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Abstract. This paper presents a very simple explicit description of Langlands Eisenstein
series for SL(n,Z). The functional equations of these Eisenstein series are heuristically
derived from the functional equations of certain divisor sums and certain Whittaker functions
that appear in the Fourier coefficients of the Eisenstein series. We conjecture that the
functional equations are unique assuming they take the form of a real affine transformation
of the s variables defining the Eisenstein series. The uniqueness conjecture is proved in
certain special cases.

Contents

1. Introduction 1
1.1. Early history of the analytic theory of Eisenstein series 1
1.2. Elementary introduction to Langlands Eisenstein series for SL(2,Z) 2
1.3. Motivation and Main Theorems of this paper 2
2. Basic notation 3
3. Examples for Langlands Eisenstein series of small rank 5
4. Eisenstein series for a parabolic subgroup of GL(n,R) 11
5. Whittaker function for Langlands Eisenstein series 13
6. Statement and proof of the Main Theorem of this paper 14
7. Uniqueness of functional equations for self-dual Langlands

Eisenstein series 16
7.1. Proof of Proposition 7.3 18
7.2. Proof of Proposition 7.6 18
References 19

1. Introduction

1.1. Early history of the analytic theory of Eisenstein series. As remarked by Moeglin
and Waldspurger [MW95], the analytic theory of Eisenstein series really began with the work
of Maass [Maa49] who formally defined the series

E(z, s) :=
1

2

∑
(c,d)=1

c,d∈Z

ys

|cz + d|2s
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which converges absolutely for s ∈ C and <(s) > 1 for all z = x+ iy in the upper half-plane,
i.e., x ∈ R, y > 0. Let ζ(s) denote the Riemann zeta function which satisfies the functional
equation

(1.1) ζ∗(s) := π−
s
2 Γ
(
s
2

)
ζ(s) = ζ∗(1− s).

Maass obtained the meromorphic continuation and functional equation of the completed
Eisenstein series

E∗(z, s) := ζ∗(2s)E(z, s) = E∗(z, 1− s)
from the Fourier expansion of E(z, s) together with the functional equation (1.1). This ap-
proach was generalized by Roelcke [Roe56] to discrete groups commensurable with SL(2,Z)
and completed by Selberg [Sel56], [Sel63] for all Eisenstein series on GL(2,R). In his talk
at the International Congress in Stockholm 1962, Selberg [Sel63] presented a new proof of
the functional equation of rank one Eisenstein series which did not make use of the Fourier
expansion of Eisenstein series except for the constant term. This approach was generalized
by Langlands, (see [Lan66], [Lan76], [MW95]) who defined more general Eisenstein series
in the higher rank case and extended Selberg’s proof of the meromorphic continuation and
functional equations. The basic principle in Selberg’s proof is to show the analytic contin-
uation of the Eisenstein series and its constant term simultaneously by using the fact that
the resolvent of an operator has analytic continuation to the complement of its spectrum. In
1967 Selberg found another proof of the functional equation of Eisenstein series which was
not published but shown to Dennis Hejhal, Paul Cohen, and Peter Sarnak which Selberg
suggested would also work in the case of higher rank, but it took at least two decades before
Selberg’s claim was vindicated. In the 1980’s Joseph Bernstein simplified Selberg’s second
proof. More recently Bernstein and Lapid [BL19] found a “soft” uniform proof of the mero-
morphic continuation and functional equations of Eisenstein series induced from a general
automorphic form (not necessarily cuspidal or in the discrete spectrum).

1.2. Elementary introduction to Langlands Eisenstein series for SL(n,Z). We now
present a very elementary explanation of the notation for Langlands Eisenstein series. For
a formal definition see §4.

Let n ≥ 2. The Langlands Eisenstein series for SL(n,Z) depends on an integer partition

n = n1 + n2 + · · ·+ nr,
(
n1, n2, . . . , nr ∈ Z>0 and 2 ≤ r ≤ n

)
,

which we denote by P = Pn1,n2,...nr . In addition, the Langlands Eisenstein series for SL(n,Z)
also depends on a product of automorphic functions

Φ := φ1 ⊗ φ2 ⊗ · · · ⊗ φr,
where each φj : GL(nj,R) 7→ C is a smooth function invariant under left multiplication
by the discrete subgroup SL(nj,Z) and the center of GL(nj,R), and right invariant by
O(nj,R). We denote the Langlands Eisenstein series associated to P and Φ by EP,Φ(g, s).

where s = (s1, s2, . . . , sr) ∈ Cr. It is required that s satisfies
r∑
i=1

nisi = 0.

1.3. Motivation and Main Theorems of this paper. After seeing our paper [GSW23]
(where certain Fourier coefficients of Langlands Eisenstein series for SL(n,Z) are explicitly
computed), Peter Sarnak raised the question if it might be possible to prove the meromorphic
continuation and functional equation of Langlands Eisenstein series for SL(n,Z) by the
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original method of Maass which just uses the explicit form of the Fourier coefficients of
Eisenstein series.

The aim of this paper is to show that the non-constant Fourier coefficients of Langlands
Eisenstein series for SL(n,Z) all satisfy the same functional equations and are entire functions
of the complex variables defining the Eisenstein series. It was proved in [GSW23] that
the first coefficient of EP,Φ(g, s) is given as a recipricol of a certain product of completed
Rankin-Selberg L-functions. If we multiply EP,Φ(g, s) by this product of completed Rankin-
Selberg L-functions we obtain the normalized Eisenstein series E∗P,Φ(g, s) defined in our main
Theorem 6.3. We will show by direct computation of the Fourier coefficients (see Corollary
6.5) that the functional equation of E∗P,Φ(g, s) proved by Langlands (see [Lan76], [MW95])
is given by

(1.2) E∗P,Φ(g, s) = E∗σP,σΦ(g, σs)

where the permutation σ ∈ Sr satisfies

σP = Pnσ(1),nσ(2),...,nσ(r)
, σΦ = φσ(1) ⊗ φσ(2) ⊗ · · ·φσ(r), σs =

(
sσ(1), sσ(2), . . . , sσ(r)

)
.

For some simple concrete examples of functional equations of Langlands Eisenstein series see
§3.

We also conjecture that the functional equations 1.2 are unique in the sense that if there
exists a real valued affine transformation µ(s) of the variables s = (s1, s2, . . . , sk) then µ has
to be a permutation in Sr. See §7 where this conjecture is stated and proved in the case
where Φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φr and φ1 = φ2 = · · · = φr. As far as we know the uniqueness of
functional equations of Langlands Eisenstein series has not been investigated before.

