Lemma 0.1. (Nakayama’s lemma.) If M is a finite nonzero module over R, then $\text{m} M \neq M$.

Proof. Here is a silly way to prove this: If $\text{m} M = M$ for M finite then by induction $\text{m}^n M = M$. Hence the completion of M with respect to the maximal ideal is zero. Hence $M \otimes_R \hat{R} = 0$, see Lemma ???. But $R \rightarrow \hat{R}$ is faithfully flat by Lemma ?? and hence we conclude $M = 0$ by Lemma ???. □

Lemma 0.2. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

1. If M is finite, and $IM = M$, then there exists a $f = 1 + i \in 1 + I$ such that $fM = 0$.
2. If M is finite, $IM = M$, and $I \subset \text{rad}(R)$ then $M = 0$.
3. If $IM = M$, I is nilpotent, then $M = 0$.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'} x_{jj'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'}) x_{jj'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy. □

Lemma 0.3. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

1. If M is finite, and $IM = M$, then there exists a $f = 1 + i \in 1 + I$ such that $fM = 0$.
2. If M is finite, $IM = M$, and $I \subset \text{rad}(R)$ then $M = 0$.
3. If $IM = M$, I is nilpotent, then $M = 0$.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'} x_{jj'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'}) x_{jj'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy. □

Lemma 0.4. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

1. If M is finite, and $IM = M$, then there exists a $f = 1 + i \in 1 + I$ such that $fM = 0$.
2. If M is finite, $IM = M$, and $I \subset \text{rad}(R)$ then $M = 0$.
3. If $IM = M$, I is nilpotent, then $M = 0$.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'} x_{jj'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'}) x_{jj'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy. □
Lemma 0.5. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

1. If M is finite, and $IM = M$, then there exists a $f = 1 + i \in 1 + I$ such that $fM = 0$.
2. If M is finite, $IM = M$, and $I \subset \text{rad}(R)$ then $M = 0$.
3. If $IM = M$, I is nilpotent, then $M = 0$.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$, with $i_{jj'} \in I$. In other words $\sum(\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy. \qed

Lemma 0.6. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

1. If M is finite, and $IM = M$, then there exists a $f = 1 + i \in 1 + I$ such that $fM = 0$.
2. If M is finite, $IM = M$, and $I \subset \text{rad}(R)$ then $M = 0$.
3. If $IM = M$, I is nilpotent, then $M = 0$.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$, with $i_{jj'} \in I$. In other words $\sum(\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy. \qed

Lemma 0.7. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

1. If M is finite, and $IM = M$, then there exists a $f = 1 + i \in 1 + I$ such that $fM = 0$.
2. If M is finite, $IM = M$, and $I \subset \text{rad}(R)$ then $M = 0$.
3. If $IM = M$, I is nilpotent, then $M = 0$.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$, with $i_{jj'} \in I$. In other words $\sum(\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy. \qed
Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy. \qed

Commit: 046ef996f091e082c9abf898cbda171e7d057afdl

Lemma 0.9. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

1. If M is finite, and $IM = M$, then there exists a $f = 1 + i \in 1 + I$ such that $fM = 0$.
2. If M is finite, $IM = M$, and $I \subset \text{rad}(R)$ then $M = 0$.
3. If $IM = M$, I is nilpotent, then $M = 0$.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy. \qed

Commit: 3b3c53693a5c163bcfa583372c198e036d24d792

Lemma 0.10. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

1. If M is finite, and $IM = M$, then there exists a $f = 1 + i \in 1 + I$ such that $fM = 0$.
2. If M is finite, $IM = M$, and $I \subset \text{rad}(R)$ then $M = 0$.
3. If $IM = M$, I is nilpotent, then $M = 0$.

Proof. Proof of (1). Write $M = \sum Rx_j$, $j = 1, \ldots, r$. Write $x_j = \sum i_{jj'}x_{j'}$ with $i_{jj'} \in I$. In other words $\sum (\delta_{jj'} - i_{jj'})x_{j'} = 0$. Hence the determinant f of the $r \times r$ matrix $(\delta_{jj'} - i_{jj'})$ is a solution. The other parts are easy. \qed

Commit: 6bb230916504b9fad68a91f290a85db2000fb266

Lemma 0.11. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and let $I \subset R$ be an ideal.

