Commit: 6ed92f8527de1b84dd020ae49e70d477b0458f93 algebra.tex, lemma-NAK,
Lemma 0.1. (Nakayama's lemma.) If M is a finite nonzero module over R, then $\mathfrak{m} M \neq M$.

Proof. Here is a silly way to prove this: If $\mathfrak{m} M=M$ for M finite then by induction $\mathfrak{m}^{n} M=M$. Hence the completion of M with respect to the maximal ideal is zero. Hence $M \otimes_{R} \hat{R}=0$, see Lemma ??. But $R \rightarrow \hat{R}$ is faithfully flat by Lemma ?? and hence we conclude $M=0$ by Lemma ??.

Commit: 9ba5fc9ef712809448ae2d791141606db3844bdd algebra.tex, lemma-NAK,

Lemma 0.2. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite, and $I M=M$, then there exists a $f=1+i \in 1+I$ such that $f M=0$.
(2) If M is finite, $I M=M$, and $I \subset \operatorname{rad}(R)$ then $M=0$.
(3) If $I M=M, I$ is nilpotent, then $M=0$.

Proof. Proof of 1. Write $M=\sum R x_{j}, j=1, \ldots, r$. Write $x_{j}=\sum i_{j j^{\prime}} x_{j^{\prime}}$ with $i_{j j^{\prime}} \in I$. In other words $\sum\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right) x_{j^{\prime}}=0$. Hence the determinant f of the $r \times r$ matrix $\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right)$ is a solution. The other parts are easy.

Commit: 89af1485ec12a23ea70f17bd36a2513c703142d9
algebra.tex, lemma-NAK,
Lemma 0.3. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite, and $I M=M$, then there exists a $f=1+i \in 1+I$ such that $f M=0$.
(2) If M is finite, $I M=M$, and $I \subset \operatorname{rad}(R)$ then $M=0$.
(3) If $I M=M, I$ is nilpotent, then $M=0$.

Proof. Proof of (1). Write $M=\sum R x_{j}, j=1, \ldots, r$. Write $x_{j}=\sum i_{j j^{\prime}} x_{j^{\prime}}$ with $i_{j j^{\prime}} \in I$. In other words $\sum\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right) x_{j^{\prime}}=0$. Hence the determinant f of the $r \times r$ matrix $\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right)$ is a solution. The other parts are easy.

Commit: b992073e01d52fd6d1a62af3e6107c73076e38e9
algebra.tex, lemma-NAK,
Lemma 0.4. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite, and $I M=M$, then there exists a $f=1+i \in 1+I$ such that $f M=0$.
(2) If M is finite, $I M=M$, and $I \subset \operatorname{rad}(R)$ then $M=0$.
(3) If $I M=M, I$ is nilpotent, then $M=0$.

Proof. Proof of (1). Write $M=\sum R x_{j}, j=1, \ldots, r$. Write $x_{j}=\sum i_{j j^{\prime}} x_{j^{\prime}}$ with $i_{j j^{\prime}} \in I$. In other words $\sum\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right) x_{j^{\prime}}=0$. Hence the determinant f of the $r \times r$ matrix $\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right)$ is a solution. The other parts are easy.

Commit: de8364792372d9455a953929e5eb1c5c57c7d826 algebra.tex, lemma-NAK,
Lemma 0.5. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite, and $I M=M$, then there exists a $f=1+i \in 1+I$ such that $f M=0$.
(2) If M is finite, $I M=M$, and $I \subset \operatorname{rad}(R)$ then $M=0$.
(3) If $I M=M, I$ is nilpotent, then $M=0$.

Proof. Proof of (1). Write $M=\sum R x_{j}, j=1, \ldots, r$. Write $x_{j}=\sum i_{j j^{\prime}} x_{j^{\prime}}$ with $i_{j j^{\prime}} \in I$. In other words $\sum\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right) x_{j^{\prime}}=0$. Hence the determinant f of the $r \times r$ matrix $\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right)$ is a solution. The other parts are easy.

