
Notes for Learning Seminar on Conformal Field Theory (Fall 2019)

Henry Liu

December 3, 2019

Webpage: http://math.columbia.edu/~hliu/seminars/f19-conformal-field-theory.html

Abstract

These are my live-texed notes for the Fall 2019 student learning seminar on conformal field theory.
Let me know when you find errors or typos. I’m sure there are plenty.
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1 Kostya (Sep 24): Intro to CFT

This will be an informal talk from a physics perspective. We’ll try to make some mathematical connections,
but there will be very few mathematical statements. The main purpose is to give a feeling of how CFT
formalism appeared and why.

We’ll follow the paper by Belavin, Polyakov and Zamolodchikov from ’84. This paper actually arise as an
attempt to understand an earlier paper in ’81 by Polyakov about string theory. String theory is a theory on
Riemann surfaces (Σ, g), with or without boundary, genus, and marked points. It feels as few of the features
of the surfaces as possible, because we want it to embed into spacetime R1,3. The theory should be:

1. covariant, i.e. independent of all coordinate transformations;

1

http://math.columbia.edu/~hliu/seminars/f19-conformal-field-theory.html


2. conformal, i.e. the Lagrangian should only depend on the conformal class of the metric g.

For example, for a quantum particle, there is a worldline and a map from the worldline to R1,3. In principle
when we write a Lagrangian for the particle, it depends on the metric of the worldline. But in string theory
we don’t want this dependence.

The partition function Z of string theory looks like

Z =

∫
all (Σ,g)

DXDg exp

(
1

~
[Smatter[X] + Sgravity[g]]

)
.

In general, we think of DX as a measure on something like Γ(E) where E is some bundle over the moduli
of some (Σ, g). When we consider conformal matter, gauge fixing for diffeomorphisms turns this action into

Z =

∫
conformal classes

DXDg exp

(
1

~
[Smatter[X] + Sgravity[g] + Sgauge fixing]

)
.

In a particular case, called critical strings, the gravity term Sgravity[g] is trivial and therefore we get
a theory that only depends on the topology of Σ. In the critical case, the central charge of matter is
cmatter = 26; in the supersymmetric version cmatter = 15. But in general we can consider arbitrary central
charge, giving different gravity theories. One such example is Liouville gravity. Classically it coincides with
the Liouville equation, which is also conformal. The most useful result in this direction appeared in the ’84
paper, which showed that CFTs could actually be solved. However the technique did not work for Liouville
theory, which was worked out about a decade later.

What is a CFT? The first thing to discuss we should discuss, which is very particular to CFTs, is the
state-operator correspondence. First forget about conformal structure and think only about topological
theories. For such 2d theories there are Atiyah–Segal axioms, which basically say that such a theory is a
functor

F : Cob→ Vect

from the category of cobordisms to the category of vector spaces. Boundaries are always disjoint unions of
circles S1, and

F(S1) = H = (state space of the theory).

For a cobordism represented by a 2d manifold Σ with boundary, we get

F(Σ) = v ∈ F(∂Σ).

For example, if Σ is a cylinder, its boundary is two circles with different orientation, i.e.

∂Σ = S1 + (S1)op.

Part of the axioms say that orientation is encoded by dualizing, so

F(cylinder) ∈ H ⊗H∨

which we can view as an operator. This is actually the identity operator of the theory.
A state is something living on the boundary. So it is a vector in the Hilbert space H. For example,

taking the cylinder, we can plug in two states to get a correlation number of the theory. Another nice way to
think of a state is, again, in the path integral formalism. For a non-topological theory, think of H as L2(S1)
in some sense. Say Σ is a disk D2. Then we can take expectation values

Z =

∫
DX exp

1

~
S ∈ C

where the action is an integral over a disk

S =

∫
Σ

d2ξ L[X, ∂X].
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The point is that this integral is not well-defined unless we specify boundary conditions on the disk. A
boundary condition is e.g.

X(eiϕ) = X0(eiϕ).

A (local) operator are differential polynomials (or slight generalization) of the basic fields of the theory.
(Usually operators in the CFT context are always local.) An example of a local operator would be something
like ∂X · X3. We can also think about non-local operators, e.g. 〈X(z0)X(z1)〉. They depend not on one
point, but on multiple.

At the classical level, an example is as follows. Let X(z) ∈ C be a section of the trivial line bundle.
After quantization, in the Hamiltonian formalism, it will be an operator. Then we can compute correlation
functions such as

〈X(z0)〉 =

∫
DX ·X(z0) exp

1

~
S.

This defines an element of H∨ associated to the same boundary of the disk, because the action still requires
a boundary condition on the disk. Hence local operators define states. In fact any state in CFT can be
obtained in this way.

In general, think of the operator-state correspondence as follows. Consider a cylinder, infinitely long in
the negative direction.

At the negative end, plug in a state |φ〉. It produces a state eitH |φ〉 on the other S1. But since the theory
is conformal, we can convert this picture into a disk

The boundary on the lhs of the cylinder is mapped to a puncture at the origin, and the boundary on the rhs
becomes the boundary S1. Then the object at the puncture is a local object A(0), which is a local operator
at 0. This is in general called radial quantization.

An important consequence is the following. Take a sphere with three punctures. Put two states |φ〉 and
|ψ〉 in two of the punctures. Then we get an element |v〉 ∈ H associated to the third puncture. Apply the
state-operator correspondence. Pick a basis {φα}α∈I for H and decompose

|v〉 =
∑

Cαφψ(z, w)φα(w)

for some coefficients C. Hence we get

φα(z)φβ(z) =
∑
γ

Cγαβ(z, w)φγ(w).

This gives an operator algebra structure to H. In general, this expression can be put into any correlation
function, as

〈A(z1, . . . , zN )φα(z)φβ(w)〉 = 〈
∑
γ

Cγαβφγ(w)A(z1, . . . , zN )〉.

Associativity of such a product structure imposes constraints on Cγαβ , and allows us to solve for them. This
is the bootstrap approach to solving CFTs.

A very important object to work with in CFT is the stress-energy tensor. It is the generator of time
transformations. If we think about a cylinder, pick some slice t = 0 in it. The Hamiltonian is

H(t) =

∫
t=t0

dxT0,0(ξ, ξ).
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In classical field theory, the Hamiltonian generates time translations, i.e.

{H(t), X} = ∂tX.

In CFT we can get much more. The theory being conformal is equivalent to the stress-energy tensor Tab
being traceless, i.e. T aa = 0. Noether’s theorem gives ∂aT

a
b = 0. In complex coordinates, these two properties

become:
Tzz = trT = 0, ∂Tzz = 0, ∂Tzz = 0.

Due to this, we write the holomorphic and anti-holomorphic functions

T (z) = Tzz(z), T (z) = Tzz(z).

They are rank-2 tensors, so they transform like

T (z)→
(
∂ξ

∂z

)2

T (ξ).

After quantization, [H(t), X] = ∂tX, so

[

∫
t=t0

dxT (z), X] = ∂zX.

But more generally we can use any complex transformation ε(z) =
∑
n εnz

n, to get

[

∫
dx ε(z)T (z), X] = δεX.

In radial quantization, this commutator becomes just

∂εX =

∫
dt ε(z)T (z)X(z0) |0〉

where |0〉 is the state inserted at 0. This is called a Ward identity.
A field φ is primary if it transforms as

φα(z)→
(
∂ξ

∂z

)∆α
(
∂ξ

∂z

)∆α

φα(ξ),

i.e. it is a “tensor” of rank (∆α,∆α), called the conformal dimension, which can be non-integers. For
such fields, the operator product expansion is

T (z)φα(w,w) =
∆α

(z − w)2
φα +

∂wφα
z − w

.

However it turns out that T is not a primary field. (In the classical theory it of course is, because it is a
rank-2 tensor. But in the quantum theory it is not.) It transforms as

T (z)→
(
∂ξ

∂z

)2

T (ξ) +
c

12
{ξ, z}

where the second (correction) term is the Schwartz derivative and c is a constant called the central
charge. One can try to understand this term physically in many ways, but it is believed to be the most
possible such expression. Using this transformation law with the Ward identities, we get

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
.
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Out of this, we can get the Virasoro algebra as follows. Formally decompose

T (w) =
∑ Ln

zn+2
.

(The +2 here is because of the conformal dimension 2.) Then∮
dz zn+1T (z) = Ln.

Applying this to the operator product expansion, we get Virasoro relations

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m.

Note that if we define vector fields `n := zn+1∂z, we get just the first term in this commutator:

[`n, `m] = (n−m)`n+m.

This comes from the relation between the classical stress-energy tensor and the Hamiltonian. Note also that
this means {L−1, L0, L1} span an SL2 subalgebra.

Using the OPE T (z)φα(0), one can show that the state operator correspondence φ(z) → |φ〉 = φ(0) |0〉
sends the operator φ to a highest-weight vector for the Virasoro algebra. In other words,

Ln |φ〉 = 0, n > 0

and the highest weight is exactly the conformal weight ∆. Generically,

L−n1 · · ·L−nk |φ〉 , n1 < · · · < nk

are independent. By the state-operator correspondence, they can be represented by some contour integrals.
These are descendants of the primary field φ(0).

To sum up in representation-theoretic language, the entire Hilbert space H decomposes into a sum of
irreducible highest weight representations of the Virasoro. Primary fields are highest weight vectors, and
descendants are generated by primary fields. Correlation functions for all descendants are computed through
the ones for primary fields, precisely because we know the OPE of the stress-energy tensor with any field.
So to study CFTs, we only care about primary fields.

If in the decomposition H =
⊕

α∈A Vα the indexing set A is finite, then we have a finite number of
primaries and the CFT is called rational. Also, when

Vir ⊂ U(g)

for some g, e.g. Heisenberg, loop/affine algebra (like WZW theory), then we can ask about reps of this
bigger symmetry algebra U(g). Examples include minimal models, WZW theories, KS models.

Another consequence of the Ward identities, which leads to differential equations for conformal blocks,
comes from considering

〈T (z)φα1
(z1) · · ·φαn(zn)〉 =

n∑
i=1

(
∆i

(z − zi)2
+
∂/∂zi
z − zi

)
× 〈φα1

(z1) · · ·φαn(zn)〉.

What is a conformal block? Recall the product φ1(z)φ2(w) =
∑
Cα12(z)φα(0). Decompose φα into pri-

mary/descendants to get

φ1(z)φ2(z) =
∑
α

Cα12

∑
{k}

β
α,{k}
12 z∆α−∆1−∆2+

∑
kiL−n1 · · ·L−nkφα(0).

5



Apart from the structure constants β
α,{k}
12 , everything else is determined by conformal symmetry, e.g.

〈φα(z)〉 = 0 if φα 6= id

〈φα(z)φβ(w)〉 =
δαβ

|z − w|∆α

〈φα(z)φβ(w)φγ(ξ)〉 =
Cαβγ

|z − w|∆|w − ξ||ξ − z|
〈φ1(∞)φ2(1)φ3(x)φ4(0)〉 =

∑
p

Cp12C
p
34

∑
{k}

z···β
p{k}
12 β

p{k}
34 〈φp|Ln′1 · · ·Ln′k |Ln1

· · ·Lnk |φp〉.

