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Stony Brook University

Stony Brook, NY, U.S.A.

Claire Voisin
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Introduction

It is a problem of significant interest to construct and classify compact hyper-Kähler (HK)

manifolds. In dimension 2, the HK manifolds are K3 surfaces. All known higher dimen-

sional examples are obtained from K3s or abelian varieties, by a moduli construction and

a deformation. Specifically, Beauville [9] has given two series of examples: the Hilbert

scheme of points on K3s and generalized Kummer varieties, respectively. Mukai [47]

has given a more general construction, namely he has shown that the moduli space of

semi-stable sheaves on K3s carries a symplectic form, and thus is a HK manifold if it is

smooth. Unfortunately, these examples are deformation equivalent to those of Beauville

[67]. Starting from a singular moduli space of sheaves on K3s, O’Grady [50], [51] has

produced two genuinely new examples: a 10-dimensional and a 6-dimensional one, that

we call OG10 and OG6, respectively. It was subsequently verified ([38]) that these are

the only two new examples that can be obtained by this method.

It is natural to expect that hyper-Kähler manifolds can be constructed from lower-

dimensional objects of similar nature. Specifically, we recall that the moduli space of

polarized HK manifolds in a fixed deformation class is birational via the period map to

a locally symmetric variety D/Γ, where D is a type-IV domain, and Γ an arithmetic

group. Such a locally symmetric variety contains divisors D ′/Γ′ (known as Noether–

Lefschetz or Heegner divisors), which are of the same type. It is natural to expect that
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some of these NL divisors are associated (at least motivically) with moduli spaces of

lower-dimensional HK manifolds. For instance, the Beauville–Mukai construction will

give such an example (i.e. Hilbn(K3) form an NL divisor in the corresponding moduli

space of 2n-dimensional HK manifolds). Another NL divisor in the moduli space, that

we will call a Lagrangian NL divisor, is obtained by considering the HK manifolds that

admit a Lagrangian fibration. Again, one can hope that they can be constructed from

lower-dimensional geometric objects.

As polarized K3 surfaces have only 19 parameters, Hodge theory and abstract defor-

mation theory show that many hyper-Kähler varieties built from polarized K3 surfaces

have projective deformations which are unrelated to K3 surfaces. However, the problem

of constructing explicit projective models for these deformations is usually hard, one

reason being the fact that most of these deformation spaces are of general type ([28]).

Cubic 4-folds have 20 moduli and they are well known to have a Hodge structure with

Hodge numbers h3,1=1, h2,2
prim=20. In several instances, cubic 4-folds have been used to

provide via an auxiliary construction such an algebro-geometric deformation of Hilbert

schemes of K3 surfaces. For instance [13], one of the key papers in the field, shows that

the Fano variety of lines of a cubic X is a deformation of a Hilb2(K3). More recently,

[42] constructs a HK manifold from the variety of cubic rational curves in X, which is

then shown in [1] to be deformation equivalent to a Hilb4(K3).

The 10-dimensional examples by O’Grady have b2=24, which means that polarized

deformations of them have 21 moduli, and complete families of such varieties with Picard

number 2 have 20 moduli. The construction by O’Grady in [50] provides (infinitely

many) 19-parameters families of such examples with Picard number 3, parameterized

by any moduli space of polarized K3 surfaces. The present paper provides an algebro-

geometric realization of the moduli space of cubic 4-folds as a 20-dimensional moduli

space of deformations of O’Grady’s 10-dimensional examples, and more precisely, as a

Lagrangian NL divisor in the larger 21-dimensional deformation space (our varieties are

canonically lattice polarized). Note first that this embedding is a priori given by lattice

considerations. Indeed, the moduli space of cubic 4-folds is birational to a 20-dimensional

locally symmetric variety D ′/Γ′, which is associated with the lattice A2⊕E2
8⊕U2 (where

A2 and E8 are the standard positive definite root lattices, and U is the hyperbolic plane).

On the other hand, by work of Rapagnetta [55], it is known that the second cohomology

of OG10 equipped with the Beauville–Bogomolov form is isometric to the lattice

A2(−1)⊕E8(−1)2⊕U3.

This shows that, from an arithmetic point of view, the situation is similar to that of

elliptic K3s with a section (lattice E8(−1)2⊕U2), also known as unigonal K3s, versus
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general K3s (lattice E8(−1)2⊕U3). Furthermore, it is not hard to embed the period

space of cubic 4-folds as a NL divisor into a 21-dimensional period domain of polarized

OG10 manifolds (for K3s, the unigonal K3s form a Heegner divisor in any of the polarized

period domains).

Our contribution in this paper is to realize geometrically this abstract embedding

by actually constructing a family of OG10 polarized manifolds parameterized by the

moduli space of cubic 4-folds. This is done by realizing the following program that has

been started by Donagi–Markman and developed by Markushevich, with further evidence

provided by work of Kuznetsov and O’Grady–Rapagnetta: Starting from a general cubic

4-fold X, one has the universal family Y/B of cubic 3-folds over B :=(P5)∨ obtained

as hyperplane sections of X, and then the associated relative intermediate Jacobian

fibration JU/U , where U=B\X∨⊂B is the locus of smooth hyperplane sections. In

1993, Donagi and Markman [22] had the insight that this fibration, which they showed

to be algebraic, carries a holomorphic symplectic form. The question naturally was

raised, as to whether or not it admitted a holomorphic symplectic compactification. If

such an algebraic or Kähler holomorphic symplectic compactification J̄ /B exists, then

it has Picard number at least 2 and transcendental second cohomology containing the

transcendental cohomology of the cubic X. Thus, b2(
J )>24, showing in particular that

J cannot be deformation equivalent to K3[5] type, but potentially equivalent to OG10.

Markushevich and Kuznetsov [40] (with further supporting evidence by O’Grady and

others) conjectured that indeed a good compactification 
J exists, and that it is of OG10

type. In this paper, we verify this conjecture. Specifically, we prove the following.

Main theorem (Cf. Theorem 5.7 and Corollary 6.3.) Let X⊂P5 be a general cubic

4-fold. Let B=(P5)∨, U=(B\X∨), and JU!U be the associated intermediate Jacobian

fibration. Then there exists a smooth projective compactification J̄!B, which carries a

holomorphic symplectic form, with respect to which the fibration is Lagrangian. Further-

more, J̄ is deformation equivalent to OG10.

The key issue for the theorem, and the main new content of the paper, is the con-

struction of a smooth projective compactification of the intermediate Jacobian fibration

that has a non-degenerate holomorphic 2-form. In order to do so, it is important to

understand degenerations of intermediate Jacobians as the hyperplane section of X be-

comes singular. The study of intermediate Jacobians from a different perspective was

done in [17], [16], and the main tool used there is Mumford’s construction of the inter-

mediate Jacobian as a Prym variety. This is our approach also here. A key point that

allows us to construct the compactification 
J /B is the observation that much of the

Prym construction goes through for mildly singular cubic 3-folds. Namely, we recall that
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for a smooth cubic 3-fold Y , the projection from a generic line l realizes Y as a conic

bundle over P2 with discriminant locus a smooth quintic C. Then, Mumford showed

that J(Y )∼=Prym(C̃/C), where C̃ is an étale double cover of C. In [17], the authors have

noted that for mildly singular cubics Y there still exist good lines l (see Definition 2.2)

such that the associated quintic C has a one-to-one correspondence with the singular-

ities of Y (including the type), and that the covering C̃/C is still étale. This reduces

questions about degenerations of cubic 3-folds to degenerations of curves. In [16], the

degeneration of the Prym variety Prym(C̃/C) is studied from the perspective of stable

abelian varieties (in the sense of Alexeev). Here we study this from the perspective of

compactified relative Jacobians (or rather compactified Pryms) instead. For curves, one

has a very good understanding of the degeneration of Jacobians. Namely, from the per-

spective of moduli spaces, the correct statement is the theorem of Mumford–Namikawa,

according to which there exists an extended period map from �Mg to ĀVor
g (and thus

with a family of DM stable curves one can associate a family of Alexeev stable abelian

varieties). If one insists instead on associating with an arbitrary family of curves C/B a

family of degenerate abelian varieties, without modifying the base, one gets into the the-

ory of compactified relative Jacobians (to pass from the relative compactified Jacobian

to the family of stable abelian varieties, one needs to perform a simultaneous semi-stable

reduction, see [18] and the references within). The situation for Prym varieties is more

complicated, but still well understood (see [24], [2], [15]) when the point of view is that

of Beauville’s admissible covers compactification; the relative compactified Prym is less

studied but a few cases, namely when the families of curves come from linear systems

on surfaces, were studied in [45], [7], and [58]. In our situation, due to the existence of

very good lines, we can make an important simplifying assumption: namely, we consider

only étale double covers of planar curves, and furthermore we may assume that both the

cover and the base are irreducible.

Finally, we should remark that this construction also provides the first example of

hyper-Kähler manifolds admitting a Lagrangian fibration in principally polarized abelian

varieties that are not Jacobians of curves. Indeed, the known constructions of compact

holomorphic symplectic varieties that are fibered in principally polarized abelian vari-

eties are either the relative compactified Jacobian of a linear system on a K3 surface

(Beauville–Mukai system), or the relative compactified Prym associated with a linear

system on a K3 with an anti–symplectic involution ([45], [7]). In these last examples, ei-

ther the relative Prym varieties are isomorphic to Jacobian of curves, in which case their

total spaces are hyper-Kähler manifolds deformation equivalent to the Hilbert scheme of

points on a K3 surface, or the total space of the family has singularities that admit no

symplectic resolution.
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Let us briefly describe the main steps of the paper.

The hyper-Kähler structure

In §1, we review the construction of the relative intermediate Jacobian fibration JU!U
and the existence of a holomorphic symplectic 2-form. We then show, without much dif-

ficulty, that this symplectic form extends over the locus of cubics with a single ordinary

node JU1
!U1, providing a non-degenerate holomorphic 2-form on JU1

. These results

are well known, and are essentially completely contained in [22, §8.5.2], but the cycle-

theoretic method used here has the advantage of providing an extension to a holomorphic

closed 2-form on any smooth algebraic compactification J̄ of JU1
. If furthermore JU1

⊂J̄
has codimension larger than 2, then the extended form is everywhere non-degenerate.

This allows us to concentrate on the problem of constructing a smooth compactification

of JU1
which is flat over B. The fact that the variety we construct is irreducible holomor-

phic symplectic (or hyper-Kähler) makes use of [42]. Indeed, the intermediate Jacobian

fibration contains a divisor which is birationally a P1-bundle on the hyper-Kähler 8-fold

recently constructed in [42].

Local compactification

In §2, we briefly recall the Prym construction, and discuss the existence of a good line

for all hyperplane sections of a general cubic 4-fold. Roughly speaking the existence of a

good line guarantees that the deformation theory of cubic 3-folds and their singularities

can be identified locally, up to a smooth factor, with the corresponding deformation the-

ory of quintic curves (see [16, §3]). Studying the degenerations of intermediate Jacobians

thus reduces to studying degenerations of abelian varieties associated with curves (more

precisely Prym varieties). Some of the results and ideas in this section previously oc-

curred in [17], [16]. Here we obtain a slight strengthening applicable to our context: for

any hyperplane section Y of a general cubic 4-fold, there exists a very good line l, that is,

a line such that the associated cover C̃/C is étale, and both curves are irreducible (with

singularities in one-to-one correspondence with those of the cubic 3-fold Y ). With these

assumptions, there exists a (canonical) relative compactified Prym fibration, and our

main result here is Theorem 4.20, which says that this compactification has the property

that the total space is smooth, provided that the family of (base) curves gives a simul-

taneous versal deformation of the singularities (an analogue of the corresponding result

for Jacobians). Moreover, this relative compactified Prym fibration is equidimensional,

in particular flat over a smooth base. These results are discussed in §4.
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While §4 gives a general construction for a smooth compactification of a family

of Prym varieties (under suitable assumptions), the fact that this is applicable to our

situation follows from the versality statements of §3 (e.g. Corollary 3.9). It is here, in

§3, that the generality assumption on the cubic 4-fold X is essential. Moreover, for the

purpose of proving the deformation equivalence of our compactified fibration 
J /B to

OG10, we need to show that the versality statements still hold for general Pfaffian cubic

4-folds (§3.2).

Descent

Let F!B be the relative Fano surface associated with the family u:Y!B of hyperplane

sections of a fixed cubic 4-fold, and F 0
!B be the open subset of very good lines. The

results of the previous three sections give that F 0
!B is a surjective smooth map (with

2-dimensional fibers), and the existence of a relative compactified Prym fibration 
P!F 0

which is proper over F 0, with smooth total space 
P. Our compactification J̄ is a descent

of 
P!F 0 to B. More precisely, in §5, using the relative theta divisor and a relative Proj

construction, we conclude that 
P descends to B, giving a smooth compactification J̄!B
of JU!U extending JU1!U1 and equidimensional over B. The arguments of §1 now

allow us to conclude that J̄ is a 10-dimensional compact HK manifold, and that J̄ is a

Lagrangian fibration (whose general fiber is an intermediate Jacobian). This concludes

(see Theorem 5.7) the proof of the first half of the main theorem.

Relationship with O’Grady’s varieties

In the final section, we establish that the constructed object is in fact deformation equiv-

alent to the OG10 example [50] (see Corollary 6.3). Assuming the existence of a smooth

compactification of JU , partial results in this direction had been established by O’Grady–

Rapagnetta. Their idea was to use the degeneration of the cubic 4-fold to the chordal

cubic (the secant variety of the Veronese surface), for which one can show that the com-

pactification of the limiting family of intermediate Jacobians is birational to the O’Grady

moduli space for an adequate K3 surface. A similar construction was provided by Hwang

and Nagai [35] in the case of a singular cubic 4-fold, for which the K3 surface is the

surface of lines through the singular point. Unfortunately, in both cases, we could not

deduce from the existence of these birational maps the fact that our compactified Jaco-

bian fibration is deformation equivalent to the O’Grady moduli space, because we have

no control of the singularities of the compactified Jacobian fibration at these points. We

study instead, as suggested also by Markushevich and Kuznetsov [40], the intermediate
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Jacobian fibration in the case of a Pfaffian cubic 4-fold. By Beauville–Donagi [13], such

a cubic X is Hodge-theoretic equivalent to a degree-14 K3 surface S. Using [37], [44],

and [41] we show that the fibration JU (or the compact version) is birational to the

O’Grady moduli space of sheaves on S. On the other hand, using versality statements

established in §3, we are able to prove that the compactified intermediate Jacobian fibra-

tion is smooth also for a general Pfaffian cubic 4-fold, so that Huybrechts’ fundamental

theorem [33] applies, allowing us to conclude the deformation equivalence to the OG10

example.

Two remaining questions

We point out that there are two families of intermediate Jacobians associated to the

family of hyperplane sections of a cubic 4-fold X: in addition to the JU!U considered

here, there is a twisted family J ′U!U parameterizing 1-cycles of degree 1 (or 2) in the

fibers of u:YU!U . In this paper, we are compactifying the untwisted family JU . A

natural question, that will be addressed elsewhere, is the existence of a compactification

for the twisted case. Here we only note that once a line has been chosen on a cubic

3-fold, the intermediate Jacobian and the twisted intermediate Jacobian are naturally

identified. Thus, up to the descent argument of §5 everything goes through unchanged.

On a related note, our construction is somewhat indirect (e.g. it involves the aux-

iliary choice of a line). It is natural to ask if a more direct construction is possible, in

particular one wonders if there is a modular construction for our compactification 
J!B
at least up to natural birational modifications (e.g. resolution of symplectic singular-

ities, or contraction of some divisor on which the symplectic form is degenerate). We

remind the reader that O’Grady’s original construction for OG10 is indeed modular in

this sense (it is the resolution of the moduli of sheaves on K3s for a specific choice of

Mukai vector). Results of [12], [44] in a relative setting show that after blowing-up JU
(or rather its twisted version) along the universal family of lines, one gets a variety which

is a relative moduli space of coherent sheaves supported on smooth hyperplane sections

of X, and it is maybe possible to recontract it to a symplectic moduli space of coherent

sheaves on X. The compactification of the present paper is birational to a moduli space

of sheaves on the Fano variety of lines on X (supported on the Fano surfaces of lines on

the hyperplane sections of X). A possible strategy to find a modular compactification is

therefore to study the smoothness of this moduli space of sheaves.
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Notation and conventions

Unless otherwise specified, X⊂P5 denotes a (Hodge) general cubic 4-fold. Let B=(P5)∨,

U=B\X∨, and let U1=B\(X∨)sing be the open set parameterizing hyperplane sec-

tions with at most one single ordinary node. Thus U⊂U1⊂B, and U1 has boundary of

codimension 2 in B. Let u:Y!B be the universal family of cubic 3-folds obtained as

hyperplane sections of X, and u:YU!U and u:YU1!U1 be its restrictions to U and

U1, respectively. Typically, Y or Yt will denote hyperplane sections of X or fibers of Y.

We let πU :JU!U denote the intermediate Jacobian fibration associated with the family

YU!U , and similarly for πU1
:JU1

!U1. Thus JU and JU1
are smooth quasi-projective

varieties together with a holomorphic symplectic form, and the restriction of JU1
to U is

JU (cf. [22] and §1). We let 
J!B denote a proper algebraic extension of JU!U (and

more precisely of JU1
!U1) over B. Of course, such 
J always exists; the goal of the paper

is to establish the existence of a smooth 
J which is flat over B, hence holomorphically

symplectic.

Let Y be a cubic 3-fold, and l⊂Y a line (both Y and l need to satisfy some mild

assumptions, to be specified in the text). The projection from l realizes Y as a conic
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bundle over P2 with a plane quintic C as discriminant. The lines in Y incident to l

are parameterized by a curve C̃, which is a double cover (étale for general l) of C. We

let F!B denote the universal family of Fano surfaces, and (C̃, C) the relative family of

double covers over (a suitable open of) F .

We will say that two hypersurface singularities (V (f), 0)⊂Cn and (V (g), 0)⊂Cn+k

have the same type if they differ by a suspension, i.e. in suitable analytic coordinates

g(x1, ..., xn+k)=u·(f(x1, ..., xn)+x2
n+1+...+x2

n+k), with u a unit in O(Cn+k,0). The de-

formation spaces for singularities of the same type (and also the local monodromies if

k≡0 mod 2) are naturally identified.

1. Holomorphic 2-forms on Jacobian fibrations

In [22], Donagi and Markman have performed the infinitesimal study of algebraically

integrable systems, also called Lagrangian fibrations, which consist of a holomorphic

family of complex tori, equipped with a non-degenerate (2, 0)-form for which the fibers

are Lagrangian. In this section, we provide an alternative way to construct a structure

of Lagrangian or rather isotropic fibration on certain families of intermediate Jacobians.

That is, we give a cycle and Hodge-theoretic argument to construct a closed holomorphic

2-form vanishing on fibers of such families. The non-degeneracy of the holomorphic 2-

form needs to be checked by hand. However, a strong point of our construction is that

it easily implies that the (2, 0)-form extends to any algebraic smooth compactification of

the family of intermediate Jacobians.

1.1. The general case

Let X be a smooth projective variety of dimension 2k, and let L be a line bundle on X.

Assume that the smooth members Y of the linear system |L| have the following property:

Hp,q(Y ) = 0, p+q= 2k−1 and (p, q) /∈{(k, k−1), (k−1, k)}. (1.1)

Note that by [27] (see also [65, Vol. I, §12.1 and §12.2]) (1.1) is implied by the following

property:

The Abel–Jacobi map ΦY : CHk(Y )hom! J2k−1(Y ) is surjective. (?)

Conversely, (1.1) should imply (?), according to the Hodge conjecture (see [66,

§2.2.5]). Under the assumption (1.1), the intermediate Jacobians J(Y ):=J2k−1(Y ) are

abelian varieties. Let U⊂B :=|L| be the Zariski open set parameterizing smooth mem-

bers, Y⊂B×X be the universal family, and YU be its restriction to U . The family of
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intermediate Jacobians is under the same assumption a quasi-projective variety JU with

a smooth projective morphism

πU :JU −!U

with fiber J(Yt) over the point t∈U .

Let now η∈Hk+1,k−1(X) and assume that η|Y =0 in Hk+1,k−1(Y ) for any smooth

member Y of |L|. (In our main application, where X is the cubic 4-fold and k=2, this

assumption will be automatic, since Hk+1,k−1(Yt) will be 0.) We are going to construct a

holomorphic 2-form σU on JU associated with the above data and establish Theorem 1.2.

We will first do this assuming (?) and will explain at the end how to adapt the proof

when they only satisfy property (1.1).

Construction of the holomorphic 2-form. We denote by u:YU!U the first pro-

jection, where YU⊂U×X is the universal hypersurface. We have the folowing lemma.

Lemma 1.1. Assuming (?), there exists a codimension-k cycle

Z ∈CHk(JU×UYU )Q

such that the Betti cohomology class α:=[Z]∈H2k(JU×UYU ,Q), or rather its image α0

in H0(U,R2k(πu, u)∗Q), satisfies the condition that

α∗0:R2k−1u∗Q−!R1πU∗Q

is the natural isomorphism.

Proof. By the assumption (?), for each fiber Yt, t∈U , there exist a smooth and

projective variety Wt and a family of codimension-k cycles Tt∈CHk(Wt×Yt), such that

Tt|{w}×Yt is homologically trivial, with the property that the Abel–Jacobi map

ΦTt :Wt−! J(Yt),

w 7−!ΦYt(Tt,w),

is surjective. It follows that there exists a codimension-k cycle Z ′t∈CHk(J(Yt)×Yt) such

that the Abel-Jacobi map

ΦZ′t : J(Yt)−! J(Yt),

w 7−!ΦYt(Z ′t,w),
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is N times the identity of J(Yt) for some integer N>0. Indeed, we may assume that the

surjective morphism ΦTt :Wt!J(Yt) is generically finite of degree N , by replacing Wt by

a linear section if necessary. Then we set

Z ′t := (ΦTt , IdYt)∗Tt.

The cycles Z ′t have been defined fiberwise, but standard argument show that for an

adequate choice of N they can be constructed in family over a smooth generically finite

cover V of U by spreading the original cycles Tt,w. This provides a codimension-k cycle

Z ′′∈CHk(JV ×V YV ) such that the class α′′ :=[Z ′′] satisfies that

(α′′0)∗:R2k−1u′∗Q−!R1π′∗Q

is N times the natural isomorphism, where u′:YV!V and π′:JV!V are the natural

maps. We can choose a partial smooth completion 
V of V such that the morphism

V!U extends to a proper morphism r:
V!U . We next extend the cycle Z ′′ to a cycle

Z ′′∈CHk(J
V ×
V Y
V ). If M=deg r, the cycle Z :=r̃∗Z ′′/MN∈CHk(JU×UYU ) satisfies

the desired property, where r̃:J
V ×
V Y
V!JU×UYU is the natural degree-M induced

map.

Having the lemma, we now observe that there is a natural proper morphism

q′= (Id, q):JU×UYU −!JU×X,

where q:YU!X is the second projection restricted to YU⊂U×X, and we thus get a

codimension-(k+1) cycle Zq :=q′∗Z∈CHk+1(JU×X)Q with Betti cohomology class [Zq]∈
H2k+2(JU×X,Q) and Dolbeault cohomology class [Zq]k+1,k+1∈Hk+1(JU×X,Ωk+1

JU×X).

For any η∈Hk−1(X,Ωk+1
X ), the corresponding class σU∈H0(JU ,Ω2

JU
) is defined by the

formula

σU = ([Zq]k+1,k+1)∗(η), (1.2)

where ([Zq]k+1,k+1)∗:Hk−1(X,Ωk+1
X )!H0(JU ,Ω2

JU
) is defined by

([Zq]k+1,k+1)∗(ω) = pr1∗([Zq]k+1,k+1∪pr∗2 ω),

the pri’s being the two projections defined on JU×X. This completes the construction

of the form σU .

