
Étale Cohomology

notes from a class by J. de Jong

Introduction 3

0.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.2 The Étale Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.3 Feats of the Étale Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Sheaf Theory 6

1.1 Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Sheafification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The fpqc Site 10

2.1 Faithfully Flat Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Quasi-coherent Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 C̆ech Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The C̆ech-to-cohomology Spectral Sequence . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Cohomology of Quasi-coherent Sheaves . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Picard Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 The Étale Site 19

3.1 Étale Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Étale Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Kummer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Neighborhoods, Stalks and Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Direct Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Inverse Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Étale Cohomology 24

4.1 Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Stalks of Higher Direct Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 The Leray Spectral Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



4.4 Henselian Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Vanishing of Finite Higher Direct Images . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 Cohomology of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Galois Action on Stalks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Cohomology of Curves 31

5.1 Brauer Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Higher Vanishing for Gm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Picards Groups of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Constructible Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Extension by Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6 Higher Vanishing for Torsion Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 The Trace Formula 43

6.1 Frobenii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Derived Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Perfectness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Lefschetz Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.6 Preliminaries and Sorites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.7 Proof of the Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Applications 62

7.1 `-adic sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Examples of L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



Etale Cohomology 3

Introduction

0.1 Prologue

This class is about another cohomology theory. So the first thing to remark is that the Zariski
topology is not entirely satisfactory. One of the main reasons that it fails to give the results
that we would want is that if X is a complex variety and F is a constant sheaf then

H i
Zar(X,F) = 0 for all i > 0.

The reason for that is the following. In an irreducible scheme (a variety in particular), any two
nonempty open subsets meet, and so the restriction mappings of a constant sheaf are surjective.
We say that the sheaf is flasque. In this case, all higher C̆ech cohomology groups vanish, and
so do all higher Zariski cohomology groups. In other words, there are “not enough” open sets
in the Zariski topology to detect this higher cohomology.
On the other hand, if X is a smooth projective complex variety, then

H2 dimX
Betti (X(C),Λ) = Λ for Λ = Z, Z/nZ,

where X(C) means the set of complex points of X . This is a feature that would be nice to
replicate in algebraic geometry. In positive characteristic in particular.

0.2 The Étale Topology

It is very hard to simply “add” extra open sets to refine the Zariski topology. One efficient
way to define a topology is to consider not only open sets, but also some schemes that lie over
them. To define the étale topology, one considers all morphisms ϕ : U → X which are étale.
If X is a smooth projective variety over C, then this means

(a) U is a disjoint union of smooth varieties ; and

(b) ϕ is (analytically) locally an isomorphism.

The word “analytically” refers to the usual (transcendental) topology over C. So the second
condition means that the derivative of ϕ has full rank everywhere (and in particular all the
components of U have the same dimension as X).

A double cover may not be an étale morphism if it has a double point. All the fibers should
have the same number of points. Removing that point will make the morphism étale.

not étale. étale.

To consider the étale topology, we have to look at all such morphisms. Unlike the Zariski
topology, these need not be merely subsets of X , even though their images always are.
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Definition. A family of morphisms {ϕi : Ui → X}i∈I is called an étale covering if each ϕi is
an étale morphism and their images cover X , i.e. X = ∪i∈Iϕi(Ui).

This “defines” the étale topology. In other words, we can now say what the sheaves are. An
étale sheaf F on X of sets (respectively abelian groups, vector spaces, rings, etc) is the data

(a) for each étale morphism ϕ : U → X , of a set (resp. abelian group, etc) F(U) ;

(b) for each pair U , U ′ of étale schemes over X , and each morphism U → U ′ over X (which
is automatically étale), of a restriction map ρUU ′ : F(U)→ F(U ′) ; such that

(c) for every étale covering {ϕi : Ui → X}i∈I , the diagram

∅→ F(U)→ Πi∈IF(Ui)⇒ Πi,j∈IF(Ui ×U Uj)

is exact (in the category of sets, and similarly in the appropriate category of abelian groups,
vector spaces etc).

Remark. In the last statement, it is essential not to forget the case where i = j which is
in general a highly nontrivial condition (unlike in the Zariski topology). In fact, the most
important coverings have only one element.

Since the identity is an étale morphism, we can compute the global sections of an étale sheaf,
and cohomology will simply be the corresponding right-derived functors. In other words,
once more theory has been developed and statements have been made precise, there will be no
obstacle to defining cohomology.

0.3 Feats of the Étale Topology

For a natural number n ∈ N = {1, 2, 3, 4, . . . } it is true that

H2
ét(P1

C,Z/nZ) = Z/nZ.

More generally, if X is a complex variety, then its étale Betti numbers with coefficients in a
finite field agree with the usual Betti numbers of X(C), i.e.

dimFq H
2i
ét (X,Fq) = dimFq H

2i
Betti(X(C),Fq).

This is extremely satisfactory. However, these equalities only hold for torsion coefficients, not
in general. For integer coefficients, one has

H2
ét(P1

C,Z) = 0.

There are ways to get back to nontorsion coefficients from torsion ones.

0.3.1 A Computation

How do we compute the cohomology of P1
C with coefficients Λ = Z/nZ? We use C̆ech

cohomology. A covering of P1
C is given by the two standard opens U0,U1, which are both

isomorphic to A1
C, and which intersection is isomorphic to A1

C − {0} = Gm. It turns out that
the Mayer-Vietoris sequence holds in the étale topology, therefore there is an exact sequence

H i−1
ét (U0 ∩ U1,Λ)→ H i

ét(P1
C ,Λ)→ H i

ét(U0,Λ)⊕H i
ét(U1,Λ)→ H i

ét(U0 ∩ U1,Λ).
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To get the answer we expect, we would need to show that the direct sum in the third term
vanishes. In fact, it is true that, as for the usual topology,

Hq
ét(A

1
C,Λ) = 0 for q > 1,

and

Hq
ét(A

1
C − {0},Λ) =

{
Λ if q = 1, and
0 for q > 2.

These results are already quite hard (what is an elementary proof?). Let us explain how we
would compute this once the machinery of étale cohomology is at our disposal.

Higher cohomology. This is taken care of by the following general fact: if X is an affine
curve over C, then

Hq
ét(X,Z/nZ) = 0 for q > 2.

This is proved by considering the generic point of the curve and doing some Galois cohomol-
ogy. So we only have to worry about the cohomology in degree 1.

Cohomology in degree 1. We use the following identifications:

H1
ét(X,Z/nZ) =

{
sheaves of sets F on the étale site Xét endowed with an
action Z/nZ×F → F such that F is a Z/nZ-torsor.

}/
∼=

=
{

morphisms Y → X which are finite étale together
with a free Z/nZ action such that X = Y/(Z/nZ).

}/
∼= .

The first identification is very general (it is true for any cohomology theory on a site) and has
nothing to do with the étale topology. The second identification is a consequence of descent
theory. The last set describes a collection of geometric objects on which we can get our hands.

• Since A1
C has no nontrivial finite étale covering, H1

ét(A1
C,Z/nZ) = 0.

• We need to study the finite étale coverings ϕ : Y → A1
C − {0}. It suffices to consider

the case where Y is connected, which we assume. Say that this morphism is n to 1, and
consider a projective compactification

Y
� � //

ϕ

��

Ȳ

ϕ̄
��

A1
C − {0}

� � // P1
C

Even though ϕ is étale and does not ramify, ϕ̄ may ramify at 0 and ∞. Say that the
preimages of 0 are the points y1, . . . , yr with indices of ramification e1, . . . er, and that
the preimages of∞ are the points y′1, . . . , y

′
s with indices of ramification d1, . . . ds. (In

particular,
∑
ei = n =

∑
dj .) Applying the Riemann-Hurwitz formula, we get

2gY − 2 = −2n+
∑

(ei − 1) +
∑

(dj − 1)

and therefore gY = 0, r = s = 1 and e1 = d1 = n. One such covering is given by
taking the nth root of the coordinates. Here Y = A1

C − {0} and ϕ(z) = zn.

Remember that we need not only classify the coverings of A1
C − {0} but also the free

Z/nZ-actions on it. In our case any such action corresponds to an automorphism of Y
sending z to ζnz, where ζn is an nth root of unity. There are ϕ(n) such actions (here
ϕ(n) means the Euler function). In other words, this computation shows that

H1
ét(A1

C − {0},Z/nZ) = µn(C) ∼= Z/nZ.

The first identification is canonical, the second isn’t.
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0.3.2 Nontorsion Coefficients

To study nontorsion coefficients, one makes the following definition:

H i
ét(X,Q`)

def=

(
lim←−
n

H i
ét(X; Z/`nZ)

)
⊗Z` Q`.

Thus we will need to study systems of sheaves satisfying some compatibility conditions.

1 Sheaf Theory

1.1 Presheaves

Definition. Let C be a category. A presheaf of sets (respectively, an abelian presheaf ) on C
is a functor C opp → Sets (resp. Ab).

Terminology. If U ∈ Ob(C ), then elements of F(U) are called sections of F on U ; for ϕ :
V → U in C , the map F(ϕ) : F(V) → F(U) is denoted s 7→ F(ϕ)(s) = ϕ∗(s) = s|V and
called restriction mapping. This last notation is ambiguous since the restriction map depends
on ϕ, but it’s standard. We also use the notation Γ(U ,F) = F(U).

Saying that F is a functor merely means that if W → V → U are morphisms in C and
s ∈ Γ(U ,F) then (s|V)|W = s|W , with the abuse of notation just seen.

The category of presheaves of sets (respectively of abelian presheaves) on C is denoted PSh(C )
(resp. PAb(C )). It is the category of functors from C opp to Sets (resp. Ab), which is to say
that the morphisms of presheaves are natural transformations of functors.

Example. Given an object X ∈ Ob(C ), we consider the functor

hX : C opp → Sets
U 7→ hX(U) = HomC (U , X)

V ϕ−→ U 7→ ϕ ◦ − : hX(U)→ hX(V).

It is a presheaf, called the representable presheaf associated to X . It is not true that repre-
sentable presheaves are sheaves in every topology on every site.

Lemma 1.1 (Yoneda). Let C be a category, and X,Y ∈ Ob(C ). There is a natural bijection

HomC (X,Y ) ∼−→ HomPSh(C )(hX , hY )
ψ 7−→ hψ = ψ ◦ − : hX → hY .

1.2 Sites

Definition. Let C be a category. A family of morphisms with fixed target {ϕi : Ui → U}i∈I is
the data of

• an object U ∈ C ;

• a set I (possibly empty) ; and

• for all i ∈ I , a morphism ϕi : Ui → U .

A site consists of a category C and a set Cov(C ) consising of families of morphisms with
fixed target called coverings, such that
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(isom) if ϕ : V → U is an isomorphism in C , then {ϕ : V → U} is a covering ;

(locality) if {ϕi : Ui → U}i∈I and for all i ∈ I , {ψij : Uij → Ui}j∈Ii are all coverings, then

{ϕi ◦ ψij : Uij → U}(i,j)∈Q
i∈I{i}×Ii

is also a covering ;

(base change) if {Ui → U}i∈I is a covering and V → U is a morphism in C , then

• for all i ∈ I , Ui ×U V exists in C ; and
• {Ui ×U V → V}i∈I is a covering.

Example. If X is a topological space, then it has an associated site TX defined as follows:
the objects of TX are the open subsets of X , the morphisms between these are the inclusion
mappings, and the coverings are the usual topological (surjective) coverings. Observe that if
U ,V ⊆ W ⊆ X are open subsets then U ×W V = U ∩ V exists: this category has fiber
products. All the verifications are trivial and everything works as can be expected.

1.3 Sheaves

Definition. A presheaf F of sets (resp. abelian presheaf) on a site C is called a sheaf if for all
coverings {ϕi : Ui → U}i∈I ∈ Cov(C ), the diagram

F(U)→
∏
i∈I
F(Ui)⇒

∏
i,j∈I
F(Ui ×U Uj),

where the first map is s 7→ (s|Ui)i∈I and the two maps on the right are (si)i∈I 7→ (si|Ui×UUj )
and (si)i∈I 7→ (sj |Ui×UUj ), is an equalizer diagram (in the appropriate category of sets or
abelian groups).
Remark. For the empty covering (where I = ∅), this implies that F(∅) is an empty product,
which is a final object in the corresponding category (a singleton, for Sets and Ab).
Example. Working this out for TX gives the usual notion of sheaves.
Definition. We denote Sh(C ) (respectively Ab(C )) the full subcategory of PSh(C ) (resp.
PAb(C )) which objects are sheaves. This is the category of sheaves of sets (resp. abelian
sheaves) on C .

1.3.1 The example of G-Sets

Let G be a group and define a site TG as follows: the underlying category is the category of
G-sets, i.e. its objects are sets endowed with a leftG-action and the morphisms are equivariant
maps; and the coverings of TG are the families {ϕi : Ui → U}i∈I satisfying U = ∪i∈Iϕi(Ui).
There is a special object in the site TG, namely the G-set G endowed with its natural action
by left translations. We denote it G. Observe that there is a natural group isomorphism

ρ : Gopp ∼−→ AutG-Sets(G)
g 7−→ (h 7→ hg).

In particular, for any presheaf F , the set F(G) inherits a G-action via ρ. (Note that by con-
travariance of F , the set F(G) is again a left G-set.) In fact, the functor

Sh(TG) −→ G-Sets
F 7−→ F(G)

is an equivalence of categories. Its quasi-inverse is the functor X 7→ hX . Without giving an
actual proof, let’s try to explain why some of this is true.
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Step 1. If S is a G-set, we can decompose it into orbits S =
∐
i∈I Oi. The sheaf axiom for

the covering {Oi → S}i∈I says that

F(S)→
∏
i∈I
F(Oi)⇒

∏
i,j∈I
F(Oi ×S Oj)

is an equalizer. Observing that fibered products in G-Sets are induced from fibered
products in Sets, and using the fact that F(∅) is a G-singleton, we get that∏

i,j∈I
F(Oi ×S Oj) =

∏
i∈I
F(Oi)

and the two maps above are in fact the same. Therefore the sheaf axiom merely says
that F(S) =

∏
i∈I F(Oi).

Step 2. If S is the G-set S = G/H and F is a sheaf on TG, then we claim that

F(G/H) = F(G)H

and in particular F({∗}) = F(G)G. To see this, let’s use the sheaf axiom for the
covering {G→ G/H} of S. We have

G×G/H G ∼−→ G×H
(g1, g2) 7−→ (g1, g1g

−1
2 )

is a disjoint union of copies of G (as a G-set). Hence the sheaf axiom reads

F(G/H)→ F(G)⇒
∏
h∈H
F(G)

where the two maps on the right are s 7→ (s)h∈H and s 7→ (hs)h∈H . Therefore
F(G/H) = F(G)H as claimed.

This doesn’t quite prove the claimed equivalence of categories, but it shows at least that a sheaf
F is entirely determined by its sections over G.

1.4 Sheafification

Definition. Let F be a presheaf on the site C and U = {Ui → U} ∈ Cov(C ). We define the
first C̆ech cohomology group by

Ȟ0(U ,F) =

{
(si)i∈I ∈

∏
i∈I
F(Ui)

∣∣∣∣∣ si|Ui×UUj = sj |Ui×UUj

}
.

There is a canonical map F(U) → Ȟ0(U ,F), s 7→ (s|Ui)i∈I . We say that a covering V =
{Vj → U}j∈J refines U if there exists α : J → I and for all j ∈ J , a commutative diagram

Vj
χj

//

  
AAAAAAAA

Uα(j)

||zzzzzzzz

U .
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Given the data α, {χj}i∈J as above, define

Ȟ0(U ,F) → Ȟ0(V ,F)
(si)i∈I 7→

(
χ∗j
(
sα(j)

))
j∈J .

We then claim that

(a) the map is well-defined (easy verification) ; and

(b) this map is independent of the choice of α, {χj}i∈J . To see this, consider also β, {ψj :
Vj → Uβ(j)}j∈J and the commutative diagram

Vj
(χj ,ψj)

// Uα(j) ×U Uβ(j)

xxqqqqqqqqqqq

&&MMMMMMMMMMM

Uα(j)

''NNNNNNNNNNNN
Uβ(j)

wwpppppppppppp

U .

Given a section s ∈ F(U), its image in F(Vj) under the map given by α, {χj}i∈J is
sα(j)|Uα(j)×UUβ(j)

, and its image under the map given by β, {ψj}i∈J is sβ(j)|Uα(j)×UUβ(j)
.

These two are equal since by assumption s ∈ Ȟ(U ,F). By the presheaf axiom, these
two are the same when restricted to Vj .

Theorem 1.2. Let C be a site and F a presheaf on C .

i. The rule
U 7→ F+U def= colim

U ∈Cov(U)
Ȟ0(U ,F)

is a presheaf. (And the colimit is a directed one.)

ii. There is a canonical map of presheaves F → F+.

iii. If F is a separated presheaf then F+ is a sheaf and the map in ii is injective.

iv. F+ is a separated presheaf.

v. F ] = (F+)+ is a sheaf, and the canonical map induces a functorial isomorphism

HomPSh(C )(F ,G) = HomSh(C )(F ],G)

for any G ∈ Sh(C ).

In other words, this means that the natural inclusion map F ↪→ F ] is a left adjoint to the
forgetful functor Sh(C )→ PSh(C ).

1.5 Cohomology

Theorem 1.3. The category of abelian sheaves on a site has enough injectives.

Proof. Omitted.
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So we can define cohomology as the right-derived functors of the global sections functor: if
X ∈ Ob(C ) and F ∈ Ab(C ),

Hp(X,F) def= RpΓ(X,F) = Hp(Γ(X, I•))

where F → I• is an injective resolution. To do this, we should check that the functor Γ(X,−)
is left exact. This is true indeed.

2 The fpqc Site

Definition. Let T be a scheme. An fpqc-covering of T is a family {ϕi : Ti → T}i∈I such that

(a) each ϕi is a flat morphism and ∪i∈Iϕi(Ti) = T ; and

(b) for each affine open U ⊆ T there exists a finite set K, a map i : K → I and affine opens
Ui(k) ⊆ Ti(k) such that U = ∪k∈Kϕi(k)(Ui(k)).

Remark. The first condition corresponds to fp, which stands for fidèlement plat, faithfully
flat in french, and the second to qc, quasi-compact. The second part of the first condition is
unnecessary when the second condition holds.

Example.

• Any Zariski open covering of T is an fpqc-covering.

• If f : X → Y is flat, surjective and quasi-compact, then {f : X → Y } is an fpqc-
covering.

• The morphism ϕ :
∐
x∈Ank

Spec(OAnk ,x) → An
k , where k is an infinite field, is flat and

surjective, but not quasi-compact, hence the family {ϕ} is not an fpqc-covering.

• Write A2
k = Spec k[x, y], ix : D(x) ↪→ A2

k and iy : D(y) ↪→ A2
k the standard opens.

Then the families {ix, iy,Spec kJx, yK→ A2
k} and {ix, iy,SpecOA2

k,0
→ A2

k} are fpqc-
coverings.

Lemma 2.1. The collection of fpqc-coverings defines a site on the category of schemes.

The proof is left as an exercise.

Definition. The site defined by the fpqc-coverings on the category of schemes (respectively,
over a fixed scheme S) is denoted Schfpqc (resp. Sch/S, fpqc) and called the big fpqc site (resp.
over S). Note that Sch = Sch/ Spec Z so we may deal with the relative case only, without loss
of generality.

Lemma 2.2. Let F be a presheaf on Sch/S . Then F is a sheaf on Sch/S, fpqc if and only if

i. F is a sheaf with respect to the Zariski topology, and

ii. for every faithfully flat morphism SpecB → SpecA of affine schemes over S, the sheaf
axiom holds for the covering {SpecB → SpecA}. Namely, this means that

F(SpecA)→ F(SpecB)⇒ F(SpecB ⊗A B)

is an equalizer diagram.
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An alternative way to think of an fpqc sheaf F on Sch/S, fpqc is as the following data:

(a) for each T/S , a usual (i.e. Zariski) sheaf FT on TZar ;

(b) for every map f : T ′ → T over S, a restriction mapping f∗FT → FT ′ ; such that

(c) the restriction mappings are functorial. These three conditions give the data of a Zariski
sheaf on Sch/S . The above lemma says that for F to be an fpqc sheaf, one also needs that

(d) for every faithfully flat morphism SpecB → SpecA over S, the diagram

FSpecA(SpecA)→ FSpecB(SpecB)⇒ FSpecB⊗AB(SpecB ⊗A B)

is an equalizer.

Example. Consider the presheaf

F : Schopp
/S → Ab

T/S 7→ Γ(T,Ω1
T/S).

The compatibility of differentials with localization implies that F is a sheaf on the Zariski
site (conditions (a)-(c) hold). However, it is not a sheaf on the fpqc site: consider the case
S = Spec Fp and the morphism

ϕ : V = Spec Fp[v]→ U = Spec Fp[u]

given by mapping u to vp. The family {ϕ} is an fpqc-covering, yet the restriction mapping
F(U)→ F(V) send the generator du to d(vp) = 0, so it is the zero map, and the diagram

F(U) 0−→ F(V)⇒ F(V ×U V)

is not an equalizer. (We will see that F is in fact a sheaf on the étale and smooth sites.)

Lemma 2.3. Any representable presheaf on Sch/S is a sheaf on the fpqc site.

We will prove this further. We say that the fpqc site is subcanonical.

Remark. The fpqc is the finest topology that we will see. Hence any sheaf on the fpqc site
will also be a sheaf in the subsequent sites (étale, smooth, etc).

Example. For the additive group scheme Ga,S = A1
S , one has hGa,S (T ) = HomS(T,Ga,S) =

Γ(T,OT ), hence the structure sheaf

O : Schopp
/S → Rings

T/S 7→ Γ(T,OT )

is a sheaf on the fpqc site. So for instance there is a notion of O-modules on this site.

2.1 Faithfully Flat Descent

Definition. Let U = {ti : Ti → T}i∈I be a family with fixed target. A descent datum for
quasi-coherent sheaves with respect to U is a family (Fi, ϕij)i,j∈I where

(a) for all i, Fi is a quasi-coherent sheaf on Ti ; and
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(b) for all i, j ∈ I , ϕij : pr∗0Fi
∼−→ pr∗1Fj is an isomorphism on Ti ×T Tj such that the

diagrams

pr∗0Fi

pr∗02 ϕik $$IIIIIIIII

pr∗01 ϕij // pr∗1Fj

pr∗12 ϕjkzzuuuuuuuuu

pr∗2Fk
commutes on Ti ×T Tj ×T Tk.