If we knew that every Fourier-Whittaker coefficient of the Langlands Eisenstein series
E∗P,Φ(g, s) had meromorphic continuation in all its complex variables and satisfied the same
functional equations, then this would give a new significantly simpler proof of the meromor-
phic continuation and functional equations of all Langlands Eisenstein series for SL(n,Z).
We conjecture that it’s enough to prove this for the constant Fourier-Whittaker coefficient
and the

(1, 1, . . . , 1, p︸︷︷︸
jth entry

, 1, . . . , 1)

coefficients, for every prime p and all j with 1 ≤ j ≤ n− 1.

2. Basic notation

Definition 2.1. (Generalized upper half plane hn) We define the generalized upper half
plane as

hn := GL(n,R)/
(
O(n,R) · R×

)
.

By the Iwasawa decomposition of GL(n) (see [Gol06]) every element of hn has a coset rep-
resentative of the form g = xy where

(2.2) x =


1 x1,2 x1,3 ··· x1,n

1 x2,3 ··· x2,n

...
...

1 xn−1,n

1

 ∈ Un(R), y =

 y1y2···yn−1
y1y2···yn−2

...
y1

1

 ,
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with yi > 0 for each 1 ≤ i ≤ n− 1. The group GL(n,R) acts as a group of transformations
on hn by left multiplication.

Remark 2.3. In the case n = 2, the above definition gives us the classical upper half-plane

h2 =

{(
1 x
0 1

)(
y 0
0 1

)∣∣∣∣ x ∈ R, y > 0

}
.

Note that the GL(2,R) power function ys is a function of the y-component of h2. It is
natural to try to do the same thing on hn.

Consider a partition n = n1 + n2 + · · ·+ nr, where ni ∈ Z>0 for 1 ≤ i ≤ r. We can define

a power function on matrices m =

( m1 ∗ ··· ∗
m2 ··· ∗

...
...
mr

)
∈ GL(n,R) and s = (s1, s2, . . . , sr) ∈ Cr

satisfying
r∑
i=1

nisi = 0 as follows:

∣∣m∣∣sP :=
r∏
i=1

∣∣ detmi

∣∣s,
where P = Pn1,n2,...nr denotes the partition.

Remark 2.4. The condition
r∑
i=1

nisi = 0 assures that the above power function is invariant

under multiplication by elements of the center of GL(n,R).

Definition 2.5. A Langlands parameter for GL(n) is an n-tuple α = (α1, α2, . . . , αn) ∈ Cn

satisfying
n∑
i=1

αi = 0.

Definition 2.6. (Langlands parameter for an automorphic form) Let F : hn → C be
a smooth function invariant under SL(n,Z), and suppose that F is an eigenfunction of all the
GL(n,R)-invariant differential operators on hn (see [Gol06]). We say that F has Langlands
parameter α = (α1, α2, . . . αn) if F has the same eigenvalues as the power function∣∣ ∗ ∣∣α+ρB

B ,

where B denotes the partition n = 1 + 1 + · · ·+ 1, and

ρB =

(
n− 1

2
,
n− 3

2
, . . . ,

1− n
2

)
.

Remark 2.7. The notation B is used to connote the Borel parabolic subgroup. There is a
one-to-one correspondence between partitions and parabolic subgroups, up to conjugacy, cf.
Definition 4.1.

Example 2.8. A Maass form for SL(2,Z) with Laplace eigenvalue 1
4
− β2 has Langlands

parameter (α1, α2) = (β,−β).
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3. Examples for Langlands Eisenstein series of small rank

The Eisenstein series for SL(2,Z) is constructed by summing all translates of (Im γz)s over

γ ∈
(

1 ∗
0 1

)
. Here, for z = x + iy in the upper half plane, (Im z)s = ys can be thought of

as a power function. To generalize Eisenstein series to SL(n,Z) for n ≥ 2, it is necessary to
construct a generalization of the power function ys. (Note: we intend to describe everything,
including in this case in terms of the Langlands parameters.)

Example 3.1. (SL(2,Z) Eisenstein series) Here we have the partition 2 = 1 + 1.
Let s = (s1, s2) ∈ C2 with s1 + s2 = 0. Then the power function is∣∣∣∣(1 x

0 1

)(
y 0
0 1

)∣∣∣∣s
P1,1

= ys

and we can define the Eisenstein series

EP1,1(g, s) =
∑

γ∈( 1 ∗
0 1 )\ SL(2,Z)

∣∣γg∣∣s1+1/2

P1,1
.

Remark 3.2. Shifting s by 1
2

in the power function simplifies the functional equation, whose
derivation we now explain.

The Fourier expansion

EP1,1(g, s)(3.3)

= ys1+ 1
2 + φ(s1 + 1

2
)y

1
2
−s1 +

1

ζ∗(2s1 + 1)

∑
m 6=0

σ2s1(m)|m|−s1√y Ks1(|m|y)e2πimx,

where

ζ∗(s) = π−s/2 Γ( s2) ζ(s), φ(s) =
ζ∗(2s− 1)

ζ∗(2s)
, σs(n) =

∑
d|n
d>0

ds,

and K denotes the classical K-Bessel function, is well-known.
To see the functional equation of EP1,1(g, s) from the Fourier expansion, it is necessary to

define
E∗P1,1

(g, s) = ζ∗(2s+ 1)EP1,1(g, s);

that is, we are clearing the denominator.

The main object of this paper is to show that the functional equations of all Langlands
Eisenstein series for SL(n,Z) can be easily seen by observing the Fourier coefficients in the
Fourier expansion of the Eisenstein series.

In the case of SL(2, Z),∫ 1

0

E∗P1,1

((
1 u
0 1

)
g, s

)
e2πimu du =

σ2s1(m)|m|−s1
ζ∗(2s1 + 1)

√
y Ks1(|m|y).

This immediately implies that, if EP1,1(g, s) satisfies a functional equation in s, then each
of its Fourier coefficients must also satisfy the same functional equation. Since the mth

Fourier coefficient is easily seen to be invariant under s → −s, the functional equation is
E∗P1,1

(g, s) = E∗P1,1
(g,−s).
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Example 3.4. (The Eisenstein series EP1,1,1(g, s) for SL(3,Z))
In the case n = 3, the above definition of hn yields

h3 =

xy =

1 x1 x3

0 1 x2

0 0 1

y1y2 0 0
0 y1 0
0 0 1

∣∣∣∣∣∣ x1, x2, x3 ∈ R, y1, y2 > 0

 .

Let s = (s1, s2, s3) ∈ C3 with s1 + s2 + s3 = 0. Then the power function is given by

∣∣dxyk|sP1,1,1
:=

∣∣∣∣∣∣
y1y2 0 0

0 y1 0
0 0 1

∣∣∣∣∣∣
s

P1,1,1

= (y1y2)s1ys22 ,

where d is in the center of GL(3,R) and k ∈ O(n,R). Then for g ∈ GL(3,R)we have

EP1,1,1(g, s) =
∑

γ∈
(

1 ∗ ∗
1 ∗

1

)∖
SL(3,Z)

∣∣γg∣∣s+(1,0,−1)

P1,1,1
.

