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Abstract
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2 Feb 05 (Renata): Gromov–Witten invariants of stable maps
with fields
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3 Feb 19 (Zhengyu): (Equivariant) mirror symmetry for non-
Hamiltonian torus actions

Let’s first review all-genus mirror symmetry for toric CY 3-folds (or orbifolds), of finite type. This means
that the fan contains only finitely many cones. In this setting, there is the remodeling conjecture, which is
an all-genus statement for mirror symmetry. It was first introduced by Bouchard–Klemm–Mariño–Pasquetti
(BKMP).

Before we talk about all-genus mirror symmetry, let’s first review genus-0 mirror symmetry for general
toric manifolds/orbifolds.

1. In the smooth case, this was first proved by Givental and also by Lian–Liu–Yau (in 1997).

2. In the orbifold case, there are two independent proofs:

(a) by Coates–Corti–Iritani–Tseng (in 2013) generalizing the proof in the smooth case;

(b) by Cheung–Ciocan–Fontanine–Kim (in 2014) using quasimap theory.

The statement of mirror symmetry is the correspondence of the following data:

A-model Landau–Ginzburg B-model

Semi-projective toric orbifold X of dim r T -equivariant superpotential WT ∶ (C∗)r → C
torus action T = (C∗)r on X the critical locus Jac(WT )

equivariant quantum cohomology QH∗
CR,T (X) a residue pairing (f, g)

quantum product ⋆t
the T -equivariant Poincaré pairing (−,−)X,T

(The construction of WT comes purely from the combinatorial data of the fan of X.)

Theorem 3.1 (Genus-0 mirror symmetry). There is an isomorphism of Frobenius structures

(QH∗
CR,T (X),⋆t, (−,−)X,T ) ≅ (Jac(WT ), ⋅, (−,−)).

Now we want to generalize this to the higher-genus case. In higher genus, we also have A-model and
B-model.

A-model B-model
X a toric CY 3-orbifold affine mirror curve C ⊂ (C∗)2

a Lagrangian L ⊂X (Aganagic–Vafa brane) Eynard–Orantin topological recursion producing
open GW potential FX,Lg,n of (X,L) a symmetric n-form Ωg,n ∈H0(Cn,KC ⊗⋯)Sn

Theorem 3.2 (Remodeling conjecture). If we expand Ωg,n under suitable local coordinates on the mirror
curve C, we obtain the open GW potential FX,Lg,n under the mirror map.

Example 3.3. Consider X = Tot(O(−3) → P2). The fan is the cone over the polytope
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From this polytope, we can draw the toric diagram by drawing edges in a dual graph perpendicular to
corresponding edges in the polytope:

The Lagrangian L will intersect with one of the three non-compact edges. On the mirror side, we get

H(X,Y ) ∶=X + Y + 1 + qX3Y −1 = 0.

Here this q is the parameter for complex structures. The equation comes from writing down an monomial for
each point in the polytope. The topological type of the mirror curve C is determined by the toric diagram,
by fattening. We put a puncture at (X,Y ) = (0,−1). If we expand Ωg,n around (0,−1), we will get the
A-model open GW potential.

Proof strategy. A priori, the A-model and B-model pictures are of very different objects. The strategy is to
realize both A-model and B-model higher-genus potentials as quantizations on two isomorphic semisimple
Frobenius structures. The diagram is

genus 0 A-model genus 0 B-model

genus 0 data of mirror curve

higher genus A-model higher genus B-model

genus 0 mirror symmetry

orbifold Givental quantization

dimensional reduction

Eynard–Orantin recursion

graph sum formula

.

Today we want to generalize this to toric CY3s Y of infinite type, i.e. Y is no longer an algebraic
variety in the usual sense. In the toric case, this is equivalent to saying that there are infinitely many cones
in the toric fan. But the fan is still always a cone over a triangulation of a non-compact polyhedron in R2.
On the B-model side we still have a curve

Ĉ ∶= {H(X,Y ) = 0} ⊂ (C∗)2.

In the original case, the monomials in the equation H(X,Y ) corresponded to points in the toric polytope,
but now there are infinitely many points. So H(X,Y ) will not be an algebraic equation, and there will be
a convergence issue. It turns out convergence is not an issue. We can still run topological recursion to get
Ωg,n.

Another more interesting case we want to study is when there exist a certain symmetry on the toric
variety Y . Specifically, assume there exists an action of Γ on Y , for a certain discrete group Γ. This induces
a Γ-action on the mirror curve Ĉ. We want to consider the pair

X ∶= Y /Γ, C ∶= Ĉ/Γ,
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so C is the mirror curve for X. The picture is summarized in the following diagram:

Y
MSÐÐÐÐ→ Ĉ ⊂ (C∗)2

×××Ö
×××Ö

X = Y /Γ MSÐÐÐÐ→ C = Ĉ/Γ.
Of course, we want to assume the Γ action commutes with the torus action on Y . So X will have a non-
Hamiltonian torus action in general. This is because the moment map Y → R2 descends to X → R2/Γ, which
is in general not a vector space.

Example 3.4. The polyhedral ∆ is given by the (infinite) periodic tiling which looks like

.

The toric diagram arising from this polyhedral cone is a hexagonal lattice. There is a Z2-action on ∆ given by
translation (a, b) ↦ (a+m,b+n), which induces an action on the resulting toric variety Y . The fundamental
diagram in the quotient X = Y /Z2 is

Here the two vertical edges are identified, and the two horizontal edges are identified, for a total of three
T -invariant P1’s. This X is sometimes called the local banana manifold. The generalized moment map is

R2 → R2/Z2 = U(1)2,

i.e. it is Lie group valued. It turns out there is a generalization of Hamiltonian actions called quasi-
Hamiltonian T -actions. This is when the target is Lie group valued and the moment map satisfies certain
conditions.

The mirror curve lies in A ∶= C2/Z2, which is an abelian surface. If we write its period matrix as

P = (τ σ
σ ρ

) ,

then the mirror curve is given by

H(X,Y ) ∶= ∆(q)Θ2 [(−τ/2,−ρ/2)] (−x/2πi,−y/2πi;ρ),

where Θ2 is the genus-2 Riemann zeta function. So the mirror curve is a genus-2 curve in the abelian surface
A.

4 Feb 26 (Song): Open-closed Gromov–Witten invariants of toric
CY3-orbifolds

We’ll start with some basics about toric orbifolds. Recall that toric varieties can be defined via the combi-
natorial data of fans. Toric orbifolds arise from stacky fans, encoding data of the stabilizers. In the algebraic
setting, these are called smooth toric DM stacks.
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Definition 4.1. A stacky fan is the following data:

1. a finitely-generated free abelian group N ≅ Zn (i.e. a lattice of finite rank);

2. a simplicial fan Σ ⊂ NR ∶= N ⊗Z R;

3. vectors b1, . . . , br′ such that the set of 1-cones in Σ are generated by {R≥0bi};

4. additional vectors br′+1, . . . , br such that N = ⟨b1, . . . , br⟩.

So we have a short exact sequence

0→ (Zr−n ≅ L) → (Zr ≅ Ñ) b̃i↦biÐÐÐ→ N → 0

Applying ⊗C, we get
0→ G→ T̃ → T ≅ (C∗)r → 0.

This inclusion G → T̃ induces an action of G on Cr. The toric orbifold X is the quotient by G of a
subvariety of Cr as follows.

1. Define the anti-cones

A ∶= {I ′ ∪ {r′ + 1, . . . , r} ∶ I ′ ⊂ {1, . . . , r′} s.t. ∑
i∉I′

R≥0bi is a cone in Σ}.

2. Remove anti-cones:
UA ∶= Cr ∖ ⋃

I∈A
Z(∏

i∈I
xi).

3. Define the stacky quotient X ∶= [UA/G].

Remark. If b1, . . . , br′ are minimal generators, in the sense that on each ray we select the smallest integral
point, X will be a simplicial toric variety, not a DM stack. We disallow torsion in N because that gives rise
to generic stabilizer.

Example 4.2. Let N = Z and Σ be the complete fan on R. Choose b1 = 3 and b2 = 2. To generate N , pick
b3 = 1. The result is

X = P[3,2].

