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Lemma 0.1. (Nakayama’s lemma.) If M is a finite nonzero module over R, then
mM # M.

Proof. Here is a silly way to prove this: If mM = M for M finite then by induction
m"M = M. Hence the completion of M with respect to the maximal ideal is zero.
Hence M @ R = 0, see Lemma ??. But R — R is faithfully flat by Lemma 7?7 and
hence we conclude M = 0 by Lemma ?7. O

Commit: 9babfc9ef712809448ae2d791141606db3844bdd
algebra.tex, lemma-NAK,

Lemma 0.2. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I C R be an ideal.
(1) If M is finite, and IM = M, then there exists a f = 141 € 141 such that
fM=0.
(2) If M is finite, IM = M, and I C rad(R) then M = 0.
(3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of 1. Write M = )" Rxj, j = 1,...,r. Write x; = > 4,z with
ij;» € I. In other words ) (0;;7 —i;5)xj = 0. Hence the determinant f of the r xr
matrix (9,7 — i;;7) is a solution. The other parts are easy. O
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Lemma 0.3. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I C R be an ideal.
(1) If M is finite, and IM = M, then there exists a f = 1414 € 14+ 1 such that
fM =0.
(2) If M is finite, IM = M, and I C rad(R) then M = 0.
(3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write M = 5 Rxj, j = 1,...,r. Write x; = ) 4;;x;, with
ij;7 € I. In other words ) (8, —4;5)xj = 0. Hence the determinant f of the r x r
matrix (6,7 — 4j;/) is a solution. The other parts are easy. O
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Lemma 0.4. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I C R be an ideal.
(1) If M is finite, and IM = M, then there exists a f = 1414 € 141 such that
fM =0.
(2) If M is finite, IM = M, and I C rad(R) then M = 0.
(3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write M = 5 Rzxj, j = 1,...,r. Write x; = ) 4;5x;, with

ij;7 € I. In other words ) (8, —4;5)xj» = 0. Hence the determinant f of the r x r

matrix (6, — ¢j;/) is a solution. The other parts are easy. O
1
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Lemma 0.5. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I C R be an ideal.
(1) If M is finite, and IM = M, then there exists a f =141 € 141 such that
fM =0.
(2) If M is finite, IM = M, and I C rad(R) then M = 0.
(3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write M = Y Rxj, j = 1,...,r. Write z; = ) i,z with
ij;» € I. In other words ) (0;;7 —i;5)xj = 0. Hence the determinant f of the r xr
matrix (6, — ij,/) is a solution. The other parts are easy. O
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Lemma 0.6. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I C R be an ideal.
(1) If M is finite, and IM = M, then there exists a f =141 € 1+ 1 such that
fM =0.
(2) If M is finite, IM = M, and I C rad(R) then M = 0.
(3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write M = 3 Rxj, j = 1,...,r. Write z; = Y i;;:x; with
ij;» € I. In other words Y (8, —4;5)x;» = 0. Hence the determinant f of the r x r
matrix (6, — ij,/) is a solution. The other parts are easy. O
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Lemma 0.7. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I C R be an ideal.
(1) If M is finite, and IM = M, then there exists a f = 1+1i € 1+ 1 such that
fM = 0.
(2) If M is finite, IM = M, and I C rad(R) then M = 0.
(3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write M = 5 Rzj, j = 1,...,r. Write x; = Y 4,5z, with
ij;» € I. In other words ) (8, —4;5)x;; = 0. Hence the determinant f of the r x r
matrix (6, — ¢j;,) is a solution. The other parts are easy. O

Commit: ca002a3be7da6a8fd965fdedd75e93f59aa160c7
algebra.tex, lemma-NAK, 00DV

Lemma 0.8. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I C R be an ideal.
(1) If M is finite, and IM = M, then there exists a f = 1414 € 141 such that
fM =0.
(2) If M is finite, IM = M, and I C rad(R) then M = 0.
(3) If IM = M, I is nilpotent, then M = 0.
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Proof. Proof of (1). Write M = 5 Rxj, j = 1,...,r. Write x; = Y 4,5z, with
ij;7 € I. In other words ) (8, —4;5)xj; = 0. Hence the determinant f of the r x r
matrix (6, — ¢j;,) is a solution. The other parts are easy. O
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Lemma 0.9. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I C R be an ideal.