The shift by (1, 0,−1) makes the form of the functional equations as simple as possible. Note
that this shift is a special value of the ρ-function defined in . . . .

Proposition 3.5. Let g ∈ GL(3,R) and s = (s1, s2, s3) ∈ C3 with s1 + s2 + s3 = 0. Define

E∗P1,1,1
(g, s) =

( ∏
1≤j<`≤3

ζ∗(1 + sj − s`)

)
EP1,1,1(g, s).

Then E∗P1,1,1
(g, s) satisfies the functional equation

E∗P1,1,1
(g, s1, s2, s3) = E∗P1,1,1

(g, sσ(1), sσ(2), sσ(3))

for any σ ∈ S3.

Proof. It’s well-known that EP1,1,1(g, s) has analytic continuation and satisfies various func-
tional equations (see [Bum84]). As we did for SL(2,Z), we will determine these functional
equations by considering the (m, 1)th Fourier coefficient of EP1,1,1(g, s), for a generic m ∈ Z>0.

It is proved in [Bum84] that this (m, 1)th Fourier coefficient is given by∫ 1

0

∫ 1

0

∫ 1

0

EP1,1,1

((
1 u1 u3

1 u2
1

)
g, s

)
e−2πi(mu1+u2) du1 du2 du3(3.6)

=
1

m ·
∏

1≤j<`≤3

ζ∗(1 + sj − s`)

 ∑
c1,c2,c3∈Z>0

c1c2c3=m

cs11 c
s2
2 c

s3
3

W
(3)
(s1,s2,s3)

((
m

1
1

)
g

)
,

where W
(3)
(s1,s2,s3) denotes the unique rapidly decaying GL(3,R) Whittaker function with Lang-

lands parameter (s1, s2, s3) ∈ C3 (see [Bum84], [Gol15]). It is known ([Gol15]) that W
(3)
(s1,s2,s3)

is invariant under any permutation of s1, s2, s3. It is also immediate that the divisor sum
satisfies the same invariances. Therefore, so does E∗P1,1,1

(g, s). �
6



Remark 3.7. Note that the product
∏

1≤j<`≤3

ζ∗(1+sj−s`) is not invariant under permutations

of (s1, s2, s3). It is for this reason that we need to multiply the Eisenstein series EP1,1,1(g, s)
by this product to obtain our functional equations for E∗P1,1,1

(g, s).

Example 3.8. (The Eisenstein series EP1,2,1⊗φ(g, s), EP2,1,φ⊗1(g, s) for SL(3,Z))
Here we consider the partitions 3 = 1 + 2 and 3 = 2 + 1. In these cases we are twisting

the Eisenstein series EP1,1,1(g, s) by a Maass form for SL(2,Z). The notation 1⊗ φ refers to
the situation where the 1 denotes the constant function 1 on the upper left 1 × 1 block of
our 3× 3 matrix, and φ denotes a Maass form for SL(2,Z), which is a function on the lower
right 2× 2 block. Similarly, the notation φ⊗ 1 refers to the situation where the Maass form
φ is a function on the upper left 2× 2 block of our 3× 3 matrix, and the the constant 1 is a
function on the lower right 1× 1 block.

We first consider the partition 3 = 1 + 2 represented by P2,2. The power function in
this case takes the following form: let g = dxyk, with d a central element of GL(3,R) and
k ∈ O(3,R). Then for s = (s1, s2) ∈ C2 with 2s1 + 2s2 = 0, we have

∣∣g∣∣sP2,2
:=

∣∣∣∣∣∣
y1y2 0 0

0 y1 0
0 0 1

∣∣∣∣∣∣
s

P1,2

= (y1y2)s1
∣∣∣∣det

(
y1 0
0 1

)∣∣∣∣s2 = ys1+s2
1 ys12 .

Suppose φ is a Maass form for SL(2,Z). Associated to φ is a Langlands parameter α =
(α1, α2) ∈ C2, where α1 + α2 = 0 and 1

4
− α2

1 = 1
4
− α2

2 is the Laplace eigenvalue of φ.
By the Iwasawa decomposition, every g ∈ GL(3,R) can be written in the form g =(
m1(g) ∗

m2(g)

)
k for some k ∈ O(3,R), where m1(g) ∈ GL(1,R) ∼= R× and m2(g) ∈ GL(2,R).

Then we define the Eisenstein series

(3.9) EP1,2,1⊗φ(g, s) =
∑

γ∈
( ∗ ∗ ∗
∗ ∗
∗ ∗

)∖
SL(3,Z)

φ
(
m2(γg)

) ∣∣m1(γg)
∣∣s1+1 ∣∣ detm2(γg)

∣∣s2−1/2
.

Next we consider the partition 3 = 2 + 1 represented by P2,1. The power function in
this case takes the following form: let g = dxyk, with d a central element of GL(3,R) and
k ∈ O(3,R). Then for s = (s1, s2) ∈ C2 with 2s1 + s2 = 0, we have

∣∣g∣∣sP2,1
:=

∣∣∣∣∣∣
y1y2 0 0

0 y1 0
0 0 1

∣∣∣∣∣∣
s

P2,1

=

∣∣∣∣det

(
y1y2 0

0 y1

)∣∣∣∣s1 = y2s1
1 ys12 .

Suppose φ is a Maass form for SL(2,Z) with Langlands parameter α = (α1, α2) ∈ C2, where
α1 + α2 = 0. By the Iwasawa decomposition, every g ∈ GL(3,R) can be written in the form

g =
(

m1(g) ∗
m2(g)

)
k for some k ∈ O(3,R), where m1(g) ∈ GL(2,R) and m2(g) ∈ GL(1,R) ∼=

R×. Then we define the Eisenstein series

(3.10) EP2,1,φ⊗1(g, s) :=
∑

γ∈
( ∗ ∗ ∗
∗ ∗ ∗
∗

)∖
SL(3,Z)

φ
(
m1(γg)

) ∣∣m1(γg)
∣∣s1+1/2 ∣∣ detm2(γg)

∣∣s2−1
.
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Recall the L-function L(s, φ) as defined in [Gol15]. The completed L-function for this is
given by

L∗(s, φ) := π−sΓ( s+α1

2
)Γ( s+α2

2
)L(s, φ) = L∗(1− s, φ).

