The symbol map of a Fredholm Operator is carrying essential topological and geometrical information about the underline manifold. Our approach to this direction is by studying Dirac operators involving a perturbation term. In particular we think of operators of the form $\mathcal{D} + sA : \Gamma(E) \rightarrow \Gamma(F)$ over a Riemannian manifold (X, g) for special bundle maps $A : E \rightarrow F$ and study their behavior as $s \rightarrow \infty$. We start with a simple criterion that insures localization. Two main aspects of localization are being examined: First is the separation of the spectrum of this family of operators into low and high eigenvalues for large s. Second is the observation that eigenvectors corresponding to low eigenvalues L^2 concentrate near the singular set of the perturbation bundle map A. This gives a new localization formula for the index of \mathcal{D} in terms of the singular set of A.