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1 (Jan 22) An introduction to an introduction

Enumerative geometry asks questions like: how many lines intersect four given lines in P3? The answer
is 2. Traditionally, the way to get this answer is by setting up a moduli space of all lines, and then by
doing intersection theory in this moduli space. A line in P(C4) is a plane in C4, so the moduli space of
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lines is Gr(2, 4). The condition of passing through a given line is a unique divisor class D, consisting of the
subvariety of all lines meeting a given line. Hence the intersection-theoretic number we want to compute is
D4. To do this computation requires using the GL(4) action on Gr(2, 4) to get the Bruhat decomposition

Gr(2, 4) =
⊔

(Bruhat cells).

Each cell corresponds to a Young diagram in a k× (n−k) rectangle. Multiplication by a divisor corresponds
to adding a box. Hence D4 corresponds to all ways to add four boxes inside a 2× 2 rectangle. The result is,
as expected, 2.

To do this computation in K-theory means to look at K(Gr(2, 4)) instead of H∗(Gr(2, 4)). Elements of
K(X) in general are coherent sheaves on X, up to the equivalence relation [E2] = [E1] + [E3] defined by short
exact sequences

0→ E1 → E2 → E3 → 0.

The analogous computation, in K-theory, of lines meeting four given lines, is given by taking the structure
sheaf OD instead of the divisor D, and computing O⊗4

D . To get an actual number, we apply χ. This
K-theoretic invariant still turns out to be

χ(O⊗4
D ) = 2.

K-theory is richer than cohomology. One reason is that it is a vector space, and vector spaces admit
group actions. One can ask why we stay in K-theory instead of going to the full-fledged derived category
DbCoh(X). The answer is that we want to preserve the crucial property of deformation invariance.

Why do we care about such enumerative problems in 2020? Often we want to study curves in varieties,
e.g. Gromov–Witten theory, subject to some intersection-theoretic constraints. There is often some moduli
M of maps f : C → X, where these constraints become cohomology/K-theory classes, and one ends up
computing invariants like

χ(M,Ovir
M ⊗ (constraints))

where Ovir
M is some improved version of the ordinary structure sheaf. For Gr(2, 4), which is an amazingly

nice moduli space, we don’t see this improvement because the improved version is the same as the original
structure sheaf.

Physically, these invariants are also thought of as indices in some 2+1 dimensional QFTs. What does this
mean? In classical mechanics, if we have some physical system then there is an associated configuration space
(M, g) which also has a metric measuring the energy. There is also a potential, which is a function V : M → k.
The corresponding quantum-mechanical problem has an operator E := −∆g + V and one would like to find
its spectrum. In particular we would like to know its eigenspaces, as representations of Aut(M, g, V ). The
typical example is a hydrogen atom, or really any kind of particle in a rotationally-invariant system.

In general, this problem is very hard. The first and biggest simplification we make is to introduce
supersymmetry (SUSY). We say the problem is supersymmetric if the Hilbert space decomposes as

H = H0 ⊕H1,

and there is an operator Q,Q∗ : Hi → Hi+1 such that

Q2 = (Q∗)2 = 0, E = {Q,Q∗} := QQ∗ +Q∗Q.

This is like a super Lie algebra of symmetries. A super Lie algebra is like a Lie algebra with Z/2-grading,
but where the anti-commutator {−,−} is used for odd degree elements.

How do we incorporate odd degrees of freedom into the configuration space? We need to add “odd
directions” to the moduli space, and then ask what should happen when we take functions on such odd
directions. The simplest example is when M is a vector space. Then functions on odd coordinates are just
dual vectors, and they have to anti-commute. Hence

H0 = Γ(∧evenT ∗M)

H1 = Γ(∧oddT ∗M),
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and we can take Q = d and Q∗ = d∗. Here the adjoint is with respect to the Riemannian metric g. Then

E = {Q,Q∗} = dd∗ + d∗d = −∆g

on Ω∗(M). So now we have to compute not just eigenvalues (and associated eigenspaces) on functions, but
also on differential forms.

One eigenvalue is easy. We know that −∆ ≥ 0. In other words,

(−∆v, v) = {Q∗v‖2 + ‖Qv‖2 ≥ 0.

If ∆v = 0, then Q∗v = Qv = 0. In our simple example, this means we want forms ω such that dω = 0, and
also that d∗ω = 0. To be killed by d∗ means it is orthogonal to anything in the image of d. Hence ω must
be a harmonic representative of a cohomology class. The picture to have is the following.

eigenvalues of ∆

Heven Hodd

Q+Q∗

Q+Q∗

• All non-zero eigenvalues of {Q,Q∗} pair up between Heven and Hodd.

• Heven 	 Heven = (ker ∆)even 	 (ker ∆)odd, which is now a finite-dimensional (virtual) vector space.
In the de Rham example, this is Heven

dR (M) − Hodd
dR (M). Importantly, this object is invariant under

deformations.

Why is the index deformation-invariant? Consider again the example where (M, g) is a Riemannian manifold,
and Q = d : Ωi → Ωi+1. Introduce a non-trivial local system L, and instead of d we take dL. We can also
deform dL by some operator that raises degree, like

dL + dW ∧ .

The corresponding energy operator is

−∆ = {Q,Q∗} = ∆L + (some dependence on W ′′) + ‖dW‖2.

We can either deform L or W . If we move L around, the individual cohomologies will change but the Euler
characteristic will not. If we scale W by a large N , then the dominant contribution is from N2‖dW‖2. All
eigenfunctions will therefore be very localized around the critical locus dW = 0. (Good reading for checking
these claims is Witten’s “Supersymmetry and Morse theory” paper.)

We are interested in a two-fold generalization of this setup: extended SUSY, and field theories in 2 + 1
dimensions. What is extended SUSY? Suppose M is a Kähler manifold. Then we can get more of these Q
operators. As before, we have −∆ = dd∗ + d∗d, but since d = ∂ + ∂,

−∆ = 2(∂∂∗ + ∂∗∂)

= 2(∂∂
∗

+ ∂
∗
∂).
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Setting Q1 := ∂ and Q2 = ∂ yields

{Q∗i , Qj} =
1

2
δijE.

So now there are two Q’s. (If we specialize further to hyperkähler manifolds, we can get even more.) Choose

Q := ∂ : Ω0,i(M)⊗ L → Ω0,i+1(M)⊗ L.

where instead of a flat bundle L we can put an arbitrary holomorphic bundle. Then, by Dolbeault’s theorem,
the index is

Heven(M,L)	Hodd(M,L).

As before, we can deform this construction by tensoring with a Koszul complex and adding a section
+s∧ for s ∈ Γ(V ). We can even tensor with a Chevalley–Eilenberg complex to introduce an additional Lie
algebra. The effect is that −∆ picks up extra terms ‖s‖2. In the end, such a complex still computes the
Euler characteristic of some coherent sheaf, but maybe on a stack instead of an algebraic variety.

What about “field theory in 2 + 1 dimensions”? Let C be a Riemann surface, which is the 2-dimensional
space. (Time is the +1.) In field theory, the configuration space is

M = (all functions from C to X).

One can imagine a little magnet at each point in space, pointing in some arbitrary direction, which specifies
an arbitrary function. Given a function f , we can put a PDE on f . The complex we discussed will then sit
on the zero locus of this PDE, which is finite-dimensional.

The point of this entire discussion is to show that all this physics reduces to something very mathematical:
the Euler characteristic of some coherent sheaf on an algebraic variety/stack. But this finite-dimensional
computation does some computation in an originally infinite-dimensional setting.

2 (Jan 27) Equivariant K-theory

Let X be an algebraic variety (or scheme) with a group G acting on it. Associated to this data is the
K-group K(X) and the G-equivariant K-group KG(X). Recall that given X, we can talk about the abelian
category Coh(X) of coherent sheaves on X. If X = Spec(R) is affine, then this is just finitely-generated
R-modules. Inside Coh(X) sits Perf(X), the category of locally free sheaves. Again, in the affine case, this is
finitely-generated projective R-modules.

The K-group is generated by symbols [E ] where E ∈ Coh(X) is a coherent sheaf. If there is a short exact
sequence 0→ E1 → E → E2 → 0, then there is a corresponding relation

[E ] = [E1] + [E2]

in the K-group. From this definition it is clear that there is a map

KPerf(X)→ K(X)

where KPerf means the K-group of the category Perf(X).
At this point we may as well assume that X is reduced. Otherwise, if R has a nilpotent ideal I, then

there is a (finite) filtration M ⊃ IM ⊃ I2M ⊃ · · · for any R-module M . Then in the K-group, M is a sum
of successive quotients, and these quotients are modules for R/I. So wlog we assume X is reduced.

If X is smooth, then every coherent sheaf E admits a finite locally free resolution. Assuming X is quasi-
projective (which we will), this is fairly easy to see: we can twist by an ample line bundle until there is a
section corresponding to a map F0 → E , and then one can repeat with the kernel. Hilbert’s syzygy theorem
guarantees this process terminates in finitely many steps. Hence for smooth X,

KPerf(X) ' K(X).
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We would like a map f : X → Y to induce a map between K-groups. Given a sheaf E on X, it has a
pushforward f∗E . But f∗ is not an exact functor, so to avoid losing information in K-theory we define

f∗[E ] :=
∑

(−1)i[Rif∗E ].

(In the case of pushforward to a point, this is just Euler characteristic, which is what last lecture we said we
wanted to compute in the end.)

There is also a pullback map. Given F on Y , there is the pullback OX ⊗fsheaf,∗OY f sheaf,*F . Again,
OX ⊗− is not exact, so in K-theory we have to define

f∗[F ] :=
∑

(−1)i Tori(OX , f sheaf,∗F).

Note that we need some criteria on the map f in order for pushforwards/pullbacks to exist. For pushfor-
wards, for the sheaves Rif∗E to be coherent we need f to be proper. For pullbacks, the sum must be finite,
so e.g. F should be locally free, or f should have finite Tor dimension. This is one reason it is nice to assume
the target Y is smooth, because then we can pull back any coherent sheaf. More generally, the way to think
is that K(Y ) is covariant while KPerf(X) is contravariant, so when the two coincide we get both properties.

If f : X → Y is a closed embedding, then pushforward has no higher cohomology. (It is just extension
by zero.) Pullback is more complicated: we have to resolve the sheaf by locally free sheaves and then pull
back. We’ll see the primary example in a moment.

The tensor E ⊗ F of two sheaves requires infinitely many Tors when the space is singular. But if one of
the sheaves is locally free, there are only finitely many Tors. Hence there is a map

K(X)⊗KPerf(X)→ K(X).

When G acts on X, there is a category CohG(X) of G-equivariant coherent sheaves. Let’s first talk
about locally free sheaves, which are the same as vector bundles. A vector bundle V is G-equivariant if
there is a G-action on the total space which is linear on fibers. One way to phrase this is to take the action
a : G×X → X, and consider a∗V . This is a bundle on G×X, whose fiber over (g, x) is

(a∗V )(g,x) = Vgx ∼= Vx.

So G-equivariance is an isomorphism
a∗V ∼= p∗2V.

Note that this definition makes sense for arbitrary sheaves. For more details, read the book by Chriss and
Ginzburg, chapter 5.

Definition 2.1. The equivariant K-group of X is

KG(X) := K(CohGX).

As before, there is a map KG,Perf(X)→ KG(X).

Example 2.2. Since a G-equivariant vector bundle on a point is just a representation of G,

KG(pt) = R(G)

is the representation ring of G. Explicitly, R(G) = Z[Vi] where Vi ranges over all irreps.

An interesting question is to examine the forgetful map KG(X)→ K(X). At the level of reps of G, this
is like sending a representation to its dimension. So one can ask: is

Z⊗R(G) KG(X)→ K(X)

an isomorphism? It turns out the answer is yes, for a large class of groups, independently of X.
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Suppose G acts freely on X with Y := X/G. There are, of course, all kinds of algebraic quotients, but
all of them should satisfy

CohG(X) ' Coh(Y ).