Proposition 3.11. Let EP1,2,1⊗φ and EP2,1,φ⊗1 be as in equations (3.9) and (3.10). Define

E∗P1,2,1⊗φ(g, s) := L∗(1 + s2 − s1, φ)EP1,2,1⊗φ(g, s),
(
s = (s1, s2) ∈ C2, s1 + 2s2 = 0

)
,

E∗P2,1,φ⊗1(g, s) := L∗(1 + s2 − s1, φ)EP2,1,φ⊗1(g, s),
(
s = (s1, s2) ∈ C2, 2s1 + s2 = 0

)
.

Then the functional equation takes the form

E∗P1,2,1⊗φ
(
g, (s1, s2)

)
= E∗P2,1,φ⊗1

(
g, (s2, s1)

)
for all s1, s2 ∈ C.

Remark 3.12. In E∗P1,2,1⊗φ
(
g, (s1, s2)

)
, as required we have s1 + 2s2 = 0. Similarly, in

E∗P2,1,φ⊗1

(
g, (s2, s1)

)
, as required we have 2s2+s1 = 0, which is, of course, the same condition.

Proof. Recall the definition of the adjoint L-function: L(s,Adφ) := L(s, φ× φ)/ζ(s) where
L(s, φ×φ) is the Rankin-Selberg convolution L-function as in §12.1 of [Gol15]. The completed
adjoint L-function at s = 1 is given by

L∗(1,Adφ) := Γ(1
2

+ α1)Γ(1
2

+ α2)L(1,Adφ).

It is proved in [GMW21] that, if s1 + 2s2 = 0, then the (m, 1)th Fourier coefficient of
EP1,2,1⊗φ is given by∫ 1

0

∫ 1

0

∫ 1

0

EP1,2,1⊗φ

((
1 u1 u3

1 u2
1

)
g, (s1, s2)

)
e−2πi(mu1+u2) du1 du2 du3

=
1

mL∗(1,Adφ)1/2L∗(1 + s2 − s1, φ)

 ∑
c1,c2∈Z>0

c1c2=m

λφ(c1)cs11 c
s2
2

W
(3)
(s1,s2+α1,s2+α2)

((
m

1
1

)
g

)
.

We therefore have∫ 1

0

∫ 1

0

∫ 1

0

E∗P1,2,1⊗φ

((
1 u1 u3

1 u2
1

)
g, (s1, s2)

)
e−2πi(mu1+u2) du1 du2 du3(3.13)

=
1

mL∗(1,Adφ)1/2

 ∑
c1,c2∈Z>0

c1c2=m

λφ(c1)cs11 c
s2
2

W
(3)
(s1,s2+α1,s2+α2)

((
m

1
1

)
g

)
.
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Similarly, it is proved in [GMW21] that, if 2s1 + s2 = 0, then the (m, 1)th Fourier coefficient
of E∗P2,1,φ⊗1 is given by∫ 1

0

∫ 1

0

∫ 1

0

E∗P2,1,φ⊗1

((
1 u1 u3

1 u2
1

)
g, (s1, s2)

)
e−2πi(mu1+u2) du1 du2 du3(3.14)

=
1

mL∗(1,Adφ)1/2

 ∑
c1,c2∈Z>0

c1c2=m

λφ(c2)cs11 c
s2
2

W
(3)
(s1+α1,s1+α2,s2)

((
m

1
1

)
g

)
.

Note that, if we interchange s1 and s2 in the divisor sum in (3.13), we get the divisor sum

appearing in (3.14). Also, this interchange sends W
(3)
(s1,s2+α1,s2+α2) to W

(3)
(s2,s1+α1,s1+α2), which

equals W
(3)
(s1+α1,s1+α2,s2), since W

(3)
(a,b,c) is invariant under any permutation of (a, b, c). Finally,

this switch transforms the condition s1 + 2s2 = 0 to the condition 2s1 + s2 = 0. �

Example 3.15. (The Eisenstein series EP2,2,φ1⊗φ2(g, s) for SL(4,Z))
Here we consider the partition 4 = 2 + 2. In this case our construction involves a twist by

two Maass forms for SL(2,Z): a Maass form φ1 with Langlands parameter (α1,1, α1,2) ∈ C2

with α1,1 + α1,2 = 0, and a Maass form φ2 with Langlands parameter (α2,1, α2,2) ∈ C2 with
α2,1 + α2,2 = 0. Here, 1

4
− α2

j,1 is the Laplace eigenvalue of φj, for j = 1, 2.
The power function in this case takes the following form: let g = dxyk, with d a central

element of GL(4,R) and k ∈ O(4,R). Then for s = (s1, s2) ∈ C2 with 2s1 + 2s2 = 0, we have

∣∣g∣∣sP2,2
:=

∣∣∣∣∣∣∣∣

y1y2y3 0 0 0

0 y1y2 0 0
0 0 y1 0
0 0 0 1


∣∣∣∣∣∣∣∣
s

P2,2

=

∣∣∣∣det

(
y1y2y3 0

1 y1y2

)∣∣∣∣s1 · ∣∣∣∣det

(
y1 0
0 1

)∣∣∣∣s2

= y2s1+s2
1 y2s1

2 ys13 .

By the Iwasawa decomposition, every g ∈ GL(4,R) can be written in the form g =(
m1(g) ∗

m2(g)

)
k for some k ∈ O(4,R), where m1(g),m2(g) ∈ GL(2,R). Then we define the

Eisenstein series

(3.16) EP2,2,φ1⊗φ2(g, s) =
∑

γ∈
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

)∖
SL(4,Z)

φ1

(
m1(γg)

)
φ2

(
m2(γg)

)
·
∣∣γg∣∣s+(1,−1)

P2,2
.

Recall the Rankin-Selberg L-function L∗(s, φ1 × φ2) as defined in [Gol15]. The completed
L-function for this is given by

L∗(s, φ1 × φ2) := π−2s

(
2∏

j,k=1

Γ
( s+α1,j+α2,k

2

))
· L(s, φ1 × φ2).

9



Proposition 3.17. Let EP2,2,φ1⊗φ2 be as in equation (3.16). Define

E∗P2,2,φ1⊗φ2
(g, s) := L∗(1 + s2 − s1, φ1 × φ2)EP2,2,φ1⊗φ2(g, s),

where s = (s1, s2) ∈ C2 satisfies 2s1 + 2s2 = 0. Then the functional equation takes the form

E∗P2,2,φ1⊗φ2

(
g, (s1, s2)

)
= E∗P2,2,φ2⊗φ1

(
g, (s2, s1)

)
for all s1, s2 ∈ C.

Remark 3.18. In E∗P2,2,φ1⊗φ2

(
g, (s1, s2)

)
, as required we have 2s1 + 2s2 = 0. Similarly, in

E∗P2,2,φ2⊗φ1

(
g, (s2, s1)

)
, as required we have 2s2 + 2s1 = 0, which is, of course, the same

condition.