The only unknowns here are the structure constants Cp12 and Cp34. In the BPZ paper, the four-point correlators
are constructed in terms of objects called conformal blocks F34

12 (p|z), as

〈φ1φ2φ3φ4〉 =
∑
p

Cp12C
p
34|F34

12 (p|z)|.

These are universal quantities which are fully determined by representation-theoretic considerations. In all
rational theories, they satisfy differential equations called BPZ equations coming from the Ward identities.
(In WZW models they are called KZ equations, coming from some rep theory of U(g).) However, in
Liouville theory we cannot do this, and there are other things to work with.

2 Davis (Oct 01): The local structure of CFT

(Notes by Davis)
In this talk, I’ll try to explain how vertex operator algebras are related to the local structure of conformal

field theory. I’ll motivate VOAs from this point of view, explain what the Virasoro algebra is from a
mathematically motivated perspective, then explain how the Heisenberg Lie algebra is related to the free
boson CFT. Time permitting, I hope to say something about the OPE, or about conformal blocks.

In 2D CFT, a general correlator on a manifold Σ,

〈φ1(z1) . . . φn(zn)〉Σ.

can be viewed as fields φ1, . . . , φn inserted at points z1, . . . , zn on the manifold.
Part of the content of Kostya’s talk was justifying that we could understand this picture by breaking

apart Σ into smaller pieces and cobording them together. Hence, we may break apart Σ into pieces and
assume all the fields live together on a genus zero piece. Studying this genus zero piece is what I will call
the local structure of CFT: understanding higher genus pieces, and how they glue together, will be beyond
this talk.

2.1 The standout objects of CFT on the circle

Kostya’s talk yesterday introduced a lot of important objects in the study of CFT on a genus zero surface
with boundary,

1. The space of states (boundary conditions)

2. The OPE, Cα(z)Cβ(w) =
∑
Cαβγ (z, w)Cγ(z)

3. The state operator correspondence

4. The stress energy tensor, Tµν → T (z), T (z).

Claim. On the circle, for a large class of CFTs called ’chiral CFTs’, the “holomorphic and antiholomorphic
sectors decouple” and we may study the holomorphic part of the CFT independently. I will justify this
statement, and explain it in more detail, shortly, but for now take it on faith.
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2.2 VOAs

Formalising these ideas, observing that we may derive the OPE from the state-operator correspondence, we
arrive at the long definition of a VOA.

Definition 2.1. A vertex operator algebra

1. A space of states V (a vector space)

2. A vacuum vector |0〉 ∈ V

3. A translation operator T : V → V ,

4. Vertex operators, Y (•, z) : V → EndV [[z, z−1]], sending A→ Y (A,Z), a field.

such that

1. Y (|0〉 , z) = id

2. Y (A, z) |0〉 ∈ V [[z], Y (A, z) |0〉z=0 = A;

3. [T, Y (A, z)] = ∂zY (A, z), T |0〉 = 0;

4. The Y (A, z) are pairwise local.

where

1.
∑
Ajz

−j = A(z) ∈ EndV [[z, z−1] is a field if for any v ∈ V , Ajv = 0 for j large enough.

2. Two fields A(z), B(w) are local pairwise if ∃N ≥ 0, (z − w)N [A(z), B(w)] = 0.

Where did the stress energy tensor go in this definition? We’ll see after we’ve discussed Virasoro.
I don’t want to get into the weeds of formal power series, and BenZvi/Frenkel’s book covers this back-

ground well. But here’s one example:

Example 2.2. The formal delta function, δ(z − w), is the power series

δ(z − w) =
∑

zmw−m−1.

It satisfies the property

A(z)δ(z − w) =
∑

Akw
kzmw−m−1 =

∑
Am+n+1z

mwn = A(w)δ(z − w).

In particular, zδ(z − w) = wδ(z − w) =⇒ (z − w)δ(z − w) = 0.

The easiest VOAs are commutative ones.

Example 2.3. Suppose [Y (A, z), Y (B,w)] = 0 for all A,B. Then

Y (A, z)B = Y (A, z)Y (B,w) |0〉w=0 = Y (B,w)Y (A, z) |0〉w=0.

Because this is true for all B and Y (A, z) |0〉 ∈ EndV [[z] by the axioms, this means Y (A, z) ∈ EndV [[z] for
all A.

So we can equip the VOA with the structure of a commutative algebra,

A ? B := Y (A, 0)B.

T is a derivation for this algebra.
In the other direction, with mild assumptions, Y (A, z) := ezTA makes an algebra with a derivation into

a VOA.
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2.3 Virasoro

Our first examples of interesting vertex operators will come from the Virasoro algebra.
Recall that we have identified states with boundary conditions. So Diff(S1) acts on states on the

disc. We really want the ’complexified’ Diff(S1) action. However, Diff(S1) admits no complexification
as a Lie group. (There is a semigroup which serves as a partial answer, as exposited in Andre Henriques
cobordism-centred CFT notes).

So, we look at its Lie alg and complexify. Complexified LieDiff(S1) has a basis

`n = −zn+1∂z

`n = −zn+1∂z

[`n, `m] = (n−m)`n+m

[`n, `m] = (n−m)`n+m

.

So, (LieDiff(S1))C = Witt⊕Witt, where Witt has basis {`n}.
Remark. This is what I mean by decoupling of holomorphic/antiholomorphic sectors. The assumption here
is that the Diff(S1) global action, whatever I really mean by this, upgrades to a local action: this the
definition of a chiral CFT.

Primary fields, for instance, are ones where this action so upgrades. For general CFTs, you can only use
the VOA to study the chiral sector, which basically means fields coming from primary fields.

Goal. We want to study projective representations of the Witt algebra, because scaling by a constant
doesn’t change the physical state. The standard yoga is that projective representations of Witt are ordinary
reps of centrally extended Witt.

Definition 2.4. The Virasoro algebra is [Ln, Lm] = (n−m)Ln+m + c
12 (m3 −m)δn+m,0.

It is the universal central extension of the Witt algebra.

Remark. We can now write a generating functional

T (z) =
∑

Lnz
−n−2

[T (z), T (w)] =
c

12
∂3
wδ(z − w) + 2T (w)∂wδ(z − w) + ∂wT (w)δ(z − w)

.

and this relation is equivalent to the [Ln, Lm] relation. So, the stress-energy tensor pops up!

Finally, we can make a VOA

Example 2.5. Let V irc = U(V ir)⊗U(LieDiff(S1)C⊕Cc Cc, i.e. ’the universal enveloping algebra of Virasoroa
with the element c sent to be constant number c.

This algebra has a basis
Lj1 . . . Ljm |0〉

where j1 ≤ · · · ≤ jm ≤ −2
we can declare T = L−1, Y (L−2 |0〉 , z) := T (z), and other vertex operators ‘generated from this’.

What we mean by ‘generated by this’ calls for another messy theorem which will let us practically define
a lot of VOAs.

Theorem 2.6. Let V a vector space, |0〉 6= 0 ∈ V, T ∈ End(V ). Let {aα}α∈Z vectors, and {aα(z)} fields so
that

1. aα(z) |0〉 = aα +O(z≥1)

2. T |0〉 = 0, [T, aα(z)] = ∂za
α(z)
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3. aα(z) are pairwise local;

4. V has a basis of vectors aα1

(j1) . . . a
αn
(jn) |0〉, with j1 ≤ · · · ≤ jm < 0 and ji = ji+1 =⇒ αi ≤ αi+1

then, we can equip V with a VOA structure by

Y (aα1
j1
. . . aαmjm |0〉 , z) =

1

(−j1 − 1)! . . . (−jm − 1)!
: ∂−j1−1

z aα1 . . . ∂−jm−1
z aαm(z) :.

where : AB : denotes normal ordering: if A(z) =
∑
Amz

−m−1, B(w) =
∑
Bnw

−n−1, we define
: A(z)B(w) : to be

∑
n(
∑
m<0AmBnz

−m−1 +
∑
m≥0BnAmz

−m−1)w−n−1. We then extend : ABC :=: A :
BC ::.

Normal ordering has a weird definition, basically it means removing the singular point as z → w. In
physics speak, we demand that vacuum expectation values of normal ordered correlators vanish.

I hope to explain this theorem’s formula via the OPE, time permitting.

Example 2.7. So in the Virasoro case, we may write Y (Lj1 . . . Ljm |0〉 , z) in this way as

const× : ∂−j1−2
z T (z) . . . ∂−jm−2

z T (z) :

Most VOAs we care about are related to the Virasoro VOAs, in the following sense.

Definition 2.8. A VOA is conformal with central charge c if

1. The space of states V is Z-graded;

2. ∃ω ∈ V2, a conformal vector, so Y (ω, z) =
∑
LVn z

−n−2 and the LVn have the Virasoro Ln commuta-
tion relations;

3. Further, T = LV−1, L
V
0 |Vn = n · id.

Of course, V irc is conformal, with central charge c and ω = L−2 |0〉. (From the physics perspective, all
CFTs have stress energy tensors, so the state-operator map should define a conformal vector, so this sort of
structure should be universally expected.)

2.4 Free boson

One CFT we care about is the free boson. I will say some physics words to try to make contact with the
physics. If these words mean nothing to you, don’t worry: it should be brief. It has Lagrangian

g

2

∫
dx(∂tφ)2 − (∂xφ)2.

On a cylinder, φ(x+ L, t) = φ(x, t), we may Fourier expand and go to a Hamiltonian, we find

H =
1

2gL

∑
n

πnπ−n + (2πng)2φnφ−n.

Which is an infinite sum of harmonic oscillators, plus one zero mode, π2
0 .

The commutation relations of the πn, φn are [πn, φm] = iδnm. These are like ‘energy and momentum
pairs’. The algebra generated by this is called the Heisenberg algebra.

Definition 2.9. Heisenberg is the central extension

0→ C1̃→ H→ C[t, t−1]→ 0.
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with basis {tn}n∈Z and 1̃, and rule [tn, tm] = −mδn,−m1̃.
(This is a basis of creation and annihilation operators, related to our φ, π by

an =
1√

4πg|n|
(2πg|n|φn + iπ−n)

n > 0 =⇒ tn = −i
√
nan

n ≤ 0 =⇒ tn = i
√
−na†−n

.

The Weyl algebra is Heisenberg letting 1̃ = 1.

The simplest VOA we can make out of this is the Fock space of the CFT, the subalgebra of the Weyl
algebra generated by {ti = bi}i<0 acting on |0〉 = 1̃.

We define

• T |0〉 = 0, [T, bi] = −ibi−1

• Y (b−1, z) = b(z) =
∑
bnz
−n−1

• y(b−n, z) = 1
(n−1)!∂

n−1
z b(z)

Example 2.10. In fact the Fock space VOA admits a one-parameter family of conformal structures.
Let

ωλ = (
1

2
b2−1 + λb−2) |0〉.

then Y (ωλ, z) = 1
2 : b(z)2 : +λ∂zb(z) satisfy the conformal relations, and equip the Fock space VOA with

the structure of a conformal VOA with central charge cλ = 1− 12λ2.

