1 Introduction

We begin with a theorem of Lagrange, proven in 1770:

Theorem 1.0.1. Every natural number \(n \in \mathbb{N} \) can be represented as a sum of four squares:

\[
 n = a^2 + b^2 + c^2 + d^2.
\]

One natural question to ask is how many such representations there are of \(n \). Denote by \(c_4(n) \) the number of ordered 4-tuples \((a, b, c, d)\) that satisfy the above formula. For example \(c_4(1) = 8 \), because we will consider all integer solutions. Lagrange’s theorem says that \(c_4(n) > 0 \) for all positive \(n \). It is often quite useful, when counting such quantities, to introduce a generating function. So let’s define

\[
 \eta(q) = \sum_{n=-\infty}^{\infty} q^{n^2} = 1 + 2q + 2q^4 + 2q^9 + 2q^{16} + 2q^{25} + \cdots.
\]

The coefficient of \(q^r \) is the number of ways to write \(r \) as a sum of one square. Then

\[
 \eta^2(q) = \sum_{n,m=-\infty}^{\infty} q^{n^2 + m^2} = \sum_{r=0}^{\infty} c_2(r)q^r
\]

where \(c_2(r) \) is the number of representations of \(r \) as a sum of two squares. Similarly

\[
 \eta^4(q) = \sum_{r=0}^{\infty} c_4(r)q^r.
\]

Our goal is to compute \(\eta^4 \) in a different way so that we can equate power series coefficients and get a formula for \(c_4(r) \). But how? One beautiful way, discovered by Jacobi in 1834, is to interpret \(\eta \) as a Fourier series!

We let \(q = e^{\pi iz} \) so that \(\eta \) becomes a Fourier series

\[
 \eta(z) = \sum_{n \in \mathbb{Z}} e^{\pi in^2 z}.
\]

Recall the following:

Definition 1.0.2. A Fourier series is a sum \(f(z) = \sum a(n)e^{2\pi inz} \) that expresses a continuous, periodic function \(f(z) \) (with period 1 in this case) as an infinite sum of sinusoids.

Note that \(f(z+1) = \sum a(n)e^{2\pi in(z+1)} = f(z) \). The essential theorem about Fourier series is that every continuous periodic function has a unique Fourier series expansion! We may be curious in the case of \(\eta(z) \) where our Fourier series actually converges. Note that

\[
|e^{\pi in^2 z}| = e^{-\pi n^2 \text{Im}(z)}
\]

so whenever \(\text{Im}(z) > 0 \), the terms go to zero in absolute value quite quickly, and the sum converges.

Definition 1.0.3. The upper half-plane \(\mathbb{H} \) is the subset of complex numbers with positive imaginary part:

\[
 \mathbb{H} = \{ z \in \mathbb{C} \mid \text{Im}(z) > 0 \}.
\]

Furthermore, \(\eta(z) \) converges to a holomorphic function on \(\mathbb{H} \), as it is an absolutely convergent sum of holomorphic functions. As mentioned above, we have that \(\eta(z) = \eta(z+2) \). What else do we know? To find another transformation that \(\eta \) satisfies, we must use the Poisson summation formula, which states the following:

Exercise 1.0.1. Let \(f(z) \) be a quickly decaying function on \(\mathbb{R} \). Then

\[
 \sum_{n \in \mathbb{Z}} f(n) = \sum_{m \in \mathbb{Z}} (\mathcal{F}f)(m)
\]

where \(\mathcal{F} \) denotes the Fourier transform

\[
(\mathcal{F}f)(y) = \int_{-\infty}^{\infty} e^{-2\pi i xy} f(x) \, dx.
\]
This is quite simple to prove, and we leave it as an exercise. It is well known that the Fourier transform of a Gaussian is another Gaussian, and the exact formula is a simple exercise:

\[\mathcal{F}(e^{-ax^2}) = \sqrt{\frac{\pi}{a}} e^{-\pi^2 x^2 / a}. \]

Using this formula, we have that as a function of \(n \),

\[\mathcal{F}(e^{\pi in^2 z}) = \sqrt{\frac{i}{z}} e^{-\pi m^2 / z}. \]

Hence the Poisson summation formula states that

\[\eta(z) = \sum_{n \in \mathbb{Z}} e^{\pi in^2 z} = \sqrt{\frac{i}{z}} \sum_{m \in \mathbb{Z}} e^{\pi im^2 (-1/z)} = \frac{i}{z} \eta(-1/z). \]

Thus, we have two relatively simple transformation laws that \(\eta^4(z) \) satisfies

\[\eta^4(z + 2) = \eta^4(z) \quad (1) \]
\[\eta^4(-1/z) = -z^2 \eta^4(z) \quad (2) \]

2 The Modular Curve

The transformations

\[z \mapsto z + 2 \]
\[z \mapsto -1/z \]

are examples of so-called fractional linear transformations. In our case, the group \(SL_2(\mathbb{R}) \) of determinant 1 two-by-two matrices has a group action on \(\mathbb{H} \). They act as follows

\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az + b}{cz + d}. \]

One can check easily that this defines a group action, i.e. if we have \(\gamma \) and \(\delta \) in \(SL_2(\mathbb{R}) \), then \(\gamma \cdot (\delta \cdot z) = (\gamma \delta) \cdot z \).

