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Chapter 1

Motivation

1.1 Primes p = x2 + ny2

Which primes p can be written as the sum x2 + y2 of two squares? For p 6= 2, it turns out p = x2 + y2 iff
p ≡ 1 mod 4. Fermat discovered this phenomenon. Similarly,

2 6= p = x2 + 2y2 ⇐⇒ p ≡ 1, 3 mod 8

3 6= p = x2 + 3y2 ⇐⇒ p ≡ 1 mod 3

2, 5 6= p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 mod 20.

These results are really phenomena of class field theory. Let’s reinterpret them in terms of number fields.
Write

p = x2 + y2 = (x+ iy)(x− iy) ∈ Z[i],

the ring of integers of the number field Q(i). So p = x2 + y2 implies the ideal (p) = p1p2 decomposes in Z[i].
In general, for the results above, we work with the number field k := Q(

√
d) for d ≡ 0, 1 mod 4, called the

discriminant of K. These are three possibilities:

(p) =


p1p2 (split), x2 ≡ d mod p has solution

p (inert), x2 ≡ d mod p has no solution

p2 (ramified), p÷ d.

In other words, the splitting behavior of p in K = Q(
√
d) is controlled by solving the equation x2 ≡ d mod p.

Define the Legendre symbol

(
d

p

)
:=


+1 x2 ≡ d mod p has solution

−1 x2 ≡ d mod p has no solution

0 p | d,

and recall Gauss’s quadratic reciprocity:(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 ∀p, q odd primes.

Something miraculous is happening here. If we want to solve x2 ≡ q mod p, this is somehow related to
solving x2 ≡ p mod q. In a real problem, q is fixed and often very small, so this second equation is much
simpler. For example, (

−3

p

)
= +1 ⇐⇒ x2 ≡ p mod 3 ⇐⇒ p ≡ 1 mod 3,
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and this is exactly the congruence condition for p = x2 + 3y2. The motivation of class field theory (CFT)
is to generalize this picture. Namely, given a number field K, relate the splitting behavior of p in K to some
congruence condition on p. Some examples:

p splits in Q(
√
−5) ⇐⇒ p ≡ 1, 3, 7, 9 mod 20

p splits in Q(
√
−5, i) ⇐⇒ p ≡ 1, 9 mod 20

p splits in Q(ζ5) ⇐⇒ p ≡ 1 mod 5.

However, whether there is a congruence condition for whether p splits in Q( 3
√

2) is unknown. One key
difference between this example and the above three examples is whether K/Q is Galois. In addition, the
Galois closure of Q( 3

√
2) is Q( 3

√
2, ζ3), which has Galois group S3 over Q. This is not abelian, whereas the

other examples are.

Definition 1.1.1. A field extension L/K is abelian if L/K is Galois and has abelian Galois group Gal(L/K).

Class field theory studies abelian extensions, for which we can always obtain congruence relations de-
scribing the splitting of primes. It gives a vast generalization of quadratic reciprocity called Artin reciprocity.

1.2 A special case of CFT

Recall that the class group ClK of a number field K is

ClK := {fractional ideals of K}/K×.

Eventually we want to understand all abelian extensions of K, but for now let’s look at those which are
unramified, i.e. all the primes of K stay unramified.

Definition 1.2.1. A finite unramified abelian extension L/K is a class field for a subgroup H ⊂ ClK if

p splits in L/K ⇐⇒ [p] ∈ H ⊂ ClK .

Theorem 1.2.2. Given a subgroup H ⊂ ClK , the class field for H exists and is unique. Moreover, any
finite unramified abelian extension arises as a class field.

Hence there is a bijection

{unramified abelian extensions L/K} ↔ {subgroups H ⊂ ClK}.

This bijection is called the Artin reciprocity map. In particular, Gal(L/K) ∼= ClK /H, and p splits in L/K
iff [p] is trivial in ClK /H.

Example 1.2.3. For K = Q(i),Q(
√
−2),Q(

√
−3), the class group ClK is trivial, so there is only the trivial

unramified abelian extension. For K = Q(
√
−5), the class group is ClK = Z/2. Hence there are the trivial

and the maximal unramified abelian extensions. The maximal one has degree 2.

Definition 1.2.4. The maximal unramified abelian extension of K is called the Hilbert class field of K,
denoted HK . In particular, Gal(HK/K) = ClK , i.e. H trivial.

Example 1.2.5. For K = Q(i), the Hilbert class group is the trivial extension, so HK = K. For K =
Q(
√
−5), the Hilbert class group has degree 2, so HK = Q(

√
−5,
√
d) for some d. Since HK must be

unramified over K, we must have d = −1. So HK = Q(
√
−5, i).
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1.3 Back to p = x2 + ny2

We know already that
p = x2 + ny2 =⇒ p splits in K = Q(

√
−n).

Example 1.3.1. Let n = 5. We stated earlier that

p splits in K = Q(
√
−5) ⇐⇒ p ≡ 1, 3, 7, 9 mod 20.

If K had class number one, then every ideal is principal, so this would be precisely the condition for
p = x2 + ny2. But in this case K does not, and 3 and 7 are not valid congruence classes. The failure is that
in the factorization p = p1p2, the ideals p1, p2 may not be principal.

Theorem 1.3.2. p1, p2 are principal iff p1, p2 split in HK .

So we see that p = x2 +5y2 iff p splits in HK = Q(
√
−5, i). This is again an unramified abelian extension,

from which we get the congruence condition p ≡ 1, 9 mod 20.

Example 1.3.3. If we try to do the same for p = x2 + 14y2, we find that ClK = Z/6, and HK/Q is
non-abelian (even though by definition HK/K is abelian). There is no simple congruence criterion in this
case.
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Chapter 2

Local Fields

Suppose we want to study the number field Q. Then we can take a larger field, e.g. R, such that Q ↪→ R. If
we want to study arithmetic problems in Q, we can study them in R instead. But of course this loses a lot
of information. So we construct local fields Qp for each prime p to recover this information. We call Q a
global field, so that it embeds into each of its local fields. Local fields are much simpler.

2.1 Absolute values and valued fields

Definition 2.1.1. Let K be a field. An absolute value or valuation on K is a function | · | : K → R such
that:

1. |0| = 0 and | · | : K× → R>0 is positive;

2. |xy| = |x||y| (so | · | : K× → R>0 is a group homomorphism);

3. (triangle inequality) |x+ y| ≤ |x|+ |y|;

Call (K, | · |) a valued field.

Example 2.1.2. The usual absolute value on R induces an absolute value on Q. In general, given a number
field K, any real or complex embedding of K induces an absolute value on K:

1. for σ : K ↪→ R, define |x|σ := |σx|;

2. for σ : K ↪→ C, define |x|σ := |σx|2 (called the normalized absolute value).

Definition 2.1.3. A valuation | · | on K is called non-archimedean if it satisfies the stronger condition

3’. (ultrametric inequality) |x+ y| ≤ max{|x|, |y|}.

Otherwise, say | · | is archimedean.

Remark. Recall the archimedean property of R: given 0 6= x ∈ R, then |nx| > 1 for some n ∈ Z. A
non-archimedean valuation fails to satisfy the archimedean property, since |nx| ≤ |x| by the ultrametric
inequality.

Example 2.1.4. For 0 6= a ∈ Q, define ordp(a) to be the power of p in the factorization of a ∈ Z (i.e.
a =

∏
p p

ordp a). Then ordp(a + b) ≥ min{ordp(a), ordp(b)}. So define |a|p := cordp(a) for some constant
0 < c < 1. Then | · |p is an absolute value on Q, called the p-adic valuation. If we choose c = 1/p, it is the
normalized p-adic valuation.
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Remark. For a general number field K and a prime p ⊂ OK , we can define a p-adic valuation

|a|p := (Np)ordp a

where Np is the norm of p, and ordp a is the order of p in the factorization of the principal ideal (a). These
are all non-archimedean.

Definition 2.1.5. The valuation |·| is discrete if |K×| ⊂ R is a discrete subgroup (under the usual topology
on R). All these p-adic valuations are discrete.

Definition 2.1.6. Assume | · | is discrete and non-archimedean. Define

A := {x ∈ K : |x| ≤ 1} ⊂ K a subgroup

U := {x ∈ K : |x| = 1} ⊂ K× a subgroup

m := {x ∈ K : |x| < 1} ⊂ A an ideal.

Note that A is a DVR, and therefore a PID with only one non-zero prime ideal m = (π) for some π ∈ A.
The structure of A is therefore very simple.

Remark. An absolute value defines a metric d(x, y) := |x − y| and therefore a topology. A basis of open
neighborhoods of a ∈ K is given by

B(a, r) := {x ∈ K : d(x, a) < r}.

Example 2.1.7. Let K = Q and | · | = | · |p. Then x, y ∈ Q are “closer” iff ordp(x− y) is “large,” i.e. x ≡ y
mod a “high” power of p.

Definition 2.1.8. We say two absolute values on K are equivalent if they define the same topology (e.g.
| · | ∼ | · |α for every α ∈ R). An equivalence class of absolute values on a number field is called a prime or
a place.

Theorem 2.1.9 (Ostrowski, 1916). There are only the following valuations on Q:

1. | · |∞ (the usual archimedean valuation);

2. | · |p where p runs over primes.

Remark. We call | · |∞ the infinite prime/place, and | · |p the finite prime/place.

Proof. Let m,n > 1 be integers. Let N = max{1, |n|}. The claim is that |m| ≤ N logm/ logn. Then there are
two cases.

1. (|n| > 1 for all n) In this case, |m| ≤ |n|logm/ logn. Then |m|1 logm ≤ |n|1/ logn. By symmetry, this is
an equality, so let

c := |m|1/ logm = |n|1/ logn.

Then |m| = clogm = mlog c, which is just the usual archimedean valuation raised to some power log c.
Hence |m| ∼ |m|log c

∞ .

2. (|n| ≤ 1 for some n) In this case, the claim shows |m| ≤ 1 for all m. Then

|x+ y|k ≤
k∑
r=0

∣∣∣∣(kr
)∣∣∣∣ |x|k−r|y|r ≤ (k + 1) max{|x|, |y|}k.

This implies |x+ y| ≤ (k + 1)1/k max{|x|, |y|}. As k →∞, we get |x+ y| ≤ max{|x|, |y|}. Hence | · | is
non-archimedean. Now consider its valuation ring A and maximal ideal m. Then Z ⊂ A, so m∩Z ⊂ A
is a prime ideal. So m ∩ Z = (p) for some prime p. Hence |m| = cordp(m), i.e. |m| ∼ |m|p.
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To prove the claim, write m = a0 + a1n+ a2n
2 + · · ·+ arn

r where 0 ≤ ai ≤ n− 1. The triangle inequality
gives

|m| ≤
r∑
i=0

|ai||n|i ≤ n(1 + |n|+ · · ·+ |n|r) ≤ n(1 + r)Nr.

But the base-n expansion of m has at most logm/ log n terms. Hence

|m| ≤ n
(

1 +
logm

log n

)
N logm/ logn.

To eliminate the constant, replace m by mk. Then taking the k-th root of both sides,

|m| ≤ n1/k

(
1 + k

logm

log n

)1/k

N logm/ logn.

As k →∞, the constant term now goes to 1.

Remark. A similar theorem holds for any number field K. There are three types of places:

1. | · |σ for real embeddings σ : K ↪→ R;

2. | · |σ for complex embeddings σ : K ↪→ C, which are equivalent for conjugate pairs;

3. | · |p where p runs over all prime ideals of OK .

Theorem 2.1.10 (Product formula). Let K be a number field, and α ∈ K×. Then using the normalized
valuations, ∏

v place of K

|α|v = 1.

Proof. Suppose K = Q. Note that |α|v 6= 1 iff ordp(α) 6= 0, which happens only at finitely many primes.
Hence the product is a finite product. Because

∏
v | · |v : Q→ R× is still a group homomorphism, it suffices

to check the following.

1. (
∏
v |p|v = 1 for primes p) Note that |p|p = 1/p, |p|∞ = p, and |p|l = 1 for other primes l.

2. (
∏
v | − 1|v = 1) | − 1|p = 1, and | − 1|∞ = 1.

2.2 Completions

Definition 2.2.1. Say a sequence {an} of elements in a valued field K is a Cauchy sequence if for every
ε > 0, there exists N such that for all m,n ≥ N ,

|am − an| < ε.

Say K is complete if any Cauchy sequence has a limit in K.

Example 2.2.2. Consider the sequence

4, 34, 334, 3334, 33334, . . . .

Under the archimedean absolute value, this does not converge. But under | · |5,

|am − an|5 = 5−n if m ≥ n.

So an is Cauchy under | · |5. Since we have |3an − 2|5 = 5−n, we get 3an − 2→ 0, so an → 2/3 under | · |5.
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Theorem 2.2.3. Let K be a valued field. Then there exists a complete valued field K̂ and a homomorphism
K → K̂ such that the absolute value on K̂ extends the absolute value on K and is universal: for every other
complete L which extends the absolute value on K, the morphism K → L factors uniquely through K̂.

Proof. Define K̂ to be all Cauchy sequences in K mod the equivalence {an} ∼ {bn} if |an − bn| → 0. Then
K̂ has a field structure by term-wise operations, and define |{an}| := lim |an|. The map K → K̂ is given by
a 7→ (a, a, a, . . .).

Definition 2.2.4. Define Qp to be the completion of Q under | · |p. The valuation ring of Qp is denoted Zp.
More generally, if K is a number field and p is a prime in OK , define Kp to be the completion of K under
| · |p, and its valuation ring is denoted OK,p. These are all complete discrete non-archimedean fields.

Definition 2.2.5. Let K be a discrete nonarchimedean field. Some notation:

K ⊃ A := {x ∈ K : |x| ≤ 1} ⊃ m

K̂ ⊃ Â := {x ∈ K̂ : |x| ≤ 1} ⊃ m̂.

Note that A/m ∼= Â/m̂ is always an isomorphism. We will implicitly make this identification from now on.

Theorem 2.2.6. Let S be a set of representatives of A/m. Let m = (π), where π is called the uniformizer.
Then every element of K̂ can be uniquely written as∑

i≥k

aiπ
i, k ∈ Z, ai ∈ S.

Proof. Let 0 6= x ∈ K̂. We can find y ∈ Â× and k ∈ Z such that x = πky. So it suffices to write y in such a
form. Since y ∈ Â, find a unique a0 ∈ S such that

y ≡ a mod m.

Then y − a0 ∈ πÂ. Now repeat this process with (y − a0)/π to get a unique a1 ∈ S, then a2 ∈ S, etc.

Example 2.2.7. Let K = Qp. Then each element has a p-adic expansion
∑
i≥k aip

i with 0 ≤ ai ≤ p − 1,

e.g. a−5p
−5 + a−4p

−4 + · · · . The elements ai are called p-adic digits.

Example 2.2.8. Suppose p = 2 and consider 1+2+22+23+· · · . This series converges to limn→∞ 2n+1−1 =
−1 ∈ Q2.

Theorem 2.2.9 (Hensel’s lemma). Let K be a complete discrete non-archimedean field with residue field
k := A/m. Suppose f(x) ∈ A[x], and let f̄(x) = f(x) mod π ∈ k[x]. Assume f̄ = g0h0 in k[x] where g0, h0

are monic and coprime. Then there exist g, h ∈ K[x] such that f = gh in K[x] and ḡ = g0 and h̄ = h0.

Proof. Pick an arbitrary lift of g0, h0 to A[x]. Then

f − g0h0 ∈ πA[x],

i.e. they agree “up to the first digit.” We will inductively increase the precision. Assume there exist gn, hn
such that ḡn = g0 and h̄n = h0 and f − gnhn ∈ πn+1A[x]. Write

gn+1 := gn + πn+1u, hn+1 := hn + πn+1v

where deg u < deg g0 and deg v < deg h0 to preserve the property of being monic. Hence we want

πn+1uhn + πn+1vgn = f − gnhn mod πn+2.

Rearranging, this is equivalent to wanting

uhn + vgn =
f − gnhn
πn+1

mod π,

i.e. we want this equality in k[x]. By Bezout’s theorem, u and v exist.
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Corollary 2.2.10. If f̄(x) has a simple root α ∈ k, then f(x) has a root β ∈ A such that β̄ = α.

Corollary 2.2.11. If K is complete discrete nonarchimedean and k = Fq, then xq − x has q distinct roots
in K.

