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1 Introduction

The main purpose of converse theorems is to show that Dirichlet series with nice properties
(analytic continuation, moderate growth, functional equation) are, in fact, Mellin transforms
of automorphic functions. Converse theorems establish a one-to-one correspondence between
“nice” Dirichlet series and automorphic functions.

The first such converse theorem was due to Hecke [10] who showed that if N = 1, 2, 3 or 4,
and a Dirichlet series D(s) =

∑∞
n=1 ann

−s converges in some right half-plane, is EBV (entire
and bounded in vertical strips) and satisfies a functional equation of the type(√

N

2π

)s

Γ(s)D(s) = w

(√
N

2π

)k−s

Γ(k − s)D(k − s), w = ±(−1)k/2,

then the function f(z) =
∑∞

n=1 ane
2πinz is in fact a modular form of weight k and level N , i.e.,

f

(
az + b

cz + d

)
= (cz + d)kf(z), (for all ( a bc d ) ∈ Γ0(N)) .

Hecke’s results were later generalized by Maass [12] to the case of non-holomorphic forms.
Hecke’s method fails for N ≥ 5. It was Weil [16] who obtained a converse theorem for all N by
assuming that, in addition, the twisted Dirichlet series D(s, χ) =

∑∞
n=1 anχ(n)n−s, for each

primitive Dirichlet character χ, also satisfies the EBV condition and an appropriate functional
equation. For some other converse theorems improving on aspects of Weil’s theorem see [14],
[4], [5], [6]. For general converse theorems on GLn see [1], [2], [3].

Multiple Dirichlet series are Dirichlet series in several complex variables. It is a natural
question to ask if a converse theorem exists for multiple Dirichlet series. In Theorem 3.1, we
examine the case of certain vector valued double Dirichlet series. We show that if such a vector
valued double Dirichlet series (and all its twists by Dirichlet characters) have “nice” properties
and satisfy appropriate functional equations, then the vector valued double Dirichlet series is,
in fact, the Mellin transform of a vector valued metaplectic Eisenstein series.

One may ask if there exist multiple Dirichlet series which are not vector valued and satisfy
meromorphic continuation (with finitely many poles), moderate growth, and a finite group
of functional equations. It would be of great interest to characterize such multiple Dirichlet
series by a converse theorem. In Theorem 4.2 we obtain a converse theorem for what seems
to be historically the first example of a scalar double Dirichlet series studied from the point
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of view of functional equations in two variables. That study was carried out by Siegel ([15])
and the multiple Dirichlet series is essentially the Mellin transform of a metaplectic Eisenstein
series on Γ0(4). For N > 4, we have not been able to discover linear combinations of meta-
plectic Eisenstein series on Γ0(N) whose Mellin transforms satisfy suitable pairs of functional
equations. Therefore, it has not been possible to formulate a scalar converse theorem in that
case. The difficulty to find multiple Dirichet series coming from linear combinations of higher
level metaplectic Eisenstein series may suggest the possible existence of scalar valued double
Dirichlet series that do not correspond to automorphic objects we are currently familiar with.

2 L-functions of metaplectic Eisenstein series

2.1 Metaplectic Eisenstein series

Fix a positive integer N . Let Γ = Γ0(4N) denote the group of matrices ( a bc d ) of determinant
1 with a, b, c, d ∈ Z and 4N |c. Define

v(γ) =
( c
d

)
ε−1
d ,

with

εd =

{
1, d ≡ 1(mod 4),

i, d ≡ 3(mod 4),

where
(
c
d

)
is the usual Kronecker symbol. We shall also adopt the notation that we may write

M in the form M =
(
a
M

b
M

c
M

d
M

)
. The arguments of complex numbers are chosen to be in (π, π].

Then, for f : H → C and γ ∈ SL2(R), we recall the slash operator: f |γ. It is defined by the
formula

(f |γ) (z) = f(γz)
(cγz + dγ)

1/2

|cγz + dγ|1/2
,

and satisfies the relation

f |γ|δ = r(γ, δ) · f |(γδ), (γ, δ ∈ SL2(R)),

where

r(M,N) =
(cMNz + dM)1/2(cNz + dN)1/2

(cMNz + dMN)1/2
, (for M,N ∈ SL2(R)).

To compute r(M,N) we will tacitly be using Theorem 16 of [11].

Lemma 2.1. Let M = ( ∗ ∗
m1 m2 ) , S = ( a bc d ) ∈SL2(R) and MS =

( ∗ ∗
m′1 m

′
2

)
. Then r(M,S) =

e
πi
4
w(M,S), with

w(M,S) =



(sgn(c) + sgn(m1)− sgn(m′1)− sgn(m1cm
′
1)), m1cm

′
1 6= 0,

(sgn(c)− 1)(1− sgn(m1)), m1c 6= 0,m′1 = 0,

(sgn(c) + 1)(1− sgn(m2)), m′1c 6= 0,m1 = 0,

(1− sgn(a))(1 + sgn(m1)), m1m
′
1 6= 0, c = 0,

(1− sgn(a))(1− sgn(m2)), m1 = c = m′1 = 0.
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Now, we fix a set {ai, i = 1, . . . ,m} of inequivalent cusps of Γ0(4N) among which the first
m∗ are singular with respect to v (i.e. v(γa) = 1, if γa is the generator of the stabilizer Γa of
a). We choose the a’s so that a1 =∞ and am∗ = 0.

For each a we fix a scaling matrix σa such that σa(∞) = a and σ−1
a Γaσa = Γ∞. In

particular, we select σa1 = I, σam∗ = W4N , where I is the identity matrix and W4N is the

Fricke involution
(

0 −1/(2
√
N)

2
√
N 0

)
.

For each of the cusps ai (i = 1, . . . ,m∗) and w ∈ C with <(w) > 1, we define an Eisenstein
series

Ei(z, w) =
∑

γ∈Γai\Γ

Im(σ−1
ai
γz)w

r(σ−1
ai , γ)v(γ)

(
cσ−1

ai
γz + dσ−1

ai
γ

|cσ−1
ai
γz + dσ−1

ai
γ|

)−1/2

.

