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Abstract

These are my live-texed notes for the Fall 2018 student enumerative geometry seminar on the GW/DT
correspondence. These notes have known omissions in the earlier talks. Let me know when you find errors
or typos. I’m sure there are plenty.
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1 GW theory

1.1 Sep 11 (Melissa): Hodge/Hurwitz numbers and ELSV

Today we prove the ELSV formula, relating Hodge integrals with Hurwitz numbers.

Definition 1.1. A Hodge integral is an integral over M̄g,n of the form∫
[M̄g,n]

ψj11 · · ·ψjnn λ
k1
1 · · ·λkgg .

Remark. Using Mumford’s GRR, Hodge integrals can be expressed in terms of ψ integrals (called descen-
dant integrals). Then Witten’s conjecture that descendants satisfy the KdV hierarchy (and the string
equation) determines all descendants from the initial value

∫
M̄0,3

1 = 1.

Witten’s conjecture was first proved by Kontsevich. Another proof is in Okounkov–Pandharipande’s
GW/Hurwitz papers, in part 2, which derives Witten’s conjecture from the ELSV formula by localization
on M̄g,n(P1, d). The proof of ELSV is due to Graber–Vakil in “Hodge integrals and Hurwitz numbers via
virtual localization”.

Definition 1.2. Let f : C → P1 be a ramified connected cover of genus g and degree d, with branch points
b1, . . . , br ∈ C ⊂ P1 and ∞. Assume that b1, . . . , br are simple branch points, i.e. f−1(bi) contains exactly
d− 1 points. Write

f−1(∞) =: µ1x1 + · · ·µnxn
as a divisor. (Simple) Hurwitz numbers Hg,µ count the number of such ramified covers for given µ. We
know |µ| :=

∑
µi = d, i.e. µ is a partition of d, and we write `(µ) := n for the length.

Remark. By Riemann–Hurwitz,

2− 2g = χ(C) = dχ(P1) +R = 2d− r − (d+ n),

so that there are a total of r = 2g − 2 + d+ n = 2g − 2 + |µ|+ `(µ) ramification points.

Remark. The monodromy around a simple branch point gives a transposition of two out of d sheets. Hence
the simple Hurwitz number is

Hg,µ =
1

Zµ
#

σ1, . . . , σr, σ∞ ∈ Sd :
σ1, . . . , σrtranspositions, σ∞ ∈ Cµ

σ1 · · ·σrσ∞ = 1
(connectedness) 〈σ1, . . . , σr〉 acts transitively on {1, . . . , d}


Here Cµ is the conjugacy class of the cycle class of µ, and Zµ := µ1 · · ·µn|Aut(µ)|, where Aut(µ) is non-trivial
if there are identical numbers µi = µi+1 = · · · in the partition.

Definition 1.3. The disconnected Hurwitz numbers H•g,µ are exactly the same as above, but without
the connectedness requirement. Both can be put into generating functions∑

g

Hg,µλ
2g−2+`(µ),

∑
g

H•g,µλ
2g−2+`(µ).

These can be explicitly evaluated via Burnside’s formula.

Theorem 1.4 (ELSV formula).

Hg,µ =
2g − 2 + |µ+ `(µ)

|Aut(µ)|

`(µ)∏
i=1

µµii
µi!

∫
[M̄g,n]

1− λ1 + λ2 − · · ·+ (−1)gλg∏`(µ)
i=1 (1− µiψi)

.
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Remark. The idea is to set up the moduli of relative stable maps, and then do localization. We will define
the moduli only for (P1,∞).

Definition 1.5. The moduli of relative stable maps to (P1,∞) is given as follows.

1. Define the moduli space Mg(P1, µ) of

f : (C, x1, . . . , xn)
deg d−−−→ P1

where f−1(∞) = µ1x1 + · · ·+ µnxn and C is smooth of genus g.

2. Define the compactification M̄g(P1, µ) of

f : (C, x1, . . . , xn)→ P1[m]

by allowing C to become nodal, and P1[m] denotes attaching m extra P1 to the original P1. Let q′i
denote nodes in the P1[m]. Require compatibility conditions:

(a) fi : Ci → P1 is degree d = |µ| where Ci is the preimage of the i-th P1;

(b) f−1(q′m) = µ1x1 + · · ·+ µnxn;

(c) (predeformable) f−1(q′i) is a union of nodes in C with the same contact order (so that we can
simultaneously smooth nodes in the target and the source);

(d) (stability) Aut(f) is finite.

A homomorphism of two such relative stable maps is a commuting square

(C, x1, . . . , xn)
f−−−−→ P1[m]

φ

y ψ∈(C∗)m
y

(C ′, x′1, . . . , x
′
n)

f ′−−−−→ P1[m]

where ψ can re-parameterize the extra P1. (The number m is bounded by stability once we fix g and
µ.)

The compactification is the moduli of relative stable maps. It is a proper DM stack with perfect obstruction
theory.

Definition 1.6. There is a branch morphism extending the usual one for smooth projective varieties

Br: M̄g(P1, µ)→ Symr P1 ∼= Pr

[f : (C, x1, . . . , xn)→ P1[m]] 7→
∑

Br(fi) +
∑

(2g(Bi)− 2)[f(Bi)] + f∗N,

where in the normalization C̃ → P1 of C → P1:

1. fi : Ai → D are maps of uncontracted components;

2. Bi ⊂ C̃ are contracted components;

3. N is the divisor consisting of the nodes in C.

Hence the Hurwitz number Hg,µ is the degree of Br:

Hg,µ =
1

|Aut(µ)|
deg(Br: M̄g(P1, µ)→ Pr)

=
1

|Aut(µ)|

∫
[M̄g(P1,µ)]vir

Br∗(Hr)

since Hr = PD(pt).
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1.2 Sep 18 (Melissa): ELSV formula

Last time we identified Hurwitz numbers Hg,µ with the degree of a branch morphism. Today we will compute
this via localization. First, a brief review of localization.

Definition 1.7. Let G be a Lie group and EG be a contractible topological space with free G-action. The
classifying space of G is BG := EG/G, defined up to homotopy equivalence. If X is a topological space
with continuous G-action, then we can form the associated X-bundle

XG := EG×G X,

called the homotopy orbit space, with projection π : XG → BG. The G-equivariant cohomology
H∗G(X,R) := H∗(XG, R) for any coefficient ring R.

Example 1.8. If G acts on X freely, then

H∗G(X,R) = H∗(XG, R) = H∗(X/G,R)

since XG is homotopic to X/G by contractibility of EG. If G acts on X trivially, then

H∗G(X,R) = H∗(X ×BG,R) = H∗(X,R)⊗R H∗(BG,R).

Remark. In general, because of
π∗ : H∗(BG)→ H∗(XG),

the G-equivariant cohomology of any space is always a H∗G(pt)-module. There is also an inclusion i : X → XG

which induces
i∗ : H∗(XG)→ H∗(X),

the specialization to non-equivariant cohomology; this is well-defined because all fibers are homotopic.

Example 1.9. For G = C∗, we see that it acts freely on C∞ − {0}. Hence

BC∗ = (C∞ − {0})/C∗ = C∞ := lim
N→∞

CPn.

The equivariant cohomology is

H∗(BC∗,Z) = lim
N→∞

H∗(CPN ,Z) = lim
N→∞

Z[u]/uN+1 = Z[u].

Here u := c1(OCPN (−1)).

Definition 1.10. Let V → X be a G-equivariant complex vector bundle of rank r. Then VG → XG is still
a vector bundle of rank r. The G-equivariant Chern class of V is

cGk (V ) := ck(VG) ∈ H2k(XG,Z) = H2k
G (X,Z).

Example 1.11. Let C∗ act on C via the standard weight, i.e.

C∗ → GL(1,C), t 7→ t.

This gives a C∗-equivariant line bundle Ct. On BC∗, this is

CC∗ = OCP∞(−1)→ CP∞ = BC∗.

We see that cC
∗

1 (Ct) = u.
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Example 1.12. The standard action of C∗ on P1 induces an action on Pr = Symr P1 given by

t · [a0 : · · · : ar] := [a0 : t−1a1 : t−2a2 : · · · : t−rar].

The two fixed points q0, q1 ∈ P1 induce fixed points

Pr 3 pi := {aj = 0 ∀j 6= i} ↔ iq0 + (r − i)q1 ∈ Symr P1.

Remark. If X is a compact complex manifold of dimension n, then there is a pushforward induced by
π : XG → BG:

π∗ : H∗G(X)→ H∗G(pt), α 7→
∫

[X]

α.

Suppose G = C∗ for simplicity. Then this pushforward commutes with specialization to non-equivariant
cohomology:

H∗C∗(X) −−−−→ H∗−2n
C∗ (pt)

u 7→0

y u 7→0

y
H∗(X) −−−−→ H∗−2n(pt)

.

Example 1.13. Let Di := {ai = 0} ⊂ Pr be a T -invariant divisor, and there are r + 1 of them. We
know PD(Di) = c1(OPr (Di)) = H ∈ H2(Pr,Z). The cohomology H∗(Pr,Z) = ZH/〈Hr+1〉 is saying
D1 · · · · ·Dr = 0. But equivariantly,

Hi := PDC∗(Di) = cC
∗

1 (OPr (Di)) ∈ H2
C∗(Pr,Z),

and H0|p0
= 0 ∈ H2

C∗(pt) = Zu and
Hi|p0

= −iu.
Hence Hi = H0 − iu, and

H∗C∗(Pr,Z) = Z[H,u]/

r∏
i=0

(H0 − iu).

Back to our situation: we want to compute

|Aut(µ)|Hg,µ =

∫
[M̄g(P1,µ)]vir

Br∗(Hr).

We can do this equivariantly, by the equivariant lift of Hr coming from the example above:∫
[M̄g(P1,µ)]vir

Br∗(Hr) =

∫
[M̄g(P1,µ)]vir

Br∗
r−1∏
i=0

(H0 − iu).

We need to identify fixed points in order to apply equivariant localization. The branch morphism Br is
C∗-equivariant, so that

Br: M̄g(P1, µ)C
∗
7→ (Pr)C

∗
= {p0, p1, . . . , pr}

where as we identified earlier, pi = iq0 + (r − i)q1. Define Fi := Br−1(pi). By localization,

|Aut(µ)|Hg,µ =

r∑
j=0

∫
[Fj ]vir

i∗j Br∗
∏r−1
i=0 (H0 − iu)

eC∗(Nvir
Fj

)
.

But over pj , we have
∏r−1
i=0 (H0 − iu)|pj = 0 unless j = r. Hence

|Aut(µ)|Hg,µ =

∫
[Fj ]vir

r!ur

eC∗(Nvir
Fr

)
.

It suffices now to identify the fixed locus ξ ∈ Fr ⊂ M̄g(P1, µ) such that Br(ξ) = rq1.
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1.3 Sep 25 (Melissa): Resolved conifold

Let X be the total space of OP1(−1) ⊕ OP1(−1), called the resolved conifold. It is a non-compact toric
CY3. Let

i0 : P1 → X

denote the inclusion of the zero section. Let M̄g(X, d) denote the moduli of genus g degree d stable maps
f : C → X. The inclusion i0 induces two things.

1. Because X is homotopy equivalent to P1, the induced (i0)∗ : H2(P1,Z)→ H2(X,Z) is an isomorphism.
Hence f∗[C] = d[P1] for d ∈ Z≥0.

2. There is an induced map i0 : M̄g(P1, d)→ M̄g(X, d).

(a) When d = 0 we get M̄g(P1, 0) = M̄g × P1; note that M̄g(X, 0) = M̄g ×X is not compact.

(b) When d > 0, compose f : C → X with the blow-down map π : X → X0 := {ad − bc = 0} ⊂ C4.
Since X0 is affine, the induced f̃ : C → X0 is constant, and hence the image of f must lie in
π−1(0) = P1 ⊂ X. Hence

i0 : M̄g(P1, d) ↪→ M̄g(X, d)

is actually an isomorphism of DM stacks, and since the former is proper, so is the latter. It follows
that

[M̄g(X, d)]vir = e(Vg,d) ∩ [M̄g(P1, d)]vir

where Vg,d is a complex vector bundle of rank 2(d+ g − 1), to be defined.

For any g ∈ Z≥0 and d ∈ Z>0, define the genus g degree d GW invariant of the resolved conifold is defined
by

Ng,d := deg[M̄g(X, d)]vir =

∫
[M̄g(P1,d)]vir

e(Vg,d) ∈ Q.

What is Vg,d? It should measure the difference of the deformations of a map to P1 vs a map to X. Given
[f : C → X] ∈ M̄g(X, d), the tangent space T 1

ξ and the obstruction space T 2
ξ fit into the following exact

sequence of C-vector spaces:

0→ Aut(C)→ Def(f)→ T 1
ξ → Def(C)→ Obs(f)→ T 2

ξ → 0

where:

1. Aut(C) := Ext0(ΩC ,OC) is infinitesimal automorphisms of the domain C (when C is smooth, this is
just the space H0(C, TC) of vector fields);

2. Def(C) := Ext1(ΩC ,OC) is infinitesimal deformations of the domain C (when C is smooth, this is just
H1(C, TC), which is first-order deformations of complex structures);

3. Def(f) := H0(C, f∗TX) is infinitesimal deformations of the map f with fixed domain curve C;

4. Obs(f) := H1(C, f∗TX) is infinitesimal obstructions to such deformations.

Imagine now we do the same thing for P1. Then the only difference in the tangent-obstruction theory is the
difference between f∗TX and f∗TP1 :

f∗TX = f∗TP1 ⊕ f∗(O(−1)⊕O(−1)).

Hence we have a splitting Hi(C, f∗TX) = Hi(C, f∗TP1) ⊕ Hi(C, f∗(O(−1) ⊕ O(−1))). Since H0 vanishes,
the excess H1(C, f∗(O(−1) ⊕O(−1))) over each point ξ glue to form a vector bundle over M̄g(P1, d), and
this vector bundle is precisely Vg,d.
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Definition 1.14. Define the generating series

F (u, v) :=
∑
d>0

∑
g≥0

Ng,dv
du2g−2.

We will compute F (u, v) by virtual localization. Let C∗ act on P1 by t · [x : y] := [tx : y]. Call 0 = [0 : 1]
and ∞ = [1 : 0]. Then T0P1 = Cu and T∞P1 = C−u. Lift the C∗-action to OP1(−1) ⊕OP1(−1). There are
many possible linearizations; for every a, b ∈ Z we can choose weights

0 = [0 : 1] ∞ = [1 : 0]
O(−1) Cau C(a+1)u

O(−1) Cbu C(b+1)u

.

But it turns out the most convenient one is a = −1 and b = 0. So we get a full C∗-action on M̄g(P1, d)
and Vg,d is equivariant with respect to this action. Hence we can apply equivariant localization. We need to
identify fixed components, i.e. components in M̄g(P1, d)C

∗
, and the virtual normal bundle.

Definition 1.15. Given ξ = [f : C → P1] ∈ M̄g(P1, d)C
∗
, we can associate to it a decorated graph as follows:

1. (vertices) for each connected component Cv of f−1({0,∞}), associate a vertex v ∈ V (Γ);

2. (edges) for each connected component Oe ∼= C∗ of f−1(P1 − {0,∞}), associate an edge e ∈ E(Γ), and
let Ce := Ōe ∼= P1;

3. (flags) F (Γ) := {(e, v) ∈ E(Γ)× V (Γ)} : v ∈ e};

4. (genus) label each vertex with its arithmetic genus ~g : V (Γ) → Z≥0, mapping Cv to its arithmetic
genus;

5. (degree) label each edge with its degree ~d : E(Γ)→ Z>0, so that f |Ce : P1 → P1 is a degree d cover;

6. (marking) label each vertex with its marked points ~f : V (Γ)→ {subset of {1, . . . , n}}.

Note that the total degree is d =
∑
e∈E(Γ) de and the total genus is g =

∑
v∈V (Γ) gv + b1(Γ) where b1 is the

first Betti number of the graph. Define the following subsets.

1. (stable vertices) V s(Γ) := {v ∈ V (Γ) : Cv is stable}.

Let Gg(P1, d) be the set of such decorated graphs. (For each g, d clearly there are finitely many such graphs.)

These decorated graphs index fixed components. The structure of the fixed component associated to
(Γ, ~f ,~g, ~d) is

F~Γ := [(
∏

v∈Vs(Γ)

M̄gv,nv )/A~Γ]

where A~Γ is the stabilizer of the whole fixed component. It fits into a SES

1→
∏

e∈E(Γ)

Z/deZ→ A~Γ → Aut(~Γ)→ 1.

Lemma 1.16. If Γ contains a vertex with valency nv > 1, then the restriction of eC∗(Vg,d) to the locus F~Γ
is zero.

Proof sketch. This arises from our convenient choice of linearization as follows. By normalization exact
sequence, check that if there are any nodes of valency greater than 1, we will get zero weights and eC∗(Vg,d) =
0.

7



Hence the only remaining graph with (possibly) non-zero contribution is from ~Γ with a single edge of
degree d, from a vertex of genus g1 to a vertex of genus g2. Its normal bundle Nvir

ξ = T 1,m
ξ − T 2,m

ξ is the
moving part in the tangent-obstruction sequence

0→ (B1 := Aut(C))→ (B2 := Def(f))→ T 1
ξ → (B4 := Def(C))→ (B5 := Obs(f))→ T 2

ξ → 0.

It remains to evaluate the weights of each term:

1. B1 = Aut(C0, y1, y2) = H0(C0, TC0(−y1 − y2)) = Bf1 because the only vector field fixing 0 and ∞ is
z∂z, with trivial weight;

2. Bm4 = Ty1C0 ⊗ Ty1C1 ⊕ Ty2C0 ⊗ Ty2C2, where note that C1 is a d-fold cover of P1 so that (TyC1)⊗d =
TyP1;

3. We will continue next time!

1.4 Oct 02 (Melissa): Resolved conifold II

Theorem 1.17. We have ∑
g≥0

Ng,du
2g−2 =

1

d(2 sin(du/2))2
.

Remark. On the GW side, we expand near u = 0. Hence we have

Z ′GW = exp

∞∑
d=1

vd

d(2 sin du/2)2
.

We use u−χ so that the series behaves nicely under degeneration.

Definition 1.18. Recall that fixed components ξ = [f : C → P1] ∈ M̄g(P1, d)C
∗

correspond to decorated

graphs (~Γ := (Γ, ~f ,~g, ~d) as follows.

1. (Vertices) For each connected component Cv ∈ f−1({0,∞}), we associate a vertex v ∈ V (Γ). Define
two labels on vertices:

(a) ~f(v) := f(Cv), i.e. the label is either 0 or ∞;

(b) ~g(v) is the genus of Cv (or 0 if Cv is a point).

Let V0(Γ), V∞(Γ) be all vertices sitting over 0 and ∞ respectively.

2. (Edges) For each connected component Oe ∼= C∗ of f−1(P1 − {0,∞}), associate an edge e ∈ E(Γ).

Define the label on edges ~d : E(Γ)→ Z>0 giving the degree of f |Oe . Write Ce := Ōe ∼= P1.

3. (Flags) Define F (Γ) := {(e, v) : v ∈ e}. Also, define Ev := {e : v ∈ e} ⊂ E(Γ) to be all edges incident
to v, and let nv := |Ev| be the valency of v. Hence

2gv − 2 + nv > 0.

Write V (Γ) = V I(Γ) t V II(Γ) t V s(Γ) where

V I(Γ) = {v : (gv, nv) = (0, 1)}
V II(Γ) = {v : (gv, nv) = (0, 2)}
V s(Γ) = {v : Cv is a curve}.

Similarly, write F s to mean flags which involve stable vertices.
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Do a partial normalization, at the nodes in F s(Γ) t V II(Γ). Given a labeled graph ~Γ, write

M~Γ
:= (

∏
v∈V s(Γ)

M̄gv,nv ), F~Γ := [M~Γ/A~Γ].

Lemma 1.19. We have

[F~Γ]vir =
1

|A~Γ|
(i~Γ)∗[M~Γ], [M~Γ] =

∏
v∈V s(Γ)

[M̄gv,nv ].

Remark. By virtual localization, it follows that

Ng,d =
∑

~Γ∈Gg(Γ,d)

I~Γ, I~Γ :=
1

|A~Γ|

∫
[M~Γ]vir

i∗~Γ
eC∗(Vg,d)|F~Γ
eC∗(Nvir

~Γ
)
.

We will do the virtual normal bundle now.

Take a point ξ = [f : C → P1] ∈ F~Γ. We get an exact sequence

0→ Ext0(ΩC ,OC)→ H0(C, f∗TP1)→ T 1
ξ → Ext1(ΩC ,OC)→ H1(C, f∗TP1)→ T 2

ξ → 0.

