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The aim of this paper is to study the singularities of certain 
moduli spaces of sheaves on K3 surfaces by means of Nakajima 
quiver varieties. The singularities in question arise from 
the choice of a non-generic polarization, with respect to 
which we consider stability, and admit natural symplectic 
resolutions corresponding to choices of general polarizations. 
For sheaves that are pure of dimension one, we show that 
these moduli spaces are, locally around a singular point, 
isomorphic to a quiver variety and that, via this isomorphism, 
the natural symplectic resolutions correspond to variations of 
GIT quotients of the quiver variety.
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1. Introduction

A normal variety X is said to have symplectic singularities [3] if its smooth locus Xsm

carries a holomorphic symplectic form σ having the property that, for any resolution 
f : Y → X, the pull-back of σ to f−1(Xsm) extends to a holomorphic form σY on Y . 
When this is the case, X is called a symplectic variety. A resolution f : Y → X of 
a symplectic variety is called symplectic if, in addition, the holomorphic 2-form σY is 
non-degenerate. In particular, a symplectic resolution is crepant. Symplectic resolutions 
are rare: for example, C2n/± 1 with the standard symplectic form on the smooth locus 
is a symplectic singularity, but it admits a symplectic resolution if and only if n = 1.

Examples of symplectic varieties and symplectic resolutions come from both repre-
sentation theory and the theory of moduli spaces of sheaves on K3 or abelian surfaces. 
Among the symplectic varieties coming from representation theory, we find the nilpo-
tent cone of a complex semisimple Lie algebra and its Springer resolution, the quotients 
of C2 by a finite group of symplectic automorphism and their minimal resolutions, and 
Nakajima quiver varieties. Regarding moduli spaces of sheaves on a K3 surface, their 
symplectic singularities come from two sources, when the Mukai vector is not primitive, 
or when the polarization (more generally, the stability condition) is not general. We ex-
plain this in Section 2. In [30], Nakajima showed that the Hilbert–Chow morphism, 
from the Hilbert scheme of points on a holomorphic symplectic surface to the symmetric 
product of the surface itself, can be described in terms of quiver varieties. This fruitful 
interaction between quiver varieties and Hilbert schemes of points on surfaces has gener-
ated several results, especially on the cohomology and Chow groups of Hilbert schemes. 
One of the aims of the present article is to generalize Nakajima’s description to other 
moduli spaces and this is the first step in that direction.

Two particular cases of singularities due to a non-primitive Mukai vector were studied 
by O’Grady [32], [33]. Through this study, he discovered two new examples of irreducible 
holomorphic symplectic manifolds by exhibiting symplectic resolutions of two singu-
lar moduli spaces on a K3 surface and on an abelian surface, respectively. Inspecting 
O’Grady’s construction, Kaledin, Lehn, and Sorger showed, in their inspiring paper [17], 
that in the remaining cases with non-primitive Mukai vector the corresponding moduli 
space has no symplectic resolution. Our aim is to continue their investigation, and to 
study the case when the singularities of a moduli space of sheaves arise from the choice of 
a non-generic polarization. In certain cases, moving slightly the polarization to a general 
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one induces a symplectic resolution of the singular moduli space. Our specific purpose is 
to find a local analytic model of these singularities, as well as of their modular symplectic 
resolutions.

The case we will be studying is the one of pure dimension one sheaves on a K3 
surface S. By definition, these are sheaves whose support, as well as that of any non-trivial 
sub-sheaf, has dimension one. Let us briefly explain the reasons for this choice. Let 
v ∈ H∗

alg(S, Z) be the Mukai vector of a pure dimension one sheaf on S. Yoshioka 
showed that the ample cone Amp(S) admits a finite wall and chamber structure relative 
to v. If v is primitive, then for polarizations lying in a chamber (i.e., not on a wall) the 
moduli space MH(v) is smooth. On the contrary, if a polarization H0 is contained in 
a wall, then the corresponding moduli space MH0(v) is singular. We choose to study 
the case of pure dimension sheaves because if H lies in a chamber containing H0 in 
its closure, then there is natural regular morphism h : MH(v) → MH0(v), which is 
a symplectic resolution. In higher rank, this is not always the case, and one needs to 
look instead at resolutions arising from Matsuki–Wentorth twisted stability or from 
Bridgeland stability conditions. For example, in the case of ideal sheaves our methods 
recover Nakajima’s quiver description of the Hilbert–Chow morphism. These are the 
next steps in our program and will be addressed in a separate work.

To state our main theorem we need to introduce some notation. A quiver, denoted 
by Q, is an oriented graph. Let I = {1, 2, . . . , s} be the set of vertices of Q and denote 
by E the set of edges. For an edge e ∈ E, we denote by s(e) and t(e) ∈ I the source and 
target of e, respectively. Given a dimension vector n = (n1, . . . , ns) ∈ Zs

≥0, we choose, 
for each i = 1, . . . s a complex ni-dimensional vector space Vi and we let

Rep(Q,n) =
⊕
e∈E

Hom(Vs(e), Vt(e)) ⊕ Hom(Vt(e), Vt(e))

be the space of n-dimensional representations of the double quiver Q (defined in Sec-
tion 5). The group G := G(n) =

∏
GL(Vi) acts on Rep(Q, n) via conjugation and 

Rep(Q, n) is naturally equipped with a G-invariant symplectic form. This is the context 
in which one can define a moment map, with values in the Lie algebra g of G

μ : Rep(Q,n) → g,
∑

(xe, ye) �→
∑

[xe, ye]

Via the moment map, it is possible to perform symplectic reduction, the essence of 
which is that the quiver variety M0 := μ−1(0) � G is a symplectic variety. When n is 
primitive, a symplectic resolution of M0 can often be achieved via GIT. More precisely, 
let χ ∈ Hom(G, C) be a rational character of G. By considering the GIT quotient Mχ :=
μ−1(0) �χ G we get a projective morphism

ξ : Mχ → M0, (1.1)
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which, in many cases, is birational. In [31], Nakajima shows that there is a wall and 
chamber decomposition of Hom(G, C) ⊗Q, so that if χ is chosen in a chamber then (1.1)
is a symplectic resolution.

We can now state the main theorem (Theorem 6.5).

Theorem 1.1. Let v be a primitive Mukai vector of a pure dimension one sheaf on S. For 
any singular point x ∈ MH0(v) there exists a quiver Q and a dimension vector n such 
that

i) There is a local isomorphism ψ : (M0, 0) ∼= (MH0(v), x);
ii) For every polarization H in a chamber containing H0 in its closure, there is a char-

acter χH in a chamber of Hom(G, C) ⊗Q such that the symplectic resolutions

ξ : MχH
(n) → M0(n), and h : MH(v) → MH0(v),

correspond to each other via ψ.

Let us make a few remarks.
First of all, recall that given a singular point x ∈ MH0(v), there is a unique up to 

isomorphism H0-polystable sheaf F = ⊕s
i=1F

ni
i in the S-equivalence class represented 

by x. With this notation, the quiver Q has s vertices, and for every i < j, it has 
dim Ext1(Fi, Fj) edges from i to j, and if i = j it has dim Ext1(Fi, Fi)/2 loops at the 
vertex i. This can be defined for arbitrary polystable sheaves, but if F is pure of dimension 
one, then Q is “essentially” the dual graph of its support. Also notice that Aut(F ) = G.

The heart of the main theorem is item (ii) where the isomorphism in item (i) is lifted 
to an isomorphism between symplectic resolutions of the two sides, and the wall–and–
chamber structure of Amp(S) is explicitly compared with the one of Hom(G, C). The 
assignment H �→ χH of part ii) can be chosen to be given by the following formula

G � (g1, . . . , gs) �→ χ(g1, . . . , gs) =
s∏

i=1
det(gi)(Di·H−Di·H0), where Di := c1(Fi),

(for a more precise statement see (iii) of Theorem 6.5).
Next, two words about the isomorphism in statement (i) which holds for any 

polystable sheaf F satisfying the formality property or, more generally, satisfying the 
quadraticity property we will now discuss.

At any point x = [F ], a moduli space MH0(v) is locally isomorphic to the quotient of 
the deformation space DefF by the automorphism group G = Aut(F ). The differential 
graded Lie algebra (dgla) RHom(F, F ) is said to satisfy the formality property, if it is 
quasi-isomorphic to its cohomology algebra Ext∗(F, F ). When this is the case, the defor-
mation space DefF is isomorphic to a complete intersection of quadrics in Ext1(F, F ). 
We call this the quadraticity property of DefF . A result that is instrumental in our proof 
of part (i) is to prove the quadraticity property for DefF .
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Theorem 1.2. Let x = [F ] ∈ MH0(v) be a point corresponding to a H0-polystable sheaf 
F pure of dimension one on S. Then the deformation space DefF is isomorphic to 
a complete intersection of quadrics in Ext1(F, F ).

We thank Z. Zhang for pointing out to us that in a previous version this theorem was 
incorrectly stated. Next is a brief description of the contents of the various sections.

In Section 2 we set up the notation we use for moduli spaces of pure sheaves of 
dimension one on a K3 surface, describing how the choice of a Mukai vector induces a 
wall and chamber structure on the ample cone of S.

In Section 3 we prove Theorem 1.2. Using results by Yoshioka [39] we reduce the proof 
of Theorem 1.2 to a formality result for sheaves of positive rank, due to Zhang [40].

Section 4 is devoted to the study of Kuranishi families for a polystable sheaf on S. 
The formality property for a polystable sheaf F implies that a Kuranishi family is (the 
completion of) a complete intersection of quadrics

κ−1
2 (0) ⊂ Ext1(F, F )

as in (3.5). A subtle point is that the algebraization of this family can be preformed 
G-equivariantly.

In Section 5 we briefly recall the results on quiver varieties we need for our purposes. 
This paves the way to understand the GIT partial desingularizations of κ−1

2 (0) � G in 
terms of the characters of G.

The main theorem (Theorem 6.5) is stated in Section 6. In this section we also relate 
very explicitly the wall and chamber structure of the ample cone of S, to the wall and 
chamber structure of Hom(G, C) ⊗Q. The proof of the main theorem is given in Section 7
and uses the geometry of the Quot scheme, of an étale slice around a point corresponding 
to F , and certain natural determinant line bundles.
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2. Notation and generalities on moduli spaces of sheaves on a K3 surface

Throughout this paper S will denote a projective K3 surface. Given a sheaf F on S, 
its Mukai vector v = v(F ) is defined by

ch(F )
√

td(F ) = (rk(F ), c1(F ), χ(F ) − r) ∈ H∗
alg(S,Z).

The lattice H∗(S, Z) is equipped with the non-degenerate Mukai pairing defined by

v · w = v1w2 − v0w2 − v2w0,

for v = (v0, v1, v2) and w = (w0, w1, w2) in H∗(S, Z). If F and G are two coherent sheaves 
of Mukai vector v and w, respectively, then

χ(F,G) = −v · w.

In the following, by Mukai vector we will mean an element in H∗
alg(S, Z), which is the 

Mukai vector of some coherent sheaf on S. Given a polarization H in the ample cone 
Amp(S), we let MH(v) be the moduli space of H-semistable sheaves with Mukai vector v. 
Here, semi-stability with respect to a given polarization H means Gieseker semi-stability, 
defined in terms of the reduced Hilbert polynomial associated to H.

We denote by

Ms
H(v) ⊂ MH(v)

the locus parametrizing stable sheaves. As proved by Mukai [27], this is a smooth sym-
plectic variety. Indeed, given a point [F ] ∈ Ms

H(v), there a canonical identification

T[F ]M
s
H(v) = Ext1(F, F ),

and obstructions to smoothness lie in the trace free part of Ext2(F, F ) (we will expand on 
this in Section 4, while talking about deformation spaces). By stability and Serre duality, 
Ext2(F, F ) ∼= C, and hence the obstruction space vanishes. Moreover, when non-empty, 
we have

dimMH(v) = v2 + 2.

Finally, the smooth variety Ms
H(v) is endowed with the symplectic form defined at each 

point by the cup product

Ext1(F, F ) × Ext1(F, F ) ∪−→ Ext2(F, F ) = C.

Following Yoshioka [38], we make the following definition
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Definition 2.1. We say that a primitive element v = (v0, v1, v2) ∈ H∗
alg(S, Z) is positive 

if v2 ≥ −2 and one of the following holds:

• v0 > 0;
• v0 = 0, v1 is effective, and v2 �= 0;
• v0 = v1 = 0 and v2 > 0.

Following [2], Theorem 5.2 we can state

Theorem 2.2 (Yoshioka). Let v be a positive element in H∗
alg(S, Z). Then for every H ∈

Amp(S) and every m ≥ 1, the moduli space MH(mv) is nonempty.

Let F be an H-semistable sheaf. It is well known that F admits a Jordan–Hölder 
filtration, which is an increasing filtration with the property that the successive quotients 
are H-stable sheaves of the same reduced Hilbert polynomial as F . Given F , this filtration 
depends on H whereas the direct sum of the graded pieces, which will be denoted by 
grH(F ) and which is an H-polystable sheaf, is uniquely determined by H. Recall that 
two H-semi-stable sheaves F and F ′ are SH -equivalent (and we write F ∼H F ′) if their 
Jordan–Hölder filtration (with respect to H) have isomorphic graded pieces. In symbols

F ∼H F ′ ⇐⇒ grH(F ) = grH(F ′).

The moduli space MH(v) parametrizes SH-equivalence classes of H-semi-stable sheaves 
with Mukai vector v, and since for any SH -equivalence class there is a unique 
H-polystable sheaf, we can say that MH(v) parametrizes isomorphism classes of 
H-polystable sheaves with Mukai vector v. Notice also that if F is H-stable then its 
SH -equivalence class coincides with its isomorphism class.