The following notation will be used below: as we have η|Yt=0 in Hk−1(Ωk+1
Yt

) and

Hk−2(Yt,Ω
k+1
Yt

)=0 by (1.1), η determines a class

η̃t ∈Hk−1(Yt,Ω
k
Yt(−L)) (1.3)

using the exact sequence

0−!ΩkYt(−L)−!Ωk+1
X |Yt −!Ωk+1

Yt
−! 0.
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Theorem 1.2. The holomorphic 2-form

σU ∈H0(JU ,Ω2
JU )

constructed above satisfies the following properties:

(i) The fibers of the fibration πU :JU!U are isotropic for σU .

(ii) At any point t∈U , the map yσt:TU,t!H0(Jt,ΩJt)=Hk−1(Yt,Ω
k
Yt

) induced by

σU using (i) identifies with the multiplication map

TU,t =H0(Yt, L|Yt)−!Hk−1(Yt,Ω
k
Yt)

by the class η̃t of (1.3).

(iii) For any smooth algebraic variety 
J containing JU as a Zariski open set, the

2-form σU extends to a holomorphic 2-form on 
J .

(iv) The 2-form σU is closed.

Proof. Denoting by p1:JU×UYU!JU the first projection and by p2:JU×UYU!YU
the second one, formula (1.2) gives as well, using the projection formula and the fact that

[Z]k+1,k+1
q =q′∗([Z]k,k),

σU = ([Z]k,k)∗(q∗η), (1.4)

where ([Z]k,k)∗:Hk−1(YU ,Ωk+1
YU ))!H0(JU ,Ω2

JU
) is defined by

([Z]k,k)∗(ω) = p1∗([Z]k,k∪p∗2ω).

(i) This follows immediately from (1.4) which gives, for t∈U ,

σU |Jt = ([Z]k,k|Jt×Yt)∗(η|Yt),

and from the fact that η|Yt=0 in Hk+1,k−1(Yt) by assumption. (Here we identify the

fiber Yt of the universal family and its image in X.)

(iii) We observe that if 
J !JU is a smooth algebraic partial compactification of

JU , the cycle Zq extends to a cycle 
Zq∈CHk+1(
J ×X), so that its cohomology class

[Zq]k+1,k+1 extends to a class

[
Zq]k+1,k+1 ∈Hk+1(
J ×X,Ωk+1

J×X).

It thus follows that the form σU extends to a 2-form σ∈H0(
J ,Ω2
J

) given by the formula

σ= ([
Zq]k+1,k+1)∗(η). (1.5)
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(iv) This is an immediate consequence of (iii). Indeed, choosing a smooth projective

compactification 
J !JU of JU , the 2-form σU extends by (iii) to a holomorphic 2-form

σ on 
J . The 2-form σ is closed, hence the original form σU is closed.

(ii) Consider the class q∗η∈Hk−1(YU ,Ωk+1
YU ). As it vanishes on fibers Yt of u, t∈U ,

it provides for any t∈U a morphism

int( ·)q∗η:TU,t−!Hk−1(Yt,Ω
k
Yt) (1.6)

which for k=1 is simply obtained by taking interior product of the 2-form η with a local

lift of the considered tangent vector on the base, and for arbitrary k is constructed as

follows: the cotangent bundle sequence of u,

0−!ΩU,t⊗OYt −!ΩYU |Yt −!ΩYt −! 0,

induces an exact sequence

0−!ΩU,t⊗ΩkYt −!Ωk+1
YU |Yt/L

2Ωk+1
YU |Yt −!Ωk+1

Yt
−! 0, (1.7)

where L2Ωk+1
YU |Yt

⊂Ωk+1
YU |Yt

is the sub-bundle u∗Ω2
U,t∧Ωk−1

YU |Yt
. From (1.7), using the fact

that Hk−2(Yt,Ω
k+1
Yt

)=0, we deduce that the class q∗η|Yt∈Hk−1(Yt,Ω
k+1
YU |Yt) lifts to a

unique class q̃∗ηt in ΩU,t⊗Hk−1(Yt,Ω
k
Yt

)=Hom(TU,t, H
k−1(Yt,Ω

k
Yt

)), giving the desired

morphism int( ·)q∗η of (1.6). We now use formula (1.4), which makes obvious that, for

any t∈U and v∈TU,t,

vyσU = ([Z]k,k|Jt×Yt)∗(int(v)q∗η) in H0(Jt,ΩJt). (1.8)

In the right-hand side, we recall that, by construction, the morphism

([Z]k,k|Jt×Yt)∗:Hk(Yt,Ω
k−1
Yt

)−!H0(Jt,ΩJt)

is the natural isomorphism. It thus only remains to analyze the morphism int( ·)q∗η. We

observe now that the cotangent bundle sequence (1.7) is compatible with the conormal

bundle sequence of Yt in X, since via the differential q∗ of the morphism q:Y!X, we

get the following commutative diagram:

0 // OYt(−L) //

��

ΩX |Yt //

��

ΩYt
//

��

0

0 // ΩU,t // ΩYU |Yt // ΩYt // 0.

(1.9)
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The first vertical map is the natural inclusion dual to the evaluation map TU,t=

H0(Yt, L|Yt)!L|Yt . Taking (k+1)-th exterior powers, we get the following commutative

diagram:

0 // ΩkYt(−L) //

f

��

Ωk+1
X |Yt //

��

Ωk+1
Yt

//

��

0

0 // ΩU,t⊗ΩkYt
// Ωk+1
YU |Yt/L

2Ωk+1
YU |Yt // Ωk+1

Yt
// 0.

(1.10)

It clearly follows from the commutativity of diagram (1.10) that

f(η̃t) = q̃∗ηt in ΩU,t⊗Hk−1(Yt,Ω
k
Yt) (1.11)

(where η̃t is as in (1.3)). The proof of (ii) is now a consequence of (1.8) and (1.11).

Indeed, for any v∈TU,t we have

vyσU = ([Z]k,k|Jt×Yt)∗(int(v)q∗η) = ([Z]k,k|Jt×Yt)∗(q̃∗ηt(v)) in H0(Jt,ΩJt),

where the first equality is (1.8) and the second equality is by definition of q̃∗ηt. The

equality (1.11) then tells that

q̃∗ηt(v) = vη̃t,

where, on the right, v is seen as an element of H0(OYt(−L)) and vη̃t is the product of

v and ηt. The proof is thus finished, since ([Z]k,k|Jt×Yt)∗ is the natural identification

between Hk−1(Yt,Ω
k
Yt

) and H0(Jt,ΩJt).

The construction of the 2-form σU and the proof of Theorem 1.2, assuming prop-

erty (?), are now complete. We conclude this section explaining how to modify the

arguments to get the same results only assuming (1.1). If we examine the proofs given

above, we see that the key tool is the algebraic cycle Z∈CHk(JU×UYU )Q and its image

Zq∈CHk+1(JU×X)Q. These cycles appear only through their Dolbeault classes [Z]k,k,

[Zq]k+1,k+1, which are better seen, after extensions to smooth projective varieties, as

Hodge classes. In the absence of the cycle Z that we constructed using the assumption

(?) we still have the desired Hodge classes, as follows from the following lemma. Below,

a Hodge class on a smooth quasi-projective variety Y is by definition the restriction of a

Hodge class on a smooth projective compactification 
Y of Y. The set of Hodge classes on

Y does not depend on the compactification 
Y . In fact, according to Deligne [21], Hodge

classes in H2k(Y,Q) are identified with Hdg2k(W2kH
2k(Y,Q)), where W2kH

2k(Y,Q) is

the smallest weight part of H2k(Y,Q), which is also the image of the restriction map

H2k(
Y ,Q)!H2k(Y,Q) for any smooth projective compactification 
Y of Y. Hodge classes

α∈Hdg2k(H2k(Y,Q)) have a Dolbeault counterpart αk,k∈Hk(Y,ΩkY ) (which usually does

not determine α in the non-projective situation).
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Lemma 1.3. Let X, k and L be as above, satisfying condition (1.1). Then, there

exists a Hodge class α∈Hdg2k(JU×UYU ,Q) with the property that the class

α0 ∈H0(U,R2k(πU , u)∗Q)

induces the natural isomorphism H2k−1(Yt,Q)∼=H1(Jt,Q) at any point t∈U .

Proof. The only observation to make is that the canonical isomorphism

H2k−1(Yt,Q)∼=H1(Jt,Q)

is an isomorphism of Hodge structures of bidegree (−k+1,−k+1), by the vanishing

condition (1.1). Such an isomorphism of Hodge structures provides a degree 2k Hodge

class αt on the product Jt×Yt. We thus have a section of the local system R2k(πU , u)∗Q
which is a Hodge class at any point t of U . Deligne’s global invariant cycle theorem [21]

then says that for any smooth projective compactification M of JU×UYU , there exists

a cohomogy class β∈H2k(M,Q) such that β|Jt×Yt=αt for any t∈U . Using the facts

that αt is a Hodge class and the restriction morphism H2k(M,Q)!H2k(Jt×Yt,Q) is a

morphism of polarized Hodge structures, the semi-simplicity of the category of polarized

rational Hodge structures allows us to conclude that the class β can be chosen to be

Hodge on M (see [66, §2.2.1]). The restriction of β to JU×UYU is then the desired

Hodge class α on JU×UYU .

This concludes the proof of Theorem 1.2 assuming only (1.1). We conclude this

section observing that, except for (ii), we did not use the condition that Y is the universal

family of smooth divisors in X. Any smooth projective family mapping to X, or even

only having a correspondence Z with X, with fibers satisfying condition (1.1) will do.

In practice, (ii) gives a way of deciding whether the constructed 2-form is degenerate or

not. So our arguments prove more generally the following variant of Theorem 1.2:

Theorem 1.4. Let X be a smooth projective variety of dimension n and f :Y!U
be a smooth projective morphism between smooth quasi-projective varieties. Let l and k

be integers and let Z∈CHn−l+k−1(Y×X)Q be a codimension-(n−l+k−1) cycle. Assume

that the fibers Yt of f satisfy condition (1.1) for the given integer k. Let πU :JU!U be

the family of intermediate Jacobians J2k−1(Yt), t∈U . Then

(i) For any class η∈H l+2,l(X) such that Z∗η|Yt=0 in Hk+1,k−1(Yt) for any t in U ,

there is a closed (2, 0)-form σU∈H0(JU ,Ω2
JU ) for which the fibers of πU are isotropic.

(ii) For any smooth algebraic partial compactification JU⊂ 
J , the (2, 0)-form σU

extends to a (2, 0)-form σ on 
J .
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Example 1.5. In [36], Iliev and Manivel construct a Lagrangian fibration structure

on the family of intermediate Jacobians of smooth cubic 5-folds containing a given cubic

4-fold X. We recover the closed (2, 0)-form as an application of Theorem 1.4: The family

YU in this case is the universal family of these cubic 5-folds and the integer k is 3. The

cycle Z⊂X×YU∼=YU×X is isomorphic to X×U and will be given by the embedding of

X in Yt for any t∈U , hence we have l=1, n=4, n−l+k−1=5 in this case. Of course,

some more work as in Theorem 1.2 (ii) is needed to show that the (2, 0)-form is non-

degenerate, but our approach shows that this forms extends to any smooth projective

compactification.

1.2. The case of the cubic 4-fold

The paper will be devoted to the case where X⊂P5 is a cubic 4-fold, L=OX(1) and k=2.

One has dimH3,1(X)=1 by Griffiths’ theory, and a generator η of H3,1(X) provides

thus by Theorem 1.2 a (2, 0)-form σU on the family of intermediate Jacobians of smooth

hyperplane sections of X. We have the following result.

Proposition 1.6. If X is a smooth cubic 4-fold, the holomorphic 2-form σU is

non-degenerate on JU .

Proposition 1.6 already appears in [22], [36], [46], [43]. The proof given here is

slightly different, being an easy application of Theorem 1.2.

Proof of Proposition 1.6. We apply Theorem 1.2. In the case of the family of hy-

perplane sections of a cubic 4-fold, the base U and the fiber J(Yt) of the family JU!U
are of dimension 5. The 2-form σU vanishes along the fibers of πU , and in order to

prove that it is non-degenerate, it suffices to show that at any point t∈U , the map

y( ·)σU :TU,t!H
0(Jt,ΩJt) is an isomorphism. Theorem 1.2 (ii) tells us that y( ·)σU is the

following map: the generator η induces for each point t∈U a class η̃t∈H1(Yt,Ω
2
Yt

(−1)).

Then, using the identification H0(Jt,ΩJt)∼=H1(Yt,Ω
2
Yt

), we have that

y( ·)σU :TU,t =H0(Yt,OYt(1))−!H1(Yt,Ω
2
Yt)

is the multiplication map by η̃t. So the statement of Proposition 1.6 is the following.

Claim. For any t∈U , the class η̃t∈H1(Yt,Ω
2
Yt

(−1)) induces an isomorphism

H0(Yt,OYt(1))−!H1(Yt,Ω
2
Yt). (1.12)

The proof of the claim is a consequence of the following lemma.
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Lemma 1.7. (i) The class η̃t∈H1(Yt,Ω
2
Yt

(−1)) is a non-zero multiple of the exten-

sion class e of the normal bundle sequence

0−!TYt −!TP4 |Yt −!OYt(3)−! 0, (1.13)

using the natural identification Ω2
Yt

(−1)∼=TYt(−3).

(ii) The extension class e has the property that the multiplication map by

e:H0(Yt,OYt(1))−!H1(Yt,Ω
2
Yt)

is an isomorphism.

Proof. (ii) is Griffiths’ residue isomorphism (see [65, Vol. II, §6.1.3]) and in this case,

the statement immediately follows from the exact sequence (1.13) and the fact that

H0(Yt, TP4 |Yt(−2))=0, and H2(Yt, TYt(−2))=0. As for (i), this simply follows from the

fact that the class η̃t∈H1(Yt,Ω
2
Yt

(−1)) is non-zero because η 6=0, and H1(X,Ω3
X(−1))=0,

so that η|Yt 6=0. On the other hand, H1(Yt,Ω
2
Yt

(−1))=H1(Yt, TYt(−3)) is 1-dimensional,

as follows from the normal bundle sequence (1.13).

The proof of Proposition 1.6 is finished.

1.3. Another example: quadric sections of cubic 4-folds

Note that the cubic 4-fold X has another family of smooth divisors Y ⊂X satisfying con-

dition (1.1), namely the smooth complete intersections Q∩X, where Q is a quadric in P5.

The corresponding family JQ!UQ of intermediate Jacobians has a basis UQ of dimen-

sion 20=h0(P5,OP5(2))−1 and fibers of dimension 20. Theorem 1.2 shows that JQ has

a closed holomorphic 2-form σQ which extends to any smooth algebraic compactification

JQ of JQ. However the 2-form in this case is only generically non-degenerate.

Lemma 1.8. The 2-form σQ is non-degenerate along a fiber JQ,t=J(Yt), where

Yt=Qt∩X, if and only if the quadric Qt is non-degenerate.

Proof. The generator η of H1(X,Ω3
X)=H1(X,TX(−3)) is the extension class of the

normal bundle sequence

0−!TX −!TP5 |X −!OX(3)−! 0.

Restricting to Yt=Qt∩X, we get the exact sequence

0−!TX |Yt −!TP5 |Yt −!OYt(3)−! 0,
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whose extension class must come from the extension class et of the normal bundle se-

quence

0−!TYt −!TQ|Yt −!OYt(3)−! 0 (1.14)

of Yt in Qt. In other words, the class η̃t∈H1(Ω2
Yt

(−2))=H1(Yt, TYt(−3)) is nothing but

the extension class et. It follows that the multiplication map

η̃t:H
0(Yt,OYt(2))−!H1(Yt,Ω

2
Yt)

identifies with the map H0(Yt,OYt(2))!H1(Yt,Ω
2
Yt

)∼=H1(Yt, TYt(−1)) induced by the

exact sequence (1.14) twisted by OYt(−1). Looking at the long exact sequence associated

with (1.14), we find that this map is an isomorphism if and only if H0(Yt, TQt |Yt(−1))=0.

But H0(Yt, TQt |Yt(−1))=0 if and only if Qt is not singular.

1.4. Extensions to nodal fibers

Let X be a smooth cubic 4-fold, and η∈H1(X,Ω3
X) be a generator of H1(X,Ω3

X). We use

as before the notation Y!B and YU!U for the universal family of hyperplane sections

of X. Let U1⊂|OX(1)| be the Zariski open set parameterizing hyperplane sections of

X with at most one ordinary double point. The Jacobian fibration πU :JU!U has a

flat projective extension πU1 :JU1!U1 with smooth total space (see Lemma 5.2 for the

smoothness statement). As the vanishing cycle of the degeneration is not trivial at a point

t∈U1\U , the fiber of πU1 over t is a singular compactification of a C∗-bundle over J(Ỹt),

where Ỹt is the desingularization of Yt obtained by blowing-up the node. We will denote

below by J �

U1
the quasi-abelian part of JU1

. Note that J �

U1
⊂JU1

has a complement of

codimension 2, consisting of the singular loci of the compactified Jacobians over U1\U .

By Theorem 1.2 (iii), the 2-form σU extends to a 2-form σU1
on JU1

, for which the

fibers of πU1
are isotropic by Theorem 1.2 (i) (and the fact that the fibers of πU1

are

equidimensional). Next, the smooth locus J(Yt)reg=J �

U1,t
is a quasi-abelian variety with

cotangent space isomorphic to H1(Ỹt,Ω
2
Ỹt

(logEY )), where EY is the exceptional divisor

of the resolution Ỹt!Yt.

Our goal in this section is to reprove the following result which can be found in [22,

§8.5.2].

Proposition 1.9. The extended 2-form σU1
is everywhere non-degenerate on J �

U1
,

hence also on JU1
.

As an immediate corollary, we get the following result.

Corollary 1.10. Assume that JU1
has a smooth compactification 
J with boundary


J \JU1 of codimension >2 in 
J . Then 
J is holomorphically symplectic.
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Proof. Indeed, the extended 2-form, being non-degenerate away from a codimension-

2 closed analytic subset, is everywhere non-degenerate.

The proof of Proposition 1.9 is based on Lemma 1.11 below. For t∈U1\U , we have

the inclusions

Ỹt⊂ X̃ ⊂ P̃5,

where X̃ (resp. P̃5) is the blow-up of X (resp. P5) at the singular point of Yt. We denote

by E the exceptional divisor of P̃5 and EX the exceptional divisor of X̃, so EY =EX∩Ỹt.
As X̃ is transverse to the exceptional divisor E of P̃5 and belongs to the linear system

|OP̃5(3)(−E)|, we have a logarithmic tangent bundles sequence

0−!T
X̃

(logEX)−!TP̃5(logE)|
X̃
−!O

X̃
(3)(−EX)−! 0. (1.15)

Here we recall that the logarithmic tangent bundle of a variety equipped with a smooth

divisor D is the dual of the logarithmic cotangent bundle determined by D and can be

defined as the sheaf of vector fields tangent to D along D. As EX∩Ỹt=EY , we also get

natural inclusions for any l:

T
Ỹt

(logEY )(lEY )(−3)⊂T
X̃

(logEX)(lEX)(−3)|Ỹt . (1.16)

Lemma 1.11. The induced map yσU1,t:TU1,t!H
1(Ỹt,Ω

2
Ỹt

(logEY )) is constructed as

follows:

(i) The extension class e∈H1(T
X̃

(logEX)(EX)(−3)) of (1.15) maps naturally to

an element e′∈H1(T
X̃

(logEX)(2EX)(−3)), which restricted to Ỹt comes via (1.16) from

a uniquely defined element

eY ∈H1(Ỹt, TỸt(logEY )(2EY )(−3)). (1.17)

(ii) One has T
Ỹt

(logEY )(2EY )(−3)=Ω2
Ỹt

(logEY )(−1), thus

eY ∈H1(Ỹt,Ω
2
Ỹt

(logEY )(−1)).

(iii) The interior product yσU1,t:TU1,t!H
1(Ỹt,Ω

2
Ỹt

(logEY )) is given by multiplica-

tion H0(Ỹt,OỸt(1))
eY−−!H1(Ỹt,Ω

2
Ỹt

(logEY )).

Proof. (i) We write the logarithmic normal bundle sequence for Ỹt⊂X̃:

0−!T
Ỹt

(logEY )−!T
X̃

(logEX)|
Ỹt
−!O

Ỹt
(1)(−2EY )−! 0

which we twist by O
Ỹt

(2EY )(−3). The conclusion then follows from the following easy

vanishing statements:

H1(Ỹt,OỸt(−2)) = 0 and H0(Ỹt,OỸt(−2)) = 0.
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Remark 1.12. It is easy to check that eY is in fact the class of the logarithmic

tangent bundles exact sequence

0−!T
Ỹt

(logEY )−!TP̃4(logEP4)|
Ỹt
−!O

Ỹt
(3)(−2EY )−! 0

associated with the embedding of Ỹt in the blow-up P̃4 of the hyperplane P4 containing

Yt at the singular point of Yt.

(ii) This follows from the fact that T
Ỹt

(logEY ) is dual to Ω
Ỹt

(logEY ) and that the

later has determinant K
Ỹt

(EY )=O
Ỹt

(−2)(2EY ). Thus

Ω2
Ỹt

(logEY )∼=T
Ỹt

(logEY )(K
Ỹt

(EY )) =T
Ỹt

(logEY )(−2)(2EY ).

(iii) The morphism u:YU1
!U1 is smooth along the smooth locus Yt,reg of the

fiber Yt. It follows that the arguments used in the proof of Theorem 1.2 (ii) apply along

Yt,reg, so that we can conclude that the conclusion of (iii) holds true in H1(Yt,reg,Ω
2
Yt,reg

),

i.e., after composing with the restriction map H1(Ỹt,Ω
2
Ỹt

(logEY ))!H1(Yt,reg,Ω
2
Yt,reg

).

The proof is then finished using the following sublemma.

Sublemma 1.13. The restriction map H1(Ỹt,Ω
2
Ỹt

(logEY ))!H1(Yt,reg,Ω
2
Yt,reg

) is an

isomorphism.

Proof. Note that Yt,reg=Ỹt\EY . Denoting by j:Yt,reg!Ỹt the inclusion map, j is

an affine map and we have Ω2
Yt,reg

=j∗(Ω2
Ỹt

(logEY )), so that

H1(Yt,reg,Ω
2
Yt,reg

) =H1(Ỹt, R
0j∗(Ω

2
Ỹt

(logEY )|Yt,reg)) = lim
−→
k

H1(Ỹt,Ω
2
Ỹt

(logEY )(kEY )).

(1.18)

The lemma then follows from the following exact sequence:

0−!Ω2
EY −!Ω2

Ỹt
(logEY )|EY −!ΩEY −! 0. (1.19)

Indeed, we recall that EY ∼=P1×P1 and that OEY (EY )=OEY (−1,−1). It follows that,

for any k>0,

H1(EY ,ΩEY (kEY )) = 0 and H1(EY ,Ω
2
EY (kEY )) = 0,

and, for any k>0,

H0(EY ,ΩEY (kEY )) = 0 and H0(EY ,Ω
2
EY (kEY )) = 0,

Using the exact sequence (1.19), this shows that

H1(EY ,Ω
2
Ỹt

(logEY )|EY (kEY )) = 0
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for k>0 and H0(EY ,Ω
2
Ỹt

(logEY )|EY (kEY ))=0 for k>0. It follows that the map

H1(Ỹt,Ω
2
Ỹt

(logEY )(kEY ))−!H1(Yt,Ω
2
Yt(logEY )((k+1)EY ))

is an isomorphism for k>0, proving the lemma by (1.18).

The proof of Lemma 1.11 is now complete.

Proof of Proposition 1.9. We have to prove that σU1
is non-degenerate at any point

of J �

U1
over t∈U1\U . This is equivalent to proving that the map

yσU1 :TU1,t−!H0
inv(J �

U1,t,ΩJ �

U1,t
) =H1(Ỹt,Ω

2
Ỹt

(logEY )(−EY ))

is an isomorphism, where H0
inv here denotes the space of translation-invariant 1-forms.