If π : X → Y is the quotient, then one direction is the pullback π∗. The other direction is π∗, which produces
a G-equivariant sheaf with trivial G-action, and then take G-invariants. Sometimes this is denoted as

π∗,GE := (π∗E)G.

In particular, passing to K-theory,
KG(X) = K(Y ).

We can use this to compute the K-theory of projective space. The first step is to recognize that

P(V ) = (V \ {0})/GL(1).

The second step is to return to studying a closed embedding Z → X of a closed, G-invariant subvariety.
Then there are maps

CohG(Z)→ CohG(X)→ CohG(X \ Z).

One says that this is a Serre subcategory, which just means that given two objects in two of these categories,
the third lies in the third category. Passing to K-theory, we get

KG(Z)→ KG(X)→ KG(X \ Z)→ 0.

That the last map is surjective is just extension by zero. However, the first map is not injective; take any
interesting hypersurface in projective space.

Applying this to P(V ), we get a sequence

KGL(1)(pt)→ KGL(1)(V )→ KGL(1)(V \ {0})→ 0.

Here we may as well discuss GL(V )-equivariant K-theory, so this sequence becomes

KG(pt)→ KG(V )→ KG(V \ {0})→ 0.

where G := GL(1)×GL(V ). These can be identified with

R(G)→ R(G)→ KGL(V )(P(V ))→ 0.

The second identification is because every module on V has a resolution by free modules, but there aren’t
many free modules. It remains to compute the cokernel, i.e. compute the pushforward f∗Opt.

We’ll do f∗Opt in steps: first for dimension 1, then for dimension 2, then in general. When V is a line
with coordinate x, we get

0→ OV
·x−→ OV → O0 → 0.

To restore the equivariance, recall that x is an element in V ∗. This is actually less confusion in dimension
2, so we’ll do that case. In dimension 2, when V is a plane with coordinates x and y, we get

0→ OV

 y
−x


−−−−−→ O⊕2

V

(
x y

)
−−−−−→ OV → O0 → 0.

To restore equivariance, since x, y ∈ V ∗, it makes sense that O⊕2
V = OV ⊗ V ∗, and the map is

OV ⊗ V ∗
∑
xi⊗ d

dxi−−−−−−→ OV ⊗ 1.
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There is a beautiful way to continue this sequence, using the same element d :=
∑
xi ⊗ d/dxi:

· · · d−→ OV ⊗ ∧2V ∗
d−→ OV ⊗ V ∗

d−→ OV ⊗ 1→ O0 → 0.

It remains to add in the GL(1) equivariance. It is the center of GL(V ), which acts on the defining repre-
sentation with the defining character. On V ∗ it acts by the dual to the defining character, which we notate
as

· · · d−→ OV ⊗ ∧2V ∗(−1)
d−→ OV ⊗ V ∗(−1)

d−→ OV ⊗ 1→ O0 → 0.

Let’s put all this together. Let s± denote the variable for GL(1), and a±1 , . . . , a
±
n denote the variables for

GL(V ). The map KG(pt)→ KG(V ) produces the relation which is the image of the generator:

1− s−1V ∗ + s−2 ∧2 V ∗ − · · · =
n∏
i=1

(
1− s−1a−1

i

)
.

We have shown the following.

Proposition 2.3. The equivariant K-ring of P(V ) is

KGL(V )(P(V )) = Z[s±, (a±1 , . . . , a
±
n )S(n)]/〈

n∏
i=1

(
1− s−1a−1

i

)
〉.

Recall we had a map CohG(X)→ Coh(Y \X). Multiplying by a character in CohG(X) corresponds to a
line bundle on Coh(Y \X), and one can check that s corresponds to O(1).

3 (Jan 29) Equivariant restriction

If G is a group and H ⊂ G is a subgroup, then there is a forgetful map KG(X)→ KH(X). It is more natural
to think about R(H)⊗R(G) KG(X)→ KH(X), and the question for today is whether this map is surjective.
The general criterion for surjectivity is that the commutator subgroup G′ is simply connected.

In particular, if H is trivial, this is a comparison between equivariant and non-equivariant K-theory. It is
not true in general that a group can be made to act on an arbitrary line bundle. In Chriss–Ginzburg, there
is the following.

Proposition 3.1. If X is normal and L ∈ Pic(X), then L⊗n can be made G-equivariant for some n.

Why do we need to raise L to some power? Consider Aut(P1) = PGL(2) acting on P1. As discussed last
time, K(P1) = Z with the generator O(1). However, PGL(2) does not act on O(1); otherwise it would also act
on the two-dimensional rep H0(P1,O(1)), but PGL(2) has no two-dimensional rep. Actually, KAut(P1)(P1)
is generated by O(2).

Why do we need normality? Let X be the nodal cubic, so that Xnonsing ∼= C×. By normalization, a
degree-d line bundle on X pulls back to a degree-d line bundle on P1. There is only one such bundle: OP1(d).
The pre-image of the node is two points on P1, which we call 0 and ∞. To pass back to X, we need an
identification of fibers at 0 and ∞. On sections, this is the condition f(0) = af(∞) for some a ∈ C×. Hence
Picd(X) = C×. If we let Xnonsing = C× act on X with weight q, then clearly on Picd(X) the action is
a 7→ qda. It follows that there is no line bundle of non-zero degree that can be made equivariant.

Here is another (perhaps more useful) argument. Suppose PicGd>0(X) is non-empty, and pick L in it.
Then L is ample and some power of it gives an equivariant embedding into P(V ) where V := H0(L⊗m)∗.
But note that given a non-fixed point x ∈ X, both limits limq→0 qx and limq→∞ qx are the same point,
namely the nodal point. This can never happen inside P(V ).

Note that although we have produced many different bundles on X, they are actually the same in the
K-theory. This is because of excision:

K(pt)→ K(X)→ K(C×)→ 0.
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Remark. A Lie group can always be written as GnU , where G is reductive and U is the unipotent radical.
As part of the proof we are about to see, it turns out that

KGnU (X) = KG(X).

Theorem 3.2. If G is reductive with G′ simply connected, then there is a surjection

KG(X)⊗R(G) R(H)� KH(X).

As an immediate corollary, K(G) = KG(G) = K(G/G) = K(pt) = Z, and therefore Pic(G) = 0. Such
groups are called factorial.

Another interesting case is X = G/H. Here KG(G/H) = KG×H(G) = KH(pt) = R(H). So the theorem
implies that

R(H)⊗R(G) R(H)� KH(G/H).

Note that the computation of KG(G/H) shows more generally that KG(G/H ×X) = KH(X). Hence

R(H)⊗R(G) KG(X)� KG(G/H ×X).

We can rewrite this as
KG(G/H)⊗R(G) KG(X)� KG(G/H ×X).

This starts looking like some kind of Kunneth formula. In general, in algebraic K-theory there is no Kunneth
formula; G/H is special.

We will prove the theorem by passing from G to H in several stages. First take a reductive subgroup
L ⊃ H of the same rank as G, by taking L/H = (C×)rankG−rankH . Then take P := L o U ⊃ L. The
unipotent radical has a filtration

U ⊃ U1 ⊃ · · · ⊃ UdimU , Ui/Ui+1 = C.

Finally, G/P is projective (this is the hardest part). In summary, there is a chain

G ⊃︸︷︷︸
projective

P ⊃︸︷︷︸
C

L ⊃︸︷︷︸
C×

H.

Theorem 3.3. Let G be simply-connected and semisimple, and P ⊂ G be a parabolic. The map

KG(G/P )⊗R(G) KG(X)→ KG(G/P ×X)

is surjective.

Proposition 3.4. Let Y be any space. For the map

KG(Y )⊗R(G) KG(X)→ KG(Y ×X),

the following are equivalent

1. it is surjective for all X;

2. it is surjective for X = Y ;

3. the diagonal O∆ is in the image when X = Y .

Proof. The forward directions are obvious, so we go backward from (3) to (1). If X is proper, then there is
a “multiplication” map

K(Y ×X)⊗K(X)→ K(Y )
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given by push-pull. Namely, because pX : Y ×X → X is flat and pY : Y ×X → Y is proper, we can do

(M ?−) : E 7→ pY,∗(M⊗ p∗XE)

for any class M∈ K(Y ×X). Importantly, if M = O∆ then this is the identity map.
If O∆ is in the image, this means we can write it as

O∆ =
∑
i

αi � α
i.

Given any class β ∈ KG(Y ×X), we therefore have

β = ∆ ? β = p13,∗(p
∗
12∆⊗ p∗23β).

By push-pull, this simplifies to ∑
αi � p3,∗(· · · ).

So we have exhibited β as an element of KG(Y )⊗R(G) KG(X).

In particular, we can apply this proposition to the case X = pt. Then we see that K(Y ) is spanned by
{αi} or {αi}, by the same reasoning:

β = ∆ ? β =
∑

αipY,∗(α
i ⊗ β).

The term pY,∗(α
i ⊗ β) we can think of as some bilinear pairing

(αi, β)Y := χ(αi ⊗ β).

To sum up, we have proved the following.

Corollary 3.5. Let X be smooth and proper. Suppose ∆ =
∑
αi � αi ∈ KG(X ×X). Then:

1. KG(X) is spanned by {αi} over R(G);

2. KG(X) is a projective module over R(G);

3. the map α 7→ (α,−)X is an isomorphism KG(X)→ KG(X)∨.

For example, the diagonal in E×E cannot be decomposed like this. Otherwise Pic(E) would have finite
rank over Z.

The simplest varieties with a decomposition of the diagonal like this are G/P , and the simplest G/P
are when G = GL(n) and P is the parabolic giving G/P = Pn−1. We’ll see next time how to explicitly
decompose the diagonal ∆ ⊂ P(V )× P(V ).

4 (Feb 03) Decomposition of the diagonal

What is the (non-equivariant) K-theory of a smooth genus-g curve? Given a sheaf over an algebraic variety
X, the first thing one can do is consider the corresponding module over the function field C(X). In other
words, there is a map from K(X) to the K-theory of the generic point:

K(X)→ K(ModC(X)).

For any given module, this loses the data of finitely many points. So there is an exact sequence⊕
p= points
of codim 1

K(p)→ K(X)→ K(ModC(X))→ 0.
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Concretely, the last arrow just takes the rank of the sheaf. The first arrow just sends a point p to the
structure sheaf Op.

We can keep extending this sequence to the left. Fact: given Y = SpecR, the higher K-theory K1(R)
is just GL(∞, R)/[·, ·]. Here GL(∞, R) means locally finite infinite-dimensional matrices. The commutator
subgroup inside GL is just SL, so K1 consists of units. In general (not just for curves), K1(X) = C(X)×.
There is therefore a map

C(X)× →
⊕
p

Z, f 7→ div f.

If we specialize to curves, we get that

K(curve) = Z⊕ Cl(curve),

with a degree map deg : Cl→ Z. This is because the K1 term mods out by rational equivalence.
In general, CohX has a filtration by F iCohX consisting of sheaves with support in codimension i. There

is a corresponding filtration on K-groups, with maps

K1(F i−1/F i)→ K0(F i/F i+1)→ K0(F i−1/F i+1)→ K0(F i−1/F i)→ 0.

Clearly

K0(F i−1/F i) =
⊕

W codim i−1

K0(C(W )).

The boundary map takes a function f and again sends it to its divisor. Hence we conclude

K(F i−1/F i+1) =
⊕

W codim i−1

OW ⊕ CHi(X)

where CHi is the i-th Chow group. Namely, given a cycle Z, there is a well-defined map to K0(F i/F i+1)
given by Z 7→ OZ .

To reiterate slightly differently: given a curve X, there is a map KPerf(X)→ Z⊕Pic(X) given by taking
rank and determinant. The determinant of a (perfect) sheaf E is det E := ∧rankE . On short exact sequences
0→ E1 → E2 → E3 → 0, we have

det E2 = det E1 ⊗ det E3
so it is well-defined in K-theory. Conclusion: if X is a curve of genus g > 0, then K(X) is:

1. not finitely generated;

2. the quadratic form
K(X)⊗K(X)→ K(pt), (E ,F) 7→ χ(E ⊗ F)

has kernel Pic0(X). This is because Riemann–Roch tells us

χ(E ⊗ F) = rank E · rankF · (1− g) + rank E · degF + rankF · deg E .

