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RELATIVE COMPACTIFIED JACOBIANS

OF LINEAR SYSTEMS

ON ENRIQUES SURFACES

GIULIA SACCÀ

Abstract. We study certain moduli spaces of sheaves on Enriques surfaces,
thereby obtaining, in every odd dimension, new examples of Calabi–Yau mani-
folds. We describe the geometry (canonical bundle, fundamental group, second
Betti number, and certain Hodge numbers) of these moduli spaces showing, in
partial analogy to the well-known case of sheaves on K3 or abelian surfaces,

how the geometry of the surface reflects that of the moduli space itself.

Introduction

Moduli spaces of sheaves on K3 surfaces are among the most studied objects in
algebraic geometry. Part of their interest lies in that they inherit the rich structure
coming from the K3 surface itself. For example, by work of Mukai [Muk84], the
symplectic structure on the surface induces a holomorphic symplectic structure on
the smooth locus of the moduli space. When smooth and projective, these mod-
uli spaces provide examples of compact irreducible hyperkähler manifolds [Bea83],
[Huy97], [Muk84], [O’G97]. On the other hand, not much work has been done re-
garding the geometry of moduli spaces of sheaves on Enriques surfaces, even though
it is natural to expect that their geometry is tightly related to that of the Enriques
surface itself and of the moduli spaces of sheaves on the covering K3 surface. The
present paper describes the geometry of a certain class of moduli spaces of sheaves
on an Enriques surface T , namely, the case of moduli spaces parametrizing pure
dimension 1 sheaves on T . By considering pure dimension 1 sheaves whose support
is linearly equivalent to a given curve C, these moduli spaces may be viewed as
the relative compactified Jacobian of the linear system |C|. As such, they have a
structure of fibration in abelian varieties.

One of the results of the paper is to show that the canonical bundle of these
moduli spaces is trivial. Though it is not hard to see that the canonical bundle is a
torsion element in the Picard group, it is an interesting surprise that it is actually
trivial, and not 2-torsion as is true in the case of Enriques surfaces. This produces
a series of new examples (in every odd dimension) of Calabi–Yau manifolds. Re-
call that one of the reasons why hyperkähler manifolds have attracted attention is
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that they are, together with irreducible Calabi–Yau manifolds and complex tori,
the building blocks of Kähler manifolds with trivial first Chern class [Bea83]. By
proving that the universal cover of these moduli spaces are irreducible Calabi–Yau
manifolds, this paper thus produces a new series of building blocks for c1-trivial
manifolds.

The fact that the properties of these moduli spaces do not fully reflect those of
the underlying surface makes the study of their geometry even more compelling.
The other main results of the paper, all of which use the abelian fibration structure,
are the computations of the fundamental group, of the cohomology of the structure
sheaf, and of the second Betti number.

To fix ideas, let us assume that we are considering a moduli space N parametriz-
ing sheaves whose Fitting support belongs to a linear system |C|, of genus g ≥ 2.
Associating to every sheaf its Fitting support defines the support (or Le Potier)
morphism N → |C| = Pg−1 and endows the moduli space with a fibration structure
in the g-dimensional Jacobians of the curves belonging to |C|. Notice that these
moduli spaces are always nonempty. To sum up the main results, we have the
following theorem.

Theorem. Let |C| be a genus g ≥ 2 linear system on a general Enriques T , let
d �= g − 1 be an integer, let H be a generic polarization, and let N → |C| be the
component of the moduli space of H-semistable sheaves on T with Fitting support in
|C| and Euler characteristic equal to χ = d− g + 1 that contains sheaves supported
on irreducible curves. Suppose the divisibility of C in NS(T ) is coprime with 2(d−
g + 1). Then we have the following.

(1) N is a smooth (2g − 1)-dimensional Calabi–Yau variety, i.e.,

ωN
∼= ON and hp,0(N) = 0 for p �= 0, 2g − 1.

(2) There is a surjection Z/(2) � π1(N) which, under a natural assumption
that holds in many cases (e.g., for low values of g and in the case |C|
is a primitive linear system), and that is expected to hold in general (see
Assumption 2.17 and the subsequent discussion), turns out to be an iso-
morphism.

(3) Under the same assumption, we show that for g ≥ 3

h2(N) = 11.

(4) For g = 2, we get Calabi–Yau 3-folds with the following Hodge diamond:

1
0 0

0 10 0
1 10 10 1

Geometrically, we can realize the universal cover Ñ of N via the Stein factoriza-

tion of the norm map. Since Ñ is simply connected, it is an irreducible Calabi–Yau
manifold of dimension 2g − 1.

Further content of the paper regards the support morphism which, though ap-
pearing ubiquitously in algebraic geometry (e.g., the Hitchin system, the Beauville–
Mukai integrable system) is not very well understood (especially over the locus
of nonreduced curves). We give some factual and conjectural properties for the
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support morphism in the case of a linear system on a smooth projective surface
(Section 2). We also mention a recent result of Yoshioka’s [Yos16] regarding this
morphism in the case of primitive linear systems. In the specific case of Enriques
surfaces, we study the corresponding variation of Hodge structures (via degenera-
tion of Hodge bundles) and compute the pushforward of the structure sheaf (4.7).
This involves monodromy calculations that are of independent interest (Proposi-
tion 5.9).

Beyond the case of the Hilbert scheme T [n] of n points on T , whose canonical
bundle (which is shown to be of 2-torsion) and fundamental group are computed
in [OS11], this paper is the first one that studies geometric properties of a moduli
space of sheaves on an Enriques surface. The previously existing literature, [Kim98],
[Kim06], [Zow13], studies smoothness and irreducibility properties of moduli spaces
of sheaves on Enriques surfaces by realizing them as double covers of Lagrangian
subvarieties of moduli spaces on the covering K3 surface (and after the first version
of this paper appeared, also [Nue16a], where nonemptiness is studied, and [Nue16b],
where the birational geometry of these moduli spaces is studied). Finally, [Hau10]
finds an explicit parametrization in the case when the moduli spaces are one di-
mensional and shows how to relate moduli spaces of sheaves of arbitrary rank to
those of low rank.

The techniques of this paper can be used also to study relative compactified Jaco-
bians of linear systems on bielliptic surfaces. These moduli spaces produce another
series of Calabi–Yau manifolds, whose geometry is the subject of a forthcoming
paper by Saccà.

1. Preliminaries

1.1. Setup and notation.

1.1.1. Throughout the paper, T will denote an Enriques surface, that is, a smooth
projective surface with

H1(T,OT ) = 0,

and whose canonical bundle ωT defines a nontrivial 2-torsion element of the Picard
group. It is well known that π1(T ) = Z/(2) and that its universal cover, which will
be denoted by S, is a K3 surface. The covering morphism

f : S → T

is the double covering induced by ωT . The deck involution

ι : S → S

is antisymplectic; i.e., if σ denotes the holomorphic symplectic form on S, then
ι∗σ = −σ.

By C, we will denote a curve in T . Using the Riemann–Roch theorem, one can
see that if C2 ≥ 0, then the line bundle O(C)⊗ωT is also effective. We will denote
by C ′ a curve in |O(C)⊗ ωT |. We also set

D := f−1(C) ⊂ S.

By the Hodge index theorem, if the arithmetic genus g of C satisfies g ≥ 2 and
C is connected and reduced, then the covering

f : D → C
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is connected. In particular, the two-torsion line bundle

(1.1) η := ωT |C

is not trivial. When this is the case, the genus of D is equal to

h = 2g − 1.

If g ≥ 2, then dim |C| = dim |C ′| = g − 1 and dim |D| = h. Moreover, we see that
|C| and |C ′|, identified with their images in |D| under the pullback morphism, are
the two ι-invariant linear subspaces of |D|.

1.2. Pure dimension 1 sheaves on surfaces.

1.2.1. Let (X,H) be a smooth projective polarized surface. Associated to any
coherent sheaf F on X is the ideal sheaf,

IF := ker[OX → End(F )],

defining the OX -module structure on F . The scheme theoretic support of F , de-
noted Supp(F ), is the scheme defined by IF . A sheaf is called pure of dimension
d if for any subsheaf 0 �= G ⊆ F , dimSupp(G) = d . Let F be a pure dimension 1
sheaf on X. Then Supp(F ) is a (possibly nonintegral) curve and F = i∗L, where
i : Supp(F ) → X is the natural embedding and where L is a sheaf on Supp(F )
having no subsheaves that are supported on points.

For pure dimension 1 sheaves, we will also consider another type of support, the
Fitting support, which is defined in the following way. A pure dimension 1 sheaf
on a smooth projective has homological dimension 1 [HL97, Chapter 1]; i.e., there
exists a length one locally free resolution of F ,

0 → L1
a→ L0 → F → 0.

The Fitting support of F , denoted supp(F ), is the subscheme of X defined by the
equation det a = 0. Contrary to the case of the scheme theoretic support, the
Fitting support behaves well in families. It is important to point out that the class
in cohomology of the pure dimension 1 scheme supp(F ) is exactly the first Chern
class c1(F ).

1.2.2. For pure dimension 1 sheaves, stability with respect to the Hilbert polynomial
defined by H amounts to considering stability with respect to the slope function

μH(F ) =
χ(F )

c1(F ) ·H ,

where χ(F ) denotes the Euler characteristic of F . So if F is pure of rank one
supported on a reduced curve Γ, F is H-semistable if and only if for every subcurve
Γ′ ⊂ Γ, we have

(1.2)
χ(F )

Γ ·H ≤ χ(FΓ′)

Γ′ ·H ,

where

FΓ′ := F
Γ′/Tor(F Γ′)

is the restriction of F to the subcurve modulo its torsion. We say that H is χ-
general for a curve Γ and an integer χ (or d-general for d := χ−χ(OΓ)) if for every

subcurve Γ′ ⊂ Γ the rational number χΓ′·H
Γ·H is not an integer. This guarantees

that H-semistability is equivalent to H-stability. Recall that for any coherent sheaf
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F on X, one can define the Mukai vector v(F ) ∈ H∗
alg(T,Z). When F is pure of

dimension 1, it is given by

v = v(F ) = (0, c1(F ), ch2(F )) = (0, c1(F ), χ(F )− 1

2
c1(X)c1(F )).

Here ch2(F ) denotes the degree 2 part of the Chern character of F . Let

Mv,H(X)

be the moduli space of H-semistable sheaves on X with Mukai vector v. Let F
be a sheaf with v(F ) = v, and let Hc1(v) be the Hilbert scheme parametrizing
subschemes with cohomology class equal to supp(F ). Since the Fitting support
behaves well in families, we can define the Le Potier [LP93] or support morphism

π : Mv,H(X) −→ Hc1(v),

F �−→ supp(F ),

which associates to a pure sheaf of dimension 1 its Fitting support. For a curve
Γ ⊂ X defining a point [Γ] ∈ Hc1(v), the fiber Mv,H(X)[Γ] := π−1([Γ]) is the
Simpson moduli space of H|Γ-semistable sheaves on Γ. For example, the fiber over
a nodal curve is isomorphic to an appropriate compactified Jacobian in the sense
of Oda and Seshadri [OS79] (see Alexeev [Ale04]).

If h1(X,OX) = 0, then every component of Hc1(v) is just the linear system of
some line bundle with that cohomology class. Hence, if v = (0,Γ, χ) and we let

Mv,H(X, |Γ|)
be the irreducible component of π−1(|Γ|) containing the locus of locally free sheaves
with integral Fitting support, we can think of

(1.3) π : Mv,H(X, |Γ|) = JH,d(|Γ|) → |Γ|
as the relative compactified Jacobian of degree d = χ− χ(OΓ) of the linear system
|Γ|. Indeed, the fiber over a reduced curve Γ is just the degree d compactified
Jacobian of that curve with respect to the polarization H, i.e.,

π−1([Γ]) = JH,d(Γ),

where d = χ − χ(OΓ). Notice that if the curve is integral, then the compactified
Jacobian does not depend on H.

Lemma 1.1. If Γ is an integral curve, the fiber π−1([Γ]) is contained in the stable
locus Ms

v,H(X, |Γ|) of Ms
v,H(X, |Γ|). In particular, if there exist an integral curve

in the linear system |Γ|, then Ms
v,H(X, |Γ|) is nonempty and changing polarization

changes Mv,H(X, |Γ|) only within its birational class.

Proof. If supp(F ) is integral, then there is no condition (1.2) to be checked; i.e.,
any surjection F → G is an isomorphism. �

Often in this paper, if we consider the restriction of (1.3) to a locus in |Γ|
parametrizing irreducible curves, we omit the polarization from the notation.

If the curve Γ is reducible, then stability depends on the degree of H on each
component of Γ. For later use, we work out the characterization of semistability
for pure rank one sheaves supported on a curve that is the union of two smooth
components meeting transversally.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7796 G. SACCÀ

Lemma 1.2. Let Γ = Γ1+Γ2 be a curve that is the union of two smooth components
meeting transversely in δ points. Let F be a pure rank one sheaf on Γ with χ(F ) = χ,
and let δ′ ≤ δ be the number of nodes where F is locally free. Then F is H-
semistable if and only if

h1

h
χ ≤ χ1 ≤ h1

h
χ+ δ′,

where h1 = H ·Γ1, h2 = H ·Γ2, and h = h1 + h2, and where χi = χ(FΓi
). Further-

more, F is H-stable if and only if the inequalities are strict. As a consequence, if
H is general, then semistability is equivalent to stability.

Proof. This follows readily from (1.2) and the fact that F fits into a short exact
sequence

0 → F → FΓ1
⊕ FΓ2

→ Cδ′ → 0

so that χ+ δ′ = χ1 + χ2, and we can rewrite inequality (1.2) for i = 2 in terms of
h1 and χ1. �

We will also need the following important result by Melo, Rapagnetta, and
Viviani.

Proposition 1.3 ([MRV14]). Let Γ be a reduced locally planar curve of genus g,
let d be an integer, let H be a d-general polarization for Γ, and let JH,d(Γ) be the

compactified Jacobian of degree d. Then JH,d(Γ) is a local complete intersection of
dimension g, and its smooth locus is precisely the locus

JH,d(Γ)

parametrizing line bundles.

As a consequence of these considerations, we highlight the following well-known
corollary that will be used in Section 3.

Corollary 1.4. Let Γ = Γ1+Γ2 be the union of two smooth components meeting at
δ points. Then JH,d(Γ) has δ irreducible components, parametrized by the δ pairs
(χ1, χ2) satisfying the condition of Lemma 1.2: For every such pair (χ1, χ2), the
corresponding component contains as a dense open subset the locus of line bundles
whose restriction to Γ1 and Γ2 have Euler characteristics χ1 and χ2, respectively.

Suppose now that χ(F ) = −g+1, where g is equal to the genus of Γ = supp(F ).
In this case, there is a rational section

(1.4) s : Hc1(v) ��� Mv,H(X)

defined on an open subset containing integral curves.

Remark 1.5. If Γ is ample, then we can also consider H = Γ, and it is not hard to
see using (1.2) that the structure sheaf of every curve is stable. It follows that the
section is a regular morphism. This guarantees that there is a nonempty open set
in the ample cone of polarizations for which the section is a regular morphism.

1.2.3. Recall that if F is a stable sheaf, the tangent space to the moduli space at a
point [F ] is canonically isomorphic to Ext1(F, F ). Moreover [Art88], [Muk84], the
obstructions to deforming F on X lie in

(1.5) Ext2(F, F )0 := ker[tr : Ext2(F, F ) → H2(X,OX)],

where tr : Ext2(F, F ) → H2(X,OX) is the trace morphism (see [HL97]). Hence,
by Serre duality, if (X,H) is a polarized surface with ωX = OX (i.e., a K3 or an
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abelian surface) and F is a pure sheaf H-stable sheaf on X with v = v(F ), then
the moduli space Mv,H is smooth at the point [F ].

Theorem 1.6 ([Muk84],[GH96], [O’G97],[Huy97],[Yos99], [Yos01]). Let X be a K3
surface, let H be a polarization on X, let F be a pure sheaf on X, and set v = v(F ).
The locus Ms

v,H(X) of H-stable sheaves on X has a holomorphic symplectic form.
If v is primitive, then there exists a locally finite collection of real codimension 1
linear subspaces (called the v-walls) in the ample cone Amp(X) ⊗ Q such that, if
H is chosen outside the union of the v-walls, then H-stability coincides with H-
semistability (an H satisfying this condition is called v-generic; see Definition 2.9)

and Mv,H is an irreducible holomorphic symplectic manifold of K3[n] type.1

Hence, if v = (0,Γ, χ) and H is chosen to be v-generic, then H is χ-general for
every curve in |Γ|.

Finally, we will need the following expression for the symplectic form on Mv,H :

On the tangent space T[F ]Mv,H(X) = Ext1(F, F ) at a point [F ] corresponding to
a stable sheaf F , the symplectic form is given by the composition

(1.6)
σ : Ext1(F, F )× Ext1(F, F )

∪−→ Ext2(F, F )
tr−→ H2(S,OS) ∼= C,

(e, f) �−→ e ∪ f �−→ tr(e ∪ f),

where the identification H2(S,OS) = H2(S, ωS) ∼= C is Serre dual to the isomor-
phism

(1.7) H0(S, ωS) = Cσ ∼= C,

defined by the choice of a unique up to scalar, symplectic form σ ∈ H0(S, ωS).

1.3. Some facts about linear systems on Enriques surfaces. In this section,
we collect a few (mostly known) results about linear systems on an Enriques surface
that will be needed in the rest of the paper. After a general introduction, we
will focus on linear systems on a general Enriques surface. For a more complete
treatment, we refer to [Cos83], [CD89].

