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1 Xujia (Sep 17): Lifting cobordisms and Kontsevich-type recur-
sions for counts of real curves

Let (X,ω) be a symplectic manifold of dimension 2n, and let J be an almost-complex structure. Fix
B ∈ H2(X) and take closed submanifolds H1, . . . ,H` ⊂ X such that 2(c1(X)B+n− 3 + `) =

∑
i codimRHi.

Then we can ask about the number of J-holomorphic curves of degree B and genus 0 passing through the
Hi. These are usual genus-0 Gromov–Witten invariants

〈[H1], . . . , [H`]〉B .

This quantity is independent of the choice of (generic) J .
More precisely, define the moduli space

M`(B) := {u : P1 → X : J-holomorphic, [u] = B, z1, . . . , z` ∈ P1}/Aut(P1).

For today we can think of this as a smooth manifold. It has a natural Gromov compactification

M`(B) := {u : C → X : C nodal curve, J-holomorphic, [u] = B, z1, . . . , z` ∈ C}/Aut(C).

For today we think of this as a compact smooth manifold. There are evaluation maps

M`(B)
ev−→ X`

[(u, z1, . . . , z`)] 7→ (u(z1), . . . , u(z`)).

To compute these Gromov–Witten invariants, we use the WDVV relations (Kontsevich ’92, Ruan–Tian
’93). These say that

#D(H1, H2|H3, H4) = #D(H1, H3|H2, H4)

where D(H1, H2|H3, H4) is the divisor consisting of curves with a single node, with one component passing
through H1, H2 and another passing through H3, H4. To see this, recall that

M0,4 = {(z1, z2, z3, z4) ∈ P1}/Aut(P1) ∼= P1

given by the cross-ratio. Consider the points σ0, σ∞ ∈ M0,4 corresponding to 0,∞ ∈ P1. They are linearly
equivalent divisors, i.e.

[σ0] = [σ∞] ∈ H0(M0,4).

Any moduli M`(B) has a forgetful map

f : M`(B)→M0,4

given by forgetting the map and all but the first 4 marked points. Hence this relation on M0,4 pulls back
via f :

[f−1(σ0)] = [f−1(σ∞)] ∈ H∗(M`(B)).
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This is exactly the WDVV relation.
Today we will discuss a similar story for the real case. Let (X,ω, φ) be a real symplectic manifold of

dimension 2n. This means (X,ω) is a symplectic manifold and φ : X → X is an anti-symplectic involution,
i.e.

φ2 = id, φ∗ω = −ω.

We usually refer to φ as the conjugation, because typical examples include Pn with φ as the actual conju-
gation map. Note that the almost holomorphic structure J behaves as

φ∗J = −J.

Let Xφ denote the fixed locus of φ. We take B ∈ H2(X) and p1, . . . , pk ∈ Xφ and H1, . . . ,H` ⊂ X. Now
we can count real rational curves C ⊂ X, namely curves with φ(C) = C. (In general, “real” means φ-
invariant.) Now if we impose the usual dimension restriction c1(X)B+n−3 = k(n−1)+

∑
i(codimRHi−2),

then we can count curves like we did in the complex case. However this is not in general an invariant, because
in the real setting we don’t have Bézout’s theorem and so on.

Theorem 1.1 (Welschinger ’03, ’05, Solomon ’06). If n = 2, or n = 3 and Xφ is oriented, then the number
of degree B real rational curves passing through H1, . . . ,H`, p1, . . . , pk, counted with appropriate signs, is an
invariant of J , pi, and Hi ∈ [Hi] ∈ H∗(X −Xφ).

Now we can ask: are there WDVV relations in this real case?

Theorem 1.2 (Xujia Chen ’18). In n = 2, the relations for Welschinger’s invariants proposed by Solomon
’07 hold.

Theorem 1.3 (Chen–Zinger ’19). In n = 3, similar relations hold if (X,ω, φ) has some symmetry, e.g. P3

with real hyperplane reflection.

In the case of P2,P3,P1 × P1 these WDVV relations reduce to formulas in Alcalado’s ’17 thesis. For e.g.
P2,P3,P1 × P1, (P1)3, and real blow-ups of P2, we get complete recursion formulas.

Idea of proof. The usual conjugation map conj : P1 → P1 sends z → z, with fixed locus RP1. The real moduli
is

RMk,`(B) :=

{
u : P1 → X :

J-hol , [u] = B, u ◦ conj = φ ◦ u,
x1, . . . xk ∈ RP1, z±1 , . . . , z

±
` ∈ P1, z−i = conj(z+

i )

}
/Aut(P1).

This is, again, not compact, but it has a Gromov compactification RMk,`(B) by replacing P1 with nodal
curves.

We can lift relations from RM1,2 and RM0,3. However the problem is that the spaces

RMk,`(B), Xφ, RM1,2

may not be orientable. In Solomon’s thesis, he showed that ev |RMk,`(B) is relatively orientable, i.e. pullback
of the first Stiefel–Whitney class of the target equals that of the domain. The relative orientation extends
through some codimension-1 strata, but not all of them.

Let Γ ⊂ RM1,2 (or (0, 3)) consist of curves such that z±2 or z±3 coincide with z±1 . Georgieva–Zinger ’13
shows that Γ bounds in RM0,3. Take Y ⊂ RM1,2 such that ∂Y = Γ and

RMk,`(B)
ev×f−−−→ (Xφ)k ×X` × RM1,2 ←↩ (p1 × · · · ×H`)× Y.

Let C denote the constraints p1 × · · · ×H`. Then

RMk,`(B) · (C × Γ) = ±2(bad strata) · (C × Y ). (1)
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This comes from cutting RM open along the bad strata. Call the resulting space RM̂. It is relatively
orientable now. Then

∂(RM̂ · (C × Y )) = (∂RM̂) · (C × Y )± RM̂ · ∂(C × Y ).

The lhs is 0, and the rhs gives the desired formula (1).
Finally, the lifted relations (1), with splitting relations, give the desired relations between Welschinger’s

invariants. Splitting works as follows. A dimension count together with a good choice of Y shows that, for
all bad strata contributing to the rhs of (1),

1. the first bubble is rigid,

2. the condition “cut out by Y ” is the same as specifying the position of the node on the first bubble.

Hence the count of such nodal curves is exactly the count of first bubbles, and the count of second bubbles
with one additional real point specifying the position of the node.

As for the lhs, when n = 2 the splitting is immediate. When n = 3, a dimension count gives two cases.

1. The real bubble is rigid. Then

#(nodal) = #(first bubble) ·#(second bubble with curve insertion).

2. The complex bubble is rigid, and the real bubble passes through it. Then

#(nodal) = #(complex bubble) ·#(real bubble passing through C1 t · · · t CN ).

This case is why we need to assume the symmetry property in the theorem. Assume there is a
G ⊂ Aut(X,ω, φ) such that

H2(X −Xφ)G
∼−→ H2(X).

Then if we take H1, . . . ,H` to be G-invariant, C1 t · · · t CN is also G-invariant. This way we can
express the second term above in terms of usual GW invariants.

2 Nathan (Sep 24): BHK mirror symmetry and beyond

The outline for today will be:

1. LG models and BHK mirror symmetry;

2. GW theory and LG/CY correspondence;

3. other forms of mirror symmetry.

What is a Landau–Ginzburg model? Mathematically this is called FJRW theory. The input is a pair
(W,G).

• W is a quasi-homogeneous polynomial, meaning that

W (λw1x1, . . . , λ
wNxN ) = λdW (x1, . . . , xN ), gcd(w1, . . . , wN , d) = 1.

• W is non-degenerate, meaning that there is an isolated critical point at 0 and there are no terms like
xixj . This implies there is exactly one choice of weights wi to make homogeneity work.

• (Calabi–Yau condition)
∑
wi = d. This is not strictly necessary for FJRW theory, but we’ll assume it

for today.
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• G ⊂ Aut(W ), where

Aut(W ) := {(g1, . . . , gN ) ∈ (Q/Z)N : W (e2πig1x1, . . . , e
2πigNxN ) = W (x1, . . . , xN )}.

• (A-admissible) G must contain the exponential grading operator jW := (w1/d, . . . , wN/d). This is a
condition we always need for FJRW theory, since it is the LG A-model.

• (B-admissible)
∑
gi ≡ 0 mod Z. This is required for a LG B-model. It is necessary for us today.

The output of FJRW theory is the following.

• A state space

HW,G =
⊕
g∈G

Hmiddle(CNg ,W+∞
g ,C)G

where Ng is the dimension of the fixed locus of g, and W+∞
g is the Milnor fiber.

