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Abstract. Let Γ denote the modular group SL(2, Z) and Cn(Γ) the number of congruence

subgproups of Γ of index at most n. We prove that lim
n→∞

log Cn(Γ)

(log n)2/ log log n
= 3−2

√
2

4
. Some

extensions of this result for other arithmetic groups are presented as well as a general conjecture.

§0. Introduction

Let k be an algebraic number field, O its ring of integers, S a finite set of valuations of
k (containing all the archimedean ones), and OS =

{
x ∈ k

∣∣ v(x) ≥ 0, ∀v �∈ S
}
. Let G

be a semisimple, simply connected, connected algebraic group defined over k with a fixed
embedding into GLd. Let Γ = G(OS) = G ∩ GLd(OS) be the corresponding S-arithmetic
group. We assume that Γ is an infinite group.

For every non-zero ideal I of OS let Γ(I) = Ker
(
Γ → GLd(OS/I)

)
. A subgroup of Γ is

called a congruence subgroup if it contains Γ(I) for some I. For n > 0, define

Cn(Γ) = #
{
congruence subgroups of Γ of index at most n

}
.

Theorem 1. There exist two positive real numbers α− and α+ such that for all sufficiently
large positive integers n

n
log n

log log nα− ≤ Cn(Γ) ≤ n
log n

log log nα+ .

This theorem is proved in [Lu], although the proof of the lower bound presented there
requires the prime number theorem on arithmetic progressions in an interval where its
validity depends on the GRH (generalized Riemann hypothesis for arithmetic progressions).
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In §2 below, we show that by appealing to a theorem of Linnik [Li1, Li2] on the least prime
in an arithmetic progression, the proof can be made unconditional. Following [Lu] we define:

α+(Γ) = lim
logCn(Γ)

λ(n)
, α−(Γ) = lim

logCn(Γ)
λ(n)

,

where λ(n) = (log n)2

log log n .
It is not difficult to see that α+ and α− are independent of both the choice of the

representation of G as a matrix group, as well as independent of the choice of S. Hence
α± depend only on G and k. The question whether α+(Γ) = α−(Γ) and the challenge to
evaluate them for Γ = SL2(Z) and other groups were presented in [Lu]. It was conjectured
by Rademacher that there are only finitely many congruence subgroups of SL2(Z) of genus
zero. This counting problem has a long history. Petersson [Pe, 1974] proved that the number
of all subgroups of index n and fixed genus goes to infinity exponentially as n → ∞. Dennin
[De, 1975] proved that there are only finitely many congruence subgroups of SL2(Z) of
given fixed genus and solved Rademacher’s conjecture. It does not seem possible, however,
to accurately count all congruence subgroups of index at most n in SL2(Z) by using the
theory of Riemann surfaces of fixed genus. Here we prove:

Theorem 2. α+(SL2(Z)) = α−(SL2(Z)) = 3−2
√

2
4 = 0.0428932 . . .

We believe that SL2(Z) represents the general case and we expect that α+ = α− for all
groups.

The proof of the lower bound in Theorem 2 is based on the Bombieri-Vinogradov Theorem
[Bo], [Da], [Vi], i.e., the Riemann hypothesis on the average. The upper bound, on the other
hand, is proved by first reducing the problem to a counting problem for subgroups of abelian
groups and then solving that extremal counting problem.

We will, in fact, show a more remarkable result: the answer is independent of O!

Theorem 3. Let k be a number field with Galois group g = Gal(k/Q) and with ring of
integers O. Let S be a finite set of primes, and OS as above. Assume GRH (generalized
Riemann hypothesis) for k and all cyclotomic extensions k(ζ�) with � a rational prime and
ζ� a primitive �th root of unity. Then

α+(SL2(OS)) = α−(SL2(OS)) =
3 − 2

√
2

4
.

The GRH is needed only for establishing the lower bound. It can be dropped in many
cases by appealing to a theorem of Murty and Murty [MM] which generalizes the Bombieri–
Vinogradov Theorem cited earlier.
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Theorem 4. Theorem 3 can be proved unconditionally for k if either

(a) g = Gal(k/Q) has an abelian subgroup of index at most 4 (this is true, for example,
if k is an abelian extension);

(b) d = deg[k : Q] < 42.

We conjecture that for every Chevalley group scheme G, the upper and lower limiting
constants, α±(G(OS)), depend only on G and not on O. In fact, we have a precise con-
jecture, for which we need to introduce some additional notation. Let G be a Chevalley
group scheme of dimension d = dim(G) and rank � = rk(G). Let κ = |Φ+| denote the
number of positive roots in the root system of G. Letting R = R(G) = d−�

2� = κ
� , we see that

R = �+1
2 , (resp.�, �, �−1, 3, 6, 6, 9, 15) if G is of type A� (resp. B�, C�, D�, G2, F4, E6, E7, E8).

Conjecture. Let k,O, and S be as in Theorem 3, and suppose that G is a simple Chevalley
group scheme. Then

α+(G(OS)) = α−(G(OS)) =

(√
R(R + 1) −R

)2

4R2
.

The conjecture reflects the belief that “most” subgroups of H = G(Z/mZ) lie between
the Borel subgroup B of H and the unipotent radical of B. Our proof covers the case of
SL2 and we are quite convinced that this will hold in general. For general G, we do not
have such an in depth knowledge of the subgroups of G(Fq) as we do for G = SL2, yet we
can still prove:

Theorem 5. Let k,O, and S be as in Theorem 3. Let G be a simple Chevalley group scheme
of dimension d and rank �, and R = R(G) = d−�

2� , then:

(a) Assuming GRH or the assumptions of Theorem 4;

α−(G(OS)) ≥

(√
R(R + 1) −R

)2

4R2
∼ 1

16R2
.

(b) There exists an absolute constant C such that

α+(G(OS)) ≤ C ·
(√

R(R + 1) −R
)2

4R2
.

Corollary 6. There exists an absolute constant C such that for d = 2, 3, . . .

(1 − o(1))
1

4d2
≤ α−(SLd(Z)) ≤ α+(SLd(Z)) ≤ C

1
d2

.

This greatly improves the upper bound α+(SLd(Z)) < 5
4d

2 implicit in [Lu] and settles a
question asked there.

As a byproduct of the proof of Theorem 2 in §7 we obtain the following.
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Corollary 7. The subgroup growth type of SLd(Zp) is at least nc where c = (3− 2
√

2)d2 −
2(2 −

√
2).

The counting techniques in this paper can be applied to solve a novel extremal problem in
multiplicative number theory involving the greatest common divisors of pairs (p− 1, p′ − 1)
where p, p′ are prime numbers. The solution of this problem does not appear amenable to
the standard techniques used in analytic number theory.

Theorem 8. For n → ∞, let

M(n) = max

{ ∏
p,p′∈P

gcd(p− 1, p′ − 1)

∣∣∣∣∣ P = set of different primes where
∏
p∈P

p ≤ n

}
.

Then we have: lim logM(n)
λ(n) = lim logM(n)

λ(n) = 1
4 , ( where λ(n) = (log n)2/ log logn).

The paper is organized as follows.
In §1, we present some required preliminaries and notation.
In §2, we prove the lower bound of Theorem 1. As shown in [Lu] this depends essentially

on having uniform bounds on the error term in the prime number theorem along arithmetic
progressions. The choice of parameters in [Lu] needed an estimate on this error term in
a domain in which it is known only modulo the GRH. We show here that by a slight
modification of the proof and an appeal to a result of Linnik the proof will be unconditional.
Still, if one is interested in good lower bounds on α−(Γ), better estimates on the error terms
are needed. To obtain unconditional results (independent of the GRH), we will use the
Bombieri–Vinogradov Theorem [Bo], [Da], [Vi].

In §3, we introduce the notion of a Bombieri set which is the crucial ingredient needed
in the proof of the lower bounds. We then use it in §4 and §5 to prove the lower bounds of
Theorems 2, 3, 4, and 5. We then turn to the proof of the upper bounds. In §6, we show how
the counting problem of congruence subgroups in SL2(Z) can be completely reduced to an
extremal counting problem of subgroups of finite abelian groups; the problem is actually, as
one may expect, a number theoretic extremal problem - see §7 and §8 where this extremal
problem is solved and the upper bounds of Theorems 2, 3, and 4 are then deduced in §9. In
§10 we give the upper bound of Theorem 5. Finally, in §11 we prove Theorem 8.

§1. Preliminaries and notation

Throughout this paper we let

�(n) =
log n

log log n
, λ(n) =

(log n)2

log log n
.
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If f and g are functions of n, we will say that f is small w.r.t. g if lim
n→∞

log f(n)
log g(n) = 0. We say

that f is small if f is small with respect to n�(n). Note that if f is small, then multiplying
Cn(Γ) by f will have no effect on the estimates of α+(Γ) or α−(Γ). We may, and we will,
ignore factors which are small.

Note also that if ε(n) is a function of n which is smaller than n

(i.e., log ε(n) = o(log n)) then:

(1.1) lim
logCnε(n)(Γ)

λ(n)
= α+(Γ)

and

(1.2) lim
logCnε(n)(Γ)

λ(n)
= α−(Γ).

The proof of (1.1) follows immediately form the inequalities:

α+(Γ) = lim
logCn(Γ)

λ(n)
≤ lim

logCnε(n)(Γ)
λ(n)

= lim
logCnε(n)(Γ)
λ(nε(n))

· λ(nε(n))
λ(n)

≤ α+(Γ) · 1
= α+(Γ).

Here, we have used the fact that lim λ(nε(n))
λ(n) = 1, which is an immediate consequence of the

assumption that ε(n) is small with respect to n. A similar argument proves (1.2).
It follows that we can, and we will sometimes indeed, enlarge n a bit when evaluating

Cn(Γ), again without influencing α+ or α−. Similar remarks apply if we divide n by ε(n)
provided ε(n) is bounded away from 0.