1.3.1. The Néron–Severi group2 of T has rank 10 and is isomorphic to the abstract
lattice U ⊕ E8(−1), where U and E8(−1) denote the hyperbolic lattice and the
positive definite E8 root lattice, respectively. The pullback homomorphism

(1.8) f∗ : NS(T ) → NS(S),

is injective, and in [Nam85] it is shown that the image of the Néron–Severi group
of T in the Néron–Severi group of S is a primitive sublattice (of rank 10). In
particular, if we choose C so that its class is primitive in NS(T ), then so is the
class of D in NS(S). By abuse of notation, we say that a curve or a line bundle is
primitive if its class in the Néron–Severi group is a primitive element of the lattice.
Moreover [Nam85], by choosing the Enriques surface general in moduli, we can
ensure that

(1.9) f∗(NS(T )) = NS(S).

1By definition, this means that it is deformation equivalent to a Hilbert scheme of points on a
K3 surface.

2Following [Laz04, Definition 1.1.13], we let the Néron–Severi group of a smooth projective
variety X be the group of line bundles on X modulo numerical equivalence. In particular, it is
torsion free.
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When this is the case, ι∗ acts as the identity on NS(S) and there are no smooth
rational curves on S or on T . In particular, there are not effective line bundles of
negative self-intersection.

From now on, when we say that T is general, we will assume that (1.9) holds.

Lemma 1.7. Let T be a general Enriques surface.

(1) If L is a line bundle on T with L2 > 0 (resp., L2 ≥ 0), then ±L is ample
(resp., nef).

(2) If L2 > 0, then the general member of |L| is irreducible.

Proof. Item (1) follows immediately from the Hodge index theorem and the fact
that there are no curves with negative self-intersection on a general T . Item (2)
is [CD89, Prop. 3.1.6], [CD89, Cor. 3.1.2]. �

Lemma 1.8. Let T be a general Enriques surface, and let C ⊂ T be a primitive
curve of genus g ≥ 2. If C is irreducible, then so is its preimage D = f−1(C).

Proof. Suppose D breaks into the sum of two irreducible components D1 and D2.
Since D1 and D2 are interchanged by the involution and since by assumption ι∗

acts as the identity on NS(S), it follows that D1 ∼ D2, and hence that D ∼ 2Di,
contradicting the fact that C, and thus D by Subsubsection 1.3.1, is primitive. �

We should also point out that for the conclusion of this lemma to hold, it is
sufficient to assume that the class of C is not divisible by 2.

Contrary to what happens for a positive genus where the dimension of an effective
linear system of genus g is equal to g − 1, if L is an effective linear system with
L2 = 0, then the dimension of |L| depends on the divisibility of the class of L in
NS(T ). It is well known [Cos83, Section 1.6] that if L is a primitive, then L = O(e)
for a primitive elliptic curve and |L| = {e}. According to the notation introduced
in Subsection 1.1, we denote by e′ the (unique) curve in the linear system L⊗ ωT .
If L = O(2e), then |L| is a pencil whose general fiber is a smooth elliptic curve
and which has exactly two double fibers, e and e′. This shows that the canonical
bundle of T is equal to the difference of the two half fibers, i.e., ωT = O(e− e′).

From these considerations, one can deduce (see [Cos83, Thm. 1.5.1]) that if
L = O(ke) with k ≥ 2, then |L| ∼= Sym� k

2 � |2e|,
and L has a fixed component if and only if k is odd. Primitive elliptic curves and
elliptic pencils play a big role in the study of linear systems on Enriques surfaces.

Definition 1.9. A genus g ≥ 2 linear system |C| on an Enriques T is called
hyperelliptic if g = 2 or if the map T ��� Pg−1 defined by |C| is of degree 2 onto a
rational normal scroll of degree g − 2 in Pg−1.

The following proposition gives a very useful characterization of hyperelliptic
linear systems

Proposition 1.10 ([CD89, Prop. 4.5.1 and Cor. 4.5.1]). Let T be an Enriques
surface, and let C ⊂ T be an irreducible curve with C2 = 2g− 2 ≥ 2. The following
are equivalent:

(1) The linear system |C| is hyperelliptic.
(2) |C| has base points.
(3) There exists a primitive elliptic curve e1 such that C · e1 = 1.
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Moreover, if T is general, then |C| is hyperelliptic if and only if C ≡ (g− 1)e1 + e2
for two primitive elliptic curves with e1 · e2 = 1.

Up to tensoring by ωT , the two elliptic curves are determined by |C|.
It is worth mentioning here that if |C| is hyperelliptic, then its base locus (which

is nonempty by the proposition above) consists of two simple points, described by
the following Lemma.

Lemma 1.11. Let C = (g − 1)e1 + e2 be a hyperelliptic linear system. The two
simple base points of |C| are

e1 ∩ e′2 and e′1 ∩ e2 if g − 1 is odd,

e1 ∩ e2 and e′1 ∩ e2 if g − 1 is even.

Proof. The proof is straightforward after noticing that O(C)
e1

is equal to O(e′2) e1
or O(e2) e1

depending on whether g − 1 is odd or even, and similarly for the re-

striction to e′1. �
Corollary 1.12. Let p : C → |C| be the universal family of curves of a hyperelliptic
linear system. Then C is smooth and p has two sections.

Proof. By the lemma above, |C| has two simple base points, and hence we can

identify this linear system as a base point free linear system on the blowup T̃ of T
at the two base points. Since the universal family C → T factors via the blowup

morphism T̃ → T , we see that C is smooth. The statement about the sections also
follows readily from the lemma above. �

Finally, it is known that the general curve in |C| is a smooth hyperelliptic
curve [CD89, Cor. 4.5.1].

Corollary 1.13. Let L be an effective line bundle on a general T with L2 > 0.
Then the general member of |L| is a smooth connected curve.

We will need the following observation regarding intersection of curves on a
general T . If C and Γ are two curves such that C · Γ = 1, then one of them has
to be a primitive elliptic curve, and the other one either another primitive elliptic
curve or a hyperelliptic curve: If they are both of genus 1, there is nothing to show.
So let us suppose that one of them, say C, is of genus g ≥ 2. Up to moving C in
its linear system, we can assume it to be smooth. Suppose that Γ is not primitive
elliptic so that it moves in a positive dimensional linear system. If |Γ| is base point
free, then O(Γ)

C
would cut a positive dimensional degree 1 linear system on C,

providing a contradiction since C is not rational. If |Γ| has a base point, then by the
proposition above, it has to be hyperelliptic. It follows that there are two primitive
elliptic curves such that |Γ| = |ne1+e2|, with n = g(Γ)−1. But since by the Hodge
index theorem C · ei > 0, for i = 1 and 2, we get a contradiction to the fact that
C · Γ = 1.

In the rest of the paper, we will need some knowledge about singular curves
in linear systems on a general T . Given a linear system |C| on T with a smooth
connected general member, we define the discriminant

Δ ⊂ |C|
of |C| to be the closed codimension 1 subset of |C| parametrizing singular members
(for the sake of this paper, it will be enough to consider Δ with its reduced induced
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structure). The following three propositions describe the curves parametrized by
the general points of the discriminant.

Proposition 1.14. Let |C| be a genus g ≥ 2 linear system on a general Enriques
surface T . Then |C| has reducible members in codimension 1 if and only if |C| is
hyperelliptic.

Proof. Consider a reducible member of the form

(1.10) C1 + C2,

where C1 and C2 have no common components, and set ν = C1 · C2. For i = 1, 2,
we let gi be the arithmetic genus of Ci. We have

g = g1 + g2 + ν − 1,

so dim |C| = g1−1+g2−1+ν. Since the irregularity of T is 0, the locus of curves in
|C| having a decomposition like that in (1.10) admits a finite surjective morphism
from the product of linear systems |C1| × |C2|. Case by case, we will compare the
dimension of |C1| and |C2| with that of |C|. Clearly, if dim |Ci| = gi − 1 for both
i = 1 and 2 (as is the case when the two curves have either positive genus greater
than 1 or are primitive elliptic), then

dim |C| = dim |C1|+ dim |C2|+ ν = dim |C1| × |C2|+ ν.

It follows that the codimension of the locus of curves of this type is equal to 1 if
and only if ν = 1. If this is the case, then by the remarks following Corollary 1.13,
at least one of the two curves, say, C1, has to be a primitive elliptic curve. This
implies that C · C1 = 1, and hence by the remarks following Corollary 1.13, that
|C| is hyperelliptic.

Next, consider the case where C1 ∈ |se1| = P� s
2 � for some primitive elliptic curve

e1 and some integer s ≥ 1. If g2 ≥ 2, we have dim |C1| × |C2| = � s
2� + g2 − 1 and

dim |C| = g2 − 1+ ν. If C2 = te2, with t ≥ 1, then dim |C1| × |C2| = � s
2�+ � t

2� and
dim |C| = ν. Either way we have

dim |C| − dim(|C1| × |C2|) =

⎧⎪⎨⎪⎩
ν − �s

2
� if g2 ≥ 2,

ν − �s
2
� − � t

2
� if g2 = 1.

In the first case, since ν = sν′ and ν′ ≥ 1, then we are done, unless (a) s = 1
and ν′ = 1, or (b) s = 2 and ν′ = 1. In case (a), C1 is primitive elliptic and
C ·C1 = 1, so we are in the hyperelliptic case. In case (b), C2 · e1 = 1, so the curve
C2 is hyperelliptic and we can write it as νe1 + e2, with e1 · e2 = 1. It follows that
|C| = |(ν + s)e1 + e2| is hyperelliptic.

As for the second case, we can set ν = stν′. It follows that we are done unless
ν′ = 1, s = 2, and t = 1 (or s = 1 and t = 2). This means that C2 = e2, with
e1 · e2 = 1, and that |C| = 2e1 + e2 is hyperelliptic (or |C| = |2e2 + e1|). �

Proposition 1.15. Let |C| be a genus g ≥ 3 nonhyperelliptic linear system on
a general Enriques surface. If |C| �= |2(e1 + e2)| for two primitive elliptic curves
e1 and e2 with e1 · e2 = 1, then there is an open dense subset of the discriminant
parametrizing irreducible curves with one single node.
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Proof. It is well known that if |C| is very ample, then |C| contains a Lefschetz pencil
(e.g., [Voi03, Section 2.1 II]), so we only need to prove the statement in the case
where |C| is not very ample. By [Knu01, Thm. 1.2], a curve C of genus g ≥ 2 on
a general Enriques surface is very ample if and only if there is no primitive elliptic
curve e such that C · e = 1 or C · e = 2. Since in the first case |C| is hyperelliptic,
we need to prove only the statement in the second case. Under this assumption,
we claim that the linear system |C| satisfies one of the following:

(1) |C| defines a degree 4 morphism ψ : T → P2.
(2) |C| defines a degree 1 morphism T → R ⊂ Pg−1 onto a nonnormal surface.
(3) |C| = |2(e1+e2)| for some primitive elliptic curves e1 and e2, with ei ·ej = 1,

for i �= j.

Indeed, by [CD89, Theorem 4.6.3], either (1) happens or |C| defines a birational
morphism onto a nonnormal surface with double lines or |C| is base point free and
defines a degree 2 map. These linear systems are called superelliptic (see [CD89,
page 228]). If this is the case, [CD89, Proposition 4.7.1 and Theorems 4.7.1
and 4.7.2] imply that case (3) occurs ([CD89, case (i) of Thm. 4.7.2] is excluded
using the fact that T contains no rational curves). For the first two cases above,
let us now prove that in codimension 1 only curves with one single node can occur.
Case (1) uses the description of the ramification locus of ψ provided in [Ver83].
Verra shows that, generically, the ramification locus is equal to a degree 12 curve
Γ ⊂ P2 that has 36 cuspidal points and no other singularity. Since lines that are
tangent to a smooth point of Γ appear only in codimension 1 and since a plane
curve has only a finite number of bitangents or flexes, we need to show only that if
� is a general line through a cusp γ ∈ Γ, then ψ−1(�) has at worst one node. This
is proved in Lemma 1.17.

Let us pass to case (2). Since the map is birational, a curve in |C| can be singular
only if it is the preimage ψ−1(H) of a hyperplane section H of R that either is
tangent to R at a smooth point (or is the limit of such) or passes through the
singular locus of R. We can argue as in [Voi03, Section 2.1 II] (see [Voi03, remarks
after Cor. 2.8], which apply to a smooth quasi-projective variety) and conclude
that the general hyperplane that is tangent to the smooth locus of R has one single
ordinary double point (i.e., hyperplanes that are have two ordinary double points
or other singularities appearing in codimension 2). We are left analyzing what
happens over the hyperplane sections through the singular locus SingR. Notice
that, by Bertini, these hyperplane sections are smooth outside of SingR, so we
have to understand only what happens over the singular locus.

To do so, we first have to understand what the singular locus of R looks like:
Using [CD89, Propositions 3.6.2 and 3.6.3], we may assume that |C| is one of the
following:

(a) |ke + 2e1|, where e and e1 are primitive elliptic curves with e · e1 = 1 and
k ≥ 3 (genus g = 2k + 1);

(b) |ke + e1|, where e and e1 are primitive elliptic curves with e · e1 = 2 and
k ≥ 2 (genus g = 2k + 1);

(c) |ke+ e1 + e2|, where e, e1, and e2 are primitive elliptic curves with e · e1 =
e · e2 = e1 · e2 = 1 and k ≥ 1 (genus g = 2k + 2).

(In the first two cases, we have set k ≥ 3 and k ≥ 2 to prevent from falling in
cases (3) and (1) above.) Let us do case (c) with k = 1, which is the well-known
realization of an Enriques surface as the normalization of a sextic surface R in P3
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that passes doubly through the edges l1, . . . , l6 of a tetrahedron [Dol16]. The edges
of the tetrahedron are the images of the elliptic curves e, e′, e1, e

′
1, e2, e

′
2 (indeed,

the linear system |C| restricts to a g12 on each of these elliptic curves). In addition
to the double lines, the surface R has four pinch points on each of the edges of
the tetrahedron (the ramification points of the g12 ’s on the elliptic curves) and four
triple points at the four vertices of the tetrahedron. In particular, the preimage of a
general point on one of the lines li consists of two points, the preimage of the pinch
points consists of one single point, and the preimage of the triple points consists of
three points. If H is a general hyperplane section through one of the pinch points,
then it acquires a cusp. However, since T → R is the normalization morphism, we
can see that in this case ψ−1(H) is smooth. Indeed, T can be locally identified with
the proper transform of R under the blowup of P3 along the double line, and it is
clear that this blowup normalizes a general cuspidal curve passing through a pinch
point. A general hyperplane section through one of the triple points will be a curve
with a triple point with three distinct branches which are separated under the map
ψ. It follows that curves in |C| that have worse singularities than one simple node
appear in codimension 2.

The other cases can be dealt with analogously: Using Lemma 1.18 and [Kol13,
Definition 1.43 (and discussion thereafter)], R has two double lines (and is generi-
cally normal crossing along them) and pinch points. Hence, a hyperplane section Γ
of R is singular wherever it is tangent to the smooth locus of R and is also singular
along its intersection with the two double lines. A tangent hyperplane section that
does not contain the double locus will thus be normalized under the morphism
T → R. It follows that the discriminant locus of this linear system is equal to the
closure of the locus of hyperplane sections of R that are tangent along the smooth
locus of R, which, again using [Voi03, Section 2.1 II], is irreducible. �

Corollary 1.16. Let |C| be as in case (2) of Proposition 1.15. Then the discrimi-
nant locus of |C| is irreducible. Moreover, if |C| is as in case (1) of Proposition 1.15,
the number of irreducible components of the discriminant locus is equal to 37.

Proof. The second statement follows from the discussion of Verra’s result in the
proof of Proposition 1.15. As for the second statement, we can argue as follows.
First, recall that the closure of locus of hyperplane sections that are tangent to a
smooth quasi-projective variety (as is the smooth locus of R) is irreducible. Second,
notice that for any hyperplane H ⊂ Pg−1 that does not contain the two lines of
the nonnormal locus of R, the curve H ∩ R has only nodes or cusps along the
two lines (depending on whether it meets a line at a regular double point or at a
pinch point), and hence it is normalized under the map T → R (notice that the
hyperplane sections that contain the lines appear in higher codimension). �

We remark that since in case (3) the class of C is divisible by 2, this is not a
case we will consider (a necessary condition for the assumptions of Theorem 2.10
to hold is that the class of |C| is not divisible by 2).

Lemma 1.17. Let |C|, ψ : T → P2, and Γ be as in case (1) above, and let γ ∈ Γ
be a cuspidal point. Then for a general line � through γ, the curve C = ψ−1(�) has
at worst one node.

Proof. Since � is a general line through γ, we may assume that it is not tangent

to Γ away from γ, and hence that C is smooth away from ψ−1(γ). Let C̃ → C be
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the normalization of C, and let us consider the induced morphism ψ̃ : C̃ → C → �.

Suppose that C has a cusp over γ, so that C̃ has genus 3 − 1 = 2 and ψ̃ has

a ramification point over γ. Applying Riemann–Hurwitz to ψ̃, we can compute

the ramification r of ψ̃: r = 2degψ + 2g − 2 = 2 · 4 + 2 = 10. Since � already

meets the ramification curve Γ in 10 points other than γ, ψ̃ cannot ramify over γ.

Hence, if C has a double point over γ, it must be a node. The case where C̃ has
worst singularities is dealt with analogously, using Riemann–Hurwitz to compute
the ramification divisor and finding a contradiction on the number of ramification

points of ψ̃ outside of γ. �

Lemma 1.18. Let |C| and ψ : T → R ⊂ Pg−1 be as in (a) and (b), or in (c) with
k ≥ 2 above (so that g ≥ 5). Then ψ is an isomorphism outside of the two elliptic
curves e and e′, which are mapped 2:1 onto two double lines in R.

