
ON AN ADDITIVE PRIME DIVISOR FUNCTION
OF ALLADI AND ERDŐS

DORIAN GOLDFELD

This paper is dedicated to Krishna Alladi on the occasion of his 60th birthday.

Abstract. This paper discusses the additive prime divisor function A(n) :=
∑

pα||n
αp which

was introduced by Alladi and Erdős in 1977. It is shown that A(n) is uniformly distributed
(mod q) for any fixed integer q > 1.

1. Introduction

Let n =
r∏
i=1

paii be the unique prime decomposition of a positive integer n. In 1977, Alladi

and Erdős [1] introduced the additive function

A(n) :=
r∑
i=1

ai · pi.

Among several other things they proved that A(n) is uniformly distributed modulo 2. This
was obtained from the identity

∞∑
n=1

(−1)A(n)

ns
=

2s + 1

2s − 1
· ζ(2s)

ζ(s)
(1)

together with the known zero free region for the Riemann zeta function. As a consequence
they proved that there exists a constant c > 0 such that∑

n≤x

(−1)A(n) = O
(
x e−c

√
log x log log x

)
,

for x→∞.
The main goal of this paper is to show that A(n) is uniformly distributed modulo q for any

integer q ≥ 2. Unfortunately, it is not possible to obtain such a simple identity as in (1) for
the Dirichlet series

∞∑
n=1

e2πi
hA(n)
q

ns

when q > 2 and h, q are coprime. Instead we require a representation involving a product
of rational powers of Dirichlet L-functions which will have branch points at the zeros of the
L-functions.

The uniform distribution of A(n) is a consequence of the following theorem (1.1) which is
proved in §3. To state the theorem we require some standard notation. Let µ denote the
Mobius function and let φ denote Euler’s function. For any Dirichlet character χ (mod q)
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(with q > 1) let τ(χ) =
∑

(̀mod q)

χ(`)e
2πi`
q denote the associated Gauss sum and let L(s, χ)

denote the Dirichlet L-function associated to χ.

Theorem 1.1. Let h, q be fixed coprime integers with q > 2. Then for x → ∞ we have the
asymptotic formula

∑
n≤x

e2πi
hA(n)
q =


Ch,q · x (log x)−1+

µ(q)
φ(q)

(
1 +O ((log x)−1)

)
if µ(q) 6= 0,

O
(
x e−c0

√
log x
)

if µ(q) = 0,

where c0 > 0 is a constant depending at most on h, q,

Ch,q =
Vh,q · sin

(
µ(q)π
φ(q)

)
π

Γ

(
1− µ(q)

φ(q)

) ∏
χ (mod q)

χ 6=χ0

L(1, χ)
τ(χ)χ(h)
φ(q) ,

and

Vh,q := exp

−µ(q)

φ(q)

∑
p|q

∞∑
k=1

1

kpk
+
∑
p | q

∞∑
k=1

e
2πihpk

q

k pk
+
∑
p

∞∑
k=2

e
2πiphk
q − e

2πipkh
q

k pk

 .
Theorem 1.1 has the following easily proved corollary.

Corollary 1.1.1. Let q > 1 and let h be an arbitrary integer. Then∑
n≤x

e2πi
hA(n)
q = O

(
x√

log x

)
.

The above corollary can then be used to obtain the desired uniform distribution theorem.

Theorem 1.2. Let h, q be fixed integers with q > 2. Then for x→∞, we have∑
n≤x

A(n) ≡ h (mod q)

1 =
x

q
+ O

(
x√

log x

)
.

We remark that the error term in theorem 1.2 can be replaced by a second order asymptotic
term which is not uniformly distributed (mod q).

The proof of theorem (1.1) relies on explicitly constructing an L-function with coefficients

of the form e2πi
hA(n)
q . It will turn out that this L-function will be a product of Dirichlet L-

functions raised to complex powers. The techniques for obtaining asymptotic formulae and
dealing with branch singularities arising from complex powers of ordinary L-series were first
introduced by Selberg [6], and see also Hildebrand and Tenenbaum [7] for a very nice exposition
with different applications. In [3], [4], [5] one finds a larger class of additive functions where
these methods can also be applied yielding similar results but with different constants.
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2. On the function L(s, ψh/q)

Let h, q be coprime integers integers with q > 1. In this paper we shall investigate the
completely multiplicative function

ψh/q(n) := e
2πihA(n)

q .

