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Lemma 0.1. (Nakayama’s lemma.) If M is a finite nonzero module over R, then
mM 6= M .

Proof. Here is a silly way to prove this: If mM = M for M finite then by induction
mnM = M . Hence the completion of M with respect to the maximal ideal is zero.
Hence M ⊗R R̂ = 0, see Lemma ??. But R→ R̂ is faithfully flat by Lemma ?? and
hence we conclude M = 0 by Lemma ??. �
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Lemma 0.2. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite, and IM = M , then there exists a f = 1 + i ∈ 1 + I such that
fM = 0.

(2) If M is finite, IM = M , and I ⊂ rad(R) then M = 0.
(3) If IM = M , I is nilpotent, then M = 0.

Proof. Proof of 1. Write M =
∑
Rxj , j = 1, . . . , r. Write xj =

∑
ijj′xj′ with

ijj′ ∈ I. In other words
∑

(δjj′ − ijj′)xj′ = 0. Hence the determinant f of the r× r
matrix (δjj′ − ijj′) is a solution. The other parts are easy. �
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Lemma 0.3. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite, and IM = M , then there exists a f = 1 + i ∈ 1 + I such that
fM = 0.

(2) If M is finite, IM = M , and I ⊂ rad(R) then M = 0.
(3) If IM = M , I is nilpotent, then M = 0.

Proof. Proof of (1). Write M =
∑
Rxj , j = 1, . . . , r. Write xj =

∑
ijj′xj′ with

ijj′ ∈ I. In other words
∑

(δjj′ − ijj′)xj′ = 0. Hence the determinant f of the r× r
matrix (δjj′ − ijj′) is a solution. The other parts are easy. �
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Lemma 0.4. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite, and IM = M , then there exists a f = 1 + i ∈ 1 + I such that
fM = 0.

(2) If M is finite, IM = M , and I ⊂ rad(R) then M = 0.
(3) If IM = M , I is nilpotent, then M = 0.

Proof. Proof of (1). Write M =
∑
Rxj , j = 1, . . . , r. Write xj =

∑
ijj′xj′ with

ijj′ ∈ I. In other words
∑

(δjj′ − ijj′)xj′ = 0. Hence the determinant f of the r× r
matrix (δjj′ − ijj′) is a solution. The other parts are easy. �
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Lemma 0.5. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite, and IM = M , then there exists a f = 1 + i ∈ 1 + I such that
fM = 0.

(2) If M is finite, IM = M , and I ⊂ rad(R) then M = 0.
(3) If IM = M , I is nilpotent, then M = 0.

Proof. Proof of (1). Write M =
∑
Rxj , j = 1, . . . , r. Write xj =

∑
ijj′xj′ with

ijj′ ∈ I. In other words
∑

(δjj′ − ijj′)xj′ = 0. Hence the determinant f of the r× r
matrix (δjj′ − ijj′) is a solution. The other parts are easy. �
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Lemma 0.6. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite, and IM = M , then there exists a f = 1 + i ∈ 1 + I such that
fM = 0.

(2) If M is finite, IM = M , and I ⊂ rad(R) then M = 0.
(3) If IM = M , I is nilpotent, then M = 0.

Proof. Proof of (1). Write M =
∑
Rxj , j = 1, . . . , r. Write xj =

∑
ijj′xj′ with

ijj′ ∈ I. In other words
∑

(δjj′ − ijj′)xj′ = 0. Hence the determinant f of the r× r
matrix (δjj′ − ijj′) is a solution. The other parts are easy. �
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Lemma 0.7. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite, and IM = M , then there exists a f = 1 + i ∈ 1 + I such that
fM = 0.

(2) If M is finite, IM = M , and I ⊂ rad(R) then M = 0.
(3) If IM = M , I is nilpotent, then M = 0.