Proof. It is easy to check that the restriction of |O(C)| to e and e′ is a g12 . Also
notice that since two sublinear systems |Ie(C)| = |O(C−e) and |Ie′(C)| = |O(C−e′)
are different subspaces of |O(C)|, it follows that |O(C)| separates the two curves e
and e′. In the case when C2 ≥ 10 (which corresponds precisely to k ≥ 3 in cases (a)
and (b) above, and to k ≥ 2 in case (c)), we can use Reider’s theorem, together with
our assumptions on T and |C|, to conclude that ψ separates points and tangent
directions outside of an effective curve whose components E satisfy E2 = 0 and
E · C = 2. Since the components of such a curve have to be equal to e or e′, this
solves the question in the case when C2 ≥ 10.3 We are thus left to consider only
case (b), with k = 2. This corresponds to the case in which |C| = |2e+e1| and e and
e1 are primitive elliptic curves with e · e1 = 2. As mentioned in [CD89, page 278]
the projective model associated to this linear system is a nonnormal octic surface
in P4 with two double lines (images of e and e′). We include a proof of the fact
that, for general T , such an octic surface is smooth away from the two lines. We
need to show that for every length 2 point z on T that is scheme theoretically not
contained in {e ∪ e′}, there is a surjective map

αz : H0(O(C)) → H0(Oz(C)).

We will prove this with the help of the linear systems D := C − e = e + e1 and
D′ = C − e′ = e′ + e1. Notice that, as in case (1) of Proposition 1.15, |D| defines a
degree 4 morphism ϕD : T → P2 (see [CD89, Thm. 4.6.3]). Given z as above, then
either z is scheme-theoretically contained in a fiber of ϕD or it is not. Suppose it is,
so that z ⊂ ϕ−1

D (p), for some p ∈ P2. Then |Iz|T (D)| = ϕ∗
D|Ip|P2(1)| is a pencil, and

hence there is an irreducible curve Dz ∈ |D| containing z (here we denote by IX|Y
the ideal sheaf of a closed subscheme X ⊂ Y ). We claim that H1(Dz, Iz|Dz

(C)) =

H0(Dz, I
∨
z|Dz

(−C)⊗ ωDz
) = 0. This immediately implies that H0(Dz,ODz

(C)) →
H0(Oz(C)) is surjective, which, sinceH1(T,O(C−Dz)) = H1(T,O(e)) = 0, implies
that αz is also surjective. To prove the claim, suppose by contradiction that there
is a nonzero section σ ∈ H0(Dz, I

∨
z|Dz

(−C) ⊗ ωDz
) = H0(Dz, I

∨
z|Dz

(−e′)). Then

σ induces an injective morphism ODz
→ I∨z|Dz

(−e′) which we can dualize (notice

that Iz|Dz
is reflexive because it is a torsion free sheaf on a locally planar curve) to

get an injection

σ∨ : Iz|Dz
(e′) → ODz

.

3We thank the referee for suggesting the use of Reider’s theorem.
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Using the fact that H1(e1) = 0, we see that |O(e′)
Dz

| = {e′ ∩Dz}. The existence

of a nonzero σ∨ as above implies hence that z ⊃ e′ ∩Dz. Since the length of z and
of e′ ∩Dz are both equal to 2, this implies that z = e′ ∩Dz, which contradicts the
fact that z is scheme theoretically not contained in e′ ∪ e.

Let us now suppose that z is not contained in a fiber of ϕD. Then the morphism
βz : H0(O(D)) → H0(Oz(D)) is surjective. Consider the morphisms

γ : H0(O(D)) → H0(O(C))

and
γz : H0(Oz(D)) = H0(Oz(C − e)) → H0(Oz(C)).

Since γzβz = αzγ and βz is surjective, we have Im(γz) ⊂ Im(αz). Notice that γz
vanishes along e ∩ z. There are three cases. The first is when z ∩ e = ∅ so that γz
is an isomorphism and hence αz is surjective. The second is when z is a length 2
point supported on e (but not scheme-theoretically contained in e). Then, under
the identification Oz(C) ∼= C[ε]/(ε2), we see that Im(γz) is the maximal ideal (ε),
and to conclude that αz is surjective we need to notice only that |C| is base point
free and hence that there is a section not vanishing on the support of z. The third
case is when z = z1 ∪ z2, with z1 ∈ e and z2 /∈ e. Then Im(γz) = Oz2 . In this
case, we can use the linear system D′ = C − e′ = e′ + e1 and consider instead the
morphism γ′

z : H0(Oz(D
′)) = H0(Oz(C − e′)) → H0(Oz(C)). The same reasoning

as above, together with the fact that z1 /∈ e′, shows that we have Im(γ′
z) ⊃ Oz1 .

Since Im(αz) ⊃ Im(γ′
z), this shows that also in the third case, αz is surjective and

concludes the proof. �
Proposition 1.19.

(1) Let |C| be a hyperelliptic of genus g ≥ 3. Then Δ ⊂ |C| is the union of four
irreducible components Δ1,Δ2,Δ3,Δ4. The general point of the first two
components parametrizes curves that are the union of two smooth curves
meeting transversally in one point, the general point of the third component
parametrizes curves that are the union of two smooth components meeting
transversally at two points, and the general point of the fourth component
parametrizes singular, but irreducible, curves. Moreover, the general curve
parametrized by this component has only one node.

(2) If g(C) = 2, then |C| is a pencil which for general T has exactly 18 singular
members, 16 of which are irreducible with one node and 2 of which are
reducible, consisting of two elliptic curves meeting transversely at one point.

Proof. (1) It is clear that the two hyperplanes,

(1.11) Δ1 := {e1} × |(n− 1)e1 + e2| and Δ2 := {e′1} × |(n− 1)e1 + e′2|,
constitute two components of the discriminant locus, and also that they parametrize
curves of the form e1 ∪ Γ, with Γ being a curve in |(n − 1)e1 + e2| (resp., e′1 ∪ Γ,
with Γ ∈ |(n − 1)e1 + e′2|). Since the genus of Γ is ≥ 2, the general curve in these
linear systems is smooth by Corollary 1.13. For the third irreducible component,
consider the natural map

ψ : P1 × Pn−2 = |2e1| × |(n− 2)e1 × e2| −→ Δ ⊂ Pn

(C1, C2) �−→ C1 + C2,

which is finite and birational. In particular, the image of ψ defines a component of
Δ which we denote by Δ3. The general curve parametrized by this component is
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therefore the union of a smooth curve in |2e1| and of a smooth curve in |(n−2)e1×
e2|, which generically meet transversally in two distinct points.

We are left with proving that the remaining part Δ4 of the discriminant is
irreducible and that the general curve parametrized by it is irreducible with one
single node. By definition of a hyperelliptic linear system, and the fact that T
contains no rational curves, the rational map ϕ|C| associated to the linear system
maps T generically 2:1 onto a degree n − 1 smooth rational surface R ⊂ Pn. We
now recall some geometry of ϕ|C|, following [CD89, Thm. 4.5.2]. We already saw
that the linear system has two base points, which were described in Lemma 1.11.
Since the degree 1 linear systems induced by restricting |C| to e1 and e′1 both have
a base point, ϕ|C| contracts these two curves to two distinct points, denoted by P
and Q. By Lemma 1.11, when n is even, then both base points of |C| lie on e2 so
that when n = 2, the degree 2 linear systems |C|

e2
is trivial and the curve e2 also

gets contracted. Let T ′ → T be the blowup of the two base points of |C|. We get a
generically 2:1 morphism T ′ → R which contracts the proper transforms of e1 and
e′1 (and also e2 if n = 2).

The ramification curve of ϕ|C| is described in [CD89, Theorem 4.5.2]. It consists
of the union of two lines �1 and �2 (the images of the exceptional divisor of the
blowup T ′ → T ) and of an irreducible curve B ⊂ R. The irreducible curve B
has two tacnodes in P and Q and is otherwise nonsingular (T contains no rational
curves), except in the case n = 2, where it is has a simple node at the intersection
O of the two lines.

A curve in |C| is singular in the following three cases: if it covers a singular (and
hence reducible) hyperplane section of R, if it covers a smooth curve that is tangent
to the ramification curve, if its image contains one of the two points P and Q, or,
when n = 2, if it covers a line passing by the intersection O of �1 and �2.

The preimages, under ϕ|C|, of the hyperplane sections through P and Q are
the curves in Δ1 and Δ2, respectively. The set of hyperplane sections of R that
are tangent to �1 (resp., �2) contain �1 (resp., �2), and hence they form a set of
codimension 2. For n = 2, we also have to consider the set of hyperplanes through
O, which is nothing but Δ3, namely, the sublinear system e2 + |2e1| of curves
containing e2. For n ≥ 3, the component Δ3 corresponds to the curves covering
the reducible hyperplane sections of R.

Finally, we observe that the closure of the set of hyperplane sections that are
tangent to B at smooth points is irreducible, since it is dominated by a Pn−2–bundle
over the smooth locus of B. Moreover, generically it parametrizes tangent curves
that are tangent but not bitangent, so that the corresponding curve in |C| has one
simple node.

(2) A genus 2 linear system has two simple base points p and q, so that if
C → |C| denotes the universal family, we have χtop(C) = χtop(BLp,qT ) = 14.
We use this to count the number of singular curves in |C|. By Proposition 1.10,
|C| = |e1+e2| for two primitive elliptic curves e1 and e2, with e1 ·e2 = 1. It follows
that there are exactly two reducible curves in |C|, namely, e1 + e2 and e′1 + e′2.
By [Cos83, Section 8.1.4(i)], the linear system |C| is the pullback under a degree 2
map ψ : T ��� |C| × |C ′| = P1 × P1 ⊂ P3 of one of the two rulings of the quadric.
The map ψ, which is defined away from the four intersection points ei∩e′j , ramifies
over the union of a square of lines (the images of the four exceptional divisors of
the blowup of T at ei ∩ e′j and of a degree (4, 4) curve B that has a simple node at
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each edge of the square. Counting parameters, we can see that the general Enriques
surface can be constructed in this way, and that generically B will have no other
singularities. Moreover, we can also assume that no line in the ruling is bitangent
(for more details, see [Sac13]). Since the singular, but irreducible, members of |C|
arise from lines that are tangent to B, we see that generically they all have one
simple node and no other singularity. Hence, all of the singular curves in |C| have
Euler numbers equal to −1. If N denotes the number of singular fibers, we have
14 = −2(2 − N) − N , and there are exactly 18 singular fibers, two of which are
reducible. �

2. Smoothness and first properties of N

Let χ be a nonzero integer, and set

(2.1) w = (0, [C], χ) and v = f∗w = (0, [D], 2χ).

Let H denote a polarization on T , and set

A = f∗H.

The Hilbert scheme Hc1(w) has two components: |C| and |C ′|. Without loss of
generality, we can consider only one of them and set

(2.2) N = Mw,H(T, |C|) and M = Mv,A(S).

In order to study N , we will look at the natural pullback morphism from N to
M , which to a sheaf F on T , with v(F ) = w, associates the sheaf f∗F on S, with
v(f∗F ) = v. We start with a few well-known lemmas.

Lemma 2.1 ([Gie79]). Let G be a pure dimension 1 sheaf on T , let H be an ample
line bundle on T , and set A = f∗H. If G is H-semistable, then f∗G is A-semistable
on Y .

Proof. Since ωT is numerically trivial, tensoring a sheaf by ωT does not change the
numerical invariants of the sheaf itself. It follows that the operation of tensoring by
ωT preserves not only the slope but also stability and semistability with respect to
any line bundle. Let E ⊂ f∗G be a subsheaf. Using the projection formula for f , we
see that f∗E is a subsheaf of the H-semistable sheaf G⊕ (G⊗ωT ). Clearly, χ(E) =
χ(f∗E). Moreover, since E is pure of dimension 1, f∗c1(E) = c1(f∗E). Then
c1(E) ·H = f∗c1(E) ·H, so μH(E) = μH(f∗E). Since μH(G) = μA(G⊕ (G⊗ωT )),
the lemma is proved. �

Lemma 2.2. Let E and G be two nonisomorphic H-stable sheaves on T . Suppose
that f∗E ∼= f∗G. Then

G ∼= E ⊗ ωT .

Proof. If f∗E ∼= f∗G, then we also have an isomorphism E⊗(OT ⊗ωT ) = f∗f
∗E ∼=

f∗f
∗G = G ⊗ (OT ⊗ ωT ). Since all maps from E to G are trivial, it follows that

the composition E → E ⊗ f∗OS → G ⊗ ωT has to be nonzero. However, since E
and G⊗ ωT are stable of the same reduced Hilbert polynomial, we have

E ∼= G⊗ ωT .

�
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Lemma 2.3 ([Tak73]). Let G be a sheaf on T . If G ∼= G ⊗ ωT , then f∗G is not
simple. In particular, it cannot be stable.

Proof. We have

(2.3)
Hom(f∗G, f∗G) = Hom(G, f∗f

∗G) =

= Hom(G,G)⊕ Hom(G,G⊗ ωT ).

Since, by assumption, Hom(G,G ⊗ ωT ) is at least one dimensional, the lemma is
proved. �

By Lemma 2.1, the pullback map

(2.4)
Φ : N = Mw,H(T, |C|) −→ M = Mv,A(S),

[G] �−→ [f∗G]

is a regular morphism.

Lemma 2.4 ([Kim98]). The pullback morphism Φ : N → M is generically 2:1.

Proof. By Lemma 2.2, the morphism Φ is of degree ≤ 2 so that we need to prove
only that, for a sheaf G corresponding to a general point in N , the sheaf G is not
isomorphic to G⊗ωT . By Corollary 1.13, the general member of |C| is smooth. By
Lemma 1.1, if the Fitting support of G is a smooth curve, then f∗G is H-stable,
so we may use Lemma 2.3 and conclude that Φ is generically 2:1. �

As we remarked above, tensoring by ωT preserves stability; hence, the involution

(2.5)
ε : N → N,

G �→ G⊗ ωT

is well defined. It clearly commutes with Φ.

Lemma 2.5. Let G be an H-semistable sheaf such that f∗G is A-stable. Then G
is H-stable, and N is smooth at [G] of dimension 2g − 1.

Proof. The first statement is clear. The obstructions to deforming a G on T lie in
Ext2(G,G), which is dual, by Serre duality, to

Hom(G,G⊗ ωT ).

However, this space is 0 by Lemma 2.3, as we are assuming f∗G to be simple. �

Since ι∗f∗G = f∗G, the image of Φ is contained in the closure of the fixed locus
of the birational involution

(2.6)
ι∗ : M = Mv,A(S) ��� Mv,A(S) = M,

F �−→ ι∗F.

Notice that this involution is regular on an open subset containing sheaves with
irreducible support.

Lemma 2.6. The involution ι∗ : M ��� M is antisymplectic; i.e., if σ denotes the
symplectic form on the smooth locus of M , then ι∗σ = −σ. Moreover, the fibration
π : M → |D| is equivariant with respect to the involution ι∗ defined above.
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Proof. Let F be an A-stable sheaf corresponding to a point [F ] in M . By functorial-
ity of the cup product and of the trace map, the following diagram is commutative:

(2.7) Ext1(F, F )× Ext1(F, F )

ι∗

��

∪ �� Ext2(F, F )
tr ��

ι∗

��

H2(S,OS)

ι∗

��
Ext1(ι∗F, ι∗F )× Ext1(ι∗F, ι∗F )

∪ �� Ext2(ι∗F, ι∗F )
tr �� H2(S,OS)

Hence, by Mukai’s description of σ (see (1.6)), to prove the lemma we need to prove
only that the identification H2(S,OS) ∼= C changes sign if we compose it with ι∗.
This follows from the fact that, since ι is an antisymplectic involution on S, the
identification H0(S, ωS) = Cσ ∼= C changes sign once we compose it with ι∗. The
second statement follows from the definitions of ι∗ and π. �

Lemma 2.7. If H is ι∗-invariant, then the involution (2.6) is regular. Let Z be
any component of Fix(ι∗) ⊂ M . Then Z ∩ (M \ Sing(M)) is smooth. Moreover, if
Z ∩ (M \ Sing(M)) is nonempty, then Z is an isotropic subvariety of M .

Proof. The first statement is clear, since if F is H-stable, then ι∗F is ι∗H-stable.
The second statement follows from the well-known fact that the fixed locus of the
action of a finite group on a smooth variety is smooth. As for the third statement,
it is an immediate consequence of Lemma 2.6. �

Lemma 2.8 ([Kim98]). Let F be a pure sheaf of dimension 1 on X, and assume
that it is ι∗-invariant. If F is simple, then

F = f∗(G)

for some sheaf G on Y .

Proof. Since Y is a quotient of X by a Z/(2) action, the descent data translate
into the existence of a morphism ϕ : ι∗F → F such that the following diagram is
commutative:

ι∗ι∗F
ι∗ϕ �� ι∗F

ϕ �� F

F

id

�������������������

Since F is simple, this can always be achieved by multiplying any given isomorphism
ι∗F → F by a suitable scalar. �

Now let

(2.8) Y := Yv,A ⊂ Fix(ι∗)

be component of Fix(ι∗) containing “Fix(”. The lemma above says that the restric-
tion

Φ : N → Y ⊂ M

(which by abuse of notation we still denote by Φ) is surjective.
Before stating the main result of this section, we recall the following definition.

Definition 2.9 ([Yos09, Def. 3.8], [AS15, Theorem-Definition 2.4]). Let v be a
primitive Mukai vector. A polarization H is called v-generic if any H-semistable
sheaf with a Mukai vector v is actually H-stable.
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By [Yos01, Section 1.4], if v = (0, D, χ) is a primitive Mukai vector and χ �= 0,
then the locus of v-generic polarizations is nonempty. More precisely, this locus
is equal to the complement of a finite union of a real codimension 1 subset of
AmpR(T ). A wall of v is defined to be an irreducible component of the complement
of the locus of v-generic polarizations. In [AS15, Prop. 2.5], explicit equations for
the walls are given for primitive Mukai vectors of pure dimension 1 (notice that the
set of walls could, a priori, be a proper subset of the linear subspaces appearing
in [Yos01, Section 1.4]). It is not hard to see that if χ = 0, then the set of v-generic
polarizations can be empty.

