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Abstract

These are my live-texed notes for (some subset of) the Fall 2018 student reading seminar on inter-
section theory. Let me know when you find errors or typos. I'm sure there are plenty.
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1 Sep 13 (Song): Rational equivalence

Sorry, no notes!

2 Sep 20 (Noah): Divisors
Today we will learn how to intersect with Cartier divisors D, i.e. we will define an operation
D: Ay X — Ap_1(X N |DJ).
We will define it on the level of cycles Z; X, and showing it descends to ApX will be the hard part.

Definition 2.1. A Cartier divisor on a variety X is an element of I'(X, K% /O% ). Write Div(X) for the
group of Cartier divisors. The support of a Cartier divisor D is

|D| = U{Z C X :local equation of D in Z is not a unit}.

Example 2.2. Take the cusp y? — 2. The rational function (y — z)/(y + z) is a Cartier divisor.

1. The support of the associated Weil divisor is [(1,1)] — [(1, —1)]. In particular, it does not contain the
cusp point, because both the numerator and the denominator vanish to the same order there.

2. The support of the Cartier divisor includes the cusp!


http://math.columbia.edu/~syu/f18-intersection.html

2.1 Pseudodivisors

Definition 2.3. Cartier divisors do not necessarily pull back nicely. So we define a pseudodivisor on a
scheme X as a triple (£, Z, s) where:

1. £ € Pic(X) is a line bundle on X;
2. Z C X closed and we think of it as the support of the pseudodivisor;
3. s is nowhere vanishing outside 7, i.e. £|x\z 5 Ox\z-

Remark. Let f: V — X be a morphism of varieties. If f(Y) ¢ |D|, we can define f*D for a Cartier divisor
D just by restricting equations. Otherwise no Cartier divisor pullback is defined.

Example 2.4. Given a Cartier divisor D, we get a pseudodivisor
(Ox(D),|D],1).
Here |D]| is the support of the Cartier divisor.
Proposition 2.5. Let X be a variety. Then any pseudodivisor on X is represented by a Cartier divisor D.
1. If Z = X, then D is unique up to linear equivalence.
2. If Z C X, then D is unique.
Definition 2.6 (Operations on pseudodivisors). We define some operations.

1. (Pullback) Let f: Y — X and D = (£,|D|,s) on X. Then
D= (f*L, (D)), [*s).
2. (Sum) Given Dy = (L4, |D1], s1) and Dy = (Lo, |Da|, s2), define
Dy + Dy = (L1 ® L3,|D1] U | D3], s1 ® $2).

Consequently, —D = (L,|D], s~ ).

3. (Induced cycle class) There is a map D — [D] € A,_1(|D|) given by taking any Cartier divisor

representing D and using the map
Div(X) = A,—1(X).

2.2 Intersection product

Definition 2.7 (Intersecting with Cartier divisors). Let X be a scheme, D be a pseudodivisor on X, and
let j: V < X be a k-dimensional subvariety of X. Define the intersection product

D-[V]=1[j"D] € A1 (V N |D|).
Note that there is no way to define this on the level of cycles.
Proposition 2.8. Let X be a scheme. Then, on the smallest closed sets where these statements make sense:
1. (linear in cycles) if o, € ZiX and D 1is a pseudodivisor,
D-(a+d)=D-a+D-d

in Ag_1((lal Ule']) N|DJ);



2. (linear in pseudodivisors) similarly,
(D+D')-a=D-a+D -«
in Ap_1(|D+ D'|N|a|);
3. (projection formula) if f: X' — X is proper and o € Zp X', and g is the induced map f~1(|D|N|al) —

|D| N |al, then
g*(f*D-a)=D- fia;

4. (pullback formula) if D is a pseudodivisor on X and f: X' — X is flat of relative dimension m, then
D ffa= fY(D- )
5. (linear equivalence) if D on X is such that Ox (D) = Ox, then
D-a=0.

Theorem 2.9 (Commutativity). Let X be a variety of dimension n, and D, D’ be Cartier divisors on X.
Then
D-[D]=D'-[D]
in An_o(|D|N|D’|).
Proof. We do this in three (technically four) cases.
1. (Trivial) When D = D', this is obvious.