From our discussion last class, it immediately follows that on curves with g > 0, the diagonal is not
decomposable. Otherwise K(X) would be finitely generated. Let’s return to proving the theorem from last
class.

Theorem 4.1. Suppose X is proper and

K(X)⊗K(pt) K(X)� K(X ×X).

Then:

1. K(X) is a finitely generated projective module over K(pt);

10



2. the pairing K(X)→ Hom(K(X),K(pt)) given by E 7→ χ(E ⊗ −) is non-degenerate.

Proof. Write R := K(pt) and M := K(X). Let O∆ =
∑n
i=1 αi � α

j , and recall that convolution with O∆ is
the identity:

id = O∆ ?− =
∑
i

(αj ,−)αi.

This implies that

M
β 7→(r1,...,rn)−−−−−−−−→ Rn

(r1,...,rn)7→
∑
riαi−−−−−−−−−−−−→→M

is the identity, and therefore this sequence is an inclusion followed by a surjection. Hence M is finitely
generated. Note that therefore

Rn →M → Rn

is an idempotent, and M is the image of the idempotent map p. So

Rn = im p⊕ im(1− p) = M ⊕ im(1− p).

Hence M is projective. Also, it is clear that if β is in the kernel of

M 7→M∨ = Hom(M,R), β =
∑
i

αi(α
i, β),

then β = 0. Applying f to both sides, any map f ∈ Hom(M,R) can be written as

f(β) =
∑
i

f(αi)(α
i, β).

Recall that our original goal was to determine, if G is a group and P ⊂ G is a subgroup, whether

KG(G/P ×G/P )
?
= KG(G/P )⊗KG(pt) KG(G/P ).

Actually, we started with an arbitrary variety Y , and the question of whether

KP (Y )
?
= KP (pt)⊗KG(pt) KG(Y ).

But via the decomposition of the diagonal, we reduced down to the problem of whether

KP (G/P )
?
= KP (pt)⊗KG(pt) KP (pt).

In principle, this can be analyzed purely Lie-theoretically. There are finitely many P -orbits in G/P and
one can just figure out what can happen. Of course, as discussed, this statement is equivalent to finding
a decomposition of the diagonal for G/P . Without loss of generality, we may as well assume P ⊂ G is a
maximal parabolic. This is because we can reduce down from G to P in multiple stages, taking a maximal
parabolic at each stage.

So we will discuss the decomposition of the diagonal in the specific case when G = GL(n) and

P =

 k︷︸︸︷
∗

n−k︷︸︸︷
∗

0 ∗

 ,

so that G/P = Gr(k, n) = {L ⊂ Cn : dimL = k}. Let L denote the tautological bundle, whose fiber over a
point [L] is the space Cn/L. Over Gr(k, n)×Gr(k, n), there are two of these bundles L1 and L2 (from each
factor), and there is a canonical map

L1 → Cn → Cn/L2.

11



This is, equivalently, a section s ∈ Hom(L1,Cn/L2). This section has the very nice property that

s(L1, L2) = 0 ⇐⇒ L1 = L2.

One can check that it is a regular section. Hence it cuts out the diagonal ∆ ⊂ Gr(k, n) × Gr(k, n). Write
E := Hom(L1,Cn/L2) and X := Gr(k, n) for short. Then we have obtained a sequence

E∨ s−→ OX×X → O∆ → 0.

The way to continue this is with higher exterior powers ∧iE∨:

· · · → ∧2E∨ → E∨ s−→ OX×X → O∆ → 0.

The higher maps are just contractions with s. In general, this construction is known as a Koszul complex.
It is exact iff the section is regular. One checks now that all bundles ∧iE∨ sit inside K(X)⊗K(X), and we
are done.

For projective space P(Cn) = Gr(1, n), the tautological bundle is L = O(−1). The resulting Koszul
complex is exactly the Beilinson sequence

O(i)� ΩiPn−1(i)→ O∆,

and we immediately conclude that either {O(i)}n−1
i=0 or {Ωi(i)}n−1

i=0 spans K(Pn−1).
More generally, given a universal bundle V → X, we can do a resolution of the diagonal on the total

space of the bundle Y := Gr(k, V ) by the same argument. It follows that

KG(Y ) =
⊕

γi basis
of KG(Gr)

KG(X)γi.

This is known as the projective bundle theorem.
Be careful: on a vector bundle V , one cannot apply this argument because V itself is not proper! However

we can embed it into its projective closure

Y ↪→ P(V ⊕OX)

Call the total space of the projective bundle Y . Inside Y is the complement of V , which we call Z := P(V ).
This yields an exact sequence

K(Z)→ K(Y )→ K(V )→ 0.

But both Z and Y are projective bundles, with rankY = rankZ+1. Applying the projective bundle theorem
to both, this sequence becomes

n⊕
i=1

γiK(X)→
n⊕
i=0

γiK(X)→ K(V )→ 0.

Hence K(V ) ∼= K(X), and the isomorphism is just the pullback.
Interestingly, for this argument, we did not need the sum V ⊕OX to be a direct sum! In other words, it

suffices to have a map of bundles
0→ V →W → OX → 0.

Then P(W ) \ P(V ) is a principal homogeneous space over V . It is important that there is no canonical
identification between it and V . In this situation, the same argument goes through.

12



5 (Feb 05) Localization

Consider a vector bundle V → B. It could be that there is a space Y → B with an action by V fiber-wise,
such that the fibers of V and Y are non-canonically isomorphic. If we consider functions of degree ≤ 1 on
Y , there is a short exact sequence

0→ C→ (such functions)→ V ∗ → 0.

Let W denote the space of such functions. This means there is an embedding

Y ↪→ Spec Sym•W.

Rephrasing, Y ∼= P(W ) \ P(V ). Hence any affine bundle can be written as some projective bundle minus a
certain section.

Let’s continue the discussion from last time. We are in the middle of restricting from G to H. By the
structure theory of Lie groups, we can always find a sequence

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = H

such that Gi/Gi+1 is either projective, C, or C×. In other words, in the restriction process we will have to
deal with objects like

KG(G/P × Y ), KG(C× Y ), KG(C× × Y ).

We already discussed the G/P case, and the C case is a special case of the vector bundle theorem from last
time. It remains to do C×. There is a sequence

KG(Y ) ↪→ KG(C× Y )→ KG(C× × Y )→ 0.

The group G must act by a character χ on the C in the middle term. The first map is inclusion of the zero
section; the image is described by the Koszul complex, so we describe the map as 1− χ−1. Explicitly, think
of 0 ∈ Cχ being cut out by the function χ, which has weight χ−1. The Koszul complex is

0→ χ−1OCχ → OCχ → O0 → 0

and therefore O0 = (1− χ−1)OCχ . It follows that

KG(C× × Y ) = KG(Y )/〈1− χ−1〉.

If we write G = C× ×H, then χ is exactly the coordinate on this C×.

To reiterate: if G
χ−→ C×χ is a character and we set H := kerχ, then

KH(X) = KG(C×χ ×X) = KG(X)/〈χ = 1〉.

This is a very important result that we will use later to understand the structure of KG(X) more deeply.
This concludes the proof of the following theorem which we started discussing a few classes ago.

Theorem 5.1. If G′ is simply connected, then

KG(X)⊗R(G) R(H) ∼= KH(X).

Consider SpecKG(X). This is a scheme over G/G, where G acts on itself by conjugation. There is a
natural map H/H → G/G, and this theorem says the square

SpecKH(X) −−−−→ SpecKG(X)y y
H/H −−−−→ G/G

13



is Cartesian. For example, from now on we will basically restrict to the maximal torus T ⊂ G for computing
characters; nothing is lost.

Let G = C× act linearly on a vector space V by something like

a 7→

1
a

a2

 ,

and so it also acts on P(V ). We can ask for KC×(P(V )), as a module over the base ring R := KC×(pt) =
Z[a±1]. From the Koszul complex computation of a few classes ago,

KC×(P(V )) = R[s±1]/〈(1− s−1)(1− s−1a−1)(1− s−1a−2)〉

where s is the class of O(1). What does it look like as a scheme over SpecR? We will draw the norm-1 part
of the torus SpecR, and use logarithmic coordinates:

s

a

So KC×(P(V )) is a finite union of components, and these components all intersect at (a, s) = (0, 0) and
(a, s) = (1, 1). There is also another interesting point of order 2 in between.

The point a = 1 is easy to understand. It corresponds to restricting to the trivial subgroup. Its fiber is
just K(P2) = Z[s±1]/〈(1− s)3〉, which is a point of multiplicity 3. The interesting point corresponds to the
subgroup of order 2, and we have not computed the equivariant K-theory of P2 with respect to it yet. The
fiber there consists of a double point and another point.

In general we actually have a universal formula for the fiber over a point a ∈ SpecR: it is K(Xa). Given
a ∈ T , let A be the smallest subgroup generated by a, i.e. A := 〈an〉. Then

a ∈ A \
⋃
A′⊂A

proper subgroup

A′,

and there should be an identification

KA(X)
∣∣
A\
⋃
A′

= K(XA) = K(Xa).

In other words, we want to restrict to a complement of subgroups. This is called localization.
Consider the inclusion of the fixed locus XA ↪→ X. Since A doesn’t act on XA,

KA(XA) = K(XA)⊗R.

There is an exact sequence

· · · → K1
A(X \XA)→ KA(XA)→ KA(X)→ KA(X \XA)→ 0.

We want to prove that K1
A and KA of X \XA are supported only on

⋃
A′⊂AA

′, i.e. they are torsion. Hence
if we restrict to the complement of

⋃
A′, the map KA(XA) → KA(X) is an isomorphism. It would also

imply that the map K1
A(X \XA)→ KA(XA) is the zero map, because KA(XA) is a free module.

The idea of the proof is to do the comparison in stages, via a sequence

XA ⊂ · · · ⊂ XA′ ⊂ · · · ⊂ X.

14



Suppose we have XC× ⊂ X, and there is nothing intermediate. This means C× acts freely, because otherwise
we can take the element that acts with fixed locus and use that fixed locus. In other words, C× acts freely
on X \XC× . Let

Y :=
(
X \XC×

)
/C×

be the quotient. Then the sequence is

K1(Y )→ KC×(XC×)→ KC×(X)→ K(Y )→ 0.

Importantly, everything in K1(Y ) and K(Y ) sit at 1 ∈ C×, because the only data remembered by the
quotient by C× is the rank of the sheaf (which is evaluation at 1).

In our P2 example earlier, we had a chain of inclusions

(3 pts) ⊂ P1 t pt ⊂ P2.

The second inclusion has a free C×-action on P2 \ (P1 t pt), so

suppK(P2 \ (P1 t pt)) = {1}.

The first inclusion similarly has supp = {±1}.
This is not how localization is usually used. Its primary application is in the computation of pushforwards.

Consider

XA X

pt

proper

and suppose X → pt is proper. We want to compute χ(F) ∈ R for a sheaf F on X. Since R is torsion free,
it is enough to know the function on any open set of A = SpecR. If we tensor with the field of fractions,
then there is an isomorphism

K(XA)⊗R Frac(R) KA(X)⊗R Frac(R)

Frac(R)

∼

.

So to push forward from KA(X), we may as well push forward from KA(XA). In general it is hard to identify
what corresponds to F ∈ KA(X) inside KA(XA). But if X is smooth, there is a formula.

To understand the formula, consider the map i∗ : KA(XA) → KA(X) from earlier. This map is hard to
draw, because it is not an algebra homomorphism. However there is an opposite map i∗ : KA(X)→ KA(XA)
which is an isomorphism of algebras. This map is just the normalization map for our earlier picture over
SpecR:

s

a

,

s

a

s

a

 

s

a

.