This descent datum is called effective if there exist a quasi-coherent sheaf F over T and OTi-
module isomorphisms ϕi : t∗iF

∼−→ Fi satisfying the cocycle condition, namely

ϕij = pr∗1(ϕj) ◦ pr∗0(ϕi)−1.

Theorem 2.4. If V = {Ti → T}i∈I is an fpqc-covering, then all descent data with respect to
V is effective.

In other words, the fibered category of quasi-coherent sheaves is a stack on the fpqc site. The
proof of the theorem is in two steps. The first one is to realize that for the Zariski site this is
easy (or well-known) using standard glueing of sheaves and the locality of quasi-coherence.
The second step is the case of an fpqc-covering of the form {SpecB → SpecA} where
A→ B is a faithfully flat ring map. This is a lemma in algebra, which we now present.

Descent If A→ B is a ring map, we consider the complex

(B/A)• : B → B ⊗A B → B ⊗A B ⊗A B → · · ·

where B is in degree 0, B ⊗A B in degree 1, etc, and the maps are given by

b 7→ 1⊗ b− b⊗ 1,
b0 ⊗ b1 7→ 1⊗ b0 ⊗ b1 − b0 ⊗ 1⊗ b1 + b0 ⊗ b1 ⊗ 1,

etc.

Lemma 2.5. If A→ B is faithfully flat, then the complex (B/A)• is exact in positive degrees,
and H0((B/A)•) = A.

Grothendieck proves this in three steps. Firstly, he assumes that the mapA→ B has a section,
and constructs an explicit homotopy to the complex where A is the only nonzero term, in
degree 0. Secondly, he observes that to prove the result, it suffices to do so after a faithfully
flat base change A → A′, replacing B with B′ = B ⊗A A′. Thirdly, he applies the faithfully
flat base change A → A′ = B and remarks that the map A′ = B → B′ = B ⊗A B has a
natural section.

Lemma 2.6. If A→ B is faithfully flat and M is an A-module, then the complex (B/A)•⊗A
M is exact in positive degrees, and H0((B/A)• ⊗AM) = M .

The same strategy of proof works.
Definition. LetA→ B be a ring map andN aB-module. A descent datum forN with respect
to A → B is an isomorphism ϕ : N ⊗A B ∼−→ B ⊗A N of B ⊗A B-modules such that the
diagram of B ⊗A B ⊗A B-modules

N ⊗A B ⊗A B

ϕ01
))RRRRRRRRRRRRR

ϕ02
// B ⊗A N ⊗A B

ϕ12
uulllllllllllll

B ⊗A B ⊗A N
commutes.
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If N ′ = B ⊗AM for some A-module M, then it has a canonical descent datum given by the
map

ϕcan : N ′ ⊗A B → B ⊗A N ′
b0 ⊗m⊗ b1 7→ b0 ⊗ b1 ⊗m.

Definition. A descent datum (N,ϕ) is called effective if there exists anA-moduleM such that
(N,ϕ) ∼= (B ⊗AM,ϕcan), with the obvious notion of isomorphism of descent data.

The previous lemma is then equivalent to the following result.

Theorem 2.7. If A → B is faithfully flat then all descent data with respect to A → B is
effective.

Remark.

• This fact gives the exactness of the C̆ech complex in positive degrees for the covering
{SpecB → SpecA} where A → B is faithfully flat. In particular, this will give some
vanishing of cohomology.

• If (N,ϕ) is a descent datum with respect to a faithfully flat map A → B, then the
corresponding A-module is given by

M = ker
(
N −→ B ⊗A N
n 7−→ 1⊗ n− ϕ(n⊗ 1)

)
.

2.2 Quasi-coherent Sheaves

Proposition 2.8. For any quasi-coherent sheaf F on S the presheaf

Ffpqc : Sch/S, fpqc → Ab
(f : T → S) 7→ Γ(T, f∗F)

is a sheaf of O-modules (on the fpqc site).

Proof. As established in a previous lemma, it is enough to check the sheaf property on Zariski
coverings and faithfully flat morphisms of affine schemes. The sheaf property for Zariski
coverings is standard scheme theory, since Γ(U , i∗F) = F(U) when i : U ↪→ S is an open
immersion.
For {Spec(B)→ Spec(A)} with A→ B faithfully flat and F|Spec(A) = M̃ this corresponds
to the fact that M = H0 ((B/A)• ⊗AM), i.e. that

0→M → B ⊗AM → B ⊗A B ⊗AM

is exact.

Definition. Let C be a ringed site, i.e. a site endowed with a sheaf of rings O. A sheaf of
O-modules F on C is called quasi-coherent if for all U ∈ Ob(C ) there exists a covering
{Ui → U}i∈I of C such that F|C/Ui is isomorphic to the cokernel of an O-linear map of free
O-modules

O|(K)
C/Ui
→ O|(L)

C/Ui
.

Here, C/U is the category of objects of C over U , whose objects are morphisms V → U
and whose morphisms are over U , and the sheaf O(K) is the sheaf associated to the presheaf⊕

f∈K O.
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Remark. In the case where C has a final object (e.g. S) it suffices to take U to be the final
object in the above statement.

Theorem 2.9. Any quasi-coherent O-module on Sch/S, fpqc is of the form Ffpqc for some
quasi-coherent sheaf F on S.

In other words, there is no difference between quasi-coherentO-modules on S (or on Sch/S, Zar)
and on the site Sch/S, fpqc.

Proof. After some formal arguments this is exactly the descent theorem 2.4.

2.3 C̆ech Cohomology

Our next goal is to use descent theory to show that H i
fpqc(S,F) = H i

Zar(S,F) for all quasi-
coherent sheaves F on S, allowing us to compute cohomology of some fpqc-sheaves. To this
end, we introduce C̆ech cohomology on sites. See [1] for more details.

Definition. Let C be a site, U = {Ui → U}i∈I a covering of C and F ∈ PAb(C ) an abelian
presheaf. We define the C̆ech complex Č •(U ,F) by∏

i0∈I
F(Ui0)→

∏
i0,i1∈I

F (Ui0 ×U Ui1)→
∏

i0,i1,i2∈I
F (Ui0 ×U Ui1 ×U Ui2)→ · · ·

where the first term is in degree 0, and the maps are the usual ones. Again, it is essential to
allow the case i0 = i1 etc. The C̆ech cohomology groups are defined by

Ȟp(U ,F) = Hp(Č • (U ,F)).

Lemma 2.10. The functor Č •(U ,−) is exact on the category PAb(C ).

In other words, if 0→ F1 → F2 → F3 → 0 is a short exact sequence of presheaves of abelian
groups, then

0→ Č • (U ,F1)→ Č •(U ,F2)→ Č •(U ,F3)→ 0

is a short exact sequence of complexes.

Proof. This follows at once from the definition of a short exact sequence of presheaves. Since
the category of abelian presheaves is the category of functors on some category with values in
Ab, it is automatically an abelian category: a sequence F1 → F2 → F3 is exact in PAb if and
only if for all U ∈ Ob(C ), the sequence F1(U) → F2(U) → F3(U) is exact in Ab. So the
complex above is merely a product of short exact sequences in each degree.

This shows that Ȟ•(U ,−) is a δ-functor. We now proceed to show that it is a universal δ-
functor. We thus need to show that it is an effaceable functor. We start by recalling the Yoneda
lemma.

Lemma 2.11 (Yoneda Lemma). For any presheaf F on a site C there is a functorial iso-
mophism

HomPSh(C )(hU ,F) = F(U).

Definition. Given a presheaf of sets G , we define the free abelian presheaf on G, denoted ZG ,
by

ZG(U) def= free abelian group on G(U) =
⊕

g∈G(U)

Z def= Z [G(U)]

with restriction maps induced by the original restriction maps of sets. In the special case
G = hU we write simply ZU = ZhU .
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The functor G 7→ ZG is left adjoint to the forgetful functor PAb(C )→ PSh(C ). Thus, for any
presheaf F , there is a canonical isomorphism

HomPAb(C ) (ZU ,F) = HomPSh(C )(hU ,F) = F(U).

In particular, we have the following result.

Lemma 2.12. The C̆ech complex Č •(U ,F) can be described explicitly as follows

Č •(U ,F) =

∏
i0∈I

HomPAb(C )(ZU0 ,F)→
∏

i0,i1∈I
HomPAb(C ) (ZU0×UU1 ,F)→ · · ·


= HomPAb(C )

⊕
i0∈I

ZUi0 ←
⊕
i0,i1∈I

ZUi0×UUi1 ← · · ·

 ,F


= HomPAb(C )

((
Z(

‘
i0∈I

Ui0 ) ← Z(
‘
i0,i1∈I

Ui0×UUi1 ) ← · · ·
)
,F
)

This reduces us to studying only the complex in the first argument of the last Hom.

Lemma 2.13. The complex of abelian presheaves

Z•U : Z(
‘
i0
Ui0 ) ← Z(

‘
i0,i1∈I

Ui0×UUi1 ) ← · · ·

is exact in negative degrees (in PAb(C )).

Proof. For any V ∈ Ob(C ) the complex Z•U (V) is

Z

∐
i0∈I

HomC (V,Ui0)

← Z

 ∐
i0,i1∈I

HomC (V,Ui0 ×U Ui1)

← · · ·
=

⊕
ϕ:V→U

Z

∐
i0∈I

Homϕ(V,Ui0)

← Z

 ∐
i0,i1∈I

Homϕ(V,Ui0)×Homϕ(V,Ui1)

← · · ·


where Homϕ(V,Ui) = {V → Ui | V → Ui → U = ϕ}. Set Sϕ =
∐
i∈I Homϕ(V,Ui), so that

Z•U [V] =
⊕

ϕ:V→U
(Z[Sϕ]← Z[Sϕ × Sϕ]← Z[Sϕ × Sϕ × Sϕ]← · · · ) .

Thus it suffices to show that for each S = Sϕ, the complex

Z[S]← Z[S × S]← Z[S × S × S]← · · ·

is exact in negative degrees. To see this, we can give an explicit homotopy. Fix s ∈ S and
define K : n(s0,...,sp) 7→ n(s,s0,...,sp). One easily checks that K is a nullhomotopy for the
operator

δ : η(s0,...,sp) 7→
p∑
i=0

(−1)pη(s0,...,ŝi,...,sp).

Lemma 2.14. Let C be a category. If I is an injective object of PAb(C ) and U is a family of
morphisms with fixed target in C , then Ȟp(U , I) = 0 for all p > 0.
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Proof. The C̆ech complex is the result of applying the functor HomPAb(C )(−, I) to the com-
plex Z•U , i.e.

Ȟp(U ; I) = Hp(HomPAb(C )(Z•U , I)).

But we have just seen that Z•U is exact in negative degrees, and the functor HomPAb(C )(−, I)
is exact, hence HomPAb(C )(Z•U , I) is exact in positive degrees.

Theorem 2.15. On PAb(C ) the functors Ȟp(U ,−) are the right derived functors of Ȟ0(U ,−).

Proof. By the lemma 2.14, the functors Ȟp(U ,−) are universal δ-functors since they are
effaceable. So are the right derived functors of Ȟ0(U ,−). Since they agree in degree 0, they
agree by the universal property of universal δ-functors.

Remark. Observe that all of the preceding statements are about presheaves so we haven’t made
use of the topology yet.

2.4 The C̆ech-to-cohomology Spectral Sequence

Theorem 2.16. Let C be a site. For any covering U = {Ui → U}i∈I of U ∈ Ob(C ) and any
abelian sheaf F on C there is a spectral sequence

Ep,q2 = Ȟp(U , Hq(F))⇒ Hp+q(U ,F),

where Hq(F) is the abelian presheaf U 7→ Hq(U ,F).

Proof. Choose an injective resolution F → I• in Ab(C ), and consider the double complex

Γ(U , I•) // Č •(U , I•)

Č •(U ,F)

OO

where the horizontal map is the natural map Γ(U , I•) → Č 0(U , I•) to the left column, and
the vertical map is induced by F → I0 and lands in the bottom row. By assumption, I• is
injective in Ab(C ), hence by lemma 2.17 below, it is injective in PAb(C ). Thus, the rows of the
double complex are exact in positive degrees, and the kernel of the horizontal map is equal to
Γ(U , I•), since I is a complex of sheaves. In particular, the cohomology of the total complex
is the standard cohomology of the global sections functor H0(U ,F).
For the vertical direction, the qth cohomology group of the pth column is∏

i0,...,ip

Hq(Ui0 ×U · · · ×U Uip ;F) =
∏

i0,...,ip

Hq(Ui0 ×U · · · × Uip)

in the entry Ep,q1 . So this is a standard double complex spectral sequence, and the E2-page is
as prescribed.

Remark. This is a Grothendieck spectral sequence for the functors Ab(C )→ PAb(C ) and Ȟ0.

Lemma 2.17. The forgetful functor Ab(C )→ PAb(C ) transforms injectives into injectives.

Proof. This is formal using the fact that the forgetful functor has a left adjoint, namely sheafi-
fication, which is an exact functor.
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2.5 Cohomology of Quasi-coherent Sheaves

Lemma 2.18. Let U be a scheme and U = {Ui → U}i∈I an fpqc-covering of U . Let
V =

∐
i∈I Ui. Then

i. V = {V → U} is an fpqc-covering ; and

ii. the C̆ech complexes Č •(U ,F) and Č •(V ,F) agree whenever F is an abelian sheaf.

The proof is straightforward by unwinding the definitions and observing that if F is a sheaf
and {Tj}j∈J is a family of schemes, then the family of morphisms with fixed target {Ti →∐
j∈J Tj}i∈J is an fpqc-covering, and so

F

∐
j∈J

Tj

 =
∏
j∈J
F(Tj).

Note that this equality is false for a presheaf. It does not hold on any site, but it does for all the
usual ones (at least all the ones we will study).

Remark. In the statement of the lemma, U is a refinement of V , so this does not mean that it
suffices to look at coverings with a single morphism to compute C̆ech cohomology.

Lemma 2.19 (Locality of cohomology). Let C be a site, F an abelian sheaf on C , U an object
of C , p > 0 an integer and ξ ∈ Hp(U ,F). Then there exists a covering U = {Ui → U}i∈I
of U in C such that ξ|Ui = 0 for all i ∈ I .

Proof. Choose an injective resolution F → I•. Then ξ is represented by a cocycle ξ̃ ∈ Ip(U)
with dp(ξ̃) = 0. By assumption, the sequence Ip−1 → Ip → Ip+1 in exact in Ab(C ), which
means that there exists a covering U = {Ui → U}i∈I such that ξ̃|Ui = dp−1(ξi) for some
ξi ∈ Ip−1(Ui). Since the cohomology class ξ|Ui is represented by the cocycle ξ̃|Ui which is a
coboundary, it vanishes.

Theorem 2.20. Let S be a scheme and F a quasi-coherent OS-module. Then

Hp
Zar(S,F) = Hp(S,Ffpqc) for all p > 0.

Remark. Since S is a final object in the category Sch/S , the cohomology groups on the right-
hand side are merely the right derived functors of the global sections functor.

Proof. The result is true for p = 0 by the sheaf property. We only prove the result for S
separated, and we start with the case of an affine scheme.

Step 1. Assume that S is affine and that F is a quasi-coherent sheaf on S. Then we want to
prove that Hp(S,Ffpqc) = 0 for all p > 0. We use induction on p.

p = 1. Pick ξ ∈ H1(S,Ffpqc). By lemma 2.19, there exists an fpqc covering U =
{Ui → S}i∈I such that ξ|Ui = 0 for all i ∈ I . Up to refining U , we may
assume that each Ui is affine and I is finite. Applying the spectral sequence 2.16,
we see that ξ comes from a cohomology class ξ̌ ∈ Ȟ1(U ,Ffpqc). Consider
the covering V = {

∐
i∈I Ui → S} = {SpecB → SpecA}, then by lemma

2.18, Ȟ•(U ,Ffpqc) = Ȟ•(V ,Ffpqc). On the other hand, the C̆ech complex
Č •(V ,F) is none other than the complex (B/A)• ⊗AM where F = M̃ . Now
by lemma 2.6, Hp((B/A)• ⊗AM) = 0 for p > 0, hence ξ̌ = 0 and so ξ = 0.
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p > 1. Observe that the intersections Ui0×S · · ·×S Uip are affine, so that by induction
hypothesis the cohomology groups

Ep,q2 = Ȟp(U , Hq(Ffpqc))

vanish for all 0 < q < p. Now the same argument as above works: if ξ ∈
Hp(S,Ffpqc), we can find a finite covering U of S by affines for which ξ is
locally trivial. Using the spectral sequence 2.16 and the induction hypothesis,
we see that ξ must come from a ξ̌ ∈ Ȟp(U ,Ffpqc). Replacing U with the
covering V containing only one morphism and using lemma 2.6 again, we see
that the C̆ech cohomology class ξ̌ must be zero, hence ξ = 0.

Step 2. Assume that S is separated. Choose an affine open covering S = ∪i∈IUi of S. The
family U = {Ui → S}i∈I is then an fpqc-covering, and all the intersections Ui0 ×S
· · · ×S Uip are affine since S is separated. So all rows of the spectral sequence 2.16
are zero, except the zeroth row. Therefore

Hp(S,Ffpqc) = Ȟp(U ,Ffpqc) = Ȟp(U ,F) = Hp(S,F)

where the last equality results from standard scheme theory.

The general case is technical and requires a discussion about maps of spectral sequences, so
we won’t treat it.

Definition. The sheaf T 7→ Γ(T,OT ) is denoted Ga, regardless of the site on which it is
considered. Its usual restriction on a scheme S (in other words, OS) is sometimes denoted
Ga,S . Similarly, the sheaf T 7→ Γ(T,O∗T ) is denoted Gm. The constant sheaf Z/nZ on any
site is the sheafification of the constant presheaf U 7→ Z/nZ with restriction maps the identity.

Remark. If C is the small étale site over S (defined later) and U → S is étale, then Γ(U ,Z/nZ)
is the set of Zariski locally constant functions from U to Z/nZ.

Remark. A special case of theorem 2.20 is Hp
Zar(X,OX) = Hp

fpqc(X,Ga) for all p > 0.

2.6 Picard Groups

Theorem 2.21. Let X be a scheme. Then H1
fpqc(X; Gm) = Pic(X) = H1

Zar(X;O∗X).

Sketch of proof. Arguing as above, one shows that

H1
fpqc(X; Gm) = colim

U ∈Cov(Sch/X,fpqc)
Ȟ1(U ,Gm).

Given an fpqc-covering {Ui → U}i∈I and a C̆ech cocycle (fij)i,j∈I , fij ∈ Γ(Ui ×X Uj ; Gm),
we get a descent datum (

OUi , fij |Ui×XUj : pr∗0(OUi)→ pr∗1(OUj )
)

for coherent sheaves, which is effective by theorem 2.4, hence we can descend line bundles.
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3 The Étale Site

3.1 Étale Morphisms

For more details, see the section on étale morphisms in [2].

Definition. A morhism of schemes is étale if it is smooth of relative dimension 0. Recall that a
morphism of algebras over an algebraically closed field is smooth if it is of finite type and the
sheaf of differentials is locally free of rank equal to the dimension. A morphism of schemes is
smooth if it is flat, finitely presented, and the geometric fibers are smooth. A ring map A→ B
is said to be étale at a prime q of B if there exists h ∈ B, h /∈ q such that A→ Bq is étale.

Proposition 3.1.

i. Let k be a field. A morphism of schemes U → Spec k is étale if and only if U =∐
(i) Spec ki where for each i, ki is a finite separable extension of k.

ii. Let ϕ : U → S be a morphism of schemes. The following conditions are equivalent:

• ϕ is étale,

• ϕ is locally finitely presented, flat, and all its fibres are étale,

• ϕ is flat and unramified.

iii. A ring map A → B is étale if and only if B ∼=A A[x1, . . . , xn]/(f1, . . . , fn) such that
∆ = det

(
∂fi
∂xj

)
is invertible in B.

iv. The base change of an étale morphism is étale.

v. An étale morphism has relative dimension 0.

vi. Let Y → X be an étale morphism. If X is reduced (respectively smooth) then so is Y .

vii. Etale morphims are open.

viii. If X → S and Y → S are étale, then any S-morphism X → Y is also étale.

Definition. A ring map A → B is called standard étale if B ∼=A (A[t]/(f(t)))g(t) with f(t)

monic and df
dt invertible in B.

Theorem 3.2. A ring map A→ B is étale at a prime q if and only if there exists g ∈ B, g /∈ q

such that Bg is standard étale over A.

3.2 Étale Coverings

Definition. An étale covering of a scheme U is a family of morphisms of schemes with fixed
target {ϕi : Ui → U}i∈I such that

(a) each ϕi is an étale morphism ;

(b) the Ui cover U , i.e. U = ∪i∈Iϕi(Ui).

Lemma 3.3. Any étale covering is an fpqc-covering.
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Proof. Since an étale morphism is flat, and the elements of the covering should cover its
target, the property fp (faithfully flat) is satisfied. To check qc (quasi-compact), let V ⊆ U be
an affine open, and write ϕ−1

i = ∪j∈JiVij for some affine opens Vij ⊆ Ui. Since ϕi is open
(étale morphisms are open), we see that V = ∪i∈I ∪j∈Ji ϕi(Vij) is an open covering of U .
Further, since V is quasi-compact, this covering has a finite refinement.

So any statement which is true for fpqc-coverings (respectively sheaves etc) remains true a
fortiori for étale coverings (resp. sheaves etc). For instance, the étale site is subcanonical.

Definition. Let S be a scheme. The big étale site over S is the site Sch/S,ét defined by the étale
coverings on the category Sch/S of schemes over S. The small étale site over S is the site Sét
defined by the étale coverings on the full subcategory of Sch/S which objects are morphisms
U → S. We define similarly the big and small Zariski sites on S, Sch/S and SZar. Note that
there is no notion of a small fpqc site.

The small étale site has fewer objects than the big étale site, it contains only the “opens” of
the étale topology on S. It is a full subsite of the big étale site, and it is true that the restriction
functor from the big étale site to the small one is exact and maps injectives to injectives. This
has the following consequence.

Proposition 3.4. Let S be a scheme and F an abelian sheaf on Sch/S,ét. Then F|Sét is a sheaf
on Sét and

Hp(Sét,F|Sét) = Hp(S,F)

for all p > 0.

We write Hp
ét(S,F) for the above cohomology group.

