑥 of 𝒳 there exists a covering {𝑥𝑖 → 𝑥} in 𝒳𝜏 such that each 𝑥𝑖

is isomorphic to 𝑓(𝑢𝑖) for some object 𝑢𝑖 of 𝒰,
(3) the category 𝒰 has equalizers, and
(4) the functor 𝑓 is faithful.

Then there is a first quadrant spectral sequence of Γ(𝒪𝒳)-modules

𝐸𝑝,𝑞
2 = 𝐻𝑞((𝒰𝑝)𝜏, 𝑓∗

𝑝ℱ) ⇒ 𝐻𝑝+𝑞(𝒳𝜏, ℱ)
converging to the cohomology of ℱ in the 𝜏-topology.

Proof. The proof of this lemma is identical to the proof of Lemma 58.18.8 except that it
uses an injective resolution in Mod(𝒳𝜏, 𝒪𝒳) and it uses Lemma 58.16.6 instead of Lemma
58.16.5. �

Here is a lemma that translates a more usual kind of covering in the kinds of coverings we
have encountered above.

Lemma 58.18.10. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓.

(1) Assume that 𝑓 is representable by algebraic spaces, surjective, flat, and locally
of finite presentation. Then for any object 𝑦 of 𝒴 there exists an fppf covering
{𝑦𝑖 → 𝑦} and objects 𝑥𝑖 of 𝒳 such that 𝑓(𝑥𝑖) ≅ 𝑦𝑖 in 𝒴.

(2) Assume that 𝑓 is representable by algebraic spaces, surjective, and smooth. Then
for any object 𝑦 of 𝒴 there exists an étale covering {𝑦𝑖 → 𝑦} and objects 𝑥𝑖 of 𝒳
such that 𝑓(𝑥𝑖) ≅ 𝑦𝑖 in 𝒴.

Proof. Proof of (1). Suppose that 𝑦 lies over the scheme 𝑉. We may think of 𝑦 as a mor-
phism (Sch/𝑉)𝑓𝑝𝑝𝑓 → 𝒴. By definition the 2-fibre product 𝒳×𝒴(Sch/𝑉)𝑓𝑝𝑝𝑓 is representable
by an algebraic space 𝑊 and the morphism 𝑊 → 𝑉 is surjective, flat, and locally of finite
presentation. Choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑊. Then 𝑈 → 𝑉 is
also surjective, flat, and locally of finite presentation (see Morphisms of Spaces, Lemmas
42.35.7, 42.35.8, 42.6.4, 42.26.2, and 42.27.2). Hence {𝑈 → 𝑉} is an fppf covering. De-
note 𝑥 the object of 𝒳 over 𝑈 corresponding to the 1-morphism (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳. Then
{𝑓(𝑥) → 𝑦} is the desired fppf covering of 𝒴.
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Proof of (1). Suppose that 𝑦 lies over the scheme 𝑉. We may think of 𝑦 as a morphism
(Sch/𝑉)𝑓𝑝𝑝𝑓 → 𝒴. By definition the 2-fibre product 𝒳 ×𝒴 (Sch/𝑉)𝑓𝑝𝑝𝑓 is representable by
an algebraic space 𝑊 and the morphism 𝑊 → 𝑉 is surjective and smooth. Choose a scheme
𝑈 and a surjective étale morphism 𝑈 → 𝑊. Then 𝑈 → 𝑉 is also surjective and smooth (see
Morphisms of Spaces, Lemmas 42.35.6, 42.6.4, and 42.33.2). Hence {𝑈 → 𝑉} is a smooth
covering. By More on Morphisms, Lemma 33.26.7 there exists an étale covering {𝑉𝑖 → 𝑉}
such that each 𝑉𝑖 → 𝑉 factors through 𝑈. Denote 𝑥𝑖 the object of 𝒳 over 𝑉𝑖 corresponding
to the 1-morphism

(Sch/𝑉𝑖)𝑓𝑝𝑝𝑓 → (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳.
Then {𝑓(𝑥𝑖) → 𝑦} is the desired étale covering of 𝒴. �

Lemma 58.18.11. Let 𝑓 ∶ 𝒰 → 𝒳 and 𝑔 ∶ 𝒳 → 𝒴 be composable 1-morphisms of
categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐,
𝑓𝑝𝑝𝑓}. Assume

(1) ℱ is an abelian sheaf on 𝒳𝜏,
(2) for every object 𝑥 of 𝒳 there exists a covering {𝑥𝑖 → 𝑥} in 𝒳𝜏 such that each 𝑥𝑖

is isomorphic to 𝑓(𝑢𝑖) for some object 𝑢𝑖 of 𝒰,
(3) the category 𝒰 has equalizers, and
(4) the functor 𝑓 is faithful.

Then there is a first quadrant spectral sequence of abelian sheaves on 𝒴𝜏

𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑔 ∘ 𝑓𝑝)∗𝑓−1

𝑝 ℱ ⇒ 𝑅𝑝+𝑞𝑔∗ℱ
where all higher direct images are computed in the 𝜏-topology.

Proof. Note that the assumptions on 𝑓 ∶ 𝒰 → 𝒳 and ℱ are indentical to those in Lemma
58.18.8. Hence the preliminary remarks made in the proof of that lemma hold here also.
These remarks imply in particular that

0 → 𝑔∗ℐ → (𝑔 ∘ 𝑓0)∗𝑓−1
0 ℐ → (𝑔 ∘ 𝑓1)∗𝑓−1

1 ℐ → …
is exact if ℐ is an injective object of Ab(𝒳𝜏). Having said this, consider the two spectral
sequences of Homology, Section 10.19 associated to the double complex 𝒞•,• with terms

𝒞𝑝,𝑞 = (𝑔 ∘ 𝑓𝑝)∗ℐ𝑞

where ℱ → ℐ• is an injective resolution in Ab(𝒳𝜏). The first spectral sequence implies, via
Homology, Lemma 10.19.6, that 𝑔∗ℐ• is quasi-isomorphic to the total complex associated
to 𝒞•,•. Since 𝑓−1

𝑝 ℐ• is an injective resolution of 𝑓−1
𝑝 ℱ (see Lemma 58.16.5) the second

spectral sequence has terms 𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑔 ∘ 𝑓𝑝)∗𝑓−1

𝑝 ℱ as in the statement of the lemma. �

Lemma 58.18.12. Let 𝑓 ∶ 𝒰 → 𝒳 and 𝑔 ∶ 𝒳 → 𝒴 be composable 1-morphisms of
categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Let 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐,
𝑓𝑝𝑝𝑓}. Assume

(1) ℱ is an object of Mod(𝒳𝜏, 𝒪𝒳),
(2) for every object 𝑥 of 𝒳 there exists a covering {𝑥𝑖 → 𝑥} in 𝒳𝜏 such that each 𝑥𝑖

is isomorphic to 𝑓(𝑢𝑖) for some object 𝑢𝑖 of 𝒰,
(3) the category 𝒰 has equalizers, and
(4) the functor 𝑓 is faithful.

Then there is a first quadrant spectral sequence in Mod(𝒴𝜏, 𝒪𝒴)

𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑔 ∘ 𝑓𝑝)∗𝑓−1

𝑝 ℱ ⇒ 𝑅𝑝+𝑞𝑔∗ℱ
where all higher direct images are computed in the 𝜏-topology.
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Proof. The proof is identical to the proof of Lemma 58.18.11 except that it uses an injective
resolution in Mod(𝒳𝜏, 𝒪𝒳) and it uses Lemma 58.16.6 instead of Lemma 58.16.5. �

58.19. Cohomology on algebraic stacks

Let 𝒳 be an algebraic stack over 𝑆. In the sections above we have seen how to define
sheaves for the étale, ..., fppf topologies on 𝒳. In fact, we have constructed a site 𝒳𝜏 for
each 𝜏 ∈ {𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. There is a notion of an abelian sheaf ℱ
on these sites. In the chapter on cohomology of sites we have explained how to define
cohomology. Putting all of this together, let's define the derived global sections

𝑅Γ𝑍𝑎𝑟(𝒳, ℱ), 𝑅Γ ́𝑒𝑡𝑎𝑙𝑒(𝒳, ℱ), … , 𝑅Γ𝑓𝑝𝑝𝑓(𝒳, ℱ)

as Γ(𝒳𝜏, ℐ•) where ℱ → ℐ• is an injective resolution in Ab(𝒳𝜏). The 𝑖th cohomology
group is the 𝑖th cohomology of the total derived cohomology. We will denote this

𝐻𝑖
𝑍𝑎𝑟(𝒳, ℱ), 𝐻𝑖

́𝑒𝑡𝑎𝑙𝑒(𝒳, ℱ), … , 𝐻𝑖
𝑓𝑝𝑝𝑓(𝒳, ℱ).

It will turn out that 𝐻𝑖
́𝑒𝑡𝑎𝑙𝑒 = 𝐻𝑖

𝑠𝑚𝑜𝑜𝑡ℎ because of More on Morphisms, Lemma 33.26.7.
If ℱ is a presheaf of 𝒪𝒳-modules which is a sheaf in the 𝜏-topology, then we use injec-
tive resolutions in Mod(𝒳𝜏, 𝒪𝒳) to compute total derived global sections and cohomology
groups; of course the end result is quasi-isomorphic resp. isomorphic by the general fact
Cohomology on Sites, Lemma 19.12.4.

Sofar our only tool to compute cohomology groups is the result on Čech complexes proved
above. We rephrase it here in the language of algebraic stacks for the étale and the fppf
topology. Let 𝑓 ∶ 𝒰 → 𝒳 be a 1-morphism of algebraic stacks. Recall that

𝑓𝑝 ∶ 𝒰𝑝 = 𝒰 ×𝒳 … ×𝒳 𝒰 ⟶ 𝒳

is the structure morphism where there are (𝑝 + 1)-factors. Also, recall that a sheaf on 𝒳
is a sheaf for the fppf topology. Note that if 𝒰 is an algebraic space, then 𝑓 ∶ 𝒰 → 𝒳
is representable by algebraic spaces, see Algebraic Stacks, Lemma 57.10.11. Thus the
proposition applies in particular to a smooth cover of the algebraic stack 𝒳 by a scheme.

Proposition 58.19.1. Let 𝑓 ∶ 𝒰 → 𝒳 be a 1-morphism of algebraic stacks.

(1) Let ℱ be an abelian étale sheaf on 𝒳. Assume that 𝑓 is representable by algebraic
spaces, surjective, and smooth. Then there is a spectral sequence

𝐸𝑝,𝑞
2 = 𝐻𝑞

́𝑒𝑡𝑎𝑙𝑒(𝒰𝑝, 𝑓−1
𝑝 ℱ) ⇒ 𝐻𝑝+𝑞

́𝑒𝑡𝑎𝑙𝑒(𝒳, ℱ)

(2) Let ℱ be an abelian sheaf on 𝒳. Assume that 𝑓 is representable by algebraic
spaces, surjective, flat, and locally of finite presentation. Then there is a spectral
sequence

𝐸𝑝,𝑞
2 = 𝐻𝑞

𝑓𝑝𝑝𝑓(𝒰𝑝, 𝑓−1
𝑝 ℱ) ⇒ 𝐻𝑝+𝑞

𝑓𝑝𝑝𝑓(𝒳, ℱ)

Proof. To see this wewill check the hypotheses (1) -- (4) of Lemma 58.18.8. The 1-morphism
𝑓 is faithful by Algebraic Stacks, Lemma 57.15.2. This proves (4). Hypothesis (3) follows
from the fact that 𝒰 is an algebraic stack, see Lemma 58.16.2. To see (2) apply Lemma
58.18.10. Condition (1) is satisfied by fiat. �
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58.20. Higher direct images and algebraic stacks

Let 𝑔 ∶ 𝒳 → 𝒴 be a 1-morphism of algebraic stacks over 𝑆. In the sections above
we have constructed a morphism of ringed topoi 𝑔 ∶ Sh(𝒳𝜏) → Sh(𝒴𝜏) for each 𝜏 ∈
{𝑍𝑎𝑟, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. In the chapter on cohomology of sites we have ex-
plained how to define higher direct images. Hence the derived direct image𝑅𝑔∗ℱ is defined
as 𝑔∗ℐ• where ℱ → ℐ• is an injective resolution in Ab(𝒳𝜏). The 𝑖th higher direct image
𝑅𝑖𝑔∗ℱ is the 𝑖th cohomology of the derived direct image. Important: it matters which
topology 𝜏 is used here!

If ℱ is a presheaf of 𝒪𝒳-modules which is a sheaf in the 𝜏-topology, then we use injective
resolutions in Mod(𝒳𝜏, 𝒪𝒳) to compute derived direct image and higher direct images.

Sofar our only tool to compute the higher direct images of 𝑔∗ is the result on Čech complexes
proved above. This requires the choice of a ``covering'' 𝑓 ∶ 𝒰 → 𝒳. If 𝒰 is an algebraic
space, then 𝑓 ∶ 𝒰 → 𝒳 is representable by algebraic spaces, see Algebraic Stacks, Lemma
57.10.11. Thus the proposition applies in particular to a smooth cover of the algebraic stack
𝒳 by a scheme.

Proposition 58.20.1. Let 𝑓 ∶ 𝒰 → 𝒳 and 𝑔 ∶ 𝒳 → 𝒴 be composable 1-morphisms of
algebraic stacks.

(1) Assume that 𝑓 is representable by algebraic spaces, surjective and smooth.
(a) If ℱ is in Ab(𝒳 ́𝑒𝑡𝑎𝑙𝑒) then there is a spectral sequence

𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑔 ∘ 𝑓𝑝)∗𝑓−1

𝑝 ℱ ⇒ 𝑅𝑝+𝑞𝑔∗ℱ

in Ab(𝒴 ́𝑒𝑡𝑎𝑙𝑒) with higher direct images computed in the étale topology.
(b) If ℱ is in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) then there is a spectral sequence

𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑔 ∘ 𝑓𝑝)∗𝑓−1

𝑝 ℱ ⇒ 𝑅𝑝+𝑞𝑔∗ℱ

in Mod(𝒴 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒴).
(2) Assume that 𝑓 is representable by algebraic spaces, surjective, flat, and locally

of finite presentation.
(a) If ℱ is in Ab(𝒳) then there is a spectral sequence

𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑔 ∘ 𝑓𝑝)∗𝑓−1

𝑝 ℱ ⇒ 𝑅𝑝+𝑞𝑔∗ℱ

in Ab(𝒴) with higher direct images computed in the fppf topology.
(b) If ℱ is in Mod(𝒪𝒳) then there is a spectral sequence

𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑔 ∘ 𝑓𝑝)∗𝑓−1

𝑝 ℱ ⇒ 𝑅𝑝+𝑞𝑔∗ℱ

in Mod(𝒪𝒴).

Proof. To see this we will check the hypotheses (1) -- (4) of Lemma 58.18.11 and Lemma
58.18.12. The 1-morphism 𝑓 is faithful by Algebraic Stacks, Lemma 57.15.2. This proves
(4). Hypothesis (3) follows from the fact that 𝒰 is an algebraic stack, see Lemma 58.16.2.
To see (2) apply Lemma 58.18.10. Condition (1) is satisfied by fiat in all four cases. �

Here is a description of higher direct images for a morphism of algebraic stacks.

Lemma 58.20.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝒳 → 𝒴 be a 1-morphism of algebraic stacks4
over 𝑆. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}. Let ℱ be an object of Ab(𝒳𝜏)

4This result should hold for any 1-morphism of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
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or Mod(𝒳𝜏, 𝒪𝒳). Then the sheaf 𝑅𝑖𝑓∗ℱ is the sheaf associated to the presheaf

𝑦 ⟼ 𝐻𝑖
𝜏((Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳, pr−1ℱ)

Here 𝑦 is a typical object of 𝒴 lying over the scheme 𝑉.

Proof. Choose an injective resolutionℱ[0] → ℐ•. By the formula for pushforward (58.5.0.1)
we see that 𝑅𝑖𝑓∗ℱ is the sheaf associated to the presheaf which associates to 𝑦 the coho-
mology of the complex

Γ((Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳, pr−1ℐ𝑖−1
)

↓
Γ((Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳, pr−1ℐ𝑖

)
↓

Γ((Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳, pr−1ℐ𝑖+1
)

Since pr−1 is exact, it suffices to show that pr−1 preserves injectives. This follows fromLem-
mas 58.16.5 and 58.16.6 as well as the fact that pr is a representable morphism of algebraic
stacks (so that pr is faithful by Algebraic Stacks, Lemma 57.15.2 and that (Sch/𝑉)𝑓𝑝𝑝𝑓×𝑦,𝒴𝒳
has equalizers by Lemma 58.16.2). �

Here is a trivial base change result.

Lemma 58.20.3. Let 𝑆 be a scheme. Let 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓}.
Let

𝒴′ ×𝒴 𝒳
𝑔′

//

𝑓′

��

𝒳

𝑓
��

𝒴′ 𝑔 // 𝒴
be a 2-cartesian diagram of algebraic stacks over 𝑆. Then the base change map is an
isomorphism

𝑔−1𝑅𝑓∗ℱ ⟶ 𝑅𝑓′
∗(𝑔′)−1ℱ

functorial for ℱ in Ab(𝒳𝜏) or ℱ in Mod(𝒳𝜏, 𝒪𝒳).

Proof. The isomorphism 𝑔−1𝑓∗ℱ = 𝑓′
∗(𝑔′)−1ℱ is Lemma 58.5.1 (and it holds for arbitrary

presheaves). For the derived direct images, there is a base change map because the mor-
phisms 𝑔 and 𝑔′ are flat, see Cohomology on Sites, Section 19.15. To see that this map is
a quasi-isomorphism we can use that for an object 𝑦′ of 𝒴′ over a scheme 𝑉 there is an
equivalence

(Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑔(𝑦′),𝒴 𝒳 = (Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦′,𝒴′ (𝒴′ ×𝒴 𝒳)
We conclude that the induced map 𝑔−1𝑅𝑖𝑓∗ℱ → 𝑅𝑖𝑓′

∗(𝑔′)−1ℱ is an isomorphism by
Lemma 58.20.2. �

58.21. Comparison

In this section we collect some results on comparing cohomology defined using stacks and
using algebraic spaces.

Lemma 58.21.1. Let 𝑆 be a scheme. Let 𝒳 be an algebraic stack over 𝑆 representable by
the algebraic space 𝐹.

(1) ℐ|𝐹 ́𝑒𝑡𝑎𝑙𝑒
is injective in Ab(𝐹 ́𝑒𝑡𝑎𝑙𝑒) for ℐ injective in Ab(𝒳 ́𝑒𝑡𝑎𝑙𝑒), and
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(2) ℐ|𝐹 ́𝑒𝑡𝑎𝑙𝑒
is injective in Mod(𝐹 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝐹) for ℐ injective in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪).

Proof. This follows formally from the fact that the restriction functor 𝜋𝐹,∗ = 𝑖−1
𝐹 (see

Lemma 58.10.1) is an exact left adjoint of 𝑖𝐹,∗, see Homology, Lemma 10.22.1. �

Lemma 58.21.2. Let 𝑆 be a scheme. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks
over 𝑆. Assume 𝒳, 𝒴 are representable by algebraic spaces 𝐹, 𝐺. Denote 𝑓 ∶ 𝐹 → 𝐺 the
induced morphism of algebraic spaces.

(1) For any ℱ ∈ Ab(𝒳 ́𝑒𝑡𝑎𝑙𝑒) we have

(𝑅𝑓∗ℱ)|𝐺 ́𝑒𝑡𝑎𝑙𝑒
= 𝑅𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝐹 ́𝑒𝑡𝑎𝑙𝑒

)

in 𝐷(𝐺 ́𝑒𝑡𝑎𝑙𝑒).
(2) For any object ℱ of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) we have

(𝑅𝑓∗ℱ)|𝐺 ́𝑒𝑡𝑎𝑙𝑒
= 𝑅𝑓𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝐹 ́𝑒𝑡𝑎𝑙𝑒

)

in 𝐷(𝒪𝐺).

Proof. Follows immediately from Lemma 58.21.1 and (58.10.2.1) on choosing an injective
resolution of ℱ. �

Lemma 58.21.3. Let 𝑆 be a scheme. Consider a 2-fibre product square

𝒳′
𝑔′
//

𝑓′

��

𝒳

𝑓
��

𝒴′ 𝑔 // 𝒴

of algebraic stacks over 𝑆. Assume that 𝑓 is representable by algebraic spaces and that 𝒴′

is representable by an algebraic space 𝐺′. Then 𝒳′ is representable by an algebraic space
𝐹′ and denoting 𝑓′ ∶ 𝐹′ → 𝐺′ the induced morphism of algebraic spaces we have

𝑔−1(𝑅𝑓∗ℱ)|𝐺′
́𝑒𝑡𝑎𝑙𝑒

= 𝑅𝑓′
𝑠𝑚𝑎𝑙𝑙,∗((𝑔′)−1ℱ|𝐹′

́𝑒𝑡𝑎𝑙𝑒
)

for any ℱ in Ab(𝒳 ́𝑒𝑡𝑎𝑙𝑒) or in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)

Proof. Follows formally on combining Lemmas 58.20.3 and 58.21.2. �

58.22. Change of topology

Here is a technical lemma which tells us that the fppf cohomology of a locally quasi-
coherent sheaf is equal to its étale cohomology provided the comparison maps are iso-
morphisms for morphisms of 𝒳 lying over flat morphisms.

Lemma 58.22.1. Let 𝑆 be a scheme. Let 𝒳 be an algebraic stack over 𝑆. Let ℱ be a
presheaf of 𝒪𝒳-modules. Assume

(a) ℱ is locally quasi-coherent, and
(b) for any morphism 𝜑 ∶ 𝑥 → 𝑦 of 𝒳 which lies over a morphism of schemes

𝑓 ∶ 𝑈 → 𝑉 which is flat and locally of finite presentation the comparison map
𝑐𝜑 ∶ 𝑓∗

𝑠𝑚𝑎𝑙𝑙ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
→ ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

of (58.9.4.1) is an isomorphism.
Then ℱ is a sheaf for the fppf topology.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=075N
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=075P
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=076T
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Proof. Let {𝑥𝑖 → 𝑥} be an fppf covering of 𝒳 lying over the fppf covering {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}
of schemes over 𝑆. By assumption the restriction 𝒢 = ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is quasi-coherent and the
comparison maps 𝑓∗

𝑖,𝑠𝑚𝑎𝑙𝑙𝒢 → ℱ|𝑈𝑖, ́𝑒𝑡𝑎𝑙𝑒
are isomorphisms. Hence the sheaf condition for ℱ

and the covering {𝑥𝑖 → 𝑥} is equivalent to the sheaf condition for 𝒢𝑎 on (Sch/𝑈)𝑓𝑝𝑝𝑓 and
the covering {𝑈𝑖 → 𝑈} which holds by Descent, Lemma 31.6.1. �

Lemma 58.22.2. Let 𝑆 be a scheme. Let 𝒳 be an algebraic stack over 𝑆. Let ℱ be a
presheaf 𝒪𝒳-module such that

(a) ℱ is locally quasi-coherent, and
(b) for any morphism 𝜑 ∶ 𝑥 → 𝑦 of 𝒳 which lies over a morphism of schemes

𝑓 ∶ 𝑈 → 𝑉 which is flat and locally of finite presentation, the comparison map
𝑐𝜑 ∶ 𝑓∗

𝑠𝑚𝑎𝑙𝑙ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
→ ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

of (58.9.4.1) is an isomorphism.
Then ℱ is an 𝒪𝒳-module and we have the following

(1) If 𝜖 ∶ 𝒳𝑓𝑝𝑝𝑓 → 𝒳 ́𝑒𝑡𝑎𝑙𝑒 is the comparison morphism, then 𝑅𝜖∗ℱ = 𝜖∗ℱ.
(2) The cohomology groups 𝐻𝑝

𝑓𝑝𝑝𝑓(𝒳, ℱ) are equal to the cohomology groups com-
puted in the étale topology on𝒳. Similarly for the cohomology groups𝐻𝑝

𝑓𝑝𝑝𝑓(𝑥, ℱ)
and the derived versions 𝑅Γ(𝒳, ℱ) and 𝑅Γ(𝑥, ℱ).

(3) If 𝑓 ∶ 𝒳 → 𝒴 is a 1-morphism of categories fibred in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓
then𝑅𝑖𝑓∗ℱ is equal to the fppf-sheafification of the higher direct image computed
in the étale cohomology. Similarly for derived pushforward.

Proof. The assertion that ℱ is an 𝒪𝒳-module follows from Lemma 58.22.1. Note that 𝜖
is a morphism of sites given by the identity functor on 𝒳. The sheaf 𝑅𝑝𝜖∗ℱ is therefore
the sheaf associated to the presheaf 𝑥 ↦ 𝐻𝑝

𝑓𝑝𝑝𝑓(𝑥, ℱ), see Cohomology on Sites, Lemma
19.8.4. To prove (1) it suffices to show that 𝐻𝑝

𝑓𝑝𝑝𝑓(𝑥, ℱ) = 0 for 𝑝 > 0 whenever 𝑥 lies over
an affine scheme 𝑈. By Lemma 58.15.1 we have 𝐻𝑝

𝑓𝑝𝑝𝑓(𝑥, ℱ) = 𝐻𝑝((Sch/𝑈)𝑓𝑝𝑝𝑓, 𝑥−1ℱ).
Combining Descent, Lemma 31.7.4 with Coherent, Lemma 25.2.2 we see that these coho-
mology groups are zero.

We have seen above that 𝜖∗ℱ and ℱ are the sheaves on 𝒳 ́𝑒𝑡𝑎𝑙𝑒 and 𝒳𝑓𝑝𝑝𝑓 corresponding to
the same presheaf on 𝒳 (and this is true more generally for any sheaf in the fppf topology
on 𝒳). We often abusively identify ℱ and 𝜖∗ℱ and this is the sense in which parts (2) and
(3) of the lemma should be understood. Thus part (2) follows formally from (1) and the
Leray spectral sequence, see Cohomology on Sites, Lemma 19.14.5.

Finally we prove (3). The sheaf 𝑅𝑖𝑓∗ℱ (resp. 𝑅𝑓 ́𝑒𝑡𝑎𝑙𝑒,∗ℱ) is the sheaf associated to the
presheaf

𝑦 ⟼ 𝐻𝑖
𝜏((Sch/𝑉)𝑓𝑝𝑝𝑓 ×𝑦,𝒴 𝒳, pr−1ℱ)

where 𝜏 is 𝑓𝑝𝑝𝑓 (resp. ́𝑒𝑡𝑎𝑙𝑒), see Lemma 58.20.2. Note that pr−1ℱ satisfies properties (a)
and (b) also (by Lemmas 58.11.6 and 58.9.3), hence these two presheaves are equal by (2).
This immediately implies (3). �

We will use the following lemma to compare étale cohomology of sheaves on algebraic
stacks with cohomology on the lisse-étale topos.

Lemma 58.22.3. Let 𝑆 be a scheme. Let 𝒳 be an algebraic stack over 𝑆. Let 𝜏 = ́𝑒𝑡𝑎𝑙𝑒
(resp. 𝜏 = 𝑓𝑝𝑝𝑓). Let 𝒳′ ⊂ 𝒳 be a full subcategory with the following properties

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=075R
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07AK
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(1) if 𝑥 → 𝑥′ is a morphism of 𝒳 which lies over a smooth (resp. flat and locally
finitely presented) morphism of schemes and 𝑥′ ∈ 𝑂𝑏(𝒳′), then 𝑥 ∈ 𝑂𝑏(𝒳′),
and

(2) there exists an object 𝑥 ∈ 𝑂𝑏(𝒳′) lying over a scheme 𝑈 such that the associated
1-morphism 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 is smooth and surjective.

We get a site 𝒳′
𝜏 by declaring a covering of 𝒳′ to be any family of morphisms {𝑥𝑖 → 𝑥}

in 𝒳′ which is a covering in 𝒳𝜏. Then the inclusion functor 𝒳′ → 𝒳𝜏 is fully faithful,
cocontinuous, and continuous, whence defines a morphism of topoi

𝑔 ∶ Sh(𝒳′
𝜏) ⟶ Sh(𝒳𝜏)

and 𝐻𝑝(𝒳′
𝜏, 𝑔−1ℱ) = 𝐻𝑝(𝒳𝜏, ℱ) for all 𝑝 ≥ 0 and all ℱ ∈ Ab(𝒳𝜏).

Proof. Note that assumption (1) implies that if {𝑥𝑖 → 𝑥} is a covering of 𝒳𝜏 and 𝑥 ∈
𝑂𝑏(𝒳′), then we have 𝑥𝑖 ∈ 𝑂𝑏(𝒳′). Hence we see that 𝒳′ → 𝒳 is continuous and cocon-
tinuous as the coverings of objects of 𝒳′

𝜏 agree with their coverings seen as objects of 𝒳𝜏.
We obtain the morphism 𝑔 and the functor 𝑔−1 is identified with the restriction functor, see
Sites, Lemma 9.19.5.
In particular, if {𝑥𝑖 → 𝑥} is a covering in 𝒳′

𝜏, then for any abelian sheaf ℱ on 𝒳 then

�̌�𝑝({𝑥𝑖 → 𝑥}, 𝑔−1ℱ) = �̌�𝑝({𝑥𝑖 → 𝑥}, ℱ)

Thus if ℐ is an injective abelian sheaf on 𝒳𝜏 then we see that the higher Čech cohomology
groups are zero (Cohomology on Sites, Lemma 19.11.2). Hence 𝐻𝑝(𝑥, 𝑔−1ℐ) = 0 for all
objects 𝑥 of 𝒳′ (Cohomology on Sites, Lemma 19.11.8). In other words injective abelian
sheaves on 𝒳𝜏 are right acyclic for the functor 𝐻0(𝑥, 𝑔−1−). It follows that 𝐻𝑝(𝑥, 𝑔−1ℱ) =
𝐻𝑝(𝑥, ℱ) for all ℱ ∈ Ab(𝒳) and all 𝑥 ∈ 𝑂𝑏(𝒳′).
Choose an object 𝑥 ∈ 𝒳′ lying over a scheme 𝑈 as in assumption (2). In particular 𝒳/𝑥 →
𝒳 is a morphism of algebraic stacks which representable by algebraic spaces, surjective,
and smooth. (Note that 𝒳/𝑥 is equivalent to (Sch/𝑈)𝑓𝑝𝑝𝑓, see Lemma 58.9.1.) The map of
sheaves

ℎ𝑥 ⟶ ∗
in Sh(𝒳𝜏) is surjective. Namely, for any object 𝑥′ of 𝒳 there exists a 𝜏-covering {𝑥′

𝑖 → 𝑥′}
such that there exist morphisms 𝑥′

𝑖 → 𝑥, see Lemma 58.18.10. Since 𝑔 is exact, the map of
sheaves

𝑔−1ℎ𝑥 ⟶ ∗ = 𝑔−1∗
in Sh(𝒳′

𝜏) is surjective also. Let ℎ𝑥,𝑛 be the (𝑛 + 1)-fold product ℎ𝑥 × … × ℎ𝑥. Then we
have spectral sequences
(58.22.3.1) 𝐸𝑝,𝑞

1 = 𝐻𝑞(ℎ𝑥,𝑝, ℱ) ⇒ 𝐻𝑝+𝑞(𝒳𝜏, ℱ)
and
(58.22.3.2) 𝐸𝑝,𝑞

1 = 𝐻𝑞(𝑔−1ℎ𝑥,𝑝, 𝑔−1ℱ) ⇒ 𝐻𝑝+𝑞(𝒳′
𝜏, 𝑔−1ℱ)

see Cohomology on Sites, Lemma 19.13.2.
Case I: 𝒳 has a final object 𝑥 which is also an object of 𝒳′. This case follows immediately
from the discussion in the second paragraph above.
Case II: 𝒳 is representable by an algebraic space 𝐹. In this case the sheaves ℎ𝑥,𝑛 are rep-
resentable by an object 𝑥𝑛 in 𝒳. (Namely, if 𝒮𝐹 = 𝒳 and 𝑥 ∶ 𝑈 → 𝐹 is the given ob-
ject, then ℎ𝑥,𝑛 is representable by the object 𝑈 ×𝐹 … ×𝐹 𝑈 → 𝐹 of 𝒮𝐹.) It follows that
𝐻𝑞(ℎ𝑥,𝑝, ℱ) = 𝐻𝑞(𝑥𝑝, ℱ). The morphisms 𝑥𝑛 → 𝑥 lie over smooth morphisms of schemes,
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hence 𝑥𝑛 ∈ 𝒳′ for all 𝑛. Hence 𝐻𝑞(𝑔−1ℎ𝑥,𝑝, 𝑔−1ℱ) = 𝐻𝑞(𝑥𝑝, 𝑔−1ℱ). Thus in the two spec-
tral sequences (58.22.3.1) and (58.22.3.2) above the 𝐸𝑝,𝑞

1 terms agree by the discussion in
the second paragraph. The lemma follows in Case II as well.
Case III: 𝒳 is an algebraic stack. We claim that in this case the cohomology groups
𝐻𝑞(ℎ𝑥,𝑝, ℱ) and 𝐻𝑞(𝑔−1ℎ𝑥,𝑛, 𝑔−1ℱ) agree by Case II above. Once we have proved this
the result will follow as before.
Namely, consider the category𝒳/ℎ𝑥,𝑛, see Sites, Lemma 9.26.3. Sinceℎ𝑥,𝑛 is the (𝑛+1)-fold
product of ℎ𝑥 an object of this category is an (𝑛+2)-tuple (𝑦, 𝑠0, … , 𝑠𝑛) where 𝑦 is an object
of 𝒳 and each 𝑠𝑖 ∶ 𝑦 → 𝑥 is a morphism of 𝒳. This is a category over (Sch/𝑆)𝑓𝑝𝑝𝑓. There
is an equivalence

𝒳/ℎ𝑥,𝑛 ⟶ (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝒳 … ×𝒳 (Sch/𝑈)𝑓𝑝𝑝𝑓 =∶ 𝒰𝑛

over (Sch/𝑆)𝑓𝑝𝑝𝑓. Namely, if 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳 also denotes the 1-morphism as-
sociated with 𝑥 and 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 the structure functor, then we can think of
(𝑦, 𝑠0, … , 𝑠𝑛) as (𝑦, 𝑓0, … , 𝑓𝑛, 𝛼0, … , 𝛼𝑛) where 𝑦 is an object of 𝒳, 𝑓𝑖 ∶ 𝑝(𝑦) → 𝑝(𝑥) is a
morphism of schemes, and 𝛼𝑖 ∶ 𝑦 → 𝑥(𝑓𝑖) an isomorphism. The category of 2𝑛 + 3-tuples
(𝑦, 𝑓0, … , 𝑓𝑛, 𝛼0, … , 𝛼𝑛) is an incarnation of the (𝑛 + 1)-fold fibred product 𝒰𝑛 of alge-
braic stacks displayed above, as we discussed in Section 58.17. By Cohomology on Sites,
Lemma 19.13.3 we have

𝐻𝑝(𝒰𝑛, ℱ|𝒰𝑛
) = 𝐻𝑝(𝒳/ℎ𝑥,𝑛, ℱ|𝒳/ℎ𝑥,𝑛

) = 𝐻𝑝(ℎ𝑥,𝑛, ℱ).

Finally, we discuss the ``primed'' analogue of this. Namely, 𝒳′/ℎ𝑥,𝑛 corresponds, via the
equivalence above to the full subcategory𝒰′

𝑛 ⊂ 𝒰𝑛 consisting of those tuples (𝑦, 𝑓0, … , 𝑓𝑛, 𝛼0, … , 𝛼𝑛)
with 𝑦 ∈ 𝒳′. Hence certainly property (1) of the statement of the lemma holds for the in-
clusion 𝒰′

𝑛 ⊂ 𝒰𝑛. To see property (2) choose an object 𝜉 = (𝑦, 𝑠0, … , 𝑠𝑛) which lies over
a scheme 𝑊 such that (Sch/𝑊)𝑓𝑝𝑝𝑓 → 𝒰𝑛 is smooth and surjective (this is possible as 𝒰𝑛
is an algebraic stack). Then (Sch/𝑊)𝑓𝑝𝑝𝑓 → 𝒰𝑛 → (Sch/𝑈)𝑓𝑝𝑝𝑓 is smooth as a composition
of base changes of the morphism 𝑥 ∶ (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒳, see Algebraic Stacks, Lemmas
57.10.6 and 57.10.5. Thus axiom (1) for 𝒳 implies that 𝑦 is an object of 𝒳′ whence 𝜉 is an
object of 𝒰′

𝑛. Using again

𝐻𝑝(𝒰′
𝑛, ℱ|𝒰′

𝑛
) = 𝐻𝑝(𝒳′/ℎ𝑥,𝑛, ℱ|𝒳′/ℎ𝑥,𝑛

) = 𝐻𝑝(𝑔−1ℎ𝑥,𝑛, 𝑔−1ℱ).

we now can use Case II for 𝒰′
𝑛 ⊂ 𝒰𝑛 to conclude. �
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CHAPTER 59

Criteria for Representability

59.1. Introduction

The purpose of this chapter is to find criteria guaranteeing that a a stack in groupoids over
the category of schemes with the fppf topology is an algebraic stack. Historically, this
often involved proving that certain functors were representable, see Grothendieck's lectures
[Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and [Gro95d]. This explains the title
of this chapter. Another important source of this material comes from the work of Artin,
see [Art69c], [Art70a], [Art73a], [Art71c], [Art71a], [Art69a], [Art69e], and [Art74a].

59.2. Conventions

The conventions we use in this chapter are the same as those in the chapter on algebraic
stacks, see Algebraic Stacks, Section 57.2.

59.3. What we already know

The analogue of this chapter for algebraic spaces is the chapter entitled ``Bootstrap'', see
Bootstrap, Section 54.1. That chapter already contains some representability results. More-
over, some of the preliminary material treated there we already have worked out in the
chapter on algebraic stacks. Here is a list:

(1) We discuss morphisms of presheaves representable by algebraic spaces in Boot-
strap, Section 54.3. In Algebraic Stacks, Section 57.9 we discuss the notion of
a 1-morphism of categories fibred in groupoids being representable by algebraic
spaces.

(2) We discuss properties of morphisms of presheaves representable by algebraic
spaces in Bootstrap, Section 54.4. In Algebraic Stacks, Section 57.10 we discuss
the notion of a 1-morphism of categories fibred in groupoids being representable
by algebraic spaces.

(3) We proved that if 𝐹 is a sheaf whose diagonal is representable by algebraic spaces
and which has an étale covering by an algebraic space, then 𝐹 is an algebraic
space, see Bootstrap, Theorem 54.6.1. (This is a weak version of the result in the
next item on the list.)

(4) We proved that if 𝐹 is a sheaf and if there exists an algebraic space 𝑈 and a
morphism 𝑈 → 𝐹 which is representable by algebraic spaces, surjective, flat, and
locally of finite presentation, then 𝐹 is an algebraic space, see Bootstrap, Theorem
54.10.1.

(5) We have also proved the ``smooth'' analogue of (4) for algebraic stacks: If 𝒳 is
a stack in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 and if there exists a stack in groupoids 𝒰
over (Sch/𝑆)𝑓𝑝𝑝𝑓 which is representably by an algebraic space and a 1-morphism
𝑢 ∶ 𝒰 → 𝒳 which is representable by algebraic spaces, surjective, and smooth
then 𝒳 is an algebraic stack, see Algebraic Stacks, Lemma 57.15.3.

2731
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Our first task now is to prove the analogue of (4) for algebraic stacks in general; it is Theorem
59.16.1.

59.4. Morphisms of stacks in groupoids

This section is preliminary and should be skipped on a first reading.

Lemma 59.4.1. Let 𝒳 → 𝒴 → 𝒵 be 1-morphisms of categories fibred in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝒳 → 𝒵 and 𝒴 → 𝒵 are representable by algebraic spaces and étale so is
𝒳 → 𝒴.

Proof. Let 𝒰 be a representable category fibred in groupoids over 𝑆. Let 𝑓 ∶ 𝒰 → 𝒴 be
a 1-morphism. We have to show that 𝒳 ×𝒴 𝒰 is representable by an algebraic space and
étale over 𝒰. Consider the composition ℎ ∶ 𝒰 → 𝒵. Then

𝒳 ×𝒵 𝒰 ⟶ 𝒴 ×𝒵 𝒰

is a 1-morphism between categories fibres in groupoids which are both representable by
algebraic spaces and both étale over 𝒰. Hence by Properties of Spaces, Lemma 41.13.6
this is represented by an étale morphism of algebraic spaces. Finally, we obtain the result
we want as the morphism 𝑓 induces a morphism 𝒰 → 𝒴 ×𝒵 𝒰 and we have

𝒳 ×𝒴 𝒰 = (𝒳 ×𝒵 𝒰) ×(𝒴×𝒵𝒰) 𝒰.

�

Lemma 59.4.2. Let𝒳, 𝒴, 𝒵 be stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Suppose that𝒳 → 𝒴
and 𝒵 → 𝒴 are 1-morphisms. If

(1) 𝒴, 𝒵 are representable by algebraic spaces 𝑌, 𝑍 over 𝑆,
(2) the associated morphism of algebraic spaces 𝑌 → 𝑍 is surjective, flat and locally

of finite presentation, and
(3) 𝒴 ×𝒵 𝒳 is a stack in setoids,

then 𝒳 is a stack in setoids.

Proof. This is a special case of Stacks, Lemma 50.6.10. �

The following lemma is the analogue of Algebraic Stacks, Lemma 57.15.3 and will be
superseded by the stronger Theorem 59.16.1.

Lemma 59.4.3. Let 𝑆 be a scheme. Let 𝑢 ∶ 𝒰 → 𝒳 be a 1-morphism of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If

(1) 𝒰 is representable by an algebraic space, and
(2) 𝑢 is representable by algebraic spaces, surjective, flat and locally of finite pre-

sentation,
then Δ ∶ 𝒳 → 𝒳 × 𝒳 representable by algebraic spaces.

Proof. Given two schemes 𝑇1, 𝑇2 over 𝑆 denote 𝒯𝑖 = (Sch/𝑇𝑖)𝑓𝑝𝑝𝑓 the associated rep-
resentable fibre categories. Suppose given 1-morphisms 𝑓𝑖 ∶ 𝒯𝑖 → 𝒳. According to
Algebraic Stacks, Lemma 57.10.11 it suffices to prove that the 2-fibered product 𝒯1 ×𝒳 𝒯2
is representable by an algebraic space. By Stacks, Lemma 50.6.8 this is in any case a stack
in setoids. Thus 𝒯1 ×𝒳 𝒯2 corresponds to some sheaf 𝐹 on (Sch/𝑆)𝑓𝑝𝑝𝑓, see Stacks, Lemma
50.6.3. Let 𝑈 be the algebraic space which represents 𝒰. By assumption

𝒯′
𝑖 = 𝒰 ×𝑢,𝒳,𝑓𝑖

𝒯𝑖

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05XK
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05XL
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05XW
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is representable by an algebraic space 𝑇′
𝑖 over 𝑆. Hence 𝒯′

1 ×𝒰 𝒯′
2 is representable by the

algebraic space 𝑇′
1 ×𝑈 𝑇′

2. Consider the commutative diagram

𝒯1 ×𝒳 𝒯2
//

��

𝒯1

��

𝒯′
1 ×𝒰 𝒯′

2

88

//

��

𝒯′
1

??

��

𝒯2
// 𝒳

𝒯′
2

//

88

𝒰

??

In this diagram the bottom square, the right square, the back square, and the front square
are 2-fibre products. A formal argument then shows that 𝒯′

1 ×𝒰 𝒯′
2 → 𝒯1 ×𝒳 𝒯2 is the

``base change'' of 𝒰 → 𝒳, more precisely the diagram

𝒯′
1 ×𝒰 𝒯′

2

��

// 𝒰

��
𝒯1 ×𝒳 𝒯2

// 𝒳

is a 2-fibre square. Hence 𝑇′
1 ×𝑈 𝑇′

2 → 𝐹 is representable by algebraic spaces, flat, locally
of finite presentation and surjective, see Algebraic Stacks, Lemmas 57.9.6, 57.9.7, 57.10.4,
and 57.10.6. Therefore 𝐹 is an algebraic space by Bootstrap, Theorem 54.10.1 and we
win. �

59.5. Limit preserving on objects

Let 𝑆 be a scheme. Let 𝑝 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. We will say that 𝑝 is limit preserving on objects if the following condition
holds: Given any data consisting of

(1) an affine scheme 𝑈 = 𝑙𝑖𝑚𝑖∈𝐼 𝑈𝑖 which is written as the directed limit of affine
schemes 𝑈𝑖 over 𝑆,

(2) an object 𝑦𝑖 of 𝒴 over 𝑈𝑖 for some 𝑖,
(3) an object 𝑥 of 𝒳 over 𝑈, and
(4) an isomorphism 𝛾 ∶ 𝑝(𝑥) → 𝑦𝑖|𝑈,

then there exists an 𝑖′ ≥ 𝑖, an object 𝑥𝑖′ of 𝒳 over 𝑈𝑖′, an isomorphism 𝛽 ∶ 𝑥𝑖′|𝑈 → 𝑥, and
an isomorphism 𝛾𝑖′ ∶ 𝑝(𝑥𝑖′) → 𝑦𝑖|𝑈𝑖′

such that

(59.5.0.1)

𝑝(𝑥𝑖′|𝑈)

𝑝(𝛽)
��

𝛾𝑖′|𝑈

// (𝑦𝑖|𝑈𝑖′
)|𝑈

𝑝(𝑥)
𝛾 // 𝑦𝑖|𝑈

commutes. In this situation we say that ``(𝑖′, 𝑥𝑖′, 𝛽, 𝛾𝑖′) is a solution to the problem posed
by our data (1), (2), (3), (4)''. The motivation for this definition comes from More on
Morphisms of Spaces, Lemma 46.4.2.
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Lemma 59.5.1. Let 𝑝 ∶ 𝒳 → 𝒴 and 𝑞 ∶ 𝒵 → 𝒴 be 1-morphisms of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑝 ∶ 𝒳 → 𝒴 is limit preserving on objects, then so is the base change
𝑝′ ∶ 𝒳 ×𝒴 𝒵 → 𝒵 of 𝑝 by 𝑞.

Proof. This is formal. Let 𝑈 = 𝑙𝑖𝑚𝑖∈𝐼 𝑈𝑖 be the directed limit of affine schemes 𝑈𝑖 over 𝑆,
let 𝑧𝑖 be an object of 𝒵 over 𝑈𝑖 for some 𝑖, let 𝑤 be an object of 𝒳 ×𝒴 𝒵 over 𝑈, and let
𝛿 ∶ 𝑝′(𝑤) → 𝑧𝑖|𝑈 be an isomorphism. We may write 𝑤 = (𝑈, 𝑥, 𝑧, 𝛼) for some object 𝑥 of
𝒳 over 𝑈 and object 𝑧 of 𝒵 over 𝑈 and isomorphism 𝛼 ∶ 𝑝(𝑥) → 𝑞(𝑧). Note that 𝑝′(𝑤) = 𝑧
hence 𝛿 ∶ 𝑧 → 𝑧𝑖|𝑈. Set 𝑦𝑖 = 𝑞(𝑧𝑖) and 𝛾 = 𝑞(𝛿) ∘ 𝛼 ∶ 𝑝(𝑥) → 𝑦𝑖|𝑈. As 𝑝 is limit preserving
on objects there exists an 𝑖′ ≥ 𝑖 and an object 𝑥𝑖′ of 𝒳 over 𝑈𝑖′ as well as isomorphisms
𝛽 ∶ 𝑥𝑖′|𝑈 → 𝑥 and 𝛾𝑖′ ∶ 𝑝(𝑥𝑖′) → 𝑦𝑖|𝑈𝑖′

such that (59.5.0.1) commutes. Then we consider
the object 𝑤𝑖′ = (𝑈𝑖′, 𝑥𝑖′, 𝑧𝑖|𝑈𝑖′

, 𝛾𝑖′) of 𝒳 ×𝒴 𝒵 over 𝑈𝑖′ and define isomorphisms

𝑤𝑖′|𝑈 = (𝑈, 𝑥𝑖′|𝑈, 𝑧𝑖|𝑈, 𝛾𝑖′|𝑈)
(𝛽,𝛿−1)

−−−−−→ (𝑈, 𝑥, 𝑧, 𝛼) = 𝑤
and

𝑝′(𝑤𝑖′) = 𝑧𝑖|𝑈𝑖′

id
−−→ 𝑧𝑖|𝑈𝑖′

.
These combine to give a solution to the problem. �

Lemma 59.5.2. Let 𝑝 ∶ 𝒳 → 𝒴 and 𝑞 ∶ 𝒴 → 𝒵 be 1-morphisms of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑝 and 𝑞 are limit preserving on objects, then so is the composition 𝑞 ∘ 𝑝.

Proof. This is formal. Let 𝑈 = 𝑙𝑖𝑚𝑖∈𝐼 𝑈𝑖 be the directed limit of affine schemes 𝑈𝑖 over
𝑆, let 𝑧𝑖 be an object of 𝒵 over 𝑈𝑖 for some 𝑖, let 𝑥 be an object of 𝒳 over 𝑈, and let
𝛾 ∶ 𝑞(𝑝(𝑥)) → 𝑧𝑖|𝑈 be an isomorphism. As 𝑞 is limit preserving on objects there exist an
𝑖′ ≥ 𝑖, an object 𝑦𝑖′ of 𝒴 over 𝑈𝑖′, an isomorphism 𝛽 ∶ 𝑦𝑖′|𝑈 → 𝑝(𝑥), and an isomorphism
𝛾𝑖′ ∶ 𝑞(𝑦𝑖′) → 𝑧𝑖|𝑈𝑖′

such that (59.5.0.1) is commutative. As 𝑝 is limit preserving on objects
there exist an 𝑖″ ≥ 𝑖′, an object 𝑥𝑖″ of 𝒳 over 𝑈𝑖″, an isomorphism 𝛽′ ∶ 𝑥𝑖″|𝑈 → 𝑥, and an
isomorphism 𝛾′

𝑖″ ∶ 𝑝(𝑥𝑖″) → 𝑦𝑖′|𝑈𝑖″
such that (59.5.0.1) is commutative. The solution is

to take 𝑥𝑖″ over 𝑈𝑖″ with isomorphism

𝑞(𝑝(𝑥𝑖″))
𝑞(𝛾′

𝑖″
)

−−−−→ 𝑞(𝑦𝑖′)|𝑈𝑖″

𝛾𝑖′|𝑈𝑖″−−−−−→ 𝑧𝑖|𝑈𝑖″

and isomorphism 𝛽′ ∶ 𝑥𝑖″|𝑈 → 𝑥. We omit the verification that (59.5.0.1) is commutative.
�

Lemma 59.5.3. Let 𝑝 ∶ 𝒳 → 𝒴 be a 1-morphisms of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
If 𝑝 is representable by algebraic spaces, then the following are equivalent:

(1) 𝑝 is limit preserving on objects, and
(2) 𝑝 is locally of finite presentation (see Algebraic Stacks, Definition 57.10.1).

Proof. Assume (2). Let 𝑈 = 𝑙𝑖𝑚𝑖∈𝐼 𝑈𝑖 be the directed limit of affine schemes 𝑈𝑖 over
𝑆, let 𝑦𝑖 be an object of 𝒴 over 𝑈𝑖 for some 𝑖, let 𝑥 be an object of 𝒳 over 𝑈, and let
𝛾 ∶ 𝑝(𝑥) → 𝑦𝑖|𝑈 be an isomorphism. Let 𝑋𝑦𝑖

denote an algebraic space over 𝑈𝑖 representing
the 2-fibre product

(Sch/𝑈𝑖)𝑓𝑝𝑝𝑓 ×𝑦𝑖,𝒴,𝑝 𝒳.

Note that 𝜉 = (𝑈, 𝑈 → 𝑈𝑖, 𝑥, 𝛾−1) defines an object of this 2-fibre product over 𝑈. Via
the 2-Yoneda lemma 𝜉 corresponds to a morphism 𝑓𝜉 ∶ 𝑈 → 𝑋𝑦𝑖

over 𝑈𝑖. By More on
Morphisms of Spaces, Proposition 46.4.9 there exists an 𝑖′ ≥ 𝑖 and a morphism 𝑓𝑖′ ∶ 𝑈𝑖′ →
𝑋𝑦𝑖

such that 𝑓𝜉 is the composition of 𝑓𝑖′ and the projection morphism 𝑈 → 𝑈𝑖′. Also, the
2-Yoneda lemma tells us that 𝑓𝑖′ corresponds to an object 𝜉𝑖′ = (𝑈𝑖′, 𝑈𝑖′ → 𝑈𝑖, 𝑥𝑖′, 𝛼) of

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06CV
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06CW
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06CX
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the displayed 2-fibre product over 𝑈𝑖′ whose restriction to 𝑈 recovers 𝜉. In particular we
obtain an isomorphism 𝛾 ∶ 𝑥𝑖′|𝑈 → 𝑥. Note that 𝛼 ∶ 𝑦𝑖|𝑈𝑖′

→ 𝑝(𝑥𝑖′). Hence we see that
taking 𝑥𝑖′, the isomorphism 𝛾 ∶ 𝑥𝑖′|𝑈 → 𝑥, and the isomorphism 𝛽 = 𝛼−1 ∶ 𝑝(𝑥𝑖′) → 𝑦𝑖|𝑈𝑖′
is a solution to the problem.

Assume (1). Choose a scheme 𝑇 and a 1-morphism 𝑦 ∶ (Sch/𝑇)𝑓𝑝𝑝𝑓 → 𝒴. Let 𝑋𝑦 be
an algebraic space over 𝑇 representing the 2-fibre product (Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝑦,𝒴,𝑝 𝒳. We have
to show that 𝑋𝑦 → 𝑇 is locally of finite presentation. To do this we may use More on
Morphisms of Spaces, Proposition 46.4.9 in the form described in More on Morphisms
of Spaces, Remark 46.4.10. Hence it suffices to show that given an affine scheme 𝑈 =
𝑙𝑖𝑚𝑖∈𝐼 𝑈𝑖 written as the directed limit of affine schemes over 𝑇, then𝑋𝑦(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑋𝑦(𝑈𝑖).
Pick any 𝑖 ∈ 𝐼 and set 𝑦𝑖 = 𝑦|𝑈𝑖

. Also denote 𝑖′ an element of 𝐼 which is bigger than or
equal to 𝑖. By the 2-Yoneda lemma morphisms 𝑈 → 𝑋𝑦 over 𝑇 correspond bijectively to
isomorphism classes of pairs (𝑥, 𝛼) where 𝑥 is an object of 𝒳 over 𝑈 and 𝛼 ∶ 𝑦|𝑈 → 𝑝(𝑥)
is an isomorphism. Of course giving 𝛼 is, up to an inverse, the same thing as giving an
isomorphism 𝛾 ∶ 𝑝(𝑥) → 𝑦𝑖|𝑈. Similarly for morphisms 𝑈𝑖′ → 𝑋𝑦 over 𝑇. Hence (1)
guarantees that

𝑋𝑦(𝑈) = 𝑐𝑜𝑙𝑖𝑚𝑖′≥𝑖 𝑋𝑦(𝑈𝑖′)
in this situation and we win. �

Lemma 59.5.4. Let 𝑝 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
Assume 𝑝 is representable by algebraic spaces and an open immersion. Then 𝑝 is limit
preserving on objects.

Proof. This follows from Lemma 59.5.3 and (via the general principle Algebraic Stacks,
Lemma 57.10.9) from the fact that an open immersion of algebraic spaces is locally of finite
presentation, see Morphisms of Spaces, Lemma 42.26.10. �

59.6. Formally smooth on objects

Let 𝑆 be a scheme. Let 𝑝 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. We will say that 𝑝 is formally smooth on objects if the following condition
holds: Given any data consisting of

(1) a first order thickening 𝑈 ⊂ 𝑈′ of affine schemes over 𝑆,
(2) an object 𝑦′ of 𝒴 over 𝑈′,
(3) an object 𝑥 of 𝒳 over 𝑈, and
(4) an isomorphism 𝛾 ∶ 𝑝(𝑥) → 𝑦′|𝑈,

then there exists an object 𝑥′ of 𝒳 over 𝑈′ with an isomorphism 𝛽 ∶ 𝑥′|𝑈 → 𝑥 and an
isomorphism 𝛾′ ∶ 𝑝(𝑥′) → 𝑦′ such that

(59.6.0.1)

𝑝(𝑥′|𝑈)

𝑝(𝛽)
��

𝛾′|𝑈

// 𝑦′|𝑈

𝑝(𝑥)
𝛾 // 𝑦′|𝑈

commutes. In this situation we say that ``(𝑥′, 𝛽, 𝛾′) is a solution to the problem posed by
our data (1), (2), (3), (4)''.

Lemma 59.6.1. Let 𝑝 ∶ 𝒳 → 𝒴 and 𝑞 ∶ 𝒵 → 𝒴 be 1-morphisms of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑝 ∶ 𝒳 → 𝒴 is formally smooth on objects, then so is the base change
𝑝′ ∶ 𝒳 ×𝒴 𝒵 → 𝒵 of 𝑝 by 𝑞.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06CY
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06D1
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Proof. This is formal. Let 𝑈 ⊂ 𝑈′ be a first order thickening of affine schemes over 𝑆, let
𝑧′ be an object of 𝒵 over 𝑈′, let 𝑤 be an object of 𝒳×𝒴 𝒵 over 𝑈, and let 𝛿 ∶ 𝑝′(𝑤) → 𝑧′|𝑈
be an isomorphism. Wemaywrite 𝑤 = (𝑈, 𝑥, 𝑧, 𝛼) for some object 𝑥 of 𝒳 over 𝑈 and object
𝑧 of 𝒵 over 𝑈 and isomorphism 𝛼 ∶ 𝑝(𝑥) → 𝑞(𝑧). Note that 𝑝′(𝑤) = 𝑧 hence 𝛿 ∶ 𝑧 → 𝑧|𝑈.
Set 𝑦′ = 𝑞(𝑧′) and 𝛾 = 𝑞(𝛿) ∘ 𝛼 ∶ 𝑝(𝑥) → 𝑦′|𝑈. As 𝑝 is formally smooth on objects there
exists an object 𝑥′ of 𝒳 over 𝑈′ as well as isomorphisms 𝛽 ∶ 𝑥′|𝑈 → 𝑥 and 𝛾′ ∶ 𝑝(𝑥′) → 𝑦′

such that (59.6.0.1) commutes. Then we consider the object 𝑤 = (𝑈′, 𝑥′, 𝑧′, 𝛾′) of 𝒳 ×𝒴 𝒵
over 𝑈′ and define isomorphisms

𝑤′|𝑈 = (𝑈, 𝑥′|𝑈, 𝑧′|𝑈, 𝛾′|𝑈)
(𝛽,𝛿−1)

−−−−−→ (𝑈, 𝑥, 𝑧, 𝛼) = 𝑤

and
𝑝′(𝑤′) = 𝑧′ id

−−→ 𝑧′.
These combine to give a solution to the problem. �

Lemma 59.6.2. Let 𝑝 ∶ 𝒳 → 𝒴 and 𝑞 ∶ 𝒴 → 𝒵 be 1-morphisms of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑝 and 𝑞 are formally smooth on objects, then so is the composition 𝑞 ∘𝑝.

Proof. This is formal. Let 𝑈 ⊂ 𝑈′ be a first order thickening of affine schemes over 𝑆, let
𝑧′ be an object of 𝒵 over 𝑈′, let 𝑥 be an object of 𝒳 over 𝑈, and let 𝛾 ∶ 𝑞(𝑝(𝑥)) → 𝑧′|𝑈 be
an isomorphism. As 𝑞 is formally smooth on objects there exist an object 𝑦′ of 𝒴 over 𝑈′,
an isomorphism 𝛽 ∶ 𝑦′|𝑈 → 𝑝(𝑥), and an isomorphism 𝛾′ ∶ 𝑞(𝑦′) → 𝑧′ such that (59.6.0.1)
is commutative. As 𝑝 is formally smooth on objects there exist an object 𝑥′ of 𝒳 over 𝑈′,
an isomorphism 𝛽′ ∶ 𝑥′|𝑈 → 𝑥, and an isomorphism 𝛾″ ∶ 𝑝(𝑥′) → 𝑦′ such that (59.6.0.1)
is commutative. The solution is to take 𝑥′ over 𝑈′ with isomorphism

𝑞(𝑝(𝑥′))
𝑞(𝛾″)

−−−−→ 𝑞(𝑦′)
𝛾′

−−→ 𝑧′

and isomorphism 𝛽′ ∶ 𝑥′|𝑈 → 𝑥. We omit the verification that (59.6.0.1) is commutative.
�

Note that the class of formally smooth morphisms of algebraic spaces is stable under ar-
bitrary base change and local on the target in the fpqc topology, see More on Morphisms
of Spaces, Lemma 46.16.3 and 46.16.10. Hence condition (2) in the lemma below makes
sense.

Lemma 59.6.3. Let 𝑝 ∶ 𝒳 → 𝒴 be a 1-morphisms of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
If 𝑝 is representable by algebraic spaces, then the following are equivalent:

(1) 𝑝 is formally smooth on objects, and
(2) 𝑝 is formally smooth (see Algebraic Stacks, Definition 57.10.1).

Proof. Assume (2). Let 𝑈 ⊂ 𝑈′ be a first order thickening of affine schemes over 𝑆, let 𝑦′

be an object of 𝒴 over 𝑈′, let 𝑥 be an object of 𝒳 over 𝑈, and let 𝛾 ∶ 𝑝(𝑥) → 𝑦′|𝑈 be an
isomorphism. Let 𝑋𝑦′ denote an algebraic space over 𝑈′ representing the 2-fibre product

(Sch/𝑈′)𝑓𝑝𝑝𝑓 ×𝑦′,𝒴,𝑝 𝒳.

Note that 𝜉 = (𝑈, 𝑈 → 𝑈′, 𝑥, 𝛾−1) defines an object of this 2-fibre product over 𝑈. Via the
2-Yoneda lemma 𝜉 corresponds to a morphism 𝑓𝜉 ∶ 𝑈 → 𝑋𝑦′ over 𝑈′. As 𝑋𝑦′ → 𝑈′ is
formally smooth by assumption there exists a morphism 𝑓′ ∶ 𝑈′ → 𝑋𝑦′ such that 𝑓𝜉 is the
composition of 𝑓′ and the morphism 𝑈 → 𝑈′. Also, the 2-Yoneda lemma tells us that 𝑓′

corresponds to an object 𝜉′ = (𝑈′, 𝑈′ → 𝑈′, 𝑥′, 𝛼) of the displayed 2-fibre product over 𝑈′

whose restriction to 𝑈 recovers 𝜉. In particular we obtain an isomorphism 𝛾 ∶ 𝑥′|𝑈 → 𝑥.
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Note that 𝛼 ∶ 𝑦′ → 𝑝(𝑥′). Hence we see that taking 𝑥′, the isomorphism 𝛾 ∶ 𝑥′|𝑈 → 𝑥,
and the isomorphism 𝛽 = 𝛼−1 ∶ 𝑝(𝑥′) → 𝑦′ is a solution to the problem.
Assume (1). Choose a scheme 𝑇 and a 1-morphism 𝑦 ∶ (Sch/𝑇)𝑓𝑝𝑝𝑓 → 𝒴. Let 𝑋𝑦 be
an algebraic space over 𝑇 representing the 2-fibre product (Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝑦,𝒴,𝑝 𝒳. We have
to show that 𝑋𝑦 → 𝑇 is formally smooth. Hence it suffices to show that given a first
order thickening 𝑈 ⊂ 𝑈′ of affine schemes over 𝑇, then 𝑋𝑦(𝑈′) → 𝑋𝑦(𝑈′) is surjective
(morphisms in the category of algebraic spaces over 𝑇). Set 𝑦′ = 𝑦|𝑈′. By the 2-Yoneda
lemma morphisms 𝑈 → 𝑋𝑦 over 𝑇 correspond bijectively to isomorphism classes of pairs
(𝑥, 𝛼) where 𝑥 is an object of 𝒳 over 𝑈 and 𝛼 ∶ 𝑦|𝑈 → 𝑝(𝑥) is an isomorphism. Of
course giving 𝛼 is, up to an inverse, the same thing as giving an isomorphism 𝛾 ∶ 𝑝(𝑥) →
𝑦′|𝑈. Similarly for morphisms 𝑈′ → 𝑋𝑦 over 𝑇. Hence (1) guarantees the surjectivity of
𝑋𝑦(𝑈′) → 𝑋𝑦(𝑈′) in this situation and we win. �

59.7. Surjective on objects

Let 𝑆 be a scheme. Let 𝑝 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids over
(Sch/𝑆)𝑓𝑝𝑝𝑓. We will say that 𝑝 is surjective on objects if the following condition holds:
Given any data consisting of

(1) a field 𝑘 over 𝑆, and
(2) an object 𝑦 of 𝒴 over 𝑆𝑝𝑒𝑐(𝑘),

then there exists an extension 𝑘 ⊂ 𝐾 of fields over 𝑆, an object 𝑥 of 𝒳 over 𝑆𝑝𝑒𝑐(𝐾) such
that 𝑝(𝑥) ≅ 𝑦|𝑆𝑝𝑒𝑐(𝐾).

Lemma 59.7.1. Let 𝑝 ∶ 𝒳 → 𝒴 and 𝑞 ∶ 𝒵 → 𝒴 be 1-morphisms of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑝 ∶ 𝒳 → 𝒴 is surjective on objects, then so is the base change
𝑝′ ∶ 𝒳 ×𝒴 𝒵 → 𝒵 of 𝑝 by 𝑞.

Proof. This is formal. Let 𝑧 be an object of 𝒵 over a field 𝑘. As 𝑝 is surjective on objects
there exists an extension 𝑘 ⊂ 𝐾 and an object 𝑥 of 𝒳 over 𝐾 and an isomorphism 𝛼 ∶
𝑝(𝑥) → 𝑞(𝑧)|𝑆𝑝𝑒𝑐(𝐾). Then 𝑤 = (𝑆𝑝𝑒𝑐(𝐾), 𝑥, 𝑧|𝑆𝑝𝑒𝑐(𝐾), 𝛼) is an object of 𝒳 ×𝒴 𝒵 over 𝐾
with 𝑝′(𝑤) = 𝑧|𝑆𝑝𝑒𝑐(𝐾). �

Lemma 59.7.2. Let 𝑝 ∶ 𝒳 → 𝒴 and 𝑞 ∶ 𝒴 → 𝒵 be 1-morphisms of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝑝 and 𝑞 are surjective on objects, then so is the composition 𝑞 ∘ 𝑝.

Proof. This is formal. Let 𝑧 be an object of 𝒵 over a field 𝑘. As 𝑞 is surjective on objects
there exists a field extension 𝑘 ⊂ 𝐾 and an object 𝑦 of 𝒴 over 𝐾 such that 𝑞(𝑦) ≅ 𝑥|𝑆𝑝𝑒𝑐(𝐾).
As 𝑝 is surjective on objects there exists a field extension 𝐾 ⊂ 𝐿 and an object 𝑥 of 𝒳 over
𝐿 such that 𝑝(𝑥) ≅ 𝑦|𝑆𝑝𝑒𝑐(𝐿). Then the field extension 𝑘 ⊂ 𝐿 and the object 𝑥 of 𝒳 over 𝐿
satisfy 𝑞(𝑝(𝑥)) ≅ 𝑧|𝑆𝑝𝑒𝑐(𝐿) as desired. �

Lemma 59.7.3. Let 𝑝 ∶ 𝒳 → 𝒴 be a 1-morphisms of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
If 𝑝 is representable by algebraic spaces, then the following are equivalent:

(1) 𝑝 is surjective on objects, and
(2) 𝑝 is surjective (see Algebraic Stacks, Definition 57.10.1).

Proof. Assume (2). Let 𝑘 be a field and let 𝑦 be an object of 𝒴 over 𝑘. Let 𝑋𝑦 denote an
algebraic space over 𝑘 representing the 2-fibre product

(Sch/ 𝑆𝑝𝑒𝑐(𝑘))𝑓𝑝𝑝𝑓 ×𝑦,𝒴,𝑝 𝒳.
As we've assumed that 𝑝 is surjective we see that 𝑋𝑦 is not empty. Hence we can find a field
extension 𝑘 ⊂ 𝐾 and a 𝐾-valued point 𝑥 of 𝑋𝑦. Via the 2-Yoneda lemma this corresponds
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to an object 𝑥 of 𝒳 over 𝐾 together with an isomorphism 𝑝(𝑥) ≅ 𝑦|𝑆𝑝𝑒𝑐(𝐾) and we see that
(1) holds.

Assume (1). Choose a scheme 𝑇 and a 1-morphism 𝑦 ∶ (Sch/𝑇)𝑓𝑝𝑝𝑓 → 𝒴. Let 𝑋𝑦 be
an algebraic space over 𝑇 representing the 2-fibre product (Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝑦,𝒴,𝑝 𝒳. We have
to show that 𝑋𝑦 → 𝑇 is surjective. By Morphisms of Spaces, Definition 42.6.2 we have
to show that |𝑋𝑦| → |𝑇| is surjective. This means exactly that given a field 𝑘 over 𝑇
and a morphism 𝑡 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑇 there exists a field extension 𝑘 ⊂ 𝐾 and a morphism
𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝑋𝑦 such that

𝑆𝑝𝑒𝑐(𝐾)

��

𝑥
// 𝑋𝑦

��
𝑆𝑝𝑒𝑐(𝑘) 𝑡 // 𝑇

commutes. By the 2-Yoneda lemma this means exactly that we have to find 𝑘 ⊂ 𝐾 and an
object 𝑥 of 𝒳 over 𝐾 such that 𝑝(𝑥) ≅ 𝑡∗𝑦|𝑆𝑝𝑒𝑐(𝐾). Hence (1) guarantees that this is the case
and we win. �

59.8. Algebraic morphisms

The following notion is occasionally useful.

Definition 59.8.1. Let 𝑆 be a scheme. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in
groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. We say that 𝐹 is algebraic if for every scheme 𝑇 and every
object 𝜉 of 𝒴 over 𝑇 the 2-fibre product

(Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝜉,𝒴 𝒳

is an algebraic stack over 𝑆.

With this terminology in place we have the following result that generalizes Algebraic
Stacks, Lemma 57.15.4.

Lemma 59.8.2. Let𝑆 be a scheme. Let𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If

(1) 𝒴 is an algebraic stack, and
(2) 𝐹 is algebraic (see above),

then 𝒳 is an algebraic stack.

Proof. By assumption (1) there exists a scheme 𝑇 and an object 𝜉 of 𝒴 over 𝑇 such that
the corresponding 1-morphism 𝜉 ∶ (Sch/𝑇)𝑓𝑝𝑝𝑓 → 𝒴 is smooth an surjective. Then 𝒰 =
(Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝜉,𝒴 𝒳 is is an algebraic stack by assumption (2). Choose a scheme 𝑈 and a
surjective smooth 1-morphism (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒰. The projection 𝒰 ⟶ 𝒳 is, as the base
change of the morphism 𝜉 ∶ (Sch/𝑇)𝑓𝑝𝑝𝑓 → 𝒴, surjective and smooth, see Algebraic Stacks,
Lemma 57.10.6. Then the composition (Sch/𝑈)𝑓𝑝𝑝𝑓 → 𝒰 → 𝒳 is surjective and smooth as
a composition of surjective and smooth morphisms, see Algebraic Stacks, Lemma 57.10.5.
Hence 𝒳 is an algebraic stack by Algebraic Stacks, Lemma 57.15.3. �

Lemma 59.8.3. Let𝑆 be a scheme. Let𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝒳 is an algebraic stack and Δ ∶ 𝒴 → 𝒴 × 𝒴 is representable by
algebraic spaces, then 𝐹 is algebraic.
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Proof. Choose a representable stack in groupoids 𝒰 and a surjective smooth 1-morphism
𝒰 → 𝒳. Let 𝑇 be a scheme and let 𝜉 be an object of 𝒴 over 𝑇. The morphism of 2-fibre
products

(Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝜉,𝒴 𝒰 ⟶ (Sch/𝑇)𝑓𝑝𝑝𝑓 ×𝜉,𝒴 𝒳
is representable by algebraic spaces, surjective, and smooth as a base change of 𝒰 → 𝒳,
see Algebraic Stacks, Lemmas 57.9.7 and 57.10.6. By our condition on the diagonal of 𝒴
we see that the source of this morphism is representable by an algebraic space, see Alge-
braic Stacks, Lemma 57.10.11. Hence the target is an algebraic stack by Algebraic Stacks,
Lemma 57.15.3. �

59.9. Spaces of sections

Given morphisms 𝑊 → 𝑍 → 𝑈 we can consider the functor that associates to a scheme 𝑈′

over 𝑈 the set of sections 𝜎 ∶ 𝑍𝑈′ → 𝑊𝑈′ of the base change 𝑊𝑈′ → 𝑍𝑈′ of the morphism
𝑊 → 𝑍. In this section we prove some preliminary lemmas on this functor.

Lemma 59.9.1. Let 𝑍 → 𝑈 be a finite morphism of schemes. Let 𝑊 be an algebraic
space and let 𝑊 → 𝑍 be a surjective étale morphism. Then there exists a surjective étale
morphism 𝑈′ → 𝑈 and a section

𝜎 ∶ 𝑍𝑈′ → 𝑊𝑈′

of the morphism 𝑊𝑈′ → 𝑍𝑈′.

Proof. We may choose a separated scheme 𝑊′ and a surjective étale morphism 𝑊′ → 𝑊.
Hence after replacing 𝑊 by 𝑊′ we may assume that 𝑊 is a separated scheme. Write 𝑓 ∶
𝑊 → 𝑍 and 𝜋 ∶ 𝑍 → 𝑈. Note that 𝑓 ∘ 𝜋 ∶ 𝑊 → 𝑈 is separated as 𝑊 is separated
(see Schemes, Lemma 21.21.14). Let 𝑢 ∈ 𝑈 be a point. Clearly it suffices to find an étale
neighbourhood (𝑈′, 𝑢′) of (𝑈, 𝑢) such that a section 𝜎 exists over 𝑈′. Let 𝑧1, … , 𝑧𝑟 be the
points of 𝑍 lying above 𝑢. For each 𝑖 choose a point 𝑤𝑖 ∈ 𝑊 whichmaps to 𝑧𝑖. Wemay pick
an étale neighbourhood (𝑈′, 𝑢′) → (𝑈, 𝑢) such that the conclusions of More on Morphisms,
Lemma 33.28.5 hold for both 𝑍 → 𝑈 and the points 𝑧1, … , 𝑧𝑟 and 𝑊 → 𝑈 and the points
𝑤1, … , 𝑤𝑟. Hence, after replacing (𝑈, 𝑢) by (𝑈′, 𝑢′) and relabeling, we may assume that
all the field extensions 𝜅(𝑢) ⊂ 𝜅(𝑧𝑖) and 𝜅(𝑢) ⊂ 𝜅(𝑤𝑖) are purely inseparable, and moreover
that there exist disjoint union decompositions

𝑍 = 𝑉1 ⨿ … ⨿ 𝑉𝑟 ⨿ 𝐴, 𝑊 = 𝑊1 ⨿ … ⨿ 𝑊𝑟 ⨿ 𝐵

by open and closed subschemes with 𝑧𝑖 ∈ 𝑉𝑖, 𝑤𝑖 ∈ 𝑊𝑖 and 𝑉𝑖 → 𝑈, 𝑊𝑖 → 𝑈 finite.
After replacing 𝑈 by 𝑈 ⧵ 𝜋(𝐴) we may assume that 𝐴 = ∅, i.e., 𝑍 = 𝑉1 ⨿ … ⨿ 𝑉𝑟.
After replacing 𝑊𝑖 by 𝑊𝑖 ∩ 𝑓−1(𝑉𝑖) and 𝐵 by 𝐵 ∪ ⋃ 𝑊𝑖 ∩ 𝑓−1(𝑍 ⧵ 𝑉𝑖) we may assume
that 𝑓 maps 𝑊𝑖 into 𝑉𝑖. Then 𝑓𝑖 = 𝑓|𝑊𝑖

∶ 𝑊𝑖 → 𝑉𝑖 is a morphism of schemes finite
over 𝑈, hence finite (see Morphisms, Lemma 24.42.12). It is also étale (by assumption),
𝑓−1

𝑖 ({𝑧𝑖}) = 𝑤𝑖, and induces an isomorphism of residue fields 𝜅(𝑧𝑖) = 𝜅(𝑤𝑖) (because both
are purely inseparable extensions of 𝜅(𝑢) and 𝜅(𝑧𝑖) ⊂ 𝜅(𝑤𝑖) is separable as 𝑓 is étale). Hence
by Étale Morphisms, Lemma 37.14.2 we see that 𝑓𝑖 is an isomorphism in a neighbourhood
𝑉′

𝑖 of 𝑧𝑖. Since 𝜋 ∶ 𝑍 → 𝑈 is closed, after shrinking 𝑈, we may assume that 𝑊𝑖 → 𝑉𝑖 is an
isomorphism. This proves the lemma. �

Lemma 59.9.2. Let 𝑍 → 𝑈 be a finite locally free morphism of schemes. Let 𝑊 be an
algebraic space and let 𝑊 → 𝑍 be an étale morphism. Then the functor

𝐹 ∶ (Sch/𝑈)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 ⟶ Sets,
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defined by the rule

𝑈′ ⟼ 𝐹(𝑈′) = {𝜎 ∶ 𝑍𝑈′ → 𝑊𝑈′ section of 𝑊𝑈′ → 𝑍𝑈′}

is an algebraic space and the morphism 𝐹 → 𝑈 is étale.

Proof. Assume first that 𝑊 → 𝑍 is also separated. Let 𝑈′ be a scheme over 𝑈 and let
𝜎 ∈ 𝐹(𝑈′). ByMorphisms of Spaces, Lemma 42.5.7 themorphism 𝜎 is a closed immersion.
Moreover, 𝜎 is étale by Properties of Spaces, Lemma 41.13.6. Hence 𝜎 is also an open im-
mersion, see Morphisms of Spaces, Lemma 42.40.2. In other words, 𝑍𝜎 = 𝜎(𝑍𝑈′) ⊂ 𝑊𝑈′

is an open subspace such that the morphism 𝑍𝜎 → 𝑍𝑈′ is an isomorphism. In particular,
the morphism 𝑍𝜎 → 𝑈′ is finite. Hence we obtain a transformation of functors

𝐹 ⟶ (𝑊/𝑈)𝑓𝑖𝑛, 𝜎 ⟼ (𝑈′ → 𝑈, 𝑍𝜎)

where (𝑊/𝑈)𝑓𝑖𝑛 is the finite part of the morphism 𝑊 → 𝑈 introduced inMore on Groupoids
in Spaces, Section 53.8. It is clear that this transformation of functors is injective (since
we can recover 𝜎 from 𝑍𝜎 as the inverse of the isomorphism 𝑍𝜎 → 𝑍𝑈′). By More on
Groupoids in Spaces, Proposition 53.8.11 we know that (𝑊/𝑈)𝑓𝑖𝑛 is an algebraic space
étale over 𝑈. Hence to finish the proof in this case it suffices to show that 𝐹 → (𝑊/𝑈)𝑓𝑖𝑛 is
representable and an open immersion. To see this suppose that we are given a morphism
of schemes 𝑈′ → 𝑈 and an open subspace 𝑍′ ⊂ 𝑊𝑈′ such that 𝑍′ → 𝑈′ is finite. Then it
suffices to show that there exists an open subscheme 𝑈″ ⊂ 𝑈′ such that a morphism 𝑇 → 𝑈′

factors through 𝑈″ if and only if 𝑍′ ×𝑈′ 𝑇 maps isomorphically to 𝑍 ×𝑈′ 𝑇. This follows
from Quot, Lemma 47.3.6 (here we use that 𝑍 → 𝐵 is flat and locally of finite presentation
as well as finite). Hence we have proved the lemma in case 𝑊 → 𝑍 is separated as well as
étale.

In the general case we choose a separated scheme 𝑊′ and a surjective étale morphism
𝑊′ → 𝑊. Note that the morphisms 𝑊′ → 𝑊 and 𝑊 → 𝑍 are separated as their source
is separated. Denote 𝐹′ the functor associated to 𝑊′ → 𝑍 → 𝑈 as in the lemma. In the
first paragraph of the proof we showed that 𝐹′ is representable by an algebraic space étale
over 𝑈. By Lemma 59.9.1 the map of functors 𝐹′ → 𝐹 is surjective for the étale topology
on Sch/𝑈. Moreover, if 𝑈′ and 𝜎 ∶ 𝑍𝑈′ → 𝑊𝑈′ define a point 𝜉 ∈ 𝐹(𝑈′), then the fibre
product

𝐹″ = 𝐹′ ×𝐹,𝜉 𝑈′

is the functor on Sch/𝑈′ associated to the morphisms

𝑊′
𝑈′ ×𝑊𝑈′,𝜎 𝑍𝑈′ → 𝑍𝑈′ → 𝑈′.

Since the first morphism is separated as a base change of a separated morphism, we see that
𝐹″ is an algebraic space étale over 𝑈′ by the result of the first paragraph. It follows that
𝐹′ → 𝐹 is a surjective étale transformation of functors, which is representable by algebraic
spaces. Hence 𝐹 is an algebraic space by Bootstrap, Theorem 54.10.1. Since 𝐹′ → 𝐹 is
an étale surjective morphism of algebraic spaces it follows that 𝐹 → 𝑈 is étale because
𝐹′ → 𝑈 is étale. �

59.10. Relative morphisms

Let 𝑆 be a scheme. Let 𝑍 → 𝐵 and 𝑋 → 𝐵 be morphisms of algebraic spaces over
𝑆. Given a scheme 𝑇 we can consider pairs (𝑎, 𝑏) where 𝑎 ∶ 𝑇 → 𝐵 is a morphism and
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𝑏 ∶ 𝑇 ×𝑎,𝐵 𝑍 → 𝑇 ×𝑎,𝐵 𝑋 is a morphism over 𝑇. Picture

(59.10.0.1)

𝑇 ×𝑎,𝐵 𝑍

##

𝑏
// 𝑇 ×𝑎,𝐵 𝑋

{{

𝑍

��

𝑋

��
𝑇 𝑎 // 𝐵

Of course, we can also think of 𝑏 as a morphism 𝑏 ∶ 𝑇 ×𝑎,𝐵 𝑍 → 𝑋 such that

𝑇 ×𝑎,𝐵 𝑍 //

��

𝑏 **𝑍

��

𝑋

��
𝑇 𝑎 // 𝐵

commutes. In this situation we can define a functor

(59.10.0.2) 𝑀𝑜𝑟𝐵(𝑍, 𝑋) ∶ (Sch/𝑆)𝑜𝑝𝑝 ⟶ Sets, 𝑇 ⟼ {(𝑎, 𝑏) as above}

Sometimes we think of this as a functor defined on the category of schemes over 𝐵, in which
case we drop 𝑎 from the notation.

Lemma 59.10.1. Let 𝑆 be a scheme. Let 𝑍 → 𝐵 and 𝑋 → 𝐵 be morphisms of algebraic
spaces over 𝑆. Then

(1) 𝑀𝑜𝑟𝐵(𝑍, 𝑋) is a sheaf on (Sch/𝑆)𝑓𝑝𝑝𝑓.
(2) If 𝑇 is an algebraic space over 𝑆, then there is a canonical bijection

𝑀𝑜𝑟Sh((Sch/𝑆)𝑓𝑝𝑝𝑓)(𝑇, 𝑀𝑜𝑟𝐵(𝑍, 𝑋)) = {(𝑎, 𝑏) as in (59.10.0.1)}

Proof. Let 𝑇 be an algebraic space over 𝑆. Let {𝑇𝑖 → 𝑇} be an fppf covering of 𝑇 (as in
Topologies on Spaces, Section 44.4). Suppose that (𝑎𝑖, 𝑏𝑖) ∈ 𝑀𝑜𝑟𝐵(𝑍, 𝑋)(𝑇𝑖) such that
(𝑎𝑖, 𝑏𝑖)|𝑇𝑖×𝑇𝑇𝑗

= (𝑎𝑗, 𝑏𝑗)|𝑇𝑖×𝑇𝑇𝑗
for all 𝑖, 𝑗. Then by Descent on Spaces, Lemma 45.6.2 there

exists a unique morphism 𝑎 ∶ 𝑇 → 𝐵 such that 𝑎𝑖 is the composition of 𝑇𝑖 → 𝑇 and 𝑎.
Then {𝑇𝑖 ×𝑎𝑖,𝐵 𝑍 → 𝑇 ×𝑎,𝐵 𝑍} is an fppf covering too and the same lemma implies there
exists a unique morphism 𝑏 ∶ 𝑇 ×𝑎,𝐵 𝑍 → 𝑇 ×𝑎,𝐵 𝑋 such that 𝑏𝑖 is the composition of
𝑇𝑖 ×𝑎𝑖,𝐵 𝑍 → 𝑇 ×𝑎,𝐵 𝑍 and 𝑏. Hence (𝑎, 𝑏) ∈ 𝑀𝑜𝑟𝐵(𝑍, 𝑋)(𝑇) restricts to (𝑎𝑖, 𝑏𝑖) over 𝑇𝑖 for
all 𝑖.

Note that the result of the preceding paragraph in particular implies (1).

Let 𝑇 be an algebraic space over 𝑆. In order to prove (2) we will construct mutually inverse
maps between the displayed sets. In the following when we say ``pair'' we mean a pair (𝑎, 𝑏)
fitting into (59.10.0.1).

Let 𝑣 ∶ 𝑇 → 𝑀𝑜𝑟𝐵(𝑍, 𝑋) be a natural transformation. Choose a scheme 𝑈 and a surjective
étale morphism 𝑝 ∶ 𝑈 → 𝑇. Then 𝑣(𝑝) ∈ 𝑀𝑜𝑟𝐵(𝑍, 𝑋)(𝑈) corresponds to a pair (𝑎𝑈, 𝑏𝑈)
over 𝑈. Let 𝑅 = 𝑈 ×𝑇 𝑈 with projections 𝑡, 𝑠 ∶ 𝑅 → 𝑈. As 𝑣 is a transformation of
functors we see that the pullbacks of (𝑎𝑈, 𝑏𝑈) by 𝑠 and 𝑡 agree. Hence, since {𝑈 → 𝑇} is an
fppf covering, we may apply the result of the first paragraph that deduce that there exists a
unique pair (𝑎, 𝑏) over 𝑇.

Conversely, let (𝑎, 𝑏) be a pair over 𝑇. Let𝑈 → 𝑇, 𝑅 = 𝑈×𝑇𝑈, and 𝑡, 𝑠 ∶ 𝑅 → 𝑈 be as above.
Then the restriction (𝑎, 𝑏)|𝑈 gives rise to a tranformation of functors 𝑣 ∶ ℎ𝑈 → 𝑀𝑜𝑟𝐵(𝑍, 𝑋)
by the Yoneda lemma (Categories, Lemma 4.3.5). As the two pullbacks 𝑠∗(𝑎, 𝑏)|𝑈 and
𝑡∗(𝑎, 𝑏)|𝑈 are equal, we see that 𝑣 coequalizes the two maps ℎ𝑡, ℎ𝑠 ∶ ℎ𝑅 → ℎ𝑈. Since
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𝑇 = 𝑈/𝑅 is the fppf quotient sheaf by Spaces, Lemma 40.9.1 and since 𝑀𝑜𝑟𝐵(𝑍, 𝑋) is an
fppf sheaf by (1) we conclude that 𝑣 factors through a map 𝑇 → 𝑀𝑜𝑟𝐵(𝑍, 𝑋).
We omit the verification that the two constructions above are mutually inverse. �

Lemma 59.10.2. Let 𝑆 be a scheme. Let 𝑍 → 𝐵, 𝑋 → 𝐵, and 𝐵′ → 𝐵 be morphisms of
algebraic spaces over 𝑆. Set 𝑍′ = 𝐵′ ×𝐵 𝑍 and 𝑋′ = 𝐵′ ×𝐵 𝑋. Then

𝑀𝑜𝑟𝐵′(𝑍′, 𝑋′) = 𝐵′ ×𝐵 𝑀𝑜𝑟𝐵(𝑍, 𝑋)
in Sh((Sch/𝑆)𝑓𝑝𝑝𝑓).

Proof. The equality as functors follows immediately from the definitions. The equality as
sheaves follows from this because both sides are sheaves according to Lemma 59.10.1 and
the fact that a fibre product of sheaves is the same as the corresponding fibre product of
pre-sheaves (i.e., functors). �

Lemma 59.10.3. Let 𝑆 be a scheme. Let 𝑍 → 𝐵 and 𝑋′ → 𝑋 → 𝐵 be morphisms of
algebraic spaces over 𝑆. Assume

(1) 𝑋′ → 𝑋 is étale, and
(2) 𝑍 → 𝐵 is finite locally free.

Then 𝑀𝑜𝑟𝐵(𝑍, 𝑋′) → 𝑀𝑜𝑟𝐵(𝑍, 𝑋) is representable by algebraic spaces and étale. If
𝑋′ → 𝑋 is also surjective, then 𝑀𝑜𝑟𝐵(𝑍, 𝑋′) → 𝑀𝑜𝑟𝐵(𝑍, 𝑋) is surjective.

Proof. Let 𝑈 be a scheme and let 𝜉 = (𝑎, 𝑏) be an element of 𝑀𝑜𝑟𝐵(𝑍, 𝑋)(𝑈). We have to
prove that the functor

ℎ𝑈 ×𝜉,𝑀𝑜𝑟𝐵(𝑍,𝑋) 𝑀𝑜𝑟𝐵(𝑍, 𝑋′)
is representable by an algebaic space étale over 𝑈. Set 𝑍𝑈 = 𝑈×𝑎,𝐵 𝑍 and 𝑊 = 𝑍𝑈 ×𝑏,𝑋 𝑋′.
Then 𝑊 → 𝑍𝑈 → 𝑈 is as in Lemma 59.9.2 and the sheaf 𝐹 defined there is identified with
the fibre product displayed above. Hence the first assertion of the lemma. The second
assertion follows from this and Lemma 59.9.1 which guarantees that 𝐹 → 𝑈 is surjective
in the situation above. �

Lemma 59.10.4. Let 𝑍 → 𝐵 and 𝑋 → 𝐵 be morphisms of affine schemes. Assume
Γ(𝑍, 𝒪𝑍) is a finite free Γ(𝐵, 𝒪𝐵)-module. Then 𝑀𝑜𝑟𝐵(𝑍, 𝑋) is representable by an affine
scheme over 𝐵.

Proof. Write 𝐵 = 𝑆𝑝𝑒𝑐(𝑅). Choose a basis {𝑒1, … , 𝑒𝑚} for Γ(𝑍, 𝒪𝑍). Finally, choose a
presentation

Γ(𝑋, 𝒪𝑋) = 𝑅[{𝑥𝑖}𝑖∈𝐼]/({𝑓𝑘}𝑘∈𝐾).
We will denote 𝑥𝑖 the image of 𝑥𝑖 in this quotient. Write

𝑃 = 𝑅[{𝑎𝑖𝑗}𝑖∈𝐼,1≤𝑗≤𝑚].
Consider the 𝑅-algebra map

Ψ ∶ 𝑅[{𝑥𝑖}𝑖∈𝐼] ⟶ 𝑃 ⊗𝑅 Γ(𝑍, 𝒪𝑍), 𝑥𝑖 ⟼ ∑𝑗
𝑎𝑖𝑗 ⊗ 𝑒𝑗.

Write Ψ(𝑓𝑘) = ∑ 𝑐𝑘𝑗 ⊗ 𝑒𝑗 with 𝑐𝑘𝑗 ∈ 𝑃. Finally, denote 𝐽 ⊂ 𝑃 the ideal generated by the
elements 𝑐𝑘𝑗, 𝑘 ∈ 𝐾, 1 ≤ 𝑗 ≤ 𝑚. We claim that 𝑊 = 𝑆𝑝𝑒𝑐(𝑃/𝐽) represents the functor
𝑀𝑜𝑟𝐵(𝑍, 𝑋).
First, note that by construction 𝑃/𝐽 is an 𝑅-algebra, hence a morphism 𝑎𝑢𝑛𝑖𝑣 ∶ 𝑊 → 𝐵. Sec-
ond, by construction the map Ψ factors through Γ(𝑋, 𝒪𝑋), hence we obtain an 𝑃/𝐽-algebra
homomorphism

𝑃/𝐽 ⊗𝑅 Γ(𝑋, 𝒪𝑋) ⟶ 𝑃/𝐽 ⊗𝑅 Γ(𝑍, 𝒪𝑍)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05Y4
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which determines a morphism 𝑏𝑢𝑛𝑖𝑣 ∶ 𝑊 ×𝑎𝑢𝑛𝑖𝑣,𝐵 𝑍 → 𝑊 ×𝑎𝑢𝑛𝑖𝑣,𝐵 𝑋. By the Yoneda lemma
the pair (𝑎𝑢𝑛𝑖𝑣, 𝑏𝑢𝑛𝑖𝑣) determines a transformation of functors 𝑊 → 𝑀𝑜𝑟𝐵(𝑍, 𝑋) which
we claim is an isomorphism. To show that it is an isomorphism it suffices to show that it
induces a bijection of sets 𝑊(𝑇) → 𝑀𝑜𝑟𝐵(𝑍, 𝑋)(𝑇) over any affine scheme 𝑇.

Suppose 𝑇 = 𝑆𝑝𝑒𝑐(𝑅′) is an affine scheme and (𝑎, 𝑏) ∈ 𝑀𝑜𝑟𝐵(𝑍, 𝑋)(𝑇), then 𝑎 defines an
𝑅-algebra structure on 𝑅′ and 𝑏 defines an 𝑅′-algebra map

𝑏♯ ∶ 𝑅′ ⊗𝑅 Γ(𝑋, 𝒪𝑋) ⟶ 𝑅′ ⊗𝑅 Γ(𝑍, 𝒪𝑍).

In particular we can write 𝑏♯(1 ⊗ 𝑥𝑖) = ∑ 𝛼𝑖𝑗 ⊗ 𝑒𝑗 for some 𝛼𝑖𝑗 ∈ 𝑅′. This corresponds
to an 𝑅-algebra map 𝑃 → 𝑅′ determined by the rule 𝑎𝑖𝑗 ↦ 𝛼𝑖𝑗. This map factors through
the quotient 𝑃/𝐽 by the construction of the ideal 𝐽 to give a map 𝑃/𝐽 → 𝑅′. This in turn
corresponds to a morphism 𝑇 → 𝑊 such that (𝑎, 𝑏) is the pullback of (𝑎𝑢𝑛𝑖𝑣, 𝑏𝑢𝑛𝑖𝑣). Some
details omitted. �

Proposition 59.10.5. Let𝑆 be a scheme. Let𝑍 → 𝐵 and𝑋 → 𝐵 bemorphisms of algebraic
spaces over 𝑆. If 𝑍 → 𝐵 is finite locally free then 𝑀𝑜𝑟𝐵(𝑍, 𝑋) is an algebraic space.

Proof. Choose a scheme 𝐵′ = ∐ 𝐵′
𝑖 which is a disjoint union of affine schemes 𝐵′

𝑖 and
an étale surjective morphism 𝐵′ → 𝐵. We may also assume that 𝐵′

𝑖 ×𝐵 𝑍 is the spectrum
of a ring which is finite free as a Γ(𝐵′

𝑖 , 𝒪𝐵′
𝑖
)-module. By Lemma 59.10.2 and Spaces,

Lemma 40.5.5 the morphism 𝑀𝑜𝑟𝐵′(𝑍′, 𝑋′) → 𝑀𝑜𝑟𝐵(𝑍, 𝑋) is surjective étale. Hence by
Bootstrap, Theorem 54.10.1 it suffices to prove the proposition when 𝐵 = 𝐵′ is a disjoint
union of affine schemes 𝐵′

𝑖 so that each 𝐵′
𝑖 ×𝐵 𝑍 is finite free over 𝐵′

𝑖 . Then it actually
suffices to prove the result for the restriction to each 𝐵′

𝑖 . Thus we may assume that 𝐵 is
affine and that Γ(𝑍, 𝒪𝑍) is a finite free Γ(𝐵, 𝒪𝐵)-module.

Choose a scheme 𝑋′ which is a disjoint union of affine schemes and a surjective étale
morphism 𝑋′ → 𝑋. By Lemma 59.10.3 the morphism 𝑀𝑜𝑟𝐵(𝑍, 𝑋′) → 𝑀𝑜𝑟𝐵(𝑍, 𝑋)
is representable by algebraic spaces, étale, and surjective. Hence by Bootstrap, Theorem
54.10.1 it suffices to prove the proposition when 𝑋 is a disjoint union of affine schemes.
This reduces us to the case discussed in the next paragraph.

Assume 𝑋 = ∐𝑖∈𝐼 𝑋𝑖 is a disjoint union of affine schemes, 𝐵 is affine, and that Γ(𝑍, 𝒪𝑍)
is a finite free Γ(𝐵, 𝒪𝐵)-module. For any finite subset 𝐸 ⊂ 𝐼 set

𝐹𝐸 = 𝑀𝑜𝑟𝐵(𝑍, ∐𝑖∈𝐸
𝑋𝑖).

By Lemma 59.10.4 we see that 𝐹𝐸 is an algebraic space. Consider the morphism

∐𝐸⊂𝐼 finite
𝐹𝐸 ⟶ 𝑀𝑜𝑟𝐵(𝑍, 𝑋)

Each of the morphisms 𝐹𝐸 → 𝑀𝑜𝑟𝐵(𝑍, 𝑋) is an open immersion, because it is simply
the locus parametrizing pairs (𝑎, 𝑏) where 𝑏 maps into the open subscheme ∐𝑖∈𝐸 𝑋𝑖 of
𝑋. Moreover, if 𝑇 is quasi-compact, then for any pair (𝑎, 𝑏) the image of 𝑏 is contained in
∐𝑖∈𝐸 𝑋𝑖 for some 𝐸 ⊂ 𝐼 finite. Hence the displayed arrow is in fact an open covering and
we win1 by Spaces, Lemma 40.8.4. �

1Modulo some set theoretic arguments. Namely, we have to show that ∐ 𝐹𝐸 is an algebraic space. This
follows because |𝐼| ≤ size(𝑋) and size(𝐹𝐸) ≤ size(𝑋) as follows from the explicit description of 𝐹𝐸 in the proof
of Lemma 59.10.4. Some details omitted.
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59.11. Restriction of scalars

Suppose 𝑋 → 𝑍 → 𝐵 are morphisms of algebraic spaces over 𝑆. Given a scheme 𝑇 we can
consider pairs (𝑎, 𝑏) where 𝑎 ∶ 𝑇 → 𝐵 is a morphism and 𝑏 ∶ 𝑇 ×𝑎,𝐵 𝑍 → 𝑋 is a morphism
over 𝑍. Picture

(59.11.0.1)

𝑋

��
𝑇 ×𝑎,𝐵 𝑍

��

𝑏
;;

// 𝑍

��
𝑇 𝑎 // 𝐵

In this situation we can define a functor

(59.11.0.2) Res𝑍/𝐵(𝑋) ∶ (Sch/𝑆)𝑜𝑝𝑝 ⟶ Sets, 𝑇 ⟼ {(𝑎, 𝑏) as above}

Sometimes we think of this as a functor defined on the category of schemes over 𝐵, in which
case we drop 𝑎 from the notation.

Lemma 59.11.1. Let 𝑆 be a scheme. Let 𝑋 → 𝑍 → 𝐵 be morphisms of algebraic spaces
over 𝑆. Then

(1) Res𝑍/𝐵(𝑋) is a sheaf on (Sch/𝑆)𝑓𝑝𝑝𝑓.
(2) If 𝑇 is an algebraic space over 𝑆, then there is a canonical bijection

𝑀𝑜𝑟Sh((Sch/𝑆)𝑓𝑝𝑝𝑓)(𝑇,Res𝑍/𝐵(𝑋)) = {(𝑎, 𝑏) as in (59.11.0.1)}

Proof. Let 𝑇 be an algebraic space over 𝑆. Let {𝑇𝑖 → 𝑇} be an fppf covering of 𝑇 (as
in Topologies on Spaces, Section 44.4). Suppose that (𝑎𝑖, 𝑏𝑖) ∈ Res𝑍/𝐵(𝑋)(𝑇𝑖) such that
(𝑎𝑖, 𝑏𝑖)|𝑇𝑖×𝑇𝑇𝑗

= (𝑎𝑗, 𝑏𝑗)|𝑇𝑖×𝑇𝑇𝑗
for all 𝑖, 𝑗. Then by Descent on Spaces, Lemma 45.6.2 there

exists a unique morphism 𝑎 ∶ 𝑇 → 𝐵 such that 𝑎𝑖 is the composition of 𝑇𝑖 → 𝑇 and 𝑎. Then
{𝑇𝑖 ×𝑎𝑖,𝐵 𝑍 → 𝑇 ×𝑎,𝐵 𝑍} is an fppf covering too and the same lemma implies there exists a
unique morphism 𝑏 ∶ 𝑇×𝑎,𝐵 𝑍 → 𝑋 such that 𝑏𝑖 is the composition of 𝑇𝑖 ×𝑎𝑖,𝐵 𝑍 → 𝑇×𝑎,𝐵 𝑍
and 𝑏. Hence (𝑎, 𝑏) ∈ Res𝑍/𝐵(𝑋)(𝑇) restricts to (𝑎𝑖, 𝑏𝑖) over 𝑇𝑖 for all 𝑖.

Note that the result of the preceding paragraph in particular implies (1).

Let 𝑇 be an algebraic space over 𝑆. In order to prove (2) we will construct mutually inverse
maps between the displayed sets. In the following when we say ``pair'' we mean a pair (𝑎, 𝑏)
fitting into (59.11.0.1).

Let 𝑣 ∶ 𝑇 → Res𝑍/𝐵(𝑋) be a natural transformation. Choose a scheme 𝑈 and a surjective
étale morphism 𝑝 ∶ 𝑈 → 𝑇. Then 𝑣(𝑝) ∈ Res𝑍/𝐵(𝑋)(𝑈) corresponds to a pair (𝑎𝑈, 𝑏𝑈)
over 𝑈. Let 𝑅 = 𝑈 ×𝑇 𝑈 with projections 𝑡, 𝑠 ∶ 𝑅 → 𝑈. As 𝑣 is a transformation of
functors we see that the pullbacks of (𝑎𝑈, 𝑏𝑈) by 𝑠 and 𝑡 agree. Hence, since {𝑈 → 𝑇} is an
fppf covering, we may apply the result of the first paragraph that deduce that there exists a
unique pair (𝑎, 𝑏) over 𝑇.

Conversely, let (𝑎, 𝑏) be a pair over 𝑇. Let𝑈 → 𝑇, 𝑅 = 𝑈×𝑇𝑈, and 𝑡, 𝑠 ∶ 𝑅 → 𝑈 be as above.
Then the restriction (𝑎, 𝑏)|𝑈 gives rise to a tranformation of functors 𝑣 ∶ ℎ𝑈 → Res𝑍/𝐵(𝑋)
by the Yoneda lemma (Categories, Lemma 4.3.5). As the two pullbacks 𝑠∗(𝑎, 𝑏)|𝑈 and
𝑡∗(𝑎, 𝑏)|𝑈 are equal, we see that 𝑣 coequalizes the two maps ℎ𝑡, ℎ𝑠 ∶ ℎ𝑅 → ℎ𝑈. Since
𝑇 = 𝑈/𝑅 is the fppf quotient sheaf by Spaces, Lemma 40.9.1 and since Res𝑍/𝐵(𝑋) is an
fppf sheaf by (1) we conclude that 𝑣 factors through a map 𝑇 → Res𝑍/𝐵(𝑋).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05YB


59.11. RESTRICTION OF SCALARS 2745

We omit the verification that the two constructions above are mutually inverse. �

Of course the sheaf Res𝑍/𝐵(𝑋) comeswith a natural transformation of functors Res𝑍/𝐵(𝑋) →
𝐵. We will use this without further mention in the following.

Lemma 59.11.2. Let 𝑆 be a scheme. Let 𝑋 → 𝑍 → 𝐵 and 𝐵′ → 𝐵 be morphisms of
algebraic spaces over 𝑆. Set 𝑍′ = 𝐵′ ×𝐵 𝑍 and 𝑋′ = 𝐵′ ×𝐵 𝑋. Then

Res𝑍′/𝐵′(𝑋′) = 𝐵′ ×𝐵 Res𝑍/𝐵(𝑋)

in Sh((Sch/𝑆)𝑓𝑝𝑝𝑓).

Proof. The equality as functors follows immediately from the definitions. The equality as
sheaves follows from this because both sides are sheaves according to Lemma 59.11.1 and
the fact that a fibre product of sheaves is the same as the corresponding fibre product of
pre-sheaves (i.e., functors). �

Lemma 59.11.3. Let 𝑆 be a scheme. Let 𝑋′ → 𝑋 → 𝑍 → 𝐵 be morphisms of algebraic
spaces over 𝑆. Assume

(1) 𝑋′ → 𝑋 is étale, and
(2) 𝑍 → 𝐵 is finite locally free.

Then Res𝑍/𝐵(𝑋′) → Res𝑍/𝐵(𝑋) is representable by algebraic spaces and étale. If 𝑋′ → 𝑋
is also surjective, then Res𝑍/𝐵(𝑋′) → Res𝑍/𝐵(𝑋) is surjective.

Proof. Let 𝑈 be a scheme and let 𝜉 = (𝑎, 𝑏) be an element of Res𝑍/𝐵(𝑋)(𝑈). We have to
prove that the functor

ℎ𝑈 ×𝜉,Res𝑍/𝐵(𝑋) Res𝑍/𝐵(𝑋′)

is representable by an algebaic space étale over 𝑈. Set 𝑍𝑈 = 𝑈×𝑎,𝐵 𝑍 and 𝑊 = 𝑍𝑈 ×𝑏,𝑋 𝑋′.
Then 𝑊 → 𝑍𝑈 → 𝑈 is as in Lemma 59.9.2 and the sheaf 𝐹 defined there is identified with
the fibre product displayed above. Hence the first assertion of the lemma. The second
assertion follows from this and Lemma 59.9.1 which guarantees that 𝐹 → 𝑈 is surjective
in the situation above. �

At this point we can use the lemmas above to prove that Res𝑍/𝐵(𝑋) is an algebraic space
whenever 𝑍 → 𝐵 is finite locally free in almost exactly the same way as in the proof that
𝑀𝑜𝑟𝐵(𝑍, 𝑋) is an algebraic spaces, see Proposition 59.10.5. Insteadwewill directly deduce
this result from the following lemma and the fact that 𝑀𝑜𝑟𝐵(𝑍, 𝑋) is an algebraic space.

Lemma 59.11.4. Let 𝑆 be a scheme. Let 𝑋 → 𝑍 → 𝐵 be morphisms of algebraic spaces
over 𝑆. The following diagram

𝑀𝑜𝑟𝐵(𝑍, 𝑋) //𝑀𝑜𝑟𝐵(𝑍, 𝑍)

Res𝑍/𝐵(𝑋) //

OO

𝐵

id𝑍

OO

is a cartesian diagram of sheaves on (Sch/𝑆)𝑓𝑝𝑝𝑓.

Proof. Omitted. Hint: Exercise in the functorial point of view in algebraic geometry. �

Proposition 59.11.5. Let 𝑆 be a scheme. Let 𝑋 → 𝑍 → 𝐵 be morphisms of algebraic
spaces over 𝑆. If 𝑍 → 𝐵 is finite locally free then Res𝑍/𝐵(𝑋) is an algebraic space.
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Proof. By Proposition 59.10.5 the functors 𝑀𝑜𝑟𝐵(𝑍, 𝑋) and 𝑀𝑜𝑟𝐵(𝑍, 𝑍) are algebraic
spaces. Hence this follows from the cartesian diagram of Lemma 59.11.4 and the fact that
fibre products of algebraic spaces exist and are given by the fibre product in the underlying
category of sheaves of sets (see Spaces, Lemma 40.7.2). �

59.12. Finite Hilbert stacks

In this section we prove some results concerning the finite Hilbert stacks ℋ𝑑(𝒳/𝒴) intro-
duced in Examples of Stacks, Section 55.17.

Lemma 59.12.1. Consider a 2-commutative diagram

𝒳′
𝐺
//

𝐹′

��

𝒳

𝐹
��

𝒴′ 𝐻 // 𝒴

of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 with a given 2-isomorphism 𝛾 ∶ 𝐻 ∘ 𝐹′ → 𝐹 ∘ 𝐺. In
this situation we obtain a canonical 1-morphism ℋ𝑑(𝒳′/𝒴′) → ℋ𝑑(𝒳/𝒴). This morphism
is compatible with the forgetful 1-morphisms of Examples of Stacks, Equation (55.17.2.1).

Proof. We map the object (𝑈, 𝑍, 𝑦′, 𝑥′, 𝛼′) to the object (𝑈, 𝑍, 𝐻(𝑦′), 𝐺(𝑥′), 𝛾 ⋆ id𝐻 ⋆
𝛼′) where ⋆ denotes horizontal composition of 2-morphisms, see Categories, Definition
4.25.1. To a morphism (𝑓, 𝑔, 𝑏, 𝑎) ∶ (𝑈1, 𝑍1, 𝑦′

1, 𝑥′
1, 𝛼′

1) → (𝑈2, 𝑍2, 𝑦′
2, 𝑥′

2, 𝛼′
2) we assign

(𝑓, 𝑔, 𝐻(𝑏), 𝐺(𝑎)). We omit the verification that this defines a functor between categories
over (Sch/𝑆)𝑓𝑝𝑝𝑓. �

Lemma59.12.2. In the situation of Lemma 59.12.1 assume that the given square is 2-cartesian.
Then the diagram

ℋ𝑑(𝒳′/𝒴′) //

��

ℋ𝑑(𝒳/𝒴)

��
𝒴′ // 𝒴

is 2-cartesian.

Proof. Weget a 2-commutative diagram byLemma 59.12.1 and hencewe get a 1-morphism
(i.e., a functor)

ℋ𝑑(𝒳′/𝒴′) ⟶ 𝒴′ ×𝒴 ℋ𝑑(𝒳/𝒴)
We indicate why this functor is essentially surjective. Namely, an object of the category
on the right hand side is given by a scheme 𝑈 over 𝑆, an object 𝑦′ of 𝒴′

𝑈, an object
(𝑈, 𝑍, 𝑦, 𝑥, 𝛼) of ℋ𝑑(𝒳/𝒴) over 𝑈 and an isomorphism 𝐻(𝑦′) → 𝑦 in 𝒴𝑈. The assump-
tion means exactly that there exists an object 𝑥′ of 𝒳′

𝑍 such that there exist isomorphisms
𝐺(𝑥′) ≅ 𝑥 and 𝛼′ ∶ 𝑦′|𝑍 → 𝐹′(𝑥′) compatible with 𝛼. Then we see that (𝑈, 𝑍, 𝑦′, 𝑥′, 𝛼′) is
an object of ℋ𝑑(𝒳′/𝒴′) over 𝑈. Details omitted. �

Lemma 59.12.3. In the situation of Lemma 59.12.1 assume
(1) 𝒴′ = 𝒴 and 𝐻 = id𝒴,
(2) 𝐺 is representable by algebraic spaces and étale.

Then ℋ𝑑(𝒳′/𝒴) → ℋ𝑑(𝒳/𝒴) is representable by algebraic spaces and étale. If 𝐺 is also
surjective, then ℋ𝑑(𝒳′/𝒴) → ℋ𝑑(𝒳/𝒴) is surjective.
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Proof. Let 𝑈 be a scheme and let 𝜉 = (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) be an object of ℋ𝑑(𝒳/𝒴) over 𝑈. We
have to prove that the 2-fibre product

(59.12.3.1) (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝜉,ℋ𝑑(𝒳/𝒴) ℋ𝑑(𝒳′/𝒴)

is representable by an algebraic space étale over 𝑈. An object of this over 𝑈′ corresponds to
an object 𝑥′ in the fibre category of 𝒳′ over 𝑍𝑈′ such that 𝐺(𝑥′) ≅ 𝑥|𝑍𝑈′ . By assumption
the 2-fibre product

(Sch/𝑍)𝑓𝑝𝑝𝑓 ×𝑥,𝒳 𝒳′

is representable by an algebraic space 𝑊 such that the projection 𝑊 → 𝑍 is étale. Then
(59.12.3.1) is representable by the algebraic space 𝐹 parametrizing sections of 𝑊 → 𝑍
over 𝑈 introduced in Lemma 59.9.2. Since 𝐹 → 𝑈 is étale we conclude that ℋ𝑑(𝒳′/𝒴) →
ℋ𝑑(𝒳/𝒴) is representable by algebraic spaces and étale. Finally, if 𝒳′ → 𝒳 is surjective
also, then 𝑊 → 𝑍 is surjective, and hence 𝐹 → 𝑈 is surjective by Lemma 59.9.1. Thus in
this case ℋ𝑑(𝒳′/𝒴) → ℋ𝑑(𝒳/𝒴) is also surjective. �

Lemma 59.12.4. In the situation of Lemma 59.12.1. Assume that 𝐺, 𝐻 are representable
by algebraic spaces and étale. Then ℋ𝑑(𝒳′/𝒴′) → ℋ𝑑(𝒳/𝒴) is representable by alge-
braic spaces and étale. If also 𝐻 is surjective and the induced functor 𝒳′ → 𝒴′ ×𝒴 𝒳 is
surjective, then ℋ𝑑(𝒳′/𝒴′) → ℋ𝑑(𝒳/𝒴) is surjective.

Proof. Set 𝒳″ = 𝒴′ ×𝒴 𝒳. By Lemma 59.4.1 the 1-morphism 𝒳′ → 𝒳″ is representable
by algebraic spaces and étale (in particular the condition in the second statement of the
lemma that 𝒳′ → 𝒳″ be surjective makes sense). We obtain a 2-commutative diagram

𝒳′ //

��

𝒳″ //

��

𝒳

��
𝒴′ // 𝒴′ // 𝒴

It follows from Lemma 59.12.2 that ℋ𝑑(𝒳″/𝒴′) is the base change of ℋ𝑑(𝒳/𝒴) by 𝒴′ →
𝒴. In particular we see that ℋ𝑑(𝒳″/𝒴′) → ℋ𝑑(𝒳/𝒴) is representable by algebraic spaces
and étale, see Algebraic Stacks, Lemma 57.10.6. Moreover, it is also surjective if 𝐻 is.
Hence if we can show that the result holds for the left square in the diagram, then we're
done. In this way we reduce to the case where 𝒴′ = 𝒴 which is the content of Lemma
59.12.3. �

Lemma 59.12.5. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
Assume that Δ ∶ 𝒴 → 𝒴 × 𝒴 is representable by algebraic spaces. Then

ℋ𝑑(𝒳/𝒴) ⟶ ℋ𝑑(𝒳) × 𝒴

see Examples of Stacks, Equation (55.17.2.1) is representably by algebraic spaces.

Proof. Let 𝑈 be a scheme and let 𝜉 = (𝑈, 𝑍, 𝑝, 𝑥, 1) be an object of ℋ𝑑(𝒳) = ℋ𝑑(𝒳/𝑆)
over 𝑈. Here 𝑝 is just the structure morphism of 𝑈. The fifth component 1 exists and is
unique since everything is over 𝑆. Also, let 𝑦 be an object of 𝒴 over 𝑈. We have to show
the 2-fibre product

(59.12.5.1) (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝜉×𝑦,ℋ𝑑(𝒳)×𝒴 ℋ𝑑(𝒳/𝒴)

is representable by an algebraic space. To explain why this is so we introduce

𝐼 = 𝐼𝑠𝑜𝑚𝒴(𝑦|𝑍, 𝐹(𝑥))
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which is an algebraic space over 𝑍 by assumption. Let 𝑎 ∶ 𝑈′ → 𝑈 be a scheme over 𝑈.
What does it mean to give an object of the fibre category of (59.12.5.1) over 𝑈′? Well,
it means that we have an object 𝜉′ = (𝑈′, 𝑍′, 𝑦′, 𝑥′, 𝛼′) of ℋ𝑑(𝒳/𝒴) over 𝑈′ and iso-
morphisms (𝑈′, 𝑍′, 𝑝′, 𝑥′, 1) ≅ (𝑈, 𝑍, 𝑝, 𝑥, 1)|𝑈′ and 𝑦′ ≅ 𝑦|𝑈′. Thus 𝜉′ is isomorphic to
(𝑈′, 𝑈′ ×𝑎,𝑈 𝑍, 𝑎∗𝑦, 𝑥|𝑈′×𝑎,𝑈𝑍, 𝛼) for some morphism

𝛼 ∶ 𝑎∗𝑦|𝑈′×𝑎,𝑈𝑍 ⟶ 𝐹(𝑥|𝑈′×𝑎,𝑈𝑍)

in the fibre category of 𝒴 over 𝑈′ ×𝑎,𝑈 𝑍. Hence we can view 𝛼 as a morphism 𝑏 ∶ 𝑈′ ×𝑎,𝑈
𝑍 → 𝐼. In this way we see that (59.12.5.1) is representable by Res𝑍/𝑈(𝐼) which is an
algebraic space by Proposition 59.11.5. �

The following lemma is a (partial) generalization of Lemma 59.12.3.

Lemma 59.12.6. Let 𝐹 ∶ 𝒳 → 𝒴 and 𝐺 ∶ 𝒳′ → 𝒳 be 1-morphisms of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. If 𝐺 is representable by algebraic spaces, then the 1-morphism

ℋ𝑑(𝒳′/𝒴) ⟶ ℋ𝑑(𝒳/𝒴)

is representable by algebraic spaces.

Proof. Let 𝑈 be a scheme and let 𝜉 = (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) be an object of ℋ𝑑(𝒳/𝒴) over 𝑈. We
have to prove that the 2-fibre product

(59.12.6.1) (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝜉,ℋ𝑑(𝒳/𝒴) ℋ𝑑(𝒳′/𝒴)

is representable by an algebraic space étale over 𝑈. An object of this over 𝑎 ∶ 𝑈′ →
𝑈 corresponds to an object 𝑥′ of 𝒳′ over 𝑈′ ×𝑎,𝑈 𝑍 such that 𝐺(𝑥′) ≅ 𝑥|𝑈′×𝑎,𝑈𝑍. By
assumption the 2-fibre product

(Sch/𝑍)𝑓𝑝𝑝𝑓 ×𝑥,𝒳 𝒳′

is representable by an algebraic space 𝑋 over 𝑍. It follows that (59.12.6.1) is representable
by Res𝑍/𝑈(𝑋), which is an algebraic space by Proposition 59.11.5. �

Lemma 59.12.7. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
Assume 𝐹 is representable by algebraic spaces and locally of finite presentation. Then

𝑝 ∶ ℋ𝑑(𝒳/𝒴) → 𝒴

is limit preserving on objects.

Proof. This means we have to show the following: Given
(1) an affine scheme 𝑈 = 𝑙𝑖𝑚𝑖 𝑈𝑖 which is written as the directed limit of affine

schemes 𝑈𝑖 over 𝑆,
(2) an object 𝑦𝑖 of 𝒴 over 𝑈𝑖 for some 𝑖, and
(3) an object Ξ = (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) of ℋ𝑑(𝒳/𝒴) over 𝑈 such that 𝑦 = 𝑦𝑖|𝑈,

then there exists an 𝑖′ ≥ 𝑖 and an object Ξ𝑖′ = (𝑈𝑖′, 𝑍𝑖′, 𝑦𝑖′, 𝑥𝑖′, 𝛼𝑖′) of ℋ𝑑(𝒳/𝒴) over
𝑈𝑖′ with Ξ𝑖′|𝑈 = Ξ and 𝑦𝑖′ = 𝑦𝑖|𝑈𝑖′

. Namely, the last two equalities will take care of the
commutativity of (59.5.0.1).

Let 𝑋𝑦𝑖
→ 𝑈𝑖 be an algebraic space representing the 2-fibre product

(Sch/𝑈𝑖)𝑓𝑝𝑝𝑓 ×𝑦𝑖,𝒴,𝐹 𝒳.

Note that 𝑋𝑦𝑖
→ 𝑈𝑖 is locally of finite presentation by our assumption on 𝐹. Write Ξ. It is

clear that 𝜉 = (𝑍, 𝑍 → 𝑈𝑖, 𝑥, 𝛼) is an object of the 2-fibre product displayed above, hence 𝜉
gives rise to a morphism 𝑓𝜉 ∶ 𝑍 → 𝑋𝑦𝑖

of algebraic spaces over 𝑈𝑖 (since 𝑋𝑦𝑖
is the functor
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of isomorphisms classes of objects of (Sch/𝑈𝑖)𝑓𝑝𝑝𝑓 ×𝑦,𝒴,𝐹 𝒳, see Algebraic Stacks, Lemma
57.8.2). By Limits, Lemmas 27.6.1 and 27.6.7 there exists an 𝑖′ ≥ 𝑖 and a finite locally free
morphism 𝑍𝑖′ → 𝑈𝑖′ of degree 𝑑 whose base change to 𝑈 is 𝑍. By More on Morphisms of
Spaces, Proposition 46.4.9 we may, after replacing 𝑖′ by a bigger index, assume there exists
a morphism 𝑓𝑖′ ∶ 𝑍𝑖′ → 𝑋𝑦𝑖

such that

𝑍

��

//

𝑓𝜉

''
𝑍𝑖′

��

𝑓𝑖′
// 𝑋𝑦𝑖

��
𝑈 // 𝑈𝑖′

// 𝑈𝑖

is commutative. We set Ξ𝑖′ = (𝑈𝑖′, 𝑍𝑖′, 𝑦𝑖′, 𝑥𝑖′, 𝛼𝑖′) where
(1) 𝑦𝑖′ is the object of 𝒴 over 𝑈𝑖′ which is the pullback of 𝑦𝑖 to 𝑈𝑖′,
(2) 𝑥𝑖′ is the object of 𝒳 over 𝑍𝑖′ corresponding via the 2-Yoneda lemma to the

1-morphism

(Sch/𝑍𝑖′)𝑓𝑝𝑝𝑓 → 𝒮𝑋𝑦𝑖
→ (Sch/𝑈𝑖)𝑓𝑝𝑝𝑓 ×𝑦𝑖,𝒴,𝐹 𝒳 → 𝒳

where the middle arrow is the equivalence which defines 𝑋𝑦𝑖
(notation as in Al-

gebraic Stacks, Sections 57.8 and 57.7).
(3) 𝛼𝑖′ ∶ 𝑦𝑖′|𝑍𝑖′

→ 𝐹(𝑥𝑖′) is the isomorphism coming from the 2-commutativity of
the diagram

(Sch/𝑍𝑖′)𝑓𝑝𝑝𝑓
//

))

(Sch/𝑈𝑖)𝑓𝑝𝑝𝑓 ×𝑦𝑖,𝒴,𝐹 𝒳 //

��

𝒳

𝐹
��

(Sch/𝑈𝑖′)𝑓𝑝𝑝𝑓
// 𝒴

Recall that 𝑓𝜉 ∶ 𝑍 → 𝑋𝑦𝑖
was the morphism corresponding to the object 𝜉 = (𝑍, 𝑍 →

𝑈𝑖, 𝑥, 𝛼) of (Sch/𝑈𝑖)𝑓𝑝𝑝𝑓 ×𝑦𝑖,𝒴,𝐹 𝒳 over 𝑍. By construction 𝑓𝑖′ is the morphism correspond-
ing to the object 𝜉𝑖′ = (𝑍𝑖′, 𝑍𝑖′ → 𝑈𝑖, 𝑥𝑖′, 𝛼𝑖′). As 𝑓𝜉 = 𝑓𝑖′ ∘ (𝑍 → 𝑍𝑖′) we see that the
object 𝜉𝑖′ = (𝑍𝑖′, 𝑍𝑖′ → 𝑈𝑖, 𝑥𝑖′, 𝛼𝑖′) pulls back to 𝜉 over 𝑍. Thus 𝑥𝑖′ pulls back to 𝑥 and
𝛼𝑖′ pulls back to 𝛼. This means that Ξ𝑖′ pulls back to Ξ over 𝑈 and we win. �

59.13. The finite Hilbert stack of a point

Let 𝑑 ≥ 1 be an integer. In Examples of Stacks, Definition 55.17.2 we defined a stack in
groupoids ℋ𝑑. In this section we prove that ℋ𝑑 is an algebraic stack. We will throughout
assume that 𝑆 = 𝑆𝑝𝑒𝑐(𝐙). The general case will follow from this by base change. Recall
that the fibre category of ℋ𝑑 over a scheme 𝑇 is the category of finite locally free mor-
phisms 𝜋 ∶ 𝑍 → 𝑇 of degree 𝑑. Instead of classifying these directly we first study the
quasi-coherent sheaves of algebras 𝜋∗𝒪𝑍.

Let 𝑅 be a ring. Let us temporarily make the following definition: A free 𝑑-dimensional
algebra over 𝑅 is given by a commutative 𝑅-algebra structure 𝑚 on 𝑅⊕𝑑 such that 𝑒1 =
(1, 0, … , 0) is a unit2. We think of 𝑚 as an 𝑅-linear map

𝑚 ∶ 𝑅⊕𝑑 ⊗𝑅 𝑅⊕𝑑 ⟶ 𝑅⊕𝑑

2It may be better to think of this as a pair consisting of a multiplication map 𝑚 ∶ 𝑅⊕𝑑 ⊗𝑅 𝑅⊕𝑑 → 𝑅⊕𝑑 and
a ring map 𝜓 ∶ 𝑅 → 𝑅⊕𝑑 satisfying a bunch of axioms.
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such that 𝑚(𝑒1, 𝑥) = 𝑚(𝑥, 𝑒1) = 𝑥 and such that 𝑚 defines a commutative and associative
ring structure. If we write 𝑚(𝑒𝑖, 𝑒𝑗) = ∑ 𝑎𝑘

𝑖𝑗𝑒𝑘 then we see this boils down to the conditions

⎧⎪
⎨
⎪⎩

∑𝑙 𝑎𝑙
𝑖𝑗𝑎

𝑚
𝑙𝑘 = ∑𝑙 𝑎𝑚

𝑖𝑙𝑎
𝑙
𝑗𝑘 ∀𝑖, 𝑗, 𝑘, 𝑚

𝑎𝑘
𝑖𝑗 = 𝑎𝑘

𝑗𝑖 ∀𝑖, 𝑗, 𝑘
𝑎𝑗

𝑖1 = 𝛿𝑖𝑗 ∀𝑖, 𝑗

where 𝛿𝑖𝑗 is the Kronecker 𝛿-function. OK, so let's define

𝑅𝑢𝑛𝑖𝑣 = 𝐙[𝑎𝑘
𝑖𝑗]/𝐽

where the ideal 𝐽 is the ideal generated by the relations displayed above. Denote

𝑚𝑢𝑛𝑖𝑣 ∶ 𝑅⊕𝑑
𝑢𝑛𝑖𝑣 ⊗𝑅𝑢𝑛𝑖𝑣

𝑅⊕𝑑
𝑢𝑛𝑖𝑣 ⟶ 𝑅⊕𝑑

𝑢𝑛𝑖𝑣

the free 𝑑-dimensional algebra 𝑚 over 𝑅𝑢𝑛𝑖𝑣 whose structure constants are the classes of 𝑎𝑘
𝑖𝑗

modulo 𝐽. Then it is clear that given any free 𝑑-dimensional algebra 𝑚 over a ring 𝑅 there
exists a unique 𝐙-algebra homomorphism 𝜓 ∶ 𝑅𝑢𝑛𝑖𝑣 → 𝑅 such that 𝜓∗𝑚𝑢𝑛𝑖𝑣 = 𝑚 (this
means that 𝑚 is what you get by applying the base change functor − ⊗𝑅𝑢𝑛𝑖𝑣

𝑅 to 𝑚𝑢𝑛𝑖𝑣). In
other words, setting 𝑋 = 𝑆𝑝𝑒𝑐(𝑅𝑢𝑛𝑖𝑣) we obtain a canonical identification

𝑋(𝑇) = {free 𝑑-dimensional algebras 𝑚 over 𝑅}

for varying 𝑇 = 𝑆𝑝𝑒𝑐(𝑅). By Zariski localization we obtain the following seemingly more
general identification

(59.13.0.1) 𝑋(𝑇) = {free 𝑑-dimensional algebras 𝑚 over Γ(𝑇, 𝒪𝑇)}

for any scheme 𝑇.

Next we talk a little bit about isomorphisms of free 𝑑-dimensional 𝑅-algebras. Namely,
suppose that 𝑚, 𝑚′ are two free 𝑑-dimensional algebras over a ring 𝑅. An isomorphism
from 𝑚 to 𝑚′ is given by an invertible 𝑅-linear map

𝜑 ∶ 𝑅⊕𝑑 ⟶ 𝑅⊕𝑑

such that 𝜑(𝑒1) = 𝑒1 and such that

𝑚 ∘ 𝜑 ⊗ 𝜑 = 𝜑 ∘ 𝑚′.

Note that we can compose these so that the collection of free 𝑑-dimensional algebras over
𝑅 becomes a category. In this way we optain a functor

(59.13.0.2) 𝐹𝐴𝑑 ∶ Sch𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 ⟶ Groupoids

from the category of schemes to groupoids: to a scheme 𝑇 we associate the set of free
𝑑-dimensional algebras over Γ(𝑇, 𝒪𝑇) endowed with the structure of a category using the
notion of isomorphisms just defined.

The above suggests we consider the functor 𝐺 in groups which associates to any scheme 𝑇
the group

𝐺(𝑇) = {𝑔 ∈ GL𝑑(Γ(𝑇, 𝒪𝑇)) ∣ 𝑔(𝑒1) = 𝑒1}
It is clear that 𝐺 ⊂ GL𝑑 (see Groupoids, Example 35.5.4) is the closed subgroup scheme
cut out by the equations 𝑥11 = 1 and 𝑥𝑖1 = 0 for 𝑖 > 1. Hence 𝐺 is a smooth affine group
scheme over 𝑆𝑝𝑒𝑐(𝐙). Consider the action

𝑎 ∶ 𝐺 ×𝑆𝑝𝑒𝑐(𝐙) 𝑋 ⟶ 𝑋
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which associates to a 𝑇-valued point (𝑔, 𝑚) with 𝑇 = 𝑆𝑝𝑒𝑐(𝑅) on the left hand side the free
𝑑-dimensional algebra over 𝑅 given by

𝑎(𝑔, 𝑚) = 𝑔−1 ∘ 𝑚 ∘ 𝑔 ⊗ 𝑔.

Note that this means that 𝑔 defines an isomorphism 𝑚 → 𝑎(𝑔, 𝑚) of 𝑑-dimensional free
𝑅-algebras. We omit the verification that 𝑎 indeed defines an action of the group scheme
𝐺 on the scheme 𝑋.

Lemma 59.13.1. The functor in groupoids 𝐹𝐴𝑑 defined in (59.13.0.2) is isomorphic (!) to
the functor in groupouids which associates to a scheme 𝑇 the category with

(1) set of objects is 𝑋(𝑇),
(2) set of morphhisms is 𝐺(𝑇) × 𝑋(𝑇),
(3) 𝑠 ∶ 𝐺(𝑇) × 𝑋(𝑇) → 𝑋(𝑇) is the projection map,
(4) 𝑡 ∶ 𝐺(𝑇) × 𝑋(𝑇) → 𝑋(𝑇) is 𝑎(𝑇), and
(5) composition 𝐺(𝑇) × 𝑋(𝑇) ×𝑠,𝑋(𝑇),𝑡 𝐺(𝑇) × 𝑋(𝑇) → 𝐺(𝑇) × 𝑋(𝑇) is given by

((𝑔, 𝑚), (𝑔′, 𝑚′)) ↦ (𝑔𝑔′, 𝑚′).

Proof. We have seen the rule on objects in (59.13.0.1). We have also seen above that
𝑔 ∈ 𝐺(𝑇) can be viewed as a morphism from 𝑚 to 𝑎(𝑔, 𝑚) for any free 𝑑-dimensional
algebra 𝑚. Conversely, any morphism 𝑚 → 𝑚′ is given by an invertible linear map 𝜑
which corresponds to an element 𝑔 ∈ 𝐺(𝑇) such that 𝑚′ = 𝑎(𝑔, 𝑚). �

In fact the groupoid (𝑋, 𝐺 × 𝑋, 𝑠, 𝑡, 𝑐) described in the lemma above is the groupoid asso-
ciated to the action 𝑎 ∶ 𝐺 × 𝑋 → 𝑋 as defined in Groupoids, Lemma 35.13.1. Since 𝐺 is
smooth over 𝑆𝑝𝑒𝑐(𝐙) we see that the two morphisms 𝑠, 𝑡 ∶ 𝐺 × 𝑋 → 𝑋 are smooth: by
symmetry it suffices to prove that one of them is, and 𝑠 is the base change of 𝐺 → 𝑆𝑝𝑒𝑐(𝐙).
Hence (𝐺 × 𝑋, 𝑋, 𝑠, 𝑡, 𝑐) is a smooth groupoid scheme, and the quotient stack [𝑋/𝐺] is an
algebraic stack by Algebraic Stacks, Theorem 57.17.3.

Proposition 59.13.2. The stack ℋ𝑑 is equivalent to the quotient stack [𝑋/𝐺] described
above. In particular ℋ𝑑 is an algebraic stack.

Proof. Note that by Groupoids in Spaces, Definition 52.19.1 the quotient stack [𝑋/𝐺] is the
stackification of the category fibred in groupoids associated to the ``presheaf in groupoids''
which associates to a scheme 𝑇 the groupoid

(𝑋(𝑇), 𝐺(𝑇) × 𝑋(𝑇), 𝑠, 𝑡, 𝑐).

Since this ``presheaf in groupoids'' is isomorphic to 𝐹𝐴𝑑 by Lemma 59.13.1 it suffices to
prove that the ℋ𝑑 is the stackification of (the category fibred in groupoids associated to the
``presheaf in groupoids'') 𝐹𝐴𝑑. To do this we first define a functor

𝑆𝑝𝑒𝑐 ∶ 𝐹𝐴𝑑 ⟶ ℋ𝑑

Recall that the fibre category ofℋ𝑑 over a scheme 𝑇 is the category of finite locally freemor-
phisms𝑍 → 𝑇 of degree 𝑑. Thus given a scheme 𝑇 and a free 𝑑-dimensionalΓ(𝑇, 𝒪𝑇)-algebra
𝑚 we may assign to this the object

𝑍 = 𝑆𝑝𝑒𝑐
𝑇
(𝒜)

of ℋ𝑑,𝑇 where 𝒜 = 𝒪⊕𝑑
𝑇 endowed with a 𝒪𝑇-algebra structure via 𝑚. Moreover, if 𝑚′ is a

second such free 𝑑-dimensional Γ(𝑇, 𝒪𝑇)-algebra and if 𝜑 ∶ 𝑚 → 𝑚′ is an isomorphism of
these, then the induced 𝒪𝑇-linear map 𝜑 ∶ 𝒪⊕𝑑

𝑇 → 𝒪⊕𝑑
𝑇 induces an isomorphism

𝜑 ∶ 𝒜′ ⟶ 𝒜

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05YP
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05YQ
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of quasi-coherent 𝒪𝑇-algebras. Hence

𝑆𝑝𝑒𝑐
𝑇
(𝜑) ∶ 𝑆𝑝𝑒𝑐

𝑇
(𝒜) ⟶ 𝑆𝑝𝑒𝑐

𝑇
(𝒜′)

is a morphism in the fibre category ℋ𝑑,𝑇. We omit the verification that this construction
is compatible with base change so we get indeed a functor 𝑆𝑝𝑒𝑐 ∶ 𝐹𝐴𝑑 → ℋ𝑑 as claimed
above.

To show that 𝑆𝑝𝑒𝑐 ∶ 𝐹𝐴𝑑 → ℋ𝑑 induces an equivalence between the stackification of 𝐹𝐴𝑑
and ℋ𝑑 it suffices to check that

(1) 𝐼𝑠𝑜𝑚(𝑚, 𝑚′) = 𝐼𝑠𝑜𝑚(𝑆𝑝𝑒𝑐(𝑚), 𝑆𝑝𝑒𝑐(𝑚′)) for any 𝑚, 𝑚′ ∈ 𝐹𝐴𝑑(𝑇).
(2) for any scheme 𝑇 and any object 𝑍 → 𝑇 of ℋ𝑑,𝑇 there exists a covering {𝑇𝑖 → 𝑇}

such that 𝑍|𝑇𝑖
is isomorphic to 𝑆𝑝𝑒𝑐(𝑚) for some 𝑚 ∈ 𝐹𝐴𝑑(𝑇𝑖), and

see Stacks, Lemma 50.9.1. The first statement follows from the observation that any iso-
morphism

𝑆𝑝𝑒𝑐
𝑇
(𝒜) ⟶ 𝑆𝑝𝑒𝑐

𝑇
(𝒜′)

is necessarily given by a global invertible matrix 𝑔 when 𝒜 = 𝒜′ = 𝒪⊕𝑑
𝑇 as modules. To

prove the second statement let 𝜋 ∶ 𝑍 → 𝑇 be a finite locally free morphism of degree 𝑑.
Then 𝒜 is a locally free sheaf 𝒪𝑇-modules of rank 𝑑. Consider the element 1 ∈ Γ(𝑇, 𝒜).
This element is nonzero in 𝒜⊗𝒪𝑇,𝑡

𝜅(𝑡) for every 𝑡 ∈ 𝑇 since the scheme 𝑍𝑡 = 𝑆𝑝𝑒𝑐(𝒜⊗𝒪𝑇,𝑡
𝜅(𝑡)) is nonempty being of degree 𝑑 > 0 over 𝜅(𝑡). Thus 1 ∶ 𝒪𝑇 → 𝒜 can locally be used as
the first basis element (for example you can use Algebra, Lemma 7.73.3 parts (1) and (2)
to see this). Thus, after localizing on 𝑇 we may assume that there exists an isomorphism
𝜑 ∶ 𝒜 → 𝒪⊕𝑑

𝑇 such that 1 ∈ Γ(𝒜) corresponds to the first basis element. In this situation
the multiplication map 𝒜 ⊗𝒪𝑇

𝒜 → 𝒜 translates via 𝜑 into a free 𝑑-dimensional algebra 𝑚
over Γ(𝑇, 𝒪𝑇). This finishes the proof. �

59.14. Finite Hilbert stacks of spaces

The finite Hilbert stack of an algebraic space is an algebraic stack.

Lemma 59.14.1. Let 𝑆 be a scheme. Let 𝑋 be an algebraic space over 𝑆. Then ℋ𝑑(𝑋) is
an algebraic stack.

Proof. The 1-morphism
ℋ𝑑(𝑋) ⟶ ℋ𝑑

is representably by algebraic spaces according to Lemma 59.12.6. The stack ℋ𝑑 is an
algebraic stack according to Proposition 59.13.2. Hence ℋ𝑑(𝑋) is an algebraic stack by
Algebraic Stacks, Lemma 57.15.4. �

This lemma allows us to bootstrap.

Lemma 59.14.2. Let 𝑆 be a scheme. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in
groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓 such that

(1) 𝒳 is representable by an algebraic space, and
(2) 𝐹 is representable by algebraic spaces, surjective, flat, and locally of finite pre-

sentation.
Then ℋ𝑑(𝒳/𝒴) is an algebraic stack.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05YS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06CI
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Proof. Choose a representable stack in groupoids 𝒰 over 𝑆 and a 1-morphism 𝑓 ∶ 𝒰 →
ℋ𝑑(𝒳) which is representable by algebraic spaces, smooth, and surjective. This is possible
because ℋ𝑑(𝒳) is an algebraic stack by Lemma 59.14.1. Consider the 2-fibre product

𝒲 = ℋ𝑑(𝒳/𝒴) ×ℋ𝑑(𝒳),𝑓 𝒰.

Since 𝒰 is representable (in particular a stack in setoids) it follows fromExamples of Stacks,
Lemma 55.17.3 and Stacks, Lemma 50.6.7 that 𝒲 is a stack in setoids. The 1-morphism
𝒲 → ℋ𝑑(𝒳/𝒴) is representable by algebraic spaces, smooth, and surjective as a base
change of the morphism 𝑓 (see Algebraic Stacks, Lemmas 57.9.7 and 57.10.6). Thus, if
we can show that 𝒲 is representable by an algebraic space, then the lemma follows from
Algebraic Stacks, Lemma 57.15.3.

The diagonal of 𝒴 is representable by algebraic spaces according to Lemma 59.4.3. We
may apply Lemma 59.12.5 to see that the 1-morphism

ℋ𝑑(𝒳/𝒴) ⟶ ℋ𝑑(𝒳) × 𝒴

is representable by algebraic spaces. Consider the 2-fibre product

𝒱 = ℋ𝑑(𝒳/𝒴) ×(ℋ𝑑(𝒳)×𝒴),𝑓×𝐹 (𝒰 × 𝒳).

The projection morphism 𝒱 → 𝒰×𝒳 is representable by algebraic spaces as a base change
of the last displayed morphism. Hence 𝒱 is an algebraic space (see Bootstrap, Lemma
54.3.6 or Algebraic Stacks, Lemma 57.9.8). The 1-morphism 𝒱 → 𝒰 fits into the following
2-cartesian diagram

𝒱

��

// 𝒳

𝐹
��

𝒲 // 𝒴

because

ℋ𝑑(𝒳/𝒴) ×(ℋ𝑑(𝒳)×𝒴),𝑓×𝐹 (𝒰 × 𝒳) = (ℋ𝑑(𝒳/𝒴) ×ℋ𝑑(𝒳),𝑓 𝒰) ×𝒴,𝐹 𝒳.

Hence 𝒱 → 𝒲 is representable by algebraic spaces, surjective, flat, and locally of finite
presentation as a base change of 𝐹. It follows that the same thing is true for the correspond-
ing sheaves of sets associated to 𝒱 and 𝒲, see Algebraic Stacks, Lemma 57.10.4. Thus
we conclude that the sheaf associated to 𝒲 is an algebraic space by Bootstrap, Theorem
54.10.1. �

59.15. LCI locus in the Hilbert stack

Please consult Examples of Stacks, Section 55.17 for notation. Fix a 1-morphism 𝐹 ∶
𝒳 ⟶ 𝒴 of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume that 𝐹 is representable by
algebraic spaces. Fix 𝑑 ≥ 1. Consider an object (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) of ℋ𝑑. There is an induced
1-morphism

(Sch/𝑍)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴,𝐹 𝒳
(by the universal property of 2-fibre products) which is representable by a morphism of
algebraic spaces over 𝑈. Namely, since 𝐹 is representable by algebraic spaces, we may
choose an algebraic space 𝑋𝑦 over 𝑈 which represents the 2-fibre product (Sch/𝑈)𝑓𝑝𝑝𝑓×𝑦,𝒴,𝐹
𝒳. Since 𝛼 ∶ 𝑦|𝑍 → 𝐹(𝑥) is an isomorphism we see that 𝜉 = (𝑍, 𝑍 → 𝑈, 𝑥, 𝛼) is an object
of the 2-fibre product (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴,𝐹 𝒳 over 𝑍. Hence 𝜉 gives rise to a morphism
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𝑥𝛼 ∶ 𝑍 → 𝑋𝑦 of algebraic spaces over 𝑈 as 𝑋𝑦 is the functor of isomorphisms classes of
objects of (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴,𝐹 𝒳, see Algebraic Stacks, Lemma 57.8.2. Here is a picture

(59.15.0.1)

𝑍 𝑥𝛼
//

  

𝑋𝑦

��
𝑈

(Sch/𝑍)𝑓𝑝𝑝𝑓

((

𝑥,𝛼
// (Sch/𝑈)𝑓𝑝𝑝𝑓 ×𝑦,𝒴,𝐹 𝒳 //

��

𝒳

𝐹
��

(Sch/𝑈)𝑓𝑝𝑝𝑓
𝑦 // 𝒴

We remark that if (𝑓, 𝑔, 𝑏, 𝑎) ∶ (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) → (𝑈′, 𝑍′, 𝑦′, 𝑥′, 𝛼′) is a morphism between
objects of ℋ𝑑, then the morphism 𝑥′

𝛼′ ∶ 𝑍′ → 𝑋′
𝑦′ is the base change of the morphism 𝑥𝛼

by the morphism 𝑔 ∶ 𝑈′ → 𝑈 (details omitted).

Now assume moreover that 𝐹 is flat and locally of finite presentation. In this situation we
define a full subcategory

ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) ⊂ ℋ𝑑(𝒳/𝒴)

consisting of those objects (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) of ℋ𝑑(𝒳/𝒴) such that the corresponding mor-
phism 𝑥𝛼 ∶ 𝑍 → 𝑋𝑦 is unramified and a local complete intersection morphism (see Mor-
phisms of Spaces, Definition 42.34.1 andMore onMorphisms of Spaces, Definition 46.24.1
for definitions).

Lemma 59.15.1. Let𝑆 be a scheme. Fix a 1-morphism𝐹 ∶ 𝒳 ⟶ 𝒴 of stacks in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓. Assume 𝐹 is representable by algebraic spaces, flat, and locally of finite
presentation. Then ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) is a stack in groupoids and the inclusion functor

ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) ⟶ ℋ𝑑(𝒳/𝒴)

is representable and an open immersion.

Proof. Let Ξ = (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) be an object of ℋ𝑑. It follows from the remark following
(59.15.0.1) that the pullback of Ξ by 𝑈′ → 𝑈 belongs to ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) if and only if the base
change of 𝑥𝛼 is unramified and a local complete intersection morphism. Note that 𝑍 → 𝑈
is finite locally free (hence flat, locally of finite presentation and universally closed) and
that 𝑋𝑦 → 𝑈 is flat and locally of finite presentation by our assumption on 𝐹. Then Quot,
Lemmas 47.3.1 and 47.3.7 imply exists an open subscheme 𝑊 ⊂ 𝑈 such that a morphism
𝑈′ → 𝑈 factors through 𝑊 if and only if the base change of 𝑥𝛼 via 𝑈′ → 𝑈 is unramified
and a local complete intersection morphism. This implies that

(Sch/𝑈)𝑓𝑝𝑝𝑓 ×Ξ,ℋ𝑑(𝒳/𝒴) ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴)

is representable by 𝑊. Hence the final statement of the lemma holds. The first statement
(that ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) is a stack in groupoids) follows from this an Algebraic Stacks, Lemma
57.15.5. �

Local complete intersection morphisms are ``locally unobstructed''. This holds in much
greater generality than the special case that we need in this chapter here.

Lemma 59.15.2. Let 𝑈 ⊂ 𝑈′ be a first order thickening of affine schemes. Let 𝑋′ be an
algebraic space flat over 𝑈′. Set 𝑋 = 𝑈 ×𝑈′ 𝑋′. Let 𝑍 → 𝑈 be finite locally free of degree
𝑑. Finally, let 𝑓 ∶ 𝑍 → 𝑋 be unramified and a local complete intersection morphism. Then
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there exists a commutative diagram

(𝑍 ⊂ 𝑍′)

&&

(𝑓,𝑓′)
// (𝑋 ⊂ 𝑋′)

xx
(𝑈 ⊂ 𝑈′)

of algebraic spaces over 𝑈′ such that 𝑍′ → 𝑈′ is finite locally free of degree 𝑑 and 𝑍 =
𝑈 ×𝑈′ 𝑍′.

Proof. ByMore on Morphisms of Spaces, Lemma 46.24.8 the conormal sheaf 𝒞𝑍/𝑋 of the
unramifiedmorphism 𝑍 → 𝑋 is a finite locally free 𝒪𝑍-module and byMore onMorphisms
of Spaces, Lemma 46.24.9 we have an exact sequence

0 → 𝑖∗𝒞𝑋/𝑋′ → 𝒞𝑍/𝑋′ → 𝒞𝑍/𝑋 → 0

of conormal sheaves. Since 𝑍 is affine this sequence is split. Choose a splitting

𝒞𝑍/𝑋′ = 𝑖∗𝒞𝑋/𝑋′ ⊕ 𝒞𝑍/𝑋

Let 𝑍 ⊂ 𝑍″ be the universal first order thickening of of 𝑍 over 𝑋′ (seeMore onMorphisms
of Spaces, Section 46.12). Denote ℐ ⊂ 𝒪𝑍″ the quasi-coherent sheaf of ideals correspond-
ing to 𝑍 ⊂ 𝑍″. By definition we have 𝒞𝑍/𝑋′ is ℐ viewed as a sheaf on 𝑍. Hence the
splitting above determines a splitting

ℐ = 𝑖∗𝒞𝑋/𝑋′ ⊕ 𝒞𝑍/𝑋

Let 𝑍′ ⊂ 𝑍″ be the closed subscheme cut out by 𝒞𝑍/𝑋 ⊂ ℐ viewed as a quasi-coherent
sheaf of ideals on 𝑍″. It is clear that 𝑍′ is a first order thickening of 𝑍 and that we obtain
a commutative diagram of first order thickenings as in the statement of the lemma.

Since 𝑋′ → 𝑈′ is flat and since 𝑋 = 𝑈 ×𝑈′ 𝑋′ we see that 𝒞𝑋/𝑋′ is the pullback of
𝒞𝑈/𝑈′ to 𝑋, see More on Morphisms of Spaces, Lemma 46.15.1. Note that by construction
𝒞𝑍/𝑍′ = 𝑖∗𝒞𝑋/𝑋′ hence we conclude that 𝒞𝑍/𝑍′ is isomorphic to the pullback of 𝒞𝑈/𝑈′ to
𝑍. Applying More on Morphisms of Spaces, Lemma 46.15.1 once again (or its analogue
for schemes, see More on Morphisms, Lemma 33.8.1) we conclude that 𝑍′ → 𝑈′ is flat
and that 𝑍 = 𝑈 ×𝑈′ 𝑍′. Finally, More on Morphisms, Lemma 33.8.3 shows that 𝑍′ → 𝑈′

is finite locally free of degree 𝑑. �

Lemma 59.15.3. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
Assume 𝐹 is representable by algebraic spaces, flat, and locally of finite presentation. Then

𝑝 ∶ ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) → 𝒴

is formally smooth on objects.

Proof. We have to show the following: Given
(1) an object (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) of ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) over an affine scheme 𝑈,
(2) a first order thickening 𝑈 ⊂ 𝑈′, and
(3) an object 𝑦′ of 𝒴 over 𝑈′ such that 𝑦′|𝑈 = 𝑦,

then there exists an object (𝑈′, 𝑍′, 𝑦′, 𝑥′, 𝛼′) of ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) over 𝑈′ with 𝑍 = 𝑈 ×𝑈′ 𝑍′,
with 𝑥 = 𝑥′|𝑍, and with 𝛼 = 𝛼′|𝑈. Namely, the last two equalities will take care of the
commutativity of (59.6.0.1).

Consider the morphism 𝑥𝛼 ∶ 𝑍 → 𝑋𝑦 constructed in Equation (59.15.0.1). Denote simi-
larly 𝑋′

𝑦′ the algebraic space over 𝑈′ representing the 2-fibre product (Sch/𝑈′)𝑓𝑝𝑝𝑓×𝑦′,𝒴,𝐹𝒳.
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By assumption the morphism 𝑋′
𝑦′ → 𝑈′ is flat (and locally of finite presentation). As

𝑦′|𝑈 = 𝑦 we see that 𝑋𝑦 = 𝑈 ×𝑈′ 𝑋′
𝑦′. Hence we may apply Lemma 59.15.2 to find

𝑍′ → 𝑈′ finite locally free of degree 𝑑 with 𝑍 = 𝑈 ×𝑈′ 𝑍′ and with 𝑍′ → 𝑋′
𝑦′ extending

𝑥𝛼. By construction the morphism 𝑍′ → 𝑋′
𝑦′ corresponds to a pair (𝑥′, 𝛼′). It is clear that

(𝑈′, 𝑍′, 𝑦′, 𝑥′, 𝛼′) is an object of ℋ𝑑(𝒳/𝒴) over 𝑈′ with 𝑍 = 𝑈×𝑈′ 𝑍′, with 𝑥 = 𝑥′|𝑍, and
with 𝛼 = 𝛼′|𝑈. As we've seen in Lemma 59.15.1 that ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) ⊂ ℋ𝑑(𝒳/𝒴) is an ``open
substack'' it follows that (𝑈′, 𝑍′, 𝑦′, 𝑥′, 𝛼′) is an object of ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) as desired. �

Lemma 59.15.4. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓.
Assume 𝐹 is representable by algebraic spaces, flat, surjective, and locally of finite presen-
tation. Then

∐𝑑≥1
ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) ⟶ 𝒴

is surjective on objects.

Proof. It suffices to prove the following: For any field 𝑘 and object 𝑦 of 𝒴 over 𝑆𝑝𝑒𝑐(𝑘)
there exists an integer 𝑑 ≥ 1 and an object (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) of ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) with 𝑈 = 𝑆𝑝𝑒𝑐(𝑘).
Namely, in this case we see that 𝑝 is surjective on objects in the strong sense that an exten-
sion of the field is not needed.

Denote𝑋𝑦 the algebraic space over𝑈 = 𝑆𝑝𝑒𝑐(𝑘) representing the 2-fibre product (Sch/𝑈′)𝑓𝑝𝑝𝑓×𝑦′,𝒴,𝐹
𝒳. By assumption the morphism 𝑋𝑦 → 𝑆𝑝𝑒𝑐(𝑘) is surjective and locally of finite presen-
tation (and flat). In particular 𝑋𝑦 is nonempty. Choose a nonempty affine scheme 𝑉 and
an étale morphism 𝑉 → 𝑋𝑦. Note that 𝑉 → 𝑆𝑝𝑒𝑐(𝑘) is (flat), surjective, and locally of fi-
nite presentation (by Morphisms of Spaces, Definition 42.26.1). Pick a closed point 𝑣 ∈ 𝑉
where 𝑉 → 𝑆𝑝𝑒𝑐(𝑘) is Cohen-Macaulay (i.e., 𝑉 is Cohen-Macaulay at 𝑣), see More on
Morphisms, Lemma 33.15.4. Applying More on Morphisms, Lemma 33.16.4 we find a
regular immersion 𝑍 → 𝑉 with 𝑍 = {𝑣}. This implies 𝑍 → 𝑉 is a closed immersion.
Moreover, it follows that 𝑍 → 𝑆𝑝𝑒𝑐(𝑘) is finite (for example by Algebra, Lemma 7.113.1).
Hence 𝑍 → 𝑆𝑝𝑒𝑐(𝑘) is finite locally free of some degree 𝑑. Now 𝑍 → 𝑋𝑦 is unramified
as the composition of an closed immersion followed by an étale morphism (see Morphisms
of Spaces, Lemmas 42.34.3, 42.35.10, and 42.34.8). Finally, 𝑍 → 𝑋𝑦 is a local complete
intersection morphism as a composition of a regular immersion of schemes and an étale
morphism of algebraic spaces (see More onMorphisms, Lemma 33.38.9 andMorphisms of
Spaces, Lemmas 42.35.6 and 42.33.8 and More on Morphisms of Spaces, Lemmas 46.24.6
and 46.24.5). The morphism 𝑍 → 𝑋𝑦 corresponds to an object 𝑥 of 𝒳 over 𝑍 together
with an isomorphism 𝛼 ∶ 𝑦|𝑍 → 𝐹(𝑥). We obtain an object (𝑈, 𝑍, 𝑦, 𝑥, 𝛼) of ℋ𝑑(𝒳/𝒴). By
what was said above about the morphism 𝑍 → 𝑋𝑦 we see that it actually is an object of the
subcategory ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) and we win. �

59.16. Bootstrapping algebraic stacks

The following theorem is one of the main results of this chapter.