This Eisenstein series has a meromorphic continuation to the w-plane ([13], Section 10) and,
for all δ ∈ Γ, it satisfies

Ei(·, w)|δ = v(δ)Ei(·, w).

For convenience, for every function f on H we set

f̌ := e
πi
4 f |W4N .

Thus, f̌(iy) = f(i/(4Ny)).
Next, if T denotes transpose, set

E(z, w) = (E1(z, w), . . . , Em∗(z, w))T

and
Ě(z, w) = (Ě1(z, w), . . . , Ěm∗(z, w))T .

Each Ei is an eigenfunction of the weight 1/2 Laplacian

∆1/2 = y2

(
∂2

∂x2
+

∂2

∂y2

)
− iy

2

∂

∂x

with eigenvalue w(w − 1) ([13], (10.10)). This implies that, if z := x + iy, then, for all
i, j ∈ {1, . . . ,m∗}, there are functions of w, aijn , such that

Ei(·, w)|σaj = δijy
w + pij(w)y1−w +

∑
n6=0

aijn (w)Wsgn(n4 ), w− 1
2
(4π|n|y)e2πinx

where δij is the Kronecker delta and pij(w) the ij-th entry of the scattering matrix Φ(w).
Here, W·,· is the classical Whittaker function with integral representation

Wa,b(z) =
e−z/2za

Γ(1/2− a+ b)

∫ ∞
0

u−a−1/2+b(1 + z−1u)a−1/2+be−udu

(cf. [17], pg. 340).
If w and 1− w are not poles of any of the Ei (i = 1, . . . ,m∗), then, by [13], (10.19),

E(z, 1− w) = Φ(1− w)E(z, w). (1)
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2.2 Twists

We first introduce in a general form the formalism of twists we will be using.
For every positive integer D (with (D, 4N) = 1), let χ be a Dirichlet character modulo D.

For every function f on H we define its twist (denoted f(· ;χ)) by the formula

f(· ;χ) =
∑

m(modD)
(m,D)=1

χ(m)f
∣∣ ( 1 m/D

0 1

)
.

We shall be interested in functions f(z, w) of two variables z = x + iy ∈ H, w ∈ C, which
have Fourier expansions of the form

f(z, w) = a(w)y1−w + b(w)yw +
∑
n6=0

an(w)Wsgn(n4 ), w− 1
2
(4π|n|y)e2πinx.

Then the twisted function f(· ;χ), in terms of z, is

f(z, w;χ) = τ0(χ)
(
a(w)y1−w + b(w)yw

)
+
∑
n6=0

τn(χ)an(w)Wsgn(n4 ), w− 1
2
(4π|n|y)e2πinx

where
τn(χ) =

∑
m(modD)
(m,D)=1

χ(m)e2πimn/D.

We have

f(· ;χ)
∣∣∣ ( 0 −1

2D
√
N

2D
√
N 0

)
=

∑
m(modD)
(m,D)=1

χ(m)r

((
1 m/D
0 1

)
,
(

0 −1

2D
√
N

2D
√
N 0

))
f
∣∣∣ ( 2m

√
N −1

2D
√
N

2D
√
N 0

)
. (2)

By repeated use of Lemma 2.1 we deduce that (2) equals

e−πi/4
∑

m(modD)
(m,D)=1

χ(m)f̌
∣∣∣ ( 0 1

2
√
N

−2
√
N 0

)(
2m
√
N −1

2D
√
N

2D
√
N 0

)
=

e−πi/4
∑

m(modD)
(m,D)=1

χ(m)f̌ |
(

D 0
−4mN 1/D

)
.

For each pair of positive integers m,D with (m,D) = 1, we choose r, s such that r, s > 0 and
Ds− 4Nmr = 1. Then, as m ranges over a reduced system of residues modD, so does r too,
so by the last equality we deduce that

f(· ;χ)
∣∣∣ ( 0 −1

2D
√
N

2D
√
N 0

)
= e−πi/4

∑
m(modD)
(m,D)=1

χ(m)f̌
∣∣ ( D −r
−4mN s

)
|
(

1 r/D
0 1

)
= e−πi/4χ(−4N)

∑
r(modD)
(r,D)=1

χ(r)f̌
∣∣ ( D −r
−4mN s

)
|
(

1 r/D
0 1

)
. (3)
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We also consider the Dirichlet character χ̌ (modD) given by

χ̌(m) :=
(m
D

)
χ(m).

Note that χ̌ is a character since (D, 4N) = 1, D is odd and
( ·
·

)
is the Jacobi symbol.

In the next sections we will compare (3) with the function

f̌(· ; χ̌) = εD

(
4N

D

) ∑
r(modD)
(r,D)=1

χ(r)

(
4Nr

D

)
ε−1
D f̌
∣∣ ( 1 r/D

0 1

)
. (4)

2.3 L-functions

We now associate an L-function to the metaplectic Eisenstein series E (of section 2.1) to
obtain a “perfect” double Dirichlet series.

Let ain(w) denote the n-th coefficient of the expansion at ∞ of Ei(z, w). We define

L±i (s, w) =
∑
±n>0

ain(w)

|n|s

for Re(s) large enough. More generally, for χ a Dirichlet character modulo D ((D, 4N) = 1),
we set

L±i (s, w;χ) =
∑
±n>0

τn(χ)ain(w)

|n|s
.

We also define the “completed” L-function associated to L±i :

Λi(s, w;χ) :=

∫ ∞
0

(
Ei(iy, w;χ)− τ0(χ)

(
δi0y

w + pi0(w)y1−w
))
ys
dy

y
.

With this notation we define

L±E(s, w;χ) = (L±1 (s, w;χ), . . . , L±m∗(s, w;χ))T ,

and
ΛE(s, w;χ) = (Λ1(s, w;χ), . . . ,Λm∗(s, w;χ))T .