Commit: 713944efa842f07df0a41e64a9b0e203b2dccff2 algebra.tex, lemma-NAK,
Lemma 0.6. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite, and $I M=M$, then there exists a $f=1+i \in 1+I$ such that $f M=0$.
(2) If M is finite, $I M=M$, and $I \subset \operatorname{rad}(R)$ then $M=0$.
(3) If $I M=M, I$ is nilpotent, then $M=0$.

Proof. Proof of (1). Write $M=\sum R x_{j}, j=1, \ldots, r$. Write $x_{j}=\sum i_{j j^{\prime}} x_{j^{\prime}}$ with $i_{j j^{\prime}} \in I$. In other words $\sum\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right) x_{j^{\prime}}=0$. Hence the determinant f of the $r \times r$ matrix $\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right)$ is a solution. The other parts are easy.

Commit: fad2e125112d54e1b53a7e130ef141010f9d151d
algebra.tex, lemma-NAK, 00DV
Lemma 0.7. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite, and $I M=M$, then there exists a $f=1+i \in 1+I$ such that $f M=0$.
(2) If M is finite, $I M=M$, and $I \subset \operatorname{rad}(R)$ then $M=0$.
(3) If $I M=M, I$ is nilpotent, then $M=0$.

Proof. Proof of (1). Write $M=\sum R x_{j}, j=1, \ldots, r$. Write $x_{j}=\sum i_{j j^{\prime}} x_{j^{\prime}}$ with $i_{j j^{\prime}} \in I$. In other words $\sum\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right) x_{j^{\prime}}=0$. Hence the determinant f of the $r \times r$ matrix $\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right)$ is a solution. The other parts are easy.

Commit: ca002a3be7da6a8fd965fdedd75e93f59aa160c7 algebra.tex, lemma-NAK, 00DV

Lemma 0.8. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite, and $I M=M$, then there exists a $f=1+i \in 1+I$ such that $f M=0$.
(2) If M is finite, $I M=M$, and $I \subset \operatorname{rad}(R)$ then $M=0$.
(3) If $I M=M, I$ is nilpotent, then $M=0$.

Proof. Proof of (1). Write $M=\sum R x_{j}, j=1, \ldots, r$. Write $x_{j}=\sum i_{j j^{\prime}} x_{j^{\prime}}$ with $i_{j j^{\prime}} \in I$. In other words $\sum\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right) x_{j^{\prime}}=0$. Hence the determinant f of the $r \times r$ matrix $\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right)$ is a solution. The other parts are easy.

Commit: 046ef996f091e082c9abf898cbda171e7d057afd
algebra.tex, lemma-NAK, 00DV
Lemma 0.9. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite, and $I M=M$, then there exists a $f=1+i \in 1+I$ such that $f M=0$.
(2) If M is finite, $I M=M$, and $I \subset \operatorname{rad}(R)$ then $M=0$.
(3) If $I M=M, I$ is nilpotent, then $M=0$.

Proof. Proof of (1). Write $M=\sum R x_{j}, j=1, \ldots, r$. Write $x_{j}=\sum i_{j j^{\prime}} x_{j^{\prime}}$ with $i_{j j^{\prime}} \in I$. In other words $\sum\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right) x_{j^{\prime}}=0$. Hence the determinant f of the $r \times r$ matrix $\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right)$ is a solution. The other parts are easy.

Commit: 3b3c53693a5c163bcfa583372c198e036d24d792

algebra.tex, lemma-NAK, 00DV
Lemma 0.10. (Nakayama's lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite, and $I M=M$, then there exists a $f=1+i \in 1+I$ such that $f M=0$.
(2) If M is finite, $I M=M$, and $I \subset \operatorname{rad}(R)$ then $M=0$.
(3) If $I M=M, I$ is nilpotent, then $M=0$.

Proof. Proof of (1). Write $M=\sum R x_{j}, j=1, \ldots, r$. Write $x_{j}=\sum i_{j j^{\prime}} x_{j^{\prime}}$ with $i_{j j^{\prime}} \in I$. In other words $\sum\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right) x_{j^{\prime}}=0$. Hence the determinant f of the $r \times r$ matrix $\left(\delta_{j j^{\prime}}-i_{j j^{\prime}}\right)$ is a solution. The other parts are easy.