Proof. Proof of (1). Write M =
∑
Rxj , j = 1, . . . , r. Write xj =

∑
ijj′xj′ with

ijj′ ∈ I. In other words
∑

(δjj′ − ijj′)xj′ = 0. Hence the determinant f of the r× r
matrix (δjj′ − ijj′) is a solution. The other parts are easy. �
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Lemma 0.8. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite, and IM = M , then there exists a f = 1 + i ∈ 1 + I such that
fM = 0.

(2) If M is finite, IM = M , and I ⊂ rad(R) then M = 0.
(3) If IM = M , I is nilpotent, then M = 0.
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Proof. Proof of (1). Write M =
∑
Rxj , j = 1, . . . , r. Write xj =

∑
ijj′xj′ with

ijj′ ∈ I. In other words
∑

(δjj′ − ijj′)xj′ = 0. Hence the determinant f of the r× r
matrix (δjj′ − ijj′) is a solution. The other parts are easy. �
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Lemma 0.9. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite, and IM = M , then there exists a f = 1 + i ∈ 1 + I such that
fM = 0.

(2) If M is finite, IM = M , and I ⊂ rad(R) then M = 0.
(3) If IM = M , I is nilpotent, then M = 0.

Proof. Proof of (1). Write M =
∑
Rxj , j = 1, . . . , r. Write xj =

∑
ijj′xj′ with

ijj′ ∈ I. In other words
∑

(δjj′ − ijj′)xj′ = 0. Hence the determinant f of the r× r
matrix (δjj′ − ijj′) is a solution. The other parts are easy. �
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Lemma 0.10. (Nakayama’s lemma.) Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite, and IM = M , then there exists a f = 1 + i ∈ 1 + I such that
fM = 0.

(2) If M is finite, IM = M , and I ⊂ rad(R) then M = 0.
(3) If IM = M , I is nilpotent, then M = 0.

Proof. Proof of (1). Write M =
∑
Rxj , j = 1, . . . , r. Write xj =

∑
ijj′xj′ with

ijj′ ∈ I. In other words
∑

(δjj′ − ijj′)xj′ = 0. Hence the determinant f of the r× r
matrix (δjj′ − ijj′) is a solution. The other parts are easy. �
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Lemma 0.11 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If M is finite and IM = M , then there exists a f ∈ 1+I such that fM = 0.
(2) If IM = M , I ⊂ rad(R), and M is finite, then M = 0.
(3) If N,N ′ ⊂M , M = N + IN ′, I ⊂ rad(R), and N ′ is finite then M = N .
(4) If x1, . . . , xn ∈ M generate M/IM and M is finite, then there exists an

f ∈ 1 + I such that x1, . . . , xn generate Mf over Rf .
(5) If x1, . . . , xn ∈ M generate M/IM , I ⊂ rad(R), and M is finite, then M

is generated by x1, . . . , xn.
(6) If IM = M , I is nilpotent, then M = 0.
(7) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
(8) If {xα}α∈A is a set of elements of M which generate M/IM and I is

nilpotent, then M is generated by the xα.
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Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we can
write yi =

∑
zijyj with zij ∈ I. In other words

∑
j(δij − zij)yj = 0. Let f be

the determinant f of the m ×m matrix A = (δij − zij). Note that f ∈ 1 + I. By
Lemma ?? there exists an m×m matrix B such that BA = f1m×m. Writing out
we see that fyj =

∑
i,j bhiaijyj = 0 for every j. This implies that f annihilates M .

By Lemma ?? an element of 1 + rad(R) is invertible element of R. Hence we see
that (1) implies (2). We obtain (3) by applying (2) to M/N . We obtain (4) by
applying (1) to M/Rx1 + . . .+Rxn. We obtain (5) from (4) by the first remark of
this paragraph.