Proof. Since xq − x ∈ Fq[x] has q distinct roots, apply Hensel’s lemma.

Remark. In particular, xp − x = x(xp−1 − 1) has p distinct solutions in Qp. So Qp contains all (p− 1) roots
of unity. More generally, k contains all (q − 1) roots of unity.

2.3 Extensions of complete discrete valuation fields

Let K be a complete discrete valuation field. Recall that given a finite separable extension L/K, we have

NL/Kβ =
∏

σ : L→L̃

σβ

where L̃ is the Galois closure of L/K.

Theorem 2.3.1. Let L/K be a finite separable extension of degree n.

1. | · |K extends uniquely to a discrete absolute value | · |L on L.

2. L is complete under | · |L.

3. |β|L = |NL/Kβ|
1/n
K for any β ∈ L.

Proof. Let A ⊂ K be the valuation ring. Define B to be the integral closure of A inside L. A general fact:
A is a Dedekind domain, and B, as the integral closure, is also a Dedekind domain. Since A is a DVR, it
has a unique non-zero prime ideal p. By unique factorization of prime ideals in Dedekind domains, write
p = pe11 · · · p

ek
k , where pi are prime ideals of B.

Claim: there is exactly one non-zero prime ideal in B. Assume otherwise and let p1, p2 be two distinct
non-zero prime ideals of B. Find an element β ∈ p1 with β /∈ p2. Then

A[β] ∩ p1 6= A[β] ∩ p2

are distinct prime ideals of A[β] containing p. Let f(x) ∈ A[x] be the minimal polynomial of β. Consider
the reduction f̄(x) ∈ A/p[x] = k[x]. By Hensel’s lemma, f̄(x) can only have one irreducible factor; otherwise
the factorization lifts to f(x) ∈ A[x]. So f̄(x) = g(x)k for some g(x) ∈ k[x] and integer k. So

A[β]/pA[β] = A[x]/(f(x), p) = k[x]/(f̄(x)) = k[x]/(g(x)k).

Hence this ring has only one non-zero prime ideal. So there can only be one prime ideal in A[β] containing
p. But this is a contradiction.

Let p = Pe, where P is the non-zero prime of B. It follows that | · |K extends uniquely to the P-adic
valuation on L. The constant is determined by comparison to | · |K .

To show L is complete, take a basis {e1, . . . , en} of L as a K-vector space. Suppose {ak} is a Cauchy
sequence in L. Write ak = ak,1e1 + · · · + ak,nen. Then by the ultrametric inequality, {ak,i}k is a Cauchy
sequence in K for each i. If ak,i → bi ∈ K, then ak → b1e1 + · · ·+ bnen.

Finally, let L̃ be the Galois closure of L/K, and take β ∈ L. The Galois closure is a finite separable
extension, so what we have proved so far applies to L̃ as well. So

|β|L = |β|L̃ = |σβ|L̃, σ : L→ L̃

since Galois conjugation does not change the absolute value. In particular, by the definition of the norm
NL/K ,

|NL/K(β)|K = |NL/K(β)|L̃ =
∏

σ : L→L̃

|σβ|L̃ =
∏

σ : L→L̃

|β|L = |β|nL.
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Corollary 2.3.2. Let L/K be a separable algebraic extension (of possibly infinite degree). Then | · |K also
extends uniquely to L.

Proof. Note that L is the composite of all finite sub-extensions of L/K.

Remark. A separable algebraic extension L/K may not be complete, even if K is complete.

Definition 2.3.3. Let L/K be a finite extension of degree n. Write p = Pe. We say this integer e is the
ramification index of L/K. We also have an extension of residue fields ` = OL/P→ k = OK/p. We call
f := [` : k] the residue degree of L/K.

Lemma 2.3.4. Some facts from Dedekind domains:

1. n = ef ;

2. e and f are multiplicative in field extensions, i.e. for extensions M ⊃ L ⊃ K, we have e(M/K) =
e(M/L)e(L/K) and similarly for f .

2.4 Unramified extensions

Definition 2.4.1. The finite separable extension L/K is unramified if e = 1 (i.e. f = n), and totally
ramified if e = n (i.e. f = 1). Unramified extensions are easier to understand.

Proposition 2.4.2. 1. If L/K is unramified, then ` = k(α0). If α ∈ OL is such that ᾱ = α0, then
L = K(α).

2. If L = K(α), let f(x) ∈ OK [x] be the minimal polynomial of α. If f̄(x) ∈ k[x] has no repeated root,
then L/K is unramified.

Proof. Let f(x) be the minimal polynomial of α. Then

deg f̄ ≥ [k(α0) : k] = [` : k] = [L : K]

On the other hand,
deg f = [K(α) : K] ≤ [L : K].

Hence all inequalities must be equalities. In particular, K(α) = L.
If f̄(x) has no repeated roots, then by Hensel’s lemma f̄(x) is irreducible. Then

[L : K] = [K(α) : K] = deg f = deg f̄ = [k(α) : k] ≤ [` : k] ≤ [L : K].

Hence all inequalities must be equalities. In particular, [` : k] = [L : K], i.e. L/K is unramified.

Theorem 2.4.3. Assume k is perfect. Then there is a one-to-one correspondence

{L/K finite unramified} ↔ {`/k finite}
L 7→ ` = OL/P.

Moreover, L/K is Galois iff `/k is Galois. In this case, Gal(L/K) ∼= Gal(`/k).

Lemma 2.4.4. 1. Given a tower M ⊃ L ⊃ K, the extension M/K is unramified iff M/L and L/K are
both unramified.

2. Given L/K unramified and L′/K any finite extension, the composite LL′/L′ is unramified.

3. Given L/K, L′/K unramified, then LL′/K is unramified.
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Proof. Since e(M/K) = e(M/L)e(L/K), the first statement is obvious.
If L/K is unramified, then L = K(α) and the minimal polynomial f ∈ OK [x] of α has f̄ irreducible. But

k is perfect, so f̄(x) has no repeated root. In particular, LL′/L′ = L′(α)/L′, and the minimal polynomial g
of α satisfies ḡ | f̄ so ḡ has no repeated root. Hence LL′/L′ is unramified.

Now if L′/K is unramified, then LL′/K is unramified because both LL′/L′ and L′/K are.

Proof of theorem. We first prove surjectivity. Write ` = k(α0). Let f0 ∈ k[x] be the minimal polynomial of
α0. Pick an arbitrary lift f ∈ OK [x] such that f̄ = f0. By Hensel’s lemma, α0 lifts to a root α of f . (We
can do this because α0 is a simple root, since k is perfect.) Define L = K(α). Then L/K is unramified and
the residue field of L is `.

Now we show injectivity. Suppose L,L′ are two unramified extensions of K with the same residue field
`. Then LL′/K is also unramified, with the same residue field `. But then

[LL′ : K] = [` : k] = [L : K] = [L′ : K].

This implies LL′ = L = L′.
Assume L/K is Galois. Write L = K(α) and ` = k(α0) where α0 = ᾱ, and let f ∈ OK [x] be the minimal

polynomial of α. Since L/K is Galois, f(x) splits in L, and therefore f̄(x) splits in `. Hence `/k is also
Galois. The converse follows by Hensel’s lemma.

Finally, since Gal(L/K) stabilizes OL, we have pL ⊂ OL, and since it acts trivially on OK , we have
pK ⊂ OK . Then automorphisms in Gal(L/K) descend to OL/pL = `, and hence there is an induced map

Gal(L/K)→ Gal(`/k).

The permutation of roots of f(x) corresponds to that of roots of f̄(x), since L/K is unramified. So this is a
bijection.

Corollary 2.4.5. If L/K is an algebraic extension, then there exists a largest unramified subset K0 ⊂ L.
Moreover, L/K0 is totally ramified.

Proof. Let K0 be the composite of all unramified extensions of K. Then L/K0 has trivial residue field
extension by the theorem. By definition, L/K0 is therefore totally ramified.

Corollary 2.4.6. Assume k = Fq is finite. Then there exists a unique degree n unramified extension Kn of
K for each n ≥ 1, and

Gal(Kn/K) = Gal(Fqn/Fq) = Z/n.

Proof. Fqn/Fq is the unique degree n extension of Fq.

Definition 2.4.7. Let σ ∈ Gal(Kn/K) correspond to the automorphism x 7→ xq in Gal(Fqn/Fq). We call σ
the Frobenius in Gal(Kn/K). Explicitly,

σ(α) ≡ αp mod pKn ∀α ∈ OKn .

Corollary 2.4.8. Assume k = Fq. Then the maximal unramified extension of K is

Kur :=
⋃

(m,p)=1

K(ζm).

In particular, Qur
p =

⋃
(m,p)=1 Qp(ζm).

Proof. F̄q =
⋃

(m,p)=1 Fq(ζm). In fact, every element of F×qn satisfies xq
n−1 − 1 = 0.
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2.5 Totally ramified extensions

Definition 2.5.1. A polynomial f(x) = anx
n + · · ·+ a1x+ a0 ∈ K[x] is Eisenstein if

|an| = 1, |ai| < 1∀i = 1, . . . , n− 1, |a0| = |π|.

In other words, π - an, π | ai, and π || a0 (exactly one factor of π goes into a0).

Lemma 2.5.2 (Eisenstein’s criterion). If f(x) is Eisenstein, then f(x) is irreducible.

Remark. Given a Eisenstein polynomial f(x), all of its roots are Galois conjugate and therefore have the
same absolute value. In particular, because their product is |π|, it follows that this absolute value is |π|1/n.

Proposition 2.5.3. Suppose L/K is finite. Then L/K is totally ramified iff L = K(α) for α a root of some
Eisenstein polynomial in K[x].

Proof. If L = K(α) for α a root of f(x) ∈ K[x] Eisenstein, then |α|deg f = |π| by the preceding remark.
Hence

[L : K] ≥ e(L/K) ≥ deg f = [L : K],

and equality must hold and L/K is totally ramified. Conversely, if L/K is totally ramified, Take the
uniformizer α of L, i.e. pL = (α). Then pnL = pK and (αn) = (π). Hence |α| = |π|1/n. Look at 1, α, . . . , αn−1.
They cannot be linearly dependent over K because they have absolute values |π|0, |π|1/n, . . . , |π|(n−1)/n, so
they are exactly representatives of the cosets |L×|/|K×|. (In other words, if

a0 + a1α+ · · ·+ an−1α
n−1 = 0, αi ∈ K,

then there cannot be two aiα
i with the same absolute value.) So there must be a relation

a0 + a1α+ · · ·+ an−1α
n−1 + αn = 0.

The cancellation in the absolute value must occur in a0 and αn, so |α0| = |αn| = |π|. Cancellation cannot
happen in the middle terms, so |ai| < 1. Hence α satisfies an Eisenstein polynomial.

Lemma 2.5.4 (Krasner’s lemma). Let f(x) =
∑
aix

i, g(x) =
∑
bix

i ∈ K[x]. Assume |ai − bi| sufficiently
small. Then

{k(α) : α a root of f} = {k(β) : β a root of g}.

Proposition 2.5.5. Assume k is finite. Then there are only finitely many totally ramified extensions of K
of degree n.

Proof. By the previous proposition, all totally ramified extensions are given by an Eisenstein polynomial of
degree n. By Krasner’s lemma, an Eisenstein polynomial

∑
aix

i defines a totally ramified extension, and
this extension only depends on ai mod pNK for sufficiently large N . But OK/pNK is finite.

Corollary 2.5.6. Assume k is finite. Then there are only finitely many extensions of K of degree n.

Remark. This is obviously not true for other fields, e.g. K = Q.

2.6 Local class field theory

Definition 2.6.1. A local field is a field K with an absolute value such that K is locally compact (under
the induced topology of | · |).

Remark. Recall that a topological space is compact iff any open cover has a finite subcover. It is locally
compact iff every open neighborhood of every point contains a compact neighborhood. For example, R and
C are locally compact. A metric space is compact iff it is complete and totally bounded (i.e. for any r ∈ R+,
there exists a finite cover by balls of radius r). Similarly, a metric space is locally compact iff all closed balls
are compact. In particular, local fields are complete.

11



Lemma 2.6.2. Let K be a complete discrete valued field. Then K is locally compact iff K has finite residue
field.

Proof. Assume K is locally compact. Then OK = {x ∈ K : |x| ≤ 1} is a closed ball, and therefore is
compact. It contains an open ball mK = {x ∈ K : |x| < 1}. By compactness, OK =

⋃
x∈OK/mK (x + mK)

has a finite subcover, i.e. OK/mK is finite.
Conversely, suppose K has finite residue field. Then OK/mnK is finite, by inductively using the short

exact sequence
0→ mn−1

K /mnK = OK/mK → OK/mnK → OK/mn−1
K → 0.

Then the balls Ba,r := {x ∈ K : |x − a| < r} cover OK where a runs over all representatives of OK/mnK
for sufficiently large n. But OK/mnK is finite, so OK is totally bounded and therefore compact. Hence K is
locally compact.

Theorem 2.6.3. Every local field is one of the following:

1. R or C;

2. a finite extension of Qp for some prime p;

3. the field Fpn((T )) of Laurent series over Fpn , for some prime p and some n ≥ 1.

Proof. Suppose the local field K is archimedean. There is an injection Q ↪→ K. Since K is complete,
R ↪→ K. By local compactness, K/R must be a finite extension. Hence K is either R or C.

Suppose the local field K is non-archimedean. If charK = 0, then Q ↪→ K. Since K is complete,
Qp ↪→ K. By local compactness, K/Qp must be a finite extension. Otherwise if charK = p, then Fp ↪→ K.
Write the residue field as Fpn for some n, since it must be finite. Then

K = {
∑
n≥k

anπ
n : k ∈ Z, an ∈ S a representative of OK/mK}.

Observe that Fpn ↪→ K by Hensel’s lemma. So actually,

K = {
∑
n≥k

anπ
n : k ∈ Z, an ∈ Fpn} ∼= Fp((T ))

under the isomorphism π ↔ T .

Remark. The goal of local class field theory is to classify all finite abelian extensions of K for K a non-
archimedean local field. (Recall that a field extension L/K is abelian iff L/K is Galois and Gal(L/K) is
abelian.)

Lemma 2.6.4. If L1/K and L2/K are both abelian, then L1L2/K is also abelian.

Definition 2.6.5. Let Kab be the union of all finite abelian extensions of K. It is the maximal abelian
extension of K. We want to understand Gal(Kab/K) in terms of K× itself.

Theorem 2.6.6 (Part I of local CFT, local reciprocity). Assume K is a non-archimedean local field. Then
there exists a unique homomorphism φK : K× → Gal(Kab/K) such that:

1. for any uniformizer π of K and any finite unramified extension L/K, the image of φK(π) in the
quotient Gal(Kab/K)→ Gal(L/K) is given by the Frobenius in Gal(L/K);

2. for any finite abelian extension L/K, the map φK factors as

K×
φK−−−−→ Gal(Kab/K)y y

K×/Nm(L×)
φL/K−−−−→ Gal(L/K)

where φL/K is an isomorphism. Here Nm: L× → K× is the norm map.
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Remark. This map φK is called the local Artin reciprocity map.

2.7 Norm groups

Definition 2.7.1. A subgroup of K× of the form Nm(L×) for some finite abelian L/K is called a norm
group of K×.

Remark. We recall some Galois theory before continuing. Suppose Ω/K is a possibly infinite extension. We
say Ω/K is Galois if it is algebraic, separable, and normal. Note that Ω/K is Galois iff Ω is the union of
finite Galois extensions. We have

Gal(Ω/K) = {σ : Ω→ Ω : σ|K = id} = lim←−
L/K finite Galois

Gal(L/K).

So Gal(Ω/K) is an example of a profinite group, i.e. an inverse limit of finite groups. There is a profinite
topology on Gal(Ω/K) making it a topological group. A basis of open neighborhoods of 1 in Gal(Ω/K) is
given by Gal(Ω/L) where L/K is finite.

Theorem 2.7.2 (Galois theory for infinite extensions). Fix Ω/K Galois. Then there is a bijection

{L/K sub-extension} ↔ {closed subgroups of Gal(Ω/K)}
L 7→ Gal(Ω/L)

ΩH ←[ H.

Moreover,
{L/K Galois} ↔ {normal closed subgroups of Gal(Ω/L)}.

Remark. Note that if L/K is finite, then Gal(Ω/L) is open. In a topological group, open subgroups are
always closed, so Gal(Ω/L) is closed.

