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Abstract

These are my live-texed notes for the Fall 2016 offering of MATH GR6261 Commutative Algebra.
Let me know when you find errors or typos. I’'m sure there are plenty.
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Chapter 1

Dimension theory

1.1 Graded rings and modules

Definition 1.1.1. A graded ring is a ring R endowed with a direct sum decomposition (as an abelian
group) R = ®d20 Ry such that Ry - Re C Ryye-

Remark. Note that Ry C R is a subring. Also, the subset Ry = @,., Rq is an ideal. Sometimes we call
R, the irrelevant ideal.

Definition 1.1.2. An element f € R is homogeneous if f € R, for some d. This d is called the degree.

Lemma 1.1.3. Let S be a graded ring. A set of homogeneous elements f; € S, generates S as an algebra
over Sy iff they generate Sy as an ideal.

Proof. If a set {f;} generates S as an algebra, then we can write any f € S, as a polynomial in the f; with
the coefficients in Sy, whose constant part is zero. But then f is in S} generated by the f;.

Conversely, we want to write every f € S as a polynomial in f; over Sy. It suffices to prove this for
homogeneous elements, since every f € S is a sum of homogeneous elements. We induct on the degree d.

1. If d = 0, then f € Sy so we are done.

2. If d > 0, then f € S, so by the hypothesis f = > g; f; for some g; € S. Of course, we may replace g;
by its homogeneous piece of degree d — deg(f;). Then we can apply the induction hypothesis to the g;
to write them as polynomials in the f;. Hence f is also a polynomial in the f;. O

Definition 1.1.4. A ring R is Noetherian if every ideal of R is finitely generated. Equivalently, every
increasing chain Iy C Iy C --- of ideals stabilizes, i.e. there exists an n such that I,, = I,,41 = [y42 = ---.

Lemma 1.1.5 (Hilbert basis theorem). If R is a Noetherian ring, then any finitely generated R-algebra (i.e.
Rlx1,...,x,]/J) is Noetherian.

Example 1.1.6. The polynomial rings R[z], Clz],F,[x1,...,Z100] are all Noetherian. The ring Z is also
Noetherian, along with any number field.

Lemma 1.1.7. A graded ring S is Noetherian iff So is Noetherian and S, is finitely generated as an ideal.

Proof. If S is Noetherian, then Sy = S/S; is Noetherian and S, is finitely generated by the definition of
Noetherian. Conversely, if Si = (f1,..., f), then after replacing the f; by their homogeneous parts, we can
assume without loss of generality that the f; are homogeneous. By lemma S is finitely generated as
an Sp-algebra. Since Sy is Noetherian, Hilbert’s basis theorem implies S is Noetherian. O



Definition 1.1.8. Let S be a graded ring. A graded S-module is an S-module M endowed with a grading
M = @ e, My as an abelian group (note that the grading is over all of Z now) such that

f€Ssy, reM, = fre Myy..
Example 1.1.9. Let S = C[z] and M = @, Cz4, and make M into an S-module by defining
T-z2q=24+1, dEZ,
i.e. multiplication by z is a shift operator. Note that M is not finitely generated as a module.

Lemma 1.1.10. Let S be a graded ring, and M be a graded S-module. If S is finitely generated over Sy and
M is finitely generated as an S-module, then each My is a finite So-module. (Terminology: for S-modules,
finite just means finitely generated.)

Proof. Let x1,...,x, € M be generators of M as an S-module, i.e. every element in M is a linear combination
of the x; with coefficients in S. Again without loss of generality, assume the x; are homogeneous. Let
fi,--+, fm € S+ be homogeneous generators of the ideal. Every element z € My can be written as

z = Zaixi, a; €8.

Replace a; with its homogeneous part of degree d — degx;. By we can write
ai =Y arifit-- fir.
I
Hence the generators for My as an Sp-module are given by

N i stod = 217 deg(f;) + deg(z;). O

1.2 Numerical polynomials

Definition 1.2.1. Let A be an abelian group. An A-valued function f defined on sufficiently large integers

n is a numerical polynomial if there exists an > 0 and elements ag, ..., a,. € A such that
" /n
f(n) = z; (Z>az Vn > 0.
i

Proposition 1.2.2. If P € Q[z] and P(n) € Z for all sufficiently large n, then P = > (?)ai for some
a; € 7.

Lemma 1.2.3. Suppose f: n — f(n) € A is a function such that n — f(n) — f(n — 1) is a numerical
polynomial. Then f is a numerical polynomial.

Proof. Think of taking repeated differences of sequences: if the sequence of differences is a numerical poly-
nomial, so is the original sequence. O

Example 1.2.4. Let k be a field. Consider k[z1,...,z,] as a graded ring with &k in degree 0 and the z; in
degree 1. Then

d — dimy k21, ..., 2n]4
is a numerical polynomial, since the dimension is given by ("+3_1).

Definition 1.2.5. Let R be a ring. Define the K-groups K, (R) and Ky(R) as follows. The abelian group
K{(R) has the following properties:



1. every finite R-module M induces an element [M] € K{(R), and K{(R) is generated by these [M];

2. every short exact sequence 0 — M’ — M — M" — 0 induces a relation [M] = [M’] 4+ [M"], and all
relations in K)(R) are Z-linear combinations of such relations.

The abelian group Ko(R) is defined similarly, except only for finite projective R-modules.
Remark. There is an obvious map Ky(R) — K{(R) which is not an isomorphism in general.
Example 1.2.6. If R =k is a field, then dim: K{(R) — Z is an isomorphism; similarly for Ky(R).

Example 1.2.7. If k is a field and R = k[z], then every finite projective R-module is free because R
is a PID. Hence rank: Ky(R) — Z is again an isomorphism. As for K|(R), the structure theorem for
finitely generated modules over a PID says M = R" x R/(dy) X --- x R/(dy), but the short exact sequence
0 — (d;) = R — R/(d;) — 0 shows that [R/(d;)] = [R] — [(d;)] = [R] — [R] = 0 since (d;) = R (it is free
with generator d;). So torsion parts disappear in K{), and rank: K{j(R) — Z is again an isomorphism.

Proposition 1.2.8. Suppose S is a Noetherian graded ring and M is a finite graded S-module. If S, is
generated by elements of degree 1, then

Z — K((So), nw— [M,],

(which is well-defined by lemma is a numerical polynomial.

Proof. We induct on the minimal number of generators of Sy. If this number is 0, then S, is trivial, so scalar
multiplication cannot change the degree of elements in M, and therefore M,, = 0 for n > 0 (in particular,
for n greater than the maximal degree of a generator of M as an S-module). Hence clearly n — [M,] is a
numerical polynomial in this case.

For the induction step, let € S7 be part of a minimal generating set so that S/(x) has one less generator.
We do a simple case and then generalize.

1. Suppose z is nilpotent on M, i.e. "M = 0 for some r. If r = 1, i.e. *M = 0 then M is an S/(x)-
module and the induction hypothesis applies. Otherwise we induct on 7: find a short exact sequence
00— M — M — M"” — 0 such that r’,r"” < r, so the result holds for M’ and M”, and therefore for
[Ma] = [Mg] + [Mg].

2. If x is not nilpotent on M, let M’ C M be the largest submodule on which x is nilpotent, and consider
0= M — M — M/M' — 0. It suffices to prove the result for M /M’ where multiplication by x is
injective. So without loss of generality assume that is the case on M. Let M := M/xM. The map
x: M — M is not a map of graded S-modules since it fails to preserve the grading, but we get a short
exact sequence 0 — My = Mgy — Mgy — 0. Hence [Mgy 1] — [Mg] = [Mgy1]. By lemmam we
are done. O

Example 1.2.9. Let S = k[X,..., X4]. Then Sy = k, and we know K{(Sy) = Ko(So) = Z via dim. Hence
any finitely generated graded k[X7, ..., X4]-module M gives a numerical polynomial n +— dimy(M,,).

Lemma 1.2.10. Let k be a field, and I C k[X1,..., X4] is a non-zero graded ideal. Let M = k[Xq,...,X4]/I.
Then the numerical polynomial n — dimy(M,) has degree < d — 1.

Proof. By example the numerical polynomial for k[X7,...,Xg] is n — (";ﬁ;l). If f € I is homoge-

neous of degree e and any degree n > e, we have I, D f - k[X1, ..., Xa]ln—e, so that dimg(I,,) > (”j’f‘f*l).
Subtracting, dimy (M,,) < ("jﬁ;l) — ("_;f‘li_l), which is indeed of degree < d — 1. O



1.3 Length of modules

Let R be a Noetherian local ring with maximal ideal m. All modules will be finite R-modules.

Definition 1.3.1. Let R be any ring and M an R-module. The length of M over R is
lengthp(M) :=sup{n:30=My C M1 C --- C M, = M}.

Equivalently, length (M) is the length of any composition series: a filtration 0 = My C M; C --- C
M,, = M such that M;/M;, is simple for every i.

Remark. Obviously if length 5 (M) < oo, then any chain can be refined to a maximal chain. It is not obvious
that the lengths of every maximal chain are the same (cf. Jordan—Ho6lder theorem).

Example 1.3.2. Let M = R = k[z]. There exists arbitrarily long sequences 0 C (z'%°) C --- C (z) C M, so
lengthp (M) = co. On the other hand, for M a finite-dimensional k-vector space, length, (M) = dimy(M).

Lemma 1.3.3. lengthy, is additive on short exact sequences 0 — M’ — M — M" — 0.
Lemma 1.3.4. Let R be a local ring with mazimal ideal m, and let M be an R-module.
1. If M is a finite module and m™M # 0 for every n, then lengthy (M) = co.
2. Iflengthp(M) < oo, then m"M =0 for some n.

Proof. Suppose m"M +# 0 for every n. Fix x € M and pick fi,...,f, € m such that fifo--- frz # 0 for
k <n. Then the terms in the filtration

0CRf1f2"‘fniEC"'CRf1f2$CRf1$CR$CM

are distinct: if Rf; fox = Rfix, then gf; fox = fia for some g € R, so that (1 — gfa)fixz =0, ie. frx =0
since 1 — gfy is a unit, contradicting our choice of f;.

Now note that if M is not a finite R-module, lengthr(M) = co. Hence if lengthp(M) < oo, we must
have M finite, and therefore m™ M = 0 for some n. O

Lemma 1.3.5. Let R be a ring, M a finite R-module, and m C M a finitely generated maximal ideal such
that m™M = 0 for somen > 1. Then

n—1
length (M) = > dimp m (m'M/m' ' M).
=0

Proof. Since R/m is a field, it has length 1 as an R-module. Also, m*M/m**1M is an R/m-module since m
annihilates everything in it. Take the filtration 0 = m”M C --- C mM C M. This filtration gives associated
short exact sequences 0 — mFH1 A — mFM — m*FM/mk+1 M — 0 on which length is additive. Hence

n—1
length (M) = length  (mM) + dimpg e (M/m) = - - - = length(m" M) + Z dimp /e (m*M/m" M), O
=0

1.4 Hilbert polynomial

Proposition 1.4.1. Let I be an ideal of definition, i.e. m" C I C m. The functions

¢r.m(n) = length, (1" M /I M)
xr.m(n) = length (M /I" T M)

are numertcal polynomials.



Remark. The polynomial ¢y, s is called the Hilbert polynomial of M.

Proof. Let S == @dzo I4/19%+1. This is a Noetherian graded ring generated by S; = I/I? over Sy = R/I.
Also, N :== ®d20 IYM /1941 M is a finitely generated graded S-module. By the map

ns [I"M/I" M) € K)(R/I)
is a numerical polynomial. To conclude the proposition is true for ¢ ar, we use the following two facts:

1. any finite /2//-module has finite length over R/I, so lengthp; is a well-defined function Ky(R/I) — Z
by the universal property (or the construction) of the K-group;

2. for any finite R-module M annihilated by I, the length length (M) = lengthp,;(M).
This concludes the proof for ¢y ar. We get the result for x; ar because xrp(n) —xrm(n—1) = o m(n). O

Example 1.4.2. Let R = k[z, y] and M = R. Let I be the maximal ideal in R. Then x = k, and:

(z,y)
n m*/m"tl ooy
0 1 1 1
1 z,y 2 3
2 z%xy,42 3 6.

The table is the same for R = k[[z, y]], even though it is not the same ring, but rather the completion. If
we change I = m2, then clearly

x1.r(n) = lengthn(R/I") = length z(R/m*" ™) = . r(2n + 2).

It follows that

2n+ 3 2n +1
SDI,R(TL)ZXI,R(TL)—XI,R(TL—H):< ) >—< ) >:4n—|—3.

Example 1.4.3. Let R = k[, y|(,,,), and M = R/(x® + y®) for some a < b. Let I be the maximal ideal in
R. Then k =k, and

mn+(xa+yb) B mn

m"M/m" M = =
/ mn+1+(xa+yb) mn+1 +mnm(xa+yb)

will be (for n > 0) a vector space with basis

n n—1 a—1, n—a+1

y,ry .- Y

since we can get rid of 2™ = 2" %(2% + ¢*) mod m"*1, and so on. So ¢m m(n) = a for n > 0. Hence
Xm,Mm (1) = an + ¢ for some constant ¢ for n > 0.

