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§1. Generalities on Modular Forms and 1-Cocycles

Consider an unramified covering

Y

iﬂ

of complex manifolds X, Y. Let I'(O3) denote the group of invertible holomorphic
functions on Y, G = Gal(Y/X), and let H! (G, T'(O%)) be the group of one—cocycles
of G with values in I'(O3).
A map
c:GxY —C"=C-{0}

is an element of H'! if and only if it satisfies

0(919273/) = 0(9179234) : 0’(927y)

for all g1,92 € G,y € Y. Given such a o, we may also define an action of G on
Y x C via

g (y,w) = (gy,0(g,y)w)

where o(g,y)w is ordinary multiplication of complex numbers. Factoring by this
action defines a map
¢ : H' — Pic(X)

given by
¢(0) = G\(Y x C)

for all 0 € H'. This leads to the sequence
HY(G,T(0%)) -2 Pic(X) = Pic(Y),

which we claim is exact. To see this, note that for £ € Pic(X), we have 7*L£ =Y xC
is trivial. Further, for y € Y, g € G,

{y} xC ~ {gy} xC
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is an isomorphism of C—vector spaces. Such an isomorphism must be given by

a(g,y) € C,
{y} x{w} = {gy} x {o(g,y)w}

which implies that o(g,y) € H' and £ ~ G\(Y x C). Further, G\(Y x C) is trivial
if and only if there exists a section s € G\(Y x C) which has no zeros or poles.
Thus

Ker(¢) = {a<g,y>:% ' fGF(Oi‘f)}-

Example: If Y is contractable then G = 71 (X). If we define

K(G,Y):{aeﬂl | J(g,y):%, fer(op}

then we have the exact sequence

0 — K(G,Y) — HYG,T(0})) — Pic(X) — 0.

Consider now a covering 7 : Y — X which has ramified points, and a cocycle
o € H' which may not be invertible. In this case the action of G on Y x C may
not be well defined. We can circumvent this problem by requiring that

o(g,y) =1

for all g € G,y € Y such that gy = y. Under this assumption, the quotient £, =
G\(Y x C) under the action of o will be a line bundle on X.

We now focus on another example of the general construction outlined above
which is of primary interest in number theory. Let

b ={z|Im(z) > 0}
denote the upper half-plane, and let
h* =bUQU {ico}
denote the extended upper half—plane. Consider a congruence subgroup
G C SL(2,7Z),

which is of finite index in SL(2,Z). Then G acts discontinuously on h* by linear
fractional transformations. In this special situation we choose ¥ = h* and X =
G\b* in the general construction outlined above. For this example, a one cocycle
o € H', is a map

c:Gxh"—C

which satisfies the cocycle relation

0(91927 Z) = 0(917922) : ‘7(9272)7
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for all g1,g92 € G and z € h*. This leads to an action of G on h* x C given by

g- (va) = (gZ,O'(g,Z)UJ)
for all g € G,z € h*, and w € C. We may thus consider the diagram below.

h* x C — b*

l l

G\(h*xC) — G\b”

Fix a cocycle 0 € H'. A modular form for G (with cocyle o) is a holomorphic
function f : h* — C which satisfies

flgz) =0(g,2)f(2)

for all ¢ € G and z € h*. Following Borel [2], a modular form is a section of the
line bundle £ = G\ (h* x C) lifted to h* via the natural projection.

Example: We may take G = SL(2,Z). For g = (CCL b) € G and z € h* let

d
o(g,2) = (cz +d)*

Then the Ramanujan Delta function,

A(Z) — 2miz H(]- . 627rinz)24

n=1

is a modular form with cocycle o.