3.3 Kummer Theory

Let n ∈ N and consider the presheaf µn defined by

Schopp −→ Ab
S 7−→ µn(T ) = {t ∈ Γ(S,O∗S) | tn = 1} .

This presheaf is an fpqc sheaf (in particular, it is also an étale sheaf, Zariski sheaf, etc.) and it
is representable by the group scheme Spec(Z[t]/(tn − 1)).

Lemma 3.5. If n ∈ O∗S then

0→ µn,S → Gm,S
(·)n−−→ Gm,S → 0

is a short exact sequence of sheaves on the small étale site of S.

Remark. This lemma is false when Sét is replaced with SZar.

Proof. The only nontrivial step is to show that the last map is surjective. Let U → S be an
étale map and f ∈ Gm(U) = Γ(U ,O∗U ). We need to show that we can find a cover of U in Sét
over which the restriction of f is an nth power. Set

U ′ = Spec(OU [T ]/(Tn − f)) π−→ U .

Locally, the map π has the form A → B = A[T ]/(Tn − a) for some a ∈ A∗ and n ∈ A∗.
Since it is an injective integral ring map, π is surjective. In addition, n and Tn−1 are invertible
in B, so nTn−1 ∈ B∗ and the ring map A → B is étale. Hence U = {π : U ′ → U} is an
étale covering. Moreover, f |U ′ = (f ′)n where f ′ is the class of T in Γ(U ′,O∗U ′), so U has the
desired property.
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Lemma 3.5 gives the long exact cohomology sequence

0 // H0
ét(S,µn) // Γ(S,O∗S)

(·)n
// Γ(S,O∗S)

xx

H1
ét(S,µn) // Pic(S)

(·)n
// Pic(S)

xx

H2
ét(S,µn) // · · ·

It is also true that

H1
ét(S,µn) =

{
(L, α)

∣∣∣∣ L invertible sheaf on S
and α : L⊗n ∼−→ OS

}/
∼= .

3.4 Neighborhoods, Stalks and Points

Definition. Let S be a scheme. A geometric point of S is a morphism Spec k = s̄ → S
(usually denoted s̄ again) where k is separably closed. An étale neighborhood of s̄ is a com-
mutative diagram

U

ϕ

��

s̄
s̄ //

ū
??�������
S

where ϕ is étale. We write (U , ū) → (S, s̄). A morphism of étale neighborhoods (U , ū) →
(U ′, ū′) is an S-morphism h : U → U ′ such that ū′ = h ◦ ū.

Remark. Since U and U ′ are étale over S, any S-morphism between them is also étale. In
particular all morphisms of étale neighborhoods are étale.

Lemma 3.6.

i. Let (Ui, ūi)i=1,2 be two étale neighborhoods of s̄ in S. Then there exists a third étale
neighborhood (U , ū) and morphims (U , ū)→ (Ui, ūi)i=1,2.

ii. Let h1, h2 : (U , ū)→ (U ′, ū′) be two morphisms between étale neighborhoods of s̄. Then
there exist an étale neighborhood and a morphism h : (U ′′, ū′′)→ (U , ū) which equalizes
h1 and h2, i.e. such that h1 ◦ h = h2 ◦ h.

In other words, the category of étale neighborhoods is codirected.

Proof. For part i, consider the fibre product U = U1×S U2. It is étale over both U1 and U2 and
the map s̄→ U defined by (ū1, ū2) gives it the structure of an étale neighborhood mapping to
both U1 and U2. For part ii, define U ′′ as the fibre product

U ′′ //

��

U
(h1,h2)
��

U ′ ∆ // U ′ ×S U ′

and let ū′′ = (ū, ū′). Since ū and ū′ agree over S with s̄, we see that U ′′ 6= ∅. Moreover,
since U and U ′ are étale over S, so is the fibre product U ′ ×S U ′ and therefore U ′′ by base
change.
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Lemma 3.7. Let s̄ be a geometric point of S, (U , ū) an étale neighborhood of s̄, and U =
{ϕi : Ui → U}i∈I an étale covering. Then there exist i ∈ I and ūi : s̄ → Ui such that
ϕi : (Ui, ūi)→ (U , ū) is a morphism of étale neighborhoods.

Proof. As U =
⋃
i∈I ϕi(Ui), the fibre product s̄×ū, U ,ϕi Ui is not empty for some i. Then look

at the cartesian diagram

s̄×ū, U ,ϕi Ui
pr1

��

pr2 // Ui
ϕi

��

Spec k = s̄

σ

DD

ū // U .
The projection pr1 is the base change of an étale morphisms so it is étale. Therefore, s̄×ū,U ,ϕi
Ui is a disjoint union of finite separable extensions of k, where s̄ = Spec k. But k is separably
closed, so all these extensions are trivial, and there exists a section σ of pr1. The composition
pr2 ◦σ gives a map compatible with ū.

Definition. Let S be a scheme, F a presheaf (or a sheaf) on Sét and s̄ a geometric point of S.
The stalk of F at s̄ is

Fs̄ = colim
(U ,ū)→(S,s̄)

F(U)

where (U , ū)→ (S, s̄) runs over all étale neighborhoods of s̄ in S. By lemma 3.6, this colimit
is directed. We also define the étale local ring at s̄ to be the stalk of the sheaf Ga at s̄, that is

Osh
S,s̄

def= colim
(U ,ū)→(S,s̄)

Γ(U ,OU ).

Lemma 3.8. The stalk functor

PAb(Sét) −→ Ab
F 7−→ Fs̄

is exact. Furthermore,
(
F ]
)
s̄

= Fs̄ and hence it induces an exact functor Ab(Sét)→ Ab.

Proof. Exactness as a functor from PAb(Sét) is formal from the fact that directed colimits
commute with all colimits and with finite limits. The identification of the stalks is via the map

κ : Fs̄ −→
(
F ]
)
s̄

induced by the natural morphism F → F ]. We claim that this map is an isomorphism of
abelian groups. We will show injectivity and omit surjectivity.
Let σ ∈ Fs̄. There exists an étale neighborhood (U , ū) → (S, s̄) such that σ is the image
of some section s ∈ F(U). If κ(σ) = 0 in (F ])s̄ then there exists a morphism of étale
neighborhoods (U ′, ū′) → (U , ū) such that s|U ′ is zero in F ](U ′). Following, there exists an
étale covering {U ′i → U ′}i∈I such that s|U ′i = 0 in F(U ′i) for all i. By lemma 3.7 there exist
i ∈ I and a morphism ū′i : s̄ → U ′i such that (U ′i , ū′i) → (U ′, ū′) → (U , ū) are morphisms of
étale neighborhoods. Hence for some ū′i, we have s|U ′i = 0, which implies σ = 0. Therefore,
s|U ′i = 0 ∈ Fs̄ and κ is injective.
To show that the functor Ab(Sét)→ Ab is exact, consider any short exact sequence in Ab(Sét):
0→ F → G → H → 0. This gives us the exact sequence of presheaves

0→ F → G → H → H/pG → 0,

where /p denotes the quotient in PAb(Sét). Taking stalks at s̄, we see that (H/pG)s̄ =
(H/G)s̄ = 0, since the sheafification ofH/pG is 0. Therefore,

0→ Fs̄ → Gs̄ → Hs̄ → 0 = (H/pG)s̄

is exact, since taking stalks is exact as a functor from presheaves.
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Theorem 3.9. A sequence of abelian sheaves on Sét is exact if and only if it is exact on stalks.

Proof. The necessity of exactness on stalks was proven in the previous lemma. For the con-
verse, it suffices to show that a map of sheaves is surjective (respectively injective) if and only
if it is surjective (resp. injective) on all stalks. We only treat the case of surjectivity.
Let α : F → G be a map of abelian sheaves such that Fs̄ → Gs̄ is surjective for all geometric
points. Fix U ∈ Ob(Sét) and s ∈ G(U). For every u ∈ U choose some ū→ U lying over u and
an étale neighborhood (Vu, v̄u) → (U , ū) such that s|Vu = α(sVu) for some sVu ∈ F(Vu).
This is possible since α is surjective on stalks. Then {Vu → U}u∈U is an étale covering on
which the restrictions of s are in the image of the map α. Thus, α is surjective.

3.5 Direct Images

Definition. Let f : X → Y be a morphism of schemes, F a presheaf on Xét. The direct image
of F (under f ) is

f∗F : Y
opp

ét −→ Sets
(V → Y ) 7−→ F (X ×Y V → X) .

This is a well-defined étale presheaf since the base change of an étale morphism is again étale,
and defines a functor f∗ : PSh(Xét)→ PSh(Yét) since base change is a functor.

Remark. If {Vi → V}i∈I is an étale covering in Yét then {X ×Y Vi → X ×Y V} is an étale
covering in Xét. Hence the sheaf condition for F with respect to the latter is equivalent to the
sheaf condition for f∗F with respect to the former. Thus if F is a sheaf, so is f∗F .

Definition. The previous functor therefore induces f∗ : Ab(Xét) → Ab(Yét), called direct
image again. It is left exact, and its right derived functors {Rpf∗}p>1 are called higher direct
images.

3.6 Inverse Image

Definition. Let f : X → Y be a morphism of schemes. The inverse image functor f−1 :
Sh(Yét)→ Sh(Xét) (respectively f−1 : Ab(Yét)→ Ab(Xét)) is the left adjoint to f∗. It is thus
characterized by the fact that

HomSh(Xét)(f
−1G,F) = HomSh(Yét)(G, f∗F)

functorially, for any F ∈ Sh(Xét) (resp. Ab(Xét)), G ∈ Sh(Yét) (resp. Ab(Yét)).

Lemma 3.10. Let f : X → Y be a morphism of schemes, x̄→ X a geometric point and G a
presheaf on Yét. Then there is a canonical identification(

f−1G
)
x̄

= Gf◦x̄.

Moreover, f−1 is exact.

Proof. The exactness of f−1 is a formal consequence of the first statement, the proof of which
is omitted.

Remark. More generally, let C1,C2 be sites, and assume they have final objects and fibre
products. Let u : C2 → C1 be a functor satisfying:

(a) u(Cov(C2)) ⊆ Cov(C1) (we say that u is continuous) ; and
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(b) u commutes with finite limits (i.e. u is left exact, i.e. u preserves fibre products and final
objects).

Then one can define f∗ : Sh(C1)→ Sh(C2) by f∗F(V) = F(u(V)). Moreover, there exists a
functor f−1 which is left adjoint to f∗ and is exact.
To recover our definition, notice that a morphism of schemes f : X → Y induces a continous
functor of sites uf : Yét → Xét via uf (V → Y ) = V ×Y X → X .

4 Étale Cohomology

4.1 Colimits

Let us start by recalling that if {Fi}i∈I is a system of sheaves onX , its colimit (in the category
of sheaves) is the sheafification of the presheaf U 7→ colimi∈I Fi(U). In the case where X is
noetherian, the sheafification is superfluous. See [4].

Theorem 4.1. Let X be a quasi-compact and quasi-separated scheme. Let (Fi, ϕij) be a
system of abelian sheaves on Xét over the partially ordered set I . If I is directed then

colim
i∈I

Hp
ét(X,Fi) = Hp

ét(X, colim
i∈I
Fi).

Sketch of proof. This is proven for all X at the same time, by induction on p.

Step 1. For any quasi-compact and quasi-separated scheme X and any étale covering U of
X , show that there exists a refinement V = {Vj → X}j∈J with J finite and each
Vj quasi-compact and quasi-separated such that all the Vj0 ×X · · · ×X Vjp are also
quasi-compact and quasi-separated.

Step 2. Using the previous step and the definition of colimits in the category of sheaves, show
that the theorem holds for p = 0, all X . (Exercise.)

Step 3. Using the locality of cohomology (lemma 2.19), the C̆ech-to-cohomology spectral se-
quence (theorem 2.16) and the fact that the induction hypothesis applies to all Vj0 ×X
· · · ×X Vjp in the above situation, prove the induction step p→ p+ 1.

Theorem 4.2. Let A be a ring, (I,6) a directed poset and (Bi, ϕij) a system of A-algebras.
Set B = colimi∈I Bi. Let X → SpecA be a quasi-compact and quasi-separated morphism
of schemes and F an abelian sheaf on Xét. Denote Xi = X ×SpecA SpecBi, Y = X ×SpecA

SpecB, Fi = (Xi → X)−1F and G = (Y → X)−1F . Then

Hp
ét(Y,G) = colim

i∈I
Hp

ét((Xi),Fi).

Sketch of proof.

Step 1. Given V → Y étale with V quasi-compact and quasi-separated, there exist i ∈ I and
Ui → Xi such that V = Ui ×Xi Y .



Etale Cohomology 25

Remark. If all the schemes considered were affine, this would correspond to the fol-
lowing algebra statement: if B = colimBi and B → C is étale, then there exist i ∈ I
and Bi → Ci étale such that C ∼= B ⊗Bi Ci.
This is proven as follows: writeC ∼= B [x1, . . . , xn] /(f1, . . . , fn) with det(fj(xk)) ∈
C∗ and pick i ∈ I large enough so that all the coefficients of the fjs lie in Bi, and
let Ci = Bi [x1, . . . , xn] /(f1, . . . , fn). This makes sense by the assumption. After
further increasing i, det(fj(xk)) will be invertible in Ci, and Ci will be étale over Bi.

Step 2. By Step 1, we see that for every étale covering V = {Vj → Y }j∈J with J finite and
the Vjs quasi-compact and quasi-separated, there exists i ∈ I and an étale covering
Vi = {Vij → Xi}j∈J such that V ∼= Vi ×Xi Y .

Step 3. Show that Step 2 implies

Ȟ∗(V,G) = colim
i∈I

Ȟ∗(Vi,Fi).

This is not clear, as we have not explained how to deal with Fi and G, in particular
with the dual.

Step 4. Use the C̆ech-to-cohomology spectral sequence (theorem 2.16).

4.2 Stalks of Higher Direct Images

Lemma 4.3. Let f : X → Y be a morphism of schemes and F ∈ Ab(Xét). Then Rpf∗F is
the sheaf associated to the presheaf

(V → Y ) 7−→ H0
ét (X ×Y V,F|X×Y V ) .

This lemma is valid for topological spaces, and the proof in this case is the same.

Theorem 4.4. Let f : X → S be a quasi-compact and quasi-separated morphism of schemes,
F an abelian sheaf on Xét, and s̄ a geometric point of S. Then

(Rpf∗F)s̄ = Hp
ét

(
X ×S Spec(Osh

S,s̄),pr−1F
)

where pr is the projection X ×S Spec(Osh
S,s̄)→ X .

Proof. Let I be the category opposite to the category of étale neighborhoods of s̄ on S. By
lemma 4.3 we have

(Rpf∗F)s̄ = colim
(V,v̄)∈I

Hp(X ×S V,F|X×SV).

On the other hand,
Osh
S,s̄ = colim

(V,v̄)∈I
Γ(V,OV).

Replacing I with its cofinal subset I aff consisting of affine étale neighborhoods Vi =
SpecBi of s̄ mapping into some fixed affine open SpecA ⊆ S, we get

Osh
S,s̄ = colim

i∈I aff
Bi,

and the result follows from theorem 4.2.
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4.3 The Leray Spectral Sequence

Lemma 4.5. Let f : X → Y be a morphism and I an injective sheaf in Ab(Xét). Then

i. for any V ∈ Ob(Yét) and any étale covering V = {Vj → V}j∈J we have Ȟp(V , f∗I) =
0 for all p > 0 ;

ii. f∗I is acyclic for the functors Γ(Y,−) and Γ(V,−) ; and

iii. if g : Y → Z, then f∗I is acyclic for g∗.

Proof. Observe that Č •(V , f∗I) = Č •(V ×Y X, I) which has no cohomology by lemma
2.14, which proves i. The second statement is a great exercise in using the C̆ech-to-cohomology
spectral sequence. See [2] for more details. Part iii is a consequence of ii and the description
of Rpg∗ from theorem 4.4.

Using the formalism of Grothendieck spectral sequences, this gives the following.

Proposition 4.6 (Leray spectral sequence). Let f : X → Y be a morphism of schemes and F
an étale sheaf on X . Then there is a spectral sequence

Ep,q2 = Hp
ét(Y,R

qf∗F)⇒ Hp+q
ét (X,F).

4.4 Henselian Rings

Theorem 4.7. Let A → B be finite type ring map and p ⊆ A a prime ideal. Then there exist
an étale ring map A→ A′ and a prime p′ ⊆ A′ lying over p such that

i. κ(p) = κ(p′) ;

ii. B ⊗A A′ = B1 × · · · ×Br × C ;

iii. A′ → Bi is finite and there exists a unique prime qi ⊆ Bi lying over p′ ; and

iv. all irreducible components of the fibre Spec(C ⊗A′ κ(p′)) of C over p′ have dimension at
least 1.

Proof. Omitted (see EGA IV, théorème 18.12.1).

Definition. A local ring (R,m, κ) is called henselian if for all f ∈ R[T ] monic, for all α ∈ κ
such that f̄(α) = 0 and f̄ ′(α) 6= 0, there exists α̃ ∈ R such that f(α̃) = 0 and α̃ mod m = α.

Recall that a complete local ring is a local ring (R,m) such that R ∼= limnR/m
n, i.e. it is

complete and separated for the m-adic topology.

Theorem 4.8. Complete local rings are henselian.

Proof. Newton’s method.

Theorem 4.9. Let (R,m, κ) be a local ring. The following are equivalent:

i. R is henselian ;

ii. for any f ∈ R[T ] and any factorization f̄ = g0h0 in κ[T ] with gcd(g0, h0) = 1, there
exists a factorization f = gh in R[T ] with ḡ = g0 and h̄ = h0 ;
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iii. any finite R-module is isomorphic to a product of (finite) local rings ;

iv. any finite type R-algebra A is isomorphic to a product A ∼= A′ × C where A′ ∼= A1 ×
· · · × Ar is a product of finite local rings and all the irreducible components of C ⊗R κ
have dimension at least 1 ;

v. if A is an étale R-algebra and n is a maximal ideal of A lying over m such that κ ∼= A/n,
then there exists an isomorphism ϕ : A ∼−→ R×A′ such that ϕ(n) = m×A′ ⊆ R×A′.

Example. In the case R = CJtK, the finite henselian R-algebras are the trivial one R → R
and the extensions CJtK → CJtK[X,X−1]/(Xn − t). The latter ones always miss the origin,
so any étale covering contains the identity and thus has the trivial covering as refinement. We
will see below that this is in fact a somewhat general fact and this will give us the vanishing of
higher direct images for a finite morphism.

Corollary 4.10. If R is henselian and A is a finite R-module, then A is a finite product of
henselian local rings.

Definition. A local ring R is called strictly henselian if it is henselian and its residue field is
separably closed.

Theorem 4.11. Let (R,m, κ) be a local ring and κ ⊆ κsep a separable closure. There exist
canonical local ring maps R→ Rh → Rsh where

i. Rh, Rsh are colimits of étale R-algebras ;

ii. Rh, Rsh are henselian ;

iii. mRh (respectively mRsh) is the maximal ideal of Rh (resp. Rsh) ; and

iv. the first residue field extension is trivial κ = Rh/mRh, and the second is the separable
closure κsep = Rsh/mRsh.

Moreover, Rsh ∼= Osh
Spec(R), Spec(κsh)

as defined in 3.4.

Remark. If R is noetherian then Rh is also noetherian and they have the same completion:
R̂ ∼= R̂h. In particular, R ⊆ Rh ⊆ R̂. The henselization of R is in general much smaller than
its completion and inherits many of its properties (e.g if R is reduced, then so is Rh, but not R̂
in general).

4.5 Vanishing of Finite Higher Direct Images

The next goal is to prove that the higher direct images of a finite morphism of schemes vanish.

Lemma 4.12. Let R be a strictly henselian ring and S = Spec(R). Then the global sections
functor Γ(S,−) : Ab(Sét)→ Ab is exact. In particular

∀p > 1, Hp
ét(S,F) = 0

for all F ∈ Ab(Sét).

Proof. Let U = {fi : Ui → S}i∈I be an étale covering, and denote s the closed point of
S. Then s = fi(ui) for some i ∈ I and some ui ∈ Ui by lemma 3.7. Pick an affine open
neighborhood SpecA of ui in Ui. Then there is a commutative diagram

R //

��

A

��

κ(s) // κ(ui)
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where κ(s) is separably closed, and the residue extension is finite separable. Therefore,
κ(s) ∼−→ κ(ui), and using part v of theorem 4.9, we see that A ∼= R × A′ and we get a
section

SpecA

##HHHHHHHHH
� � // Ui

��

S.

VV

In particular, the covering {id : S → S} refines U . This implies that if

0→ F1 → F2
α−→ F3 → 0

is a short exact sequence in Ab(Sét), then the sequence

0→ Γ(Sét,F1)→ Γ(Sét,F2)→ Γ(Sét,F3)→ 0

is also exact. Indeed, exactness is clear except possibly at the last step. But given a section
s ∈ Γ(Sét,F3), we know that there exist a covering U and local sections si such that α(si) =
s|Ui . But since this covering can be refined by the identity, the si must agree locally with s,
hence they glue to a global section of F2.

Proposition 4.13. Let f : X → Y be a finite morphism of schemes. Then for all q > 1 and
all F ∈ Ab(Xét), Rqf∗F = 0.

Proof. Let Xsh
ȳ denote the fiber product X ×Y Spec(Osh

Y,ȳ). It suffices to show that for all
q > 1, Hq

ét(X
sh
ȳ ,G) = 0. Since f is finite, Xsh

ȳ is finite over Spec(Osh
Y,ȳ), thus Xsh

ȳ = SpecA
for some ring A finite over Osh

Y,ȳ. Since the latter is strictly henselian, corollary 4.10 implies
that A is henselian and therefore splits as a product of henselian local rings A1 × · · · × Ar.
Furthermore, κ(Osh

Y,ȳ) is separably closed and for each i, the residue field extension κ(Osh
Y,ȳ) ⊆

κ(Ai) is finite, hence κ(Ai) is separably closed and Ai is strictly henselian. This implies that
SpecA =

∐r
i=1 SpecAi, and we can apply lemma 4.12 to get the result.

4.6 Cohomology of a Point

Lemma 4.14. Let K be a field and Ksep a separable closure of K. Consider

G
def= AutSpec(K)(Spec(Ksep))opp = Gal(Ksep|K)

as a topological group, and denote G -Sets (respectively C0(G -Sets)) the category of (resp.
continuous) left G -sets. Then the functor

SpecKét −→ G -Sets
(X → SpecK) 7−→ HomSpecK (Spec(Ksep), X)

is an equivalence of categories, with essential image C0(G -Sets).

