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Chapter 1

Lie Groups

1.1 Definition and Examples

Definition 1.1.1. A Lie group over a field k (generally R or C) is a group G that is also a differentiable
manifold over k such that the multiplication map G×G→ G is differentiable.

Remark. We will see later that x 7→ x−1 on a Lie group G is also differentiable.

Remark. There are complex Lie groups and real Lie groups. Every complex Lie group is a real Lie group,
since being a complex manifold is stricter than being a real manifold.

Example 1.1.2. Some examples of Lie groups:

1. kn as a vector space with additive group structure;

2. T := {z ∈ C∗ : |z| = 1};

3. k∗, the multiplicative group of the field k;

4. GL(V ), the group of matrices with non-zero determinant;

5. any finite group, or countable group with discrete topology;

6. SLn(k), the group of matrices with det = 1;

7. GL+
n (k), the group of matrices with det > 0;

8. On(k), the group of matrices with AAT = ATA;

9. SOn(k) := On(k) ∩ SLn(k);

10. Spn(k) := {S : STΩS = Ω} where Ω :=

(
0 I
−I 0

)
;

11. Un(k), the group of matrices with UU∗ = U∗U .

Note that Un(k) is not a complex Lie group, since its defining equation contains complex conjugation, which
is not holomorphic.

Definition 1.1.3. A subgroup of a Lie group is a Lie subgroup if it is a submanifold.

Example 1.1.4. Consider the torus T2 := S1 × S1 = R2/Z2, and pick a line R in R2 of irrational slope.
Clearly R is a Lie group and is a subgroup of T2, but it is definitely not a Lie subgroup. What went wrong:
R needs to be a submanifold, not just a manifold in its own right.
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Example 1.1.5. Examples of Lie subgroups:

1. any discrete subgroup is a Lie subgroup;

2. diagonal matrices in GL(V );

We have to be careful about which field Lie subgroups are taken over. For example, GL(Cn) is both a
complex and real Lie group, but U(n) ⊂ GL(Cn) is only a real Lie subgroup (since it is not a complex Lie
group).

Proposition 1.1.6. Let G1, G2 be Lie groups over k. Then G1 × G2 is also a Lie group over k with the
standard structure of a product of groups and a product of manifolds.

Definition 1.1.7. A group homomorphism m : G1 → G2 of Lie groups is a Lie group homomorphism if
it is differentiable.

Example 1.1.8. Some examples of Lie group homomorphisms:

1. the identity map id, or more generally embeddings of Lie subgroups;

2. any linear map;

3. the determinant map det;

4. the conjugation map a(g) : x 7→ gxg−1;

5. the exponential map R→ S1 given by x 7→ eix.

Note that the map which is multiplication by a fixed group element g is not a Lie group homomorphism,
since it is not a group homomorphism.

Definition 1.1.9. A Lie group homomorphism from p : G→ GL(V ) is a linear representation of G.

Example 1.1.10. Some examples of linear representations:

1. R
exp−−→ S1 ↪→ GL(R2) given by rotations;

2. given R,S linear representations of G, we can construct R⊕ S, R⊗ S, etc.

Remark. A representation of a Lie group is its action on a vector space, but we want to talk about actions
in general.

1.2 Lie group actions

Let G be a Lie group (or algebraic group) and let X be a manifold in the same category.

Definition 1.2.1. A Lie group action of G on X is a differentiable group action G ×X → X given by
(g, x) 7→ g · x. Here group action means it satisfies

e · x = x, g1 · (g2 · x) = (g1g2) · x.

Remark. Note that this may not be a Lie group homomorphism, since for an arbitrary differentiable manifold
X we cannot say anything about whether Diff(X) is a Lie group.

Example 1.2.2. A linear representation is an action on a vector space by linear operators, i.e. G →
GL(V ). For any group G, we have a few canonical actions:

1. the left (resp. right) regular action where X = G, and G × G → G is just the multiplication
(g1, g2) 7→ g1g2 (resp. (g1, g2) 7→ g2g

−1
1 );
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2. the adjoint action Ad: G×G→ G given by (g, h) 7→ ghg−1.

A homomorphism ϕ : G→ H induces an action of G on H by (g, h) 7→ ϕ(g)h.

Definition 1.2.3. For x ∈ X, the set Gx ⊂ X is the orbit. The set of orbits is the quotient X/G. The
stabilizer Gx is the set of elements g ∈ G fixing x.

Proposition 1.2.4. Let G act on X with x ∈ X. Then:

1. Gx is a Lie subgroup in G;

2. there is some open set U containing the identity e ∈ G such that U · x is a submanifold.

In this setting, dimU · x+ dimGx = dimG.

Proof. Define αx : G→ X by g 7→ g · x. It has constant rank. Hence Gx = α−1
x (x) is a regular submanifold

by the constant rank theorem, and is also clearly a subgroup.
Similarly, by the constant rank theorem, for each g ∈ G there is some neighborhood U 3 g such that its

image αx(U) is a submanifold in X. For g = e, we get that U · x is a submanifold.
To see that dimU · x+ dimGx = dimG, note that rank-nullity holds for the differential dαx at x.

Remark. Some general questions we can ask about actions:

1. what are the orbits of the action?

2. what does the set of orbits X/G look like?

Lemma 1.2.5. A Lie subgroup H ⊂ G is closed.

Proof. Suppose H ⊂ G is a Lie subgroup. Then its closure H̄ is a subgroup of G. In particular, H̄ is H-
invariant. By definition, H is a submanifold of G. Hence H is open in H̄. Right-multiplication is continuous
so Hx = r−1

x−1(H) is open in H̄ too. But H̄ is the disjoint union of cosets, i.e. H̄ \H =
⊔
x6=eHx is open,

i.e. H is also closed in H̄. Since H̄ is the closure, H = H̄ by definition.

Remark. Note that naturally X/G is a topological space. The natural (set-theoretic) map X → X/G induces
a topology on X/G via the quotient topology; however, this topology is usually non-Hausdorff.

Example 1.2.6. Here’s an example of a non-Hausdorff topology on the quotient. Let X = C2 and let
G = (R,+). There are two possible actions, and the first is non-Hausdorff:(

et 0
0 e−t

)
,

(
1 t
0 1

)
.

The orbits of the first action look like hyperbolas, along with the four pieces of axes and the origin. The
axes are not separable from the origin.

Definition 1.2.7. A function X/G→ R is regular if its lift to X → R is a morphism in the category of X.

Example 1.2.8. Let X = C and G = {±1} acting via multiplication. Then a function on X/G is a function
f such that f(z) = f(−z). In other words it is a function g(z2). Hence z2 : X/G→ C = X is an isomorphism
because the sets of regular functions on X/G and X are the same.

Example 1.2.9. Let X = C2 and G = {±1} acting via multiplication (x, y) 7→ ±(x, y). Regular functions
here are even functions in (x, y). Any such function factors through x2, xy, y2, i.e. there is a map from
X/G to a cone. Here the image is a cone because there is the non-trivial relation (x2)(y2) = (xy)2. (This is
actually a diffeomorphism, not just a homeomorphism.)

Remark. Really, X/G is a topological space equipped with a sheaf of functions. The question is under what
conditions is it a nicely behaved space.
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Example 1.2.10. Consider the map

R 3 t 7→
(
eita 0
0 eitb

)
∈ U(1)2 ⊂ GL(2).

If a/b ∈ Q, then the image of this map is closed. However if a/b /∈ Q, then the image is dense.

1.3 Proper actions

Definition 1.3.1. An action is proper if the following map is proper (as a map of topological spaces, i.e.
the preimage of compact sets is compact):

A : G×X → X ×X, (g, x) 7→ (x, gx)

Example 1.3.2. A few examples of proper actions:

1. the left regular action gives (g1, g2) 7→ (g2, g1g2), which is an isomorphism, so clearly it is proper;

2. if H ⊂ G be a Lie subgroup, the restriction to H of any proper action of G is still proper;

3. any action of a compact group is proper.

The “irrational flow” of R on T2 given in 1.1.4 is not a proper action of R on T2.

Lemma 1.3.3. Fix x ∈ X. The evaluation map αx : G→ X given by g 7→ gx is proper, and therefore also
closed.

Proof. Let K ⊂ X be a compact set. Then A−1({x} ×K) = B × {x} for some B. But B × {x} is compact
since A is proper, so B = α−1

x (K) is also compact. Recalling that proper maps between locally compact
Hausdorff spaces (every manifold is locally Rn, which is locally compact by Heine–Borel) are closed, αx is
also closed.

Proposition 1.3.4. For a proper action, the stabilizer Gx is compact for all x. Hence the adjoint action is
never proper unless G is compact.

Proof. The evaluation map αx : G → X is proper, so α−1
x ({x}) = Gx is compact. For the adjoint action

(g, h) 7→ (h, ghg−1), note that Ge = G must therefore be compact.

Proposition 1.3.5. Orbits of a proper action are closed embedded submanifolds, not just immersed sub-
manifolds.

Remark. This prevents pathologies like the “irrational flow” of R on T2.

Proof. Fix x ∈ X. It is clear that Gx is closed since the evaluation map αx : G → X given by g 7→ gx is
closed (by lemma 1.3.3), so αx(G) = Gx is closed.

To show Gx is an embedded submanifold, it suffices to show it locally. Take a compact ball B around
x. Let A : G × X → X × X denote the map (g, x) 7→ (x, gx). Since the action is proper, A is proper, i.e.
A−1((x,B)) = {g ∈ G : gx ∈ B} is compact.

We use compactness to get finiteness restrictions. By the constant rank theorem applied to the constant
rank map g 7→ gx, for each g ∈ G there is an open neighborhood U such that Ux is an embedded submanifold
of X. By compactness, A−1((x,B)) has a finite cover by such open sets U , i.e. B ∩ Gx is a finite union of
embedded submanifolds. We can shrink B until B∩Gx is contained within just one embedded submanifold.
Hence Gx is an embedded submanifold.

Proposition 1.3.6. For a proper action G on X, the quotient X/G is Hausdorff.
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Remark. Suppose R ⊂ X ×X is an equivalence relation. The general fact is that X/R is Hausdorff if and
only if R is closed.

Proof. Using the remark, for us, the equivalence relation is precisely the map G × X → X × X given by
(g, x) 7→ (x, gx). The image of this map is closed because G acts properly on X, and so we are done.

Proposition 1.3.7. Assume the action of G on X is proper and free, i.e. Gx = {1} for every x ∈ X. Then
X/G is a smooth manifold. (Even more strongly, it is a Hausdorff ringed space.)

Proof. Pick a point x̄ ∈ X/G, which corresponds to an orbit G · x. The orbit is a smooth manifold. Let
a : G×X → X be the group action, so that da : g⊕ TxX → TxX is just addition of vectors (ξ, v) 7→ (ξ+ v).
Pick a small transverse slice S so that we have a map G× S → X. The claim is that S can be chosen small
enough such that this map is an isomorphism with a neighborhood of the orbit Gx.

1. Locally near x this map is a diffeomorphism by the inverse function theorem.

2. It is a local diffeomorphism everywhere since G moves the diffeomorphism around in the orbits..

3. Hence we must show G×S → X is bijective with its image (because local diffeomorphisms may not be
bijective, e.g. covering maps). So suppose g1s1 = g2s2, i.e. gs1 = s2. Choose a sequence S̄1 ⊃ S̄2 ⊃ · · ·
compact, such that

⋂
Si = {x}. There exists a neighborhood U 3 e ∈ G such that for any g ∈ U ,

if gS ∩ S 6= ∅, then g = e (by looking the differential of such a map would be given by addition by
0, i.e. g = e). Now look at Gn := {g ∈ G \ U : gS̄n ∩ S̄n 6= ∅}. This is compact by properness and
G1 ⊃ G2 ⊃ · · · , so that

⋂
nGn 6= ∅, i.e. there is some element g in the intersection such that g · x = x.

Hence for every S open in the quotient X/G, we have found a neighborhood of orbits. For every such
neighborhood, we have a notion of regular functions: smooth functions which are G-invariant. This gives S
a smooth structure.

Remark. In particular, G/H is a manifold for any Lie subgroup H.

Remark. What if the action is proper but not free? Then there is a point x ∈ X with non-trivial stabilizer
Gx 6= {1}. The orbit is still a smooth manifold, but now Gx = G/Gx. Now we can choose the slice S to be
Gx-invariant: find a Gx-invariant Riemannian metric (see below) and then take S to be geodesics through
(TxGx)⊥, i.e. S ∼= (TxGx)⊥.

Proposition 1.3.8. Every compact Lie group G has a G-invariant finite-measure regular measure dg.

Remark. Note that the tangent bundle of any Lie group is trivial, since given a basis at TeG we can move
it around via dLg where Lg is left multiplication by g.

Proof idea. Since TG is trivial, G is orientable, and the left-invariant differential forms correspond to the
tangent space TeG. Hence there exists a unique left-invariant top form; explicitly, it is given by ∧i(g−1

i dgi).
(For manifolds this is a lot easier, because measures are represented by differential forms, and the Lebesgue
measure is the only translation-invariant measure on Rn.)

Remark. Left and right Haar measures both exist, and for compact Lie groups they coincide. Right transla-
tions act on the space of left-invariant Haar measures (which is R+), so for the left and right Haar measures
to coincide, we require G has no homomorphism to the positive reals R+. Sufficient conditions include when
G is compact, or simple, or has no 1-dimensional representations at all.

Corollary 1.3.9. Let ‖ · ‖0 be an arbitrary Riemannian metric. We can construct an invariant metric from
it using

‖v‖2 :=

∫
Gx

‖gv‖20 dg.

Proposition 1.3.10. Let G compact act on V an affine space, and suppose it preserves a convex set S in
V . Then there exists a vector v ∈ S fixed by G.
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Proof. Pick an arbitrary vector v0 ∈ S, and set v :=
∫
G
µ(dg) g · v0. (View v as the barycenter of the orbit

Gv0.)

Proposition 1.3.11. Let G compact act on X a manifold. Then X has a G-invariant Riemannian metric.

Remark. This is a generalization of the previous proposition.

Theorem 1.3.12. Let Gx be the stabilizer of a point x ∈ X a manifold. Let S be a Gx-invariant slice,
isomorphic to (TxGx)⊥ as a Gx-manifold. Then

GS ∼= G×Gx S := (G× S)/Gx

as G-manifolds, i.e. manifolds with an action of G. (Here A×HB := (A×B)/H, where h(a, b) 7→ (ah−1, hb)
is the standard fiber product.)

Proof. (Did we do this in class?)

Corollary 1.3.13. X/G ∼= S/Gx near Gx.

Corollary 1.3.14. X has a G-invariant Riemannian metric because G×S has a G×Gx-invariant metric.