Theorem 59.16.1. Let 𝑆 be a scheme. Let 𝐹 ∶ 𝒳 → 𝒴 be a 1-morphism of stacks in
groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. If

(1) 𝒳 is representable by an algebraic space, and
(2) 𝐹 is representable by algebraic spaces, surjective, flat and locally of finite pre-

sentation,
then 𝒴 is an algebraic stack.
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Proof. ByLemma 59.4.3we see that the diagonal of𝒴 is representable by algebraic spaces.
Hence we only need to verify the existence of a 1-morphism 𝑓 ∶ 𝒱 → 𝒴 of stacks in
groupouds over (Sch/𝑆)𝑓𝑝𝑝𝑓 with 𝒱 representable and 𝑓 surjective and smooth. By Lemma
59.14.2 we know that

∐𝑑≥1
ℋ𝑑(𝒳/𝒴)

is an algebraic stack. It follows from Lemma 59.15.1 and Algebraic Stacks, Lemma 57.15.5
that

∐𝑑≥1
ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴)

is an algebraic stack as well. Choose a representable stack in groupoids 𝒱 over (Sch/𝑆)𝑓𝑝𝑝𝑓
and a surjective and smooth 1-morphism

𝒱 ⟶ ∐𝑑≥1
ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴).

We claim that the composition

𝒱 ⟶ ∐𝑑≥1
ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) ⟶ 𝒴

is smooth and surjective which finishes the proof of the theorem. In fact, the smoothness
will be a consequence of Lemmas 59.12.7 and 59.15.3 and the surjectivity a consequence
of Lemma 59.15.4. We spell out the details in the following paragraph.

By construction 𝒱 → ∐𝑑≥1 ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) is representable by algebraic spaces, surjective,
and smooth (and hence also locally of finite presentation and formally smooth by the general
principle Algebraic Stacks, Lemma 57.10.9 and More on Morphisms of Spaces, Lemma
46.16.6). Applying Lemmas 59.5.3, 59.6.3, and 59.7.3 we see that 𝒱 → ∐𝑑≥1 ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴)
is limit preserving on objects, formally smooth on objects, and surjective on objects. The
1-morphism ∐𝑑≥1 ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) → 𝒴 is

(1) limit preserving on objects: this is Lemma 59.12.7 for ℋ𝑑(𝒳/𝒴) → 𝒴 and we
combine it with Lemmas 59.15.1, 59.5.4, and 59.5.2 to get it for ℋ𝑑,𝑙𝑐𝑖(𝒳/𝒴) →
𝒴,

(2) formally smooth on objects by Lemma 59.15.3, and
(3) surjective on objects by Lemma 59.15.4.

Using Lemmas 59.5.2, 59.6.2, and 59.7.2 we conclude that the composition 𝒱 → 𝒴 is
limit preserving on objects, formally smooth on objects, and surjective on objects. Using
Lemmas 59.5.3, 59.6.3, and 59.7.3 we see that 𝒱 → 𝒴 is locally of finite presentation,
formally smooth, and surjective. Finally, using (via the general principle Algebraic Stacks,
Lemma 57.10.9) the infinitesimal lifting criterion (More on Morphisms of Spaces, Lemma
46.16.6) we see that 𝒱 → 𝒴 is smooth and we win. �

59.17. Applications

Our first task is to show that the quotient stack [𝑈/𝑅] associated to a ``flat and locally finitely
presented groupoid'' is an algebraic stack. See Groupoids in Spaces, Definition 52.19.1 for
the definition of the quotient stack. The following lemma is preliminary and is the analogue
of Algebraic Stacks, Lemma 57.17.2.

Lemma 59.17.1. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid
in algebraic spaces over 𝑆. Assume 𝑠, 𝑡 are flat and locally of finite presentation. Then the
morphism 𝒮𝑈 → [𝑈/𝑅] is flat, locally of finite presentation, and surjective.
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Proof. Let 𝑇 be a scheme and let 𝑥 ∶ (Sch/𝑇)𝑓𝑝𝑝𝑓 → [𝑈/𝑅] be a 1-morphism. We have to
show that the projection

𝒮𝑈 ×[𝑈/𝑅] (Sch/𝑇)𝑓𝑝𝑝𝑓 ⟶ (Sch/𝑇)𝑓𝑝𝑝𝑓

is surjective and smooth. We already know that the left hand side is representable by an
algebraic space 𝐹, see Algebraic Stacks, Lemmas 57.17.1 and 57.10.11. Hence we have to
show the corresponding morphism 𝐹 → 𝑇 of algebraic spaces is surjective, locally of finite
presentation, and flat. Since we are working with properties of morphisms of algebraic
spaces which are local on the target in the fppf topology we may check this fppf locally
on 𝑇. By construction, there exists an fppf covering {𝑇𝑖 → 𝑇} of 𝑇 such that 𝑥|(Sch/𝑇𝑖)𝑓𝑝𝑝𝑓
comes from a morphism 𝑥𝑖 ∶ 𝑇𝑖 → 𝑈. (Note that 𝐹 ×𝑇 𝑇𝑖 represents the 2-fibre product
𝒮𝑈 ×[𝑈/𝑅] (Sch/𝑇𝑖)𝑓𝑝𝑝𝑓 so everything is compatible with the base change via 𝑇𝑖 → 𝑇.) Hence
we may assume that 𝑥 comes from 𝑥 ∶ 𝑇 → 𝑈. In this case we see that

𝒮𝑈 ×[𝑈/𝑅] (Sch/𝑇)𝑓𝑝𝑝𝑓 = (𝒮𝑈 ×[𝑈/𝑅] 𝒮𝑈) ×𝒮𝑈
(Sch/𝑇)𝑓𝑝𝑝𝑓 = 𝒮𝑅 ×𝒮𝑈

(Sch/𝑇)𝑓𝑝𝑝𝑓

The first equality by Categories, Lemma 4.28.10 and the second equality by Groupoids
in Spaces, Lemma 52.21.2. Clearly the last 2-fibre product is represented by the algebraic
space𝐹 = 𝑅×𝑠,𝑈,𝑥𝑇 and the projection𝑅×𝑠,𝑈,𝑥𝑇 → 𝑇 is flat and locally of finite presentation
as the base change of the flat locally finitely presented morphism of algebraic spaces 𝑠 ∶
𝑅 → 𝑈. It is also surjective as 𝑠 has a section (namely the identity 𝑒 ∶ 𝑈 → 𝑅 of the
groupoid). This proves the lemma. �

Here is the first main result of this section.

Theorem 59.17.2. Let 𝑆 be a scheme contained in Sch𝑓𝑝𝑝𝑓. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a groupoid
in algebraic spaces over 𝑆. Assume 𝑠, 𝑡 are flat and locally of finite presentation. Then the
quotient stack [𝑈/𝑅] is an algebraic stack over 𝑆.

Proof. We check the two conditions of Theorem 59.16.1 for the morphism

(Sch/𝑈)𝑓𝑝𝑝𝑓 ⟶ [𝑈/𝑅].

The first is trivial (as 𝑈 is an algebraic space). The second is Lemma 59.17.1. �

59.18. When is a quotient stack algebraic?

In Groupoids in Spaces, Section 52.19 we have defined the quotient stack [𝑈/𝑅] associated
to a groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in algebraic spaces. Note that [𝑈/𝑅] is a stack in groupoids
whose diagonal is representable by algebraic spaces (see Bootstrap, Lemma 54.11.3 and
Algebraic Stacks, Lemma 57.10.11) and such that there exists an algebraic space 𝑈 and a
1-morphism (Sch/𝑈)𝑓𝑝𝑝𝑓 → [𝑈/𝑅] which is an ``fppf surjection'' in the sense that it induces
a map on presheaves of isomorphism classes of objects which becomes surjective after
sheafification. However, it is not the case that that [𝑈/𝑅] is an algebraic stack in general.
This is not a contradiction with Theorem 59.16.1 as the 1-morphism (Sch/𝑈)𝑓𝑝𝑝𝑓 → [𝑈/𝑅]
is not representable by algebraic spaces in general, and if it is it may not be flat and locally
of finite presentation.

The easiest way to make examples of non-algebraic quotient stacks is to look at quotients
of the form [𝑆/𝐺] where 𝑆 is a scheme and 𝐺 is a group scheme over 𝑆 acting trivially on
𝑆. Namely, we will see below (Lemma 59.18.3) that if [𝑆/𝐺] is algebraic, then 𝐺 → 𝑆 has
to be flat and locally of finite presentation. An explicit example can be found in Examples,
Section 64.32.
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Lemma59.18.1. Let𝑆 be a scheme and let𝐵 be an algebraic space over𝑆. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
be a groupoid in algebraic spaces over 𝐵. The quotient stack [𝑈/𝑅] is an algebraic stack if
and only if there exists a morphism of algebraic spaces 𝑔 ∶ 𝑈′ → 𝑈 such that

(1) the composition 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑅
𝑠

−→ 𝑈 is a surjection of sheaves, and
(2) the morphisms 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ are flat and locally of finite presentation where

(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) is the restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) via 𝑔.

Proof. First, assume that 𝑔 ∶ 𝑈′ → 𝑈 satisfies (1) and (2). Property (1) implies that
[𝑈′/𝑅′] → [𝑈/𝑅] is an equivalence, seeGroupoids in Spaces, Lemma 52.24.2. By Theorem
59.17.2 the quotient stack [𝑈′/𝑅′] is an algebraic stack. Hence [𝑈/𝑅] is an algebraic stack
too, see Algebraic Stacks, Lemma 57.12.4.

Conversely, assume that [𝑈/𝑅] is an algebraic stack. We may choose a scheme 𝑊 and a
surjective smooth 1-morphism

𝑓 ∶ (Sch/𝑊)𝑓𝑝𝑝𝑓 ⟶ [𝑈/𝑅].

By the 2-Yoneda lemma (Algebraic Stacks, Section 57.5) this corresponds to an object 𝜉
of [𝑈/𝑅] over 𝑊. By the description of [𝑈/𝑅] in Groupoids in Spaces, Lemma 52.23.1 we
can find a surjective, flat, locally finitely presented morphism 𝑏 ∶ 𝑈′ → 𝑊 of schemes such
that 𝜉′ = 𝑏∗𝜉 corresponds to a morphism 𝑔 ∶ 𝑈′ → 𝑈. Note that the 1-morphism

𝑓′ ∶ (Sch/𝑈′)𝑓𝑝𝑝𝑓 ⟶ [𝑈/𝑅].

corresponding to 𝜉′ is surjective, flat, and locally of finite presentation, seeAlgebraic Stacks,
Lemma 57.10.5. Hence (Sch/𝑈′)𝑓𝑝𝑝𝑓 ×[𝑈/𝑅] (Sch/𝑈′)𝑓𝑝𝑝𝑓 which is represented by the alge-
braic space

𝐼𝑠𝑜𝑚[𝑈/𝑅](pr∗0𝜉′, pr∗1𝜉′) = (𝑈′ ×𝑆 𝑈′) ×(𝑔∘pr0,𝑔∘pr1),𝑈×𝑆𝑈 𝑅 = 𝑅′

(see Groupoids in Spaces, Lemma 52.21.1 for the first equality; the second is the definition
of restriction) is flat and locally of finite presentation over 𝑈′ via both 𝑠′ and 𝑡′ (by base
change, see Algebraic Stacks, Lemma 57.10.6). By this description of 𝑅′ and by Algebraic
Stacks, Lemma 57.16.1 we obtain a canonical fully faithful 1-morphism [𝑈′/𝑅′] → [𝑈/𝑅].
This 1-morphism is essentially surjective because 𝑓′ is flat, locally of finite presentation,
and surjective (see Stacks, Lemma 50.4.8); another way to prove this is to use Algebraic
Stacks, Remark 57.16.3. Finally, we can use Groupoids in Spaces, Lemma 52.24.2 to con-
clude that the composition 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑅

𝑠
−→ 𝑈 is a surjection of sheaves. �

Lemma 59.18.2. Let 𝑆 be a scheme and let 𝐵 be an algebraic space over 𝑆. Let 𝐺 be a
group algebraic space over 𝐵. Let 𝑋 be an algebraic space over 𝐵 and let 𝑎 ∶ 𝐺×𝐵 𝑋 → 𝑋
be an action of 𝐺 on 𝑋 over 𝐵. The quotient stack [𝑋/𝐺] is an algebraic stack if and only
if there exists a morphism of algebraic spaces 𝜑 ∶ 𝑋′ → 𝑋 such that

(1) 𝐺 ×𝐵 𝑋′ → 𝑋, (𝑔, 𝑥′) ↦ 𝑎(𝑔, 𝜑(𝑥′)) is a surjection of sheaves, and
(2) the two projections 𝑋″ → 𝑋′ of the algebraic space 𝑋″ given by the rule

𝑇 ⟼ {(𝑥′
1, 𝑔, 𝑥′

2) ∈ (𝑋′ ×𝐵 𝐺 ×𝐵 𝑋′)(𝑇) ∣ 𝜑(𝑥′
1) = 𝑎(𝑔, 𝜑(𝑥′

2))}

are flat and locally of finite presentation.

Proof. This lemma is a special case of Lemma 59.18.1. Namely, the quotient stack [𝑋/𝐺]
is by Groupoids in Spaces, Definition 52.19.1 equal to the quotient stack [𝑋/𝐺 ×𝐵 𝑋] of the
groupoid in algebraic spaces (𝑋, 𝐺×𝐵 𝑋, 𝑠, 𝑡, 𝑐) associated to the group action in Groupoids
in Spaces, Lemma 52.14.1. There is one small observation that is needed to get condition
(1). Namely, the morphism 𝑠 ∶ 𝐺 ×𝐵 𝑋 → 𝑋 is the second projection and the morphism

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06PJ
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𝑡 ∶ 𝐺×𝐵 𝑋 → 𝑋 is the action morphism 𝑎. Hence the morphism ℎ ∶ 𝑈′ ×𝑔,𝑈,𝑡 𝑅 → 𝑅
𝑠

−→ 𝑈
from Lemma 59.18.1 corresponds to the morphism

𝑋′ ×𝜑,𝑋,𝑎 (𝐺 ×𝐵 𝑋)
pr1−−→ 𝑋

in the current setting. However, because of the symmetry given by the inverse of 𝐺 this
morphism is isomorphic to the morphism

(𝐺 ×𝐵 𝑋) ×pr1,𝑋,𝜑 𝑋′ 𝑎
−→ 𝑋

of the statement of the lemma. Details omitted. �

Lemma 59.18.3. Let 𝑆 be a scheme and let 𝐵 be an algebraic space over 𝑆. Let 𝐺 be a
group algebraic space over 𝐵. Endow 𝐵 with the trivial action of 𝐺. Then the quotient
stack [𝐵/𝐺] is an algebraic stack if and only if 𝐺 is flat and locally of finite presentation
over 𝐵.
Proof. If 𝐺 is flat and locally of finite presentation over 𝐵, then [𝐵/𝐺] is an algebraic stack
by Theorem 59.17.2.
Conversely, assume that [𝐵/𝐺] is an algebraic stack. By Lemma 59.18.2 and because the
action is trivial, we see there exists an algebraic space 𝐵′ and a morphism 𝐵′ → 𝐵 such
that (1) 𝐵′ → 𝐵 is a surjection of sheaves and (2) the projections

𝐵′ ×𝐵 𝐺 ×𝐵 𝐵′ → 𝐵′

are flat and locally of finite presentation. Note that the base change 𝐵′×𝐵𝐺×𝐵𝐵′ → 𝐺×𝐵𝐵′

of 𝐵′ → 𝐵 is a surjection of sheaves also. Thus it follows from Descent on Spaces, Lemma
45.7.1 that the projection 𝐺 ×𝐵 𝐵′ → 𝐵′ is flat and locally of finite presentation. By (1)
we can find an fppf covering {𝐵𝑖 → 𝐵} such that 𝐵𝑖 → 𝐵 factors through 𝐵′ → 𝐵. Hence
𝐺 ×𝐵 𝐵𝑖 → 𝐵𝑖 is flat and locally of finite presentation by base change. By Descent on
Spaces, Lemmas 45.10.11 and 45.10.8 we conclude that 𝐺 → 𝐵 is flat and locally of finite
presentation. �

59.19. Algebraic stacks in the étale topology

Let 𝑆 be a scheme. Instead of working with stacks in groupoids over the big fppf site
(Sch/𝑆)𝑓𝑝𝑝𝑓 we could work with stacks in groupoids over the big étale site (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒.
All of the material in Algebraic Stacks, Sections 57.4, 57.5, 57.6, 57.7, 57.8, 57.9, 57.10,
and 57.11 makes sense for categories fibred in groupouds over (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒. Thus we get
a second notion of an algebraic stack by working in the étale topology. This notion is (a
priori) weaker then the notion introduced in Algebraic Stacks, Definition 57.12.1 since a
stack in the fppf topology is certainly a stack in the étale topology. However, the notions
are equivalent as is shown by the following lemma.
Lemma 59.19.1. Denote the common underlying category of Sch𝑓𝑝𝑝𝑓 and Sch ́𝑒𝑡𝑎𝑙𝑒 by Sch𝛼
(see Sheaves on Stacks, Section 58.4 and Topologies, Remark 30.9.1). Let 𝑆 be an object
of Sch𝛼. Let

𝑝 ∶ 𝒳 → Sch𝛼/𝑆
be a category fibred in groupoids with the following properties:

(1) 𝒳 is a stack in groupoids over (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒,
(2) the diagonal Δ ∶ 𝒳 → 𝒳 × 𝒳 is representable by algebraic spaces3, and

3Here we can either mean sheaves in the étale topology whose diagonal is representable and which have
an étale surjective covering by a scheme or algebraic spaces as defined in Algebraic Spaces, Definition 40.6.1.
Namely, by Bootstrap, Lemma 54.12.1 there is no difference.
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(3) there exists 𝑈 ∈ 𝑂𝑏(Sch𝛼/𝑆) and a 1-morphism (Sch/𝑈) ́𝑒𝑡𝑎𝑙𝑒 → 𝒳 which is sur-
jective and smooth.

Then 𝒳 is an algebraic stack in the sense of Algebraic Stacks, Definition 57.12.1.

Proof. Note that properties (2) and (3) of the lemma and the corresponding properties (2)
and (3) of Algebraic Stacks, Definition 57.12.1 are independent of the topology. This is
true because these properties involve only the notion of a 2-fibre product of categories
fibred in groupoids, 1- and 2-morphisms of categories fibred in groupoids, the notion of a
1-morphism of categories fibred in groupoids representable by algebraic spaces, and what it
means for such a 1-morphism to be surjective and smooth. Thus all we have to prove is that
an étale stack in groupoids 𝒳 with properties (2) and (3) is also an fppf stack in groupoids.
Using (2) let 𝑅 be an algebraic space representing

(Sch𝛼/𝑈) ×𝒳 (Sch𝛼/𝑈)
By (3) the projections 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are smooth. Exactly as in the proof of Algebraic
Stacks, Lemma 57.16.1 there exists a groupoid in spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) and a canonical fully
faithful 1-morphism [𝑈/𝑅] ́𝑒𝑡𝑎𝑙𝑒 → 𝒳 where [𝑈/𝑅] ́𝑒𝑡𝑎𝑙𝑒 is the étale stackification of presheaf
in groupoids

𝑇 ⟼ (𝑈(𝑇), 𝑅(𝑇), 𝑠(𝑇), 𝑡(𝑇), 𝑐(𝑇))
Claim: If 𝑉 → 𝑇 is a surjective smooth morphism from an algebraic space 𝑉 to a scheme 𝑇,
then there exists an étale covering {𝑇𝑖 → 𝑇} refining the covering {𝑉 → 𝑇}. This follows
fromMore on Morphisms, Lemma 33.26.7 or the more general Sheaves on Stacks, Lemma
58.18.10. Using the claim and arguing exactly as in Algebraic Stacks, Lemma 57.16.2 it
follows that [𝑈/𝑅] ́𝑒𝑡𝑎𝑙𝑒 → 𝒳 is an equivalence.
Next, let [𝑈/𝑅] denote the quotient stack in the fppf topology which is an algebraic stack
by Algebraic Stacks, Theorem 57.17.3. Thus we have 1-morphisms

𝑈 → [𝑈/𝑅] ́𝑒𝑡𝑎𝑙𝑒 → [𝑈/𝑅].
Both 𝑈 → [𝑈/𝑅] ́𝑒𝑡𝑎𝑙𝑒 ≅ 𝒳 and 𝑈 → [𝑈/𝑅] are surjective and smooth (the first by as-
sumption and the second by the theorem) and in both cases the fibre product 𝑈 ×𝒳 𝑈 and
𝑈 ×[𝑈/𝑅] 𝑈 is representable by 𝑅. Hence the 1-morphism [𝑈/𝑅] ́𝑒𝑡𝑎𝑙𝑒 → [𝑈/𝑅] is fully faith-
ful (since morphisms in the quotient stacks are given by morphisms into 𝑅, see Groupoids
in Spaces, Section 52.23).
Finally, for any scheme 𝑇 and morphism 𝑡 ∶ 𝑇 → [𝑈/𝑅] the fibre product 𝑉 = 𝑇 ×𝑈/𝑅 𝑈
is an algebraic space surjective and smooth over 𝑇. By the claim above there exists an
étale covering {𝑇𝑖 → 𝑇}𝑖∈𝐼 and morphisms 𝑇𝑖 → 𝑉 over 𝑇. This proves that the object
𝑡 of [𝑈/𝑅] over 𝑇 comes étale locally from 𝑈. We conclude that [𝑈/𝑅] ́𝑒𝑡𝑎𝑙𝑒 → [𝑈/𝑅] is
an equivalence of stacks in groupoids over (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒 by Stacks, Lemma 50.4.8. This
concludes the proof. �
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CHAPTER 60

Properties of Algebraic Stacks

60.1. Introduction

Please see Algebraic Stacks, Section 57.1 for a brief introduction to algebraic stacks, and
please read some of that chapter for our foundations of algebraic stacks. The intent is that
in that chapter we are careful to distinguish between schemes, algebraic spaces, algebraic
stacks, and starting with this chapter we employ the customary abuse of language where all
of these concepts are used interchangeably.

The goal of this chapter is to introduce some basic notions and properties of algebraic stacks.
A fundamental reference for the case of quasi-separated algebraic stacks with representable
diagonal is [LMB00a].

60.2. Conventions and abuse of language

We choose a big fppf site Sch𝑓𝑝𝑝𝑓. All schemes are contained in Sch𝑓𝑝𝑝𝑓. And all rings 𝐴
considered have the property that 𝑆𝑝𝑒𝑐(𝐴) is (isomorphic) to an object of this big site.

We also fix a base scheme 𝑆, by the conventions above an element of Sch𝑓𝑝𝑝𝑓. The reader
who is only interested in the absolute case can take 𝑆 = 𝑆𝑝𝑒𝑐(𝐙).

Here are our conventions regarding algebraic stacks:
(1) When we say algebraic stack we will mean an algebraic stacks over 𝑆, i.e., a

category fibred in groupoids 𝑝 ∶ 𝒳 → (Sch/𝑆)𝑓𝑝𝑝𝑓 which satisfies the conditions
of Algebraic Stacks, Definition 57.12.1.

(2) Wewill say𝑓 ∶ 𝒳 → 𝒴 is amorphism of algebraic stacks to indicate a 1-morphism
of algebraic stacks over 𝑆, i.e., a 1-morphism of categories fibred in groupoids
over (Sch/𝑆)𝑓𝑝𝑝𝑓, see Algebraic Stacks, Definition 57.12.3.

(3) A 2-morphism 𝛼 ∶ 𝑓 → 𝑔 will indicate a 2-morphism in the 2-category of alge-
braic stacks over 𝑆, see Algebraic Stacks, Definition 57.12.3.

(4) Given morphisms 𝒳 → 𝒵 and 𝒴 → 𝒵 of algebraic stacks we abusively call the
2-fibre product 𝒳 ×𝒵 𝒴 the fibre product.

(5) We will write 𝒳 ×𝑆 𝒴 for the product of the algebraic stacks 𝒳, 𝒴.
(6) Wewill often abuse notation and say two algebraic stacks𝒳 and𝒴 are isomorphic

if they are equivalent in this 2-category.

Here are our conventions regarding algebraic spaces.
(1) If we say 𝑋 is an algebraic space then we mean that 𝑋 is an algebraic space over

𝑆, i.e., 𝑋 is a presheaf on (Sch/𝑆)𝑓𝑝𝑝𝑓 which satisfies the conditions of Spaces,
Definition 40.6.1.

(2) A morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 is a morphism of algebraic spaces
over 𝑆 as defined in Spaces, Definition 40.6.3.
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(3) We will not distinguish between an algebraic space 𝑋 and the algebraic stack
𝒮𝑋 → (Sch/𝑆)𝑓𝑝𝑝𝑓 it gives rise to, see Algebraic Stacks, Lemma 57.13.1.

(4) In particular, a morphism 𝑓 ∶ 𝑋 → 𝒴 from 𝑋 to an algebraic stack 𝒴 means a
morphism 𝑓 ∶ 𝒮𝑋 → 𝒴 of algebraic stacks. Similarly for morphisms 𝒴 → 𝑋.

(5) Moreover, given an algebraic stack 𝒳 we say 𝒳 is an algebraic space to indicate
that 𝒳 is representable by an algebraic space, see Algebraic Stacks, Definition
57.8.1.

(6) We will use the following notational convention: If we indicate an algebraic stack
by a roman capital (such as 𝑋, 𝑌, 𝑍, 𝐴, 𝐵, …) then it will be the case that its in-
ertia stack is trivial, and hence it is an algebraic space, see Algebraic Stacks,
Proposition 57.13.3.

Here are our conventions regarding schemes.
(1) If we say 𝑋 is a scheme then we mean that 𝑋 is a scheme over 𝑆, i.e., 𝑋 is an

object of (Sch/𝑆)𝑓𝑝𝑝𝑓.
(2) By a morphism of schemes we mean a morphism of schemes over 𝑆.
(3) We will not distinguish between a scheme 𝑋 and the algebraic stack 𝒮𝑋 →

(Sch/𝑆)𝑓𝑝𝑝𝑓 it gives rise to, see Algebraic Stacks, Lemma 57.13.1.
(4) In particular, a morphism 𝑓 ∶ 𝑋 → 𝒴 from a scheme 𝑋 to an algebraic stack 𝒴

means a morphism 𝑓 ∶ 𝒮𝑋 → 𝒴 of algebraic stacks. Similarly for morphisms
𝒴 → 𝑋.

(5) Moreover, given an algebraic stack 𝒳 we say 𝒳 is a scheme to indicate that 𝒳 is
representable, see Algebraic Stacks, Section 57.4.

Here are our conventions regarding morphism of algebraic stacks:
(1) A morphism 𝑓 ∶ 𝒳 → 𝒴 of algebraic stacks is representable, or representable

by schemes if for every scheme 𝑇 and morphism 𝑇 → 𝒴 the fibre product 𝑇 ×𝒴 𝒳
is a scheme. See Algebraic Stacks, Section 57.6.

(2) A morphism 𝑓 ∶ 𝒳 → 𝒴 of algebraic stacks is representable by algebraic spaces
if for every scheme 𝑇 and morphism 𝑇 → 𝒴 the fibre product 𝑇 ×𝒴 𝒳 is an
algebraic space. See Algebraic Stacks, Definition 57.9.1. In this case 𝑍 ×𝒴 𝒳 is
an algebraic space whenever 𝑍 → 𝒴 is a morphism whose source is an algebraic
space, see Algebraic Stacks, Lemma 57.9.8.

Note that every morphism 𝑋 → 𝒴 from an algebraic space to an algebraic stack is rep-
resentable by algebraic spaces, see Algebraic Stacks, Lemma 57.10.11. We will use this
basic result without further mention.

60.3. Properties of morphisms representable by algebraic spaces

We will study properties of (arbitrary) morphisms of algebraic stacks in its own chapter.
For morphisms representable by algebraic spaces we know what it means to be surjective,
smooth, or étale, etc. This applies in particular to morphisms 𝑋 → 𝒴 from algebraic spaces
to algebraic stacks. In this section, we recall how this works, we list the properties to which
this applies, and we prove a few easy lemmas.
Our first lemma says a morphism is representable by algebraic spaces if it is so after a base
change by a flat, locally finitely presented, surjective morphism.

Lemma 60.3.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Let 𝑊 be an algebraic
space and let 𝑊 → 𝒴 be surjective, locally of finite presentation, and flat. The following
are equivalent
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(1) 𝑓 is representable by algebraic spaces, and
(2) 𝑊 ×𝒴 𝒳 is an algebraic space.

Proof. The implication (1) ⇒ (2) is Algebraic Stacks, Lemma 57.9.8. Conversely, let 𝑊 →
𝒴 be as in (2). To prove (1) it suffices to show that 𝑓 is faithful on fibre categories, see
Algebraic Stacks, Lemma 57.15.2. Assumption (2) implies in particular that 𝑊×𝒴 𝒳 → 𝑊
is faithful. Hence the faithfulness of 𝑓 follows from Stacks, Lemma 50.6.9. �

Let 𝑃 be a property of morphisms of algebraic spaces which is fppf local on the target and
preserved by arbitrary base change. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks
representable by algebraic spaces. Then we say 𝑓 has property 𝑃 if and only if for every
scheme 𝑇 andmorphism 𝑇 → 𝒴 the morphism of algebraic spaces 𝑇×𝒴𝒳 → 𝑇 has property
𝑃, see Algebraic Stacks, Definition 57.10.1.

It turns out that if 𝑓 ∶ 𝒳 → 𝒴 is representable by algebraic spaces and has property 𝑃,
then for any morphism of algebraic stacks 𝒴′ → 𝒴 the base change 𝒴′ ×𝒴 𝒳 → 𝒴′

has property 𝑃, see Algebraic Stacks, Lemmas 57.9.7 and 57.10.6. If the property 𝑃 is
preserved under compositions, then this holds also in the setting of morphisms of algebraic
stacks representable by algebraic spaces, see Algebraic Stacks, Lemmas 57.9.9 and 57.10.5.
Moreover, in this case products 𝒳1 × 𝒳2 → 𝒴1 × 𝒴2 of morphisms representable by
algebraic spaces having property 𝒫 have property 𝒫, see Algebraic Stacks, Lemma 57.10.8.

Finally, if we have two properties 𝑃, 𝑃′ of morphisms of algebraic spaces which are fppf
local on the target and preserved by arbitrary base change and if 𝑃(𝑓) ⇒ 𝑃′(𝑓) for every
morphism 𝑓, then the same implication holds for the corresponding property of morphisms
of algebraic stacks representable by algebraic spaces, seeAlgebraic Stacks, Lemma 57.10.9.
We will use this without further mention in the following and in the following chapters.

The discussion above applies to each of the following properties of morphisms of algebraic
spaces

(1) quasi-compact, see Morphisms of Spaces, Lemma 42.9.3 and Descent on Spaces,
Lemma 45.10.1,

(2) quasi-separated, seeMorphisms of Spaces, Lemma 42.5.4 andDescent on Spaces,
Lemma 45.10.2,

(3) universally closed, see Morphisms of Spaces, Lemma 42.10.3 and Descent on
Spaces, Lemma 45.10.3,

(4) universally open, seeMorphisms of Spaces, Lemma 42.7.3 andDescent on Spaces,
Lemma 45.10.4,

(5) surjective, see Morphisms of Spaces, Lemma 42.6.5 and Descent on Spaces,
Lemma 45.10.5,

(6) universally injective, see Morphisms of Spaces, Lemma 42.18.5 and Descent on
Spaces, Lemma 45.10.6,

(7) locally of finite type, see Morphisms of Spaces, Lemma 42.22.3 and Descent on
Spaces, Lemma 45.10.7,

(8) locally of finite presentation, see Morphisms of Spaces, Lemma 42.26.3 and De-
scent on Spaces, Lemma 45.10.8,

(9) finite type, see Morphisms of Spaces, Lemma 42.22.3 and Descent on Spaces,
Lemma 45.10.9,

(10) finite presentation, see Morphisms of Spaces, Lemma 42.26.3 and Descent on
Spaces, Lemma 45.10.10,
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(11) flat, see Morphisms of Spaces, Lemma 42.27.3 and Descent on Spaces, Lemma
45.10.11,

(12) open immersion, see Morphisms of Spaces, Section 42.4 and Descent on Spaces,
Lemma 45.10.12,

(13) isomorphism, see Descent on Spaces, Lemma 45.10.13,
(14) affine, seeMorphisms of Spaces, Lemma 42.19.5 and Descent on Spaces, Lemma

45.10.14,
(15) closed immersion, seeMorphisms of Spaces, Section 42.4 andDescent on Spaces,

Lemma 45.10.15,
(16) separated, see Morphisms of Spaces, Lemma 42.5.4 and Descent on Spaces,

Lemma 45.10.16,
(17) proper, seeMorphisms of Spaces, Lemma 42.36.2 andDescent on Spaces, Lemma

45.10.17,
(18) quasi-affine, see Morphisms of Spaces, Lemma 42.20.5 and Descent on Spaces,

Lemma 45.10.18,
(19) integral, seeMorphisms of Spaces, Lemma 42.37.5 andDescent on Spaces, Lemma

45.10.20,
(20) finite, see Morphisms of Spaces, Lemma 42.37.5 and Descent on Spaces, Lemma

45.10.21,
(21) (locally) quasi-finite, see Morphisms of Spaces, Lemma 42.25.3 and Descent on

Spaces, Lemma 45.10.22,
(22) syntomic, see Morphisms of Spaces, Lemma 42.32.3 and Descent on Spaces,

Lemma 45.10.23,
(23) smooth, seeMorphisms of Spaces, Lemma 42.33.3 andDescent on Spaces, Lemma

45.10.24,
(24) unramified, see Morphisms of Spaces, Lemma 42.34.4 and Descent on Spaces,

Lemma 45.10.25,
(25) étale, see Morphisms of Spaces, Lemma 42.35.4 and Descent on Spaces, Lemma

45.10.26,
(26) finite locally free, see Morphisms of Spaces, Lemma 42.38.5 and Descent on

Spaces, Lemma 45.10.27,
(27) monomorphism, seeMorphisms of Spaces, Lemma 42.14.5 andDescent on Spaces,

Lemma 45.10.28,
(28) immersion, seeMorphisms of Spaces, Section 42.4 andDescent on Spaces, Lemma

45.11.1,
(29) locally separated, seeMorphisms of Spaces, Lemma 42.5.4 andDescent on Spaces,

Lemma 45.11.2,

Lemma 60.3.2. Let 𝑃 be a property of morphisms of algebraic spaces as above. Let
𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks representable by algebraic spaces. The
following are equivalent:

(1) 𝑓 has 𝑃,
(2) for every algebraic space 𝑍 and morphism 𝑍 → 𝒴 the morphism 𝑍 ×𝒴 𝒳 → 𝑍

has 𝑃.

Proof. The implication (2) ⇒ (1) is immediate. Assume (1). Let 𝑍 → 𝒴 be as in (2).
Choose a scheme 𝑈 and a surjective étale morphism 𝑈 → 𝑍. By assumption the morphism

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04XC
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𝑈 ×𝒴 𝒳 → 𝑈 has 𝑃. But the diagram

𝑈 ×𝒴 𝒳

��

// 𝑍 ×𝒴 𝒳

��
𝑈 // 𝑍

is cartesian, hence the right vertical arrow has 𝑃 as {𝑈 → 𝑍} is an fppf covering. �

The following lemma tells us it suffices to check 𝑃 after a base change by a surjective, flat,
locally finitely presented morphism.

Lemma 60.3.3. Let 𝑃 be a property of morphisms of algebraic spaces as above. Let 𝑓 ∶
𝒳 → 𝒴 be a morphism of algebraic stacks representable by algebraic spaces. Let 𝑊 be an
algebraic space and let 𝑊 → 𝒴 be surjective, locally of finite presentation, and flat. Set
𝑉 = 𝑊 ×𝒴 𝒳. Then

(𝑓 has 𝑃) ⇔ (the projection 𝑉 → 𝑊 has 𝑃).

Proof. The implication from left to right follows from Lemma 60.3.2. Assume 𝑉 → 𝑊 has
𝑃. Let 𝑇 be a scheme, and let 𝑇 → 𝒴 be a morphism. Consider the commutative diagram

𝑇 ×𝒴 𝒳

��

𝑇 ×𝒴 𝑊

��

oo // 𝑊

��
𝑇 𝑇 ×𝒴 𝑉oo // 𝑉

of algebraic spaces. The squares are cartesian. The bottom left morphism is a surjective, flat
morphism which is locally of finite presentation, hence {𝑇 ×𝒴 𝑉 → 𝑇} is an fppf covering.
Hence the fact that the right vertical arrow has property 𝑃 implies that the left vertical arrow
has property 𝑃. �

Lemma 60.3.4. Let 𝑃 be a property of morphisms of algebraic spaces as above. Let 𝑓 ∶
𝒳 → 𝒴 be a morphism of algebraic stacks representable by algebraic spaces. Let 𝒵 → 𝒴
be a morphism of algebraic stacks which is representable by algebraic spaces, surjective,
flat, and locally of finite presentation. Set 𝒲 = 𝒵 ×𝒴 𝒳. Then

(𝑓 has 𝑃) ⇔ (the projection 𝒲 → 𝒵 has 𝑃).

Proof. Choose an algebraic space 𝑊 and a morphism 𝑊 → 𝒵 which is surjective, flat,
and locally of finite presentation. By the discussion above the composition 𝑊 → 𝒴 is also
surjective, flat, and locally of finite presentation. Denote 𝑉 = 𝑊 ×𝒵 𝒲 = 𝑉 ×𝒴 𝒳. By
Lemma 60.3.3 we see that 𝑓 has 𝒫 if and only if 𝑉 → 𝑊 does and that 𝒲 → 𝒵 has 𝒫 if
and only if 𝑉 → 𝑊 does. The lemma follows. �

Lemma 60.3.5. Let𝑃 be a property of morphisms of algebraic spaces as above. Let𝒳 → 𝒴
and 𝒴 → 𝒵 be morphisms of algebraic stacks representable by algebraic spaces. Assume

(1) 𝒳 → 𝒴 is surjective, flat, and locally of finite presentation,
(2) the composition has 𝑃, and
(3) 𝑃 is local on the source in the fppf topology.

Then 𝒴 → 𝒵 has property 𝑃.

Proof. Let 𝑍 be a scheme and let 𝑍 → 𝒵 be a morphism. Set 𝑋 = 𝒳 ×𝒵 𝑍, 𝑌 = 𝒴 ×𝒵 𝑍.
By (1) {𝑋 → 𝑌} is an fppf covering of algebraic spaces and by (2) 𝑋 → 𝑍 has property 𝑃.
By (3) this implies that 𝑌 → 𝑍 has property 𝑃 and we win. �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04XD
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Lemma 60.3.6. Let 𝑔 ∶ 𝒳′ → 𝒳 be a morphism of algebraic stacks which is representable
by algebraic spaces. Let [𝑈/𝑅] → 𝒳 be a presentation. Set 𝑈′ = 𝑈 ×𝒳 𝒳′, and 𝑅′ =
𝑅 ×𝒳 𝒳′. Then there exists a groupoid in algebraic spaces of the form (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′), a
presentation [𝑈′/𝑅′] → 𝒳′, and the diagram

[𝑈′/𝑅′]

[pr]
��

// 𝒳′

𝑔
��

[𝑈/𝑅] // 𝒳

is 2-commutative where the morphism [pr] comes from a morphism of groupoids pr ∶
(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) → (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).

Proof. Since 𝑈 → 𝒴 is surjective and smooth, see Algebraic Stacks, Lemma 57.17.2
the base change 𝑈′ → 𝒳′ is also surjective and smooth. Hence, by Algebraic Stacks,
Lemma 57.16.2 it suffices to show that 𝑅′ = 𝑈′ ×𝒳′ 𝑈′ in order to get a smooth groupoid
(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) and a presentation [𝑈′/𝑅′] → 𝒳′. Using that 𝑅 = 𝑉 ×𝒴 𝑉 (see Groupoids
in Spaces, Lemma 52.21.2) this follows from

𝑅′ = 𝑈 ×𝒳 𝑈 ×𝒳 𝒳′ = (𝑈 ×𝒳 𝒳′) ×𝒳′ (𝑈 ×𝒳 𝒳′)
see Categories, Lemmas 4.28.8 and 4.28.10. Clearly the projection morphisms 𝑈′ → 𝑈 and
𝑅′ → 𝑅 give the desired morphism of groupoids pr ∶ (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) → (𝑈, 𝑅, 𝑠, 𝑡, 𝑐).
Hence the morphism [pr] of quotient stacks by Groupoids in Spaces, Lemma 52.20.1.
We still have to show that the diagram 2-commutes. It is clear that the diagram

𝑈′

pr𝑈
��

𝑓′
// 𝒳′

𝑔
��

𝑈
𝑓 // 𝒳

2-commutes where pr𝑈 ∶ 𝑈′ → 𝑈 is the projection. There is a canonical 2-arrow 𝜏 ∶
𝑓 ∘ 𝑡 → 𝑓 ∘ 𝑠 in 𝑀𝑜𝑟(𝑅, 𝒳) coming from 𝑅 = 𝑈 ×𝒳 𝑈, 𝑡 = pr0, and 𝑠 = pr1. Using the
isomorphism 𝑅′ → 𝑈′ ×𝒳′ 𝑈′ we get similarly an isomorphism 𝜏′ ∶ 𝑓′ ∘ 𝑡′ → 𝑓′ ∘ 𝑠′. Note
that 𝑔 ∘ 𝑓′ ∘ 𝑡′ = 𝑓 ∘ 𝑡 ∘pr𝑅 and 𝑔 ∘ 𝑓′ ∘ 𝑠′ = 𝑓 ∘ 𝑠 ∘pr𝑅, where pr𝑅 ∶ 𝑅′ → 𝑅 is the projection.
Thus it makes sense to ask if
(60.3.6.1) 𝜏 ⋆ idpr𝑅 = id𝑔 ⋆ 𝜏′.

Now we make two claims: (1) if Equation (60.3.6.1) holds, then the diagram 2-commutes,
and (2) Equation (60.3.6.1) holds. We omit the proof of both claims. Hints: part (1) follows
from the construction of 𝑓 = 𝑓𝑐𝑎𝑛 and 𝑓′ = 𝑓′

𝑐𝑎𝑛 in Algebraic Stacks, Lemma 57.16.1. Part
(2) follows by carefully working through the definitions. �

Remark 60.3.7. Let 𝒴 be an algebraic stack. Consider the following 2-category:
(1) An object is a morphism 𝑓 ∶ 𝒳 → 𝒴 which is representable by algebraic spaces,
(2) a 1-morphism (𝑔, 𝛽) ∶ (𝑓1 ∶ 𝒳1 → 𝒴) → (𝑓2 ∶ 𝒳2 → 𝒴) consists of amorphism

𝑔 ∶ 𝒳1 → 𝒳2 and a 2-morphism 𝛽 ∶ 𝑓1 → 𝑓2 ∘ 𝑔, and
(3) a 2-morphism between (𝑔, 𝛽), (𝑔′, 𝛽′) ∶ (𝑓1 ∶ 𝒳1 → 𝒴) → (𝑓2 ∶ 𝒳2 → 𝒴) is a

2-morphism 𝛼 ∶ 𝑔 → 𝑔′ such that (id𝑓2
⋆ 𝛼) ∘ 𝛽 = 𝛽′.

Let us denote this 2-category Spaces/𝒴 by analogy with the notation of Topologies on
Spaces, Section 44.2. Now we claim that in this 2-category the morphism categories

𝑀𝑜𝑟Spaces/𝒴((𝑓1 ∶ 𝒳1 → 𝒴), (𝑓2 ∶ 𝒳2 → 𝒴))

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04Y6
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are all setoids. Namely, a 2-morphism 𝛼 is a rule which to each object 𝑥1 of 𝒳1 assigns
an isomorphism 𝛼𝑥1

∶ 𝑔(𝑥1) ⟶ 𝑔′(𝑥1) in the relevant fibre category of 𝒳2 such that the
diagram

𝑓2(𝑥1)
𝛽𝑥1

yy

𝛽′
𝑥1

%%
𝑓2(𝑔(𝑥1))

𝑓2(𝛼𝑥1)
// 𝑓2(𝑔′(𝑥1))

commutes. But since 𝑓2 is faithful (see Algebraic Stacks, Lemma 57.15.2) this means that
if 𝛼𝑥1

exists, then it is unique! In other words the 2-category Spaces/𝒴 is very close to being
a category. Namely, if we replace 1-morphisms by isomorphism classes of 1-morphisms
we obtain a category. We will often perform this replacement without further mention.

60.4. Points of algebraic stacks

Let 𝒳 be an algebraic stack. Let 𝐾, 𝐿 be two fields and let 𝑝 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝒳 and 𝑞 ∶
𝑆𝑝𝑒𝑐(𝐿) → 𝒳 be morphisms. We say that 𝑝 and 𝑞 are equivalent if there exists a field Ω
and a 2-commutative diagram

𝑆𝑝𝑒𝑐(Ω) //

��

𝑆𝑝𝑒𝑐(𝐿)

𝑞
��

𝑆𝑝𝑒𝑐(𝐾)
𝑝 // 𝒳.

Lemma 60.4.1. The notion above does indeed define an equivalence relation onmorphisms
from spectra of fields into the algebraic stack 𝒳.

Proof. It is clear that the relation is reflexive and symmetric. Hence we have to prove that
it is transitive. This comes down to the following: Given a diagram

𝑆𝑝𝑒𝑐(Ω)
𝑏
//

𝑎
��

𝑆𝑝𝑒𝑐(𝐿)

𝑞
��

𝑆𝑝𝑒𝑐(Ω′)
𝑏′
oo

𝑎′

��
𝑆𝑝𝑒𝑐(𝐾)

𝑝 // 𝒳 𝑆𝑝𝑒𝑐(𝐾′)
𝑝′

oo

with both squares 2-commutative we have to show that 𝑝 is equivalent to 𝑝′. By the
2-Yoneda lemma (see Algebraic Stacks, Section 57.5) the morphisms 𝑝, 𝑝′, and 𝑞 are given
by objects 𝑥, 𝑥′, and 𝑦 in the fibre categories of 𝒳 over 𝑆𝑝𝑒𝑐(𝐾), 𝑆𝑝𝑒𝑐(𝐾′), and 𝑆𝑝𝑒𝑐(𝐿).
The 2-commutativity of the squares means that there are isomorphisms 𝛼 ∶ 𝑎∗𝑥 → 𝑏∗𝑦 and
𝛼′ ∶ (𝑎′)∗𝑥′ → (𝑏′)∗𝑦 in the fibre categories of 𝒳 over 𝑆𝑝𝑒𝑐(Ω) and 𝑆𝑝𝑒𝑐(Ω′). Choose any
field Ω″ and embeddings Ω → Ω″ and Ω′ → Ω″ agreeing on 𝐿. Then we can extend the
diagram above to

𝑆𝑝𝑒𝑐(Ω″)
𝑐

xx
𝑞′

��

𝑐′

&&
𝑆𝑝𝑒𝑐(Ω)

𝑏
//

𝑎
��

𝑆𝑝𝑒𝑐(𝐿)

𝑞
��

𝑆𝑝𝑒𝑐(Ω′)
𝑏′

oo

𝑎′

��
𝑆𝑝𝑒𝑐(𝐾)

𝑝 // 𝒳 𝑆𝑝𝑒𝑐(𝐾′)
𝑝′

oo

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04XF
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with commutative triangles and

(𝑞′)∗(𝛼′)−1 ∘ (𝑞′)∗𝛼 ∶ (𝑎 ∘ 𝑐)∗𝑥 ⟶ (𝑎′ ∘ 𝑐′)∗𝑥′

is an isomorphism in the fibre category over 𝑆𝑝𝑒𝑐(Ω″). Hence 𝑝 is equivalent to 𝑝′ as
desired. �

Definition 60.4.2. Let 𝒳 be an algebraic stack. A point of 𝒳 is an equivalence class of
morphisms from spectra of fields into 𝒳. The set of points of 𝒳 is denoted |𝒳|.

This agrees with our definition of points of algebraic spaces, see Properties of Spaces, Defi-
nition 41.4.1. Moreover, for a scheme we recover the usual notion of points, see Properties
of Spaces, Lemma 41.4.2. If 𝑓 ∶ 𝒳 → 𝒴 is a morphism of algebraic stacks then there
is an induced map |𝑓| ∶ |𝒳| → |𝒴| which maps a representative 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝒳
to the representative 𝑓 ∘ 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝒴. This is well defined: namely 2-isomorphic
1-morphisms remain 2-isomorphic after pre- or post-composing by a 1-morphism because
you can horizontally pre- or post-compose by the identity of the given 1-morphism. This
holds in any (strict) (2, 1)-category. If

𝒳

��

// 𝒴

��
𝒲 // 𝒵

is a 2-commutative diagram of algebraic stacks, then the diagram of sets

|𝒳|

��

// |𝒴|

��
|𝒲| // |𝒵|

is commutative. In particular, if 𝒳 → 𝒴 is an equivalence then |𝒳| → |𝒴| is a bijection.

Lemma 60.4.3. Let
𝒵 ×𝒴 𝒳 //

��

𝒳

��
𝒵 // 𝒴

be a fibre product of algebraic stacks. Then the map of sets of points

|𝒵 ×𝒴 𝒳| ⟶ |𝒵| ×|𝒴| |𝒳|

is surjective.

Proof. Namely, suppose given fields 𝐾, 𝐿 and morphisms 𝑆𝑝𝑒𝑐(𝐾) → 𝒳, 𝑆𝑝𝑒𝑐(𝐿) →
𝒵, then the assumption that they agree as elements of |𝒴| means that there is a common
extension 𝐾 ⊂ 𝑀 and 𝐿 ⊂ 𝑀 such that 𝑆𝑝𝑒𝑐(𝑀) → 𝑆𝑝𝑒𝑐(𝐾) → 𝒳 → 𝒴 and 𝑆𝑝𝑒𝑐(𝑀) →
𝑆𝑝𝑒𝑐(𝐿) → 𝒵 → 𝒴 are 2-isomorphic. And this is exactly the condition which says you
get a morphism 𝑆𝑝𝑒𝑐(𝑀) → 𝒵 ×𝒴 𝒳. �

Lemma 60.4.4. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent:

(1) |𝑓| ∶ |𝒳| → |𝒴| is surjective, and
(2) 𝑓 is surjective.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=04XG
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Proof. Assume (1). Let 𝑇 → 𝒴 be a morphism whose source is a scheme. To prove (2)
we have to show that the morphism of algebraic spaces 𝑇 ×𝒴 𝒳 → 𝑇 is surjective. By
Morphisms of Spaces, Definition 42.6.2 this means we have to show that |𝑇 ×𝒴 𝒳| → |𝑇|
is surjective. Applying Lemma 60.4.3 we see that this follows from (1).

Conversely, assume (2). Let 𝑦 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝒴 be a morphism from the spectrum of a
field into 𝒴. By assumption the morphism 𝑆𝑝𝑒𝑐(𝐾)×𝑦,𝒴 𝒳 → 𝑆𝑝𝑒𝑐(𝐾) of algebraic spaces
is surjective. By Morphisms of Spaces, Definition 42.6.2 this means there exists a field
extension 𝐾 ⊂ 𝐾′ and a morphism 𝑆𝑝𝑒𝑐(𝐾′) → 𝑆𝑝𝑒𝑐(𝐾) ×𝑦,𝒴 𝒳 such that the left square
of the diagram

𝑆𝑝𝑒𝑐(𝐾′) //

��

𝑆𝑝𝑒𝑐(𝐾) ×𝑦,𝒴 𝒳

��

// 𝒳

��
𝑆𝑝𝑒𝑐(𝐾) 𝑆𝑝𝑒𝑐(𝐾)

𝑦 // 𝒴
is commutative. This shows that |𝑋| → |𝒴| is surjective. �

Here is a lemma explaining how to compute the set of points in terms of a presentation.

Lemma 60.4.5. Let 𝒳 be an algebraic stack. Let 𝒳 = [𝑈/𝑅] be a presentation of 𝒳, see
Algebraic Stacks, Definition 57.16.5. Then the image of |𝑅| → |𝑈| × |𝑈| is an equivalence
relation and |𝒳| is the quotient of |𝑈| by this equivalence relation.

Proof. The assumption means that we have a smooth groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in algebraic
spaces, and an equivalence 𝑓 ∶ [𝑈/𝑅] → 𝒳. We may assume 𝒳 = [𝑈/𝑅]. The induced
morphism 𝑝 ∶ 𝑈 → 𝒳 is smooth and surjective, see Algebraic Stacks, Lemma 57.17.2.
Hence |𝑈| → |𝒳| is surjective by Lemma 60.4.4. Note that 𝑅 = 𝑈 ×𝒳 𝑈, see Groupoids in
Spaces, Lemma 52.21.2. Hence Lemma 60.4.3 implies the map

|𝑅| ⟶ |𝑈| ×|𝒳| |𝑈|

is surjective. Hence the image of |𝑅| → |𝑈| × |𝑈| is exactly the set of pairs (𝑢1, 𝑢2) ∈
|𝑈| × |𝑈| such that 𝑢1 and 𝑢2 have the same image in |𝒳|. Combining these two statements
we get the result of the lemma. �

Remark 60.4.6. The result of Lemma 60.4.5 can be generalized as follows. Let 𝒳 be an
algebraic stack. Let 𝑈 be an algebraic space and let 𝑓 ∶ 𝑈 → 𝒳 be a surjective morphism
(which makes sense by Section 60.3). Let 𝑅 = 𝑈 ×𝒳 𝑈, let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be the groupoid in
algebraic spaces, and let 𝑓𝑐𝑎𝑛 ∶ [𝑈/𝑅] → 𝒳 be the canonical morphism as constructed in
Algebraic Stacks, Lemma 57.16.1. Then the image of |𝑅| → |𝑈| × |𝑈| is an equivalence
relation and |𝒳| = |𝑈|/|𝑅|. The proof of Lemma 60.4.5 works without change. (Of course
in general [𝑈/𝑅] is not an algebraic stack, and in general 𝑓𝑐𝑎𝑛 is not an isomorphism.)

Lemma 60.4.7. There exists a unique topology on the sets of points of algebraic stacks
with the following properties:

(1) for every morphism of algebraic stacks𝒳 → 𝒴 the map |𝒳| → |𝒴| is continuous,
and

(2) for every morphism 𝑈 → 𝒳 which is flat and locally of finite presentation with 𝑈
an algebraic space the map of topological spaces |𝑈| → |𝒳| is continuous and
open.

Proof. Choose a morphism 𝑝 ∶ 𝑈 → 𝒳 which is surjective, flat, and locally of finite
presentation with 𝑈 an algebraic space. Such exist by the definition of an algebraic stack,
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as a smooth morphism is flat and locally of finite presentation (see Morphisms of Spaces,
Lemmas 42.33.5 and 42.33.7). We define a topology on |𝒳| by the rule: 𝑊 ⊂ |𝒳| is open
if and only if |𝑝|−1(𝑊) is open in |𝑈|. To show that this is independent of the choice of 𝑝,
let 𝑝′ ∶ 𝑈′ → 𝒳 be another morphism which is surjective, flat, locally of finite presentation
from an algebraic space to 𝒳. Set 𝑈″ = 𝑈 ×𝒳 𝑈′ so that we have a 2-commutative diagram

𝑈″ //

��

𝑈′

��
𝑈 // 𝒳

As 𝑈 → 𝒳 and 𝑈′ → 𝒳 are surjective, flat, locally of finite presentation we see that
𝑈″ → 𝑈′ and 𝑈″ → 𝑈 are surjective, flat and locally of finite presentation, see Lemma
60.3.2. Hence the maps |𝑈″| → |𝑈′| and |𝑈″| → |𝑈| are continuous, open and surjective,
see Morphisms of Spaces, Definition 42.6.2 and Lemma 42.27.5. This clearly implies that
our definition is independent of the choice of 𝑝 ∶ 𝑈 → 𝒳.

Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. By Algebraic Stacks, Lemma 57.15.1
we can find a 2-commutative diagram

𝑈

𝑥
��

𝑎
// 𝑉

𝑦
��

𝒳
𝑓 // 𝒴

with surjective smooth vertical arrows. Consider the associated commutative diagram

|𝑈|

|𝑥|
��

|𝑎|
// |𝑉|

|𝑦|
��

|𝒳|
|𝑓| // |𝒴|

of sets. If 𝑊 ⊂ |𝒴| is open, then by the definition above this means exactly that |𝑦|−1(𝑊)
is open in |𝑉|. Since |𝑎| is continuous we conclude that |𝑎|−1|𝑦|−1(𝑊) = |𝑥|−1|𝑓|−1(𝑊) is
open in |𝑊| whichmeans by definition that |𝑓|−1(𝑊) is open in |𝒳|. Thus |𝑓| is continuous.

Finally, we have to show that if 𝑈 is an algebraic space, and 𝑈 → 𝒳 is flat and locally of
finite presentation, then |𝑈| → |𝒳| is open. Let 𝑉 → 𝒳 be surjective, flat, and locally of
finite presentation with 𝑉 an algebraic space. Consider the commutative diagram

|𝑈 ×𝒳 𝑉| 𝑒
//

𝑓
&&

|𝑈| ×|𝒳| |𝑉|

𝑐
��

𝑑
// |𝑉|

𝑏
��

|𝑈| 𝑎 // |𝒳|

Now the morphism 𝑈 ×𝒳 𝑉 → 𝑈 is surjective, i.e, 𝑓 ∶ |𝑈 ×𝒳 𝑉| → |𝑈| is surjective. The
left top horizontal arrow is surjective, see Lemma 60.4.3. The morphism 𝑈×𝒳 𝑉 → 𝑉 is flat
and locally of finite presentation, hence 𝑑 ∘ 𝑒 ∶ |𝑈 ×𝒳 𝑉| → |𝑉| is open, see Morphisms of
Spaces, Lemma 42.27.5. Pick 𝑊 ⊂ |𝑈| open. The properties above imply that 𝑏−1(𝑎(𝑊)) =
(𝑑 ∘ 𝑒)(𝑓−1(𝑊)) is open, which by construction means that 𝑎(𝑊) is open as desired. �

Definition 60.4.8. Let 𝒳 be an algebraic stack. The underlying topological space of 𝒳 is
the set of points |𝒳| endowed with the topology constructed in Lemma 60.4.7.
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This definition does not conflict with the already existing topology on |𝒳| if 𝒳 is an alge-
braic space.

Lemma 60.4.9. Let 𝒳 be an algebraic stack. Every point of |𝒳| has a fundamental system
of quasi-compact open neighbourhoods. In particular |𝒳| is locally quasi-compact in the
sense of Topology, Definition 5.18.1.

Proof. This follows formally from the fact that there exists a scheme 𝑈 and a surjective,
open, continuous map 𝑈 → |𝒳| of topological spaces. Namely, if 𝑈 → 𝒳 is surjective
and smooth, then Lemma 60.4.7 garantees that |𝑈| → |𝒳| is continuous, surjective, and
open. �

60.5. Surjective morphisms

Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks which is representable by algebraic
spaces. In Section 60.3 we have already defined what it means for 𝑓 to be surjective. In
Lemma 60.4.4 we have seen that this is equivalent to requiring |𝑓| ∶ |𝒳| → |𝒴| to be
surjective. This clears the way for the following definition.

Definition 60.5.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. We say 𝑓 is
surjective if the map |𝑓| ∶ |𝒳| → |𝒴| of associated topological spaces is surjective.

Here are some lemmas.

Lemma 60.5.2. The composition of surjective morphisms is surjective.

Proof. Omitted. �

Lemma 60.5.3. The base change of a surjective morphism is surjective.

Proof. Omitted. Hint: Use Lemma 60.4.3. �

Lemma 60.5.4. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Let 𝒴′ → 𝒴 be a
surjective morphism of algebraic stacks. If the base change 𝑓′ ∶ 𝒴′ ×𝒴 𝒳 → 𝒴′ of 𝑓 is
surjective, then 𝑓 is surjective.

Proof. Immediate from Lemma 60.4.3. �

Lemma 60.5.5. Let 𝒳 → 𝒴 → 𝒵 be morphisms of algebraic stacks. If 𝒳 → 𝒵 is
surjective so is 𝒴 → 𝒵.

Proof. Immediate. �

60.6. Quasi-compact algebraic stacks

The following definition is equivalent with the definition for algebraic spaces by Properties
of Spaces, Lemma 41.5.2.

Definition 60.6.1. Let 𝒳 be an algebraic stack. We say 𝒳 is quasi-compact if and only if
|𝒳| is quasi-compact.

Lemma 60.6.2. Let 𝒳 be an algebraic stack. The following are equivalent:
(1) 𝒳 is quasi-compact,
(2) there exists a surjective smooth morphism 𝑈 → 𝒳 with 𝑈 a quasi-compact

scheme,
(3) there exists a surjective smooth morphism 𝑈 → 𝒳 with 𝑈 a quasi-compact alge-

braic space, and
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(4) there exists a surjective morphism 𝒰 → 𝒳 of algebraic stacks such that 𝒰 is
quasi-compact.

Proof. We will use Lemma 60.4.4. Suppose 𝒰 and 𝒰 → 𝒳 are as in (4). Then since
|𝒰| → |𝒳| is surjective and continuous we conclude that |𝒳| is quasi-compact. Thus
(4) implies (1). The implications (2) ⇒ (3) ⇒ (4) are immediate. Assume (1), i.e., 𝒳 is
quasi-compact, i.e., that |𝒳| is quasi-compact. Choose a scheme 𝑈 and a surjective smooth
morphism 𝑈 → 𝒳. Then since |𝑈| → |𝒳| is open we see that there exists a quasi-compact
open 𝑈′ ⊂ 𝑈 such that |𝑈′| → |𝑋| is surjective (and still smooth). Hence (2) holds. �

Lemma60.6.3. Afinite disjoint union of quasi-compact algebraic stacks is a quasi-compact
algebraic stack.

Proof. This is clear from the corresponding topological fact. �

60.7. Properties of algebraic stacks defined by properties of schemes

Any smooth local property of schemes gives rise to a corresponding property of algebraic
stacks via the following lemma. Note that a property of schemes which is smooth local is
also étale local as any étale covering is also a smooth covering. Hence for a smooth local
property 𝑃 of schemes we know what it means to say that an algebraic space has 𝑃, see
Properties of Spaces, Section 60.7.

Lemma 60.7.1. Let 𝒫 be a property of schemes which is local in the smooth topology, see
Descent, Definition 31.11.1. Let 𝒳 be an algebraic stack. The following are equivalent

(1) for some scheme 𝑈 and some surjective smooth morphism 𝑈 → 𝒳 the scheme 𝑈
has property 𝒫,

(2) for every scheme 𝑈 and every smooth morphism 𝑈 → 𝒳 the scheme 𝑈 has prop-
erty 𝒫,

(3) for some algebraic space 𝑈 and some surjective smooth morphism 𝑈 → 𝒳 the
algebraic space 𝑈 has property 𝒫, and

(4) for every algebraic space 𝑈 and every smooth morphism 𝑈 → 𝒳 the algebraic
space 𝑈 has property 𝒫.

If 𝒳 is a scheme this is equivalent to 𝒫(𝑈). If 𝒳 is an algebraic space this is equivalent to
𝑋 having property 𝒫.

Proof. Let 𝑈 → 𝒳 surjective and smooth with 𝑈 an algebraic space. Let 𝑉 → 𝒳 be a
smooth morphism with 𝑉 an algebraic space. Choose schemes 𝑈′ and 𝑉′ and surjective
étale morphisms 𝑈′ → 𝑈 and 𝑉′ → 𝑉. Finally, choose a scheme 𝑊 and a surjective étale
morphism 𝑊 → 𝑉′ ×𝒳 𝑈′. Then 𝑊 → 𝑉′ and 𝑊 → 𝑈′ are smooth morphisms of schemes
as compositions of étale and smooth morphisms of algebraic spaces, see Morphisms of
Spaces, Lemmas 42.35.6 and 42.33.2. Moreover, 𝑊 → 𝑉′ is surjective as 𝑈′ → 𝒳 is
surjective. Hence, we have

𝒫(𝑈) ⇔ 𝒫(𝑈′) ⇒ 𝒫(𝑊) ⇒ 𝒫(𝑉′) ⇔ 𝒫(𝑉)
where the equivalences are by definition of property 𝒫 for algebraic spaces, and the two
implications come from Descent, Definition 31.11.1. This proves (3) ⇒ (4).
The implications (2) ⇒ (1), (1) ⇒ (3), and (4) ⇒ (2) are immediate. �

Definition 60.7.2. Let 𝒳 be an algebraic stack. Let 𝒫 be a property of schemes which is
local in the smooth topology. We say 𝒳 has property 𝒫 if any of the equivalent conditions
of Lemma 60.7.1 hold.
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Remark 60.7.3. Here is a list of properties which are local for the smooth topology (keep
in mind that the fpqc, fppf, and syntomic topologies are stronger than the smooth topology):

(1) locally Noetherian, see Descent, Lemma 31.12.1,
(2) Jacobson, see Descent, Lemma 31.12.2,
(3) locally Noetherian and (𝑆𝑘), see Descent, Lemma 31.13.1,
(4) Cohen-Macaulay, see Descent, Lemma 31.13.2,
(5) reduced, see Descent, Lemma 31.14.1,
(6) normal, see Descent, Lemma 31.14.2,
(7) locally Noetherian and (𝑅𝑘), see Descent, Lemma 31.14.3,
(8) regular, see Descent, Lemma 31.14.4,
(9) Nagata, see Descent, Lemma 31.14.5.

Any smooth local property of germs of schemes gives rise to a corresponding property of
algebraic stacks. Note that a property of germs which is smooth local is also étale local.
Hence for a smooth local property of germs of schemes 𝑃 we know what it means to say
that an algebraic space 𝑋 has property 𝑃 at 𝑥 ∈ |𝑋|, see Properties of Spaces, Section 60.7.

Lemma 60.7.4. Let 𝒳 be an algebraic stack. Let 𝑥 ∈ |𝒳| be a point of 𝒳. Let 𝒫 be a
property of germs of schemes which is smooth local, see Descent, Definition 31.17.1. The
following are equivalent

(1) for any smooth morphism 𝑈 → 𝒳 with 𝑈 a scheme and 𝑢 ∈ 𝑈 with 𝑎(𝑢) = 𝑥 we
have 𝒫(𝑈, 𝑢),

(2) for some smooth morphism 𝑈 → 𝒳 with 𝑈 a scheme and some 𝑢 ∈ 𝑈 with
𝑎(𝑢) = 𝑥 we have 𝒫(𝑈, 𝑢),

(3) for any smooth morphism 𝑈 → 𝒳 with 𝑈 an algebraic space and 𝑢 ∈ |𝑈| with
𝑎(𝑢) = 𝑥 the algebraic space 𝑈 has property 𝒫 at 𝑢, and

(4) for some smooth morphism𝑈 → 𝒳with𝑈 a an algebraic space and some 𝑢 ∈ |𝑈|
with 𝑎(𝑢) = 𝑥 the algebraic space 𝑈 has property 𝒫 at 𝑢.

If 𝒳 is representable, then this is equivalent to 𝒫(𝒳, 𝑥). If 𝒳 is an algebraic space then this
is equivalent to 𝒳 having property 𝒫 at 𝑥.

Proof. Let 𝑎 ∶ 𝑈 → 𝒳 and 𝑢 ∈ |𝑈| as in (3). Let 𝑏 ∶ 𝑉 → 𝒳 be another smooth morphism
with 𝑉 an algebraic space and 𝑣 ∈ |𝑉| with 𝑏(𝑣) = 𝑥 also. Choose a scheme 𝑈′, an étale
morphism 𝑈′ → 𝑈 and 𝑢′ ∈ 𝑈′ mapping to 𝑢. Choose a scheme 𝑉′, an étale morphism
𝑉′ → 𝑉 and 𝑣′ ∈ 𝑉′ mapping to 𝑣. By Lemma 60.4.3 there exists a point 𝑤 ∈ |𝑉′ ×𝒳 𝑈′|
mapping to 𝑢′ and 𝑣′. Choose a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝑉′ ×𝒳 𝑈′.
We may choose a 𝑤 ∈ |𝑊| mapping to 𝑤 (see Properties of Spaces, Lemma 41.4.4). Then
𝑊 → 𝑉′ and 𝑊 → 𝑈′ are smooth morphisms of schemes as compositions of étale and
smooth morphisms of algebraic spaces, see Morphisms of Spaces, Lemmas 42.35.6 and
42.33.2. Hence

𝒫(𝑈, 𝑢) ⇔ 𝒫(𝑈′, 𝑢′) ⇔ 𝒫(𝑊, 𝑤) ⇔ 𝒫(𝑉′, 𝑣′) ⇔ 𝒫(𝑉, 𝑣)

The outer two equivalences by Properties of Spaces, Definition 41.7.5 and the other two by
what it means to be a smooth local property of germs of schemes. This proves (4) ⇒ (3).

The implications (1) ⇒ (2), (2) ⇒ (4), and (3) ⇒ (1) are immediate. �

Definition 60.7.5. Let 𝒫 be a property of germs of schemes which is smooth local. Let 𝒳
be an algebraic stack. Let 𝑥 ∈ |𝒳|. We say 𝒳 has property 𝒫 at 𝑥 if any of the equivalent
conditions of Lemma 60.7.4 holds.
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60.8. Monomorphisms of algebraic stacks

We define amonomorphism of algebraic stacks in the following way. Wewill see in Lemma
60.8.4 that this is compatible with the corresponding 2-category theoretic notion.

Definition 60.8.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. We say 𝑓 is a
monomorphism if it is representable by algebraic spaces and a monomorphism in the sense
of Section 60.3.

First some basic lemmas.

Lemma 60.8.2. Let𝒳 → 𝒴 be amorphism of algebraic stacks. Let𝒵 → 𝒴 be amonomor-
phism. Then 𝒵 ×𝒴 𝒳 → 𝒳 is a monomorphism.

Proof. This follows from the general discussion in Section 60.3. �

Lemma 60.8.3. Compositions of monomorphisms of algebraic stacks are monomorphisms.

Proof. This follows from the general discussion in Section 60.3 and Morphisms of Spaces,
Lemma 42.14.4. �

Lemma 60.8.4. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. The following are
equivalent:

(1) 𝑓 is a monomorphism,
(2) 𝑓 is fully faithful,
(3) the diagonal Δ𝑓 ∶ 𝒳 → 𝒳 ×𝒴 𝒳 is an equivalence, and
(4) there exists an algebraic space 𝑊 and a surjective, flat morphism 𝑊 → 𝒴 which

is locally of finite presentation such that 𝑉 = 𝒳 ×𝒴 𝑊 is an algebraic space, and
the morphism 𝑉 → 𝑊 is a monomorphism of algebraic spaces.

Proof. The equivalence of (1) and (4) follows from the general discussion in Section 60.3
and in particular Lemmas 60.3.1 and 60.3.3.

The equivalence of (2) and (3) is Categories, Lemma 4.32.9.

Assume the equivalent conditions (2) and (3). Then 𝑓 is representable by algebraic spaces
according to Algebraic Stacks, Lemma 57.15.2. Moreover, the 2-Yoneda lemma combined
with the fully faithfullness implies that for every scheme 𝑇 the functor

𝑀𝑜𝑟(𝑇, 𝒳) ⟶ 𝑀𝑜𝑟(𝑇, 𝒴)

is fully faithful. Hence given amorphism 𝑦 ∶ 𝑇 → 𝒴 there exists up to unique 2-isomorphism
at most one morphism 𝑥 ∶ 𝑇 → 𝒳 such that 𝑦 ≅ 𝑓 ∘ 𝑥. In particular, given a morphism of
schemes ℎ ∶ 𝑇′ → 𝑇 there exists at most one lift ℎ̃ ∶ 𝑇′ → 𝑇 ×𝒴 𝒳 of ℎ. Thus 𝑇 ×𝒴 𝒳 → 𝑇
is a monomorphism of algebraic spaces, which proves that (1) holds.

Finally, assume that (1) holds. Then for any scheme 𝑇 and morphism 𝑦 ∶ 𝑇 → 𝒴 the fibre
product 𝑇 ×𝒴 𝒳 is an algebraic space, and 𝑇 ×𝒴 𝒳 → 𝑇 is a monomorphism. Hence there
exists up to unique isomorphism exactly one pair (𝑥, 𝛼) where 𝑥 ∶ 𝑇 → 𝒳 is a morphism
and 𝛼 ∶ 𝑓 ∘ 𝑥 → 𝑦 is a 2-morphism. Applying the 2-Yoneda lemma this says exactly that 𝑓
is fully faithful, i.e., that (2) holds. �

Lemma 60.8.5. A monomorphism of algebraic stacks induces an injective map of sets of
points.
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Proof. Let 𝑓 ∶ 𝒳 → 𝒴 be a monomorphism of algebraic stacks. Suppose that 𝑥𝑖 ∶
𝑆𝑝𝑒𝑐(𝐾𝑖) → 𝒳 be morphisms such that 𝑓 ∘ 𝑥1 and 𝑓 ∘ 𝑥2 define the same element of |𝒴|.
Applying the definition we find a common extension Ω with corresponding morphisms
𝑐𝑖 ∶ 𝑆𝑝𝑒𝑐(Ω) → 𝑆𝑝𝑒𝑐(𝐾𝑖) and a 2-isomorphism 𝛽 ∶ 𝑓 ∘ 𝑥1 ∘ 𝑐1 → 𝑓 ∘ 𝑥1 ∘ 𝑐2. As 𝑓 is fully
faithful, see Lemma 60.8.4, we can lift 𝛽 to an isomorphism 𝛼 ∶ 𝑓 ∘ 𝑥1 ∘ 𝑐1 → 𝑓 ∘ 𝑥1 ∘ 𝑐2.
Hence 𝑥1 and 𝑥2 define the same point of |𝒳| as desired. �

60.9. Immersions of algebraic stacks

Immersions of algebraic stacks are defined as follows.

Definition 60.9.1. Immersions.
(1) A morphism of algebraic stacks is called an open immersion if it is representable,

and an open immersion in the sense of Section 60.3.
(2) A morphism of algebraic stacks is called a closed immersion if it is representable,

and a closed immersion in the sense of Section 60.3.
(3) A morphism of algebraic stacks is called an immersion if it is representable, and

an immersion in the sense of Section 60.3.

This is not the most convenient way to think about immersions for us. For us it is a little bit
more convenient to think of an immersion as a morphism of algebraic stacks which is rep-
resentable by algebraic spaces and is an immersion in the sense of Section 60.3. Similarly
for closed and open immersions. Since this is clearly equivalent to the notion just defined
we shall use this characterization without further mention. We prove a few simple lemmas
about this notion.

Lemma 60.9.2. Let 𝒳 → 𝒴 be a morphism of algebraic stacks. Let 𝒵 → 𝒴 be a (closed,
resp. open) immersion. Then 𝒵 ×𝒴 𝒳 → 𝒳 is a (closed, resp. open) immersion.

Proof. This follows from the general discussion in Section 60.3. �

Lemma 60.9.3. Compositions of immersions of algebraic stacks are immersions. Similarly
for closed immersions and open immersions.

Proof. This follows from the general discussion in Section 60.3 and Spaces, Lemma 40.12.2.
�

Lemma 60.9.4. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. let 𝑊 be an algebraic
space and let 𝑊 → 𝒴 be a surjective, flat morphism which is locally of finite presentation.
The following are equivalent:

(1) 𝑓 is an (open, resp. closed) immersion, and
(2) 𝑉 = 𝑊 ×𝒴 𝒳 is an algebraic space, and 𝑉 → 𝑊 is an (open, resp. closed)

immersion.

Proof. This follows from the general discussion in Section 60.3 and in particular Lemmas
60.3.1 and 60.3.3. �

Lemma 60.9.5. An immersion is a monomorphism.

Proof. See Morphisms of Spaces, Lemma 42.14.7. �

The following two lemmas explain how to think about immersions in terms of presentations.
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Lemma 60.9.6. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a smooth groupoid in algebraic spaces. Let 𝑖 ∶ 𝒵 →
[𝑈/𝑅] be an immersion. Then there exists an 𝑅-invariant locally closed subspace 𝑍 ⊂ 𝑈
and a presentation [𝑍/𝑅𝑍] → 𝒵 where 𝑅𝑍 is the restriction of 𝑅 to 𝑍 such that

[𝑍/𝑅𝑍]

$$

// 𝒵

𝑖||
[𝑈/𝑅]

is 2-commutative. If 𝑖 is a closed (resp. open) immersion then 𝑍 is a closed (resp. open)
subspace of 𝑈.

Proof. By Lemma 60.3.6 we get a commutative diagram

[𝑈′/𝑅′]

$$

// 𝒵

||
[𝑈/𝑅]

where 𝑈′ = 𝒵 ×[𝑈/𝑅] 𝑈 and 𝑅′ = 𝒵 ×[𝑈/𝑅] 𝑅. Since 𝒵 → [𝑈/𝑅] is an immersion we
see that 𝑈′ → 𝑈 is an immersion of algebraic spaces. Let 𝑍 ⊂ 𝑈 be the locally closed
subspace such that 𝑈′ → 𝑈 factors through 𝑍 and induces an isomorphism 𝑈′ → 𝑍. It
is clear from the construction of 𝑅′ that 𝑅′ = 𝑈′ ×𝑈,𝑡 𝑅 = 𝑅 ×𝑠,𝑈 𝑈′. This implies that
𝑍 ≅ 𝑈′ is 𝑅-invariant and that the image of 𝑅′ → 𝑅 identifies 𝑅′ with the restriction
𝑅𝑍 = 𝑠−1(𝑍) = 𝑡−1(𝑍) of 𝑅 to 𝑍. Hence the lemma holds. �

Lemma 60.9.7. Let (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) be a smooth groupoid in algebraic spaces. Let 𝒳 = [𝑈/𝑅]
be the associated algebraic stack, see Algebraic Stacks, Theorem 57.17.3. Let 𝑍 ⊂ 𝑈 be
an 𝑅-invariant locally closed subspace. Then

[𝑍/𝑅𝑍] ⟶ [𝑈/𝑅]

is an immersion of algebraic stacks, where 𝑅𝑍 is the restriction of 𝑅 to 𝑍. If 𝑍 ⊂ 𝑈 is open
(resp. closed) then the morphism is an open (resp. closed) immersion of algebraic stacks.

Proof. Recall that by Groupoids in Spaces, Definition 52.17.1 (see also discussion fol-
lowing the definition) we have 𝑅𝑍 = 𝑠−1(𝑍) = 𝑡−1(𝑍) as locally closed subspaces of
𝑅. Hence the two morphisms 𝑅𝑍 → 𝑍 are smooth as base changes of 𝑠 and 𝑡. Hence
(𝑍, 𝑅𝑍, 𝑠|𝑅𝑍

, 𝑡|𝑅𝑍
, 𝑐|𝑅𝑍×𝑠,𝑍,𝑡𝑅𝑍

) is a smooth groupoid in algebraic spaces, and we see that
[𝑍/𝑅𝑍] is an algebraic stack, see Algebraic Stacks, Theorem 57.17.3. The assumptions of
Groupoids in Spaces, Lemma 52.24.3 are all satisfied and it follows that we have a 2-fibre
square

𝑍

��

// [𝑍/𝑅𝑍]

��
𝑈 // [𝑈/𝑅]

It follows from this and Lemma 60.3.1 that [𝑍/𝑅𝑍] → [𝑈/𝑅] is representable by algebraic
spaces, whereupon it follows from Lemma 60.3.3 that the right vertical arrow is an immer-
sion (resp. closed immersion, resp. open immersion) if and only if the left vertical arrow
is. �

We can define open, closed, and locally closed substacks as follows.
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Definition 60.9.8. Let 𝒳 be an algebraic stack.

(1) An open substack of 𝒳 is a strictly full subcategory 𝒳′ ⊂ 𝒳 such that 𝒳′ is an
algebraic stack and 𝒳′ → 𝒳 is an open immersion.

(2) A closed substack of 𝒳 is a strictly full subcategory 𝒳′ ⊂ 𝒳 such that 𝒳′ is an
algebraic stack and 𝒳′ → 𝒳 is a closed immersion.

(3) A locally closed substack of 𝒳 is a strictly full subcategory 𝒳′ ⊂ 𝒳 such that 𝒳′

is an algebraic stack and 𝒳′ → 𝒳 is an immersion.

This definition should be used with caution. Namely, if 𝑓 ∶ 𝒳 → 𝒴 is an equivalence of
algebraic stacks and 𝒳′ ⊂ 𝒳 is an open substack, then it is not necessarily the case that the
subcategory 𝑓(𝒳′) is an open substack of 𝒴. The problem is that it may not be a strictly
full subcategory; but this is also the only problem. Here is a formal statement.

Lemma60.9.9. For any immersion 𝑖 ∶ 𝒵 → 𝒳 there exists a unique locally closed substack
𝒳′ ⊂ 𝒳 such that 𝑖 factors as the composition of an equivalence 𝑖′ ∶ 𝒵 → 𝒳′ followed
by the inclusion morphism 𝒳′ → 𝒳. If 𝑖 is a closed (resp. open) immersion, then 𝒳′ is a
closed (resp. open) substack of 𝒳.

Proof. Omitted. �

Lemma 60.9.10. Let [𝑈/𝑅] → 𝒳 be a presentation of an algebraic stack. There is a
canonical bijection

𝑅-invariant locally closed subspaces 𝑍 of 𝑈 ↔ locally closed substacks 𝒵 of 𝒳

where if𝑍 corresponds to𝒵, then [𝑍/𝑅𝑍] → 𝒵 is a presentation fitting into a 2-commutative
diagram with the given presentation of 𝒳. Similarly for closed substacks and open sub-
stacks.

Proof. Omitted. Hints: Use Lemma 60.9.6 to go from right to left and Lemma 60.9.7 from
left to right. �

Lemma 60.9.11. Let 𝒳 be an algebraic stack. The rule 𝒰 ↦ |𝒰| defines an inclusion
preserving bijection between open substacks of 𝒳 and open subsets of |𝒳|.

Proof. Choose a presentation [𝑈/𝑅] → 𝒳, see Algebraic Stacks, Lemma 57.16.2. By
Lemma 60.9.10 we see that open substacks correspond to 𝑅-invariant open subschemes of
𝑈. On the other hand Lemmas 60.4.5 and 60.4.7 guarantee these correspond bijectively to
open subsets of |𝒳|. �

Lemma 60.9.12. Let 𝒳 be an algebraic stack. Let 𝑈 be an algebraic space and 𝑈 → 𝒳
a surjective smooth morphism. For an open immersion 𝑉 ↪ 𝑈, there exists an algebraic
stack 𝒴, an open immersion 𝒴 → 𝒳, and a surjective smooth morphism 𝑉 → 𝒴.

Proof. We define a category fibred in groupoids 𝒴 by letting the fiber category 𝒴𝑇 over
an object 𝑇 of (Sch/𝑆)𝑓𝑝𝑝𝑓 be the full subcategory of 𝒳𝑇 consisting of all 𝑦 ∈ 𝑂𝑏(𝒳𝑇) such
that the projection morphism 𝑉 ×𝒳,𝑦 𝑇 → 𝑇 surjective. Now for any morphism 𝑥 ∶ 𝑇 → 𝒳,
the 2-fibred product 𝑇 ×𝑥,𝒳 𝒴 has fiber category over 𝑇′ consisting of triples (𝑓 ∶ 𝑇′ →
𝑇, 𝑦 ∈ 𝒳𝑇′, 𝑓∗𝑥 ≃ 𝑦) such that 𝑉 ×𝒳,𝑦 𝑇′ → 𝑇′ is surjective. Note that 𝑇 ×𝑥,𝒳 𝒴 is fibered
in setoids since 𝒴 → 𝒳 is faithful (see Stacks, Lemma 50.6.7). Now the isomorphism
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𝑓∗𝑥 ≃ 𝑦 gives the diagram

𝑉 ×𝒳,𝑦 𝑇′

��

// 𝑉 ×𝒳,𝑥 𝑇 //

��

𝑉

��
𝑇′ 𝑓 // 𝑇 𝑥 // 𝒳

where both squares are cartesian. The morphism 𝑉 ×𝒳,𝑥 𝑇 → 𝑇 is smooth by base change,
and hence open. Let 𝑇0 ⊂ 𝑇 be its image. From the cartesian squares we deduce that
𝑉×𝒳,𝑦 𝑇′ → 𝑇′ is surjective if and only if 𝑓 lands in 𝑇0. Therefore 𝑇×𝑥,𝒳 𝒴 is representable
by 𝑇0, so the inclusion 𝒴 → 𝒳 is an open immersion. By Algebraic Stacks, Lemma 57.15.5
we conclude that 𝒴 is an algebraic stack. Lastly if we denote the morphism 𝑉 → 𝒳 by 𝑔,
we have 𝑉 ×𝒳 𝑉 → 𝑉 is surjective (the diagonal gives a section). Hence 𝑔 is in the image of
𝒴𝑉 → 𝒳𝑉, i.e., we obtain a morphism 𝑔′ ∶ 𝑉 → 𝒴 fitting into the commutative diagram

𝑉 //

𝑔′

��

𝑈

��
𝒴 // 𝒳

Since 𝑉 ×𝑔,𝒳 𝒴 → 𝑉 is a monomorphism, it is in fact an isomorphism since (1, 𝑔′) defines
a section. Therefore 𝑔′ ∶ 𝑉 → 𝒴 is a smooth morphism, as it is the base change of the
smooth morphism 𝑔 ∶ 𝑉 → 𝒳. It is surjective by our construction of 𝒴 which finishes the
proof of the lemma. �

Lemma 60.9.13. Let 𝒳 be an algebraic stack and 𝒳𝑖 ⊂ 𝒳 a collection of open substacks
indexed by 𝑖 ∈ 𝐼. Then there exists an open substack, which we denote ⋃𝑖∈𝐼 𝒳𝑖 ⊂ 𝒳, such
that the 𝒳𝑖 are open substacks covering it.

Proof. We define a fibred subcategory 𝒳′ = ⋃𝑖∈𝐼 𝒳𝑖 by letting the fiber category over an
object 𝑇 of (Sch/𝑆)𝑓𝑝𝑝𝑓 be the full subcategory of 𝒳𝑇 consisting of all 𝑥 ∈ 𝑂𝑏(𝒳𝑇) such
that the morphism ⨆𝑖∈𝐼(𝒳𝑖 ×𝒳 𝑇) → 𝑇 is surjective. Let 𝑥𝑖 ∈ 𝑂𝑏((𝒳𝑖)𝑇). Then (𝑥𝑖, 1)
gives a section of 𝒳𝑖 ×𝒳 𝑇 → 𝑇, so we have an isomorphism. Thus 𝒳𝑖 ⊂ 𝒳′ is a full
subcategory. Now let 𝑥 ∈ 𝑂𝑏(𝒳𝑇). Then 𝒳𝑖 ×𝒳 𝑇 is representable by an open subscheme
𝑇𝑖 ⊂ 𝑇. The 2-fibred product 𝒳′ ×𝒳 𝑇 has fiber over 𝑇′ consisting of (𝑦 ∈ 𝒳𝑇′, 𝑓 ∶ 𝑇′ →
𝑇, 𝑓∗𝑥 ≃ 𝑦) such that ⨆(𝒳𝑖 ×𝒳,𝑦 𝑇′) → 𝑇′ is surjective. The isomorphism 𝑓∗𝑥 ≃ 𝑦 induces
an isomorphism 𝒳𝑖 ×𝒳,𝑦 𝑇′ ≃ 𝑇𝑖 ×𝑇 𝑇′. Then the 𝑇𝑖 ×𝑇 𝑇′ cover 𝑇′ if and only if 𝑓 lands in
⋃ 𝑇𝑖. Therefore we have a diagram

𝑇𝑖
//

��

⋃ 𝑇𝑖
//

��

𝑇

��
𝒳𝑖

// 𝒳′ // 𝒳

with both squares cartesian. By Algebraic Stacks, Lemma 57.15.5 we conclude that 𝒳′ ⊂
𝒳 is algebraic and an open substack. It is also clear from the cartesian squares above that
the morphism ⨆𝑖∈𝐼 𝒳𝑖 → 𝒳′ which finishes the proof of the lemma. �

Lemma 60.9.14. Let 𝒳 be an algebraic stack and 𝒳′ ⊂ 𝒳 a quasi-compact open substack.
Suppose that we have a collection of open substacks 𝒳𝑖 ⊂ 𝒳 indexed by 𝑖 ∈ 𝐼 such that
𝒳′ ⊂ ⋃𝑖∈𝐼 𝒳𝑖, where we define the union as in Lemma 60.9.13. Then there exists a finite
subset 𝐼′ ⊂ 𝐼 such that 𝒳′ ⊂ ⋃𝑖∈𝐼′ 𝒳𝑖.
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Proof. Since 𝒳 is algebraic, there exists a scheme 𝑈 with a surjective smooth morphism
𝑈 → 𝒳. Let 𝑈𝑖 ⊂ 𝑈 be the open subscheme representing 𝒳𝑖 ×𝒳 𝑈 and 𝑈′ ⊂ 𝑈 the
open subscheme representing 𝒳′ ×𝒳 𝑈. By hypothesis, 𝑈′ ⊂ ⋃𝑖∈𝐼 𝑈𝑖. From the proof of
Lemma 60.6.2, there is a quasi-compact open 𝑉 ⊂ 𝑈′ such that 𝑉 → 𝒳′ is a surjective
smooth morphism. Therefore there exists a finite subset 𝐼′ ⊂ 𝐼 such that 𝑉 ⊂ ⋃𝑖∈𝐼′ 𝑈𝑖. We
claim that 𝒳′ ⊂ ⋃𝑖∈𝐼′ 𝒳𝑖. Take 𝑥 ∈ 𝑂𝑏(𝒳′

𝑇) for 𝑇 ∈ 𝑂𝑏((Sch/𝑆)𝑓𝑝𝑝𝑓). Since 𝒳′ → 𝒳 is a
monomorphism, we have cartesian squares

𝑉 ×𝒳 𝑇 //

��

𝑇

𝑥
��

𝑇

𝑥
��

𝑉 // 𝒳′ // 𝒳
By base change, 𝑉 ×𝒳 𝑇 → 𝑇 is surjective. Therefore ⋃𝑖∈𝐼′ 𝑈𝑖 ×𝒳 𝑇 → 𝑇 is also surjective.
Let 𝑇𝑖 ⊂ 𝑇 be the open subscheme representing 𝒳𝑖 ×𝒳 𝑇. By a formal argument, we have
a Cartesian square

𝑈𝑖 ×𝒳𝑖
𝑇𝑖

//

��

𝑈 ×𝒳 𝑇

��
𝑇𝑖

// 𝑇
where the vertical arrows are surjective by base change. Since 𝑈𝑖 ×𝒳𝑖

𝑇𝑖 ≃ 𝑈𝑖 ×𝒳 𝑇, we find
that ⋃𝑖∈𝐼′ 𝑇𝑖 = 𝑇. Hence 𝑥 is an object of (⋃𝑖∈𝐼′ 𝒳𝑖)𝑇 by definition of the union. Observe
that the inclusion 𝒳′ ⊂ ⋃𝑖∈𝐼′ 𝒳𝑖 is automatically an open substack. �

Lemma 60.9.15. Let 𝒳 be an algebraic stack. Let 𝒳𝑖, 𝑖 ∈ 𝐼 be a set of open substacks of
𝒳. Assume

(1) 𝒳 = ⋃𝑖∈𝐼 𝒳𝑖, and
(2) each 𝒳𝑖 is an algebraic space.

Then 𝒳 is an algebraic space.

Proof. Apply Stacks, Lemma 50.6.10 to the morphism ∐𝑖∈𝐼 𝒳𝑖 → 𝒳 and the morphism
id ∶ 𝒳 → 𝒳 to see that 𝒳 is a stack in setoids. Hence 𝒳 is an algebraic space, see Algebraic
Stacks, Proposition 57.13.3. �

Lemma 60.9.16. Let 𝒳 be an algebraic stack. Let 𝒳𝑖, 𝑖 ∈ 𝐼 be a set of open substacks of
𝒳. Assume

(1) 𝒳 = ⋃𝑖∈𝐼 𝒳𝑖, and
(2) each 𝒳𝑖 is a scheme

Then 𝒳 is a scheme.

Proof. By Lemma 60.9.15 we see that 𝒳 is an algebraic space. Since any algebraic space
has a largest open subspace which is a scheme, see Properties of Spaces, Lemma 41.10.1
we see that 𝒳 is a scheme. �

The following lemma is the analogue of More on Groupoids, Lemma 36.5.1.

Lemma 60.9.17. Let 𝒫, 𝒬, ℛ be properties of morphisms of algebraic spaces. Assume
(1) 𝒫, 𝒬, ℛ are fppf local on the target and stable under arbitrary base change,
(2) smooth ⇒ ℛ,
(3) for any morphism 𝑓 ∶ 𝑋 → 𝑌 which has 𝒬 there exists a largest open subspace

𝑊(𝒫, 𝑓) ⊂ 𝑋 such that 𝑓|𝑊(𝒫,𝑓) has 𝒫, and
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(4) for any morphism 𝑓 ∶ 𝑋 → 𝑌 which has 𝒬, and any morphism 𝑌′ → 𝑌 which has
ℛ we have 𝑌′ ×𝑌 𝑊(𝒫, 𝑓) = 𝑊(𝒫, 𝑓′), where 𝑓′ ∶ 𝑋𝑌′ → 𝑌′ is the base change
of 𝑓.

Let 𝑓 ∶ 𝒳 → 𝒴 be a morphisms of algebraic stacks representable by algebraic spaces.
Assume 𝑓 has 𝒬. Then

(A) there exists a largest open substack 𝒳′ ⊂ 𝒳 such that 𝑓|𝒳′ has 𝒫, and
(B) if 𝒵 → 𝒴 is a morphism of algebraic stacks representable by algebraic spaces

which has ℛ then 𝒵 ×𝒴 𝒳′ is the largest open substack of 𝒵 ×𝒴 𝒳 over which
the base change id𝒵 × 𝑓 has property 𝒫.

Proof. Choose a scheme 𝑉 and a surjective smooth morphism 𝑉 → 𝒴. Set 𝑈 = 𝑉×𝒴 𝒳 and
let 𝑓′ ∶ 𝑈 → 𝑉 be the base change of 𝑓. The morphism of algebraic spaces 𝑓′ ∶ 𝑈 → 𝑉
has property 𝒬. Thus we obtain the open 𝑊(𝒫, 𝑓′) ⊂ 𝑈 by assumption (3). Note that
𝑈 ×𝒳 𝑈 = (𝑉 ×𝒴 𝑉) ×𝒴 𝒳 hence the morphism 𝑓″ ∶ 𝑈 ×𝒳 𝑈 → 𝑉 ×𝒴 𝑉 is the base change
of 𝑓 via either projection 𝑉 ×𝒴 𝑉 → 𝑉. By our choice of 𝑉 these projections are smooth,
hence have property ℛ by (2). Thus by (4) we see that the inverse images of 𝑊(𝒫, 𝑓′) under
the two projections pr𝑖 ∶ 𝑈 ×𝒳 𝑈 → 𝑈 agree. In other words, 𝑊(𝒫, 𝑓′) is an 𝑅-invariant
subspace of 𝑈 (where 𝑅 = 𝑈 ×𝒳 𝑈). Let 𝒳′ be the open substack of 𝒳 corresponding to
𝑊(𝒫, 𝑓) via Lemma 60.9.6. By construction 𝑊(𝒫, 𝑓′) = 𝒳′ ×𝒴 𝑉 hence 𝑓|𝒳′ has property
𝒫 by Lemma 60.3.3. Also, 𝒳′ is the largest open substack such that 𝑓|𝒳′ has 𝒫 as the same
maximality holds for 𝑊(𝒫, 𝑓). This proves (A).

Finally, if 𝒵 → 𝒴 is a morphism of algebraic stacks representable by algebraic spaces
which has ℛ then we set 𝑇 = 𝑉 ×𝒴 𝒵 and we see that 𝑇 → 𝑉 is a morphism of algebraic
spaces having property ℛ. Set 𝑓′

𝑇 ∶ 𝑇 ×𝑉 𝑈 → 𝑇 the base change of 𝑓′. By (4) again we
see that 𝑊(𝒫, 𝑓′

𝑇) is the inverse image of 𝑊(𝒫, 𝑓) in 𝑇 ×𝑉 𝑈. This implies (B); some details
omitted. �

Remark 60.9.18. Warning: Lemma 60.9.17 should be used with care. For example, it
applies to 𝒫 =``flat'', 𝒬 =``empty'', and ℛ =``flat and locally of finite presentation''. But
given a morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 the largest open subspace 𝑊 ⊂ 𝑋 such
that 𝑓|𝑊 is flat is not the set of points where 𝑓 is flat!

Remark 60.9.19. Notwithstanding the warning in Remark 60.9.18 there are some cases
where Lemma 60.9.17 can be used without causing ambiguity. We give a list. In each case
we omit the verification of assumptions (1) and (2) and we give references which imply (3)
and (4). Here is the list:

(1) 𝒬 =``locally of finite type'', ℛ = ∅, and 𝒫 =``relative dimension ≤ 𝑑''. See
Morphisms of Spaces, Definition 42.30.2 and Morphisms of Spaces, Lemmas
42.31.4 and 42.31.3.

(2) 𝒬 =``locally of finite type'', ℛ = ∅, and 𝒫 =``locally quasi-finite''. This is the
case 𝑑 = 0 of the previous item, see Morphisms of Spaces, Lemma 42.31.6. On
the other hand, properties (3) and (4) are spelled out in Morphisms of Spaces,
Lemma 42.31.7.

(3) 𝒬 =``locally of finite type'', ℛ = ∅, and 𝒫 =``unramified''. This is Morphisms
of Spaces, Lemma 42.34.10.

(4) 𝒬 =``locally of finite presentation'', ℛ =``flat and locally of finite presentation'',
and 𝒫 =``flat''. SeeMore onMorphisms of Spaces, Theorem 46.17.1 and Lemma
46.17.2. Note that here 𝑊(𝒫, 𝑓) is always exactly the set of points where the
morphism 𝑓 is flat because we only consider this open when 𝑓 has 𝒬 (see loc.cit.).
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(5) 𝒬 =``locally of finite presentation'', ℛ =``flat and locally of finite presentation'',
and 𝒫 =``étale''. This follows on combining (3) and (4) because an unramified
morphism which is flat and locally of finite presentation is étale, see Morphisms
of Spaces, Lemma 42.35.12.

(6) Add more here as needed (compare with the longer list at More on Groupoids,
Remark 36.5.3).

60.10. Reduced algebraic stacks

We have already defined reduced algebraic stacks in Section 60.7.

Lemma 60.10.1. Let 𝒳 be an algebraic stack. Let 𝑇 ⊂ |𝒳| be a closed subset. There exists
a unique closed substack 𝒵 ⊂ 𝒳 with the following properties: (a) we have |𝒵| = 𝑇, and
(b) 𝒵 is reduced.

Proof. Let 𝑈 → 𝒳 be a surjective smooth morphism, where 𝑈 is an algebraic space. Set
𝑅 = 𝑈 ×𝒳 𝑈, so that there is a presentation [𝑈/𝑅] → 𝒳, see Algebraic Stacks, Lemma
57.16.2. As usual we denote 𝑠, 𝑡 ∶ 𝑅 → 𝑈 the two smooth projection morphisms. By
Lemma 60.4.5 we see that 𝑇 corresponds to a closed subset 𝑇′ ⊂ |𝑈| such that |𝑠|−1(𝑇′) =
|𝑡|−1(𝑇′). Let 𝑍 ⊂ 𝑈 be the reduced induced algebraic space structure on 𝑇′, see Properties
of Spaces, Definition 41.9.3. The fibre products 𝑍×𝑈,𝑡 𝑅 and 𝑅×𝑠,𝑈 𝑍 are closed subspaces
of 𝑅 (Spaces, Lemma 40.12.3). The projections 𝑍 ×𝑈,𝑡 𝑅 → 𝑍 and 𝑅 ×𝑠,𝑈 𝑍 → 𝑍 are
smooth by Morphisms of Spaces, Lemma 42.33.3. Thus as 𝑍 is reduced, it follows that
𝑍 ×𝑈,𝑡 𝑅 and 𝑅 ×𝑠,𝑈 𝑍 are reduced, see Remark 60.7.3. Since

|𝑍 ×𝑈,𝑡 𝑅| = |𝑡|−1(𝑇′) = |𝑠|−1(𝑇′) = 𝑅 ×𝑠,𝑈 𝑍

we conclude from the uniqueness in Properties of Spaces, Lemma 41.9.1 that 𝑍 ×𝑈,𝑡 𝑅 =
𝑅 ×𝑠,𝑈 𝑍. Hence 𝑍 is an 𝑅-invariant closed subspace of 𝑈. By the corresondence of
Lemma 60.9.10 (and its proof) we obtain a closed substack 𝒵 ⊂ 𝒵 with a presentation
[𝑍/𝑅𝑍] → 𝒵. Then |𝒵| = |𝑍|/|𝑅𝑍| = |𝑇′|/ ∼ is the given closed subset 𝑇. We omit the
proof of unicity. �

Lemma 60.10.2. Let 𝒳 be an algebraic stack. If 𝒳′ ⊂ 𝒳 is a closed substack, 𝒳 is reduced
and |𝒳′| = |𝒳|, then 𝒳′ = 𝒳.

Proof. Choose a presentation [𝑈/𝑅] → 𝒳 with 𝑈 a scheme. As 𝒳 is reduced, we see that 𝑈
is reduced (by definition of reduced algebraic stacks). By Lemma 60.9.10 𝒳′ corresponds
to an 𝑅-invariant closed subscheme 𝑍 ⊂ 𝑈. But now |𝑍| ⊂ |𝑈| is the inverse image of
|𝒳′|, and hence |𝑍| = |𝑈|. Hence 𝑍 is a closed subscheme of 𝑈 whose underlying sets of
points agree. By Schemes, Lemma 21.12.6 the map id𝑈 ∶ 𝑈 → 𝑈 factors through 𝑍 → 𝑈,
and hence 𝑍 = 𝑈, i.e., 𝒳′ = 𝒳. �

Lemma 60.10.3. Let 𝒳, 𝒴 be algebraic stacks. Let 𝒵 ⊂ 𝒳 be a closed substack Assume
𝒴 is reduced. A morphism 𝑓 ∶ 𝒴 → 𝒳 factors through 𝒵 if and only if 𝑓(|𝒴|) ⊂ |𝒵|.

Proof. Assume 𝑓(|𝒴|) ⊂ |𝒵|. Consider 𝒴×𝒳𝒵 → 𝒴. There is an equivalence 𝒴×𝒳𝒵 →
𝒴′ where 𝒴′ is a closed substack of 𝒴, see Lemmas 60.9.2 and 60.9.9. Using Lemmas
60.4.3, 60.8.5, and 60.9.5 we see that |𝒴′| = |𝒴|. Hence we have reduced the lemma to
Lemma 60.10.2. �

Definition 60.10.4. Let 𝒳 be an algebraic stack. Let 𝑍 ⊂ |𝒳| be a closed subset. An
algebraic stack structure on 𝑍 is given by a closed substack 𝒵 of 𝒳 with |𝒵| equal to
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𝑍. The reduced induced algebraic stack structure on 𝑍 is the one constructed in Lemma
60.10.1. The reduction 𝒳𝑟𝑒𝑑 of 𝒳 is the reduced induced algebraic stack structure on |𝒳|.

In fact we can use this to define the reduced induced algebraic stack structure on a locally
closed subset.

Remark 60.10.5. Let 𝑋 be an algebraic stack. Let 𝑇 ⊂ |𝒳| be a locally closed subset. Let
𝜕𝑇 be the boundary of 𝑇 in the topological space |𝒳|. In a formula

𝜕𝑇 = 𝑇 ⧵ 𝑇.

Let 𝒰 ⊂ 𝒳 be the open substack of 𝑋 with |𝒰| = |𝒳| ⧵ 𝜕𝑇, see Lemma 60.9.11. Let 𝒵
be the reduced closed substack of 𝒰 with |𝒵| = 𝑇 obtained by taking the reduced induced
closed subspace structure, see Definition 60.10.4. By construction 𝒵 → 𝒰 is a closed
immersion of algebraic stacks and 𝒰 → 𝒳 is an open immersion, hence 𝒵 → 𝒳 is an
immersion of algebraic stacks by Lemma 60.9.3. Note that 𝒵 is a reduced algebraic stack
and that |𝒵| = 𝑇 as subsets of |𝑋|. We sometimes say 𝒵 is the reduced induced substack
structure on 𝑇.

60.11. Residual gerbes

In the stacks project we would like to define the residual gerbe of an algebraic stack 𝒳 at
a point 𝑥 ∈ |𝒳| to be a monomorphism of algebraic stacks 𝑚𝑥 ∶ 𝒵𝑥 → 𝒳 where 𝒵𝑥 is
a reduced algebraic stack having a unique point which is mapped by 𝑚𝑥 to 𝑥. It turns out
that there are many issues with this notion; existence is not clear in general and neither is
uniqueness. We resolve the uniqueness issue by imposing a slightly stronger condition on
the algebraic stacks 𝒵𝑥. We discuss this in more detail by working through a few simple
lemmas regarding reduced algebraic stacks having a unique point.

Lemma 60.11.1. Let 𝒵 be an algebraic stack. Let 𝑘 be a field and let 𝑆𝑝𝑒𝑐(𝑘) → 𝒵 be
surjective and flat. Then any morphism 𝑆𝑝𝑒𝑐(𝑘′) → 𝒵 where 𝑘′ is a field is surjective and
flat.

Proof. Consider the fibre square

𝑇

��

// 𝑆𝑝𝑒𝑐(𝑘)

��
𝑆𝑝𝑒𝑐(𝑘′) // 𝒵

Note that 𝑇 → 𝑆𝑝𝑒𝑐(𝑘′) is flat and surjective hence 𝑇 is not empty. On the other hand
𝑇 → 𝑆𝑝𝑒𝑐(𝑘) is flat as 𝑘 is a field. Hence 𝑇 → 𝒵 is flat and surjective. It follows from
Morphisms of Spaces, Lemma 42.28.5 (via the discussion in Section 60.3) that 𝑆𝑝𝑒𝑐(𝑘′) →
𝒵 is flat. It is clear that it is surjective as by assumption |𝒵| is a singleton. �

Lemma 60.11.2. Let 𝒵 be an algebraic stack. The following are equivalent
(1) 𝒵 is reduced and |𝒵| is a singleton,
(2) there exists a surjective flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵 where 𝑘 is a field, and
(3) there exists a locally of finite type, surjective, flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵 where

𝑘 is a field.

Proof. Assume (1). Let 𝑊 be a scheme and let 𝑊 → 𝒵 be a surjective smooth morphism.
Then 𝑊 is a reduced scheme. Let 𝜂 ∈ 𝑊 be a generic point of an irreducible component
of 𝑊. Since 𝑊 is reduced we have 𝒪𝑊,𝜂 = 𝜅(𝜂). It follows that the canonical morphism
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𝜂 = 𝑆𝑝𝑒𝑐(𝜅(𝜂)) → 𝑊 is flat. We see that the composition 𝜂 → 𝒵 is flat (see Morphisms
of Spaces, Lemma 42.27.2). It is also surjective as |𝒵| is a singleton. In other words (2)
holds.
Assume (2). Let 𝑊 be a scheme and let 𝑊 → 𝒵 be a surjective smooth morphism. Choose
a field 𝑘 and a surjective flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵. Then 𝑊 ×𝒵 𝑆𝑝𝑒𝑐(𝑘) is an algebraic
space smooth over 𝑘, hence regular (see Spaces over Fields, Lemma 48.5.1) and in particular
reduced. Since 𝑊 ×𝒵 𝑆𝑝𝑒𝑐(𝑘) → 𝑊 is surjective and flat we conclude that 𝑊 is reduced
(Descent on Spaces, Lemma 45.8.2). In other words (1) holds.
It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme 𝑊 and a
smooth morphism 𝑊 → 𝒵. Pick a closed point 𝑤 ∈ 𝑊 and set 𝑘 = 𝜅(𝑤). The composition

𝑆𝑝𝑒𝑐(𝑘)
𝑤

−−→ 𝑊 ⟶ 𝒵
is locally of finite type by Morphisms of Spaces, Lemmas 42.22.2 and 42.33.6. It is also
flat and surjective by Lemma 60.11.1. Hence (3) holds. �

The following lemma singles out a slightly better class of singleton algebraic stacks than
the preceding lemma.

Lemma 60.11.3. Let 𝒵 be an algebraic stack. The following are equivalent
(1) 𝒵 is reduced, locally Noetherian, and |𝒵| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵

where 𝑘 is a field.

Proof. Assume (2) holds. By Lemma 60.11.2 we see that 𝒵 is reduced and |𝒵| is a sin-
gleton. Let 𝑊 be a scheme and let 𝑊 → 𝒵 be a surjective smooth morphism. Choose
a field 𝑘 and a locally finitely presented, surjective, flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵. Then
𝑊 ×𝒵 𝑆𝑝𝑒𝑐(𝑘) is an algebraic space smooth over 𝑘, hence locally Noetherian (see Mor-
phisms of Spaces, Lemma 42.22.5). Since 𝑊 ×𝒵 𝑆𝑝𝑒𝑐(𝑘) → 𝑊 is flat, surjective, and
locally of finite presentation, we see that {𝑊 ×𝒵 𝑆𝑝𝑒𝑐(𝑘) → 𝑊} is an fppf covering and we
conclude that 𝑊 is locally Noetherian (Descent on Spaces, Lemma 45.8.3). In other words
(1) holds.
Assume (1). Pick a nonempty affine scheme 𝑊 and a smooth morphism 𝑊 → 𝒵. Pick a
closed point 𝑤 ∈ 𝑊 and set 𝑘 = 𝜅(𝑤). Because 𝑊 is locally Noetherian the morphism
𝑤 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝑊 is of finite presentation, see Morphisms, Lemma 24.20.7. Hence the
composition

𝑆𝑝𝑒𝑐(𝑘)
𝑤

−−→ 𝑊 ⟶ 𝒵
is locally of finite presentation by Morphisms of Spaces, Lemmas 42.26.2 and 42.33.5. It
is also flat and surjective by Lemma 60.11.1. Hence (2) holds. �

Lemma 60.11.4. Let 𝒵′ → 𝒵 be a monomorphism of algebraic stacks. Assume there
exists a field 𝑘 and a locally finitely presented, surjective, flat morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵.
Then either 𝒵′ is empty or 𝒵′ → 𝒵 is an equivalence.

Proof. We may assume that 𝒵′ is nonempty. In this case the fibre product 𝑇 = 𝒵′ ×𝒵
𝑆𝑝𝑒𝑐(𝑘) is nonempty, see Lemma 60.4.3. Now 𝑇 is an algebraic space and the projection
𝑇 → 𝑆𝑝𝑒𝑐(𝑘) is a monomorphism. Hence 𝑇 = 𝑆𝑝𝑒𝑐(𝑘), see Morphisms of Spaces, Lemma
42.14.8. We conclude that 𝑆𝑝𝑒𝑐(𝑘) → 𝒵 factors through 𝒵′. Suppose the morphism
𝑧 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝒵 is given by the object 𝜉 over 𝑆𝑝𝑒𝑐(𝑘). We have just seen that 𝜉 is isomor-
phic to an object 𝜉′ of 𝒵′ over 𝑆𝑝𝑒𝑐(𝑘). Since 𝑧 is is surjective, flat, and locally of finite
presentation we see that every object of 𝒵 over any scheme is fppf locally isomorphic to a
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pullback of 𝜉, hence also to a pullback of 𝜉′. By descent of objects for stacks in groupoids
this implies that 𝒵′ → 𝒵 is essentially surjective (as well as fully faithful, see Lemma
60.8.4). Hence we win. �

Lemma 60.11.5. Let𝒵 be an algebraic stack. Assume𝒵 satisfies the equivalent conditions
of Lemma 60.11.2. Then there exists a unique strictly full subcategory 𝒵′ ⊂ 𝒵 such that
𝒵′ is an algebraic stack which satisfies the equivalent conditions of Lemma 60.11.3. The
inclusion morphism 𝒵′ → 𝒵 is a monomorphism of algebraic stacks.

Proof. The last part is immediate from the first part and Lemma 60.8.4. Pick a field 𝑘
and a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵 which is surjective, flat, and locally of finite type. Set
𝑈 = 𝑆𝑝𝑒𝑐(𝑘) and 𝑅 = 𝑈 ×𝒵 𝑈. The projections 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are locally of finite type.
Since 𝑈 is the spectrum of a field, it follows that 𝑠, 𝑡 are flat and locally of finite presentation
(by Morphisms of Spaces, Lemma 42.26.7). We see that 𝒵′ = [𝑈/𝑅] is an algebraic stack
by Criteria for Representability, Theorem 59.17.2. By Algebraic Stacks, Lemma 57.16.1
we obtain a canonical morphism

𝑓 ∶ 𝒵′ ⟶ 𝒵
which is fully faithful. Hence this morphism is representable by algebraic spaces, see Al-
gebraic Stacks, Lemma 57.15.2 and a monomorphism, see Lemma 60.8.4. By Criteria for
Representability, Lemma 59.17.1 the morphism 𝑈 → 𝒵′ is surjective, flat, and locally of
finite presentation. Hence 𝒵′ is an algebraic stack which satisfies the equivalent condi-
tions of Lemma 60.11.3. By Algebraic Stacks, Lemma 57.12.4 we may replace 𝒵′ by its
essential image in 𝒵. Hence we have proved all the assertions of the lemma except for the
uniqueness of 𝒵′ ⊂ 𝒵. Suppose that 𝒵″ ⊂ 𝒵 is a second such algebraic stack. Then the
projections

𝒵′ ⟵ 𝒵′ ×𝒵 𝒵″ ⟶ 𝒵″

are monomorphisms. The algebraic stack in the middle is nonempty by Lemma 60.4.3.
Hence the two projections are isomorphisms by Lemma 60.11.4 and we win. �

Example 60.11.6. Here is an example where the morphism constructed in Lemma 60.11.5
isn't an isomorphism. This example shows that imposing that residual gerbes are locally
Noetherian is necessary in Definition 60.11.8. In fact, the example is even an algebraic
space! Let Gal(𝐐/𝐐) be the absolute Galois group of 𝐐 with the pro-finite topology. Let

𝑈 = 𝑆𝑝𝑒𝑐(𝐐) ×𝑆𝑝𝑒𝑐(𝐐) 𝑆𝑝𝑒𝑐(𝐐) = Gal(𝐐/𝐐) × 𝑆𝑝𝑒𝑐(𝐐)

(we omit a precise explanation of the meaning of the last equal sign). Let 𝐺 denote the
absolute Galois group Gal(𝐐/𝐐) with the discrete topology viewed as a constant group
scheme over 𝑆𝑝𝑒𝑐(𝐐), see Groupoids, Example 35.5.6. Then 𝐺 acts freely and transitively
on 𝑈. Let 𝑋 = 𝑈/𝐺, see Spaces, Definition 40.14.4. Then 𝑋 is a non-noetherian reduced
algebraic space with exactly one point. Furthermore, 𝑋 has a (locally) finite type point:

𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐐) ⟶ 𝑈 ⟶ 𝑋

Indeed, every point of 𝑈 is actually closed! As 𝑋 is an algebraic space over 𝐐 it follows
that 𝑥 is a monomorphism. So 𝑥 is the morphism constructed in Lemma 60.11.5 but 𝑥 is
not an isomorphism. In fact 𝑆𝑝𝑒𝑐(𝐐) → 𝑋 is the residual gerbe of 𝑋 at 𝑥.

It will turn out later that under mild assumptions on the algebraic stack 𝒳 the equivalent
conditions of the following lemma are satisfied for every point 𝑥 ∈ |𝒳| (insert future ref-
erence here).
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Lemma 60.11.7. Let 𝒳 be an algebraic stack. Let 𝑥 ∈ |𝒳| be a point. The following are
equivalent

(1) there exists an algebraic stack 𝒵 and a monomorphism 𝒵 → 𝒳 such that |𝒵| is
a singleton and such that the image of |𝒵| in |𝒳| is 𝑥,

(2) there exists a reduced algebraic stack 𝒵 and a monomorphism 𝒵 → 𝒳 such that
|𝒵| is a singleton and such that the image of |𝒵| in |𝒳| is 𝑥,

(3) there exists an algebraic stack 𝒵, a monomorphism 𝑓 ∶ 𝒵 → 𝒳, and a surjective
flat morphism 𝑧 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝒳 where 𝑘 is a field such that 𝑥 = 𝑓(𝑧).

Moreover, if these conditions hold, then there exists a unique strictly full subcategory 𝒵𝑥 ⊂
𝒳 such that 𝒵𝑥 is a reduced, locally Noetherian algebraic stack and |𝒵𝑥| is a singleton
which maps to 𝑥 via the map |𝒵𝑥| → |𝒳|.

Proof. If 𝒵 → 𝒳 is as in (1), then 𝒵𝑟𝑒𝑑 → 𝒳 is as in (2). (See Section 60.10 for the
notion of the reduction of an algebraic stack.) Hence (1) implies (2). It is immediate that
(2) implies (1). The equivalence of (2) and (3) is immediate from Lemma 60.11.2.

At this point we've seen the equivalence of (1) -- (3). Pick a monomorphism 𝑓 ∶ 𝒵 → 𝒳
as in (2). Note that this implies that 𝑓 is fully faithful, see Lemma 60.8.4. Denote 𝒵′ ⊂ 𝒳
the essential image of the functor 𝑓. Then 𝑓 ∶ 𝒵 → 𝒵′ is an equivalence and hence 𝒵′

is an algebraic stack, see Algebraic Stacks, Lemma 57.12.4. Apply Lemma 60.11.5 to get
a strictly full subcategory 𝒵𝑥 ⊂ 𝒵′ as in the statement of the lemma. This proves all the
statements of the lemma except for uniqueness.

In order to prove the uniqueness suppose that 𝒵𝑥 ⊂ 𝒳 and 𝒵′
𝑥 ⊂ 𝒳 are two stricly full

subcategories as in the statement of the lemma. Then the projections

𝒵′
𝑥 ⟵ 𝒵′

𝑥 ×𝒳 𝒵𝑥 ⟶ 𝒵𝑥

are monomorphisms. The algebraic stack in the middle is nonempty by Lemma 60.4.3.
Hence the two projections are isomorphisms by Lemma 60.11.4 and we win. �

Having explained the above we can now make the following definition.

Definition 60.11.8. Let 𝒳 be an algebraic stack. Let 𝑥 ∈ |𝒳|.
(1) We say the residual gerbe of 𝒳 at 𝑥 exists if the equivalent conditions (1), (2),

and (3) of Lemma 60.11.7 hold.
(2) If the residual gerbe of 𝒳 at 𝑥 exists, then the residual gerbe of 𝒳 at 𝑥1 is the

strictly full subcategory 𝒵𝑥 ⊂ 𝒳 constructed in Lemma 60.11.7.

In particular we know that 𝒵𝑥 (if it exists) is a locally Noetherian, reduced algebraic stack
and that there exists a field and a surjective, flat, locally finitely presented morphism

𝑆𝑝𝑒𝑐(𝑘) ⟶ 𝒵𝑥.

We will see in Morphisms of Stacks, Lemma 61.19.10 that 𝒵𝑥 is a gerbe. It turns out that
𝒵𝑥 is a regular algebraic stack as follows from the following lemma.

Lemma 60.11.9. A reduced, locally Noetherian algebraic stack 𝒵 such that |𝒵| is a sin-
gleton is regular.

1This clashes with [LMB00a] in spirit, but not in fact. Namely, in Chapter 11 they associate to any point on
any quasi-separated algebraic stack a gerbe (not necessarily algebraic) which they call the residual gerbe. We will
see in Morphisms of Stacks, Lemma 61.21.1 that on a quasi-separated algebraic stack every point has a residual
gerbe in our sense which is then equivalent to theirs. For more information on this topic see [Ryd10, Appendix
B].
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Proof. Let 𝑊 → 𝒵 be a surjective smooth morphism where 𝑊 is a scheme. Let 𝑘 be a
field and let 𝑆𝑝𝑒𝑐(𝑘) → 𝒵 be surjective, flat, and locally of finite presentation (see Lemma
60.11.3). The algebraic space 𝑇 = 𝑊 ×𝒵 𝑆𝑝𝑒𝑐(𝑘) is smooth over 𝑘 in particular regular, see
Spaces over Fields, Lemma 48.5.1. Since 𝑇 → 𝑊 is locally of finite presentation, flat, and
surjective it follows that 𝑊 is regular, see Descent on Spaces, Lemma 45.8.4. By definition
this means that 𝒵 is regular. �

Lemma 60.11.10. Let 𝒳 be an algebraic stack. Let 𝑥 ∈ |𝒳|. Assume that the residual
gerbe 𝒵𝑥 of 𝒳 exists. Let 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝒳 be a morphism where 𝐾 is a field in the
equivalence class of 𝑥. Then 𝑓 factors through the inclusion morphism 𝒵𝑥 → 𝒳.

Proof. Choose a field 𝑘 and a surjective flat locally finite presentationmorphism𝑆𝑝𝑒𝑐(𝑘) →
𝒵𝑥. Set 𝑇 = 𝑆𝑝𝑒𝑐(𝐾) ×𝒳 𝒵𝑥. By Lemma 60.4.3 we see that 𝑇 is nonempty. As 𝒵𝑥 → 𝒳
is a monomorphism we see that 𝑇 → 𝑆𝑝𝑒𝑐(𝐾) is a monomorphism. Hence by Morphisms
of Spaces, Lemma 42.14.8 we see that 𝑇 = 𝑆𝑝𝑒𝑐(𝐾) which proves the lemma. �

Lemma 60.11.11. Let 𝒳 be an algebraic stack. Let 𝑥 ∈ |𝒳|. Let 𝒵 be an algebraic stack
satisfying the equivalent conditions of Lemma 60.11.3 and let 𝒵 → 𝒳 be a monomorphism
such that the image of |𝒵| → |𝒳| is 𝑥. Then the residual gerbe 𝒵𝑥 of 𝒳 at 𝑥 exists and
𝒵 → 𝒳 factors as 𝒵 → 𝒵𝑥 → 𝒳 where the first arrow is an equivalence.

Proof. Let 𝒵𝑥 ⊂ 𝒳 be the full subcategory corresponding to the essential image of the
functor 𝒵 → 𝒳. Then 𝒵 → 𝒵𝑥 is an equivalence, hence 𝒵𝑥 is an algebraic stack, see
Algebraic Stacks, Lemma 57.12.4. Since 𝒵𝑥 inherits all the properties of 𝒵 from this
equivalence it is clear from the uniqueness in Lemma 60.11.7 that 𝒵𝑥 is the residual gerbe
of 𝒳 at 𝑥. �
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CHAPTER 61

Morphisms of Algebraic Stacks

61.1. Introduction

In this chapter we introduce some types of morphisms of algebraic stacks. A reference in
the case of quasi-separated algebraic stacks with representable diagonal is [LMB00a].
The goal is to extend the definition of each of the types of morphisms of algebraic spaces
to morphisms of algebraic stacks. Each case is slightly different and it seems best to treat
them all separately.

For morphisms of algebraic stacks which are representable by algebraic spaces we have
already defined a large number of types of morphisms, see Properties of Stacks, Section
60.3. For each corresponding case in this chapter we have to make sure the definition in the
general case is compatible with the definition given there.

61.2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Properties of
Stacks, Section 60.2.

61.3. Properties of diagonals

The diagonal of an algebraic stack is closely related to the 𝐼𝑠𝑜𝑚-sheaves, see Algebraic
Stacks, Lemma 57.10.11. By the second defining property of an algebraic stack these
𝐼𝑠𝑜𝑚-sheaves are always algebraic spaces.

Lemma 61.3.1. Let 𝒳 be an algebraic stack. Let 𝑇 be a scheme and let 𝑥, 𝑦 be objects of
the fibre category of 𝒳 over 𝑇. Then the morphism 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑦) → 𝑇 is locally of finite type.

Proof. By Algebraic Stacks, Lemma 57.16.2 we may assume that 𝒳 = [𝑈/𝑅] for some
smooth groupoid in algebraic spaces. By Descent on Spaces, Lemma 45.10.7 it suffices
to check the property fppf locally on 𝑇. Thus we may assume that 𝑥, 𝑦 come from mor-
phisms 𝑥′, 𝑦′ ∶ 𝑇 → 𝑈. By Groupoids in Spaces, Lemma 52.21.1 we see that in this case
𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑦) = 𝑇 ×(𝑦′,𝑥′),𝑈×𝑆𝑈 𝑅. Hence it suffices to prove that 𝑅 → 𝑈 ×𝑆 𝑈 is locally of
finite type. This follows from the fact that the composition 𝑠 ∶ 𝑅 → 𝑈×𝑆 𝑈 → 𝑈 is smooth
(hence locally of finite type, see Morphisms of Spaces, Lemmas 42.33.5 and 42.26.5) and
Morphisms of Spaces, Lemma 42.22.6. �

Lemma 61.3.2. Let 𝒳 be an algebraic stack. Let 𝑇 be a scheme and let 𝑥, 𝑦 be objects of
the fibre category of 𝒳 over 𝑇. Then

(1) 𝐼𝑠𝑜𝑚𝒳(𝑦, 𝑦) is a group algebraic space over 𝑇, and
(2) 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑦) is a pseudo torsor for 𝐼𝑠𝑜𝑚𝒳(𝑦, 𝑦) over 𝑇.

Proof. See Groupoids in Spaces, Definitions 52.5.1 and 52.9.1. The lemma follows imme-
diately from the fact that 𝒳 is a stack in groupoids. �
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Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. The diagonal of 𝑓 is the morphism

Δ𝑓 ∶ 𝒳 ⟶ 𝒳 ×𝒴 𝒳

Here are two properties that every diagonal morphism has.

Lemma 61.3.3. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Then
(1) Δ𝑓 is representable by algebraic spaces, and
(2) Δ𝑓 is locally of finite type.

Proof. Let 𝑇 be a scheme and let 𝑎 ∶ 𝑇 → 𝒳 ×𝒴 𝒳 be a morphism. By definition of the
fibre product and the 2-Yoneda lemma the morphism 𝑎 is given by a triple 𝑎 = (𝑥, 𝑥′, 𝛼)
where 𝑥, 𝑥′ are objects of 𝒳 over 𝑇, and 𝛼 ∶ 𝑓(𝑥) → 𝑓(𝑥′) is a morphism in the fibre
category of 𝒴 over 𝑇. By definition of an algebraic stack the sheaves 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥′) and
𝐼𝑠𝑜𝑚𝒴(𝑓(𝑥), 𝑓(𝑥′)) are algebraic spaces over 𝑇. In this language 𝛼 defines a section of the
morphism 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥′) → 𝑇. A 𝑇′-valued point of 𝒳 ×𝒳×𝒴𝒳,𝑎 𝑇 for 𝑇′ → 𝑇 a scheme over
𝑇 is the same thing as an isomorphism 𝑥|𝑇′ → 𝑥′|𝑇′ whose image under 𝑓 is 𝛼|𝑇′. Thus we
see that

(61.3.3.1)

𝒳 ×𝒳×𝒴𝒳,𝑎 𝑇

��

// 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥′)

��
𝑇 𝛼 // 𝐼𝑠𝑜𝑚𝒴(𝑓(𝑥), 𝑓(𝑥′))

is a fibre square of sheaves over 𝑇. In particular we see that 𝒳 ×𝒳×𝒴𝒳,𝑎 𝑇 is an algebraic
space which proves part (1) of the lemma.

To prove the second statement we have to show that the left vertical arrow of Diagram
(61.3.3.1) is locally of finite type. By Lemma 61.3.1 the algebraic space 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥′) and
is locally of finite type over 𝑇. Hence the right vertical arrow ofDiagram (61.3.3.1) is locally
of finite type, see Morphisms of Spaces, Lemma 42.22.6. We conclude by Morphisms of
Spaces, Lemma 42.22.3. �

Lemma 61.3.4. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks which is representable
by algebraic spaces. Then

(1) Δ𝑓 is representable (by schemes),
(2) Δ𝑓 is locally of finite type,
(3) Δ𝑓 is a monomorphism,
(4) Δ𝑓 is separated, and
(5) Δ𝑓 is locally quasi-finite.

Proof. We have already seen in Lemma 61.3.3 that Δ𝑓 is representable by algebraic spaces.
Hence the statements (2) -- (5) make sense, see Properties of Stacks, Section 60.3. Also
Lemma 61.3.3 garantees (2) holds. Let 𝑇 → 𝒳 ×𝒴 𝒳 be a morphism and contemplate
Diagram (61.3.3.1). ByAlgebraic Stacks, Lemma 57.9.2 the right vertical arrow is injective
as a map of sheaves, i.e., a monomorphism of algebraic spaces. Hence also the morphism
𝑇×𝒳×𝒴𝒳𝒳 → 𝑇 is amonomorphism. Thus (3) holds. We already know that 𝑇×𝒳×𝒴𝒳𝒳 → 𝑇
is locally of finite type. Thus Morphisms of Spaces, Lemma 42.25.8 allows us to conclude
that 𝑇 ×𝒳×𝒴𝒳 𝒳 → 𝑇 is locally quasi-finite and separated. This proves (4) and (5). Finally,
Morphisms of Spaces, Proposition 42.39.2 implies that 𝑇×𝒳×𝒴𝒳𝒳 is a schemewhich proves
(1). �
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Lemma 61.3.5. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks representable by
algebraic spaces. Then the following are equivalent

(1) 𝑓 is separated,
(2) Δ𝑓 is a closed immersion,
(3) Δ𝑓 is proper, or
(4) Δ𝑓 is universally closed.

Proof. The statements ``𝑓 is separated'', ``Δ𝑓 is a closed immersion'', ``Δ𝑓 is universally
closed'', and ``Δ𝑓 is proper'' refer to the notions defined in Properties of Stacks, Section 60.3.
Choose a scheme 𝑉 and a surjective smooth morphism 𝑉 → 𝒴. Set 𝑈 = 𝒳 ×𝒴 𝑉 which
is an algebraic space by assumption, and the morphism 𝑈 → 𝒳 is surjective and smooth.
By Categories, Lemma 4.28.14 and Properties of Stacks, Lemma 60.3.3 we see that for any
property 𝑃 (as in that lemma) we have: Δ𝑓 has 𝑃 if and only if Δ𝑈/𝑉 ∶ 𝑈 → 𝑈 ×𝑉 𝑈 has
𝑃. Hence the equivalence of (2), (3) and (4) follows from Morphisms of Spaces, Lemma
42.36.6 applied to 𝑈 → 𝑉. Moreover, if (1) holds, then 𝑈 → 𝑉 is separated and we see that
Δ𝑈/𝑉 is a closed immersion, i.e., (2) holds. Finally, assume (2) holds. Let 𝑇 be a scheme,
and 𝑎 ∶ 𝑇 → 𝒴 a morphism. Set 𝑇′ = 𝒳 ×𝒴 𝑇. To prove (1) we have to show that the
morphism of algebraic spaces 𝑇′ → 𝑇 is separated. Using Categories, Lemma 4.28.14 once
more we see that Δ𝑇′/𝑇 is the base change of Δ𝑓. Hence our assumption (2) implies that
Δ𝑇′/𝑇 is a closed immersion, hence 𝑇′ → 𝑇 is separated as desired. �

Lemma 61.3.6. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks representable by
algebraic spaces. Then the following are equivalent

(1) 𝑓 is quasi-separated,
(2) Δ𝑓 is quasi-compact, or
(3) Δ𝑓 is finite type.

Proof. The statements ``𝑓 is quasi-separated'', ``Δ𝑓 is quasi-compact'', and ``Δ𝑓 is finite
type'' refer to the notions defined in Properties of Stacks, Section 60.3. Note that (2) and
(3) are equivalent in view of the fact that Δ𝑓 is locally of finite type by Lemma 61.3.4 (and
Algebraic Stacks, Lemma 57.10.9). Choose a scheme 𝑉 and a surjective smooth morphism
𝑉 → 𝒴. Set 𝑈 = 𝒳 ×𝒴 𝑉 which is an algebraic space by assumption, and the morphism
𝑈 → 𝒳 is surjective and smooth. By Categories, Lemma 4.28.14 and Properties of Stacks,
Lemma 60.3.3 we see that we have: Δ𝑓 is quasi-compact if and only if Δ𝑈/𝑉 ∶ 𝑈 → 𝑈 ×𝑉 𝑈
is quasi-compact. If (1) holds, then 𝑈 → 𝑉 is quasi-separated and we see that Δ𝑈/𝑉 is
quasi-compact, i.e., (2) holds. Assume (2) holds. Let 𝑇 be a scheme, and 𝑎 ∶ 𝑇 → 𝒴
a morphism. Set 𝑇′ = 𝒳 ×𝒴 𝑇. To prove (1) we have to show that the morphism of
algebraic spaces 𝑇′ → 𝑇 is quasi-separated. Using Categories, Lemma 4.28.14 once more
we see that Δ𝑇′/𝑇 is the base change of Δ𝑓. Hence our assumption (2) implies that Δ𝑇′/𝑇 is
quasi-compact, hence 𝑇′ → 𝑇 is quasi-separated as desired. �

Lemma 61.3.7. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks representable by
algebraic spaces. Then the following are equivalent

(1) 𝑓 is locally separated, and
(2) Δ𝑓 is an immersion.

Proof. The statements ``𝑓 is quasi-separated'', and ``Δ𝑓 is an immersion'' refer to the no-
tions defined in Properties of Stacks, Section 60.3. Proof omitted. Hint: Argue as in the
proofs of Lemmas 61.3.5 and 61.3.6. �
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61.4. Separation axioms

Let 𝒳 = [𝑈/𝑅] be a presentation of an algebraic stack. Then the properties of the diagonal
of 𝒳 over 𝑆, are the properties of the morphism 𝑗 ∶ 𝑅 → 𝑈 ×𝑆 𝑈. For example, if 𝒳 =
[𝑆/𝐺] for some smooth group 𝐺 in algebraic spaces over 𝑆 then 𝑗 is the structure morphism
𝐺 → 𝑈. Hence the diagonal is not automatically separated itself (contrary to what happens
in the case of schemes and algebraic spaces). To say that [𝑆/𝐺] is quasi-separated over 𝑆
should certainly imply that 𝐺 → 𝑆 is quasi-compact, but we hesitate to say that [𝑆/𝐺] is
quasi-separated over 𝑆 without also requiring the morphism 𝐺 → 𝑆 to be quasi-separated.
In other words, requiring the diagonal morphism to be quasi-compact does not really agree
with our intuition for a ``quasi-separated algebraic stack'', and we should also require the
diagonal itself to be quasi-separated.

What about ``separated algebraic stacks''? We have seen in Morphisms of Spaces, Lemma
42.36.6 that an algebraic space is separated if and only if the diagonal is proper. This is
the condition that is usually used to define separated algebraic stacks too. In the example
[𝑆/𝐺] → 𝑆 above this means that 𝐺 → 𝑆 is a proper group scheme. This means algebraic
stacks of the form [𝑆𝑝𝑒𝑐(𝑘)/𝐸] are proper over 𝑘 where 𝐸 is an elliptic curve over 𝑘 (insert
future reference here). In certain situations it may be more natural to assume the diagonal
is finite.

Definition 61.4.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks.
(1) We say 𝑓 is DM if Δ𝑓 is unramified1.
(2) We say 𝑓 is quasi-DM if Δ𝑓 is locally quasi-finite2.
(3) We say 𝑓 is separated if Δ𝑓 is proper.
(4) We say 𝑓 is quasi-separated if Δ𝑓 is quasi-compact and quasi-separated.

In this definition we are using that Δ𝑓 is representable by algebraic spaces and we are using
Properties of Stacks, Section 60.3 to make sense out of imposing conditions on Δ𝑓. We note
that these definitions do not conflict with the already existing notions if 𝑓 is representable by
algebraic spaces, see Lemmas 61.3.6 and 61.3.5. There is an interesting way to characterize
these conditions by looking at higher diagonals, see Lemma 61.6.3.

Definition 61.4.2. Let 𝒳 be an algebraic stack over the base scheme 𝑆. Denote 𝑝 ∶ 𝒳 → 𝑆
the structure morphism.

(1) We say 𝒳 is DM over 𝑆 if 𝑝 ∶ 𝒳 → 𝑆 is DM.
(2) We say 𝒳 is quasi-DM over 𝑆 if 𝑝 ∶ 𝒳 → 𝑆 is quasi-DM.
(3) We say 𝒳 is separated over 𝑆 if 𝑝 ∶ 𝒳 → 𝑆 is separated.
(4) We say 𝒳 is quasi-separated over 𝑆 if 𝑝 ∶ 𝒳 → 𝑆 is quasi-separated.
(5) We say 𝒳 is DM if 𝒳 is DM3 over 𝑆𝑝𝑒𝑐(𝐙).
(6) We say 𝒳 is quasi-DM if 𝒳 is quasi-DM over 𝑆𝑝𝑒𝑐(𝐙).
(7) We say 𝒳 is separated if 𝒳 is separated over 𝑆𝑝𝑒𝑐(𝐙).

1The letters DM stand for Deligne-Mumford. If 𝑓 is DM then given any scheme 𝑇 and any morphism 𝑇 → 𝒴
the fibre product 𝒳𝑇 = 𝒳 ×𝒴 𝑇 is an algebraic stack over 𝑇 whose diagonal is unramified, i.e., 𝒳𝑇 is DM. This
implies 𝒳𝑇 is a Deligne-Mumford stack, see Theorem 61.15.6. In other words a DM morphism is one whose
``fibres'' are Deligne-Mumford stacks. This hopefully at least motivates the terminology.

2If 𝑓 is quasi-DM, then the ``fibres'' 𝒳𝑇 of 𝒳 → 𝒴 are quasi-DM. An algebraic stack 𝒳 is quasi-DM exactly
if there exists a scheme 𝑈 and a surjective flat morphism 𝑈 → 𝒳 of finite presentation which is locally quasi-finite,
see Theorem 61.15.3. Note the similarity to being Deligne-Mumford, which is defined in terms of having an étale
covering by a scheme.

3Theorem 61.15.6 shows that this is equivalent to 𝒳 being a Deligne-Mumford stack.
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(8) We say 𝒳 is quasi-separated if 𝒳 is quasi-separated over 𝑆𝑝𝑒𝑐(𝐙).
In the last 4 definitions we view 𝒳 as an algebraic stack over 𝑆𝑝𝑒𝑐(𝐙) via Algebraic Stacks,
Definition 57.19.2.

Thus in each case we have an absolute notion and a notion relative to our given base scheme
(mention of which is usually surpressed by our abuse of notation introduced in Properties
of Stacks, Section 60.2). We will see that (1) ⇔ (5) and (2) ⇔ (6) in Lemma 61.4.13. We
spend some time proving some standard results on these notions.

Lemma 61.4.3. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks.
(1) If 𝑓 is separated, then 𝑓 is quasi-separated.
(2) If 𝑓 is DM, then 𝑓 is quasi-DM.
(3) If 𝑓 is representable by algebraic spaces, then 𝑓 is DM.

Proof. To see (1) note that a proper morphism of algebraic spaces is quasi-compact and
quasi-separated, see Morphisms of Spaces, Definition 42.36.1. To see (2) note that an
unramified morphism of algebraic spaces is locally quasi-finite, see Morphisms of Spaces,
Lemma 42.34.7. Finally (3) follows from Lemma 61.3.4. �

Lemma 61.4.4. All of the separation axioms listed in Definition 61.4.1 are stable under
base change.

Proof. Let 𝑓 ∶ 𝒳 → 𝒴 and 𝒴′ → 𝒴 be morphisms of algebraic stacks. Let 𝑓′ ∶ 𝒴′ ×𝒴
𝒳 → 𝒴′ be the base change of 𝑓 by 𝒴′ → 𝒴. Then Δ𝑓′ is the base change of Δ𝑓 by
the morphism 𝒳′ ×𝒴′ 𝒳′ → 𝒳 ×𝒴 𝒳, see Categories, Lemma 4.28.14. By the results of
Properties of Stacks, Section 60.3 each of the properties of the diagonal used in Definition
61.4.1 is stable under base change. Hence the lemma is true. �

Lemma 61.4.5. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Let 𝑊 → 𝒴 be a
surjective, flat, and locally of finite presentation where 𝑊 is an algebraic space. If the base
change 𝑊 ×𝒴 𝒳 → 𝑊 has one of the separation properties of Definition 61.4.1 then so
does 𝑓.

Proof. Denote 𝑔 ∶ 𝑊 ×𝒴 𝒳 → 𝑊 the base change. Then Δ𝑔 is the base change of Δ𝑓 by
the morphism 𝑞 ∶ 𝑊×𝒴 (𝒳×𝒴 𝒳) → 𝒳×𝒴 𝒳. Since 𝑞 is the base change of 𝑊 → 𝒴 we see
that 𝑞 is representable by algebraic spaces, surjective, flat, and locally of finite presentation.
Hence the result follows from Properties of Stacks, Lemma 60.3.4. �

Lemma 61.4.6. Let 𝑆 be a scheme. The property of being quasi-DM over 𝑆, quasi-
separated over 𝑆, or separated over 𝑆 (see Definition 61.4.2) is stable under change of
base scheme, see Algebraic Stacks, Definition 57.19.3.

Proof. Follows immediately from Lemma 61.4.4. �

Lemma 61.4.7. Let 𝑓 ∶ 𝒳 → 𝒵, 𝑔 ∶ 𝒴 → 𝒵 and 𝒵 → 𝒯 be morphisms of algebraic
stacks. Consider the induced morphism 𝑖 ∶ 𝒳 ×𝒵 𝒴 → 𝒳 ×𝒯 𝒴. Then

(1) 𝑖 is representable by algebraic spaces and locally of finite type,
(2) if Δ𝒵/𝒯 is quasi-separated, then 𝑖 is quasi-separated,
(3) if Δ𝒵/𝒯 is separated, then 𝑖 is separated,
(4) if 𝒵 → 𝒯 is DM, then 𝑖 is unramified,
(5) if 𝒵 → 𝒯 is quasi-DM, then 𝑖 is locally quasi-finite,
(6) if 𝒵 → 𝒯 is separated, then 𝑖 is proper, and
(7) if 𝒵 → 𝒯 is quasi-separated, then 𝑖 is quasi-compact and quasi-separated.
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Proof. The following diagram

𝒳 ×𝒵 𝒴
𝑖
//

��

𝒳 ×𝒯 𝒴

��
𝒵

Δ𝒵/𝒯 //// 𝒵 ×𝒯 𝒵

is a 2-fibre product diagram, see Categories, Lemma 4.28.13. Hence 𝑖 is the base change
of the diagonal morphism Δ𝒵/𝒯. Thus the lemma follows from Lemma 61.3.3, and the
material in Properties of Stacks, Section 60.3. �

Lemma 61.4.8. Let 𝒯 be an algebraic stack. Let 𝑔 ∶ 𝒳 → 𝒴 be a morphism of algebraic
stacks over 𝒯. Consider the graph 𝑖 ∶ 𝒳 → 𝒳 ×𝒯 𝒴 of 𝑔. Then

(1) 𝑖 is representable by algebraic spaces and locally of finite type,
(2) if 𝒴 → 𝒯 is DM, then 𝑖 is unramified,
(3) if 𝒴 → 𝒯 is quasi-DM, then 𝑖 is locally quasi-finite,
(4) if 𝒴 → 𝒯 is separated, then 𝑖 is proper, and
(5) if 𝒴 → 𝒯 is quasi-separated, then 𝑖 is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 61.4.7 applied to the morphism 𝒳 = 𝒳 ×𝒴 𝒴 →
𝒳 ×𝒯 𝒴. �

Lemma 61.4.9. Let 𝑓 ∶ 𝒳 → 𝒯 be a morphism of algebraic stacks. Let 𝑠 ∶ 𝒯 → 𝒳 be a
morphism such that 𝑓 ∘ 𝑠 is 2-isomorphic to id𝒯. Then

(1) 𝑠 is representable by algebraic spaces and locally of finite type,
(2) if 𝑓 is DM, then 𝑠 is unramified,
(3) if 𝑓 is quasi-DM, then 𝑠 is locally quasi-finite,
(4) if 𝑓 is separated, then 𝑠 is proper, and
(5) if 𝑓 is quasi-separated, then 𝑠 is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 61.4.8 applied to 𝑔 = 𝑠 and 𝒴 = 𝒯 in which case
𝑖 ∶ 𝒯 → 𝒯 ×𝒯 𝒳 is 2-isomorphic to 𝑠. �

Lemma 61.4.10. All of the separation axioms listed in Definition 61.4.1 are stable under
composition of morphisms.

Proof. Let 𝑓 ∶ 𝒳 → 𝒴 and 𝑔 ∶ 𝒴 → 𝒵 be morphisms of algebraic stacks to which the
axiom in question applies. The diagonal Δ𝒳/𝒵 is the composition

𝒳 ⟶ 𝒳 ×𝒴 𝒳 ⟶ 𝒳 ×𝒵 𝒳.

Our separation axiom is defined by requiring the diagonal to have some property 𝒫. By
Lemma 61.4.7 above we see that the second arrow also has this property. Hence the lemma
follows since the composition of morphisms which are representable by algebraic spaces
with property 𝒫 also is a morphism with property 𝒫, see our general discussion in Proper-
ties of Stacks, Section 60.3 and Morphisms of Spaces, Lemmas 42.34.3, 42.25.2, 42.36.3,
42.9.4, and 42.5.8. �

Lemma 61.4.11. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks over the base scheme
𝑆.

(1) If 𝒴 is DM over 𝑆 and 𝑓 is DM, then 𝒳 is DM over 𝑆.
(2) If 𝒴 is quasi-DM over 𝑆 and 𝑓 is quasi-DM, then 𝒳 is quasi-DM over 𝑆.
(3) If 𝒴 is separated over 𝑆 and 𝑓 is separated, then 𝒳 is separated over 𝑆.
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(4) If𝒴 is quasi-separated over𝑆 and 𝑓 is quasi-separated, then𝒳 is quasi-separated
over 𝑆.

(5) If 𝒴 is DM and 𝑓 is DM, then 𝒳 is DM.
(6) If 𝒴 is quasi-DM and 𝑓 is quasi-DM, then 𝒳 is quasi-DM.
(7) If 𝒴 is separated and 𝑓 is separated, then 𝒳 is separated.
(8) If 𝒴 is quasi-separated and 𝑓 is quasi-separated, then 𝒳 is quasi-separated.

Proof. Parts (1), (2), (3), and (4) follow immediately from Lemma 61.4.10 and Definition
61.4.2. For (5), (6), (7), and (8) think of 𝒳 and 𝒴 as algebraic stacks over 𝑆𝑝𝑒𝑐(𝐙) and
apply Lemma 61.4.10. Details omitted. �

The following lemma is a bit different to the analogue for algebraic spaces. To compare
take a look at Morphisms of Spaces, Lemma 42.5.10.

Lemma 61.4.12. Let 𝑓 ∶ 𝒳 → 𝒴 and 𝑔 ∶ 𝒴 → 𝒵 be morphisms of algebraic stacks.
(1) If 𝑔 ∘ 𝑓 is DM then so is 𝑓.
(2) If 𝑔 ∘ 𝑓 is quasi-DM then so is 𝑓.
(3) If 𝑔 ∘ 𝑓 is separated and Δ𝑔 is separated, then 𝑓 is separated.
(4) If 𝑔 ∘ 𝑓 is quasi-separated and Δ𝑔 is quasi-separated, then 𝑓 is quasi-separated.

Proof. Consider the factorization

𝒳 → 𝒳 ×𝒴 𝒳 → 𝒳 ×𝒵 𝒳

of the diagonal morphism of 𝑔 ∘ 𝑓. Both morphisms are representable by algebraic spaces,
see Lemmas 61.3.3 and 61.4.7. Hence for any scheme 𝑇 and morphism 𝑇 → 𝒳 ×𝒴 𝒳 we
get morphisms of algebraic spaces

𝐴 = 𝒳 ×(𝒳×𝒵𝒳) 𝑇 ⟶ 𝐵 = (𝒳 ×𝒴 𝒳) ×(𝒳×𝒵𝒳) 𝑇 ⟶ 𝑇.

If 𝑔 ∘ 𝑓 is DM (resp. quasi-DM), then the composition 𝐴 → 𝑇 is unramified (resp. lo-
cally quasi-finite). Hence (1) (resp. (2)) follows on applying Morphisms of Spaces, Lemma
42.34.11 (resp. Morphisms of Spaces, Lemma 42.25.7). This proves (1) and (2).

Proof of (3). Assume 𝑔 ∘ 𝑓 is quasi-separated and Δ𝑔 is quasi-separated. Consider the
factorization

𝒳 → 𝒳 ×𝒴 𝒳 → 𝒳 ×𝒵 𝒳
of the diagonalmorphism of 𝑔∘𝑓. Bothmorphisms are representable by algebraic spaces and
the second one is quasi-separated, see Lemmas 61.3.3 and 61.4.7. Hence for any scheme 𝑇
and morphism 𝑇 → 𝒳 ×𝒴 𝒳 we get morphisms of algebraic spaces

𝐴 = 𝒳 ×(𝒳×𝒵𝒳) 𝑇 ⟶ 𝐵 = (𝒳 ×𝒴 𝒳) ×(𝒳×𝒵𝒳) 𝑇 ⟶ 𝑇

such that 𝐵 → 𝑇 is quasi-separated. The composition 𝐴 → 𝑇 is quasi-compact and quasi-
separated as we have assumed that 𝑔∘𝑓 is quasi-separated. Hence 𝐴 → 𝐵 is quasi-separated
by Morphisms of Spaces, Lemma 42.5.10. And 𝐴 → 𝐵 is quasi-compact by Morphisms of
Spaces, Lemma 42.9.8. Thus 𝑓 is quasi-separated.

Proof of (4). Assume 𝑔 ∘ 𝑓 is separated and Δ𝑔 is separated. Consider the factorization

𝒳 → 𝒳 ×𝒴 𝒳 → 𝒳 ×𝒵 𝒳

of the diagonal morphism of 𝑔 ∘ 𝑓. Both morphisms are representable by algebraic spaces
and the second one is separated, see Lemmas 61.3.3 and 61.4.7. Hence for any scheme 𝑇
and morphism 𝑇 → 𝒳 ×𝒴 𝒳 we get morphisms of algebraic spaces

𝐴 = 𝒳 ×(𝒳×𝒵𝒳) 𝑇 ⟶ 𝐵 = (𝒳 ×𝒴 𝒳) ×(𝒳×𝒵𝒳) 𝑇 ⟶ 𝑇
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such that 𝐵 → 𝑇 is separated. The composition 𝐴 → 𝑇 is proper as we have assumed that
𝑔 ∘ 𝑓 is quasi-separated. Hence 𝐴 → 𝐵 is proper by Morphisms of Spaces, Lemma 42.36.5
which means that 𝑓 is separated. �

Lemma 61.4.13. Let 𝒳 be an algebraic stack over the base scheme 𝑆.
(1) 𝒳 is DM ⇔ 𝒳 is DM over 𝑆.
(2) 𝒳 is quasi-DM ⇔ 𝒳 is quasi-DM over 𝑆.
(3) If 𝒳 is separated, then 𝒳 is separated over 𝑆.
(4) If 𝒳 is quasi-separated, then 𝒳 is quasi-separated over 𝑆.

Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks over the base scheme 𝑆.
(5) If 𝒳 is DM over 𝑆, then 𝑓 is DM.
(6) If 𝒳 is quasi-DM over 𝑆, then 𝑓 is quasi-DM.
(7) If 𝒳 is separated over 𝑆 and Δ𝒴/𝑆 is separated, then 𝑓 is separated.
(8) If 𝒳 is quasi-separated over 𝑆 and Δ𝒴/𝑆 is quasi-separated, then 𝑓 is quasi-

separated.

Proof. Parts (5), (6), (7), and (8) follow immediately from Lemma 61.4.12 and Spaces,
Definition 40.13.2. To prove (3) and (4) think of 𝑋 and 𝑌 as algebraic stacks over 𝑆𝑝𝑒𝑐(𝐙)
and apply Lemma 61.4.12. Similarly, to prove (1) and (2), think of 𝒳 as an algebraic stack
over 𝑆𝑝𝑒𝑐(𝐙) consider the morphisms

𝒳 ⟶ 𝒳 ×𝑆 𝒳 ⟶ 𝒳 ×𝑆𝑝𝑒𝑐(𝐙) 𝒳
Both arrows are representable by algebraic spaces. The second arrow is unramified and
locally quasi-finite as the base change of the immersion Δ𝑆/𝐙. Hence the composition is
unramified (resp. locally quasi-finite) if and only if the first arrow is unramified (resp. locally
quasi-finite), see Morphisms of Spaces, Lemmas 42.34.3 and 42.34.11 (resp. Morphisms
of Spaces, Lemmas 42.25.2 and 42.25.7). �

Lemma 61.4.14. Let 𝒳 be an algebraic stack. Let 𝑊 be an algebraic space, and let 𝑓 ∶
𝑊 → 𝒳 be a surjective, flat, locally finitely presented morphism.

(1) If 𝑓 is unramified (i.e., étale, i.e., 𝒳 is Deligne-Mumford), then 𝒳 is DM.
(2) If 𝑓 is locally quasi-finite, then 𝒳 is quasi-DM.

Proof. Note that if 𝑓 is unramified, then it is étale by Morphisms of Spaces, Lemma
42.35.12. This explains the parenthetical remark in (1). Assume 𝑓 is unramified (resp.
locally quasi-finite). We have to show that Δ𝒳 ∶ 𝒳 → 𝒳 × 𝒳 is unramified (resp. lo-
cally quasi-finite). Note that 𝑊 × 𝑊 → 𝒳 × 𝒳 is also surjective, flat, and locally of finite
presentation. Hence it suffices to show that

𝑊 ×𝒳×𝒳,Δ𝒳
𝒳 = 𝑊 ×𝒳 𝑊 ⟶ 𝑊 × 𝑊

is unramified (resp. locally quasi-finite), see Properties of Stacks, Lemma 60.3.3. By as-
sumption themorphism pr𝑖 ∶ 𝑊×𝒳𝑊 → 𝑊 is unramified (resp. locally quasi-finite). Hence
the displayed arrow is unramified (resp. locally quasi-finite) byMorphisms of Spaces, Lemma
42.34.11 (resp. Morphisms of Spaces, Lemma 42.25.7). �

Lemma 61.4.15. A monomorphism of algebraic stacks is separated and DM. The same is
true for immersions of algebraic stacks.