Commit: 6bb230916504b9fad68a91f290a85db2000fb266 algebra.tex, lemma-NAK, 00DV

Lemma 0.11 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If M is finite and $I M=M$, then there exists a $f \in 1+I$ such that $f M=0$.
(2) If $I M=M, I \subset \operatorname{rad}(R)$, and M is finite, then $M=0$.
(3) If $N, N^{\prime} \subset M, M=N+I N^{\prime}, I \subset \operatorname{rad}(R)$, and N^{\prime} is finite then $M=N$.
(4) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M$ and M is finite, then there exists an $f \in 1+I$ such that x_{1}, \ldots, x_{n} generate M_{f} over R_{f}.
(5) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M, I \subset \operatorname{rad}(R)$, and M is finite, then M is generated by x_{1}, \ldots, x_{n}.
(6) If $I M=M, I$ is nilpotent, then $M=0$.
(7) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and I is nilpotent then $M=N$.
(8) If $\left\{x_{\alpha}\right\}_{\alpha \in A}$ is a set of elements of M which generate $M / I M$ and I is nilpotent, then M is generated by the x_{α}.

Proof. Proof of (1). Choose generators y_{1}, \ldots, y_{m} of M over R. For each i we can write $y_{i}=\sum z_{i j} y_{j}$ with $z_{i j} \in I$. In other words $\sum_{j}\left(\delta_{i j}-z_{i j}\right) y_{j}=0$. Let f be the determinant f of the $m \times m$ matrix $A=\left(\delta_{i j}-z_{i j}\right)$. Note that $f \in 1+I$. By Lemma ?? there exists an $m \times m$ matrix B such that $B A=f 1_{m \times m}$. Writing out we see that $f y_{j}=\sum_{i, j} b_{h i} a_{i j} y_{j}=0$ for every j. This implies that f annihilates M.
By Lemma ?? an element of $1+\operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (2) to M / N. We obtain (4) by applying (1) to $M / R x_{1}+\ldots+R x_{n}$. We obtain (5) from (4) by the first remark of this paragraph.

Part (6) holds because if $M=I M$ then $M=I^{n} M$ for all $n \geq 0$ and I being nilpotent means $I^{n}=0$ for some $n \gg 0$. Parts (7) and (8) follow from (6) by considering the quotient of M by the given submodule.

Commit: 64a936bc55f4edc2d51e2de94f97aa716a67360e
algebra.tex, lemma-NAK, 00DV
Lemma 0.12 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If $I M=M$ and M is finite, then there exists a $f \in 1+I$ such that $f M=0$.
(2) If $I M=M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then $M=0$.
(3) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and N^{\prime} is finite, then there exists a $f \in 1+I$ such that $M_{f}=N_{f}$.
(4) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, N^{\prime} is finite, and $I \subset \operatorname{rad}(R)$, then $M=N$.
(5) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, and M is finite, then there exists a $f \in 1+I$ such that $N_{f} \rightarrow M_{f}$ is surjective.
(6) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, M is finite, and $I \subset \operatorname{rad}(R)$, then $N \rightarrow M$ is surjective.
(7) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M$ and M is finite, then there exists an $f \in 1+I$ such that x_{1}, \ldots, x_{n} generate M_{f} over R_{f}.
(8) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then M is generated by x_{1}, \ldots, x_{n}.
(9) If $I M=M, I$ is nilpotent, then $M=0$.
(10) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and I is nilpotent then $M=N$.
(11) If $N \rightarrow M$ is a module map, I is nilpotent, and $N / I N \rightarrow M / I M$ is surjective, then $N \rightarrow M$ is surjective.
(12) If $\left\{x_{\alpha}\right\}_{\alpha \in A}$ is a set of elements of M which generate $M / I M$ and I is nilpotent, then M is generated by the x_{α}.
Proof. Proof of (1). Choose generators y_{1}, \ldots, y_{m} of M over R. For each i we can write $y_{i}=\sum z_{i j} y_{j}$ with $z_{i j} \in I$. In other words $\sum_{j}\left(\delta_{i j}-z_{i j}\right) y_{j}=0$. Let f be the determinant f of the $m \times m$ matrix $A=\left(\delta_{i j}-z_{i j}\right)$. Note that $f \in 1+I$. By Lemma ?? there exists an $m \times m$ matrix B such that $B A=f 1_{m \times m}$. Writing out we see that $f y_{j}=\sum_{i, j} b_{h i} a_{i j} y_{j}=0$ for every j. This implies that f annihilates M.
By Lemma ?? an element of $1+\operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M / N which is finite as N^{\prime} is finite. We obtain (4) by applying (2) to M / N which is finite as N^{\prime} is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (7) by
applying (5) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$. We obtain (8) by applying (6) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$.