What’s going on here? Because the Hamiltonian is independent of φ0, π0 ‘commutes with everything’,
so we can simultaneously diagonalise eigenstates of H to also be eigenstates of π0. In the physical picture,
we can view the Fock space as being built on a one-parameter family of vacua |λ〉, where λ is related by
normalisation to the eigenvalue of π0 by normalisation. No operators relate the vacua, so the theory decouples
into conformal VOAs with different central charges.

By the way, why did we want to consider these vertex operator fields/states rather than our original
free boson, φ? For one, φ itself doesn’t factor into holomorphic and antiholomorphic components: it is not
primary.

2.5 OPE

OK, the final thing I want to do is give a general derivaton of the OPE from the state-operator correspondence,
at the level of physics rigor.

State-operator says that Y (A, z)Y (B,w) is determined by the state Y (A, z)Y (B,w) |0〉 as w → 0. (This
is a theorem in Ben-Zvi/Frenkel, called Goddard’s uniqueness theorem). Translate to Y (A, z−w)Y (B, 0) |0〉
and expand Y (A, z − w) =

∑
An(z − w)−n−1. We find

Y (A, z)Y (B,w) =
∑
n≤0

Y (AnB,w)

(z − w)n+1
+ : Y (A, z)Y (B,w) :.

which is the OPE for vertex operators. (The non-singular term, sort of by definition, is : Y (A, z)Y (B,w) :,
but I haven’t justified this adequately.)

OPE can be used to construct the weird formula we had for the VOA of a product of endomorphisms.
We need one more formula:
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Claim. Y (B, z) |0〉 = ezTB

Proof. It suffices to prove B(−n−1) |0〉 = Tn

n! B.
By the axioms, ∂zY (B, z) |0〉 = [T, Y (B, z)] |0〉 = TY (B, z) |0〉.
Equate coefficients to find nB−n−1 |0〉 = TB−n |0〉. Induct.

Claim. Y (Ta, z) = ∂zY (A, z) for all A.

Proof. Y (Ta, z) |0〉 = ∂zY (A, z) |0〉, use state-operator to go back.

Which implies Y (B(−n−1) |0〉 , z) =
∂nz
n! Y (B, z).

Contour integrating, the OPE we find

Y (AnB, z) =
1

(−n− 1)!
: ∂−n−1

z Y (A, z)Y (B, z) :.

Now using the above claim to expand replace B with B−n−1, if desired, and inducting to include more fields,
we get the desired ‘reconstruction formula’.

3 Cailan (Oct 08): VOA: Examples and Representations

Definition 3.1. A VOA is:

1. a vector space V ;

2. a vacuum vector |0〉 ∈ V ;

3. a translation operator T : V → V ;

4. vertex operators, which are linear maps

Y (−, z) : V → EndV [[z, z−1]]

such that Y (A, z) =
∑
n∈ZAnz

−n−1 is a field, i.e. for all v ∈ V we have Anv = 0 for n � 0. We call
the An the Fourier coefficients of A.

This data is subject to the following axioms:

1. Y (|0〉 , z) = id, and
Y (A, z) |0〉 ∈ V [[z]], Y (A, z) |0〉 |z=0 = A;

2. [T, Y (A, z)] = ∂zY (A, z);

3. (locality) there exists N ≥ 0 such that

(z − w)N [Y (A, z), Y (B,w)] = 0.

Example 3.2. The Heisenberg algebra H is the central extension

0→ C · 1→ cH → C[t, t−1]→ 0

given by the 2-cocycle
c(f, g) = −Rest=0 f dg.

Let bn = tn. Then the commutation relations are

[bn, bm] = nδn,−m1, [1, bn] = 0.
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What we will do in most of our examples is turn representations of Lie algebras into VOAs. Let

H̃ := UH/〈1− 1〉.

Let H̃+ ⊂ H̃ be the positive subalgebra. Since it is commutative, it has a trivial rep C. The Fock
representation is

π := H̃ ⊗H̃+
C.

By PBW, this has a basis
{· · · be2−2b

e1
−1 ⊗ 1}.

The VOA structure on π is defined as follows.

1. The vacuum is |0〉 := 1⊗ 1.

2. Translation is defined inductively using

[T, bi] = −ibi−1.

This means T behaves as a formal derivative, with

T (bj1 · · · bjk ⊗ 1) =
∑
i

jibj1 · · · bi−1 · · · bjk ⊗ 1.

3. Vertex operators are defined as follows:

Y (b−1 ⊗ 1, z) := b(z) :=
∑
n∈Z

bnz
−n−1

Y (b−k ⊗ 1, z) =
i

(k − 1)!
∂k−1
z b(z)

Y (b−j1 · · · b−jk ⊗ 1, z) =
1

(j1 − 1)! · · · (jk − 1)!
:∂j1−1
z b(z) · · · ∂jk−1

z b(z):

where :A(z)B(w): := A(z)+B(w) +B(w)A(z)−.

Claim. This gives π the structure of a VOA.

Proof. By construction, [T, bi] = −ibi−1 implies

[T, b(z)] = ∂zb(z).

So the translation axiom is satisfied by Y (b−1⊗1, z). For the general case, use that normal ordering satisfies
the Leibniz rule

∂z :A(z)B(z): =:∂zA(z)B(z): + :A(z)∂zB(z): .

The real content of this claim is in checking the locality axiom.

1. Check that b(z) is local with itself. Recall δ(z − w) =
∑
n∈Z z

−n−1wm. Compute that

[b(z), b(w)] =
∑
n,m

[bn, bm]z−n−1w−m−1 =
∑
n

[bn, b−n]z−n−1wn−1 = ∂wδ(z − w).

Locality means this commutator is a sum of delta functions and their derivatives, which is true here.

2. Check that ∂nz b(z) is local with ∂mz b(z). Start with

(z − w)N [b(z), b(w)] = 0,

which is the definition of locality for b(z) with itself, and differentiate with respect to z. This yields

(z − w)N [∂zb(z), b(w)] + n(z − w)N−1[b(z), b(w)] = 0.

Multiply by (z − w) to get rid of the last term and get locality of ∂zb(z) with b(z). Then induct.

12



3. Apply induction using Dong’s lemma, which says if A(z), B(z), C(z) are mutually local fields then the
fields :A(z)B(z): and C(z) are local.

Remark. We can’t avoid normal ordering. One of the consequences of OPE is the following identity:

Y (An ·B, z) =
1

(−n− 1)!
:∂−n−1
z Y (A, z)Y (B, z): n < 0.

In the case of the Heisenberg, note that b−1 generates all coefficients of Y (b−1 ⊗ 1, z) = b(z). Hence the
moment we specify Y (b−1 ⊗ 1, z) we have specified everything. This is why only b(z) and its derivatives
occur in Y (A, z).

Example 3.3 (Affine Kac–Moody algebras). Define ĝ as

0→ CK → ĝ→ Lg→ 0.

Let CK be the 1-dimensional rep of the subalgebra g[t]⊗ CK. Set K · v = kv. The vacuum rep of level
k is

Vk(g) := Indĝ
g[t]⊕CK CK = U(ĝ)⊗U(g[t]⊗CK) CK .

Let {Ja}dim g
a=1 be a basis of g, and set Jan := Ja ⊗ tn. Then by PBW, a basis of Vk(g) is

{Je1n1
· · · Jemnm ⊗ 1}.

The VOA structure is defined as follows.

1. The vacuum is |0〉 := 1⊗ 1.

2. Translation is defined inductively by T |0〉 = 0 and [T, Jan ] := −nJan−1.

3. Vertex operators are defined as follows:

Y (Ja−1 ⊗ 1, z) := Ja(z) :=
∑
n∈Z

Janz
−n−1

Y (Ja1−n1
· · · Jam−nm ⊗ 1, z) =

1

(n1 − 1)! · · · (nm − 1)!
:∂n1−1
z Ja1(z) · · · ∂nm−1

z Jam(z): .

Checking locality is analogous to the previous case.

Definition 3.4. Let (V, |0〉 , T < Y ) be a vertex algebra. A vector space M is a V -module if it is equipped
with an action

YM : V → EndM [[z, z−1]], A 7→
∑
n∈Z

Am(n)z
−n−1.

This action must satisfy the following axioms:

1. YM (|0〉 , z) = idM ;

2. for A,B ∈ V and m ∈M , the elements

YM (A, z)YM (B,w)m ∈M((z))((w))

YM (Y (A, z − w)B,w)m ∈M((w))((z − w))

represent the same element in M [[z, w]][z−1, w−1, (z − w)−1].
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Remark. What does this mean? By Taylor expansion, we get a map

M((z))((w))→M((w))((z − w)), z 7→ w + (z − w).

On one hand,

YM (A, z)YM (B,w) = Ym(A,w + z − w)Ym(B,w) =

∞∑
n=0

∂nwYM (A,w)

n!
YM (B,w)(z − w)n.

On the other hand,

YM (Y (A, z − w)B,w) = YM (
∑
n

An ·B(z − w)−n−1, w) =
∑
n

YM (AnB,w)(z − w)−n−1.

If M = V , this is an OPE.

Remark. There is a Lie algebra associated to every VOA, such that V -modules are the same as g-modules.
This is as follows. A consequence of OPEs is that for Y (A, z) and Y (B, z),

[Am, Bk] =
∑
n≥0

(
m

n

)
(AnB)m+k−n.

Hence the span of all Fourier coefficints of all vertex operators form a Lie subalgebra U ′(V ) ⊂ End(V ).
(That this satisfies the Jacobi identity is automatic from it being a commutator.)

Theorem 3.5. There is an equivalence of categories

Mod(V )
∼−→
{

smooth and coherent modules
of Lie algebra generated by U ′(V )

}
∼−→
{

smooth modules of Ũ(V )
}
.

Example 3.6 (VOAs associated to 1-dimensional lattices). Let Cλ be the 1-dimensional rep of H̃ where
b0 |λ〉 = λ |λ〉. Let

πλ := H̃ ⊗H̃+
Cλ,

with basis {· · · be2−2b
e1
−1⊗ |λ〉}. This is a locally finite H̃-module, and therefore a π-module. Actually one can

show it is irreducible. Let N ∈ Z+ and set

V√NZ :=
⊕
m∈Z

πm
√
N .

This turns out to be a VOA.

Theorem 3.7. For any even N (resp. odd N), the module V√NZ carries the structure of a VOA (resp.
super VOA) such that π0 is a vertex subalgebra.

Proof. Once we define Vλ(z) := Y (1⊗ |λ〉 , z) for λ ∈
√
NZ, we are done. It looks like

Vλ(z) := Sλz
λb0 exp

(
−λ
∑
n<0

bn
n
z−n

)
exp

(
−λ
∑
n>0

bn
n
z−n

)
.

Remark. When N = 1, actually there is an identification

VZ ∼= Λ := Cl⊗Cl+C

where Cl is the Clifford algebra on {ψn, ψ∗n}. This is the boson-fermion correspondence, and e.g. the Jacobi
triple product comes from looking at graded dimension on both sides.

