FINDING ALL SQUARE ROOTS (mod \(pq \)) IS AS HARD AS FACTORING

Question: Let \(p, q \) be primes and let \(1 \leq a < pq \) with \(\text{GCD}(a, pq) = 1 \). How many solutions \(1 \leq x \leq pq \) are there to the equation

\[x^2 \equiv a \pmod{pq} \]

Let’s do some examples to see if we can formulate a conjecture about this.

Example 1: Let \(1 \leq x < 15 \). Solve \(x^2 \equiv 1 \pmod{15} \). With a brute force search, we find the four solutions \(x = 1, 4, 11, 14 \). These can be written \(x \equiv \pm 1, \pm 4 \pmod{15} \).

Example 2: Let \(1 \leq x < 15 \). Solve \(x^2 \equiv 2 \pmod{15} \). A brute force search shows there are no solutions.

Example 3: Let \(1 \leq x < 15 \). Solve \(x^2 \equiv 4 \pmod{15} \). With a brute search, we find the four solutions \(x = 2, 7, 8, 13 \). These can be written \(x \equiv \pm 2, \pm 7 \pmod{15} \).

Example 4: Let \(1 \leq x < 15 \). Solve \(x^2 \equiv 7 \pmod{15} \) and \(x^2 \equiv 8 \pmod{15} \) and \(x^2 \equiv 11 \pmod{15} \) and \(x^2 \equiv 13 \pmod{15} \) and \(x^2 \equiv 14 \pmod{15} \) A brute force search shows there are no solutions for all these cases.

Conjecture: Let \(p, q \) be primes. Let \(1 \leq a < pq \) with \(\gcd(a, pq) = 1 \). Then the equation \(x^2 \equiv a \pmod{pq} \) either has exactly 4 solutions or no solutions with \(1 \leq x < pq \).

Remark: The above conjecture can be proved (see section 3.9 in the Trappe-Washington book).

We now prove that finding 4 square roots (mod \(pq \)) (if they exist) is as hard as factoring \(pq \).

Proof: Let \(\pm u, \pm v \) be the four square roots of \(a \pmod{pq} \), i.e.,

\[u^2 \equiv a \pmod{pq}, \quad v^2 \equiv a \pmod{pq} \quad \Rightarrow \quad u^2 - v^2 \equiv 0 \pmod{pq}. \]

For the four square roots to be distinct (mod \(pq \)) it is necessary that \(u \neq \pm v \pmod{pq} \).

Now \(u^2 - v^2 \equiv 0 \pmod{pq} \) implies that

\[(u - v)(u + v) \equiv 0 \pmod{pq}. \]

This means that \(u - v \) must be divisible by either \(p \) or \(q \) but not both. So we can factor \(pq \) by computing \(\gcd(u - v, pq) \).

Example: Factor \(n = 77 \) by finding the four solutions to \(x^2 \equiv 1 \pmod{77} \). Clearly \(x \equiv \pm 1 \pmod{77} \) are two solutions, i.e., \(x = 1, 76 \). With a brute force search we find the other two solutions \(x \equiv \pm 34 \pmod{77} \), i.e., \(x = 34, 43 \). Then

\[34^2 - 1^2 \equiv 0 \pmod{77}. \]

When we compute

\[\gcd(34 - 1, n) = 11 \]

we find the factorization of \(n = 77 \).