Notes on Pollard’s $p − 1$ Attack on RSA

Let $n = pq$ be an RSA key where p, q are primes. Pollard’s attack is a method to find the factorization of n. The method will work (with a choice of a large integer B) provided:

- $p − 1$ divides B!
- $q − 1$ has a prime factor $> B$.

Step 1: Let $a = 2$ and compute $b = 2^{B!} \pmod{n}$.

Step 2 Calculate GCD$(b − 1, n)$. This should give the prime factor p.

Step 3 If p is not found in step 2 repeat steps 1,2 with $a = 3$. If $a = 3$ fails keep trying other values for a.

Why does this work? Pollard’s attack works because of Fermat’s Little Theorem.

In fact, since $(p − 1)|B!$ this implies that $B! = k \cdot (p − 1)$ for some integer k. It follows that

$$b ≡ 2^{B!} \pmod{p} \equiv 2^{k(p−1)} \equiv 1 \pmod{p}.$$

Hence p divides $b − 1$.

The method will work as long as $b > 1$, which will certainly be the case if 2 is a primitive root \pmod{q}. If $a = 2$ doesn’t work then try $a = 3$, etc, until a good choice of a is obtained. Eventually the factorization of n will be found.

EXAMPLE: $n = 31 \cdot 83 = 2573$ and $B = 5$.

Step 1: $B! = 5! = 120 = 64 + 32 + 16 + 8 = 2^6 + 2^5 + 2^4 + 2^3$.

$$
\begin{align*}
2^{2^1} \pmod{2573} & \equiv 4 \\
2^{2^2} \pmod{2573} & \equiv 16 \\
2^{2^3} \pmod{2573} & \equiv 256 \\
2^{2^4} \pmod{2573} & \equiv 1211 \\
2^{2^5} \pmod{2573} & \equiv 2484 \\
2^{2^6} \pmod{2573} & \equiv 202 \\
\end{align*}
\]

$$b \equiv 2^{120} \pmod{2573} \equiv 2^{2^6} \cdot 2^{2^5} \cdot 2^{2^4} \cdot 2^{2^3} \pmod{2573} \equiv 202 \cdot 2484 \cdot 1211 \cdot 256 \pmod{2573} \equiv 280$$

Step 2: GCD$(279, 2573) = 31$.