Proposition 2.7.3. 1. Nm(L1) ∩Nm(L2) = Nm(L1L2).

2. L1 ⊂ L2 iff Nm(L1) ⊃ Nm(L2).

3. Nm(L1) Nm(L2) = Nm(L1 ∩ L2).

4. Every subgroup of K× containing a norm group is also a norm group.

Proof. Clearly Nm(L1L2) ⊂ Nm(L1) by transitivity (take the norm in the extension L1L2/L1 first) and
similarly for Nm(L2), so Nm(L1L2) ⊂ Nm(L1) ∩ Nm(L2). Now suppose a ∈ Nm(L1) ∩ Nm(L2). Using the
local Artin map, a ∈ ker(φL1/K)∩ker(φL2/K). In other words, φK(a)|L1

= φK(a)|L2
= 1, so φK(a)|L1L2

= 1.
Then a ∈ Nm(L1L2) = ker(φL1L2/K). So Nm(L1L2) ⊃ Nm(L1) ∩Nm(L2).

Clearly if L1 ⊂ L2, then Nm(L1) ⊃ Nm(L2). Conversely, Nm(L1)∩Nm(L2) = Nm(L2), and by part (1),
this intersection is Nm(L1L2). Using the local Artin map, [K× : Nm(L×)] = [L : K], so [L1L2 : K] = [L2 :
K]. Hence [L1L2 : L2] = 1, i.e. L1L2 = L2, so L1 ⊂ L2.

Assume H ⊃ Nm(L). Let M be the fixed field LφL/K(H). (Note that φL/K(H) ⊂ Gal(L/K).) By Galois
theory, H/Nm(L×) = Gal(L/M). Using the Artin map, Nm(M×) = ker(φM/K) = φL/K(Gal(L/M)) = H.

Finally, Nm(L1) Nm(L2) is the smallest norm group containing Nm(L1) and Nm(L2). On the field
side, we therefore want the largest field contained in L1 and L2. This is L1 ∩ L2. Hence Nm(L1 ∩ L2) =
Nm(L1) Nm(L2).

Proposition 2.7.4. Let L/K be any finite extension. If Nm(L×) is finite index in K×, then Nm(L×) is
open in K×.

Remark. In general, a finite index closed subgroup is open. Also, in general, every open subgroup is closed.
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Proof. It suffices to show that Nm(L×) contains an open subgroup Nm(O×L ). We know O×L is a closed
subspace of OL. But OL is compact, so O×L is also compact. Now note that Nm(O×L ) = Nm(L×)∩O×K (since
the norms must have valuation 1). Hence O×K/Nm(O×L ) → K×/Nm(L×) is an injection. By assumption,
the rhs is finite. So the lhs is also finite, and Nm(O×L ) is finite index in O×K . But O×L is compact, so Nm(O×L )
is also compact and closed. Therefore Nm(O×L ) is open in O×K .

Theorem 2.7.5 (Part II of local CFT, local existence). Every finite index open subgroup of K× is a norm
group.

Corollary 2.7.6. There is a one-to-one correspondence

{L/K finite abelian} ⇔ {finite index open subgroup of K×}
L 7→ Nm(L×),

and Gal(L/K) ∼= K×/Nm(L×).

Remark. The corollary also holds for K archimedean, i.e. R or C. This is easily checked, because R/R
corresponds to R× ⊂ R×, and C/R corresponds to R>0 ⊂ R×. Finally, C/C corresponds to C× ⊂ C×, and
there are no non-trivial finite index subgroups of C×.

Remark. If charK = 0, i.e. K is a finite extension of Qp, then any finite index subgroup of K× is automat-
ically open. In particular, the bijection becomes

{L/K abelian of degree n} ⇔ {index n subgroup of K×/(K×)n}.

The reason for this is as follows. Given H ⊂ K finite index, H ⊃ (K×)n. So to show H is open, it suffices
to show (K×)n contains an open subgroup. But (K×)n ⊃ 1 + mk for some k, because xn − a = 0 has a
solution when a ∈ 1 +mk for sufficiently large k (by Hensel’s lemma when p - n, and by the stronger version
of Hensel’s lemma otherwise).

Remark. If charK = p > 0, then finite index does not necessarily imply open.
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Chapter 3

Galois cohomology

3.1 Group cohomology

Definition 3.1.1. Let G be a group. A G-module is an abelian group M together with a G-action
G×M →M given by (g,m) 7→ gm such that:

1. g(x+ y) = gx+ gy for g ∈ G and x, y ∈M ;

2. (gh)(x) = g(hx) for g, h ∈ G and x ∈M ;

3. 1(x) = x for x ∈M , where 1 ∈ G is the identity.

We say the G-action is trivial if gx = x for all g ∈ G and x ∈M .

Remark. The G-action defines a homomorphism G→ Aut(M).

Example 3.1.2. If L/K is a Galois extension, let G = Gal(L/K). Then M = L× (or L) is a G-module,
via the usual Galois action.

Definition 3.1.3. The group algebra Z[G] is the free abelian group with basis given by the elements in
G and multiplication given by (∑

nigi

)
·
(∑

mjhj

)
:=
∑

nimj(gihj).

Then aG-module is the same as a Z[G]-module. In other words, ModG = ModZ[G]. Write the homomorphisms
in ModG as

HomG(M,N) := {ϕ : M → N group homomorphism : ϕ(gx) = gϕ(x)}.

Definition 3.1.4. The motivation for group cohomology is to study the G-invariants

MG := {x ∈M : gx = x∀g ∈ G}.

Example 3.1.5. Let G = Gal(L/K) and M = L×. Then MG = K×, by the definition of the Galois group
G.

Remark. Note that we can identify MG := HomG(Z,M) where Z is regarded as the trivial G-module. Hence
(−)G = HomG(Z,−) as functors. We therefore see that (−)G is left-exact, by the left-exactness of Hom.

Definition 3.1.6. For every i ≥ 0, define the r-th group cohomology Hr(G,M) := ExtrZ[G](Z,M). (Here
ExtrZ[G](Z,−) is the right derived functor of HomG(Z,−).)

Remark. Concretely, the following three properties characterize Hr(G,−):
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1. H0(G,M) = MG, by construction;

2. if I is an injective G-module, then HomG(−, I) is exact and therefore Hr(G, I) = 0 for all r ≥ 1;

3. to every short exact sequence 0→ A→ B → C → 0, there is a long exact sequence in cohomology

0→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)→ H2(G,A)→ · · · .

Remark (Computing using injective resolutions). We can compute Hr(G,−) using injective resolutions.
Given a G-module M , take an exact sequence

0→M → I0 → I1 → I2 → · · ·

where all the Ik are injectives. Then apply (−)G to get

0→ (I0)G
d0−→ (I1)G

d1−→ (I2)G → · · ·

Then Hr(G,M) = ker dr/ im dr−1.

Remark (Computing using projective resolutions). ExtrZ[G](Z,M) can be computed as the cohomology
Hr(HomZ[G](Z, I•)) where I• is an injective resolution of M . However, we can also use a projective resolution
P• of Z to compute

ExtrZ[G](Z,M) = Hr(HomZ[G](P•,M)).

Definition 3.1.7. Take a particular free resolution of Z:

Pr = Z[

r+1 copies︷ ︸︸ ︷
G× · · · ×G], g(g0, . . . , gr) := (gg0, . . . , ggr).

We see that Pr is a free Z[G]-module. Define the differential

dr : Pr → Pr−1, (g0, . . . , gr) 7→
r∑
i=0

(−1)r(g0, . . . , ĝi, . . . , gr).

Then Pr → Pr−1 → · · · → P1 → P0 → Z is a free resolution of Z as Z[G]-modules. Then Hr(G,M) =
Hr(HomG(P•,M)). Explicitly,

HomG(Pr,M) = {ϕ : Gr+1 →M : ϕ((gg0, . . . , ggr)) = gϕ(g0, . . . , gr)}.

We write C̃r(G,M) := HomG(Pr,M), and call its elements homogeneous cochains of G valued in M .
The differential is

dr : C̃r(G,M)→ C̃r+1(G,M), ϕ 7→ dr(ϕ) :=

(
(g0, . . . , gr+1) 7→

r+1∑
i=0

(−1)iϕ(g0, . . . , ĝi, . . . , gr+1)

)
.

Definition 3.1.8. Note that a homogeneous cochain ϕ : Gr+1 →M is determined by its value on elements
(1, g1, g1g2, g1g2g3, . . . , g1 · · · gr). Define the inhomogeneous cochains Cr(G,M) := {ϕ : Gr →M}. Under
the identification C̃r(G,M) ∼= Cr(G,M), the differential becomes dr : Cr → Cr+1, given by

dr(ϕ)(g1, . . . , gr+1) = g1ϕ(g2, . . . , gr+1) +

r∑
i=1

(−1)iϕ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gr+1)

+ (−1)r+1ϕ(g1, . . . , gr).

We call Zr(G,M) := ker dr the cocycles, and Br(G,M) := im dr−1 the coboundaries. Then Hr(G,M) =
Zr(G,M)/Br(G,M).
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Example 3.1.9. We can explicitly compute some low-degree groups. For example,

Z1(G,M) = {ϕ : G→M : d1ϕ = 0}
= {ϕ : G→M : g1ϕ(g2)− ϕ(g1g2) + ϕ(g1) = 0}
= {ϕ : G→M : ϕ(g1g2) = g1ϕ(g2) + ϕ(g1)}.

Such homomorphisms ϕ : G→M are called crossed homomorphisms. Similarly, we can compute

B0(G,M) = {d0ϕ : ϕ : G0 →M} = {ϕ : G→M : ϕ(g) = gm−m for some m ∈M}.

Such homomorphisms ϕ : G→M are called principal crossed homomorphisms. Hence

H1(G,M) = {crossed homomorphisms}/{principal crossed homomorphisms}.

Example 3.1.10. If M is a trivial G-module, then the crossed homomorphisms from G→M are precisely
the usual homomorphisms G → M , since g1ϕ(g2) = ϕ(g2). Similarly, since gm = m for every m ∈ M , the
only principal crossed homomorphism is the zero map. Hence H1(G,M) = Hom(G,M).

3.2 Induction and restriction

Definition 3.2.1. Let H ≤ G be a subgroup, and M ∈ Mod(H). The induced G-module is

IndGHM := HomZ[H](Z[G],M) = {ϕ : G→M : ϕ(hg) = hϕ(g) ∀h ∈ H, g ∈ G}.

Then IndGHM ∈ Mod(G), where G acts on IndGHM by (g · ϕ)(x) = ϕ(xg), i.e. via the right action.

Remark. Note that ϕ ∈ IndGH(M) is determined by its value on coset representatives S of H\G. So as an
abelian group, IndGHM =

∏
g∈S gM .

Proposition 3.2.2. Consider IndGH : Mod(H)→ Mod(G) as a functor.

1. (Frobenius reciprocity) For M ∈ Mod(G) and N ∈ Mod(H),

HomG(M, IndGH N) = HomH(ResGHM,N),

where ResGHM is M regarded as an H-module (i.e. IndGH is the right adjoint of ResGH).

2. IndGH is exact.

3. IndGH preserves injective modules.

Proof. Given α ∈ HomG(M, IndGH N), define β : ResGHM → N by m 7→ α(m)(1G). We must check β is
H-equivariant. But clearly β(hm) = (hα(m))(1G) = α(m)(h) = h(α(m)(1G)) = hβ(m), since α is G-
equivariant. Conversely, given β ∈ HomH(ResGHM,N), define α : M → IndGH N by m 7→ (g 7→ β(gm)).
These two maps α 7→ β and β 7→ α are inverse to each other.

Since IndGH is a right adjoint, it is left exact by abstract nonsense. So it suffices to show it preserves
surjections. Suppose M � N is a surjection of H-modules. Take S = H\G to be the coset representatives.
Maps ϕ ∈ IndGH N are defined by the values ϕ(s) ∈ N for s ∈ S. Take ϕ̃(s) ∈ M to be lifts of ϕ(s) ∈ N ,
using the surjection M � N . Then ϕ̃ ∈ IndGHM and ϕ̃ 7→ ϕ, so IndGHM � IndGH N is a surjection.

Take I ∈ Mod(H) injective, so that HomH(−, I) is exact. By Frobenius reciprocity, HomH(−, I) =
HomG(−, IndGH I). Hence IndGH I is also injective.

Proposition 3.2.3 (Shapiro’s lemma). For any r ≥ 0, we have Hr(G, IndGH N) = Hr(H,N).
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Proof. Take an injective resolution N → I•. Then by the previous proposition, this gives an injective
resolution IndGH N → IndGH I

•. So

Hr(G, IndGH N) = Hr(HomZ[G](Z, IndGH I
•)) = Hr(HomZ[H](Z, I•)) = Hr(H,N).

Definition 3.2.4. A G-module M ∈ Mod(G) is called induced if M = IndG1 M0 for some abelian group
M0.

Remark. If G is a finite group, then IndG1 M0
∼= Z[G] ⊗Z M0, which as an abelian group is

⊕
g∈G gM0.

Concretely, the map is ϕ 7→
∑
g∈G g ⊗ ϕ(g−1).

Corollary 3.2.5. If M is an induced module, then Hr(G,M) = 0 for r > 0.

Proof. By Shapiro’s lemma, Hr(G, IndG1 M0) = Hr(1,M0). If r = 0, then H0(1,M0) = (M0)1 = M0 where
here (−)1 denotes invariants under the trivial group. But this functor is exact, because it is the identity
functor. Hence higher cohomologies vanish.

3.3 Functorial properties

Definition 3.3.1. Let M ∈ Mod(G) and M ′ ∈ Mod(G′). Given α : G′ → G and β : M →M ′ such that they
are compatible, i.e. β(α(g′)m) = g′β(m), we get a homomorphism of cochain complexes

C•(G,M)→ C•(G′,M ′), ϕ 7→ β ◦ ϕ ◦ α.

This induces a homomorphism Hr(G,M)→ Hr(G′,M ′). We will define three specific cases:

1. the restriction map Hr(G,M)
res−−→ Hr(H,M), given by α : H ↪→ G and β = id;

2. the co-restriction map Hr(H,M)
cor−−→ Hr(G,M), defined when [G : H] <∞, given by α = idG and

β : IndGH(ResGHM)→M where ϕ 7→
∑
g∈H\G gϕ(g−1);

3. the inflation map Hr(G/H,MH)
inf−−→ Hr(G,M), defined when H is normal in G, given by α : G �

G/H and β : MH ↪→M .

Proposition 3.3.2. The composition cor ◦ res : Hr(G,M)→ Hr(G,M) is multiplication by [G : H].

Proof. By construction, cor ◦ res arises from α = idG and β : M → IndGHM → M . We can compute β
explicitly:

m 7→ (ϕ : g 7→ gm) 7→
∑

g∈H\G

gϕ(g−1) =
∑

g∈H\G

m = [G : H]m.

(So in fact this is multiplication by [G : H] at the level of the cochain complexes.)

Corollary 3.3.3. If G is finite, then Hr(G,M) is killed by |G| for r > 0.

Proof. Use cor ◦ res for the trivial group, to get the composition Hr(G,M)
res−−→ Hr(1,M)

cor−−→ Hr(G,M).
We know Hr(1,M) = 0 for r > 0, so this composition is the zero map. But by the proposition, this
composition is multiplication by [G : 1] = |G|.

Corollary 3.3.4. If G is finite and M is finitely generated as an abelian group, then Hr(G,M) is a finite
group for r > 0.

Proof. Since M is finitely generated, Hr(G,M) is a finitely generated abelian group. (The cochain groups
are finitely generated.) By the previous corollary, Hr(G,M) is torsion, i.e. it has no free part. Hence it is
actually a finite group.
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Theorem 3.3.5 (Inflation-restriction exact sequence). Let H / G be a normal subgroup and M ∈ Mod(G).
Let r ≥ 1 and assume Hi(H,M) = 0 for 0 < i < r. Then there is an exact sequence

0→ Hr(G/H,MH)
inf−−→ Hr(G,M)

res−−→ Hr(H,M).

Proof. Consider r = 1. We check explicitly that the sequence is exact.

