
SECOND MOMENTS OF GL2 AUTOMORPHIC L–FUNCTIONS

Adrian Diaconu and Dorian Goldfeld

§1 Introduction

Let H denote the upper half-plane. A complex valued function f defined on H is called an
automorphic form for Γ = SL2(Z), if it satisfies the following properties:

(1) We have

f

(
az + b

cz + d

)
= (cz + d)κf(z) for

(
a b
c d

)
∈ Γ;

(2) f(iy) = O(yα) for some α, as y →∞;

(3) κ is either an even positive integer and f is holomorphic, or κ = 0, in which case, f is
an eigenfunction of the non-euclidean Laplacian ∆ = − y2

(
∂2

∂x2 + ∂2

∂y2

)
(z = x + iy ∈ H) with

eigenvalue λ. In the first case, we call f a modular form of weight κ, and in the second, we call f
a Maass form with eigenvalue λ.

In addition, if f satisfies ∫ 1

0

f(x + iy) dx = 0,

then it is called a cusp form.
Let f and g be two cusp forms for Γ of the same weight κ (for Maass forms we take κ = 0) with

Fourier expansions

f(z) =
∑
m6=0

am |m|
κ−1

2 W (mz), g(z) =
∑
n 6=0

bn |n|
κ−1

2 W (nz) (z = x + iy, y > 0).

Here, if f, for example, is a modular form, W (z) = e2πiz, and the sum is restricted to m ≥ 1, while
if f is a Maass form with eigenvalue λ1 = 1

4 + r2
1,

W (z) = W 1
2+ir1

(z) = y
1
2 Kir1(2πy)e2πix (z = x + iy, y > 0),

where Kν(y) is the K–Bessel function. Throughout, we shall assume that both f and g are
eigenfunctions of the Hecke operators, normalized so that the first Fourier coefficients a1 = b1 = 1.
Furthermore, if f and g are Maass cusp forms, we shall assume them to be even.

Associated to f and g, we have the L–functions:
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Lf (s) =
∞∑

m=1

amm−s; Lg(s) =
∞∑

n=1

bnn−s.

In [G], Anton Good found a natural method to obtain the meromorphic continuation of multiple
Dirichlet series of type

(1.1)
∫ ∞

1

Lf (s1 + it)Lg(s2 − it) t−w dt,

where Lf (s) and Lg(s) are the L–functions associated to automorphic forms f and g on GL(2, Q).
For fixed g and fixed s1, s2, w ∈ C, the identity (1.1) is equivalent to the existence of a linear map
from the Hilbert space of cusp forms to C given by:

f −→
∫ ∞

1

Lf (s1 + it)Lg(s2 − it) t−w dt.

The Riesz representation theorem guarantees that this linear map has a kernel. Good computes
this kernel explicitly. For example when s1 = s2 = 1

2 , he shows that there exists a Poincaré series
Pw and a certain function K such that

〈f, P̄wg〉 =
∫ ∞

−∞
Lf

(
1
2

+ it

)
Lg

(
1
2

+ it

)
K(t, w) dt,

where 〈 , 〉 denotes the Peterson inner product on the Hilbert space of cusp forms. Remarkably, it
is possible to choose Pw so that

K(t, w) ∼ |t|−w, (as |t| → ∞).

Good’s approach has been worked out for congruence subgroups in [Zh].

There are, however, two serious obstacles in Good’s method.

• Although K(t, w) ∼ |t|−w as |t| → ∞ and w fixed, it has a quite different behavior when
t � |Im(w)|. In this case it grows exponentially in |t|.

• The function 〈f, P̄wg〉 has infinitely many poles in w, occurring at the eigenvalues of the
Laplacian. So there is a problem to obtain polynomial growth in w by the use of convexity
estimates such as the Phragmen-Lindelöf theorem.

In this paper, we introduce novel techniques for surmounting the above two obstacles. The
key idea is to use instead another function Kβ , instead of K, so that (1.1) satisfies a functional
equation w → 1−w. This allows one to obtain growth estimates for (1.1) in the regions <(w) > 1
and −ε < <(w) < 0. In order to apply the Phragmen-Lindelöf theorem, one constructs an auxiliary
function with the same poles as (1.1) and which has good growth properties. After subtracting
this auxiliary function from (1.1), one may apply the Phragmen-Lindelöf theorem. It appears that
the above methods constitute a new technique which may be applied in much greater generality.
We will address these considerations in subsequent papers.
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For <(w) sufficiently large, consider the function Z(w) defined by the absolutely convergent
integral

(1.2) Z(w) =

∞∫
1

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
t−w dt.

The main object of this paper is to prove the following.

Theorem 1.3. Suppose f and g are two cusp forms of weight κ ≥ 12 for SL(2, Z). The function
Z(w), originally defined by (1.2) for <(w) sufficiently large, has meromorphic continuation to the
half-plane <(w) > −1, with at most simple poles at w = 0, 1, 1

2 + iµ, − 1
2 + iµ, ρ

2 , where 1
4 + µ2

is an eigenvalue of ∆ and ζ(ρ) = 0. Furthermore, for fixed ε > 0, and ε < δ < 1 − ε, we have the
growth estimate:

(1.4) Z(δ + iη) �ε (1 + |η|)2−
3δ
4 ,

provided |w|, |w − 1|, |w ± 1
2 − µ|,

∣∣w − ρ
2

∣∣ > ε with w = δ + iη, and for all µ, ρ, as above.

Note that in the special case when f(z) = g(z) is the usual SL2(Z) Eisenstein series at s = 1
2

(suitably renormalized), a stronger result is already known (see [IJM]) for <(δ) > 1
2 . It is remarked

in [IJM] that their methods can be extended to holomorphic cusp forms, but that obtaining such
results for Maass forms is problematic.

§2 Poincaré series

To obtain Theorem 1.3, we shall need two Poincaré series, the second one being first considered
by A. Good in [G]. The first Poincaré series P (z; v, w) is defined by

(2.1) P (z; v, w) =
∑

γ∈Γ/Z

(=(γz))v

(
=(γz)
|γz|

)w

(Z = {±I}).

This series converges absolutely for <(v) and <(w) sufficiently large. Writing

P (z; v, w) =
1
2

∑
γ∈SL2(Z)

yv+w|z|−w
∣∣∣ [γ] =

∑
γ∈Γ∞\Γ

yv+w ·
∞∑

m=−∞
|z + m|−w

∣∣∣ [γ],

and using the well-known Fourier expansion of the above inner sum, one can immediately write

(2.2) P (z; v, w) =
√

π
Γ
(

w−1
2

)
Γ
(

w
2

) E(z, v + 1) + 2 π
w
2 Γ
(w

2

)−1 ∞∑
k=−∞

k 6=0

|k|
w−1

2 Pk

(
z; v +

w

2
,
w − 1

2

)
,

where Γ(s) is the usual Gamma function, E(z, s) is the classical non-holomorphic Eisenstein series
for SL2(Z), and Pk(z; v, s) is the classical Poincaré series defined by

(2.3) Pk(z; v, s) = |k|− 1
2

∑
γ∈Γ∞\Γ

(=(γz))v W 1
2+s(k · γz).
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It is not hard to show (see [Z2]) that Pk(z; v, s) ∈ L2
(
Γ\H

)
, for |<(s)|+ 3

4 > <(v) > |<(s)|+ 1
2 .

To define the second Poincaré series Pβ(z, w), let β(z, w) be defined for z ∈ H and <(w) > 0 by

(2.4) β(z, w) =


1
i

− log z̄∫
− log z

[
2yeξ

(zeξ−1)(z̄eξ−1)

]1−w

dξ if <(z) = x ≥ 0 and <(w) > 0,

β(−z̄, w) if x < 0,

where the logarithm takes its principal values, and the integration is along a vertical line segment.
It can be easily checked that β(z, w) satisfies the following two properties:

(2.5) β(αz, w) = β(z, w) (α > 0),

and for z off the imaginary axis,

(2.6) ∆β = w(1− w)β.