(1) If M is finite, and IM = M, then there exists a f =141 € 1+ 1 such that
fM =0.

(2) If M is finite, IM = M, and I C rad(R) then M = 0.

(3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write M = Y Rxj, j = 1,...,r. Write z; = ) i,z with
ij;» € I. In other words ) (0;;7 —i;5)xj = 0. Hence the determinant f of the r xr
matrix (6, — ij,,) is a solution. The other parts are easy. O
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Lemma 0.10. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I C R be an ideal.

(1) If M is finite, and IM = M, then there exists a f = 1414 € 141 such that
fM =0.

(2) If M is finite, IM = M, and I C rad(R) then M = 0.

(3) If IM = M, I is nilpotent, then M = 0.

Proof. Proof of (1). Write M = 5 Rz, j = 1,...,r. Write x; = Y 4;;x;, with
ij;» € I. In other words ) (8, —4;5)x;» = 0. Hence the determinant f of the r x r
matrix (6,7 — ij;/) is a solution. The other parts are easy. O
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Lemma 0.11 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I C R be an ideal.

(1) If M is finite and IM = M, then there exists a f € 1+1I such that fM = 0.

(2) If IM =M, I C rad(R), and M is finite, then M = 0.

(3) If NNN' C M, M =N+ 1IN, IC rad(R), and N' is finite then M = N.

(4) If v1,...,xy, € M generate M/IM and M is finite, then there exists an
f €1+1 such that xq,...,x, generate My over Ry.

(5) If x1,...,xn € M generate M/IM, I C rad(R), and M is finite, then M
18 generated by x1,...,%y.

(6) If IM = M, I is nilpotent, then M = 0.

(7) If NyN'C M, M =N+ 1IN’, and I is nilpotent then M = N.

(8) If {xataca is a set of elements of M which generate M/IM and I is
nilpotent, then M 1is generated by the x,.
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Proof. Proof of (1). Choose generators yi,. .., ym of M over R. For each i we can
write y; = Y 2;;y; with z;; € I. In other words Zj(5ij — 2i;)y; = 0. Let f be
the determinant f of the m x m matrix A = (§;; — z;;). Note that f € 1+ 1. By
Lemma 77 there exists an m x m matrix B such that BA = f1,,x,,. Writing out
we see that fy; = Z” bnia;jy; = 0 for every j. This implies that f annihilates M.

By Lemma ?? an element of 1 4 rad(R) is invertible element of R. Hence we see
that (1) implies (2). We obtain (3) by applying (2) to M/N. We obtain (4) by
applying (1) to M/Rx1 + ...+ Rx,. We obtain (5) from (4) by the first remark of
this paragraph.

Part (6) holds because if M = IM then M = I"M for all n > 0 and I being
nilpotent means I™ = 0 for some n > 0. Parts (7) and (8) follow from (6) by
considering the quotient of M by the given submodule. (Il
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Lemma 0.12 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I C R be an ideal.
(1) IfIM = M and M is finite, then there exists a f € 1+1 such that fM = 0.
(2) If IM = M, M is finite, and I C rad(R), then M = 0.
(3) If NNN' C M, M =N+IN', and N’ is finite, then there exists a f € 1+1
such that My = Ny.
(4) If NNN' c M, M =N+ 1IN', N’ is finite, and I C rad(R), then M = N.
(5) If N = M is a module map, N/IN — M/IM is surjective, and M is
finite, then there exists a f € 1+ 1 such that Ny — My is surjective.
(6) If N - M is a module map, N/IN — M/IM is surjective, M is finite,
and I C rad(R), then N — M is surjective.
(7) If v1,...,2p € M generate M/IM and M is finite, then there exists an
f €141 such that x1,...,x, generate My over Ry.
(8) If x1,...,2n € M generate M/IM, M is finite, and I C rad(R), then M
is generated by T1,...,Ty.
(9) If IM = M, I is nilpotent, then M = 0.
(10) If NyN' C M, M =N+ IN’, and I is nilpotent then M = N.
(11) If N — M is a module map, I is nilpotent, and N/IN — M/IM is
surjective, then N — M 1is surjective.
(12) If {za}aca is a set of elements of M which generate M/IM and I is
nilpotent, then M 1is generated by the x.