• A moduli space of W -curves

W g,k := {(C, p1, . . . , pk,L1, . . . ,LN , ϕ1, . . . , ϕs) : genus(C) = g, ϕi : Wi(L1, . . . ,LN )
∼−→ ωlog(C)}

where we write W =
∑s
i=1Wi as a sum of monomials. This moduli has a “virtual class”

[W g,k]vir ∈ H∗(W g,k(W, g1, . . . , gn))⊗
∏

Hmiddle(CNg ,W+∞
g ,Q)

constructed analytically, not via an obstruction theory.

• FJRW invariants

〈τ`1(α1), . . . , τ`k(αk)〉W,Gg,k :=

∫
[Mg,k]

ΛW,Gg,k (α1, . . . , αk)

k∏
i=1

ψ`ii

where ΛW,Gg,k is the factor arising from pushing down from W g,k to the moduli of curves Mg,k.

BHK mirror symmetry constructs a “dual” (WT , GT ) to a pair (W,G), in the situation where W is
invertible, meaning that there is the same number of variables as monomials.

• WT comes from taking the exponent matrix AW of W , taking its transpose, and getting the resulting
polynomial. For example,

W = x4
1 + x2

2x3 + x4
3 + x8

4

is quasi-homogeneous with respect to (2, 3, 2, 1; 8). Then

AW =


4 0 0 0
0 2 1 0
0 0 4 0
0 0 0 8

 .

The dual polynomial is therefore

WT = x4
1 + x2

2 + x2x
4
3 + x8

4,

which is quasi-homogeneous with respect to (2, 4, 1, 1; 8).

• GT comes from
GT := {h ∈ Aut(WT ) : hAW g

T ∈ Z ∀g ∈ G}.

Equivalently, this is Hom(Aut(W )/G,C×).
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Given a pair (W,G), we can get an associated stack [XW /G̃], where

XW := {W = 0} ⊂ P(w1, . . . , wN ), G̃ := G/〈jW 〉.

Then we can look at the GW theory with target [XW /G̃]. The output is a state space H∗CR([XW /G̃],C), a
moduli space of stable curves, and invariants.

Theorem 2.1 (Chiodo–Ruan, LG/CY correspondence).

HW,G ∼= H∗CR([XW /G̃])

as bigraded vector spaces.

Conjecture 2.2.
FJRW(W,G) ∼= GW([XW /G̃]).

This has been proved in a handful of cases and different levels. For example, if W is a sum of Fermat
polynomials then this correspondence is proved in genus 0. We can compare it to other forms of mirror
symmetry.

1. Quintic/mirror quintic:

W =

5∑
i=1

x5
i , G = 〈jW 〉 ↔ Q = {W = 0} ⊂ P4

WT =

5∑
i=1

x5
i , GT = 〈

(1/5, 4/5, 0, 0, 0)
(1/5, 0, 4/5, 0, 0)
(1/5, 0, 0, 4/5, 0)
(1/5, 0, 0, 0, 4/5)

〉 ↔ M = {W = 0}/G̃, G̃ ∼= Z3
5

where
G̃ = 〈(ξ5, ξ4

5 , 1, 1, 1), (ξ5, 1, ξ
4
5 , 1, 1), (ξ5, 1, 1, ξ

4
5 , 1)〉.

In this setting, there is a diagram

FJRW(W,G) −−−−→ GW(Q)

mirror theorem

y ymirror theorem

B-model(WT , GT ) −−−−−−−−−−−−−−−−−−−−−−→
analytic continuation

U : ĨGW = IFJRW

symplectic transformation

B-model(M)

On the rhs, the invariants involved are

JFJRW =
∑
〈τ`1(α1), . . . , τ`N (αN )〉W,G0,k

t
(α1)
`1
· · · t(αN )

`N

k!

and one can show

(JGW =
IGW

IGW
0

) after change of vars.

A similar thing holds on the lhs.

2. Mirror symmetry for K3 surfaces. Take a K3 surface X. Then H2(X,Z) = U3⊕E2
8 =: LK3 where U is

the hyperbolic lattice. Take a polarization, i.e. a lattice M with a primitive embedding M ↪→ Pic(X);
there is a moduli of M -polarized K3 surfaces. If there is a decomposition

M⊥LK3
= U ⊕M∨,

we say X∨ is mirror to X if there exists M∨ ↪→ Pic(X∨).

5



If we let
W := xn0 + f(x1, x2, x3)

and we choose W right, then

XW,G = X̃W /G̃

is a K3 surface. This means for such K3 surfaces we have two candidates for how to do mirror symmetry. It
turns out the dual XWT ,GT is also a K3 surface.

Theorem 2.3. XW,G and XWT ,GT are K3 mirror.

Why? If we take the automorphism

σn : (x0, x1, x2, x3) 7→ (ξnx0, x1, x2, x3)

then we can look at the invariant lattice

S(σn) = {x ∈ H2(X,Z) : σ∗nx = x}

and one can show S(σ)∨ = S(σTn ).
Finally we can look at non-abelian LG models. Take W as before, but now

G = H ·K, H ⊂ Aut(W ) ⊂ GLn(C), K ∈ An(permuting vars).

Then there is a mirror (W∨, G∨), where
W∨ := WT

as before, but
G∨ := HT ·K.

This should be mirror symmetry. The first indication this should work is an isomorphism of state spaces.

Theorem 2.4.

(HW,G)untwisted
∼= (BW∨,G∨)narrow diagonal

(HW,G)narrow diagonal
∼= (BW∨,G∨)untwisted.

This allows us to think about e.g. GW theory of quotients of the quintic, or symmetric products of elliptic
curves.

3 Fenglong (Oct 01): Structures of relative Gromov–Witten the-
ory

Let X be a smooth projective variety. In GW theory we are interested in counting curves in X. To define
invariants, we consider the moduli space of stable maps

Mg,n,d(X) := {f : (C, pi)→ X : genus g degree d and n markings}.

Let evi : Mg,n(X)→ X be the i-th evaluation map pi 7→ f(pi). To define invariants we use evi to pull back
some cohomology classes γi ∈ H∗(X) and cap with the virtual fundamental class of Mg,n(X). There are
also classes ψ := c1(Li) where Li is the line bundle over Mg,n whose fibers are the cotangent spaces of the
i-th marking. We define GW invariants

〈
n∏
i=1

τai(γi)〉Xg,n,d :=

∫
[M]vir

∏
ψaii ev∗i (γi).
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Such invariants have many structural properties. For example, we can define quantum cohomology, WDVV
relations, topological recursion relations, Givental’s formalism, Virasoro constraints, and cohomological field
theory.

To define relative GW invariants we need a smooth divisor D ⊂ X, and we count curves with tangency
conditions along the divisor. The relevant moduli space is

Mg,k,n,d(X,D) := {f : (C, pi)→ X : genus g degree d and n interior markings}

with relative condition k = (k1, . . . , km) where ki ∈ Z≥0 and
∑
ki =

∫
d
[D]. There are now additional

evaluation maps evj : M → D for 1 ≤ j ≤ m, using which we can pull back δi ∈ H∗(D). Then invariants
are

〈
∏

τai(δi)|
∏

τai(γi)〉
(X,D)
g,k,n,d =

∫
[M]vir

∏
ψaii ev∗i (δi)

∏
ψaii ev∗i (γi).

The virtual dimension constraint of this relative moduli space is

vdim = (1− g)(dimCX − 3) +

∫
d

c1(TX)−
∫
d

[D] +m+ n

=
1

2

∑
deg(γi) +

1

2

∑
deg(δi) +

∑
ai.

Question: how to obtain structural properties of relative GW theory? (E.g. relative quantum cohomology,
WDVV, topological recursion, Givental’s formalism, mirror theorem.) Answer: using stacks to impose
tangency conditions. This was originally part of C. Cadman’s dissertation.

The specific stack we will use is the r-th root stack XD,r of X along D, where r ∈ Z>0. Geometrically,
XD,r is smooth away from D and has µr stabilizer along D. Then consider the evaluation map

Mg,k,n,d(XD,r)
evi−−→ IXD,r.

Here IXD,r is the inertia stack. In general inertia stacks are complicated, but in this case

IXD,r = X ∪
r−1⊔
i=0

D︸ ︷︷ ︸
twisted sectors

.

The twisted sectors are labeled by ages 1/r, 2/r, . . . , (r−1)/r. The ages of the divisor evaluations evj : M→
D now have ages ki/r. We can define GW invariants for XD,r as well. The virtual dimension constraint is

(1− g)(dimCX − 3) +

∫
d

c1(TX)−
∫
d

[D] +

∫
d
[D]

r
+m+n−

∑
ages =

1

2

∑
deg(γi) +

1

2

∑
deg(δi) +

∑
ai.