So i∗ is easy to understand. The idea is to compute i∗i∗ in order to get a handle on i∗. Let XA =
⊔
Fi, and

let E be a sheaf on a component Fi. The components Fi are smooth. To compute i∗i∗E , we use the Koszul
complex, and get

i∗i∗E = E ⊗
(
OFi −N∨X/Fi + ∧2N∨X/Fi − · · ·

)
.
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6 (Feb 10) Localization (cont’d)

Let X have an action by A, where A is a semisimple algebraic abelian group (sometimes called a quasi-
torus). These are all products of finite abelian groups and tori. Any A-orbit is of the form A/A′ where A′ is
a (discrete) subgroup. There are infinitely many such A/A′, but on X there is a finite stratification by free
orbits of things like A/A′. One can imagine that X sits inside some P(V ), in which case this statement is
clear. Each stratum is of the form

X̊A′ := XA′ \
⊔

A′′⊃A′
XA′′ .

If we take KA of each stratum, there is clearly a map

KA(X̊A′)→ KA/A′(X̊
A′),

and we view KA(X̊A′) as pulled back from KA/A′ . But since A/A′ acts freely on X̊A′ ,

KA/A′(X̊
A′) = K(X̊A′/(A/A′)).

In summary,

KA(X̊A′) = R(A)⊗R(A/A′)KA/A′(X̊
A′)

KA/A′(X̊
A′) = K(X̊A′)⊗Z R(A/A′).

The K-theory KA(X̊A′) is therefore only supported at 1 ∈ A/A′. It follows that in the sequence

→ Ki
A(XA)→ Ki

A(X)→ Ki
A(X \XA)→ · · · ,

all the elements in Ki
A(X \XA) are torsion, because X \XA decomposes as a union of strata of the form

X̊A′ . Note also that the first term Ki
A(XA) is free, because it is K(XA)⊗Z R(A).

Suppose X is smooth. Let i∗ : KA(X)→ KA(XA) be the pullback map. It is an algebra homomorphism.
Given a sheaf F ∈ KA(XA), we can compute using Koszul resolution that

i∗i∗F = F ⊗ (Koszul) = F ⊗
∑
i

(−1)i ∧i N∨X/XA .

It is important to observe now that the term
∑
i(−1)i ∧i N∨X/XA is invertible on the relevant locus in A.

This is because if a ∈ A acts with some weights w(a) in NX/XA , then we can decompose

NX/XA =
⊕

wi(a)Li.

Without loss of generality, we assume the Li are line bundles. (In K-theory it suffices to prove formulas for
vector bundles that decompose as a sum of line bundles, by the usual splitting principle argument.) Then
the Koszul expression becomes∑

i

(−1)i ∧i N∨X/XA =
∏

(1− w−1
i L−1

i ) ∈ KA(XA).

The operator L⊗− of multiplication by a line bundle is unipotent, because by trivializing the line bundle we
see that the operator has eigenvalue 1 on each F iK(XA)/F i+1K(XA). Hence the operator

∏
(1 − wiL−1

i )
has eigenvalues 1 − wi. The only way for this to be zero is if wi is a fixed weight, which is impossible by
definition. It follows that

i∗ : KA(XA)

[
1

1− w

]
→ KA(X)

[
1

1− w

]
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is an isomorphism. The inverse map is i∗ up to the Koszul factor, namely

i∗

(
i∗E∏

(1− w−1
i L−1

i )

)
= E

for E ∈ KA(X).
In K-theory, if V =

∑
xi is the decomposition of V into its Chern roots, then ∧kV = ek(xi) where ek is

the k-th elementary symmetric polynomial. It is very convenient to think of wiLi as a Chern root, since it
is an equivariant line bundle. We will write it as just wi from now on.

Consider a proper map p : X → Y . Given E on X, to compute the pushforward p∗E we may as well think
about E on XA, via

XA X

Y

i

p .

If the pushforward p∗ is actually not proper but the composition p ◦ i is, then one might even want to define
the pushforward p∗ using p ◦ i. If Y is a point, the formula becomes

χ(X, E) = χ

(
XA,

i∗E∏
(1− w−1

i )

)
.

Example 6.1. Take O(d) on P(C2), and let(
a1 0
0 a2

)
∈ GL2

act on P(C2). Recall that O(1) has fibers dual to the corresponding line represented by a point of P(C2).
Hence

O(d)|[1:0] = a−d1 , O(d)|[0:1] = a−d2 .

We discussed last time that
T`P(V ) = Hom( `︸︷︷︸

a1

, V/`︸︷︷︸
a2

) = a2/a1.

As a picture, we think of this setup as

a−d1 a−d2

a2/a1 a1/a2

.

Applying localization,

χ(P(C2),O(d)) =
a−d1

1− a1/a2
+

a−d2

1− a2/a1
=
a−d−1

1 − a−d−1
2

a−1
1 − a

−1
2

.

There are two cases here. If d ≥ 0, we get a−d1 + a−d+1
1 a−1

2 + · · · + a−d2 . If d < 0 we get something else.
Note that we knew this is the correct answer, because for d ≥ 0 the space of sections is spanned by degree-d
monomials in two variables.

An equivalent way to think of χ(E) is that we are computing the trace of an operator a ∈ A acting on
the cohomology of E . We write this as

strH•(E)(a) =
∑

(−1)i trHi(E)(a),
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where str denotes a supertrace. We’ll just call it a trace. If dimXA = 0, then localization says this simplifies
dramatically to

trH•(E) a =
∑

fixed pts p

trEp a

det(1− a−1)

where the denominator is acting on TpX.
Consider an abelian variety X = V/Λ, where V is a C-vector space of dimension n. Let a ∈ GL(V ) ∩

GL(2n,Z) preserve the lattice Λ. Take the simplest sheaf on X, namely OX . To compute trH•(OX) a, one
way is to use the Dolbeault resolution

Ω0,0(X)
∂−→ Ω0,1(X)

∂−→ Ω0,2(X)→ · · · .

Then
Hi(OX) = H0,i(X) = ∧iV ∨.

Conveniently, from the perspective of the element a, we can replace V
∨

by just V . It follows that

trH•(OX) a = detC(1− a),

where detC reminds us to take determinant in GL(V ) and not GL(2n,Z). However, by localization,

trH•(OX) a =
∑

fixed pt p

1

detNX/p(1− a−1)
.

Since NX/p = V for every fixed point p,

# (fixed pts) = detC(1− a) detC(1− a−1) = detR(1− a).

This is an incarnation of the Lefschetz fixed point formula, where the number of fixed points is computed as
the degree of the map (1− a) : X → X.

Remark. There are fixed point formulas from differential geometry as well, by Atiyah and Bott. Given a
sheaf E , the Dolbeault resolution

E ⊗ Ω0,1(X)
∂−→ E ⊗ Ω0,2(X)→ · · ·

would yield

tr−χ(E)a =
∑
p

trEp a · det(1− a−1)

detTp(1− a−1) · det(1− a−1)
.

Here detTp is the character of an action on a formal neighborhood lim←−OX/m
N
p of p. The two additional

terms correspond to antiholomorphic functions and antiholomorphic forms. Upon canceling them, we get
the usual algebraic localization formula.

Example 6.2. Let’s look at P2 = P(C3) with actiona1

a2

a3

 .

The picture corresponding to O(d) on P2 is a triangle of size d, on the lattice a1 + a2 + a3 = 0.
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Then the vertices of the triangle correspond to a−d1 , a−d2 , and a−d3 . Take a Cech cover

Ui := {xi 6= 0} ∼= C2

Uij := Ui ∩ Uj ∼= C× C×

U123 := U1 ∩ U2 ∩ U3
∼= (C×)2.

Let’s do a Cech computation for χ(O(4)). On U1, the character of O(4) will be of the form

∑
d1,d2≥0

a−4
1

(
a1

a2

)d1 (a1

a3

)d2
=

a−4
1

(1− a1/a2)(1− a1/a3)
.

We recognize this as a term in the localization formula, where a−4
1 = O(4)|[1:0:0] and the denominators are

tangent weights. A similar computation holds for the other two fixed points. Repeating this calculation
on U12 = C × C× and U123, we can keep track of which areas of the polytope are included/excluded. The
final result is that only the interior triangle contributes. From our localization formula, we knew this must
be the result. All other regions in the polytope have torsion contributions, because they contain invertible
functions like x1/x2 which contribute terms like∑

k∈Z
(a1/a2)k.

These are delta functions.

Suppose V is an infinite-dimensional space, and we want to compute trV a. This may be too much to
ask for, but maybe we can compute trV

∫
aϕ(a) da.

7 (Feb 12) Character formulas

Let X := G/B, and let L be a line bundle on X. Then

Hi(X,L) =

{
0

induced rep of G

and therefore a computation of χ(X,L) will yield the Weyl character formula. The group acting on X is the
maximal torus A ⊂ G. Let’s see this in action for P1.

Example 7.1. If X = P1 = GL(2)/B, then L = O(d) for some d. Let

A =

(
a1

a2

)
.

We have a freedom to choose the linearization of the line bundle O(d). In other words, we are allowed to
twist L by an equivariant character. We computed last time, using the canonical linearization, that

χ(X,O(d)) =
a−d−1

1 − a−d−1
2

a−1
1 − a

−1
2

.

If d ≥ 0, this all comes from H0; if d < 0, this all comes from H1. Note that this answer is essentially a
generating function like

∑d
i=0 x

i, but it must

• analytically continue to d < 0, and

• satisfy the duality χ|(d+1) 7→(−d−1) = χ, where χ means the substitution ai := a−1
i .
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This duality operation corresponds to taking a dual representation. Explicitly, Serre duality tells us

H1(L−1 ⊗K) = H0(L)∨.

So we expect the duality to be a symmetry around the square root K1/2 of the canonical K.

In terms of localization, taking duals yields

χ(E) =
∑
p

E|p∏
(1− w−1)

=
∑
p

(−1)dim E|p ·
∏
w−1∏

(1− w−1)
.

This product
∏
w−1 is exactly the weight of the canonical KX .

Proposition 7.2. Let X = G/B. For every line bundle L ∈ Pic(X):

1. H0(X,L) is either zero or an irrep of G;

2. all irreps of G appear in this way.

Proof. Let V = H0(X,L). Then V has at most one highest weight vector v, namely a vector v ∈ V such
that

b · v = χv(b)v

for some character χv. Let U ⊂ B be the unipotent subgroup. In fact there is at most one U -invariant
highest vector. Otherwise if v1, v2 ∈ V are two such vectors, v1/v2 is a U -invariant rational function on X.
But U acts with an open orbit, so v1/v2 is actually constant.

Here is a more down-to-earth proof. We discussed that PicG(G/B) = PicB(pt). Hence a section in
H0(X,L) is a function f(g) on G such that f(gb) = f(g)χ(b) for some character χ. Peter–Weyl says that
functions live in

⊕
V ⊗ V ∗. The character χ specifies V ∗ uniquely.

Given an irrep V , note that V = H0(P(V ∨),O(1)). Inside P(V ∨) is G/B. The restriction map of linear
equations to a smaller sub-variety is injective, unless the sub-variety has a linear relation, in which case the
functions must come from a smaller P(W∨).

To understand TeB(G/B) for localization, write

g = h⊕ n+︸ ︷︷ ︸
b

⊕n−.

Then it is clear that TeB(G/B) = n− =
⊕

α<0 α in KB(pt).
On G/B, we have KG/B = O(−

∑
α>0 α). If we let ρ := (1/2)

∑
α>0 α denote the half-sum of all positive

roots, KG/B = O(−2ρ). Hence the symmetry coming from Serre duality involves a shifted version of the
Weyl chambers, by exactly −ρ. If we label each (shifted) chamber by its length i, i.e. the minimum number
of reflections across hyperplanes necessary to reach it from the dominant cone, it is true that only Hi 6= 0
for a line bundle in that chamber. Equivalently, we can restate this as follows.

Proposition 7.3. There is a shifted action

w · λ := w(λ+ ρ)− ρ,

and Hi(X,λ) 6= 0 iff i = `(w) where w · λ lands in the dominant cone.