Proof. It is proved in [GMW21] that, if 2s1 + 2s2 = 0, then the (m, 1, 1)th Fourier coefficient
of E∗P2,2,φ1⊗φ2

is given by∫ 1

0

· · ·
∫ 1

0

E∗P2,2,φ1⊗φ2

((
1 u1 u4 u6

1 u2 u5
1 u3

1

)
g, (s1, s2)

)
e−2πi(mu1+u2+u3)

6∏
i=1

dui(3.19)

=

 ∑
c1,c2∈Z>0

c1c2=m

λφ1(c1)λφ2(c2)cs11 c
s2
2

W
(4)
(s1+α1,1,s1+α1,2,s2+α2,1,s2+α2,2)

((
m

1
1

1

)
g

)

m3/2L∗(1,Adφ1)1/2L∗(1,Adφ2)1/2
.

Interchanging φ1 and φ2 we find that, if 2s1 + 2s2 = 0, then the (m, 1, 1)th Fourier coefficient
of EP2,2,φ2⊗φ1 is given by∫ 1

0

· · ·
∫ 1

0

E∗P2,2,φ2⊗φ1

((
1 u1 u4 u6

1 u2 u5
1 u3

1

)
g, (s1, s2)

)
e−2πi(mu1+u2+u3)

6∏
i=1

dui(3.20)

=

 ∑
c1,c2∈Z>0

c1c2=m

λφ2(c1)λφ1(c2)cs11 c
s2
2

W
(4)
(s1+α2,1,s1+α2,2,s2+α1,1,s2+α1,2)

((
m

1
1

1

)
g

)

m3/2L∗(1,Adφ1)1/2L∗(1,Adφ2)1/2
.

Note that, if we interchange s1 and s2 in the divisor sum in (3.19), we get the divisor sum
appearing in (3.20). Also, this interchange sends the Whittaker function with Langlands
parameter

(s1 + α1,1, s1 + α1,2, s2 + α2,1, s2 + α2,2)

to the Whittaker function with Langlands parameter

(3.21) (s2 + α1,1, s2 + α1,2, s1 + α2,1, s1 + α2,2).

The Whittaker function with Langlands parameter given by (3.21) equals the Whittaker
function in equation (3.20) because the Whittaker function is invariant under permutations
of the Langlands parameters. �
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4. Eisenstein series for a parabolic subgroup of GL(n,R)

Definition 4.1. (Parabolic Subgroup) For n ≥ 2 and 1 ≤ r ≤ n, consider a partition
of n given by n = n1 + · · · + nr with positive integers n1, · · · , nr. We define the standard
parabolic subgroup

P := Pn1,n2,...,nr :=




GL(n1) ∗ · · · ∗
0 GL(n2) · · · ∗
...

...
. . .

...
0 0 · · · GL(nr)


 .

Letting Ir denote the r × r identity matrix, the subgroup

NP :=



In1 ∗ · · · ∗
0 In2 · · · ∗
...

...
. . .

...
0 0 · · · Inr




is the unipotent radical of P. The subgroup

MP :=




GL(n1) 0 · · · 0
0 GL(n2) · · · 0
...

...
. . .

...
0 0 · · · GL(nr)




is the standard choice of Levi subgroup of P.

Definition 4.2. (Automorphic form Φ associated to a parabolic P) Let n ≥ 2.
Consider a partition n = n1 + · · · + nr with 1 < r < n. Let P := Pn1,n2,...,nr ⊆ GL(n,R).
For i = 1, 2, . . . , r, let φi : GL(ni,R) → C be either the constant function 1 (if ni = 1) or
a Maass cusp form for SL(ni,Z) (if ni > 1). The form Φ := φ1 ⊗ · · · ⊗ φr is defined on
GL(n,R) = P(R)K (where K = O(n,R)) by the formula

Φ(umk) :=
r∏
i=1

φi(mi), (u ∈ NP ,m ∈MP , k ∈ K)

where m ∈ MP has the form m =

( m1 0 ··· 0
0 m2 ··· 0
...

...
...

...
0 0 ··· mr

)
, with mi ∈ GL(ni,R). In fact, this

construction works equally well if some or all of the φi are Eisenstein series.

Definition 4.3. (Power function for a parabolic subgroup) Let n ≥ 2 and 2 ≤ r ≤ n.
Fix a partition n = n1 + n2 + · · · + nr with associated parabolic subgroup P := Pn1,n2,...,nr .

Let s = (s1, s2, . . . , sr) ∈ Cr satisfy
r∑
i=1

nisi = 0.

For g ∈ P , with diagonal block entries mi ∈ GL(ni,R), we define the power function

|g|s
P

:=
r∏
i=1

|det(mi)|si .

11



Since det(miki) = ± det(mi) for ki ∈ O(ni,R), we see that |g|s
P

is invariant under right mul-

tiplication by O(n,R). Because of this, and the fact that
r∑
i=1

nisi = 0, it follows that |g|s
P

extends to a well-defined function on GL(n,R), invariant by the center and right multipli-
cation by O(n,R).

Definition 4.4. (ρ-function for a parabolic) Let n ≥ 2 and 2 ≤ r ≤ n. Let P be the
parabolic subgroup P := Pn1,n2,...,nr . Then we define

ρP (j) :=

{
n−n1

2
, j = 1,

n−nj
2
− n1 − · · · − nj−1, j ≥ 2,

and
ρP = (ρP(1), ρP(2), . . . , ρP(r)).

Remark 4.5. The ρ-function is introduced as a normalizing factor (a shift in the s variable)
in the definition of Eisenstein series, below, to make later formulae as simple as possible.
Note that, in the definition of Eisenstein series for reductive groups, ρP equals half the sum
of the roots of the parabolic subgroup.

Definition 4.6. (Langlands Eisenstein series) Let n ≥ 2 and 2 ≤ r ≤ n. Let P be
the parabolic subgroup P := Pn1,n2,...,nr . Suppose Φ is a Maass form associated to P, as in

Definition 4.2. Let s = (s1, s2, . . . , sr) ∈ Cr with
r∑
i=1

nisi = 0 and let |g|sP be the power

function as in Definition 4.3.
For Γn := SL(n,Z), we define the Eisenstein series

(4.7) EP,Φ(g, s) :=
∑

γ∈(Γn∪P)\Γn

Φ(γg) · |γg|s+ρPP ,

with ρP as in Definition 4.4.

Example 4.8. (Borel Eisenstein series) Consider the partition

n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

,

associated to the Borel parabolic subgroup

B := P1,1,...,1 :=



∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 0 · · · ∗


 .