Recall that a G -set is continuous if each of its elements has an open stabilizer. This means that
the action is continuous when G is endowed with its profinite topology and the G -sets have
the discrete topology.

Proof. Recall that X is étale over K if and only if X =
∐
i∈I SpecKi with Ki|K finite and

separable. Then use standard Galois theory.
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Remark. Under the correspondence of the lemma, the coverings in Spec(K)ét correspond to
surjective families of maps in C0(G -Sets).

Lemma 4.15. The stalk functor

Sh(SpecKét) −→ C0(G -Sets)
F 7−→ FSpecKsep

is an equivalence of categories. In other words, every sheaf on Spec(K)ét is representable.

Proof. The category SpecKét has some extra structure (maybe pushouts or something – fig-
ure it out) which makes it automatic that all sheaves are representable. In the language of
paragraph 1.3.1, we have identifications Sh(TG) = Sh(G -Sets) = G -Sets.

Corollary 4.16. Let F be an abelian sheaf on Spec(K)ét. Then

i. the G -module M = FSpec(Ksep) is continuous ;

ii. H0
ét(Spec(K),F) = MG ; and

iii. Hq
ét(Spec(K),F) = Hq

C0(G ,M).

Proof. Part i is clear (use that the stalk functor is exact). For ii, we have

Γ(Spec(K)ét,F) = HomSh(Spec(K)ét)(hSpec(K),F)
= HomC0(G -Sets)({∗},M)

= MG

where the first identification is of Yoneda type, the second results from lemma 4.15 and the
third is clear. Part iii is also a straightforward consequence of lemma 4.15.

Example (Sheaves on Spec(K)ét.).

(a) The constant sheaf Z/nZ corresponds to the module Z/nZ with trivial action ;

(b) the sheaf Gm|Spec(K)ét corresponds to (Ksep)∗ with the canonical (left) G-action ;

(c) the sheaf Ga|Spec(Ksep) corresponds to (Ksep,+) with the canonical (left) G-action ;

(d) the sheaf µn|Spec(Ksep) corresponds to µn(Ksep) with the canonical G-action.

The same arguments as in the fpqc case (see section 2.5) give the following identifications for
cohomology groups:

H0
ét(Sét,Gm) = Γ(S,O∗S) ;

H1
ét(Sét,Gm) = H1(S,O∗S) = H1(S,O∗S) = Pic(S) ;

H i
ét(Sét,Ga) = H i

Zar(S,OS).

Also, for any quasi-coherent sheaf F on Sét, H i(Sét,F) = H i
Zar(S,F). In particular, this

gives the following sequence of equalities

0 = Pic(Spec(K))
= H1

ét(Spec(K)ét,Gm)
= H1

C0(G, (Ksep)∗)
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which is none other than Hilbert’s 90 theorem. Similarly, for i > 1,

0 = H i(Spec(K),O)
= H i

ét(Spec(K)ét,Ga)
= H i(G, (Ksep,+)).

*** MERGE THESE TWO SECTIONS ***

4.7 Galois Action on Stalks

Definition. Let S be a scheme. A geometric point s̄ of S is called algebraic if κ(s) ⊆ κ(s̄) is
algebraic, i.e. if κ(s̄) is a separable algebraic closure of κ(s).

Example. The geometric point Spec C→ Spec Q is not algebraic.

Stalks as sets. Let S be a scheme, F an étale sheaf on X , and s̄ a geometric point of S.
Then

Fs̄ =
{

(U , ū, t)
∣∣ U → S is étale, ū : s̄→ U is an S-morphism and t ∈ F(U)

}/
∼

where (U , ū, t) ∼ (U ′, ū′, t′) if there exist an étale neighborhood (U ′′, ū′′) of s̄ and a commu-
tative diagram

s̄
ū′′

  
@@@@@@@@ ū′

��

ū

##

U ′′
β
//

α

��

U ′

��

U // S

such that α∗(t) = β∗(t′) in F(U ′′).

Galois action on stalks. Given an algebraic geometric point s̄ of S, set G = Gal(κ(s̄)|κ(s))
and define an action of G on Fs̄ as follows

G × Fs̄ −→ Fs̄
(σ , (U , ū, t)) 7−→ (U , ū ◦ Specσ, t).

It is easy to check that this is a well-defined left action on the stalk Fs̄. We can thus restate the
theorem of last time as follows.

Theorem 4.17. The action of G on the stalks Fs̄ is continuous (for the discrete topology on
Fs̄. Moreover, if s̄ = SpecK then it induces an equivalence of categories

Sh(Sét) −→ {discrete G -sets with continuous action}
F 7−→ Fs̄.

In particular, the category Ab(Sét) corresponds to the full subcategory of discrete G -modules,
and we have the identificationH0

ét(S,F) = (Fs̄)G , and more generallyHq
ét(S,F) = Hq

C0(G ,Fs̄)
for q > 1.
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5 Cohomology of Curves

The next task at hand is to compute the étale cohomology of a smooth curve with torsion
coefficients, and in particular show that it vanishes in degree at least 3. To prove this, we will
compute cohomology at the generic point, which amounts to some Galois cohomology. We
now review without proofs. the relevant facts about Brauer groups. For references, see [?] or
[?].

5.1 Brauer Groups

Definition/Theorem 5.1. Let K be a field. A unital, associative (not necessarily commutative)
K-algebra A is a central simple algebra over K if the following equivalent conditions hold

i. A is finite dimensional over K, K is the center of A and A has no nontrivial two-sided
ideal ;

ii. there exists d > 1 such that A⊗K K̄ ∼=K̄ Md(K̄) ;

iii. there exists d > 1 such that A⊗K Ksep ∼=Ksep Md(Ksep) ;

iv. there exist d > 1 and a finite Galois extensionK ⊆ K ′ such thatA⊗K′K ′ ∼=K′ Md(K ′);

v. there exist f > 1 and a finite dimensional division algebra D with center K such that
A ∼=K′ Mf (D).

The integer d is called the degree of A.

Definition. Two central simple algebras A1 and A2 over K are called equivalent if there exist
m,n > 1 such that Mn(A1) ∼= Mm(A2). We write A1 ∼ A2.

Lemma 5.2. Let A be a central simple algebra over K. Then

A⊗K Aopp −→ EndK−Mod(A)
a⊗ a′ 7−→ (x 7→ axa′)

is an isomorphism of central simple algebras over K.

Definition. Let K be a field. The Brauer group of K is the set Br(K) of central simple
algebras over K modulo equivalence, endowed with the group law induced by tensor product
(over K). The class of A in Br(K) is denoted by [A]. The neutral element is [K] = [Md(K)]
for any d > 1.

The previous lemma thus mean that inverses exist, and that −[A] = [Aopp]. The Brauer
group is always torsion, but not finitely generated in general. It is also true (exercise) that
A⊗ degA ∼ K for any central simple algebra A.

Lemma 5.3. Let K be a field and G = Gal(Ksep|K)). Then the set of isomorphism classes
of central simple algebras of degree d over K is in bijection with the anabelian cohomology
H1
C0(G ,PGLd(Ksep)).

Sketch of proof. The Skolem-Noether theorem implies that for any field L, AutL−Alg(Md(L))
= PGLd(L). By 5.1, we see that central simple algebras of degree d correspond to forms of
the K-algebra Md(K), which in turn correspond to H1

C0(G ,PGLd(Ksep)). For more details,
see [7].
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If A is a central simple algebra over K, we denote ξA the corresponding cohomology class in
H1
C0(G ,PGLdegA(Ksep)). Consider now the short exact sequence

1→ (Ksep)∗ → GLd(Ksep)→ PGLd(Ksep)→ 1,

which gives rise to a long exact cohomology sequence (up to degree 2) with coboundary map

δd : H1
C0(G ,PGLd(Ksep))→ H2(G , (Ksep)∗).

Explicitly, this is given as follows: if ξ is a cohomology class represented by the 1-cocyle (gσ),
then δd(ξ) is the class of the 2-cocycle ((gτσ)−1gστg

−1
τ ).

Theorem 5.4. The map

δ : Br(K) −→ H2(G , (Ksep)∗)
[A] 7−→ δdegA(ξA)

is a group isomorphism.

We omit the proof of this theorem. Note, however, that in the abelian case, one has the identi-
fication

H1(G ,GLd(Ksep)) = H1
ét(SpecK,GLd(O))

the latter of which is trivial by fpqc descent. If this were true in the anabelian case, this would
readily imply injectivity of δ. (See [3].) Rather, to prove this, one can reinterpret δ([A]) as
the obstruction to the existence of a K-vector space V with a left A-module structure and
such that dimK V = degA. In the case where V exists, one has A ∼= EndK−Mod(V ). For
surjectivity, pick a cohomology class ξ ∈ H2(G , (Ksep)∗), then there exists a finite Galois
extension K ⊆ K ′ ⊆ Ksep such that ξ is the image of some ξ′ ∈ H2

C0(Gal(K ′|K), (K ′)∗).
Then write down an explicit central simple algebra over K using the data K ′, ξ′.

The Brauer group of a scheme. Let S be a scheme. AnOS-algebra A is called Azumaya if
it is étale locally a matrix algebra, i.e. if there exists an étale covering U = {ϕi : Ui → S}i∈I
such thatϕ∗iA ∼= Mdi(OUi) for some di > 1. Two such A and B are called equivalent if there
exist finite locally free sheaves F and G on S such that A ⊗OS End(F) ∼= B ⊗OS End(G).
The Brauer group of S is the set Br(S) of equivalence classes of Azumaya OS-algebras with
the operation induced by tensor product (over OS).
In this setting, the analogue of the isomorphism δ of theorem 5.4 is a map

δS : Br(S)→ H2
ét(S,Gm).

It is true that δS is injective (the previous argument still works). If S is quasi-compact or
connected, then Br(S) is a torsion group, so in this case the image of δS is contained in the
cohomological Brauer group of S

Br′(S) def= H2
ét(S,Gm)torsion.

So if S is quasi-compact or connected, there is an inclusion Br(S) ⊆ Br′(S). This is not
always an equality: there exists a nonseparated singular surface S for which Br(S) ( Br′(S).
If S is quasi-projective, then Br(S) = Br′(S). However, it is not known whether this holds
for a smooth proper variety over C, say.

Proposition 5.5. LetK be a field, G = Gal(Ksep|K) and suppose that for any finite extension
K ′ of K, Br(K ′) = 0. Then
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i. for all q > 1, Hq(G , (Ksep)∗) = 0 ; and

ii. for any torsion G -module M and any q > 2, Hq
C0(G ,M) = 0.

See [6] for proofs.

Definition. A field K is called Cr if for every 0 < dr < n and every f ∈ K[T1, . . . , Tn]
homogeneous of degree d, there exist α = (α1, . . . , αn), αi ∈ K not all zero, such that
f(α) = 0. Such an α is called a nontrivial solution of f .

Example. An algebraically closed field is Cr.

In fact, we have the following simple lemma.

Lemma 5.6. Let k be an algebraically closed field. Let f1, . . . , fs ∈ k[T1, . . . , Tn] be homo-
geneous polynomials of degree d1, . . . , ds with di > 0. If s < n, then f1 = . . . = fs = 0 have
a common nontrivial solution.

Proof. Omitted.

The following result computes the Brauer group of C1 fields.

Theorem 5.7. Let K be a C1 field. Then Br(K) = 0.

Proof. Let D be a finite dimensional division algebra over K with center K. We have seen
that

D ⊗K Ksep ∼= Md(Ksep)

uniquely up to inner isomorphism. Hence the determinant det : Md(Ksep) → Ksep is Galois
invariant and descends to a homogeneous degree d map

det = Nred : D −→ K

called the reduced norm. Since K is C1, if d > 1, then there exists a nonzero x ∈ D with
Nred(x) = 0. This clearly implies that x is not invertible, which is a contradiction. Hence
Br(K) = 0.

Theorem 5.8 (Tsen). The function field of a variety of dimension r over an algebraically
closed field k is Cr.

Proof. Case 1. Projective space. The field k(x1, . . . , xr) is Cr (exercise).

Case 2. General case. Without loss of generality, we may assume X to be projective. Let
f ∈ K[T1, . . . , Tn]d with 0 < dr < n. Say the coefficients of f are in Γ(X,OX(H))
for some ample H ⊆ X . Let α = (α1, . . . , αn) with αi ∈ Γ(X,OX(eH)). Then
f(α) ∈ Γ(X,OX((de + 1)H)). Consider the system of equations f(α) = 0. Then
by asymptotic Riemann-Roch,

• the number of variables is n dimK Γ(X,OX(eH)) ∼ n err! (Hr) ; and

• the number of equations is dimK Γ(X,OX((de+ 1)H)) ∼ (de+1)r

r! (Hr).

Since n > dr, there are more variables than equations, and since there is a trivial
solution, there are also nontrivial solutions.
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Definition. We call variety a separated, geometrically irreducible and geometrically reduced
scheme of finite type over a field, and curve a variety of dimension 1.

Corollary 5.9. Let C be a curve over an algebraically closed field k. Then Br(k(C)) = 0.

This is clear from the theorem.

Corollary 5.10. Let k be an algebraically closed field and k ⊆ K a field extension of tran-
scendence degree 1. Then for all q > 1, Hq

ét(SpecK,Gm) = 0.

Proof. It suffices to show that if K ⊆ K ′ is a finite field extension, then Br(K ′) = 0. Now
observe that K ′ = colimK ′′, where K ′′ runs over the finitely generated subextensions of k
contained inK ′ of transcendence degree 1. By some result in [4], eachK ′′ is the function field
of a curve, hence has trivial Brauer group by the previous corollary. It now suffices to observe
that Br(K ′) = colim Br(K ′′).

5.2 Higher Vanishing for Gm

In this section, we fix an algebraically closed field k and a smooth curve X over k. We denote
ix : x ↪→ X the inclusion of a closed point of X and j : η ↪→ X the inclusion of the generic
point. We also denote X0 the set of closed points of X .

Theorem 5.11 (The Fundamental Exact Sequence). There is a short exact sequence of étale
sheaves on X

0 −→ Gm,X −→ j∗Gm,η
div−−−→

⊕
x∈X0

ix∗Z −→ 0.

Proof. Let ϕ : U → X be an étale morphism. Then by properties v and vi of étale morphisms
(proposition 3.1), U =

∐
i Ui where each Ui is a smooth curve mapping to X . The above

sequence for X is a product of the corresponding sequences for each Ui, so it suffices to treat
the case where U is connected, hence irreducible. In this case, there is a well known exact
sequence (see [4])

1 −→ Γ(U ,O∗U ) −→ k(U)∗ div−−−→
⊕
y∈U0

Zy.

This amounts to a sequence

Γ(U ,O∗U ) −→ Γ(η ×X U ,O∗η×XU ) div−−−→
⊕
x∈X0

Γ(x×X U ,Z)

which, unfolding definitions, is nothing but a sequence

Gm(U) −→ j∗Gm,η(U) div−−−→
⊕
x∈X0

ix∗Z(U).

This defines the maps in the Fundamental Exact Sequence and shows it is exact except possibly
at the last step. To see surjectivity, let us recall (from [4] again) that if C is a nonsingular curve
and D is a divisor on C, then there exists a Zariski open covering {Vj → C} of C such that
D|Vj = div(fj) for some fj ∈ k(C)∗.

Lemma 5.12. For any q > 1, Rqj∗Gm,η = 0.

Proof. We need to show that (Rqj∗Gm,η)x̄ = 0 for every geometric point x̄ of X .
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Step 1. Assume that x̄ lies over a closed point x of X . Let SpecA be an open neighborhood
of x in X , and K the fraction field of A, so that

Spec(Osh
X,x̄)×X η = Spec(Osh

X,x̄ ⊗A K).

The ringOsh
X,x̄⊗AK is a localization of the discrete valuation ringOsh

X,x̄, so it is either
Osh
X,x̄ again, or its fraction field Ksh

x̄ . But since some local uniformizer gets inverted,
it must be the latter. Hence

(Rqj∗Gm,η)(X,x̄) = Hq
ét(SpecKsh

x̄ ,Gm).

Now recall that Osh
X,x̄ = colim(U ,ū)→x̄O(U) = colimA⊆B B where A → B is étale,

hence Ksh
x̄ is an algebraic extension of k(X), and we may apply corollary 5.10 to get

the vanishing.

Step 2. Assume that x̄ = η̄ lies over the generic point η ofX (in fact, this case is superfluous).
Then OX,η̄ = κ(η)sep and thus

(Rqj∗Gm,η)η̄ = Hq
ét(Specκ(η)sep ×X η,Gm)

= Hq
ét(Specκ(η)sep,Gm)

= 0 for q > 1

since the corresponding Galois group is trivial.

Lemma 5.13. For all p > 1, Hp
ét(X, j∗Gm,η) = 0.

Proof. The Leray spectral sequence reads

Ep,q2 = Hp
ét(X,R

qj∗Gm,η)⇒ Hp+q
ét (η,Gm,η),

which vanishes for p + q > 1 by corollary 5.10. Taking q = 0, we get the desired vanishing.

Lemma 5.14. For all q > 1, Hq
ét(X,

⊕
x∈X0 ix∗Z) = 0.

Proof. For X quasi-compact and quasi-separated, cohomology commutes with colimits, so it
suffices to show the vanishing of Hq

ét(X, ix∗Z). But then the inclusion ix of a closed point is
finite so Rpix∗Z = 0 for all p > 1 by proposition 4.13. Applying the Leray spectral sequence,
we see that Hq

ét(X, ix∗Z) = Hq
ét(x,Z). Finally, since x is the spectrum of an algebraically

closed field, all higher cohomology on x vanishes.

Concluding this series of lemmata, we get the following result.

Theorem 5.15. Let X be a smooth curve over an algebraically closed field. Then

Hq
ét(X,Gm) = 0 for all q > 2.

We also get the cohomology long exact sequence

0→ H0
ét(X,Gm)→ H0

ét(X, j∗Gmη)
div−−→ H0

ét(X,
⊕

ix∗Z)→ H1
ét(X,Gm)→ 0

although this is the familiar

0→ H0
Zar(X,O∗X)→ k(X)∗ div−−→ Div(X)→ Pic(X)→ 0.

We would like to use the Kummer sequence to deduce some information about the cohomology
group of a curve with finite coefficients. In order to get vanishing in the long exact sequence,
we review some facts about Picard groups.
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5.3 Picards Groups of Curves

Let X be a smooth projective curve over an algebraically closed field k. There exists a short
exact sequence

0→ Pic0(X)→ Pic(X)
deg−−→ Z→ 0.

The abelian group Pic0(X) can be identified with Pic0(X) = Pic0
X/k(k), i.e. the k-valued

points of an abelian variety Pic0
X/k of dimension g = g(X) over k.

Definition. An abelian variety over k is a proper smooth connected group scheme over k (i.e.
a proper group variety over k).

Proposition 5.16. Let A be an abelian variety over an algebraically closed field k. Then

i. A is projective over k;

ii. A is a commutative group scheme;

iii. the morphism [n] : A → A is surjective for all n > 1, in other words A(k) is a divisible
abelian group;

iv. A[n] = Ker(A
[n]−→ A) is a finite flat group scheme of rank n2 dimA over k. It is reduced

if and only if n ∈ k∗;

v. if n ∈ k∗ then A(k)[n] = A[n](k) ∼= (Z/nZ)2 dim(A).

Consequently, if n ∈ k∗ then Pic0(X)[n] ∼= (Z/nZ)2g as abelian groups.

Corollary 5.17. Let X be a smooth projective of genus g over an algebraically closed field k
and n > 1, n ∈ k∗. Then there are canonical identifications

Hq
ét(X,µn) =


µn(k) if q = 0 ;

Pic0(X)[n] if q = 1 ;
Z/nZ if q = 2 ;

0 if q > 3.

Since µn
∼= Z/nZ, this gives (noncanonical) identifications

Hq
ét(X,Z/nZ) ∼=


Z/nZ if q = 0 ;

(Z/nZ)2g if q = 1 ;
Z/nZ if q = 2 ;

0 if q > 3.

Proof. The Kummer sequence 0 → µn,X → Gm,X
(·)n−−→ Gm,X → 0 give the long exact

cohomology sequence

0 // µn(k) // k∗
(·)n

// k∗

xx

H1
ét(X,µn) // Pic(X)

(·)n
// Pic(X)

yy

H2
ét(X,µn) // 0 // 0 · · ·
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The n power map k∗ → k∗ is surjective since k is algebraically closed. So we need to compute

the kernel and cokernel of the map Pic(X)
(·)n−−→ Pic(X). Consider the commutative diagram

with exact rows

0 // Pic0(X) //

(·)n
����

Pic(X)
deg

//

(·)n
��

Z //
� _

n

��

0

0 // Pic0(X) // Pic(X)
deg

// Z // 0

where the left vertical map is surjective by proposition 5.16, iii. Applying the snake lemma
gives the desired identifications.

Corollary 5.18. Let X be an affine smooth curve over an algebraically closed field k and
n ∈ k∗. Then

i. H0
ét(X,µn) = µn(k);

ii. H1
ét(X,µn) ∼= (Z/nZ)2g+r−1, where r is the number of points in X̄−X for some smooth

projective compactification X̄ of X ; and

iii. for all q > 2, Hq
ét(X,µn) = 0.

Proof. Write X = X̄ − {x1, . . . , xr}. Then Pic(X) = Pic(X̄)/R, where R is the subgroup
generated by OX̄(xi), 1 6 i 6 r. Since r > 1, we see that Pic0(X) � Pic(X) is surjective,
hence Pic(X) is divisible. Applying the Kummer sequence, we get i and iii. For ii, recall that

H1
ét(X,µn) =

{
(L, α)

∣∣∣∣ L ∈ Pic(X)
α : L⊗n ∼−→ OX

}/
∼=

=
{

(L̄, D, ᾱ)
}/

R̃

where L̄ ∈ Pic0(X̄), D is a divisor on X̄ supported on {x1, · · · , xr} and ᾱ : L̄⊗n ∼−→ OX̄(D)
is an isomorphism. Note thatD must have degree 0. Further R̃ is the subgroup of triples of the
form (OX̄(D′), nD′, 1⊗n) where D′ is supported on {x1, · · · , xr} and has degree 0. Thus,
we get an exact sequence

0 −→ H1
ét(X̄,µn) −→ H1

ét(X,µn) −→
r⊕
i=1

Z/nZ
P
−−→ Z/nZ −→ 0

where the middle map sends the class of a triple (L̄, D, ᾱ) with D =
∑r

i=1 ai(xi) to the
r-tuple (ai)ri=1. It now suffices to use corollary 5.17 to count ranks.