We call the terms B1, B2, B4, B5 for short. Hence the virtual normal bundle is the difference of the moving
parts, i.e. parts with non-trivial weight:

(Nvir
~Γ

)ξ = T 1,m
ξ − T 2,m

ξ .

Hence
1

eC∗(Nvir
~Γ

)
=
eC∗(B

m
1 )eC∗(B

m
5 )

eC∗(Bm2 )eC∗(Bm4 )
.

So we just have to identify the weights of each piece Bmi . These details are in Melissa’s “ Equivariant
Gromov-Witten Invariants of Algebraic GKM Manifolds” paper, applied to X = P1.

We go into some detail about the vanishing for the obstruction bundle O(−1)⊕O(−1), by request. The
most general linearization is

0 = [0 : 1] ∞ = [1 : 0]
O(−1) Cau C(a+1)u

O(−1) Cbu C(b+1)u

.

By normalization exact sequence, we get

0→ H0(C, f∗O(−1))→
⊕
v∈V s

H0(Cv)⊕
⊕
e∈E

H0(Ce)→ (Cau)|F
s
0 |+|V

2
0 | ⊕ (C(a+1)u)|F

s
∞|+|V

2
∞|

→ H1(C, f∗O(−1))→
⊕
v∈V s

H1(Cv)⊕
⊕
e∈E

H1(Ce)→ 0.

This will give an Euler class

eC∗(Vg,d) =
∏

v∈V s0 (Γ)

Λ∨gv (au)Λ∨gv (bu)((au)(bu))nv−1

∏
v∈V s∞(Γ)

Λ∨gv ((a+ 1)u)Λ∨gv ((b+ 1)u)(((a+ 1)u)((b+ 1)u))nv−1

∏
e∈E

de−1∏
j=1

(a+
1

de
)(b+

1

de
)u2de−1.
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This vanishes when a = 0 and b = −1 for any vertex, stable or unstable, whenever there are vertices with
nv > 1. This is why only the graph

g1 g2

d

contributes, where g1 + g2 = g. The contribution of the g1 vertex (over 0) is of the form

Λ∨g1
(u)Λ∨g1

(0)Λ∨g1
(−1)

u/d− ψ1

and similarly for the g2 vertex (over ∞). Let

bg :=

{
1 g = 0∫
M̄g,1

λg
1−ψ1

g > 0

so that

Ng,d =
∑

g1+g2=g

1

d

∫
M̄g,1

λg1
u2g1

u/d− ψ1

∫
M̄g,1

λg2
(−u)2g2

−u/d− ψ1

( (d−1)!
dd−1 )2u2d−2(−1)d−1

( d!
dd

)2u2d(−1)d
.

Putting everything into a generating function, we get

∑
g≥0

Ng,du
2g−2 =

1

u2d3

∑
g≥0

bg(du)2g

2

.

From the Faber–Pandharipande evaluation of Hodge integrals, we know∑
g≥0

bgt
2g =

t/2

sin(t/2)
.

Simplifying gives the desired theorem from the beginning of today’s lecture.

1.5 Oct 09 (Melissa): Relative GW theory

Let’s quickly review the tangent-obstruction theory for (absolute) GW theory. This is to prepare for the
tangent-obstruction theory in relative GW theory. Fix X a non-singular projective variety over C and
β ∈ H2(X,Z) an effective curve class. Let

C f̃−−−−→ X

π

y
M̄g,n(X,β)

where π : C → M̄g,n is the universal domain and f̃ : C → X is the universal map. We can also consider the
forgetful map

q : M̄g,n(X,β)→Mpre
g,n

to the Artin stack of prestable curves of genus g with n marked points. At the point ξ = [(C, x1, . . . , xn)] ∈
Mpre
g,n, we have

Lie(Aut(ξ)) = Ext0(ΩC(D),OC), Def(ξ) = Ext1(ΩC(D),OC)

where D := x1 + · · · + xn. Inside Mpre
g,n sits the proper smooth DM stack M̄g,n of stable curves, which

inherits this tangent-obstruction theory. Hence to compute the virtual dimension of M̄g,n(X,β), we can
first compute vdimM̄g,n = 3g − 3 + n, and then say

vdimM̄g,n(X,β) = 3g − 3 + n+ (relative dimension of q).
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But the relative tangent-obstruction theory for q is Def(f)−Obs(f), i.e. the deformation theory of the map
f , which we know is

Def(f)−Obs(f) = H0(C, f∗TX)−H1(C, f∗TX) = χ(C, f∗TX).

Putting this all together, we get

vdimM̄g,n(X,β) =

∫
β

c1(TX) + (dimX − 3)(1− g) + n.

Now we do this in the relative case.

Definition 1.20. Let X be a non-singular projective variety over C, with a smooth divisor D ⊂ X. Fix
an effective curve class β ∈ H2(X,Z) such that β · D :=

∫
β
c1(O(D)) ≥ 0. Let µ = µ1 ≥ · · · ≥ µ` > 0 be

a partition of β ·D. Define the moduli space of relative stable maps M̄g,n(X/D, β, µ) to parametrize
objects

f : (C, x1, . . . , xn, y1, . . . , y`)→ X[k] := X ∪D0 ∆1 ∪D1 · · · ∪Dk ∆k = Dk

where ∆i := P(ND/X ⊕O) and Di
∼= D for i = 0, 1, . . . , k, such that f−1(Dk) =

∑`
i=1 µiyi. Again we have

a universal domain and universal target

C T

M̄g,n(X/D, β, µ) B

Mpre
g,n+`

π

f̃

π̃

q

target

To understand what the universal target B is, look at X := lim[X [k]/Gkm] mapping to B := lim[Ak/Gkm],
where X [k] is constructed as follows.

1. Set X [1] := BlD×0(X × A1). When t = 0 ∈ A1, we get X tD0
∆, and otherwise we just get (X,D).

There is a Gm-action acting on the A1, giving

[X [1]/Gm]→ [A1/Gm]

and we are supposed to view [A1/Gm] as the moduli corresponding to the total space [X [1]/Gm].

2. Set X [2] := BlD[1]×A1(X [1]×A1). Now there are two parameters t = (t1, t2), and when t1 = t2 = 0 we
get X[2]. There is now a G2

m-action, and we get

[X [2]/G2
m]→ [A2/G2

m].

3. Continue in a similar fashion.

The universal target T is formed by pullback of X → B to M̄, i.e.

T −−−−→ Xy y
M̄g,n(X/D, β, µ) −−−−→ B

is Cartesian.
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Now let’s describe the tangent-obstruction theory for M̄g,n(X/D, β, µ). Fix ξ := [f : (C,Dx, Dy) → X]
where Dx is the marked points on the domain and Dy is marked points intersecting with D. Then we get

0→ Ext0(ΩC(Dx +Dy),OC)→ H0(C, f∗ΩX(logD)∨)→ T 1
ξ

→ Ext1(ΩC(Dx +Dy),OC)→ H1(C, f∗ΩX(logD)∨)→ T 2
ξ → 0.

Here the two terms Hi(C, f∗ΩX(logD)∨) are the relative tangent-obstruction theory for the map q at the
point ξ. If there were no logD, then this would just be f∗TX . But the logD requires the section to vanish
to some degree: if z1, . . . , zN are local coordinates on X with D = {zN = 0}, then locally

ΩX(logD) = 〈dz1, . . . , dzN−1,
dzN
zN

= d log(zN )〉.

It follows that
vdimM̄g,n(X/D, β, µ) = 3g − 3 + n+ `+ χ(C, f∗ΩX(logD)∨).

But ΩX(logD) is a vector bundle over C of degree
∫
β
c1(TX) − β · D and rank dimX. Putting this all

together, we get the following.

Proposition 1.21. The virtual dimension of the moduli of relative stable maps is

vdimM̄g,n(X/D, β, µ) = (

∫
β

c1(TX) + (dimX − 3)(1− g) + n) + (`− β ·D).

We see that the second term is new, and can also be written as `−
∑`
i=1 µi. View this as the codimension

arising from the relative condition. In the generic case µ = (1, . . . , 1), there is no codimension.
Now in the general case of ξ := [f : (C,Dx, Dy)→ X[k]], we need the more general exact sequence

0→ H0(C, f∗ΩX[k](logDk)∨)→
r−1⊕
m=0

H0
et(Rm)→ H0(D)

→ H1(C, f∗ΩX[k](logDk)∨)→
r−1⊕
m=0

H1
et(Rm)→ H1(D)→ 0.

What is Hi
et(Rm)? Think: it is supposed to be the deformation theory of q which is “compatible” with the

smoothing of nodes in the domain at Di. Over each Di there are line bundles Li := NDi/∆i
⊗ NDi/∆i+1

.
Define

H0
et(Ri) :=

⊕
q∈f−1(Di)

OD`

H1
et(Ri) := H0(Di, Li)

⊕ni/∆, ni := #f−1(Di).

Here ∆ is the diagonal. We can view Ri as the ramification divisor at Di.
Now let’s look at gluing formulas. Take a simple degeneration Y → A1, with:

Yt = Y, Y0 = X1 tD X2.

When we look at M̄g,n(Yt, β), think of β as an element of Hom(Pic(Y),Z), because now in general we can
have monodromy when we go around 0. This is in general coarser than H2. There is a cobordism argument
that says that in Chow,

[M̄g,n(Y0, β)]vir = [M̄g,n(Yt, β)]vir, ∀t 6= 0.

The rhs is GW invariants on Y = Yt. The lhs can be expressed using the relative moduli M̄g,n(Xi/D, β, µ)
as follows. To write the formula, it is more convenient to do the disconnected invariants M̄•g,n(. . .), because
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if we break a curve it may become disconnected. Let β1 + β2 = β and µ1 ≥ · · · ≥ µ` > 0 be a partition of
β ·D. There are evaluation maps which fit into a square

M1 ×DlM2 −−−−→ M̄•g,n(X/D, β2, µ) =:M2y ēv

y
M1 := M̄•g,n(X/D, β1, µ)

ēv−−−−→ D`

Let ∆: D` → D2` be the diagonal. Then we have another diagram

M1 ×D`M2 −−−−→ D`y ∆

y
M1 ×M2

ēv×ēv−−−−→ D` ×D`

with [M1 ×D`M2]vir = ∆!([M1]vir × [M2]vir). Hence we have an equality

[M̄•g,n(Y0, β)]vir =
∑

µ`β1·D=β2·D
length(µ)=`

µ1 · · ·µ`
|Aut(µ)|

[M̄g1,n1
(X1/D, β1, µ)×D` M̄g2,n2

(X2/D, β2, µ)]vir

for g1 + g2 = g and β1 + β2 = β.

1.6 Oct 16 (Henry): The GW local curves TQFT

All manifolds are oriented, and we work over C. Given a manifold Y , denote by −Y the same manifold with
opposite orientation. (We also assume our QFTs are anomaly-free.)

Definition 1.22. A (n+ 1)-dimensional TQFT is a symmetric monoidal functor

Z : (n+ 1)Cob→ VectC

from the category of cobordisms to the category of vector spaces. Concretely, this means the following data.

1. Associated to each closed n-dimensional manifold Y is a vector space HY called the (quantum) state
space satisfying:

• (gluing) H∅ = C and HY1tY2
= HY1

⊗HY2
;

• (orientation) H−Y = H∗Y .

• (functoriality) if f : Y → Y ′ is a diffeomorphism, then there is an induced isomorphism f∗ : HY →
HY ′ .

2. Associated to each compact (d + 1)-dimensional manifold X is an element ZX ∈ H∂X called the
partition function. To work with ZX it helps to imagine H∂X as the collection of functions on
“boundary conditions” on X, and ZX as a function that takes a boundary condition and spits out
the number of states satisfying that boundary condition on ∂X. This assignment must satisfy the
following.

• (Functoriality) if f : X → X ′ is a diffeomorphism with ∂f : ∂X → ∂X ′, then (∂f)∗ZX = ZX′ .
(This is why we say the theory is “topological”.)

• (Gluing) Suppose X = X1 tY X2, i.e. X is obtained by gluing (d + 1)-folds X1 and X2 along a
common boundary Y .

ZX = trHY (ZX1
⊗ ZX2

).
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Think: ZXi counts how many states on Xi satisfy a given boundary condition Q ∈ HY on Y , so
if {Qi} is a basis for HY , then

#(states in X) =
∑
i

#(states in X1 satisfying Qi) ·#(states in X2 satisfying Qi),

which is exactly the formula above.

In (1 + 1) dimensions, TQFTs have a structure that we can really get our hands on. The key idea is that
any compact orientable surface S with boundary and genus zero looks like this:

This is because the boundary ∂S is a closed 1-manifold, which is always a disjoint union of a finite number
of circles S1. So the only state space we need to consider is H = HS1 , associated to “incoming” circles, and
its dual H∗ = H−S1 , associated to “outgoing” circles, which have the opposite orientation. A surface S with
m incoming circles and n outgoing circles will correspond to a map

H⊗m → H⊗n.

Example 1.23. The following is an inner product 〈−,−〉 : H ⊗ H → C and a multiplication operator
m(−,−) : H⊗H → H:

Example 1.24 (Identity map). Consider the cylinder

:= ZC : H → H.

Usually we restrict our state space H so that ZC is surjective. Then

=

Hence ZC = ZC ◦ ZC . Idempotents are the identity on their image, so ZC = id: H → H.

Proposition 1.25 (2d TQFT = Frobenius algebra). H with 〈−,−〉 and m(−,−) has the structure of a
Frobenius algebra:

1. it is a commutative and associative algebra, with unit D2 = ∈ H;

2. multiplication is compatible with the non-degenerate inner product, i.e. 〈ab, c〉 = 〈a, bc〉.
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Proof. The diagrammatic proof of associativity is as follows:

= .

This uses the diffeomorphism invariance of the partition function. The others are left as an exercise.

Remark. Clearly we don’t have to map to Vectk; we can do ModR for any commutative unital ring R. Later
we will take R = Q(t1, t2)((u)).

Remark. The following are equivalent:

1. H = C⊕ · · · ⊕ C is a semisimple algebra;

2. H has an idempotent basis {ei} (with dual basis {ei} using 〈−,−〉);

3. 〈−,−〉 is a non-degenerate inner product.

Semisimplicity is a very important structural result: it means we can piece together partition functions for
whole surfaces using partition functions of pieces, as follows.

Proposition 1.26. For a semisimple 2-TQFT, let λi := 〈ei, ei〉 be its structure constants. Then

ZΣg =
∑
i

λ1−g
i .

Proof. Do a pair of pants decomposition of Σg:

· · · .

We need to compute the two pieces we don’t know yet.

1. Compute the value of ∈ H ⊗ H as follows. It arises from dualizing the second factor in id =∑
i ei ⊗ ei ∈ H ⊗H∗ where {ei := ei/〈ei, ei〉} is the dual basis to ei. This means

=
∑
i

ei ⊗
ei

〈ei, ei〉
∈ H ⊗H.
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2. Using this, we compute

= =

[
x 7→

∑
i

(xei)⊗
ei

〈ei, ei〉

]
: H → H⊗H.

To get ZΣg , compose all the pieces in the pairs of pants decomposition from left to right. Recalling that
eiej = 0 for i 6= j, we get∑

i

ei ⊗ ei
λi

7→
∑
i

ei
λi
7→
∑
i

ei ⊗ ei
λ2
i

7→
∑
i

ei
λ2
i

7→ · · · 7→
∑
i

ei ⊗ ei
λgi

7→
∑
i

λi
λgi
.

Hence the final result is ZΣg =
∑
i λ

1−g
i , as desired.

Definition 1.27. The local curve case for GW involves the following data:

1. a smooth irreducible projective curve X of genus g;

2. a rank-2 bundle N := L1 ⊕ L2 over X, of degrees or level (k1, k2);

3. a possibly disconnected source curve C of genus h whose image has degree β.

Let T 2 act on N with equivariant parameters t1, t2, so that

[M̄•h(N, d[X])T ]vir = [M̄•h(X, d)]vir.

Here (−)• denotes disconnected invariants. By localization we can define:

1. the reduced GW partition function

Z ′d(N) :=
∑
h∈Z

u2h−2

∫
[M̄•h(X,d)]vir

e(−R•π∗f∗(L1 ⊕ L2)) ∈ Q(t1, t2)((u));

2. the GW generating function

GWd(g; k1, k2) := ud(2−2g+k1+k2)Z ′d(N) ∈ Q(t1, t2)((u)).

We pick the exponent of u so that gluing rules (later) are nice. In particular, (2h − 2) + d(2 − 2g) is
the dimension of M̄h(X, d), and levels add.

Remark. Every vector bundle on a curve is deformation equivalent to a sum of line bundles; this is why
it suffices to do the split case. This is because every vector bundle E on a curve has a filtration by line
bundles: twist so that E(n) is globally generated, but a generic global section has zero locus of dimension
dimX − rank E < 0, so

0→ OX → E(n)→ F → 0

and we can induct. In K-theory this means E is a positive linear combination of line bundles. This is not
true in higher dimension: TP2 = 2O(1)−O requires that negative term. Now within each extension of line
bundles, we can “deform the Ext class”, i.e. form a universal family over X×Ext1(L2, L1) to make it trivial,
and we are done.

16



Remark. Write down the dependence of GWd(g; k1k2) on its variables, to get rid of the sum over h (by
dimension axiom).

1. To make the dependence on t1, t2 clear, define

GW b1,b2
d (g; k1, k2) :=

∫
[M̄•h(X,d)]vir

cb1(−R•π∗f∗L1)cb2(−R•π∗f∗L2),

so that the total GWd(g; k1, k2) is a sum over b1, b2 of these pieces. The nice thing about these pieces
is t1, t2 pull out of them as follows.

(a) The degree of t1 in cb1 is

rank(−R•π∗f∗L1)− b1 = −χ(C, f∗L1)− b1 = −(deg f∗L1 + 1− h)− b1 = h− 1− dk1 − b1.

(b) We don’t want a dependence on the genus h of the source curve, because that will vary. Compute
the virtual dimension

b1+b2 = vdimM̄•h(X, d) = (dimX−3)(1−h)+

∫
d[X]

c1(TX) = 2h−2+ddeg TX = 2h−2+d(2−2g).

Hence h− 1 = (1/2)(b1 + b2) + d(g − 1).

It follows that the exponent of t1 is (1/2)(b2 − b1) + d(g − 1− k1).

2. The variable u indexes the quantity

2h− 2 +

∫
d[X]

c1(TN ) = 2h− 2 + d(2− 2g + k1 + k2) = b1 + b2 + d(k1 + k2).

In total, we have

GWd(g; k1, k2) = ud(k1+k2)t
d(g−1−k1)
1 t

d(g−1−k2)
2

∞∑
b1,b2=0

ub1+b2t
1
2 (b2−b1)
1 t

1
2 (b1−b2)
2 GW b1,b2

d (g; k1, k2).

This will be super helpful later, because it suffices to compute the number GW b1,b2
d (g; k1, k2), and insert

t1, t2 manually.

Definition 1.28. Let M̄h(X,λ1, . . . , λr) be the moduli of relative stable maps to a curve X of genus g,
with prescribed ramification profiles λ1, . . . , λr (all partitions of d) at given points x1, . . . , xr ∈ X. Melissa
showed us that for one ramification, the codimension of M̄h(X,λ) is

|λ| − `(λ) = d− `(λ),

so that the codimension for multiple ramifications is

co vdimM̄h(X,λ1, . . . , λr) = δ :=

r∑
i=1

(d− `(λi)).

As with the absolute case, we can shift Z ′(N)λ1,...,λr by ud(2−2g+k1+k2−r)+
∑r
i=1 `(λ

i) so that

GW (g; k1, k2)λ1,...,λr := ud(k1+k2)t
d(g−1−k1)
1 t

d(g−1−k2)
2

∞∑
b1,b2=0

ub1+b2t
1
2 (b2−b1+δ)
1 t

1
2 (b1−b2+δ)
2 GW b1,b2

d (g; k1, k2).
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The idea now is to make a 2-TQFT out of the partition functions GW (g; k1, k2)λ1,...,λr , where each
incoming/outgoing state is a ramification condition λi. This means we need some prescription for turning
incomings into outgoings, i.e. for dualizing. The factor we use is whatever makes the gluing formula work.

Definition 1.29. To raise indices, use z(λ)(t1t2)`(λ), i.e. define

GW (g; k1, k2)ν
1···νt
µ1···µs := GW (g; k1, k2)µ1···µs,ν1···νt

t∏
i=1

z(νi)(t1t2)`(ν
i).

Theorem 1.30. For g = g′ + g′′ and ki = k′i + k′′i ,

GW (g; k1, k2)ν
1···νt
µ1···µs =

∑
λ`d

GW (g′; k′1, k
′
2)λµ1···µsGW (g′′; k′′1 , k

′′
2 )ν

1···νt
λ ,

and
GW (g; k1, k2)µ1···µs =

∑
λ`d

GW (g − 1; k1, k2)λµ1···µsλ.