1. If M is finite and $IM = M$, then there exists a $f \in 1 + I$ such that $fM = 0$.
2. If $IM = M$, $I \subset \text{rad}(R)$, and M is finite, then $M = 0$.
3. If $N, N' \subset M$, $M = N + IN'$, $I \subset \text{rad}(R)$, and N' is finite then $M = N$.
4. If $x_1, \ldots, x_n \in M$ generate M/IM and M is finite, then there exists an $f \in 1 + I$ such that x_1, \ldots, x_n generate M_f over R_f.
5. If $x_1, \ldots, x_n \in M$ generate M/IM, $I \subset \text{rad}(R)$, and M is finite, then M is generated by x_1, \ldots, x_n.
6. If $IM = M$, I is nilpotent, then $M = 0$.
7. If $N, N' \subset M$, $M = N + IN'$, and I is nilpotent then $M = N$.
8. If $\{x_\alpha\}_{\alpha \in A}$ is a set of elements of M which generate M/IM and I is nilpotent, then M is generated by the x_α.

Commit: 6bb230916504b9fad68a91f290a85db2000fb266
Proof. Proof of (1). Choose generators \(y_1, \ldots, y_m \) of \(M \) over \(R \). For each \(i \) we can write \(y_i = \sum z_{ij} y_j \) with \(z_{ij} \in I \). In other words \(\sum_j (\delta_{ij} - z_{ij}) y_j = 0 \). Let \(f \) be the determinant of the \(m \times m \) matrix \(A = (\delta_{ij} - z_{ij}) \). Note that \(f \in 1 + I \). By Lemma ?? there exists an \(m \times m \) matrix \(B \) such that \(BA = f^1_{m \times m} \). Writing out we see that \(f y_j = \sum_i b_{ij} a_{ij} y_j = 0 \) for every \(j \). This implies that \(f \) annihilates \(M \).

By Lemma ?? an element of \(1 + \text{rad}(R) \) is invertible element of \(R \). Hence we see that (1) implies (2). We obtain (3) by applying (2) to \(M/N \). We obtain (4) by applying (1) to \(M/Rx_1 + \cdots + Rx_n \). We obtain (5) from (4) by the first remark of this paragraph.

Part (6) holds because if \(M = IM \) then \(M = I^n M \) for all \(n \geq 0 \) and \(I \) being nilpotent means \(I^n = 0 \) for some \(n \gg 0 \). Parts (7) and (8) follow from (6) by considering the quotient of \(M \) by the given submodule. \(\square \)

Commit: 6a936bc55f4edc2d51e2d94f97aa716a67366e

algebra.tex, lemma-NAK, 00DV

Lemma 0.12 (Nakayama’s lemma). Let \(R \) be a ring, let \(M \) be an \(R \)-module, and let \(I \subset R \) be an ideal.

1. If \(IM = M \) and \(M \) is finite, then there exists a \(f \in 1 + I \) such that \(fM = 0 \).
2. If \(IM = M \), \(M \) is finite, and \(I \subset \text{rad}(R) \), then \(M = 0 \).
3. If \(N, N' \subset M, M = N + IN', \) and \(N' \) is finite, then there exists a \(f \in 1 + I \) such that \(M_f = N_f \).
4. If \(N, N' \subset M, M = N + IN', \) \(N' \) is finite, and \(I \subset \text{rad}(R) \), then \(M = N \).
5. If \(N \to M \) is a module map, \(N/IN \to M/IM \) is surjective, and \(M \) is finite, then there exists a \(f \in 1 + I \) such that \(N_f \to M_f \) is surjective.
6. If \(N \to M \) is a module map, \(N/IN \to M/IM \) is surjective, \(M \) is finite, and \(I \subset \text{rad}(R) \), then \(N \to M \) is surjective.
7. If \(x_1, \ldots, x_n \in M \) generate \(M/IM \) and \(M \) is finite, then there exists an \(f \in 1 + I \) such that \(x_1, \ldots, x_n \) generate \(M_f \) over \(R_f \).
8. If \(x_1, \ldots, x_n \in M \) generate \(M/IM \), \(M \) is finite, and \(I \subset \text{rad}(R) \), then \(M \) is generated by \(x_1, \ldots, x_n \).
9. If \(IM = M, I \) is nilpotent, then \(M = 0 \).
10. If \(N, N' \subset M, M = N + IN' \), and \(I \) is nilpotent then \(M = N \).
11. If \(N \to M \) is a module map, \(I \) is nilpotent, and \(N/IN \to M/IM \) is surjective, then \(N \to M \) is surjective.
12. If \(\{x_\alpha\}_{\alpha \in A} \) is a set of elements of \(M \) which generate \(M/IM \) and \(I \) is nilpotent, then \(M \) is generated by the \(x_\alpha \).