14



4 Yasha (Oct 15): Minimal models

Recall that ϕ(z) is a primary field if it is highest weight in a representation of the Virasoro algebra. In
terms of OPEs,

T (z)ϕ(w) =
∆ϕ(w)

(z − w)2
+
∂ϕ(w)

z − w
+ reg.

In terms of the Virasoro algebra, this is equivalent to

Lnϕ(z) =

{
0 n > 0

∆ϕ(z) n = 0
.

Theorem 4.1. Correlators of descendant fields are determined by correlators of primary fields.

Proof. Consider a correlator
〈L−nA(z)A1(z1) · · ·AN (zN )〉 n ≥ 0.

We can write

L−n =

∮
T (ζ)ζ−n+1 dζ

2πi
.

Substituting this into the correlator gives∮
dζ

2πi
(ζ − z)−n+1〈T (ζ)A(z)A1(z1) · · ·AN (zN )〉

where the contour is around poles of A(z) and not poles of the other Ai. The stress-energy tensor T (ζ)
decays very quickly as ζ →∞, so we can expand the contour to include all other poles, giving

−
N∑
i=1

∮
dζ

2πi
(zi − z + ζ − zi)−n+1〈T (ζ)A(z)A1(z1) · · ·AN (zN )〉.

The series expansion of this will have Ln acting on the other fields Ai(zi):

−
N∑
i=1

∑
k≥0

∮
Ci

dζ

2πi

(
1− n
k

)
(zi − z)1−n−k(ζ − zi)k〈T (ζ)A(z)A1(z1) · · ·AN (zN )〉

= −
N∑
i=1

∑
k≥0

(
1− n
k

)
(zi − z)1−n−k〈A(z)A1(z1) · · ·Lk−1Ai(zi) · · ·AN (zN )〉.

If all fields A1, . . . , AN are primary, then only k = 0 and k = 1 act non-trivially. Hence there are two terms

L−nA(z)φ1(z1) · · ·φN (zN ) =

N∑
i=1

(
(n− 1)∆i

(zi − z)n
− 1

(zi − z)n−1

∂

∂zi

)
〈A(z)A1(z1) · · ·AN (zN )〉.

In fact, the contribution of descendants to OPEs (three-point correlators) is also fully determined by the
contribution of primary fields. Suppose we have two primary fields ϕn(z) and ϕm(w). Then we can always
expand

ϕn(z)ϕm(0) =
∑
p,λ

Cpλnmz
∆p−∆n−∆m+|λ|ϕλp(0)

where λ encodes the descendant ϕλp := L−λ1
· · ·L−λnϕp. The claim is that it suffices to know Cpλnm only for

λ = ∅, and all the other coefficients are determined by conformal symmetry. Rewrite the expansion as

ϕn(z)ϕm(0) =
∑
p,λ

Cqnmz
∆p−∆n−∆mΨp(z|0) Ψp(z|0) :=

∑
p

βpλnmz
|λ|ϕλp(0).
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How do we determine the β coefficients? Assume for simplicity that ∆p = ∆n = ∆m = ∆. Then

ϕ∆(z) |∆〉 =
∑

C∆ρ
∆∆ϕ∆(z) |∆p〉 , ϕ∆(z) =

∑
z|λ|βλL−λ1 · · ·L−λk .

Apply Ln to both sides, for n > 0, to get

Lnϕ1(z)ϕ2(0) =

∮
dζT (ζ)ζ−n+1ϕ1(z)ϕ2(0)

= (zn+1 ∂

∂z
+ (n+ 1)zn∆1)ϕ1(z)ϕ2(0) + ϕ1(z)Lkϕ2(0).

(The two terms come from L1 and L0 respectively.) The second term is zero, because ϕ2 is primary.
Now suppose we want to compute four-point correlators

〈ϕk(ζ1)ϕ`(ζ2)ϕn(ζ3)ϕm(ζ4)〉 = 〈k|ϕ`(1)ϕn(x)|m〉 = Glknm(x).

Here we used an automorphism to set z1 =∞, z2 = 1, z3 = x and z4 = 0. By gluing,

Glknm(x) =
∑
p

CpnmCklpA
lk
nm(p, x).

This function
Alknm(p, x) = (Cpkl)

−1〈k|ϕ`(1)ϕp(x)|0〉

is called a conformal block.
In minimal models, we consider degenerate representations of the Virasoro algebra Vir =

⊕
i CLi ⊕ Cc.

Theorem 4.2 (Kac, Feigin–Fuchs). The Verma module |∆, c〉 is irreducible for generic ∆ and c. Set

α± :=

√
1− c±

√
25− c√

24

∆0 := (1/4)(α+ + α−)2.

For fixed c, there is a singular vector at the following levels:

∆mn := ∆0 +
1

4
(mα+ + nα−), m, n ∈ Z>0.

Example 4.3 (Level 0). The simplest example is if L−1 |∆〉 is a singular vector. Then we have

L1L−1 |∆〉 = 0.

But this is equal to
[L1, L−1] |∆〉 = 2L0 |∆〉 = 2∆ |∆〉 .

Hence this is only possible when ∆ = 0. This corresponds to m = n = 0.

Example 4.4 (Level 2). The next simplest example is that

v = (L−2 + aL2
−1) |∆〉

is a singular vector. Then

0 = L1v = [L1, L−2] |∆〉+ (a[L1, L−1]L−1 + aL−1[L1, L−1]) |∆〉
= 3L−1 |∆〉+ 2aL0L−1 |∆〉+ 2aL−1L0 |∆〉
= (3 + 2a(2∆ + 1)) |∆〉 .
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Hence

a = − 3

2(2∆ + 1)
.

By similar calculations,

0 = L2v =

(
4∆ +

c

2
− 9∆

2∆ + 1

)
|∆〉 .

This constrains c.

Let

ϕ
(2)
12 =

(
L−2 −

3

2(2∆ + 1)
L−1

)
φ12 = 0.

This vector has norm zero and therefore we require it to really be zero. Transforming it into an operator
gives

− 3

2(2∆ + 1)

∂2

∂z2
+

N∑
i=1

(
∆i

(zi − z)2
− 1

zi − z
∂

∂zi

)
〈φ12(z)φ1(z1) · · ·φN (zN )〉 = 0.

The general OPE looks like

φ12(z)φ∆(z1) =
∑
∆′

C∆′

12,∆(z − zi)∆′−∆12−∆φ∆′(z1) + · · · .

Applying the operator to this, we get a constraint

3H(H− 1)

2(2∆12 + 1)
+ ∆−H = 0

where H := ∆′ −∆12 −∆. The two solutions are

∆′ = ∆(α− α−),∆(α+ α−).

Hence we have shown
φ12φ(α) = [φα−α− ] + [φα+α− ].

Here we are using fusion ring notation, where we forget about coefficients and just remember whether or not
a field appears in the OPE. Similarly,

φ21φ(α) = [φα−α+
] + [φα+α+

].

In particular, applying both rules,

[φ02] + [φ22] = φ12φ21 = [φ20] + [φ22].

Hence it must actually just be [φ22]. As another example,

φ12φ12 = [φ11] + [φ13].

But [φ11] is the identity operator. So we now know how to apply φ13:

φ13φα = [φα+2α− ] + [φα] + [φα+2α− ].

In general,

φm1n1φm2n2 =

`0∑
`=0

k0∑
k=0

φm0+2`,n0+2k
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where

m0 = |m1 −m2|+ 1

n0 = |n1 − n2|+ 1

`0 = min(m1,m2)− 1

k0 = min(n1, n2)− 1.

This corresponds to multiplication in SLq(2).
Now let’s consider some minimal models. For minimal models, pick two integers p 6= q. Suppose we have

α+ := −
√
q

p
, α− :=

√
p

q
.

Let m < p and n < q and consider |∆mn〉. Note that

∆p+m,q+n = ∆mn, ∆p−m,q−n = ∆mn.

The central charge is

c = 1− 6(p− q)
4pq

.

We have

M(p/q) =
1

2

⊕
[φ].

For minimal models it is possible to determine all the structure constants, by crossing symmetry. The
four-point function turns out to be a hypergeometric function in x. We know how to analytically continue
it, to get it in 1/x. This gives explicit constraints on structure constants. For example,

M
(

2

5

)
= C[φ11] + C[φ12],

since φ12 = φ13 and φ11 = φ14. Hence
φ12φ12 = Cφ12 + · · ·

for some constant C. From the explicit constraints, we can compute

C =
i

5

Γ2(1/5)

Γ(4/5)Γ(3/5)

√√
5− 1

2
.

Example 4.5. ConsiderM(p/p+ 1). These are called unitary minimal models. It is conjectured that these
are the only minimal models with real structure constants. In M(3/4), we have

21
ε

22
σ

23
τ

11
I

12
σ

13
ε

Then we have
εε = φ21φ21 = [I] + [φ31].

But we can also write it as
εε = φ13φ13 = [I] + [φ13] + [φ15].

The dimension of φ31 is ∆ = 5/3, whereas for φ15 it is ∆ = 5/2. Hence they are different fields, and so

εε = [I].

Similarly one can compute (in the fusion ring)

εσ = σ, σσ = I + ε.
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When we pair with the antiholomorphic part, this example is actually the Ising model (at criticality).
For φ21 = φ13 = ε, we have ∆ = 1/2. Take

ψ ∈ V12 ⊗ V 11, ψ ∈ V11 ⊗ V 12.

Then

ψ(z)ψ(0) =
I

z
+ reg.

ψ(z)ψ(0) =
I

z
+ reg.

ψ(z)ψ(0) = iε+ reg.

We see a free fermion subalgebra [I]⊕ [ψ]⊕ [ψ]⊕ [ε], with Hamiltonian

H =
1

2

∫
(ψ∂ψ + ψ∂ψ) d2x

and T = (−1/2) :ψ∂ψ: . Analogously, φ21 = φ22 has ∆ = 1/16. Take V21 ⊗ V21 and the subalgebra

AIM := [I]⊕ [σ]⊕ [µ]⊕ [ε]⊕ [ψ]⊕ [ψ]

where
ψ(z)σ(0) = z−1/2µ(0) + · · · .

This space corresponds to the Ising model, where σ is the parameter of order and µ is the parameter of
disorder. There is some duality between them at high temperatures.

5 Guillaume (Oct 22): A probabilistic approach to Liouville CFT

We’ll start with some motivation. Liouville field theory first appeared in Polyakov’s 1981 paper “Quantum
geometry of bosonic strings”. The idea is that when we have a quantum theory, to model a particle going from
point A to point B, we sum over all paths connecting the two points. In string theory, points are replaced
by loops. and therefore paths by surfaces connecting the loops. In this talk, the surface will always be the
Riemann sphere S2. Let M be the space of all Riemannian metrics on S2. Polyakov tried to understand
what the canonical uniform measure on M. This is highly non-trivial because it is an infinite-dimensional,
highly non-linear space. In particular we are interested in quantities∫

M
Dg F [g]

for some formal measure Dg and functional F [g]. Recall the uniformization theorem from Riemannian
geometry, which says that

M = {eφg : φ : S2 → R}

for some fixed metric g on S2. Physicists understood that choosing a uniform measure on M is essentially
choosing a measure on φ given by Liouville field theory.

