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ABSTRACT. A new class of automorphic functions is introduced where the 
automorphic relation involves a shift by a modular symbol. In the special case 
of Eisenstein series, this leads to new zeta functions whose Dirichlet coefficients 
are themselves modular symbols. On the basis of this new theory a number 
of conjectures are made concerning the distribution of moments of modular 
symbols. 

1. Introduction and statement of results 

For N = 1 ,2,3. . . , let To(N) denote the group of matrices (a
c
h

d) with a, 6, c, d G 
Z, ad — be = 1, and c = 0 (mod N). Fix an even Dirichlet character x to the 
modulus N and for a matrix 7 = (" S) ^ To(iV) define x{l) — x(d) and .7(7,2:) = 
cz + d. Let 

t) = {z = x + iyeC\y>0} 
denote the upper half plane and define f)* = f}UQU {00} to be the extended upper 
half-plane including the cusps. Consider the set of automorphic forms M^(iV, x) 
of weight k and character x- Thus, if / G Mfc(iV, x), then / is a function (not 
necessarily holomorphic in z) from h* to C satisfying 

which has polynomial growth at the cusps. This last condition simply means that if 
s G Q is a cusp of To(iV) and p G SL2(M) satisfies ps = 00, then f(p~1z)-j(p~1,z)~k 

has a polynomial growth in y = Im(z) as y —+ 00. Similarly, let Sk(N) denote the 
space of holomorphic cusp forms in Mfc(iV, xo) where xo is the trivial character. 
There is a bilinear pairing 

S 2 ( i V ) x H 1 ( X 0 ( 7 V ) , C ) ^ C 
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112 DORIAN GOLDFELD 

given by 

(/,7) ~ (7,/> = -27ri I f(z)dz. 

The modular symbols (7, / ) have played a crucial role in the study of cusp forms 
and elliptic curves (see, [C], [M], [MSD]). Very little is known at present on the 
distribution properties of the values (7, / ) as 7 ranges over TQ(N). Using results of 
Shimura [Sh], one may write 

2n 

where fli are fixed complex numbers (periods of JQ(N)), rrii G Z, and n is the 
degree (over Q) of the smallest field containing the Fourier coefficients of / . We 
have conjectured [G89] that if 7 = (a

c
b
d) € T0(N) with \c\ < iV2, then 

m% <C NK (for i = 1, 2 , 3 , . . . 2n, N -+ 00) 

for some fixed K > 0. In the special case that / is associated to an elliptic curve 
over Q, the above conjecture is equivalent (see [G89]) to the well known conjecture 
of Szpiro [Sz], 

D <C Nc (for some fixed constant C > 6) 

relating the conductor N and the discriminant D of the elliptic curve. 
In relation to the problem of obtaining distribution theorems on the values 

(7, / ) , it is natural to introduce the Epstein type zeta function 

Z^ (c2 + d2)s 

c = 0 (mod N) v y 

(c,d) = l 

where 7 = (® ^ ) . This is a special case (set z = i, x — Xo = trivial character) of 
the generalized Eisenstein series 

E*(z,s,X)= E x (7 ) (7 , / ) Im( 7 ^) s , 

where T^ denotes the group {(J ?) | n £ ^ } which stabilizes infinity. It is easy to 
see that E*(z,s,x) satisfies the automorphic relation 

E*(1z,s,x)=x(l)E*(z,s,x)-x(l)(7J}E(z,S,X) 

where E(z, s, x) — Yl x(7)Im(72 :) s ls the classical non-holomorphic weight 
7^roo\r0(iv) 

zero Eisenstein series for TQ(N). 
Set E*(z, s) — E(z, s, xo)5 E(z, s) = i£(z, 5, xo)- Since £?(z, s) has a simple pole 

at s — 1, the automorphic relation for £?* implies that E*(z, s) must have a pole at 
s = 1. Let i£(z) denote the residue at s = 1. Since E*(z7s) is an eigenfunction of 
the Laplacian it immediately follows that R(z) must be harmonic. Further, R(z) 
must satisfy the automorphic relation 

R(1z) = R(z)-(1,f)rN 

where 
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ZETA FUNCTIONS FORMED WITH MODULAR SYMBOLS 113 

is the residue at s = 1 of E(z, s). In this paper, we compute the Fourier expansion 
of E* at infinity and show that the constant term vanishes. It follows from this 
that 