Any finite-dimensional representation of a compact group is semi-simple, i.e. if we have a representation
W , then W =

⊕
iWi where each Wi is simple. (This comes from how there is always a quadratic form that

is G-invariant; given W ′ ⊂W , we can always decompose W = W ′ ⊕ (W ′)⊥.)

Example 1.3.15. Let R act on R2 by

(
1 a
0 1

)
. It has two sub-representations that are trivial, but it is not

the direct sum of two trivial representations.

Example 1.3.16 (Grassmannian). Let G = GL(n,R) and H of upper triangular matrices with the first
block being k × k. Then G/H = Gr(n, k). Note that a matrix preserves the span of the first k basis vectors
if and only if it is of the form given by H. Hence G acts on Gr(n, k) with H stabilizing span(e1, . . . , ek).

Alternatively, Gr(n,C) = U(n)/(U(k)×U(n−k)), because U(n) acts transitively on orthogonal bases for
k-dimensional subspaces, and if an element fixes a k-dimensional subspace it also fixes the (n−k)-dimensional
complement. This decomposition shows that Gr(n, k) is compact.

A chart near L ∈ Gr(n, k) is formed by linear maps L → V/L; the graph of a map is a subspace. The
Grassnammian Gr(n, k) is covered by

(
n
k

)
charts of the form “n × k matrices with prescribed minor being

non-zero” (there are
(
n
k

)
such minors). This is a generalization of what we do for projective space, where

k = 1 and we have just an n-tuple of numbers. Hence Gr(n, k) = Mn,k/GL(k) as well, where Mn,k is the
set of all n× k matrices.

Remark. These ways of expressing Gr(n, k) hold over every field (except for U(n)/(U(k)× U(n− k))). The
question we should ask ourselves in general is if G is a linear (i.e. closed subspace of GL(n)) algebraic group
and H ⊂ G is a subgroup, we want to make G/H an algebraic variety.

The way to do this for Grassmannians is to use the Plücker embedding: if we have L ⊂ V where dimL = k
and dimV = n, then

ΛkL ⊂ ΛkV

where ΛkL is a line and ΛkV has a basis of
(
n
k

)
elements. The coordinates of L we now define to be the

coordinates of the line ΛkL inside ΛkV , i.e. precisely the values of the minors in the n×k matrix representing
L in Gr(n, k) = Mn,k/GL(k). To recover the line L, let α represent ΛkL, and take the kernel

V → Λk+1V, v 7→ v ∧ α.

The kernel is precisely L because e1 ∧ β = 0 iff β = e1 ∧ β′.
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1.4 Some Lie group properties

GLn(R) SLn(R) On(R) SOn(R) Un SUn Sp2n(R)

dim n2 n2 − 1 n(n−1)
2

n(n−1)
2 n2 n2 − 1 n(2n+ 1)

π0 Z2 1 Z2 1 1 1 1
π1 Z2 Z2 Z2 Z2 Z 1 Z.

We used the following facts (some of which are explained in the following subsections) in populating the
table.

1. There is a surjective continuous map det : GL(n,R)→ R×, but R× is not connected. Hence GL(n,R)
and even O(n,R) is not connected. Given M ∈ GL+(n,R), construct a path from M to I as follows:
given a basis v1, . . . , vn, Gram–Schmidt provides an orthogonal basis

w1 = v1, w2 = v2 − t
〈v2, w1〉
〈w1, w1〉

w1, . . . , wn = vn − t
∑
i<n

〈vn, wi〉
〈wi, wi〉

wn

where we added the parameter t to obtain a homotopy to O(n,R); then use the homotopy (cos θ)e1 +
(sin θ)w to move basis vectors to the standard basis while staying in O(n,R). For the other groups, a
similar argument works, except there is no obstruction arising from positive/negative determinant.

2. U(n) = O(2n) ∩ Sp(2n,R) (complex vs real picture). This is useful because Sp(2n,R) retracts onto
U(n): given A ∈ Sp(2n,R), there is a polar decomposition A = SU where S := (ATA)1/2 is
symmetric and symplectic, and U is unitary, so by a preceding lemma, A(t) = StU is the homotopy.

3. Using the long exact sequence of homotopy coming from the fibration SU(n − 1) → SU(n) → S2n−1,
we get

π1(SU(n)) = π1(SU(n− 1)) = · · · = π1(SU(2)) = π1(S3) = 0.

Similarly, SO(n−1)→ SO(n)→ Sn−1 shows πi(SO(n)) = π1(SO(3)) = Z/2Z. Everything else retracts
onto SO and SU.

1.5 Symplectic matrices

Definition 1.5.1. A matrix M is symplectic if MTJM = J , where J =

(
0 I
−I 0

)
. The collection of

2n× 2n symplectic matrices is denoted Sp(n, k) (over a field k).

Definition 1.5.2. The Pfaffian of a skew-symmetric matrix ω is given by taking the associated 2-form
ω = aije

i ∧ ej , then computing 1/n!ωn = Pf(ω)e1 ∧ · · · ∧ e2n.

Lemma 1.5.3. Pf2(A) = det(A) for any skew-symmetric matrix A.

Lemma 1.5.4. Symplectic matrices have determinant 1.

Proof. Use the Pfaffian argument: Pf(Ω) = Pf(MTΩM) = det(M) Pf(Ω), and since Pf(Ω) 6= 0, we have
det(M) = 1.

Proposition 1.5.5. Let S ∈ Sp(2n,R) be positive definite. Then it can be diagonalized using a unitary
change of basis, i.e. there exists U ∈ U(2n,R) such that S = UTDU where D is diagonal.

Remark. Here U(2n,R) is the image of U(n) inside M(2n,R), under the identification A+ iB 7→
(
A B
−B A

)
.

In particular, if U ∈ U(2n,R), we have UTU = I.

Corollary 1.5.6. If M is a symmetric symplectic matrix, then Mα ∈ Sp(2n,R) for α > 0.

Proof. Diagonalize M = UTDU and note that Mα = UTDαU , which is still in Sp(2n,R). We require
symmetric so that taking the α power makes sense (i.e. diagonalizing and taking each eigenvalue to the α
power).
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1.6 Fundamental groups of Lie groups

Proposition 1.6.1. Let π : G̃ → G be the universal cover of the Lie group G. Let ẽ ∈ π−1(e). Then there
exists a unique multiplicative structure on G̃ (with ẽ the identity), that makes π a homomorphism of Lie
groups.

Proof. Consider the commutative diagram

G̃× G̃ −−−−→ G̃y p

y
G×G µG−−−−→ G.

Let α : G̃× G̃→ G be the diagonal map. Then im(α∗) lies in p∗(π∗(G̃)), so we have a unique lift of α to µ̃.
Associativity follows from uniqueness. Facts:

1. the kernel of p is discrete and normal;

2. a discrete normal subgroup of a path connected Lie group is central.

Corollary 1.6.2. π1(G) is abelian.

Proof. (I zoned out. Help?)

Remark. It turns out that for Lie groups, π2(G) = 0 and π3(G) is torsion-free.
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Chapter 2

Lie Algebras

2.1 From Lie groups to Lie algebras

Recall that we have a smooth transitive action of G on itself via Lg(h) := gh.

Definition 2.1.1. A vector field X on G is left invariant if (Lg)∗X = X, i.e. (dLg)h(Xh) = Xgh.

For a left invariant vector field, because the action of G is transitive, the vector field is fully determined
by Xe, its value at the identity.

Proposition 2.1.2. For X and Y vector fields on a smooth manifold M , the commutator [X,Y ]f = X(Y f)−
Y (Xf) is a vector field on M .

Proposition 2.1.3. If M = G is a Lie group, and X,Y are left-invariant, then so is [X,Y ].

Proposition 2.1.4. If F : G → H and X is a left invariant vector field on G, then there is a unique left
invariant vector field on H such that

dFg(Xg) = YF (g), ∀g ∈ G.

Definition 2.1.5. The Lie algebra g of a Lie group G is the set of left-invariant vector fields with the
bracket [·, ·]. A representation of a Lie algebra g is a Lie algebra homomorphism g→ gl(V ) for some vector
space V .

Proposition 2.1.6. Given a Lie group representation ρ : G → GL(V ), the differential dρ : g → gl(V ) is a
Lie algebra representation.

Example 2.1.7. Let ϕg(h) = ghg−1. Then ϕg(e) = e, so we can differentiate at e to get dϕg : g→ g given
by X 7→ gXg−1 called Ad: G→ GL(g). Differentiating once more we get ad: g→ gl(g).

Example 2.1.8. Consider det : GLn(R)→ R×. We find that de(det)(X) = tr(X).

Example 2.1.9. The tensor product of two representations of a Lie group G is g · (v⊗w) = (g · v)⊗ (g ·w).
Differentiating,

(d/dt)(g(t)v ⊗ g(t)w)|t=0 = Xv ⊗ w + v ⊗Xw,

giving the tensor product of two Lie algebra representations.

Theorem 2.1.10 (Existence). Let G,H be Lie groups with G simply connected. Then for any Lie algebra
homomorphism ϕ : g→ h, there exists a map f : G→ H such that df = ϕ.
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Proof sketch. Take a path g(t) in G from e to g and define a path ξ(t) in Te(G) by g′(t) = dLg(t)ξ(t).
Consider a solution h(t) in H of the differential equation

h′(t) = dLh(t)ϕ(ξ(t))h(t).

Define f(g) := h(1). We need to check this is well-defined.
Suppose g0, g1 are two paths in G with gi(0) = e and gi(1) = g. Since G is simply connected, these paths

are homotopic; call the square given by the homotopy g. Define maps A,B : [0, 1] × [0, 1] → g by taking
A(t, s0) to be the velocity path for g(t, s0), and B(t0, s) to be the velocity path for g(t0, s), i.e.

∂g(t, s)/∂t = A(t, s)g(t, s), ∂g(t, s)/∂s = B(t, s)g(t, s).

Hence (∂B/∂t− ∂A/∂s)g = ABg −BAg = [A,B]g. Define a map h : [0, 1]× [0, 1]→ H to be a solution

∂h(t, s)/∂t = ϕ(A(t, s))h(t, s).

If we can show that h(1, s) does not depend on s, we are done. Look at the equation

∂h/∂s = B̃(t, s)h(t, s), ∂B̃/∂t = ∂(ϕ(A))/∂s = [ϕ(A), B̃].

This differential equation in t is satisfied by ϕ(B) and B̃(0, s) = 0. By uniqueness of solutions, B̃(1, s) =
ϕ(B(1, s)) = 0, i.e. h(1, s) is independent of s.

Theorem 2.1.11 (Uniqueness). If G is a connected Lie group, then any map f : G → H is determined by
its differential df : g→ h.

Proof. (I zoned out. Help?)

2.2 The Lie functor

There is a functor from the category of (real or complex) connected 1-connected Lie groups to the category
of Lie algebras (over real or complex), given by

G 7→ g := TeG, G1
f−→ G2 7→ g1

df−→ g2.

For every given df , there is a unique f determined by solving the relevant differential equation. The hard
part is, given g, find a Lie group G whose Lie algebra is g.

For any G, there is an exact sequence

1→ H → Ĝ
γ 7→γ(1)=g−−−−−−−→ G→ 1

where Ĝ is the universal cover, and H is a normal discrete subgroup (isomorphic to π1(G), which is abelian).

Any map of Lie groups G1
f−→ G2 induces a map Ĝ1

f̂−→ Ĝ2 which preserves the kernels of Ĝ1 → G1 and
Ĝ2 → G2.

If H = Gx for a G-action on X, then the Lie algebra of H is ker(g → TxX) where this map is the
differential of g 7→ gx.

Definition 2.2.1. A Poisson algebra is a commutative algebra and a Lie algebra, but with bracket {·, ·},
satisfying the Leibniz rule

{a, bc} = {a, b}c+ {a, c}b.

In other words, a 7→ {a, ·} is a map A→ Der(A, {·, ·}). (This is the Hamiltonian vector flow.) Analogously,
ad: ξ 7→ [ξ, ·] is also a map g 7→ Der(g, [·, ·]).
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Remark. If one has a family of associative products ∗~ such that

(a ∗~ b)|~=0 = ab,

then define

{a, b} = lim
~→0

a ∗~ b− b ∗~ a
~

.

Since the numerator is the commutator, it satisfies the Jacobi identity, and therefore so does {a, b}. Hence
we should view Poisson algebras as first-order approximations to non-commutative algebras, at the point
where they are commutative.

Example 2.2.2. Take R2n with coordinates p1, . . . , pn, q1, . . . , qn. We make it a Poisson algebra by declaring
{pi, qj} = δij . What non-commutative algebra is this the first-order approximation of? Take Pi = ~∂qi ,
which satisfies [Pi, qj ] = ~δij . In fact, Sp(2n) has a very concrete description: it consists of polynomials in
pi, qj of degree 2, under the Poisson bracket {·, ·}.

Recall that π1(SO(n)) = Z/2 for n ≥ 3, and Z for n = 2. Hence we can construct the universal cover
of SO(n) as follows. Take a quadratic form Q on a vector space V , and define the Clifford algebra by
v · v = Q(v).

Example 2.2.3. If we take V = R and Q(x) = −x2, then the Clifford algebra is C. If instead we take
Q(x) = x2, we get R⊕ R.

Example 2.2.4. Take eiej + ejei = δij , and note that [e1e2, ej ] is linear in e and preserves e2
j = Q(ej).

Hence the dimension of the Clifford algebra Cl associated to this quadratic form Q is 2dimV . The space of
quadratic vectors in Cl is the Lie algebra of SO(n). The corresponding Lie group, called the Spin group
Spin(Q), is the set of invertible elements x ∈ Cl that preserve V under v 7→ xvx−1. Clearly this map is in
SO(V,Q) since it preserves the quadratic form Q, and is a two-fold cover with kernel ±1.

2.3 Lie algebra to Lie group

How do we get from the Lie algebra to the Lie group? Let g be a Lie algebra. Step 1 is to apply Ado’s
theorem.

Theorem 2.3.1 (Ado). Any finite-dimensional Lie algebra has a faithful linear representation g→ gl(V ).

Proof sketch. One representation we have is g
ad−→ gl(g). The kernel is given by the center, so we must deal

with it. We have a faithful representation of g/Z(g), so by inducting on the dimension of the center, we can
move this faithful representation up to g.

Then look for G ⊂ GL(V ) (which need not be a Lie subgroup). The Lie algebra g sits in the tangent
space Te GL(V ). Using the local triviality of the tangent bundle T GL(V ), we can make the foliation by
G in GL(V ) have tangent space (dlh)g at the point h of GL(V ). These tangent spaces form an involutive
distribution, and are therefore integrable by Frobenius.