Remark. Not all orbifold GW invariants of XD,r are defined using relative data; there are extra orbifold
invariants which will be very important later.

Q: what is the relation between the orbifold invariant 〈· · ·〉XD,r and the relative invariant 〈· · ·〉(X,D)?
Before we talk about this, we state some facts.

1. (Cadman)Mg,k,n,d(XD,r) provides an alternative compactification of the space of relative stable maps.

2. (Maulik–Pandharipande) Relative invariants can be determined from absolute invariants of X and D.
(Tseng–You) The orbifold invariants can also be determined from this data, with the extra data of r.

3. −KXD,r = −KX −D +D/r. As r →∞ note that this becomes −KX −D.
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What is the precise relation? In genus-0, they are equal (Abramovich–Cadman–Wise 2017, arXiv 2010):

〈· · ·〉(X,D) = 〈· · ·〉XD,r , r � 1.

This ACW result includes all relative GW invariants of (X,D) but not all orbifold GW invariants of XD,r.
Orbifold GW invariants may involve large ages 1 − ki/r, which are not included in this relation. It would
be nice if the ACW relation holds in higher genus as well, but in g = 1 there is a counterexample given by
Maulik: take

X = E × P1, D = E0 ∪ E∞
and compute for [f ] ∈ H2(E) the invariants

〈〉(X,D)
1,0,[f ] = 0, 〈〉X(D0,r0),(D∞,r∞)

1,0,[f ] = r0 + r∞.

So what is the relation in higher genus? The invariant 〈〉XD,r is a function of r. As r →∞ this is constant
in g = 0. For general g, it is a polynomial in r.

Theorem 3.1 (Tseng–You). The relation is that

[〈〉XD,r ]r0 = 〈〉(X,D),

i.e. the constant term of the polynomial.

Proof. The ACW proof doesn’t generalize to higher genus. Instead, the idea is as follows.

1. The comparison is local over D, so we can degenerate to the normal cone Y := P(ND ⊕OD), by

X  X ∪D Y, XD,r  X ∪D Y(D∞,r).

Here YD∞,r is the r-th root stack of Y along ∞. By the degeneration formula,

〈〉XD,r =
∑
〈〉(X,D)〈〉(YD∞,r,D0)

〈〉(X,D) =
∑
〈〉(X,D)〈〉(Y,D0∪D∞).

The sums are exactly the same, so it remains to compare the orbifold and relative invariants for Y .

2. Localize with respect to the C× scaling on the P1 fibers of Y . There are two fixed loci: one orbifold,
one relative. The key idea is from double ramification cycles (Janda–Pandharipande–Pixton–Zvonkine,
2018), and is a polynomiality in the pushforward of the resulting Hurwitz–Hodge classes toMg,n. What
remains is a rubber integral.

In genus 0, we can actually get this without needing polynomiality. For higher genus we need to take the
constant term, which removes some extra contributions from the orbifold side.

Question: do orbifold invariants with large ages stabilize? What is the relation with relative invariants?
The answer to the first question is no! Actually 〈〉XD,r depends on r and tends to 0 when r →∞. We should
instead set

m− := #(large ages),

and look at rm−〈〉XD,r (Fan–Wu–You). In genus 0,

rm−〈〉XD,r = 〈〉(X,D) with negative contact orders.

For positive contact orders, curves in the rubber satisfy kissing conditions with the original curve ramifying
at the divisor D. If instead the curve in the rubber ramifies at D with no corresponding ramification in the
original curve, it is a negative contact order. The m− is the number of such negative contact orders. (This
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is expected to be related to the punctured GW invariants of the Gross–Seibert program, but the precise
relation is unknown.)

Using this, we get topological recursion relations, WDVV, relative quantum cohomology, Givental’s
formalism, and Virasoro constraints directly from the orbifold GW theory. The underlying state space
H =

⊕
a∈ZHa has H0 = H∗(X), for the untwisted sector, and Ha = H∗(D) when a 6= 0, for the twisted

sectors. Write [γ]i ∈ Hi. There is a pairing

([α]i, [β]j) =


0 i+ j 6= 0

α ∪ β i+ j = 0, i, j 6= 0∫
X
α ∪ β i = j = 0.

In higher genus, we do have

[rm−〈〉XD,r ]r0 = 〈〉(X,D) negative contact orders.

For this, we need to prove that rm−〈〉XD,r is a polynomial, which is not clear even from preceding results
(Fan–Wu–You). This implies a partial CohFT structure, which is the usual CohFT structure without the
loop axiom.

4 Kostya (Oct 08): Special geometry for invertible singularities
and localization in GLSM

The first paper in this direction was by Candelas, de la Ossa, Green, Parker (’91) where they computed
periods for the quintic threefold. Another later paper was by Cecotti and Vafa. We’ll generalizes to the
cases of arbitrary number of deformations, for invertible singularities.

Mathematically, the genus zero B-model corresponds to variation of polarized Hodge structure. Special
geometry is a case of this. Let X → M be a family of quasi-smooth CY 3-folds. The example worked out
first was the family

X = {
5∑
i=1

x5
i − φ

∏
xi = 0}.

This is a family over C, parameterized by φ. The special fiber at φ = 0 is the Fermat quintic. There is a
Kähler metric on M; if φa are coordinates on M, then the Kähler potential is

exp
(
−K(φa, φb)

)
=

∫
Xφ

Ωφ ∧ Ωφ

where Ω ∈ Γ(M, H3,0(Xφ)) is a family of 3-forms. The Kähler metric itself is

Gab = −∂φa∂φb log

∫
Xφ

Ωφ ∧ Ωφ =

∫
Xφ

χa ∧ χb∫
Xφ

Ωφ ∧ Ωφ
.

These χ are Beltrami (2, 1)-forms. In the case of the quintic three-fold,

Ω =
x5dx1dx2dx3

∂W (x, φ)
= Resx5=0 Resw=0

d5x

W (x, φ)
.

Pick a flat basis {pa} of H3(Xφ,Z); this is do-able because there is a canonical Gauss–Manin connection.
Let Ωφ = ωa(φ)pa by taking Poincaré duals. Then∫

Xφ

Ωφ ∧ Ωφ = ωa(φ)Cabωb(φ)
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where Cab is the intersection matrix
∫
pa ∧ pb. Usually we pick {pa} such that Cab is symplectic. Then we

introduce

Xa :=

∫
qa

Ωφ

These are projective coordinates on the moduli space. They have dual coordinates

Fa =

∫
qa−1−h2,1

Ωφ.

Then we can form the superpotential

F(X) =
1

2

∑
a

XaFa

and say Fa = ∂XaF(X).
Finally, we define Yukawa constants. These are mirror to 3-point GW invariants. In the B-model they

are computed as

Cabc =

∫
Xφ

Ω ∧ ∂φa∂φb∂φcΩ =
1

X0
∂Xa∂Xb∂XcF(X)

where ∂φ is the Gauss–Manin connection. Define

F̃(X,X) =
(
poly in X,X0

)
+X0 · F(X).

This is a superpotential defining a Frobenius manifold isomorphic to the quantum cohomology of the mirror.
What is an invertible singularity? They are natural generalizations of the quintic which do not lose many

nice properties. They are defined by equations of the type

{W (X,φ) = 0} ⊂ P5
(v1,...,v5)

inside weighted projective space. Invertible singularities are distinguished by the fact that we can write

W (X,φ) = W0(X) +
∑

e5φ5

where W0 is a sum
∑∏

j x
Mij

j of five monomials such that (Mij) is an invertible matrix. Actually most
formulas are written in terms of the inverse of this matrix. For the quintic,

exp(−K(φ, φ)) =

3∑
i=0

(−1)i
Γ((i+ 1)/5)5

Γ((4− i)/5)5

∑
n≥0

(
n+ 1

5

)5

n

φ5n+i

(5n+ i)!
.

We’ll see the general formula is similar to this.
To describe H3(Xφ), there is a certain subspace H3

poly) which stands for polynomial deformations. We
have

H3 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3

and polynomial deformations live in H2,1. In the Fermat case all deformations are polynomial. But in
general weighted projective spaces have orbifold singularities. Then the hypersurface may intersect such
singularities, and the blow-up may contribute non-trivially to H3.

The space H3
poly(Xφ) is isomorphic to the Jacobi ring Jac(W )Z/d. The Jacobi ring is the space of

infinitesimal deformations of a polynomial:

Jac(W ) =
C[x1, . . . , x5]

〈∂1W, . . . , ∂5W 〉
.
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Invertible singularities have a huge symmetry group:

W0(λ
∑
jM
−1
ij

i xi) =
∑

λi
∏
j

x
Mij

j .