Then the Borel Eisenstein series is constructed as follows. Let Φ = 1 be the trivial function,

and choose s = (s1, s2, . . . , sn) where
n∑
i=1

si = 0. Then ρB =
(
n−1

2
, n−3

2
, . . . , 1−n

2

)
, and (4.7)

becomes

(4.9) EB(g, s) =
∑

γ∈(Γ∪B)\Γ

|γg|s+ρBB .

The Borel Eisenstein series for SL(2,Z) and SL(3,Z) are given in Examples 3.1 and 3.4
respectively.
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5. Whittaker function for Langlands Eisenstein series

Definition 5.1. (Jacquet’s Whittaker function) Let g ∈ GL(n,R) with n ≥ 2. Let

α = (α1, α2, . . . , αn) ∈ Cn with
n∑
i=1

αi = 0. We define the completed Whittaker function

Wα : GL(n,R)
/

(O(n,R) · R×)→ C, with Langlands parameter α, by the integral

(5.2) W (n)
α (g) =

∏
1≤j<k≤n

Γ
(1+αj−αk

2

)
π

1+αj−αk
2

·
∫

Un(R)

∣∣wn · ug∣∣s+ρBB ψ1,1,...,1(u) du,

where wn is the long element of the Weyl group for GL(n,R), and |∗|sB is the power function
for the Borel B given in Definition 4.3. This integral converges absolutely if Re(αi−αi+1) > 0

for 1 ≤ i ≤ n − 1, has meromorphic continuation to all α ∈ Cn satisfying
n∑
i=1

αi = 0, and is

invariant under permutations of α1, α2, . . . , αn (cf. [GMW21]).

Proposition 5.3. Let P := Pn1,n2,...nr be a parabolic subgroup of GL(n,R), and let Φ = φ1⊗
φ2⊗· · ·⊗φr be an automorphic form associated to P. For j = 1, 2, . . . , r, let (αj,1, . . . , αj,nj)
denote the Langlands parameter of φj. We adopt the convention that if nj = 1 then αj,1 = 0.
Then the Langlands parameter of EP,Φ(g, s) (denoted αP,Φ(s)) is

αP,Φ(s) =

( n1 terms︷ ︸︸ ︷
α1,1 + s1, . . . , α1,n1 + s1,

n2 terms︷ ︸︸ ︷
α2,1 + s2, . . . , α2,n2 + s2,

. . . ,

nr terms︷ ︸︸ ︷
αr,1 + sr, . . . , αr,nr + sr

)
.

Proof. Let B be the Borel parabolic subgroup of GL(n). We need to show that EP,Φ(g, s)

has the same eigenvalues as the power function
∣∣ ∗ ∣∣αP,Φ(s)+ρB

B .
By construction, the Eisenstein series EP(g, s) has the same eigenvalues as the power

function
∣∣ ∗ ∣∣s+ρPP . If we define s∗ + ρ∗P ∈ Cr by

s∗ + ρ∗P :=

( n1 terms︷ ︸︸ ︷
s1 + ρP(1), . . . , s1 + ρP(1),

n2 terms︷ ︸︸ ︷
s2 + ρP(2), . . . , s2 + ρP(2),

. . . ,

nr terms︷ ︸︸ ︷
sr + ρP(r), . . . , sr + ρP(r)

)
,

then
∣∣ ∗ ∣∣s+ρPP =

∣∣ ∗ ∣∣s∗+ρ∗PB . To see this, note that it suffices to check this equality on diagonal
matrices diag(d1, d2, . . . , dn). This can be verified by a simple calculation.

Let Bj be the Borel parabolic subgroup of GL(nj). Let (αj,1, αj,2, . . . , αj,nj) be the Lang-

lands parameter of φj (that is, φj has the same eigenvalues as
∣∣ ∗ ∣∣αj+ρBjBj ). The Langlands

parameter of Φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φr is

αΦ =

( n1 terms︷ ︸︸ ︷
α1,1, . . . , α1,n1 ,

n2 terms︷ ︸︸ ︷
α2,1, . . . , α2,n2 , . . . ,

nr terms︷ ︸︸ ︷
αr,1, . . . , αr,nr

)
.
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Hence Φ has the same eigenvalues as
∣∣ ∗ ∣∣αΦ+ρΦ

B , where

ρΦ =

( ρB1︷ ︸︸ ︷
n1−1

2
, n1−3

2
, . . . , 1−n1

2
,

ρB2︷ ︸︸ ︷
n2−1

2
, n2−3

2
, . . . , 1−n2

2
, . . . ,

ρBr︷ ︸︸ ︷
nr−1

2
, nr−3

2
, . . . , 1−nr

2

)
.

The eigenvalues of EP,Φ(∗, s) match those of
∣∣ ∗ ∣∣αΦ+ρΦ

B ·
∣∣ ∗ ∣∣s∗+ρ∗PB . It therefore suffices to

show that

(5.4) αΦ + ρΦ + s∗ + ρ∗P = αP,Φ(s) + ρB.

This is equivalent to the identity ρΦ + ρ∗P = ρB, which follows immediately from the defini-
tions. �

6. Statement and proof of the Main Theorem of this paper

Proposition 6.1. The M th Fourier coefficient of EP,Φ Let

s = (s1, s2, . . . , sr) ∈ Cr,

where
r∑
i=1

nisi = 0. Consider EP,Φ(∗, s) with associated Langlands parameters αP,Φ(s) as

defined in Proposition 5.3. Let M = (m1,m2, . . . ,mn−1) ∈ Zn−1
>0 . Then the M th term in the

Fourier-Whittaker expansion of EP,Φ is

1∫
0

· · ·
1∫

0

EP,Φ(ug, s) exp

(
−2πi

n−1∑
i=1

miui,i+1

) ∏
1≤i<j≤n

dui,j =
AP,Φ(M, s)
n−1∏
k=1

m
k(n−k)/2
k

WαP,Φ (s)

(
Mg
)
,

where AP,Φ(M, s) = AP,Φ
(
(1, . . . , 1), s

)
· λP,Φ(M, s), and

λP,Φ
(
(m, 1, . . . , 1), s

)
=

∑
c1,c2,...,cr ∈Z>0

c1c2···cr=m

λφ1(c1) · · ·λφr(cr) · cs11 · · · csrr .(6.2)

is the (m, 1, . . . , 1)th (or more informally the mth) Hecke eigenvalue of EP,Φ.
Moreover, suppose φj has Langlands parameter (αj,1, . . . , αj,nj), with the convention that

if nj = 1 then αj,1 = 0. We also assume that each φj is normalized to have Petersson norm
〈φj, φj〉 = 1. Then the first coefficient of EP,Φ is given by

AP,Φ
(
(1, . . . , 1), s

)
=

r∏
k=1
nk 6=1

L∗
(
1,Ad φk

)− 1
2

∏
1≤j<`≤r

L∗
(
1 + sj − s`, φj × φ`

)−1

up to a non-zero constant factor with absolute value depending only on n. Here

L∗(1, Ad φk) = L(1, Ad φk)
∏

1≤i 6=j≤nk

Γ

(
1 + αk,i − αk,j

2

)
and

L∗(1 + sj − s`, φj × φ`) =


L∗(1 + sj − s`, φj) if n` = 1 and nj 6= 1,

L∗(1 + sj − s`, φ`) if nj = 1 and n` 6= 1,

ζ∗(1 + sj − s`) if nj = n` = 1.
14



Otherwise, L∗(1 + sj − s`, φj × φ`) is the completed Rankin-Selberg L-function.