Theorem 2.10. Let C be a curve of genus g ≥ 2 on an Enriques surface T . Let χ
be a nonzero integer, set w = (0, [C], χ) and v = (0, [D], 2χ), where D = f−1(C).
Assume that v is primitive, and let A be an ample line bundle on T such that
A = f∗H is v-generic. The moduli space

N = Mw,H(T, |C|)
is a smooth, irreducible, projective variety of dimension 2g − 1, and it admits an
étale double cover onto the Lagrangian subvariety Yv,A(S) ⊂ Mv,A(S).

Proof. The smoothness follows from Lemmas 2.5, 2.7, and 2.8. The fact that
the pullback morphism is unramified follows from Lemma 2.2. Notice that since
dimMv,A(S) = 2h and h = 2g−1, the isotropic subvariety Yv,A(S) ⊂ Mv,A(S) is in-
deed Lagrangian. The fact that N is irreducible follows from [Yos16, Thm. 0.2]. �

Remark 2.11. In the rest of the paper, we will usually refer to N without mention
of the dependency on w and H. The phrase “let N be as in Theorem 2.10” will
mean “let w and A be as in Theorem 2.10, and set N = Mw,A(T, |C|)”. If we refer
to N as a relative compactified Jacobian of specific degree d, then it means that we
have chosen χ = d− g + 1 in w = (0, C, χ).

Remark 2.12. In the theorem above, we have asked χ �= 0. This is because other-
wise the canonical bundle of a reducible curve would be strictly semistable. This
condition appears also in [Yos01].

One can also verify directly that if G � G⊗ ωT , then the differential

dΦ : Ext1T (G,G) → Ext1S(f
∗G, f∗G)

is injective.
Notice that if w is primitive, then so is v as soon as C is not divisible by 2 in

NS(T ). Moreover, if T is general, then the general H in Amp(T ) will be such that
f∗H is v-generic.

Remark 2.13. If the assumptions of the proposition are not satisfied, the singular
locus of M and of N may be nonempty. For vector bundles, this singular locus has
been described by Kim in [Kim98].

2.1. On the support morphism. Regarding the relative compactified Jacobian
over the locus of reduced curves, we have the following result of Melo, Rapagnetta,
and Viviani.

Proposition 2.14 ([MRV14]). The restriction

NV → V
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of ν to the open locus V of reduced curves is equidimensional. In particular, if N
is smooth, then NV → V is flat.

Proof. This follows from the cited result Proposition 1.3. �
Problems, however, may arise when dealing with nonreduced curves. In gen-

eral, the Simpson moduli spaces of sheaves on a nonreduced curve may have higher
dimensional components, as the following example shows, and are not well under-
stood.

Example 2.15. Consider a smooth curve Γ′ of genus γ′ ≥ 2, and let Γ denote the
scheme obtained by considering a nonreduced double structure on Γ′. Let γ be the
genus4 of Γ. It was shown by Chen and Kass in [CK11] that all of the components of
the Simpson moduli space have dimension γ except, possibly, a (4γ′−3)-dimensional
component, which exists when 4γ′ − 3 ≥ γ. This component parametrizes rank 2
semistable sheaves on Γ′. Suppose now that Γ and Γ′ are contained in a smooth
surface X so that the scheme structure defining Γ is the one induced by the ideal
sheaf O(−2Γ′). By the adjunction formula,

γ = 4γ′ − 3− degωX |Γ′ .

so the dimension of the Simpson moduli space does not jump when

(2.9) degωX |Γ′ ≤ 0.

In particular, as soon as the canonical bundle of X is numerically trivial (K3,
abelian, Enriques, or bielliptic surfaces), then (2.9) is satisfied for any curve con-
tained in X.

Conjecture 2.16. Let (X,H) be a smooth projective surface, and let C ⊂ X be a
curve of arithmetic genus g. If degωX |Γ ≤ 0 for every sub curve Γ ⊂ C, then any
component of the Simpson moduli space of pure dimension 1 sheaves with support
equal to C is g-dimensional.

Evidence for this conjecture is given by the following examples.
Suppose (X,H) is a polarized K3 or abelian surface, and let v = (0, D, χ) be a

primitive Mukai vector with χ �= 0. Matsushita proved in [Mat99] that the support
morphism

π : Mv,H → |D|
is equidimensional. The proof, however, relies on the existence of a symplectic
structure on these moduli spaces and cannot be applied to moduli spaces of sheaves
on other surfaces. Indeed, using Kollár’s theorem on the torsion freeness of the
higher direct images of the structure sheaf, Matsushita proves that every fiber
of π, and not just the general one, is Lagrangian and hence of dimension equal to
dimMv,H(X)/2. Here, by Lagrangian, we mean that the pullback of the symplectic
form to any resolution of a fiber, considered with its reduced induced structure,
vanishes identically.

Another example where the conjecture holds true is the Hitchin system for the
group GL(r), which can be thought of as the relative compactified Jacobian of a
linear system on the ruled surface X associated to the canonical bundle of a curve.
The spectral curves are multisections of the ruling and hence satisfy ωS · C = 0.
Also, in this case, the proof of flatness comes from the existence of a symplectic

4By genus we mean the arithmetic genus of Γ, i.e., the integer γ defined by χ(OΓ) = 1− γ.
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form with respect to which the Jacobian fibration is Lagrangian [Lau88]. The
condition degωX |Γ ≤ 0 appears also in the recent paper [CL16], which provides
further evidence for the conjecture.

However, it is natural to expect that the dimension of the fibers of the support
map should depend not on the existence of a symplectic structure but only on
discrete invariants such as the rank of the sheaves and the arithmetic genera of
their supports.

The last example is provided by del Pezzo surfaces. In [LP93], Le Potier shows
that for P2, the Picard group of the moduli spaces has two generators: the pullback
of the hyperplane section under the support morphism and the determinant line
bundle. Looking into the proof, however, one realizes that for any generically
polarized Fano surface, the fibers of the support morphism are not too big. More
specifically, one can use [LP93, Lemmas 3.2 and 3.3], and the fact that in this
setting one can choose the Quot scheme so that it is a principal bundle over the
moduli space, to show that the locus of sheaves supported on nonreduced curves
has codimension greater than or equal to 2.

Since we are not yet able to prove Conjecture 2.16 for Enriques surfaces, we will
need the following assumption when computing the fundamental group and the
second Betti number in Sections 3 and 5.

Assumption 2.17. As above, let NV → V be the restriction of ν to the locus
V ⊂ |C| of reduced curves. The linear system |C| is such that

codim(N \NV , N) ≥ 2.

Since codim(V, |C|) ≥ 2, this assumption is equivalent to asking that there are
no irreducible components of NΔ which map to codimension ≥ 2 subsets of Δ.

In some cases of low genus, where the curves of the linear system do not degen-
erate too much, one can show directly that the relative compactified Jacobian is
equidimensional. For example, if there are no nonreduced curves, or if all of the
nonreduced curves have at worst a double structure, one can use Proposition 2.14
and Example 2.15. Some examples of linear systems, all of whose members are
reduced, are

(2.10)

|e1 + e2|, with e1 · e2 = 1, g(C) = 2, dimN = 3,

|e+ f |, with e · f = 2, g(C) = 3, dimN = 5,

|e1 + e2 + e3|, with ei · ej = 1 for i �= j, g(C) = 4, dimN = 7,

where e1, e2, e3, e, and f are primitive elliptic curves.
More generally, as Yoshioka has pointed out to me, this assumption is satisfied

whenever |C| is primitive.

Proposition 2.18 ([Yos16]). Let |C| be a primitive linear system on a general
Enriques surface T , and let N be as in Theorem 2.10 (i.e., let w and H be as in
Theorem 2.10, and set N = Mw,H(T, |C|)). Then Assumption 2.17 is satisfied.

Proof. This is [Yos16, Proposition 4.4]. �

Corollary 2.19. Let |C| be a hyperelliptic linear system on a general Enriques
surface T , and let N be as in Theorem 2.10. Then Assumption 2.17 is satisfied.

Proof. By Proposition 1.10(3), a hyperelliptic linear system is primitive, and hence
we may use Proposition 2.18. �
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3. The fundamental group

This section is devoted to computing the fundamental group of the relative com-
pactified Jacobian variety N constructed in Section 2. We show that there is a
surjection Z/(2) � π1(N) which, under Assumption 2.17, is actually an isomor-
phism. Under this assumption, we can also identify the universal covering space,
which can be described using the norm map. At the end of the section, we also
prove some results on the vanishing cycles of these families. These results will be
used to calculate the second Betti numbers of N .

The main result of the section is the following

Theorem 3.1. Let |C| be a genus g ≥ 2 linear system on a general Enriques
surface T , and let v and N be as in Theorem 2.10. Then there is a surjection

Z/(2) � π1(N)

which is an isomorphism in the case in which |C| satisfies Assumption 2.17.

Remark 3.2. Recall that a hyperelliptic linear system on a general Enriques sur-
face T is always primitive (Proposition 1.10). Hence, the theorem above holds
unconditionally if |C| is hyperelliptic.

There are two main ingredients in the proof of this result. The first is a theorem
of Leibman’s [Lei93], as used also in [MT07], [ASF15]. We combine this with the
second ingredient, which is the Abel–Jacobi map and which allows the comparison of
the fundamental group of a family of mildly singular curves with the fundamental
group of the corresponding relative compactified Jacobian.5 At the end of the
section, we also prove a result on the vanishing cycles of these families.6 This will
be used in Section 5.

3.1. Preliminaries. By abuse of notation, let us denote by

π : Y → |C|
the map induced by the support morphism M → |D|, and by

ν : N → |C|
the support morphism for the moduli space of sheaves on T . There is a commutative
diagram,

(3.1) N

ν ���
��

��
��

�
Φ �� Y

π����
��
��
��

|C|

which shows that the double cover Φ restricts fiberwise to a nontrivial double cover.
For later use, let us define a torsion line bundle on Y by setting

(3.2) Φ∗ON
∼= OY ⊕ L.

Notice that L⊗2 ∼= OY , and that L generates the kernel of Φ∗ : Pic(Y ) → Pic(N).

5I followed an idea of the referee to use the Abel–Jacobi map, as it seemed to be very natural.
I am grateful to them for this suggestion.

6This corrects a mistake that was pointed out to us by the referee.
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Let

U ⊂ |C|
and

U ′ ⊂ |C|
be the open loci of smooth and integral curves, respectively. For any t ∈ U , let Ct

be the smooth member of |C| corresponding to t, and set

Dt = f−1(Ct).

By [Mum74, Section 2(vi) and Corollary 2, Section 3], the fixed locus Fix(ι) of ι∗

acting on Jac(Dt) is exactly f∗(Jac(Ct)) and the double cover Nt → Yt is induced
by the sequence

(3.3) 1 → Z/(2) → Jac(Ct)
f∗

→ Fix(ι) ⊂ Jac(Dt).

3.2. Leibman. Let us start by considering the setting of [Lei93], which we formu-
late directly in the context of algebraic varieties. Let p : E → B be a surjective
morphism of smooth connected varieties. Assume that p has a section s. LetW ⊂ B
be a locally closed smooth subvariety of codimension at least 1. Set U = B \W ,
EU = p−1(U), and EW = p−1(W ). Assume that EU → U is a smooth fibration

that is topologically locally trivial with path connected fiber F
j
↪→ EU . We will say

that a morphism E → B satisfies Leibman’s condition if it satisfies the assumptions
just mentioned. Fix base points o ∈ EU and p(o) ∈ U with respect to which we
consider fundamental groups. We have the following commutative diagram:

(3.4) 1 �� R

��

�� G ��

��

H

��
1 �� π1(F )

j∗ ��

��

π1(EU )
p∗ ��

��

π1(U) ��

��

1

1 �� K �� π1(E)
p∗ �� π1(B)

where G = ker[π1(EU ) → π1(E)], H = ker[π1(U) → π1(B)], K = ker[π1(E) →
π1(B)], and R = ker[π1(F ) → K]. Since removing closed algebraic subsets only
makes the fundamental group larger, the two vertical arrows at the bottom left are
surjective, and hence so is π1(E) → π1(B).

Following Leibman, let us select a set of generators of H which we will then lift
to G. A loop in U that can be closed in B can be represented as the image of
the boundary of a map D → B from a two-dimensional disk D. Choose a general
point xi on every irreducible component Wi ⊂ W and a small two-dimensional disk
Di ⊂ B transversal to Wi in xi and such that Di ∩Wi = {xi}. By transversality,
any map from a two-dimensional disk to B with boundary contained in U can be
moved, up to homotopy, to a map whose image is a disk that is transversal to
every component of W . Moreover, it can be arranged so that this disk meets every
component at the chosen points (see [Lei93, (1.11)]). For every i, join the base point
p(o) with ∂Di in every possible way (up to homotopy) via paths γ in U . The set of
paths of the form γ∂Diγ

−1, together with their inverses, gives a set of generators
for H. Since E → B has a section, the set of loops in EU of the form s∗(γ∂Diγ

−1)
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are a lift to G of the generators of H. Hence, the morphism G → H is surjective.
As a consequence, π1(F ) → K is also surjective, and there is an exact sequence

(3.5) 1 → R = π1(F ) ∩G → π1(F ) → π1(E) → π1(B) → 1.

Our aim is to describe the group R more explicitly when E → B is a family of
curves or its relative compactified Jacobian. Before doing so, let us point out two
important facts.

Remark 3.3. The first remark is that so far we have only used that the section
is defined at the general point of each component of W . The second is if E′ is a
smooth variety and h : E ��� E′ is a birational map, then π1(E) ∼= π1(E

′). In
particular, if h restricts to an isomorphism over the general fiber of E → B, we are
free to consider π1(E

′) instead of π1(E) in the exact sequence above.

As usual, let |C| be a linear system on a general Enriques surface T of genus
g ≥ 2. Let B ⊂ |C| be a general linear subsystem with the property that the
universal family

CB ⊂ B × T, p : CB → B,

of curves is smooth and has a section s. This is the case, for example, if |C| is a
hyperelliptic linear system (Corollary 1.12), or if B ⊂ |C| is a general pencil in an
arbitrary linear system of genus g ≥ 3 (a general pencil in a genus g linear system
has 2g−2 simple base points). Then CB → B satisfies the assumptions of Leibman,
and we can consider the corresponding sequence (3.5). For the base point o ∈ C,
let Cto be the fiber of p over to := p(o). We have the following.

Lemma 3.4. Let Dto = f−1(Cto) be the inverse image of Cto under the universal
cover f : S → T . There is an exact sequence

(3.6) 1 → RC → π1(Cto) → π1(CB) → 1,

where

RC = f∗(π1(Dto)),

Proof. This is just (3.5) applied to CB → B together with the fact that π1(B) is
trivial. It is easy to see that the second projection CB → T induces an isomorphism
at the level of fundamental groups, so

π1(CB) ∼= Z/(2).

As a consequence, the two morphisms π1(Cto) → π1(CB) and π1(Cto) → π1(T ) have
the same kernel. Since the 2:1 cover S → T restricts to the nontrivial 2:1 cover
Dto → Cto , it is clear that ker[π1(Cto) → π1(T )] = f∗(π1(Dto)), and the lemma
follows. �

Now let H be a polarization on T , and let

ν : JH,0(CB) → B

be the degree 0 relative compactified Jacobian of CB → B. In other words,
JH,0(CB) = N ×|C| B, where N is the moduli space for the Mukai vector w =

(0, C,−g + 1). Let us assume that H is v-generic (so that N and J are smooth),
and also that ν has a section. Such a polarization exists because of Remark 1.5.

We are thus in the setting of Leibman. Sequence (3.5) becomes

(3.7) 0 → RJH,0(CB) → π1(Jto) = H1(Cto ,Z) → π1(JH,0(CB)) → 0.
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Lemma 3.5. Let CB → B be as above. For any polarization H and any degree d
such that JH,d(CB) is smooth, there is a short exact sequence (3.7) with first term
RJH,0(CB) independent of H and d.

Proof. Using Remark 3.3, we need to check only that the birational class of JH,0(CB)
is independent of H and d. Independence of H follows from Lemma 1.1, and the
independence of d follows from the existence of a section. �

As a consequence, to compute π1(JH,d(CB)) we can drop H from the notation
and consider only the degree 0 compactified Jacobian. This will be denoted by

JB := JH,0(CB).
Our aim is to use Lemma 3.4 to compute RJB

= RJH,0(CB), and we will use

Abel–Jacobi maps to compare (3.6) and (3.7).
Let UB = U ∩ B ⊂ B be the open locus parametrizing smooth curves, and

consider the restriction JUB
= ν−1(UB) of JB → B to UB . Using the section

s : B → CB , we can define an Abel–Jacobi map

(3.8)
A = AUB ,s : CUB

−→ JUB
,

c �−→ mCb,c ⊗OCb
(s(b)),

which is well known to be an embedding. We can view A as a rational map

CB ��� JB,

which induces, since we are assuming J to be smooth (so the fundamental group
is a birational invariant; A is defined on an open set whose codimension is at least
2), a morphism A∗ : π1(CB) → π1(J) which fits into the following commutative
diagram:

(3.9) 1 �� RJB

�� π1(Jto)
�� �� π1(JB) �� 1

1 �� RCB
��

r

��

π1(Cto)

t

����

�� �� π1(CB)

A∗

��

�� 1

Lemma 3.6. There exists a surjection π1(CB) = Z/(2) � π1(JB) which is an
isomorphism if and only if RCB

→ RJ is surjective. If this is the case, then RJB
=

f∗H1(Dto ,Z).