From the above discussion about tangent and obstruction spaces, it follows that the 
singular locus of the moduli space lies in the strictly semi-stable locus MH(v) \Ms

H(v)
or, equivalently, in the locus parametrizing polystable sheaves with non-trivial automor-
phism group. There are two sources of strictly semi-stable sheaves

1) The Mukai vector v is not primitive, i.e., v = mv, with m ≥ 2 and some v ∈
H∗

alg(S, Z);
2) The Mukai vector v is primitive, but the polarization H is not v-general (see 

Theorem–Definition 2.4 below for the definition of v-general polarization).

Let us comment on these two points. Regarding item 1), we already said that Kaledin, 
Lehn, and Sorger [17] showed that no other example, beyond those studied by O’Grady, 
admit a symplectic resolution.

As for item 2), it is at the center of the present note. This case is quite different in 
nature, in that by changing the stability parameter one can always find a symplectic 
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resolution. For technical reasons which we will explain at the end of this section, we will 
from now on concentrate on the case of pure dimension one sheaves. As mentioned earlier 
we believe that the correct context for handling the general case is that of Bridgeland 
stability conditions; this will be the subject of a forthcoming paper.

Definition 2.3. A sheaf F on S is called pure of dimension one if its support has dimension 
one, and if the same holds for any nonzero sub-sheaf of F .

This means that F can have 1-dimensional, but not 0-dimensional torsion. If F is 
a pure dimension one sheaf then its Fitting support, which is one-dimensional by defini-
tion, is a representative of its first Chern class. By definition, the Mukai vector of a pure 
dimension one sheaf F of the form

v(F ) = (0, c1(F ), χ(F )),

and is positive in the sense of Definition 2.1, as soon as χ(F ) �= 0. Let g be the arithmetic 
genus of the Fitting support of F . Since v2 = c1(F )2 = 2g−2, it follows that MH(v) has 
dimension 2g. In fact, there is a natural support morphism from MH(v) to the linear 
system defined by c1(F ) (which is g-dimensional since we are on a K3 surface) that 
realizes this moduli space as a relative compactified Jacobian of the linear system. Since 
this morphism will not play a role in the rest of the paper, we will not say anything more 
about it.

For a sheaf F of pure dimension one, Gieseker semi-stability with respect to an ample 
line bundle H is expressed by means of the slope

μH(F ) := χ(F )
c1(F ) ·H .

From this one sees directly that, if the Fitting support D is reduced and irreducible, then 
F is stable with respect to any polarization. In general, the stability of F with respect 
to H is determined by the quotient sheaves supported on the sub-curves of D (for e.g., 
cf. Lemma 3.2 in [1]).

Theorem–Definition 2.4 (Yoshioka [38], Huybrechts-Lehn [12]). Let v ∈ H∗
alg(S, Z) be a 

positive Mukai vector. There is a countable set of real codimension one linear subspaces 
in Amp(S) ⊗ZR (called the walls associated to v) such that if H lies in the complement of 
these subspaces then there are no strictly H-semistable sheaves with Mukai vector v, while 
if H lies on one of these walls, then there are strictly H-semi-stable sheaves with Mukai 
vector v. A connected component of the complement of the walls is called a chamber. Let 
W1, . . . , Wk be a (possibly empty) set of walls. For H varying in W1∩· · ·∩Wk but not on 
any other wall, the moduli space MH(v) is independent of H (a connected component of 
the set of such polarizations is called a face; in particular a chamber is a face). The set 
of walls is locally finite and, in the case where v is the Mukai vector of a pure dimension 
one sheaf, it is actually finite.
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If H and H ′ are polarizations, we say that H is adjacent to H ′, if H ′ lies in the closure 
of the face containing H.

In the case v is the Mukai vector of a pure dimension one sheaf, it is fairly straight-
forward to describe the walls associated to v.

Proposition 2.5. Let v = (0, D, χ) be a positive Mukai vector (i.e. D is an effective curve, 
and χ �= 0).

1) The walls associated to v (briefly, the v-walls) are described by equations of the form

χ (Γ · x) = χΓ(D · x)

where Γ ⊂ D is a subcurve and χΓ ranges in a finite set of integers determined by v

and by Γ.
2) Let H0 be a polarization that is not v-generic. Then, there exists a natural stratifica-

tion of the singular locus of MH0(v), whose strata are in one-to-one correspondence 
with decompositions

v =
∑

mjw
(j),

where mj > 0 and where w(j) are rank zero positive Mukai vectors.
3) For any H adjacent to H0, there exists a morphism (cf. [41])

h : MH(v) −→ MH0(v)

F �−→ grH0
(F )

which associates to each H-semistable sheaf F the polystable sheaf grH0
(F ) and which 

is an isomorphism over the locus of H0-stable sheaves. In particular, if the general 
member of the linear system is an integral curve, then h is birational.

Proof. We start with the proof of (1). Let H be a polarization lying on a wall, and let F
be a strictly H-semistable sheaf with Mukai vector v. This means that for every quotient 
F → G, with Fitting support equal to some subcurve Γ ⊂ D we have

χ

D ·H ≤ χ(G)
Γ ·H , (2.1)

and that equality holds for a least one quotient sheaf G. It follows that a necessary 
condition for H to lie on a v-wall is that there exist a subcurve Γ such that the rational 
number

χΓ := χ (Γ ·H)

D ·H
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is an integer. Conversely, if the rational number χΓ is an integer, we can exhibit a 
strictly H-semi-stable sheaf F with Mukai vector v in the following way. Let Γ′ ⊂ D be 
the complementary sub-curve. Since χΓ is an integer if and only if χΓ′ = χ

D·H (Γ′ · H)
is an integer, we only need to produce H-semistable sheaves G and G′ with Mukai 
vectors w = (0, Γ, χΓ) and w′ = (0, Γ′, χΓ′), respectively. Indeed, then we can simply set 
F = G ⊕G′. This can be achieved thanks to Theorem 2.2 which guarantees that MH(w)
and MH(w′) are both non-empty.

The stratification in (2) is defined in terms of the type of a polystable sheaf, in the 
following sense. For j = 1, . . . , s, let mj be a positive integer and wj a positive, rank-zero, 
Mukai vector. An H0-polystable sheaf F , is said to be of type

τ = (m1, w1; · · · ;ms, ws) (2.2)

if it is of the form ⊕s
i=1F

mi
i , where the Fi’s are distinct H0-stable sheaves of Mukai 

vector wi. Notice that each stratum is isomorphic to an open subset of (a finite quotient 
of) the product

MH0(w1) × · · · ×MH0(ws).

As for (3), we argue as follows. Let F be the face containing H, and let F be an H-semi-
stable sheaf with Mukai vector v. We need to show that F is H0-semistable. Since F
is H-semistable, inequalities hold in (2.1); some are strict inequalities, whereas those 
corresponding to the equations of F are equalities. Since H0 is contained in the closure 
of F, we can move H within F until it hits its boundary at the face F0 containing the 
polarization H0. Since F0 lies in the boundary of F, the equalities all continue to hold. As 
for the inequalities, they will either continue to hold strictly or, those defining F0 in F, 
will turn into equalities and hence F is H0-semistable. This defines the morphism h. As 
for the statement about the birationality, it is clear in the case when |D| has no fixed 
component (indeed h is an isomorphism on the locus of sheaves with irreducible support) 
but, with a little more work, it can be shown in general. �
Definition 2.6. We say that a v-wall W is relevant to the sheaf F , if the polarizations 
parametrized by W make F strictly semistable.

Notice that if H is v-generic (i.e., F is a chamber), then h : MH(v) −→ MH0(v) is a 
symplectic resolution, whereas in general it is only a partial resolution. The aim of this 
article is to study these morphisms, locally around a point [F ] ∈ MH0(v). We will do so 
by means of Nakajima quiver varieties that will be introduced in Section 5.

Observe that item (3) in Proposition 2.5 can fail for sheaves of positive rank (where 
the reduced Hilbert polynomial has two coefficients, see Example 2.7 below), in the sense 
that the morphism associated to a degeneration of the polarization can have nonempty
indeterminacy locus. This failure is precisely the reason for restricting to pure dimension 
one sheaves.
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For higher rank, one needs to consider either Bridgeland stability conditions, where the 
analogue of the morphism h is always regular, or twisted Gieseker stability as introduced 
by Matsuki and Wentworth [26] (see also [41]). This will be the subject of a forthcoming 
paper. One example where the morphism is not defined is the following.

Example 2.7. Let S be a K3 surface whose the Picard group is generated by two elliptic 
curves e and f , with e · f = 2. Let n ≥ 0 be a positive integer, let Iz ⊂ OS be the ideal 
sheaf of a length n subscheme z of S, and set L = f − e. We claim that for n � 0 the 
rank two sheaf defined by a non-split extension

0 → OS → E → L⊗ Iz → 0

has the following property: there is a chamber in Amp(S) where E is stable, but there 
is a wall of this chamber where E is unstable. First observe that for H0 = e + f the 
sheaf E is unstable since μH0(E) = 0 and χ(E)/2 < χ(OS). Second, we claim that for 
any H = ae + bf with b < a < 3b, the sheaf E is H-stable. Indeed, to check Gieseker 
stability of E we have to compare the slope of E with that of rank one subsheaves 
G ⊂ E. Set Γ = c1(G). Since for a > b, μH(E) > 0 we can assume that the composition 
G → E → L ⊗Iz is non-zero. From this it follows that D := L ⊗Γ−1 is effective and, since 
we can assume G to be saturated in E and since the extension defining E is non-trivial, 
we can assume that D is non-trivial. We therefore only have to worry about line bundles 
Γ satisfying

L ·H
2 ≤ Γ ·H < L ·H. (2.3)

Since L ⊗ Γ−1 is effective but L ⊗ Γ−2 cannot be effective, we can write Γ = f − ce, 
for some c ≥ 2. It is now easy to check that for H in the range above there is no Γ
satisfying (2.3).

3. Quadraticity of Kuranishi families

Let H0 be a polarization on S and let

F = Fn1
1 ⊕ · · · ⊕ Fns

s (3.1)

be an H0-polystable sheaf on S. Here the Fi are the distinct H0-stable factors of F . We 
denote by G the automorphism group of F

G := Aut(F ) ∼=
s
⊕
i=1

GL(ni) (3.2)

Consider the functor (cf. [12] Section 2.1.6)

DefF : Art −→ Sets
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from the category of local Artinian C-algebras to the category of sets, which assigns to 
a local Artinian C-algebra A the set DefF (A) of equivalence classes of pairs (FA, ϕ), 
where FA is a flat deformation of F , parametrized by A, and ϕ : FA ⊗ C → F is an 
isomorphism. Two pairs (FA, ϕ) and (F ′

A, ϕ
′) are equivalent if there is an isomorphism 

ψ : FA → F ′
A such that ϕ′ ◦ ψ = ϕ. It is well known that functor DefF is a deformation 

functor (in the sense that it satisfies conditions H1 and H2 of [36]). Its tangent space is 
canonically identified with

Ext1(F, F ),

whereas the obstruction space with

Ext2(F, F )0 := ker[tr : Ext2(F, F ) → H2(OS)].

By using the definition of obstruction space, one gets the so-called Kuranishi map

κ = κ2 + κ3 + · · · : ̂Ext1(F, F ) −→ Ext2(F, F )0 (3.3)

with values in the obstruction space, which is a formal map, defined inductively on the 
order, having the property that the formal scheme

Dκ := κ−1(0) (3.4)

parametrizes a formal deformation (F̂ , ϕ̂) of F . This means that, if A denotes the local 
Artinian k-algebra defined by Dκ = SpecA and m ⊂ A is the maximal ideal, then (F̂ , ϕ̂)
is a collection of compatible families {(Fn, ϕn) ∈ DefF (A/mn)}. This family, called 
formal Kuranishi or versal family, has the following versal property:

for any local Artinian k-algebra B and any equivalence class (FB, ϕ) in DefF (B) there 
is a morphism SpecB → Dκ inducing (FB , ϕ) by pull-back. This morphism is not unique, 
but the induced tangent map is unique.

This property determines Dκ uniquely, but not up to unique isomorphism. The for-
mal scheme Dκ is called the versal deformation space (or hull) by Schlessinger [36]
and Rim [34], and miniversal deformation space by Hartshorne. The versality property 
translates into the fact that the second order term (but not the higher order ones) of the 
Kuranishi map is uniquely determined. More specifically, it can be shown [17] that this 
term coincides with the cup product map, i.e.,

κ2 : Ext1(F, F ) −→ Ext2(F, F )0
e �−→ κ2(e) = e ∪ e

(3.5)

A way to construct Kuranishi maps and versal deformation spaces is within the frame-
work of differential graded Lie algebras (dgla for short). The advantage of this point of 
view is that it allows, in some cases, to see some properties of the Kuranishi map that 
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cannot be seen otherwise. Given a dgla there is an abstract way of assigning to it a 
deformation functor (cf. [11], [23], [24]) and this deformation functor admits a formal 
versal deformation space, defined by an equation in the first graded piece of the graded 
algebra. The quadratic term of the equation is canonically identified with the Lie bracket, 
or commutator, on the first graded piece of the graded algebra. Two observations are 
important for the following. First, if we start from the dgla RHom(F, F ), then the de-
formation functor is exactly the deformation functor DefF defined above (cf. [23]) and 
the versal deformation space can be identified with the base of a formal Kuranishi map 
(with the equation corresponding to the formal Kuranishi map defined above). Second, if 
the dgla has trivial differential, then the equation defining the versal deformation space 
is quadratic [11]. In particular, if this is the case then the formal deformation space can 
be defined by a quadratic equations, i.e. referring to (3.5), we have

DefF ∼= κ−1
2 (0) (3.6)

The crucial observation ([11], [23]) is that given two quasi-isomorphic dgla’s, the versal 
deformation spaces associated to them are isomorphic. Recall that a dgla L is formal if 
there exists a pair of quasi-isomorphisms of dgla’s: L ← M → H, with H having trivial 
differential.

