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 Appendix:
 An effective zero-free region

 By DORIAN GOLDFELD, JEFFREY HOFFSTEIN and DANIEL LIEMAN*

 All the notation in this appendix will be as in the preceding paper. Let f

 be a Maass form which is a newform for Fo(N), with eigenvalue A and central

 character X, normalized so that (f, f) = 1. We have seen that the size of
 p(l), the first Fourier coefficient of f, is intimately related to the behavior of

 L(s, F) near s = 1. Here L(s, F) is the L-series of F, the adjoint square lift of
 f to GL(3), and the crucial question is whether or not L(s, F) vanishes when

 s is real and close to 1. It was shown in Theorem 0.1 that if L(s, F) is nonzero

 in a sufficiently wide neighborhood of 1 then Ip(1)12 <,z log(AN + 1) where
 the implied constant is absolute and effective. The paper goes on to show

 that even if a zero of L(s, F) does exist close to 1 for some F, such a "Siegel
 zero" can only happen rarely. As a consequence the bound Ip(l) I <z (AN)6
 is proved, for any E > 0, where the implied constant depends on E and is

 ineffective.

 About a year after the preceding paper was first circulated, it developed

 from conversations involving the above three authors that by slightly modi-

 fying the techniques introduced in that paper the possibility of a Siegel zero

 could be completely eliminated in many cases. In particular, Theorem 0.1 is

 now true unconditionally in the generic situation when f is not a lift from

 GL(1), that is to say, when the L-series of f is not equal to a Hecke L-series
 defined over a quadratic field. If we include all cusp forms, we can still obtain

 the Theorem in the A-aspect, but must restrict ourselves to either an ineffective

 constant or a weaker effective constant in the N-aspect. We have:

 MAIN THEOREM. Let f be a Maass form which is a newform for Fo(N),

 with eigenvalue A and central character X, normalized. so (ff) = 1. Let p(l)
 denote the first Fourier coefficient of f, and F the adjoint square lift of f to

 GL (3). Suppose that f is not a lift from GL (1). Then there exist effective
 constants c1 and C2 such that

 L(1) ? )log(AN+ 1)

 *The authors would like to thank Bill Duke for some very helpful conversations.
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 178 D. GOLDFELD, J. HOFFSTEIN AND D. LIEMAN

 and

 Ip(1)I2 < c2 log(AN + 1).

 If f is a lift from GL (1) then there exist effective constants C3 and C4 such
 that

 L(1, F) > c3 min (vs) log(AN+ 1))

 and

 Ip(1) 12 < C4 max (V, log(AN + 1)).

 The VA can be replaced by NE, for any E > 0, at the cost of making C3 and
 C4 ineffective constants depending on ?.

 Remark. As in the previous paper, all the arguments go through for
 holomorphic f or Maass forms with weight. In fact the above bounds can be

 made uniform in the weight, as well as the level and eigenvalue.

 The Theorem breaks into two cases because although Siegel zeros that

 originate on GL(2) can be eliminated, in the case of a lifted form there is a
 possibility that L(s, F) will be divisible by a quadratic Dirichlet L-series with
 a Siegel zero. Even here, the zero can only occur in the N-aspect. Note that in

 many instances there are no forms that are lifts. This is the case, for example,
 in SL(2, Z) and in ro(N) when N is prime and the central character is trivial.

 The proof is as follows. We first give a slightly more general version of

 Lemma 3.3.

 LEMMA. Let so(s) be a Dirichlet series with nonnegative coefficients, abso-
 lutely convergent for Re (s) > 1. Suppose also that so(s) has an Euler product,

 so so(s) 7& 0 for Re (s) > 1, and 'I(s)/lo(s) is negative for s real and > 1.
 Let so(s) have a pole of order m at s = 1 and let A(s) = sm(l - s)mG(s)(o(s)
 satisfy A(s) = A(1 - s), with A(s) entire of order 1. Here

 G(s) =D8f( rS 2 )

 with D > 1 the "level" of so(s). Then there exists an effective constant c,
 depending only on 1 and m, such that so(s) has at most m real zeros in the
 range

 log M

 where M =1 +D max{IciI}.

 Proof. Write

 A(s) = eA+BS f )esi P
 p
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 where p runs over the set of zeros of A(s). Taking the logarithmic derivative,

 and applying the functional equation, we get

 n1 m m + G'(s) Vp'(s)
 s -p s s -1 G(s) cp(s)

 Now cp'(s)/p(s) is negative for s real and greater than 1. Also, pairing conju-

 gate roots, every term of E is positive, so there exists an absolute effective

 constant cl such that

 n 1 m
 s s-H < f 1 + C1 log M,

 where we have included all the real zeros fi of cp(s) with 3i > 1 - c/ log M.
 Let s = 1 + 6/ log M with 6 < cj1. If c is chosen small enough, compared to