Proof. The proof of this proposition is given in [GSW23]. �

Theorem 6.3. (Main Theorem) Let P := Pn1,n2,...nr be a parabolic subgroup of GL(n,R),
and let Φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φr be an automorphic form associated to P. For j = 1, 2, . . . , r,
let (αj,1, . . . , αj,nj) denote the Langlands parameter of φj. We adopt the convention that if
nj = 1 then αj,1 = 0.

Let EP,Φ(g, s) be as in Definition 4.6. Define

E∗P,Φ(g, s) :=

( ∏
1≤j<`≤r

L∗
(
1 + sj − s`, φj × φ`

))
EP,Φ(g, s),

where s = (s1, s2, . . . sr) ∈ Cr satisfies
r∑
j=1

njsj = 0. Then the M = (m, 1, . . . , 1)th Fourier-

Whittaker coefficient of E∗P,Φ(g, s), defined by

FWP,Φ(g,M, s) :=

1∫
0

· · ·
1∫

0

E∗P,Φ(ug, s) exp

(
−2πi

n−1∑
i=1

miui,i+1

) ∏
1≤i<j≤n

dui,j,

satisfies the functional equations

FWP,Φ(g,M, s) = FWσP,σΦ(g,M, σs)

for any σ ∈ Sr. The action of σ on P, Φ, and s is given by

σP := Pnσ(1),nσ(2),...,nσ(r)
,

σΦ := φσ(1) ⊗ φσ(2) ⊗ · · ·φσ(r),

σs :=
(
sσ(1), sσ(2), . . . , sσ(r)

)
.

Proof. By Proposition 6.1, it suffices to show that each of the following three expressions is
invariant under the action of any σ ∈ Sr:

r∏
k=1
nk 6=1

L∗
(
1,Ad φk

)− 1
2 ,

∑
c1,c2,...,cr ∈Z>0

c1c2···cr=m

λφ1(c1) · · ·λφr(cr) · cs11 · · · csrr , WαP,Φ (s)

(
Mg
)
.

The first two of these expressions clearly satisfy these invariances. Moreover, by Proposition
5.3, the above action of σ amounts to a certain permutation of the coordinates of the Lang-
lands parameter αP,Φ(s). It is well-known ([Gol15]) that the Whittaker function WαP,Φ (s) is

invariant under such permutations. �

Corollary 6.4. Suppose σ ∈ Sr satisfies σΦ = Φ. Then

FWP,Φ(g,M, s) = FWP,Φ(g,M, σs).

Proof. This is immediate from our Main Theorem. �
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Corollary 6.5. (Functional equations of E∗P,Φ(g, s)) Suppose σ ∈ Sr satisfies

σP = Pnσ(1),nσ(2),...,nσ(r)
, σΦ = φσ(1) ⊗ φσ(2) ⊗ · · ·φσ(r), σs =

(
sσ(1), sσ(2), . . . , sσ(r)

)
.

Then

E∗P,Φ(g, s) = E∗σP,σΦ(g, σs),

for all g ∈ GL(n,R).

Proof. This follows from the fact that it is known by Langlands (see [Lan76], [MW95]) that
E∗P,Φ(g, s) satisfies functional equations in the variables s. It is easy to see that every Fourier
Whittaker coefficient of E∗P,Φ(g, s) has to have the same functional equation. Furthermore,
one can check that the functional equations found by Langlands match the functional equa-
tions of the Fourier Whittaker coefficients given in Theorem. 6.3 �

Example 6.6. The Borel Eisenstein series satisfies FWB(g,M, s) = FWB(g,M, σs) for any
σ ∈ Sn.

Example 6.7. If Φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φr and φk = φj for some 1 ≤ k 6= j ≤ r, and σ is the
transposition that interchanges k and j, then FWP,Φ(g,M, s) = FWP,Φ(g,M, σs).

7. Uniqueness of functional equations for self-dual Langlands
Eisenstein series

Conjecture 7.1. Let n ≥ 2. Suppose that P = Pn1,n2,...,nr with n = n1 + n2 + · · ·+ nr with
r ≥ 2 and Φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φr with each φj a Maass form for SL(nj,Z) if nj ≥ 2 and
φj is the constant function one if nj = 1. If E∗P,Φ(g, s) satisfies a functional equation of the
form

E∗P,Φ(g, s) = E∗P,Φ(g, µ(s))

for some affine transformation

(7.2) µ

([ s1
s2
...
sr

])
=

[ a11 a12 ··· a1r
a21 a22 ··· a2r

...
a11 a12 ··· ar1

][ s1
s2
...
sr

]
+

 b1
b2
...
br

 ,
where aij, bi ∈ R for all 1 ≤ i, j ≤ r. Then, in fact, µ = σ for some σ ∈ Sr for which
σP = P and σΦ = Φ.

We give the following two results as evidence for this conjecture.

Proposition 7.3. Conjecture 7.1 holds in the special case that φ1 = φ2 = · · · = φr is the
same automorphic form φ with r ≥ 2. (Note: In this case, every permutation σ ∈ Sr has the
property that σP = P and σΦ = Φ.)

Conjecture 7.4. Fix an integer κ ≥ 2. Assume `1, `2, . . . , `κ are arbitrary integers greater
than one. Let η1, η2, . . . , ηκ be distinct Maass forms where each ηj is a Maass form for
SL(`j,Z) with associated nth Hecke eigenvalue λj(n). Then there exists a prime p such that
λ1(p), λ2(p), . . . , λκ(p) are all distinct and non zero.

Remark 7.5. Conjecture 7.4 can be proved in the case that κ = 2 by the methods introduced
in [JS81].
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Proposition 7.6. Assume Conjecture 7.4 and assume that µ given in (7.2) is linear, i.e.,
bi = 0 for each i = 1, 2, . . . , r. Then Conjecture 7.1 holds.

Remark 7.7. The proof uses the fact that if φj 6= φk, then we can find p such that λj(p)
and λk(p) are nonzero and distinct. If µ is not necessarily linear and Φ consists of at least
two distinct automorphic forms, our proof breaks down if λj(p) = pbλk(p) for some value of
b independent of p.