R(z) = rN • F(z) 

where F(z) — 2ixi fl°° f(w) dw is the anti-derivative of / . 
The above calculations suggest that for arbitrary M > 0, 

SN(X) = SN(X; f)= Yl ^ /> ~ R(iM^ ' X 

c2M2+d2<X 
c=0 (mod N) 

for X —> oo. We have made some preliminary computations with the software 
package Mathematica in the special case M = 1. For TV = 11 there is a Hecke cusp 
form of weight two associated to the elliptic curve y2 — y = x3 — x2 — lOx — 20 of 
conductor 11 with periods Qi = 1.269209304... and Vt2 = (1.458816617...) • i. In 
this case, we have computed: 

Sii(5000) = 8fti, 

511(20,000) =6f i i , 

511(100,000) = 14£2i. 

Similarly, for TV = 67, the elliptic curve y2+y — x3-\-x2 — Ylx — 21 has periods given 
by fii = 1.273770037... and 0 2 = (3.029968401...) -i. As before, we have computed: 

567(5000) = 10fii, 

S67(20,000) = -25fii , 

S67(100,000) =39fi i , 

567(500,000) =35fi i . 

In this paper, we compute the Fourier expansion of E*. Further properties of 
E*, such as the analytic continuation and functional equation, should be obtainable 
by the method of Selberg (see [S56]). It would also be of great interest to study 
even more general Eisenstein series 

E;(Z,8,X)= E X ( 7 ) - P ( < 7 , / > , h J ) ) l m ( 7 ^ ) s , 
7^roo\r0(iv) 

where p(x,y) is an arbitrary polynomial in two variables x, y with complex coeffi­
cients. For example, the constant term of the Fourier expansion of the Eisenstein 
series 

£**(z,s)= E K7,/>|2M7*r 

has a simple pole at s = 1. Let R*(z) denote the residue of E** at s = 1. Then R* 
satisfies the automorphic relation 

W{1Z) = R*(z)-^J)R(z) - <7)/> W + l(7,/>|2riv. 

This suggests the asymptotic formula 

E |((: ;)./)f-«•<.>•* 
c2+d2<X ' X V 7 ' ' 

for X —> oo. The precise determination of R*(z) is a problem of considerable 
interest. 
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114 DORIAN GOLDFELD 

The meromorphic continuation and functional equations of other such gener­
alized Eisenstein series will provide important information on the higher moment 
distributions of modular symbols. Since special values of L-functions associated 
to cusp forms of weight two can be expressed in terms of modular symbols, the 
analytic study of the proposed generalized Eisenstein series should ultimately give 
new information on the growth properties and value distribution of special values 
of L-functions. 

The generalized Eisenstein series E* is a special case of a new class of auto­
morphic functions where the automorphic relation involves a shift by a modular 
symbol multiplied by a classical automorphic form. We give a rapid introduction 
to this new theory by specializing to the case of the congruence subgroups To(A^). 
The further study of this class of automorphic functions opens a new horizon in the 
analytic theory of modular symbols. 

Acknowledgment: The author would like to thank Cormac O'Sullivan for several 
helpful conversations. 

2. A new class of automorphic functions 

Let M,N be positive integers with M|7V, and let \ be Dirichlet character 
modulo N. Fix / G S2(M) and G G Mfc(iV,x). We do not assume that G is 
holomorphic. We shall consider the C-vector space of automorphic forms G* : 
f)* —> C which have polynomial growth at the cusps and satisfy the relation 

G*(7z) = j (7 , z)k (x{7) G*(z) + c • X(7)<7, f) G(z)^J 

for some fixed c G C, all z G fj* and all 7 G r0(iV). Let Mj^(/,G) denote the set 
of automorphic forms as defined above. It is clear that if G\, G\ G M£(/, G), then 
there exist constants c\, c2 G C (not both zero) such that 

ClGUz)-c2G*2(z)eMk(N,X). 

The existence of automorphic forms in Mj£(/, G) can be shown by explicitly con­
structing them as Poincare series. We first consider the case where G is a holomor­
phic modular form of integer weight k > 2. Define the Poincare series 

Pn{z,k,XJ) = E x(7)<7,/) j(7,^)- f ce2 7 r i n 7 W . 
7^ro o\r0(iV) 

The absolute convergence of the above series is an immediate consequence of the 
following lemma: 

LEMMA 1. Let 7 = (a
c
h

d) e T0(N). Then (7 , / ) <C |c | 1 / 2 + e where the implied 
constant depends only on e and f. 