Definition 3.1. We say that a sheaf F satisfies the dgla-formality condition if the dgla 
RHom(F, F ) is formal. We say that F satisfies the quadraticity property if the defor-
mation space is a complete intersection of quadrics, i.e. if (3.6) holds. The formality 
property implies the quadraticity property.

In [16], Kaledin and Lehn prove the following proposition

Theorem 3.2 ([16]). Let S be a K3 surface, and let Iz be the ideal sheaf of a subscheme 
z ⊂ S of finite length. Then the polystable sheaf E = I⊕n

z satisfies the formality property, 
i.e., the dgla RHom(E, E) is formal.

Inspired by Kaledin Lehn’s work, Zhang [40] proves the following theorem.

Theorem 3.3. Let (S, H) be a polarized K3 surface. Let v0 be a primitive Mukai vector 
of positive rank and such that there is at least one μH-stable sheaf on S with Mukai 
vector v0. Let m be a positive and let E be an H-polystable sheaf with Mukai vector 
v = mv0 whose decomposition in nonisomorphic stable summands is given by

E =
s
⊕
i=1

Eni
i

Suppose that v(Ei) ∈ Nv0 and, for every i, let ri be the rank of Ei. Then E satisfies the 
dgla-formality property in following cases:
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(1) when ri ≥ 2 for all i;
(2) when ri = 1 for all i.

The proof builds on the work of Verbitsky [37], who introduced the notion of hyper-
holomorphic bundles and of Kaledin [15], which gives certain criteria for when formality 
holds in families (see also [22]). The proof of part (1) uses the Ulhenbeck–Yau theorem on 
the existence of a Hermitian–Einstein connection on stable vector bundles, which under 
the assumptions of the theorem guarantees a Hermitian–Einstein connection on E, and 
therefore on E⊗E∨. This allows one to conclude that E⊗E∨ is a hyperholomorphic sheaf 
which, in turn, allows one to use Theorem 4.3 of [15]. Recall that given a hyperkähler 
metric on a K3 surface S, there is a whole P1 of complex structures for which that metric 
stays hyperkähler. More precisely, one defines a twistor family X → P1, whose total space 
is diffeomorphic to X × P1 and whose fibers are copies of X equipped with the complex 
structure parametrized by P1. Roughly speaking, a hyperholomorphic sheaf is a sheaf F
on X that is holomorphic with respect to all of these complex structures. Since for the 
general complex structure parametrized by this P1, the corresponding Kähler surface has 
no holomorphic curves, a necessary condition for a sheaf to be hyperholomorphic is that 
its first Chern class is trivial (for a partial converse see Theorem 3.9 of [37]). For this 
reason one cannot use this strategy to prove the a formality result in the case of pure 
dimension one sheaves.

Remark 3.4. 1) A first remark about Zhang’s paper is the following. It is not immediately 
apparent that the hyperholomorphic sheaf F extending E⊗E∨ carries an algebra struc-
ture. The author explained to us how to proceed. The algebra structure on F = E∨⊗E, 
is given by a contraction map F ⊗ F → F , that is by a global section of the sheaf 
G = F∨ ⊗ F∨ ⊗ F on X. To defined the algebra structure it is enough to extend this 
section to a global section of G = F∨ ⊗ F∨ ⊗ F . Now G is a hyperholomorphic sheaves 
and one may use Proposition 3.4 [40] (i.e. Proposition 6.3 in [37]) on G and G, for i = 0.

2) A second important remark about Zhang’s paper is the following. Looking into the 
proof of Zhang’s theorem, one sees that the assumption on H and E is not necessary since 
for the existence of a Hermitian–Einstein connection on E one only needs to assume that 
the ratio (c1(Ei) ·H)/ri is independent of i, a condition which is satisfied by assumption 
since E is polystable. It follows that one can state the theorem also in the case where 
the polystability of E comes not from the non-primitiveness of the Mukai vector, but 
from the fact that the polarization is not general.

We will now describe a method to reduce the problem of quadraticity of the deforma-
tion space DefF for a pure dimension one sheaf F , to the case of formality for positive 
rank sheaves where one can use Zhang’s result. A first example of this procedure is given 
by Lazarsfeld–Mukai bundles.

As usual, let S denote a K3 surface. We will say that a pure, dimension-one sheaf F
on a K3 surface S, is non-special if the following conditions are satisfied.
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a) F is generated by its sections,

b) H1(S, F ) = 0 .
(3.7)

The kernel MF of the evaluation of global sections of F , defined by the exact sequence

0 → MF → H0(S, F ) ⊗OS → F → 0, (3.8)

is locally free and its dual

EF = M∨
F

is called the Lazarsfeld–Mukai sheaf associated to F .
For the first properties of these bundles see [20]. Taking Hom( , OS) of (3.8) one easily 

establishes the following equalities

h1(S,MF ) = h1(S,EF ) = h2(S,EF ) = h0(S,MF ) = 0 (3.9)

and since we are assuming H1(S, F ) = 0, from the dual of (3.8) we also get an isomor-
phism

H0(S, F )∨ ∼= H0(S,EF )

The following two facts can be easily verified directly.

Fact 1. There is an isomorphism of differential graded Lie algebras:

Ext•(F, F ) ∼= Ext•(MF ,MF ) = Ext•(EF , EF ).

Fact 2. Let G = Aut(F ). Then G ∼= Aut(MF ) and there is a G-equivariant isomorphism 
of functors

η : DefF → DefMF
.

Putting together the two facts above we get the following result.

Proposition 3.5. Let S be a K3 surface. Let F be a non-special pure dimension one 
sheaf. Let MF be its Lazarsfeld–Mukai bundle. There exists a G-equivariant isomorphism 
between DefF and DefM . In particular, DefF enjoys the quadraticity property if and only 
if the DefMF

does, too.

From Zhang’s Theorem and Remark 3.4 we then get the following quadraticity crite-
rion in the pure dimension one case.
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Proposition 3.6. Let (S, H0) be a polarized K3 surface. Let v = (0, [C], χ) be a Mukai 
vector and let F be a H0-polystable sheaf on S, pure of dimension one and non-special, 
and with Mukai vector equal to v. If MF is H0-polystable, then both DefMF

and DefF
satisfy the quadraticity property.

The main result of this section is the following theorem.

Theorem 3.7. Let x = [F ] ∈ MH0(v) be a point corresponding to a H0-polystable sheaf F
pure of dimension one on S. Then the deformation space of F satisfies the quadracity 
property.

In view of Proposition 3.6, in order to prove this theorem it suffices to reduce ourselves 
to the case where F is non-special and then prove that MF is H0-polystable. The first task 
is easily fulfilled. In fact, tensoring F with any power of H0, preserves H0-(poly)stability 
of F and gives an isomorphism of MH0(v) onto MH0(vn), where vn = v(F (nH0)). Using 
Lemma 7.6 we may assume that F is non-special.

We are thus reduced to proving the following theorem. In proving this theorem, we 
will appeal to results by Yoshioka that were kindly pointed out to us by the author 
himself.

Theorem 3.8. Let F = ⊕Fni
i be a non-special, pure, dimension one sheaf on S which is 

polystable with respect to a given polarization H0. Then MF is H0-polystable.

Proof. More precisely we will make use of Proposition 1.5 and Corollary 2.14 in Yosh-
ioka’s paper [39]. When possible, will also adopt the notation of that paper.

Consider the Mukai vector v0 = (1, 0, 0). A sheaf E on S such that v(E) = v0, is of 
the form E = Ip, for some p ∈ S. Moreover, every polarization H is v0-generic. As in 
Theorem 1.7 of [39], we set

Y = MH(v0) ∼= S

We then let E = IΔ ⊂ S × Y and consider the diagram

IΔ ⊂ S × Y
pS pY

S Y

and the Fourier–Mukai equivalence attached to E :

FE : Db(S) −→ Db(Y )

G �−→ Rp (E ⊗ p∗G)
Y ∗ S
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Set

G1 = E∨
|S×{y} = OS , G2 = E|{x}×Y = Ix ⊂ OY

Let v be a Mukai vector. We should think of v as v = v(F ) or as v = vi = v(Fi), 
accordingly

v = (0, D, χ) , or v = (0, Di, χi) , with χ �= 0 , χi �= 0

We can write

v = (0, D, χ) = l(1, 0, 0) + a(0, 0, 1) + dH0 + D,

where

D ∈ (NS(S) ⊗Q) ∩H⊥
0 , dH0 + D = D, d ∈ 1

H2Z

and l = 0, a = χ. We are thus in case 2) of Theorem 1.7 in [39], so we must be sure that

a > max
{

3, d
2H2

0
2 + 1

}
(3.10)

Now d (or the di’s) only depend on D (or on the Di’s) and this is a finite set of numbers. 
Twisting F and the Fi’s by nH0 does not change the H0-stability of the Fi’s or the 
polystability of F but allows one to increase at will the value of a = χ (or a = χi) 
insuring the validity of (3.10). From Theorem 1.7 [39] we infer that FE induces an 
isomorphism

MH0(v)ss
∼=−→ MG2

Ĥ0
(FE(v))ss , (G1 = OS)

which preserves S-equivalence classes. We must then identify the polarization Ĥ0, the 
Mukai vector FE(v) and address the question of G2-twisted-Ĥ0-semistability. Since F
and the Fi’s are non-special we have

FE(F ) = MF , FE(Fi) = MFi

so that

FE(v) = (χ,−D, 0) , FE(vi) = (χi,−Di, 0).

Moreover,

0 → FE(H0) → H0(S,O(H0)) ⊗OS → OS(H0) → 0
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so that, by formula (1.4) in [39], we get

Ĥ0 = −[FE(H0)]1 = H0

The conclusion is that, if Fi is H0-stable, then MFi
is G2-twisted-H0-stable. It remains 

to prove that MFi
is in fact μH0 -stable. For this we use Corollary 2.14 in [39]. To put 

ourselves in the hypotheses of that corollary, we must check that MFi
is μH0-semistable. 

Set G = G2(= Ix) and M = MFi
. By definition of G-twisted stability we have

χG(N(nH0))
rkG(N) <

χG(M(nH0))
rkG(M) , 0 � N � M , and n >> 0 ,

where

χG(x) = v(G)∨ · v(x) , and rkG(x) = [ch(G)∨ · ch(x)]0

Since

v(M) = (χi, −Di, 0)

we have

χG(M(nH0))
rkG(M) = n2H2

0
2 − n

Di ·H
χi

Suppose N = (r, s, t) with s = −Γ, then

χG(N(nH0)) =
(

1, nH0,
n2H2

0
2

)
· (r, −Γ, t)

Thus

χGN(nH0))
r

= n2H2
0

2 − n
Γ ·H0

r
+ t .

Now, G-twisted-H0-stability means that, for n >> 0,

t− n
Γ ·H0

r
+ n2H2

0
2 < −n

Di ·H
χi

+ n2H2
0

2

i.e.

t + nμH0(N) < nμH0(M) for n >> 0

This shows that μH0(N) ≤ μH0(M), proving the semistability of M . This ends the proof 
of Theorem 3.8 and thus also of Theorem 3.7. �
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4. G-equivariant Kuranishi families

Let us consider again the Kuranishi map (3.3). It is important to remark that since 
the Kuranishi map is not unique, there is no a priori reason for it to be G-equivariant 
(with respect to the natural action of G on the Ext-groups), nor for there to be a natural 
action of G on the base of a versal family. However, with some additional work, one 
can construct a G-equivariant map formal Kuranishi map κ and a G-equivariant formal 
family (F̂κ, ϕ̂κ) = {(Fn, ϕn) ∈ DefF (A/mn)} parametrized by the corresponding Dκ; 
roughly speaking, this means that for every n the sheaf Fn is G-linearized with respect 
to the action of G on κ−1(0)n = SpecA/mn. The reader may look at Rim’s paper [34]
for a more detailed discussion. The main result of [34] is the following theorem.

Theorem 4.1 (Rim). Let the notation be as in the rest of the section. A G-equivariant 
formal Kuranishi map κ and a G-equivariant formal family (F̂κ, ϕ̂κ) on κ−1(0) exist and 
are unique up to unique G-equivariant isomorphism.

The abstract nature of this theorem makes it often hard to compute, in practice, 
G-equivariant maps and families. A very nice and explicit construction of a G-equivariant 
formal Kuranishi map (even though not of a G-equivariant family) is given in Appendix A 
of [21]; as for G-equivariant families see Proposition 4.2 below.

The next important feature of the Kuranishi map and of the Kuranishi family comes 
in relation to the Quot scheme. Let us start with some notation. We denote by QuotH0

the irreducible component of an appropriate Quot scheme, constructed by using the 
polarization H0, containing the H0-polystable sheaf F , and we let GL(V) be the natural 
group acting on it (the appropriate Quot scheme needed for the proof of the main 
theorem will be specified in Section 7.2). Let QuotssH0

be the open subset parametrizing 
H0-semistable sheaves and let us fix a point q0 ∈ QuotssH0

, corresponding to the sheaf F . 
It is well known that Stab(q0) ∼= G, so that the point q0 has reductive stabilizer. One 
can therefore consider an étale slice

Z ⊂ QuotssH0
(4.1)

at q0 for the action of GL(V) on QuotssH0
(cf. [9]). By definition, the étale slice Z is 

a locally closed and G-invariant affine subvariety of QuotssH0
containing q0, having the 

property that the natural morphism

ε : Z � G → QuotssH0
� GL(V) = MH0 , (4.2)

is étale (for a more precise statement see, for example, Theorem 5.3 of [9]). For later use 
we now present a brief sketch of the construction of Z.