Using Lemma 1.11, the last statement is equivalent to the fact that the multiplication

map

eY :H0(Ỹt,OỸt(3))−!H1(Ỹt,Ω
2
Ỹt

(logEY )(−EY )) (1.20)

is an isomorphism, where eY ∈H1(Ỹt,Ω
2
Ỹt

(logEY )(−EY )(−1)). We have

Ω2
Ỹt

(logEY )(−EY )(−1)∼=T
Ỹt

(logEY )(−3)(EY ),

and the class eY maps to the extension class e′Y ,

0−!T
Ỹt

(logEY )−!TP̃4(logE)|
Ỹt
−!O

Ỹt
(3−2EY )−! 0, (1.21)

of the logarithmic normal bundle sequence of Ỹt in P̃4, via the natural map

H1(Ỹt, TỸt(logEY )(−3)(EY ))−!H1(Ỹt, TỸt(logEY )(−3)(2EY )).

An element in the kernel of the multiplication map by eY is thus also in

Ker(e′Y :H0(Ỹt,OỸt(1))−!H1(Ỹt, TỸt(logEY )(−2)(2EY )))

induced by (1.21), hence comes from an element of

H0(Ỹt, TP̃4(logE)|
Ỹt

(−2)(2EY )),

and it is easily shown that this space reduces to zero. The map

yσU1
:TU1,t−!H0

inv(J �

U1,t,ΩJ �

U1,t
)

is thus injective, and hence an isomorphism.
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2. Good and very good lines

Our main tool for studying degenerations of intermediate Jacobians of cubic 3-folds is

Mumford’s description of the intermediate Jacobian J(Y ) as a Prym variety Prym(C̃/C).

The curve C (and its étale double cover C̃) are obtained by projecting from a generic line

on the smooth cubic Y. In [17] (this is also subsequently used in [16]), it is noted that

much of the Prym construction carries on to the mildly singular case provided a careful

choice of a line l on (the possibly singular) Y. This provides a powerful tool for studying

the degenerations of intermediate Jacobians. We caution the reader that the context in

the current paper is slightly different from that of [17], [16] (e.g. see Remark 2.4) forcing

us to reprove (under slightly different hypotheses) and strengthen certain results. For

convenience, we have tried to make the exposition below mostly self-contained.

Notation 2.1. If X is a cubic 4-fold and Y ⊂X is a hyperplane section, we denote by

F (Y ) (resp. F (X), with F (Y )⊂F (X)) the varieties of lines in Y (resp. X). We denote

by [l]∈F (Y ) (resp. F (X)) the point parameterizing l⊂Y (resp. l⊂X).

2.1. Good lines

Definition 2.2. (Cf. [17, Definition 3.4]) Let Y ⊂P4 be a cubic 3-fold not containing

any plane. A line l⊂Y is good if for any plane P⊂P4 containing l, P∩Y consists in three

distinct lines.

The notion of a good line is obviously important from the point of view of the Prym

construction of the intermediate Jacobian of a cubic 3-fold. Projecting Y from l, we

get a conic bundle Ỹl!P2, where Ỹl is the blow-up of Y along l, and the discriminant

curve Cl⊂P2 parameterizing reducible conics has degree 5. The curve C̃l of lines in

Y intersecting l is the double cover of Cl with fiber over the point c parameterizing a

reducible conic C the set of components of C. Thus, if l is good, the natural involution

acting on C̃l has no fixed point.

Proposition 2.3. Let X be a general cubic 4-fold. Then any hyperplane section Y

of X has a good line.

Remark 2.4. The existence of a good line is proved in [17] when Y has singularities

of type Ak for k65, or D4, i.e. the singularities relevant in the geometric invariant

theory (GIT) context. Unfortunately, we need to allow some additional simple (or ADE)

singularities (e.g.D5) as these can appear as singularities of hyperplane sections of general

cubic 4-folds. It is very likely that the arguments of [17] could be extended to cover the

cases needed in this paper, but we prefer to give an alternative proof here.
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Proof of Proposition 2.3. Let us say that a line l in X is special in X (resp. in Y ) if

the restriction map JX!H
0(l,Ol(2)) (resp. JY!H

0(l,Ol(2))) has rank 62, where JX

(resp. JY ) denotes the degree-2 part of the Jacobian ideal ofX (resp. Y ). AsX is general,

lines which are special in X are parameterized by a smooth surface Σsp⊂F (X) (see [6]).

Recall from [64] that the variety F (X) has a rational self-map φ:F (X)99KF (X). The

map φ associates with [l]∈F (X) the point [l′] parameterizing the line l′⊂X constructed

as follows: if l is not special in X, that is [l] /∈Σsp, there is a unique plane Pl⊂P5 such

that Pl∩X=2l+l′ as a divisor of Pl, where l′⊂X is the desired line in X. When X

contains no plane, the indeterminacy locus of φ is exactly the surface Σsp, along which

the plane Pl above is not unique. Furthermore, the indeterminacies of the map φ are

solved after blowing-up the surface Σsp, and the induced morphism φ̃: F̃ (X)!F (X) is

finite if X is general (see [6]). Note that the condition on a line l′⊂Y to being good will

be implied by the slightly stronger fact that l′ is non-special in X (so φ is well defined at

[l′]) and for no point [l]∈F (Y ), one has φ̃([l])=[l′] or φ([l′])=[l]. (For the first of these

conditions, one has rather to consider a point over [l] in F̃ (X).)

We first have the following lemma.

Lemma 2.5. (i) If X is smooth, F (Y ) is a surface for any hyperplane section Y

of X. Furthermore, F (Y )red⊂F (X) is Lagrangian for the holomorphic 2-form σ on the

smooth hyper-Kähler manifold F (X) (see [13]).

(ii) If X is general, F (Y ) is irreducible and reduced for any hyperplane section

of X.

Proof. (i) It is classical that F (Y ) is smooth of dimension 2 at any point [l] parame-

terizing a line l contained in the smooth locus of Y. Moreover, Y has isolated singularities,

and the families of lines in Y through any point y∈Y cannot be 3-dimensional as oth-

erwise it would be the whole set of lines in HY passing through y, where we denote by

HY the hyperplane cutting Y in X. This proves the first statement. The (2, 0)-form σ

on F (X) is deduced from the class α generating H3,1(X) by the formula

σ=P ∗α in H2,0(F (X)),

where P⊂F (X)×X is the incidence correspondence, so that p:P!F (X) is a P1-bundle

over F (X). Denoting by PY ⊂F (Y )×Y the incidence correspondence of Y , we observe

that, since Y has only isolated singularities, PY lifts to a correspondence PỸ ⊂F (Y )×Ỹ ,

where Ỹ is a desingularization of Y. If U is any open set contained in the regular locus

of F (Y )red, we then have

σ|U =P ∗(α)|U =P ∗
Ỹ

(j∗α) in H2,0(U),
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where j: Ỹ!X is the desingularization map. Thus the vanishing of σ|U follows from

the vanishing of j∗σ in H3,1(Ỹ ). To get the last vanishing, observe that Ỹ is smooth of

dimension 3 and rationally connected, so that we have H2,0(Ỹ )=0 hence also H3,1(Ỹ )=0.

Thus F (Y )red is Lagrangian for σ.

(ii) The stated property is Zariski open, so it suffices to prove it when X is very gen-

eral. In this case, the space Hdg4(F (X)) of rational Hodge classes of degree 4 on F (X)

is of dimension 2. Let us say that a class γ∈Hdg4(F (X)) is Lagrangian if γ∪[σ]=0

in H6(F (X),C). The class l2, where l is a Plücker hyperplane section of F (X), is

not Lagrangian by the second Hodge–Riemann bilinear relations and thus the space

Hdg4(F (X))lag of Lagrangian rational Hodge classes on F (X) is of dimension 61. It

follows that the class [F (Y )]∈Hdg4(F (X))lag cannot be written as the sum of two non-

proportional Lagrangian classes. In fact, coming back to integer coefficients, it can

neither be written as the sum of two proportional non-zero effective classes. Indeed,

the class [F (Y )]∈Hdg4(F (X),Z) is primitive, that is, not divisible by any non-zero in-

teger 6=±1, because when X contains a plane P , F (X) contains the dual plane P ∗ and

[F (Y )]·[P ∗]=1. We thus proved that F (Y ) is irreducible and reduced.

Coming back to the proof of Proposition 2.3, it is clear that for any hyperplane

section Y of X, there is a line contained in Y which is non-special in X. Indeed, the

surface Σsp of lines which are special in X is irreducible and not contained in the surface

of lines in Y because it is smooth connected and not Lagrangian, see [6]; thus it can

intersect F (Y ) only along a proper subset. Next, assume to the contrary that there is

no good line in Y. This then means that for a general [l]∈F (Y ), (hence non-special for

X), either (1) there is a [l′]∈F (Y ) such that, for some plane P⊂HY , P∩Y =2l+l′, that

is φ(l)=l′, or (2) there is a [l′]∈F (Y ) such that for some plane P⊂HY , P∩Y =l+2l′. In

case (1), the map φ is well defined at the general point [l]∈F (Y ) hence of maximal rank

at [l] because φ∗σ=−2σ, hence φ(F (Y ))=F (Y ) by irreducibility of F (Y ). But then [l′]

is also general in F (Y ), which implies that (2) occurs as well. So we just have to exclude

(2). Note that the line l′ is then special for Y.

There are two possibilities:

(a) The point [l′]∈F (Y ) moves in a surface contained in F (Y ), and hence, by

Lemma 2.5, every line in Y is special for Y.

(b) The point [l′] moves in a curve D⊂F (Y ) and this curve is contained Σsp. Fur-

thermore, for any [l′]∈D, the 3-dimensional projective space Ql=
⋂
x∈lHX,x is contained

in HY , where HX,x denotes the hyperplane tangent to X at x.

In case (a), we get a contradiction as follows: the general line l′⊂Y does not pass

through a singular point of Y , and the fact that l′ is special for Y says exactly, by taking
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global sections in the normal bundle sequence

0−!Nl′/Y (−1)−!Nl′/P4(−1)−!Ol′(2)−! 0,

that H0(Nl′/Y (−1)) 6=0, hence that Nl′/Y ∼=Ol′(1)⊕Ol′(−1). But the fact that Nl′/Y has

this form says equivalently that the map q:PY!Y is not submersive at any point of the

fiber PY,[l′]⊂PY of p:PY!F (Y ) over the point [l′]. As q(PY )=Y , this contradicts the

fact that [l′] is general in F (Y ).

The case (b) is excluded by the following lemma which we will use again later.

Lemma 2.6. Let X be a general cubic 4-fold. Then every hyperplane section Y ⊂X
contains only finitely many cubic surfaces which are singular along a line.

Proof. Assume to the contrary that there is a curve D of such surfaces and such lines

l′ of singularities. We note that every line l′ parameterized by a point [l′]∈D has to pass

through a singular point of Y. Indeed, if Y is smooth along l′, then its Gauss map given

by the partial derivatives of the defining equation fY of Y in HY is well defined along l′,

and thus it cannot be constant along l, hence equivalently Y ∩P3 cannot be singular at all

points of l′ for any P3 containing l. Next, a hyperplane section Y of X has finitely many

singular points, and hence we may assume that, in case (b), the curve D consists of lines

passing through a given singular point y of Y. By Lemma 2.5, the family Cy of lines in

X passing through y is a curve, and thus D must be an irreducible component of Cy. In

adequate homogeneous coordinates X0, ..., X4 on HY , the point y has equations Xi=0,

i=0, ..., 3, and Y has equation X4Q(X0, ..., X3)+T (X0, ..., X3)=0, where Q and T are

homogeneous polynomials of degrees 2 and 3, respectively. The curve Cy of lines through

y (in Y or X) is defined by the equations Q=T=0. Let [l′]∈Cy parameterize a line l′ in

Y such that some hyperplane H ′ in HY containing l′ is tangent to Y everywhere along

l′. This is saying that the equation f :=X4Q(X0, ..., X3)+T (X0, ..., X3)=0, restricted to

a hyperplane H ′ of P3 passing through the point [l′], has zero derivatives along l′. Thus

the equations Q and T restricted to H ′, must have zero derivative at [l′]. It follows that

the two polynomials Q and T have non-independent derivatives at [l′], so that [l′] is a

singular point of the curve Cy. In conclusion, we found that, under our assumption, the

curve Cy has a non-reduced component. Hence, the proof of Lemma 2.6 is concluded by

the proof of Lemma 2.7 below.

Lemma 2.7. If X is general, the curve Cy of lines through any point y∈X is reduced.

Remark 2.8. It is not true that Cy is irreducible for any y. Indeed, a general X

contains a cubic surface which is a cone over an elliptic curve, with vertex y∈X. Hence,

the elliptic curve is an irreducible component of Cy in this case.
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Proof of Lemma 2.7. For any y∈X, the curve Cy has degree 6, and the cone over

the curve Cy, with vertex y, is a degree-6 surface contained in X. We now use the fact

that X is very general, and hence Hdg4(X,Z)=Zh2, where h=c1(OX(1)). Therefore any

surface in X has degree divisible by 3. Applying this to the components of this cone,

the only way the curve Cy can be non-reduced is if Cy is everywhere non-reduced with

multiplicity 2. The curve Cy,red is then a curve of degree 3 which can be either a plane

cubic or a normal rational curve of degree 3. If S is the cone over a normal cubic curve

in P3, the set of cubic hypersurfaces in P5 containing S has codimension 22, while the

dimension of the Hilbert scheme parameterizing such an S in P5 is 5+4+15−3=21, so

that a general cubic does not contain such a surface. In the case of the cone over an

irreducible plane cubic, the curve Cy is the complete intersection of a quadric and a cubic

in P3 which contains an irreducible plane cubic with multiplicity 2. The only possibility

is then that the quadric itself is a double plane. However, one can easily check that,

for general X, there is no point y∈X where the Hessian of the defining equation of X

defines a non-reduced quadric in P3.

The proof of Proposition 2.3 is now complete.

2.2. Existence of very good lines

For constructing compactified Jacobian fibrations (and similarly compactified Prym fibra-

tions) irreducibility assumptions are crucial. This leads us to the following strengthening

of the notion of good line.

Definition 2.9. Let Y be a cubic 3-fold. We will say that a line l⊂Y is very good if l

is good (see Definition 2.2) and the curve C̃l=C̃l,Y ={lines in Y meeting l} is irreducible.

Proposition 2.10. Let X be a general cubic 4-fold. Then, for any hyperplane

section Y ⊂X, there exists a line l⊂Y such that the curve C̃l,Y is irreducible.

Corollary 2.11. If X and Y are as above, a general line in Y is very good.

Proof. Proposition 2.3 shows the existence of a good line, and this is an open prop-

erty on F (Y ). Proposition 2.10 shows the existence of a line l⊂Y such that the curve

C̃l,Y is irreducible, and this is also an open property on F (Y ). As we know by Lemma 2.5

that F (Y ) is irreducible, it follows that a general line is very good.

Proof of Proposition 2.10. We consider the incidence variety PY ⊂F (Y )×Y, which

is a P1-bundle p:PY!F (Y ) over Y. We proved in Lemma 2.5 that, being X and Y as

above, F (Y ) is irreducible and reduced, and thus PY satisfies the same properties. In
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particular, the degree of the map q:PY!Y is 6 as for a smooth Y, and the degree of the

map q′=pr2: (PY ×Y PY )\∆PY!PY is 5. We have the following lemma.

Lemma 2.12. Let X be a general cubic 4-fold and let Y be any hyperplane section

of X. If for all lines l⊂Y the curve C̃l is reducible, then (PY ×Y PY )\∆PY has at least

two irreducible components dominating Y.

Proof. We observe first that for any line l⊂Y the curve C̃l⊂F (Y ) (minus the point

[l] when l is special for Y ) identifies naturally with q−1(l) away from its intersection with

the vertical curve PY,[l]=p
−1([l]). Indeed q−1(l) is, away from the vertical fiber PY,[l],

the set of pairs ([l′], x) such that [l] 6=[l′] and x∈l∩l′. The curve C̃l (away from [l] when

l is special) thus maps to it via the map

[l′] 7−! ([l′], x), with {x}= l∩l′.

We will in fact see C̃l (minus the point [l]) as contained in (PY ×Y PY )\∆PY by the map

[l′] 7−! ([l′], [l], x), with {x}= l∩l′. (2.1)

Now suppose that C̃l is reducible for all l. For general l, C̃l is reduced and the

morphism q′l=q
′|C̃l : C̃l!l has degree 5. So, for general l, we must be in one of the

following situations:

(1) C̃l has no component of degree 1 over l and has a unique component C̃l,2 of

degree 2 over l. We then denote by C̃l,3 the Zariski closure of C̃l\C̃l,2.

(2) C̃l has 16k<4 components C̃l,1,i of degree 1 over l and the rest

C̃l,rem = C̃l\
k⋃
i=1

C̃l,1,i

has all its components of degree >1 over C̃l.

(3) C̃l has five components of degree 1 over l.

If case (1) or case (2) happens, then (PY ×Y PY )\∆PY has at least two irreducible

components dominating PY , namely the two varieties
⋃

[l]∈F (Y ) C̃l,2 and
⋃

[l]∈F (Y ) C̃l,3 in

case (1), and the two varieties
⋃

[l]∈F (Y )

⋃k
i=1 C̃l,1,i and

⋃
[l]∈F (Y ) C̃l,rem in case (2). It

thus suffices to show that (3) cannot happen. This however follows from Proposition 2.3.

Indeed, we may assume that l is good, so that the involution on C̃l has no fixed point.

But if C̃l has five irreducible components all isomorphic to P1, one of them is fixed under

the involution which then has fixed points.

Proposition 2.10 now follows from Lemma 2.12 and from the following one.
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Lemma 2.13. If X is general, then, for any hyperplane section Y of X , the variety

(PY ×Y PY )\∆PY is irreducible.

Let us prove a few intermediate statements.

Lemma 2.14. If X is general, and Y is any hyperplane section of X, any irreducible

component of (PY ×Y PY )\∆PY dominates PY by the second projection.

Proof. The only possibility for an irreducible component Z of PY ×Y PY not to

dominate PY by the second projection is if there is a curve W⊂Y such that, for any

y∈W , there is a curve Dy of lines in Y passing through y. However, this is impossible

by the following claim.

Claim 2.15. For general X, and for any hyperplane section Y of X, there are only

finitely many points y∈Y such that the set of lines in Y through y contains a curve Dy.

Proof. The stated property of X is Zariski open, so it suffices to prove it assuming

that X is very general. Assume by contradiction that this set is a curve W . Then the

union over y∈W of the Dy’s would then be a surface contained in F (Y ), and since we

know by Lemma 2.5 that F (Y ) is irreducible, this surface would be the whole of F (Y ).

Thus Y has the property that any line in Y meets the curve W⊂Y. But the general

point [l]∈F (Y ) is a smooth point of F (Y ) parameterizing a line l with normal bundle

Nl/X∼=Ol⊕Ol, which means that the morphism q:PY!Y is étale in a neighborhood of

the fiber PY,[l] of PY over [l]∈F (Y ), so that the general deformation of l in Y does not

intersect Z.

Lemma 2.14 is thus proved.

The variety (PY ×Y PY )\∆PY has several rational involutions. We denote by τ the

involution exchanging factors and by i the involution of (PY ×Y PY )\∆PY which maps

(l1, l2), l1∩l2 6=∅, to (l3, l2), where l3 is the residual line of the intersection Pl1,l2∩Y ,

with Pl1,l2 being the plane generated by l1 and l2. Recall from (2.1) that the fiber of the

composite map

PY ×Y PY
pr2−−!PY

p−−!F (Y )

over [l]∈F (Y ) identifies with the curve C̃l of lines in Y meeting l, and that i acts on

C̃l as the Prym involution. The quotient C̃l/i is the discriminant curve Cl of the conic

bundle πl: Ỹl!P2.

Lemma 2.16. If X is general and Y is any hyperplane section of X, then the

quotient
(PY ×Y PY )\∆PY

i

is irreducible.
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Proof. Using Lemma 2.14, it suffices to show that, being X and Y as above, for

general [l]∈F (Y ) the curve Cl is irreducible. The curve Cl is a quintic curve, so if it is

not irreducible, it must decompose either as

(a) the union of a line and a quartic, or

(b) the union of a smooth conic and a cubic.

Case (a) is excluded as follows. A line component in the discriminant curve provides

a cubic surface S=P3∩Y, where P3 is a P3 contained in HY , which contains a 1-parameter

family of lines meeting l. The surface S is irreducible because X is general, so does not

contain a plane or a quadric surface. Furthermore S cannot be a cone over an elliptic

curve, because l is general, and hence, by Claim 2.15, through any point y of l there are

only finitely many lines in Y through y. By assumption, for any plane P⊂P3 containing l,

the intersection P∩S contains l and a residual reducible conic. The singular point of the

conic moves in S, and hence, by Bertini, the singular locus of S consists of a curve 	Z

and thus must be a line l′. Indeed, any bisecant line to 	Z⊂SingS is contained in S, and

the only alternative possibility would be that 	Z is a conic and S has a component which

is a plane which is excluded, since X is general. The line l′ is then a special line of X

whose associated P3
l′=
⋂
x∈l′ TX,x is equal to P3. We know by Lemma 2.6 that there are

finitely many such P3
l′ contained in HY (or equivalently, cubic surfaces singular along a

line l′ and contained in Y ), so the general line l in Y cannot be contained in such a P3
l′ .

Case (b) is excluded as follows. Suppose that the discriminant curve Cl has a

component which is a smooth conic C. As l is a good line, the double cover r: C̃l!Cl is

étale, hence split over C: r−1(C)=C1∪C2. Let πl: Ỹl!P2 be the linear projection from l,

and let T :=π−1
l (C). Then T is a reducible surface, T=T1∪T2, where T1 is swept-out by

lines in C1 and T2 is swept-out by lines in C2. On the other hand, as X is very general,

any surface in X has degree divisible 3, thus T1 and T2 must have degree 3. The surfaces

T1 and T2 are ruled surfaces using their 1-parameter family of lines intersecting l, and

none of them can be contained in a projective subspace P3⊂HY , since otherwise P3

would contain l, and thus would project via πl to a line in P2, while the image πl(Ti) is

our smooth conic.

Finally, a ruled non-degenerate degree-3 surface in P4 is a cone over a rational

normal curve or a projection of a Veronese surface from one of its points. The first case

corresponds to the vector bundle O⊕O(3) on P1, while the second one corresponds to the

vector bundle O(1)⊕O(2) on P1. We already explained by counting parameters that the

general cubic hypersurface X in P5 does not contain a cone over a rational cubic curve

in P3. It is also true that the general cubic hypersurface X in P5 does not contain the

projection of a Veronese surface from one of its point, but this does not follow from an

immediate dimension count. One has to argue as follows: this surface V is smooth with
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c1(V )2=8 and c2(V )=4. If V ⊂X, the normal bundle NV/X fits into the exact sequence

0−!TV −!TX |V −!NV/X −! 0. (2.2)

As

c2(TX) = 6h2 and c1(TX) = 3h,

one gets from (2.2) the following equalities in H∗(V,Q):

c1(NV/X) =−c1(TV )+3hV , c2(NV/X) =−c2(TV )−c1(NV/X)·c1(TV )+6h2
V

=−c2(TV )−(−c1(TV )+3hV )·c1(TV )+6h2
V ,

(2.3)

where hV =c1(OV (1)) and h2
V =3. In the ruled surface T=P(OP1(1)⊕OP1(2))

π−−!P1, one

has

KV =−c1(TV ) =−2hV +π∗OP1(3),

which, combined with (2.3), gives

c2(NV/X) =−4−(−2hV +π∗c1(OP1(3))+3hV )·(2hV −π∗c1(OP1(3)))+18 = 5.

This shows that the self-intersection of V in X is equal to 5, so that the class of V is not

equal to h2. Hence such a surface does not exist for general X.

We get the following corollary (where again X is general and Y is any hyperplane

section of X).