If we write z = reiθ with r > 0 and 0 < θ < π
2 , then by (2.4) and (2.5), we have

β(z, w) = β
(
eiθ, w

)
=

1
i

iθ∫
−iθ

[
2 eξ sin θ

(eξ+iθ − 1)(eξ−iθ − 1)

]1−w

dξ

=

θ∫
−θ

[
2 eit sin θ

(ei(t+θ) − 1)(ei(t−θ) − 1)

]1−w

dt =

θ∫
−θ

(
sin θ

cos t− cos θ

)1−w

dt(2.7)

=
√

2π sin θ Γ(w)P
1
2−w

− 1
2

(cos θ),

where Pµ
ν (z) is the spherical function of the first kind. This function is a solution of the differential

equation

(2.8) (1− z2)
d2u

dz2
− 2z

du

dz
+
[
ν(ν + 1)− µ2

1− z2

]
u = 0 (µ, ν ∈ C).

There is another linearly independent solution of (2.8) denoted by Qµ
ν (z) and called, the spherical

function of the second kind. We shall need these functions for real values of z = x and −1 ≤ x ≤ 1.
For these values, one can take as linearly independent solutions the functions defined by

(2.9) Pµ
ν (x) =

1
Γ(1− µ)

(
1 + x

1− x

)µ
2

F

(
−ν, ν + 1; 1− µ;

1− x

2

)
;

(2.10) Qµ
ν (x) =

π

2 sinµπ

[
Pµ

ν (x) cos µπ − Γ(ν + µ + 1)
Γ(ν − µ + 1)

P−µ
ν (x)

]
.

Here

F (α, β; γ; z) =
Γ(γ)

Γ(α)Γ(β)
·
∞∑

n=0

1
n!

Γ(α + n)Γ(β + n)
Γ(γ + n)

zn
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is the Gauss hypergeometric function. We shall need an additional formula (see [GR]) relating the
spherical functions, namely

(2.11) Pµ
ν (−x) = Pµ

ν (x) cos[(µ + ν)π]− 2
π

Qµ
ν (x) sin[(µ + ν)π].

Now, we define the second Poincaré series Pβ(z, w) by

(2.12) Pβ(z, w) =
∑

γ∈Γ/Z

β(γz, w) (Z = {±I}).

It can be observed that the series in the right hand side converges absolutely for <(w) > 1.

§3 Multiple Dirichlet series

Fix two cusp forms f, g of weight κ for Γ = SL(2, Z) as in §1. Here f, g are holomorphic for
κ ≥ 12 and are Maass forms if κ = 0. Define

F (z) = yκf(z)g(z).

For compex variables s1, s2, w, we are interested in studying the multiple Dirichlet series of type∫ ∞

1

Lf (s1 + it)Lg (s2 − it) t−w dt.

As was first discovered by Good [G], such series can be constructed by considering inner products
of F with Poincaré series of the type that we have introduced in §2. Good shows that such inner
products lead to multiple Dirichlet series of the form∫ ∞

0

Lf (s1 + it) Lg (s2 − it)K(s1, s2, t, w) dt,

with a suitable kernel function K(s1, s2, t, w). One of the main difficulties of the theory is to obtain
kernel functions K with good asymptotic behavior. The following kernel functions arise naturally
in our approach.

First, if f, g are holomorphic cusp forms of weight κ, then we define:

(3.1) K(s; v, w) = 21−w−2v−2κ π−v−κ Γ(w + v + κ− 1) Γ(s) Γ(v + κ− s)
Γ
(

w
2 + s

)
Γ
(

w
2 + v + κ− s

) ;

(3.2) Kβ(t, w) = 21−κ π−κ−1
∣∣∣Γ(κ

2
+ it

)∣∣∣2
π
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ.

Also, for 0 < θ < 2π, let W̃ 1
2+ν

(
eiθ, s

)
denote the Mellin transform of W 1

2+ν

(
ueiθ

)
. Then, if f

and g are both Maass cusp forms, we define K(s; v, w) and Kβ(t, w) with t ≥ 0, by

(3.3) K(s; v, w) =
∑

ε1, ε2=±1

π∫
0

W̃ 1
2+ir1

(
ε1e

iθ, s
)
W̃ 1

2+ir2
(ε2 eiθ, v̄ − s̄) sinv+w−2(θ) dθ;

(3.4) Kβ(t, w) =
∑

ε1, ε2=±1

π∫
0

β
(
eiθ, w

)
sin−2(θ) W̃ 1

2+ir1

(
ε1e

iθ, it
)
W̃ 1

2+ir2
(ε2 eiθ, it) dθ.

We have the following.
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Proposition 3.5. Fix two cusp forms f, g of weight κ for SL(2, Z) with associated L-functions
Lf (s), Lg(s). For <(v) and <(w) sufficiently large, we have

〈P (∗ ; v, w), F 〉 =

∞∫
−∞

Lf

(
σ − κ

2
+

1
2

+ it

)
Lg

(
v +

κ

2
+

1
2
− σ − it

)
K(σ + it; v, w) dt,

and

〈Pβ(∗ ; w), F 〉 =

∞∫
0

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
Kβ(t, w) dt,

where K(s; v, w), Kβ(t, w) are given by (3.1) and (3.2), if f and g are holomorphic, and by (3.3)
and (3.4), if f and g are both Maass cusp forms.

Proof: We evaluate

I(v, w) = 〈P (∗; v, w), F 〉 =
∫ ∫

Γ\H
P (z; v, w)f(z)g(z) yκ dx dy

y2

by the unfolding technique. We have

I(v, w) =

∞∫
0

∞∫
−∞

f(z)g(z) |z|−wyv+w+κ−2 dx dy

=

π∫
0

∞∫
0

f
(
reiθ

)
g (reiθ) rv+κ−1 sinv+w+κ−2(θ) dr dθ

=
∑

m, n 6=0

ambn

|mn| 1−κ
2

π∫
0

∞∫
0

W 1
2+ir1

(
mreiθ

)
W 1

2+ir2
(nreiθ) rv+κ−1 sinv+w+κ−2(θ) dr dθ.

By Mellin transform theory, we may express

W 1
2+ir1

(
mreiθ

)
=

1
2πi

∫
(σ)

∞∫
0

W 1
2+ir1

(
mueiθ

)
us du

u
r−s ds.

Making the substitution u 7→ u
|m| , we have

W 1
2+ir1

(
reiθ

)
=

1
2πi

∫
(σ)

∞∫
0

W 1
2+ir1

(
m

|m|
ueiθ

)
us

|m|s
du

u
r−s ds.

Plugging this in the last expression of 〈P (·; v, w), F 〉, we obtain

I(v, w) =
1

2πi

∫
(σ)

∑
m, n 6=0

ambn

|m|s+ 1−κ
2 |n| 1−κ

2

π∫
0

∞∫
0

W 1
2+ir1

(
m

|m|
ueiθ

)
us du

u

·
∞∫
0

W 1
2+ir2

(nreiθ) rv−s+κ dr

r
· sinv+w+κ−2(θ) dθ ds.
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Recall that if f and g are Maass forms, then both are even. The proposition immediately follows
by making the substitution r 7→ r

|n| .