What is Liouville theory? In the path integral formalism, let Σ be the space of all X : S2 → R. Define

〈F (φ)〉 :=
1

Z

∫
Σ

DX F (X)e−SL(X)

for some uniform measure DX, and “weight” eSL(X). The Liouville action is

SL(X) =
1

4π

∫
S2

(
|∂gX|2 +QRgX + µeγX

)
dλg.
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• The |∂gX|2 term is kinetic energy. It is the most basic term we can put into any energy functional.

• The eγX is a non-linear term which makes the whole theory non-trivial. It is the total volume of S2

using the metric given by X.

• The coupling constant µ is called the cosmological constant. The whole theory in the end depends
trivially on µ so it doesn’t really matter.

• γ ∈ (0, 2). In physics, the notation is b = γ/2.

• Q = 2/γ + γ/2, and cL := 1 + 6Q2.

Mark some points zi ∈ S2, with associated weights αi ∈ R. The geometric interpretation is some conical
singularities at those points. Then set

F (X) :=

N∏
i=1

eαiX(zi).

For the correlator 〈F (X)〉 to exist, the Seiberg bounds must hold:∑
i

αi > 2Q, αi < Q ∀i.

Hence the minimum number of points for it to be well-defined is three. Note that these eαiX(zi) are vertex
operators, and primary fields.

In Liouville theory, we can make the path integral formalism rigorous using probability (following David,
Kupiainen, Rhodes, Vargas, 2014). Start with

1

Z

∫
Σ

DX e−
1
4π

∫
S2 |∂gX|2 dλg F̂ (X).

Integrating by parts, ∫
2

|∂gX| dλg = −
∫
S2

X∆gX dλg.

So the kinetic term will give a Gaussian free field, with covariance given by the Green’s function. If we
diagonalize −∆g as

−∆gϕj(x) = λjϕj(x) λj > 0.

Then X = c +
∑
j≥1 cjϕg(x). We think of c =

∫
S2 X dλg, and the ϕj are chosen with

∫
S2 ϕj(x) dλg = 0.

Then

− 1

4π

∫
S2

X∆gX dλg = − 1

4π

∑
j≥1

λjc
2
j .

Hence the correlator becomes

1

Z

∫
R
dc

∫
RN

∏
j≥1

e−u
2
j/2

duj√
2π
F̂

(
c+
√

2π
∑
j≥1

uj
ϕj√
λj︸ ︷︷ ︸

XGFF

)
.

Here XGFF is a Gaussian free field. So we define the correlator as∫
R
dcE[F̂ (c+XGFF )].

The F̂ will include the rest of the terms in the Liouville action. In summary,

〈
∏

eαiφ(zi)〉 :=

∫
R
dc bE

[
N∏
i=1

eαiXGFF (zi)+c exp

(
− 1

4π

∫
QRg(XGFF + c) dλg −

µ

4π

∫
S2

eγ(XGFF+c)dλg

)]
.
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Strictly speaking we need to introduce a regularization ε and send ε→ 0. This integral over the zero mode
c can be computed, giving

2γ

µ

−s
Γ(s)

∏
i<j

1

|zi − zj |αiαj
E

(∫
S2

eγXGFF (x)
N∏
i=1

1

|x− zi|Niγ
dλg(x)

)−s
with s = (

∑
αi − 2Q)/γ.

Now that this is well-defined, we can ask for the usual structures of CFT (e.g. OPE, BPZ equations) in
this language. Given a Mobius map ψ : S2 → S2, correlators behave as conformal tensors

〈
N∏
i=1

eαiφ(ψ(zi))〉 =

N∏
i=1

|ψ′(zi)|−2∆αi 〈
N∏
i=1

eαiφ(zi)〉

with conformal weight ∆αi = (αi/2)(Q−αi/2). This is like seeing global conformal invariance. We can also
ask for the BPZ equations, which is like seeing local conformal invariance. Let χ := −γ/2 or −2/γ. Then(

1

χ2
∂2
z +

N∑
i=1

∆αi

(zi − zj)2
+

N∑
i=1

1

z − zi
∂zi

)
〈eχφ(z)

N∏
i=1

eαiφ(zi)〉 = 0.

By solving the BPZ equations, we get an explicit formula for 3-point functions called the DOZZ formula.
Move the points z1, z2, z3 to 0, 1,∞ to get

〈
3∏
i=1

eαiφ(zi)〉 =
1

|z1 − z2|∆12 |z1 − z3|∆13 |z2 − z3|∆23
Cγ(α1, α2, α3).

The DOZZ formula is for Cγ , and is in terms of double gamma functions. It is an analytic expression in the
αi.

Theorem 5.1 (Kupiainen, Rhodes, Vargas, 2017). The three-point correlator defined via probability is equal
to the DOZZ formula.

6 Ivan (Oct 29): WZW

No notes, sorry!

7 Gus (Nov 05): Free field realizations

Recall last time Ivan discussed WZW theory. The input is a simple Lie algebra g with g-invariant bilinear
form (·, ·). Then we consider the affine Lie algebra ĝ = g[t, t−1]⊕ Cc, which has commutators

[xn, ym] = [x, y]n+m + δn+m,0nc(x, y).

We considered various representations of ĝ. The first kind is Verma modules. If Vλ is a Verma for g,
then there is a corresponding Verma Vλ,k := Indĝ

ĝ+
(Vλ) for ĝ. We always suppose λ is generic, so that Vλ,k

is irreducible. The other kind is evaluation modules. If V is any rep of g, then V (z) is the rep of ĝ where xn
acts as znx.

Using these representations, we considered intertwiners

Φ(z) : Vλ1,k → Vλ2,k ⊗ Vµ(z).
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Take such Φi(zi) for λ0, . . . , λn+1 and consider matrix elements

Ψ(z1, . . . , zn) := 〈u0,Φ1(z1) · · ·Φn(zn)un+1〉

for fixed vectors u0 ∈ Vλ0,k and un+1 ∈ Vλn+1,k. These are correlation functions, and satisfy KZ equations

(k + h∨)∂ziΨ =
∑
j 6=i

Ωij
zi − zj

Ψ.

Today we will focus on how to actually compute these intertwiners Φ explicitly, in a form suitable for
calculating matrix elements.

Reminder on OPEs. Given two fields a(z) =
∑
anz
−n−1 and b(z) =

∑
bnz
−n−1, they are local if

[a(z), b(w)] =

N−1∑
j=0

cj(w)∂jzδ(z − w)

is a sum of delta functions and their derivatives. The cj(w) are OPE coefficients. We set

a+(z) :=
∑
n<0

anz
−n−1, a−(z) :=

∑
n≥0

anz
−n−1.

This splitting is done so that (∂a)± = ∂(a±). The normally ordered product of fields is

:a(z)b(w): = a+(z)b(w) + b(w)a−(z)

= a+b+ + a+b− + b+a− + b−a−,

i.e. we put all minus terms before plus terms. Then

∂ :ab: =:∂ab: + :a∂b: .

The only distinction between :a(z)b(w): and a(z)b(w) is the term b+a−, so

a(z)b(w) =:a(z)b(w): +[a−(z), b(w)]

=:a(z)b(w): +ιz,w

N−1∑
j=0

cj(w)

(z − w)j+1

where ιz,w means expansion in |z| > |w|. Hence to compute OPEs, we just need the difference between
a(z)b(w) and the normal ordered :a(z)b(w): . The notation is

a(z)b(w) ∼
N−1∑
j=0

cj(w)

(z − w)j+1

in this case.

Example 7.1 (Free boson). For the free boson, we have a(z) =
∑
anz
−n−1 with [an, am] = nδn+m,0. This

corresponds to the OPE

a(z)a(w) ∼ 1

(z − w)2
.

Equivalently, this says
[a(z), a(w)] = ∂δ(z − w).
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Example 7.2 (Current algebras). Given a simple g, for each x ∈ g we produce a field

Jx(z) :=
∑

xnz
−n−1.

The commutator [xn, ym] = [x, y]n+m + nc(x, y)δn+m,0 yields the OPE

Jx(z)Jy(w) ∼
J[x,y](w)

z − w
+

c(x, y)

(z − w)2
.

Now we can talk about free field realizations of ĝ. Some motivation comes from the finite dimensional set-
ting. The easiest Lie algebras to handle are the abelian ones; the next easiest, with non-trivial commutators,
is the Heisenberg algebra Heis with commutator

[∂, x] = c.

In the Heisenberg, [a, b] = scalar for any elements, so it is very easy to compute nested commutators. On
the other end of the spectrum, for simple Lie algebras we have [g, g] = g, giving rise to highly non-trivial
terms in the BCH formula.

The difference between simple g and the Heisenberg algebra “goes away” if we pass to universal enveloping
algebras. Namely, there is an algebra homomorphism

Ug→ U Heis .

It comes from the action of G on G/B, which gives a homomorphism g→ Vect(G/B). This extends to

Ug→ Diff(G/B).

More generally, we can pick a line bundle λ ∈ Pic(G/B)⊗C and look at differential operators twisted by λ.

Example 7.3. For sl2, the flag variety is G/B = P1. We have

Heis1 = Diff(C) ⊂ Diff(P1).

The homomorphism is
e 7→ ∂, f 7→ −x2∂, h 7→ −2x∂,

given by restriction to a specific chart C ⊂ P1. In general we can restrict to any chart, which is equivalent
to changing a Borel B. More generally, picking a line bundle λ ∈ C gives

e 7→ ∂, f 7→ −x2∂ + λ, h 7→ −2x∂ + λx.

We want to affinize this construction. A free theory is a collection of pairwise local fields {aj(z)} such
that

[ai±(z), aj±(w)] = 0

and all OPE coefficients cj(w) are just scalars. Roughly this is the affine analogue of [A,B] = scalar. The
idea is to build fields with more interesting OPEs in terms of normally ordered products of free fields, in the
same way that the example built sl2 from Heis1.

For this purpose, we need some tools for computing products of normally ordered products (of free fields).

1. (Taylor’s theorem) Given a field a(z, w) and some cutoff N ∈ N, there is a Taylor expansion

a(z, w) =

n−1∑
j=0

cj(w)(z − w)j + (z − w)Nd(N)(z, w)

where cj(w) = ∂jza(z, w)|z=w.
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2. (Wick’s theorem) If {a1, . . . , aM} and {b1, . . . , bN} are two collections of free fields,

:a1(z) · · · aM (z): :b1(w) · · · bN (w):

is the sum over all possible subset of pairs of “contractions”. Formally, it is

min(N,M)∑
s=0

∑
i1<···<is

∑
j1 6=···6=js

s∏
k=1

[aik,−(z), bjk(w)] :A(i)B(j):

where A(i) denotes the product of all ai(z) where i is not one of the chosen indices ik, and similarly
for B(j). The proof is roughly that commuting + across − produces terms [a−(z), b(w)], but because
all OPE coefficients are scalar these can be collected in front. Notation:

[a−(z), b(w)] =: 〈a(z)b(w)〉.

Example 7.4 (Virasoro). Let a(z) be a free boson. Then

L(z) :=
1

2
:a(z)2:

satisfies the OPE

L(z)L(w) ∼ 1

(z − w)4
+

L(z)

(z − w)2
+

2L′(z)

z − w
,

which is exactly the OPE for the Virasoro algebra.