Proof. The first two statements are diagram chasing, while the third follows from
the fact that since RCB

= f∗(π1(Dto)), then r(RCB
) = f∗H1(Dto ,Z) ⊂ RJB

, and
this inclusion is an equality if and only if r is surjective. �

To show that the map π1(CB) → π1(J) is actually an isomorphism, we will need
the following lemma, which we will use after showing that the Abel–Jacobi maps
embed CB in JB. Before stating the lemma, let us introduce some more notation
to add to the one defined at the beginning of the section.

Again, we follow Leibman [Lei93, (γ′) on pages 102 and 104]. For this part, we
also need that p : E → B is smooth at the general point of EW (in the case of
N → |C|, this follows from Proposition 1.3).

For every component Ej
Di

of p−1(Wi), we can choose a general point qij , lifting

xi, and a small disk Dij , lifting Di, which is transversal to Ej
Di

and meets it
only in qij . This is possible because p admits local sections at the general point
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of every component of EW . For every i, we can choose these lifts so that the
one corresponding to the component meeting the section s(B) is precisely s(Di).
Moreover, for any path η joining p(o) to ∂Di as above, we can choose (since the
fibers over U are path connected) a path γ in EU which lifts η and which joins the
base point in EU to a fixed point oij ∈ ∂Dij . Notice that we can choose such points
oij so that for fixed i they lie over the same point oi ∈ ∂Di and so that the point
lying in s(Di) is precisely s(oi).

This defines other lifts of the generators ofH, which are not necessarily contained
in the image of the section. The observation, which we will make more precise in
Subsection 3.4, is that different lifts of the same generator of H differ by a vanishing
cycle of the family. Since for the moment we do not need this, we postpone the
discussion on the vanishing cycles to a separate subsection.

Lemma 3.7. Let us be given two morphisms p : E → B and p′ : E′ → B′ satisfying
the conditions of Leibman, and suppose that there are locally closed embeddings
E′ ⊂ E and B′ ⊂ B commuting with p and p′. Let U ′ ⊂ B′ be the locus where p′ is
smooth, and suppose that U ′ ⊂ U . Denote by F ′ the fiber of the topologically locally
trivial fibration E′

U ′ , and suppose that the inclusion F ′ ⊂ F induces a surjection
at the level of fundamental group. Suppose furthermore that every component of

EW contains a component of E′
W ′ = p′

−1
(W ′), where W ′ = B′ \ U ′, and that

both p and p′ are smooth at the general point of every component of E′
W ′ . Let

R = ker[π1(F ) → π1(E)] and R′ = ker[π1(F
′) → π1(E

′)] be as in (3.4). Then the
natural morphism R′ → R is surjective.

Proof. We know that R = G∩π1(F ), whereG = ker[π1(EU ) → π1(E)] and similarly
R′ = G′ ∩ π1(F

′), where G′ = ker[π1(E
′
U ) → π1(E

′)]. We claim that it is enough
to show that the natural morphism G′ → G is surjective. Indeed, consider the
short exact sequences 1 → R → G → H → 1 and the corresponding primed one
1 → R′ → G′ → H ′ → 1. Both are exact on the right because p : E → B
and p′ : E′ → B′ satisfy the conditions of Leibman and because of the discussion
after diagram (3.4). Moreover, the morphism between the two fibrations induce
a morphism of complexes between the two short exact sequences. It follows that
if G′ → G is surjective, then the cokernel of R′ → R is surjected upon by the
kernel of the natural morphism H ′ → H. Since π1(F

′) → π1(F ) is surjective, then
π1(U

′) → π1(U) is injective, and hence so is H ′ → H. As above, we can write any
element α ∈ G as a product of paths of the form γ∂Dijγ

−1, where the disks Dij

are as above and the γ’s are paths in EU connecting o to oij ∈ ∂Dij . Since p is

smooth at the general point of Ej
Wi

, we can choose the Dij to be centered at points
x′
ij ∈ E′

W ′ . Moreover, if locally we trivialize the embedding E′ → E, we can use a
homotopy to move the disk Dij so that it is actually contained in E′. To show that
G′ → G is surjective, it is therefore sufficient to show that the paths γ joining o to
∂Dij are homotopic to paths γ′ in E′

U ′ . Since F ′ is path connected, we can choose

a path γ′′ joining o to ∂Dij and lifting p(γ). Then γγ′′−1 is a loop in EU which lies

in the kernel of p∗, i.e., γγ
′′−1

= f for some f ∈ π1(F ). Since π1(F
′) → π1(F ) is

surjective by assumption, f is homotopic to a loop in F ′ and hence γ is homotopic
to γ′ := γ′′f , which is a path in E′

U ′ . �
3.3. Abel–Jacobi maps and the proof of the theorem. The next step will be
to show, given a family of curves as above, that the Abel–Jacobi map (3.8) can be ex-
tended to an embedding satisfying the assumptions of this lemma. Before doing so,
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we need to recall a few facts about extension of Abel–Jacobi maps to singular curves.
This topic has been extensively studied. We refer to [MRV14], [CCE08] and the
references therein for a more thorough treatment on the topic. Here we limit our-
selves to the most basic facts. We start by considering the extension over the locus
V ⊂ B parametrizing singular but integral curves. Following [MRV14], [CCE08],
one can extend (3.8) over V by considering on CV ×V CV the sheaf

IΔ ⊗ p∗1OCV
(Σ), Σ := s(B) ⊂ CB ,

where IΔ is the ideal sheaf of the diagonal in CV ×V CV . This sheaf defines a flat
family of rank 1 torsion free sheaves of degree 0, parametrized by the second factor
CV . As such, it defines a morphism, extending AUB ,s, from CV into the relative
compactified Jacobian. For reference, we highlight the following proposition.

Proposition 3.8. Let CB → B be the family over a general pencil B ⊂ |C| in a
nonhyperelliptic linear system on a general Enriques surface, and let JB → B be
the degree 0 relative compactified Jacobian of this family. Choose a section of the
family, and consider the Abel–Jacobi map (3.8) with respect to this section. Then
A extends to an embedding

C ↪→ J

over B.

Proof. The fact that the morphism A extends was discussed above, and the fact
that it is an embedding follows from [CCE08, Thm. 1]. �

To extend the Abel–Jacobi map over the locus of reducible curves, one needs to
be more careful, as the sheaves of the form mCb,c⊗OCb

(s(b)) will in general not be
semistable. Melo, Rapagnetta, and Viviani have shown in [MRV14, Lem. 6.1 and
Prop. 6.7] that on a fixed curve one can always find a polarization which guarantees
stability, and hence that, up to suitably choosing the polarization, the assignment

Cb � c �→ mCb,c ⊗OCb
(s(b)) ∈ JH,0(Cb)

defines an extension of the Abel–Jacobi morphism (notice, however, that if the curve
has separating nodes, then the definition has to be tweaked [CCE08, Sections 9
and 10], [MRV14, Prop. 6.7]. However, the polarization for which the Abel–Jacobi
map is defined depends on the given curve, and hence the construction does not
in general work in families. Luckily, for a hyperelliptic linear system on a general
Enriques surface, we have the following proposition.

Proposition 3.9. Let C → |C| be the universal family of a hyperelliptic linear
system of genus g ≥ 2 on a general Enriques surface. Fix s : |C| → C as one of
the two sections, and let B ⊂ |C| be the open subset parametrizing curves that are
irreducible or are the union of two smooth curves meeting at two points (as is the
general curve of the component Δ3 of the discriminant) or are the union of two
smooth curves meeting at one point (as is the general curve of the components Δ1

and Δ2 of the discriminant). There exists a (−g + 1)-general polarization H such
that A extends to a regular embedding over B,

CB ↪→ JH,0(CB).

Proof. By the remarks before the proposition, we need only to check the extension
of the morphism on the locus parametrizing reducible curves. By Proposition 1.19,
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in codimension 1, the only curves that appear are of the form Γ1 + Γ2, where

(i) Γ1 ∈ |2e1| and Γ2 ∈ |(n− 2)e1 + e2|,
(ii) Γ1 = e1 and Γ2 ∈ |(n− 1)e1 + e2|,
(iii) Γ1 = e′1 and Γ′

2 ∈ |((n− 1)e1 + e2)
′|

(if g = 2, only the last two cases occur). Recall that the two sections of a hyperel-
liptic linear system come from its base points, which were described in Lemma 1.11.
Let Σ := s(|C|) be the image of the section. Up to switching cases (ii) and (iii),
we can assume that the following intersections hold—in case (i): Σ ∩ Γ1 = 0 and
Σ ∩ Γ2 = 1, in case (ii): Σ ∩ Γ1 = 0 and Σ ∩ Γ2 = 1, in case (iii): Σ ∩ Γ1 = 1 and
Σ ∩ Γ2 = 0. We will use Lemma 1.2 to check whether in the three cases, (i)–(iii),
the sheaves of the form mp ⊗ OΓ(Σ) are stable. Notice that the only things that
matter for stability are the intersection numbers

a = H · e1
and

b = H · e2,
so we will drop H from the notation and use only a and b. Since g(C) = n+1 and
we are considering the degree 0 Jacobian, χ = −n. For curves of type (i), stability
for line bundles becomes

− 2na

na+ b
≤ χ1 ≤ − 2na

na+ b
+ 2.

If a and b are such that na > b, then

(3.10) 1 <
2na

na+ b
< 2

(by choosing H to be appropriate combination of e1 and e2, this can certainly
be achieved), so H is χ-general for Γ, and a line bundle is stable if and only if
−1 ≤ χ1 ≤ 0, i.e., if and only if

(χ1, χ2) = (−1,−n+ 3)

or

(χ1, χ2) = (0,−n+ 2).

This means that the sheaf mp ⊗ OΓ(Σ Γ
) is stable when p is a smooth point on

either of the two components, and hence A extends over the smooth locus of curves
of type (i). When p ∈ Γ1 ∩ Γ2, the sheaf mp ⊗OΓ(Σ Γ

) is locally free at only one

node. By Lemma 1.2, stability is equivalent to χ1 = −1, and hence mp ⊗OΓ(Σ Γ
)

is stable since Euler characteristics of the restriction to the two components are
(χ1, χ2) = (−1,−n+ 2).

It is more subtle to extend the morphism over the locus of curves with separating
nodes [MRV14, Prop. 6.7] (as are the curves of cases (ii) and (iii)). To fix ideas, let
us consider case (ii). Stability requires (χ1, χ2) = (0,−n+1), which is satisfied for
sheaves of the form mp⊗OΓ(Σ Γ

) if and only if p is a point belonging to Γ2\Γ1∩Γ2.

Indeed, in this case (χ1, χ2) = (0,−n + 1); otherwise (χ1, χ2) = (−1,−n + 2).
Following [MRV14, 6.7], [CCE08, Sections 9 and 10]. For p ∈ Γ1, we can set
A(p) = mp ⊗ OΓ(Σ Γ

) ⊗ OΓ(Γ1). Here OΓ(Γi) denotes the restriction to Γ of the

divisor in CB → B that lives over Δ1 and is swept out by the components Γi of the
curves parametrized by Δ1. Since degOΓ(Γi)|Γi

= −1 and degOΓ(Γi)|Γi
= 1, the
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sheaf mp⊗OΓ(Σ Γ
)⊗OΓ(Γ1) is stable. Similarly, to extend the morphism over the

second component of curves of type (iii), we need to twist by OΓ(Γ2).
For a hyperelliptic linear system, this can work in families since there is no

monodromy among the irreducible components, so over Δ1 and Δ2 we can single
out the first and second components of every curve. More precisely, the morphism
CB → JB will be determined, using the universal property of the moduli space, by
the sheaf

IΔ ⊗ p∗1OC(Σ)⊗OCB×BCB
(D1)⊗OCB×BCB

(D2)

on CB ×B CB, viewed as a family of sheaves parametrized by the second factor CB .
Here D1 ⊂ CB ×B CB is the component of (p× p)−1(Δ1 ×Δ1) parametrizing pairs
of points (x, y) ∈ CB ×B CB , both of which belong to e1, and D2 ⊂ CB ×B CB is the
component of (p× p)−1(Δ2 ×Δ2) parametrizing pairs of points (x, y) ∈ CB ×B CB ,
both of which belong to |((n− 1)e1 + e2)

′|.
Finally, by [CCE08, Thm. 1] (see also [MRV14, Fact 6.10]) the Abel–Jacobi

map is an embedding precisely away from the components of a curve, which are
smooth rational curves whose intersection with the rest of the curve consists of two
separating nodes. �

From the proof of the above proposition, we may deduce the following corollary.

Corollary 3.10. Let Γ = Γ1 + Γ2 be a general curve in Δ3, let H be a general
polarization satisfying na > b as above, and let J̄H(Γ) be the relative compactified
Jacobian of degree 0 pure sheaves on Γ, stable with respect to H. Then the Abel–
Jacobi map defined above embeds Γ1 in the component corresponding to (−1,−n+3)
and embeds Γ2 in the component corresponding to (0,−n+ 2).

We can finally show the following.

Theorem 3.11. Let |C| be a hyperelliptic linear system of genus g ≥ 2, and let N
be as in Theorem 2.10. Then

π1(N) ∼= Z/(2),

and the kernel of the natural morphism π1(Cto) → π1(N) is equal to f∗(π1(Dto)).

Proof. Recall that |C| is a primitive linear system, and hence by Proposition 2.18
it satisfies Assumption 2.17. By Lemma 3.5, it is enough to look at the case
in which the degree is 0 and in which H is general and satisfies (3.10). Then by
Proposition 3.9, we can apply Lemma 3.7 to CB → B andN = JB → B, which gives
surjectivity of the map r in diagram (3.9). Hence, by Lemma 3.6, the morphism
A∗ : π1(C) = Z/(2) → π1(N) is an isomorphism and ker[π1(Cto) → π1(N)] =
f∗(π1(Dto)). �

Let us now come to the case of a nonhyperelliptic linear system. Since there is
no section, the strategy is to first compute the fundamental group of the relative
compactified Jacobian of a general pencil (which admits a section), and then to
pass from there to the family over the complete linear system.

Lemma 3.12. Let |C| be a genus g ≥ 3 nonhyperelliptic linear system on a general
Enriques surface T , and let N be as in Theorem 2.10. Let B ⊂ |C| be a general
pencil, let CB → B be the universal family of curves, and let JB = J(CB) =
N ×B |C| → B be its degree d relative compactified Jacobian. Then

π1(JB) ∼= Z/(2),
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and there is a surjection
π1(JB) � π1(N).

Proof. The proof is the same as for the case of a hyperelliptic linear system. Since
CB → B has a section, the birational class of JB does not depend on the degree
(or on the polarization), and hence we can assume that d = 0. By Proposition 3.8,
there is an embedding A : CB → JB which, by Lemmas 3.7 and 3.6, induce an
isomorphism π1(CB) ∼= Z/(2). The second statement is standard. It can, for
example, be proved comparing diagram (3.4) for the two families and using the fact
that π1(U ∩B) → π1(U) is surjective (and also by using [GM88, Thm. 1.1]). �

This shows that there is a 2:1 cover of JB. Using the norm map, we wish to
extend this cover to all of N .

Let U ′ ⊂ |C| be the locus parametrizing integral curves. The norm map will
allow us to extend the covering to NU ′ = J(CU ′), showing that the surjection Z/
(2) = π1(JB) → NU ′ = J(CU ′) is an isomorphism. To extend this result to all of N ,
we need to assume that |C| satisfies Assumption 2.17. Indeed, if this holds, then
codim(N \NU ′ , N) ≥ 2, and hence π1(NU ′) = π1(N).

Proposition 3.13. Let

D

���
��

��
��

� 2:1

f �� C

����
��
��
�

B

be a family of étale double covers between reduced and irreducible curves with locally
planar singularities. Let d be an integer, and let Jd(D) → B and Jd(C) → B be the
relative degree d compactified Jacobians of the families D and C. There is a natural

fiberwise étale double cover of J̃d(C) → Jd(C), which on the Jacobian of a smooth
curve Cb is induced by the index 2 subgroup

(3.11) f∗H1(Db,Z) ⊂ H1(Cb,Z).

Proof. The proof is based on the norm map; see [Gro61, Section 6.5], [Gro67,
Section 21.5]. Let Jd(D) ⊂ Jd(D) and Jd(C) ⊂ Jd(C) be the open loci parametrizing
locally free sheaves. For simplicity, let us consider the case in which the general
curve is smooth and in which the total space Jd(C) is also smooth (this is the only
case we will need; in any event, the general case can be deduced from this using
versal deformation spaces). Since the codimension of the complement of Jd(C) in
Jd(C) is of codimension ≥ 2, π1(Jd(C)) = π1(Jd(C)) and it will be enough to study
the double cover over Jd(C), as it will automatically extend to the whole Jd(C).
The norm map is the morphism defined by (see [Gro61, Section 6.5])

(3.12)
ND/C : Jd(D) −→ Jd(C),

L �−→ det f∗L⊗ (det f∗OD)
−1.

For b ∈ B, let Db → Cb be the restriction to b of the 2:1 cover. If L = ODb
(
∑

nixi),
then [Gro67, 21.5.5]

(3.13) ND/C(L) = OCb
(
∑

nif(xi)).