Definition 4.3. In the toric case, we have a nice description of stabilizers in terms of the stacky fan data.

1. Let Σ(d) be the set of all d-dimensional cones in Σ.

2. Given σ ∈ Σ(d), let

Iσ′ ∶= {i ∈ {1, . . . , r′} ∶ R≥0bi ∈ σ}
Iσ ∶= {1, . . . , r} ∖ Iσ′ .

3. Define the n − d-dimensional closed substack

V (σ) ∶= [(UA ∩Z(xi ∶ i ∈ Iσ′))/G].

Note that this isT -invariant. In general, it is not an orbifold. Smaller orbits will have larger generic
stabilizers.

Let Gσ ≤ G be the generic stabilizer of V (σ). All of these arise combinatorially as follows.
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Lemma 4.4. There is an identification of Gσ with

Box(σ) ∶= { ∑
i∈Iσ′

cibi ∈ N ∶ 0 ≤ ci ≤ 1}.

Example 4.5. Let N = Z2 with fan Σ just the first quadrant. Pick

b1 = (2,0), b2 = (0,3)

with additional vectors to generate the lattice. Then we have one 2-dimensional cone σ and two 1-dimensional
cones τ1, τ2. The box elements are therefore

Box(τ1) = {(0,0), (1,0)}, Box(τ2) = {((0,0), (0,1), (0,2)}.

These are identified with stabilizers Z/2Z and Z/3Z. What about Box(σ)? It is

Box(σ1) = Box(τ1) ∪Box(τ2) ∪ {(1,1)}.

This is identified with Z/2Z ×Z/3Z.

Remark. We see that in general Box(σ) is always actually a box. If τ ⊂ σ then Box(τ) is the projection of
Box(σ) in the appropriate direction.

Remark. The most interesting case is τ ≺ σ where τ ∈ Σ(n − 1) and σ ∈ Σ(n). This is a T -fixed point on a
T -fixed curve. The quotient is always a cyclic group µr(τ,σ), where

r(τ, σ) ∶= ∣Gσ ∣
∣Gτ ∣

.

Definition 4.6. For v ∶= ∑i∈Iσ′ cibi ∈ Box(σ), define the age

age(v) ∶= ∑ ci.

Definition 4.7. We can package all this data into an object called the inertia stack IX. Formally, it is
defined via a Cartesian square

IX ÐÐÐÐ→ X
×××Ö

×××Ö
X ÐÐÐÐ→ X ×X

.

Example 4.8. In our case, because we understand the stabilizers well, we can identify all the components
in the inertia stack. There is a bijection

{g ∈ G ∶ g fixes a point in UA} ↔ Box(Σ) ∶= ⋃
σ∈Σ(n)

Box(σ).

The inertia stack will be
IX ∶= ∐

v∈Box(Σ)
Xv

where Xv is the maximal closed substack fixed by the element g ∈ G corresponding to v.

Definition 4.9. The inertia stack allows us to upgrade our usual cohomology theory to Chen–Ruan
orbifold cohomology

H∗
CR(X) ∶= ⊕

v∈Box(Σ)
H∗(Xv)[2 age(v)].

Example 4.10. Let X = P[3,2]. In this case, the boxes are Box(σ1) = {0,1,2} and Box(σ2) = {0,−1}.
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1. The generic stabilizer of the point corresponding to σ1 is therefore Z/3Z. Hence V (σ1) = Bµ3.

2. The generic stabilizer of the point corresponding to σ2 is therefore Z/2Z. Hence V (σ2) = Bµ2.

The inertia stack IX therefore has four components

IX = X0 ⊔X1 ⊔X2 ⊔X−1.

1. X0 = X, since the identity element fixes everything. The age is 0.

2. X1 = X2 = Bµ3, corresponding to σ1. The age is 1/3 in both cases.

3. X−1 = Bµ2, corresponding to σ2. The age is 1/2.

Hence the Chen–Ruan orbifold cohomology, as a Q-vector space, is

H∗
CR(X) = Q10 ⊕Q11/3 ⊕Q11/2 ⊕Q12/3 ⊕QH.

Remark. Note that IX has an involution given by

inv ∶= (x,ϕ) ↦ (x,ϕ−1).

This essentially maps Xv to Xv−1 . Here “v−1” means the inverse of the group element corresponding to v.

Definition 4.11. The product structure on H∗
CR(X) is defined via the orbifold Poincaré pairing

(α,β) ∶= ∫
IX
α ∪ inv∗(β).

If α,β are pure in that they both come from single strata Xv1 and Xv2 , then

(α,β) =
⎧⎪⎪⎨⎪⎪⎩
∫XV (α) α ∪ inv∗(β) V (β) = inv(V (α))
0 otherwise.

Remark. For toric orbifolds, Borisov–Reisner–Smith writes down a presentation for the orbifold cohomology
ring which looks like a Stanley–Reisner presentation.

Definition 4.12. Now let’s talk about open-closed GW invariants. Specialize to X a toric CY3-orbifold. So
N = Z3 = ⟨u1, u2, u3⟩. The CY condition says that

bi ∈ hyperplane N ′
1 ∶= {u3 = 1}.

In this situation, the data of the stacky fan is realized on the N ′
1 plane as a planar graph. This is equivalent

to giving the data called the toric graph, consisting of a point for each top-dimensional cone and a ray for
each edge.

Definition 4.13. Since we want to study open invariants, we need Aganagic–Vafa branes. These are
Lagrangian sub-orbifolds L, preserved under the compact CY torus T ′ ⊂ T . Such L intersect unique T -fixed
curves V (τ).

1. If L intersects a non-compact orbit, call it outer.

2. If L intersects a compact orbit, call it inner.

The computations for the two cases will be very similar.
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Remark. In general, L = [S1 ×C/Gσ]. This is saying that in addition to the winding numbers around L, we
also need to know stabilizers. We get a sequence

0
×××Ö
Gτ
×××Ö

H1(L,Z) ÐÐÐÐ→ Gσ
×××Ö

×××Ö
0 ÐÐÐÐ→ Z ⋅rÐÐÐÐ→ Z ÐÐÐÐ→ µr(τ,σ) ÐÐÐÐ→ 0

×××Ö
0

.

Definition 4.14. Now we can define stable maps to (X,L)

M(g,h),n(X,L∣β′, µ⃗).

1. The domain is a bordered Riemann orbi-surface

(Σ, x1, . . . , xn)

with n marked points. The compact components are genus g, with h disks attached to these compo-
nents. We require that orbifold points only come from marked points or the nodes.

2. The map is

(Σ, ∂Σ) uÐ→ (X,L).
The data of this map is

β′ ∶= u∗[Σ] ∈H2(X,L)
and µ⃗ = (µ1, . . . , µn) where

µj ∶= u∗([∂Dj]) ∈H1(L,Z).

Remark. We can write the usual perfect obstruction theory, but evaluation maps are more subtle than in
the non-orbifold case. Fixed points [pt/µr] can have non-trivial stabilizer, so evaluation maps must keep
track of where the generator of the stabilizer group is sent. So

evi∶M(g,h),n(X,L∣β′, µ⃗) → IX.

Hence we must pull back classes in H∗(IX) = H∗
CR(X). In general, X is not compact, so we must use the

torus action of T ′ to define invariants via localization:

⟨γ1, . . . , γn⟩g,β′,µ⃗ ∶= ∫[F ]vir

∏ ev∗i (γi)∣F
eT ′(Nvir

F ) .

How do we compute invariants? We can decompose the data of a stable map into two parts:

1. invariants on the closed components, with n + h fixed points total;

2. (disk factors) invariants of the h open components.
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In the case of disk factors, our moduli space is simple since (h,n) = (1,1). Consider the case that L is inner,
on an edge V (τ) between fixed points V (σ+) and V (σ−). It splits the edge into two orbi-disks D±. Let
α ∈H2(X,L) be the class of V (τ), and let β and α−β be the classes [D+] and [D−] respectively. Given the
data

(d0, λ) ∈ Z ×Gτ ,
define h±(d0, λ) ∈ Gσ± so that (d0, h

+, h−) ∈H1(L,Z). Define the disk factor

Dd0,λ ∶=
⎧⎪⎪⎨⎪⎪⎩

⟨1h+(d0,λ)⟩
(X,L)
0,d0b,(d0,λ) d0 > 0

⟨1h−(d0,λ)⟩
(X,L)
0,−d0b,(d0,λ) d0 < 0.