The following lemma is proved in [Lu] in a slightly weaker form and in its current form
is proved in [LS, Proposition 6.1.1].

Lemma 1.1. (“Level versus index”). Let Γ be as before. Then there exists a constant c > 0
such that if H is a congruence subgroup of Γ of index at most n, it contains Γ(m) for some
m ≤ cn, where m ∈ Z and by Γ(m) we mean Γ(mOS).

Corollary 1.2. Let γn(Γ) =
n∑

m=1
sn(G(OS/mOS)), where for a group H, sn(H) denotes

the number of subgroups of H of index at most n. Then we have α+(Γ) = lim log γn(Γ)
λ(n) and

α−(Γ) = lim log γn(Γ)
λ(n) .

Proof. By Lemma 1.1, Cn(Γ) ≤ γcn(Γ) for some c > 0. It is also clear that γn(Γ) ≤ n·Cn(Γ).
Since c = o(log n) (i.e., c is small w.r.t. n), Corollary 1.2 follows by arguments of the type
we have given above. �
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The number of elements in a finite set X is denoted by #X or |X|. The set of subgroups
of a group G is denoted by Sub(G).

§2. Proof of Theorem 1

Before proving the theorem, a remark is in order (see also [Lu]): we may change S, as
long as Γ = G(OS) is infinite, without changing α− or α+. Also, by restriction of scalars
(and as we are not worried in Theorem 1 about the precise constants) we can assume k = Q.

The proof given here for Theorem 1 will follow the one given in [Lu] (and simplify it a bit).
The main new ingredient is the use of a deep result of Linnik [Li1, Li2] giving an estimate
for the number of primes in a short interval of an arithmetic progression. A result of that
kind was also used in [Lu], but because of a careless choice of the parameters, the interval
was very short, and the validity of the prime number theorem there is known only modulo
GRH.

We introduce some notation which is needed here and for the next section. Let a, q

be relatively prime integers with q > 0. For x > 0, let P(x; q, a) be the set of primes p

with p ≤ x and p ≡ a( mod q). For a = 1, we set P(x; q) = P(x; q, 1). We also define
ϑ(x; q, a) =

∑
p∈P(x;q,a)

log p.

If f(x), g(x) are arbitrary functions of a real variable x, we say f(x) ∼ g(x) as x → ∞ if

lim
x→∞

f(x)
g(x)

= 1.

Theorem 2.1 (Linnik, [Li1, Li2]). There exist effectively computable constants c0, c1 > 1
such that if a and q are relatively prime integers, q ≥ 2 and x ≥ qc0 , then

ϑ(x; q, a) ≥ x

c1q2ϕ(q)
,

where ϕ is the Euler function.

Let now x be a large number and q a prime with q ∼ x1/c0 . Let X be a subset of P(x; q)
satisfying ∑

p∈X
log p ∼ 1

c1
x1−θ(x),

where 0 < θ(x) ≤ 3
c0
. We also define P =

∏
p∈X

p. It follows that

logP ∼ x1−θ(x)

c1
.
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Let now Γ(P ) be the corresponding principal congruence subgroup. It is of index ap-
proximately P dimG in Γ and by Strong Approximation, Γ/Γ(P ) =

∏
p∈P(x;q)

G(Fp), where G

is considered as a group defined over Fp. (This can be done for almost all p’s and we can
ignore the finitely many exceptions). Moreover, by a theorem of Lang (see [PR, Theorem
6.1]) G is quasi-split over Fp, which implies that G has a split one dimensional torus, so
G(Fp) has a subgroup isomorphic to F×

p . The latter is a cyclic group of order p − 1. Since
q|p−1, G(Fp) contains a cyclic group of order q and Γ/Γ(P ) contains a subgroup isomorphic
to (Z/qZ)L where L = #X.

It now follows from Theorem 2.1 and the choice of X, that

L ≥ x1−θ(x)

c1 log x
.

On the other hand, the abelian group (Z/qZ)L has q
1
4L

2+O(L) subgroups as L → ∞ (cf. [LS,
Prop. 15.2 ] or Proposition 7.1 below). Consequently, Γ has at least q

1
4L

2+O(L) subgroups
of index at most P dim(G).

Taking logarithms, we compute:

log(#subgroups)
(log(index))2/ log log(index)

≥ ( 1
4L

2 + O(L)) log q
(log(P dim(G)))2/ log log(P dimG)

≥

1
4

(
x1−θ(x)

c1 log x

)2

· 1
c0

log x

dim(G)2 1
c21

(
x1−θ(x))2

/
(1 − θ(x)) log x

=
1 − θ(x)

4c0(dimG)2
≥

(1 − 3
c0

)
4c0(dimG)2

.

This finishes the proof of the lower bound with α− = c
(dimG)2 for some constant c.

When one is interested in better estimates on α−, Linnik’s result is not sufficient. We
show, however, in the next two sections, that the Bombieri–Vinogradov Theorem, Riemann
hypothesis on the average, suffices to get lower bounds on α− which are as good as can be
obtained using GRH (though the construction of the appropriate congruence subgroup is
probabilistic and not effective).

§3. Bombieri Sets.

Let a, q be relatively prime integers with q > 0. For x > 0 let

ϑ(x; q, a) =
∑
p≤x

p≡ a (mod q)

log p,

where the sum ranges over rational prime numbers p. Define the error term

E(x; q, a) = ϑ(x; q, a) − x

φ(q)
,

where φ(q) is Euler’s function. Then Bombieri proved the following deep theorem [Bo], [Da].
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Theorem 3.1. (Bombieri) Let A > 0 be fixed. Then there exists a constant c(A) > 0 such
that ∑

q ≤
√

x

(log x)A

max
y≤x

max
(a,q)=1

∣∣E(y; q, a)
∣∣ ≤ c(A) · x

(log x)A−5

as x → ∞.

This theorem shows that the error terms max
(a,q)=1

E(x; q, a) behave as if they satisfy the

Riemann hypothesis in an averaged sense.

Definition 3.2. Let x be a large positive real number. A Bombieri prime (relative to x)
is a prime q ≤ √

x such that the set P(x, q) of primes p ≤ x with p ≡ 1 (mod q) satisfies

max
y ≤ x

|E(y; q, 1)| ≤ x

φ(q)(log x)2
.

We call P(x, q) a Bombieri set (relative to x).

Remark. In all the applications in this paper, we do not really need q to be prime, though it
makes the calculations somewhat easier. We could work with q being a “Bombieri number”.

Lemma 3.3. Fix 0 < ρ < 1
2 . Then for x sufficiently large, there exists at least one Bombieri

prime (relative to x) q in the interval

xρ

log x
≤ q ≤ xρ.

Proof. Assume that
max
y ≤ x

|E(y; q, 1)| >
x

φ(q)(log x)2

for all primes xρ

log x ≤ q ≤ xρ, i.e., that there are no such Bombieri primes in the interval. In
view of the trivial inequality, φ(q) = q − 1 < q, it immediately follows that

∑
xρ

log x ≤ q≤ xρ

max
y ≤ x

∣∣E(y; q, 1)
∣∣ >

x

(log x)2
∑

xρ

log x ≤ q≤ xρ

1
q

>
x · (log log x)2

2ρ · (log x)3
,

say, for sufficiently large x. This follows from the well known asymptotic formula [Lan] for
the partial sum of the reciprocal of the primes

∑
q≤Y

1
q

= log log Y + b + O

(
1

log Y

)

as Y → ∞. Here b is an absolute constant. This contradicts Theorem 3.1 with A ≥ 8
provided x is sufficiently large. �
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Lemma 3.4. Let P(x, q) be a Bombieri set. Then for x sufficiently large∣∣∣∣#P(x, q) − x

φ(q) log x

∣∣∣∣ ≤ 3
(

x

φ(q)(log x)2

)
.

Proof. We have∑
p∈P(x,q)

1 =
x∑
n=2

ϑ(n; q, 1) − ϑ(n− 1; q, 1)
log n

=
x∑
n=2

ϑ(n; q, 1)
( 1

log(n)
− 1

log(n + 1)

)
+

ϑ(x; q, 1)
log([x] + 1)

=
x∑
n=2

ϑ(n; q, 1)
log

(
1 + 1

n

)
log n log(n + 1)

+
ϑ(x; q, 1)

log x
− ϑ(x; q, 1)

(
1

log x
− 1

log([x] + 1)

)
.

It easily follows that∣∣∣∣∣∣
∑

p∈P(x,q)

1 − ϑ(x; q, 1)
log x

∣∣∣∣∣∣ ≤
x∑
n=2

ϑ(n; q, 1)
1

n · (log n)2
+ ϑ(x; q, 1)

(
1

log x
− 1

log(x + 1)

)
.

By the property of a Bombieri set, we have the estimate |ϑ(n; q, 1) − n
φ(q) | ≤ x

φ(q)(log x)2 , for

n ≤ x. Since
(

1
log x − 1

log(x+1)

)
=

log(1+ 1
x )

log x log(x+1 ) = O
(

1
x(log x)2

)
, the second expression on the

right side of the above equation is very small and can be ignored. It remains to estimate

the sum
x∑
n=2

ϑ(n; q, 1) 1
n·(log n)2 . This sum can be broken into two parts, the first of which

corresponds to n ≤ x
(log x)3 , which is easily seen to be very small, so can be ignored. We

estimate∑
x

(log x)3
≤n≤x

ϑ(n; q, 1)
1

n · (log n)2
=

∑
x

(log x)3
≤n≤x

n

φ(q)
· 1
n(log n)2

+ O


 ∑

x
(log x)3

≤n≤x

x

φ(q)(log x)2
· 1
n(log n)2




=
∑

x
(log x)3

≤n≤x

1
φ(q)(log n)2

+ O

(
x

φ(q)(log x)3

)

≤ 3
2

x

φ(q)(log x)2
,

which holds for x sufficiently large and where the constant 3
2 is not optimal. Hence∣∣∣∣∣∣

∑
p∈P(x,q)

1 − ϑ(x; q, 1)
log x

∣∣∣∣∣∣ ≤ 7
4

x

φ(q)(log x)2
,

say. Since |ϑ(x; q, 1) − x
φ(q) | ≤ x

φ(q)(log x)2 , Lemma 3.4 immediately follows.

