Commit: 6ed92f8527de1b84dd020ae49e70d477b0458f93 algebra.tex, lemma-NAK,

Lemma 0.1. (Nakayama's lemma.) If M is a finite nonzero module over R, then $\mathfrak{m}M \neq M$.

Proof. Here is a silly way to prove this: If $\mathfrak{m}M = M$ for M finite then by induction $\mathfrak{m}^n M = M$. Hence the completion of M with respect to the maximal ideal is zero. Hence $M \otimes_R \hat{R} = 0$, see Lemma ??. But $R \to \hat{R}$ is faithfully flat by Lemma ?? and hence we conclude M = 0 by Lemma ??.

Commit: 9ba5fc9ef712809448ae2d791141606db3844bdd algebra.tex, lemma-NAK,

Lemma 0.2. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite, and IM = M, then there exists a $f = 1 + i \in 1 + I$ such that fM = 0.
- (2) If M is finite, IM = M, and $I \subset rad(R)$ then M = 0.
- (3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of 1. Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy.

Commit: 89af1485ec12a23ea70f17bd36a2513c703142d9 algebra.tex, lemma-NAK,

Lemma 0.3. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite, and IM = M, then there exists a $f = 1 + i \in 1 + I$ such that fM = 0.
- (2) If M is finite, IM = M, and $I \subset rad(R)$ then M = 0.
- (3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write $M = \sum Rx_j$, j = 1, ..., r. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy.

Commit: b992073e01d52fd6d1a62af3e6107c73076e38e9 algebra.tex, lemma-NAK,

Lemma 0.4. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite, and IM = M, then there exists a $f = 1 + i \in 1 + I$ such that fM = 0.
- (2) If M is finite, IM = M, and $I \subset rad(R)$ then M = 0.
- (3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy.

Commit: de8364792372d9455a953929e5eb1c5c57c7d826 algebra.tex, lemma-NAK,

Lemma 0.5. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite, and IM = M, then there exists a $f = 1 + i \in 1 + I$ such that fM = 0.
- (2) If M is finite, IM = M, and $I \subset rad(R)$ then M = 0.
- (3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy.

Commit: 713944efa842f07df0a41e64a9b0e203b2dccff2 algebra.tex, lemma-NAK,

Lemma 0.6. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite, and IM = M, then there exists a $f = 1 + i \in 1 + I$ such that fM = 0.
- (2) If M is finite, IM = M, and $I \subset rad(R)$ then M = 0.
- (3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy.

Commit: fad2e125112d54e1b53a7e130ef141010f9d151d algebra.tex, lemma-NAK, 00DV

Lemma 0.7. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite, and IM = M, then there exists a $f = 1 + i \in 1 + I$ such that fM = 0.
- (2) If M is finite, IM = M, and $I \subset rad(R)$ then M = 0.
- (3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write $M = \sum Rx_j$, j = 1, ..., r. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy.

Commit: ca002a3be7da6a8fd965fdedd75e93f59aa160c7 algebra.tex, lemma-NAK, 00DV

Lemma 0.8. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite, and IM = M, then there exists a $f = 1 + i \in 1 + I$ such that fM = 0.
- (2) If M is finite, IM = M, and $I \subset rad(R)$ then M = 0.
- (3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy.

Commit: 046ef996f091e082c9abf898cbda171e7d057afd algebra.tex, lemma-NAK, 00DV

Lemma 0.9. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite, and IM = M, then there exists a $f = 1 + i \in 1 + I$ such that fM = 0.
- (2) If M is finite, IM = M, and $I \subset rad(R)$ then M = 0.
- (3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write $M = \sum Rx_j$, j = 1, ..., r. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy.

Commit: 3b3c53693a5c163bcfa583372c198e036d24d792 algebra.tex, lemma-NAK, 00DV

Lemma 0.10. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite, and IM = M, then there exists a $f = 1 + i \in 1 + I$ such that fM = 0.
- (2) If M is finite, IM = M, and $I \subset rad(R)$ then M = 0.
- (3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy.