Corollary 2.17. (i) The fibered product (PY ×Y PY )\∆PY has at most two irre-

ducible components and, if (PY ×Y PY )\∆PY is reducible, the two components are ex-

changed by the rational involution i acting on each curve C̃l×[l]⊂PY ×Y PY .

(ii) Let τ be the involution of (PY ×Y PY )\∆PY which exchanges the factors. If

(PY ×Y PY )\∆PY is reducible, then its two components are exchanged by τ .

Proof. (i) is an immediate consequence of Lemmas 2.16 and 2.14. The proof of (ii)

goes as follows: We observe that the two rational involutions σ and τ are part of an action

of the symmetric group S3 on (PY ×Y PY )\∆PY by birational maps. Indeed, (PY ×Y
PY )\∆PY can also be seen as the set of labelled triangles, that is, triples (l1, l2, l3) of lines

in Y such that, for some plane P⊂HY , P∩Y =l1+l2+l3. The action of S3 is simply the

permutation of the labels. Note that these birational maps are well defined at each generic

point of (PY ×Y PY )\∆PY by Lemma 2.14. Note that i is the involution (l1, l2) 7!(l3, l2),

while τ is the involution (l1, l2) 7!(l2, l1). In any case, these two involutions are conjugate

in S3. We know by (i) that, if there are two irreducible components, then they are

exchanged by i. Hence they must be also exchanged by τ .
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Proof of Lemma 2.13. Let X be a general cubic 4-fold and let Y be any hyperplane

section of X. Assume by contradiction that (PY ×Y PY )\∆PY is not irreducible. Then,

by Corollary 2.17, it has exactly two components C1 and C2. Both components dominate

Y , by Lemma 2.14. Let k1 and k2, with 16k1<k2 and k1+k2=5, be the respective

degrees of pr2: C1!PY and pr2: C2!PY . One has (k1, k2)=(2, 3) or (k1, k2)=(1, 4). For

a general point y∈Y, denote by {l1, ..., l6}=q−1(y)=:Ey⊂PY . For li 6=lj , we have (li, lj)∈
(PY ×Y PY )\∆PY , and thus we can write (Ey×Ey)\∆Ey as a disjoint union

(Ey×Ey)\∆Ey =E1,ytE2,y, (2.4)

where

E1,y := (Ey×Ey\∆Ey )∩C1 and E2,y := (Ey×Ey\∆Ey )∩C2.

The partition (2.4) satisfies the following properties:

(a) for any i∈{1, ..., 6}, the set of j 6=i such that (li, lj)∈E1,y has cardinality k1,

while the set of j 6=i such that (li, lj)∈E2,y has cardinality k2;

(b) for any i, j∈{1, ..., 6} with i 6=j, one has (li, lj)∈E1,y if and only if (lj , li)∈E2,y.

Indeed, (b) is exactly Corollary 2.17 (ii).

The contradiction is now obvious: Indeed, (a) shows that the cardinality of E1,y is

6k1 and the cardinality of E2,y is 6k2, with 6k1 6=6k2, while (b) implies that the two sets

have the same cardinality.

Proposition 2.10 is thus proved.

3. Transversality arguments

This section is devoted to applying transversality arguments in order to deduce that

some statements which hold in large codimension for cubic 3-folds in P4 hold for every

hyperplane sections of a general cubic 4-fold. In particular, we will first prove Lemma 3.8

which guarantees that the versality statement of [17] is actually satisfied by the family of

quintic curves associated with the family of hyperplane sections of a general cubic 4-fold

and a local choice of good lines in them. This will be needed in §4. In §3.2, we will

extend this result to the case of a general Pfaffian cubic 4-fold. By applying a similar

transversality argument, we will also prove the existence of a very good line in every

hyperplane section of a general Pfaffian cubic 4-fold. This will be needed in order to

make the arguments of §4 apply as well when the cubic 4-fold is a general Pfaffian cubic

(see §6).
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3.1. Transversality results for general cubic 4-folds

Below, we denote byHyp0
4,3 the open subset of P(H0(P5,OP5(3))) parameterizing smooth

cubic 4-folds, and by Hyp3,3 the projective space P(H0(P4,OP4(3))). By restriction from

P5 to a given P4⊂P5, we get a morphism

r:Hyp0
4,3−!Hyp3,3,

which is obviously smooth, since the fibers are Zariski open subsets of H0(P5,OP5(2)).

With these notations, the following transversality lemma holds.

Lemma 3.1. (i) Let Z⊂Hyp3,3 be a closed algebraic subset of codimension >6,

which is invariant under the action of PGL(5). Then for a general [X]∈Hyp4,3, no

hyperplane section of X is isomorphic to a cubic 3-fold Y parameterized by a point

of Z.

(ii) Let M′⊂Hyp0
4,3 be a hypersurface which is invariant under PGL(5), and let

Z⊂Hyp3,3 be a closed algebraic subset of codimension >7, which is invariant under

the action of PGL(5). Then, for a general [X]∈M′, no hyperplane section of X is

isomorphic to a cubic 3-fold Y parameterized by a point of Z.

Proof. (i) Indeed, as r is smooth (actually, flat would suffice), r−1(Z)⊂Hyp0
4,3 has

codimension 6 in Hyp0
4,3. The group PGL(6, 5)⊂PGL(6) of automorphisms of P5 pre-

serving P4 acts on Hyp0
4,3 preserving r−1(Z), since Z is invariant under PGL(5). It thus

follows that

dim PGL(6)·r−1(Z)6 5+dim r−1(Z),

or equivalently codim PGL(6)·r−1(Z)>1. Thus PGL(6)·r−1(Z) is not open in Hyp0
4,3,

which proves (i).

(ii) The same argument as in (1) shows that PGL(6)·r−1(Z) has codimension at

least 2 in Hyp0
4,3, and hence cannot contain the hypersurface M′.

Remark 3.2. We will see in §3.2 an improved version of Lemma 3.1 (ii), where under

a certain assumption on the hypersurface M′, the estimate on codimension of Z will be

also 6, not 7. The hypersurface of interest for us will be the locus of Pfaffian cubics.

The above lemma will allow us to exclude from our study highly singular cubic 3-

folds and to restrict ourselves to mildly singular cubic 3-folds with the following precise

meaning.

Definition 3.3. Let Y be a cubic 3-fold. We say Y is allowable (or mildly singular) if

Y has at worst isolated singularities and τtot(Y )66. Here τ denotes the Tjurina number

of an isolated hypersurface singularity, and τtot(Y ) is the sum of the associated Tjurina

numbers, i.e. τtot(Y )=
∑
p∈Sing(Y ) τ(Yp) (where Yp denotes the germ of Y at p).
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Remark 3.4. We recall that, for an isolated hypersurface singularity (V (f), 0)⊂Cn,

the Tjurina number is defined to be

τ(f) = dimC
C[x1, ..., xn]

〈f, ∂f/∂x1, ..., ∂f/∂xn〉
,

and is the expected codimension in moduli to encounter that singularity. By dimension

count, we thus expect that all hyperplane sections Y of a general cubic 4-fold X are

allowable in the sense of Definition 3.3. The results below say that this is indeed the

case.

Remark 3.5. The arguments involving good lines are closely related and inspired

by those in [17]. However, as already noted in Remark 2.4, the results of [17] do not

suffice here. Namely, in [17] the focus was on GIT stable/semi-stable cubic 3-folds, while

here we focus on hyperplane sections of general cubic 4-folds (or general Pfaffian cubics).

Thus, our notion of allowable is slightly different from that of [17, Definition 2.2].

Proposition 3.6. Let Y be an allowable cubic 3-fold in the sense of Definition 3.3.

Then, the following statements hold :

(0) Y has at worst ADE (in particular planar) singularities.

(1) The deformations of Y in P4 induce a simultaneous versal deformation of the

singularities of Y. This means equivalently that the natural map from the first-order

deformation space of Y, that is H0(Y,OY (3)), to the product
∏
p∈Sing Y T

1
Yp

, where T 1
Yp

classifies the first-order deformations of the germ of singularities of Y at p, is surjective.

(2) Assume additionally that there exists a good line l⊂Y . Let C̃l be the curve of

lines in Y meeting l. Then, the singular points of Y are in bijection with the singular

points of the curve Cl=C̃l/ι (which is a plane quintic curve), the analytic types of corre-

sponding singularities of Y and Cl coincide and the deformation theory of corresponding

singular points of Y and Cl coincide. Furthermore, the deformations of Cl give si-

multaneous versal deformations of the singularities of Cl (which is compatible with the

deformations of the singularities of Y ).

(3) The locus of cubic hypersurfaces Y ⊂P4 with non-allowable singularities has codi-

mension >7 in the space Hyp3,3 of all cubic 3-folds.

(4) Y has finite stabilizer.

Proof. A non-ADE hypersurface singularity has Tjurina number τ>7, giving (0).

(1) The simultaneous versality statement (1) is a specialization of a result of Shustin–

Tyomkin [62, main theorem] to the case of cubic 3-folds (in fact, τtot(Y )67 suffices; see

also [52, Lemma 3.3 (i)] which gives the stronger results that τtot(Y )615 suffices for cubic

3-folds; [17, p. 35, Fact (5)] gives the simultaneous versality for GIT stable cubics).
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(2) The correspondence of singularities under the projection from a good line is [17,

Proposition 3.6]. Clearly, we get τtot(Cl)66, which then implies that the deformations

of Cl give simultaneous versal deformations of its singularities (in fact, [61] says that

τtot(Cl)<4(d−1)=16 suffices). Finally, the compatibility between the global-to-local

deformations of Y and Cl is discussed in [16, §3.3].

(3) The expected codimension for the equisingular deformations of a singular cubic

Y is τtot(Y ). Thus, the locus of cubics with τtot(Y )>7 is expected to have codimension

7 in Hyp3,3. The simultaneous versality statements cited above (more precisely, [52,

Lemma 3.3 (i)]) guarantee that the expected codimension is the actual codimension for

cubics with τtot(Y )615. It remains to check that the more degenerate cases (cubics

with τtot(Y )>15 or non-isolated singularities) have still codimension >7. This is an easy

case-by-case analysis that we omit (the main tool for this analysis is to study a singular

cubic via the associated (2, 3) complete intersection in P3, see [17, §3.1]).

(4) The cases when Y is GIT semi-stable (in particular, if Y has at worst A1, ..., A5 or

D4 singularities) and has positive-dimensional stabilizer are classified by Allcock (e.g. [3]).

It follows that either τtot(Y )>10 or Y has non-isolated singularities (in fact, Y is the

chordal cubic). Assuming that Y is not GIT semi-stable and that τtot(Y )66 leads to

a small number of cases that can be excluded by a case-by-case analysis. Namely, Y is

stabilized either by Gm or Ga. The unipotent case can be seen not to occur using the

classification of [53]. Finally, if Y is stabilized byGm, then it has at least two singularities.

Under our assumptions (in particular, GIT unstable), the only possibility is that Y has

a D5 singularity and an A1 singularity, which can be then excluded by studying the

associated (2, 3) curve obtained by projecting from the A1 singular point.

An immediate consequence of Corollary 2.11, Lemma 3.1 and Proposition 3.6 (3) is

the following.

Corollary 3.7. If X is a general cubic 4-fold, any hyperplane section Y of X is

allowable, hence satisfies properties (0)–(4) of Proposition 3.6. Moreover, Y has a very

good line.

Note however that since we are restricting to the universal family Y/B of hyperplane

sections of a fixed cubic 4-fold X, the simultaneous versal statement of Proposition 3.6 (1)

does not suffice for our purposes. What is needed instead is the following lemma which

follows from Proposition 3.6 and a transversality argument.

Lemma 3.8. Let X⊂P5 be a general cubic 4-fold, and let Y be any hyperplane

section of X. Then the natural morphism H0(Y,OY (1))!
∏
p∈Sing Y T

1
Yp

is surjective.

In other words, the family of deformations of Y in X induces a versal deformation of

the singularities of Y.
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Combined with Proposition 3.6 (2), Lemma 3.8 gives the following.

Corollary 3.9. In the situation of Lemma 3.8, denote by Fgood the universal

family of good lines in hyperplane sections of X:

Fgood = {([l], t)∈G(2, 6)×B : l is a good line of Yt},

Then, if X is general, Y0⊂X is any hyperplane section and l⊂Y0 is a general good line,

the natural map TFgood,([l],0)!
⊕

p∈SingCl,Y0
T 1
Cl,p

is surjective. Furthermore, for a local

analytic or étale section B⊂Fgood of the second projection defined near 0, the natural

map TB,([l],0)!
⊕

p∈SingCl,Y0
T 1
Cl,p

is surjective.

Proof of Lemma 3.8. Using Lemma 3.1 and Proposition 3.6, we see that there exists

a (non-empty) Zariski open subset Hyp00
4,3⊂Hyp0

4,3 of the space of cubic 4-folds such

that: (i) X has trivial automorphism, and (ii) any hyperplane section Y of X has finite

stabilizer and satisfies property (1) of Proposition 3.6 (i.e. the space of cubic 3-folds

Hyp3,3 gives a simultaneous versal deformation of the singularities of Y ). We want to

obtain the stronger statement that the hyperplane sections of X (giving a P5 non-linearly

embedded in Hyp3,3) give a versal deformation of the singularities of Y.

Let k be a number and z=(z1, ..., zk) be the data of k analytic isomorphism classes

of germs of allowable hypersurfaces singularities. Let

N :=

k∑
i=1

dimT 1
zi(= τtot).

Let Hyp3,3,z⊂Hyp3,3 be the set of cubic 3-folds admitting exactly k singular points with

local germs zi. Note that, by Lemma 3.8, we may assume N66, i.e. a cubic 3-fold Y

with higher N will not occur as a hyperplane section of a cubic 4-fold [X]∈Hyp0,0
4,3. Using

property (1), we conclude that Hyp3,3,z is smooth locally closed of codimension N in

Hyp3,3. It follows that its inverse image r−1(Hyp3,3,z) is smooth of codimension N in

Hyp00
4,3. The group PGL(6, 5) of automorphisms of P5 preserving P4 acts now on Hyp00

4,3

preserving r−1(Hyp3,3,z), and using the definition of Hyp00
4,3 we find that the fiber LX

over a general point [X]∈Hyp00
4,3/PGL(6) of the quotient map

Hyp00
4,3/PGL(6, 5)−!Hyp00

4,3/PGL(6)

is smooth, isomorphic to P(H0(OX(1)). (This statement is in fact not completely correct

due to the presence of hyperplane sections of X which have finite automorphisms, but it

is true at the infinitesimal level.) Sard’s theorem then tells us that, for general X, the
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locus LX∩r−1(Hyp3,3,z) is smooth of codimension N in LX , which exactly means that

for the given type z, and for any Y ⊂X having z as singularities, the map

H0(Y,OY (1))−!
∏

p∈Sing Y

T 1
Yp

is surjective. The conclusion then follows from the fact that there are finitely many

analytic isomorphism classes of allowable singularities (by Proposition 3.6 (0), all of them

are ADE with τtot66).

3.2. Transversality results in the Pfaffian case

Recall that a Pfaffian cubic hypersurface is a linear section of the Pfaffian cubic hy-

persurface in P14=P(
∧2

W6) defined by the vanishing of ω3 in
∧6

W6. Pfaffian cubic

4-folds are parameterized by a hypersurface P in the moduli space of all smooth cubic

4-folds (see [13]). Restricting to cubic 4-folds without automorphisms, this hypersurface

is smooth away from the locus where the cubic has two different Pfaffian structures. In

general, it is a divisor with normal crossings, with one branch for each Pfaffian structure.

This follows from the fact that the period map for cubic 4-folds is étale. As we want to

apply the results of §4 also to the case of a general Pfaffian cubic 4-fold, we have to prove

that a general Pfaffian cubic 4-fold satisfies the needed assumptions, namely Lemmas 3.11

and 3.12, that will be obtained as easy consequences of the following lemma.

Lemma 3.10. Let X be a general Pfaffian cubic 4-fold. Then for any hyperplane

section Y ⊂X with equation fY ∈H0(X,OX(1)), the subspace

fYH
0(X,OX(2))⊂H0(X,OX(3))

is not contained in the tangent space to the Pfaffian hypersurface at the point [X].

The Pfaffian locus P is an open set in the hypersurface C14 in the space of all cubic

4-folds parameterizing special cubics with discriminant 14 (see [32]). The subspace

fYH
0(X,OX(2))⊂H0(X,OX(3))

is the space of first-order deformations of X containing Y.

Proof of Lemma 3.10. The Pfaffian cubic 4-folds are characterized by the fact that

they contain quintic del Pezzo surfaces: if X contains a quintic del Pezzo surface Σ,

the Pfaffian rank 2 vector bundle E with c2=2 and c1=0 on X is deduced from Σ by

the Serre construction. Conversely, if X is Pfaffian with Pfaffian rank-2 vector bundle E ,
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there is a 5-dimensional family of quintic del Pezzo surfaces Σ in X, obtained as zero-sets

of sections of E (see [11, Proposition 9.2]). Let Σ⊂X be such a pair, and let σ :=[Σ]∈
H2(X,Ω2

X) be the cohomology class of Σ. The numerical condition characterizing the

Pfaffian class σ is σ2=13 and σ ·h2=5, where we use the intersection pairing on H4(X,Z)

and h=c1(OX(1)). The cup-product with σ induces a composite morphism

σ∪( ·):H0(X,OX(3))
%−−!H1(X,TX)−!H1,3(X), (3.1)

where the first map % is the Kodaira–Spencer map, and the general theory of variations of

Hodge structures tells us that the tangent space to the Pfaffian locus P at [X] identifies

to Kerσ∪( ·). Note that % identifies to the quotient map

H0(X,OX(3))−!R3
f :=H0(X,OX(3))/J3

f ,

where f=0 is the defining equation for X and J3
f is the degree-3 piece of the Jacobian

ideal of f . Griffiths’ residue theory (see [65, Vol. II, §6.2]) provides isomorphisms

H2,2(X)prim
∼=R3

f and H1,3(X)∼=R6
f

such that the second map in (3.1) identifies to multiplication by σ̃:R3
f!R

6
f , where σ̃∈R3

f

is the representative of σ, or rather of its projection in H2,2(X)prim=H2,2(X)/〈h2〉.
Lemma 3.10 can thus be rephrased as follows: For a general Pfaffian cubic 4-fold with

equation f=0, the Pfaffian class σ̃∈R3
f is not annihilated by yR2

f , for any non-zero

y∈H0(X,OX(1)). Note that by Macaulay’s theorem [65, Vol. II, §6.2.2], to say that

yσ̃R2
f=0 in R6

f is equivalent to saying that yσ̃=0 in R4
f . So what we have to prove is

the following claim.

Claim. For a general Pfaffian cubic 4-fold with equation f and (primitive) Pfaffian

class σ̃∈R3
f , and for any non-zero y∈H0(X,OX(1)), one has yσ̃ 6=0 in R4

f .

In order to prove the claim, we use the fact(1) (see [32]) that cubic 4-folds containing

two non-intersecting planes P1 and P2 are parameterized by points in the closure of the

divisor C14. In fact, if pi is the cohomology class of Pi, i=1, 2, one has

p2
i = 3, p1 ·p2 = 0, h2 ·pi = 1,

and so σ=h2+p1+p2 satisfies the numerical conditions σ2=13 and σ ·h2=5. It thus suf-

fices to prove that, for a general cubic 4-fold containing two non-intersecting planes P1 and

P2, and for any non-zero y∈S1 :=H0(X,OX(1)), the class h+p1+p2∈H2,2(X)prim=R3
f

(1) We are grateful to the referee for pointing out this fact, which simplified our original argument.
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satisfies y(h+p1+p2) 6=0 in R4
f . This computation can be made explicitly on the Fermat

cubic Xf with equation f=
∑5
i=0 x

3
i =0, where such configurations of planes are easy to

exhibit: we can take P1 to be defined by x0=ζx1, x2=ζx3, x4=ζx5, with ζ3=−1, and

P2 to be defined by x0=ζ ′x1, x2=ζ ′x3, x4=ζ ′x5, with (ζ ′)3=−1, and ζ ′ 6=ζ. The compu-

tations in the Jacobian ring Rf are easy to perform. In this ring, x2
i =0, hence in every

degree 66, we get as free generators the monomials
∏
i∈I xi with no repeated indices.

The primitive class p̃1∈R3
f defined as the projection of p1 is annihilated by multiplication

by x0−ζx1, x2−ζx3, x4−ζx5, because these are hyperplane sections vanishing on P1,

and similarly the primitive class p̃2 of p2 is annihilated by multiplication by x0−ζ ′x1,

x2−ζ ′x3, x4−ζ ′x5. It follows that S1 ·p̃1⊂R4
f is orthogonal with respect to Macaulay

duality (see [65, Vol. II, §6.2.2]) to the subspace

S1 ·〈x0−ζx1, x2−ζx3, x4−ζx5〉⊂R2
f

and similarly for p2. But then the two spaces S1 ·p̃1 and S1 ·p̃2 have trivial intersection,

as otherwise the spaces

S1 ·〈x0−ζx1, x2−ζx3, x4−ζx5〉 and S1 ·〈x0−ζ ′x1, x2−ζ ′x3, x4−ζ ′x5〉

would not generate R2
f . Thus, if y∈S1 satisfies y(p̃1+p̃2)=0 in R4

f , one has

yp̃1 = 0 and yp̃2 = 0 in R4
f .

This easily implies that y=0.

We have the following applications.

Lemma 3.11. Let X be a general Pfaffian cubic 4-fold. Then for any hyperplane

section Y of X, the natural map H0(Y,OY (1))!
⊕

p∈Sing Y T
1
Yp

is surjective.

Proof. Let P00 be the Zariski open subset of the Pfaffian locus, which is defined

as the intersection of P with the Zariski open set Hyp00
4,3. Note that P00 is non-empty

by Lemma 3.1 (ii), using the fact that the set of [Y ]∈P(H0(OP4(3))) admitting a non-

trivial vector field has codimension >7 (see Proposition 3.6 (4)). We now consider the

natural map rpf :P00
!Hyp3,3, defined as the restriction to P00⊂Hyp00

4,3 of r:Hyp00
4,3!

Hyp3,3. The fiber of rpf over [Y ]∈Hyp3,3 consists in those Pfaffian cubic 4-folds which

intersect P4 along Y. Let X be a general Pfaffian cubic 4-fold. Then rpf is smooth

at any [X ′] parameterizing a cubic isomorphic to X. Indeed, the map r is smooth,

and rpf is the restriction of r to P00. Thus, if rpf was not smooth at a point [X ′]

with [Y ]=rpf([X
′]), then the fiber of r would be tangent to P00 at [X ′], which exactly

means that fYH
0(X ′,OX′(2))⊂H0(X ′,OX′(3)) is contained in the tangent space to the
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Pfaffian hypersurface at the point [X ′]. As X is general, Lemma 3.11 tells us that this

does not happen at any X ′ isomorphic to X. The end of the proof is now identical to the

proof of Lemma 3.8. Indeed, by Lemma 3.12 below and Proposition 3.6, property (1) of

Proposition 3.6 is satisfied by any hyperplane section of a general Pfaffian cubic, replacing

r−1(Hyp3,3,z) by its Pfaffian analogue r−1
pf (Hyp3,3,z), which we know to be smooth.

Recall from Definition 2.9 that a very good line in a cubic 3-fold containing no plane

is a line which is good and such that the curve C̃l of lines in Y meeting l is irreducible.

Lemma 3.12. Let X be a general Pfaffian cubic 4-fold. Then any hyperplane section

Y of X is allowable and admits a very good line.

Proof. We know by Propositions 2.3 and 2.10 and Corollary 3.7 that if X is a general

cubic 4-fold, then any hyperplane section of X is allowable and contains a very good line.