�
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§4. Proof of the lower bound over Q.

In this section we consider the case of k = Q and O = Z.
Fix a real number 0 < ρ0 < 1

2 . It follows from Lemma 3.3 that for x → ∞ there exists
a real number ρ which converges to ρ0, and a prime number q ∼ xρ such that P(x, q) is a
Bombieri set.

Define

P =
∏

p ∈ P(x,q)

p.

It is clear from the definition of a Bombieri set that

logP ∼ x

φ(q)
∼ x1−ρ

and from Lemma 3.4 that

L = #P(x, q) ∼ x

φ(q) log x
∼ x1−ρ

log x
.

Consider Γ(P ) = ker(G(Z) → G(Z/PZ)) which is of index at most P dim(G) in Γ. Note
that for every subgroup H/Γ(P ) in Γ/Γ(P ) there corresponds a subgroup H in Γ of index
at most P dim(G) in Γ.

By strong approximation

Γ/Γ(P ) = G (Z/PZ) =
∏

p∈P(x,q)

G(Fp).

Let B(p) denote the Borel subgroup in G(Fp). Then

log
(
#B(p)

)
∼ dim(G) + rk(G)

2
log p.

But

log
(
#G(Fp)

)
∼ dim(G) log p.

It immediately follows that (for p → ∞)

log
[
G(Fp) : B(p)

]
∼ dim(G) − rk(G)

2
log p,

and, therefore,

log
[
G(Z/PZ) : B(P )

]
∼ dim(G) − rk(G)

2
logP.
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where B(P ) ≤ G(Z/PZ) is:

B(P ) =
∏

p∈P(x:q)

B(Fp).

Now B(p) is mapped onto F×
p

rk(G) and, hence, is also mapped onto (Z/qZ)rk(G) since
#F×

p = p− 1 and p ≡ 1 (mod q). So B(P ) is mapped onto

(Z/qZ)rk(G)·L

where

L = #P(x, q) ∼ x

φ(q) log x
∼ x1−ρ

log x
.

For a real number θ, define �θ� to be the smallest integer t such that θ ≤ t. Let 0 ≤ σ ≤ 1.

We will now use Proposition 7.1, a basic result on counting subspaces of finite vector
spaces. It follows that B(P ) has at least

qσ(1−σ)rk(G)2L2+O(rk(G)·L)

subgroups of index equal to

qσ·rk(G)·L� ·
[
G(Z/PZ) : B(P )

]
.

Hence, for x → ∞,

log
(
#

{
subgroups

})
=

(
σ(1 − σ)rk(G)2L2 + O(rk(G) · L)

)
log q

∼ σ(1 − σ)rk(G)2
x2−2ρ

(log x)2
· ρ log x,

while

log(index) = �σ · rk(G) · L� · log q +
1
2
(
dim(G) − rk(G)

)
logP

∼ rk(G)σ
x1−ρ

log x
ρ log x +

1
2
(
dim(G) − rk(G)

)
x1−ρ

=
(
σ · ρ · rk(G) +

1
2
(
dim(G) − rk(G)

))
x1−ρ,

and

log log(index) ∼ (1 − ρ) log x.
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We compute

log
(
#{subgroups}

)
(
log(index)

)2
/ log log(index)

∼
σ(1 − σ) · rk(G)2 · ρ x2−2ρ

log x((
σ · ρ · rk(G) + 1

2

(
dim(G) − rk(G)

))
x1−ρ

)2/
(1 − ρ) log x

∼ σ(1 − σ)ρ(1 − ρ) · rk(G)2((
σρ− 1

2

)
· rk(G) + 1

2 dim(G)
)2

as x → ∞.

We may rewrite

σ(1 − σ)ρ(1 − ρ) · rk(G)2((
σρ− 1

2

)
· rk(G) + 1

2 dim(G)
)2 =

σ(1 − σ)ρ(1 − ρ)
(σρ + R)2

where

R =
dim(G) − rk(G)

2 · rk(G)
.

Now, for fixed R, it is enough to choose σ, ρ so that

σ(1 − σ)ρ(1 − ρ)
(σρ + R)2

is maximized. This occurs when

ρ = σ =
√
R(R + 1) −R,

in which case we get

σ(1 − σ)ρ(1 − ρ)
(σρ + R)2

=

(√
R(R + 1) −R

)2

4R2
.

Actually, we choose ρ0 to be
√
R(R + 1) − R, then we can take ρ to be asymptotic to

ρ0 as x is going to infinity. Note that

(√
R(R+1)−R

)2

4R2 < 1
16R2 holds for all R > 0. This

follows from the easy inequality
√
R(R + 1) −R ≤ 1

2 . It is also straightforward to see that√
R(R + 1) −R converges to 1

2 as R → ∞ hence

(√
R(R+1)−R

)2

4R2 ∼ 1
16R2 .

In the special case when R = 1, we obtain the lower bound of Theorem 2. For a simple
Chevalley group scheme over Q, this gives the lower bound in Theorem 5.
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§5. Proof of the lower bound for a general number field.

To prove the lower bounds over a general number field we need an extension of the
Bombieri–Vinogradov Theorem to these fields, as was obtained by Murty and Murty [MM].

Let us first fix some notations:

Let k be a finite Galois extension of degree d over Q, g = Gal(k/Q), and O the ring of
integers in k. For a rational prime q and x ∈ R, we will denote by P̃k(x, q) the set of rational
primes p ≡ 1( mod q) where p splits completely in k and p ≤ x. Let

π̃k(x, q) = #P̃k(x, q), ν̃k(x, q) =
∑

p∈P̃k(x,q)

log p,

and,

Ẽk(x, q) = ν̃k(x, q) −
x

dφ(q)
.

We shall show that the following theorems follow from Murty and Murty [MM].

Theorem 5.1. Let k be a fixed finite Galois extension of Q. Assume GRH (generalized
Riemann hypothesis) for k and all cyclotomic extensions k(ζ�) with � a rational prime and
ζ� a primitive �th root of unity. Then for every 0 < ρ < 1

2 and x → ∞, there exists a
rational prime q such that

(a) xρ

log x ≤ q ≤ xρ

(b) |π̃k(x, q) − x
dφ(q) log x | ≤ 3

(
x

dφ(q)(log x)2

)

(c) max
y≤x

|Ẽk(y, q)| ≤ x
dφ(q)(log x)2 .

Theorem 5.2. Theorem 5.1 can be proved unconditionally for k if either

(a) g = Gal(k/Q) has an abelian subgroup of index at most 4 (this is true, for example,
if k is an abelian extension);

(b) d = deg[k : Q] < 42.

Theorem 5.3. Theorem 5.1 is valid unconditionally for every k with the additional
assumption that 0 < ρ < 1

η , where η is the maximum of 2 and d∗ − 2, and where d∗ is
the index of the largest possible abelian subgroup of g = Gal(k/Q). In particular, we may
take η = d∗ − 2 if d∗ ≥ 4 and η = 2 if d∗ ≤ 4.
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Proof of Theorems 5.1 - 5.3. For any ε > 0, A > 0, under the assumptions of Theorem 5.1
or 5.2 (a), Murty and Murty [MM] prove the following Bombieri theorem:

(5.1)
∑

q≤x
1
2−ε

max
(a,q)=1

max
y≤x

∣∣∣∣πC(y, q, a) − |C|
|G| ·

1
φ(q)

π(y)
∣∣∣∣ � x

(log x)A
.

Here C denotes a conjugacy class in G, π(y) =
∑
p≤y 1,

πC(x, q, a) =
∑
p≤x

(p,k/Q)=C

p≡a (mod q)

p unramified in k

1,

and (p, k/Q) denotes the Artin symbol.
In fact, under the assumption of the GRH, equation (5.1) holds, but without assuming

GRH they showed that (5.1) holds when the sum is over q < x
1
η −ε where η is defined as

follows: Let

(5.2) d∗ = min
H

max
w

[G : H]w(1)

The minimum here is over all subgroups H of Gal(k/Q) satisfying:
(i) H ∩ C �= ∅, and
(ii) for every irreducible character w of H and any non-trivial Dirichlet character χ, the

Artin L-series L(s, w ⊗ χ) is entire. Then the maximum in (5.2) is over the irreducible
characters of such H’s.

Now

η =
{

d∗ − 2 if d∗ ≥ 4
2 if d∗ ≤ 4

We need their result for the special case when C is the identity conjugacy class. In this
case |C|

|G| = 1
d and πC(y, q, 1) = π̃k(y, q). So for proving Theorem 5.3 we can take for H an

abelian subgroup of smallest index and then H satisfies assumption (i) and (ii). (Recall that
abelian groups satisfy (AC) - Artin conjecture, i.e. L(s, w ⊗ χ) are entire – see [CF]).

For Theorem 5.2(a), again take H to be the abelian subgroup of index at most 4. It
satisfies (i) and (ii) and this time η = 2.

For Theorem 5.2(b): Going case by case over all possible numbers d < 42, one can deduce
by elementary group theoretic arguments that every finite group g of order d < 42, has an
abelian subgroup of index at most 4, unless d = 24 and g is isomorphic to the symmetric
group S4. But for this group, a highly non-trivial theorem of Tunnell [Tu] asserts that it
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satisfies the Artin conjecture. Moreover, every irreducible character of S4 is of degree at
most 4. Thus for g = S4 we have d∗ = 4 and so η = 2.