Remark. The “natural” way to prove the previous corollary is to excise X from X̄ . This is
possible, we just haven’t developed that theory.

Our main goal is to prove the following result.

Theorem 5.19. Let X be a separated, finite type, dimension 1 scheme over an algebraically
closed field k and F a torsion sheaf on Xét. Then

Hq
ét(X,F) = 0, ∀q > 3.

If X affine then also H2
ét(X,F) = 0.

Recall that an abelian sheaf is called a torsion sheaf if all of its stalks are torsion groups. We
have computed the cohomology of constant sheaves. We now generalize the latter notion to
get all the way to torsion sheaves.
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5.4 Constructible Sheaves

Definition. Let X be a scheme and F an abelian sheaf on Xét. We say that F is finite locally
constant if it is represented by a finite étale morphism to X .

Lemma 5.20. Let X be a scheme and F an abelian sheaf on Xét. Then the following are
equivalent

i. F is finite locally constant ;

ii. there exists an étale covering {Ui → X}i∈I such that F|Ui ∼= Ai for some finite abelian
group Ai.

For a proof, see [3].

Definition. Let X be a quasi-compact and quasi-separated scheme. A sheaf F on Xét is
constructible if there exists a finite decomposition ofX into locally closed subsetsX =

∐
iXi

such that F|Xi is finite locally constant for all i.

Lemma 5.21. The kernel and cokernel of a map of finite locally constant sheaves are finite
locally constant.

Proof. Let U be a connected scheme, A and B finite abelian groups. Then

HomAb(Uét) (AU , BU ) = HomAb(A,B),

so Ker
(
AU

ϕ−→ BU

)
= Ker(ϕ)U and similarly for the cokernel.

Remark. If X is noetherian, then any constructible sheaf on Xét is a torsion sheaf.

Lemma 5.22. Let X be a noetherian scheme. Then:

i. the category of constructible sheaves is abelian ;

ii. it is a full exact subcategory of Ab(Xét) ;

iii. any extension of constructible sheaves is constructible ; and

iv. the image of a constructible sheaf is constructible.

Proof of i. Let ϕ : F → G be a map of constructible sheaves. By assumption, there exists a
stratification X =

∐
Xi such that F|Xi and G|Xi are finite locally constant. Since pullback if

exact, we thus have Kerϕ|Xi = Ker(F|Xi
ϕ−→ G|Xi) which is finite locally constant by lemma

5.21. Statement iv means that if ϕ : F → G is a map in Ab(Xét) and F is constructible then
Im (ϕ) is constructible. It is proven in [3].

Lemma 5.23. Let ϕ : U → X be an étale morphism of noetherian schemes. Then there exists
a stratification X =

∐
iXi such that for all i, Xi ×X U → Xi is finite étale.

Proof. By noetherian induction it suffices to find some nonempty open V ⊆ X such that
ϕ−1(V)→ V is finite. This follows from the following very general lemma.

Lemma 5.24 (02NW in [2]). Let f : X → Y be a quasi-compact and quasi-separated
morphism of schemes and η a generic point of Y such that f−1(η) is finite. Then there exists
an open V ⊆ Y containing η such that f−1(V)→ V is finite.
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5.5 Extension by Zero

Definition. Let j : U → X be an étale morphism of schemes. The restriction functor j−1 is
right exact, so it has a left adjoint, denoted j! : Ab(Uét) → Ab(Xét) and called extension by
zero. Thus it is characterized by the functorial isomorphism

HomX(j!F ,G) = HomU (F , j−1G)

for all F ∈ Ab(Uét) and G ∈ Ab(Xét).

To describe it more explicitly, recall that j−1 is just the restriction functor Uét → Xét, that is,

j−1G(U ′ → U) = G
(
U ′ → U j−→ X

)
.

For F ∈ Ab(Uét) we consider the presheaf

jPSh! F : Xét −→ Ab

(V → X) 7−→
⊕

V
ϕ−→U over X

F(V ϕ−→ U),

then j!F is the sheafification
(
jPSh! F

)].
Exercise. Prove directly that j! is left adjoint to j−1 and that j∗ is right adjoint to j−1.

Proposition 5.25. Let j : U → X be an étale morphism of schemes. Then

i. the functors j−1 and j! are exact ;

ii. j−1 transforms injectives into injectives ;

iii. Hp
ét(U ,G) = Hp

ét(U , j−1G) for any G ∈ Ab(Xét)

iv. if x̄ is a geometric point of X , then (j!F)x̄ =
⊕

(U ,ū)→(X,x)

Fū.

Proof. The functor j−1 has both a right and a left adjoint, so it is exact. The functor j! has
a right adjoint, so it is right exact. To see that it is left exact, use the description above and
the fact that sheafification is exact. Property ii is standard general nonsense. In part iii, the
left-hand side refers (as it should) to the right derived functors of G 7→ G(U) on Ab(Xét), and
the right-hand side refers to global cohomology on Ab(Uét). It is a formal consequence of ii.
Part iv is again a consequence of the above description.

Lemma 5.26. Extension by zero commutes with base change. More precisely, let f : Y → X
be a morphism of schemes, j : V → X be an étale morphism and F a sheaf on Vét. Consider
the cartesian diagram

V ′ = Y ×X V
f ′

��

j′
// Y

f

��

V
j

// X

then j′!f
′−1F = f−1j!F .

Sketch of proof. By general nonsense, there exists a map j′! ◦ f ′−1 → f−1 ◦ j!. We merely
verify that they agree on stalks. We have(

j′!f
′−1F

)
ȳ

=
⊕
v̄′→ȳ

(f ′−1F)v̄′ =
⊕

v̄→f(ȳ)

Fv̄ = (j!F)f(ȳ) = (f−1j!F)ȳ.
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Lemma 5.27. Let j : V → X be finite and étale. Then j! = j∗.

Sketch of proof. In this situation, one can again construct a map j! → j∗ although in this case
it is not just by general nonsense and uses the assumptions on j. Again, we only check that
the stalks agree. We have on the one hand

(j!F)x̄ =
⊕
v̄→x̄
Fv̄,

and on the other hand
(j∗F)x̄ = H0

ét(Spec(Osh
X,x̄)×X V,F).

But j is finite and OX,x̄ is strictly henselian, hence Spec(Osh
X,x̄) ×X V splits completely into

spectra of strictly henselian local rings

Spec(Osh
X,x̄)×X V =

∐
v̄→x̄

Spec(Osh
X,x̄)

and so (j∗F)x̄ =
∏
v̄→x̄Fv̄ by lemma 5.26. Since finite products and finite coproducts agree,

we get the result. Note that this last step fails if we take infinite colimits, and indeed the result
is not true anymore for ind-morphisms, say.

Lemma 5.28. Let X be a noetherian scheme and j : U → X an étale, quasi-compact mor-
phism. Then j!Z/nZ is constructible on X .

Proof. By lemma 5.23, X has a stratification
∐
iXi such that πi : j−1(Xi) → Xi is finite

étale, hence
j!(Z/nZ)|Xi = πi!(Z/nZ) = πi∗(Z/nZ)

by lemma 5.27. Thus it suffices to show that for π : Y → X finite étale, π∗(Z/nZ) is finite
locally constant. This is clear because it is the sheaf represented by Y × Z/nZ.

Remark. Using the alternative definition of finite locally constant (as in 5.20), the last step is
replaced by considering a Galois closure of Y .

Lemma 5.29. Let X be a noetherian scheme and F a torsion sheaf on Xét. Then F is a
directed (filtered) colimit of constructible sheaves.

Sketch of proof. Let j : U → X inXét and s ∈ F(U) for some U noetherian. Then ns = 0 for
some n > 0. Hence we get a map Z/nZU → F|U , by sending 1̄ to s. By adjointness, this gives
a map ϕ : j!(Z/nZ)→ F whose image contains s. There is an element 1idU ∈ Γ(U , j!Z/nZ)
which maps to s. Thus, Im (ϕ) ⊆ F is a constructible subsheaf and s ∈ Im (ϕ)(U). A
similar argument applies for a finite collection of section, and the result follows by taking
colimits.

5.6 Higher Vanishing for Torsion Sheaves

The goal of this section is to prove the result that follows now.

Theorem 5.30. Let X be an affine curve over an algebraically closed field k and F a torsion
sheaf on Xét. Then Hq

ét(X,F) = 0 for all q > 2.

We begin by reducing the proof to a more simpler statement.
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Step 1. If suffices to prove the vanishing when F is a constructible sheaf.
Using the compatibility of étale cohomology with colimits and lemma 5.29, we have
colimHq

ét(X,F) = Hq
ét(X, colimFi) for some constructible sheaves Fi, whence the

result.

Step 2. It suffices to assume that F = j!G where U ⊆ X is open, G is finite locally constant
on U smooth.
Choose a nonempty open U ⊆ X such that F|U is finite locally constant, and consider
the exact sequence

0→ j!(F|U )→ F → Q→ 0.

By looking at stalks we get Qx̄ = 0 unless x̄ ∈ X − U . It follows that Q =⊕
x∈X−U

ix∗(Qx) which has no higher cohomology.

Step 3. It suffices to assume that X is smooth and affine (over k), G is a finite locally constant
sheaf on a open U of X and F = j!G.
Let U , X and G be as in the step 2, and consider the commutative diagram

Xν

ν

��

U
j
//

jν
==||||||||
X

where ν : Xν → X is the normalization of X . Since ν is finite, H∗ét(X, j!G) =
H∗ét(X

ν , jν! G), which implies that ν∗((jν)!G) = j!G by looking at stalks.

We are thus reduced to proving the following lemma.

Lemma 5.31. Let X be a smooth affine curve over an algebraically closed field k, j : U ↪→
X an open immersion and F a finite locally constant sheaf on Uét. Then for all q > 2,
Hq

ét(X, j!F) = 0.

Proposition 5.32 (Topological invariance of étale cohomology WHERE DO I GO?). Let X
be a scheme and X0 ↪→ X a closed immersion defined by a nilpotent sheaf of ideals. Then the
étale sites Xét and (X0)ét are isomorphic. In particular, for any sheaf F on Xét, Hq(X,F) =
Hq(X0,F|X0) for all q.

The proof of this follows the “méthode de la trace” as explained in SGA 4, exposé IX, §5.

Definition. Let f : Y → X be a finite étale morphism. There are pairs of adjoint functors
(f!, f

−1) and (f−1, f∗) on Ab(Xét). The adjunction map id → f∗f
−1 is called restriction.

Since f is finite, f! = f∗ and the adjunction map f∗f−1 = f!f
−1 → id is called the trace.

The trace map is characterized by the following two properties:

(a) it commutes with étale localization ; and

(b) if f : Y =
∐d
i=1X → X then the trace map is just the sum map f∗f−1F = F⊕d → F .

It follows that if f has constant degree d, then the composition F res−−→ f∗f
−1F tr−→ F is

multiplication by d. The “méthode” then essentially consits in the following observation: if
F is an abelian sheaf on Xét such that multiplication by d is an isomorphism F ∼−→ F , and
if furthermore Hq

ét(Y, f
−1F) = 0 then Hq

ét(X,F) = 0 as well. Indeed, multiplication by d
induces an isomorphism on Hq

ét(X,F) which factors through Hq
ét(Y, f

−1F) = 0.

Using this method, we further reduce the proof of lemma 5.31] to a yet simpler statement.
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Step 1. We may assume that F is killed by a prime `.
Writing F = F1⊕· · ·⊕Fr where Fi is `i-primary for some prime `i, we may assume
that `n kills F for some prime `. Now consider the exact sequence

0→ F [`]→ F → F/F [`]→ 0.

Applying the exact functor j! and looking at the long exact cohomology sequence, we
see that it suffices to assume that F is `-torsion, which we do.

Step 2. There exists a finite étale morphism f : V → U of degree prime to ` such that f−1F
has a filtration

0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gs = f−1F
with Gi/Gi−1

∼= Z/nZV for all i 6 s.
Since F is finite locally constant, there exists a finite étale Galois cover h : U ′ → U
such that h−1F ∼= AU ′ for some finite abelian group A. Note that A ∼= (Z/`Z)⊕m for
some m. Saying that the cover is Galois means that the finite group G = Aut(U ′|U)
has (maximal) cardinality #G = deg h. Now let H ⊆ G be the `-Sylow, and set

U ′ π−−→ V = U ′/H f−−→ U .

The quotient exists by taking invariants (schemes are affine). By construction, deg f =
#G/#H is prime to `. The sheaf G = f−1F is then a finite locally constant sheaf on
V and

π−1G = h−1F ∼= (Z/`Z)⊕mU ′ .

Moreover,
H0

ét(V,G) = H0
ét(U ′, π−1G)H =

(
(Z/`Z)⊕m

)H 6= 0,

where the first equality follows from writing out the sheaf condition for G (again,
schemes are affine), and the last inequality is an exercise in linear algebra over F`.
Following, we have found a subsheaf Z/`ZV ↪→ G. Repeating the argument for
the quotient G/Z/`ZV if necessary, we eventually get a subsheaf of G with quotient
Z/`ZV . This is the first step of the filtration.

Exercise. Let f : X → Y be a finite étale morphism with Y noetherian, and X,Y
irreducible. Then there exists a finite étale Galois morphismX ′ → Y which dominates
X over Y .

Step 3. We consider the normalization Y ofX in V , that is, we have the commutative diagram

V
f

��

� � j′
// Y

f ′

��

U � � j
// X.

Then there is an injection Hq
ét(X, j!F) ↪→ Hq

ét(Y, j
′
!f
−1F) for all q.

We have seen that the composition F res−−→ f∗f
−1F tr−→ F is multiplication by the

degree of f , which is prime to `. On the other hand,

j!f∗f
−1F = j!f!f

−1F = f ′∗j
′
!f
−1F

since f and f ′ are both finite and the above diagram is commutative. Hence applying
j! to the previous sequence gives a sequence

j!F −→ f ′∗j′!f
−1F −→ j!F .

Taking cohomology, we see that Hq
ét(X, j!F) injects into Hq

ét(X, f
′∗j′!f

−1F). But
since f ′ is finite, this is merely Hq

ét(Y, j
′
!f
−1F), as desired.
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Step 4. It suffices to prove Hq
ét(Y, j

′
!Z/`Z) = 0.

By Step 3, it suffices to show vanishing of Hq
ét(Y, j

′
!f
−1F). But then by Step 2,

we may assume that f−1F has a finite filtration with quotients isomorphic to Z/nZ,
whence the claim.

Finally, we are reduced to proving the following lemma.

Lemma 5.33. Let X be a smooth affine curve over an algebraically closed field, j : U ↪→ X
an open immersion and ` a prime number. Then for all q > 2, Hq

ét(X, j!Z/`Z) = 0.

Proof. Consider the short exact sequence

0 −→ j!Z/`ZU −→ Z/`Z
X
−→

⊕
x∈X−U

ix∗(Z/`Z) −→ 0.

We know that the cohomology of the middle sheaf vanishes in degree at least 2 by corollary
5.18 and that of the skyscraper sheaf on the right vanishes in degree at least 1. Thus applying
the long exact cohomology sequence, we get the vanishing of j!Z/`ZU in degree at least 2.
This finishes the proof of the lemma, hence of lemma 5.31, hence of theorem 5.30.

Remark.

• This méthode is very générale. For instance, it applies in Galois cohomology, and this
is essentially how proposition 5.5 is proved.

• In fact, we have overlooked the case where ` is the characteristic of the field k, since
the Kummer sequence is not exact then and we cannot use corollary 5.18 anymore.
The result is still true, as shown by considering the Artin-Schreier exact sequence for a
scheme S of characteristic p > 0, namely

0 −→ Z/pZ
S
−→ Ga,S

F−1−−−→ Ga,S −→ 0

where F − 1 is the map x 7→ xp − x. Using this, it can be shown that is S is affine then
Hq

ét(S,Z/pZ) = 0 for all q > 2. In fact, ifX is projective over k, thenHq
ét(X,Z/pZ) =

0 for all q > dimX + 2.

• If X is a projective curve over an algebraically closed field then Hq
ét(X,F) = 0 for all

q > 3 and all torsion sheaves F onXét. This can be shown using Serre’s Mayer Vietoris
argument, thereby proving theorem 5.19.

6 The Trace Formula

A typical course in étale cohomology would normally state and prove the proper and smooth
base change theorems, purity and Poincaré duality. All of these can be found in [3, Arcata].
Instead, we are going to study the trace formula for the frobenius, following the account of
Deligne in [3, Rapport]. We will only look at dimension 1, but using proper base change this
is enough for the general case. Since all the cohomology groups considered will be étale,
we drop the subscript ét. Let us now describe the formula we are after. Let X be a finite
type scheme of dimension 1 over a finite field k, ` a prime number and F a constructible, flat
Z/`nZ sheaf. Then∑

x∈X(k)

Tr(Frob |Fx̄) =
2∑
i=0

(−1)i Tr(π∗X |H i
c(X ⊗k k̄,F)) (∗)

as elements of Z/`nZ. As we will see, this formulation is slightly wrong as stated. Let us
nevertheless describe the symbols that occur therein.
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6.1 Frobenii

Throughout this section, X will denote a scheme of finite type over a finite field k with q = pf

elements. We let α : X → Spec k denote the structural morphism, k̄ a fixed algebraic closure
of k and Gk = Gal(k̄|k) the absolute Galois group of k.

Definition. The absolute frobenius of X is the morphism F = FX : X → X which is the
identity on the induced topological space, and which takes a section to its pth power. That is,
F ] : OX → OX is given by g 7→ gp. It is clear that this induces the identity on the topological
space indeed.

Theorem 6.1 (The Baffling Theorem). Let X be a scheme in characteristic p > 0. Then the
absolute frobenius induces (by pullback) the trivial map on cohomology, i.e. for all integers
j > 0,

F ∗X : Hj(X,Z/nZ) −→ Hj(X,Z/nZ)

is the identity.

This theorem is purely formal. It is a good idea, however, to review how to compute the pull-
back of a cohomology class. Let us simply say that in the case where cohomology agrees with
C̆ech cohomology, it suffices to pull back (using the fiber products on a site) the C̆ech cocy-
cles. The general case is quite technical and can be found in [2, somewhere]. A topological
analogue of the baffling theorem is the following.

Exercise. LetX be a topological space and g : X → X a continuous map such that g−1(U) =
U for all opens U of X . Then g induces the identity on cohomology on X (for any coeffi-
cients).

We now turn to the statement for the étale site.

Lemma 6.2. LetX be a scheme and g : X → X a morphism. Assume that for all ϕ : U → X
étale, there is a functorial isomorphism

U

ϕ
��

????????
∼ // U ×ϕ,X,g X

pr2
yyssssssssss

X,

then g induces the identity on cohomology (for any sheaf).

The proof is formal and without difficulty. To prove the theorem, we merely verify that the
assumption of the lemma holds for the frobenius.

Proof of theorem 6.1. We need to verify the existence of a functorial isomorphism as above.
For an étale morphism ϕ : U → S, consider the diagram

U

%%LLLLLL FU

$$

ϕ

&&

U ×ϕ,X,FX X
pr1 //

pr2

��

U
ϕ

��

X
FX // X.

The dotted arrow is an étale morphism which induces an isomorphism on the underlying topo-
logical spaces, so it is an isomorphism.
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Definition. The geometric frobenius of X is the morphism πX : X → X over Spec k
which equals F fX . We can base change it to any scheme over k, and in particular to Xk̄ =
Spec k̄ ×Spec k X to get the morphism idSpec k̄×πX : Xk̄ → Xk̄ which we denote πX again.
This should not be ambiguous, as Xk̄ does not have a geometric frobenius of its own.

Lemma 6.3. Let F be a sheaf on Xét. Then there are canonical isomorphisms π−1
X F

∼−→ F
and F ∼−→ πX∗F .

This is false for, say, the flat site.

Proof. Let ϕ : U → X be étale. Recall that πX∗F(U) = F(U × ϕ,X, πXX). Since
πX = F fX , by lemma 6.2 that there is a functorial isomorphism

U

ϕ
��

????????
∼
γU

// U ×ϕ,X,πX X

pr2
yyrrrrrrrrrrr

X

where γU = (ϕ, F fU ). Now we define an isomorphism

F(U) −→ πX∗F(U) = F(U ×ϕ,X,πX X)

by taking the restriction map of F along γ−1
U . The other isomorphism is analogous.

Remark. It may or may not be the case that F fU equals πU .

Let F be an abelian sheaf on Xét. Consider the cohomology group Hj(Xk̄,F|Xk̄) as a left
Gk-module as follows: if σ ∈ Gk, the diagram

Xk̄

  AAAAAAAA
Specσ×idX // Xk̄

~~}}}}}}}}

X

commutes. Thus we can set, for ξ ∈ Hj(Xk̄,F|Xk̄)

σ · ξ def= (Specσ × idX)∗ξ ∈ Hj(Xk̄, (Specσ × idX)−1F|Xk̄) = Hj(Xk̄,F|Xk̄),

where the last equality follows from the commutativity of the previous diagram. This endows
the latter group with the structure of a Gk-module.

Lemma 6.4. Let F be an abelian sheaf on Xét. Consider (Rjα∗F)Spec k̄ endowed with its
natural Galois action as in paragraph 4.7. Then the identification

(Rjα∗F)Spec k̄
∼= Hj(Xk̄,F|Xk̄)

from theorem 4.4 is an isomorphism of Gk-modules.

A similar result holds comparing (Rjα!F)Spec k̄ with Hj
c (Xk̄,F|Xk̄). We omit the proof.

Definition. The arithmetic frobenius is the map frobk : k̄ → k̄, x 7→ xq of Gk.

Theorem 6.5. Let F be an abelian sheaf on Xét. Then for all j > 0, frobk acts on the
cohomology group Hj(Xk̄,F|Xk̄) as the inverse of the map π∗X .
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The map π∗X is defined by the composition

Hj(Xk̄,F|Xk̄)
πX
∗
k̄−−→ Hj(Xk̄, (π

−1
X F)|Xk̄) ∼−→ Hj(Xk̄,F|Xk̄).

Proof. The composition Xk̄

Spec(frobk)−−−−−−−→ Xk̄
πX−−→ Xk̄ is equal to F fXk̄ , hence the result follows

from the baffling theorem suitably generalized to nontrivial coefficients. Note that the previous
composition commutes in the sense that F fXk̄ = πX ◦ Spec(frobk) = Spec(frobk) ◦ πX .