It is known that since F is an H0-semistable point, one can use the natural 
GL(V)-linearized ample line bundle on QuotH0

(cf. [12], Section 4.3), to define a 
GL(V)-equivariant embedding of an affine open neighborhood of q0 ∈ QuotssH into an 
0
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affine space AN , acted on linearly by GL(V), so that the G-fixed point q0 ∈ QuotssH0

is mapped to the origin in AN . Recall that the tangent space to the GL(V)-orbit 
of q0 is canonically identified with Ext1(F, F ) and that the affine space AN can be 
identified with its tangent space T0AN at the origin. Consider the natural embedding 
Ext1(F, F ) ⊂ T0AN , and let t : Ext1(F, F ) → T0AN ∼= AN be the composition. One can 
check that

Z = t(Ext1(F, F )) ∩ QuotssH0
,

satisfies (4.2) above. We would like to ’think of Z as sitting G-equivariantly inside 
Ext1(F, F ). This is possible locally: if s : T0AN → Ext1(F, F ) is a G-equivariant splitting 
of the natural inclusion, then the composition

Z ↪→ AN ∼= T0AN s→ Ext1(F, F )

is surjective at the level of tangent spaces and hence is étale onto its image. This means 
that if we look at the completion of the étale slice Ẑ at the point q0, then we can think 

of it as sitting G-equivariantly inside ̂Ext1(F, F ). Over QuotssH0
×S there is a universal 

family F̃ of sheaves and we consider its restriction to Z × S:

F = F̃|Z×S (4.3)

By construction, the action of G on Z is modular, i.e., for q ∈ Z and g ∈ G the sheaf Fq

is isomorphic to the sheaf Fgq and, moreover, since it is the restriction of F̃ , the family 
F is G-linearized (this will play an important role in Section 7.3). Notice that since 

Ẑ ⊂ ̂Ext1(F, F ) parametrizes a formal family we can construct, again using the definition 

of the obstruction space, a formal Kuranishi map κZ : ̂Ext1(F, F ) −→ Ext2(F, F )0 such 
that

Ẑ ∼= κ−1
Z (0). (4.4)

Notice, also that since this family is G-linearized it is also G-equivariant in the sense of 
Rim. We sum up these results in the following proposition

Proposition 4.2. Let κ : ̂Ext1(F, F ) → Ext2(F, F )0 be a formal G-equivariant Kuranishi 
map for the polystable sheaf F and let F̂ be a G-equivariant versal family parametrized by 
κ−1(0) (which exist by Rim’s theorem). Then the local completion Ẑ of Z at q0 is isomor-
phic to κ−1(0) and, under this isomorphism, the universal family F induces F̂ . Moreover, 
there is a unique G-equivariant isomorphism Ẑ ∼= κ−1(0). In particular, κ−1(0) and F̂
are G-equivariantly algebraizable.

When the dgla-formality property holds for F , we can always find a Kuranishi map 
so that the corresponding base of the versal family for F is the completion at the origin 
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of a complete intersection of quadrics in affine space. In particular, the base of the 
Kuranishi family coincides with its tangent cone and the Kuranishi map is automatically 
G-equivariant.

Remark 4.3. Consider a polystable sheaf F enjoying the dgla-formality property. We then 
have at our disposal two Kuranishi families. The base, κ−1

2 (0), of one family is a complete 
intersection of quadrics, it is naturally acted on by G, but the family parametrized by 
it has no a priori natural G-linearization. The base of the second family is an analytic 
neighborhood of a point in an étale slice Z ⊂ Quot and the family of sheaves parametrized 
by it has a natural G-linearization. The advantage of the first family is the simplicity of 
its base, while the advantage of the second is its G-linearization.

The central result in this section is the following proposition that reconciles these two 
advantages.

Proposition 4.4. Let F be a polystable sheaf as above. Assume that F satisfies the dgla-
formality condition. Let then κ = κ2 be the quadratic Kuranishi map. Let q0 ∈ QuotssH0

be the point corresponding to F and let (Z, q0) be an étale slice through q0. Then, there 
is a G-equivariant local analytic isomorphism,

ψ : (Z, q0) ∼= (k−1
2 (0), 0)

inducing the identity on tangent spaces: Tq0(Z) = Ext1(F, F ) = T0(k−1
2 (0)). In partic-

ular, there is a G-linearized deformation of F parametrized by a G-equivariant analytic 
open neighborhood of the origin in k−1

2 (0).

The proof of the preceding proposition is based on two results. The first one is a formal 
version of the proposition itself, while the second one consists in a G-equivariant version 
of Artin’s approximation theorem.

Before starting with the formal result, we need some notation. Let (A, m) and (B, n)
be local, complete k-algebras. For s > r, let

ηr,s : A/ms+1 → A/mr+1 , ζr,s : B/ms+1 → B/mr+1

be the natural projections.

Definition 4.5. Let (A, m) and (B, n) be as above. A formal isomorphism between (A, m)
and (B, n) is a collection u = {ur}r∈N of compatible isomorphism ur : A/mr+1 →
B/nr+1, for r > 0. This means that ζr,sus = urηr,s, for s > r. When this compatible 
system exists we say that the single isomorphisms ur extend to the formal isomorphism u.

Consider the algebraic group of k-algebra automorphisms of A/mr+1.

Autr(A) := Autk-alg(A/mr+1)
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with the obvious projections

pr,s : Auts(A) −→ Autr(A) , s > r.

Autr(A) = {hr ∈ Autr(A) | hr extends to a formal automorphism} (4.5)

Definition 4.6. An action of G on (A, m) is the datum of a sequence of group homomor-
phism

ur : G −→ Autr(A) (4.6)

such that pr,sus = ur for s > r.

The proof of the following proposition, which is the first ingredient in the proof of 
Proposition 4.4, was communicated to us by Jason Starr.

Proposition 4.7 (J. Starr). Let (A, m) and (B, n) be local, complete k-algebras acted on by 
a reductive algebraic group G. Assume that there is a formal isomorphism between (A, m)
and (B, n) inducing a G-equivariant isomorphism from A/m2 to B/n2. Then there is a 
G-equivariant formal isomorphism between (A, m) and (B, n).

Proof. Consider the affine scheme of isomorphisms between A/mr+1 and B/nr+1:

Isor(A,B) = Iso(A/mr+1, B/nr+1)

In analogy with (4.5) we denote by Isor(A, B) the closed subscheme of Isor(A, B) of 
those isomorphisms that extend to formal isomorphisms. By definition the projection 
map

pr : Isor(A,B) −→ Isor−1(A,B) (4.7)

is surjective. Since, by hypothesis, Iso1(A, B) is non-empty, so is Isor(A, B), for every 
r > 1.

The automorphism group Autr(A) (resp. Autr(B)) acts on the right (resp. on the 
left) on Isor(A, B). The induced actions on Isor(A, B) are faithful and transitive, so 
that Isor(A, B) is both an Autr(A)-torsor and a Autr(B)-torsor. Using (4.6), we get an 
induced action of G on Isor(A, B) and on Isor(A, B), via conjugation. A fixed point in 
Isor(A, B) for this action is nothing but a G-equivariant isomorphism between A/mr+1

and B/nr+1. By Hypothesis Iso1(A, B) has a G-fixed point. We must show that, for 
r > 1, the projection map (4.7) is surjective on G-fixed points.

For r > 1, set

Kr(A) = ker{Autr(A) → Autr−1(A)} , Kr(A) = ker{Autr(A) → Autr−1(A)}
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Both Kr(A) and Kr(A) are normal abelian subgroups. We think of them as addi-
tive groups and in fact as finite-dimensional k-vector spaces. The group G acts on 
these two vector spaces via conjugation, yielding two finite dimensional linear repre-
sentations of G. Given a G-fixed point φr ∈ Isor−1 A, B) the fiber F = p−1

r (πr−1)
is a Kr(A)-torsor with compatible G-action, meaning that the natural morphism 
Kr(A) ×F → F is G-equivariant. Now Kr(A)-torsor with compatible G-action are clas-
sified by H1(G, Kr(A)).1 Since G is reductive this cohomology group vanishes so that F
must be the trivial torsor, meaning that there is a G-fixed point φr over φr−1. �

The second ingredient for the proof of Proposition 4.4 is the following result by Bier-
stone and Milman.

Proposition 4.8 (Bierstone and Milman [4]). Let (X, x0) ⊂ Cn and (Y, y0) ⊂ Cp be germs 
of algebraic varieties acted on by a reductive group G. Suppose there is a G-equivariant 
morphism from (Ĉn)x0 to (Ĉp)y0 inducing an isomorphism φ̂ between the formal neigh-
borhoods (X̂, x0) and (Ŷ , y0). Let c ∈ N. Then there is a local analytic G-equivariant 
isomorphism φ between (X, x0) and (Y, y0) which is equal to φ̂ up to order c.

As stated above, the result, does not formally appear in [4], but it follows immedi-
ately from the remarks on pages 121–122 therein. We are now ready for the proof of 
Proposition 4.4.

Proof of Proposition 4.4. Recall the way in which the étale slice Z is constructed. From 
the discussion just above Proposition 4.2 and from Rim’s uniqueness theorem, we may 
assume the existence of a formal G-equivariant Kuranishi map h such that

Ẑ = h−1(0) ⊂ Êxt
1
(F, F ) .

Clearly,

h2(e) = κ2(e) = e ∪ e

1 To see this from a topological point of view, set V = Kr(A) and consider the V -torsor over EG given 
by

P̃ = EG × F → EG

By the G-equivariance of F × V →F one may form the quotient

P = (EG × F )/G

and obtain a V -torsor over BG, i.e an element in H1(BG, V ) = H1(G, V ). Whenever this element is trivial 
the V -torsor P is trivial and thus P̃ and F must be trivial as well. For a more algebraic argument one may 
substitute EG with {∗} and BG with the stack {∗}/G, and proceed in a similar way.
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Our aim is to find a G-equivariant formal isomorphism between Ẑ and κ−1
2 (0). Un-

fortunately, since we don’t know if κ−1
2 (0) carries a G-linearized formal deformation 

of F , we can’t apply Rim’s uniqueness theorem. We do know that Ẑ ∼= κ−1
2 (0), though 

perhaps not G-equivariantly. However, letting (A, m) and (B, n) be the complete local 
k-algebras corresponding to κ−1

2 (0) and Ẑ, respectively, we may apply Proposition 4.7
(up to the second order the map is indeed unique, and hence G-equivariant) and find a 
G-equivariant formal isomorphism

α : Ẑ = h−1(0)
∼=−→ κ−1

2 (0).

If we can prove that α is induced by a G-equivariant morphism α̃ : Êxt
1
(F, F ) →

Êxt
1
(F, F ) then Proposition 4.4 follows at once from Proposition 4.8. So let (C, M)

be the completion at 0 of the polynomial ring ⊕
n≥0

Sn Ext1(F, F )∨. Both A and B are 

quotients of C and we denote by

σr : C/Mr+1 → A/mr+1 , τr : C/Mr+1 → B/nr+1

the induced quotient maps. We are interested in diagrams of type

C/Mr+1 ψr

σr

C/Mr+1

τr

A/mr+1 φr

B/nr+1

where φr is the G-equivariant homomorphism induced by α. We recall the notation 
introduced after Definition 4.5 and we set

Ãutr(C) = {ψr ∈ Autr(C) | ψr lifts a G-equivariant φr ∈ Isor(A,B)}

Ãutr(C) = {ψr ∈ Autr(C) | ψr lifts a G-equivariant φr ∈ Isor(A,B)}

By hypothesis Ãut1(C) is not empty and contains a G-fixed point. The task is to show 
that the projection map

Ãutr(C) −→ Ãutr−1(C)

is surjective on G-fixed points. We then follow, step by step, the proof of Proposition 4.7
and prove that if there is a formal G-equivariant isomorphism φ between (A, m) and (B, n)
inducing the identity m/m2 = n/n2, then there is a G-equivariant formal automorphism 
ψ of (C, M) lifting φ. �
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5. Generalities on quiver varieties

In this section we recall a few basic facts regarding geometric invariant theory 
(GIT) [28], [7], [8], mostly to set up the notation, and about quiver varieties. For the 
latter, we loosely follow the exposition of [10], and then present the results from [31], [5], 
and [6] that will be needed in the following. For more details on the subject the reader 
may also consult [29].

Let G be a reductive group and let A be a finitely generated C-algebra. Suppose that 
the affine variety X = SpecA is acted on by G, and consider the GIT quotient

X � G = SpecAG

This is a good categorical quotient. Given a rational character χ : G → C×, let

An = {f ∈ A | (g · f)(x) = χ(g)nf(x)}

be the vector space of χn-invariant functions and set

X �χ G = Proj
(

⊕
n≥0

An

)
Definition 5.1. A point x ∈ X is said to be χ-semistable if there exists an f ∈ An such 
that f(x) �= 0, it is called stable if, in addition, the action of G on Xf is closed and the 
stabilizer of x is finite. We denote by X(χ) resp. X(χ)s the locus of χ-semistable, resp. 
χ-stable points in X. Two χ-semistable points are said to be Sχ-equivalent if and only 
if the closure of their orbits meet in X(χ). In each Sχ-equivalence class there exists a 
unique closed orbit (which is of minimal dimension and has reductive stabilizer).

By construction, he natural morphism

X(χ) −→ X �χ G (5.1)

establishes a one-to-one correspondence between the set of closed points of the quotient 
X �χG and the set of Sχ-equivalence classes in X(χ) (equivalently, with the set of closed 
orbits). The morphism

X �χ G −→ X � G = X �χ=0 G (5.2)

is projective and, often, a resolution of singularities.
Let us turn our attention to quivers.