These are still a little difficult to compute. We reinterpret them as relative invariants and compute them
that way. Idea: degenerate the orbit such that the generic stabilizer Gτ of the resulting node p0 is the generic
stabilizer of the entire orbit. So for d0 > 0, we can compute

Dd0,λ = ∫[M0,1(I+/p0,(d0,λ))]vir
ev∗(1h+(d0,λ))e(V +)

where e(V +) is the contribution of the obstruction bundle. Explicitly,

V + ∶= Rπ∗f∗(degeneration of NV (τ)/X to I+).

So in the localization calculation, all we need are the additional torus weights at the degeneration point on
V (τ), and along the divisor corresponding to the degeneration.

5 Mar 05 (Song): Mirror symmetry and crepant resolution con-
jecture for disks

Last time we talked about open-closed GW invariants. These are roughly just virtual counts of holomorphic
orbifold maps

f ∶ ( bordered prestable
orbifold Riemann surface

) → (X,L)

where (X,L) is a toric CY3-orbifold. This means we have the following data.

1. The action of a 3d complex torus T on X, with compact real sub-torus T ′R ∶= U(1)2, called the Calabi–
Yau torus.

2. Combinatorially, the data of X is given by the stacky fan. By the CY condition, this amounts to
some two-dimensional fan, or equivalently a toric graph.

3. L is a Lagrangian called the Aganagic–Vafa brane. It must be invariant under the T ′R action. It
intersects a unique T -invariant curve of X.

(a) If the curve is non-compact, we call L outer.

(b) If the curve is compact, we call L inner.

Because we are in the orbifold, each fixed point σ and curve τ will have stabilizers. There is a short exact
sequence

1→ Gτ → Gσ → µr(τ,σ) → 1

where r(τ, σ) is the appropriate index. We saw last time that we can get r(τ, σ) from the box description.
We also get a bijection

H1(L,Z) ↔ Z × µm.
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Example 5.1. Let X ∶= [C2/Z3] × C. The first factor is an A2-singularity. In terms of the stacky fan, we
have

The stacky fan data is from the five interior lattice points

1→ L ≅ Z2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0
0 1
1 0
−2 1
1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ÐÐÐÐÐÐ→ Z5

⎛
⎜⎜⎜⎜
⎝

1 0 0 0 0
0 3 0 1 2
1 1 1 1 1

⎞
⎟⎟⎟⎟
⎠

ÐÐÐÐÐÐÐÐÐÐÐ→ Z3 → 1

The non-trivial stabilizer is G = Z/3 and all other stabilizers are trivial. The corresponding toric 1-skeleton
is

The thick leg is a gerby leg, because it has stabilizer G. We want to resolve this singularity, to get the full
resolution

We can also look at partial resolutions, given in the obvious way, e.g.

Definition 5.2. The moduli space is denoted

M ∶=M(g,h),n(X,L∣β′, µ⃗).

It parametrizes maps (Σ, ∂Σ) uÐ→ (X,L) such that

β′ = u∗[Σ] ∈H2(X,L)
µj = u∗[Rj] ∈H1(L)
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where Rj is the j-th boundary component of Σ. There are also evaluation maps

evi∶M → IX

landing in the inertia stack. Because we have a compact CY torus T ′R acting on (X,L), we get an action by
T ′R on M. Open-closed invariants are defined by localization as

⟨γ1, . . . , γn⟩X,L,T
′

R
g,β′,µ⃗ ∶= ∫[F ]vir

∏i ev∗i (γi)
eT ′R(N

vir
F ) ∈ Q(v′1, v′2)

where v′1, v
′
2 are the weights of T ′R. Here γi ∈H∗

CR(X,Q) are elements in orbifold cohomology.

There are two types of contributions to open-closed invariants: from the open disk components (called
disk factors), and from the closed components. We computed disk factors by viewing them as relative
invariants, for P1 relative to a point. If we pick a framing f ∈ Z, we get a 1-dimensional torus

T ′f ∶= ker(v′2 − fv′1) ↪ T ′.

Pulling back to this torus, disk factors basically become number ⋅ v where v is the weight of T ′f . These
numbers are very explicit (Ross ’14, Fang–Liu–Tseng). Write

β′ = β + ∑
dj>0

djb + ∑
dj<0

(−dj)(α − b)

where (b,α − b) are the classes the two sides of the curve cut by the Lagrangian L. So β ∈ H2(X). If we
restrict the map u to each of the disk components, then we get maps

u∣Dj ∶ (Dj , ∂Dj) → (X,L)

which are accounted for by the disk factors. So the remaining problem is the contribution from the closed
component C, i.e. the map

[u∣C ∶ (C,xi, yj) → (X,L)] ∈Mg,n+h(X, β) =∶ M̂.

The data of fixed loci in M̂ consists of decorated graphs Γ̂, just like the data of fixed loci in M consists of
decorated graphs Γ. Given Γ, we get Γ̂ by requiring that

evn+j(Γ̂) = (pσ± , h1(d0, λ)),

i.e. we put constraints on where the extra marked points (corresponding to the disks) map to. Actually, FΓ

and FΓ̂ differ by a finite map, i.e.

[FΓ]vir =? ⋅ [FΓ̂]
vir,

and we need to know the extra factor. It contains contributions from:

1. automorphisms of u∣Dj ;

2. node smoothing at yj .

The former already shows up in disk factors. The latter is essentially some ψ class insertions. We get

⟨γ1, . . . , γn⟩X,Lg,β′,µ⃗ = ∑
Γ̂

? ⋅D(d0λ,f) ∫[FΓ̂]vir

∏n
i=1 ev∗i γi∏h

j=1 ev∗n+j φj

∏j ( v
rjdj

− ψn+j
ri

) e(Nvir
FΓ̂

)

where ? is some combinatorial automorphism factor.
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To compute disk invariants, we will compute the whole generating function for (g, h) = (0,1). Define

F
X,(L,f)
(0,1) (τ0, τ1, . . . , τk) ∶= ∑

(d0,λ)∈H1(L,Z)
∑
β,n≥0

⋯ ∈H∗
CR(Bµm;C).

One part of this comes from genus-0 closed GW invariants J(τ1, . . . , τk, z), where τ1, . . . , τk are formal
variables keeping track of coefficients in front of a basis of H2

CR(X). The remaining τ0 keeps track of the
open part. In genus-0, this J function is related to the I function

I(q0, q1, . . . , qk, z) ∈H∗
CR(X)[[z]].

The q1, . . . , qk keep track of curve classes, and q0 keeps track of the open part. The relation is as follows.

Theorem 5.3 (Coates–Corti–Iritani–Tseng, equivariant genus-0 mirror symmetry).

e
τ0
2 J(τ, z) = I(q0, q, z)

under the closed mirror map.

We can look at F
X,(L,f)
(0,1) under the mirror map, to get

WX,(L,f)(q0, q, z).

This W can be written very explicitly via the work of Fang–Liu–Tseng.

Example 5.4. Return to the example X = [C2/Z3] ×C. Then the rows of the matrix

⎛
⎜⎜⎜⎜⎜
⎝

0 0
0 1
1 0
−2 1
1 −1

⎞
⎟⎟⎟⎟⎟
⎠

are the Di.

1. The Kähler cone, in terms of the Di, is described by the picture

and is given by the interior of the cone spanned by D4 and D5. The other chambers correspond to
the partial resolutions written earlier. Together, they form a fan covering the whole plane. The whole
system is called the secondary fan.

2. The Mori cone parametrizes effective curve classes. This means we take the dual. Let β1, β2 be dual
to D4,D5.

Then the extended parameter space is

Keff(X,L) ∶= {(d, c1β1, c2β2) ∶ d > 0, c1, c2 ≥ 0}.

This is what we sum over in the Fang–Liu–Tseng formula.