Proof. Proof of (1). Choose generators y1, ..., ym of M over R. For each i we can
write y; = Y z;y; with z;; € I. In other words Zj(éij — 2i;)y; = 0. Let f be
the determinant f of the m x m matrix A = (;; — 2;;). Note that f € 1+ I. By
Lemma 7?7 there exists an m x m matrix B such that BA = f1,,x,. Writing out
we see that fy; = Z” bnia;jy; = 0 for every j. This implies that f annihilates M.

By Lemma ?? an element of 14+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M /N which is finite as N’ is finite.
We obtain (4) by applying (2) to M/N which is finite as N’ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N — M) and M. We obtain (6)
by applying (4) to M and the submodules Im(N — M) and M. We obtain (7) by
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applying (5) to the map R®" — M, (ai1,...,a,) = a1@1 + ...+ ayx,. We obtain
(8) by applying (6) to the map R®" — M, (a1,...,an) = a121 + ... + A Ty.

Part (9) holds because if M = IM then M = I™"M for all n > 0 and I being
nilpotent means I™ = 0 for some n > 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. ([
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Lemma 0.13 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I C R be an ideal.

(1) If IM = M and M is finite, then there exists a f € 1+1 such that fM = 0.
(2) If IM = M, M is finite, and I C rad(R), then M = 0.
(3) If N,N' C M, M = N+IN’', and N' is finite, then there exists a f € 1+1
such that My = Ny.
(4) If NNN'C M, M =N+ 1IN, N’ is finite, and I C rad(R), then M = N.
(5) If N — M is a module map, N/JIN — M/IM is surjective, and M is
finite, then there exists a f € 1+ 1 such that Ny — My is surjective.
(6) If N - M is a module map, N/JIN — M/IM is surjective, M is finite,
and I C rad(R), then N — M is surjective.
(7) If v1,...,2, € M generate M/IM and M is finite, then there exists an
f e 1+1 such that x1,...,z, generate My over Ry.
(8) If x1,...,xy, € M generate M/IM, M is finite, and I C rad(R), then M
s generated by x1,...,Ty.
(9) If IM = M, I is nilpotent, then M = 0.
(10) If NyN' C M, M =N+ IN’, and I is nilpotent then M = N.
(11) If N — M is a module map, I is nilpotent, and N/IN — M/IM is
surjective, then N — M 1is surjective.
(12) If {za}aca is a set of elements of M which generate M/IM and I is
nilpotent, then M 1is generated by the x,.

Proof. Proof of (1). Choose generators yi, ..., Yy of M over R. For each i we can
write y; = > z;;y; with z;; € I. In other words -, (di; — 2i5)y; = 0. Let f be
the determinant f of the m x m matrix A = (J;; — z;;). Note that f € 1 +1. By
Lemma 7?7 there exists an m x m matrix B such that BA = f1,,xm. Writing out

we see that fy; = Z” bnia;jy; = 0 for every j. This implies that f annihilates M.