Commit: 6bb230916504b9fad68a91f290a85db2000fb266 algebra.tex, lemma-NAK, 00DV

Lemma 0.11 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If M is finite and IM = M, then there exists a $f \in 1+I$ such that fM = 0.
- (2) If IM = M, $I \subset rad(R)$, and M is finite, then M = 0.
- (3) If $N, N' \subset M$, M = N + IN', $I \subset rad(R)$, and N' is finite then M = N.
- (4) If $x_1, \ldots, x_n \in M$ generate M/IM and M is finite, then there exists an $f \in 1 + I$ such that x_1, \ldots, x_n generate M_f over R_f .
- (5) If $x_1, \ldots, x_n \in M$ generate M/IM, $I \subset rad(R)$, and M is finite, then M is generated by x_1, \ldots, x_n .
- (6) If IM = M, I is nilpotent, then M = 0.
- (7) If $N, N' \subset M$, M = N + IN', and I is nilpotent then M = N.
- (8) If $\{x_{\alpha}\}_{\alpha \in A}$ is a set of elements of M which generate M/IM and I is nilpotent, then M is generated by the x_{α} .

Proof. Proof of (1). Choose generators y_1, \ldots, y_m of M over R. For each i we can write $y_i = \sum z_{ij} y_j$ with $z_{ij} \in I$. In other words $\sum_j (\delta_{ij} - z_{ij}) y_j = 0$. Let f be the determinant f of the $m \times m$ matrix $A = (\delta_{ij} - z_{ij})$. Note that $f \in 1 + I$. By Lemma ?? there exists an $m \times m$ matrix B such that $BA = f \mathbf{1}_{m \times m}$. Writing out we see that $f y_j = \sum_{i,j} b_{hi} a_{ij} y_j = 0$ for every j. This implies that f annihilates M.

By Lemma ?? an element of $1 + \operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (2) to M/N. We obtain (4) by applying (1) to $M/Rx_1 + \ldots + Rx_n$. We obtain (5) from (4) by the first remark of this paragraph.

Part (6) holds because if M = IM then $M = I^n M$ for all $n \ge 0$ and I being nilpotent means $I^n = 0$ for some $n \gg 0$. Parts (7) and (8) follow from (6) by considering the quotient of M by the given submodule.

Commit: 64a936bc55f4edc2d51e2de94f97aa716a67360e algebra.tex, lemma-NAK, 00DV

Lemma 0.12 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If IM = M and M is finite, then there exists a $f \in 1+I$ such that fM = 0.
- (2) If IM = M, M is finite, and $I \subset rad(R)$, then M = 0.
- (3) If $N, N' \subset M$, M = N + IN', and N' is finite, then there exists a $f \in 1 + I$ such that $M_f = N_f$.
- (4) If $N, N' \subset M$, M = N + IN', N' is finite, and $I \subset rad(R)$, then M = N.
- (5) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, and M is finite, then there exists a $f \in 1 + I$ such that $N_f \to M_f$ is surjective.
- (6) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, M is finite, and $I \subset rad(R)$, then $N \to M$ is surjective.
- (7) If $x_1, \ldots, x_n \in M$ generate M/IM and M is finite, then there exists an $f \in 1 + I$ such that x_1, \ldots, x_n generate M_f over R_f .
- (8) If $x_1, \ldots, x_n \in M$ generate M/IM, M is finite, and $I \subset rad(R)$, then M is generated by x_1, \ldots, x_n .
- (9) If IM = M, I is nilpotent, then M = 0.
- (10) If $N, N' \subset M$, M = N + IN', and I is nilpotent then M = N.
- (11) If $N \to M$ is a module map, I is nilpotent, and $N/IN \to M/IM$ is surjective, then $N \to M$ is surjective.
- (12) If $\{x_{\alpha}\}_{\alpha \in A}$ is a set of elements of M which generate M/IM and I is nilpotent, then M is generated by the x_{α} .