The second formula in Proposition 3.5 can be proved by a similar argument �

§4 The kernels K(t, w) and Kβ(t, w)

In this section, we shall study the behavior in the variable t of the kernels

(4.1) K(t, w) := K
(κ

2
+ it; 0, w

)
= 21−w−2κ π−κ Γ(w + κ− 1) Γ

(
κ
2 + it

)
Γ(κ

2 − it)
Γ
(

w
2 + κ

2 + it
)
Γ
(

w
2 + κ

2 − it
)

and Kβ(t, w) given by (3.2). This will play an important role in the sequel. We begin by proving
the following.

Proposition 4.2. For t � 0, the kernels K(t, w) and Kβ(t, w) are meromorphic functions of the
variable w. Furthermore, for −1 < <(w) < 2, |=(w)| → ∞, we have the asymptotic formulae

(4.3) K(t, w) = A(w) t−w ·
(

1 + Oκ

(
|=(w)|4

t2

))
,

Kβ(t, w) = 21−κ π−κ−1
∣∣∣Γ(κ

2
+ it

)∣∣∣2
π
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ(4.4)

= B(w) t−w

(
1 +Oκ

(
|=(w)|3

t2

))
,

where

A(w) =
Γ(w + κ− 1)
22κ+w−1 πκ

and B(w) =
2πw− 1

2 Γ(w)Γ(w + κ− 1)
Γ(w + 1

2 )(4π)κ+w−1
.

Proof: Let s and a be complex numbers with |a| large and |a| < |s| 12 . Using the well-known
asymptotic representation for large values of |s| :

Γ(s) =
√

2π · ss− 1
2 e−s

(
1 +

1
12 s

+
1

288 s2
− 139

51840 s3
+ O

(
|s|−4

))
,

which is valid provided −π < arg(s) < π, we have

Γ(s)
Γ(s + a)

= s−a
(
1 +

a

s

)−s−a+ 1
2

ea ·
(

1− 1
12 (s + a)

+ O
(
|s|−2

))(
1 +

1
12 s

+ O
(
|s|−2

))
.

Since |s| > |a|2, it easily follows that

( 1
2 − s− a) log

(
1 +

a

s

)
+ a =

a (1− a)
2 s

+
a3

6 s2
+ O

(
|a|2|s|−2

)
.
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Consequently,

Γ(s)
Γ(s + a)

= s−ae
a (1−a)

2 s + a3

6 s2
+ O(|a|2|s|−2) ·

(
1− 1

12 (s + a)
+ O

(
|s|−2

))
·
(

1 +
1

12 s
+ O

(
|s|−2

))
.

Now, we have by the Taylor expansion that

e
a (1−a)

2 s + a3

6 s2 = 1 +
a(1− a)

2s
+O

(
|a|4

|s|2

)
.

It follows that

(4.5)
Γ(s)

Γ(s + a)
= s−a

(
1 +

a(1− a)
2s

+O
(
|a|4

|s2|

))
.

Now

K(t, w) = 21−w−2κ π−κ Γ(w + κ− 1)
Γ
(

κ
2 + it

)
Γ(κ

2 − it)
Γ
(

w
2 + κ

2 + it
)
Γ
(

w
2 + κ

2 − it
) .

We may apply (4.5) (with s = κ
2 ± it, a = w

2 ) to obtain (for t →∞)

K(t, w) =
Γ(w + κ− 1)
22κ+w−1 πκ

∣∣∣κ
2

+ it
∣∣∣−w

·
(

1 + O
(

|w|4

κ2 + t2

))
=

Γ(w + κ− 1)
22κ+w−1 πκ

t−w ·
(

1 + O
(
|w|4

t2

))
.

This proves the asymptotic formula (4.3). We now continue on to the proof of (4.4). Recall that

Kβ(t, w) =
4
∣∣∣Γ(κ

2 + it
)∣∣∣2

(2π)κ+1

π
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ.

We shall split the θ–integral into two parts. Accordingly, we write

Kβ(t, w) =
4
∣∣∣Γ(κ

2 + it
)∣∣∣2

(2π)κ+1


|=(w)|−

1
2∫

0

+

π
2∫

|=(w)|−
1
2

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ.

First of all, we may assume t � |=(w)| 32+ε. Otherwise, the asymptotic formula (4.4) is not valid.

π
2∫

|=(w)|−
1
2

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ � eπte

− 2t√
|=(w)| · max

|=(w)|−
1
2≤θ≤π

2

∣∣β(eiθ, w
)∣∣

� eπte−|=(w)|1+ε

,
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since t � |=(w)| 32+ε and β
(
eiθ, w

)
is bounded. It follows that

Kβ(t, w) =
4
∣∣∣Γ(κ

2 + it
)∣∣∣2

(2π)κ+1

|=(w)|−
1
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ + O

(
e−|=(w)|1+ε

)

=
2
∣∣∣Γ(κ

2 + it
)∣∣∣2 · eπt

(2π)κ+1

|=(w)|−
1
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) e−2θt dθ + O

(
e−|=(w)|1+ε

)
.

Now, for θ � |=(w)|− 1
2 , we have

β
(
eiθ, w

)
=

θ∫
−θ

(
sin θ

cos u− cos θ

)1−w

du

= 2(sin θ)1−w · θ
1∫

0

(
cos(θu)− cos(θ)

)w−1
du

= 2(sin θ)1−w · θ
1∫

0

(
θ2 (1− u2)

2!
− θ4 (1− u4)

4!
+ θ6 (1− u6)

6!
− · · ·

)w−1

du

=
√

π 21−w(sin θ)1−w · θ2w−1

[
Γ(w)

Γ
(

1
2 + w

) +
θ2(w − 1)

6

(
− 2Γ(w)

Γ
(

1
2 + w

) +
Γ(1 + w)
Γ
(

3
2 + w

)) + · · ·

]

=
√

π 21−w(sin θ)1−w · θ2w−1

[
Γ(w)

Γ
(

1
2 + w

)(1 + θ2h2(w) + θ4h4(w) + θ6h6(w) + · · ·
)]

,

where

h2(w) =
1− w2

6 + 12w
, h4(w) =

(w − 1)(−21− 5w + 9w2 + 5w3)
360(3 + 8w + 4w2)

,

h6(w) =
(1− w)(3 + w)(465− 314w − 80w2 + 14w3 + 35w4)

45360(1 + 2w)(3 + 2w)(5 + 2w)
, · · ·

and where h2`(w) = O
(
|=(w)|`

)
for ` = 1, 2, 3, . . . , and

Γ(w)
Γ
(

1
2 + w

)(1 + θ2h2(w) + θ4h4(w) + θ6h6(w) + · · ·
)

converges absolutely for all w ∈ C and any fixed θ.

We may now substitute this expression for β
(
eiθ, w

)
into the above integral for Kβ(t, w). We
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then obtain

Kβ(t, w) =

∣∣∣Γ(κ
2 + it

)∣∣∣2 · eπt Γ(w)

2κ+w−1π
1
2+κ Γ

(
1
2 + w

) |=(w)|−
1
2∫

0

(sin θ)κ−w−1θ2w−1 e−2θt

(
1 + θ2h2(w) + · · ·

)
dθ

+ O
(
e−|=(w)|1+ε

)

=

∣∣∣Γ(κ
2 + it

)∣∣∣2 · eπt Γ(w)

2κ+w−1π
1
2+κ Γ

(
1
2 + w

) |=(w)|−
1
2∫

0

θκ+w−2 e−2θt

(
1 + θ2h̃2(w) + θ4h̃4(w) + · · ·

)
dθ

+ O
(
e−|=(w)|1+ε

)
=

∣∣∣Γ(κ
2 + it

)∣∣∣2 · eπt Γ(w)

2κ+w−1π
1
2+κ Γ

(
1
2 + w

) ∞∫
0

θκ+w−2 e−2θt

(
1 + θ2h̃2(w) + θ4h̃4(w) + · · ·

)
dθ

+ O
(
e−|=(w)|1+ε

)
=

∣∣∣Γ(κ
2 + it

)∣∣∣2 · eπt Γ(w)Γ(κ + w − 1)

tκ+w−1 · 4κ+w−1π
1
2+κ Γ

(
1
2 + w

) (
1 + O

(
|=(w)|3

t2

))
,

where, in the above, h̃2`(w) = O
(
|=(w)|`

)
for ` = 1, 2, . . . .