We also set Λ̌i, ĽE and Λ̌E for the corresponding functions associated to Ě.
By [11], (pgs 216, 219 (12)),

Λi(s, w;χ) = (2π)−sΓ(w + s)Γ(s− w + 1)
(
F+(s, w)L+

i (s, w;χ) + F−(s, w)L−i (s, w;χ)
)
,

where

F+(s, w) =
21/4F

(
w − 1

4
, 3

4
− w, s+ 3

4
; 1

2

)
Γ
(
s+ 3

4

) ,

and

F−(s, w) =
2−1/4F

(
w + 1

4
, 5

4
− w, s+ 5

4
; 1

2

)
Γ
(
s+ 5

4

) ,
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where F (a, b, c; d) denotes the Gaussian hypergeometric function.
Before we can establish the analytic continuation and functional equation in s we need to

evaluate the constant term a0(y, w;χ)̌ of the expansion of Ei(·, w;χ)|W4ND2 (at ∞). By (3),

Ei(·, w;χ)|W4ND2 = e−πi/4χ(−4N)

(
4N

D

)
ε−1
D

∑
r(modD)
(r,D)=1

χ̌(r)Ěi
∣∣ ( 1 r/D

0 1

)
.

Therefore,

a0(y, w;χ)̌ = χ(−4N)

(
4N

D

)
ε−1
D τ0(χ̌)

(
δim∗y

w + pim∗(w)y1−w
)
.

We can then apply the standard Riemann trick to get

Λi(s, w;χ) =

∫ ∞
1

2D
√
N

(
Ei(iy, w;χ)− τ0(χ)

(
δi0y

w + pi0(w)y1−w
))
ys
dy

y
+

∞∫
1

2D
√
N

[
e
πi
4

(
Ei(·, w;χ)

∣∣W
4ND2

)
(iy)−τ0(χ)

(
δi0·(4ND2y)−w+pi0(w)(4ND2y)w−1

)]
(4ND2y)−s

dy

y

=

∫ ∞
1

2D
√
N

[
(Ei(iy, w;χ)− τ0(χ)(δi0y

w + pi0(w)y1−w))ys +

(
χ(−4N)

(
4N

D

)
ε−1
D Ěi(iy, w; χ̌)− a0(y, w;χ)̌

)
(4ND2y)−s

]
dy

y

+

∫ ∞
1

2D
√
N

(
− τ0(χ)(δi0 · (4ND2y)−w + pi0(w)(4ND2y)w−1)+

χ(−4N)

(
4N

D

)
ε−1
D τ0(χ̌)(δim∗y

w + pim∗(w)y1−w)

)
(4ND2y)−s

dy

y
. (5)

By the exponential decay of Wsgn(n4 ), w−1/2(iy) as y →∞, the first integral of the last equality

is clearly convergent giving an entire function of s. An elementary computation implies that
the last integral of (5) is

− (2D
√
N)−s−w

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)δim∗

w − s
+
τ0(χ)δi0
w + s

)
+

(2
√
ND)−s+w−1

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)pim∗(w)

w + s− 1
+
τ0(χ)pi0(w)

w − s− 1

)
.

This implies that

(i) ΛE(s, w;χ) is meromorphic on C2.
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(ii)

Λi(s, w;χ) + (2D
√
N)−s−w

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)δim∗

w − s
+

τ0(χ)δi0
w + s

)

− (2
√
ND)−s+w−1

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)pim∗(w)

w + s− 1
+

τ0(χ)pi0(w)

w − s− 1

)

is EBV (entire and bounded in vertical strips).

(iii)

(4ND2)sχ(−4N)

(
4N

D

)
εDΛE(s, w;χ) = Λ̌E(−s, w; χ̌).

(iv) If w and 1− w are not poles of Φ(w), then

ΛE(s, 1− w;χ) = Φ(1− w)ΛE(s, w;χ). (6)

The functional equations (iii) and (iv) are deduced from (5) and (1) respectively.

3 The converse theorem

We maintain the notation of sections 2.2 and 2.3.

Theorem 3.1. Fix positive integers D,N, with (D,N) = 1 and 1 ≤ D < (4N)2. Let (ain,`)n,`,i
and (ǎin,`)n,`,i (with `, n ∈ Z, ` ≥ 1, i = 1, . . . ,m∗) be sequences of complex numbers which are
assumed to have polynomial growth in |n| and ` as |n|, `→∞. For s, w ∈ C (with sufficiently
large real parts) and each Dirichet character χ (mod D), define double Dirichlet series:

L±i (s, w;χ) =
∑
±n>0

∞∑
`=1

ain,` τn(χ)

`w |n|s
, Ľ±i (s, w;χ) =

∑
±n>0

∞∑
`=1

ǎin,` τn(χ)

`w |n|s
.

Next define vector valued double Dirichlet series:

L±(s, w;χ) = (L±1 (s, w;χ), . . . , L±m∗(s, w;χ))T , Ľ±(s, w;χ) = (Ľ±1 (s, w;χ), . . . , Ľ±m∗(s, w;χ))T .

We shall assume that L±(s, w;χ) and Ľ±(s, w;χ) satisfy assumptions (9), (10), (11) (listed
below). We set

ain(w) =
∞∑
m=1

ain,m
mw

and ǎin(w) =
∞∑
m=1

ǎin,m
mw

,

and assume that, for each fixed i, w (with Re(w) large enough), the functions: |ain(w)|, |ǎin(w)| =
O(|n|C) (C > 0), as n →∞. Suppose also that ai(w), bi(w), ǎi(w), b̌i(w), (i = 1, . . . ,m∗) are
meromorphic functions on C which are holomorphic for Re(w) large enough.

Then, for
f(z, w) = (f1(z, w), . . . , fm∗(z, w))T ,
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where

fi(z, w) = ai(w)y1−w + bi(w)yw +
∑
n6=0

ain(w)Wsgn(n4 ), w− 1
2
(4π|n|y)e2πinx, (i = 1, 2, . . . ,m∗),

we have
f(z, w) = A(w)E(z, w),

where A(w) is a matrix of functions and E(z, w) is the matrix of Eisenstein series given in
§2.1. If A(w) is meromorphic, then, for each w and 1 − w which are not poles of Φ(w) and
A(w), we have

Φ(1− w)A(w)Φ(w) = A(1− w). (7)

Assumptions: Set

Λ(s, w;χ) = (2π)−sΓ(w + s)Γ(s− w + 1)
(
F+(s, w)L+(s, w;χ) + F−(s, w)L−(s, w;χ)