Proof. Let αi be a simple root, and ri be the corresponding reflection in W . There is an associated parabolic
Pi ⊂ G whose Lie algebra is b⊕ g−α. Then there is a fibration

P/B = P1 G/B

G/P

π .
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On the P1 fibers, the G action is by 〈α∨i , λ〉. Fiber-wise, Serre duality tells us that if 〈α∨i , λ〉 ≥ 0,

π∗(Lλ) = π∗Lri·λ[1],

from our discussion earlier about P1. Since the maximal length is exactly dimX, it follows that the only
non-zero Hi is exactly i = `(w).

To wrap up our general discussion of K-theory, let’s discuss rigidity. This is when you think you have a
group action, but in fact it doesn’t act non-trivially. Here is the main example. Take a connected group G
and a smooth proper X. Then we can look at Hp(ΩqX), which a priori is some non-trivial G-rep. In fact,
this is the trivial rep, because by Hodge theory there is an embedding

Hp(ΩqX) ↪→ Hp+q
Top (X,C)

but the G-action is trivial on this.
Typically we make rigidity arguments differently. For a reductive group G, to prove a rep is trivial it is

enough to prove it is trivial upon restriction to the maximal torus A ⊂ G. Individual cohomology groups
are hard to deal with, so let’s compute a generating function. Define

Ω•t (X) :=
∑
q

Ωqtq.

This is a generating function for exterior powers, so we have things like

Ω•t (X) = Ω•t (XA)⊗ ∧•t (N∨X/XA)

because on the fixed locus, the tangent bundle TX splits in K-theory as TXA +NX/XA . By localization,

χ(X,Ω•t (X)) = χ

(
XA,Ω•t

1 + tw−1
i

1− w−1
i

)
,

where the wi are weights of the normal bundle NX/XA . Since we assumed X is proper,

χ(X,Ω•t (X)) ∈ KG(pt)[t] ⊂ (Laurent polynomials on A)[t].

The statement of rigidity is that actually this expression for χ has to be constant. This is because the
rational function

1 + tw−1
i

1− w−1
i

is bounded at every infinity of the torus A. Hence the resulting χ must actually be a constant Laurent
polynomial, i.e. a trivial rep.

In addition, rigidity implies this Laurent polynomial can be computed. We can choose any direction in
A to go to infinity. Let C× → A be a generic cocharacter, so that for z ∈ C× each weight wi(z) → 0,∞.
Call the 0 limit attracting and the ∞ limit repelling. Taking the limit for χ, each attracting weight wi yields
a factor (−t), and therefore

1 + tw−1
i

1− w−1
i

= (−t)#(attracting weights).

Actually the quantity χ(X,Ω•y(X)) is usually called χy-genus. We have just proved that

χy(X) =
∑

components F of
fixed locus

χy(F ) · y#(attracting weights),

where to compute attracting weights we take a generic cocharacter C× → A.
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Example 7.4. For P1, we have H0(O) = C and H1(Ω1) = C, so

χy(P1) = 1 + y.

Indeed, given a torus action on P1, everything is attracted to one of the two fixed points, giving 1 + 1 · y.

Note that here it is crucial that X is compact. For something like Cn, there is only H0 but this is a
non-trivial infinite-dimensional rep. In fact, there is a motivic decomposition

X =
∑

XA × A#(attracting weights)

in the “ring of varieties”, and χy genus is the homomorphism A 7→ y.

Exercise 7.1. Suppose X is such that L = Ks
X where 0 < s < 1 is some fractional power. For example, if

X = Pn, then KX = O(−n− 1) and O(−p) = K
p/(n+1)
X where 0 < p < n+ 1. Then show that

χ(L) = 0.

8 (Feb 17) Correspondences acting on K-theory

(Notes by Davis Lazowski)
We’ve talked in general about K-theory. For us, K-theory will be an arena in which representation theory

will play out.
If we want a map K(Y )→ K(X), you write the analogous thing to a matrix: some element E ∈ K(Y ×X).

You then get an operator by pushforward and pullback. I.e. if F ∈ K(X), we send

F → pY,?(p
?
XF ⊗ E)

Note, for pushforward to make sense, we need the map to be proper, for pullback to make sense, we need
the map to be flat.

Now suppose we are working equivariantly. Let T a torus of rank r. Then everything we write down is
over the ring

KT (pt) = Z[t±1 , . . . , t
±
r ]

In representation theory, we typically work over a field. For the representation theory over a general ring
is often a nightmare. Nonetheless, the fact that we’re over Z[{t±i }] is somehow an added feature. Becuse
this ring is very nice. If we tensor with a field, KT (pt)⊗Z Q, we understand its fibres very well.

Some of the big successes of this business are the work of Ginzburg, in his book, and of Kazhdan–Lusztig.
They took the Hecke algebra, which has a parameter q. If q is generic (not a root of unity), things are very
different from at a root of unity. If you interpret q as a coordinate on a copy of Gm acting, the reason for
this difference is very transparent.

Remark. We could also work over a base scheme S. Then we would have a correspondence

KT (Y ×X × S)

KT (Y × S) KT (X × S)

We have discussed at length the failure of the Kunneth formula in K-theory, but nonetheless, KT (Y × S) is
not that different from KT (Y )⊗KT (S), and may agree for many varieties. We may view this as a family of
sheaves fibred over S. We can take a further correspondence,

∆Y � β ∈ KT (Y × Y × S)

KT (Y ) KT (Y × S)
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If the Kunneth formula fails, in some sense, that’s ok : it just means you need to add an extra copy of S
every time we compose. So indices just pile up.

Example 8.1. Let S a surface, Hilbn(S) the variety parametrising n-tuples of points on S. The Nakajima
correspondence then says, for example, that if I had a configuration of five points on S, corresponding to an
ideal In, I could consider adding one extra point on S to get In+1. I could consider adding a point, which
would correspond to a short exact sequence

0→ In+1 → In → Op → 0

In fact, {0→ In+1 → In → Op} ⊂ Hilbn(S)×Hilbn+1(S)× S is smooth.
If S is a general surface, e.g. K3, there is no way we can decompose the ideal. So this correspondence is

really parameterized by S.
The operator induced by the correspondence that adds a point is usually called α−1. That which removes

a point is α1. Then
[α1, α−1] ∼ ∆Hilb ×∆S

(i.e., if one adds a point somewhere and removes a spatially distant point, these operations commute.) We
write this as a map

Hilbn → Hilbn×S × S
where this map lives in K-theory, but we have dropped the KT (•) from our notation.

Example 8.2. We will start with the simplest possible Nakajima quiver variety. Pick some n ∈ Z≥0, then
let

X = TG(n) = tnk=0T
? Gr(k, n).

GL(n)×GL(1) acts on TG(n), where

• GL(1) scales fibres;

• GL(n) acts on the base.

Lying inside here, we write the torus as

T = {

a1

. . .

an

× ~−1} = A× C×,

where the matrix is in some basis {bi}, and look at KT (X).

• On one hand, we’ve proved for any B, K(T ?B) = K(B).

• On the other hand, we’ve proved that K(Gr(k, n)) is generated by ΛiTaut, Taut denoting a tautological
bundle.

So what does equivariant K-theory look like as a scheme

Spec(KT (T ? Gr(k, n)))→ Spec(KT (pt))?

We write ei(x1, . . . , xk) = Λi(Taut), where the xi are coordinates on the base (C×)k/S(k). The fixed locus,
w.r.t to A, is spanned by coordinate vector spaces, i.e. span{bi1 , . . . , bik}.

So the fixed locus is the union of
(
n
k

)
parts. Therefore,

rank K(X) =

n∑
k=0

(
n

k

)
= 2n

we would like this to be a representation of something that deforms C2(a1)⊗C2(a2)⊗ . . .C2(an) where each
one of these is going to be a representation of gl(2,C[u]).
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If one then looks at a point in the torus, say ai, I may evaluate this Lie algebra at that point. So
this representation is for general a1, . . . , an, a very big algebra, and for specific choices of a1, . . . , an it’s an
evaluation of this.

Remark. C2(ai) should be written as C2[a±i ], the round brackets are purely convention.

What this representation will be will end up being called an R-matrix.

Example 8.3. Here is a coordinate point of view. Take gl(2,C[u±]). These are generated by matrices like(
un 0
0 0

)
(

0 1
0 0

)
(

0 0
1 0

)
The first kind of matrices roughly come from ΛkTaut. The

(
n
k

)
above correspond to summing coefficient in

the |↑〉 , |↓〉 basis.
There is a Nakajima-style correspondence here on Gr(k, n) × Gr(k + 1, n), which by taking conormals

gives a correspondence on T ?(Gr(k, n)×Gr(k + 1, n)).

But this is not how you should be thinking about it. Just like you don’t think of an algebraic variety in
terms of coordinates, you think about it in terms of the coherent sheaves on it, you don’t think of an algebra
in terms of generators-and-relations, but rather in terms of its category of modules.

Remark. Note that if G is a group, CG an algebra with an extra structure of a coproduct and antipode
making it a Hopf algebra, note that these have the same category of modules, But the extra structure on
CG gives G−mod the structure of a tensor category.

Observe that totally generally, if A is an algebra,

A = all operators in M that commute with Hom in Mod-A

So inside A = CG, we can find G inside as the subset solving

∆g = g ⊗ g

where ∆ denotes the coproduct.

Remark. The same story holds when G a group is replaced by g a Lie algebra. Then the analogue to CG is
the universal enveloping algebra U(g), and the coproduct equation identifying g inside is now

∆ξ = ξ ⊗ 1 + 1⊗ ξ

Definition 8.4. A quantum group is a deformation of Ug or CG in the class of Hopf algebras for which
the coproduct ∆ is no longer commutative.

One may think this makes the story more complicated, but in fact in many ways it is easier. Previously,
we had

(12)∆ = ∆

but this no longer holds. The point is, how can this not be the same? It can not be the same if now

C2(a1)⊗ C2(a2) 6= C2(a2)⊗ C2(a1)

How can it not be the same? Well, it means that sometimes these representations might be reducible.
In fact, they’re still the ‘same’, just there is a nontrivial isomorphism, R(a1/a2)?, from one side to the
other. R(a1/a2) is a rational function of its parameter. The points where the representations are reducible
corresponds to the points where the R-matrix has zero determinant. We will discuss this in more detail in
the next lecture.
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Remark. For notational convention, it may often be easier to use the same space but the opposite coproduct.
For C2(u)⊗ anything = V has some R-matrix,

R(u) : C2(u)⊗ V → C2(u)⊗ V

where u is a rational function of u with values in End(C2 ⊗ V ). To have one function in this space is the
same as to have four operators on V , by taking matrix elements.

The strategy of how we are going to make this R-matrix is as follows. TG(1) consists of two points.

Take K(TG(1)× TG(n)), construct two different maps (of U~ĝl2) in K(TG(n + 1)), such that they are

both isomorpisms after localisation in u. I.e. we want to send a tuple (u)× ~−1,

a1

. . .

an

× ~−1 into

a matrix


u

a1

. . .

an

. The Kunneth formula holds for the Grassmannian, so

K(TG(1)× TG(n)) ' K(TG(1))⊗K(TG(n)).

So take the matrix elements there. This is the direction in which our discussion will proceed next time.

9 (Feb 19) Reconstruction for quantum groups

(Notes by Davis Lazowski)
Setup. Today, we will look at A = U~(ĝ). This will be a Hopf algebra deformation of U(C? → g). The

C× automorphisms will be preserved in A. It will act on K(Xn) = tnk=0T
? Gr(k, n)).