Definition 5.2. A quiver Q is an oriented graph. We denote by I the vertex set and by E
the edge and we write Q = (I, E). Given an oriented edge e ∈ E, one lets s(e) and t(e)
denote the “source” and the “target” of e, respectively. If e is a loop then t(e) = h(e).
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Associated to a quiver Q is the so called Cartan matrix. Set |I| = s, then the Cartan 
matrix is the s × s integral matrix

C = (cij) (5.3)

defined by

cij =
{

2 − 2 � (edges joining i to itself) if i = j

−� (edges joining i to j) if i �= j

We also set

D = −C , dij = −cij

We let d : Zs × Zs → Z be the quadratic form associated to (dij) and we set:

d(n) = tnD n. (5.4)

Fix a dimension vector

n = (n1, . . . , ns) ∈ Zs
≥0

and vector spaces Vi, i = 1, . . . , s, with

dimVi = ni,

and define the vector space of n-dimensional representations of Q by setting

Rep(Q,n) :=
⊕
e∈E

Hom(Vs(e), Vt(e))

The group

G(n) :=
s∏

i=1
GL(ni)

acts on Rep(Q, n) in a natural way via conjugation. We denote by Qop = (I, Eop) the 
quiver with the same underlying graph as Q, where the orientation of every edge has 
been reversed. The trace pairing gives an isomorphism

Rep(Qop,n) ∼= Rep(Q,n)∨.

Finally, one defines a new quiver Q having the same set of vertices as Q and having
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E := E � Eop

as edge set. We then get an identification

Rep(Q,n) = Rep(Q,n) ⊕ Rep(Q,n)∨

so that we get a natural symplectic form on Rep(Q, n). Since the action of G(n) on 
Rep(Q, n) respects the symplectic form there is a moment map which is given by

μn : Rep(Q,n) −→ gl(n) ∼= gl(n)∨

(x, y∨) �−→ μ(x, y∨) =
∑
e∈E

[xe, y
∨
e ] (5.5)

Here gl(n) and gl(n)∨ are identified via the Killing form and μn is G(n)-equivariant with 
respect to the coadjoint action on gl(n)∨. Since the center C∗ of G(n) acts trivially, the 
moment map has values in the hyperplane (Lie C×)⊥ ⊂ gl(n)∨.

Recall that rational characters

χ : G(n) → C×

are in a one-to-one correspondence with vectors

θ = (θ1, . . . , θs) ∈ Zs

via the formula

χθ(g) =
∏

det(gi)θi

where g = (g1, . . . , gs) ∈ G(n). To simplify notation we will freely substitute the symbol 
χθ with θ.

In general, the space Rep(Q, n) �χθ
G(n) is very singular, and the philosophy behind 

the moment map is that the quotient

Mθ(n) := μ−1
n (0) �χθ

G(n)

is the natural substitute for the non-existing tangent bundle to Rep(Q, n) �χθ
G(n). This 

assertion is justified by the following process, called Marsden–Weinstein or symplectic 
reduction ([25], [10]). Let

π : μ−1
n (0)(χθ) −→ Mθ(n)

be the quotient morphism. At a smooth point x ∈ μ−1(0), the tangent space to the orbit 
G(n) · x is the orthogonal complement (with respect to natural symplectic structure on 
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Rep(Q, n)) to the tangent space at x to μ−1(0). Hence, the normal space Nx carries a 
natural symplectic structure. If in addition x is χθ-stable, then its Sχθ

-equivalence class 
coincides with its orbit, the point π(x) is a smooth point of Mθ(n) and Nx can therefore 
be identified with the tangent space to Mθ(n) at π(x). We denote by Ms

θ(n) the locus 
parametrizing orbits of stable points in Mθ(n), so that

Ms
θ(n) ⊂ Mθ(n)smooth

has a natural holomorphic symplectic form defined by Marsden–Weinstein reduction. We 
have

dimMθ(n) = d(n) + 2.

Following Crawley-Boevey [5] define p(n) by

d(n) + 2 = 2p(n)

so that

dimMθ(n) = 2p(n)

The notion of χθ-semistability can also be described in terms of a slope function, 
which was first introduced by King in [18].

Given a quiver Q, consider in Zs the orthogonal complement of the dimension vector n:

n⊥ ⊂ Zs,

and consider θ ∈ n⊥⊗Q. Let V = ⊕Vi be an n-dimensional representation of Q (or of Q). 
For any sub-representation

W = ⊕i∈IWi, Wi ⊂ Vi

we define the θ-slope of W by setting by setting

slopeθ(W ) = θ · dimW∑
dimWi

=
∑s

i=1 θi dimWi∑
dimWi

so that, in particular, slopeθ(V ) = 0. Accordingly, a non-zero representation V is said 
to be θ-semistable if, for every sub-representation W of V , we have slopeθ(W ) ≤ 0
and is said to be θ-stable, if the strict equality holds for every non-zero, proper sub-
representation.

Remark 5.3. Consider θ = 0 = (0, · · · , 0). Then

slope0(W ) = 0
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for any W = ⊕Wi, so that any representation V is 0-semistable. Moreover, the 0-stable 
representations are precisely the simple ones, i.e., those that have no nontrivial sub-
representations. Lastly, a simple representation is stable with respect to any θ.

As usual in this context, given a θ-semistable one can consider a Jordan–Hölder 
filtration and then the associated graded grθ(V ). For example, if θ = 0, then the Jordan–
Hölder filtration is just a composition series for V , and gr0(V ) is a direct sum of simple 
representations, the so-called “semi-simplification” of V . Two n-dimensional θ-semistable 
representations V and V ′ are called Sθ-equivalent, if

grθ(V ) = grθ(V ′).

Theorem 5.4 (King [18]). Let Q be a quiver, and V a representation of Q, or of Q, with 
dimension vector n. Let θ ∈ n⊥. Then

i) A representation V is θ-semistable (resp. θ-stable) if and only if the point [V ] ∈
Rep(Q, n) (or in Rep(Q, n)) is χθ-semistable (resp. χθ-stable);

ii) Two n-dimensional θ-semistable representations V and V ′ are Sθ-equivalent if and 
only if the corresponding points in Rep(Q, n) (or in Rep(Q, n)) are Sχθ

-equivalent.

Remark 5.5. For the definition of slope, we follow [31] and [10], even though it differs 
from the one considered in [18] by a sign. However, taking the dual of a representation 
preserves stability so that Mθ(n) is canonically isomorphic to M−θ(n). Hence, from our 
point of view, this change of sign is irrelevant.

Remark 5.6. The reason to consider θ ∈ n⊥ is that in this way the character is trivial 
when restricted to the center C× ⊂ G(n), which acts trivially on the n-dimensional 
quiver representations of Q (cf. the remark after Proposition 7.9 and the Warning on 
page 517 of [18]). From the point of view of μθ stability, it is not strictly necessary to 
assume that 

∑
θini = 0. However, as observed by Rudakov ([35] Proposition 3.4, cf. also 

Remark 2.3.3 of [10]), it is always possible to reduce to this case since stability with 
respect to a given θ is equivalent to stability with respect to θ − c(1, . . . , 1), for any 
constant c. Another way of solving this issue would be to consider instead the action of 
the group G(n) ∩SL(⊕Vi). Since the first seems to be the convention adopted widely in 
this context, we stick to it. From now on we will assume that θ · n = 0.

Given an element α = (α1, . . . , αs) ∈ Zs the support of α, denoted by Supp(α), is the 
subgraph of Q consisting of those vertices i for which αi �= 0 and all the edges joining 
these vertices.

Kac has generalized the concept of positive roots to arbitrary quivers (not only of 
Dynkin type):

R+ := {α ∈ Zs
+ | d(α) ≥ 2 and Supp(α) is connected}



678 E. Arbarello, G. Saccà / Advances in Mathematics 329 (2018) 649–703
and has shown in [13] and [14] that there exist an indecomposable representation of a 
given dimension vector precisely if the dimension vector is a positive root. We can now 
state the first of the two theorems by Crawley-Boevey that we will need.

Theorem 5.7. (Crawley-Boevey [5], Theorem 1.2) Let Q be a quiver with s vertices and 
let n ∈ Zs

+ be a dimension vector. Then there exists a simple representation in μ−1
n (0) if 

and only if n is a positive root and, for any decomposition

n = β(1) + · · ·β(r) , r ≥ 2 , β(i) ∈ R+, for i = 1, . . . r

the inequality

p(n) >
r∑

i=1
p(β(i)) (5.6)

holds. In this case μ−1
n (0) is a reduced and irreducible complete intersection of dimension

2p(n) + tn · n − 1 = d(n) + 2 + tn · n − 1.

Let V be a semisimple (i.e., 0-semistable) representation, and consider its simple 
components

gr0(V ) = V k1
1 ⊕ · · · ⊕ V kr

r , dimVi = β(i) , i = 1, . . . , r.

One then says that V has type τ = (k1, β(1); . . . ; kr, β(r)). Notice that the representation 
types τ are in one-to-one correspondence with decompositions

n = k1β
(1) + · · · + krβ

(r),

with ki > 0 and β(i) a positive root. The second theorem of Crawley-Boevey is the 
following.

Theorem 5.8. (Crawley-Boevey [5], Theorem 1.3) Let Q be a quiver with s vertices. Let 
n ∈ Zs

+ be a dimension vector. Suppose n = k1β
(1) + · · · + krβ

(r). Then the set Στ of 
semisimple representations of type τ = (k1, β(1); . . . ; kr, β(r)) is a locally closed subset 
of M0(n) = μ−1

n (0) � G(n) of dimension 2 
∑r

i=1 p(β(i)).

Set

Wn = n⊥ ⊗Q ⊂ Qs

As we already observed, points of Wn may be thought of as stability parameters for 
quiver representations. Nakajima [31], introduced a wall and chamber structure in Wn, 
which we now describe. We set
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R+(n) = {α ∈ Zs | α a positive root, αi ≤ ni} \ {0 ,n}

(here, to avoid “redundant” walls we slightly depart from Nakajima’s definition by adding 
the condition on the connected support). By virtue of Theorem 5.7, if α belongs to R+(n)
then d(α) + 2 ≥ 0. For every α ∈ R+(n) we define the wall associated to α by setting

Wα = {θ ∈ Wn | θ · α = 0} (5.7)

The idea is that there exist a strictly θ-semistable V with an α-dimensional sub-
representation V ′ ⊂ V with slopeα(V ′) = slopeα(V ), precisely when θ lies in Wα. Notice 
that

if α + β = n , then Wα = Wβ

By definition, the chambers of Wn are the connected components of the complement of 
the walls. A point of Wn is said to be n-generic if it lies in a chamber. In Nakajima’s 
language, a codimension i ≥ 1 face of Wn is a connected component of the complement 
of the intersection of (i + 1) walls in an intersection of i walls. One of Nakajima’s result 
is the following, which is the quiver counterpart of Theorem 2.4 and Proposition 2.5.

Proposition 5.9 (Nakajima [31], Lemma 2.12).

(1) If θ is in a chamber then θ-semistability implies θ-stability so that Ms
θ(n) = Mθ(n).

(2) If two stability parameters θ and θ′ are contained in the same face, then θ-semista-
bility (resp. θ-stability) is equivalent to θ′-semistability (resp. θ′-stability).

(3) Let F and F ′ be faces such that F ′ ⊂ F . Suppose that θ ∈ F and θ′ ∈ F ′. Then:
(i) a θ-semistable representation is also θ′-semistable,
(ii) a θ′-stable representation is also θ-stable.

In particular, since all the faces contain 0 in their closure, for any θ ∈ n⊥, there is a 
natural projective morphism

ξ : Mθ(n) −→ M0(n),

which is an isomorphism on the locus of simple representations. Recall, also, that 
S0-equivalence classes of representations are in one-to-one correspondence with isomor-
phism classes of direct sum of simple representations and therefore one can interpret the 
morphism ξ as the “semisimplification” map, which to a representation V assigns the 
isomorphism class of gr0(V ):

ξ : V �−→ gr0(V ).

Finally, observe that if Q and n are such that (5.6) holds for any decomposition 
n = β(1) + · · · + β(r), then the assumptions of Theorem 5.7 are satisfied, hence the 
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simple locus is non-empty and ξ is birational. As a consequence, if θ is n-generic so that 
Ms

θ(n) ⊂ Mθ(n), then ξ is a symplectic resolution.

Remark 5.10 ([10], Remark 2.3.10). There is a canonical isomorphism Mθ
∼= M−θ, given 

by taking the dual representation.

6. Statement of the main theorem

Before stating the main theorem we show how to associate a quiver to a polystable F
on a K3 surface S. The connection with quiver varieties is already present in Kaledin, 
Lehn and Sorger who pointed out in [17] the strong similarity between singular moduli 
spaces and Nakajima quiver varieties (§2.7 of [17]).

Proposition 6.1. Let H0 be a polarization on S, let V1, . . . , Vs be vector spaces of dimen-
sion n1, . . . , ns and let F1, . . . , Fs be pairwise distinct H0-stable sheaves such that the 
sheaf

F = ⊕s
i=1Fi ⊗ Vi,

is H0-polystable. Set n := (n1, . . . , ns) and G(n) =
∏

GL(ni), so that

G(n) ∼= Aut(F ).

There exist a quiver Q = Q(F ) and G(n)-equivariant isomorphisms

Rep(Q,n) ∼= Ext1(F, F ), gl(n)∨ ∼= Ext2(F, F ),

such that, via these isomorphisms, the quadratic part (3.5) of the Kuranishi map for F

k2 : Ext1(F, F ) → Ext2(F, F ),

corresponds to the moment map (5.5).

Proof. For brevity, we use the notation

exti(A,B) = dim Exti(A,B)

We first define the quiver Q(F ): the vertex set of Q is the set I = {1, . . . , s} of distinct 
stable factors of F ; the number of edges between the i-th and the j-th vertex is equal to{

ext1(Fi, Fi)/2 if i = j

ext1(Fi, Fj) if i �= j
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Since we will be passing to the quiver Q, we can choose for each of these edges and loops 
an arbitrary orientation. The Cartan matrix (5.3) is then defined by

cij =
{

2 − ext1(Fi, Fi) if i = j

− ext1(Fi, Fj) if i �= j

we now pass to the double Q of Q and we have

Rep(Q,n) =
s⊕

i=1
End(Vi)⊕ ext1(Fi,Fi)

×
⊕
i<j

(
End(Vi, Vj)⊕ ext1(Fi,Fj) ⊕ End(Vj , Vi)⊕ ext1(Fj ,Fi)

)
∼=

s⊕
i=1

End(Vi) ⊗ Ext1(Fi, Fi)

×
⊕
i<j

(
End(Vi, Vj) ⊗ Ext1(Fi, Fj) ⊕ End(Vj , Vi) ⊗ Ext1(Fj , Fi)

)
= Ext1(F, F ).