Theorem 2.3.2 (Frobenius). A field of k-planes is integrable if and only if the subspace of vector fields
tangent to any field of k-planes is a Lie algebra.

Proof. Choose a local frame ∂xi
for the distribution and check that the commutator of two basis vectors is

zero. So we can change coordinates such that ∂ei is the local frame.

Hence we can lift the Lie algebra g to a manifold G by integrating the distribution. That G is a subgroup
follows from exponentiating the addition map on tangent vectors.

11



Example 2.3.3. We can apply this machinery to find all connected commutative Lie groups G, i.e. the
commutator is 0. Hence the Lie group G must have universal cover Rn, with kernel a discrete subgroup Zk.
It follows that G = Rn−k × (S1)k.

(We can actually use this to prove the fundamental theorem of algebra: if [F : C] > 1, then F× =
R2d \ {0} ∼= S2d−1 × R, which is not commutative by the above result.)

2.4 Exponential map

There is a Lie algebra map from R (as a Lie algebra) to any other Lie algebra. Hence we have a Lie algebra
map R 3 1 → ξ ∈ g that can be integrated to give a map exp: (R,+) → G, which satisfies the differential
equation ∂te

tξ = ξetξ. In particular if g ⊂ gl(V ), then exp is exactly the matrix exponential.

Proposition 2.4.1. eaeb 6= ea+b unless [a, b] = 0.

Proof. If [a, b] = 0, then there is a Lie algebra homomorphism R2 3 1 7→ (a, b) ∈ g, which lifts to a Lie group
homomorphism (R2,+)→ G. That this is a homomorphism gives eaeb = ea+b.

Proposition 2.4.2. The exponential map a 7→ ea is a diffeomorphism near e because d expe = id.

Proposition 2.4.3 (Trotter product formula). ea+b = limn→∞(ea/neb/n)n.

Proof. Without loss of generality, we can arbitrarily scale a + b. So suppose a is very small, where ea =
1 + a+O(a2). Then we are done.

Remark. There is a formula due to Baker–Campbell–Hausdorff of ln(eaeb) in terms a convergent series
involving only commutators. Then in a chart near the identity, multiplication is analytic in that chart.
Hence a Lie group is actually a real analytic manifold.

What is the differential of the exponential map in general? This tells us when exp fails to be a diffeo-
morphism.

Theorem 2.4.4. d exp(ξ)e−ξ = F (adξ)dξ where

F (x) = (ex − 1)/x =
∑
k≥0

xk

(k + 1)!
.

Proof. Assume gl ⊂ GL(n). Then

exp(x) = 1 + x+ x2/2 + · · · =
∑
n≥0

xn/n!

is the usual power series. When we differentiate, we must be careful because x is not necessarily commutative:

d(ex) =
∑

a≥0, b≥0

xa dxxb

(a+ b+ 1)!
.

Trick: write this series as a product, by noting that

∑
a≥0, b≥0

xa dxxb

(a+ b+ 1)!
=

∫ 1

0

esx dx e(1−s)x ds (2.1)

by observing that ∫ 1

0

sa(1− s)b ds =
a!b!

(a+ b+ 1)!
.
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To extract an exp(x), we commute the ds term past the dx term (by conjugating the dx by e−sx:)∫ 1

0

esx dx e(1−s)x ds =

(∫ 1

0

ds es adx(dx)

)
ex.

Hence F (x) =
∫ 1

0
esx dx, which is indeed the expression we want.

Remark. Equation (2.1) is a very general formula. Let X be a manifold and v(x, t) be a time-dependent
vector field on X. Let G(t0, t1) : X → X be the flow from time t = t0 to t = t1. If we vary the field, i.e.
v 7→ v + δv, what will happen to the flow? We don’t know anything about G, but we can take the interval
[t0, t1] and partition it into [ti/n, t(i+1)/n], which gives a product

G(t0, t1) = · · ·G(t1/n, t2/n)G(t0, t1/n).

Taking the variation with respect to v, of course we get a sum:

δvG(t0, t1) =

n∑
i=1

G(t(n−1)/n, t1) · · · δvG(ti/n, t(i+1)/n) · · ·G(t0, t1/n).

But what is the flow G(t, t+ ε) for a very short time? Well, it is just G(t, t+ ε) = 1 + εv(x, t) +O(ε2). Hence
if n is large,

dG(ti/n, t(i+1)/n) = dv(x, t)|ti/n − ti+1/n|.

Then for n→∞, we get a sum corresponding to the Riemann integral

δvG(t0, t1) =

∫ t1

t0

G(t, t1) dv G(t0, t) dt.

Corollary 2.4.5. exp is a local isomorphism if 2πik for k 6= 0 is not an eigenvalue of the adjoint.

Proof. exp is not a local isomorphism if the differential kills something, which happens if 0 is an eigenvalue
of F (ad ξ), i.e. 2πik is an eigenvalue of ad ξ.

Example 2.4.6. If ad(ξ) is nilpotent for every ξ, then exp is a covering. For example, take the Lie group
consisting of upper triangular matrices. (Such Lie algebras are called nilpotent.)

Theorem 2.4.7 (Cartan). A closed subgroup H ⊂ G of a Lie group G is a Lie subgroup, and the Lie algebra
h of H is

h = {ξ ∈ g : etξ ∈ H ∀t}.

Proof. Define h this way; we will show it is the Lie algebra.

1. It is a linear subspace: ea+b = limn→∞(ea/neb/n)n, and the right hand side lies in H for all n, so the
limit lies in H because H is closed.

2. It is a Lie subalgebra (i.e. closed under bracket) because Ad(etξ) = t ad(ξ) +O(t2) preserves H.

Write g = h⊕ p where p is the complementary linear subspace. Since exp is a local isomorphism, G = ehep

locally (where eh and ep are submanifolds and we are taking their pointwise product).
Claim: H = eh locally. Suppose not. Then no matter how small we make our neighborhood, there exists

pn ∈ p such that pn → 0 and epn ∈ H. (If these points are not on p, of course we can “project” them onto p
by multiplying by elements of H.) But this is impossible, since then we can find a convergent subsequence
among pn/‖pn‖ (where we literally take any norm), which we suppose converges to ξ ∈ p. Then

etξ = lim
n→∞

et(pn/‖pn‖) = lim
n→∞

epn[t/‖pn‖]+pn{t/‖pn‖} ∈ H

since epn[t/‖pn‖] ∈ H but pn{t/‖pn‖} → 0. (Here [x] denotes integral part and {x} fractional part.)
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Example 2.4.8. We have the formula

log

(
ea c
0 eb

)
=

(
a c a−b

ea−eb
0 b

)
so there is a singularity when a = b+ 2πik for k 6= 0. In other words, when there is a zero in exp, there is a
singularity in log.

Proposition 2.4.9. Let G be a compact Lie group, so that G has a Haar measure. Then the geodesics in
this metric are getξ, i.e. etAd(g)ξg. More generally, for any Lie group G,(

left-invariant
metrics on G

)
∼=
(

right-invariant
metrics on G

)
∼=
(

metrics
on g

)
.

Right translations act on left-invariant metrics via the Ad action on g. If G is compact, then this action
preserves some metric on g (because the set of metrics is convex).

2.5 Digression: classical mechanics

Example 2.5.1. Left-invariant metrics on SO(3) generalize Euler’s equations for rigid bodies. The config-
uration space of a rigid body in R3 is R3 × SO(3) (for center of mass and rotation). We can always work in
a coordinate system where the center of mass is at rest, so only SO(3) remains. Given a rotation g(t), we
can view ġ as ġ = gξ for some angular velocity vector ξ ∈ g, i.e. “in the body.” Alternatively, we can find
a vector ω such that ωg = ġ, where ω is some angular velocity in the space. Here the kinetic energy is the
metric on g, i.e. some bilinear form on ξ, satisfying

1

2
‖ġ‖2 =

1

2
‖g−1ġ‖2 =

1

2
‖ξ‖2.

The motion of the rigid body will be a geodesic under this metric. The Lagrangian here is
∫
dt ‖ġ‖2/2. Note

however that this is not the length of the geodesic, which is
∫
dt ‖ġ‖/2. It is better to integrate ‖ġ‖2 even

though length is reparametrization invariant.

Remark. More generally, Lagrangians are written
∫
dtL(x(t), ẋ(t), t), and physical paths x(t) are extremals

of this functional. To find extremals, we vary x 7→ x+ δx, to get∫
dt (∂xLδx+ ∂ẋLδẋ) =

∫
dt (∂xL− ∂t∂ẋL) δx.

Since x is an extremal, this variation must vanish, i.e. ∂t∂ẋL = ∂xL, the Euler–Lagrange equation. The
description of classical mechanics in this manner allows us to easily work in moving coordinate systems.

Definition 2.5.2. We can rewrite the Lagrangian as a function H(p, x) where p is now a cotangent vector
by

H(p, x) = max
ẋ

(〈p, ẋ〉 − L(x, ẋ, t)).

The maximum is achieved when p = ∂ẋL. The equations

q̇ = ∂pH, ṗ = −∂qH

where q := x are Hamilton’s equations. This says there is a Poisson algebra structure {pi, qj} = δij on
the space of functions, so that ∂tf(p, q) = {H, f}. (Note: ∂tH = {H,H} = 0, so energy is conserved.)
Derivation of Hamilton’s equations (noting that δq̇ = 0 because we are at an extremal for q̇):

dH = dmax
q̇

(〈p, q̇〉 − L(q, q̇, t))

= q̇δp− ∂qLδq − ∂tLδt
= q̇δp− ṗδq − ∂tLδt.

Hence we are done.
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2.6 Universal enveloping algebra

Associated to a Lie algebra g we will define an associative algebra Ug such that the category of finite-
dimensional representations of g is equivalent to the category of finite-dimensional representations of Ug.
Our goal is to find a basis for this algebra Ug. First we recall some constructions in linear algebra.

Definition 2.6.1. For k any field and V a vector space over k, we can define the tensor algebra T ∗V :=⊔
m T

mV where Tm(V ) := V ⊗m. We can also define it using a universal property: it is the algebra with a
map V → T ∗V such that any other map V → A factors through T ∗V .

Definition 2.6.2. From the tensor algebra, we get the symmetric algebra S∗(V ) = T ∗(V )/I, where I is
the ideal generated by all elements of the form x ⊗ y − y ⊗ x for any x, y ∈ V . If V has a basis x1, . . . , xn,
then S∗V ∼= C[x1, . . . , xn]. In particular, the quotient map σ : T ∗(V )→ S∗(V ) is injective on T 0V = k and
T 1V = V , since the generators of the ideal I are degree 2. By the universal property of the tensor algebra,
Si(V ) = σ(T iV ).

Definition 2.6.3. The universal enveloping algebra Ug of a Lie algebra g is a pair (i, Ug) where Ug is
an associative algebra with unit, and i : g→ Ug satisfying the following universal property:

for any associative algebra A with unit, any algebra homomorphism φ : g → A with φ(x)φ(y) −
φ(y)φ(x) = φ([x, y]) factors through i : g→ Ug.

As usual, with any definition via universal properties, Ug must be unique up to unique isomorphism. Its
explicit construction, to show existence, is to take Ug := T ∗(g)/J where J is the ideal generated by x⊗ y −
y ⊗ x− [x, y] for all x, y ∈ g. Let π : T ∗(g)→ Ug be the quotient map.

Remark. Note that elements in the ideal J are not homogeneous: x⊗y and y⊗x have degree 2, but [x, y] has
degree 1. So it is not obvious that π|g is injective, which was the case for the symmetric algebra. (Actually,
it turns out π|g is injective, which we will prove later.) However it is clear that π|k is injective. In particular,
at least Ug contains scalars and is non-empty.

Definition 2.6.4. There is a filtration on the tensor algebra, given by Tm := T 0⊕T 1⊕· · ·⊕Tm (where the
T i(V ) are the graded components). We get an induced filtration Un := π(Tn) on the universal enveloping
algebra.

Definition 2.6.5. Whenever we have a filtration, we can consider the associated graded algebra Gr :=
Gr(Ug) :=

⊕
m≥0 Grm where Grm := Um/Um−1. Clearly it has an algebra structure, because there is an

induced multiplication

Grm×Grn = Um/Um−1 × Un/Un−1 → Um+n/Um+n−1 = Grm+n .

So Gr is a graded associative algebra with unit 1. We have a surjective map Tm → Um → Gm = Um/Um−1

for each graded component, so we get a surjective map φ : T ∗(g)→ Gr.

Lemma 2.6.6. φ is an algebra homomorphism, and φ(I) = 0 where I is generated by x ⊗ y − y ⊗ x for
x, y ∈ g.

Proof. That φ is an algebra homomorphism is easy, because it is induced by an algebra homomorphism. It
suffices to check φ(I) = 0. But π(x⊗ y − y ⊗ x) = π([x, y]) by the construction of the universal enveloping
algebra. Then because φ arises from π : T ∗(g)→ U(g),

φ(x⊗ y − y ⊗ x) ∈ U1/U1 = 0.

Theorem 2.6.7 (Poincaré–Birkhoff–Witt (PBW)). Since I ⊂ ker(φ : T ∗(g)→ Gr), we have an induced map
T ∗g/I → Gr(Ug). This is an isomorphism of associative algebras, i.e. Gr(Ug) is just a polynomial algebra
on the Lie algebra
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Corollary 2.6.8. Let W be a subspace of Tmg, and suppose the map Tm → Smg is an isomorphism on W .
Then π(W ) is a complement to Um−1 in Um.

Proof. Consider the map from the graded piece:

Tm
π−→ Um → Grm = Um/Um−1.

We have a different map Tm → Smg
∼=−→ Grm (where the isomorphism is by PBW) which makes a commu-

tative diagram. Since W ⊂ Tm is sent isomorphically to Smg, we know W ∼= Grm = Um/Um−1. Hence in
Um, we see Grm is a complement to Um−1.

Corollary 2.6.9. The map i : g→ Ug is injective.

Proof. This is trivial: take S1g = g, and PBW says it maps isomorphically to Gr1 = U1/U0.

Corollary 2.6.10. Let (x1, x2, . . .) be a basis for the Lie algebra g. Then the elements

xi(1) · · ·xi(m) := π(xi(1) ⊗ · · · ⊗ xi(m)) m ∈ Z≥0, i(1) ≤ i(2) ≤ · · · ≤ i(m)

form a basis for Ug, along with 1.

Proof. Recall that Ug has a filtration U0 ⊂ U1 ⊂ · · · . So if we can give a basis for every Um/Um−1, we
can put them together to get a basis of the whole space Ug. Let W be the subspace of Tm spanned by
elements of the form xi(1) ⊗ · · · ⊗ xi(m). It satisfies the conditions of an earlier corollary, i.e. it is mapped
isomorphically into Sm. By that corollary, the images of these elements form a basis for the complement of
Um−1. Putting these elements together, we get a basis for all of Ug.