Then the L-function associated to ψh/q is defined by the absolutely convergent series

L(s, ψh/q) :=
∞∑
n=1

ψh/q(n)n−s, (2)

in the region <(s) > 1, and has an Euler product representation (product over rational primes)
of the form

L(s, ψh/q) :=
∏
p

(
1− e

2πihp
q

ps

)−1
. (3)

The Euler product (3) converges absolutely to a non-vanishing function for <(s) > 1. We
would like to show it has analytic continuation to a larger region.

Lemma 2.1. Let <(s) > 1. Then

log
(
L(s, ψh/q)

)
=
∑
p

∞∑
k=1

e
2πihpk

q

k psk
+ Th,q(s)

where, for any ε > 0, the function

Th,q(s) :=
∑
p

∞∑
k=2

e
2πiphk
q − e

2πipkh
q

k psk

is holomorphic for <(s) > 1
2

+ ε and satisfies |Th,q(s)| = Oε (1) where the Oε-constant is
independent of q and depends at most on ε.

Proof. Taking log’s, we obtain

log
(
L(s, ψh/q)

)
=
∑
p

∞∑
k=1

e
2πiphk
q

k psk

=
∑
p

∞∑
k=1

e
2πihpk

q

k psk
+
∑
p

∞∑
k=2

e
2πiphk
q − e

2πipkh
q

k psk
.

Hence, we may take

Th,q(s) =
∑
p

∞∑
k=2

e
2πiphk
q − e

2πipkh
q

k psk
,

which is easily seen to converge absolutely for <(s) > 1
2
. �
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For q > 2, let χ denote a Dirichlet character (mod q) with associated Gauss sum τ(χ). We
also let χ0 be the trivial character (mod q).

We require the following lemma.

Lemma 2.2. Let h, q ∈ Z with q > 2 and (h, q) = 1. Then

e
2πih
q =

 1

φ(q)

∑
χ (mod q)

χ 6=χ0

τ(χ) · χ(h)

 +
µ(q)

φ(q)

Proof. Since (h, q) = 1, it follows that for χ (mod q) with χ 6= χ0,

τ(χ)χ(h) =

q∑
`=1

χ(`)e
2πi`h
q .

This implies that

∑
χ (mod q)

χ 6=χ0

τ(χ)χ(h) = (φ(q)− 1) e
2πih
q +

q∑
`=2

(`,q)=1

 ∑
χ (mod q)

χ 6=χ0

χ(`)

 e
2πi`h
q

= (φ(q)− 1) e
2πih
q −

q∑
`=1

(`,q)=1

e
2πi`h
q + e

2πih
q .

The proof is completed upon noting that the Ramanujan sum on the right side above can be
evaluated as

q∑
`=1

(`,q)=1

e
2πi`h
q =

∑
d|(q,h)

µ
(q
d

)
d = µ(q).

�

Theorem 2.3. Let s ∈ C with <(s) > 1. Then we have the representation

L(s, ψh/q) =

 ∏
χ (mod q)

χ 6=χ0

L(s, χ)
τ(χ)χ(h)
φ(q)

 · ζ(s)
µ(q)
φ(q) · eUh,q(s),

where

Uh,q(s) := −µ(q)

φ(q)

∑
p|q

∞∑
k=1

1

kpsk
+
∑
p | q

∞∑
k=1

e
2πihpk

q

k psk
+
∑
p

∞∑
k=2

e
2πiphk
q − e

2πipkh
q

k psk
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Proof. If we combine lemmas (2.1) and (2.2) it follows that for <(s) > 1,

log
(
L(s, ψh/q)

)
=
∑
p

∞∑
k=1

e
2πihpk

q

k psk
+ Th,q(s)

=
∑
p - q

∞∑
k=1

e
2πihpk

q

k psk
+
∑
p | q

∞∑
k=1

e
2πihpk

q

k psk
+ Th,q(s)

=
∑
p - q

∞∑
k=1

 1
φ(q)

∑
χ (mod q)

χ 6=χ0

τ(χ) · χ(h pk) + µ(q)
φ(q)


k psk

+
∑
p | q

∞∑
k=1

e
2πihpk

q

k psk
+ Th,q(s).