Let us say that Y is bad if it does not admit a very good line or has non-allowable

singularities and X is bad if it has a hyperplane section Y which is bad. The locus of bad

cubic 4-folds is a proper closed algebraic subset Hyp00,bad
4,3 of Hyp00

4,3, and its irreducible

components are constructed as follows: for each irreducible component Z⊂Hyp3,3 of

the locus of bad cubic 3-folds, r−1(Z)⊂Hyp4,3 is the locus of bad cubic 4-folds such

that the cubic 3-fold X∩P4 is parameterized by a point of Z. Thus PGL(6)·r−1(Z) is

the set of cubic 4-folds X such that some hyperplane section of X is isomorphic to a

cubic 3-fold parameterized by a point of Z. It is thus clear that we get any irreducible

component of Hyp00,bad
4,3 as PGL(6)·r−1(Z), with Z as above. We conclude from this

that any irreducible component Z ′ of Hyp00,bad
4,3 has the property that, for any [X]∈Z ′,

there exists a hyperplane section Y ⊂X such that all cubic 4-folds containing Y as a

hyperplane section are parameterized by points of Z ′. In particular, if fY ∈H0(X,OX(1))

is the equation of Y in X, fYH
0(X,OX(2)) must be contained in the Zariski tangent

space of Z ′. If all Pfaffian cubic 4-folds were bad, then the Pfaffian hypersurface P00

would be an irreducible component Z ′ of Hyp00,bad
4,3 , and we would get a contradiction

with Lemma 3.10.

4. Relative compactified Prym varieties

As previously mentioned, our main tool for compactifying the intermediate Jacobian

fibration JU!U is the Prym construction that identifies the intermediate Jacobian J(Y )

with a Prym variety Prym(C̃/C) (where the pair (C̃, C) is obtained from Y via the

projection from a general line). The Prym construction works well in a relative setting

over the smooth locus U⊂(P5)∨ (and more precisely over the open set F0/U of very good

lines in the fibers), reducing (at least locally) the problem of understanding degenerations
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of intermediate Jacobians to that of understanding degenerations of Prym varieties. This

is of course a well studied problem: Beauville [8] gave a compactification of the moduli

of pairs (C̃, C), and many people studied degenerations of Pryms as abelian varieties

(e.g. [24], [2], [15]). Here we need to understand a specific compactification, and its

local structure, over a given base B. A few instances of this have already been studied

in [45], [7], and [58]. Below, we define and prove a number of results for the relative

compactified Prym of families of étale double covers of irreducible curves, which we then

apply to our context. Specifically, the results of §2 and §3 say that, for a general cubic

4-fold X, we may replace (locally on B) the family Y/B of hyperplane sections by a

family of double covers (C̃, C) such that each fiber (C̃t, Ct) is an étale double cover with

both curves irreducible (see Corollary 2.11). Furthermore, the singularities of C̃t and Ct

are planar, and we may assume (see Corollary 3.9) that the family C gives a simultaneous

versal deformation of the singularities of any fiber Ct.

Notation 4.1. From now on in this section, B will stand for an arbitrary base, not

necessarily (P5)∨ as elsewhere in the paper.

We proceed as follows: as in [7] we can define, for any family C̃B!CB of étale

double covers of irreducible locally planar curves, parameterized by a base B, a relative

compactified Prym variety Prym (C̃B/CB)!B whose fibers over the locus parameterizing

smooth curves are usual Prym varieties. The relative Prym variety is defined as (one

component) of the fixed locus of an involution on the relative compactified Jacobian

Jac(C̃B) of the family C̃B!B. From this definition, it follows immediately that, if Jac(C̃B)

is smooth, then so is Prym (C̃B/CB). Unfortunately, in general Jac(C̃B) is not smooth.

However, one can sometimes think of C̃B!B as the restriction of a larger family C̃B̃!B̃,

B⊂B̃, with the property that

(a) there exist two compatible involutions on C̃B̃ and on B̃, such that the first one

is an extension of the given involution on C̃B and second one has the property that the

fixed locus on B̃ is equal to B;

(b) the relative compactified Jacobian Jac(C̃B̃) is smooth. Under these assumptions

the relative Prym variety Prym (C̃B/CB) is smooth. An instance of this already appeared

in [7]. As discussed below, the versality statements valid in our setup allow us to conclude

that the relative compactified Prym variety is indeed smooth in our situation.

The results in this section build on an important result for compactified relative

Jacobians, namely the Fantechi–Göttsche–van Straten [23] smoothness criterion.
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4.1. Relative compactified Prym varieties (the étale case)

Let f : C̃!C be an étale double cover of smooth projective curves, and let ι: C̃!C̃ be

the corresponding involution on C̃. We denote by g be the genus of C, and by h the

genus of C̃, so that h=2g−1. Recall that the Prym variety of C̃ over C, which we will

denote by Prym(C̃/C), is the identity component of the fixed locus of the involution

τ :=−ι∗: Pic0(C̃)−!Pic0(C̃).

The Prym variety Prym(C̃/C) is a principally polarized abelian variety [49] of dimension

g−1. Equivalently [49], the Prym variety can be defined as the identity component of

the norm map

Nm: Pic0(C)−!Pic0(C),

OC̃

(∑
i

pi

)
7−!OC

(∑
f(pi)

)
,

or as the image of

1−ι∗: Pic0(C̃)−!Pic0(C̃).

Now suppose that f : C̃!C is an étale double cover of singular, but irreducible curves,

and let ñ: D̃!C̃ and n:D!C be the normalizations of the two curves. The involution

ι on C̃ lifts to a compatible involution

ε: D̃−! D̃ (4.1)

so that the natural morphism D̃!D is an étale double cover with associated involution ε.

Let {x1, ..., xk} be the singular points of C and let

{p1, ..., pk, q1, ..., qk}

be the singular points of C̃, with f−1(xi)={pi, qi}. The identity component of the Picard

group, or generalized Jacobian, of C̃ fits into the natural short exact sequence of groups

1−!A×A−!Pic0(C̃)
ñ∗−−−!Pic0(D̃)−! 1, (4.2)

where

A :=H0

(
C̃,

k⊕
i=1

(n∗O×D̃/O
×
C̃

)pi

)
∼=H0

(
C̃,

k⊕
i=1

(n∗O×D̃/O
×
C̃

)qi

)
is a commutative affine group. The involution −ι∗ still acts on Pic0(C̃), and we can

define, in analogy with the generalized Jacobian, the generalized Prym variety of C̃ over

C to be the identity component of the fixed locus of −ι∗:

Prym(C̃/C) := Fix(−ι∗)0.
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The involution −ι∗ is compatible, via n∗, with −ε∗ on Pic0(D̃) and it acts on A×A via

(a, b) 7!(b−1, a−1) (note that we use multiplicative notation for these groups, even though

A can be a product of both additive and multiplicative groups). We therefore get a short

exact sequence

1−!A−!Prym(C̃/C)
ñ∗−−−!Prym(D̃/D)−! 1,

where the inclusion A↪!A×A=ker ñ∗ is given by a 7!(a, a−1). Set δ :=dimA, so that

g(D)=g−δ and g(D̃)=h−2δ. Since dim Prym(D̃/D)=g−δ−1, we see that

dim Prym(C̃/C) = g−1,

as in the smooth case. For example, if C is a nodal irreducible curve, then Prym(C̃/C)

is a semi-abelian variety.

The strategy to compactify the generalized Prym variety is to extend the involution

to the compactified Jacobian of C̃. By definition, the degree-d compactified Jacobian

of an integral projective curve Γ is the moduli space of rank-1, degree-d, torsion-free

sheaves on Γ. If Γ has planar singularities, i.e. if locally around every singular point,

Γ is isomorphic to a plane curve, then every component is irreducible [56] of dimension

equal to the arithmetic genus of Γ. The degree-zero component Jac(Γ) contains Pic0(Γ)

as an open dense subset. For the proof of Propositions 4.10 and 4.20 we will need further

properties of the compactified Jacobian, and in particular we will need a description

of the complement Jac(Γ)\Pic0(Γ) (cf. [56] and [20]; see Proposition 4.11 below), and

a smoothness criterion due to Fantechi–Göttsche–van Straten [23] (recalled below in

Proposition 4.19). If Γ has locally planar singularities, then any torsion-free coherent

sheaf F on Γ is reflexive, that is

(F∨)∨=F, where F∨ :=HomOΓ
(F,OΓ).

Moreover, if

j: Γ⊂Z,

is an embedding of Γ in a smooth projective variety Z of dimension d, then using [34,

Proposition 1.1.10] we can see that

ExtcZ(F, ωZ) = 0 for all c 6= d−1. (4.3)

The following lemma is well known, and is crucial to define the involution as a regular

morphism on the family of compactified Jacobians.
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Lemma 4.2. The only non–zero Ext sheaf satisfies

Extd−1
Z (F,OZ) =F∨⊗detNΓ|Z

(notice that, since Γ has locally planar singularities, the embedding in Z is a local com-

plete intersection (l.c.i.) variety).

Proof. This is simply [31, Chapter III, Lemma 7.4 and Theorem 7.11]. The only

thing to remark is that the proof of [31, Lemma 7.4] goes through unchanged for the

ext-sheaves.

Lemma 4.3. Assume that C, and therefore C̃, has planar singularities. Then the

assignment

τ : Jac(C̃)−! Jac(C̃),

F 7−! ι∗F∨,
(4.4)

defines a regular involution which extends −ι∗ over the complement of Pic0(C̃).

Proof. By [4, Theorem 3.4], there is a universal sheaf F on Jac(C̃)×C̃. Let C̃⊂Z
be an embedding of C̃ in a smooth projective variety Z of dimension d>2. We may view

F as a sheaf on Jac(C̃)×Z, i.e., as a flat family of pure codimension-(d−1) sheaves on

Z parameterized by Jac(C̃). Let pZ : Jac(C̃)×Z!Z be the second projection. We claim

that the sheaf Extd−1

Jac(C̃)×Z
(F , p∗ZOZ) satisfies base change, i.e. that

Extd−1

Jac(C̃)×Z
(F , p∗ZOZ)|{t}×Z = Extd−1(Ft,OZ) =F∨t ⊗detNC |Z .

Indeed, by [5, Theorem 1.10], it is enough to verify that Extc(Ft,OZ)=0, for c=d−2

and c=d, which follows directly from (4.3).

Using Lemma 4.2 we see that the sheaf

Extd−1

Jac(C̃)×Z
(ι∗F , p∗ZOZ)⊗p∗Z detN∨C |Z

provides a flat family of rank-1 torsion-free sheaves on C, and it determines a morphism

Jac(C̃)!Jac(C̃) which sends a sheaf F to ι∗F∨. Since the sheaves are reflexive, this

morphism is an involution.

Definition 4.4. The compactified Prym variety Prym(C̃/C) of an étale double cover

C̃!C of integral curves with planar singularities is the irreducible component containing

the identity of the fixed locus Fix(τ)⊂Jac(C̃).
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Remark 4.5. Notice that Prym(C̃/C)⊂Prym(C̃/C) is a dense open subset, so that,

in particular,

dim Prym(C̃/C) = g−1.

For example, if C is irreducible with one node, then Prym(C̃/C) is a rank-1 degeneration

of an abelian variety. For an explicit description of Prym varieties of other singular curves,

see [58].

Remark 4.6. One could also drop the assumption of integrality, and define the rel-

ative compactified Prym variety for étale double covers of arbitrary curves with locally

planar singularities. In this situation, however, a choice has to be made, namely that of a

polarization on the family of double covers and the relative compactified Prym depends

on this choice (for the case of family of curves lying on smooth projective surfaces, see

[7] and [58]). Since the curves we will deal with in our situation turn out to be integral

by Proposition 2.10, we will restrict ourselves to the case of integral curves.

Now let B be an irreducible base scheme and let

C̃B
f

2:1
//

��

CB

��

B

(4.5)

be a family, parameterized by B, of étale double covers of reduced and irreducible curves

with planar singularities. Let us denote by g the genus of the curves in the family CB!B,

and by h=2g−1 the genus of their double covers C̃B!B. We let

ι: C̃B −! C̃B

be the involution associated with the covering, and we define a 2–torsion line bundle ηB

on CB by setting

f∗OC̃B =OCB⊕ηB .

For any b∈B, we denote by

fb: C̃b−! Cb, ιb: C̃b−! C̃b and ηb ∈Pic0(Cb)

the restrictions of f , ι and η, respectively, to the fiber over b. Consider the degree-zero

relative compactified Jacobians

ξ: Jac(C̃B)−!B and π: Jac(CB)−!B.
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The fiber of ξ (resp. π) over a point b∈B is the compactified Jacobian of the curve C̃b (resp.

Cb) and is a reduced and irreducible l.c.i. variety of dimension h (respectively g). The

smooth locus of ξ (respectively π) is the relative generalized Jacobian Pic0
C̃B

(resp. Pic0
CB )

which parameterizes line bundles. Since these fibrations are group schemes, both admit

a zero section, and the morphisms −ι∗ and 1−ι∗ are well defined group homomorphisms

of Pic0
C̃B

. Also, Pic0
CB has another section determined by ηB .

Lemma 4.7. The “−1” morphism on the group scheme Pic0
C̃B

extends to a regular

morphism on the whole compactified Jacobian Jac(C̃B). In particular, there is a regular

involution

τ : Jac(C̃B)−! Jac(C̃B)

F 7−! ι∗F∨

Proof. Again, this follows from [4, Theorem 3.4]. Locally on B we can find a section

of the smooth locus of C̃B!B, hence by [4] there is a universal sheaf on Jac(C̃B)×C̃B .

Since the morphism C̃B!B is projective, we can find (up to restricting B) a smooth

projective variety Z of dimension d such that C̃B!B can be factored by an embedding

C̃B⊂Z×B followed by the second projection to B. We can hence argue as in Lemma 4.3

and define an involution by considering the flat family of torsion-free sheaves

Extd−1
Z×B(ι∗F , p∗ZOZ)⊗detN∨C̃B

|Z×B .

Since the assignment is independent of the choice of a section and of Z, these local

morphisms glue together to a global involution on Jac(C̃B).

We can now define the relative compactified Prym variety.

Definition 4.8. Let f : C̃B!CB be as in (4.5) an étale double cover between two fami-

lies of reduced and irreducible curves with planar singularities. The relative compactified

Prym variety of C̃B over CB , denoted Prym(C̃B/CB), is defined to be the irreducible com-

ponent of the fixed locus Fix(τ)⊂Jac(C̃B) that contains the zero section:

Prym(C̃B/CB) := Fix(τ)0⊂ Jac(C̃B).

Lemma 4.9. The fixed locus Fix(−ι∗)⊂Pic0
C̃B

has four isomorphic connected com-

ponents.

Proof. In [49], it is proved that, for any b∈B such that Cb is smooth,

Nm−1(OCb)⊂Pic0
C̃b



100 r. laza, g. saccà and c. voisin

has two connected components. Hence, so has Nm−1(ηb). Moreover,

f∗
(

Nm

(
OC̃b

(∑
i

ci

)))
=OC̃b

(∑
i

(ci+ιci)

)
,

and ker(f∗)=〈OC̃b , ηb〉, so that Fix(−ι∗b)=Nm−1(ηb)∪Nm−1(OCb), and hence the fixed

locus of −ι∗b in Pic0(C̃b) has four connected components. Over B, since f is étale

and f∗OC̃B=OCB⊕ηB is locally free, we can consider the relative norm map [29, §6.5]

NmB : Pic0
C̃B
!Pic0

CB , and hence we may consider the inverse images of the zero section

of Pic0
CB!B and of the section determined by ηB . By [29, Proposition 6.5.8], on each

fiber the norm map is compatible with the norm map associated with the double cover

D̃b!Db between the normalizations of the two curves (cf. (4.1)). Hence, it restricts to

a norm map m:A×A!A (notation as in (4.2)), which is nothing but the multiplication

map (a, b) 7!ab. Hence, on every fiber the kernel of the norm map is an extension of the

kernel of the norm map of an étale double cover of smooth curves (namely, the normal-

izations) by kerm∼=A. It follows that the inverse image under NmB of the zero section

has two connected components: the one containing the zero section of Pic0
C̃B

and the

remaining one. Hence, also the inverse image of the section determined by ηB has two

connected components, and the lemma is proved.

Let

P1, P2, P3 and P4 (4.6)

be the four connected components of Fix(−ι∗)⊂Pic0
C̃B

, with P1 being the component

Prym (C̃B/CB) := Fix(−ι∗)0 = Im(1−ι∗)⊂Pic0
C̃B

containing the zero section. We will call this component, which is a group scheme of

dimension g−1 over B, the relative generalized Prym variety of C̃B over CB . It is dense

in the relative compactified Prym variety, so that its closure 
P1 satisfies


P1 = Prym(C̃B/CB) = Im(1−ι∗).

By restricting π to the relative Prym variety, we get a morphism

νB : Prym(C̃B/CB)−!B,

whose fiber over a point b∈B corresponding to a double cover between smooth curves

C̃b!Cb is isomorphic to the usual Prym variety Prym(C̃b/Cb). Notice that

dim Prym(C̃B/CB) = dimB+g−1.
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We now need to show that this definition is well posed, in the sense that it is

compatible with base change. For example, we would like to verify that the fiber over an

arbitrary point b∈B of the relative compactified Prym variety is the compactified Prym

variety of C̃b over Cb.

Proposition 4.10. (1) For every b∈B we have Prym(C̃B/CB)|b=Prym(C̃b/Cb).
(2) The base change property holds for arbitrary base change, i.e., for any morphism

B′!B, setting C̃B′=C̃B×BB′ and CB′=CB×BB′, we have

Prym(C̃B/CB)×BB′= Prym(C̃B′/CB′).

(3) The morphism νB : Prym(C̃B/CB)!B is equidimensional.

We claim that it is sufficient to prove (1), since it implies the other two points.

Indeed, to show that (1)⇒ (2) we may assume without loss of generality that B′ is

irreducible. Hence Prym(C̃B′/CB′) is irreducible. As it is contained in Prym(C̃B/CB)×B
B′, we only need to show that the latter is also irreducible of the same dimension. By (1)

and Remark 4.5, the fiber Prym(C̃B/CB)|b over any b∈B is irreducible of dimension g−1.

So, the morphism Prym(C̃B/CB)×BB′!B′ is equidimensional and Prym(C̃B/CB)×BB′

is irreducible of dimension dimB′+g−1. The claim is proved.

To prove (1) we first need a few lemmas, as well as the first statement of Propo-

sition 4.20 below. Before stating and proving these lemmas, we need to recall a few

properties of compactified Jacobians (cf. [56], [20]).

Let Γ be an integral projective curve, with normalization n: Γ!Γ. Given a rank-1

torsion-free sheaf F on Γ, there exists [20] a partial normalization

n′: Γ′−!Γ,

with the property that End(F )∼=n′∗OΓ′ and the rank-1 torsion-free sheaf

F ′ := (n′)∗F/Tors

on Γ′ satisfies

F =n′∗F
′.

For later use, we highlight that, given F , we can define the curve Γ′ by setting

Γ′ := SpecOΓ
End(F ).

We define a local type [20] of rank-1 torsion-free sheaf to be a collection {Mp}p∈Sing(Γ)

of isomorphism classes of rank-1 torsion-free OΓ,p-modules, where p runs in the set of

singular point of Γ.

Two rank-1 torsion-free sheaves F and G on Γ are said to be of the same local type

if for any p∈Γ the localizations Fp and Gp are isomorphic as OΓ,p-modules.
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Proposition 4.11. ([20], [56]) The relative compactified Jacobian Jac(Γ) is strat-

ified based on the local type: for every local type {Mp}p∈Sing(Γ) there exists a rank-1

torsion-free sheaf F of degree zero with Fp∼=Mp for every p. Furthermore, Pic(Γ) acts

transitively on the set of rank-1 torsion-free sheaves of a fixed type {Mp}, with stabilizer

ker[Pic0(Γ)!Pic0(Γ′)], where Γ′ :=SpecOΓ
End(F ) as above. If Γ has planar singulari-

ties, then Jac(Γ) contains the generalized Jacobian as a dense open subset.

Let us now return to our situation. Our aim is to understand the fixed locus of

τ in Jac(C̃B). We start by viewing the group homomorphism (1−ι∗): Pic0
C̃B
!Pic0

C̃B
,

L 7!L⊗ι∗L∨ as a rational map

(1−ι∗): Jac(C̃B) 99K Jac(C̃B). (4.7)

Let us focus on a neighborhood of the fiber Jac(C̃b0) over a point b0∈B. Let {x1, ..., xk}
be the singular points of Cb0 , and let {p1, ..., pk, q1, ..., qk} be the singular points of C̃b0 ,

with f−1(xi)={pi, qi}. For every subset I⊂{1, ..., k}, we can consider the open subset

VI ⊂ Jac(C̃B)

of sheaves that are locally free in a neighborhood of {pi}i∈I and of {qj}j /∈I , so that

V =
⋃
I

VI

is the open set of sheaves that for every i are locally free at least at one of the two points

pi and qi.

Lemma 4.12. The rational map (4.7) is defined in an open neighborhood of Jac(C̃B)

containing V.

Proof. It is enough to show that, if F∈VI , then F⊗ι∗F∨ is torsion-free. We only

need to check this condition at the singular points {p1, ..., pk, q1, ..., qk} and, by symmetry,

it is enough to check at pi, for every i. We have (F⊗ι∗F∨)pi=Fpi⊗F∨qi . Since by

construction at least one between Fpi and F∨qi is locally free, while the other is torsion-

free, their tensor product is torsion-free.

Lemma 4.13. Given F∈Fix(τ)⊂Jac(C̃B), supported on C̃b0 , there exists a G′∈V ⊂
Jac(C̃B) such that the rank-1, τ -invariant, torsion-free sheaf

G := (1−ι∗)G′ ∈Prym(C̃B/CB)

is of the same local type as F .
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Proof. Set Γ:=C̃b0 . Since τ(F )=F , we have

Fpi = (ι∗F∨)pi =F∨qi ,

so that the local type of F is determined by the localizations Fp1 , ..., Fpk at only half of the

singular points. Consider the local type {Fp1 , ..., Fpk ,Oq1 , ...,Oqk}, where Oqi :=OΓ,qi ,

and let G′ be a sheaf in Jac(C̃b0) with this local type, which exists by Proposition 4.11.

With this notation it is clear that

G :=G′⊗ι∗G′∨

is of the same local type as F . As G∈Im(1−ι∗)=Prym(C̃B/CB), the lemma is proved.

Set

Γ′ := SpecOΓ
End(F ),

and let n′: Γ′!Γ be the natural partial normalization morphism. Since G and F are of

the same local type, by Proposition 4.11 we know that there exists an L∈Pic0
C̃t0

, well

defined up to an element of ker[(n′)∗: Pic0(Γ)!Pic0(Γ′)], such that

G=F⊗L.

Lemma 4.14. Up to changing L by an element of ker[Pic0(Γ)!Pic0(Γ′)], we may

assume that τ(L)=L.

Proof. As τ(F )=F and τ(G)=G, we have that M :=L⊗τ(L)∨ lies in ker[Pic0(Γ)!

Pic0(Γ′)] and satisfies M∨∼=τ(M). This last equality implies that M=ι∗(M), and it is

not hard to see (cf. for example [59, Lemma 2.8]) that this implies the existence of an

M ′∈ker[Pic0(Γ)!Pic0(Γ′)] such that M=M ′⊗ι∗M ′. From

L= ι∗L∨⊗M = ι∗L∨⊗M ′⊗ι∗M ′,

we deduce that

L′ :=L⊗M ′∨

satisfies ι∗L′
∨

=L′, and since M ′∈ker[Pic0(Γ)!Pic0(Γ′)] we still have

G=F⊗L′.

Let us now go back to the components P1, ...,P4 defined in (4.6). The morphism

P1⊗Pi−!Pi,

(L,M) 7−!L⊗M,
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extends to a morphism


P1⊗Pi−! 
Pi,

(G,M) 7−!G⊗M,
(4.8)

where, for every i, 
Pi denotes the closure of Pi and hence is an irreducible component of

Fix(τ). Recall that we defined P1, so that 
P1=Prym(C̃B/CB).

The last element we need is the following lemma.

Lemma 4.15. For i 6=j, the closures 
Pi and 
Pj do not intersect.