1.5 Nakayama, Artin—Rees, and Krull’s Intersection

Lemma 1.5.1 (Nakayama). Let R be local Noetherian, m a mazimal ideal, and M a finite R-module. Then
any of the following equivalent statements are true:

1. mM = M implies M = 0;

2. ifxq,...,x, € M map to generators of M/mM as a R/m-vector space, then x1,...,x, generate M as
an R-module.



Lemma 1.5.2 (Artin—Rees). Let R be a Noetherian ring and I C R a proper ideal. Let N C M be finite
R-modules. Then there exists ¢ > 0 such that for alln > c,

I"M AN = I""°(I°M N N).

Proof. Let S = @ 51 4 called the Rees algebra. It is Noetherian. Since I is finitely generated, M =
Do I%M is a finite graded S-module, and M’ = Do N N I*M c M is a graded S-submodule. Since

S is Noetherian, M’ is a finitely generated S-module. Let & eNNI 4 M be the generators (by taking
homogeneous parts, if necessary). Then for n > ¢ := max{d,},

NOI'M =M, =Y Sp_q,My =Y I""(NNI%M)CI"°(NNIM). O

Theorem 1.5.3 (Krull’s intersection theorem). Let R be a Noetherian local ring, and I C R be a proper
ideal. Let M be a finite R-module. Then (,~,I"M = 0.

Proof. Set M" =(,,~o I"M and apply Artin-Rees: there exists ¢ > 0 such that M’ NI"M = I""¢(M'NI")
for n > c¢. Take n = ¢+ 1. Then this is just M’ = IM’. Nakayama’s lemma gives M’ = 0. O

1.6 Co-length

Lemma 1.6.1. Say N C M has finite co-length if lengthy(M/N) < co.

1. If N C M is of finite co-length, then there exists c1,co such that for all n > ca,
c1+xrn(n—c2) < xrm(n) < e+ xrm(n).

The degree of x1.m — X1,N 15 less than the degree of x1a (which is the degree of x1.n, provided that
M does not have finite length.

2. If I,I' are two ideals of definition, then there exists a > 0 such that x1a(n) < xr.am(an), so that the
degree of x1,m 15 independent of I.

Definition 1.6.2. Define d(M) € {—0,0,1,2,...} by:

d(M) = —00 M=0
B deg xr,a otherwise.

Lemma 1.6.3. If 0 - M’ — M — M"” — 0 is a short exact sequence, then there exists a submodule
N C M’ of finite co-length £ and ¢ > 0 such that

xr,m(n) = xrmr(n) +xrn(n—c) + £
or.m(n) = o1 mr(n) +ern(n —c).

Proof. For every n > 0, we get a short exact sequence
0— M /(M' NI M) — M/I" T M — M /T M — 0.

It is clear that It M’ Cc M’ NI"' M, we don’t know how much bigger M’ N "1 M is. But Artin—Rees
says that there exists a ¢ > 0 such that

M NI"M =1""°(M'"NI°M), Yn>c.



Set N = M’ N I°M, which proves the lemma via the sequence
M’'/N

0 —— M/I"'"N — M/I""'M —— M"/IM" —— 0

N/In+lch

where M’/N has length ¢. O
Corollary 1.6.4. We have

max(deg xr,n,deg xr,a) = deg xr1,m
max(d(M’), d(M")) = d(M)
deg(Xl,M — XI,M' — XI,]VI”) < deg(XI,M')-

1.7 Dimension of local Noetherian rings

Definition 1.7.1. Let (R, m, x) be a Noetherian local ring. Let dim(R) denote the Krull dimension of the
ring, as usual. Let d(R) be the degree of xm r. Let d'(R) be the minimal number of generators of an ideal
of definition in R.

Theorem 1.7.2. Let (R,m, k) be a Noetherian local ring. Then
dimR =0 < d(R)=0 < d(R)=0 < R Artinian.

Proof. (1) <= (4) We know R is Artinian iff it is Noetherian and dimension 0.

(1) <= (3) Note that d'(R) = 0 iff (0) is an ideal of definition iff m = 1/(0) iff m is minimal iff
Spec R = {m}.

(1) < (2) Note that d(R) = 0 iff ym g is eventually constant, iff m"» = m"*! = ... for n > 0, iff
m” = 0 by Nakayama, i.e. (0) is an ideal of definition. O

Theorem 1.7.3. Let (R, m, k) be a Noetherian local ring. Then
dim R = d(R) = d'(R).

Proof. First show d(R) < d'(R). Say I = (f1,..., far) is an ideal of definition with d’ = d’(R). Then we get

B RIS (ap) Y asfite £y
E

E=(ey,...,eqr)
’

Z?:l €i=n

Hence length (1" /1"*!) < length (D R/I) = (dljle) length(R/I). It follows that degyrr < d —1,
and therefore deg x7 g < d’. Hence d(R) < d'(R).

Now we show d'(R) < dim(R). This is clear if dim(R) = oo, so assume dim(R) < oo and induct. We
know the base case dim(R) = 0 from last time. If dim(R) > 0, let py1,...,p; be the minimal primes of R.
(This is fine because R is Noetherian, hence there are finitely many minimal primes.) Since dim(R) > 0,
we know p; € m for all . Pick an element z € m not in any of the p; (using prime avoidance; the

=



vanishing set of z transversally cuts each of the irreducible components). Hence p; ¢ V(x) = Spec(R/xR),
ie. dim(R/zR) < dim(R). By the induction hypothesis, there exist Zo,...,Z4 in R/xR which generate the
ideal of definition in R/xR with d < dim(R/xR). Then (z,...,x4) is an ideal of definition in R, because
V(z,2a,...,2q) = V(22,...,24) = {Mp/yr}. Hence d+1 < dim R and we are done by induction.

Finally, show dim(R) < d(R). We induct on d(R), and we know the base case d(R) = 0. Assume
d(R) > 0; if dim(R) = 0 we are done, so assume dim(R) > 0 as well. Pick

P=0Cq=q S S g=m

with e > 1. (Here p represents a biggest irreducible component; we are working with it.) We must show
e < d(R). Look at
0—-p—>R— R/p—0.

For short exact sequences, we know d(R) > d(R/p) > 0. Pick z € ¢\ p, so that
0— R/p - R/p— R/(xR+p) — 0.

By lemma d(R/(xR + p)) < d(R/p). By the induction hypothesis, we get dim(R/(zR + p)) <
d(R/p) —1 < d(R) — 1. Hence ¢ — 1 < d(R) — 1. =

Remark. This theorem is why we built the Hilbert polynomial machinery: somehow we couldn’t do the proof
of this theorem without it!

Corollary 1.7.4. dim(R) = d'(R) is less than the minimal number of generators of the mazimal ideal, which
via Nakayama is equal to dim, m/m?.

Definition 1.7.5. We say (R, m, k) is a regular local ring if R is Noetherian and dim(R) = d'(R) =
dim, m/m?.

Example 1.7.6. Let k be a field. Then R = k[zq,. .. ,gcn](gc1 _____ x,) 18 regular of dimension n. There are a
few ways to see this.

1. 0 C (x1) C (21,22) C --+ C (x1,...,Zy,) is a chain of primes of length n, so the dimension is at least
n. But m = (x1,...,x,) is generated by n elements, so the dimension is at most n.

2. Use the Hilbert polynomial.

Corollary 1.7.7 (Krull’s Hauptidealsatz). Let R be a Noetherian ring, and take x € RN p where p is a
minimal prime over (x). Then the height of p is at most 1.

Proof. Consider R, where the only prime containing « is pR,,. Hence if z is not nilpotent, then V(z) = pR,,
ie. \/@ = pR,. Then (z) is an ideal of definition, and also no ideal of definition is trivial because it must
contain z" for some n. Hence dim R = 1. It follows that the height of p is 1. Of course, if = is nilpotent, the
height of p is 0. O

Remark. Geometrically, p is a generic point of an irreducible component of V' (z), i.e. if we have an irreducible
component cut out by 1 equation, the codimension is at most 1.

Corollary 1.7.8 (Krull’s height theorem). Let R be Noetherian and fi,...,f. € R. Let p be a minimal
prime over (f1,..., fr). Then the height of p is at most r.

Proof. Same proof as for the Hauptidealsatz, which is the height 1 case. O

Corollary 1.7.9 (Cutting down). If (R, m, k) is Noetherian local and x € m, then dim(R/xR) > dim(R)—1
and equality holds if x is not in any minimal prime of R.



Proof. Let n = dim(R/zR). If x1,...,2, € R map to generators of an ideal of definition in R/zR, then
x,%1,...,T, generate an ideal of definition in R, i.e. dim R < dim(R/xR)+ 1. But if « is not in any minimal
prime, then every chain of R/zR is still a chain in R, but now we can prepend (x). Hence equality holds. [

Corollary 1.7.10. Let (R,m, k) be Noetherian local. If I = (z1,...,zq) is an ideal of definition with
d=dimR, then dim R/(z1,...,2;) =d —1 for all .

Proof. Induct on d and use the previous corollary. O

Remark. It follows from all this machinery that dim R[z1,...,z,] = n for R a Noetherian ring. Note that
this is not a trivial fact at all. For example, (22 — 2,2y — 2,y — 2) in k[z,y] is actually generated by
(22 — 2,2 —y).

1.8 Annihilators and support

Definition 1.8.1. Let R be a ring and M an R-module. The support of M is
supp(M) = {p € Spec R : M,, # 0} C SpecR.

(Think of sheaves: these are points where the stalk is non-zero.)
Lemma 1.8.2. M # (0) iff supp(M) # 0.
Proof. Recall that M — [], M, is injective, since if z/1 = 0 € M, then Anng(z) N (R\p) # 0, ie.
Anng(x) ¢ p for every p, and therefore must contain a unit. O
Definition 1.8.3. Let R be a ring and M an R-module. The annihilator of M is

Anng(M) = Ann(M) ={f € R: ft =0Vx € M}.
If x € M, let Anng(x) :={f € R: fx =0} = Anng(Rx).
Lemma 1.8.4. If M is a finite R-module, then supp(M) = V(Anngr(M)) is closed in Spec R.

Proof. Let I = Anng(M), so that ITM = 0. If p € supp(M), then M, # 0. so M, # (IM), = I,M,. If
I, = R, then M, # RM,, which is impossible. Hence I, # R,, i.e. it contains no unit, so I C p (since p is
the unique maximal ideal in M,,, and therefore everything outside it is a unit). Then p € V(I).

Conversely, if p € V(I), then I C p. Then I, # R,. If we could show that I, = Ann(M,) (keep in mind
that M, is an Rp-module, so Ann(M,) = Anng,(Mp)), then we would be done, since then Ann(M,) # Ry,
i.e. the annihilator is not the whole ring, and therefore M # 0. This is where we require M finite.

Claim: if M is finite, and S C R is a multiplicative subset, then S™! Anng(M) = Anng-1x(S~1M).

Clearly the forward inclusion is obvious. For the converse, say /s € Anng-15z(S™tM), and let xq,..., 2,
be generators of M. Then (r/s)z; = 0 in S~LM means there exist s; € S such that s;rz; = 0 in M, and
817y ..., 8,7 € Anng(M). Hence r/s = (s1 -+ 8,7)/(881 - 8,) € S™1 Anng(M). O

Example 1.8.5. We have supp(k[z]/(x — 5)) = {(x — 5)}. Generalizing, supp(k[z]/(x — 1) - (x — 10)) =
{(x —1),...,(x — 10)}. What about infinitely many points in the support? Try

i=1

but no polynomial annihilates M, because any such polynomial must contain factors (z — i) for every i.
(This is because localization does not commute with products.) Instead,

supp <@ klz]/(x — z)) ={(z-1),(x—2),...}.

This is an instance of the general fact that supp(@;—, M;) = @.-, supp(}M;), since localization commutes
with direct sum.



Some useful facts about support:

1. if M C N then supp(M) C supp(V), and if M — @ is onto, supp(Q) C supp(M);
2. if 0 —» My — My — Ms — 0, then supp(Ms) = supp(M7) U supp(Ms);

3. supp(M/IM) = supp(M) NV (I) provided M is finite.

Lemma 1.8.6. Let R be a Noetherian ring, and M a finite R-module. Then there exists a filtration by
submodules
O=MycCcMyCMyC---CM,=M

such that M;/M;_1 = R/p; for each i, with p; prime.

Example 1.8.7. Let R = k[z,y] and M = k[z,y]/(y?,xy). Then V(y2,2y) = V(y), but (y>
prime. We get a sequence 0 — (y)/(y?, xy) — M — klx,y]/(y) — 0. The annihilator of (y)/(y?

Le. (y)/(y? zy) = R/(x,y).

Proof. If M is finite, then 0 C Rxy C Rxy + Rxo C --- C Rx1 + -+ 4+ Rx, = M. Hence without loss of
generality, M is cyclic, i.e. M = R/I for some ideal I. Consider the set S of ideals J such that the lemma
does not hold for R/J, and suppose S # (). Then there exists J € S maximal, and J is not prime. Pick
a,b € R such that abe J, but a ¢ J and b ¢ J. Then

,xy) is not a
ywy) is (z,y),

(0) C aR/(J NaR) C R/J.