In our case,

\[\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdot z = z + 2 \quad \text{and} \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot z = -1/z. \]

Let’s call the above matrices \(T \) and \(S \) respectively. Then \(\eta^4 \) is invariant under \(T \) and almost invariant under \(S \). Rewriting in group action notation, we have

\[\eta^4(T \cdot z) = \eta^4(z) \quad \text{and} \quad \eta^4(S \cdot z) = -z^2 \eta^4(z) \]

There are very few holomorphic functions on the upper half-plane that satisfy both of these transformation properties. In fact \(\eta^4 \) is the only one up to scaling! Let’s prove this using some complex analysis. First, we need to see what the action of \(T \) and \(S \) look like on the upper half-plane. The transformation \(T \) is quite simple: It is a horizontal translation by 2. The transformation \(S \) is a bit more complicated: We invert about the unit circle, then reflect about the \(y \)-axis. In some sense, the place where the function \(\eta^4(z) \) naturally “lives” is the quotient of the upper half-plane by the group \(\Gamma = \langle T, S \rangle \) generated by \(T \) and \(S \). Just like the place where a periodic function on \(\mathbb{R} \) naturally lives is the circle.

Definition 2.0.4. We call \(\mathcal{D} \subset \mathbb{H} \) a fundamental domain for the action of \(\Gamma \) if for every orbit of \(\Gamma \), there is exactly one orbit representative in \(\mathcal{D} \), except possibly on the boundary of \(\mathcal{D} \).
Any of the regions above are a fundamental domain for the action of Γ on \mathbb{H}.
The boundary of the fundamental domain glues together to construct the quotient of the action $Y(\Gamma) = \Gamma \backslash \mathbb{H}$, and we can compactify $Y(\Gamma)$ by adding a finite number of cusps: $X(\Gamma) = \overline{Y(\Gamma)}$. In our case $X(\Gamma) = \mathbb{P}^1$.

Denote the space of functions satisfying the transformation laws (1) and (2) by $M_2^{-}(\Gamma)$ and note that it is a vector space over \mathbb{C}.

To determine the dimension of M_2^{-}, we will use a contour integral around the boundary of the fundamental domain. Suppose that $f \in M_2^{-}$ and consider the contour drawn above. Then by Cauchy’s integral formula (we suppress the factor of $\frac{1}{2\pi i}$ throughout),

$$\oint f'(z) f(z) \, dz = \# \text{ zeroes of } f \text{ inside the contour} = \sum_{p \in \partial\mathbb{D}} v_p(f)$$

where $v_p(f)$ is the order of vanishing of f at p. On the other hand, we can combine all the contributions from the individual arcs of C to get a second formula:

$$\oint f'(z) f(z) \, dz = - \sum_{p \in \partial D} v_p(f) - v_1(f) - v_{\infty}(f) - \frac{1}{2}v_i(f) + \left(\int_A + \int_B + \int_C + \int_D \right) f'(z) f(z) \, dz.$$

Note that the line integrals \int_C and \int_D along the vertical sides of the fundamental domain cancel because $f(z+2) = f(z)$ and the line integrals are going in opposite directions. So we have used the first transformation rule to our benefit. Now, we use the second transformation rule. The arc A is sent to the arc $-B$ by the
transformation S. By the change of variables formula,
\[
\int_A f'(z) f(z) \, dz = \int_B f'(S \cdot z) f(S \cdot z) \, d(S \cdot z) = - \int_B \frac{[z^2 f(z)]'}{z^2 f(z)} \, dz = - \int_B \frac{2 \, dz}{z} - \int_B f'(z) f(z) \, dz = \frac{1}{2} - \int_B f'(z) f(z) \, dz.
\]
The second part of this integral cancels with the remaining undetermined piece of the original contour integral, and so we combine the two formulas to get
\[
\sum_{p \in \mathbb{D}, p \neq i} v_p(f) + \frac{1}{2} \eta_i(f) = \frac{1}{2}.
\]
Since the order of vanishing is always an integer, we must have $v_i(f) = 1$ while $v_p(f) = 0$ for all $p \neq i$. In particular, this must be true of η_i. But then, consider the function
\[
h(z) = \frac{f(z)}{\eta^i(z)}.
\]
It is totally invariant under Γ because the $-z^2$ factors cancel. But then $h(z)$ descends to a bona fide holomorphic function on $X(\Gamma) = \mathbb{P}^1$. Because \mathbb{P}^1 is compact, $h(z)$ attains a maximum modulus somewhere, but at the same time, by the maximum modulus principle, it must attain a maximum on the boundary, which is empty. Hence $h(z)$ is actually a constant function, and thus
\[
f(z) = c\eta(z)
\]
for some $c \in \mathbb{C}$. This proves that $\dim(M_2^-) = 1$.