2. (Algebra) Suppose D, D’ are both effective and they intersect properly, i.e. components of the intersec-
tion have dimension < n—2. Take a codimension 2 component W C DND’. The local ring A := Oxw
has a bunch of height 1 primes, which correspond to codimension 1 subvarieties of X containing W.
Some of them are components of D, and some are components of D’. Let a,a’ € A be local equations
for D and D’. Take one of these codimension 1 components V' C X. Recall that the coefficient of [V]
in [D] is

ordy (a") = length(Ay/a’Ayp).
The coefficient of [W] in D - [V] is length(A/(p + aA)). Putting this together, the coefficient of [W] in
D-[D']is
> length(Ay/a’Ay)length(A/(p + aA)) =: e(a, A/d' A).
p height 1

By symmetry, the coefficient of [W]in D’-[D] is e(a’, A/aA). Algebra fact: e(a’, A/aA) =e(a, A/d'A).

3. (Blowups) Suppose D and D’ do not intersect properly. Then the idea is to do a sequence of blow-ups
until they do. We need an invariant of the blow-up procedure so that we know it terminates. Define
the excess

AN /
e(D,D") = max (ordy D)(ordy D).
codim 1

Note that if D, D’ intersect properly, there are no such V contributing to this sum. Write D N D’ :=
D xx D', and let } R

7T:X—>X, XIZB]DXXD/X
be the blow-up along the intersection, with exceptional divisor E. We know

TD=E+C, ™D =E+C'

for effective Cartier divisors C, C’ on X. By the lemma below, we can pass from D - [D’] to C - [E] or
C' - [E], and it remains to induct on (D, D") until we hit the second case.



4. (General case) Extend to case of non-effective Cartier divisors by linearity. O
Lemma 2.10. In the blow-up situation of the theorem:

1. C and C' are disjoint;

2. If e(D,D’") > 0, then e(C, E) and (C', E) are both smaller.

Proof. For (1), pass to the local picture, i.e. let X = Spec A and a, a’ be local equations for D, D’. Then if
1= (a,d),

X =Proj 1" =P x X
where the embedding is given by a,a’ (in degree 1). From this picture, it is clear that C' lies over 0 € P! and
C’ lies over co € P! and are therefore disjoint.

For (2), take V C X of codimension 1 in C'N E or C' N E. Since 7 is an isomorphism outside of D N D',
we know (V) C X is a codimension 1 subvariety of X contained in D N D’. By the projection formula,

T.[E +C) =7 [n*D - X] = D - m,[X] = [D].

Hence ordy > ordy E + ordy C (since there may be contributions from other components). But we can
choose V so that
€(C,E) =ordy, C +ordy, E.

Then we have the sequence of inequalities

> ordy D + ordy D’

> (ordy E 4 ordy C)(ordy E + ordy C)

> (ordy E)? + €(C, E) + 0. O

e(D, D)

Corollary 2.11. Given D a pseudodivisor on a scheme X and o € Zp X equivalent to 0, then D - o = 0.

Proof. In this case, a = div(r) for r € K(V)* where V' C X is a dimension k + 1 subvariety in X. Then we
can replace X by V using proper pushforward, i.e. compute

D - [div(r)] € Ap—1(V).
By commutativity, this is the same as div(r) - [D]. A previous lemma said this is zero. O

Remark. This corollary allows the intersection product to descend to A from Zj. Hence we can now intersect
with Cartier divisors in Ay.

Corollary 2.12. D-D'-a=D'-D-a.

3 Sep 27 (Alex): Chern classes

Let X be a scheme and L — X be a line bundle. Let V' be a k-dimensional subvariety.

Definition 3.1. Let L|y = Oy (C) for some Cartier divisor C'. Take the associated Weil divisor [C], and
define
a(L)Nn V] =[C.

Note that this is exactly what we defined last time.
Proposition 3.2. Properties of first Chern classes:

1. ¢1(L) N — is well-defined;



2. ci(L)N(eaa(L)Na) =c1 (L) N (er (L) Na);
3. 4f f: X' = X is proper, then
fular(f* L) Na) =1 (L) N fra
4. if f: X' — X is flat, then
a(f*L)N frfa= f*(ci(L) Na);
5. ci(L® L") = c1(L) + c1(L') and hence ¢1(LY) = —c1(L).
Proposition 3.3. Given a fiber square
X 2 X
A
v 2 v
where f is proper and g is flat, we have R
feg a = g" fea.

Definition 3.4 (Segre classes). Setup: E — X be a vector bundle of rank r := e + 1. Then we have the
tautological bundle

OE(—l) p*E E

| d
P(E) —— X.
Define the Segre classes

si(E)N—: Ap(X) = Ar_i(X), a p(cr(0Op(1) T Npa).

Proposition 3.5. The Segre class operations s;(E) N — inherit all the properties of the first Chern class
C1 (E) n-—.