Then the quotients are R/Ja and R/J" where J' = Anng/(jnar)(a). Note that J' 2 Jand J" :== J+aR 2 J.
Hence we get a filtration of the desired kind on each of the two steps in the above filtration. This gives a
filtration of the desired kind on the original module. O

Corollary 1.8.8. In this situation, supp(M) = J:—, V(p;).
Proof. We already know the behavior of supp on short exact sequences. O

Corollary 1.8.9. Let R be Noetherian local, M non-zero and finite. Then supp(M) = {m} if and only if
length (M) < oc.

Proof. If supp(R) = {m}, then every step in a filtration has associated graded module R/m, which means
length is precisely the length of the filtration itself. Conversely, we already have a structure theorem for
finite length modules. O

Corollary 1.8.10. Let R be Noetherian, I C R an ideal, and M a finite R-module. Then I"M = 0 for
some n > 1 if and only if supp(M) C V(I).

Proof. Suppose supp(M) C V(I). Every ideal p; in the filtration must therefore be contained in V'(I), i.e.
I D p; for every i. Then I kills every graded piece, i.e. I" kills the entire ring. Conversely, supp(M) =
V(Ann(M)) Cc V(I). O

Lemma 1.8.11. Let (R,m,k) be a Noetherian local ring, and M be a finite R-module. Then d(M) =
dim(supp(M)).

Proof. Take a filtration as in the lemma. Then d(M) = max{d(R/p;)} because of the behavior of d over
short exact sequences. By the theorem on dimension,

max(dim(R/p;)) = max(dim V (p;)) = dimU V(p;) = dimsupp(M). O
Lemma 1.8.12. Let R be Noetherian and 0 — M' — M — M" — 0 be a short ezact sequence of finite

R-modules. Then
dim supp(M) = max{dim supp(M"), dim supp(M")}.
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1.9 Associated primes

Definition 1.9.1. Let R be a ring and M a R-module. A prime p of R is associated to M if there exists
x € M whose annihilator Anng(z) is p. The set of associated primes of M is denoted Assg(M).

Example 1.9.2. Let R = k[x,y] and M = k[x,y]/(y?, vy). Then (y) € Assg(M) because it is the annihilator
of . Also, (x,y) € Assg(M) is killed by y. Note that every prime in Assg(M) must contain Anng(M),
and hence Ass(M) C supp(M). (However while supp(M) = V(y) is infinite, Ass(M) contains only these two
elements!)

Proposition 1.9.3. Ass(M) C supp(M), and if 0 = M’ — M — M"” — 0 is a short exact sequence then
Ass(M') C Ass(M) and Ass(M) C Ass(M') U Ass(M").

Lemma 1.9.4. Suppose we have 0 C My C --- C M,, = M with M;/M;_1 = R/p; for p; prime. Then

Ass(M) C {p1,...,0n}

Proof. By induction on n. Pick x € M whose annihilator is a prime p. Since p is therefore an associated
prime, we must show p is one of the p; arising from the associated graded of the filtration. If x € M,,_1, then
we are done by induction (since M,,_; has a shorter filtration). If not, then & maps to a non-zero element
T in M/M, 1 = R/p,. Then Anng,, (%) = pn, and therefore p := Anng(z) C p,. If p = p,, we are done.
If not, pick f € p, \ p. Then Anng(fz) = p (since if afz = 0, then af € p, but f ¢ p so a € p). Then
fx € M, _1 and therefore we are done by induction. O

Corollary 1.9.5. If R is Noetherian and M is finite, then Ass(M) is finite.

Proposition 1.9.6. Let R be a Noetherian ring and M be a finite R-module. The following sets of primes
are the same:

1. the primes minimal in supp(M);
2. the primes minimal in Ass(M);
3. for any filtration 0 = My C --- C M,, = M with M;/M,;_1 = R/p;, the primes minimal in {p1,...,pn}

Proof. We know that in the situation of (3), supp(M) = |J; V(p;). Hence the sets of (1) and (3) are equal.

(1) C (2) Now suppose p is minimal in {p1, ..., p,}. Let ¢ be minimal such that p = p;. Pickx € M;\ M;_1.
Then Anng(x) C p; = p. On the other hand, p; ---p; C Ann(M) since py kills My_1, and multiplying goes
down the filtration killing everything. For j = 1,...,i — 1, pick f; € p; with f; ¢ p (which is possible by
the choice of 4). Then Anng(f;--- fi—1z) = p = p;. Hence p € Ass(M) C supp(M), so more strongly p is
minimal in Ass(M).

(2) C (1) Conversely, if p is minimal in Ass(M), then since Ass(M) C supp(M), there exists a minimal
q € supp(M) with ¢ C p. We just showed g € Ass(M), so g = p, i.e. p is minimal in supp(M). O

Corollary 1.9.7. If R is Noetherian and M is finite, then M = (0) iff Ass(M) = 0.

Corollary 1.9.8. If R is Noetherian and M is finite, then the set of zero divisors on M, i.e. {f € R: 3z €
M s.t. fa =0}, is equal to UPGASS(M)p.

Proof. Easy: unwind definition. O
Corollary 1.9.9. If R is Noetherian and I is an ideal and M 1is finite, then TFAE:

1. there exists x € I which is a non-zerodivisor on M ;

2. we have I ¢ p for all p € Ass(M).

Proof. (1) = (2) Use the previous lemma.
(2) = (1) By prime avoidance and the previous lemma. O
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1.10 Ext groups

Lemma 1.10.1. If R is a ring and M an R-module, then:

1. there exists an exact complex
o= F - Fp—-M—=0

of R-modules, with F; a free R-module;
2. if R is Noetherian and M is finite, then we can choose the F; to be finite free.

Proof. For any R-module M, there is a surjection

Fy = @ R— M, I\p)mem — Z Am .
meM m

Now take F7 — ker(Fy — M) to be a surjection by the same method, and so on.

Definition 1.10.2. Such a sequence --- — Fy — Fy — M — 0 is called a (free) resolution.

If F, is a complex and «ae: Fy — (G, is a morphism of complexes, then there is an induced map

Hi(a.): H,L<F.) — H,L(G.)

Definition 1.10.3. We say «, #: Fy — G, are homotopic if there is a collection he of maps he: F; — G411,

called a homotopy, such that
a;— B =dgoh;+h;_10dp.

Lemma 1.10.4. If ae and fe are homotopic, then H;(ae) = H;(Se).

Goal: show that free resolutions are unique up to homotopy. Then if € from R-modules to abelian groups

is an additive functor, we can look at H;(Q2(F,)).

Proposition 1.10.5. Let R be a ring, p: M — N be a ap of R-modules, and Fy — M be a free resolution.

Suppose Go — N is a resolution. Then:
1. there exists a map of complexes a: Fy — Go with Hyo(a) = p;
2. if a, B: Fo = Go are two maps with Hy(«) = Ho(B) = ¢, then a, 8 are homotopic.

Proof. Using the commutative diagram

P F M 0
d
Gl GO N 07

repeatedly use the universal property of free modules. So existence is easy. To show uniqueness up to
homotopy, it suffices to show Hy(a)) = 0 implies « is homotopic to 0. This time we have arrows:

Fy Fy M 0
Y
G Go N 0

and we want maps h;: F; — G;41 such that o; = dg o h; + h;—1 o dp. Now do more diagram chasing.

Definition 1.10.6. Let M, N be R-modules. View Homp(M, N) as an R-module. Define Ext% (M, N) as

follows:

12



1. pick a free resolution Fy — M;

2. form the cochain complex Hom¥%(F,, N), i.e. the complex whose n-th term is Hom'i(F,, N) =
Homp(F,, N);

3. set BExth (M, N) = H'(Hom%(F,, N)).
Lemma 1.10.7. This is a well-defined bifunctor
Mod?’ x Modr — Modg, (M, N) + Ext’ (M, N).

Proof. For functoriality in M, suppose we have p: M — M’ and free resolutions Fy — M and F, — M’.
Then pick a: Fy — F, with Hy(a) = ¢. This gives a map of complexes

a': Homp(F.,, N) — Homg(F,, N).

Hence we get induced maps H'(at): Exth(M’, N) — Exth (M, N). This map H'(at) is independent of the
choice of a, since if 3 is another choice, then we know « is homotopic to 8 via a family h;: F; — F], |, so
that H(at) is homotopic to H*(S?) via the family H*(h!).

Lemma 1.10.8. Ext%(M,N) =0 for n < 0, and Ext%(M, N) = Homg (M, N).
Proof. Note that Homp(—, N) is left exact, so the sequence
0 — Hompg(M, N) — Homg(Fy, N) — Hompg(Fy, N)
is exact because F} — Fy — M — 0 is exact. O
Lemma 1.10.9. A short exact sequence 0 — My — My — M3 — 0 of R-modules gives a long exact sequence
0 — BExt%(Ms, N) — Ext%(My, N) — Ext% (M, N) = Exth(Ms, N) — Ext,(My, N) — -

Proof. We can find free resolutions

0 0
Fie M, 0
Fae M, 0
Fs3, Ms 0
0 0

such that 0 — Fy o — F5 ¢ — F3 4 — 01is a short exact sequence of complexes (i.e. it is exact in every degree).
Since F3, is free, the sequence splits. Then 0 — Hom(F; o, N) — Hom(F5,, N) — Hom(F5,.,N) — 0 is
also (split) exact. Fact from homological algebra: if 0 — A®* — B®* — C*® — 0 is a short exact sequence of
complexes, then we get a long exact sequence of cohomology

o HY(A®) = HY(B®) > H'(C*) 5 HT(A%) > - -

where the § are called boundary maps via the snake lemma. O
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Lemma 1.10.10. If0 — Ny — Ny — N3 — 0 is a short exact sequence of R-modules, ther eis a long exact
sequence

0 — Ext%(M, Ny) — Ext%(M, Ny) — Ext% (M, N3) — Exth (M, Ny) — Exth (M, Ny) — ---
Proof. Note that 0 — Hom(F,, N;) — Hom(F,, N2) — Hom(F,, N3) — 0 is short exact. O
Lemma 1.10.11. If F is a free R-module, then Exts(F,N) =0 fori > 0.
Proof. Choose the resolution 0 — F — F — 0. O

Lemma 1.10.12 (Dimension shifting). If 0 - K — F — M — 0 is a short exact sequence with F free (or
projective), then

1. there is an exact sequence 0 — Hompg(M, N) — Hompg(F, N) — Homp (K, N) — Exty(M, N) — 0;

2. Ext (M, N) = Exth (K, N) fori> 0.
Proof. Apply the long exact sequence and use the previous lemma. O
Example 1.10.13. Let R be a ring, and f € R a non-zerodivisor. We compute Ext’z(R/fR, N) using the
short exact sequence (or resolution) 0 — R LR R/fR — 0, which gives via the lemma

0 — ExtQ(R/fR,N) = N L N — Exth(R/fR,N) = 0

and Extz(R/fR,N) =0 for i > 1.
Lemma 1.10.14. If R is a ring, x € R, and M, N are R-modules, then:

1. multiplication by x on M induces multiplication on Extlé(M, N) wvia functoriality in the first variable;

2. multiplication by x on N induces multiplication on Ext%(M, N) via functoriality in the second variable.

1.11 Regular sequences

Definition 1.11.1. Let R be aring and M an R-module. A sequence fi, ..., f. of R is called an M-regular
sequence if:

1. f; is a non-zerodivisor on the module M/(f1,..., fi—1);
2. M/(f1,...,[fr) is non-zero.

Example 1.11.2. Note weirdness: the property depends on the order of the elements. Let R = k[z,y, z].
Then

(fla f27 f3) = (xay(l - $)7 Z(l - Jf))

is regular. (Terminology: If R is the module, we drop the R, i.e. regular means “R-regular”.) But
(f1, f2, f3) = (y(1 = z), 2(1 — z), x)

is not regular! Even worse, we can make a (non-Noetherian) local example:

Lemma 1.11.3. Let R be Noetherian local and M finite. If x1,...,x, is M-reqular, then any permutation
of them is still M -regular.
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Proof. Tt suffices to prove this for r = 2 since any permutation is a composition of transpositions. By
hypothesis, x; is a non-zerodivisor. Set K = ker(M 2 M ). Then the snake lemma applied to the diagram
(given by the lower two rows)

0 K =25 K 0
L |

0 M —=— M M/zM —— 0

0 M M M/zeM —— 0

shows that K =% K is an isomorphism. Then z;K = K, so that mzpK = K, i.e. K = 0 by Nakayama.
Therefore x1: M — M is injective. Similarly, looking at cokernels, M/xo M N M/xoM is injective, i.e.
T, x1 is M-regular. O

Definition 1.11.4. Let R be a ring and I an ideal and M finite. The I-depth of M, denoted depth;(M),
is:

1. if IM # M, then it is the maximum length of M-regular sequences of elements of I;
2. if IM = M, then define it to be oco.
If (R, m) is local, we write depth(M) = depth,, (M).

Key fact: in the situation of the definition, if f € I is a non-zerodivisor on M, then depth,(M/fM) =
depth; (M) — 1. We will prove this in the local case using Ext.