§2. Action of the Hecke Operators on Line Bundles

Let G be a congruence subgroup which is of finite index in SL(2,7Z). Consider
the commensurator subgroup, denoted Com(G), which is defined by

Com(G) = {p € GL(2,R) | [G: (p~'Gp)NG] < o0,
[p1Gp: (p~rGp) NG| < oo}.
Clearly, G < Com(G) < GL(2,R). For every p € Com(G), we may write

G=J((r"'Gp) NG) s

as a finite union of right cosets. Each such p € Com(G) defines a Hecke operator,
denoted T),, which is defined as a formal sum

Tp:Zak
k
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where we have set oy = pdy.
Let £ = G\(h* x C) be a line bundle in Pic(G\h*) associated to a one cocycle
o € H'. For p € Com(G), we define the action of the Hecke operator T, on o by

T,0(9,2) = [ [ o(arga; ', ax2)
k

forall g € G,z € h*.
To check that this is well defined, we observe that

T,0(91,92,2) = H o(akgig20, ", ak2)
k

-1 -1
=[] o(argia; arga;t, arz)

k
= H olargiog s akgaz) - H o(argacy, ", axz)
k k

=T,0(91,922) - Tp 0(g2, 2)
Since each one-cocycle o € H! defines a line bundle

L=g\(h" xC)

the above action on one—cocycles determines an action of the Hecke operators on
line bundles.

§3. A Theorem of Manin

Let N > 1 be a fixed integer. For the remainder of this paper we shall be working
exclusively with the congruence subgroup

FO(N):{<Z Z) € SL(2,7) ) ¢c=0 (mod N)}.

For this group we have the following Hecke operators. Let m > 1 be an integer
which is coprime to N. Then

p= (73 (1)) € Com(T'o(N)).

A calculation shows that the Hecke operator 7}, (denoted, henceforth, as T,) is

simply X
r— 1 b
T,= Y (mg ) |

rlm b=0

Let M > 1 be a divisor of IN. Define the matrix

_( Mz oy
WM_(Nz Mw)
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for integers x, v, z, w which satisfy M2xzw — Nyz = M. The matrices W), normalize
[o(N) and satisfy

War W = Wi, VM, M"|N,
0o -1

HWqQZWN:(N 0)’

q°|IN

where the last product goes over all prime powers ¢¢ exactly dividing N. For M|N,
we define the Hecke operator T, to simply be Ty = Wy,.
Consider a holomorphic cusp form

1) =3 alnyerin:

of weight two for the congruence group I'g(N). Then

F(E50) = e rarse

for all (CCL 2) € I'p(N), and
f(z)dz

is a holomorphic differential one—form for the Riemann surface
Xo(N) =To(N)\b™.
Furthermore, every differential one—form arises in this manner from a weight two

holomorphic cusp form for I'g(/N). The Hecke operators T;,, act on differential one—
forms as follows. For (m, N) = 1, we define the action

r—1 -1 -1
Tmf(z)dz:ZZf(mr rz-l—b)d(mr Tz-l—b),

rlm b=0

and for M|N,
Ty f(2)dz = f(Wa2)d(Why z).

Following Atkin and Lehner [1], we say f(z) is a newform if
a(l)y =1
T, f(2)dz = a(p) f(z)dz V primes p, p [N
T, f(2)dz = —a(q) f(2)dz V primes q| .
Now, suppose v € I'g(N), and 7 € h*. The integral
YT

I(vy) = —2mi f(z)dz

T
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is independent of 7 (this can easily be seen by differentiating with respect to 7, the
result is 0) and must be a period of X(/N). Manin studied the action of the Hecke
operators on homology by defining

YT

T I(y) = —2m’/ T f(2) dz.

T

A change of variable gives the action of T}, on the closed loop joining 7 and 7.
Let f(z) = Yo7, a(n)e?™* be a newform for I'¢(N) with associated L-function

Le(s) =Y _a(n)n".

Let m > 1 be an integer coprime to N. Manin [3] proved the beautiful identity
i r—1 b
v v
=42 [T
rlm b=0

where

A= Zr — a(m).

rlm
The integrals X
—2m’/; f(z)dz
0
are period integrals since 0 is equivalent to g under the action of I'g(N) when r|m

and (m,N) = 1.