Definition. If x ∈ X(k) is a rational point and x̄ : Spec k̄ → X the geometric point lying over
x, we let πX : Fx̄ → Fx̄ denote the action by frob−1

k and call it the geometric frobenius. This
notation is not standard (this is denoted Fx in [3]).

We can now make a more precise statement (albeit a false one) of the trace formula (∗). Let
X be a finite type scheme of dimension 1 over a finite field k, ` a prime number and F a
constructible, flat Z/`nZ sheaf. Then∑

x∈X(k)

Tr(πX |Fx̄) =
2∑
i=0

(−1)i Tr(π∗X |H i
c(Xk̄,F))

as elements of Z/`nZ. The reason this equation is wrong is that the trace in the right-hand side
does not make sense for the kind of sheaves considered. Before addressing this issue, we try
to motivate the appearance of the geometric frobenius (apart from the fact that it is a natural
morphism!).

Let us consider the case where X = P1
k and F = Z/`Z. For any point, the Galois module Fx̄

is trivial, hence for any morphism ϕ acting on Fx̄, the left-hand side is∑
x∈X(k)

Tr(ϕ|Fx̄) = #P1
k(k) = q + 1.

Now P1
k is proper, so compactly supported cohomology equals standard cohomology, and so

for a morphism π : P1
k → P1

k, the right-hand side equals

Tr(π∗|H0(P1
k̄,Z/`Z)) + Tr(π∗|H2(P1

k̄,Z/`Z)).

The Galois module H0(P1
k̄
,Z/`Z) = Z/`Z is trivial, since the pullback of the identity is the

identity. Hence the first trace is 1, regardless of π. For the second trace, we need to compute
the pullback of a map π : P1

k̄
→ P1

k̄
onH2(P1

k̄
,Z/`Z)). This is a good exercise and the answer

is multiplication by the degree of π. In other words, this works as in the familiar situation of
complex cohomology. In particular, if π is the geometric frobenius we get

Tr(π∗X |H2(P1
k̄,Z/`Z)) = q

and if π is the arithmetic frobenius then we get

Tr(frob∗k |H2(P1
k̄,Z/`Z)) = q−1.

The latter option is clearly wrong.
Remark. The computation of the degrees can be done by lifting (in some obvious sense) to
characteristic 0 and considering the situation with complex coefficients. This method almost
never works, since lifting is in general impossible for schemes which are not projective space.

The question remains as to why we have to consider compactly supported cohomology. In
fact, in view of Poincaré duality, it is not strictly necessary. However, let us consider the
case where X = A1

k and F = Z/`Z. The action on stalks is again trivial, so we only need
look at the action on cohomology. But then π∗X acts as the identity on H0(A1

k̄
,Z/`Z) and as

multiplication by q on H2
c (A1

k̄
,Z/`Z).
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6.2 Traces

We now explain how to take the trace of an endomorphism of a module over a noncommutative
ring. Fix a finite ring Λ with cardinality prime to p. Typically, Λ is the group ring (Z/`nZ)[G]
for some finite group G. By convention, all the Λ-modules considered will be left Λ-modules.

Notation. We set Λ\ to be the quotient of Λ by its additive subgroup generated by the commu-
tators (i.e. the elements of the form ab− ba, a, b ∈ Λ). Note that Λ\ is not a ring.

For instance, the module (Z/`nZ)[G]\ is the dual of the class functions, so

(Z/`nZ)[G]\ =
⊕

conjugacy
classes ofG

Z/`nZ.

For a free Λ-module, we have EndΛ(Λ⊕m) = Mn(Λ). Note that since the modules are left
modules, representation of endomorphism by matrices is a right action: if a ∈ End(Λ⊕m) has
matrix A and v ∈ Λ, then a(v) = vA.

Definition. The trace of the endomorphism a is the sum of the diagonal entries of a matrix
representing it. This defines an additive map Tr : EndΛ(Λ⊕m)→ Λ\.

Exercise. Given maps Λ⊕n a−→ Λ⊕n b−→ Λ⊕m show that Tr(ab) = Tr(ba).

We extend the definition of the trace to a finite projective Λ-module P and an endomorphism
ϕ of P as follows. Write P as the summand of a free Λ-module, i.e. consider maps P a−→
Λ⊕n b−→ P with

(a) Λ⊕n = Im a⊕ ker b; and

(b) b ◦ a = idP .

Then we set Tr(ϕ) = Tr(aϕb). It is easy to check that this is well-defined, using the previous
exercise.

Derived categories

With this definition of the trace, let us now discuss another issue with the formula as stated. Let
C be a smooth projective curve over k. Then there is a correspondence between finite locally
constant sheaves F on Cét which stalks are isomorphic to (Z/`nZ)⊕m on the one hand, and
continuous representations ρ : π1(C, c̄)→ GLm(Z/`nZ)) (for some fixed choice of c̄) on the
other hand. We denote Fρ the sheaf corresponding to ρ. Then H2(Ck̄,Fρ) is the group of
coinvariants for the action of ρ(π1(C, c̄)) on (Z/`nZ)⊕m, and there is a short exact sequence

0 −→ π1(Ck̄, c̄) −→ π1(C, c̄) −→ Gk −→ 0.

For instance, let Z = Zσ act on Z/`2Z via σ(x) = (1+`)x. The coinvariants are (Z/`2Z)σ =
Z/`Z, which is not a flat Z/`Z-module. Hence we cannot take the trace of some action on
H2(Ck̄,Fρ), at least not in the sense of the previous paragraph.

In fact, our goal is to consider a trace formula for `-adic coefficients. But Q` = Z`[1/`] and
Z` = lim Z/`nZ, and even for a flat Z/`nZ sheaf, the individual cohomology groups may
not be flat, so we cannot compute traces. One possible remedy is consider the total derived
complex RΓ(Ck̄,Fρ) in the derived category D(Z/`nZ) and show that it is a perfect object,
which means that it is quasi-isomorphic to a finite complex of finite free module. For such
complexes, we can define the trace, but this will require an account of derived categories.
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6.3 Derived Categories

To set up notation, let A be an abelian category. Let Cxs(A) be the abelian category of com-
plexes in A. Let K(A) be the category of complexes up to homotopy, with objects equal to
complexes in A and objects equal to homotopy classes of morphisms of complexes. This is
not an abelian category. Loosely speaking, D(A) is defined to be the category obtained by
inverting all quasi-isomorphisms in Cxs(A) or, equivalently, in K(A). Moreover, we can de-
fine Cxs+(A),K+(A),D+(A) analogously using only bounded below complexes. Similarly,
we can define Cxs−(A),K−(A),D−(A) using bounded above complexes, and we can define
Cxsb(A),Kb(A),Db(A) using bounded complexes.

Remark.

• There are some set-theoretical problems when A is somewhat arbitrary, which we will
happily disregard.

• The categories K(A) and D(A) may be endowed with the structure of triangulated cat-
egory, but we will not need these structures in the following discussion.

• The categories Cxs(A) and K(A) can also be defined when A is an additive category.

The homology functor H i : Cxs(A) → A taking a complex K• 7→ H i(K•) extends to
functors H i : K(A)→ A and H i : D(A)→ A.

Lemma 6.6. An object E of D(A) is contained in D+(A) if and only if H i(E) = 0 for all
i� 0. Similar statements hold for D− and D+.

The proof uses truncation functors.

Lemma 6.7. i. Let I• be a complex in A with In injective for all n ∈ Z. Then

HomD(A)(K
•, I•) = HomK(A)(K

•, I•).

ii. Let P • ∈ Cxs−(A) with Pn is projective for all n ∈ Z. Then

HomD(A)(P
•,K•) = HomK(A)(P

•,K•).

iii. If A has enough injectives and I ⊆ A is the additive subcategory of injectives, then
D+(A) ∼= K+(I) (as triangulated categories).

iv. If A has enough projectives and P ⊆ A is the additive subcategory of projectives, then
D−(A) ∼= K−(P).

Proof. Omitted.

Definition. Let F : A → B be a left exact functor and assume that A has enough injectives.
We define the total right derived functor of F as the functor RF : D+(A) → D+(B) fitting
into the diagram

D+(A) RF // D+(B)

K+(I)

OO

F // K+(B).

OO
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This is possible since the left vertical arrow is invertible by the previous lemma. Similarly, let
G : A → B be a right exact functor and assume that A has enough projectives. We define the
total right derived functor of G as the functor LG : D−(A)→ D−(B) fitting into the diagram

D−(A) LG // D−(B)

K−(P)

OO

G // K−(B).

OO

This is possible since the left vertical arrow is invertible by the previous lemma.

Remark. In these cases, it is true that RiF (K•) = H i(RF (K•)), where the left hand side is
defined to be ith homology of the complex F (K•).

6.3.1 Filtered Derived Category

Definition. LetA be an abelian category. Let Fil(A) be the category of filtered objects (A,F )
of A, where F is a filtration of the form

A ⊇ · · · ⊇ FnA ⊇ Fn+1A ⊇ · · · ⊇ 0.

This is an additive category. We denote Filf (A) the full subcategory of Fil(A) whose objects
(A,F ) have finite filtration. This is also an additive category. An object I ∈ Filf (A) is called
filtered injective (respectively projective) provided that grp(I) = grpF (I) = F pI/F p+1I is
injective (resp. projective) in A for all p. The categories Cxs(Filf (A)) ⊇ Cxs+(Filf (A))
and K(Filf (A)) ⊇ K+(Filf (A)) are defined as before.
A morphismα : K• → L• of complexes in Cxs(Filf (A)) is called a filtered quasi-isomorphism
provided that

grp(α) : grp(K•)→ grp(L•)

is a quasi-isomorphism for all p ∈ Z. Finally, we define DF (A) (resp. DF+(A)) by inverting
the filtered quasi-isomorphisms in K(Filf (A)) (resp. K+(Filf (A))).

Lemma 6.8. IfA has enough injectives, then DF+(A) ∼= K+(I), where I is the full additive
subcategory of Filf (A) consisting of filtered injective objects. Similarly, if A has enough
projectives, then DF−(A) ∼= K+(P), where P is the full additive subcategory of Filf (A)
consisting of filtered projective objects.

We omit the proof.

6.3.2 Filtered Derived Functors

Definition. Let T : A → B be a left exact functor and assume that A has enough injectives.
Define RT : DF+(A)→ DF+(B) to fit in the diagram

DF+(A) RT // DF+(B)

K+(I)

OO

T // K+(Filf (B)).

OO

This is well-defined by the previous lemma. Let G : A → B be a right exact functor and
assume that A has enough projectives. Define LG : DF+(A) → DF+(B) to fit in the
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diagram

DF−(A) LG // DF−(B)

K−(P)

OO

G // K−(Filf (B)).

OO

Again, this is well-defined by the previous lemma.

Proposition 6.9. In the situation above, we have

grp ◦RT = RT ◦ grp

where the RT on the left is the filtered derived functor while the one on the right is the total
derived functor. That is, there is a commuting diagram

DF+(A) RT //

grp

��

DF+(B)

grp

��

D+(A) RT // D+(B).

Given K• ∈ DF+(B), we get a spectral sequence

Ep,q1 = Hp+q(grpK•)⇒ Hp+q(forget filt(K•)).

6.3.3 Applications

Let A be an abelian category with enough injectives, and 0 → L → M → N → 0 a short
exact sequence in A. Consider M̃ ∈ Filf (A) to be M along with the filtration defined by

F 1M = L, FnM = M for n 6 0, and FnM = 0 for n > 2.

By definition, we have

forget filt(M̃) = M, gr0(M̃) = N, gr1(M̃) = L

and grn(M̃) = 0 for all other n 6= 0, 1. Let T : A → B be a left exact functor. Assume thatA
has enough injectives. Then RT (M̃) ∈ DF+(B) is a filtered complex with

grp(RT (M̃))
qis
=


0 if p 6= 0, 1,

RT (N) if p = 0,
RT (L) if p = 1.

and forget filt(RT (M̃))
qis
= RT (M). The spectral sequence applied to RT (M̃) gives

Ep,q1 = Rp+qT (grp(M̃))⇒ Rp+qT (forget filt(M̃)).

Unwinding the spectral sequence gives us the long exact sequence

0 // T (L) // T (M) // T (N)

zz

R1T (L) // R1T (M) // · · ·

This will be used as follows. Let X/k be a scheme of finite type. Let F be a flat constructible
Z/`nZ-module. Then we want to show that the trace

Tr(π∗X |RΓc(Xk̄,F)) ∈ Z/`nZ

is additive on short exact sequences. To see this, it will not be enough to work withRΓc(Xk̄,−) ∈
D+(Z/`nZ), but we will have to use the filtered derived category.
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6.4 Perfectness

Let Λ be a (possibly noncommutative) ring, ModΛ the category of left Λ-modules, K(Λ) =
K(ModΛ) its homotopy category, and D(Λ) = D(ModΛ) the derived category.

Definition. We denote byKperf(Λ) the category whose objects are bounded complexes of finite
projective Λ-modules, and whose morphisms are morphisms of complexes up to homotopy.
The functor Kperf(Λ) → D(Λ) is fully faithful, and we denote Dperf(Λ) its essential image.
An object of D(Λ) is called perfect if it is in Dperf(Λ).

Proposition 6.10. Let K ∈ Dperf(Λ) and f ∈ EndD(Λ)(K). Then the trace Tr(f) ∈ Λ\ is
well defined.

Proof. Let P • be a bounded complex of finite projective Λ-modules and α : P • ∼−→ K be
an isomorphism in D(Λ). Then α−1 ◦ f ◦ α is the class of some morphism of complexes
f• : P • → P • by ??? Set

Tr(f) =
∑
i

(−1)i Tr(f i : P i → P i) ∈ Λ\.

Given P • and α, this is independent of the choice of f•: any other choice is of the form
f̃• = f• + dh+ hd for some hi : P i → P i−1(i ∈ Z). But

Tr(dh) =
∑
i

(−1)i Tr(P i dh−→ P i)

=
∑
i

(−1)i Tr(P i−1 hd−→ P i−1)

= −
∑
i

(−1)i−1 Tr(P i−1 hd−→ P i−1)

= −Tr(hd)

and so
∑

i(−1)i Tr((dh + hd)|P i) = 0. Furthermore, this is independent of the choice of
(P •, α): suppose (Q•, β) is another choice. Then by ???, the compositions

Q•
β−→ K

α−1

−−→ P • and P •
α−→ K

β−1

−−→ Q•

are representable by morphisms of complexes γ•1 and γ•2 respectively, such that γ•1 ◦ γ•2 is
homotopic to the identity. Thus, the morphism of complexes γ•2 ◦ f• ◦ γ•1 : Q• → Q•

represents the morphism β−1 ◦ f ◦ β in D(Λ). Now

Tr(γ•2 ◦ f• ◦ γ•1 |Q•) = Tr(γ•1 ◦ γ•2 ◦ f•|P •)
= Tr(f•|P •)

by the fact that γ•1 ◦γ•2 is homotopic to the identity and the independence from (P •, α) already
proved.

Filtrations

We now present a filtered version of the category of perfect complexes. An object (M,F )
of Filf (ModΛ) is called filtered finite projective if for all p, grpF (M) is finite and projective.
We then consider the homotopy category KFperf(Λ) of bounded complexes of filtered finite
projective objects of Filf (ModΛ). We have a diagram of categories

KF(Λ) ⊇ KFperf(Λ)
↓ ↓

DF(Λ) ⊇ DFperf(Λ)
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where the vertical functor on the right is fully faithful and the category DFperf(Λ) is its essential
image, as before.

Lemma 6.11 (Additivity). Let K ∈ DFperf(Λ) and f ∈ EndDF(K). Then

Tr(f |K) =
∑
p∈Z

Tr(f |grpK).

Proof. By proposition 6.10, we may assume we have a bounded complex P • of filtered finite
projectives of Filf (ModΛ) and a map f• : P • → P • in Cxs(Filf (ModΛ)). So the lemma
follows from the following result, which proof is left to the reader.

Lemma 6.12. Let P ∈ Filf (ModΛ) be filtered finite projective, and f : P → P an endomor-
phism in Filf (ModΛ). Then

Tr(f |P ) =
∑
p

Tr(f |grp(P )).

Characterizing Perfect Objects
Definition. An object K ∈ D−(Λ) is said to have finite Tor-dimension if there exists r ∈
Z such that for any right Λ-module N , H i(N ⊗L

Λ K) = 0 for all i 6 r (in other words,
ToriΛ(N,K) = 0). Recall that N ⊗L

ΛK is the total left derived functor of the functor ModΛ →
Ab, M 7→ N ⊗Λ M . It is thus a complex of abelian groups.

Lemma 6.13. Let Λ be a left noetherian ring and K ∈ D−(Λ). Then K is perfect if and only
if the two following conditions hold:

i. K has finite Tor-dimension ; and

ii. for all i ∈ Z, H i(K) is a finite Λ-module.

The reader is strongly urged to try and prove this. The proof relies on the fact that a finite
module on a finitely left-presented ring is flat if and only if it is projective.

Remark. A common variant of this lemma is to consider instead a noetherian scheme X and
the category Dperf(OX) of complexes which are locally quasi-isomorphic to a finite complex
of finite locally free OX -modules.

The Lefschetz Trace Formula
Definition. Let Λ be a finite ring, X a noetherian scheme, K(X,Λ) the homotopy category of
sheaves of Λ-modules on Xét, and D(X,Λ) the corresponding derived category. We denote by
Db (respectively D+, D−) the full subcategory of bounded (resp. above, below) complexes in
D(X,Λ).

We consider the full subcategory Db
ctf(X,Λ) of D−(X,Λ) consisting of objects which are

quasi-isomorphic to a bounded complex of constructible flat Λ-modules. Its objects are abu-
sively called perfect complexes.

Remark. In fact, a perfect complex is projective in each degree, because of the noetherian
assumption on X .

Remark. This construction differs from the common variant mentioned above. It can happen
that a complex ofOX -modules is locally quasi-isomorphic to a finite complex of finite locally
free OX -modules, without being globally quasi-isomorphic to a bounded complex of locally
free OX -modules. This does not happen in the étale site for constructible sheaves.
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In this framework, lemma 6.13 reads as follows.

Lemma 6.14. Let K ∈ D−(X,Λ). Then K ∈ Db
ctf(X,Λ) if and only if

i. K has finite Tor-dimension ; and

ii. for all i ∈ Z, H i(K) is constructible.

The first condition can be checked on stalks (provided that the bounds are uniform).

Remark. This lemma is used to prove that if f : X → Y is a separated, finite type morphism
of schemes and Y is noetherian, then Rf! induces a functor Db

ctf(X,Λ) → Db
ctf(Y,Λ). We

only need this fact in the case where Y is the spectrum of a field and X is a curve.

Proposition 6.15. Let X be a projective curve over a field k, Λ a finite ring and K ∈
Db

ctf(X,Λ). Then RΓ(Xk̄,K) ∈ Dperf(Λ).

Sketch of proof.

Step 1. The cohomology of RΓ(Xk̄,K) is bounded.
Consider the spectral sequence

H i(Xk̄, H
j(K))⇒ H i+j(RΓ(Xk̄,K)).

Since K is bounded and Λ is finite, the sheaves Hj(K) are torsion. Moreover, Xk̄

has finite cohomological dimension, so the left-hand side is nonzero for finitely many
i and j only. Therefore, so is the right-hand side.

Step 2. The cohomology groups H i+j(RΓ(Xk̄,K)) are finite.
Since the sheaves Hj(K) are constructible, the groups H i(Xk̄, H

j(K)) are finite,1 so
it follows by the spectral sequence again.

Step 3. RΓ(Xk̄,K) has finite Tor-dimension.
Let N be a right Λ-module (in fact, since Λ is finite, it suffices to assume that N is
finite). By the projection formula (change of module),

N ⊗L
Λ RΓ(Xk̄,K) = RΓ(Xk̄, N ⊗L

Λ K).

Therefore,
H i(N ⊗L

Λ RΓ(Xk̄,K)) = H i(RΓ(Xk̄, N ⊗L
Λ K)).

Now consider the spectral sequence

H i(Xk̄, H
j(N ⊗L

Λ K))⇒ H i+j(RΓ(Xk̄, N ⊗L
Λ K)).

Since K has finite Tor-dimension, Hj(N ⊗L
Λ K) vanishes universally for j small

enough, and the left-hand side vanishes whenever i < 0. Therefore RΓ(Xk̄,K) has
finite Tor-dimension, as claimed. So it is a perfect complex by lemma 6.13.

1In section 5.6 where we proved vanishing of cohomology, we should have proved – using the exact same
arguments – that étale cohomology with values in a torsion sheaf is finite. Maybe that section should be updated.
It’s flabbergasting that we even forgot to mention it.
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6.5 Lefschetz Numbers

The fact that the total cohomology of a constructible complex with finite coefficients is a
perfect complex is the key technical reason why cohomology behaves well, and allows us to
define rigorously the traces occurring in the trace formula.

Definition. Let Λ be a finite ring,X a projective curve over a finite field k andK ∈ Db
ctf(X,Λ)

(for instance K = Λ). There is a canonical map cK : π−1
X K → K, and its base change cK |Xk̄

induces an action denoted π∗X on the perfect complex RΓ(Xk̄,K|Xk̄). The global Lefschetz
number of K is the trace Tr(π∗X

∣∣
RΓ(Xk̄,K) ) of that action. It is an element of Λ\.

Since K ∈ Db
ctf(X,Λ), for any geometric point x̄ of X , the complex Kx̄ is a perfect complex

(in Dperf(Λ)). As we have seen in section 6.1, the Frobenius πX acts on Kx̄. The local
Lefschetz number of K is the sum ∑

x∈X(k)

Tr(πX |Kx )

which is again an element of Λ\.

At last, we can formulate precisely the trace formula.

Theorem 6.16 (Lefschetz Trace Formula). Let X be a projective curve over a finite field k,
Λ a finite ring and K ∈ Db

ctf(X,Λ). Then the global and local Lefschetz numbers of K are
equal, i.e.

Tr(π∗X
∣∣
RΓ(Xk̄,Λ) ) =

∑
x∈X(k)

Tr(πX |Kx̄ )

in Λ\.

We will use, rather than prove, the trace formula. Nevertheless, let us discuss some ideas of
proof. Since we only stated the formula for curves, it is a consequence of the following result.