1. (Injectivity) Let ϕ : G/H → MH be a cocycle such that inf(ϕ) is a coboundary. The inflation is the

composition inf(ϕ) : G → G/H
ϕ−→ MH ↪→ M , and inf(ϕ)(g) = gm −m for some m ∈ M because we

assume it is a coboundary. Then inf(ϕ)(g) depends only on ḡ ∈ G/H. In particular, inf(ϕ)(h) = 0 for
all h ∈ H. So hm = m for all h ∈ H, i.e. m ∈ MH . Hence ϕ(ḡ) = ḡm−m for some m ∈ MH , i.e. ϕ
itself is a coboundary.

2. (res ◦ inf = 0) Let ϕ be a 1-cocycle representing some element in H1(G/H,MH). Its image under the

composition is (res ◦ inf)(ϕ) : H ↪→ G→ G/H
ϕ−→MH ↪→M , which is clearly 0.

3. (ker res ⊂ im inf) Let ϕ : G→M be such that res(ϕ) = 0. Then ϕ(h) = hm−m for all h ∈ H. Define
another cocycle ϕ′ : G → M such that ϕ′(g) := ϕ(g) − (gm −m) for the same m ∈ M . Clearly ϕ′ is
cohomologous to ϕ, since we only added a coboundary, and ϕ′(h) = 0 for all h ∈ H. So ϕ′ factors
through G/H, i.e. ϕ′ ∈ im(inf).

Now induct on r. Recall we have M ↪→ IndG1 M . Write the quotient as M ′, so that we have an exact
sequence 0→M → IndG1 M →M ′ → 0. The long exact sequence of cohomology is

· · · → Hr−1(G, IndG1 M)→ Hr−1(G,M ′)→ Hr(G,M)→ Hr(G, IndG1 M)→ · · · .

If r ≥ 2, then both terms involving IndG1 M are zero. So Hr−1(G,M ′) ∼= Hr(G,M). By assumption,
Hi(H,M) = 0 for all 0 < i < r. Then Hi(H,M ′) = 0 for all 0 < i < r − 1. So by the induction hypothesis,
there is an exact sequence

0 −−−−→ Hr−1(G/H, (M ′)H)
inf−−−−→ Hr−1(G,M ′)

res−−−−→ Hr−1(H,M ′) −−−−→ 0∥∥∥ ∥∥∥ ∥∥∥
0 −−−−→ Hr(G/H,MH)

inf−−−−→ Hr(G,M)
res−−−−→ Hr(H,M) −−−−→ 0.

where the isomorphisms arise from dimension shifting.

Remark. More generally, given an exact sequence of G-modules 0 → M → A1 → · · · → Ak → N → 0 such
that Ai are induced, there are isomorphisms Hr(G,N)

∼−→ Hr+k(G,M) for all r ≥ 1.

3.4 Group homology

Recall that Hr(G,−) is the right derived functor of (−)G, the invariants functor. View MG as the largest G-
submodule with trivial G-action. By analogy, Hr(G,−) is the left derived functor of (−)G, the coinvariants
functor. View MG as the largest quotient with trivial G-action.

Definition 3.4.1. The coinvariants MG of M is defined by

MG := M/〈gm−m : g ∈ G,m ∈M〉.

Let Z[G]
deg−−→ Z be induced by g 7→ 1, and let IG := ker(deg), called the augmentation ideal. This is a

free Z[G]-submodule with basis {g − 1 : g 6= 1}. Then

MG = M/IGM ∼= M ⊗Z[G] Z[G]/IG

by definition. Hence (−)G is right exact.
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Remark. We can compute Hr(G,M) using a projective resolution P• →M . Then Hr(G,M) = Hr(P•⊗Z[G]

Z[G]/IG). Concretely, the following properties characterize Hr(G,−):

1. H0(G,M) = MG, by construction;

2. if P is a projective G-module, then Hr(G,P ) = 0 for all r ≥ 1;

3. to every short exact sequence 0→ A→ B → C → 0, there is a long exact sequence in homology

· · · → H2(G,C)→ H1(G,A)→ H1(G,B)→ H1(G,C)→ AG → BG → CG → 0.

Proposition 3.4.2. H1(G,Z) ∼= Gab := G/[G,G] (with trivial G-action on Z).

Proof. Use the short exact sequence 0→ IG → Z[G]
deg−−→ Z→ 0. This gives a long exact sequence

0 −−−−→ H1(G,Z) −−−−→ H0(G, IG) −−−−→ H0(G,Z[G]) −−−−→ H0(G,Z) −−−−→ 0∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥
0 −−−−→ H1(G,Z) −−−−→ IG/I

2
G −−−−→ Z[G]/IGZ[G] −−−−→ Z −−−−→ 0

where we used that Z[G] is a free G-module, so its H1 vanishes. So the map H0(G, IG) → H0(G,Z[G]) is
the zero map. It follows that H1(G,Z) ∼= IG/I

2
G. Define the map

G→ IG/I
2
G, g 7→ g − 1.

This is a group homomorphism by checking

I2
G 3 (g1 − 1)(g2 − 1) = −(g1 − 1)− (g2 − 1) + (g1g2 − 1),

so that g1g2−1 = (g1−1)+(g2−1) in IG/I
2
G. But IG/I

2
G is abelian, so this map necessarily factors through

Gab → IG/I
2
G. Now define the map

IG 7→ Gab, g − 1 7→ g.

Using the same identity, we can check I2
G lies in the kernel, and the induced IG/I

2
G → Gab is the inverse

map.

Remark. We can identify Hr(G,Z) ∼= Hr
sing(BG,Z), where BG is the classifying space of G (recall that

π1(BG) = G), and Hr
sing denotes singular cohomology. Similarly, Hr(G,Z) ∼= Hsing

r (BG,Z). In particular,

the proposition reflects that H1(G,Z) ∼= Hsing
1 (BG,Z) = π1(BG)ab = Gab.

Example 3.4.3. If G = Z, then BG = S1. Hence Hr(Z,M) = 0 for r ≥ 2. Similarly, if G = Z ∗ · · · ∗ Z,
then BG = S1 ∨ · · · ∨ S1, and Hr(Z,M) = 0 again for r ≥ 2.

3.5 Tate cohomology

Let G be a finite group. In this special case, we can “patch together” group cohomology and homology.

Definition 3.5.1. Let M ∈ Mod(G). Define the norm map

NmG : M →M, m 7→
∑
g∈G

gm.

Then gNmG(m) = NmG(m), so that im(NmG) ⊂ MG. Also, NmG(gm) = NmG(m), so that ker(NmG) ⊃
IGM . Hence NmG induces a map

NmG : (H0(G,M) = MG = M/IGM)→ (MG = H0(G,M)).
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Using this, we connect the two long exact sequences H• and H•:

· · · −−−−→ H1(C) −−−−→ H0(A) −−−−→ H0(B) −−−−→ H0(C) −−−−→ 0

NmG

y NmG

y NmG

y
0 −−−−→ H0(A) −−−−→ H0(B) −−−−→ H0(C) −−−−→ H1(A) −−−−→ · · · .

We can apply the snake lemma to this diagram to get the Tate cohomology groups

Ĥr(G,M) :=


Hr(G,M) r > 0

H0(G,M)/ im(NmG) r = 0

ker(NmG)/IGM r = −1

H−(r+1)(G,M) r < −1,

which therefore form a very long exact sequence in both directions.

Remark. If M is an induced G-module, then Ĥr(G,M) = 0 for all r ∈ Z. (See homework.) More strongly,

Shapiro’s lemma holds in general for Ĥr(G,M). Hence we can dimension shift for Ĥr in both directions:

1. using 0→M ↪→ IndG1 M →M ′ → 0, we get Ĥr+1(M) = Ĥr(M ′);

2. using 0→M ′ → (IndG1 M = Z[G]⊗Z M)→M → 0, we get ĤrM = Ĥr+1(M ′).

Remark. There are also functorial maps

res : Ĥr(G,M)→ Ĥr(H,M), cor : Ĥr(H,M)→ Ĥr(G,M),

and cor ◦ res = [G : H].

Remark. Let P• → Z be a free Z[G]-resolution of Z. Taking duals gives another Z[G]-resolution Z → P ∗• .
Then we get a very long exact sequence

→ P2 → P1 → P0 → P−1 → P−2 → · · ·

where P−i := P ∗i . Then Ĥr(G,M) = Hr(HomZ[G](P•,M)), using Pn ⊗Z[G] M = HomZ[G](P
∗
n ,M).

3.6 Tate cohomology of finite cyclic groups

Example 3.6.1. Let G = 〈σ〉 be a finite cyclic group. Then

Ĥ0(G,M) = H0(G,M)/ im(NmG) = ker(σ − 1)/ im(NmG)

Ĥ−1(G,M) = ker(NmG)/IGM = ker(NmG)/ im(σ − 1).

Proposition 3.6.2. Let G = 〈σ〉 be a finite cyclic group. Then

Ĥr(G,M) ∼= Ĥr+2(G,M) ∀r ∈ Z.

Proof. Since NmG = 1 + σ + · · ·+ σn−1, there is a free resolution

· · · NmG−−−→ Z[G]
σ−1−−−→ Z[G]

NmG−−−→ Z[G]
σ−1−−−→ Z[G]

deg−−→ Z.

Hence this gives a very long exact sequence which is periodic of period 2. So Tate cohomology is also periodic
of period 2, i.e. Ĥr(G,M) ∼= Ĥr+2(G,M).
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Definition 3.6.3. Let G be finite cyclic. Define the Herbrand quotient of M as

h(M) := |Ĥ0(G,M)|/|Ĥ1(G,M)|

if both Ĥ0 and Ĥ1 are finite.

Proposition 3.6.4. If 0 → A → B → C → 0 is an exact sequence of G-modules and two of the three
Herbrand quotients h(A), h(B), h(C) are defined, so is the third, and h(B) = h(A)h(C).

Proof. Write the long exact sequence and truncate it:

0→ K → Ĥ0(A)→ Ĥ0(B)→ Ĥ0(C)→ Ĥ1(A)→ Ĥ1(B)→ Ĥ1(C)→ Q→ 0.

For long exact sequences, cardinality is multiplicative, so

1 =
|K| · |Ĥ0(B)| · |Ĥ1(A)| · |Ĥ1(C)|
|Ĥ0(A)| · |Ĥ0(C)| · |Ĥ1(B)| · |Q|

=
h(B)

h(A)h(C)

|K|
|Q|

.

So it suffices to show |K| = |Q|. From the previous proposition,

K = ker(Ĥ0(A)→ Ĥ0(B)) = coker(Ĥ−1(B)→ Ĥ−1(C)) = coker(Ĥ1(B)→ Ĥ1(C)) = Q.

Proposition 3.6.5. If M is a finite-order G-module, then h(M) = 1.

Proof. There is an exact sequence 0 → Ĥ−1(G,M) → MG
NmG−−−→ MG → Ĥ0(G,M) → 0. We want to

show |Ĥ1| = |Ĥ0|, so it suffices to show |MG| = |MG|. But if G = 〈σ〉, there is another exact sequence

0→MG →M
σ−1−−−→M →MG → 0. Hence |MG| = |MG|.

Corollary 3.6.6. If α : M → N has finite-order kernel and cokernel, then h(M) = h(N).

Proof. There is an exact sequence 0→ ker(α)→ M
α−→ N → coker(α)→ 0. By the proposition, h(kerα) =

h(cokerα) = 1. Splitting this into two short exact sequences, we get h(M) = h(N).
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Chapter 4

Local class field theory

4.1 Tate’s theorem

Theorem 4.1.1 (Tate). Let G be a finite group and C ∈ Mod(G). Assume that for any subgroup H ⊂ G,

1. H1(H,C) = 0, and

2. H2(H,C) is a cyclic group of order |H|.

Then for any r ∈ Z, there is an isomorphism Ĥr(G,Z)
∼−→ Ĥr+2(G,C).

Example 4.1.2. Take L/K a Galois extension of local fields and G := Gal(L/K). Let C = L×. Take

r = −2. Then H1(G,Z) ∼= Ĥ0(G,L×). But H1(G,Z) = Gab, and Ĥ0(G,L×) = K×/Nm(L×). Hence

Gab ∼−→ K×/Nm(L×),

which is precisely the local Artin map.

Remark. The proof strategy: we will construct an exact sequence of G-modules 0 → C → C(ϕ)→ Z[G]→
Z→ 0 such that Ĥr(G,C(ϕ)) = Ĥr(G,Z[G]) = 0. To do so, we need to discuss H2. Recall that:

1. a 2-cocycle is a map ϕ : G2 →M such that

0 = dϕ = g1ϕ(g2, g3)− ϕ(g1g2, g3) + ϕ(g1, g2g3) + ϕ(g1, g2);

2. a 2-coboundary is a map ϕ : G2 →M such that

ϕ(g1, g2) = (dψ)(g1, g2) = g1ψ(g2)− ψ(g1g2) + ψ(g1).

Fact (we will show part of it): an interpretation of H2(G,M) is

H2(G,M)
∼−→

 group extensions of G by M
1→M → E → G→ 1

s.t. conjugation of G on M is the G-module structure


For example, if M is a trivial G-module, then we are looking at all extensions such that M ⊂ Z(E), the
center of E. Such extensions are called central extensions. Given an extension 1 → M → E → G → 1,
we want to get a 2-cocycle. Choose an arbitrary (set-theoretic) section s : G → E. For any g1, g2 ∈ G,
the images s(g1)s(g2) and s(g1g2) map to the same element in g, and therefore must differ by an element
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ϕ(g1, g2) ∈ M , i.e. s(g1)s(g2) = ϕ(g1, g2)s(g1g2). By associativity and the requirement that conjugation is
the G-module structure,

ϕ(g1, g2)ϕ(g1g2, g3)s(g1g2g3) = ϕ(g1, g2)s(g1g2)s(g3) = (s(g1)s(g2))s(g3)

= s(g1)((s(g2)s(g3)) = s(g1)ϕ(g2, g3)s(g2g3)

= g1ϕ(g2, g3)s(g1)s(g2g3) = g1ϕ(g2, g3)ϕ(g1, g2g3)s(g1g2g3).

So ϕ is a 2-cocycle. We can check that different choices of the section s gives ϕ up to 2-coboundaries.

Definition 4.1.3. Let ϕ be a 2-cocycle representing γ ∈ H2(G,C). Define C(ϕ) := C ⊕
⊕

1 6=g∈G Zxg as an
abelian group, where xg is just a formal symbol, with G-action given by

g1 · xg2 := xg1g2 − xg1 + ϕ(g1, g2).

Convention: x1 := ϕ(1, 1) ∈ C. The 2-cocycle condition ensures this is indeed a G-action. We have an exact
sequence of G-modules

1→ C → C(ϕ)
ϕ : xg 7→g−1−−−−−−−→ IG → 1.

Because ϕ(g1, g2) = g1xg2 −xg1g2 +xg1 = d(g 7→ xg), we get a natural map H2(G,C)→ H2(G,C(ϕ)) where
ϕ 7→ 0. Therefore C(ϕ) is called the splitting module of ϕ.

Proof of Tate’s theorem. The exact sequence 0→ C → C(ϕ)→ IG → 0 gives a long exact sequence

· · · → H1(H,C)→ H1(H,C(ϕ))→ H1(H, IG)→ H2(H,C)
0−→ H2(H,C(ϕ))→ H2(H, IG)→ · · · ,

where the middle map is 0 by the construction of C(ϕ) and that H2(H,C) is cyclic. Exercise: if G is finite
and H ≤ G is normal, then

Ĥ0(G,Z) = Z/|G|Z, H1(G,Z) = 0, H2(G,Z) = Hom(G,Q/Z)

H1(H, IG) = Z/|H|Z, H2(H, IG) = 0.

By assumption, H1(H,C) = 0 and H2(H,C) = Z/|H|Z is cyclic. It follows that H1(H, IG) → H2(H,C)
is an isomorphism, and its kernel and cokernel are zero: H1(H,C(ϕ)) = H2(H,C(ϕ)) = 0. Now Tate’s

theorem follows from the following more general theorem. It gives Ĥr(G,C(ϕ)) = 0 for all r ∈ Z. Then
the result follows from the exact sequence 0 → C → C(ϕ) → Z[G] → Z → 0 (since all Tate cohomologies
vanishes for the induced module Z[G] as well).

Theorem 4.1.4. Let G be a finite group. If H1(H,M) = H2(H,M) = 0 for any subgroup H ≤ G, then

Ĥr(G,M) = 0 for every r ∈ Z.