Part (6) holds because if M = IM then M = InM for all n ≥ 0 and I being
nilpotent means In = 0 for some n � 0. Parts (7) and (8) follow from (6) by
considering the quotient of M by the given submodule. �
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Lemma 0.12 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If IM = M and M is finite, then there exists a f ∈ 1+I such that fM = 0.
(2) If IM = M , M is finite, and I ⊂ rad(R), then M = 0.
(3) If N,N ′ ⊂M , M = N +IN ′, and N ′ is finite, then there exists a f ∈ 1+I

such that Mf = Nf .
(4) If N,N ′ ⊂M , M = N + IN ′, N ′ is finite, and I ⊂ rad(R), then M = N .
(5) If N → M is a module map, N/IN → M/IM is surjective, and M is

finite, then there exists a f ∈ 1 + I such that Nf →Mf is surjective.
(6) If N → M is a module map, N/IN → M/IM is surjective, M is finite,

and I ⊂ rad(R), then N →M is surjective.
(7) If x1, . . . , xn ∈ M generate M/IM and M is finite, then there exists an

f ∈ 1 + I such that x1, . . . , xn generate Mf over Rf .
(8) If x1, . . . , xn ∈ M generate M/IM , M is finite, and I ⊂ rad(R), then M

is generated by x1, . . . , xn.
(9) If IM = M , I is nilpotent, then M = 0.

(10) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
(11) If N → M is a module map, I is nilpotent, and N/IN → M/IM is

surjective, then N →M is surjective.
(12) If {xα}α∈A is a set of elements of M which generate M/IM and I is

nilpotent, then M is generated by the xα.

Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we can
write yi =

∑
zijyj with zij ∈ I. In other words

∑
j(δij − zij)yj = 0. Let f be

the determinant f of the m ×m matrix A = (δij − zij). Note that f ∈ 1 + I. By
Lemma ?? there exists an m×m matrix B such that BA = f1m×m. Writing out
we see that fyj =

∑
i,j bhiaijyj = 0 for every j. This implies that f annihilates M .

By Lemma ?? an element of 1+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N ′ is finite.
We obtain (4) by applying (2) to M/N which is finite as N ′ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N →M) and M . We obtain (6)
by applying (4) to M and the submodules Im(N →M) and M . We obtain (7) by
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applying (5) to the map R⊕n → M , (a1, . . . , an) 7→ a1x1 + . . . + anxn. We obtain
(8) by applying (6) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+ anxn.

Part (9) holds because if M = IM then M = InM for all n ≥ 0 and I being
nilpotent means In = 0 for some n� 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. �
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Lemma 0.13 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If IM = M and M is finite, then there exists a f ∈ 1+I such that fM = 0.
(2) If IM = M , M is finite, and I ⊂ rad(R), then M = 0.
(3) If N,N ′ ⊂M , M = N +IN ′, and N ′ is finite, then there exists a f ∈ 1+I

such that Mf = Nf .
(4) If N,N ′ ⊂M , M = N + IN ′, N ′ is finite, and I ⊂ rad(R), then M = N .
(5) If N → M is a module map, N/IN → M/IM is surjective, and M is

finite, then there exists a f ∈ 1 + I such that Nf →Mf is surjective.
(6) If N → M is a module map, N/IN → M/IM is surjective, M is finite,

and I ⊂ rad(R), then N →M is surjective.
(7) If x1, . . . , xn ∈ M generate M/IM and M is finite, then there exists an

f ∈ 1 + I such that x1, . . . , xn generate Mf over Rf .
(8) If x1, . . . , xn ∈ M generate M/IM , M is finite, and I ⊂ rad(R), then M

is generated by x1, . . . , xn.
(9) If IM = M , I is nilpotent, then M = 0.

(10) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
(11) If N → M is a module map, I is nilpotent, and N/IN → M/IM is

surjective, then N →M is surjective.
(12) If {xα}α∈A is a set of elements of M which generate M/IM and I is

nilpotent, then M is generated by the xα.

Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we can
write yi =

∑
zijyj with zij ∈ I. In other words

∑
j(δij − zij)yj = 0. Let f be

the determinant f of the m ×m matrix A = (δij − zij). Note that f ∈ 1 + I. By
Lemma ?? there exists an m×m matrix B such that BA = f1m×m. Writing out
we see that fyj =

∑
i,j bhiaijyj = 0 for every j. This implies that f annihilates M .