Hence

log
(
L(s, ψh/q)

)
=

1

φ(q)

∑
χ (mod q)

χ 6=χ0

τ(χ)χ(h) log(L(s, χ) +
µ(q)

φ(q)
log
(
ζ(s)

)

− µ(q)

φ(q)

∑
p|q

∞∑
k=1

1

kpsk
+
∑
p | q

∞∑
k=1

e
2πihpk

q

k psk
+ Th,q(s).

The theorem immediately follows after taking exponentials. �

The representation of L(s, ψh/q) given in theorem 2.3 allows one to analytically continue the
function L(s, ψh/q) to a larger region which lies to the left of the line <(s) = 1 + ε (ε > 0).
This is a region which does not include the branch points of L(s, ψh/q) at the zeros and poles
of L(s, χ), ζ(s).

Assume that q > 1 and χ (mod q). It is well known (see [2]) that the Dirichlet L-functions
L(σ + it, χ)) do not vanish in the region

σ ≥

{
1− c1

log q|t| if |t| ≥ 1,

1− c2
log q

if |t| ≤ 1,
(for absolute constants c1, c2 > 0), (4)

unless χ is the exceptional real character which has a simple real zero (Siegel zero) near s = 1.
Similarly, ζ(σ + it) does not vanish for

σ ≥ 1− c3
log(|t|+ 2)

, (for an absolute constant c3 > 0). (5)

Assume q > 1 and that there is no exceptional real character (mod q). It follows from (4)
and (5) that L(s, ψh/q) is holomorphic in the region to the right of the contour Cq displayed in
Figure 1.
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Cq

Figure 1

To construct the contour Cq first take a slit along the real axis from 1− c2
log q

to 1 and construct

a line just above and just below the slit. Then take two asymptotes to the line <(s) = 1 with
the property that if σ + it is on the asymptote and |t| ≥ 1, then σ satisfies (4). If q = 1, we
do a similar construction using (5).

3. Proof of theorem 1.1

The proof of theorem 1.1 is based on the following theorem.

Theorem 3.1. Let h, q be fixed coprime integers with q > 2 and µ(q) 6= 0. Then for x → ∞
there exist absolute constants c, c′ > 0 such that

∑
n≤x

e2πi
hA(n)
q =

sin
(
µ(q)π
φ(q)

)
π

1∫
1− c√

log x

 ∏
χ (mod q)

χ 6=χ0

L(σ, χ)
τ(χ)χ(h)
φ(q)

 · |ζ(σ)|
µ(q)
φ(q) · eHh,q(σ) x

σ

σ
dσ

+O
(
xe−c

′√log x
)
.

On the other hand if µ(q) = 0, then
∑
n≤x

e2πi
hA(n)
q = O

(
xe−c

′√log x
)
.

Proof. The proof of theorem 3.1 relies on the following lemma taken from [2].

Lemma 3.2. Let

δ(x) :=


0, if 0 < x < 1
1
2
, if x = 1

1, if x > 1,

then for x, T > 0, we have∣∣∣∣∣∣ 1

2πi

c+iT∫
c−iT

xs

s
ds − δ(x)

∣∣∣∣∣∣ <
{
xc ·min

(
1, 1

T | log x|

)
, if x 6= 1,

cT−1, if x = 1.
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It follows from lemma 3.2, for x, T � 1 and c = 1 + 1
log x

, that

1

2πi

c+iT∫
c−iT

L
(
s, ψh/q

) xs
s
ds =

∑
n≤x

ψh/q(n) + O
(
x log x

T

)
(6)

Fix large constants c1, c2 > 0. Next, shift the integral in (6) to the left and deform the line
of integration to a contour

L+ + CT,x + L−

as in figure 2 below which contains two short horizontal lines:

L± =

{
σ ± iT

∣∣∣∣ 1− c1
log qT

≤ σ ≤ 1 +
1

log x

}
,

together together with the contour CT,x which is similar to Cq except that the two curves
asymptotic to the line <(s) = 1 go from 1− c1√

log qT
+ iT to 1− c2√

log x
+ iε and 1− c2√

log x
− iε

to 1− c1√
log qT

− iT , respectively, for 0 < ε→ 0.