Proof. This is Corollary 4.21 proved in the next section, which is based only on the

smoothness of the relative compactified Jacobian over the versal family of an integral,

locally planar curve.

Corollary 4.16. Every irreducible component of Fix(τ)⊂Jac(C̃B) is of the form 
Pi
for some i=1, ..., 4. In particular, in Definition 4.8 we can replace irreducible component

with connected component.

Proof. Consider an F∈Fix(τ), and let G and L be as in Lemmas 4.13 and 4.14,

respectively. Since τ(L)=L and the fixed locus of τ on Pic0
C̃B

is equal to
∐
i Pi, we have

L∈Pi for some i. Since G∈
P1, it follows by (4.8) that F∈
Pi.

We finally get to the proof of (1) of Proposition 4.10.

Corollary 4.17. For any b0∈B, one has Prym(C̃B/CB)|b0 =Prym(C̃b0/Cb0).

Proof. We only need to prove that Prym(C̃B/CB)|b0⊂Prym(C̃b0/Cb0), since the re-

verse inclusion is clear. Consider an F∈Prym(C̃B/CB)|b0 . As in Lemmas 4.13 and 4.14,

we can find a τ–invariant L and a G∈
P1, with G=(1−ι∗)G′, such that G=F⊗L. By

Lemma 4.15, and the fact that F∈
P1, we necessarily have L∈P1. As P1=(1−ι∗) Pic0
C̃B

,

we can find L′′∈Pic0
C̃t0

such that L=(1−ι∗t0)L′′. By construction, G=(1−ι∗)G′ and

hence

F = (1−ι∗t0)(F ′⊗L′′∨),

from which we see that

F ∈ Im(1−ι∗t0) = Prym(C̃t0/Ct0).

4.2. Smoothness results for the relative compactified Prym

The next step is to study the local structure of the relative compactified Prym variety.

This will allows us to formulate a criterion that has to be satisfied by a family C̃B!CB of
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étale double covers of irreducible, locally planar curves in order for the relative compact-

ified Prym variety to be smooth. Since this criterion will be deduced by an analogous

criterion for the smoothness of the relative compactified Jacobian, we start by reviewing

rapidly, following closely [23], the results we need on this topic.

Let D be a reduced projective curve, with planar singularities. We denote by Def(D)

the deformation functor of the curve D and, for any p∈D, we let Def(Dp) be the de-

formation functor of the local ring OD,p. For more precise definitions, see [60, §2.4.1].

Letting Sing(D)⊂D denote the singular locus of D, set

Def loc(D) :=
∏

p∈Sing(D)

Def(Dp),

and consider the natural transformation of functors

Φ: Def(D)−!Def loc(D),

which to a deformation of the global curve assigns the induced deformation of local rings

at the singular points. Since D is reduced, Def(D) and Def(Dp) are unobstructed [60,

Example 2.4.9], and hence they admit smooth semi-universal deformations spaces, i.e.,

there exist a smooth affine scheme S, a point s∈S, and a transformation of functors

Ψ: (S, s)−!Def(D)

(here, we denote by (S, s) the deformation functor induced by the germ of the complex

space), which is smooth and an isomorphism at the level of tangent spaces, and analo-

gously for the Def(Dp). We say that the semi-universal space is centered at s∈S. The

tangent spaces to these deformation functors fit into the local to global exact sequence

0−!H1(TD)−!Ext1(Ω1
D,OD)︸ ︷︷ ︸

T Def(D)

−!
⊕

p∈Sing(D)

H0(Ext1
OD,p(Ω1

D,p,OD,p))︸ ︷︷ ︸
T Def(Dp)

−! 0,

where TD :=Hom(Ω1
D,OD), and where H1(TD) is the tangent space to the subfunc-

tor Def(D)′ of the deformations of D that are locally trivial. Let D!S be the semi-

universal family for D, centered at s, and let Jac(D)!S be the relative compactified

Jacobian. For any sheaf F∈Jac(D) we can consider the deformation functor of the

pair Def(F,D) and, for any p∈Sing(D), also of the pair Def(Fp, Dp). By [23, Propo-

sition A3], the Def(Fp, Dp) are smooth functors. As above, there are natural trans-

formations Ψ′: (Jac(D), F )!Def(F,D) and Φ′: Def(F,D)!
∏

Def(Fp, Dp). There is a

commutative diagram of functors

(Jac(D), F )
Φ′�Ψ′ //

��

∏
p∈Sing(D) Def(Fp, Dp)

��

(S, s)
Φ�Ψ

//
∏
p∈Sing(D) Def(Dp).

(4.9)
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This diagram is not necessarily Cartesian, but the horizontal maps are smooth maps of

functors, by the considerations above and by [23, Proposition A1]. In particular, Jac(D)

is smooth along Jac(D)=Jac(Ds). Now, let DB!B be a family of integral locally planar

curves, with D0=D for some 0∈B and with B smooth. There is a morphism B!S,

mapping 0 to s, inducing a diagram

Jac(DB) //

��

Jac(D)

��

B // S.

Since the diagram is Cartesian and we are assuming that B is smooth, Jac(DB) is smooth

at a point F∈Jac(D0) if and only if the image of the tangent space T0B in TsS is

transversal to the image of TF Jac(D) in TsS. Hence, in order to be able to check whether

Jac(DB) is smooth at a point F , we need to understand the image of TF Jac(D) in TsS.

This is done by analyzing, in the following way, what happens in diagram (4.9) at the

level of tangent spaces.

Set P :=C[[x, y]]. As D has locally planar singularities, for any pi∈Sing(D) there

exists fi∈P such that the completion of the local ring OD,pi is isomorphic to Ri=P/fi.

With this notation, we have

T 1
Dpi

(=T Def(D, pi)) =P/(fi, ∂xfi, ∂yfi)

(note that T 1
Dpi

is a vector space of dimension τ(fi), see Remark 3.4). For any i, let
	Ri⊃Ri be the normalization of Ri. We denote by Ii⊂Ri the conductor ideal, i.e., Ii :=

Hom(	Ri, Ri), and we let

V (Dpi)⊂T 1
Dpi

(4.10)

be the image in the Jacobian ring P/(fi, ∂xfi, ∂yfi) of the conductor ideal. It is a

codimension-δi subspace, with δi :=dim 	Ri/Ri=dimRi/Ii. Let

V (D)⊂TsS (4.11)

be the inverse image of
∏
V (Dpi) under the tangent map TsS!

∏
T 1
Dpi

. It is known

that V (D) is the support of the tangent cone to the deformations of D that keep the

geometric genus constant, and has codimension in TsS equal to the cogenus δ=
∑
i δi,

i.e. the difference between the arithmetic and the geometric genera of D. Let M be a

rank-1 torsion-free Ri-module, viewed as a P -module. Recall that M admits a length-1

free resolution

0−!Pn
ϕ−−!Pn−!M −! 0,
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and that the jth Fitting ideal Fj(M)⊂Ri of M is the ideal of Ri generated by the (n−j)–
minors of the matrix ϕ. It is independent of the choice of the resolution. For example,

the zeroth Fitting ideal is the ideal generated by the local equation fi of the curve at

pi, i.e., (detϕ)=(fi)⊂Ri. As for the first Fitting ideal, by [23, Proposition C2] it is the

image in Ri of the evaluation map M×Hom(M,Ri)!Ri. For later use, we highlight the

following remark.

Remark 4.18. F1(M)=F1(M∨)⊂Ri.

We can now formulate the following key consequence of [23].

Proposition 4.19. ([23]) (a) For any F∈Jac(D), the image of the tangent space

TF Jac(D) in TsS contains the space V (D) defined in (4.11).

(b) There exists an F in Jac(D) such that the image is exactly V (D).

(c) Jac(DB) is smooth along Jac(D) if and only if the image of T0B in TsS is

transversal to V (D).

Proof. By [23, Proposition C1], the image of the tangent space T Def(Fpi , Dpi) in

T Def(pi) equals the image

W (Fpi)⊂Ri/(∂xfi, ∂yfi) =T Def(pi) (4.12)

of the first Fitting ideal F1(Fi)⊂Ri. By [23, Corollary C3], F1(Fi)⊃Ii and hence the

first statement follows from the definition of V (D) and the fact that the tangent map

TF Jac(D)!
∏
T Def(Fpi , Dpi) is surjective. The third statement follows from the obser-

vation made in Remark C4 of [23] that F1(	Ri)=Ii, and from the fact that, by Proposi-

tion 4.11 above, there exists an F∈Jac(D) with local type {	Ri}. Statement (c) is clear,

once we recall that we are assuming that B is smooth and that

Jac(DB) = Jac(D)×SB.

Let us now get back to our situation and consider

f : C̃ −!C and ι: C̃! C̃, (4.13)

an étale double cover of reduced and irreducible curves with planar singularities and the

corresponding involution on C̃. We denote by Def(C̃, C) the deformation functor of the

map C̃!C [60, Definition 3.4.1] whose tangent space can be identified by [54] with

T 1
C = Ext1(Ω1

C ,OC)

(that is with T Def(C)), viewed as the ι–invariant part of T 1
C̃

=Ext1(Ω1
C̃
,OC̃). A semi-

universal family for this functor can be described as follows. Let C!S be a semi-universal
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family for C, centered at a point s∈S. As in [16], we can consider the finite group scheme

Pic0(C)[2]⊂Pic0(C) over S which parameterizes 2-torsion line bundles on the curves in

C!S. Since we are in characteristic zero, the morphism Pic0(C)[2]!S is étale and

therefore the natural transformation

(Pic0(C)[2], η)−!Def(C̃, C),

which one can easily check to be smooth, is an isomorphism at the level of tangent

spaces. Hence, Pic0(C)[2] is the base of a semi-universal family for Def(C̃, C). Since

Pic0(C)[2]!S is étale, and an isomorphism on tangent spaces, we can replace S by

Pic0(C)[2] so that (S, s) is a semi-universal space for both Def(C) and Def(C̃, C). In

particular, we have a family

f : C̃S −! CS := C, ι: C̃S −! C̃S

of étale double covers of integral curves with planar singularities.

We can finally state and prove the smoothness criterion for the relative Prym variety.

Theorem 4.20. Let the notation be as above.

(1) The relative compactified Prym variety Prym(C̃S/CS) over the semi-universal

deformation space is smooth.

(2) For any smooth base B and any family of double covers as in (4.5), the relative

compactified Prym variety Prym(C̃B/CB) is smooth along Prym(C̃b/Cb)=ν−1
B (b) if and

only if the image of the tangent map TbB!T Def(Cb) of the classifying morphism is

transversal to the space V (Cb)⊂T Def(Cb) defined in (4.11).

(3) Prym(C̃B/CB) is smooth along Prym(C̃b/Cb)=ν−1(b) if and only if Jac(CB) is

smooth along Jac(Cb)=π−1(b).

Proof. Consider the curve C̃ and the involution ι: C̃!C̃. A result of Rim (Corollary

in [57]) ensures that we may consider a ι–equivariant semi-universal family C̃S̃!S̃ for C̃.

By definition, this is a semi-universal family for Def(C̃) that has the additional property

of admitting compatible actions of ι on C̃ and on S̃. Let us then consider such a family.

We set T :=Fix(ι)⊂S̃ and we denote by C̃T!T the restriction of the semi-universal family

to T . Then

CT := C̃T /ι−!T

is a family of integral curves with locally planar singularities. If S̃ is centered at s∈S̃,

then Cs=C, and the tangent space of T at s is the ι–invariant subspace

(TsS̃)ι =T 1
C =T Def(C̃, C).
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This shows that T is a semi-universal space for Def(C̃, C). Hence, to prove (1) it is

enough to prove that Prym(C̃T /CT ) is smooth. But this is clear, since Prym(C̃T /CT ) is

by definition just the component of the fixed locus of τ that contains the zero section of

Jac(C̃S̃). Since Jac(C̃S̃) is smooth, so is every component of fixed locus of an involution

acting on it.

For item (2), we can reason as in the proof of Proposition 4.19, provided we un-

derstand, for any F∈Prym(C̃b/Cb), the image in T Def(Cb, Cb) of the tangent space of

the relative compactified Prym variety over a semi-universal deformation space T for

Def(C̃b, Cb). Indeed, since by Proposition 4.10 Prym(C̃B/CB)=Prym(C̃T /CT )×TB, it

is sufficient to prove that, for any F∈Prym(C̃b/Cb), the image of TFPrym(C̃T /CT ) in

T Def(C̃b, Cb)=T 1
Cb contains the support V (Cb) of the tangent cone to the equigeneric lo-

cus. To see this, we argue as follows. Set C=Cb and C̃=Cb, and let {p1, ..., pk, q1, ..., qk}
be the singular points of C̃, with f−1(xi)={pi, qi}. Consider an F∈Prym(C̃/C) and let

S̃ and T be as above. The tangent map

Ξ:TF Jac(C̃S̃)−!
k∏
i=1

(T 1
C̃pi
×T 1

C̃qi
)

is equivariant with respect to the two involutions τ , which acts on TF Jac(C̃S̃) with fixed

locus TFPrym(C̃T /CT ), and ι, which acts on
∏k
i=1(T 1

C̃pi
×T 1

C̃qi
) by interchanging T 1

C̃pi

with T 1
C̃qi

(which are isomorphic since ι(pi)=qi). By item (a) in Proposition 4.19, we

know that the image of Ξ is ∏
i

(W (Fpi)×W (Fqi)).

Here, as in (4.12), W (Fpi) denotes the image of the first Fitting ideal of Fpi in T 1
C̃pi

.

Since τ(F )=F , Fqi=F
∨
pi and hence, by Remark 4.18, W (Fpi)

∼=W (Fqi). It follows that

the image of TFPrym(C̃T /CT ) in∏
i

(T Def(C̃, pi)×T Def(C̃, qi)),

which is nothing but the ι-invariant subspace of Im Ξ, is equal to the product of diagonals∏
i ∆W (Fpi )

. Under the identification T 1
C=(TsS̃)ι, the subspace V (C)⊂T 1

C corresponds

to the preimage in TsS̃ of the product
∏
i ∆V (C̃,pi)

⊂
∏
i(T

1
C̃pi
×T 1

C̃qi
). Since we know that

W (Fpi)⊃V (C̃, pi), it follows that
∏
i ∆W (Fpi )

⊃
∏
i ∆V (C̃,pi)

, and hence that the image

of TFPrym(C̃T /CT ) in T 1
C contains V (C).

The only thing we are left to prove is that there exists an F∈Prym(C̃/C) such

that this image is exactly V (C). This is done, like in Lemma 4.13, by considering a
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sheaf F ′∈Jac(C̃) of local type {
OC̃,p1
, ...,OC̃,pk ,OC̃,p1

, ...,OC̃,pk}, where 
OC̃,pi is the

normalization of OC̃,pi , and setting

F =F ′⊗ι∗(F ′)∨.

As for statement (3), it follows from (2) and Proposition 4.19 (c).

The proof of Proposition 4.20 (1) has the following corollary.

Corollary 4.21. For any base T , the closure 
Pi of the connected components of

Fix(−ι∗)⊂Pic0
C̃B

do not intersect.

Proof. Since Fix(τ)⊂Jac(C̃S̃) is smooth, its irreducible components are smooth and

disjoint. In particular, the closure in Jac(C̃S̃) of the components of Fix(−ι∗)⊂Pic0
C̃ , which

are irreducible components of Fix(τ) are smooth and disjoint. If this is true over the

semi-universal family, it is a fortiori true that the closures of the Pi’s are disjoint over

an arbitrary base.

Corollary 4.22. If Prym(C̃B/CB) and B are smooth, then νB : Prym(C̃B/CB)!B

is flat.

5. Descent—From the relative Prym variety

to the relative intermediate Jacobian

In the previous section, we developed a method for associating with any family of double

covers of irreducible locally planar curves a relative compactified Prym variety. We now

apply these results to the double cover of curves that come up in our situation and get

a relative compactified Prym variety 
P. The transversality arguments of §3 guarantee

the smoothness of 
P. Unfortunately, this flat family 
P (of relative dimension 5) lives

over the relative Fano variety F (or more precisely an open subset of it) and not over

the base B=(P5)∨, as would be needed in order to compactify the intermediate Jacobian

fibration JU . It is therefore necessary to descend 
P to a family 
J over B that will give

the desired compactification of JU!U . This descent argument is the content of this

section.

Let X be a general cubic 4-fold (or a general Pfaffian cubic). Let p:F!B be

the relative Fano surface, let F0/B the non-empty open subset of very good lines, in

particular not passing through the singular points of the considered hyperplane section.

Then F0
!B is smooth and, by Proposition 2.10, it is surjective. Let

C̃F0 //

!!

CF0

}}

F0
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be the associated family of plane quintic curves with their étale double covers. By

Proposition 2.10, the curves in the two families are reduced and irreducible. We may

therefore apply the results of §4 and construct the relative compactified Prym variety

ν: 
PF0 := Prym(C̃F0/CF0)−!F0.

Proposition 5.1. The relative compactified Prym 
PF0 is smooth and the morphism

ν: 
PF0!F0 is flat of relative dimension 5.

Proof. This follows immediately from Proposition 4.20 (2) and Corollary 3.9.

As usual, we let U (resp. U1) be the open subset of B parameterizing hyperplane

sections that are smooth (resp. that have a single ordinary node). We set F0
U=F0×UB

and let C̃F0
U

be the restriction of the family of curves. We use the analogous notation

for U1. For any t∈B, and any `∈F0
t ⊂F (Yt), the curve C̃(`,t) is the curve of lines in Yt

meeting the line `⊂Yt. We let LU⊂C̃F0
U
×UYU be the corresponding universal family of

lines of the smooth hyperplane sections. For any x∈C̃(`,t), we let Lx be the corresponding

line in Yt. There is a relative Abel–Jacobi map

ΦLU : C̃F0
U
−!JU ,

C̃(`,t) 3x 7−!ΦYt(Lx−`)∈Jt = J(Yt)

inducing a morphism

Ψ: Jac(C̃F0
U

)−!JF0
U

=JU×UF0
U .

Since for every x∈C̃(`,t) the rational equivalence class of the cycle Lx+ιLx in Yt is

constant, the morphism Ψ factors via (1−ι) Jac(C̃F0
U

)=Prym (C̃F0
U
/CF0

U
), thus inducing

a morphism from the relative Prym variety

Prym (C̃F0
U
/CF0

U
)−!JF0

U
, (5.1)

which is an isomorphism by a result of Mumford [63]. In particular, over the smooth locus

U , the relative Prym variety is the pull-back to F0
U of the intermediate Jacobian fibration.

The following lemma shows that it is the case also over the locus U1 parameterizing 1-

nodal hyperplane sections.

Lemma 5.2. The isomorphism (5.1) extends to an isomorphism

Prym(C̃F0
U1
/CF0

U1
)−!JF0

U1
=JU1

×U1
F0
U1
. (5.2)

In particular, JU1 is smooth.
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Proof. The extensions over the boundary F0
U1
\F0

U of the families Prym (C̃F0
U
/CF0

U
)

and JF0
U

to the families Prym (C̃F0
U1
/CF0

U1
) and J �

F0
U1

, respectively, of semi-abelian vari-

eties are determined by the monodromy of the local systems over F0
U : indeed, if H0,1

Prym

andH0,1
J are the Hodge bundles of the families ν: Prym (C̃F0

U
/CF0

U
)!F0

U and %:JF0
U
!F0

U ,

respectively, then the two families of semi-abelian varieties (or rather their sheaves of local

sections) Prym (C̃F0
U1
/CF0

U1
) and J �

F0
U1

are given, respectively, by


H0,1
Prym/j∗R

1ν∗Z, and 
H0,1
J /j∗R

1%∗Z.

Here 
H0,1
Prym and 
H0,1

J are the canonical extensions of the Hodge bundle across F0
U1
\F0

U ,

which is smooth, and j:F0
U!F0

U1
is the inclusion. Since the two families are isomorphic

over F0
U by (5.1), so are the corresponding local systems and Hodge bundles, and hence

so are the canonical extensions. We thus get an isomorphism

Prym (C̃F0
U1
/CF0

U1
)∼=J �

F0
U1

=J �

U1
×U1
F0
U1
.

The fact that this isomorphism extends to the Mumford compactifications, where along

the boundary the C∗-bundles are replaced with the corresponding P1-bundle with the

sections 0 and ∞ glued via a translation, follows from the fact that the Mumford com-

pactification is canonical. We thus get the desired isomorphism (5.2).

From now on, we will use the following notation (justified by Lemma 5.2): For any

morphism f :M!F0 with induced morphism f ′=p�f :M!B, we will denote by JM the

pull-back 
PF0×F0M and by πM :JM!M the second projection. Over M1 :=(f ′)−1(U1),

one has JM |M1
=JU1

×U1
M1 by Lemma 5.2. The aim of this section is to show a result

extending in some sense Lemma 5.2 over the whole of B, that is, to construct a projective

compactification 
J of JU1 that is flat over B, whose pull-back to F0 will be isomorphic

to 
PF0 =JF0 . Then 
J will be clearly smooth. This is a descent problem which will

use the following Proposition 5.3. The morphism πU1
:JU1

!U1 is projective. In fact,

there is a canonical Theta divisor Θ1⊂JU1
defined as the Zariski closure in JU1

of the

canonically defined divisor Θ⊂J (see Lemma 5.4 for more detail). Using Lemma 5.2, we

get by pull-back a divisor Θ̃1 on JU1
×U1
F0
U1

=JF0
U1

, and as the morphism πF0 :JF0!F0

is flat, JF0
U1
⊂JF0 has a complement of codimension >2, and thus Θ̃1 extends uniquely

to a divisor


Θ̃1 on JF0 .

Proposition 5.3. The divisor


Θ̃1 on JF0 is πF0-ample.

The proof will use several lemmas. We first recall the following lemma.

Lemma 5.4. For any smooth cubic 3-fold Y, there is a canonically defined Theta

divisor ΘY ⊂J(Y ) which is invariant under the involution −1.
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Proof. The divisor ΘY is defined as follows: Consider the family C!H of rational

cubic curves in Y. We have the Abel-Jacobi map

ΦC :H−! J(Y ),

s 7−!ΦY (Cs−h2),

where h=c1(OY (1))∈CH2(Y ), so that Cs−h2 is homologous to zero in Y. The fact that

the image of this map is a Theta divisor in J(Y ) is proved in [19, §13] (see also [30]).

The fact that it is a (−1)-invariant divisor in J(Y ) follows from the following observation

([30]).

Sublemma 5.5. Let C⊂Y be a general cubic rational normal curve in a smooth

cubic 3-fold. Then, there exist two lines L,L′⊂Y such that C is rationally equivalent in

Y to c1(OY (1))2+L−L′. Conversely, for two general lines L and L′ on Y, we have that

c1(OY (1))2+L−L′ is rationally equivalent in Y to a smooth rational cubic curve C.

Proof. The curve C generates a P3 which intersects Y in a cubic surface S⊂Y ,

which is smooth because C is generic. The linear system |OS(C)| is a P2 which provides

a birational map φ:S!P2, contracting six lines Li in S to points pi. The curve C belongs

to the linear system |φ∗OP2(1)|. Choose a line L contracted to a point p, and consider

the proper transform L′ in S of a conic passing through all points pi except p. Then L′

is a line in S which belongs to the linear system
∣∣φ∗OP2(2)

(
−
∑
pi 6=p Li

)∣∣ and thus L′−L
is rationally equivalent in S to φ∗OP2(2)

(
−
∑
i Li
)
. But KS=−h|S=φ∗OP2(−3)

(∑
i Li
)

(with h=c1(OY (1))), hence we get

−h|S+φ∗OP2(1) =L−L′

in CH1(S), and thus C=h2+L−L′ in CH2(Y ). Conversely, if L and L′ are two lines in

Y , the P3=P3 generated by L and L′ intersects Y along a smooth cubic surface, and for

a given point x∈L, the plane 〈L′, x〉⊂P3 intersects Y along the union of L′ and a conic

C ′ meeting L at x. The curve L∪C ′ is a reducible rational cubic curve C in S (which

deforms to a smooth rational cubic curve).