If we take the λi as exponents of e2πi, then they generate symmetries. The Z/d is the diagonal subgroup
where λ1 = · · · = λ5.

Lemma 4.1 (Key lemma). For any γ ∈ Hpoly
3 (Xφ),∫
γ

Ωφ =

∫
Γ

e−W (x,φ) d5x

where Γ ∈ H5(C5,<W � 0,Q) is some Lefschetz thimble.

This lemma lets us reduce computations about the CY geometry to oscillating integrals. It is a version
of a well-known fact in singularity theory, that period integrals are the same as singularity integrals. Hence
we just need to compute ∫

Γ+
a

eW (x,φ) d5x Cab
∫

Γ−b

e−W (x,φ) d5x.

What are these cycles Γ? The space of integrands of such integrals is just Ω5(C5)/(d+ dW )Ω5(C5). This
differential comes from Stokes’ formula∫

d(eW (x,φ)α) =

∫
eW (x,φ)(dα+ dW ∧ α).

This space is isomorphic to Jac(W ). A basis {[ea]} of Jac(W ) gives a basis {[ead5x]} of this space.
For example, the whole quintic has a 101-dimensional deformation

∑
x5
i +

101∑
a=1

eaφa.

The corresponding oscillating integral is relatively easy to compute:∫
Γ

eW (x,φ)d5x =

101∑
a=1

φm1
1 · · ·φm101

101

m1! · · ·m101!

∫
eW0(x)

5∏
i=1

x
∑
smssi

i d5x.

But then we can write

xb11 · · ·x
b5
5 d5x =

5∏
i=1

(
bi mod 5 + 1

5

)
xb1 mod 5

1 · · ·xb5 mod 5
5 d5x.

(Missing notes.)

5 Gus (Oct 22): Coulomb branches and cluster algebras

Fix a reductive group G over C, and a complex representation N . Loosely speaking, the BFN construction
associates to (G,N) some sort of “generalized affine Springer theory”. The building block of this theory is
the affine Grassmannian GrG, which is the moduli of pairs (P, ϕ) where

• P is a principal G-bundle on D := SpecO := SpecC[[z]], and

• ϕ is a trivialization of P|D× .

11



A fruitful way of thinking about GrG is as the homogeneous space G(K)/G(O), where K := C((z)). It has
a stratification

GrG =
⊔
λ

Grλ, Grλ := G(O)zλ

indexed by dominant coweights λ, with

Grλ =
⊔
µ≤λ

Grµ .

From (G,N), BFN produce a “variety of triples” RG,N parameterizing triples (P, ϕ, s) where

• (P, ϕ) ∈ GrG, and

• s is a section of P ×G N such that ϕ ◦ s is regular at z = 0.

More concretely,
RG,N = {[g], s : [g] ∈ GrG, s ∈ N [[z]] ∩ gN [[z]]}.

It is roughly an affine analogue of the usual Steinberg variety of triples St = Ñ ×N Ñ . This presentation of
St gives it a convolution structure, and C× ×G act on St. A theorem by Ginzburg shows

KG×C×(St) ∼= affine Hecke(Weyl(G)).

Similarly, RG,N carries an action by G(O) n C×q , where the C×q is by loop rotation, and RG,N has a very
similar convolution structure. Hence BFN considered

AG,N := KG(O)nC×q (RG,N )

and showed it is an associative algebra which becomes commutative at q = 1. It is called the Coulomb
branch algebra for (G,N).

To understand AG,N better, we have a few tools. First, there is a forgetful map π : RG,N → GrG and we
can look at

RλG,N = π−1(GrλG).

Second, we can use equivariant localization with respect to T ⊂ G to get an algebra embedding

AG,N ↪→ Aloc
T,0.

This Coulomb branch algebra AT,0 is very explicit algebra of rational q-difference operators on KT (pt).
When λ is minuscule, we can actually compute the image of [ORλG,N ] under this map.

Theorem 5.1 (Weekes, ’19). Such classes, ranging over all minuscule coweights λ, generate AG,N as an
algebra over KG(pt), for (G,N) coming from quivers.

We can add flavor symmetry GF . If N carries an action by a larger group G̃ = G × GF , then we can
consider

KG̃(O)nC×q (RG,N ).

One place where this shows up is when we add framing vertices to the quiver.

Example 5.2. Consider the Jordan quiver, where G = GL(d) and N is the adjoint rep. Let C×t scale N .
Then

AT,0 = C〈λ±i , D
±
i 〉

d
i=1/Diλj = qδijλjDi.

Then the images of the classes [ORωi ] are∑
J⊂{1,...,d}
|J|=i

∏
r∈J
s/∈J

tλr − λs
λr − λs

∏
r∈J

Dr,

which are Macdonald operators. In this case, AG,N is exactly spherical DAHA of GLd.
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What is the physical meaning of AG,N? At q = 1, the space SpecAq=1
G,N is a component MC , called the

Coulomb branch, in the moduli of vacua of a 4d N = 2 Gc-gauge theory on R3 × S1. There are physical
expectations about these moduli of vacua. For one, expectations of line operators should give interesting
functions on MC . Gaiotto–Moore–Neitzke explain that these line operators should be described by the
cluster algebra for the BPS quiver of the theory. The 1-particle Hilbert space decomposes over the charge
lattice

H =
⊕
λ∈Λ

Hλ,

where Λ comes with a skew-symmetric Z-bilinear form.
Let’s discuss cluster algebras. Suppose we are in exactly this situation, where Λ ∼= Zd has some Z-valued

skew form (·, ·). Let {ei}di=1 be a basis in Zd, and set εij := (ei, ej). We can let εij denote multiplicities of
arrows in some quiver Q. Associated to the lattice is a quantum torus

T qΛ := Z[q±]Λ,

with multiplication
YλYµ := q(µ,λ)Yλ+µ.

(Importantly, note that this is basis-dependent: choosing a different basis gives a different quiver.) For each
node k ∈ Q, define a new basis

{e′i} = µk({ei}),

which we think of as a mutation of the old basis “in the direction k”, by

e′i :=

{
−ek i = k

ei + [εik]+ek i 6= k

where [a]+ := max(0, a). To each such mutation we want to associate a birational automorphism of the
quantum torus T qΛ , given by AdΨq(Yek ) where

Ψq(z) :=
∏
n≥0

(1 + q2n+1z)−1.

Example 5.3. Consider the quiver with one arrow and two edges. Then the quantum torus has generators
Y1, Y2 with relation

Y1Y2 = q−1Ye1+e2 , Y2Y1 = qYe1+e2 ,

and hence Y1Y2 = q−2Y2Y1. Then

µ1(Y2) = Ψq(Y1)Y2Ψq(Y1)−1 = Y2
Ψq(q2Y1)

Ψq(Y1)
= Y2(1 + qY1).

The cluster algebra CΛ = CQ ⊂ T qΛ is

CΛ := {a ∈ T qΛ : µ(a) ∈ T qΛ for all finite sequences of mutations µ}.

This seems like a very restrictive condition and it is not clear that CΛ contains more than scalars. But Fomin–
Zelevinsky proved a “Laurent phenomenon” which implies for each node i ∈ Q there exists a monomial
Ai ∈ CΛ. In the previous example, A1 = Y2 and A2 = 1/Y1. These Ai in general are called cluster
A-variables.

The relation with the BFN construction is clearest in the case G = GLn and N = 0. Bezrukavnikov–
Finkelberg–Mirkovic (BFM) studied AGLn,0 and showed it is isomorphic to an algebra Toda(n)

q , which is the

algebra of observables in the quantum difference open Toda system. Then BFZ identified Toda(n)
q with a
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cluster algebra CQn . There is a functional realization of this cluster algebra acting on Laurent polynomials
C[x±1 , . . . , x

±
n ], by

pj · f := f(q2xj).

Via this action,
HToda

1 = Y0 + Y0Y1 + Y0Y1Y2 + · · · .
There is a spectral transform (Schrader–Shapiro ’18) for the q-Toda system

W : Fun(x±1 , . . . , x
±
n )
∼−→ Funsym(λ±1 , . . . , λ

±
n )

such that
WHk = ek(λ)W

where ek is the k-th elementary symmetric polynomial. Applied to the frozen vertices in Q,

WYfrozen =

 n∑
i=1

∏
j 6=i

1

1− wj/wi
Di

W
which is the t = 0 limit of the first Macdonald operator.

Now suppose (G,N) come from a quiver Γ. Construct another (cluster algebra) quiver Q(Γ) in the
following way:

• take a copy of GLdi -Toda quiver with no frozen vertex at the bottom, for each node i ∈ Γ0 with
dimVi = di;

• for each edge e ∈ Γ1, add a new vertex to Q(Γ) which we use to glue the corresponding Toda sub-
quivers.