This is useful for the crepant resolution conjecture. If X is a Gorenstein orbifold and Y
πÐ→ X is a crepant

resolution, then the enumerative invariants of Y and X should roughly match up.
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Conjecture 5.5 (Ruan). If Y
πÐ→ X is crepant, then there is an isomorphism of rings

QH∗(Y,C) ≅ QH∗
CR(X,C).

Here QH∗
CR means the orbifold cohomology with the full quantum product.

This roughly boils down to identifying the Gromov–Witten invariants of Y and X. In our case, if X is a
toric CY3-orbifold, then the partial resolutions are given by subdivision of cones and are all crepant.

Theorem 5.6 (Ke–Zhou). In the case where L is effective, i.e. L intersects a non-gerby leg, for (X̂, L̂, f̂) →
(X,L, f) we can match up the two disk potentials, i.e.

W X̂,(L̂,f̂)(x̂, q̂) =WX,(L,f)(x, q)

with a change of variables.

Example 5.7. Take our previous example. We have the full resolution

→ .

Put the Lagrangian on a non-gerby leg, so that the resolution doesn’t affect the Lagrangian. (This is what
makes this case easier.) Then the strategy is to identify

Keff(X̂, L̂) ↔Keff(X,L)

by doing a change of basis to identify D2,D5 with D4,D5.

6 Mar 12 (Clara): Klein TQFTs

We will first recap the complex picture, of local curves. Then we will move to the real Gromov–Witten
setting, where we get a Klein TQFT.

Definition 6.1. Consider GW theory for Y a non-singular quasi-projective algebraic 3-fold:

M●
h(Y,β).

We would like to define invariants via

Z ′(Y )β“ ∶=′′ ∫[M●

h(Y,β)]vir
1.

Since Y is not compact, we instead need to define invariants via localization:

Z ′(Y )β ∶= ∑
h∈Z

u2h−2 ∫[Mh(Z,β)]vir

1

e(Normvir)

where Z ⊂ Y is a compact submanifold.
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Definition 6.2 (Local curves). Now specialize to the following setting. Let X be a curve of genus g, with
two line bundles L1, L2. Let

Y ∶= tot(L1 ⊕L2 →X)
be the total space. There are two tori C× acting on L1 and L2 by scaling fibers. All torus-invariant curves
to Y will therefore land in X, so

M●
h(Y, d[X])T =M●

h(X,d).
The difference between the obstruction theories is the term Normvir ∶= Rπ∗ ev∗(L1 ⊕L2).

Definition 6.3 (Relative stable maps). In order to use degeneration, we generalize to relative stable
maps, i.e. maps C → Y with prescribed ramification profiles over points in X ⊂ Y . Degeneration then tells
us that if Y = Y1 ∪D Y2, then we should reconstruct the GW theory of Y from gluing the GW theories of Y1

and Y2 along D. Let λ1, . . . , λr be partitions of the degree d. Define the moduli of relative stable maps

M●
h(X,λ1, . . . , λr).

Denote the invariants by

GW(g∣k1, k2)λ
1,...,λt

µ1,...,µs

where k1, k2 are the levels, i.e. the degrees of the line bundles L1, L2 over X.

Theorem 6.4 (Degeneration and gluing). Pick splittings g = g′ + g′′ and ki = k′i + k′′i . Then

GW(g∣k1, k2)λ
1,...,λt

µ1,...,µs
= ∑
ν⊢d

GW(g′∣k′1, k′2)λ
1,...,λt

ν GW(g′′∣k′′1 , k′′2 )µ1,...,µs .

Definition 6.5. The GW partition functions for relative maps into local curves forms a TQFT. A TQFT
is a symmetric monoidal functor

F ∶2Cob→Mod(R).
The category 2Cob has:

1. objects which are compact oriented 1-manifolds, i.e. ⊔ni=1 S
1 for every n;

2. morphisms which are oriented cobordisms.

Hence there are generators:

identity multiplication comultiplication unit counit

Example 6.6. We describe the GW local curves TQFT F . Take the ring R ∶= Q(t1, t2)((q)), where q
will keep track of Euler characteristic and t1, t2 are equivariant weights. Define the functor F as follows.

F (S1) ∶=H ∶= ⊕
ρ⊢d

Reρ, F (S1 ⊔⋯ ⊔ S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r copies

) ∶=H⊗r.

On a cobordism between s circles and t circles, the morphism will be

eη1 ⊗⋯⊗ eηs ↦ ∑
µ1,...,µt⊢d

GW(g∣0,0)µ
1,...,µt

η1,...,ηs
eµ1 ⊗⋯⊗ eµt .
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Gluing cobordisms corresponds to gluing GW partition functions via the degeneration formula. To cover all
levels (k1, k2), i.e. degrees of the line bundles L1, L2, we decorate the cobordisms with the levels of the line
bundles over them. So for example, we will have a (0,0) cap and a (0,−1) cap:

(0,0) (0,-1) .

Levels are additive with respect to gluing. For example

(3,4) ○ (-1,2) ○ (0,1) = (2,7)

So now our cobordism category is enriched with the data of labels. Denote it 2Cobk1,k2 . Now to solve the
local curves TQFT, it suffices to compute a few (0,0) and (0,−1) cobordisms.

Now we will move to the real case. Let Σ be a Riemann surface. The moduli

Mφ,●
d,χ(Σ),

will parametrize real curves C → Σ with degree d and Euler characteristic χ. There is an involution φ
representing complex conjugation.

Definition 6.7 (Real GW). Let (X,ω) be a symplectic manifold. Let φ be an anti-symplectic involution
on X, i.e. φ∗ω = −ω. To have a real map, we also need a real domain. A symmetric Riemann surface
(C,σ) is a Riemann surface C with an anti-holomorphic involution σ. Then σ splits the domain into:

1. real components, invariant under it, and

2. complex-conjugate doublets, which we write as C0 ⊔C0.

A real stable map is
f ∶ (C,σ) → (X,φ)

compatible with σ and φ.

Definition 6.8 (Real local curve). An R-bundle on (X,φ) is

(V,ϕ) → (X,φ)

where V →X is a vector bundle and ϕ is an involution lifting φ fiber-wise. To get the setting of local curves,
take a holomorphic line bundle L→ (Σ, σ) and pull back σ to form

(L⊕ σ∗L,σ) → (Σ, σ).

This is the setting of real local curves. Invariants are denoted

RZφd,χ ∶= ∫[Mφ,●

d,χ(Σ)]vir

1

e(Normvir)
.

Ramification data λ now comes in conjugate pairs (λ,λ), via applying the involution σ.
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Example 6.9 (Doublet target). We want to compute

RZσd,χ(DΣ∣D(L1, L2))λ1,...,λs .

Here
DΣ ∶= (Σ ⊔Σ, σ) = (Σ1 ⊔Σ2, σ)

and D(L1, L2) is a single line bundle given by

D(L1, L2)∣Σ1 = L1, D(L1, L2)∣Σ2 = σ∗L2.

Then we look at the bundle D(L1, L2) ⊕ σ∗D(L1, L2). There is an isomorphism of moduli spaces

D∶M●
d,χ(Σ)λ1,...,λs ↔M

φ,●
d,2χ(DΣ)λ1,...,λs

by doubling. The virtual classes compare as

[Mφ,●
d,2χ(DΣ)λ1,...,λs]vir = (−1)dm2+`2D∗[M

●
d,χ(Σ)λ1,...,λs]vir.

The normal bundles also differ up to some sign.

7 Mar 26 (Mark): Integral transforms and quantum correspon-
dences

Start with Mg,n(X,d) for a smooth projective variety/orbifold X. The general question; if two varieties
X,Y are related in some way, how does their GW theory relate?

Example 7.1 (K-equivalence). If X1,X2 are birational

X̃

X1 X2

π1

π2

such that π∗1KX1 = π∗2KX2 , we say they are K-equivalent. Then it is known in a lot of generality that
the GW theories of X1 and X2 are related, called the crepant transformation conjecture (CTC). The
relationship is complicated, involving analytic continuation of partition functions. This analytic continuation
is compatible, in a precise sense, with a Fourier–Mukai transform Db(X1) →Db(X2).