Example 7.5 (ŝl2). Take three free fields: a free boson α(z) =
∑
αnz

−n−1, and a βγ system β(z) =∑
βnz

−n−1 and γ(z) =
∑
γnz
−n. This indexing of γn is done so that

[β±, γ±] = 0.

Normalize α so that

α(z)α(w) ∼ 2

(z − w)2

because we want to think of it as the root α in sl2. We also set

β(z)γ(w) ∼ 1

z − w

and all other OPEs are trivial. Unpacking,

[βn, γm] = δn+m,0.

For λ ∈ C, consider the rep Hλ of {αn, βn, γn} generated by a vacuum vector v satisfying

α0v = λv, β0v = 0, αnv = βnv = γnv = 0 ∀n > 0.

Now define

Je(z) = β(z)

Jh(z) = −2 :γ(z)β(z): +κ1/2α(z)

Jf (z) = − :γ2(z)β(z): +κ1/2α(z)γ(z) + kγ′(z)

where κ := k + ~∨ with k the level. For sl2 we have ~∨ = 2.
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Theorem 7.6. This prescription defines a rep of ŝl2 on Hλ(k). If λ, k are generic, i.e. Vλ,k is irreducible,
then

Hλ/√κ(k) ∼= Vλ,k

as ŝl2-modules.

For special λ, k, it is not always an isomorphism. For example, if λ = 0 then it is not hard to see f0v = 0.
Note that there is a strong analogy with the finite case.

Why is this important? It lets us write down a formula for the intertwining operator. For λ ∈ h, consider
free fields

hλ(z)hµ(w) ∼ (λ, µ)

(z − w)2
.

Construct a vertex operator

X(µ, z) := exp

(∑
n<0

hµn
−n

zn

)
exp

(∑
n>0

hµn
−n

zn

)
eµzh

µ
0

where eµ : Hλ → Hλ+µ induced from vλ 7→ vλ+µ. So X(µ, z) has components in Hom(Hλ,Hλ+µ). They
satisfy

X(µ, z)X(ν, w) = (z − w)(µ,ν) :X(µ, z)X(ν, w):

where (z − w)(µ,ν) means

exp

−(µ, ν)
∑
n≥0

wn

nzn

 .

This is like doing the calculation eABe−A = B + [A,B]. Hence we can view X(µ, z)X(ν, w) analytically,
since we know how to analytically continue (z − w)(µ,ν) and the normally ordered product is holomorphic.
To construct

Φm(z) : Vλ,k → Vλ+µ−2m,k ⊗ Vµ(z),

we think of Vλ,k ∼= Hλ/√κ(k) and similarly for the other term.

1. (m = 0) In the easy case of level zero, we take

Φ0(z)u := X

(
µ√
κ
, z

)
exp (−γ(z)⊗ e)u⊗ vµ.

One can check via Wick’s theorem that this is an intertwiner for ŝl2.

2. (m > 0) In this case we need a screening current

U(t) := X

(
−α√
κ
, t

)
β(t).

It satisfies

[U(t), Je(w)] = 0, [Jf (z), U(w)] = κ∂w

(
δ(z − w)X

(
−α√
κ
,w

))
.

Then form

Θ(z, t1, . . . , tm)u = X

(
µ√
κ
, z

)
exp (−γ(z)⊗ e)U(t1) · · ·U(tm)u⊗ vµ.

This can be analytically continued to cycles C ⊂ (C×)m, in the t variables. Then

Φm(z) :=

∫
C

Θ(z, t) dt

is an intertwiner, because its commutator with Jf is a total t-derivative.
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8 Sam (Nov 07): Representations of quantum affine algebras and
qKZ equations

Our goal will be to understand the second column of the following table:

U g̃ Uq(g̃)
correlators Φ: Vλ,k → Vµ,k ⊗ V (z) correlators

currents Ja(z) quantum currents La(z)
KZ equation qKZ equation

Ωij
zi−zj satisfies CYB R satisfies YB.

Then we’ll hopefully have enough time to see this for the simplest case sl2.

Definition 8.1. Let g be finite dimensional with Cartan matrix A = (aij). The quantum affine algebra
Uq(ĝ) is a Hopf algebra over C[[q − 1]], with generators ei, fi, q

h where h ∈ h and relations:

1. [qh1 , qh2 ] = 0;

2. qhei = qei(h)eiq
h and similarly qhfj = q−fj(h)fjq

h;

3. [ei, fj ] = 0 unless i = j in which case

[ei, fi] =
qdihi − q−dihi

q − q−1
;

4. q-Serre relations.

Since this is a Hopf algebra we have the coproduct ∆, counit ε, and antipode γ. For example

∆(ei) = ei ⊗ qhi + 1⊗ ei.

Definition 8.2. Let Uq(g̃) be the algebra generated by Uq(ĝ) and symbols qad where a ∈ C. The additional
relations arise from writing

qad =
∑
n>0

1

n!
(τad)n

and set
[d, ei] = δi0ei, [d, fj ] = δj0fj , [d, qh] = 0.

We want an analogue of evaluation reps for Uq(ĝ), i.e. some composition

Uq(ĝ)→ Uq(g)
ρ−→ V.

Unfortunately, unless g = sln, this first map does not exist. Instead, define

Dz : Uq(ĝ)→ Uq(ĝ)

e0 7→ ze0

f0 7→ z−1f0

and all other generators map to themselves. Given some representation ρ : Uq(ĝ) → End(V ), we introduce
the z by the twist

ρ ◦Dz : Uq(ĝ)→ End(V (z)).

Definition 8.3. A rep V is an evaluation rep if:

1. it is finite length over Uq(g) ↪→ Uq(ĝ);

2. V ∼=
⊕

λ V
q
λ where V qλ are highest weight reps.
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Construction 1. Given a highest weight rep V qλ of Uq(g), we can induce it up to Uq(ĝ) to get V qλ,k.

Construction 2. If V is a Uq(ĝ)-module and

g : Lqλ1
⊗ Lqλ2

⊗ V

is an Uq(g) intertwiner, we can extend it uniquely to an intertwiner

Φg(z) : V qλ1,k
→ V qλ2,k

⊗̂V (z)

of Uq(ĝ) intertwiner. To get a Uq(g̃) intertwiner, we need a twist

Φ̃g(z) : V qλ1,k
→ V qλ2,k

⊗ z−∆V [z±]

where ∆ = ∆(λ1)−∆(λ2) with

∆(λ) :=
〈λ, λ+ ρ〉
2(k + h∨)

.

Definition 8.4. A universal R-matrix is an invertible

R ∈ Uq(g̃)⊗̂Uq(g̃)

such that:

1. R∆(x) = ∆op(x)R;

2. (∆⊗ id)R = R13R23;

3. (id⊗∆)R = R13R12.

One can construct such a thing via the Drinfeld double construction. If H is any Hopf algebra, its double
is D(H) := H ⊗H∨. Then

R = 1⊗ idH ⊗1 ∈ H ⊗H∨ ⊗H ⊗H∨

is an R-matrix in D(H). We can apply this to

Uq(g̃) = D(Uq(b̃+))/Uq(h)

to get the universal R-matrix. The resulting formula is

R̃ = qc⊗d+d⊗c+
∑
ei⊗fi

∑
aj ⊗ aj

where aj is a basis for Uq(g̃) as a module over the base ring. We’ll actually use the R-matrix for Uq(ĝ)

R := q−c⊗d−d⊗cR̃.

We also need to add the spectral parameter z, by

R(z) := (Dz ⊗ id)R = (id⊗Dz−1)R.

These R-matrices satisfy the Yang–Baxter (YB) equation. (Aside: this means that given any rep W , the
braid group Bn acts on W⊗n.)

Definition 8.5. Let Rop := flip ◦R. The q-currents are

L+,V (z) := (id⊗ρV )Rop(z) ∈ Uq(ĝ)⊗̂End(V )[[z]]

L−,V (z) := (id⊗ρV )R−1(z−1) ∈ Uq(ĝ)⊗̂End(V )[[z−1]].

These satisfy

L±(z) = 1⊗ 1 + (q − q−1)
∑
a∈B

J̃±a (z)⊗ ρV (a) +O((q − q−1)2).
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Definition 8.6 (q-Sugawara). We need an action of qd in V qλ,k when k 6= −h∨. Use that there is an adjoint
action

Adqd : Uq(ĝ)→ Uq(ĝ)

Let ρ̃ := ρ+ h∨d and λ̃ := λ+ dk −∆c such that

〈λ̃, λ̃+ ρ̃〉 = 0.

Recall there is a quantum Casimir C in Uq(g̃) which acts by q〈λ̃,λ̃+ρ〉 in Vλ̃. If we pick λ̃ as above, then

1 = C−1 = q−2ρ̂q−2kd mult
(
(γ ◦Adq2kd)⊗ 1Rop

)
.

Hence we can define an action of

q2(k+h∨)d = mult
(
(γ ◦Adq2kd)⊗ 1Rop

)
on V qλ,k.

Finally we can talk about correlators and qKZ equations. As usual we define correlators

Ψ := 〈u0Φ̃g(z1) · · · Φ̃g(zN )uN+1〉

where u0 is lowest weight and uN+1 is highest weight. If we consider

Ψ(z1, . . . , q
2(k+h∨)zj , . . . , zN )

this is like acting by d in the j-th insertion. By our construction of what this means, it is the same as
inserting L+ on one side and L− on the other. Because the Φ̃ are intertwining operators, these L± pass
through to either side, moduli picking up an R-matrix every time. Finally, the action of L± on lowest and
highest weight vectors yields qλ0 and qλN . Putting this all together, we get

Ψ(z1, . . . , pzj , . . . , zN ) = qλ0+λN+2ρ|VjRj,1
(
pzj
z1

)
Rj,j−1

(
pzj
zj−1

)
(R−1)j,j+1

(
zj+1

zj

)
· · ·Ψ(z1, . . . , zN ),

called the qKZ equation. They form a consistent system, i.e. if we write

Ψ(z1, . . . , pzj , . . . , zN ) = AjΨ(z1, . . . , zN ),

then we have
Ai(z1, . . . , pzj , . . . , zN )Aj = Aj(· · · )Ai.

9 Henry (Nov 12): An overview of AGT

First I’ll say some words about what I understand of the physics behind the AGT correspondence. Then
we’ll do one explicit calculation to show that the existence of some formula like the one given by AGT should
not be too surprising.

Consider 6d N = (2, 0) SCFT. As a theory on R6, it is indexed by an ADE Lie algebra g, because one

way it arises is as the compactification of type IIB strings on R6 × C̃2/Γ where both the volume of cycles on

C̃2/Γ and the string length ` tend to zero. The type IIB string theory essentially decouples into type IIB
supergravity, and the desired 6d theory near R6×{singularity}. Without the limit `→ 0, we would get little
string theory instead of 6d N = (2, 0) SCFT. Mathematically, this is the distinction between a q-deformation
vs the q = 1 case.