Proof. If G is cyclic, we are done by the 2-periodicity of Tate cohomology for finite cyclic groups. If G is
solvable, induct on |G|. Pick H ≤ G such that G/H is cyclic. By the inductive hypothesis, Hr(H,M) = 0
for all r ≥ 0. So by the inflation-restriction exact sequence, Hr(G/H,MH)

∼−→ Hr(G,M) is an isomorphism
for r ≥ 1. Since Hr(G,M) = 0 for r = 1, 2, this implies H1(G/H,MH) = H2(G/H,MH) = 0. Hence

Ĥr(G/H,MH) = 0 for all r ∈ Z, and so Hr(G,M) = 0 for all r ≥ 1. We can manually check Ĥ0(G,M) = 0,

because Ĥ0(G/M,MH) = 0 implies MG = im(NmG/HM
H) and Ĥ0(H,M) = 0 implies MH = im(NmHM),

so MG = im(NmGM).

Now dimension shift: given 0 → M1 → IndG1 M → M → 0, we have Ĥr(H,M)
∼−→ Ĥr+1(H,M ′) for

all r ∈ Z. By the inductive hypothesis, Ĥr(H,M ′) = 0 implies Ĥr(G,M ′) = 0 for all r ≥ 0. But then

Ĥr(G,M) = 0 for all r ≥ −1. Repeating, we get Ĥr(G,M) = 0 for all r ∈ Z. Finally, for an arbitrary

finite group G, apply the solvable case to all p-Sylow subgroups Gp ≤ G. This implies Ĥr(Gp,M) = 0 for

all r ∈ Z and all p, which implies Ĥr(G,M) = 0 for all r ∈ Z.
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4.2 Vanishing of H1

Theorem 4.2.1 (Hilbert’s theorem 90). If L/K is a finite Galois extension of arbitrary fields, then

H1(Gal(L/K), L×) = 0.

Proof. Let ϕ be a 1-cocycle. We want to show ϕ(g) = gm/m for some m ∈ L×. To construct m, pick a ∈ L×
and define m :=

∑
g∈G ϕ(g)ga such that m 6= 0. We can always arrange for m 6= 0 because g : L× → L× as

characters of L× are linearly independent. Then
∑
ϕ(g)g : L× → L× is a non-zero map, so such an a exists.

Since gϕ(h) = ϕ(gh)ϕ(g)−1,

gm = g
∑
h∈G

ϕ(h)ha =
∑
h∈G

ϕ(hg)

ϕ(g)
gha =

1

ϕ(g)

∑
h∈G

ϕ(h)ha =
m

ϕ(g)
.

Hence ϕ(g) = m/gm. (Fix this by inverting m.)

Example 4.2.2. If L/K is a cyclic Galois extension, then 0 = H1(G,L×) = Ĥ−1(G,L×) by the 2-periodicity
of Tate cohomology for cyclic groups. Write G = 〈σ〉, so that

Ĥ−1(G,L×) = ker(NmG)/ im(σ − 1).

In other words, if a ∈ L× with NmL/K(a) = 1, then a = σb/b for some b ∈ L×.

Example 4.2.3. Explicitly, take L/K = Q(i)/Q. If a := x+ iy and b := m+ in are in Q(i)×, then

NmL/K(a) = x2 + y2,
σb

b
=
m− in
m+ in

=
m2 − n2

m2 + n2
+

2mn

m2 + n2
i.

Hilbert’s theorem 90 therefore implies that if x2 + y2 = 1, then there exist m,n ∈ Q such that

x =
m2 − n2

m2 + n2
, y =

2mn

m2 + n2
.

Clearing denominators, this is the complete family of solutions to the Pythagorean triples problem.

Remark. Hilbert’s theorem 90 implies H1(Gal(Ksep/K), (Ksep)×) = 0. In general, if G = lim←−H G/H is

a profinite group, then we define Hr(G,M) := lim−→H
Hr(G/H,MH). This is the same as Hr(G,M) =

Zrcts(G,M)/Brcts(G,M) using continuous cochains, i.e. we require that any cochains factors through some
finite quotient G/H. So we interpret Hilbert’s theorem 90 in this case as

0 = H1(Gal(Ksep/K), (Ksep)×) = H1
ét(SpecK,Gm) = Pic(SpecK).

4.3 H2 of unramified extensions

Theorem 4.3.1. Let L/K be a finite Galois unramified extension of non-archimedean local fields, and write
G := Gal(L/K). Then H2(G,L×) is a cyclic group of order |G|.

Remark. Recall that in the setting of the theorem, G = Gal(L/K) ∼= Gal(`/k) = 〈FrobL/K〉 where `, k are
the residue fields of L and K respectively, and the Frobenius map is x 7→ xq where q := #k.

Remark. The strategy of proof is as follows. We have a G-module decomposition L× ∼= O×L × πZ, where π
is a uniformizer. We can choose π ∈ K× because L/K is unramified. In particular, G acts trivially on πZ.
We will put a filtration on O×L so that we can compute its cohomology. The cohomology of πZ is easy.
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Definition 4.3.2. Let UL := O×L , and define U
(i)
L := 1+miL. Then there is a filtration UL ⊃ U (1)

L ⊃ U (2)
L ⊃

· · · . The inclusions give short exact sequences

1→ U
(1)
L → UL

a 7→a mod π−−−−−−−→ `× → 1

1→ U
(i+1)
L → U

(i)
L

1+aπi 7→a mod π−−−−−−−−−−−→ `→ 1.

We will use these short exact sequences to compute the cohomology of the units O×L .

Proposition 4.3.3. Ĥr(G, `×) = 0 for all r ∈ Z.

Proof. By Hilbert’s theorem 90, H1(G, `×) = 0. Recall that the Herbrand quotient h(M) = 1 for M finite

order. So in particular, h(`×) = 1. Hence Ĥ0(G, `×) = 0 as well. By the 2-periodicity of Tate cohomology,
we are done.

Corollary 4.3.4. The norm map Nm: `× → k× is surjective, since Ĥ0(G, `×) = k×/Nm(`×).

Proposition 4.3.5. Ĥr(G, `) = 0 for all r ∈ Z.

Proof. We showed (in the homework) that Hr(G, `) = 0 for all r ≥ 1 because by Galois theory, ` is an
induced module. By the 2-periodicity of Tate cohomology, we are done.

Corollary 4.3.6. Tr: `→ k is surjective, since Ĥ0(G, `) = k/Tr(`).

Proposition 4.3.7. Nm: O×L → O
×
K is surjective.

Proof. There are commutative diagrams

UL −−−−→ `×

Nm

y Nm

y
UK −−−−→ k×

U
(i)
L −−−−→ `

Nm

y Tr

y
U

(i)
K −−−−→ k.

If a ∈ UK , then there exists a0 ∈ UL such that a/Nm(a0) ∈ U
(1)
K by the surjectivity of Nm: `× → k×.

Similarly, there exists a1 ∈ U (1)
L such that (a/Nm(a0))(1/Nm(a1)) ∈ U (2)

K by the surjectivity of Tr: ` → k.
Repeating, we get a0, . . . , an such that

a

Nm(a0 · · · an)
∈ U (n+1)

K .

Define b :=
∏∞
i=1 ai. Then a/Nm(b) ∈

⋂∞
i=1 U

(i)
K = {1}, i.e. a = Nm(b).

Corollary 4.3.8. Ĥ0(G,UL) = 0

Proposition 4.3.9. Ĥr(G,UL) = 0 for all r ∈ Z.

Proof. It suffices by the 2-periodicity of Tate cohomology to check H1(G,UL) = 0. But UL × πZ ∼= L× as
G-modules, so by Hilbert’s theorem 90

0 = H1(G,L×) = H1(G,UL)⊕H1(G, πZ) .

Proposition 4.3.10. H2(G,L×) = Hom(G,Q/Z).

Proof. Write L× = UL × πZ. Then H2(G,L×) ∼= H2(G, πZ) = H2(G,Z). By a homework exercise, this is
Hom(G,Q/Z).
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4.4 H2 of ramified extensions

Definition 4.4.1. Define the invariant map invL/K : H2(Gal(L/K), L×)→ Q/Z to be the composition

H2(G,L×)
∼−→ Hom(G,Q/Z)

f 7→f(σ)−−−−−→ (1/|G|)Z/Z

where G = 〈σ〉 (i.e. σ = FrobL). Patch these together to get

invK : (H2(Gal(Kun/K), (Kun)×) = lim−→
L/K unramified

H2(Gal(L/K), L×))→ Q/Z.

(Here Kun is the maximal unramified extension of K inside a fixed algebraic closure.)

Remark. Shorthand notation: write H2(L/K) := H2(Gal(L/K), L×). The invariant map gives an isomor-
phism H2(Kun/K)

∼−→ Q/Z.

Proposition 4.4.2. Let L/K be a finite extension of degree n. Then there is a commutative diagram

H2(Kun/K)
Res−−−−→ H2(Lun/L)

invK

y invL

y
Q/Z n−−−−→ Q/Z.

Proof. Decompose the invariant map so that we can wee what the base change to L does at each step:

H2(Kun/K)
ordK−−−−→ H2(Kun/K,Z) H1(Kun/K,Q/Z) −−−−→ Q/Z

Res

y ?

y ?

y ?

y
H2(Lun/L)

ordL−−−−→ H2(Lun/L,Z) H1(Lun/L,Q/Z) −−−−→ Q/Z.

To understand the first square, note that we have a commutative diagram

(Kun)×
ordK−−−−→ Zy e(L/K)

y
(Lun)×

ordL−−−−→ Z

because the uniformizer in K and the uniformizer in L get sent to 1 in Z, but the ratio of their degrees is
by definition e(L/K), the ramification index. The second square is trivial and does nothing to the vertical
maps. To understand the third square, note that the generator FrobK is x 7→ xq where q = #k, and the

generator FrobL is x 7→ xq
f

where qf = #`. Hence FrobL = (FrobK)f . Hence the last vertical arrow is
multiplication by ef = n.

Theorem 4.4.3. There exists a canonical isomorphism

invK : H2(Kal/K)
∼−→ Q/Z.

If L/K is finite Galois of degree n, then we have a commutative diagram

0 −−−−→ H2(L/K)
inf−−−−→ H2(Kal/K)

Res−−−−→ H2(Kal/L)y invK

y invL

y
0 −−−−→ (1/n)Z/Z −−−−→ Q/Z n−−−−→ Q/Z.
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Lemma 4.4.4. For any finite Galois extension L/K, the group H2(L/K) contains a subgroup isomorphic
to (1/n)Z/Z.

Proof. Recall that the restriction map for the unramified part is just multiplication by n, so using the
inflation-restriction sequence, there is a commutative diagram

0 −−−−→ (1/n)Z/Z −−−−→ H2(Kun/K)
Res−−−−→ H2(Lun/L)

inf

y inf

y
0 −−−−→ H2(L/K)

inf−−−−→ H2(Kal/K) −−−−→ H2(Lal/L).

The two vertical arrows are injections. So there is an injection of the kernel as well, i.e. (1/n)Z/Z ↪→
H2(L/K).

Lemma 4.4.5. |H2(L/K)| = n.

Proof. First assume L/K is cyclic of order n. By a homework exercise, h(L×) = n. By Hilbert 90,
H1(Gal(L/K), L×) = 0, so |H2(L/K)| = n.

In general, Gal(L/K) is always solvable (by another homework exercise). So induct on |Gal(L/K)|.
Choose a cyclic sub-extension L′/K inside L/K. The inflation-restriction sequence is

0→ H2(L′/K)
inf−−→ H2(L/K)

Res−−→ H2(L/L′).

By the induction hypothesis, |H2(L/K)| ≤ |H2(L′/K)||H2(L/L′)|. Both of these groups have smaller order,
so we are done by the previous lemma.

Proof of theorem. By the previous two lemmas,

0 −−−−→ H2(L/K)
inf−−−−→ H2(Kal/K)

Res−−−−→ H2(Kal/L)∥∥∥ inf

x inf

x
0 −−−−→ (1/n)Z/Z inf−−−−→ H2(Kun/K)

Res−−−−→ H2(Lun/L).

Hence H2(Kun/K)
inf−−→ H2(Kal/K) = lim−→H2(L/K) is an injection. This implies the map inf here must

actually be an isomorphism. So the invariant map is defined on H2(Kal/K) using this isomorphism.

Remark. There are actually two commutative diagrams:

H2(Kal/K)
res−−−−→ H2(Lal/L)

invK

y invK

y
Q/Z n−−−−→ Q/Z

H2(Kal/K)
cor←−−−− H2(Lal/L)

invK

y invK

y
Q/Z Q/Z.

This comes from the fact that cor ◦ res = n.

Remark. H2(Kal/K) ∼= Br(K), the Brauer group of K. Local class field theory is essentially the compu-
tation Br(K) ∼= Q/Z when K is a local field.

Definition 4.4.6. The fundamental class uL/K ∈ H2(L/K)
∼−→ (1/n)Z/Z is the inverse image of 1/n,

the canonical generator of the cyclic group.
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4.5 Proof of local class field theory

Theorem 4.5.1 (Local class field theory). 1. (Local Artin reciprocity) There exists a homomorphism

φK : K× → Gal(Kal/K)ab

such that:

(a) for any finite Galois extension L/K, the restriction φL/K : K×/Nm(L×)
∼−→ Gal(L/K)ab of φK

is an isomorphism;

(b) for any L/K finite unramified and any uniformizer π of K, we have φL/K(π) = FrobL/K ∈
Gal(L/K).

2. (Local existence) The norm subgroups of K× (i.e. of the form Nm(L×)) are exactly the open subgroups
of K× of finite index.

Remark. Recall that if charK = 0, then all finite index subgroups are open.

Proof. Recall that we have a map

invK : H2(Kal/K, (Kal)×)
∼−→ Q/Z

which induces invL/K : H2(L/K,L×)
∼−→ (1/n)Z/Z for a finite extension L/K of degree n. By Tate’s theorem,

we have an isomorphism Ĥr(Gal(L/K),Z)
∼−→ Ĥr+2(Gal(L/K), L×) for every r ∈ Z. Taking r = −2, we get

Ĥ−2(Gal(L/K),Z)
∼−−−−→ Ĥ0(Gal(L/K), L×)∥∥∥ ∥∥∥

Gal(L/K)ab ∼−−−−→ K×/Nm(L×),

which is precisely the inverse of the local Artin isomorphism φL/K . Moreover, we have compatibility, i.e.
given a tower E ⊃ L ⊃ K of extensions, the natural quotient map commutes:

K×
φL/K−−−−→ Gal(L/K)ab∥∥∥ x

K×
φE/K−−−−→ Gal(E/K)ab.

Taking an inverse limit, we get the desired local Artin reciprocity map φK : K× → Gal(Kal/K)ab.
Let L/K be a finite unramified extension with G := Gal(L/K). We need to check that FrobL/K ∈

Ĥ−2(G,Z) ∼= G is mapped to π ∈ Ĥ0(G,L×) = K×/Nm(L×) by this construction of the local Artin
isomorphism. Note that the class of π is independent of the choice of π, because L/K is unramified and

therefore Nm: O×L → O
×
K is surjective. Recall that the isomorphism Ĥ−2(G,Z)

∼−→ Ĥ0(G,L×) is constructed
by following the short exact sequence

0→ L× → L×(ϕ)→ Z[G]
deg−−→ Z→ 0

where L×(ϕ) is the splitting module of the generator ϕ := uL/K ∈ H2(G,L|times) ∼= (1/n)Z/Z, defined as
L×(ϕ) = L× ⊕

⊕
16=g∈G xg with the G-action given by g1xg2 := xg1g2 − xg1 + ϕ(g1, g2). Compute explicitly

that
Ĥ−2(G,Z)

∼−→ Ĥ−1(G, IG) = IG/I
2
G → Ĥ0(G,L×), σ 7→ σ − 1 7→?
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where the second map is the connecting homomorphism for the short exact sequence 0 → L× → L×(ϕ) →
IG → 0. We compute the connecting homomorphism. First pick the pre-image xσ ∈ Ĥ0(L×(ϕ)) of σ − 1.
Then compute its norm

Nm(xσ) = (1 + σ + · · ·+ σn−1)xσ

= xσ +

n−1∑
k=1

(xσk+1 − xσk + ϕ(σk, σ))

= x1 + ϕ(σ, σ) + · · ·+ ϕ(σn−1, σ)

= ϕ(1, 1) + ϕ(σ, σ) + · · ·+ ϕ(σn−1, σ).