By Lemma ?? an element of 1+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N ′ is finite.
We obtain (4) by applying (2) to M/N which is finite as N ′ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N →M) and M . We obtain (6)
by applying (4) to M and the submodules Im(N →M) and M . We obtain (7) by
applying (5) to the map R⊕n → M , (a1, . . . , an) 7→ a1x1 + . . . + anxn. We obtain
(8) by applying (6) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+ anxn.

Part (9) holds because if M = IM then M = InM for all n ≥ 0 and I being
nilpotent means In = 0 for some n� 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. �
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Lemma 0.14 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If IM = M and M is finite, then there exists a f ∈ 1+I such that fM = 0.
(2) If IM = M , M is finite, and I ⊂ rad(R), then M = 0.
(3) If N,N ′ ⊂M , M = N +IN ′, and N ′ is finite, then there exists a f ∈ 1+I

such that Mf = Nf .
(4) If N,N ′ ⊂M , M = N + IN ′, N ′ is finite, and I ⊂ rad(R), then M = N .
(5) If N → M is a module map, N/IN → M/IM is surjective, and M is

finite, then there exists a f ∈ 1 + I such that Nf →Mf is surjective.
(6) If N → M is a module map, N/IN → M/IM is surjective, M is finite,

and I ⊂ rad(R), then N →M is surjective.
(7) If x1, . . . , xn ∈ M generate M/IM and M is finite, then there exists an

f ∈ 1 + I such that x1, . . . , xn generate Mf over Rf .
(8) If x1, . . . , xn ∈ M generate M/IM , M is finite, and I ⊂ rad(R), then M

is generated by x1, . . . , xn.
(9) If IM = M , I is nilpotent, then M = 0.

(10) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
(11) If N → M is a module map, I is nilpotent, and N/IN → M/IM is

surjective, then N →M is surjective.
(12) If {xα}α∈A is a set of elements of M which generate M/IM and I is

nilpotent, then M is generated by the xα.

Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we can
write yi =

∑
zijyj with zij ∈ I. In other words

∑
j(δij − zij)yj = 0. Let f be

the determinant f of the m ×m matrix A = (δij − zij). Note that f ∈ 1 + I. By
Lemma ?? there exists an m×m matrix B such that BA = f1m×m. Writing out
we see that fyj =

∑
i,j bhiaijyj = 0 for every j. This implies that f annihilates M .

By Lemma ?? an element of 1+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N ′ is finite.
We obtain (4) by applying (2) to M/N which is finite as N ′ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N →M) and M . We obtain (6)
by applying (4) to M and the submodules Im(N →M) and M . We obtain (7) by
applying (5) to the map R⊕n → M , (a1, . . . , an) 7→ a1x1 + . . . + anxn. We obtain
(8) by applying (6) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+ anxn.

Part (9) holds because if M = IM then M = InM for all n ≥ 0 and I being
nilpotent means In = 0 for some n� 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. �
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Lemma 0.15 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If IM = M and M is finite, then there exists a f ∈ 1+I such that fM = 0.
(2) If IM = M , M is finite, and I ⊂ rad(R), then M = 0.
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(3) If N,N ′ ⊂M , M = N +IN ′, and N ′ is finite, then there exists a f ∈ 1+I
such that Mf = Nf .

(4) If N,N ′ ⊂M , M = N + IN ′, N ′ is finite, and I ⊂ rad(R), then M = N .
(5) If N → M is a module map, N/IN → M/IM is surjective, and M is

finite, then there exists a f ∈ 1 + I such that Nf →Mf is surjective.
(6) If N → M is a module map, N/IN → M/IM is surjective, M is finite,

and I ⊂ rad(R), then N →M is surjective.
(7) If x1, . . . , xn ∈ M generate M/IM and M is finite, then there exists an

f ∈ 1 + I such that x1, . . . , xn generate Mf over Rf .
(8) If x1, . . . , xn ∈ M generate M/IM , M is finite, and I ⊂ rad(R), then M

is generated by x1, . . . , xn.
(9) If IM = M , I is nilpotent, then M = 0.