Lemma 1.11.5. Let R be a ring, I C R an ideal, and M a finite R-module.q Then depth; (M) is equal to

the supremum of lengths of sequences f1,..., f» € I such that f; is a non-zerodivisor on M/(f1, -, fi—1)M
fori=1,...,7r.
Remark. If M =0, then 1,1,... is an infinite sequence of non-zerodivisors, so indeed depth;(M) = cc.

Lemma 1.11.6. Let (R, m) be a Noetherian local ring, and M # 0 a finite R-module. Then dim(supp(M)) >
depth(M).

Proof. Proof by induction on dim(supp(M)). The base case is dim(supp(M)) = 0, so that supp(M) = {m}.
Then Ass(M) = {m}, so there cannot be a non-zerodivisor in m; there must be an element z € M killed by
everything in m. Hence depth(M) = 0 because there are no non-zerodivisors.

(Induction step) Assume dim(supp(M)) > 0, and let fi,..., fa be a sequence of elements in M such
that f; is a non-zerodivisor on M/(f1,..., fi—1). We must show dim(supp(M)) > d. By a previous
lemma, dim(supp(M/fiM)) = dim(supp(M)) — 1, since f1 a non-zerodivisor implies f; ¢ p for every p €
Ass(M), which implies f; is not a minimal prime in supp(M) by [1.9.6] which means dim(supp(M/f1M)) =
dim(supp(M) NV (f1)) < dim(supp(M)). By induction, d — 1 < dim(supp(M/f1M)) since fa,..., fq is still
a regular sequence in M/ f1 M, so d < dim(supp(M)). O

Lemma 1.11.7. Let R be Noetherian, I C R an ideal, and M a finite R-module such that IM # M. Then
depth; (M) < oo, allowing us to do induction on depth.

Proof. Idea: the previous lemma says that in the Noetherian local case, depth(M) < dim(supp(M)). So it
suffices in the non-local case to localize at certain primes. O

Lemma 1.11.8. Let (R, m, k) be a Noetherian local ring, and M a finite R-module. Then

depth(M) = min{i € Z : Ext’(x, M) # 0}.
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Proof. Call the minimal integer ¢(M). Suppose i(M) = 0. Then Hompg(k, M) # 0, i.e. the image of 1 € & is
killed by the maximal ideal since it is a copy of R/m sitting inside M. Hence m € Ass(M) and depth(M) = 0.
Conversely, if depth(M) = 0. Then every f € m is a zero-divisor, so by prime avoidance, m € Ass(M). Hence
i(M) = 0. Essentially:

i(M)=0 <= Hompg(k,M)=0 < m e Ass(M) < depth(M) = 0.

Assume now that (M), depth(M) > 0. There exists a non-zerodivisor f € m such that depth(M/fM) =
depth(M) — 1, by picking a maximal M-regular sequence f1, ..., faepth(ar) and set f = fi. Then the short
exact sequence

0— ML M~ M/FM 0

gives a long exact sequence of cohomology
0 — Ext®(k, M) L Ext®, (k, M) — Bxt% (s, M/ fM) — Exth(k, M) -5 Bxth (s, M) — -+ .

Using a previous lemma, these multiplication maps by f, which originally came from M, also comes from &.

But multiplication on  is zero (by choice of f), so all the maps Ext}(/i, M) N Exté{(n, M) are zero maps.
Hence we get short exact sequences

0 — Exty(k, M) — Exty(k, M/fM) — ExtS*(k, M) — 0.

If Ext% ! (k, M) is the smallest non-zero Ext, then Extk(x, M) = 0 and therefore Extly(r, M/fM) # 0.
Hence i(M) — 1 =i(M/fM). By induction, i(M/fM) = depth(M/fM) = depth(M) — 1. O

Lemma 1.11.9. Let (R,m,k) be a local Noetherian ring, and 0 - N' — N — N” — 0 be a short exact
sequence of finite R-modules. Then:

1. depth(N) > min{depth(N"), depth(N")};
-1}

3. depth(N’) > min{depth(V), depth(N") + 1};

)
2. depth(N") > min{depth(N), depth(N")

Proof. Write down the long exact sequence of Ext coming from the short exact sequence. Then, for example,
Ext%(k, N) is sandwiched between Extp(r, N') and Ext% (s, N”'), so one of them has to be non-zero in order
for Exty(k, N) to be non-zero. This proves (1). O

Lemma 1.11.10. Let R be local Noetherian, M a non-zero finite R-module.
1. If x € m is a non-zerodivisor on M, then depth(M/xM) = depth(M) — 1.

2. Any M -regular sequence 1, ...,x, € m can be extended to a maximal one.

Proof. Apply the previous lemma to the short exact sequence 0 — M % M — M/xM — 0. Then note
that depth(M/zM) < depth(M) because we can always lift regular sequences in M/xM and prepend z.
The second claim follows from induction using the first. O

Remark. We actually already proved that there exists some f € m satisfying this lemma; now we’ve showed
every x € m satisfies the lemma.

Lemma 1.11.11. Let (R, m) be local Noetherian, and M a finite R-module. Pick x € m and p € Ass(M)
and q minimal over (x) +p. Then q € Ass(M/x™M) for some n.

Proof. Pick N C M such that N = R/p. By Artin-Rees, NNz"M C xN for some n > 1. Let N C M/a"M
be the image of N. It is enough to show that ¢ € Ass(N). By construction, there is a surjection N —
M/xN = R/((z) + p). Then q is in the support of R/((z) + p), so it is in the support of N. On the other
hand, z" and p kill N, so supp(N) C V((2™) +p) = V((z) + p). So ¢ is minimal in supp(N), i.e. it is
minimal in Ass(N). (This has to do with embedded primes.) O
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Remark. We say a prime is embedded if it is an associated prime but is not minimal in the support of M.
(This will be important later on in the context of Cohen—Macaulay modules.)

Lemma 1.11.12. Let (R,m) be local Noetherian, and M a finite R-module. Then p € Ass(M) gives
depth(M) < dim(R/p).

Proof. Use induction on depth M. We skip the base case. Assume depthM > 1. Pick z € M a non-
zerodivisor (i.e. x is not in any associated prime of M), and ¢ minimal over (z) + p with dimR/q =
dim R/p — 1. By the previous lemma, ¢ € Ass(M /2" M) for some n > 1. By the induction hypothesis,
depth(M) — 1 = dim M/2"M < dim(R/q) = dim(R/p) — 1 where in the first equality we used that =™ is a
non-zerodivisor. O

1.12 Cohen—Macaulay modules

Definition 1.12.1. Let R be a Noetherian local ring, and M a finite R-module. We say M is Cohen—
Macaulay (CM) if depth M = dim supp M.

Remark. Suppose we defined property P for (R, M) where R is local Noetherian and M an R-module. We
would like to say (R, M) has property P for R non-local Noetherian iff (R, M,,) has P for all p € Spec R.
But then we must sanity check that (R,, M) has P in the local Noetherian case too!

Lemma 1.12.2. Let (R, m) be local Noetherian, M finite over R, and x € m a non-zerodivisor on M. Then
M is CM iff M/xM is CM.

Proof. We proved lemmas that show both sides of dim supp M = depth M drop by exactly 1 when we mod
out by z. O

Lemma 1.12.3. Let R — S be a surjective (local) homomorphism of local Noetherian rings, and M be a
finite S-module. Then M is CM over S iff M is CM over R.

Lemma 1.12.4 (Unmixedness). Let (R,m) be local Noetherian, and M finite CM. If p € Ass(M), then
dim(R/p) = dimsupp M, and p is a minimal prime in supp M.

Proof. We have depth M < dim R/p from a previous lemma. But dim R/p < dim supp M, and dim supp M =
depth M by the CM property. We can’t have a smaller prime because then dim R/p would be bigger. O

Lemma 1.12.5. Let (R, m) be local Noetherian. Assume there exists a finite CM module M over R with
supp M = Spec R. Then any mazimal chain of primes pg C - -+ C p, has length n = dim R.

Proof. Induct on dim R. If dim R = 0, it is clear. Assume dim R > 0, so that n > 0. Using prime
avoidance, choose x € p; such that z is not in any of the minimal primes of R. In particular, ¢ py. Then
dim R/xR = dim R — 1. By previous lemmas, M/xzM is CM over R/zR. (Outline: z is a non-zerodivisor
because x is not in any associated prime, because those are precisely the minimal primes of R by the
unmixedness lemma and the fact that supp M = Spec R.) Then

supp(M/xzM) = supp(M) NV (z) = Spec(R) NV (z) = Spec(R/xR).

Because our chain pg C -+ C p, is maximal, we know p; is minimal over (z) + py since & ¢ pg. Then
p1 € Ass(M/x™ M) for some n > 1. We can replace z with 2™ and get p; € Ass(M/xM). Since supp M/zM =
Spec R/zR, we get p1 is minimal in R/xR (by unmixedness). It follows that p; /(z) € Assg/,r(M/xM). By
a previous lemma, p;/(x) is a minimal prime of R/xR.

Now consider the chain p;/(x) C -+ C p,/(z). It is a maximal chain in R/zR since p;/(z) is minimal.
By the induction hypothesis, we get n — 1 = dim R/zR = dim R — 1. O
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Example 1.12.6. Let R = k[21,...,2])(q,,... 2,) and M = R. We know dim R = n, and 1,...,2, is an
R-regular sequence. So R is CM over R. (We actually want to show this for the whole ring k[z1, ..., x,],
i.e. when we localize at any maximal ideal.)

Corollary 1.12.7. Let (R, m) be local Noetherian. Assume there exists a CM module M with Spec R =
supp M. Then for all p € Spec R, we have dim(R) = dim(R,) + dim R/p.

Example 1.12.8. Suppose we have a ring R and an R-module M. Then we can make a new ring R & M
given by (r,m) - (r',m’) = (rr',rm’ +1'm). Then M is an ideal of square 0 in R & M. We can take M to
be CM, but as an (R ® M)-module.

Explicitly, k[x,y](s,,) @ k has depth 0 and k[, y](s,,) is a CM module over it, with support the whole
ring. What went wrong is we took a well-behaved space k[z,y](, ) and literally just added an embedded
prime, destroying CM-ness.

We have two goals:

1. if (R, m) is local Noetherian and M is finite CM, then we want to show that M, is CM over R, for
every p € Spec R (this will allow us to define CM-ness for an arbitrary finite M over a Noetherian R);

2. if R is Noetherian and M is finite CM, then M &g R|x1,...,2,] is CM over R[xy,...,Z,].

Remark. If P is a property of (Noetherian) rings, then we say “R is universally P” if any finite-type
R-algebra has P. For example, no ring is universally CM; that makes no sense. However it will turn out
that CM rings are universally catenary.

Lemma 1.12.9. Let (R,m) be local Noetherian and M finite over R and CM. For any prime p C R, we
have M, is CM over R,,.

Proof. By a simple induction argument. Reduce to the case where p C m and there is no prime strictly in
between. If M, = 0, then there is nothing to prove, so assume M, # 0. Then dim supp M,, < dimsupp M —1.
So it is enough to show depth M, > depth M — 1. By induction on depth M, we will show there exists an
M-regular sequence f1, ..., fqepth(a)—1 € p- Since localization is exact, this M-regular sequence maps to an
M,-regular sequence in pR,, and so we are done.

The base case is trivial. So assume depth(M) > 2. Let I = Ann(M), so V(I) = supp M. Since M is
CM, every irreducible component in V' (I) has the same depth. So every maximal chain in V' (I) has length
> 2. Therefore p is not contained in any associated prime of M, because Ass(M) consists of minimal primes
in R/I. By prime avoidance, we can find f; € p and f; not in any associated prime. Hence f; is a non-
zerodivisor on M and is the first element of our M-regular sequence. Then depth(M/f1 M) = depth(M) —1
and we are done by induction. O

Definition 1.12.10. Let R be Noetherian and M finite over R. We say M is Cohen—Macaulay iff M, is
CM over R, for all p € Spec R.

Lemma 1.12.11. Let A be a local ring, and m C Alx] a mazimal ideal such that ANm is the mazimal ideal
of A. Then there exists f € m monic.

Proof. Let k := A/m4 be the residue field of A. Then mgA[z] C m, and my A[x] = ker(A[z] — &[z]). Som
is the inverse image of some maximal ideal m C k[z]. By the structure of ideals in k[z], we can pick a monic
¢+ ay "t + -+ + a, € m. Then choose any lift f € m back to m. O

Lemma 1.12.12. Let R be Noetherian and M finite CM over R. Then M ®pr R[z1,...,xy,] is CM over
Rlzy,...,zp].

Remark. Since Johan doesn’t want to spend time explaining tensor product, we will prove the following
corollary instead. It is the one that is commonly used.

Lemma 1.12.13. Let R be Noetherian and CM. Then R[zy,...,x,] is CM.
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Proof. Tt suffices to prove the n =1 case. Let m C R[z] be a maximal ideal. It is enough to show R[z]nm is
CM. Let p=RNm and fi,..., fa € pR, be a regular sequence of length d = dim R,, (since R is CM). Then
fi,..., fa is still a regular sequence in R[z]|, with final quotient R,[x]/(f1,..., fa) = (Rp/(f1,---, fa))[z].
We know supp(R,/(f1,.--,fa)) = {pRp} (since the support is zero-dimensional, and R, is local). Hence
supp(Rp[z]/(f1,..., fa)) consists of all primes in R,[x] lying over p.