A−mod will be a tensor category with an action of C?, M →M(u), generically braided so that there is
a rational matrix of u inducing an isomorphism

R(u1/u2) : M1(u1)⊗M2(u2)→M1(u1)⊗opM2(u2)

Further, R will satisfy a certain consistency equation, the Yang-Baxter equation,

R12(u1/u2)R13(u1/u3)R23(u2/u3) = R23(u2/u3)R13(u1/u3)R13(u1/u3)

Fact. For Xn = TG(n), it will be that case that K(Xn)⊗Frac(K(pt)) ' K(X1)⊗n. Further, K(X1) = pttpt.
Therefore it suffices to know

RK(X1),K(X1)(u)

Remark. Suppose we have a solution RMi,Mj
(u) of the Yang-Baxter equation for some collection {Mi}i∈I of

projective modules over your ground ring (for us, basically vector spaces).
Then this makes Mi1(a1)⊗ · · · ⊗Mik(ak) a module over a certain Hopf algebra with automorphism C×,

where the automorphism sends ai → qai, constructed as follows.
We take the further requirement

R21(u−1)R12(u) = 1

• Step 1. Define

RMi1
(a1)⊗···⊗Mik

(ak),Mj1
(b1)⊗···⊗Mj`

(b`) = Ri1j`(ai1b`) . . . RMik
,Mj1

(ak/b1)

Then we may check this satisfies the Yang-Baxter equation. The span of all matrix elements of our
R-matrices will be the putative algebra A.
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• Step 3. So we can think about RW,M , where we call W the auxiliary space and M the physical
space. This acts on W ⊗M . What we do is take an arbitrary matrix element on W .

Tensor product in auxiliary space W corresponds to multiplication of operators; the corresponding
relation from YBE on the tensor product of two auxiliary spaces and a physical space is known as
RTT=TTR. Meanwhile, tensor product in physical space corresponds to coproduct.

For picking a matrix element in W , the Yang-Baxter equation for W ⊗M1 ⊗M2 implies

∆matrix element of R = same matrix element of R01R02

where the label 0 is in W , 1, 2 in physical space.

• Step 3. Now we want to study commutation relations in A: we want to understand how W ⊗W ′ ⊗
M,M ⊗W ⊗W ′ compare. I.e. we would like to compare R0′1R01 and R01R0′1.

We know by Yang-Baxter

R0′0R0′1R01 = R01R0′1R0′0

• I.e. the algebra is the algebra of all matrix elements in auxiliary space of R-matrices RW,M . It is an
algebra because we may tensor auxiliary spaces, with coproduct coming from tensoring representations
of M .

There are relations: for instance, given by Yang-Baxter. But there could be further relations, i.e. a map
W →W ′ which universally commutes with R-matrices. These correspond one-to-one to morphisms in
the tensor category, hence one-to-one to relations in A.

Example 9.1. This is very familiar from the case of an algebra which is commutative but not cocommutative,
e.g. the example of functions on a group. E.g. G ⊂ GL(N),

We have a map C[End(V )] → C[G], which is a surjection. The relations are Sym•End(V ), which goes
like

⊗∞k=0(EndV )⊗k → S•End(V )→ C[End(V )]→ C[G]

The map ⊗k(EndV )⊗k → S•End(V ) is xij ⊗ xk`xk` ⊗ xij , the analogue of the Yang-Baxter equation. Any
G-invariant map S•End(V )→ C[End(V )] leads to another relation.

Moral. Any time you are faced by something which is like a quantum group, do not try to think about
relations in the algebra. Better is to think about morphisms in the tensor category one will generate, for
one has a chance to get a handle on these e.g. geometrically.

Our case. We are trying to use this general setup to compute an algebra gl(2,C[u±1]). There is a map

U(gl(2,C[u±]))→ ⊗U(gl(2))

by evaluating at some sets of points. So the representation theory is sort of a copy of gl2 for every point,
and they don’t talk to each other. But as we deform, that will change.

Hope. We would like

KGL(n)(TG(n))⊗ Frac(KGL(n)(pt)) ' ⊗ni=1C2(ai)

where in fact we take a torus diag(a1, . . . , an) ⊂ GL(n).

Fact. There will be two maps ∆,∆op : Keq(TG(n1)) ⊗ Keq(TG(n2)) ⇒ Keq(TG(n)). which will be iso-
morphisms after we invert some certain elements. Further, composing one with the other, we will get the
R-matrix. It will be given by a particular correspondence between these two Grassmannians.
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For Grassmannians, the decomposition theorem holds, so this really will be two correspondences

TG(n1)× TG(n2)⇒ TG(n1 + n2)

This will be a vey special case of a more general idea. Observe that if I have a torus diag(u, . . . , u, 1, . . . , 1)
with u in the first n1 entries and 1 in the last n2 entries, TG(n1)×TG(n2) ⊂ TG(n1 +n2) as the fixed locus
of this torus.

There is an interesting correspondence associated to such a situation, and much more generally. For if I
have a general torus A acting on some X, with fixed locus F = XA, there are two natural other subvarieties
associated to this set.

Example 9.2. We will do the special case of T ?P1. There is a torus action

(
u 0
0 1

)
with two fixed points,

0 and ∞.
We can study the attracting and repelling loci of the fixed point set on T ?P1. The two correspondences

we are interested in will live by taking an isomorphism of the fixed loci in K-theory with the attracting
or repelling loci, then pushfoward to Keq(X) (which will be an isomorphism after localisation). The really
interesting thing here will be the isomorphism with the atracting loci.

The geometric question this story raises:

0→ K(Xattr,∞)→ K(Xattr,∞ tXattr,0)→ K(Xattr,0)→ 0

How may we relate a sheaf on the union of the attracting loci onto the whole space?

10 (Feb 24) Nakajima quiver varieties

(Notes by Davis Lazowski)
Andrei is away this week, so Henry Liu is lecturing instead this week.
This week I’ll introduce you guys to Nakajima quiver varieties. They will be the prototypical varieties

we discuss for the rest of the course.
But before we talk about them specifically, I think it’s best to start with a larger picture, and view them

of as a special kind of (conical) symplectic resolution.
We want to view them as such because symplectic resolutions are already a very nice class of algebraic

variety, with many nice properties, inherited by Nakajima quiver varieties.

Definition 10.1. Let (X,ω) a smooth algebraic symplectic variety, X0 = Spec(Γ(X0)) is affinisation. If
X → X0 is a resolution of singularities (i.e. proper, birational,surjective), we call (X,ω) a symplectic
resolution.

Algebraic symplectic means that the symplectic form is an algebraic, i.e. holomorphic, 2-form.

Example 10.2. T ?G/B, Hilb(C2) are smooth symplectic spaces. (Hilb(C2) inherits a symplectic form from
C2).

• Spec(Γ(T ?G/B)) is the nilcone, N = {x ∈ g|ad(x) nilpotent }.

• Hilb(C2) is the moduli space of n points on C2, possibly overlapping. Its affinisation is Sym(C2)
(which is n-tuples of points on C2.) Moving to the affinisation, we lose the data of how points hit each
other.

For instance, (x2, y), (x, y2) are different in the Hilbert scheme, but both the same multiple of zero in
Sym.

Examples of symplectic resolutions we have are locally one of these two. So it’s not a theorem but
generally, locally, it suffices to study these two.
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Remark. These two examples are more special than general symplectic resolutions: there is a C× action on
the base.

Definition 10.3. A conical symplectic resolution is a symplectic resolution with a C× action on X0

which scales X0 down to a point.
In the opposite category, this means C[X0]0 = C. In particular, therefore the symplectic form is scaled

by a positive weight.

So we may look at [ω] ∈ H2(X,C). We learned a few classes ago thatH2(X,C) is the trivial representation
– i.e. weight zero. Hence,

Claim. If (X,ω) is a conical symplectic resolution, ω is exact.

Lots of other consequences follow from considering the C× action just like this.

Remark. For symplectic resolutions, not necessarily algebraic, X → X0 is stratified nicely, in some sense.
It’s nice because e.g.

Xi X

(X0)i X0

⊂

⊂

If (X0)i is a downstairs stratum, then the symplectic form ω|Xi on Xi is pulled back from the symplectic
form (ω0)|(X0)i downstairs. This automatically implies every symplectic resolution is semismall.

Definition 10.4. A resolution X → Y is semismall if codimY Yi = 2`, then codimXXi ≥ `.

We care about the semismall property because of the BBDG decomposition theorem, which implies
that we can understand the cohomology of X in terms of the cohomology of the strata of Yi.

The semismall property follows from this property on symplectic forms because the symplectic form
upstairs is nondegenerate. So look at the fibre over x0 ∈ (X0)i. We know dim(Xi) + dim(Xi)x0

≤ dim(X).
Hence because dim(X) = dim(X0) and dim(Xi)x0

= dim(Xi)− dim(X0)i,

2dim(X) ≥ 2dim(Xi) + dim(X)− dim(X0)i

=⇒ 2codimXXi ≥ codimX0
(X0)i

So now we know symplectic resolutions are important: how many we manufacture them? We do it via
algebraic symplectic reduction. Suppose G a Lie group, reductive, acts on M . Then

M ��θ,ζG = µ−1(ζ) �θ G = µ−1(ζ)θ−semistable/G

I am assuming most of you have seen symplectic reduction, to at least some extent, so I will focuse on the
GIT side of things. But first, let’s go over symplectic reduction quickly.

Symplectic reduction.

Definition 10.5. If G acts on (M,ω), we say the action is Hamiltonian if the map

g→ V ect(M,ω)

is such that ιV ω is exact. Very roughly, this says that you have ’enough conserved quantities’, i.e. Noether’s
theorem applies.

In this case, we may extend the sequence

g→ V ect(M,ω)→ C∞(M)

Then the moment map is the associated map µ : M → g?.
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Remark. If you haven’t done it, it is a good exercise to compute the moment map of the S1 action on S2.

Remark. From this description of the moment map, note that we can’t just plug in any ζ in for algebraic
symplectic reduction: you also need ζ to be a coadjoint fixed point, i.e. fixed under the action of G on g?.

Geometric invariant theory.

Example 10.6. Let Gm act on kn diagonally, by diag(t, t, . . . , t).
Gm-invariant functions on k[x1, . . . , xn] = k itself, just constant functions. Taking Spec, we just get a

point.
The problem is: we don’t have enough functions. Viewing k[x1, . . . , xn] as H0(X,OX), we will find more

functions by choosing a different line bundle.
To do GIT, you

• Pick L ∈ PicG(X), ample;

• Let C[X]G,L := ⊕n≥0H
0
G(X,L⊗n).

• Take Proj of this to get a geometric space.

Definition 10.7. The GIT quotient, X �L G = ProjC[X]G,L.

Remark. No one ever computes a GIT quotient this way. Note that X �L G has affine charts, Xf/sslashG,
where the functions really are invariant functions: it’s parameterising orbits of your action.

So we let XL−semistable = {x ∈ X| some f ∈ C[X]G,L has f(x) 6= 0 }.
Here, you’re thorwing away fixed points where all equivariant functions are zero which would otherwise

destroy your quotient.

Remark. For us X will almost always be affine. Then a line bundle is the same thing as a character
L ' O ∈ Hom(G,C×).

Example 10.8. Let X = Cn , acted on by C× (the k = C case of the example above). Choose a character
θ > 0.

Then 0 ∈ Cn is not θ-semistable, because f(t · 0) = tnf(0), by equivariance. t is arbitrary, so take the
limit as t→ 0.

What made this work was that 0 was a t-fixed point, and the weight of f under t is in some sense a
positive weight. Keep those two observations in mind, we will come back to them later.

I claim every other point is semistable and leave it to you to check. Then

Cn �θ C× = (Cn \ 0)/C× = Pn−1

What would happen if you took θ < 0, rather than θ > 0? There are no functions with negative weights, so
that space is just empty.

So,

• If θ > 0, we get Pn−1;

• If θ = 0, we get a point;

• If θ < 0, we get the empty set.

Remark. Observe that

f(x) = θ(γ(t))nf(γ(t)x)

Just like in the case above, we should try to take a limit, and compare f(x) with limt→0 θ(γ(t))nf(γ(t)x).
If limt→0γ(t)x exists as t → 0 and θ(γ(t))n is of positive weight, then, by the same argument as in our

earlier special case, x cannot be θ-semistable.
The Hilbert-Mumford criterion says that this is an if and only if.
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However, this is not enough to get a good quotient, where good is a technical term. For even some
semistable points may have very large (possibly infinite) stabilisers. This are, from the point of view of
algebraic geometry, very bad.