This recipe manifestly depends on the orientation of Γ. So now we have recipes

Γ −−−−→ AΓy Q(Γ) −−−−→ CQ

producing a Coulomb algebra and a cluster algebra associated to Γ. We know there is an embedding

CQ ↪→ Dpol({X(i)
j }

i∈Γ0

i≤j≤di).

Via the spectral transform, we can look at

AΓ −−−−→ Drat({λ(i)
j })⊗

i∈Γ0
Wdi

y
CQ −−−−→ Dpol({X(i)

j }
i∈Γ0

i≤j≤di)

and we want to fill in the lhs arrow. This is not clear because the spectral transform produces denominators.
In other words, we need to show AΓ stays Laurent under any finite sequence of mutations. It is enough to use
Weekes’ result and show it is true for minuscule monopole operators Mi associated to vertex i ∈ Γ. There is
a special case we can check by pure calculation: if there is a node i ∈ Γ which is a sink, then the monopole
operator Mi goes to a cluster A-variable which is in CQ by the Laurent phenomenon. In general, observe
that the BFN construction is independent of the orientation of the quiver Γ. If we reverse the orientation of
an edge in Γ to get Γ′, on the cluster algebra side there exists a sequence of mutations

µe : Q(Γ)→ Q(Γ′).

Hence by reversing all arrows incident to a sink i, we can mutate Mi to a cluster A-variable, and therefore
Mi ∈ CQ.

Theorem 5.4 (Schrader–Shapiro). For Γ without self loops, AΓ ⊂ CQ(Γ).
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6 Catherine (Nov 12): HMS for the complex genus two curve

Here is the statement of HMS in a special case.

• On the symplectic side, take T 2 with
∫
T 2 ω = a. Associated to it is the Fukaya category Fuk(T 2),

whose objects are Lagrangians and morphisms are their intersection points.

• On the complex side, take E = C/(Z + iaZ). Associated to it is DbCoh(E), whose objects are equiv-
alence classes of bounded chain complexes of coherent sheaves, inverting chain maps which induce
isomorphisms on homology.

Then HMS says that there is an equivalence

Fuk(T 2) ' DbCoh(E).

The way to do this is as follows. Anything one-dimensional in T 2 is Lagrangian. Take them to be indexed
by slope s and denote them by `s. For example, |`0 ∩ `1| = 1 and |`0 ∩ `2| = 2. A linear Lagrangian of slope
i is mirror to a fixed degree-1 ample line bundle to the i-th tensor power L⊗i. The homology of the complex

HF :=
CF =

⊕
∩pts pCp

∂ = 0

should match with Ext groups. For example,

HF (`0, `2) = CF (`0, `2) =
⊕

p∈`0∩`2

Cp ∼−→ H0(L2).

Counting triangles corresponds to multiplying theta functions, so actually composition agrees as well. This
was worked out by Zaslow and Polishchuk.

How does one get a mirror geometrically? For SYZ mirror symmetry, start with a symplectic manifold
equipped with Lagrangian torus fibration. Then SYZ produces a mirror as follows. Start with

L = T 2 −−−−→ My
B.

The mirror has the same base, but parameterizes (L,∇) where ∇ is a flat connection on L× C.
What if M has no Lagrangian torus fiber? By work of AAK, the idea is to embed it into something that

does, as a critical locus. Specifically, embed M as a hypersurface in a toric or abelian variety V , in which
case we denote H := M . Then consider

X := BlH×0 V × Cy.

We can do SYZ on this. The projection onto Cy has the right critical locus, namely Crit(y) = H. The
hypersurface H ⊂ V is embedded as a genus-2 curve of general type. The abelian variety is

V := (C×)2/ΓB ,

where ΓB scales norms of (x1, x2). Namely

ΓB := Z〈γ1 :=

(
2
1

)
, γ2 :=

(
1
2

)
〉

and
γ = (γ1, γ2) · (x1, x2) = (τ−γ1x1, τ

−γ2x2).
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Now take
L := (C×)2 × C/ΓB , γ · (x1, x2, v) := (γ · (x1, x2), xλ(γ)τκ(γ)v)

where κ(γ) is the associated quadratic form on ΓB , and embed V
s−→ L via the section

s :=
∑
γ∈ΓB

x−λ(γ)τ−κ(γ) =
∑

(n1,n2)∈Z2

x−nτ ···θ(· · · ).

Now look at X → C where we view

X = {(x, y, (u, v)) : s(x)v = yu}.

Looking at the structure of the exceptional fiber vs H, actually it turns out there is a semi-orthogonal
decomposition

DbCoh(X) = 〈DbCoh(V × C), DbCoh(H)〉.

What is the SYZ mirror to X? It is defined by a toric polytope of infinite type

∆Y := {(ξ1, ξ2, η) ∈ R3 : η ≥ Trop(s)(γ)}/ΓB

This tropicalization is essentially
max
γ∈Γ
〈λ(γ), ξ〉+ κ(γ).

This lattice ∆Y looks like some honeycomb lattice mod ΓB . If we take v0 := xyz, it corresponds to η. Then
the fibers over v0 are generically T 4 = V ∨, and special fibers correspond to a hexagon in the honeycomb
with edges glued, i.e. Bl3 pts CP2/ΓB .

Theorem 6.1 (C). The right vertical arrow is a fully faithful embedding

DbCoh(X)
ι∗−−−−→ DbCoh(Σ2)

⊂
y ⊂

y
H∗Fuk(V ∨)

uu-shape−−−−→ H∗FS(Y, v0),

and the diagram commutes.

Parameterize V ∨ 3 (ξ1, ξ2, θ1, θ2). Just as in Zaslow–Polishchuk, define `i to be the Lagrangian with a
certain slope:

`i := {(ξ1, ξ2, i
(

2 1
1 2

)
(ξ)}ξ∈TB .

These are topologically T 2’s. Let `∞ =: tz, which corresponds to (a1, a2, θ1, θ2) where θi ∈ [0, 2π) are allowed
to vary. It corresponds to a skyscraper sheaf Oz(a). Points in the intersection `i ∩ `j are parameterized by

(i− j)
(

2 1
1 2

)
∈ Z2,

i.e. |`i − `j | = (i − j)2. The algebra and triangle counting matches with the structure of Ext(Li,Lj) =
H0(V,Lj−i) (of rank (i− j)2). In other words,

DbCoh(V )→ Fuk(V ∨)

is a functor.
To get the picture on Σ2, we need to restrict to Σ2 ⊂ V . The Fukaya–Seidel category FS(Y, v0) has objects

which are parallel transports along u-shapes of `i, starting over −1, such that v0 outside of a compact set is
just a union of rays in <v0 > 0. Morphisms are defined by categorical localization, where one:
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1. defines

Hom(K,L) :=


CF (K,L) K > L

C · eL
0

;

2. inverts eL-quasiisomorphisms K < L.

So a morphism K → L is a roof. To identify Ext(Li,Lj) with HF (Li, Lj), consider

Hom(Li+1,Lj) ⊗s−−−−→ Hom(Li,Lj) −−−−→ Hom(Li,Lj ⊗OU ) −−−−→ 0

∼=
y ∼=

y
CFV ∨(`i+1, `j)

∂−−−−→ CFV ∨(`i, `j) −−−−→ HF (Li, Lj) −−−−→ 0.

The first two vertical arrows are isomorphisms from what we know in the abelian variety case. If one has
∂ ∝ s, then the missing last vertical arrow is also an isomorphism. (Missing notes for the argument why this
is true.)

7 Song (Nov 19): Open crepant transformation conjecture for
toric CY3 orbifolds

What is the crepant transformation conjecture? It was first proposed by Ruan in ’06. Take X to be a
Gorenstein (KX is a line bundle) orbifold and let Y → X be a crepant resolution. In this setting, the
conjecture is that

QH∗(Y ;C) ∼= QH∗CR(X;C).

Example 7.1. If M is a smooth surface, then

π : HilbnM → SymnM

is a crepant resolution.

Example 7.2 (An singularities). When n = 1, the resolution is

Y → X := C2/Z2

where Y has an extra exceptional curve.

These examples satisfy the hard Lefschetz condition, which is some condition on orbifold cohomology
involving an automorphism swapping components but preserving ages.

More generally, let X and Y be K-equivalent manifolds/orbifolds. Here K-equivalence means there is a
common resolution

X
φ←− Z ψ−→ Y

such that φ∗KX = ψ∗KY . In this case, Ruan also conjectured that there is an isomorphism

QH∗CR(X;C) ∼= QH∗CR(Y ;C).