Proof. We prove a simpler case:

GW (g; k1, k2) =
∑
λ`d

GW (g′; k′1, k
′
2)λGW (g′′; k′′1 , k

′′
2 )λz(λ)(t1t2)`(λ).

The general case requires a little more work (see Theorem 21, Jun Li’s lecture notes on relative GW invari-
ants). Melissa showed us last time that in a degeneration of Y to Y0 = X1 ∪D X2,

[M̄•g,n(Y, β)]vir = [M̄•g,n(Y0, β)]vir

=
∑

µ`β1·D=β2·D
length(µ)=`

z(µ)[M̄g1,n1
(X1/D, β1, µ)×D` M̄g2,n2

(X2/D, β2, µ)]vir.

Specifically, let’s focus on the component of M̄•g,n(Y0, β) which corresponds to degenerations of type µ =

λ (in the sum). We already see all the factors except (t1t2)`(λ). This factor comes from the integrand
e(−R∗π∗f∗(L1 ⊕ L2)) as follows. If we degenerate the target and source

X = X ′ ∪X ′′, C = C ′ ∪ C ′′,

the line bundles L1, L2 must split with degrees k1 = k′1 + k′′1 and k2 = k′2 + k′′2 , and for each line bundle Li
there is a normalization sequence

0→ f∗(Li)|C → f∗(Li)|C′ ⊕ f∗(Li)|C′′ → f∗(Li)|C′∩C′′ → 0.

But |C ′ ∩ C ′′| = `(λ), and this last term is trivial with weight ti. Hence

−R•π∗f∗(L1|C′ ⊕ L2|C′′) + (t1t2)`(λ) = −R•π∗f∗(L1 ⊕ L2)|C .

Level and genus add, which is why u behaves fine in gluing too.

1.7 Oct 23 (Henry): Local curve computations

Definition 1.31. Let 2CobL1,L2 enrich 2Cob by asking morphisms Y1 → Y2 to be equivalence classes of
triples (W,L1, L2) where:

1. W is a cobordism from Y1 to Y2;

2. L1, L2 are line bundles on W trivialized on ∂W .
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Topologically, vector bundles are classified by degree and rank, so it suffices to label W with the level (k1, k2)
of (L1, L2).

Definition 1.32. Let R := Q(t1, t2)((u)), and define the R-valued 2-TQFT

GW : 2CobL1,L2 → ModR

by the data of:

1. the state space GW (S1) := H :=
⊕

λ`dReλ;

2. the morphisms

eη1 ⊗ · · · eηs 7→
∑

µ1,...,µt`d

GW (g; k1, k2)µ
1···µt
η1···ηs eµ1 ⊗ · · · ⊗ eµt

associated to a genus g cobordism from s inputs to t outputs of level (k1, k2).

Theorem 1.33. GW is a well-defined functor, and is uniquely determined by its value on

(0,0) (-1,0) (0,-1) (0,0) (0,0)

Proof. Everything follows from gluing laws. The only thing we really have to check is that the tube is sent
to the identity morphism, i.e. that

GW (0; 0, 0)νµ = δνµ.

We will check this later.

We will show GW is a semisimple 2-TQFT by showing it in level 0, i.e. for GW (g; 0, 0). This is the part
of the theory which gives classical contributions. Then we lift to the whole TQFT by the following lemma.

Lemma 1.34 (TQFT Nakayama lemma). Let (R,m) be a complete local ring, and let A be a Frobenius
algebra over R. Suppose A is a free R-module and A/mA is a semisimple Frobenius algebra over R/m. Then
A is semisimple (over R).

Proof. Since A/mA is semisimple, pick an idempotent basis represented by elements e1, . . . , en ∈ A, i.e.

e2
i − ei ∈ m, ∀i, eiej ∈ ∀i 6= j,

and by the regular Nakayama lemma, {ei} is a basis for A. We modify it inductively so that it is idempotent
mod mk. Suppose we had the relations for mk instead of m. Then define

bi := e2
i − ei ∈ mk, e′i = ei + bi(1− 2ei)

−1.

Note that 1− 2ei is invertible only because R is complete. We picked it so that terms cancel out in

(e′i)
2 − e′i = e2

i − ei + (2eibi − bi)(1− 2ei)
−1 + b2i (1− 2ei)

−2

= b2i (1− 2ei)
−2 ∈ m2k.

Also, e′ie
′
j ∈ mk+1 just by checking all the terms are. Hence we can inductively construct an idempotent

basis {e(k)
i } for A/mk+1A for every k. By completeness again, there exists ẽi ∈ A with ẽi ≡ e

(k)
i mod mk+1

for all k. This is the idempotent basis we want.
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Proposition 1.35. Let R̃ := Q(t
1/2
1 , t

1/2
2 )((u)). Then the level (0, 0) sector of GW in degree d is semisimple

over R̃.

Proof. Since m = (u), the structure constants of multiplication in the Frobenius algebra are given by the
pair of pants structure constants GW (0; 0, 0)γαβ |u=0. Hence we care only about b1 = b2 = 0. Recall that
b1 + b2 = vdim, so here expected dimension is 0. Hence

GW (0; 0, 0)γαβ |u=0 = z(γ)(t1t2)`(γ)GW (0; 0, 0)αβγ |u=0

= z(γ)(t1t2)
1
2 (d−`(α)−`(β)+`(γ))HP1

d (α, β, γ)

where HP1

d is a Hurwitz number. These we know how to compute by Burnside’s formula

HP1

d (α, β, γ) =
∑
ρ`d

d!

dim ρ

χραχ
ρ
βχ

ρ
γ

z(α)z(β)z(γ)
.

Hence we have an explicit formula for the structure constants. The resulting Frobenius algebra is (up to
t1t2) Yang–Mills with finite gauge group Sd and is well-known to be semisimple. We can actually explicitly
write an idempotent basis

vρ :=
dim ρ

d!

∑
α

(t
1/2
1 t

1/2
2 )`(α)−dχραeα.

This requires the extension to R̃.

Corollary 1.36. There are universal series λρ, ηρ ∈ R̃ indexed by partitions ρ such that

GWd(g; k1, k2) =
∑
ρ`d

λ1−g
ρ η−k1

ρ η̄−k2
ρ

where bar means swapping t1 and t2.

Proof. Same proof as earlier, except we have series ηρ associated to the level adding operator (-1,0) .

Example 1.37 (Level (0, 0) tube). This is given by the series

F

(
(0,0)

)
:= GW (0; 0, 0)λµ =

{
1

z(λ)(t1t2)`(λ) λ = µ

0 λ 6= µ

as follows. For connected domains, the only contribution to GW (0; 0, 0)αβ can be from degree-d covers

P1 d−→ P1, because of the following.

1. Since the Li are trivial,

c(−R•π∗f∗Li) = c(R1π∗OC̄h −R
0π∗OC̄h) = c(E∨)/1,

and hence the terms in GW (0; 0, 0)αβ are∫
[M̄h(P1,α,β)]vir

cb1(E∨)cb2(E∨).

2. Do a dimension count: vdimM̄h(P1, α, β) = 2h − 2 + `(α) + `(β), but E∨ is rank h and hence the
integrand is dimension at most 2h. Hence `(α) = `(β) = 1 and b1 = b2 = h. But Mumford’s relation
says

ch(E∨)2 = 0 ∀h > 0.

Hence h = 0 as well, i.e. we have a totally ramified P1 d−→ P1.
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Disconnected maps which contribute must therefore be a disjoint union of totally ramified covers. Such maps
are isolated in moduli and have automorphism group of order z(α), i.e.

GW b1,b2(0; 0, 0)αβ =

{
1/z(α) b1 = b2 = 0, α = β

0 otherwise

which gives the desired expression for the tube.

Example 1.38 (Level (0, 0) cap). This is given by the series

F

(
(0,0)

)
:= GW (0; 0, 0)λ =

{
1

d!(t1t2)d
λ = (1d)

0 λ 6= (1d)

as follows. Now vdimM̄h(P1, λ) = 2h−2+d+`(λ), and we require d = `(λ) = 1. Then h = 0 by Mumford’s
relation. Hence we can only have isomorphisms P1 ∼−→ P1. Accounting for disconnected covers, we get d
copies of isomorphisms, i.e. λ = (1d), with Sd automorphism group.

Example 1.39 (Level (−1, 0) cap). This is given by the series

F

(
(-1,0)

)
:= GW (0;−1, 0)λ = (−1)|λ|(−t2)−`(λ) 1

z(λ)

`(λ)∏
i=1

(
2 sin

λiu

2

)−1

as follows. Again do the connected case. Look at the terms of the integrand:

1. −R•π∗f∗O(−1) has fibers −H•(C,OC(−d)), which by Riemann–Roch is rank −(d+ 1− h);

2. −R•π∗f∗O has fibers −H•(C,OC), whose Chern class (up to a trivial factor) is just c(E).

So by the usual inequalities, we require `(λ) = 1, i.e. λ = (d) and b1 = h− 1 + d and b2 = h. Compute∫
[M̄h(P1,(d))]vir

e(−R•π∗ ev∗O(−1))e(−R•π∗ ev∗O)

via C∗q-localization for the usual action of C∗q on P1. Pick the linearization (−1, 0) and (0, 0) on O(−1) and
O respectively, so that:

1. there is a unique vertex over ∞ because of the ramification profile (d), and it has genus 0 because it
carries the class cg(v)(E∨)2, which vanishes unless g(v) = 0;

2. the vertex over∞ cannot have valence> 1, using our choice of linearization as in the proof of Aspinwall–
Morrison; (note that we can only run this argument for O(−1) because O has non-trivial H0, in the
LES induced from normalization exact sequence)

3. the vertex at 0 must be of genus h for the total genus to be h;

4. the vertex at∞ is rigid, i.e. gives no contributions at all to the integral, because it cannot be deformed
within this moduli space.

Hence the only contribution is from a graph of the form
h 0

d
. We compute its contribution via C∗q-

localization.

1. The vertex contribution is done in the Faber–Pandharipande linear Hodge integral calculation. From
the genus-h vertex at 0 we get∫

M̄h,1

(−1)hΛ(q)(−1)hΛ(0) · (−1)hΛ(−q)
q/d− ψ

,

where Λ(q)Λ(0) comes from e(−E−1)e(−E). (Here E−1 is E with linearization −1, coming from O(−1)
term.)

2. To be continued.
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1.8 Oct 30 (Henry): Cap and pants

We continue the (−1, 0) cap computation from last time. The edge contribution from the single graph

h 0

d

is as follows. Both deformations of the map and the integrand contribution involve weights of sections
H•(P1, f∗dO(k)), so we care only about what the linearization is at 0 and ∞. Note however that we cannot
deform the map at the degenerate vertex ∞.

1. (Denominator) From the linearization (1, 0) of TP1(−∞) (because we can’t deform the degenerate
vertex at ∞), we get weights kq/d for k ∈ {0, . . . , d} − {0}. The product is d!(q/d)d.

2. (Numerator) From the linearization (−1, 0) of O(−1), we get weights kq/d for k ∈ {−1, . . . ,−(d− 1)}.
The product is (−1)d−1(d− 1)!(q/d)d−1.

Collecting everything together and using Mumford’s relation, the total contribution is a sum over h of the
terms

1

d

∫
M̄h,1

(−1)hq2h (−1)hch(E)

q/a− ψ
· (−1)d−1(d− 1)!(q/d)d−1

d!(q/d)d

=
1

d

∫
M̄h,1

q2hch(E)
ψ2h−2

(q/d)2h−1

(−1)d−1

q
= (−1)d−1d2h−2

∫
M̄h,1

ch(E)ψ2h−2.

(Note that all the q’s cancel, as they should!) This is a linear Hodge integral, and can be evaluated via
Faber–Pandharipande’s formula ∑

h≥0

(du)2h

∫
M̄h,1

ψ2h−2
1 λh =

du/2

sin(du/2)
.

Plugging this into the explicit expression for GW (g; k1, k2)λ, we get the desired result. For example:

1. since δ = d− 1 and b1 = h− 1 + d and b2 = h, we see that (1/2)(b2 − b1 + δ) = 0 and d(g − 1− k2) +
(1/2)(b1 − b2 + δ) = −1;

2. disconnected invariants are products of `(λ) connected invariants, so in total we have t
−`(λ)
2 .

This finishes the (−1, 0) cap computation.
The pair of pants is hard, because now there are no dimensionality arguments:

vdimM̄h(P1, λ, µ, ν) = 2h− 2− d+ `(λ) + `(µ) + `(ν),

so now the contributions even from connected sources is complicated. However for small cases, we still have
dimensionality arguments. We will compute a modified version of GW (−) called GW ∗(−); it involves a
prefactor which will make the GW/DT correspondence hold on the nose:

GW ∗(−) = (−i)d(2−2g+k1+k2)−δGW (−).

This requires us to make a modification to the (inverse of the) metric, which is now z(ν)(−t1t2)`(ν), i.e. there
is an extra minus sign.

Example 1.40 (GW ∗(0; 0, 0)(d),(d),(2)). Let (2) denote (2, 1d−2). In this case, we have vdim = 2h − 1 but
the integrand is cb1(E∨)cb2(E∨), so the only two possibilities are

(b1, b2) = (h, h− 1), (b1, b2) = (h− 1, h).
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So it suffices to compute
∫

[M̄h(P1,(d),(d),(2))]vir ρ
∗(−λhλh−1) where λk ∈ M̄h,2 and

ρ : M̄h(P1, (d), (d), (2))→ M̄h,2

takes a relative stable map to the domain marked with the two totally ramified points. We use this to reduce
to integrals over M̄h,2 by computing

ρ∗[M̄h(P1, (d), (d), (2))]vir = 2h[H̄d] +B

where Hd ⊂Mh,2 is the image of ρ on the smooth locus and H̄d ⊂ M̄h,2 is the closure, and B is some cycle
on the boundary which we can neglect, as follows.

1. Note that M̄h(P1, (d), (d), (2)) is unobstructed and hence the virtual class is the usual fundamental
class. On the open locus, let Hd ⊂Mh,2 be the image of ρ. Then

ρ : Mh(P1, (d), (d), (2))→ Hd

is a proper degree 2h cover, because by Riemann–Hurwitz there are R′ = 2h other ramification points,
and we can choose which one is the one we call (2). (Here 2h− 2 = d(−2) + (d− 1) + (d− 1).) Hence

ρ∗[M̄h(P1, (d), (d), (2))]vir = 2h[H̄d] +B

where B is supported on ρ(∂M̄h(P1, (d), (d), (2))).

2. Let ε : M̄h,2 → M̄h,1 be the forgetful map. Then actually

ρ(∂M̄h(P1, (d), (d), (2))) ⊂ ε−1(∂M̄h,1).

This is because we know the image lies in ∂M̄h,2, but the only stratum there (i.e. singular curve with
2 marked points) that does not come from ∂Mh,1 (i.e. singular curve with 1 marked point) must have
one P1 component holding both marked points, which contracts onto the main component of genus h
when we forget one marked point. Such a component is not a valid source curve in the compactification
of relative stable maps. Now to disregard B, use that

λhλh−1|∂M̄h,n
= 0.

This is because there are two kinds of components in ∂M̄g, and it suffices to verify λgλg−1 = 0 on
both.

(a) (M̄g−1,2) Here there is a surjection i∗Eg � O given by taking residue at one of the marked points.
Hence cg(Eg) = 0.

(b) (M̄h,1 × M̄g−h,1) Here i∗Eg factors as p∗1Eh ⊕ p∗2Eg−h, so

i∗λg = p∗1λhp
∗
2λg−h

i∗λg−1 = p∗1λhp
∗
2λg−h−1 + p∗1λh−1p

∗
2λg−h.

Use the vanishing λ2
h = λ2

g−h = 0.

Collecting all this together, we get

GW ∗(0; 0, 0)(d),(d),(2) = i
t1 + t2
t1t2

∑
h≥1

u2h−1ch(d), ch(d) := 2h

∫
[H̄d]

λhλh−1.

The next step is to reduce to the d = 2 case and explicitly compute on the hyperelliptic locus.
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1. Hd is the locus of curves (C, x1, x2) with O(x1 − x2) ∈ Pic0(C) being a non-trivial d-torsion point. In

other words, if Pic0 π−→Mh,2 is the universal Picard bundle with section s : (C, x1, x2) 7→ OC(x1−x2),
then

[Hd] = π∗(s∗[Mh,2] ∩ Pd) ∈ A∗(Mh,2)

where Pd is the locus of non-zero d-torsion points.

2. A result of Looijenga says given any family of abelian varieties A → S, the class of the locus of d-torsion
points is a multiple of the zero section in Chow. Hence

1

d2h − 1
[Pd] = [0] =

1

22h − 1
[P2]

and this descends to ch(d) = (d2h − 1)/(22h−1)ch(2).

Hence we have reduced to d = 2. This case is easy, because [H̄2] relates to the hyperelliptic locus H̄ ⊂ M̄h

almost by definition.

1. The extra data in H̄2 is which two of the Weierstrass points we choose to call (2). By Riemann–Hurwitz,
2h− 2 = −2 · 2 + r, so there are r = 2h+ 2 Weierstrass points, i.e.

(M̄h,2 → M̄h)∗[H̄2] = (2h+ 2)(2h+ 1)[H̄].

2. Use Faber–Pandharipande’s evaluation of ch(E) on the hyperelliptic locus H̄ ⊂ M̄h to get

GW ∗(0; 0, 0)(2),(2),(2) =
i

2

t1 + t2
t1t2

tan
u

2
.

From this, we get ch(2), which gives ch(d), and therefore the general expression

GW ∗(0; 0, 0)(d),(d),(2) =
i

2

t1 + t2
t1t2

(
d cot

du

2
− cot

u

2

)
.

Remark. It will be helpful to rewrite this with q := −eiu as

GW ∗(0; 0, 0)(d),(d),(2) =
1

2

t1 + t2
t1t2

(
d

(−q)d + 1

(−q)d − 1
− (−q) + 1

(−q)− 1

)
.

Theorem 1.41 (Bryan–Faber–Okounkov–Pandharipande reconstruction result). The pair of pants series
GW ∗(0; 0, 0)λµν can be uniquely reconstructed from GW ∗(0; 0, 0)(d),(d),(2), lower degree series of level (0, 0),
and Hurwitz numbers of P1 → P1.

Proof. We show uniqueness. Idea: write an invertible linear system of equations for GW ∗(0; 0, 0)λµν whose
coefficients are matrix elements of GW ∗(0; 0, 0)µ,(2),ν ; let

〈λ|M2|µ〉 := (−1)|λ|GW ∗(0; 0, 0)λ,(2),µδ|λ|,|µ|

be these matrix elements. In Fock space formalism, it is easy to express disconnected invariants in terms of
connected ones:

−M2 ∝
∑
k>0

GW ∗(0; 0, 0)(k),(2),(k)α−kαk +
∑
k,l>0

(
GW ∗(0; 0, 0)(k+l),(2),(k,l)|u=0αk+lα−kα−l − α−k−lαkαl

)
.

This is because there are two types of contributions. The virtual dimension is 2h−2−d+`(µ)+`(ν)+d−1 =
2h− 3 + `(µ) + `(ν).
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1. (Quantum contribution) If `(µ) + `(ν) = 2 then `(µ) = `(ν) = 1 and we are necessarily in the case of
connected invariants GW ∗(0; 0, 0)(d),(2),(d).

2. (Classical contribution) Otherwise `(µ) + `(ν) = 3 and we need contributions from ch(E)2, which as
usual vanishes unless h = 0. This is the classical contribution, i.e. at u = 0, from Hurwitz numbers.
Recall that

GW (0; 0, 0)γαβ |u=0 = z(γ)(t1t2)
1
2 (d−`(α)−`(β)+`(γ))HP1

d (α, β, γ)

and the Hurwitz number controlls what happens when a transposition hits another partition: it can
either merge two cycles, or split a cycle into two.

The desired linear system arises as follows. Let (2)r denote r copies of (2). Then for partitions µ, ν ` d, we
can get ramification (µ, (2)r, ν) in two ways:

1. glue r copies of (α, (2), β);

2. glue the unknown (µ, γ, ν) to (γ, (2)r), where we know

GW ∗(0; 0, 0)(2)r,γ = GW ∗(0; 0, 0)
(1d)
(2)r,γGW

∗(0; 0, 0)(1d)

because of the explicit expression for the (0, 0) cap.

The equality we get is

〈µ|Mr
2 |ν〉 ∝

∑
γ`d

GW ∗(0; 0, 0)µγν〈γ|Mr
2 |(1d)〉.

This ranges over all r, and we need to show the resulting system (for fixed µ, ν) is non-singular, over the
field Q(t1, t2, q) where the coefficients live (by our explicit formula).