§4. A Formula for L', (1)

Let N > 1 be a fixed integer. For the remainder of this paper we shall be working
exclusively with the congruence subgroup

To(N) = { (g Z) € SL(2,2)

c=0 (mod N)},
and
IG(N) = (To(N), W)

which is the group generated by I'g(/N) and the involution Wy .
Fix a prime p with p fN and set

ak:<p<61) kp(1—1)> (0<k<p)

p 0
ap:(o 1).
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Since f(z) is a newform of weight two for I'o(N) it follows that f(z)dz is an eigen-
function for all the 7;,. We have

T, f(z)dz = Z flakz)d(agz)
=0

a(p)f(z)dz.

The basic 1-cocycle for the group SL(2,R) is

j(v,2) =cz+d for z = (CCL Z) € SL(2,R),

which satisfies the multiplicative cocycle relation

J(v1y2,2) = j(71,72%2) - 5 (72, 2)

for all 1,72 € SL(2,R), z € b.
Assume there exists a non—constant function

u:bh* —C
which is holomorphic for z € b, has polynomial growth at infinity, i.e.
lu(z)| << |log z|° for some § > 0, as z — ioco,
and satisfies
u(yz) = u(z) + clog(j(v, 2)) + ¢'log(j(v, 20)) + u(vz0) — u(z0)

for fixed complex constants ¢, ¢’ and all v € T§(N), z,20 € h* (Note that we must
have ¢/ = —c¢, which can be seen upon setting z = z9). Let f(z) be a newform of
weight 2 for I'g(N). For v € I'§(IV) and 7 € h we shall define the function

o(v,7) = /’YT f(2)u(z)dz.

Clearly this integral is independent of the path of integration for 7 € b since u(z) is
holomorphic on b. It is also independent of the path of integration for 7 € QU {ioco}
since f(z) vanishes at the cusps and wu(z) has at most polynomial growth at the
cusps.

We compute

o) = [ " ez dz

Y27 Y1772T

= (2)u(z)dz + / f(z)u(z)dz

Y2T

20(717727—) + 0-(’7277-)7
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so that o is an additive cocycle for the group I'§ (V).

We wish to compute the action of the Hecke operators on this cocycle. To facili-
tate this matter we introduce the following notation. Let a be as in the beginning
of this section. For every such aj and v € T'o(N) there exists a permutation (k)
(of the integers between 0 and p) and a matrix v} € I'o(IV) such that

ary = Y% Or(k)

Ve = axY a;(lk)-

Since the differential one—form f(z)dz is an eigenfunction of all the Hecke operators,
it follows that for all primes p [N,

I
NE

T, f(z)dz flagz)d(agz)

I

Q =

— |
o

p)f(2)dz

where a(p) is the p*™® coefficient in the Fourier expansion of f(z).
For v € I'g(N), we let z, € h* denote the fixed point of . Thus

Y2y = Zy.

With this notation in place, we will show that for all 7,79 € b*, v € I'o(N),

T, (o(7.7) = o(1.70)) = alp) - (o(77) =0 (370) ) + ch

where

N——
S~
Q
3
=
\‘
~
W
S—
Y
Q

Ci = ( = ¢ log(j(, 2,)) + ¢ og (i3, ;)

To prove this identity note that for any 7 € bh*

d _ fly)
a0 = 2

u(yr) — f(r)u(r)

= £(r) - [elog(j(7,7)) + ¢ log(j(7, 1)) + u(ym) = u(m)|.

Choosing 71 = z, (the fixed point of v) yields

d .