Part (9) holds because if $M=I M$ then $M=I^{n} M$ for all $n \geq 0$ and I being nilpotent means $I^{n}=0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

Commit: 19733a9e82de0e0b2c4b809c2a5f00092a6b6152
algebra.tex, lemma-NAK, 00DV
Lemma 0.13 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If $I M=M$ and M is finite, then there exists a $f \in 1+I$ such that $f M=0$.
(2) If $I M=M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then $M=0$.
(3) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and N^{\prime} is finite, then there exists a $f \in 1+I$ such that $M_{f}=N_{f}$.
(4) If $N, N^{\prime} \subset M, M=N+I N^{\prime}, N^{\prime}$ is finite, and $I \subset \operatorname{rad}(R)$, then $M=N$.
(5) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, and M is finite, then there exists a $f \in 1+I$ such that $N_{f} \rightarrow M_{f}$ is surjective.
(6) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, M is finite, and $I \subset \operatorname{rad}(R)$, then $N \rightarrow M$ is surjective.
(7) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M$ and M is finite, then there exists an $f \in 1+I$ such that x_{1}, \ldots, x_{n} generate M_{f} over R_{f}.
(8) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then M is generated by x_{1}, \ldots, x_{n}.
(9) If $I M=M, I$ is nilpotent, then $M=0$.
(10) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and I is nilpotent then $M=N$.
(11) If $N \rightarrow M$ is a module map, I is nilpotent, and $N / I N \rightarrow M / I M$ is surjective, then $N \rightarrow M$ is surjective.
(12) If $\left\{x_{\alpha}\right\}_{\alpha \in A}$ is a set of elements of M which generate $M / I M$ and I is nilpotent, then M is generated by the x_{α}.

Proof. Proof of (1). Choose generators y_{1}, \ldots, y_{m} of M over R. For each i we can write $y_{i}=\sum z_{i j} y_{j}$ with $z_{i j} \in I$. In other words $\sum_{j}\left(\delta_{i j}-z_{i j}\right) y_{j}=0$. Let f be the determinant f of the $m \times m$ matrix $A=\left(\delta_{i j}-z_{i j}\right)$. Note that $f \in 1+I$. By Lemma ?? there exists an $m \times m$ matrix B such that $B A=f 1_{m \times m}$. Writing out we see that $f y_{j}=\sum_{i, j} b_{h i} a_{i j} y_{j}=0$ for every j. This implies that f annihilates M.

By Lemma ?? an element of $1+\operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M / N which is finite as N^{\prime} is finite. We obtain (4) by applying (2) to M / N which is finite as N^{\prime} is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (7) by applying (5) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$. We obtain (8) by applying (6) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$.