Proof. Proof of (1). Choose generators \(y_1, \ldots, y_m \) of \(M \) over \(R \). For each \(i \) we can write \(y_i = \sum z_{ij} y_j \) with \(z_{ij} \in I \). In other words \(\sum_j (\delta_{ij} - z_{ij}) y_j = 0 \). Let \(f \) be the determinant \(f \) of the \(m \times m \) matrix \(A = (\delta_{ij} - z_{ij}) \). Note that \(f \in 1 + I \). By Lemma ?? there exists an \(m \times m \) matrix \(B \) such that \(BA = f^1_{m \times m} \). Writing out we see that \(f y_j = \sum_i b_{ij} a_{ij} y_j = 0 \) for every \(j \). This implies that \(f \) annihilates \(M \).

By Lemma ?? an element of \(1 + \text{rad}(R) \) is invertible element of \(R \). Hence we see that (1) implies (2). We obtain (3) by applying (1) to \(M/N \) which is finite as \(N' \) is finite. We obtain (4) by applying (2) to \(M/N \) which is finite as \(N' \) is finite. We obtain (5) by applying (3) to \(M \) and the submodules \(\text{Im}(N \to M) \) and \(M \). We obtain (6) by applying (4) to \(M \) and the submodules \(\text{Im}(N \to M) \) and \(M \). We obtain (7) by
applying (5) to the map \(R^{\oplus n} \rightarrow M, (a_1, \ldots, a_n) \mapsto a_1 x_1 + \ldots + a_n x_n \). We obtain (8) by applying (6) to the map \(R^{\oplus n} \rightarrow M, (a_1, \ldots, a_n) \mapsto a_1 x_1 + \ldots + a_n x_n \).

Part (9) holds because if \(M = IM \) then \(M = I^n M \) for all \(n \geq 0 \) and \(I \) being nilpotent means \(I^n = 0 \) for some \(n \gg 0 \). Parts (10), (11), and (12) follow from (9) by the arguments used above.

\[\square \]

Commit: 19733a9e82de0e0b2c4b809c2a5f0092a6b6152

algebra.tex, lemma-NAK, 00DV

Lemma 0.13 (Nakayama’s lemma). Let \(R \) be a ring, let \(M \) be an \(R \)-module, and let \(I \subset R \) be an ideal.

1. If \(IM = M \) and \(M \) is finite, then there exists a \(f \in 1 + I \) such that \(fM = 0 \).
2. If \(IM = M \), \(M \) is finite, and \(I \subset \text{rad}(R) \), then \(M = 0 \).
3. If \(N, N' \subset M \), \(M = N + IN' \), and \(N' \) is finite, then there exists a \(f \in 1 + I \) such that \(Mf = Nf \).
4. If \(N, N' \subset M \), \(M = N + IN' \), \(N' \) is finite, and \(I \subset \text{rad}(R) \), then \(M = N \).
5. If \(N \rightarrow M \) is a module map, \(N/I \rightarrow M/IM \) is surjective, and \(M \) is finite, then there exists a \(f \in 1 + I \) such that \(Mf \rightarrow Mf \) is surjective.
6. If \(N \rightarrow M \) is a module map, \(N/I \rightarrow M/IM \) is surjective, \(M \) is finite, and \(I \subset \text{rad}(R) \), then \(N \rightarrow M \) is surjective.
7. If \(x_1, \ldots, x_n \in M \) generate \(M/IM \) and \(M \) is finite, then there exists an \(f \in 1 + I \) such that \(x_1, \ldots, x_n \) generate \(Mf \) over \(Rf \).
8. If \(x_1, \ldots, x_n \in M \) generate \(M/IM \) and \(M \) is finite, and \(I \subset \text{rad}(R) \), then \(M \) is generated by \(x_1, \ldots, x_n \).
9. If \(IM = M \), \(I \) is nilpotent, then \(M = 0 \).
10. If \(N, N' \subset M \), \(M = N + IN' \), and \(I \) is nilpotent then \(M = N \).
11. If \(N \rightarrow M \) is a module map, \(I \) is nilpotent, and \(N/I \rightarrow M/IM \) is surjective, then \(N \rightarrow M \) is surjective.
12. If \(\{ x_\alpha \}_{\alpha \in A} \) is a set of elements of \(M \) which generate \(M/IM \) and \(I \) is nilpotent, then \(M \) is generated by the \(x_\alpha \).