Corollary 2.6.11. Let h ⊂ g be a Lie subalgebra. Extend a basis (h1, h2, . . .) of h to an ordered basis
(h1, h2, . . . , x1, x2, . . .) of g. Then the map Uh → Ug is injective and Ug is a free Uh-module with basis
{xi(1) · · ·xi(m)} ∪ {1}.

Proof of PBW. We already know this map is surjective, so it suffices to prove injectivity. In other words,
we must show that if t ∈ Tmg such that π(t) ∈ Um−1, then t ∈ I.

(Setup) Fix a basis {xλ}λ∈Ω of g. Write S∗g = C[zλ] for λ ∈ Ω. For each sequence Σ = (λ1, . . . , λn) of
indices, let

zΣ := zλ1
· · · zλn

∈ SmgxΣ := xλ1
⊗ · · · ⊗ xλm

∈ Tmg.

Write λ ≤ Σ to mean λ ≤ µ for every µ ∈ Σ.
Assume there exists a representation ρ : g→ End(S∗g) satisfying:

1. ρ(xλ)zσ = zλzσ if λ ≤ Σ;

2. ρ(xλ)zΣ ≡ zλzΣ mod Sm if |Σ| = m;

3. if we extend ρ to ρ : T ∗g→ End(S∗g), then ker ρ ⊃ J .

We show the following result: if t ∈ Tm ∩ J , written t = tm + tm−1 + · · · where ti ∈ T ig are the
homogeneous components, then tm ∈ I. The representation ρ : g → End(S∗g) extends to a representation
ρ : T ∗g→ End(S∗g), so ρ(t) = 0 for t ∈ Tm∩J . Then using property 2 above, the highest degree component
of ρ(t)1 is determined by tm, and is actually 0. Hence tm ∈ I.

Now we proceed with the proof of PBW. Let t ∈ Tmg and π(t) ∈ Um−1. We want to show t ∈ I. If
π(t) ∈ Um−1 = π(Tm−1), we know π(t) = π(t′) for t′ ∈ Tm−1. Hence π(t−t′) = 0, and we are in the situation
of the preceding result: t − t′ ∈ Tm ∩ J , so we know the highest degree part of t − t′, i.e. t itself, lies in I.
Hence t ∈ I.

Finally, we need to construct the representation ρ : g→ End(S∗g). Equivalently, for every m, we need a
map fm : g⊗ Sm → S∗g satisfying the three properties we want:
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1. fm(xλ ⊗ zΣ) = zλzΣ if λ ≤ Σ and zΣ ∈ Sm;

2. fm(xλ ⊗ zΣ)− zλzΣ ∈ Sk for k ≤ m and zΣ ∈ Sk;

3. fm(xλ ⊗ fm(xµ ⊗ zτ )) = fm(xµ ⊗ fm(xλ ⊗ zτ )) + fm([xλ, xµ]⊗ zτ ).

Just do it. We construct

fm(xλ ⊗ zi(1) ⊗ · · · ⊗ zi(m)) = zλ ⊗ zi(1) ⊗ · · · , λ ≤ i(1).

If i(1) < λ, then we can swap two terms using the third property:

fm(xλ ⊗ zi(1) ⊗ · · · ⊗ zi(m)) = fm(xi(1) ⊗ zλ ⊗ zi(1) ⊗ · · · ) + fm([xλ, xi(1)]⊗ zi(2) ⊗ · · · )

which is well-defined because [xλ, xi(1)] lies in g and the remainder lies in Sm−1.
So we could use induction: if we defined fm−1, we have defined fm. Formally, induct on m. For m = 0

the construction is obvious. Now we use the commutator relation to push computations with fm onto fm−1.
Explicitly we have fm(xλ ⊗ zΣ) = zλzΣ if λ ≤ Σ. Otherwise if Σ = (µ, τ) for µ < λ, then

fm(xλ ⊗ zΣ) = fm(xλ ⊗ fm−1(xµ ⊗ zτ ))

Since µ < λ, we know by the third property that this is equal to

fm(xµ ⊗ fm(xλ ⊗ zI)) + fm−1([xλ, xµ]⊗ zτ ).

The hard part is to compute

fm(xλ ⊗ zτ ) = fm−1(xλ ⊗ zτ ) ≡ zλzτ mod Sm−1.

Hence now everything is well-defined, because we’ve pushed everything into lower degree.
Finally, the check that this construction satisfies the third property is a computation using the Jacobi

identity for the bracket (which we haven’t used yet).

2.7 Poisson algebras and Poisson manifolds

A Poisson algebra A has two products: one as a commutative, associative algebra, and another as a Lie
algebra. These products are compatible by the Leibniz rule

{f, g1g2} = {f, g1}g2 + {f, g2}g1,

i.e. the bracket {f,−} is a derivation for the commutative associative algebra. Recall that {−,−} arises as
the commutative limit of non-commutative algebras ∗~:

{f, g} = lim
~→0

f ∗~ g − g ∗~ f
~

.

This limit is called the classical limit. The process in reverse is called quantization and is much more
difficult.

Any commutative associative algebra can be thought of as a collection of functions on something. For
example, if the ring of functions on a manifold has the structure of a Poisson algebra, we call it a Poisson
manifold.

Example 2.7.1. Let X = T ∗M . Then functions on X consist of pullbacks of functions on M , and also
vector fields on M . We also have the algebra of differential operators of M whose lower-order bits are these
two types of objects, where if coordinates on M are (q1, . . . , qn), then there is the commutation relation
[∂qi , qi] = δij . If we denote pi := ~∂qi (by rescaling by ~ along fibers), then [pi, qj ] = ~δij . The corresponding
Poisson bracket is {pi, qj} = δij .
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Remark. Consider the maximal ideal mx = {f : f(x) = 0} in the algebra of functions on X. Then {c,−} = 0
where c is a constant, but we also have

{m2
x,−}|x = 0,

since {f,−}|x is determined by the class of f − f(x) in mx/m
2
x, which is the cotangent space. Hence the

Poisson bracket goes from differentials to functions, and therefore is a tensor.

Example 2.7.2. A Lie algebra g is not a Poisson manifold, but its dual g∗ is. Functions on g∗ include
constants k, and linear functions g, and so on: k⊕g⊕S2g⊕· · · , denoted S•g. What is the non-commutative
algebra whose limit is this? It is the universal enveloping algebra Ug~, with a parameter ~: in the universal
enveloping algebra Ug, we had ξη − ηξ = [ξ, η], but for Ug~ we define ξη − ηξ = ~[ξ, η], with ~ of degree 1.

Example 2.7.3. The intersection of the previous two examples is called the Heisenberg Lie algebra,
where [pi, qj ] = eδij , where e is a central element. (We can always mod out by central elements.)

Fix H a function on X, called the Hamiltonian. Then Hamilton’s equation says

d

dt
f = {H, f}.

As discussed, {H,−} is a derivation of a commutative product, i.e. a vector field on X, which specifies
dynamics. (Not every dynamical system is Hamiltonian though.) For example, the geodesic flow we discussed
earlier on is an example of Hamiltonian dynamics, with X = T ∗M and H(p, q) = (1/2)‖p‖2. (Of course,
this corresponds to the Lagrangian formulation

1

2

∫ t1

t0

L(q, q̇, t) dt, L(q, q̇, t) := ‖q̇(t)‖2,

since H(p, q) = maxq̇(〈p, q〉−L(q, q̇)).) The Legendre transform is the classical limit of the Fourier transform.

Lemma 2.7.4. The following are equivalent:

1. {H,G} = 0 for some function G;

2. G is preserved by the flow of H;

3. H is preserved by the flow of G.

If H = (1/2)‖ξ‖2, then we get geodesics in a left-invariant metrics. Then H is preserved by left trans-
lations by G, but there is dimG worth of flows. We call preserved quantities integrals, so there are dimG
many integrals. For a rigid body, we write the phase space T ∗ SO(3) as either g×G (with coordinates (ω, g))
or G× g (with coordinates (g, ξ)), and it turns out these integrals are precisely the angular momentum ω.

So we understand ω, and we want to look at the time-evolution of ξ. By general principles,

d

dt
ξ =

1

2
{‖ξ‖2, ξ}.

We know the Poisson bracket {ξ1, ξ2} = −[ξ1, ξ2] (the minus sign is because the ξ are left invariant). Hence
we re-interpret {‖ξ‖2, ξ} as a bracket on T ∗G as {ξ, ‖ξ‖2} a bracket on g∗:

d

dt
ξ =

1

2
{‖ξ‖2, ξ} = {ξ, 1

2
‖xi‖2}.

Because the metric is both left and right invariant, ξ is Ad-invariant, fixed by the action of G, i.e. {η, ‖ξ‖2} =
0 for every η ∈ g. Hence ξ is a constant.
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2.8 Baker–Campbell–Hausdorff formula

In a neighborhood of the identity, exp: g → G is a diffeomorphism. What does multiplication look like in
this chart? In other words, what is log(eXeY )? We know the first-order terms are X + Y .

Warmup: start with a matrix Lie group, where eX = 1+X+X2/2+· · · and log(1+X) = X−X2/2+· · · .
Then

log(eXeY ) = log(1 +X + Y +X2/2 +XY + Y 2/2 + · · · )
= X + Y + (X2/2 +XY + Y 2/2− (X + Y )2/2) + · · · = X + Y + [X,Y ]/2 + · · · .

Let g be the free Lie algebra generated by variables X and Y . Then it is graded by the number of
generators: g = g0 ⊕ g1 ⊕ · · · , where for example g3 contains [x, [x, y]] and [y, [x, y]]. What is the dimension
of gn? The universal enveloping algebra Ug is a free associative algebra and is also graded. If we take∑
d≥0 t

d dim(Ug)d to be the generating function of the dimensions, it is equal to (1 − 2t)−1. From this we
can compute the dimensions of the grading on g.

Consider exp: g→ Ûg (completion with respect to the grading) given by X 7→
∑
n≥0X

n/n!. This is an

isomorphism between series 0 + · · · in Ûg and series 1 + · · · in Ûg. (Sidenote: completion means we take a
series to converge if the degree of its terms goes to infinity.) Then we will show log(eXeY ) lies in ĝ, i.e. that
all the terms in the resulting series involve only (nested) commutators.

Suppose G is finite. Then it has a group algebra

A := CG ∼=
⊕

irreps V

End(V ).

The map from G to CG does not remember the group, e.g. think when G is abelian. How can we reconstruct
the group from the group algebra? Well, there is a (coassociative) diagonal map

G
∆−→ G×G, g 7→ (g, g)

which is a group homomorphism. By linearity, this extends to an algebra homomorphism A ∆−→ A → A. This
map remembers the multiplication on irreps V1⊕V2 =

∑
mi

12Vi. Hence the group is the set of solutions in A
to ∆(x) = x⊕x, which is a non-linear equation. (Elements x satisfying this equation are called group-like.)

Definition 2.8.1. Such an algebraA with a coassociative comultiplication is called a bialgebra. A bialgebra
is a Hopf algebra if in addition it has an anti-automorphism S : A → A called the antipode. In our case,
we take S(g) := g−1.

Let G be a Lie group. Then take A = CG, i.e. finite linear combinations, which can be viewed as
measures with finite support (where multiplication is precisely convolution). Define a map

∆: Ug→ Ug⊗ Ug, X 7→ X ⊗ 1 + 1⊗X.

This is the differential of ∆: G→ G⊗G. We can sanity-check:

[∆(X),∆(Y )] = [X ⊗ 1 + 1⊗X,Y ⊗ 1 + 1⊗ Y ] = [X,Y ]⊗ 1 + 1⊗ [X,Y ] = ∆([X,Y ]).

Hence we have a Hopf algebra structure on Ug.

Proposition 2.8.2. If k is a field of characteristic 0, then the set of primitive elements

{solutions to ∆y = y ⊗ 1 + 1⊗ y} ⊂ Ug

is equal to g.
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Remark. This is no longer true in characteristic p, since

∆(Xp) = ∆(X)p = (X ⊗ 1 + 1⊗X)p = Xp ⊗ 1 + 1⊗Xp

shows that Xp is also primitive.

Proof. Filter Ug by degree (as in PBW). Denote the associated graded by GrUg, which is just Sg, the
symmetric algebra. View Sg as the polynomial algebra on g∗. If y is primitive, then the top degree term of
y is primitive for Sg. But comultiplication on Sg is just ∆: C[g∗] → C[g∗ × g∗] = C[g∗] ⊗ C[g∗]. In other
words,

y(λ+ µ) = y(λ) + y(µ), λ, µ ∈ g∗.

Hence the top degree term of y is additive, and therefore linear. So y itself is linear, and therefore y ∈ g.
(This is where we need characteristic 0: in characteristic p, it is not true that if a polynomial is additive, it
is linear.)

Lemma 2.8.3. An element X ∈ g is primitive if and only if eX := 1 + Y is group-like. In other words,
∆X = X ⊗ 1 + 1⊗X if and only if ∆eX = eX ⊗ eX .

Proof. This is a statement about a 1-dimensional Lie algebra g generated by X. Then Ug really just is
polynomials on g∗, and ea+b = eaeb.

Theorem 2.8.4. log(eXeY ) ∈ g.

Proof. If we have a Lie algebra g freely generated by X,Y , then X and Y are primitive. By the lemma, eX

and eY are group-like. Then their product eXeY is group-like, since

∆(g1g2) = ∆(g1)∆(g2) = (g1 ⊗ g1)(g2 ⊗ g2) = (g1g2)⊗ (g1g2).

But then log(eXeY ) is primitive, by the lemma.

So how do we actually write log(eXeY ) as a sum of (nested) commutators? Consider the map Φ: Ug→ ĝ
which takes a monomial in Ug and replaces the (free) multiplication with the Lie bracket, e.g.

xyx3 7→ [[[[x, y], x], x], x].

Another example: [x, y] ∈ g2 goes to [x, y]− [y, x] = 2[x, y] ∈ ĝ.

Lemma 2.8.5. An element A ∈ gk ⊂ g ⊂ Ug satisfies Φ(A) = kA. In particular, A can be written in terms
of (nested) commutators.

Hence, using this lemma, we can convert the expression in Ug for log(eXeY ) into a sum of (nested)
commutators, sometimes called the Baker–Campbell–Hausdorff series in Dynkin form. This series has
a radius of convergence 1.

Corollary 2.8.6. Lie groups are actually real analytic.
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Chapter 3

Compact Lie groups

Example 3.0.1. Some examples of compact Lie groups: S1 = R/Z, SU(n), U(n), O(n,R). Some examples
of non-compact Lie groups: GL(n,R), SL(n,R), O(n,C).