Part (9) holds because if $M=I M$ then $M=I^{n} M$ for all $n \geq 0$ and I being nilpotent means $I^{n}=0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

Commit: 3f49c6d2094af2b3a7d520d9df7956e444838f06
algebra.tex, lemma-NAK, 00DV
Lemma 0.14 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If $I M=M$ and M is finite, then there exists a $f \in 1+I$ such that $f M=0$.
(2) If $I M=M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then $M=0$.
(3) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and N^{\prime} is finite, then there exists a $f \in 1+I$ such that $M_{f}=N_{f}$.
(4) If $N, N^{\prime} \subset M, M=N+I N^{\prime}, N^{\prime}$ is finite, and $I \subset \operatorname{rad}(R)$, then $M=N$.
(5) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, and M is finite, then there exists a $f \in 1+I$ such that $N_{f} \rightarrow M_{f}$ is surjective.
(6) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, M is finite, and $I \subset \operatorname{rad}(R)$, then $N \rightarrow M$ is surjective.
(7) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M$ and M is finite, then there exists an $f \in 1+I$ such that x_{1}, \ldots, x_{n} generate M_{f} over R_{f}.
(8) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then M is generated by x_{1}, \ldots, x_{n}.
(9) If $I M=M, I$ is nilpotent, then $M=0$.
(10) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and I is nilpotent then $M=N$.
(11) If $N \rightarrow M$ is a module map, I is nilpotent, and $N / I N \rightarrow M / I M$ is surjective, then $N \rightarrow M$ is surjective.
(12) If $\left\{x_{\alpha}\right\}_{\alpha \in A}$ is a set of elements of M which generate $M / I M$ and I is nilpotent, then M is generated by the x_{α}.

Proof. Proof of (1). Choose generators y_{1}, \ldots, y_{m} of M over R. For each i we can write $y_{i}=\sum z_{i j} y_{j}$ with $z_{i j} \in I$. In other words $\sum_{j}\left(\delta_{i j}-z_{i j}\right) y_{j}=0$. Let f be the determinant f of the $m \times m$ matrix $A=\left(\delta_{i j}-z_{i j}\right)$. Note that $f \in 1+I$. By Lemma ?? there exists an $m \times m$ matrix B such that $B A=f 1_{m \times m}$. Writing out we see that $f y_{j}=\sum_{i, j} b_{h i} a_{i j} y_{j}=0$ for every j. This implies that f annihilates M.
By Lemma ?? an element of $1+\operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M / N which is finite as N^{\prime} is finite. We obtain (4) by applying (2) to M / N which is finite as N^{\prime} is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (7) by applying (5) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$. We obtain (8) by applying (6) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$.

Part (9) holds because if $M=I M$ then $M=I^{n} M$ for all $n \geq 0$ and I being nilpotent means $I^{n}=0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

Commit: 62d020eee038bca1a79e7686058cfd2efdc0adbe algebra.tex, lemma-NAK, 00DV
Lemma 0.15 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If $I M=M$ and M is finite, then there exists a $f \in 1+I$ such that $f M=0$.
(2) If $I M=M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then $M=0$.
(3) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and N^{\prime} is finite, then there exists a $f \in 1+I$ such that $M_{f}=N_{f}$.
(4) If $N, N^{\prime} \subset M, M=N+I N^{\prime}, N^{\prime}$ is finite, and $I \subset \operatorname{rad}(R)$, then $M=N$.
(5) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, and M is finite, then there exists a $f \in 1+I$ such that $N_{f} \rightarrow M_{f}$ is surjective.
(6) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, M is finite, and $I \subset \operatorname{rad}(R)$, then $N \rightarrow M$ is surjective.
(7) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M$ and M is finite, then there exists an $f \in 1+I$ such that x_{1}, \ldots, x_{n} generate M_{f} over R_{f}.
(8) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then M is generated by x_{1}, \ldots, x_{n}.
(9) If $I M=M, I$ is nilpotent, then $M=0$.
(10) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and I is nilpotent then $M=N$.
(11) If $N \rightarrow M$ is a module map, I is nilpotent, and $N / I N \rightarrow M / I M$ is surjective, then $N \rightarrow M$ is surjective.
(12) If $\left\{x_{\alpha}\right\}_{\alpha \in A}$ is a set of elements of M which generate $M / I M$ and I is nilpotent, then M is generated by the x_{α}.