Since the quantum product is formulated in terms of GW theory, there is a reformulation of the crepant
transformation conjecture in terms of GW theory (Bryan–Graber ’09). If π : Y → X is a crepant resolution,
the statement is that there is an identification of genus-0 GW potentials

FX0 (QX , γX) :=
∑

β∈Eff(X)

∑
n≥0

〈γX , . . . , γX〉X0,n,β
QβX
n!

and FY0 (QY , γY ). The identification is not equality, but rather:
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1. a degree-preserving linear isomorphism

H∗(Y ;C) ∼= H∗CR(X;C);

2. a relation between Novikov parameters QX and QY ;

3. some kind of analytic continuation.

Let’s look at this from the perspective of mirror symmetry. On the B-model side there is a Kähler moduli
space. We view X and Y as points pX , pY in this space, where pX is a large radius limit, where the local
coordinates qX is sent to 0. Then the two GW potentials become local solutions to some global system on
the Kähler moduli space, called the Picard–Fuchs system or the quantum D-module. It is a flat connection
on some bundle on this space. The analytic continuation corresponds to moving from pX to pY .

Known cases: An singularities (Perroni, Bryan et al, Maulik). The An case was fully proved in Coates–
Corti–Iritani–Tseng ’09. In higher genus, there is a paper by Zhou.

Another formalism is due to Givental. Consider two infinite-dimensional symplectic vector spaces. One
is HX , which is (H∗CR(X;C)[z, z−1], ωX), and similarly for X. Inside them are Lagrangian cones LX and
LY . Then in Givental’s formalism, the crepant resolution conjecture is that there is an isomorphism

U : HX
∼−→ HY

which preserves these Lagrangian cones. This can be related to K-theory by Iritani’s integral class, to form
a square

HX
U−−−−→ HYx x

KX
FM−−−−→ KY

where FM is some Fourier–Mukai transform. In this formalism, Coates–Iritani–Jiang ’17 proves the CTC
for general toric crepant transformations.

We can now consider the CTC in open GW theory. In usual CTC, we look at maps from closed Riemann
surfaces. For the open version of CTC, we look at maps from bordered Riemann surfaces (C, ∂C) into (X,L)
where X is a toric CY3-orbifold and L is a Lagrangian. The geometry of X is specified by an extended stacky
fan, which consists of:

1. a 3d lattice N ∼= Z3;

2. a simplicial fan Σ ⊂ NR;

3. a surjection β : ZR � N , thought of as a selection of vectors ei 7→ bi.

If we consider

0→ L→ ZR β−→ N → 0,

the CY condition is that there exists an affine hyperplane

N ′ = {v ∈ N : 〈v, u〉 = 1}

containing all the bi.

Example 7.3. Consider C3, with presentation1 0 0
0 1 0
1 1 1

 .

Consequently the hyperplane is N ′ = {z = 1}. Then on N ′ the fan becomes a a triangle with vertices (0, 0),
(1, 0) and (0, 1).
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Example 7.4. Consider the A1 singularity, with β : Z4 → N given by1 0 0 0
0 0 1 2
1 1 1 1

 .

Then on the hyperplane N ′ = {z = 1}, we now get a triangle with vertices (0, 0), (1, 0) and (0, 2). Hence one
of the T -invariant divisors has a Z/2 stabilizer. The extended stacky fan contains the vector (0, 1), which
resolves the singularity.

Example 7.5. For the A2 singularity, picking different β corresponds to picking different partial resolutions.
Now there are two different partial resolutions.

Example 7.6. The classical flop is given by

↔ .

The Lagrangian L is an Aganagic–Vafa brane, defined as follows. The 3-dimensional torus T acting on
X has a CY subtorus T ′. Consider the maximal compact T ′R ⊂ T ′.

1. We require that T ′R preserves L. In other words, L will be a union of orbits of T ′R.

2. We require L to intersect a unique T -invariant curve V (τ), where τ is some 2-dimensional cone in X.

If L has generic stabilizer, then we call it ineffective; otherwise it is effective. If L intersects a compact
T -invariant curve, we call it inner.

We can define open GW invariants using localization with respect to T ′R. For genus zero with one

boundary component we get disk invariants FX,L0,1 . Then the open CTC says that for a pair (X+,L+) and
(X−,L−) of toric CY3 orbifolds related by some crepant transformation, there should be an identification

F
X+,L+

0,1 ≈ FX−,L−0,1 ,

again up to some analytic continuation. This is imprecise, because it could be that a Lagrangian splits into
multiple upon some crepant transformation. Cavalieri–Ross ’13 computes both sides for the A2 case and
shows they are equal. Brini–Cavalieri–Ross ’17 prove it for An using the Givental formalism, where the disk
potentials DX and DY are viewed as automorphisms of HX and HY . In the mirror symmetry formalism,
the orbifold equivariant mirror map should send

FX,L0,1 7→WX,L(q, x)

where x is the open parameter. From physics, this should correspond to period integrals
∫

Ω̌q over the
Hori–Vafa mirror (X̌q, Ω̌q), which via dimensional reduction correspond to some integrals

∫
log y dxx over the

mirror curve Cq := {(x, y) ∈ (C×)2 : Hq(x, y) = 0.

Theorem 7.7 (F.L, F.L.T). Expand the object WX,L ∈ H∗CR(V (τ);C) as

W = Wm1 +

m−1∑
j=1

Wj1j .

Then (
x
∂

∂x

)2

W1

...
Wm

 = Ux
∂

∂x

 log k1

...
log km


where ki are solutions to Hq.
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Song’s approach is to look at X+, X− related by a single wall-crossing. In this setting there are two
scenarios: they differ by a flop, or by a (partial) resolution. On the two sides we can relate the disk
potentials W+ and W−. Via mirror symmetry, the potentials can be related to local coordinates on the
mirror curves C+

q and C−q . The observation is that these two mirror curves fit into a global family of mirror
curves C over the Kähler moduli space. Then matching the disk potentials is just analytic continuation of
coordinates on C.

8 Renata (Nov 26): Stable maps with p-fields on smooth projec-
tive varieties

Let X be a smooth projective variety of dimension n over C, and let E → X be a rank-r vector bundle. Pick
a section s ∈ Γ(X,E) cutting out some Z ⊂ X, such that s intersects the zero section transversely. Then Z
is smooth projective of dimension n− r. The goal is to relate the Gromov–Witten theory on X to that of Z.

One example of this is when X = P4 and E = OX(5). Then Z = Z(
∑
x5
i ) is a quintic threefold. Being

able to relate GW(Z) with GW(X) means we can use techniques on P4 on Z.
Some notation: fix a genus g, number of marked points n, and a curve class β ∈ H2(X,Z). The moduli of

stable maps is denoted X :=Mg,n(X,β), with universal curve CX → C. Let evX : CX → X be the universal
evaluation. Similarly, let

Z :=
⋃

i∗β′=β

Mg,n(Z, β′).

Then i : Z ↪→ X induces i : Z → X . Let M := Mprestable
g,n , so that both moduli spaces have forgetful maps

to M compatible with i. Since GW invariants come from integrating against a virtual cycle, we want to
compare virtual cycles on Z and X .

We briefly recall how to construct [X ]vir. Recall that the tangent-obstruction theory is

ĚX/M := R•πX ,∗ ev∗X TX .

The virtual class then arises as
[X ]vir = 0!

EX/M
([M]),

where EX/M = h1/h0(ĚX/M) is the vector bundle stack containing the normal cone CXM. It turns out
that the morphism Z → X has tangent-obstruction theory

ĚZ/X = [0→ i∗R0πX ,∗ ev∗X E → i∗R1πX ,∗ ev∗X E].

From now on, write EX := ev∗X E. If
R1πX ,∗ ev∗X E = 0,

then this is perfect in [0, 1] and EZ/X = h1/h0(ĚZ/X ) =: Ed is an actual vector bundle. This condition is
called convexity and happens in genus-0 under good assumptions. Then

i∗[Z]vir = ctop(πX ,∗EX ) ∩ [X ]vir,

first shown by Kim, Kresch, and Pantev.
In general, R1πX ,∗EX does not vanish, so we need to take it into account to define the “E-twisted” theory

on X . One way to do so is to look at

Mg,n(X,β)p =: XE := SpecX (SymR1π∗EX ).

Note that R1π∗ commutes with base change, since π is flat of dimension 1. So objects in XE are ((C, x), f, p)
where:

• (C, x) is a marked prestable curve;
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• f : C → X is a stable map;

• p ∈ H0(f∗E∨ ⊗ ωC) is a p-field.

Then X ⊂ XE as the zero locus {p = 0}. The locus Z ⊂ XE is no longer a zero section of a vector bundle
as before, but rather is a degeneracy locus of a cosection.