If G is a compact Lie group, then it has the following nice properties.

1. G has a left and right invariant measure µHaar, which is finite. (This comes from the fact that any
homomorphism G→ (R>0, ∗) is trivial.)

2. (Averaging) Using this measure, we can take a vector to another vector fixed by the action of the group
G:

v 7→
∫
G

g · v µ(dg);

3. (Complete reducibility) Any complex finite-dimensional representation V of G has a positive definite
Hermitian metric, and therefore V =

⊕
Vi where the Vi are irreducible.

4. G has a left and right invariant Riemannian metric, which induces a positive-definite bilinear form
(·, ·) on g which is invariant, i.e. (Ad(g)ξ,Ad(g)η) = (ξ, η). This can be differentiated to give
([ξ, γ], η) = (ξ, [γ, η]). Equivalently, ad(γ) is skew-symmetric.

Proposition 3.0.2. If g has a positive-definite invariant metric, then the universal cover Ĝ of its Lie group
is Rn times some compact Lie group.

Proof. First, apply complete reducibility to the adjoint representation of G on g, to get g =
⊕

i gi where
the gi are simple. A simple Lie algebra can either be R or a simple non-abelian Lie algebra. So it suffices to
show that if g is simple non-abelian with positive-definite invariant metric (·, ·), then Ĝ is compact.

Given ξ ∈ g, the exponential etξ is a geodesic. Claim: there is some constant c such that it fails to
be a minimal geodesic for ‖tξ‖ > c. We know ad(tξ) is skew-symmetric, so its eigenvalues are purely
imaginary. By rescaling ξ, which gives us the constant c, we can make sure its eigenvalues are not a subset of
(−2πi, 2πi). (Not all its eigenvalues can be zero, otherwise it commutes with everything.) Hence the volume
of Ĝ is bounded.

3.1 Peter–Weyl theorem

We now look at a generalization of Fourier’s theorem, which says that there is an isometry

L2(R/Z, dx) ∼=
⊕̂

k
Ce2πikx.

(Here
⊕̂

means to take the direct sum of the subspaces first, and then to take the completion.) From the
perspective of Lie theory, the summands Ce2πikx are 1× 1 irreducible representations of G.
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Definition 3.1.1. If V is a representation of G, then there is a function

φ`,v(g) := `(g · v), v ∈ V, ` ∈ V ∗

called a matrix element. (We will prove soon that matrix elements are orthogonal.)

Theorem 3.1.2 (Peter–Weyl). If V ranges over all irreducible complex representations of G, then

L2(G,µHaar) =
⊕̂

V
(V ∗ ⊗ V, (A,B) := (trA∗B)/ dim)

where V ∗ ⊗ V are the matrix elements.

Remark. There is an action of G×G on L2(G,µHaar) by left and right translation:

(Lgf)h := f(g−1h), (Rgf)h = f(hg).

What are the left and right actions of G on matrix elements? Well,

(Lgφ`,v)h = `(g−1hv) = φg`,v, (Rgφ`,v)h = `(hgv) = φ`,gv.

Hence the embedding V ∗ ⊗ V → {matrix elements} is (G × G)-equivariant. In fact, matrix elements of V
are precisely functions that transform in a representation V under Rg. The space V ∗ ⊗ V = End(V ) has a
natural Hermitian form (A,B) := trA∗B, i.e. the elementary matrices Eij are orthonormal.

Theorem 3.1.3. Matrix elements of inequivalent irreducible representations are orthogonal. Matrix elements
φij of a representation V are orthogonal and

‖φij‖2L2(G) =
1

dimV
.

Hence ‖
∑
φii‖ = 1.

Proof. Let V,W be irreducible representations of G, and let A : V → W be any operator. Then Ā :=∫
gAg−1 : V →W commutes with all g ∈ G. Schur’s lemma says that:

1. if W 6= V , then Ā = 0;

2. if W = V , then Ā = λI where λ = trA/ dimV .

If we choose an invariant Hermitian form for V then g−1 = (ḡ)T (i.e. g ∈ U(V )). Taking A = Eij , the
integral becomes (∫

gEijg
−1 dµ(g)

)
kl

= (φ`j , φki)L2 .

Hence we have shown that ⊕
irreps V

(V ∗ ⊗ V, ‖ · ‖2/ dimV )→ L2(G,µ)

is an injection, and the left hand side is (G × G)-equivariant. The image consists of G-finite vectors in
L2(G), i.e. vectors that transform in a finite-dimensional representation. A rephrasing Peter–Weyl is that
the image of this map is dense.

Lemma 3.1.4. Peter–Weyl is equivalent to showing that G has a faithful linear representation.

Proof. If W is a faithful linear representation, then G ⊂ GL(W ). Polynomials of GL(W ) are just matrix
elements of W⊗n, which decomposes as

⊕
Vi,n where Vi,n are irreps. But Stone–Weierstrass says polynomials

are dense in continuous functions, and continuous functions are dense in L2.

Hence we have proved Peter–Weyl for all the compact groups we have seen; it is an easy consequence of
Stone–Weierstrass.
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3.2 Compact operators

Let V be a Banach space (though we will work with Hilbert spaces only). Recall that the unit ball {v :
‖v‖ ≤ 1} is compact if and only if dimV <∞.

Definition 3.2.1. An operator A : V → V is compact if it sends bounded sets to pre-compact sets, i.e.
sets whose closures are compact.

Example 3.2.2. A map A : Cn → Cn is an n×n matrix. We have (Av)i =
∑
j aijv

j , which we can write as

[Af ](i) =
∫
a(i, j)f(j) with the counting measure, on basis vectors {1, . . . , n}. But we can replace {1, . . . , n}

with (X, ν) where ν is a measure. So we consider maps

K := f(x) 7→
∫
X

K(x, y)f(y).

Then K : L2(X)→ C(X) ⊂ L2(X) and takes bounded sets to pre-compact sets; we know pre-compact sets
(in C(X) with the sup norm) are precisely those whose functions are uniformly bounded and equi-continuous,
so this is not hard to check. For example,

|Kfn(x1)−Kfn(x2)| ≤
∫
|K(x1, y)−K(x2, y)||fn(y)| dy ≤ C

∫
|fn(y)|2 dy.

Another proof of the same fact: use that an operator A is compact if and only if it is the limit of finite rank
operators in the operator norm. Such maps are called integral operators and are a primary example of
compact operators.

Remark. Here is the more general situation. Suppose we have a functor F from topological spaces to algebras
that behaves well with respect to pushforwards and pullbacks. Then F (X ×X) acts on F (X) via

Af := (p1)∗(A · p∗2(f)),

called a Fourier–Mukai kernel.

Theorem 3.2.3 (Spectral theorem for compact self-adjoint operators). If K = K∗ is compact, then V =⊕̂
iCvi such that Kvi = λivi, and limi→∞ |λi| → 0. In general,

K =
∑
i

λi(fi, ·)ei

with |λi| → 0, where ‖ei‖ = ‖fi‖ = 1.

Example 3.2.4. Let X = G, and consider the operator K which is the average of left shifts by g ∈ G:

K :=

∫
k(g)Lg dg, (Lgf)(h) := f(g−1h).

Here k is some continuous function on G which we think of as a weight. Explicitly,

[Kf ](h) =

∫
k(g)f(g−1h) dg =

∫
k(hg−1)f(g) dg.

So if we declare K(h, g) := k(hg−1), we have obtained an integral operator. We can make it self-adjoint by
imposing k(g−1) = k(g). Hence by the spectral theorem, if λi and vi are the eigenvalues and eigenvectors,
respectively, of K, then

L2(G) =
⊕̂

i
Cvi

consists of summands which are clearly finite-dimensional for non-zero eigenvalues. (This comes from
limi→∞ |λi| =∞, so every non-zero eigenvalue can appear only a finite number of times.)

This is how we finish off the proof of Peter–Weyl! Note that K commutes with the right-action of G.

Hence G acts on the right on
⊕̂

iCvi, and every vector corresponding to λ 6= 0 is G-finite. For λ = 0, choose

a sequence kn such that kn → δe and kn(g−1) = kn(g). Then
∫
kn(hg−1)f(g) dg → f(h) shows that f is

zero.
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3.3 Complexifications

Definition 3.3.1. The finite part of
⊕̂

V End(V ) is
⊕

V End(V ). We denote it by L2(G)fin.

Consider L2(SU(n)). Its finite part L2(SU(n))fin is precisely C[SL(n,C)], since the complexification of
SU(n) is SL(n,C).

Definition 3.3.2. Given a 1-connected compact Lie group G with Lie algebra g, its complexification GC
is the 1-connected complex Lie group with Lie algebra gC := g⊗R C.

Hence there is a correspondence between:

1. finite-dimensional complex representations of G;

2. finite-dimensional complex representations of g (by Lie’s theorem);

3. finite-dimensional complex representations of gC;

4. finite-dimensional complex representations of GC (by Lie’s theorem again).

Clearly G sits in GC as a totally real submanifold. Matrix elements of GC are complex analytic, and matrix
elements of G are real analytic. The map between the two is by restriction and by analytic continuation.

While in general L2(G) is not an algebra (the product of two L2 functions is not necessarily L2 anymore),
matrix elements are analytic and therefore form an algebra:

End(V )⊗ End(V ′) ⊂ End(V ⊗ V ′).

This algebra is finitely generated. (It also clearly has no zero divisors.) So we can make the analytic variety
GC algebraic by producing this finitely generated algebra which separates points. In other words, GC is
automatically a linear algebraic group. Also, because finite-dimensional complex representations of compact
G are semisimple, the same holds for finite-dimensional complex representations of GC.

Let G be a linear algebraic group, i.e. a closed subgroup of GL(N, k) for k algebraically closed. It is
fairly easy to show that if G is reductive, then the category of representations of G is semisimple, and also
that the analogue k[G] =

⊕
V V

∗ ⊗ V of Peter–Weyl holds. Reductive Lie groups arise as complexifications
of Lie groups.

3.4 Symmetric spaces

Let G be a compact Lie group, and H a Lie subgroup. We know L2(G/H) =
⊕

irreps V V
∗⊗V H . In general,

we can ask: what can we say about V H?

Definition 3.4.1. Let X be a compact (for simplicity) Riemannian manifold. We call X symmetric if for
every point x ∈ X, there exists an isometry sx which fixes x and acts by −1 on TxX.

Remark. Since every isometry preserves geodesics, to specify an isometry it suffices to specify its action on
a point and on the tangent bundle.

Example 3.4.2. The spheres Sn are clearly symmetric. We can also mod by {±1} to get RPn. In fact, any
compact Lie group G is symmetric: the isometry around the origin is g 7→ g−1.

Suppose any two points on X are connected by a geodesic. Pick two points x, y and let (x+ y)/2 denote
the midpoint on the geodesic connecting them. What is τx→y := s(x+y)/2sx? It preserves the geodesic, and
on the geodesic it will be a translation by the length from x to y. It is therefore true that the group of
isometries acts transitively. Hence X = Isom(X)/ Stabx.

How do we pick out the stabilizer? Note that Stabx ⊂ Isom(X)sx . By the example below, we see this
may not be an equality.
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Example 3.4.3. Take Sn−1 = SO(n)/ SO(n−1) with x = e1. Then sx is diag(1,−1,−1, . . . ,−1). But then

SO(n)sx =



∗ 0 0 · · ·
0
0 ∗
...


 = O(n− 1) 6= SO(n− 1).

In fact, we see that Stabx ⊃ Isom(X)sx0 , the connected component of the identity. In general, the following
proposition is true.

Proposition 3.4.4. Gs ⊃ Stabx ⊃ (Gs)0.

Proof. Any isometry that commutes with reflection by sx takes x to a fixed point of sx.

Let G be a compact Lie group with an automorphism s : G → G of order 2. Then Gs, the collection
of fixed points of s, may not be connected, but we can choose a subgroup H such that Gs ⊃ H ⊃ (Gs)0.
(Keep in mind the example of the sphere, where Gs = O(n− 1) and (Gs)0 = SO(n− 1).) Then s descends
to X = G/H, and the identity 1 is an isolated fixed point. So we have shown that symmetric spaces are
precisely the quotients of compact Lie groups G by a subgroup H such that Gs ⊃ H ⊃ (Gs)0 where s2 = 1
is an involution.

Example 3.4.5. If X = G is a compact Lie group, then at least G × G acts transitively via (g1, g2) · x =
g1xg

−1
2 . The stabilizer Stab1 of the identity is precisely the diagonal ∆(G). On G×G, there is an involution

that permutes factors. It descends to x 7→ x−1 on X. In this case, the stabilizer Stab1 is precisely the fixed
points (G×G)s.

Example 3.4.6. The complex Grassmannian Gr(k, n,C) can be written as U(n)/(U(k) × U(n − k)). Of
course, U(k)× U(n− k) is the matrix commuting with diag(1, 1, . . . , 1,−1,−1, . . . ,−1). It follows that the
complex Grassmannian is a symmetric space. In the real case, we can write Gr(k, n,R) as SO(n)/S(O(k)×
O(n − k)). Alternatively, we can also quotient by SO(k) × SO(n − k) to get the oriented Grassmannian, a
double cover of Gr(k, n,R).

Example 3.4.7. Equip R2n with a symplectic form ω =
∑n
i=1 dpi ∧ dqi. A Lagrangian subspace is an

n-dimensional subspace L ⊂ R2n such that ω|L = 0. It is easy to see that n is the maximal dimension for
which ω|L = 0 can happen, since ω is non-degenerate. The space of all Lagrangian subspaces is called the
Lagrangian Grassmannian LGr(2n).

This is a homogeneous space, but the way to see this is interesting. Think of R2n ∼= Cn via zi := pi+
√
−1qi.

Then ω is proportional to the imaginary part of the Hermitian form (z, w) :=
∑
i z̄iwi. By definition, the

unitary group U(n) preserves the Hermitian form, and therefore preserves, separately, its real and imaginary
parts. Hence U(n) preserves ω, and is in fact transitive on LGr(2n). The stabilizer of a point is O(n),
since it is precisely the stabilizer of Rn ⊂ Cn, i.e. where im z = 0. Note that O(n) = U(n)s where s is
complex conjugation g 7→ ḡ. Alternatively, we can also take U(n)/ SO(n) to get the double cover consisting
of oriented Lagrangian subspaces.

Theorem 3.4.8 (Gelfand lemma). If X = G/H is a symmetric space, then dimV H ∈ {0, 1} for any irrep
V .