Theorem 6.17 (Weil). Let C be a nonsingular projective curve over an algebraically closed
field k, andϕ : C → C a k-endomorphism ofC distinct from the identity. Let V (ϕ) = ∆C ·Γϕ,
where ∆C is the diagonal, Γϕ is the graph of ϕ, and the intersection number is taken onC×C.
Let J = Pic0

C/k be the jacobian ofC and denote ϕ∗ : J → J the action induced by ϕ by taking
pullbacks. Then

V (ϕ) = 1− TrJ(ϕ∗) + degϕ.

The number V (ϕ) is the number of fixed points of ϕ, it is equal to

V (ϕ) =
∑

c∈|C|:ϕ(c)=c

mFix(ϕ)(c)

where mFix(ϕ)(c) is the multiplicity of c as a fixed point of ϕ, namely the order or vanishing of
the image of a local uniformizer under ϕ− idC . Proofs of this theorem can be found in [5, 8].

Example. Let C = E be an elliptic curve and ϕ = [n] be multiplication by n. Then ϕ∗ = ϕt

is multiplication by n on the jacobian, so it has trace 2n and degree n2. On the other hand, the
fixed points of ϕ are the points p ∈ E such that np = p, which is the (n − 1)-torsion, which
has cardinality (n− 1)2. So the theorem reads

(n− 1)2 = 1− 2n+ n2.
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Jacobians We now discuss without proofs the correspondence between a curve and its ja-
cobian which is used in Weil’s proof. Let C be a nonsingular projective curve over an al-
gebraically closed field k and choose a base point c0 ∈ C(k). Denote by A1(C × C) (or
Pic(C × C), or CaCl(C × C)) the abelian group of codimension 1 divisors of C × C. Then

A1(C × C) = pr∗1(A1(C))⊕ pr∗2(A1(C))⊕R

where R = {Z ∈ A1(C × C) | Z|C×{c0} ∼rat 0 and Z|{c0}×C ∼rat 0}. In other words, R is
the subgroup of line bundles which pull back to the trivial one under either projection. Then
there is a canonical isomorphism of abelian groups R ∼−→ End(J) which maps a divisor Z in
R to the endomorphism

J → J
[OC(D)] 7→ (pr1 |Z)∗(pr2 |Z)∗(D).

The aforementioned correspondence is the following. We denote by σ the automorphism of
C × C that switches the factors.

End(J) R

composition of α, β pr13∗(pr12
∗(α) ◦ pr23

∗(β))

idJ ∆C − {c0} × C − C × {c0}

ϕ∗ Γϕ − C × {ϕ(c0)} −
∑

ϕ(c)=c0
{c} × C

the trace form
α, β 7→ Tr(αβ)

α, β 7→ −
∫
C×C α.σ

∗β

the Rosati involution
α 7→ α†

α 7→ σ∗α

positivity of Rosati
Tr(αα†) > 0

Hodge index theorem on C × C
−
∫
C×C ασ

∗α > 0.

In fact, in light of the Kunneth formula, the subgroup R corresponds to the 1, 1 hodge classes
in H1(C)⊗H1(C).

Weil’s proof Using this correspondence, we can prove the trace formula. We have

V (ϕ) =
∫
C×C

Γϕ.∆

=
∫
C×C

Γϕ. (∆C − {c0} × C − C × {c0}) +
∫
C×C

Γϕ. ({c0} × C + C × {c0}) .

Now, on the one hand ∫
C×C

Γϕ. ({c0} × C + C × {c0}) = 1 + degϕ
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and on the other hand, sinceR is the the orthogonal of the ample divisor {c0}×C+C×{c0},∫
C×C

Γϕ. (∆C − {c0} × C − C × {c0})

=
∫
C×C

Γϕ − C × {ϕ(c0)} −
∑

ϕ(c)=c0

{c} × C

 . (∆C − {c0} × C − C × {c0})

= −TrJ(ϕ∗ ◦ idJ).

Recapitulating, we have
V (ϕ) = 1− TrJ(ϕ∗) + degϕ

which is the trace formula.

Corollary 6.18. Consider the situation of theorem 6.17 and let ` be a prime number invertible
in k. Then

2∑
i=0

(−1)i Tr(ϕ∗|Hi(C,Z/`nZ)) = V (ϕ) mod `n.

Sketch of proof. Observe first that the assumption makes sense because H i(C,Z/`nZ) is a
free Z/`nZ-module for all i. The trace of ϕ∗ on the 0th degree cohomology is 1. The choice
of a primitive `nth root of unity in k gives an isomorphism

H i(C,Z/`nZ) ∼= H i(C,µ`n)

compatibly with the action of the geometric Frobenius. On the other hand, H1(C,µ`n) =
J [`n]. Therefore,

Tr(ϕ∗|H1(C,Z/`nZ))) = TrJ(ϕ∗) mod `n

= TrZ/`nZ(ϕ∗ : J [`n]→ J [`n]).

Moreover, H2(C,µ`n) = Pic(C)/`n Pic(C) ∼= Z/`nZ where ϕ∗ is multiplication by degϕ.
Hence

Tr(ϕ∗|H2(C,Z/`nZ)) = degϕ.

Thus we have

2∑
i=0

(−1)i Tr(ϕ∗|Hi(C,Z/`nZ)) = 1− TrJ(ϕ∗) + degϕ mod `n

and the corollary follows from theorem 6.17.

An alternative way to prove this corollary is to show that

X 7→ H∗(X,Q`) = Q` ⊗ lim
n
H∗(X,Z/`nZ)

defines a Weil cohomology theory on smooth projective varieties over k. Then the trace for-
mula

V (ϕ) =
2∑
i=0

(−1)i Tr(ϕ∗|Hi(C,Q`))

is a formal consequence of the axioms (it’s an exercise in linear algebra, the proof is the same
as in the topological case).
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6.6 Preliminaries and Sorites

Notation. We fix the notation for this section. We denote by A a commutative ring, Λ a
(possibly noncommutative) ring with a ring map A → Λ which image lies in the center of Λ.
We let G be a finite group, Γ a monoid extension of G by N, meaning that there is an exact
sequence

1→ G→ Γ̃→ Z→ 1

and Γ consists of those elements of Γ̃ which image is nonnegative. Finally, we let P be an
A[Γ]-module which is finite and projective as an A[G]-module, and M a Λ[Γ]-module which
is finite and projective as a Λ-module.

Our goal is to compute the trace of 1 ∈ N acting over Λ on the coinvariants of G on P ⊗AM ,
that is, the number

TrΛ (1; (P ⊗AM)G) ∈ Λ\.

The element 1 ∈ N will correspond to the Frobenius.

Lemma 6.19. Let e ∈ G denote the neutral element. The map

Λ[G] −→ Λ\∑
λg · g 7−→ λe

factors through Λ[G]\. We denote ε : Λ[G]\ → Λ\ the induced map.

Proof. We have to show the map annihilates commutators. One has(∑
λgg
)(∑

µgg
)
−
(∑

µgg
)(∑

λgg
)

=
∑
g

( ∑
g1g2=g

λg1µg2 − µg1λg2

)
g

The coefficient of e is∑
g

(
λgµg−1 − µgλg−1

)
=
∑
g

(
λgµg−1 − µg−1λg

)
which is a sum of commutators, hence it it zero in Λ\.

Definition. Let f : P → P be an endomorphism of a finite projective Λ[G]-module P . We
define

TrGΛ(f ;P ) def= ε
(
TrΛ[G](f ;P )

)
.

Lemma 6.20. Let f : P → P be an endomorphism of the finite projective Λ[G]-module P .
Then

TrΛ(f ;P ) = #G · TrGΛ(f ;P ).

Proof. By additivity, reduce to the case P = Λ[G]. In that case, f is given by right multipli-
cation by some element

∑
λg · g of Λ[G]. In the basis (g)g∈G, the matrix of f has coefficient

λg−1
2 g1

in the (g1, g2) position. In particular, all diagonal coefficients are λe, and there are #G
such coefficients.

Lemma 6.21. The map A→ Λ defines an A-module structure on Λ\.

This is clear.

Lemma 6.22. Let P be a finite projective A[G]-module and M a Λ[G]-module, finite projec-
tive as a Λ-module. Then P ⊗AM is a finite projective Λ[G]-module, for the structure induced
by the diagonal action of G.
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Note that P ⊗AM is naturally a Λ-module since M is. Explictly, together with the diagonal
action this reads (∑

λgg
)

(p⊗m) =
∑

gp⊗ λggm.

Proof. For any Λ[G]-module N one has

HomΛ[G] (P ⊗AM,N) = HomA[G] (P,HomΛ(M,N))

where the G-action on HomΛ(M,N) is given by (g · ϕ)(m) = gϕ(g−1m). Now it suffices to
observe that the right-hand side is a composition of exact functors, because of the projectivity
of P and M .

Lemma 6.23. With assumptions as in lemma 6.22, let u ∈ EndA[G](P ) and v ∈ EndΛ[G](M).
Then

TrGΛ (u⊗ v;P ⊗AM) = TrGA(u;P ) · TrΛ(v;M).

Sketch of proof. Reduce to the case P = A[G]. In that case, u is right multiplication by
some element a =

∑
agg of A[G], which we write u = Ra. There is an isomorphism of

Λ[G]-modules
ϕ : A[G]⊗AM

∼−→ (A[G]⊗AM)′

g ⊗m 7−→ g ⊗ g−1m

where (A[G]⊗AM)′ has the module structure given by the left G-action, together with the
Λ-linearity on M . This transport of structure changes u ⊗ v into

∑
g agRg ⊗ g−1v. In other

words,
ϕ ◦ (u⊗ v) ◦ ϕ−1 =

∑
g

agRg ⊗ g−1v.

Working out explicitly both sides of the equation, we have to show

TrGΛ

(∑
g

agRg ⊗ g−1v

)
= ae · TrΛ(v;M).

This is done by showing that

TrGΛ
(
agRg ⊗ g−1v

)
=
{

0 if g 6= e
ae TrΛ (v;M) if g = e

by reducing to M = Λ.

Notation. Consider the monoid extension 1 → G → Γ → N → 1 and let γ ∈ Γ. Then we
write Zγ = {g ∈ G | gγ = γg}.

Lemma 6.24. Let P be a Λ[Γ]-module, finite and projective as a Λ[G]-module, and γ ∈ Γ.
Then

TrΛ(γ;P ) = #Zγ · TrZγΛ (γ;P ) .

Proof. This follows readily from lemma 6.20.

Lemma 6.25. Let P be an A[Γ]-module, finite projective as A[G]-module. Let M be a Λ[Γ]-
module, finite projective as a Λ-module. Then

TrZγΛ (γ;P ⊗AM) = TrZγA (γ;P ) · TrΛ(γ;M).

Proof. This follows directly from lemma 6.23.
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Lemma 6.26. Let P be a Λ[Γ]-module, finite projective as Λ[G]-module. Then the coinvari-
ants PG = Λ⊗Λ[G]P form a finite projective Λ-module, endowed with an action of Γ/G = N.
Moreover, we have

TrΛ(1;PG) =
∑
γ 7→1

′
TrZγΛ (γ;P )

where
∑′

γ 7→1 means taking the sum over the G-conjugacy classes in Γ.

Sketch of proof. We first prove this after multiplying by #G.

#G · TrΛ(1;PG) = TrΛ

(∑
γ 7→1

γ;PG

)
= TrΛ

(∑
γ 7→1

γ;P
)

where the second equality follows by considering the commutative triangle

PG
� � a // P

b // // PG

c

hh

where a is the canonical inclusion, b the canonical surjection and c =
∑

γ 7→1 γ. Then we have(∑
γ 7→1

γ

)∣∣∣∣
P

= a ◦ c ◦ b and
(∑
γ 7→1

γ

)∣∣∣∣
PG

= b ◦ a ◦ c

hence they have the same trace. We then have

#G · TrΛ(1;PG) =
∑
γ 7→1

′ #G
#Zγ

TrΛ(γ;P ) = #G
∑
γ 7→1

′
TrZγΛ (γ;P ).

To finish the proof, reduce to case Λ torsion-free by some universality argument. See [3] for
details.

Let us try to illustrate the content of formula 6.25. Suppose that Λ, viewed as a trivial Γ-
module, admits a finite resolution 0 → Pr → . . . → P1 → P0 → Λ → 0 by some Λ[Γ]-
modules Pi which are finite and projective as Λ[G]-modules. In that case

H∗ ((P•)G) = TorΛ[G]
∗ (Λ,Λ) = H∗(G,Λ);

and
TrZγΛ (γ;P•) =

1
#Zγ

TrΛ(γ;P•) =
1

#Zγ
Tr(γ; Λ) =

1
#Zγ

.

Therefore, lemma 6.25 says

TrΛ(1;PG) = Tr
(
1
∣∣
H∗(G,Λ)

)
=
∑
γ 7→1

′ 1
#Zγ

.

This can be interpreted as a point count on the stack BG. If Λ = F` with ` prime to #G, then
H∗(G,Λ) is F` in degree 0 (and 0 in other degrees) and the formula reads

1 =
∑

σ-conjugacy
classes 〈γ〉

1
#Zγ

mod `.
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6.7 Proof of the Trace Formula

Theorem 6.27. Let k be a finite field and X a finite type, separated scheme of dimension
at most 1 over k. Let Λ be a finite ring whose cardinality is prime to that of k, and K ∈
Db

ctf(X,Λ). Then

Tr
(
π∗X
∣∣
RΓc(Xk̄,K)

)
=

∑
x∈X(k)

Tr
(
πx
∣∣
Kx̄

)
(1)

in Λ\.

Remark.

• This formula holds in any dimension. By a dévissage lemma (which uses proper base
change etc.) it reduces to the current statement – in that generality.

• The complex RΓc(Xk̄,K) is defined by choosing an open immersion j : X ↪→ X̄ with
X̄ projective over k of dimension at most 1 and setting

RΓc(Xk̄,K) def= RΓ(X̄k̄, j!K).

That this is independent of the choice made follows from (the missing section).

Notation. For short, we write T ′(X,K) =
∑

x∈X(k) Tr
(
πx
∣∣
Kx̄

)
for the right-hand side of (1)

and T ′′(X,K) = Tr
(
π∗x
∣∣
RΓc(Xk̄,K)

)
for the left-hand side.

Proof of theorem 6.27.

Step 1. Let j : U ↪→ X be an open immersion with complement Y = X −U and i : Y ↪→ X .
Then

(a) T ′′(X,K) = T ′′(U , j−1K) + T ′′(Y, i−1K) ; and

(b) T ′(X,K) = T ′(U , j−1K) + T ′(Y, i−1K).

This is clear for T ′. For (a), use the exact sequence

0→ j!j
−1K → K → i∗i

−1K → 0

to get a filtration on K. This gives rise to an object K̃ ∈ DF(X,Λ) whose graded
pieces are j!j−1K and i∗i−1K, both of which lie in Db

ctf(X,Λ). Then, by filtered
derived abstract nonsense (INSERT REFERENCE), RΓc(Xk̄,K) ∈ DFperf(Λ), and
it comes equipped with π∗x in DFperf(Λ). By the discussion of traces on filtered com-
plexes (INSERT REFERENCE) we get

Tr
(
π∗X
∣∣
RΓc(Xk̄,K)

)
= Tr

(
π∗X
∣∣
RΓc(Xk̄,j!j

−1K)

)
+ Tr

(
π∗X
∣∣
RΓc(Xk̄,i∗i

−1K)

)
= T ′′(U, i−1K) + T ′′(Y, i−1K).

Step 2. The theorem holds if dimX 6 0.
Indeed, in that case

RΓc(Xk̄,K) = RΓ(Xk̄,K) = Γ(Xk̄,K) =
⊕
x̄∈Xk̄

Kx̄ 	 πX ∗ .

Since the fixed points of πX : Xk̄ → Xk̄ are exactly the points x̄ ∈ Xk̄ which lie over
a k-rational point x ∈ X(k) we get

Tr
(
π∗X |RΓc(Xk̄)

)
=

∑
x∈X(k)

Tr(πx̄|Kx̄).
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Step 3. It suffices to prove the equality T ′(U ,F) = T ′′(U ,F) in the case where

• U is a smooth irreducible affine curve over k ;

• U(k) = ∅ ;

• K = F is a finite locally constant sheaf of Λ-modules on U whose stalk(s) are
finite projective Λ-modules ; and

• Λ is killed by a power of a prime ` and ` ∈ k∗.

Indeed, because of Step 2, we can throw out any finite set of points. But we have only
finitely many rational points, so we may assume there are none2. We may assume that
U is smooth irreducible and affine by passing to irreducible components and throwing
away the bad points if necessary. The assumptions of F come from unwinding the
definition of Db

ctf(X,Λ) and those on Λ from considering its primary decomposition.

For the remainder of the proof, we consider the situation

V
f

��

� � // Y

f̄
��

U � � // X

where U is as above, f is a finite étale Galois covering, V is connected and the horizontal
arrows are projective completions. Denoting G = Aut(V|U), we also assume (as we may)
that f−1F = M is constant, where the module M = Γ(V, f−1F) is a Λ[G]-module which is
finite and projective over Λ. This corresponds to the trivial monoid extension

1→ G→ Γ = G× N→ N→ 1.

In that context, using the reductions above, we need to show that T ′′(U ,F) = 0. We now
present a series of lemmata in order to complete the proof.

1. There is a natural action of G on f∗f−1F and the trace map f∗f−1F → F defines an
isomorphism

(f∗f−1F)⊗Λ[G] Λ = (f∗f−1F)G
∼−→ F .

To prove this, simply unwind everything at a geometric point.

2. Let A = Z/`nZ with n� 0. Then f∗f−1F ∼= (f∗A)⊗AM with diagonal G-action.

3. There is a canonical isomorphism (f∗A⊗AM)⊗Λ[G]
∼= F .

In fact, this is a derived tensor product, because of the projectivity assumption on F .

4. There is a canonical isomorphism RΓc(Uk̄,F) = (RΓc(Uk̄, f∗A) ⊗L
A M) ⊗L

Λ[G] Λ, com-
patible with the action of π∗U ..
This comes from the universal coefficient theorem, i.e. the fact that RΓc commutes with
⊗L, and the flatness of F as a Λ-module.

We have

Tr(π∗U
∣∣
RΓc(Uk̄,F)

) =
∑
g∈G

′
TrZgΛ

(
(g, π∗U )

∣∣
RΓc(Uk̄,f∗A)⊗L

AM

)
=

∑
g∈G

′
TrZgA ((g, π∗U )

∣∣
RΓc(Uk̄,f∗A)

) · TrΛ(g|M )

2At this point, there should be an evil laugh in the background.
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where Γ acts on RΓc(Uk̄,F) by G and (e, 1) acts via π∗U . So the monoidal extension is given
by Γ = G×N→ N, γ 7→ 1. The first equality follows from lemma 6.26 and the second from
lemma 6.25.

Step 5. It suffices to show that TrZgA
(

(g, π∗U )
∣∣
RΓc(Uk̄,f∗A)

)
∈ A maps to zero in Λ.

Recall that

#Zg · TrZgA
(

(g, π∗U )
∣∣
RΓc(Uk̄,f∗A)

)
= TrA

(
(g, π∗U )

∣∣
RΓc(Uk̄,f∗A)

)
= TrA

(
(g−1πV)∗

∣∣
RΓc(Vk̄,A)

)
.

The first equality is lemma 6.24, the second is the Leray spectral sequence, using
the finiteness of f and the fact that we are only taking traces over A. Now since
A = Z/`nZ with n � 0 and #Zg = `a for some (fixed) a, it suffices to show the
following result.

Step 6. TrA
(

(g−1πV)∗
∣∣
RΓc(V,A)

)
= 0 in A.

By additivity again, we have

TrA
(

(g−1πV)∗
∣∣
RΓc(Vk̄,A)

)
+ TrA

(
(g−1πV)∗

∣∣
RΓc(Y−V)k̄,A)

)
= TrA

(
(g−1πY )∗

∣∣
RΓ(Yk̄,A)

)
The latter trace is the number of fixed points of g−1πY on Y , by Weil’s trace formula
6.27. Moreover, by the 0-dimensional case already proven in step 2,

TrA
(

(g−1πV)∗
∣∣
RΓc(Y−V)k̄,A)

)
is the number of fixed points of g−1πY on (Y − V)k̄. Therefore,

TrA
(

(g−1πV)∗
∣∣
RΓc(Vk̄,A)

)
is the number of fixed points of g−1πY on Vk̄. But there are no such points: if ȳ ∈ Yk̄
is fixed under g−1πY , then f̄(ȳ) ∈ Xk̄ is fixed under πX . But U has no k-rational
point, so we must have f̄(ȳ) ∈ (X − U)k̄ and so ȳ /∈ Vk̄, a contradiction.

This finishes the proof.

Remark. Even though all we did are reductions and mostly algebra, the trace formula 6.27
is much stronger than Weil’s geometric trace formula (theorem 6.17) because it applies to
coefficient systems (sheaves), not merely constant coefficients.

7 Applications

7.1 `-adic sheaves

Definition. Let X be a noetherian scheme. A Z`-sheaf on X is an inverse system {Fn}n>1

where

• Fn is a constructible Z/`nZ-module on Xét, and
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• the transition maps Fn+1 → Fn induce isomorphisms Fn+1 ⊗Z/`n+1Z Z/`nZ ∼−→ Fn.

We say thatF is lisse if eachFn is locally constant. A morphism of such is merely a morphism
of inverse systems.

Lemma 7.1. Let {Gn}n>1 be an inverse system of constructible Z/`nZ-modules. Suppose
that for all k > 1, the maps

Gn+1/`
kGn+1 → Gn/`kGn

are isomorphisms for all n � 0 (where the bound possibly depends on k). In other words,
assume that the system {G/`kGn}n>1 is eventually constant, and call Fk the corresponding
sheaf. Then the system {Fk}k>1 forms a Z`-sheaf on X .

The proof is obvious.

Lemma 7.2. The category of Z`-sheaves on X is abelian.

Proof. Let Φ = {ϕn}n>1 : {Fn} → {Gn} be a morphism of Z`-sheaves. Set

Coker Φ def=
{

Coker
(
Fn

ϕn−−→ Gn
)}

n>1

and Ker Φ is the result of lemma 7.1 applied to the inverse system ⋂
m>n

Im (Kerϕm → Kerϕn)


n>1

.

That this defines an abelian category is left to the reader.

Example. Let X = Spec(C) and Φ : Z` → Z` be multiplication by `. More precisely,

Φ =
{

Z/`nZ `−→ Z/`nZ
}
n>1

.

To compute the kernel, we consider the inverse system

· · · → Z/`Z 0−→ Z/`Z 0−→ Z/`Z.