Proof. Proof of (1). Choose generators y_1, \ldots, y_m of M over R. For each i we can write $y_i = \sum z_{ij}y_j$ with $z_{ij} \in I$. In other words $\sum_j (\delta_{ij} - z_{ij})y_j = 0$. Let f be the determinant f of the $m \times m$ matrix $A = (\delta_{ij} - z_{ij})$. Note that $f \in 1 + I$. By Lemma ?? there exists an $m \times m$ matrix B such that $BA = f \mathbf{1}_{m \times m}$. Writing out we see that $fy_j = \sum_{i,j} b_{hi}a_{ij}y_j = 0$ for every j. This implies that f annihilates M.

By Lemma ?? an element of $1 + \operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N' is finite. We obtain (4) by applying (2) to M/N which is finite as N' is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (7) by

applying (5) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1 x_1 + \ldots + a_n x_n$. We obtain (8) by applying (6) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1 x_1 + \ldots + a_n x_n$.

Part (9) holds because if M = IM then $M = I^n M$ for all $n \ge 0$ and I being nilpotent means $I^n = 0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

Commit: 19733a9e82de0e0b2c4b809c2a5f00092a6b6152 algebra.tex, lemma-NAK, 00DV

Lemma 0.13 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If IM = M and M is finite, then there exists a $f \in 1+I$ such that fM = 0.
- (2) If IM = M, M is finite, and $I \subset rad(R)$, then M = 0.
- (3) If $N, N' \subset M$, M = N + IN', and N' is finite, then there exists a $f \in 1 + I$ such that $M_f = N_f$.
- (4) If $N, N' \subset M$, M = N + IN', N' is finite, and $I \subset rad(R)$, then M = N.
- (5) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, and M is finite, then there exists a $f \in 1 + I$ such that $N_f \to M_f$ is surjective.
- (6) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, M is finite, and $I \subset rad(R)$, then $N \to M$ is surjective.
- (7) If $x_1, \ldots, x_n \in M$ generate M/IM and M is finite, then there exists an $f \in 1 + I$ such that x_1, \ldots, x_n generate M_f over R_f .
- (8) If $x_1, \ldots, x_n \in M$ generate M/IM, M is finite, and $I \subset rad(R)$, then M is generated by x_1, \ldots, x_n .
- (9) If IM = M, I is nilpotent, then M = 0.
- (10) If $N, N' \subset M$, M = N + IN', and I is nilpotent then M = N.
- (11) If $N \to M$ is a module map, I is nilpotent, and $N/IN \to M/IM$ is surjective, then $N \to M$ is surjective.
- (12) If $\{x_{\alpha}\}_{\alpha \in A}$ is a set of elements of M which generate M/IM and I is nilpotent, then M is generated by the x_{α} .

Proof. Proof of (1). Choose generators y_1, \ldots, y_m of M over R. For each i we can write $y_i = \sum z_{ij} y_j$ with $z_{ij} \in I$. In other words $\sum_j (\delta_{ij} - z_{ij}) y_j = 0$. Let f be the determinant f of the $m \times m$ matrix $A = (\delta_{ij} - z_{ij})$. Note that $f \in 1 + I$. By Lemma ?? there exists an $m \times m$ matrix B such that $BA = f \mathbf{1}_{m \times m}$. Writing out we see that $f y_j = \sum_{i,j} b_{hi} a_{ij} y_j = 0$ for every j. This implies that f annihilates M.

By Lemma ?? an element of $1+\operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N' is finite. We obtain (4) by applying (2) to M/N which is finite as N' is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (7) by applying (5) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n$. We obtain (8) by applying (6) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n$.