Proof. We know L2(H) =
⊕

W W ⊗ W ∗ where the sum is over irreps W . Inside the sum is the trivial
representation C · 1. Therefore there exists a projector P : f(h) 7→

∫
H
f(h) dh where dh is the normalized

Haar measure. This is analogous to the Fourier case:

f(t) =
∑
k

f̂(k)e2πikt, f̂(k) =

∫ 1

0

f(t)e−2πikt dt

extracts f̂(k). In our projector, we are just extracting the coefficient associated to the trivial representation.
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Consider L2(H\G/H), i.e. functions invariant under the H-action on both the left and the right. This
is just PL2(G)P by the definition of the projector P . Similarly, the same applies for C(H\G/H), the space

of left and right invariant continuous functions on G. Hence L2(H\H/H) =
⊕̂

V (V ∗)H ⊗ V H since we take
invariants on both sides. But each term is just End(V H). The statement that dimV H ∈ {0, 1} for every
V is equivalent to the statement that

⊕
V End(V H) is commutative. But this algebra is commutative iff

its completions are commutative, i.e. C(H\G/H) is commutative. So it suffices to prove C(H\G/H) is
commutative.

Fact: if an algebra A has an anti-automorphism σ, i.e. a linear map such that σ(ab) = σ(b)σ(a), such
that σ = 1, then A is commutative. This is stupidly obvious but is apparently somewhat deep. Take
A = C(H\G/H) = C(H\X). We will define such an anti-automorphism σ on A by first defining it on G.
Define it to be σ : g 7→ s(g−1) = s(g)−1 (since s is a group automorphism), so that it is an anti-automorphism
of G and therefore of C(G) and therefore of A. Now we show it is the identity on A. Given g near the
identity in X, we can write it as g = τx→yh. Then

σ(g) = σ(h)σ(τx→y) = σ(h)τx→y.

Hence σ(g) ∈ HgH, i.e. applying σ does not change the two-sided coset. It follows that σ is the identity on
A = C(H\G/H).

Remark. It was important for H to be compact because we needed to integrate over H, but not so important
for G to be compact. Indeed, there are non-compact symmetric spaces like the Lobachevsky plane.

Corollary 3.4.9. L2(X) =
⊕̂

dimV H=1V .

Corollary 3.4.10. G-invariant operators (of any nature) in L2(X) commute.

Proof. Such operators commute with G and preserve the decomposition of L2(X), and therefore act by
scalars in each V . So of course they commute.

26



Chapter 4

Subgroups and subalgebras

4.1 Solvable and nilpotent Lie algebras

Let F be any field (of any characteristic, and not necessarily algebraically closed). Throughout, let L denote
the Lie algebra, finite dimensional over the field F .

Definition 4.1.1. Define the following sequence of ideals:

L(1) := L, L(2) := [L(1), L(1)], L(3) := [L(2), L(2)], · · · .

We say L is solvable if L(n) = 0 for some n.

Example 4.1.2. A basic example is the Lie algebra L of upper triangular matrices inside gl(n, F ). It is
easy to check that L is solvable.

Proposition 4.1.3. 1. If L is solvable, then so are all the subalgebras and homomorphic images of L.

2. If I ⊂ L is a solvable ideal such that L/I is solvable, then L is also solvable.

3. If I, J ⊂ L are solvable ideals, then I + J is also solvable.

Proof. (1) is obvious. (2) follows by noting that L/I is solvable implies (L/I)(n) = 0 for some n, i.e.
L(n) ⊂ I for some n. But I is solvable, so L is therefore also solvable. (3) follows from the isomorphism
(I + J)/J → I/(I ∩ J). Since I is solvable, I/(I ∩ J) is solvable by (1). But J is also solvable, so by (2),
I + J is also solvable.

Definition 4.1.4. By (3) in the preceding proposition, there must exist a unique maximal solvable ideal in
L, called the radical radL of L. We say L is semisimple if radL = 0.

Remark. For any L, it follows that L/ rad(L) is semisimple.

Definition 4.1.5. Define another sequence of ideals:

L1 := L, L2 := [L1, L1], L3 := [L1, L2], · · · .

We say L is nilpotent if Ln = 0 for some n.

Example 4.1.6. The Lie algebra of strictly upper triangular matrices in gl(n, F ) is nilpotent.

Remark. It is easy to see that L(i) ⊂ Li. Hence nilpotent implies solvable. The converse is not true.

Proposition 4.1.7. 1. If L is nilpotent, then so are all the subalgebras and homomorphic images of L.
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2. If L/Z(L) is nilpotent, so is L.

3. If L is nilpotent and non-zero, then Z(L) 6= 0.

Proof. (1) is obvious. (2) comes from (L/Z(L))i = 0 implying Li ⊂ Z(L), so that Li+1 = 0. (3) comes from
0 = Ln = [L,Ln−1] implying 0 6= Ln−1 ⊂ Z(L).

Remark. Note that L is nilpotent iff for some n, adx1 adx2 · · · adxn(y) = 0 for every x1, . . . , xn ∈ L. In
particular, (adx)n = 0. So adx ∈ gl(L) is a nilpotent matrix.

Theorem 4.1.8 (Engel). L is nilpotent if and only if all elements of L are ad-nilpotent, i.e. adx is a
nilpotent matrix for all x ∈ L.

Remark. Question: given a nilpotent matrix X ∈ gl(V ), is the adjoint adX also nilpotent? Yes, because
(adX)Y = XY − Y X is nilpotent. However, the converse is not true: take X = I, which is not nilpotent,
but adX = 0.

Theorem 4.1.9. Let L be a subalgebra of gl(V ) (with dimV <∞). If L consists of nilpotent endomorphisms
and V 6= 0, then there exists a non-zero vector v ∈ V such that Lv = 0.

Proof. Use induction on the dimension of L. The base cases dimL = 0, 1 are obvious. So take dimL ≥ 2,
and let 0 6= K ( L be a subalgebra. By the previous remark, since every element in K is nilpotent, the
adjoint action of K on L is also nilpotent. The adjoint action of K on L/K (which is well-defined because
the action preserves K) is also nilpotent. Hence there is a homomorphism K → gl(L/K). By the induction
hypothesis, there exists a non-zero element x + K ∈ L/K such that (adK)(x + K) = 0, i.e. [K,x] ⊂ K
with x /∈ K. Hence the normalizer NL(K) contains x, and therefore K ( NL(K). So if we take K to be
a maximal proper subalgebra of L, then NL(K) = L because of the maximality of K, and dimL/K = 1.
Write L = K + F · z for some z ∈ L \K. Define

W = {v ∈ V : K · v = 0},

which is non-zero because x exists. It suffices now to find an element in W annihilated by z. We have

xzv = [x, z]v + zxv = 0 + zxv

since x ∈ NL(K). Then z commutes with the K action, and therefore we can find v ∈ W such that
zv = 0.

Proof of Engel’s theorem. Consider the map L
ad−→ gl(L). By hypothesis, the operators adx are nilpotent for

every x ∈ L. Hence by the preceding theorem, there exists v ∈ L such that (adx)v = 0 for all x ∈ L. Engel’s
theorem follows by induction on the dimension of L, using that dimL/Z(L) < dimL and that L/Z(L)
nilpotent implies L nilpotent.

Corollary 4.1.10. Let L ⊂ gl(V ). If L consists of nilpotent endomorphisms, then there exists a flag (Vi)
in V such that X · Vi ⊂ Vi−1 for all i and all X ∈ L. In other words, there exists a basis of V such that all
the matrices of L are strictly upper triangular.

Proof. Using the theorem, find v ∈ V such that Lv = 0. Take V1 = Fv. Now induct to find a flag on V/V1

which can be lifted back to V .

From now on, assume char F = 0, and F = F̄ is algebraically closed. We would like an analogue of
Engel’s theorem for solvable Lie algebras.

Theorem 4.1.11. If L ⊂ gl(V ) is solvable (with dimV < ∞), then V contains a common eigenvector for
L.
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Proof. Again, induct on dimL. We first find a ideal K ⊂ L of codimension 1. Note that [L,L] 6= L, and
is therefore a proper subalgebra. Let K be the pre-image of a codimension 1 subspace in L/[L,L]. Such
a subspace is an ideal because L/[L,L] is abelian. Hence K is a codimension 1 ideal in L. Now by the
induction hypothesis, there exists an eigenvector v ∈ V for K with associated character λ : K → F (i.e.
xv = λ(x)v). Fix such a character λ, and define

W := {w ∈ V : xw = λ(x)w ∀x ∈ K}.

Since v ∈W , we know W 6= 0. Finally, we show L preserves W . Pick x ∈ L, w ∈W , and y ∈ K. Then

yxw = [y, x]w + xyw = λ([y, x])w + λ(y)xw

since [y, x] ∈ K (because K is an ideal). So if we can show λ([y, x]) = 0, then xw ∈W . Let n be the smallest
integer such that w, xw, x2w, . . . , xnw are linearly dependent. Define Wi := Fw + Fxw + · · ·+ Fxi−1w and
W0 := 0, and Wn := Wn+1 := · · · . Check by induction (using commutators to push terms into Wi) that for
all y ∈ K, we have

yWi ⊂Wi, yxiw ∼= λ(y)xiw mod Wi.

Hence trWn
y = nλ(y), because the first equation says y is an upper triangular matrix, and the second

equation says the diagonal of y consists of only λ(y). Now we have

nλ([y, x]) = trWn
[y, x] = 0

because trWn [y, x] is just the trace of two matrices. Because char F = 0, we can divide by n to get
λ([y, x]) = 0. Hence write L = K + Fz, and find an eigenvector in W for z. Then we are done.

Corollary 4.1.12 (Lie). If L ⊂ gl(V ) is solvable (with dimV <∞), then L stabilizes some flag (Vi) in V .
In other words, the matrices of L, relative to some basis, are upper triangular.

Proof. Obvious.

Corollary 4.1.13. If L is solvable, then there exists a chain of ideals of L 0 ⊂ L1 ⊂ · · · ⊂ Ln = L such
that dimLi = i.

Proof. Apply the preceding corollary to the adjoint representation L
ad−→ gl(L).

Corollary 4.1.14. If L is solvable, then x ∈ [L,L] implies adx is nilpotent. In particular, [L,L] is nilpotent.

Proof. Consider the adjoint representation L
ad−→ gl(L). Then adL consists of upper triangular matrices,

and ad[L,L] = [adL, adL] consists of strictly upper triangular matrices. By Engel’s theorem, [L,L] is
nilpotent.

Remark. Conversely, if [L,L] is nilpotent, then L is solvable. This is because L/[L,L] is commutative and
therefore solvable, and [L,L] is nilpotent and therefore solvable.

Theorem 4.1.15 (Cartan). Let L ⊂ gl(V ) (with dimV < ∞). If trxy = 0 for all x ∈ [L,L] and y ∈ L,
then L is solvable.

Lemma 4.1.16. Let A ⊂ B be two subspaces of gl(V ). Set

M :− {x ∈ gl(V ) : [x,B] ⊂ A}.

Suppose x ∈ A satisfies trxy = 0 for all y ∈M . Then x is nilpotent.

Proof. This is a statement from Humphrey’s book. We will skip the proof.
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Proof of Cartan’s theorem. We know that L is solvable iff [L,L] is nilpotent. Hence it suffices to prove [L,L]
is nilpotent. By Engel’s theorem, it suffices to show ad[L,L] is nilpotent. Apply the lemma: let A = [L,L],
and B = L, so that M = {x ∈ gl(V ) : [x, L] ⊂ [L,L]}. In particular, M ⊃ L. For z ∈ M , we have
tr([x, y]z) = tr(x[y, z]), but [y, z] ∈ L so by hypothesis, this trace vanishes. Hence we can apply the lemma,
and we are done.

Corollary 4.1.17. Let L be a Lie subalgebra such that tr(adx ad y) = 0 for all x ∈ [L,L] and y ∈ L. Then
L is solvable.

4.2 Parabolic and Borel subgroups

Definition 4.2.1. A variety X is complete if for any other variety Y , the projection X × Y pr2−−→ Y is a
closed morphism.

Proposition 4.2.2. Let X be complete. Then:

1. a closed subvariety of X is also complete;

2. if Y is complete, then so is the product X × Y ;

3. if φ : X → Y is a morphism, then φ(X) is closed and complete;

4. if X is a subvariety of Y , then X is closed;

5. if X is irreducible, then k[X] = k;

6. if X is affine, then X is finite;

7. a projective variety is complete.

Definition 4.2.3. G is solvable if there exists a series of subgroups {1} = G0 ≤ G1 ≤ · · · ≤ Gn =
G such that Gj−1 is normal in Gj an Gj/Gj−1 is abelian. G is nilpotent if there exists n such that
(x1, (x2, . . . , (xn, y)) · · · ) = e for all x1, . . . , xn, y ∈ G, where (x, y) := xyx−1y−1.

Definition 4.2.4. A closed subgroup P is parabolic if G/P is complete.

Example 4.2.5. Let G = GL(n, k). Take P to be the block-diagonal matrices with a k × k block and a
(n−k)× (n−k) block. Then P is a parabolic subgroup, since G/P is just the Grassmannian Gr(n, k), which
is projective and therefore complete.

Lemma 4.2.6. If P is parabolic, then G/P is projective.

Proof. We already know G/P is quasi-projective by construction. We also know it is complete. Hence G/P
is a closed subset of a projective variety, and therefore projective.

Lemma 4.2.7. Let Q ⊂ P ⊂ G be parabolic subgroups of G. Then Q ⊂ G is also parabolic.

Proof. We need to show G/Q is complete, i.e. for any variety Z, the projection G× Z → G/Q× Z → Z is
closed. (Fact: a map X → Y between G-varieties gives an open map X × Z → Y × Z.) Equivalently, we
must show that A ⊂ G×X closed such that (g, x) ∈ A implies (gQ, x) ∈ A. Consider

P ×G×X α−−−−→ G×Xx x
α−1A −−−−→ A.

Then something happens. (?)
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Lemma 4.2.8. If P ⊂ G is parabolic, then any Q ⊃ P is parabolic. Also, P is parabolic if and only if
P 0 ⊂ G0 is parabolic (connected components).

Proof. Clearly G/P → G/Q is surjective. But G/P is complete, so the image G/Q is also complete. The
second claim uses the fact that G/G0 is finite, so G0 ⊂ G is automatically parabolic. This holds for any G, so
in particular P 0 ⊂ P is parabolic. If P ⊂ G is parabolic, P 0 ⊂ G is also parabolic. The map G0/P 0 ⊂ G/P 0

is closed, so since closed subvarieties of complete varieties are complete, G0/P 0 is complete, and therefore
P 0 ⊂ G0 is parabolic. Conversely, if P 0 ⊂ G0 is parabolic, we know G0 ⊂ G is parabolic, so by transitivity,
P 0 ⊂ G is parabolic. But P 0 ⊂ P ⊂ G, so by the first part of the lemma, P ⊂ G is also parabolic.

