In this talk, I will discuss some recent results on the spectrum of the Laplacian and drifted Laplacian on complete noncompact manifolds.

The Lichnerowicz-Obata theorem states that if the Ricci curvature of a complete \(n \)-dimensional Riemannian manifold \(M \) is bounded below by a positive constant \(a \), then the first nonzero eigenvalue of the Laplacian \(\Delta \) on \(M \) satisfies \(\lambda_1 \geq \frac{na}{n-1} \). Moreover the equality holds if and only if the manifold is a round sphere of radius \(\sqrt{\frac{n-1}{a}} \). When \((M^n, g, e^{-f}dv)\) is a complete smooth metric measure space with the Bakry-Emery Ricci curvature tensor \(\text{ric}_f \geq ag \), constant \(a > 0 \), \(M \) may be non-compact. It is known that the spectrum of the drifted Laplacian \(\Delta_f = \Delta - \langle \nabla f, \nabla \cdot \rangle \) on such \(M \) is discrete and the first nonzero eigenvalue of \(\Delta_f \) has lower bound \(a \). We will discuss the rigidity of this lower bound and prove that if it is achieved with multiplicity \(k \), then \(M \) is isometric to \(\Sigma^{n-k} \times \mathbb{R}^k \) for some complete \((n-k)\)-dimensional manifold \(\Sigma \). One special example is gradient shrinking Ricci solitons. We also discuss the case of self-shrinkers for mean curvature flows. This is a joint work with Xu Cheng.