The proofs of Theorems 5.1, 5.2 and 5.3 follow now in the same manner as in §3.
Using Theorems 5.1, 5.2, 5.3, we can now prove the lower bounds of Theorem 3 and 4

just as in §4. Note that every prime p ∈ P̃k(x, q) gives d prime ideals π1, . . . , πd in O with

[O : πi] = p, πi ∩ Z = pZ and
d∏
i=1

πi = pO. Now let Pk(x, q) be the set of all prime ideals in

O lying above the primes in P̃k(x, q), and

P =
∏

p∈P̃k(x,q)

pO =
∏

π∈Pk(x,q)

π.

Then
log[O : P ] ∼ x

φ(q)
∼ x1−ρ, L := |Pk(x, q)| ∼

x

φ(q) log x
,

and
G(O/P ) =

∏
π∈Pk(x,q)

G(O/π) �
∏

p∈P̃k(x,q)

G(Z/pZ)d.

We can now take for every rational prime p ∈ P̃k(x, q), the Borel subgroup B(p) as in §4
and define:

B(P ) =
∏

p∈P̃k(x,q)

B(p)d.

Then B(P ) is mapped onto (Z/qZ)rk(G)·L and

log
[
G(O/P ) : B(P )

]
∼ dim(G) − rk(G)

2
logP.

Thus, by exactly the same computations as in §4, we can show that

α−(G(O)) ≥

(√
R(R + 1) −R

)2

4R2
.

The lower bounds of Theorems 3, 4, and 5 are now also proved. We now turn to the proof
of the upper bounds.

§6. From SL2 to abelian groups

In this section we show how to reduce the estimation of α+(SL2(Z)) to a problem on
abelian groups.

Corollary 1.2 shows us that in order to give an upper bound on α+(Γ) it suffices to bound
sn(G(Z/mZ)) when m ≤ n. Our first goal is to show that we can further assume that m
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is a product of different primes. To this end denote m =
∏

p where p runs through all the
primes dividing m.

We have an exact sequence

1 → K → G(Z/mZ) π−→ G(Z/mZ) → 1

where K is a nilpotent group of rank at most dimG. Here, the rank of a finite group G is
defined to be the smallest integer r such that every subgroup of G is generated by r elements,
(see [LS, Window 5, §2]).

Lemma 6.1. Let 1 → K → U
π−→ L → 1 be an exact sequence of finite groups, where K is

a solvable group of derived length � and of rank at most r. Then the number of supplements
to K in U (i.e., of subgroups H of U for which π(H) = L) is bounded by |U |3r2+�r.

Proof. See [LS, Corollary 1.3.5].

Corollary 6.2. sn(G(Z/mZ)) ≤ mf
′(dimG) log log msn(G(Z/mZ)) where f ′(dimG) depends

only on dimG.

Proof. Let H be a subgroup of index at most n in G(Z/mZ) and denote L = π(H) ≤
G(Z/mZ). So L is of index at most n in G(Z/mZ). Let U = π−1(L), so every subgroup H of
G(Z/mZ) with π(H) = L is a subgroup of U . Given L (and hence also U) we have the exact
sequence 1 → K → U

π−→ L → 1 and by Lemma 6.1, the number of H in U with π(H) = L

is at most |U |�f(r) where � is the derived length of K, r ≤ dimG is the rank of K and
f(r) ≤ f(dimG) where f is some function depending on r and independent of m (say f(r) =
3r2 + r). Now |U | ≤ mdimG and K being nilpotent, is of derived length O(log log |K|). We
can, therefore, deduce that sn(G(Z/mZ)) ≤ mc dimGf(dimG)(log logm+log dimG)sn(G(Z/mZ))
for some constant c which proves our claim.

Corollary 1.2 shows us that in order to estimate α+(G(Z)) one should concentrate on
sn(G(Z/mZ)) with m ≤ n. Corollary 6.2 implies that we can further assume that m is a

product of different primes. So let us now assume that m =
t∏
i=1

qi where the qi are different

primes and so G(Z/mZ) �
∏

G(Z/qiZ) and t ≤ (1 + o(1)) logm
log logm . We can further assume

that we are counting only fully proper subgroups of G(Z/mZ), i.e., subgroups H which do
not contain G(Z/qiZ) for any 1 ≤ i ≤ t, or equivalently the image of H under the projection

to G(Z/qiZ) is a proper subgroup (see [Lu]). Thus H is contained in
t∏
i=1

Mi where Mi is a

maximal subgroup of G(Z/qiZ).

Let us now specialize to the case G = SL2, and let q be a prime.
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Maximal subgroups of SL2(Z/qZ) are conjugate to one of the following three subgroups
(see [La, Theorem 2.3])

(1) B = Bq-the Borel subgroup of all upper triangular matrices in SL2.

(2) D = Dq -a dihedral subgroup of order 2(q+1) which is equal to N(Tq) the normalizer
of a non-split torus Tq. The group Tq is obtained as follows: Let Fq2 be the field of order
q2,F×

q2 acts on Fq2 by multiplication. The latter is a 2-dimensional vector space over Fq.
The elements of norm 1 in F×

q2 induce the subgroup Tq of SL2(Fq).

(3) A = Aq-a subgroup of SL2(Z/qZ) which is of order at most 120.

In cases B, D there is just one conjugacy class and in case A only boundedly many. Also,
the number of conjugates of every subgroup is small, so it suffices to count only subgroups
of SL2(Z/mZ) whose projection to SL2(Z/qZ) (for q|m) is inside either B,D, or A.

Let S ⊆ {q1 . . . , qt} be the subset of the prime divisors of m for which the projection
of H is in Aqi

and S the complement to S. Let m =
∏
q∈S

q and H the projection of H to

SL2(Z/mZ). So H is a subgroup of index at most n in SL2(Z/mZ) and the kernel N from
H → H is inside a product of |S| groups of type A. As every subgroup of SL2(Z/qZ) is
generated by two elements, H is generated by at most 2 logm

log logm ≤ 2 logn
log log n generators. Set

k = [2 logn
log log n ] and chose k generators for H. By a lemma of Gaschütz (cf. [FJ, Lemma

15.30]) these k generators can be lifted up to give k generators for H. Each generator
can be lifted up in at most |N | ways and N is a group of order at most 120|S| ≤ 120t ≤
120

log n
log log n . We, therefore, conclude that given H the number of possibilities for H is at most

1202(log n)2/(log log n)2 which is small w.r.t. n�(n).

We can, therefore, assume that S = φ and all the projections of H are either into groups
of type B or D.

Now, Bq , the Borel subgroup of SL2(Z/qZ), has a normal unipotent cyclic subgroup
Uq of order q. Let now S be the subset of {q1, . . . , qt} for which the projection is in B

and S-the complement. Then H ≤
∏
q∈S

Bq ×
∏
q∈S

Dq. Let H be the projection of H to∏
q∈S

Bq/Uq ×
∏
q∈S

Dq. The kernel is a subgroup of the cyclic group U =
∏
q∈S

Uq. By Lemma

6.1 we know that given H, there are only few possibilities for H. We are, therefore, led to
counting subgroups in L =

∏
q∈S

Bq/Uq×
∏
q∈S

Dq. Let E now be the product
∏
q∈S

Bq/Uq×
∏
q∈S

Tq

and for a subgroup H of L we denote H ∩ E by H.

Our next goal will be to show that given H in E, the number of possibilities for H is
small. To this end we formulate first two easy lemmas, which will be used in the proof of
Proposition 6.6 below. This proposition will complete the main reduction.
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Lemma 6.3. Let H be a subgroup of U = U1 × U2. For i = 1, 2 denote Hi = πi(H) where
πi is the projection from U to Ui, and H0

i = H ∩ Ui. Then:
(i) H0

i is normal in Hi and H1/H
0
1 � H2/H

0
2 with an isomorphism ϕ induced by the

inclusion of H/(H0
1 ×H0

2 ) as a subdirect product of H1/H
0
1 and H2/H

0
2 ,

(ii) H is determined by:
(a) Hi for i = 1, 2
(b) H0

i for i = 1, 2
(c) the isomorphism ϕ from H1/H

0
1 to H2/H

0
2 .

Proof. See [Su, p 141]. �

Definition 6.4. Let U be a group and V a subnormal subgroup of U . We say that V is
co-poly-cyclic in U of co-length � if there is a sequence V = V0 � V1 � . . . � V� = U such
that Vi/Vi−1 is cyclic for every i = 1, . . . , �.

Lemma 6.5. Let U be a group and F a subgroup of U . The number of subnormal co-poly-
cyclic subgroups V of U containing F and of co-length � is at most |U : F |�.

Proof. For � = 1, V contains [U,U ]F and so it suffices to prove the lemma for the abelian
group U = U/[U,U ]F and F = {e}. For an abelian group U , the number of subgroups V

with U/V cyclic is equal, by Pontrjagin duality, to the number of cyclic subgroups. This is
clearly bounded by |U | ≤ |U : F |. If � > 1, then by induction the number of possibilities
for V1 as in Definition 6.4 is bounded by |U : F |�−1. Given V1, the number of possibilities
for V is at most |V1 : F | ≤ |U : F | by the case � = 1. Thus, V has at most |U : F |�
possibilities. �

Proposition 6.6. Let D = D1 × . . . ×Ds where each Di is a finite dihedral group with a
cyclic subgroup Ti of index 2. Let T = T1 × . . . × Ts, so, |D : T | = 2s. The number of
subgroups H of D whose intersection with T is a given subgroup L of T is at most |D|822s2 .

Proof. Denote Fi =
∏
j≥i

Di. We want to count the number of subgroups H of D with

H ∩ T = L. Let Li = projFi(L) i.e., the projection of L to Fi, and L̃i+1 = Li ∩ Fi+1,
so L̃i+1 ⊆ Li+1. Let Hi be the projection of H to Fi. Given H, the sequence (H1 =
H,H2, . . . , Hs) is determined and, of course, vice versa. We will actually prove that the
number of possibilities for (H1, . . . , Hs) is at most |D|822s2 .