Proof. If 𝑓 ∶ 𝒳 → 𝒴 is a monomorphism of algebraic stacks, then Δ𝑓 is an isomorphism,
see Properties of Stacks, Lemma 60.8.4. Since an isomorphism of algebraic spaces is proper
and unramified we see that 𝑓 is separated and DM. The second assertion follows from the
first as an immersion is a monomorphism, see Properties of Stacks, Lemma 60.9.5. �
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Lemma 61.4.16. Let 𝒳 be an algebraic stack. Let 𝑥 ∈ |𝒳|. Assume the residual gerbe 𝒵𝑥
of 𝒳 at 𝑥 exists. If 𝒳 is DM, resp. quasi-DM, resp. separated, resp. quasi-separated, then
so is 𝒵𝑥.

Proof. This is true because 𝒵𝑥 → 𝒳 is a monomorphism hence DM and separated by
Lemma 61.4.15. Apply Lemma 61.4.11 to conclude. �

61.5. Inertia stacks

The (relative) inertia stack of a stack in groupoids is defined in Stacks, Section 50.7. The
actual construction, in the setting of fibred categories, and some of its properties is in Cat-
egories, Section 4.31.

Lemma 61.5.1. Let 𝒳 be an algebraic stack. Then the inertia stack ℐ𝒳 is an algebraic
stack as well. The morphism

ℐ𝒳 ⟶ 𝒳
is representable by algebraic spaces and locally of finite type. More generally, let 𝑓 ∶ 𝒳 →
𝒴 be a morphism of algebraic stacks. Then the morphism

ℐ𝒳/𝒴 ⟶ 𝒳

is representable by algebraic spaces and locally of finite type.

Proof. By Categories, Lemma 4.31.1 there are equivalences

ℐ𝒳 → 𝒳 ×Δ,𝒳×𝑆𝒳,Δ 𝒳 and ℐ𝒳/𝒴 → 𝒳 ×Δ,𝒳×𝒴𝒳,Δ 𝒳

which shows that the inertia stacks are algebraic stacks. Let 𝑇 → 𝒳 be a morphism given
by the object 𝑥 of the fibre category of 𝒳 over 𝑇. Then we get a 2-fibre product square

𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥)

��

// ℐ𝒳

��
𝑇 𝑥 // 𝒳

This follows immediately from the definition of ℐ𝒳. Since 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥) is always an alge-
braic space locally of finite type over 𝑇 (see Lemma 61.3.1) we conclude that ℐ𝒳 → 𝒳 is
representable by algebraic spaces and locally of finite type. Finally, for the relative inertia
we get

𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥)

��

𝐾oo

��

// ℐ𝒳/𝒴

��
𝐼𝑠𝑜𝑚𝒴(𝑓(𝑥), 𝑓(𝑥)) 𝑇𝑒oo 𝑥 // 𝒳

with both squares 2-fibre products. This follows from Categories, Lemma 4.31.3. The left
vertical arrow is a morphism of algebraic spaces locally of finite type over 𝑇, and hence is
locally of finite type, see Morphisms of Spaces, Lemma 42.22.6. Thus 𝐾 is an algebraic
space and 𝐾 → 𝑇 is locally of finite type. This proves the assertion on the relative inertia.

�

Remark 61.5.2. Let 𝒳 be an algebraic stack. In Properties of Stacks, Remark 60.3.7 we
have seen that the 2-category of morphisms 𝒳′ → 𝒳 representable by algebraic spaces with
target 𝒳 forms a category. In this category the inertia stack of 𝒳 is a group object. Recall
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that an object of ℐ𝒳 is just a pair (𝑥, 𝛼) where 𝑥 is an object of 𝒳 and 𝛼 is an automorphism
of 𝑥 in the fibre category of 𝒳 that 𝑥 lives in. The composition

𝑐 ∶ ℐ𝒳 ×𝒳 ℐ𝒳 ⟶ ℐ𝒳

is given by the rule on objects

((𝑥, 𝛼), (𝑥′, 𝛼′), 𝛽) ↦ (𝑥, 𝛼 ∘ 𝛽−1 ∘ 𝛼′ ∘ 𝛽)

which makes sense as 𝛽 ∶ 𝑥 → 𝑥′ is an isomorphism in the fibre category by our definition
of fibre products. The neutral element 𝑒 ∶ 𝒳 → ℐ𝒳 is given by the functor 𝑥 ↦ (𝑥, id𝑥).
We omit the proof that the axioms of a group object hold. There is a variant of this remark
for relative inertia stacks.

Let 𝒳 be an algebraic stack and let ℐ𝒳 be its inertia stack. We have seen in the proof of
Lemma 61.5.1 that for any scheme 𝑇 and object 𝑥 of 𝒳 over 𝑇 there is a canonical cartesian
square

𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥)

��

// ℐ𝒳

��
𝑇 𝑥 // 𝒳

The group structure on ℐ𝒳 discussed in Remark 61.5.2 induces the group structure on
𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥) of Lemma 61.3.2. This allows us to define the sheaf 𝐼𝑠𝑜𝑚𝒳 also for morphisms
from algebraic spaces to 𝒳. We formalize this in the following definition.

Definition 61.5.3. Let 𝒳 be an algebraic stack and let 𝑋 be an algebraic space. Let 𝑥 ∶
𝑋 → 𝒳 be a morphism. We set

𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥) = 𝑋 ×𝑥,𝒳 ℐ𝒳

We endow it with the structure of a group algebraic space over 𝑋 by pulling back the com-
position law discussed in Remark 61.5.2. We will sometimes refer to 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥) as the
sheaf of automorphisms of 𝑥.

As a variant we may occasionally use the notation 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑦) when given two morphisms
𝑥, 𝑦 ∶ 𝑋 → 𝒳. This will mean simply the algebraic space

(𝑋 ×𝑥,𝒳,𝑦 𝑋) ×𝑋×𝑋,Δ𝑋
𝑋.

Then it is true, as in Lemma 61.3.2, that 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑦) is a pseudo torsor for 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥)
over 𝑋. We omit the verification.

Lemma 61.5.4. Let 𝜋 ∶ 𝒳 → 𝑋 be a morphism from an algebraic stack to an algebaic
space. Let 𝑓 ∶ 𝑋′ → 𝑋 be a morphism of algebraic spaces. Set 𝒳′ = 𝑋′ ×𝑋 𝒳. Then both
squares in the diagram

ℐ𝒳′ //

Categories, Equation (4.31.2.1)
��

𝒳′ //

��

𝑋′

��
ℐ𝒳

// 𝒳 // 𝑋

are fibre product squares.

Proof. The inertia stack ℐ𝒳′ is the defined as the category of pairs (𝑥′, 𝛼′) where 𝑥′ is an
object of 𝒳′ and 𝛼′ is an automorphism of 𝑥′ in its fibre category over (Sch/𝑆)𝑓𝑝𝑝𝑓, see
Categories, Section 4.31. Suppose that 𝑥′ lies over the scheme 𝑈 and maps to the object 𝑥
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of 𝒳. By the construction of the 2-fibre product in Categories, Lemma 4.29.3 we see that
𝑥′ = (𝑈, 𝑎′, 𝑥, 1) where 𝑎′ ∶ 𝑈 → 𝑋′ is a morphism and 1 indicates that 𝑓 ∘ 𝑎′ = 𝜋 ∘ 𝑥
as morphisms 𝑈 → 𝑋. Moreover we have 𝐼𝑠𝑜𝑚𝒳′(𝑥′, 𝑥′) = 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥) as sheaves on 𝑈
(by the very construction of the 2-fibre product). This implies that the left square is a fibre
product square (details omitted). �

Lemma 61.5.5. Let 𝑓 ∶ 𝒳 → 𝒴 be amonomorphism of algebraic stacks. Then the diagram

ℐ𝒳
//

��

𝒳

��
ℐ𝒴

// 𝒴

is a fibre product square.

Proof. This follows immediately from the fact that 𝑓 is fully faithful (see Properties of
Stacks, Lemma 60.8.4) and the definition of the inertia in Categories, Section 4.31. Namely,
an object of ℐ𝒳 over a scheme 𝑇 is the same thing as a pair (𝑥, 𝛼) consisting of an object
𝑥 of 𝒳 over 𝑇 and a morphism 𝛼 ∶ 𝑥 → 𝑥 in the fibre category of 𝒳 over 𝑇. As 𝑓 is fully
faithful we see that 𝛼 is the same thing as a morphism 𝛽 ∶ 𝑓(𝑥) → 𝑓(𝑥) in the fibre category
of 𝒴 over 𝑇. Hence we can think of objects of ℐ𝒳 over 𝑇 as triples ((𝑦, 𝛽), 𝑥, 𝛾) where 𝑦 is
an object of 𝒴 over 𝑇, 𝛽 ∶ 𝑦 → 𝑦 in 𝒴𝑇 and 𝛾 ∶ 𝑦 → 𝑓(𝑥) is an isomorhism over 𝑇, i.e., an
object of ℐ𝒴 ×𝒴 𝒳 over 𝑇. �

Lemma 61.5.6. Let 𝒳 be an algebraic stack. Let [𝑈/𝑅] → 𝒳 be a presentation. Let 𝐺/𝑈
be the stabilizer group algebraic space associated to the groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). Then

𝐺

��

// 𝑈

��
ℐ𝒳

// 𝒳

is a fibre product diagram.

Proof. Immediate from Groupoids in Spaces, Lemma 52.25.2. �

61.6. Higher diagonals

Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. In this situation it makes sense to
consider not only the diagonal

Δ𝑓 ∶ 𝒳 → 𝒳 ×𝒴 𝒳

but also the diagonal of the diagonal, i.e., the morphism

ΔΔ𝑓
∶ 𝒳 ⟶ 𝒳 ×(𝒳×𝒴𝒳) 𝒳

Because of this we sometimes use the following terminology. We denote Δ𝑓,0 = 𝑓 the
zeroth diagonal, we denote Δ𝑓,1 = Δ𝑓 the first diagonal, and we denote Δ𝑓,2 = ΔΔ𝑓

the
second diagonal. Note that Δ𝑓,1 is representable by algebraic spaces and locally of finite
type, see Lemma 61.3.3. Hence Δ𝑓,2 is representable, a monomorphism, locally of finite
type, separated, and locally quasi-finite, see Lemma 61.3.4.
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We can describe the second diagonal using the relative inertia stack. Namely, the fibre
product 𝒳×(𝒳×𝒴𝒳) 𝒳 is equivalent to the relative inertia stack ℐ𝒳/𝒴 by Categories, Lemma
4.31.1. Moreover, via this identification the second diagonal becomes the neutral section

𝑒 ∶ 𝒳 → ℐ𝒳/𝒴

of the relative inertia stack. Moreover, recall from the proof of Lemma 61.5.1 that given
a morphism 𝑥 ∶ 𝑇 → 𝒳 the fibre product 𝑇 ×𝑥,𝒳 ℐ𝒳/𝒴 is given as the kernel 𝐾 of the
homomorphism of group algebraic spaces

𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥) ⟶ 𝐼𝑠𝑜𝑚𝒴(𝑓(𝑥), 𝑓(𝑥))

over 𝑇. The morphism 𝑒 corresponds to the neutral section 𝑒 ∶ 𝑇 → 𝐾 in this situation.

Lemma 61.6.1. Let 𝑓 ∶ 𝒳 → 𝒴 be amorphism of algebraic stacks. Then 𝑓 is representable
by algebraic spaces if and only if the second diagonal is an isomorphism.

Proof. Namely, 𝑓 is representable by algebraic spaces if and only if 𝑓 is faithful, see Alge-
braic Stacks, Lemma 57.15.2. On the other hand, 𝑓 is faithful if and only if for every object 𝑥
of 𝒳 over a scheme 𝑇 the functor 𝑓 induces an injection 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥) → 𝐼𝑠𝑜𝑚𝒴(𝑓(𝑥), 𝑓(𝑥)),
which happens if and only if the kernel 𝐾 is trivial, which happens if and only if 𝑒 ∶ 𝑇 → 𝐾
is an isomorphism for every 𝑥 ∶ 𝑇 → 𝒳. Since 𝐾 = 𝑇 ×𝑥,𝒳 ℐ𝒳/𝒴 as discussed above, this
proves the lemma. �

Lemma 61.6.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Then
(1) Δ𝑓,1 separated ⇔ Δ𝑓,2 closed immersion ⇔ Δ𝑓,2 proper ⇔ Δ𝑓,2 universally

closed,
(2) Δ𝑓,1 quasi-separated ⇔ Δ𝑓,2 finite type ⇔ Δ𝑓,2 quasi-compact, and
(3) Δ𝑓,1 locally separated ⇔ Δ𝑓,2 immersion.

Proof. Follows from Lemmas 61.3.5, 61.3.6, and 61.3.7 applied to Δ𝑓,1. �

The following lemma is kind of cute and it may suggest a generalization of these conditions
to higher algebraic stacks.

Lemma 61.6.3. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Then
(1) 𝑓 is separated if and only if Δ𝑓,1 and Δ𝑓,2 are universally closed, and
(2) 𝑓 is quasi-separated if and only if Δ𝑓,1 and Δ𝑓,2 are quasi-compact.
(3) 𝑓 is quasi-DM if and only if Δ𝑓,1 and Δ𝑓,2 are locally quasi-finite.
(4) 𝑓 is DM if and only if Δ𝑓,1 and Δ𝑓,2 are unramified.

Proof. Proof of (1). Assume that Δ𝑓,2 and Δ𝑓,1 are universally closed. Then Δ𝑓,1 is sepa-
rated and universally closed by Lemma 61.6.2. By Morphisms of Spaces, Lemma 42.10.7
and Algebraic Stacks, Lemma 57.10.9 we see that Δ𝑓,1 is quasi-compact. Hence it is quasi-
compact, separated, universally closed and locally of finite type (by Lemma 61.3.3) so
proper. This proves ``⇐'' of (1). The proof of the implication in the other direction is
omitted.
Proof of (2). This follows immediately from Lemma 61.6.2.
Proof of (3). This follows from the fact that Δ𝑓,2 is always locally quasi-finite by Lemma
61.3.4 applied to Δ𝑓 = Δ𝑓,1.
Proof of (4). This follows from the fact that Δ𝑓,2 is always unramified as Lemma 61.3.4
applied to Δ𝑓 = Δ𝑓,1 shows that Δ𝑓,2 is locally of finite type and a monomorphism. See
More on Morphisms of Spaces, Lemma 46.11.8. �
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61.7. Quasi-compact morphisms

Let 𝑓 be a morphism of algebraic stacks which is representable by algebraic spaces. In
Properties of Stacks, Section 60.3 we have defined what it means for 𝑓 to be quasi-compact.
Here is another characterization.

Lemma 61.7.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent:

(1) 𝑓 is quasi-compact, and
(2) for every quasi-compact algebraic stack 𝒵 and any morphism 𝒵 → 𝒴 the alge-

braic stack 𝒵 ×𝒴 𝒳 is quasi-compact.

Proof. Assume (1), and let 𝒵 → 𝒴 be a morphism of algebraic stacks with 𝒵 quasi-
compact. By Properties of Stacks, Lemma 60.6.2 there exists a quasi-compact scheme
𝑈 and a surjective smooth morphism 𝑈 → 𝒵. Since 𝑓 is representable by algebraic
spaces and quasi-compact we see by definition that 𝑈 ×𝒴 𝒳 is an algebraic space, and
that 𝑈×𝒴 𝒳 → 𝑈 is quasi-compact. Hence 𝑈×𝑌 𝑋 is a quasi-compact algebraic space. The
morphism 𝑈 ×𝒴 𝒳 → 𝒵 ×𝒴 𝒳 is smooth and surjective (as the base change of the smooth
and surjective morphism 𝑈 → 𝒵). Hence 𝒵 ×𝒴 𝒳 is quasi-compact by another application
of Properties of Stacks, Lemma 60.6.2

Assume (2). Let 𝑍 → 𝒴 be a morphism, where 𝑍 is a scheme. We have to show that
the morphism of algebraic spaces 𝑝 ∶ 𝑍 ×𝒴 𝒳 → 𝑍 is quasi-compact. Let 𝑈 ⊂ 𝑍 be
affine open. Then 𝑝−1(𝑈) = 𝑈 ×𝒴 𝒵 and the algebraic space 𝑈 ×𝒴 𝒵 is quasi-compact by
assumption (2). Hence 𝑝 is quasi-compact, see Morphisms of Spaces, Lemma 42.9.7. �

This motivates the following definition.

Definition 61.7.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. We say 𝑓 is
quasi-compact if for every quasi-compact algebraic stack 𝒵 and morphism 𝒵 → 𝒴 the
fibre product 𝒵 ×𝒴 𝒳 is quasi-compact.

By Lemma 61.7.1 above this agrees with the already existing notion for morphisms of
algebraic stacks representable by algebraic spaces. In particular this notion agrees with the
notions already defined for morphisms between algebraic stacks and schemes.

Lemma 61.7.3. The base change of a quasi-compact morphism of algebraic stacks by any
morphism of algebraic stacks is quasi-compact.

Proof. Omitted. �

Lemma 61.7.4. The composition of a pair of quasi-compact morphisms of algebraic stacks
is quasi-compact.

Proof. Omitted. �

Lemma 61.7.5. Let
𝒳

𝑓
//

𝑝
��

𝒴

𝑞
��

𝒵
be a 2-commutative diagram of morphisms of algebraic stacks. If 𝑓 is surjective and 𝑝 is
quasi-compact, then 𝑞 is quasi-compact.
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Proof. Let 𝒯 be a quasi-compact algebraic stack, and let 𝒯 → 𝒵 be a morphism. By
Properties of Stacks, Lemma 60.5.3 the morphism 𝒯 ×𝒵 𝒳 → 𝒯 ×𝒵 𝒴 is surjective and by
assumption 𝒯 ×𝒵 𝒳 is quasi-compact. Hence 𝒯 ×𝒵 𝒴 is quasi-compact by Properties of
Stacks, Lemma 60.6.2. �

Lemma 61.7.6. Let 𝑓 ∶ 𝒳 → 𝒴 and 𝑔 ∶ 𝒴 → 𝒵 be morphisms of algebraic stacks. If
𝑔 ∘ 𝑓 is quasi-compact and 𝑔 is quasi-separated then 𝑓 is quasi-compact.

Proof. This is true because 𝑓 equals the composition (1, 𝑓) ∶ 𝒳 → 𝒳 ×𝒵 𝒴 → 𝒴. The
first map is quasi-compact by Lemma 61.4.9 because it is a section of the quasi-separated
morphism 𝒳 ×𝒵 𝒴 → 𝒳 (a base change of 𝑔, see Lemma 61.4.4). The second map is
quasi-compact as it is the base change of 𝑓, see Lemma 61.7.3. And compositions of quasi-
compact morphisms are quasi-compact, see Lemma 61.7.4. �

Lemma 61.7.7. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks.
(1) If 𝒳 is quasi-compact and 𝒴 is quasi-separated, then 𝑓 is quasi-compact.
(2) If 𝒳 is quasi-compact and quasi-separated and 𝒴 is quasi-separated, then 𝑓 is

quasi-compact and quasi-separated.
(3) A fibre product of quasi-compact and quasi-separated algebraic stacks is quasi-

compact and quasi-separated.

Proof. Part (1) follows from Lemma 61.7.6. Part (2) follows from (1) and Lemma 61.4.12.
For (3) let 𝒳 → 𝒴 and 𝒵 → 𝒴 be morphisms of quasi-compact and quasi-separated
algebraic stacks. Then 𝒳×𝒴𝒵 → 𝒵 is quasi-compact and quasi-separated as a base change
of 𝒳 → 𝒴 using (2) and Lemmas 61.7.3 and 61.4.4. Hence 𝒳 ×𝒴 𝒵 is quasi-compact
and quasi-separated as an algebraic stack quasi-compact and quasi-separated over 𝒵, see
Lemmas 61.4.11 and 61.7.4. �

61.8. Noetherian algebraic stacks

We have already defined locally Noetherian algebraic stacks in Properties of Stacks, Section
60.7.

Definition 61.8.1. Let 𝒳 be an algebraic stack. We say 𝒳 is Noetherian if 𝒳 is quasi-
compact, quasi-separated and locally Noetherian.

Note that a Noetherian algebraic stack 𝒳 is not just quasi-compact and locally Noetherian,
but also quasi-separated. In the language of Section 61.6 if we denote 𝑝 ∶ 𝒳 → 𝑆𝑝𝑒𝑐(𝐙) the
``absolute'' structure morphism (i.e., the structure morphism of 𝒳 viewed as an algebraic
stack over 𝐙), then

𝒳 Noetherian ⇔ 𝒳 locally Noetherian and Δ𝑝,0, Δ𝑝,1, Δ𝑝,2 quasi-compact.
This will later mean that an algebraic stack of finite type over a Noetherian algebraic stack
is not automatically Noetherian.

61.9. Open morphisms

Let 𝑓 be a morphism of algebraic stacks which is representable by algebraic spaces. In
Properties of Stacks, Section 60.3 we have defined what it means for 𝑓 to be universally
open. Here is another characterization.

Lemma 61.9.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent

(1) 𝑓 is universally open, and
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(2) for every morphism of algebraic stacks 𝒵 → 𝒴 the morphism of topological
spaces |𝒵 ×𝒴 𝒳| → |𝒵| is open.

Proof. Assume (1), and let 𝒵 → 𝒴 be as in (2). Choose a scheme 𝑉 and a surjective
smooth morphism 𝑉 → 𝒵. By assumption the morphism 𝑉 ×𝒴 𝒳 → 𝑉 of algebraic spaces
is universally open, in particular the map |𝑉 ×𝒴 𝒳| → |𝑉| is open. By Properties of Stacks,
Section 60.4 in the commutative diagram

|𝑉 ×𝒴 𝒳| //

��

|𝒵 ×𝒴 𝒳|

��
|𝑉| // |𝒵|

the horizontal arrows are open and surjective, and moreover

|𝑉 ×𝒴 𝒳| ⟶ |𝑉| ×|𝒵| |𝒵 ×𝒴 𝒳|

is surjective. Hence as the left vertical arrow is open it follows that the right vertical arrow
is open. This proves (2). The implication (2) ⇒ (1) follows from the definitions. �

Thus we may use the following natural definition.

Definition 61.9.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks.
(1) We say 𝑓 is open if the map of topological spaces |𝒳| → |𝒴| is open.
(2) We say 𝑓 is universally open if for every morphism of algebraic stacks 𝒵 → 𝒴

the morphism of topological spaces

|𝒵 ×𝒴 𝒳| → |𝒵|

is open, i.e., the base change 𝒵 ×𝒴 𝒳 → 𝒵 is open.

Lemma 61.9.3. The base change of a universally open morphism of algebraic stacks by
any morphism of algebraic stacks is universally open.

Proof. This is immediate from the definition. �

Lemma 61.9.4. The composition of a pair of (universally) open morphisms of algebraic
stacks is (universally) open.

Proof. Omitted. �

61.10. Submersive morphisms

Definition 61.10.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks.
(1) We say 𝑓 is submersive4 if the continuous map |𝒳| → |𝒴| is submersive, see

Topology, Definition 5.15.1.
(2) We say 𝑓 is universally submersive if for every morphism of algebraic stacks

𝒴′ → 𝒴 the base change 𝒴′ ×𝒴 𝒳 → 𝒴′ is submersive.

We note that a submersive morphism is in particular surjective.

4This is very different from the notion of a submersion of differential manifolds.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06U2
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06U3
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06U4
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06U6


2806 61. MORPHISMS OF ALGEBRAIC STACKS

61.11. Universally closed morphisms

Let 𝑓 be a morphism of algebraic stacks which is representable by algebraic spaces. In
Properties of Stacks, Section 60.3 we have defined what it means for 𝑓 to be universally
closed. Here is another characterization.

Lemma 61.11.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent

(1) 𝑓 is universally closed, and
(2) for every morphism of algebraic stacks 𝒵 → 𝒴 the morphism of topological

spaces |𝒵 ×𝒴 𝒳| → |𝒵| is closed.

Proof. Assume (1), and let 𝒵 → 𝒴 be as in (2). Choose a scheme 𝑉 and a surjective
smooth morphism 𝑉 → 𝒵. By assumption the morphism 𝑉 ×𝒴 𝒳 → 𝑉 of algebraic spaces
is universally closed, in particular the map |𝑉 ×𝒴 𝒳| → |𝑉| is closed. By Properties of
Stacks, Section 60.4 in the commutative diagram

|𝑉 ×𝒴 𝒳| //

��

|𝒵 ×𝒴 𝒳|

��
|𝑉| // |𝒵|

the horizontal arrows are open and surjective, and moreover

|𝑉 ×𝒴 𝒳| ⟶ |𝑉| ×|𝒵| |𝒵 ×𝒴 𝒳|

is surjective. Hence as the left vertical arrow is closed it follows that the right vertical arrow
is closed. This proves (2). The implication (2) ⇒ (1) follows from the definitions. �

Thus we may use the following natural definition.

Definition 61.11.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks.
(1) We say 𝑓 is closed if the map of topological spaces |𝒳| → |𝒴| is closed.
(2) We say 𝑓 is universally closed if for every morphism of algebraic stacks 𝒵 → 𝒴

the morphism of topological spaces

|𝒵 ×𝒴 𝒳| → |𝒵|

is closed, i.e., the base change 𝒵 ×𝒴 𝒳 → 𝒵 is closed.

Lemma 61.11.3. The base change of a universally closed morphism of algebraic stacks by
any morphism of algebraic stacks is universally closed.

Proof. This is immediate from the definition. �

Lemma 61.11.4. The composition of a pair of (universally) closed morphisms of algebraic
stacks is (universally) closed.

Proof. Omitted. �

61.12. Types of morphisms smooth local on source-and-target

Given a property ofmorphisms of algebraic spaceswhich is smooth local on the source-and-
target, see Descent on Spaces, Definition 45.18.1 we may use it to define a corresponding
property of morphisms of algebraic stacks, namely by imposing either of the equivalent
conditions of the lemma below.
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Lemma 61.12.1. Let 𝒫 be a property of morphisms of algebraic spaces which is smooth lo-
cal on the source-and-target. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Consider
commutative diagrams

𝑈

𝑎
��

ℎ
// 𝑉

𝑏
��

𝒳
𝑓 // 𝒴

where 𝑈 and 𝑉 are algebraic spaces and the vertical arrows are smooth. The following are
equivalent

(1) for any diagram as above such that in addition 𝑈 → 𝒳 ×𝒴 𝑉 is smooth the mor-
phism ℎ has property 𝒫, and

(2) for some diagram as above with 𝑎 ∶ 𝑈 → 𝒳 surjective the morphism ℎ has
property 𝒫.

If 𝒳 and 𝒴 are representable by algebraic spaces, then this is also equivalent to 𝑓 (as
a morphism of algebraic spaces) having property 𝒫. If 𝒫 is also preserved under any
base change, and fppf local on the base, then for morphisms 𝑓 which are representable by
algebraic spaces this is also equivalent to 𝑓 having property 𝒫 in the sense of Properties
of Stacks, Section 60.3.

Proof. Let us prove the implication (1) ⇒ (2). Pick an algebraic space 𝑉 and a surjective
and smooth morphism 𝑉 → 𝒴. Pick an algebraic space 𝑈 and a surjective and smooth
morphism 𝑈 → 𝒳×𝒴𝑉. Note that 𝑈 → 𝒳 is surjective and smooth as well, as a composition
of the base change 𝒳 ×𝒴 𝑉 → 𝒳 and the chosen map 𝑈 → 𝒳 ×𝒴 𝑉. Hence we obtain a
diagram as in (1). Thus if (1) holds, then ℎ ∶ 𝑈 → 𝑉 has property 𝒫, which means that (2)
holds as 𝑈 → 𝒳 is surjective.

Conversely, assume (2) holds and let 𝑈, 𝑉, 𝑎, 𝑏, ℎ be as in (2). Next, let 𝑈′, 𝑉′, 𝑎′, 𝑏′, ℎ′ be
any diagram as in (1). Picture

𝑈

��

ℎ
// 𝑉

��
𝒳

𝑓 // 𝒴

𝑈′

��

ℎ′
// 𝑉′

��
𝒳

𝑓 // 𝒴

To show that (2) implies (1) we have to prove that ℎ′ has 𝒫. To do this consider the com-
mutative diagram

𝑈

ℎ

��

𝑈 ×𝒳 𝑈′

��

oo

(ℎ,ℎ′)

~~

// 𝑈′

ℎ′

��

𝑈 ×𝒴 𝑉′

bb

��
𝑉 𝑉 ×𝒴 𝑉′oo // 𝑉′
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of algebraic spaces. Note that the horizontal arrows are smooth as base changes of the
smooth morphisms 𝑉 → 𝒴, 𝑉′ → 𝒴, 𝑈 → 𝒳, and 𝑈′ → 𝒳. Note that

𝑈 ×𝒳 𝑈′

��

// 𝑈′

��
𝑈 ×𝒴 𝑉′ // 𝒳 ×𝒴 𝑉′

is cartesian, hence the left vertical arrow is smooth as 𝑈′, 𝑉′, 𝑎′, 𝑏′, ℎ′ is as in (1). Since 𝒫
is local on the target we see that the base change 𝑈 ×𝒴 𝑉′ → 𝑉 ×𝒴 𝑉′ has 𝒫 and hence after
precomposing by the smooth morphism 𝑈 ×𝒳 𝑈′ → 𝑈 ×𝒴 𝑉′ the morphism we conclude
(ℎ, ℎ′) has 𝒫. Finally, since 𝑈 ×𝑋 𝑈′ → 𝑈′ is surjective this implies that ℎ′ has 𝒫 as 𝒫 is
local on the source-and-target. This finishes the proof of the equivalence of (1) and (2).
If 𝒳 and 𝒴 are representable, then Descent on Spaces, Lemma 45.18.3 applies which shows
that (1) and (2) are equivalent to 𝑓 having 𝒫.
Finally, suppose 𝑓 is representable, and 𝑈, 𝑉, 𝑎, 𝑏, ℎ are as in part (2) of the lemma, and that
𝒫 is preserved under arbitrary base change. We have to show that for any scheme 𝑍 and
morphism 𝑍 → 𝒳 the base change 𝑍 ×𝒴 𝒳 → 𝑍 has property 𝒫. Consider the diagram

𝑍 ×𝒴 𝑈

��

// 𝑍 ×𝒴 𝑉

��
𝑍 ×𝒴 𝒳 // 𝑍

Note that the top horizontal arrow is a base change of ℎ and hence has property 𝒫. The left
vertical arrow is smooth and surjective and the right vertical arrow is smooth. Thus Descent
on Spaces, Lemma 45.18.3 kicks in and shows that 𝑍 ×𝒴 𝒳 → 𝑍 has property 𝒫. �

Definition 61.12.2. Let 𝒫 be a property of morphisms of algebraic spaces which is smooth
local on the source-and-target. We say a morphism 𝑓 ∶ 𝒳 → 𝒴 of algebraic stacks has
property 𝒫 if the equivalent conditions of Lemma 61.12.1 hold.

Remark 61.12.3. Let 𝒫 be a property of morphisms of algebraic spaces which is smooth lo-
cal on the source-and-target and stable under composition. Then the property of morphisms
of algebraic stacks defined in Definition 61.12.2 is stable under composition. Namely, let
𝑓 ∶ 𝒳 → 𝒴 and 𝑔 ∶ 𝒴 → 𝒵 be morphisms of algebraic stacks having propery 𝒫. Choose
an algebraic space 𝑊 and a surjective smooth morphism 𝑊 → 𝒵. Choose an algebraic
space 𝑉 and a surjective smooth morphism 𝑉 → 𝒴 ×𝒵 𝑊. Finally, choose an algebraic
space 𝑈 and a surjective and smooth morphism 𝑈 → 𝒳 ×𝒴 𝑉. Then the morphisms 𝑉 → 𝑊
and 𝑈 → 𝑉 have property 𝒫 by definition. Whence 𝑈 → 𝑊 has property 𝒫 as we assumed
that 𝒫 is stable under composition. Thus, by definition again, we see that 𝑔 ∘ 𝑓 ∶ 𝒳 → 𝒵
has property 𝒫.

Remark 61.12.4. Let 𝒫 be a property of morphisms of algebraic spaces which is smooth lo-
cal on the source-and-target and stable under base change. Then the property of morphisms
of algebraic stacks defined in Definition 61.12.2 is stable under base change. Namely, let
𝑓 ∶ 𝒳 → 𝒴 and 𝑔 ∶ 𝒴′ → 𝒴 be morphisms of algebraic stacks and assume 𝑓 has propery
𝒫. Choose an algebraic space 𝑉 and a surjective smooth morphism 𝑉 → 𝒴. Choose an
algebraic space 𝑈 and a surjective smooth morphism 𝑈 → 𝒳×𝒴 𝑉. Finally, choose an alge-
braic space 𝑉′ and a surjective and smooth morphism 𝑉′ → 𝒴′ ×𝒴 𝑉. Then the morphism
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𝑈 → 𝑉 has property 𝒫 by definition. Whence 𝑉′ ×𝑉 𝑈 → 𝑉′ has property 𝒫 as we assumed
that 𝒫 is stable under base change. Considering the diagram

𝑉′ ×𝑉 𝑈 //

��

𝒴′ ×𝒴 𝒳 //

��

𝒳

��
𝑉′ // 𝒴′ // 𝒴

we see that the left top horizontal arrow is smooth and surjective, whence by definition we
see that the projection 𝒴′ ×𝒴 𝒳 → 𝒴′ has property 𝒫.

Remark 61.12.5. Let 𝒫, 𝒫′ be properties of morphisms of algebraic spaces which are
smooth local on the source-and-target and stable under base change. Suppose that we have
𝒫 ⇒ 𝒫′ for morphisms of algebraic spaces. Then we also have 𝒫 ⇒ 𝒫′ for the properties
of morphisms of algebraic stacks defined in Definition 61.12.2 using 𝒫 and 𝒫′. This is clear
from the definition.

61.13. Morphisms of finite type

The property ``locally of finite type'' of morphisms of algebraic spaces is smooth local on
the source-and-target, see Descent on Spaces, Remark 45.18.5. It is also stable under base
change and fpqc local on the target, see Morphisms of Spaces, Lemma 42.22.3 and Descent
on Spaces, Lemma 45.10.7. Hence, by Lemma 61.12.1 above, we may define what it means
for a morphism of algebraic spaces to be locally of finite type as follows and it agrees with
the already existing notion defined in Properties of Stacks, Section 60.3 when the morphism
is representable by algebraic spaces.

Definition 61.13.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks.
(1) We say 𝑓 locally of finite type if the equivalent conditions of Lemma 61.12.1 hold

with 𝒫 = locally of finite type.
(2) We say 𝑓 is of finite type if it is locally of finite type and quasi-compact.

Lemma 61.13.2. The composition of finite type morphisms is of finite type. The same holds
for locally of finite type.

Proof. Combine Remark 61.12.3 with Morphisms of Spaces, Lemma 42.22.2. �

Lemma 61.13.3. A base change of a finite type morphism is finite type. The same holds for
locally of finite type.

Proof. Combine Remark 61.12.4 with Morphisms of Spaces, Lemma 42.22.3. �

Lemma 61.13.4. An immersion is locally of finite type.

Proof. Follows from Morphisms of Spaces, Lemma 42.22.7. �

Lemma 61.13.5. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. If 𝑓 is locally of finite
type and 𝒴 is locally Noetherian, then 𝒳 is locally Noetherian.

Proof. Let
𝑈

��

// 𝑉

��
𝒳 // 𝒴
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be a commutative diagram where 𝑈, 𝑉 are schemes, 𝑉 → 𝒴 is surjective and smooth, and
𝑈 → 𝑉 ×𝒴 𝒳 is surjective and smooth. Then 𝑈 → 𝑉 is locally of finite type. If 𝒴 is locally
Noetherian, then 𝑉 is locally Noetherian. By Morphisms, Lemma 24.14.6 we see that 𝑈 is
locally Noetherian, which means that 𝒳 is locally Noetherian. �

The following two lemmas will be improved on later (after we have discussed morphisms
of algebraic stacks which are locally of finite presentation).

Lemma 61.13.6. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Let 𝑊 → 𝒴 be a
surjective, flat, and locally of finite presentation where 𝑊 is an algebraic space. If the base
change 𝑊 ×𝒴 𝒳 → 𝑊 is locally of finite type, then 𝑓 is locally of finite type.

Proof. Choose an algebraic space 𝑉 and a surjective smooth morphism 𝑉 → 𝒴. Choose an
algebraic space 𝑈 and a surjective smooth morphism 𝑈 → 𝑉 ×𝒴 𝒳. We have to show that
𝑈 → 𝑉 is locally of finite presentation. Now we base change everything by 𝑊 → 𝒴: Set
𝑈′ = 𝑊 ×𝒴 𝑈, 𝑉′ = 𝑊 ×𝒴 𝑉, 𝒳′ = 𝑊 ×𝒴 𝒳, and 𝒴′ = 𝑊 ×𝒴 𝒴 = 𝑊. Then it is still true
that 𝑈′ → 𝑉′ ×𝒴′ 𝒳′ is smooth by base change. Hence by our definition of locally finite
type morphisms of algebraic stacks and the assumption that 𝒳′ → 𝒴′ is locally of finite
type, we see that 𝑈′ → 𝑉′ is locally of finite type. Then, since 𝑉′ → 𝑉 is surjective, flat,
and locally of finite presentation as a base change of 𝑊 → 𝒴 we see that 𝑈 → 𝑉 is locally
of finite type by Descent on Spaces, Lemma 45.10.7 and we win. �

Lemma 61.13.7. Let 𝒳 → 𝒴 → 𝒵 be morphisms of algebraic stacks. Assume 𝒳 → 𝒵 is
locally of finite type and that 𝒳 → 𝒴 is representable by algebraic spaces, surjective, flat,
and locally of finite presentation. Then 𝒴 → 𝒵 is locally of finite type.

Proof. Choose an algebraic space 𝑊 and a surjective smooth morphism 𝑊 → 𝒵. Choose
an algebraic space 𝑉 and a surjective smooth morphism 𝑉 → 𝑊 ×𝒵 𝒴. Set 𝑈 = 𝑉 ×𝒴 𝒳
which is an algebraic space. We know that 𝑈 → 𝑉 is surjective, flat, and locally of finite
presentation and that 𝑈 → 𝑊 is locally of finite type. Hence the lemma reduces to the case
of morphisms of algebraic spaces. The case of morphisms of algebraic spaces is Descent
on Spaces, Lemma 45.14.2. �

Lemma 61.13.8. Let 𝑓 ∶ 𝒳 → 𝒴, 𝑔 ∶ 𝒴 → 𝒵 be morphisms of algebraic stacks. If
𝑔 ∘ 𝑓 ∶ 𝒳 → 𝒵 is locally of finite type, then 𝑓 ∶ 𝒳 → 𝒴 is locally of finite type.

Proof. We can find a diagram

𝑈 //

��

𝑉 //

��

𝑊

��
𝒳 // 𝒴 // 𝒵

where 𝑈, 𝑉, 𝑊 are schemes, the vertical arrow 𝑊 → 𝒵 is surjective and smooth, the arrow
𝑉 → 𝒴 ×𝒵 𝑊 is surjective and smooth, and the arrow 𝑈 → 𝒳 ×𝒴 𝑉 is surjective and
smooth. Then also 𝑈 → 𝒳 ×𝒵 𝑉 is surjective and smooth (as a composition of a surjective
and smooth morphism with a base change of such). By definition we see that 𝑈 → 𝑊 is
locally of finite type. Hence 𝑈 → 𝑉 is locally of finite type by Morphisms, Lemma 24.14.8
which in turn means (by definition) that 𝒳 → 𝒴 is locally of finite type. �
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61.14. Points of finite type

Let 𝒳 be an algebraic stack. A finite type point 𝑥 ∈ |𝒳| is a point which can be represented
by a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒳 which is locally of finite type. Finite type points are a suitable
replacement of closed points for algebraic spaces and algebraic stacks. There are always
``enough of them'' for example.

Lemma 61.14.1. Let 𝒳 be an algebraic stack. Let 𝑥 ∈ |𝒳|. The following are equivalent:
(1) There exists a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒳 which is locally of finite type and repre-

sents 𝑥.
(2) There exists a scheme 𝑈, a closed point 𝑢 ∈ 𝑈, and a smooth morphism 𝜑 ∶ 𝑈 →

𝒳 such that 𝜑(𝑢) = 𝑥.

Proof. Let 𝑢 ∈ 𝑈 and 𝑈 → 𝒳 be as in (2). Then 𝑆𝑝𝑒𝑐(𝜅(𝑢)) → 𝑈 is of finite type,
and 𝑈 → 𝒳 is representable and locally of finite type (by Morphisms of Spaces, Lemmas
42.35.8 and 42.26.5). Hence we see (1) holds by Lemma 61.13.2.
Conversely, assume 𝑆𝑝𝑒𝑐(𝑘) → 𝒳 is locally of finite type and represents 𝑥. Let 𝑈 → 𝒳 be
a surjective smooth morphism where 𝑈 is a scheme. By assumption 𝑈 ×𝒳 𝑆𝑝𝑒𝑐(𝑘) → 𝑈
is a morphism of algebraic spaces which is locally of finite type. Pick a finite type point
𝑣 of 𝑈 ×𝒳 𝑆𝑝𝑒𝑐(𝑘) (there exists at least one, see Morphisms of Spaces, Lemma 42.24.3).
By Morphisms of Spaces, Lemma 42.24.4 the image 𝑢 ∈ 𝑈 of 𝑣 is a finite type point of 𝑈.
Hence by Morphisms, Lemma 24.15.4 after shrinking 𝑈 we may assume that 𝑢 is a closed
point of 𝑈, i.e., (2) holds. �

Definition 61.14.2. Let 𝒳 be an algebraic stack. We say a point 𝑥 ∈ |𝒳| is a finite type
point5 if the equivalent conditions of Lemma 61.14.1 are satisfied. We denote 𝒳ft-pts the
set of finite type points of 𝒳.

We can describe the set of finite type points as follows.

Lemma 61.14.3. Let 𝒳 be an algebraic stack. We have

𝒳ft-pts = ⋃𝜑∶𝑈→𝑋 smooth
|𝜑|(𝑈0)

where 𝑈0 is the set of closed points of 𝑈. Here we may let 𝑈 range over all schemes smooth
over 𝒳 or over all affine schemes smooth over 𝒳.

Proof. Immediate from Lemma 61.14.1. �

Lemma 61.14.4. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. If 𝑓 is locally of finite
type, then 𝑓(𝒳ft-pts) ⊂ 𝒴ft-pts.

Proof. Take 𝑥 ∈ 𝒳ft-pts. Represent 𝑥 by a locally finite type morphism 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝒳.
Then 𝑓 ∘ 𝑥 is locally of finite type by Lemma 61.13.2. Hence 𝑓(𝑥) ∈ 𝒴ft-pts. �

Lemma 61.14.5. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. If 𝑓 is locally of finite
type and surjective, then 𝑓(𝒳ft-pts) = 𝒴ft-pts.

Proof. We have 𝑓(𝒳ft-pts) ⊂ 𝒴ft-pts by Lemma 61.14.4. Let 𝑦 ∈ |𝒴| be a finite type point.
Represent 𝑦 by a morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒴 which is locally of finite type. As 𝑓 is surjective
the algebraic stack 𝒳𝑘 = 𝑆𝑝𝑒𝑐(𝑘) ×𝒴 𝒳 is nonempty, therefore has a finite type point
𝑥 ∈ |𝒳𝑘| by Lemma 61.14.3. Now 𝒳𝑘 → 𝒳 is a morphism which is locally of finite type
as a base change of 𝑆𝑝𝑒𝑐(𝑘) → 𝒴 (Lemma 61.13.3). Hence the image of 𝑥 in 𝒳 is a finite
type point by Lemma 61.14.4 which maps to 𝑦 by construction. �

5This is a slight abuse of language as it would perhaps be more correct to say ``locally finite type point''.
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Lemma 61.14.6. Let 𝒳 be an algebraic stack. For any locally closed subset 𝑇 ⊂ |𝒳| we
have

𝑇≠∅ ⇒ 𝑇 ∩ 𝒳ft-pts≠∅.
In particular, for any closed subset 𝑇 ⊂ |𝒳| we see that 𝑇 ∩ 𝒳ft-pts is dense in 𝑇.

Proof. Let 𝑖 ∶ 𝒵 → 𝒳 be the reduced induced substack structure on 𝑇, see Properties of
Stacks, Remark 60.10.5. An immersion is locally of finite type, see Lemma 61.13.4. Hence
by Lemma 61.14.4 we see 𝒵ft-pts ⊂ 𝒳ft-pts ∩𝑇. Finally, any nonempty affine scheme 𝑈 with
a smooth morphism towards 𝒵 has at least one closed point, hence 𝒵 has at least one finite
type point by Lemma 61.14.3. The lemma follows. �

Here is another, more technical, characterization of a finite type point on an algebraic stack.
It tells us in particular that the residual gerbe of 𝒳 at 𝑥 exists whenever 𝑥 is a finite type
point!

Lemma 61.14.7. Let 𝒳 be an algebraic stack. Let 𝑥 ∈ |𝒳|. The following are equivalent:
(1) 𝑥 is a finite type point,
(2) there exists an algebraic stack 𝒵 whose underlying topological space |𝒵| is a

singleton, and a morphism 𝑓 ∶ 𝒵 → 𝒳 which is locally of finite type such that
{𝑥} = |𝑓|(|𝒵|), and

(3) the residual gerbe 𝒵𝑥 of 𝒳 at 𝑥 exists and the inclusion morphism 𝒵𝑥 → 𝒳 is
locally of finite type.

Proof. (All of the morphisms occuring in this paragraph are representable by algebraic
spaces, hence the conventions and results of Properties of Stacks, Section 60.3 are applica-
ble.) Assume 𝑥 is a finite type point. Choose an affine scheme 𝑈, a closed point 𝑢 ∈ 𝑈, and
a smooth morphism 𝜑 ∶ 𝑈 → 𝒳 with 𝜑(𝑢) = 𝑥, see Lemma 61.14.3. Set 𝑢 = 𝑆𝑝𝑒𝑐(𝜅(𝑢))
as usual. Set 𝑅 = 𝑢 ×𝒳 𝑢 so that we obtain a groupoid in algebraic spaces (𝑢, 𝑅, 𝑠, 𝑡, 𝑐), see
Algebraic Stacks, Lemma 57.16.1. The projection morphisms 𝑅 → 𝑢 are the compositions

𝑅 = 𝑢 ×𝒳 𝑢 → 𝑢 ×𝒳 𝑈 → 𝑢 ×𝒳 𝑋 = 𝑢

where the first arrow is of finite type (a base change of the closed immersion of schemes
𝑢 → 𝑈) and the second arrow is smooth (a base change of the smooth morphism 𝑈 → 𝒳).
Hence 𝑠, 𝑡 ∶ 𝑅 → 𝑢 are locally of finite type (as compositions, see Morphisms of Spaces,
Lemma 42.22.2). Since 𝑢 is the spectrum of a field, it follows that 𝑠, 𝑡 are flat and locally of
finite presentation (by Morphisms of Spaces, Lemma 42.26.7). We see that 𝒵 = [𝑢/𝑅] is
an algebraic stack by Criteria for Representability, Theorem 59.17.2. By Algebraic Stacks,
Lemma 57.16.1 we obtain a canonical morphism

𝑓 ∶ 𝒵 ⟶ 𝒳

which is fully faithful. Hence this morphism is representable by algebraic spaces, see Al-
gebraic Stacks, Lemma 57.15.2 and a monomorphism, see Properties of Stacks, Lemma
60.8.4. It follows that the residual gerbe 𝒵𝑥 ⊂ 𝒳 of 𝒳 at 𝑥 exists and that 𝑓 factors through
an equivalence 𝒵 → 𝒵𝑥, see Properties of Stacks, Lemma 60.11.11. By construction the
diagram

𝑢

��

// 𝑈

��
𝒵

𝑓 // 𝒳
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is commutative. By Criteria for Representability, Lemma 59.17.1 the left vertical arrow is
surjective, flat, and locally of finite presentation. Consider

𝑢 ×𝒳 𝑈

��

// 𝒵 ×𝒳 𝑈 //

��

𝑈

��
𝑢 // 𝒵

𝑓 // 𝒳
As 𝑢 → 𝒳 is locally of finite type, we see that the base change 𝑢 ×𝒳 𝑈 → 𝑈 is locally of
finite type. Moreover, 𝑢×𝒳 𝑈 → 𝒵×𝒳 𝑈 is surjective, flat, and locally of finite presentation
as a base change of 𝑢 → 𝒵. Thus {𝑢 ×𝒳 𝑈 → 𝒵 ×𝒳 𝑈} is an fppf covering of algebraic
spaces, and we conclude that 𝒵 ×𝒳 𝑈 → 𝑈 is locally of finite type by Descent on Spaces,
Lemma 45.14.1. By definition this means that 𝑓 is locally of finite type (because the vertical
arrow 𝒵 ×𝒳 𝑈 → 𝒵 is smooth as a base change of 𝑈 → 𝒳 and surjective as 𝒵 has only
one point). Since 𝒵 = 𝒵𝑥 we see that (3) holds.
It is clear that (3) implies (2). If (2) holds then 𝑥 is a finite type point of 𝒳 by Lemma
61.14.4 and Lemma 61.14.6 to see that 𝒵ft-pts is nonempty, i.e., the unique point of 𝒵 is a
finite type point of 𝒵. �

61.15. Special presentations of algebraic stacks

The following lemma gives a criterion for when a ``slice'' of a presentation is still flat over
the algebraic stack.

Lemma 61.15.1. Let 𝒳 be an algebraic stack. Consider a cartesian diagram

𝑈

��

𝐹𝑝
oo

��
𝒳 𝑆𝑝𝑒𝑐(𝑘)oo

where 𝑈 is an algebraic space, 𝑘 is a field, and 𝑈 → 𝒳 is flat and locally of finite presenta-
tion. Let 𝑓1, … , 𝑓𝑟 ∈ Γ(𝑈, 𝒪𝑈) and 𝑧 ∈ |𝐹| such that 𝑓1, … , 𝑓𝑟 map to a regular sequence
in the local ring 𝒪𝐹,𝑧. Then, after replacing 𝑈 by an open subspace containing 𝑝(𝑧), the
morphism

𝑉(𝑓1, … , 𝑓𝑟) ⟶ 𝒳
is flat and locally of finite presentation.

Proof. Choose a scheme 𝑊 and a surjective smooth morphism 𝑊 → 𝒳. Choose an exten-
sion of fields 𝑘 ⊂ 𝑘′ and a morphism 𝑤 ∶ 𝑆𝑝𝑒𝑐(𝑘′) → 𝑊 such that 𝑆𝑝𝑒𝑐(𝑘′) → 𝑊 → 𝒳
is 2-isomorphic to 𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘) → 𝒳. This is possible as 𝑊 → 𝒳 is surjective.
Consider the commutative diagram

𝑈

��

𝑈 ×𝒳 𝑊pr0
oo

��

𝐹′
𝑝′

oo

��
𝒳 𝑊oo 𝑆𝑝𝑒𝑐(𝑘′)oo

both of whose squares are cartesian. By our choice of 𝑤 we see that 𝐹′ = 𝐹 ×𝑆𝑝𝑒𝑐(𝑘)
𝑆𝑝𝑒𝑐(𝑘′). Thus 𝐹′ → 𝐹 is surjective and we can choose a point 𝑧′ ∈ |𝐹′| mapping to 𝑧.
Since 𝐹′ → 𝐹 is flat we see that 𝒪𝐹,𝑧 → 𝒪𝐹′,𝑧′ is flat, see Morphisms of Spaces, Lemma
42.27.7. Hence 𝑓1, … , 𝑓𝑟 map to a regular sequence in 𝒪𝐹′,𝑧′, see Algebra, Lemma 7.65.7.
Note that 𝑈 ×𝒳 𝑊 → 𝑊 is a morphism of algebraic spaces which is flat and locally of
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finite presentation. Hence by More on Morphisms of Spaces, Lemma 46.19.1 we see that
there exists an open subspace 𝑈′ of 𝑈 ×𝒳 𝑊 containing 𝑝(𝑧′) such that the intersection
𝑈′ ∩(𝑉(𝑓1, … , 𝑓𝑟)×𝒳 𝑊) is flat and locally of finite presentation over 𝑊. Note that pr0(𝑈′)
is an open subspace of 𝑈 containing 𝑝(𝑧) as pr0 is smooth hence open. Now we see that
𝑈′ ∩ (𝑉(𝑓1, … , 𝑓𝑟) ×𝒳 𝑊) → 𝒳 is flat and locally of finite presentation as the composition

𝑈′ ∩ (𝑉(𝑓1, … , 𝑓𝑟) ×𝒳 𝑊) → 𝑊 → 𝒳.

Hence Properties of Stacks, Lemma 60.3.5 implies pr0(𝑈′) ∩ 𝑉(𝑓1, … , 𝑓𝑟) → 𝒳 is flat and
locally of finite presentation as desired. �

Lemma 61.15.2. Let 𝒳 be an algebraic stack. Consider a cartesian diagram

𝑈

��

𝐹𝑝
oo

��
𝒳 𝑆𝑝𝑒𝑐(𝑘)oo

where 𝑈 is an algebraic space, 𝑘 is a field, and 𝑈 → 𝒳 is locally of finite type. Let 𝑧 ∈ |𝐹|
be such that dim𝑧(𝐹) = 0. Then, after replacing 𝑈 by an open subspace containing 𝑝(𝑧),
the morphism

𝑈 ⟶ 𝒳
is locally quasi-finite.

Proof. Since 𝑓 ∶ 𝑈 → 𝒳 is locally of finite type there exists a maximal open 𝑊(𝑓) ⊂ 𝑈
such that the restriction 𝑓|𝑊(𝑓) ∶ 𝑊(𝑓) → 𝒳 is locally quasi-finite, see Properties of Stacks,
Remark 60.9.19 (2). Hence all we need to do is prove that 𝑝(𝑧) is a point of 𝑊(𝑓). Moreover,
the remark referenced above also shows the formation of 𝑊(𝑓) commutes with arbitrary
base change by a morphism which is representable by algebraic spaces. Hence it suffices to
show that the morphism 𝐹 → 𝑆𝑝𝑒𝑐(𝑘) is locally quasi-finite at 𝑧. This follows immediately
from Morphisms of Spaces, Lemma 42.31.6. �

A quasi-DM stack has a locally quasi-finite ``covering'' by a scheme.

Theorem 61.15.3. Let 𝒳 be an algebraic stack. The following are equivalent
(1) 𝒳 is quasi-DM, and
(2) there exists a scheme 𝑊 and a surjective, flat, locally finitely presented, locally

quasi-finite morphism 𝑊 → 𝒳.

Proof. The implication (2) ⇒ (1) is Lemma 61.4.14. Assume (1). Let 𝑥 ∈ |𝒳| be a finite
type point. We will produce a scheme over 𝒳 which ``works'' in a neighbourhood of 𝑥. At
the end of the proof we will take the disjoint union of all of these to conclude.

Let 𝑈 be an affine scheme, 𝑈 → 𝒳 a smooth morphism, and 𝑢 ∈ 𝑈 a closed point which
maps to 𝑥, see Lemma 61.14.1. Denote 𝑢 = 𝑆𝑝𝑒𝑐(𝜅(𝑢)) as usual. Consider the following
commutative diagram

𝑢

��

𝑅oo

��
𝑈

��

𝐹

��

𝑝
oo

𝒳 𝑢oo

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06ME
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with both squares fibre product squares, in particular 𝑅 = 𝑢 ×𝒳 𝑢. In the proof of Lemma
61.14.7 we have seen that (𝑢, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid in algebraic spaces with 𝑠, 𝑡 locally of
finite type. Let 𝐺 → 𝑢 be the stabilizer group algebraic space (see Groupoids in Spaces,
Definition 52.15.2). Note that

𝐺 = 𝑅 ×(𝑢×𝑢) 𝑢 = (𝑢 ×𝒳 𝑢) ×(𝑢×𝑢) 𝑢 = 𝒳 ×𝒳×𝒳 𝑢.

As 𝒳 is quasi-DM we see that 𝐺 is locally quasi-finite over 𝑢. By More on Groupoids in
Spaces, Lemma 53.7.10 we have dim(𝑅) = 0.

Let 𝑒 ∶ 𝑢 → 𝑅 be the identity of the groupoid. Thus both compositions 𝑢 → 𝑅 → 𝑢 are
equal to the identity morphism of 𝑢. Note that 𝑅 ⊂ 𝐹 is a closed subspace as 𝑢 ⊂ 𝑈 is a
closed subscheme. Hence we can also think of 𝑒 as a point of 𝐹. Consider the maps of étale
local rings

𝒪𝑈,𝑢
𝑝♯

−−→ 𝒪𝐹,𝑒 ⟶ 𝒪𝑅,𝑒

Note that 𝒪𝑅,𝑒 has dimension 0 by the result of the first paragraph. On the other hand, the
kernel of the second arrow is 𝑝♯(𝔪𝑢)𝒪𝐹,𝑒 as 𝑅 is cut out in 𝐹 by 𝔪𝑢. Thus we see that

𝔪𝑧 = √𝑝♯(𝔪𝑢)𝒪𝐹,𝑒

On the other hand, as the morphism 𝑈 → 𝒳 is smooth we see that 𝐹 → 𝑢 is a smooth
morphism of algebraic spaces. This means that 𝐹 is a regular algebraic space (Spaces over
Fields, Lemma 48.5.1). Hence 𝒪𝐹,𝑒 is a regular local ring (Properties of Spaces, Lemma
41.22.1). Note that a regular local ring is Cohen-Macaulay (Algebra, Lemma 7.98.3). Let
𝑑 = dim(𝒪𝐹,𝑒). By Algebra, Lemma 7.96.11 we can find 𝑓1, … , 𝑓𝑑 ∈ 𝒪𝑈,𝑢 whose images
𝜑(𝑓1), … , 𝜑(𝑓𝑑) form a regular sequence in 𝒪𝐹,𝑧. By Lemma 61.15.1 after shrinking 𝑈 we
may assume that 𝑍 = 𝑉(𝑓1, … , 𝑓𝑑) → 𝒳 is flat and locally of finite presentation. Note that
by construction 𝐹𝑍 = 𝑍 ×𝒳 𝑢 is a closed subspace of 𝐹 = 𝑈 ×𝒳 𝑢, that 𝑒 is a point of this
closed subspace, and that

dim(𝒪𝐹𝑍,𝑒) = 0.

By Morphisms of Spaces, Lemma 42.31.1 it follows that dim𝑒(𝐹𝑍) = 0 because the tran-
scendece degree of 𝑒 relative to 𝑢 is zero. Hence it follows from Lemma 61.15.2 that after
possibly shrinking 𝑈 the morphism 𝑍 → 𝒳 is locally quasi-finite.

We conclude that for every finite type point 𝑥 of 𝒳 there exists a locally quasi-finite, flat,
locally finitely presented morphism 𝑓𝑥 ∶ 𝑍𝑥 → 𝒳 with 𝑥 in the image of |𝑓𝑥|. Set
𝑊 = ∐𝑥 𝑍𝑥 and 𝑓 = ∐ 𝑓𝑥. Then 𝑓 is flat, locally of finite presentation, and locally
quasi-finite. In particular the image of |𝑓| is open, see Properties of Stacks, Lemma 60.4.7.
By construction the image contains all finite type points of 𝒳, hence 𝑓 is surjective by
Lemma 61.14.6 (and Properties of Stacks, Lemma 60.4.4). �

Lemma 61.15.4. Let 𝒵 be a DM, locally Noetherian, reduced algebraic stack with |𝒵| a
singleton. Then there exists a field 𝑘 and a surjective étale morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵.

Proof. By Properties of Stacks, Lemma 60.11.3 there exists a field 𝑘 and a surjective, flat,
locally finitely presented morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵. Set 𝑈 = 𝑆𝑝𝑒𝑐(𝑘) and 𝑅 = 𝑈×𝒵 𝑈 so we
obtain a groupoid in algebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐), see Algebraic Stacks, Lemma 57.9.2.
Note that by Algebraic Stacks, Remark 57.16.3 we have an equivalence

𝑓𝑐𝑎𝑛 ∶ [𝑈/𝑅] ⟶ 𝒵
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The projections 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are locally of finite presentation. As 𝒵 is DM we see that the
stabilizer group algebraic space

𝐺 = 𝑈 ×𝑈×𝑈 𝑅 = 𝑈 ×𝑈×𝑈 (𝑈 ×𝒵 𝑈) = 𝑈 ×𝒳×𝒳,Δ𝒳
𝒳

is unramified over 𝑈. In particular dim(𝐺) = 0 and by More on Groupoids in Spaces,
Lemma 53.7.10 we have dim(𝑅) = 0. This implies that 𝑅 is a scheme, see Spaces over
Fields, Lemma 48.4.1. By Varieties, Lemma 28.13.2 we see that 𝑅 (and also 𝐺) is the
disjoint union of spectra of Artinian local rings finite over 𝑘 via either 𝑠 or 𝑡. Let 𝑃 =
𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑅 be the open and closed subscheme whose underlying point is the identity 𝑒 of
the groupoid scheme (𝑈, 𝑅, 𝑠, 𝑡, 𝑐). As 𝑠 ∘ 𝑒 = 𝑡 ∘ 𝑒 = id𝑆𝑝𝑒𝑐(𝑘) we see that 𝐴 is an Artinian
local ring whose residue field is identified with 𝑘 via either 𝑠♯ ∶ 𝑘 → 𝐴 or 𝑡♯ ∶ 𝑘 → 𝐴.
Note that 𝑠, 𝑡 ∶ 𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝑘) are finite (by the lemma referenced above). Since
𝐺 → 𝑆𝑝𝑒𝑐(𝑘) is unramified we see that

𝐺 ∩ 𝑃 = 𝑃 ×𝑈×𝑈 𝑈 = 𝑆𝑝𝑒𝑐(𝐴 ⊗𝑘⊗𝑘 𝑘)

is unramified over 𝑘. On the other hand 𝐴⊗𝑘⊗𝑘𝑘 is local as a quotient of 𝐴 and surjects onto
𝑘. We conclude that 𝐴 ⊗𝑘⊗𝑘 𝑘 = 𝑘. It follows that 𝑃 → 𝑈 × 𝑈 is universally injective (as 𝑃
has only one point with residue field 𝑘, unramified (by the computation of the fibre over the
unique image point above), and of finite type (because 𝑠, 𝑡 are) hence a monomorphism (see
Étale Morphisms, Lemma 37.7.1). Thus 𝑠|𝑃, 𝑡|𝑃 ∶ 𝑃 → 𝑈 define a finite flat equivalence
relation. Thus we may apply Groupoids, Proposition 35.19.8 to conclude that 𝑈/𝑃 exists
and is a scheme 𝑈. Moreover, 𝑈 → 𝑈 is finite locally free and 𝑃 = 𝑈 ×𝑈 𝑈. In fact
𝑈 = 𝑆𝑝𝑒𝑐(𝑘0) where 𝑘0 ⊂ 𝑘 is the ring of 𝑅-invariant functions. As 𝑘 is a field it follows
from the definition Groupoids, Equation (35.19.0.1) that 𝑘0 is a field.

We claim that

(61.15.4.1) 𝑆𝑝𝑒𝑐(𝑘0) = 𝑈 = 𝑈/𝑃 → [𝑈/𝑅] = 𝒵

is the desired surjective étale morphism. It follows from Properties of Stacks, Lemma
60.11.1 that this morphism is surjective. Thus it suffices to show that (61.15.4.1) is étale6.
Instead of proving the étaleness directly we first apply Bootstrap, Lemma 54.9.1 to see
that there exists a groupoid scheme (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) such that (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is the restriction
of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) via the quotient morphism 𝑈 → 𝑈. (We verified all the hypothesis of the
lemma above except for the assertion that 𝑗 ∶ 𝑅 → 𝑈 × 𝑈 is separated and locally quasi-
finite which follows from the fact that 𝑅 is a separated scheme locally quasi-finite over
𝑘.) Since 𝑈 → 𝑈 is finite locally free we see that [𝑈/𝑅] → [𝑈/𝑅] is an equivalence, see
Groupoids in Spaces, Lemma 52.24.2.

Note that 𝑠, 𝑡 are the base changes of the morphsms 𝑠, 𝑡 by 𝑈 → 𝑈. As {𝑈 → 𝑈} is an fppf
covering we conclude 𝑠, 𝑡 are flat, locally of finite presentation, and locally quasi-finite, see
Descent, Lemmas 31.19.13, 31.19.9, and 31.19.22. Consider the commutative diagram

𝑈 ×𝑈 𝑈

""

𝑃 //

��

𝑅

��
𝑈 𝑒 // 𝑅

6We urge the reader to find his/her own proof of this fact. In fact the argument has a lot in common with the
final argument of the proof of Bootstrap, Theorem 54.10.1 hence probably should be isolated into its own lemma
somewhere.
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It is a general fact about restrictions that the outer four corners form a cartesian diagram.
By the equality we see the inner square is cartesian. Since 𝑃 is open in 𝑅 we conclude that
𝑒 is an open immersion by Descent, Lemma 31.19.14.

But of course, if 𝑒 is an open immersion and 𝑠, 𝑡 are flat and locally of finite presentation then
the morphisms 𝑡, 𝑠 are étale. For example you can see this by applying More on Groupoids,
Lemma 36.4.1 which shows that Ω𝑅/𝑈 = 0 implies that 𝑠, 𝑡 ∶ 𝑅 → 𝑈 is unramified (see
Morphisms, Lemma 24.34.2), which in turn implies that 𝑠, 𝑡 are étale (see Morphisms,
Lemma 24.35.16). Hence 𝒵 = [𝑈/𝑅] is an étale presentation of the algebraic stack 𝒵 and
we conlude that 𝑈 → 𝒵 is étale by Properties of Stacks, Lemma 60.3.3. �

Lemma 61.15.5. Let 𝒳 be an algebraic stack. Consider a cartesian diagram

𝑈

��

𝐹𝑝
oo

��
𝒳 𝑆𝑝𝑒𝑐(𝑘)oo

where 𝑈 is an algebraic space, 𝑘 is a field, and 𝑈 → 𝒳 is flat and locally of finite presen-
tation. Let 𝑧 ∈ |𝐹| be such that 𝐹 → 𝑆𝑝𝑒𝑐(𝑘) is unramified at 𝑧. Then, after replacing 𝑈
by an open subspace containing 𝑝(𝑧), the morphism

𝑈 ⟶ 𝒳

is étale.

Proof. Since 𝑓 ∶ 𝑈 → 𝒳 is flat and locally of finite presentation there exists a maximal
open 𝑊(𝑓) ⊂ 𝑈 such that the restriction 𝑓|𝑊(𝑓) ∶ 𝑊(𝑓) → 𝒳 is étale, see Properties of
Stacks, Remark 60.9.19 (5). Hence all we need to do is prove that 𝑝(𝑧) is a point of 𝑊(𝑓).
Moreover, the remark referenced above also shows the formation of 𝑊(𝑓) commutes with
arbitrary base change by a morphism which is representable by algebraic spaces. Hence it
suffices to show that the morphism 𝐹 → 𝑆𝑝𝑒𝑐(𝑘) is étale at 𝑧. Since it is flat and locally of
finite presentation as a base change of 𝑈 → 𝒳 and since 𝐹 → 𝑆𝑝𝑒𝑐(𝑘) is unramified at 𝑧
by assumption, this follows from Morphisms of Spaces, Lemma 42.35.12. �

A DM stack is a Deligne-Mumford stack.

Theorem 61.15.6. Let 𝒳 be an algebraic stack. The following are equivalent
(1) 𝒳 is DM,
(2) 𝒳 is Deligne-Mumford, and
(3) there exists a scheme 𝑊 and a surjective étale morphism 𝑊 → 𝒳.

Proof. Recall that (3) is the definition of (2), see Algebraic Stacks, Definition 57.12.2. The
implication (3) ⇒ (1) is Lemma 61.4.14. Assume (1). Let 𝑥 ∈ |𝒳| be a finite type point.
We will produce a scheme over 𝒳 which ``works'' in a neighbourhood of 𝑥. At the end of
the proof we will take the disjoint union of all of these to conclude.

By Lemma 61.14.7 the residual gerbe 𝒵𝑥 of 𝒳 at 𝑥 exists and 𝒵𝑥 → 𝒳 is locally of finite
type. By Lemma 61.4.16 the algebraic stack 𝒵𝑥 is DM. By Lemma 61.15.4 there exists a
field 𝑘 and a surjective étale morphism 𝑧 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝒵𝑥. In particular the composition
𝑥 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝒳 is locally of finite type (by Morphisms of Spaces, Lemmas 42.22.2 and
42.35.9).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06N2
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Pick a scheme 𝑈 and a smooth morphism 𝑈 → 𝒳 such that 𝑥 is in the image of |𝑈| → |𝒳|.
Consider the following fibre square

𝑈

��

𝐹oo

��
𝒳 𝑆𝑝𝑒𝑐(𝑘)𝑥oo

in other words 𝐹 = 𝑈 ×𝒳,𝑥 𝑆𝑝𝑒𝑐(𝑘). By Properties of Stacks, Lemma 60.4.3 we see that 𝐹
is nonempty. As 𝒵𝑥 → 𝒳 is a monomorphism we have

𝑆𝑝𝑒𝑐(𝑘) ×𝑧,𝒵𝑥,𝑧 𝑆𝑝𝑒𝑐(𝑘) = 𝑆𝑝𝑒𝑐(𝑘) ×𝑥,𝒳,𝑥 𝑆𝑝𝑒𝑐(𝑘)

with étale projection maps to 𝑆𝑝𝑒𝑐(𝑘) by construction of 𝑧. Since

𝐹 ×𝑈 𝐹 = (𝑆𝑝𝑒𝑐(𝑘) ×𝒳 𝑆𝑝𝑒𝑐(𝑘)) ×𝑆𝑝𝑒𝑐(𝑘) 𝐹

we see that the projections maps 𝐹 ×𝑈 𝐹 → 𝐹 are étale as well. It follows that Δ𝐹/𝑈 ∶
𝐹 → 𝐹 ×𝑈 𝐹 is étale (see Morphisms of Spaces, Lemma 42.35.11). By Morphisms of
Spaces, Lemma 42.40.2 this implies that Δ𝐹/𝑈 is an open immersion, which finally implies
by Morphisms of Spaces, Lemma 42.34.9 that 𝐹 → 𝑈 is unramified.

Pick a nonempty affine scheme 𝑉 and an étale morphism 𝑉 → 𝐹. (This could be avoided by
working directly with 𝐹, but it seems easier to explain what's going on by doing so.) Picture

𝑈

��

𝐹oo

��

𝑉oo

{{
𝒳 𝑆𝑝𝑒𝑐(𝑘)𝑥oo

Then 𝑉 → 𝑆𝑝𝑒𝑐(𝑘) is a smooth morphism of schemes and 𝑉 → 𝑈 is an unramified mor-
phism of schemes (see Morphisms of Spaces, Lemmas 42.33.2 and 42.34.3). Pick a closed
point 𝑣 ∈ 𝑉 with 𝑘 ⊂ 𝜅(𝑣) finite separable, see Varieties, Lemma 28.15.6. Let 𝑢 ∈ 𝑈 be
the image point. The local ring 𝒪𝑉,𝑣 is regular (see Varieties, Lemma 28.15.3) and the local
ring homomorphism

𝜑 ∶ 𝒪𝑈,𝑢 ⟶ 𝒪𝑉,𝑣

coming from the morphism 𝑉 → 𝑈 is such that 𝜑(𝔪𝑢)𝒪𝑉,𝑣 = 𝔪𝑣, see Morphisms, Lemma
24.34.14. Hence we can find 𝑓1, … , 𝑓𝑑 ∈ 𝒪𝑈,𝑢 such that the images 𝜑(𝑓1), … , 𝜑(𝑓𝑑)
form a basis for 𝔪𝑣/𝔪2

𝑣 over 𝜅(𝑣). Since 𝒪𝑉,𝑣 is a regular local ring this implies that
𝜑(𝑓1), … , 𝜑(𝑓𝑑) form a regular sequence in 𝒪𝑉,𝑣 (see Algebra, Lemma 7.98.3). After re-
placing 𝑈 by an open neighbourhood of 𝑢 we may assume 𝑓1, … , 𝑓𝑑 ∈ Γ(𝑈, 𝒪𝑈). Af-
ter replacing 𝑈 by a possibly even smaller open neighbourhood of 𝑢 we may assume that
𝑉(𝑓1, … , 𝑓𝑑) → 𝒳 is flat and locally of finite presentation, see Lemma 61.15.1. By con-
struction

𝑉(𝑓1, … , 𝑓𝑑) ×𝒳 𝑆𝑝𝑒𝑐(𝑘) ⟵ 𝑉(𝑓1, … , 𝑓𝑑) ×𝒳 𝑉
is étale and 𝑉(𝑓1, … , 𝑓𝑑) ×𝒳 𝑉 is the closed subscheme 𝑇 ⊂ 𝑉 cut out by 𝑓1|𝑉, … , 𝑓𝑑|𝑉.
Hence by construction 𝑣 ∈ 𝑇 and

𝒪𝑇,𝑣 = 𝒪𝑉,𝑣/(𝜑(𝑓1), … , 𝜑(𝑓𝑑)) = 𝜅(𝑣)

a finite separable extension of 𝑘. It follows that 𝑇 → 𝑆𝑝𝑒𝑐(𝑘) is unramified at 𝑣, see Mor-
phisms, Lemma 24.34.14. By definition of an unramified morphism of algebraic spaces
this means that 𝑉(𝑓1, … , 𝑓𝑑) ×𝒳 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝑘) is unramified at the image of 𝑣 in
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𝑉(𝑓1, … , 𝑓𝑑) ×𝒳 𝑆𝑝𝑒𝑐(𝑘). Applying Lemma 61.15.5 we see that on shrinking 𝑈 to yet
another open neighbourhood of 𝑢 the morphism 𝑉(𝑓1, … , 𝑓𝑑) → 𝒳 is étale.

We conclude that for every finite type point 𝑥 of 𝒳 there exists an étale morphism 𝑓𝑥 ∶
𝑊𝑥 → 𝒳 with 𝑥 in the image of |𝑓𝑥|. Set 𝑊 = ∐𝑥 𝑊𝑥 and 𝑓 = ∐ 𝑓𝑥. Then 𝑓 is étale. In
particular the image of |𝑓| is open, see Properties of Stacks, Lemma 60.4.7. By construction
the image contains all finite type points of 𝒳, hence 𝑓 is surjective by Lemma 61.14.6 (and
Properties of Stacks, Lemma 60.4.4). �

61.16. Quasi-finite morphisms

The property ``locally quasi-finite'' of morphisms of algebraic spaces is not smooth local
on the source-and-target so we cannot use the material in Section 61.12 to define locally
quasi-finite morphisms of algebraic stacks. We do already know what it means for a mor-
phism of algebraic stacks representable by algebraic spaces to be locally quasi-finite, see
Properties of Stacks, Section 60.3. To find a condition suitable for general morphisms we
make the following observation.

Lemma 61.16.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Assume 𝑓 is repre-
sentable by algebraic spaces. The following are equivalent

(1) 𝑓 is locally quasi-finite, and
(2) 𝑓 is locally of finite type and for every morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒴 where 𝑘 is a field

the space | 𝑆𝑝𝑒𝑐(𝑘) ×𝒴 𝒳| is discrete.

Proof. Assume (1). In this case the morphism of algebraic spaces 𝒳𝑘 → 𝑆𝑝𝑒𝑐(𝑘) is locally
quasi-finite as a base change of 𝑓. Hence |𝒳𝑘| is discrete by Morphisms of Spaces, Lemma
42.25.4. Conversely, assume (2). Pick a surjective smooth morphism 𝑉 → 𝒴 where 𝑉 is a
scheme. It suffices to show that the morphism of algebraic spaces 𝑉 ×𝒴 𝒳 → 𝑉 is locally
quasi-finite, see Properties of Stacks, Lemma 60.3.3. The morphism 𝑉×𝒴 𝒳 → 𝑉 is locally
of finite type by assumption. For any morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝑉 where 𝑘 is a field

𝑆𝑝𝑒𝑐(𝑘) ×𝑉 (𝑉 ×𝒴 𝒳) = 𝑆𝑝𝑒𝑐(𝑘) ×𝒴 𝒳

has a discrete space of points by assumption. Hence we conclude that 𝑉 ×𝒴 𝒳 → 𝑉 is
locally quasi-finite by Morphisms of Spaces, Lemma 42.25.4. �

Amorphism of algebraic stacks which is representable by algebraic spaces is quasi-DM, see
Lemma 61.4.3. Combined with the lemma above we see that the following definition does
not conflict with all of the already existing notion in the case of morphisms representable
by algebraic spaces.

Definition 61.16.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. We say 𝑓 is locally
quasi-finite if 𝑓 is quasi-DM, locally of finite type, and for every morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒴
where 𝑘 is a field the space |𝒳𝑘| is discrete.

The condition that 𝑓 be quasi-DM is natural. For example, let 𝑘 be a field and consider the
morphism 𝜋 ∶ [𝑆𝑝𝑒𝑐(𝑘)/𝐆𝑚] → 𝑆𝑝𝑒𝑐(𝑘) which has singleton fibres and is locally of finite
type. As we will see later this morphism is smooth of relative dimension −1, and we'd like
our locally quasi-finite morphisms to have relative dimension 0. Also, note that the section
𝑆𝑝𝑒𝑐(𝑘) → [𝑆𝑝𝑒𝑐(𝑘)/𝐆𝑚] does not have discrete fibres, hence is not locally quasi-finite, and
we'd like to have the following permanence property for locally quasi-finite morphisms: If
𝑓 ∶ 𝒳 → 𝒳′ is a morphism of algebraic stacks locally quasi-finite over the algebraic stack
𝒴, then 𝑓 is locally quasi-finite (in fact something a bit stronger holds, see Lemma 61.16.8).
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Another justification for the definition above is Lemma 61.16.7 below which characterizes
being locally quasi-finite in terms of the existence of suitable ``presentations'' or ``cover-
ings'' of 𝒳 and 𝒴.

Lemma 61.16.3. A base change of a locally quasi-finite morphism is locally quasi-finite.

Proof. We have seen this for quasi-DM morphisms in Lemma 61.4.4 and for locally finite
type morphisms in Lemma 61.13.3. It is immediate that the condition on fibres is inherited
by a base change. �

Lemma 61.16.4. Let 𝒳 → 𝑆𝑝𝑒𝑐(𝑘) be a locally quasi-finite morphism where 𝒳 is an
algebraic stack and 𝑘 is a field. Let 𝑓 ∶ 𝑉 → 𝒳 be a locally quasi-finite morphism where 𝑉
is a scheme. Then 𝑉 → 𝑆𝑝𝑒𝑐(𝑘) is locally quasi-finite.

Proof. By Lemma 61.13.2 we see that 𝑉 → 𝑆𝑝𝑒𝑐(𝑘) is locally of finite type. Assume, to
get a contradiction, that 𝑉 → 𝑆𝑝𝑒𝑐(𝑘) is not locally quasi-finite. Then there exists a non-
trivial specialization 𝑣 𝑣′ of points of 𝑉, see Morphisms, Lemma 24.19.6. In particular
trdeg𝑘(𝜅(𝑣)) > trdeg𝑘(𝜅(𝑣′)), see Morphisms, Lemma 24.27.6. Because |𝒳| is discrete we
see that |𝑓|(𝑣) = |𝑓|(𝑣′). Consider 𝑅 = 𝑉 ×𝒳 𝑉. Then 𝑅 is an algebraic space and the
projections 𝑠, 𝑡 ∶ 𝑅 → 𝑉 are locally quasi-finite as base changes of 𝑉 → 𝒳 (which is rep-
resentable by algebraic spaces so this follows from the discussion in Properties of Stacks,
Section 60.3). By Properties of Stacks, Lemma 60.4.3 we see that there exists an 𝑟 ∈ |𝑅|
such that 𝑠(𝑟) = 𝑣 and 𝑡(𝑟) = 𝑣′. By Morphisms of Spaces, Lemma 42.30.3 we see that
the transcendence degree of 𝑣/𝑘 is equal to the transcendence degree of 𝑟/𝑘 is equal to the
transcendence degree of 𝑣′/𝑘. This contradiction proves the lemma. �

Lemma 61.16.5. A composition of a locally quasi-finite morphisms is locally quasi-finite.

Proof. We have seen this for quasi-DMmorphisms in Lemma 61.4.10 and for locally finite
type morphisms in Lemma 61.13.2. Let 𝒳 → 𝒴 and 𝒴 → 𝒵 be locally quasi-finite. Let 𝑘
be a field and let 𝑆𝑝𝑒𝑐(𝑘) → 𝒵 be a morphism. It suffices to show that |𝒳𝑘| is discrete. By
Lemma 61.16.3 the morphisms 𝒳𝑘 → 𝒴𝑘 and 𝒴𝑘 → 𝑆𝑝𝑒𝑐(𝑘) are locally quasi-finite. In
particular we see that 𝒴𝑘 is a quasi-DM algebraic stack, see Lemma 61.4.13. By Theorem
61.15.3 we can find a scheme 𝑉 and a surjective, flat, locally finitely presented, locally
quasi-finite morphism 𝑉 → 𝒴𝑘. By Lemma 61.16.4 we see that 𝑉 is locally quasi-finite
over 𝑘, in particular |𝑉| is discrete. The morphism 𝑉 ×𝒴𝑘

𝒳𝑘 → 𝒳𝑘 is surjective, flat, and
locally of finite presentation hence |𝑉 ×𝒴𝑘

𝒳𝑘| → |𝒳𝑘| is surjective and open. Thus it
suffices to show that |𝑉 ×𝒴𝑘

𝒳𝑘| is discrete. Note that 𝑉 is a disjoint union of spectra of
Artinian local 𝑘-algebras 𝐴𝑖 with residue fields 𝑘𝑖, see Varieties, Lemma 28.13.2. Thus it
suffices to show that each

| 𝑆𝑝𝑒𝑐(𝐴𝑖) ×𝒴𝑘
𝒳𝑘| = | 𝑆𝑝𝑒𝑐(𝑘𝑖) ×𝒴𝑘

𝒳𝑘| = | 𝑆𝑝𝑒𝑐(𝑘𝑖) ×𝒴 𝒳|
is discrete, which follows from the assumption that 𝒳 → 𝒴 is locally quasi-finite. �

Before we characterize locally quasi-finite morphisms in terms of coverings we do it for
quasi-DM morphisms.

Lemma 61.16.6. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. The following are
equivalent

(1) 𝑓 is quasi-DM,
(2) for any morphism 𝑉 → 𝒴 with 𝑉 an algebraic space there exists a surjective, flat,

locally finitely presented, locally quasi-finite morphism 𝑈 → 𝒳 ×𝒴 𝑉 where 𝑈 is
an algebraic space, and
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(3) there exist algebraic spaces 𝑈, 𝑉 and a morphism 𝑉 → 𝒴 which is surjective,
flat, and locally of finite presentation, and a morphism 𝑈 → 𝒳 ×𝒴 𝑉 which is
surjective, flat, locally of finite presentation, and locally quasi-finite.

Proof. The implication (2) ⇒ (3) is immediate.

Assume (1) and let 𝑉 → 𝒴 be as in (2). Then 𝒳 ×𝒴 𝑉 → 𝑉 is quasi-DM, see Lemma
61.4.4. By Lemma 61.4.3 the algebraic space 𝑉 is DM, hence quasi-DM. Thus 𝒳 ×𝒴 𝑉 is
quasi-DM by Lemma 61.4.11. Hence we may apply Theorem 61.15.3 to get the morphism
𝑈 → 𝒳 ×𝒴 𝑉 as in (2).

Assume (3). Let 𝑉 → 𝒴 and 𝑈 → 𝒳 ×𝒴 𝑉 be as in (3). To prove that 𝑓 is quasi-DM it
suffices to show that 𝒳 ×𝒴 𝑉 → 𝑉 is quasi-DM, see Lemma 61.4.5. By Lemma 61.4.14 we
see that 𝒳 ×𝒴 𝑉 is quasi-DM. Hence 𝒳 ×𝒴 𝑉 → 𝑉 is quasi-DM by Lemma 61.4.13 and (1)
holds. This finishes the proof of the lemma. �

Lemma 61.16.7. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. The following are
equivalent

(1) 𝑓 is locally quasi-finite,
(2) 𝑓 is quasi-DM and for any morphism 𝑉 → 𝒴 with 𝑉 an algebraic space and any

locally quasi-finite morphism 𝑈 → 𝒳 ×𝒴 𝑉 where 𝑈 is an algebraic space the
morphism 𝑈 → 𝑉 is locally quasi-finite,

(3) for any morphism 𝑉 → 𝒴 from an algebraic space 𝑉 there exists a surjective, flat,
locally finitely presented, and locally quasi-finite morphism 𝑈 → 𝒳 ×𝒴 𝑉 where
𝑈 is an algebraic space such that 𝑈 → 𝑉 is locally quasi-finite,

(4) there exists algebraic spaces 𝑈, 𝑉, a surjective, flat, and locally of finitely pre-
sented morphism 𝑉 → 𝒴, and a morphism 𝑈 → 𝒳 ×𝒴 𝑉 which is surjective, flat,
locally of finite presentation, and locally quasi-finite such that 𝑈 → 𝑉 is locally
quasi-finite.

Proof. Assume (1). Then 𝑓 is quasi-DM by assumption. Let 𝑉 → 𝒴 and 𝑈 → 𝒳 ×𝒴 𝑉
be as in (2). By Lemma 61.16.5 the composition 𝑈 → 𝒳 ×𝒴 𝑉 → 𝑉 is locally quasi-finite.
Thus (1) implies (2).

Assume (2). Let 𝑉 → 𝒴 be as in (3). By Lemma 61.16.6 we can find an algebraic space 𝑈
and a surjective, flat, locally finitely presented, locally quasi-finite morphism 𝑈 → 𝒳 ×𝒴 𝑉.
By (2) the composition 𝑈 → 𝑉 is locally quasi-finite. Thus (2) implies (3).

It is immediate that (3) implies (4).

Assume (4). We will prove (1) holds, which finishes the proof. By Lemma 61.16.6 we
see that 𝑓 is quasi-DM. To prove that 𝑓 is locally of finite type it suffices to prove that
𝑔 ∶ 𝒳 ×𝒴 𝑉 → 𝑉 is locally of finite type, see Lemma 61.13.6. Then it suffices to check that
𝑔 precomposed with ℎ ∶ 𝑈 → 𝒳 ×𝒴 𝑉 is locally of finite type, see Lemma 61.13.7. Since
𝑔 ∘ ℎ ∶ 𝑈 → 𝑉 was assumed to be locally quasi-finite this holds, hence 𝑓 is locally of finite
type. Finally, let 𝑘 be a field and let 𝑆𝑝𝑒𝑐(𝑘) → 𝒴 be a morphism. Then 𝑉 ×𝒴 𝑆𝑝𝑒𝑐(𝑘) is a
nonempty algebraic space which is locally of finite presentation over 𝑘. Hence we can find
a finite extension 𝑘 ⊂ 𝑘′ and a morphism 𝑆𝑝𝑒𝑐(𝑘′) → 𝑉 such that

𝑆𝑝𝑒𝑐(𝑘′) //

��

𝑉

��
𝑆𝑝𝑒𝑐(𝑘) // 𝒴
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commutes (details omitted). Then 𝒳𝑘′ → 𝒳𝑘 is representable (by schemes), surjective,
and finite locally free. In particular |𝒳𝑘′| → |𝒳𝑘| is surjective and open. Thus it suffices
to prove that |𝒳𝑘′| is discrete. Since

𝑈 ×𝑉 𝑆𝑝𝑒𝑐(𝑘′) = 𝑈 ×𝒳×𝒴𝑉 𝒳𝑘′

we see that 𝑈 ×𝑉 𝑆𝑝𝑒𝑐(𝑘′) → 𝒳𝑘′ is surjective, flat, and locally of finite presentation (as
a base change of 𝑈 → 𝒳 ×𝒴 𝑉). Hence |𝑈 ×𝑉 𝑆𝑝𝑒𝑐(𝑘′)| → |𝒳𝑘′| is surjective and open.
Thus it suffices to show that |𝑈 ×𝑉 𝑆𝑝𝑒𝑐(𝑘′)| is discrete. This follows from the fact that
𝑈 → 𝑉 is locally quasi-finite (either by our definition above or from the original definition
for morphisms of algebraic spaces, via Morphisms of Spaces, Lemma 42.25.4). �

Lemma 61.16.8. Let 𝒳 → 𝒴 → 𝒵 be morphisms of algebraic stacks. Assume that 𝒳 → 𝒵
is locally quasi-finite and 𝒴 → 𝒵 is quasi-DM. Then 𝒳 → 𝒴 is locally quasi-finite.

Proof. Write 𝒳 → 𝒴 as the composition
𝒳 ⟶ 𝒳 ×𝒵 𝒴 ⟶ 𝒴

The second arrow is locally quasi-finite as a base change of 𝒳 → 𝒵, see Lemma 61.16.3.
The first arrow is locally quasi-finite by Lemma 61.4.8 as 𝒴 → 𝒵 is quasi-DM. Hence
𝒳 → 𝒴 is locally quasi-finite by Lemma 61.16.5. �

61.17. Flat morphisms

The property ``being flat'' of morphisms of algebraic spaces is smooth local on the source-
and-target, see Descent on Spaces, Remark 45.18.5. It is also stable under base change and
fpqc local on the target, see Morphisms of Spaces, Lemma 42.27.3 and Descent on Spaces,
Lemma 45.10.11. Hence, by Lemma 61.12.1 above, we may define what it means for a
morphism of algebraic spaces to be flat as follows and it agrees with the already existing
notion defined in Properties of Stacks, Section 60.3 when the morphism is representable by
algebraic spaces.

Definition 61.17.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. We say 𝑓 is flat if
the equivalent conditions of Lemma 61.12.1 hold with 𝒫 = flat.

Lemma 61.17.2. The composition of flat morphisms is flat.

Proof. Combine Remark 61.12.3 with Morphisms of Spaces, Lemma 42.27.2. �

Lemma 61.17.3. A base change of a flat morphism is flat.

Proof. Combine Remark 61.12.4 with Morphisms of Spaces, Lemma 42.27.3. �

Lemma 61.17.4. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Let 𝒵 → 𝒴 be a
surjective flat morphism of algebraic stacks. If the base change 𝒵 ×𝒴 𝒳 → 𝒵 is flat, then
𝑓 is flat.

Proof. Choose an algebraic space 𝑊 and a surjective smooth morphism 𝑊 → 𝒵. Then
𝑊 → 𝒵 is surjective and flat (Morphisms of Spaces, Lemma 42.33.7) hence 𝑊 → 𝒴 is
surjective and flat (by Properties of Stacks, Lemma 60.5.2 and Lemma 61.17.2). Since the
base change of 𝒵 ×𝒴 𝒳 → 𝒵 by 𝑊 → 𝒵 is a flat morphism (Lemma 61.17.3) we may
replace 𝒵 by 𝑊.
Choose an algebraic space 𝑉 and a surjective smooth morphism 𝑉 → 𝒴. Choose an alge-
braic space 𝑈 and a surjective smooth morphism 𝑈 → 𝑉×𝒴𝒳. We have to show that 𝑈 → 𝑉
is flat. Now we base change everything by 𝑊 → 𝒴: Set 𝑈′ = 𝑊 ×𝒴 𝑈, 𝑉′ = 𝑊 ×𝒴 𝑉,
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𝒳′ = 𝑊 ×𝒴 𝒳, and 𝒴′ = 𝑊 ×𝒴 𝒴 = 𝑊. Then it is still true that 𝑈′ → 𝑉′ ×𝒴′ 𝒳′ is
smooth by base change. Hence by our definition of flat morphisms of algebraic stacks and
the assumption that 𝒳′ → 𝒴′ is flat, we see that 𝑈′ → 𝑉′ is flat. Then, since 𝑉′ → 𝑉 is
surjective as a base change of 𝑊 → 𝒴 we see that 𝑈 → 𝑉 is flat by Morphisms of Spaces,
Lemma 42.28.3 (2) and we win. �

Lemma 61.17.5. Let 𝒳 → 𝒴 → 𝒵 be morphisms of algebraic stacks. If 𝒳 → 𝒵 is flat
and 𝒳 → 𝒴 is surjective and flat, then 𝒴 → 𝒵 is flat.

Proof. Choose an algebraic space 𝑊 and a surjective smooth morphism 𝑊 → 𝒵. Choose
an algebraic space 𝑉 and a surjective smooth morphism 𝑉 → 𝑊×𝒵 𝒴. Choose an algebraic
space 𝑈 and a surjective smooth morphism 𝑈 → 𝑉 ×𝒴 𝒳. We know that 𝑈 → 𝑉 is flat and
that 𝑈 → 𝑊 is flat. Also, as 𝒳 → 𝒴 is surjective we see that 𝑈 → 𝑉 is surjective (as a
composition of surjective morphisms). Hence the lemma reduces to the case of morphisms
of algebraic spaces. The case of morphisms of algebraic spaces is Morphisms of Spaces,
Lemma 42.28.5. �

61.18. Morphisms of finite presentation

The property ``locally of finite presentation'' of morphisms of algebraic spaces is smooth
local on the source-and-target, see Descent on Spaces, Remark 45.18.5. It is also stable
under base change and fpqc local on the target, see Morphisms of Spaces, Lemma 42.26.3
and Descent on Spaces, Lemma 45.10.8. Hence, by Lemma 61.12.1 above, we may define
what it means for a morphism of algebraic spaces to be locally of finite presentation as
follows and it agrees with the already existing notion defined in Properties of Stacks, Section
60.3 when the morphism is representable by algebraic spaces.

Definition 61.18.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks.
(1) We say 𝑓 locally of finite presentation if the equivalent conditions of Lemma

61.12.1 hold with 𝒫 = locally of finite presentation.
(2) We say 𝑓 is of finite presentation if it is locally of finite presentation, quasi-

compact, and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism which is
locally of finite presentation.

Lemma 61.18.2. The composition of finitely presented morphisms is of finite presentation.
The same holds for morphisms which are locally of finite presentation.

Proof. Combine Remark 61.12.3 with Morphisms of Spaces, Lemma 42.26.2. �

Lemma 61.18.3. A base change of a finitely presented morphism is of finite presentation.
The same holds for morphisms which are locally of finite presentation.

Proof. Combine Remark 61.12.4 with Morphisms of Spaces, Lemma 42.26.3. �

Lemma 61.18.4. A morphism which is locally of finite presentation is locally of finite type.
A morphism of finite presentation is of finite type.

Proof. Combine Remark 61.12.5 with Morphisms of Spaces, Lemma 42.26.5. �

Lemma 61.18.5. Let 𝑓 ∶ 𝒳 → 𝒴 and 𝑔 ∶ 𝒴 → 𝒵 be morphisms of algebraic stacks If
𝑔 ∘ 𝑓 is locally of finite presentation and 𝑔 is locally of finite type, then 𝑓 is locally of finite
presentation.
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Proof. Choose an algebraic space 𝑊 and a surjective smooth morphism 𝑊 → 𝒵. Choose
an algebraic space 𝑉 and a surjective smooth morphism 𝑉 → 𝒴×𝒵 𝑊. Choose an algebraic
space 𝑈 and a surjective smooth morphism 𝑈 → 𝒳×𝒴𝑉. The lemma follows upon applying
Morphisms of Spaces, Lemma 42.26.9 to the morphisms 𝑈 → 𝑉 → 𝑊. �

Lemma 61.18.6. An open immersion is locally of finite presentation.

Proof. Follows from Morphisms of Spaces, Lemma 42.26.10. �

Lemma 61.18.7. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Let 𝒵 → 𝒴 be a
surjective, flat, locally finitely presented morphism of algebraic stacks. If the base change
𝒵 ×𝒴 𝒳 → 𝒵 is locally of finite presentation, then 𝑓 is locally of finite presentation.

Proof. Choose an algebraic space 𝑊 and a surjective smooth morphism 𝑊 → 𝒵. Then
𝑊 → 𝒵 is surjective, flat, and locally of finite presentation (Morphisms of Spaces, Lemmas
42.33.7 and 42.33.5) hence 𝑊 → 𝒴 is surjective, flat, and locally of finite presentation (by
Properties of Stacks, Lemma 60.5.2 and Lemmas 61.17.2 and 61.18.2). Since the base
change of 𝒵 ×𝒴 𝒳 → 𝒵 by 𝑊 → 𝒵 is locally of finite presentation (Lemma 61.17.3) we
may replace 𝒵 by 𝑊.
Choose an algebraic space 𝑉 and a surjective smooth morphism 𝑉 → 𝒴. Choose an al-
gebraic space 𝑈 and a surjective smooth morphism 𝑈 → 𝑉 ×𝒴 𝒳. We have to show that
𝑈 → 𝑉 is locally of finite presentation. Now we base change everything by 𝑊 → 𝒴: Set
𝑈′ = 𝑊 ×𝒴 𝑈, 𝑉′ = 𝑊 ×𝒴 𝑉, 𝒳′ = 𝑊 ×𝒴 𝒳, and 𝒴′ = 𝑊 ×𝒴 𝒴 = 𝑊. Then it is still true
that 𝑈′ → 𝑉′ ×𝒴′ 𝒳′ is smooth by base change. Hence by our definition of locally finitely
presented morphisms of algebraic stacks and the assumption that 𝒳′ → 𝒴′ is locally of fi-
nite presentation, we see that 𝑈′ → 𝑉′ is locally of finite presentation. Then, since 𝑉′ → 𝑉
is surjective, flat, and locally of finite presentation as a base change of 𝑊 → 𝒴 we see
that 𝑈 → 𝑉 is locally of finite presentation by Descent on Spaces, Lemma 45.10.8 and we
win. �

Lemma 61.18.8. Let 𝒳 → 𝒴 → 𝒵 be morphisms of algebraic stacks. If 𝒳 → 𝒵 is locally
of finite presentation and 𝒳 → 𝒴 is surjective, flat, and locally of finite presentation, then
𝒴 → 𝒵 is locally of finite presentation.

Proof. Choose an algebraic space 𝑊 and a surjective smooth morphism 𝑊 → 𝒵. Choose
an algebraic space 𝑉 and a surjective smooth morphism 𝑉 → 𝑊×𝒵 𝒴. Choose an algebraic
space 𝑈 and a surjective smooth morphism 𝑈 → 𝑉 ×𝒴 𝒳. We know that 𝑈 → 𝑉 is flat
and locally of finite presentation and that 𝑈 → 𝑊 is locally of finite presentation. Also,
as 𝒳 → 𝒴 is surjective we see that 𝑈 → 𝑉 is surjective (as a composition of surjective
morphisms). Hence the lemma reduces to the case of morphisms of algebraic spaces. The
case of morphisms of algebraic spaces is Descent on Spaces, Lemma 45.14.1. �

Lemma 61.18.9. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks which is surjective,
flat, and locally of finite presentation. Then for every scheme 𝑈 and object 𝑦 of 𝒴 over 𝑈
there exists an fppf covering {𝑈𝑖 → 𝑈} and objects 𝑥𝑖 of 𝒳 over 𝑈𝑖 such that 𝑓(𝑥𝑖) ≅ 𝑦|𝑈𝑖
in 𝒴𝑈𝑖

.

Proof. We may think of 𝑦 as a morphism 𝑈 → 𝒴. By Properties of Stacks, Lemma 60.5.3
and Lemmas 61.18.3 and 61.17.3 we see that 𝒳 ×𝒴 𝑈 → 𝑈 is surjective, flat, and locally
of finite presentation. Let 𝑉 be a scheme and let 𝑉 → 𝒳 ×𝒴 𝑈 smooth and surjective. Then
𝑉 → 𝒳 ×𝒴 𝑈 is also surjective, flat, and locally of finite presentation (see Morphisms of
Spaces, Lemmas 42.33.7 and 42.33.5). Hence also 𝑉 → 𝑈 is surjective, flat, and locally
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of finite presentation, see Properties of Stacks, Lemma 60.5.2 and Lemmas 61.18.2, and
61.17.2. Hence {𝑉 → 𝑈} is the desired fppf covering and 𝑥 ∶ 𝑉 → 𝒳 is the desired
object. �

Lemma 61.18.10. Let 𝑓𝑗 ∶ 𝒳𝑗 → 𝒳, 𝑗 ∈ 𝐽 be a family of morphisms of algebraic stacks
which are each flat and locally of finite presentation and which are jointly surjective, i.e.,
|𝒳| = ⋃ |𝒳𝑖|. Then for every scheme 𝑈 and object 𝑥 of 𝒳 over 𝑈 there exists an fppf
covering {𝑈𝑖 → 𝑈}𝑖∈𝐼, a map 𝑎 ∶ 𝐼 → 𝐽, and objects 𝑥𝑖 of 𝒳𝑎(𝑖) over 𝑈𝑖 such that
𝑓𝑎(𝑖)(𝑥𝑖) ≅ 𝑦|𝑈𝑖

in 𝒳𝑈𝑖
.

Proof. Apply Lemma 61.18.9 to the morphism ∐𝑗∈𝐽 𝒳𝑗 → 𝒳. (There is a slight set the-
oretic issue here -- due to our setup of things -- which we ignore.) To finish, note that a
morphism 𝑥𝑖 ∶ 𝑈𝑖 → ∐𝑗∈𝐽 𝒳𝑗 is given by a disjoint union decomposition 𝑈𝑖 = ∐ 𝑈𝑖,𝑗 and
morphisms 𝑈𝑖,𝑗 → 𝒳𝑗. Then the fppf covering {𝑈𝑖,𝑗 → 𝑈} and the morphisms 𝑈𝑖,𝑗 → 𝒳𝑗
do the job. �

Lemma 61.18.11. Let 𝑓 ∶ 𝒳 → 𝒴 be flat and locally of finite presentation. Then |𝑓| ∶
|𝒳| → |𝒴| is open.

Proof. Choose a scheme 𝑉 and a smooth surjective morphism 𝑉 → 𝒴. Choose a scheme 𝑈
and a smooth surjective morphism 𝑈 → 𝑉 ×𝒴 𝒳. By assumption the morphism of schemes
𝑈 → 𝑉 is flat and locally of finite presentation. Hence 𝑈 → 𝑉 is open by Morphisms,
Lemma 24.24.9. By construction of the topology on |𝒴| the map |𝑉| → |𝒴| is open. The
map |𝑈| → |𝒳| is surjective. The result follows from these facts by elementary topology.

�

61.19. Gerbes

An important type of algebraic stack are the stacks of the form [𝐵/𝐺] where 𝐵 is an al-
gebraic space and 𝐺 is a flat and locally finitely presented group algebraic space over 𝐵
(acting trivially on 𝐵), see Criteria for Representability, Lemma 59.18.3. It turns out that
an algebraic stack is a gerbe when it locally in the fppf topology is of this form, see Lemma
61.19.8. In this section we briefly discuss this notion and the corresponding relative notion.

Definition 61.19.1. Let 𝑓 ∶ 𝒳 → 𝒴 be amorphism of algebraic stacks. We say 𝒳 is a gerbe
over 𝒴 if 𝒳 is a gerbe over 𝒴 as stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓, see Stacks, Definition
50.11.4. We say an algebraic stack 𝒳 is a gerbe if there exists a morphism 𝒳 → 𝑋 where
𝑋 is an algebraic space which turns 𝒳 into a gerbe over 𝑋.

The condition that 𝒳 be a gerbe over 𝒴 is defined purely in terms of the topology and
category theory underlying the given algebraic stacks; but as we will see later this condition
has geometric consequences. For example it implies that 𝒳 → 𝒴 is surjective, flat, and
locally of finite presentation, see Lemma 61.19.7. The absolute notion is trickier to parse,
because it may not be at first clear that 𝑋 is well determined. Actually, it is.

Lemma 61.19.2. Let 𝒳 be an algebraic stack. If 𝒳 is a gerbe, then the sheafification of the
presheaf

(Sch/𝑆)𝑜𝑝𝑝
𝑓𝑝𝑝𝑓 → Sets, 𝑈 ↦ 𝑂𝑏(𝒳𝑈)/≅

is an algebraic space and 𝒳 is a gerbe over it.

Proof. (In this proof the abuse of language introduced in Section 61.2 really pays off.)
Choose a morphism 𝜋 ∶ 𝒳 → 𝑋 where 𝑋 is an algebraic space which turns 𝒳 into a gerbe
over 𝑋. It suffices to prove that 𝑋 is the sheafification of the presheaf ℱ displayed in the
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lemma. It is clear that there is a map 𝑐 ∶ ℱ → 𝑋. We will use Stacks, Lemma 50.11.3
properties (2)(a) and (2)(b) to see that the map 𝑐# ∶ ℱ# → 𝑋 is surjective and injective,
hence an isomorphism, see Sites, Lemma 9.11.2. Surjective: Let 𝑇 be a scheme and let
𝑓 ∶ 𝑇 → 𝑋. By property (2)(a) there exists an fppf covering {ℎ𝑖 ∶ 𝑇𝑖 → 𝑇} and morphisms
𝑥𝑖 ∶ 𝑇𝑖 → 𝒳 such that 𝑓 ∘ ℎ𝑖 corresponds to 𝜋 ∘ 𝑥𝑖. Hence we see that 𝑓|𝑇𝑖

is in the image of
𝑐. Injective: Let 𝑇 be a scheme and let 𝑥, 𝑦 ∶ 𝑇 → 𝒳 be morphisms such that 𝑐 ∘ 𝑥 = 𝑐 ∘ 𝑦.
By (2)(b) we can find a covering {𝑇𝑖 → 𝑇} and morphisms 𝑥|𝑇𝑖

→ 𝑦|𝑇𝑖
in the fibre category

𝒳𝑇𝑖
. Hence the restrictions 𝑥|𝑇𝑖

, 𝑦|𝑇𝑖
are equal in ℱ(𝑇𝑖). This proves that 𝑥, 𝑦 give the same

section of ℱ# over 𝑇 as desired. �

Lemma 61.19.3. Let

𝒳′ //

��

𝒳

��
𝒴′ // 𝒴

be a fibre product of algebraic stacks. If 𝒳 is a gerbe over 𝒴, then 𝒳′ is a gerbe over 𝒴′.

Proof. Immediate from the definitions and Stacks, Lemma 50.11.5. �

Lemma 61.19.4. Let 𝒳 → 𝒴 and 𝒴 → 𝒵 be morphisms of algebraic stacks. If 𝒳 is a
gerbe over 𝒴 and 𝒴 is a gerbe over 𝒵, then 𝒳 is a gerbe over 𝒵.

Proof. Immediate from Stacks, Lemma 50.11.6. �

Lemma 61.19.5. Let

𝒳′ //

��

𝒳

��
𝒴′ // 𝒴

be a fibre product of algebraic stacks. If 𝒴′ → 𝒴 is surjective, flat, and locally of finite
presentation and 𝒳′ is a gerbe over 𝒴′, then 𝒳 is a gerbe over 𝒴.

Proof. Follows immediately from Lemma 61.18.9 and Stacks, Lemma 50.11.7. �

Lemma 61.19.6. Let 𝜋 ∶ 𝒳 → 𝑈 be a morphism from an algebraic stack to an algebraic
space and let 𝑥 ∶ 𝑈 → 𝒳 be a section of 𝜋. Set 𝐺 = 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥), see Definition 61.5.3. If
𝒳 is a gerbe over 𝑈, then

(1) there is a canonical equivalence of stacks in groupoids

𝑥𝑐𝑎𝑛 ∶ [𝑈/𝐺] ⟶ 𝒳.

where [𝑈/𝐺] is the quotient stack for the trivial action of 𝐺 on 𝑈,
(2) 𝐺 → 𝑈 is flat and locally of finite presentation, and
(3) 𝑈 → 𝒳 is surjective, flat, and locally of finite presentation.
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Proof. Set 𝑅 = 𝑈 ×𝑥,𝒳,𝑥 𝑈. The morphism 𝑅 → 𝑈 × 𝑈 factors through the diagonal
Δ𝑈 ∶ 𝑈 → 𝑈 × 𝑈 as it factors through 𝑈 ×𝑈 𝑈 = 𝑈. Hence 𝑅 = 𝐺 because

𝐺 = 𝐼𝑠𝑜𝑚𝒳(𝑥, 𝑥)
= 𝑈 ×𝑥,𝒳 ℐ𝒳

= 𝑈 ×𝑥,𝒳 (𝒳 ×Δ,𝒳×𝑆𝒳,Δ 𝒳)
= (𝑈 ×𝑥,𝒳,𝑥 𝑈) ×𝑈×𝑈,Δ𝑈

𝑈
= 𝑅 ×𝑈×𝑈,Δ𝑈

𝑈
= 𝑅

for the fourth equality use Categories, Lemma 4.28.12. Let 𝑡, 𝑠 ∶ 𝑅 → 𝑈 be the projections.
The composition law 𝑐 ∶ 𝑅 ×𝑠,𝑈,𝑡 𝑅 → 𝑅 constructed on 𝑅 in Algebraic Stacks, Lemma
57.16.1 agrees with the group law on 𝐺 (proof omitted). Thus Algebraic Stacks, Lemma
57.16.1 shows we obtain a canonical fully faithful 1-morphism

𝑥𝑐𝑎𝑛 ∶ [𝑈/𝐺] ⟶ 𝒳
of stacks in groupoids over (Sch/𝑆)𝑓𝑝𝑝𝑓. To see that it is an equivalence it suffices to show
that it is essentially surjective. To do this it suffices to show that any object of 𝒳 over a
scheme 𝑇 comes fppf locally from 𝑥 via a morphism 𝑇 → 𝑈, see Stacks, Lemma 50.4.8.
However, this follows the condition that 𝜋 turns 𝒳 into a gerbe over 𝑋, see property (2)(a)
of Stacks, Lemma 50.11.3.
By Criteria for Representability, Lemma 59.18.3 we conclude that 𝐺 → 𝑈 is flat and locally
of finite presentation. Finally, 𝑈 → 𝒳 is surjective, flat, and locally of finite presentation
by Criteria for Representability, Lemma 59.17.1. �

Lemma 61.19.7. Let 𝜋 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. The following are
equivalent

(1) 𝒳 is a gerbe over 𝒴, and
(2) there exists an algebraic space 𝑈, a group algebraic space 𝐺 flat and locally of

finite presentation over 𝑈, and a surjective, flat, and locally finitely presented
morphism 𝑈 → 𝒴 such that 𝒳 ×𝒴 𝑈 ≅ [𝑈/𝐺] over 𝑈.

Proof. Assume (2). By Lemma 61.19.5 to prove (1) it suffices to show that [𝑈/𝐺] is a gerbe
over 𝑈. This is immediate from Groupoids in Spaces, Lemma 52.26.2.
Assume (1). Any base change of 𝜋 is a gerbe, see Lemma 61.19.3. As a first step we
choose a scheme 𝑉 and a surjective smooth morphism 𝑉 → 𝒴. Thus we may assume
that 𝜋 ∶ 𝒳 → 𝑉 is a gerbe over a scheme. This means that there exists an fppf covering
{𝑉𝑖 → 𝑉} such that the fibre category 𝒳𝑉𝑖

is nonempty, see Stacks, Lemma 50.11.3 (2)(a).
Note that 𝑈 = ∐ 𝑉𝑖 → 𝑈 is surjective, flat, and locally of finite presentation. Hence we
may replace 𝑉 by 𝑈 and assume that 𝜋 ∶ 𝒳 → 𝑈 is a gerbe over a scheme 𝑈 and that there
exists an object 𝑥 of 𝒳 over 𝑈. By Lemma 61.19.6 we see that 𝒳 = [𝑈/𝐺] over 𝑈 for some
flat and locally finitely presented group algebraic space 𝐺 over 𝑈. �

Lemma 61.19.8. Let 𝜋 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. If 𝒳 is a gerbe over
𝒴, then 𝜋 is surjective, flat, and locally of finite presentation.

Proof. By Properties of Stacks, Lemma 60.5.4 and Lemmas 61.17.4 and 61.18.7 it suffices
to prove to the lemma after replacing 𝜋 by a base change with a surjective, flat, locally
finitely presented morphism 𝒴′ → 𝒴. By Lemma 61.19.7 we may assume 𝒴 = 𝑈 is an
algebraic space and 𝒳 = [𝑈/𝐺] over 𝑈. Then 𝑈 → [𝑈/𝐺] is surjective, flat, and locally of
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finite presentation, see Lemma 61.19.6. This implies that 𝜋 is surjective, flat, and locally of
finite presentation by Properties of Stacks, Lemma 60.5.5 and Lemmas 61.17.5 and 61.18.8.

�

Proposition 61.19.9. Let 𝒳 be an algebraic stack. The following are equivalent
(1) 𝒳 is a gerbe, and
(2) ℐ𝒳 → 𝒳 is flat and locally of finite presentation.

Proof. Assume (1). Choose a morphism 𝒳 → 𝑋 into an algebraic space 𝑋 which turns 𝒳
into a gerbe over 𝑋. Let 𝑋′ → 𝑋 is a surjective, flat, locally finitely presented morphism
and set 𝒳′ = 𝑋′ ×𝑋 𝒳. Note that 𝒳′ is a gerbe over 𝑋′ by Lemma 61.19.3. Then both
squares in

ℐ𝒳′ //

��

𝒳′ //

��

𝑋′

��
ℐ𝒳

// 𝒳 // 𝑋
are fibre product squares, see Lemma 61.5.4. Hence to prove ℐ𝒳 → 𝒳 is flat and locally
of finite presentation it suffices to do so after such a base change by Lemmas 61.17.4 and
61.18.7. Thus we can apply Lemma 61.19.7 to assume that 𝒳 = [𝑈/𝐺]. By Lemma 61.19.6
we see 𝐺 is flat and locally of finite presentation over 𝑈 and that 𝑥 ∶ 𝑈 → [𝑈/𝐺] is
surjective, flat, and locally of finite presentation. Moreover, the pullback of ℐ𝒳 by 𝑥 is 𝐺
and we conclude that (2) holds by descent again, i.e., by Lemmas 61.17.4 and 61.18.7.
Conversely, assume (2). Choose a smooth presentation 𝒳 = [𝑈/𝑅], see Algebraic Stacks,
Section 57.16. Denote𝐺 → 𝑈 the stabilizer group algebraic space of the groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖),
see Groupoids in Spaces, Definition 52.15.2. By Lemma 61.5.6 we see that 𝐺 → 𝑈 is flat
and locally of finite presentation as a base change of ℐ𝒳 → 𝒳, see Lemmas 61.17.3 and
61.18.3. Consider the following action

𝑎 ∶ 𝐺 ×𝑈,𝑡 𝑅 → 𝑅, (𝑔, 𝑟) ↦ 𝑐(𝑔, 𝑟)
of 𝐺 on 𝑅. This action is free on 𝑇-valued points for any scheme 𝑇 as 𝑅 is a groupoid. Hence
𝑅′ = 𝑅/𝐺 is an algebraic space and the quotient morphism 𝜋 ∶ 𝑅 → 𝑅′ is surjective, flat,
and locally of finite presentation by Bootstrap, Lemma 54.11.5. The projections 𝑠, 𝑡 ∶ 𝑅 →
𝑈 are 𝐺-invariant, hence we obtain morphisms 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈 such that 𝑠 = 𝑠′ ∘ 𝜋 and
𝑡 = 𝑡′ ∘ 𝜋. Since 𝑠, 𝑡 ∶ 𝑅 → 𝑈 are flat and locally of finite presentation we conclude that
𝑠′, 𝑡′ are flat and locally of finite presentation, see Morphisms of Spaces, Lemmas 42.28.5
and Descent on Spaces, Lemma 45.14.1. Consider the morphism

𝑗′ = (𝑡′, 𝑠′) ∶ 𝑅′ ⟶ 𝑈 × 𝑈.
We claim this is a monomorphism. Namely, suppose that 𝑇 is a scheme and that 𝑎, 𝑏 ∶
𝑇 → 𝑅′ are morphisms which have the same image in 𝑈 × 𝑈. By definition of the quotient
𝑅′ = 𝑅/𝐺 there exists an fppf covering {ℎ𝑗 ∶ 𝑇𝑗 → 𝑇} such that 𝑎 ∘ ℎ𝑗 = 𝜋 ∘ 𝑎𝑗 and
𝑏 ∘ ℎ𝑗 = 𝜋 ∘ 𝑏𝑗 for some morphisms 𝑎𝑗, 𝑏𝑗 ∶ 𝑇𝑗 → 𝑅. Since 𝑎𝑗, 𝑏𝑗 have the same image in
𝑈 × 𝑈 we see that 𝑔𝑗 = 𝑐(𝑎𝑗, 𝑖(𝑏𝑗)) is a 𝑇𝑗-valued point of 𝐺 such that 𝑐(𝑔𝑗, 𝑏𝑗) = 𝑎𝑗. In other
words, 𝑎𝑗 and 𝑏𝑗 have the same image in 𝑅′ and the claim is proved. Since 𝑗 ∶ 𝑅 → 𝑈 × 𝑈
is a pre-equivalence relation (see Groupoids in Spaces, Lemma 52.11.2) and 𝑅 → 𝑅′ is
surjective (as a map of sheaves) we see that 𝑗′ ∶ 𝑅′ → 𝑈 × 𝑈 is an equivalence relation.
Hence Bootstrap, Theorem 54.10.1 shows that 𝑋 = 𝑈/𝑅′ is an algebraic space. Finally, we
claim that the morphism

𝒳 = [𝑈/𝑅] ⟶ 𝑋 = 𝑈/𝑅′
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turns 𝒳 into a gerbe over 𝑋. This follows from Groupoids in Spaces, Lemma 52.26.1
as 𝑅 → 𝑅′ is surjective, flat, and locally of finite presentation (if needed use Bootstrap,
Lemma 54.4.5 to see this implies the required hypothesis). �

At this point we have developed enough machinery to prove that residual gerbes (when they
exist) are gerbes.

Lemma 61.19.10. Let 𝒵 be a reduced, locally Noetherian algebraic stack such that |𝒵| is
a singleton. Then 𝒵 is a gerbe over a reduced, locally Noetherian algebraic space 𝑍 with
|𝑍| a singleton.

Proof. ByProperties of Stacks, Lemma 60.11.3 there exists a surjective, flat, locally finitely
presented morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝒵 where 𝑘 is a field. Then ℐ𝑍 ×𝒵 𝑆𝑝𝑒𝑐(𝑘) → 𝑆𝑝𝑒𝑐(𝑘) is
representable by algebraic spaces and locally of finite type (as a base change of ℐ𝒵 → 𝒵,
see Lemmas 61.5.1 and 61.13.3). Therefore it is locally of finite presentation, see Mor-
phisms of Spaces, Lemma 42.26.7. Of course it is also flat as 𝑘 is a field. Hence we may
apply Lemmas 61.17.4 and 61.18.7 to see that ℐ𝒵 → 𝒵 is flat and locally of finite pre-
sentation. We conclude that 𝒵 is a gerbe by Proposition 61.19.9. Let 𝜋 ∶ 𝒵 → 𝑍 be a
morphism to an algebraic space such that 𝒵 is a gerbe over 𝑍. Then 𝜋 is surjective, flat,
and locally of finite presentation by Lemma 61.19.8. Hence 𝑆𝑝𝑒𝑐(𝑘) → 𝑍 is surjective,
flat, and locally of finite presentation as a composition, see Properties of Stacks, Lemma
60.5.2 and Lemmas 61.17.2 and 61.18.2. Hence by Properties of Stacks, Lemma 60.11.3
we see that |𝑍| is a singleton and that 𝑍 is locally Noetherian and reduced. �

Lemma 61.19.11. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. If 𝒳 is a gerbe over
𝒴 then the map |𝒳| → |𝒴| is a homeomorphism of topological spaces.

Proof. Let 𝑘 be a field and let 𝑦 be an object of 𝒴 over 𝑆𝑝𝑒𝑐(𝑘). By Stacks, Lemma 50.11.3
property (2)(a) there exists an fppf covering {𝑇𝑖 → 𝑆𝑝𝑒𝑐(𝑘)} and objects 𝑥𝑖 of 𝒳 over 𝑇𝑖
with 𝑓(𝑥𝑖) ≅ 𝑦|𝑇𝑖

. Choose an 𝑖 such that 𝑇𝑖≠∅. Choose a morphism 𝑆𝑝𝑒𝑐(𝐾) → 𝑇𝑖 for
some field 𝐾. Then 𝑘 ⊂ 𝐾 and 𝑥𝑖|𝐾 is an object of 𝒳 lying over 𝑦|𝐾. Thus we see that
|𝒴| → |𝒳|. is surjective. The map |𝒴| → |𝒳| is also injective. Namely, if 𝑥, 𝑥′ are objects
of 𝒳 over 𝑆𝑝𝑒𝑐(𝑘) whose images 𝑓(𝑥), 𝑓(𝑥′) become isomorphic (over an extension) in 𝒴,
then Stacks, Lemma 50.11.3 property (2)(b) garantees the existence of an extension of 𝑘
over which 𝑥 and 𝑥′ become isomorphic (details omitted). Hence |𝒳| → |𝒴| is continuous
and bijective and it suffices to show that it is also open. This follows from Lemmas 61.19.8
and 61.18.11. �

The following lemma tells us that residual gerbes exist for all points on any algebraic stack
which is a gerbe.

Lemma 61.19.12. Let 𝒳 be an algebraic stack. If 𝒳 is a gerbe then for every 𝑥 ∈ |𝒳| the
residual gerbe of 𝒳 at 𝑥 exists.

Proof. Let 𝜋 ∶ 𝒳 → 𝑋 be a morphism from 𝒳 into an algebraic space 𝑋 which turns
𝒳 into a gerbe over 𝑋. Let 𝑍𝑥 → 𝑋 be the residual space of 𝑋 at 𝑥, see Decent Spaces,
Definition 43.10.6. Let 𝒵 = 𝒳 ×𝑋 𝑍𝑥. By Lemma 61.19.3 the algebraic stack 𝒵 is a gerbe
over 𝑍𝑥. Hence |𝒵| = |𝑍𝑥| (Lemma 61.19.11) is a singleton. Since 𝒵 → 𝑍𝑥 is locally of
finite presentation as a base change of 𝜋 (see Lemmas 61.19.8 and 61.18.3) we see that 𝒵
is locally Noetherian, see Lemma 61.13.5. Thus the residual gerbe 𝒵𝑥 of 𝒳 at 𝑥 exists and
is equal to 𝒵𝑥 = 𝒵𝑟𝑒𝑑 the reduction of the algebraic stack 𝒵. Namely, we have seen above
that |𝒵𝑟𝑒𝑑| is a singleton mapping to 𝑥 ∈ |𝒳|, it is reduced by construction, and it is locally
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Noetherian (as the reduction of a locally Noetherian algebraic stack is locally Noetherian,
details omitted). �

61.20. Stratification by gerbes

The goal of this section is to show that many algebraic stacks 𝒳 have a ``stratification'' by
locally closed substacks 𝒳𝑖 ⊂ 𝒳 such that each 𝒳𝑖 is a gerbe. This shows that in some
sense gerbes are the building blocks out of which any algebraic stack is constructed. Note
that by stratification we only mean that

|𝒳| = ⋃𝑖
|𝒳𝑖|

and nothing more (in general). Hence it is harmless to replace 𝒳 by its reduction (see
Properties of Stacks, Section 60.10) in order to study this stratification.

The following proposition tells us there is (almost always) a dense open substack of the
reduction of 𝒳

Proposition 61.20.1. Let 𝒳 be a reduced algebraic stack such that ℐ𝒳 → 𝒳 is quasi-
compact. Then there exists a dense open substack 𝒰 ⊂ 𝒳 which is a gerbe.

Proof. According to Proposition 61.19.9 it is enough to find a dense open substack 𝒰 such
that ℐ𝒰 → 𝒰 is flat and locally of finite presentation. Note that ℐ𝒰 = ℐ𝒳 ×𝒳 𝒰, see
Lemma 61.5.4.

Choose a presentation 𝒳 = [𝑈/𝑅]. Let 𝐺 → 𝑈 be the stabilizer group algebraic space of
the groupoid 𝑅. By Lemma 61.5.6 we see that 𝐺 → 𝑈 is the base change of ℐ𝒳 → 𝒳
hence quasi-compact (by assumption) and locally of finite type (by Lemma 61.5.1). Let
𝑊 ⊂ 𝑈 be the largest open (possibly empty) subscheme such that the restriction 𝐺𝑊 → 𝑊
is flat and locally of finite presentation (we omit the proof that 𝑊 exists; hint: use that the
properties are local). By Morphisms of Spaces, Proposition 42.29.1 we see that 𝑊 ⊂ 𝑈 is
dense. Note that 𝑊 ⊂ 𝑈 is 𝑅-invariant by More on Groupoids in Spaces, Lemma 53.4.2.
Hence 𝑊 corresponds to an open substack 𝒰 ⊂ 𝒳 by Properties of Stacks, Lemma 60.9.10.
Since |𝑈| → |𝒳| is open and |𝑊| ⊂ |𝑈| is dense we conclude that 𝒰 is dense in 𝒳. Finally,
the morphism ℐ𝒰 → 𝒰 is flat and locally of finite presentation because the base change
by the surjective smooth morphism 𝑊 → 𝒰 is the morphism 𝐺𝑊 → 𝑊 which is flat and
locally of finite presentation by construction. See Lemmas 61.17.4 and 61.18.7. �

The above proposition immediately implies that any point has a residual gerbe on an alge-
braic stack with quasi-compact inertia, as we will show in Lemma 61.21.1. It turns out that
there doesn't always exist a finite stratification by gerbes. Here is an example.

Example 61.20.2. Let 𝑘 be a field. Take 𝑈 = 𝑆𝑝𝑒𝑐(𝑘[𝑥0, 𝑥1, 𝑥2, …]) and let 𝐆𝑚 act by
𝑡(𝑥0, 𝑥1, 𝑥2, …) = (𝑡𝑥0, 𝑡𝑝𝑥1, 𝑡𝑝2

𝑥2, …) where 𝑝 is a prime number. Let 𝒳 = [𝑈/𝐆𝑚]. This
is an algebraic stack. There is a stratification of 𝒳 by strata

(1) 𝒳0 is where 𝑥0 is not zero,
(2) 𝒳1 is where 𝑥0 is zero but 𝑥1 is not zero,
(3) 𝒳2 is where 𝑥0, 𝑥1 are zero, but 𝑥2 is not zero,
(4) and so on, and
(5) 𝒳∞ is where all the 𝑥𝑖 are zero.

Each stratum is a gerbe over a scheme with group 𝜇𝑝𝑖 for 𝒳𝑖 and 𝐆𝑚 for 𝒳∞. The strata are
reduced locally closed substacks. There is no coarser stratification with the same properties.
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Nonetheless, using transfinite induction we can use Proposition 61.20.1 find possibly infi-
nite stratifications by gerbes...!

Lemma 61.20.3. Let 𝒳 be an algebraic stack such that ℐ𝒳 → 𝒳 is quasi-compact. Then
there exists a well ordered index set 𝐼 and for every 𝑖 ∈ 𝐼 a reduced locally closed substack
𝒰𝑖 ⊂ 𝒳 such that

(1) each 𝒰𝑖 is a gerbe,
(2) we have |𝒳| = ⋃𝑖∈𝐼 |𝒰𝑖|,
(3) 𝑇𝑖 = |𝒳| ⧵ ⋃𝑖′<𝑖 |𝒰𝑖′| is closed in |𝒳| for all 𝑖 ∈ 𝐼, and
(4) |𝒰𝑖| is open in 𝑇𝑖.

We can moreover arrange it so that either (a) |𝒰𝑖| ⊂ 𝑇𝑖 is dense, or (b)𝒰𝑖 is quasi-compact.
In case (a), if we choose 𝒰𝑖 as large as possible (see proof for details), then the stratification
is canonical.

Proof. Let 𝑇 ⊂ |𝒳| be a nonempty closed subset. We are going to find (resp. choose) for
every such 𝑇 a reduced locally closed substack 𝒰(𝑇) ⊂ 𝒳 with |𝒰(𝑇)| ⊂ 𝑇 open dense (resp.
nonempty quasi-compact). Namely, by Properties of Stacks, Lemma 60.10.1 there exists a
unique reduced closed substack 𝒳′ ⊂ 𝒳 such that 𝑇 = |𝒳′|. Note that ℐ𝒳′ = ℐ𝒳 ×𝒳 𝒳′ by
Lemma 61.5.5. Hence ℐ𝒳′ → 𝒳′ is quasi-compact as a base change, see Lemma 61.7.3.
Therefore Proposition 61.20.1 implies there exists a dense maximal (see proof proposition)
open substack 𝒰 ⊂ 𝒳′ which is a gerbe. In case (a) we set 𝒰(𝑇) = 𝒰 (this is canonical) and
in case (b) we simply choose a nonempty quasi-compact open 𝒰(𝑇) ⊂ 𝒰, see Properties of
Stacks, Lemma 60.4.9 (we can do this for all 𝑇 simultaneously by the axiom of choice).

By transfinite induction we construct for every ordinal 𝛼 a closed subset 𝑇𝛼 ⊂ |𝒳|. For
𝛼 = 0 we set 𝑇0 = |𝒳|. Given 𝑇𝛼 set

𝑇𝛼+1 = 𝑇𝛼 ⧵ |𝒰(𝑇𝛼)|.

If 𝛽 is a limit ordinal we set
𝑇𝛽 = ⋂𝛼<𝛽

𝑇𝛼.

We claim that 𝑇𝛼 = ∅ for all 𝛼 large enough. Namely, assume that 𝑇𝛼≠∅ for all 𝛼. Then
we obtain an injective map from the class of ordinals into the set of subsets of |𝒳| which
is a contradiction.

The claim implies the lemma. Namely, let

𝐼 = {𝛼 ∣ 𝒰𝛼≠∅}.

This is a well ordered set by the claim. For 𝑖 = 𝛼 ∈ 𝐼 we set 𝒰𝑖 = 𝒰𝛼. So 𝒰𝑖 is a reduced
locally closed substack and a gerbe, i.e., (1) holds. By construction 𝑇𝑖 = 𝑇𝛼 if 𝑖 = 𝛼 ∈ 𝐼,
hence (3) holds. Also, (4) and (a) or (b) hold by our choice of 𝒰(𝑇) as well. Finally, to
see (2) let 𝑥 ∈ |𝒳|. There exists a smallest ordinal 𝛽 with 𝑥∉𝑇𝛽 (because the ordinals are
well-ordered). In this case 𝛽 has to be a successor ordinal by the definition of 𝑇𝛽 for limit
ordinals. Hence 𝛽 = 𝛼 + 1 and 𝑥 ∈ |𝒰(𝑇𝛼)| and we win. �

Remark 61.20.4. We canwonder about the order type of the canonical stratifications which
occur as output of the stratifications of type (a) constructed in Lemma 61.20.3. A natural
guess is that the well ordered set 𝐼 has cardinality at most ℵ0. We have no idea if this is
true or false. If you do please email stacks.project@gmail.com.
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61.21. Existence of residual gerbes

In this section we prove that residual gerbes (as defined in Properties of Stacks, Definition
60.11.8) exist on many algebraic stacks. First, here is the promised application of Proposi-
tion 61.20.1.

Lemma 61.21.1. Let 𝒳 be an algebraic stack such that ℐ𝒳 → 𝒳 is quasi-compact. Then
the residual gerbe of 𝒳 at 𝑥 exists for every 𝑥 ∈ |𝒳|.

Proof. Let 𝑇 = {𝑥} ⊂ |𝒳| be the closure of 𝑥. By Properties of Stacks, Lemma 60.10.1
there exists a reduced closed substack 𝒳′ ⊂ 𝒳 such that 𝑇 = |𝒳′|. Note that ℐ𝒳′ =
ℐ𝒳 ×𝒳 𝒳′ by Lemma 61.5.5. Hence ℐ𝒳′ → 𝒳′ is quasi-compact as a base change, see
Lemma 61.7.3. Therefore Proposition 61.20.1 implies there exists a dense open substack
𝒰 ⊂ 𝒳′ which is a gerbe. Note that 𝑥 ∈ |𝒰| because {𝑥} ⊂ 𝑇 is a dense subset too. Hence
a residual gerbe 𝒵𝑥 ⊂ 𝒰 of 𝒰 at 𝑥 exists by Lemma 61.19.12. It is immediate from the
definitions that 𝒵𝑥 → 𝒳 is a residual gerbe of 𝒳 at 𝑥. �

If the stack is quasi-DM then residual gerbes exist too. In particular, residual gerbes always
exist for Delinge-Mumford stacks.

Lemma 61.21.2. Let 𝒳 be a quasi-DM algebraic stack. Then the residual gerbe of 𝒳 at 𝑥
exists for every 𝑥 ∈ |𝒳|.

Proof. Choose a scheme 𝑈 and a surjective, flat, locally finite presented, and locally quasi-
finite morphism 𝑈 → 𝒳, see Theorem 61.15.3. Set 𝑅 = 𝑈 ×𝒳 𝑈. The projections
𝑠, 𝑡 ∶ 𝑅 → 𝑈 are surjective, flat, locally of finite presentation, and locally quasi-finite
as base changes of the morphism 𝑈 → 𝒳. There is a canonical morphism [𝑈/𝑅] → 𝒳
(see Algebraic Stacks, Lemma 57.16.1) which is an equivalence because 𝑈 → 𝒳 is surjec-
tive, flat, and locally of finite presentation, see Algebraic Stacks, Remark 57.16.3. Thus we
may assume that 𝒳 = [𝑈/𝑅] where (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) is a groupoid in algebraic spaces such that
𝑠, 𝑡 ∶ 𝑅 → 𝑈 are surjective, flat, locally of finite presentation, and locally quasi-finite. Set

𝑈′ = ∐𝑢∈𝑈 lying over 𝑥
𝑆𝑝𝑒𝑐(𝜅(𝑢)).

The canonical morphism 𝑈′ → 𝑈 is a monomorphism. Let
𝑅′ = 𝑈′ ×𝒳 𝑈′ = 𝑅 ×(𝑈×𝑈) (𝑈′ × 𝑈′)

Because 𝑈′ → 𝑈 is a monomorphism we see that both projections 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ factor
as a monomorphism followed by a locally quasi-finite morphism. Hence, as 𝑈′ is a disjoint
union of spectra of fields, using Spaces over Fields, Lemma 48.4.3 we conclude that the
morphisms 𝑠′, 𝑡′ ∶ 𝑅′ → 𝑈′ are locally quasi-finite. Again since 𝑈′ is a disjoint union
of spectra of fields, the morphisms 𝑠′, 𝑡′ are also flat. Finally, 𝑠′, 𝑡′ locally quasi-finite
implies 𝑠′, 𝑡′ locally of finite type, hence 𝑠′, 𝑡′ locally of finite presentation (because 𝑈′

is a disjoint union of spectra of fields in particular locally Noetherian, so that Morphisms
of Spaces, Lemma 42.26.7 applies). Hence 𝒵 = [𝑈′/𝑅′] is an algebraic stack by Criteria
for Representability, Theorem 59.17.2. As 𝑅′ is the restriction of 𝑅 by 𝑈′ → 𝑈 we see
𝒵 → 𝒳 is a monomorphism by Groupoids in Spaces, Lemma 52.24.1 and Properties of
Stacks, Lemma 60.8.4. Since 𝒵 → 𝒳 is a monomorphism we see that |𝒵| → |𝒳| is
injective, see Properties of Stacks, Lemma 60.8.5. By Properties of Stacks, Lemma 60.4.3
we see that

|𝑈′| = |𝒵 ×𝒳 𝑈′| ⟶ |𝒵| ×|𝒳| |𝑈′|
is surjective which implies (by our choice of 𝑈′) that |𝒵| → |𝒳| has image {𝑥}. We
conclude that |𝒵| is a singleton. Finally, by construction 𝑈′ is locally Noetherian and

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06RD
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=06UI


61.23. OTHER CHAPTERS 2833

reduced, i.e., 𝒵 is reduced and locally Noetherian. This means that the essential image of
𝒵 → 𝒳 is the residual gerbe of 𝒳 at 𝑥, see Properties of Stacks, Lemma 60.11.11. �

61.22. Smooth morphisms

The property ``being smooth'' of morphisms of algebraic spaces is smooth local on the
source-and-target, see Descent on Spaces, Remark 45.18.5. It is also stable under base
change and fpqc local on the target, see Morphisms of Spaces, Lemma 42.33.3 and Descent
on Spaces, Lemma 45.10.24. Hence, by Lemma 61.12.1 above, we may define what it
means for a morphism of algebraic spaces to be smooth as follows and it agrees with the
already existing notion defined in Properties of Stacks, Section 60.3 when the morphism is
representable by algebraic spaces.

Definition 61.22.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. We say 𝑓 is smooth
if the equivalent conditions of Lemma 61.12.1 hold with 𝒫 = smooth.

Lemma 61.22.2. The composition of smooth morphisms is smooth.

Proof. Combine Remark 61.12.3 with Morphisms of Spaces, Lemma 42.33.2. �

Lemma 61.22.3. A base change of a smooth morphism is smooth.

Proof. Combine Remark 61.12.4 with Morphisms of Spaces, Lemma 42.33.3. �
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CHAPTER 62

Cohomology of Algebraic Stacks

62.1. Introduction

In this chapter we write about cohomology of algebraic stacks. This mean in particular
cohomology of quasi-coherent sheaves, i.e., we prove analogues of the results in the chapter
entitled ``Coherent Cohomology''. The results in this chapter are different from those in
[LMB00a] mainly because we consistently use the ``big sites''. Before reading this chapter
please take a quick look at the chapter ``Sheaves on Algebraic Stacks'' in order to become
familiar with the terminology introduced there, see Sheaves on Stacks, Section 58.1.

62.2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Properties of
Stacks, Section 60.2.

62.3. Notation

Different topologies. If we indicate an algebraic stack by a calligraphic letter, such as
𝒳, 𝒴, 𝒵, then the notation 𝒳𝑍𝑎𝑟, 𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒳𝑠𝑚𝑜𝑜𝑡ℎ, 𝒳𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝒳𝑓𝑝𝑝𝑓 indicates the site intro-
duced in Sheaves on Stacks, Definition 58.4.1. (Think ``big site''.) Correspondingly the
structure sheaf of 𝒳 is a sheaf on 𝒳𝑓𝑝𝑝𝑓. On the other hand, algebraic spaces and schemes
are usually indicated by roman capitals, such as 𝑋, 𝑌, 𝑍, and in this case 𝑋 ́𝑒𝑡𝑎𝑙𝑒 indicates the
small étale site of 𝑋 (as defined in Topologies, Definition 30.4.8 or Properties of Spaces,
Definition 41.15.1). It seems that the distinction should be clear enough.

The default topology is the fppf topology. Hence we will sometimes say ``sheaf on 𝒳'' or
``sheaf of 𝒪𝒳'' modules when we mean sheaf on 𝒳𝑓𝑝𝑝𝑓 or object of Mod(𝒳𝑓𝑝𝑝𝑓, 𝒪𝒳).

If 𝑓 ∶ 𝒳 → 𝒴 is a morphism of algebraic stacks, then the functors 𝑓∗ and 𝑓−1 defined
on presheaves preserves sheaves for any of the topologies mentioned above. In particular
when we discuss the pushforward or pullback of a sheaf we don't have to mention which
topology we are working with. The same isn't true when we compute cohomology groups
and/or higher direct images. In this case we will always mention which topology we are
working with.

Suppose that 𝑓 ∶ 𝑋 → 𝒴 is a morphism from an algebraic space 𝑋 to an algebraic stack
𝒴. Let 𝒢 be a sheaf on 𝒴𝜏 for some topology 𝜏. In this case 𝑓−1𝒢 is a sheaf for the 𝜏
topology on 𝒮𝑋 (the algebraic stack associated to 𝑋) because (by our conventions) 𝑓 really
is a 1-morphism 𝑓 ∶ 𝒮𝑋 → 𝒴. If 𝜏 = ́𝑒𝑡𝑎𝑙𝑒 or stronger, then we write 𝑓−1𝒢|𝑋 ́𝑒𝑡𝑎𝑙𝑒

to
denote the restriction to the étale site of 𝑋, see Sheaves on Stacks, Section 58.21. If 𝒢 is
an 𝒪𝒳-module we sometimes write 𝑓∗𝒢 and 𝑓∗𝒢|𝑋 ́𝑒𝑡𝑎𝑙𝑒

instead.
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62.4. Pullback of quasi-coherent modules

Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. It is a very general fact that quasi-
coherent modules on ringed topoi are compatible with pullbacks. In particular the pullback
𝑓∗ preserves quasi-coherent modules and we obtain a functor

𝑓∗ ∶ QCoh(𝒪𝒴) ⟶ QCoh(𝒪𝒳),

see Sheaves on Stacks, Lemma 58.11.2. In general this functor isn't exact, but if 𝑓 is flat
then it is.

Lemma62.4.1. If 𝑓 ∶ 𝒳 → 𝒴 is a flat morphism of algebraic stacks then𝑓∗ ∶ QCoh(𝒪𝒴) →
QCoh(𝒪𝒳) is an exact functor.

Proof. Choose a scheme 𝑉 and a surjective smooth morphism 𝑉 → 𝒴. Choose a scheme 𝑈
and a surjective smooth morphism 𝑈 → 𝑉×𝒴 𝒳. Then 𝑈 → 𝒳 is still smooth and surjective
as a composition of two such morphisms. From the commutative diagram

𝑈

��

𝑓′
// 𝑉

��
𝒳

𝑓 // 𝒴

we obtain a commutative diagram

QCoh(𝒪𝑈) QCoh(𝒪𝑉)oo

QCoh(𝒪𝒳)

OO

QCoh(𝒪𝒴)oo

OO

of abelian categories. Our proof that the bottom two categories in this diagram are abelian
showed that the vertical functors are faithful exact functors (see proof of Sheaves on Stacks,
Lemma 58.14.1). Since 𝑓′ is a flat morphism of schemes (by our definition of flat mor-
phisms of algebraic stacks) we see that (𝑓′)∗ is an exact functor on quasi-coherent sheaves
on 𝑉. Thus we win. �

62.5. The key lemma

The following lemma is the basis for our understanding of higher direct images of certain
types of sheaves of modules. There are two verions: one for the étale topology and one for
the fppf topology.

Lemma 62.5.1. Let ℳ be a rule which associates to every algebraic stack 𝒳 a subcategory
ℳ𝒳 of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) such that

(1) ℳ𝒳 is a weak Serre subcategory of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) (see Homology, Definition
10.7.1) for all algebraic stacks 𝒳,

(2) for a smooth morphism of algebraic stacks 𝑓 ∶ 𝒴 → 𝒳 the functor 𝑓∗ maps ℳ𝒳
into ℳ𝒴,

(3) if 𝑓𝑖 ∶ 𝒳𝑖 → 𝒳 is a family of smooth morphisms of algebraic stacks with |𝒳| =
⋃ |𝑓𝑖|(|𝒳𝑖|), then an object ℱ of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) is in ℳ𝒳 if and only if 𝑓∗

𝑖 ℱ is
in ℳ𝒳𝑖

for all 𝑖, and
(4) if 𝑓 ∶ 𝒴 → 𝒳 is a morphism of algebraic stacks such that 𝒳 and 𝒴 are repre-

sentable by affine schemes, then 𝑅𝑖𝑓∗ maps ℳ𝒴 into ℳ𝒳.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=076X
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=076Z
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Then for any quasi-compact and quasi-separated morphism 𝑓 ∶ 𝒴 → 𝒳 of algebraic stacks
𝑅𝑖𝑓∗ maps ℳ𝒴 into ℳ𝒳. (Higher direct images computed in étale topology.)

Proof. Let 𝑓 ∶ 𝒴 → 𝒳 be a quasi-compact and quasi-separated morphism of algebraic
stacks and let ℱ be an object of ℳ𝒴. Choose a surjective smooth morphism 𝒰 → 𝒳 where
𝒰 is representable by a scheme. By Sheaves on Stacks, Lemma 58.20.3 taking higher direct
images commuteswith base change. Assumption (2) shows that the pullback ofℱ to𝒰×𝒳𝒴
is in ℳ𝒰×𝒳𝒴 because the projection 𝒰 ×𝒳 𝒴 → 𝒴 is smooth as a base change of a smooth
morphism. Hence (3) shows we may replace 𝒴 → 𝒳 by the projection 𝒰 ×𝒳 𝒴 → 𝒰. In
other words, we may assume that 𝒳 is representable by a scheme. Using (3) once more, we
see that the question is Zariski local on 𝒳, hence we may assume that 𝒳 is representable
by an affine scheme. Since 𝑓 is quasi-compact this implies that also 𝒴 is quasi-compact.
Thus we may choose a surjective smooth morphism 𝑔 ∶ 𝒱 → 𝒴 where 𝒱 is representable
by an affine scheme.
In this situation we have the spectral sequence

𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑓 ∘ 𝑔𝑝)∗𝑔∗

𝑝ℱ ⇒ 𝑅𝑝+𝑞𝑓∗ℱ
of Sheaves on Stacks, Proposition 58.20.1. Recall that this is the spectral sequence asso-
ciated to a double complex. By assumption (1) we may use Homology, Remark 10.19.7.
Note that the morphisms

𝑔𝑝 ∶ 𝒱𝑝 = 𝒱 ×𝒴 … ×𝒴 𝒱 ⟶ 𝒴
are smooth as compositions of base changes of the smooth morphism 𝑔. Thus the sheaves
𝑔∗

𝑝ℱ are in ℳ𝒱𝑝
by (2). Hence it suffices to prove that the higher direct images of objects

of ℳ𝒱𝑝
under the morphisms

𝒱𝑝 = 𝒱 ×𝒴 … ×𝒴 𝒱 ⟶ 𝒳
are in ℳ𝒳. The algebraic stacks 𝒱𝑝 are quasi-compact and quasi-separated by Morphisms
of Stacks, Lemma 61.7.7. Of course each 𝒱𝑝 is representable by an algebraic space (the
diagonal of the algebraic stack 𝒴 is representable by algebraic spaces). This reduces us to
the case where 𝒴 is representable by an algebraic space and 𝒳 is representable by an affine
scheme.
In the situation where 𝒴 is representable by an algebraic space and 𝒳 is representable
by an affine scheme, we choose anew a surjective smooth morphism 𝒱 → 𝒴 where 𝒱 is
representable by an affine scheme. Going through the argument above once again we once
again reduce to the morphisms 𝒱𝑝 → 𝒳. But in the current situation the algebraic stacks
𝒱𝑝 are representable by quasi-compact and quasi-separated schemes (becase the diagonal
of an algebraic space is representable by schemes).
Thus we may assume 𝒴 is representable by a scheme and 𝒳 is representable by an affine
scheme. Choose (again) a surjective smooth morphism 𝒱 → 𝒴 where 𝒱 is representable
by an affine scheme. In this case all the algebraic stacks 𝒱𝑝 are representable by separated
schemes (because the diagonal of a scheme is separated).
Thus we may assume 𝒴 is representable by a separated scheme and 𝒳 is representable by
an affine scheme. Choose (yet again) a surjective smooth morphism 𝒱 → 𝒴 where 𝒱 is
representable by an affine scheme. In this case all the algebraic stacks 𝒱𝑝 are representable
by affine schemes (because the diagonal of a separated scheme is a closed immersion hence
affine) and this case is handled by assumption (4). This finishes the proof. �

Here is the version for the fppf topology.
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Lemma 62.5.2. Let ℳ be a rule which associates to every algebraic stack 𝒳 a subcategory
ℳ𝒳 of Mod(𝒪𝒳) such that

(1) ℳ𝒳 is a weak Serre subcategory of Mod(𝒪𝒳) for all algebraic stacks 𝒳,
(2) for a smooth morphism of algebraic stacks 𝑓 ∶ 𝒴 → 𝒳 the functor 𝑓∗ maps ℳ𝒳

into ℳ𝒴,
(3) if 𝑓𝑖 ∶ 𝒳𝑖 → 𝒳 is a family of smooth morphisms of algebraic stacks with |𝒳| =

⋃ |𝑓𝑖|(|𝒳𝑖|), then an object ℱ of Mod(𝒪𝒳) is in ℳ𝒳 if and only if 𝑓∗
𝑖 ℱ is in ℳ𝒳𝑖

for all 𝑖, and
(4) if 𝑓 ∶ 𝒴 → 𝒳 is a morphism of algebraic stacks and 𝒳 and 𝒴 are representable

by affine schemes, then 𝑅𝑖𝑓∗ maps ℳ𝒴 into ℳ𝒳.
Then for any quasi-compact and quasi-separated morphism 𝑓 ∶ 𝒴 → 𝒳 of algebraic stacks
𝑅𝑖𝑓∗ maps ℳ𝒴 into ℳ𝒳. (Higher direct images computed in fppf topology.)

Proof. Identical to the proof of Lemma 62.5.1. �

62.6. Locally quasi-coherent modules

Let 𝒳 be an algebraic stack. Let ℱ be a presheaf of 𝒪𝒳-modules. We can ask whether ℱ
is locally quasi-coherent, see Sheaves on Stacks, Definition 58.11.4. Briefly, this means
ℱ is an 𝒪𝒳-module for the étale topology such that for any morphism 𝑓 ∶ 𝑈 → 𝒳 the
restriction 𝑓∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is quasi-coherent on 𝑈 ́𝑒𝑡𝑎𝑙𝑒. (The actual definition is slightly different,
but equivalent.) A useful fact is that

LQCoh(𝒪𝒳) ⊂ Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)

is a weak Serre subcategory, see Sheaves on Stacks, Lemma 58.11.7.

Lemma 62.6.1. Let 𝒳 be an algebraic stack. Let 𝑓𝑗 ∶ 𝒳𝑗 → 𝒳 be a family of smooth
morphisms of algebraic stacks with |𝒳| = ⋃ |𝑓𝑗|(|𝒳𝑗|). Let ℱ be a sheaf of 𝒪𝒳-modules
on 𝒳 ́𝑒𝑡𝑎𝑙𝑒. If each 𝑓−1

𝑗 ℱ is locally quasi-coherent, then so is ℱ.

Proof. We may replace each of the algebraic stacks 𝒳𝑗 by a scheme 𝑈𝑗 (using that any
algebraic stack has a smooth covering by a scheme and that compositions of smooth mor-
phisms are smooth, see Morphisms of Stacks, Lemma 61.22.2). The pullback of ℱ to
(Sch/𝑈𝑗) ́𝑒𝑡𝑎𝑙𝑒 is still locally quasi-coherent, see Sheaves on Stacks, Lemma 58.11.6. Then
𝑓 = ∐ 𝑓𝑗 ∶ 𝑈 = ∐ 𝑈𝑗 → 𝒳 is a surjective smooth morphism. Let 𝑥 be an object of
𝒳. By Sheaves on Stacks, Lemma 58.18.10 there exists an étale covering {𝑥𝑖 → 𝑥}𝑖∈𝐼
such that each 𝑥𝑖 lifts to an object 𝑢𝑖 of (Sch/𝑈) ́𝑒𝑡𝑎𝑙𝑒. This just means that 𝑥, 𝑥𝑖 live over
schemes 𝑉, 𝑉𝑖, that {𝑉𝑖 → 𝑉} is an étale covering, and that 𝑥𝑖 comes from a morphism
𝑢𝑖 ∶ 𝑉𝑖 → 𝑈. The restriction 𝑥∗

𝑖 ℱ|𝑉𝑖, ́𝑒𝑡𝑎𝑙𝑒
is equal to the restriction of 𝑓∗ℱ to 𝑉𝑖, ́𝑒𝑡𝑎𝑙𝑒, see

Sheaves on Stacks, Lemma 58.9.3. Hence 𝑥∗ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
is a sheaf on the small étale site of 𝑉

which is quasi-coherent when restricted to 𝑉𝑖, ́𝑒𝑡𝑎𝑙𝑒 for each 𝑖. This implies that it is quasi-
coherent (as desired), for example by Properties of Spaces, Lemma 41.26.6. �

Lemma 62.6.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a quasi-compact and quasi-separated morphism of
algebraic stacks. Let ℱ be a locally quasi-coherent 𝒪𝒳-module on 𝒳 ́𝑒𝑡𝑎𝑙𝑒. Then 𝑅𝑖𝑓∗ℱ
(computed in the étale topology) is a locally quasi-coherent on 𝒴 ́𝑒𝑡𝑎𝑙𝑒.

Proof. We will use Lemma 62.5.1 to prove this. We will check its assumptions (1) -- (4).
Parts (1) and (2) follows from Sheaves on Stacks, Lemma 58.11.7. Part (3) follows from
Lemma 62.6.1. Thus it suffices to show (4).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0770
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Suppose 𝑓 ∶ 𝒳 → 𝒴 is a morphism of algebraic stacs such that 𝒳 and 𝒴 are representable
by affine schemes 𝑋 and 𝑌. Choose any object 𝑦 of 𝒴 lying over a scheme 𝑉. For clarity,
denote 𝒱 = (Sch/𝑉)𝑓𝑝𝑝𝑓 the algebraic stack corresponding to 𝑉. Consider the cartesian
diagram

𝒵

��

𝑔
//

𝑓′

��

𝒳

𝑓
��

𝒱
𝑦 // 𝒴

Thus 𝒵 is representable by the scheme 𝑍 = 𝑉 ×𝑌 𝑋 and 𝑓′ is quasi-compact and separated
(even affine). By Sheaves on Stacks, Lemma 58.21.3 we have

𝑅𝑖𝑓∗ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
= 𝑅𝑖𝑓′

𝑠𝑚𝑎𝑙𝑙,∗(𝑔∗ℱ|𝑍 ́𝑒𝑡𝑎𝑙𝑒)

The right hand side is a quasi-coherent sheaf on 𝑉 ́𝑒𝑡𝑎𝑙𝑒 by Cohomology of Spaces, Lemma
49.4.1. This implies the left hand side is quasi-coherent which is what we had to prove. �

Lemma 62.6.3. Let 𝒳 be an algebraic stack. Let 𝑓𝑗 ∶ 𝒳𝑗 → 𝒳 be a family of flat and
locally finitely presented morphisms of algebraic stacks with |𝒳| = ⋃ |𝑓𝑗|(|𝒳𝑗|). Let ℱ be
a sheaf of 𝒪𝒳-modules on 𝒳𝑓𝑝𝑝𝑓. If each 𝑓−1

𝑗 ℱ is locally quasi-coherent, then so is ℱ.

Proof. First, suppose there is a morphism 𝑎 ∶ 𝒰 → 𝒳 which is surjective, flat, locally
of finite presentation, quasi-compact, and quasi-separated such that 𝑎∗ℱ is locally quasi-
coherent. Then there is an exact sequence

0 → ℱ → 𝑎∗𝑎∗ℱ → 𝑏∗𝑏∗ℱ

where 𝑏 is the morphism 𝑏 ∶ 𝒰×𝒳 𝒰 → 𝒳, see Sheaves on Stacks, Proposition 58.18.7 and
Lemma 58.18.10. Moreover, the pullback 𝑏∗ℱ is the pullback of 𝑎∗ℱ via one of the pro-
jection morphisms, hence is locally quasi-coherent (Sheaves on Stacks, Lemma 58.11.6).
The modules 𝑎∗𝑎∗ℱ and 𝑏∗𝑏∗ℱ are locally quasi-coherent by Lemma 62.6.2. (Note that 𝑎∗
and 𝑏∗ don't care about which topology is used to calculate them.) We conclude that ℱ is
locally quasi-coherent, see Sheaves on Stacks, Lemma 58.11.7.