Now we construct an explicit 2-cocycle representing ϕ using the isomorphism

H2(G,L×)
∼−→ H2(G,Z)

∼−→ H1(G,Q/Z) = Hom(G,Q/Z) ∼= (1/n)Z/Z.

Take the generator f : σ 7→ 1/n in G → Q/Z and lift it to f̃ : σ 7→ 1/n in G → Q. Then a 2-cocycle
representing ϕ is given by

ϕ(σi, σj) = σif̃(σj)− f̃(σi+j) + f̃(σi)

= f̃(σj)− f̃(σi+j) + f̃(σi) =
j

n
− (i+ j) mod n

n
+
i

n
=

{
0 i+ j < n

1 i+ j ≥ n.

So now we can finish the computation of Nm(xσ): it is

Nm(xσ) = ϕ(1, 1) + ϕ(σ, σ) + · · ·+ ϕ(σn−1, σ) = 0 + 0 + · · ·+ 0 + 1 = 1.

Hence the image of Ĥ−2(G,Z)→ Ĥ0(G,L×) is σ 7→ π1 = π.
Finally, we prove the local existence theorem. Assume for simplicity that charK = 0. Note that if L/K

is a finite extension and E/K is the maximal abelian sub-extension, then Nm(L×) = Nm(E×). For example,
if L/K is Galois, local Artin reciprocity gives a diagram

K×/Nm(E×)
φE/K−−−−→ Gal(E/K)x ∥∥∥

K×/Nm(L×)
φL/K−−−−→ Gal(L/K)ab.

Recall that any subgroup of K× containing a norm subgroup is also a norm subgroup. Because any finite
index subgroup of K× contains (K×)n for some n, it suffices to prove that (K×)n, for every n, contains a
norm subgroup. Consider the Kummer sequence of Gal(Kal/K)-modules

1→ µn → (Kal)×
a7→an−−−−→ (Kal)× → 1

where µn is the subgroup of n-th roots of unity. It gives a long exact sequence

0 −−−−→ H0(µn) −−−−→ H0((Kal)×) −−−−→ H0((Kal)×) −−−−→ H1(µn) −−−−→ H1((Kal)×)∥∥∥ ∥∥∥ ∥∥∥
K×

(·)n−−−−→ K× 0,

so we get the Kummer isomorphism K×/(K×)n ∼= H1(Gal(Kal/K), µn). If µn ⊂ K, then µn ⊂ Z/n as
a Gal(Kal/K)-module, and

H1(Gal(Kal/K), µn) ∼= Hom(Gal(Kal/K),Z/n) ∼= Gal(L/K)
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where L is the maximal abelian extension of degree n. By local Artin reciprocity, K×/Nm(L×) = Gal(L/K),
so Nm(L×) = (K×)n. If µn 6⊂ K, then consider K1 := K(µn) and apply the preceding case to K1 to get
an abelian extension L1/K1 such that Nm(L×1 ) = (K×1 )n. Pick L ⊃ L1 Galois over K, so that by the
transitivity of norm,

NmL/K(L×) = NmK1/K(NmL/K1
(L×)) ⊂ NmK1/K(NmL1/K1

(L×1 ) = NmK1/K((K×1 )n) ⊂ (K×)n.

Hence in general, (K×)n contains a norm subgroup.
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Chapter 5

Global class field theory

Now that we have proved local class field theory, we can focus on more interesting things. Let K be a
number field (i.e. a finite extension of Q). The goal is to study abelian extensions of K and to understand
Gal(Kal/K)ab in terms of the arithmetic of K itself. (Note that even Gal(Qal/Q) is not understood, so we
look only at the abelian part.) To do so, we will construct a group CK and the global Artin reciprocity map

φK : CK → Gal(Kal/K)ab ∼= Gal(Kab/K)

where Kab is the maximal abelian extension of K. Moreover, there are norm maps NmL/K : CL → CK , for
a finite abelian extension L/K, such that the induced map

φL/K : CK/NmL/K(CL)
∼−→ Gal(L/K)

is an isomorphism. Note that if K is a local field, we know the Artin map exists from local class field theory,
and CK = K×. However, CK cannot be K× in the global situation. For example, if K = Q and L = Q(i),
then NmL/K(L×) = {a2 + b2 : a, b ∈ Q, (a, b) 6= (0, 0)} is not of index 2 inside K×, and so there cannot be
an isomorphism K×/NmL/K(L×) ∼= Gal(L/K). Instead, we will construct a locally compact group CK as
a generalization of the ideal class group ClK of K. (Recall that ClK := IK/K

×, where IK is the group of
fractional ideals of K, and K× is the group of principal ideals). In particular, CK := IK/K×, where IK is
the group of idèles (“ideal element”), and K× is the group of principal ideles. This is called the idèle class
group.

5.1 Idèle class group

Let K be a number field. Let v denote a (finite or infinite) prime of K. Associated to the prime v, there is
a (normalized) absolute value | · |v such that the product formula

∏
v |x|v = 1 holds for every x ∈ K×. Let

Kv denote the completion of K at v, so that Kv is a local field. If v is a finite prime, let Ov ⊂ Kv denote
the ring of integers and p̂v ⊂ Ov denote the maximal ideal. Let pv ⊂ OK denote the (global) maximal ideal
associated to v.

Definition 5.1.1. We will construct IK from K×v . The naive construction
∏
vK
×
v fails because it is “too

big”: not locally compact. To make it locally compact, impose the condition that only finitely many entries
have denominators. The group of idèles is

IK := {(av) ∈
∏
v

K×v : av ∈ O×v for all but finitely many v}.

We say IK is the restricted product
∏′
vK
×
v of the K×v with respect to O×v .
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Remark. For any finite set of primes S ⊃ S∞ := {infinite primes}, define

IK,S := {(av) ∈ IK : av ∈ O×v if v /∈ S} =
∏
v∈S

K×v ×
∏
v/∈S

O×v .

By definition, IK =
⋃
S IK,S .

Definition 5.1.2. Define a topology on IK (to make each IK,S open): a basis of neighborhoods of 1 consists
of

U(S, ε) := {(av) : |a− 1|v < ε∀v ∈ S, |av|v = 1∀v /∈ S}.

The IK becomes a topological group under this topology.

Remark. We have a natural injection K×v ↪→ IK given by a 7→ (. . . , 1, . . . , a, . . . , 1, . . .), i.e. put a at the v-th
entry and 1’s everywhere else. This is continuous in the induced topology of IK .

Remark. There is a natural surjection IK � IK given by (av) 7→
∏
v p

ordv(av)
v . Note that this is a finite prod-

uct, because at all but finitely many places we have ordv(av) = 0. The kernel is
∏
v∈S∞ K

×
v ×

∏
v/∈S∞ O

×
v =

IK,S∞ . So we can think of IK as an enlargement of IK by IK,S∞ .

Proposition 5.1.3. The natural injection K× ↪→ IK given by a 7→ (a, a, a, . . .) has discrete image.

Proof. We show that if S ⊃ S∞ and ε < 1, then K× ∩ U(S, ε) = {1}. By the definition of U(S, ε), if
a ∈ K× ∩ U(S, ε), then |a − 1|v < ε for v ∈ S and |a|v = 1 for v /∈ S. But then for v /∈ S, the ultrametric
inequality says |a−1|v ≤ max{|a|v, |−1|v} = 1. Hence

∏
v |a−1|v < 1. This contradicts the product formula

unless a = 1.

Remark. The product formula, as we used it in the proof above, shows that the different places “repel” each
other for a global element. Consider a more elementary example: Z[

√
2] ↪→ R is dense, but

Z[
√

2] ↪→ R× R, a+ b
√

2 7→ (a+ b
√

2, a− b
√

2)

is discrete. The phenomenon of the previous proposition is an infinite-dimensional generalization of this
phenomenon.

Definition 5.1.4. The idèle class group is CK := IK/K×, endowed with the quotient topology.

Remark. The surjection IK � IK we saw earlier induces a surjection Ck � ClK .

Definition 5.1.5. Let L/K be a finite extension. Define the norm map

NmL/K : IL → IK , (aw) 7→ (bv)

where bv :=
∏
w|v NmLw/Kv (aw).

Remark. For any a ∈ L×, we have NmL/K(a) =
∏
w|v NmLw/Kv (a). This is because of the isomorphism

L⊗K Kv
∼=
∏
w|v Lw. Hence the norm map induces a map NmL/K : CL → CK of idèle class groups.

5.2 Global class field theory

Definition 5.2.1. Let L/K be a finite Galois extension and v be a prime of K. Let w | v be a prime of L.
Define the decomposition group

D(w) := {σ ∈ Gal(L/K) : σw = w} ∼= Gal(Lw/Kv).

Moreover, for a different choice w′ | v, there exists τ ∈ Gal(L/K) such that w′ = τw. So D(w′) = τD(w)τ−1.
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Remark. If Gal(L/K) is abelian, then D(w) and the local Artin map φv : K∗v → Gal(Lw/Kv) = D(w) ⊂
Gal(L/K) are independent of the choice of w | v

Proposition 5.2.2. There exists a unique continuous homomorphism φK : IK → Gal(Kab/K) such that for
every L/K finite abelian extension and any choice of w | v, the following diagram commutes:

K×v
φv−−−−→ Gal(Lw/Kv)y y

IK
φK−−−−→ Gal(Kab/K).

Proof. If a ∈ IK , then define φK(a) :=
∏
v φv(av). Note that av ∈ O×v and Lw/Kv is unramified for all but

finitely many v. So in this case, by local class field theory, φv(av) = 1. Hence the product is actually finite
and well-defined. This uniquely defines φK . It remains to check φK is continuous, i.e. check that ker(φK) is
open. By global class field theory, we have the functorial property

IL
φL/L−−−−→ Gal(L/L)

NmL/K

y y
IK

φL/K−−−−→ Gal(L/K).

Hence φL/K ◦NmL/K = 0. So ker(φL/K) contains NmL/K(IL), which is open by local CFT.

Theorem 5.2.3 (Global class field theory). 1. (Global Artin reciprocity) The map

φK : IK → Gal(Kab/K)

satisfies φK(K×) = 1, and therefore induces the global Artin map

φK : CK → Gal(Kab/K).

Moreover, for any L/K finite abelian, φK induces an isomorphism φL/K : CK/NmCL
∼−→ Gal(L/K).

2. (Global existence) For any open subgroup N ⊂ CK of finite index, there exists a finite abelian L/K
such that N = NmL/K(CL).

Remark. From the statement of global class field theory, we get a bijection

{L/K finite abelian extension} ⇔ {finite index open subgroup N ⊂ CK}
L 7→ Nm(CL).

Remark. Note that if L1 ⊂ L2, then Nm(CL1
) ⊃ Nm(CL2

). Also, Nm(CL1L2
) = Nm(CL1

) ∩ Nm(CL2
), and

Nm(CL1
∩ CL2

) = Nm(CL1
) Nm(CL2

).

Definition 5.2.4. A modulus of K is a function m : {primes of K} → Z≥0 such that:

1. m(p) = 0 for all but finitely many primes p;

2. m(p) ∈ {0, 1} if p is a real prime;

3. m(p) = 0 if p is a complex prime.

Shorthand notation: m :=
∏

p p
m(p) = m0m∞ where m∞ is a product of real primes.
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Definition 5.2.5. Given a modulus m, define

ImK :=
∏
p|m0

(1 + pm(p))
∏

p|m∞

(Kp)×≥0

∏
p-m0

O×p
∏

p-m∞

K×p

Define Cm
K := ImKK×/K×, called the congruence subgroup. Define the ray class group Clm := CK/C

m
K .

Definition 5.2.6. By global class field theory, there exists an abelian extension Lm corresponding to Cm
K ,

and Clm ∼= Gal(Lm/K). In particular, when m = 1, then Cl1 = ClK , and L1 is called the Hilbert class
field. In particular, Gal(L1/K) ∼= ClK . The Hilbert class field is the maximal abelian extension of K which
is unramified at all finite places and stays real at all real places.

Example 5.2.7. If K = Q, then ClQ = {1} by unique factorization, and the Hilbert class field is Q itself.

Example 5.2.8. If K = Q and m = (m) for some m ∈ Z, then Clm := (Z/m)×/{±1}. Similarly, if
m = (m) · ∞, then Clm ∼= {±1} × (Z/m)×/{±1} = (Z/m)×. Global CFT says Cl(m)

∼= Gal(L(m)/Q) and
Cl(m)·∞Gal(L(m)·∞/Q). Clearly the cyclotomic extension Q(ζm) has Galois group (Z/m)×. Hence it is
L(m)·∞. The sub-extension L(m) of index 2 is precisely the sub-extension fixed by complex conjugation. We
have recovered the classical Kronecker–Weber theorem.

Theorem 5.2.9 (Kronecker–Weber). Qab =
⋃
m≥1 Q(ζm).

5.3 Cohomology of idèles

Theorem 5.3.1 (First inequality). [CK : NmCL] ≥ [L : K].

Remark. The proof of the first inequality will establish global class field theory for cyclic extensions L/K.
In fact, for cyclic extensions, we will show that the Herbrand quotient h(CL) = [L : K]. This will imply the
first inequality, since h(CL) = [CK : NmCL]/|H1(G,CL)|.

Recall that if v is a prime of K and L/K is a finite Galois extension, then v decomposes into multiple
primes w1 · · ·wg in L. Moreover, L ⊗KKv =

∏
w|v Lw. The Galois group G := Gal(L/K) acts on the lhs

on the factor L, and induces a G-action on the rhs by permuting the factors in the product. Specifically, if
α = (αw) ∈

∏
w|v and σ ∈ G, then (σα)σw = σαw.

Proposition 5.3.2. As G-modules, there is an isomorphism
∏
w|v Lw = IndGGw0

Lw0
for any fixed w0 | v.

Proof. Recall that by definition,

IndGGw0
Lw0

= {f : G→ Lw0
: f(τσ) = τf(σ) ∀τ ∈ Gw0

, σ ∈ G}.

For any α ∈
∏
w|v Lw, define such a function fα : G→ Lw0

by σ 7→ σασ−1w0
. We verify that

fα(τσ) = (τσ)α(τσ)−1w0
= τ(σασ−1w0

) = τfα(σ).

Conversely, given f ∈ IndGGw0
Lw0

, define αf ∈
∏
w|v Lw by (αf)σw0

:= σf(σ−1). We can check that α 7→ fα
and f 7→ αf are mutually inverse and respect the G-action.

Corollary 5.3.3. For all r, we have Ĥr(G,
∏
w|v Lw) = Ĥr(Gw0 , Lw0).

Proof. Apply Shapiro’s lemma to the proposition.

Remark. Since we know Ĥr(Gw0
, Lw0

) is independent of the choice of w0 | v, we often write it as Ĥr(Gv, Lv).

Corollary 5.3.4. For all r, Ĥr(G,
∏
w|v L

×
w) = Ĥr(Gw0

, L×w0
) and Ĥr(G,

∏
w|v Uw) = Ĥr(Gw0

, Uw0
)
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Proposition 5.3.5. H0(G, IL) = IK , and for any r, we have

Ĥr(G, IL) =
⊕
v

Ĥr(Gv, (Lv)×).

Proof. α = (αw) ∈ IL is fixed by G iff (αw)w|v is fixed by G for every v of K, iff αw ∈ K×v and is independent
of w | v. This data is equivalent to an element of IK .

Let S be a finite set of primes of K containing all infinite primes and all the primes ramified in L. Let
T be the finite set of primes of L lying over the primes v in S. Let IL,T :=

∏
w∈T L

×
w ×

∏
w/∈T U

×
w . Then

IL =
⋃
T IL,T , and by Shapiro’s lemma,

Ĥr(G, IL) = lim−→
T

Ĥr(G, IL,T ) = lim−→
S

∏
v∈S

Ĥr(Gv, (Lv)×)×
∏
v/∈S

Ĥr(Gv, Uv).

By assumption, all v /∈ S are unramified, so Ĥr(Gv, Uv) = 0. Hence we are left with

lim−→
S

∏
v∈S

Ĥr(Gv, (Lv)×) =
⊕
v

Ĥr(Gv, (Lv)×).

Corollary 5.3.6. Ĥ1(G, IL) = 0, and Ĥ2(G, IL) =
⊕

v(
1
nv

Z/Z) where nv := [Lv : Kv].