1. Note that M2 as an operator has distinct eigenvalues, because in the limit t1t2 = 0 it is upper triangular
with linearly independent entries on the diagonal. If Fd ⊂ F is spanned by vectors of degree d, then
it follows that the idempotents of the Frobenius algebra are eigenvectors of M2|Fd . This is by picking
eigenvectors {vj} and looking at quantum multiplication ∗, which gives

vi ∗ vi =
∑

ajvj =⇒ vi ∗ vi = aivi

by applying M2 to both sides as follows:∑
λiajvj = λivi ∗ vi = M2vi ∗ vi =

∑
ajM2vj =

∑
λjajvj ,

but the vj are linearly independent so λi = λj . But eigenvalues are also distinct, so there can be only
one j on the rhs.

2. Check that |(1d)〉 is the unit in the Frobenius algebra. This is because (up to checking prefactors) of
the (0, 0) cap being non-zero only for λ = 〈(1d)〉, so

|µ〉

|(1d)〉

∝

|µ〉

= |µ〉 .

But the unit is the sum of all idempotents, and M2 has distinct eigenvalues. Hence {Mr
2 |(1d)〉}r≥0

spans Fd. So the linear system of equations we got must be non-singular. Explicitly, the system is of
the form vr · x = 〈µ|Mr

2 |ν〉 ranging over all r, where vr = Mr
2 |(1d)〉; because they span, solutions are

unique.

25



1.9 Nov 13 (Melissa): 1-leg GW vertex

We will talk about multiple covers of the sphere and the disk, and then the (Gopakumar–)Marino–Vafa
formula.

Example 1.42 (Multiple covers of the sphere). Let X := Tot(OP1(−1)⊕OP1(−1)), with inclusion i0 : P1 →
X of the zero section. When d > 0, recall that

M̄g,0(P1, d)
i0−→ M̄g,0(X, d)

is an isomorphism. Let

Ng,d :=

∫
[M̄g,0(X,d)]vir

1 =

∫
[M̄g,0(P1,d)]vir

e(Vd), Vd := Rπ∗ ev∗(O(−1)⊕O(−1)).

For d > 0, we computed via localization that

Fd(λ) :=
∑
g≥0

Ng,dλ
2g−2 =

1

λ2

∑
g≥0

bg(du)2g

2

.

where b0 = 1 and bg =
∫
M̄g,1

λgψ
2g−1
1 for g > 0. By Faber–Pandharipande, we got

Fd(λ) =
1

d(2 sin(du/2))2
.

Example 1.43 (Multiple covers of the disk). Let X := Tot(OP1(−1) ⊕ OP1(−1)). Let A be the antiholo-
morphic involution

(z, u, v) 7→ (1/z̄, z̄v̄, z̄ū).

Let L := XA → S1 = (P1)A. By writing in charts,

L = {(eiθ, u, e−iθū) : eiθ ∈ S1, u ∈ C1},

and (P1)A = {z = 1/z̄} = {|z|2 = 1}. So in this setup we are going to count multiple covers of the upper
hemisphere. This is not completely well-defined, but let us do a heuristic computation. Let g ≥ 0 and
µ := (µ1 ≥ µ2 ≥ · · ·µ` > 0) be a partition of d. We can consider maps

u : (Σ, ∂Σ)
holomorphic−−−−−−−−→ (X,L)

where ∂Σ =
∏`
i=1Ri is a product of disks, with conditions:

1. (multiple cover) u∗[Σ] = dβ ∈ H2(X,L,Z);

2. (boundary conditions) u∗[Ri] = µiγ ∈ H1(L,Z).

There is a boundary map H2(X,L,Z)
∂−→ H1(L,Z), and of course the compatibility condition is that

∑
µi =

d. This defines a moduli space Mg,µ (at least set-theoretically).
There is a (C∗)3-action on the total space, but L is not fixed by the whole torus. We restrict to the

Calabi–Yau torus T ′R
∼= U(1)2. Then we should define

Ng,µ :=
1

|Aut(µ)|

∫
[M̄g,µ]vir

1 =
1

|Aut(µ)|

∫
[M̄g,µ(P1,D)]vir

e(Vg,µ).

By localization (Katz–Liu), this is equal to

(τ(τ + 1))`−1

|Aut(µ)|
∏̀
i=1

∏µi−1
n=1 (τµi + ai)

(µi − 1)!

∫
M̄g,`

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)∏`
i=1(1− µiψi)

.
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This answer depends on τ , because the original integral is over a non-compact thing. We call τ the framing,
from physics, related to the framing of the knot. So define the generating function

Fµ(u, τ) :=
∑
g≥0

Ng,µ(τ)u2g−2+`(µ).

The localization expression looks complicated, but we can set τ = 0 to get a lot of vanishing:

Fµ(u, 0) =

{
0 `(µ) > 1

1
d2u

(
du/2

sin(du/2)

)
= 1

2d sin(du/2) µ = (d)
.

Question: is there a formula when τ 6= 0? Introduce a new invariant

Gg,µ(τ) :=
−
√
−1
|µ|+`(µ)

(τ(τ + 1))`(µ)−1

|Aut(µ)|

`(µ)∏
i=1

∏µi−1
a=1 (µiτ + a)

(µi − 1)!

∫
M̄g,`

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)∏`(µ)
i=1 (1− µiψi)

and write the generating series

Gµ(λ, τ) :=
∑
g≥0

Gg,µ(τ)λ2g−2+`(µ)

and look at the disconnected series

exp(
∑
µ6=∅

Gµ(λ, τ)pµ) =: 1 +
∑
µ6=∅

G•µ(λ, τ)pµ.

Theorem 1.44 (Gopakumar–Marino–Vafa formula).

G•µ(λ, τ) = R•µ(λ, τ) :=
∑
|ν|=|µ|

χν(Cµ)

z(µ)
e−
√
−1(τ+ 1

2 )
kiλ

2

√
−1
|µ| dimq Rν

|µ|!

where dimq Rν is the quantum dimension.

Remark (Framing dependence). From this formula, we get a simple relation between arbitrary framing and
zero framing:

R•µ(λ, τ) =
∑

R•µ(λ, 0)z(ν)Φ•νµ(
√
−1λτ)

where the change of basis matrix is a generating series for disconnected double Hurwitz numbers

Φ•νµ(λ) :=
∑ H•g,ν,µ

(2g − 2 + `(µ) + `(ν))!
λ2g−2+`(µ)+`(ν).

We can get a formula for this via Burnside’s formula.

Definition 1.45. In the GMV formula, the lhs is called the framed 1-leg GW vertex, and the rhs is an
explicit formula for it. Define the connected version

exp(
∑
µ 6=∅

Rµ(λ, τ)pµ) := 1 +
∑
µ6=∅

R•µ(λ, τ)pµ.

Proof strategy. Our goal is to prove the GMV formula

Gµ(λ, τ) = Rµ(λ, τ).

It is easy to check at zero framing that

Gµ(λ, 0) = Rµ(λ, 0) =

{
0 `(µ) > 1
−
√
−1

d+1

2d sin(dλ/2) µ = (d)
.
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So to prove Gµ = Rµ, it suffices to show they satisfy the same framing dependence, i.e. that

G•µ(λ, τ) =
∑
|ν|=|µ|

G•ν(λ, 0)z(ν)Φν(
√
−1λτ).

We will define a generating function K•µ(λ) of certain relative GW invariants of (P1,∞). We will compute
it via localization to get an explicit formula

K•µ(λ) =
∑
|ν|=|µ|

G•ν(λ, τ)z(ν)Φ•νµ(−
√
−1λτ).

This implies G•µ(λ, 0) = K•µ(λ) and also the desired framing dependence. The disconnected and connected
generating series are

K•g,µ :=

√
−1
|µ|+`(µ)

|Aut(µ)|

∫
[M̄•g(P1,µ)]vir

e(V •g,µ)

Kg,µ :=

√
−1
|µ|+`(µ)

|Aut(µ)|

∫
[M̄g(P1,µ)]vir

e(Vg,µ).

To define Vg,µ, form the diagram

R −−−−→ C
f̃−−−−→ T π̃−−−−→ P1

π

y
M̄g(P1, µ)

where R is the universal ramification divisor, T is the universal target, and the map π̃ : T → P1 is the
(universal) contraction to the original P1. Then

Vg,µ := R1π∗((π̃f̃)∗O(−1)⊕OC(−R)),

i.e. the fiber over ξ = [f̄ : (C, x1, . . . , x`)
f−→ P1[m] → P1] is H1(C, f̄∗O(−1) ⊕ O(−x1 − · · · − x`)). It has

rank 2g − 2 + `+ d = vdimM̄g(P1, µ). We will compute K•g,µ by virtual localization.

1. (Linearizations) Take the linearization (u,−u) on TP1 and ((−τ − 1)u,−τu) on O(−1) and (τu, τu) on
O.

2. (Fixed points) The torus fixed points in M̄•g(P1, µ) are as follows. Over the original P1, we can have a
possibly-disconnected degree-d rigid cover, and on the bubbles we can have anything. Hence∑

g0,g1,ν
g=g0+g1+`(ν)+1

∫
M̄g0,`(ν)

∫
[M̄∼g1 (··· )]vir

· · · .

On the connected version of the moduli space, there is a contraction map M̄g(P1, µ) → M̄g(P1, d)
which contracts both the target and domain with stabilization.

3. (Tangent-obstruction theory) Recall that (T 1, T 2) is given by Ext•(ΩC(D),OC) and H•(D•). The
only new piece is the rubber contribution for a vertex v:

Av =
∏
e∈Ev

−u− ψt

−u/de − ψ(e,v)

arising from smoothing nodes. Since we are just a degree-d cover, this simplifies into the factor∏
e∈Ev de.
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Putting everything together, for a fixed locus F ,

e(Vg,µ)|F =
∏

v∈V (Γ)

Bv
∏

e∈E(Γ)

Be

Bv :=

{
Λ∨g (τu)Λ∨g (−τu)(τu(−τ − u))`−1 v ∈ V s(Γ)
Λ∨g (τu)Λ∨g (−τu)

(−1)g(τu)2g otherwise

Be :=

∏de−1
a=1 (deτ + a)

dde−1
e

(−u)de−1.

So the disconnected rubber contributions will just be disconnected double Hurwitz numbers, of the form∫
[M̄•∼g (P1,ν,µ)]vir

(τu)2g1+2+`(ν)+`(µ)

−u− ψ0
.

1.10 Nov 20 (Melissa): 2-leg GW vertex

The basic geometry is C3 with three legs. Let L1 be the given by

L1 := {(
√
|u|+ 1eiθ, u, e−iθū)} ∼= S1 × R2,

and define L2, L3 by cyclic permutation. The Gromov–Witten vertex can be viewed as a generating
function of open GW invariants for holomorphic maps

(Σ, ∂Σ)→ (C3, L1 t L2 t L3).

Since we have three Lagrangians, we can specify the topological type of the map by the data of H2(C3, L1 t
L2 t L3) along with H1(L1 t L2 t L3) =

⊕3
i=1H1(Li). Note that there is a boundary map

∂ : H2(C3, L1 t L2 t L3)→ H1(L1 t L2 t L3).

Let µi be the winding number around Li, and let Mg,µ1,µ2,µ3 be the corresponding moduli of such maps.
Compactify to get M̄g,µ1,µ2,µ3 . Let TR := {(eiθ1 , eiθ2 , eiθ3)} act on C3 and therefore on M̄g,µ1,µ2,µ3 . Fixed
loci involve a contracted genus-g component in the source with some legs forming degree-µik covers. Then
by localization we will get something like

∫
[M̄g,µ1,µ2,µ3 ]vir

1 = G̃g,µ1,µ2,µ3(w1, w2, w3) :=
±1

|Aut |

3∏
i=1

`i∏
j=1

∏µij
a=1(wi + µij − awi)
(µij − 1)!w

µj−1
i∫

M̄g,`1+`2+`3

Λ∨g (w1)Λ∨g (w2)Λ∨g (w3)(w1w2w3)`1+`2+`3∏3
i=1

∏`i
j=1(wi(wi − µijψij))

.

This is how we should define the lhs.

Definition 1.46. The 3-leg GW vertex is the generating function

Gµ1,µ2,µ3(λ, ~w) :=
∑
g≥0

λ2g−2+`1+`2+`3Gg,µ1,µ2,µ3(~w)

Gg,µ1,µ2,µ3(~w) := (−i)`1+`2+`3G̃g,µ1,µ2,µ3(~w).

Let G•µ1,µ2,µ3(λ, ~w) be the disconnected version.
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GW invariants of any toric CY3 (defined using the CY torus) can be obtained by gluing GW vertices
G•µ1,µ2,µ3 , by localization. We saw from MNOP1 that DT invariants of toric CY3s can be obtained by gluing

vertices Cµ1,µ2,µ3 . So GW/DT for toric CY3s is equivalent to some formula

Gµ1,µ2,µ3(λ, ~w) = R•µ1,µ2,µ3(λ, ~w)

matching these two vertices

Remark (1-leg vertex). This case is the GMV formula

G•µ∅∅(λ, ~w) = R•µ∅∅(λ, ~w),

which we showed last time. The geometry is (C3, L1), which we can embed it into the resolved coni-
fold (X,L1). By large N duality, open GW invariants of (C3, L1) corresponds to open GW invariants of
(T ∗S3, NK) where K is the unknot.

Remark (2-leg vertex). In general, open GW invariants of (X,Lk) should be extracted from colored HOMFLY
polynomials of a knot K ⊂ S3. For (C3, L1, L2), its open GW invariants can be extracted from the colored
HOMFLY of the Hopf link.

Remark (3-leg vertex). For the general case, Aganagic–Klem–Mariño–Vafa say something like this. By
certain non-trivial transformations, we can move L2 and L3 to the same leg. Hence the knot K is a 3-
component link. Then they compute the colored HOMFLY of K to get he formula for the 3-leg vertex. This
formula will follow from MOOP. For now, let’s just write the expression for R•µ1,µ2,µ3 in terms of the familiar
object Cµ1,µ2,µ3 :

R•µ1,µ2,µ3(λ, ~w) =
∑

|νi|=|µi|

3∏
i=1

χνi(Cµi)

z(µi)
q

1
2

∑3
i=1 wt dependenceCν1,ν2,ν3(q)

where q := eiλ.

Today we will prove the 2-leg case. This will give the GW/DT correspondence for local toric surfaces
KS → S. Let

G•µ1,µ2(λ, τ) := G•µ1,µ2,∅(λ, 1, τ,−τ − 1)

R•µ1,µ2(λ, τ) := R•µ1,µ2,∅(λ, 1, τ,−τ − 1).

Theorem 1.47 (LLZ). G•µ1,µ2(λ, τ) = R•µ1,µ2(λ, τ).

Proof. The proof of the 1-leg case we saw last time is a specialization of the proof for the 2-leg case we will
see now. (It is not actually the proof in the 1-leg paper.) We first verify this formula in the case τ = −1. In
general,

Gg,µ1,µ2(τ) = (τ(τ + 1))`1+`2−1(· · · )
so that Gg,µ1,µ2(−1) = 0 unless (µ1, µ2) is ((d), ∅) or (∅, (d)). In this case, we get an explicit expression∫

M̄g,1

Λ∨g (1)Λ∨g (−1)Λ∨g (0)

1− qψ
.

This verifies the initial condition (due to Zhou)

G•µ1,µ2(λ,−1) = Rµ1,µ2(λ,−1).

Now we look at the dependence on framing conditions. By orthogonality of characters, from the (unproved,
so far) general formula for the 3-leg case, we want the framing dependence

R•µ1,µ2(λ, τ) =
∑

|νi|=|µi|

R•ν1,ν2(λ, τ0)z(ν1)Φ•ν1,µ1(iλ(τ − τ0))z(ν2)Φ•ν2,µ2(iλ(
1

τ
− 1

τ0
)).

30



It suffices to show that G•µ1,µ2(λ, τ) satisfies this framing dependence. The idea is the same as last time:
define a generating function

K•µ1,µ2(λ) :=
∑
g

(
√
−1)···λ2g−2+`1+`2

∫
[M̄•g(S/D1∪D2,β=|µ1|D1+|µ2|D2,µ1,µ2)]vir

e(V •g,µ)

for relative GW invariants of (S := Bl2 pts P2, D1, D2) where the Di are exceptional divisors. This we compute
by virtual localization, but we have to be careful because these divisors are not T -fixed. We get

K•µ1,µ2(λ) =
∑

|νi|=|µi|

G•ν1,ν2(λ, τ)z(ν1)Φ•ν1,µ1(−iλτ)z(ν2)Φ•ν2,µ2(
−iλ
τ

).

This identity implies the desired result, as before. This calculation is analogous to the one last time. The
bundle is

V •g,µ1,µ2 := R1π∗(f
∗O(−D1 −D2)⊗OC(−R))

with rank vdimM̄•g,µ1,µ2 = g− 1 + |µ1|+ |µ2|+ `1 + `2. A lemma tells us eT (V •g,µ1,µ2)|F = 0 on a fixed locus

unless the image of the map is precisely the x and y axes in P2. This is by some clever choice of weights.

1. The contribution from the vertex contracted to (0, 0) gives an integral over M̄•g,`1+`2
, i.e. the term

G•g,µ1,µ2 .

2. The contribution from the rubbers give double Hurwitz integrals Φ•νi,µi .

1.11 Nov 27 (Melissa): Topological vertex

Given a toric CY3 X, its GW invariants can be obtained by gluing together local pieces at each vertex.
According to the physicists, the local pieces are F •µ1,µ2,µ3(λ, n1, n2, n3), where ni are the framings at each
open leg, coming from framings of 3-component links. Recall from last time that we had a generating
function G•µ1,µ2,µ3(λ,w1, w2, w3) of open GW invariants, where wi are the weights of a CY torus. The
physicists prediction for general framing is:

G•µ1,µ2,µ3(λ,w1, w2, w3) = F •µ1,µ2,µ3(λ,w2/w1, w3/w2, w1/w3).

We denote τ := w2/w1 and hence (−τ − 1)/τ = w3/w2 and 1/(−τ − 1) = w1/w3.

Definition 1.48. Let X1 ⊂ X denote the 1-skeleton of X, i.e. the union of 0-dimensional and 1-dimensional
orbits of the T -action. Let T ′ ⊂ T be the CY subtorus. The configuration of X1 and the T -equivariant
structure gives a planar trivalent graph ΓX associated to X, labeled by tangent weights on its edges. It will
have compact edges and non-compact edges.

Conversely, given ΓX , we can recover X̂. Here X̂ is the formal completion of X along X1. By localization,
we can define T -equivariant GW invariants of X purely using X̂. Hence we have a procedure

ΓX  X̂  NX
g,β .

Example 1.49. The resolved conifold O(−1)⊕O(−1)→ P1 gives the graph

w1

w2

−w1 − w2
−w1 w2

w1 + w2
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Definition 1.50 (FTCY graphs). We generalize the procedure by introducing the notion of formal toric
CY (FTCY) graphs. The idea is to add fi ∈ Z2 to the end of each non-compact edge which specifies the
equivariant structure on the normal bundle to the edge at the compactification divisor:

w1

w2

−f1f1

−w1 − w2

−f2

f2

−w1 w2

f3

−f3

w1 + w2
−f4

f4

.

These specify framings at the compactification divisor D̂. For example, f4 = −w1 − n4(w1 + w2) where the
normal bundle to that compactified edge is O(n4)⊕O(−n4 − 1). Note that in (Ŷ , D̂), the CY condition is
KŶ + D̂ = 0. Hence we get a procedure

FTCY graph (Ŷ , D̂) FΓ
g,~d,~µ

producing T -equivariant formal relative GW invariants.

To introduce degenerations, we need to know how the normal bundle degenerates, equivariantly. So if we
want to degenerate a FTCY graph, we must choose a framing for the node corresponding to the degeneration
point, e.g.

w1

w2

−f1f1

−w1 − w2

−f2

f2

−w1 w2

f3

−f3

w1 + w2
−f4

f4

If we resolve the singularity, the result will be two graphs Γ1,Γ2.

w1

w2

−w1 − w2 −w1 w2

w1 + w2

The degeneration formula tells us that the original graph arises from gluing the invariants associated to Γ1

and Γ2:

F •,Γd,µ1,µ2,µ3,µ4 =
∑

F •,Γ1

µ1,µ2,νz(ν)F •,Γ2

µ3,µ4 .

Definition 1.51. The topological vertex is the T -equivariant formal relative GW series F •~µ(λ; ~w,~n) cor-
responding to the graph

w1

f1 = w2 − n1w1

−f1

w2

−f2

f2 = w3 − n2w2

w3

f3 = w1 − n3w3

−f3
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Let Ci denote the compactified leg of weight wi. Then NCi/Ŷ = O(ni)⊕O(−ni − 1).

We can explicitly identify contributions to the topological vertex using our past computations.