)
,

Λ̌(s, w;χ) = (2π)−sΓ(w + s)Γ(s− w + 1)
(
F+(s, w)Ľ+(s, w;χ) + F−(s, w)Ľ−(s, w;χ)

)
,

and

Λ̃(s, w;χ) = (Λ̃1(s, w;χ), . . . , Λ̃m∗(s, w;χ))T = − i
4
Λ(s, w;χ)+

i

(2π)s
Γ(w + s+ 1)Γ(s− w + 2)

(
F+(s+ 1, w)L+(s, w;χ)− F−(s+ 1, w)L−(s, w;χ)

)
,

˜̌Λ(s, w;χ) = (˜̌Λ1(s, w;χ), . . . , ˜̌Λm∗(s, w;χ))T = − i
4
Λ̌(s, w;χ)+

i

(2π)s
Γ(w + s+ 1)Γ(s− w + 2)

(
F+(s+ 1, w)Ľ+(s, w;χ)− F−(s+ 1, w)Ľ−(s, w;χ)

)
.

Suppose that

Λi(s, w;χ) + (2
√
ND)−s−w

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)b̌i(w)

w − s
+
τ0(χ)bi(w)

w + s

)
−

(2
√
ND)−s+w−1

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)ǎi(w)

w + s− 1
+
τ0(χ)ai(w)

w − s− 1

)
(8)

and

Λ̃i(s, w;χ) +
i

4(2
√
ND)s+w

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)b̌i(w)

w − s
− τ0(χ)bi(w)

w + s

)
−

i

4(2
√
ND)s−w+1

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)ǎi(w)

w + s− 1
− τ0(χ)bi(w)

w − s− 1

)
(9)
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are EBV for every w (with Re(w) large enough) and for every χ.
Further, assume that, for every Dirichlet character χ,

(4ND2)sχ(−4N)

(
4N

D

)
εDΛ(s, w;χ) = Λ̌(−s, w; χ̌),

and that

(4ND2)sχ(−4N)

(
4N

D

)
εDΛ̃(s, w;χ) = − ˜̌Λ(−s, w; χ̌),

and
Λ(s, 1− w;χ) = Φ(1− w)Λ(s, w;χ). (10)

Proof of Theorem 3.1.

• We first prove that, for every w (with Re(w) large enough), fi(·, w) is invariant under
the action of Γ0(4N).

For every w with Re(w) large enough, i = 1, . . . ,m∗, every character χ mod D and every
y > 0 define,

Fi(y, w;χ) =
∑
n6=0

ain(w)τn(χ)Wsgn(n4 ), w− 1
2
(4π|n|y),

F̌i(y, w;χ) =
∑
n6=0

ǎin(w)τn(χ)Wsgn(n4 ), w− 1
2
(4π|n|y),

and

F̃i(y, w;χ) = 2πiy
∑
n6=0

nain(w)τn(χ)Wsgn(n4 ), w− 1
2
(4π|n|y)− i

4
Fi(y, w;χ),

˜̌Fi(y, w;χ) = 2πiy
∑
n6=0

nǎin(w)τn(χ)Wsgn(n4 ), w− 1
2
(4π|n|y)− i

4
F̌i(y, w;χ).

Since for every w (with Re(w) large enough), |ain(w)|, |ǎin(w)| = O(|n|C), in the Mellin
transforms of Fi(y, w;χ), F̃i(y, w;χ) we can exchange summation and integration to get, for
Re(s) large enough∫ ∞

0

Fi(y, w;χ)ys
dy

y
= Λi(s, w;χ) and

∫ ∞
0

F̃i(y, w;χ)ys
dy

y
= Λ̃i(s, w;χ).

For each w (with Re(w) large enough), (2π)−sΓ(w+ s)Γ(s−w+ 1)F±(s, w) = O(e−c|Im(s)|) as
|Im(s)| → ∞ (c > 0) ([11], pg. 221), so we can apply Mellin inversion to get

Fi(y, w;χ) =
1

2πi

∫ σ0+i∞

σ0−i∞
Λi(s, w;χ)y−sds and F̃i(y, w;χ) =

1

2πi

∫ σ0+i∞

σ0−i∞
Λ̃i(s, w;χ)y−sds

(11)
for σ0 large enough and a line of integration to the right of the poles of Λi, Λ̃i. By the same
estimate for F±, the standard Phràgmen-Lindelöf argument applies. We can, therefore, move

9



the line of integration from σ0 to σ1 = −σ0 to get

Fi(y, w;χ) =
1

2πi

∫ σ1+i∞

σ1−i∞
Λi(s, w;χ)y−sds+

∑
s0 pole

Ress=s0Λi(s, w;χ)y−s

=
1

2πi

∫ σ1+i∞

σ1−i∞
Λi(s, w;χ)y−sds +

χ(−4N)

(
4N

D

)
ε−1
D τ0(χ̌)

(
b̌i(w)(4ND2y)−w

+ ǎi(w)(4ND2y)w−1
)
− τ0(χ)

(
bi(w)yw + ai(w)y1−w

)
. (12)

By the functional equation of Λi, the integral equals∫ σ1+i∞

σ1−i∞
(4ND2)−sχ(−4N)

(
4N

D

)
ε−1
D Λ̌i(−s, w; χ̌)y−sds =

χ(−4N)

(
4N

D

)
ε−1
D

∫ σ0+i∞

σ0−i∞
Λ̌i(s, w;χ)(4ND2y)sds. (13)

However, if

f̌i(z, w; χ̌) := τ0(χ̌)
(
ǎi(w)y1−w + b̌i(w)yw

)
+
∑
n6=0

ǎin(w; χ̌)Wsgn(n4 ), w− 1
2
(4π|n|y)e2πinx,

we have
fi(iy, w;χ) = Fi(y, w;χ) + τ0(χ)

(
bi(w)yw + ai(w)y1−w

)
,

and
f̌i(iy, w; χ̌) = F̌i(y, w; χ̌) + τ0(χ̌)

(
b̌i(w)yw + ǎi(w)y1−w

)
.

Therefore, (12), (13) imply that

fi(iy, w;χ) = χ(−4N)

(
4N

D

)
ε−1
D f̌i

(
i

4ND2y
, w; χ̌

)
. (14)

We will show that this transformation law can be extended to the entire upper half-plane. We
will need the following lemma.