There is a construction of cosection-localized virtual classes, due to Kiem and Li. If M is a DM stack
with some perfect obstruction theory EM , a cosection is a map

ObM := h1(ĚM )→ OM .

We can define cosection-localized intrinsic normal cones and cosection-localized Gysin pullback, and use
them to define

[M ]vir
σ ∈ A∗(D(σ))

where D(σ) is the degeneracy locus

D(σ) := {x ∈M : σ|x is not surjective}.

This cosection-localized virtual class has virtual dimension equal to the virtual dimension of M , and:

• has good functorial properties;

• has a notion of torus localization;

• has a relative construction.

These properties were proved later, in a paper by Chang, Kiem and Li. So we can find EXE and σ such that

D(σ) = Z ⊂ XE .

This gives a cosection-localized virtual class

[XE ]vir
σ ∈ A∗(Z).

Theorem 8.1.
[XE ]virσ = (−1)

∫
β
c1(E)+r(1−g)[Z]vir.

This has been proved for:

• (X,E) = (P4,O(5)) by H.L. Chang and J. Li;

• (X,E) = (Pn,
⊕r

i=1O(di)), i.e. complete intersections, by H.L. Chang and M.L. Li;

• for quasimaps in these two settings by Kim and Oh;

• X a smooth projective DM stack (and also quasimaps) by Chen, Janda and Webb.

Proof. We’ll give an alternate approach. The idea is to work relative to

B = BunGLr
g,n,d := {((C, x), F ) : F ∈ Bun(GLr) of degree d}

where d =
∫
β
c1(E). On top of B lies

EB → CB → B,

arising from the pullback from M of CM and EM. There is a map

X → B, ((C, x), f) 7→ ((C, x), f∗E)
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which only remembers the pullback of E. The diagram

EX −−−−→ EBy y
CX −−−−→ CBy y
X −−−−→ B

is Cartesian. The perfect obstruction theory comes from studying the automorphisms/deformations of the
pair E → X. It turns out these are represented by the Atiyah extension AE , defined as

0→ End(E)→ AE → TX → 0.

The map AE → TX sends the Atiyah class to the usual Kodaira–Spencer class. Then

ĚX/B = R•πX ,∗ ev∗X AE .

This is compatible with the usual tangent-obstruction theory ĚX/M. Hence we can define

[X ]vir := 0!
EX/B

([B])

and this will agree with the usual virtual fundamental class on X . Consequently, we can split

ĚXE/B = π∗XE/XR
•πX ,∗(ev∗X AE ⊕ ωπ).

Note that XE is not proper, so it does not have a virtual class, but we can get a cosection-localized class.
The section s ∈ H0(X,E) gives a map δs : AE → E. It induces

ev∗X AE → ev∗X E = EX .

Hence there is an induced
ev∗X AE ⊕ E∨X ⊗ ωπ → EX ⊕ E∨X ⊗ ωπ → ωπ.

To get the cosection, we take R1πX ,∗ of this. One can check that the cosection vanishes for f∗s = 0 and
p = 0, which is exactly Z.

Now to compare the two virtual classes, we can use deformation to the normal cone to turn Z ↪→ X
into Z ↪→ CZX = E|Z . Under this deformation, the moduli X deforms to N , which is the moduli of stable
maps to E|Z . Equivalently, it is the moduli of stable maps to Z with the additional choice of a section
q ∈ H0(C, f∗E|Z). Similarly, XE deforms to NE . The perfect obstruction theory of XE deforms to a nice

ĚNE/B = π∗
(
ĚZ/B ⊕R0πZ,∗(E∨Z ⊗ ωπZ ⊕ EZ)

)
where EZ := ev∗Z E|Z . We also need to deform the cosection; it becomes, on points,

σ|Z : H1(C, f∗E|∨Z ⊗ ωC)⊕H1(C, f∗E|Z)→ H1(ωC) = C
(ṗ, q̇) 7→ 〈p, q̇〉+ 〈ṗ, q〉.

It is easy to see then that D(σ) = Z ⊂ NE . By deformation-invariance of cosection-localized virtual classes,

[XE ]vir
σ = [NE ]vir

σ ∈ A∗(Z).

But there is a natural torus action on NE which we can use to study [NE ]vir
σ . Using it, we can compare

[NE ]vir
σ and [Z]vir.
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Let T := C× act on E by scaling fibers (diagonally, with weight 1). It lifts to NE , with (NE)T = Z. All
constructions so far were equivariant. The cosection on the fixed locus is trivial, so torus localization says

[NE ]vir
σ =

[Z]vir

eT (Nvir
Z/NE )

.

This Euler class can be explicitly computed using our previous description of Nvir
Z/NE :

eT (Nvir
Z/NE ) =

eT (H0(E|Z ⊕ E|∨Z ⊗ ωC))

eT (H1(E|Z ⊕ E|∨Z ⊗ ωC))
.

If we set F = H0(E|Z) and G = H1(E|Z), then this is just

eT (F ⊕ G∨)

eT (F∨ ⊕ G)
= (−1)χ(f∗E|Z).

By Riemann–Roch, χ(f∗E|Z) =
∫
β
c1(E) + r(1− g).

9 Qile Chen (Dec 03): Logarithmic gauged linear sigma model

(This is joint with Felix Janda and Yongbin Ruan.)

Definition 9.1. In log geometry we are interested in pairs X := (X,MX). Such a pair is a log scheme
(or log stack) if:

1. X is a scheme (or a stack);

2. MX is a sheaf of monoids such that

• there is a structure morphism α : MX → (OX , ·),
• α−1O∗X

α−→ O∗X is an isomorphism.

A morphism f = (f, f [) is a morphism f : X → Y along with a morphism of log structures

f∗MY
f[−→MX

compatible with the structure morphisms f∗αY and αX .

The definition is designed in such a way that the log structure keeps track of the boundary, where elements
of MX are not invertible.

Example 9.2. For any scheme, take X = (X,O∗X), called the trivial log structure.

Example 9.3. For any smooth scheme X and smooth divisor D ⊂ X, the divisorial log structure is

M := {f ∈ OX : f |X\D ∈ O∗}.

This forms a sheaf of monoids under multiplication and has a natural injection into OX .

The dream of log GLSM is to start with a non-compact (DM-type morphism) P◦ → BC∗W and compactify
it as follows. There is a universal line bundle LW → BC×W , and let

W : P◦ → LW

be the superpotential. We would like a space
P ⊃ P◦

such that P→ BC×W is proper DM, and also that ∂P := P \P◦ is nice, namely it defines a log structure on
P. The superpotential W should extend to W : P→ LW .
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Definition 9.4. A log R-map is a commutative triangle

P

C BC×W

S

ωlog
C/S

f

where C → S is a family of prestable curves.

Without the BC×W , this is just the usual theory of stable maps.
The reality is as follows. Fix a projective DM stack X , a vector bundle E :=

⊕
i>0 Ei over X , a line

bundle L over X , and r ∈ Z>0. The target is

Py
X −−−−→ BGm = BC×Ry yr-th root

BC×W ×X
LW�L−−−−→ BGm

where the log stack P is

P := Pw
(⊕
i>0

E∨i,X ⊗ LiX ⊕O

)
with boundary ∞P defined by the vanishing of the last coordinate. The Pw means to weigh the projec-
tivization by a weight w, chosen as follows. Let d := gcd(i : Ei 6= 0) and pick a ∈ (1/d)Z>0. Then the i-th
factor has weight a+ i, and the last factor has weight 1. The freedom to choose this weighing affects certain
multiplicities at ∞P.

There are two classes of examples: p-fields, and FJRW theory.

Example 9.5 (r-spin). Here X = pt and E = E1 = L = C. Then a log R-map is a morphism C → BC×W
inducing

P(LX ⊕O) P(LC ⊕O)

BC×R = X

BC×W C

r-th root

ωlog

In other words, it is such a morphism with a section C → P(LC ⊕O).

Example 9.6 (p-fields). Here X = P4 and E = O(5) and r = 1. Then a log R-map is a morphism C → BC×W
along with a section C → P(h∗O(−5)⊗ ωlog ⊕O).

Definition 9.7. A log R-map is stable if:

1. f is representable;

2. (ωlog)1+δ ⊗ f∗H⊗k ⊗ f∗O(ar∞P) > 0.
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Example 9.8 (Line bundle). If E is a line bundle, the condition (2) is equivalent to

ωlog ⊗ f∗H⊗k ⊗ f∗O(m0P) > 0

for k � 0 and m � 0 since we just have a P1 bundle and it doesn’t matter whether we use 0 or ∞. Note
that without the last term, this is the usual stability condition for Gromov–Witten.