Proof. Proof of (1). Choose generators y_{1}, \ldots, y_{m} of M over R. For each i we can write $y_{i}=\sum z_{i j} y_{j}$ with $z_{i j} \in I$. In other words $\sum_{j}\left(\delta_{i j}-z_{i j}\right) y_{j}=0$. Let f be the determinant f of the $m \times m$ matrix $A=\left(\delta_{i j}-z_{i j}\right)$. Note that $f \in 1+I$. By Lemma ?? there exists an $m \times m$ matrix B such that $B A=f 1_{m \times m}$. Writing out we see that $f y_{j}=\sum_{i, j} b_{h i} a_{i j} y_{j}=0$ for every j. This implies that f annihilates M.

By Lemma ?? an element of $1+\operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M / N which is finite as N^{\prime} is finite. We obtain (4) by applying (2) to M / N which is finite as N^{\prime} is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (7) by applying (5) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$. We obtain (8) by applying (6) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$.

Part (9) holds because if $M=I M$ then $M=I^{n} M$ for all $n \geq 0$ and I being nilpotent means $I^{n}=0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

Commit: c3de517872bbdd3fe5bf82bf85de353330a25c4c algebra.tex, lemma-NAK, 00DV

Lemma 0.16 (Nakayama's lemma). Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.
(1) If $I M=M$ and M is finite, then there exists a $f \in 1+I$ such that $f M=0$.
(2) If $I M=M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then $M=0$.
(3) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and N^{\prime} is finite, then there exists a $f \in 1+I$ such that $M_{f}=N_{f}$.
(4) If $N, N^{\prime} \subset M, M=N+I N^{\prime}, N^{\prime}$ is finite, and $I \subset \operatorname{rad}(R)$, then $M=N$.
(5) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, and M is finite, then there exists a $f \in 1+I$ such that $N_{f} \rightarrow M_{f}$ is surjective.
(6) If $N \rightarrow M$ is a module map, $N / I N \rightarrow M / I M$ is surjective, M is finite, and $I \subset \operatorname{rad}(R)$, then $N \rightarrow M$ is surjective.
(7) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M$ and M is finite, then there exists an $f \in 1+I$ such that x_{1}, \ldots, x_{n} generate M_{f} over R_{f}.
(8) If $x_{1}, \ldots, x_{n} \in M$ generate $M / I M, M$ is finite, and $I \subset \operatorname{rad}(R)$, then M is generated by x_{1}, \ldots, x_{n}.
(9) If $I M=M, I$ is nilpotent, then $M=0$.
(10) If $N, N^{\prime} \subset M, M=N+I N^{\prime}$, and I is nilpotent then $M=N$.
(11) If $N \rightarrow M$ is a module map, I is nilpotent, and $N / I N \rightarrow M / I M$ is surjective, then $N \rightarrow M$ is surjective.
(12) If $\left\{x_{\alpha}\right\}_{\alpha \in A}$ is a set of elements of M which generate $M / I M$ and I is nilpotent, then M is generated by the x_{α}.

Proof. Proof of (1). Choose generators y_{1}, \ldots, y_{m} of M over R. For each i we can write $y_{i}=\sum z_{i j} y_{j}$ with $z_{i j} \in I$. In other words $\sum_{j}\left(\delta_{i j}-z_{i j}\right) y_{j}=0$. Let f be the determinant f of the $m \times m$ matrix $A=\left(\delta_{i j}-z_{i j}\right)$. Note that $f \in 1+I$. By Lemma ?? there exists an $m \times m$ matrix B such that $B A=f 1_{m \times m}$. Writing out we see that $f y_{j}=\sum_{i, j} b_{h i} a_{i j} y_{j}=0$ for every j. This implies that f annihilates M.
By Lemma ?? an element of $1+\operatorname{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M / N which is finite as N^{\prime} is finite. We obtain (4) by applying (2) to M / N which is finite as N^{\prime} is finite. We obtain (5) by applying (3) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (6) by applying (4) to M and the submodules $\operatorname{Im}(N \rightarrow M)$ and M. We obtain (7) by applying (5) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$. We obtain (8) by applying (6) to the map $R^{\oplus n} \rightarrow M,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} x_{1}+\ldots+a_{n} x_{n}$.

Part (9) holds because if $M=I M$ then $M=I^{n} M$ for all $n \geq 0$ and I being nilpotent means $I^{n}=0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above.