If we now apply the identity∣∣∣Γ(κ

2
+ it

)∣∣∣2 = t · |1 + it|2|2 + it|2|3 + it|2 · · ·
∣∣∣κ
2
− 1 + it

∣∣∣2 π

sinhπt

= 2πtκ−1e−πt
(
1 + Oκ

(
t−2
))

in the above expression, we obtain the second part of Proposition 4.2.

For t smaller than |=(w)|2+ε, we have the following

Proposition 4.6. Fix ε > 0, κ ≥ 12. For −1 < <(w) < 2 and 0 ≤ t � |=(w)|2+ε, with =(w) →∞,
we have ∣∣∣sin(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

∣∣∣ �κ t
1
2 |=(w)|κ− 3

2 .

Proof: Let g(w, θ) denote the function defined by

g(w, θ) = Γ(w) P
1
2−w

− 1
2

(cos θ).

We observe that

(4.7) sin
(πw

2

)
g(1− w, θ)− cos

(πw

2

)
g(w, θ) = − cos πw

2 cos
(

πw
2

) [g(w, θ) + g(w, π − θ)] .

To see this, apply (2.10) and (2.11) with ν = − 1
2 and µ = 1

2 − w. We have:

g(1− w, θ) = g(w, θ) sinπw − 2
π

Γ(w) Q
1
2−w

− 1
2

(cos θ) cos πw;
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g(w, π − θ) = g(w, θ) cos πw +
2
π

Γ(w)Q
1
2−w

− 1
2

(cos θ) sinπw.

Multiplying the first by sinπw, the second by cos πw, and then adding the resulting identities, we
obtain

g(1− w, θ) sinπw + g(w, π − θ) cos πw = g(w, θ),

from which (4.7) immediately follows by adding g(w, θ) cos πw on both sides.
Now, if f and g are holomorphic, it follows from (2.7) (3.3) and (4.7) that

sin
(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

(4.8)

= −2
1
2−κ π−κ− 1

2

∣∣∣Γ(κ

2
+ it

)∣∣∣2 cos πw

cos
(

πw
2

)
π
2∫

0

[g(w, θ) + g(w, π − θ)] sinκ− 3
2 (θ) cosh[t(2θ − π)] dθ

= −2
1
2−κ π−κ− 1

2

∣∣∣Γ(κ

2
+ it

)∣∣∣2 Γ(w) cos πw

cos
(

πw
2

) π∫
0

P
1
2−w

− 1
2

(cos θ) sinκ− 3
2 (θ) cosh[t(2θ − π)] dθ.

By (2.9), we have

P
1
2−w

− 1
2

(cos θ) =
1

Γ(w + 1
2 )

cot
1
2−w

(
θ

2

)
F

(
1
2
,
1
2
;w +

1
2
; sin2

(
θ

2

))
.

Invoking the well-known transformation formula

F (α, β; γ; z) = (1− z)−αF

(
α, γ − β; γ;

z

z − 1

)
,

we can further write

P
1
2−w

− 1
2

(cos θ) =
cos−w− 1

2
(

θ
2

)
sinw− 1

2
(

θ
2

)
Γ(w + 1

2 )
F

(
1
2
, w;w +

1
2
;− tan2

(
θ

2

))
.

Now, represent the hypergeometric function on the right hand side by its inverse Mellin transform
obtaining:

P
1
2−w

− 1
2

(cos θ) =
1

Γ( 1
2 )Γ(w)

cos−w− 1
2

(
θ

2

)
sinw− 1

2

(
θ

2

)

· 1
2πi

i∞∫
−i∞

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

tan2z

(
θ

2

)
dz.(4.9)

Here, the path of integration is chosen such that the poles of Γ( 1
2 + z) and Γ(w + z) lie to the left

of the path, and the poles of the function Γ(−z) lie to the right of it.
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It follows that

sin
(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

= −2
1
2−κ π−κ− 1

2

∣∣∣Γ(κ

2
+ it

)∣∣∣2 Γ(w) cos πw

cos
(

πw
2

) π∫
0

cos−w− 1
2
(

θ
2

)
sinw− 1

2
(

θ
2

)
Γ( 1

2 )Γ(w)

·

 1
2πi

i∞∫
−i∞

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

tan2z

(
θ

2

)
dz

 · sinκ− 3
2 (θ) cosh[t(2θ − π)] dθ.

In the above, we apply the identity sin(θ) = 2 sin
(

θ
2

)
cos
(

θ
2

)
; after exchanging integrals and

simplifying, we obtain

sin
(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

=

∣∣∣Γ(κ
2 + it

)∣∣∣2
2πκ+1

cos πw

cos
(

πw
2

) · 1
2πi

i∞∫
−i∞

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

(4.10)

·
π∫

0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
cosh[t(2θ − π)] dθ dz.

Note that sin
(

πw
2

)
Kβ(t, 1− w)− cos

(
πw
2

)
Kβ(t, w) satisfies a functional equation w 7→ 1− w.

We may, therefore, assume, without loss of generality, that =(w) > 0. Fix ε > 0. We break the
z–integral in (4.10) into three parts according as

−∞ < =(z) < − ( 1
2 + ε)=(w), − ( 1

2 + ε)=(w) ≤ =(z) ≤ ( 1
2 + ε)=(w),

( 1
2 + ε)=(w) < =(z) < ∞.

Under the assumptions that =(w) → ∞ and 0 ≤ t � =(w)2+ε, it follows easily from Stirling’s
estimate for the Gamma function that

−i( 1
2+ε)=(w)∫
−i∞

∣∣∣∣Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

∣∣∣∣ dz = O
(
e−(π

2 +ε)=(w)
)

,

i∞∫
i( 1

2+ε)=(w)

∣∣∣∣Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

∣∣∣∣ dz = O
(
e−(π

2 +ε)=(w)
)

,

and, therefore,
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sin
(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

=

∣∣∣Γ(κ
2 + it

)∣∣∣2
2πκ+1

cos πw

cos
(

πw
2

) · 1
2πi

i( 1
2+ε)=(w)∫

−i( 1
2+ε)=(w)

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

(4.11)

·
π∫

0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
cosh[t(2θ − π)] dθ dz

+ O
(
e−ε=(w)

)
.

Next, we evaluate the θ–integral on the right hand side of (4.11):

π∫
0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
cosh[t(2θ − π)] dθ

=
e−πt

2

π∫
0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
e2tθ dθ(4.12)

+
eπt

2

π∫
0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
e−2tθ dθ

= e−πt

π/2∫
0

cosκ−w−2z−2(θ) sin2z+w+κ−2(θ) e4tθ dθ

+ eπt

π/2∫
0

cosκ−w−2z−2(θ) sin2z+w+κ−2(θ) e−4tθ dθ,

where for the last equality we made the substitution

θ 7→ 2θ.