—o(7,7) = £(7) - |clog(i(3,7)) + ¢ log(j(: )]
It follows that

o(3,7) = o(3,70) / £(2) - [elog(i(r.2)) + ¢ Tog(i(v, 22))] d=.
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Next we compute

k=0" *kT
P Vi O (k)T p Qr (k)T
= Z/ f()u(z)dz + Z/ 2)u(z) dz
k=07 %) T k=0 QKT
But
P ot
Z/ g(2)dz=0
k=0 T
for any function g(z).
Hence
p V;aﬂ‘(k)T
1,00, =3 [ (2)u(z) dz
k=0" Y=(k)T
p Qo (k)T
:Z/ f(z)[clogj(vi,z)%—c'logj (fy;,z%:)]dz+
k=0"Y % (k)70
p
+ Z U(’}/Zv aﬂ'(k)TO)'
k=0
But
4 D Vi Qe (k) TO
SoGianmm)=> [ f@u)ds
k=0 k=0 " % (k)70

= TP 0-(77 TO)'

It follows that

T, |:0'(’7,T — 0'(’7,7’0)] =

Oé.,r(k)T
/ f(2) [clogj(VZ,Z)JrC’logj (IYk;Z'yk)i| dz

7(k)TO

M= 1=

/ [ (@ (r)?) [clogj (Vi riy 2) + ' log j <”y}:, z,y;> } d (e 2) -

0

e
Il
=

We observe that
log j (Vi ey 2) = log j <04k’704;(1k)7 Ofn(k)2>
= log j (ax7,2) + log j (a;(lk), aw(k)z>

= log j (ak,vz) + log j(v,2) + logj (a;(lk),aw<k)2> :
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Since
log j (ak , ) =0

for any w € h and all oy, it immediately follows that

log j (’Y;cka aw(k)z) = IOg .](77 Z)

We obtain

T, [o(,7) - U(%To)] -

p

= Z f Or (k)% [CIOgJ (’77 ) + d log.] (7;»272) ] d (aﬂ(k)z)
k=070
aw(k)T
= (o) [ 1) elog(y.2)ds + Z/ )¢ 108 (v 2; ) d
aﬂ(k)TO

from which the stated result easily follows.
These results will now be applied to obtain a closed formula for L'f(l). We begin
with the well known formula

2m)*T'(s+ 1)Lf(s+ 1) = —2mi i f()Im(z)%dz.

Henceforth, we assume that L¢(s) has a zero of odd order at s = 1. Upon differen-
tiating with respect to s and setting s = 0 it follows that

L (1) = —2mi ; f(z)logzdz.

Recall the identities
ot r) = [ F)u(z)dz,

T

T

or7) = o) = [ 1) [elogi(.) + ¢ ogi(a. )] d

Choosing v = Wy, 79 = 0, and 7 = i00 in the above identities yields
-2 Oioo f()u(z)dz = Oioo f(z)clogj(Wn, z) dz.
Here we have used the fact that L;(1) = 0 which is equivalent to
" f)dz =

0

in addition to the identity

f(Wn2)d(Wyz) = f(2)d=
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which is equivalent to the fact that L¢(s) has an odd order zero at s = 1. Note that

j(WN, Z) = Nz.
Hence . .
100 4 - 100
—274 (z)logzdz = il f(2)u(z)d=
0 ¢ Jo

or equivalently

4 . 100

L) = [ () ds
0
o
- %’ [(;(WN,O) — (W, ioo)].

Let p be a prime which does not divide N. Then we define the Hecke action

T,1(1) = ?Tp [J(WN, 0) — o(Wy, ioo)} .

It immediately follows from our previous computations that

T,L5(1) = a(@Lf(1) + > Ci
k=0

where .
Ol (k) 100
Cr = A / f(z)dz
(k)0

and ,
27

Ay =~ [—clogj(% 2y) + ' log j (%z%ﬂ

with v = W . By results of Manin [3], and the fact that the fixed point z., always
lies in a quadratic number field, it follows that

M*@

Ch
k=0
must be a complex number which lies in the field generated by Q, ¢, ¢/, i, the

periods of f, and the logarithms of quadratic algebraic numbers.
We shall now prove our main theorem.