Proposition 4.2.9. A connected group G contains a non-trivial parabolic subgroup if and only if G is not
solvable.

Proof. Fact: if G acts on X, then there exists a closed orbit in X. (If G is a unipotent group, then every
orbit is closed.) Put G ⊂ GL(V ) for dimV sufficiently large. In particular, G acts on PV . Then there exists
a closed orbit Ox, which bijects with G/Gx. Since Ox is closed, it is projective and therefore complete. Then
the stabilizer Gx is parabolic.

If Gx = G, then consider the action of G on P(V/kx). By the same argument, we can find another
parabolic subgroup. Hence there are two cases:

1. there exists a non-trivial parabolic subgroup, i.e. at some point we stop, with Gx 6= G;

2. there does not exist a non-trivial parabolic subgroup, i.e. Gx = G at each step, and therefore G is
contained within upper triangular matrices. But upper triangular matrices are solvable, and subgroups
of solvable groups are solvable, so G is solvable.

Conversely, assume G is connected and solvable, and we want to show G has no non-trivial parabolic
subgroup. Assume P ⊂ G is a maximal parabolic subgroup. Consider (G,G), which is also connected.
Define Q = P · (G,G), which is also connected, and contains the parabolic subgroup P and is therefore
parabolic.

1. If Q = P , then (G,G) ⊂ P (and is a normal subgroup). Then G/P is affine, and therefore finite. But
it is also connected, so P = G.

2. If Q = G, then G(G/P ) = P (G,G)/P ∼= (G,G)/((G,G) ∩ P ). But (G,G) ∩ P ⊂ (G,G) is parabolic.
By induction on dimG, we can descend to working with (G,G), and hence P = G.

Hence there is no non-trivial parabolic subgroup P ⊂ G.

Theorem 4.2.10 (Borel’s fixed point theorem). Let G be a connected solvable linear algebraic group. Let
X be a complete G-variety. Then there exists a point x ∈ X fixed by G.

Remark. If G acts on V , then G also acts on PV . If there is a line L ∈ PV fixed by G, then there is an
eigenvector for the group G.

Example 4.2.11. Note that in characteristic 0, a Lie group G is solvable if and only if its Lie algebra g is
solvable. In characteristic non-zero, the converse is false: g solvable does not imply G solvable. For example,
the Lie algebra sl(2, F ) is solvable over a field of characteristic 2, because it has the standard basis {e, f, h}
satisfying [h, e] = 2e, [h, f ] = 2f , and [e, f ] = h, which is nilpotent. They both act on P(F 2), but sl(2, F )
does not have a fixed point.

Proof of Borel’s fixed point theorem. Since G acts on X, there exists a closed orbit Ox ∼= G/Gx. We assumed
G is complete, so Ox is also complete. Hence Gx is a parabolic subgroup. But G is connected and solvable,
so by the proposition either Gx = G or Gx = {e}. Hence either x is the desired fixed point, or we get a
contradiction.
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Definition 4.2.12. A Borel subgroup of G is a closed connected solvable subgroup of G which is maximal
among all subgroups with these properties.

Example 4.2.13. Take GL(n). Then the subgroup of all upper triangular matrices is a Borel subgroup.

Theorem 4.2.14. 1. P ⊂ G if parabolic if and only if P contains a Borel subgroup.

2. Any Borel subgroups are parabolic.

3. Any two Borel subgroups are conjugate.

Proof. (1) Assume P is parabolic. Take any Borel subgroup B. Then B acts on G/P by left multiplication,
so by Borel’s fixed point theorem, there exists gP ∈ G/P fixed by B. Then g−1Bg ∈ P is a Borel subgroup,
by definition. Conversely, assume G is not solvable. Then there exists a parabolic subgroup P ⊂ G. Then
pick a Borel set B ⊂ P (by the forward direction). By induction on dimG, we get B is parabolic in P . Since
P is parabolic in G, it follows that B is parabolic in G.

(2) Easy, using the forward direction of (1).
(3) Apply Borel’s fixed point theorem.

Theorem 4.2.15 (Lie–Kolchin). Let G be a closed connected and solvable subgroup of GLn. Then there
exists some x ∈ GLn such that xGx−1 is a subset of the upper triangular matrices.

4.3 Maximal tori

Theorem 4.3.1 (Kolchin). Let V be a vector space over F , and let G be any subgroup of GL(V ) that consists
of unipotent elements (i.e. all eigenvalues are 1). Then G has a fixed point.

Proof. We are solving the linear equation g · v = v, so we can assume F = F̄ . We can also assume V is
irreducible. Finally, we can assume the image of the group algebra F [G] in End(V ) is all of End(V ), by
Burnside. It suffices to show g − 1 = 0 for all g ∈ G. Compute

tr((g − 1)g′) = tr gg′ − tr g′ = dimV − dimV = 0.

On the other hand, matrices of the form (g − 1)g′ span End(V ). Since tr(ab) is non-degenerate, it follows
that g − 1 = 0 for all g ∈ G.

An important use of fixed point theorems in Lie theory is to show conjugacy of certain kinds of subgroups.

1. If G is an arbitrary Lie group, then all maximal compact Lie subgroups are conjugate.

2. If K is a compact Lie group, then all maximal connected abelian subgroups (maximal tori) are conju-
gate.

3. If G is a connected linear algebraic group over k = k̄, then all connected solvable groups (i.e. Borel
subgroups) are conjugate.

The general argument goes as follows: if H,H ′ ⊂ G are two subgroups of a certain kind, and we want to
prove gH ′g−1 ⊂ H. The subgroup H is the stabilizer of 1 in G/H. So gH ′g−1 ⊂ H iff H ′ fixes a point in
G/H, namely g−1H.

For example, to show (2), we need a torus T ′ ∼= (S1)m to have a fixed point on K/T . Clearly we can write
(S1)m as the closure of a single orbit, because we can pick an irrational orbit. So this is really a question
about whether an operator g ∈ T ′ acting on K/T has a fixed point. The Lefschetz fixed point theorem says
that for g ∈ Diff(M) with M a manifold,

∑
x∈Mg

(−1)x =

dimM∑
i=0

(−1)i tr g|Hi(M,C).
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In particular, if g ∈ Diff(M)0, then since tr g|Hi(M,C) depends only on the isotopy class of g, it behaves the
same as the identity, i.e. ∑

x∈Mg

(−1)x =

dimM∑
i=0

(−1)i dimHi(M,C) = χ(M).

So if the Euler characteristic χ(M) is non-zero, then g must have a fixed point.
How do we prove Lefschetz’s fixed point theorem? Consider the diagonal ∆ ⊂ M2. If Γ is the graph of

G, then it is (1 × G)∆ where G acts on the second coordinate. We have
∑
x∈Mg (−1)x = ∆ ∩ Γ. But the

Künneth formula says

[∆] =
∑
i

αi ⊗ αi ∈ Hmiddle(M2,C)

where {αi} and {αi} are Poincaré duals. So the class [Γ] of the graph is just
∑
αi ⊗ g(αi). But now after

applying the pairing, this sum is just the trace of the matrix corresponding to g.
So it suffices to show χ(K/T ) is non-zero, since we know it is a compact manifold. For example, let

K = U(n) and T be the diagonal matrices inside. Then M = K/T is the space of complete flags, since
U(n) acts on orthonormal frames up to rescaling. Then MT is just the coordinate flags, which consists of
Sn, the symmetric group, acting on the standard flag. Hence |MT | = χ(M) = |Sn| 6= 0. In general, let
N(T ) := {g ∈ K : gTg−1 = T} be the normalizer. Then W = N(T )/T is called the Weyl group.

Lemma 4.3.2. T is the connected component in N(T ), so W is actually a discrete group.

Proof. There is a map N(T ) → Aut(T ) given by g 7→ (t 7→ gtg−1). But Aut(T ) is a discrete group, since
these automorphisms come from its universal cover, which is a lattice. The connected component of N(T ) is
therefore mapped to the connected component of Aut(T ), which is just the identity. Hence N(T )0 = C(T )0.
But T is maximal connected abelian, so C(T )0 = T .

Theorem 4.3.3. χ(K/T ) = |W |, which in particular is non-zero.

Proof. Consider M = K/N(T ). Then K/T → M is a covering of degree |W |. Hence it suffices to prove
χ(M) = 1. We do this by computing the fixed points of T on M , and then applying the Lefschetz fixed
point theorem. But T fixes a point iff gTg−1 = T modulo N(T ), so there is only one fixed point. To get
the index (−1)T of this fixed point, consider the action of T on T1M = Lie(K)/Lie(T ). This is just a torus
acting on a vector space, so each (rotation) action is non-trivial (i.e. all weights are non-zero). Hence we
have one fixed point with index 1, since the index of the origin under rotations is 1. Hence χ(M) = 1.

Remark. We really require characteristic 0 here; it turns out not all maximal tori are conjugate in SL(n,Qp)
or SL(n,Zp).

4.4 More Borel subgroups

Let G be either a complex Lie group or an algebraic group. To use fixed point theory, we assume k = k̄.

Theorem 4.4.1 (Borel). All Borel subgroups are conjugate.

Example 4.4.2. Take G = GL(n). Then every Borel subgroup B is conjugate to the subgroup of upper
diagonal matrices, by Lie’s theorem. Actually, we can deduce Lie’s theorem from the fixed point theorem:
G/B is the space of complete flags 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = Cn. This space is projective, because it is a
closed subspace of the Grassmannian. So every solvable subgroup will preserve a flag, and therefore is upper
triangular in the corresponding basis.

Proof. The idea is to fix one Borel subgroup B0 and show that G/B0 is projective. Then any other Borel
subgroup B will have a fixed point on G/B0 = M , so that gBg−1 ⊂ B0.

Choose a B0 of maximal dimension, i.e. dimB0 = maxB dimB. Choose an embedding G ⊂ GL(n) (to
be made more precise later). Consider the action of G on Fl(n), the space of flags. A Borel subgroup B
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acting on Fl(n) will have some fixed point F0, where F0 is a flag. So consider the orbit G · F0 ⊂ Fl(n). It
is closed, because it is of minimal dimension: dimG · F0 = dimG− dim StabG F0, and StabG F0 is solvable,
and we chose B0 maximal. Hence M = G · F0 is projective, and MB 6= ∅ for any connected solvable B. So
there exists g such that gBg−1 ⊂ (StabF0)0. But (StabF0)0 is solvable and connected and contains B0.
By maximality of B0, we have (StabF0)0 = B0. We can actually make StabF0 = B0 by using Chevalley’s
theorem to find an embedding G ⊂ GL(n) and a vector e1 such that B0 = StabG(Ce1).

Remark. We say P ⊂ G is parabolic if G/P is projective. These G/P are called homogeneous projective
varieties. Note that G/P is projective iff P contains a Borel subgroup. It is a fact that there are only finitely
many such P in G up to conjugacy.

Proposition 4.4.3. The connected component of the normalizer N(B) = {g ∈ G : gBg−1 ⊂ B} of a Borel
subgroup is equal to B itself.

Proof. We know N(B)0 ⊂ B, because otherwise adding g ∈ N(B)0 \ B into B creates a bigger connected
solvable subgroup. Now we show N(B)/B is trivial. Every Borel subgroup fits into an exact sequence
1 → U → B → T → 1 where U is unipotent and T is semisimple. (Think of T as the diagonal and U as
the strictly upper triangular entries.) Consider the action of T on G/N(B), which is the space of all Borel
subgroups. Then [B] ∈ G/N(B) is an isolated fixed point of T . We know T[B]G/N(B) = g/b, where b is the
Lie algebra of B, and 0 is the unique fixed point. Hence the variety G/N(B) is a vector space plus something
(the “boundary”) of codimension one. Then π1(G/N(B)) = 0. Hence there is a fibration

N(B)/B → G/B → G/N(B)

which is a priori a finite cover, i.e. N(B)/B is finite. But G/N(B) is 1-connected, so G/B is connected, and
therefore N(B)/B is trivial.

Theorem 4.4.4 (B-B decomposition). Let M be projective and smooth inside P(V ). Let T ⊂ GL(V ) be
a torus acting on M . Then the fixed point locus MT =

⋃
i Fi is also smooth, where the Fi are connected

components.

Definition 4.4.5. In the situation of the theorem, given a generic 1-parameter subgroup σ : GL(1) → T ,
define the attracting manifold

Attr(Fi) := {m ∈M : lim
z→0

σ(z)m ∈ Fi}.

A map k× →M extends uniquely to P1 →M since M is projective, and limz→0 σ(z)m is just this additional
point.

Example 4.4.6. Let M = GL(n)/B, and T the diagonal. Then

MT = {g ∈ G : gTg−1 ⊂ B}/B = {g ∈ G : gTg−1 ⊂ T}/T = NG(T )/T = W,

the Weyl group, because the normalizer of T inside B is NB(T ) = T . Take w = 1 ∈ W . The torus T acts
on the equivalence class of diag(t1, . . . , tn) by ti/tj for i > j on the (i, j)-th entry. If we take a 1-parameter
subgroup such that ti/tj → 0, the attracting manifold Attr(1) is precisely the group N−, the lower triangular
B along with 1’s along the diagonal. (We know via Gaussian elimination that GL(n) =

⊔
wN−wB.)

Theorem 4.4.7. M =
⊔
i Attr(Fi), and Attr(Fi)→ Fi is an affine linear bundle.

Remark. This gives a decomposition of an algebraic variety into pieces, each of which is a vector bundle over
a simpler algebraic variety. This equality is actually structure-preserving. For example, the Hodge structure
on M is equivalent to the Hodge structures on the Attr(Fi), shifted appropriately.

Theorem 4.4.8 (Borel). Let G be an algebraic group over k = k̄. We can ask for tori T ∼=
∏

GL(1, k).
Then all maximal tori are conjugate.

Proof sketch. Since T is commutative, in particular solvable, and connected, there exists B such that T ⊂ B.
All B are conjugate, so it is enough to show that all T ⊂ B are B-conjugate. In fact, they are conjugate
under U ⊂ B, the unipotent radical, by induction on dimU .
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4.5 Levi–Malcev decomposition

Theorem 4.5.1 (Levi–Malcev). Any Lie algebra g decomposes as a semidirect sum g = r⊕ gss
⊕

i gi where
r is solvable, called the radical, and gss :=

⊕
i gi is a sum of simple non-abelians. (We have [gss, r] ⊂ r.)

Remark. Solvable Lie algebras have non-trivial moduli, but simple Lie algebras are rigid, i.e. they have no
non-trivial deformations.

Remark. We will construct r as the maximal solvable ideal in g. We must show it is uniquely determined.
This is because if r1, r2 ⊂ g are solvable, then r1 + r2 are also solvable.