Example 7.2 (Quantum Serre duality). Let Z = Z(W ) be a degree-d (smooth) hypersurface in Pr. Let

Y ∶= tot(OPr(−d)).

Then Y is non-compact of dimension r + 1, and Z is compact of dimension r − 1. There is a relation called
quantum Serre duality that says the GW theory of Y determines the GW theory of Z in genus 0. (The
procedure is to take a derivative of the partition function of Y and then do a change of variables.) This is
not too surprising, because:

1. GW theory of Y involves H1(C, f∗(O(−d))(−p2));

2. GW theory of Z involves H0(C, f∗(O(d))(−p1)).

On the smooth locus C = P1, these are related by Serre duality.
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Example 7.3. Now let’s look at an example where both are in play. Let W be a degree-d polynomial in d
variables, i.e. corresponding to a section s ∈H0(Pd−1,O(d)), so that

Z ∶= {W = 0}

is CY. Then we have a diagram of relations

GWg=0([Cd/Zd]) GWg=0(Y )

FJRW([Cd/Zd]
WÐ→ C) GWg=0(Z)

crepant transformation

quantum Serre duality

LG/CY

Here the potential W defines a function on [Cd/Zd]. The enumerative theory for such singularities with
potential is called FJRW theory.

Theorem 7.4 (YP, Nathan, Mark). There exists a correspondence on the left of the above diagram.

Remark. This theorem means we can understand LG/CY in terms of CTC. But how geometric are these
correspondences? More precisely, CTC comes from some FM transform at the level of derived categories,
but do the rest?

Definition 7.5. Let K(Y ) → GWg=0(Y ) be Iritani’s integral structure, then we can draw another square

K([Cd/Zd]) K(Y )

GWg=0([Cd/Zd]) GWg=0(Y )

FJRW([Cd/Zd]
WÐ→ C) GWg=0(Z)

Fourier–Mukai

crepant transformation

quantum Serre duality

LG/CY

.

Iritani’s integral structure map comes from

L(t, z)∶H∗(X) →H∗(X)[[q]][z−1]

α ↦ α +∑
d

qd ∑
n≥0

⟨ α

−z − ψ , t, . . . , t, φi⟩0,n+2φ
i.

Then L(t, z)(α) is a solution to the Dubrovin connection

∇i = ∂i +
1

z
φi ⋆X (−).

Iritani’s map is given by

K(X) → solutions to the qDE

E ↦ L(t, z)(ch(E)Γ(TX))

where Γ(TX) is a square root of the Todd class.
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Definition 7.6. We can add the same square for K-theory of [Cd/Zd] twisted by W , and Orlov tells us we
have an equivalence K([Cd/Zd],W ) →K(Z). So we now have a diagram

K([Cd/Zd]) K(Y )

GWg=0([Cd/Zd]) GWg=0(Y )

FJRW([Cd/Zd]
WÐ→ C) GWg=0(Z)

Fourier–Mukai

crepant transformation

quantum Serre duality

LG/CY

.

If we restrict K([Cd/Zd]) to the ones supported only on the origin [0/Zd] and the same for K(Y ) to the
ones supported only on Pd−1, then we get arrows

K([Cd/Zd])∣[0/Z−d] →K([Cd/Z − d],W )
K(Y )∣Pd−1 →K(Z)

The final diagram is

K([Cd/Zd]) K(Y )

K([Cd/Zd],W ) K(Z)

GWg=0([Cd/Zd]) GWg=0(Y )

FJRW([Cd/Zd]
WÐ→ C) GWg=0(Z)

Fourier–Mukai

Orlov

crepant transformation

quantum Serre duality

LG/CY

.

Theorem 7.7 (YP, Nathan, Mark). The back square implies the front square.

Definition 7.8. What are the arrows in the top square? Look in the simple case of d = 2. Let j∶Z → P1 be
the inclusion, and π∶Y → P1 be the projection. Then the diagram is

K([C2/Z2])[0/Z2] K(tot(OP1(−2)))P1

O[0/Z2] = [C
( x2
−x1

)
ÐÐÐ→ C2 (x1 x2 )ÐÐÐÐÐ→ C] [OY (2) → OY ] = OP1

O[0/Z2] = [C (x2 −x1 )←ÐÐÐÐÐ→
( x2
−x1

)
C2

(x1
x2

)
←ÐÐÐÐ→
(x1 x2 )

C] [OY (2) → OY ] = OZ

K([C2/Z2], x2
1 + x2

2) K(Z)

≅

j∗π∗

∈ ∈

∈

∈

≅

.

Here we are viewing P1 = {` = 0} ⊂ Y and taking the Koszul resolution.
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1. In general, if f ∶X → Y is a proper map, then there is a pushforward

f∗∶K(X,f∗W ) →K(Y,W )

for potentials W ∶Y → C. Using this, the vertical left arrow comes from

[C2/Z2] ↔p
i [0/Z2].

by the composition

K([C2/Z2])
p∗Ð→K([0/Z2],0)

i∗Ð→K([C2/Z2], x2
1 + x2

2).

2. Under the isomorphism K(Z) = K(Y, W̃ ), the structure sheaf OZ becomes a factorization version of
the Koszul complex:

[OY (2) ↔ OY ].
Then the map from K(tot(O(−2))) →K(Y,W ) arises the same way as the vertical left map.

Remark (Connection to p-fields). Let Y = OPr(−d). In genus 0, recall that the GW theory of Y has virtual
class

[M0,n(Y,D)]vir = e(R1π∗L⊗−d) ∈ A∗(M0,n(Pr, d)).
For a hypersurface Z, we can use p-fields:

[M0,n(Pr,D)p] = e(R1π∗(L⊗−d ⊗ ωlog)) ∈ A∗(M0,n(Pr,D)).

If n = 2 and C is smooth, then ωlog = OC . Hence on the smooth locus, the two virtual classes are identical.
This perspective generalizes beyond complete intersections.

8 Apr 02 (Clara): Klein TQFTs

Recall that the moduli of stable real maps is

Mn,c

d,χ(Σ)λ1,...,λr .

We continue with the notation and setup of last time. Start with a symmetric connected Riemann surface Σ.
Real maps have involutions on domains, so we get a splitting of the domain into components of two types:

1. (doublets) pairs of components swapped by the involution;

2. (connected components) components fixed by the involution.

So we need to compute these individually, and then exponentiate. We can relate both to complex invariants.

Example 8.1 (Doublet domains). For doublet domains, the first step is to pass to the double cover of the
domain. The doublet moduli space

D̃Md,h(Σ)λ1,...

has domains with fixed first and second components. There is a forgetful map

ϕ∶ D̃Md,h(Σ) →DMd,h(Σ)

which gives

DMd,h(Σ) = 1

2
ϕ∗[D̃Md,h(Σ)]vir.

Then we need to distribute ramification patterns. Let f split as (f1, f2) over the two components in the
domain. If f1 has ramification λ+ over x+, then f2 has ramification λ− over x+, such that the original is
λ = λ+ ⊔ λ−. So we have a decomposition of the doublet moduli space into pieces

D̃Md,h(Σ)λ⃗+,λ⃗−
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where λ⃗± are ramifications over x± in the first component. (This fully determines the ramification over the
second component.) These pieces are related to the complex moduli Md,h(Σ)λ⃗+,λ⃗− by doubling, and their
virtual classes agree up to sign.

Example 8.2 (Sphere relative to a point). Define a shifted version of the partition function such that the
level-0 real GW series has no non-zero terms of positive degree. (This is a non-trivial vanishing result.)

1. (Doublet) Upon doubling, this becomes connected GW invariants for a complex tube. Such invariants
vanish unless both ramification points are fully ramified.

2. (Connected components) By the vanishing result, we need h − 1 + `(λ) = 0. So `(λ) = 1 and h = 0.

(Notes stop here, sorry.)

9 Apr 09 (Yunfeng): Vafa–Witten invariants via surface Deligne–
Mumford stacks

Definition 9.1. Let’s first discuss the background of Vafa–Witten for surfaces. Let S be a smooth projective
surface. If we fix some polarization OS(1), then we can consider the moduli space M(r,c1,c2)(S) of stable
torsion-free sheaves of rank r and Chern classes c1, c2 on S. In Donaldson theory, if we fix r, c1 and let c2
move, we can write down a generating function

F (q) ∶= ∑
c2∈Z

χ(M(r,c1,c2))qc2 .