Theorem|[1] Let f(z) be a holomorphic newform of weight two for T'o(N) for which
L¢(s) has an odd order zero at s = 1. Let u: h* — C be a holomorphic function on
b having polynomial growth at oo which satisfies

u(vz) = u(z) + clog j(v, z) + ' log j (7, z0) + u(vz0) — u(z0)

for fixed constants ¢, € C and all v € T§(N), z,20 € b*. Then for any integer
m > 1, coprime to N, we have
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where

C
A—R ZT’ — a(m) N

and B lies in the field generated by Q,c,c,mi,a(m), the periods of f, and the
logarithms of quadratic algebraic numbers.

Remark: This formula expresses L';(1) as a finite linear combination of additive
one cocycles for I'g(N). It gives the natural generalization of Manin’s theorem on
L¢(1) (see section 3) to higher derivatives.

Proof: We give the proof when m = p is a prime number. The general case is
similar and left to the reader. We have already shown that

T, L/f(l) = a(p)L;c(l) + B

with .
B = Z Ck
k=0
But
211 '
T,L5(1) = = =T, [o(Wi,0) — o(Wh, ico)]
4 p Q100
2> Y I ETEYE
€ k=070

p

4772
¢ Z/ako

=, /”°1 o

4
e Z 2)dz + (p+ DLS(1).
—0 akO

The stated result follows immediately from this computation.

§5. Construction of Special One—Cocycles

In the previous section we outlined a closed formula for the derivative of an L—
function (associated to a newform f of weight two for I'o(NV)) at the special value
s =1 in terms of one—cocycles of the form

It was required that u(z) have polynomial growth at oo and satisfy

u(vz) = u(z) + clog j(v, 2) + ¢’ log j (7, zy) + u(y20) — u(20),
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for all v € T'o(N) and z, zp € h*. We now explicitly construct such a function u(z).
Define

u(z) =log (A(z) : A(Nz))

where
o

A(Z) — 2miz H (1 o 627rin2>24

n=1

is the Ramanujan cusp form of weight twelve for the modular group. Then u(z)
satisfies the modular relations

u(vz) = u(z) + 24log j(v, 2)

for all v € T'o(V).
Furthermore, for the involution Wy, we have

W(Wiz) = log (A (J%) A (—71))

— log ((NZ)HA(NZ) : leA(z))

=u(z) + 24log(Nz) — 12log(N).

It follows that u(z) satisfies

u(y2) = u(z) + 24| log (7, 2) — log (7, 20) | + u(720) — u(z0)

for all v € I'{(N), z,z0 € h*. Furthermore, u(z) has polynomial growth at infinity
and is holomorphic for z € h. Thus we may express L’f(l) in terms of the special
one—cocycles
YT
o) = [ f(2)log (A(z) - A(N2)) d=

for y € Io(N), T € Q.

Another explicit one—cocycle may be constructed from the (almost holomorphic)
Eisenstein series Eo(z) of weight two for the modular group. We have

9 2 ) ‘
EQ(Z) _ Uy n % . 87'('2 Z o1 (n)627rznz
n=1

z—Z

where
os(n) = st.
d|
d>1

If we define the holomorphic function

Ej(2) = Ea(2) +
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then a simple computation shows that E3(z) satisfies the modular relations

E3 271
. 5(v2) _Ei2) — Tic
7(7,2)? cz+d

a b
v = (C d) € SL(2,Z).
If we lift E3(2) to I'o(N) by defining

for all

E3(z,N) =E3(z) + E5N(2)

then the antiderivative of E5(z, N') with respect to z can be used to define a function

u(z).

§7. Acknowledgment

The author would like to take this opportunity to thank Shou-Wu Zhang and
Nikolaos Diamantis for many helpful discussions.

§8. References

[1] A.O.L Atkin, J. Lehner, Hecke operators on I',(m), Math. Ann. 185 (1970),
134-160.

[2] A. Borel, Introduction to automorphic forms, Proc. Symp. Pure Math. 9,
Amer. Math. Soc. (1966), 199-210.

[3] Y.T. Manin, Parabolic points and zeta functions of modular forms, (Russian)
Isv. Acad. Nauk. Vol 6 (1972), No. 1, 19-64.