Assume now that Hi+1 is given. What is the number of possibilities for Hi? Well, Hi
is a subgroup of Fi = Di × Fi+1 containing Li, whose projection to Fi+1 is Hi+1 and its
intersection with Fi+1, which we will denote by X, contains L̃i+1. By Lemma 5.2, Hi is
determined by Hi+1, X, Y, Z and ϕ where Y is the projection of Hi to Di, Z = Hi ∩Di and
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ϕ is an isomorphism from Y/Z to Hi+1/X. Now, every subgroup of the dihedral group is
generated by two elements and so the number of possibilities for Y and Z is at most |Di|2
each, and the number of automorphisms of Y/Z is also at most |Di|2.

Let us now look at X : X is a normal subgroup of Hi+1 with Hi+1/X isomorphic to
Y/Z, so it is meta-cyclic. Moreover, X contains L̃i+1. So by Lemma 5.3, the number of
possibilities for X is at most |Hi+1 : L̃i+1|2.

Now |Hi+1 : L̃i+1| ≤ |Hi+1 : Li+1||Li+1 : L̃i+1|. We know that |Hi+1 : Li+1| =
|projFi+1(H) : projFi+1(L)| ≤ |H : L| ≤ 2s and |Li+1 : L̃i+1| = |projFi+1(Li) : Fi+1 ∩ Li| ≤
|Di|. So, |Hi+1 : L̃i+1| ≤ 2s · |Di|.

Altogether, given Hi+1 (and L and hence also Li’s and L̃i’s) the number of possibilities for
Hi is at most |Di|822s. Arguing, now by induction we deduce that the number of possibilities
for (H1, . . . , Hs) is at most |D|822s2 as claimed. �

Let’s now get back to SL2: Proposition 6.6 implies, in the notations before Lemma
6.3, that when counting subgroups of L =

∏
q∈S

Bq/Uq ×
∏
q∈S

Dq, we can count instead the

subgroups of E =
∏
q∈S

Bq/Uq ×
∏
q∈S

Tq where Tq is the non-split tori in SL2(Z/qZ) (so Tq is

a cyclic group of order q + 1 while Bq/Uq is a cyclic group of order q − 1).

A remark is needed here: Let H be a subgroup of index at most n in SL2(Z/mZ) which
is contained in X =

∏
q∈S

Bq×
∏
q∈S

Dq and contains Y =
∏
q∈S

Uq× v
∏
q∈S

{e}. By our analysis in

this section, these are the groups which we have to count in order to determine α+(SL2(Z)).
We proved that for counting them, it suffices for us to count subgroups of X0/Y where
X0 =

∏
q∈S

Bq ×
∏
q∈S

Tq. Note though that replacing H with its intersection with X0, may

enlarge the index of H in SL2(Z/mZ). But the factor is at most

2logm/ log logm = m1/ log logm ≤ n1/ log log n.

As n → ∞, this factor is small with respect to n. By the remark made in §1, we can deduce
that our original problem is now completely reduced to the following extremal problem on
counting subgroups of finite abelian groups:

Let P− = {q1, . . . , qt} and P+ = {q′1, . . . , q′t′} be two sets of (different) primes and let
P = P−

⋃
P+. Denote

f(n) = sup{sr(X)|X =
t∏
i=1

Cqi−1 ×
t′∏
i=1

Cq′i+1}
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where the supremum is over all possible choices of P−,P+ and r such that r
t∏
i=1

qi
t′∏
j=1

q′j ≤ n,

(and Cm denotes the cyclic group of order m).

Corollary 6.7.

α+(SL2(Z)) = lim sup
log f(n)
λ(n)

.

§7. Counting subgroups of p-groups

In this section we first give some general estimates for the number of subgroups of finite
abelian p-groups which will be needed in §8. As an application we obtain a lower bound for
the subgroup growth of uniform pro-p-groups (see definitions later).

For an abelian p-group G, we denote by Ωi(G) the subgroup of elements of order dividing
pi. Then Ωi(G)/Ωi−1(G) is an elementary abelian group of order say pλi called the i-th
layer of G. We call the sequence λ1 ≥ λ2 ≥ . . . ≥ λr the layer type of G. It is clear that this
sequence is decreasing.

Denote by
[
λ
ν

]
p

the p-binomial coefficient, that is, the number of ν-dimensional subspaces

of a λ-dimensional vector space over Z/pZ.
The following holds (see [LS, Proposition 1.5.2]).

Proposition 7.1.

(i) pν(λ−ν) ≤
[
λ
ν

]
p

≤ pν · pν(λ−ν).

(ii) max
[
λ
ν

]
p

is attained for ν = [λ2 ] in which case
[
λ
ν

]
p

= p
1
4λ

2+O(λ) holds as λ → ∞.

We need the following well-known formula (see[Bu]).

Proposition 7.2. Let G be an abelian p-group of layer type λ1 ≥ λ2 . . . ≥ λr. The number
of subgroups H of layer type ν1 ≥ ν2 . . . is

∏
i≥1

pνi+1(λi−νi)

[
λi − νi+1

νi − νi+1

]
p

. �

(In the above expression we allow some of the νi to be 0.)
We need the following estimate.

Proposition 7.3.

∏
i≥1

pνi(λi−νi) ≤
∏
i≥1

pνi+1(λi−νi)

[
λi − νi+1

νi − νi+1

]
p

≤ pν1
∏
i≥1

pνi(λi−νi).
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Proof. By Proposition 7.1 we have

∏
i≥1

pνi+1(λi−νi)

[
λi − νi+1

νi − νi+1

]
p

≤
∏
i≥1

pνi+1(λi−νi) · p(νi−νi+1)((λi−νi+1)−(νi−νi+1)) · p(νi−νi+1)

= pν1
∏
i≥1

pνi+1(λi−νi) · p(νi−νi+1)(λi−νi) = pν1
∏
i≥1

pνi(λi−νi).

The lower bound follows in a similar way. �

Corollary 7.4. Let G be an abelian group of order pα and layer type λ1 ≥ λ2 ≥ . . . ≥ λr.
Then |G|−1

∏
i≥1

pλ
2
i /4 ≤ |Sub(G)| ≤ |G|2

∏
i≥1

pλ
2
i /4 holds.

Proof. Considering subgroups H of layer type [λ1
2 ] ≥ [λ2

2 ] ≥ . . . we obtain that

|Sub(G)| ≥
∏
i≥1

p[
λi
2 ](λi−[

λi
2 ]) ≥ p−r

∏
i≥1

pλ
2
i /4 which implies the lower bound.

On the other hand, for any fixed layer type ν1 ≥ ν2 ≥ . . . the number of subgroups H

with this layer type is at most

pν1
∏
i≥1

pνi(λi−νi) ≤ |G|
∏
i≥1

pλ
2
i /4.

The number of possible layer types ν1 ≥ ν2 ≥ . . . of subgroups of G is bounded by
the number of partitions of the number α hence it is at most 2α ≤ |G|. This implies our
statement. �

Let us make an amusing remark which will not be needed later.
If G is an abelian p-group of the form G = Cx1 × Cx2 × . . . × Cxt then it is known (see

[LS]) that |End(G)| =
∏
j,k≥1

gcd(xj , xk). Noting that
∏
j,k≥1

gcd(xj , xk) =
∏
i≥1

pλ
2
i we obtain

that
|G|−1|End(G)| 14 ≤ |Sub(G)| ≤ |G|2|End(G)| 14 .

These inequalities clearly extend to arbitrary finite abelian groups G.
For the application of the above results to estimating the subgroup growth of SLd(Zp) we

have to introduce additional notation .For a group G let Gk denote the subgroup generated
by all k-th powers.For odd p a powerful p-group G is a p-group with the property that G/Gp

is abelian.(In the rest of this section we will always assume that p is odd,the case p = 2
requires only slight modifications.) G is said to be uniformly powerful (uniform ,for short)
if it is powerful and the indices |Gpi

: Gp
i+1 | do not depend on i as long as i < e, where pe

is the exponent of G .
Now let G be a uniform group of exponent pe , where e = 2i , with d generators. Then

Gp
i

is a homocyclic abelian group of exponent pi and d generators (i.e. it has layer type
d, d, . . . , d with i terms) (see[DDMS]).
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Consider subgroups H of Gp
i

of layer type ν, ν, . . . , ν (i terms).The number of such
subgroups is at least piν(d−ν) by Proposition 7.3. . The index n of such a subgroup H in G

is pdi+(d−ν)i. Hence the number of index n subgroups in G is at least nx where x = ν(d−ν)
2d−ν .

Substituting ν = [d(2 −
√

2)] we see that x can be as large as (3 − 2
√

2)d− (
√

2 − 1).
Let now U be a uniform pro-p-group of rank d , i.e. an inverse limit of d-generated finite

uniform groups G.Then we see that for infinitely many n we have sn(G) ≥ n(3−2
√

2)d−(
√

2−1).
Now SLd(Zp) is known to have a finite index uniform pro-p- subgroup of rank d2 − 1

(see[DDMS]). This proves the following

Proposition 7.5. SLd(Zp) has subgroup growth of type at least n(3−2
√

2)d2−2(2−
√

2)

B. Klopsch proved [Kl] that if G is a residually finite virtually soluble minimax group of
Hirsch length h(G) then its subgroup growth is of type at least nh(G)/7. By using the above
argument one can improve this to n(3−2

√
2)h(G)−(

√
2−1).

§8. Counting subgroups of abelian groups

The aim of this section is to solve a somewhat unusual extremal problem concerning the
number of subgroups of abelian groups. The result we prove is the crucial ingredient in
obtaining a sharp upper bound for the number of congruence subgroups of SL(2,Z).

We will use Propositions 7.2 and 7.3 in conjunction with the following simple (but some-
what technical) observations.

Let us call a pair of sequences of integers {λi}, {νi} good if λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1, ν1 ≥
ν2 ≥ . . . ≥ νr ≥ 1 and λi ≥ νi for i = 1, 2, . . . , r.