Lemma 3.2. Let z = x + iy be in the upper half-plane. Then for every w (with Re(w) large
enough)

∂

∂x

(
i1/2fi

(
−1

4ND2z
, w; χ

)(
z

|z|

)−1/2

− χ(−4N)

(
4N

D

)
ε−1
D f̌i(z, w; χ̌)

)∣∣∣∣∣
x=0

= 0. (15)

Proof. Set

Gi(y, χ) = y
∂fi
∂x

(iy, w;χ)− i

4
fi(iy, w;χ) and Ǧi(y, χ̌) = y

∂f̌i
∂x

(iy, w; χ̌)− i

4
f̌i(iy, w; χ̌).

10



We first observe that (15) holds if and only if

Gi(1/4ND
2y, χ) = −χ(−4N)

(
4N

D

)
ε−1
D Ǧi(y, χ̌).

Indeed, the left-hand side of (15) equals

i1/2

4ND2

∂fi
∂x

(
−1

4ND2(x+ iy)
, w;χ

)
1

(x+ iy)2

(
x+ iy

(x2 + y2)2

)−1/2

− χ(−4N)

(
4N

D

)
ε−1
D

∂f̌i
∂x

(x+ iy, w; χ̌)

− i1/2 (x2 + y2)1/2 − x(x2 + y2)−1/2(x+ iy)

(x2 + y2)

(
x+ iy

(x2 + y2)1/2

)−3/2

fi

(
−1

4ND2(x+ iy)
, w;χ

)
,

(16)

and its value at x = 0 is

− ∂fi
∂x

(
−1

4ND2iy
, w; χ

)
1

4ND2y2
+

i

2y
fi

(
i

4ND2y
, w; χ

)
−

χ(−4N)

(
4N

D

)
ε−1
D

∂f̌i
∂x

(iy, w; χ̌).

By (14), this is 0 if and only if

∂fi
∂x

(
−1

4ND2iy
, w; χ

)
1

4ND2y
− i

4
fi

(
i

4ND2y
, w; χ

)
=

− χ(−4N)

(
4N

D

)
ε−1
D

( ∂
∂x
f̌i(iy, w; χ̌)y − i

4
f̌i(iy, w; χ̌)

)
,

as desired.
We also have

Gi(y, χ) = F̃i(y, w;χ)− i
4
τ0(χ)

(
ai(w)y1−w + bi(w)yw

)
,

Ǧi(y, χ̌) = ˜̌Fi(y, w; χ̌)− i
4
τ0(χ̌)

(
ǎi(w)y1−w + b̌i(w)yw

)
.

Therefore, to prove (15), it suffices to prove

F̃i

(
1

4ND2y
, w; χ

)
− i

4
τ0(χ)

(
ai(w)(4ND2y)w−1 + bi(w)(4ND2y)−w

)
=

− χ(−4N)

(
4N

D

)
ε−1
D

(
˜̌Fi(y, w; χ̌)− i

4
τ0(χ̌)

(
ǎi(w)y1−w + b̌i(w)yw

))
. (17)

11



To verify this we move the line of integration in (11) as before to get

F̃i(y, w;χ) =
1

2πi

∫ σ1+i∞

σ1−i∞
Λ̃i(s, w;χ)y−sds

+
i

4

(
τ0(χ̌)χ(−4N)

(
4N

D

)
ε−1
D

(
b̌i(w)(4ND2y)−w + ǎi(w)(4ND2y)w−1

)
+ τ0(χ)(bi(w)yw + ai(w)y1−w)

)
. (18)

By the functional equation of Λ̃, the first term on the RHS equals

−
χ(−4N)

(
4N
D

)
ε−1
D

2πi

∫ σ0+i∞

σ0−i∞

ˇ̃Λi(s, w)((4ND2y)−1)−sds.

This implies (17) and thus (15).
It then follows from this lemma, together with (14) and Lemma 13.5.2 of [9], that

fi

(
−1

4ND2z
, w; χ

)
= i−1/2χ(−4N)

(
4N

D

)
ε−1
D f̌i(z, w; χ̌)

(
z

|z|

)1/2

. (19)

Together with (3) and (4), (19) implies that∑
r(modD)
(r,D)=1

χ(r)f̌i|
(

D −r
−4mN s

)
|
(

1 r/D
0 1

)
=

∑
r(modD)
(r,D)=1

χ(r)

(
4Nr

D

)
ε−1
D f̌i|

(
1 r/D
0 1

)
. (20)

Character summation then implies that

f̌i

∣∣∣ ( D −r
−4mN s

)
=

(
4Nr

D

)
ε−1
D f̌i, (21)

or, with Lemma 2.1,

fi

∣∣∣ ( s m
4Nr D

)
=

(
4Nr

D

)
ε−1
D fi. (22)

However, the matrices on the left-hand side of (22) generate Γ:

Lemma 3.3. ([14]) Let r ∈ Z+. For D ranging in a set of congruence classes modulo 4Nr
((D, 4Nr) = 1) choose ( s m

4Nr D ) ∈ Γ. Denote the set of all such matrices by Sr. Then Γ is
generated by

4N⋃
r=1

Sr ∪ {( 1 0
0 1 )} ∪ {

( −1 0
0 −1

)
}.

Therefore, fi is Γ-invariant. The reason all matrices described in the lemma are captured
by (22) is that the summands of f(·, χ) are independent of the choice of representative of
congruence class mod D. So, if r ∈ {1, . . . , 4N} and D ∈ {1, . . . , 4Nr} are such that ( s m

4Nr D ) ∈
Γ, then we can consider a restricted system of residues modulo D containing m. Using this

12



specific representative in the definition of f(·, χ) and τn(χ) for every χ, we deduce (22) for
( s m

4Nr D ).