L+

CT,x
L−

Figure 2

Now, by the zero-free regions (4), (5), the region to the right of the contour L+ + CT,x +L−

does not contain any branch points or poles of the L-functions L(s, χ) for any χ (mod q). It
follows that

1

2πi

c+iT∫
c−iT

L
(
s, ψh/q

) xs
s
ds =

1

2πi

(∫
L+

+

∫
Cε

+

∫
L−

)
L
(
s, ψh/q

) xs
s
ds. (7)

The main contribution for the integral along L+ + CT,x +L− in (7) comes from the integrals

along the straight lines above and below the slit on the real axis
[
1− c2√

log x
, 1
]
. These integrals

cancel if the function L
(
s, ψh/q

)
has no branch points or poles on the slit. It follows from
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theorem 2.3 that this will be the case if µ(q) = 0. The remaining integrals in 7 can then be
estimated as in the proof of the prime number theorem for arithmetic progressions (see [2]),

yielding an error term of the form O
(
xe−c

′√log x
)

. This proves the second part of theorem

3.1.

Next, assume µ(q) 6= 0. In this case L(s, ψh/q) has a branch point at s = 1 coming from
the Riemann zeta function, it is necessary to keep track of the change in argument. Let 0+i
denote the upper part of the slit and let 0−i denote the lower part of the slit. Then we have
log[ζ(σ + 0+i) = log |ζ(σ)| − iπ and log[ζ(σ + 0−i) = log |ζ(σ)|+ iπ.

By the standard proof of the prime number theorem for arithmetic progressions it follows
that (with an error O

(
e−c

′√log x)) the right hand side of (7) is asymptotic to

Islit :=
−1

2πi

1∫
1− c√

log x

[
exp

(
log
(
L
(
σ + 0+i, ψh/q

)) )
− exp

(
log
(
L
(
σ − 0−i, ψh/q

)) )] xσ
σ
dσ.

(8)
We may evaluate Islit using theorem 2.3. This gives

Islit =
−1

2πi

1∫
1− c√

log x

 ∏
χ (mod q)

χ 6=χ0

L(σ, χ)
τ(χ)χ(h)
φ(q)

 · eUh,q(σ)
·
[
exp

(
µ(q)

φ(q)

(
log |ζ(σ)| − iπ

))
− exp

(
µ(q)

φ(q)

(
log |ζ(σ)|+ iπ

))] xσ
σ
dσ

=
sin
(
µ(q)π
φ(q)

)
π

1∫
1− c√

log x

 ∏
χ (mod q)

χ 6=χ0

L(σ, χ)
τ(χ)χ(h)
φ(q)

 · |ζ(σ)|
µ(q)
φ(q) · eUh,q(σ) x

σ

σ
dσ.

As in the previous case when µ(q) = 0, the remaining integrals in 7 can then be estimated
as in the proof of the prime number theorem for arithmetic progressions, yielding an error

term of the form O
(
xe−c

′√log x
)

. This completes the proof of theorem 3.1. �

The proof of theorem 1.1 follows from theorem 3.1 if we can obtain an asymptotic formula
for the integral

Islit =
sin
(
µ(q)π
φ(q)

)
π

1∫
1− c√

log x

 ∏
χ (mod q)

χ 6=χ0

L(σ, χ)
τ(χ)χ(h)
φ(q)

 · |ζ(σ)|
µ(q)
φ(q) · eUh,q(σ) x

σ

σ
dσ. (9)
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Since we have assumed q is fixed, it immediately follows that for arbitrarily large c� 1 and
x→∞, we have

Islit =
sin
(
µ(q)π
φ(q)

)
π

1∫
1− c log log x

log x

 ∏
χ (mod q)

χ 6=χ0

L(σ, χ)
τ(χ)χ(h)
φ(q)

·|ζ(σ)|
µ(q)
φ(q) · eUh,q(σ) x

σ

σ
dσ + O

(
x

(log x)c

)
.