We are going to reduce the proof of the general case the the situation in the first paragraph.
Let 𝑥 be an object of 𝒳 lying over the scheme 𝑈. We have to show that ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is a quasi-
coherent 𝒪𝑈-module. It suffices to do this (Zariski) locally on 𝑈, hence we may assume
that 𝑈 is affine. By Morphisms of Stacks, Lemma 61.18.10 there exists an fppf covering
{𝑎𝑖 ∶ 𝑈𝑖 → 𝑈} such that each 𝑥 ∘ 𝑎𝑖 factors through some 𝑓𝑗. Hence 𝑎∗

𝑖 ℱ is locally quasi-
coherent on (Sch/𝑈𝑖)𝑓𝑝𝑝𝑓. After refining the covering we may assume {𝑈𝑖 → 𝑈}𝑖=1,…,𝑛
is a standard fppf covering. Then 𝑥∗ℱ is an fppf module on (Sch/𝑈)𝑓𝑝𝑝𝑓 whose pullback
by the morphism 𝑎 ∶ 𝑈1 ⨿ … ⨿ 𝑈𝑛 → 𝑈 is locally quasi-coherent. Hence by the first
paragraph we see that 𝑥∗ℱ is locally quasi-coherent, which certainly implies that ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is
quasi-coherent. �

62.7. Flat comparison maps

Let 𝒳 be an algebraic stack and let ℱ be an object ofMod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳). Given an object 𝑥 of
𝒳 lying over the scheme 𝑈 the restriction ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is the restriction of 𝑥−1ℱ to the small étale
site of 𝑈, see Sheaves on Stacks, Definition 58.9.2. Next, let 𝜑 ∶ 𝑥 → 𝑥′ be a morphism of
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𝒳 lying over a morphism of schemes 𝑓 ∶ 𝑈 → 𝑈′. Thus a 2-commutative diagram

𝑈

𝑥 ��

𝑓
// 𝑈′

𝑥′
~~

𝒳

Associated to 𝜑 we obtain a comparison map between restrictions

(62.7.0.1) 𝑐𝜑 ∶ 𝑓∗
𝑠𝑚𝑎𝑙𝑙(ℱ|𝑈′

́𝑒𝑡𝑎𝑙𝑒
) ⟶ ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

see Sheaves on Stacks, Equation (58.9.4.1). In this situation we can consider the following
property of ℱ.

Definition 62.7.1. Let 𝒳 be an algebraic stack and let ℱ inMod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳). We say ℱ has
the flat base change property1 if and only if 𝑐𝜑 is an isomorphism whenever 𝑓 is flat.

Here is a lemma with some properties of this notion.

Lemma 62.7.2. Let 𝒳 be an algebraic stack. Let ℱ be an 𝒪𝒳-module on 𝒳 ́𝑒𝑡𝑎𝑙𝑒.
(1) If ℱ has the flat base change property then for any morphism 𝑔 ∶ 𝒴 → 𝒳 of

algebraic stacks, the pullback 𝑔∗ℱ does too.
(2) The full subcategory of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) consisting of modules with the flat base

change property is a weak Serre subcategory.
(3) Let 𝑓𝑖 ∶ 𝒳𝑖 → 𝒳 be a family of smooth morphisms of algebraic stacks such that

|𝒳| = ⋃𝑖 |𝑓𝑖|(|𝒳𝑖|). If each 𝑓∗
𝑖 ℱ has the flat base change property then so does

ℱ.
(4) The category of 𝒪𝒳-modules on 𝒳 ́𝑒𝑡𝑎𝑙𝑒 with the flat base change property has

colimits and they agree with colimits in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳).

Proof. Let 𝑔 ∶ 𝒴 → 𝒳 be as in (1). Let 𝑦 be an object of 𝒴 lying over a scheme 𝑉. By
Sheaves on Stacks, Lemma 58.9.3 we have (𝑔∗ℱ)|𝑉 ́𝑒𝑡𝑎𝑙𝑒

= ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
. Moreover a comparison

mapping for the sheaf 𝑔∗ℱ on 𝒴 is a special case of a comparison map for the sheaf ℱ on
𝒳, see Sheaves on Stacks, Lemma 58.9.3. In this way (1) is clear.

Proof of (2). We use the characterization of weak Serre subcategories of Homology, Lemma
10.7.3. Kernels and cokernels of maps between sheaves having the flat base change prop-
erty also have the flat base change property. This is clear because 𝑓∗

𝑠𝑚𝑎𝑙𝑙 is exact for a flat
morphism of schemes and since the restriction functors (−)|𝑈 ́𝑒𝑡𝑎𝑙𝑒

are exact (because we are
working in the étale topology). Finally, if 0 → ℱ1 → ℱ2 → ℱ3 → 0 is a short exact
sequence of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) and the outer two sheaves have the flat base change property
then the middle one does as well, again because of the exactness of 𝑓∗

𝑠𝑚𝑎𝑙𝑙 and the restriction
functors (and the 5 lemma).

Proof of (3). Let 𝑓𝑖 ∶ 𝒳𝑖 → 𝒳 be a jointly surjective family of smooth morphisms of
algebraic stacks and assume each 𝑓∗

𝑖 ℱ has the flat base change property. By part (1), the
definition of an algebraic stack, and the fact that compositions of smooth morphisms are
smooth (see Morphisms of Stacks, Lemma 61.22.2) we may assume that each 𝒳𝑖 is repre-
sentable by a scheme. Let 𝜑 ∶ 𝑥 → 𝑥′ be a morphism of 𝒳 lying over a flat morphism
𝑎 ∶ 𝑈 → 𝑈′ of schemes. By Sheaves on Stacks, Lemma 58.18.10 there exists a jointly

1This may be nonstandard notation.
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surjective family of étale morphisms 𝑈′
𝑖 → 𝑈′ such that 𝑈′ → 𝑈′ → 𝒳 factors through 𝒳𝑖.

Thus we obtain commutative diagrams

𝑈𝑖 = 𝑈 ×𝑈′ 𝑈′
𝑖 𝑎𝑖

//

��

𝑈′
𝑖 𝑥′

𝑖

//

��

𝒳𝑖

𝑓𝑖
��

𝑈 𝑎 // 𝑈′ 𝑥′
// 𝒳

Note that each 𝑎𝑖 is a flat morphism of schemes as a base change of 𝑎. Denote 𝜓𝑖 ∶ 𝑥𝑖 → 𝑥′
𝑖

the morphism of 𝒳𝑖 lying over 𝑎𝑖 with target 𝑥′
𝑖 . By assumption the comparison maps

𝑐𝜓𝑖
∶ (𝑎𝑖)∗

𝑠𝑚𝑎𝑙𝑙(𝑓∗
𝑖 ℱ|(𝑈′

𝑖 ) ́𝑒𝑡𝑎𝑙𝑒) → 𝑓∗
𝑖 ℱ|(𝑈𝑖) ́𝑒𝑡𝑎𝑙𝑒

is an isomorphism. Because the vertical arrows
𝑈′

𝑖 → 𝑈′ and 𝑈𝑖 → 𝑈 are étale, the sheaves 𝑓∗
𝑖 ℱ|(𝑈′

𝑖 ) ́𝑒𝑡𝑎𝑙𝑒
and 𝑓∗

𝑖 ℱ|(𝑈𝑖) ́𝑒𝑡𝑎𝑙𝑒
are the restrictions

of ℱ|𝑈′
́𝑒𝑡𝑎𝑙𝑒

and ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
and the map 𝑐𝜓𝑖

is the restriction of 𝑐𝜑 to (𝑈𝑖) ́𝑒𝑡𝑎𝑙𝑒, see Sheaves
on Stacks, Lemma 58.9.3. Since {𝑈𝑖 → 𝑈} is an étale covering, this implies that the
comparison map 𝑐𝜑 is an isomorphism which is what we wanted to prove.

Proof of (4). Let ℐ → Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳), 𝑖 ↦ ℱ𝑖 be a diagram and assume each ℱ𝑖 has the
flat base change property. Recall that 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖 is the sheafification of the presheaf colimit.
As we are using the étale topology, it is clear that

(𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖)|𝑈 ́𝑒𝑡𝑎𝑙𝑒
= 𝑐𝑜𝑙𝑖𝑚𝑖 ℱ𝑖|𝑈 ́𝑒𝑡𝑎𝑙𝑒

As 𝑓∗
𝑠𝑚𝑎𝑙𝑙 commutes with colimits (as a left adjoint) we see that (4) holds. �

Lemma 62.7.3. Let 𝑓 ∶ 𝒳 → 𝒴 be a quasi-compact and quasi-separated morphism of
algebraic stacks. Let ℱ be an object of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) which is locally quasi-coherent
and has the flat base change property. Then each 𝑅𝑖𝑔∗ℱ (computed in the étale topology)
has the flat base change property.

Proof. Wewill use Lemma 62.5.1 to prove this. For every algebraic stack 𝒳 let ℳ𝒳 denote
the full subcategory of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) consisting of locally quasi-coherent sheaves with
the flat base change property. Once we verify conditions (1) -- (4) of Lemma 62.5.1 the
lemma will follow. Properties (1), (2), and (3) follow from Sheaves on Stacks, Lemmas
58.11.6 and 58.11.7 and Lemmas 62.6.1 and 62.7.2. Thus it suffices to show part (4).

Suppose 𝑓 ∶ 𝒳 → 𝒴 is a morphism of algebraic stacs such that 𝒳 and 𝒴 are representable
by affine schemes 𝑋 and 𝑌. In this case, suppose that 𝜓 ∶ 𝑦 → 𝑦′ is a morphism of 𝒴
lying over a flat morphism 𝑏 ∶ 𝑉 → 𝑉′ of schemes. For clarity denote 𝒱 = (Sch/𝑉)𝑓𝑝𝑝𝑓 and
𝒱′ = (Sch/𝑉′)𝑓𝑝𝑝𝑓 the corresponding algebraic stacks. Consider the diagram of algebraic
stacks

𝒵

𝑓″

��

𝑎
// 𝒵′

𝑥′
//

𝑓′

��

𝒳

𝑓
��

𝒱 𝑏 // 𝒱′ 𝑦′
// 𝒴

with both squares cartesian. As 𝑓 is representable by schemes (and quasi-compact and
separated -- even affine) we see that 𝒵 and 𝒵′ are representable by schemes 𝑍 and 𝑍′ and
in fact 𝑍 = 𝑉 ×𝑉′ 𝑍′. Since ℱ has the flat base change property we see that

𝑎∗
𝑠𝑚𝑎𝑙𝑙(ℱ|𝑍′

́𝑒𝑡𝑎𝑙𝑒) ⟶ ℱ|𝑍 ́𝑒𝑡𝑎𝑙𝑒

is an isomorphism. Moreover,

𝑅𝑖𝑓∗ℱ|𝑉′
́𝑒𝑡𝑎𝑙𝑒

= 𝑅𝑖(𝑓′)𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑍′
́𝑒𝑡𝑎𝑙𝑒)
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and
𝑅𝑖𝑓∗ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒

= 𝑅𝑖(𝑓″)𝑠𝑚𝑎𝑙𝑙,∗(ℱ|𝑍 ́𝑒𝑡𝑎𝑙𝑒)
by Sheaves on Stacks, Lemma 58.21.3. Hence we see that the comparision map

𝑐𝜓 ∶ 𝑏∗
𝑠𝑚𝑎𝑙𝑙(𝑅

𝑖𝑓∗ℱ|𝑉′
́𝑒𝑡𝑎𝑙𝑒

) ⟶ 𝑅𝑖𝑓∗ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒

is an isomorphism by Cohomology of Spaces, Lemma 49.9.1. Thus 𝑅𝑖𝑓∗ℱ has the flat base
change property. Since 𝑅𝑖𝑓∗ℱ is locally quasi-coherent by Lemma 62.6.2 we win. �

Proposition 62.7.4. Summary of results on locally quasi-coherent modules having the flat
base change property.

(1) Let 𝒳 be an algebraic stack. If ℱ is an object of Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) which is locally
quasi-coherent and has the flat base change property, then ℱ is a sheaf for the
fppf topology, i.e., it is an object of Mod(𝒪𝒳).

(2) The category of modules which are locally quasi-coherent and have the flat base
change property is a weak Serre subcategoryℳ𝒳 of bothMod(𝒪𝒳) andMod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳).

(3) Pullback 𝑓∗ along any morphism of algebraic stacks 𝑓 ∶ 𝒳 → 𝒴 induces a
functor 𝑓∗ ∶ ℳ𝒴 → ℳ𝒳.

(4) If 𝑓 ∶ 𝒳 → 𝒴 is a quasi-compact and quasi-separated morphism of algebraic
stacks and ℱ is an object of ℳ𝒳, then
(a) the derived direct image 𝑅𝑓∗ℱ and the higher direct images 𝑅𝑖𝑓∗ℱ can be

computed in either the étale or the fppf topology with the same result, and
(b) each 𝑅𝑖𝑓∗ℱ is an object of ℳ𝒴.

(5) The category ℳ𝒳 has colimits and they agree with colimits in Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)
as well as in Mod(𝒪𝒳).

Proof. Part (1) is Sheaves on Stacks, Lemma 58.22.1.
Part (2) for the embedding ℳ𝒳 ⊂ Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) we have seen in the proof of Lemma
62.7.3. Let us prove (2) for the embedding ℳ𝒳 ⊂ Mod(𝒪𝒳). Let 𝜑 ∶ ℱ → 𝒢 be a
morphism between objects of ℳ𝒳. Since Ker(𝜑) is the same whether computed in the
étale or the fppf topology, we see that Ker(𝜑) is in ℳ𝒳 by the étale case. On the other
hand, the cokernel computed in the fppf topology is the fppf sheafification of the cokernel
computed in the étale topology. However, this étale cokernel is in ℳ𝒳 hence an fppf sheaf
by (1) and we see that the cokernel is in ℳ𝒳. Finally, suppose that

0 → ℱ1 → ℱ2 → ℱ3 → 0
is an exact sequence in Mod(𝒪𝒳) (i.e., using the fppf topology) with ℱ1, ℱ2 in ℳ𝒳. In
order to show that ℱ2 is an object of ℳ𝒳 it suffices to show that the sequence is also
exact in the étale topology. To do this it suffices to show that any element of 𝐻1

𝑓𝑝𝑝𝑓(𝑥, ℱ1)
becomes zero on the members of an étale covering of 𝑥 (for any object 𝑥 of 𝒳). This is true
because 𝐻1

𝑓𝑝𝑝𝑓(𝑥, ℱ1) = 𝐻1
́𝑒𝑡𝑎𝑙𝑒(𝑥, ℱ1) by Sheaves on Stacks, Lemma 58.22.2 and because

of locality of cohohomology, see Cohomology on Sites, Lemma 19.8.3. This proves (2).
Part (3) follows from Lemma 62.7.2 and Sheaves on Stacks, Lemma 58.11.6.
Part (4)(b) for 𝑅𝑖𝑓∗ℱ computed in the étale cohomology follows from Lemma 62.7.3.
Whereupon part (4)(a) follows from Sheaves on Stacks, Lemma 58.22.2 combined with
(1) above.
Part (5) for the étale topology follows from Sheaves on Stacks, Lemma 58.11.7 and Lemma
62.7.2. The fppf version then follows as the colimit in the étale topology is already an fppf
sheaf by part (1). �
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Lemma 62.7.5. Let 𝒳 be an algebraic stack. With ℳ𝒳 the category of locally quasi-
coherent modules with the flat base change property.

(1) Let 𝑓𝑗 ∶ 𝒳𝑗 → 𝒳 be a family of smooth morphisms of algebraic stacks with
|𝒳| = ⋃ |𝑓𝑗|(|𝒳𝑗|). Let ℱ be a sheaf of 𝒪𝒳-modules on 𝒳 ́𝑒𝑡𝑎𝑙𝑒. If each 𝑓−1

𝑗 ℱ is
in ℳ𝒳𝑖

, then ℱ is in ℳ𝒳.
(2) Let 𝑓𝑗 ∶ 𝒳𝑗 → 𝒳 be a family of flat and locally finitely presented morphisms of

algebraic stacks with |𝒳| = ⋃ |𝑓𝑗|(|𝒳𝑗|). Let ℱ be a sheaf of 𝒪𝒳-modules on
𝒳𝑓𝑝𝑝𝑓. If each 𝑓−1

𝑗 ℱ is in ℳ𝒳𝑖
, then ℱ is in ℳ𝒳.

Proof. Part (1) follows from a combination of Lemmas 62.6.1 and 62.7.2. The proof of (2)
is analogous to the proof of Lemma 62.6.3. Let ℱ of a sheaf of 𝒪𝒳-modules on 𝒳𝑓𝑝𝑝𝑓.
First, suppose there is a morphism 𝑎 ∶ 𝒰 → 𝒳 which is surjective, flat, locally of finite
presentation, quasi-compact, and quasi-separated such that 𝑎∗ℱ is locally quasi-coherent
and has the flat base change property. Then there is an exact sequence

0 → ℱ → 𝑎∗𝑎∗ℱ → 𝑏∗𝑏∗ℱ
where 𝑏 is the morphism 𝑏 ∶ 𝒰 ×𝒳 𝒰 → 𝒳, see Sheaves on Stacks, Proposition 58.18.7
and Lemma 58.18.10. Moreover, the pullback 𝑏∗ℱ is the pullback of 𝑎∗ℱ via one of the
projection morphisms, hence is locally quasi-coherent and has the flat base change prop-
erty, see Proposition 62.7.4. The modules 𝑎∗𝑎∗ℱ and 𝑏∗𝑏∗ℱ are locally quasi-coherent and
have the flat base change property by Proposition 62.7.4. We conclude that ℱ is locally
quasi-coherent and has the flat base change property by Proposition 62.7.4.
Choose a scheme 𝑈 and a surjective smooth morphism 𝑥 ∶ 𝑈 → 𝒳. By part (1) it suffices
to show that 𝑥∗ℱ is locally quasi-coherent and has the flat base change property. Again by
part (1) it suffices to do this (Zariski) locally on 𝑈, hence we may assume that 𝑈 is affine.
By Morphisms of Stacks, Lemma 61.18.10 there exists an fppf covering {𝑎𝑖 ∶ 𝑈𝑖 → 𝑈}
such that each 𝑥 ∘ 𝑎𝑖 factors through some 𝑓𝑗. Hence the module 𝑎∗

𝑖 ℱ on (Sch/𝑈𝑖)𝑓𝑝𝑝𝑓 is
locally quasi-coherent and has the flat base change property. After refining the covering
we may assume {𝑈𝑖 → 𝑈}𝑖=1,…,𝑛 is a standard fppf covering. Then 𝑥∗ℱ is an fppf module
on (Sch/𝑈)𝑓𝑝𝑝𝑓 whose pullback by the morphism 𝑎 ∶ 𝑈1 ⨿ … ⨿ 𝑈𝑛 → 𝑈 is locally quasi-
coherent and has the flat base change property. Hence by the previous paragraph we see
that 𝑥∗ℱ is locally quasi-coherent and has the flat base change property as desired. �

62.8. Parasitic modules

The following definition is compatible with Descent, Definition 31.7.1.

Definition 62.8.1. Let 𝒳 be an algebraic stack. A presheaf of 𝒪𝒳-modules ℱ is parasitic
if we have ℱ(𝑥) = 0 for any object 𝑥 of 𝒳 which lies over a scheme 𝑈 such that the
corresponding morphism 𝑥 ∶ 𝑈 → 𝒳 is flat.

Here is a lemma with some properties of this notion.

Lemma 62.8.2. Let 𝒳 be an algebraic stack. Let ℱ be a presheaf of 𝒪𝒳-modules.
(1) If ℱ is parasitic and 𝑔 ∶ 𝒴 → 𝒳 is a flat morphism of algebraic stacks, then 𝑔∗ℱ

is parasitic.
(2) For 𝜏 ∈ {𝑍𝑎𝑟𝑖𝑠𝑘𝑖, ́𝑒𝑡𝑎𝑙𝑒, 𝑠𝑚𝑜𝑜𝑡ℎ, 𝑠𝑦𝑛𝑡𝑜𝑚𝑖𝑐, 𝑓𝑝𝑝𝑓} we have

(a) the 𝜏 sheafification of a parasitic presheaf of modules is parasitic, and
(b) the full subcategory of Mod(𝒳𝜏, 𝒪𝒳) consisting of parasitic modules is a

Serre subcategory.
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(3) Suppose ℱ is a sheaf for the étale topology. Let 𝑓𝑖 ∶ 𝒳𝑖 → 𝒳 be a family of
smooth morphisms of algebraic stacks such that |𝒳| = ⋃𝑖 |𝑓𝑖|(|𝒳𝑖|). If each
𝑓∗

𝑖 ℱ is parasitic then so is ℱ.
(4) Suppose ℱ is a sheaf for the fppf topology. Let 𝑓𝑖 ∶ 𝒳𝑖 → 𝒳 be a family of

flat and locally finitely presented morphisms of algebraic stacks such that |𝒳| =
⋃𝑖 |𝑓𝑖|(|𝒳𝑖|). If each 𝑓∗

𝑖 ℱ is parasitic then so is ℱ.

Proof. To see part (1) let 𝑦 be an object of 𝒴 which lies over a scheme 𝑉 such that the
corresponding morphism 𝑦 ∶ 𝑉 → 𝒴 is flat. Then 𝑔(𝑦) ∶ 𝑉 → 𝒴 → 𝒳 is flat as a
composition of flat morphisms (see Morphisms of Stacks, Lemma 61.17.2) hence ℱ(𝑔(𝑦))
is zero by assumption. Since 𝑔∗ℱ = 𝑔−1ℱ(𝑦) = ℱ(𝑔(𝑦)) we conclude 𝑔∗ℱ is parasitic.

To see part (2)(a) note that if {𝑥𝑖 → 𝑥} is a 𝜏-covering of 𝒳, then each of the morphisms
𝑥𝑖 → 𝑥 lies over a flat morphism of schemes. Hence if 𝑥 lies over a scheme 𝑈 such that
𝑥 ∶ 𝑈 → 𝒳 is flat, so do all of the objects 𝑥𝑖. Hence the presheaf ℱ+ (see Sites, Section
9.10) is parasitic if the presheaf ℱ is parasitic. This proves (2)(a) as the sheafification of ℱ
is (ℱ+)+.

Let ℱ be a parasitic 𝜏-module. It is immediate from the definitions that any submodule of
ℱ is parasitic. On the other hand, if ℱ′ ⊂ ℱ is a submodule, then it is equally clear that the
presheaf 𝑥 ↦ ℱ(𝑥)/ℱ′(𝑥) is parasitic. Hence the quotient ℱ/ℱ′ is a parasitic module by
(2)(a). Finally, we have to show that given a short exact sequence 0 → ℱ1 → ℱ2 → ℱ3 → 0
with ℱ1 and ℱ3 parasitic, then ℱ2 is parasitic. This follows immediately on evaluating on
𝑥 lying over a scheme flat over 𝒳. This proves (2)(b), see Homology, Lemma 10.7.2.

Let 𝑓𝑖 ∶ 𝒳𝑖 → 𝒳 be a jointly surjective family of smooth morphisms of algebraic stacks
and assume each 𝑓∗

𝑖 ℱ is parasitic. Let 𝑥 be an object of 𝒳 which lies over a scheme 𝑈 such
that 𝑥 ∶ 𝑈 → 𝒳 is flat. Consider a surjective smooth covering 𝑊𝑖 → 𝑈 ×𝑥,𝒳 𝒳𝑖. Denote
𝑦𝑖 ∶ 𝑊𝑖 → 𝒳𝑖 the projection. It follows that {𝑓𝑖(𝑦𝑖) → 𝑥} is a covering for the smooth
topology on 𝒳. Since a composition of flat morphisms is flat we see that 𝑓∗

𝑖 ℱ(𝑦𝑖) = 0.
On the other hand, as we saw in the proof of (1), we have 𝑓∗

𝑖 ℱ(𝑦𝑖) = ℱ(𝑓𝑖(𝑦𝑖)). Hence we
see that for some smooth covering {𝑥𝑖 → 𝑥}𝑖∈𝐼 in 𝒳 we have ℱ(𝑥𝑖) = 0. This implies
ℱ(𝑥) = 0 because the smooth topology is the same as as the étale topology, see More
on Morphisms, Lemma 33.26.7. Namely, {𝑥𝑖 → 𝑥}𝑖∈𝐼 lies over a smooth covering {𝑈𝑖 →
𝑈}𝑖∈𝐼 of schemes. By the lemma just referenced there exists an étale covering {𝑉𝑗 → 𝑈}𝑗∈𝐽
which refines {𝑈𝑖 → 𝑈}𝑖∈𝐼. Denote 𝑥′

𝑗 = 𝑥|𝑉𝑗
. Then {𝑥′

𝑗 → 𝑥} is an étale covering in 𝒳
refining {𝑥𝑖 → 𝑥}𝑖∈𝐼. This means the map ℱ(𝑥) → ∏𝑗∈𝐽 ℱ(𝑥′

𝑗), which is injective as ℱ
is a sheaf in the étale topology, factors through ℱ(𝑥) → ∏𝑖∈𝐼 ℱ(𝑥𝑖) which is zero. Hence
ℱ(𝑥) = 0 as desired.

Proof of (4): omitted. Hint: similar, but simpler, than the proof of (3). �

Parasitic modules are preserved under absolutely any pushforward.

Lemma 62.8.3. Let 𝜏 ∈ { ́𝑒𝑡𝑎𝑙𝑒, 𝑓𝑝𝑝𝑓}. Let 𝒳 be an algebraic stack. Let ℱ be a parasitic
object of Mod(𝒳𝜏, 𝒪𝒳).

(1) 𝐻𝑖
𝜏(𝒳, ℱ) = 0 for all 𝑖.

(2) Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Then 𝑅𝑖𝑓∗ℱ (computed in
𝜏-topology) is a parasitic object of Mod(𝒴𝜏, 𝒪𝒴).
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Proof. We first reduce (2) to (1). By Sheaves on Stacks, Lemma 58.20.2 we see that 𝑅𝑖𝑓∗ℱ
is the sheaf associated to the presheaf

𝑦 ⟼ 𝐻𝑖
𝜏(𝑉 ×𝑦,𝒴 𝒳, pr−1ℱ)

Here 𝑦 is a typical object of 𝒴 lying over the scheme 𝑉. By Lemma 62.8.2 it suffices to
show that these cohomology groups are zero when 𝑦 ∶ 𝑉 → 𝒴 is flat. Note that pr ∶
𝑉 ×𝑦,𝒴 𝒳 → 𝒳 is flat as a base change of 𝑦. Hence by Lemma 62.8.2 we see that pr−1ℱ is
parasitic. Thus it suffices to prove (1).

To see (1) we can use the spectral sequence of Sheaves on Stacks, Proposition 58.19.1 to
reduce this to the the case where 𝒳 is an algebraic stack representable by an algebraic space.
Note that in the spectral sequence each 𝑓−1

𝑝 ℱ = 𝑓∗
𝑝ℱ is a parasitic module by Lemma

62.8.2 because the morphisms 𝑓𝑝 ∶ 𝒰𝑝 = 𝒰 ×𝒳 … ×𝒳 𝒰 → 𝒳 are flat. Reusing this
spectral sequence one more time (as in the proof of the key Lemma 62.5.1) we reduce to
the case where the algebraic stack 𝒳 is representable by a scheme 𝑋. Then 𝐻𝑖

𝜏(𝒳, ℱ) =
𝐻𝑖((Sch/𝑋)𝜏, ℱ). In this case the vanishing follows easily from an argument with Čech
coverings, see Descent, Lemma 31.7.2. �

The following lemma is one of the major reasons we care about parasitic modules. To un-
derstand the statement, recall that the functorsQCoh(𝒪𝒳) → Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) andQCoh(𝒪𝒳) →
Mod(𝒪𝒳) aren't exact in general.

Lemma 62.8.4. Let 𝒳 be an algebraic stack. Let ℱ• be an exact complex in QCoh(𝒪𝒳).
Then the cohomology sheaves of ℱ• in either the étale or the fppf topology are parasitic
𝒪𝒳-modules.

Proof. Let 𝑥 ∶ 𝑈 → 𝒳 be a flat morphism where 𝑈 is a scheme. Then 𝑥∗ℱ• is exact by
Lemma 62.4.1. Hence the restriction 𝑥∗ℱ•|𝑈 ́𝑒𝑡𝑎𝑙𝑒

is exact which is what we had to prove. �

62.9. Quasi-coherent modules, I

We have seen that the category of quasi-coherent modules on an algebraic stack is equiv-
alent to the category of quasi-coherent modules on a presentation, see Sheaves on Stacks,
Section 58.14. This fact is the basis for the following.

Lemma 62.9.1. Let 𝒳 be an algebraic stack. Let ℳ𝒳 be the category of locally quasi-
coherent modules with the flat base change property, see Proposition 62.7.4. The inclusion
functor 𝑖 ∶ QCoh(𝒪𝒳) → ℳ𝒳 has a right adjoint

𝑄 ∶ ℳ𝒳 → QCoh(𝒪𝒳)

such that 𝑄 ∘ 𝑖 is the identity functor.

Proof. Choose a scheme 𝑈 and a surjective smoothmorphism 𝑓 ∶ 𝑈 → 𝒳. Set 𝑅 = 𝑈×𝒳𝑈
so that we obtain a smooth groupoid (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in algebraic spaces with the property that
𝒳 = [𝑈/𝑅], see Algebraic Stacks, Lemma 57.16.2. We may and do replace 𝒳 by [𝑈/𝑅]. In
the proof of Sheaves on Stacks, Proposition 58.13.1 we constructed a functor

𝑞1 ∶ QCoh(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) ⟶ QCoh(𝒪𝒳).

The construction of the inverse functor in the proof of Sheaves on Stacks, Proposition
58.13.1 works for objects of ℳ𝒳 and induces a functor

𝑞2 ∶ ℳ𝒳 ⟶ QCoh(𝑈, 𝑅, 𝑠, 𝑡, 𝑐).
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Namely, if ℱ is an object of ℳ𝒳 the we set
𝑞2(ℱ) = (𝑓∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

, 𝛼)

where 𝛼 is the isomorphism
𝑡∗
𝑠𝑚𝑎𝑙𝑙(𝑓

∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
) → 𝑡∗𝑓∗ℱ|𝑅 ́𝑒𝑡𝑎𝑙𝑒

→ 𝑠∗𝑓∗ℱ|𝑅 ́𝑒𝑡𝑎𝑙𝑒
→ 𝑠∗

𝑠𝑚𝑎𝑙𝑙(𝑓
∗ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

)

where the outer twomorphisms are the comparison maps. Note that 𝑞2(ℱ) is quasi-coherent
precisely because ℱ is locally quasi-coherent (and we used the flat base change property in
the construction of the descent datum 𝛼). We omit the verification that the cocycle condition
(see Groupoids in Spaces, Definition 52.12.1) holds. We define 𝑄 = 𝑞1 ∘ 𝑞2. Let ℱ be an
object of ℳ𝒳 and let 𝒢 be an object of QCoh(𝒪𝒳). We have

𝑀𝑜𝑟ℳ𝒳
(𝑖(𝒢), ℱ) = 𝑀𝑜𝑟QCoh(𝑈,𝑅,𝑠,𝑡,𝑐)(𝑞2(𝒢), 𝑞2(ℱ))

= 𝑀𝑜𝑟QCoh(𝒪𝒳)(𝒢, 𝑄(ℱ))

where the first equality is Sheaves on Stacks, Lemma 58.13.2 and the second equality holds
because 𝑞1 and 𝑞2 are inverse equivalences of categories. The assertion 𝑄 ∘ 𝑖 ≅ id is a
formal consequence of the fact that 𝑖 is fully faithful. �

Lemma 62.9.2. Let 𝒳 be an algebraic stack. Let 𝑄 ∶ ℳ𝒳 → QCoh(𝒪𝒳) be the functor
constructed in Lemma 62.9.1.

(1) The kernel of 𝑄 is exactly the collection of parasitic objects of ℳ𝒳.
(2) For any object ℱ of ℳ𝒳 both the kernel and the cokernel of the adjunction map

𝑄(ℱ) → ℱ are parasitic.
(3) The functor 𝑄 is exact.

Proof. Write 𝒳 = [𝑈/𝑅] as in the proof of Lemma 62.9.1. Let ℱ be an object of ℳ𝒳. It is
clear from the proof of Lemma 62.9.1 that ℱ is in the kernel of 𝑄 if and only if ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

= 0.
In particular, if ℱ is parasitic then ℱ is in the kernel. Next, let 𝑥 ∶ 𝑉 → 𝒳 be a flat
morphism, where 𝑉 is a scheme. Set 𝑊 = 𝑉 ×𝒳 𝑈 and consider the diagram

𝑊

𝑝
��

𝑞
// 𝑉

��
𝑈 // 𝒳

Note that the projection 𝑝 ∶ 𝑊 → 𝑈 is flat and the projection 𝑞 ∶ 𝑊 → 𝑉 is smooth and sur-
jective. This implies that 𝑞∗

𝑠𝑚𝑎𝑙𝑙 is a faithful functor on quasi-coherent modules. By assump-
tion ℱ has the flat base change property so that we obtain 𝑝∗

𝑠𝑚𝑎𝑙𝑙ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
≅ 𝑞∗

𝑠𝑚𝑎𝑙𝑙ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
.

Thus if ℱ is in the kernel of 𝑄, then ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
= 0 which completes the proof of (1).

Part (2) follows from the discussion above and the fact that the map 𝑄(ℱ) → ℱ becomes
an isomorphism after restricting to 𝑈 ́𝑒𝑡𝑎𝑙𝑒.
To see part (3) note that 𝑄 is left exact as a right adjoint. Suppose that 0 → ℱ → 𝒢 → ℋ →
0 is a short exact sequence in ℳ𝒳. Let ℰ = Coker(𝑄(𝒢) → 𝑄(ℋ)) in QCoh(𝒪𝒳). Since
QCoh(𝒪𝒳) → ℳ𝒳 is a left adjoint it is right exact. Hence we see that 𝑄(𝒢) → 𝑄(ℋ) →
ℰ → 0 is exact in ℳ𝒳. Using Lemma 62.8.4 we find that the top row of the following
commutative diagram has parasitic cohomology sheaves at 𝑄(ℱ) and 𝑄(𝒢):

0 // 𝑄(ℱ) //

𝑎
��

𝑄(𝒢) //

𝑏
��

𝑄(ℋ) //

𝑐
��

ℰ //

��

0

0 // ℱ // 𝒢 // ℋ // 0
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The bottom row is exact and the vertical arrows 𝑎, 𝑏, 𝑐 have parasitic kernel and cokernels
by part (2). It follows that ℰ is parasitic: in the quotient category ofMod(𝒪𝒳)/Parasitic (see
Homology, Lemma 10.7.6 and Lemma 62.8.2) we see that 𝑎, 𝑏, 𝑐 are isomorphisms and that
the top row becomes exact. As it is also quasi-coherent, we conclude that ℰ is zero because
ℰ = 𝑄(ℰ) = 0 by part (1). �

62.10. Pushforward of quasi-coherent modules

Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. Consider the pushforward

𝑓∗ ∶ Mod(𝒪𝒳) ⟶ Mod(𝒪𝒴)

It turns out that this functor almost never preserves the subcategories of quasi-coherent
sheaves. For example, consider the morphism of schemes

𝑗 ∶ 𝑋 = 𝐀2
𝑘 ⧵ {0} ⟶ 𝐀2

𝑘 = 𝑌.

Associated to this we have the corresponding morphism of algebraic stacks

𝑓 = 𝑗𝑏𝑖𝑔 ∶ 𝒳 = (Sch/𝑋)𝑓𝑝𝑝𝑓 → (Sch/𝑌)𝑓𝑝𝑝𝑓 = 𝒴

The pushforward 𝑓∗𝒪𝒳 of the structure sheaf has global sections 𝑘[𝑥, 𝑦]. Hence if 𝑓∗𝒪𝒳 is
quasi-coherent on 𝒴 then we would have 𝑓∗𝒪𝒳 = 𝒪𝒴. However, consider 𝑇 = 𝑆𝑝𝑒𝑐(𝑘) →
𝐀2

𝑘 = 𝑌 mapping to 0. Then Γ(𝑇, 𝑓∗𝒪𝒳) = 0 because 𝑋 ×𝑌 𝑇 = ∅ whereas Γ(𝑇, 𝒪𝒴) = 𝑘.
On the positive side, we know from Coherent, Lemma 25.6.2 that for any flat morphism
𝑇 → 𝑌 we have the equality Γ(𝑇, 𝑓∗𝒪𝒳) = Γ(𝑇, 𝒪𝒴) (this uses that 𝑗 is quasi-compact and
quasi-separated).

Let 𝑓 ∶ 𝒳 → 𝒴 be a quasi-compact and quasi-separated morphism of algebraic stacks. We
work around the problem mentioned above using the following three observations:

(1) 𝑓∗ does preserve locally quasi-coherent modules (Lemma 62.6.2),
(2) 𝑓∗ transforms a quasi-coherent sheaf into a locally quasi-coherent sheaf whose

flat comparison maps are isomorphisms (Lemma 62.7.3), and
(3) locally quasi-coherent 𝒪𝒴-modules with the flat base change property give rise to

quasi-coherentmodules on a presentation of𝒴 and hence quasi-coherentmodules
on 𝒴, see Sheaves on Stacks, Section 58.14.

Thus we obtain a functor

𝑓QCoh,∗ ∶ QCoh(𝒪𝒳) ⟶ QCoh(𝒪𝒴)

which is a right adjoint to 𝑓∗ ∶ QCoh(𝒪𝒴) → QCoh(𝒪𝒳) such that moreover

Γ(𝑦, 𝑓∗ℱ) = Γ(𝑦, 𝑓QCoh,∗ℱ)

for any 𝑦 ∈ 𝑂𝑏(𝒴) such that the associated 1-morphism 𝑦 ∶ 𝑉 → 𝒴 is flat, see (insert
future reference here). Moreover, a similar construction will produce functors 𝑅𝑖𝑓QCoh,∗.
However, these results will not be sufficient to produce a total direct image functor (of
complexes with quasi-coherent cohomology sheaves).

Proposition 62.10.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a quasi-compact and quasi-separated morphism
of algebraic stacks. The functor 𝑓∗ ∶ QCoh(𝒪𝒴) → QCoh(𝒪𝒳) has a right adjoint

𝑓QCoh,∗ ∶ QCoh(𝒪𝒳) ⟶ QCoh(𝒪𝒴)

which can be defined as the composition

QCoh(𝒪𝒳) → ℳ𝒳
𝑓∗−−→ ℳ𝒴

𝑄
−−→ QCoh(𝒪𝒴)
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where the functors 𝑓∗ and 𝑄 are as in Proposition 62.7.4 and Lemma 62.9.1. Moreover, if
we define 𝑅𝑖𝑓QCoh,∗ as the composition

QCoh(𝒪𝒳) → ℳ𝒳
𝑅𝑖𝑓∗−−−−→ ℳ𝒴

𝑄
−−→ QCoh(𝒪𝒴)

then the sequence of functors {𝑅𝑖𝑓QCoh,∗}𝑖≥0 forms a cohomological 𝛿-functor.

Proof. This is a combination of the results mentioned in the statement. The adjointness can
be shown as follows: Let ℱ be a quasi-coherent 𝒪𝒳-module and let 𝒢 be a quasi-coherent
𝒪𝒴-module. Then we have

𝑀𝑜𝑟QCoh(𝒪𝒳)(𝑓∗𝒢, ℱ) = 𝑀𝑜𝑟ℳ𝒴
(𝒢, 𝑓∗ℱ)

= 𝑀𝑜𝑟QCoh(𝒪𝒴)(𝒢, 𝑄(𝑓∗ℱ))

= 𝑀𝑜𝑟QCoh(𝒪𝒴)(𝒢, 𝑓QCoh,∗ℱ)

the first equality by adjointness of 𝑓∗ and 𝑓∗ (for arbitrary sheaves of modules). By Propo-
sition 62.7.4 we see that 𝑓∗ℱ is an object of ℳ𝒴 (and can be computed in either the fppf
or étale topology) and we obtain the second equality by Lemma 62.9.1. The third equality
is the definition of 𝑓QCoh,∗.

To see that {𝑅𝑖𝑓QCoh,∗}𝑖≥0 is a cohomological 𝛿-functor as defined in Homology, Definition
10.9.1 let

0 → ℱ1 → ℱ2 → ℱ3 → 0
be a short exact sequence of QCoh(𝒪𝒳). This sequence may not be an exact sequence in
Mod(𝒪𝒳) but we know that it is up to parasitic modules, see Lemma 62.8.4. Thus we may
break up the sequence into short exact sequences

0 → 𝒫1 → ℱ1 → ℐ2 → 0
0 → ℐ2 → ℱ2 → 𝒬2 → 0
0 → 𝒫2 → 𝒬2 → ℐ3 → 0
0 → ℐ3 → ℱ3 → 𝒫3 → 0

ofMod(𝒪𝒳) with 𝒫𝑖 parasitic. Note that each of the sheaves 𝒫𝑗, ℐ𝑗, 𝒬𝑗 is an object of ℳ𝒳,
see Proposition 62.7.4. Applying 𝑅𝑖𝑓∗ we obtain long exact sequences

0 → 𝑓∗𝒫1 → 𝑓∗ℱ1 → 𝑓∗ℐ2 → 𝑅1𝑓∗𝒫1 → …
0 → 𝑓∗ℐ2 → 𝑓∗ℱ2 → 𝑓∗𝒬2 → 𝑅1𝑓∗ℐ2 → …
0 → 𝑓∗𝒫2 → 𝑓∗𝒬2 → 𝑓∗ℐ3 → 𝑅1𝑓∗𝒫2 → …
0 → 𝑓∗ℐ3 → 𝑓∗ℱ3 → 𝑓∗𝒫3 → 𝑅1𝑓∗ℐ3 → …

where are the terms are objects of ℳ𝒴 by Proposition 62.7.4. By Lemma 62.8.3 the sheaves
𝑅𝑖𝑓∗𝒫𝑗 are parasitic, hence vanish on applying the functor 𝑄, see Lemma 62.9.2. Since 𝑄
is exact the maps

𝑄(𝑅𝑖𝑓∗ℱ3) ≅ 𝑄(𝑅𝑖𝑓∗ℐ3) ≅ 𝑄(𝑅𝑖𝑓∗𝒬2) → 𝑄(𝑅𝑖+1𝑓∗ℐ2) ≅ 𝑄(𝑅𝑖+1𝑓∗ℱ1)

can serve as the connecting map which turns the family of functors {𝑅𝑖𝑓QCoh,∗}𝑖≥0 into a
cohomological 𝛿-functor. �

Lemma 62.10.2. Let 𝑓 ∶ 𝒳 → 𝒴 be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let ℱ be a quasi-coherent sheaf on 𝒳. Then there exists a spectral
sequence with 𝐸2-page

𝐸𝑝,𝑞
2 = 𝐻𝑝(𝒴, 𝑅𝑞𝑓QCoh,∗ℱ)

converging to 𝐻𝑝+𝑞(𝒳, ℱ).
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Proof. By Cohomology on Sites, Lemma 19.14.4 the Leray spectral sequence with

𝐸𝑝,𝑞
2 = 𝐻𝑝(𝒴, 𝑅𝑞𝑓∗ℱ)

converges to 𝐻𝑝+𝑞(𝒳, ℱ). The kernel and cokernel of the adjunction map

𝑅𝑞𝑓QCoh,∗ℱ ⟶ 𝑅𝑞𝑓∗ℱ

are parasitic modules on 𝒴 (Lemma 62.9.2) hence have vanishing cohomology (Lemma
62.8.3). It follows formally that 𝐻𝑝(𝒴, 𝑅𝑞𝑓QCoh,∗ℱ) = 𝐻𝑝(𝒴, 𝑅𝑞𝑓∗ℱ) and we win. �

Lemma 62.10.3. Let 𝑓 ∶ 𝒳 → 𝒴 and 𝑔 ∶ 𝒴 → 𝒵 be quasi-compact and quasi-separated
morphisms of algebraic stacks. Let ℱ be a quasi-coherent sheaf on 𝒳. Then there exists a
spectral sequence with 𝐸2-page

𝐸𝑝,𝑞
2 = 𝑅𝑝𝑔QCoh,∗(𝑅𝑞𝑓QCoh,∗ℱ)

converging to 𝑅𝑝+𝑞(𝑔 ∘ 𝑓)QCoh,∗ℱ.

Proof. By Cohomology on Sites, Lemma 19.14.6 the Leray spectral sequence with

𝐸𝑝,𝑞
2 = 𝑅𝑝𝑔∗(𝑅𝑞𝑓∗ℱ)

converges to 𝑅𝑝+𝑞(𝑔∘𝑓)∗ℱ. By the results of Proposition 62.7.4 all the terms of this spectral
sequence are objects of ℳ𝒵. Applying the exact functor 𝑄𝒵 ∶ ℳ𝒵 → QCoh(𝒪𝒵) we
obtain a spectral sequence in QCoh(𝒪𝒵) convering to 𝑅𝑝+𝑞(𝑔 ∘ 𝑓)QCoh,∗ℱ. Hence the result
follows if we can show that

𝑄𝒵(𝑅𝑝𝑔∗(𝑅𝑞𝑓∗ℱ)) = 𝑄𝒵(𝑅𝑝𝑔∗(𝑄𝒳(𝑅𝑞𝑓∗ℱ))

This follows from the fact that the kernel and cokernel of the map

𝑄𝒳(𝑅𝑞𝑓∗ℱ) ⟶ 𝑅𝑞𝑓∗ℱ

are parasitic (Lemma 62.9.2) and that𝑅𝑝𝑔∗ transforms parasiticmodules into parasiticmod-
ules (Lemma 62.8.3). �

To end this section we make explicit the spectral sequences associated to a smooth covering
by a scheme. Please compare with Sheaves on Stacks, Sections 58.19 and 58.20.

Proposition 62.10.4. Let 𝑓 ∶ 𝒰 → 𝒳 be a morphism of algebraic stacks. Assume 𝑓 is
representable by algebraic spaces, surjective, flat, and locally of finite presentation. Let ℱ
be a quasi-coherent 𝒪𝒳-module. Then there is a spectral sequence

𝐸𝑝,𝑞
2 = 𝐻𝑞(𝒰𝑝, 𝑓∗

𝑝ℱ) ⇒ 𝐻𝑝+𝑞(𝒳, ℱ)

where 𝑓𝑝 is the morphism 𝒰 ×𝒳 … ×𝒳 𝒰 → 𝒳 (𝑝 + 1 factors).

Proof. This is a special case of Sheaves on Stacks, Proposition 58.19.1. �

Proposition 62.10.5. Let 𝑓 ∶ 𝒰 → 𝒳 and 𝑔 ∶ 𝒳 → 𝒴 be composable morphisms of
algebraic stacks. Assume that

(1) 𝑓 is representable by algebraic spaces, surjective, flat, locally of finite presenta-
tion, quasi-compact, and quasi-separated, and

(2) 𝑔 is quasi-compact and quasi-separated.
If ℱ is in QCoh(𝒪𝒳) then there is a spectral sequence

𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑔 ∘ 𝑓𝑝)QCoh,∗𝑓∗

𝑝ℱ ⇒ 𝑅𝑝+𝑞𝑔QCoh,∗ℱ

in QCoh(𝒪𝒴).
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Proof. Note that each of the morphisms 𝑓𝑝 ∶ 𝒰 ×𝒳 … ×𝒳 𝒰 → 𝒳 is quasi-compact and
quasi-separated, hence 𝑔 ∘ 𝑓𝑝 is quasi-compact and quasi-separated, hence the assertion
makes sense (i.e., the functors 𝑅𝑞(𝑔 ∘ 𝑓𝑝)QCoh,∗ are defined). There is a spectral sequence

𝐸𝑝,𝑞
2 = 𝑅𝑞(𝑔 ∘ 𝑓𝑝)∗𝑓−1

𝑝 ℱ ⇒ 𝑅𝑝+𝑞𝑔∗ℱ

by Sheaves on Stacks, Proposition 58.20.1. Applying the exact functor 𝑄𝒴 ∶ ℳ𝒴 →
QCoh(𝒪𝒴) gives the desired spectral sequence in QCoh(𝒪𝒴). �

62.11. The lisse-étale and the flat-fppf sites

In the book [LMB00a] many of the results above are proved using the lisse-étale site of
an algebraic stack. We define this site here. In Examples, Section 64.37 we show that the
lisse-étale site isn't functorial. We also define its analogue, the flat-fppf site, which is better
suited to the development of algebraic stacks as given in the stacks project (because we use
the fppf topology as our base topology). Of course the flat-fppf site isn't functorial either.

Definition 62.11.1. Let 𝒳 be an algebraic stack.
(1) The lisse-étale site of 𝒳 is the full subcategory 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

2 of 𝒳 whose objects
are those 𝑥 ∈ 𝑂𝑏(𝒳) lying over a scheme 𝑈 such that 𝑥 ∶ 𝑈 → 𝒳 is smooth. A
covering of 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 is a family of morphisms {𝑥𝑖 → 𝑥}𝑖∈𝐼 of 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 which
forms a covering of 𝒳 ́𝑒𝑡𝑎𝑙𝑒.

(2) The flat-fppf site of 𝒳 is the full subcategory 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓 of 𝒳 whose objects are
those 𝑥 ∈ 𝑂𝑏(𝒳) lying over a scheme 𝑈 such that 𝑥 ∶ 𝑈 → 𝒳 is flat. A covering
of 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓 is a family of morphisms {𝑥𝑖 → 𝑥}𝑖∈𝐼 of 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓 which forms a
covering of 𝒳𝑓𝑝𝑝𝑓.

We denote 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
the restriction of 𝒪𝒳 to the lisse-étale site and similarly for 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

.
The relationship between the lisse-étale site and the étale site is as follows (we mainly stick
to ``topological'' properties in this lemma).

Lemma 62.11.2. Let 𝒳 be an algebraic stack.
(1) The inclusion functor 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 → 𝒳 ́𝑒𝑡𝑎𝑙𝑒 is fully faithful, continuous and cocon-

tinuous. It follows that
(a) there is a morphism of topoi

𝑔 ∶ Sh(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝒳 ́𝑒𝑡𝑎𝑙𝑒)

with 𝑔−1 given by restriction,
(b) the functor 𝑔−1 has a left adjoint 𝑔𝑆ℎ

! on sheaves of sets,
(c) the adjunction maps 𝑔−1𝑔∗ → id and id → 𝑔−1𝑔𝑆ℎ

! are isomorphisms,
(d) the functor 𝑔−1 has a left adjoint 𝑔! on abelian sheaves,
(e) the adjunction map id → 𝑔−1𝑔! is an isomorphism, and
(f) we have 𝑔−1𝒪𝒳 = 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

hence 𝑔 induces a flat morphism of ringed topoi
such that 𝑔−1 = 𝑔∗.

(2) The inclusion functor 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓 → 𝒳𝑓𝑝𝑝𝑓 is fully faithful, continuous and cocon-
tinuous. It follows that

2In the literature the site is denoted Lis-ét(𝒳) or Lis-Et(𝒳) and the associated topos is denoted 𝒳lis-é𝑡 or
𝒳lis-et. In the stacks project our convention is to name the site and denote the corresponding topos by Sh(𝒞).
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(a) there is a morphism of topoi

𝑔 ∶ Sh(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) ⟶ Sh(𝒳𝑓𝑝𝑝𝑓)

with 𝑔−1 given by restriction,
(b) the functor 𝑔−1 has a left adjoint 𝑔𝑆ℎ

! on sheaves of sets,
(c) the adjunction maps 𝑔−1𝑔∗ → id and id → 𝑔−1𝑔𝑆ℎ

! are isomorphisms,
(d) the functor 𝑔−1 has a left adjoint 𝑔! on abelian sheaves,
(e) the adjunction map id → 𝑔−1𝑔! is an isomorphism, and
(f) we have 𝑔−1𝒪𝒳 = 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

hence 𝑔 induces a flat morphism of ringed topoi
such that 𝑔−1 = 𝑔∗.

Proof. In both cases it is immediate that the functor is fully faithful, continuous, and cocon-
tinuous (see Sites, Definitions 9.13.1 and 9.18.1). Hence properties (a), (b), (c) follow from
Sites, Lemmas 9.19.5 and 9.19.7. Parts (d), (e) follow from Modules on Sites, Lemmas
16.16.2 and 16.16.4. Part (f) is immediate. �

Lemma 62.11.3. Let 𝒳 be an algebraic stack. Notation as in Lemma 62.11.2.
(1) There exists a functor

𝑔! ∶ Mod(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
) ⟶ Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)

which is left adjoint to 𝑔∗. Moreover it agrees with the functor 𝑔! on abelian
sheaves and 𝑔∗𝑔! = id.

(2) There exists a functor

𝑔! ∶ Mod(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓, 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
) ⟶ Mod(𝒳𝑓𝑝𝑝𝑓, 𝒪𝒳)

which is left adjoint to 𝑔∗. Moreover it agrees with the functor 𝑔! on abelian
sheaves and 𝑔∗𝑔! = id.

Proof. In both cases, the existence of the functor 𝑔! follows fromModules on Sites, Lemma
16.35.1. To see that 𝑔! agrees with the functor on abelian sheaves we will show the maps
(16.35.2.1) of Modules on Sites, Remark 16.35.2 are isomorphisms.

Lisse-étale case. Let 𝑥 ∈ 𝑂𝑏(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒) lying over a scheme 𝑈 with 𝑥 ∶ 𝑈 → 𝒳 smooth.
Consider the induced fully faithful functor

𝑔′ ∶ 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒/𝑥 ⟶ 𝒳 ́𝑒𝑡𝑎𝑙𝑒/𝑥

The right hand side is identified with (Sch/𝑈) ́𝑒𝑡𝑎𝑙𝑒 and the left hand side with the full sub-
category of schemes 𝑈′/𝑈 such that the composition 𝑈′ → 𝑈 → 𝒳 is smooth. Thus Étale
Cohomology, Lemma 38.49.2 applies.

Flat-fppf case. Let 𝑥 ∈ 𝑂𝑏(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) lying over a scheme 𝑈 with 𝑥 ∶ 𝑈 → 𝒳 flat.
Consider the induced fully faithful functor

𝑔′ ∶ 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓/𝑥 ⟶ 𝒳𝑓𝑝𝑝𝑓/𝑥

The right hand side is identified with (Sch/𝑈)𝑓𝑝𝑝𝑓 and the left hand side with the full sub-
category of schemes 𝑈′/𝑈 such that the composition 𝑈′ → 𝑈 → 𝒳 is flat. Thus Étale
Cohomology, Lemma 38.49.2 applies.

In both cases the equality 𝑔∗𝑔! = id follows from 𝑔∗ = 𝑔−1 and the equality for abelian
sheaves in Lemma 62.11.2. �

Lemma 62.11.4. Let 𝒳 be an algebraic stack. Notation as in Lemmas 62.11.2 and 62.11.3.
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(1) We have 𝑔!𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
= 𝒪𝒳.

(2) We have 𝑔!𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
= 𝒪𝒳.

Proof. In this proof we write 𝒞 = 𝒳 ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒞 = 𝒳𝑓𝑝𝑝𝑓) and we denote 𝒞′ = 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
(resp. 𝒞′ = 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓). Then 𝒞′ is a full subcategory of 𝒞. In this proof we will think of
objects 𝑉 of 𝒞 as schemes over 𝒳 and objects 𝑈 of 𝒞′ as schemes smooth (resp. flat) over 𝒳.
Finally, we write 𝒪 = 𝒪𝒳 and 𝒪′ = 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

(resp. 𝒪′ = 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
). In the notation above

we have 𝒪(𝑉) = Γ(𝑉, 𝒪𝑉) and 𝒪′(𝑈) = Γ(𝑈, 𝒪𝑈). Consider the 𝒪-module homomorphism
𝑔!𝒪′ → 𝒪 adjoint to the identification 𝒪′ = 𝑔−1𝒪.
To see that 𝑔!𝒪′ → 𝒪 is surjective it suffices to show that 1 ∈ Γ(𝒞, 𝒪) is locally in the
image. Choose an object 𝑈 of 𝒞′ corresponding to a surjective smooth morphism 𝑈 → 𝒳.
Then viewing 𝑈 both as an object of 𝒞′ and 𝒞 we have 𝑔!𝒪′(𝑈) = 𝒪′(𝑈) = 𝒪(𝑈) whence
1 ∈ 𝒪(𝑈) is in the image. Since 𝑈 surjects onto the final object of Sh(𝒞) we conclude
𝑔!𝒪′ → 𝒪 is surjective.
Suppose that 𝑠 ∈ 𝑔!𝒪′(𝑉) is a section mapping to zero in 𝒪(𝑉). To finish the proof we have
to show that 𝑠 is zero. After replacing 𝑉 by the members of a covering we may assume 𝑠 is
an element of the colimit

𝑐𝑜𝑙𝑖𝑚𝑉→𝑈 𝒪′(𝑈)
Say 𝑠 = ∑(𝜑𝑖, 𝑠𝑖) is a finite sum with 𝜑𝑖 ∶ 𝑉 → 𝑈𝑖, 𝑈𝑖 smooth (resp. flat) over 𝒳, and
𝑠𝑖 ∈ Γ(𝑈𝑖, 𝒪𝑈𝑖

). Choose a scheme 𝑊 surjective étale over the algebraic space 𝑈 = 𝑈1 ×𝒳
… ×𝒳 𝑈𝑛. Note that 𝑊 is still smooth (resp. flat) over 𝒳, i.e., defines an object of 𝒞′. The
fibre product

𝑉′ = 𝑉 ×(𝜑1,…,𝜑𝑛),𝑈 𝑊
is surjective étale over 𝑉, hence it suffices to show that 𝑠 maps to zero in 𝑔!𝒪′(𝑉′). Note that
the restriction ∑(𝜑𝑖, 𝑠𝑖)|𝑉′ corresponds to the sum of the pullbacks of the functions 𝑠𝑖 to
𝑊. In other words, we have reduced to the case of (𝜑, 𝑠) where 𝜑 ∶ 𝑉 → 𝑈 is a morphism
with 𝑈 in 𝒞′ and 𝑠 ∈ 𝒪′(𝑈) restricts to zero in 𝒪(𝑉). By the commutative diagram

𝑉
(𝜑,0)

//

𝜑
''

𝑈 × 𝐀1

𝑈

(id,0)

OO

we see that ((𝜑, 0) ∶ 𝑉 → 𝑈 × 𝐀1, pr∗2𝑥) represents zero in the colimit above. Hence we
may replace 𝑈 by 𝑈 × 𝐀1, 𝜑 by (𝜑, 0) and 𝑠 by pr∗1𝑠 + pr∗2𝑥. Thus we may assume that
the vanishing locus 𝑍 ∶ 𝑠 = 0 in 𝑈 of 𝑠 is smooth (resp. flat) over 𝒳. Then we see that
(𝑉 → 𝑍, 0) and (𝜑, 𝑠) have the same value in the colimit, i.e., we see that the element 𝑠 is
zero as desired. �

The lisse-étale and the flat-fppf sites can be used to characterize parasitic modules as fol-
lows.

Lemma 62.11.5. Let 𝒳 be an algebraic stack.
(1) Let ℱ be an 𝒪𝒳-module with the flat base change property on 𝒳 ́𝑒𝑡𝑎𝑙𝑒. The follow-

ing are equivalent
(a) ℱ is parasitic, and
(b) 𝑔∗ℱ = 0 where 𝑔 ∶ Sh(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒) → Sh(𝒳 ́𝑒𝑡𝑎𝑙𝑒) is as in Lemma 62.11.2.

(2) Let ℱ be an 𝒪𝒳-module on 𝒳𝑓𝑝𝑝𝑓. The following are equivalent
(a) ℱ is parasitic, and
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(b) 𝑔∗ℱ = 0 where 𝑔 ∶ Sh(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) → Sh(𝒳𝑓𝑝𝑝𝑓) is as in Lemma 62.11.2.

Proof. Part (2) is immediate from the definitions (this is one of the advantages of the flat-
fppf site over the lisse-étale site). The implication (1)(a) ⇒ (1)(b) is immediate as well.
To see (1)(b) ⇒ (1)(a) let 𝑈 be a scheme and let 𝑥 ∶ 𝑈 → 𝒳 be a surjective smooth mor-
phism. Then 𝑥 is an object of the lisse-étale site of 𝒳. Hence we see that (1)(b) implies
that ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒

= 0. Let 𝑉 → 𝒳 be an flat morphism where 𝑉 is a scheme. Set 𝑊 = 𝑈 ×𝒳 𝑉
and consider the diagram

𝑊

𝑝
��

𝑞
// 𝑉

��
𝑈 // 𝒳

Note that the projection 𝑝 ∶ 𝑊 → 𝑈 is flat and the projection 𝑞 ∶ 𝑊 → 𝑉 is smooth and sur-
jective. This implies that 𝑞∗

𝑠𝑚𝑎𝑙𝑙 is a faithful functor on quasi-coherent modules. By assump-
tion ℱ has the flat base change property so that we obtain 𝑝∗

𝑠𝑚𝑎𝑙𝑙ℱ|𝑈 ́𝑒𝑡𝑎𝑙𝑒
≅ 𝑞∗

𝑠𝑚𝑎𝑙𝑙ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
.

Thus if ℱ is in the kernel of 𝑔∗, then ℱ|𝑉 ́𝑒𝑡𝑎𝑙𝑒
= 0 as desired. �

Lemma 62.11.6. Let 𝒳 be an algebraic stack. Notation as in Lemmas 62.11.2 and 62.11.3.
(1) The functor 𝑔! ∶ Ab(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒) → Ab(𝒳 ́𝑒𝑡𝑎𝑙𝑒) has a left derived functor

𝐿𝑔! ∶ 𝐷(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒) ⟶ 𝐷(𝒳 ́𝑒𝑡𝑎𝑙𝑒)

which is left adjoint to 𝑔−1 and such that 𝑔−1𝐿𝑔! = id.
(2) The functor 𝑔! ∶ Mod(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

) → Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) has a left de-
rived functor

𝐿𝑔! ∶ 𝐷(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
) ⟶ 𝐷(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)

which is left adjoint to 𝑔∗ and such that 𝑔∗𝐿𝑔! = id.
(3) The functor 𝑔! ∶ Ab(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) → Ab(𝒳𝑓𝑝𝑝𝑓) has a left derived functor

𝐿𝑔! ∶ 𝐷(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) ⟶ 𝐷(𝒳𝑓𝑝𝑝𝑓)

which is left adjoint to 𝑔−1 and such that 𝑔−1𝐿𝑔! = id.
(4) The functor 𝑔! ∶ Mod(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓, 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

) → Mod(𝒳𝑓𝑝𝑝𝑓, 𝒪𝒳) has a left de-
rived functor

𝐿𝑔! ∶ 𝐷(𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
) ⟶ 𝐷(𝒪𝒳)

which is left adjoint to 𝑔∗ and such that 𝑔∗𝐿𝑔! = id.
Warning: It is not clear (a priori) that 𝐿𝑔! on modules agrees with 𝐿𝑔! on abelian sheaves,
see Cohomology on Sites, Remark 19.22.2.

Proof. The existence of the functor 𝐿𝑔! and adjointess to 𝑔∗ is Cohomology on Sites,
Lemma 19.22.1. (For the case of abelian sheaves use the constant sheaf 𝐙 as the structure
sheaves.) Moreover, it is computed on a complex ℋ• by taking a suitable left resolution
𝒦• → ℋ• and applying the functor 𝑔! to 𝒦•. Since 𝑔−1𝑔!𝒦• = 𝒦• by Lemmas 62.11.3
and 62.11.2 we see that the final assertion holds in each case. �

The lisse-étale site is functorial for smooth morphisms of algebraic stacks and the flat-fppf
site is functorial for flat morphisms of algebraic stacks.

Lemma 62.11.7. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07AS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07AT
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(1) If 𝑓 is smooth, then 𝑓 restricts to a continuous and cocontinuous functor𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 →
𝒴𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 which gives a morphism of ringed topoi fitting into the following com-
mutative diagram

Sh(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒)
𝑔′
//

𝑓′

��

Sh(𝒳 ́𝑒𝑡𝑎𝑙𝑒)

𝑓
��

Sh(𝒴𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒)
𝑔 // Sh(𝒴 ́𝑒𝑡𝑎𝑙𝑒)

We have 𝑓′
∗(𝑔′)−1 = 𝑔−1𝑓∗ and 𝑔′

! (𝑓
′)−1 = 𝑓−1𝑔!.

(2) If 𝑓 is flat, then 𝑓 restricts to a continuous and cocontinuous functor 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓 →
𝒴𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓 which gives a morphism of ringed topoi fitting into the following com-
mutative diagram

Sh(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓)
𝑔′
//

𝑓′

��

Sh(𝒳𝑓𝑝𝑝𝑓)

𝑓
��

Sh(𝒴𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓)
𝑔 // Sh(𝒴𝑓𝑝𝑝𝑓)

We have 𝑓′
∗(𝑔′)−1 = 𝑔−1𝑓∗ and 𝑔′

! (𝑓
′)−1 = 𝑓−1𝑔!.

Proof. The initial statement comes from the fact that if 𝑥 ∈ 𝑂𝑏(𝒳) lies over a scheme
𝑈 such that 𝑥 ∶ 𝑈 → 𝒳 is smooth (resp. flat) and if 𝑓 is smooth (resp. flat) then 𝑓(𝑥) ∶
𝑈 → 𝒴 is smooth (resp. flat), see Morphisms of Stacks, Lemmas 61.22.2 and 61.17.2. The
induced functor 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 → 𝒴𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓 → 𝒴𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) is continuous and
cocontinuous by our definition of coverings in these categories. Finally, the commutativity
of the diagram is a consequence of the fact that the horizontal morphisms are given by the
inclusion functors (see Lemma 62.11.2) and Sites, Lemma 9.19.2.

To show that 𝑓′
∗(𝑔′)−1 = 𝑔−1𝑓∗ let ℱ be a sheaf on 𝒳 ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒳𝑓𝑝𝑝𝑓). There is a canonical

pullback map
𝑔−1𝑓∗ℱ ⟶ 𝑓′

∗(𝑔′)−1ℱ
see Sites, Section 9.39. We claim this map is an isomorphism. To prove this pick an object
𝑦 of 𝒴𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒴𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓). Say 𝑦 lies over the scheme 𝑉 such that 𝑦 ∶ 𝑉 → 𝒴 is
smooth (resp. flat). Since 𝑔−1 is the restriction we find that

(𝑔−1𝑓∗ℱ) (𝑦) = Γ(𝑉 ×𝑦,𝒴 𝒳, pr−1ℱ)

by Sheaves on Stacks, Equation (58.5.0.1). Let (𝑉 ×𝑦,𝒴 𝒳)′ ⊂ 𝑉 ×𝑦,𝒴 𝒳 be the full subcat-
egory consisting of objects 𝑧 ∶ 𝑊 → 𝑉 ×𝑦,𝒴 𝒳 such that the induced morphism 𝑊 → 𝒳 is
smooth (resp. flat). Denote

pr′ ∶ (𝑉 ×𝑦,𝒴 𝒳)′ ⟶ 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓)

the restriction of the functor pr used in the formula above. Exactly the same argument that
proves Sheaves on Stacks, Equation (58.5.0.1) shows that for any sheaf ℋ on 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
(resp. 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) we have

(62.11.7.1) 𝑓′
∗ℋ(𝑦) = Γ((𝑉 ×𝑦,𝒴 𝒳)′, (pr′)−1ℋ)

Since (𝑔′)−1 is restriction we see that

(𝑓′
∗(𝑔′)−1ℱ) (𝑦) = Γ((𝑉 ×𝑦,𝒴 𝒳)′, pr−1ℱ|(𝑉×𝑦,𝒴𝒳)′)
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By Sheaves on Stacks, Lemma 58.22.3 we see that

Γ((𝑉 ×𝑦,𝒴 𝒳)′, pr−1ℱ|(𝑉×𝑦,𝒴𝒳)′) = Γ(𝑉 ×𝑦,𝒴 𝒳, pr−1ℱ)

are equal as desired; although we omit the verification of the assumptions of the lemma we
note that the fact that 𝑉 → 𝒴 is smooth (resp. flat) is used to verify the second condition.

Finally, the equality 𝑔′
! (𝑓

′)−1 = 𝑓−1𝑔! follows formally from the equality 𝑓′
∗(𝑔′)−1 = 𝑔−1𝑓∗

by the adjointness of 𝑓−1 and 𝑓∗, the adjointness of 𝑔! and 𝑔−1, and their ``primed'' versions.
�

Lemma 62.11.8. With assumptions and notation as in Lemma 62.11.7. We have

𝑔−1 ∘ 𝑅𝑓∗ = 𝑅𝑓′
∗ ∘ (𝑔′)−1 and 𝐿(𝑔′)! ∘ (𝑓′)−1 = 𝑓−1 ∘ 𝐿𝑔!

on unbounded derived categories (both for the case of modules and for the case of abelian
sheaves).

Proof. Let ℱ be an abelian sheaf on 𝒳 ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒳𝑓𝑝𝑝𝑓). We first show that the canonical
(base change) map

𝑔−1𝑅𝑓∗ℱ ⟶ 𝑅𝑓′
∗(𝑔′)−1ℱ

is an isomorphism. To do this let 𝑦 be an object of 𝒴𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒴𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓). Say 𝑦 lies
over the scheme 𝑉 such that 𝑦 ∶ 𝑉 → 𝒴 is smooth (resp. flat). Since 𝑔−1 is the restriction
we find that

(𝑔−1𝑅𝑝𝑓∗ℱ) (𝑦) = 𝐻𝑝
𝜏(𝑉 ×𝑦,𝒴 𝒳, pr−1ℱ)

where 𝜏 = ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝜏 = 𝑓𝑝𝑝𝑓), see Sheaves on Stacks, Lemma 58.20.2. By (62.11.7.1)
for any sheaf ℋ on 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓)

𝑓′
∗ℋ(𝑦) = Γ((𝑉 ×𝑦,𝒴 𝒳)′, (pr′)−1ℋ)

An object of (𝑉×𝑦,𝒴 𝒳)′ can be seen as a pair (𝑥, 𝜑) where 𝑥 is an object of 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp.
𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) and 𝜑 ∶ 𝑓(𝑥) → 𝑦 is a morphism in 𝒴. We can also think of 𝜑 as a section of
(𝑓′)−1ℎ𝑦 over 𝑥. Thus (𝑉 ×𝒴 𝒳)′ is the localization of the site 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓)
at the sheaf of sets (𝑓′)−1ℎ𝑦, see Sites, Lemma 9.26.3. The morphism

pr′ ∶ (𝑉 ×𝑦,𝒴 𝒳)′ → 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp. pr′ ∶ (𝑉 ×𝑦,𝒴 𝒳)′ → 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓)

is the localization morphism. In particular, the pullback (pr′)−1 preserves injective abelian
sheaves, see Cohomology on Sites, Lemma 19.13.3. At this point exactly the same argu-
ment as in Sheaves on Stacks, Lemma 58.20.2 shows that

(62.11.8.1) 𝑅𝑝𝑓′
∗ℋ(𝑦) = 𝐻𝑝

𝜏((𝑉 ×𝑦,𝒴 𝒳)′, (pr′)−1ℋ)

where 𝜏 = ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝜏 = 𝑓𝑝𝑝𝑓). Since (𝑔′)−1 is given by restriction we conclude that

(𝑅𝑝𝑓′
∗(𝑔′)∗ℱ) (𝑦) = 𝐻𝑝

𝜏((𝑉 ×𝑦,𝒴 𝒳)′, pr−1ℱ|(𝑉×𝑦,𝒴𝒳)′)

Finally, we can apply Sheaves on Stacks, Lemma 58.22.3 to see that

𝐻𝑝
𝜏((𝑉 ×𝑦,𝒴 𝒳)′, pr−1ℱ|(𝑉×𝑦,𝒴𝒳)′) = 𝐻𝑝

𝜏(𝑉 ×𝑦,𝒴 𝒳, pr−1ℱ)

are equal as desired; although we omit the verification of the assumptions of the lemma we
note that the fact that 𝑉 → 𝒴 is smooth (resp. flat) is used to verify the second condition.

The rest of the proof is formal. Since cohomology of abelian groups and sheaves of modules
agree we also conclude that 𝑔−1𝑅𝑓∗ℱ = 𝑅𝑓′

∗(𝑔′)−1ℱ when ℱ is a sheaf of modules on
𝒳 ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒳𝑓𝑝𝑝𝑓).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07AV
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Next we show that for 𝒢 (either sheaf of modules or abelian groups) on 𝒴𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp.
𝒴𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) the canonical map

𝐿(𝑔′)!(𝑓′)−1𝒢 → 𝑓−1𝐿𝑔!𝒢

is an isomorphism. To see this it is enough to prove for any injective sheaf ℐ on 𝒳 ́𝑒𝑡𝑎𝑙𝑒
(resp. 𝒳𝑓𝑝𝑝𝑓) that the induced map

𝐻𝑜𝑚(𝐿(𝑔′)!(𝑓′)−1𝒢, ℐ[𝑛]) ← 𝐻𝑜𝑚(𝑓−1𝐿𝑔!𝒢, ℐ[𝑛])

is an isomorphism for all 𝑛 ∈ 𝐙. (Hom's taken in suitable derived categories.) By the
adjointness of 𝑓−1 and 𝑅𝑓∗, the adjointness of 𝐿𝑔! and 𝑔−1, and their ``primed'' versions
this follows from the isomorphism 𝑔−1𝑅𝑓∗ℐ → 𝑅𝑓′

∗(𝑔′)−1ℐ proved above.

In the case of a bounded complex 𝒢• (of modules or abelian groups) on 𝒴𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp.
𝒴𝑓𝑝𝑝𝑓) the canonical map

(62.11.8.2) 𝐿(𝑔′)!(𝑓′)−1𝒢• → 𝑓−1𝐿𝑔!𝒢•

is an isomorphism as follows from the case of a sheaf by the usual arguments involving
truncations and the fact that the functors 𝐿(𝑔′)!(𝑓′)−1 and 𝑓−1𝐿𝑔! are exact functors of
triangulated categories.

Suppose that 𝒢• is a bounded above complex (of modules or abelian groups) on 𝒴𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
(resp. 𝒴𝑓𝑝𝑝𝑓). The canonical map (62.11.8.2) is an isomorphism because we can use the
stupid truncations 𝜎≥−𝑛 (see Homology, Section 10.11) to write 𝒢• as a colimit 𝒢• =
𝑐𝑜𝑙𝑖𝑚 𝒢•

𝑛 of bounded complexes. This gives a distinguished triangle

⨁𝑛≥1
𝒢•

𝑛 → ⨁𝑛≥1
𝒢•

𝑛 → 𝒢• → …

and each of the functors𝐿(𝑔′)!, (𝑓′)−1, 𝑓−1, 𝐿𝑔! commutes with direct sums (of complexes).

If 𝒢• is an arbitrary complex (of modules or abelian groups) on 𝒴𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒴𝑓𝑝𝑝𝑓)
then we use the canonical truncations 𝜏≤𝑛 (see Homology, Section 10.11) to write 𝒢• as a
colimit of bounded above complexes and we repeat the argument of the paragraph above.

Finally, by the adjointness of 𝑓−1 and 𝑅𝑓∗, the adjointness of 𝐿𝑔! and 𝑔−1, and their
``primed'' versions we conclude that the first identity of the lemma follows from the second
in full generality. �

62.12. Quasi-coherent modules, II

In this section we explain how to think of quasi-coherent modules on an algebraic stack in
terms of its lisse-étale or flat-fppf site.

Lemma 62.12.1. Let 𝒳 be an algebraic stack.
(1) Let 𝑓𝑗 ∶ 𝒳𝑗 → 𝒳 be a family of smooth morphisms of algebraic stacks with

|𝒳| = ⋃ |𝑓𝑗|(|𝒳𝑗|). Let ℱ be a sheaf of 𝒪𝒳-modules on 𝒳 ́𝑒𝑡𝑎𝑙𝑒. If each 𝑓−1
𝑗 ℱ is

quasi-coherent, then so is ℱ.
(2) Let 𝑓𝑗 ∶ 𝒳𝑗 → 𝒳 be a family of flat and locally finitely presented morphisms of

algebraic stacks with |𝒳| = ⋃ |𝑓𝑗|(|𝒳𝑗|). Let ℱ be a sheaf of 𝒪𝒳-modules on
𝒳𝑓𝑝𝑝𝑓. If each 𝑓−1

𝑗 ℱ is quasi-coherent, then so is ℱ.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07AZ
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Proof. Proof of (1). We may replace each of the algebraic stacks 𝒳𝑗 by a scheme 𝑈𝑗
(using that any algebraic stack has a smooth covering by a scheme and that compositions of
smooth morphisms are smooth, see Morphisms of Stacks, Lemma 61.22.2). The pullback
of ℱ to (Sch/𝑈𝑗) ́𝑒𝑡𝑎𝑙𝑒 is still locally quasi-coherent, see Sheaves on Stacks, Lemma 58.11.2.
Then 𝑓 = ∐ 𝑓𝑗 ∶ 𝑈 = ∐ 𝑈𝑗 → 𝒳 is a smooth surjective morphism. Let 𝑥 ∶ 𝑉 → 𝒳
be an object of 𝒳. By Sheaves on Stacks, Lemma 58.18.10 there exists an étale covering
{𝑥𝑖 → 𝑥}𝑖∈𝐼 such that each 𝑥𝑖 lifts to an object 𝑢𝑖 of (Sch/𝑈) ́𝑒𝑡𝑎𝑙𝑒. This just means that
𝑥𝑖 lives over a scheme 𝑉𝑖, that {𝑉𝑖 → 𝑉} is an étale covering, and that 𝑥𝑖 comes from a
morphism 𝑢𝑖 ∶ 𝑉𝑖 → 𝑈. Then 𝑥∗

𝑖 ℱ = 𝑢∗
𝑖 𝑓∗ℱ is quasi-coherent. This implies that 𝑥∗ℱ

on (Sch/𝑉) ́𝑒𝑡𝑎𝑙𝑒 is quasi-coherent, for example by Modules on Sites, Lemma 16.23.3. By
Sheaves on Stacks, Lemma 58.11.3 we see that ℱ is quasi-coherent.

Proof of (2). This is proved using exactly the same argument, which we fully write out
here. We may replace each of the algebraic stacks 𝒳𝑗 by a scheme 𝑈𝑗 (using that any
algebraic stack has a smooth covering by a scheme and that flat and locally finite presented
morphisms are preserved by composition, see Morphisms of Stacks, Lemmas 61.17.2 and
61.18.2). The pullback of ℱ to (Sch/𝑈𝑗) ́𝑒𝑡𝑎𝑙𝑒 is still locally quasi-coherent, see Sheaves on
Stacks, Lemma 58.11.2. Then 𝑓 = ∐ 𝑓𝑗 ∶ 𝑈 = ∐ 𝑈𝑗 → 𝒳 is a surjective, flat, and locally
finitely presented morphism. Let 𝑥 ∶ 𝑉 → 𝒳 be an object of 𝒳. By Sheaves on Stacks,
Lemma 58.18.10 there exists an fppf covering {𝑥𝑖 → 𝑥}𝑖∈𝐼 such that each 𝑥𝑖 lifts to an
object 𝑢𝑖 of (Sch/𝑈) ́𝑒𝑡𝑎𝑙𝑒. This just means that 𝑥𝑖 lives over a scheme 𝑉𝑖, that {𝑉𝑖 → 𝑉} is
an fppf covering, and that 𝑥𝑖 comes from a morphism 𝑢𝑖 ∶ 𝑉𝑖 → 𝑈. Then 𝑥∗

𝑖 ℱ = 𝑢∗
𝑖 𝑓∗ℱ

is quasi-coherent. This implies that 𝑥∗ℱ on (Sch/𝑉) ́𝑒𝑡𝑎𝑙𝑒 is quasi-coherent, for example by
Modules on Sites, Lemma 16.23.3. By Sheaves on Stacks, Lemma 58.11.3 we see that ℱ
is quasi-coherent. �

We recall that we have defined the notion of a quasi-coherent module on any ringed topos
in Modules on Sites, Section 16.23.

Lemma 62.12.2. Let 𝒳 be an algebraic stack. Notation as in Lemma 62.11.2.
(1) Let ℋ be a quasi-coherent 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

-module on the lisse-étale site of 𝒳. Then
𝑔!ℋ is a quasi-coherent module on 𝒳.

(2) Let ℋ be a quasi-coherent 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
-module on the flat-fppf site of 𝒳. Then 𝑔!ℋ

is a quasi-coherent module on 𝒳.

Proof. Pick a scheme 𝑈 and a surjective smooth morphism 𝑥 ∶ 𝑈 → 𝒳. By Modules on
Sites, Definition 16.23.1 there exists an étale (resp. fppf) covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 such that
each pullback 𝑓−1

𝑖 ℋ has a global presentation (see Modules on Sites, Definition 16.17.1).
Here 𝑓𝑖 ∶ 𝑈𝑖 → 𝒳 is the composition 𝑈𝑖 → 𝑈 → 𝒳 which is a morphism of algebraic
stacks. (Recall that the pullback ``is'' the restriction to 𝒳/𝑓𝑖, see Sheaves on Stacks, Defi-
nition 58.9.2 and the discussion following.) Since each 𝑓𝑖 is smooth (resp. flat) by Lemma
62.11.7 we see that 𝑓−1

𝑖 𝑔!ℋ = 𝑔𝑖,!(𝑓′
𝑖 )

−1ℋ. Using Lemma 62.12.1 we reduce the statement
of the lemma to the case where ℋ has a global presentation. Say we have

⨁𝑗∈𝐽
𝒪 ⟶ ⨁𝑖∈𝐼

𝒪 ⟶ ℋ ⟶ 0

of𝒪-moduleswhere𝒪 = 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
(resp.𝒪 = 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

). Since 𝑔! commuteswith arbitrary
colimits (as a left adjoint functor, see Lemma 62.11.3 and Categories, Lemma 4.22.2) we
conclude that there exists an exact sequence

⨁𝑗∈𝐽
𝑔!𝒪 ⟶ ⨁𝑖∈𝐼

𝑔!𝒪 ⟶ 𝑔!ℋ ⟶ 0
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Finally, Lemma 62.11.4 shows that 𝑔!𝒪 = 𝒪𝒳 and we win. �

Lemma 62.12.3. Let 𝒳 be an algebraic stack. Let ℳ𝒳 be the category of locally quasi-
coherent 𝒪𝒳-modules with the flat base change property.

(1) With 𝑔 as in Lemma 62.11.2 for the lisse-étale site we have
(a) the functors 𝑔−1 and 𝑔! define mutually inverse functors

QCoh(𝒪𝒳)
𝑔−1
//
QCoh(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

)
𝑔!
oo

(b) if ℱ is in ℳ𝒳 then 𝑔−1ℱ is in QCoh(𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
) and

(c) 𝑄(ℱ) = 𝑔!𝑔−1ℱ where 𝑄 is as in Lemma 62.9.1.
(2) With 𝑔 as in Lemma 62.11.2 for the flat-fppf site we have

(a) the functors 𝑔−1 and 𝑔! define mutually inverse functors

QCoh(𝒪𝒳)
𝑔−1
//
QCoh(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓, 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

)
𝑔!
oo

(b) if ℱ is in ℳ𝒳 then 𝑔−1ℱ is in QCoh(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓, 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
) and

(c) 𝑄(ℱ) = 𝑔!𝑔−1ℱ where 𝑄 is as in Lemma 62.9.1.

Proof. Pullback by any morphism of ringed topoi preserves categories of quasi-coherent
modules, see Modules on Sites, Lemma 16.23.4. Hence 𝑔−1 preserves the categories of
quasi-coherent modules. The same is true for 𝑔! by Lemma 62.12.2. We know that ℋ →
𝑔−1𝑔!ℋ is an isomorphism by Lemma 62.11.2. Conversely, if ℱ is in QCoh(𝒪𝒳) then the
map 𝑔!𝑔−1ℱ → ℱ is a map of quasi-coherent modules on 𝒳 whose restriction to any scheme
smooth over 𝒳 is an isomorphism. Then the discussion in Sheaves on Stacks, Sections
58.13 and 58.14 (comparing with quasi-coherent modules on presentations) shows it is an
isomorphism. This proves (1)(a) and (2)(a).

Let ℱ be an object of ℳ𝒳. By Lemma 62.9.2 the kernel and cokernel of themap 𝑄(ℱ) → ℱ
are parasitic. Hence by Lemma 62.11.5 and since 𝑔∗ = 𝑔−1 is exact, we conclude 𝑔∗𝑄(ℱ) →
𝑔∗ℱ is an isomorphism. Thus 𝑔∗ℱ is quasi-coherent. This proves (1)(b) and (2)(b). Finally,
(1)(c) and (2)(c) follow because 𝑔!𝑔∗𝑄(ℱ) → 𝑄(ℱ) is an isomorphism by our arguments
above. �

Remark 62.12.4. Let 𝒳 be an algebraic stack. The results of Lemmas 62.9.1 and 62.9.2
imply that

QCoh(𝒪𝒳) = ℳ𝒳/Parasitic ∩ ℳ𝒳

in words: the category of quasi-coherent modules is the category of locally quasi-coherent
modules with the flat base change property divided out by the Serre subcategory consist-
ing of parasitic objects. See Homology, Lemma 10.7.6. The existence of the inclusion
functor 𝑖 ∶ QCoh(𝒪𝒳) → ℳ𝒳 which is left adjoint to the quotient functor means that
ℳ𝒳 → QCoh(𝒪𝒳) is a Bousfield colocalization or a right Bousfield localization (insert fu-
ture reference here). Our next goal is to show a similar result holds on the level of derived
categories.

Lemma 62.12.5. Let 𝒳 be an algebraic stack. Notation as in Lemma 62.11.2.
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(1) Let ℋ be a quasi-coherent 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
-module on the lisse-étale site of 𝒳. For all

𝑝 ∈ 𝐙 the sheaf 𝐻𝑝(𝐿𝑔!ℋ) is a locally quasi-coherent module with the flat base
change property on 𝒳.

(2) Let ℋ be a quasi-coherent 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
-module on the flat-fppf site of 𝒳. For all

𝑝 ∈ 𝐙 the sheaf 𝐻𝑝(𝐿𝑔!ℋ) is a locally quasi-coherent module with the flat base
change property on 𝒳.

Proof. Pick a scheme 𝑈 and a surjective smooth morphism 𝑥 ∶ 𝑈 → 𝒳. By Modules on
Sites, Definition 16.23.1 there exists an étale (resp. fppf) covering {𝑈𝑖 → 𝑈}𝑖∈𝐼 such that
each pullback 𝑓−1

𝑖 ℋ has a global presentation (see Modules on Sites, Definition 16.17.1).
Here 𝑓𝑖 ∶ 𝑈𝑖 → 𝒳 is the composition 𝑈𝑖 → 𝑈 → 𝒳 which is a morphism of algebraic
stacks. (Recall that the pullback ``is'' the restriction to 𝒳/𝑓𝑖, see Sheaves on Stacks, Defini-
tion 58.9.2 and the discussion following.) After refining the covering we may assume each
𝑈𝑖 is an affine scheme. Since each 𝑓𝑖 is smooth (resp. flat) by Lemma 62.11.8 we see that
𝑓−1

𝑖 𝐿𝑔!ℋ = 𝐿𝑔𝑖,!(𝑓′
𝑖 )

−1ℋ. Using Lemma 62.7.5 we reduce the statement of the lemma to
the case where ℋ has a global presentation and where 𝒳 = (Sch/𝑋)𝑓𝑝𝑝𝑓 for some affine
scheme 𝑋 = 𝑆𝑝𝑒𝑐(𝐴).

Say our presentation looks like

⨁𝑗∈𝐽
𝒪 ⟶ ⨁𝑖∈𝐼

𝒪 ⟶ ℋ ⟶ 0

where 𝒪 = 𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
(resp. 𝒪 = 𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

). Note that the site 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓)
has a final object, namely 𝑋/𝑋 which is quasi-compact (see Cohomology on Sites, Section
19.16). Hence we have

Γ(⨁𝑖∈𝐼
𝒪) = ⨁𝑖∈𝐼

𝐴

by Cohomology on Sites, Lemma 19.16.1. Hence the map in the presentation corresponds
to a similar presentation

⨁𝑗∈𝐽
𝐴 ⟶ ⨁𝑖∈𝐼

𝐴 ⟶ 𝑀 ⟶ 0

of an 𝐴-module 𝑀. Moreover, ℋ is equal to the restriction to the lisse-étale (resp. flat-fppf)
site of the quasi-coherent sheaf 𝑀𝑎 associated to 𝑀. Choose a resolution

… → 𝐹2 → 𝐹1 → 𝐹0 → 𝑀 → 0

by free 𝐴-modules. The complex

… 𝒪 ⊗𝐴 𝐹2 → 𝒪 ⊗𝐴 𝐹1 → 𝒪 ⊗𝐴 𝐹0 → ℋ → 0

is a resolution of ℋ by free 𝒪-modules because for each object 𝑈/𝑋 of 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 (resp.
𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) the structure morphism 𝑈 → 𝑋 is flat. Hence by construction the value of
𝐿𝑔!ℋ is

… → 𝒪𝒳 ⊗𝐴 𝐹2 → 𝒪𝒳 ⊗𝐴 𝐹1 → 𝒪𝒳 ⊗𝐴 𝐹0 → 0 → …

Since this is a complex of quasi-coherent modules on 𝒳 ́𝑒𝑡𝑎𝑙𝑒 (resp. 𝒳𝑓𝑝𝑝𝑓) it follows from
Proposition 62.7.4 that 𝐻𝑝(𝐿𝑔!ℋ) is quasi-coherent. �

Lemma 62.12.6. Let 𝒳 be an algebraic stack.
(1) QCoh(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

) is a weak Serre subcategory of Mod(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
).

(2) QCoh(𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
) is a weak Serre subcategory of Mod(𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

).
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Proof. We will verify conditions (1), (2), (3), (4) of Homology, Lemma 10.7.3. Since 0 is
a quasi-coherent module on any ringed site we see that (1) holds. By definition QCoh(𝒪) is
a strictly full subcategory Mod(𝒪), so (2) holds. Let 𝜑 ∶ 𝒢 → ℱ be a morphism of quasi-
coherent modules on 𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 or 𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓. We have 𝑔∗𝑔!ℱ = ℱ and similarly for 𝒢 and
𝜑, see Lemma 62.11.3. By Lemma 62.12.2 we see that 𝑔!ℱ and 𝑔!𝒢 are quasi-coherent
𝒪𝒳-modules. Hence we see that Ker(𝑔!𝜑) and Coker(𝑔!𝜑) are quasi-coherent modules
on 𝒳. Since 𝑔∗ is exact (see Lemma 62.11.2) we see that 𝑔∗Ker(𝑔!𝜑) = Ker(𝑔∗𝑔!𝜑) =
Ker(𝜑) and 𝑔∗Coker(𝑔!𝜑) = Coker(𝑔∗𝑔!𝜑) = Coker(𝜑) are quasi-coherent too (see Lemma
62.12.3). This proves (3). Finally, suppose that

0 → ℱ → ℰ → 𝒢 → 0

is an extension of𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
-modules (resp.𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

-modules) withℱ and𝒢 quasi-coherent.
Then

𝐻−1(𝐿𝑔!𝒢) → 𝑔!ℱ → 𝑔!ℰ → 𝑔!𝒢 → 0
is an exact sequence with 𝑔!ℱ, 𝑔!𝒢, and 𝐻−1(𝐿𝑔!𝒢) locally quasi-coherent with the flat
base change property, see Lemma 62.12.5. By Proposition 62.7.4 it follows that 𝑔!ℰ is
locally quasi-coherent with the flat base change property. Finally, Lemma 62.12.3 implies
that ℰ = 𝑔−1𝑔!ℰ is quasi-coherent as desired. �

62.13. Derived categories of quasi-coherent modules

Let 𝒳 be an algebraic stack. As the inclusion functor QCoh(𝒪𝒳) → Mod(𝒪𝒳) isn't exact,
we cannot define 𝐷QCoh(𝒪𝒳) as the full subcategory of 𝐷(𝒪𝒳) consisting of complexes
with quasi-coherent cohomology sheaves. In stead we define the category as follows.

Definition 62.13.1. Let 𝒳 be an algebraic stack. Let ℳ𝒳 ⊂ Mod(𝒪𝒳) denote the category
of locally quasi-coherent 𝒪𝒳-modules with the flat base change property. Let 𝒫𝒳 ⊂ ℳ𝒳
be the full subcategory consisting of parasitic objects. We define the derived category of
𝒪𝒳-modules with quasi-coherent cohomology sheaves as the Verdier quotient3

𝐷QCoh(𝒪𝒳) = 𝐷ℳ𝒳
(𝒪𝒳)/𝐷𝒫𝒳

(𝒪𝒳)

This definition makes sense: By Proposition 62.7.4 we see that ℳ𝒳 is a weak Serre sub-
category of Mod(𝒪𝒳) hence 𝐷ℳ𝒳

(𝒪𝒳) is a strictly full, saturated triangulated subcategory
of 𝐷(𝒪𝒳), see Derived Categories, Lemma 11.12.1. Since parasitic modules form a Serre
subcategory of Mod(𝒪𝒳) (by Lemma 62.8.2) we see that 𝒫𝒳 = Parasitic ∩ ℳ𝒳 is a weak
Serre subcategory of Mod(𝒪𝒳) and hence 𝐷𝒫𝒳

(𝒪𝒳) is a strictly full, saturated triangulated
subcategory of 𝐷(𝒪𝒳). Since clearly

𝐷𝒫𝒳
(𝒪𝒳) ⊂ 𝐷ℳ𝒳

(𝒪𝒳)

we conclude that the first is a strictly full, saturated triangulated subcategory of the second.
Hence the Verdier quotient exists. A morphism 𝑎 ∶ 𝐸 → 𝐸′ of 𝐷ℳ𝒳

(𝒪𝒳) becomes an
isomorphism in 𝐷QCoh(𝒪𝒳) if and only if the cone 𝐶(𝑎) has parasitic cohomology sheaves,
see Derived Categories, Section 11.6 and especially Lemma 11.6.10.

Consider the functors

𝐷ℳ𝒳
(𝒪𝒳)

𝐻𝑖

−−→ ℳ𝒳
𝑄

−−→ QCoh(𝒪𝒳)

3This definition is different from the one in the literature, see [Ols07b, 6.3], but it agrees with that definition
by Lemma 62.13.3.
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Note that 𝑄 annihilates the subcategory 𝒫𝒳, see Lemma 62.9.2. By Derived Categories,
Lemma 11.6.8 we obtain a cohomological functor

(62.13.1.1) 𝐻𝑖 ∶ 𝐷QCoh(𝒪𝒳) ⟶ QCoh(𝒪𝒳)

Moreover, note that 𝐸 ∈ 𝐷QCoh(𝒪𝒳) is zero if and only if 𝐻𝑖(𝐸) = 0 for all 𝑖 ∈ 𝐙.

Note that the categories 𝒫𝒳 and ℳ𝒳 are also weak Serre subcategories of the abelian cate-
goryMod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) of modules in the étale topology, see Proposition 62.7.4 and Lemma
62.8.2. Hence the statement of the following lemma makes sense.

Lemma 62.13.2. Let 𝒳 be an algebraic stack. The comparision morphism 𝜖 ∶ 𝒳𝑓𝑝𝑝𝑓 →
𝒳 ́𝑒𝑡𝑎𝑙𝑒 induces a commutative diagram

𝐷𝒫𝒳
(𝒪𝒳) // 𝐷ℳ𝒳

(𝒪𝒳) // 𝐷(𝒪𝒳)

𝐷𝒫𝒳
(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) //

𝜖∗

OO

𝐷ℳ𝒳
(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) //

𝜖∗

OO

𝐷(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)

𝜖∗

OO

Moreover, the left two vertical arrows are equivalences of triangulated categories, hence
we also obtain an equivalence

𝐷ℳ𝒳
(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)/𝐷𝒫𝒳

(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) ⟶ 𝐷QCoh(𝒪𝒳)

Proof. Since 𝜖∗ is exact it is clear that we obtain a diagram as in the statement of the
lemma. We will show the middle vertical arrow is an equivalence by applying Cohomology
on Sites, Lemma 19.20.2 to the following situation: 𝒞 = 𝒳, 𝜏 = 𝑓𝑝𝑝𝑓, 𝜏′ = ́𝑒𝑡𝑎𝑙𝑒, 𝒪 = 𝒪𝒳,
𝒜 = ℳ𝒳, and ℬ is the set of objects of 𝒳 lying over affine schemes. To see the lemma
applies we have to check conditions (1), (2), (3), (4). Conditions (1) and (2) are clear from
the discussion above (explicitly this follows from Proposition 62.7.4). Condition (3) holds
because every scheme has a Zariski open covering by affines. Condition (4) follows from
Descent, Lemma 31.7.4.

We omit the verification that the equivalence of categories 𝜖∗ ∶ 𝐷ℳ𝒳
(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) →

𝐷ℳ𝒳
(𝒪𝒳) induces an equivalence of the subcategories of complexes with parasitic coho-

mology sheaves. �

It turns out that 𝐷QCoh(𝒪𝒳) is the same as the derived category of complexes of modules
with quasi-coherent cohomology sheaves on the lisse-étale or flat-fppf site.

Lemma 62.13.3. Let 𝒳 be an algebraic stack. Let ℱ• be an object of 𝐷ℳ𝒳
(𝒪𝒳).

(1) With 𝑔 as in Lemma 62.11.2 for the lisse-étale site we have
(a) 𝑔−1ℱ• is in 𝐷QCoh(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

),
(b) 𝑔−1ℱ• = 0 if and only if ℱ• is in 𝐷𝒫𝒳

(𝒪𝒳),
(c) 𝐿𝑔!ℋ• is in 𝐷ℳ𝒳

(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) for ℋ• in 𝐷QCoh(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
), and

(d) the functors 𝑔−1 and 𝐿𝑔! define mutually inverse functors

𝐷QCoh(𝒪𝒳)
𝑔−1
//
𝐷QCoh(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

)
𝐿𝑔!
oo

(2) With 𝑔 as in Lemma 62.11.2 for the flat-fppf site we have
(a) 𝑔−1ℱ• is in 𝐷QCoh(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

),
(b) 𝑔−1ℱ• = 0 if and only if ℱ• is in 𝐷𝒫𝒳

(𝒪𝒳),

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07B8
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(c) 𝐿𝑔!ℋ• is in 𝐷ℳ𝒳
(𝒪𝒳) for ℋ• in 𝐷QCoh(𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

), and
(d) the functors 𝑔−1 and 𝐿𝑔! define mutually inverse functors

𝐷QCoh(𝒪𝒳)
𝑔−1
//
𝐷QCoh(𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

)
𝐿𝑔!
oo

Proof. The functor 𝑔−1 is exact, hence (a) and (b) follow fromLemmas 62.12.3 and 62.11.5.

The construction of 𝐿𝑔! in Lemma 62.11.6 (via Cohomology on Sites, Lemma 19.22.1
which in turn uses Derived Categories, Proposition 11.27.2) shows that 𝐿𝑔! on any object
ℋ• of 𝐷(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

) is computed as

𝐿𝑔!ℋ• = 𝑐𝑜𝑙𝑖𝑚 𝑔!𝒦•
𝑛 = 𝑔! 𝑐𝑜𝑙𝑖𝑚 𝒦•

𝑛

(termwise colimits) where the quasi-isomorphism 𝑐𝑜𝑙𝑖𝑚 𝒦•
𝑛 → ℋ• induces quasi-isomorphisms

𝒦•
𝑛 → 𝜏≤𝑛ℋ•. Since ℳ𝒳 ⊂ Mod(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳) (resp. ℳ𝒳 ⊂ Mod(𝒪𝒳)) is preserved

under colimits we see that it suffices to prove (c) on bounded above complexes ℋ• in
𝐷QCoh(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒

) (resp. 𝐷QCoh(𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
)). In this case to show that 𝐻𝑛(𝐿𝑔!ℋ•) is in

ℳ𝒳 we can argue by induction on the integer 𝑚 such that ℋ𝑖 = 0 for 𝑖 > 𝑚. If 𝑚 < 𝑛, then
𝐻𝑛(𝐿𝑔!ℋ•) = 0 and the result holds. In general consider the distinguished triangle

𝜏≤𝑚−1ℋ• → ℋ• → 𝐻𝑚(ℋ•)[−𝑚] → …

and apply the functor 𝐿𝑔!. Since ℳ𝒳 is a weak Serre subcategory of the module category
it suffices to prove (c) for two out of three. We have the result for 𝐿𝑔!𝜏≤𝑚−1ℋ• by induction
and we have the result for 𝐿𝑔!𝐻𝑚(ℋ•)[−𝑚] by Lemma 62.12.5. Whence (c) holds.

Let us prove (2)(d). By (a) and (b) the functor 𝑔−1 = 𝑔∗ induces a functor

𝑐 ∶ 𝐷QCoh(𝒪𝒳) ⟶ 𝐷QCoh(𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
)

seeDerivedCategories, Lemma 11.6.8. Thuswe have the following diagram of triangulated
categories

𝐷ℳ𝒳
(𝒪𝒳)

𝑔−1

''

𝑞
// 𝐷QCoh(𝒪𝒳)

𝑐
ww

𝐷QCoh(𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓
)

𝐿𝑔!

gg

where 𝑞 is the quotient functor, the inner triangle is commutative, and 𝑔−1𝐿𝑔! = id. For
any object of 𝐸 of 𝐷ℳ𝒳

(𝒪𝒳) the map 𝑎 ∶ 𝐿𝑔!𝑔−1𝐸 → 𝐸 maps to a quasi-isomorphism in
𝐷(𝒪𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓

). Hence the cone on 𝑎 maps to zero under 𝑔−1 and by (b) we see that 𝑞(𝑎) is
an isomorphism. Thus 𝑞 ∘ 𝐿𝑔! is a quasi-inverse to 𝑐.

In the case of the lisse-étale site exactly the same argument as above proves that

𝐷ℳ𝒳
(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)/𝐷𝒫𝒳

(𝒳 ́𝑒𝑡𝑎𝑙𝑒, 𝒪𝒳)

is equivalent to 𝐷QCoh(𝒪𝒳𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒
). Applying the last equivalence of Lemma 62.13.2 fin-

ishes the proof. �

The following lemma tells us that the quotient functor 𝐷ℳ𝒳
(𝒪𝒳) → 𝐷QCoh(𝒪𝒳) is a Bous-

field colocalization (insert future reference here).
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Lemma 62.13.4. Let 𝒳 be an algebraic stack. Let 𝐸 be an object of 𝐷ℳ𝒳
(𝒪𝒳). There

exists a canonical distinguished triangle

𝐸′ → 𝐸 → 𝑃 → 𝐸′[1]

in 𝐷ℳ𝒳
(𝒪𝒳) such that 𝑃 is in 𝐷𝒫𝒳

(𝒪𝒳) and

𝐻𝑜𝑚𝐷(𝒪𝒳)(𝐸′, 𝑃′) = 0

for all 𝑃′ in 𝐷𝒫𝒳
(𝒪𝒳).

Proof. Consider the morphism of ringed topoi 𝑔 ∶ Sh(𝒳𝑓𝑙𝑎𝑡,𝑓𝑝𝑝𝑓) ⟶ Sh(𝒳𝑓𝑝𝑝𝑓). Set
𝐸′ = 𝐿𝑔!𝑔−1𝐸 and let 𝑃 be the cone on the adjunction map 𝐸′ → 𝐸. Since 𝑔−1𝐸′ → 𝑔−1𝐸
is an isomorphism we see that 𝑃 is an object of 𝐷𝒫𝒳

(𝒪𝒳) by Lemma 62.13.3 (2)(b). Finally,
𝐻𝑜𝑚(𝐸′, 𝑃′) = 𝐻𝑜𝑚(𝐿𝑔!𝑔−1𝐸, 𝑃′) = 𝐻𝑜𝑚(𝑔−1𝐸, 𝑔−1𝑃′) = 0 as 𝑔−1𝑃′ = 0.

Uniqueness. Suppose that 𝐸″ → 𝐸 → 𝑃′ is a second distinguished triangle as in the
statement of the lemma. Since 𝐻𝑜𝑚(𝐸′, 𝑃′) = 0 the morphism 𝐸′ → 𝐸 factors as 𝐸′ →
𝐸″ → 𝐸, see Derived Categories, Lemma 11.4.2. Similarly, the morphism 𝐸″ → 𝐸 factors
as 𝐸″ → 𝐸′ → 𝐸. Consider the composition 𝜑 ∶ 𝐸′ → 𝐸′ of the maps 𝐸′ → 𝐸″ and
𝐸″ → 𝐸′. Note that 𝜑 − 1 ∶ 𝐸′ → 𝐸′ fits into the commutative diagram

𝐸′

𝜑−1
��

// 𝐸

0
��

𝐸′ // 𝐸

hence factors through 𝑃[−1] → 𝐸. Since 𝐻𝑜𝑚(𝐸′, 𝑃[−1]) = 0 we see that 𝜑 = 1. Whence
the maps 𝐸′ → 𝐸″ and 𝐸″ → 𝐸′ are inverse to each other. �

62.14. Derived pushforward of quasi-coherent modules

Here is a first application of the material above.

Proposition 62.14.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a quasi-compact and quasi-separated morphism
of algebraic stacks. The functor 𝑅𝑓∗ induces a commutative diagram

𝐷+
𝒫𝒳

(𝒪𝒳) //

𝑅𝑓∗

��

𝐷+
ℳ𝒳

(𝒪𝒳) //

𝑅𝑓∗

��

𝐷(𝒪𝒳)

𝑅𝑓∗

��
𝐷+

𝒫𝒴
(𝒪𝒴) // 𝐷+

ℳ𝒴
(𝒪𝒴) // 𝐷(𝒪𝒴)

and hence induces a functor

𝑅𝑓QCoh,∗ ∶ 𝐷+
QCoh(𝒳) ⟶ 𝐷+

QCoh(𝒴)

on quotient categories. Moreover, the functor 𝑅𝑖𝑓QCoh of Proposition 62.10.1 are equal to
𝐻𝑖 ∘ 𝑅𝑓QCoh,∗ with 𝐻𝑖 as in (62.13.1.1).

Proof. We have to show that 𝑅𝑓∗𝐸 is an object of 𝐷+
ℳ𝒴

(𝒪𝒴) for 𝐸 in 𝐷+
ℳ𝒳

(𝒪𝒳). This
follows from Proposition 62.7.4 and the spectral sequence 𝑅𝑖𝑓∗𝐻𝑗(𝐸) ⇒ 𝑅𝑖+𝑗𝑓∗𝐸. The
case of parasitic modules works the same way using Lemma 62.8.3. The final statement is
clear from the definition of 𝐻𝑖 in (62.13.1.1). �

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07BA
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62.15. Derived pullback of quasi-coherent modules

Derived pullback of complexes with quasi-coherent cohomology sheaves exists in general.

Proposition 62.15.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a morphism of algebraic stacks. The exact functor
𝑓∗ induces a commutative diagram

𝐷ℳ𝒳
(𝒪𝒳) // 𝐷(𝒪𝒳)

𝐷ℳ𝒴
(𝒪𝒴) //

𝑓∗

OO

𝐷(𝒪𝒴)

𝑓∗

OO

The composition

𝐷ℳ𝒴
(𝒪𝒴)

𝑓∗

−−→ 𝐷ℳ𝒳
(𝒪𝒳)

𝑞𝒳−−→ 𝐷QCoh(𝒪𝒳)
is left deriveable with respect to the localization 𝐷ℳ𝒴

(𝒪𝒴) → 𝐷QCoh(𝒪𝒳) and we may
define 𝐿𝑓∗

QCoh as its left derived functor

𝐿𝑓∗
QCoh ∶ 𝐷QCoh(𝒪𝒴) ⟶ 𝐷QCoh(𝒪𝒳)

(see Derived Categories, Definitions 11.14.2 and 11.14.9). If 𝑓 is quasi-compact and quasi-
separated, then 𝐿𝑓∗

QCoh and 𝑅𝑓QCoh,∗ satisfy the following adjointness:

𝐻𝑜𝑚𝐷QCoh(𝒪𝒳)(𝐿𝑓∗
QCoh𝐴, 𝐵) = 𝐻𝑜𝑚𝐷QCoh(𝒪𝒴)(𝐴, 𝑅𝑓QCoh,∗𝐵)

for 𝐴 ∈ 𝐷QCoh(𝒪𝒴) and 𝐵 ∈ 𝐷+
QCoh(𝒪𝒳).

Proof. We have to show that 𝑓∗𝐸 is an object of 𝐷ℳ𝒳
(𝒪𝒳) for 𝐸 in 𝐷ℳ𝒴

(𝒪𝒴). Since
𝑓∗ = 𝑓−1 is exact this follows immediately from the fact that 𝑓∗ maps ℳ𝒴 into ℳ𝒳.

Set 𝒟 = 𝐷ℳ𝒴
(𝒪𝒴). Let 𝑆 be the collection of morphisms in 𝒟 whose cone is an object of

𝐷𝒫𝒴
(𝒪𝒴). Set 𝒟′ = 𝐷QCoh(𝒪𝒳). Set 𝐹 = 𝑞 ∘ 𝑓∗ ∶ 𝒟 → 𝒟′. Then 𝒟, 𝑆, 𝒟′, 𝐹 are as in

Derived Categories, Situation 11.14.1 and Definition 11.14.2. Let us prove that 𝐿𝐹(𝐸) is
defined for any object 𝐸 of 𝒟. Namely, consider the triangle

𝐸′ → 𝐸 → 𝑃 → 𝐸′[1]

constructed in Lemma 62.13.4. Note that 𝑠 ∶ 𝐸′ → 𝐸 is an element of 𝑆. We claim that 𝐸′

computes 𝐿𝐹. Namely, suppose that 𝑠′ ∶ 𝐸″ → 𝐸 is another element of 𝑆, i.e., fits into a
triangle 𝐸″ → 𝐸 → 𝑃′ → 𝐸″[1] with 𝑃′ in 𝐷𝒫𝒴

(𝒪𝒴). By Lemma 62.13.4 (and its proof)
we see that 𝐸′ → 𝐸 factors through 𝐸″ → 𝐸. Thus we see that 𝐸′ → 𝐸 is cofinal in the
system 𝑆/𝐸. Hence it is clear that 𝐸′ computes 𝐿𝐹.

To see the final statement, write 𝐵 = 𝑞𝒳(𝐻) and 𝐴 = 𝑞𝒴(𝐸). Choose 𝐸′ → 𝐸 as above. We
will use on the one hand that 𝑅𝑓QCoh,∗(𝐵) = 𝑞𝒴(𝑅𝑓∗𝐻) and on the other that 𝐿𝑓∗

QCoh(𝐴) =
𝑞𝒳(𝑓∗𝐸′).

𝐻𝑜𝑚𝐷QCoh(𝒪𝒳)(𝐿𝑓∗
QCoh𝐴, 𝐵) = 𝐻𝑜𝑚𝐷QCoh(𝒪𝒳)(𝑞𝒳(𝑓∗𝐸′), 𝑞𝒳(𝐻))

= 𝑐𝑜𝑙𝑖𝑚𝐻→𝐻′ 𝐻𝑜𝑚𝐷(𝒪𝒳)(𝑓∗𝐸′, 𝐻′)
= 𝑐𝑜𝑙𝑖𝑚𝐻→𝐻′ 𝐻𝑜𝑚𝐷(𝒪𝒴)(𝐸′, 𝑅𝑓∗𝐻′)

= 𝐻𝑜𝑚𝐷(𝒪𝒴)(𝐸′, 𝑅𝑓∗𝐻)

= 𝐻𝑜𝑚𝐷QCoh(𝒪𝒴)(𝐴, 𝑅𝑓QCoh,∗𝐵)

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=07BE
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Here the colimit is over morphisms 𝑠 ∶ 𝐻 → 𝐻′ in 𝐷+
ℳ𝒳

(𝒪𝒳) whose cone 𝑃(𝑠) is an
object of 𝐷+

𝒫𝒳
(𝒪𝒳). The first equality holds by construction. The second equality holds

by construction of the Verdier quotient. The third equality holds by Cohomology on Sites,
Lemma 19.19.1. Since 𝑅𝑓∗𝑃(𝑠) is an object of 𝐷+

𝒫𝒴
(𝒪𝒴) by Proposition 62.14.1 we see

that 𝐻𝑜𝑚𝐷(𝒪𝒴)(𝐸′, 𝑅𝑓∗𝑃(𝑠)) = 0. Thus the fourth equality holds. The final equality holds
by construction of 𝐸′. �
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CHAPTER 63

Introducing Algebraic Stacks

63.1. Why read this?

We give a very informal introduction to algebraic stacks aimed at graduate students and
advanced undergraduates. The goal is to quickly introduce a simple language which you
can use to think about local and global properties of your favorite moduli problem. Having
done this it should be possible to ask yourself well-posed questions about moduli problems
and to start solving them, whilst assuming a general theory exists. If you end up with an
interesting result, you can go back to the general theory in the other parts of the stacks
project and fill in the gaps as needed.

The point of view we take here is very close to the point of view taken in [KM85] and
[Mum65].

63.2. Preliminary

Let 𝑆 be a scheme. An elliptic curve over 𝑆 is a triple (𝐸, 𝑓, 0) where 𝐸 is a scheme and
𝑓 ∶ 𝐸 → 𝑆 and 0 ∶ 𝑆 → 𝐸 are morphisms of schemes such that

(1) 𝑓 ∶ 𝐸 → 𝑆 is proper, smooth of relative dimension 1,
(2) for every 𝑠 ∈ 𝑆 the fibre 𝐸𝑠 is a connected curve of genus 1, i.e., 𝐻0(𝐸𝑠, 𝒪) and

𝐻1(𝐸𝑠, 𝒪) both are 1-dimensional 𝜅(𝑠)-vector spaces, and
(3) 0 is a section of 𝑓.

Given elliptic curves (𝐸, 𝑓, 0)/𝑆 and (𝐸′, 𝑓′, 0′)/𝑆′ a morphism of elliptic curves over 𝑎 ∶
𝑆 → 𝑆′ is a morphism 𝛼 ∶ 𝐸 → 𝐸′ such that the diagram

𝐸 𝛼
//

𝑓
��

𝐸′

𝑓′

��
𝑆

0

77

𝑎 // 𝑆′

0′

gg

is commutative. We are going to define the stack of elliptic curves ℳ1,1. In the rest of
the stacks project we work out the method introduced in Deligne and Mumford's paper
[DM69a] which consists in presenting ℳ1,1 as a category endowed with a functor

𝑝 ∶ ℳ1,1 ⟶ Sch, (𝐸, 𝑓, 0)/𝑆 ⟼ 𝑆

This means you work with fibred categories over the categories of schemes, topologies,
stacks fibred in groupoids, coverings, etc, etc. In this chapter we throw all of that out of the
window and we think about it a bit differently -- probably closer to how the initiators of the
theory started thinking about it themselves.

63.3. The moduli stack of elliptic curves

Here is what we are going to do:

2867
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(1) Start with your favorite category of schemes Sch.
(2) Add a new symbol ℳ1,1.
(3) A morphism 𝑆 → ℳ1,1 is an elliptic curve (𝐸, 𝑓, 0) over 𝑆.
(4) A diagram

𝑆 𝑎
//

(𝐸,𝑓,0) !!

𝑆′

(𝐸′,𝐹′,0′)}}
ℳ1,1

is commutative if and only if there exists a morphism 𝛼 ∶ 𝐸 → 𝐸′ of elliptic
curves over 𝑎 ∶ 𝑆 → 𝑆′. We say 𝛼 witnesses the commutativity of the diagram.

(5) Note that commutative diagrams glue as follows

𝑆 𝑎
//

(𝐸,𝑓,0)
))

𝑆′

(𝐸′,𝐹′,0′)
��

𝑎′
// 𝑆″

(𝐸″,𝐹″,0″)uu
ℳ1,1

because 𝛼′∘𝛼 witnesses the commutativity of the outer triangle if 𝛼 and 𝛼′ witness
the commutativity of the left and right triangles.

(6) The composition

𝑆′ 𝑎
−→ 𝑆′ (𝐸′,𝑓′,0′)

−−−−−−−→ ℳ1,1

is given by (𝐸′ ×𝑆′ 𝑆, 𝑓′ ×𝑆′ 𝑆, 0′ ×𝑆′ 𝑆).
At the end of this procedure we have enlarged the category Sch of schemes with exactly
one object...

Except that we haven't defined what a morphism from ℳ1,1 to a scheme 𝑇 is. The answer is
that it is the weakest possible notion such that compositions make sense. Thus a morphism
𝐹 ∶ ℳ1,1 → 𝑇 is a rule which to every elliptic curve (𝐸, 𝑓, 0)/𝑆 associates a morphism
𝐹(𝐸, 𝑓, 0) ∶ 𝑆 → 𝑇 such that given any commutative diagram

𝑆 𝑎
//

(𝐸,𝑓,0) !!

𝑆′

(𝐸′,𝐹′,0′)}}
ℳ1,1

the diagram
𝑆 𝑎

//

𝐹(𝐸,𝑓,0) ��

𝑆′

𝐹(𝐸′,𝐹′,0′)��
𝑇

is commutative also. An example is the 𝑗-invariant

𝑗 ∶ ℳ1,1 ⟶ 𝐀1
𝐙

which you may have heard of. Aha, so now we're done...

Except, no we're not! We still have to define a notion of morphisms ℳ1,1 → ℳ1,1. This
we do in exactly the same way as before, i.e., a morphism 𝐹 ∶ ℳ1,1 → ℳ1,1 is a rule which
to every elliptic curve (𝐸, 𝑓, 0)/𝑆 associates another elliptic curve 𝐹(𝐸, 𝑓, 0) preserving
commutativity of diagrams as above. However, since I don't know of a nontrivial example
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of such a functor, I'll just define the set of morphisms from ℳ1,1 to itself to consist of the
identity for now.
I hope you see how to add other objects to this enlarged category. Somehow it seems
intuitively clear that given any ``well-behaved'' moduli problem we can perform the con-
struction above and add an object to our category. In fact, much of modern day algebraic
geometry takes place in such a universe where Sch is enlarged with countably many (ex-
plicitly constructed) moduli stacks.
You may object that the category we obtain isn't a category because there is a ``vagueness''
about when diagrams commute and which combinations of diagrams continue to commute
as we have to produce a witness to the commutativity. However, it turns out that this, the
idea of having witnesses to commutativity, is a valid approach to 2-categories! Thus we
stick with it.

63.4. Fibre products

The question we pose here is what should be the fibre product

?

""}}
𝑆

(𝐸,𝑓,0) !!

𝑆′

(𝐸′,𝑓′,0′)}}
ℳ1,1

The answer: A morphism from a scheme 𝑇 into ? should be a triple (𝑎, 𝑎′, 𝛼) where 𝑎 ∶
𝑇 → 𝑆, 𝑎′ ∶ 𝑇 → 𝑆′ are morphisms of schemes and where 𝛼 ∶ 𝐸 ×𝑆,𝑎 𝑇 → 𝐸′ ×𝑆′,𝑎′ 𝑇
is a morphism of elliptic curves over id𝑇. This makes sense because of our definition of
composition and commutative diagrams earlier in the discussion.

Lemma 63.4.1 (Key fact). The functor Sch𝑜𝑝𝑝 → Sets, 𝑇 ↦ {(𝑎, 𝑎′, 𝛼) as above} is repre-
sentable by a scheme 𝑆 ×ℳ1,1

𝑆′.

Proof. Idea of proof. Relate this functor to
𝐼𝑠𝑜𝑚𝑆×𝑆′(𝐸 × 𝑆′, 𝑆 × 𝐸′)

and use Grothendieck's theory of Hilbert schemes. �

Remark 63.4.2. We have the formula 𝑆 ×ℳ1,1
𝑆′ = (𝑆 × 𝑆′) ×ℳ1,1×ℳ1,1

ℳ1,1. Hence the
key fact is a property of the diagonal Δℳ1,1

of ℳ1,1.

In any case the key fact allows us to make the following definition.

Definition 63.4.3. We say a morphism 𝑆 → ℳ1,1 is smooth if for every morphism 𝑆′ →
ℳ1,1 the projection morphism

𝑆 ×ℳ1,1
𝑆′ ⟶ 𝑆′

is smooth.

Note that this is compatible with the notion of a smooth morphism of schemes as the base
change of a smooth morphism is smooth. Moreover, it is clear how to extend this defini-
tion to other properties of morphisms into ℳ1,1 (or your own favorite moduli stack). In
particular we will use it below for surjective morphisms.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=072M
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=072N
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=072P
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63.5. The definition

We'll formulate it as a definition and not as a result since we expect the reader to try out
other cases (not just the stack ℳ1,1 and not just Sch the category of all schemes).

Definition 63.5.1. We say ℳ1,1 is an algebraic stack if and only if
(1) We have descent for objects for the étale topology on Sch.
(2) The key fact holds.
(3) there exists a surjective and smooth morphism 𝑆 → ℳ1,1.

The first condition is a ``sheaf property''. We're going to spell it out since there is a technical
point we should make. Suppose given a scheme 𝑆 and an étale covering {𝑆𝑖 → 𝑆} and
morphisms 𝑒𝑖 ∶ 𝑆𝑖 → ℳ1,1 such that the diagrams

𝑆𝑖 ×𝑆 𝑆𝑗

𝑒𝑖∘pr1 $$

id
// 𝑆𝑖 ×𝑆 𝑆𝑗

𝑒𝑗∘pr2zz
ℳ1,1

commute. The sheaf condition does not guarantee the existence of a morphism 𝑒 ∶ 𝑆 →
ℳ1,1 in this situation. Namely, we need to pick witnesses 𝛼𝑖𝑗 for the diagrams above and
require that

pr∗02𝛼𝑖𝑘 = pr12𝛼𝑗𝑘 ∘ pr∗01𝛼𝑖𝑗
as witnesses over 𝑆𝑖 ×𝑆 𝑆𝑗 ×𝑆 𝑆𝑘. I think it is clear what this means... If not, then I'm afraid
you'll have to read some of the material on categories fibred in groupoids, etc. In any case,
the displayed equation is often called the cocycle condition. A more precise statement of
the ``sheaf property'' is: given {𝑆𝑖 → 𝑆}, 𝑒𝑖 ∶ 𝑆𝑖 → ℳ1,1 and witnesses 𝛼𝑖𝑗 satisfying the
cocycle condition, there exists a unique (up to unique isomorphism) 𝑒 ∶ 𝑆 → ℳ1,1 with
𝑒𝑖 ≅ 𝑒|𝑆𝑖

recovering the 𝛼𝑖𝑗.

As you can see even formulating a precise statement takes a bit of work. The proof of this
``sheaf property'' relies on a fundamental technique in algebraic geometry, namely descent
theory. My suggestion is to initially simply accept the ``sheaf property'' holds, and see
what it implies in practice. In fact, a certain amount of mental agility is required to boil
the ``sheaf property'' down to a manageable statement that you can fit on a napkin. Perhaps
the simplest variant which is already a bit interesting is the following: Suppose we have a
Galois extension 𝐾 ⊂ 𝐿 of fields with Galois group 𝐺 = Gal(𝐿/𝐾). Set 𝑇 = 𝑆𝑝𝑒𝑐(𝐿) and
𝑆 = 𝑆𝑝𝑒𝑐(𝐾). Then {𝑇 → 𝑆} is an étale covering. Let (𝐸, 𝑓, 0) be an elliptic curve over 𝐿.
(Yes, this just means that 𝐸 ⊂ 𝐏2

𝐿 is given by aWeierstrass equation and 0 is the usual point
at infinity.) Denote 𝐸𝜎 = 𝐸 ×𝑇,𝑆𝑝𝑒𝑐(𝜎) 𝑇 the base change. (Yes, this corresponds to applying
𝜎 to the coefficients of the Weierstrass equation, or is it 𝜎−1?) Now, suppose moreover that
for every 𝜎 ∈ 𝐺 we are given an isomorphism

𝛼𝜎 ∶ 𝐸 ⟶ 𝐸𝜎

over 𝑇. The cocycle condition above means in this situation that

(𝛼𝜏)𝜎 ∘ 𝛼𝜎 = 𝛼𝜏𝜎

for 𝜎, 𝜏 ∈ 𝐺. If you've ever done any group cohomology then this should be familiar.
Anyway, the ``glueing'' condition on ℳ1,1 says that if you have a solution to this set of
equations, then there exists an elliptic curve 𝐸′ over 𝑆 such that 𝐸 ≅ 𝐸 ×𝑆 𝑇 (it says a little
bit more because it also tells you how to recover the 𝛼𝜎).

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=072R
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Challenge: Can you prove this entirely using only elliptic curves defined in terms of Weier-
strass equations?

63.6. A smooth cover

The last thing we have to do is find a smooth cover of ℳ1,1. In fact, in some sense the
existence of a smooth cover implies1 the key fact! In the case of elliptic curves we use the
Weierstrass equation to construct one.
Set

𝑊 = 𝑆𝑝𝑒𝑐(𝐙[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6, 1/Δ])
where Δ ∈ 𝐙[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] is a certain polynomial (see below). Set

𝐏2
𝑊 ⊃ 𝐸𝑊 ∶ 𝑧𝑦2 + 𝑎1𝑥𝑦𝑧 + 𝑎3𝑦𝑧2 = 𝑥3 + 𝑎2𝑥2𝑧 + 𝑎4𝑥𝑧3 + 𝑎6𝑧3.

Denote 𝑓𝑊 ∶ 𝐸𝑊 → 𝑊 the projection. Finally, denote 0𝑊 ∶ 𝑊 → 𝐸𝑊 the section of 𝑓𝑊
given by (0 ∶ 1 ∶ 0). It turns out that there is a degree 12 homogeneous polynomial Δ in 𝑎𝑖
where deg(𝑎𝑖) = 𝑖 such that 𝐸𝑊 → 𝑊 is smooth. You can find it explicitly by computing
partials of the Weierstrass equation -- of course you can also look it up. You can also use
pari/gp to compute it for you. Here it is

Δ = −𝑎6𝑎6
1 + 𝑎4𝑎3𝑎5

1 + ((−𝑎2
3 − 12𝑎6)𝑎2 + 𝑎2

4)𝑎4
1+

(8𝑎4𝑎3𝑎2 + (𝑎3
3 + 36𝑎6𝑎3))𝑎3

1+

((−8𝑎2
3 − 48𝑎6)𝑎2

2 + 8𝑎2
4𝑎2 + (−30𝑎4𝑎2

3 + 72𝑎6𝑎4))𝑎2
1+

(16𝑎4𝑎3𝑎2
2 + (36𝑎3

3 + 144𝑎6𝑎3)𝑎2 − 96𝑎2
4𝑎3)𝑎1+

(−16𝑎2
3 − 64𝑎6)𝑎3

2 + 16𝑎2
4𝑎2

2 + (72𝑎4𝑎2
3 + 288𝑎6𝑎4)𝑎2+

− 27𝑎4
3 − 216𝑎6𝑎2

3 − 64𝑎3
4 − 432𝑎2

6

You may recognize the last two terms from the case 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 having discriminant
−64𝐴3 − 432𝐵2 = −16(4𝐴3 + 27𝐵2).

Lemma 63.6.1. The morphism 𝑊
(𝐸𝑊,𝑓𝑊,0𝑊)

−−−−−−−−−→ ℳ1,1 is smooth and surjective.

Proof. Surjectivity follows from the fact that every elliptic curve over a field has a Weier-
strass equation. We give a very rough sketch of one way to prove smoothness. Consider
the sub group scheme

𝐻 =
⎧⎪
⎨
⎪⎩

⎛
⎜
⎜
⎝

𝑢2 𝑠 0
0 𝑢3 0
𝑟 𝑡 1

⎞
⎟
⎟
⎠

|
|
|
|
||

𝑢 unit
𝑠, 𝑟, 𝑡 arbitrary

⎫⎪
⎬
⎪⎭

⊂ GL3,𝐙

There is an action 𝐻 × 𝑊 → 𝑊 of 𝐻 on the Weierstrass scheme 𝑊. To find the equations
for this action write out what a coordinate change given by a matrix in 𝐻 does to the general
Weierstrass equation. Then it turns out the following statements hold

(1) any elliptic curve (𝐸, 𝑓, 0)/𝑆 has Zariski locally on 𝑆 a Weierstrass equation,
(2) any two Weierstrass equations for (𝐸, 𝑓, 0) differ (Zariski locally) by an element

of 𝐻.
1This is a bit of a cheat because in checking the smoothness you have to prove something very close to the

key fact -- after all smoothness is defined in terms of fibre products. The advantage is that you only have to prove
the existence of these fibre products in the case that on one side you have the morphism that you are trying to
show provides the smooth cover.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=072T
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Considering the fibre product 𝑆 ×ℳ1,1
𝑊 = 𝐼𝑠𝑜𝑚𝑆×𝑊(𝐸 × 𝑊, 𝑆 × 𝐸𝑊) we conclude that

this means that the morphism 𝑊 → ℳ1,1 is an 𝐻-torsor. Since 𝐻 → Spec(𝐙) is smooth,
and since torsors over smooth group schemes are smooth we win. �

Remark 63.6.2. The argument sketched above actually shows that ℳ1,1 = [𝑊/𝐻] is a
global quotient stack. It is true about 50% of the time that an argument proving a moduli
stack is algebraic will show that it is a global quotient stack.

63.7. Properties of algebraic stacks

Ok, so now we know that ℳ1,1 is an algebraic stack. What can we do with this? Well, it
isn't so much the fact that it is an algebraic stack that helps us here, but more the point of
view that properties of ℳ1,1 should be encoded in the properties of morphisms 𝑆 → ℳ1,1,
i.e., in families of elliptic curves. We list some examples

Local properties:
ℳ1,1 → Spec(𝐙) is smooth ⇔ 𝑊 → Spec(𝐙) is smooth

Idea. Local properties of an algebraic stack are encoded in the local properties of its smooth
cover.

Global properties:
ℳ1,1 is quasi-compact ⇐ 𝑊 is quasi-compact

ℳ1,1 is irreducible ⇐ 𝑊 is irreducible
Idea. Some global properties of an algebraic stack can be read off from the corresponding
property of a suitable2 smooth cover.

Quasi-coherent sheaves:
QCoh(ℳ1,1) = 𝐻-equivariant quasi-coherent modules on 𝑊

Idea. On the one hand a quasi-coherent module on ℳ1,1 should correspond to a quasi-
coherent sheaf ℱ𝑆,𝑒 on 𝑆 for each morphism 𝑒 ∶ 𝑆 → ℳ1,1. In particular for the morphism
(𝐸𝑊, 𝑓𝑊, 0𝑊) ∶ 𝑊 → ℳ1,1. Since this morphism is 𝐻-equivariant we see the quasi-
coherent module ℱ𝑊 we obtain is 𝐻-equivariant. Conversely, given an 𝐻-equivariant
module we can recover the sheaves ℱ𝑆,𝑒 by descent theory starting with the observation
that 𝑆 ×𝑒,ℳ1,1

𝑊 is an 𝐻-torsor.

Picard group:
Pic(ℳ1,1) = Pic𝐻(𝑊) = 𝐙/12𝐙

Idea. We have seen the first equality above. Note that Pic(𝑊) = 0 because the ring
𝐙[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6, 1/Δ] has trivial class group. There is an exact sequence

𝐙Δ → Pic𝐻(𝐀5
𝐙) → Pic𝐻(𝑊) → 0

The middle group equals 𝐻𝑜𝑚(𝐻, 𝐆𝑚) = 𝐙. The image Δ is 12 because Δ has degree 12.
This argument is roughly correct, see [FO10].

Étale cohomology: Let Λ be a ring. There is a first quadrant spectral sequence converging
to 𝐻𝑝+𝑞

́𝑒𝑡𝑎𝑙𝑒(ℳ1,1, Λ) with 𝐸2-page

𝐸𝑝,𝑞
2 = 𝐻𝑞

́𝑒𝑡𝑎𝑙𝑒(𝑊 × 𝐻 × … × 𝐻, Λ) (𝑝 factors 𝐻)

2I suppose that it is possible an irreducible algebraic stack exists which doesn't have an irreducible smooth
cover -- but if so it is going to be quite nasty!

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=072U
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Idea. Note that
𝑊 ×ℳ1,1

𝑊 ×ℳ1,1
… ×ℳ1,1

𝑊 = 𝑊 × 𝐻 × … × 𝐻

because 𝑊 → ℳ1,1 is a 𝐻-torsor. The spectral sequence is the Čech-to-cohomology spec-
tral sequence for the smooth cover {𝑊 → ℳ1,1}. For examplewe see that𝐻0

́𝑒𝑡𝑎𝑙𝑒(ℳ1,1, Λ) =
Λ because 𝑊 is connected, and 𝐻1

́𝑒𝑡𝑎𝑙𝑒(ℳ1,1, Λ) = 0 because 𝐻1
́𝑒𝑡𝑎𝑙𝑒(𝑊, Λ) = 0 (of course

this requires a proof). Of course, the smooth covering 𝑊 → ℳ1,1 may not be ``optimal''
for the computation of étale cohomology.

63.8. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups
(9) Sites and Sheaves

(10) Homological Algebra
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(13) Smoothing Ring Maps
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(15) Sheaves of Modules
(16) Modules on Sites
(17) Injectives
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(20) Hypercoverings
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(24) Morphisms of Schemes
(25) Coherent Cohomology
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(27) Limits of Schemes
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CHAPTER 64

Examples

64.1. Introduction

This chapters will contain examples which illuminate the theory.

64.2. Noncomplete completion

Let 𝑅 be a ring and let 𝔪 be a maximal ideal. Consider the completion

𝑅∧ = 𝑙𝑖𝑚 𝑅/𝔪𝑛.

Note that 𝑅∧ is a local ring with maximal ideal 𝔪′ = Ker(𝑅∧ → 𝑅/𝔪). Namely, if
𝑥 = (𝑥𝑛) ∈ 𝑅∧ is not in 𝔪′, then 𝑦 = (𝑥−1

𝑛 ) ∈ 𝑅∧ satisfies 𝑥𝑦 = 1, whence 𝑅∧ is local by
Algebra, Lemma 7.17.2. Now it is always true that 𝑅∧ complete in its limit topology (see
the discussion in More on Algebra, Section 12.27). But beyond that, we have the following
questions:

(1) Is it true that 𝔪𝑅∧ = 𝔪′?
(2) Is 𝑅∧ viewed as an 𝑅∧-module 𝔪′-adically complete?
(3) Is 𝑅∧ viewed as an 𝑅-module 𝔪-adically complete?

It turns out that of these questions all have a negative answer. The example below was
taken from an upublished note of Bart de Smit and Hendrik Lenstra. It also is discussed
in [Bou61, Exercise III.2.12] over a finite field. It is further discussed in [Yek11, Example
1.8]

Let 𝑘 be a field, 𝑅 = 𝑘[𝑥1, 𝑥2, 𝑥3, …], and 𝔪 = (𝑥1, 𝑥2, 𝑥3, …). Wewill think of an element
𝑓 of 𝑅∧ as a (possibly) infinite sum

𝑓 = ∑ 𝑎𝐼𝑥𝐼

(using multi-index notation) such that for each 𝑑 ≥ 0 there are only finitely many nonzero
𝑎𝐼 for |𝐼| = 𝑑. The maximal ideal 𝔪′ ⊂ 𝑅∧ is the collection of 𝑓 with zero constant term.
In particular, the element

𝑓 = 𝑥1 + 𝑥2
2 + 𝑥3

3 + …
is in 𝔪′ but not in 𝔪𝑅∧ which shows that (1) is false in this example. Note that we do
have 𝔪𝑅∧ ⊂ 𝔪′. Hence, 𝑅∧ is not 𝔪-adically complete as an 𝑅-module, then it is also
not 𝔪′-adically complete. To show that 𝑅∧ is not 𝔪-adically complete (as an 𝑅-module)
it suffices to show that 𝐾2 = Ker(𝑅∧ → 𝑅/𝔪2) is not equal to 𝔪2𝑅∧, see Algebra, Lemma
7.90.6. Note that an element of 𝔪2𝑅∧ ⊂ (𝔪′)2 can be written as a finite sum

(64.2.0.1) ∑𝑖=1,…,𝑡
𝑓𝑖𝑔𝑖

with 𝑓𝑖, 𝑔𝑖 ∈ 𝑅∧ having vanishing constant terms. To get an example we are going to
choose an 𝑧 ∈ 𝐾2 of the form

𝑧 = 𝑧1 + 𝑧2 + 𝑧3 + …

2875
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with the following properties
(1) there exist sequences 1 < 𝑑1 < 𝑑2 < 𝑑3 < … and 0 < 𝑛1 < 𝑛2 < 𝑛3 < … such

that 𝑧𝑖 ∈ 𝑘[𝑥𝑛𝑖
, 𝑥𝑛𝑖+1, … , 𝑥𝑛𝑖+1−1] homogeneous of degree 𝑑𝑖, and

(2) in the ring 𝑘[[𝑥𝑛𝑖
, 𝑥𝑛𝑖+1, … , 𝑥𝑛𝑖+1−1]] the element 𝑧𝑖 cannot be written as a sum

(64.2.0.1) with 𝑡 ≤ 𝑖.
Clearly this implies that 𝑧 is not in (𝔪′)2 because the image of the relation (64.2.0.1) in the
ring 𝑘[[𝑥𝑛𝑖

, 𝑥𝑛𝑖+1, … , 𝑥𝑛𝑖+1−1]] for 𝑖 large enough would produce a contradiction. Hence it
suffices to prove that for all 𝑡 > 0 there exists a 𝑑 ≫ 0 and an integer 𝑛 such that we can
find an homogeneous element 𝑧 ∈ 𝑘[𝑥1, … , 𝑥𝑛] of degree 𝑑 which cannot be written as a
sum (64.2.0.1) for the given 𝑡 in 𝑘[[𝑥1, … , 𝑥𝑛]]. Take 𝑛 > 2𝑡 and any 𝑑 > 1 prime to the
characteristic of 𝑝 and set 𝑧 = ∑𝑖=1,…,𝑛 𝑥𝑑

𝑖 . Then the vanishing locus of the ideal

( 𝜕𝑧
𝜕𝑥1

, … , 𝜕𝑧
𝜕𝑥𝑛

) = (𝑑𝑥𝑑−1
1 , … , 𝑑𝑥𝑑−1

𝑛 )

consists of one point. On the other hand,
𝜕(∑𝑖=1,…,𝑡 𝑓𝑖𝑔𝑖)

𝜕𝑥𝑗
∈ (𝑓1, … , 𝑓𝑡, 𝑔1, … , 𝑔𝑡)

by the Leibniz rule and hence the vanishing locus of these derivatives contains at least

𝑉(𝑓1, … , 𝑓𝑡, 𝑔1, … , 𝑔𝑡) ⊂ 𝑆𝑝𝑒𝑐(𝑘[[𝑥1, … , 𝑥𝑛]]).

Hence this is a contradition as the dimension of 𝑉(𝑓1, … , 𝑓𝑡, 𝑔1, … , 𝑔𝑡) is at least 𝑛−2𝑡 ≥ 1.

Lemma 64.2.1. There exists a local ring𝑅 and amaximal ideal𝔪 such that the completion
𝑅∧ of 𝑅 with respect to 𝔪 has the following properties

(1) 𝑅∧ is local, but its maximal ideal is not equal to 𝔪𝑅∧,
(2) 𝑅∧ is not a complete local ring, and
(3) 𝑅∧ is not 𝔪-adically complete as an 𝑅-module.

Proof. This follows from the discussion above as (with 𝑅 = 𝑘[𝑥1, 𝑥2, 𝑥3, …]) the comple-
tion of the localization 𝑅𝔪 is equal to the completion of 𝑅. �

64.3. Noncomplete quotient

Let 𝑘 be a field. Let

𝑅 = 𝑘[𝑡, 𝑧1, 𝑧2, 𝑧3, … , 𝑤1, 𝑤2, 𝑤3, … , 𝑥]/(𝑧𝑖𝑡 − 𝑥𝑖𝑤𝑖, 𝑧𝑖𝑤𝑗)

Note that in particular 𝑧𝑖𝑧𝑗𝑡 = 0 in this ring. Any element 𝑓 of 𝑅 can be uniquely written
as a finite sum

𝑓 = ∑𝑖=0,…,𝑑
𝑓𝑖𝑥𝑖

where each 𝑓𝑖 ∈ 𝑘[𝑡, 𝑧𝑖, 𝑤𝑗] has no terms involving the products 𝑧𝑖𝑡 or 𝑧𝑖𝑤𝑗. Moreover, if
𝑓 is written in this way, then 𝑓 ∈ (𝑥𝑛) if and only if 𝑓𝑖 = 0 for 𝑖 < 𝑛. So 𝑥 is a nonzero
divisor and ⋂(𝑥𝑛) = 0. Let 𝑅∧ be the completion of 𝑅 with respect to the ideal (𝑥). Note
that 𝑅∧ is (𝑥)-adically complete, see Algebra, Lemma 7.90.7. By the above we see that an
element of 𝑅∧ can be uniquely written as an infinite sum

𝑓 = ∑
∞
𝑖=0

𝑓𝑖𝑥𝑖

where each 𝑓𝑖 ∈ 𝑘[𝑡, 𝑧𝑖, 𝑤𝑗] has no terms involving the products 𝑧𝑖𝑡 or 𝑧𝑖𝑤𝑗. Consider the
element

𝑓 = ∑
∞
𝑖=1

𝑥𝑖−1𝑤𝑖 = 𝑥𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 + …
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i.e., we have 𝑓𝑛 = 𝑤𝑛. Note that 𝑓 ∈ (𝑡, 𝑥𝑛) for every 𝑛 because 𝑥𝑚𝑤𝑚 ∈ (𝑡) for all 𝑚. We
claim that 𝑓∉(𝑡). To prove this assume that 𝑡𝑔 = 𝑓 where 𝑔 = ∑ 𝑔𝑙𝑥𝑙 in canonical form
as above. Since 𝑡𝑧𝑖𝑧𝑗 = 0 we may as well assume that none of the 𝑔𝑙 have terms involving
the products 𝑧𝑖𝑧𝑗. Examining the process to get 𝑡𝑔 in canonical form we see the following:
Given any term 𝑐𝑚 of 𝑔𝑙 where 𝑐 ∈ 𝑘 and 𝑚 is a monomial in 𝑡, 𝑧𝑖, 𝑤𝑗 and we make the
following replacement

(1) if the monomial 𝑚 does not involve any 𝑧𝑖, then 𝑐𝑡𝑚 is a term of 𝑓𝑙, and
(2) if the monomial 𝑚 does involve a 𝑧𝑖 then it is eqal to 𝑚 = 𝑧𝑖 and we see that 𝑐𝑤𝑖

is term of 𝑓𝑙+𝑖.
Since 𝑔0 is a polynomial only finitely many of the variables 𝑧𝑖 occur in it. Pick 𝑛 such that
𝑧𝑛 does not occur in 𝑔0. Then the rules above show that 𝑤𝑛 does not occur in 𝑓𝑛 which is a
contradiction. It follows that 𝑅∧/(𝑡) is not complete, see Algebra, Lemma 7.90.13.

Lemma 64.3.1. There exists a ring 𝑅 complete with respect to a principal ideal 𝐼 and a
principal ideal 𝐽 such that 𝑅/𝐽 is not 𝐼-adically complete.

Proof. See discussion above. �

64.4. Completion is not exact

A quick example is the following. Suppose that 𝑅 = 𝑘[𝑡]. Let 𝑃 = 𝐾 = ⨁𝑛∈𝐍 𝑅 and
𝑀 = ⨁𝑛∈𝐍 𝑅/(𝑡𝑛). Then there is a short exact sequence 0 → 𝐾 → 𝑃 → 𝑀 → 0
where the first map is given by multiplication by 𝑡𝑛 on the 𝑛th summand. We claim that
0 → 𝐾∧ → 𝑃∧ → 𝑀∧ → 0 is not exact in the middle. Namely, 𝜉 = (𝑡2, 𝑡3, 𝑡4, …) ∈ 𝑃∧

maps to zero in 𝑀∧ but is not in the image of 𝐾∧ → 𝑃∧, because it would be the image of
(𝑡, 𝑡, 𝑡, …) which is not an element of 𝐾∧.

A ``smaller'' example is the following. In the situation of Lemma 64.3.1 the short exact
sequence 0 → 𝐽 → 𝑅 → 𝑅/𝐽 → 0 does not remain exact after completion. Namely, if
𝑓 ∈ 𝐽 is a generator, then 𝑓 ∶ 𝑅 → 𝐽 is surjective, hence 𝑅 → 𝐽∧ is surjective, hence the
image of 𝐽∧ → 𝑅 is (𝑓) = 𝐽 but the fact that 𝑅/𝐽 is noncomplete means that the kernel
of the surjection 𝑅 → (𝑅/𝐽)∧ is strictly bigger than 𝐽, see Algebra, Lemmas 7.90.1 and
7.90.13. By the same token the sequence 𝑅 → 𝑅 → 𝑅/(𝑓) → 0 does not remain exact on
completion.

Lemma 64.4.1. Completion is not an exact functor in general; it is not even right exact in
general. This holds even when 𝐼 is finitely generated on the category of finitely presented
modules.

Proof. See discussion above. �

64.5. The category of complete modules is not abelian

Let 𝑅 be a ring and let 𝐼 ⊂ 𝑅 be a finitely generated ideal. Consider the category 𝒜
of 𝐼-adically complete 𝑅-modules, see Algebra, Definition 7.90.5. Let 𝜑 ∶ 𝑀 → 𝑁 be a
morphism of 𝒜. The cokernel of 𝜑 in 𝒜 is the completion (Coker(𝜑))∧ of the usual cokernel
(as 𝐼 is finitely generated this completion is complete, see Algebra, Lemma 7.90.7). Let
𝐾 = Ker(𝜑). We claim that 𝐾 is complete and hence is the kernel of 𝜑 in 𝒜. Namely, let
𝐾∧ be the completion. As 𝑀 is complete we obtain a factorization

𝐾 → 𝐾∧ → 𝑀
𝜑

−→ 𝑁
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Since 𝜑 is continuous for the 𝐼-adic topology, 𝐾 → 𝐾∧ has dense image, and 𝐾 = Ker(𝜑)
we conclude that 𝐾∧ maps into 𝐾. Thus 𝐾∧ = 𝐾 ⊕ 𝐶 and 𝐾 is a direct sum of a complete
module, hence complete.

We will give an example that shows that Im≠Coim in general. We take 𝑅 = 𝐙𝑝 =
𝑙𝑖𝑚𝑛 𝐙/𝑝𝑛𝐙 to be the ring of 𝑝-adic integers and we take 𝐼 = (𝑝). Consider the map

diag(1, 𝑝, 𝑝2, …) ∶ (⨁𝑛≥1
𝐙𝑝)

∧
⟶ ∏𝑛≥1

𝐙𝑝

where the left hand side is the 𝑝-adic completion of the direct sum. Hence an element of
the left hand side is a vector (𝑥1, 𝑥2, 𝑥3, …) with 𝑥𝑖 ∈ 𝐙𝑝 with 𝑝-adic valuation 𝑣𝑝(𝑥𝑖) → ∞
as 𝑖 → ∞. This maps to (𝑥1, 𝑝𝑥2, 𝑝2𝑥3, …). Hence we see that (1, 𝑝, 𝑝2, …) is in the closure
of the image but not in the image. By our description of kernels and cokernels above it is
clear that Im≠Coim for this map.

Lemma 64.5.1. Let 𝑅 be a ring and let 𝐼 ⊂ 𝑅 be a finitely generated ideal. The category
of 𝐼-adically complete 𝑅-modules has kernels and cokernels but is not abelian in general.

Proof. See above. �

64.6. Regular sequences and base change

We are going to construct a ring 𝑅 with a regular sequence (𝑥, 𝑦, 𝑧) such that there exists a
nonzero element 𝛿 ∈ 𝑅/𝑧𝑅 with 𝑥𝛿 = 𝑦𝛿 = 0.

To construct our example we first construct a peculiar module 𝐸 over the ring 𝑘[𝑥, 𝑦, 𝑧]
where 𝑘 is any field. Namely, 𝐸 will be a push-out as in the following diagram

𝑥𝑘[𝑥,𝑦,𝑧,𝑦−1]
𝑥𝑦𝑘[𝑥,𝑦,𝑧]

//

𝑧/𝑥
��

𝑘[𝑥,𝑦,𝑧,𝑥−1,𝑦−1]
𝑦𝑘[𝑥,𝑦,𝑧,𝑥−1]

//

��

𝑘[𝑥,𝑦,𝑧,𝑥−1,𝑦−1]
𝑦𝑘[𝑥,𝑦,𝑧,𝑥−1]+𝑥𝑘[𝑥,𝑦,𝑧,𝑦−1]

��
𝑘[𝑥,𝑦,𝑧,𝑦−1]
𝑦𝑧𝑘[𝑥,𝑦,𝑧]

// 𝐸 // 𝑘[𝑥,𝑦,𝑧,𝑥−1,𝑦−1]
𝑦𝑘[𝑥,𝑦,𝑧,𝑥−1]+𝑥𝑘[𝑥,𝑦,𝑧,𝑦−1]

where the rows are short exact sequences (we dropped the outer zeros due to typesetting
problems). Another way to describe 𝐸 is as

𝐸 = {(𝑓, 𝑔) ∣ 𝑓 ∈ 𝑘[𝑥, 𝑦, 𝑧, 𝑥−1, 𝑦−1], 𝑔 ∈ 𝑘[𝑥, 𝑦, 𝑧, 𝑦−1]}/ ∼

where (𝑓, 𝑔) ∼ (𝑓′, 𝑔′) if and only if there exists a ℎ ∈ 𝑘[𝑥, 𝑦, 𝑧, 𝑦−1] such that

𝑓 = 𝑓′ + 𝑥ℎ mod 𝑦𝑘[𝑥, 𝑦, 𝑧, 𝑥−1], 𝑔 = 𝑔′ − 𝑧ℎ mod 𝑦𝑧𝑘[𝑥, 𝑦, 𝑧]

We claim: (a) 𝑥 ∶ 𝐸 → 𝐸 is injective, (b) 𝑦 ∶ 𝐸/𝑥𝐸 → 𝐸/𝑥𝐸 is injective, (c) 𝐸/(𝑥, 𝑦)𝐸 = 0,
(d) there exists a nonzero element 𝛿 ∈ 𝐸/𝑧𝐸 such that 𝑥𝛿 = 𝑦𝛿 = 0.

To prove (a) suppose that (𝑓, 𝑔) is a pair that gives rise to an element of 𝐸 and that (𝑥𝑓, 𝑥𝑔) ∼
0. Then there exists a ℎ ∈ 𝑘[𝑥, 𝑦, 𝑧, 𝑦−1] such that 𝑥𝑓+𝑥ℎ ∈ 𝑦𝑘[𝑥, 𝑦, 𝑧, 𝑥−1] and 𝑥𝑔−𝑧ℎ ∈
𝑦𝑧𝑘[𝑥, 𝑦, 𝑧]. We may assume that ℎ = ∑ 𝑎𝑖,𝑗,𝑘𝑥𝑖𝑦𝑗𝑧𝑘 is a sum of monomials where only
𝑗 ≤ 0 occurs. Then 𝑥𝑔 − 𝑧ℎ ∈ 𝑦𝑧𝑘[𝑥, 𝑦, 𝑧] implies that only 𝑖 > 0 occurs, i.e., ℎ = 𝑥ℎ′ for
some ℎ′ ∈ 𝑘[𝑥, 𝑦, 𝑧, 𝑦−1]. Then (𝑓, 𝑔) ∼ (𝑓 + 𝑥ℎ′, 𝑔 − 𝑧ℎ′) and we see that we may assume
that 𝑔 = 0 and ℎ = 0. In this case 𝑥𝑓 ∈ 𝑦𝑘[𝑥, 𝑦, 𝑧, 𝑥−1] implies 𝑓 ∈ 𝑦𝑘[𝑥, 𝑦, 𝑧, 𝑥−1] and we
see that (𝑓, 𝑔) ∼ 0. Thus 𝑥 ∶ 𝐸 → 𝐸 is injective.
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Since multiplication by 𝑥 is an isomorphism on 𝑘[𝑥,𝑦,𝑧,𝑥−1,𝑦−1]
𝑦𝑘[𝑥,𝑦,𝑧,𝑥−1] we see that 𝐸/𝑥𝐸 is isomor-

phic to
𝑘[𝑥, 𝑦, 𝑧, 𝑦−1]

𝑦𝑧𝑘[𝑥, 𝑦, 𝑧] + 𝑥𝑘[𝑥, 𝑦, 𝑧, 𝑦−1] + 𝑧𝑘[𝑥, 𝑦, 𝑧, 𝑦−1]
=

𝑘[𝑥, 𝑦, 𝑧, 𝑦−1]
𝑥𝑘[𝑥, 𝑦, 𝑧, 𝑦−1] + 𝑧𝑘[𝑥, 𝑦, 𝑧, 𝑦−1]

and hence multiplication by 𝑦 is an isomorphism on 𝐸/𝑥𝐸. This clearly implies (b) and (c).
Let 𝑒 ∈ 𝐸 be the equivalence class of (1, 0). Suppose that 𝑒 ∈ 𝑧𝐸. Then there exist
𝑓 ∈ 𝑘[𝑥, 𝑦, 𝑧, 𝑥−1, 𝑦−1], 𝑔 ∈ 𝑘[𝑥, 𝑦, 𝑧, 𝑦−1], and ℎ ∈ 𝑘[𝑥, 𝑦, 𝑧, 𝑦−1] such that

1 + 𝑧𝑓 + 𝑥ℎ ∈ 𝑦𝑘[𝑥, 𝑦, 𝑧, 𝑥−1], 0 + 𝑧𝑔 − 𝑧ℎ ∈ 𝑦𝑧𝑘[𝑥, 𝑦, 𝑧].
This is impossible: the monomial 1 cannot occur in 𝑧𝑓, nor in 𝑥ℎ. On the other hand, we
have 𝑦𝑒 = 0 and 𝑥𝑒 = (𝑥, 0) ∼ (0, −𝑧) = 𝑧(0, −1). Hence settting 𝛿 equal to the congruence
class of 𝑒 in 𝐸/𝑧𝐸 we obtain (d).
Lemma 64.6.1. There exists a local ring 𝑅 and a regular sequence 𝑥, 𝑦, 𝑧 (in the maximal
ideal) such that there exists a nonzero element 𝛿 ∈ 𝑅/𝑧𝑅 with 𝑥𝛿 = 𝑦𝛿 = 0.
Proof. Let 𝑅 = 𝑘[𝑥, 𝑦, 𝑧] ⊕ 𝐸 where 𝐸 is the module above considered as a square zero
ideal. Then it is clear that 𝑥, 𝑦, 𝑧 is a regular sequence in 𝑅, and that the element 𝛿 ∈
𝐸/𝑧𝐸 ⊂ 𝑅/𝑧𝑅 gives an element with the desired properties. To get a local example we may
localize 𝑅 at the maximal ideal 𝔪 = (𝑥, 𝑦, 𝑧, 𝐸). The sequence 𝑥, 𝑦, 𝑧 remains a regular
sequence (as localization is exact), and the element 𝛿 remains nonzero as it is supported at
𝔪. �

Lemma 64.6.2. There exists a local homomorphism of local rings 𝐴 → 𝐵 and a regular
sequence 𝑥, 𝑦 in the maximal ideal of 𝐵 such that 𝐵/(𝑥, 𝑦) is flat over 𝐴, but such that the
images 𝑥, 𝑦 of 𝑥, 𝑦 in 𝐵/𝔪𝐴𝐵 do not form a regular sequence, nor even a Koszul-regular
sequence.
Proof. Set 𝐴 = 𝑘[𝑧](𝑧) and let 𝐵 = (𝑘[𝑥, 𝑦, 𝑧] ⊕ 𝐸)(𝑥,𝑦,𝑧,𝐸). Since 𝑥, 𝑦, 𝑧 is a regular
sequence in 𝐵, see proof of Lemma 64.6.1, we see that 𝑥, 𝑦 is a regular sequence in 𝐵 and
that 𝐵/(𝑥, 𝑦) is a torsion free 𝐴-module, hence flat. On the other hand, there exists a nonzero
element 𝛿 ∈ 𝐵/𝔪𝐴𝐵 = 𝐵/𝑧𝐵which is annihilated by 𝑥, 𝑦. Hence𝐻2(𝐾•(𝐵/𝔪𝐴𝐵, 𝑥, 𝑦))≠0.
Thus 𝑥, 𝑦 is not Koszul-regular, in particular it is not a regular sequence, see More on
Algebra, Lemma 12.22.2. �

64.7. A Noetherian ring of infinite dimension

A Noetherian local ring has finite dimension as we saw in Algebra, Proposition 7.57.8. But
there exist Noetherian rings of infinite dimension. See [Nag62, Appendix, Example 1].
Namely, let 𝑘 be a field, and consider the ring

𝑅 = 𝑘[𝑥1, 𝑥2, 𝑥3, …].
Let 𝔭𝑖 = (𝑥2𝑖−1, 𝑥2𝑖−1+1, … , 𝑥2𝑖−1) for 𝑖 = 1, 2, … which are prime ideals of 𝑅. Let 𝑆 be the
multiplicative subset

𝑆 = ⋂𝑖≥1
(𝑅 ⧵ 𝔭𝑖).