Proposition 8.1. Let α, t be fixed positive integers. Consider good pairs of sequences
{λi}, {νi} such that

∑
i≥1

(λi + νi) ≤ α and λ1 ≤ t.

Under these assumptions the maximal value of the expression
∑
i≥1

νi(λi−νi) is also attained

by a pair of sequences {λi}, {νi} such that
(i) t = λ1 = λ2 = . . . = λr−1 (i.e. only λr, the last term can be smaller than t).
(ii) for some 0 ≤ b ≤ r − 1 we have

ν1 = ν2 = . . . = νb = νb+1 + 1 = . . . = νr−1 + 1.

If λr = t then we also have ν1 = νr or ν1 = νr + 1.
(iii) We have νi ≥ [ t3 ] except possibly for i = r if λr < t, in which case we have

⌈λr
3

⌉
≥ νr ≥

[λr
3

]
.
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Proof. Suppose that the maximum is attained for {λi}, {νi}. Let j be the smallest index
such that we have t > λj ≥ λj+1 ≥ 1 (if there is no such j then (i) holds). Assume that
λj+1 = . . . = λj+k and λj+k > λj+k+1 or j + k = r. The condition νj ≥ νj+k implies that

νj((λj + 1) − νj) + νj+k((λj+k − 1) − νj+k)

≥ νj(λj − νj) + νj+k(λj+k − νj+k).

If λj+k = νj+k then (by deleting some terms and renumbering the rest) we can clearly replace
our sequences by another good pair for which

∑
i≥1

λj is strictly smaller and
∑
i≥1

νi(λi − νi) is

the same. Otherwise, replacing λj by λj + 1 and λj+k by λj+k − 1 we obtain a good pair of
sequences for which {λi} is lexicographically strictly greater and for which

∑
i≥1

νi(λi − νi) is

at least as large (hence maximal).

It is clear that by repeating these two types of moves we eventually obtain a good pair
{λi}, {νi} satisfying (i).

Now set β = ν1 + ν2 + . . . + νr−1. Then

∑
i≥1

νi(λi − νi) = tβ − (ν2
1 + . . . + ν2

r−1) + νr(λr − νr).

It is clear that if the value of such an expression is maximal, then the difference of any
two of the νj with j ≤ r − 1 is at most 1. Part (ii) follows.

Let us assume now that λr < t. Suppose that µ = νb+1 = . . . = νr−1 < [ t3 ]. This implies
that µ ≤ [ t3 ] − 1 and hence 3µ < t− 2.

We claim that µ(t− µ) < (µ + 1)((t− 1) − (µ + 1)). This reduces to

µ(t− µ) < (µ + 1)(t− µ) − 2(µ + 1)

2µ + 2 < t− µ and

3µ < t− 2 which is true.

By the claim, replacing νj by νj + 1 and λj by t − 1 for b + 1 ≤ j ≤ r − 1 we obtain a
good pair of sequences for which

∑
i≥1

νi(λi − νi) is strictly greater, a contradiction.

Hence we have νr−1 ≥ [ t3 ] ≥ [λr

3 ]. Using this, a similar argument establishes that νr ≥ [λr

3 ]
(note that if νr < [λr

3 ] then replacing λr by λr − 1 and νr by νr + 1 we obtain a good pair
of sequences).

Suppose now that νr > �λr

3 �. This implies νr ≥ �λr

3 � + 1 and hence 3νr > λr + 2.
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We claim that νr(λr − νr) < (νr − 1)((λr + 1) − (νr − 1)). This reduces to

νr(λr − νr) < (νr − 1)(λr − νr) + 2(νr − 1)

λr − νr < 2νr − 2 and

λr + 2 < 3νr which is true.

By the claim replacing νr by νr − 1 and λr by λr + 1 we obtain a pair of good sequences
for which

∑
i≥1

νi(λi − νi) is strictly greater, a contradiction.

Hence we have νr ≤ �λr

3 � as well.
Finally if λr = t then (setting µ = νb+1 = . . . = νr) the first part of the previous argument

establishes νr ≥ [ t3 ]. �

Proposition 8.2. Let x1, x2, . . . , xt be positive integers such that at most d of the xi can
be equal. Then

t∏
i=1

xi ≥
(

t

ed

)t

holds.

Proof. If say, x1 is the largest among the xi then x1 ≥ t
d . By induction we can assume that

t∏
i=2

xi ≥
(
t−1
ed

)t−1

holds. Then

t∏
i=1

xi ≥
t

d

(
t− 1
ed

)t−1

≥ e

(
t

ed

)(
t− 1
ed

)t−1

≥ e

(
t

ed

)t(
t− 1
t

)t−1

=

=
(

t

ed

)t
e(

1 + 1
t−1

)t−1 ≥
(

t

ed

)t
, �

as required.

The main result of this section is the following.

Theorem 8.3. Let d be a fixed integer ≥ 1. Let n, r be positive integers. Let G be an
abelian group of the form G = Cx1 ×Cx2 × . . .×Cxt where at most d of the xi can be equal.
Suppose that r|G| ≤ n holds. Then the number of subgroups R of order ≤ r in G is at most
n(γ+o(1))�(n) where γ = 3−2

√
2

4 .

Proof. We start the proof with several claims.

Claim 1. t ≤ (1 + o(1))�(n).
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Proof. By Proposition 8.2 we have
(
t
ed

)t ≤ n. This easily implies the claim.

Claim 2. In proving the theorem, we may assume that t ≥ γ�(n).

Proof. For otherwise, every subgroup of G can be generated by γ�(n) elements hence
|Sub(G)| ≤ |G|γ�(n) ≤ nγ�(n).

Now let a(n) be a monotone increasing function which goes to infinity sufficiently slowly.
For example, we may set a(n) = log log log logn.

Let Gp denote the Sylow p-subgroup of G and let λp1 ≥ λp2 ≥ . . . denote the layer type of
Gp. Altogether the layers of the Gp comprise the layers of Gj . We call such a layer essential
if its dimension λpi is at least �(n)

a(n) . Clearly the essential layers in Gp correspond to the layers

of a certain subgroup Ep of Gp (which equals Ωi(Gp) for the largest i such that λpi ≥
�(n)
a(n) ).

Let us call E =
∏
p
Ep the essential subgroup of G.

Claim 3. Given E ∩R we have at most no(�(n) (i.e., a small number of) choices for R.

Proof. It is clear from the definitions that every subgroup of the quotient groups Gp/Ep and
hence of G/E can be generated by less than �(n)

a(n) elements. Therefore the same is true for
R/R ∩ E. This implies the claim.

By Claim 3, in proving the theorem, it is sufficient to consider subgroups R of E.

Let v denote the exponent of E. Then E is the subgroup of elements of order dividing v

in G. Now v is the product of the exponents of the Ep hence the product of the exponents
of the essential layers of G. It is clear from the definitions that we have v�(n)/a(n) ≤ n, hence
v ≤ (log n)a(n). Using well-known estimates of number theory [Ra] we immediately obtain
the following.

Claim 4. (i) the number z of different primes dividing v is at most log v
log log v ≤ a(n) log log n

log log log n .

(ii) The total number of divisors of v is at most v
c

log log v ≤ log n
ca(n)

log log log n for some constant
c > 0.

Claim 5. |G : E| ≥ (log n)(1+o(1))t.

Proof. Consider the subgroup Ei = E ∩Cxi . It follows that Ei is the subgroup of elements
of order dividing v in Cxi . Set ei = |Ei| and hi = xi/ei. It is easy to see that E =

∏
i≥1

Ei,

hence |G : E| =
∏
i≥1

hi.

By Claim 4(ii) for the number s of different values of the numbers ei we have s =
(log n)o(1). We put the numbers xi into s blocks according to the value of ei. By our
condition on the xi it follows that at most d of the numbers hi corresponding to a given
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block are equal. Hence altogether ds of the hi can be equal. Using Proposition 8.2 we obtain
that |G : E| ≥

∏
i≥1

hi ≥
(
t
eds

)t.
Since sd = (logn)o(1) and by Claim 2 t ≥ γ logn

log log n we obtain that |G : E| ≥ (log n)(1+o(1))t

as required.
Let us now choose a group G and a number r as in the theorem for which the number

of subgroups R ≤ E of order dividing r is maximal. To complete the proof it is clearly
sufficient to show that this number is at most n(γ+o(1))�(n).

Denote the order of the corresponding essential subgroup E by f and the index |G : E|
by m.

Using Propositions 7.2 and 7.3 we see that apart from an no(�(n)) factor (which we ignore)
the number of subgroups R as above is at most

(8.1)
∏
p

∏
i≥1

pν
p
i (λp

i −ν
p
i )

for some νpi , λ
p
i where {λpi }, {ν

p
i } is a good pair of sequences for every p,

∏
p

∏
i≥1

pλ
p
i divides f

and
∏
p

∏
i≥1

pν
p
i divides r. Assuming that fr is fixed together with the upper bound t for all

the λpi , let us estimate the value of the expression (8.1).
By Proposition 8.1 a maximal value of an expression like (8.1) is attained for a choice of

the λpi , ν
p
i (for the sake of simplicity we use the same notation for the new sequences) such

that for every p there are at most 3 different pairs (pλ
p
i , pν

p
i ) equal to say

(pt, pµ
p+1), (pt, pµ

p

), and (pτ
p

, pµ
p
0 )

where µp ≥
[
t
3

]
, τp < t and � τp

3 � ≥ µp0 ≥
[
τp

3

]
= µp1 for all p.

Exchange the pairs equal to the first type for pairs equal to (pt, pµ
p

) and the pairs of
the third type for pairs equal to (pτ

p

, pµ
p
1 ). We obtain an expression like (8.1) (where for

every p the {λpi }, {ν
p
i } still forms a good pair of sequences) such that the ratio of the two

expressions is at most ∏
p

∏
i≥1

pλ
p
i ≤ n .