Proof. We know H1(Gv, (Lv)×) = 0 by Hilbert 90, and H2(Gv, (Lv)×) = (1/nv)Z/Z by local class field
theory.

Proposition 5.3.7. Let S be a finite set of primes of K, and T := {w | v : v ∈ S}. Assume L/K is finite
cyclic. Then the Herbrand quotient h(IL,T ) =

∏
v∈S nv, where nv := [Lv : Kv].

Proof. h(IL,T ) = h(
∏
v∈S(Lv)× ×

∏
v/∈S U

v) = h(
∏
v∈S(Lv)×) =

∏
v∈S nv.

5.4 Cohomology of units

Let L/K be a finite Galois extension of number fields.

Definition 5.4.1. Let T be a finite set of primes in L. The group of T -units is

U(T ) := {α ∈ L× : ordw(α) = 0 ∀w /∈ T} = L× ∩ IL,T .

For example, if T is the set of infinite primes of L, then U(T ) = UL.

Lemma 5.4.2. Let G be a finite cyclic group and V be a finite R[G]-module, i.e. a finite-dimensional real
vector space with a G-action. Let M,N be G-stable lattices in V . Then h(M) = h(N), if either is defined.

Proof. Since M , N are lattices, M ⊗Z R = N ⊗Z R as G-modules. In the homework, we showed this implies
α : M ⊗Z Q ∼−→ N ⊗Z Q as G-modules. By scaling by the common denominator of α, we get α(M) ⊂ N .
These are two free Z-modules of the same rank, so their quotient N/α(M) is torsion and therefore finite.
Hence h(N/α(M)) = 1, and h(α(M)) = h(N).

Proposition 5.4.3. Assume L/K is cyclic. Then h(U(T )) = 1
n

∏
v∈S nv where n := [L : K].

Proof. Apply the lemma to the R-vector space V := Fun(T,R) consisting of functions from T to R. It has
a G-action given by (g · f)(w) = f(g−1w), where f ∈ V , w ∈ T and g ∈ G. In other words, as a G-module,
V =

⊕
v∈S IndGGv R where R is the trivial G-module. By this description, we have two lattices.
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1. Consider the lattice
N :=

⊕
v∈S

IndGGv Z ⊂ V.

The Herbrand quotient is h(G,N) =
∏
v∈S h(G, IndGGv Z). By Shapiro’s lemma, this is

∏
v∈S h(Gv,Z) =∏

v∈S nv.

2. Define a map λ : U(T ) → V given by a 7→ (log |a|w)w∈T (cf. proof of Dirichlet’s unit theorem). Then
im(λ) has a single non-trivial relation coming from the product formula

∏
w |a|w = 1, so im(λ) is a

lattice in V 0 := {
∑
w∈T xw = 0} ⊂ V . Note that

ker(λ) = {a ∈ L× : |a|w = 1∀w /∈ T, |a|w = 1∀w ∈ T}.

This is precisely the roots of unity in L×, so in particular it is finite. Hence h(U(T )) = h(im(U(T ))).
Define M := im(U(T )) ⊕ Z(1, . . . , 1). Then M is a G-stable lattice in V , and h(im(U(T ))) =
h(M)/h(Z). Clearly h(Z) = n.

By the lemma,
∏
v∈S nv = h(N) = h(M) = nh(U(T )).

5.5 The first inequality

Lemma 5.5.1. Let S ⊃ S∞ be a finite set of primes containing the generating set of primes of the class
group ClK . Then IK = K× · IK,S. Then

IK/K× = IK,S/(IK,S ∩K×) = IK,S/U(S).

Proof. Recall that we have a surjection

IK � IK = {fractional ideals}, (av) 7→ pordv(av)
v

with kernel IK,S∞ . This implies IK/(K× · IK,S∞) = ClK . By enlarging ∞ to S, we get IK/(K× · IK,S) = 0.
Hence IK = K× · IK,S .

Theorem 5.5.2 (First inequality). [CK : NmCL] ≥ [L : K].

Proof. Recall that for cyclic extensions, it suffices to show that the Herbrand quotient is h(CL) = [L : K].
This will imply the first inequality, since h(CL) = [CK : NmCL]/|H1(G,CL)|. Take S to be the finite set of
primes of K such that:

1. S ⊃ S∞;

2. S ⊃ {primes ramified in L};

3. S ⊃ {pL ∩ OK : pL runs over a generating set of ClL}.

Take T := {w : w | v, v ∈ S}. Then by previous lemmas, CL = IL,T /U(T ), and hence h(CL) = n = [L :
K].

Lemma 5.5.3. If L/K is finite Galois with solvable G := Gal(L/K), and there exists a subgroup D ⊂ IK
such that

1. D ⊂ NmL/K(IL), and

2. K× ·D is dense in IK ,

then L = K.
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Proof. Suppose otherwise. Choose a cyclic sub-extension K ′/K (since L/K is solvable). By condition (1),
D ⊂ NmK′/K(IK′). By local CFT, NmK′/K(IK′) ⊂ IK′ is open. Hence K× · NmK′/K(IK′) ⊂ IK is closed.
By condition (2), this is actually an equality. Hence [CK : NmK′/K CK′ ] = 1. By the first inequality,
[K ′ : K] = 1. It follows that [L : K] = 1, so L = K.

Definition 5.5.4. A prime v of K splits completely in L if the primes w1, . . . , wg above a prime v satisfy
g = [L : K] and e, f,= 1, i.e. no ramification or non-trivial residue field.

Corollary 5.5.5 (Weak version of Chebotarev density theorem). If L/K is solvable and L 6= K, then there
exists infinitely many primes of K that do not split completely in L.

Proof. Let D := {(av) : av = 1∀v ∈ S} ⊂ IK where S = S∞ ∪ {all primes that don’t split completely in L}.
If there are only finitely many such primes, then S is finite. For any v /∈ S, by definition Lw = Kv. Hence
D ⊂ NmL/K(IL). Moreover, K× ·D is dense in IK by the following weak approximation (Milne ANT theorem
7.20): if | · |1, . . . , | · |n are inequivalent absolute values on a field K, and a1, . . . , an ∈ K, then for every ε > 0
there exists a ∈ K such that |ai − a|i < ε. Specifically, using weak approximation, given a = (av) ∈ IK , we
can choose b ∈ K close to av for all v ∈ S, and choose c ∈ D such that cv = 1 for all v ∈ S and cv = av for all
v /∈ S, so that bc is close to a. Hence K× ·D is dense. But then by the lemma, L = K, a contradiction.

Example 5.5.6. Take K := Q and L := Q(i). If p is an odd prime, then p splits in Q(i) iff p ≡ 1 mod 4. In
other words, p doesn’t split in L iff p ≡ 3 mod 4. Hence there are infinitely many primes p ≡ 3 mod 4. (In
fact, the “density” of each of these two classes is 1/2.)

5.6 Density and L-functions

Definition 5.6.1. Let P be a set of primes in Z. Its natural density is

µ(P ) := lim
x→∞

#{p ∈ P : p < x}
#{p prime : p < x}

if the limit exists.

Remark. This is quite a natural definition, but depends on the existence of an ordering of primes in Z. So
it does not work for general number fields.

Definition 5.6.2. Let P be a set of finite primes of a number field K. Its natural density is

µ(P ) := lim
x→∞

#{p ∈ P : Np < x}
#{p prime : Np < x}

if the limit exists.

Definition 5.6.3. We have an alternative notion of density which is useful in analytic arguments. Let P
be a set of finite primes of a number field K. Its Dirichlet density is

δ(P ) := lim
s→1+

∑
p∈P Np−s∑
pNp−s

if the limit exists.

Proposition 5.6.4. If µ(p) exists, then δ(p) also exists and µ(p) = δ(p).

Remark. We will not prove this fact. It shows that in some sense, the natural density is the “strongest”
notion of density.
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Definition 5.6.5. Recall the Riemann zeta function

ζ(s) :=
∑
n≥1

n−s =
∏

p prime

1

1− p−s
.

Dedekind then introduced the Dedekind zeta function for arbitrary number fields

ζK(s) :=
∑

a⊂OK

(Na)−s =
∏

p⊂OK

1

1−Np−s

where a ranges over all (integral) ideals, and p over (integral) prime ideals. Now fix a character χ : (Z/m)× →
C×, and define the Dirichlet L-function

L(s, χ) :=
∑
n≥1

χ(n)n−s =
∏

p prime

1

1− χ(p)p−s

where χ is extended by 0 to all integers. Finally, note that (Z/m)× is a ray class group, so fix a character
χ : Clm → C× and define the Weber L-function

L(s, χ) :=
∑

a∈OK
gcd(a,m)=1

χ(a)(Na)−s =
∏

p⊂OK
gcd(p,m)=1

1

1− χ(p)Np−s

where to evaluate χ(a) we implicitly embed a into Clm.

Example 5.6.6. If K = Q and m := (m) · ∞, then Clm = (Z/m)×. So we recover the Dirichlet L-function
from the Weber L-function.

Remark. In general, an L-function of the form
∑
n≥0 ann

−s with an Euler product
∏
p 1/(1− αpp−s).

Theorem 5.6.7. If χ is not trivial, then L(s, χ) has an analytic continuation to s ∈ C, and L(1, χ) 6= 0.
Otherwise if χ is trivial, then L(s, χ) = ζK(s) has an analytic continuation to s ∈ C−{1}, and has a simple
pole at s = 1 (with residue given by the class number formula).

Remark. There is a relationship between
∑

pNp−s and ζK(s) as follows. Compute

log ζK(s) = log
∏
p

1

1−Np−s
= −

∑
p

log(1−Np−s) =
∑
p

∑
m≥1

Np−ms

m
=
∑
p

Np−s +
∑
p

∑
m≥2

Np−ms

m
.

The second term is analytic when <(s) > 1/2. In particular, it is analytic at s = 1. Hence we write

log ζK(s) ∼
∑
p

Np−s,

where f ∼ g means f − g is analytic at s = 1. On the other hand, using that ζK(s) has only a simple pole
at s = 1,

log ζK(s) ∼ log ζK(s)− log((s− 1)ζK(s)) = log
1

s− 1
.

Hence Dirichlet density is also equal to

δ(P ) = lim
s→1+

∑
p∈P Np−s

log 1/(s− 1)
.

Proposition 5.6.8. It follows that the Dirichlet density has the properties:
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1. 0 ≤ δ(p) ≤ 1;

2. if P is finite, then δ(P ) = 0;

3. if P = P1 t P2, then δ(P ) = δ(P1) + δ(P2) (if two of the three densities exist, so does the third);

4. if P1 ⊂ P2 both have densities, then δ(P1) ≤ δ(P2);

5. if P has density and δ(P ′) = 1, then δ(P ) = δ(P ∩ P ′);

6. if P and P ′ are complementary sets and P has density, then δ(P ) + δ(P ′) = 1.

Theorem 5.6.9. Let L/K be finite Galois. Let P be the set of finite primes of K that split completely in
L. Then δ(P ) = 1/[L : K].

Proof. We can directly compute δ(P ):∑
p∈P

Np−s ∼ 1

[L : K]

∑
q in L
f(q)=1

Nq−s ∼ 1

[L : K]

∑
q in L

Nq−s =
1

[L : K]
log ζL(s) ∼ 1

[L : K]
log

1

s− 1

because all the other primes q in L with f(q) > 1 contribute an analytic term. Dividing, we get δ(P ) =
1/[L : K].

5.7 The second inequality

We now want to show [CK : NmL/K CL] ≤ [L : K]. By the previous section, we can interpret the right
hand side as a density. Now we want to re-interpret Ck/NmL/K CL in terms of the density of another set
of primes.

Definition 5.7.1. Let m be a modulus. Define the subgroup of m-idèles

IK(m) = {(an) ∈ IK : ap ∈ 1 + pm(p) ∀p | m finite, ap ∈ Kp,>0 ∀p | m infinite}.

Define K×(m) := IK(m) ∩K×.

Proposition 5.7.2. IK(m)/K×(m) = IK/K×, and the ray class group is Clm = Im/K×(m), where Im is
the group of fractional ideals of K coprime to m.

Proof. Write IK(m) ↪→ IK → IK/K×. Note that the kernel is contained in K×(m). Hence IK(m)/K×(m)→
IK/K× is injective. Surjectivity follows by weak approximation: we can modify any element in IK by an
element of K× to get an element in IK(m). So IK(m)/K×(m) = IK/K×. Now use the natural map

IK(m)→ Im, (ap) 7→
∏
p-m

pordp(ap).

By the definition of IK(m), the kernel of this map is K×(m). Hence we have an induced isomorphism
Clm = IK/(K× · ImK) ∼= Im/K×(m).

So for any L/K Galois, there exists a modulus m such that the global Artin map should induce an
isomorphism

ImK/(K
×(m) ·NmL/K I

m
L ) ∼= Gal(L/K)

if L/K is abelian.

Theorem 5.7.3. Let A ∈ Im/H be an ideal class, where K×(m) ⊂ H ⊂ Im. Then the Dirichlet density is
δ(p ∈ A) = 1/[Im : H].
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Proof. Let χ be a character of the finite group Im/H. Then

logL(s, χ) ∼
∑
p|m

χ(p)

Nps
=

∑
B∈Im/H

χ(B)
∑
p∈B

1

Nps
.

Recall that if G is a finite abelian group with group of characters Ĝ, we have

∑
χ∈Ĝ

χ(g) =

{
|G| g = 0

0 g 6= 0.

So multiply both sides by χ(A)−1 and sum up over all χ, to get∑
χ

logL(s, χ)χ(A)−1 ∼
∑
χ

∑
B∈Im/H

χ(A)−1χ(B)
∑
p∈B

1

Nps
=
∑
p∈A

1

Nps
[Im : H].

But recall that L(s, χ) is holomorphic unless χ = 1, so∑
χ

logL(s, χ)χ(A)−1 ∼ log ζK(s) = log
1

s− 1
.

Hence we get that

δ(p ∈ A) = lim
s→1+

∑
p∈ANp−s

log(1/(s− 1))
=

1

[Im : H]
.

Theorem 5.7.4 (Second inequality). [CK : NmL/K CL] ≤ [L : K].

Proof. Take H = K×(m) · NmL/K I
m
L , and A = [0] ∈ Im/H. The theorem implies δ(p ∈ K×(m) · Nm ImL ) =

1/[Im : K×(m) Nm ImL ]. Clearly

{p : p splits completely in L} ⊂ {p : p ∈ K×(m) ·Nm ImL }

because if a prime splits completely, each of its local extensions is trivial, so the norm map is the identity.
(Also, we use that m is a finite set, so it does not make a difference in terms of density.) However, we know
δ({p : p splits completely in L}) = 1/[L : K]. Hence 1/[L : K] ≤ 1/[Im : K×(m) · Nm ImL ], which is the
desired inequality.

Corollary 5.7.5 (Global version of Hilbert 90). If L/K is finite Galois, then H1(G,CL) = 0.

Proof. Assume G is abelian and cyclic. The first inequality gives

[L : K] = h(CL) = [CK : NmL/K CL]/|H1(G,CL)|.

By the second inequality,

[CK : NmL/K CL]/|H1(G,CL)| ≤ [L : K]/1 = [L : K].

Hence equality holds, and [CK : NmL/K CL] = [L : K] and |H1(G,CL)| = 1. Now assume G is a p-group.
Take H ⊂ G of index p and use the inflation-restriction sequence

0→ H1(G/H,CLH )→ H1(G,CL)→ H1(H,CL).

By the cyclic case, H1(G/H,CLH ) = 0. By induction on |G|, we knowH1(H,CL) = 0. HenceH1(G,CL) = 0.
Finally, for G an arbitrary group, use that H1(G,CL) ↪→

∏
pH

1(Gp, CL) is an injection, and each of the
terms in the product are 0.
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Corollary 5.7.6. Let L/K be finite Galois. Then the natural map

H2(L/K)→
⊕
v

H2(Lv/Kv)

is an injection. (Recall H2(L/K) := H2(Gal(L/K), L×).)

Proof. Consider the exact sequence of G-modules 0→ L× → IL → CL → 0. The long exact sequence gives

· · · → H1(G,CL)→ H2(L/K)→ H2(G, IL)→ · · · .

By global Hilbert 90, H1(G,CL) = 0. We already computed H2(G, IL) =
⊕

vH
2(Lv/Kv). Hence we get

the desired injection.