Consider the ring 𝐴 = 𝑆−1𝑅. We claim that
(1) The maximal ideals of the ring 𝐴 are the ideals 𝔪𝑖 = 𝔭𝑖𝐴.
(2) We have 𝐴𝔪𝑖

= 𝑅𝔭𝑖
which is a Noetherian local ring of dimension 2𝑖.

(3) The ring 𝐴 is Noetherian.
Hence it is clear that this is the example we are looking for. Details omitted.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0640
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0641
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64.8. Local rings with nonreduced completion

In Algebra, Example 7.110.4 we gave an example of a characteristic 𝑝 Noetherian local
domain 𝑅 of dimension 1 whose completion is nonreduced. In this section we present the
example of [FR70, Proposition 3.1] which gives a similar ring in characteristic zero.

Let 𝐂{𝑥} be the ring of convergent power series over the field 𝐂 of complex numbers. The
ring of all power series 𝐂[[𝑥]] is its completion. Let 𝐾 = 𝐂{𝑥}[1/𝑥] = 𝑓.𝑓.(𝐵) be the field
of convergent Laurent series. The 𝐾-module Ω𝐾/𝐂 of algebraic differentials of 𝐾 over 𝐂
is an infinite dimensional 𝐾-vector space (proof omitted). We may choose 𝑓𝑛 ∈ 𝑥𝐂{𝑥},
𝑛 ≥ 1 such that d𝑥, d𝑓1, d𝑓2, … are part of a basis of Ω𝐾/𝐂. Thus we can find a 𝐂-derivation

𝐷 ∶ 𝐂{𝑥} ⟶ 𝐂((𝑥))

such that 𝐷(𝑥) = 0 and 𝐷(𝑓𝑖) = 𝑥−𝑛. Let

𝐴 = {𝑓 ∈ 𝐂{𝑥} ∣ 𝐷(𝑓) ∈ 𝐂[[𝑥]]}

We claim that
(1) 𝐂{𝑥} is integral over 𝐴,
(2) 𝐴 is a local domain,
(3) dim(𝐴) = 1,
(4) the maximal ideal of 𝐴 is generated by 𝑥 and 𝑥𝑓1,
(5) 𝐴 is Noetherian, and
(6) the completion of 𝐴 is equal to the ring of dual numbers over 𝐂[[𝑥]].

Since the dual numbers are nonreduced the ring 𝐴 gives the example.

Note that if 0≠𝑓 ∈ 𝑥𝐂{𝑥} then we may write 𝐷(𝑓) = ℎ/𝑓𝑛 for some 𝑛 ≥ 0 and ℎ ∈ 𝐂[[𝑥]].
Hence𝐷(𝑓𝑛+1/(𝑛+1)) ∈ 𝐂[[𝑥]] and𝐷(𝑓𝑛+2/(𝑛+2)) ∈ 𝐂[[𝑥]]. Thuswe see 𝑓𝑛+1, 𝑓𝑛+2 ∈ 𝐴!
In particular we see (1) holds. We also conclude that the fraction field of 𝐴 is equal to the
fraction field of 𝐂{𝑥}. It also follows immediately that 𝐴 ∩ 𝑥𝐂{𝑥} is the set of nonunits of
𝐴, hence 𝐴 is a local domain of dimension 1. If we can show (4) then it will follow that 𝐴
is Noetherian (proof omitted). Suppose that 𝑓 ∈ 𝐴 ∩ 𝑥𝐂{𝑥}. Write 𝐷(𝑓) = ℎ, ℎ ∈ 𝐂[[𝑥]].
Write ℎ = 𝑐 + 𝑥ℎ′ with 𝑐 ∈ 𝐂, ℎ′ ∈ 𝐂[[𝑥]]. Then 𝐷(𝑓 − 𝑐𝑥𝑓1) = 𝑐 + 𝑥ℎ′ − 𝑐 = 𝑥ℎ′.
On the other hand 𝑓 − 𝑐𝑥𝑓1 = 𝑥𝑔 with 𝑔 ∈ 𝐂{𝑥}, but by the computation above we have
𝐷(𝑔) = ℎ′ ∈ 𝐂[[𝑥]] and hence 𝑔 ∈ 𝐴. Thus 𝑓 = 𝑐𝑥𝑓1 + 𝑥𝑔 ∈ (𝑥, 𝑥𝑓1) as desired.

Finally, why is the completion of 𝐴 nonreduced? Denote ̂𝐴 the completion of 𝐴. Of course
this maps surjectively to the completion 𝐂[[𝑥]] of 𝐂{𝑥} because 𝑥 ∈ 𝐴. Denote this map
𝜓 ∶ ̂𝐴 → 𝐂[[𝑥]]. Above we saw that 𝔪𝐴 = (𝑥, 𝑥𝑓1) and hence 𝐷(𝔪𝑛

𝐴) ⊂ (𝑥𝑛−1) by an easy
computation. Thus 𝐷 ∶ 𝐴 → 𝐂[[𝑥]] is continuous and gives rise to a continuous derivation
�̂� ∶ ̂𝐴 → 𝐂[[𝑥]] over 𝜓. Hence we get a ring map

𝜓 + 𝜖�̂� ∶ ̂𝐴 ⟶ 𝐂[[𝑥]][𝜖].

Since ̂𝐴 is a one dimensional Noetherian complete local ring, if we can show this arrow is
surjective then it will follow that ̂𝐴 is nonreduced. Actually the map is an isomorphism but
we omit the verification of this. The subring 𝐂[𝑥](𝑥) ⊂ 𝐴 gives rise to amap 𝑖 ∶ 𝐂[[𝑥]] → ̂𝐴
on completions such that 𝑖 ∘ 𝜓 = id and such that 𝐷 ∘ 𝑖 = 0 (as 𝐷(𝑥) = 0 by construction).
Consider the elements 𝑥𝑛𝑓𝑛 ∈ 𝐴. We have

(𝜓 + 𝜖𝐷)(𝑥𝑛𝑓𝑛) = 𝑥𝑛𝑓𝑛 + 𝜖

for all 𝑛 ≥ 1. Surjectivity easily follows from these remarks.
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64.9. A non catenary Noetherian local ring

Even though there is a succesful dimension theory of Noetherian local rings there are non-
catenary Noetherian local rings. An example may be found in [Nag62, Appendix, Example
2]. In fact, we will present this example in the simplest case. Namely, we will construct a
local Noetherian domain 𝐴 of dimension 2 which is not universally catenary. (Note that 𝐴
is automatically catenary, see Exercises, Exercise 65.12.2.) The existence of a Noetherian
local ring which is not universally catenary implies the existence of a Noetherian local ring
which is not catenary -- and we spell this out at the end of this section in the particular
example at hand.

Let 𝑘 be a field, and consider the formal power series ring 𝑘[[𝑥]] in one variable over 𝑘. Let

𝑧 = ∑
∞
𝑖=1

𝑎𝑖𝑥𝑖

be a formal power series. We assume 𝑧 as an element of the Laurent series field 𝑘((𝑥)) =
𝑓.𝑓.(𝑘[[𝑥]]) is transcendental over 𝑘(𝑥). Put

𝑧𝑗 = 𝑥−𝑗(𝑧 − ∑𝑖=1,…,𝑗−1
𝑎𝑖𝑥𝑖) = ∑

∞
𝑖=𝑗

𝑎𝑖𝑥𝑖−𝑗 ∈ 𝑘[[𝑥]].

Note that 𝑍 = 𝑧1. Let 𝑅 be the subring of 𝑘[[𝑥]] generated by 𝑥, 𝑧 and all of the 𝑧𝑗, in
other words

𝑅 = 𝑘[𝑥, 𝑧1, 𝑧2, 𝑧3, …] ⊂ 𝑘[[𝑥]].
Consider the ideals 𝔪 = (𝑥) and 𝔫 = (𝑥 − 1, 𝑧1, 𝑧2, …) of 𝑅.

We have 𝑥(𝑧𝑗+1 + 𝑎𝑗) = 𝑧𝑗. Hence 𝑅/𝔪 = 𝑘 and 𝔪 is a maximal ideal. Moreover, any
element of 𝑅 not in 𝔪 maps to a unit in 𝑘[[𝑥]] and hence 𝑅𝔪 ⊂ 𝑘[[𝑥]]. In fact it is easy to
deduce that 𝑅𝔪 is a discrete valuation ring and residue field 𝑘.

We claim that
𝑅/(𝑥 − 1) = 𝑘[𝑥, 𝑧1, 𝑧2, 𝑧3, …]/(𝑥 − 1) ≅ 𝑘[𝑧].

Namely, the relation above implies that (𝑥 − 1)(𝑧𝑗+1 + 𝑎𝑗) = −𝑧𝑗+1 − 𝑎𝑗 + 𝑧𝑗, and hence we
may express the class of 𝑧𝑗+1 in terms of 𝑧𝑗 in the quotient 𝑅/(𝑥−1). Since the fraction field
of 𝑅 has transcendence degree 2 over 𝑘 by construction we see that 𝑧 is transcendental over
𝑘 in 𝑅/(𝑥 − 1), whence the desired isomorphism. Hence 𝔫 = (𝑥 − 1, 𝑧) and is a maximal
ideal. In fact the map

𝑘[𝑥, 𝑥−1, 𝑧](𝑥−1,𝑧) ⟶ 𝑅𝔫

is an isomorphism (since 𝑥−1 is invertible in 𝑅𝔫 and since 𝑧𝑗+1 = 𝑥−1𝑧𝑗 − 𝑎𝑗 = … =
𝑓𝑗(𝑥, 𝑥−1, 𝑧)). This shows that 𝑅𝔫 is a regular local ring of dimension 2 and residue field
𝑘.

Let 𝑆 be the multiplicative subset

𝑆 = (𝑅 ⧵ 𝔪) ∩ (𝑅 ⧵ 𝔫) = 𝑅 ⧵ (𝔪 ∪ 𝔫)

and set 𝐵 = 𝑆−1𝑅. We claim that
(1) The ring 𝐵 is a 𝑘-algebra.
(2) The maximal ideals of the ring 𝐵 are the two ideals 𝔪𝐵 and 𝔫𝐵.
(3) The residue fields at these maximal ideals is 𝑘.
(4) We have 𝐵𝔪𝐵 = 𝑅𝔪 and 𝐵𝔫𝐵 = 𝑅𝔫 which are Noetherian regular local rings of

dimensions 1 and 2.
(5) The ring 𝐵 is Noetherian.
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We omit the details of the verifications.

Whenever given a 𝑘-algebra 𝐵 with the properties listed abovewe get an example as follows.
Take 𝐴 = 𝑘 + rad(𝐵) ⊂ 𝐵, in our case rad(𝐵) = 𝔪𝐵 + 𝔫𝐵. It is easy to see that 𝐵 is finite
over 𝐴 and hence 𝐴 is Noetherian by Eakin's theorem (see [Eak68], or [Nag62, Appendix
A1], or insert future reference here). Also 𝐴 is a local domain with the same fraction field
as 𝐵 and residue field 𝑘. Since the dimension of 𝐵 is 2 we see that 𝐴 has dimension 2 as
well, by Algebra, Lemma 7.103.4.

If 𝐴 were universally catenary then the dimension formula, Algebra, Lemma 7.104.1 would
give dim(𝐵𝔪𝐵) = 2 contradiction.

Note that 𝐵 is generated by one element over 𝐴. Hence 𝐵 = 𝐴[𝑥]/𝔭 for some prime 𝔭 of
𝐴[𝑥]. Let 𝔪′ ⊂ 𝐴[𝑥] be the maximal ideal corresponding to 𝔪𝐵. Then on the one hand
dim(𝐴[𝑥]𝔪′) = 3 and on the other hand

(0) ⊂ 𝔭𝐴[𝑥]𝔪′ ⊂ 𝔪′𝐴[𝑥]𝔪′

is a maximal chain of primes. Hence 𝐴[𝑥]𝔪′ is an example of a non catenary Noetherian
local ring.

64.10. Non-quasi-affine variety with quasi-affine normalization

The existence of an example of this kind is mentioned in [DG67, II Remark 6.6.13]. They
refer to the fifth volume of EGA for such an example, but the fifth volume did not appear.

Let 𝑘 be a field. Let 𝑌 = 𝐀2
𝑘⧵{(0, 0)}. We are going to construct a finite surjective birational

morphism 𝜋 ∶ 𝑌 ⟶ 𝑋 with 𝑋 a variety over 𝑘 such that 𝑋 is not quasi-affine. Namely,
consider the following curves in 𝑌:

𝐶1 ∶ 𝑥 = 0
𝐶2 ∶ 𝑦 = 0

Note that 𝐶1 ∩ 𝐶2 = ∅. We choose the isomorphism 𝜑 ∶ 𝐶1 → 𝐶2, (0, 𝑦) ↦ (𝑦−1, 0). We
claim there is a unique morphism 𝜋 ∶ 𝑌 → 𝑋 as above such that

𝐶1

id //

𝜑
// 𝑌

𝜋 // 𝑋

is a coequalizer diagram in the category of varieties (and even in the category of schemes).
Accepting this for the moment let us show that such an 𝑋 cannot be quasi-affine. Namely,
it is clear that we would get

Γ(𝑋, 𝒪𝑋) = {𝑓 ∈ 𝑘[𝑥, 𝑦] ∣ 𝑓(0, 𝑦) = 𝑓(𝑦−1, 0)} = 𝑘 ⊕ (𝑥𝑦) ⊂ 𝑘[𝑥, 𝑦].

In particular these functions do not separate the points (1, 0) and (−1, 0) whose images in
𝑋 (we will see below) are distinct (if the characteristic of 𝑘 is not 2).

To show that 𝑋 exists consider the Zariski open 𝐷(𝑥 + 𝑦) ⊂ 𝑌 of 𝑌. This is the spectrum
of the ring 𝑘[𝑥, 𝑦, 1/(𝑥 + 𝑦)] and the curves 𝐶1, 𝐶2 are completely contained in 𝐷(𝑥 + 𝑦).
Moreover the morphism

𝐶1 ∐ 𝐶2 ⟶ 𝐷(𝑥 + 𝑦) ∩ 𝑌 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦, 1/(𝑥 + 𝑦)])

is a closed immersion. It follows from Algebra, Lemma 7.47.10 that the ring

𝐴 = {𝑓 ∈ 𝑘[𝑥, 𝑦, 1/(𝑥 + 𝑦)] ∣ 𝑓(0, 𝑦) = 𝑓(𝑦−1, 0)}
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is of finite type over 𝑘. On the other hand we have the open 𝐷(𝑥𝑦) ⊂ 𝑌 of 𝑌 which is disjoint
from the curves 𝐶1 and 𝐶2. It is the spectrum of the ring

𝐵 = 𝑘[𝑥, 𝑦, 1/𝑥𝑦].

Note that we have 𝐴𝑥𝑦 ≅ 𝐵𝑥+𝑦 (since 𝐴 clearly contains the elements 𝑥𝑦𝑃(𝑥, 𝑦) any polyno-
mial 𝑃 and the element 𝑥𝑦/(𝑥+𝑦)). The scheme 𝑋 is obtained by glueing the affine schemes
𝑆𝑝𝑒𝑐(𝐴) and 𝑆𝑝𝑒𝑐(𝐵) using the isomorphism 𝐴𝑥𝑦 ≅ 𝐵𝑥+𝑦 and hence is clearly of finite type
over 𝑘. To see that it is separated one has to show that the ring map 𝐴 ⊗𝑘 𝐵 → 𝐵𝑥+𝑦 is
surjective. To see this use that 𝐴 ⊗𝑘 𝐵 contains the element 𝑥𝑦/(𝑥 + 𝑦) ⊗ 1/𝑥𝑦 which maps
to 1/(𝑥 + 𝑦). The morphism 𝑋 → 𝑌 is given by the natural maps 𝐷(𝑥 + 𝑦) → 𝑆𝑝𝑒𝑐(𝐴) and
𝐷(𝑥𝑦) → 𝑆𝑝𝑒𝑐(𝐵). Since these are both finite we deduce that 𝑋 → 𝑌 is finite as desired.
We omit the verification that 𝑋 is indeed the coequalizer of the displayed diagram above,
however, see (insert future reference for push outs in the category of schemes here). Note
that the morphism 𝜋 ∶ 𝑌 → 𝑋 does map the points (1, 0) and (−1, 0) to distinct points in 𝑋
because the function (𝑥 + 𝑦3)/(𝑥 + 𝑦)2 ∈ 𝐴 has value 1/1, resp. −1/(−1)2 = −1 which are
always distinct (unless the characteristic is 2 -- please find your own points for characteristic
2). We summarize this discussion in the form of a lemma.

Lemma 64.10.1. Let 𝑘 be a field. There exists a variety 𝑋 whose normalization is quasi-
affine but which is itself not quasi-affine.

Proof. See discussion above and (insert future reference on normalization here). �

64.11. A locally closed subscheme which is not open in closed

This is a copy of Morphisms, Example 24.2.10. Here is an example of an immersion which
is not a composition of an open immersion followed by a closed immersion. Let 𝑘 be a
field. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑘[𝑥1, 𝑥2, 𝑥3, …]). Let 𝑈 = ⋃∞

𝑛=1 𝐷(𝑥𝑛). Then 𝑈 → 𝑋 is an open
immersion. Consider the ideals

𝐼𝑛 = (𝑥𝑛
1, 𝑥𝑛

2, … , 𝑥𝑛
𝑛−1, 𝑥𝑛 − 1, 𝑥𝑛+1, 𝑥𝑛+2, …) ⊂ 𝑘[𝑥1, 𝑥2, 𝑥3, …][1/𝑥𝑛].

Note that 𝐼𝑛𝑘[𝑥1, 𝑥2, 𝑥3, …][1/𝑥𝑛𝑥𝑚] = (1) for any 𝑚≠𝑛. Hence the quasi-coherent ideals
̃𝐼𝑛 on 𝐷(𝑥𝑛) agree on 𝐷(𝑥𝑛𝑥𝑚), namely ̃𝐼𝑛|𝐷(𝑥𝑛𝑥𝑚) = 𝒪𝐷(𝑥𝑛𝑥𝑚) if 𝑛≠𝑚. Hence these ideals

glue to a quasi-coherent sheaf of ideals ℐ ⊂ 𝒪𝑈. Let 𝑍 ⊂ 𝑈 be the closed subscheme
corresponding to ℐ. Thus 𝑍 → 𝑋 is an immersion.

We claim that we cannot factor 𝑍 → 𝑋 as 𝑍 → 𝑍 → 𝑋, where 𝑍 → 𝑋 is closed and
𝑍 → 𝑍 is open. Namely, 𝑍 would have to be defined by an ideal 𝐼 ⊂ 𝑘[𝑥1, 𝑥2, 𝑥3, …] such
that 𝐼𝑛 = 𝐼𝑘[𝑥1, 𝑥2, 𝑥3, …][1/𝑥𝑛]. But the only element 𝑓 ∈ 𝑘[𝑥1, 𝑥2, 𝑥3, …] which ends
up in all 𝐼𝑛 is 0! Hence 𝐼 does not exist.

64.12. Pushforward of quasi-coherent modules

In Schemes, Lemma 21.24.1 we proved that 𝑓∗ transformes quasi-coherent modules into
quasi-coherent modules when 𝑓 is quasi-compact and quasi-separated. Here are some ex-
amples to show that these conditions are both necessary.

Suppose that 𝑌 = Spec(𝐴) is an affine scheme and that 𝑋 = ∐𝑛∈𝐍 𝑌. We claim that 𝑓∗𝒪𝑋
is not quasi-coherent where 𝑓 ∶ 𝑋 → 𝑌 is the obvious morphism. Namely, for 𝑎 ∈ 𝐴 we
have

𝑓∗𝒪𝑋(𝐷(𝑎)) = ∏𝑛∈𝐍
𝐴𝑎

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=0272
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Hence, in order for 𝑓∗𝒪𝑋 to be quasi-coherent we would need

∏𝑛∈𝐍
𝐴𝑎 = (∏𝑛∈𝐍

𝐴)𝑎

for all 𝑎 ∈ 𝐴. This isn't true in general, for example if𝐴 = 𝐙 and 𝑎 = 2, then (1, 1/2, 1/4, 1/8, …)
is an element of the left hand side which is not in the right hand side. Note that 𝑓 is a non-
quasi-compact separated morphism.

Let 𝑘 be a field. Set

𝐴 = 𝑘[𝑡, 𝑧, 𝑥1, 𝑥2, 𝑥3, …]/(𝑡𝑥1𝑧, 𝑡2𝑥2
2𝑧, 𝑡3𝑥3

3𝑧, …)

Let 𝑌 = 𝑆𝑝𝑒𝑐(𝐴). Let 𝑉 ⊂ 𝑌 be the open subscheme 𝑉 = 𝐷(𝑥1) ∪ 𝐷(𝑥2) ∪ …. Let 𝑋 be
two copies of 𝑌 glued along 𝑉. Let 𝑓 ∶ 𝑋 → 𝑌 be the obvious morphism. Then we have an
exact sequence

0 → 𝑓∗𝒪𝑋 → 𝒪𝑌 ⊕ 𝒪𝑌
(1,−1)

−−−−−→ 𝑗∗𝒪𝑉

where 𝑗 ∶ 𝑉 → 𝑌 is the inclusion morphism. Since

𝐴 ⟶ ∏ 𝐴𝑥𝑛

is injective (details omitted) we see that Γ(𝑌, 𝑓∗𝒪𝑋) = 𝐴. On the other hand, the kernel of
the map

𝐴𝑡 ⟶ ∏ 𝐴𝑡𝑥𝑛

is nonzero because it contains the element 𝑧. Hence Γ(𝐷(𝑡), 𝑓∗𝒪𝑋) is strictly bigger than
𝐴𝑡 because it contains (𝑧, 0). Thus we see that 𝑓∗𝒪𝑋 is not quasi-coherent. Note that 𝑓 is
quasi-compact but non-quasi-separated.

Lemma 64.12.1. Schemes, Lemma 21.24.1 is sharp in the sense that one can neither drop
the assumption of quasi-compactness nor the assumption of quasi-separatedness.

Proof. See discussion above. �

64.13. A nonfinite module with finite free rank 1 stalks

Let 𝑅 = 𝐐[𝑥]. Set 𝑀 = ∑𝑛∈𝐍
1

𝑥−𝑛 𝑅 as a submodule of the fraction field of 𝑅. Then 𝑀 is
not finitely generated, but for every prime 𝔭 of 𝑅 we have 𝑀𝔭 ≅ 𝑅𝔭 as an 𝑅𝔭-module.

64.14. A finite flat module which is not projective

This is a copy of Algebra, Remark 7.72.3. It is not true that a finite 𝑅-module which is 𝑅-flat
is automatically projective. A counter example is where 𝑅 = 𝒞∞(𝐑) is the ring of infinitely
differentiable functions on 𝐑, and 𝑀 = 𝑅𝔪 = 𝑅/𝐼 where 𝔪 = {𝑓 ∈ 𝑅 ∣ 𝑓(0) = 0} and
𝐼 = {𝑓 ∈ 𝑅 ∣ ∃𝜖, 𝜖 > 0 ∶ 𝑓(𝑥) = 0 ∀𝑥, |𝑥| < 𝜖}.

The morphism 𝑆𝑝𝑒𝑐(𝑅/𝐼) → 𝑆𝑝𝑒𝑐(𝑅) is also an example of a flat closed immersion which
is not open.

Lemma 64.14.1. Strange flat modules.
(1) There exists a ring 𝑅 and a finite flat 𝑅-module 𝑀 which is not projective.
(2) There exists a closed immersion which is flat but not open.

Proof. See discussion above. �
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64.15. A projective module which is not locally free

We give two examples. One where the rank is between 0 and 1 and one where the rank is
ℵ0.

Lemma 64.15.1. Let𝑅 be a ring. Let 𝐼 ⊂ 𝑅 be an ideal generated by a countable collection
of idempotents. Then 𝐼 is projective as an 𝑅-module.

Proof. Say 𝐼 = (𝑒1, 𝑒2, 𝑒3, …) with 𝑒𝑛 an idempotent of 𝑅. After inductively replacing
𝑒𝑛+1 by 𝑒𝑛 + (1 − 𝑒𝑛)𝑒𝑛+1 we may assume that (𝑒1) ⊂ (𝑒2) ⊂ (𝑒3) ⊂ … and hence 𝐼 =
⋃𝑛≥1(𝑒𝑛) = 𝑐𝑜𝑙𝑖𝑚𝑛 𝑒𝑛𝑅. In this case

𝐻𝑜𝑚𝑅(𝐼, 𝑀) = 𝐻𝑜𝑚𝑅(𝑐𝑜𝑙𝑖𝑚𝑛 𝑒𝑛𝑅, 𝑀) = 𝑙𝑖𝑚𝑛 𝐻𝑜𝑚𝑅(𝑒𝑛𝑅, 𝑀) = 𝑙𝑖𝑚𝑛 𝑒𝑛𝑀

Note that the transition maps 𝑒𝑛+1𝑀 → 𝑒𝑛𝑀 are given by multiplication by 𝑒𝑛 are are
surjective. Hence by Algebra, Lemma 7.80.4 the functor 𝐻𝑜𝑚𝑅(𝐼, 𝑀) is exact, i.e., 𝐼 is a
projective 𝑅-module. �

Lemma 64.15.2. Let 𝑅 be a ring. Let 𝑛 ≥ 1. Let 𝑀 be an 𝑅-module generated by < 𝑛
elements. Then any 𝑅-module map 𝑓 ∶ 𝑅⊕𝑛 → 𝑀 has a nonzero kernel.

Proof. Choose a surjection 𝑅⊕𝑛−1 → 𝑀. We may lift the map 𝑓 to a map 𝑓′ ∶ 𝑅⊕𝑛 →
𝑅⊕𝑛−1. It suffices to prove 𝑓′ has a nonzero kernel. The map 𝑓′ ∶ 𝑅⊕𝑛 → 𝑅⊕𝑛−1 is given
by amatrix 𝐴 = (𝑎𝑖𝑗). If one of the 𝑎𝑖𝑗 is not nilpotent, say 𝑎 = 𝑎𝑖𝑗 is not, then we can replace
𝐴 by the localization 𝐴𝑎 and we may assume 𝑎𝑖𝑗 is a unit. Since if we find a nonzero kernel
after localization then there was a nonzero kernel to start with as localization is exact, see
Algebra, Proposition 7.9.12. In this case we can do a base change on both 𝑅⊕𝑛 and 𝑅⊕𝑛−1

and reduce to the case where

𝐴 =
⎛
⎜
⎜
⎜
⎝

1 0 0 …
0 𝑎22 𝑎23 …
0 𝑎32 …
… …

⎞
⎟
⎟
⎟
⎠

Hence in this case we win by induction on 𝑛. If not then each 𝑎𝑖𝑗 is nilpotent. Set 𝐼 =
(𝑎𝑖𝑗) ⊂ 𝑅. Note that 𝐼𝑚+1 = 0 for some 𝑚 ≥ 0. Let 𝑚 be the largest integer such that 𝐼𝑚≠0.
Then we see that (𝐼𝑚)⊕𝑛 is contained in the kernel of the map and we win. �

Suppose that 𝑃 ⊂ 𝑄 is an inclusion of 𝑅-modules with 𝑄 a finite 𝑅-module and 𝑃 locally
free, see Algebra, Definition 7.72.1. Suppose that 𝑄 can be generated by 𝑁 elements as an
𝑅-module. Then it follows from Lemma 64.15.2 that 𝑃 is finite locally free (with the free
parts having rank at most 𝑁). And in this case 𝑃 is a finite 𝑅-module, see Algebra, Lemma
7.72.2.

Combining this with the above we see that a non-finitely-generated ideal which is generated
by a countable collection of idempotents is projective but not locally free. An explicit
example is 𝑅 = ∏𝑛∈𝐍 𝐅2 and 𝐼 the ideal generated by the idempotents

𝑒𝑛 = (1, 1, … , 1, 0, …)

where the sequence of 1's has length 𝑛.

Lemma 64.15.3. There exists a ring 𝑅 and an ideal 𝐼 such that 𝐼 is projective as an
𝑅-module but not locally free as an 𝑅-module.

Proof. See above. �
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Lemma 64.15.4. Let 𝐾 be a field. Let 𝐶𝑖, 𝑖 = 1, … , 𝑛 be smooth, projective, geometrically
irreducible curves over 𝐾. Let 𝑃𝑖 ∈ 𝐶𝑖(𝐾) be a rational point and let 𝑄𝑖 ∈ 𝐶𝑖 be a point
such that [𝜅(𝑄𝑖) ∶ 𝐾] = 2. Then [𝑃1 × … × 𝑃𝑛] is nonzero in 𝐴0(𝑈1 ×𝐾 … ×𝐾 𝑈𝑛) where
𝑈𝑖 = 𝐶𝑖 ⧵ {𝑄𝑖}.

Proof. There is a degree map deg ∶ 𝐴0(𝐶1 ×𝐾 … ×𝐾 𝐶𝑛) → 𝐙 Because each 𝑄𝑖 has degree
2 over 𝐾 we see that any zero cycle supported on the ``boundary''

𝐶1 ×𝐾 … ×𝐾 𝐶𝑛 ⧵ 𝑈1 ×𝐾 … ×𝐾 𝑈𝑛

has degree divisible by 2. �

We can construct another example of a projective but not locally free module using the
lemma above as follows. Let 𝐶𝑛, 𝑛 = 1, 2, 3, … be smooth, projective, geometrically ir-
reducible curves over 𝐐 each with a pair of points 𝑃𝑛, 𝑄𝑛 ∈ 𝐶𝑛 such that 𝜅(𝑃𝑛) = 𝐐 and
𝜅(𝑄𝑛) is a quadratic extension of 𝐐. Set 𝑈𝑛 = 𝐶𝑛 ⧵ {𝑄𝑛}; this is an affine curve. Let ℒ𝑛
be the inverse of the ideal sheaf of 𝑃𝑛 on 𝑈𝑛. Note that 𝑐1(ℒ𝑛) = [𝑃𝑛] in the group of zero
cycles 𝐴0(𝑈𝑛). Set 𝐴𝑛 = Γ(𝑈𝑛, 𝒪𝑈𝑛

). Let 𝐿𝑛 = Γ(𝑈𝑛, ℒ𝑛) which is a locally free module
of rank 1 over 𝐴𝑛. Set

𝐵𝑛 = 𝐴1 ⊗𝐐 𝐴2 ⊗𝐐 … ⊗𝐐 𝐴𝑛
so that 𝑆𝑝𝑒𝑐(𝐵𝑛) = 𝑈1 × … × 𝑈𝑛 all products over 𝑆𝑝𝑒𝑐(𝐐). For 𝑖 ≤ 𝑛 we set

𝐿𝑛,𝑖 = 𝐴1 ⊗𝐐 … ⊗𝐐 𝑀𝑖 ⊗𝐐 … ⊗𝐐 𝐴𝑛

which is a locally free 𝐵𝑛-module of rank 1. Note that this is also the global sections of
pr∗𝑖 ℒ𝑛. Set

𝐵∞ = 𝑐𝑜𝑙𝑖𝑚𝑛 𝐵𝑛 and 𝐿∞,𝑖 = 𝑐𝑜𝑙𝑖𝑚𝑛 𝐿𝑛,𝑖
Finally, set

𝑀 = ⨁𝑖≥1
𝐿∞,𝑖.

This is a direct sum of finite locally free modules, hence projective. We claim that 𝑀 is not
locally free. Namely, suppose that 𝑓 ∈ 𝐵∞ is a nonzero function such that 𝑀𝑓 is free over
(𝐵∞)𝑓. Let 𝑒1, 𝑒2, … be a basis. Choose 𝑛 ≥ 1 such that 𝑓 ∈ 𝐵𝑛. Choose 𝑚 ≥ 𝑛 + 1 such
that 𝑒1, … , 𝑒𝑛+1 are in

⨁1≤𝑖≤𝑚
𝐿𝑚,𝑖.

Because the elements 𝑒1, … , 𝑒𝑛+1 are part of a basis after a faithfully flat base change we
conclude that the chern classes

𝑐𝑖(pr∗1ℒ1 ⊕ … ⊕ pr∗𝑚ℒ𝑚), 𝑖 = 𝑚, 𝑚 − 1, … , 𝑚 − 𝑛
are zero in the chow group of

𝐷(𝑓) ⊂ 𝑈1 × … × 𝑈𝑚

Since 𝑓 is the pullback of a function on 𝑈1 × … × 𝑈𝑛 this implies in particular that

𝑐𝑚−𝑛(𝒪⊕𝑛
𝑊 ⊕ pr∗1ℒ𝑛+1 ⊕ … ⊕ pr∗𝑚−𝑛ℒ𝑚) = 0.

on the variety
𝑊 = (𝐶𝑛+1 × … × 𝐶𝑚)𝐾

over the field 𝐾 = 𝐐(𝐶1 × … × 𝐶𝑛). In other words the cycle
[(𝑃𝑛+1 × … × 𝑃𝑚)𝐾]

is zero in the chow group of zero cycles on 𝑊. This contradicts Lemma 64.15.4 above
because the points 𝑄𝑖, 𝑛 + 1 ≤ 𝑖 ≤ 𝑚 induce corresponding points 𝑄′

𝑖 on (𝐶𝑛)𝐾 and as 𝐾/𝐐
is geometrically irreducible we have [𝜅(𝑄′

𝑖 ) ∶ 𝐾] = 2.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=05WK
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Lemma 64.15.5. There exists a countable ring 𝑅 and a projective module 𝑀 which is a
direct sum of countably many locally free rank 1 modules such that 𝑀 is not locally free.

Proof. See above. �

64.16. Zero dimensional local ring with nonzero flat ideal

In [Laz67] there is an example of a zero dimensional local ring with a nonzero flat ideal.
Here is the construction. Let 𝑘 be a field. Let 𝑋𝑖, 𝑌𝑖, 𝑖 ≥ 1 be variables. Take 𝑅 =
𝑘[𝑋𝑖, 𝑌𝑖]/(𝑋𝑖 − 𝑌𝑖𝑋𝑖+1, 𝑌2

𝑖 ). Denote 𝑥𝑖, resp. 𝑦𝑖 the image of 𝑋𝑖, resp. 𝑌𝑖 in this ring. Note
that

𝑥𝑖 = 𝑦𝑖𝑥𝑖+1 = 𝑦𝑖𝑦𝑖+1𝑥𝑖+2 = 𝑦𝑖𝑦𝑖+1𝑦𝑖+2𝑥𝑖+3 = …

in this ring. The ring 𝑅 has only one prime ideal, namely 𝔪 = (𝑥𝑖, 𝑦𝑖). We claim that the
ideal 𝐼 = (𝑥𝑖) is flat as an 𝑅-module.

Note that the annihilator of 𝑥𝑖 in 𝑅 is the ideal (𝑥1, 𝑥2, 𝑥3, … , 𝑦𝑖, 𝑦𝑖+1, 𝑦𝑖+2, …). Consider
the 𝑅-module 𝑀 generated by elements 𝑒𝑖, 𝑖 ≥ 1 and relations 𝑒𝑖 = 𝑦𝑖𝑒𝑖+1. Then 𝑀 is flat
as it is the colimit 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅 of copies of 𝑅 with transition maps

𝑅
𝑦1−−→ 𝑅

𝑦2−−→ 𝑅
𝑦3−−→ …

Note that the annilator of 𝑒𝑖 in 𝑀 is the ideal (𝑥1, 𝑥2, 𝑥3, … , 𝑦𝑖, 𝑦𝑖+1, 𝑦𝑖+2, …). Since every
element of 𝑀, resp. 𝐼 can be written as 𝑓𝑒𝑖, resp. ℎ𝑥𝑖 for some 𝑓, ℎ ∈ 𝑅 we see that the
map 𝑀 → 𝐼, 𝑒𝑖 → 𝑥𝑖 is an isomorphism and 𝐼 is flat.

Lemma 64.16.1. There exists a local ring 𝑅 with a unique prime ideal and a nonzero ideal
𝐼 ⊂ 𝑅 which is a flat 𝑅-module

Proof. See discussion above. �

64.17. An epimorphism of zero-dimensional rings which is not surjective

In [Laz69] one can find the following example. Let 𝑘 be a field. Consider the ring homo-
morphism

𝑘[𝑥1, 𝑥2, … , 𝑧1, 𝑧2, …]/(𝑥4𝑖

𝑖 , 𝑧4𝑖

𝑖 ) ⟶ 𝑘[𝑥1, 𝑥2, … , 𝑦1, 𝑦2, …]/(𝑥4𝑖

𝑖 , 𝑦𝑖 − 𝑥𝑖+1𝑦2
𝑖+1)

which maps 𝑥𝑖 to 𝑥𝑖 and 𝑧𝑖 to 𝑥𝑖𝑦𝑖. Note that 𝑦4𝑖+1

𝑖 is zero in the right hand side but that 𝑦1
is not zero (details omitted). This map is not surjective: we can think of the above as a map
of 𝐙-graded algebras by setting deg(𝑥𝑖) = −1, deg(𝑧𝑖) = 0, and deg(𝑦𝑖) = 1 and then it is
clear that 𝑦1 is not in the image. Finally, the map is an epimorphism because

𝑦𝑖−1 ⊗ 1 = 𝑥𝑖𝑦2
𝑖 ⊗ 1 = 𝑦𝑖 ⊗ 𝑥𝑖𝑦𝑖 = 𝑥𝑖𝑦𝑖 ⊗ 𝑦𝑖 = 1 ⊗ 𝑥𝑖𝑦2

𝑖 .

hence the tensor product of the target over the source is isomorphic to the target.

Lemma 64.17.1. There exists an epimorphism of local rings of dimension 0 which is not a
surjection.

Proof. See discussion above. �
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64.18. Finite type, not finitely presented, flat at prime

Let 𝑘 be a field. Consider the local ring 𝐴0 = 𝑘[𝑥, 𝑦](𝑥,𝑦). Denote 𝔭0,𝑛 = (𝑦 + 𝑥𝑛 + 𝑥𝑛+1).
This is a prime ideal. Set

𝐴 = 𝐴0[𝑧1, 𝑧2, 𝑧3, …]/(𝑧𝑛𝑧𝑚, 𝑧𝑛(𝑦 + 𝑥𝑛 + 𝑥2𝑛+1))

Note that 𝐴 → 𝐴0 is a surjection whose kernel is an ideal of square zero. Hence 𝐴 is also
a local ring and the prime ideals of 𝐴 are in one-to-one correspondence with the prime
ideals of 𝐴0. Denote 𝔭𝑛 the prime ideal of 𝐴 corresponding to 𝔭0,𝑛. Observe that 𝔭𝑛 is the
annihilator of 𝑧𝑛 in 𝐴. Let

𝐶 = 𝐴[𝑧]/(𝑥𝑧2 + 𝑧 + 𝑦)[ 1
2𝑧𝑥 + 1

].

Note that 𝐴 → 𝐶 is an étale ring map, see Algebra, Example 7.126.8. Let 𝔮 ⊂ 𝐶 be the
maximal ideal generated by 𝑥, 𝑦, 𝑧 and all 𝑧𝑛. As 𝐴 → 𝐶 is flat we see that the annihilator
of 𝑧𝑛 in 𝐶 is 𝔭𝑛𝐶. We compute

𝐶/𝔭𝑛𝐶 = 𝐴0/(𝑦 + 𝑥𝑛 + 𝑥2𝑛+1)

= 𝑘[𝑥](𝑥)[𝑧]/(𝑥𝑧2 + 𝑧 − 𝑥𝑛 − 𝑥2𝑛+1)

= 𝑘[𝑥](𝑥)[𝑧]/(𝑧 − 𝑥𝑛) × 𝑘[𝑥](𝑥)[𝑧]/(𝑥𝑧 + 𝑥𝑛+1 + 1)
= 𝑘[𝑥](𝑥) × 𝑘(𝑥)

because (𝑧 − 𝑥𝑛)(𝑥𝑧 + 𝑥𝑛+1 + 1) = 𝑥𝑧2 + 𝑧 − 𝑥𝑛 − 𝑥2𝑛+1. Hence we see that 𝔭𝑛𝐶 = 𝔯𝑛 ∩ 𝔮𝑛
with 𝔯𝑛 = 𝔭𝑛𝐶 + (𝑧 − 𝑥𝑛)𝐶 and 𝔮𝑛 = 𝔭𝑛𝐶 + (𝑥𝑧 + 𝑥𝑛+1 + 1)𝐶. Since 𝔮𝑛 + 𝔯𝑛 = 𝐶 we also
get 𝔭𝑛𝐶 = 𝔯𝑛𝔮𝑛, It follows that 𝔮𝑛 is the annihilator of 𝜉𝑛 = (𝑧 − 𝑥𝑛)𝑧𝑛. Observe that on the
one hand 𝔯𝑛 ⊂ 𝔮, and on the other hand 𝔮𝑛 + 𝔮 = 𝐶. This follows for example because 𝔮𝑛 is
a maximal ideal of 𝐶 distinct from 𝔮. Similarly we have 𝔮𝑛 + 𝔮𝑚 = 𝐶. At this point we let

𝐵 = Im(𝐶 ⟶ 𝐶𝔮)

We observe that the elements 𝜉𝑛 map to zero in 𝐵 as 𝑥𝑧 + 𝑥𝑛+1 + 1 is not in 𝔮. Denote
𝔮′ ⊂ 𝐵 the image of 𝔮. By construction 𝐵 is a finite type 𝐴-algebra, with 𝐵𝔮′ ≅ 𝐶𝔮. In
particular we see that 𝐵𝔮′ is flat over 𝐴.

We claim there does not exist an element 𝑔′ ∈ 𝐵, 𝑔′∉𝔮′ such that𝐵𝑔′ is of finite presentation
over 𝐴. We sketch a proof of this claim. Choose an element 𝑔 ∈ 𝐶 which maps to 𝑔′ ∈
𝐵. Consider the map 𝐶𝑔 → 𝐵𝑔′. By Algebra, Lemma 7.6.3 we see that 𝐵𝑔 is finitely
presented over 𝐴 if and only if the kernel of 𝐶𝑔 → 𝐵𝑔′ is finitely generated. But the element
𝑔 ∈ 𝐶 is not contained in 𝔮, hence maps to a nonzero element of 𝐴0[𝑧]/(𝑥𝑧2 + 𝑧 + 𝑦).
Hence 𝑔 can only be contained in finitely many of the prime ideals 𝔮𝑛, because the primes
(𝑦 + 𝑥𝑛 + 𝑥2𝑛+1, 𝑥𝑧 + 𝑥𝑛+1 + 1) are an infinite collection of codimension 1 points of the
2-dimensional irreducible Noetherian space 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦, 𝑧]/(𝑥𝑧2 + 𝑧 + 𝑦)). The map

⨁𝑔∉𝔮𝑛
𝐶/𝔮𝑛 ⟶ 𝐶𝑔, (𝑐𝑛) ⟶ ∑ 𝑐𝑛𝜉𝑛

is injective and its image is the kernel of 𝐶𝑔 → 𝐵𝑔′. We omit the proof of this statement.
(Hint: Write 𝐴 = 𝐴0 ⊕ 𝐼 as an 𝐴0-module where 𝐼 is the kernel of 𝐴 → 𝐴0. Similarly,
write 𝐶 = 𝐶0 ⊕ 𝐼𝐶. Write 𝐼𝐶 = ⨁ 𝐶𝑧𝑛 ≅ ⨁(𝐶/𝔯𝑛 ⊕ 𝐶/𝔮𝑛) and study the effect of
multiplication by 𝑔 on the summands.) This concludes the sketch of the proof of the claim.
This also proves that 𝐵𝑔′ is not flat over 𝐴 for any 𝑔′ as above. Namely, if it were flat, then
the annihilator of the image of 𝑧𝑛 in 𝐵𝑔′ would be 𝔭𝑛𝐵𝑔′, and would not contain 𝑧 − 𝑥𝑛.
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As a consequence we can answer (negatively) a question posed in [GR71, Part I, Remarques
(3.4.7) (v)]. Here is a precise statement.

Lemma 64.18.1. There exists a local ring 𝐴, a finite type ring map 𝐴 → 𝐵 and a prime 𝔮
lying over 𝔪𝐴 such that 𝐵𝔮 is flat over 𝐴, and for any element 𝑔 ∈ 𝐵, 𝑔∉𝔮 the ring 𝐵𝑔 is
neither finitely presented over 𝐴 nor flat over 𝐴.

Proof. See discussion above. �

64.19. Finite type, flat and not of finite presentation

In this section we give some examples of ring maps and morphisms which are of finite type
and flat but not of finite presentation.

Let 𝑅 be a ring which has an ideal 𝐼 such that 𝑅/𝐼 is a finite flat module but not projective,
see Section 64.14 for an explicit example. Note that this means that 𝐼 is not finitely gen-
erated, see Algebra, Lemma 7.100.5. Note that 𝐼 = 𝐼2, see Algebra, Lemma 7.100.2. The
base ring in our examples will be 𝑅 and correspondingly the base scheme 𝑆 = 𝑆𝑝𝑒𝑐(𝑅).

Consider the ring map 𝑅 → 𝑅 ⊕ 𝑅/𝐼𝜖 where 𝜖2 = 0 by convention. This is a finite, flat
ring map which is not of finite presentation. All the fibre rings are complete intersections
and geometrically irreducible.

Let 𝐴 = 𝑅[𝑥, 𝑦]/(𝑥𝑦, 𝑎𝑦; 𝑎 ∈ 𝐼). Note that as an 𝑅-module we have 𝐴 = ⨁𝑖≥0 𝑅𝑦𝑖 ⊕
⨁𝑗>0 𝑅/𝐼𝑥𝑗. Hence 𝑅 → 𝐴 is a flat finite type ring map which is not of finite presentation.
Each fibre ring is isomorphic to either 𝜅(𝔭)[𝑥, 𝑦]/(𝑥𝑦) or 𝜅(𝔭)[𝑥].

We can turn the previous example into a projectivemorphism by taking𝐵 = 𝑅[𝑋0, 𝑋1, 𝑋2]/(𝑋1𝑋2, 𝑎𝑋2; 𝑎 ∈
𝐼). In this case 𝑋 = Proj(𝐵) → 𝑆 is a proper flat morphism which is not of finite presen-
tation such that for each 𝑠 ∈ 𝑆 the fibre 𝑋𝑠 is isomorphic either to 𝐏1

𝑠 or to the closed
subscheme of 𝐏2

𝑠 defined by the vanishing of 𝑋1𝑋2 (this is a projective nodal curve of
arithmetic genus 0).

Let 𝑀 = 𝑅 ⊕ 𝑅 ⊕ 𝑅/𝐼. Set 𝐵 = Sym𝑅(𝑀) the symmetric algebra on 𝑀. Set 𝑋 = Proj(𝐵).
Then 𝑋 → 𝑆 is a proper flat morphism, not of finite presentation such that for 𝑠 ∈ 𝑆 the
geometric fibre is isomorphic to either 𝐏1

𝑠 or 𝐏2
𝑠 . In particular these fibres are smooth and

geometrically irreducible.

Lemma 64.19.1. There exist examples of

(1) a flat finite type ring map with geometrically irreducible complete intersection
fibre rings which is not of finite presentation,

(2) a flat finite type ring map with geometrically connected, geometrically reduced,
dimension 1, complete intersection fibre rings which is not of finite presentation,

(3) a proper flat morphism of schemes 𝑋 → 𝑆 each of whose fibres is isomorphic to
either 𝐏1

𝑠 or to the vanishing locus of 𝑋1𝑋2 in 𝐏2
𝑠 which is not of finite presenta-

tion, and
(4) a proper flat morphism of schemes 𝑋 → 𝑆 each of whose fibres is isomorphic to

either 𝐏1
𝑠 or 𝐏2

𝑠 which is not of finite presentation.

Proof. See discussion above. �
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64.20. Topology of a finite type ring map

Let 𝐴 → 𝐵 be a local map of local domains. If 𝐴 is Noetherian, 𝐴 → 𝐵 is essentially of
finite type, and 𝐴/𝔪𝐴 ⊂ 𝐵/𝔪𝐵 is finite then there exists a prime 𝔮 ⊂ 𝐵, 𝔮≠𝔪𝐵 such that
𝐴 → 𝐵/𝔮 is the localization of a quasi-finite ring map. See More on Morphisms, Lemma
33.33.6.

In this section we give an example that shows this result is false 𝐴 is no longer Noetherian.
Namely, let 𝑘 be a field and set

𝐴 = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + … ∣ 𝑎0 ∈ 𝑘, 𝑎𝑖 ∈ 𝑘((𝑦)) for 𝑖 ≥ 1}

and
𝐶 = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + … ∣ 𝑎0 ∈ 𝑘[𝑦], 𝑎𝑖 ∈ 𝑘((𝑦)) for 𝑖 ≥ 1}.

The inclusion 𝐴 → 𝐶 is of finite type as 𝐶 is generated by 𝑦 over 𝐴. We claim that 𝐴 is a
local ring with maximal ideal 𝔪 = {𝑎1𝑥 + 𝑎2𝑥2 + … ∈ 𝐴} and no prime ideals besides (0)
and 𝔪. Namely, an element 𝑓 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + … of 𝐴 is invertible as soon as 𝑎0≠0.
If 𝔮 ⊂ 𝐴 is a nonzero prime ideal, and 𝑓 = 𝑎𝑖𝑥𝑖 + … ∈ 𝔮, then using properties of power
series one sees that for any 𝑔 ∈ 𝑘((𝑦)) the element 𝑔𝑖+1𝑥𝑖+1 ∈ 𝔮, i.e., 𝑔𝑥 ∈ 𝔮. This proves
that 𝔮 = 𝔪.

As to the spectrum of the ring 𝐶, arguing in the same way as above we see that any nonzero
prime ideal contains the prime 𝔭 = {𝑎1𝑥 + 𝑎2𝑥2 + … ∈ 𝐶} which lies over 𝔪. Thus the
only prime of 𝐶 which lies over (0) is (0). Set 𝔪𝐶 = 𝑦𝐶 + 𝔭 and 𝐵 = 𝐶𝔪𝐶

. Then 𝐴 → 𝐵
is the desired example.

Lemma 64.20.1. There exists a local homomorphism 𝐴 → 𝐵 of local domains which is
essentially of finite type and such that 𝐴/𝔪𝐴 → 𝐵/𝔪𝐵 is finite such that for every prime
𝔮≠𝔪𝐵 of 𝐵 the ring map 𝐴 → 𝐵/𝔮 is not the localization of a quasi-finite ring map.

Proof. See the discussion above. �

64.21. Pure not universally pure

Let 𝑘 be a field. Let
𝑅 = 𝑘[[𝑥, 𝑥𝑦, 𝑥𝑦2, …]] ⊂ 𝑘[[𝑥, 𝑦]].

In other words, a power series 𝑓 ∈ 𝑘[[𝑥, 𝑦]] is in 𝑅 if and only if 𝑓(0, 𝑦) is a constant. In par-
ticular 𝑅[1/𝑥] = 𝑘[[𝑥, 𝑦]][1/𝑥] and 𝑅/𝑥𝑅 is a local ring with a maximal ideal whose square
is zero. Denote 𝑅[𝑦] ⊂ 𝑘[[𝑥, 𝑦]] the set of power series 𝑓 ∈ 𝑘[[𝑥, 𝑦]] such that 𝑓(0, 𝑦) is a
polynomial in 𝑦. Then 𝑅 → 𝑅[𝑦] is a finite type but not finitely presented ring map which
induces an isomorphism after inverting 𝑥. Also there is a surjection 𝑅[𝑦]/𝑥𝑅[𝑦] → 𝑘[𝑦]
whose kernel has square zero. Consider the finitely presented ring map 𝑅 → 𝑆 = 𝑅[𝑡]/(𝑥𝑡−
𝑥𝑦). Again 𝑅[1/𝑥] → 𝑆[1/𝑥] is an isomorphism and in this case 𝑆/𝑥𝑆 ≅ (𝑅/𝑥𝑅)[𝑡]/(𝑥𝑦)
maps onto 𝑘[𝑡] with nilpotent kernel. There is a surjection 𝑆 → 𝑅[𝑦], 𝑡 ⟼ 𝑦 which
induces an isomorphism on inverting 𝑥 and a surjection with nilpotent kernel modulo 𝑥.
Hence the kernel of 𝑆 → 𝑅[𝑦] is locally nilpotent. In particular 𝑆 → 𝑅[𝑦] is a universal
homeomorphism.

First we claim that 𝑆 is an 𝑆-module which is relatively pure over 𝑅. Since on inverting 𝑥
we obtain an isomorphism we only need to check this at the maximal ideal 𝔪 ⊂ 𝑅. Since
𝑅 is complete with respect to its maximal ideal it is henselian hence we need only check
that every prime 𝔭 ⊂ 𝑅, 𝔭≠𝔪, the unique prime 𝔮 of 𝑆 lying over 𝔭 satisfies 𝔪𝑆 + 𝔮≠𝑆.
Since 𝔭≠𝔪 it corresponds to a unique prime ideal of 𝑘[[𝑥, 𝑦]][1/𝑥]. Hence either 𝔭 = (0)
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or 𝔭 = (𝑓) for some irreducible element 𝑓 ∈ 𝑘[[𝑥, 𝑦]] which is not associated to 𝑥 (here we
use that 𝑘[[𝑥, 𝑦]] is a UFD -- insert future reference here). In the first case 𝔮 = (0) and the
result is clear. In the second case we may multiply 𝑓 by a unit so that 𝑓 ∈ 𝑅[𝑦] (Weierstrass
preparation; details omitted). Then it is easy to see that 𝑅[𝑦]/𝑓𝑅[𝑦] ≅ 𝑘[[𝑥, 𝑦]]/(𝑓) hence
𝑓 defines a prime ideal of 𝑅[𝑦] and 𝔪𝑅[𝑦] + 𝑓𝑅[𝑦]≠𝑅[𝑦]. Since 𝑆 → 𝑅[𝑦] is a universal
homeomorphism we deduce the desired result for 𝑆 also.
Second we claim that 𝑆 is not universally relatively pure over 𝑅. Namely, to see this it
sufffices to find a valuation ring 𝒪 and a local ringmap 𝑅 → 𝒪 such that 𝑆𝑝𝑒𝑐(𝑅[𝑦]⊗𝑅𝒪) →
𝑆𝑝𝑒𝑐(𝒪) does not hit the closed point of 𝑆𝑝𝑒𝑐(𝒪). Equivalently, we have to find 𝜑 ∶ 𝑅 → 𝒪
such that 𝜑(𝑥)≠0 and 𝑣(𝜑(𝑥)) > 𝑣(𝜑(𝑥𝑦)) where 𝑣 is the valuation of 𝒪. (Because this
means that the valuation of 𝑦 is negative.) To do this consider the ring map

𝑅 ⟶ {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + … ∣ 𝑎0 ∈ 𝑘[𝑦−1], 𝑎𝑖 ∈ 𝑘((𝑦))}
defined in the obvious way. We can find a valuation ring 𝒪 dominating the localization of
the right hand side at the maximal ideal (𝑦−1, 𝑥) and we win.

Lemma 64.21.1. There exists a morphism of affine schemes of finite presentation 𝑋 →
𝑆 and an 𝒪𝑋-module ℱ of finite presentation such that ℱ is pure relative to 𝑆, but not
universally pure relative to 𝑆.

Proof. See discussion above. �

64.22. A formally smooth non-flat ring map

Let 𝑘 be a field. Consider the 𝑘-algebra 𝑘[𝐐]. This is the 𝑘-algebra with basis 𝑥𝛼, 𝛼 ∈ 𝐐 and
multiplication determined by 𝑥𝛼𝑥𝛽 = 𝑥𝛼+𝛽. (In particular 𝑥0 = 1.) Consider the 𝑘-algebra
homomorphism

𝑘[𝐐] ⟶ 𝑘, 𝑥𝛼 ⟼ 1.
It is surjective with kernel 𝐽 generated by the elements 𝑥𝛼 − 1. Let us compute 𝐽/𝐽2. Note
that multiplication by 𝑥𝛼 on 𝐽/𝐽2 is the identity map. Denote 𝑧𝛼 the class of 𝑥𝛼 − 1 modulo
𝐽2. These classes generate 𝐽/𝐽2. Since

(𝑥𝛼 − 1)(𝑥𝛽 − 1) = 𝑥𝛼+𝛽 − 𝑥𝛼 − 𝑥𝛽 + 1 = (𝑥𝛼+𝛽 − 1) − (𝑥𝛼 − 1) − (𝑥𝛽 − 1)

we see that 𝑧𝛼+𝛽 = 𝑧𝛼 + 𝑧𝛽 in 𝐽/𝐽2. A general element of 𝐽/𝐽2 is of the form ∑ 𝜆𝛼𝑧𝛼 with
𝜆𝛼 ∈ 𝑘 (only finitely many nonzero). Note that if the characteristic of 𝑘 is 𝑝 > 0 then

0 = 𝑝𝑧𝛼/𝑝 = 𝑧𝛼/𝑝 + … + 𝑧𝛼/𝑝 = 𝑧𝛼

and we see that 𝐽/𝐽2 = 0. If the characteristic of 𝑘 is zero, then
𝐽/𝐽2 = 𝐐 ⊗𝐙 𝑘 ≅ 𝑘

(details omitted) is not zero.
We claim that 𝑘[𝐐] → 𝑘 is a formally smooth ring map if the characteristic of 𝑘 is positive.
Namely, suppose given a solid commutative diagram

𝑘 //

""

𝐴

𝑘[𝐐]

OO

𝜑 // 𝐴′

OO

with 𝐴′ → 𝐴 a surjection whose kernel 𝐼 has square zero. To show that 𝑘[𝐐] → 𝑘 is
formally smooth we have to prove that 𝜑 factors through 𝑘. Since 𝜑(𝑥𝛼 − 1) maps to zero
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in 𝐴 we see that 𝜑 induces a map 𝜑 ∶ 𝐽/𝐽2 → 𝐼 whose vanishing is the obstruction to the
desired factorization. Since 𝐽/𝐽2 = 0 if the characteristic is 𝑝 > 0 we get the result we
want, i.e., 𝑘[𝐐] → 𝑘 is formally smooth in this case. Finally, this ring map is not flat, for
example as the nonzero divisor 𝑥2 − 1 is mapped to zero.

Lemma 64.22.1. There exists a formally smooth ring map which is not flat.

Proof. See discussion above. �

64.23. A formally étale non-flat ring map

In this section we give a counterexample to the final sentence in [DG67, 0𝐼𝑉, Example
19.10.3(i)] (this was not one of the items caught in their later errata lists). Consider 𝐴 →
𝐴/𝐽 for a local ring A and a nonzero proper ideal 𝐽 such that 𝐽2 = 𝐽 (so 𝐽 isn't finitely
generated); the valuation ring of an algebraically closed non-archimedean field with 𝐽 its
maximal ideal is a source of such (𝐴, 𝐽). These non-flat quotient maps are formally étale.
Namely, suppose given a commutative diagram

𝐴/𝐽 // 𝑅/𝐼

𝐴

OO

𝜑 // 𝑅

OO

where 𝐼 is an ideal of the ring 𝑅 with 𝐼2 = 0. Then 𝐴 → 𝑅 factors uniquely through 𝐴/𝐽
because

𝜑(𝐽) = 𝜑(𝐽2) ⊂ (𝜑(𝐽)𝐴)2 ⊂ 𝐼2 = 0.
Hence this also provides a counterexample to the formally étale case of the ``structure theo-
rem'' for locally finite type and formally étale morphisms in [DG67, IV, Theorem 18.4.6(i)]
(but not a counterexample to part (ii), which is what people actually use in practice). The
error in the proof of the latter is that the very last step of the proof is to invoke the incorrect
[DG67, 0𝐼𝑉, Example 19.3.10(i)], which is how the counterexample just mentioned creeps
in.

Lemma 64.23.1. There exist formally étale nonflat ring maps.

Proof. See discussion above. �

64.24. A formally étale ring map with nontrivial cotangent complex

Let 𝑘 be a field. Consider the ring

𝑅 = 𝑘[{𝑥𝑛}𝑛≥1, {𝑦𝑛}𝑛≥1]/(𝑥1𝑦1, 𝑥𝑚
𝑛𝑚 − 𝑥𝑛, 𝑦𝑚

𝑛𝑚 − 𝑦𝑛)

Let 𝐴 be the localization at the maximal ideal generated by all 𝑥𝑛, 𝑦𝑛 and denote 𝐽 ⊂ 𝐴 the
maximal ideal. Set 𝐵 = 𝐴/𝐽. By construction 𝐽2 = 𝐽 and hence 𝐴 → 𝐵 is formally étale
(see Section 64.23). We claim that the element 𝑥1 ⊗ 𝑦1 is a nonzero element in the kernel
of

𝐽 ⊗𝐴 𝐽 ⟶ 𝐽.
Namely, (𝐴, 𝐽) is the colimit of the localizations (𝐴𝑛, 𝐽𝑛) of the rings

𝑅𝑛 = 𝑘[𝑥𝑛, 𝑦𝑛]/(𝑥𝑛
𝑛𝑦𝑛

𝑛)

at their corresponding maximal ideals. Then 𝑥1 ⊗ 𝑦1 corresponds to the element 𝑥𝑛
𝑛 ⊗ 𝑦𝑛

𝑛 ∈
𝐽𝑛 ⊗𝐴𝑛

𝐽𝑛 and is nonzero (by an explicit computation which we omit). Since ⊗ commutes
with colimits we conclude. By [Ill72, III Section 3.3] we see that 𝐽 is not weakly regular.
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Hence by [Ill72, III Proposition 3.3.3] we see that the cotangent complex 𝐿𝐵/𝐴 is not zero.
In fact, we can be more precise. We have 𝐻0(𝐿𝐵/𝐴) = Ω𝐵/𝐴 and 𝐻1(𝐿𝐵/𝐴) = 0 because
𝐽/𝐽2 = 0. But from the five-term exact sequence of Quillen's fundamental spectral sequence
[Rei, Corollary 8.2.6] and the nonvanishing of Tor𝐴2 (𝐵, 𝐵) = Ker(𝐽⊗𝐴𝐽 → 𝐽) we conclude
that 𝐻2(𝐿𝐵/𝐴) is nonzero.

Lemma 64.24.1. There exists a formally étale surjective ring map 𝐴 → 𝐵 with 𝐿𝐵/𝐴 not
equal to zero.

Proof. See discussion above. �

64.25. Ideals generated by sets of idempotents and localization

Let 𝑅 be a ring. Consider the ring

𝐵(𝑅) = 𝑅[𝑥𝑛; 𝑛 ∈ 𝐙]/(𝑥𝑛(𝑥𝑛 − 1), 𝑥𝑛𝑥𝑚; 𝑛≠𝑚)

It is easy to show that every prime 𝔮 ⊂ 𝐵(𝑅) is either of the form

𝔮 = 𝔭𝐵(𝑅) + (𝑥𝑛; 𝑛 ∈ 𝐙)

or of the form
𝔮 = 𝔭𝐵(𝑅) + (𝑥𝑛 − 1) + (𝑥𝑚; 𝑛≠𝑚, 𝑚 ∈ 𝐙).

Hence we see that
𝑆𝑝𝑒𝑐(𝐵(𝑅)) = 𝑆𝑝𝑒𝑐(𝑅) ⨿ ∐𝑛∈𝐙

𝑆𝑝𝑒𝑐(𝑅)

where the topology is not just the disjoint union topology. It has the following properties:
Each of the copies indexed by 𝑛 ∈ 𝐙 is an open subscheme, namely it is the standard open
𝐷(𝑥𝑛). The "central" copy of 𝑆𝑝𝑒𝑐(𝑅) is in the closure of the union of any infinitely many
of the other copies of 𝑆𝑝𝑒𝑐(𝑅). Note that this last copy of 𝑆𝑝𝑒𝑐(𝑅) is cut out by the ideal
(𝑥𝑛, 𝑛 ∈ 𝐙) which is generated by the idempotents 𝑥𝑛. Hence we see that if 𝑆𝑝𝑒𝑐(𝑅) is
connected, then the decomposition above is exactly the decomposition of 𝑆𝑝𝑒𝑐(𝐵(𝑅)) into
connected components.

Next, let 𝐴 = 𝐂[𝑥, 𝑦]/((𝑦 − 𝑥2 + 1)(𝑦 + 𝑥2 − 1)). The spectrum of 𝐴 consists of two
irreducible components 𝐶1 = 𝑆𝑝𝑒𝑐(𝐴1), 𝐶2 = 𝑆𝑝𝑒𝑐(𝐴2) with 𝐴1 = 𝐂[𝑥, 𝑦]/(𝑦 − 𝑥2 + 1)
and 𝐴2 = 𝐂[𝑥, 𝑦]/(𝑦 + 𝑥2 − 1). Note that these are parametrized by (𝑥, 𝑦) = (𝑡, 𝑡2 − 1) and
(𝑥, 𝑦) = (𝑡, −𝑡2 + 1) which meet in 𝑃 = (−1, 0) and 𝑄 = (1, 0). We can make a twisted
version of 𝐵(𝐴) where we glue 𝐵(𝐴1) to 𝐵(𝐴2) in the following way: Above 𝑃 we let
𝑥𝑛 ∈ 𝐵(𝐴1)⊗𝜅(𝑃) correspond to 𝑥𝑛 ∈ 𝐵(𝐴2)⊗𝜅(𝑃), but above 𝑄 we let 𝑥𝑛 ∈ 𝐵(𝐴1)⊗𝜅(𝑃)
correspond to 𝑥𝑛+1 ∈ 𝐵(𝐴2) ⊗ 𝜅(𝑃). Let 𝐵𝑡𝑤𝑖𝑠𝑡(𝐴) denote the resulting 𝐴-algebra. Details
omitted. By construction 𝐵𝑡𝑤𝑖𝑠𝑡(𝐴) is Zariski locally over 𝐴 isomorphic to the untwisted
version. Namely, this happens over both the principal open 𝑆𝑝𝑒𝑐(𝐴)⧵{𝑃} and the principal
open 𝑆𝑝𝑒𝑐(𝐴) ⧵ {𝑄}. However, our choice of glueing produces enough "monodromy"
such that 𝑆𝑝𝑒𝑐(𝐵𝑡𝑤𝑖𝑠𝑡(𝐴)) is connected (details omitted). Finally, there is a central copy of
𝑆𝑝𝑒𝑐(𝐴) → 𝑆𝑝𝑒𝑐(𝐵𝑡𝑤𝑖𝑠𝑡(𝐴)) which gives a closed subscheme whose ideal is Zariski locally
on 𝐵𝑡𝑤𝑖𝑠𝑡(𝐴) cut out by ideals generated by idempotents, but not globally (as 𝐵𝑡𝑤𝑖𝑠𝑡(𝐴) has
no nontrivial idempotents).

Lemma 64.25.1. There exists an affine scheme 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and a closed subscheme
𝑇 ⊂ 𝑋 such that 𝑇 is Zariski locally on 𝑋 cut out by ideals generated by idempotents, but
𝑇 is not cut out by an ideal generated by idempotents.

Proof. See above. �
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64.26. Non flasque quasi-coherent sheaf associated to injective module

For more examples of this type see [BGI71, Exposé II, Appendix I] where Illusie explains
some examples due to Verdier.

Consider the affine scheme 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) where

𝐴 = 𝑘[𝑓, 𝑔, 𝑥, 𝑦, {𝑎𝑛, 𝑏𝑛}𝑛≥1]/(𝑓𝑦 − 𝑔𝑥, {𝑎𝑛𝑓𝑛 + 𝑏𝑛𝑔𝑛}𝑛≥1)

is the ring from Properties, Example 23.22.2. Set 𝐼 = (𝑓, 𝑔) ⊂ 𝐴. Consider the quasi-
compact open 𝑈 = 𝐷(𝑓) ∪ 𝐷(𝑔) of 𝑋. We have seen in loc. cit. that there is a section
𝑠 ∈ 𝒪𝑋(𝑈) which does not come from an 𝐴-module map 𝐼𝑛 → 𝐴 for any 𝑛 ≥ 0.

Let 𝛼 ∶ 𝐴 → 𝐽 be the embedding of 𝐴 into an injective 𝐴-module. Let 𝑄 = 𝐽/𝛼(𝐴) and
denote 𝛽 ∶ 𝐽 → 𝑄 the quotient map. We claim that the map

Γ(𝑋, ̃𝐽) ⟶ Γ(𝑈, ̃𝐽)

is not surjective. Namely, we claim that 𝛼(𝑠) is not in the image. To see this, we argue by
contradiction. So assume that 𝑥 ∈ 𝐽 is an element which restricts to 𝛼(𝑠) over 𝑈. Then
𝛽(𝑥) ∈ 𝑄 is an element which restricts to 0 over 𝑈. Hence we know that 𝐼𝑛𝛽(𝑥) = 0 for
some 𝑛, see Properties, Lemma 23.22.1. This implies that we get a morphism 𝜑 ∶ 𝐼𝑛 → 𝐴,
ℎ ↦ 𝛼−1(ℎ𝑥). It is easy to see that this morphism 𝜑 gives rise to the section 𝑠 via the map
of Properties, Lemma 23.22.1 which is a contradiction.

Lemma 64.26.1. There exists an affine scheme 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) and an injective 𝐴-module
𝐽 such that ̃𝐽 is not a flasque sheaf on 𝑋. Even the restriction Γ(𝑋, ̃𝐽) → Γ(𝑈, ̃𝐽) with 𝑈
quasi-compact open need not be surjective.

Proof. See above. �

64.27. A non-separated flat group scheme

Every group scheme over a field is separated, see Groupoids, Lemma 35.7.2. This is not
true for group schemes over a base.

Let 𝑘 be a field. Let 𝑆 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]) = 𝐀1
𝑘. Let 𝐺 be the affine line with 0 doubled (see

Schemes, Example 21.14.3) seen as a scheme over 𝑆. Thus a fibre of 𝐺 → 𝑆 is either a
singleton or a set with two elements (one in 𝑈 and one in 𝑉). Thus we can endow these
fibres with the structure of a group (by letting the element in 𝑈 be the zero of the group
structure). More precisely, 𝐺 has two opens 𝑈, 𝑉 which map isomorphically to 𝑆 such that
𝑈 ∩ 𝑉 is mapped isomorphically to 𝑆 ⧵ {0}. Then

𝐺 ×𝑆 𝐺 = 𝑈 ×𝑆 𝑈 ∪ 𝑉 ×𝑆 𝑈 ∪ 𝑈 ×𝑆 𝑉 ∪ 𝑉 ×𝑆 𝑉

where each piece is isomorphic to 𝑆. Hence we can define amultiplication 𝑚 ∶ 𝐺×𝑆𝐺 → 𝐺
as the unique 𝑆-morphism which maps the first and the last piece into 𝑈 and the two middle
pieces into 𝑉. This matches the pointwise description given above. We omit the verification
that this defines a group scheme structure.

Lemma 64.27.1. There exists a flat group scheme of finite type over the affine line which
is not separated.

Proof. See discussion above. �
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64.28. A non-flat group scheme with flat identity component

Let 𝑋 → 𝑆 be a monomorphism of schemes. Let 𝐺 = 𝑆 ⨿ 𝑋. Let 𝑚 ∶ 𝐺 ×𝑆 𝐺 → 𝐺 be the
𝑆-morphism

𝐺 ×𝑆 𝐺 = 𝑋 ×𝑆 𝑋 ⨿ 𝑋 ⨿ 𝑋 ⨿ 𝑆 ⟶ 𝐺 = 𝑋 ⨿ 𝑆
which maps the summands 𝑋 ×𝑆 𝑋 and 𝑆 into 𝑆 and maps the summands 𝑋 into 𝑋 by the
identity morphism. This defines a group law. To see this we have to show that 𝑚∘(𝑚×id𝐺) =
𝑚 ∘ (id𝐺 × 𝑚) as maps 𝐺 ×𝑆 𝐺 ×𝑆 𝐺 → 𝐺. Decomposing 𝐺 ×𝑆 𝐺 ×𝑆 𝐺 into components
as above, we see that we need to verify this for the restriction to each of the 8-pieces. Each
piece is isomorphic to either 𝑆, 𝑋, 𝑋×𝑆𝑋, or 𝑋×𝑆𝑋×𝑆𝑋. Moreover, both maps map these
pieces to 𝑆, 𝑋, 𝑆, 𝑋 respectively. Having said this, the fact that 𝑋 → 𝑆 is a monomorphism
implies that 𝑋 ×𝑆 𝑋 ≅ 𝑋 and 𝑋 ×𝑆 𝑋 ×𝑆 𝑋 ≅ 𝑋 and that there is in each case exactly one
𝑆-morphism 𝑆 → 𝑆 or 𝑋 → 𝑋. Thus we see that 𝑚 ∘ (𝑚 × id𝐺) = 𝑚 ∘ (id𝐺 × 𝑚). Thus
taking 𝑋 → 𝑆 to be any nonflat monomorphism of schemes (e.g., a closed immersion) we
get an example of a group scheme over a base 𝑆 whose identity component is 𝑆 (hence flat)
but which is not flat.

Lemma 64.28.1. There exists a group scheme 𝐺 over a base 𝑆 whose identity component
is flat over 𝑆 but which is not flat over 𝑆.

Proof. See discussion above. �

64.29. A non-separated group algebraic space over a field

Every group scheme over a field is separated, see Groupoids, Lemma 35.7.2. This is not
true for group algebraic spaces over a field.

Let 𝑘 be a field of characteristic zero. Consider the algebraic space 𝐺 = 𝐀1
𝑘/𝐙 from Spaces,

Example 40.14.8. By construction 𝐺 is the fppf sheaf associated to the presheaf

𝑇 ⟼ Γ(𝑇, 𝒪𝑇)/𝐙

on the category of schemes over 𝑘. The obvious addition rule on the presheaf induces an
addtion 𝑚 ∶ 𝐺 × 𝐺 → 𝐺 which turns 𝐺 into a group algebraic space over 𝑆𝑝𝑒𝑐(𝑘). Note
that 𝐺 is not separated (and not even quasi-separated or locally separated). On the other
hand 𝐺 → 𝑆𝑝𝑒𝑐(𝑘) is of finite type!

Lemma 64.29.1. There exists a group algebraic space of finite type over a field which is
not separated (and not even quasi-separated or locally separated).

Proof. See discussion above. �

64.30. Specializations between points in fibre étale morphism

If 𝑓 ∶ 𝑋 → 𝑌 is an étale, or more generally a locally quasi-finite morphism of schemes,
then there are no specializations between points of fibres, see Morphisms, Lemma 24.19.8.
However, for morphisms of algebraic spaces this doesn't hold in general.

To give an example, let 𝑘 be a field. Set

𝑃 = 𝑘[𝑢, 𝑢−1, 𝑦, {𝑥𝑛}𝑛∈𝐙].

Consider the action of 𝐙 on 𝑃 by 𝑘-algebra maps generated by the automorphism 𝜏 given by
the rules 𝜏(𝑢) = 𝑢, 𝜏(𝑦) = 𝑢𝑦, and 𝜏(𝑥𝑛) = 𝑥𝑛+1. For 𝑑 ≥ 1 set 𝐼𝑑 = ((1−𝑢𝑑)𝑦, 𝑥𝑛−𝑥𝑛+𝑑, 𝑛 ∈
𝐙). Then 𝑉(𝐼𝑑) ⊂ 𝑆𝑝𝑒𝑐(𝑃) is the fix point locus of 𝜏𝑑. Let 𝑆 ⊂ 𝑃 be themultiplicative subset
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generated by 𝑦 and all 1 − 𝑢𝑑, 𝑑 ∈ 𝐍. Then we see that 𝐙 acts freely on 𝑈 = 𝑆𝑝𝑒𝑐(𝑆−1𝑃).
Let 𝑋 = 𝑈/𝐙 be the quotient algebraic space, see Spaces, Definition 40.14.4.

Consider the prime ideals 𝔭𝑛 = (𝑥𝑛, 𝑥𝑛+1, …) in 𝑆−1𝑃. Note that 𝜏(𝔭𝑛) = 𝔭𝑛+1. Hence each
of these define point 𝜉𝑛 ∈ 𝑈 whose image in 𝑋 is the same point 𝑥 of 𝑋. Moreover we have
the specializations

… 𝜉𝑛  𝜉𝑛−1  …
We conclude that 𝑈 → 𝑋 is an example of the promised type.

Lemma 64.30.1. There exists an étale morphism of algebraic spaces 𝑓 ∶ 𝑋 → 𝑌 and a
nontrivial specialization of points 𝑥 𝑥′ in |𝑋| with 𝑓(𝑥) = 𝑓(𝑥′) in |𝑌|.

Proof. See discussion above. �

64.31. A torsor which is not an fppf torsor

In Groupoids, Remark 35.9.5 we raise the question whether any 𝐺-torsor is a 𝐺-torsor for
the fppf topology. In this section we show that this is not always the case.

Let 𝑘 be a field. All schemes and stacks are over 𝑘 in what follows. Let 𝐺 → 𝑆𝑝𝑒𝑐(𝑘) be
the group scheme

𝐺 = (𝜇2,𝑘)∞ = 𝜇2,𝑘 ×𝑘 𝜇2,𝑘 ×𝑘 𝜇2,𝑘 ×𝑘 … = 𝑙𝑖𝑚𝑛(𝜇2,𝑘)𝑛

where 𝜇2,𝑘 is the group scheme of second roots of unity over 𝑆𝑝𝑒𝑐(𝑘), see Groupoids,
Example 35.5.2. As an inverse limit of affine schemes we see that 𝐺 is an affine group
scheme. In fact it is the spectrum of the ring 𝑘[𝑡1, 𝑡2, 𝑡3, …]/(𝑡2

𝑖 − 1). The multiplication
map 𝑚 ∶ 𝐺 ×𝑘 𝐺 → 𝐺 is on the algebra level given by 𝑡𝑖 ↦ 𝑡𝑖 ⊗ 𝑡𝑖.

We claim that any 𝐺-torsor over 𝑘 is of the form

𝑃 = 𝑆𝑝𝑒𝑐(𝑘[𝑥1, 𝑥2, 𝑥3, …]/(𝑥2
𝑖 − 𝑎𝑖))

for certain 𝑎𝑖 ∈ 𝑘∗ and with 𝐺-action 𝐺×𝑘 𝑃 → 𝑃 given by 𝑥𝑖 → 𝑡𝑖 ⊗𝑥𝑖 on the algebra level.
We omit the proof. Actually for the example we only need that 𝑃 is a 𝐺-torsor which is clear
since over 𝑘′ = 𝑘(√𝑎1, √𝑎2, …) the scheme 𝑃 becomes isomorphic to 𝐺 in a 𝐺-equivariant
manner. Note that 𝑃 is trivial if and only if 𝑘′ = 𝑘 since if 𝑃 has a 𝑘-rational point then all
of the 𝑎𝑖 are squares.

We claim that 𝑃 is an fppf torsor if and only if the field extension 𝑘 ⊂ 𝑘′ = 𝑘(√𝑎1, √𝑎2, …)
is finite. If 𝑘′ is finite over 𝑘, then {𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘)} is an fppf covering which
trivializes 𝑃 and we see that 𝑃 is indeed an fppf torsor. Conversely, suppose that 𝑃 is
a 𝐺-torsor for the fppf topology. This means that there exists an fppf covering {𝑆𝑖 →
𝑆𝑝𝑒𝑐(𝑘)} such that each 𝑃𝑆𝑖

is trivial. Pick an 𝑖 such that 𝑆𝑖 is not empty. Let 𝑠 ∈ 𝑆𝑖 be
a closed point. By Varieties, Lemma 28.12.1 the field extension 𝑘 ⊂ 𝜅(𝑠) is finite, and by
construction 𝑃𝜅(𝑠) has a 𝜅(𝑠)-rational point. Thus we see that 𝑘 ⊂ 𝑘′ ⊂ 𝜅(𝑠) and 𝑘′ is finite
over 𝑘.

To get an explicit example take 𝑘 = 𝐐 and 𝑎𝑖 = 𝑖 for example (or 𝑎𝑖 is the 𝑖th prime if you
like).

Lemma64.31.1. Let𝑆 be a scheme. Let𝐺 be a group scheme over𝑆. The stack𝐺-Principal
classifying principal homogeneous 𝐺-spaces (see Examples of Stacks, Subsection 55.13.5)
and the stack 𝐺-Torsors classifying fppf 𝐺-torsors (see Examples of Stacks, Subsection
55.13.8) are not equivalent in general.
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Proof. The discussion above shows that the functor 𝐺-Torsors → 𝐺-Principal isn't essen-
tially surjective in general. �

64.32. Stack with quasi-compact flat covering which is not algebraic

In this section we briefly describe an example due to Brian Conrad. You can find the
example online at this location. Our example is slightly different.

Let 𝑘 be an algebraically closed field. All schemes and stacks are over 𝑘 in what follows.
Let 𝐺 → 𝑆𝑝𝑒𝑐(𝑘) be an affine group scheme. In Examples of Stacks, Proposition 55.14.4
we have seen that 𝒳 = [𝑆𝑝𝑒𝑐(𝑘)/𝐺] is a stack in groupoids over (Sch/ 𝑆𝑝𝑒𝑐(𝑘))𝑓𝑝𝑝𝑓 which
can be described as follows. A 1-morphism 𝑇 → 𝒳 corresponds by definition to an fppf
𝐺𝑇-torsor 𝑃 over 𝑇. The diagonal 1-morphism

Δ ∶ 𝒳 ⟶ 𝒳 ×𝑆𝑝𝑒𝑐(𝑘) 𝒳

is representable and affine. The reason for this is that given any pair of 𝐺𝑇-torsors 𝑃1, 𝑃2 in
the fppf topology over a scheme 𝑆/𝑘 the scheme 𝐼𝑠𝑜𝑚(𝑃1, 𝑃2) is affine over 𝑇. The trivial
𝐺-torsor over 𝑆𝑝𝑒𝑐(𝑘) defines a 1-morphism

𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑘) ⟶ 𝒳.

We claim that this is a surjective 1-morphism. The reason is simply that by definition for
any 1-morphism 𝑇 → 𝒳 there exists a fppf covering {𝑇𝑖 → 𝑇} such that 𝑃𝑇𝑖

is isomorphic
to the trivial 𝐺𝑇𝑖

-torsor. Hence the compositions 𝑇𝑖 → 𝑇 → 𝒳 factor through 𝑓. Thus it
is clear that the projection 𝑇 ×𝒳 𝑆𝑝𝑒𝑐(𝑘) → 𝒳 is surjective (which is how we define the
property that 𝑓 is surjective, see Algebraic Stacks, Definition 57.10.1). In a similar way you
show that 𝑓 is quasi-compact and flat (details omitted). We also record here the observation
that

𝑆𝑝𝑒𝑐(𝑘) ×𝒳 𝑆𝑝𝑒𝑐(𝑘) ≅ 𝐺
as schemes over 𝑘.

Suppose there exists a surjective smooth morphism 𝑝 ∶ 𝑈 → 𝒳 where 𝑈 is a scheme.
Consider the fibre product

𝑊

��

// 𝑈

��
𝑆𝑝𝑒𝑐(𝑘) // 𝒳

Then we see that 𝑊 is a nonempty smooth scheme over 𝑘 which hence has a 𝑘-point. This
means that we can factor 𝑓 through 𝑈. Hence we obtain

𝐺 ≅ 𝑆𝑝𝑒𝑐(𝑘) ×𝒳 𝑆𝑝𝑒𝑐(𝑘) ≅ (𝑆𝑝𝑒𝑐(𝑘) ×𝑘 𝑆𝑝𝑒𝑐(𝑘)) ×(𝑈×𝑘𝑈) (𝑈 ×𝒳 𝑈)

and since the projections 𝑈 ×𝒳 𝑈 → 𝑈 were assumed smooth we conclude that 𝑈 ×𝒳 𝑈 →
𝑈 ×𝑘 𝑈 is locally of finite type, see Morphisms, Lemma 24.14.8. It follows that in this case
𝐺 is locally of finite type over 𝑘. Alltogether we have proved the following lemma (which
can be significantly generalized).

Lemma 64.32.1. Let 𝑘 be a field. Let 𝐺 be an affine group scheme over 𝑘. If the stack
[𝑆𝑝𝑒𝑐(𝑘)/𝐺] has a smooth covering by a scheme, then 𝐺 is of finite type over 𝑘.

Proof. See discussion above. �
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To get an explicit example as in the title of this section, take for example 𝐺 = (𝜇2,𝑘)∞ the
group scheme of Section 64.31, which is not locally of finite type over 𝑘. By the discussion
above we see that 𝒳 = [𝑆𝑝𝑒𝑐(𝑘)/𝐺] has properties (1) and (2) of Algebraic Stacks, Defini-
tion 57.12.1, but not property (3). Hence 𝒳 is not an algebraic stack. On the other hand,
there does exists a scheme 𝑈 an a surjective, flat, quasi-compact morphism 𝑈 → 𝒳, namely
the morphism 𝑓 ∶ 𝑆𝑝𝑒𝑐(𝑘) → 𝒳 we studied above.

64.33. A non-algebraic classifying stack

Let 𝑆 = Spec(𝐅𝑝) and let 𝜇𝑝 denote the group scheme of 𝑝th roots of unity over 𝑆. In
Groupoids in Spaces, Section 52.19 we have introduced the quotient stack [𝑆/𝜇𝑝] and in
Examples of Stacks, Section 55.14 we have shown [𝑆/𝜇𝑝] is the classifying stack for fppf
𝜇𝑝-torsors: Given a scheme 𝑇 over𝑆 the category𝑀𝑜𝑟𝑆(𝑇, [𝑆/𝜇𝑝]) is canonically equivalent
to the category of fppf 𝜇𝑝-torsors over 𝑇. Finally, in Criteria for Representability, Theorem
59.17.2 we have seen that [𝑆/𝜇𝑝] is an algebraic stack.
Now we can ask the question: ``How about the category fibred in groupoids 𝒮 classifying
étale 𝜇𝑝-torsors?'' (In other words 𝒮 is a category over Sch/𝑆 whose fibre category over a
scheme 𝑇 is the category of étale 𝜇𝑝-torsors over 𝑇.)
The first objection is that this isn't a stack for the fppf topology, because descent for objects
isn't going to hold. For example the 𝜇𝑝-torsor Spec(𝐅𝑝(𝑡)[𝑥]/(𝑥𝑝 − 𝑡)) over 𝑇 = Spec(𝐅𝑝(𝑇))
is fppf locally trivial, but not étale locally trivial.
A fix for this first problem is to work with the étale topology and in this case descent for
objects does work. Indeed it is true that 𝒮 is a stack in groupoids over (Sch/𝑆) ́𝑒𝑡𝑎𝑙𝑒. More-
over, it is also the case that the diagonal Δ ∶ 𝒮 → 𝒮 × 𝒮 is representable (by schemes).
This is true because given two 𝜇𝑝-torsors (whether they be étale locally trivial or not) the
sheaf of isomorphisms between them is representable by a scheme.
Thus we can finally ask if there exists a scheme 𝑈 and a smooth and surjective 1-morphism
𝑈 → 𝒮. We will show in two ways that this is impossible: by a direct argument (which we
advise the reader to skip) and by an argument using a general result.
Direct argument (sketch): Note that the 1-morphism 𝒮 → Spec(𝐅𝑝) satisfies the infinites-
imal lifting criterion for formal smoothness. This is true because given a first order infin-
itesimal thickening of schemes 𝑇 → 𝑇′ the kernel of 𝜇𝑝(𝑇′) → 𝜇𝑝(𝑇) is isomorphic to the
sections of the ideal sheaf of 𝑇 in 𝑇′, and hence 𝐻1

́𝑒𝑡𝑎𝑙𝑒(𝑇, 𝜇𝑝) = 𝐻1
́𝑒𝑡𝑎𝑙𝑒(𝑇′, 𝜇𝑝). Moreover,

𝒮 is a limit preserving stack. Hence if 𝑈 → 𝒮 is smooth, then 𝑈 → Spec(𝐅𝑝) is limit pre-
serving and satisfies the infinitesimal lifting criterion for formal smoothness. This implies
that 𝑈 is smooth over 𝐅𝑝. In particular 𝑈 is reduced, hence 𝐻1

́𝑒𝑡𝑎𝑙𝑒(𝑈, 𝜇𝑝) = 0. Thus 𝑈 → 𝒮
factors as 𝑈 → Spec(𝐅𝑝) → 𝒮 and the first arrow is smooth. By descent of smoothness, we
see that 𝑈 → 𝒮 being smooth would imply Spec(𝐅𝑝) → 𝒮 is smooth. However, this is not
the case as Spec(𝐅𝑝) ×𝒮 Spec(𝐅𝑝) is 𝜇𝑝 which is not smooth over Spec(𝐅𝑝).
Structural argument: In Criteria for Representability, Section 59.19 we have seen that we
can think of algebraic stacks as those stacks in groupoids for the étale topology with di-
agonal representable by algebraic spaces having a smooth covering. Hence if a smooth
surjective 𝑈 → 𝒮 exists then 𝒮 is an algebraic stack, and in particular satisfies descent
in the fppf topology. But we've seen above that 𝒮 does not satisfies descent in the fppf
topology.
Loosely speaking the arguments above show that the classifying stack in the étale topology
for étale locally trivial torsors for a group scheme 𝐺 over a base 𝐵 is algebraic if and only
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if 𝐺 is smooth over 𝐵. One of the advantages of working with the fppf topology is that it
suffices to assume that 𝐺 → 𝐵 is flat and locally of finite presentation. In fact the quotient
stack (for the fppf topology) [𝐵/𝐺] is algebraic if and only if 𝐺 → 𝐵 is flat and locally of
finite presentation, see Criteria for Representability, Lemma 59.18.3.

64.34. Sheaf with quasi-compact flat covering which is not algebraic

Consider the functor 𝐹 = (𝐏1)∞, i.e., for a scheme 𝑇 the value 𝐹(𝑇) is the set of 𝑓 =
(𝑓1, 𝑓2, 𝑓3, …) where each 𝑓𝑖 ∶ 𝑇 → 𝐏1 is a morphism of schemes. Note that 𝐏1 satisfies
the sheaf property for fpqc coverings, see Descent, Lemma 31.9.3. A product of sheaves
is a sheaf, so 𝐹 also satisfies the sheaf property for the fpqc toplogy. The diagonal of 𝐹
is representable: if 𝑓 ∶ 𝑇 → 𝐹 and 𝑔 ∶ 𝑆 → 𝐹 are morphisms, then 𝑇 ×𝐹 𝑆 is the
scheme theoretic intersection of the closed subschemes 𝑇×𝑓𝑖,𝐏1,𝑔𝑖

𝑆 inside the scheme 𝑇×𝑆.
Consider the group scheme SL2 which comes with a surjective smooth affine morphism
SL2 → 𝐏1. Next, consider 𝑈 = (SL2)∞ with its canonical (product) morphism 𝑈 → 𝐹.
Note that 𝑈 is an affine scheme. We claim the morphism 𝑈 → 𝐹 is flat, surjective, and
universally open. Namely, suppose 𝑓 ∶ 𝑇 → 𝐹 is a morphism. Then 𝑍 = 𝑇 ×𝐹 𝑈 is the
infinite fibre product of the schemes 𝑍𝑖 = 𝑇 ×𝑓𝑖,𝐏1 SL2 over 𝑇. Each of the morphisms
𝑍𝑖 → 𝑇 is surjective smooth and affine which implies that

𝑍 = 𝑍1 ×𝑇 𝑍2 ×𝑇 𝑍3 ×𝑇 …

is a scheme flat and affine over 𝑍. A simple limit argument shows that 𝑍 → 𝑇 is open as
well.

On the other hand, we claim that 𝐹 isn't an algebraic space. Namely, if 𝐹 where an algebraic
space it would be a quasi-compact and separated (by our description of fibre products over
𝐹) algebraic space. Hence cohomology of quasi-coherent sheaves would vanish above a
certain cutoff (see Cohomology of Spaces, Proposition 49.7.2 and remarks preceding it).
But clearly by taking the pullback of 𝒪(−2, −2, … , −2) under the projection

(𝐏1)∞ ⟶ (𝐏1)𝑛

(which has a section) we can obtain a quasi-coherent sheaf whose cohomology is nonzero
in degree 𝑛. Altogether we obtain an answer to a question asked by Anton Geraschenko on
mathoverflow.

Lemma 64.34.1. There exists a functor 𝐹 ∶ Sch𝑜𝑝𝑝 → Sets which satisfies the sheaf condi-
tion for the fpqc topology, has representable diagonal Δ ∶ 𝐹 → 𝐹 × 𝐹, and such that there
exists a surjective, flat, universally open, quasi-compact morphism 𝑈 → 𝐹 where 𝑈 is a
scheme, but such that 𝐹 is not an algebraic space.

Proof. See discussion above. �

64.35. Sheaves and specializations

In the following we fix a big étale site Sch ́𝑒𝑡𝑎𝑙𝑒 as constructed in Topologies, Definition
30.4.6. Moreover, a scheme will be an object of this site. Recall that if 𝑥, 𝑥′ are points of
a scheme 𝑋 we say 𝑥 is a specialization of 𝑥′ or we write 𝑥′  𝑥 if 𝑥 ∈ {𝑥′}. This is true
in particular if 𝑥 = 𝑥′.

Consider the functor 𝐹 ∶ Sch ́𝑒𝑡𝑎𝑙𝑒 → Ab defined by the following rules:

𝐹(𝑋) = ∏𝑥∈𝑋 ∏𝑥′∈𝑋,𝑥′ 𝑥,𝑥′≠𝑥
𝐙/2𝐙
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Given a scheme 𝑋 we denote |𝑋| the underlying set of points. An element 𝑎 ∈ 𝐹(𝑋) will
be viewed as a map of sets |𝑋| × |𝑋| → 𝐙/2𝐙, (𝑥, 𝑥′) ↦ 𝑎(𝑥, 𝑥′) which is zero if 𝑥 = 𝑥′

or if 𝑥 is not a specialization of 𝑥′. Given a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 we define
𝐹(𝑓) ∶ 𝐹(𝑌) ⟶ 𝐹(𝑋)

by the rule that for 𝑏 ∈ 𝐹(𝑌) we set

𝐹(𝑓)(𝑏)(𝑥, 𝑥′) = {
0 if 𝑥 is not a specialization of 𝑥′

𝑏(𝑓(𝑥), 𝑓(𝑥′)) else.
Note that this really does define an element of 𝐹(𝑋). We claim that if 𝑓 ∶ 𝑋 → 𝑌 and
𝑔 ∶ 𝑌 → 𝑍 are composable morphisms then 𝐹(𝑓) ∘ 𝐹(𝑔) = 𝐹(𝑔 ∘ 𝑓). Namely, let 𝑐 ∈ 𝐹(𝑍)
and let 𝑥′  𝑥 be a specialization of points in 𝑋, then

𝐹(𝑔 ∘ 𝑓)(𝑥, 𝑥′) = 𝑐(𝑔(𝑓(𝑥)), 𝑔(𝑓(𝑥′))) = 𝐹(𝑔)(𝐹(𝑓)(𝑐))(𝑥, 𝑥′)
because 𝑓(𝑥′) 𝑓(𝑥). (This also works if 𝑓(𝑥) = 𝑓(𝑥′).)
Let 𝐺 be the sheafification of 𝐹 in the étale topology.
I claim that if 𝑋 is a scheme and 𝑥′  𝑥 is a specialization and 𝑥′≠𝑥, then 𝐺(𝑋)≠0.
Namely, let 𝑎 ∈ 𝐹(𝑋) be an element such that when we think of 𝑎 as a function |𝑋|×|𝑋| →
𝐙/2𝐙 it is nonzero at (𝑥, 𝑥′). Let {𝑓𝑖 ∶ 𝑈𝑖 → 𝑋} be an étale covering of 𝑋. Then we can
pick an 𝑖 and a point 𝑢𝑖 ∈ 𝑈𝑖 with 𝑓𝑖(𝑢𝑖) = 𝑥. Since generalizations lift along flat morphisms
(see Morphisms, Lemma 24.24.8) we can find a specialization 𝑢′

𝑖  𝑢𝑖 with 𝑓𝑖(𝑢′
𝑖 ) = 𝑥′.

By our construction above we see that 𝐹(𝑓𝑖)(𝑎)≠0. Hence 𝑎 determines a nonzero element
of 𝐺(𝑋).
Note that if 𝑋 = 𝑆𝑝𝑒𝑐(𝑘) where 𝑘 is a field (or more generally a ring all of whose prime
ideals are maximal), then 𝐹(𝑋) = 0 and for every étale morphism 𝑈 → 𝑋 we have 𝐹(𝑈) = 0
because there are no specializations between distinct points in fibres of an étale morphism.
Hence 𝐺(𝑋) = 0.
Suppose that 𝑋 ⊂ 𝑋′ is a thickening, see More on Morphisms, Definition 33.2.1. Then
the category of schemes étale over 𝑋′ is equivalent to the category of schemes étale over
𝑋 by the base change functor 𝑈′ ↦ 𝑈 = 𝑈′ ×𝑋′ 𝑋, see Étale Cohomology, Theorem
38.45.1. Since it is always the case that 𝐹(𝑈) = 𝐹(𝑈′) in this situation we see that also
𝐺(𝑋) = 𝐺(𝑋′).
As a variant we can consider the presheaf 𝐹𝑛 which associates to a scheme 𝑋 the collection
of maps 𝑎 ∶ |𝑋|𝑛+1 → 𝐙/2𝐙 where 𝑎(𝑥0, … , 𝑥𝑛) is nonzero only if 𝑥𝑛  …  𝑥0 is a
sequence of specializations and 𝑥𝑛≠𝑥𝑛−1≠ … ≠𝑥0. Let 𝐺𝑛 be the sheaf associated to 𝐹𝑛. In
exactly the same way as above one shows that 𝐺𝑛 is nonzero if dim(𝑋) ≥ 𝑛 and is zero if
dim(𝑋) < 𝑛.

Lemma 64.35.1. There exists a sheaf of abelian groups 𝐺 on Sch ́𝑒𝑡𝑎𝑙𝑒 with the following
properties

(1) 𝐺(𝑋) = 0 whenever dim(𝑋) < 𝑛,
(2) 𝐺(𝑋) is not zero if dim(𝑋) ≥ 𝑛, and
(3) if 𝑋 ⊂ 𝑋′ is a thickening, then 𝐺(𝑋) = 𝐺(𝑋′).

Proof. See the discussion above. �

Remark 64.35.2. Here are some remarks:
(1) The presheaves 𝐹 and 𝐹𝑛 are separated presheaves.
(2) It turns out that 𝐹, 𝐹𝑛 are not sheaves.
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(3) One can show that 𝐺, 𝐺𝑛 is actually a sheaf for the fppf topology.
We will prove these results if we need them.

64.36. Sheaves and constructible functions

In the following we fix a big étale site Sch ́𝑒𝑡𝑎𝑙𝑒 as constructed in Topologies, Definition
30.4.6. Moreover, a scheme will be an object of this site. A constructible stratification
of a scheme 𝑋 is a locally finite disjoint union decomposition 𝑋 = ∐𝑖∈𝐼 𝑋𝑖 such that
each 𝑋𝑖 ⊂ 𝑋 is a locally constructible subset of 𝑋. Locally finite means that for any
quasi-compact open 𝑈 ⊂ 𝑋 there are only finitely many 𝑖 ∈ 𝐼 such that 𝑋𝑖 ∩ 𝑈 is not
empty. Note that if 𝑓 ∶ 𝑋 → 𝑌 is a morphism of schemes and 𝑌 = ∐ 𝑌𝑗 is a constructible
stratification, then 𝑋 = ∐ 𝑓−1(𝑌𝑗) is a constructible stratification of 𝑋. Given a set 𝑆 and
a scheme 𝑋 a constructible function 𝑓 ∶ |𝑋| → 𝑆 is a map such that 𝑋 = ∐𝑠∈𝑆 𝑓−1(𝑠)
is a constructible stratification of 𝑋. If 𝐺 is an (abstract group) and 𝑎, 𝑏 ∶ |𝑋| → 𝐺 are
constructible functions, then 𝑎𝑏 ∶ |𝑋| → 𝐺, 𝑥 ↦ 𝑎(𝑥)𝑏(𝑥) is a constructible function too.
The reason is that given any two constructible stratifications there is a third one refining
both.

Let 𝐴 be any abelian group. For any scheme 𝑋 we define

𝐹(𝑋) =
{𝑎 ∶ |𝑋| → 𝐴 ∣ 𝑎 is a constructible function}

locally constant functions |𝑋| → 𝐴
We think of an element 𝑎 of 𝐹(𝑋) simply as a function well defined up to adding a locally
constant one. Given a morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 and an element 𝑏 ∈ 𝐹(𝑌), then we
define 𝐹(𝑓)(𝑏) = 𝑏 ∘ 𝑓. Thus 𝐹 is a presheaf on Sch ́𝑒𝑡𝑎𝑙𝑒.

Note that if {𝑓𝑖 ∶ 𝑈𝑖 → 𝑋} is an fppf covering, and 𝑎 ∈ 𝐹(𝑋) is such that 𝐹(𝑓𝑖)(𝑎) = 0
in 𝐹(𝑈𝑖), then 𝑎 ∘ 𝑓𝑖 is a locally constant function for each 𝑖. This means in turn that 𝑎 is a
locally constant function as the morphisms 𝑓𝑖 are open. Hence 𝑎 = 0 in 𝐹(𝑋). Thus we see
that 𝐹 is a separated presheaf (in the fppf topology hence a fortiori in the étale topology).

Let𝐺 be the sheafification of𝐹 in the étale topology. Since𝐹 is separated, and since𝐹(𝑋)≠0
for example when 𝑋 is the spectrum of a discrete valuation ring, we see that 𝐺 is not zero.

Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑘) where 𝑘 is a field. Then any étale covering of 𝑋 can be dominated by a
covering {𝑆𝑝𝑒𝑐(𝑘′) → 𝑆𝑝𝑒𝑐(𝑘)} with 𝑘 ⊂ 𝑘′ a finite separable extension of fields. Since
𝐹(𝑆𝑝𝑒𝑐(𝑘′)) = 0 we see that 𝐺(𝑋) = 0.

Suppose that 𝑋 ⊂ 𝑋′ is a thickening, see More on Morphisms, Definition 33.2.1. Then the
category of schemes étale over 𝑋′ is equivalent to the category of schemes étale over 𝑋 by
the base change functor 𝑈′ ↦ 𝑈 = 𝑈′ ×𝑋′ 𝑋, see Étale Cohomology, Theorem 38.45.1.
Since 𝐹(𝑈) = 𝐹(𝑈′) in this situation we see that also 𝐺(𝑋) = 𝐺(𝑋′).

The sheaf 𝐺 is limit preserving, see More on Morphisms of Spaces, Definition 46.4.1.
Namely, let 𝑅 be a ring which is written as a directed colimit 𝑅 = 𝑐𝑜𝑙𝑖𝑚𝑖 𝑅𝑖 of rings. Set
𝑋 = 𝑆𝑝𝑒𝑐(𝑅) and 𝑋𝑖 = 𝑆𝑝𝑒𝑐(𝑅𝑖), so that 𝑋 = 𝑙𝑖𝑚𝑖 𝑋𝑖. Then 𝐺(𝑋) = 𝑐𝑜𝑙𝑖𝑚𝑖 𝐺(𝑋𝑖).
To prove this one first proves that a constructible stratification of 𝑆𝑝𝑒𝑐(𝑅) comes from a
constructible stratifications of some 𝑆𝑝𝑒𝑐(𝑅𝑖). Hence the result for 𝐹. To get the result
for the sheafification, use that any étale ring map 𝑅 → 𝑅′ comes from an étale ring map
𝑅𝑖 → 𝑅′

𝑖 for some 𝑖. Details omitted.

Lemma 64.36.1. There exists a sheaf of abelian groups 𝐺 on Sch ́𝑒𝑡𝑎𝑙𝑒 with the following
properties
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(1) 𝐺(𝑆𝑝𝑒𝑐(𝑘)) = 0 whenever 𝑘 is a field,
(2) 𝐺 is limit preserving,
(3) if 𝑋 ⊂ 𝑋′ is a thickening, then 𝐺(𝑋) = 𝐺(𝑋′), and
(4) 𝐺 is not zero.

Proof. See discussion above. �

64.37. The lisse-étale site is not functorial

The lisse-étale site 𝑋𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 of 𝑋 is the category of schemes smooth over 𝑋 endowed with
(usual) étale coverings, see Cohomology of Stacks, Section 62.11. Let 𝑓 ∶ 𝑋 → 𝑌 be a
morphism of schemes. There is a functor

𝑢 ∶ 𝑌𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒 ⟶ 𝑋𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒, 𝑉/𝑌 ⟼ 𝑉 ×𝑌 𝑋

which is continuous. Hence we obtain an adjoint pair of functors

𝑢𝑠 ∶ Sh(𝑋𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑌𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒), 𝑢𝑠 ∶ Sh(𝑌𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒) ⟶ Sh(𝑋𝑙𝑖𝑠𝑠𝑒, ́𝑒𝑡𝑎𝑙𝑒),

see Sites, Section 9.13. We claim that, in general, 𝑢 does not define a morphism of sites,
see Sites, Definition 9.14.1. In other words, we claim that 𝑢𝑠 is not left exact in general.
Note that representable presheaves are sheaves on lisse-étale sites. Hence, by Sites, Lemma
9.13.5 we see that 𝑢𝑠ℎ𝑉 = ℎ𝑉×𝑌𝑋. Now consider two morphisms

𝑉1

��

𝑎 //

𝑏
// 𝑉2

��
𝑌

of schemes 𝑉1, 𝑉2 smooth over 𝑌. Now if 𝑢𝑠 is left exact, then we would have

𝑢𝑠Equalizer(ℎ𝑎, ℎ𝑏 ∶ ℎ𝑉1
→ ℎ𝑉2

) = Equalizer(ℎ𝑎×1, ℎ𝑏×1 ∶ ℎ𝑉1×𝑌𝑋 → ℎ𝑉2×𝑌𝑋)

We will take the morphisms 𝑎, 𝑏 ∶ 𝑉1 → 𝑉2 such that there exists no morphism from a
scheme smooth over 𝑌 into (𝑎 = 𝑏) ⊂ 𝑉1, i.e., such that the left hand side is the empty
sheaf, but such that after base change to 𝑋 the equalizer is nonempty and smooth over 𝑋.
A silly example is to take 𝑋 = 𝑆𝑝𝑒𝑐(𝐅𝑝), 𝑌 = 𝑆𝑝𝑒𝑐(𝐙) and 𝑉1 = 𝑉2 = 𝐀1

𝐙 with morphisms
𝑎(𝑥) = 𝑥 and 𝑏(𝑥) = 𝑥 + 𝑝. Note that the equalizer of 𝑎 and 𝑏 is the fibre of 𝐀1

𝐙 over (𝑝).

Lemma 64.37.1. The lisse-étale site is not functorial, even for morphisms of schemes.

Proof. See discussion above. �

64.38. Derived pushforward of quasi-coherent modules

Let 𝑘 be a field of characteristic 𝑝 > 0. Let 𝑆 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]). Let 𝐺 = 𝐙/𝑝𝐙 viewed
either as an abstract group or as a constant group scheme over 𝑆. Consider the algebraic
stack 𝒳 = [𝑆/𝐺] where 𝐺 acts trivially on 𝑆, see Examples of Stacks, Remark 55.14.3 and
Criteria for Representability, Lemma 59.18.3. Consider the structure morphism

𝑓 ∶ 𝒳 ⟶ 𝑆

This morphism is quasi-compact and quasi-separated. Hence we get a functor

𝑅𝑓QCoh,∗ ∶ 𝐷+
QCoh(𝒪𝒳) ⟶ 𝐷+

QCoh(𝒪𝑆),

see Cohomology of Stacks, Proposition 62.14.1. Let's compute𝑅𝑓QCoh,∗𝒪𝒳. Since𝐷QCoh(𝒪𝑆)
is equivalent to the derived category of 𝑘[𝑥]-modules (see Coherent, Lemma 25.4.1) this
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is equivalent to computing 𝑅Γ(𝒳, 𝒪𝒳). For this we can use the covering 𝑆 → 𝒳 and the
spectral sequence

𝐻𝑞(𝑆 ×𝒳 … ×𝒳 𝑆, 𝑂) ⇒ 𝐻𝑝+𝑞(𝒳, 𝒪𝒳)
see Cohomology of Stacks, Proposition 62.10.4. Note that

𝑆 ×𝒳 … ×𝒳 𝑆 = 𝑆 × 𝐺𝑝

which is affine. Thus the complex

𝑘[𝑥] → Map(𝐺, 𝑘[𝑥]) → Map(𝐺2, 𝑘[𝑥]) → …

computes 𝑅Γ(𝒳, 𝒪𝒳). Here for 𝜑 ∈ Map(𝐺𝑝−1, 𝑘[𝑥]) its differential is the mapwhich sends
(𝑔1, … , 𝑔𝑝) to

𝜑(𝑔2, … , 𝑔𝑝) + ∑
𝑝−1
𝑖=1

(−1)𝑖𝜑(𝑔1, … , 𝑔𝑖 + 𝑔𝑖+1, … , 𝑔𝑝) + (−1)𝑝𝜑(𝑔1, … , 𝑔𝑝−1).

This is just the complex computing the group cohomology of 𝐺 acting trivially on 𝑘[𝑥]
(insert future reference here). The cohomology of the cyclic group 𝐺 on 𝑘[𝑥] is exactly one
copy of 𝑘[𝑥] in each cohomological degree ≥ 0 (insert future reference here). We conclude
that

𝑅𝑓∗𝒪𝒳 = ⨁𝑛≥0
𝒪𝑆[−𝑛]

Now, consider the complex
𝐸 = ⨁𝑚≥0

𝒪𝒳[𝑚]

This is an object of 𝐷QCoh(𝒳). Note that in the derived category we have

𝐸 = ∏𝑚≥0
𝒪𝒳[𝑚]

because this is true on affine objects over 𝒳 by Injectives, Remark 17.17.5 (details omitted).
Since cohomology commutes with limits we see that

𝑅𝑓∗𝐸 = ∏𝑚≥0 (⨁𝑛≥0
𝒪𝑆[𝑚 − 𝑛])

Note that this complex is not an object of 𝐷QCoh(𝒪𝑆).

Lemma64.38.1. A quasi-compact and quasi-separatedmorphism 𝑓 ∶ 𝒳 → 𝒴 of algebraic
stacks need not induce a functor 𝑅𝑓∗ ∶ 𝐷QCoh(𝒪𝒳) → 𝐷QCoh(𝒪𝒴).

Proof. See discussion above. �

64.39. A big abelian category

The purpose of this section is to give an example of a ``big'' abelian category 𝒜 and objects
𝑀, 𝑁 such that the collection of isomorphism classes of extensions Ext𝒜(𝑀, 𝑁) is not a
set. The example is due to Freyd, see [Fre64, page 131, Exercise A].

We define 𝒜 as follows. An object of 𝒜 consists of a triple (𝑀, 𝛼, 𝑓) where 𝑀 is an abelian
group and 𝛼 is an ordinal and 𝑓 ∶ 𝛼 → End(𝑀) is a map. A morphism (𝑀, 𝛼, 𝑓) →
(𝑀′, 𝛼′, 𝑓′) is given by a homomorphism of abelian groups 𝜑 ∶ 𝑀 → 𝑀′ such that for any
ordinal 𝛽 we have

𝜑 ∘ 𝑓(𝛽) = 𝑓′(𝛽) ∘ 𝜑
Here the rule is that we set 𝑓(𝛽) = 0 if 𝛽 is not in 𝛼 and similarly we set 𝑓′(𝛽) equal to zero
if 𝛽 is not an element of 𝛼′. We omit the verification that the category so defined is abelian.

Consider the object 𝑍 = (𝐙, ∅, 𝑓), i.e., all the operators are zero. The observation is that
computed in 𝒜 the group Ext1𝒜(𝑍, 𝑍) is a proper class and not a set. Namely, for each
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ordinal 𝛼 we can find an extension (𝑀, 𝛼 + 1, 𝑓) of 𝑍 by 𝑍 whose underlying group is
𝑀 = 𝐙 ⊕ 𝐙 and where the value of 𝑓 is always zero except for

𝑓(𝛼) = (
0 1
0 0) .

This clearly produces a proper class of isomorphism classes of extensions. In particular,
the derived category of 𝒜 has proper classes for its collections of morphism, see Derived
Categories, Lemma 11.26.6. This means that some care has to be exercised when defining
Verdier quotients of triangulated categories.

Lemma 64.39.1. There exists a ``big'' abelian category 𝒜 whose Ext-groups are proper
classes.

Proof. See discussion above. �
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CHAPTER 65

Exercises

65.1. Algebra

This first section just contains some assorted questions.

Exercise 65.1.1. Let 𝐴 be a ring, and 𝔪 a maximal ideal. In 𝐴[𝑋] let �̃�1 = (𝔪, 𝑋) and
�̃�2 = (𝔪, 𝑋 − 1). Show that

𝐴[𝑋]�̃�1
≅ 𝐴[𝑋]�̃�2

.

Exercise 65.1.2. Find an example of a non Noetherian ring 𝑅 such that every finitely gen-
erated ideal of 𝑅 is finitely presented as an 𝑅-module. (A ring is said to be coherent if the
last property holds.)

Exercise 65.1.3. Suppose that (𝐴, 𝔪, 𝑘) is a Noetherian local ring. For any finite 𝐴-module
𝑀 define 𝑟(𝑀) to be theminimumnumber of generators of𝑀 as an𝐴-module. This number
equals dim𝑘 𝑀/𝔪𝑀 = dim𝑘 𝑀 ⊗𝐴 𝑘 by NAK.

(1) Show that 𝑟(𝑀 ⊗𝐴 𝑁) = 𝑟(𝑀)𝑟(𝑁).
(2) Let 𝐼 ⊂ 𝐴 be an ideal with 𝑟(𝐼) > 1. Show that 𝑟(𝐼2) < 𝑟(𝐼)2.
(3) Conclude that if every ideal in 𝐴 is a flat module, then 𝐴 is a PID (or a field).

Exercise 65.1.4. Let 𝑘 be a field. Show that the following pairs of 𝑘-algebras are not
isomorphic:

(1) 𝑘[𝑥1, … , 𝑥𝑛] and 𝑘[𝑥1, … , 𝑥𝑛+1] for any 𝑛 ≥ 1.
(2) 𝑘[𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓]/(𝑎𝑏 + 𝑐𝑑 + 𝑒𝑓) and 𝑘[𝑥1, … , 𝑥𝑛] for 𝑛 = 5.
(3) 𝑘[𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓]/(𝑎𝑏 + 𝑐𝑑 + 𝑒𝑓) and 𝑘[𝑥1, … , 𝑥𝑛] for 𝑛 = 6.

Remark 65.1.5. Of course the idea of this exercise is to find a simple argument in each
case rather than applying a ``big'' theorem. Nonetheless it is good to be guided by general
principles.

Exercise 65.1.6. Algebra. (Silly and should be easy.)
(1) Give an example of a ring 𝐴 and a nonsplit short exact sequence of 𝐴-modules

0 → 𝑀1 → 𝑀2 → 𝑀3 → 0.

(2) Give an example of a nonsplit sequence of 𝐴-modules as above and a faithfully
flat 𝐴 → 𝐵 such that

0 → 𝑀1 ⊗𝐴 𝐵 → 𝑀2 ⊗𝐴 𝐵 → 𝑀3 ⊗𝐴 𝐵 → 0.

is split as a sequence of 𝐵-modules.

Exercise 65.1.7. Suppose that 𝑘 is a field having a primitive 𝑛th root of unity 𝜁. This means
that 𝜁𝑛 = 1, but 𝜁𝑚≠1 for 0 < 𝑚 < 𝑛.

(1) Show that the characteristic of 𝑘 is prime to 𝑛.
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(2) Suppose that 𝑎 ∈ 𝑘 is an element of 𝑘 which is not an 𝑑th power in 𝑘 for any
divisor 𝑑 of 𝑛, 𝑖𝑛 ≥ 𝑑 > 1. Show that 𝑘[𝑥]/(𝑥𝑛 − 𝑎) is a field. (Hint: Consider a
splitting field for 𝑥𝑛 − 𝑎 and use Galois theory.)

Exercise 65.1.8. Let 𝜈 ∶ 𝑘[𝑥] ⧵ {0} → 𝐙 be a map with the following properties: 𝜈(𝑓𝑔) =
𝜈(𝑓) + 𝜈(𝑔) whenever 𝑓, 𝑔 not zero, and 𝜈(𝑓 + 𝑔) ≥ 𝑚𝑖𝑛(𝜈(𝑓), 𝜈(𝑔)) whenever 𝑓, 𝑔, 𝑓 + 𝑔 are
not zero, and 𝜈(𝑐) = 0 for all 𝑐 ∈ 𝑘∗.

(1) Show that if 𝑓, 𝑔, and 𝑓 + 𝑔 are nonzero and 𝜈(𝑓)≠𝜈(𝑔) then we have equality
𝜈(𝑓 + 𝑔) = 𝑚𝑖𝑛(𝜈(𝑓), 𝜈(𝑔)).

(2) Show that if 𝑓 = ∑ 𝑎𝑖𝑥𝑖, 𝑓≠0, then 𝜈(𝑓) ≥ 𝑚𝑖𝑛({𝑖𝜈(𝑥)}𝑎𝑖≠0). When does equality
hold?

(3) Show that if 𝜈 attains a negative value then 𝜈(𝑓) = −𝑛 deg(𝑓) for some 𝑛 ∈ 𝐍.
(4) Suppose 𝜈(𝑥) ≥ 0. Show that {𝑓 ∣ 𝑓 = 0, 𝑜𝑟 𝜈(𝑓) > 0} is a prime ideal of 𝑘[𝑥].
(5) Describe all possible 𝜈.

Let 𝐴 be a ring. An idempotent is an element 𝑒 ∈ 𝐴 such that 𝑒2 = 𝑒. The elements 1 and
0 are always idempotent. A nontrivial idempotent is an idempotent which is not equal to
zero. Two idempotents 𝑒, 𝑒′ ∈ 𝐴 are called orthogonal if 𝑒𝑒′ = 0.

Exercise 65.1.9. Let 𝐴 be a ring. Show that 𝐴 is a product of two nonzero rings if and only
if 𝐴 has a nontrivial idempotent.

Exercise 65.1.10. Let 𝐴 be a ring and let 𝐼 ⊂ 𝐴 be a locally nilpotent ideal. Show that
the map 𝐴 → 𝐴/𝐼 induces a bijection on idempotents. (Hint: It may be easier to prove this
when 𝐼 is nilpotent. Do this first. Then use ``absolute Noetherian reduction'' to reduce to
the nilpotent case.)

65.2. Colimits

Definition 65.2.1. A directed partially ordered set is a nonempty set 𝐼 endowed with a
partial ordering ≤ such that given any pair 𝑖, 𝑗 ∈ 𝐼 there exists a 𝑘 ∈ 𝐼 such that 𝑖 ≤ 𝑘
and 𝑗 ≤ 𝑘. A system of rings over 𝐼 is given by a ring 𝐴𝑖 for each 𝑖 ∈ 𝐼 and a map of
rings 𝜑𝑖𝑗 ∶ 𝐴𝑖 → 𝐴𝑗 whenever 𝑖 ≤ 𝑗 such that the composition 𝐴𝑖 → 𝐴𝑗 → 𝐴𝑘 is equal to
𝐴𝑖 → 𝐴𝑘 whenever 𝑖 ≤ 𝑗 ≤ 𝑘.

One similarly defines systems of groups, modules over a fixed ring, vector spaces over a
field, etc.

Exercise 65.2.2. Let 𝐼 be a directed partially ordered set and let (𝐴𝑖, 𝜑𝑖𝑗) be a system of
rings over 𝐼. Show that there exists a ring 𝐴 and maps 𝜑𝑖 ∶ 𝐴𝑖 → 𝐴 such that 𝜑𝑗 ∘ 𝜑𝑖𝑗 = 𝜑𝑖
for all 𝑖 ≤ 𝑗 with the following universal property: Given any ring 𝐵 and maps 𝜓𝑖 ∶ 𝐴𝑖 → 𝐵
such that 𝜓𝑗 ∘ 𝜑𝑖𝑗 = 𝜓𝑖 for all 𝑖 ≤ 𝑗, then there exists a unique ring map 𝜓 ∶ 𝐴 → 𝐵 such
that 𝜓𝑖 = 𝜓 ∘ 𝜑𝑖.

Definition 65.2.3. The ring 𝐴 constructed in Exercise 65.2.2 is called the colimit of the
system. Notation 𝑐𝑜𝑙𝑖𝑚 𝐴𝑖.

Exercise 65.2.4. Let (𝐼, ≥) be a directed partially ordered set and let (𝐴𝑖, 𝜑𝑖𝑗) be a system
of rings over 𝐼 with colimit 𝐴. Prove that there is a bijection

Spec(𝐴) = {(𝔭𝑖)𝑖∈𝐼 ∣ 𝔭𝑖 ⊂ 𝐴𝑖 and 𝔭𝑖 = 𝜑−1
𝑖𝑗 (𝔭𝑗) ∀𝑖 ≤ 𝑗} ⊂ ∏𝑖∈𝐼

𝑆𝑝𝑒𝑐(𝐴𝑖)

The set on the right hand side is the limit of the sets 𝑆𝑝𝑒𝑐(𝐴𝑖). Notation 𝑙𝑖𝑚 𝑆𝑝𝑒𝑐(𝐴𝑖).
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Exercise 65.2.5. Let (𝐼, ≥) be a directed partially ordered set and let (𝐴𝑖, 𝜑𝑖𝑗) be a system
of rings over 𝐼 with colimit 𝐴. Suppose that Spec(𝐴𝑗) → Spec(𝐴𝑖) is surjective for all 𝑖 ≤ 𝑗.
Show that Spec(𝐴) → Spec(𝐴𝑖) is surjective for all 𝑖. (Hint: You can try to use Tychonoff,
but there is also a basically trivial direct algebraic proof based on Algebra, Lemma 7.16.9.)

Exercise 65.2.6. Let 𝐴 ⊂ 𝐵 be an integral ring extension. Prove that Spec(𝐵) → Spec(𝐴)
is surjective. Use the exercises above, the fact that this holds for a finite ring extension
(proved in the lectures), and by proving that 𝐵 = 𝑐𝑜𝑙𝑖𝑚 𝐵𝑖 is a directed colimit of finite
extensions 𝐴 ⊂ 𝐵𝑖.

Exercise 65.2.7. Let (𝐼, ≥) be a partially ordered set which is directed. Let 𝐴 be a ring and
let (𝑁𝑖, 𝜑𝑖,𝑖′) be a directed system of 𝐴-modules indexed by 𝐼. Suppose that 𝑀 is another
𝐴-module. Prove that

𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑀 ⊗𝐴 𝑁𝑖 ≅ 𝑀 ⊗𝐴 ( 𝑐𝑜𝑙𝑖𝑚𝑖∈𝐼 𝑁𝑖).

Definition 65.2.8. A module 𝑀 over 𝑅 is said to be of finite presentation over 𝑅 if it is
isomorphic to the cokernel of a map of finite free modules 𝑅⊕𝑛 → 𝑅⊕𝑚.

Exercise 65.2.9. Prove that any module over any ring is
(1) the colimit of its finitely generated submodules, and
(2) in some way a colimit of finitely presented modules.

65.3. Additive and abelian categories

Exercise 65.3.1. Let 𝑘 be a field. Let 𝒞 be the category of filtered vector spaces over 𝑘,
see Homology, Definition 10.13.1 for the definition of a filtered object of any category.

(1) Show that this is an additive category (explain carefully what the direct sum of
two objects is).

(2) Let 𝑓 ∶ (𝑉, 𝐹) → (𝑊, 𝐹) be a morphism of 𝒞. Show that 𝑓 has a kernel and
cokernel (explain precisely what the kernel and cokernel of 𝑓 are).

(3) Give an example of a map of 𝒞 such that the canonical map Coim(𝑓) → Im(𝑓) is
not an isomorphism.

Exercise 65.3.2. Let 𝑅 be a Noetherian domain. Let 𝒞 be the category of finitely generated
torsion free 𝑅-modules.

(1) Show that this is an additive category.
(2) Let 𝑓 ∶ 𝑁 → 𝑀 be a morphism of 𝒞. Show that 𝑓 has a kernel and cokernel

(make sure you define precisely what the kernel and cokernel of 𝑓 are).
(3) Give an example of a Noetherian domain 𝑅 and amap of 𝒞 such that the canonical

map Coim(𝑓) → Im(𝑓) is not an isomorphism.

Exercise 65.3.3. Give an example of a category which is additive and has kernels and
cokernels but which is not as in Exercises 65.3.1 and 65.3.2.

65.4. Flat ring maps

Exercise 65.4.1. Let 𝑆 be a multiplicative subset of the ring 𝐴.
(1) For an 𝐴-module 𝑀 show that 𝑆−1𝑀 = 𝑆−1𝐴 ⊗𝐴 𝑀.
(2) Show that 𝑆−1𝐴 is flat over 𝐴.

Exercise 65.4.2. Find an injection 𝑀1 → 𝑀2 of 𝐴-modules such that 𝑀1 ⊗𝑁 → 𝑀2 ⊗𝑁
is not injective in the following cases:
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(1) 𝐴 = 𝑘[𝑥, 𝑦] and 𝑁 = (𝑥, 𝑦) ⊂ 𝐴. (Here and below 𝑘 is a field.)
(2) 𝐴 = 𝑘[𝑥, 𝑦] and 𝑁 = 𝐴/(𝑥, 𝑦).

Exercise 65.4.3. Give an example of a ring 𝐴 and a finite 𝐴-module 𝑀 which is a flat but
not a projective 𝐴-module.

Remark 65.4.4. If 𝑀 is of finite presentation and flat over 𝐴, then 𝑀 is projective over
𝐴. Thus your example will have to involve a ring 𝐴 which is not Noetherian. I know of an
example where 𝐴 is the ring of 𝒞∞-functions on 𝐑.

Exercise 65.4.5. Find a flat but not free module over 𝐙(2).

Exercise 65.4.6. Flat deformations.
(1) Suppose that 𝑘 is a field and 𝑘[𝜖] is the ring of dual numbers 𝑘[𝜖] = 𝑘[𝑥]/(𝑥2)

and 𝜖 = �̄�. Show that for any 𝑘-algebra 𝐴 there is a flat 𝑘[𝜖]-algebra 𝐵 such that
𝐴 is isomorphic to 𝐵/𝜖𝐵.

(2) Suppose that 𝑘 = 𝐅𝑝 = 𝐙/𝑝𝐙 and

𝐴 = 𝑘[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]/(𝑥𝑝
1, 𝑥𝑝

2, 𝑥𝑝
3, 𝑥𝑝

4, 𝑥𝑝
5, 𝑥𝑝

6).

Show that there exists a flat 𝐙/𝑝2𝐙-algebra 𝐵 such that 𝐵/𝑝𝐵 is isomorphic to 𝐴.
(So here 𝑝 plays the role of 𝜖.)

(3) Now let 𝑝 = 2 and consider the same question for 𝑘 = 𝐅2 = 𝐙/2𝐙 and

𝐴 = 𝑘[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]/(𝑥2
1, 𝑥2

2, 𝑥2
3, 𝑥2

4, 𝑥2
5, 𝑥2

6, 𝑥1𝑥2 + 𝑥3𝑥4 + 𝑥5𝑥6).

However, in this case show that there does not exist a flat𝐙/4𝐙-algebra𝐵 such that
𝐵/2𝐵 is isomorphic to 𝐴. (Find the trick! The same example works in arbitrary
characteristic 𝑝 > 0, except that the computation is more difficult.)

Exercise 65.4.7. Let (𝐴, 𝔪, 𝑘) be a local ring and let 𝑘 ⊂ 𝑘′ be a finite field extension.
Show there exists a flat, local map of local rings 𝐴 → 𝐵 such that 𝔪𝐵 = 𝔪𝐵 and 𝐵/𝔪𝐵
is isomorphic to 𝑘′ as 𝑘-algebra. (Hint: first do the case where 𝑘 ⊂ 𝑘′ is generated by a
single element.)

Remark 65.4.8. The same result holds for arbitrary field extensions 𝑘 ⊂ 𝐾.

65.5. The Spectrum of a ring

Exercise 65.5.1. Compute 𝑆𝑝𝑒𝑐(𝐙) as a set and describe its topology.

Exercise 65.5.2. Let 𝐴 be any ring. For 𝑓 ∈ 𝐴 we define 𝐷(𝑓) ∶= {𝔭 ⊂ 𝐴 ∣ 𝑓∉𝔭}. Prove
that the open subsets 𝐷(𝑓) form a basis of the topology of 𝑆𝑝𝑒𝑐(𝐴).

Exercise 65.5.3. Prove that the map 𝐼 ↦ 𝑉(𝐼) defines a natural bijection

{𝐼 ⊂ 𝐴 with 𝐼 = √𝐼} ⟶ {𝑇 ⊂ 𝑆𝑝𝑒𝑐(𝐴) closed}

Definition 65.5.4. A topological space 𝑋 is called quasi-compact if for any open covering
𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 there is a finite subset {𝑖1, … , 𝑖𝑛} ⊂ 𝐼 such that 𝑋 = 𝑈𝑖1 ∪ … 𝑈𝑖𝑛.

Exercise 65.5.5. Prove that 𝑆𝑝𝑒𝑐(𝐴) is quasi-compact for any ring 𝐴.

Definition 65.5.6. A topological space 𝑋 is said to verify the separation axiom 𝑇0 if for
any pair of points 𝑥, 𝑦 ∈ 𝑋, 𝑥≠𝑦 there is an open subset of 𝑋 containing one but not the
other. We say that 𝑋 is Hausdorff if for any pair 𝑥, 𝑦 ∈ 𝑋, 𝑥≠𝑦 there are disjoint open
subsets 𝑈, 𝑉 such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉.
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Exercise 65.5.7. Show that 𝑆𝑝𝑒𝑐(𝐴) is not Hausdorff in general. Prove that 𝑆𝑝𝑒𝑐(𝐴) is 𝑇0.
Give an example of a topological space 𝑋 that is not 𝑇0.

Remark 65.5.8. Usually the word compact is reserved for quasi-compact and Hausdorff
spaces.

Definition 65.5.9. A topological space 𝑋 is called irreducible if 𝑋 is not empty and if
𝑋 = 𝑍1 ∪ 𝑍2 with 𝑍1, 𝑍2 ⊂ 𝑋 closed, then either 𝑍1 = 𝑋 or 𝑍2 = 𝑋. A subset 𝑇 ⊂ 𝑋
of a topological space is called irreducible if it is an irreducible topological space with the
topology induced from 𝑋. This definition implies 𝑇 is irreducible if and only if the closure

̄𝑇 of 𝑇 in 𝑋 is irreducible.

Exercise 65.5.10. Prove that 𝑆𝑝𝑒𝑐(𝐴) is irreducible if and only if 𝑁𝑖𝑙(𝐴) is a prime ideal
and that in this case it is the unique minimal prime ideal of 𝐴.

Exercise 65.5.11. Prove that a closed subset 𝑇 ⊂ 𝑆𝑝𝑒𝑐(𝐴) is irreducible if and only if it is
of the form 𝑇 = 𝑉(𝔭) for some prime ideal 𝔭 ⊂ 𝐴.

Definition 65.5.12. A point 𝑥 of an irreducible topological space 𝑋 is called a generic point
of 𝑋 if 𝑋 is equal to the closure of the subset {𝑥}.

Exercise 65.5.13. Show that in a 𝑇0 space 𝑋 every irreducible closed subset has at most
one generic point.

Exercise 65.5.14. Prove that in 𝑆𝑝𝑒𝑐(𝐴) every irreducible closed subset does have a generic
point. In fact show that themap 𝔭 ↦ {𝔭} is a bijection of 𝑆𝑝𝑒𝑐(𝐴) with the set of irreducible
closed subsets of 𝑋.

Exercise 65.5.15. Give an example to show that an irreducible subset of 𝑆𝑝𝑒𝑐(𝐙) does not
neccesarily have a generic point.

Definition 65.5.16. A topological space 𝑋 is called Noetherian if any decreasing sequence
𝑍1 ⊃ 𝑍2 ⊃ 𝑍3 ⊃ … of closed subsets of𝑋 stabilizes. (It is calledArtinian if any increasing
sequence of closed subsets stabilizes.)

Exercise 65.5.17. Show that if the ring 𝐴 is Noetherian then the topological space 𝑆𝑝𝑒𝑐(𝐴)
is Noetherian. Give an example to show that the converse is false. (The same for Artinian
if you like.)

Definition 65.5.18. Amaximal irreducible subset 𝑇 ⊂ 𝑋 is called an irreducible component
of the space 𝑋. Such an irreducible component of 𝑋 is automatically a closed subset of 𝑋.

Exercise 65.5.19. Prove that any irreducible subset of 𝑋 is contained in an irreducible
component of 𝑋.

Exercise 65.5.20. Prove that a Noetherian topological space 𝑋 has only finitely many ir-
reducible components, say 𝑋1, … , 𝑋𝑛, and that 𝑋 = 𝑋1 ∪ 𝑋2 ∪ … ∪ 𝑋𝑛. (Note that any 𝑋
is always the union of its irreducible components, but that if 𝑋 = 𝐑 with its usual topology
for instance then the irreducible components of 𝑋 are the one point subsets. This is not
terribly interesting.)

Exercise 65.5.21. Show that irreducible components of 𝑆𝑝𝑒𝑐(𝐴) correspond to minimal
primes of 𝐴.

Definition 65.5.22. A point 𝑥 ∈ 𝑋 is called closed if {𝑥} = {𝑥}. Let 𝑥, 𝑦 be points of 𝑋.
We say that 𝑥 is a specialization of 𝑦, or that 𝑦 is a generalization of 𝑥 if 𝑥 ∈ {𝑦}.
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Exercise 65.5.23. Show that closed points of 𝑆𝑝𝑒𝑐(𝐴) correspond to maximal ideals of 𝐴.

Exercise 65.5.24. Show that 𝔭 is a generalization of 𝔮 in 𝑆𝑝𝑒𝑐(𝐴) if and only if 𝔭 ⊂ 𝔮.
Characterize closed points, maximal ideals, generic points and minimal prime ideals in
terms of generalization and specialization. (Here we use the terminology that a point of a
possibly reducible topological space 𝑋 is called a generic point if it is a generic points of
one of the irreducible components of 𝑋.)

Exercise 65.5.25. Let 𝐼 and 𝐽 be ideals of 𝐴. What is the condition for 𝑉(𝐼) and 𝑉(𝐽) to be
disjoint?

Definition 65.5.26. A topological space 𝑋 is called connected if it is not the union of two
nonempty disjoint open subsets. A connected component of 𝑋 is a (nonempty) maximal
connected subset. Any point of 𝑋 is contained in a connected component of 𝑋 and any
connected component of 𝑋 is closed in 𝑋. (But in general a connected component need
not be open in 𝑋.)

Exercise 65.5.27. Show that 𝑆𝑝𝑒𝑐(𝐴) is disconnected iff 𝐴 ≅ 𝐵 × 𝐶 for certain nonzero
rings 𝐵, 𝐶.

Exercise 65.5.28. Let 𝑇 be a connected component of 𝑆𝑝𝑒𝑐(𝐴). Prove that 𝑇 is stable under
generalization. Prove that 𝑇 is an open subset of 𝑆𝑝𝑒𝑐(𝐴) if 𝐴 is Noetherian. (Remark: This
is wrong when 𝐴 is an infinite product of copies of 𝐅2 for example. The spectrum of this
ring consists of infinitely many closed points.)

Exercise 65.5.29. Compute 𝑆𝑝𝑒𝑐(𝑘[𝑥]), i.e., describe the prime ideals in this ring, de-
scribe the possible specializations, and describe the topology. (Work this out when 𝑘 is
algebraically closed but also when 𝑘 is not.)

Exercise 65.5.30. Compute 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]), where 𝑘 is algebraically closed. [Hint: use the
morphism 𝜑 ∶ 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]) → 𝑆𝑝𝑒𝑐(𝑘[𝑥]); if 𝜑(𝔭) = (0) then localize with respect to
𝑆 = {𝑓 ∈ 𝑘[𝑥] ∣ 𝑓≠0} and use result of lecture on localization and 𝑆𝑝𝑒𝑐.] (Why do you
think algebraic geometers call this affine 2-space?)

Exercise 65.5.31. Compute 𝑆𝑝𝑒𝑐(𝐙[𝑦]). [Hint: as above.] (Affine 1-space over 𝐙.)

65.6. Localization

Exercise 65.6.1. Let 𝐴 be a ring. Let 𝑆 ⊂ 𝐴 be a multiplicative subset. Let 𝑀 be an
𝐴-module. Let𝑁 ⊂ 𝑆−1𝑀 be an𝑆−1𝐴-submodule. Show that there exists an𝐴-submodule
𝑁′ ⊂ 𝑀 such that 𝑁 = 𝑆−1𝑁′. (This useful result applies in particular to ideals of 𝑆−1𝐴.)

Exercise 65.6.2. Let 𝐴 be a ring. Let 𝑀 be an 𝐴-module. Let 𝑚 ∈ 𝑀.
(1) Show that 𝐼 = {𝑎 ∈ 𝐴 ∣ 𝑎𝑚 = 0} is an ideal of 𝐴.
(2) For a prime 𝔭 of 𝐴 show that the image of 𝑚 in 𝑀𝔭 is zero if and only if 𝐼⊄𝔭.
(3) Show that 𝑚 is zero if and only if the image of 𝑚 is zero in 𝑀𝔭 for all primes 𝔭

of 𝐴.
(4) Show that 𝑚 is zero if and only if the image of 𝑚 is zero in 𝑀𝔪 for all maximal

ideals 𝔪 of 𝐴.
(5) Show that 𝑀 = 0 if and only if 𝑀𝔪 is zero for all maximal ideals 𝔪.

Exercise 65.6.3. Find a pair (𝐴, 𝑓) where 𝐴 is a domain with three or more pairwise distinct
primes and 𝑓 ∈ 𝐴 is an element such that the principal localization 𝐴𝑓 = {1, 𝑓, 𝑓2, …}−1𝐴
is a field.
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Exercise 65.6.4. Let𝐴 be a ring. Let𝑀 be a finite𝐴-module. Let𝑆 ⊂ 𝐴 be amultiplicative
set. Assume that 𝑆−1𝑀 = 0. Show that there exists an 𝑓 ∈ 𝑆 such that the principal
localization 𝑀𝑓 = {1, 𝑓, 𝑓2, …}−1𝑀 is zero.

Exercise 65.6.5. Give an example of a triple (𝐴, 𝐼, 𝑆) where 𝐴 is a ring, 0≠𝐼≠𝐴 is a proper
nonzero ideal, and 𝑆 ⊂ 𝐴 is a multiplicative subset such that 𝐴/𝐼 ≅ 𝑆−1𝐴 as 𝐴-algebras.

65.7. Nakayama's Lemma

Exercise 65.7.1. Let 𝐴 be a ring. Let 𝐼 be an ideal of 𝐴. Let 𝑀 be an 𝐴-module. Let
𝑥1, … , 𝑥𝑛 ∈ 𝑀. Assume that

(1) 𝑀/𝐼𝑀 is generated by 𝑥1, … , 𝑥𝑛,
(2) 𝑀 is a finite 𝐴-module,
(3) 𝐼 is contained in every maximal ideal of 𝐴.

Show that 𝑥1, … , 𝑥𝑛 generate 𝑀. (Suggested solution: Reduce to a localization at a max-
imal ideal of 𝐴 using Exercise 65.6.2 and exactness of localization. Then reduce to the
statement of Nakayama's lemma in the lectures by looking at the quotient of 𝑀 by the
submodule generated by 𝑥1, … , 𝑥𝑛.)

65.8. Length

Definition 65.8.1. Let 𝐴 be a ring. Let 𝑀 be an 𝐴-module. The length of 𝑀 as an
𝑅-module is

length𝐴(𝑀) = sup{𝑛 ∣ ∃ 0 = 𝑀0 ⊂ 𝑀1 ⊂ … ⊂ 𝑀𝑛 = 𝑀, 𝑀𝑖≠𝑀𝑖+1}.

In other words, the supremum of the lengths of chains of submodules.

Exercise 65.8.2. Show that a module 𝑀 over a ring 𝐴 has length 1 if and only if it is
isomorphic to 𝐴/𝔪 for some maximal ideal 𝔪 in 𝐴.

Exercise 65.8.3. Compute the length of the following modules over the following rings.
Briefly(!) explain your answer. (Please feel free to use additivity of the length function in
short exact sequences, see Algebra, Lemma 7.48.3).

(1) The length of 𝐙/120𝐙 over 𝐙.
(2) The length of 𝐂[𝑥]/(𝑥100 + 𝑥 + 1) over 𝐂[𝑥].
(3) The length of 𝐑[𝑥]/(𝑥4 + 2𝑥2 + 1) over 𝐑[𝑥].

Exercise 65.8.4. Let 𝐴 = 𝑘[𝑥, 𝑦](𝑥,𝑦) be the local ring of the affine plane at the origin.
Make any assumption you like about the field 𝑘. Suppose that 𝑓 = 𝑥3 + 𝑥2𝑦2 + 𝑦100 and
𝑔 = 𝑦3 − 𝑥999. What is the length of 𝐴/(𝑓, 𝑔) as an 𝐴-module? (Possible way to proceed:
think about the ideal that 𝑓 and 𝑔 generate in quotients of the form 𝐴/𝔪𝑛

𝐴 = 𝑘[𝑥, 𝑦]/(𝑥, 𝑦)𝑛

for varying 𝑛. Try to find 𝑛 such that 𝐴/(𝑓, 𝑔) + 𝔪𝑛
𝐴 ≅ 𝐴/(𝑓, 𝑔) + 𝔪𝑛+1

𝐴 and use NAK.)

65.9. Singularities

Exercise 65.9.1. Let 𝑘 be any field. Suppose that 𝐴 = 𝑘[[𝑥, 𝑦]]/(𝑓) and 𝐵 = 𝑘[[𝑢, 𝑣]]/(𝑔),
where 𝑓 = 𝑥𝑦 and 𝑔 = 𝑢𝑣 + 𝛿 with 𝛿 ∈ (𝑢, 𝑣)3. Show that 𝐴 and 𝐵 are isomorphic rings.

Remark 65.9.2. A singularity on a curve over a field 𝑘 is called an ordinary double point
if the complete local ring of the curve at the point is of the form 𝑘′[[𝑥, 𝑦]]/(𝑓), where (a) 𝑘′

is a finite separable extension of 𝑘, (b) the initial term of 𝑓 has degree two, i.e., it looks like
𝑞 = 𝑎𝑥2 +𝑏𝑥𝑦+𝑐𝑦2 for some 𝑎, 𝑏, 𝑐 ∈ 𝑘′ not all zero, and (c) 𝑞 is a nondegenerate quadratic
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form over 𝑘′ (in char 2 this means that 𝑏 is not zero). In general there is one isomorphism
class of such rings for each isomophism class of pairs (𝑘′, 𝑞).

65.10. Hilbert Nullstellensatz

Exercise 65.10.1. A silly argument using the complex numbers! Let 𝐂 be the complex
number field. Let 𝑉 be a vector space over 𝐂. The spectrum of a linear operator 𝑇 ∶ 𝑉 → 𝑉
is the set of complex numbers 𝜆 ∈ 𝐂 such that the operator 𝑇 − 𝜆id𝑉 is not invertible.

(1) Show that 𝐂(𝑋) = 𝑓.𝑓.(𝐂[𝑋]) has uncountable dimension over 𝐂.
(2) Show that any linear operator on 𝑉 has a nonempty spectrum if the dimension of

𝑉 is finite or countable.
(3) Show that if a finitely generated 𝐂-algebra 𝑅 is a field, then the map 𝐂 → 𝑅 is

an isomorphism.
(4) Show that any maximal ideal 𝔪 of 𝐂[𝑥1, … , 𝑥𝑛] is of the form (𝑥1 − 𝛼1, … , 𝑥𝑛 −

𝛼𝑛) for some 𝛼𝑖 ∈ 𝐂.

Remark 65.10.2. Let 𝑘 be a field. Then for every integer 𝑛 ∈ 𝐍 and every maximal ideal
𝔪 ⊂ 𝑘[𝑥1, … , 𝑥𝑛] the quotient 𝑘[𝑥1, … , 𝑥𝑛]/𝔪 is a finite field extension of 𝑘. This will be
shown later in the course. Of course (please check this) it implies a similar statement for
maximal ideals of finitely generated 𝑘-algebras. The exercise above proves it in the case
𝑘 = 𝐂.

Exercise 65.10.3. Let 𝑘 be a field. Please use Remark 65.10.2.
(1) Let 𝑅 be a 𝑘-algebra. Suppose that dim𝑘 𝑅 < ∞ and that 𝑅 is a domain. Show

that 𝑅 is a field.
(2) Suppose that 𝑅 is a finitely generated 𝑘-algebra, and 𝑓 ∈ 𝑅 not nilpotent. Show

that there exists a maximal ideal 𝔪 ⊂ 𝑅 with 𝑓∉𝔪.
(3) Show by an example that this statement fails when 𝑅 is not of finite type over a

field.
(4) Show that any radical ideal 𝐼 ⊂ 𝐂[𝑥1, … , 𝑥𝑛] is the intersection of the maximal

ideals containing it.

Remark 65.10.4. This is the Hilbert Nullstellensatz. Namely it says that the closed sub-
sets of 𝑆𝑝𝑒𝑐(𝑘[𝑥1, … , 𝑥𝑛]) (which correspond to radical ideals by a previous exercise) are
determined by the closed points contained in them.

Exercise 65.10.5. Let 𝐴 = 𝐂[𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑦11, 𝑦12, 𝑦21, 𝑦22]. Let 𝐼 be the ideal of 𝐴
generated by the entries of the matrix 𝑋𝑌, with

𝑋 = (
𝑥11 𝑥12
𝑥21 𝑥22) and 𝑌 = (

𝑦11 𝑦12
𝑦21 𝑦22) .

Find the irreducible components of the closed subset 𝑉(𝐼) of 𝑆𝑝𝑒𝑐(𝐴). (I mean describe
them and give equations for each of them. You do not have to prove that the equations you
write down define prime ideals.) Hints:

(1) You may use the Hilbert Nullstellensatz, and it suffices to find irreducible locally
closed subsets which cover the set of closed points of 𝑉(𝐼).

(2) There are two easy components.
(3) An image of an irreducible set under a continuous map is irreducible.
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65.11. Dimension

Exercise 65.11.1. Construct a ring 𝐴 with finitely many prime ideals having dimension
> 1.

Exercise 65.11.2. Let 𝑓 ∈ 𝐂[𝑥, 𝑦] be a nonconstant polynomial. Show that 𝐂[𝑥, 𝑦]/(𝑓) has
dimension 1.

Exercise 65.11.3. Let (𝑅, 𝔪) be aNoetherian local ring. Let 𝑛 ≥ 1. Let𝔪′ = (𝔪, 𝑥1, … , 𝑥𝑛)
in the polynomial ring 𝑅[𝑥1, … , 𝑥𝑛]. Show that

dim(𝑅[𝑥1, … , 𝑥𝑛]𝔪′) = dim(𝑅) + 𝑛.

65.12. Catenary rings

Definition 65.12.1. A Noetherian ring 𝐴 is said to be catenary if for any triple of prime
ideals 𝔭1 ⊂ 𝔭2 ⊂ 𝔭3 we have

ℎ𝑡(𝔭3/𝔭1) = ℎ𝑡(𝔭3/𝔭2) + ℎ𝑡(𝔭2/𝔭1).
Here ℎ𝑡(𝔭/𝔮) means the height of 𝔭/𝔮 in the ring 𝐴/𝔮.

Exercise 65.12.2. Show that a Noetherian local domain of dimension 2 is catenary.

Exercise 65.12.3. Let 𝑘 be a field. Show that a finite type 𝑘-algebra is catenary.

65.13. Fraction fields

Exercise 65.13.1. Consider the domain
𝐐[𝑟, 𝑠, 𝑡]/(𝑠2 − (𝑟 − 1)(𝑟 − 2)(𝑟 − 3), 𝑡2 − (𝑟 + 1)(𝑟 + 2)(𝑟 + 3)).

Find a domain of the form 𝐐[𝑥, 𝑦]/(𝑓) with isomorphic field of fractions.

65.14. Transcendence degree

Exercise 65.14.1. Let 𝑘 ⊂ 𝐾 ⊂ 𝐾′ be field extensions with 𝐾′ algebraic over 𝐾. Prove that
trdeg𝑘(𝐾) = trdeg𝑘(𝐾′). (Hint: Show that if 𝑥1, … , 𝑥𝑑 ∈ 𝐾 are algebraically independent
over 𝑘 and 𝑑 < trdeg𝑘(𝐾′) then 𝑘(𝑥1, … , 𝑥𝑑) ⊂ 𝐾 cannot be algebraic.)

65.15. Finite locally free modules

Definition 65.15.1. Let 𝐴 be a ring. Recall that a finite locally free 𝐴-module 𝑀 is a
module such that for every 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝐴) there exists an 𝑓 ∈ 𝐴, 𝑓∉𝔭 such that 𝑀𝑓 is a finite
free 𝐴𝑓-module. We say 𝑀 is an invertible module if 𝑀 is finite locally free of rank 1, i.e.,
for every 𝔭 ∈ 𝑆𝑝𝑒𝑐(𝐴) there exists an 𝑓 ∈ 𝐴, 𝑓∉𝔭 such that 𝑀𝑓 ≅ 𝐴𝑓 as an 𝐴𝑓-module.

Exercise 65.15.2. Prove that the tensor product of finite locally freemodules is finite locally
free. Prove that the tensor product of two invertible modules is invertible.

Definition 65.15.3. Let 𝐴 be a ring. The class group of 𝐴, sometimes called the Picard
group of 𝐴 is the set Pic(𝐴) of isomomorphism classes of invertible 𝐴-modules endowed
with a group operation defined by tensor product (see Exercise 65.15.2).

Note that the class group of 𝐴 is trivial exactly when every invertible module is isomorphic
to a free module of rank 1.

Exercise 65.15.4. Show that the class groups of the following rings are trivial
(1) a polynomial ring 𝐴 = 𝑘[𝑥] where 𝑘 is a field,
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(2) the integers 𝐴 = 𝐙,
(3) a polynomial ring 𝐴 = 𝑘[𝑥, 𝑦] where 𝑘 is a field, and
(4) the quotient 𝑘[𝑥, 𝑦]/(𝑥𝑦) where 𝑘 is a field.

Exercise 65.15.5. Show that the class group of the the ring 𝐴 = 𝑘[𝑥, 𝑦]/(𝑦2 − 𝑓(𝑥)) where
𝑘 is a field of characteristic not 2 and where 𝑓(𝑥) = (𝑥 − 𝑡1) … (𝑥 − 𝑡𝑛) with 𝑡1, … , 𝑡𝑛 ∈ 𝑘
distinct and 𝑛 ≥ 3 an odd integer is not trivial. (Hint: Show that the ideal (𝑦, 𝑥 − 𝑡1) defines
a nontrivial element of Pic(𝐴).)

Exercise 65.15.6. Let 𝐴 be a ring.
(1) Suppose that 𝑀 is a finite locally free 𝐴-module, and suppose that 𝜑 ∶ 𝑀 → 𝑀

is an endomorphism. Define/construct the trace and determinant of 𝜑 and prove
that your construction is ``functorial in the triple (𝐴, 𝑀, 𝜑)''.

(2) Show that if 𝑀, 𝑁 are finite locally free 𝐴-modules, and if 𝜑 ∶ 𝑀 → 𝑁 and
𝜓 ∶ 𝑁 → 𝑀 then 𝑇𝑟𝑎𝑐𝑒(𝜑 ∘ 𝜓) = 𝑇𝑟𝑎𝑐𝑒(𝜓 ∘ 𝜑) and 𝐷𝑒𝑡(𝜑 ∘ 𝜓) = 𝐷𝑒𝑡(𝜓 ∘ 𝜑).

(3) In case𝑀 is finite locally free show that𝐷𝑒𝑡 defines amultiplicativemap𝐸𝑛𝑑𝐴(𝑀) →
𝐴.

Exercise 65.15.7. Now suppose that 𝐵 is an 𝐴-algebra which is finite locally free as an
𝐴-module, in other words 𝐵 is a finite locally free 𝐴-algebra.

