Analytic Number Theory
Homework #4
(due Thursday, April 25, 2019)

Problem 1: Let \(\mathfrak{h} = \{ z = x + iy \mid x \in \mathbb{R}, y > 0 \} \) and let \(f : \mathfrak{h} \to \mathbb{C} \) be a holomorphic modular form of weight 0 for \(SL(2, \mathbb{Z}) \).

(a) Show that every element in \(\mathfrak{h} \) is \(SL(2, \mathbb{Z}) \) equivalent to some \(z = x + iy \) with \(y \geq \frac{\sqrt{3}}{2} \). Hint: Use the known fundamental domain for \(SL(2, \mathbb{Z}) \backslash \mathfrak{h} \).

(b) Deduce that \(|f| \) attains a maximum on \(\mathfrak{h} \).

(c) Conclude that the only holomorphic modular forms of weight zero are the constant functions. Hint: maximum modulus principle.

Problem 2: Fix a prime \(p \). Show that \(\Gamma_0(p) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \mid c \equiv 0 \pmod{p} \} \) is a subgroup of \(SL(2, \mathbb{Z}) \).

Problem 3: Define \(P_k(z) := \sum_{c \in \mathbb{Z}} \sum_{d \in \mathbb{Z}} \frac{e^{2\pi i \frac{ax + by}{cz + d}}}{(cz + d)^k} \) for \(c, d \) coprime.

Here, for every pair of coprime integers \(c, d \) we choose integers \(a, b \) so that \(ad - bc = 1 \). Show that the above series is independent of the choice of \(a, b \). Also show that the above series converges absolutely for \(k > 2 \).

Problem 4: Rewrite \(P_k(z) \) as a sum involving \(j(\gamma, z) = cz + d \) for \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). If \(k > 2 \) is an integer, prove that \(P_k(z) \) is a holomorphic modular form of weight \(k \) for \(SL(2, \mathbb{Z}) \). Hint: use the cocycle relation for \(j \).

Problem 5: For \(s \in \mathbb{C} \) with \(\Re(s) > 8 \), let \(L(s) := \sum_{n=1}^{\infty} a(n)n^{-s} \), where \(a(1) = 1 \) and \(|a(n)| \ll n^7 \) (for \(n = 1, 2, \ldots \)).

Assume that the function \(\Phi(s) := (2\pi)^{-s} \Gamma(s)L(s) \) is an entire function which is bounded in any fixed vertical strip \(\{ s \in \mathbb{C} \mid a < \Re(s) < b \} \) and satisfies the functional equation \(\Phi(s) = \Phi(12 - s) \) for all \(s \in \mathbb{C} \). Using the inverse Mellin transform, prove that \(f(z) := \sum_{n=1}^{\infty} a(n)e^{2\piinz} \) is the Ramanujan cusp form of weight 12. Hint: It is enough to show that \(f \) satisfies \(f(-1/z) = z^{12}f(z) \).