It follows that the divisor ImΦC (or rather 6 times this divisor) is also equal to the

image in J(Y ) of the difference map

F (Y )×F (Y )−! J(Y ),

(l1, l2) 7−! l1−l2.

Thus it is invariant under the involution (−1) of J(Yt).
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Coming back to our family πU :JU!U , on which the (−1)-involution acts over U ,

we constructed from Lemma 5.4 a canonical Theta divisor Θ⊂JU which is −1-invariant,

with Zariski closure Θ1⊂JU1
. We now have the following lemma.

Lemma 5.6. For any dominant morphism f ′:M1!U1, M1 irreducible, with canon-

ical lift f :JM1
!JU1

, the (−1)-invariant part of PicJM1
/M1, where JM1

:=J ×U1
M1,

is generated modulo torsion by f∗Θ1.

Proof. The relative Picard group PicJM1
/M1 :=PicJM1

/π∗M1
PicM1 injects in the

Picard group of the fiber J(Yt), where t∈M is very general, because the fibers of the map

πM (which are also the fibers of the map πU1 :JU1!U1) are all reduced and irreducible. In

particular, it injects into PicJMU
/MU , where MU :=f ′

−1
(U)⊂M1. We are thus reduced

to proving that the (−1)-invariant part of Pic J(Yt) is, modulo torsion, generated by ΘYt

for t very general in U . However, modulo torsion, the (−1)-invariant part of Pic J(Yt) is

isomorphic to the Néron–Severi group of J(Yt). Finally, recall that we have a canonical

isomorphism H3(Yt,Q)∼=H1(J(Yt),Q) which provides more generally an isomorphism of

local systems over U :

R3u∗Q∼=R1πU∗Q.

For the local system on the left, the corresponding monodromy group

Im(%:π1(U, t)−!AutH3(Yt,Z))

is the full symplectic group of the intersection pairing by Picard–Lefschetz theory [10].

Hence, the same is true for the local system on the right. As M1 is irreducible and the

morphism f ′:M1!U1 is dominating, the image of the morphism

(f ′U )∗:π1(MU ,mt)−!π1(U, t),

where f ′U :MU!U is the restriction of f ′ and f ′U (mt)=t, is a subgroup of finite index

in π1(U, t). Thus, the monodromy group of the family JMU
!MU acts via a subgroup

of finite index of Sp(H1(Jmt ,Z)) on the cohomology of Jmt . On the other hand, it is

a general fact that the monodromy group acts on H2(J(Ymt),Q)=
∧2

H1(J(Ymt),Q) by

preserving (for very general t) the Néron–Severi group of J(Yt) and with finite orbits

on NS(J(Yt))Q. The only elements of
∧2

H1(J(Ymt),Z) which have finite orbit under

Sp(H1(Jmt ,Z)) are the multiples of the class [Θt], and we conclude that

NS(J(Yt))Q =Q[ΘYt ].

Proof of Proposition 5.3. The morphism πF0 :JF0!F0 is projective. Next we recall

from Lemma 4.7 that the involution (−1) acting on JU1
, hence on JF0

U1
by Lemma 5.2,
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extends to an involution acting on JF0 over F0: it can be defined as the involution

F 7!F∨ acting on reflexive sheaves on C̃l,Y , where for any point ([l], [Y ])∈F0, the curve

C̃l,Y is the incidence curve of the line l∈F (Y ) (cf. Lemma 4.7). Notice that, since the

relative compactified Prym variety is defined as a component of the fixed locus of −ι∗,
where ι: C̃l,Y!C̃l,Y is the usual natural involution, we have (−1)=ι∗ on JF0

U1
. It follows

that starting from any πF0 -relatively ample line bundle L on JF0 , we can construct a

πF0-relatively ample line bundle L′ which is both πF0-ample and (−1)-invariant, namely

L′=L⊗(−1)∗L.

We now apply Lemma 5.6 to the natural morphism f ′=p|F0
U1

:F0
U1
!U1 and the (−1)-

invariant line bundle L′|JF0
U1

. It says that, up to replacing L′ by a multiple, we have

L′|JF0
U1

= f∗O(dΘ1)⊗π∗F0
U1

N1, (5.3)

for some integer d, where N1 is a line bundle on F0
U1

. Note that PicF0
U1

=PicF0, because

F0 is smooth and codim(F0\F0
U1
⊂F0)>2. For the same reason, PicJF0

U1
=PicJF0 ,

because πF0 is flat. Hence, also codim(JF0 \JF0
U1
⊂JF0)>2 and JF0 is smooth. Thus,

the line bundle N1 extends to a unique line bundle N on F0 and (5.3) is true as well

over JF0 , proving that

L′=O(d


Θ̃1)⊗π∗F0N . (5.4)

As L′ is πF0 ample, so is


Θ̃1 by (5.4).

Using the results above and Proposition 5.1, we now prove the following result (see

main theorem in the introduction).

Theorem 5.7. Let j1:U1!B be the inclusion. Then

(i) For any sufficiently large integer d>0, the sheaf of algebras

E∗ :=R0j1∗

(⊕
k>0

R0πU1∗OJU1
(kdΘ1)

)

is a sheaf of OB-algebras of finite type, and each summand R0j1∗(R
0πU1∗OJU1

(kdΘ1))

is a locally free coherent sheaf on B.

(ii) The variety 
J :=Proj(E∗)!B is a smooth projective compactification of JU1 .

(iii) The variety 
J is irreducible hyper-Kähler.

Proof. (i), (ii) It suffices to prove the existence of d locally in the Zariski topology.

For any b∈B there exists, by Corollary 2.11, a very good line lb∈Yb. As the family

F0
!B of very good lines in the fibers of u is smooth over B, we may assume, up
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to an étale base change f ′:M!B, m 7!b, that there is a section f :M!FM , m 7!lm.

Furthermore, the conclusion of Corollary 3.9 holds, so that the corresponding family of

plane quintic curves Clm induces a versal deformation of Sing(Clm). We can then apply

the results of §4, and especially Theorem 4.20, which provides a smooth projective flat

compactification πM :JM!M of JM1
:=JU1

×U1
M1, where M1=f ′

−1
(U1)⊂M . If L is

a πM -relatively ample line bundle on JM , for some l0 large enough, RiπM∗L⊗n=0 for

n>l0, i>0, and thus we conclude by flatness of πM that:

(a) R0πM∗L⊗n is locally free for n>d0;

(b)
⊕

k R
0πM∗L⊗kd0 is a sheaf of finitely generated OM -algebras;

(c) the smooth variety JM is isomorphic over M to Proj
(⊕

k R
0πM∗L⊗kd0

)
.

Next, let jM1
:M1!M be the inclusion map. As M \M1 has codimension >2, and

πM is flat, JM \JM1
also has codimension >2. As M and JM are smooth, we conclude

that

R0jM1∗(R
0πM1∗(L|⊗kJM1

)) =R0πM∗(L⊗k). (5.5)

We now assume that L is (−1)-invariant, so L=L′ satisfies (5.4). Up to shrinking M ,

the line bundle N appearing in (5.4) is trivial on M , so that L|JM1
=f∗1O(d′Θ1) for some

integer d′, where f1:JM1
!JU1

is the natural map over f ′|M1
/M1!U1. Thus, (a)–(c)

above and (5.5) prove (i) and (ii) after pull-back to M . In other words, we proved that

(i) and (ii) are true étale locally on B, that is, after étale base changes f ′:M!B of small

Zariski open sets of B covering B. This clearly implies (i) and (ii), for example because

an étale base change is a local isomorphism in the analytic topology, and (i) and (ii) are

local statements in the analytic topology.

(iii) We know by Proposition 1.9 that JU1
has a non-degenerate holomorphic 2-form,

which extends to a non-degenerate holomorphic 2-form on 
J , as codim(
J \JU1⊂ 
J )>2.

What remains to be done is to prove that 
J is irreducible hyper-Kähler. We have the

following lemma.

Lemma 5.8. The holomorphic 2-forms on any finite étale cover 
̃J of 
J are multiples

of the form σ coming from X.

Proof. The variety 
J contains the Zariski closure of the Theta divisor Θ⊂J which is

birational to a P1-bundle over the Lehn–Lehn–Sorger–van Straten variety F3(X). Indeed,

recall from [42] that F3(X) parameterizes birationally nets |D| of rational cubic curves

on cubic surfaces S⊂X. Consider the P1-bundle P!F3(X) having as fiber over (S,D)

the P1 of hyperplanes in P5 containing S. Then P admits a morphism to (P5)∗ whose

fiber over HY parameterizes the nets of cubic rational curves on cubic surfaces in Y. We

already mentioned that, via the map

|D| 7−!ΦX(D−h2)∈ J(Y ),
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the set of such nets dominates (in fact, is birational to) the Theta divisor of J(Y ). This

construction in family over U provides the rational map P99KΘ⊂J ⊂Z.

The proof of Lemma 5.8 is now immediate: The variety F3(X) is simply connected (it

is a deformation of S[4] for some K3 surface S; see [1]), and hence P is simply connected,

so the rational map P99K 
J constructed above lifts to a rational map P99K 
̃J for any finite

étale cover 
̃J of 
J . As F3(X) is an irreducible hyper-Kähler manifold and P!F3(X) is

a P1-bundle, the holomorphic 2-forms on P are all multiples of the restriction of σ
J . It

thus only suffices to show that, if α is a holomorphic 2-form on 
̃J which vanishes on the

image Θ of P, then α=0. That follows however immediately from the fact that, fiberwise,

as Θt⊂J̃t is an ample divisor, the restriction map

H0(J̃ t,ΩiJ̃t)−!H0(Θ0
t ,Ω

i
Θ0
t
)

is injective for t∈U , and 06i62, where Θ0
t is the smooth locus of Θt.

By the Beauville–Bogomolov decomposition theorem [9], Lemma 5.8 implies that 
J
is irreducible hyper-Kähler.

6. Construction of a birational map in the Pfaffian case

We have established in §3 that a general Pfaffian cubic 4-fold satisfies the same versality

statements as a general cubic, and thus the relative intermediate Jacobian associated

with a general Pfaffian cubic has a smooth projective hyper-Kähler compactification 
J .

The purpose of this section is to establish that this compactification 
J is birational to

an OG10 hyper-Kähler manifold, and thus by Huybrechts’ result [33] (two birationally

equivalent HK manifolds are deformation equivalent) is deformation equivalent to OG10.

This completes the proof of the main theorem (stated in the introduction).

What is used about Pfaffian cubic 4-folds X is that they have associated (cf. [13])

degree-14 K3 surfaces Σ. We will prove below that birationally the relative intermediate

Jacobian fibration 
J associated with a Pfaffian cubic X can be interpreted as a moduli

space of sheaves on Σ, linking in with the original construction of OG10 by O’Grady [50].

Remark 6.1. Of course, the same approach can be applied to other classes of cubic

4-folds for which there is an associated K3 surface (in the sense of Hassett [32]). In

particular, as mentioned in the introduction, the relative intermediate Jacobian fibration

can be seen to be related to the OG10 construction in the case of nodal cubic 4-folds

(cf. Hwang–Nagai [35]), or in the case of degenerations to the chordal cubic 4-folds

(cf. O’Grady–Rapagnetta). In fact, in those cases the geometry of relating the relative

intermediate Jacobian fibration to sheaves on the associated K3 is easier than in the
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Pfaffian case. However, the problem is that our construction will not lead to a smooth

compactification 
J (and thus Huybrechts’ result does not suffices). In other words, it

is essential for our proof of deformation equivalence to OG10 that the general Pfaffian

cubic satisfies both: it has an associated K3 and it behaves similarly to a general cubic

from the perspective of good lines (see §3, especially Corollary 3.7 and Lemma 3.12).(2)

6.1. The Pfaffian case—Statement of the main result and strategy

Let X be a Pfaffian cubic 4-fold. This means that there is a 6-dimensional vector space V6

and a 6-dimensional vector space W6⊂
∧2

V ∗6 such that X⊂P(W6) is the Pfaffian cubic

hypersurface defined by the Pfaffian equation ω3=0. Following [13], let Σ⊂G(2, V6) be

the surface defined as follows:

Σ = {[l]∈G(2, V6) :ω|Vl = 0 for all ω ∈W6},

where we denote by Vl⊂V6 the rank-2 vector subspace corresponding to [l] (l will denote

the corresponding projective line in P(V6)). Being defined (for general X as above) as

the complete intersection of six linear Plücker forms on G(2, 6), Σ is a smooth degree-14

K3 surface.

Our goal in this section is to prove the following result.

Theorem 6.2. The intermediate Jacobian fibration J of X is birational to the

O’Grady moduli space M2,0,4(Σ) parameterizing rank-2 semi-stable sheaves on Σ with

c1=0 and c2=4.

Corollary 6.3. The compactified Jacobian fibration 
J of Theorem 5.7 is a defor-

mation of O’Grady’s 10-dimensional variety.

Proof. Indeed, Theorem 5.7 is valid when X is a general Pfaffian cubic 4-fold, due

to the results of §3.2 which guarantee that the assumptions needed to make the local

construction of §4 work are satisfied in the general Pfaffian case. Hence we can rephrase

Theorem 6.2 saying that our family (
JX)[X]∈W⊂Hyp4,3
of hyper-Kähler compactified Ja-

cobian fibrations 
JX parameterized by an open set W of the space of all cubic 4-folds

has a smooth member which is birational to O’Grady’s 10-dimensional variety OG10,

which is also a smooth hyper-Kähler manifold. We then apply [33] to conclude that the

varieties 
JX are deformation equivalent to OG10.

We will heavily use the results of [37] (based on [44]) and their generalization in

[41]. The proof of Theorem 6.2 will be completed in §6.4. As the intermediate Jacobian

(2) In fact, the recent paper [39], written with Kollár after this paper was accepted, shows how to
use the degeneration to the chordal cubic to give an alternative proof of Theorem 6.2.
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fibration is a fibration over P(W ∗6 ) into intermediate Jacobians of cubic 3-folds Y3=H∩X,

which come equiped with a Pfaffian representation induced from the one of X, we will

devote §6.2 and §6.3 to the Pfaffian 3-fold geometry, which is the subject of the papers

[37] and [41]. The cubic 3-fold Y3 is represented as the Pfaffian cubic in P(W5) for some

5-dimensional vector space W5⊂
∧2

V ∗6 . Associated with this data, we get the index-1,

degree-14 Fano 3-fold V14⊂G(2, V6) defined as

V14 = {[l]∈G(2, V6) :ω|Vl = 0 for all ω ∈W5}. (6.1)

Notice that by construction these Fano 3–fold all contain the K3 surface Σ defined above.

The strategy of the proof is the following: First one notices that the relative interme-

diate Jacobian JU is birational to a relative moduli space of vector bundles M on the

hyperplane sections of X (see beginning of §6.2). Then, with a vector bundle EY3
∈M on

a cubic 3-fold Y3, one would like to associate a vector bundle EV14
on the corresponding

degree-14 Fano 3-fold V14 in order to then restrict it to the K3 surface Σ. However, to

define this assignment EY3 7!EV14 we need some more data than EY3 alone, so we end

up first getting a map from a variety dominating JU (map defined in (6.9)), and then

showing that this map factors through JU (Proposition 6.15).

The bundles in question on Y3 and on V14 will be obtained via elementary trans-

formations from two natural rank-2 vector bundles on Y3 and on V14, which we now

define. The variety V14 comes equipped with the tautological rank-2 dual vector bun-

dle, that we will denote by E14. The Pfaffian cubic Y3 comes equipped with the natural

rank-2 vector bundle E3 with fiber (Kerω)∗ over a 2-form ω∈P(
∧2

V ∗6 ) of rank 4. As

V ∗6 =H0(Y3, E3)=H0(V14, E14), we have natural maps

φ:P(E14)−!P(V6) and ψ:P(E3)−!P(V6),

which are easily seen to have the same image Q⊂P(V6). According to [41], Q is a quartic

hypersurface which is singular along a curve, and φ and ψ are two small resolutions of Q.

In particular, P(E14) and P(E3) are birational, and even related by a flop θ=ψ−1
�φ.

We will need the following lemma: Denote by ∆14 (resp. ∆3) the general fiber of the

projective bundle πV14
:P(E14)!V14 (resp. πY3

:P(E3)!Y3). Via the birational map θ,

these curves (which do not meet the indeterminacy locus of θ or θ−1) can be seen as

curves either in P(E14) or in P(E3), and we will denote by degV14
( ·) (resp. degY3

( ·)) the

degree of their projection in V14 (resp. Y3) with respect to the canonical polarizations.

We will also denote by degQ( ·) the degree of their projections in Q⊂P5 via φ (resp. ψ).

Lemma 6.4. One has degQ ∆3=degQ ∆14=1 and

degV14
∆14 = 0, degY3

∆14 = 4, degY3
∆3 = 0, degV14

∆3 = 4. (6.2)
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Proof. Let ω∈Y3 be a general point. The fiber ∆3 over ω is thus by definition the

projective line Lω=P(Kerω). Its image Cω in V14 is the set of points [l] in V14 such that

the corresponding projective line l meets Lω. As Lω=P(Kerω), one has ω|Vl=0 for any

line l meeting Lω. Thus Cω is the vanishing locus of the 4-dimensional space W5/〈ω〉 of

Plücker equations on the set of lines in V6 meeting Lω. It is easily proved that this locus

has degree 4 and this proves the last statement. Next let [l]∈V14 be a general point.

Let Cl be the image in Y3 of the fiber ∆14 over [l]. Then Cl is the set of α∈W5 whose

kernel intersects Vl non-trivially, and the map l 7!Cl associates with x∈l the unique form

ω∈P(W5) such that x∈P(Kerω). As all forms in W5 vanish on l, the natural morphism

V6⊗Ol(−1)−!W ∗5 ⊗Ol

of vector bundles over l=P1 factors through (V6/Vl)⊗Ol(−1), and its cokernel has thus

degree 4, which proves the second statement in (6.4). The other statements are immedi-

ate.

6.2. The cubic 3-fold side.

We know by [44], [37] that the moduli space of stable vector bundles of rank 2 on Y3

with c1=0 and degY3
c2=2 is birationally isomorphic to J(Y3) via the Abel–Jacobi map.

Let E be such a vector bundle.

Lemma 6.5. If E is general, then the following statements hold :

(i) dimH0(Y3, E
∗⊗E3)=4.

(ii) Furthermore, if (Y3, E) is general, for a general section σ∈H0(Y3, E
∗⊗E3), we

have an exact sequence

0−!E
σ−−! E3−!OS(C)−! 0, (6.3)

where S∈|OY3(2)| is a smooth K3 surface and C⊂S is a degree-9, genus-5 curve.

Proof. (i) Note that E∼=E∗, so (i) is equivalent to dimH0(Y3, E⊗E3)=4. We now

specialize to the case where E is not locally free, namely E=Il1⊕Il2 , where l1 and l2

are two general lines in Y3. Then h0(Y3, E3⊗Ili)=2 for i=1, 2 and Hp(Y3, E3⊗Ili)=0

for i=1, 2 and p>0, which implies the result for general E by standard deformation

arguments.

(ii) As E is stable, for any 0 6=σ∈H0(Y3, E
∗⊗E3), the generic rank of σ:E!E3 must

be 2, so that we have the exact sequence (6.3). We claim that the surface S defined by

the vanishing of the determinant of σ is smooth so that, in particular, the rank of σ

is 1 along S, and Cokerσ is a line bundle on S. We clearly have S∈|OY3
(2)| so that,

assuming the claim, S is a smooth K3 surface. Finally, the exact sequence (6.3) and
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the fact that degY3
c2(E)=2 and degY3

c2(E3)=5 immediately imply that the degree of C

is 9. To conclude, we observe that H0(Y3, E)=0, H1(Y3, E)=0 and the exact sequence

(6.3) give H0(S,OS(C))=6, that is, g(C)=5.

We now prove the claim. As the smoothness of the degeneracy surface S is an open

property (on the moduli space of 4-tuples (Y3, E3, E, σ) with dim Hom(E,E3)=4, which is

known to be irreducible by (i) and [44], [37]), it suffices to show that the conclusion holds

for at least one 4-tuple satisfying the property that dim Hom(E,E3)=4. It turns out that

the result is true generically even in the degenerate case where E=Il1⊕Il2 . This is proved

by working more generally on the universal Pfaffian cubic YPf in P14, of which Y3 is a

generic linear section. One easily checks that given two general lines l1 and l2 contained

in YPf , and two sections σ and τ of EPf⊗Il1 and EPf⊗Il2 , respectively, the quadratic

equation q=σ∧τ∈H0(YPf ,detEPf )=H0(YPf ,OYPf (2)) is of the form ω 7!ω2|W4
for some

4-dimensional subspace W4⊂V6, and hence defines a rank-6 quadricQ on P14. Comparing

the differentials of the defining equations for YPf and Q, one then concludes that Q∩YPf
is smooth away from the set of ω’s whose kernel is contained in the codimension-2 linear

subspace W4⊂W6, which has codimension 4 in YPf . The generic linear section Y3⊂YPf
thus intersects Q∩YPf along a smooth surface.

Note that if we restrict (6.3) to S, and then to C, we conclude, using OS(C)|C=KC ,

that there is a surjective morphism

E3|C −!KC , (6.4)

and hence a section

φσ:C −!P(E3|C)

such that φ∗σOP(E3)(1)=KC . This morphism induces a surjection

H0(P(E3),OP(E3)(1))−!H0(C,KC),

since both maps H0(Y3, E3)!H0(S,OS(C)) and H0(S,OS(C))!H0(C,KC) are surjec-

tive. As H0(Q,OQ(1))=H0(P(E3),OP(E3)(1)), we get as well a surjective map

H0(Q,OQ(1))−!H0(C,KC).

Thus the image of C in Q⊂P(V6) via ψ�φσ is a linearly normal canonical genus-5 curve.

The following lemma shows conversely how to recover the bundle from the curve

C⊂P(E3).

Lemma 6.6. Let C⊂P(E3) be a general genus-5 curve such that the image C ′ of C

in Y3 has degree 9, the morphism C!C ′ is an isomorphism, and the image of C in
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Q⊂P5 via ψ�φσ is a linearly normal canonical curve. Then, there exist a unique stable

vector bundle E on Y3 with c1=0 and degY3
c2=2, and a unique σ∈H0(Y3, E

∗⊗E3)

determining the line bundle OS(C) as in Lemma 6.5.

Here “general” means that there is a component of the Hilbert scheme of such curves

on which the conclusion holds generically. In fact, this component is the one containing

the curves φσ(C) appearing in Lemma 6.5 and its proof.

Proof. The curve C ′⊂Y3 has degree 9 and genus 5. Assuming the Abel–Jacobi class

of C ′ is general in J(Y3), then (1) C ′ is not contained in a hyperplane section of Y3 and

(2) C ′ is contained in a unique surface S⊂Y3, where S is a member of |OY3(2)|. Indeed,

curves contained in a hyperplane section of Y3 cannot have a general Abel–Jacobi class,

by Lemma 6.7 below. This proves the first statement. We have h0(Y3,OY3
(2))=15 and

h0(C ′,OY3
(2)|C′)=14, and thus C ′ is contained in at least one quadric section of X. If

C ′ is contained in two surfaces S and S′ as above, then as S and S′ have no common

component by the first statement, C ′ is a component of the complete intersection S∩S′

which has degree 12. Thus C ′ is residual to a degree-3 curve, and its Abel–Jacobi point

is, up to a sign and a constant, the Abel–Jacobi point of a degree-3 curve which again

by Lemma 6.7 cannot be general in J(Y3). This proves the second statement. Note that,

according to Lemma 6.5 (ii), the surface S is smooth for general C in the considered

component of the Hilbert scheme of P(E3). We now observe that the restriction map

H0(S, E∗3 |S(C ′))!H0(C ′, E∗3 |C′(KC′)) is surjective. This indeed follows from the fact

that H1(S, E∗3 |S)=0 (see [41]). Let σ′∈H0(S, E∗3 |S(C ′)) be a lift of the natural section

σ∈H0(C ′, E∗3 |C′(KC′)) giving the embedding of C ′ in P(E3) with image C. We have

dimH0(Y3, E3)=6=dimH0(S,OS(C)) and thus the property that the map

σ′:H0(Y3, E3)−!H0(S,OS(C))

is an isomorphism is an open property. Furthermore, the line bundle OS(C) is generically

globally generated, and we thus conclude that for generic C we get a surjective morphism

σ′: E3|S −!OS(C ′),

and hence as well a surjective morphism

E3−!OS(C ′)

of sheaves on Y3. Its kernel provides the desired bundle E. The fact that E is stable

follows from H0(Y3, E)=0, which is a consequence of the surjectivity, hence injectivity,

of the map H0(Y3, E3)!H0(S,OS(C)), which implies that H0(Y3, E)=0.
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We used above the following lemma.