S-duality from physics implies that F (q) is a modular form (Vafa–Witten, 94).

Example 9.2. If S = P2, for r = 1 and c1 = 0, then

F (q) = ∑
c2∈Z

χ(Hilbc2(S))qc2 = 1

∏k>0(1 − qk)3
.

If r = 2 and c1 = 0, then

F (q) = 1

∏k≥1(1 − qk)6 ∑
m,n≥1

qmn+m+n

−qm+n .

This method can be generalized to any smooth toric surface.

Example 9.3 (Blow-up formula). Let S = P2 and let S̃ → S be a blow-up at one point. Then

∑
n

χ(MH∞,c1,n(S̃))qc2−c̃
2
1/4 = ∑n∈Z q

(n+c1/2)2

∏k(1 − qk)2 ∑
n

χ(MH(c1, n))qn−c
2
1/4.

Definition 9.4. Let S be a 2d DM stack. Many examples are interesting here.

1. Take weighted projective planes P(a, b, c).

2. If S is a smooth surface and D ⊂ S is a smooth divisor, take the r-th root stack r
√

(S,D) of S along
D, where we make D ⊂ S have multiplicity Z/r.

3. Quintic surface has deformations into ADE surfaces, which can be viewed as smooth DM surfaces.

F. Nirumi constructed the moduli stack of stable torsion-free sheaves on S as follows. Let p∶ S → S be the
map to the coarse moduli space. Choose a generating sheaf Ξ: a locally free sheaf on S which is relatively
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p-very ample. We use this to define the Hilbert polynomial, so we don’t lose any stacky information. For
any E ∈ Coh(S), the Hilbert polynomial is

HΞ(E ,m) ∶= χ(S,E ⊗Ξ∨ ⊗ p∗OS(m)) =
dim

∑
i=0

αΞ,i
mi

i!
.

Define the reduced Hilbert polynomial as hΞ(E) ∶=HΞ(E)/αΞ,dim. We say E is Gieseker stable if for any
subsheaf F ⊂ E ,

hΞ(F) < hΞ(E).

Remark. In the root stack case S = d
√

(S,D), we can choose

Ξ ∶= OS ⊕OS(D1/d) ⊕⋯⊕OS(D(d−1)/d).

With this choice, Gieseker stability is equivalent to parabolic stability on the pair (S,D). This means we
take a parabolic structure, i.e. a filtration

0 = E0 ⊂ E1 ⊂ ⋯ ⊂ Ed = E(−D)

along the divisor D, and require stability with respect to this filtration.

Proposition 9.5 (Nirumi). Fix the Hilbert polynomial H. Then MH(S) exists as a projective scheme.

Definition 9.6. Let
c̃h∶K∗(S) →H∗(IS)

be the orbifold Chern character. In the decomposition IS = ⊔i∈IS Si, write

c̃h(E) ∶= (c̃hi(E) ∈H∗(Si)), (c̃hi)k ∈HdimSi−k(Si).

Then the generating function we look at is

Hα,β(q) ∶= ∑
c̃h

2(C)=α
c̃h

1(C)=β

χ(MΞ,C(S))qC .

Example 9.7. Let S = P(1,1,2), so that IS = P(1,1,2) ⊔ Bµ2. Let Ξ ∶= OS ⊕ OS(−1) be the generating
sheaf. If we fix C ∈K(S), then

(c̃h1)2 = 2, (c̃h1)1 = c1(S).
But we have other terms:

1. q1 will keep track of c2(E) = (c̃h1)0;

2. q2 keeps track of (c̃hζ)0 where ζ2 = 1 is the generating of µ2.

The generating function is therefore F (q1, q2) = H2,c1(S)(q1, q2). In the case where q1 = q and q2 = 1, we can
compute it to be

( q1/6

η(q)4
θ3(q))

2

∑
(w1,w2,w3)∈Cc1

qc
2
1/4+(w

2
1+w

2
2+w

2
3)/4

where Cc1 is the restrictions 2 ∣ c1 +∑wi and 2 ∣ w2 and wi < wj +wk for {i, j, k} = {1,2,3}. The second term
counts contributions from the moduli of bundles, while the first term counts the rest. The moduli of bundles
arises because any torsion-free sheaf E embeds into its reflexive hull E∨∨, which is locally free for surfaces.
(This is a general phenomenon for surfaces.)
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Definition 9.8 (Vafa–Witten). A Higgs bundle (E , φ) on S is a torsion-free coherent sheaf E and a section
φ∶ E → E ⊗KS . The usual spectral construction relates this to DT invariants on 3-folds. Let

X ∶= tot(KS)

so that X is a CY3 DM stack.

Proposition 9.9 (Spectral construction). There exists an equivalence of abelian categories

HiggsKS (S)
∼Ð→ Cohc(X).

Proof. If we let π∶ X → S be the projection, then there is a decomposition

π∗OX = OS +K−1
S +K−2

S +⋯.

Then use that OX -modules on X is equivalent to π∗OX -modules on S.

Remark. We can still define Gieseker invariance for these Higgs bundles, by only imposing the stability
condition for φ-invariant subsheaves. Using appropriate pullbacks of the polarization, Gieseker stability for
HiggsKS (S) matches Gieseker stability on Cohc(X).
Definition 9.10. The symmetric obstruction theory on Cohc(X) now induces a symmetric obstruction
theory on HiggsKS (S) which is exactly the usual obstruction theory. Vafa–Witten invariants are defined
using this obstruction theory:

ṼW ∶= ∫[NC× ]vir

1

e(Nvir)
where N is the moduli. This is not entirely correct: there is a trivial factor in the obstruction theory corre-
sponding to the trace. Actual Vafa–Witten invariants are defined on the moduli N ⊥L of fixed determinant
L and trace-free (E,φ).

VW ∶= ∫[(N ⊥
L
)C× ]vir

1

e(Nvir) .

We can also define
vw ∶= χ(N⊥L, ν)

using a Behrend function ν.

Remark. In general, VW and vw are not the same. However, the invariant vw agrees with the one coming
from cosection localization, where the cosection comes from the C×-action on the symmetric obstruction
theory.

Proposition 9.11 (Tanaka–Thomas). VW = vw if S is Fano.

Proposition 9.12 (Maulik–Thomas). VW = vw if S is K3.

Definition 9.13. To calculate the invariant, we have to study the C×-fixed locus on N ⊥L. There are two
kinds of fixed locus.

1. (φ = 0) This is the moduli ML of stable sheaves on S. This is called the instanton branch M1.

2. (φ ≠ 0) This is the case of φ nilpotent and is called the monopole branchM2. Gholampour–Thomas
proved that M2 in general is a nested Hilbert scheme on S.

Remark. S-duality from physics swaps the monopole and instanton branches via the transformation τ ↦ −1/τ .
In general, it is easier to compute on the monopole branch, so this gives a lot of conjectural data about
Donaldson invariants coming from the instanton branch.

Remark. Yunfeng computed two cases:

1. root stacks of quintic surfaces;

2. quintic surfaces with ADE singularities. These are deformation invariant to smooth quintics, so VW
should remain the same. But vw is not deformation invariant, so we expect different answers.
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10 Apr 16 (Shuai): Relative Gromov–Witten theory and vertex
operators

In many mathematical problems, we have a space M and an associated linear space VM on which a Hamil-
tonian H acts, and we care about solutions to the equation

Hf = ∂

∂t
f.

For example: modular forms, wave equation, heat equation. If we diagonalize H, we turn the DE problem
into a linear algebra problem:

λ2f̂ = ∂

∂t
f̂ .

Shuai’s slogans (v1.0):

1. Better universes exist;

2. Representation theory as the exploitation of symmetry;

3. Geometry encodes complicated algebraic information.

Concretely, consider the bundle T ∗P1 → P1, where P1 has weight a and the bundle has linearization
(h̵ + a, h̵ − a). Note that

e(T ∗P1)∣0 = −a(h̵ + a), e(T ∗P1)∣∞ = a(h̵ − a).
On the DT side, Hilb(T ∗P1) has divisor classes M(2) and M(1d).