If now there are say α p pairs with (pλ
p
i , pν

p
i ) equal to (pt, pµ

p

) then take βp to be the
largest integer with 2β

p ≤ pα
p

and set βp1 =
[
log2 p

]
. (Note that for every p there is at most

one pair of the form (pτ
p

, pµ
p
1 ).)

Consider the expression

(8.2)
∏
p≥1

2β
pµp(t−µp) 2β

p
1µ

p
1(τp−µp

1).
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Its value may be less than that of (8.1) but in this case their ratio is bounded by (22z)t
2
n

(where z is the number of primes dividing v). Hence this ratio is at most

2(2+o(1))�(n)2
a(n) log log n
log log log n ≤ n(2+o(1))�(n)

a(n)
log log log n = no(�(n)).

To prove our theorem it is sufficient to bound the value of (8.2) by n(γ+o(1))�(n).
It is clear that the value of (8.2) is equal to the value of another expression

(8.3)
∏
k≥1

2νk(λk−νk)

which has
∑
p

(βp+ 1) terms and for which
∏
k≥1

2λk+νk ≤ f · r . By the definition of (8.2) it is

also clear that for this new pair of sequences {λk}, {νk} we either have λk = t and νk ≥
[
t
3

]
or λk < t and νk =

[
λk

3

]
. This ensures that if {λk} is decreasing then {νk} is decreasing as

well i.e. our sequences form a good pair.
By Proposition 8.1 such an expression attains its maximal value for some sequences

{λk}, {νk} such that all but one of the λk, say λa+1 are equal to t and we have
ν1 = ν2 = . . . = νb = 1 + νb+1 = . . . = 1 + νa for some b ≤ a.

Consider now the expression

(8.4)
∏
k≥1

2ν
′
k(λ′

k−ν′k)

where
t = λ′

1 = . . . = λ′
a (λ′

a+1 = 0)

and νa = ν′1 = ν′2 = . . . = ν′a (ν′a+1 = 0).
It easily follows that the value of (8.3) is at most 22t2 times as large as the value of (8.4)

and 22t2 = no(�(n)). Hence it suffices to bound the value of (8.4) by n(γ+o(n))�(n).
To obtain our final estimate denote 2a by y, m1/t by w (where m = |G : E|) and set

x = y · w.
For some constants between 0 and 1 we have y = xρ and ν′1 = σt. Then

w = x1−ρ = y
1−ρ

ρ .
We have n ≥ m.f.r ≥ wt · yt · yσt hence log n ≥ t · log y(1 + σ + 1−ρ

ρ ).
By Claim 5 we have w ≥ (log n)(1+o(1)) hence (1 + o(1)) log logn ≤ logw = 1−ρ

ρ log y.
Therefore

(log n)2

log logn
≥

t2(log y)2(1 + σ + 1−ρ
ρ )2

( 1−ρ
ρ log y)

(1 + o(1)) = (1 + o(1))t2 log y(1 + σ +
1 − ρ

ρ
)2 · ( ρ

1 − ρ
).
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The value of (8.4) is yσt(t−σt) which as we saw is an upper bound for the number of subgroups
R (ignoring an no(�(n)) factor). Hence

log (number of subgroups R)

( (log n)2

log log n )

≤ (1 + o(1))
t2σ(1 − σ) log y

t2 log y(1 + σ + 1−ρ
ρ )2( ρ

1−ρ )

= (1 + o(1))
σ(1 − σ)( 1−ρ

ρ )

(1 + σ + 1−ρ
ρ )2

= (1 + o(1))
σ(1 − σ)ρ(1 − ρ)

(1 + ρσ)2
.

As observed in §4 the maximum value of σ(1−σ)ρ(1−ρ)
(1+ρσ)2 is γ. The proof of the theorem is

complete. �
By using a similar but simpler argument, one can also show the following

Proposition 8.4. Let G be an abelian group of order n of the form
G = Cx1 × Cx2 × . . . × Cxt

where x1 > x2 > . . . xt. Then |Sub(G)| ≤ n( 1
16+o(1))�(n). This

bound is attained if xi = t · i for all i.

Combining this result with an earlier remark, we obtain that n( 1
4+o(1))�(n) is the maximal

value of
∏
i,j

gcd(xi, xj) where the xi are different numbers whose product is at most n.

Note that |Sub(G)| is essentially the number of subgroups R of order [
√

|G|] (see [Bu] for
a strong version of this assertion). Hence Proposition 8.4 corresponds to the case r ∼ n1/3

of Theorem 8.3.

§9. End of proofs of Theorems 2, 3, and 4.

Theorem 2 is actually proved now: the lower bound was shown as a special case of
R = R(G) = 1 in §4. For the upper bound, we have shown in Corollary 6.7 how α+(SL2(Z))
is equal to lim sup log f(n)

λ(n) (see Corollary 6.7 for the definition of f(n)). But Theorem 8.3

implies, in particular, that f(n) is at most n(γ+o(1))�(n) where γ = 3−2
√

2
4 . This proves that

α+(SL2(Z)) ≤ γ and finishes the proof.
The proof of Theorem 3 is similar, but several remarks should be made: The lower bound

was deduced in §5. For the upper bound, one should follow the reductions made in §6. The
proof can be carried out in a similar way for SL2(O) instead of SL2(Z) but the following
points require careful consideration.

1) One can pass to the case that m is an ideal which is a product of different primes πi’s
in O, but it is possible that O/πi is isomorphic to O/πj . Still, each such isomorphism class
of quotient fields can occur at most d times when d = [k : Q].
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2) The maximal subgroups of SL2(Fq) when Fq is a finite field of order q (q is a prime
power, not necessarily a prime) are the same B,D and A as described in (1), (2), and (3)
of §6.

The rest of the reduction can be carried out in a similar way to §6. The final outcome
is not exactly as f(n) at the end of §6, but can be reduced to a similar problem when f̃(n)
counts sr(X) when X is a product of abelian cyclic groups, with a bounded multiplicity.
Theorem 8.3 covers also this case and gives a bound to f̃(n) which is the same as for f(n).
Thus α+(SL2(O)) ≤ γ = 3−2

√
2

4 .
We finally mention the easy fact, that replacing O by OS when S is a finite set of primes

(see the introduction) does not change α+ or α−. To see this one can either use the fact
that for every completion at a simple prime π of O, G(Oπ) has polynomial subgroup growth
and then use the well known techniques of subgroup growth and the fact that

G(Ô) = G(ÔS) × π
π∈S\V∞

G(Oπ)

to deduce that α(G(Ô)) = α(G(ÔS)).
Another way to see it, is to observe that G(ÔS) is a quotient of G(Ô), and, hence,

α+(G(O)) ≥ α+(G(OS)). On the other hand, the proof of the lower bound for α(G(O))
clearly works for G(OS). Theorem 3 is, therefore, now proved, as well as Theorem 4 (since
we have not used the GRH for the upper bounds in Theorem 3).

§10. Chevalley groups.

In this section we prove the upper bound of Theorem 5. In view of the results of [Lu]
it is sufficient to consider classical groups of large rank. For simplicity of notations we will
treat the case k = Q. The general case is similar with minor changes.

We first prove the result for SLd(Z). To this end, we will use two facts on subgroups of
“small” index in SLd(q):

Proposition 10.1. Let F be a finite field of order q, V = F d and
G = SL(V ) = SLd(F ).

(a) Every proper subgroup of G is of index at least qd−1 (unless G = SL2(9)).
(b) Let H be a subgroup of G of index smaller than q

2
9d

2
. Then V has a sequence of

F [H]-submodules {0} = V 0 < V 1 < . . . < V s = V such that:
(i) for every j = 1, . . . , s, V j/V j−1 is a simple H-module.
(ii) There exists j ∈ {1, . . . , s} such that W = V j/V j−1 has dimension at least 2

3d

and the induction of H on W contains SL(W ).

Proof. (a) is well known - see [KL]. (b) is proved in [Lie]. �
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Note that (10.1)(b) implies that H can be put in a block form with one large block and
the others much smaller.

We will also need a simple number theoretic lemma. Let ε > 0 be a constant such that
the product of the first � primes is at least eε� log � for all � ≥ 2.

Lemma 10.2. Let q1, . . . , qt be different primes. Let x1, . . . , xt and d be natural numbers

such that xi ≤ d. If
t∏
i=1

qxi
i ≤ m, then

t∑
i=1

xi ≤ 2
ε
�(m) + d

√
logm .

Proof. Let tj (j = 1, . . . , d) denote the number of indices i for which xi ≥ j. Clearly

t = t1 ≥ t2 ≥ · · · ≥ td ≥ 0 and
d∑
j=1

tj =
t∑
i=1

xi. It follows that
d∏
j=1

eεtj log tj ≤
t∏
i=1

qxi
i ≤ m

hence ε
d∑
j=1

tj log tj ≤ logm holds.

Choose r such that log tr ≥ 1
2 log logm > log tr+1. Then ε

r∑
j=1

tj log tj ≤ logm implies

that
r∑
j=1

tj ≤ 2
ε

logm
log logm . On the other hand for j ≥ r + 1 we have tr+1 ≤

√
logm. Therefore

t∑
i=1

xi =
d∑
j=1

tj ≤ 2
ε �(m) + d

√
logm as required. �

Now, our goal is to bound sn(SLd(Z/mZ)) where m ≤ n (see Corollary 1.2 ). By

Corollary 6.2, we can assume that m is a product of different primes, m =
t∏
i=1

qi. Moreover,

we count only the fully proper subgroups (see §6) so if H is a subgroup of

G = SLd(Z/mZ) =
t∏
i=1

SLd(Z/qiZ),

of index at most n, we can assume that the projection of H to each factor SLd(Z/qiZ) is a
proper subgroup. Thus, by Proposition 10.1(a), the index of H in G is at least

∏
qd−1
i , so

n ≥ md−1, i.e., m ≤ n
1

d−1 .
Let H now be a subgroup of G and qi one of the prime divisors of m. The projection

of H to SLd(Z/qiZ) will be denoted by H(qi). We can bring H(qi) to a block form as in
(10.1)(b(i)).

Now if the index of H(qi) is smaller than q
2
9d

2

i there is a large block of dimension di ≥ 2
3d.

We call the other blocks small. Set xi = d− di or xi = d if there is no large block. We see
that the index of H(qi) in SLd(Z/qiZ) is at least q

2
9dxi

i .
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We obtain that
t∏
i=1

q
2
9dxi

i ≤ n, that is
t∏
i=1

qxi
i ≤ n

9
2d . By Lemma 10.2 this implies

t∑
i=1

xi ≤
9
εd

�(n) +
√

5d log n,

which is less than say 10
εd�(n) for n large enough (and d fixed).

The number of block forms is small, so we can assume we are fixing the block form and
count only H with H(qi) of a given block form. Then H(qi) is a subgroup of the parabolic
subgroup P (qi) of SLd(Z/qiZ) corresponding to the block form. The number of choices for
P (qi) of a given block form is at most qd

2

i (since GL is flag-transitive) hence the number of
choices for P =

∏
P (qi) is small. If R(qi) denotes the unipotent radical of P (qi) then it is

clear that H(qi)R(qi)/R(qi) is a fully reducible group. The group R =
∏

R(qi) is nilpotent
of rank ≤ d2. Now H is a subgroup of P and using Lemma 6.1 (again) we see that it is
sufficient to count the number of possibilities for the quotient group H = HR/R inside
P = P/R. Note that P acts faithfully on the direct sum of all the modules V ji /V

j−1
i in a

natural way and H acts as a fully reducible subgroup of P .
Now H contains the normal subgroup N =

∏
SL(Wi) (where the Wi are the large

irreducible modules). By a theorem of Aschbacher-Guralnick [AG] (cf. [LS, Window 1,
Theorem 15]), H is generated by a subgroup S ≥ N such that S/N is solvable, plus one
element. Clearly it is sufficient to count the number of choices for S.

Now S acts faithfully on the direct sum of the H-modules V ji /V
j−1
i . For every i and

j we can choose a sequence of S-submodules of V ji /V
j−1
i such that the quotients between

consecutive submodules are simple S-modules. The number of such choices is small.
Using again Lemma 6.1 we can replace S by a quotient S which acts as a fully reducible

group on the direct sum of these simple S-modules (as we did before with H).
Note that S acts as a subgroup of GL(Wi) containing SL(Wi) on the large modules and

acts like an irreducible solvable group on the other “small” modules.
The sum of the dimensions of the small modules over Fqi is xi.

We claim that S can be generated by 3
2

t∑
i=1

xi +t elements together with N =
∏

SL(Wi).

Indeed let U be one of the small modules of dimension say y and let K be the kernel of
the action of S on U . By a result of Kovács-Robinson [KR] the fully reducible linear group
S/K can be generated by 3

2y elements. K acts trivially on U and by Clifford’s theorem fully
reducibly on all the other S-modules. Continuing in a similar way (stabilising small modules
one by one) we eventually reach a subgroup K0 of S where N ≤ K0 ≤

∏
GL(Wi) such that

S can be generated by K0 and most 3
2

∑
xi elements. Since each GL(Wi)/SL(Wi) is cyclic

we obtain our claim.



32 DORIAN GOLDFELD ALEXANDER LUBOTZKY LÁSZLÓ PYBER

For each small S-module U we fix a maximal solvable subgroup M of GL(U) containing
the image of S in GL(U). Since dim(U) ≤ d by [Py, Lemma 3.4] the number of choices for
M is at most |U |cd for some absolute constant c.

Altogether the number of choices for all the maximal solvable subgroups M is at most
mcd so we can fix them when we count the groups S.

By the Pálfy-Wolf theorem (cf. [LS, Window 3, Theorem 6]) the order of each such M is
at most |U |3. Denote by D the direct product of the groups M (for small modules U) and
of the GL(Wi) (for large modules Wi).

As we saw above we can assume that S is a subgroup of D containing N =
∏

SL(Wi). It
follows that |D/N | ≤ m ·

∏
q3xi
i ≤ n

1
d−1 · n 27

2d . On the other hand by the above claim S/N

can be generated by t+ 3
2

∑
xi elements which is less than 1

d−1�(n) + 3
2

(
10
εd�(n)

)
for large n.

Hence the number of choices for S is at most n
c

d2 �(n) for some absolute constant c. This
completes the proof of Theorem 5 for SLd(Z).

Remark. The above proof relies on the Classification of Finite Simple Groups (CFSG)
via the Aschbacher-Guralnick theorem. However this can be avoided, since all the groups
which appear in the proof are linear of bounded dimension and such groups have bounded
index subgroups with “known” simple composition factors by a deep but CFSG-free result
of Larsen-Pink [LP].

The other classical groups can be handled by essentially the same methods. In each
case we need a version of Proposition 10.1. Appropriate bounds for the indices of proper
subgroups appear in [KL]. Analogues of Proposition 10.1 (b) appear in [Lie].

Actually the symplectic groups are not considered there, hence it seems appropriate to
sketch an argument in this case (along the lines of [Lie]).

For our purposes it is sufficient to consider G = Sp2r(q) for q odd and r ≥ 4. By a result
of Kantor [Ka] if I is an irreducible subgroup of G then its index is at least q

1
2 r(r+1).

Let V = V (d, q) be the underlying symplectic space (where d = 2r). Then V has a
standard basis {e1, . . . , er, f1 . . . , fr} with (ei, ej) = (fi, fj) = 0 and (ei, fj) = δij .

Let K be the stabilizer in Spd(q) of a totally isotropic subspace of dimension a. Then

|Spd(q) : K| =
a−1∏
j=0

(qd−2j − 1)
/ a−1∏
j=0

(qa−j − 1) ≥ qa(d−
3a
2 ) ≥ q

ad
4 .

Let H be a subgroup of Spd(q) such that |Spd(q) : H| ≤ q
d2
32 and let V 1 be a maximal

totally isotropic H-subspace of V . Then dim(V 1) ≤ d
8 . Now V 1⊥/V 1 is a direct sum of

minimal H-invariant non-degenerate subspaces W 1, . . . , W s. Assume, say, that W 1 has
the largest dimension and let V 2 > V 1 be the subspace corresponding to W 1. Let us set
b = d−dim(W 1). An easy calculation shows that the index of H is at least q

bd
8 . Therefore we
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have b ≤ d
4 . Now, using the above result of Kantor [Ka] we see that H acts on W = V 2/V 1

as the full symplectic group Spd−b(q).
We return to our proof of Theorem 5 in the symplectic case. We can assume that H is a

fully proper subgroup of index n in Spd(Z/mZ) where m ≤ n and m is a product of different

primes m =
t∏
i=1

qi.

Consider H as a subgroup of SLd(Z/mZ). Now each projection H(qi) can be put in a
block form such that the largest block has dimension di ≥ 3

4d and on the corresponding
large module Wi the group H acts as Sp(Wi).

By the above discussion we have
t∏
i=1

q
1
8dxi

i ≤ n, hence t = O
(

1
d�(n)

)
as n → ∞. Now

we replace H by its fully reducible quotient H and set N =
∏

Sp(Wi). We can finish the
proof by the same argument as in the case of SLd(Z). The remaining classical groups can
be handled in essentially the same way.

§11. An extremal problem in elementary number theory.

The counting techniques in this paper can be applied to solve the following extremal
problem in multiplicative number theory.

For n → ∞, let

M1(n) = max

{ ∏
1≤i,j≤t

gcd(ai, aj)

∣∣∣∣∣ 0 < t, a1 < a2 < . . . < at ∈ Z,
t∏
i=1

ai ≤ n

}
,

M2(n) = max

{ ∏
p,p′∈P

gcd(p− 1, p′ − 1)

∣∣∣∣∣ P = set of different primes where
∏
p∈P

p ≤ n

}
.

We shall prove the following theorem which can be considered as a baby version of Theorem
2 (compare also to Theorem 8.3 ). Note that Theorem 11.1 immediately implies Theorem
8.

Theorem 11.1. Let λ(n) = (log n)2

log log n . Then

lim
logM1(n)

λ(n)
= lim

logM2(n)
λ(n)

=
1
4
.

Proof. Recall that if a1, a2, . . . , at ∈ Z and G = Ca1 ×Ca2 × · · · ×Cat
is a direct product of

cyclic groups then by §7,

|G|−1|End(G)| 14 ≤ |Sub(G)| ≤ |G|2 |End(G)| 14 ,
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and
|End(G)| =

∏
1≤i,j≤t

gcd(ai, aj).

Proposition 8.4 implies that

lim
logM1(n)

λ(n)
≤ 1

4
.

It is clear that M2(n) ≤ M1(n), so to finish the proof it is enough to obtain a lower bound
for M2(n).

Now, for x → ∞ and xρ

log x ≤ q ≤ xρ (with 0 < ρ < 1
2 ) choose

P = P(x, q) =
{
p ≤ x

∣∣ p ≡ 1 (mod q)
}
,

to be a Bombieri set relative to x where q is a prime number (Bombieri prime). By Lemma
3.4 we have the asymptotic relation #P(x, q) ∼ x

φ(q) log x . In order to satisfy the condition∏
p∈P

p ≤ n, we choose x ∼ q log n. Without loss of generality, we may choose q = xρ for

some 0 < ρ < 1
2 . It follows that

x1−ρ ∼ log n, log x ∼ log log n
1 − ρ

, #P = #P(x, q) ∼ x

φ(q) log x
∼ (1 − ρ) log n

log logn
.

Consequently

∏
p,p′∈P

gcd(p− 1, p′ − 1) ≥ q(#P)2 ≥ (xρ)
(1−ρ)2(log n)2

(log log n)2 ∼ e
ρ(1−ρ)(log n)2

log log n .

Let now ρ go to 1
2 and the theorem is proved. �
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