Proof. We prove the properties s;(E) Na = 0 for ¢ < 0, and that so(E) N — is the identity. Wlog make the
reductions that o = [V] is represented by a subvariety of dimension k. By projection formula, V = X. We
have A;_; X = 0 for ¢ < 0. Similarly,

s0(E) N = = pu(c1(Op(1))" N p"[X]) = m[X]

and we want to show m = 1. By pullback, reduce to the local case P(E) = U x P¢ where i: U < X is an
open immersion. Note that Og(1) has a section whose zero locus is P~ C P¢. Hence

a(O(1)N[U x P = [U x P!
and applying this e times we obtain [U]. Hence m = 1. O
Corollary 3.6. The map p*: AxX — AptP(E) is injective.
Proof. Define ¢(5) == p.(c1(Og(1))° N B). Then
p(p ) = so(E) Na = o

Hence ¢ is an explicit inverse to p*. O]



Definition 3.7. Let E — X be a vector bundle. The Segre polynomial of FE is the formal power series

Define the Chern polynomial of F to be the formal power series given as the inverse, i.e. it satisfies
Ct(E)St(E) =1.

Remark. Sanity check: we need to make sure ¢; agrees with our previous definition. Namely, ¢1 (L) = —s1(L)
and we check

ci(l)Na=—-s;(L)Na=—p.(OL(1)Np*a) = —c1(LY)Na=c (L) Na.

This is because P(L) = X and hence p: P(L) — X is an isomorphism.
Theorem 3.8. Properties of Chern classes:

1. ¢;(E) =0 fori>rank E;

2. they are commutative;

8. fulai(fTE)Na) = ci(E)N fio;

4. ci(f*E)N frfa= f*(c;(E) Na);

5. given a short exact sequence 0 - FE - F — G — 0,

c(F) = c(E)e(Q);

6. if L — X is a line bundle L = O(D), then c1(L) N [X] = [D].

Proof. We already know (2), (3), (4), and (6), because we inherit those properties from Segre classes. The
rest follow from the splitting construction below. O

Lemma 3.9 (Splitting construction). Given E — X, there exists a flat morphism f: X' — X such that:
1. f*: A X — A X' is injective;

2. there is a filtration
["E=FE.1 DE.D---DFE1 DE

with line bundles L; .= E;/E;_1.
We call f a splitting of E.

Proof. We use f: P(FE) — X; we already know f*: A, X — A,P(F) is injective. There is also a nice line
subbundle Og(—1) C f*E. Mod out by it to reduce the rank by one, and induct. O

Proposition 3.10 (Fulton lemma 3.2). The splitting construction gives that

T

a(B) = [[(+ e (L)),

i=1

on the X' given by the splitting construction. (There is an implicit f* on the lhs.)



Proof. Look at f: P(E) — X. Then Og(—1) C f*E as bundles on P(EF). Twist by Og(1), so that
f*E ® Og(1) has a non-zero section s. Claim:

s

[[e( Lo o) =

i=1

Do this inductively. The section s induces a section § of f*L; ® O(1). Let Y, be the zero scheme of 5. We
have a pseudodivisor D,. If j: Y, — X is the inclusion, then

a(f*L, @ O(1)) = j«.(DNa).
Applying properties of the first Chern class,
HclpL®0 Hcl “(p*L; © O(1))) N (D, - ).
i=1

For the remainder of the proof, suppose rank F = 2. Let £ := ¢;(Og(1)). Then
a(f*Li ® O1)) = c1(p"Li) + e1(O(1)) = ¢ +&.

By our previous computation,
0=cic} +ci€ +&cf + &%

Hence for all a € A, X and for all 7, we have
f@F 0 fra) + f(€@ ad 0 fra) + (€ (e + ) N fra) = 0.
Now rewrite in terms of Segre classes and compute that these relations give us
(L4 (1 + et + e1cit) (1 + s1(BE)t + so(E) + -+ ) = 1.
Since inverses of power series is unique, it follows that ¢;(E) = H?Zl (I4-¢1(L;)t). (For details, see Fulton.) O

Definition 3.11. Let X be a scheme and 7: E — X be a vector bundle of rank r = e+ 1. Let p: P(E) —
be the projectivization and Og(1) be the dual of the tautological bundle on P(E). Define the canonical
homomorphism

Of: @Ak eriX — AP(E (o) Hch ﬂp*ai.
=0

Theorem 3.12 (Fulton 3.3). 1. The pullback 7*: Ay_, X — A.E is an isomorphism.

2. The homomorphism OF is also an isomorphism. For all § € AP(E), it can be written as

B= a(01) Np*a.
=0
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