Now, in the region 1− c log log x
log x

≤ σ ≤ 1,

∏
χ (mod q)

χ 6=χ0

L(σ, χ)
τ(χ)χ(h)
φ(q) · e

Hh,q(σ)

σ
=

∏
χ (mod q)

χ 6=χ0

L(1, χ)
τ(χ)χ(h)
φ(q) · eUh,q(1) + O

(
log log x

log x

)
.

Consequently,

Islit =
sin
(
µ(q)π
φ(q)

)
π

∏
χ (mod q)

χ 6=χ0

L(1, χ)
τ(χ)χ(h)
φ(q) · eUh,q(1)

1∫
1− c log log x

log x

ζ(σ)
µ(q)
φ(q) xσ dσ

+O

 log log x

log x

∣∣∣∣∣∣∣∣
1∫

1− c log log x
log x

ζ(σ)
µ(q)
φ(q) xσ dσ

∣∣∣∣∣∣∣∣
 . (10)

It remains to compute the integral of |ζ(σ)|
µ(q)
φ(q) occurring in (10). For σ very close to 1, we

have

|ζ(σ)|
µ(q)
φ(q) =

(
1

|σ − 1|
+ O(1)

)µ(q)
φ(q)

=

(
1

|σ − 1|

)µ(q)
φ(q)

+ O

((
1

|σ − 1|

)µ(q)
φ(q)
−1
)
.

It follows that

1∫
1− c log log x

log x

|ζ(σ)|
µ(q)
φ(q) xσ dσ = Γ

(
1− µ(q)

φ(q)

)
x

(log x)1−
µ(q)
φ(q)

+ O

(
x

(log x)2−
µ(q)
φ(q)

)
. (11)

Combining equations (10) and (11) we obtain

Islit =
sin
(
µ(q)π
φ(q)

)
π

Γ

(
1− µ(q)

φ(q)

) ∏
χ (mod q)

χ 6=χ0

L(1, χ)
τ(χ)χ(h)
φ(q) eUh,q(1)

x

(log x)1−
µ(q)
φ(q)

+ O

(
x

(log x)2−
µ(q)
φ(q)

)
.
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4. Examples of equidistribution (mod 3) and (mod 9)

Equidistribution (mod 3): Theorem (1.1) says that for h = 1, q = 3 :∑
n≤x

e
2πiA(n)

3 =
−V1,3
π

Γ

(
3

2

) ∏
χ (mod 3)

χ 6=χ0

L(1, χ)
G(χ)

2
x

(log x)
3
2

(
1 +O

(
1

log x

))

≈ (−0.503073 + 0.24042 i)
x

(log x)
3
2

.

We computed the above sum for x = 107 and obtained∑
n≤ 107

e
2πiA(n)

3 ≈ −98, 423.00 + 55, 650.79 i.

Our theorem predicts that ∑
n≤ 107

e
2πiA(n)

3 ≈ −88, 870.8 + 42, 471.7 i.

Since log (107) ≈ 16.1 is very small, this explains the discrepancy between the actual and
predicted results.

As x→∞, we have ∑
n≤x

A(n) ≡ a (mod 3)

1 =
1

3

2∑
h=0

∑
n≤x

e
2πiA(n)h

3 e−
2πih a

3

=
x

3
+ ca

x

(log x)
3
2

+ O

(
x

(log x)
5
2

)
where

c0 = −0.335382, c1 ≈ 0.306498, c2 ≈ 0.0288842.

Equidistribution (mod 9):

Our theorem says that for h 6= 3, 6 (1 ≤ h < 9) and q = 9:∑
n≤x

e
2πihA(n)

9 = O
(
x e−c0

√
log x
)
.

Surprisingly!! there is a huge amount of cancellation when x = 107 :

∑
n≤ 107

e
2πihA(n)

9 ≈



−315.2− 140.4 i if h = 1,

282.2− 543.4 i if h = 2,

94.5 + 321.9 i if h = 4,

94.5− 321.9 i if h = 5,

282.2 + 543.4 i if h = 7,

−315.2 + 140.4 i if h = 8.
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