Let Rg,c(P, β) be the stack of stable log R-maps with fixed discrete data β.

Theorem 9.9. R := Rg,c(P, β) is a proper DM stack with a natural perfect obstruction theory.

However [R]vir is not the one we want. To simplify the story, let’s assume there are no markings at all.
The natural deformation theory comes from applying R1π∗ to

f∗TP◦/BC×W
dW−−→ f∗LW = ω.

This yields a Kiem–Li cosection σ : Ob → O. Kiem–Li tells us that [R0]vir is represented by a Chow cycle
[R0]σ supported on

{σ = 0} = R(Crit(W )),

which is proper. The problem is that this mysterious cycle [R0]σ is hard to compute. The solution is to
study how the cosection extends to the compactification R.

Theorem 9.10. There exists a proper surjective log étale morphism

φ : U → R

such that:

1. it is an isomorphism over R◦;

2. U has a natural perfect obstruction theory such that

φ∗[U ]vir = [R]vir;

3. U has a reduced perfect obstruction theory such that

[U ]red = [R0]σ;

4. the boundary ∆U := U \R◦ has a reduced perfect obstruction theory such that

[U ]vir = [U ]red + ar[∆U ]red,

where ar is the order of the pole of W along ∞P.

Example 9.11 (p-fields). Recall X = P4 and E = O(5) and W ∈ Γ(E). Equivalently, W is a function
Tot(E∨)→ C. Choose a generic section so that the zero locus is a smooth quintic. Then

Crit(W ) = Y := {W = 0} ⊂ P4.

We know there is a moduli of stable maps Mg(Y, β) to the quintic, and people have proved that

[Mg(Y, β)]vir = (±1)[R0]σ.

This construction tells us the rhs can be written in two ways:

[R0]σ = [U ]red = [U ]vir − ar[∆U ]red.

The usual virtual class on Y has little symmetry, but [U ]red has non-trivial C×-action.
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10 Clara (Dec 10): Degenerations

Today we’ll talk about the stack of expanded degenerations and the stack of expanded relative pairs. There
are many reasons we care about such things:

1. degeneration/gluing formulas;

2. invariants for singular targets.

The theory was first described in Jun Li’s “Stable morphisms to singular schemes and relative stable mor-
phisms” (2001).

Motivation 1. We want to compute invariants (e.g. GW or DT) of smooth targets. To do so, we look at
relative invariants of pairs (Y,D), where Y is an ambient space and D ⊂ Y is a smooth divisor. The rough
setup is a family W → C where C is a connected curve, such that Wt is smooth for t 6= 0 but W0 = Y1tD Y2.
From this we get two pairs (Y1, D1), (Y2, D2), for which we should have

GW(Wt) = GW(Y1, D1) ·GW(Y2, D2).

Motivation 2. The family W → C gives rise to moduli spaces Mg,n(Wt, β). When t 6= 0, these spaces
have virtual classes, computable invariants, etc. We get a family⋃

t 6=0

Mg,n(Wt, β)→ C \ 0.

The naive idea is to insert Mg,n(W0, β) over 0 ∈ C. But this is missing a perfect obstruction theory. Jun
Li’s idea is to create an Artin stack M of expanded degenerations, such that Mg,n(M, β) has a perfect
obstruction theory.

Setup. The remainder of the talk will describe degenerations in the special case of a family π : W → A1,
where:

1. Wt is smooth for t 6= 0;

2. W0 is reducible with a normal crossing singularity;

3. in the normalization, we get two isomorphic copies of the singular locus D.

The guiding example will be the family

π : A2 → A1, (t1, t2) 7→ t1t2.

When t 6= 0, the fiber is C×, and when t = 0 we get {t1t2 = 0}. The idea of the degeneration space is:

1. away from the singular fiber, do nothing;

2. at the singular fiber, insert projective bundles over the divisor.

In general, the projective bundle is ∆ = P(1D ⊕ ND2/Y2
). In the guiding example, ∆ = P1. There are

distinguished divisors
D− = P(1D ⊕ 0), D+ = P(0⊕ND2/Y2

).

The Y1 and Y2 are glued to ∆ along D±. Iterating this process yields a chain of P1’s attached to Y1 and Y2.
Q: how do we construct the whole degeneration? Generally, W [n] is a desingularization of W ×An An+1,

where we take the map

An+1 → An, (t1, . . . , tn+1) 7→ (t1, . . . , tn−1, tntn+1).

The result will be a family W [n]→ An+1. So to understand W [1] we need a map W [1]→ A2.
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Step 1. Pull everything back to A2, via

W ×A1 A2 −−−−→ Wy y(x,y) 7→xy

A2 (t1,t2)7→t1t2−−−−−−−−→ A1

In our specific example,
W ×A1 A2 = SpecC[x, y, t1, t2]/(xy − t1t2),

and D × 0 = (0, 0, 0, 0).

Step 2. Blow up D × 0 in W ×A1 A2. Of course,

BlD×0(W ×A1 A2) ⊂ Bl0 A4 = OP3(−1).

We just need to restrict this to W ×A1 A2, to get

OP3(−1)|{xy−t1t2} = OP1×P1(−1,−1),

via the Segre embedding

P1 × P1 → P3, ([a0 : a1], [b0 : b1]) 7→ [a0b0 : a1b0 : a0b1 : a1b1].

We label these two P1’s as P1
1 and P1

2. We can choose a P1 to contract; we’ll choose P1
1. This yieldsOP1(−1)⊕2,

which can be checked either via the toric diagram, or by explicitly computing

Spec Symπ2∗ (π∗1OP1(1)⊗ π∗2OP1(1)) .

Explicitly, in coordinates, the maps to A2 are

OP1×P1(−1,−1)
([a0:a1],[b0:b1],ξ) 7→([b0:b1],a0ξ,a1ξ)−−−−−−−−−−−−−−−−−−−−−−→ OP1(−1)⊕2y y([b0:b1],η1,η2) 7→(b0η1,b1η2)

A2 −−−−→ A2.

Hence we get a family

W [1] = OP1(−1)⊕2 → A2, ([b0 : b1], η1, η2) 7→ (b0η1, b1η2).

Properties. Now we should convince ourselves that this W [1] is actually what we wanted. Over 0 ∈ A2,

W [1]×A2 0 = {([b0 : b1], η1, η2) : b0η1 = b1η2 = 0}.

This is exactly Y1 and Y2 pulled apart, with a P1 between them. Over the t1-axis,

W [1]×A1 A2 −−−−→ W [1]y y
A1 −−−−→ A2,

and when t 6= 0 we get

W [1]×A2 A1 = {([b0 : b1], η1, η2) : b0η1 = t, b1η2 = 0}.

Hence this is a smoothing of the node connecting P1 and Y1. Similarly, over the t2 axis, we smooth the other
node connecting P1 and Y2. Away from the axes, we just have a C×.
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Constructing W [2]. The idea is to start with W [1]→ A2 and project

W [1]→ A2 pr2−−→ A1

where pr2 is projection to the second coordinate. Over 0,

W [1]×A1 0 −−−−→ W [1]y y
0 −−−−→ A1,

we have
W [1]×A1 0 = {([b0 : b1], η1, η2) : b1η2 = 0}.

The singular locus in here is
D1 = {([1 : 0], η1, 0)} ⊂W [1].

Away from 0, we just get C2. Then we can write a diagram

W [1]×A1 A2 −−−−→ W [1]y yπ V
A3 (id,m)−−−−→ A2

pr23

y ypr2

A2 −−−−→ A1

and repeat the construction along the bottom row. Globally, one does an analogous construction along the
middle row.

Stack of relative stable pairs. This is “half” of a stack of expanded degenerations, because in the end
we want to take two stacks of relative stable pairs and glue them back together. The setup is as before:
D ⊂ Z smooth. We expand along D as before, and insert projective bundles over D. For example, given
(Y,D) = (A1, 0), we should have a nodal curve as Y [1]×A1 0. In general, we want to get (Y [n], D[n]).

1. Start with a family (Y × A1, D × A1).

2. Set Y [1] := BlD×0(Y × A1), and let D[1] be the proper transform of D × A1 in this blow-up.

For (Y,D) = (A1, 0), we get
BlD×0(Y × A1) = OP1(−1),

and D[1] = {([0 : 1], η)}. Note that the map defining W [1]→ A1 is

OP1(−1)→ A1, ([b0 : b1], η) 7→ b1η.

On the affine open U0 ⊂ P1,
OP1(−1)|U0

= {([1 : a], η) : a, η ∈ C}

and the map is
OP1(−1)|U0

→ A1, (a, η) 7→ aη.
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