By the previous lemma, pick f = 2¢ + a;2°~! + - + a, € m with a; € R,. Then look at

Ryp/(fiee s f)la] 5 (Ry/(frveo ) 2), @D (=)™ — ()2,

n>0 n>0
which is injective. Since localization is exact, fi,..., fg, f forms a regular sequence in R[z]|y, and moreover,
Supp(R[x]m/(fla'~'afdaf)) = {mR[J}]m} O

Remark. Read: section on Cohen—Macaulay rings excluding the last 3 lemmas.

1.13 Catenary rings

Definition 1.13.1. Let R be a Noetherian ring. Then R is catenary iff for any p C ¢, every maximal
chain of primes p = py C p1 C -+ C pe = q has the same length. Equivalently, for every p C ¢ C r, we have
height(r/p) = height(q/p) + height(r/q). (Recall that height(p) := dim(R,).) It is universally catenary if
every finite type R-algebra is catenary.

Lemma 1.13.2. Properties of being catenary:
1. R is catenary iff Ry is catenary for all mazimal primes m;
2. R is catenary iff R/p is catenary for all minimal primes p;
3. R catenary implies ST'*R and R/I catenary.

Remark. Catenary does not imply “equidimensional.” For example, we can have one irreducible component
of dimension 2 and another of dimension 1. The lack of “loops” in the poset Spec R ensures we are still
catenary.

Definition 1.13.3. Let X be a topological space, and Y C X be an irreducible subset. The codimension
codim(Y, X) of Y in X is the supremum of lengths of chains Y =Yy C --- C Y, = X of irreducible closed
subsets.

Example 1.13.4. If X = Spec R, then irreducible loci in X correspond to prime ideals. Then
codim(V (p), Spec R) = sup{n:3p=pg D p1 D --- D p,} = dim(R,) = height(p).
Definition 1.13.5. A topological space X is catenary iff for all Y, Z C X irreducible closed, we have
1. codim(Y, Z) < oo (so that there are maximal chains);
2. every maximal chain Y =Y, C --- C Y,, = Z of irreducible closed subsets has the same length.
Lemma 1.13.6. R is catenary iff Spec R is catenary.

R ring X space
R catenary = R/I catenary X catenary —> any closed subset is catenary
R catenary = ST!R catenary X catenary = any open subset is catenary.

Lemma 1.13.7. Let R be a ring. The following are equivalent:
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1. R is (universally) catenary;
2. R/p is (universally) catenary for every minimal prime p.
3. Ry is (universally) catenary for every mazimal prime m.
Theorem 1.13.8. If R is a Noetherian CM ring, then R is universally catenary.

Example 1.13.9. Important examples include R = k a field, and R = Z the integers. In fact it turns out
R Noetherian and dim R < 1 is CM, and therefore universally catenary. If R is CM, then (Johan thinks)
R[[x1,...,2,]] is CM. (It is certainly true for R = k a field.)

Proof. Note that R is universally catenary iff R[x1,...,x,] is catenary for all n. We saw that R CM implies
Rlxy,...,z,] CM. Hence it is enough to show R CM implies R catenary. In particular, by the preceding
lemma, it is enough to show R local CM implies R catenary. We saw that in a Noetherian CM local ring R,
every maximal chain of primes has the same length. This implies R is catenary. O

Example 1.13.10 (Nagata). There is a Noetherian local domain of dimension 3 which is not catenary. Idea:
find a Noetherian ring R with exactly two maximal ideals my, my with dim(Ry,) = 2 and dim(Ry,) = 3
such that there is an isomorphism of residue fields a: R/m; — R/ms. Then set

R ={f € R:a(f mod m;) = f mod my}.
We can show that:
1. R is a local domain with maximal ideal m = R’ Nm; = R Nmy;
2. R’ is Noetherian (tricky; use Eakin’s theorem);
3. Spec R’ is Spec R with m; and m, identified.

Choose chains (0) C p C m; and (0) C p’ C p” C my in R. Then in R’ we have two chains of different length
from (0) to R Nmy; = R’ N'my, and therefore R’ is not catenary.

Definition 1.13.11. Let X be a topological space. We say X is sober iff every irreducible closed subset
has a unique generic point. (For example, every spectrum is sober.) Assume X is sober, and z,y € X
with  ~ y, i.e. = specializes to y. We say this is an immediate specialization if x # y and there is no
z € X \ {z,y} such that  ~» z ~» y. A dimension function is a map §: X — Z such that:

1. if z ~ y and x # y, then 0(x) > d(y);
2. if x ~ y is immediate, then §(z) = d(y) + 1.
Remark. Dimension functions do not exist for non-catenary rings.

Example 1.13.12. If R is Noetherian local catenary, then p — dim(R/p) is a dimension function.
Lemma 1.13.13. Let X be sober and § a dimension function. Then X is catenary and for all x ~ y in X,
codim({y}, {a}) = 6(z) — d(y).

Proposition 1.13.14. Facts about dimension functions:
1. any two dimension functions 8,0’ on a connected Noetherian sober topological space differ by a constant;

2. if X is a Noetherian sober catenary topological space, then dimension functions exist locally (i.e. around
every point there is an open subset with a dimension function).

The goal of the next few lectures is to use transcendence degree trdeg to construct dimension functions.
Another goal is to show that the map Spec(k[z1,...,z,]) = bZ given by p — trdeg, x(p) is a dimension
function (where k(p) is the residue field Frac(R/p)).

20



1.14 The dimension formula

Definition 1.14.1. Let K/k be a field extension. Say x; € K for i € I is algebraically independent over
k if there is no non-zero polynomial in k[z; : ¢ € I] such that p(z;) = 0. A transcendence basis of K/k
is a maximal set {x;};cs of algebraically independent elements in K. Equivalently, {z;};cs is algebraically
independent, and K/k(z; : ¢ € I) is algebraic. The transcendence degree trdeg; (K) is the cardinality of
a transcendence basis.

Lemma 1.14.2. If L/K and K/k are field extensions, then
trdeg, (L) = trdeg (L) 4 trdeg,, (K).
Lemma 1.14.3. If K/k is finitely generated as a field, then trdeg, (K) < oc.

Theorem 1.14.4. Let R — S be a ring, and q € SpecS be a prime lying over p € Spec R. Assume R is
Noetherian, R and S are domains, S is of finite type, and R C S, i.e. the ring map is injective. Then

height(g) < height(p) + trdegg(S) — trdeg,(,) x(q)

with equality if R is universally catenary.

Remark. Here, trdegr(S) is the transcendence degree of the fraction field Frac(S) over the fraction field
Frac(R).

Lemma 1.14.5. Let (R,mp) — (S, mg) be a local homomorphism of local Noetherian rings. Then dim(S) <
dim(R) + dim(S/mS).

Proof. Pick fi1,..., faiim g in Mg a minimal set of generators for an ideal of definition in R. Pick elements
J1s- -+ Jdim(S/ms) € Mmg/mS generating an ideal of definition in S/mS. Find g; € mg lifting g;. Then
J1,-+ 5 fdim(R)» 915 - - - » Gdim S/ms generate an ideal of definition in S, since

(m} =V(f1,.., faimr) = V(AiS+- + famrS) = V(mS) = Spec(S/mS)

and V(gla cee 7gdim(S/mS)) N V(mS) - V(gla cee 7gdimS/mS)' O

Remark. Equality holds, as in the following lemma, whenever R — S is a flat local homomorphism of local
Noetherian rings.

Lemma 1.14.6. Let (R, m) be local Noetherian, ¢ € Spec R[x] a prime ideal lying over m. With S = R|z],,
we have
dim(S) = dim(R) + dim(S/mS).

Proof. We already have the inequality. Since mR[x] C g, either ¢ = mR[z] or ¢ = (m, f) where f € R[x]
maps to an irreducible polynomial f in x(m)[z] (i.e. either it is a generic point or it is a closed point of the
fiber in Spec R[x] over m).

1. If ¢ = mR[z], then S/mS = k(m)(x) is a field. Pick pg C - -+ C paim r = M a maximal chain in R, and
lift. Then
poR[x] C p1R[z] C -+ C paim rR[z] = mR[x]

is a chain of primes in S, and therefore dim(S) > dim(R).

2. If ¢ = (m, f), then S/mS is the local ring of x(m)[z] at (f), and therefore dim(S/mS) = 1. By the
same argument as above, dim.S > dim R + 1. O

21



Proof of dimension formula. Use induction on the number of generators of S as an R-algebra. Using the
additivity of transcendence degree, we can reduce to the case where S is generated by one element over R.
With more than one generator, split R C S into R C S’ C S with ¢ lying above ¢’ lying above p such that
R C S and S’ C S both have fewer generators. Then

height(q) < height(q') + trdegp S” — trdeg,, ) #(S5"), height(q’) < height(p) + trdegg, S — trdeg, g/ K(S5).
So the only case we need to prove is S = Rz]/I for some ideal I.

1. If I = 0, then S = RJz], and height(q) = dim(R[z],). Since z is transcendental over R, we have
trdeg(S) = 1. By localizing the preceding lemmas at p in R, i.e. to R, — Ry[z], we get dim(R[z],) =
dim(R,) + dim(R[z],/pR]x],). But the second dimension is either 0 or 1, depending on whether ¢ is a
closed point or a generic point in the fiber. We know trdegy R[z] = 1, and trdeg,,) #(q) is either 1 or
0, from the proof of the preceding lemmas. Hence we are done.

2. If I # 0, then x is no longer transcendental over R, so trdegp(S) = 0. Also, Sq = R|x]4/1; where ¢ is
the inverse image of ¢ in R[z]. Since I # 0, we know I; # 0, and therefore dim S, < dim R[z];. By
case (i), we have the dimension formula for R[x]s:

dim R[z]g = dim(R,) + 1 — trdeg,,,, (r(q))-

Hence we have that
dim Sy < dim(R)p) + 0 — trdeg,,(, (k(q)).

It remains to show equality holds when R is universally catenary. We only need this in the second case,
because the first case is already an equality. Since S is a domain, I is a prime ideal. We know height(7) = 1
because it lies over (0) and corresponds to a prime in Frac(R)[z]. Since R is universally catenary, all chains
in S; = Rlx]s/I; have the same length, and these chains correspond to chains in dim(R[z|;) with length 1
or greater. Hence dim S, = dim(R[z]5) — 1, and we are done.

Remark. Actually, the dimension formula holds with equality if and only if R is universally catenary.

Theorem 1.14.7. Let R be a universally catenary ring and S be a finite-type R-algebra. Assume that
d: Spec(R) — Z is a dimension function. Then

ds: Spec(S) = Z, q+ d(p) + trdeg,, k(q),
where p = qN R, is a dimension function on Spec(S).

Proof. A situation of the form

RN

gives by the formula that

ds(q) = ds(q') = 6(p) — d(p') + trdeg,(, (r(q)) — trdeg, , (k(q))-

The first two terms on the right hand side give dim((R/p),/). Applying the dimension formula to the diagram
gives

dim((S/q)g) = dim((R/p)y) + trdegg,,,(S/q) — trdeg, (/) (K(p' /D))

But trdegp,,(S/q) = trdeg, ) (k(q)) and trdeg, /4 (k(p'/p)) = trdeg, . (k(p')). So we have obtained the
last two terms in the right hand side. Hence

ds(q) — 0s(q") = dim((S/q)y')-

Now use that Spec((S/q)y) is primes in S between ¢’ and g. So we get a well-defined global function dg. O
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Remark. If we knew that m € k[zq,...,x,] maximal implies x(m) is a finite extension of k, then we could
conclude that for any maximal chain ¢ = qo C ¢1 C --+ C g, = m, we have n = §(q). We will prove this.

Example 1.14.8. This statement would tell us that if m C Z[z1,...,x,] is maximal, then m contains p for
some p € Z, and x(m) D F, is finite. On the other hand, for R = C[[t]] or any other DVR, we might conjecture
the same nice behavior, but ¢ = (zt — 1) C C[[t]][z] is a maximal ideal. Compute that x(q) = C((t)), so

6(q) = (g N CI[t]]) + trdegg(1))(C((¥))) =1+ 0=1,

even though ¢ is a closed point!

1.15 Chevalley’s theorem

We will do Chevalley’s theorem in the Noetherian case.

Definition 1.15.1. If X is a Noetherian topological space, then a subset £ C X is called constructible if
and only if E is a finite union of locally closed subsets.

Remark. Warning: for general X, the definition of constructible is different.
Theorem 1.15.2. Let R — S be finite-type, and R (and therefore S) Noetherian. Then:
1. the image of Spec S in Spec R is constructible;
2. more generally, the image of a constructible subset in Spec S is constructible in Spec R.

Example 1.15.3. Consider Cz,y] — C|z,u] given by (z,y) — (z,zu). The scheme-theoretic image is
missing the line x = 0 except at (x,y) = (0,0), i.e. the image is D(z)U{(z,y)}, which is indeed constructible.