By Lemma ?? an element of 1+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M /N which is finite as N’ is finite.
We obtain (4) by applying (2) to M/N which is finite as N’ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N — M) and M. We obtain (6)
by applying (4) to M and the submodules Im(N — M) and M. We obtain (7) by
applying (5) to the map R®" — M, (a1,...,a,) = a1@1 + ...+ apx,. We obtain
(8) by applying (6) to the map R®" — M, (a1,...,an) = @121 + ... + apTy.

Part (9) holds because if M = IM then M = I™"M for all n > 0 and I being
nilpotent means I™ = 0 for some n > 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. [
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Lemma 0.14 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I C R be an ideal.

(1) If IM = M and M is finite, then there exists a f € 1+1 such that fM = 0.
(2) If IM = M, M is finite, and I C rad(R), then M = 0.
(3) If N,N' C M, M = N+IN', and N' is finite, then there exists a f € 1+1
such that My = Ny.
(4) If NNN'C M, M =N+ 1IN, N’ is finite, and I C rad(R), then M = N.
(5) If N — M is a module map, N/JIN — M/IM is surjective, and M is
finite, then there exists a f € 1+ 1 such that Ny — My is surjective.
(6) If N — M is a module map, N/JIN — M/IM is surjective, M is finite,
and I C rad(R), then N — M is surjective.
(7) If v1,...,2, € M generate M/IM and M is finite, then there exists an
f €1+1 such that x1,...,x, generate My over Ry.
(8) If x1,...,xy € M generate M/IM, M is finite, and I C rad(R), then M
s generated by x1,...,%y.
(9) If IM = M, I is nilpotent, then M = 0.
(10) If NyN' C M, M =N+ IN’, and I is nilpotent then M = N.
(11) If N — M is a module map, I is nilpotent, and N/IN — M/IM is
surjective, then N — M is surjective.
(12) If {za}aca is a set of elements of M which generate M/IM and I is
nilpotent, then M 1is generated by the x,.

Proof. Proof of (1). Choose generators yi, ..., ym of M over R. For each i we can
write y; = Y z;;y; with z;; € I. In other words Zj((sij — 2;)y; = 0. Let f be
the determinant f of the m x m matrix A = (;; — z;;). Note that f € 1+ 1. By
Lemma 7?7 there exists an m x m matrix B such that BA = f1,,xm. Writing out

we see that fy; = Z” briaijy; = 0 for every j. This implies that f annihilates M.

By Lemma ?? an element of 1+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M /N which is finite as N’ is finite.
We obtain (4) by applying (2) to M/N which is finite as N’ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N — M) and M. We obtain (6)
by applying (4) to M and the submodules Im(N — M) and M. We obtain (7) by
applying (5) to the map R®" — M, (a1,...,a,) = a1@1 + ...+ apx,. We obtain
(8) by applying (6) to the map R®™ — M, (a1,...,a,) = @121 + ... + apTp.

Part (9) holds because if M = IM then M = I™"M for all n > 0 and I being

nilpotent means I™ = 0 for some n > 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. O
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Lemma 0.15 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I C R be an ideal.
(1) If IM = M and M is finite, then there exists a f € 1+1I such that fM = 0.
(2) If IM = M, M s finite, and I C rad(R), then M = 0.
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(3) If NN N' C M, M =N+IN', and N’ is finite, then there exists a f € 1+1
such that Mf = Nf.
(4) If NNN' C M, M =N+ 1IN, N' is finite, and I C rad(R), then M = N.
(5) If N = M is a module map, N/IN — M/IM is surjective, and M is
finite, then there exists a f € 1+ 1 such that Ny — My is surjective.
(6) If N - M is a module map, N/JIN — M/IM is surjective, M is finite,
and I C rad(R), then N — M is surjective.
(7) If 1,...,2, € M generate M/IM and M is finite, then there exists an
f €141 such that x1,...,x, generate My over Ry.
(8) If x1,...,2n € M generate M/IM, M is finite, and I C rad(R), then M
is generated by T1,...,Ty.
(9) If IM = M, I is nilpotent, then M = 0.
(10) If NyN' C M, M =N+ IN’, and I is nilpotent then M = N.
(11) If N — M is a module map, I is nilpotent, and N/IN — M/IM is
surjective, then N — M 1is surjective.
(12) If {za}aca is a set of elements of M which generate M/IM and I is
nilpotent, then M 1is generated by the x.