Definition 10.9. In the situation above, a point x ∈ X is θ-stable if

1. The stabiliser Gx is finite;

2. The orbit Gx is closed.

Fact. There is an analogue of the Hilbert-Mumford criterion for stability. Rather than requiring a weight
t > 0, we require t ≥ 0. This will give you θ-stable points. In particular, being θ-stable is an open condition.

Remark. Because of this, it’s not hard to believe the following picture: look at the space of all stability
conditions. Inside will be a certain hyperplane arrangement. Within each chamber, the θ-stable locus will
be unchanged. AS you take a limit and hit one of the walls of the chamber, some of these stable points may
become semistable. As you go past a chamber wall, these points may becaome unstable and other points
which were unstable may not be stable.

You’re still not quite done: even after such a GIT quotient, there may be singularities coming from finite
stabilisers. You need some additional structure to guarantee smoothness.

Remark. We have talked a lot about what happens when you vary θ. But we could also vary the moment
map parameter ζ. You will get a similar hyperplane picture. The point is, the more walls you’re on, the
more resolved you are. If you’re on the intersection of all walls (e.g. 0), you are maximally resolved.

Now, time to define Nakajima quiver varieties. These things have great properties.

Definition 10.10. • Let ~Q a quiver ( a directed graph with possible self-loops at vertices and possibly
more than one edge between any two nodes ).

• A representation of ~Q is the assignment of a vector space to each vertex, and a map between the
corresponding vector spaces for each edge.

• Let ~v a fixed dimension vector, with a dimension at each vertex, constraining the dimension of the
vector space at that vertex, Rep~Q~v.

• Add (drawn square) framing vertices, one for each vertex in ~Q and an arrow from the framing
vertex to its associated original vertex. Add a dimension vector to constrain the dimensions at framing
vertices. Denote this RepQ(~v, ~w).

• Now GL(Vi) acts on T ?RepQ(~v, ~w).

• Take the space T ?Rep~Q(~v ~w) ��
∏
iGL(Vi).

Note, we do not quotient by the action on framing vertices.

Remark. Why quivers? We’ll talk about this next time. But for various reasons, this quotient will not
have finite stabilisers. Hence this will turn out to be a smooth space. So these will alwys be symplectic
resolutions, with an incredibly nice group action by the framing vertices.

I will leave you with a small exercise:
Exercise. Let ~A1 the quiver with one node and no edges. What is the associated Nakajima quiver

variety?
You should find that it is T ?Gr(v, w), for generic stability condition and ζ = 0.
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11 (Feb 26) Examples of Nakajima quiver varieties

(Notes by Davis Lazowski)
Last time, we wrote down the definition of a Nakajima quiver variety.

Example 11.1. The simplest possible such example corresponds to the quiver with no edges and one node,
~A1 = •.

1. Add a framing vertex, • ← �.

2. Associate to • a dimension vector (scalar) k, and to � a dimension vector (scalar) n.

3. Then

RepT?Q = Hom(W,V )⊕Hom(V,W )

we need to compute the moment map for the GL(V ) action on this quiver. Call the coordinate on
Rep(W,V ) = q, on Rep(V,W ) = p. We need to differentiate the action,

ξ(q, p) = (ξq,−pξ)

Contract this with the symplectic form dq ∧ dp,

ιξω = ξqdp+ pξdq = d(pξq)

The natural dual map gl→ glV sends A→ tr(A•). so So, the moment map

µ : M → gl?V

(p, q)→ (ξ → tr(pξq))

4. So,

µ−1(0) = {(i, j) ∈ Hom(W,V )⊕Hom(V,W )|ij = 0}

5. Choose stability parameter θ > 0. I claim now stability requires that j be injective. For suppose j
were not injective. Then were j(e1) = 0, take the one-parameter subgroup scaling along that direction,
γ(t) = diag(t, 1, 1, . . . , 1), which doesn’t change j. So

lim
t→0

jγ(t)−1

exists.

6. Hence j ∈ Gr(k, n). i is perpendicular to j, so i is a cotangent vector at j. So this is T ?Gr(k, n).

Remark. What happens if you pick θ < 0? Then we find that i is surjective, by a dual argument to the one
above for j. So ker(i) ∈ Gr(n − k, n). The moment map is unchanged, so j is still perpendicular to i. So
now you get T ?Gr(n− k.n), still the same space.

Remark. In general, for any Nakajima quiver variety, any generic stability parameter θ and −θ will give you
the same space.

For a general quiver, you’ll mod out by
∏
i∈I GL(Vi). So we pick a stability parameter living in RI . In

here there will be some hyperplane arrange to avoid if we want all semistable points to be stable. What is
this hyperplane arrangement?

The Hilbert-Mumford criterion says that the walls live where θ(γ(t)) = 0 exactly. So they should lie
where θ · something is zero. Where?

Let Aij the adjacency matrix of ~Q. Write down the Kac-Moody Lie algebra associated to this Aij by
taking C = 2I − A. This algebra might be horribly, but nonetheless gives a Lie algebra associated to the

quiver ~Q, I
~Q.

Associated to that matrix C is a pairing on the quiver’s vertices.
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Definition 11.2. A root of the quiver is α ∈ N I so that (α, α) ≤ 2, where (•, •) is the pairing associated
to the Cartan matrix C.

Theorem 11.3. (Nakajima). The hyperplanes are {θ · α = 0} for some root α.

Example 11.4. Let Â1 the cyclic ~A1-quiver,

• •

associated to it is the affine Lie algebra ŝl2. The roots will look like

(
2α+ n
n

)
. So there are tons of roots.

and lots of chambers – some very interesting.

Example 11.5. Recall Hilbn(C2) = {I ⊂ OC2 |dimC[x, y]/I = n} where I is an ideal.
How do we think about this? Well, there’s a group action (C×)2 = diag(x, y) acting on C2, inherited by

the Hilbert scheme. On C2 the only fixed point is zero. So what are the fixed points on Hilbn(C2)? It’s all
points suppoted at zero.

For instance, (x2, xy, y2), (x3, y), (x, y3) are the length three fixed points at zero. Actually, every fixed
point of HilbnC2 is the same as a 2D partition: for choose homogeneous generators on the x, y lattice.

This is the quiver variety associated to the Jordan quiver,

•

T ?Q looks like

�

•
i

B1 B2

j

To compute µ, note the µA⊕B = µA ⊕ µB . Now the moment map on T ?Hom(W,V ) is just ij, like before,
and we may compute that the moment map on µ is just a commutator, [B1, B2].

So, µ = [B1, B2] + ij.
Now how do we find the semistable points? Fortunately, in the case of quivers we may use a perhaps

more tractable description than that of GIT stability, due to King:

Theorem 11.6. For quiver representations, GIT stability is the same as ‘slope’ stability.

The advantage of slope stability is that it is much easier to apply than the Hilbert-Mumford criterion.

Definition 11.7. If V ∈ Rep~Q,

slopeθ(V ) =
θ · dim(V )

(1, 1, . . . , 1) · dim(V )

we say V is slope semi-stable if slopeθV
′ ≤ slopeθV for all V ′ ⊂ V . It is slope stable should the

inequality be strict.

Unfortunately, we cannot apply the criterion directly to our framed quivers: to do so, we would be also
modding by GL(W ), the global symmetry group, and we don’t want to do this. But there is a very nice
trick.

Fact. Let Q a framed quiver. From it we may produce an unframed quiver Q~w. To make it,

1. Take your framed quiver
�w1 → • ← �w2
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2. Forget your framed vertices. Add a new vertex v∞. For each framing vertex � with dimension vector
w1, add w1 arrows from v∞:

v∞ •

3. We may perform King’s stability criterion for our new quiver Q~w. The stability parameter adds

θ∞ = −θ dim(V )

Example 11.8. Let us run this for the Jordan quiver. For framing dimension one and vertex dimension n.
Choose θ = −1. So θ∞ − n. Slope stability says that (θ, θ∞)(dimV ′, dimV ′∞) = 0.

• If dim(V ′∞) = 1, then V ′ = V . If dim(V ′∞ = 0), then there are no restrictions on V ′.

• Hence, V is stable if V = 〈B1, B2〉 im(i).

• So, the Nakajima quiver variety is

M = {(B1, B2, i, j)|[B1, B2] + ij = 0and is stable}

Why is this the Hilbert scheme?

A fact is that stability implies j = 0. Hence [B1, B2] = 0. Therefore V = C[x, y]/I. The x, y actions
on V are exactly the B1, B2 actions. The image of the preferred vector i is the unit.

That’s the bijection on points. Sadly, to show an isomorphism on spaces is harder: so we’ll not do so.

Remark. Some of you may know the ADHM construction of the Hilbert scheme. The ADHM equations say

[B1, B2] + ij = 0

[B1, B
†
1] + [B2, B

†
2] + ii† − j†j = −iθ

The first is the moment map equation, the second equation is an alternate to the stability condition.
It’s true this will produce for you the Hilbert scheme; why?
The answer is that in GIT there is

Theorem 11.9. (Kempf-Ness). X �θ G = µ−1
R (−iθ)/GR

The real moment map equation is the second ADHM equation. So we often call the top equation the
complex moment map equation, the latter the real moment map equation.

Remark. If we took θ = 1 instead, then i = 0. The bijection will show you V = (C[x, y]/I)?. Here we have
(1,−n)(dimV ′, dimV ′∞) ≤ 0, i.e. a subrep wher V ′∞ = 0 means V = 0. So the picture is a dual partition
picture where 1 cogenerates, rather than generates. So you flip a generator to a cogenerator.

Remark. These are the two primary examples. Some other nice examples: an ~An quiver with appropriate
framing will give you a flag variety.

Remark. What is TM in K-theory? Since M = [V/G], a tangent direction in the quotient looks as follows.
Take a G-orbit Gv. A tangent vector is a vector perpendicular to the orbit. I.e. T [V/G] = TV − TG,
approximately. The tangent bundle to a vector space is the vector space itself.

So, TM = T ?Q− (1 + ~)⊕i Ext(Vi, Vi). Further, T ?Q = Q+ ~Q∨.
Since M is still symplectic, this tangent bundle must split as T 1/2 + ~T 1/2,∨ (true for every symplectic

manifold in K-theory). We will this splitting a polarisation. There are many ways to make this choice,

but there is a natural way to do so for Nakajima quiver varieties, corresponding to the tangent bundle of ~Q
inside TT ? ~Q.
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12 (Mar 02) Vertex models

Let’s say we take equivariant K-theory

Keq(Xn) Xn :=

n⊔
k=0

T ∗Gr(k, n).

This is a module for the quantum group Uq(ĝl(2)), where we think of gl(2) as 2 × 2 matrices in C[u±], or,
equivalently, maps C× → gl(2). Commutators are taken “point-wise” in this latter picture. To be more
precise, there is a torus T = A× C×~ where the C×~ scales the cotangent direction in T ∗Gr and A ⊂ GL(n)
is the Cartan.

We have discussed this setup for a while now, with the conclusion that the key ingredient for constructing
such a quantum group action is an R-matrix. Namely, the equivariant K-theory will be a deformation of the
representation

n⊗
i=0

C2(ai),

where C2(ai) is the evaluation representation at u = ai, and because quantum groups are not cocommutative,
the non-trivial isomorphism

RC2,C2(a1/a2) : C2(a1)⊗ C2(a2)→ C2(a1)⊗opp C2(a2)

is the data we need. For example, when n = 2, we get

X2 = pt t T ∗P1 t pt,

and therefore, as a matrix,

R =


1

? ?
? ?

1

 .

The interesting 2× 2 block, corresponding to T ∗P1, turns out to be(
~1/2 1−u

~−u u 1−~
u−~

1−~
u−~ ~1/2 1−u

~−u

)
.