Proof sketch. Let k = k. The proof uses elimination theory. The idea is as follows: given polynomials
fiseooy fr €klx1, . o, Tny Y1y -« -, Ym], We want to find

{zx€k™:Jyek™ st f(z,y) =0}
A special case is m = 1 and r = 2. Write
fl(ﬂf,y) = ad(a?)yd + .-+ aop, fz(x’y) = be(;(;)ye 44 bO-

Their resultant P(z) = Res,(f1, f2) is a polynomial in the a and b such that P(z) = 0 iff f1, fo have a
common root in k, or ag(z) = 0 or b.(x) = 0. Hence we are done by induction. O

1.16 Jacobson spaces and Jacobson rings

Definition 1.16.1. Let X be a topological space, and Xy C X be the set of closed points. We say X is
Jacobson if for any Z C X closed, Z = Z N Xy. Equivalently, any non-empty locally closed subset meets
Xo.

Example 1.16.2. A one-point space like Speck is Jacobson. But SpecC[[t]] is not Jacobson. SpecZ is
Jacobson just because we know what every closed subset in SpecZ is. Also, Spec(]] Fy) is, but this space
is complicated.

neN

Lemma 1.16.3. Let X be a Jacobson topological space, and T  C X be a subset. Assume T is closed or
open or locally closed or a union of locally closed. Then T is Jacobson and Ty, the set of closed points of T,
is equal to T N Xj.
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Definition 1.16.4. A ring R is Jacobson if v/I = Mo
there are enough closed points, since we already know /I = ﬂpD ; p ranging over primes p.

;m ranging over m maximal. This is like saying

Lemma 1.16.5. Let R be any ring, and Iy be radical ideals. Then

U Vv =v(() ).

AEA AEA
Example 1.16.6. This is not true for I, not radical: take R = C[z] and I,, = (™).

Proof. Let J be the radical ideal corresponding to the closure |J, V(Ix). If f € (), Ix, then clearly V(1)) C
V(f), so f € J. Conversely, if f ¢ (1, I, then f ¢ I, for some X\. Because Iy is radical, we know
I, = ﬂpjh p, so there exists p D Iy with f ¢ p. Hence f ¢ J. It follows that the radical ideal corresponding
to V(N I») is J, and the desired equality follows. O

Lemma 1.16.7. R is Jacobson if and only if Spec R is Jacobson.

Proof. Suppose R is Jacobson, and let V(I) C Spec R be closed. Then VI = ﬂmDI m. By the previous
lemma, V(I) = V(VI) = Un5; V(m). But all these m are closed points, and this is just the closure of
{z € V(I) : x closed in Spec R}. Hence Spec R is Jacobson.

Suppose Spec R is Jacobson, and let I C R be an ideal. Then V(I) = {z € V(I) : x closed in Spec R}.
By the lemma, this is equal to V((,,5; m). Hence VI = (,,5; m, and R is Jacobson. O

1.17 Nullstellensatz

Lemma 1.17.1. Let f: X — Y is a continuous map of Noetherian topological spaces. If Chevalley’s theorem
holds, Y is Jacobson, and the fibers X, :== f~1(y) are Jacobson, then

1. X is Jacobson, and
2. f maps closed points to closed points.

Proof. Let T C X be a non-empty locally closed subset. To prove (a), it suffices to find a point ¢ € T' which
is closed in X. By Chevalley’s theorem, f(7") is constructible. Because Y is Jacobson, there exists y € f(T')
closed in Y. The fiber X, is closed in X, and X, N T is locally closed in X,. By assumption, there exists
x € Xy, NT which is closed in X,. But X, is closed in X, so z is actually closed in X.

To get (b), suppose x € X is closed. Apply the previous argument to T = {z} to get y = f(x) € f(T)
closed in Y. O

Remark. Let A — B be a ring map. Then the fiber of Spec B — Spec A over p is Spec(B,/pB,) as a
topological space. This comes from considering the diagram

B By By, /pBy
[ I
A A, k(p).

In particular, if B = A[z], then B, = A,[z], and B,/pB, = k(p)[z], which is a polynomial ring over a field,
and therefore Jacobson.

Lemma 1.17.2 (Nullstellensatz). Let R be Noetherian and Jacobson. Then:
1. R[z] is Jacobson;

2. for any mazimal ideal m in R[x],
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(a) m = RNwm is mazimal, and
(b) w(m)/k(m) is finite.

Proof. Apply the previous lemma to Spec(R[z]) — Spec(R). This map is indeed a continuous map of
Noetherian spaces, and Spec(R) is Jacobson. The fibers are Jacobson by the preceding remark. O

Corollary 1.17.3. Any finite type algebra B over a Noetherian Jacobson ring A is a Noetherian Jacob-
son ring. Moreover, Spec B — Spec A maps closed points to closed points and induces finite residue field
extensions at those closed points.

Example 1.17.4. Many algebras are Noetherian Jacobson rings: fields, Z, and any finite-type algebra over
these. Also, Ay if A is local Noetherian and f € m works.

1.18 Noether normalization

Theorem 1.18.1 (Noether normalization). If k is a field and A a finite type k-algebra, then there exists a
finite injective map k[xy,...,xq] = A of k-algebras.

Remark. A good exercise, using the tools we have so far, is to show that d = dim A.

Lemma 1.18.2. Let A be a finite type k-algebra, and p C A be prime. Let X = Spec A and x = p. Then
dim, X = dim A4, + trdeg;, x(p),

where dim, X = inf{dimU : U C X open, xz € U}.
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Chapter 2

Regular and smooth rings

First goal: the localization R, of a regular local ring R at a prime p is also a regular local ring. Think of
“regular” as being synonymous with “non-singular,” so that smooth (over a field) implies regular, but it
won’t always be the case that regular implies smooth.

2.1 Colimits

Definition 2.1.1. A pre-ordered set I is a set equipped a pre-order, i.e. a transitive and reflexive (but
not necessarily symmetric) relation.

Definition 2.1.2. Let C be a category. A system over I in C is given by (X, ¢;;), where
1. X; for ¢ € I are objects in C, and
2. ¢ij: Xy — X for i < j in I are morphisms in C,
such that ¢;; = idx, and @i = @1 0 @5 for all i < j < k.
Definition 2.1.3. The colimit of (X, y;;), denoted colim;c; X;, is an object of C with morphisms
pi: X; — colim;er X;
such that for all ¢ < j, we have p; o ;; = p;, and (colim;c; X;, p;) has the corresponding universal property.

Example 2.1.4. In the category Set of sets, the colimit is

colimieI X,L = HXZ/ ~
i€l

where ~ is the equivalence relation generated by x; ~ ¢;;(x;).

Example 2.1.5. In AbGrp, the category of abelian groups, the colimit is

colimiej )(Z = (@ XZ)/S

i€l
where S is the subgroup generated by z; — ¢;;(x;).

Example 2.1.6. The category of finite abelian groups does not have colimits, because infinite direct sums
do not exist within the category.

Definition 2.1.7. A pre-ordered set [ is called a directed set if
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1. I #(, and
2. for all 4,5 € I, there exists k € I such that i < k and j < k.

A system over a directed set is called a directed system. A colimit over a directed set is called a directed
colimit, or a filtered colimit.

Example 2.1.8. If I is a directed set, then in Set, elements z; € X; and x; € X; determine the same
element in colim;e; X; iff there exists k > ¢, j such that @i (z;) = pjx(z;).

Proposition 2.1.9. If (X, ¢;;) is a system of groups, abelian groups, rings, modules, or Lie algebras over
a directed set, then colim X; is the colimit in Set with the relevant induced algebraic operations.

Example 2.1.10. Let R be a ring, and I be the set of its finite type Z-subalgebras. Given ¢ € I, write
R; C R, and define ¢« < j by R; C R;. Then colim R; = R, since I is indeed a directed set. This example
shows that to prove any statement about commutative algebras that pass through colimits, it suffices to
prove the statement for finite type algebras. This technique is called absolute Noetherian reduction.

Example 2.1.11. Let S C R be a multiplicative subset. Let I =S, where i € I corresponds to f; € S, and
1 <4/ iff there exists f € S such that f;; = ff;. This makes S into a directed set. Then

S7IR = colimyseg Ry.

Example 2.1.12. Let I be a directed set. Let (C;, Fi;) be a system of categories over I. Then set colimC;
to be the category with

Ob(colim;e; C;) = colim;e; Ob(C;), Mor(colim;e; C;) = colim;er Mor(C;).
More precisely, given z, € Ob(C,) and z, € Ob(Cp), we are setting
Morcolim ¢; (Ta, Tp) = colimesq,p More, (Fuc(®a), Foc(2p))
where here z, and x; on the left hand side represent their classes in colim C;.

Lemma 2.1.13. Let I be a directed set, and A; a system of rings over I. Let A = colim A;. Then

the colimit over I of the category of finitely presented A;-modules I\/Iod}jfi is (equivalent to) the category of
.

finitely presented A-modules Mod’y

Proof. Show that the induced functor from colim Modf}fi is essentially surjective and fully faithful. We show
essential surjectivity.

1. (Essentially surjective for objects) Let M € Ob(Modfj’). Choose a presentation A®™ Ly 48" — M —
0. For ¢ € I sufficiently large, we can find a matrix T; € Mat(m x n, A;) whose image in Mat(m x n, A)

is T. Set M;: coker(A$™ KLN AP™). Then we see that M; ®4, A =2 M. So M is in the essential image.

2. (Essentially surjective for morphisms) For i,j € I, let M; € I\/Iod and M; € Mod and ¢: M; ®4,
A—)M ®A A. Goal: ﬁndk>z]suchthat<pk®1dA M®A Ak®AkA—>M ®A Ak®AkA which
is canomcally identified with ¢. The obvious argument works. O

Corollary 2.1.14. Let R be a ring, M a finitely presented R-module, and p prime such that M, = R;‘?".
Then there exists f € R, with f ¢ p, such that My = Rj'?".

Proof. R, = colimycp\, Ry. O
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2.2 Projective modules

Definition 2.2.1. Let R be a ring. An R-module P is projective if and only if the functor
Homp(P,—): Modr — Modg

is exact.

Remark. In any abelian category A, for any object X € A, the functor Hom4(X, —): A — AbGrp is always
left-exact: given a short exact sequence 0 — Y; — Yo — Y3 — 0 in A,

0 — Hom4(X,Y1) — Homu(X,Y2) — Hom4 (X, Y3)

is exact. So the definition is imposing that Hompg (P, —) is also right exact. This is equivalent to the usual
definition: given a surjection Y5 — Y3 and a map P — Y3, it should always lifts to P — Y5.

Example 2.2.2. Any free module is projective. This comes from Homg(@,; R, —) = [[,c; Homg(R, —).
Lemma 2.2.3. Let R be a ring and P an R-module. The following are equivalent:

1. P 1is projective;

2. P is a summand of a free module;

3. Ext®(P,M) =0 for all R-modules M.

Proof. (1) = (2) Suppose P is projective. Choose a surjection w: F — P with F free. Then lift P — P
toi: P— F. So F = i(P) & ker(m).
(2) = (3) Suppose P @ Q = F is free. Take the free resolution

RN AN ALY (BN - SN

where a and b are the projections onto P and @ respectively. Then we get

Homp(F, M) 2 Homp(F, M) 5 Homp(F, M) 2 Homp(F, M) % - - .

But a® and b' are still both projections, and a® 4 b* = id by taking the transpose of a + b = id. Hence this
sequence is still exact (except on the first term). In particular, Exty (P, M) = 0.

(3) = (1) Assume Ext®(P, M) = 0 for all R-modules M. A short exact sequence 0 — M; — My —
M3 — 0 gives a long exact sequence

0 — Hom(P, M) — Hom(P, M,) — Hom(P, M3) — Ext'(P,M;) =0 — - --
so the functor Hom (P, —) is right exact. O
Corollary 2.2.4. Direct sums of projectives are projective.
Definition 2.2.5. Let R be a ring and M be an R-module.

1. We say M is locally free if there is a cover of Spec R by principal opens D(f;) such that My, is a free
Ry,-module for all i.

2. We say M is finite locally free if in addition My, is actually a finite Ry,-module for all i.
3. We say M is finite locally free of rank r if My, = (Ry,)®" for all i.
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Definition 2.2.6. An R-module M is finitely presented iff there exists an exact sequence
R®™ 5 R¥" - M — 0
of R-modules.
Remark. If R is Noetherian, then being finitely presented is equivalent to being finite.
Lemma 2.2.7. Let R be a ring and M an R-module. Take f; € R fori € I.
1. Spec(R) = U D(f:) if and only if (fi:i€I)=R.
2. If (a) holds, M is a finite R-module if and only if My, is a finite Ry,-module for all i.

3. If (a) holds, M is a finitely presented R-module if and only if My, is a finitely presented Ry,-module
for all i.

Example 2.2.8. Let R = Q[z] C Q(z) and M = }_ o1/(z — @)Q[z]. This is infinitely generated by
1/(z— ) for all a € Q. But localizing at a prime p C R, it is true that M, = R,. So the preceding definition
and lemma would be different if we localized over primes p instead of over principal opens D(f;).

Definition 2.2.9. An R-module M is flat over R iff the functor M @ — is exact.

Lemma 2.2.10. Let R be a ring and M an R-module. The following are equivalent:
1. M is finitely presented and flat;

M is finite projective (i.e. finite and projective);

M is a direct summand of a finite free module;

M is finitely presented and M, is free for all p € Spec R;

M is finitely presented and My, is free for all m € Spec R maximal;

M is finite and locally free;

M s finite locally free;

Sl B N T S

M is finite and M, is free for all p € Spec R and the function p: Spec R — Z given by p — rank(M,,)
is locally constant in the Zariski topology.