1. The vertex will give a triple Hodge integralGg0,ν1,ν2,ν3(w1, w2, w3). Put these into a generating function
G•~ν(λ, ~w).

2. The legs will give double Hurwitz numbers

H•g,µ,ν :=
1

|Autµ|||Aut ν|
deg(Br: M̄•g,µ,ν(P1/{0,∞})→ Pr),

which we can compute the same way we computed the ELSV formula. Put these into a generating
function Φ•g,µ,ν(λ).

Proposition 1.52.

F •~µ(λ, ~w,~n) =
∑

|νi|=|µi|

G•ν1,ν2,ν3(~w)

3∏
i=1

z(νi)Φ•νi,µi

(√
−1λ(ni −

wi−1

wi
)

)
.

Lemma 1.53 (Framing dependence, winding basis).

F •~µ(λ, ~w,~n) =
∑

|νi|=|µi|

F •~µ(λ, ~w,~0)

3∏
i=1

z(νi)Φνi,µi(
√
−1λni).

Hence we can diagonalize the framing dependence if we define

C̃~µ(λ, ~w,~n) :=
∑

|νi|=|µi|

F •~ν (λ, ~w,~n)

3∏
i=1

χµi(ν
i).

Lemma 1.54 (Framing dependence, representation basis).

C̃~µ(λ, ~w,~n) = q
1
2

∑3
i=1 κµini/2C̃~µ(λ, ~w,~0).

Theorem 1.55 (Weight independence). The series

F •~µ(λ, ~w,~0) ∈ Q(w2/w1)[[λ, λ−1]]

does not depend on ~w. Hence F •~µ(λ, ~w,~0) = F •~µ(λ,~0).

Corollary 1.56. The generating series for triple Hodge integrals satisfies

G•µ1,µ2,µ3(w1, w2, w3) =
∑

|νi|=|µi|

χνi(µ
i)

z(µi)
q

1
2

∑3
i=1 κνi

wi+1
wi C̃ν1,ν2,ν3(λ, ~n = ~0).

Lemma 1.57.

Gg,µ1,µ2,µ3(1, 1,−2) = (−1)|µ
1|−`(µ1) z(µ

1 ∪ µ2)

z(µ1)z(µ2)
Gg,∅,µ1∪µ2,µ3(1, 1,−2)

+ δg,0
∑
m≥1

δµ1,(m)δµ2,∅δµ3,(2m)
(−1)m−1

m
.

Theorem 1.58. C̃ν1,ν2,ν3(λ) = Wν1,ν2,ν3(q) where q = e
√
−1λ.
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2 DT theory

2.1 Sep 12 (Clara): GW/DT for local CY toric surfaces

Let X be a nonsingular projective CY3.

Definition 2.1 (GW side). Let Ng,β :=
∫

[M̄g(X,β)]vir 1 be GW invariants, and put them into a generating

function
F ′GW(X,u, v) :=

∑
g≥0

∑
β 6=0

Ng,βu
2g−2vβ .

Note that we exclude constant maps. The reduced GW partition function is

Z ′GW(X,u, v) := expF ′GW(X,u, v).

Definition 2.2 (DT side). Given a 1-dimensional subscheme Z, let Z ′ be the purely 1-dimensional part
[Z ′] = β ∈ H2(X,Z). Let

In(X,β) := {Z at most 1-dim : χ(OZ) = n, [Z ′] = β}

and define DT invariants Dn,β :=
∫

[In(X,β)]vir 1. For example, if β = 0, we recover In(X, 0) = Hilbn(X).

Define the generating function

ZDT(X, q, v) :=
∑
β

∑
n∈Z

Dn,βq
nvβ .

We exclude constant maps by quotienting. The reduced DT partition function is

Z ′DT(X, q, v) :=
ZDT(X, q, v)

ZDT(X,β)0

where ZDT(X,β)0 :=
∑
n∈ZDn,0q

n.

Conjecture 2.3. The change of variables eiu = −q equates reduced partition functions, i.e.

Z ′GW(X,u, v) = Z ′DT(X,−eiu, v).

We want to understand virtual localization over In(X,β). Let’s first do In(X, 0) = Hilbn(X). Given
I ∈ In(X, 0), we have dimC[x, y, z]/I = n as a C-vector space. For example, for

I = (x3, y2, z2, xy, xz, yz), C[x, y, z]/I = C〈1, x, y, z, x2〉

we have I ∈ Hilb5(X). We visually represent these ideals by boxes, i.e. 3D partitions. For β = 0 we have
only a finite number of boxes, for 0-dimensionality of the quotient C[x, y, z]/I.

For β 6= 0, we need an infinite number of boxes so that we have a curve, i.e. C[x, y, z]/I is no longer a
finite-dimensional vector space. For example, C[x, y, z]/(y, z) is a line, and corresponds to an infinite row of
boxes along the x-axis. Locally around a fixed point xα, the ideal sheaf gives a 3D partition

πα := {(k1, k2, k3) :
∏

xkii /∈ Iα}.

For each leg, asymptotically the 2d partition stays the same, and we define

λαβ := {(k2, k3) : ∀k1,
∏

xkii /∈ Iα}.

So instead of specifying ideals as fixed points of our moduli space, we specify configurations of boxes around
vertices and edges. Specifically, we specify:

1. a 2-dimensional partition λαβ for each edge;
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2. a 3-dimensional partition πα for each vertex, so that its three asymptotics agree with the specified 2d
partitions for the three edges.

Definition 2.4. Let πα be a vertex partition. Define its size by

|πα| := #{πα ∩ [0, . . . , N ]3} − (N + 1)
∑
i

|λαβi N � 0.

We will now apply virtual localization to do the integral:∫
[In(X,β)]vir

1 =
∑

[I]∈In(X,β)T

∫
[I]

e(Em1 )

e(E2)m
.

Here e is the equivariant Euler class, i.e. product of weights, and m stands for “moving part” i.e. non-trivial
weights. For us, the perfect obstruction theory is Ei := Exti(I, I). We will compute weights of

Ext1(I, I)− Ext2(I, I).

For X toric, Hi(X,OX) = 0 for i > 0. We also have

Ext3(I, I) = 0, Ext0(O,O)− Ext0(I, I) = 0,

so that we can write
Ext1(I, I)− Ext2(I, I) = χ(O,O)− χ(I, I).

This is better: we can use the Čech cover coming from fixed points to compute these Euler characteristics.
By local-to-global Ext and then passing to the Čech complex,

χ(I, I) =

3∑
i=0

Exti(I, I) =

3∑
i,j=0

(−1)i+jHi(Extj(I, I)) =

3∑
i,j=0

(−1)i+jCi(Extj(I, I)).

For us, C2(Extj(I, I)) = 0.
Hence we can now explicitly identify the weights of the virtual tangent space, as

T =

(⊕
α

Γ(Uα)−
∑

(−1)iΓ(Uα, Ext i(I, I))

)

−

⊕
α,β

Γ(Uαβ)−
∑

(−1)iΓ(Uαβ , Ext i(I, I))


Here Uα = SpecC[x1, x2, x3] and Uαβ = SpecC[x±1

1 , x2, x3]. The first line is the vertex contribution, and
the second line is the edge contribution.

Let R := C[x1, x2, x3]. We need to compute R−
∑

(−1)i Exti(Iα, Iα). This requires taking a T -equivariant
free resolution of Iα

0→ Fj → Fj−1 → · · · → F0 → Iα → 0, Fj =
⊕

R(dij).

Here dij ∈ Z3 and R(dij) := xk1
1 x

k2
2 x

k3
3 R, so that its contribution to the Euler class is

tdij
1

(1− t1)(1− t2)(1− t3)
.

The total contribution of Iα is therefore

trIα =
Pα(t1, t2, t3)

(1− t1)(1− t2)(1− t3)
, Pα(t1, t2, t3) :=

∑
(−1)itdij .
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We also have the contribution from the actual vertex

Qa = trR/Iα(t1, t2, t3) =
∑

(k1,k2,k3)∈πα

tk1
1 t

k2
2 t

k3
3

which by the SES 0→ Iα → R→ R/Iα → 0 satisfies

Qα = trR− trIα =
1 + Pα(t1, t2, t3)

(1− t1)(1− t2)(1− t3)
.

(Note that Pα begins at the −1 term of the resolution, and contains the extra minus sign.) So now we know
what Pα is. We can compute∑

(−1)I Exti(Iα, Iα) =
∑
i,j,k,l

(−1)i+kR(−dij + dkl) =
∑

(−1)iR(−dij)
∑

(−1)kR(dkl)

=
Pα(t1, t2, t3)Pα(t−1

1 , t−1
2 , t−1

3 )

(1− t1)(1− t2)(1− t3)
.

Collecting all this and rewriting in terms of Q, we get

trR−χ(Iα,Iα) = Qα −
Q̄α
t1t2t3

+QαQ̄α
(1− t1)(1− t2)(1− t3)

t1t2t3
.

Here Q̄ means we plug in t−1
i instead of ti.

2.2 Sep 19 (Clara): DT for local CY toric surfaces

First, a quick recap of what we were doing. We were computing DT invariants for smooth toric CY3s:

Dn,β =

∫
[In(X,β)]vir

1 =
∑
[I]

e(Ext2(I, I))

e(Ext1(I, I))
.

So we needed the virtual character of Ext2(I, I) − Ext1(I, I). We wanted to compute this on a Čech cover
given by vertices and edges:⊕

α

(Γ(Uα)−
∑

(−1)iΓ(Uα, Ext i(I, I)))−
⊕
α,β

(Γ(Uαβ)−
∑

(−1)iΓ(Uαβ , Ext i(I, I))).

Last time we computed the first term and rewrote it purely in terms of the partition sitting at the vertex α:

tr(Γ(Uα)−
∑

(−1)iΓ(Uα, Ext i(I, I))) = Fα := Qα −
Q̄α
t1t2t3

− QαQ̄α(1− t1)(1− t2)(1− t3)

t1t2t3
.

Today we will do the edge computation. Here Uαβ = Uα ∩ Uβ , so the ring is R := Γ(Uαβ) = C[x±1
1 , x2, x3].

Hence

trR =
δ(t1)

(1− t2)(1− t3)
, δ(t1) :=

∑
i∈Z

ti1.

If we play the same game as for the edge, we can write

Qαβ :=
∑

(k2,k3)∈λαβ

tk2
2 t

k3
3

and then the virtual character is

tr(R− χ(Iαβ , Iαβ)) = δ(t1)Fαβ , Fαβ := −Qαβ −
Q̄αβ
t2t3

+QαβQ̄αβ
(1− t2)(1− t3)

t2t3
.
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We want to split the vertex and edge contributions in such a way so that we get Laurent polynomials in the
end.

The first step is to write a new vertex. The vertex xα receives contributions from Fαβi for i = 1, 2, 3.
Pull apart

tr(R− χ(Iαβ , Iαβ)) =
Fαβ

1− t1
+
t−1
1 Fαβ

1− t−1
1

.

Hence define the new vertex term

Vα := Fα +

3∑
i=1

Fαβ
1− ti

.

Lemma 2.5. Vα is a Laurent polynomial.

Proof. The character coming from the vertex is

Qα =
Qαβ1

1− t1
+
Qαβ2

1− t2
+
Qαβ3

1− t3
+ polynomial.

Plugging this into Vα, we get the cancellations we need.

What’s left to account for:

1. (negative terms) t−1
1 Fαβ/(1− t−1

1 );

2. (overcounting) each edge has been plugged into two different vertices.

Take Cαβ ∼= P1, which has normal bundle

NCαβ/X = O(mαβ)⊕O(m′αβ).

Hence the transition functions look like

(t1, t2, t3) 7→ (t1, t2t
−mαβ
1 , t3t

−m′αβ
1 ),

and the double contributions per edge are given exactly by this change of variables. Hence define

Eαβ :=
t−1
1 Fαβ

1− t−1
1

− Fαβ(t2t
−mαβ
1 , t3t

−m′αβ
1 )

1− t−1
1

.

This Eαβ has no poles in t1 because it is regular at t1 = 1. Hence it is a Laurent polynomial.
Let’s apply this to local CY3 surfaces. Start with a non-singular projective toric surface S, and take the

total space of the canonical KS . Do a toric compactification P(KS ⊕ 1). The DT invariants we define are

Z ′DT(S, q)β :=
ZDT(X, q)β
ZDT(X, q)0

, β ∈ H2(S,Z).

Let D := X \KS be the divisor at infinity. Then if I ∈ In(X,β)T , there can be only a bunch of closed points
on D, and there is a purely 1-dimensional Z ′ ⊂ S. Split I = ξ ⊕ α, and we split off the zero-dimensional
contributions from D:

Z ′DT(S, q)β =

∑
n q

n
∑
I∈In(KS ,β)I e(Ext•)∑

n q
n
∑
I∈In(αS ,0) e(Ext•)

.

Pass to a 2d subtorus {t1t2t3 = 1} preserving the CY form. Upshot: equivariant Serre duality

Ext1(I, I)0 = Ext2(I, I)∨0 (t1t2t3)±1
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becomes simpler. So instead of computing Ext2−Ext1, we can just count the number of minus signs. We
do this by writing

Ext2−Ext1 = V + + V −

such that V̄ +|t1t2t3=1 = −V −. We will write

V + =
∑

V +
α +

∑
E+
αβ .

In general, there are many ways to do this splitting. But there are nice splittings that enable us to count
minus signs easily.

Suppose that Iα at xα is actually a finite 3d partition, i.e. in

Vα = Fα +
∑ Fαβi

1− ti
,

the second term is zero. So it suffices to split

Fα = Qα − Q̄αt−1
1 t−1

2 t−1
3 −QαQ̄α(1− t−1

1 )(1− t−1
2 )(1− t−1

3 ).

Pick

F+
α = Qα −QαQ̄α(1 + t−1

1 t−1
2 + t−1

1 t−1
3 + t−1

2 t−1
3 )

F−α = − Q̄α
t1t2t3

−QαQ̄α((t1t2t3)−1 + t−1
3 + t−1

2 + t−1
1 ).

We are left with determining the parity of V +
α (1, 1, 1) and E+

αβ(1, 1, 1). A computation with the splittings
shows

V +
α (1, 1, 1) ≡ |πα| mod 2

E+
αβ(1, 1, 1) ≡ f(α, β) +mαβ |λαβ | mod 2.

In total,
e(Ext2)

e(Ext1)
= (−1)χ(OY )+

∑
α,βmαβ |λαβ |.

2.3 Sep 26 (Ivan): MNOP2

MNOP2 modifies the GW/DT correspondence from MNOP1 in two ways: with insertions and with the
relative theory.

Definition 2.6 (GW side insertions). So far we have considered Hodge integrals∫
[M̄g,r(X,β)]vir

r∏
i=1

ψkii

possibly with λi. Let evi : M̄g,r(X,β)→ X be evaluation at the i-th marked point. Denote by

τk(γi) := ψki ev∗i (γi), γi ∈ H∗(X,Q),

which we stick into correlators 〈τk1
(γ1) · · · τkr (γr)〉. Call:

1. τ0(−) a primary field;

2. τ>0(−) a descendant field.
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Let M̄′g,r(X,β) be the moduli of maps from possibly disconnected stable curves with no collapsed connected
components. Note that g for us means g := 1− χ(OC), even when C is disconnected. We use this to define
the reduced generating function

ZGW (X;u|
r∏
i=1

τki(γi)) :=
∑
g∈Z
〈
r∏
i=1

τki(γi)〉
′
g,βu

2g−2.

Remark. The sum in g ∈ Z is bounded from below, i.e. for g � 0 there are no contributions, because we
fixed β and no connected components are collapsed.

Definition 2.7 (DT side insertions). Let X be a non-singular projective 3-fold and I an ideal sheaf on X.
Then I fits into

0→ I → OX → OY → 0

where Y ⊂ X is the subscheme associated to I. Let In(X,β) denote the moduli of ideal sheaves with [Y ] = β
and χ(OY ) = n. Let I denote the universal ideal sheaf on In(X,β)×X. Note that I has a finite resolution
by locally free sheaves, so ch∗ I is well-defined. Define homology operations for γ ∈ H`(X,Z) as

chk+2(γ) : H∗(In(X,β),Q)→ H∗−2k+2−`(In(X,β),Q)

ξ 7→ π1∗(chk+2(I) · π∗2(γ) ∩ π∗1(ξ)).

(Here we compute the dimension shift as + dimX− `−2k−4 = −2k+2− `.) For example, if we take k = 0,
we get only integration over supp I. The invariants are

〈τ̃k1
(γ1) · · · τ̃kr (γr)〉n,β :=

∫
[In(X,β)]vir

r∏
i=1

(−1)ki+1 chki+2(γi)

:= (±1) chk1+2(γ1) ◦ · · · ◦ chkr+2(γr)[In(X,β)]vir.

Define the generating function

ZDT (X; q|
r∏
i=1

τ̃ki(γi))β :=
∑
n∈Z
〈
r∏
i=1

τ̃ki(γi)〉n,βq
n.

The reduced partition function is

Z ′DT (X, q| · · · )β :=
ZDT (X; q| · · · )β
ZDT (X; q| · · · )0

.

Remark. Note that

vdim In(X,β) =

∫
β

c1(TX), vdimM̄g,r(X,β) =

∫
β

c1(TX) + r.

So later if we want to compare descendants, the insertions we make have to satisfy certain degree requirements
on both sides. This is partially why we take chk+2 instead of chk.

There are a few conjectures in MNOP2.

1. (Degree 0) For β = 0,

ZDT (X; q)0 = M(−q)
∫
X
c3(TX⊗KX)

where M(q) :=
∏
n≥0(1 − qn)−n is the MacMahon function. This is known in the toric case by the

computation from MNOP1, and the case for general 3-folds follows from the cobordism argument of
Levine–Pandharipande.

2. (Rationality) Z ′DT (X; q|
∏
· · · ) is a rational function. This is known in the toric CY3 case.
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3. (Primary fields) After the change of variables eiu = −q,

(−iu)dZ ′GW (X;u|
r∏
i=1

τ0(γi))β = (−q)d/2Z ′DT (X; q|
r∏
i=1

τ̃0(γi))β .

4. (Descendant fields) The two sets

Z ′GW,β := {(−iu)d−
∑
kiZ ′GW (X;u|

∏
τki(γi))β}

Z ′DT,β := {(−q)d/2Z ′DT (X; q|
∏

τ̃ki(γi))β}

have the same linear span, and there is a transition matrix expressing the functions in one in terms of
the other such that:

(a) it is upper triangular with 1’s along the diagonal;

(b) it has universal coefficients depending only on classical multiplication in X.

This has been checked in the toric case.

Definition 2.8 (Relative GW). Let X be a non-singular projective 3-fold with S ⊂ X a non-singular
divisor. Let β ∈ H2(X,Z) be such that

∫
β
[S] ≥ 0 and let µ be a partition of it. Define the moduli of

stable relative maps
M̄′g,r(X/S, β, µ)

of stable relative maps C → X[k] with possibly disconnected domain and relative multiplicities µ. Think:
whenever we get non-transverse intersection with S, blow up to get copies of ∆ := P(OS ⊕ NS/X), whose
divisors at infinity form a sequence S = S0, S1, . . . , Sk.

A cohomologically weighted partition is an unordered set

η := {(η1, δ1), . . . , (ηs, δs)}

where ηi ∈ Z>0 and δi ∈ H∗(S,Q). Let ~η denote the underlying partition. Using them, define relative GW
invariants as

〈τk1
(γ1) · · · τkr (γr)|η〉 :=

1

|Aut(η)|

∫
[M̄′g,r(X/S,β,~η)]vir

r∏
i=1

ψkii ev∗i (γi)

s∏
j=1

ẽv∗j (δj)

where ẽvj is evaluation at pre-images of Sk.

2.4 Oct 03 (Ivan): MNOP2 II

Let X be non-singular projective threefold. Fix a non-singular divisor S ⊂ X. We first define relative DT
theory.

Definition 2.9. We say I is an ideal sheaf on X relative to S if

I ⊗OX OS → OX ⊗OX OS

is injective. (This disallows whole components of I from lying in S.) From such an I we construct an element
of Hilb(S,

∫
β
[S]).

Remark. Being relative is an open condition on ideal sheaves, but we want a proper moduli space. To make
our space proper, consider degenerations of the target space

X[k] := X ∪D ∆ ∪D · · · ∪D ∆

where ∆ := P(ND/X ⊕OD).
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Definition 2.10. An ideal sheaf I on X[k] is predeformable if for every singular divisor Sl ⊂ X[k] (i.e.
the divisor connecting ∆l−1 and ∆l), the induced map

I ⊗OX[k]
OSl → OX[k] ⊗OX[k]

OSl

is injective. In other words, if Yl−1 and Yl are the subschemes associated to I on ∆l−1 and ∆l, then

Yl−1 ∩ Sl = Yl ∩ Sl

are equal scheme-theoretically.