 6, then a contradiction is obtained whenever n > m + 1. 0

 Proof of Theorem. The key observation of the previous paper was that

 if F1, F2 are two distinct adjoint square lifts of Maass forms to GL(3), and

 L(s, F1 x F2) denotes the L-series of the Rankin-Selberg convolution of F1 with

 F2, then

 cp(s) = C,(s)L(s, Fi)L(s, F2)L(s, F1 x F2)

 is a Dirichlet series possessing positive coefficients, a functional equation as

 s 1 - s, a simple pole at s = 1, and growth in the critical strip which is at
 most polynomial in Im(s) and the eigenvalues and levels of the lifted GL(2)

 forms as I Im(s)I oc. (See Lemma 3.1.) By Lemma 3.3 it followed that cp(s)
 could have at most one real zero close to 1. Thus if one exceptional F1 were

 fixed all others could be controlled.

 The point of this appendix is to note that if one simply sets F1 = F2 = F,
 then

 p(s) = ((s)L(s, F)2L(s, F x F)

 still has positive coefficients, a functional equation as s -- 1 - s, and at most
 polynomial growth in Im(s) and the eigenvalue and level of the lifted form f

 as I Im(s) 1 -4 oc. What changes is the order of the pole, and the fact that
 L(s, F x F) can now be analyzed further. Indeed, if we have the Euler product

 expansion

 L(s, f) = f(i - ep-8)-1(1 - 6-8)-i
 p

 (where p = ' = p depend on p and W(' = X), then since F is the adjoint
 square lift of f, it follows that

 L(s, F) = (1 - ap-,)-1(1 - p-,)-1(1 - a-
 p
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 180 D. GOLDFELD, J. HOFFSTEIN AND D. LIEMAN

 where a = X2x. Further, one has the Euler product

 L(s, F x F) = ( - C2p-s)- (1 - ap-S)-1 (1 - p-s)-1 (1- -s)-
 p

 X (1_p s) 1 (1 _ a-lp-s )-l(1 - p-1)-l(1 _ Oe-lp-s )-l (1 _ aU-2 P-S)-1

 Recall that the symmetric square L-series of F (cf. [1, p. 84]) is given by

 L(s, F, V2) = J( a2p-,) -1 (1 ap-s) (1 p-s)-1
 P

 X ( 1 p P-)1( 1 a- 08p )1( 1 e aX2 p s ) 1

 Accordingly, we have the factorization (see also [2]).

 L(s, F x F) = L(s, F)L(s, F, V2)

 (In fact, this factors further, since

 L(s, F, V2) = 4(s)L(s, f, V4 x

 where the L-series is the twist by x2 of the symmetric fourth power L-series

 of f .) Thus

 9o(s) = C,(s)L(s, F)3L(s, F, V2).

 Bump and Ginzburg [2] have shown that when f is not a lift from GL(1),

 L(s, F, V2) has a simple pole at s = 1 and is analytic elsewhere. Thus cp(s)
 has a double pole at s = 1, and any zero of L(s, F) will be a zero of so(s)

 of order at least 3. The analytic properties and functional equation of p(s)

 follow as before from the work of Gelbart and Jacquet [4] and from [5], [6] and

 [7]. We therefore may apply the lemma, taking m = 2 and M = AN + 1, and

 we find that as p(s) has only a double pole at s = 1, it cannot have a triple

 zero within c/log M of 1. We have thus shown that there exists an absolute

 effective constant c such that L(s, F) has no real zeros in the interval

 < S < 1
 log(AN + 1)

 The Theorem in this case then follows from Theorem 0.1 of the previous paper.

 If f is a lift from GL(1) then L(s, f) = L(s, 4, K) where K is some

 quadratic field and b is a Hecke character defined over K. It is easily checked
 then that

 L(s, F) = L(s, VK)L(s, 42(4-1 o NK/Q), K),

 where L(s, OK) is the quadratic Dirichlet L-series associated to K, and in the
 second L-series, 4-1 has been composed with the norm down to Q. As in

 the proof of Proposition 1.1 of the previous paper, L(1, F) is bounded from
 below by an effective constant multiple of 1 - or 1/ log(AN + 1), where 3 is
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 APPENDIX: AN EFFECTIVE ZERO-FREE REGION 181

 a possible Siegel zero. To obtain the remainder of the Theorem, first observe

 that if the square of the character in the second L-series is not trivial it can

 not have a Siegel zero. This is proved by a very minor modification of the

 usual argument that a Dirichlet L-series with a complex character can not

 have a Siegel zero [3, p. 88]. A Siegel zero can only arise from either L(s, OK)
 or a possible factorization of L(s, '2 (4-1 o NK/Q), K) into quadratic Dirichlet
 L-series, and in any of these cases, the level of the L-series will be bounded

 above by N. The Theorem follows after substituting either the effective trivial

 lower bound 1 -3? > 1i/iN, or the ineffective bound 1 -3 >? N` which
 comes from Siegel's original theorem. O

 COLUMBIA UNIVERSITY, NEW YORK, NY
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