Now imagine instead of R6 ×K3, we take R4 × C ×K3. Compactifying on C gives some 4d theory. On
the other hand, compactifying on R4 gives some CFT on C. The technicality here is that C×K3 is not CY3
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and therefore destroys supersymmetry, and the 4d theory needs to be topologically twisted. Mathematically,
there is a construction of a family X → C of CY3s X → C fibered over C, parameterized by the Hitchin
base Γ(C,KC ×Gm h/W ), so that(

type IIB string
on the CY3 X

)
≈
(

6d N = (2, 0) theory
on the curve C

)
,

for the purposes of looking at the 4d gauge theory and 2d CFT. Since X is now CY3, the resulting 4d gauge
theory is N = 2, and in fact is N = 2 super Yang–Mills. It turns out the Hitchin base is precisely the
Coulomb branch of the 4d theory, i.e. the invariant polynomials φk(z) are the vevs.

In general, when compactifies the 6d theory on C, there are lots of non-trivial fields in the 4d theory. To
control what fields arise, we add punctures to C. Punctures control divergences in φk(z), which therefore
restrict the vevs. One can work out some rules determining a map

G : (C, {p1, . . . , pk})→ 4d gauge theory

such that G behaves nicely under degenerations of C. Then any physical quantity associated to the 4d
theory gives an object in the 2d CFT, by pre-composition with G. The AGT correspondence is exactly this
dictionary. For example,

1. the Nekrasov partition function

Zinst(R4) := Z(Q,u, t1, t2) :=
∑
n≥0

Qn
∫
M(r,n)

1

yields a conformal block.

Recall that the Nekrasov partition function is one half of the 4d partition function for S4, which is, schemat-
ically,

Z(S4) =

∫
µ(u)Z(u)Z(u),

where µ(u) is some measure. This is very similar to how in 2d CFT, correlators are built from conformal
blocks as, schematically,

〈
∏
i

φi〉 =
∑

primary φ

µ(φ)F(φ)F(φ).

One can match this exactly, to get the full dictionary

1’. the full partition function Z(S4) (with insertions) yields correlators in the CFT.

Another aspect of the dictionary concerns the algebra of BPS states. Mathematically, this BPS algebra is
the cohomology H :=

⊕
nH

∗(M(r, n)). On the CFT side,

2. the BPS algebra yields the vertex algebra of the CFT.

In particular, this means that whatever symmetries act on CFT are also act on the BPS algebra. The
minimum is that H is a module for the Virasoro algebra.

Now let’s look at the mathematics, on the CFT side. Recall that the Hilbert space of a CFT is a rep of
the Virasoro algebra, and splits into highest weight irreps:

H =
⊕
α

Hα.

In other words, any state can be written in the form

L−i1L−i2 · · ·L−im |α〉

where |α〉 is a primary field of weight α. Sorting i1 < i2 < · · · < im, since they all commute, these indices
form a Young diagram Y . Hence states vα̂ are indexed by α̂ = (α, Y ), where
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• α is a highest weight, and

• Y is a Young diagram, encoding L−Y1
· · ·L−Yk |α〉.

The main objects we want to compute in a CFT are the correlation functions of vertex operators. These
correspond to n-point functions where we insert states at various points. In particular, we care about 2- and
3-point correlators. All other correlators arise from gluing 2- and 3-point ones.

• There is an inner product
Kα̂,β̂ := 〈Vα̂|Vβ̂〉 ∝ 〈Vα̂(0)Vβ̂(∞)〉.

(The rhs scales as z−2∆ as z →∞, so there is a scaling factor involved to make this well-defined). The
most important property is that

〈L−nVα̂|Vβ̂〉 = 〈Vα̂|LnVβ̂〉.

This comes from a re-expansion of T (z) = T (1/ξ).

• There are structure constants

Vα̂(z)Vβ̂(w) =
∑
γ̂

Cγ̂
α̂β̂

Vγ̂(w)

(z − w)−∆γ̂+∆α̂+∆β̂

from 3-point functions. The 3-point functions are particularly important, because they determine the
OPE of two operators.

In general, note that specializing to z1, z2, z3 = 0, 1,∞ removes the annoying zi− zj factors. We will do this
starting soon.

By repeated applications of the Ward identity, via moving contours around, one shows that all correlators
of descendant fields are determined by correlators of primary fields, so we only need to compute objects like

Vα(z)Vβ(w) =
∑
γ̂

Cγ̂αβ
Vγ̂(w)

(z − w)−∆γ̂+∆α+∆β
.

In fact all Cγ̂αβ can be determined in terms of just Cγαβ , by e.g. relations like

LmVα̂(z)Vβ(w) = (zn+1∂z + (n+ 1)zn∆α̂)Vα̂(z)Vβ(w) + Vα̂(z)LmVβ(w) (1)

for m > 0, where the second term is zero because Vβ is primary. Then solving the differential equation yields

Cγ̂αβ in terms of 3-point correlators of just primaries.
Hence the general 2-point and 3-point correlators factor into two pieces: structure constants of the CFT

itself, and quantities coming purely from the rep theory of the Virasoro. Namely, the only data specific to
the CFT are:

1. the constants Kα in the two-point functions

Kα̂,α̂′ = Kαδα,α′δ|Y |,|Y ′|S∆(Y, Y ′);

2. the constants Cβαα′ in the three-point functions

Cα̂
′′

α̂α̂′ = Cα
′′

αα′β
∆′′

∆∆′(Y, Y
′;Y ′′).

The tensors S∆(Y, Y ′) and β∆′′

∆∆′(Y, Y
′;Y ′′) arise purely from the rep theory of the Virasoro. Here ∆ is the

conformal dimension associated to the highest weight α irrep. We can use these 2- and 3-point tensors (and
the structure constants Kα and Cα

′′

αα′ to construct n-point correlators by gluing.
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Example 9.1 (4-point block). For 4-point functions, by repeated OPE

〈Vα̂1
(z1)Vα̂2

(z2)Vα̂3
(z3)Vα̂4

(z4)〉 =
∑

α̂12,α̂34

Cα̂12

α̂1α̂2
Cα̂34

α̂3α̂4

z∆
12z

∆
34

〈Vα̂12
(z2)Vα̂34

(z4)〉.

Plugging in z1, z2, z3, z4 = 1,∞, x, 0 turns the 2-point correlator into the Shapovalov form, and using only
primaries gives

x···Cαα1α2
KαC

α
α3α4
B∆(∆1,∆2; ∆3,∆4|x)

where B is the 4-point conformal block built from the 2- and 3-point rep theoretic objects S and β:

B∆ =
∑
k

xkB(k)
∆ =

∑
|Y |=|Y ′|

x|Y |BY,Y
′

∆

where
BY,Y

′

∆ = β∆
∆1∆2

(Y )S∆(Y, Y ′)β∆
∆3∆4

(Y ′).

We can compute the 4-point conformal block for a free field, where all correlators can be written in closed
form. Recall that the free boson has action

∫
d2z ∂φ∂φ. To get the propagator, consider

0 =
δ

δφ(z)

∫
Dφe−Sφ(w) =

∫
Dφe−S(−∂2φ(z)φ(w) + δ(z − w)).

Solve this ODE using ∂2 ln(z − w)2 ∝ δ(z − w) to get things like

〈∂φ(z1)φ(z2)〉 =
1

z1 − z2
, 〈∂φ(z1)∂φ(z2)〉 =

1

(z1 − z2)2
.

In this theory, T (z) :=:∂2φ(z): is the stress-energy tensor. We can use it to verify things are primary fields.

Proposition 9.2. :eαφ: is a primary field of weight −α2.

To compute conformal blocks, note that the OPE of primaries in this theory is very simple:∏
i

:eαiφ(zi): =
∏
i<j

(zi − zj)−2αiαj :
∏
i

eαiφ(zi): .

This is a nice combinatorial exercise. Taking correlators gives

〈
∏
i

:eαiφ(zi): 〉 =
∏
i<j

(zi − zj)−2αiαjδ(
∑
i

αi).

The δ function comes from the same place as δ(z−w) in the propagator; it is a selection rule for correlators.
Specifically, the 4-point correlator is

〈
4∏
i=1

:eαiφ(zi): 〉 =
∏
i<j

(zi − zj)−2αiαj

when α1 + α2 + α3 + α4 = 0. Plug in z1, z2, z3, z4 = 1,∞, x, 0 to get the 4-point conformal block

B∆(x) = x−2α3α4(1− x)−2α1α3 = x−2α3α4(1 + 2α1α3x+ · · · ).

The intermediate state is :eαφ: where

α = α1 + α2 = −α3 − α4
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and therefore has weight ∆ = −α2.
Set
√

2α1 = m1 and
√

2α3 = m2 for normalization. One can expand in x to get

(1− x)−m1m2 =
∑
k

xkB(k)
∆ =

∑
k≥0

xk

k!

Γ(k +m1m2)

Γ(m1m2)
.

From our general theory above,

(1− x)−m1m2 =
∑

|Y |=|Y ′|

x|Y |BY,Y
′

∆ .

For this specific function, there is actually a way to rewrite it in terms of a single sum over partitions, thereby
simplifying the double sum.

Proposition 9.3.

(1− x)−m1m2 =
∑
Y

x|Y |
∏
�∈Y

(m1 + j(�)− i(�))(m2 + j(�)− i(�))

h(�)2
,

where h(�) is the hook length.

Proof. It suffices to prove this for integers m1,m2 and analytically continue. Recall the Cauchy formula∏
i,j

1

1− tisj
=
∑
Y

sY (t)sY (s).

Plug in t = (
√
x, . . . ,

√
x, 0, 0, . . .) where there are m1 non-zero entries, and similarly for s and m2. Then the

lhs is (1− x)−m1m2 . For the rhs, compute

sY (t) = x|Y |/2#SSYT(Y ; r) = x|Y |/2
∏
�∈Y

m1 + j(�)− i(�)

h(�)
,

where SSYT(Y ; r) is semistandard Young tableaux of shape Y with labels from 1 to r. (Equivalently, it is
a basis of the rep LY of SLr.) The desired formula follows.

This formula is exactly the localization formula for∑
n≥0

xn
∫

Hilb(C2,n)

ch(L[n]
m1

) ch(L[n]
m2

)

where Lm is the trivial line bundle of weight m on C2, and L[n] is the induced bundle on Hilb(C2, n). In
physics-speak, this is the Nekrasov partition function for U(1) gauge theory with two fundamental hyper-
multiplets of mass m1 and m2.

The more famous and much less trivial check of AGT is to show that 4-point functions in Liouville theory
matches with the Nekrasov partition function for SU(2) gauge theory and four matter hypermultiplets.
Computationally, this can be checked by:

1. computing conformal blocks using the S and β tensors;

2. computing Nekrasov’s partition function by localization.

Liouville theory fits into a hierarchy of CFTs called the AN−1 Toda theories; Liouville theory is when
N = 1. Such CFTs have an extended W-symmetry when N ≥ 2. In addition to the stress-energy tensor T ,
there are additional (holomorphic) symmetry currents W(k), forming a W-algebra.