In a similar way

gl(n) =
s
⊕
i=1

Hom(Vi, Vi) = Hom(F, F ) = Ext2(F, F )∨

The fact that via these isomorphisms, the quadratic part of the Kuranishi map is a 
moment map (5.5) is explained in section 3.4 of [17] and was already present in [32]. �

A few remarks are in order. First of all, it should be pointed out that the construction 
of the quiver Q(F ) associated to the polystable sheaf F can been done in full generality, 
without any restrictions on F .

In the case where F is pure of dimension one, there is the following interpretation of 
Q(F ).

Di = SuppFi , i = 1, . . . , s , D = n1D1 + · · · + nsDs (6.1)

(here Supp(·) denotes the Fitting support) so that

[D] = c1(F ) (6.2)

We also set

χi = χ(Fi) , i = 1, . . . , s , χ = χ(F )

vi = (0, [Di], χi) , i = 1, . . . , s , v = (0, [D], χ) =
s∑

nivi
(6.3)
i=1
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Notice that

ext1(Fi, Fi) = dimMH0(vi) = D2
i

2 + 2 = g(Di) , i = 1, . . . , s ,

and that if i �= j, then

ext1(Fi, Fj) = Di ·Dj .

It follows that we can think of the quiver Q as the “dual graph” of D := D1 + · · ·+Ds

(in the sense that it has a vertex for every curve Di and for every i �= j it has Di ·Dj

edged connecting i and j), with g(Di) loops attached to the ith vertex. It is also worth 
mentioning that if the K3 surface is general enough (e.g. it contains no rational curve), 
then we can deform each sheaf Fi to a sheaf F ′

i with smooth support (this clearly does 
not alter the structure of the singularity) so that, up to the addition of the vertex loops, 
Q is in fact the dual graph of a curve.

Remark 6.2. Suppose that there are two indices, say i = 1, 2, for which the two curves 
D1 and D2 belong to the same linear system. Then, for every j = 1, . . . , s, we have 
D1 ·Dj = D2 ·Dj , so that the quiver Q admits a symmetry which swaps the first and the 
second vertices. More generally, partitioning the index set I = {1, . . . , s} according to 
the cohomology class of the curve of each vertex, we can define the subgroup G ⊂ Aut(Q)
of the symmetries of Q preserving the curve class of every vertex.

The last proposition allows us to start comparing the moduli space side of the picture 
with the quiver side. First some notation.

For any β = (β1, . . . , βs) ∈ Zs
≥0, define

v(β) :=
s∑

i=1
βivi ∈ H∗(S,Z)

so that v(β) = v(⊕F βi

i ). Notice that v(n) = v and that as soon as β �= 0, v(β) is a 
positive Mukai vector.

Proposition 6.3. Let F be the H0 polystable as above, let Q = Q(F ) and n be as in 
Proposition 6.1 and let R+ be the set of positive roots for Q.

(1) For any β ∈ Zs
≥0 we have v(β)2 = d(β). In particular, the moduli space MH0(v(β))

is non-empty and

dimMH0(v(β)) = d(β) + 2 = 2p(β).

(2) The moduli space MH0(β) contains a stable sheaf if and only if β lies in R+.
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(3) For n ∈ R+, decompositions

n =
r∑

j=1
kjβ

(j)

with β(j) ∈ R+(n) and kj > 0, j = 1, . . . , r, are in one-to-one correspondence 
with the strata of the singular locus of MH0(v) containing the polystable sheaf F in 
their closure. In particular, the equations of v-walls that are relevant to F (recall 
Definition 2.6) are of the form

χ

(
s∑

i=1
βiDi · x

)
= χβ(D · x), x ∈ Amp(S) ⊗Z Q (6.4)

for some uniquely determined χβ ∈ Z.

Proof. The first two statements are immediate consequence of the definitions and of 
the description of the singular locus of MH0(v) given in Proposition 2.5. Consider a 
decomposition n =

∑r
j=1 kjβ

(j), with β(j) ∈ R+(β), j = 1, . . . , r. By the first two 
statements we know that for each β(j), the stable locus of MH0(v(β(j))) is non-empty, 
so we can associate to the decomposition above the strata parametrizing polystable 

sheaves of the form 
r
⊕
j=1

F (β(j))kj , where for each j, the sheaf F (β(j)) is a H0-stable sheaf 

in MH0(v(β(j))). To see that these are the strata containing F =
s
⊕
i=1

Fni
i in their closure, 

we only need to notice that within each MH0(v(β(j))) we can deform the stable sheaves 
F (β(j)) to the polystable sheaf 

s
⊕
i=1

F
β

(j)
i

i whose support is

Δj = β
(j)
1 D1 + · · · + β(j)

s Ds , j = 1, . . . , r (6.5)

so that

D = n1D1 + · · · + nsDs = k1Δ1 + · · · + krΔr (6.6)

In this way we assign to each decomposition a stratum containing [F ] in its closure. The 
description of the converse assignement is left to the reader. �

Consider the setting and the notation of Proposition 6.1. As our aim is to study the 
singularity of MH0(v) at [F ] and its symplectic resolutions induced by the polarizations 
which are adjacent to H0, we only need to focus on the v-walls in Amp(S) that contain 
H0. We now show that such v-walls correspond to the walls in n⊥ as described above.

We first need some notation. Set

di := H0 ·Di, d :=
∑

nidi = H0 ·D, d := (d1, . . . , ds),
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and for any ample H

ai := H ·Di, h =
∑

niai = H ·D, a := (a1, . . . , as)

By Proposition 6.3, since the only things that matters for our purpose are the intersection 
numbers of H with the curves of the form 

∑
βiDi, we can project the ample cone of S

onto the cone

A = {a = (a1, . . . , as) ∈ Qs, ai ≥ 0},

and consider instead the v-walls in A. Under this projection, the class of H0 is sent to 
the point d ∈ A. Since stability with respect to a given polarization only depends on 
the positive ray determined by the polarization itself, we can consider instead of A the 
transverse slice

S = {a ∈ A |
∑
i

aini = d}.

In this space the equations (6.4) of the v-walls that pass through H0 and that make F
strictly semistable become

χ
∑

aiβi − dχβ = 0, (6.7)

where

χβ = χ

d

∑
diβi.

Lemma 6.4. The affine morphism

Ξ : S −→ Wn = n⊥ ⊗Q,

(a1, . . . , as) �−→ (a1 − d1, . . . , as − ds)

sends d to the origin and maps every v-wall that is relevant to [F ] to a wall in Wn. More 
specifically, it maps the wall {χ 

∑
aiβi−d χβ = 0} to the wall Wβ, where β = (β1, . . . , βs)

(notation as in (5.7)).

Proof. In accordance with the notation of Section 5, we let (θ1, . . . , θs) be the coordinates 
on Wn. Substituting θi = ai − di in (6.7) we find

χ
∑

βiθi + χ
∑

βidi − dχβ = 0,

and since dχβ = χ 
∑

diβi we get

χ
∑

βiθi = 0

which is the equation for Wβ. �
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Notice that if the group G defined in Remark 6.2 is non-trivial, the image of Ξ is not 
the whole of Wn, but is the G-invariant subspace WG

n ⊂ Wn and, similarly, the walls 
that come from S are the walls Wβ for which β is G-invariant.

Finally, we get to the statement of the main theorem, whose proof will cover Sec-
tion 7.

Theorem 6.5. Let H0 be a polarization on S and let F1, . . . , Fs be pairwise distinct 
H0-stable sheaves. Let V1, . . . , Vs be vector spaces of dimension n1, . . . , ns respectively, 
let

F = ⊕s
i=1Fi ⊗ Vi, (6.8)

be the corresponding H0-polystable sheaf and let v be its Mukai vector. Also set:

G = Aut(F ) =
s∏

l=1

GL(Vi)

(i) Suppose that F is pure of dimension one (or satisfies the formality property of 
Definition 3.1). Then there is a local (analytic) isomorphism

ψ : (M0, 0) ∼= (MH0(v), [F ])

(ii) Suppose that F is pure of dimension one. Then for every chamber C ⊂ Amp(S)
containing H0 in its closure, we can find a chamber D ⊂ n⊥ such that for every 
H ∈ C and every θ ∈ D the symplectic resolutions

ξ : Mθ(n) → M0(n), and h : MH(v) → MH0(v),

correspond to each other via ψ. This means that, letting U ⊂ MH0(v) and V ⊂
M0(n) be two open neighborhoods of [F ] and 0, respectively, that are isomorphic 
via ψ, there is a commutative diagram

MH(v) ×h U Mθ(n) ×ξ V

U
ψ

V

(iii) The assignment of a chamber in n⊥ ⊗ Q for every chamber in Amp(S) which is 
adjacent to H0 is induced by the morphism of Lemma 6.4. In other words, if H is 
such that H ·D = H0 ·D the morphism is given by the formula

H �−→ χH((g1, . . . , gs)) =
s∏

det(gi)(Di·H−Di·H0)
i=1
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where Di = c1(Fi), for i = 1, . . . , s.

Remark 6.6. Whether or not F is a pure dimension one sheaf, statements (ii) and (iii) of 
the theorem holds true whenever the morphism h : MH(v) → MH0(v) is regular over F .

7. Proof of the main Theorem

We consider as in (4.1) an étale slice

Z ⊂ QuotH0
(7.1)

passing through a point q0 corresponding to the H0 polystable sheaf

F = ⊕s
i=1Fi ⊗ Vi, (7.2)

and we let F be the restriction to Z × S of the universal family over QuotH0
×S.

Let us start with the proof of part (i), which is straightforward. By Proposition 6.1
there is a quiver Q such that

μ−1
n (0) ∼= k−1

2 (0) (7.3)

G(n)-equivariantly. For simplicity, we set

G := G(n).

Recall that G ∼= Aut(F ). By Theorem 3.8 the Lazersfeld–Mukai bundle MF is polystable 
and hence by Zhang’s result (Theorem 3.3), it satisfies the formality property. Using 
Proposition 4.4 applied to MF and Proposition 3.5, it follows that there is a local 
G(n)-equivariant isomorphism Z ∼= k−1

2 (0), which induces, locally around 0 and [F ], 
respectively, an isomorphism between Z � G and M0. Since the morphism

ε : Z � G → MH0(v)

of (4.2) is étale we may conclude that M0 and MH0(v) are isomorphic, locally around 0
and [F ], respectively.

The proof of part (ii) will be divided in various steps. Consider the resolution

h : MH(v) → MH0(v).

Our aim is to show that locally on MH0(v) the resolution h can be expressed, via quiver 
varieties, in terms of variations of GIT quotients as in (5.2). We will do this in two steps, 
the first consists in using the open subset of Z parametrizing the H-semistable sheaves, 
and the second will be to compare this open subset with an appropriate open subset 
of μ−1

n (0).
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7.1. First step

Let H ∈ Amp(S) be a polarization that is adjacent to H0, and let

ZH = {q ∈ Z | Fq is H-semistable} (7.4)

be the locus parametrizing H-semistable points in Z. The restriction to ZH of the family 
F in (4.3) defines a classifying morphism ZH → MH . Since this morphism is G-invariant 
we get a commutative diagram

MH(v)

h

ZH � G

ρ

η

MH0(v) Z � G
ε

(7.5)

Proposition 7.1. The diagram above is cartesian.

Before proving the proposition we need a technical lemma, which uses the fact that 
the image of the natural morphism (recall the notation (4.2))

GL(V) × Z → QuotssH0

is a saturated open subset. Following [9], the precise statement we will use is

Lemma 7.2 ([9], page 2). Let Γ be a reductive algebraic group acting on an affine vari-
ety Y . Let y ∈ Y be a point whose orbit Γy is closed, let Γy be the stabilizer of y in Γ, and 
let Z ⊂ Y be an étale slice for y in Y . Then for every point y′ ∈ Y that is SΓ-equivalent 
to a point z ∈ Z, the slice Z intersects the orbit Γy′. In other words, the slice Z inter-
sects all the Γ-orbits that are SΓ-equivalent to the Γ-orbits of its points. Moreover, given 
z ∈ Z, the natural morphism

σ : Γ × π−1
Z (πZ(z)) → π−1

Y (πY (z)) (7.6)

is surjective and Γy-invariant and

Γ × π−1
Z (πZ(z)) � Γy → π−1

Y (πY (z)) (7.7)

is an isomorphism.

Lemma 7.3. Let H be a polarization adjacent to H0, let ZH ⊂ Z be the open subset 
parametrizing H-semistable points. Then, referring to diagram (7.5), for every point 
z ∈ Z � G, the morphism η induces a bijection between ρ−1(z) and h−1(ε(z)).
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Proof. Recall that the points of MH(v) correspond to SH -equivalence classes of 
H-semistable sheaves. Lemma 7.2 tells us that for every H-semistable sheaf F ′ whose 
isomorphism class lies in h−1(ε(z)), there exists a point b ∈ ZH such that Fb

∼= F ′. This 
proves that η : ρ−1(z) → h−1(ε(z)) is surjective. As for injectivity, we argue as follows. 
Let

πZ : Z → Z � G

be the quotient map and let η′ : ZH → MH(v) be a map inducing η. Let x and y be 
two points in ZH ∩π−1

Z (z), such that η′(x) = η′(y). This means that the two sheaves Fx

and Fy are SH -equivalent. We must prove that x and y are S-equivalent in ZH , i.e. that 
the closure of their G-orbits intersect in ZH . In the SH -equivalence class of Fx there is 
a unique up to isomorphism H-polystable sheaf, which we will denote by F ′. This sheaf 
is SH0 -equivalent to Fx. Using Lemma 7.2 again, we then find a point w ∈ ZH ∩ π−1

Z (z)
such that Fw

∼= F ′. Since x, y and w are all mapped to the same point under η′, it is not 
restrictive to assume that y = w. Set Q = QuotssH0

and let πQ : Q → Q � GL(V) be the 
quotient morphism. Let QH ⊂ Q be the open subset parametrizing H-semistable sheaves. 
By construction, the orbit GL(V) · y is contained in the closure of GL(V) · x. Moreover, 
by considering a Jordan–Hölder filtration of Fx with respect to H, we can proceed as 
in Lemma 4.4.3 of [12] and find a one-parameter subgroup of GL(V) that converges to 
a point in the orbit of y. To achieve this, we only have to notice that the sheaves of the 
Jordan–Hölder filtration of Fx are H-semistable, hence H0-semistable of same reduced 
Hilbert polynomial as Fx. In particular, we can assume that they are globally generated. 
This also shows that the orbit GL(V) · y is contained in GL(V) · x ∩QH .