Lemma 6.7. Let M be a smooth variety and Z⊂M×Y3 be a codimension-2 subva-

riety. Assume that, for general m∈M , the curve Zm⊂Y3 is contained in a hyperplane

section of Y3. Then the Abel–Jacobi map ΦZ :M!J(Y3) is not dominating.

Proof. This immediately follows from the fact that the transpose of the differential

of the Abel–Jacobi map

dΦ∗Z : ΩJ(Y3),0−!ΩM,m

factors through the restriction map

H0(Y3,OY3(1))−!H0(Zm,OZm(1)),

where one uses the natural identification (see §1.2)

ΩJ(Y3),0
∼=H0(Y3,OY3

(1)).

Our assumptions thus say that dΦ∗Z is not injective, and hence ΦZ is nowhere a submer-

sion on M .

Lemmas 6.5 and 6.6 together show that a component of the family of genus-5 curves

in P(E3), of Y3-degree 9 and Q-degree 8, is birationally a P5-bundle over a P3-bundle over

a Zariski open set of J(Y3), which is itself birational to a moduli space of rank-2 vector

bundles on Y3.

Remark 6.8. We believe that the P3-bundle is not Zariski locally trivial, that is, is

not the projectivization of a vector bundle over any Zariski open set of J(Y3).

6.3. The V14 side.

Recall that V14⊂G(2, 6) denotes a smooth 3-dimensional linear section of G(2, 6). We

are going to study degree-13, genus-5 curves C⊂V14 such that h0(E14|C)=6. By the

Riemann–Roch theorem, there is a non-zero morphism

σC : E14|C −!KC . (6.5)

When the morphism is surjective, it provides a section φσ:C!P(E14) such that

φ∗σ(OP(E14)(1)) =KC .

Counting dimensions from the viewpoint of genus-5 curves equipped with a semi-stable

rank-2 vector bundle E of degree 13 with h0(C, E)=6, we see that the general such triple

(C, E , σC) corresponds to a morphism σC which is surjective, which we will assume from

now on.

We have the following lemma.
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Lemma 6.9. (i) Such curves C⊂V14 exist for a general smooth V14⊂G(2, 6).

(ii) Let L be the Plücker line bundle on G(2, 6). Then dimH0(C,L|C)=9 and the

restriction map H0(V14,L)!H0(C,L|C) is surjective. Hence C is contained in exactly

one K3 surface S∈|L|.
(iii) The surface S is smooth.

Proof. Note that V14 contains a line ∆. Let now S0⊂V14 be a K3 surface hyperplane

section of V14 containing ∆ and having as only singularity a node x0 which is not on ∆.

Let S̃0 be the desingularization of S0 by blowing-up x0. Then S̃0 contains in its Picard

lattice the subgroup generated by the classes LS , ∆, e, where e is the class of the

exceptional curve. The intersection numbers are

L2
S = 14, LS ·∆ = 1, LS ·e= 0, e2 = ∆2 =−2, e·∆ = 0.

It thus follows that the curves C̃ in |LS−∆−e| have genus 5 and Plücker degree 13. One

easily checks that the general such curve C̃ satisfies h0(C̃, n∗E14)=6, where n: C̃!S0⊂
G(2, 6) is the natural map. We now deform the surface S0 to a smooth surface St in V14

on which the class e+∆ remains algebraic. Then the Picard lattice of the general such

smoothing is generated by LSt and e+∆, and the class e+∆ is not effective anymore

on St. Hence we also have H1(St,OSt(e+∆))=0. It thus follows that the curves C in

|LSt(−e−∆)| have the property that the restriction map

H0(St,LSt)−!H0(C,L|C)

is an isomorphism. This proves the three statements, except for smoothness of the general

curves C⊂St which follows from the fact that the line bundle LSt(−e−∆) is nef. (This

is also true for the curves C̃ on the surface S̃0, but as it is not embedded in V14, the

resulting curves n(C̃) are nodal.)

Assuming that the curve C⊂V14 is general and thus satisfies the properties above,

we now compute that χ(S, E∗14|S(C))=1 and thus either

H0(S, E∗14|S(C)) 6= 0 or H0(S, E14|S(−C)) 6= 0.

As we have H0(S,L(−C))=0, and L=det E14, the second case is excluded, so that we

have a non-zero morphism σ: E14!OS(C) extending the morphism σC of (6.5). We now

compute

c2(E∗14|S(C)) = c2(E∗14|S)−degV14
C+C2 = 5−13+8 = 0.

It thus follows that either σ vanishes nowhere on S, or σ vanishes along a curve in S

which does not meet C. The second case can only occur if %(S)>3 while a dimension
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count shows that the family of surfaces S appearing in this construction has dimension 8,

so that the generically S satisfies %(S)=2. Hence σ is everywhere surjective and we thus

get a rank-2 vector bundle E on V14 with trivial determinant fitting in the exact sequence

0−!E−! E14−!OS(C)−! 0. (6.6)

One easily computes that degV14
(c2(E))=4. The following will be useful.

Lemma 6.10. The restriction of E to a smooth hyperplane section Σ⊂V14 is a

rank-2 vector bundle on Σ with trivial determinant and c2=4. If %(Σ)=1, then E|Σ is

stable.

Proof. The first statement is obvious. The stability follows from the vanishing

H0(Σ, E|Σ)=0, which is implied by H0(V14, E)=0 and H1(V14, E⊗L−1)=0, which

are both implied by the exact sequence (6.6). One uses the fact that (6.6) induces

an isomorphism on the level of global sections to get H0(V14, E)=0, and the fact that

(C−c1(L))2=−4 on S, so that H0(S,L−1(C))=0, to get H1(V14, E⊗L−1)=0.

Remark 6.11. Note that the vector bundle E constructed above from the data of the

K3 surface S and the line bundle OS(C) satisfies dim Hom(E, E14)=4, as easily follows

from (6.6). It follows that the 13-dimensional family of genus-5, degree-13 curves on V14

corresponds in fact to a 5-dimensional family of vector bundles on V14.

6.4. Construction of the rational map

We now make the following construction: Let (Y3, E3) be a general cubic 3-fold with

Pfaffian structure, and let E be a general rank-2 stable vector bundle on Y3 with c1(E)=0

and degY3
c2(E)=2. By Lemma 6.5, there is an associated 8-dimensional family of genus-

5 curves C⊂P(E3) satisfying degY3
(C)=9 and degQ(C)=8 such that the image ψ(C)⊂Q

is a linearly normal canonical curve of genus 5. We claim that the curve ψ(C) is the

complete intersection of three quadrics in P4: For this, we have to show that C is not

trigonal. However, from our construction, we see that C is contained in a general K3

surface S with Picard lattice generated by h and the class c of C, with intersection lattice

h2 = 6, h·c= 9, c2 = 8.

The fact that C is not trigonal then follows from [26]. As ψ(C)⊂Q is the complete

intersection of three quadrics in a hyperplane section H∩Q of Q, we can write

q|H = s1q1+s2q2+s3q3, (6.7)
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where q is the defining equation for Q, and the qi’s are the defining equations for ψ(C).

Here the si’s are also quadratic polynomials on H. It follows that Q contains another

set of canonical curves of genus 5, namely, viewing the expression in the right-hand side

of (6.7) as a quadric in the six variables qi and si, i=1, 2, 3, the plane defined by the

qi’s determines one ruling of this quadric (these planes are parameterized by a P3) and

the planes in the other rulings will correspond to a second P3 of linearly normal degree-8

genus-5 canonical curves in Q∩H. Concretely, the curve C1⊂Q∩H defined in H by

q1=q2=s3=0 is such a curve. The important point for us is that the original curve C is

a general member of a linear system |OS(C)| on a K3 surface S⊂P(E3), and hence it does

not meet the surface Σ3⊂P(E3) which is contracted by ψ, which means that ψ(C) does

not meet the singular curve of Q. The residual curve C1 constructed above thus moves

freely in Q and also avoids the singular locus of Q which is the indeterminacy locus of

the rational map φ−1. Thus it lifts to a curve C ′=φ−1(C1)⊂P(E14).

Lemma 6.12. The genus-5 curve C ′ satisfies degV14
C ′=13.

Proof. The rank-2 vector space

H6(P(E14),Q)alg = Hdg6(P(E14)) =H6(P(E3),Q)alg

of curve classes in either of these two varieties is generated by the classes [∆3] and [∆14].

We can thus write in this space

[C] =α[∆3]+β[∆14].

Next, as the curve C1=φ(C ′)⊂Q is residual to ψ(C) in the complete intersection in Q

of a hyperplane H and two quadrics, we get that [C ′]=4h3
Q−[C] in A3(P(E14)), where

hQ is the pull-back to P(E14) of c1(OQ(1)). Note that we also have hQ=c1(OP(E14)(1)).

It thus follows that

degV14
C ′= 4 degV14

h3
Q−degV14

C. (6.8)

As hQ=c1(OP(E14)(1)), the standard theory of Chern classes (see [25]) says that

πV14∗(h
3
Q) = s2(E14) = c21(E14)−c2(E14),

and thus degV14
(h3
Q)=14−5=9. Next we have degY3

(C)=9 and degQ(C)=8, which by

Lemma 6.4 gives

α+β= 8 and 4β= 9.

We thus deduce that 4α=23. This finally gives, using (6.8),

degV14
C ′= 36−4α= 36−23 = 13.
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By a dimension count (or by the reversibility of the construction), we observe that

for generic C the curve C ′ of genus 5, V14-degree 13 and Q-degree 8 is generic in P(E14),

and we can thus apply the construction of §6.3 to get from C ′ a stable rank-2 vector

bundle E′ on V14 with trivial determinant and degV14
c2(E′)=4.

Proof of Theorem 6.2. Let X be a general Pfaffian cubic 4-fold and let u:YU!U
be the universal family of smooth hyperplane sections of X. The general fiber of u

is thus a general cubic 3-fold with Pfaffian structure. For each point t∈U , there is a

canonical morphism from the moduli space M2,0,2(Yt) of rank-2 vector bundles on Yt

with trivial determinant and degYt c2=2 to the intermediate Jacobian J(Yt) which maps

E to ΦYt(c2(E)−c2(E3,t(−1))). Here E3,t denotes the restriction to Yt of the Pfaffian

vector bundle E on X. This morphism is birational by [37]. In this way we conclude that

the moduli space M of sheaves on X supported on a hyperplane section and with the

same numerical data as E (seen as a sheaf on X) is birational to JU , where JU!U is

the family of intermediate Jacobians.

Remark 6.13. For general X, this birational isomorphism does not exist, or rather

takes values in a torsor under J .

On the other hand, we also have the universal family

v:V14,U!U

of corresponding linear sections of the Grassmannian. For each t∈U corresponding to

a W5,t⊂W6⊂
∧2

V ∗6 , the fiber V14,t is the complete intersection of G(2, V6) with five

Plücker hypersurfaces defined by W5,t. We thus have a natural inclusion Σ⊂V14,t as a

Plücker hypersurface, since by definition Σ⊂G(2, V6) is the vanishing locus in G(2, V6)

of the six Plücker equations defined by W6.

The construction described above done in family over U now gives us the following:

There exists a smooth projective variety W which admits a morphism g:W!M∼=biratJU
with rationally connected fibers and a rational map

f :W 99KM2,0,4(Σ). (6.9)

The general point of W parameterizes a general rank-2 vector bundle E with c1=0 and

degYt c2=2 on a fiber Yt of YU , the choice of a general non-zero morphism σ:E!E3,t
defined up to a coefficient, a general member C of the linear system |OS(C)|, whereOS(C)

is defined by the exact sequence (6.3), and a general (2, 2, 2, 1) complete intersection curve

C ′ contained in Qt, residual in Qt to the (2, 2, 2, 1) complete intersection curve ψt(C)⊂Qt
(we will see in fact C ′ as living in P(E14,t)). Thus, the general fiber of the map g has



128 r. laza, g. saccà and c. voisin

dimension 10, and W has dimension 20=10+10. The rational map f then associates

with these data the vector bundle E′|Σ, which is stable by Lemma 6.10, where the vector

bundle E′=ES′,C′ on V14,t is associated as in §6.3 with the curve C ′. Here S′ is the

generically unique Plücker hyperplane section of V14,t containing C ′.

Remark 6.14. One easily checks that E′ does not depend on the choice of C or the

residual curve C ′. The only reason to introduce these curves was the fact that they do

not meet the singular locus of Qt, which is not true for the associated K3 surfaces where

they lie. It will also appear below that E′ neither depends on the choice of σ.

The proof of Theorem 6.2 will be completed using the following.

Proposition 6.15. The rational map f factors through JU and induces a birational

isomorphism

g:JU 99KM2,0,4(Σ).

Proof. We know by Theorem 5.7 that JU is not uniruled (this is indeed implied by

the fact that a smooth projective completion of JU admits a generically non-degenerate

holomorphic 2-form). It follows that JU is birational to the basis of the maximal ratio-

nally connected fibration of W . We now have the following lemma.

Lemma 6.16. (i) The rational map f is dominating.

(ii) The general fiber of f is rationally connected.

Proof. (i) The variety W has two holomorphic (in fact algebraic) 2-forms, namely

the pull-back σ̃J to W of the holomorphic 2-form σJ on JU constructed in Theorem 5.7,

and the form f∗σM2,0,4 . We claim that, for some λ 6=0,

σ̃J =λf∗σM2,0,4 . (6.10)

This equation immediately implies the surjectivity of f , since the generic rank of σ̃J

is equal to dimJU=10 and the rank of f∗σM2,0,4
is not greater than the rank of f , so

the equality (6.10) implies that the generic rank of f is 10=dimM2,0,4(Σ), implying

that f is dominant. We prove now the claim: Note that W is a fibration over JU (or

rather a smooth projective compactification 
J of JU ) with rationally connected general

fiber, hence H2,0(W )=H2,0(
J ) is of dimension 1 by Theorem 5.7 (iii). As σ̃J 6=0, it thus

suffices to prove that f∗σM2,0,4
6=0. This can be proved by a Chow-theoretic argument

using Mumford’s theorem [48]. Indeed, there is a natural inclusion

Σ×U ⊂V14,U ,

which is the restriction over U of the natural inclusion

j: Σ×P5⊂V14,
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where V14 is the universal family of 3-folds V14 containing Σ. It is immediate to check

that pr1∗ �j
∗: CH1(V14)hom!CH0(Σ)hom (which is just the restriction map j∗t on each

CH1(V14,t)hom, where jt is the inclusion of Σ in V14,t) is an isomorphism. On the other

hand, V14 is birationally equivalent to the universal family Y of hyperplane sections of

X, which satisfies CH1(Y)hom
∼=CH1(X)hom since CH0(X)hom=0 and Y is a projective

bundle over X. This fibered birational isomorphism induces an isomorphism between the

intermediate Jacobian fibrations over U (see [37]), and hence a fiberwise isomorphism

CH1(V14,t)hom
∼= CH1(Yt)hom, (6.11)

since for rationally connected 3-folds Y the Abel–Jacobi map CH1(Y )hom!J(Y ) is an

isomorphism (see [14]). This easily implies that

CH1(V14)Q,hom
∼= CH1(Y)Q,hom,

since CH0(V14,t)hom=0 and CH0(Yt)hom=0. We now observe that each point w of the

fiber Wt of the variety W over U parameterizes vector bundles E′w (resp. Ew) on the

fibers V14,t (resp. Yt), and that for each t∈U the two maps

cV :Wt−!CH1(V14,t),

w 7−! c2(E′w),
and

cY :W−!CH1(Yt),

w 7−! c2(Ew),

coincide, up to sign and a constant via (6.11). With the notation above, this follows

from the construction for a given t of the curve C ′ as residual to the curve C in a (2, 2, 1)

complete intersection in Qt. Combining these observations, we conclude that the map

CH0(W )hom−!CH0(Σ)hom,

w 7−! c2(E′w|Σ),

is surjective, and hence, by Mumford’s theorem [48], that the corresponding pull-back of

the holomorphic 2-form on Σ is non-zero. However, by construction of the holomorphic

2-form on M2,0,4(Σ), this pull-back is nothing but f∗σM2,0,4 .

(ii) Let E be a general stable rank-2 vector bundle on Σ with trivial determinant

and c2=4. The fiber of f over E essentially consists of vector bundles ES′,C′,t on 3-folds

V14,t containing Σ such that

ES′,C′,t|Σ∼=E.

More precisely, for each such vector bundle, one can apply the results of §6.3: choosing

a general section σ̃ of Hom(ES′,C′,t, E14,t), one gets a degeneracy K3 surface Sσ̃⊂V14,t

and a line bundle OSσ̃ (D) on Sσ̃ which is a quotient of E14,t|Sσ̃ , providing a section
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φσ̃:Sσ̃!P(E14,t). For a general curve D0∈|OSσ̃ (D)|, the lifted curve φσ̃(D0) is of genus 5,

Q-degree 8 and V14-degree 13 and using the map φ:P(E14,t)!Qt, it provides a complete

intersection curves of type (1, 2, 2, 2) contained in Qt, and the residual curve D′0 in a

(2, 2, 1) complete intersection of Qt provides a genus-5 curve in P(E3,t) of Q-degree 8 and

Y3-degree 9. Applying Lemma 6.6, we then reconstruct an element of W with image E

under f . Given the vector bundle ES′,C′,t on a 3-fold V14,t, the extra data described

above, namely the choices of σ and of the curves D0 and D′0, are parameterized by a

rationally connected variety, so the proof will be finished once we know that ES′,C′,t is

determined by E.

Lemma 6.17. Let ES′,C′,t be a general rank-2 vector bundle on V14,t constructed as

in §6.3, and let E be its restriction to Σ. Then the restriction map

Hom(ES′,C′,t, E14,t)−!Hom(E, E14|Σ)

is an isomorphism, where E14|Σ denotes the Plücker rank-2 vector bundle restricted to Σ.

Proof. Indeed, the injectivity is obvious and, on the other hand, both sides have

dimension 4. This was already proved in Remark 6.11 for the left-hand side. For the right-

hand side, we can specialize the general vector bundle E to the case where E∗=Iz1⊕Iz2
where z1 and z2 are two length-2 subschemes of Σ; then

H0(Σ, E∗⊗E14|Σ) =H0(Σ, E14|Σ⊗Iz1)⊕H0(Σ, E14|Σ⊗Iz2)

has dimension 4, while

Hi(Σ, E∗⊗E14|Σ) =Hi(Σ, E14|Σ⊗Iz1)⊕Hi(Σ, E14|Σ⊗Iz2) = 0 for i> 0.

The conclusion then follows from a deformation argument.

Let now σ∈Hom(E, E14|Σ) be a general section. Then we get a degeneracy curve

Dσ∈|L|Σ|, where L is the Plücker line bundle, and an exact sequence

0−!E−! E14|Σ−!ODσ (Z)−! 0,

where Z is a divisor of degree 13 on Dσ. This gives a section φσ:Dσ!P(E14) with image

D̃σ. For each vector bundle ES′,C′,t on some V14,t⊃Σ restricting to E on Σ, the section

σ extends to a section σ̃ by Lemma 6.17, and thus there is a K3 surface

S̃σ̃ :=φσ̃(Sσ̃)⊂P(E14),

which is a lift of the degeneracy surface Sσ̃⊂V14,t. The surface S̃σ̃ intersects P(E14|Σ)

along the curve D̃σ=φσ(Dσ). The surface Sσ̃ carries a line bundle OSσ̃ (Cσ) which

restricts to ODσ(Z) on Dσ. Note that the curve Dσ⊂Sσ̃ is a member of
∣∣L|Sσ̃ ∣∣. The

uniqueness of ES′,C′,t then follows from the results of §6.3 and from the following lemma.
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Lemma 6.18. For a general curve D̃σ⊂P(E14) as above, there exists a unique surface

S̃σ̃⊂P(E14) satisfying the conditions above, that is, lifting a K3 surface in some V14,t

containing Σ and intersecting P(E14|Σ) along the curve D̃σ.

Proof. Let ND̃σ/P(E14) be the normal bundle of D̃σ in P(E14). There is an exact

sequence

0!TP(E14)/G(2,6)|D̃σ −!ND̃σ/P(E14)−!NDσ/G(2,6) = (L|Dσ )7−! 0, (6.12)

and each surface S̃σ̃ extending D̃σ as above provides an inclusion

NDσ/Sσ̃ =L|Dσ ⊂ND̃σ/P(E14),

or equivalently a non-zero section of ND̃σ/P(E14)⊗L
−1. It is not hard to see that this

section determines the surface S̃σ̃, so we only have to prove that, for general D̃σ as

above, one has

h0(D̃σ, ND̃σ/P(E14)⊗L
−1) = 1. (6.13)

In order to prove (6.13), we write the normal bundle sequence twisted by L−1 for D̃σ⊂
S̃σ̃⊂P(E14). This gives

0−!ODσ −!ND̃σ/P(E14)⊗L
−1−!NS̃σ̃/P(E14)|D̃σ⊗L

−1−! 0,

and (6.13) will follow from h0(D̃σ, NS̃σ̃/P(E14)|D̃σ⊗L
−1)=0, which itself will be a conse-

quence of

h0(S̃σ̃, NS̃σ̃/P(E14)⊗L
−1) = 0 and h1(S̃σ̃, NS̃σ̃/P(E14)⊗L

−2) = 0. (6.14)

The second vanishing statement is obtained by writing the normal bundle sequence (6.12)

for S̃σ̃:

0−!TP(E14)/G(2,6)|S̃σ̃ −!NS̃σ̃/P(E14)−!NSσ̃/G(2,6) = (L|Sσ̃ )6−! 0, (6.15)

where the line bundle TP(E14)/G(2,6)|S̃σ̃ is isomorphic to (L|Sσ̃ )−1(2Cσ). One then con-

cludes using

H1(Sσ̃, (L|Sσ̃ )−1) = 0 and H1(Sσ̃, (L|Sσ̃ )−3(2Cσ)) = 0,

which both follow from standard vanishing theorems on the K3 surface Sσ̃. It remains to

prove the first vanishing statement. However, according to §6.3, the deformation space

of S̃σ̃ in P(E14) is smooth and isomorphic to a P3-bundle over the 10-dimensional moduli
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space of sheaves on V14 that are supported on the fibers V14,t and that are locally free

on V14,t of rank 2, with trivial determinant and degV14
c2=4. By (i) and Lemma 6.17,

the restriction map (Et, σ̃)!(Et|Σ, σ̃|Σ) has generically surjective differential, hence also

injective differential. It is clear however that sections of NS̃σ̃/P(E14)⊗L
−1, seen as sections

of NS̃σ̃/P(E14) vanishing on D̃σ, belong to the kernel of this differential. Hence they must

be trivial.

This concludes the proof of Lemma 6.16.

Lemma 6.16 implies Proposition 6.15 as follows: since f is dominating by (i) and

M2,0,4(Σ) is not uniruled, f must factor through the maximal rationally connected

fibration of W, that is, through JU . The general fiber of the induced rational map

g:JU 99KM2,0,4(Σ) are then rationally connected by (ii). But, as JU is not uniruled, the

general fiber of g is a point, so g is birational.

The proof of Theorem 6.2 is now finished.
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