(1) Define 𝑇𝑟𝑎𝑐𝑒𝐵/𝐴 and 𝑁𝑜𝑟𝑚𝐵/𝐴 using 𝑇𝑟𝑎𝑐𝑒 and 𝐷𝑒𝑡 as defined above.
(2) Let 𝑏 ∈ 𝐵 and let 𝜋 ∶ 𝑆𝑝𝑒𝑐(𝐵) → 𝑆𝑝𝑒𝑐(𝐴) be the induced morphism. Show that

𝜋(𝑉(𝑏)) = 𝑉(𝑁𝑜𝑟𝑚𝐵/𝐴(𝑏)). (Recall that 𝑉(𝑓) = {𝔭 ∣ 𝑓 ∈ 𝔭}.)
(3) (Base change.) Suppose that 𝑖 ∶ 𝐴 → 𝐴′ is a ring map. Set 𝐵′ = 𝐵 ⊗𝐴 𝐴′.

Indicate why 𝑖(𝑁𝑜𝑟𝑚𝐵/𝐴(𝑏)) equals 𝑁𝑜𝑟𝑚𝐵′/𝐴′(𝑏 ⊗ 1).
(4) Compute 𝑁𝑜𝑟𝑚𝐵/𝐴(𝑏) when 𝐵 = 𝐴 × 𝐴 × 𝐴 × … × 𝐴 and 𝑏 = (𝑎1, … , 𝑎𝑛).
(5) Compute the norm of 𝑦 − 𝑦3 under the finite flat map 𝐐[𝑥] → 𝐐[𝑦], 𝑥 → 𝑦𝑛.

(Hint: use the ``base change'' 𝐴 = 𝐐[𝑥] ⊂ 𝐴′ = 𝐐(𝜁𝑛)(𝑥1/𝑛).)

65.16. Glueing

Exercise 65.16.1. Suppose that 𝐴 is a ring and 𝑀 is an 𝐴-module. Let 𝑓𝑖, 𝑖 ∈ 𝐼 be a
collection of elements of 𝐴 such that

𝑆𝑝𝑒𝑐(𝐴) = ⋃ 𝐷(𝑓𝑖).

(1) Show that if 𝑀𝑓𝑖
is a finite 𝐴𝑓𝑖

-module, then 𝑀 is a finite 𝐴-module.
(2) Show that if 𝑀𝑓𝑖

is a flat 𝐴𝑓𝑖
-module, then 𝑀 is a flat 𝐴-module. (This is kind

of silly if you think about it right.)

Remark 65.16.2. In algebraic geometric language this means that the property of ``being
finitely generated'' or ``being flat'' is local for the Zariski topology (in a suitable sense). You
can also show this for the property ``being of finite presentation''.

Exercise 65.16.3. Suppose that 𝐴 → 𝐵 is a ring map. Let 𝑓𝑖 ∈ 𝐴, 𝑖 ∈ 𝐼 and 𝑔𝑗 ∈ 𝐵, 𝑗 ∈ 𝐽
be collections of elements such that

𝑆𝑝𝑒𝑐(𝐴) = ⋃ 𝐷(𝑓𝑖) and 𝑆𝑝𝑒𝑐(𝐵) = ⋃ 𝐷(𝑔𝑗).

Show that if 𝐴𝑓𝑖
→ 𝐵𝑓𝑖𝑔𝑗

is of finite type for all 𝑖, 𝑗 then 𝐴 → 𝐵 is of finite type.
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65.17. Going up and going down

Definition 65.17.1. Let 𝜙 ∶ 𝐴 → 𝐵 be a homomorphism of rings. We say that the going-up
theorem holds for 𝜙 if the following condition is satisfied:

(GU) for any 𝔭, 𝔭′ ∈ 𝑆𝑝𝑒𝑐(𝐴) such that 𝔭 ⊂ 𝔭′, and for any 𝑃 ∈ 𝑆𝑝𝑒𝑐(𝐵) lying
over 𝔭, there exists 𝑃′ ∈ 𝑆𝑝𝑒𝑐(𝐵) lying over 𝔭′ such that 𝑃 ⊂ 𝑃′.

Similarly, we say that the going-down theorem holds for 𝜙 if the following condition is
satisfied:

(GD) for any 𝔭, 𝔭′ ∈ 𝑆𝑝𝑒𝑐(𝐴) such that 𝔭 ⊂ 𝔭′, and for any 𝑃′ ∈ 𝑆𝑝𝑒𝑐(𝐵) lying
over 𝔭′, there exists 𝑃 ∈ 𝑆𝑝𝑒𝑐(𝐵) lying over 𝔭 such that 𝑃 ⊂ 𝑃′.

Exercise 65.17.2. In each of the following cases determine whether (GU), (GD) holds, and
explain why. (Use any Prop/Thm/Lemma you can find, but check the hypotheses in each
case.)

(1) 𝑘 is a field, 𝐴 = 𝑘, 𝐵 = 𝑘[𝑥].
(2) 𝑘 is a field, 𝐴 = 𝑘[𝑥], 𝐵 = 𝑘[𝑥, 𝑦].
(3) 𝐴 = 𝐙, 𝐵 = 𝐙[1/11].
(4) 𝑘 is an algebraically closed field, 𝐴 = 𝑘[𝑥, 𝑦], 𝐵 = 𝑘[𝑥, 𝑦, 𝑧]/(𝑥2 − 𝑦, 𝑧2 − 𝑥).
(5) 𝐴 = 𝐙, 𝐵 = 𝐙[𝑖, 1/(2 + 𝑖)].
(6) 𝐴 = 𝐙, 𝐵 = 𝐙[𝑖, 1/(14 + 7𝑖)].
(7) 𝑘 is an algebraically closed field, 𝐴 = 𝑘[𝑥], 𝐵 = 𝑘[𝑥, 𝑦, 1/(𝑥𝑦 − 1)]/(𝑦2 − 𝑦).

Exercise 65.17.3. Let 𝑘 be an algebraically closed field. Compute the image in𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦])
of the following maps:

(1) 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦𝑥−1]) → 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]), where 𝑘[𝑥, 𝑦] ⊂ 𝑘[𝑥, 𝑦𝑥−1] ⊂ 𝑘[𝑥, 𝑦, 𝑥−1].
(Hint: To avoid confusion, give the element 𝑦𝑥−1 another name.)

(2) 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦, 𝑎, 𝑏]/(𝑎𝑥 − 𝑏𝑦 − 1)) → 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]).
(3) 𝑆𝑝𝑒𝑐(𝑘[𝑡, 1/(𝑡 − 1)]) → 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]), induced by 𝑥 ↦ 𝑡2, and 𝑦 ↦ 𝑡3.
(4) 𝑘 = 𝐂 (complex numbers), 𝑆𝑝𝑒𝑐(𝑘[𝑠, 𝑡]/(𝑠3 + 𝑡3 − 1)) → 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]), where

𝑥 ↦ 𝑠2, 𝑦 ↦ 𝑡2.

Remark 65.17.4. Finding the image as above usually is done by using elimination theory.

65.18. Fitting ideals

Exercise 65.18.1. Let 𝑅 be a ring and let 𝑀 be a finite 𝑅-module. Choose a presentation

⨁𝑗∈𝐽
𝑅 ⟶ 𝑅⊕𝑛 ⟶ 𝑀 ⟶ 0.

of 𝑀. Note that the map 𝑅⊕𝑛 → 𝑀 is given by a sequence of elements 𝑥1, … , 𝑥𝑛 of 𝑀.
The elements 𝑥𝑖 are generators of 𝑀. The map ⨁𝑗∈𝐽 𝑅 → 𝑅⊕𝑛 is given by a 𝑛 × 𝐽 matrix
𝐴 with coefficients in 𝑅. In other words, 𝐴 = (𝑎𝑖𝑗)𝑖=1,…,𝑛,𝑗∈𝐽. The columns (𝑎1𝑗, … , 𝑎𝑛𝑗),
𝑗 ∈ 𝐽 of 𝐴 are said to be the relations. Any vector (𝑟𝑖) ∈ 𝑅⊕𝑛 such that ∑ 𝑟𝑖𝑥𝑖 = 0 is a
linear combination of the columns of 𝐴. Of course any finite 𝑅-module has a lot of different
presentations.

(1) Show that the ideal generated by the (𝑛 − 𝑘) × (𝑛 − 𝑘) minors of 𝐴 is independent
of the choice of the presentation. This ideal is the 𝑘th fitting ideal of 𝑀. Notation
𝐹𝑖𝑡𝑘(𝑀).

(2) Show that 𝐹𝑖𝑡0(𝑀) ⊂ 𝐹𝑖𝑡1(𝑀) ⊂ 𝐹𝑖𝑡2(𝑀) ⊂ …. (Hint: Use that a determinant
can be computed by expanding along a column.)

(3) Show that the following are equivalent:
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(a) 𝐹𝑖𝑡𝑟−1(𝑀) = (0) and 𝐹𝑖𝑡𝑟(𝑀) = 𝑅, and
(b) 𝑀 is locally free of rank 𝑟.

65.19. Hilbert functions

Definition 65.19.1. A numerical polynomial is a polynomial 𝑓(𝑥) ∈ 𝐐[𝑥] such that 𝑓(𝑛) ∈
𝐙 for every integer 𝑛.

Definition 65.19.2. A graded module 𝑀 over a ring 𝐴 is an 𝐴-module 𝑀 endowed with
a direct sum decomposition ⨁𝑛∈𝐙 𝑀𝑛 into 𝐴-submodules. We will say that 𝑀 is locally
finite if all of the 𝑀𝑛 are finite 𝐴-modules. Suppose that 𝐴 is a Noetherian ring and that 𝜑 is
a Euler-Poincaré function on finite 𝐴-modules. This means that for every finitely generated
𝐴-module 𝑀 we are given an integer 𝜑(𝑀) ∈ 𝐙 and for every short exact sequence

0 ⟶ 𝑀′ ⟶ 𝑀 ⟶ 𝑀″ ⟶ 0

we have 𝜑(𝑀) = 𝜑(𝑀′) + 𝜑(𝑀′). The Hilbert function of a locally finite graded module
𝑀 (with respect to 𝜑) is the function 𝜒𝜑(𝑀, 𝑛) = 𝜑(𝑀𝑛). We say that 𝑀 has a Hilbert
polynomial if there is some numerical polynomial 𝑃𝜑 such that 𝜒𝜑(𝑀, 𝑛) = 𝑃𝜑(𝑛) for all
sufficiently large integers 𝑛.

Definition 65.19.3. A graded 𝐴-algebra is a graded 𝐴-module 𝐵 = ⨁𝑛≥0 𝐵𝑛 together with
an 𝐴-bilinear map

𝐵 × 𝐵 ⟶ 𝐵, (𝑏, 𝑏′) ⟼ 𝑏𝑏′

that turns 𝐵 into an 𝐴-algebra so that 𝐵𝑛 ⋅ 𝐵𝑚 ⊂ 𝐵𝑛+𝑚. Finally, a graded module 𝑀
over a graded 𝐴-algebra 𝐵 is given by a graded 𝐴-module 𝑀 together with a (compatible)
𝐵-module structure such that 𝐵𝑛 ⋅ 𝑀𝑑 ⊂ 𝑀𝑛+𝑑. Now you can define homomorphisms
of graded modules/rings, graded submodules, graded ideals, exact sequences of graded
modules, etc, etc.

Exercise 65.19.4. Let 𝐴 = 𝑘 a field. What are all possible Euler-Poincaré functions on
finite 𝐴-modules in this case?

Exercise 65.19.5. Let 𝐴 = 𝐙. What are all possible Euler-Poincaré functions on finite
𝐴-modules in this case?

Exercise 65.19.6. Let 𝐴 = 𝑘[𝑥, 𝑦]/(𝑥𝑦) with 𝑘 algebraically closed. What are all possible
Euler-Poincaré functions on finite 𝐴-modules in this case?

Exercise 65.19.7. Suppose that 𝐴 is Noetherian. Show that the kernel of a map of locally
finite graded 𝐴-modules is locally finite.

Exercise 65.19.8. Let 𝑘 be a field and let 𝐴 = 𝑘 and 𝐵 = 𝑘[𝑥, 𝑦] with grading determined
by deg(𝑥) = 2 and deg(𝑦) = 3. Let 𝜑(𝑀) = dim𝑘(𝑀). Compute the Hilbert function of 𝐵
as a graded 𝑘-module. Is there a Hilbert polynomial in this case?

Exercise 65.19.9. Let 𝑘 be a field and let 𝐴 = 𝑘 and 𝐵 = 𝑘[𝑥, 𝑦]/(𝑥2, 𝑥𝑦) with grading
determined by deg(𝑥) = 2 and deg(𝑦) = 3. Let 𝜑(𝑀) = dim𝑘(𝑀). Compute the Hilbert
function of 𝐵 as a graded 𝑘-module. Is there a Hilbert polynomial in this case?

Exercise 65.19.10. Let 𝑘 be a field and let 𝐴 = 𝑘. Let 𝜑(𝑀) = dim𝑘(𝑀). Fix 𝑑 ∈ 𝐍.
Consider the graded 𝐴-algebra 𝐵 = 𝑘[𝑥, 𝑦, 𝑧]/(𝑥𝑑 +𝑦𝑑 +𝑧𝑑), where 𝑥, 𝑦, 𝑧 each have degree
1. Compute the Hilbert function of 𝐵. Is there a Hilbert polynomial in this case?
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65.20. Proj of a ring

Definition 65.20.1. Let 𝑅 be a graded ring. A homogeneous ideal is simply an ideal 𝐼 ⊂ 𝑅
which is also a graded submodule of 𝑅. Equivalently, it is an ideal generated by homoge-
neous elements. Equivalently, if 𝑓 ∈ 𝐼 and

𝑓 = 𝑓0 + 𝑓1 + … + 𝑓𝑛

is the decomposition of 𝑓 into homogenous pieces in 𝑅 then 𝑓𝑖 ∈ 𝐼 for each 𝑖.

Definition 65.20.2. We define the homogeneous spectrum Proj(𝑅) of the graded ring 𝑅
to be the set of homogenous, prime ideals 𝔭 of 𝑅 such that 𝑅+⊄𝔭. Note that Proj(𝑅) is a
subset of 𝑆𝑝𝑒𝑐(𝑅) and hence has a natural induced topology.

Definition 65.20.3. Let 𝑅 = ⊕𝑑≥0𝑅𝑑 be a graded ring, let 𝑓 ∈ 𝑅𝑑 and assume that 𝑑 ≥ 1.
We define 𝑅(𝑓) to be the subring of 𝑅𝑓 consisting of elements of the form 𝑟/𝑓𝑛 with 𝑟
homogenous and deg(𝑟) = 𝑛𝑑. Furthermore, we define

𝐷+(𝑓) = {𝔭 ∈ Proj(𝑅)|𝑓∉𝔭}.
Finally, for a homogenous ideal 𝐼 ⊂ 𝑅 we define 𝑉+(𝐼) = 𝑉(𝐼) ∩ Proj(𝑅).

Exercise 65.20.4. On the topology on Proj(𝑅). With definitions and notation as above
prove the following statements.

(1) Show that 𝐷+(𝑓) is open in Proj(𝑅).
(2) Show that 𝐷+(𝑓𝑓′) = 𝐷+(𝑓) ∩ 𝐷+(𝑓′).
(3) Let 𝑔 = 𝑔0 + … + 𝑔𝑚 be an element of 𝑅 with 𝑔𝑖 ∈ 𝑅𝑖. Express 𝐷(𝑔) ∩ Proj(𝑅)

in terms of 𝐷+(𝑔𝑖), 𝑖 ≥ 1 and 𝐷(𝑔0) ∩ Proj(𝑅). No proof necessary.
(4) Let 𝑔 ∈ 𝑅0 be a homogenous element of degree 0. Express 𝐷(𝑔) ∩ Proj(𝑅) in

terms of 𝐷+(𝑓𝛼) for a suitable family 𝑓𝛼 ∈ 𝑅 of homogenous elements of positive
degree.

(5) Show that the collection {𝐷+(𝑓)} of opens forms a basis for the topology of
Proj(𝑅).

(6) Show that there is a canonical bijection 𝐷+(𝑓) → 𝑆𝑝𝑒𝑐(𝑅(𝑓)). (Hint: Imitate the
proof for 𝑆𝑝𝑒𝑐 but at some point thrown in the radical of an ideal.)

(7) Show that the map from (6) is a homeomorphism.
(8) Give an example of an 𝑅 such that Proj(𝑅) is not quasi-compact. No proof nec-

essary.
(9) Show that any closed subset 𝑇 ⊂ Proj(𝑅) is of the form 𝑉+(𝐼) for some homoge-

nous ideal 𝐼 ⊂ 𝑅.

Remark 65.20.5. There is a continuous map Proj(𝑅) ⟶ 𝑆𝑝𝑒𝑐(𝑅0).

Exercise 65.20.6. If 𝑅 = 𝐴[𝑋] with deg(𝑋) = 1, show that the natural map Proj(𝑅) →
𝑆𝑝𝑒𝑐(𝐴) is a bijection and in fact a homeomorphism.

Exercise 65.20.7. Blowing up: part I. In this exercise 𝑅 = 𝐵𝑙𝐼(𝐴) = 𝐴 ⊕ 𝐼 ⊕ 𝐼2 ⊕ ….
Consider the natural map 𝑏 ∶ Proj(𝑅) → 𝑆𝑝𝑒𝑐(𝐴). Set 𝑈 = 𝑆𝑝𝑒𝑐(𝐴) − 𝑉(𝐼). Show that

𝑏 ∶ 𝑏−1(𝑈) ⟶ 𝑈
is a homeomorphism. Thus we may think of 𝑈 as an open subset of Proj(𝑅). Let 𝑍 ⊂
𝑆𝑝𝑒𝑐(𝐴) be an irreducible closed subschemewith generic point 𝜉 ∈ 𝑍. Assume that 𝜉∉𝑉(𝐼),
in other words 𝑍⊄𝑉(𝐼), in other words 𝜉 ∈ 𝑈, in other words 𝑍∩𝑈≠∅. We define the strict
transform 𝑍′ of 𝑍 to be the closure of the unique point 𝜉′ lying above 𝜉. Another way to say
this is that 𝑍′ is the closure in Proj(𝑅) of the locally closed subset 𝑍 ∩ 𝑈 ⊂ 𝑈 ⊂ Proj(𝑅).
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Exercise 65.20.8. Blowing up: Part II. Let 𝐴 = 𝑘[𝑥, 𝑦] where 𝑘 is a field, and let 𝐼 = (𝑥, 𝑦).
Let 𝑅 be the blow up algebra for 𝐴 and 𝐼.

(1) Show that the strict transforms of 𝑍1 = 𝑉({𝑥}) and 𝑍2 = 𝑉({𝑦}) are disjoint.
(2) Show that the strict transforms of 𝑍1 = 𝑉({𝑥}) and 𝑍2 = 𝑉({𝑥 − 𝑦2}) are not

disjoint.
(3) Find an ideal 𝐽 ⊂ 𝐴 such that 𝑉(𝐽) = 𝑉(𝐼) and such that the strict transforms of

𝑍1 = 𝑉({𝑥}) and 𝑍2 = 𝑉({𝑥 − 𝑦2}) are disjoint.

Exercise 65.20.9. Let 𝑅 be a graded ring.
(1) Show that Proj(𝑅) is empty if 𝑅𝑛 = (0) for all 𝑛 >> 0.
(2) Show that Proj(𝑅) is an irreducible topological space if 𝑅 is a domain and 𝑅+ is

not zero. (Recall that the empty topological space is not irreducible.)

Exercise 65.20.10. Blowing up: Part III. Consider 𝐴, 𝐼 and 𝑈, 𝑍 as in the definition of
strict transform. Let 𝑍 = 𝑉(𝔭) for some prime ideal 𝔭. Let ̄𝐴 = 𝐴/𝔭 and let ̄𝐼 be the image
of 𝐼 in ̄𝐴.

(1) Show that there exists a surjective ring map 𝑅 ∶= 𝐵𝑙𝐼(𝐴) → �̄� ∶= 𝐵𝑙 ̄𝐼( ̄𝐴).
(2) Show that the ring map above induces a bijective map from Proj(�̄�) onto the strict

transform 𝑍′ of 𝑍. (This is not so easy. Hint: Use 5(b) above.)
(3) Conclude that the strict transform 𝑍′ = 𝑉+(𝑃) where 𝑃 ⊂ 𝑅 is the homogenous

ideal defined by 𝑃𝑑 = 𝐼𝑑 ∩ 𝔭.
(4) Suppose that 𝑍1 = 𝑉(𝔭) and 𝑍2 = 𝑉(𝔮) are irreducible closed subsets defined

by prime ideals such that 𝑍1⊄𝑍2, and 𝑍2⊄𝑍1. Show that blowing up the ideal
𝐼 = 𝔭 + 𝔮 separates the strict transforms of 𝑍1 and 𝑍2, i.e., 𝑍′

1 ∩ 𝑍′
2 = ∅. (Hint:

Consider the homogenous ideal 𝑃 and 𝑄 from part (c) and consider 𝑉(𝑃 + 𝑄).)

65.21. Cohen-Macaulay rings of dimension 1

Definition 65.21.1. A Noetherian local ring 𝐴 is said to be Cohen-Macaulay of dimension
𝑑 if it has dimension 𝑑 and there exists a system of parameters 𝑥1, … , 𝑥𝑑 for 𝐴 such that 𝑥𝑖
is a nonzero divisor in 𝐴/(𝑥1, … , 𝑥𝑖−1) for 𝑖 = 1, … , 𝑑.

Exercise 65.21.2. Cohen-Macaulay rings of dimension 1. Part I: Theory.
(1) Let (𝐴, 𝔪) be a local Noetherian with dim 𝐴 = 1. Show that if 𝑥 ∈ 𝔪 is not a

zero divisor then
(a) dim 𝐴/𝑥𝐴 = 0, in other words 𝐴/𝑥𝐴 is Artinian, in other words {𝑥} is a

system of parameters for 𝐴.
(b) 𝐴 is has no embedded prime.

(2) Conversely, let (𝐴, 𝔪) be a local Noetherian ring of dimension 1. Show that if 𝐴
has no embedded prime then there exists a nonzero divisor in 𝔪.

Exercise 65.21.3. Cohen-Macaulay rings of dimension 1. Part II: Examples.
(1) Let 𝐴 be the local ring at (𝑥, 𝑦) of 𝑘[𝑥, 𝑦]/(𝑥2, 𝑥𝑦).

(a) Show that 𝐴 has dimension 1.
(b) Prove that every element of 𝔪 ⊂ 𝐴 is a zero divisor.
(c) Find 𝑧 ∈ 𝔪 such that dim 𝐴/𝑧𝐴 = 0 (no proof required).

(2) Let 𝐴 be the local ring at (𝑥, 𝑦) of 𝑘[𝑥, 𝑦]/(𝑥2). Find a nonzero divisor in 𝔪 (no
proof required).
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Exercise 65.21.4. Local rings of embedding dimension 1. Suppose that (𝐴, 𝔪, 𝑘) is a
Noetherian local ring of embedding dimension 1, i.e.,

dim𝑘 𝔪/𝔪2 = 1.

Show that the function 𝑓(𝑛) = dim𝑘 𝔪𝑛/𝔪𝑛+1 is either constant with value 1, or its values
are

1, 1, … , 1, 0, 0, 0, 0, 0, …

Exercise 65.21.5. Regular local rings of dimension 1. Suppose that (𝐴, 𝔪, 𝑘) is a regular
Noetherian local ring of dimension 1. Recall that this means that 𝐴 has dimension 1 and
embedding dimension 1, i.e.,

dim𝑘 𝔪/𝔪2 = 1.
Let 𝑥 ∈ 𝔪 be any element whose class in 𝔪/𝔪2 is not zero.

(1) Show that for every element 𝑦 of 𝔪 there exists an integer 𝑛 such that 𝑦 can be
written as 𝑦 = 𝑢𝑥𝑛 with 𝑢 ∈ 𝐴∗ a unit.

(2) Show that 𝑥 is a nonzero divisor in 𝐴.
(3) Conclude that 𝐴 is a domain.

Exercise 65.21.6. Let (𝐴, 𝔪, 𝑘) be a Noetherian local ring with associated graded 𝐺𝑟𝔪(𝐴).
(1) Suppose that 𝑥 ∈ 𝔪𝑑 maps to a nonzero divisor �̄� ∈ 𝔪𝑑/𝔪𝑑+1 in degree 𝑑 of

𝐺𝑟𝔪(𝐴). Show that 𝑥 is a nonzero divisor.
(2) Suppose the depth of 𝐴 is at least 1. Namely, suppose that there exists a nonzero

divisor 𝑦 ∈ 𝔪. In this case we can do better: assume just that 𝑥 ∈ 𝔪𝑑 maps to
the element �̄� ∈ 𝔪𝑑/𝔪𝑑+1 in degree 𝑑 of 𝐺𝑟𝔪(𝐴) which is a nonzero divisor on
sufficiently high degrees: ∃𝑁 such that for all 𝑛 ≥ 𝑁 the map of multiplication
by �̄�

𝔪𝑛/𝔪𝑛+1 ⟶ 𝔪𝑛+𝑑/𝔪𝑛+𝑑+1

is injective. Then show that 𝑥 is a nonzero divisor.

Exercise 65.21.7. Suppose that (𝐴, 𝔪, 𝑘) is a Noetherian local ring of dimension 1. As-
sume also that the embedding dimension of 𝐴 is 2, i.e., assume that

dim𝑘 𝔪/𝔪2 = 2.

Notation: 𝑓(𝑛) = dim𝑘 𝔪𝑛/𝔪𝑛+1. Pick generators 𝑥, 𝑦 ∈ 𝔪 and write 𝐺𝑟𝔪(𝐴) = 𝑘[�̄�, ̄𝑦]/𝐼
for some homogenous ideal 𝐼.

(1) Show that there exists a homogenous element 𝐹 ∈ 𝑘[�̄�, ̄𝑦] such that 𝐼 ⊂ (𝐹) with
equality in all sufficiently high degrees.

(2) Show that 𝑓(𝑛) ≤ 𝑛 + 1.
(3) Show that if 𝑓(𝑛) < 𝑛 + 1 then 𝑛 ≥ deg(𝐹).
(4) Show that if 𝑓(𝑛) < 𝑛 + 1, then 𝑓(𝑛 + 1) ≤ 𝑓(𝑛).
(5) Show that 𝑓(𝑛) = deg(𝐹) for all 𝑛 >> 0.

Exercise 65.21.8. Cohen-Macaulay rings of dimension 1 and embedding dimension 2.
Suppose that (𝐴, 𝔪, 𝑘) is a Noetherian local ring which is Cohen-Macaulay of dimension
1. Assume also that the embedding dimension of 𝐴 is 2, i.e., assume that

dim𝑘 𝔪/𝔪2 = 2.

Notations: 𝑓, 𝐹, 𝑥, 𝑦 ∈ 𝔪, 𝐼 as in Ex. 6 above. Please use any results from the problems
above.
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(1) Suppose that 𝑧 ∈ 𝔪 is an element whose class in 𝔪/𝔪2 is a linear form 𝛼�̄�+𝛽 ̄𝑦 ∈
𝑘[�̄�, ̄𝑦] which is coprime with 𝑓.
(a) Show that 𝑧 is a nonzero divisor on 𝐴.
(b) Let 𝑑 = deg(𝐹). Show that 𝔪𝑛 = 𝑧𝑛+1−𝑑𝔪𝑑−1 for all sufficiently large 𝑛.

(Hint: First show 𝑧𝑛+1−𝑑𝔪𝑑−1 → 𝔪𝑛/𝔪𝑛+1 is surjective by what you know
about 𝐺𝑟𝔪(𝐴). Then use NAK.)

(2) What condition on 𝑘 garantees the existence of such a 𝑧? (No proof required; it's
too easy.)
Now we are going to assume there exists a 𝑧 as above. This turns out to be a
harmless assumption (in the sense that you can reduce to the situation where it
holds in order to obtain the results in parts (d) and (e) below).

(3) Now show that 𝔪ℓ = 𝑧ℓ−𝑑+1𝔪𝑑−1 for all ℓ ≥ 𝑑.
(4) Conclude that 𝐼 = (𝐹).
(5) Conclude that the function 𝑓 has values

2, 3, 4, … , 𝑑 − 1, 𝑑, 𝑑, 𝑑, 𝑑, 𝑑, 𝑑, 𝑑, …

Remark 65.21.9. This suggests that a local Noetherian Cohen-Macaulay ring of dimension
1 and embedding dimension 2 is of the form 𝐵/𝐹𝐵, where 𝐵 is a 2-dimensional regular local
ring. This is more or less true (under suitable ``niceness'' properties of the ring).

65.22. Infinitely many primes

A section with a collection of strange questions on rings where infinitely many primes are
not invertible.

Exercise 65.22.1. Give an example of a finite type 𝐙-algebra 𝑅 with the following two
properties:
(a) There is no ring map 𝑅 → 𝐐.
(b) For every prime 𝑝 there exists a maximal ideal 𝔪 ⊂ 𝑅 such that 𝑅/𝔪 ≅ 𝐅𝑝.

Exercise 65.22.2. For 𝑓 ∈ 𝐙[𝑥, 𝑢] we define 𝑓𝑝(𝑥) = 𝑓(𝑥, 𝑥𝑝) mod 𝑝 ∈ 𝐅𝑝[𝑥]. Give an
example of an 𝑓 ∈ 𝐙[𝑥, 𝑢] such that the following two properties hold:
(a) There exist infinitely many 𝑝 such that 𝑓𝑝 does not have a zero in 𝐅𝑝.
(b) For all 𝑝 >> 0 the polynomial 𝑓𝑝 either has a linear or a quadratic factor.

Exercise 65.22.3. For 𝑓 ∈ 𝐙[𝑥, 𝑦, 𝑢, 𝑣] we define 𝑓𝑝(𝑥, 𝑦) = 𝑓(𝑥, 𝑦, 𝑥𝑝, 𝑦𝑝) mod 𝑝 ∈
𝐅𝑝[𝑥, 𝑦]. Give an ``interesting'' example of an 𝑓 such that 𝑓𝑝 is reducible for all 𝑝 >> 0.
For example, 𝑓 = 𝑥𝑣 − 𝑦𝑢 with 𝑓𝑝 = 𝑥𝑦𝑝 − 𝑥𝑝𝑦 = 𝑥𝑦(𝑥𝑝−1 − 𝑦𝑝−1) is ``uninteresting''; any
𝑓 depeding only on 𝑥, 𝑢 is ``uninteresting'', etc.

Remark 65.22.4. Let ℎ ∈ 𝐙[𝑦] be a monic polynomial of degree 𝑑. Then:
(1) The map 𝐴 = 𝐙[𝑥] → 𝐵 = 𝐙[𝑦], 𝑥 ↦ ℎ is finite locally free of rank 𝑑.
(2) For all primes 𝑝 the map 𝐴𝑝 = 𝐅𝑝[𝑥] → 𝐵𝑝 = 𝐅𝑝[𝑦], 𝑦 ↦ ℎ(𝑦) mod 𝑝 is finite

locally free of rank 𝑑.

Exercise 65.22.5. Let ℎ, 𝐴, 𝐵, 𝐴𝑝, 𝐵𝑝 be as in the remark. For 𝑓 ∈ 𝐙[𝑥, 𝑢] we define
𝑓𝑝(𝑥) = 𝑓(𝑥, 𝑥𝑝) mod 𝑝 ∈ 𝐅𝑝[𝑥]. For 𝑔 ∈ 𝐙[𝑦, 𝑣] we define 𝑔𝑝(𝑦) = 𝑔(𝑦, 𝑦𝑝) mod 𝑝 ∈
𝐅𝑝[𝑦].

(1) Give an example of a ℎ and 𝑔 such that there does not exist a 𝑓 with the property

𝑓𝑝 = 𝑁𝑜𝑟𝑚𝐵𝑝/𝐴𝑝
(𝑔𝑝).
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(2) Show that for any choice of ℎ and 𝑔 as above there exists a nonzero 𝑓 such that
for all 𝑝 we have

𝑁𝑜𝑟𝑚𝐵𝑝/𝐴𝑝
(𝑔𝑝) divides 𝑓𝑝.

If you want you can restrict to the case ℎ = 𝑦𝑛, even with 𝑛 = 2, but it is true in
general.

(3) Discuss the relevance of this to Exercises 6 & 7 of the previous set.

Exercise 65.22.6. Unsolved problems. They may be really hard or they may be easy. I
don't know.

(1) Is there any 𝑓 ∈ 𝐙[𝑥, 𝑢] such that 𝑓𝑝 is irreducible for an infinite number of 𝑝?
(Hint: Yes, this happens for 𝑓(𝑥, 𝑢) = 𝑢−𝑥−1 and also for 𝑓(𝑥, 𝑢) = 𝑢2 −𝑥2 +1.)

(2) Let 𝑓 ∈ 𝐙[𝑥, 𝑢] nonzero, and suppose deg𝑥(𝑓𝑝) = 𝑑𝑝+𝑑′ for all large 𝑝. (In other
words deg𝑢(𝑓) = 𝑑 and the coefficient 𝑐 of 𝑢𝑑 in 𝑓 has deg𝑥(𝑐) = 𝑑′.) Suppose
we can write 𝑑 = 𝑑1 + 𝑑2 and 𝑑′ = 𝑑′

1 + 𝑑′
2 with 𝑑1, 𝑑2 > 0 and 𝑑′

1, 𝑑′
2 ≥ 0 such

that for all sufficiently large 𝑝 there exists a factorization

𝑓𝑝 = 𝑓1,𝑝𝑓2,𝑝

with deg𝑥(𝑓1,𝑝) = 𝑑1𝑝 + 𝑑′
1. Is it true that 𝑓 comes about via a norm construction

as in Exercise 4? (More precisely, are there a ℎ and 𝑔 such that 𝑁𝑜𝑟𝑚𝐵𝑝/𝐴𝑝
(𝑔𝑝)

divides 𝑓𝑝 for all 𝑝 >> 0.)
(3) Analogous question to the one in (b) but now with 𝑓 ∈ 𝐙[𝑥1, 𝑥2, 𝑢1, 𝑢2] irre-

ducible and just assuming that 𝑓𝑝(𝑥1, 𝑥2) = 𝑓(𝑥1, 𝑥2, 𝑥𝑝
1, 𝑥𝑝

2) mod 𝑝 factors for all
𝑝 >> 0.

65.23. Filtered derived category

In order to do the exercises in this section, please read the material in Homology, Section
10.13. We will say 𝐴 is a filtered object of 𝒜, to mean that 𝐴 comes endowed with a
filtration 𝐹 which we omit from the notation.

Exercise 65.23.1. Let 𝒜 be an abelian category. Let 𝐼 be a filtered object of 𝒜. Assume that
the filtration on 𝐼 is finite and that each gr𝑝(𝐼) is an injective object of 𝒜. Show that there
exists an isomorphism 𝐼 ≅ ⨁ gr𝑝(𝐼) with filtration 𝐹𝑝(𝐼) corresponding to ⨁𝑝′≥𝑝 gr

𝑝(𝐼).

Exercise 65.23.2. Let 𝒜 be an abelian category. Let 𝐼 be a filtered object of 𝒜. Assume
that the filtration on 𝐼 is finite. Show the following are equivalent:

(1) For any solid diagram
𝐴 𝛼

//

��

𝐵

��
𝐼

of filtered objects with (i) the filtrations on 𝐴 and 𝐵 are finite, and (ii) gr(𝛼)
injective the dotted arrow exists making the diagram commute.

(2) Each gr𝑝𝐼 is injective.

Note that given a morphism 𝛼 ∶ 𝐴 → 𝐵 of filtered objects with finite filtrations to say that
gr(𝛼) injective is the same thing as saying that 𝛼 is a strict monomorphism in the category
Fil(𝒜). Namely, being a monomorphism means Ker(𝛼) = 0 and strict means that this
also implies Ker(gr(𝛼)) = 0. See Homology, Lemma 10.13.15. (We only use the term
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``injective'' for a morphism in an abelian category, allthough it makes sense in any additive
category having kernels.) The exercises above justifies the following definition.

Definition 65.23.3. Let 𝒜 be an abelian category. Let 𝐼 be a filtered object of 𝒜. Assume
the filtration on 𝐼 is finite. We say 𝐼 is filtered injective if each gr𝑝(𝐼) is an injective object
of 𝒜.

We make the following definition to avoid having to keep saying ``with a finite filtration''
everywhere.

Definition 65.23.4. Let 𝒜 be an abelian category. We denote Fil𝑓(𝒜) the full subcategory
of Fil(𝒜) whose objects consist of those 𝐴 ∈ 𝑂𝑏(Fil(𝒜)) whose filtration is finite.

Exercise 65.23.5. Let 𝒜 be an abelian category. Assume 𝒜 has enough injectives. Let 𝐴
be an object of Fil𝑓(𝒜). Show that there exists a strict monomorphism 𝛼 ∶ 𝐴 → 𝐼 of 𝐴 into
a filtered injective object 𝐼 of Fil𝑓(𝒜).

Definition 65.23.6. Let 𝒜 be an abelian category. Let 𝛼 ∶ 𝐾• → 𝐿• be a morphism of
complexes of Fil(𝒜). We say that 𝛼 is a filtered quasi-isomorphism if for each 𝑝 ∈ 𝐙 the
morphism gr𝑝(𝐾•) → gr𝑝(𝐿•) is a quasi-isomorphism.

Definition 65.23.7. Let 𝒜 be an abelian category. Let 𝐾• be a complex of Fil𝑓(𝒜). We say
that 𝐾• is filtered acyclic if for each 𝑝 ∈ 𝐙 the complex gr𝑝(𝐾•) is acyclic.

Exercise 65.23.8. Let 𝒜 be an abelian category. Let 𝛼 ∶ 𝐾• → 𝐿• be a morphism of
bounded below complexes of Fil𝑓(𝒜). (Note the superscript 𝑓.) Show that the following
are equivalent:

(1) 𝛼 is a filtered quasi-isomorphism,
(2) for each 𝑝 ∈ 𝐙 the map 𝛼 ∶ 𝐹𝑝𝐾• → 𝐹𝑝𝐿• is a quasi-isomorphism,
(3) for each 𝑝 ∈ 𝐙 the map 𝛼 ∶ 𝐾•/𝐹𝑝𝐾• → 𝐿•/𝐹𝑝𝐿• is a quasi-isomorphism, and
(4) the cone of 𝛼 (see Derived Categories, Definition 11.8.1) is a filtered acyclic

complex.
Moreover, show that if 𝛼 is a filtered quasi-isomorphism then 𝛼 is also a usual quasi-
isomorphism.

Exercise 65.23.9. Let 𝒜 be an abelian category. Assume 𝒜 has enough injectives. Let
𝐴 be an object of Fil𝑓(𝒜). Show there exists a complex 𝐼• of Fil𝑓(𝒜), and a morphism
𝐴[0] → 𝐼• such that

(1) each 𝐼𝑝 is filtered injective,
(2) 𝐼𝑝 = 0 for 𝑝 < 0, and
(3) 𝐴[0] → 𝐼• is a filtered quasi-isomorphism.

Exercise 65.23.10. Let 𝒜 be an abelian category. Assume 𝒜 has enough injectives. Let
𝐾• be a bounded below complex of objects of Fil𝑓(𝒜). Show there exists a filtered quasi-
isomorphism 𝛼 ∶ 𝐾• → 𝐼• with 𝐼• a complex of Fil𝑓(𝒜) having filtered injective terms 𝐼𝑛,
and bounded below. In fact, we may choose 𝛼 such that each 𝛼𝑛 is a strict monomorphism.

Exercise 65.23.11. Let 𝒜 be an abelian category. Consider a solid diagram

𝐾•
𝛼
//

𝛾
��

𝐿•

𝛽}}
𝐼•
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of complexes of Fil𝑓(𝒜). Assume 𝐾•, 𝐿• and 𝐼• are bounded below and assume each 𝐼𝑛 is
a filtered injective object. Also assume that 𝛼 is a filtered quasi-isomorphism.

(1) There exists a map of complexes 𝛽 making the diagram commute up to homotopy.
(2) If 𝛼 is a strict monomorphism in every degree then we can find a 𝛽 which makes

the diagram commute.

Exercise 65.23.12. Let 𝒜 be an abelian category. Let 𝐾•, 𝐾• be complexes of Fil𝑓(𝒜).
Assume

(1) 𝐾• bounded below and filtered acyclic, and
(2) 𝐼• bounded below and consisting of filtered injective objects.

Then any morphism 𝐾• → 𝐼• is homotopic to zero.

Exercise 65.23.13. Let 𝒜 be an abelian category. Consider a solid diagram

𝐾•
𝛼
//

𝛾
��

𝐿•

𝛽𝑖}}
𝐼•

of complexes of Fil𝑓(𝒜). Assume 𝐾•, 𝐿• and 𝐼• bounded below and each 𝐼𝑛 a filtered
injective object. Aslo assume 𝛼 a filtered quasi-isomorphism. Any two morphisms 𝛽1, 𝛽2
making the diagram commute up to homotopy are homotopic.

65.24. Regular functions

Exercise 65.24.1. In this exercise we try to see what happens with regular functions over
non-algebraically closed fields. Let 𝑘 be a field. Let 𝑍 ⊂ 𝑘𝑛 be a Zariski locally closed
subset, i.e., there exist ideals 𝐼 ⊂ 𝐽 ⊂ 𝑘[𝑥1, … , 𝑥𝑛] such that

𝑍 = {𝑎 ∈ 𝑘𝑛 ∣ 𝑓(𝑎) = 0 ∀ 𝑓 ∈ 𝐼, ∃ 𝑔 ∈ 𝐽, 𝑔(𝑎)≠0}.

A function 𝜑 ∶ 𝑍 → 𝑘 is said to be regular if for every 𝑧 ∈ 𝑍 there exists a Zariski open
neighbourhood 𝑧 ∈ 𝑈 ⊂ 𝑍 and polynomials 𝑓, 𝑔 ∈ 𝑘[𝑥1, … , 𝑥𝑛] such that 𝑔(𝑢)≠0 for all
𝑢 ∈ 𝑈 and such that 𝜑(𝑢) = 𝑓(𝑢)/𝑔(𝑢) for all 𝑢 ∈ 𝑈.

(1) If 𝑘 = �̄� and 𝑍 = 𝑘𝑛 show that regular functions are given by polynomials. (Only
do this if you haven't seen this argument before.)

(2) If 𝑘 is finite show that (a) every function 𝜑 is regular, (b) the ring of regular
functions is finite dimensional over 𝑘. (If you like you can take 𝑍 = 𝑘𝑛 and even
𝑛 = 1.)

(3) If 𝑘 = 𝐑 give an example of a regular function on 𝑍 = 𝐑 which is not given by
a polynomial.

(4) If 𝑘 = 𝐐𝑝 give an example of a regular function on 𝑍 = 𝐐𝑝 which is not given
by a polynomial.

65.25. Sheaves

Amorphism 𝑓 ∶ 𝑋 → 𝑌 of a category 𝒞 is anmonomorphism if for every pair of morphisms
𝑎, 𝑏 ∶ 𝑊 → 𝑋 we have 𝑓 ∘ 𝑎 = 𝑓 ∘ 𝑏 ⇒ 𝑎 = 𝑏. A monomorphism in the category of sets is
an injective map of sets.

Exercise 65.25.1. Carefully prove that a map of sheaves of sets is an monomorphism (in
the category of sheaves of sets) if and only if the induced maps on all the stalks are injective.
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A morphism 𝑓 ∶ 𝑋 → 𝑌 of a category 𝒞 is an isomorphism if there exists a morphsm
𝑔 ∶ 𝑌 → 𝑋 such that 𝑓 ∘ 𝑔 = id𝑌 and 𝑔 ∘ 𝑓 = id𝑋. An isomorphism in the category of sets
is a bijective map of sets.

Exercise 65.25.2. Carefully prove that a map of sheaves of sets is an isomorphism (in the
category of sheaves of sets) if and only if the induced maps on all the stalks are bijective.

A morphism 𝑓 ∶ 𝑋 → 𝑌 of a category 𝒞 is an epimorphism if for every pair of morphisms
𝑎, 𝑏 ∶ 𝑌 → 𝑍 we have 𝑎 ∘ 𝑓 = 𝑏 ∘ 𝑓 ⇒ 𝑎 = 𝑏. An epimorphism in the category of sets is a
surjective map of sets.

Exercise 65.25.3. Carefully prove that a map of sheaves of sets is an epimorphism (in the
category of sheaves of sets) if and only if the induced maps on all the stalks are surjective.

Exercise 65.25.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a map of topological spaces. Prove pushforward 𝑓∗
and pullback 𝑓−1 for sheaves of sets form an adjoint pair of functors.

Exercise 65.25.5. Let 𝑗 ∶ 𝑈 → 𝑋 be an open immersion. Show that 𝑗−1 has a left adjoint
𝑗! on the category of sheaves of sets. Characterize the stalks of 𝑗!(𝒢). (Hint: 𝑗! is called
extension by zero when you do this for abelian sheaves... )

Exercise 65.25.6. Let 𝑋 = 𝐑 with the usual topology. Let 𝒪𝑋 = 𝐙/2𝐙𝑋. Let 𝑖 ∶ 𝑍 =
{0} → 𝑋 be the inclusion and let 𝒪𝑍 = 𝐙/2𝐙𝑍. Prove the following (the first three follow
from the definitions but if you are not clear on the definitions you should elucidate them):

(1) 𝑖∗𝒪𝑍 is a skyscraper sheaf.
(2) There is a canonical surjective map from 𝐙/2𝐙𝑋 → 𝑖∗𝐙/2𝐙𝑍. Denote the kernel

ℐ ⊂ 𝒪𝑋.
(3) ℐ is an ideal sheaf of 𝒪𝑋.
(4) The sheaf ℐ on 𝑋 cannot be locally generated by sections (as in Modules, Defi-

nition 15.8.1.)

Exercise 65.25.7. Let 𝑋 be a topological space. Let ℱ be an abelian sheaf on 𝑋. Show
that ℱ is the quotient of a (possibly very large) direct sum of sheaves all of whose terms
are of the form

𝑗!(𝐙𝑈)
where 𝑈 ⊂ 𝑋 is open and 𝐙𝑈 denotes the constant sheaf with value 𝐙 on 𝑈.

Remark 65.25.8. Let 𝑋 be a topological space. In the category of abelian sheaves the direct
sum of a family of sheaves {ℱ𝑖}𝑖∈𝐼 is the sheaf associated to the presheaf 𝑈 ↦ ⊕ℱ𝑖(𝑈).
Consequently the stalk of the direct sum at a point 𝑥 is the direct sum of the stalks of the
ℱ𝑖 at 𝑥.

Exercise 65.25.9. Let 𝑋 be a topological space. Suppose we are given a collection of
abelian groups 𝐴𝑥 indexed by 𝑥 ∈ 𝑋. Show that the rule 𝑈 ↦ ∏𝑥∈𝑈 𝐴𝑥 with obvious
restriction mappings defines a sheaf 𝒢 of abelian groups. Show, by an example, that usually
it is not the case that 𝒢𝑥 = 𝐴𝑥 for 𝑥 ∈ 𝑋.

Exercise 65.25.10. Let 𝑋, 𝐴𝑥, 𝒢 be as in Exercise 65.25.9. Let ℬ be a basis for the
topology of 𝑋, see Topology, Definition 5.3.1. For 𝑈 ∈ ℬ let 𝐴𝑈 be a subgroup 𝐴𝑈 ⊂
𝒢(𝑈) = ∏𝑥∈𝑈 𝐴𝑥. Assume that for 𝑈 ⊂ 𝑉 with 𝑈, 𝑉 ∈ ℬ the restriction maps 𝐴𝑉 into 𝐴𝑈.
For 𝑈 ⊂ 𝑋 open set

ℱ(𝑈) = {(𝑠𝑥)𝑥∈𝑈

|
|
||

for every 𝑥 in 𝑈 there exists 𝑉 ∈ ℬ
𝑥 ∈ 𝑉 ⊂ 𝑈 such that (𝑠𝑦)𝑦∈𝑉 ∈ 𝐴𝑉 }
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Show that ℱ defines a sheaf of abelian groups on 𝑋. Show, by an example, that it is usually
not the case that ℱ(𝑈) = 𝐴𝑈 for 𝑈 ∈ ℬ.

65.26. Schemes

Let 𝐿𝑅𝑆 be the category of locally ringed spaces. An affine scheme is an object in 𝐿𝑅𝑆
isomorphic in 𝐿𝑅𝑆 to a pair of the form (𝑆𝑝𝑒𝑐(𝐴), 𝒪𝑆𝑝𝑒𝑐(𝐴)). A scheme is an object (𝑋, 𝒪𝑋)
of 𝐿𝑅𝑆 such that every point 𝑥 ∈ 𝑋 has an open neighbourhood 𝑈 ⊂ 𝑋 such that the pair
(𝑈, 𝒪𝑋|𝑈) is an affine scheme.

Exercise 65.26.1. Find a 1-point locally ringed space which is not a scheme.

Exercise 65.26.2. Suppose that 𝑋 is a scheme whose underlying topological space has 2
points. Show that 𝑋 is an affine scheme.

Exercise 65.26.3. Suppose that 𝑋 is a scheme whose underlying topological space is a
finite discrete set. Show that 𝑋 is an affine scheme.

Exercise 65.26.4. Show that there exists a non-affine scheme having three points.

Exercise 65.26.5. Suppose that 𝑋 is a quasi-compact scheme. Show that 𝑋 has a closed
point.

Remark 65.26.6. When (𝑋, 𝒪𝑋) is a ringed space and 𝑈 ⊂ 𝑋 is an open subset then
(𝑈, 𝒪𝑋|𝑈) is a ringed space. Notation: 𝒪𝑈 = 𝒪𝑋|𝑈. There is a canonical morphisms of
ringed spaces

𝑗 ∶ (𝑈, 𝒪𝑈) ⟶ (𝑋, 𝒪𝑋).
If (𝑋, 𝒪𝑋) is a locally ringed space, so is (𝑈, 𝒪𝑈) and 𝑗 is a morphism of locally ringed
spaces. If (𝑋, 𝒪𝑋) is a scheme so is (𝑈, 𝒪𝑈) and 𝑗 is a morphism of schemes. We say that
(𝑈, 𝒪𝑈) is an open subscheme of (𝑋, 𝒪𝑋) and that 𝑗 is an open immersion. More generally,
any morphism 𝑗′ ∶ (𝑉, 𝒪𝑉) → (𝑋, 𝒪𝑋) that is isomorphic to a morphism 𝑗 ∶ (𝑈, 𝒪𝑈) →
(𝑋, 𝒪𝑋) as above is called an open immersion.

Exercise 65.26.7. Give an example of an affine scheme (𝑋, 𝒪𝑋) and an open 𝑈 ⊂ 𝑋 such
that (𝑈, 𝒪𝑋|𝑈) is not an affine scheme.

Exercise 65.26.8. Given an example of a pair of affine schemes (𝑋, 𝒪𝑋), (𝑌, 𝒪𝑌), an open
subscheme (𝑈, 𝒪𝑋|𝑈) of 𝑋 and a morphism of schemes (𝑈, 𝒪𝑋|𝑈) → (𝑌, 𝒪𝑌) that does not
extend to a morphism of schemes (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌).

Exercise 65.26.9. (This is pretty hard.) Given an example of a scheme 𝑋, and open sub-
scheme 𝑈 ⊂ 𝑋 and a closed subscheme 𝑍 ⊂ 𝑈 such that 𝑍 does not extend to a closed
subscheme of 𝑋.

Exercise 65.26.10. Give an example of a scheme 𝑋, a field 𝐾, and a morphism of ringed
spaces 𝑆𝑝𝑒𝑐(𝐾) → 𝑋 which is NOT a morphism of schemes.

Exercise 65.26.11. Do all the exercises in Hartshorne, [Har77, Chapter II], Sections 1 and
2... Just kidding!

Definition 65.26.12. A scheme 𝑋 is called integral if for every nonempty affine open 𝑈 ⊂
𝑋 the ring Γ(𝑈, 𝒪𝑋) = 𝒪𝑋(𝑈) is a domain.

Exercise 65.26.13. Give an example of a morphism of integral schemes 𝑓 ∶ 𝑋 → 𝑌 such
that the induced maps 𝒪𝑌,𝑓(𝑥) → 𝒪𝑋,𝑥 are surjective for all 𝑥 ∈ 𝑋, but 𝑓 is not a closed
immersion.
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Exercise 65.26.14. Give an example of a fibre product 𝑋 ×𝑆 𝑌 such that 𝑋 and 𝑌 are affine
but 𝑋 ×𝑆 𝑌 is not.

Remark 65.26.15. It turns out this cannot happen with 𝑆 separated. Do you know why?

Exercise 65.26.16. Give an example of a scheme 𝑉 which is integral 1-dimensional scheme
of finite type over 𝐐 such that 𝑆𝑝𝑒𝑐(𝐂) ×𝑆𝑝𝑒𝑐(𝐐) 𝑉 is not integral.

Exercise 65.26.17. Give an example of a scheme 𝑉 which is integral 1-dimensional scheme
of finite type over a field 𝑘 such that 𝑆𝑝𝑒𝑐(𝑘′) ×𝑆𝑝𝑒𝑐(𝑘) 𝑉 is not reduced for some finite field
extension 𝑘 ⊂ 𝑘′.

Remark 65.26.18. If your scheme is affine then dimension is the same as the Krull dimen-
sion of the underlying ring. So you can use last semesters results to compute dimension.

65.27. Morphisms

An important question is, given a morphism 𝜋 ∶ 𝑋 → 𝑆, whether the morphism has a
section or a rational section. Here are some example exercises.

Exercise 65.27.1. Consider the morphism of schemes

𝜋 ∶ 𝑋 = 𝑆𝑝𝑒𝑐(𝐂[𝑥, 𝑡, 1/𝑥𝑡]) ⟶ 𝑆 = 𝑆𝑝𝑒𝑐(𝐂[𝑡]).

(1) Show there does not exist a morphism 𝜎 ∶ 𝑆 → 𝑋 such that 𝜋 ∘ 𝜎 = id𝑈.
(2) Show there does exist a nonempty open 𝑈 ⊂ 𝑆 and a morphism 𝜎 ∶ 𝑈 → 𝑋 such

that 𝜋 ∘ 𝜎 = id𝑈.

Exercise 65.27.2. Consider the morphism of schemes

𝜋 ∶ 𝑋 = 𝑆𝑝𝑒𝑐(𝐂[𝑥, 𝑡]/(𝑥2 + 𝑡)) ⟶ 𝑆 = 𝑆𝑝𝑒𝑐(𝐂[𝑡]).

Show there does not exist a nonempty open 𝑈 ⊂ 𝑆 and a morphism 𝜎 ∶ 𝑈 → 𝑋 such that
𝜋 ∘ 𝜎 = id𝑈.

Exercise 65.27.3. Let 𝐴, 𝐵, 𝐶 ∈ 𝐂[𝑡] be nonzero polynomials. Consider the morphism of
schemes

𝜋 ∶ 𝑋 = 𝑆𝑝𝑒𝑐(𝐂[𝑥, 𝑦, 𝑡]/(𝐴 + 𝐵𝑥2 + 𝐶𝑦2)) ⟶ 𝑆 = 𝑆𝑝𝑒𝑐(𝐂[𝑡]).

Show there does exist a nonempty open 𝑈 ⊂ 𝑆 and a morphism 𝜎 ∶ 𝑈 → 𝑋 such that
𝜋 ∘ 𝜎 = id𝑈. (Hint: Symbolically, write 𝑥 = 𝑋/𝑍, 𝑦 = 𝑌/𝑍 for some 𝑋, 𝑌, 𝑍 ∈ 𝐂[𝑡] of
degree ≤ 𝑑 for some 𝑑, and work out the condition that this solves the equation. Then show,
using dimension theory, that if 𝑑 >> 0 you can find nonzero 𝑋, 𝑌, 𝑍 solving the equation.)

Remark 65.27.4. Exercise 65.27.3 is a special case of ``Tsen's theorem''. Exercise 65.27.5
shows that the method is limited to low degree equations (conics when the base and fibre
have dimension 1).

Exercise 65.27.5. Consider the morphism of schemes

𝜋 ∶ 𝑋 = 𝑆𝑝𝑒𝑐(𝐂[𝑥, 𝑦, 𝑡]/(1 + 𝑡𝑥3 + 𝑡2𝑦3)) ⟶ 𝑆 = 𝑆𝑝𝑒𝑐(𝐂[𝑡])

Show there does not exist a nonempty open 𝑈 ⊂ 𝑆 and a morphism 𝜎 ∶ 𝑈 → 𝑋 such that
𝜋 ∘ 𝜎 = id𝑈.
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Exercise 65.27.6. Consider the schemes

𝑋 = 𝑆𝑝𝑒𝑐(𝐂[{𝑥𝑖}8
𝑖=1, 𝑠, 𝑡]/(1 + 𝑠𝑥3

1 + 𝑠2𝑥3
2 + 𝑡𝑥3

3 + 𝑠𝑡𝑥3
4 + 𝑠2𝑡𝑥3

5 + 𝑡2𝑥3
6 + 𝑠𝑡2𝑥3

7 + 𝑠2𝑡2𝑥3
8))

and
𝑆 = 𝑆𝑝𝑒𝑐(𝐂[𝑠, 𝑡])

and the morphism of schemes
𝜋 ∶ 𝑋 ⟶ 𝑆

Show there does not exist a nonempty open 𝑈 ⊂ 𝑆 and a morphism 𝜎 ∶ 𝑈 → 𝑋 such that
𝜋 ∘ 𝜎 = id𝑈.

Exercise 65.27.7. (For the number theorists.) Give an example of a closed subscheme

𝑍 ⊂ 𝑆𝑝𝑒𝑐 (𝐙[𝑥, 1
𝑥(𝑥 − 1)(2𝑥 − 1)

])

such that the morphism 𝑍 → 𝑆𝑝𝑒𝑐(𝐙) is finite and surjective.

Exercise 65.27.8. If you do not like number theory, you can try the variant where you look
at

𝑆𝑝𝑒𝑐 (𝐅𝑝[𝑡, 𝑥, 1
𝑥(𝑥 − 𝑡)(𝑡𝑥 − 1)

]) ⟶ 𝑆𝑝𝑒𝑐(𝐅𝑝[𝑡])

and you try to find a closed subscheme of the top scheme which maps finite surjectively to
the bottom one. (There is a theoretical reason for having a finite ground field here; allthough
it may not be necessary in this particular case.)

Remark 65.27.9. The interpretation of the results of Exercise 65.27.7 and 65.27.8 is that
given the morphism 𝑋 → 𝑆 all of whose fibres are nonempty, there exists a finite surjective
morphism 𝑆′ → 𝑆 such that the base change 𝑋𝑆′ → 𝑆′ does have a section. This is not a
general fact, but it holds if the base is the spectrum of a dedekind ring with finite residue
fields at closed points, and the morphism 𝑋 → 𝑆 is flat with geometrically irreducible
generic fibre. See Exercise 65.27.10 below for an example where it doesn't work.

Exercise 65.27.10. Prove there exist a 𝑓 ∈ 𝐂[𝑥, 𝑡] which is not divisible by 𝑡 − 𝛼 for
any 𝛼 ∈ 𝐂 such that there does not exist any 𝑍 ⊂ 𝑆𝑝𝑒𝑐(𝐂[𝑥, 𝑡, 1/𝑓]) which maps finite
surjectively to 𝑆𝑝𝑒𝑐(𝐂[𝑡]). (I think that 𝑓(𝑥, 𝑡) = (𝑥𝑡 − 2)(𝑥 − 𝑡 + 3) works. To show any
candidate has the required property is not so easy I think.)

65.28. Tangent Spaces

Definition 65.28.1. For any ring 𝑅 we denote 𝑅[𝜖] the ring of dual numbers. As an
𝑅-module it is free with basis 1, 𝜖. The ring structure comes from setting 𝜖2 = 0.

Exercise 65.28.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋 be a point, let
𝑠 = 𝑓(𝑥). Consider the solid commutative diagram

𝑆𝑝𝑒𝑐(𝜅(𝑥)) //

''

**𝑆𝑝𝑒𝑐(𝜅(𝑥)[𝜖]) //

��

𝑋

��
𝑆𝑝𝑒𝑐(𝜅(𝑠)) // 𝑆
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with the curved arrow being the canonical morphism of 𝑆𝑝𝑒𝑐(𝜅(𝑥)) into 𝑋. If 𝜅(𝑥) = 𝜅(𝑠)
show that the set of dotted arrows which make the diagram commute are in one to one
correspondence with the set of linear maps

𝐻𝑜𝑚𝜅(𝑥)(
𝔪𝑥

𝔪2
𝑥 + 𝔪𝑠𝒪𝑋,𝑥

, 𝜅(𝑥))

In other words: describe such a bijection. (This works more generally if 𝜅(𝑥) ⊃ 𝜅(𝑠) is a
separable algebraic extension.)

Definition 65.28.3. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋. We dub the set
of dotted arrows of Exercise 65.28.2 the tangent space of 𝑋 over 𝑆 and we denote it 𝑇𝑋/𝑆,𝑥.
An element of this space is called a tangent vector of 𝑋/𝑆 at 𝑥.

Exercise 65.28.4. For any field 𝐾 prove that the diagram

𝑆𝑝𝑒𝑐(𝐾) //

��

𝑆𝑝𝑒𝑐(𝐾[𝜖1])

��
𝑆𝑝𝑒𝑐(𝐾[𝜖2) // 𝑆𝑝𝑒𝑐(𝐾[𝜖1, 𝜖2]/(𝜖1𝜖2))

is a push out diagram in the category of schemes. (Here 𝜖2
𝑖 = 0 as before.)

Exercise 65.28.5. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. Let 𝑥 ∈ 𝑋. Define addition
of tangent vectors, using Exercise 65.28.4 and a suitable morphism

𝑆𝑝𝑒𝑐(𝐾[𝜖]) ⟶ 𝑆𝑝𝑒𝑐(𝐾[𝜖1, 𝜖2]/(𝜖1𝜖2)).

Similarly, define scalar multiplication of tangent vectors (this is easier). Show that 𝑇𝑋/𝑆,𝑥
becomes a 𝜅(𝑥)-vector space with your constructions.

Exercise 65.28.6. Let 𝑘 be a field. Consider the structure morphism 𝑓 ∶ 𝑋 = 𝐀1
𝑘 →

𝑆𝑝𝑒𝑐(𝑘) = 𝑆.
(1) Let 𝑥 ∈ 𝑋 be a closed point. What is the dimension of 𝑇𝑋/𝑆,𝑥?
(2) Let 𝜂 ∈ 𝑋 be the generic point. What is the dimension of 𝑇𝑋/𝑆,𝜂?
(3) Consider now 𝑋 as a scheme over 𝑆𝑝𝑒𝑐(𝐙). What are the dimensions of 𝑇𝑋/𝐙,𝑥

and 𝑇𝑋/𝐙,𝜂?

Remark 65.28.7. Exercise 65.28.6 explains why it is necessary to consider the tangent
space of 𝑋 over 𝑆 to get a good notion.

Exercise 65.28.8. Consider the morphism of schemes

𝑓 ∶ 𝑋 = 𝑆𝑝𝑒𝑐(𝐅𝑝(𝑡)) ⟶ 𝑆𝑝𝑒𝑐(𝐅𝑝(𝑡𝑝)) = 𝑆

Compute the tangent space of 𝑋/𝑆 at the unique point of 𝑋. Isn't that weird? What do you
think happens if you take the morphism of schemes corresponding to 𝐅𝑝[𝑡𝑝] → 𝐅𝑝[𝑡]?

Exercise 65.28.9. Let 𝑘 be a field. Compute the tangent space of 𝑋/𝑘 at the point 𝑥 = (0, 0)
where 𝑋 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]/(𝑥2 − 𝑦3)).

Exercise 65.28.10. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of schemes over 𝑆. Let 𝑥 ∈ 𝑋 be a
point. Set 𝑦 = 𝑓(𝑥). Assume that the natural map 𝜅(𝑦) → 𝜅(𝑥) is bijective. Show, using
the definition, that 𝑓 induces a natural linear map

d𝑓 ∶ 𝑇𝑋/𝑆,𝑥 ⟶ 𝑇𝑌/𝑆,𝑦.

Match it with what happens on local rings via Exercise 65.28.2 in case 𝜅(𝑥) = 𝜅(𝑠).
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Exercise 65.28.11. Let 𝑘 be an algebraically closed field. Let

𝑓 ∶ 𝐀𝑛
𝑘 ⟶ 𝐀𝑚

𝑘
(𝑥1, … , 𝑥𝑛) ⟼ (𝑓1(𝑥𝑖), … , 𝑓𝑚(𝑥𝑖))

be a morphism of schemes over 𝑘. This is given by 𝑚 polynomials 𝑓1, … , 𝑓𝑚 in 𝑛 variables.
Consider the matrix

𝐴 = (
𝜕𝑓𝑗

𝜕𝑥𝑖 )
Let 𝑥 ∈ 𝐀𝑛

𝑘 be a closed point. Set 𝑦 = 𝑓(𝑥). Show that the map on tangent spaces 𝑇𝐀𝑛
𝑘/𝑘,𝑥 →

𝑇𝐀𝑚
𝑘 /𝑘,𝑦 is given by the value of the matrix 𝐴 at the point 𝑥.

65.29. Quasi-coherent Sheaves

Definition 65.29.1. Let 𝑋 be a scheme. A sheaf ℱ of 𝒪𝑋-modules is quasi-coherent if
for every affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 the restriction ℱ|𝑈 is of the form 𝑀 for some
𝑅-module 𝑀.

It is enough to check this conditions on the members of an affine open covering of 𝑋. See
Schemes, Section 21.24 for more results.

Definition 65.29.2. Let 𝑋 be a topological space. Let 𝑥, 𝑥′ ∈ 𝑋. We say 𝑥 is a specializa-
tion of 𝑥′ if and only if 𝑥 ∈ {𝑥′}.

Exercise 65.29.3. Let 𝑋 be a scheme. Let 𝑥, 𝑥′ ∈ 𝑋. Let ℱ be a quasi-coherent sheaf of
𝒪𝑋-modules. Suppose that (a) 𝑥 is a specialization of 𝑥′ and (b) ℱ𝑥′≠0. Show that ℱ𝑥≠0.

Exercise 65.29.4. Find an example of a scheme 𝑋, points 𝑥, 𝑥′ ∈ 𝑋, a sheaf of 𝒪𝑋-modules
ℱ such that (a) 𝑥 is a specialization of 𝑥′ and (b) ℱ𝑥′≠0 and ℱ𝑥 = 0.

Definition 65.29.5. A scheme 𝑋 is called locally Noetherian if and only if for every point
𝑥 ∈ 𝑋 there exists an affine open 𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 such that 𝑅 is Noetherian. A scheme
is Noetherian if it is locally Noetherian and quasi-compact.

If 𝑋 is locally Noetherian then any affine open of 𝑋 is the spectrum of a Noetherian ring,
see Properties, Lemma 23.5.2.

Definition 65.29.6. Let 𝑋 be a locally Noetherian scheme. Let ℱ be a quasi-coherent sheaf
of 𝒪𝑋-modules. We say ℱ is coherent if for every point 𝑥 ∈ 𝑋 there exists an affine open
𝑆𝑝𝑒𝑐(𝑅) = 𝑈 ⊂ 𝑋 such that ℱ|𝑈 is isomorphic to 𝑀 for some finite 𝑅-module 𝑀.

Exercise 65.29.7. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝑅) be an affine scheme.
(1) Let 𝑓 ∈ 𝑅. Let 𝒢 be a quasi-coherent sheaf of 𝒪𝐷(𝑓)-modules on the open sub-

scheme 𝐷(𝑓). Show that 𝒢 = ℱ|𝑈 for some quasi-coherent sheaf of 𝒪𝑋-modules
ℱ.

(2) Let 𝐼 ⊂ 𝑅 be an ideal. Let 𝑖 ∶ 𝑍 → 𝑋 be the closed subscheme of 𝑋 correspond-
ing to 𝐼. Let 𝒢 be a quasi-coherent sheaf of 𝒪𝑍-modules on the closed subscheme
𝑍. Show that 𝒢 = 𝑖∗ℱ for some quasi-coherent sheaf of 𝒪𝑋-modules ℱ. (Why
is this silly?)

(3) Assume that𝑅 is Noetherian. Let𝑓 ∈ 𝑅. Let𝒢 be a coherent sheaf of𝒪𝐷(𝑓)-modules
on the open subscheme 𝐷(𝑓). Show that 𝒢 = ℱ|𝑈 for some coherent sheaf of
𝒪𝑋-modules ℱ.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=029M
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=029O
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=029P
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=029Q
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=029R
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=029S
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=029T
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=029U


2932 65. EXERCISES

Remark 65.29.8. If 𝑈 → 𝑋 is a quasi-compact immersion then any quasi-coherent sheaf
on 𝑈 is the restriction of a quasi-coherent sheaf on 𝑋. If 𝑋 is a Noetherian scheme, and
𝑈 ⊂ 𝑋 is open, then any coherent sheaf on 𝑈 is the restriction of a coherent sheaf on 𝑋. Of
course the exercise above is easier, and shouldn't use these general facts.

65.30. Proj and projective schemes

Exercise 65.30.1. Give examples of graded rings 𝑆 such that
(1) Proj(𝑆) is affine and nonempty, and
(2) Proj(𝑆) is integral, nonempty but not isomorphic to 𝐏𝑛

𝐴 for any 𝑛 ≥ 0, any ring
𝐴.

Exercise 65.30.2. Give an example of a nonconstant morphism of schemes 𝐏1
𝐂 → 𝐏5

𝐂 over
𝑆𝑝𝑒𝑐(𝐂).

Exercise 65.30.3. Give an example of an isomorphism of schemes

𝐏1
𝐂 → Proj(𝐂[𝑋0, 𝑋1, 𝑋2]/(𝑋2

0 + 𝑋2
1 + 𝑋2

2))

Exercise 65.30.4. Give an example of a morphism of schemes 𝑓 ∶ 𝑋 → 𝐀1
𝐂 = 𝑆𝑝𝑒𝑐(𝐂[𝑇])

such that the (scheme theoretic) fibre 𝑋𝑡 of 𝑓 over 𝑡 ∈ 𝐀1
𝐂 is (a) isomorphic to 𝐏1

𝐂 when
𝑡 is a closed point not equal to 0, and (b) not isomorphic to 𝐏1

𝐂 when 𝑡 = 0. We will call
𝑋0 the special fibre of the morphism. This can be done in many, many ways. Try to give
examples that satisfy (each of) the following additional restraints (unless it isn't possible):

(1) Can you do it with special fibre projective?
(2) Can you do it with special fibre irreducible and projective?
(3) Can you do it with special fibre integral and projective?
(4) Can you do it with special fibre smooth and projective?
(5) Can you do it with 𝑓 a flat morphism? This just means that for every affine open

𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑋 the induced ring map 𝐂[𝑡] → 𝐴 is flat, which in this case means
that any nonzero polynomial in 𝑡 is a nonzero divisor on 𝐴.

(6) Can you do it with 𝑓 a flat and projective morphism?
(7) Can you do it with 𝑓 flat, projective and special fibre reduced?
(8) Can you do it with 𝑓 flat, projective and special fibre irreducible?
(9) Can you do it with 𝑓 flat, projective and special fibre integral?

What do you think happens when you replace 𝐏1
𝐂 with another variety over 𝐂? (This can

get very hard depending on which of the variants above you ask for.)

Exercise 65.30.5. Let 𝑛 ≥ 1 be any positive integer. Give an example of a surjective
morphism 𝑋 → 𝐏𝑛

𝐂 with 𝑋 affine.

Exercise 65.30.6. Maps of Proj. Let 𝑅 and 𝑆 be graded rings. Suppose we have a ring
map

𝜓 ∶ 𝑅 → 𝑆
and an integer 𝑒 ≥ 1 such that 𝜓(𝑅𝑑) ⊂ 𝑆𝑑𝑒 for all 𝑑 ≥ 0. (By our conventions this is not a
homomorphism of graded rings, unless 𝑒 = 1.)

(1) For which elements 𝔭 ∈ Proj(𝑆) is there a well-defined corresponding point in
Proj(𝑅)? In other words, find a suitable open 𝑈 ⊂ Proj(𝑆) such that 𝜓 defines a
continuous map 𝑟𝜓 ∶ 𝑈 → Proj(𝑅).

(2) Give an example where 𝑈≠Proj(𝑆).
(3) Give an example where 𝑈 = Proj(𝑆).
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(4) (Do not write this down.) Convince yourself that the continuous map 𝑈 →
Proj(𝑅) comes canonically with a map on sheaves so that 𝑟𝜓 is a morphism of
schemes:

Proj(𝑆) ⊃ 𝑈 ⟶ Proj(𝑅).
(5) What can you say about this map if 𝑅 = ⨁𝑑≥0 𝑆𝑑𝑒 (as a graded ring with 𝑆𝑒,

𝑆2𝑒, etc in degree 1, 2, etc) and 𝜓 is the inclusion mapping?

Notation. Let 𝑅 be a graded ring as above and let 𝑛 ≥ 0 be an integer. Let 𝑋 = Proj(𝑅).
Then there is a unique quasi-coherent 𝒪𝑋-module 𝒪𝑋(𝑛) on 𝑋 such that for every homoge-
neous element 𝑓 ∈ 𝑅 of positive degree we have 𝒪𝑋|𝐷+(𝑓) is the quasi-coherent sheaf
associated to the 𝑅(𝑓) = (𝑅𝑓)0-module (𝑅𝑓)𝑛 (=elements homogenous of degree 𝑛 in
𝑅𝑓 = 𝑅[1/𝑓]). See Hartshorne, page 116+. Note that there are natural maps

𝒪𝑋(𝑛1) ⊗𝒪𝑋
𝒪𝑋(𝑛2) ⟶ 𝒪𝑋(𝑛1 + 𝑛2)

Exercise 65.30.7. Pathologies in Proj. Give examples of 𝑅 as above such that
(1) 𝒪𝑋(1) is not an invertible 𝒪𝑋-module.
(2) 𝒪𝑋(1) is invertible, but the natural map 𝒪𝑋(1) ⊗𝒪𝑋

𝒪𝑋(1) → 𝒪𝑋(2) is NOT an
isomorphism.

Exercise 65.30.8. Let 𝑆 be a graded ring. Let 𝑋 = Proj(𝑆). Show that any finite set of
points of 𝑋 is contained in a standard affine open.

Exercise 65.30.9. Let 𝑆 be a graded ring. Let 𝑋 = Proj(𝑆). Let 𝑍, 𝑍′ ⊂ 𝑋 be two closed
subschemes. Let 𝜑 ∶ 𝑍 → 𝑍′ be an isomorphism. Assume 𝑍∩𝑍′ = ∅. Show that for any
𝑧 ∈ 𝑍 there exists an affine open 𝑈 ⊂ 𝑋 such that 𝑧 ∈ 𝑈, 𝜑(𝑧) ∈ 𝑈 and 𝜑(𝑍∩𝑈) = 𝑍′ ∩𝑈.
(Hint: Use Exercise 65.30.8 and something akin to Schemes, Lemma 21.11.5.)

65.31. Morphisms from surfaces to curves

Exercise 65.31.1. Let 𝑅 be a ring. Let 𝑅 → 𝑘 be a map from 𝑅 to a field. Let 𝑛 ≥ 0. Show
that

𝑀𝑜𝑟𝑆𝑝𝑒𝑐(𝑅)(𝑆𝑝𝑒𝑐(𝑘), 𝐏𝑛
𝑅) = (𝑘𝑛+1 ⧵ {0})/𝑘∗

where 𝑘∗ acts via scalar multiplication on 𝑘𝑛+1. From now on we denote (𝑥0 ∶ … ∶
𝑥𝑛) the morphism 𝑆𝑝𝑒𝑐(𝑘) → 𝐏𝑛

𝑘 corresponding to the equivalence class of the element
(𝑥0, … , 𝑥𝑛) ∈ 𝑘𝑛+1 ⧵ {0}.

Exercise 65.31.2. Let 𝑘 be a field. Let 𝑍 ⊂ 𝐏2
𝑘 be a irreducible closed subscheme. Show

that either (a) 𝑍 is a closed point, or (b) there exists an homogeneous irreducible 𝐹 ∈
𝑘[𝑋0, 𝑋1, 𝑋2] of degree > 0 such that 𝑍 = 𝑉+(𝐹), or (c) 𝑍 = 𝐏2

𝑘. (Hint: Look on a
standard affine open.)

Exercise 65.31.3. Let 𝑘 be a field. Let 𝑍1, 𝑍2 ⊂ 𝐏2
𝑘 be irreducible closed subschemes

of the form 𝑉+(𝐹) for some homogeneous irreducible 𝐹𝑖 ∈ 𝑘[𝑋0, 𝑋1, 𝑋2] of degree > 0.
Show that 𝑍1 ∩ 𝑍2 is not empty. (Hint: Use dimension theory to estimate the dimension
of the local ring of 𝑘[𝑋0, 𝑋1, 𝑋2]/(𝐹1, 𝐹2) at 0.)

Exercise 65.31.4. Show there does not exist a nonconstant morphism of schemes 𝐏2
𝐂 → 𝐏1

𝐂
over 𝑆𝑝𝑒𝑐(𝐂). Here a constant morphism is one whose image is a single point. (Hint: If
the morphism is not constant consider the fibres over 0 and ∞ and argue that they have to
meet to get a contradiction.)
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Exercise 65.31.5. Let 𝑘 be a field. Suppose that 𝑋 ⊂ 𝐏3
𝑘 is a closed subscheme given by a

single homogeneous equation 𝐹 ∈ 𝑘[𝑋0, 𝑋1, 𝑋2, 𝑋3]. In other words,

𝑋 = Proj(𝑘[𝑋0, 𝑋1, 𝑋2, 𝑋3]/(𝐹)) ⊂ 𝐏3
𝑘

as explained in the course. Assume that

𝐹 = 𝑋0𝐺 + 𝑋1𝐻

for some homogeneous polynomials 𝐺, 𝐻 ∈ 𝑘[𝑋0, 𝑋1, 𝑋2, 𝑋3] of positive degree. Show
that if 𝑋0, 𝑋1, 𝐺, 𝐻 have no common zeros then there exists a nonconstant morphism

𝑋 ⟶ 𝐏1
𝑘

of schemes over 𝑆𝑝𝑒𝑐(𝑘) which on field points (see Exercise 65.31.1) looks like (𝑥0 ∶ 𝑥1 ∶
𝑥2 ∶ 𝑥3) ↦ (𝑥0 ∶ 𝑥1) whenever 𝑥0 or 𝑥1 is not zero.

65.32. Invertible sheaves

Definition 65.32.1. Let 𝑋 be a locally ringed space. An invertible 𝒪𝑋-module on 𝑋 is a
sheaf of 𝒪𝑋-modules ℒ such that every point has an open neighbourhood 𝑈 ⊂ 𝑋 such that
ℒ|𝑈 is isomorphic to 𝒪𝑈 as 𝒪𝑈-module. We say that ℒ is trivial if it is isomorphic to 𝒪𝑋
as a 𝒪𝑋-module.

Exercise 65.32.2. General facts.
(1) Show that an invertible 𝒪𝑋-module on a scheme 𝑋 is quasi-coherent.
(2) Suppose 𝑋 → 𝑌 is a morphism of ringed spaces, and ℒ an invertible 𝒪𝑌-module.

Show that 𝑓∗ℒ is an invertible 𝒪𝑋 module.

Exercise 65.32.3. Algebra.
(1) Show that an invertible 𝒪𝑋-module on an affine scheme 𝑆𝑝𝑒𝑐(𝐴) corresponds to

an 𝐴-module 𝑀 which is (i) finite, (ii) projective, (iii) locally free of rank 1, and
hence (iv) flat, and (v) finitely presented. (Feel free to quote things from last
semesters course; or from algebra books.)

(2) Suppose that 𝐴 is a domain and that 𝑀 is a module as in (a). Show that 𝑀 is
isomorphic as an 𝐴-module to an ideal 𝐼 ⊂ 𝐴 such that 𝐼𝐴𝔭 is principal for every
prime 𝔭.

Definition 65.32.4. Let 𝑅 be a ring. An invertible module 𝑀 is an 𝑅-module 𝑀 such
that 𝑀 is an invertible sheaf on the spectrum of 𝑅. We say 𝑀 is trivial if 𝑀 ≅ 𝑅 as an
𝑅-module.

In other words, 𝑀 is invertible if and only if it satisfies all of the following conditions: it is
flat, of finite presentation, projective, and locally free of rank 1. (Of course it suffices for it
to be locally free of rank 1).

Exercise 65.32.5. Simple examples.
(1) Let 𝑘 be a field. Let 𝐴 = 𝑘[𝑥]. Show that 𝑋 = 𝑆𝑝𝑒𝑐(𝐴) has only trivial invertible

𝒪𝑋-modules. In other words, show that every invertible 𝐴-module is free of rank
1.

(2) Let 𝐴 be the ring

𝐴 = {𝑓 ∈ 𝑘[𝑥] ∣ 𝑓(0) = 𝑓(1)}.

Show there exists a nontrivial invertible 𝐴-module, unless 𝑘 = 𝐅2. (Hint: Think
about 𝑆𝑝𝑒𝑐(𝐴) as identifying 0 and 1 in 𝐀1

𝑘 = 𝑆𝑝𝑒𝑐(𝑘[𝑥]).)
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(3) Same question as in (2) for the ring 𝐴 = 𝑘[𝑥2, 𝑥3] ⊂ 𝑘[𝑥] (except now 𝑘 = 𝐅2
works as well).

Exercise 65.32.6. Higher dimensions.
(1) Prove that every invertible sheaf on two dimensional affine space is trivial. More

precisely, let 𝐀2
𝑘 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]) where 𝑘 is a field. Show that every invertible

sheaf on 𝐀2
𝑘 is trivial. (Hint: One way to do this is to consider the corresponding

module 𝑀, to look at 𝑀 ⊗𝑘[𝑥,𝑦] 𝑘(𝑥)[𝑦], and then use Exercise 65.32.5 (1) to
find a generator for this; then you still have to think. Another way to is to use
Exercise 65.32.3 and use what we know about ideals of the polynomial ring:
primes of height one are generated by an irreducible polynomial; then you still
have to think.)

(2) Prove that every invertible sheaf on any open subscheme of two dimensional
affine space is trivial. More precisely, let 𝑈 ⊂ 𝐀2

𝑘 be an open subscheme where
𝑘 is a field. Show that every invertible sheaf on 𝑈 is trivial. Hint: Show that
every invertible sheaf on 𝑈 extends to one on 𝐀2

𝑘. Not easy; but you can find it
in Hartshorne.

(3) Find an example of a nontrivial invertible sheaf on a punctured cone over a field.
More precisely, let 𝑘 be a field and let 𝐶 = 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦, 𝑧]/(𝑥𝑦 − 𝑧2)). Let 𝑈 =
𝐶 ⧵ {(𝑥, 𝑦, 𝑧)}. Find a nontrivial invertible sheaf on 𝑈. Hint: It may be easier to
compute the group of isomorphism classes of invertible sheaves on 𝑈 than to just
find one. Note that 𝑈 is covered by the opens 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦, 𝑧, 1/𝑥]/(𝑥𝑦 − 𝑧2)) and
𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦, 𝑧, 1/𝑦]/(𝑥𝑦 − 𝑧2)) which are ``easy'' to deal with.

Definition 65.32.7. Let 𝑋 be a locally ringed space. The Picard group of 𝑋 is the set
Pic(𝑋) of isomorphism classes of invertible 𝒪𝑋-modules with addition given by tensor
product. See Modules, Definition 15.21.6. For a ring 𝑅 we set Pic(𝑅) = Pic(𝑆𝑝𝑒𝑐(𝑅)).

Exercise 65.32.8. Let 𝑅 be a ring.
(1) Show that if 𝑅 is a Noetherian normal domain, then Pic(𝑅) = Pic(𝑅[𝑡]). [Hint:

There is a map 𝑅[𝑡] → 𝑅, 𝑡 ↦ 0 which is a left inverse to the map 𝑅 → 𝑅[𝑡].
Hence it suffices to show that any invertible 𝑅[𝑡]-module 𝑀 such that 𝑀/𝑡𝑀 ≅
𝑅 is free of rank 1. Let 𝐾 = 𝑓.𝑓.(𝑅). Pick a trivialization 𝐾[𝑡] → 𝑀 ⊗𝑅[𝑡]
𝐾[𝑡] which is possible by Exercise 65.32.5 (1). Adjust it so it agrees with the
trivialization of 𝑀/𝑡𝑀 above. Show that it is in fact a trivialization of 𝑀 over
𝑅[𝑡] (this is where normality comes in).]

(2) Let 𝑘 be a field. Show that Pic(𝑘[𝑥2, 𝑥3, 𝑡])≠Pic(𝑘[𝑥2, 𝑥3]).

65.33. Čech Cohomology

Exercise 65.33.1. Čech cohomology. Here 𝑘 is a field.
(1) Let 𝑋 be a scheme with an open covering 𝒰 ∶ 𝑋 = 𝑈1 ∪ 𝑈2, with 𝑈1 =

𝑆𝑝𝑒𝑐(𝑘[𝑥]), 𝑈2 = 𝑆𝑝𝑒𝑐(𝑘[𝑦]) with 𝑈1 ∩ 𝑈2 = 𝑆𝑝𝑒𝑐(𝑘[𝑧, 1/𝑧]) and with open
immersions 𝑈1 ∩𝑈2 → 𝑈1 resp. 𝑈1 ∩𝑈2 → 𝑈2 determined by 𝑥 ↦ 𝑧 resp. 𝑦 ↦ 𝑧
(and I really mean this). (We've seen in the lectures that such an 𝑋 exists; it is
the affine line zith zero doubled.) Compute �𝐻1(𝒰, 𝒪); eg. give a basis for it as a
𝑘-vectorspace.

(2) For each element in �𝐻1(𝒰, 𝒪) construct an exact sequence of sheaves of𝒪𝑋-modules

0 → 𝒪𝑋 → 𝐸 → 𝒪𝑋 → 0
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such that the boundary 𝛿(1) ∈ �𝐻1(𝒰, 𝒪) equals the given element. (Part of the
problem is to make sense of this. See also below. It is also OK to show abstractly
such a thing has to exist.)

Definition 65.33.2. (Definition of delta.) Suppose that
0 → ℱ1 → ℱ2 → ℱ3 → 0

is a short exact sequence of abelian sheaves on any topological space 𝑋. The boundary
map 𝛿 ∶ 𝐻0(𝑋, ℱ3) → �𝐻1(𝑋, ℱ1) is defined as follows. Take an element 𝜏 ∈ 𝐻0(𝑋, ℱ3).
Choose an open covering 𝒰 ∶ 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 such that for each 𝑖 there exists a section

̃𝜏𝑖 ∈ ℱ2 lifting the restriction of 𝜏 to 𝑈𝑖. Then consider the assignment
(𝑖0, 𝑖1) ⟼ ̃𝜏𝑖0|𝑈𝑖0𝑖1

− ̃𝜏𝑖1|𝑈𝑖0𝑖1
.

This is clearly a 1-coboundary in the Čech complex �𝐶∗(𝒰, ℱ2). But we observe that (think-
ing of ℱ1 as a subsheaf of ℱ2) the RHS always is a section of ℱ1 over 𝑈𝑖0𝑖1. Hence we see
that the assignment defines a 1-cochain in the complex �𝐶∗(𝒰, ℱ2). The cohomology class
of this 1-cochain is by definition 𝛿(𝜏).

65.34. Divisors

We collect all relevant definitions here in one spot for convenience.

Definition 65.34.1. Throughout, let 𝑆 be any scheme and let 𝑋 be a Noetherian, integral
scheme.

(1) A Weil divisor on 𝑋 is a formal linear combination Σ𝑛𝑖[𝑍𝑖] of prime divisors 𝑍𝑖
with integer coefficients.

(2) A prime divisor is a closed subscheme 𝑍 ⊂ 𝑋, which is integral with generic
point 𝜉 ∈ 𝑍 such that𝒪𝑋,𝜉 has dimension 1. Wewill use the notation𝒪𝑋,𝑍 = 𝒪𝑋,𝜉
when 𝜉 ∈ 𝑍 ⊂ 𝑋 is as above. Note that 𝒪𝑋,𝑍 ⊂ 𝐾(𝑋) is a subring of the function
field of 𝑋.

(3) TheWeil divisor associated to a rational function 𝑓 ∈ 𝐾(𝑋)∗ is the sumΣ𝑣𝑍(𝑓)[𝑍].
Here 𝑣𝑍(𝑓) is defined as follows
(a) If 𝑓 ∈ 𝒪∗

𝑋,𝑍 then 𝑣𝑍(𝑓) = 0.
(b) If 𝑓 ∈ 𝒪𝑋,𝑍 then

𝑣𝑍(𝑓) = length𝒪𝑋,𝑍
(𝒪𝑋,𝑍/(𝑓)).

(c) If 𝑓 = 𝑎
𝑏 with 𝑎, 𝑏 ∈ 𝒪𝑋,𝑍 then

𝑣𝑍(𝑓) = length𝒪𝑋,𝑍
(𝒪𝑋,𝑍/(𝑎)) − length𝒪𝑋,𝑍

(𝒪𝑋,𝑍/(𝑏)).

(4) An effective Cartier divisor on a scheme 𝑆 is a closed subscheme 𝐷 ⊂ 𝑆 such
that every point 𝑑 ∈ 𝐷 has an affine open neighbourhood 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑆 in 𝑆
so that 𝐷 ∩ 𝑈 = 𝑆𝑝𝑒𝑐(𝐴/(𝑓)) with 𝑓 ∈ 𝐴 a nonzero divisor.

(5) The Weil divisor [𝐷] associated to an effective Cartier divisor 𝐷 ⊂ 𝑋 of our
Noetherian integral scheme 𝑋 is defined as the sum Σ𝑣𝑍(𝐷)[𝑍] where 𝑣𝑍(𝐷) is
defined as follows
(a) If the generic point 𝜉 of 𝑍 is not in 𝐷 then 𝑣𝑍(𝐷) = 0.
(b) If the generic point 𝜉 of 𝑍 is in 𝐷 then

𝑣𝑍(𝐷) = length𝒪𝑋,𝑍
(𝒪𝑋,𝑍/(𝑓))

where 𝑓 ∈ 𝒪𝑋,𝑍 = 𝒪𝑋,𝜉 is the nonzero divisor which defines 𝐷 in an affine
neighbourhood of 𝜉 (as in (4) above).
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(6) Let𝑆 be a scheme. The sheaf of total quotient rings𝒦𝑆 is the sheaf of𝒪𝑆-algebras
which is the sheafification of the pre-sheaf 𝒦′ defined as follows. For 𝑈 ⊂ 𝑆 open
we set 𝒦′(𝑈) = 𝑆−1

𝑈 𝒪𝑆(𝑈) where 𝑆𝑈 ⊂ 𝒪𝑆(𝑈) is the multiplicative subset con-
sisting of sections 𝑓 ∈ 𝒪𝑆(𝑈) such that the germ of 𝑓 in 𝒪𝑆,𝑢 is a nonzero divisor
for every 𝑢 ∈ 𝑈. In particular the elements of 𝑆𝑈 are all nonzero divisors. Thus
𝒪𝑆 is a subsheaf of 𝒦𝑆, and we get a short exact sequence

0 → 𝒪∗
𝑆 → 𝒦∗

𝑆 → 𝒦∗
𝑆/𝒪∗

𝑆 → 0.

(7) A Cartier divisor on a scheme 𝑆 is a global section of the quotient sheaf 𝒦∗
𝑆/𝒪∗

𝑆.
(8) TheWeil divisor associated to a Cartier divisor 𝜏 ∈ Γ(𝑋, 𝒦∗

𝑋/𝒪∗
𝑋) over our Noe-

therian integral scheme 𝑋 is the sum Σ𝑣𝑍(𝜏)[𝑍] where 𝑣𝑍(𝜏) is defined as by the
following recipe
(a) If the germ of 𝜏 at the generic point 𝜉 of 𝑍 is zero -- in other words the image

of 𝜏 in the stalk (𝒦∗/𝒪∗)𝜉 is ``zero'' -- then 𝑣𝑍(𝜏) = 0.
(b) Find an affine open neighbourhood 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋 so that 𝜏|𝑈 is the

image of a section 𝑓 ∈ 𝒦(𝑈) and moreover 𝑓 = 𝑎/𝑏 with 𝑎, 𝑏 ∈ 𝐴. Then we
set

𝑣𝑍(𝑓) = length𝒪𝑋,𝑍
(𝒪𝑋,𝑍/(𝑎)) − length𝒪𝑋,𝑍

(𝒪𝑋,𝑍/(𝑏)).

Remarks 65.34.2. Here are some trivial remarks.
(1) On a Noetherian integral scheme 𝑋 the sheaf 𝒦𝑋 is constant with value the func-

tion field 𝐾(𝑋).
(2) To make sense out of the definitions above one needs to show that

length𝒪(𝒪/(𝑎𝑏)) = length𝒪(𝒪/(𝑎)) + length𝒪(𝒪/(𝑏))

for any pair (𝑎, 𝑏) of nonzero elements of a Noetherian 1-dimensional local do-
main 𝒪. This will be done in the lectures.

Exercise 65.34.3. (On any scheme.) Describe how to assign a Cartier divisor to an effective
Cartier divisor.

Exercise 65.34.4. (On an integral scheme.) Describe how to assign a Cartier divisor 𝐷 to a
rational function 𝑓 such that the Weil divisor associated to 𝐷 and to 𝑓 agree. (This is silly.)

Exercise 65.34.5. Give an example of a Weil divisor on a variety which is not the Weil
divisor associated to any Cartier divisor.

Exercise 65.34.6. Give an example of a Weil divisor 𝐷 on a variety which is not the Weil
divisor associated to any Cartier divisor but such that 𝑛𝐷 is the Weil divisor associated to
a Cartier divisor for some 𝑛 > 1.

Exercise 65.34.7. Give an example of a Weil divisor 𝐷 on a variety which is not the Weil
divisor associated to anyCartier divisor and such that 𝑛𝐷 is NOT theWeil divisor associated
to a Cartier divisor for any 𝑛 > 1. (Hint: Consider a cone, for example 𝑋 ∶ 𝑥𝑦 − 𝑧𝑤 = 0
in 𝐀4

𝑘. Try to show that 𝐷 = [𝑥 = 0, 𝑧 = 0] works.)

Exercise 65.34.8. On a separated scheme 𝑋 of finite type over a field: Give an example
of a Cartier divisor which is not the difference of two effective Cartier divisors. Hint: Find
some 𝑋 which does not have any nonempty effective Cartier Cartier divisors for example
the scheme constructed in Harthorne, III Exercise 5.9. There is even an example with 𝑋 a
variety -- namely the variety of Exercise 65.34.9.
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Exercise 65.34.9. Example of a nonprojective proper variety. Let 𝑘 be a field. Let 𝐿 ⊂ 𝐏3
𝑘

be a line and let 𝐶 ⊂ 𝐏3
𝑘 be a nonsingular conic. Assume that 𝐶 ∩ 𝐿 = ∅. Choose an

isomorphism 𝜑 ∶ 𝐿 → 𝐶. Let 𝑋 be the 𝑘-variety obtained by glueing 𝐶 to 𝐿 via 𝜑. In
other words there is a surjective proper birational morphism

𝜋 ∶ 𝐏3
𝑘 ⟶ 𝑋

and an open 𝑈 ⊂ 𝑋 such that 𝜋 ∶ 𝜋−1(𝑈) → 𝑈 is an isomorphism, 𝜋−1(𝑈) = 𝐏3
𝑘 ⧵ (𝐿 ∪ 𝐶)

and such that 𝜋|𝐿 = 𝜋|𝐶 ∘ 𝜑. (These conditions do not yet uniquely define 𝑋. In order to
do this you need to specify the structure sheaf of 𝑋 along points of 𝑍 = 𝑋 ⧵ 𝑈.) Show
𝑋 exists, is a proper variety, but is not projective. (Hint: For existence use the result of
Exercise 65.30.9. For non-projectivity use that Pic(𝐏3

𝑘) = 𝐙 to show that 𝑋 cannot have an
ample invertible sheaf.)

65.35. Differentials

Definitions and results. Kähler differentials.
(1) Let 𝑅 → 𝐴 be a ring map. The module of Kähler differentials of 𝐴 over 𝑅 is

Ω𝐴/𝑅 = ⨁𝑎∈𝐴
𝐴 ⋅ 𝑑𝑎/⟨𝑑(𝑎1𝑎2) − 𝑎1𝑑𝑎2 − 𝑎2𝑑𝑎1, 𝑑𝑟⟩.

The canonical universal 𝑅-derivation 𝑑 ∶ 𝐴 → Ω𝐴/𝑅 maps 𝑎 ↦ 𝑑𝑎.
(2) Consider the short exact sequence

0 → 𝐼 → 𝐴 ⊗𝑅 𝐴 → 𝐴 → 0

which defines the ideal 𝐼. There is a canonical derivation 𝑑 ∶ 𝐴 → 𝐼/𝐼2 which
maps 𝑎 to the class of 𝑎 ⊗ 1 − 1 ⊗ 𝑎. This is another presentation of the module
of derivations of 𝐴 over 𝑅, in other words

(𝐼/𝐼2, 𝑑) ≅ (Ω𝐴/𝑅, 𝑑).
(3) For multiplicative subsets 𝑆𝑅 ⊂ 𝑅 and 𝑆𝐴 ⊂ 𝐴 such that 𝑆𝑅 maps into 𝑆𝐴 we

have
Ω𝑆−1

𝐴 𝐴/𝑆−1
𝑅 𝑅 = 𝑆−1

𝐴 Ω𝐴/𝑅.
(4) If 𝐴 is a finitely presented 𝑅-algebra then Ω𝐴/𝑅 is a finitely presented 𝐴-module.

Hence in this case the fitting ideals of Ω𝐴/𝑅 are defined. (See exercise set 6 of
last semester.)

(5) Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of schemes. There is a quasi-coherent sheaf of
𝒪𝑋-modules Ω𝑋/𝑆 and a 𝒪𝑆-linear derivation

𝑑 ∶ 𝒪𝑋 ⟶ Ω𝑋/𝑆

such that for any affine opens 𝑆𝑝𝑒𝑐(𝐴) = 𝑈 ⊂ 𝑋, 𝑆𝑝𝑒𝑐(𝑅) = 𝑉 ⊂ 𝑆 with
𝑓(𝑈) ⊂ 𝑉 we have

Γ(𝑆𝑝𝑒𝑐(𝐴), Ω𝑋/𝑆) = Ω𝐴/𝑅

compatibly with 𝑑.

Exercise 65.35.1. Let 𝑘[𝜖] be the ring of dual numbers over the field 𝑘, i.e., 𝜖2 = 0.
(1) Consider the ring map

𝑅 = 𝑘[𝜖] → 𝐴 = 𝑘[𝑥, 𝜖]/(𝜖𝑥)
Show that the fitting ideals of Ω𝐴/𝑅 are (starting with the zeroth fitting ideal)

(𝜖), 𝐴, 𝐴, …

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02AS
http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02FC


65.36. SCHEMES, FINAL EXAM, FALL 2007 2939

(2) Consider the map 𝑅 = 𝑘[𝑡] → 𝐴 = 𝑘[𝑥, 𝑦, 𝑡]/(𝑥(𝑦 − 𝑡)(𝑦 − 1), 𝑥(𝑥 − 𝑡)). Show that
the fitting ideals of of Ω𝐴/𝑅 in 𝐴 are (assume characteristic 𝑘 is zero for simplicity)

𝑥(2𝑥 − 𝑡)(2𝑦 − 𝑡 − 1)𝐴, (𝑥, 𝑦, 𝑡) ∩ (𝑥, 𝑦 − 1, 𝑡), 𝐴, 𝐴, …

So the 0-the fitting ideal is cut out by a single element of 𝐴, the 1st fitting ideal
defines two closed points of 𝑆𝑝𝑒𝑐(𝐴), and the others are all trivial.

(3) Consider the map 𝑅 = 𝑘[𝑡] → 𝐴 = 𝑘[𝑥, 𝑦, 𝑡]/(𝑥𝑦− 𝑡𝑛). Compute the fitting ideals
of Ω𝐴/𝑅.

Remark 65.35.2. The 𝑘th fitting ideal of Ω𝑋/𝑆 is commonly used to define the singular
scheme of the morphism 𝑋 → 𝑆 when 𝑋 has relative dimension 𝑘 over 𝑆. But as part
(a) shows, you have to be careful doing this when your family does not have ``constant''
fibre dimension, e.g., when it is not flat. As part (b) shows, flatness doesn't garantee it
works either (and yes this is a flat family). In ``good cases'' -- such as in (c) -- for fami-
lies of curves you expect the 0-th fitting ideal to be zero and the 1st fitting ideal to define
(scheme-theoretically) the singular locus.

Exercise 65.35.3. Suppose that 𝑅 is a ring and

𝐴 = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑛).

Note that we are assuming that 𝐴 is presented by the same number of equations as variables.
Thus the matrix of partial derivatives

(𝜕𝑓𝑖/𝜕𝑥𝑗)

is 𝑛 × 𝑛, i.e., a square matrix. Assume that its determinant is invertible as an element in 𝐴.
Note that this is exactly the condition that says that Ω𝐴/𝑅 = (0) in this case of 𝑛-generators
and 𝑛 relations. Let 𝜋 ∶ 𝐵′ → 𝐵 be a surjection of 𝑅-algebras whose kernel 𝐽 has square
zero (as an ideal in 𝐵′). Let 𝜑 ∶ 𝐴 → 𝐵 be a homomorphism of 𝑅-algebras. Show there
exists a unique homomorphism of 𝑅-algebras 𝜑′ ∶ 𝐴 → 𝐵′ such that 𝜑 = 𝜋 ∘ 𝜑′.

Exercise 65.35.4. Find a generalization of the result of the previous exercise to the case
where 𝐴 = 𝑅[𝑥, 𝑦]/(𝑓).

65.36. Schemes, Final Exam, Fall 2007

These were the questions in the final exam of a course on Schemes, in the Spring of 2007
at Columbia University.

Exercise 65.36.1. Definitions. Provide definitions of the following concepts.
(1) 𝑋 is a scheme
(2) the morphism of schemes 𝑓 ∶ 𝑋 → 𝑌 is finite
(3) the morphisms of schemes 𝑓 ∶ 𝑋 → 𝑌 is of finite type
(4) the scheme 𝑋 is Noetherian
(5) the 𝒪𝑋-module ℒ on the scheme 𝑋 is invertible
(6) the genus of a nonsingular projective curve over an algebraically closed field

Exercise 65.36.2. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝐙[𝑥, 𝑦]), and let ℱ be a quasi-coherent 𝒪𝑋-module. Sup-
pose that ℱ is zero when restricted to the standard affine open 𝐷(𝑥).

(1) Show that every global section 𝑠 of ℱ is killed by some power of 𝑥, i.e., 𝑥𝑛𝑠 = 0
for some 𝑛 ∈ 𝐍.

(2) Do you think the same is true if we do not assume that ℱ is quasi-coherent?
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Exercise 65.36.3. Suppose that 𝑋 → 𝑆𝑝𝑒𝑐(𝑅) is a proper morphism and that 𝑅 is a discrete
valuation ring with residue field 𝑘. Suppose that 𝑋 ×𝑆𝑝𝑒𝑐(𝑅) 𝑆𝑝𝑒𝑐(𝑘) is the empty scheme.
Show that 𝑋 is the empty scheme.

Exercise 65.36.4. Consider the projective1 variety

𝐏1 × 𝐏1 = 𝐏1
𝐂 ×𝑆𝑝𝑒𝑐(𝐂) 𝐏1

𝐂

over the field of complex numbers 𝐂. It is covered by four affine pieces, corresponding to
pairs of standard affine pieces of 𝐏1

𝐂. For example, suppose we use homogenous coordinates
𝑋0, 𝑋1 on the first factor and 𝑌0, 𝑌1 on the second. Set 𝑥 = 𝑋1/𝑋0, and 𝑦 = 𝑌1/𝑌0. Then
the 4 affine open pieces are the spectra of the rings

𝐂[𝑥, 𝑦], 𝐂[𝑥−1, 𝑦], 𝐂[𝑥, 𝑦−1], 𝐂[𝑥−1, 𝑦−1].

Let 𝑋 ⊂ 𝐏1 × 𝐏1 be the closed subscheme which is the closure of the closed subset of the
first affine piece given by the equation

𝑦3(𝑥4 + 1) = 𝑥4 − 1.

(1) Show that 𝑋 is contained in the union of the first and the last of the 4 affine open
pieces.

(2) Show that 𝑋 is a nonsingular projective curve.
(3) Consider the morphism 𝑝𝑟2 ∶ 𝑋 → 𝐏1 (projection onto the first factor). On the

first affine piece it is the map (𝑥, 𝑦) ↦ 𝑥. Briefly explain why it has degree 3.
(4) Compute the ramification points and ramification indices for the map 𝑝𝑟2 ∶ 𝑋 →

𝐏1.
(5) Compute the genus of 𝑋.

Exercise 65.36.5. Let 𝑋 → 𝑆𝑝𝑒𝑐(𝐙) be a morphism of finite type. Suppose that there is
an infinite number of primes 𝑝 such that 𝑋 ×𝑆𝑝𝑒𝑐(𝐙) 𝑆𝑝𝑒𝑐(𝐅𝑝) is not empty.

(1) Show that 𝑋 ×𝑆𝑝𝑒𝑐(𝐙) 𝑆𝑝𝑒𝑐(𝐐) is not empty.
(2) Do you think the same is true if we replace the condition ``finite type'' by the

condition ``locally of finite type''?

65.37. Schemes, Final Exam, Spring 2009

These were the questions in the final exam of a course on Schemes, in the Spring of 2009
at Columbia University.

Exercise 65.37.1. Let 𝑋 be a Noetherian scheme. Let ℱ be a coherent sheaf on 𝑋. Let
𝑥 ∈ 𝑋 be a point. Assume that Supp(ℱ) = {𝑥}.

(1) Show that 𝑥 is a closed point of 𝑋.
(2) Show that 𝐻0(𝑋, ℱ) is not zero.
(3) Show that ℱ is generated by global sections.
(4) Show that 𝐻𝑝(𝑋, ℱ) = 0 for 𝑝 > 0.

Remark 65.37.2. Let 𝑘 be a field. Let 𝐏2
𝑘 = Proj(𝑘[𝑋0, 𝑋1, 𝑋2]). Any invertible sheaf on

𝐏2
𝑘 is isomorphic to 𝒪𝐏2

𝑘
(𝑛) for some 𝑛 ∈ 𝐙. Recall that

Γ(𝐏2
𝑘, 𝒪𝐏2

𝑘
(𝑛)) = 𝑘[𝑋0, 𝑋1, 𝑋2]𝑛

1The projective embedding is ((𝑋0, 𝑋1), (𝑌0, 𝑌1)) ↦ (𝑋0𝑌0, 𝑋0𝑌1, 𝑋1𝑌0, 𝑋1𝑌1) in other words (𝑥, 𝑦) ↦
(1, 𝑦, 𝑥, 𝑥𝑦).
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is the degree 𝑛 part of the polynomial ring. For a quasi-coherent sheaf ℱ on 𝐏2
𝑘 set ℱ(𝑛) =

ℱ ⊗𝒪𝐏2
𝑘

𝒪𝐏2
𝑘
(𝑛) as usual.

Exercise 65.37.3. Let 𝑘 be a field. Let ℰ be a vector bundle on 𝐏2
𝑘, i.e., a finite locally free

𝒪𝐏2
𝑘
-module. We say ℰ is split if ℰ is isomorphic to a direct sum invertible 𝒪𝐏2

𝑘
-modules.

(1) Show that ℰ is split if and only if ℰ(𝑛) is split.
(2) Show that if ℰ is split then 𝐻1(𝐏2

𝑘, ℰ(𝑛)) = 0 for all 𝑛 ∈ 𝐙.
(3) Let

𝜑 ∶ 𝒪𝐏2
𝑘

⟶ 𝒪𝐏2
𝑘
(1) ⊕ 𝒪𝐏2

𝑘
(1) ⊕ 𝒪𝐏2

𝑘
(1)

be given by linear forms 𝐿0, 𝐿1, 𝐿2 ∈ Γ(𝐏2
𝑘, 𝒪𝐏2

𝑘
(1)). Assume 𝐿𝑖≠0 for some

𝑖. What is the condition on 𝐿0, 𝐿1, 𝐿2 such that the cokernel of 𝜑 is a vector
bundle? Why?

(4) Given an example of such a 𝜑.
(5) Show that Coker(𝜑) is not split (if it is a vector bundle).

Remark 65.37.4. Freely use the following facts on dimension theory (and add more if you
need more).

(1) The dimension of a scheme is the supremum of the length of chains of irreducible
closed subsets.

(2) The dimension of a finite type scheme over a field is the maximum of the dimen-
sions of its affine opens.

(3) The dimension of a Noetherian scheme is the maximum of the dimensions of its
irreducible components.

(4) The dimension of an affine scheme coincides with the dimension of the corre-
sponding ring.

(5) Let 𝑘 be a field and let 𝐴 be a finite type 𝑘-algebra. If 𝐴 is a domain, and 𝑥≠0,
then dim(𝐴) = dim(𝐴/𝑥𝐴) + 1.

Exercise 65.37.5. Let 𝑘 be a field. Let 𝑋 be a projective, reduced scheme over 𝑘. Let
𝑓 ∶ 𝑋 → 𝐏1

𝑘 be a morphism of schemes over 𝑘. Assume there exists an integer 𝑑 ≥ 0 such
that for every point 𝑡 ∈ 𝐏1

𝑘 the fibre 𝑋𝑡 = 𝑓−1(𝑡) is irreducible of dimension 𝑑. (Recall that
an irreducible space is not empty.)

(1) Show that dim(𝑋) = 𝑑 + 1.
(2) Let 𝑋0 ⊂ 𝑋 be an irreducible component of 𝑋 of dimension 𝑑 + 1. Prove that for

every 𝑡 ∈ 𝐏1
𝑘 the fibre 𝑋0,𝑡 has dimension 𝑑.

(3) What can you conclude about 𝑋𝑡 and 𝑋0,𝑡 from the above?
(4) Show that 𝑋 is irreducible.

Remark 65.37.6. Given a projective scheme 𝑋 over a field 𝑘 and a coherent sheaf ℱ on 𝑋
we set

𝜒(𝑋, ℱ) = ∑𝑖≥0
(−1)𝑖 dim𝑘 𝐻𝑖(𝑋, ℱ).

Exercise 65.37.7. Let 𝑘 be a field. Write 𝐏3
𝑘 = Proj(𝑘[𝑋0, 𝑋1, 𝑋2, 𝑋3]). Let 𝐶 ⊂ 𝐏3

𝑘 be a
type (5, 6) complete intersection curve. This means that there exist 𝐹 ∈ 𝑘[𝑋0, 𝑋1, 𝑋2, 𝑋3]5
and 𝐺 ∈ 𝑘[𝑋0, 𝑋1, 𝑋2, 𝑋3]6 such that

𝐶 = Proj(𝑘[𝑋0, 𝑋1, 𝑋2, 𝑋3]/(𝐹, 𝐺))
is a variety of dimension 1. (Variety implies reduced and irreducible, but feel free to assume
𝐶 is nonsingular if you like.) Let 𝑖 ∶ 𝐶 → 𝐏3

𝑘 be the corresponding closed immersion. Being
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a complete intersection also implies that

0 // 𝒪𝐏3
𝑘
(−11)

(
−𝐺
𝐹 )
// 𝒪𝐏3

𝑘
(−5) ⊕ 𝒪𝐏3

𝑘
(−6)

(𝐹,𝐺) // 𝒪𝐏3
𝑘

// 𝑖∗𝒪𝐶
// 0

is an exact sequence of sheaves. Please use these facts to:
(1) compute 𝜒(𝐶, 𝑖∗𝒪𝐏3

𝑘
(𝑛)) for any 𝑛 ∈ 𝐙, and

(2) compute the dimension of 𝐻1(𝐶, 𝒪𝐶).

Exercise 65.37.8. Let 𝑘 be a field. Consider the rings
𝐴 = 𝑘[𝑥, 𝑦]/(𝑥𝑦)
𝐵 = 𝑘[𝑢, 𝑣]/(𝑢𝑣)

𝐶 = 𝑘[𝑡, 𝑡−1] × 𝑘[𝑠, 𝑠−1]
and the 𝑘-algebra maps

𝐴 ⟶ 𝐶, 𝑥 ↦ (𝑡, 0), 𝑦 ↦ (0, 𝑠)
𝐵 ⟶ 𝐶, 𝑢 ↦ (𝑡−1, 0), 𝑣 ↦ (0, 𝑠−1)

It is a true fact that these maps induce isomorphisms 𝐴𝑥+𝑦 → 𝐶 and 𝐵𝑢+𝑣 → 𝐶. Hence the
maps 𝐴 → 𝐶 and 𝐵 → 𝐶 identify 𝑆𝑝𝑒𝑐(𝐶) with open subsets of 𝑆𝑝𝑒𝑐(𝐴) and 𝑆𝑝𝑒𝑐(𝐵). Let
𝑋 be the scheme obtained by glueing 𝑆𝑝𝑒𝑐(𝐴) and 𝑆𝑝𝑒𝑐(𝐵) along 𝑆𝑝𝑒𝑐(𝐶):

𝑋 = 𝑆𝑝𝑒𝑐(𝐴) ∐𝑆𝑝𝑒𝑐(𝐶)
𝑆𝑝𝑒𝑐(𝐵).

As we saw in the course such a scheme exists and there are affine opens 𝑆𝑝𝑒𝑐(𝐴) ⊂ 𝑋 and
𝑆𝑝𝑒𝑐(𝐵) ⊂ 𝑋 whose overlap is exactly 𝑆𝑝𝑒𝑐(𝐶) identified with an open of each of these
using the maps above.

(1) Why is 𝑋 separated?
(2) Why is 𝑋 of finite type over 𝑘?
(3) Compute 𝐻1(𝑋, 𝒪𝑋), or what is its dimension?
(4) What is a more geometric way to describe 𝑋?

65.38. Schemes, Final Exam, Fall 2010

These were the questions in the final exam of a course on Schemes, in the Fall of 2010 at
Columbia University.

Exercise 65.38.1. Definitions. Provide definitions of the following concepts.
(1) a separated scheme,
(2) a quasi-compact morphism of schemes,
(3) an affine morphism of schemes,
(4) a multiplicative subset of a ring,
(5) a Noetherian scheme,
(6) a variety.

Exercise 65.38.2. Prime avoidance.
(1) Let 𝐴 be a ring. Let 𝐼 ⊂ 𝐴 be an ideal and let 𝔮1, 𝔮2 be prime ideals such that

𝐼⊄𝔮𝑖. Show that 𝐼⊄𝔮1 ∪ 𝔮2.
(2) What is a geometric interpretation of (1)?
(3) Let 𝑋 = Proj(𝑆) for some graded ring 𝑆. Let 𝑥1, 𝑥2 ∈ 𝑋. Show that there exists

a standard open 𝐷+(𝐹) which contains both 𝑥1 and 𝑥2.

http://math.columbia.edu/algebraic_geometry/stacks-git/locate.php?tag=02B3
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Exercise 65.38.3. Why is a composition of affine morphisms affine?

Exercise 65.38.4. Examples. Give examples of the following:
(1) A reducible projective scheme over a field 𝑘.
(2) A scheme with 100 points.
(3) A non-affine morphism of schemes.

Exercise 65.38.5. Chevalley's theorem and the Hilbert Nullstellensatz.
(1) Let 𝔭 ⊂ 𝐙[𝑥1, … , 𝑥𝑛] be a maximal ideal. What does Chevalley's theorem imply

about 𝔭 ∩ 𝐙?
(2) In turn, what does the Hilbert Nullstellensatz imply about 𝜅(𝔭)?

Exercise 65.38.6. Let 𝐴 be a ring. Let 𝑆 = 𝐴[𝑋] as a graded 𝐴-algebra where 𝑋 has
degree 1. Show that Proj(𝑆) ≅ 𝑆𝑝𝑒𝑐(𝐴) as schemes over 𝐴.

Exercise 65.38.7. Let 𝐴 → 𝐵 be a finite ring map. Show that 𝑆𝑝𝑒𝑐(𝐵) is a H-projective
scheme over 𝑆𝑝𝑒𝑐(𝐴).

Exercise 65.38.8. Give an example of a scheme 𝑋 over a field 𝑘 such that 𝑋 is irreducible
and such that for some finite extension 𝑘 ⊂ 𝑘 the base change 𝑋𝑘′ = 𝑋 ×𝑆𝑝𝑒𝑐(𝑘) 𝑆𝑝𝑒𝑐(𝑘′)
is connected but reducible.

65.39. Schemes, Final Exam, Spring 2011

These were the questions in the final exam of a course on Schemes, in the Spring of 2011
at Columbia University.

Exercise 65.39.1. Definitions. Provide definitions of the italicized concepts.
(1) a separated scheme,
(2) a universally closed morphism of schemes,
(3) 𝐴 dominates 𝐵 for local rings 𝐴, 𝐵 contained in a common field,
(4) the dimension of a scheme 𝑋,
(5) the codimension of an irreducible closed subscheme 𝑌 of a scheme 𝑋,

Exercise 65.39.2. Results. State something formally equivalent to the fact discussed in the
course.

(1) The valuative criterion of properness for a morphism 𝑋 → 𝑌 of varieties for
example.

(2) The relationship between dim(𝑋) and the function field 𝑘(𝑋) of 𝑋 for a variety
𝑋 over a field 𝑘.

(3) Fill in the blank: The category of nonsingular projective curves over 𝑘 and non-
constant morphisms is anti-equivalent to … … ….

(4) Noether normalization.
(5) Jacobian criterion.

Exercise 65.39.3. Let 𝑘 be a field. Let 𝐹 ∈ 𝑘[𝑋0, 𝑋1, 𝑋2] be a homogeneous form of
degree 𝑑. Assume that 𝐶 = 𝑉+(𝐹) ⊂ 𝐏2

𝑘 is a smooth curve over 𝑘. Denote 𝑖 ∶ 𝐶 → 𝐏2
𝑘 the

corresponding closed immersion.
(1) Show that there is a short exact sequence

0 → 𝒪𝐏2
𝑘
(−𝑑) → 𝒪𝐏2

𝑘
→ 𝑖∗𝒪𝐶 → 0

of coherent sheaves on 𝐏2
𝑘: tell me what the maps are and briefly why it is exact.
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(2) Conclude that 𝐻0(𝐶, 𝒪𝐶) = 𝑘.
(3) Compute the genus of 𝐶.
(4) Assume now that 𝑃 = (0 ∶ 0 ∶ 1) is not on 𝐶. Prove that 𝜋 ∶ 𝐶 → 𝐏1

𝑘 given by
(𝑎0 ∶ 𝑎1 ∶ 𝑎2) ↦ (𝑎0 ∶ 𝑎1) has degree 𝑑.

(5) Assume 𝑘 is algebraically closed, assume all ramification indices (the ``𝑒𝑖'') are 1
or 2, and assume the characteristic of 𝑘 is not equal to 2. How many ramification
points does 𝜋 ∶ 𝐶 → 𝐏1

𝑘 have?
(6) In terms of 𝐹, what do you think is a set of equations of the set of ramification

points of 𝜋?
(7) Can you guess 𝐾𝐶?

Exercise 65.39.4. Let 𝑘 be a field. Let 𝑋 be a ``triangle'' over 𝑘, i.e., you get 𝑋 by glueing
three copies of 𝐀1

𝑘 to each other by identifying 0 on the first copy to 1 on the second copy,
0 on the second copy to 1 on the first copy, and 0 on the third copy to 1 on the first copy. It
turns out that 𝑋 is isomorphic to 𝑆𝑝𝑒𝑐(𝑘[𝑥, 𝑦]/(𝑥𝑦(𝑥+𝑦+1))); feel free to use this. Compute
the Picard group of 𝑋.

Exercise 65.39.5. Let 𝑘 be a field. Let 𝜋 ∶ 𝑋 → 𝑌 be a finite birational morphism of curves
with 𝑋 a projective nonsingular curve over 𝑘. It follows from the material in the course that
𝑌 is a proper curve and that 𝜋 is the normalization morphism of 𝑌. We have also seen in the
course that there exists a dense open 𝑉 ⊂ 𝑌 such that 𝑈 = 𝜋−1(𝑉) is a dense open in 𝑋 and
𝜋 ∶ 𝑈 → 𝑉 is an isomorphism.

(1) Show that there exists an effective Cartier divisor 𝐷 ⊂ 𝑋 such that 𝐷 ⊂ 𝑈 and
such that 𝒪𝑋(𝐷) is ample on 𝑋.

(2) Let 𝐷 be as in (1). Show that 𝐸 = 𝜋(𝐷) is an effective Cartier divisor on 𝑌.
(3) Briefly indicate why

(a) the map 𝒪𝑌 → 𝜋∗𝒪𝑋 has a coherent cokernel 𝑄 which is supported in 𝑌 ⧵ 𝑉,
and

(b) for every 𝑛 there is a corresponding map 𝒪𝑌(𝑛𝐸) → 𝜋∗𝒪𝑋(𝑛𝐷) whose cok-
ernel is isomorphic to 𝑄.

(4) Show that dim𝑘 𝐻0(𝑋, 𝒪𝑋(𝑛𝐷))−dim𝑘 𝐻0(𝑌, 𝒪𝑌(𝑛𝐸)) is bounded (bywhat?) and
conclude that the invertible sheaf 𝒪𝑌(𝑛𝐸) has lots of sections for large 𝑛 (why?).

65.40. Schemes, Final Exam, Fall 2011

These were the questions in the final exam of a course on Commutative Algebra, in the Fall
of 2011 at Columbia University.

Exercise 65.40.1. Definitions. Provide definitions of the italicized concepts.
(1) a Noetherian ring,
(2) a Noetherian scheme,
(3) a finite ring homomorphism,
(4) a finite morphism of schemes,
(5) the dimension of a ring.

Exercise 65.40.2. Results. State something formally equivalent to the fact discussed in the
course.

(1) Zariski's Main Theorem.
(2) Noether normalization.
(3) Chinese remainder theorem.
(4) Going up for finite ring maps.
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Exercise 65.40.3. Let (𝐴, 𝔪, 𝜅) be a Noetherian local ring whose residue field has charac-
teristic not 2. Suppose that 𝔪 is generated by three elements 𝑥, 𝑦, 𝑧 and that 𝑥2 +𝑦2 +𝑧2 = 0
in 𝐴.

(1) What are the possible values of dim(𝐴)?
(2) Give an example to show that each value is possible.
(3) Show that 𝐴 is a domain if dim(𝐴) = 2. (Hint: look at ⨁𝑛≥0 𝔪𝑛/𝔪𝑛+1.)

Exercise 65.40.4. Let 𝐴 be a ring. Let 𝑆 ⊂ 𝑇 ⊂ 𝐴 be multiplicative subsets. Assume that
{𝔮 ∣ 𝔮 ∩ 𝑆 = ∅} = {𝔮 ∣ 𝔮 ∩ 𝑇 = ∅}.

Show that 𝑆−1𝐴 → 𝑇−1𝐴 is an isomorphism.

Exercise 65.40.5. Let 𝑘 be an algebraically closed field. Let
𝑉0 = {𝐴 ∈ Mat(3 × 3, 𝑘) ∣ rank(𝐴) = 1} ⊂ Mat(3 × 3, 𝑘) = 𝑘9.

(1) Show that 𝑉0 is the set of closed points of a (Zariski) locally closed subset 𝑉 ⊂ 𝐀9
𝑘.

(2) Is 𝑉 irreducible?
(3) What is dim(𝑉)?

Exercise 65.40.6. Prove that the ideal (𝑥2, 𝑥𝑦, 𝑦2) in 𝐂[𝑥, 𝑦] cannot be generated by 2 ele-
ments.

Exercise 65.40.7. Let 𝑓 ∈ 𝐂[𝑥, 𝑦] be a nonconstant polynomial. Show that for some
𝛼, 𝛽 ∈ 𝐂 the 𝐂-algebra map

𝐂[𝑡] ⟶ 𝐂[𝑥, 𝑦]/(𝑓), 𝑡 ⟼ 𝛼𝑥 + 𝛽𝑦
is finite.

Exercise 65.40.8. Show that given finitely many points 𝑝1, … , 𝑝𝑛 ∈ 𝐂2 the scheme 𝐀2
𝐂 ⧵

{𝑝1, … , 𝑝𝑛} is a union of two affine opens.

Exercise 65.40.9. Show that there exists a surjective morphism of schemes 𝐀1
𝐂 → 𝐏1

𝐂.
(Surjective just means surjective on underlying sets of points.)

Exercise 65.40.10. Let 𝑘 be an algebraically closed field. Let 𝐴 ⊂ 𝐵 be an extension of
domains which are both finite type 𝑘-algebras. Prove that the image of Spec(𝐵) → Spec(𝐴)
contains a nonempty open subset of Spec(𝐴) using the following steps:

(1) Prove it if 𝐴 → 𝐵 is also finite.
(2) Prove it in case the fraction field of 𝐵 is a finite extension of the fraction field of

𝐴.
(3) Reduce the statement to the previous case.

65.41. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups

(9) Sites and Sheaves
(10) Homological Algebra
(11) Derived Categories
(12) More on Algebra
(13) Smoothing Ring Maps
(14) Simplicial Methods
(15) Sheaves of Modules
(16) Modules on Sites
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CHAPTER 66

A Guide to the Literature

66.1. Short introductory articles

• Barbara Fantechi: Stacks for Everybody [Fan01]
• Dan Edidin: What is a stack? [Edi03]
• Dan Edidin: Notes on the construction of the moduli space of curves [Edi00]
• Angelo Vistoli: Intersection theory on algebraic stacks and on their moduli spaces, and

especially the appendix. [Vis89]

66.2. Classic references

• Mumford: Picard groups of moduli problems [Mum65]
Mumford never uses the term ``stack'' here but the concept is implicit in the paper;
he computes the picard group of the moduli stack of elliptic curves.

• Deligne, Mumford: The irreducibility of the space of curves of given genus [DM69b]
This influential paper introduces ``algebraic stacks'' in the sense which are now
universally called Deligne-Mumford stacks (stacks with representable diagonal
which admit étale presentations by schemes). There aremany foundational results
without proof. The paper uses stacks to give two proofs of the irreducibility of
the moduli space of curves of genus 𝑔.

• Artin: Versal deformations and algebraic stacks [Art74b]
This paper introduces ``algebraic stacks'' which generalizeDeligne-Mumford stacks
and are now commonly referred to as Artin stacks, stacks with representable diag-
onal which admit smooth presentations by schemes. This paper gives deformation-
theoretic criterion known as Artin's criterion which allows one to prove that a
given moduli stack is an Artin stack without explicitly exhibiting a presentation.

66.3. Books and online notes

• Laumon, Moret-Bailly: Champs Algébriques [LMB00b]
This book is currently the most exhaustive reference on stacks containing many
foundational results. It assumes the reader is familiar with algebraic spaces and
frequently references Knutson's book [Knu71b]. There is an error in chapter
12 concerning the functoriality of the lisse-étale site of an algebraic stack. One
doesn't need to worry about this as the error has been patched by Martin Ols-
son (see [Ols07b]) and the results in the remaining chapters (after perhaps slight
modification) are correct.

• The Stacks Project Authors: Stacks Project [Aut].
You are reading it!

• Anton Geraschenko: Lecture notes for Martin Olsson's class on stacks [Ols07a]

2947
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This course systematically develops the theory of algebraic spaces before in-
troducing algebraic stacks (first defined in Lecture 27!). In addition to basic
properties, the course covers the equivalence between being Deligne-Mumford
and having unramified diagonal, the lisse-étale site on an Artin stack, the theory
of quasi-coherent sheaves, the Keel-Mori theorem, cohomological descent, and
gerbes (and their relation to the Brauer group). There are also some exercises.

• Behrend, Conrad, Edidin, Fantechi, Fulton, Göttsche, and Kresch: Algebraic stacks, online
notes for a book being currently written [BCE+]

The aim of this book is to give a friendly introduction to stacks without assuming
a sophisticated background with a focus on examples and applications. Unlike
[LMB00b], it is not assumed that the reader has digested the theory of algebraic
spaces. Instead, Deligne-Mumford stacks are introduced with algebraic spaces
being a special case with part of the goal being to develop enough theory to prove
the assertions in [DM69b]. The general theory of Artin stacks is to be devel-
oped in the second part. Only a fraction of the book is now available on Kresch's
website.

66.4. Related references on foundations of stacks

• Vistoli: Notes on Grothendieck topologies, fibered categories and descent theory [Vis05]
Contains useful facts on fibered categories, stacks and descent theory in the fpqc
topology as well as rigorous proofs.

• Knutson: Algebraic Spaces [Knu71b]
This book, which evolved from his PhD thesis under Michael Artin, contains the
foundations of the theory of algebraic spaces. The book [LMB00b] frequently
references this text. See alsoArtin's papers on algebraic spaces: [Art69b], [Art69d],
[Art69f], [Art70b], [Art71d], [Art71b], [Art73b], and [Art74b]

• Grothendieck et al, Théorie des Topos et Cohomologie Étale des Schémas I, II, III also
known as SGA4 [MA71]

Volume 1 contains many general facts on universes, sites and fibered categories.
The word ``champ'' (French for ``stack'') appears in Deligne's Exposé XVIII.

• Jean Giraud: Cohomologie non abélienne [Gir65]
The book discusses fibered categories, stacks, torsors and gerbes over general
sites but does not discuss algebraic stacks. For instance, if 𝐺 is a sheaf of abelian
groups on 𝑋, then in the same way 𝐻1(𝑋, 𝐺) can be identified with 𝐺-torsors,
𝐻2(𝑋, 𝐺) can be identified with an appropriately defined set of 𝐺-gerbes. When
𝐺 is not abelian, then 𝐻2(𝑋, 𝐺) is defined as the set of 𝐺-gerbes.

• Kelly and Street: Review of the elements of 2-categories [KS74]
The category of stacks form a 2-category although a simple type of 2-category
where are 2-morphisms are invertible. This is a reference on general 2-categories.
I have never used this so I cannot say how useful it is. Also note that [Aut] contains
some basics on 2-categories.

66.5. Papers in the literature

Below is a list of research papers which contain fundamental results on stacks and algebraic
spaces. The intention of the summaries is to indicate only the results of the paper which
contribute toward stack theory; in many cases these results are subsidiary to the main goals
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of the paper. We divide the papers into categories with some papers falling into multiple
categories.

66.5.1. Deformation theory and algebraic stacks. The first three papers by Artin do
not contain anything on stacks but they contain powerful results with the first two papers
being essential for [Art74b].

• Artin: Algebraic approximation of structures over complete local rings [Art69b]
It is proved that under mild hypotheses any effective formal deformation can be
approximated: if 𝐹 ∶ (Sch/𝑆) → (Sets) is a contravariant functor locally of finite
presentation with 𝑆 finite type over a field or excellent DVR, 𝑠 ∈ 𝑆, and ̂𝜉 ∈
𝐹( ̂𝒪𝑆,𝑠) is an effective formal deformation, then for any 𝑛 > 0, there exists an
residually trivial étale neighborhood (𝑆′, 𝑠′) → (𝑆, 𝑠) and 𝜉′ ∈ 𝐹(𝑆′) such that
𝜉′ and ̂𝜉 agree up to order 𝑛 (ie. have the same restriction in 𝐹(𝒪𝑆,𝑠/𝔪𝑛)).

• Artin: Algebraization of formal moduli I [Art69d]
It is proved that under mild hypotheses any effective formal versal deformation
is algebraizable. Let 𝐹 ∶ (Sch/𝑆) → (Sets) be a contravariant functor locally of
finite presentation with 𝑆 finite type over a field or excellent DVR, 𝑠 ∈ 𝑆 be a
locally closed point , ̂𝐴 be a complete noetherian local 𝒪𝑆-algebra with residue
field 𝑘′ a finite extension of 𝑘(𝑠), and ̂𝜉 ∈ 𝐹( ̂𝐴) be an effective formal versal
deformation of an element 𝜉0 ∈ 𝐹(𝑘′). Then there is a scheme 𝑋 finite type over
𝑆 and a closed point 𝑥 ∈ 𝑋 with residue field 𝑘(𝑥) = 𝑘′ and an element 𝜉 ∈ 𝐹(𝑋)
such that there is an isomorphism ̂𝒪𝑋,𝑥 ≅ ̂𝐴 identifying the restrictions of 𝜉 and

̂𝜉 in each 𝐹( ̂𝐴/𝔪𝑛). The algebraization is unique if ̂𝜉 is a universal deformation.
Applications are given to the representability of the Hilbert and Picard schemes.

• Artin: Algebraization of formal moduli. II [Art70b]
Vaguely, it is shown that if one can contract a closed subset 𝑌′ ⊆ 𝑋′ formally
locally around 𝑌′, then exists a global morphism 𝑋′ → 𝑋 contracting 𝑌 with 𝑋
an algebraic space.

• Artin: Versal deformations and algebraic stacks [Art74b]
This momentous paper builds on his work in [Art69b] and [Art69d]. This pa-
per introduces Artin's criterion which allows one to prove algebraicity of a stack
by verifying deformation-theoretic properties. More precisely (but not very pre-
cisely), Artin constructs a presentation of a limit preserving stack𝒳 locally around
a point 𝑥 ∈ 𝒳(𝑘) as follows: assuming the stack𝒳 satisfies Schlessinger's criterion([Sch68]),
there exists a formal versal deformation ̂𝜉 ∈ 𝑙𝑖𝑚 𝒳( ̂𝐴/𝔪𝑛) of 𝑥. Assuming that
formal deformations are effective (i.e., 𝒳( ̂𝐴) → 𝑙𝑖𝑚 𝒳( ̂𝐴/𝔪𝑛) is bijective), then
one obtains an effective formal versal deformation 𝜉 ∈ 𝒳( ̂𝐴). Using results in
[Art69d], one produces a finite type scheme 𝑈 and an element 𝜉𝑈 ∶ 𝑈 → 𝒳
which is formally versal at a point 𝑢 ∈ 𝑈 over 𝑥. Then if we assume 𝒳 admits a
deformation and obstruction theory satisfying certain conditions (ie. compatibil-
ity with étale localization and completion as well as constructibility condition),
then it is shown in section 4 that formal versality is an open condition so that after
shrinking 𝑈, 𝑈 → 𝒳 is smooth. Artin also presents a proof that any stack admit-
ting an fppf presentation by a scheme admits a smooth presentation by a scheme
so that in particular one can form quotient stacks by flat, separated, finitely pre-
sented group schemes.

• Conrad, de Jong: Approximation of Versal Deformations [CdJ02b]
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This paper offers an approach toArtin's algebraization result by applying Popescu's
powerful result: if 𝐴 is a noetherian ring and 𝐵 a noetherian 𝐴-algebra, then the
map 𝐴 → 𝐵 is a regular morphism if and only if 𝐵 is a direct limit of smooth
𝐴-algebras. It is not hard to see that Popescu's result implies Artin's approxima-
tion over an arbitrary excellent scheme (the excellence hypothesis implies that for
a local ring 𝐴, the map 𝐴h → ̂𝐴 from the henselization to the completion is reg-
ular). The paper uses Popescu's result to give a ``groupoid'' generalization of the
main theorem in [Art69d] which is valid over arbitrary excellent base schemes
and for arbitrary points 𝑠 ∈ 𝑆. In particular, the results in [Art74b] hold under
an arbitrary excellent base. They discuss the étale-local uniqueness of the alge-
braization and whether the automorphism group of the object acts naturally on
the henselization of the algebraization.

• Jason Starr: Artin's axioms, composition, and moduli spaces [Sta06]
The paper establishes that Artin's axioms for algebraization are compatible with
the composition of 1-morphisms.

• MartinOlsson: Deformation theory of representablemorphism of algebraic stacks [Ols06a]
This generalizes standard deformation theory results for morphisms of schemes to
representable morphisms of algebraic stacks in terms of the cotangent complex.
These results cannot be viewed as consequences of Illusie's general theory as the
cotangent complex of a representable morphism 𝑋 → 𝒳 is not defined in terms
of cotangent complex of a morphism of ringed topoi (because the lisse-étale site
is not functorial).

66.5.2. Coarse moduli spaces.
• Keel, Mori: Quotients in Groupoids [KM97b]

It had apparently long been ``folklore'' that separated Deligne-Mumford stacks
admitted coarse moduli spaces. A rigorous (although terse) proof of the following
theorem is presented here: if 𝒳 is an Artin stack locally of finite type over a
noetherian base scheme such that the inertia stack 𝐼𝒳 → 𝒳 is finite, then there
exists a coarse moduli space 𝜙 ∶ 𝒳 → 𝑌 with 𝜙 separated and 𝑌 an algebraic
space locally of finite type over 𝑆. The hypothesis that the inertia is finite is
precisely the right condition: there exists a coarse moduli space 𝜙 ∶ 𝒳 → 𝑌 with
𝜙 separated if and only if the inertia is finite.

• Conrad: The Keel-Mori Theorem via Stacks [Con05]
Keel and Mori's paper [KM97b] is written in the groupoid language and some
find it challenging to grasp. Brian Conrad presents a stack-theoretic version of
the proof which is quite transparent although it uses the sophisticated language
of stacks. Conrad also removes the noetherian hypothesis.

• Rydh: Existence of quotients by finite groups and coarse moduli spaces [Ryd07a]
Rydh removes the hypothesis from [KM97b] and [Con05] that 𝒳 be finitely pre-
sented over some base.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic [AOV08]
They define a tame Artin stack as an Artin stack with finite inertia such that if
𝜙 ∶ 𝒳 → 𝑌 is the coarse moduli space, 𝜙∗ is exact on quasi-coherent sheaves.
They prove that for an Artin stack with finite inertia, the following are equivalent:
𝒳 is tame ⟺ the stabilizers of 𝒳 are linearly reductive ⟺ 𝒳 is étale locally
on the coarse moduli space a quotient of an affine scheme by a linearly reductive
group scheme. For a tame Artin stack, the coarse moduli space is particularly
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nice. For instance, the coarse moduli space commutes with arbitrary base change
while a general coarse moduli space for an Artin stack with finite inertia will only
commute with flat base change.

• Alper: Good moduli spaces for Artin stacks [Alp08]
For general Artin stacks with infinite affine stabilizer groups (which are necessar-
ily non-separated), coarse moduli spaces often do not exist. The simplest example
is [𝐀1/𝐆𝑚]. It is defined here that a quasi-compact morphism 𝜙 ∶ 𝒳 → 𝑌 is a
good moduli space if 𝒪𝑌 → 𝜙∗𝒪𝒳 is an isomorphism and 𝜙∗ is exact on quasi-
coherent sheaves. This notion generalizes a tame Artin stack in [AOV08] as well
as encapsulates Mumford's geometric invariant theory: if 𝐺 is a reductive group
acting linearly on 𝑋 ⊆ 𝐏𝑛, then the morphism from the quotient stack of the
semi-stable locus to the GIT quotient [𝑋𝑠𝑠/𝐺] → 𝑋//𝐺 is a good moduli space.
The notion of a good moduli space has many nice geometric properties: (1) 𝜙 is
surjective, universally closed, and universally submersive, (2) 𝜙 identifies points
in 𝑌 with points in 𝒳 up to closure equivalence, (3) 𝜙 is universal for maps to
algebraic spaces, (4) good moduli spaces are stable under arbitrary base change,
and (5) a vector bundle on an Artin stack descends to the good moduli space if
and only if the representations are trivial at closed points.

66.5.3. Intersection theory.
• Vistoli: Intersection theory on algebraic stacks and on their moduli spaces [Vis89]

This paper develops the foundations for intersection theory with rational coeffi-
cients for Deligne-Mumford stacks. If 𝒳 is a separated Deligne-Mumford stack,
the chow group 𝐴∗(𝒳) with rational coefficients is defined as the free abelian
group of integral closed substacks of dimension 𝑘 up to rational equivalence.
There is a flat pullback, a proper push-forward and a generalized Gysin homo-
morphism for regular local embeddings. If 𝜙 ∶ 𝒳 → 𝑌 is a moduli space (ie.
a proper morphism with is bijective on geometric points), there is an induced
push-forward 𝐴∗(𝒳) → 𝐴𝑘(𝑌) which is an isomorphism.

• Edidin, Graham: Equivariant Intersection Theory [EG98]
The purpose of this article is to develop intersection theory with integral coeffi-
cients for a quotient stack [𝑋/𝐺] of an action of an algebraic group 𝐺 on an alge-
braic space 𝑋 or, in other words, to develop a 𝐺-equivariant intersection theory
of 𝑋. Equivariant chow groups defined using only invariant cycles does not pro-
duce a theory with nice properties. Instead, generalizing Totaro's definition in
the case of 𝐵𝐺 and motivated by the fact that if 𝑉 → 𝑋 is a vector bundle then
𝐴𝑖(𝑋) ≅ 𝐴𝑖(𝑉) naturally, the authors define 𝐴𝐺

𝑖 (𝑋) as follows: Let dim(𝑋) = 𝑛
and dim(𝐺) = 𝑔. For each 𝑖, choose a 𝑙-dimensional 𝐺-representation 𝑉 where
𝐺 acts freely on an open subset 𝑈 ⊆ 𝑉 whose complement as codimension
𝑑 > 𝑛 − 𝑖. So 𝑋𝐺 = [𝑋 × 𝑈/𝐺] is an algebraic space (it can even be chosen
to be a scheme). Then they define 𝐴𝐺

𝑖 (𝑋) = 𝐴𝑖+𝑙−𝑔(𝑋𝐺). For the quotient stack,
one defines 𝐴𝑖([𝑋/𝐺]) ∶= 𝐴𝐺

𝑖+𝑔(𝑋) = 𝐴𝑖+𝑙(𝑋𝐺). In particular, 𝐴𝑖([𝑋/𝐺]) = 0 for
𝑖 > dim[𝑋/𝐺] = 𝑛 − 𝑔 but can be non-zero for 𝑖 << 0 (eg. 𝐴𝑖(𝐵𝐆𝑚) = 𝐙 for
𝑖 ≤ 0). They establish that these equivariant Chow groups enjoy the same func-
torial properties as ordinary Chow groups. Furthermore, they establish that if
[𝑋/𝐺] ≅ [𝑌/𝐻] that 𝐴𝑖([𝑋/𝐺]) = 𝐴𝑖([𝑌/𝐻]) so that the definition is independent
on how the stack is presented as a quotient stack.

• Kresch: Cycle Groups for Artin Stacks [Kre99]
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Kresch defines Chow groups for arbitrary Artin stacks agreeing with Edidin and
Graham's definition in [EG98] in the case of quotient stack. For algebraic stacks
with affine stabilizer groups, the theory satisfies the usual properties.

• Behrend and Fantechi: The intrinsic normal cone [BF97]
Generalizing a construction due to Li and Tian, Behrend and Fantechi construct
a virtual fundamental class for a Deligne-Mumford stack.

66.5.4. Quotient stacks. Quotient stacks1 form a very important subclass of Artin
stacks which include almost all moduli stacks studied by algebraic geometers. The geome-
try of a quotient stack [𝑋/𝐺] is the 𝐺-equivariant geometry of 𝑋. It is often easier to show
properties are true for quotient stacks and some results are only known to be true for quo-
tient stacks. The following papers address: When is an algebraic stack a global quotient
stack? Is an algebraic stack ``locally'' a quotient stack?

• Laumon, Moret-Bailly: [LMB00b, Chapter 6]
Chapter 6 contains several facts about the local and global structure of algebraic
stacks. It is proved that an algebraic stack 𝒳 over 𝑆 is a quotient stack [𝑌/𝐺] with
𝑌 an algebraic space (resp. scheme, resp. affine scheme) and 𝐺 a finite group if
and only if there exists an algebraic space (resp. scheme, resp. affine scheme)
𝑌′ and an finite étale morphism 𝑌′ → 𝒳. It is shown that any Deligne-Mumford
stack over 𝑆 and 𝑥 ∶ 𝑆𝑝𝑒𝑐(𝐾) → 𝒳 admits an representable, étale and separated
morphism 𝜙 ∶ [𝑋/𝐺] → 𝒳 where 𝐺 is a finite group acting on an affine scheme
over 𝑆 such that 𝑆𝑝𝑒𝑐(𝐾) = [𝑋/𝐺] ×𝒳 𝑆𝑝𝑒𝑐(𝐾). The existence of presentations
with geometrically connected fibers is also discussed in detail.

• Edidin, Hassett, Kresch, Vistoli: Brauer Groups and Quotient stacks [EHKV01]
First, they establish some fundamental (although not very difficult) facts concern-
ing when a given algebraic stack (always assumed finite type over a noetherian
scheme in this paper) is a quotient stack. For an algebraic stack 𝒳: 𝒳 is a quo-
tient stack ⟺ there exists a vector bundle 𝑉 → 𝒳 such that for every geometric
point, the stabilizer acts faithfully on the fiber ⟺ there exists a vector bundle
𝑉 → 𝒳 and a locally closed substack 𝑉0 ⊆ 𝑉 such that 𝑉0 is representable and
surjects onto 𝐹. They establish that an algebraic stack is a quotient stack if there
exists finite flat cover by an algebraic space. Any smooth Deligne-Mumford stack
with generically trivial stabilizer is a quotient stack. They show that a 𝐆𝑚-gerbe
over a noetherian scheme 𝑋 corresponding to 𝛽 ∈ 𝐻2(𝑋, 𝐆𝑚) is a quotient stack
if and only if 𝛽 is in the image of the Brauer map Br(𝑋) → Br′(𝑋). They use this
to produce a non-separated Deligne-Mumford stack that is not a quotient stack.

• Totaro: The resolution property for schemes and stacks [Tot04]
A stack has the resolution property if every coherent sheaf is the quotient of a vec-
tor bundle. The first main theorem is that if 𝒳 is a normal noetherian algebraic
stack with affine stabilizer groups at closed points, then the following are equiv-
alent: (1) 𝒳 has the resolution property and (2) 𝒳 = [𝑌/GL𝑛] with 𝑌 quasi-affine.
In the case 𝒳 is finite type over a field, then (1) and (2) are equivalent to: (3)
𝒳 = [𝑆𝑝𝑒𝑐(𝐴)/𝐺] with 𝐺 an affine group scheme finite type over 𝑘. The implica-
tion that quotient stacks have the resolution property was proven by Thomason.
The second main theorem is that if 𝒳 is a smooth Deligne-Mumford stack over a

1In the literature, quotient stack often means a stack of the form [𝑋/𝐺] with 𝑋 an algebraic space and 𝐺 a
subgroup scheme of GL𝑛 rather than an arbitrary flat group scheme.
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field which has a finite and generically trivial stabilizer group 𝐼𝒳 → 𝒳 and whose
coarse moduli space is a scheme with affine diagonal, then 𝒳 has the resolution
property. Another cool result states that if 𝒳 is a noetherian algebraic stack satis-
fying the resolution property, then 𝒳 has affine diagonal if and only if the closed
points have affine stabilizer.

• Kresch: On the Geometry of Deligne-Mumford Stacks [Kre09]
This article summarizes general structure results of Deligne-Mumford stacks (of
finite type over a field) and contains some interesting results concerning quo-
tient stacks. It is shown that any smooth, separated, generically tame Deligne-
Mumford stackwith quasi-projective coarsemoduli space is a quotient stack [𝑌/𝐺]
with 𝑌 quasi-projective and 𝐺 an algebraic group. If 𝒳 is a Deligne-Mumford
stack whose coarse moduli space is a scheme, then 𝒳 is Zariski-locally a quo-
tient stack if and only if it admits a Zariski-open covering by stack quotients of
schemes by finite groups. If 𝒳 is a Deligne-Mumford stack proper over a field
of characteristic 0 with coarse moduli space 𝑌, then: 𝑌 is projective and 𝒳 is a
quotient stack ⟺ 𝑌 is projective and 𝒳 possesses a generating sheaf ⟺ 𝒳
admits a closed embedding into a smooth proper DM stack with projective coarse
moduli space. This motivates a definition that a Deligne-Mumford stack is pro-
jective if there exists a closed embedding into a smooth, proper Deligne-Mumford
stack with projective coarse moduli space.

• Kresch, VistoliOn coverings of Deligne-Mumford stacks and surjectivity of the Brauer map
[KV04]

It is shown that in characteristic 0 and for a fixed 𝑛, the following two statements
are equivalent: (1) every smooth Deligne-Mumford stack of dimension 𝑛 is a quo-
tient stack and (2) the Azumaya Brauer group coincides with the cohomological
Brauer group for smooth schemes of dimension 𝑛.

• Kresch: Cycle Groups for Artin Stacks [Kre99]
It is shown that a reduced Artin stack finite type over a field with affine stabilizer
groups admits a stratification by quotient stacks.

• Abramovich-Vistoli: Compactifying the space of stable maps [AV02]
Lemma 2.2.3 establishes that for any separated Deligne-Mumford stack is étale-
locally on the coarse moduli space a quotient stack [𝑈/𝐺] where 𝑈 affine and 𝐺
a finite group. [Ols06b, Theorem 2.12] shows in this argument 𝐺 is even the
stabilizer group.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic [AOV08]
This paper shows that a tame Artin stack is étale locally on the coarse moduli
space a quotient stack of an affine by the stabilizer group.

• Alper: On the local quotient structure of Artin stacks [Alp09]
It is conjectured that for an Artin stack 𝒳 and a closed point 𝑥 ∈ 𝒳 with linearly
reductive stabilizer, then there is an étale morphism [𝑉/𝐺𝑥] → 𝒳 with 𝑉 an al-
gebraic space. Some evidence for this conjecture is given. A simple deformation
theory argument (based on ideas in [AOV08]) shows that it is true formally lo-
cally. A stack-theoretic proof of Luna's étale slice theorem is presented proving
that for stacks 𝒳 = [𝑆𝑝𝑒𝑐(𝐴)/𝐺] with 𝐺 linearly reductive, then étale locally on
the GIT quotient 𝑆𝑝𝑒𝑐(𝐴𝐺), 𝒳 is a quotient stack by the stabilizer.

66.5.5. Cohomology.
• Olsson: Sheaves on Artin stacks [Ols07b]
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This paper develops the theory of quasi-coherent and constructible sheaves prov-
ing basic cohomological properties. This paper corrects a mistake in [LMB00b]
in the functorirality of the lisse-étale site. The cotangent complex is constructed.
In addition, the following theorems are proved: Grothendieck's Fundamental The-
orem for proper morphisms, Grothendieck's Existence Theorem, Zariski's Con-
nectness Theorem and finiteness theorem for proper pushoforwards of coherent
and constructible sheaves.

• Behrend: Derived 𝑙-adic categories for algebraic stacks [Beh03]
Proves the Lefschetz trace formula for algebraic stacks.

• Behrend: Cohomology of stacks [Beh04]
Defines the de Rham cohomology for differentiable stacks and singular cohomol-
ogy for topological stacks.

• Faltings: Finiteness of coherent cohomology for proper fppf stacks [Fal03]
Proves coherence for direct images of coherent sheaves for proper morphisms.

• Abramovich, Corti, Vistoli: Twisted bundles and admissible covers [ACV03]
The appendix contains the proper base change theorem for étale cohomology for
tame Deligne-Mumford stacks.

66.5.6. Existence of finite covers by schemes. The existence of finite covers of Deligne-
Mumford stacks by schemes is an important result. In intersection theory on Deligne-
Mumford stacks, it is an essential ingredient in defining proper push-forward for non-
representable morphisms. There are several results about ℳ𝑔 relying on the existence of a
finite cover by a smooth scheme which was proven by Looijenga. Perhaps the first result in
this direction is [Ses72, Theorem 6.1] which treats the equivariant setting.

• Vistoli: Intersection theory on algebraic stacks and on their moduli spaces [Vis89]
If 𝒳 is a Deligne-Mumford stack with a moduli space (ie. a proper morphism
which is bijective on geometric points), then there exists a finite morphism 𝑋 →
𝒳 from a scheme 𝑋.

• Laumon, Moret-Bailly: [LMB00b, Chapter 16]
As an application of Zariski's main theorem, Theorem 16.6 establishes: if 𝒳 is
a Deligne-Mumford stack finite type over a noetherian scheme, then there exists
a finite, surjective, generically étale morphism 𝑍 → 𝒳 with 𝑍 a scheme. It
is also shown in Corollary 16.6.2 that any noetherian normal algebraic space is
isomorphic to the algebraic space quotient 𝑋′/𝐺 for a finite group 𝐺 acting a
normal scheme 𝑋.

• Edidin, Hassett, Kresch, Vistoli: Brauer Groups and Quotient stacks [EHKV01]
Theorem 2.7 states: if 𝒳 is an algebraic stack of finite type over a noetherian
ground scheme 𝑆, then the diagonal 𝒳 → 𝒳 ×𝑆 𝒳 is quasi-finite if and only if
there exists a finite surjective morphism 𝑋 → 𝐹 from a scheme 𝑋.

• Kresch, Vistoli: On coverings of Deligne-Mumford stacks and surjectivity of the Brauer
map [KV04]

It is proved here that any smooth, separated Deligne-Mumford stack finite type
over a field with quasi-projective coarse moduli space admits a finite, flat cover
by a smooth quasi-projective scheme.

• Olsson: On proper coverings of Artin stacks [Ols05]
Proves that if 𝒳 is an Artin stack separated and finite type over 𝑆, then there exists
a proper surjective morphism 𝑋 → 𝒳 from a scheme 𝑋 quasi-projective over 𝑆.
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As an application, Olsson proves coherence and constructibility of direct image
sheaves under proper morphisms. As an application, he proves Grothendieck's
existence theorem for proper Artin stacks.

66.5.7. Rigidification. Rigidification is a process for removing a flat subgroup from
the inertia. For example, if 𝑋 is a projective variety, the morphism from the Picard stack to
the Picard scheme is a rigidification of the group of automorphism 𝐆𝑚.

• Abramovich, Corti, Vistoli: Twisted bundles and admissible covers [ACV03]
Let 𝒳 be an algebraic stack over 𝑆 and 𝐻 be a flat, finitely presented separated
group scheme over 𝑆. Assume that for every object 𝜉 ∈ 𝒳(𝑇) there is an embed-
ding 𝐻(𝑆) ↪ Aut𝒳(𝑇)(𝜉) which is compatible under pullbacks in the sense that
for every arrow 𝜙 ∶ 𝜉 → 𝜉′ over 𝑓 ∶ 𝑇 → 𝑇′ and 𝑔 ∈ 𝐻(𝑇), 𝑔 ∘ 𝜙 = 𝜙 ∘ 𝑓∗𝑔. Then
there exists an algebraic stack 𝒳/𝐻 and a morphism 𝜌 ∶ 𝒳 → 𝒳/𝐻 which is an
fppf gerbe such that for every 𝜉 ∈ 𝒳(𝑇), the morphismAut𝒳(𝑇)(𝜉) → Aut𝒳/𝐻(𝑇)(𝜉)
is surjective with kernel 𝐻(𝑇).