PROOF. Let 

00 

f(z) = ^ane
2*inz 

n=l 
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ZETA FUNCTIONS F O R M E D W I T H MODULAR SYMBOLS 115 

be the Fourier expansion of / where an <C n1/ /2+e. It follows by integration that 

{1J) = -2iriJ1 f(z)dz 

ne27TinT 4^ a^in^T 

n=l n=l 

is independent of r. If c = 0 then (7, / ) = 0 . Otherwise, choose r = — d/c + i/\c\ so 
that Im(7r) = Im(r) = l/ |c | . Then 

<T./> « £ -4 « ic 

n< |c | 1 + e 

This completes the proof of the lemma. • 

By construction, we have 

Pn(lZ, k, X, / ) = j(l, Z)k ( X ( 7 ) Pn(z, k, X, f) ~ X(7)<7 , f)Pn(z, k, X) 

where 
Pn(z,k,X) = E X ( 7 ) j ( 7 ^ ) ~ " e 2 - ^ ^ . 

7^roo\r0(A^) 

Since every holomorphic modular form G G Mk(N, \) c a n be constructed as a 
linear combination ^ c n P n ( z , x ) with cn G C, the existence of automorphic forms 

n 

in M£(/, G) is established. The same argument extends to nonholomorphic forms 
and forms of weight k < 2 if one uses the nonholomorphic Poincare series 

Pn{z,k,8,XJ) = E x ( 7 ) < 7 , / > J ( 7 ^ ) - f c I m ( 7 ^ ) a e 2 ™ ^ 

instead of Pn(z, fc, x? / ) a s above. 
An alternative method to construct G* G M£(/, G) is to introduce the anti-

derivative 
pioc c*0 ^ 

_,27rm2 
/>20 0 ^ 

F(z) = 2TH / /(«;) dw = J2 — < -e 
1 n 

which satisfies the automorphic relation 

F( 7 z) = F ( 2 ) - < 7 , / > 

for all 7 e r0(iV). Then it is easily seen that if G e Mk(N, \), then 

G*{z)=G(z)-F{z)e Mt(f,G). 

We shall say G* G M£(/, G) is a holomorphic cusp form if for each cusp s G Q 
and p G SL(2,IR) satisfying ps = 00 we have G*(p~1z) • j(p~1,z)~k vanishes at 
z — zoo. Let S*(/, G) denote the C-vector space of holomorphic cusp forms in 
M*(/,G). 

An immediate consequence of the above is the following proposition. 

PROPOSITION 2. Let M, N be positive integers with M\N, and let \ be a Dirich-
let character modulo N. Fix f G 52 (M) and G G Mk(N,\)- Then we have 

Dim(S*(/,G)) = l + Dim(5,(iV,x)). 
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116 DORIAN GOLDFELD 

It is also possible to define the space of holomorphic Eisenstein automorphic 
forms in M*(/, G). Again, the dimensions exceed the dimensions of the classical 
holomorphic Eisenstein modular forms in Mk(N,x) by one. 

3. Fourier expansions 

Let G* e M*(/,G). Fix T = (J \) G T0{N). Then, since 

< T , / ) = 0 , x(T) = l, j(T,z) = l, 

we see that 

G*(Tz) = G*(z + l) = G*(z) 
and, therefore, for any fixed y > 0, G* has a Fourier expansion of the form 

oo 

n= — oo 

for c(n, y) G C. If G* is holomorphic then, the Fourier expansion takes the simpler 
form 

oo 

G*(z) = ^c{n)e2lxinz 

n = 0 

with c(n) G C. 
The Poincare series 

Pm{z,k,s,XJ)= E x(7)(7jm^z)-kJm^zye2vim^ 

has a Fourier expansion 
oo 

Pm(z,k,s,XJ)= Yl An{k,s,XJ,m)e2vmx 

n = —oo 

where 
An(k,s,x,f,™>) 

and 

,~, - o-^ (x2 + l)s(x + i)k 

c=0 (mod N) ' ' " ° ° V ; V ' 

(r,c) = l 

The sum S{m,n,x, f',c) is a type of generalized Kloosterman sum which has an 
associated zeta function 

Z(m,rc, * , / ; * ) = 2 ^ ^ p * 
c = 0 (mod JV) ' ' 