This 2 × 2 matrix originated far earlier than quantum groups, in other areas of mathematics. Note that if
~ = 1, then the isomorphism is trivial and the matrix is the identity matrix. Note also that ĝl(2) is a quantum
loop group, one can also plug in things like u = 0 or u = ∞. (All other points in C× are undistinguished,
because of Aut(C×).) For example, at u = 0 we get(

~−1/2 0
1− ~−1 ~−1/2

)
.

This is a valid R-matrix. But it is a very different animal from the R-matrix we care about. One reason is
the unitarity

R21(u−1)R12(u) = 1,

which yields something like the second Reidemeister move. On the other hand, the degenerate version of the
R-matrix really yields something like a braid group.

The first time this R-matrix appeared, its entries were weights in the six-vertex model. This is historically
one of the first examples of an exactly solvable (Euclidean) model in statistical field theory. We begin by
discretizing space, as a lattice Z2. Quantum field theories are theories of fluctuating “stuff”, so what

34



fluctuates on a lattice? One can try to assign degrees of freedom to the vertices of the lattice. This yields
models like the Ising model, for ferromagnetism, where the degrees of freedom are just vectors which point
either up or down at each vertex. This is modeled by a map σ : Z2 → S0 = {±1}. Fluctuations are described
probabilistically. The basic principle in statistical physics is that a system is in thermal equilibrium if

Prob(configuration) ∝ exp(−E/T ) (1)

where E is energy and T is temperature. For the Ising model,

E := −
∑

x,y neighbors

σ(x)σ(y).

A system out of equilibrium tries to resample itself, conserving energies, so that it goes back into equilibrium.
For the Ising model, spins flip based on the energy difference of being up or down. This yields a measure on
the configuration space of maps σ : Z2 → S0. An equilibrium state, or Gibbs state, is such a measure with
the property that once spins are fixed along a given contour, the spins inside are fixed by the formula (1).

Theorem 12.1 (Onsager). The moduli of such measures is:

• one point, above a critical temperature Tc;

• two points, below the critical temperature Tc.

The two points, at temperatures T < Tc, correspond to states of predominantly spins +1, or states of
predominantly spins −1. (These are magnetized states.) Concretely, we measure this by the observable 〈σx〉.
One can think of this as the graph

T

〈σx〉

.

Onsager’s main achievement was the exact diagonalization of the transfer matrix. Working on an infinite
domain is difficult, so we usually take a finite volume and then take the limit. It is easiest to impose periodic
boundary conditions, so that the lattice now forms a cylinder. The transfer matrix is very useful tool in this
situation. Write the sum over all states as the partition function Z. The transfer matrix is a map

T : C2` → C2`

where 2` represents the states along one row. It tells us how to “transfer” spins from one row to the next.
Then

Z = 〈TNv0, vN 〉

for a cylinder of height N . (One can, of course, insert more operators than just T .) Onsager diagonalized

this matrix T in a way which is very dear to representation theorists: C2` → C2` is the spin representation,
and diagonalizing T means to find eigenvalues/eigenvectors in this representation.

People started looking for generalizations of this miracle. A class of models called vertex models were
found (by Baxter?) that could also be exactly solved, in a similar but slightly different flavor. The fields are
defined not on the vertices, but rather on the edges of the lattice:

σ : (edges in Z2)→ (target).
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So interactions now happen at vertices; corresponding to every vertex is some interaction term. If the four
states, one for each edge at a vertex, are σ1, σ2, σ3, σ4, then one can write down the interaction term

σ1 σ4

σ2

σ3

= Rσ3σ4
σ1σ2

= exp(−E/T ).

The transfer matrix in this language is then a composition of these R’s, in the form

τin τout

σ1

σ′1

σ2

σ′2

If we think of R as an operator C2 ⊗ C2 → C2 ⊗ C2, then the transfer matrix as drawn here is an operator

C2 ⊗ C2L → C2 ⊗ C2L

where we view C2 as an auxiliary space and C2L as the physical space.
Baxter looked for an algebraic trick to diagonalize this transfer matrix. It turned out that the crucial

equation that T has to satisfy is the Yang–Baxter equation. In addition, we have the freedom to assign
a variable ai to each edge in an interaction, in which case the R-matrix becomes a function of the form
R(a1/a2). Then the Yang–Baxter equation and unitarity are upgraded to involve these ai, e.g.

R21(a2/a1)R(a1/a2) = 1.

Then, formally, we define T (u) by “closing” the auxiliary direction (whose variable is u) into a loop:

T (u) = trC2 RC2(u),
⊗

C2(ai) ∈ Mat(2L).

Its matrix coefficients are functions of u, a1, . . . , aL where ai are the variables associated to the remaining
edges.

Proposition 12.2 (Baxter). In this situation,

T (u)T (u′) = T (u′)T (u).

This is a strong constraint on eigenvalues of T . In fact, one can insert into the trC2 any operator z that
commutes with the R-matrix, and this commutativity will still hold for the resulting operators Tz(u).

Proof. Take two such transfer matrices. Create a little overlap using unitarity, and then use the Yang–Baxter
equation on the resulting triangles inductively.

Consequently, the Tz(u) form a commutative sub-algebra in Uq(ĝl(2)), parameterized by z ∈ C×. But

remember that Uq(ĝl(2)) is supposed to act on KT (T ∗Gr). The basic fact is that at z = 0, these are operators
of tensor product by tautological bundles. For general z 6= 0, these are operators of quantum product.
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13 (Mar 04) Stable envelopes

Let Xn :=
⊔n
k=0 T

∗Gr(k, n). At some point it will be important that Xn is symplectic, with a group action
which scales the symplectic form ω. Namely, Aut(X) acts non-trivially on ω. We can look at the group
Aut(X,ω) preserving ω, and inside it will be a torus

A =

a1

. . .

an

 ⊂ GL(n) ⊂ Aut(X,ω).

What are interesting fixed loci of Xn under the A-action? The identity element in A clearly fixes all
of Xn. A generic element in A fixes X1 ×X1 × · · · ×X1, corresponding to asking which eigenvectors have
common eigenvalues in Ck ⊂ Cn. For X3, the picture to imagine is

X3

a1 = a2 6= a3

ai 6= aj

.

We would like a correspondence which takes us between these interesting fixed loci, e.g. between X1×X1×X1

and X3 vs X2 ×X1. Note that the one-parameter subgroup

diag(a, a, . . . , a︸ ︷︷ ︸
n1

, 1, 1, . . . , 1︸ ︷︷ ︸
n2

)

has fixed locus exactly Xn1×Xn2 . At a = 0, the fixed locus expands to Xn where n = n1 +n2. Approaching
from the two different sides ± of a = 0 yields two different morphisms

Stab± : KT (Xn1 ×Xn2)→ KT (Xn)

called stable envelopes. The R-matrix will be the ratio of these two morphisms

R = (Stab−)−1 Stab+,

and from it we will recover the entire quantum group acting on KT (Xn). The R-matrix will depend on
all equivariant parameters, but the variable a acts trivially on the fixed loci, and so in particular there is
a special dependence on a which we notate as R(a). Recovering the quantum group in this way makes all
these maps Stab± intertwiners for the quantum group action. In particular, they will look like permutations
of factors in

C2(a1)⊗ C2(a2)⊗ · · · ⊗ C2(an).

In this construction of the R-matrix, the Yang–Baxter equation holds automatically once we show that
each “triangle” commutes in the picture above. We will prove this later. The chambers in the picture above
can be explicitly described by inequalities like a1 � a2 � a3. This means that a2/a1 → 0 and a3/a2 → 0 in
any limit to infinity inside the chamber.

Take XA ⊂ X. This is the locus fixed by everything. Its normal bundle NX/XA carries an A-action, and
the ai/aj are weights that occur in it. There is jumping behavior (walls in the diagram) whenever ai/aj = 1
for some i, j, which implies that there is an extra fixed direction for that sub-torus. Away from the walls,
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elements a in the interior of each chamber have Xa = XA, and for every w ∈ NX/XA either w → 0 or
w →∞. None can stay finite. Hence we can define the attracting manifold

Attr := {(x, f) : lim
a→∞C

a · x = f} ⊂ X ×XA.

Example 13.1. Take X2 = pt t T ∗P1 t pt and focus on T ∗P1. Let diag(1, a) act on it, so that its toric
picture is

[1 : 0]

a

[0 : 1]

1/a
.

Then the attracting manifold of [1 : 0] is

.

and the attracting manifold of [0 : 1] is

.

Importantly, the attracting manifold of [1 : 0] is not a closed subset. We don’t like correspondences supported
on non-closed subsets, because then we pushforward and something goes bad. Of course, one can take a
closure, but that yields something which is not well-behaved in families. Instead, we take the transitive
closure: take the closure, and then take the attracting set of the closure, etc. We call this the full attracting
set

Attrf ⊃ Attr .

More precisely, T ∗P1 has a map to the nilcone N ⊂ sl2, and the nilcone can be deformed by smoothing the
conical singularity. If we look at Attr([1 : 0]) in this family, its closure is not the closure fiber-wise.

Hence we would like the correspondence on X×XA to be supported on Attrf . One can pick the inclusion
map XA ↪→ X for the correspondence, but it is not interesting because it does not take into account the
chamber structure.

Example 13.2. Let’s return to T ∗P1. We want two different maps

X1 ×X1 → X2 = pt t T ∗P1 t pt

whose ratio yields the non-trivial 2× 2 block we wrote down last class:

R =


1

? ?
? ?

1

 .
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The first attempt is to take the structure sheaf OAttrf as the correspondence. This will unfortunately fail
for a minor reason: when ~ = 1, the quantum group is co-commutative, and therefore when ~ = 1 the 2× 2
block must be the identity map. In other words, these two different maps must be the same at ~ = 1. But

OAttrf+([1:0])|[1:0] =
∏

w∈N
Attrf /X

(1− w) = 1− a,

whereas in the other chamber we have

OAttrf−([1:0])|[1:0] =
∏

w∈N
Attrf /X

(1− w) = 1− 1

~a
.

These are close, but not the same at ~ = 1.

Very generally, a symplectic manifold will have weights which come in dual pairs wi and 1/(~wi), and
restrictions of O will always be of the form

n∏
i=1

(1− w±i )

in any chamber. Changing a chamber will only change this up to a sign and a monomial. This observation
necessitates that we choose a “half” of all the weights beforehand, with respect to which we do certain
constructions. In K-theory, this is a polarization

T 1/2X ∈ KT (X)

such that
TX = T 1/2X + ~−1(T 1/2X)∨.

Note that T 1/2X is not necessarily an actual vector bundle; it is a virtual bundle in general. Locally, the
picture is to take π : T ∗M →M and observe that

T (T ∗M) = π∗TM + ~−1(π∗TM)∨.

If F ⊂ XA is a fixed component, we would like to normalize the stable envelopes Stab such that

StabF = (line bundle)OAttr(F )

since we have already seen it cannot be just OAttr(F ) on its own. Let wi be the attracting weights at F ; they

are just Chern roots of N>0
F/X . Then

OAttr+(F )|F =
∏

(1− ~wi), OAttr−(F )|F =
∏

(1− w−1
i ),

and so we can use the line bundle freedom to get a compromise between these two:

(line bundle) = (−1)rankT
1/2
>0

(
detN<0

detN1/2

)1/2

.

This expression, in some sense, “symmetrizes” the products for OAttr|F :

(1− ~wi) ((~wi)1/2 − (~wi)−1/2), (1− w−1
i ) (w

1/2
i − w−1/2

i ),

and then the specialization ~ = 1 makes these two agree.
Square roots are common in K-theory, and in general some argument must be made to show they exist.

In this case, note that the normal bundle can be written in two different ways:

N = N<0 + ~−1N∨>0

= N1/2 + ~−1N∨1/2.
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Then δN := N<0 −N1/2 has

δN∨ = −~−1δN.

It follows that

det(δN) =
detN<0

detN1/2
=
∏ 1

wi
· 1

~wi
.

Hence, at the price of allowing square roots of ~, the square root exists.

14 No more notes (classes moved online)
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