Proof. We’re skipping (1).

(2) = (3) Pick a surjection R®" — M. Because M is projective, we get a splitting, and therefore M
is a summand of a finite free module

(3) = (4) A summand of a finitely presented module is finitely presented. Over a local ring, a
summand of a finite free module is finite free. (Projective implies free over local rings, by using Nakayama:
if R®" = M @ N, then (R/m)®" = M/mM & N/mN so that we can pick bases and lift.)

(4) = (5) Trivial.

(5) = (6) Clearly M,, is finite free, so by Corollary there exists f € R and f ¢ m such that
My is finite free. So for every closed point « € Spec R, we have f € R such that € D(f) and Mjy is finite
free. Because of the topology of Spec R, we know these D(f) cover Spec R.

(6) = (7) Finite and free implies finite free.

(7) = (8) Obvious, except we have to show that finite locally free implies finite. (We don’t actually
need freeness.)

(8) = (7) Pick m C R maximal. Choose z1,...,z, € M which map to a basis of M/mM = M,,/mMy,
so that n = p(m). By Nakayama, the map R®™" — M given by (r1,...,7,) = 7121 + - - - + rxy, s surjective,
and there is an f € R\ m such that the induced map is surjective. By assumption, there exists g € R\ m
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such that p|p(g) is constant with value n. Then Rj‘?; — Mg is surjective and for all primes p C Ryg, we
have (Myg), = (Ryg)2™. Hence M is finite locally free.

(7) = (2) It is enough to show M is projective, since it is already finite by hypothesis. Let N — N’
be a surjective map. We want to show ¢: Hom(M, N) — Hom(M, N’) is surjective. Pick f1,...,fn € R
such that R = (f1,..., fn) and My, = Rf?i"i for every ¢. This implies M is finitely presented. But then
Homp(M,N)y, = Hompg . (My,, Ny,) (which requires M finitely presented). Then M/, finite free implies vy,
surjective. Hence 1) is surjective. O

Example 2.2.11. Let R = C*°(R) and take the ideal I to consist of functions vanishing in a neighborhood
(classical topology) of 0. Let M = R/I. It is finite and M), is either R, or (0) for all p € Spec R, but M is
not projective.

This is because I is not finitely generated, so M = R/I is not finitely presented. In fact, M = Ry, the
maximal ideal given by the kernel of the evaluation at 0 map. From this we get M, being either R, or (0).

2.3 What makes a complex exact?

Fix an exact complex

0 — R@ne Pe R@nefl %—_1> RN R@"l ﬂ) R@nU

An important thing to notice about this complex is that it starts somewhere.

Lemma 2.3.1. Suppose R is local with mazimal ideal m and for some 1 < i < e, some matriz coefficient of
;i s not in m. Then the complex is isomorphic to a complex

0— ROme 5 ... o ROMit1 _y ROMi—L _, ROnii—1 _, pOni—2 _, ... _, Rro

direct sum
050—-—0=3RS5R—>0—-—0.

Definition 2.3.2 (Ounly for today). Suppose that p: R®™ — R®™ is an R-linear map.
1. The rank of ¢ is the maximum 7 such that A"¢: A" R®™ — A"R®" is non-zero.
2. I(y) is the ideal generated by r x r minors of ¢ where r is the rank of .

Lemma 2.3.3. If our complex is trivial, i.e. isomorphic to a direct sum of complexes of the form 0 — --- —
0RLR—=0--- =0, then

1. @; has rank r; =n; —niq + -+ (—1)"ng;
2. for all1 <1 < e, the rank of wiy1 + wi = ny;

Lemma 2.3.4. Let R be local Noetherian with maximal ideal m. Assume m € Ass(R), i.e. depth(R) = 0.
Suppose our complex is exact. Then our complex is trivial.

Proof. We may assume all matrix coeflicients are in m, because otherwise we can remove a trivial summand
from the complex and continue inductively. Pick z € R non-zero with mz = 0, since m € Ass(R). Then
zv € ker ¢, is non-zero, where v is some basis vector. This is a contradiction unless n. = 0. O

Lemma 2.3.5. If the complex is exact and x € R is a non-zerodivisor, then
Bey

0— (R/zR)"™ 2% (R/zR)™* 22 ... 22, (R/zR)™

s exact.
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Proof. There is a short exact sequence of complexes

0 0 0 0

0 —— R ——  R"! R ——— R™

0 —— ;” _ Z;e—l ;"1 _ ;"0

0 —— (R/zR)"* —— (R/zR)" (R/xR)™ —— (R/xR)™
0 0 0 0

from which we get a long exact sequence of cohomology

HE¢(R™) — H*(R") — H°((R/xR)™) — H* *(R™ ') = --- — H'((R/xR)™) — H°(R™) — H°(R™).
O

Lemma 2.3.6 (Acyclicity). Let R be local Noetherian and 0 — M, — M._1 — --- — My a complez of finite
R-modules. Let ig be the largest index such that the complex is not exact at M;,. Assume depth M; > ¢ for
all i. Then the depth of the cohomology at M;, is at least 1, provided ig > 0.

Proof. Break the complex into short exact sequences. Then the cohomology at iy = e is a submodule of M,
and e > 1 so depth > 1 (since depth is inherited by submodules). If i = e — 1, then

0> M, — Me_y — M 1/Me — 0
is exact, and the cohomology at e — 1 is a submodule of M._1/M,.. By a previous lemma,
depth(M,—_1/M.) > min(depth(M,_1),depth(M,.) — 1) > e—1
so we are done. The idea is the same for general ig. O

Proposition 2.3.7. Let R be local Noetherian. The complez is exact at R™ ..., R™ iff for all1 < i <e,
we have:

1. rank(y;) = r;, the “expected rank”;
2. I(p;) is either R or contains a reqular sequence of length i.

Proof. We may assume all coefficients of all maps lie in the maximal ideal m (small exercise). Assume (1)
and (2) hold for all i. Then in particular, depth(R) > e. If there is some non-zero cohomology in degree ig
for i9 > 0, then it has depth > 1 by the acyclicity lemma. So its support has dimension at least 1. So we
can find a prime p C R with p # m such that 0 — R} — Ry — o — R0 still has non-zero cohomology
at ig. Now we must check that (1) and (2) still hold for this new complex (omitted). Then we are done by
induction on the dimension.

Conversely, assume exactness at ne,...,n1. Let ¢ € Ass(R), and consider the complex over R,. Note
that R, is a local ring of depth 0. By a previous lemma, rank ¢; , = r; and I(p; 4) = I(pi)g = Rq. This
means

I(p1) -+ I(pe) € q.

But this is for every ¢ € Ass(R), so by prime avoidance we can find a non-zerodivisor x € I(p1)--- I(p.).
Then use induction to shorten the complex by one element, by looking at

0— (R/zR)" — -+ = (R/xR)™. O
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2.4 Regular local rings

Lemma 2.4.1. Let (R,m,k) be a regular local ring. Then the graded ring @ m"/m™*! is isomorphic to
k[X1,...,X4] with d = dim R.

Proof. Let x1,...,x4 € m be a minimal set of generators, so d = dim R. Then we get a surjection of graded
rings
KXy, X = @m/mt T F(Xy, ., Xa) o Flan,. ., ag) € mio8 T /mdes P
n>0

We know dim k[z1, ..., Z4)n = (”fo% which is of degree d — 1. If there were a kernel of this surjection,

then the degree of n ~ dim, m™/m"*! would have degree < d — 1. O
Lemma 2.4.2. Any regular local ring is a domain.

Proof. By a previous lemma, (), m"” = 0 and we know Gr,,(R) is a domain. Hence it follows that R is a
domain: if f,g € R are non-zero, let n and m be the maximal integers such that f € m™ and g € m™, so

that fg # 0 € mnt™, O
Lemma 2.4.3. Let R be reqular local, and x1, . . ., x4 be a minimal set of generators of them. Then x1,...,xq
is a regular sequence and R/(x1,...,x.) is a regular local ring of dimension d — c. In particular, R is CM.
Proof. By the previous lemma, we know x; is a non-zerodivisor. Let R; := R/m;, with maximal ideal
my = m/(x1). Then dimR; = d — 1, and therefore R; is regular with Zs,...,Z, a regular system of
generators of m;. Now induct. O

Lemma 2.4.4. Let R be Noetherian local and M a finite R-module. Assume x € R is a non-zerodivisor on
M, and M/xM is free over R/xR. Then M is free over R.

Proof. Pick mq,...,m, € M mapping to a basis of M/xM. Nakayama says they generate M. If some
>-;a;m; = 0 is a relation in M, then x | a; for all i (since ), a;m; = 0 implies a; = 0 in M/xM), so
a; = zb; for some b;. Hence the kernel K of the surjection R®" — M satisfies K = K. By Nakayama
again, K = 0. O

Definition 2.4.5. A module M is maximal Cohen—Macaulay (MCM) if it is CM and depth M = dim R.
(We know from it being CM that depth M = dim supp M, so this says dimsupp M = dim R.)

Lemma 2.4.6. Let R be regular local. Any MCM-module is free.

Proof. Pick x € m\ m%. Then by a previous lemma, z is a non-zerodivisor on M (here we're using that M
is MCM). Then M/xM has depth exactly one less than M, and it lives over the regular local ring R/zR,
which also has dimension exactly one less than R. By induction on depth, M/xM is free. By the previous
lemma, M is free. O

Lemma 2.4.7. Let R be Noetherian local, and © € m a non-zerodivisor such that R/xR is regular. Then R
is reqular.

Proof. Let Ry = R/xR and m; = m/(x). We know dim R = dim Ry + 1 and dimm/m? = dimm;/m? + 1 or
dimm/m? = dimm;/m?. But we know dim R < dimm/m?, with equality iff R is regular. So dimm/m? =
dimm; /m? cannot happen. It follows that R is regular. O

Example 2.4.8. Let k = F,,(t) and R = (k[z,y]/(#* —yP+1))(s,yr—t). Then the morphism Spec k[z, y] /(2% —
y? +t) — Speck is not smooth at the point () (by the Jacobian criterion). However the ring is indeed a
regular local ring of dimension 1. So regular does not necessarily imply smooth.
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2.5 Projective and global dimension

Definition 2.5.1. Let R be a ring and M an R-module. We say M has finite projective dimension
if it has a finite length resolution by projective modules. The minimal length of such a resolution is the
projective dimension pdy(M).

Definition 2.5.2. Let R be a ring. We say R has finite global dimension if there exists an n € Z such
that pdz(M) < n for all R-modules M. The smallest such n is the global dimension of R.

Lemma 2.5.3 (Schanul’s lemma). Let R be a ring and M an R-module. Suppose there are short exact

sequences
O—-—K—-P—-M—0, 0=L—>P—>M-—=0

with P; projective. Then K ® P, 2 L @ P;.

Proof. Consider the diagram

0 Py Py
0 N PoPR M 0
0 K P M 0
0 0
arising from the snake lemma. By projectivity of Ps, the first column splits. But it is an exact sequence, so
N = P, & K. By symmetry we are done. O

Lemma 2.5.4. Let R be a ring and M an R-module. Let pdp(M) = d. Suppose we have a resolution
Fo—F1—=-=F—=>M=0
with F; projective, and e > d — 1. Then ker(F, — F._1) (or ker Fy — M if d =0) is projective.
Proof. Johan: “look it up.” It is essentially induction using the previous lemma. O
Lemma 2.5.5. Let R be a ring and M an R-module. Let d > 0. The following are equivalent:
1. M has projective dimension < d;
2. there exists a resolution 0 — Py — Py, — -+ — Py = M — 0 with P; projective;
3. for some resolution - -- — Py — P — Py — M — 0 with P; projective, ker(Py_1 — Py_2) is projective;
4. for any resolution --- — Py — Py — Py — M — 0 with P; projective, ker(Py_1 — Py_o) is projective.
If R is local, then these are also equivalent to:
5. there exists a resolution 0 — Py — Py 1 — --+ — Py — M — 0 with P; free.
If R is Noetherian (but not necessarily local) and M 1is finite, then (1) — (4) are also equivalent to:
6. there exists a resolution 0 = Py — Py_1 — --+ — Py = M — 0 with P; finite projective.

Lemma 2.5.6. Let R be a ring and M an R-module. Let n > 0. The llowing are equivalent:
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1. pdp(M) <mn;
2. Extio(M,N) =0 for alli > n+1 and for all N;
3. Extl™ (M,N) =0 for all N.

Proof. (1) = (2) By the previous lemma, there exists a resolution 0 - P, = P,_1 = --- > Py = M — 0
with P; projective. It is a fact that we are allowed to compute Extlé using projective resolutions. Hence
Ext%(M,—) =0 for all i >n + 1.

(2) = (3) Trivial.