These Kloosterman type zeta functions are generalizations of those first studied 
by Selberg [S65], and it would be of great interest to obtain their analytic continu­
ation and polar structure. The zeta function Z(0, 0, x-> f'i s) occurs in the constant 
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ZETA FUNCTIONS FORMED WITH MODULAR SYMBOLS 117 

term in the Fourier expansion of E*(z, s, \). If x is a nonprincipal character to the 
modulus iV, we have 

S(0,0,x,/;c)= J2 X(r){(* I , / 
r = l 

(r,c) = l 

E *«<(;;) , / 
r = l 

(r,c) = l 

where Xc is a primitive character induced from x> i-e-> Xc(^) = x( n ) if (n> c) — 1 
and otherwise Xc(^) = 0- Note that the conductor of Xc must divide c. It follows 
that 

S(0,0,x,f;c) = T(xc)Lf(l,Xc) 
where 

c 
r(Xc) = ^2xc(z)e^ 

a=l 
is the Gauss sum and 

^ g(n)xc(n) 

n=l 
is the twisted L-series associated to 

oc 

f(z) = J2ane
2mn z. 

71=1 

Thus, the zeta function Z(0,0, x> / ; s) can be written in the form 

r(xc)Af(l,Xc) z(o,o,x,/;*) = 5 ] 
c=0 (mod N) 

On the other hand, if \ = Xo is the principal character (mod iV), then 

5(0,0,X,/;c)= 2 ( ( c r) 
(r,c) = l 

/ ) = o 

because of the identity (choose r = —r/c + i/\c\ as in the proof of Lemma 1) 

* *\ A v ^ A(n) (— 2irn 2TT E r\ ( — 2TT G r 
e x P I ^ ~ ) — e x P cN ^ \ cN 

where 
rf = 1 (mod c). 

When we sum over r in the identity above, the sum with r and the sum with f 
cancel to give zero. 

In a similar manner, we may obtain the Fourier expansion of the more general 
Eisenstein series: 

E**(z, s, xo) = Yl *o(7) I fr> f) I' I m ^ 2 ) a -
7eroc.\r0(N) 
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118 DORIAN GOLDFELD 

/ ' 
JO 

For example, the constant term of the Fourier expansion takes the form 

' E**(z,s,Xo)dx = ^yl-sT{S~ X / 2 ) Z{s) 
/o r ( 5 ) 

where 

w
 w^i Z^ c2sL^^\^) Z^ (mn)w 

c = 0(N) d\c m = n(d) V ' 

The meromorphic continuation and polar structure of Z(s) is not easy to obtain. 
One approach would be to use the method of Selberg [S56]. Preliminary calcula­
tions suggest that Z(s) has a simple pole at s — 1 with residue proportional to the 
Petersson inner product ( / , / ) . 

4. L-functions 

Let 
oc 

G*(z) = yc(n)e2mz 

n=0 

be in M*(/, G). The L-function associated to G* is defined to be 

n = l 

We will show that the Dirichlet series for LQ* (S) converges absolutely in a half 
plane, has an analytic continuation to the entire complex s-plane, and in certain 
cases has a functional equation of simple type. 

LEMMA 3. LetG G Mk(N,X), andletG*{z) = f ] c{n)e2ninz G M*(f,G). Then 
n=0 

if G is cuspidal we have 
c{n) < nk/2+e. 

Otherwise 
c(n) < nk-^2+e. 

PROOF. By the results of §2, every holomorphic (7* G M*(/, G) may be ex­
pressed in the form 

G*(z) = cF{z)G(z) + Gi(z) c G C, 
oo 

with Gi(z) G M/c(A
r, x) ^so holomorphic. Recall that F(z) = ]P ane

27Tinz/n where 
n = l 

the coefficients a(n) satisfy the Ramanujan bound a{n) <C n1^2+e. If we write 
OC OC 

G{z) = J2 Ke2mz, Gx{z) = J2 b'ne
2vinz, 

n=0 n=0 

then one easily sees that 
n - l 

c(n) = c V frm
 n m + 6'n. 
n — m 

m=0 If G,Gi are holomorphic cusp forms of weight &, we have the estimate bn,b'n <C 
n(^-i)/2+e> Otherwise, bn,b''n <C n f c _ 1 + e . Plugging these bounds in the formula for 
c(n) given above concludes the proof of the lemma. • 
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ZETA F U N C T I O N S F O R M E D W I T H MODULAR SYMBOLS 119 

oc 

It immediately follows from lemma 3 that the Dirichlet series ^ c(n)n~s con-
7 1 = 1 

verges absolutely in the half-plane Re(s) > k -f 1/2. Similar estimates can also be 
obtained in the case that G*(z) is not holomorphic. 