• Romagny: Group actions on stacks and applications [Rom05]
Discusses how group actions behave with respect to rigidifications.

• Abramovich, Graber, Visolit: Gromov-Witten theory for Deligne-Mumford stacks [AGV08]
The appendix gives a summary of rigidification as in [ACV03] with two alterna-
tive interpretations. This paper also contains constructions for gluing algebraic
stacks along closed substacks and for taking roots of line bundles.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic ([AOV08])
The appendix handles the more complicated situation where the flat subgroup
stack of the inertia 𝐻 ⊆ 𝐼𝒳 is normal but not necessarily central.

66.5.8. Stacky curves.
• Abramovich, Vistoli: Compactifying the space of stable maps [AV02]

This paper introduces twisted curves. If one defines the moduli space of stable
maps into a stacks using stable curves, the result is not compact. By using maps
from twisted curves, the authors define a proper moduli stack.

• Behrend, Noohi: Uniformization of Deligne-Mumford curves [BN06]
Proves a uniformization theorem of Deligne-Mumford analytic curves.

66.5.9. Hilbert, Quot, Hom and branchvariety stacks.
• Vistoli: The Hilbert stack and the theory of moduli of families [Vis91]

If 𝒳 is a algebraic stack separated and locally of finite type over a locally noe-
therian and locally separated algebraic space 𝑆, Vistoli defines the Hilbert stack
ℋilb(ℱ/𝑆) parameterizing finite and unramifed morphisms from proper schemes.
It is claimed without proof that ℋilb(ℱ/𝑆) is an algebraic stack. As a conse-
quence, it is proved that with 𝒳 as above, the Hom stack ℋom𝑆(𝑇, 𝒳) is an alge-
braic stack if 𝑇 is proper and flat over 𝑆.

• Olsson, Starr: Quot functors for Deligne-Mumford stacks [OS03b]
If 𝒳 is a Deligne-Mumford stack separated and locally of finite presentation
over an algebraic space 𝑆 and ℱ is a locally finitely-presented 𝒪𝒳-module, the
quot functor Quot(ℱ/𝒳/𝑆) is represented by an algebraic space separated and lo-
cally of finite presentation over 𝑆. This paper also defines generating sheaves
and proves existence of a generating sheaf for tame, separated Deligne-Mumford
stacks which are global quotient stacks of a scheme by a finite group.
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• Olsson: Hom-stacks and Restrictions of Scalars [Ols06b]
Suppose 𝒳 and 𝒴 are Artin stacks locally of finite presentation over an algebraic
space 𝑆 with finite diagonal with 𝒳 proper and flat over 𝑆 such that fppf-locally
on 𝑆, 𝒳 admits a finite finitely presented flat cover by an algebraic space (eg. 𝒳
is Deligne-Mumford or a tame Artin stack). Then 𝐻𝑜𝑚𝑆(𝒳, 𝒴) is an Artin stack
locally of finite presentation over 𝑆.

• Alexeev and Knutson: Complete moduli spaces of branchvarieties ([AK06])
They define a branchvariety of 𝐏𝑛 as a finite morphism 𝑋 → 𝐏𝑛 from a reduced
scheme 𝑋. They prove that the moduli stack of branchvarieties with fixed Hilbert
polynomial and total degrees of 𝑖-dimensional components is a proper Artin stack
with finite stabilizer. They compare the stack of branchvarieties with the Hilbert
scheme, Chow scheme and moduli space of stable maps.

• Lieblich: Remarks on the stack of coherent algebras [Lie06]
This paper constructs a generalization of Alexeev and Knutson's stack of branch-
varieties over a scheme 𝑌 by building the stack as a stack of algebras over the
structure sheaf of 𝑌. Existence proofs of Quot and 𝐻𝑜𝑚 spaces are given.

• Starr: Artin's axioms, composition, and moduli spaces [Sta06]
As an application of the main result, a common generalization of Vistoli's Hilbert
stack [Vis91] and Alexeev and Knutson's stack of branchvarieties [AK06] is pro-
vided. If 𝒳 is an algebraic stack locally of finite type over an an excellent scheme
𝑆 with finite diagonal, then the stack ℋ parameterizing morphisms 𝑔 ∶ 𝑇 → 𝒳
from a proper algebraic space 𝑇 with a 𝐺-ample line bundle 𝐿 is an Artin stack
locally of finite type over 𝑆.

• Lundkvist and Skjelnes: Non-effective deformations of Grothendieck's Hilbert functor [LS08]
Shows that the Hilbert functor of a non-separated scheme is not represented since
there are non-effective deformations.

66.5.10. Toric stacks. Toric stacks provide a great class of examples and a natural
testing ground for conjectures due to the dictionary between the geometry of a toric stack
and the combinatorics of its stacky fan in a similar way that toric varieties provide examples
and counterexamples in scheme theory.

• Borisov, Chen and Smith: The orbifold Chow ring of toricDeligne-Mumford stacks [BCS05]
Inspired by Cox's construction for toric varieties, this paper defines smooth toric
DM stacks as explicit quotient stacks associated to a combinatorial object called
a stacky fan.

• Iwanari: The category of toric stacks [Iwa09]
This paper defines a toric triple as a smooth Deligne-Mumford stack 𝒳 with an
open immersion 𝐆𝑚 ↪ 𝒳 with dense image (and therefore 𝒳 is an orbifold) and
an action 𝒳 × 𝐆𝑚 → 𝒳. It is shown that there is an equivalence between the
2-category of toric triples and the 1-category of stacky fans. The relationship
between toric triples and the definition of smooth toric DM stacks in [BCS05] is
discussed.

• Iwanari: Integral Chow rings for toric stacks [Iwa07]
Generalizes Cox's Δ-collections for toric varieties to toric orbifolds.

• Perroni: A note on toric Deligne-Mumford stacks [Per08]
Generalizes Cox's Δ-collections and Iwanari's paper [Iwa07] to general smooth
toric DM stacks.
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• Fantechi, Mann, and Nironi: Smooth toric DM stacks [BF07]
This paper defines a smooth toric DM stack as a smooth DM stack 𝒳 with the
action of a DM torus 𝒯 (ie. a Picard stack isomorphic to 𝑇 × 𝐵𝐺 with 𝐺 finite)
having an open dense orbit isomorphic to 𝒯. They give a ``bottom-up description''
and prove an equivalence between smooth toric DM stacks and stacky fans.

66.5.11. Theorem on formal functions and Grothendieck's Existence Theorem.
These papers give generalizations of the theorem on formal functions [DG67, III.4.1.5]
(sometimes referred to Grothendieck's Fundamental Theorem for proper morphisms) and
Grothendieck's Existence Theorem [DG67, III.5.1.4].

• Knutson: Algebraic spaces [Knu71b, Chapter V]
Generalizes these theorems to algebraic spaces.

• Abramovich-Vistoli: Compactifying the space of stable maps [AV02, A.1.1]
Generalizes these theorems to tame Deligne-Mumford stacks

• Olsson and Starr: Quot functors for Deligne-Mumford stacks [OS03b]
Generalizes these theorems to separated Deligne-Mumford stacks.

• Olsson: On proper coverings of Artin stacks [Ols05]
Provides a generalization to proper Artin stacks.

• Conrad: Formal GAGA on Artin stacks [Con]
Provides a generalization to proper Artin stacks and proves a formal GAGA the-
orem.

• Olsson: Sheaves on Artin stacks [Ols07b]
Provides another proof for the generalization to proper Artin stacks.

66.5.12. Group actions on stacks. Actions of groups on algebraic stacks naturally
appear. For instance, symmetric group 𝑆𝑛 acts on ℳ𝑔,𝑛 and for an action of a group 𝐺 on
a scheme 𝑋, the normalizer of 𝐺 in Aut(𝑋) acts on [𝑋/𝐺]. Furthermore, torus actions on
stacks often appear in Gromov-Witten theory.

• Romagny: Group actions on stacks and applications [Rom05]
This paper makes precise what it means for a group to act on an algebraic stack
and proves existence of fixed points as well as existence of quotients for actions
of group schemes on algebraic stacks. See also Romagny's earlier note [Rom03].

66.5.13. Taking roots of line bundles. This useful construction was discovered in-
dependently by Cadman and by Abramovich, Graber and Vistoli. Given a scheme 𝑋 with
an effective Cartier divisor 𝐷, the 𝑟th root stack is an Artin stack branched over 𝑋 at 𝐷 with
a 𝜇𝑟 stabilizer over 𝐷 and scheme-like away from 𝐷.

• Charles Cadman Using Stacks to Impose Tangency Conditions on Curves [Cad07]
• Abramovich, Graber, Vistoli: Gromov-Witten theory for Deligne-Mumford stacks [AGV08]

66.5.14. Other papers.
• Lieblich: Moduli of twisted sheaves [Lie07]

This paper contains a summary of gerbes and twisted sheaves. If 𝒳 → 𝑋 is a
𝜇𝑛-gerbe with 𝑋 a projective relative surface with smooth connected geometric
fibers, it is shown that the stack of semistable 𝒳-twisted sheaves is an Artin stack
locally of finite presentation over 𝑆. This paper also develops the theory of asso-
ciated points and purity of sheaves on Artin stacks.

• Lieblich, Osserman: Functorial reconstruction theorem for stacks [LO08]
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Proves some surprising and interesting results on when an algebraic stack can be
reconstructed from its associated functor.

• David Rydh: Noetherian approximation of algebraic spaces and stacks [Ryd08]
This paper shows that every quasi-compact algebraic stack with quasi-finite diag-
onal can be approximated by a noetherian stack. There are applications to remov-
ing the noetherian hypothesis in results of Chevalley, Serre, Zariski and Chow.

66.6. Stacks in other fields

• Behrend and Noohi: Uniformization of Deligne-Mumford curves [BN06]
Gives an overview and comparison of topological, analytic and algebraic stacks.

• Behrang Noohi: Foundations of topological stacks I [Noo05]
• David Metzler: Topological and smooth stacks [Met05]

66.7. Higher stacks

• Lurie: Higher topos theory [Lur09f]
• Lurie: Derived AlgebraicGeometry I - V [Lur09a], [Lur09b], [Lur09c], [Lur09d], [Lur09e]

• Toën: Higher and derived stacks: a global overview [Toë09]
• Toën and Vezzosi: Homotopical algebraic geometry I, II [TV05], [TV08]
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CHAPTER 67

Desirables

67.1. Introduction

This is basically just a list of things that we want to put in the stacks project. As we add
material to the project continuously this is always somewhat behind the current state of the
project.

67.2. Conventions

We should have a chapter with a short list of conventions used in the document. This chapter
already exists, see Conventions, Section 2.1, but a lot more could be added there. Especially
useful would be to find ``hidden'' conventions and tacit assumptions and put those there.

67.3. Sites and Topoi

We have a chapter on sites and sheaves, see Sites, Section 9.1. We have a chapter on ringed
sites (and topoi) and modules on them, see Modules on Sites, Section 16.1. We have a
chapter on cohomology in this setting, see Cohomology on Sites, Section 19.1. But a lot
more could be added, especially in the chapter on cohomology.

67.4. Stacks

We have a chapter on (abstract) stacks, see Stacks, Section 50.1. It would be nice if
(1) improve the discussion on ``stackyfication'',
(2) give examples of stackyfication,
(3) more examples in general,
(4) a discussion of gerbes is missing sofar.

Example result: Given a sheaf of abelian groups ℱ over 𝒞 the set of equivalence classes of
gerbes with ``group'' ℱ is bijective to 𝐻2(𝒞, ℱ).

67.5. Simplicial methods

We have a chapter on simplicial methods, see Simplicial, Section 14.1. This has to be
reviewed and improved. Moreover, there should be a chapter on ``simplicial algebraic ge-
ometry'', where we discuss simplicial schemes, and how to think of their geometry, coho-
mology, etc. Then this should be tied into the chapter on hypercoverings to ``explain'' the
results of this chapter in the new language.

67.6. Cohomology of schemes

There is already a chapter on cohomology of quasi-coherent sheaves, see Coherent, Section
25.1. What is missing are chapters on étale cohomology and flat cohomology of schemes,
the relation with Galois cohomology etc.

2961
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67.7. Deformation theory a la Schlessinger

What is needed is a discussion of Schlessinger's paper first and foremost. It would be nice
to discuss this a tiny bit more generally than in Schlessinger's paper, but it is easy to fix
this up later also. For example we could discuss what happens if you have automorphisms
(e.g., functor in groupoids). After all this is usually why you have hulls and not actual
prorepresentability.

67.8. Definition of algebraic stacks

An algebraic stack is a stack that has a diagonal representable by algebraic spaces, that is
the target of a surjective smooth morphism from a scheme.
The notion ``Deligne-Mumford stack'' will be reserved for a stack as in [DM69a]. We will
reserve the term ``Artin stack'' for a stack such as in the papers by Artin [Art69c], and
[Art74a]. (See also [CdJ02a].) In other words, and Artin stack will be an algebraic stack
with some reasonable finiteness and separatedness conditions.

67.9. Examples of schemes, algebraic spaces, algebraic stacks

It really is not that hard to show that ℳ𝑔 is an algebraic stack for 𝑔 ≥ 2. We should have
[𝑋/𝐺] here. We should really have a long list of moduli problems here and prove they are all
algebraic stacks. (Some of themwe can postpone the proof until after Artin approximation.)
For example the Kontsevich moduli space in characteristic 𝑝 > 0.
Here are some items for the list of moduli problems mentioned above.

(1) ℳ𝑔, i.e., moduli of smooth projective curves of genus 𝑔,
(2) ℳ𝑔, i.e., moduli of stable genus 𝑔 curves,
(3) 𝒜𝑔, i.e., principally polarised abelian schemes of genus 𝑔,
(4) ℳ1,1, i.e., 1-pointed smooth projective genus 1 curves,
(5) ℳ𝑔,𝑛, i.e., smooth projective genus 𝑔-curves with 𝑛 pairwise distinct labeled

points,
(6) ℳ𝑔,𝑛, i.e., stable 𝑛-pointed nodal projective genus 𝑔-curves,
(7) ℋ𝑜𝑚𝑆(𝒳, 𝒴), moduli of morphisms (with suitable conditions on the stacks 𝒳, 𝒴

and the base scheme 𝑆),
(8) Bun𝐺(𝑋) = ℋ𝑜𝑚𝑆(𝑋, 𝐵𝐺), the stack of 𝐺-bundles of the geometric Langlands

programme (with suitable conditions on the scheme 𝑋, the group scheme 𝐺, and
the base scheme 𝑆),

(9) Pic𝒳/𝑆, i.e., the Picard stack associated to an algebraic stack over a base scheme
(or space).

How about the algebraic space you get from the deformation theory of a general surface in
𝐏3 with a node? (I mean where you deform it to a general smooth surface in 𝐏3.)
Perhaps we can talk about some small dimensional examples here too. For example the
stack where you have 𝐀1 with a 𝐵(𝐙/2) sitting at 0. Bugeyed covers. You name it.

67.10. Properties of algebraic stacks

Such as the various ways of defining what a proper algebraic stack is. Of course these things
are really properties of morphisms of stacks.
We can define singularities (up to smooth factors) etc. Prove that a connected normal stack
is irreducible, etc.
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67.11. Lisse étale site of an algebraic stack

This has to be explained and introduced. Explain it is not functorial with respect to 1-morphisms
of algebraic stacks. Define étale cohomology of an algebraic stack with coefficients in a
sheaf on the lisse-étale site. Prove a Leray spectral sequence exists (always?). Explain
about cohomology of quasi-coherent sheaves.

67.12. Things you always wanted to know but were afraid to ask

There are going to be lots of lemmas that you use over and over again that are useful but
aren't really mentioned specifically in the literature, or it isn't easy to find references for.
Bag of tricks.
Example: Given two groupoids in schemes 𝑅 ⇒ 𝑈 and 𝑅′ ⇒ 𝑈′ what does it mean to
have a 1-morphism [𝑈/𝑅] → [𝑈′/𝑅′] purely in terms of groupoids in schemes. (This is bad
because surely this is in the lit somewhere.) More anybody?

67.13. Quasi-coherent sheaves on stacks

Define them and explain how you get them. You can define them as living on the lisse-
étale site or on all of the stack and show the two notions are equivalent. Cohomology of
quasi-coherent sheaves.

67.14. Flat and smooth

Artin's theorem that having a flat surjection from a scheme is a replacement for the smooth
surjective condition.

67.15. Artin's representability theorem

Title is clear enough. Perhaps we can reformulate the condition of having a deformation
theory a little to adapt it more to the examples we know about, especially those where there
is a perfect obstruction theory (discussions with Jason)?

67.16. DM stacks are finitely covered by schemes

This all begins with Gabber's lemma I think. Somewhere in Asterisque about Faltings proof
of Mordell?

67.17. Martin Olson's paper on properness

This proves two notions of proper are the same. We can also discuss Faltings result that it
suffices to use DVR's in certain cases.

67.18. Proper pushforward of coherent sheaves

No comments yet.

67.19. Keel and Mori

See [KM97a]. The steps in this article also give a good way of looking at what an algebraic
stack locally looks like.

67.20. Add more here

Please.
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CHAPTER 68

Coding Style

68.1. List of style comments

These will be changed over time, but having some here now will hopefully encourage a
consistent LaTeX style. We will call ``code1'' the contents of the source files.

(1) Keep all lines in all tex files to at most 80 characters.
(2) Do not use indentation in the tex file. Use syntax highlighting in your editor,

instead of indentation, to visualize environments, etc.
(3) Use

\medskip\noindent
to start a new paragraph, and use
\noindent
to start a new paragraph just after an environment.

(4) Do not break the code for mathematical formulas across lines if possible. If the
complete code complete with enclosing dollar signs does not fit on the line, then
start with the first dollar sign on the first character of the next line. If it still does
not fit, find a mathematically reasonable spot to break the code.

(5) Displayed math equations should be coded as follows
$$
...
...
$$
In other words, start with a double dollar sign on a line by itself and end similarly.

(6) Do not use any macros. Rationale: This makes it easier to read the tex file, and
start editing an arbitrary part without having to learn inumerable macros. And it
doesn't make it harder or more timeconsuming to write. Of course the disadvan-
tage is that the same mathematical object may be TeXed differently in different
places in the text, but this should be easy to spot.

(7) The theorem environmentswe use are: ``theorem'', ``proposition'', ``lemma'' (plain),
``definition'', ``example'', ``exercise'', ``situation'' (definition), ``remark'', ``remarks''
(remark). Of course there is also a ``proof'' environment.

(8) An environment ``foo'' should be coded as follows
\begin{foo}
...
...
\end{foo}
similarly to the way displayed equations are coded.

1It is all Knuth's fault. See [Knu79].
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(9) Instead of a ``corollary'', just use ``lemma'' environment since likely the result
will be used to prove the next bigger theorem anyway.

(10) Directly following each lemma, proposition, or theorem is the proof of said lemma,
proposition, or theorem. No nested proofs please.

(11) The files preamble.tex, chapters.tex and fdl.tex are special tex files. Apart from
these, each tex file has the following structure
\input{preamble}
\begin{document}
\title{Title}
\maketitle
\tableofcontents
...
...
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}

(12) Try to add labels to lemmas, propositions, theorems, and even remarks, exercise,
and other environments. If labelling a lemma use something like
\begin{lemma}
\label{lemma-bar}
...
\end{lemma}
Similarly for all other environments. In other words, the label of a environment
named ``foo'' starts with ``foo-''. In addition to this please make all labels consist
only of lower case letters, digits, and the symbol ``-''.

(13) Never refer to ``the lemma above'' (or proposition, etc). Instead use:
Lemma \ref{lemma-bar} above
This means that later moving lemmas around is basically harmless.

(14) Cross-file referencing. To reference a lemma labeled ``lemma-bar'' in the file
foo.tex which has title ``Foo'', please use the following code
Foo, Lemma \ref{foo-lemma-bar}
If this does not work, then take a look at the file preamble.tex to find the correct
expression to use. This will produce the ``Foo, Lemma <link>'' in the output file
so it will be clear that the link points out of the file.

(15) If at all possible avoid forward references in proof environments. (It should be
possible to write an automated test for this.)

(16) Do not start any sentence with a mathematical symbol.
(17) Do not have a sentence of the type ``This follows from the following'' just before

a lemma, proposition, or theorem. Every sentence ends with a period.
(18) State all hypotheses in each lemma, proposition, theorem. This makes it easier for

readers to see if a given lemma, proposition, or theorem applies to their particular
problem.

(19) Keep proofs short; less than 1 page in pdf or dvi. You can always achieve this by
splitting out the proof in lemmas etc.

(20) In a defining property foobar use
{\it foobar}
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in the code inside the definition evironment. Similarly if the definition occurs in
the text of the document. This will make it easier for the reader to see what it is
that is being defined.

(21) Put any definition that will be used outside the section it is in, in its own definition
evironment. Temporary definitions may be made in the text. A tricky case is that
of mathematical constructions (which are often definitions involving interrelated
lemmas). Maybe a good solution is to have them in their own short section so
users can refer to the section instead of a definition.

(22) Do not number equations unless they are actually being referenced somewhere in
the text. We can always add labels later.

(23) In statements of lemmas, propositions and theorems and in proofs keep the sen-
tences short. For example, instead of ``Let𝑅 be a ring and let𝑀 be an𝑅-module.''
write ``Let 𝑅 be a ring. Let 𝑀 be an 𝑅-module.''. Rationale: This makes it easier
to parse the trickier parts of proofs and statements.

(24) Use the
\section
command tomake sections, but try to avoid using subsections and subsubsections.

(25) Avoid using complicated latex constructions.

68.2. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups
(9) Sites and Sheaves

(10) Homological Algebra
(11) Derived Categories
(12) More on Algebra
(13) Smoothing Ring Maps
(14) Simplicial Methods
(15) Sheaves of Modules
(16) Modules on Sites
(17) Injectives
(18) Cohomology of Sheaves
(19) Cohomology on Sites
(20) Hypercoverings
(21) Schemes
(22) Constructions of Schemes
(23) Properties of Schemes
(24) Morphisms of Schemes
(25) Coherent Cohomology
(26) Divisors
(27) Limits of Schemes

(28) Varieties
(29) Chow Homology
(30) Topologies on Schemes
(31) Descent
(32) Adequate Modules
(33) More on Morphisms
(34) More on Flatness
(35) Groupoid Schemes
(36) More on Groupoid Schemes
(37) Étale Morphisms of Schemes
(38) Étale Cohomology
(39) Crystalline Cohomology
(40) Algebraic Spaces
(41) Properties of Algebraic Spaces
(42) Morphisms of Algebraic Spaces
(43) Decent Algebraic Spaces
(44) Topologies on Algebraic Spaces
(45) Descent and Algebraic Spaces
(46) More on Morphisms of Spaces
(47) Quot and Hilbert Spaces
(48) Spaces over Fields
(49) Cohomology of Algebraic Spaces
(50) Stacks
(51) Formal Deformation Theory
(52) Groupoids in Algebraic Spaces
(53) More on Groupoids in Spaces
(54) Bootstrap



2968 68. CODING STYLE

(55) Examples of Stacks
(56) Quotients of Groupoids
(57) Algebraic Stacks
(58) Sheaves on Algebraic Stacks
(59) Criteria for Representability
(60) Properties of Algebraic Stacks
(61) Morphisms of Algebraic Stacks
(62) Cohomology of Algebraic Stacks
(63) Introducing Algebraic Stacks

(64) Examples
(65) Exercises
(66) Guide to Literature
(67) Desirables
(68) Coding Style
(69) Obsolete
(70) GNU Free Documentation Li-

cense
(71) Auto Generated Index



CHAPTER 69

Obsolete

69.1. Introduction

In this chapter we put some lemmas that have become ``obsolete'' (see [Mil17]).

69.2. Lemmas related to ZMT

The lemmas in this section were originally used in the proof of the (algebraic version of)
Zariski's Main Theorem, Algebra, Theorem 7.114.13.

Lemma 69.2.1. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Suppose 𝑡 ∈ 𝑆 satisfies the relation
𝜑(𝑎0) + 𝜑(𝑎1)𝑡 + … + 𝜑(𝑎𝑛)𝑡𝑛 = 0. Set 𝑢𝑛 = 𝜑(𝑎𝑛), 𝑢𝑛−1 = 𝑢𝑛𝑡 + 𝜑(𝑎𝑛−1), and so on till
𝑢1 = 𝑢2𝑡 + 𝜑(𝑎1). Then all of 𝑢𝑛, 𝑢𝑛−1, … , 𝑢1 and 𝑢𝑛𝑡, 𝑢𝑛−1𝑡, … , 𝑢1𝑡 are integral over 𝑅,
and the ideals (𝜑(𝑎0), … , 𝜑(𝑎𝑛)) and (𝑢𝑛, … , 𝑢1) of 𝑆 are equal.

Proof. We prove this by induction on 𝑛. As 𝑢𝑛 = 𝜑(𝑎𝑛) we conclude fromAlgebra, Lemma
7.114.1 that 𝑢𝑛𝑡 is integral over 𝑅. Of course 𝑢𝑛 = 𝜑(𝑎𝑛) is integral over 𝑅. Then 𝑢𝑛−1 =
𝑢𝑛𝑡 + 𝜑(𝑎𝑛−1) is integral over 𝑅 (see Algebra, Lemma 7.32.7) and we have

𝜑(𝑎0) + 𝜑(𝑎1)𝑡 + … + 𝜑(𝑎𝑛−1)𝑡𝑛−1 + 𝑢𝑛−1𝑡𝑛−1 = 0.

Hence by the induction hypothesis applied to the map 𝑆′ → 𝑆 where 𝑆′ is the integral
closure of 𝑅 in 𝑆 and the displayed equation we see that 𝑢𝑛−1, … , 𝑢1 and 𝑢𝑛−1𝑡, … , 𝑢1𝑡 are
all in 𝑆′ too. The statement on the ideals is immediate from the shape of the elements and
the fact that 𝑢1𝑡 + 𝜑(𝑎0) = 0. �

Lemma 69.2.2. Let 𝜑 ∶ 𝑅 → 𝑆 be a ring map. Suppose 𝑡 ∈ 𝑆 satisfies the relation
𝜑(𝑎0) + 𝜑(𝑎1)𝑡 + … + 𝜑(𝑎𝑛)𝑡𝑛 = 0. Let 𝐽 ⊂ 𝑆 be an ideal such that for at least one 𝑖 we
have 𝜑(𝑎𝑖)∉𝐽. Then there exists a 𝑢 ∈ 𝑆, 𝑢∉𝐽 such that both 𝑢 and 𝑢𝑡 are integral over 𝑅.

Proof. This is immediate from Lemma 69.2.1 since one of the elements 𝑢𝑖 will not be in
𝐽. �

The following two lemmas are a way of describing closed subschemes of 𝐏1
𝑅 cut out by one

(nondegenerate) equation.

Lemma 69.2.3. Let 𝑅 be a ring. Let 𝐹(𝑋, 𝑌) ∈ 𝑅[𝑋, 𝑌] be homogenous of degree 𝑑.
Assume that for every prime 𝔭 of 𝑅 at least one coefficient of 𝐹 is not in 𝔭. Let 𝑆 =
𝑅[𝑋, 𝑌]/(𝐹) as a graded ring. Then for all 𝑛 ≥ 𝑑 the 𝑅-module 𝑆𝑛 is finite locally free of
rank 𝑑.

Proof. The 𝑅-module 𝑆𝑛 has a presentation

𝑅[𝑋, 𝑌]𝑛−𝑑 → 𝑅[𝑋, 𝑌]𝑛 → 𝑆𝑛 → 0.

Thus by Algebra, Lemma 7.73.3 it is enough to show that multiplication by 𝐹 induces an
injective map 𝜅(𝔭)[𝑋, 𝑌] → 𝜅(𝔭)[𝑋, 𝑌] for all primes 𝔭. This is clear from the assumption
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that 𝐹 does not map to the zero polynomial mod 𝔭. The assertion on ranks is clear from this
as well. �

Lemma 69.2.4. Let 𝑘 be a field. Let 𝐹, 𝐺 ∈ 𝑘[𝑋, 𝑌] be homogeneous of degrees 𝑑, 𝑒.
Assume 𝐹, 𝐺 relatively prime. Then multiplication by 𝐺 is injective on 𝑆 = 𝑘[𝑋, 𝑌]/(𝐹).

Proof. This is one way to define ``relatively prime''. If you have another definition, then
you can show it is equivalent to this one. �

Lemma 69.2.5. Let 𝑅 be a ring. Let 𝐹(𝑋, 𝑌) ∈ 𝑅[𝑋, 𝑌] be homogenous of degree 𝑑. Let
𝑆 = 𝑅[𝑋, 𝑌]/(𝐹) as a graded ring. Let 𝔭 ⊂ 𝑅 be a prime such that some coefficient of
𝐹 is not in 𝔭. There exists an 𝑓 ∈ 𝑅 𝑓∉𝔭, an integer 𝑒, and a 𝐺 ∈ 𝑅[𝑋, 𝑌]𝑒 such that
multiplication by 𝐺 induces isomorphisms (𝑆𝑛)𝑓 → (𝑆𝑛+𝑒)𝑓 for all 𝑛 ≥ 𝑑.

Proof. During the course of the proof we may replace 𝑅 by 𝑅𝑓 for 𝑓 ∈ 𝑅, 𝑓∉𝔭 (finitely
often). As a first step we do such a replacement such that some coefficient of 𝐹 is invertible
in 𝑅. In particular the modules 𝑆𝑛 are now locally free of rank 𝑑 for 𝑛 ≥ 𝑑 by Lemma
69.2.3. Pick any 𝐺 ∈ 𝑅[𝑋, 𝑌]𝑒 such that the image of 𝐺 in 𝜅(𝔭)[𝑋, 𝑌] is relatively prime
to the image of 𝐹(𝑋, 𝑌) (this is possible for some 𝑒). Apply Algebra, Lemma 7.73.3 to the
map induced by multiplication by 𝐺 from 𝑆𝑑 → 𝑆𝑑+𝑒. By our choice of 𝐺 and Lemma
69.2.4 we see 𝑆𝑑 ⊗ 𝜅(𝔭) → 𝑆𝑑+𝑒 ⊗ 𝜅(𝔭) is bijective. Thus, after replacing 𝑅 by 𝑅𝑓 for a
suitable 𝑓 we may assume that 𝐺 ∶ 𝑆𝑑 → 𝑆𝑑+𝑒 is bijective. This in turn implies that the
image of 𝐺 in 𝜅(𝔭′)[𝑋, 𝑌] is relatively prime to the image of 𝐹 for all primes 𝔭′ of 𝑅. And
then by Algebra, Lemma 7.73.3 again we see that all the maps 𝐺 ∶ 𝑆𝑑 → 𝑆𝑑+𝑒, 𝑛 ≥ 𝑑 are
isomorphisms. �

Remark 69.2.6. Let 𝑅 be a ring. Suppose that we have 𝐹 ∈ 𝑅[𝑋, 𝑌]𝑑 and 𝐺 ∈ 𝑅[𝑋, 𝑌]𝑒
such that, setting 𝑆 = 𝑅[𝑋, 𝑌]/(𝐹) we have (1) 𝑆𝑛 is finite locally free of rank 𝑑 for all
𝑛 ≥ 𝑑, and (2) multiplication by 𝐺 defines ismorphisms 𝑆𝑛 → 𝑆𝑛+𝑒 for all 𝑛 ≥ 𝑑. In this
case we may define a finite, locally free 𝑅-algebra 𝐴 as follows:

(1) as an 𝑅-module 𝐴 = 𝑆𝑒𝑑, and
(2) multiplication 𝐴 × 𝐴 → 𝐴 is given by the rule that 𝐻1𝐻2 = 𝐻3 if and only if

𝐺𝑑𝐻3 = 𝐻1𝐻2 in 𝑆2𝑒𝑑.
This makes sense because multiplication by 𝐺𝑑 induces a bijective map 𝑆𝑑𝑒 → 𝑆2𝑑𝑒. It is
easy to see that this defines a ring structure. Note the confusing fact that the element 𝐺𝑑

defines the unit element of the ring 𝐴.

Lemma 69.2.7. Let 𝑅 be a ring, let 𝑓 ∈ 𝑅. Suppose we have 𝑆, 𝑆′ and the solid arrows
forming the following commutative diagram of rings

𝑆″

!!

��

𝑅 //

==

��

𝑆

��
𝑅𝑓

// 𝑆′ // 𝑆𝑓

Assume that 𝑅𝑓 → 𝑆′ is finite. Then we can find a finite ring map 𝑅 → 𝑆″ and dotted
arrows as in the diagram such that 𝑆′ = (𝑆″)𝑓.
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Proof. Namely, suppose that 𝑆′ is generated by 𝑥𝑖 over 𝑅𝑓, 𝑖 = 1, … , 𝑤. Let 𝑃𝑖(𝑡) ∈
𝑅𝑓[𝑡] be a monic polynomial such that 𝑃𝑖(𝑥𝑖) = 0. Say 𝑃𝑖 has degree 𝑑𝑖 > 0. Write
𝑃𝑖(𝑡) = 𝑡𝑑𝑖 + ∑𝑗<𝑑𝑖

(𝑎𝑖𝑗/𝑓𝑛)𝑡𝑗 for some uniform 𝑛. Also write the image of 𝑥𝑖 in 𝑆𝑓 as 𝑔𝑖/𝑓𝑛

for suitable 𝑔𝑖 ∈ 𝑆. Then we know that the element 𝜉𝑖 = 𝑓𝑛𝑑𝑖𝑔𝑑𝑖
𝑖 + ∑𝑗<𝑑𝑖

𝑓𝑛(𝑑𝑖−𝑗)𝑎𝑖𝑗𝑔
𝑗
𝑖

of 𝑆 is killed by a power of 𝑓. Hence upon increasing 𝑛 to 𝑛′, which replaces 𝑔𝑖 by
𝑓𝑛′−𝑛𝑔𝑖 we may assume 𝜉𝑖 = 0. Then 𝑆′ is generated by the elements 𝑓𝑛𝑥𝑖, each of
which is a zero of the monic polynomial 𝑄𝑖(𝑡) = 𝑡𝑑𝑖 + ∑𝑗<𝑑𝑖

𝑓𝑛(𝑑𝑖−𝑗)𝑎𝑖𝑗𝑡𝑗 with coeffi-
cients in 𝑅. Also, by construction 𝑄𝑖(𝑓𝑛𝑔𝑖) = 0 in 𝑆. Thus we get a finite 𝑅-algebra
𝑆″ = 𝑅[𝑧1, … , 𝑧𝑤]/(𝑄1(𝑧1), … , 𝑄𝑤(𝑧𝑤)) which fits into a commutative diagram as above.
The map 𝛼 ∶ 𝑆″ → 𝑆 maps 𝑧𝑖 to 𝑓𝑛𝑔𝑖 and the map 𝛽 ∶ 𝑆″ → 𝑆′ maps 𝑧𝑖 to 𝑓𝑛𝑥𝑖. It may not
yet be the case that 𝛽 induces an isomorphism (𝑆″)𝑓 ≅ 𝑆′. For the moment we only know
that this map is surjective. The problem is that there could be elements ℎ/𝑓𝑛 ∈ (𝑆″)𝑓 which
map to zero in 𝑆′ but are not zero. In this case 𝛽(ℎ) is an element of 𝑆 such that 𝑓𝑁𝛽(ℎ) = 0
for some 𝑁. Thus 𝑓𝑁ℎ is an element ot the ideal 𝐽 = {ℎ ∈ 𝑆″ ∣ 𝛼(ℎ) = 0 and 𝛽(ℎ) = 0}
of 𝑆″. OK, and it is easy to see that 𝑆″/𝐽 does the job. �

69.3. Formally smooth ring maps

Lemma 69.3.1. Let 𝑅 be a ring. Let 𝑆 be a 𝑅-algebra. If 𝑆 is of finite presentation and
formally smooth over 𝑅 then 𝑆 is smooth over 𝑅.

Proof. See Algebra, Proposition 7.127.13. �
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CHAPTER 70

GNU Free Documentation License

Version 1.2, November 2002
Copyright ©2000, 2001, 2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and use-

ful document "free" in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

70.1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as
"you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Docu-
ment that deals exclusively with the relationship of the publishers or authors of the Doc-
ument to the Document's overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
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could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whosemarkup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plainASCIIwithoutmarkup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title, preceding the beginning of
the body of the text.

A section "Entitled XYZ"means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve
the Title" of such a section when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

70.2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
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saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, youmay accept compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

70.3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
youmust either include amachine-readable Transparent copy alongwith eachOpaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

70.4. MODIFICATIONS

Youmay copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the pub-

lic permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Doc-
ument, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. Youmay omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Ti-
tle of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
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same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

70.5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sec-
tions with the same name but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the original author or publisher of
that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any sections
Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete
all sections Entitled "Endorsements".

70.6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

Youmay extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

70.7. AGGREGATIONWITH INDEPENDENTWORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an "ag-
gregate" if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of theDocument,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.
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70.8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and anyWarranty Disclaimers, provided that you also include the original Eng-
lish version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "His-
tory", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

70.9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

70.10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

70.11. ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is in-
cluded in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:
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with the Invariant Sections being LISTTHEIRTITLES,with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

70.12. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups
(9) Sites and Sheaves

(10) Homological Algebra
(11) Derived Categories
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(25) Coherent Cohomology
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(29) Chow Homology
(30) Topologies on Schemes
(31) Descent
(32) Adequate Modules
(33) More on Morphisms
(34) More on Flatness
(35) Groupoid Schemes
(36) More on Groupoid Schemes

(37) Étale Morphisms of Schemes
(38) Étale Cohomology
(39) Crystalline Cohomology
(40) Algebraic Spaces
(41) Properties of Algebraic Spaces
(42) Morphisms of Algebraic Spaces
(43) Decent Algebraic Spaces
(44) Topologies on Algebraic Spaces
(45) Descent and Algebraic Spaces
(46) More on Morphisms of Spaces
(47) Quot and Hilbert Spaces
(48) Spaces over Fields
(49) Cohomology of Algebraic Spaces
(50) Stacks
(51) Formal Deformation Theory
(52) Groupoids in Algebraic Spaces
(53) More on Groupoids in Spaces
(54) Bootstrap
(55) Examples of Stacks
(56) Quotients of Groupoids
(57) Algebraic Stacks
(58) Sheaves on Algebraic Stacks
(59) Criteria for Representability
(60) Properties of Algebraic Stacks
(61) Morphisms of Algebraic Stacks
(62) Cohomology of Algebraic Stacks
(63) Introducing Algebraic Stacks
(64) Examples
(65) Exercises
(66) Guide to Literature
(67) Desirables
(68) Coding Style
(69) Obsolete
(70) GNU Free Documentation Li-

cense
(71) Auto Generated Index





CHAPTER 71
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71.1. Alphabetized definitions

(2, 1)-category in 4.27.1
(2, 1)-periodic complex in 29.3.1
(𝐴, 𝐵)-bimodule in 7.11.6
(𝑅𝑘) in 7.140.1
(𝑅𝑘) in 23.12.1
(𝑆𝑘) in 7.140.1
(𝑆𝑘) in 23.12.1
(𝑆𝑘) in 25.13.1
(𝑆𝑘) in 25.13.1
1-morphisms in 4.26.1
2-category of algebraic stacks over 𝑆 in
57.12.3
2-category of categories fibred in groupoids
over 𝒞 in 4.32.6
2-category of categories fibred in setoids
over 𝒞 in 4.36.3
2-category of categories fibred in sets over
𝒞 in 4.35.3
2-category of categories over 𝒞 in 4.29.1
2-category of fibred categories over 𝒞 in
4.30.8
2-category of stacks in groupoids over 𝒞 in
50.5.5
2-category of stacks in setoids over 𝒞 in
50.6.5
2-category of stacks over 𝒞 in 50.4.5
2-category in 4.26.1
2-morphisms in 4.26.1
2-periodic complex in 29.3.1
𝛼-small with respect to 𝐼 in 17.6.4
𝛿 is compatible with 𝛾 in 39.8.1
𝛿-dimension of 𝑍 in 29.7.5
𝛿-functor from 𝒜 to 𝒟 in 11.3.6
𝛿-functor in 10.9.1
𝛿(𝜏) in 65.33.2
𝛿𝑛

𝑗 ∶ [𝑛 − 1] → [𝑛] in 14.2.1

ℓ-adic cohomology in 38.80.8
𝜖-invariant in 29.27.3
𝐻𝑜𝑚(𝑈, 𝑉) in 14.13.1
𝐻𝑜𝑚(𝑈, 𝑉) in 14.15.1
𝜅-generated in 23.21.1
𝐙ℓ-sheaf in 38.80.1
𝒞Λ in 51.3.1
ℱ is locally finitely presented relative to 𝑆 in
34.2.1
𝒢-torsor in 18.5.1
𝒢-torsor in 19.5.1
ℐ is cofinal in 𝒥 in 4.17.5
𝒦𝑋 in 26.15.1
𝒪∗ in 16.28.1
𝒪1-derivation in 16.29.1
𝒪𝒳-module in 58.7.1
𝒮 is endowed with the topology inherited
from 𝒞 in 50.10.2
𝒮𝐹 in 4.33.2
𝒮𝐹 in 4.34.2
𝒳 is relatively representable over 𝒴 in
4.38.5
𝜙 lies over 𝑓 in 4.29.2
Sh(𝒞) in 9.7.5
𝜎𝑛

𝑗 ∶ [𝑛 + 1] → [𝑛] in 14.2.1
𝜏 𝐺-torsor in 35.9.3
𝜏 𝐺-torsor in 52.9.3
𝜏 local on the base in 31.18.1
𝜏 local on the base in 45.9.1
𝜏 local on the source in 31.22.1
𝜏 local on the source in 45.12.1
𝜏 local on the target in 31.18.1
𝜏 local on the target in 45.9.1
𝜏 torsor in 35.9.3
𝜏 torsor in 52.9.3
𝜏-covering in 38.20.1
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Adeq((Sch/𝑆)𝜏, 𝒪) in 32.5.7
Adeq(𝒪) in 32.5.7
Adeq(𝑆) in 32.5.7
Mod𝐺 in 38.57.1
Ext-group in 10.4.2
Fil𝑓(𝒜) in 65.23.4
𝑈 = ℎ𝑈 in 9.12.3
𝜑-derivation in 16.29.1
𝒞Λ in 51.4.1
𝐶𝑟 in 38.59.8
𝐶𝑆/𝑅 in 7.136.2
𝑑(𝑀) in 7.56.7
𝑓 has relative dimension 𝑑 at 𝑥 in 42.30.1
𝐹 is relatively representable over 𝐺 in 4.8.2
𝑓-ample in 24.36.1
𝐹-crystal on 𝑋/𝑆 (relative to 𝜎) in 39.31.2
𝑓-map 𝜑 ∶ 𝒢 → ℱ in 41.15.8
𝑓-map 𝜉 ∶ 𝒢 → ℱ in 6.21.7
𝑓-relatively ample in 24.36.1
𝑓-relatively very ample in 24.37.1
𝑓-very ample in 24.37.1
𝑓−1𝒮 in 50.12.9
𝑓∗𝒮 in 50.12.4
𝐺-equivariant quasi-coherent𝒪𝑋-module in
35.10.1
𝐺-equivariant quasi-coherent𝒪𝑋-module in
52.10.1
𝐺-equivariant in 35.8.1
𝐺-equivariant in 52.8.1
𝐺-invariant in 56.3.1
𝐺-module in 38.57.1
𝐺-set in 38.55.1
𝐺-torsor in the 𝜏 topology in 35.9.3
𝐺-torsor in the 𝜏 topology in 52.9.3
𝐺-torsor in 35.9.3
𝐺-trace of 𝑓 on 𝑃 in 38.77.2
𝐺-Sets in 38.55.1
𝑔!ℱ = (𝑔𝑝!ℱ)# in 16.16.1
𝑔𝑝!ℱ in 16.16.1
𝐻𝑖+𝑘(𝐴•) ⟶ 𝐻𝑖(𝐴[𝑘]•) in 10.12.8
𝐻1-regular ideal in 12.23.1
𝐻1-regular immersion in 26.13.1
𝐻1-regular immersion in 46.21.2
𝐻1-regular in 12.22.1
𝐻1-regular in 26.12.2
𝐻𝑖+𝑘(𝐴•) → 𝐻𝑖(𝐴[𝑘]•) in 10.12.2
𝐼-adically complete in 7.90.5
𝐼-adically complete in 7.90.5

𝐼-depth in 7.65.4
𝐼-power torsion module in 12.8.1
𝑖th extension group in 11.26.1
𝑖th right derived functor 𝑅𝑖𝐹 of 𝐹 in 11.16.2
𝑘-cycle associated to ℱ in 29.10.2
𝑘-cycle associated to 𝑍 in 29.9.2
𝑘-cycle in 29.8.1
𝑘-shifted chain complex 𝐴[𝑘]• in 10.12.1
𝑘-shifted cochain complex 𝐴[𝑘]• in 10.12.7
𝐿-function of ℱ in 38.81.1
𝐿-function of ℱ in 38.81.3
𝑀 ↦ 𝑀∨ in 17.3.1
𝑚-pseudo-coherent relative to 𝑅 in 12.45.4
𝑚-pseudo-coherent relative to 𝑅 in 12.45.4
𝑚-pseudo-coherent in 12.40.1
𝑚-pseudo-coherent in 12.40.1
𝑀-quasi-regular in 7.66.1
𝑀-regular sequence in 𝐼 in 7.65.1
𝑀-regular in 7.65.1
𝑛-simplex of 𝑈 in 14.11.1
𝑛-truncated simplicial object of 𝒞 in 14.17.1
𝑅-bilinear in 7.11.1
𝑅-derivation in 7.122.1
𝑅-equivalent in 56.5.4
𝑅-invariant in 35.16.1
𝑅-invariant in 35.16.1
𝑅-invariant in 35.16.1
𝑅-invariant in 52.17.1
𝑅-invariant in 52.17.1
𝑅-invariant in 52.17.1
𝑅-invariant in 56.3.1
𝑅-linear in 51.10.1
𝑅-module of finite presentation in 7.5.1
𝑅-orbit in 56.5.1
𝑅-orbit in 56.5.4
𝑅(𝑓) in 65.20.3
𝑆 is a finite type 𝑅-algebra in 7.6.1
𝑆-derivation 𝐷 ∶ 𝒪𝑋/𝑆 → ℱ in 39.16.1
𝑆-derivation in 24.32.1
𝑆-pure in 34.16.1
𝑆-pure in 34.16.1
𝑆-rational map from 𝑋 to 𝑌 in 24.8.1
𝑈 in 9.12.3
𝑉• is cartesian over 𝑋• in 31.36.1
𝑥 lies over 𝑈 in 4.29.2
𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒 in 41.15.2
𝑌-derivation in 16.29.6
2-fibre product of 𝑓 and 𝑔 in 4.28.2
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2-morphism from 𝑓 to 𝑔 in 9.32.1
2-morphism from 𝑓 to 𝑔 in 16.8.1
étale at 𝔮 in 7.132.1
étale at 𝑥 ∈ 𝑋 in 24.35.1
étale at 𝑥 ∈ 𝑋 in 37.11.4
étale at 𝑥 in 42.35.1
étale covering of 𝑇 in 30.4.1
étale covering of 𝑋 in 44.7.1
étale covering in 38.4.1
étale covering in 38.27.1
étale equivalence relation in 40.9.2
étale homomorphism of local rings in
37.11.1
étale local on source-and-target in 31.28.3
étale local on the source-and-target in
31.29.1
étale local ring of 𝑆 at 𝑠 in 38.33.2
étale local ring of 𝑋 at 𝑥 in 41.19.2
étale local in 31.17.1
étale neighborhood in 38.29.1
étale neighborhood in 41.16.2
étale neighbourhood of (𝑆, 𝑠) in 33.25.1
étale sheaf in 58.4.3
étale topos in 38.21.1
étale topos in 41.15.6
étale in 7.132.1
étale in 24.35.1
étale in 31.16.2
étale in 37.11.4
étale in 38.26.1
étale in 41.13.2
Cech cohomology groups in 38.18.1
Cech complex in 38.18.1
abelian presheaf over 𝑋 in 6.4.4
abelian presheaf in 38.9.1
abelian sheaf on 𝑋 in 6.8.1
abelian sheaves in 38.11.4
abelian variety in 38.61.1
abelian in 10.3.12
absolute frobenius in 38.66.1
absolute Galois group in 38.56.1
abuts to in 10.17.6
action of 𝐺 on the algebraic space 𝑋/𝐵 in
52.8.1
action of 𝐺 on the scheme 𝑋/𝑆 in 35.8.1
acts freely in 40.14.4
acyclic for 𝐿𝐹 in 11.15.3
acyclic for 𝑅𝐹 in 11.15.3

acyclic in 10.10.4
acyclic in 10.10.10
additive in 10.3.1
additive in 10.3.8
adequate in 32.3.2
adequate in 32.5.1
adic in 12.27.1
admissible relation in 29.2.1
admissible in 12.27.1
admissible in 29.2.1
affine 𝑛-space over 𝑅 in 22.5.1
affine 𝑛-space over 𝑆 in 22.5.1
affine blowup algebra in 7.54.1
affine cone associated to 𝒜 in 22.7.1
affine scheme in 21.5.5
affine variety in 28.16.1
affine in 24.11.1
affine in 42.19.2
algebraic 𝑘-scheme in 28.13.1
algebraic closure of 𝑘 in 𝐾 in 7.38.6
algebraic space over 𝑆 in 40.6.1
algebraic space structure on 𝑍 in 41.9.3
algebraic stack over 𝑆 in 57.12.1
algebraic stack structure on 𝑍 in 60.10.4
algebraic stack in 63.5.1
algebraically closed in 𝐾 in 7.38.6
algebraically independent in 7.37.1
algebraic in 7.38.1
algebraic in 38.56.1
algebraic in 59.8.1
almost cocontinuous in 9.37.3
almost integral over 𝑅 in 7.33.3
alternating Čech complex in 18.17.1
alternating Čech complex in 49.6.2
amalgamated sum in 4.5.1
ample on 𝑋/𝑆 in 24.36.1
ample in 23.23.1
an 𝐴-module finitely presented relative to 𝑅
in 12.44.2
an 𝑓-power torsion module in 12.8.1
an ideal of definition of 𝑅 in 7.56.1
analytically unramified in 7.144.23
analytically unramified in 7.144.23
arithmetic frobenius in 38.66.9
Artinian in 7.49.1
Artinian in 65.5.16
associated étale site in 58.4.1
associated fppf site in 58.4.1
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associated graded ring in 15.21.4
associated morphism of fppf topoi in 58.4.5
associated points of 𝑋 in 26.2.1
associated simple complex 𝑠𝐴• in 10.19.2
associated smooth site in 58.4.1
associated syntomic site in 58.4.1
associated total complex in 10.19.2
associated Zariski site in 58.4.1
associated in 7.60.1
associated in 26.2.1
associates in 7.111.1
augmentation 𝜖 ∶ 𝑈 → 𝑋 of 𝑈 towards an
object 𝑋 of 𝒞 in 14.18.1
auto-associated in 12.10.1
automorphism functor of 𝑥 in 51.18.5
base change of 𝐹′ to 𝑆 in 40.16.2
base change in 7.13.1
base change in 7.13.1
base change in 21.18.1
base change in 21.18.1
base change in 21.18.1
base for the topology on 𝑋 in 5.3.1
basis for the topology on 𝑋 in 5.3.1
big 𝜏-site of 𝑆 in 38.20.4
big 𝜏-topos in 38.21.1
big étale site of 𝑆 in 30.4.8
big étale site over 𝑆 in 38.27.3
big étale site in 30.4.6
big affine étale site of 𝑆 in 30.4.8
big affine fppf site of 𝑆 in 30.7.8
big affine smooth site of 𝑆 in 30.5.8
big affine syntomic site of 𝑆 in 30.6.8
big affine Zariski site of 𝑆 in 30.3.7
big crystalline site in 39.12.4
big fppf site of 𝑆 in 30.7.8
big fppf site in 30.7.6
big smooth site of 𝑆 in 30.5.8
big smooth site in 30.5.6
big syntomic site of 𝑆 in 30.6.8
big syntomic site in 30.6.6
big Zariski site of 𝑆 in 30.3.7
big Zariski site in 30.3.5
big in 38.27.3
birational in 24.7.1
blowing up of 𝑋 along 𝑍 in 22.21.1
blowing up of 𝑋 in the ideal sheaf ℐ in
22.21.1
blowup algebra in 7.54.1

bounded above in 11.7.1
bounded below in 11.7.1
bounded derived category in 11.10.3
bounded filtered derived category in 11.13.7
bounded in 11.7.1
bounds the degrees of the fibres of 𝑓 in
24.48.1
Brauer group in 8.5.2
Brauer group in 38.59.4
canonical descent datum in 31.2.3
canonical descent datum in 31.30.10
canonical descent datum in 31.30.11
canonical descent datum in 45.3.3
canonical descent datum in 50.3.5
canonical scheme structure on 𝑇 in 24.25.2
canonical topology in 9.40.12
Cartan-Eilenberg resolution in 11.20.1
cartesian in 31.36.1
Cartier divisor in 65.34.1
categorical quotient in 𝒞 in 56.4.1
categorical quotient in schemes in 56.4.1
categorical quotient in the category of
schemes in 56.4.1
categorical quotient in 56.4.1
category ℱ̂ of formal objects of ℱ in 51.7.1
category cofibered in groupoids over 𝒞 in
51.5.1
category fibred in discrete categories in
4.35.2
category fibred in setoids in 4.36.2
category fibred in sets in 4.35.2
category of (cochain) complexes in 11.7.1
category of cosimplicial objects of 𝒞 in
14.5.1
category of finite filtered objects of 𝒜 in
11.13.1
category of groupoids in functors on 𝒞 in
51.19.1
category of sheaves of sets in 38.11.4
category of simplicial objects of 𝒞 in 14.3.1
category in 4.2.1
catenary in 5.8.1
catenary in 7.97.1
catenary in 23.11.1
catenary in 65.12.1
Cech cohomology groups in 19.9.1
Cech complex in 19.9.1
centered in 7.46.1
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central in 8.2.4
chain of irreducible closed subsets in 5.7.1
change of base of 𝒳′ in 57.19.3
chern classes of ℰ on 𝑋 in 29.34.1
choice of pullbacks in 4.30.5
Chow group of 𝑘-cycles module rational
equivalence on 𝑋 in 29.19.1
Chow group of 𝑘-cycles on 𝑋 in 29.19.1
class group of 𝐴 in 65.15.3
classical case in 51.3.1
closed immersion of ringed spaces in
15.13.1
closed immersion in 21.4.1
closed immersion in 21.10.2
closed immersion in 40.12.1
closed immersion in 60.9.1
closed subgroup scheme in 35.4.3
closed subscheme in 21.10.2
closed subspace of 𝑋 associated to the sheaf
of ideals ℐ in 21.4.4
closed subspace in 40.12.1
closed substack in 60.9.8
closed in 5.12.2
closed in 42.10.2
closed in 61.11.2
closed in 65.5.22
coarse quotient in schemes in 56.6.1
coarse quotient in 56.6.1
cocontinuous in 9.18.1
cocycle condition in 31.2.1
cocycle condition in 31.3.1
cocycle condition in 31.30.1
cocycle condition in 45.3.1
cocycle condition in 50.3.1
codimension in 5.8.3
codirected in 4.18.1
codirected in 4.18.1
coefficient ring in 7.143.4
coequalizer in 4.11.1
cofiltered in 4.18.1
cofiltered in 4.18.1
Cohen ring in 7.143.5
Cohen-Macaulay at 𝑥 in 33.15.1
Cohen-Macaulay morphism in 33.15.1
Cohen-Macaulay in 7.95.1
Cohen-Macaulay in 7.96.1
Cohen-Macaulay in 7.96.6
Cohen-Macaulay in 23.8.1

Cohen-Macaulay in 25.13.2
Cohen-Macaulay in 65.21.1
coherent 𝒪𝑋-module in 15.12.1
coherent module in 7.84.1
coherent ring in 7.84.1
coherent in 16.23.1
coherent in 65.29.6
cohomological 𝛿-functor in 10.9.1
cohomological in 11.3.5
cohomology modules in 29.3.1
cohomology modules in 29.3.1
coimage of 𝑓 in 10.3.9
cokernel in 10.3.9
colimit in 4.13.2
colimit in 65.2.3
collapses at 𝐸𝑟 in 10.14.2
combinatorially equivalent in 9.8.2
commutative in 10.25.3
compact object in 12.43.2
compatible with the triangulated structure
in 11.5.1
complete dévissage of ℱ/𝑋/𝑆 at 𝑥 in 34.6.2
complete dévissage of ℱ/𝑋/𝑆 over 𝑠 in
34.6.1
complete dévissage of 𝑁/𝑆/𝑅 at 𝔮 in 34.7.4
complete dévissage of 𝑁/𝑆/𝑅 over 𝔯 in
34.7.2
complete intersection (over 𝑘) in 7.124.5
complete local ring in 7.143.1
completely normal in 7.33.3
completion (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)∧ of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in
51.20.2
completion of ℱ in 51.7.3
complex in 10.3.18
composition 𝑓 ∘ 𝑔 in 9.15.1
composition of 𝜑 and 𝜓 in 6.21.9
composition of morphisms of germs in
31.16.1
composition of morphisms of ringed sites in
16.6.1
composition of morphisms of ringed spaces
in 6.25.3
composition of morphisms of ringed topoi in
16.7.1
composition in 4.26.1
composition in 9.14.4
computes in 11.14.10
computes in 11.14.10
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condition (RS) in 51.15.1
conditions (S1) and (S2) in 51.9.1
cone 𝜋 ∶ 𝐶 → 𝑆 over 𝑆 in 22.7.2
cone associated to 𝒜 in 22.7.1
cone in 11.8.1
connected component in 5.4.1
connected component in 65.5.26
connected in 4.15.1
connected in 5.4.1
connected in 65.5.26
conormal algebra 𝒞𝑍/𝑋,∗ of 𝑍 in 𝑋 in
26.11.1
conormal algebra of 𝑓 in 26.11.1
conormal module in 7.136.2
conormal sheaf 𝒞𝑍/𝑋 of 𝑍 in 𝑋 in 24.31.1
conormal sheaf 𝒞𝑍/𝑋 of 𝑍 in 𝑋 in 46.5.1
conormal sheaf of 𝑖 in 24.31.1
conormal sheaf of 𝑖 in 46.5.1
conormal sheaf of 𝑍 over 𝑋 in 33.5.2
conormal sheaf of 𝑍 over 𝑋 in 46.12.5
conservative in 9.34.1
constant presheaf with value 𝐴 in 6.3.2
constant sheaf with value 𝐴 in 6.7.4
constant sheaf in 38.23.1
constructible in 5.10.1
constructible in 38.62.3
continuous group cohomology groups in
38.57.3
continuous in 9.13.1
contravariant in 4.3.2
converges to in 10.17.6
converges in 10.17.6
converges in 10.18.7
converges in 10.19.4
converges in 10.19.4
coproduct in 4.5.1
coproduct in 4.13.6
cosimplicial abelian group in 14.5.1
cosimplicial object 𝑈 of 𝒞 in 14.5.1
cosimplicial set in 14.5.1
coverings of 𝒞 in 9.6.2
coverings in 38.10.2
covering in 20.2.4
covers 𝐹 in 21.15.3
crystal in 𝒪𝑋/𝑆-modules in 39.15.1
crystal in finite locally free modules in
39.15.3
crystal in quasi-coherent modules in 39.15.3

crystalline site in 39.13.1
curve in 38.59.13
cycle on 𝑋 in 29.8.1
decent in 43.6.1
decent in 43.13.1
decreasing filtration in 10.13.1
Dedekind domain in 7.111.8
deformation category in 51.15.8
degeneracy of 𝑥 in 14.11.1
degenerates at 𝐸𝑟 in 10.14.2
degenerate in 14.11.1
degree 𝑑 finite Hilbert stack of 𝒳 over 𝒴 in
55.17.2
degree of 𝑋 over 𝑌 in 24.45.5
degree of inseparability in 7.38.3
degree in 24.44.1
degree in 42.38.2
Deligne-Mumford stack in 57.12.2
depth 𝑘 at a point in 25.13.1
depth 𝑘 at a point in 25.13.1
depth in 7.65.4
derivation in 7.122.1
derivation in 24.32.1
derived category of 𝒜 in 11.10.3
derived category of 𝒪𝒳-modules with quasi-
coherent cohomology sheaves in 62.13.1
derived category of 𝒪𝑋-modules with quasi-
coherent cohomology sheaves in 49.3.1
derived tensor product in 12.3.12
derived tensor product in 18.20.13
derived tensor product in 19.17.11
descent datum (ℱ𝑖, 𝜑𝑖𝑗) for quasi-coherent
sheaves in 31.2.1
descent datum (ℱ𝑖, 𝜑𝑖𝑗) for quasi-coherent
sheaves in 45.3.1
descent datum (𝑁, 𝜑) for modules with re-
spect to 𝑅 → 𝐴 in 31.3.1
descent datum (𝑉𝑖, 𝜑𝑖𝑗) relative to the family
{𝑋𝑖 → 𝑆} in 31.30.3
descent datum (𝑋𝑖, 𝜑𝑖𝑗) in 𝒮 relative to the
family {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈} in 50.3.1
descent datum for 𝑉/𝑋/𝑆 in 31.30.1
descent datum relative to 𝑋 → 𝑆 in 31.30.1
descent datum in 38.16.1
descent datum in 38.16.5
determinant of (𝑀, 𝜑, 𝜓) in 29.3.4
determinant of the finite length 𝑅-module in
29.2.1
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differential 𝑑𝜑 ∶ 𝑇ℱ → 𝑇𝒢 of 𝜑 in 51.11.3
differential graded algebra in 10.25.1
differential object in 10.16.1
dimension function in 5.16.1
dimension of 𝑋 at 𝑥 in 23.10.1
dimension of 𝑋 at 𝑥 in 41.8.1
dimension of the local ring of 𝑋 at 𝑥 in
41.20.2
dimension of the local ring of the fibre of 𝑓
at 𝑥 in 42.30.1
dimension in 5.7.1
dimension in 23.10.1
dimension in 41.8.2
direct image functor in 9.21.1
direct image functor in 16.19.1
direct image in 38.35.1
direct image in 38.35.3
direct sum dévissage in 7.78.1
direct sum in 10.3.5
directed inverse system in 4.19.2
directed partially ordered set in 65.2.1
directed set in 7.8.1
directed system in 4.19.2
directed system in 7.8.2
directed in 4.17.1
directed in 4.17.1
directed in 4.19.2
discrete 𝐺-module in 38.57.1
discrete 𝐺-set in 38.55.1
discrete valuation ring in 7.46.8
discrete in 4.35.1
distance between 𝑀 and 𝑀′ in 7.112.5
distinguished triangle of 𝐾(𝒜) in 11.9.1
distinguished triangles in 11.3.2
divided power 𝐴-derivation in 39.10.1
divided power envelope of 𝐽 in 𝐵 relative to
(𝐴, 𝐼, 𝛾) in 39.6.2
divided power ring in 39.3.1
divided power scheme in 39.11.2
divided power structure 𝛾 in 39.11.1
divided power structure in 39.2.1
divided power thickening of 𝑋 relative to
(𝑆, ℐ, 𝛾) in 39.12.1
divided power thickening in 39.9.2
divided power thickening in 39.11.3
DM over 𝑆 in 61.4.2
DM in 61.4.1
DM in 61.4.2

dominant in 24.6.1
dominates in 7.46.1
dominates in 7.82.2
double complex in 10.19.1
dual numbers in 65.28.1
effective Cartier divisor in 26.9.1
effective Cartier divisor in 65.34.1
effective epimorphism in 9.12.1
effective in 31.2.3
effective in 31.3.4
effective in 31.30.10
effective in 31.30.11
effective in 38.16.1
effective in 38.16.6
effective in 45.3.3
effective in 50.3.5
Eilenberg-Maclane object 𝐾(𝐴, 𝑘) in
14.20.3
elementary étale localization of the ring
map 𝑅 → 𝑆 at 𝔮 in 34.7.1
elementary étale neighbourhood in 33.25.1
elementary standard in 𝐴 over 𝑅 in 13.3.3
embedded associated point in 26.4.1
embedded associated primes in 7.64.1
embedded component in 26.4.1
embedded point in 26.4.1
embedded primes of 𝑅 in 7.64.1
enough injectives in 10.20.4
enough projectives in 10.21.4
epimorphism in 4.23.1
equalizer in 4.10.1
equidimensional in 5.7.4
equivalence of categories in 4.2.17
equivalence relation on 𝑈 over 𝐵 in 52.4.1
equivalence relation on 𝑈 over 𝑆 in 35.3.1
equivalent in 4.26.4
equivalent in 11.26.4
equivalent in 24.8.1
equivalent in 38.59.3
equivariant quasi-coherent 𝒪𝑋-module in
35.10.1
equivariant quasi-coherent 𝒪𝑋-module in
52.10.1
equivariant in 35.8.1
equivariant in 52.8.1
essential surjection in 51.3.9
essentially constant inverse system in 4.20.2
essentially constant system in 4.20.2
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essentially constant in 4.20.1
essentially of finite presentation in 7.50.1
essentially of finite type in 7.50.1
essentially surjective in 4.2.9
Euler-Poincaré function in 65.19.2
everywhere defined in 11.14.9
everywhere defined in 11.14.9
exact at 𝑦 in 10.3.18
exact couple in 10.15.1
exact functor in 11.3.3
exact sequences of graded modules in
65.19.3
exact in 4.21.1
exact in 10.3.18
exact in 29.3.1
excellent in 12.39.1
exhaustive in 10.13.1
extends in 39.4.1
extension 𝐸 of 𝐵 by 𝐴 in 10.4.1
extension 𝑗!ℱ of ℱ by 0 in 6.31.5
extension 𝑗!ℱ of ℱ by 𝑒 in 6.31.5
extension 𝑗𝑝!ℱ of ℱ by 0 in 6.31.5
extension 𝑗𝑝!ℱ of ℱ by 𝑒 in 6.31.5
extension by 0 in 6.31.5
extension by 0 in 6.31.5
extension by zero in 16.19.1
extension by zero in 38.63.1
extension of ℱ by the empty set 𝑗!ℱ in 6.31.3
extension of ℱ by the empty set 𝑗𝑝!ℱ in
6.31.3
extension of 𝒢 by the empty set in 9.21.1
face of 𝑥 in 14.11.1
faithfully flat in 7.35.1
faithfully flat in 7.35.1
faithfully flat in 37.9.1
faithfully flat in 37.9.3
faithful in 4.2.9
family of morphisms with fixed target in
9.6.1
family of morphisms with fixed target in
38.10.1
fibre category in 4.29.2
fibre of 𝑓 over 𝑠 in 21.18.4
fibre product of 𝑉 and 𝑊 over 𝑈 in 14.7.1
fibre product of 𝑉 and 𝑊 over 𝑈 in 14.10.1
fibre product in 4.6.1
fibre product in 21.17.1
fibred category over 𝒞 in 4.30.4

fibred in groupoids in 4.32.1
fibres of 𝑓 are universally bounded in
24.48.1
fibres of 𝑓 are universally bounded in 43.3.1
field of rational functions in 24.8.5
filtered acyclic in 11.13.2
filtered acyclic in 65.23.7
filtered complex 𝐾• of 𝒜 in 10.18.1
filtered derived category of 𝒜 in 11.13.5
filtered derived functor in 38.71.1
filtered differential object in 10.17.1
filtered injective in 11.25.1
filtered injective in 38.70.1
filtered injective in 65.23.3
filtered object of 𝒜 in 10.13.1
filtered quasi-isomorphism in 11.13.2
filtered quasi-isomorphism in 38.70.1
filtered quasi-isomorphism in 65.23.6
filtered in 4.17.1
filtered in 4.17.1
final object in 4.28.1
final in 4.12.1
finer in 9.40.8
finite Tor-dimension in 38.75.1
finite 𝑅-module in 7.5.1
finite free in 16.17.1
finite global dimension in 7.101.6
finite locally constant in 38.62.1
finite locally free in 7.72.1
finite locally free in 15.14.1
finite locally free in 16.23.1
finite locally free in 24.44.1
finite locally free in 42.38.2
finite locally free in 65.15.1
finite presentation at 𝑥 ∈ 𝑋 in 24.20.1
finite presentation at 𝑥 in 42.26.1
finite presentation in 7.6.1
finite presentation in 15.11.1
finite presentation in 24.20.1
finite presentation in 65.2.8
finite projective dimension in 7.101.2
finite tor dimension in 12.41.1
finite tor dimension in 12.41.1
finite type at 𝑥 ∈ 𝑋 in 24.14.1
finite type at 𝑥 in 42.22.1
finite type point in 24.15.3
finite type point in 42.24.2
finite type point in 61.14.2
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finite type in 7.6.1
finite type in 15.9.1
finite type in 24.14.1
finitely generated 𝑅-module in 7.5.1
finitely presented 𝑅-module in 7.5.1
finite in 7.7.1
finite in 8.2.1
finite in 10.13.1
finite in 24.42.1
finite in 42.37.2
first order infinitesimal neighbourhood in
33.3.1
first order infinitesimal neighbourhood in
46.9.1
first order thickening in 33.2.1
first order thickening in 46.8.1
flat (resp. faithfully flat) in 37.9.1
flat at 𝑥 ∈ 𝑋 in 37.9.3
flat at 𝑥 over 𝑌 in 42.28.2
flat at 𝑥 in 15.16.3
flat at 𝑥 in 15.17.1
flat at 𝑥 in 42.27.1
flat at a point 𝑥 ∈ 𝑋 in 24.24.1
flat base change property in 62.7.1
flat group scheme in 35.4.4
flat local complete intersection over 𝑅 in
7.125.1
flat over 𝑆 at a point 𝑥 ∈ 𝑋 in 24.24.1
flat over 𝑆 in 24.24.1
flat over 𝑌 at 𝑥 ∈ 𝑋 in 37.9.3
flat over 𝑌 in 42.28.2
flat pullback of 𝛼 by 𝑓 in 29.14.1
flat pullback in 56.3.4
flat-fppf site in 62.11.1
flattening stratification in 34.21.2
flattening stratification in 34.21.2
flat in 7.35.1
flat in 7.35.1
flat in 15.16.1
flat in 15.17.1
flat in 16.26.1
flat in 16.26.1
flat in 16.26.1
flat in 16.26.1
flat in 16.27.1
flat in 16.27.1
flat in 24.24.1
flat in 37.9.1

flat in 37.9.3
flat in 42.27.1
flat in 61.17.1
formal object 𝜉 = (𝑅, 𝜉𝑛, 𝑓𝑛) of ℱ in 51.7.1
formally étale over 𝑅 in 7.137.1
formally étale in 33.6.1
formally étale in 46.10.1
formally étale in 46.13.1
formally principally homogeneous under 𝐺
in 35.9.1
formally principally homogeneous under 𝐺
in 52.9.1
formally smooth for the 𝔫-adic topology in
12.28.3
formally smooth over 𝑅 in 7.127.1
formally smooth over 𝑅 in 12.28.1
formally smooth in 33.9.1
formally smooth in 46.10.1
formally smooth in 46.16.1
formally unramified over 𝑅 in 7.135.1
formally unramified in 33.4.1
formally unramified in 46.10.1
formally unramified in 46.11.1
fppf covering of 𝑇 in 30.7.1
fppf covering of 𝑋 in 44.4.1
fppf sheaf in 58.4.3
fpqc covering of 𝑇 in 30.8.1
fpqc covering of 𝑋 in 44.3.1
fpqc covering in 38.15.1
free 𝒪-module in 16.17.1
free abelian presheaf on 𝒢 in 38.18.4
free abelian presheaf in 16.4.1
free abelian sheaf in 16.5.1
free module in 17.3.1
free in 52.8.2
full subcategory in 4.2.10
fully faithful in 4.2.9
function field in 24.8.5
functorial injective embeddings in 10.20.5
functorial projective surjections in 10.21.5
functor in 4.2.8
functor in 4.26.5
G-ring in 12.38.1
G-unramified at 𝔮 in 7.138.1
G-unramified at 𝑥 ∈ 𝑋 in 24.34.1
G-unramified at 𝑥 in 42.34.1
G-unramified in 7.138.1
G-unramified in 24.34.1
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G-unramified in 42.34.1
Galois cohomology groups of 𝐾 with coeffi-
cients in 𝑀 in 38.57.3
Galois cohomology groups in 38.57.3
Galois in 7.38.1
generalizations lift along 𝑓 in 5.14.3
generalization in 5.14.1
generalization in 65.5.22
generalizing in 5.14.3
generated by finitely many global sections in
16.17.1
generated by global sections in 15.4.1
generated by global sections in 16.17.1
generate in 15.4.1
generator in 17.14.1
generic point in 5.5.4
generic point in 65.5.12
geometric frobenius in 38.66.5
geometric frobenius in 38.66.11
geometric point lying over 𝑥 in 41.16.1
geometric point in 38.29.1
geometric point in 41.16.1
geometric quotient in 56.10.1
geometrically connected over 𝑘 in 7.44.3
geometrically connected in 28.5.1
geometrically integral over 𝑘 in 7.45.1
geometrically integral in 28.7.1
geometrically irreducible over 𝑘 in 7.43.6
geometrically irreducible in 28.6.1
geometrically normal at 𝑥 in 28.8.1
geometrically normal in 7.147.2
geometrically normal in 28.8.1
geometrically pointwise integral at 𝑥 in
28.7.1
geometrically pointwise integral in 28.7.1
geometrically reduced at 𝑥 in 28.4.1
geometrically reduced over 𝑘 in 7.40.1
geometrically reduced in 28.4.1
geometrically regular at 𝑥 in 28.10.1
geometrically regular over 𝑘 in 28.10.1
geometrically regular in 7.148.2
geometrically unibranch at 𝑥 in 41.21.2
geometrically unibranch in 41.21.2
gerbe over in 50.11.4
gerbe over in 61.19.1
gerbe in 50.11.1
gerbe in 61.19.1
germ of 𝑋 at 𝑥 in 31.16.1

global complete intersection over 𝑘 in
7.124.1
global dimension in 7.101.6
global finite presentation in 16.17.1
global Lefschetz number in 38.76.1
global presentation in 16.17.1
global sections in 9.39.1
going down in 7.36.1
going up in 7.36.1
going-down theorem in 65.17.1
going-up theorem in 65.17.1
good quotient in 56.9.1
graded 𝐴-algebra in 65.19.3
graded ideals in 65.19.3
graded module 𝑀 over a graded 𝐴-algebra
𝐵 in 65.19.3
graded module in 65.19.2
graded object of 𝒜 in 10.13.12
graded submodules in 65.19.3
Grothendieck abelian category in 17.14.1
group algebraic space over 𝐵 in 52.5.1
group cohomology groups in 38.57.3
group of infinitesimal automorphisms of 𝑥′

over 𝑥 in 51.18.1
group of infinitesimal automorphisms of 𝑥0
in 51.18.2
group scheme over 𝑆 in 35.4.1
groupoid in algebraic spaces over 𝐵 in
52.11.1
groupoid in functors on 𝒞 in 51.19.1
groupoid over 𝑆 in 35.11.1
groupoid scheme over 𝑆 in 35.11.1
groupoid in 4.2.5
Gysin homomorphism in 29.28.1
H-projective in 24.41.1
H-quasi-projective in 24.39.1
has coproducts of pairs of objects in 4.5.2
has enough points in 9.34.1
has fibre products in 4.6.2
has products of pairs of objects in 4.4.2
has property (𝛽) in 43.13.1
has property (𝛽) in 43.13.1
has property 𝒫 at 𝑥 in 41.7.5
has property 𝒫 at 𝑥 in 60.7.5
has property 𝒫 in 41.7.2
has property 𝒫 in 42.21.2
has property 𝒫 in 60.7.2
has property 𝒫 in 61.12.2
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has property 𝒬 at 𝑥 in 42.21.4
Hausdorff in 65.5.6
height in 7.57.2
henselian in 7.139.1
henselian in 38.32.2
henselization of 𝒪𝑆,𝑠 in 38.33.2
henselization of 𝑆 at 𝑠 in 38.33.2
henselization in 7.139.14
Herbrand quotient in 29.3.2
higher direct images in 38.35.4
Hilbert function in 65.19.2
Hilbert polynomial in 65.19.2
homogeneous spectrum Proj(𝑅) in 65.20.2
homogeneous spectrum of 𝒜 over 𝑆 in
22.16.7
homogeneous spectrum in 7.53.1
homogeneous spectrum in 22.8.3
homogeneous in 65.20.1
homological in 11.3.5
homology of 𝐾 in 20.3.1
homology in 10.16.3
homomorphism of differential graded alge-
bras in 10.25.2
homomorphism of divided power rings in
39.3.1
homomorphism of divided power thicken-
ings in 39.9.2
homomorphism of systems in 7.8.7
homomorphism of topological modules in
12.27.1
homomorphism of topological rings in
12.27.1
homomorphisms of graded modules/rings in
65.19.3
homotopic in 14.24.1
homotopic in 14.26.1
homotopy connecting 𝑎 and 𝑏 in 14.24.1
homotopy connecting 𝑎 and 𝑏 in 14.26.1
homotopy equivalence in 10.10.2
homotopy equivalence in 10.10.8
homotopy equivalence in 14.24.5
homotopy equivalent in 10.10.2
homotopy equivalent in 10.10.8
homotopy equivalent in 14.24.5
horizontal in 4.25.1
horizontal in 4.26.1
hypercovering in 20.2.6
ideal of definition in 12.27.1

ideal sheaf of denominators of 𝑠 in 26.15.14
image of 𝜑 in 9.3.5
image of 𝑓 in 10.3.9
image of the short exact sequence under the
given 𝛿-functor in 11.3.6
immediate specialization in 5.16.1
immersion in 21.10.2
immersion in 40.12.1
immersion in 60.9.1
impurity of ℱ above 𝑠 in 34.15.2
induced filtration in 10.13.1
induced filtration in 10.17.4
induced filtration in 10.18.5
inductive system over 𝐼 in 𝒞 in 4.19.1
inertia fibred category ℐ𝒮 of 𝒮 in 4.31.2
initial in 4.12.1
injective resolution of 𝐴 in 11.17.1
injective resolution of 𝐾• in 11.17.1
injective in 6.16.2
injective in 6.16.2
injective in 9.3.1
injective in 9.11.1
injective in 10.3.14
injective in 10.20.1
inseparable degree in 7.38.3
integral closure of 𝒪𝑋 in 𝒜 in 24.46.2
integral closure in 7.32.8
integral over 𝐼 in 7.34.1
integral over 𝑅 in 7.32.1
integrally closed in 7.32.8
integral in 7.32.1
integral in 23.3.1
integral in 24.42.1
integral in 42.37.2
integral in 65.26.12
interior in 5.17.1
intersection with the 𝑗th chern class of ℰ in
29.35.1
intersection with the first chern class of ℒ in
29.25.1
inverse image 𝑓−1(𝑍) of the closed sub-
scheme 𝑍 in 21.17.7
inverse image in 38.36.1
inverse system over 𝐼 in 𝒞 in 4.19.1
invertible 𝒪-module in 16.28.1
invertible 𝒪𝑋-module in 15.21.1
invertible 𝒪𝑋-module in 65.32.1
invertible module 𝑀 in 65.32.4
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invertible module in 65.15.1
invertible sheaf 𝒪𝑆(𝐷) associated to 𝐷 in
26.9.11
irreducible component in 5.5.1
irreducible component in 65.5.18
irreducible in 5.5.1
irreducible in 7.111.1
irreducible in 65.5.9
irreducible in 65.5.9
is essentially constant in 4.20.1
isolated point in 5.18.3
isomorphism in 4.2.4
J-0 in 12.35.1
J-1 in 12.35.1
J-2 in 12.35.1
J-2 in 24.18.1
Jacobson ring in 7.31.1
Jacobson in 5.13.1
Jacobson in 23.6.1
Japanese in 7.144.1
Japanese in 23.13.1
K-flat in 12.3.3
K-flat in 18.20.2
K-flat in 19.17.2
K-injective in 11.28.1
Kaplansky dévissage in 7.78.1
kernel of 𝐹 in 11.6.5
kernel of 𝐻 in 11.6.5
kernel of the functor 𝐹 in 10.7.5
kernel in 10.3.9
Kolmogorov in 5.5.4
Koszul at 𝑥 in 33.38.2
Koszul at 𝑥 in 46.24.1
Koszul complex on 𝑓1, … , 𝑓𝑟 in 12.21.2
Koszul complex on 𝑓1, … , 𝑓𝑟 in 15.20.2
Koszul complex in 12.21.1
Koszul complex in 15.20.1
Koszul morphism in 33.38.2
Koszul morphism in 46.24.1
Koszul-regular ideal in 12.23.1
Koszul-regular immersion in 26.13.1
Koszul-regular immersion in 46.21.2
Koszul-regular in 12.22.1
Koszul-regular in 26.12.2
Krull dimension of 𝑋 at 𝑥 in 5.7.1
Krull dimension in 5.7.1
Krull dimension in 7.57.1
lattice in 𝑉 in 7.112.3

left acyclic for 𝐹 in 11.15.3
left adjoint in 4.22.1
left deriveable in 11.14.9
left derived functor 𝐿𝐹 is defined at in
11.14.2
left derived functors of 𝐹 in 11.15.3
left exact in 4.21.1
left multiplicative system in 4.24.1
Leibniz rule in 7.122.1
Leibniz rule in 16.29.1
Leibniz rule in 24.32.1
length in 5.7.1
length in 7.48.1
length in 65.8.1
lies over in 38.29.1
lift of 𝑥 along 𝑓 in 51.16.1
lift in 4.29.2
lift in 4.29.2
limit preserving in 46.4.1
limit in 4.13.1
limit in 10.14.2
limp in 19.13.4
linearly adequate in 32.3.2
linearly topologized in 12.27.1
linearly topologized in 12.27.1
lisse-étale site in 62.11.1
lisse in 38.80.1
local complete intersection morphism in
33.38.2
local complete intersection morphism in
46.24.1
local complete intersection over 𝑘 in 7.124.1
local complete intersection over 𝑘 in 24.30.1
local complete intersection in 12.24.2
local homomorphism of local rings in 7.17.1
local in the 𝜏-topology in 31.11.1
local Lefschetz number in 38.76.2
local on the base for the 𝜏-topology in
31.18.1
local on the base for the 𝜏-topology in 45.9.1
local on the source for the 𝜏-topology in
31.22.1
local on the source for the 𝜏-topology in
45.12.1
local ring map 𝜑 ∶ 𝑅 → 𝑆 in 7.17.1
local ring of 𝑋 at 𝑥 in 21.2.1
local ring of the fibre at 𝔮 in 7.103.5
local ring in 7.17.1
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localization morphism in 9.21.1
localization morphism in 9.26.4
localization morphism in 16.19.1
localization morphism in 16.21.2
localization of 𝐴 with respect to 𝑆 in 7.9.2
localization of the ringed site (𝒞, 𝒪) at the
object 𝑈 in 16.19.1
localization of the ringed topos (Sh(𝒞), 𝒪) at
ℱ in 16.21.2
localization of the site 𝒞 at the object 𝑈 in
9.21.1
localization of the topos Sh(𝒞) atℱ in 9.26.4
localization in 7.9.6
locally 𝑃 in 23.4.2
locally algebraic 𝑘-scheme in 28.13.1
locally closed immersion in 21.10.2
locally closed subspace in 40.12.1
locally closed substack in 60.9.8
locally connected in 5.4.7
locally construcible in 5.10.1
locally finite in 18.18.1
locally finite in 29.8.1
locally finite in 65.19.2
locally free in 7.72.1
locally free in 15.14.1
locally free in 16.23.1
locally generated by sections in 15.8.1
locally generated by sections in 16.23.1
locally nilpotent in 7.47.2
locally Noetherian in 5.6.1
locally Noetherian in 23.5.1
locally Noetherian in 65.29.5
locally of finite presentation over 𝑆 in 46.4.1
locally of finite presentation in 24.20.1
locally of finite presentation in 42.26.1
locally of finite presentation in 46.4.1
locally of finite presentation in 46.4.1
locally of finite presentation in 61.18.1
locally of finite type in 24.14.1
locally of finite type in 42.22.1
locally of finite type in 61.13.1
locally of type 𝑃 in 24.13.2
locally principal closed subscheme in 26.9.1
locally projective in 23.19.1
locally projective in 24.41.1
locally projective in 41.28.2
locally quasi-coherent in 39.15.1
locally quasi-coherent in 58.11.4

locally quasi-compact in 5.18.1
locally quasi-finite in 24.19.1
locally quasi-finite in 42.25.1
locally quasi-finite in 61.16.2
locally quasi-projective in 24.39.1
locally ringed site in 16.34.4
locally ringed space (𝑋, 𝒪𝑋) in 21.2.1
locally ringed in 16.34.6
locally separated over 𝑆 in 40.13.2
locally separated in 41.3.1
locally separated in 41.3.1
locally separated in 42.5.2
locally trivial in 35.9.3
locally trivial in 52.9.3
local in 23.4.1
local in 24.13.1
maximal Cohen-Macaulay in 7.96.9
meromorphic function in 26.15.1
meromorphic section of ℱ in 26.15.5
minimal in 51.13.4
minimal in 51.25.1
miniversal in 51.13.4
Mittag-Leffler condition in 10.23.2
Mittag-Leffler directed system of modules in
7.82.1
Mittag-Leffler inverse system in 7.80.1
Mittag-Leffler in 7.82.6
ML in 10.23.2
module of differentials in 7.122.2
module of differentials in 16.29.3
module of Kähler diffentials in 7.122.2
module-valued functor in 32.3.1
monomorphism in 4.23.1
monomorphism in 21.23.1
monomorphism in 42.14.1
monomorphism in 60.8.1
morphism (𝐴, 𝐹) → (𝐵, 𝐹) of filtered objects
in 10.13.1
morphism (𝐴, 𝑘) → (𝐵, 𝑘) of graded objects
in 10.13.12
morphism (𝑁, 𝜑) → (𝑁′, 𝜑′) of descent
data in 31.3.1
morphism (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′)
of groupoids in functors on 𝒞 in 51.19.1
morphism 𝜓 ∶ (ℱ𝑖, 𝜑𝑖𝑗) → (ℱ′

𝑖 , 𝜑′
𝑖𝑗) of de-

scent data in 31.2.1
morphism 𝜓 ∶ (ℱ𝑖, 𝜑𝑖𝑗) → (ℱ′

𝑖 , 𝜑′
𝑖𝑗) of de-

scent data in 45.3.1
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morphism 𝜓 ∶ (𝐺, 𝑚) → (𝐺′, 𝑚′) of group
algebraic spaces over 𝐵 in 52.5.1
morphism 𝜓 ∶ (𝐺, 𝑚) → (𝐺′, 𝑚′) of group
schemes over 𝑆 in 35.4.1
morphism 𝜓 ∶ (𝑉𝑖, 𝜑𝑖𝑗) → (𝑉′

𝑖 , 𝜑′
𝑖𝑗) of de-

scent data in 31.30.3
morphism 𝜓 ∶ (𝑋𝑖, 𝜑𝑖𝑗) → (𝑋′

𝑖 , 𝜑′
𝑖𝑗) of de-

scent data in 50.3.1
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of
𝒪-modules on ℬ in 6.30.11
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of
𝒪-modules in 6.6.1
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of
𝒪-modules in 16.9.1
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of sets
on ℬ in 6.30.1
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of sets
on 𝑋 in 6.3.1
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves with
value in 𝒞 in 6.5.1
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves with
values in 𝒞 on ℬ in 6.30.8
morphism 𝑎 ∶ 𝜉 → 𝜂 of formal objects in
51.7.1
morphism 𝑓 ∶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) →
(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) of groupoid schemes over
𝑆 in 35.11.1
morphism 𝑓 ∶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) →
(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) of groupoids in algebraic
spaces over 𝐵 in 52.11.1
morphism 𝑓 ∶ (𝑉/𝑋, 𝜑) → (𝑉′/𝑋, 𝜑′) of de-
scent data relative to 𝑋 → 𝑆 in 31.30.1
morphism 𝑓 ∶ 𝐹 → 𝐹′ of algebraic spaces
over 𝑆 in 40.6.3
morphism 𝑓 ∶ 𝑝 → 𝑝′ in 9.33.2
morphism 𝑓 ∶ 𝑋 → 𝑌 of schemes over 𝑆 in
21.18.1
morphism from 𝒰 to 𝒱 in 9.8.1
morphism of 𝛿-functors from𝐹 to𝐺 in 10.9.2
morphism of 𝒢-torsors in 18.5.1
morphism of 𝐺-modules in 38.57.1
morphism of 𝐺-sets in 38.55.1
morphism of 𝐺-torsors in 19.5.1
morphism of 𝑛-truncated simplicial objects
in 14.17.1
morphism of étale neighborhoods in 38.29.1
morphism of étale neighborhoods in 41.16.2

morphism of étale neighbourhoods in
33.25.1
morphism of abelian presheaves over 𝑋 in
6.4.4
morphism of affine schemes in 21.5.5
morphism of cones in 22.7.2
morphism of cosimplicial objects 𝑈 → 𝑈′ in
14.5.1
morphism of differential objects in 10.16.1
morphism of divided power schemes in
39.11.2
morphism of divided power thickenings of 𝑋
relative to (𝑆, ℐ, 𝛾) in 39.12.1
morphism of exact couples in 10.15.1
morphism of families of maps with fixed tar-
get of 𝒞 from 𝒰 to 𝒱 in 9.8.1
morphism of functors in 4.2.15
morphism of germs in 31.16.1
morphism of lifts in 51.16.1
morphism of locally ringed sites in 16.34.8
morphism of locally ringed spaces in 21.2.1
morphism of locally ringed topoi in 16.34.8
morphism of module-valued functors in
32.3.1
morphism of predeformation categories in
51.6.2
morphism of presheaves on 𝒳 in 58.3.1
morphism of pseudo 𝒢-torsors in 19.5.1
morphism of ringed sites in 16.6.1
morphism of ringed spaces in 6.25.1
morphism of ringed topoi in 16.7.1
morphism of schemes in 21.9.1
morphism of sheaves of 𝒪-modules in 6.10.1
morphism of sheaves of 𝒪-modules in
16.10.1
morphism of sheaves of sets on ℬ in 6.30.2
morphism of sheaves of sets in 6.7.1
morphism of simplicial objects 𝑈 → 𝑈′ in
14.3.1
morphism of sites in 9.14.1
morphism of spectral sequences in 10.14.1
morphism of thickenings in 33.2.1
morphism of thickenings in 46.8.1
morphism of topoi in 9.15.1
morphism of triangles in 11.3.1
morphism of vector bundles over 𝑆 in 22.6.2
Morphisms of presheaves in 9.2.1
morphisms of thickenings over 𝐵 in 46.8.1
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morphisms of thickenings over 𝑆 in 33.2.1
morphisms of type 𝒫 satisfy descent for
𝜏-coverings in 31.32.1
morphism in 9.2.2
morphism in 38.80.1
multiplicative subset of 𝑅 in 7.9.1
multiplicative system in 4.24.1
multiplicity of 𝑍′ in ℱ in 29.10.2
multiplicity of 𝑍′ in 𝑍 in 29.9.2
multiplicity in 29.3.2
N-1 in 7.144.1
N-2 in 7.144.1
Nagata ring in 7.144.15
Nagata in 23.13.1
naive cotangent complex in 7.123.1
natural transformation in 4.2.15
nilpotent in 7.47.2
Noetherian in 5.6.1
Noetherian in 23.5.1
Noetherian in 41.12.1
Noetherian in 61.8.1
Noetherian in 65.5.16
Noetherian in 65.29.5
nondegenerate in 39.31.2
nonsingular in 23.9.1
nontrivial solution in 38.59.8
normal at 𝑥 in 33.13.1
normal bundle in 26.11.5
normal cone 𝐶𝑍𝑋 in 26.11.5
normal morphism in 33.13.1
normalization of 𝑋 in 𝑌 in 24.46.3
normalization in 24.46.12
normalized in 51.25.1
normal in 7.33.1
normal in 7.33.10
normal in 7.38.1
normal in 23.7.1
nowhere dense in 5.17.1
numerical polynomial in 7.55.2
numerical polynomial in 65.19.1
of finite presentation in 16.23.1
of finite presentation in 42.26.1
of finite presentation in 61.18.1
of finite type in 16.23.1
of finite type in 42.22.1
of finite type in 61.13.1
Oka family in 7.25.2
one step dévissage of ℱ/𝑋/𝑆 at 𝑥 in 34.5.2

one step dévissage of ℱ/𝑋/𝑆 over 𝑠 in 34.5.1
open immersion in 21.3.1
open immersion in 21.10.2
open immersion in 40.12.1
open immersion in 60.9.1
open subgroup scheme in 35.4.3
open subscheme in 21.10.2
open subspace of (𝑋, 𝒪) associated to 𝑈 in
6.31.2
open subspace of𝑋 associated to𝑈 in 21.3.3
open subspace in 40.12.1
open substack in 60.9.8
open in 24.22.1
open in 38.89.1
open in 42.7.2
open in 61.9.2
opposite algebra in 8.2.5
opposite category in 4.3.1
orbit space for 𝑅 in 56.5.18
orbit in 56.5.1
orbit in 56.5.4
order of vanishing along 𝑅 in 7.112.2
order of vanishing of 𝑓 along 𝑍 in 29.16.1
order of vanishing of 𝑠 along 𝑍 in 29.23.1
ordered Čech complex in 18.17.2
p-basis of 𝐾 over 𝑘 in 12.34.1
p-independent over 𝑘 in 12.34.1
parasitic for the 𝜏-topology in 31.7.1
parasitic in 31.7.1
parasitic in 62.8.1
partially ordered set in 7.8.1
perfect at 𝑥 in 46.23.1
perfect closure in 7.42.5
perfect complexes in 38.75.4
perfect ring map in 12.46.1
perfect in 7.42.1
perfect in 12.42.1
perfect in 12.42.1
perfect in 33.37.2
perfect in 38.73.1
perfect in 46.23.1
Picard group of 𝐴 in 65.15.3
Picard group of 𝑋 in 65.32.7
Picard group in 15.21.6
Picard group in 16.28.4
PID in 7.111.6
point 𝑝 of the site 𝒞 in 9.28.2
point 𝑝 in 9.45.1
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point of the topos Sh(𝒞) in 9.28.1
point in 41.4.1
point in 60.4.2
polynomial relation among the chern
classes in 29.36.1
pre-adic in 12.27.1
pre-admissible in 12.27.1
pre-equivalence relation in 35.3.1
pre-equivalence relation in 52.4.1
pre-relation in 35.3.1
pre-relation in 52.4.1
pre-triangulated category in 11.3.2
pre-triangulated subcategory in 11.3.4
preadditive in 10.3.1
predeformation category in 51.6.2
presentation of ℱ by (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in 51.23.1
presentation in 40.9.3
presentation in 57.16.5
preserved under arbitrary base change in
21.18.3
preserved under arbitrary base change in
21.18.3
preserved under base change in 21.18.3
preserved under base change in 21.18.3
presheaf ℱ of sets on ℬ in 6.30.1
presheaf ℱ of sets on 𝑋 in 6.3.1
presheaf ℱ on 𝑋 with values in 𝒞 in 6.5.1
presheaf ℱ with values in 𝒞 on ℬ in 6.30.8
presheaf of 𝒪-modules ℱ on ℬ in 6.30.11
presheaf of 𝒪-modules in 6.6.1
presheaf of 𝒪-modules in 16.9.1
presheaf of abelian groups on 𝑋 in 6.4.4
presheaf of isomorphisms from 𝑥 to 𝑦 in
50.2.2
presheaf of modules on 𝒳 in 58.7.1
presheaf of morphisms from 𝑥 to 𝑦 in 50.2.2
presheaf of sets on 𝒞 in 4.3.3
presheaf of sets in 9.2.1
presheaf of sets in 38.9.1
presheaf on 𝒳 in 58.3.1
presheaf in 4.3.3
presheaf in 9.2.2
prime divisor in 65.34.1
prime in 7.111.1
principal divisor associated to 𝑓 in 29.17.1
principal homogeneous 𝐺-space over 𝐵 in
52.9.3
principal homogeneous space in 35.9.3

principal homogeneous space in 52.9.3
principal ideal domain in 7.111.6
product 𝑈 × 𝑉 exists in 14.12.1
product 𝑈 × 𝑉 of 𝑈 and 𝑉 in 14.12.1
product category in 4.2.20
product of 𝑈 and 𝑉 in 14.6.1
product of 𝑈 and 𝑉 in 14.9.1
product in 4.4.1
product in 4.13.5
projective 𝑛-space over 𝐙 in 22.13.2
projective 𝑛-space over 𝑅 in 22.13.2
projective 𝑛-space over 𝑆 in 22.13.2
projective bundle associated to ℰ in 22.20.1
projective dimension in 7.101.2
projective resolution of 𝐴 in 11.18.1
projective resolution of 𝐾• in 11.18.1
projective system over 𝐼 in 𝒞 in 4.19.1
projective variety in 28.16.1
projective in 7.71.1
projective in 10.21.1
projective in 24.41.1
projective in 38.70.1
proper variety in 28.16.1
property 𝒫 in 40.5.1
property 𝒫 in 54.4.1
property 𝒫 in 57.10.1
proper in 5.12.2
proper in 24.40.1
proper in 42.36.1
prorepresentable in 51.6.1
prorepresentable in 51.20.1
pseudo 𝒢-torsor in 19.5.1
pseudo 𝐺-torsor in 35.9.1
pseudo 𝐺-torsor in 52.9.1
pseudo functor in 4.26.5
pseudo torsor in 19.5.1
pseudo-coherent at 𝑥 in 46.22.1
pseudo-coherent relative to 𝑅 in 12.45.4
pseudo-coherent relative to 𝑅 in 12.45.4
pseudo-coherent ring map in 12.46.1
pseudo-coherent in 12.40.1
pseudo-coherent in 12.40.1
pseudo-coherent in 33.36.2
pseudo-coherent in 46.22.1
pulbacks of meromorphic functions are de-
fined for 𝑓 in 26.15.3
pullback 𝑥−1ℱ of ℱ in 58.9.2
pullback functor in 4.30.5
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pullback functor in 31.30.7
pullback functor in 31.30.9
pullback functor in 50.3.4
pullback of 𝒮 along 𝑓 in 50.12.9
pullback of 𝐷 by 𝑓 is defined in 26.9.8
pullback of 𝑆 by 𝑓 in 9.40.4
pullback of the effective Cartier divisor in
26.9.8
pullback in 6.26.1
pullback in 16.13.1
pullback in 35.3.3
pullback in 38.36.1
pullback in 52.4.3
pullback in 56.3.4
pure along 𝑋𝑠 in 34.16.1
pure along 𝑋𝑠 in 34.16.1
pure extension module in 32.8.8
pure injective resolution in 32.8.5
pure injective in 32.8.1
pure projective resolution in 32.8.5
pure projective in 32.8.1
pure relative to 𝑆 in 34.16.1
pure relative to 𝑆 in 34.16.1
purely inseparable in 7.38.1
purely transcendental extension in 7.37.1
pure in 7.100.1
push out of 𝑉 and 𝑊 over 𝑈 in 14.8.1
push out in 4.9.1
pushforward of 𝒮 along 𝑓 in 50.12.4
pushforward in 6.26.1
pushforward in 9.38.1
pushforward in 16.13.1
pushforward in 29.12.1
pushforward in 38.35.1
pushforward in 38.35.3
quasi-affine in 23.15.1
quasi-affine in 24.12.1
quasi-affine in 42.20.2
quasi-coherent 𝒪𝒳-module in 58.11.1
quasi-coherent module on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in
35.12.1
quasi-coherent module on (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in
52.12.1
quasi-coherent module on 𝒳 in 58.11.1
quasi-coherent sheaf of 𝒪𝑋-modules in
15.10.1
quasi-coherent in 16.23.1
quasi-coherent in 38.17.2

quasi-coherent in 39.15.1
quasi-coherent in 41.26.1
quasi-coherent in 65.29.1
quasi-compact in 5.9.1
quasi-compact in 5.9.1
quasi-compact in 21.19.1
quasi-compact in 41.5.1
quasi-compact in 42.9.2
quasi-compact in 60.6.1
quasi-compact in 61.7.2
quasi-compact in 65.5.4
quasi-DM over 𝑆 in 61.4.2
quasi-DM in 61.4.1
quasi-DM in 61.4.2
quasi-excellent in 12.39.1
quasi-finite at 𝔮 in 7.113.3
quasi-finite at 𝑥 in 42.25.1
quasi-finite at a point 𝑥 ∈ 𝑋 in 24.19.1
quasi-finite in 7.113.3
quasi-finite in 24.19.1
quasi-finite in 42.25.1
quasi-inverse in 4.2.17
quasi-isomorphism in 10.10.4
quasi-isomorphism in 10.10.10
quasi-isotrivial in 35.9.3
quasi-isotrivial in 52.9.3
quasi-projective variety in 28.16.1
quasi-projective in 24.39.1
quasi-proper in 5.12.2
quasi-regular ideal in 12.23.1
quasi-regular immersion in 26.13.1
quasi-regular immersion in 46.21.2
quasi-regular sequence in 7.66.1
quasi-regular in 26.12.2
quasi-separated over 𝑆 in 40.13.2
quasi-separated over 𝑆 in 61.4.2
quasi-separated in 21.21.3
quasi-separated in 21.21.3
quasi-separated in 41.3.1
quasi-separated in 41.3.1
quasi-separated in 42.5.2
quasi-separated in 61.4.1
quasi-separated in 61.4.2
quasi-split over 𝑢 in 53.11.1
quasi-splitting of 𝑅 over 𝑢 in 53.11.1
quotient category 𝒟/ℬ in 11.6.7
quotient category cofibered in groupoids
[𝑈/𝑅] → 𝒞 in 51.19.9
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quotient filtration in 10.13.1
quotient functor in 11.6.7
quotient morphism 𝑈 → [𝑈/𝑅] in 51.19.9
quotient of 𝑈 by 𝐺 in 40.14.4
quotient representable by an algebraic
space in 52.18.3
quotient representable by an algebraic
space in 52.18.3
quotient sheaf 𝑈/𝑅 in 35.17.1
quotient sheaf 𝑈/𝑅 in 52.18.1
quotient stack in 52.19.1
quotient stack in 52.19.1
quotient in 10.3.14
radicial in 24.10.1
radicial in 46.3.1
rank 𝑟 in 16.28.1
rank in 7.94.4
rank in 24.44.1
rank in 42.38.2
rational function on 𝑋 in 24.8.2
rational map from 𝑋 to 𝑌 in 24.8.1
rationally equivalent to zero in 29.19.1
rationally equivalent in 29.19.1
reasonable in 43.6.1
reasonable in 43.13.1
reduced induced algebraic space structure
in 41.9.3
reduced induced algebraic stack structure in
60.10.4
reduced induced scheme structure in 21.12.5
reduced in 21.12.1
reduction 𝒳𝑟𝑒𝑑 of 𝒳 in 60.10.4
reduction 𝑋𝑟𝑒𝑑 of 𝑋 in 21.12.5
reduction 𝑋𝑟𝑒𝑑 of 𝑋 in 41.9.3
Rees algebra in 7.54.1
refinement in 9.8.1
regular at 𝑥 in 33.14.1
regular ideal in 12.23.1
regular immersion in 26.13.1
regular in codimension ≤ 𝑘 in 7.140.1
regular in codimension 𝑘 in 23.12.1
regular local ring in 7.57.9
regular locus in 23.14.1
regular morphism in 33.14.1
regular section in 26.9.13
regular sequence in 7.65.1
regular system of parameters in 7.57.9
regular in 7.102.6

regular in 12.31.1
regular in 23.9.1
regular in 26.12.2
regular in 26.15.10
relation in 7.8.12
relation in 35.3.1
relation in 52.4.1
relative 𝐻1-regular immersion in 26.14.2
relative assassin of ℱ in 𝑋 over 𝑆 in 26.7.1
relative assassin of 𝑁 over 𝑆/𝑅 in 7.62.2
relative cotangent space in 51.3.6
relative dimension ≤ 𝑑 at 𝑥 in 24.28.1
relative dimension ≤ 𝑑 in 24.28.1
relative dimension ≤ 𝑑 in 42.30.2
relative dimension 𝑑 in 24.28.1
relative dimension 𝑑 in 42.30.2
relative dimension of 𝑆/𝑅 at 𝔮 in 7.116.1
relative dimension of in 7.116.1
relative effective Cartier divisor in 26.10.2
relative global complete intersection in
7.125.5
relative homogeneous spectrum of 𝒜 over 𝑆
in 22.16.7
relative inertia of 𝒮 over 𝒮′ in 4.31.2
relative Proj of 𝒜 over 𝑆 in 22.16.7
relative quasi-regular immersion in 26.14.2
relative spectrum of 𝒜 over 𝑆 in 22.4.5
relative weak assassin of ℱ in 𝑋 over 𝑆 in
26.8.1
relatively ample in 24.36.1
relatively limit preserving in 46.4.1
relatively very ample in 24.37.1
representable by a scheme in 21.15.1
representable by algebraic spaces in 54.3.1
representable by algebraic spaces in 57.9.1
representable by an algebraic space over 𝑆
in 57.8.1
representable by open immersions in
21.15.3
representable quotient in 35.17.2
representable quotient in 35.17.2
representable quotient in 52.18.3
representable quotient in 52.18.3
representable sheaf in 9.12.3
representable in 4.3.6
representable in 4.6.3
representable in 4.8.2
representable in 4.37.1
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representable in 4.38.5
representable in 21.15.1
representable in 51.19.4
residual gerbe of 𝒳 at 𝑥 exists in 60.11.8
residual gerbe of 𝒳 at 𝑥 in 60.11.8
residual space of 𝑋 at 𝑥 in 43.10.6
residue field of 𝑋 at 𝑥 in 21.2.1
resolution functor in 11.22.2
resolution of 𝑀 by finite free 𝑅-modules in
7.67.2
resolution of 𝑀 by free 𝑅-modules in 7.67.2
resolution in 7.67.2
restriction (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)|𝒞′ of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to
𝒞′ in 51.19.7
restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝑈′ in 35.15.2
restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝑈′ in 52.16.2
restriction of ℱ to 𝒞/𝑈 in 9.21.1
restriction of ℱ to 𝒞/𝑈 in 16.19.1
restriction of ℱ to 𝑈 ́𝑒𝑡𝑎𝑙𝑒 in 58.9.2
restriction of 𝒢 to 𝑈 in 6.31.2
restriction of 𝒢 to 𝑈 in 6.31.2
restriction of 𝒢 to 𝑈 in 6.31.2
restriction to the small étale site in 30.4.14
restriction to the small Zariski site in 30.3.14
restriction in 35.3.3
restriction in 38.64.3
restriction in 52.4.3
retrocompact in 5.9.1
right acyclic for 𝐹 in 11.15.3
right adjoint in 4.22.1
right deriveable in 11.14.9
right derived functor 𝑅𝐹 is defined at in
11.14.2
right derived functors of 𝐹 in 11.15.3
right exact in 4.21.1
right multiplicative system in 4.24.1
ring of rational functions on 𝑋 in 24.8.3
ringed site in 16.6.1
ringed site in 38.17.2
ringed space in 6.25.1
ringed topos in 16.7.1
satisfies the existence part of the valuative
criterion in 21.20.3
satisfies the existence part of the valuative
criterion in 42.11.1
satisfies the sheaf property for the fpqc
topology in 30.8.12

satisfies the sheaf property for the fpqc
topology in 38.15.5
satisfies the sheaf property for the given fam-
ily in 30.8.12
satisfies the sheaf property for the Zariski
topology in 21.15.3
satisfies the uniqueness part of the valuative
criterion in 21.20.3
satisfies the uniqueness part of the valuative
criterion in 42.11.1
satisfies the valuative criterion in 42.11.1
saturated in 4.24.17
saturated in 11.6.1
scheme over 𝑅 in 21.18.1
scheme over 𝑆 in 21.18.1
scheme structure on 𝑍 in 21.12.5
scheme theoretic closure of 𝑈 in 𝑋 in 24.5.1
scheme theoretic fibre 𝑋𝑠 of 𝑓 over 𝑠 in
21.18.4
scheme theoretic image in 24.4.2
scheme theoretic support of ℱ in 25.10.5
scheme theoretically dense in 𝑋 in 24.5.1
scheme in 21.9.1
semi-representable objects in 20.2.1
separable degree in 7.38.3
separable over 𝑘 in 7.39.1
separable in 7.38.1
separably generated over 𝑘 in 7.39.1
separated group scheme in 35.4.4
separated over 𝑆 in 40.13.2
separated over 𝑆 in 61.4.2
separated presheaf in 38.11.1
separated in 6.11.2
separated in 9.10.9
separated in 9.42.2
separated in 10.13.1
separated in 21.21.3
separated in 21.21.3
separated in 41.3.1
separated in 41.3.1
separated in 42.5.2
separated in 61.4.1
separated in 61.4.2
separates 𝑅-orbits in 56.5.8
separates orbits in 56.5.8
Serre subcategory in 10.7.1
set-theoretic equivalence relation in 56.5.13
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set-theoretic pre-equivalence relation in
56.5.13
set-theoretically 𝑅-invariant in 56.5.8
setoid in 4.36.1
sheaf ℱ of 𝒪-modules on ℬ in 6.30.11
sheaf ℱ of sets on ℬ in 6.30.2
sheaf ℱ of sets on 𝑋 in 6.7.1
sheaf ℱ with values in 𝒞 on ℬ in 6.30.8
sheaf associated to ℱ in 9.10.11
sheaf associated to ℱ in 9.42.4
sheaf associated to the module 𝑀 and the
ring map 𝛼 in 15.10.6
sheaf associated to the module 𝑀 in 15.10.6
sheaf for the étale topology in 58.4.3
sheaf for the fppf topology in 58.4.3
sheaf for the smooth topology in 58.4.3
sheaf for the syntomic topology in 58.4.3
sheaf for the Zariski topology in 58.4.3
sheaf of𝒪-modules associated toℱ in 31.6.2
sheaf of𝒪-modules associated toℱ in 31.6.2
sheaf of 𝒪-modules in 6.10.1
sheaf of 𝒪-modules in 16.10.1
sheaf of 𝒪𝒳-modules in 58.7.1
sheaf of 𝑅-invariant functions on 𝑋 in
56.8.1
sheaf of abelian groups on 𝑋 in 6.8.1
sheaf of automorphisms of 𝑥 in 61.5.3
sheaf of differentials Ω𝑋/𝑆 of 𝑋 over 𝑆 in
24.32.4
sheaf of differentials Ω𝑋/𝑌 of 𝑋 over 𝑌 in
16.29.6
sheaf of differentials Ω𝑋/𝑌 of 𝑋 over 𝑌 in
46.6.2
sheaf of meromorphic functions on 𝑋 in
26.15.1
sheaf of total quotient rings 𝒦𝑆 in 65.34.1
sheaf theoretically empty in 9.37.1
sheaf in 6.9.1
sheaf in 9.7.1
sheaf in 9.7.6
sheaf in 9.40.10
sheaf in 38.11.1
sheaf in 58.4.3
short exact sequence in 10.3.18
sieve on 𝑈 generated by the morphisms 𝑓𝑖 in
9.40.3
sieve 𝑆 on 𝑈 in 9.40.1
similar in 38.59.3

simple in 7.48.9
simple in 8.2.3
simple in 8.2.3
simplicial abelian group in 14.3.1
simplicial object 𝑈 of 𝒞 in 14.3.1
simplicial scheme associated to 𝑓 in 31.36.2
simplicial set in 14.3.1
singular ideal of 𝐴 over 𝑅 in 13.3.1
singular locus in 23.14.1
site in 9.6.2
site in 38.10.2
size in 17.15.1
skew field in 8.2.2
skyscraper sheaf at 𝑥 with value 𝐴 in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 9.28.6
small 𝜏-site of 𝑆 in 38.20.4
small étale site 𝑋 ́𝑒𝑡𝑎𝑙𝑒 in 41.15.1
small étale site of 𝑆 in 30.4.8
small étale site over 𝑆 in 38.27.3
small étale topos in 38.21.1
small étale topos in 41.15.6
small extension in 7.130.1
small extension in 51.3.2
small Zariski site 𝐹𝑍𝑎𝑟 in 40.12.6
small Zariski site of 𝑆 in 30.3.7
small Zariski sites in 38.27.3
small Zariski topos in 38.21.1
smooth at 𝔮 in 7.126.11
smooth at 𝑥 ∈ 𝑋 in 24.33.1
smooth at 𝑥 in 42.33.1
smooth covering of 𝑇 in 30.5.1
smooth covering of 𝑋 in 44.6.1
smooth group scheme in 35.4.4
smooth groupoid in 57.16.4
smooth local on source-and-target in
45.18.1
smooth local in 31.17.1
smooth of relative dimension 𝑑 in 24.33.13
smooth sheaf in 58.4.3
smooth in 7.126.1
smooth in 24.33.1
smooth in 31.16.2
smooth in 42.33.1
smooth in 51.8.1
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smooth in 51.21.1
smooth in 61.22.1
smooth in 63.4.3
sober in 5.5.4
special cocontinuous functor 𝑢 from 𝒞 to 𝒟
in 9.25.2
specializations lift along 𝑓 in 5.14.3
specialization in 5.14.1
specialization in 65.5.22
specialization in 65.29.2
specializing in 5.14.3
spectral sequence associated to (𝐴, 𝑑, 𝛼) in
10.16.5
spectral sequence associated to the exact
couple in 10.15.3
spectral sequence in 𝒜 in 10.14.1
spectrum of 𝒜 over 𝑆 in 22.4.5
spectrum in 7.16.1
spectrum in 21.5.3
split category fibred in groupoids in 4.34.2
split fibred category in 4.33.2
split over 𝑢 in 53.11.1
splits in 8.8.1
splitting field in 8.8.1
splitting of 𝑅 over 𝑢 in 53.11.1
split in 10.3.20
split in 14.16.1
stabilizer of the groupoid in algebraic
spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in 52.15.2
stabilizer of the groupoid scheme
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) in 35.14.2
stable under base change in 24.13.1
stable under composition in 24.13.1
stable under generalization in 5.14.1
stable under specialization in 5.14.1
stack in discrete categories in 50.6.1
stack in groupoids in 50.5.1
stack in setoids in 50.6.1
stack in sets in 50.6.1
stack in 50.4.1
stalk in 38.29.6
stalk in 38.80.6
stalk in 41.16.6
standard 𝜏-covering in 38.20.2
standard étale covering in 30.4.5
standard étale in 7.132.13
standard étale in 24.35.1
standard étale in 38.26.3

standard fppf covering in 30.7.5
standard fpqc covering in 30.8.9
standard open covering in 21.5.2
standard open covering in 21.5.2
standard open covering in 22.8.2
standard opens in 7.16.3
standard shrinking in 34.5.6
standard shrinking in 34.6.5
standard smooth algebra over 𝑅 in 7.126.6
standard smooth covering in 30.5.5
standard smooth in 24.33.1
standard syntomic covering in 30.6.5
standard syntomic in 24.30.1
standard Zariski covering in 30.3.4
strict henselization of 𝒪𝑆,𝑠 in 38.33.2
strict henselization of 𝑅 with respect to 𝜅 ⊂
𝜅𝑠𝑒𝑝 in 7.139.14
strict henselization of 𝑆 at 𝑠 in 38.33.2
strict henselization of 𝑋 at 𝑥 in 41.19.2
strict henselization in 7.139.14
strict transform of 𝑀 along 𝑅 → 𝑅′ in
12.19.1
strictly commutative in 10.25.3
strictly full in 4.2.10
strictly henselian in 7.139.1
strictly henselian in 38.32.6
strictly standard in 𝐴 over 𝑅 in 13.3.3
strict in 10.13.3
strongly 𝒞-cartesian morphism in 4.30.1
strongly cartesian morphism in 4.30.1
strongly transcendental over 𝑅 in 7.114.8
structure morphism in 21.18.1
structure of site on 𝒮 inherited from 𝒞 in
50.10.2
structure sheaf 𝒪𝑆𝑝𝑒𝑐(𝑅) of the spectrum of 𝑅
in 21.5.3
structure sheaf 𝒪Proj(𝑆) of the homogeneous
spectrum of 𝑆 in 22.8.3
structure sheaf of 𝒳 in 58.6.1
structure sheaf of the big site (Sch/𝑆)𝜏 in
31.6.2
structure sheaf in 16.6.1
structure sheaf in 16.7.1
structure sheaf in 38.23.3
structure sheaf in 41.18.2
sub 2-category in 4.26.2
subcanonical in 9.12.2
subcategory in 4.2.10
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subfunctor 𝐻 ⊂ 𝐹 in 21.15.3
submersive in 5.15.1
submersive in 24.23.1
submersive in 42.8.1
submersive in 61.10.1
subobject in 10.3.14
subpresheaf in 6.16.2
subpresheaf in 9.3.3
subsheaf generated by the 𝑠𝑖 in 15.4.5
subsheaf of sections annihilated by ℐ in
23.22.4
subsheaf in 6.16.2
sum of the effective Cartier divisors 𝐷1 and
𝐷2 in 26.9.4
sum of the effective Cartier divisors in
29.27.5
support of ℱ in 15.5.1
support of ℱ in 38.31.3
support of ℱ in 41.17.3
support of 𝜎 in 38.31.3
support of 𝜎 in 41.17.3
support of 𝑀 in 7.59.2
support of 𝑠 in 15.5.1
surjective in 6.16.2
surjective in 6.16.2
surjective in 9.3.1
surjective in 9.11.1
surjective in 10.3.14
surjective in 24.9.1
surjective in 42.6.2
surjective in 60.5.1
symbol associated to 𝑀, 𝑎, 𝑏 in 29.4.3
symbolic power in 7.61.1
symbol in 29.2.1
syntomic at 𝑥 ∈ 𝑋 in 24.30.1
syntomic at 𝑥 in 42.32.1
syntomic covering of 𝑇 in 30.6.1
syntomic covering of 𝑋 in 44.5.1
syntomic of relative dimension 𝑑 in 24.30.15
syntomic sheaf in 58.4.3
syntomic in 7.125.1
syntomic in 24.30.1
syntomic in 42.32.1
system (𝑀𝑖, 𝜇𝑖𝑗) of 𝑅-modules over 𝐼 in
7.8.2
system of parameters of 𝑅 in 7.57.9
system of rings in 65.2.1
system over 𝐼 in 𝒞 in 4.19.1

tame symbol in 29.4.5
tangent space 𝑇ℱ of ℱ in 51.11.1
tangent space 𝑇𝐹 of 𝐹 in 51.10.9
tangent space of 𝑋 over 𝑆 in 65.28.3
tangent vector in 65.28.3
tautologically equivalent in 9.8.2
tensor power of ℒ in 15.21.3
tensor product differential graded algebra in
10.25.4
termwise split injection 𝛼 ∶ 𝐴• → 𝐵• in
11.8.3
termwise split sequence of complexes of 𝒜
in 11.8.8
termwise split surjection 𝛽 ∶ 𝐵• → 𝐶• in
11.8.3
the fibre of 𝑋 over 𝑧 is flat at 𝑥 over the fibre
of 𝑌 over 𝑧 in 46.18.2
the fibre of 𝑋 over 𝑧 is flat over the fibre of
𝑌 over 𝑧 in 46.18.2
the functions on 𝑋 are the 𝑅-invariant func-
tions on 𝑈 in 56.8.1
the restriction of ℱ to its fibre over 𝑧 is flat
at 𝑥 over the fibre of 𝑌 over 𝑧 in 46.18.2
thickenings over 𝐵 in 46.8.1
thickenings over 𝑆 in 33.2.1
thickening in 33.2.1
thickening in 46.8.1
topological module in 12.27.1
topological ring in 12.27.1
topological space in 41.4.7
topological space in 60.4.8
topology associated to 𝒞 in 9.41.2
topology on 𝒞 in 9.40.6
topos in 9.15.1
tor dimension ≤ 𝑑 in 12.41.1
Tor independent over 𝑅 in 12.5.1
tor-amplitude in [𝑎, 𝑏] in 12.41.1
torsion free in 12.17.1
torsion in 12.17.1
torsion in 38.80.6
torsor in 18.5.1
torsor in 19.5.1
total chern class of ℰ on 𝑋 in 29.34.1
total right derived functor of 𝐹 in 38.69.4
total right derived functor of 𝐺 in 38.69.4
totally disconnected in 5.4.6
trace in 38.64.3
trace in 38.67.1
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transcendence basis in 7.37.1
transcendence degree of 𝑥/𝑓(𝑥) in 42.30.1
transcendence degree in 7.37.3
transition maps in 4.19.1
triangle associated to the termwise split se-
quence of complexes in 11.8.8
triangle in 11.3.1
triangulated category in 11.3.2
triangulated functor in 11.3.3
triangulated subcategory in 11.3.4
trivial 𝒢-torsor in 18.5.1
trivial 𝒢-torsor in 19.5.1
trivial descent datum in 31.2.3
trivial descent datum in 31.30.10
trivial descent datum in 45.3.3
trivial descent datum in 50.3.5
trivial in 15.21.1
trivial in 35.9.1
trivial in 52.9.1
trivial in 65.32.4
twist of the structure sheaf of Proj(𝑆) in
22.10.1
twist of the structure sheaf in 22.20.1
type of algebraic structure in 6.15.1
UFD in 7.111.4
underlying presheaf of sets of ℱ in 6.5.2
uniform categorical quotient in 56.4.4
uniformly in 56.7.1
unique factorization domain in 7.111.4
universal 𝛿-functor in 10.9.3
universal 𝜑-derivation in 16.29.3
universal 𝑆-derivation in 24.32.4
universal 𝑌-derivation in 16.29.6
universal 𝑌-derivation in 46.6.2
universal categorical quotient in 56.4.4
universal effective epimorphism in 9.12.1
universal first order thickening in 7.136.2
universal first order thickening in 33.5.2
universal first order thickening in 46.12.5
universal flattening of ℱ exists in 34.21.1
universal flattening of 𝑋 exists in 34.21.1
universal homeomorphism in 24.43.1
universal homeomorphism in 42.41.2
universally 𝑆-pure in 34.16.1
universally catenary in 7.97.5
universally catenary in 24.16.1
universally closed in 5.12.2
universally closed in 21.20.1

universally closed in 42.10.2
universally closed in 61.11.2
universally exact in 7.76.1
universally injective in 7.76.1
universally injective in 24.10.1
universally injective in 42.18.3
universally Japanese in 7.144.15
universally Japanese in 23.13.1
universally open in 24.22.1
universally open in 42.7.2
universally open in 61.9.2
universally pure along 𝑋𝑠 in 34.16.1
universally pure relative to 𝑆 in 34.16.1
universally submersive in 24.23.1
universally submersive in 42.8.1
universally submersive in 61.10.1
universally in 56.7.1
unramified at 𝔮 in 7.138.1
unramified at 𝑥 ∈ 𝑋 in 24.34.1
unramified at 𝑥 in 37.3.5
unramified at 𝑥 in 42.34.1
unramified cusp form on 𝐺𝐿2(𝐀) with val-
ues in Λ in 38.93.1
unramified homomorphism of local rings in
37.3.1
unramified in 7.138.1
unramified in 24.34.1
unramified in 37.3.5
unramified in 42.34.1
valuation ring in 7.46.1
valuation in 7.46.8
value group in 7.46.8
value of 𝐿𝐹 at 𝑋 in 11.14.2
value of 𝑅𝐹 at 𝑋 in 11.14.2
value in 4.20.1
value in 4.20.1
variety in 28.3.1
variety in 38.59.13
vector bundle 𝜋 ∶ 𝑉 → 𝑆 over 𝑆 in 22.6.2
vector bundle associated to ℰ in 22.6.1
versal in 51.8.13
vertical in 4.26.1
very ample on 𝑋/𝑆 in 24.37.1
very reasonable in 43.6.1
very reasonable in 43.13.1
viewed as an algebraic space over 𝑆′ in
40.16.2



3004 71. AUTO GENERATED INDEX

viewed as an algebraic stack over 𝑆′ in
57.19.2
weak 𝑅-orbit in 56.5.4
weak functor in 4.26.5
weak orbit in 56.5.4
weak Serre subcategory in 10.7.1
weaker than the canonical topology in
9.12.2
weakly 𝑅-equivalent in 56.5.4
weakly associated points of 𝑋 in 26.5.1
weakly associated in 7.63.1
weakly associated in 26.5.1
Weil divisor [𝐷] associated to an effective
Cartier divisor 𝐷 ⊂ 𝑋 in 65.34.1
Weil divisor associated to ℒ in 29.24.1
Weil divisor associated to 𝑠 in 29.24.1
Weil divisor associated to a Cartier divisor
in 65.34.1
Weil divisor associated to a rational func-
tion 𝑓 ∈ 𝐾(𝑋)∗ in 65.34.1
Weil divisor in 65.34.1

which associates a sheaf to a semi-
representable object in 20.2.2
Yoneda extension in 11.26.4
Zariski covering of 𝑇 in 30.3.1
Zariski covering of 𝑋 in 44.8.1
Zariski covering in 40.12.5
Zariski locally quasi-separated over 𝑆 in
40.13.2
Zariski locally quasi-separated in 41.3.1
Zariski locally quasi-separated in 41.3.1
Zariski sheaf in 58.4.3
Zariski topos in 38.21.1
Zariski, étale, smooth, syntomic, or fppf cov-
ering in 39.12.4
Zariski in 7.16.3
zero object in 10.3.3
zero scheme in 26.9.15
zeroth 𝐾-group of 𝒜 in 10.8.1
zeroth Cech cohomology group in 38.13.1
Čech cohomology groups in 18.9.1
Čech complex in 18.9.1

71.2. Definitions listed per chapter

Introduction

Conventions

Set Theory

Categories

In 4.2.1: category
In 4.2.4: isomorphism
In 4.2.5: groupoid
In 4.2.8: functor
In 4.2.9: faithful, fully faithful, essentially
surjective
In 4.2.10: subcategory, full subcategory,
strictly full
In 4.2.15: natural transformation,morphism
of functors
In 4.2.17: equivalence of categories, quasi-
inverse
In 4.2.20: product category
In 4.3.1: opposite category
In 4.3.2: contravariant
In 4.3.3: presheaf of sets on 𝒞, presheaf
In 4.3.6: representable

In 4.4.1: product
In 4.4.2: has products of pairs of objects
In 4.5.1: coproduct, amalgamated sum
In 4.5.2: has coproducts of pairs of objects
In 4.6.1: fibre product
In 4.6.2: has fibre products
In 4.6.3: representable
In 4.8.2: representable, 𝐹 is relatively repre-
sentable over 𝐺
In 4.9.1: push out
In 4.10.1: equalizer
In 4.11.1: coequalizer
In 4.12.1: initial, final
In 4.13.1: limit
In 4.13.2: colimit
In 4.13.5: product
In 4.13.6: coproduct
In 4.15.1: connected
In 4.17.1: directed, filtered, directed, filtered
In 4.17.5: ℐ is cofinal in 𝒥
In 4.18.1: codirected, cofiltered, codirected,
cofiltered
In 4.19.1: system over 𝐼 in 𝒞, inductive sys-
tem over 𝐼 in 𝒞, inverse system over 𝐼 in
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𝒞, projective system over 𝐼 in 𝒞, transition
maps
In 4.19.2: directed system, directed inverse
system, directed
In 4.20.1: is essentially constant, value, es-
sentially constant, value
In 4.20.2: essentially constant system, essen-
tially constant inverse system
In 4.21.1: left exact, right exact, exact
In 4.22.1: left adjoint, right adjoint
In 4.23.1: monomorphism, epimorphism
In 4.24.1: left multiplicative system, right
multiplicative system, multiplicative system
In 4.24.17: saturated
In 4.25.1: horizontal
In 4.26.1: 2-category, 1-morphisms,
2-morphisms, vertical, composition, hori-
zontal
In 4.26.2: sub 2-category
In 4.26.4: equivalent
In 4.26.5: functor, weak functor, pseudo
functor
In 4.27.1: (2, 1)-category
In 4.28.1: final object
In 4.28.2: 2-fibre product of 𝑓 and 𝑔
In 4.29.1: 2-category of categories over 𝒞
In 4.29.2: fibre category, lift, 𝑥 lies over 𝑈,
lift, 𝜙 lies over 𝑓
In 4.30.1: strongly cartesian morphism,
strongly 𝒞-cartesian morphism
In 4.30.4: fibred category over 𝒞
In 4.30.5: choice of pullbacks, pullback
functor
In 4.30.8: 2-category of fibred categories
over 𝒞
In 4.31.2: relative inertia of 𝒮 over 𝒮′, iner-
tia fibred category ℐ𝒮 of 𝒮
In 4.32.1: fibred in groupoids
In 4.32.6: 2-category of categories fibred in
groupoids over 𝒞
In 4.33.2: split fibred category, 𝒮𝐹
In 4.34.2: split category fibred in groupoids,
𝒮𝐹
In 4.35.1: discrete
In 4.35.2: category fibred in sets, category
fibred in discrete categories
In 4.35.3: 2-category of categories fibred in
sets over 𝒞

In 4.36.1: setoid
In 4.36.2: category fibred in setoids
In 4.36.3: 2-category of categories fibred in
setoids over 𝒞
In 4.37.1: representable
In 4.38.5: representable, 𝒳 is relatively rep-
resentable over 𝒴

Topology

In 5.3.1: base for the topology on 𝑋, basis
for the topology on 𝑋
In 5.4.1: connected, connected component
In 5.4.6: totally disconnected
In 5.4.7: locally connected
In 5.5.1: irreducible, irreducible component
In 5.5.4: generic point, Kolmogorov, sober
In 5.6.1: Noetherian, locally Noetherian
In 5.7.1: chain of irreducible closed subsets,
length, dimension, Krull dimension, Krull
dimension of 𝑋 at 𝑥
In 5.7.4: equidimensional
In 5.8.1: catenary
In 5.8.3: codimension
In 5.9.1: quasi-compact, quasi-compact,
retrocompact
In 5.10.1: constructible, locally construcible
In 5.12.2: closed, proper, quasi-proper, uni-
versally closed
In 5.13.1: Jacobson
In 5.14.1: specialization, generalization,
stable under specialization, stable under
generalization
In 5.14.3: specializations lift along 𝑓, spe-
cializing, generalizations lift along 𝑓, gen-
eralizing
In 5.15.1: submersive
In 5.16.1: immediate specialization, dimen-
sion function
In 5.17.1: interior, nowhere dense
In 5.18.1: locally quasi-compact
In 5.18.3: isolated point

Sheaves on Spaces

In 6.3.1: presheaf ℱ of sets on 𝑋, morphism
𝜑 ∶ ℱ → 𝒢 of presheaves of sets on 𝑋
In 6.3.2: constant presheaf with value 𝐴
In 6.4.4: presheaf of abelian groups on
𝑋, abelian presheaf over 𝑋, morphism of
abelian presheaves over 𝑋
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In 6.5.1: presheaf ℱ on 𝑋 with values in 𝒞,
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves with
value in 𝒞
In 6.5.2: underlying presheaf of sets of ℱ
In 6.6.1: presheaf of 𝒪-modules, morphism
𝜑 ∶ ℱ → 𝒢 of presheaves of 𝒪-modules
In 6.7.1: sheaf ℱ of sets on 𝑋, morphism of
sheaves of sets
In 6.7.4: constant sheaf with value 𝐴
In 6.8.1: abelian sheaf on𝑋, sheaf of abelian
groups on 𝑋
In 6.9.1: sheaf
In 6.10.1: sheaf of 𝒪-modules, morphism of
sheaves of 𝒪-modules
In 6.11.2: separated
In 6.15.1: type of algebraic structure
In 6.16.2: subpresheaf, subsheaf, injective,
surjective, injective, surjective
In 6.21.7: 𝑓-map 𝜉 ∶ 𝒢 → ℱ
In 6.21.9: composition of 𝜑 and 𝜓
In 6.25.1: ringed space, morphism of ringed
spaces
In 6.25.3: composition of morphisms of
ringed spaces
In 6.26.1: pushforward, pullback
In 6.27.1: skyscraper sheaf at 𝑥 with
value 𝐴, skyscraper sheaf, skyscraper sheaf,
skyscraper sheaf, skyscraper sheaf
In 6.30.1: presheaf ℱ of sets on ℬ, mor-
phism 𝜑 ∶ ℱ → 𝒢 of presheaves of sets on
ℬ
In 6.30.2: sheaf ℱ of sets on ℬ, morphism
of sheaves of sets on ℬ
In 6.30.8: presheaf ℱ with values in 𝒞 on ℬ,
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves with
values in 𝒞 on ℬ, sheaf ℱ with values in 𝒞
on ℬ
In 6.30.11: presheaf of 𝒪-modules ℱ on ℬ,
morphism 𝜑 ∶ ℱ → 𝒢 of presheaves of
𝒪-modules on ℬ, sheaf ℱ of 𝒪-modules on
ℬ
In 6.31.2: restriction of 𝒢 to 𝑈, restriction of
𝒢 to 𝑈, open subspace of (𝑋, 𝒪) associated
to 𝑈, restriction of 𝒢 to 𝑈
In 6.31.3: extension of ℱ by the empty set
𝑗𝑝!ℱ, extension of ℱ by the empty set 𝑗!ℱ
In 6.31.5: extension 𝑗𝑝!ℱ of ℱ by 0, exten-
sion 𝑗!ℱ of ℱ by 0, extension 𝑗𝑝!ℱ of ℱ by

𝑒, extension 𝑗!ℱ of ℱ by 𝑒, extension by 0,
extension by 0

Commutative Algebra

In 7.5.1: finite 𝑅-module, finitely gener-
ated𝑅-module, finitely presented𝑅-module,
𝑅-module of finite presentation
In 7.6.1: finite type, 𝑆 is a finite type
𝑅-algebra, finite presentation
In 7.7.1: finite
In 7.8.1: partially ordered set, directed set
In 7.8.2: system (𝑀𝑖, 𝜇𝑖𝑗) of 𝑅-modules over
𝐼, directed system
In 7.8.7: homomorphism of systems
In 7.8.12: relation
In 7.9.1: multiplicative subset of 𝑅
In 7.9.2: localization of 𝐴 with respect to 𝑆
In 7.9.6: localization
In 7.11.1: 𝑅-bilinear
In 7.11.6: (𝐴, 𝐵)-bimodule
In 7.13.1: base change, base change
In 7.16.1: spectrum
In 7.16.3: Zariski, standard opens
In 7.17.1: local ring, local homomorphism
of local rings, local ring map 𝜑 ∶ 𝑅 → 𝑆
In 7.25.2: Oka family
In 7.31.1: Jacobson ring
In 7.32.1: integral over 𝑅, integral
In 7.32.8: integral closure, integrally closed
In 7.33.1: normal
In 7.33.3: almost integral over𝑅, completely
normal
In 7.33.10: normal
In 7.34.1: integral over 𝐼
In 7.35.1: flat, faithfully flat, flat, faithfully
flat
In 7.36.1: going up, going down
In 7.37.1: algebraically independent, purely
transcendental extension, transcendence
basis
In 7.37.3: transcendence degree
In 7.38.1: algebraic, separable, purely in-
separable, normal, Galois
In 7.38.3: separable degree, inseparable de-
gree, degree of inseparability
In 7.38.6: algebraic closure of 𝑘 in 𝐾, alge-
braically closed in 𝐾
In 7.39.1: separably generated over 𝑘, sepa-
rable over 𝑘
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In 7.40.1: geometrically reduced over 𝑘
In 7.42.1: perfect
In 7.42.5: perfect closure
In 7.43.6: geometrically irreducible over 𝑘
In 7.44.3: geometrically connected over 𝑘
In 7.45.1: geometrically integral over 𝑘
In 7.46.1: dominates, valuation ring, cen-
tered
In 7.46.8: value group, valuation, discrete
valuation ring
In 7.47.2: locally nilpotent, nilpotent
In 7.48.1: length
In 7.48.9: simple
In 7.49.1: Artinian
In 7.50.1: essentially of finite type, essen-
tially of finite presentation
In 7.53.1: homogeneous spectrum
In 7.54.1: blowup algebra, Rees algebra,
affine blowup algebra
In 7.55.2: numerical polynomial
In 7.56.1: an ideal of definition of 𝑅
In 7.56.7: 𝑑(𝑀)
In 7.57.1: Krull dimension
In 7.57.2: height
In 7.57.9: system of parameters of𝑅, regular
local ring, regular system of parameters
In 7.59.2: support of 𝑀
In 7.60.1: associated
In 7.61.1: symbolic power
In 7.62.2: relative assassin of 𝑁 over 𝑆/𝑅
In 7.63.1: weakly associated
In 7.64.1: embedded associated primes, em-
bedded primes of 𝑅
In 7.65.1: 𝑀-regular, 𝑀-regular sequence
in 𝐼, regular sequence
In 7.65.4: 𝐼-depth, depth
In 7.66.1: 𝑀-quasi-regular, quasi-regular
sequence
In 7.67.2: resolution, resolution of 𝑀 by free
𝑅-modules, resolution of 𝑀 by finite free
𝑅-modules
In 7.71.1: projective
In 7.72.1: locally free, finite locally free
In 7.76.1: universally injective, universally
exact
In 7.78.1: direct sum dévissage, Kaplansky
dévissage
In 7.80.1: Mittag-Leffler inverse system

In 7.82.1: Mittag-Leffler directed system of
modules
In 7.82.2: dominates
In 7.82.6: Mittag-Leffler
In 7.84.1: coherent module, coherent ring
In 7.90.5: 𝐼-adically complete, 𝐼-adically
complete
In 7.94.4: rank
In 7.95.1: Cohen-Macaulay
In 7.96.1: Cohen-Macaulay
In 7.96.6: Cohen-Macaulay
In 7.96.9: maximal Cohen-Macaulay
In 7.97.1: catenary
In 7.97.5: universally catenary
In 7.100.1: pure
In 7.101.2: finite projective dimension, pro-
jective dimension
In 7.101.6: finite global dimension, global
dimension
In 7.102.6: regular
In 7.103.5: local ring of the fibre at 𝔮
In 7.111.1: associates, irreducible, prime
In 7.111.4: unique factorization domain,
UFD
In 7.111.6: principal ideal domain, PID
In 7.111.8: Dedekind domain
In 7.112.2: order of vanishing along 𝑅
In 7.112.3: lattice in 𝑉
In 7.112.5: distance between 𝑀 and 𝑀′

In 7.113.3: quasi-finite at 𝔮, quasi-finite
In 7.114.8: strongly transcendental over 𝑅
In 7.116.1: relative dimension of 𝑆/𝑅 at 𝔮,
relative dimension of
In 7.122.1: derivation, 𝑅-derivation, Leib-
niz rule
In 7.122.2: module of Kähler diffentials,
module of differentials
In 7.123.1: naive cotangent complex
In 7.124.1: global complete intersection
over 𝑘, local complete intersection over 𝑘
In 7.124.5: complete intersection (over 𝑘)
In 7.125.1: syntomic, flat local complete in-
tersection over 𝑅
In 7.125.5: relative global complete inter-
section
In 7.126.1: smooth
In 7.126.6: standard smooth algebra over 𝑅
In 7.126.11: smooth at 𝔮
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In 7.127.1: formally smooth over 𝑅
In 7.130.1: small extension
In 7.132.1: étale, étale at 𝔮
In 7.132.13: standard étale
In 7.135.1: formally unramified over 𝑅
In 7.136.2: universal first order thickening,
conormal module, 𝐶𝑆/𝑅
In 7.137.1: formally étale over 𝑅
In 7.138.1: unramified, G-unramified, un-
ramified at 𝔮, G-unramified at 𝔮
In 7.139.1: henselian, strictly henselian
In 7.139.14: henselization, strict henseliza-
tion of 𝑅 with respect to 𝜅 ⊂ 𝜅𝑠𝑒𝑝, strict
henselization
In 7.140.1: (𝑅𝑘), regular in codimension ≤
𝑘, (𝑆𝑘)
In 7.143.1: complete local ring
In 7.143.4: coefficient ring
In 7.143.5: Cohen ring
In 7.144.1: N-1, N-2, Japanese
In 7.144.15: universally Japanese, Nagata
ring
In 7.144.23: analytically unramified, analyt-
ically unramified
In 7.147.2: geometrically normal
In 7.148.2: geometrically regular

Brauer groups

In 8.2.1: finite
In 8.2.2: skew field
In 8.2.3: simple, simple
In 8.2.4: central
In 8.2.5: opposite algebra
In 8.5.2: Brauer group
In 8.8.1: splits, splitting field

Sites and Sheaves

In 9.2.1: presheaf of sets, Morphisms of
presheaves
In 9.2.2: presheaf, morphism
In 9.3.1: injective, surjective
In 9.3.3: subpresheaf
In 9.3.5: image of 𝜑
In 9.6.1: family of morphisms with fixed tar-
get
In 9.6.2: site, coverings of 𝒞
In 9.7.1: sheaf
In 9.7.5: Sh(𝒞)
In 9.7.6: sheaf

In 9.8.1: morphism of families of maps with
fixed target of𝒞 from𝒰 to𝒱,morphism from
𝒰 to 𝒱, refinement
In 9.8.2: combinatorially equivalent, tauto-
logically equivalent
In 9.10.9: separated
In 9.10.11: sheaf associated to ℱ
In 9.11.1: injective, surjective
In 9.12.1: effective epimorphism, universal
effective epimorphism
In 9.12.2: weaker than the canonical topol-
ogy, subcanonical
In 9.12.3: 𝑈 = ℎ𝑈, 𝑈, representable sheaf
In 9.13.1: continuous
In 9.14.1: morphism of sites
In 9.14.4: composition
In 9.15.1: topos, morphism of topoi, compo-
sition 𝑓 ∘ 𝑔
In 9.18.1: cocontinuous
In 9.21.1: localization of the site 𝒞 at the ob-
ject 𝑈, localization morphism, direct image
functor, restriction of ℱ to 𝒞/𝑈, extension of
𝒢 by the empty set
In 9.25.2: special cocontinuous functor 𝑢
from 𝒞 to 𝒟
In 9.26.4: localization of the topos Sh(𝒞) at
ℱ, localization morphism
In 9.28.1: point of the topos Sh(𝒞)
In 9.28.2: point 𝑝 of the site 𝒞
In 9.28.6: skyscraper sheaf
In 9.32.1: 2-morphism from 𝑓 to 𝑔
In 9.33.2: morphism 𝑓 ∶ 𝑝 → 𝑝′

In 9.34.1: conservative, has enough points
In 9.37.1: sheaf theoretically empty
In 9.37.3: almost cocontinuous
In 9.38.1: pushforward
In 9.39.1: global sections
In 9.40.1: sieve 𝑆 on 𝑈
In 9.40.3: sieve on 𝑈 generated by the mor-
phisms 𝑓𝑖
In 9.40.4: pullback of 𝑆 by 𝑓
In 9.40.6: topology on 𝒞
In 9.40.8: finer
In 9.40.10: sheaf
In 9.40.12: canonical topology
In 9.41.2: topology associated to 𝒞
In 9.42.2: separated
In 9.42.4: sheaf associated to ℱ
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In 9.45.1: point 𝑝

Homological Algebra

In 10.3.1: preadditive, additive
In 10.3.3: zero object
In 10.3.5: direct sum
In 10.3.8: additive
In 10.3.9: kernel, cokernel, coimage of 𝑓, im-
age of 𝑓
In 10.3.12: abelian
In 10.3.14: injective, surjective, subobject,
quotient
In 10.3.18: complex, exact at 𝑦, exact, short
exact sequence
In 10.3.20: split
In 10.4.1: extension 𝐸 of 𝐵 by 𝐴
In 10.4.2: Ext-group
In 10.7.1: Serre subcategory, weak Serre
subcategory
In 10.7.5: kernel of the functor 𝐹
In 10.8.1: zeroth 𝐾-group of 𝒜
In 10.9.1: cohomological 𝛿-functor,
𝛿-functor
In 10.9.2: morphism of 𝛿-functors from 𝐹 to
𝐺
In 10.9.3: universal 𝛿-functor
In 10.10.2: homotopy equivalence, homo-
topy equivalent
In 10.10.4: quasi-isomorphism, acyclic
In 10.10.8: homotopy equivalence, homo-
topy equivalent
In 10.10.10: quasi-isomorphism, acyclic
In 10.12.1: 𝑘-shifted chain complex 𝐴[𝑘]•
In 10.12.2: 𝐻𝑖+𝑘(𝐴•) → 𝐻𝑖(𝐴[𝑘]•)
In 10.12.7: 𝑘-shifted cochain complex 𝐴[𝑘]•

In 10.12.8: 𝐻𝑖+𝑘(𝐴•) ⟶ 𝐻𝑖(𝐴[𝑘]•)
In 10.13.1: decreasing filtration, filtered ob-
ject of 𝒜, morphism (𝐴, 𝐹) → (𝐵, 𝐹) of fil-
tered objects, induced filtration, quotient fil-
tration, finite, separated, exhaustive
In 10.13.3: strict
In 10.13.12: graded object of 𝒜, morphism
(𝐴, 𝑘) → (𝐵, 𝑘) of graded objects
In 10.14.1: spectral sequence in 𝒜, mor-
phism of spectral sequences
In 10.14.2: limit, collapses at 𝐸𝑟, degener-
ates at 𝐸𝑟
In 10.15.1: exact couple, morphism of exact
couples

In 10.15.3: spectral sequence associated to
the exact couple
In 10.16.1: differential object, morphism of
differential objects
In 10.16.3: homology
In 10.16.5: spectral sequence associated to
(𝐴, 𝑑, 𝛼)
In 10.17.1: filtered differential object
In 10.17.4: induced filtration
In 10.17.6: converges, abuts to, converges to
In 10.18.1: filtered complex 𝐾• of 𝒜
In 10.18.5: induced filtration
In 10.18.7: converges
In 10.19.1: double complex
In 10.19.2: associated simple complex 𝑠𝐴•,
associated total complex
In 10.19.4: converges, converges
In 10.20.1: injective
In 10.20.4: enough injectives
In 10.20.5: functorial injective embeddings
In 10.21.1: projective
In 10.21.4: enough projectives
In 10.21.5: functorial projective surjections
In 10.23.2: Mittag-Leffler condition, ML
In 10.25.1: differential graded algebra
In 10.25.2: homomorphism of differential
graded algebras
In 10.25.3: commutative, strictly commuta-
tive
In 10.25.4: tensor product differential
graded algebra

Derived Categories

In 11.3.1: triangle, morphism of triangles
In 11.3.2: triangulated category, distin-
guished triangles, pre-triangulated cate-
gory
In 11.3.3: exact functor, triangulated func-
tor
In 11.3.4: pre-triangulated subcategory, tri-
angulated subcategory
In 11.3.5: homological, cohomological
In 11.3.6: 𝛿-functor from 𝒜 to 𝒟, image of
the short exact sequence under the given
𝛿-functor
In 11.5.1: compatible with the triangulated
structure
In 11.6.1: saturated
In 11.6.5: kernel of 𝐹, kernel of 𝐻
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In 11.6.7: quotient category 𝒟/ℬ, quotient
functor
In 11.7.1: category of (cochain) complexes,
bounded below, bounded above, bounded
In 11.8.1: cone
In 11.8.3: termwise split injection 𝛼 ∶ 𝐴• →
𝐵•, termwise split surjection 𝛽 ∶ 𝐵• → 𝐶•

In 11.8.8: termwise split sequence of com-
plexes of 𝒜, triangle associated to the
termwise split sequence of complexes
In 11.9.1: distinguished triangle of 𝐾(𝒜)
In 11.10.3: derived category of 𝒜, bounded
derived category
In 11.13.1: category of finite filtered objects
of 𝒜
In 11.13.2: filtered quasi-isomorphism, fil-
tered acyclic
In 11.13.5: filtered derived category of 𝒜
In 11.13.7: bounded filtered derived cate-
gory
In 11.14.2: right derived functor 𝑅𝐹 is de-
fined at, value of 𝑅𝐹 at 𝑋, left derived func-
tor 𝐿𝐹 is defined at, value of 𝐿𝐹 at 𝑋
In 11.14.9: right deriveable, everywhere de-
fined, left deriveable, everywhere defined
In 11.14.10: computes, computes
In 11.15.3: right derived functors of 𝐹, left
derived functors of 𝐹, right acyclic for 𝐹,
acyclic for 𝑅𝐹, left acyclic for 𝐹, acyclic for
𝐿𝐹
In 11.16.2: 𝑖th right derived functor 𝑅𝑖𝐹 of
𝐹
In 11.17.1: injective resolution of 𝐴, injec-
tive resolution of 𝐾•

In 11.18.1: projective resolution of 𝐴, pro-
jective resolution of 𝐾•

In 11.20.1: Cartan-Eilenberg resolution
In 11.22.2: resolution functor
In 11.25.1: filtered injective
In 11.26.1: 𝑖th extension group
In 11.26.4: Yoneda extension, equivalent
In 11.28.1: K-injective

More on Algebra

In 12.3.3: K-flat
In 12.3.12: derived tensor product
In 12.5.1: Tor independent over 𝑅
In 12.8.1: 𝐼-power torsion module, an
𝑓-power torsion module

In 12.10.1: auto-associated
In 12.17.1: torsion, torsion free
In 12.19.1: strict transform of 𝑀 along 𝑅 →
𝑅′

In 12.21.1: Koszul complex
In 12.21.2: Koszul complex on 𝑓1, … , 𝑓𝑟
In 12.22.1: Koszul-regular, 𝐻1-regular
In 12.23.1: regular ideal, Koszul-regular
ideal, 𝐻1-regular ideal, quasi-regular ideal
In 12.24.2: local complete intersection
In 12.27.1: topological ring, topological
module, homomorphism of topological mod-
ules, homomorphism of topological rings,
linearly topologized, linearly topologized,
ideal of definition, pre-admissible, admissi-
ble, pre-adic, adic
In 12.28.1: formally smooth over 𝑅
In 12.28.3: formally smooth for the 𝔫-adic
topology
In 12.31.1: regular
In 12.34.1: p-independent over 𝑘, p-basis of
𝐾 over 𝑘
In 12.35.1: J-0, J-1, J-2
In 12.38.1: G-ring
In 12.39.1: quasi-excellent, excellent
In 12.40.1: 𝑚-pseudo-coherent, pseudo-
coherent, 𝑚-pseudo-coherent, pseudo-
coherent
In 12.41.1: tor-amplitude in [𝑎, 𝑏], finite tor
dimension, tor dimension ≤ 𝑑, finite tor di-
mension
In 12.42.1: perfect, perfect
In 12.43.2: compact object
In 12.44.2: an 𝐴-module finitely presented
relative to 𝑅
In 12.45.4: 𝑚-pseudo-coherent relative to 𝑅,
pseudo-coherent relative to 𝑅, 𝑚-pseudo-
coherent relative to 𝑅, pseudo-coherent rel-
ative to 𝑅
In 12.46.1: pseudo-coherent ring map, per-
fect ring map

Smoothing Ring Maps

In 13.3.1: singular ideal of 𝐴 over 𝑅
In 13.3.3: elementary standard in 𝐴 over 𝑅,
strictly standard in 𝐴 over 𝑅

Simplicial Methods
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In 14.2.1: 𝛿𝑛
𝑗 ∶ [𝑛−1] → [𝑛], 𝜎𝑛

𝑗 ∶ [𝑛+1] →
[𝑛]
In 14.3.1: simplicial object 𝑈 of 𝒞, simpli-
cial set, simplicial abelian group, morphism
of simplicial objects 𝑈 → 𝑈′, category of
simplicial objects of 𝒞
In 14.5.1: cosimplicial object 𝑈 of 𝒞, cosim-
plicial set, cosimplicial abelian group, mor-
phism of cosimplicial objects 𝑈 → 𝑈′, cat-
egory of cosimplicial objects of 𝒞
In 14.6.1: product of 𝑈 and 𝑉
In 14.7.1: fibre product of 𝑉 and 𝑊 over 𝑈
In 14.8.1: push out of 𝑉 and 𝑊 over 𝑈
In 14.9.1: product of 𝑈 and 𝑉
In 14.10.1: fibre product of 𝑉 and 𝑊 over 𝑈
In 14.11.1: 𝑛-simplex of 𝑈, face of 𝑥, degen-
eracy of 𝑥, degenerate
In 14.12.1: product𝑈×𝑉 of𝑈 and 𝑉, product
𝑈 × 𝑉 exists
In 14.13.1: 𝐻𝑜𝑚(𝑈, 𝑉)
In 14.15.1: 𝐻𝑜𝑚(𝑈, 𝑉)
In 14.16.1: split
In 14.17.1: 𝑛-truncated simplicial object of
𝒞, morphism of 𝑛-truncated simplicial ob-
jects
In 14.18.1: augmentation 𝜖 ∶ 𝑈 → 𝑋 of 𝑈
towards an object 𝑋 of 𝒞
In 14.20.3: Eilenberg-Maclane object
𝐾(𝐴, 𝑘)
In 14.24.1: homotopic, homotopy connect-
ing 𝑎 and 𝑏
In 14.24.5: homotopy equivalence, homo-
topy equivalent
In 14.26.1: homotopic, homotopy connect-
ing 𝑎 and 𝑏

Sheaves of Modules
In 15.4.1: generated by global sections, gen-
erate
In 15.4.5: subsheaf generated by the 𝑠𝑖
In 15.5.1: support of ℱ, support of 𝑠
In 15.8.1: locally generated by sections
In 15.9.1: finite type
In 15.10.1: quasi-coherent sheaf of
𝒪𝑋-modules
In 15.10.6: sheaf associated to the module
𝑀 and the ring map 𝛼, sheaf associated to
the module 𝑀
In 15.11.1: finite presentation

In 15.12.1: coherent 𝒪𝑋-module
In 15.13.1: closed immersion of ringed
spaces
In 15.14.1: locally free, finite locally free
In 15.16.1: flat
In 15.16.3: flat at 𝑥
In 15.17.1: flat at 𝑥, flat
In 15.20.1: Koszul complex
In 15.20.2: Koszul complex on 𝑓1, … , 𝑓𝑟
In 15.21.1: invertible 𝒪𝑋-module, trivial
In 15.21.3: tensor power of ℒ
In 15.21.4: associated graded ring
In 15.21.6: Picard group

Modules on Sites

In 16.4.1: free abelian presheaf
In 16.5.1: free abelian sheaf
In 16.6.1: ringed site, structure sheaf, mor-
phism of ringed sites, composition of mor-
phisms of ringed sites
In 16.7.1: ringed topos, structure sheaf,
morphism of ringed topoi, composition of
morphisms of ringed topoi
In 16.8.1: 2-morphism from 𝑓 to 𝑔
In 16.9.1: presheaf of 𝒪-modules, morphism
𝜑 ∶ ℱ → 𝒢 of presheaves of 𝒪-modules
In 16.10.1: sheaf of 𝒪-modules,morphism of
sheaves of 𝒪-modules
In 16.13.1: pushforward, pullback
In 16.16.1: 𝑔𝑝!ℱ, 𝑔!ℱ = (𝑔𝑝!ℱ)#