(10) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
(11) If N → M is a module map, I is nilpotent, and N/IN → M/IM is

surjective, then N →M is surjective.
(12) If {xα}α∈A is a set of elements of M which generate M/IM and I is

nilpotent, then M is generated by the xα.

Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we can
write yi =

∑
zijyj with zij ∈ I. In other words

∑
j(δij − zij)yj = 0. Let f be

the determinant f of the m ×m matrix A = (δij − zij). Note that f ∈ 1 + I. By
Lemma ?? there exists an m×m matrix B such that BA = f1m×m. Writing out
we see that fyj =

∑
i,j bhiaijyj = 0 for every j. This implies that f annihilates M .

By Lemma ?? an element of 1+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N ′ is finite.
We obtain (4) by applying (2) to M/N which is finite as N ′ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N →M) and M . We obtain (6)
by applying (4) to M and the submodules Im(N →M) and M . We obtain (7) by
applying (5) to the map R⊕n → M , (a1, . . . , an) 7→ a1x1 + . . . + anxn. We obtain
(8) by applying (6) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+ anxn.

Part (9) holds because if M = IM then M = InM for all n ≥ 0 and I being
nilpotent means In = 0 for some n� 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. �
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Lemma 0.16 (Nakayama’s lemma). Let R be a ring, let M be an R-module, and
let I ⊂ R be an ideal.

(1) If IM = M and M is finite, then there exists a f ∈ 1+I such that fM = 0.
(2) If IM = M , M is finite, and I ⊂ rad(R), then M = 0.
(3) If N,N ′ ⊂M , M = N +IN ′, and N ′ is finite, then there exists a f ∈ 1+I

such that Mf = Nf .
(4) If N,N ′ ⊂M , M = N + IN ′, N ′ is finite, and I ⊂ rad(R), then M = N .
(5) If N → M is a module map, N/IN → M/IM is surjective, and M is

finite, then there exists a f ∈ 1 + I such that Nf →Mf is surjective.
(6) If N → M is a module map, N/IN → M/IM is surjective, M is finite,

and I ⊂ rad(R), then N →M is surjective.
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(7) If x1, . . . , xn ∈ M generate M/IM and M is finite, then there exists an
f ∈ 1 + I such that x1, . . . , xn generate Mf over Rf .

(8) If x1, . . . , xn ∈ M generate M/IM , M is finite, and I ⊂ rad(R), then M
is generated by x1, . . . , xn.

(9) If IM = M , I is nilpotent, then M = 0.
(10) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
(11) If N → M is a module map, I is nilpotent, and N/IN → M/IM is

surjective, then N →M is surjective.
(12) If {xα}α∈A is a set of elements of M which generate M/IM and I is

nilpotent, then M is generated by the xα.

Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we can
write yi =

∑
zijyj with zij ∈ I. In other words

∑
j(δij − zij)yj = 0. Let f be

the determinant f of the m ×m matrix A = (δij − zij). Note that f ∈ 1 + I. By
Lemma ?? there exists an m×m matrix B such that BA = f1m×m. Writing out
we see that fyj =

∑
i,j bhiaijyj = 0 for every j. This implies that f annihilates M .

By Lemma ?? an element of 1+rad(R) is invertible element of R. Hence we see that
(1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N ′ is finite.
We obtain (4) by applying (2) to M/N which is finite as N ′ is finite. We obtain
(5) by applying (3) to M and the submodules Im(N →M) and M . We obtain (6)
by applying (4) to M and the submodules Im(N →M) and M . We obtain (7) by
applying (5) to the map R⊕n → M , (a1, . . . , an) 7→ a1x1 + . . . + anxn. We obtain
(8) by applying (6) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+ anxn.

Part (9) holds because if M = IM then M = InM for all n ≥ 0 and I being
nilpotent means In = 0 for some n� 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. �


