ERROR CORRECTING CODES

Definition (Alphabet) An alphabet is a finite set of symbols.

Example: A simple example of an alphabet is the set $\mathcal{A} := \{B, \#, 17, P, \$, 0, u\}$.

Definition (Codeword) A codeword is a string of symbols in an alphabet.

Example: In the alphabet $\mathcal{A} := \{B, \#, 17, P, \$, 0, u\}$, some examples of codewords of length 4 are:

$P17u$, $0B\$, $uBuB$, 0000.

Definition (Code) A code is a set of codewords in an alphabet.

Example: In the alphabet $\mathcal{A} := \{B, \#, 17, P, \$, 0, u\}$, an example of a code is the set of 5 words: $\{P17u, 0B\$, $uBuB, 0000, PP\}$.

If all the codewords are known and recorded in some dictionary then it is possible to transmit messages (strings of codewords) to another entity over a noisy channel and detect and possibly correct errors. For example in the code $C := \{P17u, 0B\$, $uBuB, 0000, PP\}$ if the word $0B\$ is sent and received as $PB\$, then if we knew that only one error was made it can be determined that the letter P was an error which can be corrected by changing P to 0.

Definition (Linear Code) A linear code is a code where the codewords form a finite abelian group under addition.

Main Problem of Coding Theory: To construct an alphabet and a code in that alphabet so it is as easy as possible to detect and correct errors in transmissions of codewords. A key idea for solving this problem is the notion of Hamming distance.

Definition (Hamming distance d_H) Let C be a code and let

$w = w_1w_2\ldots w_n, \quad w' = w'_1w'_2\ldots w'_n,$

be two codewords in C where w_i, w'_j are elements of the alphabet of C. Then $d_H(w, w')$ is defined to be the number of $1 \leq i \leq n$ where $w_i \neq w'_i$.

Definition (Minimum Hamming distance $d_H(C)$ of a code C) Let C be a code. We define

$$d_H(C) = \min_{w, w' \in C, w \neq w'} d_H(w, w').$$

LINEAR CODES OVER FINITE FIELDS

A linear code over a finite field is a linear code where the alphabet is a finite field.

Definition ([n, k]-code) Let $1 \leq k < n$ be integers. An $[n, k]$-code over a finite field \mathbb{F} is a code with alphabet \mathbb{F} which is a k-dimensional subspace of \mathbb{F}^n.
Definition ([n, k, d]-code) Let 1 ≤ k < n be integers. An [n, k, d]-code is an [n, k]-code over a finite field \(\mathbb{F} \) (denoted \(C \)) where \(d_H(C) = d \).

CONSTRUCTING BINARY LINEAR (n, k) CODES

Definition (Binary linear code) A binary linear code is a linear code with alphabet the finite field of two elements: \(\mathbb{F}_2 := \{0, 1\} \).

Binary linear \((n, k)\) codes can be constructed using a generating matrix \(G \) of the form:

\[
G = (I_k, P)
\]

where \(I_k \) is the \(k \times k \) identity matrix and \(P \) is a \(k \times (n - k) \) matrix with entries in \(\mathbb{F}_2 \). We create a binary \((n, k)\) code by defining the codewords to be all possible row vectors of the form

\[
x \cdot G
\]

where \(x = (x_1, x_2, \ldots, x_k) \) with \(x_i \in \mathbb{F}_2 \) for \(i = 1, 2, \ldots, k \).

HAMMING DISTANCE \(d_H \) AND WEIGHT \(w_H \) FOR BINARY LINEAR CODES

Lemma 1: The Hamming distance for a bilinear code \(C \) is translation invariant, i.e.,

\[
d_H(x, x') = d_H(x + y, x' + y)
\]

for all codewords \(x, x', y \in C \). This is easily proved and is left as an exercise. An important consequence is that for a bilinear code we can conclude that

\[
d_H(x, x') = d_H(x - x', x' - x') = d_H(x - x', 0) = d_H(x + x', 0).
\]

Definition (Hamming weight \(w_H \)) Let \(C \) be a bilinear code. The Hamming weight \(w_H(x) \) of a codeword \(x \in C \) is defined to be the number of “ones” in \(x \).

Examples: \(w_H(1, 0, 0, 1, 1, 0, 1) = 4 \), \(w_H(0, 1, 0, 1, 0, 0, 0) = 2 \).

Lemma 1 tells us that the minimal Hamming distance (between distinct codewords) of a bilinear code \(C \) has to be the same as the minimal Hamming weight of all non-zero codewords.

EXAMPLES OF BINARY LINEAR (n, k) CODES

Example (Repetition Code): Let \(k = 1 \) and \(n > k \). Define the generator matrix

\[
G = (1, 1, \ldots, 1).
\]

Since \(k = 1 \), the only \(k \times k \) matrices \(x \in \mathbb{F}_2 \) are \((0)\) or \((1)\). So the only codewords generated by \(x \cdot G \) are

\[
(0, 0, \ldots, 0), \quad (1, 1, \ldots, 1).
\]

Exercise: Show that the binary repetition code \(C \) above has Hamming distance \(d_H(C) = n \).
Example (Parity Check Code): Let $n > 1$ and $k = n - 1$. A generator matrix for the Parity Check $[n, n - 1]$-code is

$$G = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 1 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 1 \end{pmatrix}$$

with one’s in the last column. The codewords are all of the form $x \cdot G$ where $x = (x_1, x_2, \ldots, x_{n-1}) \in \mathbb{F}_2^{n-1}$. Note that every codeword will be of the form:

$$(x_1, x_2, \ldots, x_{n-1}, x_1 + x_2 + \cdots + x_{n-1}),$$

so the last bit in the codeword gives the parity check.

Exercise: Show that the parity check code C above has Hamming distance $d_H(C) = 2$.

Example (Hamming (7,4) code): Here the generator matrix is

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

Here are some examples of codewords:

$$(1, 1, 0, 0) \cdot G = (1, 1, 0, 0, 0, 1, 1)$$

$$(1, 1, 1, 1) \cdot G = (1, 1, 1, 1, 1, 1, 1)$$

$$(0, 0, 0, 0) \cdot G = (0, 0, 0, 0, 0, 0, 0).$$

Exercise: Show that the Hamming $[7,4]$-code C above has Hamming distance $d_H(C) = 3$.

PARITY CHECK MATRIX

A parity check matrix for a bilinear $[n, k]$-code with generator matrix

$$G = (I_k, P)$$

where I_k is the $k \times k$ identity matrix and and P is a $k \times (n - k)$ matrix with entries in \mathbb{F}_2 is the matrix

$$H = (-P^T, I_{n-k}).$$

Here P^T is the transpose of the matrix P and I_{n-k} is the $(n - k) \times (n - k)$ identity matrix.

Theorem: We have: $G \cdot H^T = 0$.

Proof: See p. 411 in "Introduction to Cryptography with Coding Theory." □

Theorem: We have $c \cdot H^T = 0$ for any codeword c.

Proof: Every codeword c is of the form $c = x \cdot G$ with $x \in \mathbb{F}_2^k$. It follows that we have $c \cdot H^T = x \cdot G \cdot H^T = 0$. □
EXAMPLES OF PARITY CHECK MATRICES

EXAMPLE 1: ([6,2]-code) Let $G = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{pmatrix} = (I_2, P)$ with

\[I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}. \]

Then we form

\[-P^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}, \quad I_{6-2} = I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \]

\[H = (-P^T, I_4) = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad H^T = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.\]

It is easy to see that $G \cdot H^T = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = 0$.

Remark: Rather than write out a long zero matrix we abbreviate it by 0.

EXAMPLE 2: ([7,3]-code) Let $G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} = (I_3, P)$ with

\[I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}. \]

Then we form

\[-P^T = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad I_{7-3} = I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \]

\[H = (-P^T, I_4) = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad H^T = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

Again, we have: $G \cdot H^T = 0$.

4