It is well known [Mum74] that over the locus of smooth curves, the kernel of the
norm map has two connected components. To show that this is the case also for a
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singular (but irreducible) curve, we can argue in the following way. Suppose that

Db and Cb are singular curves, and let n : Ĉb → Cb and m : D̂b → Db be their nor-
malizations. The norm map is compatible with the pullback to the normalizations
(see [Gro61, Prop. 6.5.8]), in the sense that the following is a commutative diagram
of short exact sequences of groups:

(3.14) 0 �� G×G ��

∑

��

JDb

N

��

m∗
�� JD̃b

Ñ

��

�� 0

0 �� G �� JCb

n∗
�� JC̃b

�� 0

Here G ∼= n∗O∗
C̃b
/O∗

C̃b
, and the two factors of G×G ∼= m∗O∗

D̃b
/O∗

D̃b
are exchanged

by the involution. By definition of the norm map, if z = (x, y) ∈ G × G, then
N(z) is the determinant of the endomorphism μz : G × G → G × G determined
by the multiplication by z. Given that the algebra structure on G × G is simply
the product structure, multiplication by z = (x, y) is just multiplication by x on
the first component and by y on the second, so detμz = xy. This shows that the
restriction of N to G × G is the product map. From (3.14), it then follows that
kerN has two connected components, which shows that if we consider the quotient

J̃(C) of Jd(D) by the identity component of the norm map, we get a commutative
diagram

(3.15) Jd(D)

		�
��

��
��

�
�� Jd(C)

J̃d(C)
2:1

Φ



��������

which is the desired 2:1 fiberwise cover and which can be interpreted as the Stein
factorization of (3.12). We are left with determining what this double cover is for

the Jacobian of a smooth curve Cb. Since by construction, Jd(D) → J̃d(C) has

connected fibers, it is clear that Im[π1(JDb
) → π1(JCb

)] = Im[π1(J̃C b
) → π1(JCb

)].

If we consider degree d Abel–Jacobi maps Db → Jd(Db) and Cb → Jd(Cb) with
respect to points x ∈ Db and f(x) ∈ Cb, then they will be compatible with f and

with the norm map. Using this, we can see that on each smooth fiber Im[π1(J̃C b
) →

π1(JCb
)] = f∗H1(Db,Z) ⊂ H1(Cb,Z), as desired. �

Corollary 3.14. Let |C| be a nonhyperelliptic linear system on a general Enriques
surface, and let N be as in Theorem 2.10. Then there is a surjection

Z/(2) → π1(N)

which is an isomorphism in the case in which |C| satisfies Assumption 2.17.

Proof. The existence of a surjection Z/(2) → π1(N) for a nonhyperelliptic linear
system holds, unconditionally, thanks to Lemma 3.12. If a nonhyperelliptic linear
system satisfies Assumption 2.17, then the locus in N parametrizing sheaves sup-
ported on nonintegral curves has codimension ≥ 2, so we can remove it without
affecting the fundamental group. Proposition 3.13 shows that there is a surjection
π1(N) → Z/(2), which means that the morphism Z/(2) = π1(NB) → π1(N) has to
be an isomorphism. �
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Using the norm map, we can also give the following geometric interpretation to
the universal cover

(3.16) Ψ : Ñ → N

of N (under the hypothesis that |C| satisfies Assumption 2.17, so π1(N) = Z/(2)).

Proposition 3.15. Let |C| be a genus g ≥ 2 linear system on a general T , and
suppose that it satisfies Assumption 2.17. For every t in the open set U parametriz-
ing smooth curves, we let Ct be the corresponding curve and we set Dt = f−1(Ct).
Then

ker[π1(Nt) → π1(N)] = f∗H1(Dt,Z).

In addition, over the locus U ′ of integral curves, the universal cover (3.16) agrees
with the 2:1 cover Φ induced by the norm map (3.15).

Proof. If |C| is not hyperelliptic, then this is a corollary of the construction of Ψ as
an extension of Φ. Suppose therefore that |C| is hyperelliptic. The first statement
follows from Proposition 3.13 and from the second statement, Theorem 3.11. Let
us consider the two fiberwise coverings Ψ and Φ of NU ′ . They are defined by two
surjections ηΦ : π1(NU ′) → Z/(2) and ηΨ : π1(NU ′) → Z/(2), which we want
to prove are the same morphism. By the first statement, we know that Ψ and
Φ induce the same cover over the Jacobians of smooth curves (in fact, it is not
hard to show that they induce the same covering also for 1-nodal curves). Since
the surjection π1(NU ) → π1(U) is split, Ψ and Φ define the same covering of NU .
Letting j∗ : π1(NU ) � π1(NU ′) be the natural morphism associated to the open
embedding j : NU → NU ′ , we may deduce that ηΦ ◦ j∗ = ηΨ ◦ j∗. Since j∗ is
surjective, this shows that ηΦ = ηΨ, and hence that Ψ and Φ define the same
covering of NU ′ . �

We finish this section with a result that will be used in Section 5.

3.4. Vanishing cycles. Let us now come to the result on vanishing cycles which
will be used in Section 5. We use the notation introduced at the beginning of this
section and before Lemma 3.7.

Recall that for every irreducible components Wi of W , we have chosen disks
Di ⊂ B which are transversal to Wi at a chosen point xi and we have picked a
point oi ∈ ∂Di. For every i, let us consider the restriction

EDi
→ Di

and choose s(oi) as base point for π1(EDi
). Consider the usual specialization map

(3.17) spi∗ : π1(F ) → π1(EDi
) ∼= π1(Exi

), Exi
= p−1(xi),

where the isomorphism π1(EDi
) ∼= π1(Exi

) comes from a retraction EDi
→ Exi

.
Let Vi be a set of generators of ker spi∗ (which by definition is the group of the
vanishing cycles of the family EDi

). Given a loop vi ∈ Vi based in s(oi) and any
path γ joining p(o) to oi ∈ ∂Di as above, we can form a loop v in EU by setting

v = s∗(γ)vis∗(γ)
−1.

Denote by V the set of paths obtained by doing this for every component of W ,
and by V ρ the normal subgroup generated by V and all its conjugates under the
monodromy action of π1(U) on π1(F ).
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Proposition 3.16 ([Lei93]). R = [π1(F ), s∗H] · V ρ (here the commutator [π1(F ),
s∗H] is taken in π1(EU ), and, since π1(F ) ⊂ π1(EU ) is normal, it is contained in
π1(F )).

Proof. This proof imitates the proofs of [Lei93, Lems. 1.2 and 1.7]. An element α
in R = π1(F ) ∩ G can be represented as the boundary of a map ϕ : D → E, with
o ∈ ϕ(∂D) ⊂ EU and such that p∗(ϕ(∂D)) = 1 in π1(U). By transversality, ϕ(D)

can be made transversal to each component Ej
Wi

at the chosen points qij and such
that the intersection of ϕ(D) with a suitable neighborhood of qij is contained in
Dij for every i and j. Choose an orientation for ∂Dij . We can write α =

∏
αij ,

where

αij = βij∂Dijβij
−1

for a path βij in EU joining o to the chosen point oij ∈ ∂Dij . Notice that to write
α as a product, we have defined an ordering on the set of bi-indices ij, i.e., we have
chosen a bijection ν : {ij} → L = {1, . . . , N} such that we can write

α =

N∏
(ij) | ν(ij)=1

αij .

Join s(oi) ∈ s∗(Di) to oij via a path εij in the fiber Exi
. Set γij := p∗βij so

that γij is a path in U joining p(o) to p(oi). Then βijεij
−1(s∗γij)

−1 = fij for some
fij ∈ π1(F ). Since p∗(εij∂Dijεij

−1) = p∗(s∗∂Di), the difference

vij := s∗(∂Di)
−1εij∂Dijεij

−1

lies in ker(spi∗). This shows that we can write

αij = βij∂Dijβij
−1 = βijεij

−1 εij∂Dijεij
−1︸ ︷︷ ︸

s∗(∂Di)vij

εijβij
−1

= βijεij
−1s∗(∂Di)vijεijβij

−1 = fijs∗(hij)fij
−1wij ,

where hij = γij∂Diγ
−1
ij and

wij = βijεij
−1vijεijβij

−1.

We can write

wij = s∗(γij)dijvijdij
−1s∗(γij)

−1,

where dij := s∗(γij)
−1βijεij

−1 is homotopic to a loop in the fiber p−1(oi). Since

clearly dijvijdij
−1 ∈ ker(spi∗), we have wij ∈ V . We can thus write

α =
∏
ij

[fij , s∗(hij)]s∗(hij)wij =

N∏
ν=1

[fν , s∗(hν)]s∗(hν)wν ,

where in the last equality we have used the ordering of the bi-indices introduced
above. Following Leibman [Lei93, pages 100 and 103], we can write

α =

N∏
ν=1

[f ′
ν , s∗(h

′
ν)]w

′
ν

N∏
ν=1

s∗(hν),

where

f ′
ν :=

( ν−1∏
ξ=1

s∗(hξ)
)
fν

( ν−1∏
ξ=1

s∗(hξ)
)−1

,
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s∗h
′
ν :=

( ν−1∏
ξ=1

s∗(hξ)
)
s∗hν

( ν−1∏
ξ=1

s∗(hξ)
)−1

,

w′
ν :=

( ν∏
ξ=1

s∗(hξ)
)
wν

( ν∏
ξ=1

s∗(hξ)
)−1

.

Notice also that p∗
∏N

ν=1 s∗(hν) = 1, and since p∗s∗ = id, then
∏N

ν=1 s∗(hν) = 1,
and hence

α =

N∏
ν=1

[f ′
ν , s∗(h

′
ν)]w

′
ν .

To finish the proof, we have to notice only that w′
ν ∈ V ρ. This follows from

that fact that if h ∈ π1(U) and w ∈ π1(F ), then s∗(h)ws∗(h)
−1 is exactly the

monodromy action ρh(w) of h on w (see [ASF15, Section 7, in particular, (7.7) and
(7.9)]). Since we have already observed that wν ∈ V , it follows that wν ∈ V ρ. �

Let us now apply this result when [E → B] = [C → B] is a smooth family
of reduced curves whose general member is smooth of genus g and such that, in
codimension 1, we have nodal curves only of geometric genus g − 1 (this is indeed
the case for the families we consider). Suppose the family has a section so that we
can apply the remarks above. Consider, as we did before Lemma 3.7, generators of
H of the form hi,γ = γ∂Diγ

−1. For each hi, the monodromy operator ρhi
on the

fiber Cto , for to := p(o), is the Dehn twist around a closed loop ci = ci,γ ⊂ Cto ,
called the vanishing cycle associated to hi (see [ACG10, Chapter XI]). The choice of
ci depends on the choice of local coordinates, but its homology class is well defined
(up to a sign). To see how it compares to the local vanishing cycles of ker(spi∗)
(see (3.17)), consider a vi ∈ Vi and the loop s∗(γ)vis∗(γ)

−1, which clearly belongs
to R. Since we are assuming that in codimension 1 the genus drops only by 1, the
image in homology of ker(spi∗) has rank 1, and hence the classes of s∗(γ)vis∗(γ)

−1

in H1(Cto ,Z) are all a multiple of ci. In particular, the classes of the w′
ij defined

in the previous proposition will also be a multiple of ci.
Also, for any f ∈ π1(Cto), we have, passing to H1(Cto ,Z), switching to the

additive notation, and using that [f, s∗(hi)] = fρhi
(f−1),

(3.18) [f, s∗(hi)] = f − f − (f, ci)ci = −(f, ci)ci ∈ H1(Cto ,Z).

Corollary 3.17. Let p : C → B be a family of curves as above. And let RC =
ker[π1(Cto) → π1(C)] be as in (3.4). Then the image of RC in H1(Cto ,Z) is gener-
ated by the vanishing cycles associated with a set of generators of H.

Proof. This is an immediate consequence of Proposition 3.16, of the definition of
vanishing cycle, and of (3.18). �

4. The canonical bundle

The aim of this section is to show that the canonical bundle of N is trivial. We
start with the following adaptation of [HL97, Theorem 8.3.3] to our context.

Proposition 4.1 ([HL97]). Let T be an Enriques surface, and let M be a compo-
nent of a moduli space parametrizing stable sheaves F such that F � F ⊗ωY . Then
the canonical bundle is torsion, i.e.,

ωM = 0 in Pic(M)Q.
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Proof. First, notice that M is smooth since by assumption the obstructions vanish.
Even though [HL97, Chapter 8] is formulated for sheaves of positive rank, one can
go through all of the results needed for the proof of [HL97, Theorem 8.3.3] and
check that they work, with the appropriate modifications, also in the case of pure
dimension 1 sheaves. �

Recall from (2.2), (2.8), and (3.16) the definitions of N , Y , and Ñ .

Corollary 4.2. With the assumptions of Theorem 2.10, we have ωÑ
∼= OÑ .

Proof. By the proposition above, ωÑ is a torsion class in Pic(Ñ), but since Ñ is
simply connected, this class has to be trivial. �
Proposition 4.3. Let the assumptions be as in Theorem 2.10. The following are
equivalent:

(i) The canonical bundle of Y is trivial.
(ii) The canonical bundle of N is trivial.

(iii) The canonical bundle of Ñ is trivial.

Proof. Since Φ : N → Y and Ψ : Ñ → N are étale, we need to prove only that
(ii) implies that (i), and that (iii) implies (ii). We start with the first implication,
so let us suppose that ωN

∼= ON . Recall from formula (3.2) the definition of L.
Then Φ∗ωY

∼= ON , implying that either ωY is trivial or that it is isomorphic to L.
Consider a point t ∈ U , and denote, as usual, by Yt the fiber over t. To conclude,
we make the following two claims. The first is that LYt

is not trivial, which follows
immediately from (3.3), while the second claim is that (ωY )|Yt

is trivial, which

follows immediately from the fact that ωYt
and NYt|Y are trivial. Hence, ωY � L.

The same argument applies to showing that the canonical bundle of Ñ is trivial if
and only if the canonical bundle of N is trivial. In fact, the only thing we need is

that on each fiber, the double cover Ñt → Nt is nontrivial, and this is a consequence
of Corollary 3.15. �

The steps above prove the following theorem.

Theorem 4.4. Let |C| be a genus g ≥ 2 linear system on a general Enriques
surface T , and let N be as in Theorem 2.10. Then

ωN
∼= ON .

Notice that Proposition 4.3 and hence Theorem 4.4 are not conditional to
Assumption 2.17.

Corollary 4.5. With the same assumptions as in the theorem above,

χ(OY ) = χ(ON ) = 0.

Proof. By Serre duality, this is true for any odd-dimensional Calabi–Yau manifold.
�

Moduli spaces of sheaves on a K3 surface share many properties of the surface
itself. As we saw in Theorem 4.4, this is not the case for Enriques surfaces. Another
instance of this lack of an analogy is the fact that the universal cover of N induces a
nontrivial cover of every fiber: Any Enriques surface T admits an elliptic fibration
T → P1 with exactly two multiple (double) fibers. The canonical bundle of T is
the difference of the two half fibers and, moreover, the universal cover f : S → T
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induces a trivial cover of every reduced fiber; indeed, if e is a primitive elliptic curve
in T , then for any reduced curve Γ belonging to |2e|, f−1(Γ) is the disjoint union
of two members of |f∗e|. In fact, the covering S → T is induced by base change
via a degree 2 morphism P1 → P1 (ramified at the two points corresponding to
the nonreduced fibers), whereas in the case of ν : N → |C|, as we have already
mentioned, the restriction of the universal cover to the fibers of ν is nontrivial.

This difference in behavior appears also in comparison to other types of moduli
spaces of sheaves. In [OS11], Oguiso and Schröer prove that the Hilbert scheme of
n points on a given Enriques surface T has the property that the canonical bundle
is not trivial, but twice the canonical bundle is trivial. It would be interesting to
know if one could extract a general principle from this phenomenon, i.e., that the
canonical bundle of a moduli space depends on the parity of its dimension. It would
also be interesting to study, given a genus g linear system |C|, the geometry of the
rational Abel–Jacobi maps

T [g−1] ��� Ng−1

and
Ng ��� T [g].

Here Nd denotes the degree d relative compactified Jacobian of |C|.
We end the section with the main result.

Theorem 4.6. Let N be as in Theorem 2.10. Then the Calabi–Yau manifold N
is irreducible. By this, we mean that

Hp(N,ON ) ∼=
{
C if p = 0 or p = 2g − 1,

0 otherwise.

The main step in proving the theorem is the following proposition that computes
the higher direct images of the structure sheaf by using the corresponding result of
Matsushita [Mat05] for the morphism π : M → |D|.
Proposition 4.7. Let N be as in Theorem 2.10. Then

(4.1) Riν∗ON
∼=

∧i
⊕g

j=1OPg−1(−1).

Since

Hk(Pg−1,OPg−1(−p+ k)) ∼=
{
C if (k, p) = (0, 0) or (k, p) = (g − 1, 2g − 1),

0 otherwise,

the spectral sequence calculating Hp(N,ON ) degenerates, and the theorem easily
follows.

Proof of Proposition 4.7. Since the canonical bundles of N and of Y are trivial,
by [Kol86b, Theorem 2.1] the sheaves Riν∗ON and Riπ∗OY are torsion free, and
by [Kol86a, Corollary 3.9] they are reflexive. Moreover, Φ is a finite morphism, so
the spectral sequence associated to the composition of functors yields an isomor-
phism (recall that L was defined in (3.2))

Riν∗ON
∼= Riπ∗OY ⊕Riπ∗L.

However, since L|Yt
is a nontrivial torsion line bundle, the higher direct images

Riπ∗L are supported on the discriminant locus of |C|, and since the sheaf Riν∗ON

is torsion free, they have to be identically 0. It follows that

(4.2) Riν∗ON
∼= Riπ∗OY .
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The proof of the proposition can then be deduced from the following three claims,
whose proof uses Proposition 4.9.

Claim I. R1ν∗ON
∼= R1p∗OC .

Claim II. R1ν∗ON
∼= ⊕g

i=1OPg−1(−1).

Claim III. Riν∗ON
∼=

∧i R1ν∗ON .