Now look at (7.6), with Γ = GL(V), Y = Q, and Z equal to the slice at the point q0. 
The morphism σ restricts to a dominant morphism

GL(V) ×G · x → GL(V) · x ⊂ π−1
Q (ε(z)).

This morphism is surjective since, in fact, GL(V) × G · x ⊂ GL(V) × Z is a closed 
G-invariant subset so its image under the quotient morphism σ is closed. Since σ sepa-
rates G-invariant closed subsets, G · y and G · x intersect in Z if and only if GL(V) · y
and GL(V) · x intersect in Q. On the other hand, if GL(V) · y and GL(V) · x intersect 
in QH , then G · y and G · x have to intersect in ZH and hence the lemma is proved. �
Proof of Proposition 7.1. Since Z � G → MH0(v) is étale, so is the induced morphism

MH(v) ×MH0 (v) Z � G → MH(v).

Since MH(v) is smooth, MH(v) ×MH0 (v) Z � G is also smooth. It is therefore enough to 
check that the natural morphism

ZH � G → MH(v) ×MH (v) Z � G

0
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is finite and birational. By Lemma 7.3, this morphism is bijective, and it is an isomor-
phism on the locus parametrizing H0-stable sheaves. �

By Proposition 4.4 and (7.3), there is a G-equivariant local analytic isomorphism

ϕ : (Z, q0) ∼= (μ−1(0), 0),

which yields G-invariant open analytic neighborhoods

U ⊂ Z, and V ⊂ μ−1(0),

of the points q0 and 0 respectively such that

ϕ : U ∼= V,

G-equivariantly.

Proposition 7.4. Up to restricting U and V, if necessary, we can assume that the following 
properties hold:

(1) The two open subsets U and V are saturated neighborhoods of q0 in Z, and of 0 in 
μ−1(0), respectively.

(2) Set UH = U ∩ ZH . The natural morphisms of analytic spaces U � G → Z � G

and UH � G → ZH � G are open immersions, and together with the morphisms 
ZH � G → Z � G and UH � G → U � G, they form a cartesian diagram.

(3) The space U � G maps isomorphically onto its image under the étale map Z � G →
MH0(v) (and the same holds for UH � G under ZH � G → MH(v)).

Proof. We start with the first property. By definition, to say that U is saturated is 
equivalent to saying that π−1

Z πZ(U) = U . Since q0 ∈ U has closed orbit, the open subset 
U intersects, and hence contains, all the G-orbits of π−1

Z (πZ(q0)) (which is the union of 
all orbits that contain G · q0 in their closure). The same argument applies to any point 
in U corresponding to polystable sheaf (since their orbits are closed), so we only have 
to worry about the polystable sheaves not contained in U . Let Zτ be the stratum of Z
parametrizing sheaves of a given type τ (cf. (2.2)), and let Pτ ⊂ Zτ be the locally closed 
G-invariant subset parametrizing polystable sheaves of type τ . Finally, let P c

τ be the 
intersection of Pτ with the complement of U . Its closure (in the usual topology) P c

τ is a 
G-invariant closed subset and therefore

πZ(q0) ∩ πZ(P c

τ ) = ∅.

We can therefore safely remove the closed subset π−1
Z πZ(P c

τ ) from U without interfering 
with π−1

Z (πZ(q0)). Since the set of possible strata of polystable sheaves of Z is finite, 
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we can preform this operation until we get rid of all the points of U parametrizing 
sheaves whose SH0-equivalence class is not entirely contained in U . Then we restrict V
correspondingly. Since, a priori, V could be unsaturated, we can do the same trick for V, 
and we conclude noticing that this operation does not affect the saturation of U . As for 
the second part, we only have to notice that since U is saturated in Z (and UH is saturated 
in ZH) the analytic space U � G is an open subset of Z � G (and analogously for the 
restriction to the locus of H-stable sheaves). The statement about the cartesian diagram 
can be proved exactly as in Proposition 7.1. The third statement is immediate. �

Let U and V be as in Proposition 7.4 and set

VH = ϕ(U) ⊂ μ−1(0).

Consider the following commutative diagram

Z U ∼ V μ−1(0)

ZH UH ∼ VH

ZH � G UH � G
∼ VH � G X

Z � G U � G
∼ V � G μ−1(0) � G

(7.8)

In order to prove Part ii) of the Theorem, we need to understand what to place in lieu 
of the “X”.

In Section 7.4 we will find a character χ, depending on H, such that we can set 
X = μ−1(0) �χG. In the next two sections, we will develop some necessary tools for this 
aim.

These sections will develop in the following setting.
Let H0 be a polarization on S and consider an H0-polystable sheaf F = ⊕s

i=1Fi ⊗ Vi, 
where the Fi’s are mutually distinct H0-stable sheaves. Let

v = (0, D, χ)

be its Mukai vector and consider

Z ⊂ QuotH0

an étale slice passing through a point q0 corresponding to F , as in (7.1). A point q ∈
QuotH will correspond to a surjection,
0
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q : OS ⊗H0(F (m)) → F (mH0),

for some chosen large m. Which m to choose and the fact that we can make such a choice 
will be discussed in the next section.

7.2. Remarks on stability criteria

Following Section 4.4 of [12] we will need the following result by Le Potier, which we 
state in the setting of pure dimension one sheaves.

Theorem 7.5 (Le Potier, Theorem 4.4.1 of [12]). Set v = (0, D, χ). There exists a positive 
integer m0 such that for every m ≥ m0 the following are equivalent

(1) G is an H0-semistable sheaf with Mukai vector v;
(2) For m ≥ m0, χ(G(mH0)) ≤ h0(G(mH0), and for any sub-sheaf G′ ⊂ G, setting 

D′ = c1(G′), we have

h0(G′(m)
D′ ·H0

≤ h0(G(m)
D ·H0

. (7.9)

Moreover, equality in (7.9) holds if and only if G′ makes G strictly H0-semistable.

In order to use the Theorem above, we need to make sure that we can twist our 
sheaves by a large multiple of H0, without affecting the problem we are set to study. Let 
us be more precise.

First of all, recall that H0-semistability is preserved under tensoring by H0. It follows 
that for any m ∈ Z we have a natural isomorphism

MH0(v) → MH0(vm), where vm := (0, D, χ + m(D ·H0)).

From the point of view of studying the singularity of MH0(v), locally around a polystable 
sheaf F , we can consider without loss of generality the moduli space MH0(vm), locally 
around F ⊗ OS(mH0). Moreover, one can easily check using the equation of the walls 
given in Proposition 2.5 that there is a bijection between v-walls passing through H0
and the vm-walls passing through H0.

However, we also need to understand what happens to the resolution h : MH(v) →
MH0(v) as we tensor by OS(mH0).

Lemma 7.6. Let H be a polarization adjacent to H0, and set

H ′ :=
{

H if χ > 0
tH0 −H if χ < 0
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so that for t � 0, H ′ is ample and adjacent to H0. For m � 0 there is a commutative 
diagram

MH(v)

h

⊗mH0
MH′(vm)

hm

MH0(v)
⊗mH0

MH0(vm)

where the horizontal morphisms are isomorphism induced by tensoring by OS(mH0) and 
the vertical morphisms are the usual morphisms given by Proposition 2.5.

Proof. We only have to check that the top arrow defines a regular morphism. So let G be 
any H-semistable sheaf with v(G) = v and let G′ ⊂ G be a sub-sheaf and set Γ = c1(G′). 
Since G is also H0-semistable we may conclude that G(mH0) is also H0-semistable. There 
are two case. Either μH0(G′(mH0)) < μH0(G(mH0)), in which case the inequality stays 
true also for H ′ since this polarization is adjacent to H0, or else

μH0(G′(mH0)) = μH0(G(mH0)). (7.10)

To handle this case, we first introduce some notation. For any 0 �= L ∈ Pic(S), set

δ(L) := χ

L ·D − χ(G′)
Γ · L ,

so that G is L-semistable if and only if δ(L) > 0. Notice that δ(L) = −δ(−L). Using 
(7.10) we can see that

H0 ·D
L ·D − H0 · Γ

L · Γ = H0 ·D
χ

δ(H)

Hence,

μL(G(mH0)) − μL(G′(mH0)) = χ

L ·D − χ(G′)
Γ · L + m

[
H0 ·D
L ·D − H0 · Γ

Γ · L

]
︸ ︷︷ ︸

(∗)

= δ(L) + m
H0 ·D

χ
δ(L).

If G is H-semistable, then δ(H) > 0. So if χ > 0 we may conclude that G(mH0) is also 
H-semistable.

On the other hand, if χ < 0 and m is large enough, then δ(H) + mH0·D
χ δ(H) < 0, 

implying that G(mH0) is not H-semistable. Now set

Δ(L) := (L ·D)(L · Γ)(∗).
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Notice that Δ(·) is a linear function of its argument, that Δ(H0) = 0, and that Δ(H) < 0. 
It follows that for any t,

Δ(tH0 −H) > 0,

and hence for t � 0 so that H ′ = tH0 − H is ample and adjacent to H0, the sheaf 
G(mH0) is H ′-semistable. �

Using this and Theorem 7.5 we hence get,

Corollary 7.7. Up to twisting by a sufficiently high multiple of H0 (and hence replacing 
F and v appropriately) we can assume in Theorem 6.5 that:

• For any H0-semistable sheaf G with Mukai vector v, and any sub-sheaf G′ ⊂ G with 
μH0(G′) = μH0(G), we have Hi(G) = Hi(G′) = 0, for i > 0;

• For any sub-sheaf G′ ⊂ G we have

h0(G′)
D′ ·H0

≤ h0(G)
D ·H0

.

Moreover, equality holds if and only if G′ makes G strictly H0-semistable.

We henceforth assume that the conclusions of the corollary are satisfied, and since we 
are free to replace F (mH0) by F , we set

V := H0(S, F ),

so that QuotH0
, which parametrizes quotients of type V ⊗ OS → F , is acted on by 

GL(V).

7.3. Remarks on linearizations

The main result of this section is Proposition 7.10. There we prove that there is a 
natural linearized line bundle on Z such that the locus ZH ⊂ Z of points z ∈ Z for 
which Fz is H-semistable is contained in the locus of semistable points with respect to 
this line bundle. This will be the bridge between Z and the quiver variety μ−1(0).

We start by recalling the construction and the first properties of the determinant line 
bundle. For more details we refer the reader to Chapter 8 of [12].

Let E be a family of sheaves on S, parametrized by a scheme B, and let

p : B × S −→ B , and q : B × S −→ S,

be the two projections. Set EB = E|{b}×S . The group homomorphism
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λE : Pic(S) −→ Pic(B)

H �−→ λE(H) := det p∗(E ⊗ q∗H)

defines the determinant line bundle with respect to H. The construction is functorial 
on the base, in the sense that it commutes with base change. From our point of view, 
one important feature of λE(H) is that, if B has an action of an algebraic group G, 
then any linearization of the family E induces a G-linearization of λE(H). In turn, this 
defines, for every b ∈ B, an action of the stabilizer Stabb ⊂ G on the fiber λE(H)b. This 
action holds an important place in the rest of the section. For example, in the case of 
λF (�H), for some ample H and some � � 0 so that Hi(Eb(�H)) = 0, for every b ∈ B

and every i > 0, and λF (�H)b = detH0(Eb(�H)), the action can be described as follows: 
a G-linearization of E defines, for every b ∈ B, a morphism

Stabb → Aut(Eb) (7.11)

which can be composed with the natural morphism

Aut(Eb) −→ GL(H0(Eb(�H)) det−→ GL(detH0(Eb(�H))).

The action is then simply given by the natural morphism

Stabb −→ GL(detH0(Eb(�H))) = Aut(λE(�H)b).

Recall that we are assuming that the conclusions of Corollary 7.7 are satisfied.
Set

G := Aut(⊕(Fi ⊗ Vi)) =
s∏

i=1
GL(Vi).

Having fixed the point q0 ∈ QuotH0
corresponding to the H0-polystable sheaf

F = ⊕(Fi ⊗ Vi),

there is an injective morphism i0 : G → GL(V), whose image is precisely Stabq0 . The 
universal family over QuotH0

has a natural GL(V)-linearization (cf. §4.3 of [12]) such 
that for every q ∈ Q the morphism (7.11) is the inverse of the natural isomorphism 
Aut(Fq) → Stabq.

The restriction F of the universal family over the Quot scheme to Z × S is therefore 
G-linearized and hence, for every H ∈ Amp(S) and every � ∈ Z, so is the determinant 
line bundle λF (�H).

We now proceed to consider GIT with respect to the G-line bundles λF (H) on Z. 
First we set the notation.
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Notation 7.8. If Γ is an algebraic group acting on a scheme X and L is an ample 
Γ-linearized line bundle on X, we denote by Xss(L, Γ) the locus of semistable points 
in X with respect to the Γ-linearized line bundle L and by Xs(L, Γ) the locus of stable 
points. When L = OX and χ : Γ → C is a character of Γ, we denote by Xss(χ, Γ) the 
locus of semistable points in X with respect to the Γ-linearization of OX induced by 
the character χ, and by Xs(L, Γ) the locus of stable points. When there is no risk of 
confusion, we omit the group Γ from the notation and write Xss(L), Xs(L), . . . , instead.