(3) = (1) Use a dimension shifting argument. If n = 0, then M is projective. If n > 0, choose a free
module F' and a surjection F' — M with kernel K. By the long exact sequence associated to 0 - K — F —
M — 0, we get Ext'y (K, N) = 0. By induction, pdp(K) < n — 1. So of course pdp(M) < n. O

Corollary 2.5.7. Let0 - M’ — M — M" — 0 be short exact. Then:
1. pdr(M) <n and pdr(M") <n+ 1 implies pdg(M') < n;
2. pdr(M’) <n and pdr(M") < n implies pdr(M) < n;
3. pdr(M') <n and pdg(M) < n+ 1 implies pdg(M') <n+ 1.
Lemma 2.5.8. Given a ring R and an integer n > 0, the following are equivalent:
1. R has global dimension at most n;
2. every finite R-module M has pdg(M) < n;
3. every cyclic R-module M has pdg(M) < n.

Proof. (3) = (1) Let M be an R-module and E C M be a set of generators for M. Choose a well-ordering
on E. For e € E, let M, C M be the submodule generated by all ¢’ € E with ¢’ < e. Then M = {J . M.
and for each e, the quotient M./J, ., Me is cyclic (or zero). So these quotients have pdgp < n.
Let n = 0. By transfinite induction we will show M is projective. Namely, for each e, if we let P, =
M./ <o Mer, there is a splitting M, =, ., Mer © Pe. It follows that M. = @,/ ., Per.
For n > 0, read the rest of the proof on the Stacks Project. Johan: “I apologize, it’s just too annoying.”
O

Lemma 2.5.9. Let R be a ring, M an R-module, and S C R a multiplicative subset. Then:
1. if pdp M < n, then pdg—1p S™IM < n;
2. if R has global dimension < n, then S™'R has global dimension < n.

Proof. The projective dimension pdy(M) < n iff there exists a projective resolution 0 — P, — -+ — Py —
M — 0. Localization is exact, so 0 = S™'P, — --- = S71Py — S~'M — 0 is a projective resolution.

Now take any S~ R-module M and view it as an R-module. Then pdp M < n, and so pdg-1z(S™1M) <
n. But S™'M = M since M is already an S~!'R-module. O

Theorem 2.5.10. A regular local ring has finite global dimension.

Proof. By the previous lemma, it suffices to find a universally bounded resolution of any finite module M
over R. We will do this by induction on depthp M. If M = 0, then the depth is infinite, and in this case
the theorem clearly holds. If M # 0, then 0 < depthp M < dim R. If depthp M = dim R, then M is MCM.
We know that over a regular local ring, an MCM module is free. Now assume depth M < dim R. Choose a
short exact sequence 0 -+ K — R®" — M — 0. Then

depth(K) > min(depthz (R®™), depth(M) + 1) = min(dim(R), depthz (M) + 1) > depth(M).

The induction hypothesis applies to K, so K has a universally bounded free resolution. Therefore so does
M, except with length one greater. O
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Remark. More strongly, this argument actually proves pd (M) + depthz(M) = dim R for R a regular local
ring and M a finite R-module.

2.6 Dimension of regular local rings

Lemma 2.6.1. Let (R, m, k) be Noetherian local. Then pdg(k) > dim, (m/m?).

Proof. Let x1,...,2, € m be such that their images are a basis for m/m2. Consider the Koszul complex
Keonxy,...,x,:
A"RP" — ... 5 A2(R®") - R - R

with differential .

K3

dlej A= Nej) = D (1) aj e Ao Nej N ey,
a=1

So if we can show any resolution of « is longer than this Koszul complex, we are done. Let Fy — & be a
finite resolution by finite free, which exists because if pdz (k) = oo, we are done, so assume pdg(k) < co and
apply a previous lemma. By another previous lemma, assume all maps in F, have matrix coefficients in m.
Hence F; maps into mF;_;. Lift the map id: Kk — k to a map a, of complexes:

K. ce Kl KQ K
Oéol alJ{ D‘OJ{ ldl
F. v F‘1 FO

The claim is that a; mod m is injective. If the claim is true, then F,, # 0, so pdg(k) > n as desired.

1. For i = 0, note that Fy must be free of rank 1. Since Kg — k — k is not the zero map, neither is aq
by commutativity of the last square. So ay is multiplication by a unit.

2. For i = 1, note that [} — Fy = R and R®" — R factor through m. So there is an induced diagram
R®"/mR®" ——— m/m?
l lao mod m
F/mF;, ——— m/m?

where the induced map oy mod m is an isomorphism by the ¢ = 0 case. Hence the left arrow av; mod m
is injective.

3. For ¢ > 1, assume a; mod m injective for j < ¢. Then again there is a diagram
A (R®™") —— NTH(R®™)
all lai_l
F; —  Fia

where the top and bottom arrows factor through mA*~! and mF;_; respectively. Tensor with & or mod
out by m to get _ _
AN (KPT) ——— (m/m?) @, ATTL(kO™)

a; mod ml lidm/mz ®a;—1 mod m

Fi/mFi —_— m/m2 Rk Fi_l/mFi_l.
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By the induction hypothesis, the right arrow is injective, so to show the left arrow is injective, it suffices
to show the top arrow is injective. But the top arrow is just part of the Koszul complex: we know it is

€jp N Nej Z(—l)aﬂfja@jl Ao Nejg N Negy,
a

which is injective. O
Lemma 2.6.2. Let (R,m, ) be Noetherian local. Suppose pdp k =p < co. Then dim R > p.

Proof. Let 0 — F, — --- = Fy — Fy — £ — 0 be a minimal resolution by finite free, with F; mapping
into mF;_q for all i > 1. By “what makes a complex exact,” we see depth(R) > p. Hence dim(R) > p by a
previous lemma. O

Theorem 2.6.3. Let (R, m, k) be Noetherian local. The following are equivalent:
1. R is reqular;
2. the global dimension of R is finite;
3. the projective dimension pdg (k) is finite.

Proof. We showed (1) = (2) already, and (2) = (3) is trivial. So suppose pdr(x) = p < co. Then
dim(R) > p > dimp(m/m?). Hence equality holds at each step, and R is regular. O

Corollary 2.6.4. R is reqular local implies R, is reqular local.

Proof. By the theorem, R regular means R has finite global dimension, which means R, has finite global
dimension, which means R, is regular. O

Definition 2.6.5. A Noetherian ring is regular if every localization R, is regular.

Remark. Fact: if R is regular, then dim(R) is equal to the global dimension, including the case when either
is infinite.
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Chapter 3

Completions

This material is not on the final.

3.1 Completions

Definition 3.1.1. A topological ring is a ring with a topology where addition and multiplication are
continuous. A topological module (over a topological ring) is a module M with a topology such that
addition and the module structure map are continuous. We say M is separated if (), M) = {0}.

Definition 3.1.2. A topological module is linearly topologized if there is a fundamental system of zero
consisting of submodules.

Definition 3.1.3. Given M a topological module and M) an open submodule. Then M = 1'£1A M)y is the
completion and has a canonical map M — M. It inherits a limit topology via ker(M — M/M,).

Lemma 3.1.4. The completion is complete with respect to the limit topology.

Example 3.1.5. Let M =Z and A € N. Let M, := A\Z. Then

lim Z/nZ = [ [ Z,

neN D
where Z,, is the p-adics.
Example 3.1.6. Let M, = 17*Z for A\ € N. Then M= Zq7, the 17-adics.

Definition 3.1.7. Let R be a ring and I C R be an ideal. The [-adic topology on R is given by setting
{I"} to be a fundamental system of neighborhoods of zero. (We skip the verification that the product is
continuous.) Similarly, any R-module M has the I-adic topology given by {I"M}. If the canonical map
M — M = lgln M/I"M from M to its I-adic completion is an isomorphism, we say M is [-adically
complete.

Remark. The I-adic completion is not in general I-adically complete. (The limit topology will not always
be the same as the I-adic topology.) It is, however, always complete, since completions are complete.

Lemma 3.1.8. Let R be a ring and I C R be an ideal. Let o: M — N be a homomorphism of R-modules.
If M/IM — N/IN is surjective, then M — N is surjective.

Proof. Assume M/IM — N/IN is surjective. By Nakayama, M/I"M — N/I™N is surjective for all n > 1.
Let
K, ={xeM:p(x)eI"N}.
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Then we get a short exact sequence
0— K,/I"M - M/I"M — N/I"N — 0.

By the Mittag-Leffler condition for vanishing of lim', it suffices to show Kp1/I"WM — K, /JI"M is
surjective. Let x € K, and write ¢(z) = Zj zjn; where z; € I" and n; € N. By assumption, write
n; = @(m;) + Y, zjkn;r where m; € M and z;;, € I and nj, € N. Then

oz — szmj) = szzjknjk e I"TIN. O
Jsk
Lemma 3.1.9. Let R be a ring, I C R a finitely generated ideal, and M an R-module.
1. The I-adic completion M is I-adically complete.
2. I"M = ker(M — M/I"M) = I"M for all n > 1.

Proof. Since I is finitely generated, I™ is finitely generated. Say I™ = (f1,..., fr). Apply the previous
lemma to the surjection
(fiyeo oy fr): MO — I"M

yields a surjection
M®" — I"M = lig I"M/I™ M.

m>n

But this is ker(M — M/I™M). On the other hand, taking (f1, ..., f,): M®" — I"M generates I"M. Thus
M/I"M = M/I'""M. Taking limits, we are done. O

Example 3.1.10. Let R = k[z1,29,...] and I = (x1,2x2,...). Then R is the submodule of formal power
series consisting of those which have finitely many in each degree. Look at m := ker(R — k) given by taking
the constant term. Claim: m # IR. Then

f::x1+x2m3+m4x5x6+-~-§éIR

because if f = z1g1 + - + Tngn for some g1,...,gn € R, then modding out by (z1,...,2n) sends x1g1 +
o+ 4+ xpg, to 0, but not f.

3.2 Completions of Noetherian rings

All completions are I-adic completions in this section.

Lemma 3.2.1. Let R be a ring and I C R an ideal.
1. If N - M is an injective homomorphism of finite R-modules, then N — M is imjective.
2. If M finite, then M=M®gR.

Proof. The kernel of the map N/I"t¢N — M/I""M is N N I"*M, which by Artin—Rees is contained in
I™N. Hence if we look at the square

N/I"M ——— M/I"M
N/I"teN —— M/I"teN

we see that anything in the kernel is actually 0 in the inverse system.
Choose a presentation 0 — K — R®* — M — 0. Then by a previous lemma,

R® @p R= R® = RSt —» M
factors through M ®pg R so that the map M ®pr R — M is still surjective. O
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Remark. We collect all the facts we know so far about the exactness of completion:

0 — K >>> R% M 0
| | [
K®pR ROt M@rR —— 0

where the left and right vertical maps are surjective by a previous lemma, and the middle map is an
isomorphism. To show the bottom sequence is exact (as desired), it suffices to show K = ker(R®* — M).

Lemma 3.2.2. K = ker(R®t — M)

Proof. Let (z,,) be in the kernel with x,, € im(K/I"K — (R/I™)®"). Using Artin—Rees, choose ¢ such that
(IM®*NK c I"°K. For n > ¢, choose y, € K/I""K mapping to =, . such that z, = y, mod I"K.
Then

Zn+1 — 2pmod I"K = ypy1 — yp mod I"K

and yn 1 — yn € (I"T€)®* by construction. Hence z,41 — 2z, € I"K by choice of ¢. So (z,) € K maps to
(zn)- O

Remark. This proof is not the best way to think about the situation. Rather, interpret Artin—Rees as saying
that for finite modules, given a module with the I-adic topology, the induced topologies on submodules and
quotients are also I-adic topologies.

Lemma 3.2.3. Let R be a Noetherian ring, and I C R an ideal.
1. R— R is flat.
2. The functor M — M is ezact on the full subcategory of finite modules.

Proof. A previous lemma says M = M ®p R, so (2) = (1). We know M — M preserves injectivity, by
the previous lemma. Hence we are done. O

Lemma 3.2.4. If (R, m) is a local Noetherian ring, then the complete local ring R= lgln R/m™ is Noetherian
and is (faithfully) flat over R.

3.3 Cohen structure theorem

Definition 3.3.1. Let  be a field of characteristic p. A Cohen ring for « is a complete discrete valuation
ring A with uniformizer p such that A/pA = k.

Example 3.3.2. If kK =F,, take A = Z,. If s is perfect, take the (small) Witt ring W (k). For other fields,
the construction is annoying.

Lemma 3.3.3. A Cohen ring always exists, and is unique up to non-unique isomorphism.

Theorem 3.3.4 (Cohen structure theorem). Let (R, m, k) be a complete (with respect m) Noetherian local

ring.
1. If char(k) = 0, then there exists a surjection k[[x1,...,x,]] = R.
2. If char(k) = p and p = 0 in R, then there exists a surjection K[[x1,...,2,]] = R.
3. If char(k) = p and p # 0 in R, then there exists a surjection Al[z1,...,z,]] = R where A is a Cohen
ring for k.
Proof sketch. Pick generators fi,..., f, for m and use the map z; — f;. But how do we fit k into R? Use
infinitesimal deformations to get lifts K — R/m™, and then use that R is complete. O
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Definition 3.3.5. A complete Noetherian local ring (R, m) is a complete intersection iff

RgAHZL’l,...,xnﬂ/(fla"'afc)

where fi,..., f. is a regular sequence. A Noetherian local ring (R, m) is a complete intersection iff R is
a complete intersection ring.
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