Using the formula (see [GR])∫ π/2

0

e2iβx sin2µ x cos2ν x dx =

= 2−2µ−2ν−1
(
eπi(β−ν− 1

2 ) Γ(β − ν − µ)Γ(2ν + 1)
Γ(β − µ + ν + 1)

F (−2µ, β − µ− ν; 1 + β − µ + ν;−1)

+ eπi(µ+ 1
2 ) Γ(β − ν − µ)Γ(2µ + 1)

Γ(β − ν + µ + 1)
F (−2ν, β − µ− ν; 1 + β + µ− ν;−1)

)
,
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which is valid for <(µ), <(ν) > − 1
2 , one can write the first integral in (4.12) as

23−2κ
∑

ε=±1

e−επt ·
(
eπi

(1−κ+w+2z−4itε)
2

Γ(2− κ− 2itε)Γ(−1 + κ− w − 2z)
Γ(1− 2itε− w − 2z)

· F (2− κ− w − 2z, 2− κ− 2itε; 1− w − 2z − 2itε;−1)

+ eπi
(−1+κ+w+2z)

2
Γ(2− κ− 2itε)Γ(−1 + κ + w + 2z)

Γ(1− 2itε + w + 2z)

· F (2− κ + w + 2z, 2− κ− 2itε; 1 + w + 2z − 2itε;−1))
)
.

If we replace the θ–integral on the right hand side of (4.11) by the above expression, it follows
that

sin
(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

=

∣∣∣Γ(κ
2 + it

)∣∣∣2
22κ−2πκ+1

cos πw

cos
(

πw
2

) · ∑
ε=±1

e−επtΓ(2− κ− 2itε)

(4.13)

· 1
2πi

i( 1
2+ε)=(w)∫

−i( 1
2+ε)=(w)

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

·

(
eπi

(1−κ+w+2z−4itε)
2

Γ(−1 + κ− w − 2z)
Γ(1− 2itε− w − 2z)

· F (2− κ− w − 2z, 2− κ− 2itε; 1− w − 2z − 2itε;−1)

+ eπi
(−1+κ+w+2z)

2
Γ(−1 + κ + w + 2z)
Γ(1− 2itε + w + 2z)

· F (2− κ + w + 2z, 2− κ− 2itε; 1 + w + 2z − 2itε;−1))

)
dz

+ O
(
e−ε=(w)

)
.

Lemma 4.14. Fix κ ≥ 12. Let −1 < <(w) < 2, 0 ≤ t � |=(w)|2+ε, <(z) = −ε′ with ε, ε′ small
positive numbers, and |=(z)| < 2|=(w)|. Then, we have the following estimates:

F (2− κ− w − 2z, 2− κ− 2itε; 1− w − 2z − 2itε;−1) �
√

min{1, 2t, |=(w + 2z)|},

F (2− κ + w + 2z, 2− κ− 2itε; 1 + w + 2z − 2itε;−1) �
√

min{1, 2t, |=(w + 2z)|}.

Proof: We shall make use of the following well-known identity of Kummer:

F (a, b, c;−1) = 2c−a−bF (c− a, c− b, c;−1).
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It follows that

F (2− κ− w − 2z, 2− κ− 2itε, 1− w − 2z − 2itε;−1)(4.15)

= 22κ−3F (κ− 1− 2itε, κ− 1− w − 2z, 1− w − 2z − 2itε;−1)

and

F (2− κ + w + 2z, 2− κ− 2itε; 1 + w + 2z − 2itε;−1)(4.16)

= 22κ−3F (κ− 1− 2itε, κ− 1 + w + 2z, 1 + w + 2z − 2itε,−1).

Now, we represent the hypergeometric function on the right hand side of (4.15) as

(4.17) F (a, b, c;−1) =
Γ(c)

Γ(a)Γ(b)
· 1
2πi

δ+i∞∫
δ−i∞

Γ(a + ξ)Γ(b + ξ)Γ(−ξ)
Γ(c + ξ)

dξ,

with

a = κ− 1− 2itε

b = κ− 1− w − 2z

c = 1− w − 2z − 2itε.

This integral representation is valid, if, for instance, −1 < δ < 0. We may also shift the line of
integration to 0 < δ < 1 which crosses a simple pole with residue 1. Clearly, the main contribution
comes from small values of the imaginary part of ξ.

If, for example, we use Stirling’s formula

Γ(s) =
√

2π · |t|σ− 1
2 e−

1
2 π|t|+i

(
t log |t|−t+ π

2 ·
t
|t| (σ− 1

2 )
)
·
(
1 +O

(
|t|−1

) )
,

where s = σ + it, 0 ≤ σ ≤ 1, |t| � 0, we have

∣∣∣∣Γ(a + ξ)Γ(b + ξ)Γ(c)Γ(−ξ)
Γ(a)Γ(b)Γ(c + ξ)

∣∣∣∣� e
π
2

(
−|W−ξ|+|2t+W−ξ|−|ξ|−|ξ−2t|

)

· t
3
2−κ W

3
2−κ |W − ξ|− 3

2+κ+δ |ξ − 2t|− 3
2+κ+δ

√
2t + W

|ξ| 12+δ |2t + W − ξ| 12+δ
,

(4.18)

where W = =(w +2z) ≥ 0. This bound is valid provided min
(
|W − ξ|, |2t+W − ξ|, |ξ|, |ξ− 2t|

)
is

sufficiently large. If this minimum is close to zero, we can eliminate this term and obtain a similar
expression. There are 4 cases to consider.

Case 1: |ξ| ≤ W, |ξ| ≤ 2t. In this case, the exponential term in (4.18) becomes e0 = 1 and we
obtain ∣∣∣∣Γ(a + ξ)Γ(b + ξ)Γ(c)Γ(−ξ)

Γ(a)Γ(b)Γ(c + ξ)

∣∣∣∣� |ξ|− 1
2 .
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Case 2: |ξ| ≤ W, |ξ| > 2t. In this case the exponential term in (4.18) becomes

e
π
2

(
−W+ξ+2t+W−ξ−|ξ|−|ξ|+2t

)
which has exponential decay in (|ξ| − t).

Case 3: |ξ| > W, |ξ| ≤ 2t. Here, the exponential term in (4.18) takes the form

e
π
2

(
−|ξ|+W+2t+W−ξ−|ξ|−2t+ξ

)
which has exponential decay in (|ξ| −W ).

Case 4: |ξ| > W, |ξ| > 2t. In this last case, we get

e
π
2

(
−|ξ|−W+2t+W+|ξ|−2|ξ|−2t

)
if ξ is negative. Note that this has exponential decay in |ξ|. If ξ is positive, we get

e
π
2

(
−|ξ|+W+|2t+W−ξ|−2|ξ|+2t

)
.

This last expression has exponential decay in (2|ξ| −W − 2t) if 2t + W − ξ > 0. Otherwise it has
exponential decay in |ξ|.

It is clear that the major contribution to the integral (4.17) for the hypergeometric function will
come from case 1. This gives immediately the first estimate in Lemma 4.14. The second estimate
in Lemma 4.14 can be established by a similar method.

We remark that for t = 0, one can easily obtain the estimate in Proposition 4.6 by directly using
the formula (see [GR])∫ π

0

P−µ
ν (cos θ) sinα−1(θ) dθ = 2−µπ

Γ(α+µ
2 )Γ(α−µ

2 )
Γ( 1+α+ν

2 )Γ(α−ν
2 )Γ(µ+ν+2

2 )Γ(µ−ν+1
2 )

,

which is valid for <(α ± µ) > 0, and then by applying the Stirling’s formula. It follows from this
that

sin
(πw

2

)
Kβ(0, 1− w)− cos

(πw

2

)
Kβ(0, w) � |=(w)|κ−2.