Proof. Proof of (1). Choose generators \(y_1, \ldots, y_n \) of \(M \) over \(R \). For each \(i \) we can write \(y_i = \sum z_{ij} y_j \) with \(z_{ij} \in I \). In other words \(\sum (\delta_{ij} - z_{ij}) y_j = 0 \). Let \(f \) be the determinant of a \(m \times m \) matrix \(A = (\delta_{ij} - z_{ij}) \). Note that \(f \in 1 + I \). By Lemma ?? there exists an \(m \times m \) matrix \(B \) such that \(BA = f I_{m \times m} \). Writing out we see that \(f y_j = \sum_{i,j} b_{ij} a_{ij} y_i = 0 \) for every \(j \). This implies that \(f \) annihilates \(M \).

By Lemma ?? an element of \(1 + \text{rad}(R) \) is invertible element of \(R \). Hence we see that (1) implies (2). We obtain (3) by applying (1) to \(M/N \) which is finite as \(N' \) is finite. We obtain (4) by applying (2) to \(M/N \) which is finite as \(N' \) is finite. We obtain (5) by applying (3) to \(M \) and the submodules \(\text{Im}(N \rightarrow M) \) and \(M \). We obtain (6) by applying (4) to \(M \) and the submodules \(\text{Im}(N \rightarrow M) \) and \(M \). We obtain (7) by applying (5) to the map \(R^{\oplus n} \rightarrow M, (a_1, \ldots, a_n) \mapsto a_1 x_1 + \ldots + a_n x_n \). We obtain (8) by applying (6) to the map \(R^{\oplus n} \rightarrow M, (a_1, \ldots, a_n) \mapsto a_1 x_1 + \ldots + a_n x_n \).

Part (9) holds because if \(M = IM \) then \(M = I^n M \) for all \(n \geq 0 \) and \(I \) being nilpotent means \(I^n = 0 \) for some \(n \gg 0 \). Parts (10), (11), and (12) follow from (9) by the arguments used above. \[\square \]
Lemma 0.14 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and let $I \subseteq R$ be an ideal.

1. If $IM = M$ and M is finite, then there exists a $f \in 1 + I$ such that $fM = 0$.
2. If $IM = M$, M is finite, and $I \subseteq \text{rad}(R)$, then $M = 0$.
3. If $N, N' \subseteq M$, $M = N + IN'$, and N' is finite, then there exists a $f \in 1 + I$ such that $M_f = N_f$.
4. If $N, N' \subseteq M$, $M = N + IN'$, N' is finite, and $I \subseteq \text{rad}(R)$, then $M = N$.
5. If $N \rightarrow M$ is a module map, $N/IN \rightarrow M/IM$ is surjective, and M is finite, then there exists a $f \in 1 + I$ such that $N_f \rightarrow M_f$ is surjective.
6. If $N \rightarrow M$ is a module map, $N/IN \rightarrow M/IM$ is surjective, M is finite, and $I \subseteq \text{rad}(R)$, then $N \rightarrow M$ is surjective.
7. If $x_1, \ldots, x_n \in M$ generate M/IM and M is finite, then there exists an $f \in 1 + I$ such that x_1, \ldots, x_n generate M_f over R_f.
8. If $x_1, \ldots, x_n \in M$ generate M/IM and M is finite, and $I \subseteq \text{rad}(R)$, then M is generated by x_1, \ldots, x_n.
9. If $IM = M$, I is nilpotent, then $M = 0$.
10. If $N, N' \subseteq M$, $M = N + IN'$, and I is nilpotent then $M = N$.
11. If $N \rightarrow M$ is a module map, I is nilpotent, and $N/IN \rightarrow M/IM$ is surjective, then $N \rightarrow M$ is surjective.
12. If $\{x_\alpha\}_{\alpha \in A}$ is a set of elements of M which generate M/IM and I is nilpotent, then M is generated by the x_α.

Proof. Proof of (1). Choose generators y_1, \ldots, y_m of M over R. For each i we can write $y_i = \sum z_{ij}y_j$ with $z_{ij} \in I$. In other words $\sum_j (\delta_{ij} - z_{ij})y_j = 0$. Let f be the determinant f of the $m \times m$ matrix $A = (\delta_{ij} - z_{ij})$. Note that $f \in 1 + I$. By Lemma ?? there exists an $m \times m$ matrix B such that $BA = f1_{m \times m}$. Writing out we see that $f y_j = \sum_{i,j} b_{ij} a_{ij} y_j = 0$ for every j. This implies that f annihilates M.