Proof. Proof of (1). Choose generators y1, ..., ym of M over R. For each i we can
write y; = > ziy; with z;; € 1. In other words >_,(di; — 2i5)y; = 0. Let f be
the determinant f of the m x m matrix A = (d;; — 2;;). Note that f € 1+ 1. By
Lemma 77 there exists an m x m matrix B such that BA = f1,,xm. Writing out
we see that fy; = Z” bnia;jy; = 0 for every j. This implies that f annihilates M.

By Lemma ?? an element of 1+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M /N which is finite as N’ is finite.
We obtain (4) by applying (2) to M/N which is finite as N’ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N — M) and M. We obtain (6)
by applying (4) to M and the submodules Im(N — M) and M. We obtain (7) by
applying (5) to the map R®" — M, (ay,...,an) — a1x1 + ...+ a,z,. We obtain
(8) by applying (6) to the map R®" — M, (a1,...,an) = a121 + ... + UpTy.

Part (9) holds because if M = IM then M = I"M for all n > 0 and I being
nilpotent means I"™ = 0 for some n > 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. [
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Lemma 0.16 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I C R be an ideal.

(1) IfIM = M and M s finite, then there exists a f € 1+1 such that fM = 0.

(2) If IM = M, M is finite, and I C rad(R), then M = 0.

(3) If NNN' C M, M =N+IN', and N’ is finite, then there exists a f € 1+1
such that My = Ny.

(4) If NNN'C M, M =N+ 1IN, N’ is finite, and I C rad(R), then M = N.

(5) If N = M is a module map, N/IN — M/IM is surjective, and M is
finite, then there exists a f € 1+ 1 such that Ny — My is surjective.

(6) If N - M is a module map, N/IN — M/IM is surjective, M is finite,
and I C rad(R), then N — M is surjective.



(7) If 1,...,2, € M generate M/IM and M is finite, then there exists an
f €1+1 such that xq,...,x, generate My over Ry.
(8) If x1,...,xn € M generate M/IM, M is finite, and I C rad(R), then M
18 generated by x1,...,%y.
(9) If IM = M, I is nilpotent, then M = 0.
(10) If NyN'C M, M =N +IN’, and I is nilpotent then M = N.
(11) If N - M is a module map, I is nilpotent, and N/IN — M/IM is
surjective, then N — M is surjective.
(12) If {za}aca is a set of elements of M which generate M/IM and I is
nilpotent, then M 1is generated by the x,.

Proof. Proof of (1). Choose generators y1, ..., ym of M over R. For each i we can
write y; = Y z;;y; with z;; € I. In other words Zj(éij — 2i;)y; = 0. Let f be
the determinant f of the m x m matrix A = (§;; — z;;). Note that f € 1+ 1. By
Lemma 7?7 there exists an m x m matrix B such that BA = f1,,x,,. Writing out
we see that fy; = Z” bnia;jy; = 0 for every j. This implies that f annihilates M.

By Lemma ?? an element of 14+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M /N which is finite as N is finite.
We obtain (4) by applying (2) to M/N which is finite as N’ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N — M) and M. We obtain (6)
by applying (4) to M and the submodules Im(N — M) and M. We obtain (7) by
applying (5) to the map R®" — M, (ai,...,a,) = a1x1 + ...+ ayx,. We obtain
(8) by applying (6) to the map R®™ — M, (a1,...,an) = @121 + ... + apTy.

Part (9) holds because if M = IM then M = I™"M for all n > 0 and I being

nilpotent means I™ = 0 for some n > 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. (Il