Part (9) holds because if M = IM then $M = I^n M$ for all $n \ge 0$ and I being nilpotent means $I^n = 0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

Commit: 3f49c6d2094af2b3a7d520d9df7956e444838f06 algebra.tex, lemma-NAK, 00DV

Lemma 0.14 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If IM = M and M is finite, then there exists a $f \in 1+I$ such that fM = 0.
- (2) If IM = M, M is finite, and $I \subset rad(R)$, then M = 0.
- (3) If $N, N' \subset M$, M = N + IN', and N' is finite, then there exists a $f \in 1 + I$ such that $M_f = N_f$.
- (4) If $N, N' \subset M$, M = N + IN', N' is finite, and $I \subset rad(R)$, then M = N.
- (5) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, and M is finite, then there exists a $f \in 1 + I$ such that $N_f \to M_f$ is surjective.
- (6) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, M is finite, and $I \subset rad(R)$, then $N \to M$ is surjective.
- (7) If $x_1, \ldots, x_n \in M$ generate M/IM and M is finite, then there exists an $f \in 1 + I$ such that x_1, \ldots, x_n generate M_f over R_f .
- (8) If $x_1, \ldots, x_n \in M$ generate M/IM, M is finite, and $I \subset rad(R)$, then M is generated by x_1, \ldots, x_n .
- (9) If IM = M, I is nilpotent, then M = 0.
- (10) If $N, N' \subset M$, M = N + IN', and I is nilpotent then M = N.
- (11) If $N \to M$ is a module map, I is nilpotent, and $N/IN \to M/IM$ is surjective, then $N \to M$ is surjective.
- (12) If $\{x_{\alpha}\}_{\alpha \in A}$ is a set of elements of M which generate M/IM and I is nilpotent, then M is generated by the x_{α} .

Proof. Proof of (1). Choose generators y_1, \ldots, y_m of M over R. For each i we can write $y_i = \sum z_{ij} y_j$ with $z_{ij} \in I$. In other words $\sum_j (\delta_{ij} - z_{ij}) y_j = 0$. Let f be the determinant f of the $m \times m$ matrix $A = (\delta_{ij} - z_{ij})$. Note that $f \in 1 + I$. By Lemma ?? there exists an $m \times m$ matrix B such that $BA = f \mathbf{1}_{m \times m}$. Writing out we see that $f y_j = \sum_{i,j} b_{hi} a_{ij} y_j = 0$ for every j. This implies that f annihilates M.

By Lemma ?? an element of $1 + \operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N' is finite. We obtain (4) by applying (2) to M/N which is finite as N' is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (7) by applying (5) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n$. We obtain (8) by applying (6) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n$.

Part (9) holds because if M = IM then $M = I^n M$ for all $n \ge 0$ and I being nilpotent means $I^n = 0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

Commit: 62d020eee038bca1a79e7686058cfd2efdc0adbe algebra.tex, lemma-NAK, 00DV

Lemma 0.15 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If IM = M and M is finite, then there exists a $f \in 1+I$ such that fM = 0.
- (2) If IM = M, M is finite, and $I \subset rad(R)$, then M = 0.

- (3) If $N, N' \subset M$, M = N + IN', and N' is finite, then there exists a $f \in 1 + I$ such that $M_f = N_f$.
- (4) If $N, N' \subset M$, M = N + IN', N' is finite, and $I \subset rad(R)$, then M = N.
- (5) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, and M is finite, then there exists a $f \in 1 + I$ such that $N_f \to M_f$ is surjective.
- (6) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, M is finite, and $I \subset rad(R)$, then $N \to M$ is surjective.
- (7) If $x_1, \ldots, x_n \in M$ generate M/IM and M is finite, then there exists an $f \in 1 + I$ such that x_1, \ldots, x_n generate M_f over R_f .
- (8) If $x_1, \ldots, x_n \in M$ generate M/IM, M is finite, and $I \subset rad(R)$, then M is generated by x_1, \ldots, x_n .
- (9) If IM = M, I is nilpotent, then M = 0.
- (10) If $N, N' \subset M$, M = N + IN', and I is nilpotent then M = N.
- (11) If $N \to M$ is a module map, I is nilpotent, and $N/IN \to M/IM$ is surjective, then $N \to M$ is surjective.
- (12) If $\{x_{\alpha}\}_{\alpha \in A}$ is a set of elements of M which generate M/IM and I is nilpotent, then M is generated by the x_{α} .