If L′ and L′ are two Γ-line bundles such that Xss(L, Γ) = Xss(L′, Γ) and Xs(L, Γ) =
Xs(L′, Γ), we say that L and L′ are Γ-equivalent, or that they define the same GIT with 
respect to Γ.

Let λ : C× → Γ be a one-parameter subgroup (1 p.s.g.) and let x ∈ X be a point. 
Suppose that the limit limt→0 λ(t) · x exists, and denote it by x. Then, the image of the 
1 p.s.g. is contained in Stabx and the composition of λ with the linearization morphism 
Stabx → Aut(Lx) = C× defines a morphism C× → C×, t �→ tn. The integer n, denoted 
by ωx(λ, L), is the weight of λ at the point x.

We recall the affine version of the Hilbert–Mumford criterion (cf. [18]).

Proposition 7.9. Let Γ be a reductive group acting as an affine scheme X, let Γ′ ⊂ Γ
be the kernel of the action, and let L be a Γ-line bundle on X. Then x ∈ Xss(L) if 
and only if any 1 p.s.g. λ for which the limit exists satisfies ωx(λ, L) ≥ 0. Moreover, 
x ∈ Xs(L) if and only if it is semistable and for any 1 p.s.g. λ for which the limit exists 
and ωx(λ, L) = 0 we have λ ⊂ Γ′.

Notice that a necessary condition for a point x to be semistable is that if λ ⊂ Γ′, then 
ωx(λ, L) = 0. For example, if we are considering the semi-stability with respect to the 
trivial line bundle, linearized by a character χ : Γ → C×, then a necessary condition for 
the existence of semistable points is that χ is trivial on the kernel of the action.

In the case of the group G = Aut(⊕(Fi ⊗ Vi)) acting on the étale slice Z, the center 
C× ⊂ G acts trivially on every point, but from Lemma 7.17 will see that it acts with 
non-trivial weight. This is a point analogous to the one observed in Remark 5.6. In the 
context of Quot schemes and moduli spaces, the problem is solved by restricting the 
action to the subgroup of elements with trivial determinant

G′ := G ∩ SL(⊕Vi),

so that there are no one parameter subgroups contained in the kernel of the action. 
Clearly any G-linearization restricts to a G′-linearization, so that we can consider the 
determinant line bundle λF (�H) as a G′-line bundle. We set

Zss
�H := Zss(λF (�H), G′), and Zs

�H := Zs(λF (�H), G′)

We are ready to state the main result of the section.
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Proposition 7.10. Let Z, F , G and G′ be as above. Let H be an ample line bun-
dle in a chamber adjacent to H0, and consider � � 0. We consider λF (�H) with 
the G′-linearization as above. Then any z ∈ Z such that Fz is H-stable, is also 
λF (�H)-semistable, i.e., there is an inclusion

ZH ⊂ Zss
�H .

Moreover, this inclusion is saturated.

To prove Proposition 7.10, we need a few lemmas, which are the adaptation of the 
treatment of §4.3 of [12], which we follow closely, to our context. These will lead to 
Corollary 7.14 and Corollary 7.15 which, together, prove the proposition.

The notation will be as follows. For a point z ∈ Z we let

ρ : V ⊗OS → Fz

be the corresponding quotient. For a subspace V′ ⊂ V, we let

F ′
z = ρ(V′) ⊂ Fz

be the subsheaf generated by V′ and we set

D′ := c1(F ′
z).

Finally, for any sheaf E on S and any ample H we let

PH(E, �) = χ(E(�H)),

be the Hilbert polynomial of E with respect to H.
In order to use the Hilbert–Mumford criterion, we need to understand the limits of the 

one parameter subgroups of G′. Following [12], we set up the following notation. For any 
one parameter subgroup η : C× → G′ let V = ⊕α∈ZVα be its weight decomposition. If 
z ∈ Z is a point corresponding to a surjection ρ : V⊗OS → Fz, we set V≥α = ⊕β≥αVβ

and define

(Fz)≤α = ρ(V≥α ⊗OS) ⊂ Fz, and (Fz)α = (Fz)≤α/(Fz)≤α−1

Lemma 7.11. Let z ∈ Z be a point and let η : C× → Stabz be a one-parameter subgroup. 
Then,

ωz(η, λF (�H) =
∑

αPH((Fz)α, �). (7.12)

Proof. This is Lemmas 4.4.3 and 4.4.4 of [12]. �
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Lemma 7.12. There exist an �0 such that, if z ∈ Z is a point such that for any subspace 
V′ ⊂ V we have

(dimV)(D′ ·H) ≥ (dimV′)(D ·H), (7.13)

then z ∈ Zss
�H for all � ≥ �0. Moreover, if strict inequality holds in (7.13), then z ∈ Zs

�H

for all � ≥ �0

Proof. Since D · H and D′ · H are the coefficients of the leading terms of the Hilbert 
polynomials of F ′

z and Fz respectively, and since the set of sheaves of the form ρ(V′) ⊂
Fz, for V′ ⊂ V and z ∈ Z is bounded, there exist an �0 such that (7.13) is equivalent to

dimVPH(F ′
z, �) ≥ dimV′PH(Fz, �), for � � 0

(and analogously for strict inequality). The Lemma then follows from Proposition 7.9 as 
in the “only if” direction of Lemma 4.4.5 of [12], using the weight description (7.12). �

Notice that there could be one-parameter subgroups of G′ that do not admit a limit 
in Z, so that we cannot claim the validity of the reverse direction in [12] (i.e., that if 
z ∈ Z is semistable then (7.13) holds). Our claim is that we can do so as soon as the 
point z lies in ZH .

Lemma 7.13. Let H be an ample line bundle adjacent to H0. If z ∈ ZH is a point 
corresponding to an H-semistable sheaf, then for any subspace V′ ⊂ V we have

(dimV)(D′ ·H) ≥ (dimV′)(D ·H). (7.14)

Moreover, if z corresponds to an H-stable sheaf, then strict inequality holds in (7.14).

Proof. Let V′ ⊂ V be a subspace and let F ′
z ⊂ Fz be the sheaf generated by V′. Since 

Fz is H0-semistable, we can apply Corollary 7.7 and conclude that

dimV′

D′ ·H0
= h0(F ′

z)
D′ ·H0

≤ h0(Fz)
D ·H0

= dimV
D ·H0

, (7.15)

and that equality holds if and only if F ′
z has the same reduced H0-Hilbert polynomial 

as Fz. We distinguish two cases, depending on whether F ′
z has the same H0-slope of 

Fz or not. In the first case, since by the corollary Hi(F ′
z) = 0, for i > 0, we have 

dimV′ = h0(F ′
z) = χ(F ′

z). But Fz is H-semistable so that we get

dimV′

D′ ·H = χ(F ′
z)

D′ ·H ≤ χ

D ·H = dimV
D ·H ,

with strict inequality in the case Fz is H-stable. In the second case strict inequality holds 
in (7.15). In this case, since H is adjacent to H0 the strict inequality continues to hold 
and hence the lemma is proved. �
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Corollary 7.14. There exists an �0 such that for � � �0 we have ZH ⊂ Zss
�H (and the set 

of H-stable sheaves is contained in Zs
�H).

The following corollary ends the proof of Proposition 7.10

Corollary 7.15. Let H ∈ Amp(S) be in a chamber adjacent to H0. Then ZH ⊂ Zss
�H is 

saturated.

Proof. Let z ∈ Z be a point corresponding to a H-semistable sheaf Fz. Since H is 
v-generic Fz is H-stable and by the Corollary above we know that z ∈ Zs

�H . We conclude 
noticing that any invariant open subset contained in a GIT stable locus is automatically 
saturated. �

The last corollary of Lemma 7.13 that we want to highlight is the following obvious 
result.

Corollary 7.16. Z = Zss(�H0) and for any one parameter group η : C× → G′ and for 
any z ∈ Z, we have ωz(η, λF (�H0)) = 0.

7.4. From the determinant line bundle to the character

In this section we finally describe the missing object X in diagram (7.8).
It is easy to check that the weight of a one-parameter subgroup at a given point 

is a group homomorphism from the group of linearized line bundles to Z. By Corol-
lary 7.16, it then follows that for any G′-line bundle L and any one parameter subgroup 
η : C× → G′,

ωz(η, L⊗ λF (�H0)) = ωz(η, L), for every z ∈ Z.

Hence we obtain

Zss(L,G′) = Zss(L⊗ λF (�H0), G′)

(and similarly for the set of stable points).
It follows that we can consider, instead of λF(�H), any combination with positive 

coefficients of λF (�H) and λF (�H0) without affecting the GIT with respect to G′. To see 
which combination to take, we first need the following lemma.

Lemma 7.17. For any � ∈ Z, any H ∈ Amp(S), and any point z ∈ Z, the action of the 
stabilizer Stabz on the fiber λF (�H)z is given by restriction of the character of G defined 
by
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χ�H : G =
s∏

l=1

GL(Vl) −→ C×

(g1, . . . , gs) �−→
s∏

l=1

det(gl)(Dl·H)�+χl

Proof. By Proposition 4.2 of [19] it is enough to check the formula for points z ∈ Z with 
closed orbit. The singular locus of the étale slice Z admits a stratification that corre-
sponds to the stratification of the singular locus of MH0(v) introduced in Proposition 2.5. 
Each stratum Zτ corresponds to a decomposition τ = (k1, β(1); . . . ; kr, β(r)), where:

n = k1β
(1) + · · · + krβ

(r) , β(i) ∈ Zs

and p(n) >
∑r

i=1 p(β(i)), and the points z ∈ Zτ with closed orbit are of the form

E = (E1 ⊗ U1) ⊕ · · · ⊕ (Er ⊗ Ur) , dimUj = kj , j = 1, . . . , r

where Ej is an H0-stable sheaf with Mukai vector

v(Ej) = β
(j)
1 v1 + · · · + β(j)

s vs, j = 1, . . . , r.

We can find a decomposition

Vl =
r
⊕
j=1

(Wj, l ⊗ Uj) , dimWj, l = β
(l)
j

so that, up to conjugation, the injection

j : Stabz =
r∏

j=1
GL(Uj) = Aut(E) ↪→ Aut(F ) =

s∏
l=1

GL(Vl) = Stabz0 (7.16)

is given by

(h1, . . . , hr) �−→
(

r
⊕
j=1

(1
β

(1)
j

⊗ hj), . . . ,
r
⊕
j=1

(1
β

(s)
j

⊗ hj)
)
.

According to Lemma 7.11, the stabilizer Stabz acts on the fiber of LH at z, via the 
character

χτ ((h1, . . . , hr)) =
r∏

i=1
det(hi)(Δi·H)�+χ(Ei)

(here we are using notation (6.5)). Thus we must simply show that, under the injection j, 
the character χH restricts to χτ . This is obvious:
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j∗(χH)((h1, . . . , hr)) =
s∏

l=1

⎛⎝ r∏
j=1

(dethj)β
(l)
j

⎞⎠(Dj ·H)�+χj

=

=
r∏

j=1

(
s∏

l=1

(dethj)β
(l)
j [(Dj ·H)�+χj ]

)
=

=
r∏

j=1
det(hj) (Δj ·H)�+χ(Ej) . �

Set

L�H := λF (�H)D·H0 ⊗ λF (�H0)−D·H ,

and

d = D ·H, and d0 = D ·H0.

We have already noticed that GIT with respect to the G′-line bundle λF (�H) is 
equivalent to GIT with respect to L�H .

Under the obvious identification of Hom(G, C) ∼= Zs, the lemma above shows that the 
action of the stabilizer Stabz on the fiber (L�H)z is given by the character of G

(�[d0(D1 ·H) − d(D1 ·H0)], . . . , �[d0(Ds ·H) − d(Dl ·H0)]). (7.17)

Lemma 7.18. The weight of the center C× ⊂ G with respect to L�H is trivial and hence

Zss(L�H , G′) = Zss(L�H , G),

and similarly for the stable loci.

It follows that we can consider L�H as a G-line bundle, still without changing the GIT 
on Z.

Set

χH := ([d0(D1 ·H) − d(D1 ·H0)], . . . , [d0(Ds ·H) − d(Dl ·H0)]).

Notice that we put the coefficients d0 and d so that

χH ∈ n⊥.

The final step shows that, in diagram (7.8), we can put X = μ−1(0)ss(χH , G).

Lemma 7.19. Zss(L�H , G) = Zss(χH , G) and

VH ⊂ μ−1(0)ss(χH , G).
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Proof. The first statement is a consequence of Lemma 7.17 and Lemma 7.18 above. 
As for the second statement, it uses the fact that both U ⊂ Z and V ⊂ μ−1(0) are 
saturated open subsets. Indeed, this guarantees that if the limit of a point of U under 
a one parameter subgroup converges in Z, then it converges in U , and same for the 
points of V. It follows that the points of VH satisfy the Hilbert–Mumford criterion for 
the G-linearization of trivial bundle given by the character χH , and hence the lemma 
follows. �
Remark 7.20. By Remark 5.10 we known that, from the point of view of the resolution of 
quiver variety M0, considering a character or its inverse does not matter. Hence, we are 
free to ignore the change of polarization given in Lemma 7.6, which under the morphism 
of Lemma 6.4 simply corresponds to taking the inverse character.

Proof of Theorem 6.5. Since there is a commutative diagram

UH � G
∼ VH � G

U � G
∼ V � G

We only need to check that

VH � G μ−1(0) �χH
G

V � G μ−1(0) � G

is cartesian, but this follows exactly as in Proposition 7.4 or Proposition 7.1. �
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