• We will now prove that each fi has a moderate growth at the cusps. The moderate
growth at infinity is automatic from the Whittaker expansion, so we can focus on cusps other
than infinity. We first note ([17], pg. 343) that, if Re(w) > sgn

(
n
4

)
+ 1 and |z| > 1 and

|arg z| ≤ π − α then

Wsgn(n4 ), w− 1
2
(z) = e−z/2zsgn(n4 ) (1 +O

(
z−1
))

with the constant depending on α only and tending to infinity as α → 0. Therefore, for a
fixed i, w with Re(w) large enough and y < 1,

|fi(z, w)− (ai(w)y1−w + bi(w)yw)| ≤
∑
n6=0

|ain(w)| ·
∣∣∣Wsgn(n4 ), w− 1

2
(4π|n|y)

∣∣∣ =

∑
|n|≤ 1

4πy

|ain(w)| ·
∣∣∣Wsgn(n4 ), w− 1

2
(4π|n|y)

∣∣∣+
∑
|n|> 1

4πy

|ain(w)|e−2π|n|y(4π|n|y)sgn(n4 ) (1 +O
(
y−1
))
.

(23)

If A is the upper bound for
∣∣∣Wsgn(n4 ), w− 1

2
(z)
∣∣∣ for |z| < 1, the first sum is

<< A
∑
|n|≤ 1

4πy

|n|C ≤ (4πy)−C−1.

Since ain(w) = Ow

(
|n|C

)
, the second sum is ≤(

1 +O
(
y−1
))

maxn(e−2π|n|y(2π|n|y)C+2+sgn(n4 )y−C−2) = Ow(y−C−3).

Therefore, for y < 1, fi(z, w) << yC1 , uniformly in x for some C1 depending on w. Since for
every γ ∈ SL2(R), Im(γz) = O(1/Im(z)) uniformly on |Re(z)| ≤ 1/2, this implies that for
every w (with Re(w) large enough) and for every scaling matrix σ,

fi(σz, w) << yC

as y →∞, uniformly in x, for some C depending only on w, as desired.

• By ([13]), Satz 10.1 (3), the Γ-invariance, and the moderate growth at the cusps just
proved, it follows that, for Re(w) large enough fi(·, w) is the sum of a weight 1/2 Maass cusp
form gi(·, w) and a linear combination of the Eisenstein series Ej(·, w) (j = 1, . . . ,m∗). The
cusp form gi must in fact vanish for Re(w) large enough. Otherwise, it is an eigenfunction
of the Laplacian with eigen-value w(w − 1) because it is a linear combination of fi and
Ej (j = 1, . . . ,m∗). This is a contradiction because the discrete spectrum of ∆1/2 lies in
(−∞,−3/16] ([13], Satz 5.5), but, for Re(w) large enough, w(w− 1) cannot be a real number
≤ −3/16. Therefore, for Re(w) large enough there are functions lij : C→ C such that,

fi(z, w) =
∑
j

lij(w)Ej(z, w) or

f(z, w) = A(w)E(z, w), (24)

13



where A(w) := (lij(w))m
∗

i,j=1.
Now, if A is meromorphic, (24) gives the meromorphic continuation of f(z, w) to the whole

complex w-plane. Therefore, with (10) and (6), (24) implies that for w such that w and 1−w
are not poles of A(w) and Φ(w)(and thus E(z, w)), we have

A(1− w)ΛE(z, 1− w) = Λ(z, 1− w) = Φ(1− w)Λ(z, w) =

Φ(1− w)A(w)ΛE(z, w) = Φ(1− w)A(w)Φ(w)ΛE(z, 1− w). (25)

After taking an inverse Mellin transform on both sides it follows that

A(1− w)E′(z, 1− w) = Φ(1− w)A(w)Φ(w)E′(z, 1− w),

where the primes indicate that the constant terms have been subtracted. The functions of
z, Ei(z, 1 − w) are linearly independent and this implies that the entries of E′(z, 1 − w) are
linearly independent too (otherwise ayw + by1−w would have to be modular of weight 1/2 for
some a, b.) From this we deduce (7).

4 Scalar multiple Dirichlet series

The converse Theorem 3.1 assumes that a vector valued double Dirichlet series satisfies certain
assumptions, the most important of which are the existence of infinitely many twisted func-
tional equations. It is then shown that the vector valued double Dirichlet series is, in fact, the
standard vector of metaplectic Eisenstein series. A natural question to ask is whether there
should be a scalar version of the converse theorem involving scalar double Dirichlet series.
This will happen if each fi(i = 1, 2, . . . ,m∗) of Theorem 3.1 turns out to be a multiple of
Ei. A priori, there seems to be no reason for this because for all A(w) for which (7) holds,
A(w)E(z, w) satisfies the conditions of the theorem.

However, in this section we will show that for levels N = 1, 2, and slightly more restrictive
conditions, our converse theorem can yield information about the components of f .

Theorem 4.1. Let N = 1, 2. Let (ain,`)n,`,i and (ǎin,`)n,`,i, with `, n ∈ Z, ` ≥ 1, i = 1, . . . ,m∗

be sequences of complex numbers which are assumed to have polynomial growth in |n| and `
as |n|, ` → ∞. Here, as before, m∗ stands for the number of cusps of Γ0(N) with respect to
which v is singular. Let ai(w), bi(w), ǎi(w), b̌i(w), (i = 1, . . . ,m∗) be meromorphic functions of
w ∈ C which are holomorphic for Re(w) large enough and satisfy the assumptions of Theorem
3.1. In addition, suppose that b(w), (resp. b̌(w)) are holomorphic functions satisfying

bi(w) = δi1b(w) (resp. b̌i(w) = δim∗ b̌(w)) (26)

and
b(w) = b(1− w) (resp. b̌(w) = b̌(1− w)).

Then the functions

fi(z, w) = ai(w)y1−w + bi(w)yw +
∑
n6=0

ain(w)Wsgn(n4 ), w− 1
2
(4π|n|y)e2πinx,
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(i = 1, . . . ,m∗) which were previously defined in Theorem 3.1 satisfy

fi(z, w) = b(w)Ei(z, w),

for all w such that w and 1 − w are not poles of ai(w) and Φ(w). Here Ei(z, w) is the
metaplectic Eisenstein series of Γ0(4N) as defined in §2.1.

Proof of Theorem 4.1. For N = 1, we observe that Γ0(4) has only two singular cusps.
Therefore, a comparison of the coefficients of yw in (24) combined with (26), implies that
l11(w) = b(w) and l21(w) = l12(w) = 0 which gives the result.