From elementary number theory, we know that a prime p is the sum of two squares iff p ≡ 1 mod 4. One
way to prove this is to look at the lattice Z[i]. The geometric question to ask is: over which primes p do we
have ramification in the map SpecZ[i] → SpecZ. Alternatively, we want to ask which points in the lattice
Z[i] have norm p.

Now let’s return to T ∗P1 and P1. We understand the equivariant quantum cohomology QH∗
T (P1) very

well. Why would we want to look at QH∗
T (T ∗P1)? It fits nicely into ⊔k Gr(k,2), and the cohomology

H∗(pt ⊔ T ∗P1 ⊔ pt) = C⊕ (C⊕C) ⊕C

is a 4-dimensional rep of sl2. The operator of quantum multiplication u⋆ can now be understood in terms
of the representation theory of sl2. We will find

u⋆ = u ∪ + q

1 − q [P
1 × P1].

We will see that
QH∗

T (T ∗P1) = C[h̵, a, u]/⟨u2 − au − h̵ q

1 − q (h̵ + a − 2u)⟩.

The projection to QH∗
T (P1) is given by the h̵2q coefficient.

To compute quantum multiplication by u, it suffices to compute

(u ⋆ u,1) = ⟨u,u,1⟩0,3,0 +∑ qk⟨u,u,1⟩0,3,n
(u ⋆ u,u) = ⟨u,u, u⟩0,3,0 +∑ qk⟨u,u, u⟩0,3,n.

Let’s compute the first term.

1. The classical part is

⟨u,u,1⟩0,3,0 = ∫
T ∗P1

u2 = a∫
T ∗P1

u = a( u

−a(a + h̵) +
a

a(h̵ − a)) = a

h̵ − a.
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2. The quantum part is
⟨u,u,1⟩0,3,n = ⟨1⟩0,1,n = 0

by divisor relation (twice).

Now for the second term.

1. The classical part is

⟨u,u, u⟩0,3,0 = a
2 ∫

T ∗P1
u = a2

h̵ − a.

2. The quantum part is
⟨u,u, u⟩0,3,n = ⟨⟩0,0,n

by divisor relation (three times). Then M0,0(T ∗P1,1) = pt, but the virtual class is h̵. In general this
is true in degree n as well.

So we find

(u ⋆ u,1) = a

h̵ − a, (u ⋆ u,u) = a2

h̵ − a +∑ qK h̵.

What if we want to compute c1⋆? Look at the Steinberg Z. We want to argue that

c1⋆ = c1 ∪ +h̵
q

1 − q [P
1 × P1]

where P1 × P1 ⊂ Z is the diagonal. Let π1, π2∶Z → T ∗P1 be the projections. Then we only need to compute
the terms

∫
T ∗P1

π2∗([P1 × P1] ⋅ π∗1(u)) ⋅ 1, ∫
T ∗P1

π2∗([P1 × P1] ⋅ π∗1(u)) ⋅ u.

1. By push-pull, we get

∫
T ∗P1

π2∗([P1 × P1] ⋅ π∗1(u)) ⋅ 1 = ∫
Z
[P1 × P1]π∗1(u)

= a

−a2
+ a

a2
= 0.

2. Again by push-pull, we get

∫
T ∗P1

π2∗([P1 × P1] ⋅ π∗1(u)) ⋅ u = 1.

So we just have to check that ∫ (h̵ + a − 2u) ⋅ 1 = 0 and ∫ (h̵ + a − 2u) ⋅ u = 1, which it does. Hence

c1⋆ = c1 ∪ +h̵
q

1 − q (h̵ + a − 2u).

Now let’s look at M0,3(T ∗P1, d) →M0,3(P1, d), i.e. how to take the limit in h̵. It fits into a diagram

T ∗P1 M0,3(T ∗P1, d)

pt

P1 M0,3(P1, d).

evi

evi
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Let’s compare virtual localization on both. In general, localization takes the form

∫ ∏ ev∗i (γi) = ∑
fixed

∫MΓ

∏ i∗(γi)
Nvir

Γ/X
.

Because the diagram above commutes, the numerators in both cases are the same. The only difference is a
factor e(f∗O(−2)). By Riemann–Roch, this is 1 − 2d. So downstairs the coefficients we compute are for qd,
and upstairs the coefficients are for h̵2d−1qd. It turns out there aren’t many terms like h̵2d−1qd upstairs. In
general, there is a complicated change of variables and limit we have to take.

Now look at 2-pointed relative GW invariants for X ∶= T ∗P1 × P1 with relative conditions µ, ν at 0 and
∞. We can compare it with Y ∶= P1 × P1:

∫Mg,1(X,µ,ν)
ev∗(i∗ω) =∶ ⟨µ∣M(1,ω)∣ν⟩

∫Mg,1(Y,µ,ν)
ev∗(pt) =∶ ⟨µ∣M(u,Q)∣ν⟩.

The difference in virtual normal bundles is still e(f∗O(−2)), which again by Riemann–Roch becomes

(1 − g)1 + ((dV +mH),−2H) = 1 − g − 2d.

Hence coefficients of u2g−2vdHm downstairs become coefficients of u2g−2vdHmh̵2d+g−1. Let Z(µ,(1,ω),ν) denote
the generating function. It is given by

u−`(µ)−`(ν)s
d

ds
Θ, Θ = h̵

(Autµ)(Autν) ∑(du)`(µ)+`(ν)−2∏
`(µ)
i=1 s(dµiu)∏`(ν)

i=1 s(dνiu)
ds2(du)

where s(u) ∶= sin(u/2)/(u/2). For example, if µ = ν = ◻, then Z = h̵u−2∑∞
d=1 s

d, and

⟨◻∣pt∣◻⟩ = [h̵u−2s]Z = 1.

If ∣µ∣ = ∣ν∣, then we will need the h̵u−2s coefficient of

u−2h̵
d`(µ)+`(ν)−2

∣Autµ∣∣Autν∣
∏⋯∏⋯
∏⋯ .

The ⋯ are of the form sin(u)/u, and in the limit contribute just 1.
In Maulik’s An-resolutions paper, the quantum multiplication operator is written as

M(1,ω) =M(1,ω) ∪ +s
d

ds
∑
k∈Z

∶f(k)e(−k)∶ log(1 − qks).

We can match

∑
k∈Z

∶f(k)e(−k)∶ = ∑
∣µ∣=∣ν∣

α−µαν

by showing the LHS is the zeroth order term in the product Γ+Γ− of two vertex operators.

11 Apr 30 (Shuai)

Sorry, no notes!
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12 May 07 (Zijun): 3d mirror symmetry and elliptic stable en-
velopes

Let’s begin with some motivation from physics. Mirror symmetry is a phenomenon coming from physics.
For 3d theories, it is called symplectic duality mathematically. We start with a 3d N=4 supersymmetric
(susy) gauge theory. Physicists found that for some special such theories, there is a mirror theory in the
following sense. The moduli space of vacua of 3d N=4 theories have two branches: Higgs and Coulomb.
They involve FI and mass parameters. The mirror theory has Higgs and Coulomb branches exchanged, and
FI and mass parameters exchanged.

Mathematically, N = 4 susy means the moduli of vacua is hyperkähler. The Higgs branch is a holomorphic
symplectic quotient and is well understood. The Coulomb branch was not understood mathematically until
recently, by work of Braverman–Finkelberg–Nakajima. FI parameters are Kähler parameters, and mass
parameters are equivariant variables.

Example 12.1. Some examples of Higgs/Coulomb branches are as follows.

1. When the gauge group is abelian, the Higgs branch is a hypertoric variety, and the Coulomb branch is
the dual hypertoric variety.

2. We will see later what T ∗ Gr is dual to.

3. T ∗G/B is self-dual (but maybe using different Weyl chambers).

4. HilbC2 is self-dual.

5. The moduliM(An, r + 1) of instantons on An surface is dual to moduliM(Ar, n+ 1) of instantons on
Ar surface. (For r = n = 0 we get the Hilb case.)