In certain cases, the L-function LQ* (S) will have a simple functional equation. 
Let 

"* - u s) 
denote the involution on TQ(N). Let G G Mfc(iV, x), with k an even positive integer, 
satisfy 

G(WNz) = e • Nk'2zkG{z) 

with e = ±1 . If we assume that (WN, f) = 0 and G* is of the form 

G*(z)=cG(z)F(z) + c'G(z) 

with c,c' G C, then we see that G* satisfies the automorphic relation 
G*(WNz) = e-Nk/2zkG*(z). 

Riemann's method of analytic continuation yields the meromorphic continuation of 
LQ* (S) to the entire complex s-plane and the functional equation 

^j(s) = (27r)-sr(s)Ns/2LG*{s) = e • (-l)k/2^{k - s). 

It can be shown that ip(s) has at most simple poles at s = 0 and s — k with residue 
a multiple of c(0), the constant term in the Fourier expansion of G*(z). 

If < WN, f) ^ 0, then the automorphic relation takes the form 

G*(WNz) = e • Nk'2zkG*{z) + e'{WN, f)G(z) 

where e' is a root of unity. In this case, Riemann's method again gives the meromor­
phic continuation of L^* (s). In the most general case, we may express an arbitrary 
element G* G M*(/, G) in the form 

G*(z) = cG(z)F(z) + g(z) 

with g G Mk(N,x) a n d c G C. Since we know that L^(s) has a meromorphic 
continuation and satisfies a functional equation, it follows from the above that 
LG* (S) also has a meromorphic continuation. We have thus proved. 

PROPOSITION 4. Fix f G S2(N), G G M2{N,x)- Then for every 

G*(z) = ^ c ( n ) e 2 7 r m z G M*(f,G) 
71 = 0 

the L-function associated to G*7 

^ c(n) 

7 1 = 1 

converges absolutely for Re(s) > k -f 1/2 and ftas a meromorphic continuation to 
the entire complex plane with at most a simple pole at s = k whose residue is 
proportional to c(0). A similar result holds if G* is not holomorphic. 
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120 DORIAN GOLDFELD 

5. One—cocycles 

Let G* G Mjj:(/,G). For ze f j* and 7 G r0(iV), we define the one-cocycle (see 
[G95]) 

G* (w) dw 

which satisfies the cocycle relation 

{ll'iZJG* = (I>I'Z)G* + (J',Z)G* 

for all 7 ,7 ' G To (AT), z G f)*. In the special case that fc = 2 and G = / , the above 
cocycles can be explicitly computed. This is illustrated in the following proposition. 

PROPOSITION 5. Let N be a positive integer. Fix f G S2{N). Then for all 
G* G S*{f,f) and 7 G T0(N), we have 

(l,z)G*=-(iJ)F(z) + ^^-(>y,g), 

for some g G S2(AT). Further, for every G\ G $2(Af), 7 G To (AT), 

G 1 ( ^ ) - ( 7 ^ ) G * e 5 * ( / , G 1 ) . 

For fixed G\ G S2(N), the elements G\(z) • (7, Z)G* generate a one-dimensional 
subspace of S*(f,Gi) as 7 runs overTo(N). 

PROOF. Recall that every G* G S*(f,f) can be expressed in the form 

G*(z)=f(z)F(z)+g(z) 

with g € S2(N) and 
/•too 

F0) = 2m I f(w) dw. 

It follows that 

(7, z)G* = 2TTZ / (^f(w)F(w) 4- # 0 ) J dw; 

f(w)F(w)dw- (7,^). 

By integration by parts, 

f(w)F{w) dw = F ( 7 z ) 2 - F(z)2 - 27ri / f(w)F(w) dw. 

Consequently, 

Imf* f(w)F(w)dw = -(n,f)F{z) + !th£>L. 

Hence, 

(-Y,z)G. = -(1,f)F(z)+ {^f- - (ltg). 
The transformation Formula 

F(*rz)=F(z)-(>y,f) 

immediately implies that G\{z) • (7,2:)^* G S*(/, G\). The rest of the proposition 
easily follows. 
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