Finally, we return to the estimation of sin
(

πw
2

)
Kβ(0, 1 − w) − cos

(
πw
2

)
Kβ(0, w) using (4.13)

and Lemma 4.14. If we apply Stirling’s asymptotic expansion for the Gamma function, as we did
before, it follows (after noting that t,=(w) > 0) that∣∣∣sin(πw

2

)
Kβ(0, 1− w)− cos

(πw

2

)
Kβ(0, w)

∣∣∣

� t
1
2

i( 1
2+ε)=(w)∫

−i( 1
2+ε)=(w)

|=(w + 2z)|κ− 3
2

=(w)
1
2 (1 + |=(z)|) 1

2 |=(w + 2z + 2εt)| 12
√

min{1, 2t, |=(w + 2z)|} dz

� t
1
2=(w)κ− 3

2 .
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This completes the proof of Proposition 4.6.

§5 The analytic continuation of I(v, w)

To obtain the analytic continuation of

I(v, w) = 〈P (∗; v, w), F 〉 =
∫ ∫

Γ\H
P (z; v, w)f(z)g(z) yκ dx dy

y2
,

we will compute the inner product 〈P (∗; v, w), F 〉 using Selberg’s spectral theory. First, let us fix
u0, u1, u2, . . . an orthonormal basis of Maass cusp forms which are simultaneous eigenfunctions of
all the Hecke operators Tn, n = 1, 2, . . . and T−1, where

(T−1 u)(z) = u(−z̄).

We shall assume that u0 is the constant function, and the eigenvalue of uj , for j = 1, 2, . . . , will
be denoted by λj = 1

4 +µ2
j . Since the Poincaré series Pk(z; v, s) (k ∈ Z, k 6= 0) is square integrable,

for |<(s)|+ 3
4 > <(v) > |<(s)|+ 1

2 , we can spectrally decompose it as

(5.1) Pk(z; v, s) =
∞∑

j=1

〈Pk(∗; v, s), uj〉uj(z) +
1
4π

∞∫
−∞

〈Pk(∗; v, s), E(∗, 1
2 + iµ)〉E(z, 1

2 + iµ) dµ.

Here we used the simple fact that 〈Pk(∗; v, s), u0〉 = 0.
We shall need to write (5.1) explicitly. In order to do so, let u be a Maass cusp form in our

basis with eigenvalue λ = 1
4 + µ2. Writing

u(z) = ρ(1)
∑
ν 6=0

cν |ν|−
1
2 W 1

2+iµ(νz),

then by (2.3) and an unfolding process, we have

〈Pk(∗; v, s), u〉 = |k|− 1
2

∞∫
0

1∫
0

yv W 1
2+s(kz)u(z)

dx dy

y2

= ρ(1)
∑
ν 6=0

cν√
|kν|

∞∫
0

1∫
0

yv−1 W 1
2+s(kz) W 1

2+iµ(−νz)
dx dy

y

= ρ(1) ck

∞∫
0

yv Ks(2π|k|y) Kiµ(2π|k|y)
dy

y

= π−v ρ(1)
8

ck

|k|v
Γ
(−s+v−iµ

2

)
Γ
(

s+v−iµ
2

)
Γ
(−s+v+iµ

2

)
Γ
(

s+v+iµ
2

)
Γ(v)

.

Let G(s; v, w) denote the function defined by

(5.2) G(s; v, w) = π−v−w
2

Γ
(−s+v+1

2

)
Γ
(

s+v
2

)
Γ
(−s+v+w

2

)
Γ
(

s+v+w−1
2

)
Γ
(
v + w

2

) .
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Then, replacing v by v + w
2 and s by w−1

2 in (5.2), we obtain

(5.3)
〈

Pk

(
∗; v +

w

2
,
w − 1

2

)
, u

〉
=

ρ(1)
8

ck

|k|v+ w
2
G( 1

2 + iµ; v, w).

Next, we compute the inner product between Pk

(
z; v+ w

2 , w−1
2

)
and the Eisenstein series E(z, s̄).

This is well-known to be the Mellin transform of the constant term of Pk

(
z; v + w

2 , w−1
2

)
. More

precisely, if we write

Pk

(
z; v +

w

2
,
w − 1

2

)
= yv+ w

2 + 1
2 Kw−1

2
(2π|k|y)e(kx) +

∞∑
n=−∞

an

(
y; v +

w

2
,
w − 1

2

)
e(nx),

where we denoted e2πix by e(x), then for <(s) > 1,

〈
Pk

(
·; v +

w

2
,
w − 1

2

)
, E(·, s̄)

〉
=

∞∫
0

a0

(
y; v +

w

2
,
w − 1

2

)
ys−2 dy.

Now, by a standard computation, we have

a0

(
y; v +

w

2
,
w − 1

2

)
=

∞∑
c=1

c∑
r=1

(r, c)=1

e

(
kr

c

) ∞∫
−∞

(
y

c2x2 + c2y2

)v+ w+1
2

·Kw−1
2

(
2π|k|y

c2x2 + c2y2

)
e

(
−kx

c2x2 + c2y2

)
dx.

Making the substitution x 7→ x
c2 and y 7→ y

c2 , we obtain

〈
Pk

(
∗; v +

w

2
,
w − 1

2

)
, E(∗, s̄)

〉
=

∞∑
c=1

τc(k) c−2s ·
∞∫
0

∞∫
−∞

ys+v+ w−3
2

(x2 + y2)v+ w+1
2

·Kw−1
2

(
2π|k|y
x2 + y2

)

· e
(

−kx

x2 + y2

)
dx dy.

Here, τc(k) is the Ramanujan sum given by

τc(k) =
c∑

r=1
(r, c)=1

e

(
kr

c

)
.

Recalling that
∞∑

c=1

τc(k) c−2s =
σ1−2s(|k|)

ζ(2s)
,
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where for a positive integer n, σs(n) =
∑

d|n ds, it follows after making the substitution x 7→ |k|x,

y 7→ |k|y that〈
Pk

(
∗; v +

w

2
,
w − 1

2

)
, E(·, s̄)

〉
= |k|s−v−w

2 −
1
2 · σ1−2s(|k|)

ζ(2s)

∞∫
0

∞∫
−∞

ys+v+ w−3
2

(x2 + y2)v+ w+1
2

·Kw−1
2

(
2πy

x2 + y2

)
e

(
− k

|k|
x

x2 + y2

)
dx dy.(5.4)

The double integral on the right hand side can be computed in closed form by making the
substitution z 7→ − 1

z . For <(s) > 0 and for <(v − s) > −1, we successively have:
∞∫
0

∞∫
−∞

ys+v+ w−3
2

(x2 + y2)v+ w+1
2

·Kw−1
2

(
2πy

x2 + y2

)
e

(
− k

|k|
x

x2 + y2

)
dx dy(5.5)

=

∞∫
0

∞∫
−∞

ys+v+ w−3
2 (x2 + y2)−s ·Kw−1

2
(2πy) e

(
k

|k|
x

)
dx dy

=

∞∫
0

ys+v+ w−3
2 Kw−1

2
(2πy) ·

∞∫
−∞

(x2 + y2)−s e

(
k

|k|
x

)
dx dy

=
2−v−w

2 +1 πs−v−w
2

Γ(s)

∞∫
0

yv+ w
2 −1 Kw−1

2
(y) Ks− 1

2
(y) dy

=
G(s; v, w)
4 π−s Γ(s)

.

Combining (5.4) and (5.5), we obtain

(5.6)
〈

Pk

(
∗; v +

w

2
,
w − 1

2

)
, E(·, s̄)

〉
= |k|s−v−w

2 −
1
2 · σ1−2s(|k|)

4 π−s Γ(s) ζ(2s)
G(s; v, w)

Using (5.1), (5.3) and (5.6), one can decompose Pk

(
·; v + w

2 , w−1
2

)
as

Pk

(
z; v +

w

2
,
w − 1

2

)
=

∞∑
j=1

ρj(1)
8

c
(j)
k

|k|v+ w
2
G( 1

2 + iµj ; v, w) uj(z)

(5.7)

+
1

16π

∞∫
−∞

1
π−

1
2+iµ Γ( 1

2 − iµ) ζ(1− 2iµ)
σ2iµ(|k|)
|k|v+ w

2 +iµ
G( 1

2 − iµ; v, w)E(z, 1
2 + iµ) dµ.