By Lemma ?? an element of $1 + \text{rad}(R)$ is invertible element of R. Hence we see that (1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N' is finite. We obtain (4) by applying (2) to M/N which is finite as N' is finite. We obtain (5) by applying (3) to M and the submodules $\text{Im}(N \rightarrow M)$ and M. We obtain (6) by applying (4) to M and the submodules $\text{Im}(N \rightarrow M)$ and M. We obtain (7) by applying (5) to the map $M^\oplus n \rightarrow M$, $(a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_n x_n$. We obtain (8) by applying (6) to the map $M^\oplus n \rightarrow M$, $(a_1, \ldots, a_n) \mapsto a_1 x_1 + \ldots + a_n x_n$.

Part (9) holds because if $M = IM$ then $M = I^n M$ for all $n \geq 0$ and I being nilpotent means $I^n = 0$ for some $n \gg 0$. Parts (10), (11), and (12) follow from (9) by the arguments used above. \qed
(3) If \(N, N' \subseteq M, M = N + IN' \), and \(N' \) is finite, then there exists a \(f \in 1+I \) such that \(M_f = N_f \).

(4) If \(N, N' \subseteq M, M = N + IN' \), \(N' \) is finite, and \(I \subseteq \text{rad}(R) \), then \(M = N \).

(5) If \(N \to M \) is a module map, \(N/IN \to M/IM \) is surjective, and \(M \) is finite, then there exists a \(f \in 1+I \) such that \(N_f \to M_f \) is surjective.

(6) If \(N \to M \) is a module map, \(N/IN \to M/IM \) is surjective, \(M \) is finite, and \(I \subseteq \text{rad}(R) \), then \(N \to M \) is surjective.

(7) If \(x_1, \ldots, x_n \in M \) generate \(M/IM \) and \(M \) is finite, then there exists an \(f \in 1+I \) such that \(x_1, \ldots, x_n \) generate \(M_f \over R_f \).

(8) If \(x_1, \ldots, x_n \in M \) generate \(M/IM \), \(M \) is finite, and \(I \subseteq \text{rad}(R) \), then \(M \) is generated by \(x_1, \ldots, x_n \).

(9) If \(IM = M, I \) is nilpotent, then \(M = 0 \).

(10) If \(N, N' \subseteq M, M = N + IN' \), and \(I \) is nilpotent then \(M = N \).

(11) If \(N \to M \) is a module map, \(I \) is nilpotent, and \(N/IN \to M/IM \) is surjective, then \(N \to M \) is surjective.

(12) If \(\{x_\alpha\}_{\alpha \in A} \) is a set of elements of \(M \) which generate \(M/IM \) and \(I \) is nilpotent, then \(M \) is generated by the \(x_\alpha \).

Proof. Proof of (1). Choose generators \(y_1, \ldots, y_m \) of \(M \) over \(R \). For each \(i \) we can write \(y_i = \sum z_{ij} y_j \) with \(z_{ij} \in I \). In other words \(\sum_j (\delta_{ij} - z_{ij}) y_j = 0 \). Let \(f \) be the determinant \(f \) of the \(m \times m \) matrix \(A = (\delta_{ij} - z_{ij}) \). Note that \(f \in 1+I \). By Lemma ?? there exists an \(m \times m \) matrix \(B \) such that \(BA = f \text{I}_{m \times m} \). Writing out we see that \(f y_j = \sum_{i,j} b_{ij} a_i y_j = 0 \) for every \(j \). This implies that \(f \) annihilates \(M \).

By Lemma ?? an element of \(1 + \text{rad}(R) \) is invertible element of \(R \). Hence we see that (1) implies (2). We obtain (3) by applying (1) to \(M/N \) which is finite as \(N' \) is finite. We obtain (4) by applying (2) to \(M/N \) which is finite as \(N' \) is finite. We obtain (5) by applying (3) to \(M \) and the submodules \(\text{Im}(N \to M) \) and \(M \). We obtain (6) by applying (4) to \(M \) and the submodules \(\text{Im}(N \to M) \) and \(M \). We obtain (7) by applying (5) to the map \(R^{\oplus n} \to M, (a_1, \ldots, a_n) \mapsto a_1 x_1 + \ldots + a_n x_n \). We obtain (8) by applying (6) to the map \(R^{\oplus n} \to M, (a_1, \ldots, a_n) \mapsto a_1 x_1 + \ldots + a_n x_n \).