For Claim I, first notice that there is a natural isomorphism over the locus U ⊂
|C| of smooth curves (e.g., see Lemma 4.10). By Proposition 4.9, the isomorphism
extends naturally over the general point of every component of the discriminant.
Hence, there is an open subsetW ⊂ |C|, whose complement has codimension greater
than or equal to 2, over which the sheaves in question are isomorphic. Since they
are reflexive sheaves, this isomorphism extends to an isomorphism over all of |C|.

To show Claim III, we first use Proposition 4.9 as well as Claim I to find an
isomorphism which is defined over an open set W as above. Since by Claim II,
R1π∗ON , and hence also its exterior powers, are locally free, the isomorphism
defined over W extends to the whole |C|, and we have proved the claim.

For Claim II, we argue as follows. Let I denote the ideal sheaf of |C| in |D|.
Recall that I/I2 ∼= ⊕g

i=1OPg−1(−1) and that the short exact sequence (on which
the involution ι∗ acts)

0 → I/I2 → (Ω1
|D|) |C| → Ω1

|C| → 0

is split. The sheaf I/I2 is the ι∗-anti-invariant part of (Ω1
|D|) |C|, and the sheaf

Ω1
|C| is the ι∗-invariant part. By [Mat05, Theorem 1.3], there is an isomorphism

(4.3) Ω1
|D|

∼= R1π∗OM .

Since this isomorphism is induced by the symplectic form σ of M , it interchanges
the invariant and anti-invariant subbundles of Ω1

|D| |C| and of R1π∗OM |C|. In

particular, the composition of the inclusion I/I2 → (Ω1
|D|) |C|

∼= R1π∗OM |C|
with the natural morphism R1π∗OM |C| → R1π∗OY is nonzero and generically

surjective. We need to show that it is an isomorphism. Consider a general line
� ⊂ |C|, and let p′ : C′ → � be the restriction of the family of curves to � so that C′

is just the blowup of T at the 2g−2 base points of the pencil. By base change (over
W , all families in question are flat, so we can apply base change) and by Claim I,
there is an isomorphism

R1ν∗ON �
= R1π∗OY �

∼= R1p′∗OC′ .

Since R1p′∗OC′ is locally free of rank g, we can write

R1p′∗OC′ = ⊕g
i=1OP1(ai) for some ai ∈ Z.

Since the base is one dimensional, the Leray spectral sequence degenerates, and we
can use the Hodge numbers of C′ to calculate the ai’s. From

(4.4)

0 = H1(C′,O) ∼= H1(P1,O)⊕H0(P1, R1p∗OC′)

and

0 = H2(C′,O) ∼= H2(P1,O)⊕H1(P1, R1p∗OC′)⊕H0(P1, R2p∗OC′),

we deduce that
ai < 0
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and
ai > −2.

We conclude that ai = −1 for every i, so that R1p′∗OC′ = ⊕g
i=1OP1(−1). It follows

that the morphism
I/I2 → R1π∗OY

defined above is an isomorphism over an open subset whose complement has codi-
mension greater than or equal to 2. Hence, it extends to a global isomorphism and
Claim II follows using (4.2). �
Remark 4.8. As in the cases of ON and OY , one can show that the higher direct
images of ON and of OÑ are also isomorphic, so

Hp(Ñ ,OÑ ) ∼=
{
C if p = 0, 2g − 1,

0 otherwise,

and Ñ is an irreducible Calabi–Yau manifold.

Proposition 4.9. Let C → B be a projective family of smooth genus g curves
parametrized by a smooth projective curve (or a disk), and let p : C → B be a smooth
compactification of the family such that for every point ai ∈ B \B, the curve Cai

=
p−1(ai) is reduced and nodal. Let q : J → B be a relative compactified Jacobian of
the family C, and suppose that it is smooth. There is a natural isomorphism

(4.5) Riq∗OJ
∼=

∧i
R1p∗OC .

The proposition will use the following lemma and some results about Hodge
bundles and their degenerations, which we recall in the next subsection.

Lemma 4.10. Let q : C → B be a family of smooth curves, and let ν : Jd
C → B be

the degree d relative compactified Jacobian. For every i, there is a natural morphism

Riν∗QJd
C
→ Riq∗QC ,

which is an isomorphism for i = 1. Moreover, the same holds for the higher direct
images of the structure sheaves.

Proof. Suppose that C → B has a section s. Then as in (3.8), we can consider an
Abel–Jacobi map As : C → Jd

C whose pullback A∗
s induces a morphism between the

local systems. Though the map itself depends on the section s, the morphism A∗
s

does not, since translation by a point on an abelian variety induces the identity in
cohomology. It follows that even if q does not have a section, we can choose local
sections to define local morphisms which, since they are independent of the section,
can be glued to define a global morphism. The same argument can be applied to
the direct images of the structure sheaf. �

In Section 5, there will be a more refined version of this lemma (Proposition 5.8).

4.1. Degeneration of Hodge bundles. We follow [Zuc84], [Kat71], [Kol86a],
[Ste77], [PS08], to which we refer for more details and complete proofs.

Let B be a smooth curve, and let f : Z → B be a smooth projective morphism.
The degree ith cohomology of this family determines a degree i variation of Hodge
structures (VHS for short) on B whose underlying local system is Rif∗C. By [Del70,
I.2.28], the locally free sheaf

(4.6) Hi := Rif∗C⊗OB
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is isomorphic to the hypercohomology sheaf

(4.7) Rif∗Ω
•
Z|B ,

where Ω•
Z|B is the complex of relative differentials of the family. We denote by

(4.8) ∇ : Hi → Hi ⊗ Ω1
B

the Gauss–Manin connection associated to Rif∗C. Consider the so-called filtration
bête

(4.9) FpΩ•
Z|B := Ω•≥p

Z|B

of the complex of relative differentials. The spectral sequence in hypercohomology
associated to this filtration has Ep,q

1 term equal to

(4.10) Rqf∗Ω
p
Z|B

and abuts (the associated graded pieces of)

(4.11) Rif∗Ω
•
Z|B = Hi.

Since f is smooth, these sheaves are locally free and, just as in the case of a smooth
projective variety (see, for example, [PS08, Prop. 10.29]), one can show that the
spectral sequence degenerates at E1 and that the maps

(4.12) Rif∗Ω
•≥p
Z|B → Rif∗Ω

•
Z|B

are injective. In other words, the filtration induced on Hi is

(4.13) FpHi = Rif∗Ω
•≥p
Z|B ⊂ Hi,

and its associated graded pieces are the sheaves

Rqf∗Ω
p
Z|B , with p+ q = i.

The filtration (4.13) is precisely the Hodge filtration of the variation of Hodge
structures of the family Z → B. Now consider a smooth projective compactification

f : Z → B,

and suppose that D := f−1(B \ B) is a reduced divisor with normal crossing. Let
Ω•

Z|B(logD) be the complex of relative logarithmic differentials [Zuc84, (21)].

By a classical theorem [Del70, II.7.9], it is known that (Hi,∇) is an algebraic
differential equation with regular singular points. By definition [Kol86a, (2.1)(i)],
this means that ∇ has logarithmic poles at every point b in B \ B, that is to say,

there exists a vector bundle extension Hi
of Hi to all of B, such that the connection

∇ extends to a morphism

∇ : Hi → Hi ⊗ Ω1
B
(logA), A := B \B.

Such an extension is not unique, but as we will see, there is a unique one satisfying
some additional conditions. Recall from [Kol86a, (2.1)(iii)] that the residue Resb(∇)

of ∇ at a point b in B\B is defined to be the endomorphism of the fiber Hi

b induced
by restricting ∇ to b and composing this restriction with idHi

b
⊗Res, where Res is

the Poincaré residue map Ω1
B
(log b) → Cb,

Resb(∇) : Hi

b → Hi

b ⊗ Ω1
B
(log b) → Hi

b ⊗ Cb.
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In other words, if we fix a local trivialization of Hi
around b and if z is a local

coordinate on B, the residue is defined by the equation∇ = dz⊗(Resb(∇)1/z+· · · ).
Another important property of the residue [Kol86a, Lem. 2.2] is that if T denotes
the local monodromy operator, then

(4.14) T = exp(−2πiResb(∇)).

By [Ste77, (2.11)], [SZ85, (5.1) for the notation and (5.3) for the result] (for a
clear exposition, see [Zuc84]), the sheaves

Rif∗Ω
•
Z|B(logD)

and

Rqf∗Ω
p

Z|B(logD), p+ q = i,

are locally free extensions of (4.11) and (4.10), respectively. Moreover, Katz proved
in [Kat71, V] (see also [PS08, Thm. 10.28]) that there is a natural morphism

(4.15) ∇ : Rif∗Ω
•
Z|B(logD) → Rif∗Ω

•
Z|B(logD)⊗ Ω1

B
(logB \B),

which extends the Gauss–Manin connection. It follows that we can set

Hi
:= Rif∗Ω

•
Z|B(logD).

On the other hand, the filtration bête (4.9) extends to a filtration

(4.16) FpΩ•
Z|B(logD) := Ω•≥p

Z|B(logD)

of Rif∗Ω
•
Z|B(logD). This defines a spectral sequence whose Ep,q

1 terms are

Rqf∗Ω
p

Z|B(logD).

Since these sheaves are locally free and the differential is generically 0, the dif-
ferential is identically 0. Hence, the spectral sequence, which abuts the associated
graded pieces of Rif∗Ω

•
Z|B(logD), degenerates at E1. Moreover, these graded pieces

Rqf∗Ω
p

Z|B(logD) are locally free, and hence the extensions

Fp(Hi
) := Rif∗Ω

≥p

X|B(logD)

of the sheaves Fp(Hi) are actually extensions as vector subbundles of Hi
(this is

a particular case of Schmid’s nilpotent orbit theorem). The last ingredient is the
following classical theorem.

Theorem 4.11 (Manin, [Del70], Prop. 5.4). Let (H,∇) be an algebraic differential
equation with regular singular points on the pointed disk Δ∗. Then (H,∇) admits
a unique locally free extension (H,∇) to the disk Δ satisfying the following two
properties:

(1) ∇ : H → H⊗ Ω1
Δ(log 0) has logarithmic poles.

(2) The eigenvalues λ of Res0(∇) ∈ End(H0) satisfy 0 ≤ Re(λ) < 1.

An extension of an algebraic differential equationH as in the theorem is called the
canonical extension. For example, if (H,∇) = (OΔ∗ , d), then the trivial extension
(H = OΔ,∇ = d) has no poles and is the canonical extension.
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Theorem 4.12 ([Kat71], VII). Let Z → B be as above, where D = Z \ Z is a
reduced divisor with normal crossing. Then for every b ∈ B \ B, the extension
(Rif∗Ω

•
Z|B(logD),∇), with ∇ as in (4.15), of (Rif∗Ω

•
Z|B ,∇) satisfies the assump-

tions of Theorem 4.11 with the eigenvalues of the residue Resb(∇) equal to 0. In
particular, Rif∗Ω

•
Z|B(logD) is the canonical extension of Rif∗Ω

•
Z|B .

Corollary 4.13 ([PS08, Cor. 11.18]). The monodromy of a one parameter family
degenerating to a reduced normal crossing central fiber is unipotent.

Proof. This follows immediately from (4.14). �

Under this circumstance, we say by abuse of notation that Rif∗Ω
≥p

Z|B(logD) and

Rqf∗Ω
p

Z|B(logD) are the canonical extensions of Rif∗Ω
•≥p
Z|B and Rqf∗Ω

p
Z|B , respec-

tively. Notice that we can say canonical extension also for Fp(Hi
) and for Grp(Hi)

because such extensions are uniquely determined by the canonical extension. In-
deed, let j : B → B be the open immersion, let H be a vector bundle on B, and let
E ⊂ H be a subbundle. Suppose we are given a vector bundle extension H of H on
the whole of B. Any extension of E to B as a subbundle of H is always contained
in the saturation of H∩ j∗E in H and thus has to be isomorphic to the saturation
itself. In particular, since the extension of E as a vector subbundle of H is unique,
so is the extension of the quotient H/E.

We now go back to our situation by applying these remarks to the families C → B
and J → B.

Proof of Proposition 4.9. Our aim is to prove that the natural isomorphism

Riq∗OJ B
∼=

∧i R1p∗OC B
extends over B. As should be clear by now, we will

show this by using the canonical extensions of the VHS associated to the families
p : C → B and q : J → B. Indeed, by Proposition 1.3, they both have sin-
gular fibers that are reduced and normal crossing, so we can apply the theory of
degeneration of Hodge bundles. Set

A = B \B
and

CA = p−1(A), J A = q−1(A).

The sheaves
H1

J = R1q∗Ω
•
J |B(log(JA)),

H1

C = R1p∗Ω
•
J |B(log(CA))

both extend R1q∗C ⊗ OB
∼= R1p∗C⊗OB, and by Theorem 4.12 they are both

isomorphic to the canonical extension. Hence, there is an isomorphism

(4.17) H1

J
∼= H1

C

which extends the existing isomorphism over B. As a consequence, we also get an
isomorphism of the canonical extension of F1(H1

J ) ∼= F1(H1
C), i.e.,

F1(H1

J ) ∼= F1(H1

C),

which in turn implies that there is an isomorphism of the first graded pieces

Gr0(H1

J ) ∼= Gr0(H1

C),
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i.e., an isomorphism
R1q∗OJ

∼= R1p∗OC .

We now want to prove that

Rgq∗OJ
∼=

g∧
R1p∗OJ .

A connection ∇ on a vector bundle H naturally induces connections, denoted by

∇j , on all of the exterior powers
∧j H of H by setting ∇j(hi1∧· · ·∧hij ) =

∑
±hi1∧

· · · ∧∇(hik)∧ · · · ∧hij . By construction, if (H,∇) admits an extension (H,∇) with

only logarithmic poles, then so does (
∧j H,∇j), as we can set (

∧j H) =
∧j H

with the obvious definition for ∇j . This also shows that if the eigenvalues of the

residue of ∇ are 0, then the same is true for the eigenvalues of Res(∇j) (indeed,

both operators will be nilpotent). In particular, the sheaf
∧j H is the canonical

extension of
∧j H.

Since J → B and C → B have a normal crossing boundary, by Theorem 4.12,
by the discussion above, and by uniqueness of the canonical extension, we find that

(4.18)
∧i

H1

J
∼=

∧i
H1

C .

Moreover, since J → B is a family of abelian varieties, we have a natural

isomorphism of VHS
∧j H1

J
∼= Hg

J . Notice that the Hodge filtration on Hg
J is

simply the exterior power of the filtration on H1
J . Using again the result of Katz,

we know that
Hg

J := Rgq∗Ω
•
J (logJ A)

is also the canonical extension. It follows that
g∧
H1

C
∼= Hg

J .

This induces an isomorphism of the respective Hodge filtrations and thus also of
the respective graded pieces. Since Gr0(

∧g H1
J ) ∼=

∧g Gr0(H1
J ), we conclude that

Rgq∗OJ
∼=

g∧
R1p∗OC ,

and the proposition is proved.7 �

5. The second Betti number

This section is devoted to calculating the second Betti number of the relative com-
pactified Jacobian N (assumptions are as in Theorem 2.10). We will assume that
|C| satisfies Assumption 2.17 (recall that this assumption holds for primitive linear
systems; in particular, it holds also for hyperelliptic linear systems). The strategy
is to compare this cohomology group with that of the universal family of curves
in the linear system and, in fact, we will prove that the two groups have the same
dimension. In the whole section, unless otherwise stated, cohomology should be
understood with complex coefficients.

As usual, let χ be a nonzero integer, consider the Mukai vector

w = (0, [C], χ),

7The referee pointed out that this proposition can also be proved using [MRV13, Cor. B].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

RELATIVE JACOBIANS OF CURVES ON ENRIQUES SURFACES 7833

and assume that v = (0, D, 2χ) is primitive. Let A be an ample line bundle on T
such that H = f∗A is v-generic, and set

N = Nw,A

and

Y = Φ(N) ⊂ M = Mv,H .

Theorem 5.1. Let |C| be a linear system of genus g ≥ 3 on a general Enriques
surface T , and let N be as above. Suppose that |C| satisfies Assumption 2.17. Then

h2(N) = 11.

The case when |C| has genus 2 is done at the end of this section. We also recall
that, thanks to [Yos16, Prop. 4.4], Assumption 2.17 is satisfied in many cases, for
example, in low genus and for primitive linear systems.

The proof of the theorem uses the long exact sequence in cohomology associated
to the pair (N,NU ), as done in [Rap08] (for a linear system of curves on a K3
surface), and then relies on the comparison of the local systems associated to the
family of curves and its relative compactified Jacobian.

As usual, we denote by C ⊂ |C| × T the universal family of curves. Consider the
second projection,

p : C → T,

which is a fibration in Pg−2’s outside of the base locus of |C|, over which the fiber
is isomorphic to Pg−1. Using this, we easily see that

(5.1) H1(C) = 0, and that H2(C) =
{
C11 if |C| not hyperellptic,
C13 if |C| is hyperellptic.

Recall that U ⊂ |C| denotes the locus parametrizing smooth curves. Notice that
if |C| is hyperelliptic, then U is strictly contained in the locus U ′ parametrizing
smooth fibers of ν : N → |C|, since the general fiber of ν over the two components
Δ1 and Δ2 is smooth.

Lemma 5.2. Let |C| be a genus g ≥ 2 linear system on a general Enriques sur-
face T , and let k be the number of irreducible components of Δ. Then H1(CU ) ∼=
H1(NU ) ∼= H1(U) = Ck−1.