Before giving the proofs of these propositions, we give a Lemma which reduces the proof
of Conjecture 7.1 to showing that a functional equation for the divisor sum puts strong
restrictions on the affine transformation µ.

Lemma 7.8. Assume that there exist integers r1, r2, . . . , rk for which r = r1 + r2 + · · ·+ rk
and

(7.9) Φ =

r1 times︷ ︸︸ ︷
φ1 ⊗ φ1 ⊗ · · · ⊗ φ1 ⊗

r2 times︷ ︸︸ ︷
φ2 ⊗ φ2 ⊗ · · · ⊗ φ2 ⊗ · · · ⊗

rk times︷ ︸︸ ︷
φk ⊗ φk ⊗ · · · ⊗ φk .

Set λj = λφj , and write

µj(s) = aj1s1 + aj2s2 + · · ·+ ajrsr + bj,

where φi = φj if and only if i = j. Conjecture 7.1 holds if the following is true: If µ is an

affine transformation for which, setting r̂i =
i∑

j=1

rj,

(7.10)
k∑
j=1

λj(p)

 r̂j∑
i=r̂j−1+1

psi

 =
k∑
j=1

λj(p)

 r̂j∑
i=r̂j−1+1

pµi(s)


is true for all s = (s1, s2, . . . , sr) ∈ Cr satisfying

r∑
j=1

njsj and all primes p, then it must be

the case that µ = σ ∈ Sr is of the form σ = σ1 × σ2 × · · · × σk for which σj ∈ Srj permutes
the j-th block of rj forms φj ⊗ φj ⊗ · · ·φj.

Proof. If E∗P,Φ(g, s) = E∗P,Φ(g, µ(s)), then it must be true that for every g the product of the
divisor sum and the Whittaker function appearing in FWP,Φ(g, (p, 1, . . . , 1), s) is invariant
under s 7→ µ(s). Since we can choose g = diag(p−1, 1, . . . , 1), for which the Whittaker
function portion of FWP,Φ is independent of p, it must be the case that the divisor sum by
itself is invariant. Hence, it suffices to prove that the only possible affine transformations µ
which preserve the divisor sum are in fact permutations σ for which σΦ = Φ. �

Remark 7.11. There is no loss in generality in assuming that Φ is in the special form given
in (7.9). Indeed, if Φ is not of this form, then there exists some element σ0 ∈ Sr such that
σ0Φ is of the desired form. Since Corollary 6.5 implies that

E∗P,Φ(g, s) = E∗σ0P,σ0Φ(g, σ0(s))

we have that
E∗P,Φ(g, s) = E∗P,Φ(g, µ(s)),

if and only if

E∗σ0P,σ0Φ(g, s) = E∗P,Φ(g, σ−1
0 (s)) = E∗P,Φ(g, (µσ−1

0 )(s)) = E∗σ0P,σ0Φ(g, (σ0µσ
−1
0 )(s)).
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Moreover, assuming µ is a permutation of which preserves Φ is equivalent to assuming that
σ = (σ0µσ

−1
0 ) is a permutation which preserves σ0Φ, i.e., of the form σ1 × σ2 × · · · × σk.

7.1. Proof of Proposition 7.3. In this case, note that (7.10) simplifies to give

λ(p)
(
ps1 + ps2 + · · ·+ psr

)
= λ(p)

(
pµ1(s) + pµ2(s) + · · · pµr(s)

)
.

We may assume that p is a prime for which λ(p) 6= 0, hence

(7.12) ps1 + ps2 + · · ·+ psr = pµ1(s) + pµ2(s) + · · · pµr(s).

By Lemma 7.8, we just need to show that the only way this can possibly hold is if each term
µj(s) is actually equal to sσ(j) for some permutation σ ∈ Sr.

To see that this is the case, first fix s2, . . . , sr−1 and assume that s1 ∈ R with s1 → ∞.
Then in order for the asymptotics of the left hand side of (7.12) to agree with those of the
right hand side, it must be the case that µj1(s) = s1 for some j1 ∈ {1, 2, . . . , r}. This same
argument gives, for each i = 1, 2, . . . , r − 1, that si = µji(s) for some ji ∈ {1, 2, . . . , r}.
Similarly, we see that µjr(s) = sr by looking at the case that s1 → −∞ with s2, . . . , sr−1

fixed. Therefore, µ is given by the map i 7→ ji, which, by the pigeonhole principle, is a
permutation. �

7.2. Proof of Proposition 7.6. We assume that Φ is as in Lemma 7.8 and that µ is linear,
i.e., (7.2) holds with b1 = b2 = · · · = br = 0.

In order to simplify the proof, we set some notation. Recall, first, that r̂i =
i∑

j=1

rj. Then

let

Ij :=
{
i ∈ Z | r̂j−1 < i ≤ r̂j

}
.

For each j = 1, 2, . . . , k, we set λj := λφj . Then (7.9) is equivalent to

(7.13)
k∑
j=1

λj(p)

(∑
i∈Ij

psi

)
=

k∑
j=1

λj(p)

(∑
i∈Ij

pµi(s)

)
.

As in the proof of Proposition 7.3, we choose p such that λj(p) = λk(p) if and only if j = k.
Then, for a particular i ∈ I1, consider the limit si → +∞ (where sj is fixed for j 6= i, r).
Then the left hand side of (7.13) is asymptotic to λ1(p)psi . To agree with the right hand
side, it must be the case that µji(s) = si for some choice of ji ∈ I1. This shows, again via
the pigeonhole principle, that µ permutes the variables

{
s1, . . . , sr1

}
.

The same argument holds for i ∈ Ik for k = 2, . . . , r by considering si → +∞ with sj
fixed for j 6= i, 1. Comparing the asymptotics of both sides of (7.13), we conclude that µ
permutes the set

{
si | i ∈ Ik

}
. Combined with Lemma 7.8, this completes the proof. �

Remark 7.14. We observe that if one is in a case that µ is linear, i.e., that µ is as in (7.2)
with the constants bi = 0 for each i = 1, 2, . . . , r, then the representation of µ as a matrix
is not unique. Indeed, we can think of µ as an element in the image of the natural map
ψ : Mr×r(C)→ HomC(V,Cr), where

V = Cr/{(s1, s2, . . . , sr) | s1 + s2 + · · ·+ sr = 0}.
18



Note that ψ is clearly surjective, but its kernel contains the subspace

W =

{[ a1 a1 ··· a1
a2 a2 ··· a2

...
...

...
ar ar ··· ar

]∣∣∣∣∣ a1, a2, . . . , ar ∈ C

}
.

By a simple dimension counting argument, in fact, we see that ker(ψ) = W .
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