Now from (2.2) and (5.7), we deduce that

π−
w
2 Γ
(w

2

)
P (z; v, w) = π

1−w
2 Γ

(
w − 1

2

)
E(z, v + 1)

+
1
2

∑
uj−even

ρj(1)Luj
(v + 1

2 )G( 1
2 + iµj ; v, w) uj(z)(5.8)

+
1
4π

∞∫
−∞

ζ(v + 1
2 + iµ) ζ(v + 1

2 − iµ)
π−

1
2+iµ Γ( 1

2 − iµ) ζ(1− 2iµ)
G( 1

2 − iµ; v, w)E(z, 1
2 + iµ) dµ.
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The series corresponding to the discrete spectrum converges absolutely for (v, w) ∈ C2, apart from
the poles of G( 1

2 + iµj ; v, w). To handle the continuous part of the spectrum, we write the above
integral as

1
4πi

∫
( 1
2 )

ζ(v + s)ζ(v + 1− s)
πs−1Γ(1− s)ζ(2− 2s)

G(1− s; v, w)E(z, s) ds.

As a function of v and w, this integral can be meromorphically continued by shifting the line
<(s) = 1

2 . For instance, to obtain continuation to a region containing v = 0, take v with <(v) =
1
2 + ε, ε > 0 sufficiently small, and take <(w) large. By shifting the line of integration <(s) = 1

2 to
<(s) = 1

2 −2ε, we are allowed to take 1
2 − ε ≤ <(v) ≤ 1

2 + ε. We now assume <(v) = 1
2 − ε, and shift

back the line of integration to <(s) = 1
2 . It is not hard to see that in this process we encounter

simple poles at s = 1− v and s = v with residues

π
1−w

2
Γ
(

w
2

)
Γ
(

2v+w−1
2

)
Γ
(
v + w

2

) E(z, 1− v),

and

π
3
2−2v−w

2
Γ(v)Γ

(
2v+w−1

2

)
Γ
(

w
2

)
Γ(1− v)Γ

(
v + w

2

) ζ(2v)
ζ(2− 2v)

E(z, v)

= π
1−w

2
Γ
(

2v+w−1
2

)
Γ
(

w
2

)
Γ
(
v + w

2

) E(z, 1− v),

respectively, where for the last identity we applied the functional equation of the Eisenstein series
E(z, v). In this way, we obtained the meromorphic continuation of the above integral to a region
containing v = 0. Continuing this procedure, one can prove the meromorphic continuation of the
Poincaré series P (z; v, w) to C2.

Using Parseval’s formula, we obtain

π−
w
2 Γ
(w

2

)
I(v, w) = π

1−w
2 Γ

(
w − 1

2

)
〈E(·, v + 1), F 〉

+
1
2

∑
uj−even

ρj(1)Luj
(v + 1

2 )G( 1
2 + iµj ; v, w) 〈uj , F 〉

(5.9)

+
1
4π

∞∫
−∞

ζ(v + 1
2 + iµ) ζ(v + 1

2 − iµ)
π−

1
2+iµ Γ( 1

2 − iµ) ζ(1− 2iµ)
G( 1

2 − iµ; v, w) 〈E(·, 1
2 + iµ), F 〉 dµ,

which gives the meromorphic continuation of I(v, w). We record this fact in the following

Proposition 5.10. The function I(v, w), originally defined for <(v) and <(w) sufficiently large,
has meromorphic continuation to C2.

We conclude this section by remarking that from (5.9), one can also obtain information about
the polar divisor of the function I(v, w). When v = 0, this issue is further discussed in the next
section.
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§6 Proof of Theorem 1.3

To prove the first part of Theorem 1.3, assume for the moment that f = g. By Proposition
5.10, we know that the function I(v, w) admits meromorphic continuation to C2. Furthermore, if
we specialize v = 0, the function I(0, w) has its first pole at w = 1. Using the asymptotic formula
(4.3), one can write

(6.1) I(0, w) =

∞∫
−∞

|Lf ( 1
2 + it)|2 K(t, w) dt = 2

∞∫
0

|Lf ( 1
2 + it)|2 K(t, w) dt,

for at least <(w) sufficiently large. Here the kernel K(t, w) is given by (4.1). As the first pole of
I(0, w) occurs at w = 1, it follows from (4.3) and Landau’s Lemma that

Z(w) =

∞∫
1

|Lf ( 1
2 + it)|2 t−w dt

converges absolutely for <(w) > 1. If f 6= g, the same is true for the integral defining Z(w) by
Cauchy’s inequality. The meromorphic continuation of Z(w) to the region <(w) > −1 follows now
from (4.3). This proves the first part of the theorem.

To obtain the polynomial growth in |=(w)|, for <(w) > 0, we invoke the functional equation
(see [G])

(6.2) cos
(πw

2

)
Iβ(w) − sin

(πw

2

)
Iβ(1− w) =

2π ζ(w) ζ(1− w)
(2w − 1)π−w Γ(w) ζ(2w)

〈E(·, 1− w), F 〉.

It is well-known that 〈E(·, 1−w), F 〉 is (essentially) the Rankin-Selberg convolution of f and g.
Precisely, we have:

(6.3) 〈E(·, 1− w), F 〉 = (4π)w−κΓ(κ− w) L(1− w, f × g).

It can be observed that the expression on the right hand side of (6.2) has polynomial growth in
|=(w)|, away from the poles for −1 < <(w) < 2.

On the other hand, from the asymptotic formula (4.4), the integral

Iβ(w) :=

∞∫
0

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
Kβ(t, w) dt

is absolutely convergent for <(w) > 1. We break Iβ(w) into two integrals:

(6.4) Iβ(w) =

∞∫
0

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
Kβ(t, w) dt =

Tw∫
0

+

∞∫
Tw

:= I
(1)
β (w) + I

(2)
β (w),

where Tw � |=(w)|2+ε (for small fixed ε > 0), and Tw will be chosen optimally later.



22 ADRIAN DIACONU AND DORIAN GOLDFELD

Now, take w such that −ε < <(w) < − ε
2 , and write the functional equation (6.2) as

cos
(πw

2

)
I
(2)
β (w) =

(
sin
(πw

2

)
I
(1)
β (1− w) − cos

(πw

2

)
I
(1)
β (w)

)(6.5)

+ sin
(πw

2

)
I
(2)
β (1− w)

+
2π ζ(w) ζ(1− w)

(2w − 1) π−w Γ(w) ζ(2w)
〈E(·, 1− w), F 〉.

Next, by Proposition 4.2,

I
(2)
β (w)
B(w)

=
∫ ∞

Tw

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
t−w

(
1 +O

(
|=(w)|3

t2

))
dt

= Z(w)−
Tw∫
1

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
t−w dt + O

(
|=(w)|3

T 1−ε
w

)

= Z(w) +O
(

T 1+ε
w +

|=(w)|3

T 1−ε
w

)
.

It follows that

(6.6) Z(w) =
I
(2)
β (w)
B(w)

+ O
(

T 1+ε
w +

|=(w)|3

T 1−ε
w

)
.

We may estimate
I
(2)
β (w)

B(w) using (6.5). Consequently,

I
(2)
β (w)
B(w)

=
1

B(w)

[(
tan

(πw

2

)
I
(1)
β (1− w) − I

(1)
β (w)

)
+ tan

(πw

2

)
I
(2)
β (1− w)

(6.7)

+
2π ζ(w) ζ(1− w)

cos
(

πw
2

)
(2w − 1) π−w Γ(w) ζ(2w)

〈E(·, 1− w), F 〉

]
.