Definition 2.11. An isomorphism of ideal sheaves I1, I2 on X[k1], X[k2] is an isomorphism is an isomor-
phism σ : X[k1]

∼−→ X[k2] fixing the original copy of X such that:

1. σ∗OX[k2])
∼−→ OX[k1] is the identity map;

2. σ∗I2
∼−→ I1 is an isomorphism.

In particular, note that k1 = k2 necessarily. We say I is stable if Aut I is finite.

Definition 2.12 (Relative DT theory). Let In(X/S, β) be the moduli space of stable predeformable
relative ideal sheaves on all possible degenerations X[k] relative to Sk, such that

χ(OY ) = n, π∗[Y ] = β ∈ H2(X,Z)

where π : X[k]→ X is the collapsing map.

Theorem 2.13. This space In(X/S, β) is complete DM stack with canonical perfect obstruction theory, and
universal ideal sheaf Y.

Definition 2.14. Let ε : In(X/S, β)→ Hilb(S,
∫
β
[S]) be the natural map. Then ε∗ gives relative conditions

on In(X/S, β). Hence relative DT invariants are of the form

〈τ̃k1(γ1) · · · τ̃kr (γr)|η〉n,β :=

∫
[In(X/S,β)]vir

r∏
i=1

chki+2(Y)(γi)ε
∗η

where η ∈ H∗(Hilb(S,
∫
β
[S])).

Remark. Recall that H∗(Hilb(S),Q) has basis

cη := Pη1
(δ1) · · ·Pηk(δk) · 1

where η is a partition, and Pηi(δi) are correspondences which insert ηi points with class δi ∈ H∗(S,Q). Last
time we called an unordered set {(ηi, δi)} a cohomology-weighted partition.

Goal: for toric X, compute the degree-0 parts ZDT (X, q)0, i.e. β = 0. In particular, we have no relative
insertions from Hilb(S, 0) = pt. Recall that (C∗)3 acts on C3 by standard component-wise multiplication,
and the origin has tangent weights t−1

1 , t−1
2 , t−1

3 . For every 3d partition π, we introduced the equivariant
vertex

Vπ = Qπ −
Q̄π
t1t2t3

+QπQ̄π
(1− t1)(1− t2)(1− t3)

t1t2t3

where
Qπ(t1, t2, t3) :=

∑
(k1,k2,k3)∈π

tk1
1 t

k2
2 t

k3
3

is the character of the partition π, and

Q̄π(t1, t2, t3) := Qπ(t−1
1 , t−1

2 , t−1
3 ).
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Definition 2.15. Introduce the equivariant measure with three parameters s1, s2, s3

w(π) :=
∏
~k∈Z3

(k1s1 + k2s2 + k3s3)−v~k(π)

where v~k(π) is the coefficient of tk1
1 t

k2
2 t

k3
3 in V (π). This is useful because then the partition function is

W (λ1, λ2, λ3) =
∑

π with legs ~λ

w(π)q|π|.

Remark. We observe a few properties.

1. The q-coefficients of W (∅, ∅, ∅) are rational functions in s1, s2, s3. This is because we sum finitely many
rational functions.

2. Vπ(1, 1, 1) = 0, so actually
∑
~k v~k(π) = 0 for any π. Hence q-coefficients of W (∅, ∅, ∅) are degree 0

rational functions.

3. W (∅, ∅, ∅) is symmetric in s1, s2, s3.

4. logW (∅, ∅, ∅)|s1+s2+s3=0 = M(−q), because Clara computed last time that Vπ|s1+s2+s3=0 = (−1)|π|

and we know M(q) is the generating function for finite 3d partitions.

To compute W (∅, ∅, ∅), consider a special geometry where it is a part. Specifically, look at X := P1 ×C2

with weights s1, s2, s3, and fix the smooth divisor S :=∞× C2. We want to compute ZTDT (X/S, q)0.

Lemma 2.16. The q-coefficients of ZTDT (X/S, q)0 are rational functions in s1, s2, s3 with poles in s2, s3

only.

Proof. Construct a proper morphism

j : In(X/S, 0)→ Symn(X)→ Symn(C2)→
n⊕
i=1

C2

where the last map is given by
{(xi, yi)} 7→ ((pi(~x), pi(~y)))ni=1

where pi are power sums. So we can compute∫
[In(X/S,0)]vir

1 =

∫
⊕n
k=1 C2

j∗[In(X/S, 0)]vir.

But the k-th copy of C2 has a unique fixed point of weights −ks2,−ks3. Hence localization shows there are
poles only in s2, s3.

Localization gives two types of contributions: points over 0 ∈ P1 and points over ∞ ∈ P1. Hence write

ZTDT (X/S, q)0 = W0 ·W∞.

We know W0 = W (∅, ∅, ∅), but W∞ has contributions from the relative part.
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2.5 Oct 10 (Ivan): MNOP2 III

Today we will do the computation of zero-degree contributions in relative DT for toric varieties. The way
to do it is to consider a geometry with two fixed points: one on the divisor, one not. Specifically, take
T := (C∗)3 acting on X := P1 × A2, with weight −s1 on T0P1 and −s2,−s3 on T0A2.

Recall thatW0 is the partition function for all zero-dimensional sheaves supported at (0, 0) ∈ P1×A2. This
is what we previously called W (∅, ∅, ∅). The new thing involves the torus-fixed divisor D := {∞}×A2 ⊂ X;
we want to compute ZTDT(X/D, q)0. This, by localization, has contributions from T -fixed schemes supported
at (0, 0) and D (in its bubblings). So

ZTDT(X/D, q)0 = W0 ·W∞.

Recall that W0 = W (∅, ∅, ∅) is a power series in q with rational coefficients of degree 0, symmetric in s1, s2, s3,
and we showed W0|s1+s2+s3=0 = M(−q). We had a lemma last time that says ZTDT(X/D, q)0 has monomial
poles in s2, s3.

To compute W∞, we need rubber theory. What is rubber theory? Recall that the moduli in relative DT
involves bubbles R tD R tD · · · tD R. In our case, R = P1 × A2. The contribution to W∞ is only from the
moduli space I of all sheaves which are only supported on the bubbles. The space I has a description similar
to that of relative DT. The difference is that on each ∆, there is a Gm-action. Hence

I := I∼n := In(R/(S0 ∪ S∞), 0)∼

where S0 and S∞ are the two divisors at 0,∞ ∈ P1, and the ∼ means we identify by Gm on every P1. There
is still an action by C∗s2 × C∗s3 on the A2 factor.

Question: what is the relation between I∼n and W∞? Note that I∼n ↪→ In with codimension 1 (where
here by In we mean the part contributing to W∞). The normal direction is given by deforming the node
attaching the rubber to the original P1, i.e. it has Euler class s1 − ψ0 where ψ0 = c1(L0). (Here the 0 is at
the start of the rubber pieces, i.e. the ∞ of the original P1.) Hence

W∞ = 1 +
∑
n≥1

qn
∫

[I∼n ]vir

1

s1 − ψ0
.

If it weren’t for this insertion, W∞ would be a series in only s2, s3. We want to relate W∞ with the simpler

F∞ =
∑
n≥0

qn
∫

[I∼n ]vir

1.

We know F∞ is a power series in q with rational coefficients in s2, s3 only.

Lemma 2.17. We have

W∞ = exp(
1

s1
F∞).

Proof. First expand W∞ in powers of ψ0, to get

W∞ = 1 +
∑
`≥0

1

s`+1
1

F∞,`

where F∞,` =
∑
n≥1 q

n
∫

[I∼n ]vir ψ
`
0. There is a topological recursion relation between the F∞,` as follows. On

I∼n we have the universal target and universal family/subscheme

Yn R

I∼n

π
.
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We have π∗[Yn]vir = n[I∼n ]vir because Yn → I∼n is finite flat of degree n by definition of the universal family.
Rewriting in terms of F∞,`,

q
d

dq
F∞,` =

∑
n≥1

qn
∫

[Yn]vir

ψ`0.

Using the topological recursion (see lemma below)

q
d

dq
F∞,` = F∞,`−1q

d

dq
F∞,0,

we check that the unique solution is

F∞,` =
F `+1
∞,0

(`+ 1)!
.

Hence plugging back in we get W∞ = exp( 1
s1
F∞).

Lemma 2.18 (Topological recursion). We have

q
d

dq
F∞,` = F∞,`−1q

d

dq
F∞,0,

which in terms of integrals is ∫
[Yn]vir

ψ`0 =
∑

n1+n2=n

∫
[I∼n1

]vir
ψ`−1

0

∫
[Yn2 ]vir

1.

Proof sketch. A generic point of R looks like a whole bunch of points on one component P1×A2, along with
one more point r. We can rigidify with respect to the Gm action by setting r = 1. Explicitly, the point r
lets us write a section of L0, by picking a coordinate z such that z(0) = 0, z(∞) = ∞, and z(r) = 1, and
then the section of L0 we get is dz|0. As r → ∞, we see that dz → 0. Hence zeros of the section are given
by bubbled components with 0, r,∞, i.e. the divisor in the moduli space

Dn1,n2
:=

{
0 ∞r

+ degenerations

}
.

Then ψ0 = c1(L0) =
∑
n1+n2=nDn1,n2

. Note that

Dn1,n2
∼= I∼n1

×Rn2

because the point r is on the second component. Hence (??)

[Yn]vir|Dn1,n2
= [I∼n1

]vir × [Yn2 ]vir.

Putting this all together and integrating,∫
[Yn]vir

ψ`0 =

∫
[Yn]vir

ψ0 · ψ`−1
0

=
∑

n1+n2=n

∫
[Yn]vir|Dn1,n2

ψ`−1
0

=
∑

n1+n2=n

∫
[I∼n1

]vir

ψ`−1
0

∫
[Yn2

]vir

1.

The last equality comes from the (??) equality of virtual classes.
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Let’s return to ZTDT(X/D, q) = W0W∞. Then

logW0 = logZ − logW∞ = logZ − 1

s1
F∞,

where F∞ depends only on s2, s3. Hence all q-coefficient of logW0 is of the form

1

s1

p1(s1, s2, s3)

p2(s2, s3)
, deg p1 = deg p2 + 1.

By symmetry of W0 in s1, s2, s3, it follows that all q-coefficients of logW0 are of the form

p(s1, s2, s3)

s1s2s3
, deg p = 3.

Lemma 2.19 (Combinatorial lemma). (s1 + s2) divides p(s1, s2, s3).

Then by symmetry, (s1 + s3) and (s2 + s3) also divide p. It follows that the q-coefficients of logW0 are
of the form

constant · (s1 + s2)(s1 + s3)(s2 + s3)

s1s2s3
.

So for some power series F0(q),

logW0 =
(s1 + s2)(s1 + s3)(s2 + s3)

s1s2s3
F0(q).

But recall that logZDT has poles in s2, s3 only. Hence logW∞ must be the s1-pole part of logW0, which we
can just compute to be

logW∞ =
s2 + s3

s1
F0(q).

It remains to compute F0(q). We know logW0|s1+s2+s3=0 = logM(−q), and we can plug our expression for
logW0 into here to get

F0(q) = − logM(−q).

Hence we get explicit expressions for W0 and W∞.

Corollary 2.20. ZDT(X, q)0 = M(−q)
∫
X
c3(TX⊗KX).

Proof. Taking logs,

logZDT(X, q)0 =
∑
α-fixed

(sα1 + sα2 )(sα1 + sα3 )(sα2 + sα3 )

(−sα1 )(−sα2 )(−sα3 )
logM(−q).

This prefactor is exactly the localization contribution from
∫
X
c3(TX ⊗KX).

Corollary 2.21. ZDT(X/D, q)0 = M(−q)
∫
X
c3(TX(− logD)⊗KX(− logD)).

Proof. The prefactors are a little different for points in W∞.

2.6 Oct 17 (Anton): DT local curves

Let C be a non-singular projective curve. Let N → C be a rank 2 bundle; let N also denote the total space,
which is a 3-fold. To do relative theory, we need to pick a divisor. Pick points p1, . . . , pn ∈ C, and let our
divisor S =

⋃
Npi be the union of fibers over these points.

Theorem 2.22 (Main result). GW/DT correspondence holds for local curves.
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Consider ITn (N, d). If N is indecomposable, then there is only a 1-dimensional torus acting on N . But
every indecomposable bundle is deformation equivalent to a split bundle, and there is a 2-dimensional torus
acting on N = L1 ⊕ L2. The relative space In(N/S, d) has maps

εi : In(N/S, d)→ Hilb(Npi , d).

The cohomology of Hilb(Npi , d) has the Nakajima basis, labeled by partitions.

Definition 2.23. Define the partition functions

Z(N/S)d,η1,...,ηr :=
∑
n∈Z

qn
∫
ε∗i (Cηi)

e(Nvir)
.

Let Z ′ denote reduced invariants. The notation will be

Z(g; k1, k2)η1,...,ηr

for genus g curve C and line bundles of degree k1 and k2. To abbreviate gluing terms, introduce new functions

DT (g; k1, k2)η1,...,ηr := q−d(1−g)Z(g; k1, k2)η1,...,ηr .

To raise indices, use

DT (g; k1, k2)ν
1,...,νs

η1,...,ηr
:= DT (g; k1, k2)ν1,...,νs,η1,...,ηr

∏
∆d(ν

i, νj)

where ∆ is the inverse of the intersection form∫
Cµ ∪ Cν = (t1t2)−`(µ) (−1)d−`(µ)

z(µ)
δµ,ν .

Remark. The gluing matrix is diagonal in cohomology, but is more complicated in K-theory.

Proposition 2.24 (Degeneration formulas). For g = g′ + g′′ and ki = k′i + k′′i ,

DT (g; k1, k2)ν
1,...,νt

µ1,...,µs =
∑
γ

DT (g′; k′1, k
′
2)γµ1,...,µsDT (g′′; k′′1 , k

′′
2 )ν

1,...,νs

γ

DT (g; k1, k2)µ1,...,µs = DT (g − 1; k1, k2)γµ1,...,µs,γ .

Using the degeneration formula, it suffices to compute

DT (0; 0, 0)λ, DT (0; 0, 0)λµ, DT (0; 0, 0)λµν , DT (0; 0,−1)λ.

Lemma 2.25 ((0, 0) tube). DT (0; 0, 0)λµ = δλµ.

Proof. First step: show this is true modulo q. These q-constant terms just come from the intersection form.
Second step: apply the degeneration formula to the tube itself to get

DT (0; 0, 0) = DT (0; 0, 0)2.

Since the q-constant terms are invertible, DT (0; 0, 0) is invertible, and it follows that DT (0, 0, 0) = id.

Lemma 2.26 ((0, 0) cap).

DT (0; 0, 0)λ =

{
1

d!(t1t2)d
λ = (1d)

0 otherwise.
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Proof. Idea: look at the compactified P1 × P2 geometry, and do a dimension count. Then use localization,
in which one of the pieces will be the cap.

Corollary 2.27. We can always add or remove (1d) insertions.

Proof. DTµν =
∑
γ DT

γ
µνDTγ . But the cap is non-zero only for γ = (1d). Hence

DT (1d)
µν ∝ DTµν .

Now we have to compute DTλµν . A standard reconstruction theorem (which we will see for GW) shows
DTλµν can be reconstructed from DTλ,(2),ν . To compute this, we need descendant insertions σk(γ).

Definition 2.28. Introduce bracket notation

〈σk1
(γ1) · · ·σks(γs)〉 :=

∫ ∏
chki+2(γi)

e(. . .)

We write things like

〈σk1(γ1) · · ·σks(γs)|ν1, . . . , νs〉Nn,d, 〈µ|σk1(γ1) · · ·σks(γs)|ν〉
N
n,d

for relative conditions. If we omit the N , it means we take level (0, 0) theory, i.e. P1 × A2. If we omit the
n, we sum over all n with

∑
n q

n.

Define an operator Mσ by 〈µ|Mσ|ν〉 = q−d〈µ| − σ1(F )|ν〉 where F = [Nz] is the fiber over z ∈ P1. The
thing we want to compute is closely related to Mσ. This is because of the degeneration formula

〈µ| − σ1(F )|ν〉 =
∑
γ

DT (0; 0, 0)γµνq
−d〈γ| − σ1(F )〉

= DT (0; 0, 0)(1d)
µν q−d〈(1d)| − σ1(F )〉+DT (0; 0, 0)(2)

µν q
−d〈(2)| − σ1(F )〉.

Here we use that 〈γ| − σ1(F )〉 = 0 unless γ = (1d) or (2).

1. (First term) We can just remove (1d) to get the tube and use 〈(1d)| − σ1(F )〉 = 〈(1d)| − σ1(F )|(1d)〉 to
relate it back to the operator Mσ.

2. (Second term) This involves the term DT (0; 0, 0)
(2)
µν which we want to compute, and 〈(2)| − σ1(F )〉 =

〈(2)| − σ1(F )|(1d)〉.

It follows that once we figure out Mσ, we know DT (0; 0, 0)
(2)
µν . It turns out that if we write

M := (t1 + t2)
∑
k>0

k

2

(−q)k + 1

(−q)k − 1
α−kαk +

1

2

∑
k,l>0

(t1t2αk+lα−kα−l − α−k−lαkαl)

then we have

Mσ = M − (t1 + t2)ϕ(q) id, ϕ(q) := q
d

dq
logM(−q).

The proof that this is the correct expression for Mσ is quite involved.

Definition 2.29. Fock space is generated by a vacuum vector v∅ by the free action of creation and
annihilation operators α−k and αk for k > 0. A natural basis is given by

|µ〉 :=
1

z(µ)

∏
i

α−µiv∅.

The defining relations for the creation/annihilation operators are

[αk, αl] = kδk+l

and annihilation operators kill the vacuum, i.e. αkv∅ = 0 for k > 0.
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In this basis for Fock space, the first term of M is diagonal, and is the only place where we have a q-
dependence. The second term is off-diagonal, coming from either killing two rows and adding one or adding
two rows and killing one.

Lemma 2.30 ((0,−1) cap).

DT (0;−1, 0)λ =
1

z(σ)(t1t2)`(λ)

∏ 1

1− (−q)λi
.

Proof. See lemma 27.

2.7 Oct 24 (Shuai): Local curve computations

The setup is as usual: a curve C with rank-2 split vector bundle on it. We have:

1. the absolute theory DT (g; k1, k2), but we will write the geometry explicitly, like DT (P1 × C2);

2. the relative theory DT (g; k1, k2)S , e.g. DT (P1 × C2)0,∅,∅,....

We already know that in the associated TQFT, we only need to compute the genus-0 tube, caps, and pair
of pants, because of pair of pants decompositions like

· · · .

We need the DT degeneration formulas for this:

DT (g; k1, k2) =
∑
λ

DT (g1; k′1, k
′
2)λDT (g2; k′′1 , k

′′
2 )λ

DT (g; k1, k2)µ =
∑
λ

DT (g1; k′1, k
′
2)µλDT (g2; k′′1 , k

′′
2 )λ.

Here, to raise indices, we have

DT (g; k1, k2)λ := DT (g; k1, k2)λ∆d(λ, λ)

where ∆d(µ, ν) := δµ,ν(t1t2)−`(µ)(−1)d−`(µ)/z(µ) is the inverse of the intersection product on Hilb(C2).
First, how do we compute the Euler characteristic of the sheaf associated to a configuration of boxes, e.g.

two 3d partitions π, π′ at 0,∞ and a 2d partition λ along the infinite leg? Recall that in Clara’s talks, we
saw the normalized volume | · | of a (possibly-infinite) 3d partition. Euler characteristic is motivic, so for the
P1 × C2 geometry,

χ = χ(λ× P1) + χ(|π|+ |π′|) = |λ|+ |π|+ |π′|.
In general, for a genus g curve, we will get |λ|(1 − g) instead of |λ|. This explains all the appearances of
d(1− g) in the paper.

The key takeaway is that the smallest Euler characteristic we can get is d(1− g). In the definition of DT
partition function, we shifted by q−d(1−g) to make the minimal case the q-constant term.

Remark (Classical contribution). We have an isomorphism

Id(P1 × C2, d) ∼= Hilbd(C2).

Because of this isomorphism, we know the inner product on the DT TQFT corresponds to exactly the
intersection pairing ∆ on Hilbd(C2). This is why we use ∆ to raise/lower indices. Consequently, this makes
the tube into the identity, as desired.
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Proposition 2.31. The level (0, 0) cap is computed by

DT (0; 0, 0)λ =
q−d

(t1t2)`(λ)

〈|λ[0]〉
〈|∅〉

=
q−d

(t1t2)`(λ)

1

d!

(
〈|λ[0]〉
〈|∅〉

)d
=

q−d

(t1t2)`(λ)

1

d!
qd.

where the second (and following) equality is non-zero only for λ = (1d).