3 Another Modular Form

Our goal is to now construct an element of M_2^- in a new way. Once scaled properly, it must equal η^4, at which point we can equate Fourier series coefficients (by uniqueness of Fourier series) to get our formula!

Another way of constructing modular forms is with Eisenstein series. We define
\[
G_2(z) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(mz + n)^2}.
\]
Then by reindexing the second sum, we have
\[
G_2(z + 1) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(mz + m + n)^2} = G_2(z).
\]
In addition
\[
G_2(-1/z) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(-m/z + n)^2} = z^2 \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(m + nz)^2} = z^2 G_2(z).
\]
Why the question mark? Because the sum is actually conditionally convergent so we can reverse the order of summation! (What madness.) In fact, one can show that there is a correction term of $2\pi iz$:
\[
G_2(-1/z) = z^2 G_2(z) + 2\pi i z.
\]
Now, we are in a position to construct an element of M_2^-. Let
\[
f(z) = 2G_2(2z) - \frac{1}{2} G_2(z/2).
\]
Then, because $G_2(z + 1) = G_2(z)$, we have that $f(z + 2) = f(z)$. Furthermore,
\[
f(-1/z) = 2G_2\left(-\frac{1}{z/2}\right) - \frac{1}{2} G_2\left(-\frac{1}{2z}\right)
\]
\[
= 2(z/2)^2 G_2(z/2) + 2(2\pi i)(z/2) - \frac{1}{2} (2\pi i)^2 G_2(z) - \frac{1}{2} (2\pi i)(2z)
\]
\[
= -z^2 f(z)
\]
and thus \(f \in M_c^- \). Hence there is a constant \(c \) such that \(f = c\eta^4 \).

We would like to compute the Fourier series of the periodic function

\[
\sum_{n \in \mathbb{Z}} \frac{1}{(mz + n)^2}
\]

and sum over \(m \), so as to compare coefficients with \(\eta^4 \). We can do so by using Poisson summation formula again!

Exercise 3.0.2. As a function of \(n \), we have

\[
\tilde{F} \left(\frac{1}{(mz + n)^2} \right) = (2\pi i)^2 u(k) e^{2\pi i kmz}
\]

where \(u(k) \) is the unit step function, which is zero for negative \(k \) and one for positive \(k \).

As hoped, the negative coefficients of the Fourier series will be zero. Summing over \(m \) gives

\[
G_2(z) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(mz + n)^2} = \sum_{n \neq 0 \in \mathbb{Z}} \frac{1}{n^2} + 2(2\pi i)^2 \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} ke^{2\pi i kmz} = 2\zeta(2) + 2(2\pi i)^2 \sum_{n=1}^{\infty} \sigma(n) e^{2\pi inz}
\]

where \(\sigma(n) \) is the sum of the divisors of \(n \). Thus, we have a formula for \(f(z) \):

\[
f(z) = 3\zeta(2) + 4(2\pi i)^2 \sum_{n=1}^{\infty} \sigma(n) e^{4\pi inz} - (2\pi i)^2 \sum_{n=1}^{\infty} \sigma(n)e^{\pi inz}.
\]

Since the constant coefficient of \(\eta^4 \) is 1, we normalize \(f(z) \) and collect like terms to show

\[
\eta^4(z) = 1 + \sum_{n=1}^{\infty} \frac{(2\pi i)^2}{3\zeta(2)} [4\sigma(n/4) - \sigma(n)] e^{\pi inz}.
\]

We can now compute our formula!

\[
c_4(n) = \frac{(2\pi i)^2}{3(\pi^2/6)} [4\sigma(n/4) - \sigma(n)]
\]

Simplifying and putting it into a nice format, we have the final result

\[
c_4(n) = \sum_{d \mid n \atop 4 \nmid d} d.
\]