Theorem 9.4 (Maulik–Okounkov, Schiffmann–Vasserot).
⊕

nH
∗(M(r, n)) carries a W-algebra action.
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10 Shuai (Nov 26): Analogies between conformal field theory and
number theory

The goal today is to show how some kind of “S-duality” implies the quadratic reciprocity law, under the
assumption that some kind of gauge theory exists over number fields. For the analogy today, we’ll think of a
number field K in terms of the “Riemann surface” SpecOK . It includes some special points, corresponding
to infinite places, and other points are finite places. There is a projection π : SpecOK → SpecZ.

In general, we want to explore the similarity between conformal field theory and this picture. Since
the theory is conformal, there is no difference between a puncture and an S1, so we think of a punctured
Riemann surface. Then we look at integrals like∫

A/G
f(x)eCS(A)

n∏
i=1

Opi dx,

where A/G is the moduli of connections up to gauge equivalence, and Opi are local operators. We’ll explain
what the action eCS(A) should correspond to in number theory, but most importantly we’ll identify what
should correspond to local operators, e.g. Wilson loops or t’Hooft operators.

First we’ll consider the path integral without local operator insertions. In number theory, local informa-
tion is encoded in the adeles

AK :=

′∏
v primes

KV

where
∏′

is the restricted product, namely where only finitely many entries are allowed to lie outside the
corresponding ring of integers. For example, AQ consists of sequences (x∞, x2, x3, x5, . . .). Also we have the
ideles

IK :=

′∏
GL(1,KV ) =

′∏
K×V .

The conformal symmetry becomes the global action by GL(1,K) = K×. So in general we should consider
CK := IK/K

×, called the idele class group. This is the analogue of the state space A/G in CFT. Luckily,
in number theory we have the Haar measure d×x on CK .

Now we should explain the exponential action eCS(A). This should be viewed as some unitary represen-
tation of the time-evolution operator. In other words, on the number theory side it should be the character
of something. In number theory we do have characters of AK , but more importantly we have characters of
the ideles IK . For a given number field, all these characters are of the form

IK
wωs−−−→ C×

where ωs = |x|s is a quasi-character. We will also insert functions f(x). These will be functions f : AK →
C, but they should be K×-invariant. The naive way to construct such things is to average∑

α∈K×
f(αx), f ∈ S(AK)

where S(AK) is all Schwartz functions on AK , for convergence. Hence on the number theory side, the
analogue of the path integral is ∫

IK/K×

∑
α∈K×

f(αx)(wωs)(x) d×x.

From number theory, this is equal to∫
IK

f(x)(wωs)(x) d×x = Z(s;w, f),
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called the global zeta function. One property of the global zeta function which will help us later “prove”
the quadratic reciprocity law is the functional equation

Z(1− s, w−1) ◦ (̂·) = Z(s, w),

where (̂·) is Fourier transform.
The quantum equation of motion comes from the variation of the path integral with respect to α ∈ IK :∫

IK

f(αx)(wωs)(αx) d×x = wωs(α)

∫
IK

f(x)(wωs)(x) d×x.

Now we can discuss insertions. A t’Hooft operator is a singularity, where we care about the monodromy
around it. For every prime p we want to introduce a t’Hooft operator. How can we find something that only
has a singularity at one prime p? Naively we can take field extensions Q(

√
p)/Q. In number theory we know

that when p ≡ 1 mod 4, this extension only ramifies at p. Then we want to consider the “monodromy of q”
for other primes q 6= p. In number theory we can look at(

p

q

)
:= χp(Frobq).

This is the Legendre symbol. Then it becomes reasonable to consider

ωp(x) :=
∏
q 6=p

(
p

q

)−νq(x)

.

These are the appropriate analogues of t’Hooft operators. However, for some primes, e.g. p ≡ 3 mod 4, there
are actually no real quadratic extensions which only ramifies at p. We have to take a different extension,
namely Q(

√
−p)/Q. In general, it is necessary to insert an appropriate combination of t’Hooft operators,

one for each ramification point. Ramification points are determined by the discriminant of the number field.
In the abelian case, Wilson loops depend on the choice of a rep AK → C×. It turns out we should look

for those with norm 1 and only possibly positive valuation at p or ∞. There aren’t many choices: they are
all of the form

αp = (p, 1, . . . , 1, p, 1, . . .)

where the p occur at x∞ and xp.
Now we can prove quadratic reciprocity via S-duality. On one side, we want to consider correlators like

〈Wp〉q :=

∫
f(αpx)(wqωs)(x) dx∫
f(x)(wqωs)(x) dx

where we have a t’Hooft operator at q and Wp is a Wilson loop at p. Applying the quantum equation of
motion, this correlator becomes

(wωs)(αp)
−1.

The norm 1 condition says

(wωs)(αp)
−1 = ωq(αp)

−1 =

(
q

p

)
.

S-duality says that an appropriate interchange of t’Hooft operators and Wilson loops produces equivalent
theories. On the S-dual side, the appropriate correlator is

〈W−1
q 〉p−1 =

(
p

q

)
.

This whole argument is only for primes p, q ≡ 1 mod 4, because otherwise we necessarily require insertion at
other primes.
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11 Andrei (Dec 03): qKZ equations and their role in enumerative
geometry

Let X be a Nakajima quiver variety, but this should be a case in a much bigger universe, where X is some
critical locus of a potential W on V �G and V has some self-duality properties. A typical example could be

V = (symplectic rep)⊕ (adjoint reps).

Nakajima quiver varieties are of this kind.
We want to do K-theoretic counts of quasimaps P1 → X. Take two marked points 0,∞ ∈ P1. The

quasimaps we consider are non-singular at ∞, and at 0 we can put any kind of insertion. All these counts
are deformation-invariant. Degenerating the P1 into a node does not change counts, and this degeneration
can be done equivariantly.

0

∞

From the moduli of quasimaps f : P1 → X, there is an evaluation map to X by taking f(∞). The count
involving relative quasimaps is a count over a proper moduli space, and therefore results in a rational function
of relevant variables. In the degeneration of the P1, the first piece will be such a rational function, and the
second piece looks like some q-hypergeometric series. For example, when X = T ∗PN , it looks like

∑
d≥0

zd
∏ N∏

i=0

(~ai/ak)d
(qai/ak)d

where diag(a0, . . . , aN ) ∈ GL(N+1) acts on PN , and ~ scales cotangent fibers. Since it is of q-hypergeometric
form, it should satisfy q-difference equations in all variables. Hence, in general, the object

Ψ :=


0

relative

∞

nonsing
 ∈ KAut(X)⊗2[q±1]loc[[z]]

satisfies a q-difference equation in every variable except q.

1. The shift z 7→ qλz means an insertion of the kind det(V0) at 0. Since z ∈ Pic(X) ⊗ C×, we need
λ ∈ Pic(X).

2. The shift a 7→ qσa where σ : C× → Aut(X) means to use σ as a non-trivial clutching function for an
X-bundle over P1.

The conclusion is that Ψ satisfies q-difference equations

Ψ(qλz, a) = MλΨ

Ψ(z, qσa) = SσΨ.

In general, we know these counts in limits z → 0 or a → ∞, which correspond to a classical computation
and a computation on fixed loci respectively. The condition that an operator commutes with a q-difference
operator is itself a q-difference equation, and therefore with an initial condition like this, the desired operator
is uniquely specified. This is how one determines Mλ from Sσ.

In the situation where X is a Nakajima quiver variety, these operators come from quantum loop groups.
These are Hopf algebra deformations of U(g[t±]), which preserve the loop rotation t 7→ ct for c ∈ C×. In
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the undeformed situation, Lie algebras act symmetrically on tensor products, so given two reps there is an
isomorphism

M1(u1)⊗M2(u2) ∼= M2(u2)⊗M1(u1).

After deformation, for specific values of u1 and u2, this will not be an isomorphism. There is an intertwining
operator called the R-matrix:

R(u1/u2) : M1(u1)⊗M2(u2)
∼−→M2(u2)⊗M1(u1).

The Cartan h ⊂ g stays group-like. In fact the variables z will be z = eh for h ∈ h. Group-like means they
act on the tensor product by z ⊗ z. So the R-matrix commutes with these z ⊗ z. It should also commute
with T ⊗ T , where T (u) := uq. This gives a commuting set of q-difference operators in

M(u1)
1 ⊗M(u2)

2 ⊗ · · · ⊗M(un)
n .

This really means we have functions of u1, . . . , un taking values in the tensor product M1 ⊗ · · · ⊗Mn. Now
consider a collection

M1, M2, · · · , Mn, Mn+1
∼= M1

but where the last isomorphism is via zT , not the trivial one. If we think of these M as placed around a
cylinder, now there are braids which “go around” the cylinder and pick up zT . This yields an action of
the affine Weyl group of type An, which is S(n) n Zn. It is the Zn which gives the commuting difference
operators. This lattice part looks like a single strand which wraps around the whole cylinder, with all other
strands trivial. Such difference operators are qKZ.

Now one can ask: are there other difference operators which commute with these qKZ? These qKZ are
in variables u1, . . . , un but also involve the z variables in the Cartan torus of U~(ĝ), and these difference
operators should be in z. The answer is yes, and they form a kind of “quantum affine Weyl group”. If we
decompose g = h⊕

⊕
gα where α are roots, then

ĝ = f̂⊕
⊕

α∈roots
m∈Z

tmgα.

Then α is an eigenvalue of z, and m is an eigenvalue of T . Hence if we visualize a lattice containing
(log T, log z), the intersection of root hyperplanes on this lattice with the hyperplane consisting of just log z
results in some kind of locally periodic arrangement of hyperplanes, of the form

〈α, log z〉+m = 0.

The choice of a factorization of longest element in the affine Weyl group amounts to a choice of monotone
path from −∞ to ∞ on this arrangement. This path crosses each hyperplane in specific alcoves, and so
define specific walls w. This determines rank-1 subalgebras

U~(gw) ⊂ U~(ĝ).

In these rank-1 subalgebras are the desired operators Bw.
One shows that actions of elements

qσ := diag(q, q, . . . , 1, 1, . . .) ∈ GL(Wi)

in automorphisms of framing spaces are minuscule. It turns out that whenever σ is minuscule, Sσ is always
qKZ. The basic argument for this is as follows. Recall Sσ counts twisted quasimaps in a geometry like

q

q−1

1

1
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If we pick a particular basis of insertions in K(X)⊗K(X) such that they are both repelling for the q-action,
then only constant curves contribute to the count in this geometry. In other words, in this special basis, this
operator is just zdeg.

One aspect of the relationship with W-algebras and CFT comes from considering the vertex

QM
(

ns → X
)
∈ K[X][q±]loc[[z]].

Since X is a GIT quotient, the quasimap fixed points themselves are GIT quotients by G with some stability
condition. Taking Euler characteristic (of some virtual sheaf), this should be expressible as a contour integral∫

χ(on prequotient)
∏ Γq(· · · )

Γq(· · · )
.

Heuristically, the extra Γq terms come from the G[[t]] in

QM(X) ≈ QM(prequotient) �G[[t]].

We don’t have a definition of what a q-deformed W-algebra, but whatever the definition is, this integral
should be its conformal block. The χ term should be a q-deformed vertex operator of some sort. There
is however a well-defined notion of q-deformed screening operators, and the Γq terms should be screening
operators.
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