Proof. The first equality comes from shifting the whole Nakajima basis to the one supported at the point
[0] = t1t2 ∈ H4

T . Then by linearity,
1

(t1t2)`(λ)
〈|λ[0]〉 = 〈|〉.

The rest of the expression is the definition of DT partition function.
To show that only λ = (1d) contributes, we do a dimension count. Recall that

vdim In(P1 × C2/C2
∞, d) = 2d.

The dimension of the cycle defined by λ is |λ|+ `(λ), i.e. we need |λ|+ `(λ) = 2d for non-zero contribution.
Hence `(λ) = d and λ = (1d).

For this special partition, we have a factorization as follows. Compactify P1 × C2 to get P1 × P2. Idea:
the absolute theory on P1 × P2 can be computed in two different ways, to give the factorization identity in
the third equality. Put a torus action t1, t2 on fibers P2 and s on P1 at 0. How do we specify the relative
condition λ = (1d) on the additional fixed points A,B over the fiber at ∞ ∈ P1? We get

〈| 1[0], . . . , 1[0]︸ ︷︷ ︸
d copies

〉 = 〈|λ〉〈|∅〉|−t1,t2−t1〈|∅〉t1−t2,−t2

where we put the ∅ relative condition at the extra points A,B at∞ because we don’t want our original curve
to hit the infinity divisor in the fibers.

2.8 Oct 31 (Shuai): Pair of pants

First goal: reduce everything to the quantum multiplication by the divisor c1(O/I) = −(2, 1d−2). Define
three operators.

1. Let M be the explicit operator

M := (t1 + t2)
∑
k>0

k

2

(−q)k + 1

(−q)k − 1
α−kαk +

1

2

∑
k,l>0

(t1t2αk+lα−kα−l − α−k−lαkαl)

and then define M? := M−(t1 + t2)Φ(q) where Φ(q) := (d/dq) logQ where Q is the generating function
for 3d partitions.

2. Define the operator Mσ by
〈µ|Mσ|ν〉 := 〈µ| − σ1(F )|ν〉.

3. Define the operator MD by
〈µ|MD|ν〉 := DT (0|0, 0)λ,D,ν .

We want to compare these three operators. The strategy is to argue we can focus on only a few special
matrix elements.
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1. (Only need terms close to the diagonal) Prove a vanishing theorem

|`(µ)− `(ν)| > 1 =⇒ 〈µ| − σ1(F )|ν〉 = 0.

2. (Off-diagonal terms are rational numbers) Prove another vanishing theorem

|`(µ)− `(ν)| = 1 =⇒ 〈µ| − σ1(F )|ν〉n,d = 0, ∀n > d,

i.e. the invariants are really just rational numbers.

3. (Only need certain on-diagonal terms) Prove the additivity property

〈µ|Mσ|µ〉
〈µ|µ〉

=
∑

q|µ|−µi
〈µi|Mσ|µi〉
〈µi|µi〉

.

The next step is to compute these special matrix elements of Mσ.

5. To compute M? we can use any basis we want, but for the computation of Mσ we would like to work
in the fixed point basis Jµ instead of the Nakajima basis |µ〉. In this basis, we have relations

〈J (d)|Mσ|J (d−1,1)〉n = (n− d)〈J (d), J (d−1,1)〉∼n = (n− d)〈J (d)J (d−1,1)〉Hilb(C2)
n−d .

6. Compute the low-degree term

〈µ|Mσ|µ〉n = (t1 + t2)γµ,n/t
2
1 mod (t1 + t2)2.

The computation 〈J (d)|Mσ|J (d−1,1)〉 contains a contribution 〈d|Mσ|d〉. By matching the low-degree
terms, it therefore suffices to show 〈J (d)|Mσ|J (d−1,1)〉 matches with 〈J (d)|M?|J (d−1,1)〉.

Proposition 2.32. Mσ = M?.

Proof sketch. Check that the q = 0, 〈∅|Mσ|∅〉 and 〈1|Mσ|1〉 terms match. We can explicitly compute the M?

matrix elements and show they match the following computations.

1. (q = 0 term) This means n = d, i.e. our moduli space is Id(P1 × C2, d) = Hilb(C2, d). Then by a
computation via an explicit resolution of I,

Mσ(q = 0) := π1∗(ch3(I)π∗1(1)π∗2([N0])) = D − t1 + t2
2

d id .

This is the classical part.

2. (〈∅|Mσ|∅〉) Degenerate to get something like

〈∅| − σ1(F )|∅〉 =
〈σ1(F )〉0
〈∅|〉〈|∅〉

.

We know how to compute the top by moving the fiber class to 0 or ∞, and then using the equivariant
vertex measure W (∅, ∅, ∅) at some specialization of weights, from MNOP2. The denominator are the
usual degree-0 terms.

3. (〈1|Mσ|1〉) Degenerate again to get a similar formula. In the numerator we therefore need to compute
a special case of the 1-legged vertex W (1, ∅, ∅) at some specialization of weights. Then we get

− t1 + t2
2

1− q
1 + q

− (t1 + t2)Φ(q)

as expected.
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Once we show the following computation, we will be done, because we have checked the equality for q = 0.

Proposition 2.33. 〈Jd|M? −M?(q = 0)|J (d−1,1)〉 = 〈Jd|Mσ −Mσ(q = 0)|J (d−1,1)〉.

Proof. First show using some representation theory that

Jλ ≡ (−1)|λ||λ|!
dimλ

∑
µ

χλµt
|λ|+`(µ)
1 |µ〉 mod t1 + t2.

In the two cases (d) and (d− 1, 1), this becomes very simple.

1. χd is the trivial representation.

2. χd−1 is the fundamental representation {x ∈ Cn : x1 + · · ·+ xn = 0}.

Since the intersection pairing on Hilb(C2, d) is diagonal, we get

〈J (d)|M? −M?(0)|J (d−1,1)〉 ≡ (−1)n(t1 + t2)
t2n1 (d!)2

d− 1
〈χ(d−1,1), F 〉L2(Sn) mod t1 + t2

where

F := −|µ| q

1− q
−
`(µ)∑
i=1

(µi)
2 (−q)µi

1− (−q)µi
.

To be continued...

2.9 Nov 14 (Yakov): DT theory of An

The An surface is a minimal resolution of singularities for C2/Zn+1 with action (z1, z2) 7→ (ξz1, ξ
−1z2) where

ξ is a primitive (n+ 1)-th root of unity.

Example 2.34. A1 = T ∗P1, because we have

C2/Z2 = SpecC[x2, xy, y2] = SpecC[x, y, z]/(xy − z2),

which is a quadric cone. Blowing up, we get T ∗P1: the exceptional fiber is a P1, with normal bundle O(−2).

Let X := An × P1. Pick β ∈ H2(An,Z) and form the moduli Iχ(X, (β,m)) of ideal sheaves with

c2(OZ) = (β,m) ∈ H2(X,Z) = H2(An,Z)⊕ Z.

Choose points z1, . . . , zk ∈ P1, and consider the relative theory Iχ(X/S, (β,m)) with respect to S :=
⋃
iAn×

zi. Relative conditions are given by cohomology weighted partitions

~µ := {((µ(1), γ1), . . . , (µ(`)γ`)}, γi ∈ H∗T (An,C).

The fibers give maps εi : Iχ(X/S, (β,m))→ Hilb(An). Define the DT partition function

ZDT(X)(β,m),~µ :=
∑
χ

qχ
∫

[Iχ(X/S,(β,m))]vir

∏
ε∗i (~µi)

by residues, because the moduli is non-compact. If we omit (β,m), we take a generating series

ZDT(X)~µ ∈ C(t1, t2)((q))[[s1, . . . , sn]]

over β as well, with variable sβ . The degree m can be reconstructed from ~µ. The reduced partition function
is

Z ′DT(X)~µ :=
ZDT(X)~µ

ZDT(X)
(0,0),~∅

.

From MNOP2 we know ZDT(X)
(0,0),~∅ = M(−q), the MacMahon function.
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Example 2.35 (Geometry of An). The toric diagram for A2 is

Note that at any fixed point, ∧2Tp = t1 + t2. This is important for us. Also, each exceptional divisor Ei is
a (−2)-curve, and the collection {E1, . . . , En} span H2(An,C). Their duals also span cohomology, because
dimCH

∗(An,C) is the number of fixed points. The intersection pairing is

〈Ei, Ei+1〉 = 1, 〈Ei, Ei〉 = −2.

Hence H2(An,Z) is the An root system, where Ei 7→ αi,i+1, with effective classes αij := Ei + · · · + Ej−1.
Let ωi be the dual basis, i.e. 〈ωi, Ej〉 = δij .

Consider the rubber geometry Iχ(X, (β,m))∼. These are ideal sheaves on An×P1 relative to An×0 and
An ×∞, up to a C∗ scaling on P1. It has a T -equivariant perfect obstruction theory of dimension 2n − 1.
Define rubber invariants

〈µ|ν〉∼β,χ :=

∫
[Iχ(X,(β,m))T,∼]vir

ε∗0(µ)ε∗∞(ν)

e(Nvir)
, = |µ| = |ν|.

Put these into generating series 〈µ|ν〉∼β :=
∑
χ q

χ〈µ|ν〉∼β,χ. If β = 0, these follow from the local curves case.
For β 6= 0, define

〈µ|ν〉∼+ :=
∑
β 6=0

qχsβ〈µ|ν〉∼β,χ ∈ C(t1, t2)((q))[[s1, . . . , sn]].

Let FAn :=
⊕

m≥0H
∗
T (Hilbm(An),C). We know from Nakajima that this is an irreducible representation of

the Heisenberg algebra, generated by pk(γ) where γ ∈ H∗T (An,C), with commutation relation

[pk(γ1), p`(γ2)] = −kδk+`〈γ1, γ2〉 · c

where c is a central element. There are two bases for cohomology:

1. Nakajima basis, given by cohomology weighted multi-partitions;

2. T -fixed points J~ρ ∈ Hilb(An), indexed using that the isolated fixed points are in charts isomorphic to
A2, and hence

Iρ = (xρ1 , yxρ2 , . . . , y`−1xρ`), ` := `(~ρ).

We have an intersection pairing 〈~µ|~ν〉. Let ĝ := ĝ(n+ 1), with elements x(k) := xtk and commutators

[x(k), y(l)] = [x, y](k + l) + kδk+l,0 tr(xy) · c,

where c is central and [d, x(k)] = kx(k). Let ĥ := h ⊕ Cc ⊕ Cd be the Cartan subalgebra. Embed H ↪→
ĝ⊗ C(t1, t2), called the basic representation, given by

p−k(1) 7→ id(−k), pk(1) 7→ − id(k)

(n+ 1)2t1t2
, pk(Ei) 7→ eii(k)− ei+1,i+1(k).

The roots of ĝl(n+ 1) are
∆ = {kδ + αij : k ∈ Z} ∪ {kδ : k 6= 0}.

Given a weight Λ, there exists a highest weight representation Vλ such that ρ(gl(n + 1) ⊗ C[t1, t2])v = 0
and ρ(c)v = v for the highest weight vector v ∈ Vλ. Then we can consider the weight subspace W :=⊕

m≥0 Vλ[Λ − mδ]. Since W ⊗ C(t1, t2) ∼= FAn , we can construct operators on FAn using U(ĝ)ĥ. For
example, take eij(k)eji(−k).
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Definition 2.36. Define the operator formula

〈~µ|ΘDT|~ν〉 = q−m〈~µ|~ν〉DT,∼
+ ,

and let
Ω+ :=

∑
i<j

∑
k∈Z

:eji(k)eij(−k): log(1− (−q)ksi · · · sj−1).

Here the normal ordering means

:eji(k)eij(−k): :=

{
eji(k)eij(−k) k < 0 or k = 0, i < j

eij(−k)eji(k) otherwise.

Proposition 2.37.

ΘDT(q, s1, . . . , sm) = (t1 + t2)(Ω+(q, s1, . . . , sn) +
∑
i<j

F (q, si, . . . , sj − 1) id)

where F (q, si) :=
∑
k≥0(k + 1) log(1− (−q)k+1s).

To prove this, we do some geometry. Let J → Iχ(X, (β,m))×X be the universal sheaf. Let γ ∈ H∗T (X,C)
and define the insertions

chk+2(γ)(ξ) := π1∗(chk+2(J )π∗2(γ) ∩ π∗1(ξ))

as homology operations HT
∗ (In,C)→ HT

∗−2k+2−`(In,C).

Proposition 2.38. For β 6= 0, the descendants 〈σ`1(γ`1) · · ·σ`k(γ`k)|ν1, . . . , νb〉β,χ have positive valuation
with respect to (t1 + t2). For β = 0, they vanish mod t1 + t2 for χ > m.

Now let’s talk about rigidification. Let δ0 := i∗(ω1 + · · ·+ ωn) ∈ H∗T (An × P1,C) where icolonAn → X
is the inclusion.

Lemma 2.39. For ω ∈ H2
T (An,C) a divisor,

〈~µ|σ0(i∗ω)|~ν〉 = (β, ω)〈~µ|~ν〉∼β .

In particular, for ω = δ0, we get

〈~µ|σ0(δ0)|~ν〉 =
∑

sk∂sk〈~µ|~ν〉
∼
.

Proof. Let π : R→ Iχ(X/S, (β,m))∼ be the universal target, and take the universal sheaf J → R. Then R
is the set of pairs of an ideal sheaf and a point r on the target X disjoint from relative divisors and singular
points. By projection, we get a point on P1. We can rigidify the C∗-action by insisting that r 7→ 1. Then
we can exhibit R as a substack of the universal target for the rigidified theory Iχ(X/S, (β,m)). The virtual
class are equal:

[R]vir := π∗[I∼χ ]vir = φ∗[Iχ]vir.

By projection formula, we therefore get

(ω, β)〈~µ|~ν〉β = 〈~µ| ch2(J )f∗ω|~ν〉R,∼β = 〈~µ|σ0(i∗ω)|~ν〉β .

Now introduce a new C∗ acting on P1. Let ρ be a box configuration for X. Given λ, define

rank(λ) :=
1

2

∑
r∈Z

(cr(λ)− cr+1(λ)

where cr(λ) is the number of boxes of content r. Let

rankt3(ρ) :=
∑
k

rank(ρk/ρk+1).
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Lemma 2.40. The multiplicity of t1 + t2 in w(π) is
∑

rankt3(πi) over all fixed points πi.

Proof. In general, we have terms like

F (z1, z2)

1− z3
+
F (z1/z

a
3 , z2/z

b
3)

1− z−1
3

.

In the An geometry, we have a = −2 and b = 0. Plug in z3 = 1/z1 so that the terms (z1z3)k become constant
terms. Then it suffices to write some combinatorial expression for the constant terms.

Corollary 2.41. When β 6= 0, the descendants 〈σk1
(γ`1) · · ·σkr (γ`r )〉β,m = 0 mod t1 + t2.

2.10 Nov 28 (Andrei): Toric GW/DT correspondence

Let X be a toric variety. We would like to prove that GW counts are really equal to DT counts in X.
The first thing to use is localization: to X corresponds some polyhedron (its toric diagram) consisting of
1-dimensional T -orbits and fixed points. T -fixed curves can have some features along compact edges, and at
vertices.

1. (Edges) In DT theory, edges carry (constant) 2d partitions λ(e). In GW theory, edges carry multiple

covers z 7→ zµ
i

. The size of the partitions is the degree. Note that

[C] =
∑
edges

|λ(e)|[edge] ∈ H2(X,Z).

2. (Vertices) In DT theory, vertices carry 3d partitions with asymptotics λ, µ, ν. In GW theory, vertices
involve source curves whose genus-g component is collapsed to a point, and multiple covers of open
edges.

To do localization, we need the deformation theory (Def −Obs)moving over the T -fixed locus. In general, we
split this as

(Def −Obs)mov =
∑

edges e

(Def(Ce)−Obs(Ce)) +
∑

vertices v

(contributions of v),

in the sense that we define the contributions of a vertex to be the difference. To compute this vertex
contribution, we can put it into a (P1)3 geometry; alternatively, in DT theory, we can even just use C3,
where both terms of the difference are infinite-dimensional but their difference is finite. Then

curve counts on X =
∑

partitions λ(e)

Q[C]weights of(Ce)
∏

Vertices(q).

The function Vertices(q) will be a sum in DT theory and an integral in GW theory (and a smaller integral in
PT theory. In general it is some transcendental function of q. The first step is to break this transcendental
function into rational functions, and match those between GW and DT.

Definition 2.42. Take the C2 × P1 geometry, and look at the curve counts for a relative condition at 0
and a non-singular condition at ∞. Then the evaluation map goes to Hilb(C2, d)×Hilb(C2, d), which is an
operator. This operator Ψ is the fundamental solution to the quantum differential equation (QDE)

q
d

dq
Ψ = M(q)Ψ−ΨM(0).

The hard part is the matrix M(q). The essential point is that this matrix is the same for both GW and DT.
If we take this fundamental solution and insert it into the localization picture, the contributions break

up into new pieces, where each bare leg is composed with the operator Ψ. This gives the capped vertex
V̂ (λ, µ, ν, t1, t2, t3, q) and the capped edge S(m1,m2, t1, t2, t3, q).
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Theorem 2.43. Both capped vertices and capped edges

1. are rational functions of q, and

2. satisfy GW/DT.

Remark. This is good because now we have distributed the complexity across vertices and edges: both now
depend on q and are rational, but originally we had one depending on q transcendentally and the other
independent of q. Rationality is good especially because eventually we want to do the substitution q = e−iu.

Let’s do the edge first. Its toric diagram is

t3

t1 +m1t3

t2 +m2t3

−t3

t1

t2

By abstract nonsense, it is a shift operator for the QDE, and satisfies

∇S(t1, t2) = S(t1 +m1t3, t2 +m2t3)∇ ∇ := t3q
d

dq
−M(q).

Hence S is uniquely determined from its initial condition at q = 0. Since the matrix M(q) matches in GW
and DT, the operators S are the same as well. So it is enough to prove rationality on either side. There are
some very general statements that can be made about rationality in the Kähler variable.

Now let’s do vertices. Take X = A2 × P1. Its toric diagram contains a trivalent vertex, so if we put a
relative condition at 0 ∈ P1 and decompose its contributions, we will get the desired vertex. In general, we
want to do curve counts in S × P1 relative to D := S × {0}, but for us we only need S = C,A1,A2. In
particular, in all these cases, c1(S) = 0. Fix a curve class (β, d), so that evaluation map goes to Hilb(S, d).
Then we have the following non-trivial result.

Theorem 2.44.
ev∗(

∑
β,χ

Qβqχ[−]vir) = qd[Hilb(S, d)].

Proof. We stated this result in DT, but we will prove it in GW. This is all for simplicity.
Since c1(S) = 0, the virtual dimension is 2d = dim Hilb. Once we fix how the curve hits the divisor,

ev is proper. Hence we can compute it equivariantly or non-equivariantly, i.e. the lowest-degree term in
the pushforward of the lhs is some multiple of [Hilb(S, d)] and the whole expression does not depend on the
equivariant weight ε on the P1. To prove that all other terms are zero, it suffices to prove they are zero in
the ε → ∞ limit, since they do not depend on ε. Look at the localization formula. The only contributions
that depend on ε are:

1. from the original P1 component (which has weight ε);

2. the smoothing term 1/(−ε+ tangent line) from the bubble(s);

3. the smoothing
∏

1/(ε/µi − ψi) of the nodes in M̄g,n(S), from the other divisor;

4. the obstruction H1(C,OC ⊗ ε) to deforming the contracted component.

In total, these contributions give∫
[M̄g,n(S,β)]vir

Λg(ε)

ε
∏

(ε/µi − ψi)
= εg−1−n

∫
[M̄g,n(S,β)]vir

1− λ1/ε+ · · · ± λg/εg∏
(1/µi − ψi/ε)

.

The virtual dimension is (g − 1) + n, so we need a class that is at least this dimension to get a non-zero
contribution. Hence in the integrand, we will pick up a factor of at least ε−g+1−n. So the total exponent of
ε is always negative.
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Hence the evaluation pushforward is trivial, and it trivially satisfies GW/DT. But now we need to take
this trivial thing and break it up. Again, we do everything capped. So we get a capped rubber near the
relative divisor.

Definition 2.45. Take S × P1. A capped rubber is a curve count of the form

In other words, we can have rubbers on both sides, but on the capped legs we only allow features of degree
0 in S, i.e. degree (0, d) in total. This picture says that the capped rubber is

Ψ̂ := Ψ(q,Q, . . .)Ψ(q, 0, . . .)−1

where Ψ is the fundamental solution we had earlier.

Corollary 2.46. The capped rubber satisfies GW/DT and lies in Q(q)[[Q]].