Corollary 5.7.7. For all β ∈ H2(K) := H2(Ksep/K, (Ksep)×), there exists a cyclic cyclotomic extension

L/K such that the image of β under H2(K)
res−−→ H2(L) is zero.

Remark. This corollary will be used to reduce the proof of global CFT to cyclic cyclotomic extensions, which
are much more explicit.

Proof. Let βv denote the image of β in H2(Lv/Kv). By the previous corollary, β is completely determined
by {βv}. By local CFT, H2(Lv/Kv) ∼= (1/[Lv : Kv])Z ⊂ Q/Z, given by the invariant map invv. Moreover,
given βv ∈ H2(K), we can look at invw(βv|L) for w | v a place of L. We know

invw(βv|L) = [Lv : Kv] invv(βv)

by the functoriality of restriction/corestriction. Let nv := [Lv : Kv]. By the previous theorem, if β ∈ H2(K),
then invv(βv) = 0 for all but finitely many v. So there exists some integer m ≥ 1 such that m · invv(βv) = 0
for all v. So it remains to prove the following lemma.

Lemma 5.7.8. Let S be a finite set of finite primes of K. Let m ≥ 1 be an integer. Then there exists a
cyclic cyclotomic extension L/K such that m | nv for all v ∈ S.

Proof. We can reduce to the case K = Q, by replacing m by m[K : Q]. (If we have such a construction over
Q, we can take the compositum to get the desired construction over K.) We can also reduce to the case
m = `s where s is a prime power. (We can repeat the construction for each prime in m, and the product
of cyclic groups of coprime order is still cyclic.) Hence it suffices to construct a cyclic cyclotomic extension
L/Q such that `s | [Lp : Qp] for all p ∈ S. Recall that

Gal(Q(ζ`r )/Q) = (Z/`r)× =

{
Z/(`− 1)⊕ Z/`r−2 ` odd

Z/2⊕ Z/2r−3 ` = 2.

Hence take the cyclic cyclotomic extension

L =

{
Q(ζ`r )

Z/(`−1) ` odd

Q(ζ`r )
Z/2 ` = 2,

which is of degree `r−2 or `r−3. Now compute [Lp : Qp].

1. If p = `, then Lp/Qp is totally ramified. Then [Lp : Qp] = ϕ(`r) and we can choose r � 0 such that
`s | [Lp : Qp].

2. If p 6= `, then Lp/Qp is unramified. Then [Lp : Qp] = t, the smallest integer such that `r | (pt − 1) and
we can choose r � 0 such that `s | t.

42



5.8 Chebotarev density theorem

Theorem 5.8.1 (Chebotarev density theorem). Let L/K be a finite Galois extension (not necessarily
abelian) of number fields. Let σ ∈ G := Gal(L/K). Let Cσ be the conjugacy class of σ in G. Then

δ({p ⊂ K : Frobp ∈ Cσ}) =
|Cσ|
|G|

.

Example 5.8.2. For example, if σ is trivial, then the lhs is δ({p : p splits completely inL}), and the rhs is
1/|G| = 1/[L : K]. So the calculation of the density of the split primes we saw earlier is a special case of the
Chebotarev density theorem.

Example 5.8.3. If L/K = Q(ζN )/Q, then G = (Z/N)×. Choose σ = a ∈ (Z/N)×. Then the lhs is
δ({p : p ≡ a mod N}), and the rhs is 1/ϕ(N). In particular, this implies Dirichlet’s theorem: there are
infinitely many primes in any arithmetic progression.

Example 5.8.4. Let f(x) = x3 − 2 and K = Q. Let L = Q( 3
√

2, ζ3) be the Galois closure of f(x). Then
G = Gal(L/K) = S3. This group has 3 conjugacy classes:

1. σ = (1), with |Cσ| = 1, and Frobp ∈ Cσ iff x3 − 2 splits into 3 linear factors mod p;

2. σ = (1 2), with |Cσ| = 3 because there are 3 transpositions (1 2), (1 3), (2 3), and Frobp ∈ Cσ iff x3−2
splits into a linear and a quadratic factor mod p;

3. σ = (1 2 3), with |Cσ| = 2 because there are 2 cyclic permutations (1 2 3) and (1 3 2), and Frobp ∈ Cσ
iff x3 − 2 is irreducible mod p.

Note that for each of these cases, there is no congruence condition on p, because S3 is not abelian. (In the
abelian case we will get congruence conditions.)

Proof. If G is abelian, then global CFT implies there exists a modulus m and a subgroup H ⊂ Im such that

Im/H
φL/K−−−→ Gal(L/K) is an isomorphism. Let A ∈ Im/H be an ideal class such that φL/K(A) = σ. Then

δ({p : Frobp = σ}) = δ({p : p ∈ A}) = 1/[Im : H] = 1/|G|.

If G is non-abelian, take the group 〈σ〉 ⊂ G generated by σ. Take M = L〈σ〉, so that L/M is a cyclic, and
therefore abelian, extension. Consider

S1 := {q prime of M : Frobq = σ ∈ Gal(L/M)}.

Then the abelian case gives δ(S1) = 1/|〈σ〉|. Consider

S2 := {q prime of M : Frobq = σ ∈ Gal(L/M), Mq = Kp, p = q ∩ OK} ⊂ S1.

(In other words, f(q/p) = 1.) Then δ(S2) = δ(S1), since the infinitely many primes we threw away have
density 0. Consider

S3 := {p prime of K : Frobp ∈ Cσ ⊂ Gal(L/K)}.

Then there is a surjection S2 → S3 given by q 7→ p := q ∩ OK . The fiber of this map is isomorphic to

{τ ∈ G : τσ = στ}/〈σ〉 = ZG(σ)/〈σ〉.

Hence we have the following chain of equalities:

δ(S3) = δ(S2)
|〈σ〉|
|ZG(σ)|

=
1

|〈σ〉|
|〈σ〉|
|ZG(σ)|

=
1

|ZG(σ)|
=
|Cσ|
|G|

where the last equality is the orbit-stabilizer theorem.
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5.9 Proof of global CFT

Lemma 5.9.1. φL/K : IK → Gal(L/K) is surjective.

Proof. Consider the subgroup H generated by {Frobp : p is unramified in L}. We want H = G := Gal(L/K).
Let M = LH . By Galois theory it suffices to show M = K. Then Frobp is trivial in Gal(M/K) for all but
finitely many primes p. So there are only finitely many primes that do not split completely in M . By the
first inequality (or Chebotarev density), it follows that M = K.

Theorem 5.9.2 (Theorem A). φL/K(K×) = 1.

Theorem 5.9.3 (Theorem B). For any class α ∈ H2(L/K), we have
∑
v invv(α) = 0.

Proof of global CFT. By theorem A and local class field theory, K× · NmL/K IL ⊂ ker(φL/K). By the
lemma, there the resulting map IK/(K× · NmL/K IL) � Gal(L/K) is surjective. By the second inequality,
[CK : NmL/K CL] ≤ [L : K]. Hence this surjection is actually an isomorphism.

Remark. Hence to finish the proof of global CFT, it suffices to prove theorem A. Here is an outline of the
proof:

0. Prove theorem A for cyclotomic extensions L/K = Q(ζn)/Q.

1. Prove theorem A for L/K cyclic cyclotomic.

2. Prove theorem B for L/K cyclic cyclotomic.

3. Prove theorem B for L/K finite Galois.

4. Prove theorem A for L/K finite Galois.

Proof of step 0. To show: for all a ∈ Q×, we have φ(a) = 1 ∈ Gal(Q(ζn)/Q). It suffices to show φ(a) = 1 ∈
Gal(Q(ζ`r )/Q) where `r | m is a prime power. So wlog assume m = `r.

1. If v = p 6= ` is a prime and a = u · ps where u is coprime to p, then since p is unramified, φv(a) =

(ζ`r 7→ ζp
s

`r ) ∈ Gal(Q(ζ`r )/Q). (Equivalently, it is the element ps ∈ (Z/`r)×.)

2. If v = p = `, then p is ramified. Again write a = u · ps where again u is coprime to p. By a homework
exercise, φv(a) = (ζ`r 7→ ζu

−1

`r ) ∈ Gal(Q(ζ`r )/Q). (Equivalently, it is the element u−1 ∈ (Z/`r)×.)

3. Finally, if v =∞ and a = sgn(a)|a|, then φv(a) = sgn(a) ∈ Gal(C/R) = {±1}.

To show φ(a) = 1, it suffices to show φ(q) = 1, φ(`) = 1, and φ(−1) = 1. Compute

φ(q) =
∏
v

φv(q) = φq(q)φ`(q) = qq−1 = 1

φ(`) =
∏
v

φv(`) = φ`(`) = 1−1 = 1

φ(−1) =
∏
v

φv(−1) = φ`(−1)φ∞(−1) = (−1)−1(−1) = 1.

Lemma 5.9.4. If theorem A holds for L/K, then it also holds for L′/K ′ where K ′/K is a finite extension,
and L′ = L ·K ′ is the compositum. It also holds for sub-extensions M ⊂ L.
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Proof. We use functoriality in local CFT, which says that the diagram

IK′
φL′/K′−−−−→ Gal(L′/K ′)

Nm

y y
IK

φL/K−−−−→ Gal(L/K)

commutes. Then for all a ∈ (K ′)×, we have

φL′/K′(a) = φL/K(NmK′/K(a)) ∈ φL/K(K×) = 1.

Similarly, we can factor φM/K as φM/K : IK
φL/K−−−→ Gal(L/K) � Gal(M/K). Hence for all a ∈ K×, if

φL/K(a) = 1 then φM/K(a) = 1.

Proof of (0) =⇒ (1). Apply the lemma to K = Q and L = Q(ζm), and K ′ to be any number field. Hence
L′/K ′ and any sub-extension M/K ′ satisfies theorem A.

Proof of (2) =⇒ (3). Recall that for all α ∈ H2(K), there exists L/K cyclic cyclotomic such that α ∈
ker(H2(K) → H2(L)) = H2(L/K) (by inflation-restriction). Step 2 therefore says

∑
v invv(α) = 0. Hence∑

v invv(α) = 0 for all L/K finite Galois.

Proof of (1) =⇒ (2) and (3) =⇒ (4). If M,N are G-modules, there is a cup product

Hr(G,M)×Hr(G,N)→ Hr+s(G,M ⊗N)

(ϕ,ψ) 7→ ((g1, . . . , gr+s) 7→ ϕ(g1, . . . , gr)⊗ (g1 · · · gr)ψ(gr+1, . . . , gr+s)).

We will apply this to H0(G,M) × H2(G,Z) → H2(G,M). Recall that H2(G,Z) = H1(G,Q/Z) =
Hom(G,Q/Z). Take χ ∈ Hom(G,Q/Z) and let δχ ∈ H2(G,Z) be the corresponding element under these
identifications. Let M = L× or IL. Then we get a diagram

H0(G,L×) = K× −−−−→ H0(G, IL) = IK
φL/K−−−−→ Gal(L/K)

∪δχ
y ∪δχ

y χ

y
H2(G,L×) = H2(L/K) −−−−→ H2(G, IL) =

⊕
vH

2(Lv/Kv)
∑
v invv−−−−−→ Q/Z

which relates theorem A and theorem B. Hence we can actually compute φL/K using
∑
v invv after cupping.

If theorem A holds for L/K cyclic cyclotomic, then the top row of this diagram (for L/K) is zero. By
commutativity, we conclude that the bottom row is also zero. But this is precisely the statement of theorem
B. Similarly, if theorem B holds for L/K finite Galois, then theorem A also holds for L/K finite Galois.

5.10 Primes p = x2 + ny2

We can apply class field theory to the problem of determining which primes can be written in the form
x2 +ny2. Recall that an odd prime p is of the form x2 +y2 iff p ≡ 1 mod 4. More generally, in K = Q(

√
dK),

either p splits, is inert, or is ramified. For K = Q(i), set dK = −4. Then p odd implies p does not ramify in
K. Then

p splits ⇐⇒
(
−4

p

)
= 1 ⇐⇒ (−1)(p−1)/2 = 1 ⇐⇒ p ≡ 1 mod 4.

Since OK = Z[i] has class number 1, the primes p1, p2 lying over p are principal, and generated by conju-
gates x ± iy. The two ingredients making this work are quadratic reciprocity (which generalizes to Artin
reciprocity), and that pi is principal (which generalizes to using the Hilbert class field).
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Recall that the idèle class group of Q is CQ = R>0 ×
∏
p Z×p . The Kronecker–Weber theorem says

Qab =
⋃
n≥1 Q(ζn), so Gal(Qab/Q) = lim←−Gal(Q(ζn)/Q) =

∏
p Z×p . Then the Artin map

φQ : CQ → Gal(Qab/Q)

is given by projection onto the second factor. Take the modulus m = (N)∞. Then Cl(N)∞ = (Z/N)×, and
Artin reciprocity gives an isomorphism

Cl(N)∞ ∼= (Z/N)×
φQ(ζN )/Q−−−−−−→ Gal(Q(ζN )/Q), a 7→ (ζN 7→ ζaN ).

In particular, p ≡ 1 mod N iff Frobp is trivial, iff p splits completely in Q(ζN )/Q. For example, if N = 4,
then Q(ζ4) = Q(i) and we get p ≡ 1 mod 4 iff p splits, which is precisely quadratic reciprocity.

Theorem 5.10.1. p = x2 + 5y2 for p 6= 5 iff p ≡ 1, 9 mod 20.

To prove this theorem, we want to look at splitting in K = Q(
√
−5). Recall that the existence theorem

says open subgroups of finite index in CQ are in 1-to-1 correspondence with finite abelian extensions of
Q. Out of these extensions, we look at the sub-extensions of Q(ζN ). They correspond to subgroups H of
(Z/N)×. For example, when N = 5, clearly (Z/5)× has subgroups {1}, {1, 4}, and {1, 2, 3, 4}, corresponding
to extensions Q(ζ5), Q(

√
5), Q.

But we want Q(
√
−5). It has discriminant 20, so let’s look at N = 20. Then (Z/20)× = (Z/4)××(Z/5)×.

The subgroup {1, 19} corresponds to invariants under complex conjugation, i.e. Q(ζ20 + ζ̄20). We also know
Q(ζ5) corresponds to {1 mod 5} = {1, 11}. There should be a third degree-4 extension corresponding to
{1, 9}, but we don’t know what the extension is. We also have the obvious extensions Q(i), corresponding
to {1 mod 4}, and Q(

√
5), corresponding to {1, 4 mod 5}. By the existence theorem, {1, 9} contains both

Q(
√

5) and Q(i), and therefore must be Q(
√

5, i). Since Q(
√
−5) is a sub-extension of Q(

√
5, i), it must

correspond to the last order-4 subgroup containing {1, 9}, i.e. {1, 3, 7, 9}. Hence p ≡ 1, 3, 7, 9 mod 20 iff p
splits in Q(

√
−5). Warning: Q(

√
−5) has non-trivial class number. So we need to see when p = p1p2 has pi

principal. For example, we have (3) = (3, 1 +
√
−5)(3, 1−

√
−5), and both are non-principal, so at least we

should exclude 3. To do this in general, use the Hilbert class field HK .

Theorem 5.10.2. Let K be a number field and HK/K be its Hilbert class field. Then p is principal iff p
splits completely in HK .

Proof. We know ClK ∼= Gal(HK/K). Then p is principal iff [p] = [0] in ClK , iff Frobp is trivial, iff p splits
completely in HK .

So p = p1p2 with p1 and p2 principal iff p splits completely in HQ(
√
−5). But we know HQ(

√
−5) = Q(

√
5, i).

This extension corresponds to {1, 9}, i.e. p ≡ 1, 9 mod 20.

Remark. If K/Q is non-abelian, then we can never find a congruence condition for p splitting in K. For
example, take K = Q[x]/(x3 − x2 + 1), which has the smallest discriminant dK = −23 out of all cubic
extensions. Then Gal(K̃/Q) = S3. We computed the splitting behavior of primes for this extension earlier,
for the Chebotarev density theorem, and noted that the primes do not satisfy any congruence conditions.
However, we can look at the modular form

q
∏
n≥1

(1− qn)(1− q23n) =
∑
n≥1

anq
n.

We can compute ap for p prime to get the table:

p 2 3 5 7 11 13 17 19 23 29 31
ap −1 −1 0 0 0 −1 0 0 1 −1 −1.

Note that the primes p when ap = −1 are precisely the primes splitting completely. This is a hint at the
Langlands program.
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