Since the images are always zero, Ker Φ is zero as a system.

Remark. If F = {Fn}n>1 is a Z`-sheaf on X and x̄ is a geometric point then Mn = {Fn,x̄}
is an inverse system of finite Z/`nZ-modules such that Mn+1 → Mn is surjective and Mn =
Mn+1/`

nMn+1. It follows that

M = lim
n
Mn = limFn,x̄

is a finite Z`-module. Indeed,M/`M = M1 is finite over F`, so by NakayamaM is finite over
Z`. Therefore, M ∼= Z⊕r` ⊕⊕

t
i=1Z`/`eiZ` for some r, t > 0, ei > 1. The module M = Fx̄ is

called the stalk of F at x̄.

Definition. A Z`-sheaf F is torsion if `n : F → F is the zero map for some n. The abelian
category of Q`-sheaves onX is the quotient of the abelian category of Z`-sheaves by the Serre
subcategory of torsion sheaves. In other words, its objects are Z`-sheaves on X , and if F ,G
are two such, then

HomQ` (F ,G) = HomZ` (F ,G)⊗Z` Q`.

We denote byF 7→ F⊗Q` the quotient functor (right adjoint to the inclusion). IfF = F ′⊗Q`

where F ′ is a Z`-sheaf and x̄ is a geometric point, then the stalk of F at x̄ is Fx̄ = F ′x̄ ⊗Q`.
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Remark. Since a Z`-sheaf is only defined on a noetherian scheme, it is torsion if and only if
its stalks are torsion.

Definition. If X is a separated scheme of finite type over an algebraically closed field k and
F = {Fn}n>1 is a Z`-sheaf on X , then we define

H i(X,F) def= lim
n
H i(X,Fn) and H i

c(X,F) def= lim
n
H i
c(X,Fn).

If F = F ′ ⊗Q` for a Z`-sheaf F ′ then we set

H i
c(X,F) def= H i

c(X,F ′)⊗Z` Q`.

7.2 L-functions

Definition. Let X be a scheme of finite type over a finite field k. Let Λ be a finite ring of order
prime to the characteristic of k and F a constructible flat Λ-module on Xét. Then we set

L(X,F) def=
∏
x∈|X|

det
(

1− π∗x T deg x
∣∣∣
Fx̄

)−1

∈ ΛJT K

where |X| is the set of closed points of X , deg x = [κ(x) : k] and x̄ is a geometric point lying
over x. This definition clearly generalizes to the case where F = K ∈ Db

ctf(X,Λ).

Remark. Intuitively, T should be thought of as T = tf where pf = #k. The definitions are
then independent of the size of the ground field.

Now assume that F is a Q`-sheaf on X . We define

L(X,F) def=
∏
x∈|X|

det
(

1− π∗x T deg x
∣∣∣
Fx̄

)−1

∈ Q`JT K.

Note that this product converges since there are finitely many points of a given degree.

Cohomological Interpretation

This is how Grothendieck interpreted the L-function.

Theorem 7.3 (Finite Coefficients). Let X be a scheme of finite type over a finite field k. Let Λ
be a finite ring of order prime to the characteristic of k and F a constructible flat Λ-module
on Xét. Then

L(X,F) = det
(

1− π∗X T
∣∣∣
RΓc(Xk̄,F)

)−1

∈ ΛJT K.

Thus far, we don’t even know whether each cohomology group H i
c(Xk̄,F) is free.

Theorem 7.4 (Q`-sheaves). Let X be a scheme of finite type over a finite field k, and F a
Q`-sheaf on X . Then

L(X,F) =
∏
i

det
(

1− π∗X T
∣∣∣
Hi
c(Xk̄,F)

)(−1)i+1

∈ Q`JT K.

Remark. Since we have only developed some theory of traces and not of determinants, theorem
7.3 is harder to prove than theorem 7.4. We will only prove the latter, for the former see [3].
Observe also that there is no version of this theorem more general for Z` coefficients since
there is no `-torsion.
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We reduce the proof of theorem 7.4 to a trace formula. Since Q` has characteristic 0, it suffices
to prove the equality after taking logarithmic derivatives. More precisely, we apply T d

dT log
to both sides. We have on the one hand

T
d

dT
logL(X,F) = T

d

dT
log

∏
x∈|X|

det
(

1− π∗x T deg x
∣∣∣
Fx̄

)−1

=
∑
x∈|X|

T
d

dT
log

(
det
(

1− π∗x T deg x
∣∣∣
Fx̄

)−1
)

=
∑
x∈|X|

deg x
∑
n>1

Tr
(

(πnx)∗
∣∣
Fx̄

)
Tndeg x

where the last equality results from the formula

T
d

dT
log
(

det (1− fT |M )−1
)

=
∑
n>1

Tr(fn|M )Tn

which holds for any commutative ring Λ and any endomorphism f of a finite projective Λ-
module M . On the other hand, we have

T
d

dT
log

(∏
i

det
(

1− π∗X T
∣∣∣
Hi
c(Xk̄,F)

)(−1)i+1
)

=
∑
i

(−1)i
∑
n>1

Tr
(

(πnX)∗
∣∣
Hi
c(Xk̄,F)

)
Tn

by the same formula again. Now, comparing powers of T and using the Mobius inversion
formula, we see that theorem 7.4 is a consequence of the following equality∑

d|n

d
∑
x∈|X|

deg x=d

Tr
((

π
n/d
X

)∗∣∣∣
Fx̄

)
=
∑
i

(−1)i Tr
(

(πnX)∗
∣∣
Hi
c(Xk̄,F)

)
.

Writing kn for the degree n extension of k, Xn = X ×Spec k Spec kn and nF = F|Xn , this
boils down to ∑

x∈Xn(kn)

Tr
(
π∗X
∣∣
nFx̄

)
=
∑
i

(−1)i Tr
(

(πnX)∗
∣∣
Hi
c((Xn)k̄,nF)

)
which is a consequence of the following result.

Theorem 7.5. Let X be a separated scheme of finite type over a finite field k and F be a
Q`-sheaf on X . Then dimQ` H

i
c(Xk̄,F) is finite for all i, and is nonzero for 0 6 i 6 2 dimX

only. Furthermore, we have∑
x∈X(k)

Tr (πx |Fx̄ ) =
∑
i

(−1)i Tr
(
π∗X
∣∣
Hi
c(Xk̄,F)

)
.

Theorem 7.6. Let X/k be as above, let Λ be a finite ring with #Λ ∈ k∗ and K ∈ Db
ctf(X,Λ).

Then RΓc(Xk̄,K) ∈ Dperf(Λ) and∑
x∈X(k)

Tr (πx |Kx̄ ) = Tr
(
π∗X
∣∣RΓc(Xk̄,K)

)
.

Note that we have already proved this (REFERENCE) when dimX 6 1. The general case
follows easily from that case together with the proper base change theorem. We now explain
how to deduce theorem 7.5 from theorem 7.6. We first use some étale cohomology arguments
to reduce the proof to an algebraic statement which we subsequently prove.
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Proof of theorem 7.5. Let F be as in theorem 7.5. We can write F as F ′ ⊗ Q` where F ′ =
{F ′n} is a Z`-sheaf without torsion, i.e. ` : F ′ → F ′ has trivial kernel in the category of Z`-
sheaves. Then each F ′n is a flat constructible Z/`nZ-module on Xét, so F ′n ∈ Db

ctf(X,Z/`nZ)
and F ′n+1 ⊗L

Z/`n+1Z Z/`nZ = F ′n. Note that the last equality holds also for standard (non-
derived) tensor product, since F ′n is flat (it is the same equality). Therefore,

(a) the complex Kn = RΓc (Xk̄,F ′n) is perfect, and it is endowed with an endomorphism
πn : Kn → Kn in D(Z/`nZ) ;

(b) there are identifications
Kn+1 ⊗L

Z/`n+1Z Z/`nZ = Kn

in Dperf(Z/`nZ), compatible with the endomorphisms πn+1 and πn (see [3, Rapport
4.12]) ;

(c) the equality Tr (π∗X |Kn ) =
∑

x∈X(k) Tr
(
πx
∣∣
(F ′n)x̄

)
holds ; and

(d) for each x ∈ X(k), the elements Tr
(
πx
∣∣
F ′n,x̄

)
∈ Z/`nZ form an element of Z` which is

equal to Tr (πx |Fx̄ ) ∈ Q`.

It thus suffices to prove the following algebra lemma.

Lemma 7.7. Suppose we have Kn ∈ Dperf(Z/`nZ), πn : Kn → Kn and isomorphisms
ϕn : Kn+1 ⊗L

Z/`n+1Z Z/`nZ ∼−→ Kn compatible with πn+1 and πn. Then

i. the elements tn = Tr(πn |Kn ) ∈ Z/`nZ form an element t∞ = {tn} of Z` ;

ii. the Z`-module H i
∞ = limnH

i(kn) is finite and is nonzero for finitely many i only ; and

iii. the operators H i(πn) : H i(Kn)→ H i(Kn) are compatible and define πi∞ : H i
∞ → H i

∞
satisfying ∑

(−1)i Tr
(
πi∞
∣∣
Hi
∞⊗Z`Q`

)
= t∞.

Proof. Since Z/`nZ is a local ring and Kn is perfect, each Kn can be represented by a finite
complexK•n of finite free Z/`nZ-modules such that the mapKp

n → Kp+1
n has image contained

in `Kp+1
n . It is a fact that such a complex is unique up to isomorphism. Moreover πn can be

represented by a morphism of complexes π•n : K•n → K•n (which is unique up to homotopy).
By the same token the isomorphism ϕn : Kn+1 ⊗L

Z/`n+1Z Z/`nZ → Kn is represented by a
map of complexes

ϕ•n : K•n+1 ⊗Z/`n+1Z Z/`nZ→ K•n.

In fact, ϕ•n is an isomorphism of complexes, thus we see that

• there exist a, b ∈ Z independent of n such that Ki
n = 0 for all i /∈ [a, b] ; and

• the rank of Ki
n is independent of n.

Therefore, the module Ki
∞ = limn{Ki

n, ϕ
i
n} is a finite free Z`-module and K•∞ is a finite

complex of finite free Z`-modules. By induction on the number of nonzero terms, one can
prove thatH i (K•∞) = limnH

i (K•n) (this is not true for unbounded complexes). We conclude



Etale Cohomology 67

that H i
∞ = H i (K•∞) is a finite Z`-module. This proves ii. To prove the remainder of the

lemma, we need to overcome the possible noncommutativity of the diagrams

K•n+1

π•n+1

��

ϕ•n // K•n

π•n
��

K•n+1 ϕ•n

// K•n.

However, this diagram does commute in the derived category, hence it commutes up to homo-
topy. We inductively replace π•n for n > 2 by homotopic maps of complexes making these
diagrams commute. Namely, if hi : Ki

n+1 → Ki−1
n is a homotopy, i.e.

π•n ◦ ϕ•n − ϕ•n ◦ π•n+1 = dh+ hd,

then we choose h̃i : Ki
n+1 → Ki−1

n+1 lifting hi. This is possible because Ki
n+1 free and

Ki−1
n+1 → Ki−1

n is surjective. Then replace π•n by π̃•n defined by

π̃•n+1 = π•n+1 + dh̃+ h̃d.

With this choice of {π•n}, the above diagrams commute, and the maps fit together to de-
fine an endomorphism π•∞ = limn π

•
n of K•∞. Then part i is clear: the elements tn =∑

(−1)i Tr
(
πin
∣∣
Ki
n

)
fit into an element t∞ of Z`. Moreover

t∞ =
∑

(−1)i TrZ`

(
πi∞
∣∣
Ki
∞

)
=

∑
(−1)i TrQ`

(
πi∞
∣∣
Ki
∞⊗Z`Q`

)
=

∑
(−1)i Tr

(
π∞
∣∣
Hi(K•∞⊗Q`)

)
where the last equality follows from the fact that Q` is a field, so the complexK•∞⊗Q` is quasi-
isomorphic to its cohomology H i(K•∞ ⊗ Q`). The latter is also equal to H i(K•∞) ⊗Z Q` =
H i
∞ ⊗Q`, which finishes the proof of the lemma, and also that of theorem 7.5.

7.3 Examples of L-functions

We use theorem 7.4 for curves to give examples of L-functions

Constant sheaves

Let k be a finite field, X a smooth, geometrically irreducible curve over k and F = Q` the
constant sheaf. If x̄ is a geometric point of X , the Galois module Fx̄ = Q` is trivial, so

det
(

1− π∗x T deg x
∣∣∣
Fx̄

)−1

=
1

1− T deg x
.

Applying theorem 7.4, we get

L(X,F) =
2∏
i=0

det
(

1− π∗X T
∣∣
Hi
c(Xk̄,Q`)

)(−1)i+1

=
det
(

1− π∗X T
∣∣
H1
c (Xk̄,Q`)

)
det
(

1− π∗X T
∣∣
H0
c (Xk̄,Q`)

)
· det

(
1− π∗X T

∣∣
H2
c (Xk̄,Q`)

) .
To compute the latter, we distinguish two cases.
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Projective case. Assume that X is projective, so H i
c(Xk̄,Q`) = H i(Xk̄,Q`), and we have

H i(Xk̄,Q`) =


Q` if i = 0, and π∗X acts as 1 ;
Q2g
` if i = 1 ;

Q` if i = 2, and π∗X acts as multiplication by q = deg πX .

We do not know much about the action of π∗X on the degree 1 cohomology. Let us call
α1, . . . , α2g its eigenvalues in Q̄`. Putting everything together, theorem 7.4 yields the
equality ∏

x∈|X|

1
1− T deg x

=
det
(

1− π∗X T
∣∣
H1(Xk̄,Q`)

)
(1− T )(1− qT )

from which we deduce the following result.

Corollary 7.8. Let X be a smooth, projective, geometrically irreducible curve over a
finite field k. Then

i. the L-function L(X,Q`) is a rational funtion ;

ii. the eigenvalues α1, . . . , α2g of π∗X onH1(Xk̄,Q`) are algebraic integers indepen-
dent of ` ;

iii. the number of rational points of X on kn, where [kn : k] = n, is

#X(kn) = 1−
2g∑
i=1

αni + qn;

iv. for each i, |αi| < q.

Part iii is theorem 7.5 applied to F = Q` on X ⊗ kn. For part iv, use the following
result.

Exercise. Let α1, . . . , αn ∈ C. Then for any conic sector containing the positive real
axis of the form Cε = {z ∈ C | | arg z| < ε} with ε > 0, there exists an integer k > 1
such that αk1 , . . . , α

k
n ∈ Cε.

Then prove that |αi| 6 q for all i. Then, use elementary considerations on complex
numbers to prove (as in the proof of the prime number theorem) that |αi| < q. In fact,
the Riemann hypothesis says that for all |αi| =

√
q for all i. We will come back to this

later.

Affine case. Assume now that X is affine, say X = X̄ − {x1, . . . , xn} where j : X ↪→ X̄
is a projective nonsingular completion. Then H0

c (Xk̄,Q`) = 0 and H2
c (Xk̄,Q`) =

H2(X̄k̄,Q`) so theorem 7.4 reads

L(X,Q`) =
∏
x∈|X|

1
1− T deg x

=
det
(

1− π∗X T
∣∣
H1
c (Xk̄,Q`)

)
1− qT

.

On the other hand, the previous case gives

L(X,Q`) = L(X̄,Q`)
n∏
i=1

(
1− T deg xi

)
=

∏n
i=1(1− T deg xi)

∏2g
j=1(1− αjT )

(1− T )(1− qT )
.
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Therefore, we see that dimH1
c (Xk̄,Q`) = 2g+

∑n
i=1 deg(xi)− 1, and the eigenvalues

α1, . . . , α2g of π∗
X̄

acting on the degree 1 cohomology are roots of unity. More precisely,
each xi gives a complete set of deg(xi)th roots of unity, and one occurrence of 1 is
omitted. To see this directly using coherent sheaves, consider the short exact sequence
on X̄

0→ j!Q` → Q` →
n⊕
i=1

Q`,xi → 0.

The long exact cohomology sequence reads

0→ Q` →
n⊕
i=1

Q⊕ deg xi
` → H1

c (Xk̄,Q`)→ H1
c (X̄k̄,Q`)→ 0

where the action of Frobenius on
⊕n

i=1 Q⊕ deg xi
` is by cyclic permutation of each term;

and H2
c (Xk̄,Q`) = H2

c (X̄k̄,Q`).

The Legendre family

Let k be a finite field of odd characteristic, X = Spec k
[
λ, 1

λ(λ−1)

]
, and consider the family

of elliptic curves f : E → X on P2
X whose affine equation is y2 = x(x − 1)(x − λ). We set

F = Rf1
∗Q` =

{
R1f∗Z/`nZ

}
n>1
⊗Q`. In this situation, the following is true

• for each n > 1, the sheaf R1f∗(Z/`nZ) is finite locally constant – in fact, it is free of
rank 2 over Z/`nZ ;

• the system {R1f∗Z/`nZ}n>1 is a lisse `-adic sheaf ; and

• for all x ∈ |X|, det
(

1− πx T deg x
∣∣
Fx̄

)
= (1−αxT deg x)(1− βxT deg x) where αx, βx

are the eigenvalues of the geometric frobenius of Ex acting on H1(Ex̄,Q`).

Note that Ex is only defined over κ(x) and not over k. The proof of these facts uses the proper
base change theorem and the local acyclicity of smooth morphisms. For details, see [3]. It
follows that

L(E/X) def= L(X,F) =
∏
x∈|X|

1
(1− αxT deg x)(1− βxT deg x)

.

Applying theorem 7.4 we get

L(E/X) =
2∏
i=0

det
(

1− π∗X T
∣∣∣Hi

c(Xk̄,F)

)(−1)i+1

,

and we see in particular that this is a rational function. Furthermore, it is relatively easy to
show that H0

c (Xk̄,F) = H2
c (Xk̄,F) = 0, so we merely have

L(E/X) = det
(

1− π∗XT
∣∣
H1
c (X,F)

)
.

To compute this determinant explicitly, consider the Leray spectral sequence for the proper
morphism f : E → X over Q`, namely

H i
c(Xk̄, R

jf∗Q`)⇒ H i+j
c (Ek̄,Q`)
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which degenerates. We have f∗Q` = Q` and R1f∗Q` = F . The sheaf R2f∗Q` = Q`(−1) is
the Tate twist of Q`, i.e. it is the sheaf Q` where the Galois action is given by multiplication
by #κ(x) on the stalk at x̄. It follows that, for all n > 1,

#E(kn) =
∑

(−1)i Tr
(
πnE
∗∣∣
Hi
c(Ek̄,Q`)

)
=

∑
i,j

(−1)i+j Tr
(
πnX
∗∣∣
Hi
c(Xk̄,R

jf∗Q`)

)
= (qn − 2) + Tr

(
πnX
∗∣∣
H1
c (Xk̄,F)

)
+ qn(qn − 2)

= q2n − qn − 2 + Tr
(
πnX
∗∣∣
H1
c (Xk̄,F)

)
where the first equality follows from theorem 7.5, the second one from the Leray spectral
sequence and the third one by writing down the higher direct images of Q` under f . Alterna-
tively, we could write

#E(kn) =
∑

x∈X(kn)

#Ex(kn)

and use the trace formula for each curve. We can also find the number of kn-rational points
simply by counting. The zero section contributes qn − 2 points (we omit the points where
λ = 0, 1) hence

#E(kn) = qn − 2 + #
{
y2 = x(x− 1)(x− λ), λ 6= 0, 1

}
.

Now we have

#
{
y2 = x(x− 1)(x− λ), λ 6= 0, 1

}
= #

{
y2 = x(x− 1)(x− λ) in A3

}
−#

{
y2 = x2(x− 1)

}
−#

{
y2 = x(x− 1)2

}
= #

{
λ = −y2

x(x−1) + x, x 6= 0, 1
}

+ #
{
y2 = x(x− 1)(x− λ), x = 0, 1

}
− 2(qn − εn)

= qn(qn − 2) + 2qn − 2(qn − εn)

= q2n − 2qn + 2εn

where εn = 1 if −1 is a square in kn, 0 otherwise3, i.e.

εn =
1
2

(
1 +

(
−1
kn

))
=

1
2

(
1 + (−1)

qn−1
2

)
.

Thus #E(kn) = q2n − qn − 2 + 2εn. Comparing with the previous formula, we find

Tr
(
πnX
∗∣∣
H1
c (Xk̄,F)

)
= 2εn = 1 + (−1)

qn−1
2 ,

which implies, by elementary algebra of complex numbers, that if −1 is a square in k∗n, then
dimH1

c (Xk̄,F) = 2 and the eigenvalues are 1 and 1. Therefore, in that case we have

L(E/X) = (1− T )2.

3I don’t understand this:

#
˘
y2 = x2(x− 1)

¯
=
X
x∈kn

1 +

„
x2(x− 1)

kn

«
= qn +

X
x∈kn

„
x− 1

kn

«
= qn

and similarly for #
˘
y2 = x(x− 1)2

¯
, so εn = 0?
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Exponential sums

A standard problem in number theory is to evaluate sums of the form

Sa,b(p) =
∑

x∈Fp−{0,1}

e
2πixa(x−1)b

p .

In our context, this can be interpreted as a cohomological sum as follows. Consider the base
scheme S = Spec Fp

[
x, 1

x(x−1)

]
and the affine curve f : X → P1 − {0, 1,∞} over S given

by the equation yp−1 = xa(x− 1)b. This is a finite étale Galois cover with group F∗p and there
is a splitting

f∗(Q̄∗` ) =
⊕

χ:F∗p→Q̄∗`

Fχ

where χ varies over the characters of F∗p and Fχ is a rank 1 lisse Q`-sheaf on which F∗p acts
via χ on stalks. We get a corresponding decomposition

H1
c (Xk̄,Q`) =

⊕
χ

H1(P1
k̄ − {0, 1,∞},Fχ)

and the cohomological interpretation of the exponential sum is given by the trace formula
applied to Fχ over P1 − {0, 1,∞} for some suitable χ. It reads

Sa,b(p) = −Tr
(
π∗X
∣∣
H1(P1

k̄
−{0,1,∞},Fχ)

)
.

The general yoga of Weil suggests that there should be some cancellation in the sum. Applying
(roughly) the Riemann-Hurwitz formula, we see that

2gX − 2 ≈ −2(p− 1) + 3(p− 2) ≈ p

so gX ≈ p/2, which also suggests that the χ-pieces are small.
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