Proof. GW/DT follows from Ψ satisfying GW/DT. The second claim comes from Ψ actually satisfying a
system of QDEs in q(d/dq) and Qi(d/dQi), with Ψ(0, 0) = 1. So the capped rubber is still a fundamental
solution in Qi(d/dQi), and Ψ̂(q, 0) = 1. The coefficients of the QDE are rational functions of q, and the
desired claim follows.

The conclusion is that the whole A2×P1 diagram is rational in q and satisfies GW/DT. The corresponding
diagram for A1 × P1 is

Q|η|η

and can be uniquely solved for the 2-leg vertices with conditions η and µ, as follows. Fix a term Q|η|, i.e.
fix η. Wlog assume |η| ≤ |µ|, by symmetry. So we are free to pick |λ| < |η|. Hence

rank(V̂ (λ, η, ∅))|λ|<k, |η|=k = #(partitions of η).

If this matrix has maximal rank then we are done. But to compute the rank of a matrix we can pick any
specialization of its variables, so we just pick a stupid specialization t1 + t2 + t3 = 0. It follows that the 2-leg
vertex satisfies GW/DT. Then we go back to the A2 × P1 geometry and undo the 2-leg vertices to get the
3-leg vertices.

It is a conjecture that V̂ is a polynomial in q, not just a rational function.

2.11 Dec 04 (Henry): Capping and QDE

Let X be a toric 3-fold. The main idea is that capped localization is much better than regular localization
for DT theory. We illustrate the derivation of both to compare and contrast.
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Definition 2.47 (Regular localization, MNOP1). We can directly localize Z(X, q) (non-reduced partition
function):

Z(X, q) =
∑
n

qn
∑

I∈In(X,β)

e(T[I]).

1. (Compute) For a given T -fixed [I], split T[I]In(X,β) via Čech cohomology into contributions from
vertices and edges:

T[I] = (Γ(Uα)− χ(I|Uα , I|Uα))

−
(
Γ(Uαβ)− χ(I|Uαβ , I|Uαβ )

)
.

2. (Rearrange to cancel poles) Realize that these expressions are horrible because they are infinite power
series in t1, t2, t3. So we formally rearranged into nicer data

T[I] =
∑
α

Vα +
∑
αβ

Eαβ

where both Vα and Eαβ are Laurent polynomials in Q[t±1 , t
±
2 , t
±
3 ].

Then after taking equivariant Euler class, we get a product of contributions from vertices and edges. In
particular, the contribution from the vertex is the equivariant vertex

W (λ, µ, ν) :=
∑

π∈Π(λ,µ,ν)

q|π|w(π), w(π) :=
∏

�=(a,b,c)∈π

(s1a+ s2b+ s3c)
−v(�).

Here v(�) is the coefficient of ta1t
b
2t
c
3 in Vπ. Note that this whole process does not involve relative GW/DT

theory. Also, remember we have to normalize by degree-0 invariants to get reduced partition functions Z ′,
so we often consider

W (λ, µ, ν)/W (∅, ∅, ∅).

Remark. Remember that the TQFT DT(−) is built from a q-shift of the reduced partition functions Z ′. So
if we want to use degeneration, we must work with Z ′.

Definition 2.48 (Capped localization, MOOP). Use degeneration to split the toric graph of X into vertices
and edges with relative conditions.

1. Take the Xe := O(a)⊕O(b)→ P1 geometry. The capped edge is

(a, b) := E(λ, µ, t1, t2, t3, t
′
1, t
′
2, q) := Z ′(Xe/F0 ∪ F∞; q)λ,µ,

i.e. an edge with two relative conditions λ and µ. Here t′1 = t1 − at3 and t′2 = t2 − bt3.

2. Take U := (P1)3−∪3
i=1Li where Li are the three T -invariant lines at (∞,∞,∞). Let Di be the divisor

with i-th coordinate ∞. The capped vertex is

:= C(λ, µ, ν, t1, t2, t3, q) := Z ′(U/ ∪i Diq)λ,µ,ν .

There are also contributions G(λ, µ, t1, t2, t3, q) from gluing two relative conditions (i.e. raising/lowering
indices).
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Remark. In contrast to capped versions of objects, the regular versions will be called bare. (For example, we
will refer to the equivariant vertex as the bare vertex.) Capped versions of objects are generally more nicely
behaved as functions of q, because they arise as proper pushforwards from a compact moduli.

The point of MOOP is to match capped vertices and edges in GW and DT, and therefore prove that up
to q = −eiu the two theories are equivalent.

Why do we care about the bare vertex W (λ, µ, ν)? Following the logic in MNOP1, if we take the
Calabi–Yau torus t1t2t3 = 1, Serre duality says T[I] is an odd function under

(t1, t2, t3) 7→ (t−1
1 , t−1

2 , t−1
3 ).

Explicitly, if ta1t
b
2t
c
3 appears, so does −t−a1 t−b2 t−c3 . Then terms in w(π) appear in pairs, of the form

ta1t
b
2t
c
3 − t−a1 t−b2 t−c3 7→ −s1a− s2b− s3c

s1a+ s2b+ s3c
= −1.

We computed the total parity to be w(π) = (−1)|π| in MNOP1. Hence

W (λ, µ, ν)|s1+s2+s3=1 =
∑

π∈Π(λ,µ,ν)

(−q)|π|

is just an enumeration of 3d partitions.

Example 2.49. Recall from MNOP1 that we had the formula

W (∅, ∅, ∅) = M(−q)−
(s1+s2)(s1+s3)(s2+s3)

s1s2s3  W (∅, ∅, ∅)|s1+s2+s3=1 = M(−q),

agreeing with M(−q) =
∑
π∈Π(∅,∅,∅)(−q)|π|.

Theorem 2.50 (Okounkov–Reshetikhin–Vafa).∑
π∈Π(λ,µ,ν)

(−q)|π| = (prefactor)sνt(q
−ρ)

∑
η

sλt/η(q−ν−ρ)sµ/η(q−ν
t−ρ)

where sλ/µ are skew Schur functions and ρ = (−1/2,−3/2,−5/2, . . .).

Definition 2.51. The reduced vertex in the CY limit

W ′(λ, µ, ν)|s1+s2+s3=1

is called the topological vertex (up to some prefactors).

Because an explicit formula exists, a common argument in DT problems is to show that an object is
independent of weights t1, t2, t3, and to evaluate the desired object in the CY limit t1 + t2 + t3 = 0. (For
example, this is exactly the strategy for matching the capped vertex.)

Remark. Historically, the AKMV paper first proposed the topological vertex from physical arguments involv-
ing large N duality. Melissa’s lectures on her and her collaborators’ work showed that, up to a conjectural
identity W̃~µ(q) = W~µ(q), the GW topological vertex computes GW theory. To complete the argument for
the validity of the topological vertex, note that:

1. MNOP1 + the formula for the DT topological vertex matches the GW topological vertex with the DT
topological vertex;

2. MOOP proves the full equivariant GW/DT correspondence.
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To see the relationship between the capped vertex and the bare vertex, we focus on the simple case of
one relative leg instead of three relative legs. These are the 1-leg vertices. For simplicity, and also to match
with notation in Andrei’s K-theory notes, write

:= := .

This is the setting of local curves: we called the capped 1-leg vertex the (0, 0) cap in that context, corre-
sponding to the reduced series

〈 |λ〉′(0,0) =
〈 |λ〉
〈 |∅〉

.

We can view the bare 1-leg vertex as a pushforward from the non-singular part of the relative moduli
In(X/D, β) where there is nothing in the bubbles. In this way, we think of the lack of relative conditions on
the bare leg as a non-singularity condition, denoted by an empty circle. Hence the localization contributions
to the capped vertex 〈 |λ〉′ split into three pieces:

1. a bare vertex term W ′(µ, ∅, ∅)|′s,t1,t2 coming from contributions outside the bubble(s);

2. a node smoothing term 1/(−s− ψ∞) from where the bubble(s) connect to the rigid P1;

3. a rubber integral with relative conditions [Jµ] and λ.

We write this pictorially as

= · ψ

〈 |λ〉′ =
∑
|µ|=|λ|

W ′(µ, ∅, ∅)|s,t1,t2 · (gluing term) · 〈[Jµ]| 1

−s− ψ∞
|λ〉∼′.

Remark. When we write rubber integral series, in general we mean

〈µ|F|ν〉∼ := qd〈µ|ν〉d,d +
∑
n>d

qn〈µ|F|ν〉∼n,d.

Definition 2.52. Define the capping operator Ψ on Fock space F by its matrix elements

〈µ|Ψ|ν〉F := q−d〈µ| 1

1− ψ∞
|ν〉∼′ = q−dM(−q)−(t1+t2)〈µ| 1

1− ψ∞
|ν〉∼.

In degree 0, this is essentially what we called W∞ in MNOP2, where we computed W∞ = M(−q)(t1+t2)/s.

Theorem 2.53 (QDE).

q
d

dq
Ψ = MΨ−ΨM(0).

Here M = M(q) is an explicit operator on Fock space given by

M(q) := (t1 + t2)
∑
k>0

k

2

(−q)k + 1

(−q)k − 1
α−kαk +

1

2

∑
k,l>0

(t1t2αk+lα−kα−l − α−k−lαkαl).

Corollary 2.54. Ψ is invertible.
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Proof. If the inverse exists, it is uniquely determined by

0 = q
d

dq
(ΨΨ−1) = (MΨ−ΨM(0))Ψ−1 + Ψq

d

dq
Ψ−1,

i.e. q(d/dq)Ψ−1 = M(0)Ψ−1−Ψ−1M. As long as the q-constant term in Ψ is invertible, this has a solution.
This term is proportional to M(−q)−(t1+t2), so it is invertible as long as q is not a root of unity.

Hence if we know the capped 1-leg vertex and the capping operator, we get a square system of linear
equations for the unknown W ′(µ, ∅, ∅), and therefore we can solve for the bare 1-leg vertex.

The QDE for the capping operator essentially arises from rubber calculus. This refers to (a slightly more
general version with ψ0 of) the following. Let N := O ⊕O → P1 be the level (0, 0) geometry.

Lemma 2.55. Define the DT insertion on fibers

σ1 := π∗(ch3(J∞)) ∈ A1
T (Hilb(D∞, d),Q).

Then
(d− n)〈µ|ψa∞|ν〉

∼
n,d = 〈µ|σ1(F )ψa∞|ν〉

N
n,d − 〈µ|ψ

a−1
∞ |σ1 · ν〉∼n,d.

Proof. The rubber moduli has a universal target

π : R → In(R/R0 ∪R∞, d)∼,

where we define [R]vir := π∗[I∼n ]vir. The rubber calculus comes from computing

〈µ| ch3(J )π∗(ψa∞)|ν〉Rn,d

in two different ways.

1. Apply push-pull with π to get

〈µ| ch3(J )π∗(ψa∞)|ν〉Rn,d = (d− n)〈µ|ψa∞|ν〉
∼
n,d.

This is because we have π∗(ch3(J ) ∩ [R]vir) = (d− n)[In]vir by a fiberwise calculation via GRR:

ch3(IZ) = − ch3(i∗OZ) = (d− n)[pt] ∈ A0(X), ∀I ∈ In(X, d).

2. Use the rigidification map
φ : R → In(N/N0 ∪N∞, d)

given by rigidifying the P1 component carrying the extra target point. By comparing deformation
theories,

φ∗[In]vir = [R]vir.

On R, we also have a comparison relation

π∗ψ∞ = φ∗ψ∞ − φ∗D∞

where D∞ ⊂ In is the virtual boundary divisor where the rubber over 0 carries Euler characteristic n.
Hence again by push-pull,

〈µ| ch3(J )π∗(ψa∞)|ν〉Rn,d = 〈µ| ch3(J )ψa∞|ν〉
N
n,d − 〈µ|ψ

a−1
∞ |σ1 · ν〉∼n,d.

Now note that ch3(J ) in 〈−〉N is what we called the primary insertion σ1(F ).
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When we put this into a generating series, we get the identity

q
d

dq
q−d〈µ| 1

1− ψ∞
|ν〉∼ = q−d〈µ|−σ1(F )

1− ψ∞
|ν〉 − q−d〈µ| 1

1− ψ∞
|(−σ) · ν〉∼.

We will see that M(0) is essentially multiplication by −σ, so the second term, up to normalization, is ΨM(0).
To relate the first term to Ψ, we apply topological recursion.

Lemma 2.56 (Topological recursion). For the relative theory of N/N0 ∪N∞,

〈µ|ψa0 |ν〉
N
n,d =

∑
η`d

∑
n1+n2=n+d

〈µ|η〉Nn1,d
∆d(η, η)〈η|ψa−1

∞ |ν〉∼n2,d
.

Proof. The class ψ0 is dual to the boundary stratum δ0 consisting of non-trivial bubbles at 0:

δ0 = 1 2 3 . . .
s .

Hence we can exchange one ψ∞ for pulling back the integral to δ0. But δ0 factors via degeneration into the
rhs.

2.12 Dec 05 (Henry): Capping and QDE II

We are in the middle of proving the capping operator Ψ satisfies the QDE

q
d

dq
Ψ = MΨ−ΨM(q = 0)

using rubber calculus and topological recursion. From rubber calculus, we got

q
d

dq
q−d〈µ| 1

1− ψ∞
|ν〉∼ = q−d〈µ|−σ1(F )

1− ψ∞
|ν〉 − q−d〈µ| 1

1− ψ∞
|(−σ) · ν〉∼.

From topological recursion, the first term becomes

q−d〈µ|−σ1(F )

1− ψ∞
|ν〉 = q−2d

∑
η

〈µ| −σ1(F )|η〉∆d(η, η)〈η| 1

1− ψ∞
|ν〉∼.

This is some operator −σ1(F ) composed with Ψ, up to some factors. This operator has a name, from local
curves, and is related to M(q).

Proposition 2.57. Define the operator Mσ by

〈µ|Mσ|ν〉F := q−d〈µ| −σ1(F )|ν〉.

Then

Mσ = M(q)− (t1 + t2)Φ(q) · id, Φ(q) := q
d

dq
logM(−q).

It remains to put everything together and arrive at the QDE for Ψ. This is purely an algebra exercise.
We see that Mσ is the operator which plays a crucial role in deriving the QDE. So we should try to match
it with its analogue on the GW side.

To avoid confusion, write MDT
σ for what we have been discussing so far. On the GW side, the equivalent

of Mσ is the following.

Definition 2.58. Define the operator MGW
σ by

〈µ|MGW
σ |ν〉F := GW∗(−τ1(F )|0; 0, 0)µν = (−iu)`(µ)+`(ν)Z ′GW(−τ1(F )|0; 0, 0)µν .

The key to computing MGW
σ is to recall that from GW local curves, we know a different operator MD.
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Definition 2.59. Define the operator MD in both GW and DT as

〈µ|MDT
D |ν〉F := DT(0; 0, 0)µ,D,ν = −DT(0; 0, 0)µ,(2),ν

〈µ|MGW
D |ν〉F := (−1)|µ|GW∗(0; 0, 0)µ,D,ν .

Recall that D = −(2) := −(2, 1d−2).

Remark. On the DT side, we know MDT
σ but not MDT

D . On the GW side, we know MGW
D but not MGW

σ .
On both sides, the following formula holds.

Proposition 2.60.

Mσ = MD − (t1 + t2)

(
d

2

(−q) + 1

(−q)− 1
| · | − Φ(q)

)
.

Remark. This is essentially Proposition 26 in DT local curves, but structurally that argument is GW/DT-
agnostic. Its only DT input is two particular invariants. So we give the GW details instead. Since we always
work in the (0, 0) geometry, omit writing this information.

Proof sketch. First apply the degeneration formula to MGW
σ :

GW∗(−τ1(F ))µν =
∑
γ

GW∗µγν ∆d(γ, γ) GW∗(−τ1(F ))γ .

(Here ∆d(−,−) refers to the non-standard pairing on Fock space, because we use GW∗ instead of GW.) By
a dimension argument, GW∗(−τ1(F ))γ = 0 unless γ = (1d) or γ = (2, 1d−2). (The analogous vanishing on
DT side is much harder; see section 4.6.) So this sum only has two terms.

1. (γ = (2) term) Here we have terms

GW∗(0; 0, 0)µ,(2),ν = (−1)|µ|〈µ| −MGW
D |ν〉

and GW∗(−τ1(F )|0; 0, 0)(2).

2. (γ = (1d) term) Here we have terms

GW∗(0; 0, 0)µ,(1d),ν = GW∗(0; 0, 0)µ,ν = ∆d(µ, ν)

and GW∗(−τ1(F )|0; 0, 0)(1d).

In terms of connected invariants, this means we must compute∫
[M̄g,1(P1,1)]vir

λgλg−1τ1(p),

∫
[M̄g,1(P1,(2))]vir

λgλgτ1(p).

These we can easily compute by localization and known series for Hodge integrals.

Remark. The same proof works on the DT side, but with the input

q−d〈−τ1(F )|µ〉′ = 〈(1d)|Mσ|µ〉, µ = (1d), (2).

Fortunately, what we know so far is:

MDT
σ = M(q)− (t1 + t2)Φ(q) · id, MGW

D = M(q)− t1 + t2
2

(−q) + 1

(−q)− 1
| · |.

Here | · | is the energy operator, which returns d at degree d. So on DT side we can just use our formula for
Mσ to compute the two required inputs.
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Since we have a formula for MGW
D from GW local curves, we now have a formula for MGW

σ . One can
easily check the GW vs DT formulas are the same, so

MGW
σ = MDT

σ .

This also matches up MGW
D = MDT

D . Since MD fully determines the level (0, 0) pair of pants in both theories,
we have matched the final piece of the level (0, 0) local curves theories. (We have not matched the (−1, 0)
cap.)

Andrei told us in his talk that to match capped edges, we write them as solutions to the same QDE on
the GW and DT sides. Note that we only need to match capped edges of level (0, 0) and (0,−1) by the usual
degeneration argument. We know the capped edge of level (0, 0) is the tube, which is the identity map. So
it suffices to match (0,−1) edges. View them as operators by

〈λ|OGW|µ〉 := (−iu)`(λ)+`(µ)−dZ ′GW(0; 0,−1;u)λ,µ

〈λ|ODT|µ〉 := (−q)−d/2Z ′DT(0; 0,−1; q)λ,µ.

The GW/DT correspondence requires OGW = ODT with q = −eiu.

Proposition 2.61. The following DE holds for both OGW and ODT:

−t3q
d

dq
O = −M(t1, t2)O + OM(t′1, t

′
2).

Proof sketch. This follows by fairly general arguments. The key idea is to compute a σ1(1) or τ1(1) insertion
in two different ways.

1. (GW side) The dilaton equation says for connected invariants, we can pull out τ1(1) insertions and
multiply by 2g − 2 + n instead. Hence

t3OGW(τ1(1)) = t3

(
u
d

du
+ d

)
OGW.

2. (DT side) Because ch3(I) = d− n is constant for all I, we have

ZDT(σ1(1); 0,−1)λ,µ = (−q d
dq

+ d)ZDT(0,−1)λ,µ.

From MNOP2, we know degree-0 series ZDT(0; 0,−1; q)∅,∅. So normalize to give

t3ODT(σ1(1)) =

(
−t3q

d

dq
+ (t1 + t2 − t′1 − t′2)Φ(q)

)
ODT.

The rest of the argument works for both GW and DT in general. By localization, t3σ1(1) = σ1(F0)−σ1(F∞)
and similarly for τ1. But by degeneration,

O(σ1(F0))λµ =
∑

(Ot1,t2(σ1(F ))∼)λν ·Oν
µ

O(σ1(F∞))λµ =
∑

Oλ
ν · (Ot′1,t

′
2(σ1(F ))∼)νµ.

The rubber integrals can be rigidified: O(σ1(F ))∼ = O(σ1(F )). Hence

t3O(σ1(1)) = [O(σ1(F )),O],

plugging in (t1, t2) or (t′1, t
′
2) as appropriate. But we have shown

ODT(σ1(F )) = Mσ = OGW(τ1(F )).

Putting everything together gives the DE.
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Now we repeat the exact same argument for the capped rubber. Recall that the only differences between
capped rubbers and capped edges is that:

1. capped rubbers are only allowed to have degree-0 features on the fiber F0;

2. capped rubbers are in the An × P1 geometry instead of O(a)⊕O(b)→ P1.

Hence the degeneration and rigidification argument still works, up to some details.

Proposition 2.62. The capped rubber O(CR) satisfies the DE

−t3q
d

dq
O(CR) = −MAn(q = 0; t1, t2)O(CR) + O(CR)MAn(q; t′1, t

′
2).

Proof sketch. There are two modifications.

1. On F0, where we used to have M(t1, t2), we now have M(q = 0; t1, t2) for only degree-0 features.

2. These matrices MAn are the analogues of M (for (0, 0) geometry) for the An geometry. Matching
them on the GW and DT sides is the crucial input from the An papers. (See corollary 8.5 in Maulik–
Oblomkov’s DT theory of An × P1.)
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