These are very nice examples. In general, the BFN construction of Coulomb branches gives a very singular
affine scheme which has non-commutative deformations. Because we want to do enumerative geometry with
these spaces as targets, singularities are bad. The examples above are nice cases.

LetX denote the Higgs branch andX ′ denote the Coulomb branch. Via the symplectic duality conjecture,
we implicitly identify X,X ′ of the original theory with X ′,X of the mirror theory. If we have enumerative
invariants defined on X, we expect them to be related to analogous enumerative invariants on X ′, but with
Kähler and equivariant parameters swapped.

Now let’s say something about stable envelopes. The first motivation for stable envelopes is that they
form a very nice basis for cohomology (and K-theory and elliptic cohomology). They depend on a choice
of cocharacter and satisfy some wall-crossing formulas. The transition matrix arising from the wall-crossing
defines an R-matrix, using which we can form quantum group actions on cohomology. The second motivation
is special to elliptic stable envelopes. Consider the vertex V (X) ∈KT (X)[[z]] where X is a Nakajima quiver
variety, defined by counting quasimaps from P1 ⇢X. The vertex V (X) is a solution to two different quantum
difference equations (qDEs): qKZ, coming from q-shifts of equivariant parameters a, and another coming
from q-shifts of Kähler parameters z. The vertex V (X) is holomorphic in z and meromorphic in a. Call a
solution with such properties a z-solution.

Theorem 12.2 (Aganagic–Okounkov). Let X be a Nakajima quiver variety.

1. Elliptic stable envelopes (Stab(p)∣q)p,q∈XT exist.

2. (Stab(p)∣q)p,q∈XT maps (V (X)∣p)p∈XT to another set of solutions to the qDEs which are holomorphic
in a and meromorphic in z, called a-solutions.

Conjecture 12.3. These a-solutions are vertex functions V (X ′) of the dual X ′.

As a corollary of this conjecture, we get the following.
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Conjecture 12.4. There should be relations like

Stab(q)∣p
Stab(p)∣q

= Stab′(λ)∣µ
Stab′(µ)∣λ

, p, q ∈XT , λ, µ ∈ (X ′)T
′

under a bijection of fixed point sets and exchanging Kähler and equivariant parameters.

Theorem 12.5 (RSVZ). This second conjecture holds for T ∗ Gr and its dual.

Now let’s go into more detail. Let n ≥ k. Construct T ∗ Gr(k,n) as the Nakajima quiver variety associated
to

k n .

Explicitly, in this case,
T ∗R = Hom(Ck,Cn) ⊕Hom(Cn,Ck)

acted on by G ∶= GL(k). If (i, j) ∈ T ∗R, the action is

g ⋅ (i, j) = (gi, jg−1),

giving a moment map
µ∶ (i, j) ↦ ij ∈ End(Ck).

To do holomorphic symplectic reduction, we need a stability condition θ ∈ Z, specifying a character g ↦
(det g)θ. For θ < 0, we get

µ−1(0) �θ G = T ∗{k-subspaces of Cn}.
For θ > 0, we get

µ−1(0) �θ G = T ∗{k-quotients of Cn}.
We will stick with θ < 0. Let X ∶= µ−1(0) �θ G.

In X, there is a (C×)n acting on the Cn, and a C×̵
h acting on cotangent fibers. Let T ∶= (C×)n ×C×̵

h. Then

XT ∶= {coordinate k-planes}.

Index them by k-subsets p = {p1, . . . , pk} ⊂ {1, . . . , n}. If V is the tautological bundle, then the equivariant
K-theory of X is

KT (X) = C[ u±1 , . . . , u
±
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
equivariant params

, y±1 , . . . , y
±
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Chern roots of V

, h±]Sk/(relations).

The relations are given by things like

V∣p = u−1
p1
+⋯ + u−1

pk
, ∀p ∈XT .

In other words, at p ∈XT , we set yi = u−1
pi .

Now we want to look at SpecKT (X). By viewing h̵ as a constant, there are maps

SpecKT (X) SpecC[u±1 , . . . , u±n, y±1 , . . . , y±k ]Sk = (C×)n × SymkC∗

SpecC[u±1 , . . . , u±n] = SpecKT (pt)

.

To move to elliptic cohomology, fix q ∈ C with ∣q∣ < 1, and take the elliptic curve E ∶= C×/qZ. Then there are
maps

EllT (X) En × SymkE ∋ (u1, . . . , un, y1, . . . , yn)

EllT (pt) = En ∋ (u1, . . . , un)

.
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Since X is GKM, XT is finite and has finitely many 1-dimensional orbits. In K-theory, this means

KT (X) ↪ ⊕
p∈XT

KT (p),

and the image is given by
{(fp) ∶ fp∣kerχC = fq ∣kerχC}

where C is a 1-dimensional orbit connecting p and q and χC is the hyperplane character. This GKM
description of KT (X) actually implies

EllT (X) = ⋃
p∈XT

Op, Op ≅ En

if it is simple normal crossing.

Example 12.6. If X = T ∗Pn, then

KT (X) = SpecC[u±1 , . . . , u±n, y±, h̵±]/(1 − u1y)⋯(1 − uny)

and SpecKT (pi) = {1 − uiy = 0}.

Let ET (X) ∶= EllT (X) × Erank Pic(X). Choose a cocharacter σ = (1,2, . . . , n) ∈ Rn. This induces an
ordering of fixed points: p < q iff pi < qi.

Definition 12.7. For p ∈XT , define Stabσ(p) as the unique section of the line bundle T (p) on ET (X) such
that:

1.

Stab(p)∣p = ∏
i∈p,j∉p
i<j

θ (ui
uj

) ∏
i∈p,j∉p
i>j

θ (h̵−1 ui
uj

) ;

2.

Stab(p)∣q = fp,q ⋅ ∏
i∈q,j∉q
i>j

θ (h̵−1uj

ui
)

where fp,q is holomorphic in the ui.

T (p) is a line bundle coming from En×Ek×E equivariant with respect to Sk acting on Ek, thereby descending
to En × SymkE ×E. Because it is a line bundle on elliptic curves, sections can be given in terms of theta
functions. Here our θ is the Jacobi theta, satisfying

θ(qx) = −q−1/2x−1θ(x).

In other words, it is a section of the line bundle O(e) on E, where e is the identity.

Remark. There is an explicit formula for the stable envelope coming from the abelianization process. It is

Stab(p) = Symy1,...,yk

∏k
`=1 (∏i<p` θ(y`uih̵−1)) ⋅ θ(u`upiz

−1h̵k−n+pi−2`)
θ(z−1h̵k−n+pi−2`) ∏i>pi θ(u−1

i u
−1
i )

∏1≤i<j≤k θ(yi/yj)θ(h̵yi/yj)
.

The dual X ′ for n ≥ 2k is given by the An−1 quiver:

1 2 ⋯ k

1

k ⋯ k

1

⋯ 1
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We can represent the dimensions of the vertices as a slanted k×(n−k) rectangle. Let νi be the number of
boxes in the i-th diagonal. The Chern roots xI are indexed by boxes I. There are two equivariant parameters
a1, a2, and n + 1 Kähler parameters z1, . . . , zn+1. The fixed points are

(X ′)T
′

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

partitions in λ
λ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Such a partition is given by a path between opposite corners. The bijection (X ′)T ′ ↔XT is given by taking
the path and writing the sequence of direction changes. This is a standard bijection in e.g. the boson-fermion
correspondence. For X ′, we also have an explicit formula for the stable envelope:

Stab′σ′(λ) = Sym∏n+1
i=1 Sn

⎛
⎝
Sn,kλ ∑

t,t∶trees

w(t, t)
⎞
⎠

where Sn,kλ is a monomial of theta functions, and depends on the partition λ, Chern roots, and equivariant
parameters (but is independent of Kähler parameters). The w(t, t) term is also monomial in theta functions,
and depends on λ, Chern roots, and Kähler parameters. Trees must satisfy the constraint that no edges of
the form

can appear in any 2×2 box. If λ contains m(λ) number of 2×2 boxes, then the number of trees is 2m(λ)+m(λ).
From the theorem, we can therefore obtain identities of theta functions. For Gr(2,4), we can recover the

standard three-term identity of theta functions.
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