When N = 2, we have m∗ = 3. Because of (26), a comparison of the coefficients of yw in
(24) implies that li1(w) = δi1b(w) and lim∗(w) = δim∗ b̌(w).

We will now show that l12(w) = 0. Set b(w) = (b1(w), b2(w), b3(w))T and likewise for b̌, a
and ǎ. Then, by (8) and (10) we deduce that[

(2
√
ND)−s−1+w

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)

1− w − s
b̌(1− w) +

τ0(χ)

1− w + s
b(1− w)

)
−

(2
√
ND)−s−w

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)

−w + s
ǎ(1− w) +

τ0(χ)

−w − s
a(1− w)

)]
−

Φ(1− w)

[
(2
√
ND)−s−w

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)

w − s
b̌(w) +

τ0(χ)

w + s
b(w)

)

− (2
√
ND)−s−1+w

(
χ(−4N)

(
4N
D

)
ε−1
D τ0(χ̌)

−1 + w + s
ǎ(w) +

τ0(χ)

−1 + w − s
a(w)

)]
(27)

must be entire. This implies that for all w 6= 1
2

for which Φ(1− w) a(1− w) are defined,

a(1− w) = Φ(1− w)b(w) = Φ(1− w)b(1− w)

otherwise (27) would have a pole at s = −w. (The possible pole at s = −w would not
be cancelled by other poles in (27) unless w = 1/2). With (26), this implies that ai(w) =
b(w)pi1(w) for all w 6= 1

2
for which pi1(w) is defined (and, by continuity, for w = 1/2 too).

Likewise, we infer that ǎ(w) = Φ(w)b̌(w) and then (26) again, shows that ǎi(w) =
b(w)pim∗(w).

Now a comparison of the coeffients of y1−w in (24) immediately implies that l22(w) = b(w)
and thus, f2(z, w) = b(w)E2(z, w). Next, together with the already proved l11(w) = b(w)
and l13(w) = 0, a comparison of the coefficients of y1−w gives l12 = 0 and thus, f1(z, w) =
b(w)E1(z, w). Likewise, f3(z, w) = b(w)E3(z, w).

In the case of Γ0(4), we can prove a genuine scalar converse theorem. Since this theorem
is, in a sense, a converse theorem for Siegel’s multiple Dirichlet series ([15]), we slightly modify
our notation to conform to the formalism of ([15]). We set

j 1
2
(γ, z) = v(γ)(cz + d)1/2.
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For every γ, δ ∈ Γ and z ∈ H we have

j 1
2
(γδ, z) = j 1

2
(γ, δz)j 1

2
(δ, z).

The group Γ0(4) now acts on functions f on H by

(f | 1
2
γ)(z) := f(γz)j 1

2
(γ, z)−1, γ ∈ Γ0(4).

Further, we will expand eigenfunctions of ∆1/2 in terms of the functions ysKn(s, y)e2πinx where

Kn(s, y) =

∫ ∞
−∞

e−2πinx

(x2 + y2)s(x+ iy)1/2
dx.

This is equivalent to the expansions in terms of Wsgnn
4
,w− 1

2
(4π|n|y)e2πinx used in earlier sections

because of (69) of [7] (where though it should be taken into account that Wa,s is denoted by
Wa,s+1/2) Finally we set

G+(s, t) =
F ((s+ t)/2, (s− t+ 1)/2, (s+ 1)/2; 1/2)

Γ((t+ 1)/2)Γ((s+ 1)/2)

and

G−(s, t) =
F ((s+ t)/2, (s− t+ 1)/2, (s+ 2)/2; 1/2)

Γ(t/2)Γ((s+ 2)/2)
.

With this notation, we obtain the following theorem.

Theorem 4.2. Let (an,m)n∈Z,m≥1 be a sequence of complex numbers of polynomial growth in
|n|,m as |n|,m→∞. For w with Re(w) large enough, set

an(w) =
∞∑
m=1

an,m
mw

and assume that, for each fixed w, an(w) = O(|n|C) (C > 0), as n → ∞. For each w with
Re(w) large enough, consider the pair of functions L+

w(s) L−w(s) represented by

L+
w(s) =

∑
n>0

an(w)

n
s−w+1

2

, L−w(s) =
∑
n<0

an(w)

(−n)
s−w+1

2

for Re(s) large enough and set

Λw(s) =
e−πi/4Γ((s− w + 1)/2)Γ((s+ w)/2)

2s−1/2π(s−w−1)/2

(
G+(s, w)L+

w(s) +G−(s, w)L−w(s)
)

and

Λ̃w(s) = i
e−πi/4Γ( s−w+3

2
)Γ( s+w+2

2
)

2s+
1
2π

s−w−1
2

(
G+(s+ 2, w)L+

w(s)−G−(s+ 2, w)L−w(s)
)
− i

4
Λw(s).
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Let a : C → C be a meromorphic function which is holomorphic for Re(w) large enough and
let b : C→ C be a holomorphic function satisfying b(s) = b(1− s). Assume that all the above
functions satisfy the assumptions (29), (30), (31), (32) listed below. Then, for

f(z, w) = a(w)y(1−w)/2 + b(w)yw/2 +
∑
n6=0

an(w)yw/2Kn(w/2, y)e2πinx,

we have

f(z, w) = −(2e−πi/2)−1/2b(w)z−1/2E

(
− 1

4z
,
w

2

)
+ b(w)E

(
z,
w

2

)
,

for each w ∈ C for which w, 1− w are not poles of a(w). Here

E(z, w) =
∑

γ∈Γ∞\Γ0(4)

Im(γz)s

j 1
2
(γ, z)

.

Assumptions: We shall assume that the functions

Λw(s)− a(w)2(1−s+w)/2

(
1

2− s− w
+

1

w − s− 1

)
− b(w)2(2−s−w)/2

(
1

w − s+ 1
− 1

w + s

)
(28)

and

Λ̃w(s) + a(w)i2(w−s−3)/2

(
1

w − s− 1
− 1

2− w − s

)
+ b(w)i2(−2−s−w)/2

(
1

s− w − 1
− 1

w + s

)
(29)

are EBV for every w.
Further, assume that

Λw(s) = −2−s+1/2Λw(1− s) and Λ̃w(s) = 2−s+1/2Λ̃w(1− s) (30)

and
G(w)Λw(s) = G(1− w)Λ1−w(s) (31)

for G(w) = (2w − 1)ξ(2w) and ξ(s) := ζ(s)Γ(s/2)π−s/2.