Proof of Levi–Malcev. The radical r of g fits into a short exact sequence 0→ r→ g→ gss → 0, where gss is
semisimple. It remains to show gss is a sum of simples. This we do using Cartan’s theorem below.

Definition 4.5.2. A Lie algebra g is semisimple if its radical is zero.

Definition 4.5.3. If g is a Lie algebra and ρ : g→ gl(V ) is a linear representation, define

(a, b)ρ := tr(ρ(a)ρ(b)).

This is invariant in the sense that

ad g ⊂ so(g, (·, ·)ρ), i.e.(a, [b, c])ρ = ([a, b], c)ρ.

The Killing form is (·, ·)ad.

Theorem 4.5.4 (Cartan). g is semisimple iff the Killing form is non-degenerate.

Corollary 4.5.5. g is semisimple iff g =
⊕

gi where gi are simple.

Proof. Let g1 ⊂ g be a simple ideal. Then g⊥1 is also an ideal: if ξ ∈ g⊥1 , then

(g1, [b, ξ]) = ([g1, b], ξ) = 0

since [g1, b] ⊂ g1. Since g1 is simple, g1 ∩ g⊥1 is g1 or 0. The former cannot happen because the Killing form
is non-degenerate.

Proof of Cartan’s theorem. If the Killing form is degenerate, then g⊥ ⊂ g is a non-zero ideal, on which Killing
form is identically zero. In particular, (a, [b, c])ad = 0. Hence by the following theorem, g⊥ is solvable, so g
is not semisimple.

Conversely, suppose the radical r is non-zero. Then by taking enough commutators, we get an abelian
ideal a. For any y ∈ g and any a ∈ a,

(ad(y) ad(a))2x ⊂ ad(y) ad(a) ad(y)a ⊂ ad(y) ad(a)a = 0.

Hence tr(ad(y) ad(a)) = 0. So a ⊂ g⊥, and the Killing form is degenerate.

Theorem 4.5.6. Let g ⊂ gl(V ) be a Lie subalgebra. Then

tr([a, b]c) = 0 ∈ (∧3gl(V )∗)GL(V )

identically iff g is solvable.

Remark. The space (∧3gl(V )∗)GL(V ) is one-dimensional, because given a 3-form on the tangent space gl(V )
of GL(V ), we can extend it to a left and right invariant element of Ω3 GL(V ). In particular, it restricts to
Ω3U(V ). It is a general principle that H3(GL(V )) is 1-dimensional, coming from H3 of its maximal compact
U(V ), and is represented by an invariant form.
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Remark. Given X ∈ gl(V ), take its Jordan decomposition X = Xs +Xn where Xs is semisimple and Xn is
nilpotent such that [Xs, Xn] = 0. Fact: both Xs and Xn are polynomials in X. In particular, in a linear
representation, a tensor is preserved by X iff it is preserved by Xs and Xn.

Lemma 4.5.7. If X ∈ g where g is the Lie algebra of an algebraic group, then Xs, Xn ∈ g.

Definition 4.5.8. Let galg be the intersection of all Lie algebras of algebraic groups that contain g. It is
the Lie algebra of Ḡ, the Zariski closure of G, which sits in the chain of inclusions GL(V ) ⊃ Ḡ ⊃ G.

Proposition 4.5.9. [g, g] = [galg, galg].

Proof. Consider {x ∈ gl(V ) : [x, g] ⊂ [g, g]}. It is the Lie algebra of the group {h : hgh−1 ∈ [g, g]}. Hence
galg is contained in it, i.e. [g, galg] ⊂ [g, g].

Proposition 4.5.10. Suppose A ⊂ B ⊂ End(V ), and

g = {x : [x,B] ⊂ A} = Lie{g : gBg−1 ≡ B mod A}

Then for any x ∈ g⊥, with respect to (x, y) := tr(x, y), we have xs = 0.

Proof. Firstly, xs ∈ g, since g is algebraic. If e1, . . . , en is an eigenbasis with eigenvalues λi, then Eij are
eigenvectors of ad(xs) with eigenvalues λi − λj . If we can find a function f on the set {λi − λj} such that
f(λi−λj) = µi−µj , then the operator ad(y) = f(ad(xs)) where y = diag(µ1, . . . , µn). But y ∈ g and hence∑
µiλi = tr yx = 0 (since x ∈ g⊥). Consider the Q-vector space V spanned by λi in C. We must show

dimQ V = 0. Suppose not. Then there exists a non-zero linear function V
µ−→ Q. Now apply µ to

∑
i µiλi, to

get
∑
i µ

2
i , which is 0 iff every µi = 0.

Proof of theorem. If g is solvable, it consists of upper triangular matrices, and clearly tr([a, b]c) = 0 when
a, b, c are upper triangular. Conversely, consider the short exact sequence 0→ Z(g)→ g→ ad g→ 0. Then
g is solvable iff ad g is solvable. Let

g̃ := {w : [w, g] ⊂ [g, g]}.

If w ∈ g̃, then trw[y, z] = tr[w, y]z. But [w, y] = [x, y] for some x, y ∈ g, by the definition of g̃. Hence
tr[w, y]z = tr[x, y]z = 0. So [y, z] ∈ (g̃)⊥, i.e. [y, z]s = 0, and [g, g] is nilpotent.
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Chapter 5

Semisimple theory

5.1 Roots and weights

Example 5.1.1. Consider g = sl(n), which has a subalgebra of diagonal matrices

h := {diag(a1, . . . , an) :
∑
i

ai = 0}

called the Cartan subalgebra. We can ask how g decomposes under ad h. It will decompose as

g = h⊕
⊕
i 6=j

CEij

where Eij is an eigenvalue of weight αij := ai − aj ∈ h∗, i.e. [h,Eij ] = αij(h)Eij .

Definition 5.1.2. The roots of g are the elements α ∈ h∗ which are non-zero weights of ad h. So the above
decomposition can be written as

g = h⊕
⊕
α

gα

where gα is the eigenspace corresponding to α.

Proposition 5.1.3. Let V be a representation of g, so that V =
⊕

α Vα. Then gαVβ ⊂ Vα+β.

Proof. Let e ∈ gα and v ∈ Vβ . Then compute

hev = [h, e]v + ehv = α(h)ev + β(h)ev.

Corollary 5.1.4. For every root α, there is also a root −α.

Proof. The proposition shows [gα, gβ ] ⊂ gα+β . Then ad(gα) ad(gβ)gγ ⊂ gγ+α+β . Since there are only finitely
many roots, ad(gα) ad(gβ) is nilpotent unless α = −β. Hence the trace of this operator is 0, i.e. gα ⊥ gβ
with respect to the Killing form unless α = −β. So there is a non-degenerate pairing between gα and g−α
given by the Killing form.

Remark. We have a map SL2 → Ad(G) given by(
0 1
0 0

)
7→ Eij ,

(
0 0
1 0

)
7→ Eji.

In SL2, let the matrix

(
0 1
1 0

)
map to sα ∈ Ad(G). This will be a permutation of the roots, but at the same

time also a linear transformation β 7→ β − `α(β)α where `α is some linear function.
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Definition 5.1.5. A root system is a finite collection of non-zero vectors spanning a vector space such
that for every α there exists a linear transformation of the form β 7→ β − `α(β)α, where `α(β) ∈ Z, that
preserves the root system and sends α to −α, i.e. `α(α) = 2.

Remark. These conditions are stronger than they seem. Since a root system is finite, the permutation group
on the vectors in the root system is finite. In particular, the group W generated by the linear transformations
sα is finite, and therefore compact. So it preserves a positive definite inner product (·, ·). Under this inner
product,

sα(β) = β − 2
(α, β)

(α, α)
α,

a reflection. Such groups generated by reflections can be classified: these are the crystallographic groups.

Definition 5.1.6. Let g be a Lie algebra. A subalgebra h ⊂ g is a Cartan subalgebra if h is nilpotent
and the normalizer of h is h itself.

Definition 5.1.7. Let V be a representation of h, e.g. the adjoint action on g. By Lie’s theorem, h ∈ h
goes to a upper triangular matrix with αi(h) on the diagonal. Call the αi ∈ (h/[h, h])∗ ⊂ h∗ the weights of
V . Write Vα for the generalized eigenspace of a weight α, i.e.

Vα := {v ∈ V : (h− α(h))iv = 0 for some i}.

Clearly Vα is invariant under h.

Remark. Applying this definition to the adjoint representation, we get g = g0⊕
⊕

α6=0 gα. We will show that
g0 = h. The proposition we showed earlier gives gαVβ ⊂ Vα+β .

Definition 5.1.8. The rank of g is the minimal number of zero eigenvalues of adx for x ∈ g. Equivalently,
it is the maximum size of a minor in adx (over the field of rational functions in x) that is not identically
zero. We say x ∈ g is regular if adx has this generic rank.

Remark. The set of regular elements x ∈ g is a Zariski open set, since it is given by the condition that at
least one of the minors is non-zero.

Proposition 5.1.9. Let x be regular and consider

g = gx0 ⊕
⊕
α6=0

gxα.

Then dim gx0 = rank g and h := gx0 is a Cartan subalgebra.

Proof. We know [h, h] ⊂ h, from the result that [gα, gβ ] ⊂ gα+β . So we can restrict ad h to h. Then ad(y)|h
is nilpotent for every y ∈ h, because otherwise ad(y) will have fewer zero eigenvalues than x, since

ad(y) = ad(y)|h ⊕ ad(y)|g/h.

Hence h is nilpotent, by definition. Now suppose some element z is in the normalizer of h, i.e. [x, z] ∈ h. By
the nilpotence of h, we know ad(x)Nz = 0 for N � 0. Hence z ∈ h, by the definition of h.

Remark. Let h be an arbitrary Cartan subalgebra. Then g = h⊕
⊕

α6=0 gα and define

hreg := {h : α(h) 6= 0 ∀α}

so that for all x ∈ hreg, gx0 = h.

Proposition 5.1.10. Let g be a simple Lie algebra.

1. The Cartan subalgebra h is commutative and consists of ad-semisimple elements.
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2. The Killing form restricted to h is non-degenerate.

Proof. We know h nilpotent implies ([x, y], z) = 0 for any x, y, z ∈ h. Since z is arbitrary, and the Killing
form is non-degenerate, [x, y] = 0 for all x, y ∈ h.

In the decomposition g = h ⊕
⊕

α∈h∗ gα, we know gα ⊥ gβ (with respect to the Killing form) unless
α + β = 0. So gα and g−α are dual, leaving h in the direct sum. Hence the Killing form is also non-
degenerate on h.

5.2 Root systems

Definition 5.2.1. A root system ∆ ⊂ Rn \ {0} is a finite subset of non-zero vectors such that for any
α ∈ ∆, the reflection

rα(β) := β − 2
(α, β)

(α, α)
α

preserves ∆ and 〈α, β〉 := 2(α, β)/(α, α) is an integer. We say ∆ is

1. reducible if ∆ = ∆1 ⊕∆2, and

2. reduced if 2α /∈ ∆ for any α ∈ ∆.

Example 5.2.2 (Root systems for n = 1). Suppose α ∈ ∆. Then −α ∈ ∆ as well. Take another vector
β ∈ ∆. Then 2(α, β)/(α, α) must be an integer, i.e. 2β/α ∈ Z. So there is only one reduced root system,
called A1, given by {±α}, and one non-reduced root system {±α,±2α}. It turns out Lie algebras always
have reduced root systems, so {±α} corresponds to sl(2).

Example 5.2.3 (Root systems for n = 2). Suppose there is a vector β forming an angle θ with α, and this
is the smallest θ formed by any vector with α. Then

〈α, β〉〈β, α〉 = 4
(α, β)2

(α, α)(β, β)
= 4 cos2 θ

must be an integer. So there are five possibilities.

1. (θ = π/2) This is exactly A1 ⊕A1, and corresponds to the root system D2.

2. (θ = π/3) Here 〈α, β〉 = 〈β, α〉 = 1, so α, β are equal length with angle π/3 between them. By applying
reflections, we get the root system A2, corresponding to sl(3).

3. (θ = π/4) Here 〈α, β〉〈β, α〉 = 2, so there is a choice of factorization.

(a) If we pick 〈α, β〉 = 1 and 〈β, α〉 = 2, then β is
√

2 longer than α. By applying reflections, we get
the root system B2, corresponding to so(2n+ 1).

(b) Alternatively, if we pick 〈α, β〉 = 2, then we get the root system C2, corresponding to sp(2n).

4. (4 cos2 θ = 3) This gives the exceptional root system G2.

Take e ∈ gα. Via the Killing form, g−α = g∗α. We know [e, f ] ∈ h. To know which element in h, it is
enough to pair it using the Killing form:

([e, f ], h) = (e, [f, h]) = (e, α(h)f) = 2
α(h)

(α, α)
.

If we identify h ∼= h∗ via the Killing form, we can think of α as an element in h, so that ([e, f ], h) =
2(α, h)/(α, α).

Definition 5.2.4. Write hα := 2α/(α, α), also sometimes denoted α∨.
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Proposition 5.2.5. The elements e, f, hα form a copy of sl(2), and up to scalars, hα is the same vector
regardless of the choice of e and f .

Proof. We just computed [e, f ] = hα, and we know that

[hα, e] = α(hα)e = 2
(α, α)

(α, α)
e = 2e, [hα, f ] = −2f.

Corollary 5.2.6. The dimension of gα is 1, and if α ∈ ∆, then nα /∈ ∆ for n 6= ±1.

Proof. Consider the action of sl(2)α := span{e, f, hα} on Chα ⊕
⊕

n∈Z 6=0
gnα. Then e is a raising operator

and f is a lowering operator, i.e. [e, gnα] ⊂ g(n+1)α, and similarly for f . But this whole thing is a finite-
dimensional sl(2)-module with a 1-dimensional space of weight 0 (with respect to hα) and with even weights.
By the representation theory of sl(2), this representation is irreducible. But it contains sl(2), and is therefore
equal to sl(2).

Similarly, take β /∈ Zα, and look at
⊕

n∈Z gβ+nα. Then e raises, f lowers, and hα acts by the scalar
〈β, α〉 on gβ . By the corollary, each gβ+mα has dimension either 0 or 1.

Corollary 5.2.7. This representation is irreducible, 〈β, α〉 ∈ Z, and for any β ∈ ∆, the vector rα(β) :=
β − 〈β, α〉α is also in ∆.

Proof. Any finite-dimensional sl2 representation has weight spaces symmetric across the origin. But each
weight space here has dimension either 0 or 1, so this representation cannot split. Also, 〈β, α〉 is the scalar
that hα acts by on gβ , and we know for finite-dimensional representations that this is an integer. Finally,
rα(β) is precisely the weight corresponding to reflecting β across the origin.

We have shown that the set of weights of ad(h) is a root system. It remains to show that it is reduced.
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