Proof. The equality H1(U) = Ck−1 is well known; see, for example, [Dim92,
Prop. 1.3]. Since q : CU → U is a smooth morphism,

H1(CU ) ∼= H0(U,R1q∗C)⊕H1(U),

so we need to show only that H0(U,R1q∗C) = 0. This follows from the invariant
cycle theorem [Del71], which in our setting asserts that

H0(U,R1q∗C) = H1(Ct)
inv = Im[H1(C) → H1(CU )],

where H1(Ct)
inv denotes the monodromy invariant part of the first cohomology of

a smooth curve Ct. Since H1(C) = 0, we are done. To finish the proof, we need
only to invoke Lemma 4.10, which guarantees that

R1q∗CC U
= R1ν∗CN U

.

�
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Remark 5.3. By the results of Subsection 1.3 (Corollary 1.16 and Proposition 1.19),
k = 1 unless either |C| is hyperelliptic, in which case k = 4, or |C| is of genus 3 and
defines a degree 4 morphism to P2, as in case (1) of Proposition 1.15, in which case
k = 37.

We will now consider the long exact sequences in cohomology for the pairs
(N,NU ) and (C, CU ). Set

j = # of irreducible components of NΔ,

� = # of irreducible components of CΔ.

So, for example, if |C| is nonhyperellptic, k = j = �. Indeed, by Proposition 1.15,
the general point of every component of the discriminant parametrizes irreducible
curves, and hence the preimage in N of every component of the discriminant is
irreducible. In Corollary 1.16, we remarked that in the nonhyperelliptic case, k = 1,
unless |C| is of genus 3, in which case k = 37. If |C| is hyperelliptic, of genus g ≥ 3,
then by Proposition 1.19 and Corollary 1.4, j = 5 and � = 7.

Lemma 5.4. There are exact sequences

(5.2)
0 → Cj−k+1 → H2(N) → H2(NU ),

0 → C�−k+1 → H2(C) → H2(CU ).

Proof. By the long exact sequence in cohomology of pairs and by the previous
lemma, we need only to show that H2(N,NU ) = Cj and that H2(C, CU ) = C�.
By Poincaré–Lefschetz duality ([Spa66, Chapter 6, Section 2, Thm. 17] or [PS08,
Thm. B.28]),

Hi(N,NU ) ∼= H2n−i(NΔ).

Letting S(NΔ) be the singular locus of NΔ and setting i = 2, we get, since the real
codimension of S(NΔ) in NΔ is greater than or equal to 2,

(5.3) H2n−2(NΔ) ∼= H2n−2(NΔ, S(NΔ)) ∼= H0(NΔ \ S(NΔ)) ∼= Cj ,

where the second to last isomorphism is again given by Poincaré–Lefschetz dual-
ity,8 and the last isomorphism holds because by assumption NΔ has j irreducible
components. The same argument applies to showing that H2(C, CU ) = C�. �

Corollary 5.5. The dimension of the kernel of the natural morphism H2(N) →
H2(NU ) is equal to 1 if |C| is not hyperelliptic, and equal to 2 if |C| is hyperelliptic.

Remark 5.6. This corollary and the lemma before it are the places where we are
using Assumption 2.17. Clearly, if this assumption does not hold, the number of
irreducible components of NΔ cannot be computed in the same way.

Recall that the degree i cohomology groups of a smooth quasi-projective variety
Z are endowed with a canonical mixed Hodge structure (MHS for short) [Del71] of
weight ≥ i. Moreover, if Z is a smooth projective compactification of Z, by [Del71,
Corollary 3.2.17], we have

WiH
i(Z) = Im[Hi(Z) → Hi(Z)],

8Using [Spa66, Thm. 19] plus the fact that the pair (NΔ, S(NΔ)) is taut in N .
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where WiH
i(Z) denotes the weight i part of the MHS on Hi(Z). Applying this to

NU and CU , we find that there are short exact sequences

0 → Cj−k+1 → H2(N) → W2H
2(NU ) → 0,

0 → C�−k+1 → H2(C) → W2H
2(CU ) → 0.

The theorem will follow once we prove the following.

Proposition 5.7. There is an isomorphism of MHS

H2(NU ) ∼= H2(CU ).

Proof of Theorem 5.1. By (5.1), we see that W2H
2(CU ) = W2(H

2(NU )) is equal to
10 in the nonhyperelliptic case, and equal to 9 in the hyperelliptic case, while by
Corollary 5.5, we see that j − k + 1 is equal to 1 in the nonhyperelliptic case, and
equal to 2 in the hyperelliptic case. In either case, we see that dimH2(N) = 11. �

The proof of Proposition 5.7 will take the rest of this section. We start with the
following general statement.

Proposition 5.8. Let p : C → B be a family of smooth connected curves of genus
g over a smooth quasi-projective variety B. For every pair of integers d and d′, let
q : J = Jd → B and q′ : J ′ = Jd′ → B be the relative Jacobians of degrees d and
d′, respectively. There exist cycles Z ∈ CHg(J ×B J ′)Q and P ∈ CH2(C ×B J )Q
inducing

(1) natural isomorphisms [Z]∗ : Rkq∗QJ ∼= Rkq′∗QJ ′ of local systems for every
k,

(2) an isomorphism of MHS [Z]∗ : Hk(J ) ∼= Hk(J ′) for every k,
(3) natural morphisms [P ]∗ : Rkq∗QJ → Rkp∗QC of local systems for every k

(isomorphism for k = 1),
(4) a morphism of MHS [P ]∗ : Hk(J ) → Hk(C) for every k.

Moreover, the morphisms of MHS in (2) and (4) are compatible with smooth base
change and with the Leray filtrations of the two sides.

Proof. Let Σ ⊂ C be a multisection of the family, and let ϕ : Σ → B be the
induced morphism. Let r be its degree. If we base change C to Σ, there is a
tautological section, and hence all relative Jacobians are isomorphic. In particular,
we can find the graph of an isomorphism Γ ⊂ (J ×B Σ) ×Σ (J ′ ×B Σ). Let
ξ : (J ×B Σ)×Σ (J ′ ×B Σ) → J ×B J ′ be the natural projection, and set

Z :=
1

r
ξ∗Γ ∈ CHg(J ×B J ′)Q.

This cycle can be viewed also as an element of H0(B,R2g(q, q′)∗Q) = ⊕H0

(R2g−kq∗QJ ⊗ Rkq′∗QJ ′), where (q, q′) : J ×B J ′ → B is the natural mor-
phism. This defines for every k an element in H0(B,R2g−kq∗QJ ⊗ Rkq′∗QJ ′) =
HomB(R

kq∗QJ , Rkq′∗QJ ′), and hence a morphism

[Z]∗ : Rkq∗QJ → Rkq′∗QJ ′

which by [Ara05, Lemma 5.4] is the composition

(5.4) Rkq∗QJ
p∗
1→ Rk(q, q′)∗Q

∪Z→ Rk+2g(q, q′)∗Q
p2∗→ Rkq′∗QJ ′ ,

where p1 and p2 are the first and second projections from J ×B J ′. To show that
this is an isomorphism, let us look at the stalks of [Z]∗. Let b ∈ B be a point, and let
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σ ∈ Σ be such that ϕ(σ) = b. By (5.4), the stalk at b of the morphism [Z]∗ is pre-
cisely the correspondence [Zb]∗ induced by the cycle Zb = ( 1r ξ∗Γ)b. To understand

what this is, recall that by construction, the isomorphism [Γσ]∗ : Hk(Jb) → Hk(J ′
b)

is the isomorphism in cohomology induced by

Jb → J ′
b ,

L �→ L⊗OCb
((d′ − d)σ).

As in Lemma 4.10, we can see that [Γσ]∗ is independent of the point σ for σ ∈
ϕ−1(b). Since [Γσ]∗ is independent of σ, this implies that [Zb]∗ = r[ 1rΓσ]∗ :

Hk(Jb) → Hk(J ′
b). In particular, [Z]∗ is an isomorphism.

Under the cycle map CHg(J ×B J ′)Q → HBM
2 dimB+2g(J ×B J ′), we can also

view Z as a class in Borel–Moore homology. This defines a map

[Z]∗ : Hk(J ) → Hk(J ′),

α �→ p2∗([Z] ∪ p∗1(α)).

By compatibility of MHS with cup product, this is a morphism of MHS (e.g.,
see [PS08, Section 6.3]). It is shown by [Ara05, Lemmas 5.2 and 5.3] that the
Leray filtration is compatible both with cup product and with pushforward under
smooth projective morphisms as is p2. This shows (see [Ara05], page 586) that
[Z]∗ is compatible with the Leray filtrations on both Hk(J ) and Hk(J ′) and hence
induces morphisms

(5.5) Hi(B,Rjq∗QJ ) → Hi(B,Rjq′∗QJ ′),

which by (1) are isomorphisms. This shows that (2) is an isomorphism as well.
For the last two statements, we may consider the cycle P ∈ CH2(C ×B J )Q

obtained by considering the Poincaré line bundle on (C×BΣ)×Σ (Jr×BΣ), pushing
it forward to C ×B Jr and then dividing by r. With this definition, the proof of (3)
and (4), and of compatibility with the Leray filtrations, follows from the general
theory as in (1) and (2). �

Proof of Proposition 5.7. By the last statement of Proposition 5.8, there is a mor-
phism of MHS

ϕ : H2(NU ) → H2(CU )
which is compatible with the Leray filtrations of NU → U and CU → U . To show
that ϕ is an isomorphism, it is sufficient to show that the natural morphism of local
systems of Proposition 5.8 induce isomorphisms

(5.6) Hi(U,Rjν∗CN ) ∼= Hi(U,Rjq∗CC).

Since for j = 1 there is an isomorphism

R1ν∗CNU
∼= R1p∗CCU

,

we need only to prove (5.6) for (i, j) = (0, 2). By Proposition 5.8, there is a
(nonzero) morphism of local systems R2ν∗CNU

→ R2p∗CCU
, so we have to show

only that it induces an isomorphism at the level of global sections. By the invariant
cycle theorem, we know that

H0(U,R2ν∗CNU
) = H2(Nt,C)

inv

and

H0(U,R2p∗CCU
) = H2(Ct,C)

inv.
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where, since CU → U is a family of smooth connected curves, we know that
H0(U,R2p∗CCU

) is one dimensional. So we have to prove only thatH0(U,R2ν∗CNU
),

too, is one dimensional. Let

ρ : π1(U) → Aut(H1(Ct,C))

be the monodromy representation. By Proposition 5.9, this representation is ir-
reducible. Since ρ preserves the symplectic pairing (·, ·), the isomorphism w :
H1(Ct,C) ∼= H1(Ct,C) induced by (·, ·) is ρ-equivariant. By composing with w,

it follows that any ρ-invariant element of
∧2 H1(Ct,C) can be thought of as a

ρ-invariant morphism

ϕ : H1(Ct,C) → H1(Ct,C).

By Schur’s lemma,

ϕ = λ id

for some λ in C, and

(
∧2

H1(Ct,C))
inv ∼= C.

is one dimensional, generated by the class of the intersection pairing (viewed as the

theta divisor of Nt via the natural isomorphism
∧2 H1(Ct,C) ∼= H2(Nt,C)). �

Proposition 5.9. Let |C| be a linear system of genus g ≥ 2 on a general Enriques
surface T , and let t ∈ U ⊂ |C| be a point. The monodromy representation

(5.7) ρ : π1(U) → Aut(H1(Ct,C))

is irreducible.

Proof. Let N be the degree 0 relative compactified Jacobian of |C|. By Corol-
lary 3.17, we know that the kernel of the natural morphism

π1(Nt) = H1(Ct,Z) → π1(N) → 1

is generated by vanishing cycles. Hence, so isH1(Ct,C) (we freely identifyH1(Ct,C)
withH1(Ct,C) with the monodromy invariant isomorphism defined by Poincaré du-
ality). If the discriminant locus Δ ⊂ |C| is irreducible, then we can conclude by
using [Voi03, Theorem 3.4], which shows that the restriction of the monodromy rep-
resentation to the subspace generated by the vanishing cycles is irreducible provided
that Δ is irreducible. If not, we argue as follows. Let {ci} be the set of vanishing
cycles associated to a set of generators {hi} of H = π1(U), as in Subsection 3.4.

To prove that there are no invariant subspaces, we argue by contradiction and
suppose that there is a nontrivial invariant subspace

F ⊂ H1(Ct,C).

First, we check that the intersection pairing (·, ·) on H1(Ct,C) restricts to a sym-
plectic pairing on F . Indeed, since the {ci} generate H1(Ct,C) and the intersec-
tion pairing is nondegenerate, for every nonzero β ∈ F , there exists an i such
that (β, ci) �= 0. Since F is a ρ-invariant subspace, it follows that the image
of β under the Picard–Lefschetz monodromy transformation along hi, which is
ρhi

(β) = PLhi
(β) = −β + (β, αi)αi, lies in F , and thus

αi ∈ F.
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Hence, F and its orthogonal complement F⊥, which also is monodromy invariant,
are two symplectic vector spaces. Set

2n = dimF, 2m = dimF⊥.

The above argument also shows that every vanishing cycle ci lies either in F or in
F⊥. In particular, we can decompose

R := ker[π1(Nt) → π1(N)] = RF ⊕RF⊥ ,

where RF and RF⊥ are the (nondegenerate) sublattices generated by the vanishing
cycles that lie in F and F⊥, respectively. Since R ⊂ H1(Ct,Z) has index 2 and
(·, ·) is unimodular, it follows that the determinant of the intersection matrix for R
is 4 (see [BHPvdV04, Section 1.2]). Since RF and RF⊥ are symplectic lattices, the
determinants of their intersection matrices are squares, and hence, up to switching
F and F⊥, we may assume that one determinant is 1 and the other is 4. In
particular, up to switching F and F⊥, we may assume that RF ⊂ H1(Ct,Z) is
primitive. Set FZ := RF and EZ := (FZ)

⊥, where the orthogonal complement is
taken in H1(Ct,Z) so that we have decomposed

(5.8) H1(Ct,Z) = FZ ⊕ EZ

as a direct sum of two primitive lattices. Consider now the following commutative
diagram:

H1(Ct,Z)
� � j ��

� �

��

H1(Ct,OCt
)

D ∼
��

H1
dR(Ct,C) p

�� �� H0,1

∂
(Ct)

where the left-hand side vertical arrow is the composition of the base change inclu-
sion H1(Ct,Z) ⊂ H1(Ct,C), and the de Rham isomorphism. The top horizontal
arrow is given by the exponential sequence, the right-hand side vertical arrow is the
Dolbeault isomorphism, and the bottom arrow is the projection onto the Dolbeault
group. The two spaces

F ′ := D−1p(F )

and
E′ := D−1p(E)

contain the lattices j(FZ) and j(EZ), of ranks respectively equal to 2n and 2m, and
are thus of dimension equal to n and m, respectively. It follows that

Ft := F ′/j(FZ)

and
Et := E′/j(EZ)

are two smooth abelian varieties of dimensions equal to n and m, respectively. They
are both principally polarized since FZ and EZ are unimodular. In particular,

(5.9) Jac0(Ct) ∼= Ft × Et.

However, since the intersection product onH1(Ct,Z) can be viewed, via the isomor-

phism
∧2 H1(Ct,Z) ∼= H2(Jac0(Ct),Z), as the theta divisor of Jac0(Ct), it follows

that (5.9) is actually a decomposition as principally polarized abelian varieties. We
have thus reached a contradiction since the Jacobian variety of a smooth curve is
irreducible as a principally polarized abelian variety. �
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5.1. The genus 2 case. When |C| is a genus 2 linear system on a general Enriques
surface T , we get a Calabi–Yau threefold whose Hodge numbers are described by
the following theorem.

Theorem 5.10. Let |C| be a genus 2 linear system on a general Enriques surface
T . Then ν : N → P1 = |C| has exactly 16 singular fibers, each of which is a rank 1
degeneration of an abelian surface, π1(N) = Z/(2), and the Hodge diamond of N
is the following:

1
0 0

0 10 0
1 10 10 1

The singular fibers of the natural abelian surface fibration on Ñ are of the same

kind, and Ñ has the same Hodge numbers.

Proof. Since N is smooth and |C| is one dimensional, the support morphism is flat
and thus Theorem 3 holds unconditionally. As for the singular fibers, this follows
from Proposition 1.19 and the fact that the Jacobian of a union of two smooth
curves meeting transversally in one point is smooth and projective, and the fact
that the compactified Jacobian of an irreducible nodal curve is a rank 1 degeneration
of an abelian variety. As for the second Betti number, the only difference is that
now

H1(CU ) ∼= H1(NU ) ∼= H1(U) = C17

and

H2(C) ∼= C12.

Moreover,

h2(Ñ , ÑU ) = h2(Y, YU ) = h2(N,NU ) = # of irreducible components of NΔ = 18,

h2(C, CU ) = # of irreducible components of CΔ = 20,

so that (notation as above) �− k + 1 = 3 and j − k + 1 = 1. Hence,

W2(H
2(NU )) = W2(H

2(CU )) = C9

and

H2(N) ∼= C10.

To compute the remaining Hodge number H2,1(N), it is sufficient to notice that
χtop(N) = 0, and hence 2H2 + 2 = H3 = 3+H2,1. This follows from the fact that
all of the fibers of N → |C| have trivial topological Euler characteristics. �

The fact that the second Betti number group of this three-dimensional moduli
space is 10 is reminiscent of what happens in the case of K3 surfaces. Indeed, the
second Betti number of the higher dimensional examples is equal to 23 = b2(K3)+1,
whereas that of the two-dimensional moduli spaces is equal to 22.
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Hitchin (French, with English and French summaries), Ann. Inst. Fourier (Grenoble)
66 (2016), no. 2, 711–727. MR3477888

[Cos83] F. R. Cossec, Projective models of Enriques surfaces, Math. Ann. 265 (1983), no. 3,
283–334, DOI 10.1007/BF01456021. MR721398
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de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961),
222. MR0217084
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