In 16.17.1: free 𝒪-module, finite free, gener-
ated by global sections, generated by finitely
many global sections, global presentation,
global finite presentation
In 16.19.1: localization of the ringed site
(𝒞, 𝒪) at the object 𝑈, localization mor-
phism, direct image functor, restriction of ℱ
to 𝒞/𝑈, extension by zero
In 16.21.2: localization of the ringed topos
(Sh(𝒞), 𝒪) at ℱ, localization morphism
In 16.23.1: locally free, finite locally free,
locally generated by sections, of finite type,
quasi-coherent, of finite presentation, coher-
ent
In 16.26.1: flat, flat, flat, flat
In 16.27.1: flat, flat
In 16.28.1: rank 𝑟, invertible 𝒪-module, 𝒪∗

In 16.28.4: Picard group
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In 16.29.1: 𝒪1-derivation, 𝜑-derivation,
Leibniz rule
In 16.29.3:module of differentials, universal
𝜑-derivation
In 16.29.6: 𝑌-derivation, sheaf of differ-
entials Ω𝑋/𝑌 of 𝑋 over 𝑌, universal
𝑌-derivation
In 16.34.4: locally ringed site
In 16.34.6: locally ringed
In 16.34.8:morphism of locally ringed topoi,
morphism of locally ringed sites

Injectives

In 17.3.1: 𝑀 ↦ 𝑀∨, free module
In 17.6.4: 𝛼-small with respect to 𝐼
In 17.14.1: generator,Grothendieck abelian
category
In 17.15.1: size

Cohomology of Sheaves

In 18.5.1: torsor, 𝒢-torsor, morphism of
𝒢-torsors, trivial 𝒢-torsor
In 18.9.1: Čech complex, Čech cohomology
groups
In 18.17.1: alternating Čech complex
In 18.17.2: ordered Čech complex
In 18.18.1: locally finite
In 18.20.2: K-flat
In 18.20.13: derived tensor product

Cohomology on Sites

In 19.5.1: pseudo torsor, pseudo 𝒢-torsor,
morphism of pseudo 𝒢-torsors, torsor,
𝒢-torsor, morphism of 𝐺-torsors, trivial
𝒢-torsor
In 19.9.1: Cech complex, Cech cohomology
groups
In 19.13.4: limp
In 19.17.2: K-flat
In 19.17.11: derived tensor product

Hypercoverings

In 20.2.1: semi-representable objects
In 20.2.2:which associates a sheaf to a semi-
representable object
In 20.2.4: covering
In 20.2.6: hypercovering
In 20.3.1: homology of 𝐾

Schemes

In 21.2.1: locally ringed space (𝑋, 𝒪𝑋), lo-
cal ring of 𝑋 at 𝑥, residue field of 𝑋 at 𝑥,
morphism of locally ringed spaces
In 21.3.1: open immersion
In 21.3.3: open subspace of 𝑋 associated to
𝑈
In 21.4.1: closed immersion
In 21.4.4: closed subspace of 𝑋 associated
to the sheaf of ideals ℐ
In 21.5.2: standard open covering, standard
open covering
In 21.5.3: structure sheaf 𝒪𝑆𝑝𝑒𝑐(𝑅) of the
spectrum of 𝑅, spectrum
In 21.5.5: affine scheme, morphism of affine
schemes
In 21.9.1: scheme, morphism of schemes
In 21.10.2: open immersion, open sub-
scheme, closed immersion, closed sub-
scheme, immersion, locally closed immer-
sion
In 21.12.1: reduced
In 21.12.5: scheme structure on 𝑍, reduced
induced scheme structure, reduction 𝑋𝑟𝑒𝑑 of
𝑋
In 21.15.1: representable by a scheme, rep-
resentable
In 21.15.3: satisfies the sheaf property for
the Zariski topology, subfunctor 𝐻 ⊂ 𝐹,
representable by open immersions, covers 𝐹
In 21.17.1: fibre product
In 21.17.7: inverse image 𝑓−1(𝑍) of the
closed subscheme 𝑍
In 21.18.1: scheme over 𝑆, structure mor-
phism, scheme over 𝑅, morphism 𝑓 ∶ 𝑋 →
𝑌 of schemes over 𝑆, base change, base
change, base change
In 21.18.3: preserved under arbitrary base
change, preserved under base change, pre-
served under arbitrary base change, pre-
served under base change
In 21.18.4: scheme theoretic fibre 𝑋𝑠 of 𝑓
over 𝑠, fibre of 𝑓 over 𝑠
In 21.19.1: quasi-compact
In 21.20.1: universally closed
In 21.20.3: satisfies the existence part of the
valuative criterion, satisfies the uniqueness
part of the valuative criterion
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In 21.21.3: separated, quasi-separated, sep-
arated, quasi-separated
In 21.23.1: monomorphism

Constructions of Schemes

In 22.4.5: relative spectrum of 𝒜 over 𝑆,
spectrum of 𝒜 over 𝑆
In 22.5.1: affine 𝑛-space over 𝑆, affine
𝑛-space over 𝑅
In 22.6.1: vector bundle associated to ℰ
In 22.6.2: vector bundle 𝜋 ∶ 𝑉 → 𝑆 over 𝑆,
morphism of vector bundles over 𝑆
In 22.7.1: cone associated to 𝒜, affine cone
associated to 𝒜
In 22.7.2: cone 𝜋 ∶ 𝐶 → 𝑆 over 𝑆, mor-
phism of cones
In 22.8.2: standard open covering
In 22.8.3: structure sheaf 𝒪Proj(𝑆) of the
homogeneous spectrum of 𝑆, homogeneous
spectrum
In 22.10.1: twist of the structure sheaf of
Proj(𝑆)
In 22.13.2: projective 𝑛-space over 𝐙, pro-
jective 𝑛-space over 𝑆, projective 𝑛-space
over 𝑅
In 22.16.7: relative homogeneous spectrum
of 𝒜 over 𝑆, homogeneous spectrum of 𝒜
over 𝑆, relative Proj of 𝒜 over 𝑆
In 22.20.1: projective bundle associated to
ℰ, twist of the structure sheaf
In 22.21.1: blowing up of 𝑋 along 𝑍, blow-
ing up of 𝑋 in the ideal sheaf ℐ

Properties of Schemes

In 23.3.1: integral
In 23.4.1: local
In 23.4.2: locally 𝑃
In 23.5.1: locally Noetherian, Noetherian
In 23.6.1: Jacobson
In 23.7.1: normal
In 23.8.1: Cohen-Macaulay
In 23.9.1: regular, nonsingular
In 23.10.1: dimension, dimension of 𝑋 at 𝑥
In 23.11.1: catenary
In 23.12.1: regular in codimension 𝑘, (𝑅𝑘),
(𝑆𝑘)
In 23.13.1: Japanese, universally Japanese,
Nagata
In 23.14.1: regular locus, singular locus

In 23.15.1: quasi-affine
In 23.19.1: locally projective
In 23.21.1: 𝜅-generated
In 23.22.4: subsheaf of sections annihilated
by ℐ
In 23.23.1: ample

Morphisms of Schemes

In 24.4.2: scheme theoretic image
In 24.5.1: scheme theoretic closure of 𝑈 in
𝑋, scheme theoretically dense in 𝑋
In 24.6.1: dominant
In 24.7.1: birational
In 24.8.1: equivalent, rational map from 𝑋
to 𝑌, 𝑆-rational map from 𝑋 to 𝑌
In 24.8.2: rational function on 𝑋
In 24.8.3: ring of rational functions on 𝑋
In 24.8.5: function field, field of rational
functions
In 24.9.1: surjective
In 24.10.1: universally injective, radicial
In 24.11.1: affine
In 24.12.1: quasi-affine
In 24.13.1: local, stable under base change,
stable under composition
In 24.13.2: locally of type 𝑃
In 24.14.1: finite type at 𝑥 ∈ 𝑋, locally of
finite type, finite type
In 24.15.3: finite type point
In 24.16.1: universally catenary
In 24.18.1: J-2
In 24.19.1: quasi-finite at a point 𝑥 ∈ 𝑋, lo-
cally quasi-finite, quasi-finite
In 24.20.1: finite presentation at 𝑥 ∈ 𝑋, lo-
cally of finite presentation, finite presenta-
tion
In 24.22.1: open, universally open
In 24.23.1: submersive, universally submer-
sive
In 24.24.1: flat at a point 𝑥 ∈ 𝑋, flat over 𝑆
at a point 𝑥 ∈ 𝑋, flat, flat over 𝑆
In 24.25.2: canonical scheme structure on 𝑇
In 24.28.1: relative dimension ≤ 𝑑 at 𝑥, rel-
ative dimension ≤ 𝑑, relative dimension 𝑑
In 24.30.1: syntomic at 𝑥 ∈ 𝑋, syntomic,
local complete intersection over 𝑘, standard
syntomic
In 24.30.15: syntomic of relative dimension
𝑑
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In 24.31.1: conormal sheaf 𝒞𝑍/𝑋 of 𝑍 in 𝑋,
conormal sheaf of 𝑖
In 24.32.1: derivation, 𝑆-derivation, Leibniz
rule
In 24.32.4: sheaf of differentials Ω𝑋/𝑆 of 𝑋
over 𝑆, universal 𝑆-derivation
In 24.33.1: smooth at 𝑥 ∈ 𝑋, smooth, stan-
dard smooth
In 24.33.13: smooth of relative dimension 𝑑
In 24.34.1: unramified at 𝑥 ∈ 𝑋, G-
unramified at 𝑥 ∈ 𝑋, unramified, G-
unramified
In 24.35.1: étale at 𝑥 ∈ 𝑋, étale, standard
étale
In 24.36.1: relatively ample, 𝑓-relatively
ample, ample on 𝑋/𝑆, 𝑓-ample
In 24.37.1: relatively very ample,
𝑓-relatively very ample, very ample on 𝑋/𝑆,
𝑓-very ample
In 24.39.1: quasi-projective, H-quasi-
projective, locally quasi-projective
In 24.40.1: proper
In 24.41.1: projective, H-projective, locally
projective
In 24.42.1: integral, finite
In 24.43.1: universal homeomorphism
In 24.44.1: finite locally free, rank, degree
In 24.45.5: degree of 𝑋 over 𝑌
In 24.46.2: integral closure of 𝒪𝑋 in 𝒜
In 24.46.3: normalization of 𝑋 in 𝑌
In 24.46.12: normalization
In 24.48.1: bounds the degrees of the fibres
of 𝑓, fibres of 𝑓 are universally bounded

Coherent Cohomology

In 25.10.5: scheme theoretic support of ℱ
In 25.13.1: depth 𝑘 at a point, depth 𝑘 at a
point, (𝑆𝑘), (𝑆𝑘)
In 25.13.2: Cohen-Macaulay

Divisors

In 26.2.1: associated, associated points of 𝑋
In 26.4.1: embedded associated point, em-
bedded point, embedded component
In 26.5.1: weakly associated, weakly associ-
ated points of 𝑋
In 26.7.1: relative assassin of ℱ in 𝑋 over 𝑆
In 26.8.1: relative weak assassin of ℱ in 𝑋
over 𝑆

In 26.9.1: locally principal closed sub-
scheme, effective Cartier divisor
In 26.9.4: sum of the effective Cartier divi-
sors 𝐷1 and 𝐷2
In 26.9.8: pullback of 𝐷 by 𝑓 is defined, pull-
back of the effective Cartier divisor
In 26.9.11: invertible sheaf 𝒪𝑆(𝐷) associ-
ated to 𝐷
In 26.9.13: regular section
In 26.9.15: zero scheme
In 26.10.2: relative effective Cartier divisor
In 26.11.1: conormal algebra 𝒞𝑍/𝑋,∗ of 𝑍 in
𝑋, conormal algebra of 𝑓
In 26.11.5: normal cone 𝐶𝑍𝑋, normal bun-
dle
In 26.12.2: regular, Koszul-regular,
𝐻1-regular, quasi-regular
In 26.13.1: regular immersion, Koszul-
regular immersion, 𝐻1-regular immersion,
quasi-regular immersion
In 26.14.2: relative quasi-regular immer-
sion, relative 𝐻1-regular immersion
In 26.15.1: sheaf of meromorphic functions
on 𝑋, 𝒦𝑋, meromorphic function
In 26.15.3: pulbacks of meromorphic func-
tions are defined for 𝑓
In 26.15.5: meromorphic section of ℱ
In 26.15.10: regular
In 26.15.14: ideal sheaf of denominators of
𝑠

Limits of Schemes

Varieties

In 28.3.1: variety
In 28.4.1: geometrically reduced at 𝑥, geo-
metrically reduced
In 28.5.1: geometrically connected
In 28.6.1: geometrically irreducible
In 28.7.1: geometrically pointwise integral
at 𝑥, geometrically pointwise integral, geo-
metrically integral
In 28.8.1: geometrically normal at 𝑥, geo-
metrically normal
In 28.10.1: geometrically regular at 𝑥, geo-
metrically regular over 𝑘
In 28.13.1: algebraic 𝑘-scheme, locally al-
gebraic 𝑘-scheme
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In 28.16.1: affine variety, projective variety,
quasi-projective variety, proper variety

Chow Homology and Chern Classes

In 29.2.1: admissible, symbol, admissible
relation, determinant of the finite length
𝑅-module
In 29.3.1: 2-periodic complex, cohomology
modules, exact, (2, 1)-periodic complex, co-
homology modules
In 29.3.2: multiplicity, Herbrand quotient
In 29.3.4: determinant of (𝑀, 𝜑, 𝜓)
In 29.4.3: symbol associated to 𝑀, 𝑎, 𝑏
In 29.4.5: tame symbol
In 29.7.5: 𝛿-dimension of 𝑍
In 29.8.1: locally finite, cycle on 𝑋, 𝑘-cycle
In 29.9.2:multiplicity of𝑍′ in𝑍, 𝑘-cycle as-
sociated to 𝑍
In 29.10.2: multiplicity of 𝑍′ in ℱ, 𝑘-cycle
associated to ℱ
In 29.12.1: pushforward
In 29.14.1: flat pullback of 𝛼 by 𝑓
In 29.16.1: order of vanishing of 𝑓 along 𝑍
In 29.17.1: principal divisor associated to 𝑓
In 29.19.1: rationally equivalent to zero, ra-
tionally equivalent, Chow group of 𝑘-cycles
on 𝑋, Chow group of 𝑘-cycles module ratio-
nal equivalence on 𝑋
In 29.23.1: order of vanishing of 𝑠 along 𝑍
In 29.24.1:Weil divisor associated to 𝑠,Weil
divisor associated to ℒ
In 29.25.1: intersection with the first chern
class of ℒ
In 29.27.3: 𝜖-invariant
In 29.27.5: sum of the effective Cartier divi-
sors
In 29.28.1: Gysin homomorphism
In 29.34.1: chern classes of ℰ on 𝑋, total
chern class of ℰ on 𝑋
In 29.35.1: intersection with the 𝑗th chern
class of ℰ
In 29.36.1: polynomial relation among the
chern classes

Topologies on Schemes

In 30.3.1: Zariski covering of 𝑇
In 30.3.4: standard Zariski covering
In 30.3.5: big Zariski site

In 30.3.7: big Zariski site of 𝑆, small Zariski
site of 𝑆, big affine Zariski site of 𝑆
In 30.3.14: restriction to the small Zariski
site
In 30.4.1: étale covering of 𝑇
In 30.4.5: standard étale covering
In 30.4.6: big étale site
In 30.4.8: big étale site of 𝑆, small étale site
of 𝑆, big affine étale site of 𝑆
In 30.4.14: restriction to the small étale site
In 30.5.1: smooth covering of 𝑇
In 30.5.5: standard smooth covering
In 30.5.6: big smooth site
In 30.5.8: big smooth site of 𝑆, big affine
smooth site of 𝑆
In 30.6.1: syntomic covering of 𝑇
In 30.6.5: standard syntomic covering
In 30.6.6: big syntomic site
In 30.6.8: big syntomic site of 𝑆, big affine
syntomic site of 𝑆
In 30.7.1: fppf covering of 𝑇
In 30.7.5: standard fppf covering
In 30.7.6: big fppf site
In 30.7.8: big fppf site of 𝑆, big affine fppf
site of 𝑆
In 30.8.1: fpqc covering of 𝑇
In 30.8.9: standard fpqc covering
In 30.8.12: satisfies the sheaf property for
the given family, satisfies the sheaf property
for the fpqc topology

Descent
In 31.2.1: descent datum (ℱ𝑖, 𝜑𝑖𝑗) for quasi-
coherent sheaves, cocycle condition, mor-
phism 𝜓 ∶ (ℱ𝑖, 𝜑𝑖𝑗) → (ℱ′

𝑖 , 𝜑′
𝑖𝑗) of descent

data
In 31.2.3: trivial descent datum, canonical
descent datum, effective
In 31.3.1: descent datum (𝑁, 𝜑) for mod-
ules with respect to 𝑅 → 𝐴, cocycle con-
dition, morphism (𝑁, 𝜑) → (𝑁′, 𝜑′) of de-
scent data
In 31.3.4: effective
In 31.6.2: structure sheaf of the big site
(Sch/𝑆)𝜏, sheaf of 𝒪-modules associated to
ℱ, sheaf of 𝒪-modules associated to ℱ
In 31.7.1: parasitic, parasitic for the
𝜏-topology
In 31.11.1: local in the 𝜏-topology
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In 31.16.1: germ of 𝑋 at 𝑥, morphism of
germs, composition of morphisms of germs
In 31.16.2: étale, smooth
In 31.17.1: étale local, smooth local
In 31.18.1: 𝜏 local on the base, 𝜏 local on the
target, local on the base for the 𝜏-topology
In 31.22.1: 𝜏 local on the source, local on
the source for the 𝜏-topology
In 31.28.3: étale local on source-and-target
In 31.29.1: étale local on the source-and-
target
In 31.30.1: descent datum for 𝑉/𝑋/𝑆, cocy-
cle condition, descent datum relative to𝑋 →
𝑆, morphism 𝑓 ∶ (𝑉/𝑋, 𝜑) → (𝑉′/𝑋, 𝜑′) of
descent data relative to 𝑋 → 𝑆
In 31.30.3: descent datum (𝑉𝑖, 𝜑𝑖𝑗) relative
to the family {𝑋𝑖 → 𝑆}, morphism 𝜓 ∶
(𝑉𝑖, 𝜑𝑖𝑗) → (𝑉′

𝑖 , 𝜑′
𝑖𝑗) of descent data

In 31.30.7: pullback functor
In 31.30.9: pullback functor
In 31.30.10: trivial descent datum, canoni-
cal descent datum, effective
In 31.30.11: canonical descent datum, effec-
tive
In 31.32.1: morphisms of type 𝒫 satisfy de-
scent for 𝜏-coverings
In 31.36.1: cartesian, 𝑉• is cartesian over
𝑋•
In 31.36.2: simplicial scheme associated to
𝑓

Adequate Modules

In 32.3.1:module-valued functor,morphism
of module-valued functors
In 32.3.2: adequate, linearly adequate
In 32.5.1: adequate
In 32.5.7: Adeq(𝒪), Adeq((Sch/𝑆)𝜏, 𝒪),
Adeq(𝑆)
In 32.8.1: pure projective, pure injective
In 32.8.5: pure projective resolution, pure
injective resolution
In 32.8.8: pure extension module

More on Morphisms

In 33.2.1: thickening, first order thickening,
morphism of thickenings, thickenings over
𝑆, morphisms of thickenings over 𝑆
In 33.3.1: first order infinitesimal neigh-
bourhood

In 33.4.1: formally unramified
In 33.5.2: universal first order thickening,
conormal sheaf of 𝑍 over 𝑋
In 33.6.1: formally étale
In 33.9.1: formally smooth
In 33.13.1: normal at 𝑥, normal morphism
In 33.14.1: regular at 𝑥, regular morphism
In 33.15.1: Cohen-Macaulay at 𝑥, Cohen-
Macaulay morphism
In 33.25.1: étale neighbourhood of (𝑆, 𝑠),
morphism of étale neighbourhoods, elemen-
tary étale neighbourhood
In 33.36.2: pseudo-coherent
In 33.37.2: perfect
In 33.38.2: Koszul at 𝑥, Koszul morphism,
local complete intersection morphism

More on flatness

In 34.2.1: ℱ is locally finitely presented rel-
ative to 𝑆
In 34.5.1: one step dévissage of ℱ/𝑋/𝑆 over
𝑠
In 34.5.2: one step dévissage of ℱ/𝑋/𝑆 at 𝑥
In 34.5.6: standard shrinking
In 34.6.1: complete dévissage of ℱ/𝑋/𝑆 over
𝑠
In 34.6.2: complete dévissage of ℱ/𝑋/𝑆 at 𝑥
In 34.6.5: standard shrinking
In 34.7.1: elementary étale localization of
the ring map 𝑅 → 𝑆 at 𝔮
In 34.7.2: complete dévissage of 𝑁/𝑆/𝑅 over
𝔯
In 34.7.4: complete dévissage of 𝑁/𝑆/𝑅 at 𝔮
In 34.15.2: impurity of ℱ above 𝑠
In 34.16.1: pure along 𝑋𝑠, universally
pure along 𝑋𝑠, pure along 𝑋𝑠, univer-
sally 𝑆-pure, universally pure relative to 𝑆,
𝑆-pure, pure relative to 𝑆, 𝑆-pure, pure rel-
ative to 𝑆
In 34.21.1: universal flattening of ℱ exists,
universal flattening of 𝑋 exists
In 34.21.2: flattening stratification, flatten-
ing stratification

Groupoid Schemes

In 35.3.1: pre-relation, relation, pre-
equivalence relation, equivalence relation
on 𝑈 over 𝑆
In 35.3.3: restriction, pullback
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In 35.4.1: group scheme over 𝑆, morphism
𝜓 ∶ (𝐺, 𝑚) → (𝐺′, 𝑚′) of group schemes
over 𝑆
In 35.4.3: closed subgroup scheme, open
subgroup scheme
In 35.4.4: smooth group scheme, flat group
scheme, separated group scheme
In 35.8.1: action of 𝐺 on the scheme 𝑋/𝑆,
equivariant, 𝐺-equivariant
In 35.9.1: pseudo 𝐺-torsor, formally princi-
pally homogeneous under 𝐺, trivial
In 35.9.3: principal homogeneous space,
𝐺-torsor, 𝐺-torsor in the 𝜏 topology, 𝜏
𝐺-torsor, 𝜏 torsor, quasi-isotrivial, locally
trivial
In 35.10.1: 𝐺-equivariant quasi-coherent
𝒪𝑋-module, equivariant quasi-coherent
𝒪𝑋-module
In 35.11.1: groupoid scheme over 𝑆,
groupoid over 𝑆, morphism 𝑓 ∶
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) of
groupoid schemes over 𝑆
In 35.12.1: quasi-coherent module on
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
In 35.14.2: stabilizer of the groupoid scheme
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
In 35.15.2: restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝑈′

In 35.16.1: 𝑅-invariant, 𝑅-invariant,
𝑅-invariant
In 35.17.1: quotient sheaf 𝑈/𝑅
In 35.17.2: representable quotient, repre-
sentable quotient

More on Groupoid Schemes

Étale Morphisms of Schemes

In 37.3.1: unramified homomorphism of lo-
cal rings
In 37.3.5: unramified at 𝑥, unramified
In 37.9.1: flat, faithfully flat, flat (resp. faith-
fully flat)
In 37.9.3: flat over 𝑌 at 𝑥 ∈ 𝑋, flat at 𝑥 ∈ 𝑋,
flat, faithfully flat
In 37.11.1: étale homomorphism of local
rings
In 37.11.4: étale at 𝑥 ∈ 𝑋, étale

Étale Cohomology

In 38.4.1: étale covering

In 38.9.1: presheaf of sets, abelian presheaf
In 38.10.1: family of morphisms with fixed
target
In 38.10.2: site, coverings
In 38.11.1: separated presheaf, sheaf
In 38.11.4: category of sheaves of sets,
abelian sheaves
In 38.13.1: zeroth Cech cohomology group
In 38.15.1: fpqc covering
In 38.15.5: satisfies the sheaf property for
the fpqc topology
In 38.16.1: descent datum, effective
In 38.16.5: descent datum
In 38.16.6: effective
In 38.17.2: ringed site, quasi-coherent
In 38.18.1:Cech complex,Cech cohomology
groups
In 38.18.4: free abelian presheaf on 𝒢
In 38.20.1: 𝜏-covering
In 38.20.2: standard 𝜏-covering
In 38.20.4: big 𝜏-site of 𝑆, small 𝜏-site of 𝑆
In 38.21.1: étale topos, small étale topos,
Zariski topos, small Zariski topos, big
𝜏-topos
In 38.23.1: constant sheaf
In 38.23.3: structure sheaf
In 38.26.1: étale
In 38.26.3: standard étale
In 38.27.1: étale covering
In 38.27.3: big étale site over 𝑆, small étale
site over 𝑆, big, small Zariski sites
In 38.29.1: geometric point, lies over, étale
neighborhood, morphism of étale neighbor-
hoods
In 38.29.6: stalk
In 38.31.3: support of ℱ, support of 𝜎
In 38.32.2: henselian
In 38.32.6: strictly henselian
In 38.33.2: étale local ring of 𝑆 at 𝑠, strict
henselization of 𝒪𝑆,𝑠, henselization of 𝒪𝑆,𝑠,
strict henselization of 𝑆 at 𝑠, henselization
of 𝑆 at 𝑠
In 38.35.1: direct image, pushforward
In 38.35.3: direct image, pushforward
In 38.35.4: higher direct images
In 38.36.1: inverse image, pullback
In 38.55.1: 𝐺-set, discrete 𝐺-set, morphism
of 𝐺-sets, 𝐺-Sets
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In 38.56.1: absolute Galois group, algebraic
In 38.57.1: 𝐺-module, discrete 𝐺-module,
morphism of 𝐺-modules, Mod𝐺
In 38.57.3: continuous group cohomology
groups, group cohomology groups, Ga-
lois cohomology groups, Galois cohomol-
ogy groups of 𝐾 with coefficients in 𝑀
In 38.59.3: similar, equivalent
In 38.59.4: Brauer group
In 38.59.8: 𝐶𝑟, nontrivial solution
In 38.59.13: variety, curve
In 38.61.1: abelian variety
In 38.62.1: finite locally constant
In 38.62.3: constructible
In 38.63.1: extension by zero
In 38.64.3: restriction, trace
In 38.66.1: absolute frobenius
In 38.66.5: geometric frobenius
In 38.66.9: arithmetic frobenius
In 38.66.11: geometric frobenius
In 38.67.1: trace
In 38.69.4: total right derived functor of 𝐹,
total right derived functor of 𝐺
In 38.70.1: filtered injective, projective, fil-
tered quasi-isomorphism
In 38.71.1: filtered derived functor
In 38.73.1: perfect
In 38.75.1: finite Tor-dimension
In 38.75.4: perfect complexes
In 38.76.1: global Lefschetz number
In 38.76.2: local Lefschetz number
In 38.77.2: 𝐺-trace of 𝑓 on 𝑃
In 38.80.1: 𝐙ℓ-sheaf, lisse, morphism
In 38.80.6: torsion, stalk
In 38.80.8: ℓ-adic cohomology
In 38.81.1: 𝐿-function of ℱ
In 38.81.3: 𝐿-function of ℱ
In 38.89.1: open
In 38.93.1: unramified cusp form on𝐺𝐿2(𝐀)
with values in Λ

Crystalline Cohomology

In 39.2.1: divided power structure
In 39.3.1: divided power ring, homomor-
phism of divided power rings
In 39.4.1: extends
In 39.6.2: divided power envelope of 𝐽 in 𝐵
relative to (𝐴, 𝐼, 𝛾)
In 39.8.1: 𝛿 is compatible with 𝛾

In 39.9.2: divided power thickening, homo-
morphism of divided power thickenings
In 39.10.1: divided power 𝐴-derivation
In 39.11.1: divided power structure 𝛾
In 39.11.2: divided power scheme, mor-
phism of divided power schemes
In 39.11.3: divided power thickening
In 39.12.1: divided power thickening of 𝑋
relative to (𝑆, ℐ, 𝛾), morphism of divided
power thickenings of 𝑋 relative to (𝑆, ℐ, 𝛾)
In 39.12.4: Zariski, étale, smooth, syntomic,
or fppf covering, big crystalline site
In 39.13.1: crystalline site
In 39.15.1: locally quasi-coherent, quasi-
coherent, crystal in 𝒪𝑋/𝑆-modules
In 39.15.3: crystal in quasi-coherent mod-
ules, crystal in finite locally free modules
In 39.16.1: 𝑆-derivation 𝐷 ∶ 𝒪𝑋/𝑆 → ℱ
In 39.31.2: 𝐹-crystal on 𝑋/𝑆 (relative to 𝜎),
nondegenerate

Algebraic Spaces

In 40.5.1: property 𝒫
In 40.6.1: algebraic space over 𝑆
In 40.6.3: morphism 𝑓 ∶ 𝐹 → 𝐹′ of alge-
braic spaces over 𝑆
In 40.9.2: étale equivalence relation
In 40.9.3: presentation
In 40.12.1: open immersion, open subspace,
closed immersion, closed subspace, immer-
sion, locally closed subspace
In 40.12.5: Zariski covering
In 40.12.6: small Zariski site 𝐹𝑍𝑎𝑟
In 40.13.2: separated over 𝑆, locally sep-
arated over 𝑆, quasi-separated over 𝑆,
Zariski locally quasi-separated over 𝑆
In 40.14.4: acts freely, quotient of 𝑈 by 𝐺
In 40.16.2: base change of 𝐹′ to 𝑆, viewed
as an algebraic space over 𝑆′

Properties of Algebraic Spaces

In 41.3.1: separated, locally separated,
quasi-separated, Zariski locally quasi-
separated, separated, locally separated,
quasi-separated, Zariski locally quasi-
separated
In 41.4.1: point
In 41.4.7: topological space
In 41.5.1: quasi-compact
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In 41.7.2: has property 𝒫
In 41.7.5: has property 𝒫 at 𝑥
In 41.8.1: dimension of 𝑋 at 𝑥
In 41.8.2: dimension
In 41.9.3: algebraic space structure on 𝑍,
reduced induced algebraic space structure,
reduction 𝑋𝑟𝑒𝑑 of 𝑋
In 41.12.1: Noetherian
In 41.13.2: étale
In 41.15.1: small étale site 𝑋 ́𝑒𝑡𝑎𝑙𝑒
In 41.15.2: 𝑋𝑠𝑝𝑎𝑐𝑒𝑠, ́𝑒𝑡𝑎𝑙𝑒
In 41.15.6: étale topos, small étale topos
In 41.15.8: 𝑓-map 𝜑 ∶ 𝒢 → ℱ
In 41.16.1: geometric point, geometric point
lying over 𝑥
In 41.16.2: étale neighborhood, morphism
of étale neighborhoods
In 41.16.6: stalk
In 41.17.3: support of ℱ, support of 𝜎
In 41.18.2: structure sheaf
In 41.19.2: étale local ring of 𝑋 at 𝑥, strict
henselization of 𝑋 at 𝑥
In 41.20.2: dimension of the local ring of 𝑋
at 𝑥
In 41.21.2: geometrically unibranch at 𝑥, ge-
ometrically unibranch
In 41.26.1: quasi-coherent
In 41.28.2: locally projective

Morphisms of Algebraic Spaces

In 42.5.2: separated, locally separated,
quasi-separated
In 42.6.2: surjective
In 42.7.2: open, universally open
In 42.8.1: submersive, universally submer-
sive
In 42.9.2: quasi-compact
In 42.10.2: closed, universally closed
In 42.11.1: satisfies the uniqueness part of
the valuative criterion, satisfies the existence
part of the valuative criterion, satisfies the
valuative criterion
In 42.14.1: monomorphism
In 42.18.3: universally injective
In 42.19.2: affine
In 42.20.2: quasi-affine
In 42.21.2: has property 𝒫
In 42.21.4: has property 𝒬 at 𝑥

In 42.22.1: locally of finite type, finite type
at 𝑥, of finite type
In 42.24.2: finite type point
In 42.25.1: locally quasi-finite, quasi-finite
at 𝑥, quasi-finite
In 42.26.1: locally of finite presentation, fi-
nite presentation at 𝑥, of finite presentation
In 42.27.1: flat, flat at 𝑥
In 42.28.2: flat at 𝑥 over 𝑌, flat over 𝑌
In 42.30.1: dimension of the local ring of
the fibre of 𝑓 at 𝑥, transcendence degree of
𝑥/𝑓(𝑥), 𝑓 has relative dimension 𝑑 at 𝑥
In 42.30.2: relative dimension ≤ 𝑑, relative
dimension 𝑑
In 42.32.1: syntomic, syntomic at 𝑥
In 42.33.1: smooth, smooth at 𝑥
In 42.34.1: unramified, unramified at 𝑥, G-
unramified, G-unramified at 𝑥
In 42.35.1: étale at 𝑥
In 42.36.1: proper
In 42.37.2: integral, finite
In 42.38.2: finite locally free, rank, degree
In 42.41.2: universal homeomorphism

Decent Algebraic Spaces

In 43.3.1: fibres of 𝑓 are universally bounded
In 43.6.1: decent, reasonable, very reason-
able
In 43.10.6: residual space of 𝑋 at 𝑥
In 43.13.1: has property (𝛽), has property
(𝛽), decent, reasonable, very reasonable

Topologies on Algebraic Spaces

In 44.3.1: fpqc covering of 𝑋
In 44.4.1: fppf covering of 𝑋
In 44.5.1: syntomic covering of 𝑋
In 44.6.1: smooth covering of 𝑋
In 44.7.1: étale covering of 𝑋
In 44.8.1: Zariski covering of 𝑋

Descent and Algebraic Spaces

In 45.3.1: descent datum (ℱ𝑖, 𝜑𝑖𝑗) for quasi-
coherent sheaves, cocycle condition, mor-
phism 𝜓 ∶ (ℱ𝑖, 𝜑𝑖𝑗) → (ℱ′

𝑖 , 𝜑′
𝑖𝑗) of descent

data
In 45.3.3: trivial descent datum, canonical
descent datum, effective
In 45.9.1: 𝜏 local on the base, 𝜏 local on the
target, local on the base for the 𝜏-topology
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In 45.12.1: 𝜏 local on the source, local on
the source for the 𝜏-topology
In 45.18.1: smooth local on source-and-
target

More on Morphisms of Spaces

In 46.3.1: radicial
In 46.4.1: locally of finite presentation, limit
preserving, locally of finite presentation
over 𝑆, locally of finite presentation, rela-
tively limit preserving
In 46.5.1: conormal sheaf 𝒞𝑍/𝑋 of 𝑍 in 𝑋,
conormal sheaf of 𝑖
In 46.6.2: sheaf of differentials Ω𝑋/𝑌 of 𝑋
over 𝑌, universal 𝑌-derivation
In 46.8.1: thickening, first order thickening,
morphism of thickenings, thickenings over
𝐵, morphisms of thickenings over 𝐵
In 46.9.1: first order infinitesimal neigh-
bourhood
In 46.10.1: formally smooth, formally étale,
formally unramified
In 46.11.1: formally unramified
In 46.12.5: universal first order thickening,
conormal sheaf of 𝑍 over 𝑋
In 46.13.1: formally étale
In 46.16.1: formally smooth
In 46.18.2: the restriction of ℱ to its fibre
over 𝑧 is flat at 𝑥 over the fibre of 𝑌 over 𝑧,
the fibre of 𝑋 over 𝑧 is flat at 𝑥 over the fibre
of 𝑌 over 𝑧, the fibre of 𝑋 over 𝑧 is flat over
the fibre of 𝑌 over 𝑧
In 46.21.2: Koszul-regular immersion,
𝐻1-regular immersion, quasi-regular im-
mersion
In 46.22.1: pseudo-coherent, pseudo-
coherent at 𝑥
In 46.23.1: perfect, perfect at 𝑥
In 46.24.1:Koszul morphism, local complete
intersection morphism, Koszul at 𝑥

Quot and Hilbert Spaces

Algebraic Spaces over Fields

Cohomology of Algebraic Spaces

In 49.3.1: derived category of 𝒪𝑋-modules
with quasi-coherent cohomology sheaves
In 49.6.2: alternating Čech complex

Stacks

In 50.2.2: presheaf of morphisms from 𝑥 to
𝑦, presheaf of isomorphisms from 𝑥 to 𝑦
In 50.3.1: descent datum (𝑋𝑖, 𝜑𝑖𝑗) in 𝒮 rel-
ative to the family {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈}, cocy-
cle condition, morphism 𝜓 ∶ (𝑋𝑖, 𝜑𝑖𝑗) →
(𝑋′

𝑖 , 𝜑′
𝑖𝑗) of descent data

In 50.3.4: pullback functor
In 50.3.5: trivial descent datum, canonical
descent datum, effective
In 50.4.1: stack
In 50.4.5: 2-category of stacks over 𝒞
In 50.5.1: stack in groupoids
In 50.5.5: 2-category of stacks in groupoids
over 𝒞
In 50.6.1: stack in setoids, stack in sets, stack
in discrete categories
In 50.6.5: 2-category of stacks in setoids
over 𝒞
In 50.10.2: structure of site on 𝒮 inherited
from 𝒞, 𝒮 is endowed with the topology in-
herited from 𝒞
In 50.11.1: gerbe
In 50.11.4: gerbe over
In 50.12.4: 𝑓∗𝒮, pushforward of 𝒮 along 𝑓
In 50.12.9: 𝑓−1𝒮, pullback of 𝒮 along 𝑓

Formal Deformation Theory

In 51.3.1: 𝒞Λ, classical case
In 51.3.2: small extension
In 51.3.6: relative cotangent space
In 51.3.9: essential surjection
In 51.4.1: 𝒞Λ
In 51.5.1: category cofibered in groupoids
over 𝒞
In 51.6.1: prorepresentable
In 51.6.2: predeformation category, mor-
phism of predeformation categories
In 51.7.1: category ℱ̂ of formal objects of ℱ,
formal object 𝜉 = (𝑅, 𝜉𝑛, 𝑓𝑛) ofℱ,morphism
𝑎 ∶ 𝜉 → 𝜂 of formal objects
In 51.7.3: completion of ℱ
In 51.8.1: smooth
In 51.8.13: versal
In 51.9.1: conditions (S1) and (S2)
In 51.10.1: 𝑅-linear
In 51.10.9: tangent space 𝑇𝐹 of 𝐹
In 51.11.1: tangent space 𝑇ℱ of ℱ



71.2. DEFINITIONS LISTED PER CHAPTER 3021

In 51.11.3: differential 𝑑𝜑 ∶ 𝑇ℱ → 𝑇𝒢 of 𝜑
In 51.13.4: minimal, miniversal
In 51.15.1: condition (RS)
In 51.15.8: deformation category
In 51.16.1: lift of 𝑥 along 𝑓,morphism of lifts
In 51.18.1: group of infinitesimal automor-
phisms of 𝑥′ over 𝑥
In 51.18.2: group of infinitesimal automor-
phisms of 𝑥0
In 51.18.5: automorphism functor of 𝑥
In 51.19.1: category of groupoids in func-
tors on 𝒞, groupoid in functors on 𝒞, mor-
phism (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) → (𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) of
groupoids in functors on 𝒞
In 51.19.4: representable
In 51.19.7: restriction (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)|𝒞′ of
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝒞′

In 51.19.9: quotient category cofibered in
groupoids [𝑈/𝑅] → 𝒞, quotient morphism
𝑈 → [𝑈/𝑅]
In 51.20.1: prorepresentable
In 51.20.2: completion (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)∧ of
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
In 51.21.1: smooth
In 51.23.1: presentation of ℱ by
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
In 51.25.1: normalized, minimal

Groupoids in Algebraic Spaces

In 52.4.1: pre-relation, relation, pre-
equivalence relation, equivalence relation
on 𝑈 over 𝐵
In 52.4.3: restriction, pullback
In 52.5.1: group algebraic space over 𝐵,
morphism 𝜓 ∶ (𝐺, 𝑚) → (𝐺′, 𝑚′) of group
algebraic spaces over 𝐵
In 52.8.1: action of 𝐺 on the algebraic space
𝑋/𝐵, equivariant, 𝐺-equivariant
In 52.8.2: free
In 52.9.1: pseudo 𝐺-torsor, formally princi-
pally homogeneous under 𝐺, trivial
In 52.9.3: principal homogeneous space,
principal homogeneous 𝐺-space over 𝐵,
𝐺-torsor in the 𝜏 topology, 𝜏 𝐺-torsor, 𝜏 tor-
sor, quasi-isotrivial, locally trivial
In 52.10.1: 𝐺-equivariant quasi-coherent
𝒪𝑋-module, equivariant quasi-coherent
𝒪𝑋-module

In 52.11.1: groupoid in algebraic spaces
over 𝐵, morphism 𝑓 ∶ (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) →
(𝑈′, 𝑅′, 𝑠′, 𝑡′, 𝑐′) of groupoids in algebraic
spaces over 𝐵
In 52.12.1: quasi-coherent module on
(𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
In 52.15.2: stabilizer of the groupoid in al-
gebraic spaces (𝑈, 𝑅, 𝑠, 𝑡, 𝑐)
In 52.16.2: restriction of (𝑈, 𝑅, 𝑠, 𝑡, 𝑐) to 𝑈′

In 52.17.1: 𝑅-invariant, 𝑅-invariant,
𝑅-invariant
In 52.18.1: quotient sheaf 𝑈/𝑅
In 52.18.3: quotient representable by an al-
gebraic space, representable quotient, rep-
resentable quotient, quotient representable
by an algebraic space
In 52.19.1: quotient stack, quotient stack

More on Groupoids in Spaces

In 53.11.1: split over 𝑢, splitting of 𝑅 over 𝑢,
quasi-split over 𝑢, quasi-splitting of 𝑅 over
𝑢

Bootstrap

In 54.3.1: representable by algebraic spaces
In 54.4.1: property 𝒫

Examples of Stacks

In 55.17.2: degree 𝑑 finite Hilbert stack of 𝒳
over 𝒴

Quotients of Groupoids

In 56.3.1: 𝑅-invariant, 𝐺-invariant
In 56.3.4: pullback, flat pullback
In 56.4.1: categorical quotient, categorical
quotient in 𝒞, categorical quotient in the
category of schemes, categorical quotient in
schemes
In 56.4.4: universal categorical quotient,
uniform categorical quotient
In 56.5.1: orbit, 𝑅-orbit
In 56.5.4: weakly 𝑅-equivalent,
𝑅-equivalent, weak orbit, weak 𝑅-orbit, or-
bit, 𝑅-orbit
In 56.5.8: set-theoretically 𝑅-invariant, sep-
arates orbits, separates 𝑅-orbits
In 56.5.13: set-theoretic pre-equivalence re-
lation, set-theoretic equivalence relation
In 56.5.18: orbit space for 𝑅



3022 71. AUTO GENERATED INDEX

In 56.6.1: coarse quotient, coarse quotient
in schemes
In 56.7.1: uniformly, universally
In 56.8.1: sheaf of 𝑅-invariant functions on
𝑋, the functions on 𝑋 are the 𝑅-invariant
functions on 𝑈
In 56.9.1: good quotient
In 56.10.1: geometric quotient

Algebraic Stacks
In 57.8.1: representable by an algebraic
space over 𝑆
In 57.9.1: representable by algebraic spaces
In 57.10.1: property 𝒫
In 57.12.1: algebraic stack over 𝑆
In 57.12.2: Deligne-Mumford stack
In 57.12.3: 2-category of algebraic stacks
over 𝑆
In 57.16.4: smooth groupoid
In 57.16.5: presentation
In 57.19.2: viewed as an algebraic stack over
𝑆′

In 57.19.3: change of base of 𝒳′

Sheaves on Algebraic Stacks
In 58.3.1: presheaf on 𝒳, morphism of
presheaves on 𝒳
In 58.4.1: associated Zariski site, associated
étale site, associated smooth site, associated
syntomic site, associated fppf site
In 58.4.3: Zariski sheaf, sheaf for the Zariski
topology, étale sheaf, sheaf for the étale
topology, smooth sheaf, sheaf for the smooth
topology, syntomic sheaf, sheaf for the syn-
tomic topology, fppf sheaf, sheaf, sheaf for
the fppf topology
In 58.4.5: associated morphism of fppf topoi
In 58.6.1: structure sheaf of 𝒳
In 58.7.1: presheaf of modules on 𝒳,
𝒪𝒳-module, sheaf of 𝒪𝒳-modules
In 58.9.2: pullback 𝑥−1ℱ of ℱ, restriction of
ℱ to 𝑈 ́𝑒𝑡𝑎𝑙𝑒
In 58.11.1: quasi-coherent module on 𝒳,
quasi-coherent 𝒪𝒳-module
In 58.11.4: locally quasi-coherent

Criteria for Representability
In 59.8.1: algebraic

Properties of Algebraic Stacks

In 60.4.2: point
In 60.4.8: topological space
In 60.5.1: surjective
In 60.6.1: quasi-compact
In 60.7.2: has property 𝒫
In 60.7.5: has property 𝒫 at 𝑥
In 60.8.1: monomorphism
In 60.9.1: open immersion, closed immer-
sion, immersion
In 60.9.8: open substack, closed substack,
locally closed substack
In 60.10.4: algebraic stack structure on 𝑍,
reduced induced algebraic stack structure,
reduction 𝒳𝑟𝑒𝑑 of 𝒳
In 60.11.8: residual gerbe of 𝒳 at 𝑥 exists,
residual gerbe of 𝒳 at 𝑥

Morphisms of Algebraic Stacks

In 61.4.1: DM, quasi-DM, separated, quasi-
separated
In 61.4.2: DM over 𝑆, quasi-DM over 𝑆,
separated over 𝑆, quasi-separated over 𝑆,
DM, quasi-DM, separated, quasi-separated
In 61.5.3: sheaf of automorphisms of 𝑥
In 61.7.2: quasi-compact
In 61.8.1: Noetherian
In 61.9.2: open, universally open
In 61.10.1: submersive, universally submer-
sive
In 61.11.2: closed, universally closed
In 61.12.2: has property 𝒫
In 61.13.1: locally of finite type, of finite type
In 61.14.2: finite type point
In 61.16.2: locally quasi-finite
In 61.17.1: flat
In 61.18.1: locally of finite presentation, of
finite presentation
In 61.19.1: gerbe over, gerbe
In 61.22.1: smooth

Cohomology of Algebraic Stacks

In 62.7.1: flat base change property
In 62.8.1: parasitic
In 62.11.1: lisse-étale site, flat-fppf site
In 62.13.1: derived category of 𝒪𝒳-modules
with quasi-coherent cohomology sheaves

Introducing Algebraic Stacks

In 63.4.3: smooth



71.3. OTHER CHAPTERS 3023

In 63.5.1: algebraic stack
Examples

Exercises
In 65.2.1: directed partially ordered set, sys-
tem of rings
In 65.2.3: colimit
In 65.2.8: finite presentation
In 65.5.4: quasi-compact
In 65.5.6: Hausdorff
In 65.5.9: irreducible, irreducible
In 65.5.12: generic point
In 65.5.16: Noetherian, Artinian
In 65.5.18: irreducible component
In 65.5.22: closed, specialization, general-
ization
In 65.5.26: connected, connected compo-
nent
In 65.8.1: length
In 65.12.1: catenary
In 65.15.1: finite locally free, invertible mod-
ule
In 65.15.3: class group of 𝐴, Picard group
of 𝐴
In 65.17.1: going-up theorem, going-down
theorem
In 65.19.1: numerical polynomial
In 65.19.2: graded module, locally finite,
Euler-Poincaré function, Hilbert function,
Hilbert polynomial
In 65.19.3: graded 𝐴-algebra, graded mod-
ule 𝑀 over a graded 𝐴-algebra 𝐵, homo-
morphisms of graded modules/rings, graded
submodules, graded ideals, exact sequences
of graded modules

In 65.20.1: homogeneous
In 65.20.2: homogeneous spectrum Proj(𝑅)
In 65.20.3: 𝑅(𝑓)
In 65.21.1: Cohen-Macaulay
In 65.23.3: filtered injective
In 65.23.4: Fil𝑓(𝒜)
In 65.23.6: filtered quasi-isomorphism
In 65.23.7: filtered acyclic
In 65.26.12: integral
In 65.28.1: dual numbers
In 65.28.3: tangent space of 𝑋 over 𝑆, tan-
gent vector
In 65.29.1: quasi-coherent
In 65.29.2: specialization
In 65.29.5: locally Noetherian, Noetherian
In 65.29.6: coherent
In 65.32.1: invertible 𝒪𝑋-module
In 65.32.4: invertible module 𝑀, trivial
In 65.32.7: Picard group of 𝑋
In 65.33.2: 𝛿(𝜏)
In 65.34.1:Weil divisor, prime divisor,Weil
divisor associated to a rational function 𝑓 ∈
𝐾(𝑋)∗, effective Cartier divisor, Weil divi-
sor [𝐷] associated to an effective Cartier di-
visor 𝐷 ⊂ 𝑋, sheaf of total quotient rings
𝒦𝑆, Cartier divisor,Weil divisor associated
to a Cartier divisor

A Guide to the Literature

Desirables

Coding Style

Obsolete

GNU Free Documentation License

71.3. Other chapters

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Commutative Algebra
(8) Brauer Groups
(9) Sites and Sheaves

(10) Homological Algebra

(11) Derived Categories
(12) More on Algebra
(13) Smoothing Ring Maps
(14) Simplicial Methods
(15) Sheaves of Modules
(16) Modules on Sites
(17) Injectives
(18) Cohomology of Sheaves
(19) Cohomology on Sites
(20) Hypercoverings



3024 71. AUTO GENERATED INDEX

(21) Schemes
(22) Constructions of Schemes
(23) Properties of Schemes
(24) Morphisms of Schemes
(25) Coherent Cohomology
(26) Divisors
(27) Limits of Schemes
(28) Varieties
(29) Chow Homology
(30) Topologies on Schemes
(31) Descent
(32) Adequate Modules
(33) More on Morphisms
(34) More on Flatness
(35) Groupoid Schemes
(36) More on Groupoid Schemes
(37) Étale Morphisms of Schemes
(38) Étale Cohomology
(39) Crystalline Cohomology
(40) Algebraic Spaces
(41) Properties of Algebraic Spaces
(42) Morphisms of Algebraic Spaces
(43) Decent Algebraic Spaces
(44) Topologies on Algebraic Spaces
(45) Descent and Algebraic Spaces
(46) More on Morphisms of Spaces

(47) Quot and Hilbert Spaces
(48) Spaces over Fields
(49) Cohomology of Algebraic Spaces
(50) Stacks
(51) Formal Deformation Theory
(52) Groupoids in Algebraic Spaces
(53) More on Groupoids in Spaces
(54) Bootstrap
(55) Examples of Stacks
(56) Quotients of Groupoids
(57) Algebraic Stacks
(58) Sheaves on Algebraic Stacks
(59) Criteria for Representability
(60) Properties of Algebraic Stacks
(61) Morphisms of Algebraic Stacks
(62) Cohomology of Algebraic Stacks
(63) Introducing Algebraic Stacks
(64) Examples
(65) Exercises
(66) Guide to Literature
(67) Desirables
(68) Coding Style
(69) Obsolete
(70) GNU Free Documentation Li-

cense
(71) Auto Generated Index



Bibliography

[ABD+66] M. Artin, J. E. Bertin, M. Demazure, A. Grothendieck, P. Gabriel, M. Raynaud, and J.-P. Serre, Sché-
mas en groupes, Séminaire de Géométrie Algébrique de l'Institut des Hautes Études Scientifiques,
Institut des Hautes Études Scientifiques, Paris, 1963/1966.

[ACV03] Dan Abramovich, Alessio Corti, and Angelo Vistoli, Twisted bundles and admissible covers, Comm.
Algebra 31 (2003), no. 8, 3547--3618, Special issue in honor of Steven L. Kleiman. MRMR2007376
(2005b:14049)

[AD83] M. Artin and J. Denef, Smoothing of a ring homomorphism along a section, Arithmetic and geometry,
Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Mass., 1983, pp. 5--31.

[AGV08] Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford
stacks, Amer. J. Math. 130 (2008), no. 5, 1337--1398. MR MR2450211 (2009k:14108)

[AK06] Valery Alexeev and Allen Knuston, Complete moduli spaces of branchvarieties, math.AG/06022626
(2006).

[Alp08] Jarod Alper,Good moduli spaces for Artin stacks, draft available on http://math.stanford.edu/
~jarod (2008).

[Alp09] ,On the local quotient structure of Artin stacks, draft available on http://math.stanford.
edu/~jarod (2009).

[AM69] M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag,
Berlin, 1969.

[ANT44] Emil Artin, Cecil J. Nesbitt, and Robert M. Thrall, Rings with Minimum Condition, University of
Michigan Publications in Mathematics, no. 1, University of Michigan Press, Ann Arbor, Mich., 1944.

[AOV08] Dan Abramovich, Martin Olsson, and Angelo Vistoli, Tame stacks in positive characteristic, Ann.
Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057--1091. MR MR2427954 (2009c:14002)

[AR88] Michael Artin and Christel Rotthaus, A structure theorem for power series rings, Algebraic geometry
and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 35--44.

[Ara01] Alberto Arabia, Relèvements des algèbres lisses et de leurs morphismes, Comment. Math. Helv. 76
(2001), no. 4, 607--639.

[Art62] Michael Artin, Grothendieck topologies, 134 pages.
[Art66] , Etale coverings of schemes over hensel rings, Amer. J. Math. 88 (1966), 915--934.
[Art68] , On the solutions of analytic equations, Invent. Math. 5 (1968), 277--291.
[Art69a] , Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci.

Publ. Math. (1969), no. 36, 23--58.
[Art69b] , Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci.

Publ. Math. (1969), no. 36, 23--58. MR MR0268188 (42 #3087)
[Art69c] , Algebraization of formal moduli: I, Global Analysis (Papers in Honor of K. Kodaira), Univ.

Tokyo Press, Tokyo, 1969, pp. 21--71.
[Art69d] , Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira), Univ.

Tokyo Press, Tokyo, 1969, pp. 21--71. MR MR0260746 (41 #5369)
[Art69e] , The implicit function theorem in algebraic geometry, Algebraic Geometry (Internat. Colloq.,

Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 13--34.
[Art69f] , The implicit function theorem in algebraic geometry, Algebraic Geometry (Internat. Colloq.,

Tata Inst. Fund. Res., Bombay, 1968), OxfordUniv. Press, London, 1969, pp. 13--34. MRMR0262237
(41 #6847)

[Art70a] , Algebraization of formal moduli: Ii -- existence of modifications, Annals of Mathematics 91
(1970), 88 -- 135.

[Art70b] , Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970),
88--135. MR MR0260747 (41 #5370)

3025

http://math.stanford.edu/~jarod
http://math.stanford.edu/~jarod
http://math.stanford.edu/~jarod
http://math.stanford.edu/~jarod


3026 BIBLIOGRAPHY

[Art71a] , Algebraic spaces, Yale University Press, New Haven, Conn., 1971, A James K. Whittemore
Lecture in Mathematics given at Yale University, 1969, Yale Mathematical Monographs, 3.

[Art71b] , Algebraic spaces, Yale University Press, New Haven, Conn., 1971, A James K. Whitte-
more Lecture in Mathematics given at Yale University, 1969, Yale Mathematical Monographs, 3.
MR MR0407012 (53 #10795)

[Art71c] , Construction techniques for algebraic spaces, Actes du Congrès International des Mathé-
maticiens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 419--423.

[Art71d] , Construction techniques for algebraic spaces, Actes du Congrès International des Mathé-
maticiens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 419--423. MR MR0427316 (55
#350)

[Art73a] , Théorèmes de représentabilité pour les espaces algébriques, Les Presses de l'Université de
Montréal, Montreal, Que., 1973, En collaboration avec Alexandru Lascu et Jean-François Boutot,
Séminaire de Mathématiques Supérieures, No. 44 (Été, 1970).

[Art73b] , Théorèmes de représentabilité pour les espaces algébriques, Les Presses de l'Université de
Montréal, Montreal, Que., 1973, En collaboration avec Alexandru Lascu et Jean-François Boutot,
Séminaire de Mathématiques Supérieures, No. 44 (Été, 1970). MR MR0407011 (53 #10794)

[Art74a] , Versal deformations and algebraic stacks, Inventiones Mathematics 27 (1974), 165--189.
[Art74b] , Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165--189.

MR MR0399094 (53 #2945)
[Art82] , Algebraic structure of power series rings, Algebraists' homage: papers in ring theory and

related topics (New Haven, Conn., 1981), Contemp. Math., vol. 13, Amer. Math. Soc., Providence,
R.I., 1982, pp. 223--227.

[Aus55] Maurice Auslander, On the dimension of modules and algebras. III. Global dimension, Nagoya Math.
J. 9 (1955), 67--77.

[Aut] The Stacks Project Authors, Stacks Project, http://math.columbia.edu/algebraic_
geometry/stacks-git.

[AV02] Dan Abramovich and Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc.
15 (2002), no. 1, 27--75 (electronic). MR MR1862797 (2002i:14030)

[Avr75] L. L. Avramov, Flat morphisms of complete intersections, Dokl. Akad. Nauk SSSR 225 (1975), no. 1,
11--14.

[Bas63] Hyman Bass, Big projective modules are free, Illinois J. Math. 7 (1963), 24--31.
[BBD82] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular

spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5--171.
[BCE+] Kai Behrend, Brian Conrad, Dan Edidin, Barbara Fantechi, William Fulton, Lothar Göttsche, and

Andrew Kresch, Algebraic stacks, http://www.math.uzh.ch/index.php?pr_vo_det&key1=
1287&key2=580&no_cache=1 (in progress).

[BCS05] LevA. Borisov, Linda Chen, andGregory G. Smith, The orbifold Chow ring of toric Deligne-Mumford
stacks, J. Amer. Math. Soc. 18 (2005), no. 1, 193--215 (electronic). MR MR2114820 (2006a:14091)

[Bd11] Bhargav Bhatt and Johan de Jong, Crystalline cohomology and de rham cohomology, 2011.
[BE73] David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973),

259--268.
[Beh03] Kai A. Behrend, Derived 𝑙-adic categories for algebraic stacks, Mem. Amer. Math. Soc. 163 (2003),

no. 774, viii+93. MR MR1963494 (2004e:14006)
[Beh04] K. Behrend, Cohomology of stacks, Intersection theory and moduli, ICTP Lect. Notes, XIX, Ab-

dus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 249--294 (electronic). MR MR2172499
(2006i:14016)

[Ben73] Bruce Bennett, On the structure of non-excellent curve singularities in characteristic 𝑝, Inst. Hautes
Études Sci. Publ. Math. (1973), no. 42, 129--170.

[Ber74] Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique 𝑝 > 0, Lecture Notes in
Mathematics, Vol. 407, Springer-Verlag, Berlin, 1974.

[BF97] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45--88.
MR MR1437495 (98e:14022)

[BF07] Fabio Nironi Barbara Fantechi, Etienne Mann, Smooth toric dm stacks, math.AG/0708.1254 (2007).
[BGI71] P. Berthelot, A. Grothendieck, and L. Illusie, Théorie des Intersections et Théorème de Riemann-Roch,

Lecture notes in mathematics, vol. 225, Springer-Verlag, 1971.
[Bko70] Rudolphe Bkouche, Pureté, mollesse et paracompacité, C. R. Acad. Sci. Paris Sér. A-B 270 (1970),

A1653--A1655.

http://math.columbia.edu/algebraic_geometry/stacks-git
http://math.columbia.edu/algebraic_geometry/stacks-git
http://www.math.uzh.ch/index.php?pr_vo_det&key1=1287&key2=580&no_cache=1
http://www.math.uzh.ch/index.php?pr_vo_det&key1=1287&key2=580&no_cache=1


BIBLIOGRAPHY 3027

[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathe-
matik und ihrer Grenzgebiete, vol. 21, Springer-Verlag, 1990.

[BN93] Marcel Bökstedt and Amnon Neeman,Homotopy limits in triangulated categories, Compositio Math.
86 (1993), no. 2, 209--234.

[BN06] Kai Behrend and Behrang Noohi,Uniformization of Deligne-Mumford curves, J. Reine Angew. Math.
599 (2006), 111--153. MR MR2279100 (2007k:14017)

[BO83] P. Berthelot and A. Ogus, 𝐹-isocrystals and de Rham cohomology. I, Invent. Math. 72 (1983), no. 2,
159--199.

[Bou61] N. Bourbaki, Éléments de mathématique. Algèbre commutative, Hermann, Paris, 1961.
[Bou71] , Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann, Paris, 1971.

MR MR0358652 (50 #11111)
[Büh10] Theo Bühler, Exact categories, Expo. Math. 28 (2010), no. 1, 1--69.
[Cad07] Charles Cadman, Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007),

no. 2, 405--427. MR MR2306040 (2008g:14016)
[CdJ02a] B. Conrad and A.J. de Jong, Approximation and versal deformations, Journal of Algebra 255 (2002),

489--515.
[CdJ02b] Brian Conrad and A. J. de Jong, Approximation of versal deformations, J. Algebra 255 (2002), no. 2,

489--515. MR MR1935511 (2004a:14003)
[CE56] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N.

J., 1956.
[Che58a] C. Chevalley, Les classes d'equivalence rationnelles i, S'eminair Claude Chevalley (1958), 14.
[Che58b] , Les classes d'equivalence rationnelles ii, S'eminair Claude Chevalley (1958), 18.
[Con] Brian Conrad, Formal gaga for artin stacks, http://www.math.lsa.umich.edu/~bdconrad/

papers/formalgaga.pdf.
[Con05] , Keel-mori theorem via stacks, http://www.math.lsa.umich.edu/~bdconrad/

papers/coarsespace.pdf (2005).
[Con07] Brian Conrad,Deligne's notes on Nagata compactifications, J. RamanujanMath. Soc. 22 (2007), no. 3,

205--257.
[CP84] Mihai Cipu and Dorin Popescu, A desingularization theorem of Néron type, Ann. Univ. Ferrara Sez.

VII (N.S.) 30 (1984), 63--76 (1985).
[Del71] Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), no. 40, 5--57.

MR MR0498551 (58 #16653a)
[Del77] Pierre Deligne, Cohomologie étale, Lecture Notes in Mathematics, no. 569, Springer-Verlag, 1977.
[Deu68] Max Deuring, Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin,

1968.
[DG67] Jean Dieudonné and Alexandre Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études

Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1961-1967).
[dJ95] A. J. de Jong,Crystalline Dieudonnémodule theory via formal and rigid geometry, Inst. Hautes Études

Sci. Publ. Math. (1995), no. 82, 5--96 (1996).
[dJ01] , A conjecture on arithmetic fundamental groups, Israel J. Math. 121 (2001), 61--84.
[DM69a] P. Deligne and D.Mumford, The irreducibility of the space of curves of given genus, Publ. Math. IHES

36 (1969), 75--110.
[DM69b] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes

Études Sci. Publ. Math. (1969), no. 36, 75--109. MR MR0262240 (41 #6850)
[DM83] G. De Marco, Projectivity of pure ideals, Rend. Sem. Mat. Univ. Padova 69 (1983), 289--304.
[Dri80] V. G. Drinfeld, Langlands' conjecture for 𝐺𝐿(2) over functional fields, Proceedings of the In-

ternational Congress of Mathematicians (Helsinki, 1978) (Helsinki), Acad. Sci. Fennica, 1980,
pp. 565--574.

[Dri83] , Two-dimensional 𝑙-adic representations of the fundamental group of a curve over a finite
field and automorphic forms on 𝐺𝐿(2), Amer. J. Math. 105 (1983), no. 1, 85--114.

[Dri84] , Two-dimensional 𝑙-adic representations of the Galois group of a global field of characteristic
𝑝 and automorphic forms on 𝐺𝐿(2), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
134 (1984), 138--156, Automorphic functions and number theory, II.

[Dum00] Tiberiu Dumitrescu,On some examples of atomic domains and of 𝐺-rings, Comm. Algebra 28 (2000),
no. 3, 1115--1123.

[Eak68] PaulM. Eakin, Jr., The converse to a well known theorem on Noetherian rings, Math. Ann. 177 (1968),
278--282.

http://www.math.lsa.umich.edu/~bdconrad/papers/formalgaga.pdf
http://www.math.lsa.umich.edu/~bdconrad/papers/formalgaga.pdf
http://www.math.lsa.umich.edu/~bdconrad/papers/coarsespace.pdf
http://www.math.lsa.umich.edu/~bdconrad/papers/coarsespace.pdf


3028 BIBLIOGRAPHY

[Edi00] Dan Edidin, Notes on the construction of the moduli space of curves, Recent progress in intersec-
tion theory (Bologna, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 2000, pp. 85--113.
MR MR1849292 (2002f:14039)

[Edi03] , What is a stack?, Notices Amer. Math. Soc. 50 (2003), no. 4, 458--459.
[EG98] Dan Edidin and William Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3,

595--634. MR MR1614555 (99j:14003a)
[EHKV01] Dan Edidin, BrendanHassett, AndrewKresch, and Angelo Vistoli,Brauer groups and quotient stacks,

Amer. J. Math. 123 (2001), no. 4, 761--777. MR MR1844577 (2002f:14002)
[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag,

1995.
[EL45] Samuel Eilenberg and Sanders Mac Lane, General theory of natural equivalences, Transactions of

the American Mathematical Society 58 (1945), 231--294.
[Elk73] Renée Elkik, Solutions d'équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm.

Sup. (4) 6 (1973), 553--603 (1974).
[Eng77] Rysxard Engelking, General topology, Taylor & Francis, 1977.
[Fal78] Gerd Faltings,Ein einfacher Beweis, dass geometrische Regularität formale Glattheit impliziert, Arch.

Math. (Basel) 30 (1978), no. 3, 284--285.
[Fal99] , Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc. 12

(1999), no. 1, 117--144.
[Fal03] , Finiteness of coherent cohomology for proper fppf stacks, J. Algebraic Geom. 12 (2003),

no. 2, 357--366. MR MR1949648 (2004e:14007)
[Fan01] Barbara Fantechi, Stacks for everybody, European Congress ofMathematics, Vol. I (Barcelona, 2000),

Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 349--359. MR MR1905329 (2003h:14003)
[Fer69] Daniel Ferrand, Descente de la platitude par un homomorphisme fini, C. R. Acad. Sci. Paris Sér. A-B

269 (1969), A946--A949.
[FO10] William Fulton and Martin Olsson, The Picard group of ℳ1,1, Algebra and Number Theory 4 (2010),

no. 1, 87--104.
[FR70] Daniel Ferrand and Michel Raynaud, Fibres formelles d'un anneau local noethérien, Ann. Sci. École

Norm. Sup. (4) 3 (1970), 295--311.
[Fre64] Peter Freyd, Abelian categories. An introduction to the theory of functors, Harper's Series in Modern

Mathematics, Harper & Row Publishers, New York, 1964.
[Ful98] William Fulton, Intersection theory, 2 ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, 3.

Folge, vol. 2, Springer-Verlag, 1998.
[Gai07] D. Gaitsgory, On de Jong's conjecture, Israel J. Math. 157 (2007), 155--191.
[GD67] Alexandre Grothendieck and Jean Dieudonné, Éléments de géométrie algébrique IV, Publications

Mathématiques, vol. 20, 24, 28, 32, Institute des Hautes Études Scientifiques., 1964-1967.
[GD71] Alexandre Grothendieck and Jean Dieudonneé, Éléments de géométrie algébrique I, Grundlehren der

Mathematischen Wissenschaften, vol. 166, Springer-Verlag, 1971.
[Gir65] Jean Giraud, Cohomologie non abélienne, C. R. Acad. Sci. Paris 260 (1965), 2666--2668.

MR MR0201490 (34 #1372b)
[GJ99] Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174,

Birkhäuser Verlag, Basel, 1999.
[God73] Roger Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973, Troisième

édition revue et corrigée, Publications de l'Institut de Mathématique de l'Université de Strasbourg,
XIII, Actualités Scientifiques et Industrielles, No. 1252.

[GR71] L. Gruson and M. Raynaud, Critères de platitude et de projectivité, Invent. math. 13 (1971), 1--89.
[Gre76] Silvio Greco, Two theorems on excellent rings, Nagoya Math. J. 60 (1976), 139--149.

MR MR0409452 (53 #13207)
[Gro57] Alexandre Grothendieck, Sur quelques points d'algébre homologique, Tohoku Mathematical Journal

9 (1957), 119--221.
[Gro71] , Revêtements etales et groupe fondamental (sga 1), Lecture notes in mathematics, vol. 224,

Springer-Verlag, 1971.
[Gro95a] Alexander Grothendieck, Technique de descente et théorèmes d'existence en géometrie algébrique.

I. Généralités. Descente par morphismes fidèlement plats, Séminaire Bourbaki, Vol. 5, Soc. Math.
France, Paris, 1995, pp. Exp. No. 190, 299--327. MR MR1603475

[Gro95b] , Technique de descente et théorèmes d'existence en géométrie algébrique. II. Le théorème
d'existence en théorie formelle des modules, Séminaire Bourbaki, Vol. 5, Soc. Math. France, Paris,
1995, pp. Exp. No. 195, 369--390. MR MR1603480



BIBLIOGRAPHY 3029

[Gro95c] , Technique de descente et théorèmes d'existence en géométrie algébrique. V. Les schémas de
Picard: théorèmes d'existence, Séminaire Bourbaki, Vol. 7, Soc. Math. France, Paris, 1995, pp. Exp.
No. 232, 143--161. MR MR1611170

[Gro95d] , Technique de descente et théorèmes d'existence en géométrie algébrique. VI. Les schémas de
Picard: propriétés générales, Séminaire Bourbaki, Vol. 7, Soc. Math. France, Paris, 1995, pp. Exp.
No. 236, 221--243. MR MR1611207

[Gro95e] , Techniques de construction et théorèmes d'existence en géométrie algébrique. III.
Préschemas quotients, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 212,
99--118. MR MR1611786

[Gro95f] , Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les sché-
mas de Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 221,
249--276. MR MR1611822

[GRR72] A. Grothendieck, M. Raynaud, and D.S. Rim, Groupes de monodromie en géométrie algébrique. I,
Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, 1972, Séminaire de Géométrie Algébrique
du Bois-Marie 1967--1969 (SGA 7 I).

[Gru73] L. Gruson, Dimension homologique des modules plats sur an anneau commutatif noethérien, Sym-
posia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic
Press, London, 1973, pp. 243--254.

[GZ67] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik
und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967.

[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag,
1977.

[Hoo72] Raymond T. Hoobler, Cohomology in the finite topology and Brauer groups, Pacific J. Math. 42
(1972), 667--679. MR MR0318153 (47 #6702)

[Hoo82] , When is 𝐵𝑟(𝑋) = 𝐵𝑟′(𝑋)?, Brauer groups in ring theory and algebraic geometry (Wilrijk,
1981), Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 231--244.

[Iha83] Yasutaka Ihara, How many primes decompose completely in an infinite unramified Galois extension
of a global field?, J. Math. Soc. Japan 35 (1983), no. 4, 693--709.

[Ill72] Luc Illusie, Complexe cotangent et déformations i and ii, Lecture Notes in Mathematics, Vol. 239 and
283, Springer-Verlag, Berlin, 1971/1972.

[Ive86] Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986.
[Iwa07] Isamu Iwanari, Integral chow rings of toric stacks, math.AG/0705.3524 (2007).
[Iwa09] , The category of toric stacks, Compos. Math. 145 (2009), no. 3, 718--746. MR MR2507746
[Jac64] Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van

Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964.
[Jaf97] David B. Jaffe, Coherent functors, with application to torsion in the picard group, Trans. Amer. Math.

Soc. 349 (1997), no. 2, 481--527.
[Jec02] Thomas Jech, Set theory, Springer Monographs in mathematics, Springer, 2002.
[Kab71] T. Kabele, Regularity conditions in nonnoetherian rings, Trans. Amer. Math. Soc. 155 (1971),

363--374.
[Kap58] Irving Kaplansky, Projective modules, Ann. of Math (2) 68 (1958), 372--377. MR MR0100017 (20

#6453)
[Kel90] Bernhard Keller, Chain complexes and stable categories, Manuscripta Math. 67 (1990), no. 4,

379--417.
[Kle79] Steven L. Kleiman,Misconceptions about𝐾𝑥, Enseign.Math. (2) 25 (1979), no. 3-4, 203--206 (1980).

MR MR570309 (81e:14003)
[KM76] Finn Faye Knudsen and David Mumford, The projectivity of the moduli space of stable curves. I.

Preliminaries on ``det'' and ``Div'', Math. Scand. 39 (1976), no. 1, 19--55.
[KM85] Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics

Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985.
[KM97a] Seán Keel and Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), 193--213.
[KM97b] SeánKeel and ShigefumiMori,Quotients by groupoids, Ann. ofMath. (2) 145 (1997), no. 1, 193--213.

MR MR1432041 (97m:14014)
[Knu71a] Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, vol. 203, Springer-Verlag, 1971.
[Knu71b] Donald Knutson, Algebraic spaces, Springer-Verlag, Berlin, 1971, Lecture Notes in Mathematics,

Vol. 203. MR MR0302647 (46 #1791)



3030 BIBLIOGRAPHY

[Knu79] Donald E. Knuth, Tau Epsilon Chi, a system for technical text, American Mathematical Society, Prov-
idence, R.I., 1979, Revised version of Stanford Computer Science report number STAN-CS-78-675.
MR MR537439 (80i:00002)

[Knu02] Finn F. Knudsen, Determinant functors on exact categories and their extensions to categories of
bounded complexes, Michigan Math. J. 50 (2002), no. 2, 407--444.

[Kol96] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzge-
biete, 3. Folge, vol. 32, Springer-Verlag, 1996.

[Kol97] János Kollár, Quotient spaces modulo algebraic groups, Ann. of Math. (2) 145 (1997), no. 1, 33--79.
[Kol08] Janos Kollar, Quotients by finite equivalence relations, 2008.
[Kre99] Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495--536.

MR MR1719823 (2001a:14003)
[Kre09] , On the geometry of Deligne-Mumford stacks, Algebraic geometry---Seattle 2005. Part

1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 259--271.
MR MR2483938

[Kru32] W. Krull, Allgemeine bewertungstheorie, J. reine angew. Math 167 (1932), 160--196.
[KS74] G. M. Kelly and Ross Street, Review of the elements of 2-categories, Category Seminar (Proc.

Sem., Sydney, 1972/1973), Springer, Berlin, 1974, pp. 75--103. Lecture Notes in Math., Vol. 420.
MR MR0357542 (50 #10010)

[Kun83] Kenneth Kunen, Set theory, Elsevier Science, 1983.
[KV04] Andrew Kresch and Angelo Vistoli, On coverings of Deligne-Mumford stacks and surjectivity of the

Brauer map, Bull. London Math. Soc. 36 (2004), no. 2, 188--192. MR MR2026412 (2004j:14003)
[Lam99] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag,

New York, 1999.
[Lan02] Serge Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York,

2002.
[Laz67] Daniel Lazard, Disconnexités des spectres d'anneaux et des préschémas, Bull. Soc. Math. France 95

(1967), 95--108.
[Laz69] , Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81--128.
[Lie06] Max Lieblich, Remarks on the stack of coherent algebras, Int. Math. Res. Not. (2006), Art. ID 75273,

12. MR MR2233719 (2008c:14022)
[Lie07] , Moduli of twisted sheaves, Duke Math. J. 138 (2007), no. 1, 23--118. MR MR2309155
[Liu02] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6,

Oxford University Press, Oxford, 2002, Translated from the French by Reinie Erné, Oxford Science
Publications.

[LMB00a] Gérard Laumon and LaurentMoret-Bailly,Champs algébriques, Ergebnisse derMathematik und ihrer
Grenzgebiete. 3. Folge., vol. 39, Springer-Verlag, 2000.

[LMB00b] Gérard Laumon and LaurentMoret-Bailly,Champs algébriques, Ergebnisse derMathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag,
Berlin, 2000. MR MR1771927 (2001f:14006)

[LO08] Max Lieblich and Brian Osserman,Functorial reconstruction theorem for stacks, math.AG/0807.4562
(2008).

[LR08] T. Y. Lam and Manuel S. Reyes, A prime ideal principle in commutative algebra, Journal of Algebra
319 (2008), no. 7, 3006--3027.

[LS08] Christian Lundkvist and Roy Skjelnes, Non-effective deformations of Grothendieck's Hilbert functor,
Math. Z. 258 (2008), no. 3, 513--519. MR MR2369042 (2009j:14006)

[Lur09a] Jacob Lurie,Derived algebraic geometry I: Stable infinity categories, http://www-math.mit.edu/
~lurie/papers/DAG-I.pdf (2009).

[Lur09b] , Derived algebraic geometry II: Noncommutative algebra, http://www-math.mit.edu/
~lurie/papers/DAG-II.pdf (2009).

[Lur09c] , Derived algebraic geometry III: Commutative algebra, http://www-math.mit.edu/
~lurie/papers/DAG-III.pdf (2009).

[Lur09d] , Derived algebraic geometry IV: Deformation theory, http://www-math.mit.edu/
~lurie/papers/DAG-IV.pdf (2009).

[Lur09e] ,Derived algebraic geometry V: Structured spaces, http://www-math.mit.edu/~lurie/
papers/DAG-V.pdf (2009).

[Lur09f] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University
Press, Princeton, NJ, 2009. MR MR2522659

http://www-math.mit.edu/~lurie/papers/DAG-I.pdf
http://www-math.mit.edu/~lurie/papers/DAG-I.pdf
http://www-math.mit.edu/~lurie/papers/DAG-II.pdf
http://www-math.mit.edu/~lurie/papers/DAG-II.pdf
http://www-math.mit.edu/~lurie/papers/DAG-III.pdf
http://www-math.mit.edu/~lurie/papers/DAG-III.pdf
http://www-math.mit.edu/~lurie/papers/DAG-IV.pdf
http://www-math.mit.edu/~lurie/papers/DAG-IV.pdf
http://www-math.mit.edu/~lurie/papers/DAG-V.pdf
http://www-math.mit.edu/~lurie/papers/DAG-V.pdf


BIBLIOGRAPHY 3031

[MA71] J.L. Verdier M. Artin, A. Grothendieck, Theorie de topos et cohomologie etale des schemas i, ii, iii,
Lecture Notes in Mathematics, vol. 269, 270, 305, Springer, 1971.

[Mac63] Saunders MacLane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Aca-
demic Press Inc., Publishers, New York, 1963.

[Mat70] Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., 1970.
[Maz68] Pierre Mazet, Générateurs, relations et épimorphismes d'anneaux, C. R. Acad. Sci. Paris Sér. A-B

266 (1968), A309--A311.
[McC01] John McCleary, A user's guide to spectral sequences, second ed., Cambridge Studies in Ad-

vanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR MR1793722
(2002c:55027)

[Met05] David Metzler, Topological and smooth stacks, math.DG/0306176 (2005).
[MFK94] David Mumford, John Fogarty, and Frances Kirwan, Geometric invariant theory, 3d ed., Ergebnisse

der Math., vol. 34, Springer-Verlag, 1994.
[Mil17] G. A. Miller, The Obsolete in Mathematics, Amer. Math. Monthly 24 (1917), no. 10, 453--456.
[Mum65] David Mumford, Picard groups of moduli problems, Arithmetical Algebraic Geometry (Proc. Conf.

Purdue Univ., 1963), Harper & Row, New York, 1965, pp. 33--81. MR MR0201443 (34 #1327)
[Mur95] J. P. Murre, Representation of unramified functors. Applications (according to unpublished results

of A. Grothendieck), Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 294,
243--261. MR MR1608802

[Nag62] Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Inter-
science Publishers a division of John Wiley & Sons New York-London, 1962.

[Nee01] Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton Uni-
versity Press, Princeton, NJ, 2001.

[Nee02] , A counterexample to a 1961 ``theorem'' in homological algebra, Invent. Math. 148 (2002),
no. 2, 397--420, With an appendix by P. Deligne. MR MR1906154 (2003d:18021)

[Nis81] Jun-ichi Nishimura, On ideal-adic completion of Noetherian rings, J. Math. Kyoto Univ. 21 (1981),
no. 1, 153--169.

[Nob77] Augusto Nobile, A note on flat algebras, Proc. Amer. Math. Soc. 64 (1977), no. 2, 206--208.
[Noo05] Behrang Noohi, Foundations of topological stacks I, math.AG/0503247v1 (2005).
[Ogo94] Tetsushi Ogoma, General Néron desingularization based on the idea of Popescu, J. Algebra 167

(1994), no. 1, 57--84.
[Ols05] Martin C. Olsson, On proper coverings of Artin stacks, Adv. Math. 198 (2005), no. 1, 93--106.

MR MR2183251 (2006h:14003)
[Ols06a] Martin Olsson, Deformation theory of representable morphisms of algebraic stacks, Math. Z. 253

(2006), no. 1, 25--62. MR MR2206635 (2006i:14010)
[Ols06b] , 𝐻𝑜𝑚-stacks and restriction of scalars, Duke Math. J. 134 (2006), no. 1, 139--164.

MR MR2239345 (2007f:14002)
[Ols07a] Martin Olsson, Course notes for Math 274: Stacks, taken by Anton Geraschenko, http://math.

berkeley.edu/~anton/written/Stacks/Stacks.pdf (2007).
[Ols07b] Martin Olsson, Sheaves on Artin stacks, J. Reine Angew.Math. 603 (2007), 55--112. MRMR2312554
[Oor66] F. Oort, Algebraic group schemes in characteristic zero are reduced, Invent. Math. 2 (1966), 79--80.
[OP10] Brian Osserman and Sam Payne, Lifting tropical intersections, 2010.
[OS03a] Martin Olsson and Jason Starr,Quot functors for Deligne-Mumford stacks, Comm. Algebra 31 (2003),

4069--4096.
[OS03b] Martin Olsson and Jason Starr,Quot functors for Deligne-Mumford stacks, Comm. Algebra 31 (2003),

no. 8, 4069--4096, Special issue in honor of Steven L. Kleiman. MR MR2007396 (2004i:14002)
[Per75] D. Perrin, Schémas en groupes quasi-compacts sur un corps et groupes henséliens, PublicationsMath-

ématiques d'Orsay 165, 75-46 (1975), 148.
[Per76] Daniel Perrin, Approximation des schémas en groupes, quasi compacts sur un corps, Bull. Soc. Math.

France 104 (1976), no. 3, 323--335.
[Per08] Fabio Perroni, A note on toric Deligne-Mumford stacks, Tohoku Math. J. (2) 60 (2008), no. 3,

441--458. MR MR2453733
[Pes66] Christian Peskine, Une généralisation du ``main theorem'' de Zariski, Bull. Sci. Math. (2) 90 (1966),

119--127.
[Pop81] Dorin Popescu, Global form of Néron's 𝑝-desingularization and approximation, Proceedings of the

Week of Algebraic Geometry (Bucharest, 1980) (Leipzig), Teubner-Texte Math., vol. 40, Teubner,
1981, pp. 139--157.

[Pop85] , General Néron desingularization, Nagoya Math. J. 100 (1985), 97--126.

http://math.berkeley.edu/~anton/written/Stacks/Stacks.pdf
http://math.berkeley.edu/~anton/written/Stacks/Stacks.pdf


3032 BIBLIOGRAPHY

[Pop86] , General Néron desingularization and approximation, Nagoya Math. J. 104 (1986), 85--115.
[Pop90] , Letter to the editor: ``General Néron desingularization and approximation'' [Nagoya Math.

J. 104 (1986), 85--115; MR0868439 (88a:14007)], Nagoya Math. J. 118 (1990), 45--53.
[Qui67] Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag,

Berlin, 1967.
[Ray70] M. Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics, vol. 169, Spinger-Verlag,

1970.
[Ray72] Michel Raynaud, Anneaux henséliens et approximations, Colloque d'Algèbre Commutative (Rennes,

1972), Exp. No. 13, Univ. Rennes, Rennes, 1972, pp. 9 pp. Publ. Sém. Math. Univ. Rennes, Année
1972.

[Rei] Philipp Michael Reinhard, Andre-quillen homology for simplicial algebras and ring spectra, http:
//theses.gla.ac.uk/507/.

[Ric89] Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3,
436--456.

[Rie65] M. A. Rieffel, A general Wedderburn theorem, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1513.
[Rom03] Matthieu Romagny, A note on group actions on algebraic stacks, math.AG/0305243 (2003).
[Rom05] , Group actions on stacks and applications, Michigan Math. J. 53 (2005), no. 1, 209--236.

MR MR2125542 (2005m:14005)
[Ros09] Joseph Ross, The hilbert-chow morphism and the incidence divisor, Columbia University PhD thesis,

2009.
[Rot90] Christel Rotthaus, Rings with approximation property, Math. Ann. 287 (1990), no. 3, 455--466.
[Ryd07a] David Rydh, Existence of quotients by finite groups and coarse moduli spaces, math.AG/0708.3333

(2007).
[Ryd07b] , Submersions and effective descent of étale morphisms, math.AG/0710.2488 (2007).
[Ryd08] , Noetherian approximation of algebraic spaces and stacks, math.AG/0904.0227 (2008).
[Ryd10] , étale dévissage, descent and pushouts of stacks, math.AG/1005.2171v1 (2010).
[Sam56] Pierre Samuel, Rational equivalence of arbitrary cycles, Amer. J. Math. 78 (1956), 383--400.
[Sch68] Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208--222.
[Ser53] Jean-Pierre Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953),

258--294.
[Ser55a] , Applications algébriques de la cohomologie des groupes. II: Théorie des algèbres simples,

Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1955.
[Ser55b] , Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197--278.
[Ser62] , Corps locaux, Publications de l'Institut de Mathématique de l'Université de Nancago, VIII,

Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962.
[Ser65] , Algèbre locale. Multiplicités, Cours au Collège de France, 1957--1958, rédigé par Pierre

Gabriel. Seconde édition, 1965. Lecture Notes inMathematics, vol. 11, Springer-Verlag, Berlin, 1965.
[Ser97] Jean-Pierre Serre,Galois cohomology, Springer Monographs in Mathematics, Springer-Verlag, 1997.
[Ser00] Jean-Pierre Serre, Local algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin,

2000, Translated from the French by CheeWhye Chin and revised by the author.
[Ser03] C. Serpé, Resolution of unbounded complexes in Grothendieck categories, J. Pure Appl. Algebra 177

(2003), no. 1, 103--112.
[Ses72] C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. of Math. (2) 95 (1972),

511--556; errata, ibid. (2) 96 (1972), 599. MR MR0309940 (46 #9044)
[Sil86] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, no. 106,

Springer-Verlag, 1986.
[Spa88] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121--154.
[Spi99] Mark Spivakovsky, A new proof of D. Popescu's theorem on smoothing of ring homomorphisms, J.

Amer. Math. Soc. 12 (1999), no. 2, 381--444.
[SR72] Neantro Saavedra Rivano, Catégories tannakiennes, Bull. Soc. Math. France 100 (1972), 417--430.
[Sta06] Jason Starr, Artin's axioms, composition and moduli spaces, math.AG/0602646 (2006).
[Swa98] Richard G. Swan, Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995), Lect. Al-

gebra Geom., vol. 2, Int. Press, Cambridge, MA, 1998, pp. 135--192.
[Tei95] Bernard Teissier, Résultats récents sur l'approximation des morphismes en algèbre commutative

(d'après André, Artin, Popescu et Spivakovsky), Astérisque (1995), no. 227, Exp. No. 784, 4, 259--282,
Séminaire Bourbaki, Vol. 1993/94.

http://theses.gla.ac.uk/507/
http://theses.gla.ac.uk/507/


BIBLIOGRAPHY 3033

[Toë09] Bertrand Toën, Higher and derived stacks: a global overview, Algebraic geometry---Seattle 2005.
Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 435--487.
MR MR2483943

[Tot04] Burt Totaro, The resolution property for schemes and stacks, J. Reine Angew.Math. 577 (2004), 1--22.
MR MR2108211 (2005j:14002)

[TT90] R. W. Thomason and Thomas Trobaugh, Higher algebraic 𝐾-theory of schemes and of derived cate-
gories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA,
1990, pp. 247--435.

[TV] Mattia Talpo and Angelo Vistoli, Deformation theory from the point of view of fibered categories,
arXiv:1006.0497v2.

[TV05] Bertrand Toën and Gabriele Vezzosi, Homotopical algebraic geometry. I. Topos theory, Adv. Math.
193 (2005), no. 2, 257--372. MR MR2137288 (2007b:14038)

[TV08] ,Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math.
Soc. 193 (2008), no. 902, x+224. MR MR2394633 (2009h:14004)

[VD83] S. G. Vlèduts and V. G. Drinfeld, The number of points of an algebraic curve, Funktsional. Anal. i
Prilozhen. 17 (1983), no. 1, 68--69. MR MR695100 (85b:14028)

[Ver96] Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque (1996), no. 239,
xii+253 pp. (1997), With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis.

[Vis] Angelo Vistoli, Notes on grothendieck topologies, fibered categories and descent theory.
[Vis89] Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97

(1989), no. 3, 613--670. MR MR1005008 (90k:14004)
[Vis91] , The Hilbert stack and the theory of moduli of families, Geometry Seminars, 1988--1991

(Italian) (Bologna, 1988--1991), Univ. Stud. Bologna, Bologna, 1991, pp. 175--181. MRMR1138256
(92k:14011)

[Vis05] , Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic ge-
ometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 1--104.
MR MR2223406

[Wei48] André Weil, Courbes algébriques et variétés abéliennes, Hermann, 1948.
[Yek11] Amnon Yekutieli, On flatness and completion for infinitely generated modules over noetherian rings,

Communications in Algebra (2011), 4221 -- 4245.
[Yon60] Nobuo Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507 -- 576.


	Chapter 1. Introduction
	1.1. Overview
	1.2. Attribution
	1.3. Other chapters

	Chapter 2. Conventions
	2.1. Comments
	2.2. Set theory
	2.3. Categories
	2.4. Algebra
	2.5. Notation
	2.6. Other chapters

	Chapter 3. Set Theory
	3.1. Introduction
	3.2. Everything is a set
	3.3. Classes
	3.4. Ordinals
	3.5. The hierarchy of sets
	3.6. Cardinality
	3.7. Cofinality
	3.8. Reflection principle
	3.9. Constructing categories of schemes
	3.10. Sets with group action
	3.11. Coverings of a site
	3.12. Abelian categories and injectives
	3.13. Other chapters

	Chapter 4. Categories
	4.1. Introduction
	4.2. Definitions
	4.3. Opposite Categories and the Yoneda Lemma
	4.4. Products of pairs
	4.5. Coproducts of pairs
	4.6. Fibre products
	4.7. Examples of fibre products
	4.8. Fibre products and representability
	4.9. Push outs
	4.10. Equalizers
	4.11. Coequalizers
	4.12. Initial and final objects
	4.13. Limits and colimits
	4.14. Limits and colimits in the category of sets
	4.15. Connected limits
	4.16. Finite limits and colimits
	4.17. Filtered colimits
	4.18. Cofiltered limits
	4.19. Limits and colimits over partially ordered sets
	4.20. Essentially constant systems
	4.21. Exact functors
	4.22. Adjoint functors
	4.23. Monomorphisms and Epimorphisms
	4.24. Localization in categories
	4.25. Formal properties
	4.26. 2-categories
	4.27. (2, 1)-categories
	4.28. 2-fibre products
	4.29. Categories over categories
	4.30. Fibred categories
	4.31. Inertia
	4.32. Categories fibred in groupoids
	4.33. Presheaves of categories
	4.34. Presheaves of groupoids
	4.35. Categories fibred in sets
	4.36. Categories fibred in setoids
	4.37. Representable categories fibred in groupoids
	4.38. Representable 1-morphisms
	4.39. Other chapters

	Chapter 5. Topology
	5.1. Introduction
	5.2. Basic notions
	5.3. Bases
	5.4. Connected components
	5.5. Irreducible components
	5.6. Noetherian topological spaces
	5.7. Krull dimension
	5.8. Codimension and catenary spaces
	5.9. Quasi-compact spaces and maps
	5.10. Constructible sets
	5.11. Constructible sets and Noetherian spaces
	5.12. Characterizing proper maps
	5.13. Jacobson spaces
	5.14. Specialization
	5.15. Submersive maps
	5.16. Dimension functions
	5.17. Nowhere dense sets
	5.18. Miscellany
	5.19. Other chapters

	Chapter 6. Sheaves on Spaces
	6.1. Introduction
	6.2. Basic notions
	6.3. Presheaves
	6.4. Abelian presheaves
	6.5. Presheaves of algebraic structures
	6.6. Presheaves of modules
	6.7. Sheaves
	6.8. Abelian sheaves
	6.9. Sheaves of algebraic structures
	6.10. Sheaves of modules
	6.11. Stalks
	6.12. Stalks of abelian presheaves
	6.13. Stalks of presheaves of algebraic structures
	6.14. Stalks of presheaves of modules
	6.15. Algebraic structures
	6.16. Exactness and points
	6.17. Sheafification
	6.18. Sheafification of abelian presheaves
	6.19. Sheafification of presheaves of algebraic structures
	6.20. Sheafification of presheaves of modules
	6.21. Continuous maps and sheaves
	6.22. Continuous maps and abelian sheaves
	6.23. Continuous maps and sheaves of algebraic structures
	6.24. Continuous maps and sheaves of modules
	6.25. Ringed spaces
	6.26. Morphisms of ringed spaces and modules
	6.27. Skyscraper sheaves and stalks
	6.28. Limits and colimits of presheaves
	6.29. Limits and colimits of sheaves
	6.30. Bases and sheaves
	6.31. Open immersions and (pre)sheaves
	6.32. Closed immersions and (pre)sheaves
	6.33. Glueing sheaves
	6.34. Other chapters

	Chapter 7. Commutative Algebra
	7.1. Introduction
	7.2. Conventions
	7.3. Basic notions
	7.4. Snake lemma
	7.5. Finite modules and finitely presented modules
	7.6. Ring maps of finite type and of finite presentation
	7.7. Finite ring maps
	7.8. Colimits
	7.9. Localization
	7.10. Internal Hom
	7.11. Tensor products
	7.12. Tensor algebra
	7.13. Base change
	7.14. Miscellany
	7.15. Cayley-Hamilton
	7.16. The spectrum of a ring
	7.17. Local rings
	7.18. Open and closed subsets of spectra
	7.19. Connected components of spectra
	7.20. Glueing functions
	7.21. More glueing results
	7.22. Total rings of fractions
	7.23. Irreducible components of spectra
	7.24. Examples of spectra of rings
	7.25. A meta-observation about prime ideals
	7.26. Images of ring maps of finite presentation
	7.27. More on images
	7.28. Noetherian rings
	7.29. Curiosity
	7.30. Hilbert Nullstellensatz
	7.31. Jacobson rings
	7.32. Finite and integral ring extensions
	7.33. Normal rings
	7.34. Going down for integral over normal
	7.35. Flat modules and flat ring maps
	7.36. Going up and going down
	7.37. Transcendence
	7.38. Algebraic elements of field extensions
	7.39. Separable extensions
	7.40. Geometrically reduced algebras
	7.41. Separable extensions, continued
	7.42. Perfect fields
	7.43. Geometrically irreducible algebras
	7.44. Geometrically connected algebras
	7.45. Geometrically integral algebras
	7.46. Valuation rings
	7.47. More Noetherian rings
	7.48. Length
	7.49. Artinian rings
	7.50. Homomorphisms essentially of finite type
	7.51. K-groups
	7.52. Graded rings
	7.53. Proj of a graded ring
	7.54. Blow up algebras
	7.55. Noetherian graded rings
	7.56. Noetherian local rings
	7.57. Dimension
	7.58. Applications of dimension theory
	7.59. Support and dimension of modules
	7.60. Associated primes
	7.61. Symbolic powers
	7.62. Relative assassin
	7.63. Weakly associated primes
	7.64. Embedded primes
	7.65. Regular sequences and depth
	7.66. Quasi-regular sequences
	7.67. Ext groups and depth
	7.68. An application of Ext groups
	7.69. Tor groups and flatness
	7.70. Functorialities for Tor
	7.71. Projective modules
	7.72. Finite projective modules
	7.73. Open loci defined by module maps
	7.74. Faithfully flat descent for projectivity of modules
	7.75. Characterizing flatness
	7.76. Universally injective module maps
	7.77. Descent for finite projective modules
	7.78. Transfinite dévissage of modules
	7.79. Projective modules over a local ring
	7.80. Mittag-Leffler systems
	7.81. Inverse systems
	7.82. Mittag-Leffler modules
	7.83. Interchanging direct products with tensor
	7.84. Coherent rings
	7.85. Examples and non-examples of Mittag-Leffler modules
	7.86. Countably generated Mittag-Leffler modules
	7.87. Characterizing projective modules
	7.88. Ascending properties of modules
	7.89. Descending properties of modules
	7.90. Completion
	7.91. Criteria for flatness
	7.92. Base change and flatness
	7.93. Flatness criteria over Artinian rings
	7.94. What makes a complex exact?
	7.95. Cohen-Macaulay modules
	7.96. Cohen-Macaulay rings
	7.97. Catenary rings
	7.98. Regular local rings
	7.99. Epimorphisms of rings
	7.100. Pure ideals
	7.101. Rings of finite global dimension
	7.102. Regular rings and global dimension
	7.103. Homomorphisms and dimension
	7.104. The dimension formula
	7.105. Dimension of finite type algebras over fields
	7.106. Noether normalization
	7.107. Dimension of finite type algebras over fields, reprise
	7.108. Dimension of graded algebras over a field
	7.109. Generic flatness
	7.110. Around Krull-Akizuki
	7.111. Factorization
	7.112. Orders of vanishing
	7.113. Quasi-finite maps
	7.114. Zariski's Main Theorem
	7.115. Applications of Zariski's Main Theorem
	7.116. Dimension of fibres
	7.117. Algebras and modules of finite presentation
	7.118. Colimits and maps of finite presentation
	7.119. More flatness criteria
	7.120. Openness of the flat locus
	7.121. Openness of Cohen-Macaulay loci
	7.122. Differentials
	7.123. The naive cotangent complex
	7.124. Local complete intersections
	7.125. Syntomic morphisms
	7.126. Smooth ring maps
	7.127. Formally smooth maps
	7.128. Smoothness and differentials
	7.129. Smooth algebras over fields
	7.130. Smooth ring maps in the Noetherian case
	7.131. Overview of results on smooth ring maps
	7.132. Étale ring maps
	7.133. Local homomorphisms
	7.134. Integral closure and smooth base change
	7.135. Formally unramified maps
	7.136. Conormal modules and universal thickenings
	7.137. Formally étale maps
	7.138. Unramified ring maps
	7.139. Henselian local rings
	7.140. Serre's criterion for normality
	7.141. Formal smoothness of fields
	7.142. Constructing flat ring maps
	7.143. The Cohen structure theorem
	7.144. Nagata and Japanese rings
	7.145. Ascending properties
	7.146. Descending properties
	7.147. Geometrically normal algebras
	7.148. Geometrically regular algebras
	7.149. Geometrically Cohen-Macaulay algebras
	7.150. Other chapters

	Chapter 8. Brauer groups
	8.1. Introduction
	8.2. Noncommutative algebras
	8.3. Wedderburn's theorem
	8.4. Lemmas on algebras
	8.5. The Brauer group of a field
	8.6. Skolem-Noether
	8.7. The centralizer theorem
	8.8. Splitting fields
	8.9. Other chapters

	Chapter 9. Sites and Sheaves
	9.1. Introduction
	9.2. Presheaves
	9.3. Injective and surjective maps of presheaves
	9.4. Limits and colimits of presheaves
	9.5. Functoriality of categories of presheaves
	9.6. Sites
	9.7. Sheaves
	9.8. Families of morphisms with fixed target
	9.9. The example of G-sets
	9.10. Sheafification
	9.11. Injective and surjective maps of sheaves
	9.12. Representable sheaves
	9.13. Continuous functors
	9.14. Morphisms of sites
	9.15. Topoi
	9.16. G-sets and morphisms
	9.17. More functoriality of presheaves
	9.18. Cocontinuous functors
	9.19. Cocontinuous functors and morphisms of topoi
	9.20. Cocontinuous functors which have a right adjoint
	9.21. Localization
	9.22. Glueing sheaves
	9.23. More localization
	9.24. Localization and morphisms
	9.25. Morphisms of topoi
	9.26. Localization of topoi
	9.27. Localization and morphisms of topoi
	9.28. Points
	9.29. Constructing points
	9.30. Points and and morphisms of topoi
	9.31. Localization and points
	9.32. 2-morphisms of topoi
	9.33. Morphisms between points
	9.34. Sites with enough points
	9.35. Criterion for existence of points
	9.36. Exactness properties of pushforward
	9.37. Almost cocontinuous functors
	9.38. Sheaves of algebraic structures
	9.39. Pullback maps
	9.40. Topologies
	9.41. The topology defined by a site
	9.42. Sheafification in a topology
	9.43. Topologies and sheaves
	9.44. Topologies and continuous functors
	9.45. Points and topologies
	9.46. Other chapters

	Chapter 10. Homological Algebra
	10.1. Introduction
	10.2. Basic notions
	10.3. Abelian categories
	10.4. Extensions
	10.5. Additive functors
	10.6. Localization
	10.7. Serre subcategories
	10.8. K-groups
	10.9. Cohomological delta-functors
	10.10. Complexes
	10.11. Truncation of complexes
	10.12. Homotopy and the shift functor
	10.13. Filtrations
	10.14. Spectral sequences
	10.15. Spectral sequences: exact couples
	10.16. Spectral sequences: differential objects
	10.17. Spectral sequences: filtered differential objects
	10.18. Spectral sequences: filtered complexes
	10.19. Spectral sequences: double complexes
	10.20. Injectives
	10.21. Projectives
	10.22. Injectives and adjoint functors
	10.23. Inverse systems
	10.24. Exactness of products
	10.25. Differential graded algebras
	10.26. Other chapters

	Chapter 11. Derived Categories
	11.1. Introduction
	11.2. Triangulated categories
	11.3. The definition of a triangulated category
	11.4. Elementary results on triangulated categories
	11.5. Localization of triangulated categories
	11.6. Quotients of triangulated categories
	11.7. The homotopy category
	11.8. Cones and termwise split sequences
	11.9. Distinguished triangles in the homotopy category
	11.10. Derived categories
	11.11. The canonical delta-functor
	11.12. Triangulated subcategories of the derived category
	11.13. Filtered derived categories
	11.14. Derived functors in general
	11.15. Derived functors on derived categories
	11.16. Higher derived functors
	11.17. Injective resolutions
	11.18. Projective resolutions
	11.19. Right derived functors and injective resolutions
	11.20. Cartan-Eilenberg resolutions
	11.21. Composition of right derived functors
	11.22. Resolution functors
	11.23. Functorial injective embeddings and resolution functors
	11.24. Right derived functors via resolution functors
	11.25. Filtered derived category and injective resolutions
	11.26. Ext groups
	11.27. Unbounded complexes
	11.28. K-injective complexes
	11.29. Bounded cohomological dimension
	11.30. Other chapters

	Chapter 12. More on Algebra
	12.1. Introduction
	12.2. Computing Tor
	12.3. Derived tensor product
	12.4. Derived change of rings
	12.5. Tor independence
	12.6. Spectral sequences for Tor
	12.7. Products and Tor
	12.8. Formal glueing of module categories
	12.9. Lifting
	12.10. Auto-associated rings
	12.11. Flattening stratification
	12.12. Flattening over an Artinian ring
	12.13. Flattening over a closed subset of the base
	12.14. Flattening over a closed subsets of source and base
	12.15. Flattening over a Noetherian complete local ring
	12.16. Descent flatness along integral maps
	12.17. Torsion and flatness
	12.18. Flatness and finiteness conditions
	12.19. Blowing up and flatness
	12.20. Completion and flatnes
	12.21. The Koszul complex
	12.22. Koszul regular sequences
	12.23. Regular ideals
	12.24. Local complete intersection maps
	12.25. Cartier's equality and geometric regularity
	12.26. Geometric regularity
	12.27. Topological rings and modules
	12.28. Formally smooth maps of topological rings
	12.29. Some results on power series rings
	12.30. Geometric regularity and formal smoothness
	12.31. Regular ring maps
	12.32. Ascending properties along regular ring maps
	12.33. Permanence of properties under completion
	12.34. Field extensions, revisited
	12.35. The singular locus
	12.36. Regularity and derivations
	12.37. Formal smoothness and regularity
	12.38. G-rings
	12.39. Excellent rings
	12.40. Pseudo-coherent modules
	12.41. Tor dimension
	12.42. Perfect complexes
	12.43. Characterizing perfect complexes
	12.44. Relatively finitely presented modules
	12.45. Relatively pseudo-coherent modules
	12.46. Pseudo-coherent and perfect ring maps
	12.47. Other chapters

	Chapter 13. Smoothing Ring Maps
	13.1. Introduction
	13.2. Colimits
	13.3. Singular ideals
	13.4. Presentations of algebras
	13.5. The lifting problem
	13.6. The lifting lemma
	13.7. The desingularization lemma
	13.8. Warmup: reduction to a base field
	13.9. Local tricks
	13.10. Separable residue fields
	13.11. Inseparable residue fields
	13.12. The main theorem
	13.13. Other chapters

	Chapter 14. Simplicial Methods
	14.1. Introduction
	14.2. The category of finite ordered sets
	14.3. Simplicial objects
	14.4. Simplicial objects as presheaves
	14.5. Cosimplicial objects
	14.6. Products of simplicial objects
	14.7. Fibre products of simplicial objects
	14.8. Push outs of simplicial objects
	14.9. Products of cosimplicial objects
	14.10. Fibre products of cosimplicial objects
	14.11. Simplicial sets
	14.12. Products with simplicial sets
	14.13. Hom from simplicial sets into cosimplicial objects
	14.14. Internal Hom
	14.15. Hom from simplicial sets into simplicial objects
	14.16. Splitting simplicial objects
	14.17. Skelet and coskelet functors
	14.18. Augmentations
	14.19. Left adjoints to the skeleton functors
	14.20. Simplicial objects in abelian categories
	14.21. Simplicial objects and chain complexes
	14.22. Dold-Kan
	14.23. Dold-Kan for cosimplicial objects
	14.24. Homotopies
	14.25. Homotopies in abelian categories
	14.26. Homotopies and cosimplicial objects
	14.27. More homotopies in abelian categories
	14.28. A homotopy equivalence
	14.29. Other chapters

	Chapter 15. Sheaves of Modules
	15.1. Introduction
	15.2. Pathology
	15.3. The abelian category of sheaves of modules
	15.4. Sections of sheaves of modules
	15.5. Supports of modules and sections
	15.6. Closed immersions and abelian sheaves
	15.7. A canonical exact sequence
	15.8. Modules locally generated by sections
	15.9. Modules of finite type
	15.10. Quasi-coherent modules
	15.11. Modules of finite presentation
	15.12. Coherent modules
	15.13. Closed immersions of ringed spaces
	15.14. Locally free sheaves
	15.15. Tensor product
	15.16. Flat modules
	15.17. Flat morphisms of ringed spaces
	15.18. Symmetric and exterior powers
	15.19. Internal Hom
	15.20. Koszul complexes
	15.21. Invertible sheaves
	15.22. Localizing sheaves of rings
	15.23. Other chapters

	Chapter 16. Modules on Sites
	16.1. Introduction
	16.2. Abelian presheaves
	16.3. Abelian sheaves
	16.4. Free abelian presheaves
	16.5. Free abelian sheaves
	16.6. Ringed sites
	16.7. Ringed topoi
	16.8. 2-morphisms of ringed topoi
	16.9. Presheaves of modules
	16.10. Sheaves of modules
	16.11. Sheafification of presheaves of modules
	16.12. Morphisms of topoi and sheaves of modules
	16.13. Morphisms of ringed topoi and modules
	16.14. The abelian category of sheaves of modules
	16.15. Exactness of pushforward
	16.16. Exactness of lower shriek
	16.17. Global types of modules
	16.18. Intrinsic properties of modules
	16.19. Localization of ringed sites
	16.20. Localization of morphisms of ringed sites
	16.21. Localization of ringed topoi
	16.22. Localization of morphisms of ringed topoi
	16.23. Local types of modules
	16.24. Tensor product
	16.25. Internal Hom
	16.26. Flat modules
	16.27. Flat morphisms
	16.28. Invertible modules
	16.29. Modules of differentials
	16.30. Stalks of modules
	16.31. Skyscraper sheaves
	16.32. Localization and points
	16.33. Pullbacks of flat modules
	16.34. Locally ringed topoi
	16.35. Lower shriek for modules
	16.36. Other chapters

	Chapter 17. Injectives
	17.1. Introduction
	17.2. Abelian groups
	17.3. Modules
	17.4. Projective resolutions
	17.5. Modules over noncommutative rings
	17.6. Baer's argument for modules
	17.7. G-modules
	17.8. Abelian sheaves on a space
	17.9. Sheaves of modules on a ringed space
	17.10. Abelian presheaves on a category
	17.11. Abelian Sheaves on a site
	17.12. Modules on a ringed site
	17.13. Embedding abelian categories
	17.14. Grothendieck's AB conditions
	17.15. Injectives in Grothendieck categories
	17.16. K-injectives in Grothendieck categories
	17.17. Additional remarks on Grothendieck abelian categories
	17.18. Other chapters

	Chapter 18. Cohomology of Sheaves
	18.1. Introduction
	18.2. Topics
	18.3. Cohomology of sheaves
	18.4. Derived functors
	18.5. First cohomology and torsors
	18.6. Locality of cohomology
	18.7. Projection formula
	18.8. Mayer-Vietoris
	18.9. The Cech complex and Cech cohomology
	18.10. Cech cohomology as a functor on presheaves
	18.11. Cech cohomology and cohomology
	18.12. The Leray spectral sequence
	18.13. Functoriality of cohomology
	18.14. The base change map
	18.15. Cohomology and colimits
	18.16. Vanishing on Noetherian topological spaces
	18.17. The alternating Cech complex
	18.18. Locally finite coverings and the Cech complex
	18.19. Cech cohomology of complexes
	18.20. Flat resolutions
	18.21. Derived pullback
	18.22. Cohomology of unbounded complexes
	18.23. Producing K-injective resolutions
	18.24. Other chapters

	Chapter 19. Cohomology on Sites
	19.1. Introduction
	19.2. Topics
	19.3. Cohomology of sheaves
	19.4. Derived functors
	19.5. First cohomology and torsors
	19.6. First cohomology and extensions
	19.7. First cohomology and invertible sheaves
	19.8. Locality of cohomology
	19.9. The Cech complex and Cech cohomology
	19.10. Cech cohomology as a functor on presheaves
	19.11. Cech cohomology and cohomology
	19.12. Cohomology of modules
	19.13. Limp sheaves
	19.14. The Leray spectral sequence
	19.15. The base change map
	19.16. Cohomology and colimits
	19.17. Flat resolutions
	19.18. Derived pullback
	19.19. Cohomology of unbounded complexes
	19.20. Producing K-injective resolutions
	19.21. Spectral sequences for Ext
	19.22. Derived lower shriek
	19.23. Other chapters

	Chapter 20. Hypercoverings
	20.1. Introduction
	20.2. Hypercoverings
	20.3. Acyclicity
	20.4. Covering hypercoverings
	20.5. Adding simplices
	20.6. Homotopies
	20.7. Cech cohomology associated to hypercoverings
	20.8. Cohomology and hypercoverings
	20.9. Hypercoverings of spaces
	20.10. Other chapters

	Chapter 21. Schemes
	21.1. Introduction
	21.2. Locally ringed spaces
	21.3. Open immersions of locally ringed spaces
	21.4. Closed immersions of locally ringed spaces
	21.5. Affine schemes
	21.6. The category of affine schemes
	21.7. Quasi-Coherent sheaves on affines
	21.8. Closed subspaces of affine schemes
	21.9. Schemes
	21.10. Immersions of schemes
	21.11. Zariski topology of schemes
	21.12. Reduced schemes
	21.13. Points of schemes
	21.14. Glueing schemes
	21.15. A representability criterion
	21.16. Existence of fibre products of schemes
	21.17. Fibre products of schemes
	21.18. Base change in algebraic geometry
	21.19. Quasi-compact morphisms
	21.20. Valuative criterion for universal closedness
	21.21. Separation axioms
	21.22. Valuative criterion of separatedness
	21.23. Monomorphisms
	21.24. Functoriality for quasi-coherent modules
	21.25. Other chapters

	Chapter 22. Constructions of Schemes
	22.1. Introduction
	22.2. Relative glueing
	22.3. Relative spectrum via glueing
	22.4. Relative spectrum as a functor
	22.5. Affine n-space
	22.6. Vector bundles
	22.7. Cones
	22.8. Proj of a graded ring
	22.9. Quasi-coherent sheaves on Proj
	22.10. Invertible sheaves on Proj
	22.11. Functoriality of Proj
	22.12. Morphisms into Proj
	22.13. Projective space
	22.14. Invertible sheaves and morphisms into Proj
	22.15. Relative Proj via glueing
	22.16. Relative Proj as a functor
	22.17. Quasi-coherent sheaves on relative Proj
	22.18. Invertible sheaves and morphisms into relative Proj
	22.19. Twisting by invertible sheaves and relative Proj
	22.20. Projective bundles
	22.21. Blowing up
	22.22. Other chapters

	Chapter 23. Properties of Schemes
	23.1. Introduction
	23.2. Constructible sets
	23.3. Integral, irreducible, and reduced schemes
	23.4. Types of schemes defined by properties of rings
	23.5. Noetherian schemes
	23.6. Jacobson schemes
	23.7. Normal schemes
	23.8. Cohen-Macaulay schemes
	23.9. Regular schemes
	23.10. Dimension
	23.11. Catenary schemes
	23.12. Serre's conditions
	23.13. Japanese and Nagata schemes
	23.14. The singular locus
	23.15. Quasi-affine schemes
	23.16. Characterizing modules of finite type and finite presentation
	23.17. Flat modules
	23.18. Locally free modules
	23.19. Locally projective modules
	23.20. Extending quasi-coherent sheaves
	23.21. Gabber's result
	23.22. Sections of quasi-coherent sheaves
	23.23. Ample invertible sheaves
	23.24. Affine and quasi-affine schemes
	23.25. Quasi-coherent sheaves and ample invertible sheaves
	23.26. Finding suitable affine opens
	23.27. Other chapters

	Chapter 24. Morphisms of Schemes
	24.1. Introduction
	24.2. Closed immersions
	24.3. Closed immersions and quasi-coherent sheaves
	24.4. Scheme theoretic image
	24.5. Scheme theoretic closure and density
	24.6. Dominant morphisms
	24.7. Birational morphisms
	24.8. Rational maps
	24.9. Surjective morphisms
	24.10. Radicial and universally injective morphisms
	24.11. Affine morphisms
	24.12. Quasi-affine morphisms
	24.13. Types of morphisms defined by properties of ring maps
	24.14. Morphisms of finite type
	24.15. Points of finite type and Jacobson schemes
	24.16. Universally catenary schemes
	24.17. Nagata schemes, reprise
	24.18. The singular locus, reprise
	24.19. Quasi-finite morphisms
	24.20. Morphisms of finite presentation
	24.21. Constructible sets
	24.22. Open morphisms
	24.23. Submersive morphisms
	24.24. Flat morphisms
	24.25. Flat closed immersions
	24.26. Generic flatness
	24.27. Morphisms and dimensions of fibres
	24.28. Morphisms of given relative dimension
	24.29. The dimension formula
	24.30. Syntomic morphisms
	24.31. Conormal sheaf of an immersion
	24.32. Sheaf of differentials of a morphism
	24.33. Smooth morphisms
	24.34. Unramified morphisms
	24.35. Étale morphisms
	24.36. Relatively ample sheaves
	24.37. Very ample sheaves
	24.38. Ample and very ample sheaves relative to finite type morphisms
	24.39. Quasi-projective morphisms
	24.40. Proper morphisms
	24.41. Projective morphisms
	24.42. Integral and finite morphisms
	24.43. Universal homeomorphisms
	24.44. Finite locally free morphisms
	24.45. Generically finite morphisms
	24.46. Normalization
	24.47. Zariski's Main Theorem (algebraic version)
	24.48. Universally bounded fibres
	24.49. Other chapters

	Chapter 25. Coherent Cohomology
	25.1. Introduction
	25.2. Cech cohomology of quasi-coherent sheaves
	25.3. Vanishing of cohomology
	25.4. Derived category of quasi-coherent modules
	25.5. Quasi-coherence of higher direct images
	25.6. Cohomology and base change, I
	25.7. Cohomology and base change, II
	25.8. Ample invertible sheaves and cohomology
	25.9. Cohomology of projective space
	25.10. Supports of modules
	25.11. Coherent sheaves on locally Noetherian schemes
	25.12. Coherent sheaves on Noetherian schemes
	25.13. Depth
	25.14. Devissage of coherent sheaves
	25.15. Finite morphisms and affines
	25.16. Coherent sheaves and projective morphisms
	25.17. Chow's Lemma
	25.18. Higher direct images of coherent sheaves
	25.19. The theorem on formal functions
	25.20. Applications of the theorem on formal functions
	25.21. Other chapters

	Chapter 26. Divisors
	26.1. Introduction
	26.2. Associated points
	26.3. Morphisms and associated points
	26.4. Embedded points
	26.5. Weakly associated points
	26.6. Morphisms and weakly associated points
	26.7. Relative assassin
	26.8. Relative weak assassin
	26.9. Effective Cartier divisors
	26.10. Relative effective Cartier divisors
	26.11. The normal cone of an immersion
	26.12. Regular ideal sheaves
	26.13. Regular immersions
	26.14. Relative regular immersions
	26.15. Meromorphic functions and sections
	26.16. Other chapters

	Chapter 27. Limits of Schemes
	27.1. Introduction
	27.2. Directed limits of schemes with affine transition maps
	27.3. Absolute Noetherian Approximation
	27.4. Limits and morphisms of finite presentation
	27.5. Finite type closed in finite presentation
	27.6. Descending relative objects
	27.7. Characterizing affine schemes
	27.8. Variants of Chow's Lemma
	27.9. Applications of Chow's lemma
	27.10. Universally closed morphisms
	27.11. Limits and dimensions of fibres
	27.12. Other chapters

	Chapter 28. Varieties
	28.1. Introduction
	28.2. Notation
	28.3. Varieties
	28.4. Geometrically reduced schemes
	28.5. Geometrically connected schemes
	28.6. Geometrically irreducible schemes
	28.7. Geometrically integral schemes
	28.8. Geometrically normal schemes
	28.9. Change of fields and locally Noetherian schemes
	28.10. Geometrically regular schemes
	28.11. Change of fields and the Cohen-Macaulay property
	28.12. Change of fields and the Jacobson property
	28.13. Algebraic schemes
	28.14. Closures of products
	28.15. Schemes smooth over fields
	28.16. Types of varieties
	28.17. Groups of invertible functions
	28.18. Uniqueness of base field
	28.19. Other chapters

	Chapter 29. Chow Homology and Chern Classes
	29.1. Introduction
	29.2. Determinants of finite length modules
	29.3. Periodic complexes
	29.4. Symbols
	29.5. Lengths and determinants
	29.6. Application to tame symbol
	29.7. Setup
	29.8. Cycles
	29.9. Cycle associated to a closed subscheme
	29.10. Cycle associated to a coherent sheaf
	29.11. Preparation for proper pushforward
	29.12. Proper pushforward
	29.13. Preparation for flat pullback
	29.14. Flat pullback
	29.15. Push and pull
	29.16. Preparation for principal divisors
	29.17. Principal divisors
	29.18. Two fun results on principal divisors
	29.19. Rational equivalence
	29.20. Properties of rational equivalence
	29.21. Different characterizations of rational equivalence
	29.22. Rational equivalence and K-groups
	29.23. Preparation for the divisor associated to an invertible sheaf
	29.24. The divisor associated to an invertible sheaf
	29.25. Intersecting with Cartier divisors
	29.26. Cartier divisors and K-groups
	29.27. Blowing up lemmas
	29.28. Intersecting with effective Cartier divisors
	29.29. Commutativity
	29.30. Gysin homomorphisms
	29.31. Relative effective Cartier divisors
	29.32. Affine bundles
	29.33. Projective space bundle formula
	29.34. The Chern classes of a vector bundle
	29.35. Intersecting with chern classes
	29.36. Polynomial relations among chern classes
	29.37. Additivity of chern classes
	29.38. The splitting principle
	29.39. Chern classes and tensor product
	29.40. Todd classes
	29.41. Grothendieck-Riemann-Roch
	29.42. Other chapters

	Chapter 30. Topologies on Schemes
	30.1. Introduction
	30.2. The general procedure
	30.3. The Zariski topology
	30.4. The étale topology
	30.5. The smooth topology
	30.6. The syntomic topology
	30.7. The fppf topology
	30.8. The fpqc topology
	30.9. Change of topologies
	30.10. Change of big sites
	30.11. Other chapters

	Chapter 31. Descent
	31.1. Introduction
	31.2. Descent data for quasi-coherent sheaves
	31.3. Descent for modules
	31.4. Fpqc descent of quasi-coherent sheaves
	31.5. Descent of finiteness properties of modules
	31.6. Quasi-coherent sheaves and topologies
	31.7. Parasitic modules
	31.8. Derived category of quasi-coherent modules
	31.9. Fpqc coverings are universal effective epimorphisms
	31.10. Descent of finiteness properties of morphisms
	31.11. Local properties of schemes
	31.12. Properties of schemes local in the fppf topology
	31.13. Properties of schemes local in the syntomic topology
	31.14. Properties of schemes local in the smooth topology
	31.15. Variants on descending properties
	31.16. Germs of schemes
	31.17. Local properties of germs
	31.18. Properties of morphisms local on the target
	31.19. Properties of morphisms local in the fpqc topology on the target
	31.20. Properties of morphisms local in the fppf topology on the target
	31.21. Application of fpqc descent of properties of morphisms
	31.22. Properties of morphisms local on the source
	31.23. Properties of morphisms local in the fpqc topology on the source
	31.24. Properties of morphisms local in the fppf topology on the source
	31.25. Properties of morphisms local in the syntomic toplogy on the source
	31.26. Properties of morphisms local in the smooth topology on the source
	31.27. Properties of morphisms local in the étale topology on the source
	31.28. Properties of morphisms étale local on source-and-target
	31.29. Properties of morphisms of germs local on source-and-target
	31.30. Descent data for schemes over schemes
	31.31. Fully faithfulness of the pullback functors
	31.32. Descending types of morphisms
	31.33. Descending affine morphisms
	31.34. Descending quasi-affine morphisms
	31.35. Descent data in terms of sheaves
	31.36. Descent in terms of simplicial schemes
	31.37. Other chapters

	Chapter 32. Adequate Modules
	32.1. Introduction
	32.2. Conventions
	32.3. Adequate functors
	32.4. Higher exts of adequate functors
	32.5. Adequate modules
	32.6. Parasitic adequate modules
	32.7. Derived categories of adequate modules, I
	32.8. Pure extensions
	32.9. Higher exts of quasi-coherent sheaves on the big site
	32.10. Derived categories of adequate modules, II
	32.11. Other chapters

	Chapter 33. More on Morphisms
	33.1. Introduction
	33.2. Thickenings
	33.3. First order infinitesimal neighbourhood
	33.4. Formally unramified morphisms
	33.5. Universal first order thickenings
	33.6. Formally étale morphisms
	33.7. Infinitesimal deformations of maps
	33.8. Infinitesimal deformations of schemes
	33.9. Formally smooth morphisms
	33.10. Smoothness over a Noetherian base
	33.11. Openness of the flat locus
	33.12. Critère de platitude par fibres
	33.13. Normal morphisms
	33.14. Regular morphisms
	33.15. Cohen-Macaulay morphisms
	33.16. Slicing Cohen-Macaulay morphisms
	33.17. Generic fibres
	33.18. Relative assassins
	33.19. Reduced fibres
	33.20. Irreducible components of fibres
	33.21. Connected components of fibres
	33.22. Connected components meeting a section
	33.23. Dimension of fibres
	33.24. Limit arguments
	33.25. Étale neighbourhoods
	33.26. Slicing smooth morphisms
	33.27. Finite free locally dominates étale
	33.28. Étale localization of quasi-finite morphisms
	33.29. Application to the structure of quasi-finite morphisms
	33.30. Application to morphisms with connected fibres
	33.31. Application to the structure of finite type morphisms
	33.32. Application to the fppf topology
	33.33. Closed points in fibres
	33.34. Stein factorization
	33.35. Descending separated locally quasi-finite morphisms
	33.36. Pseudo-coherent morphisms
	33.37. Perfect morphisms
	33.38. Local complete intersection morphisms
	33.39. Exact sequences of differentials and conormal sheaves
	33.40. Other chapters

	Chapter 34. More on flatness
	34.1. Introduction
	34.2. A remark on finite type versus finite presentation
	34.3. Lemmas on étale localization
	34.4. The local structure of a finite type module
	34.5. One step dévissage
	34.6. Complete dévissage
	34.7. Translation into algebra
	34.8. Localization and universally injective maps
	34.9. Completion and Mittag-Leffler modules
	34.10. Projective modules
	34.11. Flat finite type modules, Part I
	34.12. Flat finitely presented modules
	34.13. Flat finite type modules, Part II
	34.14. Examples of relatively pure modules
	34.15. Impurities
	34.16. Relatively pure modules
	34.17. Examples of relatively pure sheaves
	34.18. A criterion for purity
	34.19. How purity is used
	34.20. Flattening functors
	34.21. Flattening stratifications
	34.22. Flattening stratification over an Artinian ring
	34.23. Flattening a map
	34.24. Flattening in the local case
	34.25. Flat finite type modules, Part III
	34.26. Universal flattening
	34.27. Other chapters

	Chapter 35. Groupoid Schemes
	35.1. Introduction
	35.2. Notation
	35.3. Equivalence relations
	35.4. Group schemes
	35.5. Examples of group schemes
	35.6. Properties of group schemes
	35.7. Properties of group schemes over a field
	35.8. Actions of group schemes
	35.9. Principal homogeneous spaces
	35.10. Equivariant quasi-coherent sheaves
	35.11. Groupoids
	35.12. Quasi-coherent sheaves on groupoids
	35.13. Groupoids and group schemes
	35.14. The stabilizer group scheme
	35.15. Restricting groupoids
	35.16. Invariant subschemes
	35.17. Quotient sheaves
	35.18. Separation conditions
	35.19. Finite flat groupoids, affine case
	35.20. Finite flat groupoids
	35.21. Descent data give equivalence relations
	35.22. An example case
	35.23. Other chapters

	Chapter 36. More on Groupoid Schemes
	36.1. Introduction
	36.2. Notation
	36.3. Useful diagrams
	36.4. Sheaf of differentials
	36.5. Properties of groupoids
	36.6. Comparing fibres
	36.7. Cohen-Macaulay presentations
	36.8. Restricting groupoids
	36.9. Properties of groupoids on fields
	36.10. Morphisms of groupoids on fields
	36.11. Slicing groupoids
	36.12. Étale localization of groupoids
	36.13. Other chapters

	Chapter 37. Étale Morphisms of Schemes
	37.1. Introduction
	37.2. Conventions
	37.3. Unramified morphisms
	37.4. Three other characterizations of unramified morphisms
	37.5. The functorial characterization of unramified morphisms
	37.6. Topological properties of unramified morphisms
	37.7. Universally injective, unramified morphisms
	37.8. Examples of unramified morphisms
	37.9. Flat morphisms
	37.10. Topological properties of flat morphisms
	37.11. Étale morphisms
	37.12. The structure theorem
	37.13. Étale and smooth morphisms
	37.14. Topological properties of étale morphisms
	37.15. Topological invariance of the étale topology
	37.16. The functorial characterization
	37.17. Étale local structure of unramified morphisms
	37.18. Étale local structure of étale morphisms
	37.19. Permanence properties
	37.20. Other chapters

	Chapter 38. Étale Cohomology
	38.1. Introduction
	38.2. Which sections to skip on a first reading?
	38.3. Prologue
	38.4. The étale topology
	38.5. Feats of the étale topology
	38.6. A computation
	38.7. Nontorsion coefficients
	38.8. Sheaf theory
	38.9. Presheaves
	38.10. Sites
	38.11. Sheaves
	38.12. The example of G-sets
	38.13. Sheafification
	38.14. Cohomology
	38.15. The fpqc topology
	38.16. Faithfully flat descent
	38.17. Quasi-coherent sheaves
	38.18. Cech cohomology
	38.19. The Cech-to-cohomology spectral sequence
	38.20. Big and small sites of schemes
	38.21. The étale topos
	38.22. Cohomology of quasi-coherent sheaves
	38.23. Examples of sheaves
	38.24. Picard groups
	38.25. The étale site
	38.26. Étale morphisms
	38.27. Étale coverings
	38.28. Kummer theory
	38.29. Neighborhoods, stalks and points
	38.30. Points in other topologies
	38.31. Supports of abelian sheaves
	38.32. Henselian rings
	38.33. Stalks of the structure sheaf
	38.34. Functoriality of small étale topos
	38.35. Direct images
	38.36. Inverse image
	38.37. Functoriality of big topoi
	38.38. Functoriality and sheaves of modules
	38.39. Comparing big and small topoi
	38.40. Recovering morphisms
	38.41. Push and pull
	38.42. Property (A)
	38.43. Property (B)
	38.44. Property (C)
	38.45. Topological invariance of the small étale site
	38.46. Closed immersions and pushforward
	38.47. Integral universally injective morphisms
	38.48. Big sites and pushforward
	38.49. Exactness of big lower shriek
	38.50. Étale cohomology
	38.51. Colimits
	38.52. Stalks of higher direct images
	38.53. The Leray spectral sequence
	38.54. Vanishing of finite higher direct images
	38.55. Schemes étale over a point
	38.56. Galois action on stalks
	38.57. Cohomology of a point
	38.58. Cohomology of curves
	38.59. Brauer groups
	38.60. Higher vanishing for the multiplicative group
	38.61. Picards groups of curves
	38.62. Constructible sheaves
	38.63. Extension by zero
	38.64. Higher vanishing for torsion sheaves
	38.65. The trace formula
	38.66. Frobenii
	38.67. Traces
	38.68. Why derived categories?
	38.69. Derived categories
	38.70. Filtered derived category
	38.71. Filtered derived functors
	38.72. Application of filtered complexes
	38.73. Perfectness
	38.74. Filtrations and perfect complexes
	38.75. Characterizing perfect objects
	38.76. Lefschetz numbers
	38.77. Preliminaries and sorites
	38.78. Proof of the trace formula
	38.79. Applications
	38.80. On l-adic sheaves
	38.81. L-functions
	38.82. Cohomological interpretation
	38.83. List of things which we should add above
	38.84. Examples of L-functions
	38.85. Constant sheaves
	38.86. The Legendre family
	38.87. Exponential sums
	38.88. Trace formula in terms of fundamental groups
	38.89. Fundamental groups
	38.90. Profinite groups, cohomology and homology
	38.91. Cohomology of curves, revisited
	38.92. Abstract trace formula
	38.93. Automorphic forms and sheaves
	38.94. Counting points
	38.95. Precise form of Chebotarov
	38.96. How many primes decompose completely?
	38.97. How many points are there really?
	38.98. Other chapters

	Chapter 39. Crystalline Cohomology
	39.1. Introduction
	39.2. Divided powers
	39.3. Divided power rings
	39.4. Extending divided powers
	39.5. Divided power polynomial algebras
	39.6. Divided power envelope
	39.7. Some explicit divided power thickenings
	39.8. Compatibility
	39.9. Affine crystalline site
	39.10. Module of differentials
	39.11. Divided power schemes
	39.12. The big crystalline site
	39.13. The crystalline site
	39.14. Sheaves on the crystalline site
	39.15. Crystals in modules
	39.16. Sheaf of differentials
	39.17. Two universal thickenings
	39.18. The de Rham complex
	39.19. Connections
	39.20. Cosimplicial algebra
	39.21. Notes on Rlim
	39.22. Crystals in quasi-coherent modules
	39.23. General remarks on cohomology
	39.24. Cosimplicial preparations
	39.25. Divided power Poincaré lemma
	39.26. Cohomology in the affine case
	39.27. Two counter examples
	39.28. Applications
	39.29. Some further results
	39.30. Pulling back along mitalpha p-covers
	39.31. Frobenius action on crystalline cohomology
	39.32. Other chapters

	Chapter 40. Algebraic Spaces
	40.1. Introduction
	40.2. General remarks
	40.3. Representable morphisms of presheaves
	40.4. Lists of useful properties of morphisms of schemes
	40.5. Properties of representable morphisms of presheaves
	40.6. Algebraic spaces
	40.7. Fibre products of algebraic spaces
	40.8. Glueing algebraic spaces
	40.9. Presentations of algebraic spaces
	40.10. Algebraic spaces and equivalence relations
	40.11. Algebraic spaces, retrofitted
	40.12. Immersions and Zariski coverings of algebraic spaces
	40.13. Separation conditions on algebraic spaces
	40.14. Examples of algebraic spaces
	40.15. Change of big site
	40.16. Change of base scheme
	40.17. Other chapters

	Chapter 41. Properties of Algebraic Spaces
	41.1. Introduction
	41.2. Conventions
	41.3. Separation axioms
	41.4. Points of algebraic spaces
	41.5. Quasi-compact spaces
	41.6. Special coverings
	41.7. Properties of Spaces defined by properties of schemes
	41.8. Dimension at a point
	41.9. Reduced spaces
	41.10. The schematic locus
	41.11. Points on quasi-separated spaces
	41.12. Noetherian spaces
	41.13. Étale morphisms of algebraic spaces
	41.14. Spaces and fpqc coverings
	41.15. The étale site of an algebraic space
	41.16. Points of the small étale site
	41.17. Supports of abelian sheaves
	41.18. The structure sheaf of an algebraic space
	41.19. Stalks of the structure sheaf
	41.20. Dimension of local rings
	41.21. Local irreducibility
	41.22. Regular algebraic spaces
	41.23. Sheaves of modules on algebraic spaces
	41.24. Étale localization
	41.25. Recovering morphisms
	41.26. Quasi-coherent sheaves on algebraic spaces
	41.27. Properties of modules
	41.28. Locally projective modules
	41.29. Quasi-coherent sheaves and presentations
	41.30. Morphisms towards schemes
	41.31. Quotients by free actions
	41.32. Other chapters

	Chapter 42. Morphisms of Algebraic Spaces
	42.1. Introduction
	42.2. Conventions
	42.3. Properties of representable morphisms
	42.4. Immersions
	42.5. Separation axioms
	42.6. Surjective morphisms
	42.7. Open morphisms
	42.8. Submersive morphisms
	42.9. Quasi-compact morphisms
	42.10. Universally closed morphisms
	42.11. Valuative criteria
	42.12. Valuative criterion for universal closedness
	42.13. Valuative criterion of separatedness
	42.14. Monomorphisms
	42.15. Pushforward of quasi-coherent sheaves
	42.16. Closed immersions
	42.17. Closed immersions and quasi-coherent sheaves
	42.18. Universally injective morphisms
	42.19. Affine morphisms
	42.20. Quasi-affine morphisms
	42.21. Types of morphisms étale local on source-and-target
	42.22. Morphisms of finite type
	42.23. Points and geometric points
	42.24. Points of finite type
	42.25. Quasi-finite morphisms
	42.26. Morphisms of finite presentation
	42.27. Flat morphisms
	42.28. Flat modules
	42.29. Generic flatness
	42.30. Relative dimension
	42.31. Morphisms and dimensions of fibres
	42.32. Syntomic morphisms
	42.33. Smooth morphisms
	42.34. Unramified morphisms
	42.35. Étale morphisms
	42.36. Proper morphisms
	42.37. Integral and finite morphisms
	42.38. Finite locally free morphisms
	42.39. Separated, locally quasi-finite morphisms
	42.40. Applications
	42.41. Universal homeomorphisms
	42.42. Other chapters

	Chapter 43. Decent Algebraic Spaces
	43.1. Introduction
	43.2. Conventions
	43.3. Universally bounded fibres
	43.4. Finiteness conditions and points
	43.5. Conditions on algebraic spaces
	43.6. Reasonable and decent algebraic spaces
	43.7. Points and specializations
	43.8. Schematic locus
	43.9. Points on very reasonable spaces
	43.10. Reduced singleton spaces
	43.11. Decent spaces
	43.12. Valuative criterion
	43.13. Relative conditions
	43.14. Monomorphisms
	43.15. Other chapters

	Chapter 44. Topologies on Algebraic Spaces
	44.1. Introduction
	44.2. The general procedure
	44.3. Fpqc topology
	44.4. Fppf topology
	44.5. Syntomic topology
	44.6. Smooth topology
	44.7. Étale topology
	44.8. Zariski topology
	44.9. Other chapters

	Chapter 45. Descent and Algebraic Spaces
	45.1. Introduction
	45.2. Conventions
	45.3. Descent data for quasi-coherent sheaves
	45.4. Fpqc descent of quasi-coherent sheaves
	45.5. Descent of finiteness properties of modules
	45.6. Fpqc coverings
	45.7. Descent of finiteness properties of morphisms
	45.8. Descending properties of spaces
	45.9. Descending properties of morphisms
	45.10. Descending properties of morphisms in the fpqc topology
	45.11. Descending properties of morphisms in the fppf topology
	45.12. Properties of morphisms local on the source
	45.13. Properties of morphisms local in the fpqc topology on the source
	45.14. Properties of morphisms local in the fppf topology on the source
	45.15. Properties of morphisms local in the syntomic toplogy on the source
	45.16. Properties of morphisms local in the smooth topology on the source
	45.17. Properties of morphisms local in the étale topology on the source
	45.18. Properties of morphisms smooth local on source-and-target
	45.19. Other chapters

	Chapter 46. More on Morphisms of Spaces
	46.1. Introduction
	46.2. Conventions
	46.3. Radicial morphisms
	46.4. Morphisms of finite presentation
	46.5. Conormal sheaf of an immersion
	46.6. Sheaf of differentials of a morphism
	46.7. Topological invariance of an étale site
	46.8. Thickenings
	46.9. First order infinitesimal neighbourhood
	46.10. Formally smooth, étale, unramified transformations
	46.11. Formally unramified morphisms
	46.12. Universal first order thickenings
	46.13. Formally étale morphisms
	46.14. Infinitesimal deformations of maps
	46.15. Infinitesimal deformations of algebraic spaces
	46.16. Formally smooth morphisms
	46.17. Openness of the flat locus
	46.18. Critère de platitude par fibres
	46.19. Slicing Cohen-Macaulay morphisms
	46.20. The structure of quasi-finite morphisms
	46.21. Regular immersions
	46.22. Pseudo-coherent morphisms
	46.23. Perfect morphisms
	46.24. Local complete intersection morphisms
	46.25. Exact sequences of differentials and conormal sheaves
	46.26. Other chapters

	Chapter 47. Quot and Hilbert Spaces
	47.1. Introduction
	47.2. Conventions
	47.3. When is a morphism an isomorphism?
	47.4. Other chapters

	Chapter 48. Algebraic Spaces over Fields
	48.1. Introduction
	48.2. Conventions
	48.3. Geometric components
	48.4. Schematic locus
	48.5. Spaces smooth over fields
	48.6. Other chapters

	Chapter 49. Cohomology of Algebraic Spaces
	49.1. Introduction
	49.2. Conventions
	49.3. Derived category of quasi-coherent modules
	49.4. Higher direct images
	49.5. Colimits and cohomology
	49.6. The alternating Cech complex
	49.7. Higher vanishing for quasi-coherent sheaves
	49.8. Vanishing for higher direct images
	49.9. Cohomology and base change, I
	49.10. Other chapters

	Chapter 50. Stacks
	50.1. Introduction
	50.2. Presheaves of morphisms associated to fibred categories
	50.3. Descent data in fibred categories
	50.4. Stacks
	50.5. Stacks in groupoids
	50.6. Stacks in setoids
	50.7. The inertia stack
	50.8. Stackification of fibred categories
	50.9. Stackification of categories fibred in groupoids
	50.10. Inherited topologies
	50.11. Gerbes
	50.12. Functoriality for stacks
	50.13. Stacks and localization
	50.14. Other chapters

	Chapter 51. Formal Deformation Theory
	51.1. Introduction
	51.2. Notation and Conventions
	51.3. The category CmitLambda 
	51.4. The category CmitLambda 
	51.5. Categories cofibered in groupoids
	51.6. Prorepresentable functors and predeformation categories
	51.7. Formal objects and completion categories
	51.8. Smooth morphisms
	51.9. Schlessinger's conditions
	51.10. Tangent spaces of functors
	51.11. Tangent spaces of predeformation categories
	51.12. Versal formal objects
	51.13. Minimal versal formal objects
	51.14. Miniversal formal objects and tangent spaces
	51.15. Rim-Schlessinger conditions and deformation categories
	51.16. Lifts of objects
	51.17. Schlessinger's theorem on prorepresentable functors
	51.18. Infinitesimal automorphisms
	51.19. Groupoids in functors on an arbitrary category
	51.20. Groupoids in functors on CmitLambda 
	51.21. Smooth groupoids in functors on CmitLambda 
	51.22. Deformation categories as quotients of groupoids in functors
	51.23. Presentations of categories cofibered in groupoids
	51.24. Presentations of deformation categories
	51.25. Remarks regarding minimality
	51.26. The Deformation Category of a Point of an Algebraic Stack
	51.27. Examples
	51.28. Other chapters

	Chapter 52. Groupoids in Algebraic Spaces
	52.1. Introduction
	52.2. Conventions
	52.3. Notation
	52.4. Equivalence relations
	52.5. Group algebraic spaces
	52.6. Properties of group algebraic spaces
	52.7. Examples of group algebraic spaces
	52.8. Actions of group algebraic spaces
	52.9. Principal homogeneous spaces
	52.10. Equivariant quasi-coherent sheaves
	52.11. Groupoids in algebraic spaces
	52.12. Quasi-coherent sheaves on groupoids
	52.13. Crystals in quasi-coherent sheaves
	52.14. Groupoids and group spaces
	52.15. The stabilizer group algebraic space
	52.16. Restricting groupoids
	52.17. Invariant subspaces
	52.18. Quotient sheaves
	52.19. Quotient stacks
	52.20. Functoriality of quotient stacks
	52.21. The 2-cartesian square of a quotient stack
	52.22. The 2-coequalizer property of a quotient stack
	52.23. Explicit description of quotient stacks
	52.24. Restriction and quotient stacks
	52.25. Inertia and quotient stacks
	52.26. Gerbes and quotient stacks
	52.27. Quotient stacks and change of big site
	52.28. Separation conditions
	52.29. Other chapters

	Chapter 53. More on Groupoids in Spaces
	53.1. Introduction
	53.2. Notation
	53.3. Useful diagrams
	53.4. Properties of groupoids
	53.5. Comparing fibres
	53.6. Restricting groupoids
	53.7. Properties of groups over fields and groupoids on fields
	53.8. The finite part of a morphism
	53.9. Finite collections of arrows
	53.10. The finite part of a groupoid
	53.11. Étale localization of groupoid schemes
	53.12. Other chapters

	Chapter 54. Bootstrap
	54.1. Introduction
	54.2. Conventions
	54.3. Morphisms representable by algebraic spaces
	54.4. Properties of maps of presheaves representable by algebraic spaces
	54.5. Bootstrapping the diagonal
	54.6. Bootstrap
	54.7. Finding opens
	54.8. Slicing equivalence relations
	54.9. Quotient by a subgroupoid
	54.10. Final bootstrap
	54.11. Applications
	54.12. Algebraic spaces in the étale topology
	54.13. Other chapters

	Chapter 55. Examples of Stacks
	55.1. Introduction
	55.2. Notation
	55.3. Examples of stacks
	55.4. Quasi-coherent sheaves
	55.5. The stack of finitely generated quasi-coherent sheaves
	55.6. Algebraic spaces
	55.7. The stack of finite type algebraic spaces
	55.8. Examples of stacks in groupoids
	55.9. The stack associated to a sheaf
	55.10. The stack in groupoids of finitely generated quasi-coherent sheaves
	55.11. The stack in groupoids of finite type algebraic spaces
	55.12. Quotient stacks
	55.13. Classifying torsors
	55.14. Quotients by group actions
	55.15. The Picard stack
	55.16. Examples of inertia stacks
	55.17. Finite Hilbert stacks
	55.18. Other chapters

	Chapter 56. Quotients of Groupoids
	56.1. Introduction
	56.2. Conventions and notation
	56.3. Invariant morphisms
	56.4. Categorical quotients
	56.5. Quotients as orbit spaces
	56.6. Coarse quotients
	56.7. Topological properties
	56.8. Invariant functions
	56.9. Good quotients
	56.10. Geometric quotients
	56.11. Other chapters

	Chapter 57. Algebraic Stacks
	57.1. Introduction
	57.2. Conventions
	57.3. Notation
	57.4. Representable categories fibred in groupoids
	57.5. The 2-Yoneda lemma
	57.6. Representable morphisms of categories fibred in groupoids
	57.7. Split categories fibred in groupoids
	57.8. Categories fibred in groupoids representable by algebraic spaces
	57.9. Morphisms representable by algebraic spaces
	57.10. Properties of morphisms representable by algebraic spaces
	57.11. Stacks in groupoids
	57.12. Algebraic stacks
	57.13. Algebraic stacks and algebraic spaces
	57.14. 2-Fibre products of algebraic stacks
	57.15. Algebraic stacks, overhauled
	57.16. From an algebraic stack to a presentation
	57.17. The algebraic stack associated to a smooth groupoid
	57.18. Change of big site
	57.19. Change of base scheme
	57.20. Other chapters

	Chapter 58. Sheaves on Algebraic Stacks
	58.1. Introduction
	58.2. Conventions
	58.3. Presheaves
	58.4. Sheaves
	58.5. Computing pushforward
	58.6. The structure sheaf
	58.7. Sheaves of modules
	58.8. Representable categories
	58.9. Restriction
	58.10. Restriction to algebraic spaces
	58.11. Quasi-coherent modules
	58.12. Stackification and sheaves
	58.13. Quasi-coherent sheaves and presentations
	58.14. Quasi-coherent sheaves on algebraic stacks
	58.15. Cohomology
	58.16. Injective sheaves
	58.17. The Cech complex
	58.18. The relative Cech complex
	58.19. Cohomology on algebraic stacks
	58.20. Higher direct images and algebraic stacks
	58.21. Comparison
	58.22. Change of topology
	58.23. Other chapters

	Chapter 59. Criteria for Representability
	59.1. Introduction
	59.2. Conventions
	59.3. What we already know
	59.4. Morphisms of stacks in groupoids
	59.5. Limit preserving on objects
	59.6. Formally smooth on objects
	59.7. Surjective on objects
	59.8. Algebraic morphisms
	59.9. Spaces of sections
	59.10. Relative morphisms
	59.11. Restriction of scalars
	59.12. Finite Hilbert stacks
	59.13. The finite Hilbert stack of a point
	59.14. Finite Hilbert stacks of spaces
	59.15. LCI locus in the Hilbert stack
	59.16. Bootstrapping algebraic stacks
	59.17. Applications
	59.18. When is a quotient stack algebraic?
	59.19. Algebraic stacks in the étale topology
	59.20. Other chapters

	Chapter 60. Properties of Algebraic Stacks
	60.1. Introduction
	60.2. Conventions and abuse of language
	60.3. Properties of morphisms representable by algebraic spaces
	60.4. Points of algebraic stacks
	60.5. Surjective morphisms
	60.6. Quasi-compact algebraic stacks
	60.7. Properties of algebraic stacks defined by properties of schemes
	60.8. Monomorphisms of algebraic stacks
	60.9. Immersions of algebraic stacks
	60.10. Reduced algebraic stacks
	60.11. Residual gerbes
	60.12. Other chapters

	Chapter 61. Morphisms of Algebraic Stacks
	61.1. Introduction
	61.2. Conventions and abuse of language
	61.3. Properties of diagonals
	61.4. Separation axioms
	61.5. Inertia stacks
	61.6. Higher diagonals
	61.7. Quasi-compact morphisms
	61.8. Noetherian algebraic stacks
	61.9. Open morphisms
	61.10. Submersive morphisms
	61.11. Universally closed morphisms
	61.12. Types of morphisms smooth local on source-and-target
	61.13. Morphisms of finite type
	61.14. Points of finite type
	61.15. Special presentations of algebraic stacks
	61.16. Quasi-finite morphisms
	61.17. Flat morphisms
	61.18. Morphisms of finite presentation
	61.19. Gerbes
	61.20. Stratification by gerbes
	61.21. Existence of residual gerbes
	61.22. Smooth morphisms
	61.23. Other chapters

	Chapter 62. Cohomology of Algebraic Stacks
	62.1. Introduction
	62.2. Conventions and abuse of language
	62.3. Notation
	62.4. Pullback of quasi-coherent modules
	62.5. The key lemma
	62.6. Locally quasi-coherent modules
	62.7. Flat comparison maps
	62.8. Parasitic modules
	62.9. Quasi-coherent modules, I
	62.10. Pushforward of quasi-coherent modules
	62.11. The lisse-étale and the flat-fppf sites
	62.12. Quasi-coherent modules, II
	62.13. Derived categories of quasi-coherent modules
	62.14. Derived pushforward of quasi-coherent modules
	62.15. Derived pullback of quasi-coherent modules
	62.16. Other chapters

	Chapter 63. Introducing Algebraic Stacks
	63.1. Why read this?
	63.2. Preliminary
	63.3. The moduli stack of elliptic curves
	63.4. Fibre products
	63.5. The definition
	63.6. A smooth cover
	63.7. Properties of algebraic stacks
	63.8. Other chapters

	Chapter 64. Examples
	64.1. Introduction
	64.2. Noncomplete completion
	64.3. Noncomplete quotient
	64.4. Completion is not exact
	64.5. The category of complete modules is not abelian
	64.6. Regular sequences and base change
	64.7. A Noetherian ring of infinite dimension
	64.8. Local rings with nonreduced completion
	64.9. A non catenary Noetherian local ring
	64.10. Non-quasi-affine variety with quasi-affine normalization
	64.11. A locally closed subscheme which is not open in closed
	64.12. Pushforward of quasi-coherent modules
	64.13. A nonfinite module with finite free rank 1 stalks
	64.14. A finite flat module which is not projective
	64.15. A projective module which is not locally free
	64.16. Zero dimensional local ring with nonzero flat ideal
	64.17. An epimorphism of zero-dimensional rings which is not surjective
	64.18. Finite type, not finitely presented, flat at prime
	64.19. Finite type, flat and not of finite presentation
	64.20. Topology of a finite type ring map
	64.21. Pure not universally pure
	64.22. A formally smooth non-flat ring map
	64.23. A formally étale non-flat ring map
	64.24. A formally étale ring map with nontrivial cotangent complex
	64.25. Ideals generated by sets of idempotents and localization
	64.26. Non flasque quasi-coherent sheaf associated to injective module
	64.27. A non-separated flat group scheme
	64.28. A non-flat group scheme with flat identity component
	64.29. A non-separated group algebraic space over a field
	64.30. Specializations between points in fibre étale morphism
	64.31. A torsor which is not an fppf torsor
	64.32. Stack with quasi-compact flat covering which is not algebraic
	64.33. A non-algebraic classifying stack
	64.34. Sheaf with quasi-compact flat covering which is not algebraic
	64.35. Sheaves and specializations
	64.36. Sheaves and constructible functions
	64.37. The lisse-étale site is not functorial
	64.38. Derived pushforward of quasi-coherent modules
	64.39. A big abelian category
	64.40. Other chapters

	Chapter 65. Exercises
	65.1. Algebra
	65.2. Colimits
	65.3. Additive and abelian categories
	65.4. Flat ring maps
	65.5. The Spectrum of a ring
	65.6. Localization
	65.7. Nakayama's Lemma
	65.8. Length
	65.9. Singularities
	65.10. Hilbert Nullstellensatz
	65.11. Dimension
	65.12. Catenary rings
	65.13. Fraction fields
	65.14. Transcendence degree
	65.15. Finite locally free modules
	65.16. Glueing
	65.17. Going up and going down
	65.18. Fitting ideals
	65.19. Hilbert functions
	65.20. Proj of a ring
	65.21. Cohen-Macaulay rings of dimension 1
	65.22. Infinitely many primes
	65.23. Filtered derived category
	65.24. Regular functions
	65.25. Sheaves
	65.26. Schemes
	65.27. Morphisms
	65.28. Tangent Spaces
	65.29. Quasi-coherent Sheaves
	65.30. Proj and projective schemes
	65.31. Morphisms from surfaces to curves
	65.32. Invertible sheaves
	65.33. Cech Cohomology
	65.34. Divisors
	65.35. Differentials
	65.36. Schemes, Final Exam, Fall 2007
	65.37. Schemes, Final Exam, Spring 2009
	65.38. Schemes, Final Exam, Fall 2010
	65.39. Schemes, Final Exam, Spring 2011
	65.40. Schemes, Final Exam, Fall 2011
	65.41. Other chapters

	Chapter 66. A Guide to the Literature
	66.1. Short introductory articles
	66.2. Classic references
	66.3. Books and online notes
	66.4. Related references on foundations of stacks
	66.5. Papers in the literature
	66.6. Stacks in other fields
	66.7. Higher stacks
	66.8. Other chapters

	Chapter 67. Desirables
	67.1. Introduction
	67.2. Conventions
	67.3. Sites and Topoi
	67.4. Stacks
	67.5. Simplicial methods
	67.6. Cohomology of schemes
	67.7. Deformation theory a la Schlessinger
	67.8. Definition of algebraic stacks
	67.9. Examples of schemes, algebraic spaces, algebraic stacks
	67.10. Properties of algebraic stacks
	67.11. Lisse étale site of an algebraic stack
	67.12. Things you always wanted to know but were afraid to ask
	67.13. Quasi-coherent sheaves on stacks
	67.14. Flat and smooth
	67.15. Artin's representability theorem
	67.16. DM stacks are finitely covered by schemes
	67.17. Martin Olson's paper on properness
	67.18. Proper pushforward of coherent sheaves
	67.19. Keel and Mori
	67.20. Add more here
	67.21. Other chapters

	Chapter 68. Coding Style
	68.1. List of style comments
	68.2. Other chapters

	Chapter 69. Obsolete
	69.1. Introduction
	69.2. Lemmas related to ZMT
	69.3. Formally smooth ring maps
	69.4. Other chapters

	Chapter 70. GNU Free Documentation License
	70.1. APPLICABILITY AND DEFINITIONS
	70.2. VERBATIM COPYING
	70.3. COPYING IN QUANTITY
	70.4. MODIFICATIONS
	70.5. COMBINING DOCUMENTS
	70.6. COLLECTIONS OF DOCUMENTS
	70.7. AGGREGATION WITH INDEPENDENT WORKS
	70.8. TRANSLATION
	70.9. TERMINATION
	70.10. FUTURE REVISIONS OF THIS LICENSE
	70.11. ADDENDUM: How to use this License for your documents
	70.12. Other chapters

	Chapter 71. Auto generated index
	71.1. Alphabetized definitions
	71.2. Definitions listed per chapter
	71.3. Other chapters

	Bibliography