Proof of Theorem 4.2. For every w with Re(w) large enough and every y > 0 define,

Fw(y) =
∑
n6=0

an(w)yw/2Kn(w/2, y),

and

F̃w(y) = 2πi
∑
n6=0

nan(w)yw/2+1Kn(w/2, y)− i

4
Fw(y).

As in the proof of Th. 3.1, we see that, for s with Re(s) large enough, we have∫ ∞
0

ys/2Fw(y)
dy

y
= Λw(s) and

∫ ∞
0

ys/2F̃w(y)
dy

y
= Λ̃w(s),
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and that in the inverse Mellin transform of Λw(2s) we can move the line of integration from
σ0 to σ1 = 1/2− σ0 to get

Fw(y) =
1

2πi

∫ σ1+i∞

σ1−i∞
Λw(2s)y−sds+

∑
s0 pole

Ress=s0Λw(2s)y−s =
1

2πi

∫ σ1+i∞

σ1−i∞
Λw(2s)y−sds

− a(w)y(w−2)/22w−3/2 − b(w)y−(w+1)/22−w−1/2 − a(w)y−(w−1)/2 − b(w)yw/2. (32)

This, together with the functional equation of Λw and

f(iy, w) = Fw(y) + b(w)yw/2 + a(w)y(1−w)/2

implies that
f(iy, w) = −21/2(4y)−1/2f(i/(4y), w). (33)

We show that this holds on the entire upper half-plane and not just on the positive imaginary
axis. We require the following lemma

Lemma 4.3. For every w ∈ C with Re(w) large enough, we have

∂

∂x

(
f(−1/4z, w) + (2z/i)1/2f(z, w)

) ∣∣∣
x=0

= 0. (34)

Proof. Set

G(y) = y
∂f

∂x
(iy, w)− i

4
f(iy, w).

As in Lemma (15), we observe that (34) holds if and only if

G(1/4y) = (2y)1/2G(y).

We also have

G(y) = F̃w(y)− i

4

(
a(w)y(1−w)/2 + b(w)yw/2

)
.

Therefore, to prove (34), it suffices to prove

F̃w(
1

4y
)− i

4

(
a(w)(4y)

w−1
2 + b(w)(4y)−

w
2

)
= (2y)

1
2

(
F̃w(y)− i

4
(a(w)y

−w+1
2 + b(w)y

w
2 )

)
.

(35)
To verify this we move the line of integration in the inverse Mellin transform of Λ̃w(2s) as
before to get

F̃w(y) =
1

2πi

∫ σ1+i∞

σ1−i∞
Λ̃w(2s)y−sds

+ a(w)i2−2y(1−w)/2 − a(w)i2w−7/2yw/2−1 − b(w)i2−w−5/2y−(w+1)/2 + b(w)i2−2yw/2. (36)

As before, by an application of the functional equation of Λ̃w we deduce (35) and thus (34).
This lemma, together with (33) and Lemma 13.5.2 of [9], implies that

f(−1/(4z), w) = −(2i)−1/2(4z)1/2f(z, w). (37)
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However,
( 0 −1

4 0 ) ( 1 −1
0 1 )

(
0 1/4
−1 0

)
= ( 1 0

4 1 ) .

An easy computation and (37), with the aid of Lemma 2.1 then imply that, for all w with
Re(w) large enough, f(−, w) is invariant under ( 1 0

4 1 ) in terms of the weight 1/2 action. Since
Γ0(4) is generated by ( 1 0

4 1 ) and the translations, this proves that, for all w with Re(w) large
enough, f(z, w) satisfies the weight 1/2 transformation law for Γ0(4).

To check the growth of f(z, w) at the cusps in terms of z, we first note that, by construction,
it has a moderate growth at infinity. For the other cusps, because of (69) of [7], the argument
we used to prove moderate growth in Theorem 3.1 applies here too to deduce moderate growth
for Re(w) large enough.

By (28) and (31) we deduce that

2(1−s+w)/2

(
1

2− s− w
− 1

1 + s− w

)(
a(w)G(w)− b(1− w)G(1− w)

)
+ 2(2−s−w)/2

(
1

w − s+ 1
− 1

s+ w

)(
b(w)G(w)− a(1− w)G(1− w)

)
(38)

must be entire. This implies that for all w with Re(w) large enough, and such that 1 − w is
not a pole of a(w)

a(w)G(w) = b(1− w)G(1− w) = b(w)G(1− w),

otherwise (38) would have a pole at s = 2−w. Thus, the constant term of f(z, w) at infinity
is

b(w)

(
y
w
2 +

G(1− w)

G(w)
y

1−w
2

)
. (39)

Now, by ([13]), Satz 10.1 (3), the Γ-invariance and the moderate growth at the cusps we
proved, f(·, w) is the sum of a weight 1/2 Maass cusp form g and a linear combination of the
Eisenstein series of weight 1/2 at the cusps of Γ0(4) that are singular in terms of v. One easily
sees that the singular cusps are 0 and∞. Also, using the same argument we used in the proof
of (24), we see that g must vanish and thus

f(z, w) = α(w)z−1/2E(−1/(4z), w/2) + β(w)E(z, w/2) (40)

for some functions α and β. However, the constant terms at infinity of E(z, w/2) and
z−1/2E(− 1

4z
, w/2) are

yw/2 +
2−2w

1− 2−2w

ξ(2w − 1)

ξ(2w)
y

1
2
−w/2 and

e−πi/4(1− 21−2w)

2w−1/2(1− 2−2w)

ξ(2w − 1)

ξ(2w)
y

1
2
−w/2,

respectively (cf. [8]). Therefore, upon comparison of the coefficients of yw/2 on both sides
of (40) we deduce that β(w) = b(w). An elementary computation then implies that α(w) =
−(2e−πi/2)−1/2b(w), which implies the result.
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