Proof. Proof of (1). Choose generators y_1, \ldots, y_m of M over R. For each i we can write $y_i = \sum z_{ij} y_j$ with $z_{ij} \in I$. In other words $\sum_j (\delta_{ij} - z_{ij}) y_j = 0$. Let f be the determinant f of the $m \times m$ matrix $A = (\delta_{ij} - z_{ij})$. Note that $f \in 1 + I$. By Lemma ?? there exists an $m \times m$ matrix B such that $BA = f \mathbf{1}_{m \times m}$. Writing out we see that $f y_j = \sum_{i,j} b_{hi} a_{ij} y_j = 0$ for every j. This implies that f annihilates M.

By Lemma ?? an element of $1+\operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N' is finite. We obtain (4) by applying (2) to M/N which is finite as N' is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (7) by applying (5) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n$. We obtain (8) by applying (6) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n$.

Part (9) holds because if M = IM then $M = I^n M$ for all $n \ge 0$ and I being nilpotent means $I^n = 0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

Commit: c3de517872bbdd3fe5bf82bf85de353330a25c4c algebra.tex, lemma-NAK, 00DV

Lemma 0.16 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

- (1) If IM = M and M is finite, then there exists a $f \in 1+I$ such that fM = 0.
- (2) If IM = M, M is finite, and $I \subset rad(R)$, then M = 0.
- (3) If $N, N' \subset M$, M = N + IN', and N' is finite, then there exists a $f \in 1 + I$ such that $M_f = N_f$.
- (4) If $N, N' \subset M$, M = N + IN', N' is finite, and $I \subset rad(R)$, then M = N.
- (5) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, and M is finite, then there exists a $f \in 1 + I$ such that $N_f \to M_f$ is surjective.
- (6) If $N \to M$ is a module map, $N/IN \to M/IM$ is surjective, M is finite, and $I \subset rad(R)$, then $N \to M$ is surjective.

- (7) If $x_1, \ldots, x_n \in M$ generate M/IM and M is finite, then there exists an $f \in 1 + I$ such that x_1, \ldots, x_n generate M_f over R_f .
- (8) If $x_1, \ldots, x_n \in M$ generate M/IM, M is finite, and $I \subset rad(R)$, then M is generated by x_1, \ldots, x_n .
- (9) If IM = M, I is nilpotent, then M = 0.
- (10) If $N, N' \subset M$, M = N + IN', and I is nilpotent then M = N.
- (11) If $N \to M$ is a module map, I is nilpotent, and $N/IN \to M/IM$ is surjective, then $N \to M$ is surjective.
- (12) If $\{x_{\alpha}\}_{\alpha \in A}$ is a set of elements of M which generate M/IM and I is nilpotent, then M is generated by the x_{α} .

Proof. Proof of (1). Choose generators y_1, \ldots, y_m of M over R. For each i we can write $y_i = \sum z_{ij}y_j$ with $z_{ij} \in I$. In other words $\sum_j (\delta_{ij} - z_{ij})y_j = 0$. Let f be the determinant f of the $m \times m$ matrix $A = (\delta_{ij} - z_{ij})$. Note that $f \in 1 + I$. By Lemma ?? there exists an $m \times m$ matrix B such that $BA = f \mathbf{1}_{m \times m}$. Writing out we see that $fy_j = \sum_{i,j} b_{hi}a_{ij}y_j = 0$ for every j. This implies that f annihilates M.

By Lemma ?? an element of $1+\operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N' is finite. We obtain (4) by applying (2) to M/N which is finite as N' is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \to M)$ and M. We obtain (7) by applying (5) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n$. We obtain (8) by applying (6) to the map $R^{\oplus n} \to M$, $(a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n$.

Part (9) holds because if M = IM then $M = I^n M$ for all $n \ge 0$ and I being nilpotent means $I^n = 0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

8