We estimate each term on the right hand side of (6.7) using Proposition 4.2 and Proposition 4.6.
First of all

tan
(

πw
2

)
I
(1)
β (1− w) − I

(1)
β (w)

B(w)
=

sin
(

πw
2

)
I
(1)
β (1− w) − cos

(
πw
2

)
I
(1)
β (w)

cos
(

πw
2

)
B(w)

(6.8)

=
∫ Tw

0

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
· t

1
2 |=(w)|κ− 3

2

|=(w)|κ−2−ε
dt

� T
3
2+ε

w |=(w)| 12+ε.
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Next, using Stirling’s formula to bound the Gamma function,

tan
(

πw
2

)
I
(2)
β (1− w)

B(w)
=

∞∫
Tw

Lf (·)Lg(·)
B(1− w)
B(w)

t−1− ε
2

(
1 +O

(
|=(w)|3

t2

))
dt

= O

(
B(1− w)
B(w)

·
(

1 +
|=(w)|3

T 2
w

))
(6.9)

�

∣∣∣∣∣Γ(1− w)Γ(1− w + κ− 1)Γ
(

1
2 + w

)
Γ(w)Γ(w + κ− 1)Γ

(
3
2 − w

) ∣∣∣∣∣ ·
(

1 +
|=(w)|3

T 2
w

)
� |=(w)|1+2ε +

|=(w)|4+2ε

T 2
w

.

Using the functional equation of the Riemann zeta-function (6.3), and Stirling’s asymptotic
formula, we have

(6.10)

∣∣∣∣∣ 2π ζ(w) ζ(1− w)
B(w) cos

(
πw
2

)
(2w − 1) π−w Γ(w) ζ(2w)

〈E(·, 1− w), F 〉

∣∣∣∣∣�ε |=(w)|1+ε.

Now, we can optomize Tw by letting

T
3
2+ε

w |=(w)| 12+ε =
|=(w)|3

T 1−ε
w

=⇒ Tw = |=(w)|.

Thus, we get
Z(w) = O

(
|=(w)|2+2ε

)
.

One cannot immediately apply Phragmen-Lindelöf principle as the above function may have
simple poles at w = 1

2 ± iµj , j ≥ 1. To surmount this difficulty, let

(6.11) G0(s, w) =
Γ
(
w − 1

2

)
Γ
(

w
2

) [
Γ
(

1− s

2

)
Γ
(

w − s

2

)
+ Γ

(s

2

)
Γ
(

w + s− 1
2

)]
,

and define J (w) = Jdiscr(w) + Jcont(w), where

(6.12) Jdiscr(w) =
1
2

∑
uj−even

ρj(1)Luj
( 1

2 )G0( 1
2 + iµj , w) 〈uj , F 〉

and

(6.13) Jcont(w) =
1
4π

∞∫
−∞

ζ( 1
2 + iµ) ζ( 1

2 − iµ)
π−

1
2+iµ Γ( 1

2 − iµ) ζ(1− 2iµ)
G0( 1

2 − iµ, w)〈E(·, 1
2 + iµ), F 〉 dµ.

In (6.13), the contour of integration must be slightly modified when <(w) = 1
2 to avoid passage

through the point s = w.
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¿From the upper bounds of Hoffstein-Lockhart [HL1] and Sarnak [S], we have that∣∣∣ρj(1) 〈uj , F 〉
∣∣∣ �ε |µj |N+ε,

for a suitable N. It follows immediately that the series defining Jdiscr(w) converges absolutely
everywhere in C, except for points where G0( 1

2 + iµj , w), j ≥ 1, have poles. The meromorphic
continuation of Jcont(w) follows easily by shifting the line of integration to the left. The key point
for introducing the auxiliary function J (w) is that

I(0, w) − J (w) (<(w) > −ε)

(may) have poles only at w = 0, 1
2 , 1, and moreover,

cos
(πw

2

)
J (w)

has polynomial growth in |=(w)|, away from the poles, for −ε < <(w) < 2. To obtain a good
polynomial bound in |=(w)| for this function, it can be observed using Stirling’s formula that the
main contribution to Jdiscr(w) comes from terms corresponding to |µj | close to |=(w)|. Applying
Cauchy’s inequality, we have that

∣∣∣∣Jdiscr(w)
2A(w)

∣∣∣∣ � 1
|A(w)|

·

( ∑
uj

|µj |<2|=(w)|

|ρj(1) 〈uj , F 〉|2
) 1

2

·

( ∑
uj

|µj |<2|=(w)|

L2
uj

( 1
2 ) |G0( 1

2 + iµj , w)|2
) 1

2

.

Using Stirling’s asymptotic formula, we have the estimates

1
|A(w)|

� |=(w)|−<(w)−κ+ 3
2 e

π
2 |=(w)|

|G0( 1
2 + iµj , w)| �ε |=(w)|

<(w)
2 − 3

4+εe−
π
2 |=(w)| (<(w) < 1 + ε).

Also, Hoffstein-Lockhart estimate [HL1] gives

|ρj(1)|2 �ε |=(w)|εeπ|µj |,

for µj � |=(w)|. It follows that

∣∣∣∣Jdiscr(w)
2A(w)

∣∣∣∣ � |=(w)|−
<(w)

2 −κ+ 3
4+2ε ·

( ∑
uj

|µj |<2|=(w)|

eπ|µj | · |〈uj , F 〉|2
) 1

2

·

( ∑
uj

|µj |<2|=(w)|

L2
uj

( 1
2 )

) 1
2

.

A very sharp bound for the first sum on the right hand side was recently obtained by Bernstein
and Reznikov (see [BR]). It gives an upper bound on the order of |=(w)|κ+ε. Finally, Kuznetsov’s
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bound (see [M4]) gives an estimate on the order of |=(w)|1+ε for the second sum. We obtain the
final estimate

(6.14)
∣∣∣∣Jdiscr(w)

2A(w)

∣∣∣∣ �ε |=(w)|−
<(w)

2 + 7
4+4ε (<(w) < 1 + ε).

It is not hard to see that the same estimate holds for Jcont(w)
2A(w) . To see this, we apply in (6.3)

the convexity bound for the Rankin-Selberg L–function together with Stirling’s formula. It follows
that

|〈E(·, 1
2 + iµ), F 〉| �ε |µ|κ+ε e−

π
2 |µ|.

Then,

∣∣∣∣Jcont(w)
2A(w)

∣∣∣∣ �ε |=(w)|−
<(w)

2 + 3
4+2ε

2|=(w)|∫
−2|=(w)|

|ζ( 1
2 + iµ)|2

|ζ(1− 2iµ)|
dµ (<(w) < 1 + ε).

By the well-known bounds

|ζ(1 + it)|−1 � 1

T∫
0

|ζ( 1
2 + it)|2 dt �ε T 1+ε,

we obtain

(6.15)
∣∣∣∣Jcont(w)

2A(w)

∣∣∣∣ �ε |=(w)|−
<(w)

2 + 7
4+3ε (<(w) < 1 + ε).

It can be easily seen that the function

Z(w) − J (w)
2A(w)

(<(w) > −ε)

(may) have poles only at w = 0, 1
2 , 1. We can now apply Phragmen-Lindelöf principle, and Theorem

1.3 follows. �
Finally, we remark that the choice of the function G0(s, w) defined by (6.11) is not necessarily

the optimal one. We were rather concerned with making the method as transparent as possible,
and in fact, the exponent 2− 2δ instead of 2− 3

4δ should be obtainable.
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