Part (9) holds because if \(M = IM \) then \(M = I^n M \) for all \(n \geq 0 \) and \(I \) being nilpotent means \(I^n = 0 \) for some \(n \gg 0 \). Parts (10), (11), and (12) follow from (9) by the arguments used above.

\textbf{Commit:} c3de517872b0d3fe5b8f82b1c353330a25e4c

\textbf{algebra.tex, lemma-NAK, 00DV}

\textbf{Lemma 0.16 (Nakayama’s lemma).} \textit{Let} \(R \) \textit{be a ring, let} \(M \) \textit{be an} \(R \)-\textit{module, and let} \(I \subseteq R \) \textit{be an ideal.}

(1) If \(IM = M \) and \(M \) is finite, then there exists a \(f \in 1+I \) such that \(fM = 0 \).

(2) If \(IM = M \), \(M \) is finite, and \(I \subseteq \text{rad}(R) \), then \(M = 0 \).

(3) If \(N, N' \subseteq M, M = N + IN' \), and \(N' \) is finite, then there exists a \(f \in 1+I \) such that \(M_f = N_f \).

(4) If \(N, N' \subseteq M, M = N + IN' \), \(N' \) is finite, and \(I \subseteq \text{rad}(R) \), then \(M = N \).

(5) If \(N \to M \) is a module map, \(N/IN \to M/IM \) is surjective, and \(M \) is finite, then there exists a \(f \in 1+I \) such that \(N_f \to M_f \) is surjective.

(6) If \(N \to M \) is a module map, \(N/IN \to M/IM \) is surjective, \(M \) is finite, and \(I \subseteq \text{rad}(R) \), then \(N \to M \) is surjective.
8

(7) If \(x_1, \ldots, x_n \in M\) generate \(M/IM\) and \(M\) is finite, then there exists an \(f \in 1+I\) such that \(x_1, \ldots, x_n\) generate \(M_f\) over \(R_f\).

(8) If \(x_1, \ldots, x_n \in M\) generate \(M/IM\), \(M\) is finite, and \(I \subset \text{rad}(R)\), then \(M\) is generated by \(x_1, \ldots, x_n\).

(9) If \(IM = M\), \(I\) is nilpotent, then \(M = 0\).

(10) If \(N, N' \subset M\), \(M = N + IN'\), and \(I \subset \text{rad}(R)\), then \(M\) is generated by \(x_1, \ldots, x_n\).

(11) If \(IM = M\), \(I\) is nilpotent, then \(M = 0\).

(12) If \(\{x_\alpha\}_{\alpha \in A}\) is a set of elements of \(M\) which generate \(M/IM\) and \(I\) is nilpotent, then \(M\) is generated by the \(x_\alpha\).

Proof. Proof of (1). Choose generators \(y_1, \ldots, y_m\) of \(M\) over \(R\). For each \(i\) we can write \(y_i = \sum z_{ij}y_j\) with \(z_{ij} \in I\). In other words \(\sum_j (\delta_{ij} - z_{ij})y_j = 0\). Let \(f\) be the determinant \(f\) of the \(m \times m\) matrix \(A = (\delta_{ij} - z_{ij})\). Note that \(f \in 1+I\). By Lemma ?? there exists an \(m \times m\) matrix \(B\) such that \(BA = f1_{m \times m}\). Writing out we see that \(fy_j = \sum a_{ij}y_j = 0\) for every \(j\). This implies that \(f\) annihilates \(M\).

By Lemma ?? an element of \(1+\text{rad}(R)\) is invertible element of \(R\). Hence we see that (1) implies (2). We obtain (3) by applying (1) to \(M/N\) which is finite as \(N'\) is finite. We obtain (4) by applying (2) to \(M/N\) which is finite as \(N'\) is finite. We obtain (5) by applying (3) to \(M\) and the submodules \(\text{Im}(N \to M)\) and \(M\). We obtain (6) by applying (4) to \(M\) and the submodules \(\text{Im}(N \to M)\) and \(M\). We obtain (7) by applying (5) to the map \(R^\oplus n \to M\), \((a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n\). We obtain (8) by applying (6) to the map \(R^\oplus n \to M\), \((a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots + a_nx_n\).

Part (9) holds because if \(M = IM\) then \(M = I^nM\) for all \(n \geq 0\) and \(I\) being nilpotent means \(I^n = 0\) for some \(n \gg 0\). Parts (10), (11), and (12) follow from (9) by the arguments used above. \(\square\)